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2.1 Inflammation 

Various exogenous and endogenous stimuli can cause cell injury. These stimuli provoke a complex 

reaction in the vascularized connective tissue called inflammation. Characteristic for any 

inflammatory process is the reaction of the blood vessels, leading to the accumulation of fluid and 

leukocytes in extravascular tissue (Cotran et al.; 1999).  

Inflammation can be divided into acute and chronic forms. Characteristic for an acute progression 

is the relatively short duration, the exudation of fluid and plasma, and the emigration of leukocytes, 

predominantly neutrophils. It is the immediate and early response of the organism to an injurious 

agent. Chronic inflammation is of longer duration and associated with the presence of lymphocytes 

and macrophages, the proliferation of vascular cells, and tissue necrosis. It develops under 

persistent infections of certain microorganisms, prolonged exposure to potentially toxic agents, or 

under certain conditions when immune reactions are set up against the individual’s own tissues 

(autoimmunity) (Cotran et al.; 1999).  

 

Basically, inflammation is a protective response to injury aiming to destroy the injurious agent and 

to simultaneously heal and repair the damaged tissue. However, inflammation and repair may be 

potentially harmful and are the basis of some common chronic diseases, such as rheumatoid 

arthritis, atherosclerosis, and lung fibrosis. Thus, it is important to learn about the underlying 

signaling pathways and to find new targets or ways to control pathological processes of 

inflammation (Cotran et al.; 1999).  

 

During inflammation, specific combinations of cell surface proteins (i.e. adhesion molecules) and 

certain soluble factors such as cytokines, regulate leukocyte recruitment into extravascular tissues 

at the site of injury. This is a critical step for the immune response and the repair of damaged 

tissue. Conversely, uncontrolled extravasation of leukocytes leads to inflammatory disorders 

(Springer, 1995). 
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2.2 Aim of the study 

2.2.1 Salicylates and HO-1 

The adhesion molecule P-selectin has been shown to be a major determinant of inflammatory 

responses. Different pharmacological agents including salicylate, the active metabolite of acetyl-

salicylic acid (ASA), have been shown to inhibit IL-4-induced P-selectin expression in endothelial 

cells. Mechanisms responsible for P-selectin inhibition, however, are as yet not very well known. In 

the present work we confirmed this finding and aimed to elucidate the events leading to this 

inhibition.  

In the recent past, there has been accumulating evidence that the rate-limiting enzyme in the de-

gradation of heme, heme oxygenase-1 (HO-1) has anti-inflammatory features. Several mecha-

nisms have been postulated which lead to a reduced immune response including the influence on 

several adhesion molecules such as P-selectin. In accordance with the anti-inflammatory potential 

of HO-1 we have recently found that ASA induces HO-1 in endothelial cells (Bildner, 2002). This 

led to the hypothesis that the inhibition of IL-4-induced P-selectin expression by NaSal is mediated 

via an induced HO-1 expression. In the first part of the present work we aimed to prove this 

hypothesis and tried to clarify the underlying signaling pathway leading to HO-1 induction by NaSal.  

 

2.2.2 Metalloporphyrins and caspases 

Apart from the beneficial effects of HO-1 on inflammatory processes, HO-1 is known to provoke 

anti-apoptotic effects (Maines, 1997). Metalloporphyrins are heme-analogous and are thus able to 

inhibit the activity of the heme-converting enzyme HO-1. Therefore, they are widely used and 

accepted tools in research investigating functional aspects of HO-1. In studies concerning the anti-

apoptotic features of HO-1, different metalloporphyrins are often employed to either stimulate HO-

1-expression or inhibit its activity (Dorman et al.; 2004; Sass et al.; 2003; Zhang et al.; 2004). 
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Apoptotic cell death is then quantified with various assay methods, such as the measurement of 

caspase-3-like activity. In an approach to determine potential anti-apoptotic features of ASA-

induced HO-1 we observed contradictory results in a respective experimental setting. This led to 

the hypothesis that metalloporphyrins exert actions other than their well-known HO-1-dependent 

effects. Therefore, the second part of this work deals with the specificity of metalloporphyrins. Aim 

of the study was to find the cause for these contradictory results and further investigate a potential 

effect of the metalloporphyrins on caspase activity. 

 

2.3 The endothelium 

The endothelium has an important function in the initial steps of inflammation. In the past, it was 

considered to be a non-reactive barrier between blood and tissue with its primary function to tightly 

regulate permeability of the vessel wall in the circulatory system. However, in the recent years it 

has become obvious that endothelial cells (ECs) are by no means inert. As a gate-keeper between 

the vessel lumen and the surrounding tissue, they regulate the transfer of small and large 

molecules, and exert autocrine, paracrine, and endocrine actions on smooth muscle cells and 

platelets, thereby regulating the vascular tone and coagulation (Cines et al.; 1998; Galley et al.; 

2004). ECs also regulate leukocyte movement into tissues via a carefully regulated process 

involving adhesion molecules that mediate the attachment of leukocytes to the endothelium by 

binding to specific ligands as well as the process of transmigration (Muller, 2003). Therefore, the 

endothelium represents a prominent target for numerous inflammatory stimuli released during 

several inflammatory diseases which demonstrates its important role in inflammatory processes. 

 

2.4 Adhesion molecules 

The process of leukocyte infiltration into the inflamed tissue involves several steps including (1) 

tethering of the immune cell to the vessel wall, (2) rolling, the initial formation of usually reversible 
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attachments, (3) activation of attached cells and development of stronger, shear-resistant adhesion 

(sticking), and (4) spreading and migration across the endothelium (diapedesis) (figure 1). Each of 

these steps appears to be necessary for effective leukocyte recruitment, because blocking any of 

the four can severely reduce leukocyte accumulation in the tissue (Cines et al.; 1998). 

 

 

 

 

 

 

 

 

 

figure 1: Recruitment of leukocytes to sites of inflammation. Leukocyte adhesion is a cascade of 
adhesion and activation events that ends with extravasation of the leukocyte, whereby the cell 
exerts its effects on the inflamed site. At least four steps are involved: (1) capture (tethering) 
and (2) rolling of the leukocyte, in which selectins and glyco-conjugated selectin-ligands are 
involved, (3) activation by chemokines and firm adhesion to the endothelium (sticking), followed 
by (4) transmigration (diapedesis), both mediated by integrins and immunoglobulin-like cell 
adhesion molecules (Ig-CAM). Adapted from Cines et al. (1998). 

 

Those steps are regulated by different families of cell adhesion molecules, such as selectins, 

immunoglobulin-like cell adhesion molecules (Ig-CAM), integrins, and cadherins, expressed on 

endothelial cells and leukocytes. Amongst other things they mediate the binding to counter-

receptors on other cells. Specific combinations of chemoattractants and adhesion molecules may 

control the onset and duration of leukocyte recruitment, as well as the type of leukocytes that are 

mobilized during acute, chronic, or allergic inflammation. The different inflammatory stimuli activate 

ECs to express a specific pattern of cell adhesion molecules and chemokines that physically 

engage circulating leukocytes and promote their adhesion to the vessel wall. Adhesion molecules 

present on ECs are members of the selectin family, E-selectin and P-selectin, and the Ig-CAMs 
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intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). The 

selectins allow the cells to tether and roll on the vessel wall and the Ig family members 

subsequently bind to integrins on the leukocyte surface and cause the firm adhesion of the cell 

(Aplin et al.; 1998).  

 

2.4.1 Selectins 

The selectins mediate the initial tethering and rolling of leukocytes and are essential adhesion 

molecules for the development of inflammation. They form a family of three lectin-like adhesion 

receptors composed of three members, L-, E-, and P-selectin (Aplin et al.; 1998; Springer, 1995). 

The structure of a selectin includes an amino-terminal domain that is homologous to calcium-

dependent lectins, followed by an epidermal growth factor (EGF)-type domain, two to nine 

complement regulatory protein repeats, a transmembrane helical segment, and a short cytoplasmic 

tail (figure 2).  

 

 

 

 

 

figure 2: Structure of the selectins. Selectins contain an N-terminal extracellular domain with structural 
homology to calcium-dependent lectins, followed by a domain homologous to epidermal growth 
factor (EGF), and two to nine consensus repeats (CR) similar to sequences found in 
complement regulatory proteins. Each of these adhesion receptors is inserted via a hydrophobic 
transmembrane domain and possesses a short cytoplasmic tail at the carboxy-terminus. 

 

Selectins are glycoproteins and bind, through their lectin domain, to selectin ligands. Selectin 

ligands are sialylated forms of oligosaccharides, which themselves are covalently bound to various 

glycoproteins (Menger et al.; 1996).  
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L-selectin (CD62L) is expressed constitutively on leukocytes, but its presentation at the cell surface 

may be regulated. E-selectin (CD62E) is synthesized and expressed on ECs in response to 

inflammatory cytokines such as tumor necrosis factor-α (TNF-α) or interleukin-1 (IL-1). 

Upregulation of cell surface E-selectin expression is the result of transcriptional activation of the E-

selectin gene. P-selectin (CD62P), the largest of the selectins, is stored in the membrane of the  

α-granules in platelets and in the membrane of the Weibel-Palade bodies in ECs and is 

translocated to the cell surface upon cell activation (McEver et al.; 1989).  

 

2.4.2 P-selectin in chronic inflammation 

Former names for P-selectin include platelet activation dependent granule external membrane 

protein (PADGEM) and granule membrane protein 140 (GMP-140). The existence of preformed P-

selectin enables a rapid translocation from the secretory granules to the cell surface upon cell 

activation by thrombin, histamine, or other agonists (Tedder et al.; 1995). This self-limited process 

occurs within minutes and is particularly important in leukocyte rolling on endothelium in the earliest 

stages of acute inflammation (Geng et al.; 1990; Hattori et al.; 1989). Persistent expression of P-

selectin on ECs, involving an increase in mRNA and lasting several days, has been observed in 

human tissues with chronic and allergic inflammation such as allergic rhinitis (Symon et al.; 1994), 

atherosclerotic plaque (Johnson-Tidey et al.; 1994), and chronic rheumatoid arthritis (Grober et al.; 

1993). This suggests that certain inflammatory cytokines induce P-selectin synthesis under some 

conditions. In fact, augmented expression of P-selectin involving an increase in mRNA is brought 

about by TNF-α or lipopolysaccharide (LPS) in murine (Gotsch et al.; 1994) and bovine ECs 

(Weller et al.; 1992). This increase becomes prominent after 2 to 4 hours and then declines to 

basal levels within 12 hours (Sanders et al.; 1992; Weller et al.; 1992). Thus, it remains uncertain 

whether the effects of these mediators are sufficient to account for the persistent expression of P-

selectin observed in human tissues with chronic and allergic inflammation. 
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Inflammatory mediators, such as TNF-α or LPS, activate transcription of many immediate-early 

genes, including endothelial cell adhesion molecules. Regulation by the transcription factor nuclear 

factor κB (NF-κB), a central mediator of the innate immune response, plays a critical role in 

activation of these genes (Collins et al.; 1995; De Martin et al.; 2000; Lentsch et al.; 1999). 

Interestingly, unlike its effects in murine endothelial cells, TNF-α does not increase P-selectin 

mRNA in human ECs (Yao et al.; 1996). Furthermore, the promotor of the human P-selectin gene 

lacks the recognition element for p65-containing NF-κB heterodimers, the prototypical form of this 

transcription factor (Pan et al.; 1993). This implicates that mediators other than TNF-α and LPS 

increase the prolonged transcription of endothelial P-selectin independent from NF-κB at sites of 

chronic or allergic inflammation in humans. In fact, this knowledge led to the discovery of a new 

category of agonists that induced P-selectin expression with kinetics very different from those 

induced by the agonists described earlier. Interleukin-3 (IL-3), interleukin-4 (IL-4), and oncostatin M 

(OSM), cytokines that are present during chronic or allergic inflammation, have been shown to 

induce a delayed and prolonged accumulation of P-selectin mRNA in human umbilical vein 

endothelial cells (HUVEC) (Khew-Goodall et al.; 1996; Yao et al.; 1996).  

 

2.5 Interleukin-4 in chronic inflammation 

Inflammatory cytokines dramatically and selectively modulate the transcription and expression of 

the different adhesion molecules and chemoattractants in ECs (Springer, 1995). One such cytokine 

is IL-4, a glycoprotein secreted by activated T cells, mast cells, and eosinophils. It modulates 

growth and differentiation of a variety of cell types, including B- and T-lymphocytes, NK cells, mast 

cells, and bone marrow mast cells and is present at high levels at sites of chronic and allergic 

inflammation, such as asthma and atopic dermatitis, where it appears to play an important role in 

disease progression (Bradding et al.; 1992; Hamid et al.; 1994).  

In vitro, IL-4 induces HUVEC to synthesize VCAM-1 and P-selectin, but not E-selectin or ICAM-1. 

VCAM-1 mediates adhesion of mononuclear cells, eosinophils, and basophils, but not neutrophils 
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to the endothelial surface (Schleimer et al.; 1992; Thornhill et al.; 1990). These data suggest that 

IL-4 promotes emigration of mononuclear cells or eosinophils which is a characteristic feature of 

chronic inflammation and reflects a persistent reaction to injury (Cotran et al.; 1999). 

 

2.6 The heme oxygenase-1 

2.6.1 The heme oxygenase system 

The ubiquitous heme molecule (figure 3) exerts a dual role: in small amounts it acts by itself or as 

the functional group of many different heme proteins providing diverse and indispensable cellular 

functions, such as gene transcription, cell differentiation, and proliferation (Ponka, 1999; Sassa et 

al.; 1996). In contrast, excess of free heme, released from heme-containing proteins, constitutes a 

potentially harmful molecule due to its ability to intercalate into membranes, impair lipid bilayers 

and organelles, such as mitochondria, and destabilize the cytoskeleton (Balla et al.; 1991; Beri et 

al.; 1993). Subsequently, it promotes iron-dependent reactions leading to generation of reactive 

oxygen species (ROS) and lipid peroxidation (Ryter et al.; 2000).  

 

 

 

 

 

 

figure 3: Structure of iron(II)-protoporphyrin IX (heme). 
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Therefore, the amount of free heme must be tightly controlled to maintain cellular homeostatsis. 

One of several defense mechanisms against free heme-mediated oxidative stress and 

inflammation is the heme oxygenase (HO) system. Heme oxygenase is the rate-limiting enzyme in 

the degradation of heme and was originally discovered in 1968 (Tenhunen et al.; 1968). In concert 

with NADPH-cytochrome P450 reductase as reducing agent, it catalyzes the oxidative cleavage of 

heme to yield equimolar amounts of free iron, carbon monoxide (CO), and biliverdin, which is 

subsequently converted to bilirubin by biliverdin reductase (BR) (figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

figure 4: Degradation of heme by heme oxygenase. Heme is cleaved by heme oxygenase (HO) at the 
α-methene carbon bridge to yield equimolar amounts of iron (Fe), carbon monoxide (CO), and 
biliverdin. Biliverdin is subsequently metabolized to bilirubin by biliverdin reductase (BR). 
Adapted from Durante (2003). 

 

To date, the HO system is known to include three isoforms of the enzyme. They are products of 

different genes and their expression differs greatly between cell types, tissue distribution, and 

regulation. HO-2 is constitutively expressed, mainly in the brain, endothelium, and testes (Maines, 
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1997). HO-3 has only recently been identified, predominantly in the spleen, liver, thymus, prostate, 

heart, kidney, brain, and testes, and its protein expression remains to be elucidated (McCoubrey, 

Jr. et al.; 1997). The HO-1 isoform, also termed heat shock protein 32 (Hsp32), is distributed 

ubiquitously and is strongly induced by a variety of physiological and pathophysiological stimuli, 

including heme, heavy metals, endotoxins, oxidants, and several inflammatory cytokines 

(Immenschuh et al.; 2000; Maines, 1997). HO-1 has recently been recognized to possess 

important regulatory properties. It is tightly involved in both physiological as well as 

pathophysiological processes, such as cytoprotection, apoptosis, and inflammation. 

 

As being highly inducible on the transcriptional level by a multitude of stimuli and involved in 

diverse signaling pathways, HO-1 is a very important protective strategy of the cell against stress 

situations (Otterbein et al.; 2000). Consistent with the diversity of signaling cascades involved in 

HO-1 induction, the promotor region of HO-1 contains a variety of regulatory elements including 

binding sites for NF-κB and AP-1 (Lavrovsky et al.; 1994). In the past, the degradation products 

CO, free iron, and bilirubin were considered as toxic waste (Wagener et al.; 2003). Recent insights 

have provided evidence that this is not the case. Today, the vital function of HO-1 in maintaining 

cellular homeostasis is ascribed to its breakdown products. Although potentially harmful when 

present in excessive amounts, all three metabolites have important regulative and protective 

features:  

 

(i) Free iron(II) is capable of causing severe oxidative stress by generation of reactive oxygen 

species (ROS) via catalyzation of the Fenton reaction. Nevertheless, HO-dependent release of free 

iron results in up-regulation of the iron storage protein ferritin which subsequently results in cyto-

protection (Balla et al.; 1992).  

(ii) CO is a gaseous messenger with similar functions as nitric oxide (NO). They share the ability to 

activate the heme protein soluble guanylyl cylcase (sGC), resulting in enhanced generation of the 

second messenger cGMP and subsequent vasodilatation (Marks et al.; 2003).  
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(iii) Bilirubin has recently been recognized as an important anti-oxidant, and this has been 

confirmed by several studies in different models of oxidative stress (Otterbein et al.; 2000). Thus, 

the end products of heme catabolism seem to mediate the beneficial effects of HO-1 activation.  

 

2.6.2 Functions of the HO-1 system 

In the recent years it has become evident that the HO-1 system possesses important regulatory 

properties in both physiological as well as pathophysiological processes, such as apoptosis, cell 

proliferation, and inflammation (Maines, 1997). These properties have been demonstrated in 

numerous in vitro and in vivo models. 

 

Heme oxygenase and cell proliferation and growth: HO-1 has been demonstrated to stimulate 

proliferation of numerous cell types, such as keratinocytes and ECs (Clark et al.; 1997; Li et al.; 

2002). The effect of HO-1 on cell proliferation is, however, highly variable and appears to be cell-

type-specific. In contrast to its proliferative effects, the enzyme exerts a potent anti-proliferative 

effect in other cell types, e.g. smooth muscle cells and human T cells (Aizawa et al.; 2001; Li et al.; 

2002; Pae et al.; 2004). The importance of HO-1 in growth control is illustrated by observations 

made in HO-1 deficient (HO-1-/-) mice and humans. HO-1-/- mice are found to be significantly 

smaller than wild type animals (Poss et al.; 1997) and the first case of human HO-1 deficiency 

showed severe growth retardation (Yachie et al.; 1999).  

Heme oxygenase and apoptosis: Expression of HO-1 leads to anti-apoptotic effects in several cell 

types (Brouard et al.; 2000; Petrache et al.; 2000; Pileggi et al.; 2001; Soares et al.; 1998). 

Elevated HO activity prevents graft rejection through anti-apoptotic pathways as demonstrated in 

several models (Hancock et al.; 1998; Katori et al.; 2002). The anti-apoptotic features may be an 

important mechanism by which HO-1 exerts its cytoprotective function in inflammation, since 

apoptosis of ECs, such as it occurs during acute and chronic inflammation (Wagener et al.; 2003), 

is highly deleterious. 
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Heme oxygenase and inflammation: HO-1 has been implicated in modulating the pathogenesis in 

different models of acute inflammation. The elevated activity of HO-1 is considered to be a 

protective mechanism that limits the activation level and number of inflammatory cells and the 

extent of cell death in diseased tissues (Otterbein et al.; 1999; Willis et al.; 1996). This notion is 

supported by reports describing exaggerated inflammatory responses in HO-1-/- mice (Poss et al.; 

1997) and by observations made in a case of human HO-1-deficiency (Yachie et al.; 1999).  

 

2.7 Salicylates 

The use of willow bark to reduce pain was already described by Hippocrates. In 1859, the active 

compound, salicylic acid (SA), was isolated and synthesized. In 1897 Felix Hofmann acetylated the 

hydroxyl group of SA to eliminate the unpleasant taste and subsequently acetylsalicylic acid (ASA) 

was introduced as a potent anti-inflammatory and analgesic drug. 

 

 

 

 

figure 5: Structures of salicylic acid (SA) and acetylsalicylic acid (ASA). 
 

Since then, several other drugs were discovered that share the effects of ASA and SA and were 

classified as nonsteroidal anti-inflammatory drugs (NSAIDs), to distinguish them from anti-

inflammatory glucocorticoids. All these substances have in common to relief swelling, redness and 

pain, and to reduce fever and headache. For decades, their therapeutic effects have entirely been 

attributed to the inhibition of cyclooxygenase (COX) activity and the subsequent reduction of 

prostaglandin synthesis (Vane, 1971; Vane, 2000). COX catalyzes the first steps of prostaglandin 

synthesis. Prostaglandins are crucial players in many physiological and pathophysiological 
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processes. Some of these lipid-derived mediators cause pain, swelling, and redness. In addition, 

they increase renal blood flow and reduce gastric acid secretion. The majority of therapeutic 

properties of NSAID can be explained by a reduced level of prostaglandins. However, it has been 

suggested that additional mechanisms underlie some of their anti-inflammatory actions (Tegeder et 

al.; 2001). For instance, inhibition of the activation of the MAP kinase extracellular signal-regulated 

kinase (ERK) required for integrin-mediated responses may account for COX-independent effects 

of salicylates on neutrophil adhesion (Pillinger et al.; 1998). Moreover, interference with the 

activation of transcription factors such as NF-κB has been reported to be relevant (Kopp et al.; 

1994). A recent study communicated a new pharmacological effect of salicylates via an inhibition of 

NFAT-dependent transcription of several cytokine genes, which play an important role in immune 

and inflammatory responses (Aceves et al.; 2004). Thus, it is plausible that additional unknown 

targets of salicylates remain to be discovered. 

 

Anti-inflammatory therapy with high-dose ASA (highest daily intake: 5 g) results in plasma 

salicylate concentrations of 1-2 mM (Amann et al.; 2002; Tegeder et al.; 2001). After oral 

administration, about 50 % is rapidly de-acetylated to SA already during and immediately after 

absorption. Taking into account a plasma protein binding of 80-90 % (Needs et al.; 1985), the 

concentration of free salicylate in the plasma can be expected to be in the range of 250 µM 

(Amann et al.; 2002). On the other hand, there are reports suggesting accumulation of acidic 

NSAIDs such as salicylate in acidic compartments within the body. Salicylate, for example, has 

been shown to accumulate specifically in inflamed tissue. Therefore, it seems questionable 

whether plasma salicylate concentrations found in patients are reliable definitions of relevant 

concentrations in an in vitro setting. It is most likely that millimolar concentrations provide a more 

precise picture of the conditions at sites of inflammation. A lot of studies examining anti-

inflammatory properties of these drugs choose concentrations of 2-20 mM of salicylate referring to 

this point of view (Amann et al.; 2002).  
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2.8 Metalloporphyrins 

The substrate of HO-1, iron(II)-protoporphyrin IX (FePP, heme, hemin) is a multifunctional molecule 

in nature, as described in chapter 1.1.3.1. The porphyrin-ring is a tetra dentate ligand that binds 

metals through two imino nitrogen atoms capable of accepting protons and two pyrrole nitrogens 

capable of either losing or accepting protons. Several metals, such as Fe, Cu, Zn, Sn, and Co, can 

form a complex with the porphyrin-ring (Smith et al.; 1975). The binding pocket of HO has 

specificity toward the side chains of the porphyrin-ring and does not recognize the metal moiety of 

the molecule. In consequence, metalloporphyrins in which the heme-iron has been replaced by 

other metals, like Zn, Sn and Co, can compete for heme and inhibit the activity of the enzyme 

because they cannot be degraded to bile pigments (Maines, 1981). On the other hand, heme and 

other metalloporphyrins are able to induce HO-1-expression, to various degrees though (Sardana 

et al.; 1987; Shan et al.; 2000; Shan et al.; 2002).  

 

CoPP is often employed as a strong HO-1 inducer in experimental settings aimed to study the 

functions of HO-1. In fact, CoPP acts as inhibitor of HO-1 activity, like the other metalloporphyrins, 

as it is able to bind to the catalytic site of the enzyme but cannot be converted to the heme 

degradation products. On the other hand, CoPP is able to induce the HO-1-expression by a 

mechanism fundamentally different from that of other stress inducers, possibly via a newly 

identified regulatory region of the HO-1 gene, named metalloporphyrin-responsive element (MPRE) 

(Shan et al.; 2002). Its inducing effect on HO synthesis overweighs its inhibitory effect on the 

enzyme and thus, results in total in an increased HO-1 activity.  

In contrast to CoPP, SnPP and ZnPP are generally viewed as being only weak inducers of HO-1-

expression (Shan et al.; 2000). However, there are contradictory results that claim ZnPP is the 

most potent inducer of HO-1-expression (Yang et al.; 2001). Nevertheless, it has been proven that 

tin- and zinc-containing porphyrins decrease HO-1 activity, justifying their usage as potent HO-1-

inhibitors. 
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All these compounds are being widely used in studies performed in vitro and in vivo to clarify the 

molecular pathways involved in HO-1 signal transduction (Dorman et al.; 2004; Maines, 1981; 

Pileggi et al.; 2001; Sass et al.; 2003), to prevent and treat hyperbilirubinemia (Maines et al.; 1992), 

and also to reduce jaundice in the neonates (Kappas, 2004). However, little is known about other 

biological effects of these inhibitors and inducers.  

 

2.9 Apoptosis 

Programmed cell death or apoptosis is a major component of both normal development and 

disease in multicellular organisms. It occurs during physiologic morphogenesis as well as in 

response to cell damage and is an important mechanism of the organism to eliminate damaged or 

unwanted cells. The first description of apoptosis was based on morphologic changes of the cell 

(Kerr et al.; 1972). These changes include nuclear condensation, DNA fragmentation, blebbing of 

the plasma membrane, cell shrinkage, and fragmentation of the cell into apoptotic bodies. These 

fragments are rapidly phagocytosed by macrophages or neighboring cells. This prevents lysis and 

induction inflammatory reactions by the cell contents. The crucial components of the apoptotic 

machinery is a family of proteases, the caspases, which can be divided into initiator and effector 

caspases (Leist et al.; 1997; Nicotera et al.; 2004).  

 

Diverse pro-apoptotic stimuli activate the initiator caspases, such as caspase-8 and -9, which in 

turn cleave the inactive zymogens of the effector caspases, such as caspase-3 and -7. Finally, 

certain key substrates are cleaved leading to execution, packaging, and disposal of the cell. 

 

Execution of apoptosis can be distinguished into two different pathways: the extrinsic and the 

intrinsic pathway (figure 6). The intrinsic pathway is also known as mitochondrial pathway and is 

initiated by chemotherapeutic agents, UV radiation, or free radicals. A breakdown of the potential of 

the mitochondrial membrane leads to release of cytochrome c into the cytoplasm, where it 
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associates with several other proteins to form the apoptosome. This results in activation of 

caspase-9 and subsequent activation of effector caspases (Green, 1998). 

 

 

 

 

 

 

 

 

 

 

figure 6: Signaling pathways in apoptosis. Extrinsic pathway: death ligand (DL) binds to death 
receptors (DR) such as Fas/CD95. This leads to formation of the death inducing signaling 
complex (DISC), containing the inactive initiator caspase pro-caspases 8. Intrinsic pathway: 
cytochrom c (cyt.c) is released from the mitochondrium (M) leading to the formation of the 
apoptosome (A) containing the initiator caspase pro-caspase 9. Activated initiator caspases in 
turn cleave the inactive zymogens of effector caspases. 

 

The extrinsic pathway is mediated via cell surface receptors, also called death receptors, which 

belong to the TNF receptor superfamiliy. Pro-apoptotic ligands such as TNF-α or FasLigand (FasL, 

CD95L) bind to the corresponding receptor and initiate the formation of a multi-protein complex, 

also referred to as death inducing signaling complex (DISC). In the DISC, the inactive pro-caspase 

8 is autocatalytically cleaved and thereby activated to induce downstream effector caspases, such 

as caspase-3 and -7. Caspase-8 can also activate the mitochondrial pathway via cleavage of Bid, a 

member of the pro-apoptotic bcl-2 protein family (Green, 1998). 
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2.9.1 Caspases 

The caspase family comprises at least 10 cysteine proteases that play a critical role during 

apoptotic cell death. Their name phrases the active cysteine group and the characteristic cleavage 

of their targets at aspartate residues. Caspases are expressed as inactive zymogens in the 

cytoplasm. They consist of an amino-terminal prodomain, a large subunit, and a small subunit at 

the carboxy-terminus (figure 7). The pro-caspases become activated during apoptosis by 

proteolytic processing at specific sites, followed by assembly of the active form (Denault et al.; 

2002; Leist et al.; 1997; Nicotera et al.; 2004). The inactive zymogens are cleaved between the 

large and the small subunit and the prodomain is removed. The active caspase is derived from 

association of two pro-caspases. The resulting heterotetrameric enzyme consists of two small and 

two large subunits and contains two active sites at opposite ends of the molecule (Earnshaw et al.; 

1999). 

 

 

 

 

 

 

 

figure 7: Structure of pro-caspase-8 and -3 and the active enzyme. Pro-caspase-8 and other initiator 
caspases have a long prodomain containing binding sites for the activating complexes. All 
effector caspases have a very short prodomain (green). The active enzyme is composed of two 
large (lg) and two small (sm) subunits. It contains two active sites containing the conserved 
cleavage motif with the catalytic cysteine group at opposite ends of the molecule. Adapted from 
Earnshaw et al. (1999). 

 

As mentioned above, the apoptotic caspases are generally divided into two classes: the initiator 

caspases, which include caspase-8, -9, and -10, and the effector caspases, which include 
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caspase-3, -6, and -7. The active enzyme can in turn cleave a number of defined substrates 

involved in the biochemical and morphological feature of apoptosis. One example is poly-ADP 

ribose polymerase (PARP), which is cleaved at a specific Asp-Glu-Val-Asp (DEVD) sequence. 

Caspase-3 has been identified as the caspase responsible for much of this activity (Nicholson et 

al.; 1995). These findings led to the measurement of caspase-3-like activity as a reliable, simple, 

and generally accepted method to quantify apoptotic cell death (Gurtu et al.; 1997).  
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3 MATERIALS AND METHODS 
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3.1 Materials 

Cell culture media (RPMI 1640, M199), glutamine, penicillin, streptomycin, and amphotericin B 

were from PAN Biotech (Aidenbach, Germany) and endothelial cell growth medium (ECGM) was 

from Promocell (Heidelberg, Germany). Endothelial Medium Supplement and tumor necrosis 

factor-α (TNF-α) were purchased from Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). 

Dulbecco's Modified Eagle Medium (DMEM) was from Cambrex (Verviers, Belgium). Fetal calf 

serum (FCS) was from Biochrom (Berlin, Germany), FCS gold was from PAA Laboratories (Cölbe, 

Germany), and human recombinant Fas Ligand (FasL), cobalt(III)-, tin-, and zinc(II)-protoporphyrin 

were from Alexis (Grünberg, Germany). Sodium salicylate (NaSal) was from Fluka (Buchs, 

Switzerland). The caspase-inhibitor z-VAD-fmk, the MAPK p38-inhibitor SB203580, the human 

recombinant caspases-3 and -8, and the anti-PARP antibody were from Calbiochem (Schwalbach, 

Germany). The ECL Plus Western Blotting Detection Reagent was from Amersham Biosciences 

(Freiburg, Germany). The protease inhibitor cocktail Complete® and Collagenase A were from 

Roche (Mannheim, Germany). CAPS was from USB (Cleveland, USA). Anti-hsp32 (HO-1) and 

HRP-conjugated anti-CPP32 (caspase-3) were from BD Transduction Laboratories (Heidelberg, 

Germany). Anti-phospho-JNK and HRP-conjugated goat anti-mouse antibody were from Cell 

Signaling/New England Biolabs (Frankfurt/Main, Germany). HRP-conjugated goat anti-rabbit was 

from Dianova (Hamburg, Germany). Anti-p65 was from Santa Cruz (Heidelberg, Germany) and 

AlexaFluor633 goat anti-mouse antibody for immunocytochemistry was from Molecular 

Probes/Invitrogen (Karlsruhe, Germany). Double-stranded AP-1 and NF-κB-oligonucleotides for 

EMSA were from Promega (Mannheim, Germany). The plasmids pNF-κB-Luc and pFC-MEKK 

were from Stratagene (Heidelberg, Germany) and pEGFP-N1 was from Clontech (Palo Alto, CA, 

USA). The plasmid pSV-β-Gal and salmon sperm DNA were kindly provided by Genzentrum 

(University of Munich, Germany). Dominant negative (dn) p38 MAPK plasmid and empty vector 

plasmid were a kind gift from Dr. Stephan Ludwig (University of Würzburg, Germany). Primers for 

P-selectin and GAPDH were from Invitrogen (Karlsruhe, Germany). TaqMan® probes for P-selectin 

and GAPDH were from PE Applied Biosystems (Warrington, United Kingdom). All other materials 
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were purchased from Sigma-Aldrich (Taufkirchen, Germany), Carl-Roth GmbH (Karlsruhe, 

Germany), or Merck-Eurolab (Munich, Germany). If not stated otherwise, all solutions were 

prepared with double-distilled water. 

 

3.2 Cell culture 

Solutions: 

PBS (pH 7.4):     Trypsin/EDTA (T/E): 

Na2HPO4   10.4 mM Trypsin (1:250 in PBS)  0.05 g 

KH2PO4   3.16 mM EDTA     0.20 g 

NaCl    132.2 mM PBS          ad 100 ml 

PBS+: 

NaCl    137 mM 

KCl    2.68 mM  

Na2HPO4   8.10 mM  

KH2PO4   1.47 mM  

MgCl2     0.5 mM  

CaCl2    0.68 mM 

 

All cells were routinely tested for contamination of mycoplasma with the PCR detection kit 

VenorGeM (Minerva Biolabs, Berlin, Germany). 

3.2.1 Primary cells 

Human umbilical vein endothelial cells (HUVEC) were prepared by digestion of umbilical veins with 

0.1 g/l of collagenase A (37°C, 45 min) (Marin et al.; 2001) and were grown in a humidified 

atmosphere at 5 % CO2 and 37°C in an incubator (Heraeus, Hanau, Germany). For experiments 

investigating the HO-1 induction by NaSal, cells were cultured in endothelial cell growth medium 

(ECGM) supplemented with 100 U/ml penicillin and 100 µg/ml streptomycin. For experiments 
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regarding the relationship of TNF-α-induced NF-κB-activation and p38 MAPK, cells were cultured 

in Medium 199 (M199) supplemented with 20 % heat-inactivated FCS, 2 % endothelial medium 

supplement, 2 mM glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, and 2.5 µg/ml 

amphotericin B. In order to compensate inter-individual differences, cells of at least two umbilical 

cords were combined for each cell preparation.  

After reaching a confluent state, cells were either sub-cultured 1:3 in culture flasks or seeded in 

plates for experiments. For passaging, medium was removed and cells were washed with 

phosphate buffered saline (PBS) before they were incubated with 1-2 ml trypsin/EDTA (T/E) for 1-2 

min at 37°C. The cells were gradually detached and the digestion was stopped with M199 

containing 10 % heat-inactivated FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, and 2.5 µg/ml 

amphotericin B. After centrifugation at 218 x g, 4°C for 10 min the pellet was resuspended in 

normal growth medium. All experiments were performed with cells of passage number three grown 

until confluence in 6-, 12-, 24- or 96-well plates (TPP, Trasadingen, Switzerland).  

For long-term storage, confluent HUVEC were trypsinized, centrifuged at 218 x g, 4°C for 10 min, 

and resuspended in 1.5 ml freezing medium, containing M199 supplemented with 20 % FCS, 2 % 

endothelial medium supplement, 100 U/ml penicillin, 100 µg/ml streptomycin, 2.5 µg/ml 

amphotericin B and 10 % dimethylsulfoxide (DMSO). The cell suspension was transferred to 

cryovials and frozen at -20°C for one day, afterwards at -86°C for one week, and finally stored at 

-196°C in liquid nitrogen. This procedure was maintained in order to ensure gradual freezing of the 

cells. For thawing, the content of a cryovial was gently dissolved in pre-warmed Medium 199. To 

remove DMSO from the cells, they were centrifuged at 218 x g, 4°C for 10 min and resuspended in 

complete culture medium and transferred to a 75 cm2 culture flask.  

3.2.2 Cell lines 

3.2.2.1 Jurkat T-lymphocytes 

The subclone J16 of the Jurkat cell line, derived from an acute lymphatic leukemia, was graciously 

provided by Dr. S. Eichhorst (Klinikum Großhadern, Munich, Germany). This subclone is 
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particularly sensitive to CD95-induced apoptosis. Jurkat T cells were cultured in RPMI 1640, 

supplemented with 10 % FCS gold, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.1 M 

pyruvate in a humidified atmosphere at 5 % CO2 and 37°C. For experiments, cells of passage 

numbers 3 to 15 were used at a density of 6 to 7 x 105 cells/ml. 

Due to the fact that the genome of Jurkat cells is quite unstable and mutations occur frequently 

when cell density is too high, cultures must not be grown over 1.5 x 106 cells/ml. For the 

determination of the cell concentrations 1 ml of cell suspension was analyzed with Cell Viability 

Analyzer Vi-CellTM (Beckman Coulter, Krefeld, Germany). The concentration required was achieved 

by dilution with pre-warmed medium. 

Freezing and thawing was performed as described in chapter 4.1. Jurkat cells were frozen at a 

concentration of 5 x 105 in 1.5 ml freezing medium (RPMI 1640, supplemented with 20 % FCS gold 

and 10 % DMSO). After defrosting cells were grown for at least five days before any experiments.  

3.2.2.2 Human embryonic kidney cell line 293 

Human embryonic kidney 293 (HEK 293) cells were originally generated by transformation of 

human embryonic kidney cell culture with sheared adenovirus 5 DNA, and were described by 

Graham et al. (1977).  

HEK 293 from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, 

Germany) were grown as monolayer in DMEM supplemented with 10 % FCS (Biochrom, Berlin, 

Germany), 2 mM glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin in a humidified 

atmosphere at 5 % CO2 and 37°C. After reaching ∼85-90 % confluence, the cells were sub-cultured 

1:10 in culture flasks or seeded in plates for experiments. 
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3.3 Animal model 

The following experiments were kindly performed by Stefan Seyfried and Dr. Gisa Tiegs 

(Department of Experimental Pharmacology and Toxicology, University of Erlangen-Nuremberg, 

Germany).  

3.3.1 Animals 

BALB/c-mice (age: 6-8 weeks; weight range: 18-22 g) were obtained from the animal facilities of 

the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of 

Erlangen-Nuremberg, Germany. All mice received human care according to the guidelines of the 

National Institute of Health as well as to the legal requirements in Germany. They were maintained 

under controlled conditions (22°C, 55 % humidity and 12 h day/night rhythm) and fed a standard 

laboratory chow. 

3.3.2 Dosage and application routes 

Activating anti-CD95 Ab (Jo2; BD/Pharmingen, Heidelberg, Germany) was administered 

intravenously at 125 µg/kg in 200 µl pyrogen-free saline. CoPP (i.p.; 10 mg/kg) and SnPP (i.p.;  

25 mg/kg) were dissolved in sterile 0.2 M NaOH and pH was adjusted to 7.9 by 1 M HCl (stock 

concentrations: CoPP 1 mg/ml , SnPP 2.5 mg/ml). The porphyrins were administered 2 h after 

induction of liver injury by anti-CD95 Ab. Animals were killed 6 h after administration of anti-CD95 

Ab and the isolated livers were frozen in liquid nitrogen.  
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3.4 Real-time RT-PCR 

Real-time polymerase chain reaction (PCR) is the ability to monitor the progress of the PCR as it 

occurs. Data is therefore collected throughout the PCR process, rather than at the end of it as in 

conventional RT-PCR. A fluorescent reporter is used to visualize the increasing amount of PCR 

product in a reaction. By recording the amount of fluorescence emission at each cycle, it is possible 

to monitor the PCR reaction during exponential phase where the first significant increase in the 

amount of PCR product correlates to the initial amount of target template (for review see Bustin 

(2002)). 

3.4.1 Isolation of total RNA 

Extraction of mRNA was performed with RNeasy® Mini Kit (Quiagen, Hilden, Germany) according 

to the manufacturers description. The RNeasy® procedure uses a silica-gel-based membrane and 

a specialized high-salt buffer system, which allows RNA longer than 200 bases to bind to the 

RNeasy® membrane. This procedure provides an enrichment for mRNA since most RNA <200 

nucleotides, such as rRNA and tRNA, are selectively excluded. Cells are first lysed and 

homogenized in the presence of a highly denaturating guanidine isothiocyanate (GITC)-containing 

buffer, which immediately inactivates ribonucleases (RNases) to ensure isolation of intact RNA. 

Ethanol is added to provide appropriate binding conditions for the attachment of RNA to the silica-

gel membrane. The size distribution of the isolated RNA is comparable to that obtained by the 

classical RNA isolation method of centrifugation through a CsCl cushion. Since the method of real-

time PCR is sensitive to very small amounts of DNA, DNA-digestion was performed during the 

isolation procedure.  

 

Experimental procedure: 

Cells were grown in 6-well plates until confluence. Total RNA was prepared using the RNA 

isolation RNeasy® Mini Kit. The cells were lysed and homogenized in a buffer containing  
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β-mercaptoethanol and GITC. Subsequently, 70 % ethanol was added and the samples were 

applied on to the RNeasy® mini columns. All other cellular components were removed by washing 

procedures with two different washing buffers. After the first washing step, RNase-free DNase was 

applied for DNase digestion (RNase-free DNase Set, Quiagen, Hilden Germany). Samples were 

incubated for 15 min and washing steps were continued. The purified RNA was eluated from the 

column with water under low salt conditions.  

The obtained amount of RNA was determined from spectrophotometric optical density 

measurement (Lambda Bio 20 Photometer, PerkinElmer, Überlingen, Germany). Absorption was 

measured at 260 nm (A260) and 280 nm (A280). The RNA concentration was calculated from the A260 

value. The ratio A260/A280 was used for characterizing the purity of RNA (optimum: 1.8-2.0). Strong 

absorption at 280 nm points to protein contamination. 

3.4.2 Reverse Transcription 

Experimental procedure: 

Reverse Transcription was carried out using the RNA PCR Core Reagent Kit (PE Applied 

Biosystems, Hamburg, Germany). Each reaction tube contained 400 ng of total RNA in a volume of 

20 µl containing 5.5 mM MgCl2, 1x RT buffer, 500 µM of each dNTP, 2.5 µM of random hexamers, 

0.4 U/µl RNase inhibitor, 1.25 U/µl MultiScribe reverse transcriptase and water to volume.  

RT-reactions were carried out in a GeneAmp PCR system 9700 (PE Applied Biosystems, 

Hamburg, Germany) at 25°C for 10 min and 48°C for 30 min. The reaction was stopped at 95°C for 

5 min. cDNA was stored at -20°C. 

3.4.3 Real-time PCR with TaqMan® probes 

PCR amplifying P-selectin cDNA was performed with a Taq DNA polymerase from Thermophilus 

aquaticus. For real-time detection the TaqMan® assay system was used. This assay uses a probe 

technology that exploits the 5’  3’ -nuclease activity of the Taq polymerase. The probe is an 

oligonucleotide with the reporter dye 6-carboxyfluorescein (FAM) at the 5’ end and the quencher 
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dye 6-carboxytetra-methylrhodamine (TAMRA) at the 3’ end. When the probe is intact the 

quencher dye absorbs the fluorescence of the reporter dye due to the close proximity of the two. By 

the exo-nuclease activity of the Taq polymerase, the probe is cleaved (figure 8) allowing an 

increase in fluorescence emission. The cDNA sequence for P-selectin was obtained from the 

National Center for Biotechnology Information (NCBI). PCR primers and TaqMan® fluorogenic 

probes were designed using the Primer Express® 2.0 software program. Forward primer P-selectin: 

5’-TGAAGGAAGGTTTTCTCCACTTTG-3’; reverse primer P-selectin: 5’-AGACTCCAGAAGA 

TGCTACAGGAATT-3’. By using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a 

housekeeping gene, results are quantified based on the relative expression of the target gene vs. 

the reference gene GAPDH using the mathematical model for relative quantification according to 

Pfaffl (2001). Forward primer GAPDH: 5’-GGGAAGGTGAAGGTCGGAGT-3’; reverse primer 

GAPDH: 5’-TCCACTTTACCAGAGTTAAAAGCAG-3’. 
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figure 8: TaqMan® system. After denaturation, primers and probes anneal to the target (A). 
Fluorescence does not occur because of the proximity between fluorophore (F) and quencher 
(Q). During extension, the probe is cleaved (B), allowing fluorescence of the reporter dye. 

 

Experimental procedure: 

Real-time PCR was performed using the TaqMan® PCR Core Reagent Kit. Each reaction tube 

contained 50 ng of cDNA, 10x TaqMan® buffer A, 5.5 mM MgCl2, 0.2 mM of dATP, dCTP, and 
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dGTP, 0.4 mM of dUTP, 0.01 U/µl of AmpErase UNG, 0.025 U/µl of AmpliTaq Gold Polymerase, 

600 nM of forward and reverse primer, and 200 nM of the respective TaqMan® probe. All samples 

were run in duplicates. Standard curves were constructed on a 1:10 serial dilution of total RNA. 

Amplification conditions on the GeneAmp 5700 (PE Applied Biosystems, Hamburg, Germany) 

included 2 min 50°C for activation of the AmpErase Uracil N-glycoxylase (UNG) to cleave the dU-

containing PCR-products that are carried over from an earlier PCR, followed by 10 min 95°C for 

activation of the Hot Start AmpliTaq Gold Polymerase. Afterwards 40 cycles at 95°C for 15 sec and 

60°C for 1 min are carried out for amplification of the target sequence. During the exponential 

phase of the increase in amplification products a fluorescence signal threshold is determined by the 

software at which point the signal generated from a sample is significantly greater than background 

fluorescence and all samples can be compared. 

 

3.5 Western blot analysis 

Solutions: 

Modified RIPA buffer (lysis buffer):   Laemmli sample buffer (3x): 

NaCl    150 mM  Tris-HCl (pH 8.8)  187.5 mM 

Tris-HCl (pH 7.4)  50 mM  SDS    6.0 % 

Nonidet P-40   1.0 %   glycerol    30 % 

sodium deoxycholate  0.25 %   bromphenol blue  0.015 % 

SDS    0.10 %  β-mercaptoethanol  12.5 % 

Added freshly before use: 

Complete®   4 %  

PMSF    1 mM  

For protection of phosphorylated proteins: 

NaF    1 mM 

activated Na3VO4  1 mM 

 

 



MATERIALS AND METHODS 

 32 

Separation gel 10%:    Stacking gel: 

RotiphoreseTM Gel 30  40 %  RotiphoreseTM Gel 30  17 % 

Tris (pH 8.8)   375 mM Tris (pH 6.8)   125 mM 

SDS    0.1 %  SDS    0.1 % 

TEMED    0.1 %  TEMED    0.2 % 

APS    0.5 %  APS    1 % 

Electrophoretic buffer (5x):   TBS-T (pH 8.0): 

Tris    24.6 mM Tris    24.6 mM 

glycine    192 mM NaCl    188 mM 

SDS    0.1 %  Tween 20   0.2 % 

Anode buffer:     Cathode buffer: 

Tris    12 mM  Tris    12 mM 

CAPS    8 mM  CAPS    8 mM 

methanol   15 %  SDS 10 %   0.1 % 

 

Antibodies: 

Primary antibodies: 

Anti-hsp32 (HO-1) monoclonal mouse anti-human  

Anti-phospho-p38 MAPK polyclonal rabbit anti-human 

Anti-phospho-JNK/SAPK monoclonal mouse anti-human 

Anti-PARP monoclonal mouse anti-human 

Peroxidase-conjugated anti-CPP-32 (caspase-3) monoclonal mouse anti-human 

Secondary antibodies: 

Peroxidase-conjugated goat anti-rabbit IgG 

Peroxidase-conjugated goat anti-mouse IgG 

 

Experimental procedure: 

Cell samples: For detecting proteins in whole cell lysates, cells were cultured in 6-well plates until 

confluence and were either left untreated or stimulated as indicated in the respective figure legend. 

Briefly, cells were washed with PBS and lysed in modified RIPA buffer. Cells were homogenized 

and centrifuged. In the supernatant, protein concentrations were determined with the bicinchoninic 
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acid method (BC assay reagents, Iterdim, Montluçon, France) using a BSA standard (Pierce, 

Rockford, USA). Samples were adjusted to the same protein content. The separation of proteins 

was carried out by denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) according to 

Laemmli (1970). Laemmli sample buffer was added and the samples were boiled at 95°C for 5 min 

in order to let the SDS-protein-complexes develop. The identical charge densities on the surface of 

the complexes allow the separation of proteins according to their size. For gel preparation an 

acrylamide 30 % / bis-acrylamide 0.8 % stock solution (RotiphoreseTM Gel 30 from Roth, Karlsruhe, 

Germany) was applied. Electrophoresis was carried out with a Mini-Protean 3 Cell (BioRad, 

Munich, Germany).  

Subsequently, the separated proteins were transferred to a polyvinylidenfluoride (PVDF) 

membrane (Immobilon-P, Millipore, Schwalbach, Germany) by semi-dry electro-blotting between 

two horizontal plate electrodes (BioRad, Munich, Germany) with a discontinuous buffer system. 

Blotting was performed with 1.5 mA per cm2 of blotting surface for 60 min. Unspecific binding sites 

on the membrane were saturated by blocking in a 5 % solution of non-fat dry milk powder (Blotto, 

BioRad, Munich, Germany) in TBS-T. Antibody solutions were prepared 1:1,000 or 1:10,000 in 1 % 

Blotto in TBS-T and the membranes were incubated with the indicated primary antibody overnight 

at 4°C under constant shaking. After washing with TBS-T the appropriate HRP-conjugated 

secondary antibody was applied for 60 min at room temperature. Immunoreactive bands were 

visualized with a chemiluminescent detection kit (ECL PlusTM, Amersham, Freiburg, Germany) and 

subsequent exposure to a medical x-ray film (Super RX, Fuji, Düsseldorf, Germany). Films were 

developed with an AGFA Curix 60 (AGFA, Cologne, Germany) and scanned for digital analysis. 

Tissue samples: Western blot analysis of in vivo samples was kindly performed by Stefan Seyfried 

and Dr. Gisa Tiegs (Department of Experimental Pharmacology and Toxicology, University of 

Erlangen-Nuremberg, Germany). Mice were treated as described in chapter 2.3. Livers were stored 

on dry ice during the preparation of tissue homogenates. Livers were homogenized in lysis buffer 

containing 0.5 % Nonidet P-40 (NP40), 137 mM NaCl, 2 mM EDTA, 50 mM Tris-HCl pH 8.0, 10 % 

glycerol. Following centrifugation supernatants were stored at -85°C. 30 µg of protein were 

fractioned by 12.5 % SDS-PAGE and blotted onto a nitrocellulose membrane. Western blots were 

developed using an enhanced chemiluminescence system (Amersham, Freiburg, Germany) 
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according to the manufacturers’ instructions. Semi-quantitative evaluation was done using the Gel 

Doc 2000 System (BioRad, Munich, Germany). 

 

3.6 Electrophoretic mobility shift assay (EMSA) 

Experiments investigating the HO-1 induction by NaSal were kindly performed by Cornelia 

Niemann. Experiments regarding the relationship of TNF-α-induced NF-κB-activation and p38 

MAPK were kindly performed by Brigitte Weiss. 

The interaction of proteins with DNA is central to the control of many cellular processes including 

transcription. One well established technique to studying gene regulation and determining protein-

DNA interactions is the electrophoretic mobility shift assay (EMSA). Nuclear extracts, containing 

the protein of interest e.g. a transcription factor, are incubated with linear DNA fragments consisting 

of the corresponding binding sequence. The EMSA technique is based on the observation that 

protein-DNA complexes migrate more slowly than free DNA molecules when subjected to non-

denaturing polyacrylamide gel electrophoresis.  

3.6.1 Extraction of nuclear protein 

Solutions: 

Buffer A:     Buffer B: 

HEPES (pH 7.9)  10 mM  HEPES (pH 7.9)  20 mM 

KCl    10 mM  NaCl    400 mM 

EDTA    0.1 mM  EDTA    1 mM 

EGTA    0.1 mM  EGTA    0.5 mM 

DTT    1 mM  glycerol    25 % 

PMSF    0.5 mM  DTT    1 mM 

Complete®   1 %  PMSF    1 mM 

      Complete®   2 % 
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Experimental procedure: 

HUVEC were cultured in 6-well plates until confluence and were treated as indicated. Nuclear 

extracts were prepared as described by Schreiber et al. (1989) as follows: briefly, cells were 

washed with ice-cold PBS, scraped off in PBS with a rubber cell scraper, centrifuged, and 

resuspended in ice-cold hypotonic buffer A. Cells were incubated on ice for 15 min. NP40 (10 %, 

25 µl) was added to the cells followed by 10 sec of vigorous vortexing and centrifugation of the 

homogenate at 12,000 x g for 30 sec. The supernatant, containing the cytosolic proteins, was 

removed. The nuclear pellet was resuspended by vigorous shaking for 15 min at 4°C in hypertonic 

buffer B. The nuclear extract was centrifuged at 12,000 x g for 5 min and the supernatant 

containing nuclear proteins was frozen at -80°C. The protein concentrations were determined by 

the method of Bradford (Bradford, 1976). 

3.6.2 Radioactive labeling of oligonucleotides 

Solutions: 

STE buffer (pH 7.5): 

Tris-HCl   10 mM 

NaCl    100 mM 

EDTA    1 mM 

 

Experimental procedure: 

Double-stranded oligonucleotide probes containing the consensus sequence either for AP-1  

(5´-CGCTTGATGAGTCAGCCGGAA-3´) or for NF-κB (5´-AGTTGAGGGGACTTTCCCAGGC-3´) 

were 5´-end-labeled with adenosine 5´-[γ-32P]triphosphate (3,000 Ci/mmol) (Amersham, Freiburg, 

Germany) by using the T4 polynucleotide kinase (PNK) (USB, Cleveland, USA), which catalyzes 

the transfer of the terminal phosphate of ATP to the 5´-hydroxyl termini of DNA. The 

oligonucleotides were incubated with T4 PNK for 10 min at 37°C and the reaction was stopped by 

adding EDTA-solution (0.5 M). The radiolabeled DNA was separated from unlabeled remnants by 
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using NucTrap probe purification columns (Stratagene, La Jolla, USA). Radiolabeled DNA was 

eluated from the column by STE buffer. 

3.6.3 Binding reaction and electrophoretic separation 

Solutions: 

Binding buffer (5x) (pH 7.5):   Loading buffer (pH 7.5):  

glycerol    20 %  Tris-HCl   250 mM 

MgCl2    5 mM  bromphenol blue  0.2 % 

EDTA    2.5 mM  glycerol    40 % 

NaCl    250 mM  

Tris-HCl   50 mM 

 

Reaction buffer:    TBE buffer (10x) (pH 8.3): 

DTT    2.6 mM  Tris    0.89 M 

binding buffer (5x)  90 %  boric acid   0.89 M 

loading buffer   10 %  EDTA    0.02 M 

 

Non-denaturating PAA-gel (4.5 %): 

TBE (10x)   5.3 % 

RotiphoreseTM Gel 30  15.8 % 

glycerol    2.6 % 

TEMED    0.05 % 

APS     0.08 % 

 

Experimental procedure: 

Equal amounts of nuclear protein (approx. 2 µg) were incubated for 5 min at room temperature in a 

total volume of 14 µl containing 2 µg poly(dIdC) and 3 µl reaction buffer. Subsequently, 1 µl of the 

radiolabeled oligonucleotide probe (approx. 300,000 cpm) was added. After incubation for 30 min 

(RT), the nucleoprotein-oligonucleotide complexes were resolved by electrophoresis (Mini-Protean 
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3, Bio-Rad, Munich, Germany) on non-denaturating polyacrylamide gels (4.5 %). TBE was used as 

electrophoresis buffer. Bands were visualized by applying the gels to Cyclone Storage Phosphor 

Screens (Canberra-Packard, Dreieich, Germany) and analysis by a phosphor imager (Cyclone 

Storage Phosphor System, Canberra-Packard, Dreieich, Germany). 

 

3.7 Transfection of cells 

3.7.1 Plasmids 

For reporter gene assays human embryonic kidney 293 (HEK 293) cells were transiently 

transfected by using the calcium phosphate co-precipitation method originally described by 

Graham et al. (1973) and modified by Jordan et al. (1996) for the transfection of HEK 293 cells. 

The uptake of DNA by cells in culture is markedly enhanced by presenting the nucleic acid as a co-

precipitate of calcium phosphate and DNA. After entering the cell by endocytosis, some of the co-

precipitate escapes from endosomes or lysosomes and enters the cytoplasm, from where it is 

transferred to the nucleus. Depending on the cell type, up to 50 % of a population of cells then 

express transfected genes in a transient fashion. 

table 1:  List of plasmids 

 

 

name promoter reporter gene 

pNF-κB-Luc NF-κB (5x) firefly - luciferase 

pFC-MEKK CMV MEKK 

pEGFP-N1 CMV green fluorescent protein 

pSV-β-Gal SV40 lacZ 

kRSPA-Flag-p38 (AF) RSV-LTR dn p38 

kRSPA RSV-LTR empty expression vector as control 
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Solutions: 

HBS (2x): 

NaCl    280 mM 

KCl    10 mM 

Na2HPO4   1.5 mM 

glucose    12 mM 

HEPES    50 mM 

 

Experimental procedure: 

1 x 106 cells were seeded in 100 mm or 60 mm dishes the day before transfection and grown at 

37°C, 5 % CO2 overnight. On the following day appropriate amounts of plasmid DNA were mixed 

with 2.8 µg salmon sperm DNA serving as carrier, 750 µl of sterile 250 mM CaCl2-solution, and  

750 µl of sterile HEPES buffered saline (HBS) (2x) with an adjusted pH at 7.07 and incubated for 

30 min at room temperature. The precipitate was added to the cells in the 100 mm dish and then 

incubated for 8 h at 37°C, 5 % CO2. In 60 mm dishes, cells were similarly transfected with plasmid 

DNA and 1 µg salmon sperm DNA, mixed with 250 µl of CaCl2-solution and 250 µl of HBS-buffer. 

Afterwards the medium was aspirated and cells were washed twice with ice-cold PBS+ and then 

fed with fresh medium. On the next day, transfected cells were seeded in 24-well plates at a 

concentration of 1.5 x 105 cells/well and grown for another 16 h. Transfection efficiency was judged 

by fluorescence microscopy evaluating GFP-transfected HEK-cells.  

3.7.2 Antisense oligonucleotides 

In order to silence the expression of certain genes human umbilical vein endothelial cells (HUVEC) 

were transiently transfected with antisense oligodesoxynucleotides (ODN) by using jetPEITM-RGD 

transfection reagent (Poly transfection/Biomol, Hamburg, Germany). The ODN sequences for HO-1 

were 5’-CGCCTTCATGGTgcc-3' (antisense) and 5'-GGCACCATGAAGgcg-3' (sense) (Wagener et 

al.; 1999). jetPEITM-RGD is an Arg-Gly-Asp (RGD) peptide-conjugated polyethylenimine. It allows 

efficient transfection of endothelial cells expressing integrins. The short synthetic peptides mimic 
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the natural ligands of integrins, therefore integrin-mediated cell entry can be triggered by using 

RGD-conjugated jetPEITM (Erbacher et al.; 1999). This transfection reagent is based on the 

property of linear cationic polyethylenimine (PEI) molecules (Mislick et al.; 1996). The DNA is 

compacted into positively charged particles capable of interacting with anionic proteoglycans on the 

cell surface and enters by endocytosis. In the cell it acts as a proton sponge that buffers the 

endosomal pH and protects the DNA from degradation. At the same time it induces endosomal 

osmotic swelling and rupture which provides an escape mechanism for DNA particles to the 

cytoplasm (Boussif et al.; 1995).  

 

Experimental procedure: 

HUVEC were grown in 6-well plates until they reached ∼80 % confluence. For each well  

5 µg DNA and 10 µl jetPEITM-RGD were used. The DNA was incubated with jetPEITM-RGD for  

30 min at room temperature. Cells were treated with the jetPEITM-RGD/DNA mixture for 4 h. To 

ensure sufficient silencing of the targeted protein, further experiments were done 24 h after 

transfection. 

3.7.3 AP-1 decoy 

Similar to the antisense approach described above, the decoy approach is also working with 

oligonucleotides. It uses ODN containing an enhancer element, to bind to sequence-specific DNA-

binding proteins and therefore interferes with transcription (Tomita et al.; 2003). An AP-1 decoy 

consists of the consensus sequence of the transcription factor AP-1. It is able to catch the activated 

form of the transcription factor leading to an inactivation of the AP-1 response. The sequences of 

the ODN were 5’-cgctTGATGACTCAGCCggaa-3’ (decoy) and 5’-cgctTGATGACTTGGCCggaa-3’ 

(scrambled decoy) (Jan et al.; 2000). Lower case letters represent phosphorothioate modifications. 

AP-1 decoys were transfected into HUVEC with JetPEITM according to chapter 2.8.2. Experiments 

were performed 3-4 h after transfection. 
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3.8 Reporter gene assay 

3.8.1 Transfection of HEK 293 cells 

Transfection of human embryonic kidney 293 cells (HEK 293) was performed as described in 

chapter 7.1. Cells were co-transfected with the luciferase reporter construct pNF-κB-Luc and the  

β-galactosidase gene pSV-β-Gal. The plasmid pNF-κB-Luc contains the Simian virus 40 (SV40) 

promoter driving the firefly luciferase gene. For the experiments with the dominant negative (dn) 

version of p38, cells were additionally transfected with kRSPA-Flag-p38 (AF) mutant or the empty 

expression vector (kRSPA). In order to rule out interactions of the different plasmids, control cells 

were transfected with pNF-κB-Luc, pSV-β-Gal or salmon sperm alone. Cells co-transfected with 

pNF-κB, pSV-β-Gal, pFC-MEKK and salmon sperm served as a positive control. 

3.8.2 Luciferase reporter assay 

Firefly luciferase is widely used as a reporter to study gene expression. Light is produced by 

converting the chemical energy of luciferin oxidation through an electron transition, forming the 

product molecule oxyluciferin. The enzyme catalyzes the luciferin oxidation using ATP and Mg2+ as 

co-substrate and the generated light can be measured. For normalization, cells are co-transfected 

with the gene encoding β-galactosidase. This E.coli-derived enzyme catalyzes the cleavage of the 

synthetic substrate chlorophenolred-β-D-galactopyranoside (CPRG) releasing chlorophenolred 

which is measured by spectrophotometry. 

Solutions: 

Z-buffer:     Substrate solution:   

Na2HPO4  60 mM   CPRG (50 mM)  100 µl 

NaH2PO4  40 mM   β-mercaptoethanol 10 µl 

KCl   10 mM   z-buffer   10 ml 

MgCl   10 mM 
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Experimental procedure: 

Cells were pre-incubated for 2 h with various substances and subsequently stimulated with 1 ng/ml 

TNF-α for 6 h. Then cells were washed with PBS+ and lysed with the provided passive lysis buffer 

(Promega, Heidelberg, Germany). To ensure complete and even coverage of the cells with passive 

lysis buffer, the plates were placed on a rocking platform for 15 min at room temperature and 

frozen at -85°C until measurement. Nuclear factor (NF)-κB activity was measured by the luciferase 

assay system (Promega, Heidelberg, Germany), according to the manufacturers description, with 

an AutoLumat Plus (Berthold, Pforzheim, Germany). Galactosidase activity was assayed by adding 

the substrate solution to 10 µl of each sample and measuring the absorbance at 550 nm at 37°C in 

a SpectraFluor Plus microplate reader (Tecan, Crailsheim, Germany). 

 

3.9 Measurement of caspase activity 

The activation of caspase-3, a member of the caspase family thought to mediate apoptosis in most 

mammalian cell types (Hengartner, 2000), can be measured with the help of a synthetic peptide 

substrate DEVD (Asp-Glu-Val-Asp) labeled with a fluorescent molecule, 7-amino-4-trifluoromethyl 

coumarin (AFC). Activated caspases cleave the substrate after the aspartate residue releasing the 

fluorophore (figure 9). This results in a shift from blue to green fluorescence, measured at an 

extinction wavelength of 400 nm and an emission wavelength of 505 nm.  

 

      

       DEVD      + 

 

figure 9:  Liberation of AFC by caspase-3-cleavage of Ac-DEVD-AFC. 
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The reaction has a linear progression over at least 2 h at substrate saturation. Since caspases 

need a thiol group for their catalytic activity, they are susceptible to changes of redox potential by 

agents such as air oxygen or traces of metal ions. Therefore, the substrate buffer contains 

dithiothreitol (DTT) as a reducing agent.  

3.9.1 Caspase-3-like activity 

DEVD has been identified as the consensus cleavage site for caspase-3 (Nicholson et al.; 1995), 

as well as other closely related family proteases, such as caspase-6 and -7. Therefore, the activity 

which is assayed with this method within whole cell lysates or tissue homogenates has to be 

termed “caspase-3-like activity” regarding caspase-3 as the major effector caspase.  

 

Solutions: 

Lysis buffer:     Substrate buffer: 

MgCl2    5 mM  HEPES (pH 7.5)  50 mM 

EGTA    1 mM  sucrose    1 % 

Triton® X-100   400 µl  CHAPS    0.1 % 

HEPES (pH 7.5)  25 mM  Added freshly before use: 

      Ac-DEVD-AFC   50 µM  
      DTT    10 mM 

 

Experimental procedure: 

Cell samples: Cells were cultured in 12-well plates, treated as indicated, and washed with ice-cold 

PBS, followed by addition of 70 µl cold lysis buffer. Subsequently, the plates were frozen at -85°C 

until measurement. The frozen plates were allowed to thaw on ice, cells were scraped and cell 

lysates were collected, followed by centrifugation at 21,910 x g, 4°C for 10 min. Supernatants were 

transferred to microtiter plates (Greiner, Frickenhausen, Germany) and caspase-3-like activity was 

measured according to the method originally described by Gurtu et al. (1997). 
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Tissue samples: Mice were treated as described in chapter 2.3. Livers were stored on dry ice 

during the preparation of tissue homogenates. 1 ml of ice-cold lysis buffer was added to 100 mg of 

liver tissue. After homogenization with a Potter S device (Braun Biotech, Melsungen, Germany), 

lysates were cleared by centrifugation. The obtained supernatants were stored in aliquots at -85°C. 

Caspase activity was measured as described above.  

3.9.2 Caspase-8-like activity 

Similarly to the assessment of caspase-3-like activity, the activity of other caspases can be 

determined, by changing the cleavage site of the substrate. By using the consensus cleavage site 

IETD (Ile-Glu-Thr-Asp), enzyme activity of caspase-8 and other closely related family proteases, 

such as caspase-9, becomes detectable. Activities in cell lysates and tissue homogenates were 

determined as described in chapter 2.10.1 by using Ac-IETD-AFC as caspase substrate. 

3.9.3 Activity of recombinant caspases 

Solutions: 

Buffer A (pH 7.4):      

HEPES    50 mM 

NaCl    100 mM 

CHAPS    0.1 % 

EDTA    1 mM 

glycerol    10 % 

 

Experimental procedure: 

Human recombinant caspase-3 and -8 were supplied in buffer A additionally containing 10 mM 

dithiothreitol (DTT). Before each experiment, the stock solutions were diluted to 2 U/µl with buffer A 

plus 400 µM DTT. Activity of the enzymes (final concentration: 40 U/ml) was measured at 37°C in 

100 µl buffer A (without addition of DTT) containing 50 µM caspase substrate, in microtiter plates 

following the generation of free AFC from the synthetic substrate Ac-DEVD-AFC for caspase-3 or 
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Ac-IETD-AFC for caspase-8 respectively. The activities measured in wells containing diluted 

recombinant caspase and substrate only were taken as 100 %. 

 

3.10 Microscopy 

3.10.1 Light Microscopy 

To detect changes in morphology of cells undergoing apoptosis, certain characteristic changes like 

blebbing, shrinking and formation of apoptotic bodies can be visualized in a light microscope. After 

incubation of the cells as indicated in the respective figure, they were viewed with a Zeiss Axiovert 

25 microscope (Zeiss, Oberkochen, Germany) and pictures were taken with the connected reflex 

camera.  

3.10.2 Confocal Laser Scanning Microscopy (CLSM) 

Confocal Laser Scanning Microscopy (CLSM) offers a higher optical resolution compared to 

conventional microscopy. By two conjugated pinholes, one illumination pinhole through which only 

a disk-shaped area is lit and one in front of the detector which is focused on the same focal plane 

as the illumination pinhole, out-of-focus blurs are cut off and image definition is enhanced. 

 

Experimental procedure: 

Collagen-coated (1 % collagen in PBS) glass cover slips (∅ 12 mm) were prepared in 24-well 

plates. HUVEC were grown until confluence and were treated as indicated. After treatment cells 

were washed with PBS+ and were fixed with a buffered formaldehyde solution (4 %). Cells were 

washed with PBS and were permeabilized with Triton X-100 (0.2 %). After further wash steps with 

PBS, unspecific binding was blocked by incubation with 0.2 % bovine serum albumin (BSA) 

solution. This was done in order to minimize non-specific adsorption of antibodies. Cells were 
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incubated with the primary antibody anti-p65 (1 µg/ml) for 1 h, washed with PBS, and incubated 

with AlexaFluor633 goat anti-mouse antibody (5 µg/ml) for 30 min. Again, cells were washed with 

PBS. The cover slips were embedded in fluorescent mounting medium (DakoCytomation, 

Hamburg, Germany) and put onto glass objective slides. Images were obtained using a Zeiss LSM 

510 Meta confocal laser scanning microscope (Zeiss, Oberkochen, Germany). 

 

3.11 Molecular modeling studies 

The experiments described in this chapter were kindly performed by Dr. Monika Höltje, Birte 

Brandt, and Prof. Dr. Hans-Dieter Höltje (Institute of Pharmaceutical Chemistry, Heinrich-Heine-

University Düsseldorf).  

 

 

 

 

 

 

 

figure 10: Crystal structure of caspase-3. Amino acids of the active site regions S1-S4 are displayed in 
blue balls and sticks. 

 
Automated docking analysis was carried out by using AutoDock 3.0 (Morris et al.; 1999). The 

crystal structure of caspase-3 was obtained from the Brookhaven Protein Databank (code: 1QX3). 

Several x-ray crystal structures reveal how specific peptidic and non peptidic inhibitors bind to 

caspase-3 (Erlanson et al.; 2003; Lee et al.; 2000a; Riedl et al.; 2001; Rotonda et al.; 1996). The 
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ligands occupy the active site of the caspase in the S1-S4 regions (figure 10). To identify potential 

ligand locations, a protoporphyrin molecule (without metal ligand, figure 11) was docked in the 

active site of the enzyme. Protoporphyrin was taken due to the fact that standard force field 

methods can not calculate physico-chemical properties of metal ions adequately. The ligand was 

kept flexible so that it could adjust to the positions of the protein side chains. 50 independent 

docking runs were carried out. For each calculation, similar ligand geometries were clustered and 

represented by the one with the most favorable interaction energy. The obtained complexes were 

energetically minimized by using a conjugate gradient algorithm permitting the ligand side chain 

atoms to relax. Energy minimizations were carried out by using the PRGEN program (Zbinden et 

al.; 1998). To validate the results obtained by the docking procedure, a series of GRID calculations 

was performed. 

 

figure 11: Molecular structure of protoporphyrin 

 

The program predicts favorable interactions between a molecule of known three-dimensional 

structure (i.e. caspase-3) and different probes representing characteristic chemical features of a 

ligand molecule. Unlike the docking studies, the complete structure of caspase-3 was investigated 

here, in order to search for possible protoporphyrin binding sites in addition to the known active 

site. 
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3.12 High performance liquid chromatography 

For the use in different experiments with cultured cells, stability of acetylsalicylic acid (ASA) in 

aqueous solutions was tested by high performance liquid chromatography (HPLC). 

 

Experimental procedure: 

Separation of acetylsalicylic acid (ASA) and salicylic acid (SA) was carried out on a Merck/Hitachi 

HPLC system (pump L6200A, autosampler AS-2000A, diode array detector L-4500A). A 

LiChrospher® 60 RP-select B 5 µm column (Merck/Hitachi, Darmstadt, Germany) was used at room 

temperature and a flow rate of 1.2 ml/min. The elution solvent was 40 % acetonitrile. For detection 

a spectrum of absorption from 200 to 400 nm was acquired. Chromatograms were recorded 3 h 

(A), 6 days (B), and 12 months (C) after solution of ASA in Medium 199 (M199). As can be seen in 

figure 12, hydrolization of ASA occurred already after 3 h. The second peak with a retention time 

of about 3 min could be identified as salicylic acid (SA). After 6 days the amount of SA was 

exceeding the amount of ASA and no ASA was left after 12 months of storage.  

 

 

 

 

 

 

 

 

 

figure 12: Representative chromatograms of solutions of acetylic salicylic acid in cell culture 
medium. Chromatograms were recorded 3 hours (A), 6 days (B), and 12 months (C) after 
solution of the substance in M199. 
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3.13 Statistical analysis 

All experiments were done from at least two to three different cell preparations. Each experiment 

was performed at least in duplicates. Data is expressed as mean ± SEM. Statistical analysis was 

performed with GraphPad Prism® (Version 3.02, GraphPad Software Inc., San Diego, USA). 

Statistical significance between groups was determined by one sample t-test or student’s t-test. A 

p-value < 0.05 was considered to be statistically significant.  
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4.1 Salicylates and HO-1 

4.1.1 Effect of sodium salicylate on IL-4-induced P-selectin 

The cytokine interleukin-4 (IL-4) is known to induce prolonged expression of the adhesion molecule 

P-selectin in human endothelial cells. It has been shown that salicylates are able to inhibit this 

induction. We aimed to confirm this fact in our cell system. Treatment of HUVEC with IL-4 resulted 

in an increase of P-selectin mRNA up to 15-fold (figure 13A). This induction was abrogated by pre-

treatment with NaSal, as shown in figure 13B. 

 

 

 

 

 

 

 

figure 13: IL-4-induced P-selectin mRNA is decreased by NaSal. HUVEC were either left untreated 
(Co) or were treated with Interleukin-4 (IL-4, 10 ng/ml) for the indicated times (A). Cells were 
either left untreated (Co) or were treated with IL-4 (10 ng/ml) for 20 h with or without pre-
treatment with sodium salicylate (NaSal, 10 mM) for 60 min (B). Levels of P-selectin mRNA 
were determined by real-time RT-PCR as described in chapter 2.4. Values of untreated cells 
were set as 1. ***p<0.001 vs. Co. +++p<0.001 vs. IL-4. 

 

4.1.1.1 Induction of P-selectin by IL-4 independent of NF-κB translocation 

Salicylates are known to mediate some of their anti-inflammatory effects via an inhibition of the 

transcription factor NF-κB. However, the delayed and prolonged accumulation of P-selectin mRNA 

induced by IL-4 is postulated to be independent of NF-κB-activation and translocation. Our findings 
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shown in figure 14 supported this assumption. In fact, there was no visible nuclear translocation of 

the NF-κB subunit p65 after IL-4 treatment in HUVEC compared to untreated cells. In contrast, 

TNF-α-treated cells showed a marked NF-κB-translocation into the nucleus.  

 

 

 

 

 

figure 14: IL-4 does not induce p65-translocation in HUVEC. Cells were either left untreated (Co) or 
were treated with IL-4 (10 ng/ml) for 4 h. Treatment with TNF-α (10 ng/ml, 4 h) served as a 
positive control. Immunocytochemistry for p65 and confocal laser scanning microscopy were 
performed as described in chapter 2.11. 

 

4.1.1.2 Role of heme oxygenase-1 

Salicylates have been shown to induce heme oxygenase-1 (HO-1). Furthermore, a role of HO-1 in 

inhibition of different adhesion molecules including P-selectin expression had been suggested. In 

order to elucidate whether HO-1 participates in the NaSal-mediated abrogation of the IL-4-induced 

P-selectin levels, we used the HO-1-inhibitor tin-protoporphyrin IX (SnPP). In addition, we 

transfected HUVEC with antisense ODN in order to inhibit the NaSal-induced HO-1 expression. 

The functionality of the antisense approach, i.e. the ability of the ODN to reduce the HO-1 protein 

content, is shown in figure 15.  

 

 

 

figure 15: Prove of functionality of the HO-1 antisense oligonucleotides. Cells were transfected with 
HO-1 antisense as described in chapter 2.8. Cells were treated with NaSal (10 mM, 60 min). 
For detection of HO-1 protein contents Western blot was performed as described in chapter 2.5. 
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As can be seen in figure 16, SnPP treatment as well as the antisense-approach revealed that  

HO-1 is partly involved in this inhibitory action of NaSal. 

 

 

 

 

 

 

 

 

figure 16: HO-1 is involved in the NaSal-mediated inhibition of P-selectin mRNA expression by IL-4. 
Cells were either left untreated or were treated with IL-4 (10 ng/ml) for 20 h with or without pre-
treatment with NaSal (10 mM) for 60 min. SnPP was employed 30 min before NaSal (A). For 
antisense experiments (B), cells were transfected with HO-1 antisense or sense as described in 
chapter 2.8. Levels of P-selectin mRNA were determined by real-time RT-PCR as described in 
chapter 2.4. Values of untreated cells were set as 1. ***p<0.001 vs. IL-4. +++p<0.001 vs. IL-4- 
and NaSal-treated cells. 

 

4.1.2 HO-1 induction by sodium salicylate 

The induction of HO-1 by acetylsalicylic acid (ASA) in HUVEC has previously been shown by Dr. 

Nicole Bildner (Bildner, 2002). ASA is not very stable in aqueous environment like it occurs during 

treatment of cells (as described in chapter 3.12) and is rapidly de-acetylated to salicylic acid (SA). It 

has been demonstrated that after oral administration of an analgesic dose of ASA, about 50 % is 

de-acetylated to SA already during and immediately after absorption (Amann et al.; 2002).  

To confirm the HO-1-inducing effect of ASA for its degradation product SA, we performed time- and 

concentration-courses with sodium salicylate (NaSal). As shown in figure 17A, NaSal (10 mM) 

lead to elevated levels of HO-1 protein in a time-dependent manner with maximum induction 
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between 30-90 min after treatment. We also confirmed the dose-dependency of this effect. 

Concentrations ranging from 10 µM to 10 mM induced HO-1 protein expression (figure 17B).  

 

 

 

 

 

 

 

figure 17: Time- and concentration-course of NaSal-induced HO-1 expression. Cells were either left 
untreated (Co) or were treated with NaSal (10 mM) for the indicated times (A) or with different 
concentrations of NaSal for 60 min (B). For detection of HO-1 protein expression Western blot 
was performed as described in chapter 2.5. 

 

4.1.3 HO-1 induction by JNK and AP-1 

Since we found that NaSal is able to induce HO-1 expression similar to ASA, we wanted to confirm 

the proposed molecular mechanisms mediating the up-regulation of HO-1 protein expression by 

NaSal. Recent studies revealed that the transcription factor activator protein-1 (AP-1) is likely to be 

involved in HO-1 gene transcription in different cell types including endothelial cells. This has been 

shown by ourselves for the ASA-induced HO-1 expression in HUVEC (Bildner, 2002). 

4.1.3.1 Activation of AP-1 by sodium salicylate 

To investigate the influence of NaSal on the DNA-binding activity of AP-1, cells were treated with 

sodium salicylate for different periods of time and EMSA was performed. In fact, treatment of 

HUVEC with NaSal (10 mM) resulted in a pronounced time-dependent activation of AP-1 DNA-

binding activity (figure 18). This effect was maximal after 40 min. 
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figure 18: Time-course of NaSal-induced AP-1 DNA-binding activity. HUVEC were either left untreated 
(Co) or were treated with NaSal (10 mM) for the indicated times. AP-1 DNA-binding activity was 
assessed by electrophoretic mobility shift assay (EMSA) as described in chapter 2.7. 

 

To causally link AP-1 to the induction of HO-1, we performed AP-1 decoy experiments. 

Functionality of this approach was confirmed in our lab by Dr. Robert Fürst (Fürst, 2005). HUVEC 

were transfected with AP-1 decoy oligonucleotides and treated with NaSal. The decoy completely 

abrogated the increase of HO-1 expression by NaSal (figure 19), suggesting that AP-1 is crucial 

for the NaSal-induced up-regulation of HO-1. These findings clearly corroborated the suggested 

signaling pathway of ASA. 

 

 

 

  

figure 19: Involvement of AP-1 in the NaSal-induced HO-1 expression. HUVEC were transfected with 
AP-1 decoy or scrambled decoy (scr) as described in chapter 2.8.3. After transfection cells were 
either left untreated or were treated with NaSal (10 mM) for 60 min. HO-1 protein expression 
was determined by Western blot as described in chapter 2.5.  

 

4.1.3.2 Effect of sodium salicylate on JNK/SAPK 

It is well known that transcriptional activity of AP-1 is activated via the MAP kinase c-jun N-terminal 

kinase (JNK) and it has previously been shown that JNK also mediates the induction of HO-1 by 

ASA. To confirm these findings for the present setting, we examined the ability of high-dosed 

NaSal to activate JNK. In fact, the phosphorylated form of JNK became detectable after 15 min 

(figure 20A).  
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figure 20: JNK mediates the NaSal-induced HO-1 expression. Cells were either left untreated (Co), 
were treated with TNF-α (10 ng/ml) for 30 min, or were treated with NaSal (10 mM) for the 
indicated times (A). Cells were either left untreated or were pre-treated with the JNK-inhibitor 
SP600125 (SP, 10 µM, 60 min). NaSal was added to the cells for 60 min (B). Phospho-JNK (p-
p46/54) and HO-1 protein levels were determined by Western blot as described in chapter 2.5.  

 

The participation of JNK in the signaling of NaSal was confirmed by employing the JNK inhibitor 

SP600125. As shown in figure 20B, the inhibitor completely blocks the induction of HO-1 protein 

by NaSal.  
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4.2 Metalloporphyrins and caspases 

4.2.1 Porphyrins inhibit caspase-3-like activity 

As shown in chapter 3.1, NaSal induces heme oxygenase (HO-1). In order to investigate whether 

HO-1, described as a cytoprotective protein, protects human umbilical vein endothelial cells 

(HUVEC) from apoptosis, cells were treated with NaSal and apoptosis was induced by different 

cytotoxic substances. Employing different metalloporphyrins as HO-1-inhibitors surprisingly showed 

contradictory results during assessment of caspase-3-like activity. As an inhibitor of HO-1, tin-

protoporphyrin IX (SnPP) had been suggested to lead to an increase in caspase-3-like activity by 

inhibiting the cytoprotective features of HO-1. In our experiments, however, we observed the 

opposite effect of SnPP on caspase activity (figure 21).  

 

 

 

 

 

 

 

 

figure 21: SnPP inhibits Actinomycin D/TNF-α-induced caspase-3-like activity.  Cells were either left 
untreated or treated with a combination of Actinomycin D (1 µg/ml) and TNF-α (10 ng/ml) alone 
(Act.D/TNF, 3 h) or pre-treated with the HO-1-inhibitor tin-protoporphyrin IX (SnPP, 10 µM,  
30 min) or the HO-1-inducer cobalt(III)-protoporphyrin IX (CoPP, 10 µM, 30 min). Caspase-3-
like activity was determined as described in chapter 2.10. Values of untreated cells were set as 
1. ***p<0.001 vs. Co. +++p<0.001 vs. Act.D/TNF. ++p<0.01 vs. Act.D/TNF. 

 

These results led to the assumption that SnPP, or possibly metalloporphyrins in general, might 

have a direct influence on caspase-3-like activity. In order to answer this question we were looking 
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for a system independent of the HO system. A classical model for investigating apoptosis are 

Jurkat T-lymphocytes treated with Fas ligand (FasL). 

Metalloporphyrins, as well as FasL, have been demonstrated to affect HO-1 expression in different 

cell types including Jurkat cells (Pae et al.; 2004; Sardana et al.; 1987). However, Western blot 

analysis assured that in our experimental setting HO-1 was neither induced by FasL nor by 

porphyrins (figure 22).  

Different times of treatment with these substances, as indicated in further experiments, did not 

result in an increased HO-1 expression either (data not shown). Therefore, the effect on caspase 

activity by the metalloporphyrins seems to be HO-1 independent.  

 

 

 

figure 22: FasL and metalloporphyrins do not influence HO-1 expression in Jurkat cells. Cells were 
either left untreated (Co) or treated with FasL (100 ng/ml, 16 h) or with the different porphyrins 
(CoPP, ZnPP, SnPP, 10 µM each, 30 min). Human umbilical vein endothelial cells (HUVEC) 
treated with CoPP (10 µM) served as a positive control (P) for induction of HO-1 protein. For 
detection of HO-1 protein expression Western blot was performed as described in chapter 2.5. 

 

 

We tested the inhibition of caspase-3-like activity by different metalloporphyrins in Jurkat cells 

treated with FasL (100 ng/ml, 16 h). Since we suspected a direct inhibition of the enzyme by the 

porphyrins, they were added to the FasL-treated cells 30 min before the cells were lysed. Both the 

HO-1-inducer cobalt(III)-protoporphyrin IX (CoPP) and the HO-1-inhibitor SnPP showed a similar 

effect as observed in HUVEC after Actinomycin D/TNF-α treatment. Also zinc(II)-protoporphyrin IX 

(ZnPP), another potent HO-1-inhibitor like SnPP, showed the same inhibition (figure 23). As all 

three of the porphyrins were able to inhibit caspase-3-like activity we only used CoPP for further 

experiments.  
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figure 23: Different metalloporphyrins are able to inhibit FasL-induced caspase-3-like activity in 
Jurkat T-lymphocytes. Cells were either left untreated (Co) or treated with FasL (100 ng/ml) 
for 16 h. CoPP, SnPP, and ZnPP (10 µM each) were added 30 min before the cells were lysed. 
Caspase-3-like activity was measured as described in chapter 2.10. Values of FasL-treated 
cells were set as 100 %. ***p<0.001 vs. Co. +++p<0.001 vs. FasL  

 

Morphological studies showed that after 16 h of treatment with FasL the cells are in a very late 

stage of apoptosis (data not shown). Therefore, we looked for an earlier time point where caspase-

3-like activity would become detectable. Incubation with FasL for 2 h already resulted in a marked 

induction of caspase activity with a maximum at 6 h (figure 24).  

 

 

 

 

 

 

 

 

figure 24: Time-dependent induction of caspase-3-like activity by Fas ligand. Cells were treated with 
FasL (100 ng/ml) for the indicated times. Caspase-3-like activity was measured as described in 
chapter 2.10. Values of untreated cells were set as 1. ***p<0.001 vs. Co. 

 

For the following experiment we chose a FasL treatment for 6 h and observed that CoPP (10 µM) 

inhibited enzyme activity induced by FasL also at this early time point (figure 25). 



RESULTS 

 60 

Co FasL FasL + CoPP
0

1

2

3

4

5 ***

+++

ca
sp

as
e-

3-
lik

e 
ac

tiv
ity

[x
-f

ol
d 

in
cr

ea
se

]

uncleaved PARP (115 kDa)
cleaved PARP (85 kDa)
uncleaved PARP (115 kDa)
cleaved PARP (85 kDa)

CoPP+--

FasL++-
CoPP+--

FasL++-

 

 

 

 

 

 

 

figure 25: CoPP inhibits FasL-induced caspase-3-like activity. Cells were either left untreated (Co) or 
treated with FasL (100 ng/ml) alone or together with CoPP (10 µM) for 6 h. Caspase-3-like 
activity was measured by the release of free AMC after cleavage of the caspase-3-substrate as 
described in chapter 2.10. Values of untreated cells were set as 1. ***p<0.001 vs. Co. 
+++p<0.001 vs. FasL. 

 

4.2.2 Metalloporphyrins inhibit PARP-cleavage 

In order to rule out that the effects of the porphyrins on caspase activity are in any way related to 

the method of determining caspase activity, we aimed to determine effects of metalloporphyrins on 

a physiological substrate. Poly-ADP ribose polymerase (PARP) is known to be a prominent 

substrate of caspase-3 during apoptosis. In fact, Western blot analysis (figure 26) of Jurkat T-

lymphocytes revealed a reduction of the 85 kDa cleavage product of PARP in CoPP-treated cells 

compared to Jurkat-cells treated with FasL alone. 

 

 

 

 

figure 26: CoPP inhibits FasL-induced PARP-cleavage in Jurkat cells. Cells were either left untreated 
(Co) or treated with FasL (100 ng/ml) alone or together with CoPP (10 µM) for 6 h. For detection 
of PARP-cleavage Western blot was performed as described in chapter 2.5.  
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4.2.3 Porphyrins inhibit caspase-3-like activity in vivo 

We aimed to clarify whether the inhibitory effect of metalloporphyrins on caspase-3-like activity is 

also relevant in vivo. Therefore we used a mouse model of Anti-CD95 (FasL) antibody (anti-CD95 

Ab)-induced apoptotic liver injury as described in chapter 2.3. Mice were treated with activating 

anti-CD95 Ab for 6 h resulting in high caspase-3-like activity. CoPP and SnPP were administered  

2 h after anti-CD95 Ab in order to make sure that no considerable HO-1 expression occurred yet 

(figure 27).  

 

 

 

figure 27: CoPP does not influence HO-1 protein expression in our in vivo setting. Mice were treated 
with CoPP (10 mg/kg) 2 h after induction of caspase activity by activating anti-CD95 Ab (10 
mg/kg). Animals were killed after 6 h and HO-1 protein expression was determined by Western 
blot as described in chapter 2.5. 

 

Measurement of caspase-3-like activity in liver homogenates clearly showed that metalloporphyrins 

are able to inhibit this enzyme also in vivo (figure 28). 

 

 

 

 

 

 

 

figure 28: Porphyrins influence caspase-3-like activity in vivo. Mice were treated with CoPP  
(10 mg/kg) or SnPP (25 mg/kg) 2 h after induction of caspase activity by activating anti-CD95 
Ab (10 mg/kg). At 6 h after challenge caspase-3-like activity was measured as described in 
chapter 2.10. SnPP was also added to liver homogenates of mice treated with anti-CD95 Ab 
immediately before the measurement of caspase activity serving as a positive control (P). 
Values of anti-CD95 Ab-treated mice were set as 100 %. **p<0.01 vs. anti-CD95 Ab. *p<0.05 
vs. anti-CD95 Ab. 
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4.2.4 Porphyrins are direct caspase-3-inhibitors 

To elucidate the mechanism of caspase inhibition, porphyrins were added directly to lysates of 

FasL-treated Jurkat cells containing activated caspases. Activities as shown in figure 29 suggest 

that the mode of inhibition may occur in a direct manner. CoPP and the other metalloporphyrins 

showed a stronger inhibitory effect on caspase-3-like activity than in whole cells.  

 

 

 

 

 

 

 

 

 

 

 

figure 29: Metalloporphyrins inhibit caspase-3-like activity in cell lysates of FasL-induced Jurkat T-
lymphocytes. Cells were either left untreated (Co) or treated with FasL (100 ng/ml) for 16 h. 
CoPP, SnPP and ZnPP (10 µM each) were added to the cell lysates immediately before the 
measurement of caspase activity as described in chapter 2.10. Values of FasL-treated cells 
were set as 100 %. ***p<0.001 vs. FasL. +++p<0.001 vs. Co. 

 

 

To confirm a direct inhibition of caspase activity by porphyrins, recombinant caspase-3 was 

employed. As can be seen in figure 30, the porphyrins were able to inhibit the activity of the 

isolated enzyme.  
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figure 30: Metalloporphyrins inhibit activity of recombinant caspase-3. Recombinant caspase-3 (C-3) 
was incubated with CoPP, SnPP, and ZnPP (10 µM each). The caspase-inhibitor z-VAD-fmk 
served as a positive control (z-VAD-fmk, 25 µM). Caspase activity was measured as described 
in chapter 2.10. Activity of caspase-3 in the absence of any porphyrin was taken as 100 %. 
***p<0.001 vs. C-3. 

 

The IC50-values of the three metalloporphyrins, as assessed by activity measurement with isolated 

caspase-3, demonstrate that the inhibitory potency of CoPP (IC50 ∼ 10 nM) clearly exceeds that of 

the two other porphyrins (IC50 ∼2.5 µM) (figure 31).  

 

 

 

 

 

 

 

 

figure 31: Dose-dependent inhibition of recombinant caspase-3 by metalloporphyrins. CoPP (0.001 
µM - 10 µM), SnPP, or ZnPP (0.001 - 100 µM each) were added to recombinant caspase-3  
 immediately before the measurement of caspase activity as described in chapter 2.10. Activity 
of caspase-3 in the absence of any porphyrin was taken as 100 %. 
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4.2.5 Characterization of the inhibitory action on caspase-3 

In order to clarify the mode of action of the metalloporphyrins on caspase-3-activity, we tested if the 

effect was reversible by adding an excess of caspase substrate. Further experiments were 

performed in order to elucidate the possible molecular mechanism of inhibition.  

Employing increasing amounts of the caspase-3-substrate revealed that the inhibitory effect of the 

porphyrins is not reversible at substrate concentrations of up to 1 mM, as shown in figure 32.  

 

 

 

 

 

 

 

 

 

figure 32: Increasing amounts of caspase-3-substrate is not able to abrogate the inhibition of 
caspase activity. CoPP (10 µM) was added to recombinant caspase-3 (C-3) and caspase 
activity was assessed with varying concentrations of caspase-3-substrate Ac-DEVD-AFC (50 - 
1,000 µM). Activity of caspase-3 in the absence of the porphyrin was taken as 100 %. 
***p<0.001 vs. C-3. 

 

To clarify the possible molecular mechanism of inhibition we examined which part of the 

metalloporphyrin-complex is responsible for the inhibitory effect on caspase activity. One approach 

was the application of the corresponding metals as salts to recombinant caspase-3. Different 

concentrations were used starting from equimolar amounts (10 µM) going down to 25 nM of the 

salts. All metal salts used showed no significant inhibition of caspase activity. The results for the 

experiments with ZnCl2 are shown in figure 33. The other salts used were CoCl2 and SnCl2 (data 

not shown). 
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figure 33: ZnCl2 is not able to inhibit recombinant caspase-3. Increasing amounts of ZnCl2 (0.25 nM – 
25 µM) were added to recombinant caspase-3 and caspase activity was assessed as described 
in chapter 2.10. Activity of recombinant caspase-3 in the absence of the metal salt was set as 
100 %. 

 

The fact that protoporphyrin IX lacking the metal moiety was also able to inhibit caspase-3-activity 

(figure 34) points to the protoporphyrin-ring as responsible structural element for the caspase-3-

inhibition. Molecular modeling data confirmed this assumption. 

 

 

 

 

 

 

 

 

figure 34: Protoporphyrin sodium salt influences the activity of recombinant caspase-3. Equimolar 
amounts of protoporphyrin IX sodium salt (PP, 10 µM) was added to recombinant caspase-3  
(C-3) and enzyme activity was assessed as described in chapter 2.10. Activity of caspase-3 in 
the absence of PP was set as 100 %. ***p<0.001 vs. C-3. 
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4.2.6 Caspase-3-processing is inhibited by porphyrins 

Active caspase-3 is cleaved from its inactive zymogen procaspase-3 by initiator-caspases such as 

caspase-8. As shown in figure 35, treatment with FasL leads to a decrease of the uncleaved 

procaspase-3. In the presence of CoPP the processing of procaspase-3 is blocked. The same 

effect could be seen for SnPP (data not shown). This suggests that porphyrins also interfere with 

caspases upstream of caspase-3.  

 

 

 

 

figure 35: Procaspase-3-processing is inhibited by CoPP in Jurkat T-lymphocytes. Cells were either 
left untreated (Co) or treated with FasL (100 ng/ml) in the presence or absence of CoPP  
(10 µM) for the indicated times. Cellular levels of uncleaved procaspase-3 were examined by 
Western blot as described in chapter 2.5. 

 

 

4.2.7 Porphyrins inhibit caspase-8-activity 

The data presented so far clearly demonstrates that metalloporphyrins directly inhibit caspase-3. 

The question arises whether this inhibitory effect of the porphyrins is specific for caspase-3 or if 

other caspases are equally affected.  

To address this question we chose caspase-8, being a representative of the initiator caspases, as 

opposed to caspase-3 which is an executor caspase. To find out at which time point caspase-8-

activation becomes detectable, we performed a time course. After 3 h of incubation with FasL, we 

observed a significant increase in caspase-8-like activity (figure 36).  
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figure 36: Time-dependent induction of caspase-8-like activity by FasL. Cells were treated with FasL 
(100 ng/ml) for the indicated times. Caspase-8-like activity was measured as described in 
chapter 2.10. Values of untreated cells were set as 1. ***p<0.001 vs. Co. 

 

Importantly, we found that in whole cells (figure 37A) as well as in cell lysates (figure 37B) 

metalloporphyrins had a similarly inhibitory action on caspase-8-like activity as we had observed for 

caspase-3.  

 

 

 

 

 

 

 

 

figure 37: Metalloporphyrins inhibit FasL-induced caspase-8-like activity in Jurkat T-lymphocytes. 
Cells were either left untreated (Co) or treated with FasL (100 ng/ml, 5 h). CoPP, SnPP or ZnPP 
(10 µM each) were added either 30 min before the cells were lysed (A) or immediately before 
the measurement of caspase-8-like activity (B). Caspase-3-like activity was measured as 
described in chapter 2.10. Values of FasL-treated cells were set as 100 %. ***p<0.001 vs. Co. 
+++p<0.001 vs. FasL. 

 

The metalloporphyrins were also tested with recombinant caspase-8 and as can be seen in figure 

38A caspase-8-activity was inhibited to the same extent as recombinant caspase-3. Caspase-8 

was similarly inhibited in the in vivo model (figure 38B). 
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figure 38: Metalloporphyrins inhibit isolated caspase-8 (A) and caspase-8-like activity in vivo (B). 
Recombinant caspase-8 (C-8) was incubated with CoPP, SnPP, and ZnPP (10 µM each) (A). Z-
VAD-fmk (25 µM) served as a positive control. Caspase activity was measured as described in 
chapter 2.10. Activity of caspase-8 alone was taken as 100 %. ***p<0.001 vs. C-8.   
Mice were treated with CoPP (10 mg/kg) or SnPP (25 mg/kg) 2 h after induction of caspase 
activity by anti-CD95 Abs (anti-CD95 Ab, 10 mg/kg) (B). Activity of caspase-8 was detected 6 h 
after challenge as described in chapter 2.10. SnPP was also added to liver homogenates of 
mice treated with anti-CD95 Ab immediately before the measurement of caspase activity 
serving as a positive control (P). Values of anti-CD95 Ab-treated mice were set as 100 %. 
***p<0.001, **p<0.01, *p<0.05 vs. anti-CD95 Ab. 

 

4.2.8 Morphologic alterations 

During apoptosis, cells undergo distinct morphologic changes such as cell shrinkage and the 

formation of apoptotic bodies. FasL treatment induces the formation of apoptotic bodies as 

indicated in figure 39. The treatment of CoPP clearly reduced the formation of apoptotic bodies as 

observed by light microscopic analysis.  

 

 

 

 

 

 

figure 39: Influence of CoPP on FasL-induced formation of apoptotic bodies. Jurkat cells were either 
left untreated (Co) or treated with FasL (10 ng/ml) alone or together with CoPP (10 µM) for 6 h. 
Images were obtained as described in chapter 2.11.1. 
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4.2.9 Molecular modeling studies 

Molecular modeling studies confirmed the biochemical data suggesting a direct interaction of 

metalloporphyrins with caspase-3. Protoporphyrin fits well into the active site of caspase-3, as can 

be seen from the molecular superposition of the binding conformations extracted from the 

AutoDock results (figure 40).  

 

 

 

 

 

 

 

 

 

 

 

figure 40: Auto-Dock results. Caspase-3 together with 10 putative binding conformations of 
protoporphyrin. 

 

In figure 41, the most energetically favorable interaction complex can be viewed in detail: one 

carboxylate group of the protoporphyrin forms a bidentate salt bridge to the guanidinium group of 

Arg-341. Moreover, one of the carboxylate oxygens forms a hydrogen bond with the backbone NH 

of Ser-180. The second carboxylate group acts as a hydrogen bond acceptor for the backbone NH 

of Arg-341 and for the -OH of Tyr-338. The -OH group of Ser-343 points in the direction of the 

N/NH atoms of the protoporphyrin in a way that either hydrogen bonds or interactions with a central 

metal cation can occur. 
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The protoporphyrin carbon skeleton makes some hydrophobic contacts with Thr-177, Trp-340, and 

Phe-381B. The program “GRID” was used to test the complete protein for areas that offered 

energetically favorable interactions with a ligand molecule.  

 

 

 

 

 

 

 

 

 

 

figure 41: Auto-Dock results. Representation of the most energetically favorable caspase-
3/protoporphyrin-complex showing the major protein-ligand interactions. 

 

Since the protoporphyrin molecule exhibits mainly carbons and carboxylate groups which may act 

as binding partners for a protein, we selected a hydrophobic probe and a CO- probe as 

representatives. The calculations suggest that the most favored region of interactions for the 

probes is located in the active site of the enzyme which is in agreement with our docking 

procedure. However, from the GRID results one further potential binding region was detected. In 

order to evaluate its suitability to act as a specific binding site for the protoporphyrin, subsequent 

AutoDock investigations were performed (data not shown). No energetically favorable binding 

mode was detected by AutoDock since the protoporphyrin molecule is too bulky to fit well into this 

pocket. As previously mentioned in chapter 2.12, metal ion properties and influences cannot be 

estimated reliably with force field methods. To investigate the differences seen in the various 

metalloporphyrins on caspase-3-activity, extensive quantum chemical computations have to be 

performed. 
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4.3 TNF-α-induced p38 MAPK and NF-κB activation 

In a third part of this work, we aimed to clarify the relationship of TNF-α-induced p38 MAPK and 

NF-κB activation. The atrial natriuretic peptide (ANP) has previously been shown as an inhibitor of 

NF-κB activity and p38 MAPK in HUVEC (Kiemer et al.; 2002). Both p38 MAPK as well as NF-κB 

have been suggested as a regulator of MCP-1 induction (Roebuck et al.; 1999). In this framework 

we aimed to clarify a potential interplay between these two inflammatory signaling pathways.  

 

 

 

 

 

 

 

 

 

 

 

figure 42: Involvement of p38 in TNF-α-induced NF-κB DNA-binding activity. HUVEC (A) or HEK 293 
(B) were either left untreated (Co) or were treated with TNF-α (60 min, HUVEC: 10 ng/ml; HEK 
293: 1 ng/ml) with or without pre-treatment with the p38-inhibitor SB203580 (SB, 5 µM) for 60 
min. NF-κB-binding activity was assessed by electrophoretic mobility shift assay (EMSA) as 
described in chapter 2.7. The histograms show phosphoimaging analysis of EMSA experiments. 
Values of untreated cells were set as 1. ***p<0.001, **p<0.01 vs. Co. ++p<0.01, +p<0.05 vs. 
TNF. 

 

In order to investigate the relationship between p38 MAPK and TNF-α-induced NF-κB activity, we 

performed EMSA employing the chemical p38 MAPK inhibitor, SB203580. These experiments 
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were performed in HUVEC as well as in HEK 293. As figure 42 clearly shows, both TNF-α-

stimulated HUVEC and HEK 293 showed a significantly increased NF-κB DNA-binding activity after 

pre-treatment with SB203580, suggesting an inhibitory action of p38 on NF-κB DNA-binding 

activity. 

Due to potential unspecific effects by the use of chemical kinase inhibitors, we additionally 

performed Luciferase reporter gene assay using cells transfected with a dominant negative p38 

MAPK mutant (Ludwig et al.; 1998). Due to the difficulty of efficient HUVEC transfection (Teifel et 

al.; 1997) we used HEK 293 for reporter gene assay. Our observations from EMSA experiments 

were supported by the results of Luciferase reporter gene assay. As figure 43 clearly 

demonstrates, the dominant negative p38 mutant led to a significant increase in NF-κB 

transcriptional activity compared to TNF-α-treated cells. 

 

These findings reveal that the inhibition of p38 MAPK leads to significant activation of NF-κB 

transcriptional activity in TNF-α-pre-treated HUVEC and HEK 293. For more details reference is 

made to the publication by Weber et al. (2003). 

 

 

 

 

 

 

 

figure 43: Involvement of p38 in TNF-α-induced NF-κB transcriptional activity. HEK 293 cells were 
transfected with pNF-κB-Luc and pSV-βGal plus dn p38 or empty vector as described in chapter 
2.9.1. Plasmid-transfected cells were either left untreated  (Co) or were treated with TNF  
(1 ng/ml, 6 h). Luciferase activity was measured as described in chapter 2.9.2. Values of TNF-
treated cells transfected with the empty vector were set as 100 %. +++p<0.001 vs. TNF-treated 
cells transfected with empty vector plasmid. 
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5 DISCUSSION  
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5.1 Salicylates and HO-1 

5.1.1 Effect of sodium salicylate on IL-4-induced P-selectin 

P-selectin on endothelial cells (ECs) has been shown to be a major determinant of inflammatory 

responses. Two mechanisms to control cell-surface P-selectin expression have been 

characterized: one that results in rapid up-regulation within minutes after stimulation lasting only 

several hours and utilizing only preformed protein stored in Weibel-Palade bodies (Geng et al.; 

1990; Hattori et al.; 1989). The other takes several hours to increase P-selectin expression through 

a sustained increase in gene transcription lasting several hours or even days (Gotsch et al.; 1994; 

Khew-Goodall et al.; 1996). The latter mechanism seems to be involved in processes of chronic 

and allergic inflammation and is mediated by a number of cytokines including interleukin-4 (IL-4) 

(Khew-Goodall et al.; 1999; Yao et al.; 1996). Different pharmacological agents, including sodium 

salicylate (NaSal), have been shown to inhibit IL-4-induced P-selectin expression in ECs (Xia et al.; 

1998). In the present work we confirmed this finding in our experimental setting and aimed to 

elucidate the events leading to this inhibition.  

 

5.1.1.1 Induction of P-selectin by IL-4 independent of NF-κB 

The transcription factor nuclear factor κB (NF-κB) is a central mediator of the innate immune 

response and plays a critical role in the regulation of gene expression of many genes in 

inflammatory processes, including adhesion molecules. In murine ECs inflammatory mediators 

such as tumor necrosis factor α (TNF-α) and lipopolysaccharide (LPS) increase persistent 

expression of P-selectin thus implicating a role in chronic inflammation (Gotsch et al.; 1994). These 

mediators mobilize heterodimeric NF-κB proteins from the cytoplasm to the nucleus, where they 

bind to κB elements of responsive genes encoding different proteins such as adhesion molecules. 

In contrast, these mediators do not increase P-selectin expression in human ECs (Yao et al.; 
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1996), which can be explained by the lack of the classical NF-κB binding site for NF-κB 

heterodimers in the promotor of the human P-selectin gene. In addition, IL-4 was able to induce P-

selectin expression in ECs independent of NF-κB DNA-binding as observed by electrophoretic 

mobility shift assay (EMSA) (Xia et al.; 1998). In consistence with the latter results, we found that 

IL-4 does not induce p65 translocation. This suggests the existence of alternative signaling 

pathways for the induction of P-selectin expression in human endothelial cells. 

 

Salicylates are known to impair activation of NF-κB (Kopp et al.; 1994; Pierce et al.; 1996), 

presumably by inhibiting the phosphorylation of inhibitory protein κB (IκB) that is required for its 

degradation and the subsequent release of NF-κB (Bayon et al.; 1999; Yin et al.; 1998; Yoo et al.; 

2001). They have been shown to inhibit the ability of inflammatory mediators, such as TNF-α or 

LPS, to induce expression of E-selectin, VCAM-1, or ICAM-1 in ECs (Weber et al.; 1995). This 

inhibition is mainly attributed to their ability to block activation of NF-κB. However, as mentioned 

above, the induction of P-selectin expression by IL-4 in human ECs seems to be completely 

independent of NF-κB activation. Thus, the abrogation of this effect by salicylate cannot be 

explained by its ability to block NF-κB activation. 

 

5.1.1.2 Role of heme oxygenase-1 

Several studies have shown that HO-1 has anti-inflammatory features (Otterbein et al.; 1999; Willis 

et al.; 1996). Those findings are supported by observations made in cases of murine (Poss et al.; 

1997) and human (Yachie et al.; 1999) HO-1-deficiency. 

 

In the recent years a role of HO-1 in regulating the expression of different adhesion molecules had 

been suggested by several groups. Interestingly, an inhibition of P-selectin expression by HO-1 

had been observed in rodents. Induction by hemin exerted a significant regulatory influence on the 

expression of P-selectin and E-selectin in different vascular beds in LPS-treated rats (Vachharajani 
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et al.; 2000), in the mesenteric tissue of rats under oxidative stress (Hayashi et al.; 1999), and also 

in an in vivo thrombosis model in mice (Lindenblatt et al.; 2004). In addition, decreased endothelial 

expression of P-selectin and ICAM-1 was demonstrated in an ischemia/reperfusion injury model 

after treatment with the HO-1 product biliverdin (Fondevila et al.; 2004). Data regarding a similar 

inhibition by HO-1 in human cells, however, has as yet been lacking. The question arises whether 

HO-1 is able to inhibit P-selectin expression also in human cells. 

 

5.1.1.3 Alternative signaling pathways 

Induction of P-selectin transcription in HUVEC by IL-4 seems to involve activation of signal 

transducer and activator of transcription 6 (STAT6) (Khew-Goodall et al.; 1999). On the other hand 

it has been shown that in fibroblasts ASA and NaSal inhibit IL-4-induced activation of STAT6 via 

Src kinase (Perez et al.; 2002). However, the causal connection between salicylate-conducted 

STAT6 inhibition and P-selectin inhibition remains to be elucidated. Moreover, in the study of Perez 

et al. the IL-4-induced STAT6 is not completely abolishable by the same concentration of salicylate 

as used by us. Therefore, it can be speculated that there is an alternative pathway, involving HO-1, 

leading to attenuation of P-selectin expression by salicylate. 

 

5.1.2 HO-1 induction by sodium salicylate 

In accordance with the anti-inflammatory and cytoprotective potential of HO-1, we have recently 

found that acetylsalicylic acid (ASA) induces HO-1 expression in ECs (Bildner, 2002). This has also 

been shown by others (Grosser et al.; 2003), who postulated a new site of action for ASA in anti-

thrombotic therapy.  

 

Simultaneously, numerous observations were made revealing that nonsteroidal anti-inflammatory 

drugs (NSAIDs), such as salicylates, cause anti-inflammatory effects mostly independently of 
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cyclooxygenase (COX) activity and prostaglandin synthesis inhibition. This becomes apparent 

regarding the doses of ASA necessary to treat chronic inflammatory diseases which are much 

higher than those required to inhibit COX activity (Abramson et al.; 1989). In addition, ASA inhibits 

COX activity by acetylating the enzyme, whereas salicylate, the active metabolite, lacks the acetyl 

group and is ineffective as a COX inhibitor at therapeutic doses but is nevertheless able to reduce 

inflammation (April et al.; 1990; Chiabrando et al.; 1989; Preston et al.; 1989). Therefore, the 

question as to the mode of action of salicylate becomes central for the understanding of the 

pharmacology of ASA in anti-inflammatory therapy. 

 

Taken together, these observations led to the question whether NaSal in anti-inflammatory 

concentrations may be able to abrogate IL-4-induced P-selectin expression in HUVEC via an 

induction of HO-1. In fact, we found that NaSal time- and dose-dependently induces HO-1 protein. 

Moreover, blocking the HO-1 induction leads to a significant reduction of the inhibitory effect by 

NaSal, suggesting a participation of HO-1.  

 

These findings implicate a new signal transduction mechanism of salicylate and may provide a 

better understanding of the anti-inflammatory features of this drug. Therefore, it was of highest 

interest to elucidate the underlying signaling pathway leading to HO-1 induction. 

 

5.1.3 HO-1 induction by JNK and AP-1 

The transcription factor activator protein-1 (AP-1) has been reported to play a crucial role in the 

induction of HO-1 expression by several different stimuli such as atrial natriuretic peptide (ANP), 

hyperoxia, cholecystokinin-octapeptide (CCK-8), TNF-α, and IL-1α (Huang et al.; 2004; Kiemer et 

al.; 2003; Lee et al.; 2000b; Terry et al.; 1998). This is consistent with the finding that the human 

HO-1 gene contains AP-1 binding sites (Lavrovsky et al.; 1994). AP-1 activity is known to be 
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regulated by members of the mitogen activated protein kinase (MAPK) family, predominantly by c-

jun N-terminal kinase (JNK) (Widmann et al.; 1999).  

 

The recent findings that high-dosed NaSal was able to induce HO-1 expression raised the question 

whether the JNK/AP-1 pathway might also be involved in the signaling in this experimental setting. 

In fact, NaSal enhanced phosphorylation of JNK and subsequently AP-1 DNA-binding in HUVEC.  

 

We then aimed to approve the causal relationship between an increased HO-1 expression and an 

activation of the JNK/AP-1 pathway by NaSal. By inhibiting either AP-1 DNA-binding by decoy 

ODNs or JNK phosphorylation by employing the JNK inhibitor SP600125, we were able to abrogate 

the NaSal-induced HO-1 expression. This suggests that the JNK/AP-1 pathway plays a crucial role 

in the signaling events responsible for an increased HO-1 expression after NaSal treatment. 

 

5.1.3.1 Activation of AP-1 by sodium salicylate 

Our finding that NaSal induces AP-1 DNA-binding differs from the data published on this subject by 

other investigators (Flescher et al.; 1995; Vartiainen et al.; 2003). Only two other publications report 

about stimulatory effects on the transcription factor AP-1 by aspirin-like drugs so far. One paper 

reports the increase in AP-1-binding activity by salicylates, though only after activation of the spinal 

cord cultures in a hypoxia/reoxygenation model (Vartiainen et al.; 2003). In human T-lymphocytes 

other nonsteroidal anti-inflammatory drugs such as indomethacin, diclofenac, and flurbiprofen, but 

not including ASA or NaSal itself, were tested and shown to activate AP-1 (Flescher et al.; 1995).  

 

On the other hand, publications about an inhibitory effect of salicylates on AP-1 DNA-binding 

activity after activation by different stimuli are numerous. In mouse epidermal cells, ASA and NaSal 

have been shown to inhibit epidermal growth factor-induced AP-1 activation and also basal AP-1 

levels (Dong et al.; 1997) as well as arsenite-induced AP-1 transactivation (Chen et al.; 2001). 
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Furthermore, salicylates were able to block UV-induced AP-1 activity in transgenic mice (Huang et 

al.; 1997). In human cell systems, salicylates have also shown inhibitory action on AP-1, for 

instance in human cervical cancer cells after Epstein-Barr virus (EBV) treatment (Murono et al.; 

2000).  

 

All this stands in contrast to our findings, but it must be mentioned that all these opposing studies 

show inhibitory effects of the salicylates only in settings where the cells have been activated by 

diverse stimuli. Only one of these groups is also looking at the basal effects of ASA and NaSal 

observing reduced AP-1 levels in mouse epidermal cells (Dong et al.; 1997) though lower 

concentrations of the salicylates were used than implicated in our experiments. Thus, 

investigations on the basal effects of salicylates on different cell systems are very few, and there is 

no data whatsoever about the effects of salicylates on AP-1 in ECs.  

 

5.1.3.2 Effects of sodium salicylate on JNK/SAPK 

In conformity with our findings about the relationship of NaSal and JNK are the findings of Wong et 

al. and Schwenger et al. who reported that salicylate treatment leads to activation of JNK in human 

blood eosinophils (Wong et al.; 2000) and in HO-29 colon cancer and COS-1 cells, respectively 

(Schwenger et al.; 1999). On the other hand, the same group had shown earlier that salicylate 

inhibits the TNF-α-induced activation of JNK in human fibroblasts but fails to elicit JNK activation 

after treatment with salicylate alone (Schwenger et al.; 1997). In mouse epidermal cells salicylates 

were able to block JNK after UV-radiation (Huang et al.; 1997). The contradictory results on this 

issue suggest that the effects of salicylate on JNK depend on the cellular context.  

 

In conclusion, we elucidated the signaling pathway of NaSal leading to the induction of HO-1 

protein expression. The presented data demonstrates that JNK and AP-1 are crucially involved. 
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5.2 Metalloporphyrins and caspases 

In the present work we demonstrate that different metalloporphyrins can inactivate caspases in 

vitro as well as in vivo. This inactivation could be seen when adding the porphyrins to cells or tissue 

where the caspases had been activated during apoptosis, to cell lysates containing the activated 

enzymes, and also to recombinant caspase-3 and -8. This strongly suggests that the observed 

inhibitory effect is a direct one. 

 

5.2.1 Characterization of the inhibitory action 

To clarify the possible molecular mechanism of inhibition we examined which part of the 

metalloporphyrin-complex is responsible for the inhibitory effect on caspase-3-like activity. In fact, 

we saw a similar effect by using protoporphyrin IX disodium salt on isolated caspase-3. Employing 

the corresponding metal salts did not mimic the inhibitory action on caspase activity by the different 

metalloporphyrins.  

 

In this context it has been shown that heavy metals like zinc at micromolar concentrations are able 

to influence activity of the isolated caspase-3, possibly by coordinating with one or two amino acids 

of the active site of the enzyme (Truong-Tran et al.; 2001). The effects of Zn2+ were investigated on 

apoptotic events in leukemia cells (Perry et al.; 1997) and in a cell-free model (Stennicke et al.; 

1997), revealing caspase-3 and others as a target of zinc inhibition in apoptosis. Kown et al. 

demonstrated that zinc suppresses caspase-3-activity and apoptosis in vivo using rats transplanted 

in the abdomen with allogeneic hearts (Kown et al.; 2000). On the other hand, stimulating effects of 

cobalt ions on caspase activity and expression in macrophages were the results of the work by 

Petit et al. (Petit et al.; 2004). However, the findings of this and another study showing similar 

effects after CoCl2 treatment in PC12 cells (Zou et al.; 2002) were attained with quite high 
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concentrations and after long-term treatments. Therefore, mechanisms different from the direct 

ones observed in this work are likely to be involved in the latter findings.  

 

Taken together, the data presented here implicates that the inhibition of caspase activity by the 

metalloporphyrins is mainly accountable to the porphyrin-ring.  

 

Therefore, it is especially interesting to note that there are differences in the potency of the different 

metalloporphyrins in inhibiting caspase activity. CoPP is the most efficient inhibitor of the three 

metalloporphyrins that were examined. In summary, this still remains a controversial issue and 

considering the complex stabilities of typical metalloporphyrins which allow free metal to occur in 

the attomolar (10-18 M) range (Bonnett, 2003), it is most unlikely that enough free metal is available 

to account for the differences seen in the various metalloporphyrins. Detailed molecular modeling 

studies are under way to investigate the molecular basis of this matter as well as the effects on 

other caspases. 

 

5.2.2 Metalloporphyrins as a new class of caspase-inhibitors 

Our work identifies metalloporphyrins as a novel class of irreversible caspase inhibitors. So far, 

known inhibitors are members of the family of inhibitors of apoptosis protein (IAP) and the two 

virus-derived proteins cowpox serpin CrmA and p35 from baculovirus (Riedl et al.; 2004; Stennicke 

et al.; 2002). Besides these naturally occurring compounds, well established and widely used 

caspase inhibitors have been generated by synthetically coupling caspase-specific peptide-

sequences to certain aldehyde (CHO), chloromethylketone (CMK), fluoroacyloxymethylketone 

(FAOM), or fluoromethylketone (FMK) compounds (Cohen, 1997). 

Several x-ray crystal structures reveal how specific peptidic and non-peptidic inhibitors bind to 

caspase-3 (Erlanson et al.; 2003; Lee et al.; 2000a; Riedl et al.; 2001; Rotonda et al.; 1996). The 

ligands occupy the active site of the caspase in the S1-S4 regions. The interactions between the 
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ligands and the protein mainly result from hydrophobic contacts and hydrogen bonds. A free 

carboxyl acid seems to play an important role in the ligand structure since it is critical for the 

binding of the inhibitors to the caspase enzyme. Our investigations demonstrate that the 

protoporphyrin can occupy the active site of caspase-3 energetically favorable and in a binding 

mode similar to that of known inhibitors. This postulated binding mode is consistent with crystal 

data of caspase-3, in which the inhibitors occupy similar parts of the active site. The very potent 

peptidic inhibitor XIAP-BIR2 exhibits an Asp-148 residue that is essential for the inhibiting effect 

(mutations of Asp-148 lead to a complete loss of inhibitory activity). Asp-148 forms hydrogen bonds 

via its backbone and its side chain atoms to Arg-341 and Ser-343. The protoporphyrin seems to 

meet the structural requirements for caspase-inhibitors well since it is able to form (among 

hydrophobic contacts) the important interactions between its free carboxylic acids and the 

corresponding amino acids in the catalytic center of the enzyme.  

 

5.2.3 Physiological relevance 

Metalloporphyrins as inhibitors of caspase-3 and -8 raise the question of the physiological function 

of these compounds. A possible in vivo relevance may be discussed using zinc protoporphyrin as 

an example. Research concerning ZnPP as a naturally occurring metabolite of heme biosynthesis 

has dramatically increased in the past decade. So far, proposed physiological functions are the 

control of heme catabolism until bilirubin conjugation becomes activated in neonates and a 

possible modulation of CO production in brain metabolism (Labbe et al.; 1999). In addition, the 

therapeutic potential of ZnPP and other metalloporphyrins has attracted interest in the treatment of 

hyperbilirubinemia (Kappas, 2004; Maines et al.; 1992). As yet, all of these suggested functions 

have been connected to the inhibitory effect of ZnPP on the HO system. Our data introduces a 

direct inhibitory effect on caspase activity as an additional mechanism of action of ZnPP. This 

knowledge may provide a better understanding of the role of this metabolite in physiology as well 

as in pathophysiology. 
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5.2.4 HO-independent effects of metalloporphyrins 

Our data, demonstrating that metalloporphyrins directly inhibit caspases, indicates that these 

substances have additional effects to their HO-dependent actions. This information therefore 

largely contributes to the controversial topic concerning the selectivity of pharmacologic inhibitors. 

In fact, several studies have raised concern that these porphyrins may have substantial effects on 

other heme-depending proteins. In this context Ignarro et al. revealed inhibitory effects on isolated 

guanylate cylcase by different metalloporphyrins. Interestingly, metal-free protoporphyrin IX itself 

was found to activate soluble guanylate cylcase (sGC) and metallation of the protoporphyrin IX 

converted the potent activator into an inhibitor of the isolated enzyme (Ignarro et al.; 1984). Another 

study conclusively demonstrated that the HO-1 inhibitors tin-protoporphyrin (SnPP) and zinc(II)-

protoporphyrin (ZnPP) have a blocking effect on purified sGC in vitro and pointed out that studies 

using metalloporphyrins as inhibitors of HO must be carried out and interpreted with care (Serfass 

et al.; 1998). Luo et al. demonstrated in an in vivo setting a direct inhibition of sGC by ZnPP and 

SnPP (Luo et al.; 1994).  

 

The non-selectivity of some metalloporphyrins was further emphasized by Meffert et al. by 

demonstrating an inhibition of hippocampal nitric oxide synthase (NOS) by ZnPP and other 

porphyrins (Meffert et al.; 1994). Jozkowicz et al. found differential effects of metalloporphyrins in 

vascular smooth muscle cells (VSMCs) and macrophages and thus postulated that the influence of 

the inhibition of the HO-1 enzymatic activity is masked by HO-1-independent effects of 

metalloporphyrins on NOS (Jozkowicz et al.; 2003). However, both NOS and sGC are heme-

containing proteins and interestingly the target enzymes identified in the present work, the 

caspases, do not contain heme. Thus, the outcome of this study shows a novel mode of action for 

metalloporphyrins and introduces them as a new class of caspase-inhibitors. 

 

Further effects have been shown for ZnPP, which led to an irreversible attenuation of Ca2+ current 

in pituitary cells (Linden et al.; 1993). Likewise, ZnPP significantly inhibited hematopoesis in rabbit 
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and human bone marrow (Lutton et al.; 1997) and modulated the viability of cells (Jozkowicz et al.; 

2003; Lutton et al.; 1997). The mechanisms for these effects are not well examined and it remains 

to be elucidated whether they do involve heme-depending enzymes or not. Yet, all these 

observations are clearly not fully explicable by their modulating action on the HO system and thus 

support the hypothesis that these heme-analogues exert quite a range of HO-independent actions. 

The observed increase in cell viability in different cell types (Jozkowicz et al.; 2003; Lutton et al.; 

1997), for instance, which was observed for SnPP, may be explicable by the inhibitory effect on 

caspase activity.  

 

Based on our findings, the usage of CoPP as HO-1 inducer is not helpful when examining anti-

apoptotic effects of HO-1. As shown by the presented data, direct effects of porphyrins on 

caspases could occur time dependently, independent of HO-1 expression. Furthermore, employing 

SnPP and ZnPP as HO-1 inhibitors in order to prove anti-apoptotic functions of HO-1 should lead 

to contradictory results depending on the time frame.  

 

However, a huge number of studies employing HO-1-inducers or -inhibitors other than metallo-

porphyrins and reporting cytoprotective features of HO-1, certainly justify the assumption of 

cytoprotective features of HO-1. Induction of the enzyme by other well established methods such 

as sodium arsenite (Fauconneau et al.; 2002), tetracycline-regulated expression systems (Petrache 

et al.; 2000), adenoviral gene transfer (Sass et al.; 2003), or doxorubicin (Ito et al.; 2000), and 

furthermore, inhibition of the HO system by antisense (Choi et al.; 2004) or siRNA approaches 

(Zhang et al.; 2004) clearly showed HO-1-dependent reduction of apoptotic cell death in different 

cell types in vitro and in vivo. 
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6.1 Salicylates and HO-1  

The active metabolite sodium salicylate (NaSal) of the NSAID acetylsalicylic acid (ASA) inhibits IL-

4-induced P-selectin expression. In the first part of the present work we revealed that this inhibition 

is partly due to the ability of NaSal to induce HO-1 expression. By blocking HO-1 the inhibitory 

action of NaSal on IL-4 induced P-selectin expression was diminished. Furthermore, we elucidated 

the underlying signaling pathway of the HO-1 induction by NaSal. Salicylate was shown to increase 

the phosphorylation of JNK as well as the DNA-binding activity of the transcription factor AP-1 

(figure 44). The causal link of these effects to the NaSal-induced induction of HO-1 expression 

was demonstrated by employing a JNK-inhibitor and AP-1 decoy ODN. 

 

 

 

 

 

 

 

 

figure 44: Schematic diagram of the signal transduction of the HO-1-mediated inhibition of IL-4-
induced P-selectin expression by salicylate. Salicylate induces HO-1 expression via the 
JNK/AP-1 pathways. This leads to a diminished induction of P-selectin expression induced by 
IL-4. 

 

In summary, the findings of the present study reveal a new anti-inflammatory signal transduction 

mechanism for salicylate. This is in line with findings of the recent past suggesting that nonsteroidal 

anti-inflammatory drugs such as salicylates cause anti-inflammatory effects mostly independent of 

cyclooxygenase (COX) activity and prostaglandin synthesis inhibition. 
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6.2 Metalloporphyrins and caspases 

In the second part of this work we report an important finding: the HO-1 inhibitors tin- and zinc(II)-

protoporphyrin IX (SnPP, ZnPP) and the strong HO-1-inducer cobalt(III)-protoporphyrin IX (CoPP) 

inhibit caspase activity unrelated to HO-1 expression and activity in vitro and in vivo. In fact, by 

using recombinant caspase-3 and -8 and also by performing molecular modeling studies for 

caspase-3, a direct inhibition of caspase activity by the porphyrins could be demonstrated. 

 

 

 

 

 

 

 

 

 

 

figure 45: Schematic model of caspase inhibition by metalloporphyrins. Besides the known 
mechanism of metalloporphyrins to interfere with apoptosis via HO-1 modulation, porphyrins 
can directly inhibit caspases after activation by pro-apoptotic stimuli. 

 

In summary, the finding that metalloporphyrins directly inhibit caspase activity points to a novel 

class of caspase-inhibitors, but also requests their careful employment as modulators of the HO-

system. 
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8.1 Abbreviations 
 

A    Ampere 

AMC    7-amino-4-methyl coumarin 

AP-1    activator protein 1 

APS    ammonium persulfate 

ASA    acetylic salicylic acid 

ATP    adenosine-5’-triphosphate 

BSA    bovine serum albumine 

°C    degree Celsius 

CAPS    cyclohexylamino-1-propane sulfonic acid 

cGMP    cyclic guanosin-5’-monophosphate 

CHAPS    3-[(3-cholamidopropyl)dimethylammonio]-1-propansulfonate 

CLSM    confocal laser scanning microscopy 

CMV    cytomegalovirus 

CoPP    cobalt(III)-protoporphyrin IX 

COX    cyclooxygenase 

CPRG    chlorophenolred-β-D-galactopyranoside 

dATP    2’-desoxyadenosine-5’-triphosphate 

dCTP    2’-desoxycytosine-5’-triphosphate 

dGTP    2’-desoxyguanosine-5’-triphosphate 

DEVD    Asp-Glu-Val-Asp 

DMSO    dimethylsulfoxide 

dn    dominant negative 

DNA    desoxyribonucleic acid 

dNTP    dATP, dCTP, dGTP or dTTP 

DSMZ    Deutsche Sammlung von Mikroorganismen und Zellkulturen 

DTT    dithiothreitol 

dTTP    2’-desoxythymidine-5’-triphosphate 

dUTP    2’-desoxyuracile-5’-triphosphate 

E.coli    Escherichia coli 

ECs    endothelial cells 



APPENDIX 

 110 

EDTA    ethylene diaminetetraacetic acid 

EGF    epidermal growth factor 

EGTA    ethylene-glycol-O,O'-bis-(2-amino-ethyl)-N,N,N',N',-tetraacetic acid 

ELSIA    enzyme-linked immunosorbent assay 

EMSA    electrophoretic mobility shift assay 

FAM    6-carboxyfluorescein 

FasL    Fas ligand 

FCS    fetal calf serum 

FePP    iron(II)-protoporphyrin IX 

GAPDH   glyceraldehyde-3-phosphate dehydrogenase 

GFP    green fluorescent protein 

GITC    guanidine isothiocyanate 

GMP-140   granule membrane protein 140 

h    hour 

HBS    HEPES buffered saline 

HEK 293   human embryonic kidney cell line 293 

HEPES    N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) 

HO    heme oxygenase 

HPLC    high performance liquid chromatography 

HRP    horseradish peroxidase 

hsp    heat shock protein 

HUVEC    human umbilical vein endothelial cells 

ICAM-1    intercellular adhesion molecule 1 

IETD    Ile-Glu-Thr-Asp 

Ig-CAM    immunoglobulin-like cell adhesion molecule 

IL    interleukin 

LPS    lipopolysaccharide 

LTR    long terminal repeat 

MAPK    mitogen activated protein kinase 

MEKK    MAPK kinase kinase 

min    minute 

MPRE    metalloporphyrin-responsive element 

mRNA    messenger RNA 
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NaSal    sodium salicylate 

NF-κB    nuclear factor κB 

NSAID    nonsteroidal anti-inflammatory drugs 

ODN    oligodesoxynucleotides 

OSM    oncostatin M 

PAA    polyacrylamide 

PADGEM   platelet activation dependent granule external membrane protein 

PAGE    polyacrylamide gel electrophoresis 

PARP    poly-ADP ribose polymerase 

PBS    phosphate buffered saline 

PCR    polymerase chain reaction 

PEI    polyethylenimine 

PMSF    phenylmethylsulfonylfluoride 

POD    peroxidase 

PVDF    polyvinylidenfluoride 

RNA    ribonucleic acid 

RNase    ribonucleases 

ROS    reactive oxygen species 

rRNA    ribosomal RNA 

RSV    rous sarcoma virus 

RT    reverse transcription 

SA    salicylic acid 

SDS    sodium dodecyl sulfate 

SEM    standard error of mean 

sGC    soluble guanylyl cyclase 

SnPP    tin-protoporphyrin IX 

STE    sodium chloride, Tris, EDTA buffer 

SV40    simian virus 40 

TAMRA    6-carboxytetramethylrhodamine 

TBE    Tris, borate, EDTA buffer 

TBS-T    phosphate buffered saline with Tween 

TE    Tris-EDTA buffer 

TEMED    N,N,N’,N’-tetramethylethylendiamine 
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TNF-α    tumor necrosis factor α 

Tris    Tris-hydroxymethyl-aminomethan 

tRNA    transfer RNA 

VCAM-1   vascular cell adhesion molecule 1 

ZnPP    zinc(II)-protoporphyrin IX 

z-VAD-fmk   N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone 
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8.2 Alphabetical order of companies 
 

AGFA    Cologne, Germany 

Alexis Biochemicals  Grünberg, Germany 

Amersham   Braunschweig, Germany 

Bachem   Heidelberg, Germany 

BD Biosciences   Heidelberg, Germany 

Beckmann Coulter  Krefeld, Germany 

Biochrom   Berlin, Germany 

Biomers   Ulm, Germany 

Bio-Rad Laboratories  Munich, Germany 

Biosource   Solingen, Germany 

Biozol    Eching, Germany  

Braun Biotech   Melsungen, Germany 

Calbiochem   Schwalbach, Germany 

Cambrex   Verviers, Belgium 

Canberra-Packard  Dreieich, Germany 

Cell Signaling   Frankfurt/Main, Germany 

Clontech   Palo Alto, USA 

DakoCytomation GmbH  Hamburg, Germany 

Dianova   Hamburg, Germany 

Eppendorf   Maintal, Germany 

Fluka    Buchs, Switzerland 

Fuji    Düsseldorf, Germany 

Gibco/Invitrogen  Karlsruhe, Germany 

Greiner    Frickenhausen, Germany 

Heraeus   Hanau, Germany 

Kodak    Rochester, USA 

Merck-Eurolab   Munich, Germany 

Millipore   Eschborn, Germany 

Minerva Biolabs  Berlin, Germany 

Molecular Probes/Invitrogen Karlsruhe, Germany 
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MWG-biotech   Ebersberg, Germany 

PAA Laboratories  Cölbe, Germany 

PAN Biotech   Aidenbach, Germany 

PE applied biosystems  Hamburg, Germany 

Perkin-Elmer   Überlingen, Germany 

Pharmacia Biotech  Heidelberg, Germany 

Pierce    Rockford, USA 

Promocell   Heidelberg, Germany 

Promega   Heidelberg, Germany 

Quiagen   Hilden, Germany 

Roche Diagnostics  Mannheim, Germany 

Roth    Karlsruhe, Germany 

Santa Cruz   Heidelberg, Germany 

Sigma-Aldrich   Taufkirchen, Germany 

Stratagene   Heidelberg, Germany 

Stressgen   San Diego, USA 

Takara Bio Inc.   Shiga, Japan 

Tecan    Crailsheim, Germany 

TPP    Trasadingen, Switzerland 

Upstate/Biomol   Hamburg, Germany 

USB    Cleveland, USA 

Zeiss    Oberkochen, Germany 
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8.3 Publications 

8.3.1 Poster presentations 

Blumenthal SB, Kiemer AK, Vollmar AM. Metallo-porphyrines are able to inactivate caspase-3. 

45th Spring Meeting of the Deutsche Gesellschaft für experimentelle und klinische Pharmakologie 

und Toxikologie, March 9-11, 2004, Germany. 

Naunyn Schmiedebergs Arch Pharmacol. 2004;369Suppl1:R121 

 

Kiemer AK, Bildner N, Blumenthal SB, Vollmar AM. Aspirin induces HO-1 in human endothelial 

cells. Experimental Biology 2003 Annual Meeting, April 11-15, 2003, San Diego, CA, USA. 

FASEB J. 2003; 17(4) 

 

8.3.2 Original Publications 

Kiemer AK, Blumenthal SB, Zahler S, Vollmar AM. Heme oxygenase-1: a novel anti-inflammatory 

target of salicylates in the endothelium  

Manuscript in preparation. 

 

Blumenthal SB, Kiemer AK, Tiegs G, Seyfried S, Höltje M, Brandt B, Höltje H, Zahler S, Vollmar 

AM. Metalloporphyrins inactivate Caspase-3 and -8.  

FASEB J, in press. 
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Weber NC, Blumenthal SB, Hartung T, Vollmar AM, Kiemer AK. ANP inhibits TNF-alpha-induced 

endothelial MCP-1 expression - involvement of p38 MAPK and MKP-1.   

J Leukoc Biol. 2003 Nov;74(5):932-41. Epub 2003 Aug 11. 
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8.4 Curriculum Vitae 
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Name:    Blumenthal 

Vornamen:   Signe Birgitta 

Geburtstag:   23. September 1976 

Geburtsort:   München 

Staatsangehörigkeit:  deutsch 
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Hochschule 

seit 01/2002 Dissertation zum Dr. rer. Nat in der Arbeitsgruppe von PD Dr. 

Alexandra K. Kiemer am Lehrstuhl Pharmazeutische Biologie von 

Frau Prof. Dr. Angelika M. Vollmar, Department Pharmazie, 

Ludwig-Maximilians-Universität München 
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Berufsausbildung und praktische Erfahrungen 
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Apothekerin 
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