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1. INTRODUCTION 

 

1.1 Site-specific recombination 

 

One of the most striking features of the genome is its ability to change. There are two main 

processes that underlie this ability: mutation and rearrangement (recombination) of genetic 

material. However, whilst mutation is predominantly a spontaneous event, genetic 

recombination usually occurs under a strict control of many factors and often employs an 

exact mechanism. Dependent on this mechanism three distinct types of recombination 

systems can be discerned: homologous, site-specific (including transposition) and, 

illegitimate recombination systems. 

As the name suggests, site-specific recombination involves an interaction of specific DNA 

sites. Recombination occurs by a precise exchange of DNA strands between these sites and 

formation of new recombinant joints. Site-specific recombination is distinguished from 

homologous recombination primarily by the mechanism of DNA recognition: in 

homologous recombination the recognition takes place between two homologous DNA 

sequences and the search for complementarity is performed using a DNA-protein filament 

(formed e.g. by the RecA protein). In site-specific recombination, the recombination 

proteins (recombinases) themselves mediate recognition between the two distant DNA 

sites. These proteins catalyse the DNA strand breakage and reunion without any 

requirement for a high-energy cofactor. Since the site-specific recombination involves a 

reciprocal crossover within two short sites of homologous sequence without any DNA 

synthesis or degradation it is said to be conservative (Campbell, 1981). 

Site-specific recombination systems are ubiquitous throughout eubacteria, prevalent in 

archaea, but occur only rarely in eukaryotes. Complex eukaryotic genomes, however, can 

be precisely manipulated by applying site-specific recombination systems (Sauer, 1998; 

Bode et al., 2000). The DNA rearrangements by site-specific recombination systems can 

serve different purposes, including switching between alternate gene expression patterns, 

resolution of replicated chromosomes, resolution of intermediates in transposition, 

integration of viral DNA into host chromosomes, differentiation and pathogenesis, and play 

an important role in spreading of the genetic elements such as transposons, plasmids, 

bacteriophages and integrons (Nash, 1996). Moreover, the legacies left by site-specific 
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recombination events have major consequences in the evolution of prokaryotic genomes 

(Lawrence, 1999). 

Site-specific recombinases can be classified into two major families (Table 1.1) based on 

amino acid sequence homology and catalytic residues, which are either tyrosine or serine 

(Esposito & Scocca, 1997; Nunes-Duby et al., 1998; Smith & Thorpe, 2002). The tyrosine 

family of recombinases, sometimes referred to as the integrase family after the prototypical 

member λ integrase, uses a tyrosine residue to attack the DNA backbone during cleavage. 

Other well-known members of this family include the Cre recombinase from phage P1 

(Austin et al., 1981; Abremski & Hoess, 1984), FLP invertase from yeast (Broach et al., 

1982) and the bacterial protein XerC (Colloms et al., 1990). The members of the serine 

recombinase family, sometimes referred to as the invertase/resolvase family, possess a 

catalytic serine residue (Smith & Thorpe 2002). Serine family members include the 

resolvases γδ (Reed et al., 1982), Tn3 (Krasnow & Cozzarelli, 1983) and ISXc5 (Liu et al., 

1998), the invertases Gin (Kahmann et al., 1984) and Hin (Zieg & Simon, 1980) and the 

phage integrases φC31 (Kuhstoss & Rao, 1991), R4 (Matsuura et al., 1996) and TP901-1 

(Breuner et al., 2001). 

 

 
Site-specific recombinases 

 
Serine recombinases 

(invertase/resolvase family) 
 

Tyrosine recombinases 

(integrase family) 

invertases 
 
Gin (phage Mu) 
(Escherichia coli) 
Hin (Salmonella 
typhimurium) 

resolvases 
 
γδ (Escherichia 
coli) 
Tn3 (Klebsiella 
pneumoniae) 
ISXc5 
(Xanthomonas 
campestris) 

integrases 
 
φC31 (Streptomyces 
lividans) 
R4 (Streptomyces 
parvulus) 
TP901 (Lactococcus 
lactis) 

integrases 
 
λ (Escherichia coli) 
HK022 (Escherichia coli) 
P22 (Salmonella 
typhimurium) 
HP1 (Haemophilus 
influenzae) 
L5 (Mycobacterium 
smegmatis) 

other tyrosine 
recombinases 

 
Cre (P1) (Escherichia 
coli) 
FLP (Saccharomyces 
cerevisiae) 
XerC (Escherichia 
coli) 

 
Table 1.1. Classification of the site-specific recombinases and examples of representative 

family members. 

Host organisms are indicated in brackets. 

 

 
These two families of site-specific recombinases have different structures and mechanisms 

and very likely evolved separately. Nevertheless, the recombinases of both the tyrosine and 
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serine families can perform a wide range of distinct recombination reactions (Hatfull & 

Grindley, 1988; Landy, 1989; Stark et al., 1992; Nash, 1996; Grindley, 1997). 

 
Depending on the end product of the reaction three different types of site-specific 

recombination reactions can be distinguished: 

- inversion of a DNA segment between the recombination sites; 

- deletion of a DNA segment between the recombination sites; 

- insertion (integration) of a DNA segment (or molecule); this latter reaction usually 

employs recombination sites located on different DNA molecules. 

 

The recombinases of both families catalyse the reaction by a two-step transesterification 

process, but they differ in their reaction requirements. The enzymes of the serine 

recombinase family perform intramolecular reactions only. After binding to the 

recombination sites that can be present either in direct (in the case of resolvases), or 

indirect (for invertases) orientation, the proteins bridge the two sites in a so-called synaptic 

complex and then catalyse strand exchange. The recombination sites are cleaved and the 

half sites are religated to opposite partners (Stark et al., 1992; Nash, 1996). Biochemical 

studies have demonstrated that in the reaction intermediate (Figure 1.1A), the proteins 

introduce a staggered double strand break leaving two base pair overhangs with 3' 

protruding ends. In this intermediate the protein becomes covalently attached to the 5' 

phosphate of the DNA via a conserved serine (Hatfull & Grindley, 1988; Johnson & Bruist, 

1989). This mechanism is quite distinct from that of the tyrosine recombinases, which 

initiate recombination by a single-strand DNA cleavage, exchange and rejoining of one pair 

of DNA strands. This generates a Holliday junction as a recombination intermediate, which 

is resolved by a second set of transesterification reactions carried out with the other pair of 

DNA strands (Figure 1.1B). In this reaction the proteins are covalently attached to the 3' 

phosphate of the DNA via the active site tyrosine leaving free 5'-hydroxyl ends (Landy, 

1989; Stark et al., 1992; Gopaul & van Duyne, 1999; Chen et al., 2000). 
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Figure 1.1. Schematic representation of recombination mechanisms employed by serine and 

tyrosine recombinases. 
A. Serine recombinases mediate a coordinated DNA attack to create a 2-bp staggered double-strand break at 
the centre of each recombinational site. In this process, invertase subunits become covalently joined to each 5' 
end of the broken strands via an ester linkage at serine (SerOH). In the next step of the DNA strand exchange, 
the cleaved DNA strands are positioned into the recombinant configuration and the DNA is religated through 
reversal of the protein–DNA linkage. 
Step 1: two double strand cleavages; 
step 2: strand exchange; 
step 3: two double strand ligations. 
B. Tyrosine recombinases make ordered single strand exchanges between the two recombinational sites: the 
first pair of exchanges forms a four-way Holliday junction; the second pair resolves the junction to complete 
the recombination. The nucleophile used for cleavage and formation of the covalent recombinase-DNA 
intermediate is a conserved tyrosine (TyrOH). The cleavage sites on each DNA duplex are separated by 6-8 bp 
with a 5' stagger, and the tyrosine joins to the 3' phosphate. 
Step 1: the first single strand cleavages and exchanges; 
step 2: the first ligations followed by second single-strand cleavages; 
step 3: the second strand exchanges and ligations. 
Yellow filled circles represent the subunits of recombinases arranged in tetramers. 
 

 

1.2 Serine recombinases: resolvases and invertases 

 

Most of the understanding of the mechanism of serine recombinases comes from the 

studies on the recombinases of the resolvase/invertase family (Hatfull & Grindley, 1988; 

Stark et al., 1992; Grindley, 1994). Four systems have been studied in much detail: the 

resolution of co-integrates by γδ and Tn3 resolvases, flagella antigen switching by the 

Salmonella typhimurium Hin invertase and tail fibre switching by phage Mu Gin invertase. 

The invertases and resolvases are related to each other, about 13% of amino acid residues 

being common to all members of the serine recombinase family (Hatfull & Grindley, 1988; 

Sherratt, 1989). Alignment of the amino acid sequences of the three of the most related 
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proteins of the serine recombinase family is shown in Figure 1.2. 

 
 

 
 

Figure 1.2. Alignment of the amino acid sequences of the related site-specific serine 

recombinases. 
Amino acid sequence of the invertase Gin (Plasterk et al., 1983b) is compared to Hin invertase (Zieg & 
Simon, 1980) and γδ resolvase (Reed et al., 1982). 
Residues that are highlighted in colours indicate perfect matches of amino acid sequences among proteins. 
The secondary structures observed in the crystal structure from γδ resolvase (Yang & Steitz, 1995) are 
marked underneath the sequence alignment, α for α helix, β for β strand. The asterisk marks the active site 
residue. Also indicated are the α helices that form the helix-turn-helix DNA-binding motif. Ratio of the 
proteins identity/homology is indicated according to calculations done by T.Hermann (1996). 
 

 
Based on biochemical and topological analyses of different resolution and inversion 

systems, it is thought that both sub-families employ a similar reaction mechanism during 

DNA strand exchange (reviewed by Stark et al., 1992). However, there are important 

differences between these systems in the steps that lead to catalysis. 

In both resolution and inversion systems, the combined properties of the recombinases and 

their cognate DNA sites result in strict control over the outcome of the recombination. The 

resolvases normally recombine two sites only in direct repeat to cause deletion of DNA 

between the sites and the invertases recombine sites only in inverted repeat to invert the 

DNA between the sites. Neither type of recombinase will normally recombine two of its 

cognate sites if they are on different DNA molecules, i.e. they will not be able to catalyse 

integration. The recombinases detect whether the sites are in the correct orientation by 

trapping the DNA into specific topologically defined synaptic complexes (Stark & 

Boocock, 1995). Evidence for these defined complexes comes from the analysis of 

recombination products obtained in vitro with supercoiled DNA substrates. If synapsis 

occurs by random collision of two recombination sites, as occurs with λ integrase, the 
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products are knotted or multiply catenated (Pollock & Nash, 1983). The products of 

resolution are 2-noded catenanes (Figure 1.3), whereas invertases produce mainly 

unknotted circles (Figure 1.4), indicative of defined synapse topologies in each case 

(Krasnow & Cozzarelli, 1983; Wasserman et al., 1985; Stark et al., 1989; Heichman et al., 

1991). 

Resolvases recognise a DNA sequence called res, which is composed of three binding sites 

for resolvase dimers (Figure 1.3). Two res sites must be present as direct repeats on the 

same negatively (-) supercoiled DNA molecule. Only this orientation of sites allows for the 

formation of a functional synaptic complex, the so-called synaptosome, which entraps three 

(-) supercoils (Dröge & Cozzarelli, 1989). The resolvase binds to the 2 res sites arranged as 

direct repeats and containing 3 subsites each. One dimer of resolvase binds to each subsite 

of res such that in total the resolvase synaptosome contains 6 dimers. 

 

 

 

Figure 1.3. The standard substrate for resolution and model of subunit rotation for the 

catalytic reaction.  
Resolvase (indicated with filled green and yellow circles) binds as dimer to subsites I, II and III (filled 
boxes) in the two res sequences to form a catalytic synaptosome. Interactions of the resolvase dimers bound 
to sites I with dimers bound at sites II and III are indicated by arrows. After cleavage at the subsite I, the 
DNA strands are exchanged and religated. Catenated DNA products are released upon dissociation of the 
synaptosome. 
 

 
The cleavage reaction is catalysed by resolvase dimers bound at subsite I without any need 

for auxiliary host factors. Once productive synapsis has occurred, the paired site I-bound 

resolvase dimers are activated for strand exchange (Dröge et al., 1990). There is 

compelling evidence from mutational and biochemical studies that synaptosome formation 

and transactivation of strand exchange involves interactions between dimers bound at 

accessory sites II and III, and between those dimers and the catalytically active ones bound 

at sites I, respectively. Thus, there is a clear division of labour between resolvase dimers 
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within the synaptosome: two catalytic dimers bound at sites I are directly involved in strand 

exchange, whereas at least four other dimers bound to accessory sites II and III play an 

architectural and transactivating role (Hughes et al., 1990; Grindley, 1993; Murey & 

Grindley, 1998). 

Invertases require only two inversely oriented specific sites, termed gix in the Gin system, 

each bound by an invertase dimer and aligned in parallel fashion to form a single catalytic 

tetramer (Figure 1.4). A highly ordered nucleoprotein complex formed by invertases, the 

so-called invertasome, contains, in addition, a host protein designated Factor for Inversion 

Stimulation (FIS). FIS binds to the so-called recombinational enhancer. The enhancer is a 

key structural element of the invertasome and is composed of two appropriately spaced 

binding sites for FIS dimers (Kahmann et al., 1985; Johnson et al., 1987). The functional 

role of FIS and enhancer appears to be similar to that of the resolvase dimers bound at 

accessory sites II and III (Figure 1.4). 

 

 

 

Figure 1.4. The standard substrate for site-specific DNA inversion by Gin and model for the 

Gin synaptic complex. 
The supercoiled plasmid substrate contains two recombination sites, gix L and gix R, and a recombinational 
enhancer. After Gin (indicated with filled light and dark grey circles) and FIS (filled ovals) dimers are 
bound at their respective sites, the pairing of these three DNA segment results in invertasome formation. 
Strand exchange at gix sites requires interactions between FIS and Gin dimers, as indicated by the arrows. 
FIS activates Gin to initiate double-strand cleavage at gix L and gix R followed by exchange of DNA 
strands and ligation. Resolution of the invertasome after completion of strand exchange results in inversion 
of the orientation of the DNA segment between gix L and gix R. 
 

 
 

1.3 The DNA inversion system of bacteriophage Mu 

 

Site-specific DNA inversion of a 3000 bp DNA fragment, the so-called G segment (Daniel 

et al., 1973) in phage Mu is catalysed by a nucleoprotein complex involving the phage 
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encoded invertase Gin and the host protein FIS (Kamp et al., 1978; Kahmann et al., 1985). 

Two different sets of genes, S and U, involved in the biosynthesis of tail fibres that 

determine the host range specificity, are expressed from the G region dependent on its 

orientation (Van de Putte et al., 1980; Grundy & Howe, 1984). The S gene has a constant 

part (Sc) that lies outside of the invertible region and a variable part (Sv) within it. As 

shown in Figure 1.5, the inversion of the G region causes alternate expression of ScSv and 

ScSv', and of U and U'. As a consequence of this alternate expression, two types of phage 

particles with distinct tail fibers are produced that are infectious for different host bacteria 

(Van de Putte et al., 1980; Kamp, 1981). 

The gin gene is located adjacent to the invertible G segment and is expressed from a 

promoter that overlaps the gix R recombination site (Plasterk et al., 1983a). During the 

inversion reaction, Gin binds to two identical 34 bp gix sites flanking the G segment as 

inverted repeats (Plasterk et al., 1983a; 1984; Koch et al., 1987). Catalysis of the reaction 

requires the formation of a synaptic complex of unique topology, in which the 

recombination sites (gix L and gix R) each bound by a dimer of Gin, and the 

recombinational enhancer with two bound FIS dimers, are present (see Figure 1.4). The 

enhancer sequence is located within the gin gene, but it has been shown that the enhancer 

can function independent of its orientation and distance to the gix sites (Kahmann et al., 

1985). 

 

 

 

 

Figure 1.5. Inversion system of 

the bacteriophage Mu. 
Recombination of a G-segment takes 
place between two identical, 34 bp 
long gix sites (gix L and gix R), which 
flank the G segment as inverted 
repeats. Inversion is catalysed by 
phage-encoded protein Gin. The gin 
gene maps outside the invertable 
region. The enhancer sequence is 
located within the gin gene. 

 
 

In the synapse the two Gin dimers are thought to form a tetramer (Kanaar et al., 1989a; 

Heichman & Johnson, 1990). This complex is formed at a branch point of a supercoiled 

DNA molecule, probably stabilised through Gin-Gin and Gin-FIS interactions and entraps 

two negative supercoils (Kanaar et al., 1988; 1989a). 
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In the synaptic complex the four DNA strands are cleaved in a concerted manner by Gin, 

generating a 2 bp staggered cut at the centre of the crossover sites (Klippel et al., 1988a; 

Johnson & Bruist, 1989; Lim et al., 1992). A tetramer of Gin is thought to represent the 

catalytically active species since in the cleaved recombination intermediate four Gin 

monomers are covalently attached to the four 5' phosphate ends before the strand 

rearrangement (Klippel et al., 1988a; Johnson & Bruist, 1989). The change in the topology 

of inversion products suggests that after the double-strand cleavage of gix sites there is a 

“simple rotation” of the paired gix half-sites by 180o relative to the other paired half-sites 

(Kanaar et al., 1990), followed by their religation in recombinant configuration (Klippel et 

al., 1993). As a consequence, the recombination products have a unique topology; they are 

unknotted and differ from the starting material by a change in linking number (∆Lk) of +4 

(Kahmann et al., 1987; Kanaar et al., 1988). 

Gin can catalyse the recombination reaction also in vitro. The in vitro inversion reaction 

requires a (-) supercoiled DNA substrate, the host factor FIS and Mg2+ ions, but no high-

energy cofactors (Plasterk et al., 1984). The rotation of the strands is facilitated by the free 

energy of negative supercoiling, whereas their ligation is aided by the nucleophilic attack of 

the free 3'-OH-groups on the phospho-serine bonds between protein and DNA (see Figure 

1.1A). The FIS protein is thought not only to play an architectural role, but also to stimulate 

the concerted cleavage of gix sites by the Gin tetramer (Safo et al., 1997). 

 

 

1.3.1 Structure of the Gin invertase protein 

 

The Gin protein of bacteriophage Mu is a member of the sub-family of DNA invertases 

including Hin, Cin, Pin and Min (Zieg & Simon, 1980; Iida et al., 1982; 1990; Plasterk et 

al., 1983b; Van de Putte et al., 1984) that show about 60-70% sequence homology and can 

complement each other when used in the heterologous DNA inversion systems (Plasterk et 

al., 1983a; Kamp & Kahmann, 1981). 

Gin is a 21.7 kilodalton (kDa) protein (Plasterk et al., 1983a) with 193 amino acids. The 

structure of the protein has not been solved yet. However, the structure of the related γδ 

resolvase (Yang & Steitz, 1995) and the C-terminal DNA binding domain of the highly 

homologous invertase Hin have been determined in complex with the DNA (Feng et al., 

1993, 1994; Haykinson et al., 1996; Chiu et al., 2002). 
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So far several structures of the γδ resolvase have been solved, including the protein 

complexed with an artificial version of the res binding site (Yang & Steitz, 1995) and a 

recent NMR analysis of a part of the catalytic domain (Pan et al., 2001). These structures 

have revealed important information about the protein-protein and protein-DNA 

interactions, but have left some unanswered questions concerning the mechanism of 

catalysis. 

In the crystal structure of the γδ resolvase complexed to the subsite I of the res site, γδ 

binds as an asymmetric dimer (Yang & Steitz, 1995; Figure 1.6). Each monomer has two 

globular domains (amino-terminal (N) domain, including amino acid residues 1–120 and 

carboxy-terminal (C) domain, comprising residues 148–183), connected by an extended 

arm region (residues 121–147). The N-terminal region of the protein consists of four β-

sheets packed with four α-helices. Protein–DNA contacts are made via the arm region and 

the C-terminal domain. The arm region makes extensive contacts in the minor groove of 

the DNA extending by more than half a turn. The C-terminal domain contains 3 

consecutive α-helices that form a helix-turn-helix (HTH) DNA binding motif. This C-

terminal HTH domain interacts with the major groove located on the opposite face of the 

DNA with respect to the catalytic N-terminal domain (Yang & Steitz, 1995). Upon binding 

γδ resolvase the DNA is bent at a ∼600 angle. 

In this complex, the active site serine residues within the catalytic domain of each subunit 

are not positioned appropriately and are too far from one another to initiate a concerted 

site-specific cleavage of DNA (Rice & Steitz, 1994b; Yang & Steitz, 1995). However, they 

are located in loops that may be more flexible than other parts of the protein. This implies 

that a conformational change that repositions the active site close to the scissile 

phosphodiester bonds must precede DNA cleavage and indicates that the obtained site I-

resolvase complex possibly reflects an inactive configuration (Yang & Steitz, 1995). 
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Figure 1.6. The structure of the γδ resolvase dimer complexed with DNA (Yang & Steitz, 

1995). 
One monomer is highlighted in green and another one in yellow; the active site serine 10 (S10) residues have 
yellow carbon atoms and red hydroxyl groups. Amino-terminal catalytic (N, N’) and carboxy-terminal DNA-
binding (C, C’) domains are indicated, in which α helices are indicated by letters and β strands by numbers. 
DNA is represented by the blue ribbon with scissile phosphates highlighted in magenta. 
 
 
Studies done with a C-terminal 52-mer peptide (amino acids 139-190) of the Hin invertase 

complexed with a synthetic 13 bp hix L half-site DNA provided more information about 

protein-DNA interactions (Feng et al., 1994; Rice & Steitz, 1994b; Yang & Steitz, 1995; 

Haykinson et al., 1996). The peptide has three α-helices (F, G, and H), the second and third 

of which (G and H) form the helix-turn-helix (HTH) motif (Plasterk & Van de Putte, 1984; 

Bruist et al., 1987b; Dodd & Egan, 1990). As with γδ resolvase, the binding specificity of 

the Hin invertase results from the interactions of the two structural motifs within Hin with 

the specific DNA sequence of hix. The HTH motif at the C-terminus of Hin comprises Glu 

148 through Phe 180 and interacts with the major DNA groove of hix. The other is the 

minor groove binding (MGB) motif that is composed of the three consecutive amino acid 

residues Arg 140 - Pro 141 - Arg 142 (Feng et al., 1994). The structural model of Hin 

showed that the N-terminus of the MGB motif lies immediately adjacent to the C-terminal 

end of helix E. Several reports have emphasised the importance of the MGB motif of Hin 

in DNA binding. A single nucleotide change in the minor DNA groove of hix can abolish 

binding of Hin, while a base change in the major DNA groove results in a less severe defect 

(Hughes et al., 1992). According to the studies done by Lee et al. (2001), αE helices may 
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serve to position the MGB motif correctly with respect to the minor groove of the 

recombination site. 

Based on the identified structures of the γδ resolvase (Yang & Steitz, 1995) and the C-

terminal domain of Hin (Feng et al., 1993, 1994; Haykinson et al., 1996) a comparative 

model of the catalytic domain of Gin invertase has been elaborated (Hermann, 1996; Figure 

1.7A). 

 
 
A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 

 
 
 

 
 

Figure 1.7. Organisation of the Gin monomer. 
A. 3D model of the Gin N-terminal catalytic domain (residues M1-I109) based on the identified crystal 
structure of γδ resolvase (Yang & Steitz, 1995) created by T.Hermann (1996). 
Relative orientation of the α-helices and β-sheets and the location of the active site residue serine 9 (S9) are 
indicated. 
B. Secondary structure of the Gin monomer according to the amino acids residues. 
The α-helices and the β-sheets are represented as boxes. Numbers indicate the amino acid residues. 
 

 

1.4 FIS protein, its structure and role in the inversion stimulation 

 

FIS is an abundant E. coli protein of 11 kilodaltons (kDa) comprising 98 amino acids and 

involved in the regulation of many different processes in the cell. Under laboratory 

conditions FIS is not essential for the viability (Koch et al., 1988; Johnson et al., 1988). FIS 
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was initially identified as a protein involved in the stimulation of the invertases Gin of 

phage Mu (Kahmann et al., 1985), Hin of Salmonella typhimurium (Johnson & Simon, 

1985) and Cin of phage P1 (Haffter & Bickle, 1987). Later it was found that FIS has a role 

in many other reactions including phage λ excision (Thompson et al., 1987; Ball & 

Johnson, 1991), regulation of phage Mu transposition (Betermier et al., 1989, 1993; van 

Drunen et al., 1993), transcriptional activation of rRNA and tRNA operons (Ross et al., 

1990; Zacharias et al., 1992; Lazarus & Travers, 1993), ori-C-directed DNA replication 

(Gille et al., 1991; Filutowicz et al., 1992), regulation of Tn5 transposition (Weinrech & 

Reznikoff, 1992) and DNA topology (Schneider et al., 1997). In addition, it has been 

reported that in the absence of a functional fis gene, E.coli bacteria have reduced growth 

rates (Nilsson et al., 1992) and show altered morphology (Filutowicz et al., 1992). 

 

The structure of the main part of the protein has been determined by X-ray crystallography 

(Kostrewa et al., 1991; Yuan et al., 1991). Analysis has shown that FIS is a homodimer 

each monomer of which is composed of 74 amino acids forming four α helices (A, B, C 

and D respectively) and a 24 amino acid N-terminus that could not be defined due to low 

electron density. However, the complete crystal structure of the FIS mutant K36E was 

resolved by Safo et al. (1997) and is shown in Figure 1.8. The structural core consists of 

four α-helices: A (residues 27–40), B (50–70), C (74–81) and D (85–94), for each subunit 

in the homodimer structure. This core domain, from residues 27 to 98, is almost structurally 

identical to that of wild type FIS. The previously unresolved N-terminal structure was 

shown to contain two short β-strands located at residues 12–16 (β-1) and 22–26 (β-2) 

which are joined by a hairpin loop (residues 17–21) and form an antiparallel β-sheet 

protruding from the surface of the otherwise compact molecule. The fact that in the FIS 

dimer the two antiparallel β-sheets do not have any surrounding residues, suggests that they 

must be highly flexible in solution. 

The two monomers of FIS are interlocked with extensive interactions between them due to 

which the protein exists as a dimer under different conditions, both in solution and in the 

crystals (Kostrewa et al., 1991; Yuan et al., 1991; Koch & Kahmann, 1986). The contacts 

between two subunits in the dimer are formed through extensive Van der Waals 

interactions and hydrogen bonds. Helix B of one subunit makes contacts with helix A' and 

helix C' of the opposite subunit as well as with helix D of its own unit. This hydrogen-
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bonding network helps to hold the FIS dimer like a rigid body, which undergoes 

conformational changes only with difficulty. 

 
 

 

Figure 1.8. Structure of the FIS K36E 

dimer (Safo et al., 1997). 

The four α-helices and two β-strands are 
labelled as A–D, β-1 and β-2 in the first 
monomer, which is highlighted in red and A'–D', 
β'-1 and β'-2 in the second monomer, which is 
highlighted in blue. 
 
The locations of amino acid residues Val-16 
(V16), Asp-20 (D20), Gln-21 (Q21), Val-22 
(V22), and Ser-30 (S30), which were shown to 
be involved in transactivation of Hin-catalysed 
DNA inversion (Safo et al., 1997; Merickel et 
al., 1998), are indicated with red letters. Val-16, 
Asp-20, Gln-21, and Val-22 are within the β-
hairpin activating motifs, whereas the two Ser-30 
residues are directly across from each other on 
the A/A' helices. 

 
 
The last two C-terminal helices (C and D) form an HTH motif, which constitutes the main 

component of the DNA binding surface. A remarkable feature of the HTH domain is that 

the helix D contains six positively charged residues (two arginines and four lysines), which 

are likely to make contact with the negatively charged phosphate backbone of the DNA. 

This could indicate that FIS recognises DNA through interactions that are predominantly 

non-specific, which is in agreement with the degenerated consensus 15 bp sequence of the 

FIS binding site: 

 

(G/T)nnYRnn(A/T)nnYRnn(C/A) 
 
where Y = pyrimidine; R = purine; n = any nucleotide (Hübner & Arber, 1989). 
 

Although FIS binds to highly divergent sequences, the way in which the protein binds to 

the different 15 bp core sequences is very similar (Pan et al., 1996). Binding of FIS to these 

sites results in a bending of the DNA by an angle estimated as ≈ 90o (Thompson & Landy, 

1988). However, the degree of DNA bending varies for the different FIS binding sites 

(Gille et al., 1991). The sequences flanking the 15 bp core region appear to be important in 
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determining the extent of DNA wrapping around the FIS dimer (Pan et al., 1996). The 

DNA bending induced by FIS is believed to be one of the major functions of this protein. 

This is also true with regard to the role of FIS binding at the recombinational enhancer. The 

recombinational enhancer consists of two essential binding sites for FIS the spacing of 

which relative to each other is critical for enhancer function (Johnson & Simon, 1985; 

Kahmann et al., 1985; Johnson et al., 1987). Previous studies suggested that FIS dimers 

must be associated with both binding sites within the Hin enhancer to form productive 

invertasomes (Johnson & Simon, 1985; Bruist et al., 1987a; Johnson et al., 1987; 

Heichman & Johnson, 1990). This was demonstrated by (1) mutagenesis studies showing 

that removal of either binding site or changes in the spacing between binding sites 

essentially abolish FIS-activation of inversion; (2) electron microscopy showing the 

absence of invertasome structures on substrates containing only one FIS binding domain; 

and (3) stoichiometry measurements indicating two FIS dimers per activated invertasome. 

It has been proposed that FIS stabilises a tightly bent right-handed DNA loop on binding 

the enhancer (Travers & Muskhelishvili, 1998). 

The studies in the Hin and Gin systems suggested that the enhancer remains associated with 

the invertasome complex throughout the course of the reaction, though it can be released 

prior to the ligation step under certain conditions for Hin and more readily for the Gin DNA 

invertase catalysed reaction (Kanaar et al., 1990; Heichman et al., 1991; Crisona et al., 

1994). Thus, whereas the binding of FIS at the enhancer is required to initiate catalysis, it is 

not required for the final chemical step. 

 

 

1.4.1 FIS-Gin interactions in the invertasome 

 

As mentioned above, the poor X-ray resolution of the N-terminal 24 amino acids of FIS 

suggested that this structure might be flexible. The crystal structure of a mutant FIS protein 

has revealed that previously unresolved amino acids 12–26 near the amino terminus of each 

subunit form a β-hairpin arm that protrudes over 20 Å from the α-helical core (Figure 1.8) 

and is responsible for Hin transactivation (Safo et al., 1997; Merickel et al., 1998). 

Disulfide cross-linking of cysteines introduced at different positions within the β-arms of 

FIS demonstrated that the arms are mobile in solution. The authors observed that whereas 

both FIS dimers must be capable of activating Hin, FIS heterodimers that have only one 
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functional β-arm are sufficient to stimulate both Hin DNA cleavage and strand exchange. 

Analysis of homodimer and heterodimer mixes of different Hin mutants suggests that FIS 

must activate each subunit of the two Hin dimers that participate in catalysis. These 

experiments also indicate that all four Hin subunits must be coordinately activated prior to 

initiation of the first chemical step of the reaction. These authors also made a surprising 

observation that the FIS dimers containing the two mobile β-arms linked together by a 

disulfide bridge at one of the several positions within the β-hairpin loops (e.g., between 

amino acids 15, 18, and 19) were still able to activate Hin efficiently (Safo et al., 1997). 

This covalent linkage would prevent simultaneous interaction of the two β-arms of FIS with 

the two separate regions in the Hin dimer. 

Extensive mutagenesis of this region has shown that three amino acids, Val-16, Asp-20, 

and Val-22, near the tip of the β-arm of FIS are critical for the activation of Hin inversion 

(Safo et al., 1997; Figure 1.8). Certain solvent-exposed amino acids within the α-helix A 

may also contact Hin within the invertasome structure (e.g. Ser 30). 

FIS mutants either carrying amino acid substitutions in the N-terminal part of the protein, 

or FIS mutants in which up to 26 amino acids of the N-terminus were deleted, all showed 

that this region is dispensable for stable DNA binding, but required for the stimulation of 

the inversion reaction catalysed by Gin (Koch et al., 1991; Osuna et al., 1991; Spaeny-

Dekking et al., 1992, 1995c). This suggests that the N-terminus of FIS is involved in 

interactions with Gin. When however a FIS mutant, lacking the first 29 N-terminal 

residues, was used in the inversion reaction together with the FIS-independent Gin mutant 

M114V, the activity of M114V was reduced, suggesting that the two proteins form an 

additional contact in which the N-terminus of FIS is not involved (Merker et al., 1993). 

From these results a model was proposed in which the central domain of FIS first stabilises 

the synaptic intermediate and in a second step of the reaction the N-terminus of FIS 

interacts with Gin thereby facilitating the subunit exchange by weakening the monomer-

monomer contacts in the Gin dimer (Merker et al., 1993). 

Additional evidence for such a dual role of FIS comes from the properties of Gin mutants, 

the activity of which depends on the presence of FIS protein, but does not require the 

presence of the enhancer (Spaeny-Dekking et al., 1995a). Since those mutants showed no 

inversion activity when the N-terminus of FIS is deleted, the following conclusion was 

made: binding of FIS at the enhancer stabilised the formation of an active synaptic 

complex. For this function the N-terminal part is not required. In a second step the N-
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terminal part of FIS interacts with the dimerisation helix of Gin thereby facilitating the 

subunit exchange. For this action the enhancer is no longer required. 

Several Gin mutants have been isolated that are able to carry out the inversion reaction 

without need for FIS, the enhancer and negative supercoiling (Klippel et al., 1988b). Such 

mutants showed also less stringent substrate requirements than the wild type protein, since 

they could promote recombination between direct repeats as well as intermolecular 

recombination. This suggests that the synaptic complex formed by these mutants is 

different from that formed by the wild type Gin. From the properties of these mutants it has 

been proposed that the role of FIS in inversion is to induce a conformational change in the 

Gin protein, thereby activating this protein to initiate strand exchange, and that the FIS-

independent Gin mutants are locked in such an activated configuration. A biochemical 

analysis of these mutant Gin proteins led to the suggestion that in wild-type Gin system FIS 

and the enhancer act at a stage after synapsis but before the strand exchange (Klippel et al., 

1993). The loss of need for FIS and enhancer in the mutant Gin proteins has been attributed 

to their ability to partially unwind the gix site and to cleave DNA without need for synapse 

formation (Klippel et al., 1993). All the gin mutations that confer a FIS-independent 

phenotype fall into a single domain that corresponds to the dimerisation surface of γδ 

resolvase (Sanderson et al., 1990; Hughes et al., 1993; Grindley, 1993; Lim, 1994). These 

findings indicate that FIS-independent Gin mutants are altered in the interaction surface 

between the two monomers in the Gin dimer bound at a gix site. 

Taken together, these data are consistent with a direct interaction between Gin and FIS 

during the DNA inversion reaction. 

 

 

1.5 Models of the synaptic complex and mechanism of DNA recombination 

 

The structure of the synapse and the precise nature of the molecular events during strand 

exchange are not clearly understood. There are two main models that predict different 

organisation of the synaptic complex and mechanism of recombination. 

In the "subunit exchange" model the catalytic domains of the Gin dimers are interacting 

with each other during synapse formation, whereas the C-terminal DNA binding domains 

face opposite directions (in other studies also referred as “DNA outside model”). This 
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model predicts that the Gin monomers rotate while remaining covalently attached to the gix 

half-sites (Kanaar et al., 1990; Heichman et al., 1991). 

Such an organisation of the synaptic complex was proposed for γδ resolvase as well – a 

protein homologous to Gin (Sarkis et al., 2001). An important implication of this model is 

that the crossover sites in the synapse are far apart from one another as they lie outside of 

the recombinase core, suggesting that there must be substantial movement within the 

complex to effect recombination (Sarkis et al., 2001). Another attractive feature of this 

model is that the synaptic surface is situated within the 120-residue catalytic domain and it 

is proposed to be common to all serine recombinases (Arnold et al., 1999; Sarkis et al., 

2001). The experiment described recently (Leschziner & Grindley, 2003) provided strong 

evidence in support of the idea that the resolvase-subsite I synapse contains the catalytic 

domains of the recombinase tetramer as its central core, with the two res subsites I held on 

the outside, well separated from each other and crossing to form a local positive node 

(Leschziner & Grindley, 2003). 

The alternative "static subunits" model suggests that the DNA binding domains of opposite 

dimers face each other with the recombining DNA duplexes packed close together inside 

the tetramer (“DNA inside”) (Rice & Steitz, 1994a). In this model the interactions between 

the two res subsite I-bound resolvase dimers have not been specified; however, because the 

DNAs were placed on the inside of the complex, the synaptic interactions most likely 

involved the DNA binding domains rather than the catalytic domains. A similar mode of 

synapsis with the DNA inside has been proposed for the invertasome formed by the related 

recombinase Hin (Merickel et al., 1998; Huang et al., 2003; Figure 1.9). In this model, the 

hix DNA segments are located in the centre of the Hin tetramer and oriented at  ∼90° with 

respect to each other. 

The "subunit exchange" model nicely explains the experimentally detected topological 

changes in the substrate as well as extensive knotting of inversion products. Extensive 

knotting of DNA results from processive recombination leading to multiple rounds of 

strand rotation and is observed e.g. when the 2 bp spacer regions of the crossover sites do 

not match each other (Kanaar et al., 1990; Heichman et al., 1991). However, it remains 

unclear how the nucleoprotein complex is stabilised during the strand exchange, especially 

when multiple rounds of strand rotation take place. 
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Figure 1.9. Model for the Hin invertasome organisation (Merickel et al., 1998). 
Yellow and light orange ribbon diagrams show the Hin dimers complexed with recombination sites on DNA 
fragments shown in white. Two FIS dimers, depicted in blue with the β-arm activation domains highlighted in 
pink are bound to an enhancer segment of DNA shown in dark orange. 
Proposed model positions the Hin catalytic domains on the outside of the Hin tetramer adjacent to the 
activating regions of FIS (Merickel et al., 1998). This arrangement of the Hin tetramer is similar to one of the 
models proposed for the res subsite I association in the γδ resolvase synaptosome (Rice & Steitz, 1994a; 
Yang & Steitz, 1995). 
 
 
The "static subunits" model meets substantial difficulties in explaining the mechanism by 

which multiple DNA strand rotation events (observed in processive recombination 

reactions) could occur within the complex, leading to the complex knotted DNA products 

(Kanaar et al., 1990; Heichman et al., 1991). This would require severe distortion of DNA 

within the complex (McIlwraith et al., 1997). 

Whatever the exact mechanism, the two models predict different arrangements of the 

catalytic tetramer in the synaptic complex. The determination of the dimer-dimer 

interaction interface(s) is therefore crucial to distinguish between these two mechanistically 

distinct recombination models. 

 

 

1.6 Arrangement of Gin dimers in the catalytic tetramer: a preliminary model 

 

Direct investigation of the regions involved in the stabilisation of the Gin catalytic tetramer 

that has been performed previously in our group (Rusch, 1998), takes into account the 

characterised dimerisation surface of the γδ resolvase (Hughes et al., 1990; Murley & 
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Grindley, 1998). Genetic studies of γδ resolvase showed that the interactions between two 

αE helices located in the proximity of the catalytic domains of resolvase monomers, 

stabilise the dimer both in solution and when bound at the cleavage site (Sanderson et al., 

1990; Hughes et al., 1993, Yang & Steitz, 1995). Moreover, investigations in the 

homologous Hin system also indicate that the αE helices form the dimer interface (Lim, 

1994; Haykinson et al., 1996). Importantly, mutations in this region of Gin, Hin and Cin 

invertases yield either recombination deficient or FIS-independent alleles which suggest 

alterations in the conformation of the dimer (Klippel et al., 1988a; Hafter & Bickle, 1988; 

Klippel et al., 1993; Haykinson et al., 1996). Furthermore, the dimer interface has been 

demonstrated to be critical for FIS-mediated activation of strand cleavage (Haykinson et 

al., 1996; Deufel et al., 1997). These observations strongly suggest that the conformation 

of the dimer affects the catalytic activity of the invertase tetramer. 

During previous experiments in our group several gin mutants with increased capability of 

pairing the gix sites were found and analysed both in vivo and in vitro. Most of these 

mutants were recombination deficient and all formed tetramers more efficiently than wt 

Gin. The mutations were mapped on a three-dimensional model of Gin dimer that was 

obtained by homology modelling based on the crystallographic structure of γδ resolvase, 

and a Gin tetramer was modelled by defining the optimal contact surfaces between the 

dimers (Hermann, 1996; Rusch, 1998). 

All mutations were located in domains of γδ resolvase that are involved in catalysis 

(Sanderson et al., 1990; Rice & Steitz, 1994b; Yang & Steitz, 1995). Homology to the γδ 

resolvase modelling of the Gin dimer three-dimensional structure indicated that one major 

class of the mutants (F105L, F105S, A110V, E113V, E117V and I119S) was located in the 

putative dimerisation domain of Gin, whereas another group (T40S, K62R, D92N) was 

clustered on the exposed surface of the catalytic domain. Such a distribution of the 

substitutions resulted in a conclusion that the core of the tetramer is formed by a four helix 

bundle, whereas the second contact domain, comprising the exposed loop between the ß2 

sheet and the αB helix (see Fig. 1.7), is probably involved in the stabilisation of the 

asymmetric interaction between two of the four Gin monomers. The amino acid T40 is 

located in the loop connecting the ß2 sheet and the αB helix, and may form contacts to 

basic residues (K50, R51, K54) in the C-terminal region of helix αB in the opposite Gin 

subunit. Two mutations in this region (K50R and R51H) were identified, which increased 

gix-pairing (tetramer formation) efficiency in vivo. Six previously described mutations in 
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this region (K34E, S36N, R39G, D41G, P43S, P43L) have been shown to suppress the FIS-

independent phenotype of the Gin mutant M114V, rendering the double mutants FIS-

dependent for recombination (Merker, 1993). It has been therefore suggested that this 

region is involved in protein-protein interactions between the Gin subunits during synapse 

(Merker et al., 1993). In addition, several mutants with substitutions in the corresponding 

region of γδ resolvase have been identified which are defective in cooperative interactions 

between resolvase dimers during recombination (Hughes et al., 1990). 

Taken together these results are consistent with the involvement of both the αE 

dimerisation helix and the flexible loop between the ß2 sheet and αB helix of Gin in the 

stabilisation of the Gin tetramer, whereas the Gin dimer itself is stabilised by interactions 

between the hydrophobic surfaces of the amphipathic αE helices. 

Molecular modelling of Gin dimer-dimer interactions (Hermann, 1996) based on the 

identified domains suggested such a configuration for the Gin tetramer, in which Gin 

dimers are aligned side-by-side with their DNA binding domains pointed towards opposite 

directions (Figure 1.10). The asymmetric interactions between the dimers in tetramer 

suggested an additional “checkpoint” operating at the stage of an alignment of crossover 

sites in synapse. 

 
 

 

Figure 1.10. Preliminary model of the 

side-by-side arrangement of Gin 

tetramer (Rusch, 1998). 
Two Gin dimers, depicted one in dark and 
light blue another in yellow and light green, 
are complexed with recombination sites on 
DNA fragments shown as red ribbons. 

 
 
In the side-by-side model the interactions between the dimers are mostly due to the two 

patches of charged amino acids located in the outer surfaces of the αE-helices (Figure 

1.11). The upper part of the helix is negatively charged whereas the lower part is positively 
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charged. In fact, the tetramer can be formed by aligning these two patches on the surfaces 

of the two dimers after rotating one dimer at 180o with respect to another. In this case it is 

possible to align the positive patch on the one dimer with a negative patch of another. It has 

been suggested (Rusch, 1998) that in addition to the interactions between hydrophobic 

residues at the surface of αE, salt bridges between glutamates at positions 113 and 117 and 

basic residues (H106 and possibly R102) may contribute to tetramer stabilisation. This 

interaction can be further stabilised by hydrophobic residues that surround these charged 

patches. Such model of protein-protein interactions correlates with a well-known 

observation that salt bridges within hydrophobic environment are favourable interactions 

stabilising protein associations (Rodgers & Sligar, 1991; Xu et al., 1997a, 1997b). 

 

 

Figure 1.11. Three-dimensional 

model of the Gin dimer (Hermann, 

1996). 
 

GRASP-generated image of the model 
shows the αE surface electrostatic potential 
of Gin. Blue indicates positive potential and 
red indicates negative potential. The 
hydrophobic residues are shown in green. 
 

 
 
The obtained Gin preliminary tetramer model is consistent with the "subunit exchange" 

model of DNA inversion but also implicates an asymmetry in the interaction between the 

Gin monomers bound at different gix half sites. 

Although the "subunit exchange" model nicely accounts for the topological changes 

observed in the products of recombination, it suggests a simultaneous rotation of cleaved 

DNA strands with covalently attached invertase monomers (Boocock et al., 1995). 

Mechanistically, this would require a loosening of contacts between the subunits in dimer 

and retention of contacts between the monomers of opposite dimers. The extensive contact 

surface between the opposite monomers in the preliminary Gin tetramer model makes the 



INTRODUCTION 23 

retention of such contacts feasible. This is particularly true for the opposed monomers, 

which form additional contacts by surface exposed flexible loops. However, in this model 

the catalytic tetramer looses its 4-fold symmetry. 

 

 

1.7 Modular structure of the recombinases 

 

Another attractive way of studying the arrangement of dimers in a tetramer is the 

“modular” exchange of regions among enzymes of the same family. 

Smith and Thorpe in their recent study (2002) provided an overview of the structural and 

functional variation in the serine recombinases (Figure 1.12) demonstrating their modular 

structure. Within this “modules” (regions of conservation) recombinases have a high 

percentage of homology, indicating their evolutional relatedness. 

 

 

 
 

Figure 1.12. Overview of the structural and functional variation in the serine recombinases 

(modified after Smith & Thorpe, 2002). 
The cylinders represent putative domains/regions of conservation of the serine recombinases in which orange 
is the catalytic domain, green is a DNA binding domain containing an HTH motif and yellow is a conserved 
region of unknown function. 
 
 
From phylogenetic analysis of the catalytic domains from 72 serine recombinases they 

concluded that the structural and evolutionary differences could occur by fusion of an 

ancestral catalytic domain to unrelated sequences resulting in a family of structurally and 

functionally diverse proteins. 

As it was shown recently (Akopian et al., 2003), catalysis by the N-terminal domain of a 

hyperactive Tn3 resolvase mutant does not require the presence of its proper C-terminal 

domain; it can be replaced by the DNA-binding domain of an unrelated protein (in their 

experiments - a DNA recognition domain from the mouse transcription factor Zif268). 
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They note, that any specific role for the natural C-terminal domain of resolvase in synapsis 

of two subsites I, or in catalysis of strand exchange, can now be discounted. The successful 

substitution of the C-terminal domain with a domain that binds DNA much more tightly 

(Kim & Pabo, 1998; Abdel-Meguid et al., 1984) also suggests that the mechanism of strand 

exchange does not require dissociation of the domain from the DNA, as is a feature of 

some recombination models (Grindley, 2002). 

These findings offer an attractive way to study synapse formation by generating modular 

substitutions between representatives of the different protein families. 

 

 

1.7.1 The Gin-ISXc5 resolvase chimera 

 

A chimeric protein ISXc5G10 (Schneider et al., 2000) was generated during a collaboration 

of our group with the group of Dr. P. Dröge (Cologne University) and was studied further 

in the present work. This chimera contains the residues 1 to 123 of the N-terminal catalytic 

domain of Gin (corresponding to residues 1 to 126 in γδ resolvase; Yang & Steitz, 1995; 

see Figure 1.2) including most of the long αE helix that constitutes the dimer interface (Liu 

et al., 1998). The fusion joined the end of the αE helix of Gin to the flexible arm region 

and the DNA-binding domain of ISXc5 resolvase (ISXc5 residues 124 to 205, 

corresponding to residues 127 to 183 in γδ resolvase; see Figure 1.13). About 100 amino 

acid residues were omitted from the C-terminal extension of the wild-type ISXc5 as these 

residues proved to be dispensable for resolution activity (Liu et al., 1998). 

 
 

 
 

Figure 1.13. Alignment of the amino acid sequences of the ISXc5 resolvase and Gin invertase 

(Liu et al., 1998).  
Site of the fusion (position 123) is indicated. Identical amino acids are shown in red. In the ISXc5 the C-
terminal amino acids which were omitted during construction are not shown. The secondary structures are 
marked underneath the sequence alignment, α for α helix, β for β strand. Also indicated are the α helices that 
form the helix-turn-helix DNA-binding motif. 
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Gin, the G10 chimera and the ISXc5 resolvase were all tested on different substrates in vivo 

for their recombination activity (Schneider, 1999; Schneider et al., 2000). It turned out that 

despite the presence of the large N-terminal catalytic domain of Gin, the G10 chimera was 

not able to catalyse inversion reaction on the natural Gin substrate containing the gix sites 

either as inverted or direct repeats; it also could not utilise for inversion either the original 

ISXc5 res sites, or the pair of res subsites I, presented as direct or inverted repeats. 

However, the natural substrate for the ISXc5 resolvase could be reproducibly recombined 

yielding the expected resolution product. Addition of FIS did not affect the resolution 

reaction by G10 on the substrate containing the recombinational enhancer element (Liu et 

al., 1998). 

However, the substrate containing two res subsites I and the recombinational enhancer was 

efficiently used by Gin for catalysis of inversion reaction in the presence of FIS (Schneider 

et al., 2000). With this substrate the G10 chimera showed a weak activity, whereas the 

ISXc5 resolvase was inactive. It was shown in previous studies that the sequence of site I 

from ISXc5 res, where the strand exchange by resolvase occurs, resembles that of the gix 

sites (Liu et al., 1998; Figure 1.14B, C). 

 

 
 

Figure 1.14. Organisation of the gix and res recombination sites. 
A. Schematic representation of the three ISXc5 resolvase binding subsites I, II and III in the res 
recombination site. Each subsite consists of a pair of inverted 12 bp sequences (white arrows) with an internal 
spacer (black bars) that varies in length for the each subsite (as indicated). The arrows below indicate the 
different length of the centre-to-centre separation of the subsites. 
B. Structure of the ISXc5 res subsite I. Res subsite contains two inverted 12 bp half-sites separated by the 4 
bp symmetric central core region. Regions of the resolvase dimer-DNA interaction are indicated by grey bars 
for the major groove and by white bars for the minor groove. The enzyme introduces a 2 bp staggered cut in 
the centre of the symmetric core region indicated by bold letters.  
C. Structure of the gix R recombination site. Regions of Gin-DNA interactions are indicated as in B. Note that 
the core region, where Gin introduces a 2 bp staggered cut (indicated in bold), is asymmetric. 
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Notably, the sequence of res subsites I represents an almost perfect palindrome and in 

contrast to the gix sites, the inversion reaction catalysed by Gin on substrate containing res 

subsites I did not depend on their orientation. The efficiency of the inversion reaction was 

similar to that with a standard substrate containing gix sites. As demonstrated earlier with 

the Hin inversion system (Moskowitz et al., 1991), this result can be explained by the 

inherent symmetry of the central two A-T base pairs in the core sequence of the res subsite 

I, where the staggered cleavage and strand exchange occurs (Figure 1.14B). This symmetry 

allows for the formation of a recombinogenic invertasome regardless of the orientation of 

res subsites I in the substrate. Thus, subsites I from ISXc5 res can functionally substitute 

the gix sites in the FIS-dependent DNA inversion catalysed by Gin. 

Nevertheless, Gin was unable to utilise for recombination the two complete res sites 

(natural target sequences for the ISXc5 resolvase) either as direct or inverted repeats, even 

in the presence of the enhancer element and FIS. Gin was also unable to recombine the 

substrate containing a single complete res and res subsite I oriented as direct repeats. It was 

shown (Schneider et al., 2000) that Gin recognises both subsites I and III in res, but is 

unable to bind at site II. Sequence comparisons revealed that both I and III subsites exhibit 

about 53% identity with the gix site (Schneider et al., 2000). Furthermore, it appeared that 

Gin bound at site III interferes with FIS-dependent recombination at sites I. It is possible, 

therefore, that Gin is unable to catalyse resolution on the substrate containing full res site 

because Gin dimers bound at subsites I and III of res interact with each other, or they may 

compete for interactions with either the dimer bound at the distant res subsite I or with the 

enhancer-bound FIS. In either case, on the substrate containing complete res site the Gin 

dimer bound at the subsite III would act as its own recombinational repressor. 

 

 

1.8 Goals 

 

A long-standing question concerning the organisation of the synaptic complex formed 

during site-specific DNA inversion is whether the DNA is on the inside (as suggested by 

the “static subunits” model) or on the outside (“subunit exchange” model) of the complex. 

Each model has important implications for strand exchange. A goal of this thesis was to 

distinguish between these two mechanistically different models using the bacteriophage Mu 

Gin inversion system. In particular, the aim was to design a strategy proving that the 

catalytic domains are indeed involved in the formation of the Gin tetramer and to verify the 



INTRODUCTION 27 

preliminary model of invertasome proposed earlier in our group by K. Rusch (1998). This 

would not only help to understand the processes of synapsis and Gin tetramer activation, 

but also provide a framework for elucidating the mechanism of strand exchange. 

 

Another project was focused on the characterisation of the chimeric recombinase protein 

ISXc5G10 (containing the N-terminal catalytic domain from Gin and the DNA-binding 

domain of ISXc5 resolvase). In particular, the aim was to understand the reason for its 

inversion deficiency, to study the ability of protein to form tetramers and to obtain mutant 

variants for further illumination of the molecular basis underlying the distinctions between 

the resolvases and the invertases. 

 

Finally, the question was addressed on the interactions between FIS and Gin during 

formation of the synaptic complex involved in the initiation of DNA inversion reaction. For 

this purpose genetic screening was performed for the selection of fis mutants that can 

rescue the impaired recombination activity of a Gin mutant with altered dimerisation 

interface, Gin H106T. The aim was to confirm that FIS indeed interacts with the 

dimerisation domain of Gin during tetramer formation and to test whether the position 

H106 is the site of possible contact. 

 

The ultimate goal of this thesis was to work out a molecular model for the Gin invertase 

synaptic complex under the consideration of the previous and newly obtained data. 
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2. RESULTS 

 

Since the invertase Gin is catalytically activated only after the assembly of a synaptic 

complex containing at least two FIS dimers and the enhancer element, the characterisation 

of Gin–FIS interactions is crucial for the understanding of the organisation of the 

invertasome. Thus the analysis of Gin–FIS interactions became the first issue of this study. 

 

 

2.1 Screening for the Gin H106T activating FIS mutant 

 

It is assumed that there are critical amino acid residues both in Gin and FIS necessary for 

the formation of the productive invertasome. Their identification can help to understand the 

interaction between proteins during the recombination reaction and will have implications 

for the mechanism of inversion. A putative interaction region in FIS was identified in the 

N-terminus of the protein designated the “mobile β-hairpin arm” (Safo et al., 1997). The 

region in invertases that is contacted by this flexible N-terminal arm of FIS remains 

unknown. It was proposed that this region might be constituted by the Gin dimer interface 

(Merickel et al., 1998). The importance of the dimerisation region was shown also in other 

related recombination systems (Hughes et al., 1993; Klippel et al., 1993, Haykinson et al., 

1996). It was suggested that the mechanism of FIS activation of the DNA cleavage might 

involve an induced conformational change of the invertase dimer interface that occurs upon 

the assembly of the invertasome. 

To test this hypothesis genetic screening was performed to select for fis mutants that can 

rescue the inversion-deficient phenotype of the mutant Gin H106T carrying a substitution at 

the dimerisation interface. Position H106 appears to be critical: tyrosine substitution at this 

position renders the Gin invertase FIS-independent (H106Y), whereas substitution of 

threonine inactivates Gin (H106T). The analogous mutant of Hin (H107C) is still capable to 

catalyse FIS-dependent inversion, suggesting that the contact site for FIS is not disrupted 

by this mutation (Haykinson et al., 1996). Therefore, it was theoretically possible to find a 

mutant FIS protein, which renders the mutant Gin H106T inversion proficient. 

For this purpose mutagenesis of the fis gene was performed by error-prone PCR (with a 

pUHE25-2∆Cmfis plasmid as a template) as described (Spee et al., 1993). 2 x 106 
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independent clones were generated. By sequencing it was estimated that about 80% of these 

carried mutations in fis. 

The pool of plasmids containing the mutagenised fis gene under the control of an IPTG-

inducible promoter (pUHEfis*) was transformed into the tester strain AD1 (CSH50 

fis::Kan::Iq oxyR::lacZinv) (Deufel et al., 1997). Cells carrying the pUHEfis* plasmids were 

then transformed with plasmid pMD3ginH106T carrying the gin H106T allele under the 

control of a temperature sensitive λPL promoter. 

In the AD1 chromosome the lacZ gene is flanked by gix sites and placed in an “off” 

orientation with respect to the PCm promoter. A productive inversion event places the lacZ 

gene in “on” orientation with respect to the PCm promoter, thus allowing constitutive 

expression of β-galactosidase (Deufel et al., 1997). 

The effect of fis mutants was analysed by growing the transformants for 12 hr in the 

presence of appropriate antibiotics at 28oC on X-Gal plates containing 10 µM IPTG. Gin 

protein expression was repressed during growth of the cells at 28oC. Shifting the culture to 

42oC for 2 hr inactivated the repressor and rapidly led to high levels of protein synthesis. 

Returning the induced cells to 28oC repressed further recombinase gene transcription while 

allowing recombination to continue. The recombinational activity was evaluated by the 

intensity of the blue colour of colonies. Colonies remain white when no inversion occurs, 

whereas a productive inversion gives rise to blue colonies. From the 900.000 of screened 

colonies in the mutant pool only one demonstrated the blue phenotype. This phenotype was 

verified by retransformation of the identified pUHEfis* plasmid. In the presence of this fis 

mutant allele lacZ inversion occurred in 60% of cells. Sequencing revealed that the isolated 

fis mutant carried three mutations leading to amino acid substitutions at positions 3 (E3Q), 

6 (V6L) and 14 (S14P). 

Previous findings showed that the N-terminal deletion/substitution mutant of FIS ∆4+7 

could still promote Gin-mediated inversion, whereas the mutants ∆16 and ∆19 are 

completely inactive in this process (Spaeny-Dekking et al., 1992). We therefore separated 

an individual mutation S14P from other mutations in fis E3Q/V6L/S14P and tested the fis 

S14P allele alone. The colonies showed the same phenotype as with the triple fis mutant, 

indicating that the S14P mutation alone was sufficient to activate the recombination by 

GinH106T. When compared the expression levels of the single mutant, triple mutant and wt 

FIS proteins appeared to be similar (data not shown), suggesting that activation of Gin 

H106T it is not due to an increased amount of FIS protein. 
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The fis S14P allele was cloned into the pET3a expression plasmid and the 11.5 kilodalton 

(kDa) FIS S14P-His protein was purified (Figure 2.1). The His-tag at the N-terminus does 

not interfere the biological activity of the wild type FIS (Merker, 1993). 

 

 

 

Figure 2.1. Purification of the FIS S14P-His 

protein. 
Proteins were analysed by denaturing 
polyacrylamide gel electrophoresis and visualised by 
staining with Coomassie Blue. 
M - protein marker (NEB), molecular weight is 
indicated in kilodaltons (kDa). 
lane 1 - aliquot taken during washing step; 
lane 2 - elution 1 (with 500 mM imidazole); 
lane 3 - elution 2 (with 500 mM imidazole); 
lane 4 - elution 3 (with 1 M imidazole). 
The concentration of the protein in the last eluate 
was 5 µg/µl. 

 

 

2.1.1 DNA binding of FIS S14P 

 

The DNA binding ability of the purified mutant protein FIS S14P was analysed by gel-

retardation assay (Fried & Crothers, 1981). For this purpose a radioactively labelled 160 bp 

PCR fragment comprising three specific FIS binding sites of the upstream activating 

sequence (UAS) of the tyrT promoter was used. FIS forms three distinct complexes with 

this fragment in a concentration-dependent manner (Lazarus & Travers, 1993). Since the 

mutant FIS protein contained an N-terminal His-tag, both wt FIS and wt FIS-His were used 

as controls (Figure 2.2). 

 

Binding of FIS to this DNA fragment generates three complexes of different mobility, 

corresponding to occupation of one, two and three binding sites of FIS on DNA (complexes 

F1, F2 and F3, Figure 2.2). The mobility of complexes F2 and F3 (containing two and three 

of FIS S14P dimers, respectively) was different from that of the wt protein (both with and 

without the His-tag). The migration of these complexes (but not that of F1) was slower, 

suggesting that the binding of two or more dimers of the S14P mutant may result in altered 

DNA bending. 
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Figure 2.2. Analysis of binding of FIS wt, 

FIS wt-His and FIS S14P-His proteins to 

the DNA fragments containing the UAS 

region of the tyrT promoter. 
Different concentrations of proteins (as 
indicated) were incubated with the tyrT UAS 
DNA fragment at 37oC in the binding buffer (see 
Materials and methods), complexes were 
separated on a 6% native acrylamide gel and 
visualised by phosphorimaging. 
Lane 1 - free DNA. 
 

 
Wild-type FIS forms three specific complexes: F1, F2 and F3, corresponding to sequential occupation of three 
binding sites in the UAS region. Note that the mobility of the F2 and F3 complexes formed by FIS S14P 
(lanes 5, 6) is slower, than that of complexes with wt FIS proteins (lanes 2-4). 
 

 

2.1.2 Effect of the FIS S14P on DNA inversion in vitro 

 

The stimulatory effect of FIS S14P on inversion catalysed by Gin H106T in vivo was also 

investigated in vitro. The supercoiled inversion DNA substrate pAK3 was incubated with 

different amounts of Gin and FIS in the presence of Mg2+. After the reaction the DNA was 

cleaved by PstI and analysed by agarose gel electrophoresis to monitor the appearance of a 

specific band indicative of inversion (Figure 2.3).  

 

 

 
 

Figure 2.3. Effect of the FIS S14P mutant on a Gin-catalysed inversion in vitro. 
In vitro inversion reaction was done as described in Materials and methods using pAK3 DNA as a substrate. 
The DNA was cleaved with PstI and analysed on a 2% agarose gel. 
M indicates the λ PstI marker. Lane 1 – control DNA. Arrow indicates the DNA bands that are due to 
inversion. 
Concentrations of the proteins used in the reaction are indicated above each lane. 
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Measurements of band intensities by using the ImageQuant software showed that purified 

FIS S14P stimulated inversion by Gin wt up to two-fold, as compared to wild type FIS, but 

was not able to stimulate inversion by Gin H106T. These observations are consistent with 

the results of Safo et al. (1997) showing that the FIS mutant carrying a substitution at the 

same position (FIS S14C) had the highest stimulatory effect on Hin inversion among all the 

obtained FIS mutants. 

 

Thus, although FIS S14P can lead to a 60% productive recombination by Gin H106T in 

vivo, it cannot stimulate inversion by Gin H106T in vitro. It was already shown in previous 

studies that many FIS mutants active in vivo are not active in vitro and vice versa 

(Haykinson et al., 1996; Adams et al., 1997). The reason for this discrepancy is not known. 

It is possible that besides FIS additional factors are required in vivo for a productive 

inversion reaction, which are absent in the in vitro reactions. When FIS S14P was tested 

together with Gin wt in vivo, recombination event occurred in 100% of cells (as with FIS 

wt). The two-fold activation of the wt Gin by the mutant FIS observed in vitro cannot be 

verified in vivo since wt FIS already stimulates recombination in 100% of the cells and 

therefore the increased frequency of inversion is undetectable. Taken together these results 

are consistent with the importance of the Gin dimerisation surface in mediating the effect of 

FIS.  

 

 

2.2 Intermolecular interactions in the Gin invertase catalytic tetramer 

 

As already mentioned in the introduction, Gin binds to its recombination sites as a dimer 

and becomes catalytically active only after the assembly of the dimers in a tetramer. During 

previous experiments in our group, several gin mutants affected in tetramer formation were 

detected and analysed both in vivo and in vitro. Most of these mutants were recombination 

deficient and all tetramerised more efficiently than wt Gin. The γδ resolvase homology 

modelling of the three-dimensional Gin dimer structure indicated that one major class of 

these mutations was located in the putative dimerisation domain of Gin, whereas another 

group was clustered on the exposed surface loop located between the ß2 sheet and the αB 

helix of the catalytic domain. This suggested that both the αE helix and the surface exposed 

loop of Gin are involved in the stabilisation of the Gin tetramer (see Introduction, chapter 
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1.6). Molecular modelling of Gin dimer-dimer interactions based on the identified domains 

(Hermann, 1996) suggested a novel configuration for the Gin tetramer, in which the Gin 

dimers are aligned side-by-side with their DNA binding domains pointing towards opposite 

directions.  

To gain more information on the domain(s) of Gin involved in tetramerisation, cross-

linking experiments were performed using a 4Å cross-linker diepoxybutane (DEB) reacting 

with the NH2-groups of lysine and SH-groups of cysteine residues. According to previous 

studies (Spaeny-Dekking et al., 1995b), the lysine residues in the Gin dimer are not close 

enough to be cross-linked by this reagent. 

In order to study the organisation of the Gin tetramer several cysteine substitutions were 

introduced: L17C (denoted further as 17C), S75C (further denoted as 75C), V107C 

(denoted 107C), L17C/V107C (denoted 17C/107C) and S75C/V107C (denoted 75C/107C). 

The positions 17 and 75 were chosen because the preliminary Gin tetramer model predicted 

a close proximity of the side chains of these residues to their symmetry-related counterparts 

across a dimer interface. By contrast, the amino acid V107 is involved in the interaction 

between the monomers in the dimer. Therefore, it was expected that in the double 

substitution mutants 17C/107C and/or 75C/107C the dimer stabilised by cross-links 

between 107C-107C could be cross-linked to the opposite dimer via 17C-17C or 75C-75C 

bridges, yielding a tetramer containing four covalently linked monomers. When assayed by 

immunoblotting after electrophoresis in SDS-polyacrylamide gels, these species were 

expected to show an electrophoretic mobility corresponding to a tetramer of Gin (88 kDa), 

assuming that the molecular weight of Gin is 21.7 kDa (Plasterk et al., 1983b). 

The effects of the cysteine substitutions on the inversion proficiency were analysed by 

transforming the plasmids carrying the gin mutants into the inversion tester strain AD1. The 

efficiency of inversion was monitored by the blue colour of colonies on X-gal indicator 

plates. Both single substitution mutants Gin 17C and Gin 75C were inversion proficient, 

whereas Gin 107C was inactive giving rise to white colonies only. Double mutants 

17C/107C and 75C/107C were also inactive suggesting that amino acid substitution V107C 

impairs the recombinational activity of Gin and mutations 17C and 75C cannot rescue this 

inversion-deficient phenotype. The results obtained in vivo were further confirmed by in 

vitro tests (Figure 2.4). 
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Figure 2.4. Effects of the single cysteine substitutions L17C, S75C, V107C and their 

combinations L17C/V107C and S75C/V107C on the Gin inversion activity in vitro. 
Inversion test was performed using the supercoiled pAK3 substrate under standard conditions (see Materials 
and methods) with 50 ng of FIS protein. DNA was cleaved with PstI and analysed on a 2% agarose gel.  
The arrow shows the migration position of the fragments indicative of inversion. 
M is a λ PstI marker. Concentrations of proteins are indicated above each lane. 
Inversion activity of Gin 17C was reduced (5 fold of the Gin wt activity), but still detectable (lanes 3, 4); 
activity of a 75C mutant was two-fold less then wt (lanes 7, 8). Gin 107C, 17C/107C and 75C/107C mutants 
were inversion deficient (lanes 11-19). 
 
 

Next the cross-linking experiments were performed using the mutant proteins alone or in 

the presence of substrate DNA and FIS. The reactions were carried out both under reducing 

(addition of DTT) and oxidising (addition of DEB) conditions. In the case with proteins 

alone the interactions between the Gin monomers in solution could be detected. In the 

presence of substrate DNA interactions between the Gin dimers in paired gix structures 

could be detected. In reactions containing Gin, DNA and FIS the interactions in the synapse 

could be detected. 

Incubation of the wt Gin protein with cross-linking agent resulted in a specific product 

migrating in the gel at the size of the expected dimer (Figure 2.5A). The low level of the 

Gin wt dimer formation is due to the oxidation of natural cysteine residues C24 and/or C27 

(Spaeny-Dekking et al., 1995b). All of the substitution mutants formed covalent dimers in 

the presence of 50 mM DEB (i.e. under oxidising conditions) independent of DNA and FIS 

(Figures 2.5B and 2.6). However, the dimer to monomer ratios varied: in the case of wt Gin 

it was rather low; the highest amount of cross-linked dimer was observed with Gin 107C 

and double mutants containing this latter mutation. This was expected since the position 

107 is situated in the proposed dimerisation surface of the protein. These data are wholly 

consistent with the results of Lim (1994) and Lee et al. (2001) obtained with cysteine 

substitutions in the dimerisation surface of Hin. 
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A 

 

B 

 

Figure 2.5. SDS-PAGE analyses of the reduced and cross-linked forms of Gin wt (A) and Gin 

V107C (B). 
Proteins were incubated under reducing and oxidising conditions (“red” – 10 mM DTT; “ox” – 50 mM DEB) 
with or without DNA and FIS and detected by Western analysis using Gin-specific antibodies. The locations 
of the bands corresponding to the monomeric and dimeric forms of Gin are indicated. The migration of the 
molecular weight protein marker (not visible on the film) is indicated on the left (in kDa). Note that 
dimerisation of wt Gin is rather weak, whereas in the case of Gin 107C about half of the protein is in a 
dimeric form. 
 
 
As predicted by our model double mutants 17C/107C and 75C/107C were able to form 

tetramers (88 kDa species) only in the presence of substrate DNA and FIS, suggesting that 

their formation is due to the interactions between the Gin dimers in the synapse (Figure 

2.6C, D). The efficiency of tetramer formation was low, probably due to the transient nature 

of the synapse. 

Unexpectedly also oligomeric bands were detected that migrated as app. 65 kDa species - 

possibly Gin trimers - formed by double mutants 17C/107C and 75C/107C (Figure 2.6), 

and less efficiently by single mutant 75C (Figure 2.6A,B) and even less so by 17C (Figure 

2.6C). There is no evidence to date that an invertase trimer may be a functionally relevant 

species. One explanation for the trimer formation would be that the naturally occurring 

cysteines in Gin (positions 24 and 27) allow trimer formation when combined with single 

mutants 17C and 75C. The formation of trimers could be facilitated by an increased cross-

linking propensity of monomers in the Gin V107C mutant, yet this latter mutant alone did 

not form trimers (see Figure 2.6C). Notably, although the putative trimers formed more 

efficiently than the tetramers, their formation was not strictly dependent on the presence of 

FIS and DNA (compare Figure 2.6A with B). 
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Figure 2.6. Comparison of the cross-linking effect on Gin 17C, 75C, 107C mutants and 

17C/107C, 75C/107C double mutants. 
Experiment was done in vitro; proteins were incubated with or without DNA and FIS, and analysed further 
by Western blotting using Gin-specific antibodies. Under conditions with 50mM DEB (ox) all mutant 
proteins were able to form dimers quite efficiently, sometimes even under reducing conditions (A, B, red). 
The mutants 17C and 75C alone formed dimers only and a weak band corresponding to the trimer was 
detectable in the presence of DNA and FIS (C). As expected the mutant 107C formed well detectable dimers 
and no other forms (A, B and C). Note that in the combination of the 107C with the 17C and 75C 
substitutions the trimers were formed with proteins alone (A) but tetramers formed only in the presence of 
DNA and FIS (B, C) but not with DNA alone (D). 

 
 
According to Spaeny-Dekking et al. (1995b) one or both natural cysteine residues are 

located at the interface of the Gin dimer, and this places the dimerisation domain to the N-

terminal part of the protein. In their experiments, binding of the disulfide-bonded dimers of 

Gin to a recombination site was strongly reduced, suggesting that the subunits need to 

reorient in order to stably bind the DNA. In the protein-DNA complex, however, cross-

linking of cysteine residues was still possible, indicating that the N-terminal parts of two 

Gin subunits are also in close proximity when bound to DNA. Therefore, it was necessary 

to study the role of these natural cysteine residues in the oligomerisation of Gin. 

The cysteine residue at position 27 is conserved among all DNA invertases and seems to be 

important for Gin function because an alanine or tyrosine substitution at this position makes 

Gin recombination deficient in vivo (Spaeny-Dekking et al., 1995b; unpublished data). 
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Serine substitution at the position 24 leads to the same effect and a mutant carrying 

substitutions of both cysteines (C24S/C27A) is inversion deficient as well. 

Next the Gin mutant proteins carrying C24S and C27A single mutations and the double 

mutant were purified and tested for their recombination activity in vitro. The results 

obtained were unexpected: Gin C27A was inversion deficient and Gin C24S was able to 

catalyse a week inversion whereas the double mutant C24S/C27A showed inversion 

activity comparable to that of the wt Gin (Figure 2.7). 

 
 
A

 

B 

 

Figure 2.7. Comparison of inversion 

activity of Gin mutants with single (A) 

and double (B) substituted natural 

cysteine residues C24S and C27A. 
In vitro inversion reaction was performed with 
supercoiled pAK3 DNA as a substrate. The 
DNA was cleaved with PstI and analysed on a 
2% agarose gel. Arrows indicate the DNA bands 
that are due to inversion. 
M is λ PstI marker. Lane 1 – control DNA. 
Single mutant C24S shows very weak inversion 
activity at high protein concentration (A: lanes 
6, 7) as compared to wt Gin (A: lanes 2-4) and 
mutant C27A is inactive (A: lanes 8-10). The 
double mutant C24S/C27A shows inversion 
activity (B: lanes 5-7) comparable to that of wt 
Gin (B: lanes 2-4). 

 
 
The Gin double mutant protein C24S/C27A was analysed further using the cross-linking 

experiments. The results obtained (Figure 2.8) demonstrated that in the absence of natural 

cysteine residues Gin C24S/C27A did not produce covalent dimers any more, neither in the 

absence nor in presence of DNA and FIS. This observation confirms that the covalent dimer 

formation observed with the wt Gin is due to cross-linking of these natural cysteine 

residues by DEB (see Figure 2.5A), consistent with the previous report of Spaeny-Dekking 

et al. (1995b). 
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Figure 2.8. Western blot analysis of Gin 

C24S/C27A cross-linking. 
Amount Gin C24S/C27A in the reaction was 
100 ng; pAK3 DNA – 500 ng; FIS – 50 ng. 
M - protein marker, red – 10 mM DTT, ox – 50 
mM DEB. 
Gin C24S/C27A cannot be cross-linked under 
any condition used indicating that the natural 
cysteine residues are necessary for cross-linking 
the monomers of wt Gin. 

 
 
Next the Gin double mutants 17C/107C and 75C/107C carrying in addition the 

substitutions of the both natural cysteine residues C24S and C27A (this double mutation is 

referred further as ∆C) were generated, the proteins purified and analysed in cross-linking 

experiments. The results obtained demonstrated that in the absence of the both natural 

cysteine residues, the Gin 17C/107C∆C mutant started to form dimers and tetramers more 

readily, sometimes resulting in slowly migrating multimers (Figure 2.9). However, in 

contrast to Gin 17C/107C addition of substrate DNA and FIS had no effect on the 

formation of these complexes by Gin 17C/107C∆C. This latter mutant, as well as the 

mutant Gin 75C/107C∆C, formed an additional band migrating between the putative trimer 

and tetramer and independent of the presence of DNA and FIS (designated the ∆C–specific 

band). In the case of Gin 17C/107C∆C this unspecific band was detectable only under 

reducing conditions. 

In the case of the Gin 75C/107C mutant the putative tetramer was formed in a DNA and 

FIS-dependent manner but only when the natural cysteines were present. In their absence 

Gin 75C/107C∆C only formed the ∆C-specific complex both under reducing and oxidising 

conditions and independent of addition of FIS and substrate DNA. Thus the ∆C double 

mutant lacking the natural cysteine residues in combination with both either 17C/107Cor 

75C/107C mutations demonstrated a loss of ability to form tetramers in a FIS and DNA-

dependent way, strongly suggesting that the natural cysteine residues are involved in the 

interactions between Gin protomers in the synaptic complex.  
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A 

 
B 

 

Figure 2.9. Comparison of the 

cross-linking effects on Gin 

17C/107C and 75C/107C mutants 

with substituted natural cysteine 

residues (∆C). 

After incubation alone (A) and with 
DNA and FIS (B) under standard 
conditions (se Materials and methods), 
proteins were analysed by Western blot 
using Gin-specific antibodies. 
M is a protein marker. Molecular weight 
is indicated in kDa. 
Gin 17C/107C and 75C/107C proteins 
showed dimer and trimer formation when 
incubated alone and were able to form 
tetramers when incubated with DNA and 
FIS, as expected. 
Note that in the case of mutant proteins 
with substituted cysteines additional 
band appeared, migrating between 
trimers and tetramers under reducing 
conditions (indicated by arrow as ∆C 
specific band). Gin 75C/107C∆C under 
oxidising conditions also formed dimers 
and ∆C specific complexes. 
17C/107C∆C mutant under oxidising 
conditions formed dimers and complexes 
corresponding to the tetramers, but also 
was multimerised with high efficiency. 

 

 

2.3 In vitro tetramerisation (gix-gix paring) assay 

 

To further analyse the importance of the surfaces identified by the cross-linking 

experiments for the interactions within Gin tetramer, another group of previously 

characterised Gin tetramerisation mutants (Rusch, 1998) have been studied. The mutation 

K34E is located on the surface exposed loop between the ß2 sheet and the αB helix of Gin. 

The Gin K34E mutant was identified as a suppressor of the FIS-independent phenotype of 

Gin M114V, H106Y and F104V mutants (Merker, 1993), all of which carry the amino acid 

substitutions in the Gin dimerisation domain. The mechanism by which suppression is 

achieved relies on an inter- rather than an intramolecular interaction, and in combination 

these mutations probably affect the structural organisation of the protein molecule in a 

global way. Data obtained from crystal structure analysis of the γδ resolvase dimer (Yang & 

Steitz, 1995), when applied to the related Gin (see Figure 2.10) indicate that in Gin the 
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mutation M114V can affect the interaction of the monomers within the dimer (Sanderson et 

al., 1990). The mutation K34E and the other identified suppressor mutations for the Gin 

M114V, for example D41G (Hughes et al., 1990), map to the domain involved in the inter-

dimer interactions. 

 

 

 

Figure 2.10. Structure of the Gin N-terminal catalytic domain based on identified crystal 

structure of γδ resolvase (Yang & Steitz, 1995). 

Relative orientation of α-helices and β-sheets and the location of the active site residue serine 9 (S9) and 
studied amino acids are shown. 
Amino acid residues analysed in this study are indicated: M114 and V107 are within the dimerisation αE 
helix; residue L17 is on the αA helix, residues C24 and C27 are located on the loop between αA helix and β2 
sheet, K34 – on the flexible loop between β2 and αB helices (surface exposed loop) and S75 – on the αD 
helix, which is parallel to the αE helix. 
 
 

Since both the dimerisation domain and the N-terminal surface exposed loop were found to 

be involved in tetramerisation, single mutants and double mutants, carrying the 

substitutions in both regions, were compared in an in vitro “tetramerisation assay” 

established by K. Rush (Rush, 1998). In this assay complexes formed by Gin protein were 

analysed by PAGE using two DNA fragments of different size (156 bp and 44 bp) both 

carrying a gix site, whereby only one of these fragments was radioactively end-labelled by 

γ-P32. Binding of a Gin dimer to each of these two distinct fragments leads to the formation 

of complexes of different mobility depending on the fragment size. However, if both the 
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156 bp and 44 bp DNA fragments are present in the incubation mixture an additional 

strongly retarded complex appeared. This complex shows identical mobility independent of 

which of the two gix DNA fragments are labelled and thus represented a tetramer species in 

which the two DNA fragments of distinct lengths are paired by protein interactions between 

the Gin dimers. In this assay the quantitation of the ratio of tetramer to dimer complexes 

formed (see Materials and methods) gives an estimate of the tetramerisation efficiency 

(Rusch, 1998). 

The expectation was that the double mutants carrying substitutions in both regions shown to 

be important for tetramerisation would increase the stability of tetramers containing both 

DNA fragments with gix sites. The tetramerisation assay was modified by adding either the 

reducing agent DTT or the cross-linking agent DEB to the reactions. These chemicals did 

not change the nature of the complexes formed, but affected their stability (Figure 2.11). 

Presence of DTT in the reaction did not affect the dimer complexes but specifically 

prevented tetramer formation; in contrast, presence of DEB caused stabilisation of the 

tetramer complexes, most likely by cross-linking the natural cysteine residues of Gin. 

 

 

Figure 2.11. Comparison of tetramerisation 

activities of Gin wt and Gin K34E under 

conditions with 10 mM DTT and 50 mM 

DEB. 
Lane 1 – 156 bp P32-labelled fragment carrying a gix 
site. Gin wt contains a His-tag, resulting in a 
different mobility of the dimer and tetramer bands as 
compared to Gin K34E.  
Both proteins formed dimers in the same amount, but 
K34E mutant was able to tetramerise up to four 
times more efficiently (lane 5) than wt Gin (lane 3) 
as quantified by ImageQuant. 
Concentration of proteins was 10 ng. 
 

 

To confirm the previously reported high tetramerisation activity of the K34E (Rush, 1998), 

the purified Gin wt and Gin K34E proteins were incubated with a radioactively labelled 156 

bp DNA fragment carrying the gix site under standard binding conditions. Afterwards an 

excess of the unlabelled 44 bp gix DNA fragment was added. Both Gin wt and Gin K34E 

produce a slower migrating tetramer complex upon binding to both gix sites in a native 

polyacrylamide gel (Figure 2.11). As expected, the tetramers were formed more efficiently 

with the mutant K34E, than with wt Gin. In this assay no difference was detected between 1 
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and 5 minutes of incubation time with DEB (Figure 2.12, lanes 5, 6), therefore 1 min of 

cross-linking was used for all further experiments. 

 
 
 

 

Figure 2.12. Comparison of the 

tetramerisation activity of Gin 

K34E and C24S/C27A mutants. 
Gin K34E alone readily formed a 
tetramer between the two DNA fragments 
(γ-P32-labelled 156 bp fragment and 
“cold” 44 bp fragment) containing the gix 
sites. The yield of Gin K34E tetramers 
increased three fold after adding 50 mM 
DEB in the reaction already after 1 min 
incubation. Note that His-Gin 
C24S/C27A does not produce tetramers. 
With 10 mM DTT both proteins formed 
dimers (lanes 4 and 8). 
Free DNA - lanes 1 and 7. Concentration 
of each protein was 10 ng. 

 
 

It was interesting to verify the possible role of the natural cysteine residues in tetramer 

formation revealed in the previous experiments (see Figure 2.9). With Gin C24S/C27A 

mutant no tetramer formation was observed under any conditions used, despite of the 

ability of protein to efficiently form the dimer complexes. This is wholly consistent with the 

previous observations suggesting that the positions C24 and C27 are involved in the 

stabilisation of the tetramer. 

 

Gin derivatives carrying single C24S or C27A mutations were also analysed in the 

tetramerisation assay. Both mutants appeared to be able to form tetramers to different 

amounts (Figure 2.13), indicating that each of these positions can independently, yet to 

different extents, contribute to the stabilisation of the tetramer. 
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Figure 2.13. Comparison of the tetramerisation ability of Gin wt, His-Gin C24S (A) and His-

Gin C27A (B). 
Mutant and wt proteins were incubated under standard conditions (see Materials and methods). Gin wt was 
used as a control. The protein concentrations and the bands corresponding to the dimer and tetramer are 
marked. 
A. Gin wt used in this experiment did not contain a His-tag, which explains a faster migration of complexes 
formed. 
Lane 3 - free γ-P32-labelled 156 bp DNA fragment. 
B. For testing Gin C27A two different protein preparations were used (sample 1 and sample 2). In both cases 
proteins were able to form dimers with a high efficiency, whereas tetramers were barely detectable. 
Lane 1- free γ-P32-labelled 156 bp DNA fragment. 
 

 
Next the effect of the combination of substitutions in the dimerisation surface (M114V) and 

in the surface exposed loop (K34E) on tetramer formation was investigated. In this 

experiment Gin M114V alone formed neither dimers nor tetramers, but a complex of 

intermediate mobility (Figure 2.14A,B: lanes 2, 3, 4). Since Gin M114V has a high DNA 

bending and nicking activity this unusual migration could be due either to strong bending or 

to cleavage of the gix fragment (Deufel et al., 1997). Gin K34E formed as expected only 

dimers in the presence of DTT, and both dimers and tetramers in the presence of DEB. The 

Gin protein with substitutions at both positions (Gin M114V/K34E) formed “usual” dimer 

and tetramer complexes, alike the Gin K34E. However, by contrast to the latter, the double 

mutant was able to form tetramers even in the presence of DTT. This indicates that Gin 

K34E/M114V double mutant formed a stable tetramer that could not be destabilised by 

DTT. This result is consistent with the involvement of both domains - the dimerisation 

surface and the surface exposed loop of Gin, in tetramer formation.  
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A (DTT) 
 

 

B (DEB) 
 

 

Figure 2.14. Comparison of the tetramerisation ability of Gin M114V, Gin K34E and Gin 

M114V/K34E mutants in vitro under the following conditions: 

A (DTT) addition of 10 mM DTT in the reaction; 
B (DEB) addition of 50 mM DEB in the reaction. 
All experiments were done in the presence of excess of the 44 bp gix DNA fragment to allow tetramer 
formation. 
Lane 1 –free γ-P32-labelled 156 bp DNA fragment. 
Protein concentrations are indicated above each lane. 
 
 
Other combinations of substitutions in the dimerisation domain (V107C, M100C) with the 

mutation K34E were also investigated. 

In the absence of DTT and DEB the Gin mutant V107C formed both dimer and tetramer 

complexes, but only dimers in the presence of DTT (Figure 2.15A, lane 3), whereas with 

DEB it formed predominantly tetramers with a low amount of dimers (Figure 2.15A, lane 

4). Similarly, Gin K34E formed both dimer and tetramer complexes in the absence of DTT 

and DEB.  The Gin K34E dimer complexes formed with similar efficiency under all 

conditions tested (Figure 2.15A, lanes 5-7; B, lanes 4, 5), whereas the tetramer formation 

was only slightly facilitated by DEB (Figure 2.15A, lane 7; B, lane 5; C, lane 9) and 

prevented by DTT (Figure 2.15A, lane 6; B, lane 4; C, lane 8). In the double mutant 

K34E/V107C, however, the tetramer complex was detected even in the presence of DTT 

(Figure 2.15B, lane 8), which normally prevents tetramer formation. This indicates 

therefore, that these two mutations cooperate with each other and stabilise the tetramer, as 

in the case with K34E/M114V. 
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A 

 

B 

 

 
Figure 2.15. Comparison of the 
tetramerisation activity of Gin 
mutants carrying substitutions in 
positions 34, 100, 107, 114 and their 
combinations (A, B, C). 
 
Free DNA – 156 bp γ-P32-labelled DNA 
fragment carrying the gix site. 
Different migration of the dimeric and 
tetrameric forms of different mutants is 
due to the presence or absence of the His-
tag. 

C 

 

 
 
However, using the combination of K34E/M100C mutations the tetramer formation by Gin 

was not observed when DTT was added (Figure 2.15C, lane 6), and only a weak tetramer 

was formed when DEB was added (Figure 2.15C, lanes 7). Notably, the position 100 is 

situated straight at the N-terminal end of the dimerisation αE helix and is probably not 

involved in the interaction between the monomers. 

 

Taken together these results support the notion that both the αE helix as well as the flexible 

surface exposed loop between the β2 sheet and αB helix of Gin are involved in the 

stabilisation of the Gin tetramer. 
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2.4 Characterisation of the role of the C-terminal DNA binding domain in the synaptic 

complex formation using the chimeric protein generated by fusion of Gin invertase 

and ISXc5 resolvase 

 
All the above-mentioned studies aimed at the understanding of the organisation of the 

synaptic complex by introducing substitutions in the catalytic domain of Gin. The obtained 

results clearly confirmed the importance of this domain in the formation of the invertasome. 

However, in the experiments performed in collaboration with Dr. P. Dröge (Cologne 

University) it became evident that the DNA binding domain also specifically contributes to 

the formation of the synaptic complex. During this work a number of protein fusions 

between Gin invertase and the ISXc5 resolvase from Xantomonas Campestris has been 

generated in the laboratory of Dr. Dröge and tested for the recombinational activity (see 

Figure 2.16). ISXc5 resolvase with a 100 amino acid C-terminal deletion was used 

(ISXc5∆C, see Introduction, chapter 1.7.1). The chimeric protein ISXc5G10 consisting of a 

catalytic domain of invertase Gin and DNA-binding domain of ISXc5 resolvase was most 

interesting for the future studies (Schneider et al., 2000). It was found that although it 

contained the entire catalytic domain of Gin invertase, this chimeric protein was no more 

able to catalyse inversion, but could catalyse deletion, which is a reaction characteristic for 

resolvases. 

 

 
 

Figure 2.16. Schematic representation of the fusion proteins (modified after Schneider, 1999). 

Fusions were done according to the secondary protein structure, identified for the γδ resolvase (Yang & Steitz, 
1995). Filled boxes indicate β sheets, empty boxes - α helices. In the mutant G10 the DNA-binding domain of 
Gin is completely substituted by the corresponding domain of ISXc5 resolvase. This protein is able to catalyse 
DNA resolution but not inversion reaction. 
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2.4.1 Mutagenesis of the ISXc5G10 chimera 

 

The fact that ISXc5G10 chimera has lost the ability to catalyse inversion indicated that the 

DNA binding domain is important for determining the directionality of reaction (and 

probably for the organization of the synaptic complex). This property of the chimera was 

used for identification of the residues that could be crucial for the determination of the 

directionality of the reaction. The idea was to test whether by introducing substitutions in 

the ISXc5 C-terminal DNA binding domain of G10 it would be possible to convert the 

chimeric resolvase into an invertase. 

For this purpose a test system for screening the G10 mutants capable to catalyse inversion 

has been designed. The reporter plasmid pE3 was constructed by cloning the lacZ gene in 

“off” orientation with respect to the tyrTD promoter on a pTyrTD plasmid (Auner et al., 

2003). The plasmid also contained the Gin recombinational enhancer element. Since the 

G10 chimera can bind res subsites I but not the gix sites (see below), the inversion substrate 

contained the lacZ gene flanked by two ISXc5 res subsites I instead of gix. In contrast, Gin 

itself has been previously shown to be able to bind and catalyse inversion on a DNA 

inversion substrate containing two res subsites I (Schneider et al., 2000). 

A PCR random mutagenesis of the DNA binding domain of the ISXc5G10 chimera was 

carried out and the g10 chimera mutants were cloned in pMD3E (Deufel et al., 1997) under 

the control of the temperature-sensitive λpL promoter. The pool of the mutant plasmids was 

obtained and transformed into the cells containing the reporter plasmid pE3. Transcription 

of the mutant g10 chimera genes was induced by heat-inactivation of the λts repressor. The 

wild type allele of the g10 gene did not yield any blue colonies and served as a negative 

control, whereas with wt gin all colonies were uniformly blue (positive control). 

After screening of app. 20000 colonies about 20 mutants were identified, which 

demonstrated inversion activity comparable to that of wt gin. Strikingly, with these mutants 

after retransformation a great variation in the colour of colonies on individual plates has 

been observed, whereby the pattern appeared to be hardly reproducible. Therefore, to 

quantitate the activity of the identified mutants β-galactosidase assays were performed. 

During these experiments it was discovered that the ISXc5 res subsite I can serve as a weak 

promoter providing a potential -10 element for transcription initiation (sequence is written 

below). Therefore in these mutants the lacZ gene was transcribed constitutively 

independent of its orientation with respect to the tyrTD promoter. 
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             -10 
TTTTGCAACGGTTCAATAAAACGATCGTTTTTATGAACTCTGATGGGGCGA 

AAAACGTTGCCAAGTTATTTTGCTAGCAAAAATACTTGAGACTACCCCGCT 

      -10 

 
In the case of efficient inversion catalysed by wild type Gin the influence of this 

background promoter activity was negligible. In the case of the G10 chimera the binding to 

the sites was tight enough, to prevent any transcription and so the colonies appeared white. 

But with mutants having weak DNA binding and weak inversion activity it was not 

possible to distinguish the inversion-dependent β-galactosidase expression from that driven 

by the res subsite I “promoter”. 

To avoid the influence of the res I subsites on transcription a new inversion substrate p17i 

has been constructed on the basis of the pTyrTD plasmid. In p17i construct one res I subsite 

was located within lacZ as a translational fusion with the lacZ ORF. The other res I subsite 

was located at the end of the lacZ gene, so that only the 3´-end of the lacZ gene was 

inverted with respect to the promoter (see Materials and methods). In p17i the insertion of 

the res subsite I in frame with the lacZ ORF did not affect the β-galactosidase activity, and 

functional β-galactosidase could be expressed only after productive inversion event 

between two res subsites. Cells carrying the p17i reporter were transformed with the pool 

of G10 chimera mutant plasmids. Unfortunately, after screening of about 200.000 colonies 

no inversion proficient ISXc5G10 mutants were found. It is possible, that amino acid 

substitutions not only in the DNA binding domain but also in other domains of the 

ISXc5G10 chimera are necessary to restore the inversion activity, for example in the αE 

helix. Despite the failure to identify inversion proficient mutants, in this part of work an 

inversion test system was developed where the “artificial promoter” effect of ISXc5 res 

subsite I could have been avoided. This system can be used for further screening of 

inversion proficient mutants after the random mutagenesis of the whole ISXc5G10 chimera 

gene. 

 

 

2.4.2 Cluster substitutions in the G10 chimera’s DNA-binding domain 

 

Since no inversion proficient G10 chimera mutants were found after random mutagenesis of 

the DNA-binding domain, a separate class of mutants of the G10 protein was generated by 
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extensive substitutions in the DNA-binding domain. Using the PCR-megaprimer method 

large regions of the chimera’s C-terminal domain corresponding to secondary structure 

elements (α-helices and spacers between them) were substituted by corresponding regions 

of Gin (Figure 2.17). 

 
 

 
Figure 2.17. Comparison of the amino acid sequences of the DNA-binding domains of ISXc5 

resolvase and Gin invertase. 
Residues that exhibit a high degree of identity in invertases and resolvases are indicated in red, residues that 
are identical in resolvases are indicated in blue, and those that are shared between Gin and ISXc5 are shown in 
green. The secondary structure elements (α helices) observed in the crystal structure of γδ resolvase (Yang & 
Steitz, 1995) are marked with arrows underneath the sequence alignment. Also indicated are the names of 
substitution mutants that were generated corresponding to the secondary structure elements. 
 
 

Mutant genes were cloned into the pMD3E expression vector and plasmids were 

transformed into the E. coli cells containing either the inversion reporter plasmid p17i, or 

the resolution test plasmid pFres-dir for testing inversion and resolution activity in vivo. As 

positive controls pMD3E plasmids carrying the wt genes either of ISXc5 resolvase and Gin 

invertase were transformed to the same strains. The effect of the substitution mutations was 

analysed by growing the transformants in the presence of appropriate antibiotics at 28oC on 

X-Gal plates for 12 hr and shifting them to 42oC for 2 hr for the inactivation of the 

transcriptional repressor (see Materials and methods). The inversion activity on the p17i 

substrate was evaluated by the intensity of the blue colour of colonies; the resolution 

activity on the pFres-dir was identified by restriction analysis. None of the generated 

mutants showed either inversion or resolution activity, independent of the extent of the 

regions that were substituted (summarised in Figure 2.18). These mutants were also not 

able to utilise the gix sites for inversion when transformed into the E. coli reporter strain 

AD1. 

In parallel also other mutants of the G10 chimera were generated in which the Gin part of 

the chimera was extended towards the ISXc5 HTH domain (Chim-135, Chim-145 and 

Chim-155; Figure 2.18). Unfortunately, when tested for catalysis of inversion or resolution 
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in vivo, they all did not show any activity. In addition the inversion activity of the 

Ch162/198 double mutant found as a “false positive” in the previous screening procedure 

performed with the pE3 reporter plasmid was tested. This double mutant had resolution 

activity, but as expected was not able to catalyse inversion. 

 

 
 

Figure 2.18. In vivo recombination activity of the G10 chimera mutants with substitutions in 

the DNA-binding domain. 
Mutants N1-N6 were generated by substitutions of the sequences corresponding to the secondary structure 
elements: every α helix and spacers between them of G10 Chimera were substituted one by one by the same 
of Gin. 
In the mutants Chim-135, -145 and -155 the Gin N-terminal part was extended from position 123 in G10 to 
the positions 135, 145 and 155 respectively. Amino acid substitutions in the mutant Ch162/198 are indicated 
by arrows. 
 
 
Taken together these results demonstrated that neither random mutagenesis nor large 

substitutions in the DNA binding domain alone are sufficient to generate an invertase from 

the G10 chimeric resolvase. 

 

 

2.4.3 Tetramerisation activity of the G10 chimera 

 

In further experiments dedicated to the analysis of the inversion deficiency of G10 chimera, 

the emphasis was on the specific influence of the DNA-binding domain which is derived 

from ISXc5 on the catalytic domain which is derived from Gin. More compellingly, the 
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tetramerisation properties of the protein were studied. The rationale was that, if the DNA-

binding domain of ISXc5G10 has no influence on tetramerisation, then the effects of 

substitutions in the catalytic domain on the formation of tetramers should be similar to Gin. 

Therefore, the same substitutions that were found to affect the tetramerisation of Gin were 

generated in G10 chimera in order to study the interaction between the regions that 

appeared crucial for tetramer formation. 

First of all, the ability of G10 to form tetramers was compared to the Gin wt tetramerisation 

efficiency (Figure 2.19). Quantitation of the tetramer to dimer ratios by ImageQuant 

software demonstrated that the G10 chimera formed tetramers with at least two-fold higher 

efficiency than Gin. 

 
 

 

Figure 2.19. Comparison of the 

tetramerisation efficiency of G10 

chimera and wt Gin. 
Increasing amounts of proteins were 
incubated under standard conditions with 156 
bp γ-P32-labelled DNA fragments carrying gix 
site or res subsite I (as indicated). “Cold” 44 
bp fragments containing gix site or res subsite 
I were added to the reactions as indicated. 
Complexes were separated on a 6% native 
acrylamide gel and visualised by 
phosphorimaging. 
 

 

Second, amino acid substitution mutants G10 K34E, G10 V107C, G10 M114V and their 

double combinations were generated and tested for the recombination activity in vivo. None 

of these mutants were able to catalyse either inversion or resolution on any DNA substrate 

(either with gix or res subsites I, data not shown). Despite the remarkable ability of Gin 

M114V mutant (Klippel et al., 1988a, b) to recombine without requirements for FIS, 

enhancer and DNA supercoiling, the same mutation in G10 could not make this protein 

active for the inversion with the substrate p17i. 

Next, these mutant proteins were purified and used in the in vitro tetramerisation assay 

(Figure 2.20). When the proteins were incubated without any addition, low levels of dimeric 

complexes were formed (lanes 3, 6, 9). When incubated in the presence of DEB (lanes 2, 5, 

8, 11) all proteins formed complexes that corresponded to the tetramer with high efficiency, 

while the dimeric forms were barely detectable. In reactions with all tested proteins addition 
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of DTT stabilised dimeric complexes and prevented the tetramer formation in the case of wt 

G10 chimera (lane 4) and G10 M114V (lane 12). However, addition of DTT did not 

prevent the G10 K34E/M114V protein to form tetramer complexes (lane 10), and had 

almost no effect on tetramer formation by the G10 V107C mutant (lane 7). 

 
 

 
 
Figure 2.20. Comparison of G10 chimera N-terminal mutants in the tetramerisation assay. 

All proteins were incubated with the 156 bp γ-P32-labelled DNA fragment carrying res subsite I. Cold 44 bp 
fragment containing res subsite I was added to the reaction mix alone or in the combination with DTT or 
DEB. Concentration of all proteins was 20 ng. 
 
 

The obtained results show that although the G10 chimera is characterised by a higher 

overall tetramerisation capability than Gin, the substitutions that enhance the tetramer 

formation by Gin have a similar effect in G10 chimera. One significant distinction was the 

behaviour of the V107C mutation, which can efficiently counteract tetramer destabilisation 

by DTT in the context of G10, but not in the context of Gin (compare Figure 2.15A, lane 3 

and Figure 2.20, lane 7). Since all the generated substitutions were located in the N-

terminal catalytic domain of G10 (which is identical to Gin), these results indicate that the 

observed differences are due to distinct organisation of the DNA-binding domains of Gin 

and G10 chimera. 
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2.4.4 Generation and testing of reciprocal chimeras 

 

Since the tetramerisation assays showed distinct effects of the DNA binding domains on the 

ability of Gin and G10 chimera to form tetramers, several additional chimeric recombinases 

- designated as reciprocal chimeras (RC) - were generated by fusion of the catalytic domain 

of ISXc5 resolvase (residues 1 to 123) to a DNA-binding domain of Gin (residues 124 - 

192). In the mutants RC 100 and RC 111 the Gin part was extended towards the N-terminal 

domain (residues 100 to 192 and 111 up to 192 were from Gin, respectively), such that in 

the RC 100 mutant the entire αE helix originated from Gin, whereas in the RC 111 mutant 

a part of αE helix (which shows no similarity among invertases and resolvases, see 

Introduction, Figure 1.2) originated from ISXc5 resolvase. Also mutants with one, two or 

three additional amino acid insertions at the site of fusion in the RC protein were generated 

(Figure 2.21: RC-4; RC-2 and RC-9). Finally, since the region 119 - 123 contains just one 

different amino acid at the position 120 between Gin and ISXc5 resolvase (120R - 120I), 

correspondingly (see Introduction, Figure 1.13), also a R120I substitution in the RC protein 

was generated. 

 

 
 
Figure 2.21. Schematic representation of the genes of generated reciprocal chimeras and 

results of their in vivo recombinational activity. 

 

With a standard substrate, resolvase acts efficiently only on full res sites oriented as direct 

repeats contained within the same DNA molecule (Reed, 1981; Krasnow & Cozzarelli, 
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1983). Since the reciprocal chimera and its derivatives had the catalytic domain from 

resolvase, it was interesting to test their ability to recombine a substrate containing two full 

res sites. To study the recombinational activity of the reciprocal chimera and its derivatives 

in vivo, the substrates containing ISXc5 full res sites either as direct (pFres-dir) or inverted 

(pFres-inv) repeats, as well as the p17i substrate containing res subsites I as inverted 

repeats, were used.  

After transformation of the recombinant pMD3E plasmids together with resolution 

substrates containing full res sites into CSH50, cells were grown for 12 hr at 28oC and 

shifted to 42oC for 2 hr to activate transcription. Plasmid DNA from single colonies was 

isolated and resolution was monitored by cleavage of the DNA with XmnI, followed by gel 

electrophoresis. The specific singly linked catenane products of resolvase reaction are 

detectable by the appearance of the 3853 bp and 3565 bp product fragments. These 

products were observed only in reactions with ISXc5 resolvase and G10 chimera and only 

with the natural pFres-dir substrate (Figure 2.22). None of the mutants did show any 

activity (data not shown). 

 

 

 
Figure 2.22. Comparison of 

the in vivo resolution activity 

of different recombination 

proteins on the substrates 

containing ISXc5 full res sites 

either as direct (pFres-dir) or 

as inverted (pFres-inv) 

repeats. 

 
Fragments corresponding to the 3853 and 3565 bp resolution products are indicated by arrows. The XmnI 
restriction site in pMD3E is unique resulting in a linearised fragment of ~ 5800 bp. M indicates the λ PstI 
marker. The test was performed in E. coli strains expressing FIS and described in Materials and methods. 
 
 
In contrast, when the RC proteins were tested in vivo employing the inversion substrate 

p17i carrying two res subsites I as inverted repeats, recombination activity was detected 

only in the case of wt Gin and Gin MV114. Both G10 and RC chimeras, as well as all the 

reciprocal chimera mutants, were inactive (Figure 2.23). 
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Figure 2.23. Comparison of 

the in vivo inversion activity 

of the recombination 

proteins on the substrate 

containing two ISXc5 res 

subsites I as inverted repeats 

(p17i). 
 
Inversion test was performed in E. coli strains expressing FIS and described in Materials and methods. To 
measure recombination efficiency, the plasmid DNA was digested with AatII restriction enzyme that 
distinguished the orientation of the invertible segment and subjected to agarose gel electrophoresis. AatII 
restriction site in pMD3E is unique resulting in a linearised fragment of ~ 5800 bp. 
Arrows indicate fragments corresponding to the 4252 and 2063 bp inversion products. 
M indicates the λ PstI marker. 
 
 
Taken together these results show that by substitution of the DNA-binding domain in 

ISXc5 resolvase by the same domain of Gin it was not possible to generate mutants that are 

able to catalyse either resolution or inversion.  

It was recently shown that a functional resolvase with a designed DNA sequence 

recognition can be created by fusing the catalytic domain of a hyperactive mutant of Tn3 

resolvase to a DNA recognition domain from the mouse transcription factor by a short 

linker peptide (Akopian et al., 2003; see Introduction, chapter 1.7). This indicates that the 

flexible region between the catalytic and the DNA binding can play a crucial role in the 

organisation of a productive synaptic complex.  

Therefore, in the next approach to confer more flexibility to the protein, linkers of different 

length (10, 14, 16 amino acids) were introduced between the N- terminal and C-terminal 

domains at the positions 124 and 125 (into a modified site for BsiWI restriction 

endonuclease) of G10 chimera and RC chimera genes, respectively. All these linker mutant 

proteins were tested in vivo for recombination activity on substrates for inversion or 

resolution. However, also these mutants appeared to be inactive in recombination (data not 

shown).  

Notably, none of these insertions resulted in a reduced expression of the mutant proteins as 

judged from a Western blot analysis of extracts derived from the E. coli strains containing 

plasmids with different mutant genes (Figure 2.24). All the mutant proteins were present in 

the cells in roughly similar amounts, comparable to Gin, G10 and RC. This indicates that 

the proteins were not destabilised as a result of the linker insertions. 
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1. Gin wt 
2. G10 chimera 
3. RC rev.chimera 

4. G10 + 10 
5. G10 + 14 
6. G10 + 16 

7. RC + 10 
8. RC + 14 
9. RC + 16  

Figure 2.24. Western blot analysis of the 

linker mutant’s protein expression level.  
Cell extracts were loaded on a 15% SDS-PAA gel 
and analysed by Western blot using Gin antibodies. 
RC proteins are presented in a less extent, which can 
be due to the absence of some antigens determinants 
in the N-terminal part of the protein, which is from 
resolvase. 
M is a protein marker.  

 
 
 

2.5 Interaction of the catalytic domains during tetramer formation 

 

2.5.1 Characterisation of the DNA binding properties of the recombination proteins 

 

According to the “preliminary model” (Rusch, 1998) Gin dimers are interacting via their 

catalytic domains during a tetramer formation, whereas the same interactions for the 

invertase Hin are suggested to involve DNA-binding domains (Merickel et al., 1998). To 

distinguish between these two different organisations of the synaptic complex a new 

strategy of studying the interacting surfaces was designed. Since G10 chimera consists of a 

catalytic domain of Gin and a DNA-binding domain of ISXc5 resolvase, it is possible to 

directly test which of the protein domains are involved in the interaction during formation 

of a synaptic complex. In short, the ability of a Gin dimer to form a tetramer with a dimer 

G10 chimera was investigated. As a necessary control for this experiment first the DNA-

binding properties of the proteins and in particular, their specificity of recognition of the gix 

and the res sites was analysed. In addition, to avoid “false positives” due to formation of 

Gin-G10 heterodimers, the ability of Gin and G10 chimera to form heterodimers was 

analysed using both the gix and the res sites.  

 

2.5.1.1 Binding of the proteins to the gix/res sites of different lengths 

 
First, each protein was tested for the gix/res binding specificity using the γ-P32-labelled 

DNA fragments of different lengths (156 bp and 44 bp). Gin and Gin-His proteins were 

promiscuous, capable to bind both the gix and res sites on 156 bp DNA fragments. The RC 

chimera, which contains the Gin DNA binding domain, was binding to both sites as well. In 

contrast, the G10 chimera and ISXc5 resolvase efficiently bound res subsites I but were not 

able to bind gix sites, as expected (Figure 2.25). 
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Figure 2.25. Binding of the recombinase proteins to the long fragments containing gix or res 
sites. 
 
156 bp γ-P32-labelled fragments carrying gix or res sites (as indicated) were used. Incubation of the fragments 
with different proteins resulted in the formation of protein-DNA complexes of different mobility dependent 
on protein size. 
 
 
Similarly, when tested with the short 44 bp DNA fragments, neither G10 chimera nor 

ISXc5 resolvase showed binding to the gix DNA fragment, but both were able to bind the 

res-subsite I DNA fragments with similar efficiency (Figure 2.26). Gin again was able to 

bind both the gix and the res sites. 

 
 

           
 

Figure 2.26. Binding of the recombination proteins to the short fragments containing gix or 

res sites. 

44 bp γ-P32-labelled DNA fragments carrying gix or res sites (as indicated) were used. The incubation of the 
DNA fragment containing res subsite I with increasing amount of purified proteins resulted in the formation 
of protein-DNA complexes of different mobility depending on protein size. 
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2.5.1.2 Interactions with ISXc5 res subsite I 

 

Next the binding of proteins to their specific sites were analysed in more detail using the 

DNase I footprinting. The complexes formed on binding of Gin, G10 chimera, ISXc5 

resolvase and RC reverse chimera to the 156 bp DNA fragment containing res subsite I and 

Gin and RC proteins bound to the 156 bp DNA fragments containing gix sites were 

investigated. Both fragments were uniquely radioactively labelled at one end. 

With the radioactively labelled res subsite I fragment regions that were protected from 

DNase I cleavage, or showing increased cleavage were observed, indicating enhanced 

occupation of the res site with increasing concentrations of ISXc5 and G10 proteins (Figure 

2.27A, lanes 4, 5; B, lanes 4, 11). 

Although res subsites I can be efficiently used by Gin for catalysis of inversion (Schneider 

et al., 2000), the DNase I protection pattern by Gin indicates a weak interaction with the res 

site. Similar result was obtained with RC protein (Figure 2.27A, lanes 2, 3 and 6, 7; B, 

lanes 1-3 and 12-14). 

The obtained results suggest that with res subsites I the nature of the protein-DNA 

interactions in the case of resolvase or G10 is different from that of Gin and RC. Strong 

DNase I hypersensitivities induced by ISXc5 and G10 suggest that the binding of proteins 

induces a bend in the res sequence, as observed for the interactions of Gin M114V with the 

gix recombination site (Mertens et al., 1988). 
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Figure 2.27. DNase I protection assay of the Gin, G10 chimera, ISXc5 resolvase and RC 

chimera binding to ISXc5 res subsite I. 

A. A linear DNA fragment containing ISXc5 res subsite I was 5'-labelled by γ-P32ATP either on the top or 
bottom strand (corresponding Maxam-Gilbert G-ladders are indicated as G-L* and G-R*). Proteins were used 
in following concentrations: Gin: 200-100 ng (lanes 2, 3); G10: 200 ng (lane 4); ISXc5: 200 ng (lane 5); RC: 
200-100 ng (lanes 6, 7) with 1 ng of the res-containing DNA fragment. Lane 1 – free DNA. Res subsites I are 
indicated by vertical lines; arrows in the res site point to the central 2 bp where strand cleavage and exchange 
occurs (AT; TA). Regions of hypersensitivity are marked by the red squares and are completely similar in the 
case of G10 and ISXc5. 
B. The DNase I cleavage protection patterns of different concentrations of purified Gin (200-150-100 ng), 
G10 chimera obtained from two independent protein preparations (a - 200-150 ng; b – 250-200 ng), ISXc5 
resolvase (250-200-150-100 ng) and RC reverse chimera (250-200-150 ng). The top strand of the DNA 
fragment was radioactively labelled. Lane marked as DNA is free DNA without protein. 
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Figure 2.28. Sequence of the DNA fragment containing ISXc5 res subsite I used for the DNase 

I footprinting assay. 
The sequence of the 38 bp res subsite I is written in capitals. Numbers above and below the sequence indicate 
the positions of G´s in the G-ladder and correspond to the positions of bases on the top and bottom strands in 
the footprints shown in Figure 2.27. 
 

 

 
2.5.1.3. Interactions with the gix site 

 

We also compared the DNA binding properties of the Gin and RC proteins to the fragments 

carrying gix sites by DNase I footprinting assay. Since it was already shown that neither 

ISXc5 resolvase nor G10 chimera could bind the gix site, these proteins were not used in 

this test. The footprinting results demonstrated that Gin at high concentrations protected the 

gix site, most noticeable on the bottom strand (Figure 2.29, lane 9). In contrast the RC 

chimera did not show any significant protection at any concentration used, despite the fact 

that the protein was able to bind the gix site in band-shift experiments (see Figure 2.25). 

The conditions for protein binding in these two assays are quite different, but nevertheless 

the presence of the ISXc5 catalytic domain in the RC chimera could impair the DNA 

binding capability of the Gin HTH domain. This may also explain the inability to generate 

any recombination-proficient RC mutants. 
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                        Top                 Bottom 

 

Figure 2.29. DNase I footprinting 

analysis of Gin- and RC-gix 

interactions. 
Increasing amounts of proteins were 
incubated with a γ-P32ATP uniquely 5'-
labelled PCR fragment containing the 
gix site. After DNase I treatment the 
DNA was loaded on a denaturing 
polyacrylamide gel and visualised by 
phosphorimaging. The lanes marked 
GL and GR are Maxam-Gilbert G-
ladders for the top and bottom strands, 
respectively. 
Lanes 1 and 8 – free DNA. Lanes 2-4 
and 9-11, decreasing amounts of Gin 
ranging from 200 to 50 ng.  
Lanes 5-7 and 12-14 – decreasing 
amount of RC ranging from 300 to 100 
ng. 
 
Top - top strand, bottom - bottom 
strand labelling. Gix sites are marked 
with vertical lines; the region where 
cleavage takes place is indicated by 
arrows.  
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Figure 2.30. The nucleotide sequence of the 156 bp DNA fragment containing the 25 bp gix 

site used in the footprinting experiment.  
The sequence of the 25 bp res subsite I is written in capitals. Indications are as in Figure 2.28. 

 

 

2.5.2 Formation of heterodimers 

 

In the next step it was necessary to test a possibility of heterodimer formation between Gin 

and the G10 chimera. It was shown previously that the Gin dimer could be formed on the 

DNA by combining different monomers (for example, one monomer containing a myc-tag 

and another without). This leads to differences in the mobility of the dimers in band-shift 

experiments: the dimers consisting of two Gin monomers with myc-tags migrate slower, 

than the dimers of Gin monomers without myc-tags, whereas the heterodimers demonstrate 

an intermediate mobility (Merker, 1993; Figure 2.31). 

 
 

 

Figure 2.31. Scheme of a heterodimer 

formation in a band-shift experiment.  
When the two proteins, one of which is tagged, and 
the other not, are mixed in solution prior to 
incubation with the gix DNA, three complexes could 
be observed. The distribution of these complexes 
shows a ratio of 2:1:2. The upper complex 
corresponds to the bound dimer of the tagged Gin 
variant, the lower to the dimer of untagged Gin and 
the intermediate complex to the heterodimer of both 
molecules bound to the gix site. 
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Either Gin and Gin-His, or Gin and ISXc5G10 proteins were mixed in different ratios and 

incubated with a radioactively labelled 44 bp DNA fragment carrying a res subsite under 

binding conditions. Both Gin-His and G10 chimera alone formed a distinctively slower 

migrating protein-DNA complex in comparison to Gin wt (Figure 2.32A). At certain 

concentrations of Gin and Gin-His heterodimers containing both proteins were formed. 

When G10 chimera and Gin wt proteins were mixed and incubated at different 

concentrations, heterodimers could not be detected, indicating that dimerisation of 

monomers of Gin and G10 upon binding to the res was not possible. 

 
 
A B 

 
 

Figure 2.32. Correlation of the heterodimers formation: (A) between Gin wt/Gin-His and Gin 

wt/G10 chimera; (B) between G10 chimera and ISXc5 resolvase. 
Protein/DNA complexes were analysed using a 44 bp 5’-labelled DNA fragment containing ISXc5 res subsite 
I. Amounts of proteins were 4 ng – 50 ng. Complexes were subsequently analysed by electrophoresis through 
a 5% non-denaturing polyacrylamide gel. Heterodimer formation occurred only with Gin wt/Gin-His. No 
heterodimers formation between ISXc5 resolvase and G10 chimera was observed. The position of the 
unbound DNA fragment is indicated (res). 
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2.5.3 Interaction between catalytic domains – the “beads experiment” 

 

After all these control experiments have been carried out, the nature of the interacting 

domains of G10 chimera and Gin were directly tested in an experiment using the gix DNA 

fragments immobilised on streptavidin-covered magnetic beads. The scheme of the 

experiment is presented in Figure 2.33. 

 

 

Figure 2.33. Schematic representation of 

the “beads experiment”. 
For the experiment short 44 bp DNA fragments 
carrying an ISXc5 res subsite I and long 156 bp 
biotinylated DNA fragments containing a gix site 
were used. The 156 bp gix fragments were 
immobilised on the streptavidin beads and 
incubated with Gin protein. Afterwards His-tagged 
G10 chimera or ISXc5 resolvase proteins were 
added, each preincubated with an excess of the 
short 44 bp res-fragment.  

 
After incubation followed by extraction of unbound material, complexes could be obtained containing 
tetramers. The composition of the tetramers could be analysed by Western blotting using His-tag-specific 
antibodies. 
 
 
The experiment was based on the fact that neither G10 chimera, nor ISXc5 resolvase can 

bind the gix site (chapter 2.5.1.1), therefore the question was whether they can be attached 

to the immobilised DNA containing the gix site via interactions with a Gin dimer prebound 

at the gix site. 

Both purified G10 chimera and ISXc5 resolvase contained His-tags and therefore could be 

recognised by His-specific antibodies. The Gin protein used in this experiment did not 

contain any tag. However, as a positive control for this experiment also a Gin protein with a 

His-tag was used. Biotinylated 156 bp DNA fragments containing gix site were 

immobilised on the streptavidin coated magnetic beads and incubated with Gin protein in 

the binding buffer at 37oC for 10 min followed by 3 washing steps to remove unbound 

protein. As a result stoichiometric complexes were obtained where one Gin dimer was 

bound to the gix site of each fragment. Then G10 chimera and ISXc5 resolvase proteins 

each presaturated with the 44 bp DNA fragment carrying the ISXc5 res subsite I were 

added. After incubation at 37oC for 30 min the supernatants were removed and the beads 

were washed 3 times in order to remove all unbound protein and 44 bp res DNA. In the 

next step the complexes were released from the beads by incubation of the samples at the 
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95oC for 5 min in the buffer containing SDS and β-mercaptoethanol. The beads were 

separated from the reaction mix by short centrifugation. The supernatants obtained were 

loaded on a 15% protein SDS gel and proteins were analysed after Western blotting using 

the His-tag-specific antibodies (Figure 2.34). 

 

 

 
 

Figure 2.34. Results of the Western blot analysis of protein composition in the beads 
experiment. 
 

1 - o-gix + GinHis 

2 - o-gix + Gin wt 

3 - o-gix + G10 

4 - o-gix + ISXc5 

5 - o-gix-Gin + GinHis-res 

6 - o-gix-Gin + G10-res 

7 - G10 supernatant 

8 - o-gix-Gin + ISXc5-res 

9 - ISXc5 supernatant 

 
o-gix indicates the samples where DNA fragments carrying gix sites were immobilised to the magnetic streptavidin 

particles; 

o-gix-Gin – indicates Gin bound to the gix site of the DNA fragments; res indicates that added proteins were already 

preincubated with the res-containing short DNA fragments; 

supernatant – indicates supernatants obtained in the first washing step after addition of G10- and ISXc5 resolvase - res 

subsite I complexes to the reactions. M – is a protein size marker. 

 

 

The obtained results suggested that both Gin-His and chimera G10-His could be captured 

by the Gin bound at the immobilised DNA, whereas ISXc5 resolvase could not (Figure 

2.34, lanes 5, 6 and 8). Since the catalytic domains are similar both in Gin and G10, but 

different in Gin and ISXc5, this result strongly suggests that in the tetramer the Gin and 

G10 dimers interact via the catalytic domains. The possibility of formation of Gin-G10 

heterodimers, or of direct binding of the G10 chimera or ISXc5 resolvase proteins to the gix 

DNA was ruled out in our control experiments (Figure 2.34, lanes 3 and 4; see also Figure 

2.32). 
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3. DISCUSSION 

 

 

A main step in site-specific recombination reactions involves the formation of a properly 

arranged synaptic complex in which the recombining DNA duplexes are brought in close 

proximity. The topological changes of the DNA during the recombination reaction 

catalysed by DNA invertases are well studied (Kanaar et al., 1988, 1989a, 1990), but little 

is known about the interactions between the proteins involved in the inversion reaction. The 

recombination enzymes bind DNA as dimers, but acquire enzymatic activity as tetramers 

only. Therefore the understanding of the organisation of the recombinase tetramer is of 

central importance. By now there are two models that predict different interactions of the 

recombinase monomers within the tetramer. 

Merickel et al. (1998) have proposed a molecular structure for the Gin-related Hin synaptic 

complex, in which the paring of the hix sites (i.e. the interaction of the dimers in the 

tetramer), is mediated by the Hin DNA-binding domains. This model encounters difficulties 

in explaining how each DNA duplex can rotate for 180o inside the complex, while 

remaining covalently attached to the protein. Evidences for such an attachment came from 

the experiments done by Boocock et al. (1995), in which the proteins and DNA sites cross-

linked to each other remained active for recombination, thus proving that in the 

recombination reaction DNA binding domains remain attached to sites during all reaction 

steps. In the tetramer model elaborated in our group (in the present work referred to as the 

“preliminary model”, Rusch, 1998) the Gin dimers are interacting via the catalytic domains. 

The molecular modelling of the Gin tetramer (Hermann, 1996) by using the three 

dimensional structure of the homologous γδ resolvase suggested that the Gin dimers are 

aligned side-by-side with their DNA binding domains pointing towards opposite directions. 

If the crossover points are on the inside of complex in relatively close contact with each 

other, strand transfer could potentially involve movements of cleaved DNA ends within a 

relatively fixed protein cage, as was observed with Cre and Flp. This is particularly 

attractive for the serine recombinases that must rely entirely on the recombinase to hold the 

synapse together, since these recombinases make double-strand breaks. On the other hand, 

if the DNA is on the outside with the recombination sites separated by the synapsed 

catalytic domains, then there seems to be no easy way to exchange DNA strands (following 
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recombination site cleavage) without large accompanying movements of protein subunits or 

catalytic domains. 

The aim of this thesis was to discern between these two models and to reveal the protein-

protein contacts involved in the site-specific recombination reaction catalysed by the 

invertase Gin. 

 

 

3.1 Gin-FIS communication 

 

In the synaptic complex formed between the two inverted repeats bound by invertase 

molecules and the enhancer sequence bound by FIS, the three DNA sites are brought in 

close proximity (Kanaar et al., 1988; Kanaar et al., 1989b; Heichman & Johnson, 1990). As 

evidenced by many studies, FIS is directly involved in the establishment of the proper 

protein-DNA structures, assembly of the complex and activation of the recombination 

reaction – probably by serving as a recombinational trigger. 

Previously it was shown that the recombination by Hin invertase αE helix cysteine mutants 

was no longer sensitive to oxidation once FIS–Hin interactions have occurred in an 

invertasome complex (Haykinson et al., 1996). These data imply that activation by FIS 

induces directly or indirectly a conformational change within the Hin dimer interface.  

To prove this notion in this work an inversion-deficient mutant Gin H106T carrying a 

substitution in the dimerisation domain was chosen as a target for activation by FIS. The 

position 106 appeared to be crucial during invertasome formation also because the 

substitution H106Y makes Gin FIS-independent. The H107C mutant of Hin (analogous to 

H106 in Gin) is still capable to catalyse inversion, suggesting that the contact site for FIS is 

not disrupted by this mutation (Haykinson et al., 1996). By using a genetic test system a 

mutant FIS S14P was identified that provided for 60% stimulation of inversion by Gin 

H106T in vivo, but was inactive in vitro. Differences between the in vivo and in vitro results 

obtained with FIS S14P and Gin H106T can be explained by the absence of certain factors 

(e.g. the nucleoid associated protein HU) in our in vitro reactions that can facilitate 

recombination in vivo (Haykinson & Johnson, 1993). Since the efficiency of inversion 

critically depends on the supercoiling level of DNA (Lim & Simon, 1992), it is also 

possible, that the supercoiling level of the DNA substrate used in vitro was suboptimal for 

the inversion reaction catalysed by Gin H106T. 
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It is not clear at present whether there is a direct interaction between Gin H106T and FIS 

S14P via these mutated positions, or perhaps the effect is mediated by the enhancer 

sequence, because FIS S14P is likely to bend the DNA in a different way (Figure 2.2). 

Although the stimulation of H106T inversion in vitro was not detected, the two-fold 

stimulation of the Gin wt inversion indicates that FIS S14P is able to affect the 

nucleoprotein complex in a way that makes recombination more efficient. Analyses of FIS 

binding to both specific and nonspecific sites have shown that FIS induces DNA bends of 

various degrees upon binding DNA (Betermier et al., 1994; Pan et al., 1994, 1996). FIS-

induced DNA bending may play a more direct role in FIS-dependent stimulation of site-

specific recombination or transcription. Bending of the DNA at the exact positions (sites) of 

the recombinational enhancer may be required to direct the topological changes of 

supercoiled DNA domains in the synaptic intermediate structure (Perkins-Balding et al., 

1997). During studies in the Hin-inversion system, Osuna et al. (1991) showed that amino 

acid changes in FIS that affect DNA bending reduced recombinational enhancer activity by 

approximately 50-fold, as measured by the rate of DNA inversion. It is therefore possible 

that the small difference in the DNA bending angle associated with each site may position 

the N-terminal domains of FIS S14P in a more favourable orientation for interactions with 

Gin. Notably, the mutation S14P in FIS is positioned exactly in the region shown to be 

important for the stimulation of recombination (Spaeny-Dekking et al., 1992). 

Taken together, the obtained results are wholly consistent with the effect of FIS on the 

dimerisation domain of Gin and the proposed ability of FIS to change the dimerisation 

domain conformation (Merickel et al., 1998).  

 

 

3.2 Gin surfaces involved in the interactions of dimers in tetramer: mutations that 

affect the tetramer formation are situated in the catalytic domain 

 

In the assembly of the synaptic complex two different Gin-Gin contacts can be expected 

during tetramer formation: one involved in formation of the Gin dimers which bind to the 

recombination sites and the other one involved in stabilisation of the tetramer in the 

synaptic complex. 

In the highly homologous γδ resolvase dimer the subunit contacts are due to interaction of 

the long amphipatic αE helices, which in the dimer wrap around each other in a coiled-coil 



DISCUSSION 69 

configuration forming a parallel bundle (Sanderson et al., 1990; Rice & Steitz, 1994a). This 

interface is partially conserved among resolvases and invertases with respect to the primary 

sequence, but highly conserved with respect to the distribution of hydrophobic and charged 

amino acids, crucial for the dimerisation via the hydrophobic face of the two αE helices 

(Sanderson et al., 1990; Rice & Steitz, 1994a). The region of αE helix that forms the 

dimerisation interface contains mainly hydrophobic amino acids both in Gin and γδ 

resolvase (Spaeny-Dekking et al., 1995b). Several studies carried out on the related to Gin 

invertases Cin and Hin indicate that this same domain is involved in the subunit 

dimerisation (Klippel et al., 1988b; Hafter & Bickle, 1988; Klippel et al., 1993; Lim, 1994; 

Haykinson et al., 1996). 

Investigations of the Gin-related site-specific recombinases also suggest that a quaternary 

change in the dimer interface accompanies catalytic activation. When disulfide cross-links 

were formed between cysteines introduced into the amino-terminal end of the αE helix of 

γδ resolvase and Hin, thereby restricting movement between subunits, catalytic activity was 

abolished, though resolvase or Hin binding to DNA was unaffected (Hughes et al., 1993; 

Lim, 1994; Haykinson et al., 1996). 

Previous studies identified two separate domains in Gin, which play a role in 

tetramerisation. These represent the putative dimerisation helix αE and an exposed loop 

between the β2 sheet and αB helix of Gin (Merker et al., 1993; Rusch, 1998). Several 

mutations in these domains strongly affect the stability of the tetramer formed both in vivo 

and in vitro (Rusch, 1998). In this study, assuming that there are two separate surfaces of 

interaction, mutations in the αE-helix and surface exposed loop between β2 and αB were 

generated, which potentially could interact according to the proposed model. By testing the 

mutants of Gin, we have confirmed the previous observations that the putative dimerisation 

domain of Gin monomers is also involved in the interaction between the Gin dimers. In 

particular, we found that the cross-linking of the monomers in dimer via a substitution of 

cysteine at the position 107 stabilises the tetramer. Furthermore, when we combined the 

mutations in the dimerisation αE-helix (V107C, M114V) with a mutation in the surface 

exposed loop between β2 and αB (K34E), the yield of the tetramer was increased (Figure 

2.15), suggesting that these two regions cooperate in stabilising the tetramer. 

Finding that the same domain is involved in the stabilisation of both the dimer and the 

tetramer of invertase is also consistent with the otherwise disparate observations that 

zwitterionic detergents disrupt the Hin dimeric interactions and stimulate the cleavage 
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activity, but inhibit the religation of DNA strands in recombinant configuration during 

synapse (Haykinson et al., 1996). It is conceivable that the destabilisation of the largely 

hydrophobic interactions stabilising the tetramer at the step following the strand-cleavage 

would inhibit relegation of the cleaved strands. 

According to the preliminary Gin tetramer model amino acid side chains at the positions 

L17 and S75, which are located on two opposite sides of the Gin monomer, could closely 

approach each other in the tetramer. It is noteworthy, that the regions around the positions 

L17 and S75 are almost similar for Gin and γδ resolvase as judged by distribution of the 

hydrophobic and hydrophilic amino acids, although the identity of the amino acid residues 

is rather low. The hypothesis was that substitution of cysteines at these positions in 

combination with similar substitutions in the dimerisation αE-helix could be used for 

generation of the covalently cross-linked Gin tetramers. Therefore cysteine substitutions 

were introduced at both positions (L17C and S75C) and the proteins were tested both alone 

and in combination with substitutions in the E-helix (V107C) for interactions during the 

synapse by using cross-linking experiments with DEB. Before cross-linking the proteins 

were incubated either alone to investigate the interactions in solution, or in the presence of 

supercoiled inversion substrate DNA and FIS to allow synapse formation. In control 

reactions the cross-linking by DEB was prevented by addition of the reducing agent DTT. 

The results of these experiments are summarised in the Table 3.1. 

 

In summary, the cross-linking experiments indicate that the double mutants L17C/V107C 

and S75C/V107C could form tetramers with the same efficiency, but only when DNA and 

FIS were added to the reaction. This suggest that presence of DNA and FIS can provide for 

additional interactions bringing these positions in close neighbourhood, and this specific 

dependence indicates that these are interactions characteristic of synapse. 
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Table 3.1. Summary of the results obtained during cross-linking experiments. Comparison of 

the Gin wt and Gin mutant’s inversion activities and their ability to form high-order 

complexes. 

 
Gin Inversion Dimer 

formation 
Tetramer 
formation 

Trimer 
formation 

 in vivo in vitro red ox red ox red ox 
wt + + - + - - - - 
V107C - - - + - - - - 
L17C + -/+ -/+ + - -/+ - -/+ 
S75C + +/- -/+ + - -/+ - -/+ 
L17C/V107C - - -/+ + - + - + 
S75C/V107C - - -/+ + - + - + 
C24S/C27A - + - - - - - - 
L17C/V107C/∆C - - - + - + +* +* 
S75C/V107C/∆C - - - + - -* +* +* 
 
* Note that complexes formed by Gin L17C/V107C/∆C and S75C/V107C/∆C mutants (indicated as trimers) 
had a distinct mobility. These complexes were designated as ∆C-specific bands (see Results), and their 
formation was DNA and FIS independent. 
 

 

However, these studies revealed in addition the importance of the natural cysteine residues 

C24 and C27 for the Gin-Gin interactions in synapse. In the absence of these natural 

cysteines the proteins have lost their specific dependence on FIS and substrate DNA and 

formed dimers and higher order complexes migrating between the putative trimers and 

tetramers in the gel (Figure 2.9A,B). It was shown previously that the natural cysteines C24 

and C27 are responsible for the cross-linking of Gin wt in solution resulting in formation of 

Gin dimers (Spaeny-Dekking et al., 1995b). However, the dimerisation domain proposed 

for Gin dimer bound at the DNA is the αE-helix, and strong cross-linking of the Gin 

V107C mutant observed in this study supports this notion (Figure 2.5B). The results 

obtained with the C24/C27 double mutant indicate that these positions are crucially 

involved in the interactions during the synapse. Additional support for this notion was 

obtained in experiments using the tetramerisation assay with gix sites on linear fragments. 

While the Gin C24S and Gin C27A proteins were able to form both dimers and tetramers, 

the double mutant C24S/C27A showed no tetramer formation, although it was able to 

dimerise efficiently. These observations strongly suggest that the natural cysteines play a 

crucial role in the organisation of synapse. Surprisingly, the Gin C24S/C27A double mutant 
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was still able to catalyse inversion, although only in vitro, but not in vivo. This suggests that 

the natural cysteines are important but not essential for the recombination reaction. 

One possible explanation of this phenomenon is that the efficiency of recombination may 

crucially depend on the stability of the Gin tetramer (Table 3.2).  

 

 
Table 3.2. Summary of the results obtained in the in vitro tetramerisation (gix-gix paring) 

assay and inversion activity of the tested proteins. 

 

Gin Inversion Dimer formation Tetramer formation 

 in vivo in vitro red ox red ox 
wt + + + + - + 
K34E - - ++ + - ++ 
M114V ++ ++ -* -* -* -* 
K34E/M114V + + + + + ++ 
V107C - - ++ -/+ - ++ 
K34E/V107C - - + + + +++ 
C24S/C27A - + + + - - 
 
* Note that M114V mutant formed specific complex which was some kind of intermediate between dimeric 
and tetrameric forms (see Results). 
 

 

In the genetic screen performed by K. Rusch (1998) the selection was for mutants forming 

more stable tetramers in comparison to wt Gin. All these mutants, including the mutants 

carrying substitutions in the dimerisation αE-helix, were recombination-deficient. 

Consistent with this observation, all the αE-helix dimerisation interface Hin mutants tested 

by Lee et al. (2001) showed better hix-paring activity than wild-type and were able to form 

an invertasome, but were unable to cleave the DNA. In contrast, the mutations of the same 

interface, such as e.g. M114V, apparently destabilise the dimer, impair the ability to form 

tetramers and render Gin FIS-independent (Klippel et al., 1988a; see also Figure 2.14). 

However, the combination of M114V with the “tetramerisation-up” mutation K34E renders 

the protein FIS-dependent and stabilises the tetramers. Other mutations found as M114V 

suppressors (such as K34E, S36N, R39G, D41G, P43S and P43L) were inversion-deficient 

and all were able to tetramerise more efficiently than wild-type Gin (Merker, 1993; Rusch, 

1998). Similar mutant gin alleles that can suppress the FIS-independent phenotype have 

been isolated by Spaeny-Dekking et al. (1995a). The identified mutations are located in a 
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short region of ten amino acids in the region of catalytic domain that is involved in dimer-

dimer contacts in γδ resolvase (Hughes et al., 1990). Since FIS is thought to stimulate 

conformational rearrangements that in particular affect the αE-helices (Haykinson et al., 

1996) it is conceivable that all the “tetramerisation-up” mutants are impaired in 

conformational flexibility required for the rearrangement of the tetramer. The mutation of 

natural cysteines, which themselves are likely stabilising the tetramer, therefore could affect 

the conformational flexibility. But it is also unlikely that the function of these cysteines in 

the inversion reaction is to form disulphide bonds, since in the cytoplasm of E. coli cells the 

cysteines are maintained in a reduced state by the action of thioredoxin reductase (Dermann 

et al., 1993). Also the homologous invertases Hin and Cin contain a serine residue at the 

position corresponding to C24 in Gin, showing that a cysteine residue at this position is not 

important for the inversion activity. 

In addition to the natural cysteines, the residues at the positions 17 and 75 are also making a 

close approach, because both substitutions in combination with V107C mutation were 

required to stabilise the cross-linked tetramers in the synaptic complex (Figure 2.9). The 

amino acid residues at positions 17, 24, 27 are located on the exposed surface comprised by 

αA helix and the β2 sheet adjacent to the surface exposed loop between the β2 sheet and 

the αB helix. Since amino acid substitutions at these positions affect the tetramer formation, 

this entire large region, situated on the side of the molecule opposite to that of the 

dimerisation αE-helix, is very likely to be involved in the dimer-dimer interactions. Amino 

acid residue at the position 75 is situated on the outer surface of αD helix, which is parallel 

to the αE dimerisation helix and faces the same direction as those residues on the αE helix 

(positions 110, 113, 117) that affect tetramer formation (Rusch, 1998). However, it appears 

that in the absence of natural cysteines, the organisation of putative tetramers (∆C specific 

complexes) is different. Not only they have lost the dependence on FIS and substrate DNA, 

but also show increased resistance to the reducing agent DTT (Figure 2.9). Notably, in 

addition to synapse-specific tetramers, oligomer complexes (putative trimers) independent 

of FIS and DNA form quite efficiently also in the presence of natural cysteines. The nature 

of these complexes is not clear, but they represent probably a trimer consisting of one 

monomer of Gin attached via a 17C or 75C cross-link to a Gin dimer, cross-linked via 

107C. 

Taken together these data suggest that there are several potential interacting surfaces 

allowing oligomerisation of Gin and that FIS and DNA select the proper Gin-Gin 
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interactions in the synapse. These involve the interactions of the exposed surface comprised 

by loop between the αA helix and the β2 sheet where the natural cysteines are located. This 

specific tetramer complex can be further stabilised by cross-linking via 107C in 

combination with either 17C or 75C substitutions, both of which are located in the vicinity 

of putative tetramerisation domains. However, in the absence of the natural cysteines this 

selectivity is lost and Gin oligomerises by using other interactions. The residues 17C/107C 

and 75C/107C play a role in these interactions again, although we cannot exclude that in 

contrast to wild-type Gin, in the Gin C24/C27 double mutant the natural lysines become 

available for cross-linking by DEB. The ∆C specific complex is formed with a high 

efficiency as judged by the ratio to Gin dimers (Figure 2.9). These observations imply that 

the presence of natural cysteines prevents certain unproductive interactions, which have a 

potential to cause oligomerisation of Gin in a FIS and DNA independent manner. 

The pertinent question is whether the tetramer studied in this work is relevant to the 

synaptic complex. The in vivo screening performed by K. Rusch (1998) with a DNA 

substrate containing gix sites separated by a short (83 bp) spacer was devoid of 

recombinational enhancer. The phenotype of the mutants identified by genetic screening 

has been confirmed by in vitro tetramerisation assay using linear gix fragments. In the 

present study we confirmed the “tetramerisation-up” phenotype of several previously 

isolated mutants using the same assay. However, in contrast to the previous study, in this 

work the investigation of the tetramer complexes was carried out also using naturally 

supercoiled DNA inversion substrate with recombinational enhancer and FIS, which are the 

prerequisites for productive synapse formation. With this approach we not only confirmed 

the role for the previously identified tetramerisation domains using substitutions in the 

vicinity of the putative tetramerisation domains (17C and 75C), but also revealed a new 

region comprised by the flexible loop between the αA helix and the β2 sheet, which could 

not be identified in the previous work. 

Taken together the results of cross-linking experiments demonstrate that the synapsed 

tetramer can be stabilised by combining the effects of the substitution 17C located on the 

αA helix, the substitution 75C located on the αD helix, and the substitution V107C located 

on the αE helix. This indicates that extensive contacts are clustered in two structurally 

separated large regions of the catalytic domain, which cannot simultaneously interact in the 

tetramer without involving strong rearrangements of protein contact surfaces within the 

tetramer (see Figure 2.10 and Figure 3.1). 
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Figure 3.1. Model for the Gin tetramer arrangement, showing the interacting surfaces in 

synapse. 

One Gin monomer is shown in green and yellow ribbon diagrams and complexed with blue DNA; 
the other dimer is in lighter colours and complexed with red DNA. 
The protein secondary structure elements forming the dimer interaction surfaces and the location of 
the active site residue serine 9 (S9) and studied amino acids are indicated. 
 
Gin dimers are interacting via their N-terminal domains. During synaptic complex formation the 
catalytic domains of both dimers are probably closely approaching each other and interact via the 
large surface delimited by loops, β-sheets and α-helices (direction of movement is indicated by 
arrows). During synapse the yellow monomers are interacting with each other via large surfaces 
comprising the domains identified in this and previous studies. FIS (not shown on the picture) is 
proposed to destabilise the dimerisation surface of Gin and facilitate the conformational 
rearrangement of monomers within the tetramer. 
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3.3 Why is the ISXc5G10 chimera inversion deficient? 

 

The amino acid sequence of ISXc5 resolvase shows extensive homology with members of 

the DNA invertase family (Liu et al., 1998). The N-terminal 140 amino acids show 57% 

identity with the Gin invertase. There are also another two regions in ISXc5 resolvase with 

high degree of identity to invertases. The first one - from amino acids 56 to 70, with an 

identity of 73%, possibly the region involved in catalysis and important for tertiary 

structure. The second one – from amino acids 101 to 138, exhibits a 60% identity, is 

responsible for the DNA minor groove recognition and includes the αE helix with residues 

involved in dimer interaction (Hughes et al., 1990; Yang & Steitz, 1995; reviewed in 

Grindley, 1994). 

The generated chimeric protein ISXc5G10 contains the large N-terminal catalytic domain 

of Gin, including most of the long αE helix that constitutes the dimer interface (residues 1 

to 123; Liu et al., 1998; corresponds to residues 1 to 126 in γδ resolvase; Yang & Steitz, 

1995). The fusion joined the end of the αE helix of Gin to the flexible arm region and the 

DNA-binding domain of ISXc5 resolvase (residues 124 to 205; corresponds to residues 127 

to 183 in γδ resolvase). It appears that the distinct nature of this latter domain is sufficient 

to switch the directionality of reaction from inversion to resolution. 

Schneider et al. (2000) have shown that a substrate containing an isolated pair of ISXc5 res 

subsites I and the recombinational enhancer can be utilised by Gin for catalysing the FIS-

dependent inversion reaction in vivo and in vitro, whereas G10 chimera and resolvase are 

inactive. It turned out that the orientation of the res subsite I was not important for Gin 

catalysed inversion, perhaps due to the symmetry of the two central AT base pairs in the 

core sequence of subsite I where strand exchange most likely occurs (Moskowitz et al. 

1991) and, to the the sequence of res subsite I which represents an almost perfect 

palindrome. However, Gin cannot catalyse inversion with full res sites oriented either as 

inverted or direct repeats, because of the binding to both subsites I and III in res. These 

subsites exhibit about 53% identity with the gix site (Schneider et al., 2000) and when 

present on the same substrate can interfere with each other or compete for the interaction 

with FIS. 

Most known helix-turn-helix proteins create significant DNA bends (Dodd & Egan, 1990; 

Brennan & Matthews, 1989), and the appearance of strong enhancement of DNase I 

cleavage at the around the binding site indicates that the DNA is strongly distorted upon 
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binding. In the DNase I footprinting assay we observed substantial differences in binding 

properties of Gin when compared to G10 chimera and ISXc5 resolvase, the two latter 

proteins producing regularly spaced strong DNase I hypersensitivities on binding to res 

subsites I. These differences in the DNA binding make it unlikely that Gin and ISXc5G10 

proteins bound at their cognate sites could interact via their DNA-binding domains (which 

also show a poor amino acid sequence homology). On the other hand, the G10 and ISXc5 

have the same resolvase activity and their DNA binding properties appear similar in the 

DNase I footprinting assay. However, G10 chimera was able to interact with Gin, whereas 

ISXc5 resolvase was not, indicating that interactions of the proteins involved the identical 

catalytic domains of Gin and G10. 

The results of this work support the view that each step of the Gin catalysed inversion 

reaction requires defined interactions between Gin molecules. These interactions are 

responsible for certain conformational changes which in turn could facilitate the following 

step of the recombination reaction. Every qualitative alteration of contacts between Gin 

molecules could thus block the reaction specifically. Obviously the quality of these contacts 

decides on whether FIS and the enhancer are needed for the reaction or not. 

There could be several reasons for the fact that no chimera mutants were found that were 

able to catalyse inversion. First of all, the concentration of the G10 mutant proteins in the 

cell may be critical for the formation of the tetramer complex at the res subsites I. We 

measured the expression level of mutant proteins systematically and the concentrations 

were similar to wt Gin, but it is possible that in the case of G10 chimera mutants the 

proteins need to be expressed at a higher level. Second, it could be that most mutations in 

the DNA binding domain of G10 impaired binding to the res subsite, thus preventing the 

assembly of a higher order complex required for recombination. Third, the changes in the 

DNA-binding domain may influence the conformation of the catalytic domain that makes 

the assembly of an inversion-proficient synapse impossible. Finally, the presence of a 

DNA-binding domain of ISXc5 resolvase in the G10 chimera leads to the formation of a 

tetramer with different features. One reason of failure to find any inversion proficient 

chimeras could be that the DNA-binding domain affects the orientation of the catalytic 

domain. Even extensive exchanges of entire parts of the DNA-binding domain of chimera 

and Gin, making the DNA-binding domain of chimera almost similar to Gin, did not make 

the chimera active, suggesting that the interactions between these domains and the catalytic 

domain are very different. Although our linker mutants with 10, 14 and 16 amino acid 

insertions between the DNA binding and catalytic domains were inactive, it is still possible 
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that nature of the flexible region connecting these domains that is involved in the distinct 

ability of invertases and resolvases to fulfil their particular functions. Therefore, in order to 

change interactions of the domains, the random mutagenesis of the whole chimera’s gene 

and more systematic linker analysis would be important. If this approach will allow 

identification of inversion-proficient mutants it can illuminate the molecular basis, 

underlying the distinctions between resolvases and invertases. 

Importantly, the chimera has lost the ability to be stimulated by FIS to catalyse inversion, 

although it contains the catalytic domain of Gin. If FIS contacts the DNA binding domain, 

the G10 chimera contains this domain from a resolvase and therefore, critical residues 

normally required for an interaction between FIS and invertases may be lacking. However, 

Merickel et al. (1998) proposed that it is a region within the dimer interface, which is 

contacted by FIS; this is also consistent with our observations that FIS S14P can stimulate 

the inversion-deficient Gin H106T for recombination. The G10 chimera contains the dimer 

interface from Gin (positions 102-124 according to Yang & Steitz, 1995) and is 

catalytically active as a resolvase. It is possible that the global organisation of this region is 

critical for the communication between FIS and Gin, and in G10 chimera this region is 

altered significantly, as judged from the inability of Gin and G10 to form heterodimers 

(Figure 2.32). It seems that synapsis results in a G10 tetramer that is structurally so 

different from that generated by wild-type Gin, that FIS cannot make appropriate contacts. 

One possibility is that the G10 forms the complex similar to the wt resolvase, but since the 

accessory res subsites II and III are lacking, there is no activation. Another possibility is 

that FIS determines the structure of the complex by bending the DNA and in this case 

directly repeated res subsites I will be aligned in an anti-parallel orientation so that the G10 

chimera would not be able to recombine. 

When the efficiency of tetramer formation by Gin and by G10 were compared, it appeared 

that the tetramer formed by G10 itself is more stable. The observation that the G10 chimera 

is able to form a more stable tetramer that wt Gin supports the notion that the stability of 

the tetramer is correlated with the propensity to catalyse inversion. Mutants of Gin that 

showed better tetramerisation activity were all inversion-deficient. Thus it is possible that 

the tetramer formed by chimera is similar to Gin, but its stability is much higher. If FIS 

affects cleavage by inducing conformational changes in the tetramer of Gin, in the case that 

the complex is too stable FIS would not be able to fulfil its function. In the case of FIS 

S14P its higher stimulatory activity could change the configuration of the tetramer formed 

by Gin H106T and activate it for the inversion. To confirm this notion the study of the 
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effect of FIS S14P on other inversion deficient Gin mutants with showed high 

tetramerisation activity would be necessary. 

In the case of resolvases the stability of the tetramer is perhaps not so crucial. For the 

resolution formation of a large nucleoprotein complex containing three tetramers (12 

protomers) is necessary, making it roughly three times size of an invertasome. There could 

be other mechanistic problems, and their solution is perhaps not solely dependent on the 

stability of a single tetramer. The fact that it was possible to crystallise resolvase, but not 

invertase, suggests that the complexes formed by these proteins have different dynamics. 

The invertasomes are very unstable (unpublished data). 

From this data we postulate a new rate-limiting step in DNA inversion reaction, and this is 

the stability of the tetramer. The mechanistic task that has to be solved by the synaptic 

complex is to destabilise the tetramer after the formation of the invertasome, and it is 

probably this step at which FIS is acting: if the tetramer is too stable, this will preclude 

inversion. Perhaps it will be impossible to get any chimeric mutants able to catalyse 

inversion if the stability of the tetramer will remain like that in resolvases. Thus, one future 

approach would be to screen for the mutations which destabilise the tetramer. It is 

noteworthy that by performing in this study the mutagenesis of the DNA-binding domain of 

chimera alone, we did not primarily affect the stability of the tetramer, but rather the 

stability of DNA-protein interactions. 

According to the Smith & Thorpe (2002) there are three components in the recombinase 

monomer revealing a modular organisation: the catalytic domain, the DNA-binding domain 

and the flexible region between them (represented by C-terminus of the αE-helix). 

According to Yang and Steitz (1995), the only plausible barrier to rotation of the catalytic 

and DNA-binding domains with respect to each other is provided by the carboxy-terminal 

portion (residues 122-136) of the two αE-helices, which connect the globular catalytic 

domain to the extended strand (residues 137-146) and the 3-helix bundle (residues 147-

183), that constitute each a DNA binding domain. However, the C-terminal half of the E-

helix appears to be structurally unstable; it is unfolded in the absence of DNA (for example, 

in crystals of the N-terminal domain, Sanderson et al., 1990), and even in the presence of 

site I it adopts two different conformations with a kink (at residue 127) in one subunit 

(Yang & Steitz, 1995). Together with the demonstrated ability of a resolvase dimer to bind 

to sites with a variety of spacing between the DNA recognition sequences (Leschziner et 

al., 2003), this suggests that there may be a variety of conformations for the resolvase 
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polypeptide chain from 121-146, and few energetic barriers to a rotation of the DNA (and 

the DNA binding domain) relative to the catalytic domain. Indeed, the particular position 

observed in the resolvase-site I cocrystal structure may represent just one of several 

energetically equivalent conformations, and at least one cocrystal exhibits a distinctly 

different configuration of the DNA relative to the catalytic domain. 

The reverse chimera’s mutants generated during our studies contained all these regions and 

were able to bind DNA, but still did not show any recombination activity, probably being 

affected already at the level of dimer formation. If the catalytic domain acts only as a 

“motor”, and DNA-binding domain serves only for the recognition of recombination sites, 

then at least some of the RC chimeric proteins generated in this study should still have been 

able to catalyse inversion reaction. Furthermore, Schneider et al. (2000) suggested that 

charged residues in Gin (Gln29, Arg51 and Gln53) provide the required inter-dimer 

interface once the chimeric dimers are bound to res. These residues correspond to those of 

γδ resolvase (Arg2, Arg32, Lys54 and Glu56), which form the so-called 2,3' interaction 

surface between γδ resolvase dimers and play an essential role in building a 

recombinogenic synaptosome and resolution (Sanderson et al., 1990; Hughes et al., 1990, 

1993; Murley & Grindley, 1998). In our RC proteins the N-terminal domain was from 

resolvase and this did not make proteins resolution proficient. This observation is consistent 

with our notion that there is a structural coordination between the catalytic and DNA-

binding domains, which leads to the proper recombinasome organisation and 

recombinational activity.  

We therefore propose that the structural self-coordination of the monomer subunits is the 

main feature of the higher order protein-protein interactions that can lead to the productive 

recombination. 

 

 

3.4 Outlook 
 

This study raises many new questions that await further clarification. These concern both 

the nature of Gin-FIS interactions, and the nature of Gin-Gin interactions in the synapse. 

For example, is the substitution of serine by proline at position 14 of FIS altering the 

conformation and/or flexibility of the N-terminus of FIS? And which amino acids in the 

dimerisation domain of Gin and in the N-terminus of FIS are involved in the interaction? 

According to our hypothesis the stability of Gin-Gin interactions in the tetramer can 
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interfere with recombination reaction. Is it possible to correlate the activating potential of 

FIS S14P with Gin tetramerisation ability? Can a destabilisation of the G10 tetramer by 

mutation confer FIS-dependence and an inversion proficient phenotype? Can the variation 

of the length of the linker domain between the DNA-binding and catalytic domains 

facilitate the conversion of a resolvase to an invertase? 
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4. MATERIALS AND METHODS 

 
 

4.1 Chemicals 

 

Name Name    Manufacturer 
 
Acrylamide   Roth 

Acetic Acid   Merck 

Agar    Sigma 

Agarose   SeaKem 

Ammoniumacetate  Merck 

Ammoniumpersulphate Merck 

Ammoniumsulphate  Baker 

Ampicillin   Sigma 

Bacto Agar   Difco 

Bisacrylamide   BioRad 

Bromphenolblue  Merck 

Calciumchloride  Merck 

Chloramphenicol  Sigma 

Chloroform   Merck 

Coomassie Brilliant Blue Serva 

Desoxyribonucleotid-  Pharmacia 

triphosphates    

1,2:3,4-Diepoxybutane Serva 

(DEB)     

Dimethylsulfoxide  Fluka 

(DMSO)    

Dimethylsulfate (DMSF) Sigma 

Dithiothreitol (DTT)  Boehringer 

Ethanol   Merck 

Ethidiumbromide  Sigma 

Ethylenglycol   Sigma 

Formaldehyde   Merck 

 
Lithiumacetate  Merck 

Magnesiumchloride  Merck 

Magnesiumsulphate  Merck 

Manganchloride  Merck 

β-Mercaptoethanol  Sigma 

Methanol   Roth 

Paraffin liquid   Merck 

Peptone   Difco 

Phenol    Roth 

Polyethylenglycol  Fluka 

(PEG 4000) 

Potassium permanganate Merck 

Hydrochloric acid  Merck 

Sodiumacetate

Sodiumcarbonate  Merck 

Sodiumchloride  Roth 

Sodiumdihydrogen-  Roth 

phosphate 

Sodiumdodecylsulphate Roth 

(SDS) 

Sodium-EDTA  Serva 

Sodiumhydroxide  Riedel-de 

    Haën 

Sodiumsulphate  Merck 

st-DNA   Sigma 

TEMED   BioRad 

Tetracycline   Sigma 
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Galactose   Serva 

Glucose   Merck 

Glycerol (87%)  Merck 

Imidazole Roth 

IPTG    Gerbu 

Isopropanol   Merck 

Lithiumchloride  Merck 

Magnesiumchloride  Merck 

Tris-Base   Sigma 

Tris-HCl   Sigma 

Triton X-100   BioRad 

Trypton   Difco 

Tween-20   Serva 

X-Gal    Sigma 

Xylencyanol   BioRad 

Yeast Extract   Difco 

 

 

4.2 Enzymes, proteins and reagents 

 

Name Manufacturer 
  
Albumin (BSA) New England Biolabs (NEB) 

Alkaline phosphatase (CIP) New England Biolabs 

DNase I Boehringer 

E. coli DNA polymerase I (Klenow fragment) Boehringer 

Lysozyme Boehringer 

Pfu Turbo DNA polymerase Stratagene 

Proteinase K Boehringer, Merck 

Restriction enzymes New England Biolabs, 

Boehringer, Pharmacia 

Ribonuclease A Boehringer 

T4 DNA ligase New England Biolabs 

T4 DNA polymerase New England Biolabs 

T4 polynucleotide kinase New England Biolabs 

Taq DNA polymerase Boehringer 

 

Purified E. coli FIS proteins as well as DNA invertases Gin, Gin K34E, H106T, M114V 

and K34E/M114V were used from preparations done by A. Deufel and P. Merker. 

Mutant proteins FIS S14P; Gin L17C, S75C, V107C, L17C/V107C, S75C/V107C, C24S, 

C27A, C24S/C27A, K34E/M100C, K34E/V107C; ISXc5 resolvase; ISXc5G10 chimera 

and ISXc5G10 mutants K34E, K34E/M114V, V107C, M114V, N1, N2, N3, N4, N5, N6, 
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Chim-135, Chim-145, Chim-155, Ch L162N/Q198R and reciprocal chimera RC were 

purified with His-tags during the present work. 

 
Polyclonal anti-Gin antibodies were kindly provided by Nora Goosen. Monoclonal anti-His 

mouse antibodies were purchased from Dianova (Calbiochem). FIS rabbit polyclonal 

antibody was a kind gift of Christian Koch. 

 
γ-32P-labelled deoxyribonucleotides were purchased from Perkin Elmer. 

 

 

4.3 Molecular markers 

 

4.3.1 DNA-length molecular standards for agarose gel electrophoresis 

 

λ DNA (MBI Fermentas) digested with PstI was used as DNA length standard. 
 

λ-DNA PstI-fragments: 11509 bp 1700 bp 216 bp 
 5077 bp 1159 bp 211 bp 
 4749 bp 1093 bp 200 bp 
 4507 bp  805 bp 164 bp 
 2838 bp 514 bp 150 bp 
 2560 bp 468 bp 94 bp 
 2459 bp 458 bp 87 bp 
 2443 bp 339 bp 72 bp 
 2130 bp  264 bp 15 bp 
 1936 bp 249 bp 
 

 

4.3.2 Protein molecular weight standards 

 

The apparent molecular weight of proteins in SDS-polyacrylamide gel electrophoresis was 

determined according to P7708 Prestained Broad Range protein molecular weight marker 

(6.5 – 175 kDa) from New England Biolabs. 

Protein molecular weight calculations according to the amino aid sequence were done using 

the programs at http://bioreference.net/proteinmw.htm

 

 

 

http://bioreference.net/proteinmw.htm
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4.4 General buffers and solutions 

 

AE-Buffer 50 mM Na-Acetate, pH 5.3 

10 mM Na2-EDTA 

in H2Odd

AE-PC 

 

50% AE-Phenol 

50% Chlorophorm 

 

DNA loading buffer 0.25% bromphenol blue 

1x TAE 

50% sucrose 

 

Inversion buffer 10x 200 mM Tris-HCl, pH 7.6 

100 mM MgCl2

5 mM DTT 

in H2Odd

 

Lysozyme solution 10 mg/ml lysozyme 

10 mM Tris-Cl, pH 8.0 

in H2Odd

 

RNase A solution 10 mg/ml RNase A 

15 mM NaCl 

10 mM Tris-Cl, pH 8.0 

in H2Odd, 15 min boiled 

 

Sample buffer 25% Ficoll 400 

0.25% Orange G 

in H2Odd 

 

TAE (50x) 2 M Tris-Acetat 

100 mM Na2-EDTA 

in H2Odd
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TBE (5x) 500 mM Tris-Borat, pH 7.9 

10 mM Na2-EDTA 

in H2Odd

 

 

TE (10x) 

 

100 mM Tris-Cl, pH 7.9 

10 mM Na2-EDTA 

in H2Odd

 

 

4.5 Media 

 

YT-Media    8 g Trypton 

(Sambrook et al., 1989)  5 g Yeast Extract 

     5 g NaCl 

     with H2O ad 1 l 

 

 

dYT-Media    16 g Trypton 

(Sambrook et al., 1989)  10 g Yeast Extract 

     5 g NaCl 

     with H2O ad 1 l 

 

dYT-Glycerol    16 g Trypton 

(Sambrook et al., 1989)  10 g Yeast Extract 

     5 g NaCl 

     800 ml 87% Glycerin 

     with H2O ad 1 l 

 

YT-Plates    8 g Trypton 

(Sambrook et al., 1989)  5 g Yeast Extract 

5 g NaCl 

     15 g Agar 

     with H2O ad 1 l 
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All the media were sterilised by autoclaving. 

 
Appropriate antibiotics were added where necessary from stock solutions after autoclaving 

and cooling the media down (∼ 600C) ad end concentrations: 

ampicillin  100 µg/ml 

chloramphenicol 25 µg/ml 

kanamycin  40 µg/ml  

tetracycline  25 µg/ml 

 
Antibiotic stock solutions: 

ampicillin   100 mg/ml (in H2Odd) 

chloramphenicol 25 mg/ml (in 50% ethanol) 

kanamycin   100 mg/ml (in 50% ethanol) 

tetracycline  25 mg/ml (in 50% ethanol) 

 
For the blue/white selection and protein induction X-Gal and IPTG were added up to the 

final concentrations (f.c.): 

0,1% (v/v) 100 mM IPTG (f.c. 10 µM) 

0,33% (v/v) 2% X-Gal (f.c. 0,01%) 

 

 

4.6 Escherichia coli strains 

 

The nomenclature of the E. coli strains is according to Demerec et al. (1966). 

 

Strain Corresponding marker Reference 
 

DH5α  

(E. coli strain K12 

derivate) 

 

F' endA1 hsdR hsdM, 

supE44 thi-1 gyrA1 dlacZ∆M15 λ- rel1 

gyrA96 relA1 ∆(lacZYA-arg F) U 169 

recA1 

 

 

Hanahan, 1983 

CSH50 

(E. coli K12 derivate) 

ara ∆(lac pro) rpsL thi strA  Miller, 1972 
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CSH50fis::Kan 

(fis- derivate of CSH50) 

 

fis- Koch et al., 1988 

AD1 

CSH50fis::Kan::Iq 

oxyR::lacZ inv 

(inversion test strain) 

 

fis- lacIq lacZinv Deufel et al., 1997 

WK6 (λcI+) WK6, lysogenised with λcI+

 

Klippel et al., 1988a 

XL1–Blue MRF' Kan ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr) 

173 endA1 supE44 thi-1 recA1 gyrA96 

relA1 lac[F´proAB lacIqZ∆M15 

Tn5(Kanr)] 

 

Stratagene 

BL21(DE3) F- dcm ompT hsdS(rb
- mb

-) gal λ(DE3) 

 

Stratagene 

BL21(DE3)pLysS F- dcm ompT hsdS(rb
- mb

-) gal 

λ(DE3)[pLysS Cmr] 

Stratagene 

 

 

The E. coli K12 strain CSH50 is pin- (Kamp & Kahmann, 1981) and was used for the 

propagation of inversion test plasmids. 

Strains BL21(DE3) and BL21(DE3)pLysS are all-purpose strain for high-level protein 

expression and easy induction. The BL21(DE3)pLysS provide tighter control of toxic 

proteins expression. pLysS – pACYC-based plasmid carrying T7 lysozyme gene derivative. 

Strains used in combination with plasmids containing T7 promoter constructs (e.g. pET 

vectors). T7 polymerase is induced from lacUV5 promoter with IPTG. Strains were used 

for the overproduction of Gin, FIS and mutant proteins. 

The XL1-Blue MRF´ Kan strain is a kanamycin-resistant (Kanr) derivative of Stratagene’s 

XL1-Blue strain useful for PCR cloning using vectors harbouring chloramphenicol- or 

tetracycline-resistance genes. Strain was used for the site-directed mutagenesis 

constructions on the pMD3E which is Tcr. 
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4.7 Oligonucleotides 

 
All oligonucleotides were synthesised by Metabion (Martinsried) or MWG BIOTECH 

(Ebersberg) companies. 

 

Name Nucleotide sequence (5'→3') 
 
Gin-Sty-5' 

 
GCTACCTAGGAGAGTGCTGATTGGCTATGTAAG 

Gin-KpnI CCGGTACCTTAATTGATTCGATCGTCG 

pGin PK CAACTGCAGGGTACCATTGATTCGATCGTCGTTTTC 

pGin EN GGAATTCCATATGGTGCTGATTGGCTATGTAAG 

Gin M100C CGTGGAAGAAAAAACGCCCACATGGAGATGACGTATC 

Gin C27A TTGTTCGGCTCCTGCACAAACAAGAGC 

3'C24S gin TTGTTCACATCCTGCAGAAACAAGAGC 

C24S/C27A gin TTGTTCGGCTCCTGCAGAAACAAGAGC 

Gin S75C (rev) CTACGAGACAAATCAAATGTTTC 

Gin L17C (rev) GTTGACAGTCTGTATTCTGGTC 

MV114 GTGCCCTGGCTGAAGTGGAACGAGAAC 

MV114rev GTTCTCGTTCCACTTCAGCCAGGGCAC 

Gin123-BsiW GAGCGTACGATGGCTGGACTTG 

chimera-PK GGGGTACCCACGGAGACGTTTATCGG 

Chim-Kpn-HindIII GGGGTACCCCAAAACAGCCAAGCTTTCACTA 

Chimera-END CAGCCAAGCTTTCACTACACG 

MV-chim-5' CCTGGGCGAGGTGGAGCGCGAGC 

MV-chim-rev GCTCGCGCTCCACCTCGCCCAGG 

chim162N GCGAGCGCAATCTGTCGGTCG 

chim162Nrev CGACCGACAGATTGCGCTCGC 

chim198R CAATCGGCGCGGTCGCCGATAAACG 

chim198Rrev CGTTTATCGGCGACCGCGCCGATTG 

pMD-chim/start TGAAGAAGGGCAGCATTCAAAGC 

pMD-chim/end CTGACACCCTCATCAGTGCC 

ISXc5-123rev-BsiW CTGCGTACGCTCGCGAATTAG 

ISXc5-Sty5' GCTACCTAGGAGAATGAAAATCGGCTATGCGCGCG 

Resolv-KpnI CCGGTACCCCTCACTACACGGAGACGTTTATCG 
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Resolv-NdeI GCCATATGAAAATCGGCTATGCGCGCG 

Resolv-PK(pET) CCGGTACCCACGGAGACGTTTATCGGCGAC 

RG-120ILeu GCGCGAGCTAATTATCGAGCGTACGATGG 

RG-120Ileu-rev CCATCGTACGCTCGATAATTAGCTCGCGC 

 

 

4.8 Plasmids 

 

4.8.1 Plasmids used in the present work 

 

 
Name 

Selection 
marker 

 
Reference 

 
Description 

    

pAK3 

 

Apr

 

Mertens et al., 

1988 

 

substrate for inversion test: contains two 

25 bp inverted gix sites that allow 

maximum recombination and the 

enhancer sequence 

 

pMD3Egin 

 

Tcr Deufel et al., 

1997 

vector carries the gin gene under control 

of the λpL promoter; expression can be 

regulated by the thermosensitive λCI857 

repressor mutant presented in vector 

 

pUHE25-2∆Cmfis 

 

Apr

 

Deufel et al., 

1997 

carries a fis gene under control of the trc 

promoter; vector contains the lacIq gene 

as well that allows for induction of FIS 

expression by IPTG 

 

pBR322 

 

Apr, Tcr

 

MBI Fermentas 

 

 

pET22b(+) Apr Novagen T7 expression vector (for the C-terminal 

His-tag constructions); was used for 

recombination proteins overproduction 
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pET15b Apr Novagen T7 expression vector (for the N-terminal 

His-tag constructions); was used for the 

FIS overproduction 

 

ptyrTLacZ 

 

Apr Auner et al., 

2003 

LacZ fusion under tyrT promotor 

ptyrTLacZ∆61D 

 

Apr

 

Auner et al., 

2003 

LacZ fusion under tyrTD promotor 

 

pCWt11 

 

Tcr

 

Liu et al., 1998 contains 2 full ISXc5 res sites (standard 

substrate for resolution) 

 

pACIE 

 

Tcr

 

Liu et al., 1998 contains recombination enhancer and 2 

ISXc5 res subsites I as inverted repeats 

 

pTnpR991 

ISXc5∆C 

 

Apr Schneider et al., 

2000 

contains ISXc5 resolvase with the 100 

amino acid deletion in the C-terminal 

extension 

 

pFSG10Tr 

(pTrc99A derivate) 

 

Apr Schneider et al., 

2000 

contains gene of the ISXc5G10 chimera 

(fusion of Gin and ISXc5∆C resolvase) 

 

 

4.8.2 Plasmids constructed in the present work 

 

 
Name 

Selection 
Marker 

 
  Description 

   

pMD3Eg10 

(pMD3Eg10*) 

 

Tcr

 

in the pMD3gin the gin gene was substituted by gene of 

ISXc5G10 chimera or * - its mutants 

 

pMD3EISXc5∆C 

 

Tcr

 

in the pMD3gin the gin gene was substituted by gene of 

ISXc5∆C resolvase  
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pMD3Erc 

 

Tcr

 

in the pMD3gin the gin gene was substituted by a gene of 

reverse chimera - RC (ISXc5/Gin fusion)  

 

pE3 

(ptyrT derivate) 

 

Apr

 

recombination substrate; contains 2 ISXc5 res subsites I as 

inverted repeats flanking lacZ gene presented in “off” 

orientation 

 

p17i 

(ptyrTD derivate) 

 

 

Apr

 

 

recombination substrate with 2 inverted ISXc5 res subsites 

I, one of which is inserted into the “off” oriented lacZ gene 

 

pFres-dir 

(pBR322 derivate) 

 

Apr

 

contains 2 ISXc5 full res sites as direct repeats 

 

pFres-inv 

(pBR322 derivate) 

Apr

 

contains 2 ISXc5 full res sites as inverted repeats 

 

 

The identity of all constructs was confirmed by sequencing. 

 

 

4.8.2.1 Description of the plasmids construction 

 

pMD3Eg10 

Gene of the G10 chimera was amplified form the pFSG10Tr (Schneider et al., 2000) with 

the oligonucleotides Gin-Sty-5' and Chim-Kpn-HindIII (see 4.7). The resulted PCR product 

was digested with AvrII and KpnI restriction enzymes and cloned into the corresponding 

sites of pMD3Egin plasmid replacing the gin gene. 

 

pMD3Eg10 – mutants 

a) N mutants 

For generating substitutions in the C-terminal end of the g10 chimera using the homologous 

region of gin, the megaprimer method (4.10.6.1.2) was used. In the first PCR the Gin-KpnI 

oligonucleotides (4.7) were used as a 3' in combination with the oligonucleotides listed 

below for each construction: 
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N1 5'-GCTGTACAGCTACCTGCGGGCGAAACGAGCGCATATAG-3' 

N2-aH 5'-CGCAGAAACTGCACTTGTCCCTGTCAACTCTGTATAAAAAACACC-3' 

N3 5'-CTGCCATTGCGCAGAAACTGGATGTGGCCCTGTCAACTCTG-3' 

N4-aG 5'-CGAGACCCTATACCGCGAGCGCAAGCAGGTTGCATTGATC-3' 

N5 5'-CGCTGGCGGCCGAGACCCAAGGAATCCCCCGCAAGC-3' 

N6-aF 5'-GGCGACCCAAGGGCCTGACCAAAGCGGAATGGGAGCAG-3' 

 

Oligonucleotide sequence which anneals in gin is indicated in bold, in g10 chimera – 

underlined. 

PCR products were used as megaprimers (see 4.10.6.1.2) for the second PCR with Gin-Sty-

5' oligonucleotides. The resulting PCRII products were digested with AvrII and KpnI 

restriction enzymes and cloned into the corresponding sites of pMD3Egin plasmid 

replacing the gin gene. 

 

b) Chim-135, Chim-145, Chim-155 

For the generation of the G10 mutants where N-terminal gin part was extended towards C-

terminus, the oligos Gin-Sty-5' were used as 5' in combination with one of the following 

oligos for each construction: 

 

gin-chimera-133 5'-CACCGACCCTGCCACGATTTCTGGCGGCAGCAAG-3' 

gin-chimera-143 5'-CGGCCTGCGGCGACAGTTTAGGTGGTCGCCCACC-3' 

gin-chimera-153 5'-GTATAGGGTCTCGGCCGCCCCGGCCTGCTCCCATTC-3' 

 

Oligonucleotide sequence which anneals in gin is indicated in bold, in g10 chimera – 

underlined sequence. 

PCR products were used as megaprimers for the second PCR with Gin-KpnI 

oligonucleotides. The resulting PCRII products were cloned into the pMD3E vector as 

described above. 

 

pMD3EISXc5∆C 

Gene of the ISXc5∆C resolvase was amplified form the pTnpR991 ISXc5∆C (Schneider et 

al., 2000) with the oligonucleotides ISXc5-Sty5' and Resolv-KpnI (4.7). The resulting PCR 
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product was digested with AvrII and KpnI restriction enzymes and cloned into the 

corresponding sites of pMD3Egin plasmid replacing the gin gene. 

 

pMD3Erc 

DNA sequences corresponding to the amino acid positions 122 and 123 of the Gin was 

modified using site-directed mutagenesis method (chapter 4.10.6.1.1) into the BsiWI 

restriction site, which did not change the amino acid sequence of the protein. For this 

procedure the following oligonucleotides were used: 

 

gin-BsiWI-1 5'-GAGAACTAATTATCGAGCGTACGATGGCTGGACTTGC-3' 

gin-BsiWI-2 5'-GCAAGTCCAGCCATCGTACGCTCGATAATTAGTTCTC-3' 

 

gin original sequence: CGA ACG → modification: CGT ACG 

 

Part of the resolvase gene was amplified from the pMD3EISXc5∆C with ISXc5-Sty5' and 

ISXc5-123rev-BsiW oligonucleotides (listed in 4.7). The PCR product was digested with 

AvrII and BsiWI restriction enzymes and cloned into the corresponding sites of pMD3Egin 

plasmid replacing the N-terminal part of the gin gene. 

 

pMD3Erc-100, pMD3Erc-111 

In the mutants RC 100 and RC 111 the Gin part was extended (residues 100 to 192 and 111 

to 192, respectively) using megaprimer method (4.10.6.1.2). In the first PCR the Gin-KpnI 

oligos were used as a 3' in combination with the oligos listed below for each construction: 

 

Rg100 5'-CCCATCGACACCACCAGCGCCCAAATGGGGCGTTTTTTCTTCCA 

CGTTATG-3' 

Rg111 5'-GTGTTCAACCTGTTCGCCACGCTGCTGGCTGAAATGGAACGAGA 

ACTAATTATCG-3' 

 

Oligonucleotide sequence which anneals in gin is indicated in bold, in rc reverse chimera – 

underlined sequence. 

PCR products were used as megaprimers for the second PCR with ISXc5-Sty5' (see 4.7) 

oligonucleotides. The resulting PCRII products were cloned into the pMD3E vector as 

described for pMD3EISXc5∆C. 
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Linker insertions into G10 chimera and RC reverse chimera. 

DNA sequences corresponding to the amino acid positions 122 and 123 of the G10 chimera 

were modified using site-directed mutagenesis method (chapter 4.10.6.1.1) to the BsiWI 

restriction site, which did not change the amino acid sequence of the proteins. 

 

oligonucleotides:  

 
chimera-BsiWI-1 5'-GCTGATTATCGAGCGTACGCAGGCCGGGCTGACGG-3' 

chimera-BsiWI-2 5'-CCGTCAGCCCGGCCTGCGTACGCTCGATAATCAGC-3' 

 

g10 chimera sequence: CGC ACC → modification: CGT ACG 

 
pMD3Erc was constructed with BsiWI restriction site (described above). 

 

Linker fragments of different length (containing sequences coding for 10, 14 and 16 amino 

acid peptides) were obtained by hybridisation of the complementary oligonucleotides listed 

below, flanked with the sequences for BsiWI restriction enzyme (underlined): 

 

Linker 10 5'-GACCGTACGGGATCCGGATCCGGATCCGGATCCCGTACGGTC-3' 

Linker 14 5'-GACCGTACGGGATCCGGAGGATCCGGAGGATCCGGAACGTCC 

CGTACGAAG-3' 

Linker 16 5'-GACCGTACGGGATCCGGAGGATCCGGAGGATCCGGAGGATCC 

GGAACGTCCCGTACGAAG-3' 

 

(These oligonucleotides were used as top strands; oligonucleotides used for the bottom 

strands were complementary and are not indicated. Sequences of the linker fragments were 

similar to those used by Akopian et al. (2003)). 

After annealing and BsiWI digestion linker fragments were inserted into the BsiWI 

restriction sites of the genes of G10 chimera and RC reverse chimera in pMD3E. All 

constructs were verified by sequencing. 

 

pE3  

After annealing of the oligonucleotides carrying the sequence of the ISXc5 res subsite I: 
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res-blunt1 5'-ATCAGAGTTCATAAAAACGATCGTTTTATTGAACCGTT-3' 

res-blunt2 5'-AACGGTTCAATAAAACGATCGTTTTTATGAACTCTGAT-3' 

 

the 38 bp DNA fragments were inserted into the ptyrTLacZ as inverted repeats in BspMII 

and BstBI restriction sites flanking the lacZ gene. The orientation of sites was identified by 

sequence analysis and the plasmid containing res sites as inverted repeats was taken for the 

further construction. 

The enhancer element was amplified from pAK3 with Pfu DNA polymerase using the 

following oligonucleotides: 

 
pAK-enhancer-5' 

ENH-start 

5'-CGGAGCACTGTCCGACCGC-3' 

5'-GATCCAGAGTGCTGATTGGC-3' 

 

The resulting 270 bp fragment was phosphorylated and inserted into the EcoRI restriction 

site (blunted with T4 DNA polymerase) of the construct. 

 

p17i 

DNA fragment containing ISXc5 res subsite I was obtained by the self-annealing of the 

following oligonucleotides: 

 
res-BamHI-1 5'-GGGGATCCATCAGAGTTCATAAAAACGATCGTTTTATTG 

AACCGTTGGGATCCGG-3' 

res-BamHI- 2 5'-CCGGATCCCAACGGTTCAATAAAACGATCGTTTTTATGA 

ACTCTGATGGATCCCC-3' 

 

The fragment was digested with BamHI restriction enzyme and cloned inside of the lacZ 

gene to the BamHI restriction site of the ptyrTLacZ∆61D vector. The obtained constructs 

were transformed into the CSH50 CaCl2 competent cells following by growing overnight at 

37oC on the YT-Ap-X-Gal plates. All of the colonies were blue as a result of the β-

galactosidase expression indicating that the lacZ gene was not disturbed by inserting of the 

short DNA fragment with res subsite I. The orientation of the res subsite was verified by 

sequencing. The obtained plasmid was digested with BstBI/Tth111I restriction enzyme and 

the second res subsite I carrying DNA fragment was inserted, obtained by the self-

annealing of the following oligonucleotides: 



MATERIALS AND METHODS 97 

 

res-BB-Tth-1 5'-TTTCGAACAACGGTTCAATAAAACGATCGTTTTTATGA 

ACTCTGATGACCCAGTCACG-3' 

res-BB-Tth-2 5'-CGTGACTGGGTCATCAGAGTTCATAAAAACGATCGTTT 

TATTGAACCGTTGTTCGAAA-3' 

 

Constructs were transformed into the CSH50 cells and grown on the YT-Ap-X-Gal plates. 

All obtained colonies were blue; plasmid DNA was purified and constructs were analysed 

by sequencing. 

To position the part of the lacZ gene between the res subsites into the “off” orientation, an 

in vitro inversion reaction was performed on the supercoiled substrate with the wt Gin in 

the presence of wt FIS. Obtained plasmids were transformed into the CSH50 cells and 

grown on the YT-Ap-X-Gal plates. Colonies containing the constructs where part of the 

lacZ gene had been inverted were white. Plasmid DNA was isolated and analysed by 

sequencing. 

The inversion enhancer was introduced as described for the pE3 construction. 

 

pFres 

DNA fragments containing ISXc5 full res sites were obtained from the pCWt11 (Liu et al., 

1998) by EarI and BlpI digestion and blunt ending with T4 DNA polymerase and inserted 

into the HindIII and PvuII sites of pBR322 plasmid. Tetracycline gene in pBR322 was 

destroyed by deletion of the EcoRV-NruI fragment. 

(In the pFres-inv ISXc5 res site in PvuII was inserted as an inverted repeat with respect to 

the one in HindIII site; in pFres-dir – as a direct repeat). 

 

 

Constructions of the expression plasmids: 

 
a) pET22b-recombination proteins 

For the construction of the expression plasmid for the Gin mutants, their genes were 

amplified from the pMD3Egin* using oligonucleotides pGin EN and pGin PK (listed in 

4.7), digested with KpnI and NdeI and cloned into the corresponding restriction sites of the 

pET22bgin plasmid replacing the gin gene. 
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Genes of ISXc5G10 chimera and G10 mutants were amplified from the pMD3E using 

oligonucleotides pGin EN and chimera-PK (see 4.7) and after digestion with KpnI and NdeI 

were inserted into the corresponding restriction sites of the pET22b. 

 
pET22b-ISXc5∆C resolvase was constructed by the same procedure, using oligonucleotides 

Resolv-NdeI and Resolv-PK(pET) (see 4.7). 

 

b) pET15b-fis 

pET15b (Novagen) T7 expression vector was used for the N-terminal 6xHis-tag 

constructions. 

For the overproduction of the FIS protein, the fis gene was amplified from pUHE25-

2∆Cmfis with the following oligonucleotides: 

 

FIS-R1-Nde 5'-GGAATTCCATATGTTCGAACAACGCGTAAATTC-3' 

FIS-Bam-Kpn 5'-GCGGATCCGGTACCGTTCATGCCGTATTTTTTC-3' 

 
(the sequence which anneals in fis is underlined, restriction sites for NdeI and BamHI are 

marked in bold). 

 
The obtained PCR fragment was digested with NdeI/BamHI and cloned into the 

corresponding sites of pET15b vector.  

 

 

4.9 Methods of microbiology and genetics 

 

4.9.1 Determination of E. coli cell density 

 

Density of cells in a liquid cultural medium was measured photometrically by the Lambda 

Bio UV-Spectrophotometer (Perkin Elmer) at 600 nm. An optical density of 1 ml of an 

appropriate pure culture medium at OD600 was used as a zero standard. To ensure measuring 

in linear range, cultures with OD600 less than 0.7 were used. In 1 ml of the growing bacterial 

culture (OD600 is around 0.7) amount of cells is approximately corresponds to 1 x 109, 

depending on the E. coli strain and its growth stage.  
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4.9.2 Cultivation of E. coli strains 

 

Bacterial cultures typically were growing at 37oC (the only exceptions were those cell 

cultures containing vectors for overexpression of recombination proteins, which were 

growing at 28oC) in the liquid cultural medium shaking at 200 rpm or on the agar-

containing medium under aerobic conditions. 

Glycerol cultures were prepared using the overnight cell cultures by adding dYT-Glycerol 

medium to the concentration 1:1 and stored at –80oC. 

 

 

4.9.3 Transformation of E. coli with plasmid DNA 

 

4.9.3.1 CaCl2 transformation 

 

Preparation of E. coli CaCl2-competent cells and CaCl2 transformation was performed as 

described by Cohen et al. (1972). 

Test transformations with the standard plasmid (pUC18) usually resulted in transformation 

efficiency over than 1 x 106 cells per 1 µg DNA. 

 

4.9.3.2 Electrotransformation by electroporation 

 

Preparation of E. coli electroporation-competent cells and electrotransformation was 

performed according to the protocol for the Electroporation device (BioRad). 

Test transformations with the standard plasmid (pUC18) usually resulted in transformation 

efficiency over than 1x109 cells per 1 µg DNA. 

 

After transformation bacteria were plated on YT-agar medium supplemented with the 

appropriate antibiotics and incubated overnight at 37°C (protein expression vectors pMD3E 

were growing at 28oC). 
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4.10 Methods of molecular biology 

 

4.10.1 DNA manipulations 

 

Plasmid DNA was isolated by the standard alkaline lysis method (Birnboim, 1983) or using 

QIAprep miniprep kit (Qiagen). Supercoiled DNA was isolated using Qiagen Plasmid Maxi 

Kit. 

DNA fragments were purified from low melting agarose gels using JETSORB Gel 

Extraction Kit (GENOMED) or QIAquick Gel Extraction Kit (Qiagen).  

 
Unless otherwise indicated standard molecular biology methods like cleavage of DNA with 

restriction endonucleases, DNA dephosphorylation, blunt-ending and ligation, DNA 

ethanol/isopropanol precipitation, agarose gel electrophoresis were performed in 

accordance to Sambrook et al. (1989), or in accordance to protocols developed by 

manufacturers. 

 
 

4.10.1.2 Measurement of the DNA concentration 

 
DNA concentration was measured photometrically at the wavelength (λ) 260 nm using the 

following formula (Sambrook et al., 1989): 

for double stranded DNA: C = A260 x 50 µg/ml 

for single stranded DNA: C = A260 x 40 µg/ml 

 
where C - is DNA concentration in µg/ml; A260 - absorption at λ = 260 nm. 

Measurements were done on BioPhotometer (Eppendorf) devise. 

 

 

4.10.2 Preparation of the short DNA fragments 

 

1) 160 bp UAS fragment 

The 160 bp DNA fragment containing the upstream activating sequence (UAS) region of 

the tyrT promoter containing 3 FIS binding sites (Lazarus & Travers, 1993) was obtained 

by PCR using the ptyrTLacZ plasmid template with the following oligonucleotides: 
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UAS RI-5' 5'-GAATTCCTTTGTTTACGGTAATCG -3' 

UAS-3' 5'-AAGCGGGGCGCATCATATCA-3' 

 

2) 156 bp res fragment 

The 156 bp DNA fragment containing the 34 bp ISXc5 res subsite I was obtained by PCR 

using the pE3 template with the following oligonucleotides: 

 

res-ptyrT-R 5'-GACCTGACCGCAGAAC-3' 

res-185-L 5'-GCGTTGGCAAACAGAG-3' 

 

3) 156 bp gix fragment 

The 156 bp DNA fragment containing the 34 bp gix L site was obtained by PCR using the 

pAK3 template with the following oligonucleotides: 

 

TVL-153 5'-AATAGGCGTATCACGAGGCCC-3' 

TVR-153 5'-AGAACCTGCGTGCAATCCATC-3' 

 

4) 156 bp biotinylated gix fragment 

The 156 bp DNA fragment containing the 34 bp gix L site was obtained by PCR using the 

pAK3 template with the TVR-153 oligonucleotide (mentioned above) and 5'-biotinylated 

oligonucleotide gixTVL156-bio: 

 

gixTVL156-bio Biotin-5'-GCGTATCACGAGGCCCTTTCGTC-3' 

 

5) 44 bp gix fragment 

The 44 bp DNA fragment containing the 34 bp gix site was obtained by hybridisation 

(described in the chapter 4.10.3) of the following complementary oligonucleotides: 

 

gix-C40 5'-GGGATCCCATTATCCAAAACCTCGGTTTACAGGAAACGGTCGAC-3' 

gix-C41 5'-GTCGACCGTTTCCTGTAAACCGAGGTTTTGGATAATGGGATCCC-3' 

 

6) 44 bp res fragment 

The 44 bp DNA fragment containing the 34 bp ISXc5 res subsite I was obtained by 

hybridisation (4.10.3) of the following complementary oligonucleotides: 
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res-BspEI-1 5'-GGATCAGAGTTCATAAAAACGATCGTTTTATTGAACCGTTCCGG-3' 

res-BspEI-2 5'-CCGGAACGGTTCAATAAAACGATCGTTTTTATGAACTCTGATCC-3' 

 

 

4.10.3 Hybridisation of complementary oligonucleotides 

 

Two complementary oligonucleotides were hybridised together under the following 

conditions: 

each oligonucleotide – 5 pmol 

NaCl – 50-100 mM 

TE buffer (pH 8) ad 50µl 

Reaction was carried out at 95o for 1 min, followed by 80o for 2 min, cooled down slowly 

to 60oC and kept for 30 min - 1hr. Salt was removed using the MicroSpinTM G50 columns 

(Amersham Biosciences). 

 

 

4.10.4 Radioactive labelling of the DNA fragments 

 

5'-end-labelled fragments were prepared by PCR with one of the primers labelled by γ-32P-

dATP using the T4 polynucleotide kinase (PNK). 

 
Reaction volume – 25 µl: 

8 pMol  dephosphorylated linear DNA 

20 µCi  γ-32P-dATP 

2.5 µl  10x PNK buffer (NEB) 

5 U   T4 polynucleotide kinase (NEB) 

ad 25 µl  H2Odd

 
The reaction was carried out at 37oC for 30 min and terminated at 65oC for 20 min. 

Purification was performed using G10 columns or through native polyacrylamide gel. 

 
Alternatively, restriction fragments were 3'-labelled using Klenow or 5'-labelled using T4 

polynucleotide kinase (Sambrook et al., 1989). 
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4.10.5 Extraction of the DNA fragments from the polyacrylamide gel 

 

Purification of the radiolabelled DNA fragments was performed through a native 

polyacrylamide gel (PAA) gel (percentage of which and migration time were calculated 

according to the size of the fragments) (“Crash and Shake” method, Sambrook et al., 1989).  

Samples containing DNA fragments were mixed with the sample buffer (1µl of the 10x 

buffer to 10µl of the sample) and loaded on the PAA gel. λ DNA digested with PstI and 

labelled with γ-32P-dATP was used as a length standard. After migration the gel was 

exposed to the X-ray film for app. 30 sec to identify the positions of DNA fragments to be 

extracted.   

Alternatively, ethidium bromide (EtBr) method of DNA visualisation by UV light (302 nm) 

was used (Lim & Hunt, 1994).  

Gel slices containing the DNA fragments were incubated overnight at 37oC in the elution 

buffer. To the liquid phase containing DNA 2.5 volumes of 100% C2H5OH was added and 

the DNA was precipitated by centrifugation at 18000 rpm for 30 min. Pellet was washed 

with 70% C2H5OH, precipitated by centrifugation at 18000 rpm for 15 min and 

resuspended in H2Odd after drying at RT.  

 

Elution buffer  0.5 M  NaAc 

   0.2%  SDS 

   10 mM EDTA 

 

 

4.10.6 PCR analysis 

 

Standard PCR amplification was performed in 50 µl reaction mix containing 0.1 µg of 

purified DNA, 50 pmol of each oligonucleotide, 0.1 mM of each of 4 dNTP’s and 2U Taq 

polymerase (Boehringer) in 1x Taq reaction buffer (Boehringer) according to following 

program: 1 cycle of 94°C denaturation for 3 min; 30 cycles at [94°C (30 sec), 54°C (1 min), 

and 72°C (2 min)] and a final elongation cycle of 10 min at 72°C.  

As PCR devices the MWG-hybaid (omniGene) and the PTC-100TM Programmable Thermal 

Controller (MJ Research Inc.) were used. 
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4.10.6.1 PCR mutagenesis 

 

4.10.6.1.1 Introduction of site-specific mutations using QuikChange XL system 

(Stratagene) 

 

For the introduction of the site-specific mutations the pMD3E plasmids were used carrying 

genes of the recombinase proteins. 

 
The introduction of the site-specific mutations into the gin, ISXc5 resolvase and ISXc5G10 

chimera genes were done by the Site Directed Mutagenesis method developed by 

Stratagene. 

Briefly, the kit protocol utilises a supercoiled, double stranded DNA plasmid and two 

complementary synthetic oligonucleotide primers containing a desired mutation. The 

oligonucleotide primers extend during temperature cycling by means of the high-fidelity 

Pfu TurboTM DNA polymerase (Stratagene). The product is then treated with DpnI 

endonuclease, which cuts fully- or hemi-methylated 5'-GATC-3' sequences in duplex DNA, 

resulting in the selective digestion of the template DNA. The in vitro synthesised and 

nicked plasmid DNA including the desired mutation is then transformed into E. coli. 

 
For the transformation of the pMD3E carrying genes with introduced mutations the XL1–

Blue MRF' Kan competent cells (Stratagene) (these are the analogous to the competent cells 

proposed in QuikChange®XL Site-Directed Mutagenesis Kit XL10-Gold) were used which 

allow to propagate the Tcr pMD3E plasmids. 

 
a) Reaction mix: 

50 ng template DNA 

5 µl of 10x Pfu Turbo reaction buffer 

125 ng of oligonucleotide primer #1 (100 ng/µl) 

125 ng of oligonucleotide primer #2 (100 ng/µl) 

1 µl of dNTP mix (10mM) 

double-distilled water (H2Odd) to a final volume of 50 µl 

2.5 U PfuTurbo DNA polymerase 

 
Cycling parameters for the QuikChange® XL method: 
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Segment Cycles Temperature Time 
 
1 

 
1 

 
95°C 

 
1 minute 

2 18 95°C 
60°C 
68°C 

50 seconds 
50 seconds 
1 minute/kb of plasmid length 

3 1 68°C 7 minutes 
 

b) 1 µl of the DpnI restriction enzyme (10 U/µl) was added directly to each amplification 

reaction and incubated at 37°C for 1 hr to digest the parental (i.e., the nonmutated, 

methylated supercoiled dsDNA). 

c) Electrotransformation of 2 µl of the DpnI-treated DNA into XL1–Blue MRF´ Kan 

electrocompetent cells. 

Cells were incubated for 30 min in 1 ml of dYT medium and 250 µl of each sample were 

plated out on YT-Tc agar plates. Plates were incubated at 28oC overnight. Amount of 

colonies after each transformation was app. 100, and 5 were checked for mutations by 

sequencing. 

 

 
4.10.6.1.2 “Megaprimer” method 

 
This method was used for substitution constructions, during generation of gene fusions and 

for introduction of site-specific mutations according to the protocols described by Landt et 

al. (1990) and Kuipers et al. (1991). This procedure requires just one mutagenic primer and 

two universal primers, which may contain convenient restriction sites for cloning. In this 

method two subsequent amplification rounds are used, the first with the mutagenic 

oligonucleotide and the antiparallel universal primer and the second one using the purified 

first fragment as a megaprimer together with the second universal primer, and subsequent 

digestion and cloning of the fragment. 

For the fusion constructions first PCR was done with primer consisting from two parts, one 

of which (15 and more bp) anneals in the amplified gene, another (15 and more bp) – in the 

gene to be fused with in combination with N- or C-terminal primers, which anneal at the 

end of gene. PCR products, containing not annealed overhangs, after purification through 

agarose gel were used for the amplification in the second PCR reaction as megaprimers 

(Figure 4.1). 
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Figure 4.1. General scheme of the 

PCR megaprimer method. 

 
 

Using this method the following mutants were generated: 

Gin: L17C, C24S, C27A, C24S/C27A, S75C, M100C 

G10 chimera: Chim-135, Chim-145, Chim-155, N1, N2, N3, N4, N5, N6 

RC reverse chimera: Rg100, Rg111 

 

 

4.10.6.1.3 Random mutagenesis 

 

For obtaining a high level of mutagenesis two methods were combined: an error-prone PCR 

method, where the error rate of Taq DNA polymerase is further increased by employing 

PCR reaction buffers containing Mn2+ and unbalanced dNTP concentrations in the presence 

of dITP (Spee et al., 1993; Vartanian et al., 1996; Shafikhani et al., 1997) and a 

Mutazyme® DNA polymerase (PCR mutagenesis kit, Stratagene). Combination of 

mutational spectrums of both Taq DNA polymerase and Mutazyme® DNA polymerase 

introduces a more uniform mutational spectrum in which mutations at As and Ts occur at 

the same frequency as Gs and Cs. (Mutazyme is more likely to mutate G’s and C’s and 

generate GC→AT transitions over AT→GC transitions, and Taq under error prone 

conditions is more likely to mutate A’s and T’s and introduce AT→GC transitions over 

GC→AT transitions.) 

With this method mutation rates of 1–16 mutations per kb can be achieved. 

Error-prone PCR conditions: one of the 4 dNTPs is present in limiting amounts in each of 4 

separate PCR reactions (in the case of the limiting dNTP misincorporation of one of the 

other dNTPs is favoured; mutagenesis rate: 8.3 mutations/104 bp (Spee et al., 1993). 

Misincorporation is stimulated when dITP is present, in the next cycle this would result in 

the incorporation of any of the three natural nucleotides left, as a complement to dITP.  

Mutagenesis rate: 27.1 mutations/104 bp (Spee et al., 1993). 
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Reaction mix (4 samples for each dNTP mix): 

10 ng of a template plasmid 

10 µl of 10x Error-prone PCR buffer 

10 µl DMSO (for GC rich template regions) 

3 µl of 10 mM MnCl2

50 pmol of each oligo, surrounding region to be mutagenised 

dNTP mix:  4 µl for each sample: A (20G/2A/20T/20C + 138 H2O) 

T (20G/20A/2T/20C + 138 H2O) 

G (2G/20A/20T/20C + 138 H2O) 

C (20G/20A/20T/2C + 138 H2O) 

200 µM dITP 

2 U of Taq polymerase 

2 U of Mutazyme® DNA polymerase 

H2Odd ad 100 µl 

 

 

10x Error-prone PCR buffer  100 mM  Tris-HCl, pH 8.3 

     500 mM  KCl 

     70 mM  MgCl2

     0.1% (w/v)  gelatine 

 

The MnCl2 concentration can be changed to alter the mutagenesis rate according to needs. 

The above protocol calls for 0.3 mM MnCl2 which is giving an approximate 5 point 

mutations/kb. (The solution colour has to be clear; brown colouring means it oxidised to 

Mn3+ which will kill the polymerase). 

The PCR stock was split into 10 µl aliquots and reactions were run separate; after 

completion of the reaction they were mixed together. (The separation of PCR master mix 

into different aliquots prevents the over-representation of single mutations in the library.  

This is because if a mutation occurs in the first rounds of PCR, then this mutation will be 

present in most or all of the subsequent products, thereby reducing the diversity of the 

library). 
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Cycling parameters: 

 
Segment Cycles Temperature Time 
 
1 

 
1 

 
95°C 

 
2 min 

2 30 95°C 
60°C 
72°C 

30 sec 
1 min 
1 min 

3 1 72°C 10 min 
 

To increase mutation frequencies up to 20 mutations per kb, sequential PCRs were 

performed, in which a small aliquot of the first PCR reaction was re-amplified in a second 

PCR reaction.  

PCR products were pooled together and purified trough agarose gel (1% TBE) using 

Qiagen gel purification kit. 

The mutated PCR products were then cloned into an expression vector and the resulting 

mutant library was screened for changes in protein activity. 

 

 

4.10.6.1.3.1 Mutagenesis of the fis gene 

 

Under error-prone PCR condition the fis gene was amplified from pUHE25-2∆Cmfis 

template using following oligonucleotides: 

 

FMRg 5'-GGTGACAGATCTATGTTCGAAC-3' 

FM-32  5'-CATCACAAGCTTAAAAAAGGCGCTTCCCC-3' 

 

FMRg primes on the 5'-end of fis and contains sequence for the BglII restriction enzyme 

and FM-32 primes on the 3'-end of fis and contains sequence for the HindIII restriction 

enzyme. 

The resulting PCR products were pooled, digested with BglII/HindIII and cloned into the 

corresponding sites of the pUHE25-2∆Cmfis replacing the fis wt gene. Ligates were 

transformed into CSH50fis::Kan by electroporation and grown overnight at 37oC on the 

YT-ampicillin plates. Plasmid DNA from 10 colonies was isolated and analysed by 

sequencing for verifying the mutation level. All other colonies were pooled together, 

plasmid DNA was isolated and stored at -20oC. 
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4.10.6.1.3.2 Mutagenesis of the C-terminal part of the ISXc5G10 chimera 

 

Under error-prone PCR condition the C-terminal part of the gene of the ISXc5G10 chimera 

was amplified from pMD3Eg10 template using following oligonucleotides: 

 
chimera 117-123 5'-GAGCTGATTATCGAGCGCACC-3' 

and Chim-Kpn-HindIII (see 4.7) 

 
Afterwards a second PCR round was performed using the PCR I products as a 5'-end primer 

(as in megaprimer method, 4.10.6.1.2) with a 5'-end primer Gin-Sty-5' (see 4.7). 

PCR fragments were pooled and cloned into AvrI/KpnI sites of pMD3Egin replacing the gin 

gene. Pool of plasmids was transformed into the WK6 (λcI+) cells by electroporation. Cells 

were grown overnight at 28oC on the YT-tetracycline plates. The resulted colonies were 

pooled and plasmid DNA isolated. Plasmids DNAs from a total of 10 independent clones 

were isolated and analysed by sequencing, using pMD-chim/start and pMD-chim/end 

oligonucleotides (see 4.7). 

 

 
4.10.7 Sequence analysis 

 
Genome sequences were obtained from E. coli data banks. Analysis of protein and gene 

homologies was performed using: 

BLAST search on NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) 

and ClustalW on EMBL (http://www2.ebi.ac.uk.clustalw/). 

 
Plasmid sequence and homology analyses were performed using DNA-Strider 1.2 and 

SequenceNavigator programs. 

 
Plasmid sequencing was performed by MPI for Züchtungsforschung (Cologne) or by 

automatic sequencing (see below). 

 

 
4.10.7.1 Automatic sequencing 

 
Sequencing was performed on the Perkin Elmer ABIPrism 377 DNA Sequencer. For the 

“Thermo-cycling” 20 µl of the mixture containing 0.6-1.2 µg ds-DNA, 10 pmol oligos and 

http://www.ncbi.nlm.nih.gov/BLAST/
http://www2.ebi.ac.uk.clustalw/
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8 µl “Premix” (ApliTag® ABIPrism, which contains Dye-terminator buffer and Taq 

polymerase) was used. Annealing temperature (in the range of 40-60oC) was calculated 

according to the oligonucleotide sequence and PCR was performed in MJResearch PTC100 

device. As following, 10 µl 5M NH4OAc and 125 µl 100% C2H5OH were added to the 

reaction mix, and DNA was precipitated by centrifugation at 14000rpm for 30 min and 

resuspended in 4 µl loading buffer (5:1(v/v) formamid:0.5M EDTA, pH 8). 

Sequence analyses were done using the Sequence-Navigator program. 

 

 

4.11 In vivo recombination assays 

 

4.11.1 In vivo inversion 

 

To analyse inversion in vivo E. coli tester strain AD1 (CSH50fis::Kan::Iq oxyR::lacZinv) 

(Deufel et al., 1997) was used. In AD1 the lacZ gene flanked by inversely oriented gix sites 

is placed in “off” orientation with respect to the PCm promoter. A productive inversion event 

places the lacZ gene in “on” orientation allowing expression of β-galactosidase from the 

PCm promoter (Deufel et al., 1997). 

The appropriate expression vectors for FIS (pUHE25-2∆Cmfis or fis mutants) and for 

recombination proteins Gin, G10 chimera, RC reverse chimera or their mutants (pMD3E) 

were subsequently introduced to the tester cells. Expression of FIS is under control of the 

trc promoter. Vector contains the lacIq gene that allows for induction of gene expression by 

IPTG. Expression of recombination proteins is under control of the λpL promoter present in 

pMD3E (Deufel et al., 1997). Expression can be regulated by the thermosensitive λCI857 

repressor mutant presented in vector. 

Resulting transformants harbouring both plasmids were grown in the presence of 

appropriate antibiotics at 28oC on X-Gal plates containing 10 µM IPTG for 12 hr 

(overnight). Recombinational protein expression was repressed during growth of the cells at 

28oC. Shifting the culture to 42oC for 2 hr inactivated the repressor and rapidly led to high 

levels of protein synthesis. Returning the induced cells to 28oC repressed further 

recombinational protein transcription while allowing recombination to continue. The use of 

short induction times of usually just a few minute’s duration synchronised recombination. 

The recombinational activity was evaluated by the intensity of the blue colour of colonies. 
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Colonies remain white when no inversion occurs, whereas a productive inversion gives rise 

to blue colonies. 

When the pool of mutagenised plasmids was used for inversion analysis, plasmid DNA 

carrying the gene of interest was isolated from single colonies and the phenotype was 

verified by retransformation of isolated plasmid; the isolated DNA was further sequenced. 

 
Inversion on the ISXc5 res subsite I containing p17i substrate was tested in the CSH50 cells 

under conditions described above. 

Additionally, in some cases, inversion of p17i was analysed by restriction with AatII, which 

normally results in two fragments of 5332 and 983 bp; two additional fragments of 4252 

and 2063 bp are generated when inversion has occurred. AatII restriction site is unique in 

all pMD3E espression vectors, so the resulting linearised fragment did not interfere with the 

analysis. 

 
 

4.11.1.1 Selection of the Gin H106T activating FIS mutant 

 
Selection was performed in the E. coli inversion tester strain AD1 transformed with 

plasmid pMD3ginH106T carrying gin H106T under the control of the temperature sensitive 

λPL promoter. The pool of plasmids containing the mutagenised fis gene (4.10.6.1.3.1) 

under the control of an IPTG-inducible promoter (pUHEfis*) was transformed into this 

tester system by electroporation. The effect of fis mutants was analysed by growing the 

transformants in the presence of appropriate antibiotics under conditions described above. 

The recombinational activity was evaluated by the intensity of the blue colour of colonies 

(as described above). Plasmid DNA from the blue colonies was isolated and retransformed 

into the tester system for the phenotype verification. When the phenotype was confirmed by 

the retransformation, the plasmid DNA used for retransformation was sequenced. 

 

 
4.11.1.2 Selection of the G10 chimera mutants with an inversion-proficient phenotype 

 
Pool of the pMD3E carrying genes of the G10 chimera mutants with a mutagenised C-

terminal part were transformed to CSH50 with the test plasmid p17i by electroporation. 

Cells were grown on the X-Gal plates containing 10 µM IPTG and appropriate antibiotics. 

After growing under conditions described above, blue colonies indicative of an inversion-
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proficient phenotype were collected and plasmid DNA from each colony was isolated. The 

mutant plasmids were tested a second time for their inversion phenotype by transformation 

to CSH50 with p17i. In the case of appearance of the blue phenotype, the mutant pMD3E 

DNA was sequenced. 

 
 
4.11.2 In vivo resolution 

 
In vivo resolution was tested in E. coli strain CSH50 on the pFres resolution substrate 

containing ISXc5 full res sites as directed (pFres-dir) or inverted (pFres-inv) repeats. 

The appropriate expression vectors (pMD3E) were subsequently introduced to cells 

harbouring substrates and selection was done on YT-agar plates containing the appropriate 

antibiotics for plasmid selection under conditions described for inversion test.  

Resulting transformation colonies harbouring both plasmids were inoculated into dYT and 

grown under antibiotic selection to an OD600 of 0.3–0.4 at 28oC, with following shift to 

42oC for 2 hr and plasmid DNA was isolated. The purified DNA was digested with XmnI, 

the nicked DNA was separated on a 1% agarose gel in TBE buffer, visualised and 

photographed under UV light. Restriction of pFres-dir (pFres-inv) results in two fragments 

of 5015 and 2403 bp; two additional fragments of 3853 bp and 3565 bp are generated when 

resolution has occurred. 

XmnI restriction site is unique in all pMD3E, so the resulting linearised fragment of ~ 6000 

bp was migrating over the 5015 bp fragment of the substrate DNA and thus did not 

interfere with the analysis. 

 

 

4.12 In vitro inversion assay 

 
Inversion reactions were performed in 20 µl at 37oC for 30 min, and the mixture contained 

20 mM Tris-HCl (pH 7.6), 10 mM MgCl2, DTT (up to 0.5 mM), 1 µg of supercoiled DNA, 

100 ng of Gin, and 50 ng of FIS. Reactions were terminated by heating at 80oC for 10 min. 

When performed on pAK3 gix-containing substrate, the reaction products were analysed by 

restriction with PstI in the same buffer, followed by phenol/chloroform extraction and 

electrophoresis through a 2% agarose gel using 0.5x TBE as electrophoresis buffer. After 

electrophoresis the DNA was stained with EtBr and visualised under UV light.  
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Restriction of pAK3 results in three fragments of 4206, 1004 and 920 bp. Because of the 

asymmetric location of the restriction sites with respect to the recombination sites, two 

additional fragments of 3961 and 1249 bp are generated when inversion has occurred. 

 

When performed on pE3 ISXc5 res subsite I containing substrate the reaction products 

were analysed by restriction with EcoRV, followed by electrophoresis through a 1% 

agarose gel. Restriction of pE3 results in two fragments of 5498 and 1257 bp. In the case of 

productive inversion two additional fragments of 4682 and 2073 bp are generated. 

 
On the p17i substrate, which contains ISXc5 res subsite I - lacZ fusion, inversion products 

were analysed by restriction with AatII followed by electrophoresis through a 1% agarose 

gel. Restriction of p17i results in two fragments of 5332 and 983 bp; two additional 

fragments of 4252 and 2063 bp are generated when inversion has occurred. 

 
To measure recombination efficiency, the plasmid DNA was digested with restriction 

enzymes that distinguished the orientation of the invertible segment and subjected to 

agarose gel electrophoresis. Quantification was performed using ImageQuant software 

(Molecular Dynamics). 

 

 

4.13 Biochemical methods  

 

4.13.1 Preparations of protein extracts 

 
4.13.1.1 Crude extract of FIS 

 
Crude extract of FIS was prepared using CSH50fis::Kan cells containing pUHE25-

2∆Cmfis. Expression of FIS is under control of the trc promoter. Vector contains the lacIq 

gene that allows for induction of gene expression by IPTG. 

Due to the heat stability of FIS it was possible to apply the following protocol for the quick 

FIS extract preparation. 

1) 2 ml of overnight culture dilute in 50 ml (1:25) of dYT + Ap 

2) grow at 37ºC until OD600 = 0.4 – 0.7 

3) add 200µl IPTG (0.1M), incubate 1hr at 37ºC 

4) centrifuge for 10 min at 4000rpm 
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5) resuspend pellet in 700µl of B50 buffer 

6) sonification 

7) 5' at 95ºC, cool down 

8) centrifuge for 15' at 22000rpm, 4ºC 

9) add glycerol (end concentration – 20%) to the supernatant  

10) store at -20ºC 

 
B50 buffer  25 mM Tris-HCl, pH 7.5 

50 mM NaCl 

1 mM EDTA 

10% Glycerol 

0.2 mM Pefabloc 

2 mM DTT 

 

 
4.13.1.2 Overproduction and purification of proteins with His-tags 

 
Proteins were expressed using the T7 expression system pET22b (for the overproduction of 

recombinase proteins and their mutants) and pET15b (for the overproduction of FIS and 

FIS mutants). E. coli BL21(DE3)cells were transformed with the plasmids and selected at 

37oC on YT plates containing 100 µg/ml ampicillin. A single colony was picked into 100 

ml of dYT medium containing 100 µg/ml ampicillin, and grown at 37oC until a density of 

approximately OD600 = 0.3 - 0.5 was reached, and the protein expression was induced by 

IPTG at a final concentration of 0.2 mM. Growth was induced for a further 2 hr and the cell 

pellet was obtained by centrifugation at 4oC at 6000 rpm for 10 min. Pellet was washed 

with 10 ml of cold binding buffer, centrifuged again and kept at –20oC for 1 hr or 

overnight. As following, pellet was resuspended in 4 ml of binding buffer, cells were lysed 

by a 2-3 French press steps and the lysates were centrifuged at 4oC for 60 min at 22000 

rpm. Purification of the 6xHis-tagged proteins from the cleared lysates was performed on 

nickel-sepharose matrix columns (Novagen) according to the Novagen protocol with some 

modifications. 

Ni-sepharose material was prepared for use as following: 

- washed 2x with 2 volumes of H2Odd 

- charged with 5 volumes of 50 mM NiSO4 
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- washed 2x with 4 volumes of binding buffer 

After every step material was centrifuged for 1min at 1000 rpm. 

 
Lysates were applied to the columns and the proteins were bond to the material during flow 

through. Upon binding washing with 5 volumes of binding buffer and 10 volumes of 

washing buffer was performed, and proteins were dissociated from the material with elution 

buffer. The protein samples in the eluates were concentrated and dialysed against GVP 

buffer using dialysis membrane (Pierce) with a 10 kDa molecular weight cut-off and stored 

at -80oC. 

 

 
Binding buffer 5 mM imidazole 

   500 mM NaCl 

   20 mM Tris-HCl, pH 7.9 

0.2 mM proteinase-inhibitor (Boehringer) was 

added to the buffer before use 

 

Washing buffer 50 – 200 mM imidazole* 

   500 mM NaCl 

   20 mM Tris-HCl, pH 7.9 

 

Elution buffer  500 mM-1 M imidazole* 

   500 mM NaCl 

   20 mM Tris-HCl, pH 7.9 

GVP buffer 0.1 mM ED TA 

 0.1 mM DTT 

 0.5 M NaCl 

 0.1% Triton X-100 

 20 mM Tris-HCl, pH 7.5 

 50% glycerol 

0.2 mM Pefabloc 

 

 
*Imidazole concentrations used were adjusted depending on the particular protein under 

purification. 

 
 

4.13.2 Determination of protein concentration 

 
Protein concentrations were determined using a Micro BCA Protein Reagent Assay Kit 

(Pierce, USA). Relative concentrations of proteins were estimated either by comparing 

Coomassie stained samples (4.13.3.1.1) with standards after SDS-PAGE or by the Bradford 

dye-binding assay (Bradford, 1976). 
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4.13.3 Protein gel electrophoresis 

 

4.13.3.1 Denaturing SDS – polyacrylamide protein gel electrophoresis 

 

Separation of the proteins by molecular weight was performed by SDS-containing 

polyacrylamide (PAA) gel electrophoresis according to Laemmli et al. (1970) in the 

minigel vertical apparatus (Biorad). 

 

 
Solution 

Separating gel 
(end concentration) 

Stacking gel 
(end concentration) 

 
1 M Tris-HCl, pH 8.8 

1 M Tris-HCl, pH 6.8 

 
375 mM 

- 

 
- 

125 mM 

acrylamide 

bisacrylamide  

15 - 18% (w/v) 

0.4% (w/v) 

4% (w/v) 

0.08% (w/v) 

10% SDS 0.1% (w/v) 0.1% 

H2O ad desired volume ad desired volume 

 

0.05% (w/v) APS and 0.0025% (v/v) TEMED were used for the gel polymerisation. 

 

Before loading on the gel samples were mixed with 1 volume of 2x “cracking buffer” and 

incubated at 95oC for 2 min in Thermomixer (Eppendorf). Electrophoresis was performed 

at 200 V for 1 hr in protein gel buffer. 

 

Protein gel buffer  25 mM  Tris-HCl, pH 8.5    

    200 mM  glycine      

    1% (w/v)  SDS 

 

2x Cracking buffer  125 mM Tris-HCl, pH 6.8    

    4% (w/v)  SDS      

    20% (v/v) glycerol     

    10% (w/v)  β-mercaptoethanol    

    0.002% (w/v) Bromophenol Blue 
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4.13.3.1.1 Staining of PAA gels with Coomassie Brilliant Blue 

 

The protein gel was stained for 1 hr in a staining solution which was prewarmed to ∼50°C 

to accelerate the process. Afterwards the gels were destained for 1 hr in destaining solution 

(prewarmed  to ∼50°C). 

 

Staining solution  225 ml  H2O 

225 ml methanol 

50 ml  acetic acid 

    1.25 g  Coomassie Brilliant Blue R 250 (Serva) 

filtered through 1 mm Whatman filter. 

 

Destaining solution  450 ml  H2O 

450 ml methanol 

100 ml acetic acid 

 

 

4.13.3.2 Gel retardation assay 

 

Binding of the proteins to the DNA fragments was studied in native PAA gels (Fried & 

Crothers, 1981) by comparison of the electrophoretic mobility of the protein-DNA 

complexes with that of the free DNA. 

The standard reaction mix (20 µl) contains: 

- 100 cps (2 to 5 nM) of γ-P32-ATP end-labelled DNA fragment 

- different concentration of proteins (as indicated for each experiment) in 2 µl GVP buffer 

- 2 µl of a 10x binding buffer 

 

10x Binding buffer   10 mM  EDTA 

     250 mM Tris-HCl, pH 7.9 

     500 mM NaCl 

20 mM  DTT 

     0.1 mg/ml stDNA 

     5 mg/ml BSA 
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After incubation for 20 min at 37oC the reaction was stopped by adding 3 µl of DNA 

loading buffer and the samples were loaded on the native 4-8 % PAA gel (gel size: 

180x200x1.5 mm) running at 100V. Gel-electrophoresis was performed in 0.25x TBE as 

the electrophoresis buffer. Gels were dried and the complexes were visualised either by 

autoradiography or by phosphorimaging using the Strom 860 PhosphorImager (Molecular 

Dynamics). 

Quantification was performed using the ImageQuant software (Molecular Dynamics). 

 

Native PAA gel  4-8% (w/v) acrylamide 

    0.16% (w/v) bisacrylamide 

    0.1% (w/v) APS 

    0.05% (v/v) TEMED 

    0.25x  TBE 

 

 

4.13.4 DNase I protection assay 

 

For DNase I footprinting analysis the 156 bp res- or gix-containing DNA fragments 

obtained by PCR amplification with γ-P32-dATP-labelled oligonucleotides which were 

complementary to the top or the bottom DNA strand were used. After purification through 

6% polyacrylamide gel (4.10.5), a constant amount the radiolabelled DNA was incubated 

with increasing amounts of proteins, as indicated for each experiment, under the conditions 

used for DNA band-shift analysis. DNA was analysed by electrophoresis through 6% (w/v) 

polyacrylamide sequencing gel. 

Corresponding G-ladder sequence (Maxam & Gilbert, 1980) was prepared according to the 

protocol from Sambrook et al. (1989).  

 
 
Sequencing gel  6% (w/v) acrylamide 

    0.3% (w/v) bisacrylamide 

    8 M  urea 

    0.1% (v/v) TEMED 

    0.4%  APS 

    in 0.5x TBE buffer 
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4.13.5 Tetramerisation assay 

 

For the formation of the tetramers proteins were incubated under conditions described for 

the gel retardation assay (4.2.3.3.2.) with the mix of app.: 

 

8.5 fmol of γ-P32-dATP-labelled 156 bp DNA fragment 

126 fmol of “cold” 44 bp DNA fragment 

 

To increase dimer/tetramer formation the DDT/DEB were added to the reaction mix up to 

the final concentration: DEB - 50 mM and DTT - 10 mM. Incubation time was 1 min. 

 
Gel electrophoresis was performed on 6% PAA as described for the gel-retardation assay 

(4.13.3.2.). Gels were dried and the complexes were visualised either by autoradiography or 

by phosphorimaging using the Strom 860 PhosphorImager (Molecular Dynamics). 

Quantification of the dimer/tetramer ratio was performed using the ImageQuant software 

(Molecular Dynamics). 

 

 

4.13.6 Protein cross-linking 

 

All cross-linking experiments were performed in a total volume of 12 µl with 370 nM Gin. 

The cross-linking reactions on the cysteine residues (0 Å) were performed by diluting Gin 

in a TMN buffer containing 20 mM Tris (pH 7.6), 10 mM MgCl2 and 300 mM NaCl 

without DTT. The mixture was incubated for 5 min at 37oC after which 4 µl protein sample 

buffer (50 mM Tris (pH 6.8), 1% SDS, 5% glycerol, and 0.0025% bromphenol blue) 

without β-mercaptoethanol was added. The samples were boiled for 5 min before loading 

on gel. The DEB (4 Å) protein cross-linking reactions were carried out in TNM buffer with 

or without 10 mM DTT. The samples were preincubated for 5 min at 37oC after which DEB 

in 50 mM triethanolamine (pH 7.6) was added to the final concentration 50 mM and the 

incubation was continued for additional 5 min. The cross-linking reaction was stopped by 

adding 200 mM Tris (pH 7.6), incubation was continued for 2 min at 37oC, loading buffer 

with or without 8% v/v β-mercaptoethanol was added and the samples were boiled for 5 

min before loading on gel. 
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4.13.7 Transfer of proteins onto nitrocellulose membranes: semi-dry blotting system 

 

The semi-dry transfer of proteins from the acrylamide gel onto a nitrocellulose PVDF 

membrane (Immobilon P, 0.45 µm, Millipore) was done with an electroblotting apparatus 

CarboGlas (Schleicher & Schüll). On the bottom (anode part) of the apparatus two filter 

papers (Whatman GB004) soaked with anode buffer A1 were placed and covered with 

another filter paper soaked with anode buffer A2 and then with a nitrocellulose membrane 

preincubated for 10 min with the anode buffer A2. The PAA gel was placed upon the 

nitrocellulose membrane and covered with three filter papers soaked in cathode buffer K. 

Transfer was done at 4°C at 0.8 mA/cm2 for 1 hr. Afterwards the membrane was reversibly 

stained with Ponceau S (Sigma). 

 

Anode buffer A1 300 mM Tris, pH 10.4; 10% Methanol 

Anode buffer A2 25 mM Tris, pH 10.4; 10% Methanol 

Cathode buffer K 25 mM Tris; 40 mM ε-aminocaproic acid; pH 9.4; 20% Methanol 

 

 

4.13.7.1 Staining membranes with Ponceau S 

 

For detection of proteins on the membrane after transfer manipulations, the membranes 

were incubated in Ponceau S solution for 15 min at room temperature under constant 

agitation. The membranes were rinsed in water and the position of proteins and molecular 

weight standard were marked. 

 

Ponceau S solution 0.2% (w/v)  Ponceau S      

   1.0%   acetic acid 

 

 

4.13.8 Immunodetection of proteins in Western blot using horseradish peroxidase-

conjugated antibodies 

 

After electrophoretic transfer of proteins, nitrocellulose membranes were blocked with 5% 

milk/TBST for 1 hr at room temperature and then incubated with the first antibodies (Gin 

rabbit polyclonal antibodies or mouse His-tag specific antibodies) diluted to the desired 
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concentration in 5% milk/TBST for 2 hr at room temperature or overnight at 4°C. After 3x 

washing for 10 min in 1% milk/TBST the membrane was incubated with the secondary 

antibody (anti-rabbit or anti-mouse IgG peroxidase-conjugated antibodies, Sigma) diluted 

in 1% milk/TBST at RT for 30 min. Afterwards the membrane was washed 3x for 15 min 

with 1% milk/TBST and once with TBS. Detection was performed with the ECL Plus 

Detection Kit (Amersham) using the manufacturer protocol, or in a mixture of solutions 1 

and 2 (1:1) by incubation for 1 min. Then the filters were exposed with X-ray films 

(Hyperfilm; Amersham). Autoradiograms were digitised with the NIH-IMAGE software 

and quantified.  

To verify the data all experiments were repeated at least three times. 

 

TBST buffer 

50 mM Tris-Cl, pH 7.5 

150 mM NaCl 

0,1% Tween 20 

TBS buffer 

50 mM Tris-Cl, pH 7.5 

150 mM NaCl 

 

 

Developing solutions: 

 
Solution 1 

2.5 mM luminol (in DSMO) 

0.4 mM p-coumaric acid (in DMSO)  

0.1 M Tris-HCl, pH 8.5 

Solution 2 

5.4 mM H2O2

0.1 M Tris-HCl, pH 8.5 

 

 

 

4.13.9 Beads-experiment 

 

Biotinylated 156 bp PCR fragments containing gix site (4.10.2) were immobilised to the 

magnetic streptavidin-covered beads (Dynal®) according to the protocol of the 

manufacturer. Binding of Gin protein to the DNA fragment was performed in the 1x 

binding and washing (B&W) buffer at 37oC for 10 min followed by 3 washing steps with 

100 µl of 1x B&W buffer. As a result complexes were obtained where one Gin dimer was 

bound to the gix site of each fragment. Then G10 chimera and ISXc5 resolvase proteins 

were added each bound to the 44 bp DNA fragment carrying ISXc5 res subsite I. After 

incubation at 37oC for 30 min all liquid supernatants were removed and beads were washed 



MATERIALS AND METHODS 122 

3 times with 50 µl of 1x B&W buffer in order to remove all unbound proteins (in the case 

of G10 and ISXc5 the supernatants were kept for the comparison of the amounts of 

unbound proteins). In the next step biotin-streptavidin interactions on the beads were 

destroyed by incubation of the samples at the 95oC for 5 min in the buffer containing SDS 

and β-Mercaptoethanol and the beads were separated from the reaction mix by short 

centrifugation. Aliquots of supernatants were loaded on the denaturing PAA gel and 

analysed by Western blot using the His-tag-specific antibodies. 

 

2x Binding and washing  10 mM Tris-HCl pH 7.5 

(B&W) buffer    1 mM EDTA 

     2 M NaCl 
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5. SUMMARY 

 

The Gin inversion system of bacteriophage Mu requires the formation of a synaptic 

complex of unique topology, where the two Gin dimers bound at the recombination gix 

sites are interacting to form an enzymatically active tetramer, which then catalyses the site-

specific recombination reaction. After the assembly of the synaptic complex the DNA 

strand cleavage is activated by the DNA-bending protein FIS bound at the recombinational 

enhancer sequence. During reaction the complex undergoes conformational changes 

resulting in a site-specific inversion of a DNA segment in the phage Mu genome. 

In this thesis the protein interactions in the synaptic complex were analysed. First, the 

question on the interactions between FIS and Gin during formation of the synaptic complex 

was addressed. In a genetic test system a mutant fisS14P has been selected that can rescue 

the recombination-deficient phenotype of the mutant Gin H106T. FIS S14P was shown to 

activate the Gin H106T mutant in vivo but not in vitro. The possible reasons are the 

differences in the in vivo and in vitro conditions, and the observed altered DNA bending 

ability of the FIS S14P mutant. The position of the mutation S14P in the “β-hairpin arm” of 

the FIS N-terminus suggests it could directly interact with the hydrophobic dimerisation 

interface of Gin around the position H106. 

 Next, the predictions of the preliminary model of the Gin invertasome organisation have 

been verified and the catalytic domains of Gin were demonstrated indeed to be involved in 

tetramer formation. To do this, specific mutations at the proposed synaptic interfaces were 

introduced and biochemical studies of different mutants of Gin invertase affected in their 

ability to promote synapsis were performed. It was possible to show that in addition to the 

already identified surfaces of the Gin dimer-dimer interactions, comprising of the αE helix 

and the flexible loop between the β2 sheet and the αB helix of Gin, also the αD helix and 

the loop between αA helix and β2 sheet are involved in the stabilisation of the Gin 

tetramer. Cysteine substitutions placed on these surfaces could be efficiently cross-linked in 

the tetramer in the presence of DNA and FIS, indicating their close proximity in the 

synapse.  

Furthermore, Gin mutants with either increased or decreased tetramerisation abilities were 

isolated and characterised, and the effects of these mutations on recombination were 

studied. These data led to the notion that the tetramer structure should be flexible, since all 

mutations that stabilise the complex cause inversion deficiency. In turn, the complexes 
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formed by the hyperactive mutants seem to have high conformational flexibility, although 

at the expense of the loss of specificity. Notably, introduction of substitutions that stabilise 

the Gin tetramer also lead to suppression of hyperactive features. 

A chimeric recombinase protein, containing the N-terminal catalytic domain from Gin and 

the DNA-binding domain of ISXc5 resolvase, was found to form a more stable tetramer 

complex, than Gin. The chimera ISXc5G10 is inversion deficient, but can still catalyse 

resolution. Again, these observations support the notion that the stabilisation of the tetramer 

can strongly impair the ability to catalyse inversion, but may have less effect on the 

resolution activity. The DNA-binding domain of ISXc5G10 chimera was mutagenised to 

obtain a protein with an inversion proficient phenotype, but no mutants of this type could 

be found, perhaps because in the chimera not only the DNA binding domain, but the gross 

organisation of the protein is different.  

 
Thus, according to the obtained data the Gin dimers bound to the recombination sites are 

interacting with each other via catalytic domains and recombination involves gross 

reorganisations of contact surfaces. The obtained results allowed to clearly distinguish 

between the two previously proposed mechanistically different models of recombination 

(the "subunit exchange" and "static subunits" models), and favour the “subunit exchange" 

model. Such a model serves as a useful working hypothesis for future experiments 

dedicated to the detailed understanding of the mechanism of recombination reaction 

catalysis by members of the serine recombinase family. 
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