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 I

SUMMARY 
 

Unprecedented pressure on the physical, chemical and biological systems of the Earth results in 

environment problems locally and globally, therefore the detection and understanding of 

environmental change based on long-term environmental data is very urgent. In developing 

countries/regions, because the natural resources are depleted for development while environmental 

awareness is poor, environment is changing faster. The insufficient environmental investment and 

sometimes infeasible ground access make the environment information acquisition and update 

inflexible through standard methods. With the main advantages of global observation, repetitive 

coverage, multispectral sensing and low-cost implementation, satellite remote sensing technology is a 

promising tool for monitoring environment, especially in the less developed countries. 

 

Multi-sensor satellite images may provide increased interpretation capabilities and more reliable 

results since data with different characteristics are combined and can achieve improved accuracies, 

better temporal coverage, and better inference about the environment than could be achieved by the 

use of a single sensor alone. The objective of this thesis is to demonstrate the capability and technique 

of the multi-sensor satellite data to monitor the environment in developing countries. Land cover 

assessment of Salonga national park in the democratic republic of Congo of Africa, desertification 

monitoring in North China and tropical/boreal wildland fire detection in Indonesia/Siberia were 

selected as three cases in this study for demonstrating the potential of multi-sensor application to 

environment monitoring.  

 

Chapter 2 demonstrates the combination of Landsat satellite images, Global Position System (GPS) 

signals, aerial videos and digital photos for assessing the land cover of Salonga national park in 

Congo. The purpose was to rapidly assess the current status of Salonga national park, especially its 

vegetation, and investigated the possible human impacts by shifting cultivation, logging and mining. 

Results show that the forests in the Salonga national park are in very good condition. Most of the area 

is covered by undisturbed, pristine evergreen lowland and swamp forests. No logging or mining 

activity could be detected.  

 

Chapter 3 demonstrates the one full year time series SPOT VEGETATION with coarse resolution of 1 

km and the ASTER images with higher resolution of 15 meters as well as Landsat images for land 

cover mapping optimised for desertification monitoring in North-China. One point six million km2 

were identified as risk areas of desertification. Results show within a satellite based multi-scale 

monitoring system SPOT VEGETATION imagery can be very useful to detect large scale dynamic 

environmental changes and desertification processes which then can be analysed in more detail by 

high resolution imagery and field surveys. 



 II

Chapter 4 demonstrates the detection of tropical forest fire and boreal forest fire. Firstly, the 

ENVISAT ASAR backscatter dynamics and ENVISAT full resolution MERIS characteristics of fire 

scars were investigated in Siberian boreal forest, and results show these two sensors are very useful for 

fire monitoring and impact assessment. Secondly, the general capability and potential of ENVISAT 

multi-sensor of MERIS, AATSR, ASAR as well as NOAA-AVHRR and MODIS for tropical forest 

fire event monitoring and impact assessment in tropical Indonesia were investigated, and results show 

the capability of ENVISAT to acquire data from different sensors simultaneously or within a short 

period of time greatly enhances the possibilities to monitor fire occurrence and assess fire impact. 

Finally, the multi-sensor technology was applied to the disastrous boreal forest fire event of 2003 

around East and West Lake Baikal in Siberia, and results show that 202,000 km2 burnt in 2003 within 

the study area of 1,300,000 km2, which is more than the total burnt area between 1996-2002. 71.4% of 

the burnt areas were forests, and 11.6% were wetlands or bogs. In total 32.2% of the forest cover has 

been burnt at least once from 1996 to 2003, 14% of the area has been affected at least twice by fire. 

 

These demonstrations show that in spite of the two disadvantages of indirect satellite measurements 

and the difficulty of detecting the cause of environment change, multi-sensor satellite technology is 

very useful in environment monitoring. However more studies on multi-sensor data fusion methods 

are needed for integrating the different satellite data from various sources. The lack of personnel 

skilled in remote sensing is a severe deficiency in developing countries, so the technology transfer 

from the developed countries is needed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 III

ACKNOWLEDGEMENTS 
 

 

I am very grateful to many individuals who have helped and supported me through my doctoral study 

in Munich University (Ludwig-Maximilians-Universität München, LMU). First of all, I would like to 

express my thanks to professor Dr. Florian Siegert for advising this thesis and mentoring me 

throughout my three years at Munich university and remote sensing solutions Gmbh. Were it not for 

his excellent guidance and encouragement, his patience in discussing my questions, his original 

suggestions for some solutions during my Ph.D. work, I would not have finished the Ph.D. work 

smoothly. His broad knowledge and deep insights have been an important resource to my 

accomplishment. 

 

I would like to thank ESA/ESRIN for free ENVISAT data provision in the framework of ENVISAT 

AO 689 (08-03/ENVISAT-Siberia), to the EU 5th Framework Programme (INCO-DEV project 

STRAPEAT) for field data collection in Indonesia, to European Commission Joint Research Centre 

for SPOT VEGETATION data provision. Additionally, thanks to Don Cahoon for providing data for 

the comparative assessment of the 1987 fires and Chris Schmullius for providing forest cover maps. 

 

How to thank the many colleagues in the company of remote sensing solutions Gmbh who have 

helped me in very substantial ways? Ruth Leska, Andreas Langner, Annette Bechteler, Oelaf Kranz, 

Robert Lanz, Stefan Einsiedel, Cornelia Merk, Jukka Miettinen, Michael Schulze-Horsel have helped 

me so much in both research work and daily life. In processing data, searching literatures, repairing 

hardware/software, visa application, living place searching, they provided unbelievable help in all 

aspects. My work and life here in Germany would have been a hundred times harder if not for their 

excellent contributions. Special thanks to René Beuchle, who is now in Global Vegetation Monitoring 

Unit (GVM) of Institute for Environment and Sustainability (IES) in Joint Research Centre of the 

European Commission (JRC), for his advice and help before he left the company. Thanks also to Dr. 

Steffen Kuntz for his initial help when I began the study. 

 

Throughout my time at Munich, I have had several very positive interactions with other scientists who 

helped me in project implement, publication cooperation, course training, data dissemination, ground 

survey and academic conference. Thanks to all these people: Claudia Roeben (Zoology institute, 

Department Biologie II, Munich university, Germany), Claudius Mott (Lehrstuhl für 

Landnutzungsplanung und Naturschutz der Technical university Munich, Limnologische Station 

Iffeldorf, Germany), Gernot Ruecker (ZEBRIS GbR, Germany), Johann G. Goldammer (The Global 

Fire Monitoring Center, Fire Ecology Research Group, Max Planck Institute for Chemistry, Germany), 

Anatoly Sukhinin (Sukachev Institute of Forest Research Akademgorodok, Krasnoyarsk, Russia), Adi 



 IV

Jaya ( University of Palangka Raya, Indonesia), Hans-Jurgen STIBIG and Etienne Bartholome (Joint 

Research Centre of the European Commission, Italy), Sabrina Bonaventura (Europeau Space Agency, 

Italy), Maurizio Santoro (Institute of Geography, Department of Geoinformatics, Friedrich-Schiller-

University Jena, Germany), Andreas Wimmer (Joannum Research, Institute for Digital Image 

Processing, Austria), Lenny Christy and Nanang Hayani (Integrated Forest Fire Management Project 

(IFFM)/GTZ, Indonesia). Thanks also to my former Chinese supervisor and colleague, professor Jiulin 

Sun and Mrs. Yanzhen Yue (Geography institute of Chinese Academy of Sciences) and professor 

Zengyuan Li (Chinese Academy of Forestry). 

 

Last but definitely not least, many many thanks to family, relatives and friends.  To my wife for her 

genuine love, her unselfish support and her hard but excellent care for our daughter while I am far 

away from home. Without her position as a backbone in our family in remote China, it is impossible 

for me to finish the thesis. To my father and mother in law for their encouragement and support in 

these three years. To my foreign friends Alexander, Noemi, Christopher as well as Chinese friends 

Zhu Hao, Zhou Jiayang, Yang Feikun, Zhu Feng and so on for their friendship. 

  

I dedicate this thesis to my family and friends for their love and support. May all the nice people who 

are acknowledged here be happy every day. 

 

 

 

 

 

 

 

 

                                                                                                                                      20 December 2004 

 

 
                                                                                                                                        Shengli Huang 

 



 V

TABLE OF CONTENTS 

SUMMARY ....................................................................................................................I 

ACKNOWLEDGEMENTS .......................................................................................III 

TABLE OF CONTENTS ............................................................................................ V 

CHAPTER 1---INTRODUCTION.............................................................................. 1 
1-1. Environmental monitoring by satellites ................................................................................... 1 
1-2. Land cover................................................................................................................................ 7 
1-3. Desertification.......................................................................................................................... 8 
1-4. Fire......................................................................................................................................... 11 
1-5. Summary................................................................................................................................. 13 
1-6. References .............................................................................................................................. 16 

CHAPTER 2---MULTISOURCE DATA COMBINATION FOR THE 
ASSESSMENT OF SALONGA NATIONAL PARK.............................................. 24 

2-1. Introduction............................................................................................................................ 24 
2-2. Materials and methods........................................................................................................... 27 
2-3. Results .................................................................................................................................... 31 
2-4. Summary and discussion........................................................................................................ 35 
2-5. Acknowledgements ................................................................................................................. 36 
2-6. References .............................................................................................................................. 36 

CHAPTER 3---LAND COVER CLASSIFICATION OPTIMIZED TO DETECT 
AREAS AT RISK OF DESERTIFICATION IN NORTH CHINA BASED ON 
SPOT VEGETATION IMAGERY ........................................................................... 38 

3-1. Introduction............................................................................................................................ 38 
3-2. Material and methods ............................................................................................................ 41 
3-3. Results .................................................................................................................................... 44 
3-4. Discussion .............................................................................................................................. 51 
3-5. Acknowledgements ................................................................................................................. 53 
3-6. References .............................................................................................................................. 53 

CHAPTER 4---MULTI-SENSOR SATELLITE DATA FOR FIRE 
MONITORING AND IMPACT ASSESSMENT IN INDONESIA AND SIBERIA
....................................................................................................................................... 57 

CHAPTER 4.1---OBSERVATION OF SIBERIAN FIRE-DISTURBED FORESTS IN 
ENVISAT ASAR WIDE SWATH IMAGES................................................................................. 58 

4.1-1. Introduction..................................................................................................................... 58 
4.1-2. Materials and Methods ................................................................................................... 60 
4.1-3. Results ............................................................................................................................. 62 
4.1-4. Discussion ....................................................................................................................... 69 
4.1-5. Acknowledgements .......................................................................................................... 71 
4.1-6. References ....................................................................................................................... 71 

CHAPTER 4.2---FOREST FIRE SCAR DETECTION IN SIBERIA USING ENVISAT 
MERIS.............................................................................................................................................. 75 

4.2-1. Introduction..................................................................................................................... 75 
4.2-2. Materials and Methods ................................................................................................... 77 
4.2-3. Results ............................................................................................................................. 82 
4.2-4. Discussion ....................................................................................................................... 87 
4.2-5. Acknowledgements .......................................................................................................... 89 
4.2-6. References ....................................................................................................................... 89 



 VI

CHAPTER 4.3---ENVISAT MULTISENSOR DATA FOR FIRE MONITORING AND 
IMPACT ASSESSMENT................................................................................................................ 93 

4.3-1. Introduction..................................................................................................................... 93 
4.3-2. Methods........................................................................................................................... 94 
4.3-3. Results ............................................................................................................................. 95 
4.3-4. Discussion and conclusion.............................................................................................. 98 
4.3-5. Acknowledgements .......................................................................................................... 99 
4.3-6. References ....................................................................................................................... 99 

CHAPTER 4.4---EXCEPTIONALLY LARGE FIRE DAMAGE BY LARGE-SCALE 
WILDFIRES IN SOUTHERN SIBERIA IN 2003 ..................................................................... 101 

4.4-1. Introduction................................................................................................................... 101 
4.4-2. Materials and methods.................................................................................................. 103 
4.4-3. Results ........................................................................................................................... 105 
4.4-4. Discussion ..................................................................................................................... 113 
4.4-5. Acknowledgements ........................................................................................................ 115 
4.4-6. References ..................................................................................................................... 115 

CHAPTER 5---SUMMARY AND DISCUSSION ................................................. 119 
References ................................................................................................................................... 123 

APPENDIX................................................................................................................ 125 
Appendix 1--- Some popular satellite sensors in land application.............................................. 125 
Appendix 2---Image-based ground reflectance retrieval from the ASTER measurement ........... 128 

ABBREVIATION ..................................................................................................... 141 

PUBLICATIONS ...................................................................................................... 143 

CURRICULUM VITAE........................................................................................... 144 

EHRENWÖRTLICHE VERSICHERUNG........................................................... 147 



Chapter 1---Introduction 

 1

CHAPTER 1---INTRODUCTION 
 

 

Environmental monitoring at all geographical scales is urgently needed for 

understanding the environmental change caused by the unprecedented pressure on the Earth, 

especially in developing countries. With the main advantages of global observation, repetitive 

coverage, multispectral sensing and low-cost implementation, satellite remote sensing technology 

is a promising tool for monitoring environment. However, for many applications the information 

provided by individual sensors are incomplete, inconsistent, or imprecise while multi-sensor 

satellite images are more useful because multi-sensor images give a more complete view of the 

observed objects in spectral, spatial and temporal dimension. The objective of this thesis was to 

investigate the potential of multisensor satellite remote sensing to monitor and assess the 

changing environment in developing countries. The thesis focused on three different issues of 

global importance:  land cover mapping, desertification monitoring, and wildland fire detection. 

 

1-1. Environmental monitoring by satellites 
 

Over the last 200 years, unprecedented pressure has resulted in environmental problems on the 

physical, chemical and biological systems which support life on Earth (Singh, 1996). The increasing 

pace and extent of environmental change over the last decades of the 20th century has given a new 

urgency and relevance to the detection and understanding of environmental change (Parr et al., 2003). 

Concerns over issues such as biodiversity loss, atmospheric pollution, desertification, global fire 

burning, land use change, sustainable development and climate change have highlighted the need for 

environmental monitoring (Urquhart et al., 1998; Oldfield and Dearing, 2003). Jacobson and Price 

(1990) identified seven topics of research central to understanding the interactions of human activities 

and the environment and stated: "Research must be conducted at all geographical scales and should 

include the past as well as the present and the future." This task is especially important in developing 

countries. 

 

Developing countries/regions account for nearly 80% of the human population in the world. The 

challenge for the developing countries clearly lies in the economic development and poverty 

alleviation but not in the protection of the environment. The poor people depend on natural resources 

for their livelihoods while there is rarely environmental awareness, thus resulting in the depletion of 

natural resources and damage to the environment (Wehrmeyer and Mulugetta, 1999). For example 

nearly 14 million hectares of natural tropical forests are destroyed every year mainly in tropical 

developing countries (Wehrmeyer and Mulugetta, 1999). This massive and irreversible destruction is 

mainly due to the expansion of the agricultural frontier in order to accommodate growing numbers of 
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people in extreme poverty or agricultural production for the rich countries (Centeno, 2002). To know 

the environment status and protect it, long-term data, including the environmental information of 

where, when, what, how and why, are required and need to be updated frequently. 

 

A wealth of high-quality long-term data about the environment are being gathered worldwide and 

these data are vital for informing us about the state of the Earth’s terrestrial land. Environment change 

quickly with the human activities, and most environmental monitoring applications hinge on the 

timely availability of data on the state and evolution of the system of interest (Verstraete et al., 1996). 

However, due to the poor environmental awareness, fund shortage and technological obstacles, the 

environment monitoring in developing countries/regions is far away from the need, and sometimes the 

unstable political situation such as war hinders the monitoring activities in situ (Wehrmeyer and 

Mulugetta, 1999), therefore the environmental data are always absent and difficult to update. 

 

Satellite remote sensing technology provides a promising tool for environmental monitoring, 

especially in developing countries. On 4 October 1957, the form Soviet Union launched the first 

successful Earth satellite, Sputnik 1, and provided first space views of our planet's surface and 

atmosphere. After 123 days the first successful U.S. satellite, Explorer 1, was launched. On 23 July 

1972 Landsat 1, called Earth Resources Technology Satellite (ERTS), was launched. Landsat program 

was designed for land remote sensing with extremely high resolution with 80 m in first satellite and up 

to 30 m and 15 m in the lasted one. Since 1972 when the first of the Landsat series of satellites was 

launched, the science of remote sensing has developed rapidly and plentiful satellite systems have 

been launched. Stoney (2002) summarized the technical characteristics of 31 land observation 

satellites by the year 2000 and described the 37 satellites planned for the period from 2000 through 

2006.  

 

Satellite remote sensing is the science and art of obtaining information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with the object, 

area, or phenomenon under investigation (Lilesand and Kiefer, 1994). Remote sensing depends upon 

measuring some kind of energy that is emitted, transmitted, or reflected from an object in order to 

determine certain physical properties of the object (Lilesand and Kiefer, 1994). Although detailed 

measurements could and should be acquired in situ, remote sensing from space platforms appears to be 

the only economically feasible way to repetitively gather information over large areas with a high 

spatial, spectral, and temporal resolution (Verstraete et al., 1996). Various international committees 

have identified satellite remote sensing as a unique and essential tool to repetitively acquire 

environmental data at spatial, temporal, and spectral resolutions appropriate to investigate 

environmental issues (IGBP, 1992).  
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Depending on the particular needs, data can be acquired over a range of spatial scales from local to 

global, with a spatial resolution of 1 m to 100 km. Some of these data have been acquired over a 

period of many years with a temporal resolution from hours to a few weeks, in a variety of spectral 

bands. It is becoming increasingly recognized that remote sensing in conjunction with ground-based 

observations would provide the best approach to implement some environmental activities (Singh, 

1996). The United Nations Conference on Environment and Development (UNCED) clearly envisaged 

that: “Countries and international organizations should make use of new techniques of data collection, 

including satellite based remote sensing.” (UNCED, 1992). It is the advantage of satellite remote 

sensing technique that makes it promising in environmental monitoring.  

 

Remotely sensed satellite data and images of the Earth have several important advantages 

compared to ground observations:  

1.) Synoptic view to achieve global observation. Satellite images are ‘big-picture’ views of 

large areas of the surface, which may be difficult (slow, expensive, dangerous, politically 

awkward) to measure in situ, in a short period of time, allowing a virtually instantaneous 

‘snapshot’ to be obtained. It is the only practical way to obtain data from inaccessible 

regions, e.g. primitive forest. The positions, distribution, and spatial relationships of 

features are clearly evident from space.  

2.) Repetitive coverage to obtain uniform and reproducible, periodical and continuous 

observation. Repeated images of the same regions, taken at regular intervals over periods 

of days, years, and decades, provide data bases for recognizing and measuring 

environmental changes. This is crucial for understanding where, when, and how the 

modern environment is changing.  

3.) Multispectral data. Satellite sensors are designed to operate in many different portions of 

the electromagnetic spectrum. Ultraviolet, visible, infrared, and microwave energy coming 

from the Earth's surface or atmosphere contain a wealth of information about material 

composition and physical conditions.  

4.) Low-cost data. Near-global, repetitive collection of data is far cheaper using satellite 

sensors than collecting the same type and quantity of data through conventional ground 

surveys. It is a relatively cheap and rapid method of acquiring up-to-date information over 

a large geographical area and constructing base maps in the absence of detailed land 

surveys.  

5.) Digital processing. Most remote sensing systems now generate digital data which can be 

easily manipulated in a computer and combined with other geographic coverage in the 

Geographical Information System (GIS) as well as being shared.  

6.) Feasible validation. The satellite measurements can be calibrated by using simultaneously 

observed ground truth data.  
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All these advantages prompt the satellite remote sensing to be used widely. In many different 

research fields satellite remote sensing has been applied to monitor and assess the status and condition 

of the environment. The terrestrial sciences community has made extensive use of satellite image data 

for mapping land cover, estimating geophysical and biophysical characteristics of terrain features, and 

monitoring environment changes. Ehrlich et al. (1994) reviewed many of the reported findings 

associated with defining the capabilities of National Oceanic and Atmospheric Administration’s 

(NOAA) AVHRR 1 km data to provide global land cover information; Goward (1989) discussed the 

current and future role of satellite image data for contributing to studies of bioclimatology; Tucker et 

al. (1991) used coarse-resolution satellite image data for monitoring continental-scale climate-related 

phenomena; Colwell and Sadowski (1993) used high-resolution satellite data for monitoring regional 

patterns and rates of forest resource utilization; Freeman and Fox (1994) discussed the semi-

operational use of satellite image data by several forest assessment programs.  

 

Satellite data have been used in many earth observation programmes. In 1983, the planning for the 

National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) began. In 

1988 and 1989 an announcement of opportunity was issued (Asrar and Dokken, 1993). Following this 

activity, many sensors are operational such as Moderate Resolution Imaging Spectroradiometer 

(MODIS), Advanced Spaceborne Thermal Emission and Reflection (ASTER) etc. Using the available 

satellite data, humans understand the environment of our Earth much better than before. At global 

scale, Intergovernmental Panel on Climate Change (IPCC) takes seven major geophysical and 

biological phenomena to monitor: water and energy cycles, oceans, chemistry of the troposphere and 

lower stratosphere, land surface hydrology and ecosystem processes, glaciers and polar ice sheets, 

chemistry of the middle and upper stratosphere, and solid earth. Satellite data are key information for 

these activities (Hobish, 2002). The central goal of the United States Global Change Research 

Program (USGCRP) is to establish the scientific basis in support of national and international policy-

making relating to natural and human-induced changes in the global Earth system with satellite as a 

key information source (Running et al., 1994; CEES 1992). In addition, coarse resolution satellite data 

have been used extensively to map global or regional land cover using Advanced Very High 

Resolution Radiometer (AVHRR), MODIS, SPOT VEGETATION etc. (Cihlar, 2000; DeFries and 

Townshend, 1999; Loveland et al., 2000; Hansen et al., 2000; Friedl et al., 2002; Strahler et al., 1999). 

At regional or country scale, the National Land Cover Project of China collected Landsat 7 ETM+ 

images acquired in 1999 and 2000 and generated a thematic map of land cover/use with 25 types at a 

scale of 1:100,000 (Boles et al., 2004). 

 

Currently there are hundreds of instruments (approximately 320 to be investigated by author) 

available for studying the Earth including land, ocean, atmosphere etc. (Appendix 1 lists some most 

widely used sensors in land applications). These satellite sensors can be categorized as Landsat-like 
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(having the middle resolution, broad area and multispectral coverage characteristic of the current 

satellites as Landsat, SPOT), High Resolution (providing an order of magnitude improvement in 

ground resolution, at the expense of less area and multispectral capability), Hyperspectral (providing 

near continuous radiometry over the visible, near infrared and short wave infrared spectrum.), and 

Radar (all weather capability) systems (Stoney, 2002). Each sensor has its own characteristics in 

ground resolution, temporal resolution, spectral resolution, coverage swath and so on. Fig. 1-1, Fig. 1-

2 and Fig. 1-3 illustrate these different parameters. 

 

 
Fig. 1-1. Difference in coverage and resolution of the selected satellites sensors (Source: Stoney, 2002) 

 

 

 
 

Fig. 1-2. An example showing repeat frequency over a randomly selected 100-day period (Source: Stoney, 

2002) 
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Fig. 1-3. Resolution of each band listed under their Landsat 7 band counterparts (Source: Stoney, 2002) 
 

The combination of these parameters results in advantages and disadvantages of each sensor in 

different applications. For example, optical image is very vivid for ground surface, but cloud and haze 

impede its application. High ground resolution satellite images normally can detect the Earth surface 

in detail, but the long repeat cycle and narrow coverage swath are commonly not suitable for real-time 

monitoring and large scale mapping. Visible and near infrared bands are good for vegetation 

monitoring, but surface temperature and fire detection can be better achieved from thermal bands.  

 

Because of the limited capability of single sensor in the dimension of ground resolution, spectral 

coverage, wide swath and repeat cycles, the information provided by individual sensors are 

incomplete, inconsistent, or imprecise for many applications (Varshney, 1997; Hall and Llinas, 1997; 

Pohl and Genderen, 1998). Many studies show that multi-sensor satellite images are more useful in 

environment monitoring including land cover, desertification monitoring and fire detection because 

multi-sensor images vary in spectral, spatial and temporal resolution and give a more complete view of 

the observed objects. In recent years multi-sensor data fusion has been extensively investigated by 

researchers in remote sensing (e.g. Haack and Bechdol, 1999). It was demonstrated that multi-sensor 

fusion techniques could be used to improve rectification accuracies, to depict greater cartographic 

detail, and to enhance spatial resolution in multi-sensor image data sets (Ehlers, 1991). The reason for 
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the success is that multi-sensor fused images may provide increased interpretation capabilities and 

more reliable results since data with different characteristics are combined and can achieve improved 

accuracies and better inference, by decreasing the uncertainty related to the single sources, about the 

environment than could be achieved by the use of a single sensor alone (Simone et al., 2002; Clement 

et al., 1993; Pohl and Genderen, 1998; Ma, 2001). Kalluri et al. (2003) compared the characteristics of 

different Earth observing satellite instruments that have potential use in application development for 

decision makers at the state/local and tribal level. 

 

In all these satellite-based environmental monitoring activities, land cover/use, desertification 

monitoring, wildland fire events are three important topics. These three topics were selected as the 

case studies in this thesis. 

 

1-2. Land cover 
 

Land cover is an important variable in many Earth system processes (Fig. 1-4). Many general 

circulation and carbon exchange models require the vegetation cover as a boundary layer necessary to 

run the model (Sellers et al., 1997). Vegetation also represents an important natural resource for 

humans and other species, and quantifying the types and extent of vegetation is important to resource 

management and issues regarding land cover change (Townshend, 1992). The multitemporal coverage 

provided by satellite data facilitates the use of remote sensing images to monitor changes in land cover 

and land use over time. 

 

Fig. 1-4. Land cover is an important issue of Earth environment. This figure shows the distribution of 

forest (green), shrub (brown), desert (grey), grass and crops (yellow), ice (white) etc. on the Earth.  
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With increasing frequency, remotely sensed data sets have been used to classify global as well as 

regional and local land cover. The primary goals in developing these land cover products are to meet 

the needs of the modelling community and to attempt to better understand the role of human impacts 

on Earth systems through land cover conversions. Recent work in classifying regional, continental and 

global land cover has seen the application of multi-temporal remotely sensed data sets, which describe 

vegetation dynamics by viewing their phenological variation throughout the course of a year (Verhoef 

et al., 1996; Cihlar, 2000; DeFries and Townshend, 1999). Some continental scale classifications of 

land cover were produced using this approach (e.g. Tucker et al. 1985; Townshend et al., 1987; Stone 

et al., 1994). For global land cover, DeFries and Townshend had derived a one by one degree map 

(DeFries and Townshend, 1994) and as well as an 8 km map using AVHRR data (DeFries et al., 

1998). The current global land cover products are much finer in resolution (Dickinson, 1995). As the 

resolutions of global data sets become finer, the ability to monitor short-term human-induced land 

cover changes has increased. Sensors such as the MODIS have resolutions sufficient enough to allow 

for global depictions of land cover change. Establishing a global baseline for land cover at 1 km is an 

important step to understand how change can be depicted with newer sensors. 

 

A 1 km resolution data set employing AVHRR data has been developed based on the 

recommendations from the International Geosphere Biosphere Programme (IGBP) for use in global 

change research (Townshend, 1992). Loveland et al. (2000) had produced a 1 km resolution global 

land cover layer with 17 classes, named the IGBP DISCover product, where each continent was 

classified separately and then stitched together. They used 12 monthly Normalized Difference 

Vegetation Index (NDVI) values in an unsupervised clustering algorithm that was supplemented with 

ancillary data analysis. (To measure and map the density of green vegetation across the Earth's 

landscapes, scientists use satellite sensors that observe the distinct wavelengths of visible and near-

infrared sunlight that is absorbed and reflected by the plants. Calculating the ratio of the visible and 

near-infrared yields a number from minus one -1 to plus one +1 named as Normalized Difference 

Vegetation Index. An NDVI value of zero means no green vegetation and close to +1 such as 0.8-0.9 

indicates the highest possible density of green leaves). The University of Maryland (UMD) produced 

global land cover classification with 14 classes (Hansen et al., 2000). The Boston University produced 

global land cover using both IBGP and UMD legend (Friedl et al., 2002; Strahler et al., 1999). The 

European Joint Research Center has coordinated the application of SPOT VEGETATION to map 

global land cover in a resolution of 1 km.   

 
1-3. Desertification 
 
Desertification refers to land degradation in arid, semi-arid, and dry sub-humid areas resulting from 

climatic variations and human activities. In the definition proposed by the UN Convention on 

Desertification (UNCOD), desertification is considered the result of a series of natural and 
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anthropogenic processes, leading to gradual environmental degradation or loss of the land’s biological 

or economic productivity (UNEP, 1994). Since UNCOD held in 1977 desertification has variously 

been viewed as one of the most pressing environmental issues affecting human kind (UNEP, 1987). 

The increasing rate of desertification on a global scale is one of the most pressing concerns among 

environmental scientists and laymen since it implies a clear manifestation of climatic change processes 

and human interaction on the environment (Collado et al., 2002). Desertification has been widely 

represented in the media and discussed by politicians, and has been seen as a major cause of human 

problems (Fig. 1-5): By the UNEP classification system, 41% of the Earth's land area is hyper-arid, 

arid, semi-arid or dry sub-humid (UNEP, 1992). UNEP estimated that 69% of the drylands, excluding 

the hyper-arid deserts, were already moderately to severely degraded by 1992 (Dregne et al., 1991). Of 

the more than 900 million inhabitants of drylands 135 million are considered at risk of collapse of 

their traditional land-use systems and episodic mass starvation continues to be a problem in Africa 

(Lean, 1998). According to UNEP over-grazing of rangelands is the most serious cause of 

desertification, accounting for 93% of the total 3,560,000 ha of degraded dryland and 55% of the total 

$42 US billion per year of foregone income (Kassas, 1995). 

 

  

 
Fig. 1-5. Desertification is a serious environmental problem around the world.  



Chapter 1---Introduction 

 10

 
While standard methods for undertaking such measurements are imperfect or expensive it has 

been demonstrated that, besides airborne systems for individual surveys on local to regional scale, 

several geostationary and polar-orbiting satellites (e.g., METEOSAT/GOES, NOAA-AVHRR, 

Landsat, SPOT-HRV and -VEGETATION, IKONOS) are available which operate in the reflective 

and emissive domain and offer a considerable potential. The various data sources available through 

remote sensing offer the possibility of gaining environmental data over both large areas and relatively 

long-time periods. Remote sensing systems, and in particular Earth observation satellites, provide 

significant contributions to desertification assessment and monitoring, particularly by providing 

methodological pathways for scaling up the results of field investigations and by supplying the spatial 

information needed for regional scale analysis of the relationships between climate change, land 

degradation and desertification processes. It seems obvious that the identification of degraded areas in 

the sense of environmental inventories provides the fundamental basis for better understanding the 

processes of land degradation and desertification in their spatial context.  

 

A wide range of processing techniques are available to discriminate changes in multitemporal data 

(Jensen, 1996). These properties enable the use of satellite remote sensing for monitoring trends of 

land degradation as well as to identify and characterize sand dunes and their temporal dynamism in the 

study of desertification (Verbyla, 1995; Chen et al., 1998; Smith et al., 1990a, b; Paisley et al., 1991; 

Tucker et al., 1991, 1994). The monitoring has been mainly based on the analysis of a time series of 

spectral vegetation indices (VIs). VIs are arithmetic transformations of spectral bands that emphasize 

vegetation over soil signals (Sellers, 1989). Usually, the red and infrared reflectances are combined 

(Tucker, 1979; Bannari et al., 1995) since in the red the vegetation strongly absorbs incident radiation 

(up to 90%, caused by the leaf pigments) while in the infrared green leaves are highly reflective due to 

leaf structure. This strong reflectance contrast is only observed in green vegetation, since bare soils 

present a similar reflectance in both bands (Mulders, 1987). In arid regions, multitemporal analysis of 

VIs have been applied to monitor soil degradation associated with cattle grazing (e.g. Pickup and 

Chewings, 1994), as well as to follow seasonal trends in vegetated dunes, discriminating the most 

degraded ones (Jacobberger and Hooper, 1991). There have also been some attempts to establish 

global scale models, relating temporal evolution of VI data to rainfall seasonality (Kerr et al., 1989). 

This approach has made it possible to monitor temporal changes in the desert boundary of the Sahel 

from the NOAA meteorological satellite (e.g. Tucker et al., 1991, 1994).  
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1-4. Fire 
 

 

 
Fig. 1-6. Fire is an important ecological factor influencing Earth environment 

 

In the past decades wildfires are becoming an increasingly important ecological factor which 

significantly influences the Earth’s environment and climate change. Fire is an important process 

within a significant number of terrestrial biomes, and the release of gases and particulate matter during 

biomass burning is an important contributor to the chemical reactions and physical processes taking 

place in the atmosphere (Fig. 1-6). Fires change the physical state of the vegetation, affect energy 

exchange, affect biodiversity and release a variety of harmful greenhouse gases into the atmosphere, 

which strongly influence chemical processes within the troposphere (Andreae, 1991; Barbosa et al., 

1999b). In tropical regions, biomass burning has been shown to strongly influence regional and global 

distributions of tropospheric ozone and has been related to acid deposition (Crutzen and Andreae, 

1990). In boreal forests, fire affects the flow of energy between the atmosphere and ground layer 

dramatically, and there is a dependence on the melting and formation of permafrost and the occurrence 

of fire, which in turn has a strong influence on the hydrology of these sites (Brown, 1983). On a global 

scale, fires are known to contribute significantly to the release of gases and aerosols into the 
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atmosphere, and to be a major disturbance to the vegetation cover. Biomass burning contributes up to 

50%, 40% and 16% of the total emissions of anthropogenic origin for carbon monoxide, carbon 

dioxide and methane respectively (Grégoire et al., 2003). The detection of fires and the assessment of 

their impacts on the vegetation are important to monitor and to model and predict global climate 

change (Page et al., 2002; Molion, 1991). 

 

Satellite remote sensing is able to provide essential information useful in fire monitoring and 

management as well as damage assessment. Remotely sensed data and techniques have been widely 

used to detect active fires and extract the desirable information of fire location, fire area extent, land 

cover types burnt by fire and geographical distribution of fires (Domenikiotis et al., 2002). Dwyer et 

al. (1999) demonstrated that satellite remote sensing is an efficient way for the detection of fire 

occurrence over a range of temporal and spatial scales which allow a detailed characterization of 

seasonal and inter-annual patterns of fire activity. Several techniques have been developed for using 

visible, infrared and thermal data to detect and map active fires and burn scars (Cahoon et al., 1992, 

1994; Kasischke and French, 1995a; Ahern et al., 2000). Many satellite sensors such as AVHRR, 

MODIS, Advanced Along-Track Scanning Radiometer [A(A)TSR], SPOT VEGETATION and 

European Remote-Sensing Satellite (ERS) are applied in burnt area identification (Kaufman et al., 

1998; Arino et al., 2001; Stroppiana et al., 2002; Tansey, 2002; Kasischke, 1993; Roy et al., 2002; 

Siegert and Rücker, 2000; Simon, 2002). 

 

Two general categories of products (Fire hot-spot detection and burn area maps) are typically 

derived in fire monitoring and assessment by satellites. The spectral density distribution of the 

vegetation fires whose temperature varies from 500 up to 1200 K occurs in the mid-wave infrared 

(MIR) wavelength region at 3-5 µm. According to Wien’s displacement law, 3-5µm is the main 

channel for fire hotspot detection. Optical burnt scar mapping is normally based on the reflectance 

change after the vegetation is burnt. Many studies were already conducted in the burnt area detection 

by AVHRR (e.g. Razafimpanilo et al., 1995; Barbosa et al., 1999a; Kasischke et al., 1993; Kasischke 

and French, 1995; Domenikiotis et al., 2002), MODIS (e.g. Roy et al., 2002), Landsat (e.g. Pereira 

and Setzer, 1993; Díaz-Delgado et al., 2003; Hudak et al., 2004; Bowman et al., 2003; Scholes et al., 

1996). The use of contextual algorithms that combines hot-spot detections with burnt area maps can 

improve the detection of active fires and area burnt estimation (Eva and Flasse, 1996). Fraser et al. 

(2000) presented a concise and thorough review of AVHRR fire detection and mapping work and 

describe a hybrid technique they have developed for fire mapping in Canada. Soja et al. (2004) and 

Sukhinin et al. (2004) derived the fire frequency, distribution, and area burnt in Siberia using AVHRR 

based on the similar hybrid technique. 
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Besides the optical data, SAR data are also widely used for fire scar mapping. One of the 

benefits of using SAR satellite for fire scar monitoring is that the microwave energy penetrates 

cloud cover. SAR backscatter intensity and interferometric coherence have been used in forest 

mapping and monitoring (e.g. LeToan et al., 1996; Wegmuller and Werner, 1995; Stussi et al, 

1997). These tests to analyse variations in radar image intensity associated with forest fires have 

been done in the boreal region (Kasischke et al., 1992; Bourgeau-Chavez et al, 1993; Kasischle et 

al., 1994; Dwyer et al. 2002; Bourgeau-Chavez et al., 1997; Ranson et al., 2002), in 

Mediterranean landscapes (Gimeno et al., 2002a, Gimeno et al., 2002b; Gimeno et al., 2003) and  

in the tropical rain forest (LeToan et al., 1996; Siegert et al., 1995; Kuntz et al., 1999; Siegert and 

Hoffmann, 2000). All of them found differences in the backscatter between undisturbed and fire-

disturbed areas. Originally it was hypothesized that the increase in radar backscatter within the 

burnt regions was due to an increase in dihedral scattering between tree trunks and the ground 

surface. However, latter experiments concluded that the differences in radar backscatter depend 

on the level of damage to the vegetation cover, and on the soil moisture, surface roughness, and 

topography (Kasischke et al., 1994).  

 

1-5. Summary 
 

Unprecedented pressure on the physical, chemical and biological systems of the Earth results in 

environment problems locally and globally (Singh, 1996), therefore the detection and understanding of 

environmental change is very urgent (Parr et al., 2003), which indicates long-term environmental data 

are required and needed to update frequently. With the main advantages of global observation, 

repetitive coverage, multispectral sensing and low-cost implementation, satellite remote sensing 

technology is a promising tool for monitoring environment, especially in developing countries where 

natural resources is depleted, environment is changing faster, environmental awareness is poor, 

environmental investment is insufficient, ground access is sometimes difficult and updated map is 

normally unavailable (Wehrmeyer and Mulugetta, 1999; Centeno, 2002). 

 

The analysis of satellite images acquired by different satellites with different spatial resolution and 

spectral sensitivity may provide increased interpretation capabilities and more reliable results since 

data with different characteristics are combined and can achieve improved accuracies and better 

inference about the environment than could be achieved by the use of a single sensor alone (Simone et 

al., 2002; Clement et al., 1993; Pohl and Genderen, 1998; Ma, 2001).  

 

The prospect of multi-sensor application to environmental monitoring is enhanced by more and more 

new satellite sensors which have been or will be available for Earth observations (Fig. 1-7). For 

example, ENVISAT, launched in 2002, carries ten sophisticated optical and radar instruments to 
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provide continuous observation of the Earth's land, atmosphere, oceans and ice caps. The largest single 

instrument onboard ENVISAT, Advanced Synthetic Aperture Radar (ASAR), ensures continuity of 

data after ERS-2, while the Medium Resolution Imaging Spectrometer (MERIS) measures the solar 

radiation reflected by the Earth at a ground spatial resolution of 300 m in visible and near infrared 15 

bands with global coverage of the Earth every 3 days. The Advanced Along Track Scanning 

Radiometer (AATSR), another sensor onboard ENVISAT, is to establish continuity of the ATSR-1 

and ATSR-2 data sets of precise sea surface temperature (SST), but it can also be used for wildland 

fire detection. In addition to these sensors onboard ENVISAT, the VEGETATION sensor, which is 

operational since April 1998, is conceived to allow daily monitoring of terrestrial vegetation cover 

through remote sensing at regional to global scales. The first VEGETATION instrument is part of the 

SPOT 4 satellite and a second payload, VEGETATION 2, is now operated onboard SPOT 5. Besides 

all these new European satellites and sensors, there are still other new sensors orbiting in space. 

ASTER, an imaging instrument that is flying on TERRA satellite launched in December 1999 as part 

of NASA's Earth observing system, is used to obtain detailed maps of land surface temperature, 

emissivity, reflectance and elevation. MODIS instrument provides high radiometric sensitivity in 36 

spectral bands ranging in wavelength from 0.4 µm to 14.4 µm. The first MODIS instrument is 

integrated on the TERRA spacecraft. The second MODIS flight instrument is integrated on the AQUA 

spacecraft which was successfully launched on 4 May 2002. All these instruments (ASAR, MERIS, 

AATSR, VEGETATION, ASTER, MODIS etc.) are offering unprecedented looks at terrestrial, 

atmospheric, and ocean phenomenology for a wide and diverse user communities. These sensors differ 

in the spatial, spectral, temporal dimension and width swath. How to combine these satellite data as 

well as the conventional sensors (e.g. Landsat, AVHRR) for environmental monitoring needs to be 

investigated. The objective of this thesis is to demonstrate the potential of multi-sensor satellite data to 

monitor the environment in developing countries. Land cover assessment in Salonga national park, 

desertification monitoring in North China, and tropical/boreal forest fire monitoring and impact 

assessment in Indonesia/Siberia are specially emphasized in this thesis.  

 

Salonga national park, an isolated region hardly accessible on ground, is a protection area for 

different animal species, especially the ape. In spite of its importance to natural conservation, little was 

known about the spatial distribution of vegetation types and human impacts, and the ongoing war 

impede the ground survey. Can we use multisource data to assess the land cover in a cost-effective 

way? 

 

China is one of the developing countries with vast desertified areas and desertification is very 

serious (Zha and Gao 1997). Considering the labour costs and financial constraints, multi-scale remote 

sensing monitoring system is needed (Li and Zhou, 2000). This means that the area at risk of 

desertification should be firstly identified from large scale area, and then these areas are analyzed in 

detail (Lin and Zhou, 2000; Sun and Chen, 2000; Sun and Zhou, 2000). Using a full year time series 
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daily SPOT VEGETATION images with ground resolution of 1 km, can we identify the prior area? Is 

such multi-scale monitoring system feasible?  

 

Indonesia and Siberia are two regions greatly affected by wildland fires. However, because of the 

could/haze, satellite overpass, fire spread dynamics, and ground resolution, the burnt area detection 

and impact assessment may not be satisfactory. Can we use the available data from those new sensors 

to identify the burnt area and assess the fire impact more efficiently ? 

 

 
Fig. 1-7. Satellite names of the principal vehicles from 2000 through 2006 (modified from  Stoney, 2002) 

 

In this thesis, Chapter 2 shows the combination of multi-sources data as optical high resolution 

Landsat satellite images, Global Position System signals, continuous aerial video, and digital photos 

for mapping and evaluating the Salonga national park in Congo of Africa. Chapter 3 shows the time 

series SPOT VEGETATION with coarse resolution of 1 km and the ASTER images with higher 
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resolution as well as Landsat images for land cover mapping optimised for desertification monitoring 

in North-China. Chapter 4 firstly investigates the characteristics of single ASAR and MERIS for fire 

scar detection, secondly investigates the potential of European ENVISAT multi-sensor of MERIS, 

AATSR, ASAR for tropical forest fire event monitoring and impact assessment in tropical Indonesia, 

and then finally applies these multi-sensor technology to the disastrous boreal forest fire event of 2003 

around East and West Lake Baikal in Siberia. 
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CHAPTER 2---MULTISOURCE DATA COMBINATION FOR 

THE ASSESSMENT OF SALONGA NATIONAL PARK  

 

The Salonga National Park (SNP) is the second largest tropical forest national park in 

the world and represents the largest area of protection for the bonobo apes. Up-to-date maps on 

land cover and vegetation status are not available and little is known about the spatial 

distribution of vegetation types and human impacts. The objective was to rapidly assess the 

current status of the SNP, especially its vegetation, and investigate the possible human impacts 

by shifting cultivation, logging and mining. SNP is located in a remote area and access on 

ground was very difficult due to dense forests and extensive swamps, satellite remote sensing 

images, aerial video and Global Position System (GPS) technologies were used to this study with 

the support of the Geographical Information System (GIS). Seven Enhanced Thematic Mapper 

images of Landsat were classified by the combination of automatical classification and visual on-

screen delineation in an established GIS. Eighteen GPS coordinates of interest points 

determined from Landsat images were selected in GIS for guiding the actual 1000 km flight 

route in aerial survey. The aerial video system time was synchronized to the GPS track of the 

flight route for positioning the digital video sequence used in accuracy assessment. Results show 

that the forest in the SNP is in very good condition. 98.5% of the SNP itself was covered by 

undisturbed, pristine evergreen lowland and swamp forests. No logging or mining activities were 

detected. However many human related land covers were found around the park and this 

indicates the SNP is currently under the threat from human beings. 

 

2-1. Introduction 
 

Salonga National Park (SNP) is located in the center of the Congo basin of the Democratic Republic 

of Congo and it lies in a large section of the central basin of the Zaïre River in Bandundu and Kasaï 

equatorial regions (1°00'S-3°20'S and 20°00'E-22°30'E), a very isolated region mainly accessible by 

water transport (Fig. 2-1). SNP is the second largest tropical forest national park in the world (next to 

the Tumucumaque Mountains National Park in Brazil which covers 38,700 km2) and represents the 

largest area of protection for the bonobo apes. This park was created in 1970 and became inscribed on 

the United Nations Educational, Scientific and Cultural Organization (UNESCO) “World Natural 

Heritage List” in 1984 and “List of World Heritage Sites in Danger” in 1999.  
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Fig. 2-1. Location of Salonga National park. It is located in the center of the Democratic Republic of 

Congo as well as in the Bonobo range and represents the largest area of protection for the Bonobo apes. 

Source: http://www.zoosociety.org/Conservation/Bonobo/BCBI/Salonga.php 

 

     The park covers about 36,000 km2 in two sectors of approximately equal size, separated by a 

corridor of about 45 km (Van Krunkelsven, 2001). The altitude of SNP is 350 meters to 700 meters 

rising from west to east. The climate is typically continental equatorial, hot and humid with mean 

annual precipitation of 2000 mm over most of the reserve, falling to 1800 mm in the south, and a 

slightly drier season from June to August. Rains are mostly downpours. Average relative humidity is 

86%, regularly reaching saturation at night, but maintaining 77% mostly during the day. Temperatures 

are stable with daily mean variations from 20°C at night to 30°C during the day. Mean annual 

temperature is 24.5°C. Three types of landscape characterize the SNP: low plateau, river terraces, and 

high plateau. Rivers in the west of the north sector are large and meandering with marshy banks. On 

the higher ground in the east, valleys are deeper, and rivers may run below cliffs of up to 80 m. The 

south sector includes the watershed between the basin of the Luilaka, Lokoro, and Lukeni. Equatorial 

forest covers most of the area, varying in composition according to the geomorphology. The principal 

forest types are swamp, riverine, and dry-land forests. Evergreen ombrophile forest is dominated by 

well-developed stands of Gilbertiodendron dewevrei. Semi-deciduous forest covers almost all areas 

between the rivers, most frequently comprising Staudtia stipitata, Polyalthia suavaeoleus, 

Scorodophloeus zenkeri, Anonidium mannii and Parinari glaberrimum. Pioneer or transitory 

communities are found along riverbanks, including Macaranga lancifolia and Harungana 

madagascariensis. 

 

      SNP is the habitat of many endemic endangered species (Dupain et al., 1996). The most prominent 

animal species in the SNP is the bonobo chimpanzee Pan paniscus which is endemic to the 

Democratic Republic of Congo and is listed as highly vulnerable in the IUCN/SSC Action Plan for 

African Primate Conservation (Oates, 1986), endangered in the IUCN Red Data Book (Baillie and 

Groombridge, 1996), protected by Congolese and international laws and listed as Class A of the 
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African Convention (Dupain et al., 2000). Bonobo species are only found in central Africa and the 

SNP is the only area in bonobo territory that is at least theoretically protected by law and represents 

the largest potential area of protection for bonobos (Fig. 2-1).  

 

     The bonobo population density in SNP is only 1.15 bonobos per km2 (Krunkelsven, 2001), but it is 

still higher than the densities of 0.45 and 0.43 respectively for Yalosidi (Uehara, 1988) and Lilungu 

(Sabater Pi and Vea, 1990), which are situated about 100 km east and 150 km northeast from the 

northern sector of the park. Bonobos prefer dry primary forest as the type of habitat (Horn, 1975; 

Kano, 1984) and they avoid secondary forests for nest building (Fruth, 1995). However, the bonobos 

themselves and their living environment are currently influenced by human activities.  

 

     In the area limited by the Congo stream and the rivers south of the SNP, the population of the 

bonobo in the northern half was as high as 54,000 in 1980s (Kano, 1984). However the population of 

the species might have declined to less than 5,000 individuals in 1990s (Thompson-Handler et al., 

1995). In the Lomako forest, which is 200 km north of the SNP, at least two different kinds of threats 

decimated the populations of the bonobos (Dupain et al., 2000). One was the more intense hunting 

from indigenous inhabitants who were concentrating on commercial bush meat hunting as an 

alternative to the loss of their agricultural economy. To survive there was an increasing migration into 

the forest where they established permanent settlements, start small-scale cultivation, and hunt for 

bush meat. This tendency towards remigration into the forest from the more densely inhabited border 

areas because of the deteriorating of economic prospects, is a general phenomenon throughout Congo 

and other parts of Africa (Macgaffey, 1991; Pearce and Ammann, 1995; Goodall, 1996). The second 

was the increased commercial hunting from exotic people who entered the area. The population of the 

bonobos in the north part, except in the most impenetrable forest area, seemed to be decimated 

because of hunting. In contrast in the south-central part, where there was almost no hunting, there was 

still a rather large bonobo population (Dupain et al., 2000). As a consequence of the hunting, the 

smoked bush meat as well as live bonobo infants were exchanged for clothes, soap, bullets, medicines, 

and other goods in the market place of Lomako (Dupain et al., 2000). More important is that not only 

the bonobo is suffering from a quickly growing hunting pressure, but also seven other species of 

primates: Cercopithecus ascanius, C. neglectus, C. wolfi, Cercocebus aterrimus, Colobus angolensis, 

Galago demidovi, and Allenopithecus nigroviridis (Thompson-Handler et al., 1995). In addition, 

Wilkie et al. (1992) and Oates (1994) reported the former lumber roads of abandoned concessions 

helped to make remote areas more accessible. 

 

     The above mentioned bonobo status related to vegetation type and human activities indicate the 

importance of knowing the area and spatial distribution of land cover and land use. However, in spite 

of the importance of SNP to protect the different animal species especially the ape, up-to-date maps 
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were not available and little was known about the spatial distribution of vegetation types and human 

impacts influencing the wildlife status. Currently there are almost no management and park guard 

capacities available for most of the SNP area. The Institut Congolais pour la Conservation de la Nature 

(ICCN) officials in Kinshasa, as the wildlife management authority, received no reports from the park 

guards regarding wildlife status because many of the park guards fled to Kinshasa when the war 

started in 1998 and still remained there after this study was finished. The management capacities had 

been destroyed and ICCN personnel had been unable to monitor or control the park. The objective of 

this survey was a rapid assessment of the current status of the SNP, especially its vegetation and 

possible human impacts by shifting cultivation, logging and mining, and provide baseline maps in 

different scales for 1.) assisting the demarcation of the SNP area, 2.) an ecological monitoring system 

to be established, and 3.) improving SNP management (buffer zone management, park development) 

and ecological surveys (habitat mapping, biodiversity surveys etc.). Different land covers, especially 

the vegetation type and the human-related land features such as shifting cultivation and disturbed 

forest, needed to be investigated exactly. To better understand the human influence on this park, the 

investigation area was extended outside and the mapping of important features such as big rivers and 

agriculture around the SNP was also taken into account. Because the SNP is located in a remote area 

and access on ground to this area is very difficult due to dense forests and extensive swamps, the 

survey was therefore mainly based on the evaluation of satellite imagery. A Geographical Information 

System (GIS) was set up for managing and analyzing different sources data. To assess the accuracy of 

the mapping result a field and an aerial survey was conducted using Global Position System (GPS) 

technology and digital video recording. 

 

2-2. Materials and methods 
 

Seven cloud-free Landsat Enhanced Thematic Mapper (ETM) 7 imageries, all acquired in the year 

2002, were chosen for this study (Table 2-1). 

 

Table 2-1. Procured Landsat ETM scenes description 

Path-Row Date (DD, MM, YY) Data description 

179-60 18.8.2002 

179-61 18.8.2002 

179-62 23.2.2002 

178-61 15.1.2002 

178-62 15.1.2002 

177-61 25.2.2002 

Band 1 (0.450-0.515 µm), 2 (0.525-0.605 µm), 3 (0.630-

0.690 µm), 4 (0.750-0.900 µm), 5 (1.550-1.750 µm), and 7 

(2.090-2.350 µm) at resolution of 30 meters;  Band 6 

(10.400-12.500 µm) at 60 meters; Panchromatic band 

(0.520-0.900 µm) at 15 meters. 

 

     First, geocorrection and reprojection were applied to each Landsat scenes in a unified Universal 

Transmercator projection with the WGS-84 Geodetic datum. Second, radiometric correction was done 
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to minimize differences between neighboring and successive orbits and a seamless image mosaic of 

the SNP area was produced.  

 

    The land cover/land use map was produced by a combined procedure of supervised classification 

and visual on-screen delineation. Landsat band 1 was excluded from the image processing because the 

haze that covered the acquisitions significantly influenced the data in shorter wavelengths. Resolution 

merge is a technique that combines a high spatial resolution data additively with the high spectral 

resolution image for producing high resolution, multispectral imagery (Schowengerdt, 1980).  Landsat 

ETM sensor data have one panchromatic band with higher spatial resolution of 15 m (Table 2-1). 

Therefore Landsat bands 2-5 were resampled to a higher spatial resolution of 15 meters based on the 

panchromatic band using resolution merge algorithm and then were used for the classification process. 

Automatical classification using threshold value was applied to the mosaiced image for identifying 

some lands such as savanna and water, however most of the classification had to be done in a color 

image (combination: R5G4B3) using on-screen delineation method because haze in the image mosaic 

impeded any pixel-based classification procedures. The scale of on-screen delineation was set as 

1:30,000 in GIS to achieve a mapping scale of 1:50,000. Small rivers/streams and roads are digitized 

as line themes. Mapping included the assessment of 1.) vegetation cover (year 2002) and natural 

features (rivers, lakes etc), 2.) current land use, human impact (logging, shifting cultivation etc.) and 

3.) infrastructure (public and logging roads, settlements). 

 

    To validate the land cover and assess the classification accuracy derived from the satellite images, a 

field and an aerial survey were conducted from Feburary 3-17, 2003. During the field survey all major 

vegetation types were visited on foot with the support of GPS (Fig. 2-2). Different forest types typical 

for much of the SNP had been accessed on ground near the base camp. It was a 20 km hike from Ipope 

to the base camp (Fig. 2-2 left). The trail crossed several large grasslands colonized by termites and 

two large swampy tracts along the Lokoro and some other rivers. Ecosystem and forest types as well 

as soil characteristics (wet soil, dry soil, nutrient poor sand soils, etc.) were recorded along the field 

survey. Approximately 300 photographs were taken for documentation. However the region covered 

by the survey was not big enough for the whole SNP, so an aerial survey was also conducted. In 

remote and inaccessible areas as the SNP, an aerial survey is more efficient and cheaper than ground-

based methods. 
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Fig. 2-2. Ground survey for verifying the land cover discrimination. Left: Ipope and Lokoro river. 5,4,3 

band combination showing evergreen lowland forest (green), shifting cultivation (yellow-bright green) and 

grasslands (purple). Red lines: GPS track of field survey; yellow line: GPS track of aerial survey, black 

line: NP boundary according to Central African Regional Program for the Environment (CARPE). On 

the right side there are the GPS tracks of biodiversity transects. White arrow: air strip. Length of GPS 

recorded transects: approx. 30 km. 

 

 

Fig. 2-3: GPS recording of the aerial survey (red line in left) and a section (right) of the planned (yellow) 

and actual (red) flight path. 

 

    The aerial survey allowed inspecting representative samples for each major class and some unclear 

features from the air, e.g. areas which were suspected as mining activities. The flight route was 

planned in laboratory with the satellite image as reference before the airplane took off. The 

coordinates of interest points in flight route were visually determined using the georeferenced and 

mosaiced landsat satellite image. The flight route was intently determined in a such a way that all 

35 km 10 km
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typical lands could be guaranteed for checking. Altogether 18 points coordinates were selected and the 

route linked by these 18 points was stored in GIS for the planned aircraft track in a line theme format. 

 

     Before the airplane took off, one video camera was fixed in the right side of airplane with the view 

angle being approximately 45° to the earth surface. The system time of one GPS instrument and this 

digital video camera were synchronized. When the actual aerial survey was implemented, the position 

signal of the airplane was recorded by this onboard GPS instrument in “continuous track” mode in 

every 5 seconds. The GPS coordinates, as well as the time, were timely imported to the laptop GIS 

system, in which the satellite image mosaic, the land cover map and the planned flight route were 

stored. By displaying on-line the current GPS recorded position on the satellite image and the planned 

flight track, it was possible to adjust the flight path and to visually compare the satellite image with the 

real world situation. Fig. 2-3 shows the GPS recorded track of the aerial survey (left) and a section of 

the planned (yellow) and actual (red) flight path. 

 

Fig. 2-4. Identifying specific geographic locations in the satellite image (left, R5G4B3) and at the same 

time in the digital video sequence (right). Note the sharp boundary of permanently inundated forest (PF) 

and mixed lowland forest (LF). This GPS point (yellow) superimposed with the satellite image indicates 

the same location on the right digital video scene because the GPS recorded time are the same as the 

recorded time of the digital video sequence. 

 

Totally the route of the aerial survey covered approximately 1,000 km. Flight height above the surface 

was usually 300-500 meters. In some areas we went down to 200 meters to get close up views of the 

land feature. The right view along the flight was documented by digital video (4 hours). This recorded 

video material was used to validate the classification and assess the accuracy in laboratory. First, 361 

video sequences (approximately every 2 minutes) were chosen for visual interpretation. It was intently 

guaranteed that the time of each chosen video sequence was also recorded in the GPS track database 

so that it could be exactly positioned by the GPS. In visual video interpretation the center parts of 

these video sequences were used. Second, the GPS point that had the same time as this video sequence 

PF

LF

PF 

LF 

2.5 km
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was identified, and the classification of the location, which was perpendicular to the flight direction 

and 1-2 km distant to this GPS point, was compared to the video sequence interpretation. Fig. 2-4 

shows one example of satellite and the video sequence.  

 

2-3. Results 
 

Both the Landsat satellite image mosaic, which provided the vivid landscape qualitatively, and the 

land cover map, which provided the detailed information quantitatively, were produced. Four different 

products were designed from the initial 1:50,000 classification with the minimum distance of 0.5 mm 

in map sheet: 1.) Satellite image map of the SNP, scale 1:400,000 (Fig. 2-5, top), 2.) land cover and 

land use map of the SNP, scale 1:400,000 (Fig. 2-5, bottom), 3.) land cover and land use map of the 

northern part of the SNP, scale 1:100,000, and 4.) land cover and land use map of the southern part of 

the SNP, scale 1:100,000. In land cover and land use product, those land features related to human 

activities around the SNP were also included, because they are an important indicator for showing the 

human influence on the SNP.  The area and percent of each land cover/use class are shown in Table 2-

2. 

 

Table 2-2. Different land cover and their area within and around the SNP 

No Class names Area within the 

SNP(ha) 

Area around the 

SNP (ha)

1 Mixed lowland forest 1,386,576 x

21 Mixed lowland forest (dark signature in ETM) 25,919 x

4 Lowland forest on plateau 781,031 x

5 Lowland forest in valleys 778,067 x

2 Swamp forest 25,580 x

3 Palm swamp forest 736 x

6 Lowland forest, Riverine seasonally inundated 107,355 x

7 Lowland forest, Riverine permanently inundated 86,813 x

8 Dry grasslands, savanna 150 52,575

9 Wetland 2,529 x

10 Regenerating forest 20,447 11,312

11 Strongly degraded forest, bushland 3,237 2,715

12 Agriculture (shifting cultivation) 8,454 213,815

13 Libeke within the National Park (wet grassland) 26 x

33 Esobe within the National Park (dry grassland) 380 x

14 Disturbed forest (possibly mining, logging or natural) 1,435 x

15 Bare soil, cleared land 6 158
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No Class names Area within the 

SNP(ha) 

Area around the 

SNP (ha)

16 Plantation* 0 173

18 Clouds 88,014 x

19 River 11,562 x

20 Lake 167 x

30 unmapped 8,672 x

Sum  3,337,156 x

 

     Landsat image (Fig. 2-5, top) shows the vegetation in both the north part and south part is well 

protected. However the transitional zone between the North and the South is influenced by shifting 

cultivation. Land cover classification (Fig. 2-5, bottom) shows most of the vegetation found in the 

SNP is lowland forest. Riverine forest distribute along the bigger rivers crossing the SNP. These rivers 

make up the only infrastructure enabling access to the park. The current vegetation status of SNP is in 

good condition: totally 98.5% inside the SNP is covered by undisturbed, pristine evergreen lowland 

and swamp forests. Very few villages can be found in SNP, however many relatively big villages were 

found around the park boundary and these villages are surrounded by areas of shifting cultivation. No 

logging or mining activity could be detected. In the southern section some small villages of shifting 

cultivators are located along the footpath from Ipope to Anga. The accessibility to SNP by river and 

the surrounding human residential areas around SNP indicate this park is easy to be influenced by 

human activities. Few villages detected within the SNP indicate the conceived policy of transmigrating 

the local people outside of the SNP is feasible (Schoonbroodt, 1987).  
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Fig. 2-5.  The overview illustration of Satellite image map (top, R5G4B3) and the classification map of the 

Salonga NP (bottom) showing the overall pattern of land cover/use.    

 

      In addition, only some small areas of secondary forest were found within the park, which indicates 

the current vegetation is good for bonobos because they avoid secondary forests for nest building 
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(Fruth, 1995). “Libeke” and “Esobe” are two unique features in this SNP which are from local 

language representing important land to wildlife activities.      

 

     The result of accuracy assessment is shown in a Pivot table (Table 2-3). Class 3 (palm swamp 

forest), 14 (disturbed forest), 15 (bare soil) and 16 (plantation) were not found along the aerial survey 

track. For all other classes random sample points ranging from 2 to over 100 were taken for accuracy 

assessment. Since class 10 (regenerating forest) and 11 (strongly degraded forest) are almost non-

existent within the SNP, very few random sample points could be respectively adopted. Most difficult 

was the discrimination of class 1 (mixed lowland forest) from class 5 (lowland forest in valleys) as 

well as class 4 (lowland forest on plateau) from class 1 (mixed lowland forest). Overall classification 

accuracy for class 1 was 81.3% and for class 4 (lowland forest on plateau) was 84.7%. Class 1 (mixed 

lowland forest) was assigned to lowland forests on undulating relief with a slightly darker green 

signature in band combination (R5G4B3) of the Landsat image mosaic while class 4 was assigned to 

lowland forests on flat plateaus with almost no relief. Class 4 (lowland forest on plateau) has a bright 

green signature in band combination 5, 4, 3 of the Landsat image mosaic. Permanently and 

periodically inundated forests could be discriminated clearly from all other forest and vegetation types. 

100 % accuracy was recorded for classes 8 (grasslands/savanna) and 12 (agriculture). 

 

Table 2-3. Pivot table of the accuracy assessment based on aerial survey 

                    Ground observation 

Classified class 1 2 4 5 6 7 8 9 10 11 12 13 Sum

1 Mixed lowland forest 91  7          98 

2 Swamp forest  10           10 

4 Lowland forest on plateau 2  50          52 

5 Lowland forest in valleys 18  1 58         77 

6 Riverine forest, seasonal     23        23 

7 Riverine forest, permanent 1   1 2 39       43 

8 Dry grasslands, savanna       12      12 

9 Wetland        5     5 

10 Regenerating forest         2    2 

11 Degraded forests, bush land   1       3   4 

12 Agriculture           30  30 

13 Libeke, 33 Esobe            5 5 

Sum 112 10 59 59 25 39 12 5 2 3 30 5 361 

Note: The class code represents the same class name as in Table 2-2. 
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     The field survey showed that all forest types that had clear differences in signature in the Landsat 

ETM images could be discriminated in the field. On the other hand there were no vegetation types that 

were not recognized in Landsat ETM except probably small patches of palm swamp forest. Small 

sedge meadows (less than 2 ha area) along the rivers were visible in Landsat and were mapped 

together with suspected small patches of palm swamp forest. We visited two areas of suspected illegal 

logging or mining, but in both cases no human activity could be observed. We believe that these 

signatures represent natural erosion or animal activities, e.g. by elephants. 

 

2-4. Summary and discussion 
 

A high resolution land cover map was unavailable for Salonga NP before this study while many coarse 

resolution satellite data had been used extensively to map global or regional land cover (DeFries and 

Townshend, 1999; Cihlar, 2000). The GLC2000 land cover map of Africa 

(http://www.gvm.sai.jrc.it/glc2000/Products) used SPOT VEGETATION sensor data with ground 

resolution of 1 km and only three different kinds of vegetation types in SNP were detected: closed 

evergreen lowland forest, swamp forest and forest mosaics. In the Tropical REsources and 

Environment monitoring by Satellite (TREES) map there are only two classes detected: lowland moist 

forest and secondary forest mosaic (Achard et al., 2001). The U.S. Geological Survey produced the 

global land cover classification for the International Geosphere–Biosphere Programme (IGBP) with 17 

classes (Loveland et al., 2000). The University of Maryland (UMD) produced global land cover 

classification with 14 classes (Hansen et al., 2000). The Boston University produced global land cover 

using both IBGP and UMD legend (Strahler et al., 1999; Friedl et al., 2002). However due to the 

coarse spatial resolution these data are of limited use for monitoring the status of Salonga NP. 

 

      The result of this study is the first detailed information on land cover and land use in the SNP and 

surrounding areas. Shortly after this study finished in March of 2003, another land cover dataset 

produced from visual interpretation of digitally enhanced LANDSAT TM images (Bands 4,3,2) 

acquired mainly in the year 2000-2001 by “Africover” (see 

http://www.africover.org/download/documents/Short_Project_description_en.pdf) was released in 

October 2003. This land cover classes had been developed using the FAO/UNEP international 

standard LCCS classification system and the scale is 1:200,000. These two land cover datasets 

enhanced the monitoring and management capability of the SNP. 

 

      During the workshop in Kinshasa and further discussions we found that the boundary provided by 

CARPE that was used for the SNP land cover map is not correct in several locations (about 20% of its 

length). The CARPE boundary does not agree with new information based on maps provided by ICCN 

and the original law text (Ordonnance No 70/318 dated on 20.11.1970, unpublished). It is therefore 

suggested to integrate this new information and update the boundary and the missing land covers 
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accordingly and then to serve as reference for all coming activities related to the protection and 

management of the SNP. In addition a second task was considered as highly important and valuable 

for the future work of ICCN and other interested institutions: the assignment of names to all rivers 

visible in the satellite image according to information derived from detailed maps. This will greatly 

facilitate the planned demarcation missions, and all field survey teams can be equipped with print outs 

of satellite image maps showing correctly assigned river and village names as well as land cover. 
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CHAPTER 3---LAND COVER CLASSIFICATION OPTIMIZED 

TO DETECT AREAS AT RISK OF DESERTIFICATION IN 

NORTH CHINA BASED ON SPOT VEGETATION IMAGERY 

 

Monitoring of desertification processes by satellite remote sensing is an important task in 

China and other arid regions of the world. A full year time series of SPOT VEGETATION 

images with 1 km spatial resolution was used to produce a land cover map with special emphasis 

on the detection of sparse vegetation as an indicator of areas at risk of desertification. The study 

area covered 2000 x 3500 km in North China extending from boreal forests to the Gobi desert to 

the Tibet high plateau. A classification approach for different land cover types with special 

emphasis on sparse vegetation cover was developed which was able to resolve problems related 

to seasonal effects and the highly variable natural conditions. The best classification results were 

obtained by exploiting seasonal effects detectable in time series of optimized Normalized 

Difference Vegetation Index images calculated from 10-day composites. The result of the land 

cover classification suggests that 1.60 Million km2 are areas at risk of desertification. Due to the 

wide swath and sensitivity to vegetation growth SPOT VEGETATION imagery should be very 

useful to detect large scale dynamics of environmental changes and desertification processes.  

 

3-1. Introduction 
 

According to the definition of the United Nations Convention to Combat Desertification (UNCCD), 

'desertification' means land degradation in arid, semi-arid and dry sub-humid areas resulting from 

various factors, including climatic variations and human activities. China is one of the countries with 

vast desertified areas and desertification is a serious problem in many regions of the country (Zha and 

Gao, 1997). Almost 60% of its population is living in areas at risk covering approximately 3.327 

Million km2 in 13 provinces and autonomous regions mainly in the North of China (CNC-UNCCD, 

1996). The desertification by wind erosion has exceeded the total area of arable lands in China and the 

most seriously wind-eroded areas are mainly spread out in desert areas in Xinjiang, Qinghai, Gansu 

province as well as Inner-Mongolia and Tibet autonomous regions. CNC-UNCCD (1996) estimated 

that 13 Million ha. of arable lands had been threatened by disasters of wind and sand storms; about 

100 Million ha of steppe, desert steppe and pasture lands had been seriously degraded due to the 

desertification caused by wind erosion and sand drifts; thousands of water conservation facilities and 

irrigation systems had been threatened. Desertification causes a direct economic loss estimated 

between US$2–3 billion while the associated indirect loss is 2–3 times more (Zha and Gao, 1997). 
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Neighbouring to the North of China, Mongolia has the same desertification problem. It has been 

estimated that more than 78% of the total territory of Mongolia is under the risk of desertification, of 

which nearly 60% is classed as highly vulnerable, and this problem has arisen since 1990 as the 

number of livestock has increased (Yang et al., 2004).  

 

Desertification in China is caused by both environmental settings and inappropriate human 

activities including overcultivation, overgrazing, construction of transportation routes, and excessive 

gathering of fuelwood and plant species for medicinal purpose (CNC-UNCCD, 1996; Zha and Gao, 

1997). Nevertheless, deserts are expanding and desertification processes have accelerated in many 

regions in the past two decades: the annual area of desertification increased from 1560 km2 in 1950-

60s to 2460 km2 in 1990s (CMA, 2002).   

 

Frequent sandstorms which are a direct consequence of desertification are observed in North 

China. The areas most seriously affected by sandstorms are located in the arid and semi-arid middle-

latitude regions (CMA, 2002). Eight large sandstorms were observed in the 1960s, 13 in 1970s, 14 in 

1980s and 20 in 1990s. In March 2002 the most violent sandstorm ever observed since the 1990s 

affected over 1,400,000 km2 of land and 130 Million people. Almost half of recently reclaimed 

wastelands became the major source for this sandstorm. Sandstorm affecting Hebei province in 2002 

originated from about 250,000 km2 of degraded and discarded arable land and not from the Gobi 

desert as perceived by most people (CMA, 2002). Wang et al. (2004) found that dust storms were 

highly correlated with human activities and climate change, while real deserts contributed only 

marginally to the observed dust storms.  

 

To combat desertification China has taken many measures (Yang, 2004; Zha and Gao, 1997; Guo 

et al., 1989). The most famous program is called “Three-North forest shelter belts”. The “Three-

North” region consists of three sub regions: Northeast, North, and Northwest of China covering 3.89 

Million km2, almost 40 percent of the country’s territory. Although the project has brought 

amelioration of ecosystems in some areas, desertification and soil erosion have worsened in much of 

the northern part of the country (Yang, 2004). 

 

Continuous monitoring is required to understand the processes leading to desertification. Since the 

area is so vast remote sensing is required to support programs that combat desertification (Wang et al., 

2000). Remote sensing has been applied to monitor desertification in Asia, to map land cover/land use 

and to ascertain indicators for desertification (Crépeau et al., 2000; Kharin, et al., 1999; Tsunekawa, 

2000a, 2000b). NOAA Advanced Very High Resolution Radiometer (AVHRR) Normalized 

Difference Vegetation Index (NDVI) data have also been used with some success to assess the 

condition of the vegetation in arid and semi-arid regions (Bastin et al., 1995; Prince, 1991; Tripathy et 
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al., 1996; Tucker et al., 1991; Weiss et al., 2001). Collado et al. (2002) and Ghosh (1993) 

demonstrated the application of high resolution satellite data such as Landsat TM, Landsat MSS, and 

IRS-I, ISS-II to investigate desertification processes. 

 

 Historically, ground surveys are conducted to collect desertification information in China, and 

this method is gradually replaced by small-scale aerial photographs interpretation. Since the 

emergence of space-borne remote sensing, satellite images have been utilized to delineate the extent of 

desertified areas (Zha and Gao, 1997). Geographical Information System (GIS) and remote sensing 

were used to prepare maps of soil degradation in the Loess plateau that is the region most seriously 

affected by soil erosion in the world (CNC-UNCCD, 1996). Long (2000) applied an AVHRR time 

series NDVI for monitoring desertification in China and described the growing season of different 

vegetation types as well as the relation between NDVI and the degree of soil erosion. Zhong and Qu 

(2003) compiled the ‘Modern Dynamical Changes Map of Sand Deserts in China’ at a scale of 

1:500,000 using aerial photographs and TM images. Liu et al. (2004) used Landsat TM to assess the 

grassland degradation.  Currently it is not feasible to use high resolution satellite imagery to monitor 

large regions like the Three-North shelter belt because of high costs, effort and data unavailability. 

Therefore a multi-scale remote sensing monitoring approach is proposed in which coarse resolution 

satellite imagery should be used to monitor large scale processes and to identify “hotspots” of change, 

i.e. desertification, and then these areas should be analyzed using higher resolution satellite data (Lin 

and Zhou, 2000; Sun and Chen, 2000; Sun and Zhou, 2000).  

 

In this paper, the characteristics and usefulness of low resolution SPOT VEGETATION satellite 

imagery for desertification assessment and monitoring were investigated. A land cover classification 

approach optimized to detect sparse vegetation cover was developed, because these are likely areas at 

risk of desertification. The overall objective was to find out whether SPOT VEGETATION is useful to 

identify areas at risk of desertification over large areas such as Northwest China and whether it could 

be used in a multi-scale desertification monitoring system.  
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3-2. Material and methods 
 

Study site  

 

The study site (Fig. 3-1) covers an area from 86°00'E to 119°00'E in longitude and from 49°00'N to 

35°00'N in latitude (2000 x 3500 km, 7 Million km2). The land cover types vary greatly in this vast 

area, including evergreen forest, deciduous forest, agricultural areas in which crops are grown once or 

twice a year, shrubland, grassland and barren deserts like Gobi. Land cover variability is strongly 

influenced by the monsoon climate system and elevation. The monsoon circulation creates a strong 

seasonality in precipitation: availability, the amount, and the spatial distribution of the annual 

precipitation is controlled by several sources and prevailing winds (Xue, 1996). The majority of 

annual precipitation falls in the warm summer season in association with the arrival of the monsoon. 

Summer is also the time of the critical growing season when vegetation activity is at its maximum. 

Elevation, varying from sea level to over 6000 meters, also has great effects on land cover: several 

sizable mountain ranges and the north part of the Tibet Plateau are located within the study site. With 

the influence of the continental monsoon climate and altitude, the study site can be divided into three 

climate zones, i.e. the humid and semi-humid subtropical zone, the arid and semi-arid temperate zone, 

and the Tibet Plateau zone.  

Fig. 3-1. The study area in 86°00'E - 119°00'E and 49°00'N - 35°00'N. Annual Maximal NDVI as 

background image. 
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For the classification, the type of forest canopy density (open/closed), seasonal forest types 

(evergreen/deciduous) and leaf type (needleleaf/broadleaf) as well as different seasonal types of 

agriculture besides general features such as water bodies, urban area, and permanent snow/ice were 

discriminated. A class of “mixed grassland and agriculture” was also considered because this indicates 

an important transitional ecological zone and is seriously affected by desertification (Pei, 1999). Most 

important was the identification of sparsely vegetated areas that are most fragile and are in peril of 

desertification. The sparsely vegetated areas were defined as land whose vegetation (herbaceous or 

shrub) cover is between 10% and 40%. Land with less than 10% vegetation cover was classified as 

non-vegetated area in this study.  

 

Image processing and classification  

 

A time series of SPOT VEGETATION images acquired in the year 2000 with daily coverage of the 

study site was provided by Joint Research Center (JRC) within the framework of the GLC2000 

initiative. The 365 images were co-registered to an uniform geographical Latitude/longitude projection 

based on WGS84 spheroid with a pixel size of 0.0089285714 degrees. The data set included four 

spectral bands (blue, red, NIR, MIR), four view geometries angles (VZA, VAA, SZA,  SAA) and one 

status map (Table 3-1).  

 

Table 3-1. SPOT VEGETATON daily data set  

Data set Description  

B0 Blue           0.43-0.47 µm         

B2 Red            0.61-0.68 µm         

B3 NIR           0.78-0.89 µm          

B4 MIR          1.58-1.75 µm          

SM (Status Map) Radiometric quality for 4 bands, land/water, ice/snow and cloud status 

VZA, VAA View Zenith Angle and View Azimuth Angle 

SZA,  SAA Solar Zenith Angle and Solar Azimuth Angle 

 

       Cloud cover, snow/ice, MIR stripes and directional effects disturbed the quality of single day 

SPOT VEGETATION images (Passot, 2000). Cloud and snow/ice were eliminated using the 

information of the band Status Map (SM). MIR stripes were identified and eliminated using an 

averaging by 7x7 filter. Directional effects were eliminated using the Bidirectional Reflectance 

Distribution Function (BRDF) model of Roujean et al. (1992). 10-day composites were calculated by 

the maximal NDVI method (Holben, 1986). The time series NDVI data was improved by the 

Harmonic Analysis of NDVI Time Series (HANTS) algorithm (Roerink et al., 2000). The annual 
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maximal NDVI for the year 2000 was calculated using the maximal value of the 36 NDVI 10-day 

composites.  

 

       Training sites were selected based on Advanced Spaceborne Thermal Emission and Reflection 

(ASTER) imagery and GPS-recorded field observations. Subsequently the land cover was classified in 

four steps:  

1.) water bodies and permanent snow/ice were visually identified in the 10-day composites using the 

GTOPO Digital Elevation Model (DEM) as reference. Urban areas were digitized from a NDVI 

combination (R: NDVI of June, G: July and B: August) which was superimposed by the city GIS layer 

of Digital Chart of the World (DCW).  

2.) vegetated and non-vegetated areas were separated based on threshold values: if the annual maximal 

NDVI was less than 0.116, then the pixel represented non-vegetation, and if larger than 0.26, then it 

belonged to vegetation. In the range from 0.116 and 0.260, the annual maximal NDVI criteria was not 

sufficient to discriminate sparse vegetation from non-vegetated land unambiguously because the 

NDVI of sparse vegetation is influenced by signals from the soil (Edwards et al., 1999). Therefore the 

following criteria were used for identifying vegetated area: a pixel was vegetation if (a) the NDVI was 

maximal between June to September (when the majority of annual precipitation occurs) and (b) the 

standard deviation of the NDVI from April to October (Weiss et al., 2001) was higher than a threshold 

of 0.19. 

3.) non-vegetated areas were classified into stone/rock (Gobi) and sand desert based on single day 

cloud-free SPOT VEGETATION image.  

 4.) Vegetated areas were classified based on the seasonal variation of the NDVI and ancillary data 

(Fig. 3-2). Agricultural areas with two or more harvests were identified using their unique 

characteristic of more than one NDVI peak. To separate forested areas, shrub and grasslands, the 

ISODATA classification was applied on three NDVI images of August (peak growing season), May 

(beginning of growing season) and March (non-growing season). These areas were then further 

specified using the China forest belt map to discriminate deciduous and needle forest types (Hou, 

1988), the map of the agricultural-grazing transition zone to identify the mixed grasslands/agriculture 

(Pei, 1999) and the GTOPT DEM to identify agriculture (one harvest) in lowland areas. 

 

        The classification accuracy was assessed using a random sampling scheme: a point GIS layer 

within the coverage of 17 ASTER (The ASTER reflectance retrieving is described in Appendix 2) and 

8 Landsat images was created with a distance between neighboring points being 0.1 degree in 

longitude and latitude. Totally 2941 reference points were selected, only 37 were cloud covered in the 

reference images. All points were visually interpreted in the ASTER and Landsat images and 

compared to the classification result. 
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Fig. 3-2. Flowchart diagram of the vegetation classification. The vegetated area is a result of the 

discrimination of vegetation and non-vegetation (see text). ONMV is the abbrevation of “other natural 

mixed vegetation”. The shading indicate the final classification. 

 

3-3. Results  
 

The annual maximal NDVI allowed to discriminate vegetated and non-vegetated areas. Fig. 3-1 shows 

that large areas of the study site are desert. Large areas in the western part of the study area had very 

low NDVI values indicating the Taklamakan, Tengger, Muus deserts. High NDVI values were found 

in the Southeastern humid and semi-humid regions, the boreal forest belt in Mongalia, some mountain 

ranges in Xinjiang province and the land around Lake Qinghai. In the Northwest part of the study 

sites, the annual maximal NDVI of agriculture was obviously higher than the surrounded sparse 

vegetation or desert, and the agriculture there could be easily discriminated. After comparing the result 

of the annual maximal NDVI with the available ASTER imagery, it was found that the annual 
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maximal NDVI could be used to discriminate the dense/sparse shrubland, dense/sparse grassland as 

well as open/closed forest.  

 
Fig. 3-3. Time series scaled NDVI of selected training sites.  

 

The NDVI time series of the 10-day composites showed a distinct seasonal pattern for different 

vegetation types (Fig. 3-3) while the NDVI of non-vegetated areas (sand desert and Gobi) showed 

low, stable values throughout the year. The NDVI of vegetated areas began to increase in May and 

decreased again in October with a peak in July and August, which conforms to vegetation growth in 

North China (Hou, 1988). In the Southeast of the study area, agricultural areas with two or more 

harvests showed more than one NDVI peak while all other vegetation classes had only one peak. This 

NDVI signal conforms to the agricultural practice in North China: Winter wheat starts to grow in 

March and is ready for harvest in June, while other crops begin to grow in July and are ready for 

harvest in October. In addition, the NDVI time series revealed considerable differences between forest 

types during summer (the peak of growing season) and winter (non-growing season): the NDVI of 

evergreen forest was higher than that of deciduous forest in winter, while it was lower in summer 

(June to September). The higher NDVI value of deciduous forest during summer indicates the greater 

chlorophyll content of the canopy, which was also observed by Boles et al. (2004). Therefore the 

annual NDVI amplitude (the difference of annual maximal NDVI and annual minimal NDVI) and the 
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coefficient of variation of the NDVI values could be used to discriminate evergreen forest and 

deciduous forest. Fig. 3-3 also shows the lengths of the growing season were different between 

agriculture (one harvest), deciduous forest and grassland: The length of the growing season of 

deciduous forest was longer than that of grassland, and grassland longer than that of agriculture. Since 

these results well represented natural processes (Groten and Ocatre, 2002), these properties were used 

to discriminate different land cover types. It was found that the NDVI of sparse vegetation varied with 

the seasonal change of photosynthetic activity, increasing at the beginning of June, peaking in August 

and decreasing again in September, while non-vegetated areas did not show such a temporal pattern. 

This difference was used to separate vegetated and non-vegetated land by the standard deviation. 

 

Fig. 3-4a shows the result of the land cover classification. Stone and sand deserts are located in 

the western part of the study site ranging from the Northwest to Southeast. Sparse grassland and sparse 

shrubland are mainly distributed next to sand or stone deserts. Dense grassland, dense shrubland, and 

mixed agriculture/grassland are distributed next to sparse grassland/shrublands. To the East and South 

are forests on mountain ridges, and agricultural areas in the Eastern plains. This spatial pattern, i.e. the 

gradual increase of vegetation density from Northwest to Southeast and from deserts, to sparse and 

then dense vegetation, suggests that the sparse grassland/shrubland class might be a buffer against the 

invasion of the desert into agricultural areas. Fig. 3-4a also shows that crops are planted mainly in 

valleys, river basins or well-watered oasis surrounded by sparse vegetation and deserts. In some areas, 

especially the Loess plateau and in Northern Tibet, deserts were found in landscapes dominated by 

sparse grass- and shrubland. This indicates that previously sparsely vegetated areas had been 

converted into desert by desertification processes.  
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Fig. 3-4. Land cover classification derived from year 2000 SPOT VEGETATION (a) and desertification 

risk area (b). Black and white polygons in 4a are respectively ASTER and landsat ETM coverage for 

accuracy assessment. Black areas in 4b are identified as desertification risk area. 

 

 

 

 

4a

4b
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Table 3-2. Classification result in km2 and % of the total area 

Class 
code Class name and description km2

Area
(%)

1 
 
 

open evergreen needleleaf forest 
 (Dominated by evergreen needleleaf woody vegetation with canopy cover between 
15% and 40% and height exceeding 2 m) 17,113 0.26

2 
 
 

open deciduous needleleaf forest 
(Dominated by deciduous needleleaf woody vegetation with canopy cover between 
15% and 40% and height exceeding 2 m) 60,192 0.90

3 
 
 

open deciduous broadleaf forest  
(Dominated by deciduous broadleaf woody vegetation with canopy cover between 
15% and 40% and height exceeding 2 m) 89,480 1.34

4 
 
 

closed evergreen needleleaf forest 
(Dominated by evergreen needleleaf woody vegetation with canopy cover more than 
40% and height exceeding 2 m) 28,375 0.43

5 
 
 

closed deciduous needleleaf forest  
(Dominated by deciduous needleleaf woody vegetation with canopy cover more than 
40% and height exceeding 2 m) 68,942 1.04

6 
 
 

closed deciduous broadleaf forest 
(Dominated by deciduous broadleaf woody vegetation with canopy cover more than 
40% and height exceeding 2 m) 111,494 1.67

7 
 

mixed forest  
(Dominated by mixed tree type with canopy cover more than 40% and height 
exceeding 2 m) 8,648 0.13

8 
 

forest/mosaic  
(A mosaic of forest and other vegetation; no one comprises more than 60%) 81,992 1.23

9 
 

agriculture (two and more harvests) 
(Land dedicated to the production of crops with two or more seasons during the year) 279,770 4.20

10 
 

agriculture (one harvest) 
(Land dedicated to the production of crops with only one season during the year) 328,161 4.93

11 
 

mixed grassland with agriculture  
(A mosaic of cropland and natural herbaceous vegetation; no one comprises > 60%) 256,118 3.85

12 
 

sparse shrubland  
(Wood vegetation less than 2 m in height and shrub canopy between 10% and 40%) 1,547,322 23.24

13 
 

dense shrubland   
(Wood vegetation less than 2 m in height and shrub canopy cover more than 40%) 304,598 4.57

14 
 

sparse grassland  
(Land with the herbaceous cover less than 40%, tree and shrub cover less than 10%) 322,616 4.85

15 
 

dense grassland 
 (Land with herbaceous cover more than 40%, tree and shrub cover less than 10%) 911,979 13.70

16 
 
 

non-vegetated Gobi 
(Areas of exposed and consolidated soil, rocks that never have more than 10% 
vegetated cover during any time of the year) 1,035,626 15.55

17 
 
 

non-vegetated sand desert 
(Areas of exposed and unconsolidated soil, sand that never have more than 10% 
vegetated cover during any time of the year) 1,124,256 16.88

18 
 

urban areas  
(Covered by buildings and other human-made structures) 4,565 0.07

19 
 

permanent snow/ice 
(Lands under snow/ice cover throughout the year) 16,139 0.24

20 
 

water bodies 
(Oceans, seas, reservoirs, lakes and rivers) 61,055 0.92

Sum  6,658,441 100
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Table 3-2 shows the quantitative result of the land cover classification. A large area of about 2.16 

Million km2 of stone (Gobi) and sand desert cover approximately 32.5% of the total area. Only about 

5.5% of the total area is covered by forest and 9.1% are under agricultural use. Mixed 

grassland/shrubland covers approximately 3.9%. Water bodies and permanent snow/ice are important 

water sources in the area and cover only 0.92% and 0.24 respectively. 46.36% of the total area are 

covered by shrubland and grassland with almost 61% being sparse shrub and grassland. Sparse 

vegetation was mainly located in South Mongolia, the Loess plateau and the North slope of the the 

Tibet plateau. Small amounts of them were found around the oasis and at the top of high mountains. 

Table 3-3. Accuracy assessment  

Class 

Code* 

Reference 

 totals 

Classified

 totals

Number

 correct

Producer 

accuracy (%)**

Users 

accuracy (%)*** 

Kappa

Coefficients****

1 25 24 24 96.00 100.00 1.0000

2 21 19 15 71.43 78.95 0.7879

3 4 4 4 100.00 100.00 1.0000

4 8 8 8 100.00 100.00 1.0000

5 8 7 6 75.00 85.71 0.8567

6 2 2 2 100.00 100.00 1.0000

9 28 17 15 53.57 88.24 0.8812

10 290 312 268 92.41 85.90 0.8433

11 94 103 81 86.17 78.64 0.7793

12 637 585 501 78.65 85.64 0.8161

13 134 47 40 29.85 85.11 0.8439

14 82 61 54 65.85 88.52 0.8819

15 325 398 297 91.38 74.62 0.7143

16 563 556 489 86.86 87.95 0.8505

17 612 693 554 90.52 79.94 0.7459

19 8 8 8 100.00 100.00 1.0000

20 63 60 58 92.06 96.67 0.9659

Total 2904 2904 2424 - - -

                                   Overall Classification Accuracy = 83.47%, Overall Kappa Statistic = 0.8030 

* The meaning of class code is the same as table 3-2. 

**Producer accuracy measures the probability of a reference site being correctly classified.  

*** User accurace is an indication of the probability that a site classified in the image actually 

represents that class on the ground. 

**** Kappa Coefficient measures how well the classification performed compared to the probability 

of randomly assigning points to their correct categories. 
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          The overall accuracy of the classification result was 83.47% (Table 3-3). The user accuracy was 

more than 74%. In some instances the producer accuracy was low: agriculture (two or more harvests) 

53.57%, dense shrubland 29.58% and sparse grassland 65.85%. These errors occurred mainly in the 

transitional zone from agriculture to grazing. Out of 134 reference points for dense shrubland, 16 and 

72 were classified as agriculture and dense grassland respectively. Out of 82 reference points for 

sparse grassland, 15 points were classified as sparse shrubland. This shows the agriculture, grassland 

and shrubland were not well discriminated. This might relate to a similar seasonal variation in plant 

growth and spectral reflectance of the biomass. The density of plant growth (dense grass-shrubland / 

sparse grass-shrubland) that is especially important for the risk assessment was very well 

distinguished. As can be seen in table 3-3, the user accuracy of sparse shrubland and sparse grassland 

are up to 85.64% and 88.52% respectively.  

 

Due to highly variable rainfall events and increasing human pressure the landscapes covered by 

sparse, drought adapted vegetation are most seriously affected by desertification (RG-SCDC, 1998). 

Four major risk areas were potentially of the interests: 1.) the surroundings of oases which are 

damaged by excessive fuelwood collection; 2.) the lower reaches of the interior rivers which are 

affected by inappropriate water utilization; 3.) the overgrazed land in semi-arid regions; and 4.) the 

transitional zone from agriculture to grazing (Pei, 1999; RG-SCDC, 1998). Sand and stone deserts, as 

well as sparsely vegetated high mountains, were formed a long time ago and are more-or-less stable 

ecosystems, where very few people live. These ecosystems were excluded from the risk assessment. 

Of greatest interest is the buffer zone next to the deserts because these areas are most sensitive to 

desertification (Sun and Chen, 2000). Areas at risk of desertification were defined as all sparsely 

vegetated areas consisting of the classes of sparse grassland, sparse shrubland, mixed 

grassland/agriculture and all land within a 10 km wide zone next to the classes sand desert and Gobi. 

Mountain areas higher than 4500 meters in Tibet plateau and 2500 meters in all other regions and 

water bodies as well as some isolated small sparsely vegetated areas which are not located in the arid, 

semi-arid and dry sub-humid zone were excluded.  

 

According to these definitions approximately 1.60 Million km2 at significant risk of desertification 

was estimated, in which China and Mongolia account for about 60% (0.96 Million km2) and 40% 

(0.64 Million km2) respectively (Fig. 3-4b). These areas are located mainly in the south of Mongolia, 

the west of Inner-Mongolia in China, the Loess plateau, the north of the Tibet plateau, and the 

surroundings of oases and mountains in Xinjiang province. Large areas belonge to the main grazing 

regions and the transition zone between agriculture and grazing. The areas at risk extend from 

Northwest to Southeast, corresponding to the dominant wind direction in the area, indicating that wind 
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might be a driving force for desertification. Fig. 3-4b also shows that desertification spans across 

international boundaries, which makes internationally coordinated action programs mandatory. 

 

3-4. Discussion 
 

Vegetation cover is a common criterion to assess desertification, especially if remote sensing is used 

(Zha and Gao, 1997). The NDVI, which is calculated from red and near infrared red bands, was very 

useful to assess the land cover in arid areas. Compared with the mono-temporal NDVI of August, 

which is a critical month during growing season (Long, 2000), the annual maximal NDVI proved to be 

more useful to detect sparse vegetation because vegetation growth in arid and semi-arid environments 

is usually highly rainfall dependent (Nicholson et al., 1990) and peaks in NDVI values coincide with 

the vegetation response to occasional rainfall events (Schmidt and Karnieli, 2000). In addition the 

growing season and the climate vary strongly across such a large area (2000 x 3500 km).  

 

Although many studies have demonstrated the usefulness of the NDVI in arid and semi-arid 

environments (e.g. Malo and Nicholson, 1990; Peters and Eve, 1995; Peters et al., 1997; Liu et al., 

2004), the influence of background signal from the soil is a particular problem which deteriorates the 

classification accuracy  (Edwards et al., 1999; Weiss et al., 2004). It was found that sparse vegetation 

covers with less than 10% coverage, which is normally categorized as severely desertified land (Zha 

and Gao, 1997), were difficult to detect by SPOT VEGETATION. Other  vegetation indices such as 

the perpendicular vegetation index (PVI), the soil-adjusted vegetation index (SAVI) and the 

transformed soil-adjusted vegetation index (TSAVI) may perform better in this case. 

 

There are quite disparate figures reported for the area at risk of desertification in China. Zhu 

and Cui (1996) accounted the desertified land in China to be 1.1 Million km2 while Zhou and Pu 

(1996) estimated 2.2 Million km2 and Guo et al. (1989) estimated 1.3 Million km2. The differences can 

be mainly attributed to different definitions of desertification and the degree of desertification (Zha 

and Gao, 1997). The extent of desertified land estimated by different authors converges at around 

0.334 Million km2 if the revised international definition of desertification by Rhodes (1991) is adopted 

(Zha and Gao, 1997) and at 0.371 Million km2 if the UN definition of desertification is adopted (Yang 

et al., 2004). Our estimation of the China part in the study area is about 0.96 Million km2, which is 

significantly larger. Major reasons for this discrepancy are that 1.) sparse vegetation was identified and 

not desertified land itself. Some regions with sparse vegetation such as those in the high Tibet plateau 

are natural and have almost no risk of s desertification, and 2.) our estimate includes ‘desertification´’ 

and ‘vulnerability to desertification’, which should be distinguished (Rhodes, 1991). On the other 

hand, desertified land in the sub-humid zone mapped by RG-SCDC (1998) and Zha and Gao (1997) 

was not detected in our product. This is probably related to more dense vegetation growth due to better 

water availability in sub-humid zones. Generally, the spatial pattern of our map agrees well with the 
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map of RG-SCDC (1998) and Zha and Gao (1997). In Mongolia Yang et al. (2004) reported that 78% 

of the territory (approximately 1.22 Million km2) is under the risk of desertification, of which about 

0.73 Million km2 are highly vulnerable. Our estimate of 0.64 Million km2, which was derived from 

82% of the whole Mongolia, is little different from this number of 0.73. 

 

The result of our study supports the analysis of desertification because it provides information 

on the land cover across a very large area. This  should help scientists and relevant authorities to 

determine priority areas for ground surveys and high resolution remote sensing. Especially in areas 

which are difficult to access on ground such as the Tibet plateau, information from coarse resolution 

satellites can be an important information source. Nevertheless, SPOT VEGETATION can be used  to 

assess the type of vegetation, but not the causes of desertification. This requires ground surveys or 

high resolution remote sensing.   

 

By analyzing a full year time series of SPOT VEGETATION imagery, important parameters 

such as the length of growing season, the coefficient of variation of different land covers, and the 

NDVI amplitude could be derived. These parameters can be used to monitor intra-annual changes of 

the ecosystem and to improve the land cover classification as discussed by Boles et al. (2004). 

Furthermore, in arid regions vegetation can vary inter-annually in response to climatic conditions 

change (Okin et al., 2004). The study of precipitation change from 1956-2000 within our study sites 

(Gong et al., 2004) suggests future work utilizing inter-annual comparison. ‘Desertification’ refers not 

only to the expansion of existing deserts but also the slow degradation of fertile land by the gradual 

loss of soil productivity or thinning out of the vegetation cover. Through the analysis over several 

years SPOT VEGETATION imagery was expected to be very useful to monitor large scale 

desertification processes (Tucker et al., 1991) and to assess the condition of the vegetation cover 

(Weiss et al., 2004). Additionally SPOT VEGETATION imagery can be used to analyze the origin, 

development and propagation of large-scale sand storms. 

 

The major restriction of the SPOT VEGETATION system lies in its coarse resolution of 1 km 

at nadir viewpoint, which limits its use for a detailed analysis of boundary changes between different 

land covers such as grass, shrubland and desert. In developing countries such as China where 

extremely large and highly inaccessible areas have to be monitored regularly, the collection and 

analysis of high resolution satellite imagery is not operational because of high data costs and effort. 

Therefore, conventionally ground based methods are used to monitor desertification in China (Lin and 

Zhou, 2000): Representative sample sites are selected and monitored by long-term ground observation 

or by high resolution remote sensing images. The results derived from these sample plots are then used 

to extrapolate to the whole area. A multi-scale monitoring system is mandatory in this case (Lin and 

Zhou, 2000). The whole country will be monitored by coarse resolution satellite imagery such as 
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SPOT VEGETATION or by medium resolution satellite imagery  such as TERRA/AQUA MODIS or 

ENVISAT MERIS, while the most endangered areas, i.e. hotspot areas, will be monitored by high 

resolution satellite imagery such as Landsat ETM or TERRA ASTER. In such a system, coarse and 

medium resolution imagery with daily coverage could provide data on large scale environmental 

changes, which then will be analyzed in detail using higher resolution satellite imagery. Our study 

showed that it was possible to derive important parameters linked to desertification from SPOT 

VEGETATION imagery. This information can be used to detect “hotspots” of desertification, which 

then can be analyzed in more detail by high resolution satellite imagery (Liu et al., 2004).  Such a 

multi-scale monitoring system based on SPOT VEGETATION imagery is of interest not only to 

China, but to all those developing countries where desertification is an urging problem and whose 

financial resources are limited.  

 

3-5. Acknowledgements 
 

The author would like to acknowledge Hans-Juergen Stibig and Etienne Bartholome, both at the JRC 

(Joint Research Center of the European Union), for providing the SPOT VEGETATION data in the 

framework of the GLC2000 initiative. Many thanks also to Rene Beuchle for his advice. 

 

3-6. References 
 

Bastin, G. N., Pickup G. & Pearce, G. (1995). Utility of AVHRR data for land degradation assessment: a case 

study.  International Journal of Remote Sensing, 16(4), 651-672. 

Boles, S., Xiao, X., Liu, J., Zhang, Q., Munkhtuya, S., Chen, S. & Ojima, Dennis. (2004). Land cover 

characterization of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sensing 

of Environment, 90, 477-489. 

CMA (China meteorological administration) (2002). Comprehensive description of China Duststorm, available 

at http://www.duststorm.com.cn (in Chinese). 

CNC-UNCCD (China national committee for the implementation of the UN convention to combat 

desertification) (1996). China national action programmes to combat desertification. 

http://www.unccd.int/actionprogrammes/asia/national/2000/china-eng.pdf 

Collado, A. D., Chuvieco, E. & Camarasa, A. (2002). Satellite remote sensing analysis to monitor desertification 

processes in the crop-rangeland boundary of Argentina. Journal of Arid Environments, 52, 121-133. 

Crépeau, C., Bennouna, T., & Bicheron, P. (2000). Vegetation action and demonstration plan for desertification 

monitoring in Senegal and China. VEGETATION 2000 Symposium, 3-6 April 2000 (pp.437-442). Italy: 

Belgirate. 

Edwards, M. C, Wellens, J., Al-Eisawic, A. (1999). Monitoring the grazing resources of the Badia region, 

Jordan, using remote sensing. Applied Geography, 19 (4), 385-398. 



Chapter 3---Land cover classification optimized to detect areas at risk of desertification in North China  

 54

Ghosh, T. K. (1993). Environmental impacts analysis of desertification through remote sensing and land based 

information system. Journal of Arid Environments,  25(1), 141-150. 

Gong, D.Y., Shi, P.J. & Wang, J.A. (2004). Daily precipitation changes in the semi-arid region over northern 

China. . Journal of Arid Environments, 59, 771–784. 

Groten, S. M. E., & Oatre, R. (2002). Monitoring the length of the growing season with NOAA. International 

Journal of Remote Sensing, 23, 2797-2815. 

Guo, H., Wu, D. & Zhu, H. (1989). Land restoration in China. Journal of  Applied Ecology, 26, 787–792. 

Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. 

International Journal of Remote Sensing, 7, 1417-1434. 

Hou, X. Y. (1988). The Nature and Ecology Regionization of China and the Agriculture Development Strategy. 

Beijing: Science Press (154pp.) (in Chinese). 

Kharin, N., Tateishi, R.& Harahsheh, H. (1999). Degradation of the Drylands of Asia, Chiba University. 

Lin, J., & Zhou, W. D. (2000). A summary of desertification monitoring of China. In desertification monitoring 

center of ministry of forestry (Ed.), Research of Desertification Monitoring Technique in China (pp.1-6). 

Beijing: China Forestry Science Press (264 pp.) (in Chinese). 

Liu Y., Zha, Y., Gao, J. & Ni, S. (2004). Assessment of grassland degradation near Lake Qinghai, West China, 

using Landsat TM and in situ reflectance spectra data International Journal of Remote Sensing,,  25(20), 

4177-4189. 

Long, J. (2000). Desertification monitoring and estimation from AVHRR data in China. In Desertification 

monitoring center of ministry of forestry (Ed.), Research of Desertification Monitoring Technique in China 

(pp.55-60). Beijing: China Forestry Science Press (264 pp.) (in Chinese). 

Malo, A. R. & Nicholson, S. E. (1990). A study of rainfall and vegetation dynamics in the African Sahel using 

Normalized Difference Vegetation Index. Journal of Arid Environments 19, 1–24. 

Nicholson, S. E., Davenport, M. L. & Malo, A. R. (1990). A comparison of vegetation response to rainfall in the 

Sahel and East Africa using Normalized Difference Vegetation Index from NOAA-AVHRR, Climate 

Change, 17, 209-241. 

Okin, G.S. & Roberts, D.A. (2004). Remote sensing in arid regions: challenges and opportunities. In Ustin, S.L. 

(Ed.), Manual of Remote Sensing, 3rd ed. Vol. 4, (pp 111-146), John Wiley and Sons, New York. 

Passot, X. (2000). VEGETATION image processing methods in the CTIV. VEGETATION 2000 Symposium, 3-6 

April 2000 (pp.15-22). Italy: Belgirate. 

Pei, X. F. (1999). Optimal Farming System in the Typical Agriculture-Grazing Transitional Area. Beijing: 

Commission on integrated survey of natural resources of Chinese Academy of Sciences (PhD thesis, 119pp.) 

(in Chinese). 

Peters, A. J., Eve, M. D. (1995). Satellite monitoring of desert plant community response to moisture 

availability. Environmental Monitoring and Assessment 37, 273–287. 

Prince, S.D. (1991). Satellite remote sensing of primary production: comparison of results for Sahelian 

grasslands 1981-1988. International Journal of Remote Sensing,, 12, 1301-1311. 



Chapter 3---Land cover classification optimized to detect areas at risk of desertification in North China  

 55

Rhodes, S.L. (1991). Rethinking desertification: what do we know and what have we learned? World 

Development, 21, 1137–1143. 

RG-SCDC (Research group of ‘Study on combating desertification/land degradation in China’) (1998). Study on 

Combating Desertification/Land Degradation in China. Beijing: China Environment Science Press (164 

pp.)   

Roerink, G. J., Menenti, M. & Verhoef, W. (2000). Reconstructing cloudfree NDVI composites using Fourier 

analysis of time series. International Journal of Remote Sensing, 21 (9), 1911–1917. 

Roujean, J. L., Leroy, M. & Deschamps, P. Y. (1992). A bidirectional reflectance model of the earth’s surface 

for the correction of remote sensing. Journal of .Geophysics Research, 97, 20455-20468. 

Schmidt, H., Karnieli, A. (2000). Remote sensing of the seasonal variability of vegetation in a semi-arid 

environment. Journal of Arid Environments, 45, 43–59. 

SSCC (State Science Commission of China).(1994). China’s Agenda21-White Paper on China’s Population, 

Environment and Development in the 21st Century. Beijing: China Environment Science Press (192 pp.), 

english version available at http://www.acca21.org.cn/indexe6.html 

Sun, S. H., & Chen, J. W. (2000). China national desertification monitoring, In desertification monitoring center 

of ministry of forestry (Ed.), Research of Desertification Monitoring Technique in China (pp.96-107). 

Beijing: China Forestry Science Press (264 pp.)  (in Chinese). 

Sun, S. H., & Zhou, C. X. (2000). The basic frame for formulating the technical scheme of China national 

desertification monitoring. In desertification monitoring center of ministry of forestry (Ed.), Research of 

Desertification Monitoring Technique in China (pp.49-54). Beijing: China Forestry Science Press (264 pp.)  

(in Chinese). 

Tripathy, G. K., Ghosh T. K. & Shah S. D. (1996). Monitoring of desertification process in Karnataka state of 

India using multi-temporal remote sensing and ancillary information using GIS. International Journal of 

Remote Sensing, 17(12), 2243-2257. 

Tsunekawa, A.(2000a). Methodologies of desertification monitoring and assessment. Workshop of the Asia 

regional thematic programme network on desertification monitoring and assessment(TPN1) (provisional 

edition), 28-30 June 2000 (pp.44-55). Japan: Tokyo, UNU. 

Tsunekawa, A. (2000b). Research activities in Japan: Relevant to desertification monitoring and assessment. 

Workshop of the Asia regional thematic programme network on desertification monitoring and 

assessment(TPN1) (provisional edition), 28-30 June 2000 (pp.178-186). Japan: Tokyo, UNU. 

Tucker, C. J., Dregne, H. E. & Newcomb, W. W. (1991). Expansion and contraction of the Sahara Desert 

between 1980 and 1990. Science, 253, 299-301. 

Wang, X., Dong, Z., Zhang, J. & Liu, L. (2004). Modern dust storms in China: an overview. Journal of Arid 

Environment, 58, 559–574. 

Wang G. S., Sun S.H, Liao Y. P. & Zhang, Y. X. (2000). Study on remote sensing monitoring and information 

of sand strom disaster , In desertification monitoring center of ministry of forestry (Ed.). Research of 

Desertification Monitoring Technique in China (pp. 186-193). Beijing: China Forestry Science Press (264 

pp.) (in Chinese). 



Chapter 3---Land cover classification optimized to detect areas at risk of desertification in North China  

 56

Weiss, E., Marsh, S.E. & Pfirman, E.S. (2001). Application of NOAA-AVHRR NDVI time-series data to assess 

changes in Saudi Arabia’s rangelands. International Journal of Remote Sensing, 22(6), 1005-1027. 

Weiss, J. L., Gutzler, D. S., Coonrod, J. E. A. & Dahm, C. N. (2004). Long-term vegetation monitoring with 

NDVI in a diverse semiarid setting, central New Mexico, U.S.A.. Journal of Arid Environments, 58, 248-

271. 

Xue, Y. (1996). The impact of desertification in the Mongolian and the Inner Mongolian grassland on the 

regional climate. Journal of Climate, 9, 2173– 2189. 

Yang, H. (2004). Land conservation campaign in China: integrated management, local participation and food 

supply option, Geoforum, 35, 507-518. 

Yang X., Rost, K.T, Lehmkuhl, K., Zhu. Z. & Dodson J. (2004). The evolution of dry lands in northern China 

and in the Republic of Mongolia since the Last Glacial Maximum. Quaternity Internation, 118–119, 69–85. 

Zha, Y., & Gao, J. (1997). Characteristics of desertification and its rehabilitation in China. Journal of Arid 

Environments,37(3), 419-432. 

Zhong, D. & Qu, J. (2003). Recent developmental trend and prediction of sand deserts in China. Journal of Arid 

Environments, 53, 317–329. 

Zhu, Z. & Cui, S. (1996). Distribution patterns of desertified land and assessment of its control measures in 

China. China Environmental Science, 16, 328–334. (in Chinese) 

Zhou, J. & Pu, L. (1996). Rustic opinions on concept of desertification and its practical significance. Journal of 

Arid Environments,16,  191–195. 

 

 



Chapter 4---Multi-sensor satellite data for fire monitoring and impact assessment in Indonesia and Siberia 

 57

CHAPTER 4---MULTI-SENSOR SATELLITE DATA FOR 

FIRE MONITORING AND IMPACT ASSESSMENT IN 

INDONESIA AND SIBERIA 

 
 

 
 
 



chapter 4.1---Observation of siberian fire-disturbed forests in envisat asar wide swath images 

 58

CHAPTER 4.1---OBSERVATION OF SIBERIAN FIRE-

DISTURBED FORESTS IN ENVISAT ASAR WIDE SWATH 

IMAGES 
 

Recurrent wildfires strongly affect the boreal ecosystem in Siberia and probably 

contribute to global warming by the release of significant amounts of carbon. Current fire 

monitoring activities in Russia are based on the detection of high temperature events by the 

NOAA-AVHRR instrument and the assessment of fire scars from spectral reflectance images. 

However, AVHRR sensor does not provide sufficient detail for a reliable analysis of the burnt 

area and fire impact due to its low spatial resolution. In addition, a persistent cloud cover and 

dense haze from burning fires impedes all other higher resolution optical satellite sensors. Active 

microwave sensors such as that onboard the European ENVISAT satellite overcome these 

problems. The Wide Swath Mode (WSM) of the ASAR instrument with a spatial resolution of 

150 meters would be ideal for operational burnt area mapping over the vast territory of Russia. 

The objective of this paper was to investigate the performance of this instrument in fire-

disturbed forests in south Siberia, where extensive forest fires occurred in 2003. It was found 

that 1.) the ASAR WSM backscatter signal was sensitive to fire disturbance; 2.) the backscatter 

change correlated mainly with snow-melt and rainfall; and 3.) the backscatter signal varied as a 

function of the incidence angle with a higher backscatter occurring at shallower incidence 

angles. These results suggest that ASAR WSM data can be used for operational fire impact 

monitoring in boreal forests of Siberia. However multi-temporal datasets are required, because 

environmental conditions strongly influence the backscatter signal.  

 

4.1-1. Introduction 
 

Siberian forests contain roughly half the world’s growing stock volume of coniferous forest, making 

them an economically and ecologically precious resource (Nilsson and Shvidenko, 1998). Wildfire 

disturbance is common and is an integral part of the boreal Eurasian ecosystem (Goldammer and 

Furyaev, 1996). Some recent studies imply that fires in Russia might contribute to global warming by 

releasing large amounts of carbon (Kasischke and Stocks, 2000; Conard et al, 2002; Kajii et al., 2002; 

Van der Werf et al., 2004). In recent years the forest fire situation has become more serious 

(Goldammer, 2003; Sukhinin, 2003). In 2003, an extreme fire event occurred East of Lake Baikal 

(Siegert et al., 2004). The repeated occurrence of large-scale fire disasters and the presumable release 

of huge amounts of carbon prompt for accurate information on the burnt area and the damages to the 

vegetation. However, current assessments are not satisfactory due to the unavailability of enough data 

(Soja et al, 2004) and hence the fire regime is not well understood in Russia.  
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The enormous extent and the remoteness of much of boreal Russia require remote sensing 

technology for fire detection and monitoring. Currently operational fire monitoring is based on NOAA 

(National Oceanic and Atmospheric Administration)-AVHRR (Advanced Very High Resolution 

Radiometer) hotspots detection and the analysis of the spectral channels 1, 2 and 5. The low spatial 

resolution of the NOAA AVHHR instrument leads often to a significant over- or underestimation of 

the burnt area (Kasischke and French, 1995; Kasischke and Bruhwiler, 2003). Persistent cloud cover 

during summer when most fires occur (Warren et al., 1986) and dense haze from burning fires impede 

medium resolution optical sensors such as the Moderate Imaging Spectrometer (MODIS) and the 

MEdium Resolution Imaging Spectrometer (MERIS). Synthetic Aperture Radar (SAR) overcomes 

these problems.  

 

The applicability of SAR imagery for fire scar mapping in boreal ecosystems was investigated 

extensively (Landry et al. 1995; French et al. 1996; French et al. 1999; Liew et al. 1999; Bourgeau-

Chavez et al. 2002). Fire scars as detected by the European Remote Sensing Satellite (ERS) SAR were 

3-6 dB brighter than adjacent unburnt forest (Kasischke et al., 1992). This increase was explained by 

the removal of the tree canopy by fire, exposure of rough ground surfaces and increased soil moisture 

(Kasischke et al., 1994; French et al., 1996; Bourgeau-Chavez et al., 1997). The increase in soil 

moisture was attributed to a decreased surface albedo and melting of the permafrost layer as well as 

lowered evapotranspiration (Brown, 1983; Dyrness and Norum, 1983; Viereck, 1983).  

 

In addition, it was found that the incidence angle is critical in determining the relative brightness 

of the backscatter (French et al., 1999). They found that the signature of burnt areas in one site in C-

HH imagery changed strongly as a function of incidence angle.  

 

Layover and shadowing in steep mountainous regions, wetlands and seasonal conditions are 

disturbing factors which limit the applicability of SAR imagery to detect fire scars (Bourgeau-Chavez 

et al., 1997). The small difference in backscatter between burnt versus unburnt areas in Quebec was 

attributed to the intensity of fire (high versus low severity), small increase in ground moisture post-

burn and wetlands (Bourgeau-Chavez et al., 2002). To overcome these problems Bourgeau-Chavez et 

al. (1997) composited three dates of ERS imagery to allow the fire scars to be detected in mountains 

by canceling out the effects of local incidence angles. Gimeno et al. (2002) tried to overcome the 

layover and shadowing problem by classifying the image into positive and negative slopes. Bourgeau-

Chavez et al. (2002) found that multi-temporal SAR imagery sometimes allows better distinction 

between fire scars and wetlands, but a combination of SAR and multi-spectral data are likely to be 

necessary in wetland regions for reliable fire scar mapping.  
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In March 2002 the European Space Agency (ESA) launched ENVISAT, an advanced polar-

orbiting Earth observation satellite. The Advanced Synthetic Aperture Radar (ASAR) on board 

ENVISAT operates at C-band with a frequency of 5.331 GHz. Compared to ERS Active Microwave 

Instrument (AMI), ASAR is a significantly advanced instrument employing a number of new 

technological developments which allow extended performance (European Space Agency, 2002a). 

ASAR was designed to operate in five different modes (Global Monitoring Mode, Wave Mode, Image 

Mode, Alternating Polarization Mode and Wide Swath Mode). In the Wide Swath Mode (WSM) the 

ScanSAR technique provides images with 405 km swath width at a medium geometric resolution of 

150 meters (range and azimuth spacing is approximately 75 m) in HH or VV polarization with the 

repeat circle of 3 days. The incidence angles range from 16 to 44 degrees.  

 

   Due to its cloud and haze penetrating capability and its wide swath ASAR WSM should be 

useful to complement existing fire monitoring systems in the vast boreal ecosystems of the Russian 

Federation. The objective of our research was to investigate the capability of the ASAR WSM to 

detect fire disturbances in Siberian forests. A time series of backscatter images were analyzed to 

investigate temporal variations of backscatter of known fire scars and the influence of different 

incidence angles on the backscatter signal. 

 

4.1-2. Materials and Methods 
 

The study site is located East of Lake Baikal in a region covering 400 x 200 km, centered at 118°E and 

54°30'N where fire occurred repeatedly between 1999 and 2003. SRTM digital elevation data shows 

that the site has a relatively flat undulating relief. To discriminate the disturbance of forest canopy by 

fire from other potential causes such as logging or storm, MODIS hotspot data, NOAA AVHRR fire 

products, multi-temporal Landsat quicklooks and ENVISAT MERIS images were comprehensively 

used. Weather data available from the station of Tungokochen and Tupik were used to assess snow-

melt and rainfall events. Climate data of 2003 indicate that the maximum precipitation occurred from 

June to August. The permafrost map of Russia shows that the study site is located within the type of 

“>90% continuous”. The forest type in this region is mainly larch with little dwarf shrubs in the East. 

Most of the area is sparsely populated and covered by more or less intact forest.  

 

Seven multi-look scenes (number of range looks and Azimuth looks are respectively 7 and 3) of 

ENVISAT wide swath SAR data were processed and analyzed (Table 4.1-1). The ASAR-WSM (level 

1) images were first speckle filtered using the gamma map algorithm to reduce noise. The backscatter 

value in dB was calculated from the digital number (European Space Agency, 2002b) using equation 
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where δi,j0[dB] is the backscatter at image line and column “i, j”, K is absolute calibration constant 

which was determined from the ASA-WSM header file, DNi,j is the pixel intensity value at image line 

and column “i, j”, αi,j is the incidence angle at image line and column “i, j” interpolated from header 

file and L and M are number of image lines and columns.  

 

Table 4.1-1. Local weather conditions under which the seven images were acquired 

No Date of 

2003 

Polariz-

ation 

Absolute 

Orbit 

Number 

Temperature 

 Description* 

Rainfall  

Description in 2003* 

1 January 19 V/V 4645 -21ºC, snow covered and 

frozen 

0 mm 

2 March 27 H/H 5604 4.3ºC, snow covered but 

began to melt 

0 mm, but 2 mm on March 

25 in snow form 

3 April 12 H/H 5833 4.5ºC, more snow melted 0 mm 

4 May 11 H/H 6248 9.1ºC, snow totally melted 0 mm 

5 June 18 H/H 6792 20.8ºC  1 mm, but 8.2 mm on June 

16 

6 July 4 H/H 7021 26.2ºC 0 mm, total 24.8 mm on 

June 19-July 2 

7 July 13 H/H 7150 28.1ºC 0.7 mm, but 2 mm on July 9 

and 0.7 mm on July 10 
* Data source: weather station Tungokochen of Russia Federation (location: 53°34'N 

115°34'E, altitude:  811 m). 

 

To determine the month and year of fire disturbance, the following data sets were used: 1.) a time 

series Landsat ETM quicklook images acquired from 1999 to 2004; 2.) twelve MERIS images with a 

ground resolution of 300 meters; 3.) the MODIS MOD14A2 product which is a gridded 1 km 

composite of fire hotspots detected in each grid cell over an eight-day composite interval; and 4.) a 

time series of fire scar polygons derived from NOAA AVHRR images acquired from 1996 to 2003 in 

which each polygon had been assigned the time of fire occurrence (Anatoly Sukhinin, personal 
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communication). Optical Landsat quick look images and MERIS images were visually interpreted for 

fire scar boundaries. All the data sets were georeferenced and co-registered.  

 

The same histogram stretching parameters were applied to the time series of ASAR WSM images 

to investigate fire scar visibility over time. Sites for fire scars burnt in 1999 (“burnt 1999”), in 2000 

(“burnt 2000”), in 2002 (“burnt 2002”), in 2003 (“burnt 2003”) and unburnt forests were selected and 

mean backscatter values were calculated. To study the influence of different incidence angles, fire 

scars of 2002 in an ASAR wide swath image acquired in July 2003 were compared.  

 

4.1-3. Results 
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Fig. 4.1-1. The visibility of fire scars of different years varies in this time series of ASAR WSM images. No 

big fires occurred in 2001. Bar: 20 km 
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Fig. 4.1-2. Time series mean backscatter values of burnt forest and unburnt forest. The backscatter values 

of the unburnt forest are higher than those of burnt area before April whilst lower after April. Compared 

to unburnt forest, the difference of “burnt 1999” and “burnt 2000” is smaller than “burnt 2002”. The 

“burnt 2003” (fire occurred between 18 May 2003 and 9 June 2003, the arrow above the X axis indicates 

the burning time) agrees with the unburnt forest before 11 May 2003 whilst agrees with the “burnt 2002” 

after 18 June 2003.  Note the standard deviations of fire scars of different years are  high (see Table 4.1-2).   

 

The visibility of fire scars that were burnt in different years and unburnt forest is shown in Fig. 4.1-1. 

Their temporal backscatter mean values and standard deviations are shown in Table 4.1-2 and Fig. 

4.1-2. The time series shows that the visibility of fire scars burnt in 2002 varied significantly over 

time. From January to March, fire scars are almost invisible and have lower backscatter values than 

unburnt forest. In mid-April the backscatter signal starts to increase. In May, June and July the 

backscatter is significantly higher than that of unburnt forest. In Mid-July the fire scars are almost 

invisible again. The mean backscatter values of fire scars are 1.3-1.4 dB lower than these of unburnt 

forest from mid-January to end of March, but 2-3 dB higher from mid-May to early July. In mid-July 

the backscatter difference decreases to 0.4 dB (no data was available for the period from August to 

December). Landsat quick looks and MERIS images indicated that during the first two acquisitions 

(Fig. 4.1-1A and 1B) the fire scars were snow covered. The acquisition of April 12 (Fig. 4.1-1C) 
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represented a transitional period of snow-melt. Local weather data of temperature and rainfall in this 

period are shown in Fig. 4.1-3. In April the temperature was just above 0ºC and snow had already 

begun to melt; after April 18 the temperature was permanently above 0º C and from June 14 to July 16 

rainfall was recorded. This suggested that the observed backscatter change related to the snow-melt 

and rainfall. The snow-melt influence is specially represented in the acquisition of April 12 that was 

precisely during the transitional period of snow-melt: some fires scars are brighter than surrounding 

unburnt forest while others are darker. 

 

Table 4.1-2. The backscatter mean and standard deviation of fire scars burnt in different years 

Unburnt forest Burnt 1999 Burnt 2000 Burnt 2002 Burnt 2003 Date of 

2003 dB 

(Mean) 

dB 
(std) 

dB 

(Mean) 

dB 

(std) 

dB 

(Mean) 

dB 

(std) 

dB 

(Mean) 

dB 

(std) 

dB 

(Mean) 

dB 

(std) 

Jan. 19 -10.56 1.40 -11.43 2.20 -11.67 1.95 -11.85 1.48 -11.61* 1.17* 

March 27 -10.09 1.61 -11.20 1.43 -11.73 1.71 -11.40 1.56 -11.56* 1.33* 

April 12 -11.02 1.47 -11.02 1.86 -11.33 1.85 -11.08 2.10 -10.54* 1.36* 

May 11 -9.34 1.52 -8.52 1.37 -9.26 2.07 -6.99 1.48 -9.87* 1.38* 

June 18 -8.88 1.40 -8.08 1.34 -8.54 1.71 -6.76 1.68 -7.02 1.94 

July 4 -9.59 1.49 -8.76 1.43 -8.90 1.81 -6.60 1.93 -7.51 2.10 

July 13 -9.48 1.37 -10.24 2.00 -9.88 1.63 -9.04 1.63 -9.60 1.26 

* still unburnt 

 

The MODIS 8-day hotspots and AVHRR fire polygons indicated the fire scar labeled “burnt 

2003” formed between 18 May 2003 and 9 June 2003. Fig. 4.1-1 shows that it is not visible in the pre-

fire image acquired on May 11 (Fig. 4.1-1D) whilst it is clearly visible in the post-fire image acquired 

on June 18 (Fig. 4.1-1E). Table 4.1-2 and Fig. 4.1-2 shows that the backscatter dramatically changes 

from –9.9 to –7.0 in the period of 11 May 2003 to 18 June 2003.  

 

Fig. 4.1-1 also shows that fire scars that formed in 1999 and 2000 are difficult to discriminate 

from unburnt forest in 2003 imagery. In Fig. 4.1-1F the fire scars labeled “burnt 2002” and “burnt 

2003” are clearly visible while the ones before (“burnt 1999” and “burnt 2000”) are difficult to 

discriminate. The backscatter values of “burnt 1999” and “burnt 2000” are only about 0.7-0.8 dB 

higher than unburnt forest, while “burnt 2002” and “burnt 2003” are 2-3 dB higher (Fig. 4.1-2). This 

might be due to more vegetation regrowth in the fire scars of “burnt 1999” and “burnt 2000”.  
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The precipitation and temperature change in fire scar area
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Fig. 4.1-3. Precipitation and temperature between January and July 2003. The dashed bars denote the 

ASAR WSM acquisitions (Jan 19, March 27, April 12, May 11, June 18, July 4, July 13 of 2003), the 

ellipse denotes the snow-melt period. 

 

Rainfall events caused an increase in backscatter, however the acquisition of July 13, 2003 (Fig. 

4.1-1F) did not fit into this pattern. Although the weather data (Fig. 4.1-3) indicated rainfall in this 

period, the fire scars were almost invisible. The invisibility was supposed to be correlated to the 

incidence angle. As can be seen in Fig. 4.1-1, fire scars burnt in 2002 were obviously brighter than 

adjacent unburnt forest in Fig. 4.1-1D, 1E and 1F when they were acquired under the shallower 

incidence angles about 20-30 degrees. In the acquisition of July 4 (Fig. 4.1-1G), the incidence angle 

was approximately 40 degrees. Since the weather data indicated some rain, the incidence angle was 

most likely the reason for the invisibility.  
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Fig. 4.1-4. Fire scars at different incidence angles (4 July 2003). The weather recorded by station Tupik 

(B) indicated 8, 0.3 and 12 mm rainfall on June 27, June 30 and July 2. Weather data of Tungokochen (A) 

indicated 5.1, 0.2, 2.9 and 1.9 mm rainfall on June 27, June 29, July 1 and July 2. Bar: 40 km 

 

 

Table 4.1-3. The incidence angle and backscatter of fire scars formed in 2002 

NO 

Incidence 

angle dB 

MERIS 

NDVI* 

Burning 

Date in 2002 

Area 

 (km2) 

1 19.230 -6.263 0.038 Aug 12-Aug 14 59.23 

2 22.080 -6.406 0.023 Aug 06-Aug 16 86.62 

3 25.233 -6.815 0.054 Aug 06-Aug 14 19.89 

4 27.696 -6.465 0.019 Aug 05-Aug 16 211.91 

5 29.121 -6.964 0.025 Aug 06-Aug 16 175.84 

6 34.276 -7.840 0.022 July 21-Aug 14 42.11 

7 37.961 -8.090 0.063 July 20-Aug 14 101.16 

8 41.548 -8.413 0.056 July 21-Aug 15 81.34 

*MERIS band 8 (0.68125 µm) and 14 (0.885 µm) were selected as red and NIR for this calculation. 

 

To further investigate the influence of the incidence angle on fire scar visibility, several fire scars 

that all formed in a short period in 2002 were compared (Fig. 4.1-4) and were acquired on the same 

day under different incidence angles (Table 4.1-3). The weather station Tungokochen and Tupik 

indicated some rain. It was assumed that fire damage was similar in these fire scars, because the 

NDVI, which is related to fire severity (Chafer et al., 2004), varied very little. Fig. 4.1-5 shows that 

the incidence angle had great effect on the backscatter of fire scars. With incidence angles ranging 
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from 19.2 to 41.5 degrees the backscatter values decreased from –6.3 to –8.4. The lower backscatter 

values of fire scars in the acquisitions of Jan 19, March 27 and April 12 (Fig. 4.1-1A, 1B and 1C) 

might also in part related to large incidence angles. 

 
Fig. 4.1-5. Correlation of backscatter and incidence angle. The backscatters of the fire scars decreases by 

0.1 dB for each degree in incidence angle whilst that of unburned forest not. 

 

4.1-4. Discussion  
 

Increased soil moisture in fire affected areas and the sensitivity of SAR to soil moisture are the main 

causes why backscatter features of fire scars were different from those of unburnt forest in ASAR 

WSM images in this boreal region. This relates to the facts that 1.) fire destroys and thus often 

removes large fractions of the vegetation and more solar energy can reach the ground, 2.) fire 

decreases the albedo of the ground thus increasing the amount of energy absorbed by the soil, and 3.) 

fire removes much of the dead organic matter that insulates the ground. This results in an increase in 

the moisture of soils in the permafrost zone during the initial years after a fire (Brown, 1983).  In 

addition, in the microwave spectrum a change in moisture content generally provokes a significant 

change in the dielectric properties of natural materials. Increasing moisture is thus associated with an 

increased radar reflectivity (Lilesand and Kiefer, 1994). Since the ENVISAT ASAR instrument is 

operating in C-band wavelengths of 3.75-7.5 cm, at which the volume scattering of vegetation canopy 

predominates and surface scattering from the underlying soil is minimal, the backscatter signal is 
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mainly determined by vegetation canopy in undisturbed forests. However, if the canopy is largely 

removed by fire, the radar signal scattering becomes dominated by the ground layer.  

 

 The incidence angle is an important factor in monitoring soil moisture (Ulaby and Batlivala, 

1976; Dobson and Ulaby, 1986). Our results show that the backscatter of fire scars varied as a function 

of the incidence angle with a higher backscatter correlated with smaller incidence angles. This 

observation confirms that of French et al. (1999) who used Radarsat SAR images. 

 

Kasischke et al. (1992) found that in ERS SAR images of Alaska fire scars reflected 3-6 dB 

brighter than adjacent unburnt forest. In our study it was found that fire scars after one year had a 

backscatter signal 2-3 dB higher than the surrounding unburnt forest (mid-April to early July). The 

reason for this difference might relate to differences in forest types and fire behavior (e.g. more surface 

and less stand replacement burning in Russia) (Shvidenko and Goldammer, 2001; Conard  et al., 2002; 

Soja et al., 2004). The observed backscatter corresponded well with local weather conditions of 

temperature and rainfall, which also agree with previous observations in which snow-melt in spring 

and rainfall were considered as the two factors determining the visibility of fire scars in SAR imagery 

(Bourgeau-Chavez et al., 1997). Using C-band ERS and Radarsat SAR imagery, Bourgeau-Chavez et 

al. (2002) found the fire scars in Canada and Russia had high backscatter values shortly after snow-

melt in spring, low backscatter values as the ground dried out and high values again after rainfall 

events. These findings are confirmed by the seasonal visibilty of fire scars in our study.  

 

The results show that fire scar detection using ENVISAT ASAR WSM imagery is influenced by 

several factors which are difficult to overcome as observed with other SAR systems. For operational 

burnt area mapping it is important to develop a consistent algorithm, but the variability of the 

backscatter signal, which is influenced by many environmental conditions, imposes a great barrier to 

the development of such algorithms. Our data provide some clues for burnt area detection. For 

example, snow-melt, rainfall and incidence angle can be exploited to improve fire scar detection 

through calculating the coefficient of variation (e.g. standard deviation) of each pixel in time series 

data as observered in tropical forest region (Siegert and Rücker, 2000). This, however, requires the 

continous image acquisition and the processing of large volumes of data. 

 

Rainfall events influence the backscatter of ENVISAT ASAR differently in tropical and boreal 

forests. In Siberia environmental conditions result in high soil moisture conditions from May to July, 

thus making the detection of fire scars feasible. In contrast, we found in another study in tropical 

forests in Indonesia that rainfall decreased the capability of ASAR WSM to detect fire scars (Huang 

and Siegert, 2004). In the humid tropical zone ASAR was useful in detecting burnt areas because radar 

backscatter of fire scars was significantly lower than that from forests under dry weather conditions. 
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The reason for low backscatter in this case is a considerable increase of heat flux after destruction of 

the forest canopy which leads to a quick drying out of the soil layer in fire scars (Siegert and Rücker, 

2000). These observations suggest that the local natural conditions must be considered to select the 

optimal data and algorithms for burnt area detection.  

 

The wide swath of the ENVISAT ASAR (405 km) makes this instrument very useful for large 

scale assessments of fire impact and thus may help to better understand fire regime in Russia and 

improve carbon release estimates. ENVISAT ASAR could complement existing systems of fire 

monitoring because 1.) optical instruments are often impeded by clouds in tropical and boreal regions; 

2.) area estimates based on the low resolution optical instruments such as AVHRR have significant 

uncertainties; and 3.) high resolution satellite systems are not operational for large scale monitoring 

due to limited data availability, excessive processing time and data costs.  

 

The ENVISAT ASAR instrument was expected to be especially useful in the framework of a 

multi-resolution (spatial and spectral) monitoring system. In addition to the ASAR instrument, which 

also provides a high resolution mode, the European ENVISAT satellite operates the multispectral 

MERIS instrument with 300 meters resolution and the AATSR instrument with 1 km resolution. This 

makes ENVISAT an unique system because it is possible 1.) to acquire both optical data and radar 

data at the same time; 2.) to acquire images both during day and night; and 3.) to acquire high, 

medium and low spatial resolution imagery which allows for simultaneous multi-scale analysis. The 

capability of ENVISAT to acquire imagery with different instruments almost simultaneously will 

allow one to obtain a much more detailed picture on fire events than with any other satellite system.  

 

4.1-5. Acknowledgements 
 

The author would like to thank ESA/ESRIN for financial support and free data provision in the 

framework of ENVISAT AO 689. Thanks also to Chris Schmullius in Jena University for providing 

forest cover maps and Anatoly Sukhinin in Sukachev Institute of Forest Research Academy of Russia 

for providing the time series NOAA AVHRR fire products. 

 

4.1-6. References 
 

Bourgeau-Chavez, L. L., Harrell, P. A., Kasischke, E. S. &  French, N. H. F. (1997). The detection and 

mapping of Alaskan wildfires using a spaceborne imaging radar system. International Journal of Remote 

Sensing, 18, 355-373. 

Bourgeau-Chavez, L. L., Kasischke, E. S., Brunzell S. & Mudd J. P. (2002). Mapping fire scars in global 

boreal forests using imaging radar data. International journal of remote sensing, 23(20), 4211-4234. 



chapter 4.1---Observation of siberian fire-disturbed forests in envisat asar wide swath images 

 72

Brown, R. J. E. (1983). Effects of fire on the permafrost ground thermal regime. In Wein, R. W. & Maclean, 

D. A. (Ed.), The Role of Fire in Northern Circumpolar Ecosystems (pp. 97-110). New York: John Wiley 

& Sons. 

Chafer, C. J., Noonan, M. & Macnaught, E. (2004). The post-fire measurement of fire severity and intensity in 

the Christmas 2001 Sydney wildfires. International Journal of Wildland Fire, 13(2), 227–240. 

Conard, S.G., Sukhinin, A.I., Stocks, B.J., Cahoon, D.R., Davidenko, E.P. &  Ivanova, G.A. (2002). 

Determining effects of area burnt and fire severity on carbon cycling and emissions in Siberia. Climatic 

Change 55, 197-211. 

Dobson, M. C. & Ulaby, F. T. (1986). Active microwave soil moisture research. IEEE transactions on 

geoscience and remote sensing, 24, 23–36. 

Dyrness, C. T. & Norum, R. A. (1983). The effects of experimental fires on black spruce forest floors in 

interior Alaska. Canadian Journal of forest research, 13, 879-893. 

European Space Agency (2000a). ENVISAT ASAR Product Handbook, Issue 1.1, 1 December, 2002. 

available at http://envisat.esa.int/dataproducts/asar/CNTR2-6-1.htm 

European Space Agency (2000b). MERIS Product Handbook, August, 2002. available at  

http://envisat.esa.int/pub/ESA_DOC/ENVISAT/MERIS 

French, N. H. F.,  Bourgeau-Chavez, L.L., Wang Y. & Kasischke, E. S. (1999). Initial observations of radarsat 

imagery at fire-disturbed sites in interior Alaska. Remote Sensing of Environment, 68(1), 89-94.  

French, N. H. F., Kasischke, E. S., Bourgeau-Chavez, L. L. & Harrell, P. A. (1996). Sensitivity of ERS-1 SAR 

to variations in soil water in fire-disturbed boreal forest ecosystem. International Journal of Remote 

Sensing, 17, 3037-3053. 

Goldammer, J. G. & Furyaev, V. V. (1996). Fire in Ecosystems of Boreal Eurasia. Dordrecht: Kluwer 

Academic Publishers. 

Goldammer J. G. (2003). Wildland fire season 2002 in the Russian Federation: an assessment by the Global 

Fire Monitoring Center (GFMC). International Forest Fire News (IFFN),28, 2-14. 

Huang, S. & Siegert, F. (2004). ENVISAT multisensor data for fire monitoring and impact assessment. 

International Journal of Remote Sensing, 25(20), 4411-4416. 

Kajii Y., Kato S., Streets, D. G., Tsai N. Y., Shvidenko A., Nilsson S., Minko,M. P., Abushenko N., Altyntsev 

D. & Khodzer T. V. (2002). Boreal forest fires in Siberia in 1998: estimation of area and emissions of 

pollutants by AVHRR satellite data. Journal of Geophysical Research, 107(D24), 4745, 

doi:10.1029/2001JD001078.  

Kasischke, E. S., Bourgeau-Chavez, L. L., French, N. H. F., Harrell, P. A. & Christensen, N. L. (1992). Initial 

observations on using SAR to monitor wildfires scars in boreal forest. International Journal of Remote 

Sensing, 13, 3495-3501. 

Kasischke, E. S., Bourgeau-Chavez, L. L. &  French, N. H. F. (1994). Observations in ERS-1 SAR image 

intensity associated with forest fires in Alaska. IEEE transactions on geoscience and remote sensing, 32, 

206-210. 



chapter 4.1---Observation of siberian fire-disturbed forests in envisat asar wide swath images 

 73

Kasischke, E. S., & French, N. H. F. (1995). Locating and estimating the areal extent of wildfires in Alaskan 

boreal forests using multiple-season AVHRR NDVI composite data. Remote Sensing Environment 51, 

263-275. 

Kasischke, E. S. & Stocks, B. J. (2000). Fire, Climate Change and Carbon Cycling in the Boreal Forest. New 

York: Springer-Verlag. 

Kasischke, E. S. & Bruhwiler, L. P. (2003). Emissions of carbon dioxide, carbon monoxide, and methane from 

boreal forest fires in 1998. Journal of Geophysical Research,107(D1), 8146, doi:10.1029/2001JD000461. 

Lilesand, T. M. & Kiefer, R. W. (1994). Remote Sensing and Image Interpretation, 3rd edn. New York: John 

Wiley & Sons. 

Landry, R., Ahern, F. J. &  O’Neil, R. (1995). Forest burn visibility on C-HH radar images. Canadian journal 

of remote sensing, 21, 204-206. 

Liew, S. C., Khoh, L. K., Padmanabhan, K., Lim O. K. &  Lim, H. (1999). Delineating land/forest fire burnt 

scars with ERS interferometric synthetic aperture radar. Geopgysical Research letters, 26, 2409-2412. 

Gimeno M., San-Miguel, J., Barbosa P. & Schmuck G. (2002). Using ERS-SAR images for burnt area 

mapping in Mediterranean landscapes, In Viegas (Ed.), Forest Fire Research & Wildland Fire Safety. 

Rotterdam: Millpress, ISBN 90-77017-72-0.  

Nilsson, S. & Shvidenko, A. (1998). Is sustainable development of the Russian forest sector possible? IUFRO 

Occasional Paper No. 11, ISSN 1024-414X, IUFRO Secretariat, Vienna, Austria. 76 pp. 

Shvidenko, A. & Goldammer, J.G. (2001). Fire situation in Russia. International Forest Fire News, 24, 41-59. 

Siegert, F., Huang, S., Goldammer, J. G. & Sukhinin, A. I. (2004). Exceptionally large fire damage and carbon 

release by large-scale wildfires in South-Siberia in 2003. In preparation. 

Siegert, F. &  Rücker, G. (2000). Use of multitemporal ERS-2 SAR images for identification of burned scars 

in South-East Asian tropical rain forest. International Journal of Remote Sensing, 21(4), 831-837.   

Soja, A. J., Sukhinin, A. I., Cahoon, D. R., Shugart, H. H. &  Stackhouse P.W. (2004).  AVHRR-derived fire 

frequency, distribution and area burned in Siberia, International Journal of Remote Sensing,25, 1939-

1960. 

Sukhinin, A. I. (2003). The 2002 fire season in the Asian part of the Russian Federation: a view from space. 

International Forest Fire News (IFFN), 28, 18-28. 

Ulaby, F. T. & Batlivala, P. P. (1976). Optimum radar parameters for mapping soil moisture, IEEE 

Transactions on Geoscience and Remote Sensing,14, 81–93. 

Van der Werf, G. R., Randerson, J. T., Collatz, G, J., Giglio, L., Kasibhatla, P. S., Arellano A. F., Olsen, S. C. 

&  Kasischke, E. S. (2004). Continental-scale partitioning of fire emissions during the 1997 to 2001 El 

Nino/La Niña period. Science, 303, 73-76. 

Viereck, L. A. (1983). The effects of fire in black spruce ecosystems of Alaska and northern Canada. In Wein, 

R. W. & Maclean, D. A. (Ed.), The Role of Fire in Northern Circumpolar Ecosystems (pp. 201-220). New 

York: John Wiley & Sons. 



chapter 4.1---Observation of siberian fire-disturbed forests in envisat asar wide swath images 

 74

Warren, S.G., Hahn, C.J., London, J., Chervin, R.M., & Jenne, R.L. (1986). Global distribution of total cloud 

cover and cloud type amounts over land. National Center for Atmospheric Research (NCAR) Tech. Note, 

NCAR/TN-273+STR, 29 pp. + 200 maps.  

 

 

 

 



Chapter 4.2---Forest fire scar detection in Siberia using Envisat MERIS 

 75

CHAPTER 4.2---FOREST FIRE SCAR DETECTION IN 

SIBERIA USING ENVISAT MERIS 

 
 Russia holds two-thirds of the world’s boreal forest and it accounts for one of the largest 

reservoirs of terrestrial carbon. Fire is a common phenomenon in this ecosystem and the forest 

vegetation is well adapted to fire impact. In recent years the forest fire situation became critical 

in some parts of the Russian Federation: fires became more frequent and larger in size. 

However, the system presently used to record fire occurrence, the Advanced Very High 

Resolution Radiometer (AVHRR) satellite instrument with a resolution of 1 km, is not accurate 

enough for fire scar mapping and fire impact assessment. The Medium Resolution Imaging 

Spectrometer (MERIS) instrument onboard the European ENVISAT satellite might be a 

promising new alternative with its ground resolution of 300 m and global coverage of the Earth 

in three days in 15 different visible to near infra-red spectral bands. The objective of this study 

was to investigate the applicability of ENVISAT MERIS for fire scar mapping in Siberian forest 

ecosystems. The spectral reflectance of forest, fire scars and cloud shadows were anlaysed for all 

spectral bands, the burnt area was determined using maximal Normalized Difference Vegetation 

Index (NDVI) image composites, and the mapping accuracy was assessed. The analysis showed 

that 1.) the near infrared reflectance ranging from band 9 to band 15 decreased almost half after 

a forest fire; 2.) cloud shadows were the major source of error during automated fire scar 

mapping; 3.) maximal NDVI composition eliminated the cloud shadows disturbance; 4.) the 

accuracy of fire scar mapping was high with only 3% overestimation compared to high 

resolution ASTER imagery. Our results suggest that MERIS is a promising instrument for fire 

scar mapping, which supplements current fire monitoring systems based on the AVHRR and 

MODIS instruments. 

 

4.2-1. Introduction 
 

In the past three decades wildfires became an increasingly important ecological factor which 

significantly influences the earth’s environment and climate change. Fires change the physical state of 

the vegetation, affect biodiversity and release a variety of harmfull greenhouse gases into the 

atmosphere (Andreae, 1991; Page et al., 2002; Andreae and Merlet, 2001; Van der Werf et al., 2004). 

In boreal forests, fire affects the carbon budget and the flow of energy between the atmosphere and 

ground layer, and there is adependence on the melting and formation of permafrost and the occurrence 

of fire, which in turn has a strong influence on the hydrology of these sites (Brown, 1983; Harden et 

al., 2000). Russia is a critical region because it holds two-thirds of the world’s boreal forest, and with 

its peatlands it accounts for one of the largest reservoirs of terrestrial carbon (Alexeyev and Birdsey, 
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1994; Goldammer and Furyaev, 1996). The detection of fires and the assessment of their impacts on 

the vegetation are important to better understand and model possible impacts on climate change on a 

global scale. 

 

In recent years the forest fire situation turned out to be exceptional in some parts of the Russian 

Federation (Smith et al., 2004; Goldammer, 2003). From 1980 to 1999, official Russian estimates of 

annual area burned ranged from 0.23 to 5.4 Million ha (. Shvidenko and Goldammer, 2001). More 

detailed surveys based on National Oceanic and Atmospheric Administration (NOAA)-(Advanced 

Very High Resolution Radiometer) AVHRR imagery showed that in 1998 more than 9 Million ha and 

in 2000 more than 13 Million ha have been burned (Kajii et al., 2002; Conard et al., 2002). In 2002 

many fire-related parameters exceeded the 7-year average by several orders of magnitude: 10,252 

forest fires were recorded in Asian Russia affecting a total of 11.7 Million ha, with the mean fire size 

of 1,143 ha (Sukhinin, 2003). In 2003, an even larger fire event was recorded. From mid-March till the 

end of July, thousands of uncontrolled forest fires burnt more than 20 Million ha West of Lake Baikal 

alone (Siegert and Huang, 2004). 

 

Area estimates are still not satisfactory, especially for the Asian part of Russia: official Russia 

government statistics based on ground and aerial surveys on the burnt area differ by a factor of 1.5 to 

10 with results from NOAA AVHRR satellite image analysis (Conard et al., 2002; Shvidenko and 

Nilsson, 2000; Cahoon et al., 1994; Soja et al., 2004); The annual burnt area ranges from a 47-year 

average estimate of 1.3 million hectares (Mha) (Korovin, 1996) to more than12 Mha (Conard and 

Ivanova, 1997).  

 

 Since wildfires in Russia often affect large and inaccessible regions satellite remote sensing is 

the only solution to assess the burnt area and fire impact (Kajii et al., 2002; Conard et al., 2002; 

Sukhinin, 2003; Soja et al., 2004). The AVHRR instrument is the most widely used sensor for fire 

monitoring and mapping. However, AVHRR was not designed for fire detection and therefore it is 

not optimally configured for this application. In particular, the most important band for fire 

detection, the mid-infrared thermal band at 3.7 µm, saturates at ~322K for AVHRR/2 (up to 

NOAA-14) (Csiszar and Sullivan, 2002) and ~335K for AVHRR/3 (NOAA-15 and onwards). 

These brightness temperatures are often reached when a small fraction of the pixel is covered by 

flaming fires. This makes it impossible to quantify fire size and energy from AVHRR for a broad 

range of fires. Also, small or low-intensity fires may not be detected due to sensor resolution and 

the response time (Point Spread Function) of the instruments (Cahoon et al., 2000). Therefore 

measurements by AVHRR tend to miss smaller fires and to underestimate the total area of large 

fires based on their perimeters (Kasischke and French, 1995; Kasischke and Bruhwiler, 2003). 

Zhang et al. (2003) used SPOT VEGETATION imagery with a ground resolution of 1 km to 
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detect fire scars in Russia and their results showed that a burnt area of 2 km2 or larger was reliably 

detected but the size was underestimated by on average 18% when compared to Landsat-

Enhanced Thematic Mapper (ETM). The Bi-spectral InfraRed Detection (BIRD)- Hot Spot 

Recognition System (HSRS) and the TERRA/AQUA Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors were purposely designed for hotspot detection and analysis. 

The MODIS instrument contains 36 spectral bands of which the five equivalent to those of the 

AVHRR have equal or better spatial resolution, saturation level, dynamic range and signal-to-

noise ratio (Ichoku et al., 2003). The BIRD satellite is a promising new instrument also for the 

detection of less intensely radiating fires such as in peatlands, but it is not yet operational 

(Wooster et al., 2003; Siegert et al., 2004). 

 

Low resolution systems such as MODIS, NOAA AVHRR, and SPOT VEGETATION cover large 

areas in short periods of time, however the results are not accurate enough and tend to under- or 

overestimate the burnt area. Multispectral satellites with high spatial resolution like Landsat ETM or 

SPOT 5 would allow a significantly improved accuracy for fire scar mapping, however they are of 

limited use if large areas have to be surveyed considering data costs, processing time and labour.  

 

In March 2002, the European Space Agency (ESA) launched ENVISAT, an advanced polar-orbiting 

Earth observation satellite which provides measurements of the atmosphere, ocean, land and ice. The 

Medium Resolution Imaging Spectrometer (MERIS) is one of ten sensors on ENVISAT recording 

visible and near-infrared radiation reflection across a range of 15 programmable spectral bands. Its 

spatial resolution is either 1200 or 300 metres. In another study we investigated the applicability of 

ENVISAT MERIS, Advanced Along-Track Scanning Radiometer (AATSR) and Advanced Synthetic 

Aperture Radar (ASAR) for fire scar mapping in Indonesia and found this multi-sensor dataset 

supplements existing technologies (Huang and Siegert, 2004). However, at that time only the reduced 

1200 meters resolution of MERIS was available. In this study the full resolution MERIS data with 300 

meters for fire scar mapping in Siberia were investigated. Specific objectives were 1.) to investigate 

the usefullness of the ENVISAT MERIS instrument for fire scar mapping in a boreal forest ecosystem, 

2.) to assess the significance of fire induced reflectance changes in all MERIS bands, 3.) to identify  

the main disturbing factors and error sources for automated fire scar mapping and possible solution 

and 4.) to determine the accuracy of the system compared to higher resolution satellite systems like 

Advanced Spaceborne Thermal Emission and Reflection (ASTER). 

 

4.2-2. Materials and Methods 
 

The research area was located to the East of Lake Baikal and to the North of Mongolia and China 

extending approximately 700 km in North-South direction and 800 km in West-East direction (Fig. 
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4.2-1). The climate is continental and recorded climate data indicate that the maximum precipitation 

falls from June through August. Most of the area is sparsely populated and covered by more or less 

intact mountain tagai coniferous larch and pine forests. In the Southern part forests blend into dryland 

steppe and some cropland are found along valleys. Shuttle Radar Topography Mission (SRTM) digital 

elevation data show that the site has a relatively flat undulating relief. Fires occurred in previous years, 

especially in 2000. 

 

MERIS and ASTER 
 

The MERIS instrument measures the solar radiation reflected by the Earth at a ground spatial 

resolution of 300 m in 15 spectral bands in the visible and near infrared spectrum (Table 4.2-1). The 

revisit time of MERIS is approximately three days. MERIS products are available at two spatial 

resolutions: Full Resolution (FR) with a resolution at subsatellite point 300 m and Reduced Resolution 

(RR) with a resolution at subsatellite point 1200 m. 

 

Table 4.2-1. The spectral coverage of MERIS instrument 

No. Band centre 

(nm) 

Band width 

(nm) 

Application 

1 412.5 10 Yellow substance and detrital pigments 

2 442.5 10 Chlorophyll absorption maximum 

3 490 10 Chlorophyll and other pigments 

4 510 10 Suspended sediment, red tides 

5 560 10 Chlorophyll absorption minimum 

6 620 10 Suspended sediment 

7 665 10 Chlorophyll absorption and fluorescence 

reference 

8 681.25 7.5 Chlorophyll fluorescence peak 

9 708.75 10 fluorescence reference, atmosphere 

corrections 

10 753.75 7.5 Vegetation, cloud 

11 760.625 3.75 O2 R- branch absorption band 

12 778.75 15 Atmosphere corrections 

13 865 20 Vegetation, water vapour reference 

14 885 10 Atmosphere corrections 

15 900 10 Water vapour, land 

       Source: European Space Agency (2002). 
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The ASTER instrument has 14 bands arranged in three subsystems: 1.) VNIR  (visible and near 

infrared bands 1, 2, and 3 from 0.55 to 0.80 µm) with 15 m resolution, 2.) SWIR (short wave infrared 

bands 4, 5, 6, 7, 8, and 9 from 1.65 to 2.4 µm) with 30 m resolution and 3.) TIR (thermal infrared 

bands 10, 11, 12, 13, and 14 from 8.3 to 11.32 µm) with 90 m resolution. ASTER was designed to 

obtain detailed maps of land surface temperature, emissivity, reflectance and elevation (Yamaguchi et 

al., 1998). The ASTER reflectance retrieving is described in Appendix 2. 

 

MERIS pre-processing 
 

The MERIS data used in this study were level 1 products with full resolution of 300 m (MER-FR-1P). 

They were firstly corrected using SMILE and SMAC algorithms provided by the BEAM software 

which can be downloaded for free from http://envisat.esa.int/services/beam/. MERIS is measuring the 

reflected sun light using Charged Coupled Device (CCD). This technology causes small variations of 

the spectral wavelength of each pixel. These disturbances result in visual artefacts and reduced 

accuracy. The SMILE algorithm allows to calculate corrected radiances from ENVISAT MERIS level 

1 products. The SMAC algorithm implements the simplified method for atmospheric correction as 

described in (Rahman and Dedieu, 1994). The practical application of such a simplified model is to 

invert the radiative transfer equation, and to calculate the surface reflectance from satellite 

measurements. When the SMAC algorithm was implemented, the parameters of the surface pressure, 

the ozone content, the water vapour content, and the aerosols were required for input. These 

parameters came from the European Centre for Medium-term Weather Forecast (ECMWF) and were 

embedded in each MERIS header. Preliminary cloud masks were applied to each MERIS image. All 

MERIS surface reflectance images were then coregistered and imported into a Geographical 

Information System (GIS) for quantitative analysis and comparison with other datasets. 

 

Fire scar mapping 
 

In boreal ecosystems fire often destroys and thus removes a large portion of the vegetation layer as 

well as much of the dead organic matter covering the soil (French and Kasischke, 1996). In addition 

fire decreases the albedo of the ground (Brown, 1983). It was first investigated to what extent these 

significant changes of the ground surface properties could be detected by a reflectance change in each 

of the 15 MERIS bands.  

 

Test site A (shown in Fig. 4.2-1) was about 26,645 km2 in size near to the city of Ust-Karenqa with 

the center longitude and latitude being 117.103E and 54.391N. For this site several Landsat quick look 

images and a time series of MODIS and AVHRR hotspots were available. Several fires occurred in 

August 2002 resulting in five large fire scars and in 2003 another fire event occurred between April 

and June (shown in Fig. 4.2-3(e)). 
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Totally 16 MERIS color images were produced using different band combinations and displayed for 

visual inspection and analysis. Forest, grassland, and lakes were easily discriminable using appropriate 

band combination such as R6G10B1 and R6G5B2. In all band combinations it was difficult to 

discriminate fire scars and cloud shadows. The typical training sites of forest fire scars, unburnt forests 

and cloud shadows in a MERIS image were visually identified (shown in Fig. 4.2-3(a)). In total 8 

training sites for fire scars, 8 for unburnt forest and 7 for cloud shadows were selected.  

 

Based on the findings of reflectance analysis, the cloud shadows were eliminated by composing the 

two MERIS acquisitions of July 12, 2003 and August 6, 2003 using the maximal Normalized 

Difference Vegetation Index (NDVI) algorithm. The acquisition of August 6, 2003 was first relatively 

calibrated to the acquisition of July 12, 2003 using histogram matching and then the NDVI of both 

MERIS images was calcuated using the following formula (European Space Agency, 2002): 
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nir
Gρ  is band 14 of MERIS and 25.681

red
Gρ  is band 8 of MERIS. The two MERIS acquisitions 

(July 12, 2003 and August 6, 2003) and the composed image were classified using band 1, band 8 and 

band 14 based on the Iterative Self-Organizing Data Analysis Technique (ISODATA) algorithm. Four 

classes were assigned: vegetation, burnt area, clouds and cloud shadows. 

 

Accuracy assessment 
 

The accuracy of the burnt area assessment based on MERIS imagery was compared to results obtained 

from high resolution multispectral ASTER imagery. The accuracy assessment was done in test site B 

(size: 25,200 km2, shown in Fig. 4.2-1) for which a series of almost cloud-free ASTER images (13 

July 2003) acquired only one day apart from the MERIS acquisition were available (12 July 2003). 

Disasterous fires occurred in the area in spring 2003. The burnt area in both MERIS and ASTER 

imagery was determined by manual on-screen digitizing because this approach is straight forward and 

more accurate than automated fire scar mapping techniques. 

 

MERIS colour images of different band combinations (R6G10B1; R6G5B2) were digitally 

enhanced and imported into GIS for visual on-screen digitizing of fire scars. 7 ASTER scenes acquired 

on 13 July 2003 were coregistered and imported into GIS for visual on-screen image interpretation of 

fire scars using band combination Red: band 3, 0.81 µm; Green: band 2, 0.66µm; Blue: band 1, 0.56 

µm. 11 sample sites without cloud cover in both sensors were selected (Fig. 4.2-1) and analyzed.  
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Fig. 4.2-1. The study area in South Siberia to the east of Lake Baikal and to the North of Mongolia and 

China. The background image shows a multitemporal MODIS composite of one month images acquired 

between August 20, 2002 and September 20, 2002. Forests (green) cover most of the region, grass and 

shrub (beige) and deserted land (white) cover the southern regions. The area is sparsely populated, few 

roads and one railway give access to the area. Spetral reflectance of forest, fire scars and cloud shadows 

were analyzed in area A (see text) and comparison with ASTER imagery was done in area B (see text). 

2002 fire scars are visible as brown signatures near area A and to the Southwest of area B. Bar: 100 km. 
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4.2-3. Results 
 

Reflectance analysis 
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Fig. 4.2-2. Reflectance signals in a MERIS image for all bands of forest, fire scars and cloud shadows. 

Vertival bars: average deviation. 

 

The result of the reflectance analysis for three different classes, forest, fire scars and cloud shadows, 

is shown for all 15 MERIS bands in Fig. 4.2-2. The reflectance was low in band 1-8 and similar for all 

three classes. In band 9-15 the reflectance of fire scars and cloud shadows differed very litte with 

about 3% maximum in band 13-15. The mean reflectance in band 9-15 of forest was significantly 

higher than that of fire scars and cloud shadows. These reults show that after fire disturbance the 

reflectance of forest in bands 1-8 changed very little whereas the reflectance in bands 9-15 decreased 

almost by half. This indicates the reflectance of forest is sensitive to fire disturbance probably due to 

biomass loss and albedo change and fire scars can be clearly discriminated from forest. 

 

A problem was cloud shadows which had a very similar reflectances as fire scars in all 15 bands. 

Although the reflectances of fire scars in band 13, 14, and 15 were slightly higher than those of cloud 

shadows, this difference was not significant enough to clearly discriminate both. 
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Fire scar mapping 
 

 

 
Fig. 4.2-3. MERIS images and classification results. (a): MERIS acquired 12 July 2003, band combination 

R8G14B1; (b): classification result of (a); (c): MERIS acquired 6 August 2003, band combination 

e f

c d

ba



Chapter 4.2---Forest fire scar detection in Siberia using Envisat MERIS 

 84

R8G14B1; (d): classification result of (c); (e): Composite image of (a) and (c), band combination 

R8G14B1; (f): classification result of (e). In (a) and (c), white polygons are training sites for cloud shadows 

while the red polygonds indicate training sites for fire scars; In (e), red circles indicate fire scars formed in 

2002, yellow in 2003 and blue in 2000; In (a), (c), and (e) the cloud mask (black), residual cloud/haze 

(white), vegetation (green) and fire scars (brown) are clearly visible. In (b), (d), and (f) green represents 

vegetation, red fire scars, white clouds and black cloud shadows. Bar:20 km. 

 

Fig. 4.2-3 shows two MERIS acquisitions and the corresponding ISODATA classification results. The 

unambiguous discrimination of fire scars was impossible in both acquisitions of 12 July 2003 (Fig. 

4.2-3(a)) and 6 August 2003 (Fig. 4.2-3(c)) because fire scars have very similar spectral refelctance to 

cloud shadows. Using the ISODATA algorithm it was not possible to correctly separate cloud 

shadows and fire scars. 

 

Vigorous green vegetation such as forest absorbs incoming radiation in the red part of the spectrum 

and reflects in the near infrared part, whereas clouds have larger reflectance in the visible than in the 

near infrared. The NDVI, which is obtained as the difference of reflectances between red and near 

infrared bands normalized by the sum of those two bands, was therefore used to remove clouds when 

compositing multitemporal images (Fernandez et al., 1997). Furthermore, the NDVI should be useful 

to remove cloud shadows as well because the analysis showed the reflectance of cloud shadows was 

similar to that of forest in bands 1-8 but only half in band 9-15. 

 

The NDVI composite of the two acquisitions is shown in Fig. 4.2-3(e). In the composite image most 

clouds and cloud shadows have been successfully removed as expected. The ISODATA classification 

result is shown in Table 4.2-2. The accuracy of the burnt area detected in single acquisitions (12 July 

2003 and 6 August 2003) was influenced by cloud shadows. 

 

Table 4.2-2. ISODATA classification result of two single day MERIS acquisitions (12 July 2003 and 6 

August 2003) and the maximal NDVI composite 

Type  

12 July 2003 

(km2) 

6 August 2003   

(km2) 

Composite 

(km2) 

Vegetation 15165 20413 22528 

Cloud 7482 3653 1321 

Cloud shadows 1267 139 593 

Burnt area 2731 2439 2201 

Total area 26645 26645 26645 
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Accuracy assessment 
 
To assess the quality of the MERIS instrument for fire scar detection, the results were compared with 

high resolution multispectral ASTER imagery with 15 meters spatial ground resolution in VNIR 

bands. An area where large forest fires occurred and for which almost could-free ASTER and MERIS 

images had been acquired only one day apart from each other was selected. This guaranteed the 

correct recognition of the same fire scars in both data sets. 11 fire scars sites with a total size of about 

740,000 ha have been visually identified in both data sets and compared quantitativley to each other. 

Fig. 4.2-4 shows the same fire scar in the MERIS (left) and the ASTER (right) image. Generally there 

was a good agreement between the two sensors, however, fire scars detected in MERIS showed much 

less spatial detail than that in the ASTER image. Especially small fragments of unburnt forest were not 

detectable in the MERIS image. 

 

 
Fig. 4.2-4. Fire scars as digitized in a MERIS image (left, acquired on 12 July 2003) and an ASTER image 

(right, acquired on 11 July 2003). bar: 5 km 

 

The result of the comparison is shown in Table 4.2-3. The area of the sample sites ranged from 

20,000 ha to about 140,000 ha. Fire scars mapped in the ASTER imagery were overestimated in 

MERIS imagery in 7 sites with maximal 5.13% and underestimated in 4 sites with maximal –6.48%. 

On the average there was a slight overestimate of 2.2%, primarily due to the fact that small unburnt 

forest patches were not detectable in the lower resolution MERIS imagery. 

 

 Next is to investigate whether there is a correlation between the burnt area visible in high resolution 

ASTER imagery and medium resolution MERIS imagery. The result of the regression analysis is 

shown in Fig. 4.2-5. The coefficient R2 equal to 0.9979 suggests that fire scars detected in MERIS and 
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ASTER imagery were highly correlated. The regression equation of y = 1.0299x indicates that the bias 

of the burnt area detected by MERIS is slightly shifted from the burnt area detected by ASTER. 

 
Table 4.2-3. Quantitative comparison of fire scars detected in MERIS and ASTER imagery 

 
Sites 

NO 

MERIS Fire  scar 

(Ha)

ASTER fire scar

 (Ha)

Relative Bias 

(%)

1 107,313 103,727 3.34

2 38,404 36,435 5.13

3 130,701 124,825 4.50

4 55,985 53,979 3.58

5 28,909 30,781 -6.48

6 139,595 134,402 3.72

7 19,352 18,596 3.91

8 56,535 59,418 -5.10

9 35,562 35,889 -0.92

10 100,546 98,525 2.01

11 27,873 28,003 -0.47

Sum 740,775 724,580 2.19

 

y = 1.0299x
R2 = 0.9979
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Fig. 4.2-5. The regression curve for fire scar areas determined in ASTER and MERIS imagery. y = 

1.0299x where y refers to MERIS and x to ASTER. 
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4.2-4. Discussion 
 

Two categories of fire products can be derived by satellite remote sensing: detection of active fires 

(hot-spots) and burnt areas. Hotspot detection is usefull for fire monitoring and active fire 

management, whereas the accurate assessment of burnt areas and fire impact on the vegetation are 

required to assess ecosystem disturbance and carbon release.  

 

Hotspots are normally detected via their increased spectral signature in the Middle Infrared Red 

(MIR) spectral region (3.4-4.2µm) as reviewed in detail by Robinson (1991). Instruments used for 

hotspots detection include the NOAA-AVHRR, ERS/ENVISAT-A(A)TSR, TERRA/AQUA-MODIS, 

and BIRD.  

 

In contrast to active fires that last for as short as a few hours, burn scars generally last from a few 

weeks to several months and even several years, and therefore potentially allow a more reliable 

detection through satellite remote sensing (Li et al., 2004).  In boreal ecosystems like in Russia burnt 

scars are typically warmer than surrounding unburnt areas, so thermal infrared bands are useful in 

discriminating burn boundaries (Sukhinin et al., 2004). Li et al. (2004) reported that smoke particles 

with typical sizes on the order of 0.2 µm affected short-wavelength combination of 0.66, 0.55, and 

0.47 µm more than long-wavelength combination of 2.13, 1.24, and 1.64 µm in burnt area 

identification, and thus the burn scars were better discriminated using the individual two channels of 

MODIS images centered near 1.24 and 2.13 µm. Zhang et al. (2003) also found that SPOT 

VEGETATION channel of 1.58-1.75µm also decreased following a fire event and could be used for 

burnt area identification.  

 

Since MERIS only covers the spectral region ranging from 0.4125 to 0.900 µm, these findings can 

not be applied to MERIS imagery. Because NIR reflectance generally drops markedly after a fire, the 

remote detection of newly burnt areas is commonly based on Near InfraRed (NIR) reflectance 

thresholding, or observation of a significant NIR reflectance change (Zhang et al., 2003; Fraser et al., 

2000; Stroppiana et al., 2002; Ahern et al., 2000). Many fire scar mapping activities using NOAA 

AVHRR imagery are based on the decrease of the NDVI after a fire event (Kasischke and French, 

1995; Fernandez et al., 1997; Barbosa et al., 1999). Zhang et al. (2003) also regarded a significant fall 

in NIR reflectance between pre- and post-fire image dates as their primary method for mapping burned 

areas with SPOT VEGETATION. 

 

Our results confirm these observations. A significant decrease (almost 50%) in the MERIS NIR 

bands 9-15 after fire impact was also found. The NIR reflectance drop can be used for fire scar 

mapping using MERIS imagery. Compared with others sensors, MERIS has more than 7 bands in NIR 
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spectral range and thus this higher spectral resolution might provide even more information on burn 

scars.  

 

Several factors obstruct reliable fire scar mapping such as clouds, haze, and cloud shadows. Usually 

clouds are easily discriminable from land cover features because of their high reflectance in the visible 

and near infrared spectral region, but fire scars hidden under clouds will not be detected, thus leading 

to an underestimation of the burnt area. In addition, the spectral characteristics of cloud shadows were 

very similar to that of fire scars, so cloud shadows were easily recognized as fire scars in automated 

classification procedures. This leads to an overestimate of the burnt area. It was found that the 

maximal NDVI composite algorithm was useful to remove errors caused by cloud shadows. Errors 

still may occur due to the fact that MERIS band 8 (0.68125 µm) used for the NDVI is often 

contaminated by the scattering from smoke particles and haze (Li et al., 2004; Roy et al., 1999). 

 

Kasischke et al. [1993] found that AVHRR NDVI composite images were useful to assess wildfire 

impacts in boreal forests. However, the coarse resolution of the AVHRR sensor (1-4 km) resulted in 

significant errors of burnt area estimates and tended to underestimate the total area of large fires in 

boreal regions (Kasischke and French, 1995; Kasischke and Bruhwiler, 2003). Similarly it was found 

that SPOT VGT underestimated the size of the burnt area by between 3% and 62% in Russia (Zhang et 

al., 2003) whereas it overestimated the size of burnt areas in Canadian forests by an average of 71% 

when compared to Landsat ETM (Fraser et al., 2000).  

 

It was found that MERIS performed significantly better than NOAA AVHRR and SPOT 

VEGETATION. Burnt areas were only slightly overestimated (3%) when compared to high resolution 

ASTER imagery. This result suggests that MERIS might be very useful for fire scar mapping over 

large areas. However, our study was limited to only a few data sets in a specific geographic region. 

Results might be different in other regions and ecosystems with different fire regimes. More studies 

are required to validate these findings.  

 

For example, it has been realized that both the issues related to and the methods used to monitor 

biomass burning in boreal forest are quite different than those for savannas and tropical forests 

(French et al., 1996). Fire events in boreal forest are often very large and leave a distinct scar which is 

clearly detectable through differences in surface reflectance. Fire events in tropical forests are often 

relatively small in size and less destructive. As a consequence fire scars in tropical forests are often not 

very distinct and fast vegetation regrowth makes their detection later even more difficult (Siegert et 

al., 2001). This differences prompt for detailed studies in tropical and sub-tropical regions for 

comparison. 
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Since MERIS is only one of three instruments onboard the European ENVISAT satellite which can 

be used for fire monitoring and impact assessment, ENVISAT will significantly improve our 

knowledge of the role of fire in the global ecosystem. In addition to MERIS multispectral data, 

ENVISAT acquires radar data with the ASAR instrument at wide swath mode (150 meters) and 

alternating polarization mode precision image at higher resolution of 30 meters as well as AATSR 

data at 1 km resolution. ASAR can be used to map fire scars when cloud and haze impede any optical 

sensors (Huang and Siegert, 2004) and AATSR is the successor of the Along Track Scanning 

Radiometer (ATSR) instrument onboard of ERS-1/2, which was successfully used to record fire 

hotspots (Arino et al., 2001). The capability to acquire data at different spectral and spatial resolutions 

simultaneoulsy allows to get a much more detailed picture of a fire event than with any other satellite 

system and makes ENVISAT a unique system for fire science. 
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CHAPTER 4.3---ENVISAT MULTISENSOR DATA FOR FIRE 

MONITORING AND IMPACT ASSESSMENT 
 

 

The European ENVISAT satellite provides both optical and radar measurements of the 

Earth surface. In this chapter, three ENVISAT instruments were used to investigate the extent 

and impact of the forest and peatland fires which devasted large areas in Central Kalimantan, 

Indonesia in 2002. Reduced spatial resolution MERIS imagery was used to identify simple land 

cover features and smoke plumes. Fire hotspots were detected by band 3.7 µm in AATSR night 

time acquisitions, and burnt areas were detected by ASAR wide swath radar imagery acquired 

before and after the fire event. The capability of ENVISAT to acquire data from different 

sensors simultaneoulsy or within a short period of time greatly enhances the possibilities to 

monitor fire occurrence and assess fire impact. 

 

4.3-1. Introduction 
 

The El Niño episode in 1997/98 caused an unusually long dry season across South East Asia, which 

boosted the spread of thousands of forest fires. Millions of hectares of tropical rainforests and peat 

swamp forests were destroyed and huge amounts of carbon were released into the atmosphere (Siegert 

et al., 2001; Page et al., 2002; Taconi, 2003). In 2002 a weak El Niño caused another drier than usual 

year and again hundreds of fires were observed in Central Kalimantan.  

 

Considering the importance of forest and peatland fires for global climate change, this fire event 

was chosen to qualitatively investigate the potential of the new ENVISAT environmental satellite for 

fire monitoring. The objective of this study was to investigate and demonstrate the capability of 

ENVISAT to detect forest fires and fire impact by exploiting its sophisticated combination of 

instruments.  

 

Multiple acquisitions of the Advanced Along Track Scanning Radiometer (AATSR), the MEdium 

Resolution Imaging Specrometer (MERIS) and the Advanced Synthetic Aperture Radar (ASAR) 

product, ASA-WSM-1P wide swath mode standard image and ASA-APP-1P alternating polarization 

mode precision image, on ENVISAT were used to detect fire hotspots and fire scars. The major 

advantage of the ENVISAT system is that all three instruments can record data almost simultaneously, 

thus, delivering a more detailed picture on a fire event than any other satellite system. The results were 

compared to established fire detection instruments such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS), NOAA’s Advanced Very High Resolution Radiometer (AVHRR) and 

field data. 
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4.3-2. Methods 
 

The study area was located in the province of Central Kalimantan on the island of Borneo, Indonesia. 

It is characterized by extensive lowlands supporting a natural vegetation of peat swamp forests. In 

recent decades human activity such as logging and agriculture and recurrent fires have severely 

disturbed this fragile ecosystem. In 2002 hundreds of fire hotspots were observed by the NOAA 

receiving station operated by FFPMP-Forest Fire Prevention Management Project, the global daily 

MODIS fire product and the BIRD satellite (Siegert et al., 2004). Field data on land cover and land use 

was collected before the fires. During and after the fires the occurrence and extent of fire scars and fire 

impact were recorded within a distance of 50 km from Palangkaraya in areas accessible by car or boat. 

All observations were recorded by GPS and imported into the GIS to allow comparison with satellite 

imagery. An assessment of the burned area of 2002 based on Landsat ETM imagery was used for 

validation.    

 

The AATSR sensor is characterized by three thermal bands at 3.7, 10.8 and 12 µm wavelengths 

and four reflected visible/near infrared bands. The instrument has 1 km spatial resolution at nadir 

view. The available night time acquisitions were used to detect fire hotspots. Pixel values saturated in 

band 3.7 µm were classified as fire hotspots (red colour in Fig. 4.3-1B). The accuracy of the AATSR 

derived hotspots was compared to the MODIS fire product and NOAA AVHRR hotspots downloaded 

(http://ffpmp2.hp.infoseek.co.jp/English/ and http://rapidfire.sci.gsfc.nasa.gov/production/). All data 

sets were georeferenced to UTM projection and imported into a GIS in order to allow the comparison 

of the different data sets. 

 

MERIS is a 68.5˚ field-of-view pushbroom imaging spectrometer that measures the solar radiation 

reflected by the Earth at a ground spatial resolution of 300 m in 15 spectral bands in the visible and 

near infra-red. MERIS allows global coverage of the Earth in 3 days. In autumn 2002 only the reduced 

spatial resolution MERIS data in level 1b with 1200 m ground spatial resolution were available. The 

NIR bands which are sensitive to biomass change were chosen to detect fire scars. To identify the 

origin of smoke plumes blue band (band 1) was used because haze is better visible in the shortwave 

spectrum. Colour images were prepared using band 6 as red, band 10  as green and band 1 as blue to 

visualize the vegetation cover and haze produced by the fires.  

 

ASAR, a cloud penetrating SAR instrument, operating at C-band, was designed to operate in six 

different modes ranging from alternating polarisations and from high to medium spatial resolution 

swath modes for regional and global monitoring. In this study the wide swath mode product 

(approximately 150 m ground range and 150 m azimuth) and alternating polarisation mode radar 

images (approximately 30 m ground range and 30 m azimuth) in level 1b, ASA-WSM-1P and ASA-

APP-1P were evaluated. The ASAR image were first speckle filtered using the Gamma Map filter to 
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remove the noise. Brightness was then adjusted to compensate for near to far range effects. To detect 

fire scars a Principle Component Analysis (PCA) was applied to two radar image pairs acquired before 

and after the fire event. The second component depicts the differences between the two multitemporal 

radar images and thus indicates change caused by fire (Siegert and Rücker, 2000). RGB colour 

composites were produced for fire scar detection using the second component as red and the two, pre-

fire and post-fire, images as green and  blue respectively. 

 

4.3-3. Results 
 

12 AATSR scenes, 6 MERIS scenes, 8 ASAR WSM and 2 ASAR APP images were analysed. At that 

time it was not possible to record all sensors within a single day. However, in one instance shown in 

Fig. 4.3-1, MERIS and AATSR data only one day apart were available. More than 20 smoke plumes 

are visible in the MERIS image and thick haze covers the whole Northern section. There is a clear 

correlation between the smoke plumes visible in MERIS and AATSR hotspots as shown in Fig. 4.3-

1B. NOAA and MODIS hotspots are shown for comparison. 126 hotspots were identified by AATSR, 

337 by NOAA AVHRR and 321 by MODIS. The difference in hotspot numbers between the different 

instruments relates 1.) to the fact that MODIS and NOAA (acquired on the same day) were acquired 

two days earlier than the AATSR image and 2.) smoke and clouds were more dense during the 

AATSR acquisition (dark areas in Fig. 4.3-1B). GPS recorded fire locations (August 24, 2002, shown 

in Fig. 4.3-2C) were compared with the occurrence of smoke plumes visible in a MERIS image 

acquired on the same day as the fires were recorded on ground. Out of 15 fires observed on ground 

(red in Fig. 4.3-2C), 10 fire locations could be identifed by their smoke plumes and fire scars in the 

MERIS colour image product. Four fires could not be confirmed because thick smoke covered the 

area, one fire had no smoke plume in the MERIS image.  

 

No acquisition of AATSR were available for 24th of August 2002 to be compared with GPS 

recorded fire locations accessed on ground. The comparsion of hotspots detected in an AATSR image 

acquired on September 19, 2002 (Fig. 4.3-1B) with burnt areas detected in a Landsat ETM image 

shows that almost all AATSR hotspots coincide with fire scars. Fire scars not detected by AATSR 

relate to fires damage which occurred after or before 19th September.  
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Fig. 4.3-1. MERIS colour image and hotspots detected by satellite different sensors. Fig. 4.3-1A: MERIS 

reduced spatial resolution (18.9.2002); Fig. 4.3-1B: AATSR night time acquisition (19.9.2002); Fig. 4.3-1C: 

NOAA AVHRR hotspots (17.9.2002) and Fig. 4.3-1D: MODIS hotspots (17.9.2002). 

 

In ASAR WSM wide swath images burnt scars are clearly visible due to a reduced backscatter. 

Under dry weather conditions (Fig. 4.3-2A) as they prevailed during August and September 2002, 

deforested, burnt and agricultural areas have low backscatter while forests have intermediate 

backscatter values. Cities, villages and even small transmigrator houses (10 x 5 m) are well visible in 

ASAR WSM images with a spatial resolution of 150 m. GPS recorded fire locations were compared 

with fire scars detected in ASAR WSM images. Out of 15 burnt areas 10 were detectable in a 

multitemporal ASAR WSM image (Fig. 4.3-2C). This example demonstartes that in ASAR imagery 

fire scars are only visible in areas on siliceous sandy substrates with low soil moisture, while fire scars 

on swampy peatland are not detectable (indicated by red arrows in Fig. 4.3-2C). The pre and post-fire 

images used for the PCA colour composite were acquired in September and December 2002. Since 

rainy weather conditions prevailed in December the fire scar detection capability of the ASAR 

instrument became blurred, which confirms previous results (Siegert and Rücker, 2000).  
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An ASA-APP-1P radar image with high spatial resolution was compared to a Landsat ETM 

derived land cover map. It was found that ASA-APP-1P imagery with HV polarisation allowed better 

discrimination of forest and deforested areas than HH polarisation. In Fig. 4.3-2D all areas with low 

backscatter correspond to fire scars and/or low vegetation (grass and bushland). Unfortunately ASAR-

APP images acquired before and after the fire event were not received. However, similarly as ERS-1 

and ERS-2 imagery this high resolution data set was expected to allow very detailed analyses of burnt 

areas and fire impact.  

 

Fig. 4.3-2. ENVISAT radar images and change detection. Fig. 4.3-2A: ASAR product ASA-WSM-1P 

(28.9.2002);  Fig. 4.3-2B: ASAR product ASA-WSM-1P (7.12.2002); Fig. 4.3-2C: Applying PCA to two 

ASA-WSM-1P images acquired on 28.9.2002 and 7.12.2002, then creating the colour image using 

component two (Red) and the two images (Green and Blue). Burnt scars are visible in yellow and pale 

orange. Red polygons indicate GPS recorded fire scars. Red arrows indicate fire scars not detected by 

ASAR due to wet soil conditions. Fig. 4.3-2D: ASAR ASA-APP-1P image with HV polarisation 

(25.9.2002).  
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4.3-4. Discussion and conclusion  
 

This chapter describes some preliminary, mostly qualitative observations of the multi-sensor capability 

of the European ENVISAT satellite. ENVISAT’s ASAR instrument which is able to pierce through 

haze, smoke and clouds was found very usefull in detecting fires and burnt areas. During active 

burning all optical sensors are of limited use for fire detection and timely fire impact assessment due 

to the release of haze and smoke by the fire. Similarly as it was shown for tropical regions using ERS-

1/2 SAR images, ENVISAT ASAR images had a lower radar backscatter than forested areas, 

especially under dry weather conditions (Rücker and Siegert, 2000). Compared to high resolution 

radar data such as ERS with spatial resoultion of 25 m, ASAR WSM with the medium spatial 

resolution of 150 m can be used for regional fire monitoring and impact assessment. However, the 

capability of detecting the fire scar decreases under rainy weather conditions, and fire scars on 

swampy peatland with high soil moisture are not detected. This indicates the optical sensor data are 

indispensible for accurate impact assessment in wetland zones.      

 

The high spatial resolution ASAR image product was found to be useful in detecting towns and 

villages and even individual houses. This ability to map settlements might be useful in assessing future 

fire risk since many fires are started by settlers clearing land for cultivation (Taconi, 2003). Also 

visible in ASAR imagery was the extensive network of canals that have been made to drain the peat 

swamps. These artificial canals drain the water from the humid peat swamps vulnerable to fire (Page et 

al., 2002). With a high spatial resoultion of 30 m similar to ERS, APP data is very useful for detailed 

fire impact assessments. The nearly simultaneous acquisition of both high and medium resolution 

radar data, i.e. the ASA-WSM and ASA-APP, in the same orbit should support fire monitoring and 

assessment in both spatially and  temporally. 

 

MERIS with a reduced spatial resolution of 1200 m was found to be useful for large scale fire scar 

mapping and to identify smoke plumes The reduced spatial resolution MERIS image product 

supplements existing real time monitoring capabilites because of the global coverage of the Earth in 

only 3 days.  Sources of smoke plumes could be spotted in AATSR night time acquisitions. However 

clouds and thick smoke interfere with these two optical sensors limiting their application. The low 

spatial resolution of 1200 m may lead to an underestimate of the burnt area similarly as NOAA 

AVHRR. The full resolution MERIS data with a spatial resolution of 300 m was not available at that 

time. It is expected that this data set is much better suited for fire scar mapping and can be applied at 

regional level. 

 

AATSR night acquisitions detected hotspots which were also clearly visible as smoke plumes in 

MERIS images. Each AATSR hotspot group coincide with fire scars of Landsat ETM. However due 
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to the coarse spatial resolution of 1 km the AATSR instrument may not detect small or low-intensity 

fires similarly as MODIS (Siegert  et al., 2004) and AVHRR (Cahoon et al. 2000). 

 

The capability of ENVISAT to acquire imagery with several different instruments almost 

simultaneously allows to get a much more detailed picture on a fire event than with any other satellite 

system. Major advantages are that ENVISAT is able to acquire 1.) both optical data and radar data, 2.) 

images both during day and night, 3.) a combination of high, medium and low spatial resolution 

imagery which allows for simultaneous multi-scale analysis and 4.) multiple bands covering different 

spectral wavelengths. These special characteristics make ENVISAT very suitable for fire monitoring 

and fire impact assessment in different regions with varying natural conditions and during different 

weather conditions at both local and regional level. The different ENVISAT intruments can be useful 

within the framework of a multiscale fire monitoring system in which low and medium resolution 

imagery is used for large scale active fire monitoring and impact assessement and high resolution 

ASAR data can be used for a rapid analysis of fire impact already during and shortly after the fire 

event.  
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CHAPTER 4.4---EXCEPTIONALLY LARGE FIRE DAMAGE 

BY LARGE-SCALE WILDFIRES IN SOUTHERN SIBERIA IN 

2003 
 

 

Vegetation fires significantly contribute to biogeochemical cycles and affect the 

composition and functioning of the global atmosphere. Exceptionally large forest fires were 

observed in Southern Siberia in 2003. Based on active fire measurements of the AVHRR and 

MODIS instruments and multispectral imagery from the MERIS and ASTER instruments, the 

spatial extent and fire impact within an area of 1,300,000 km2 were investigated. 202,000 km2 

burnt in 2003, which is more than the total burnt area between 1996-2002. 71.4% of the burnt 

areas were forests, 11.6% wetlands and bogs. In total 32.2% of the forest cover has been burnt 

at least once from 1996 to 2003, 14% of the area has been affected at least twice by fire. 

Although fire is a common recurrent phenomenon in boreal ecosystems, these results suggest 

that the combined effects of climate extremes, stand-replacement fires, and inappropriate 

forestry practices will lead to deterioration of the carbon sequestration potential on some sites, 

thus to a net release of carbon to the atmosphere. The prompt release of carbon to the 

atmosphere contributed significantly to the so far unexplained high increase of the global 

atmospheric CO2 concentration in 2003 by 2.54 ppm. 

 

4.4-1. Introduction 
 

Vegetation fires significantly contribute to biogeochemical cycles and affect the composition and 

functioning of the global atmosphere (Andreae and Merlet, 2001; Page et al., 2002; Van der Werf et 

al., 2004). Russia has the largest extent of boreal forest worldwide covering an estimated 8,250,000 to 

8,960,000 km2 and holding 28% of the world’s terrestrial carbon in forests, wetlands and soils (Dixon 

et al., 1994). Wildfire disturbance is common and an integral part of Eurasia’s boreal forest 

ecosystems (Goldammer and Furyaev, 1996). Studies of large-scale wildland fires burning in Siberia 

and the Far East of the Russian Federation imply that fires in Russia might contribute significantly to 

the transfer of large amounts of carbon to the atmosphere and ecosystem deposits (e.g., Kasischke and 

Stocks, 2000; Shvidenko and Nilsson, 2000; Conard  et al., 2002; Kasischke and Bruhwiler 2003; Soja 

et al., 2004a). 

 

In recent years forest fire outbreaks have been exceptional in some parts of the Russian 

Federation (Goldammer, 2003). In 2002 more than 10,000 fires were recorded by NOAA (National 

Oceanic and Atmospheric Administration) - AVHRR (Advanced Very High Resolution Radiometer) 
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in the Asian part of Russia affecting more than 117,000 km2, with a mean fire size of 11.43 km2 

(Sukhinin, 2003). Similar observations were made in 1998 and 2000 when 9000 and 130,000 km2 

were burned, respectively (Kajii et al., 2002; Conard  et al., 2002). The observed trend towards the 

more frequent occurrence of years with large fire outbreaks emphasizes the need for accurate 

information on fire regime and carbon release (Goldammer and Stocks, 2000; Ahern et al., 2001). 

 

Current fire monitoring activities in Russia are mainly based on the detection of hotspots by 

the NOAA-AVHRR instrument and the assessment of fire scars from spectral reflectance images 

(Sukhinin, 2003). However, this widely used satellite sensor was not designed for fire detection and is 

therefore not optimally configured for this application. Small fires with low-energy release will not be 

detected because of sensor resolution, sensitivity and response time (Cahoon et al., 1992). In addition, 

cloud coverage, fire plumes and the repeat cycle of satellite overpass limit the detection of all actual 

fires. The burnt area tends to be underestimated in Russian boreal due to the low resolution of the 

sensor (Kasischke and French, 1995; Kasischke and Bruhwiler, 2003; Soja et al., 2004b). These 

factors have resulted in incomplete records of fire occurrence and thus figures on fire impact and 

carbon emission vary significantly (Kajii et al., 2002; Simon, 2002; Sukhinin et al., 2004). A hybrid 

algorithm that combines hotspot detections with burn scar maps was used to get a most complete set of 

historic fire maps, however, an initial validation indicates that the burned-area was underestimated 

(Sukhinin et al., 2004). 

 

2003 was an especially disastrous year for the Siberian forests. Thousands of fires were 

recorded between March and August in an area East of lake Baikal in South Siberia (110.27°E to 

131.00°E and from 49.89°N to 55.27°N, blue polygon in Fig. 4.4-1). Thick haze covered the territories 

of the Russian Federation, Mongolia and China for weeks, with smoke plumes reaching as far as Japan 

and Alaska. 

 

To overcome the limitations of the NOAA AVHRR system, data from other three different 

satellite systems were used to determine the burnt area more accurately: 1.) the Moderate Imaging 

Spectrometer (MODIS) onboard the TERRA satellite and the NOAA AVHRR with almost daily 

coverage and 1 km spatial resolution, 2.) multispectral images from the MEdium Resolution Imaging 

Spectrometer (MERIS) with 3 day revisit time and 300 m spatial resolution onboard the European 

ENVISAT satellite, and 3.) multispectral images from the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) onboard the TERRA satellite with 16 day revisit time and 15 m 

spatial resolution. 

 

The MODIS system provides the most accurate operational source for global monitoring of the 

occurrence, dynamics and spread of vegetation fires (Justice et al., 2002; Kaufman et al., 1998) and 
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the available AVHRR fire product provides the most complete set of historic fire maps (Sukhinin et 

al., 2004), while multispectral images of the medium resolution MERIS and higher resolution ASTER 

instrument were used to assess the burnt area more accurately. 

 

Since the area of fire occurrence in the Russian Federation was vast and because of limitations 

in data availability, the investigation was only focused on the region where most fires occurred in 

2003. In addition to satellite-derived data, our analysis is based on official reports and an aerial survey 

of fire impact conducted in September 2003 in the region most affected by fires (Goldammer et al., 

2003) and a survey conducted in November 2004 by local staff of the Ministry of Natural Resources 

of the Russian Federation in Chita and Buryatia. To estimate the carbon release the Global Land Cover 

2000 (GLC2000) vegetation map derived from SPOT VEGETATION and the Vegetation Continuous 

Field map derived from MODIS imagery were used (Bartalev et al., 2003; Hansen et al., 2003). The 

results of the 2003 fire season were compared to fire occurrence and burnt area for the years 1996 – 

2002 derived from NOAA AVHHR data. 

 

4.4-2. Materials and methods 
 

Study site 

The research area was located mainly East of Lake Baikal, ranging from 110.27°E to 131.00°E in 

longitude and from 49.89°N to 55.27°N in latitude (Fig. 4.4-1) with total area about 1,300,000 km2. 

Climate is continental and recorded climate data indicates that the maximum precipitation falls from 

June through August. Most of the area is sparsely populated and covered by more or less intact 

coniferous forests interspersed with swampy wetlands. In the Southern part forests blend into dryland 

steppe and some cropland are found along the valleys. Digital Elevation data shows that the site has a 

relatively flat undulating relief. 

MODIS hotspots and AVHRR fire products  

The MODIS MOD14A2 product is a gridded 1 km composite of the most-confident hotspots detected 

in each grid cell over an eight-day composite interval. 32 scenes of MOD14A2 recorded between 14 

March and 8 August 2003 were obtained from http://edcimswww.cr.usgs.gov. The images were 

reprojected into Albers conical equal-area projection and then spatially mosaiced. Each hotspot in the 

MOD14A2 product is assigned to one of the three fire confidence classes (low-confidence fire with 

value of 7, nominal-confidence 8 and high-confidence 9). All three values were considered as hotspots 

representing fire events in this study. The maximal value was chosen when compositing time series. 

 

Production of the burned area product from NOAA AVHRR for the years 1996-2003 is a 

multi-step process, which includes a contextual fire detection algorithm (hot spot detection), creation 
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of fire polygons from adjoining fire detections, and mapping of post-fire burn scars. Adjacent and 

nearby fire pixels (within 3 to 4 pixels) were considered as belonging to the same fire event and 

aggregated to define a fire polygon. The coordinates of the center of the aggregated pixel polygon and 

area of the polygon were then calculated (Soja et al., 2004b; Sukhinin et al., 2004). For further 

analysis the AVHRR fire product was converted to raster format with each grid cell covering 1 km2 in 

the albers conical equal-area projection.  

 

MERIS and ASTER processing and burn scar mapping 

MERIS measures the solar radiation at a ground spatial resolution of 300m with global coverage of the 

Earth in three days in 15 visible and near infra-red spectral bands, which are respectively centered at 

0.4125, 0.4425, 0.490, 0.510, 0.560, 0.620, 0.665, 0.68125, 0.70875, 0.75375, 0.760625, 0.77875, 

0.865, 0.885, 0.900 µm (http://www.envisat.esa.int/dataproducts/meris/CNTR.htm). Out of 16 MERIS 

acquisitions the most cloud free (12 July and 6 August 2003) were used for the burnt scar analysis. 

The images were geocorrected and reprojected into albers conical equal-area projection. MERIS 

colour images of different band combinations (Red: band 6, 0.6196 µm; Green: band 10, 0.7535 µm; 

Blue: band 1, 0.4125 µm; Red: band 6, 0.6196 µm; Green: band 5, 0.560 µm; Blue: band 2, 0.4425 

µm) were digitally enhanced and imported into GIS for visual on-screen image interpretation of fire 

scars.  

 

The ASTER instrument has 14 bands consisting of three subsystems: 1.) VNIR (visible and 

near infrared - 0.55 to 0.80µm) with 15-m resolution, 2.) SWIR (short wave infrared - 1.65 to 2.4 µm) 

with 30-m resolution and 3.) TIR (thermal infrared - 8.3 to 11.32 µm) with 90-m resolution. 7 ASTER 

scenes acquired on 13 July 2003 were geocorrected, reprojected and coregistered and imported into 

GIS for visual on-screen image interpretation of fire scars using band combination Red: band 3, 0.81 

µm; Green: band 2, 0.66µm; Blue: band 1, 0.56 µm (The ASTER reflectance retrieving is described in 

Appendix 2). Old fire scars could be discriminated from recent fire scars by their spectral properties 

and Landsat ETM quick looks and were excluded from the analysis.  

 

24 sample sites (11 for ASTER / MERIS and 13 for MERIS / MODIS-AVHRR) were selected 

according to 1.) whether recent and pre-2003 fire scars were distinguishable, and 2.) both MERIS and 

ASTER were cloud-free. The area of the MODIS hotspots and AVHRR were calculated within the 

respective MERIS fire scar polygon by assuming that a pixel covers the area of 1 km2. The data were 

analyzed using a linear regression function.  
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Land cover data 

The GLC2000 map (http://www.gvm.sai.jrc.it/glc2000/), the MODIS Vegetation Continuous Field 

map (http://modis.umiacs.umd.edu/) and the International Institute for Advanced Systems Analysis 

(IIASA) Russia wetland and vegetation spatial databases (http://www.iiasa.ac.at) were reprojected into 

Albers conical equal-area projection. Vegetation Continuous Field is a global data set which indicates 

biomass types, i.e. the proportion of woody vegetation, herbaceous vegetation and bare ground. A 

qualitative comparison of the MODIS Vegetation Continuous Field biomass map with the GLC2000 

land cover map showed a good agreement between the total area and spatial distribution of high 

biomass and forests, and agreed also well with forested areas in ASTER and MERIS images. Both the 

MODIS hotspots composite and AVHRR fire product of 2003 were respectively used as masks to 

extract the burnt land cover types from the GLC2000 map, MODIS Vegetation Continuous Field map 

and IIASA datasets. 

Ground and aerial surveys 

Personal interviews with officials and statistical data collected by ground and aerial surveys, the 

official statistics of the Ministry for Natural Resources of the Russian Federation and the Aerial Forest 

Fire Protection Service Avialesookhrana were evaluated for the regions Irkutsk, Chita, Buryatia and 

Amur. Financial constraints for aerial fire assessments and political obstacles resulted in a severe 

underestimation of the area burned by Russian official sources. A validation mission was conducted 

by the Global Fire Monitoring Center in September 2003 flying two transects in Chita and Buryatia 

with an Antonov II (An-2) airplane and several ground surveys. 

4.4-3. Results 
 

128,546 spatially distinct hotspots were recorded by the MODIS instrument between 14 March and 8 

August 2003 in the studied area, of which 2167 hotspots were of low-confidence, 57,539 of nominal-

confidence and 68,840 of high-confidence (Fig. 4.4-1). In the same region 157,554 pixels were 

identified as burnt by the NOAA AVHRR fire detection algorithm. 
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Fig. 4.4-1. Spatial distribution of MODIS hotspots recorded between 14 March and 8 August 2003 (a) and 

time series of NOAA AVHRR fire acquired between 1996 and 2002 (b). In Fig. 4.4-1a, Red: high-

confidence fire, Yellow: nominal-confidence, Green: low- confidence. The blue outline indicates the area 

of investigation. Bar: 300 km. 

 

Persistent cloud cover and orbit parameters did not allow observation of large areas with high 

resolution imagery shortly after the fires. Therefore a combination of high, medium and low resolution 

satellite imagery in which MODIS was used to record daily fire occurrence over large areas, while 

multispectral MERIS and ASTER imagery were used to determine the burnt area in cloud-free subsets 

of the studied area. Then the detailed results were extrapolated on burnt areas obtained from ASTER 

and MERIS to the full range covered by MODIS hotspot data. 

 

In a first step fire scars in cloud-free sections of high resolution ASTER imagery were 

determined. Burnt areas were clearly identifiable and were visually delineated. Most burn scars were 

a 

b 
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large in size (average 66 km2) and showed severe fire damage (Fig. 4.4-2a). Next the same burn scars 

in cloud-free sections in medium resolution MERIS imagery were identified. Also in MERIS imagery 

fire scars were clearly identifiable in bands R6G10B1 combination (Fig. 4.4-2b). 

 

 

 

Fig. 4.4-2. Comparison of a fire scar as detected by (a) ASTER acquired 12 July 2003, RGB 6,10,1), (b) 

MERIS acquired 13 July 2003, RGB 3,2,1, (c) MODIS hotspots composite acquired between 14 March 

2003 and 11 July 2003, and (d) AVHRR fire product of 2003. Bar: 5 km. 

 

Then it was investigated whether there is a correlation between the burnt area visible in high 

resolution ASTER imagery and medium resolution MERIS imagery in order to be able to extend the 

area of investigation to the larger extent covered by MERIS. Fire scars detected by MERIS showed 

less spatial detail than the ASTER images and small fragments of unburnt forest were not visible (Fig. 

4.4-2a,b). In a second step it was investigated if there is a correlation between the burnt area detected 

b 

c 

a 

d 
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by MERIS and covered by MODIS hotspots as well as NOAA AVHRR (Fig. 4.4-2b, c, d, Fig. 4.4-3). 

11 fire scars of variable size visible in both ASTER and MERIS images and 13 fire scars visible in 

MERIS images and covered by MODIS hotspots as well as AVHRR fire were chosen to compare the 

burnt area detected by each instrument and to determine the respective errors. 

 

There was a clear congruence between the four sensors. The regression curve for fire scars 

determined in ASTER and MERIS images showed a strong linear correlation (Fig. 4.4-4a), however, 

the burnt area detected by MERIS is slightly shifted from that detected by ASTER (approx 3%). This 

can be explained by the reduced spatial resolution of the MERIS sensor. The regression curve for 

MERIS and MODIS as well as for MERIS and NOAA AVHRR also showed strong linear regression 

(Fig. 4.4-4b). However, the burnt area was significantly underestimated by MODIS (approx 38%) and 

by AVHRR (approx 20%). This can be attributed to limitations of active fire detection by satellite 

such as frequent cloud cover typical for this region, dense haze from forest and peat fires, the speed of 

fire spread, sensor sensitivity and response time. 

 

Taking into account the specific errors of the MERIS and MODIS system as well as AVHRR, 

the actual burnt area was 1.56 times larger than that derived from MODIS hotspots and 1.21 times 

larger than that derived from AVHRR fire products. These two factors were then used to estimate the 

total area which had been burnt between 14 March to 8 August 2003 on the basis of MODIS hotspots 

and total area burnt in 2003 on the basis of AVHRR fire products. Within an area of 1.3 Mio km2, 

202,000 km2 had been burnt based on MODIS hotspots and 191,000 km2 had been burnt based on 

AVHRR fire product (Table 4.4-1). The territories in China and Mongolia accounted for only 4.15% 

and 0.09% of the total burnt area. This is significantly more than previously reported for whole Russia: 

110,000 km2 in 2002, 117,000 km2 in 1998, 140,000 km2 in 1987 (Goldammer, 2003). 
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Fig. 4.4-3. Comparison of an MERIS image acquired 12 July 2003 (a) and the MODIS hotspots composite 

of 14 March 2003 to 11 July 2003 (b). Burnt areas and haze appear in purple colours in the MERIS RGB 

image (RGB 7,10,1). Bar: 50 km. 

b 

a 
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Fig. 4.4-4. Linear regression analysis for (a) MERIS and ASTER fire scars and (b) MODIS hotspots, 

AVHRR fire product and MERIS fire scars.  
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Table 4.4-1. Vegetation types affected by wildfires in the investigated region 

Note: The area result of the spatial overlay of (I: MODIS hotspots; II: AVHRR fire products) and GLC2000 land 

cover was adjusted by the factor of (I: 1.56; II: 1.21) determined from linear regression analysis. It is simply 

assumed that the (I: MODIS; II: AVHRR) underestimation error is the same for each vegetation class. 

GLC2000  

land cover 

MODIS 

hotspots 2003 

(ha)I

MODIS 

hotspots 

2003 (%)

AVHRR fire 

product2003

(ha) II

AVHRR fire 

product 2003 

(%) 

Evergreen Needle-leaf Forest 1,032,398 5.07 963,039 5.05

Deciduous Broadleaf Forest 1,462,296 7.38 1,202,256 6.31

Needle-leaf/Broadleaf Forest 375,228 1.86 391,435 2.05

Mixed Forest 301,958 1.43 305,041 1.60

Broadleaf/Needle-leaf Forest 929,290 4.67 942,227 4.94

Deciduous/Needle-leaf Forest 10,361,744 50.97 9,933,616 52.11

Subtotal Forests  14,462,914 71.38 13,737,614 72.06

Broadleaf deciduous shrubs 742,337 3.65 724,064 3.80

Needle-leaf evergreen shrubs 16,618 0.08 13,431 0.07

Humid grasslands 1,920,048 9.49 1,659,878 8.71

Steppe 127,185 0.64 113,135 0.59

Bogs and marshes 430,276 2.15 415,393 2.18

Subtotal Grasslands 3,236,464 16.01 2,925,901 15.35

Palsa bogs 7,176 0.04 7,260 0.04

Riparian vegetation 1,511 0.01 968 0.01

Barren tundra 0 0.00 0 0.00

Prostrate shrub tundra 5,571 0.03 3,146 0.02

Sedge tundra 2,266 0.01 2,178 0.01

Shrub tundra 29,459 0.15 25,168 0.13

Subtotal Tundra-wet 46,013 0.24 38,720 0.20

Recent burns (1996 – 1999) 367,108 1.83 326,095 1.71

Burns of year 2000 309,134 1.54 340,131 1.78

Subtotal Previously Burned 676,242 3.37 666,226 0.00

Croplands 759,144 3.76 694,903 3.65

Forest – Natural Vegetation 

complexes 

82,241 0.44 85,063

 

0.45

Forest-Cropland complexes 121,048 0.64 117,733 0.62

Cropland-Grassland complexes 762,260 3.78 675,059 3.54

Subtotal Croplands 1,724,693 8.62 1,572,758 11.74

Others 80,730 0.38 122,815 0.64

Sum 20,227,024 100 19,064,034 100
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To determine the significance of this fire event for the ecosystem and to estimate carbon-

release, it was investigated which vegetation types had been affected by comparing the burnt area with 

the GLC2000 vegetation map. The intersection of all MODIS hotspots with this up-to-date vegetation 

map showed that 71.4% of the burnt area was forest, 9.5% were humid grassland and 2.15% 

bogs/marshes (Table 4.4-1). The intersection of the burnt area with IIASA wetland layer showed that 

71% of the burnt wetlands were peatlands, which represent a vast store of global carbon (Gorham, 

1991) and can release significant amounts of carbon into the atmosphere if burnt (Bannikov, 2003). 

The MODIS Vegetation Continuous Field biomass map was used as another source to determine how 

much forest biomass had been burnt: 74.4% of the burnt area was covered by woody vegetation (tree 

cover more than 30%) which is slightly more than the forest area from the GLC2000 map (71.38%) 

and slightly less than the forest/woodland area from the IIASA vegetation map (77.6%). 

 

For a better understanding of the fire regime, how much of the burnt area had been affected by 

fire in the years 1996-2002 was also investigated based on the available NOAA AVHRR data. 

Recurrent fires disturb forest regeneration, make forests more susceptible to fire and previous fire 

damage has to be considered in the calculation of carbon release. The burnt area detected by AVHRR 

hotspots varied greatly each year (Table 4.4-2). The total area burnt in 2003 (202,000 km2 detected by 

MODIS and 191,000 km2 detected by AVHRR) was significantly larger than the total area burnt in the 

same region from 1996-2002 (133,370 km2). 

 

Table 4.4-2. Burnt area detected by NOAA AVHRR between 1996-2002 and reburnt area in 2003  

Year AVHRR-hotspots 

area (km2)

Reburnt area in 2003 

(km2)-MODIS II

Reburnt area in 2003 

(km2)-AVHRR III

1996 21,770 2,881 3,984 

1997 3,201 406 491 

1998 8,065 1,597 1,870 

1999 15,699 2,536 3,079 

2000 44,692 7,301 8,979 

2001 9,997 1,319 1,582 

2002 29,946 3,421 4,434 

1996-2002      

            Sum 

Composited I 

 

133,370 

121,395  

 

19,461 

17,853 

 

24,419 

22,319 

I Successive detected pixels in one location were counted only once 
II AVHRR hotspots of each year were spatially overlaid with the MODIS hotspots of 2003 
III AVHRR hotspots of each year were spatially overlaid with the AVHRR fire product of 2003 
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The comparison of the MODIS hotspot and AVHRR fire product of 2003 with the AVHRR 

hotspots of 1996-2002 showed that respectively 13.9% and 16.7% of the area had been affected by fire 

at least twice. 77.8 % of the reburnt area were forest/woodland, 11.7% grasslands and 11.4 % 

wetlands, of which 70.8% were peatlands. 

 

The sum of all AVHRR hotspots acquired between 1996-2003 and all MODIS hotspots of 

2003 showed that all together 303,731 km2 have been burnt in the studied area. The intersection with 

the IIASA vegetation layer (vegetation status of 1995 and before) showed that 32.2 % of the forested 

area (720,779 km2) has been burnt in the past eight years. 

 

4.4-4. Discussion 
 

Accurate estimates of the burnt area, fire impact on the vegetation, and carbon release are very 

important to assess the influence of fire on the ecosystem and global climate change. Due to the good 

geocorrection accuracy, the distribution of MODIS hotspots indicates the burnt location quite 

accurately and the daily availability allows detailed studies on fire dynamics and fire spread. However, 

MODIS hotspots are of limited use to assess burnt areas due to its coarse resolution of 1 km. Here it is 

shown that in combination with the medium resolution MERIS instrument on ENVISAT and the high 

resolution ASTER instrument on TERRA, it was possible to significantly improve the accuracy of 

burnt area assessments over extremely large territories. The inter-sensor correlation of low, medium, 

and high resolution satellite imagery was a straightforward, quick and efficient method to assess burnt 

areas on regional or even global scale. The intersection of the burnt area determined by MODIS 

hotspots and AVHRR fire polygons with pre-fire land cover data provided information on the type of 

vegetation which has been affected by fire. This in turn allowed us to approximately estimate the 

carbon released by this fire event, which was documented by another scientist in cooperation.  

 

In 2003 nearly 15 x 106 ha of forested land have been burnt and in addition more than 2 x 106 

ha of humid grasslands and bog sand marshes. Wildfires occur in this region in short intervals in 

forests and grasslands that are fairly well adapted to low- to medium-intensity surface fires. However, 

the analysis of MODIS hotspots and the NOAA AVHRR time series from 1996 to 2003 showed that a 

significant percentage of the land area has been affected by recurrent fires and 32.2 % of the forested 

area has been burnt in recent years. Cahoon et al. (1994) documented that 140,000 km2 burned in 

Southeastern Siberia during the extended drought of 1987. A qualitative comparison with the NOAA-

AVHRR-derived fire scar map of 1987 shows a strong overlap of burnt areas. 

 

The inter-comparison of the areas burned in 2003 reveals that both MODIS and AVHRR 

underestimates the burnt area about 38% and 20% respectively, but the adjusted areas differ only 

approximately 6%. Since MODIS hotspots are provided free of charge via internet almost in real time, 
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it is more feasible to use MODIS to monitor the Southern Siberian wildland fire and assess the impact 

in a straightforward, quick and efficient way.  

 

Recently released observations of atmospheric carbon dioxide concentrations at Mauna Loa 

indicate a dramatic and unexpected increase in carbon dioxide levels between 2002 and 2003 by 2.54 

ppm (ABC, 2004; BBC 2004). A particularly significant ∆ CO2 of 3.4 ppm between August 2002 and 

August 2003 has been recorded. The increase in CO2 was not uniform across the globe. Since the most 

recent increases were recorded in the absence of El Nino it has been speculated recently that the 

Northern Hemisphere hot summer of 2003 involving a larger than usual number of forest fires could 

have killed off vegetation and increased soil carbon release (BBC, 2004). Our study shows an 

exceptional large fire damage in Southern Siberia in 2003 which supports these findings and 

conjectures. 

 

The region that is being studied is one where the albedo effects of forest clearing and 

regeneration may have a greater global effect than the carbon storage/release effects (Bonan et al., 

1992; Betts, 2000), and there was quantitative evidence of how wildfire history influences ecosystem 

carbon input, output, and sequestration in the boreal forest and the underlying soils (Wardle et al., 

2003). Furthermore, it is becoming more evident that peatlands in boreal Russia are of special 

importance in the context of climate change, because extensive data from Russia’s Siberian lowland 

show peatlands are larger carbon stores than previously thought (Smith et al., 2004). The haze plume 

which extended more than 4000 km for days suggests that substantial amounts of peat might have 

been burnt and an amount of carbon might be released as those Western Canadian spring-time fires 

burnt in peatland (Turetsky and Wieder, 2001; Turetsky et al., 2002). 

 

At least four factors are responsible for this exceptional fire event as observed by the Global 

Fire Monitoring Center: 1.) an extraordinary drought from August 2002 to May 2003 which was even 

more extreme than the last drought preceding the 1987 fire year in the Transbaikal Region. 2.) 

decreased fire management capabilities due to insufficient budgets for operation of the Aerial Forest 

Fire Protection Service Avialesookhrana. 3.) the depletion of China’s forest resources and the 

increasing demand for timber products prompt the Chinese timber dealers to encourage local people to 

set arson fires to forest in order to increase the permissible salvage logging areas. Very few fires were 

recorded in China (Fig. 4.4-1). In addition, extensive illegal logging and timber export have been 

observed during two on-site inspection missions by the Global Fire Monitoring Center in Mongolia 

and the Russian Federation in August-September 2003. 4.) large-scale clearcuts from the 1990s have 

resulted in large areas dominated by pure grass stands. These lands are maintained by regular fires – a 

phenomenon that has been observed on a large scale in Mongolia and China  
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The repeated occurrence of severe fires in 1987 and during the investigated period from 1996 

to 2003 affecting the same areas will lead to a gradual degradation of the otherwise fire-adapted pine-

grass forest ecosystem. Ground and aerial reconnaissance conducted at the end of the 2003 fire season 

and an additional follow-up field survey in November 2004 revealed a high proportion of high-

severity stand-replacement fires in 2003, which in combination with recurrent fires in short intervals 

and increased post-fire mortality due to combined fire and drought stress, and regional climate 

variability associated with extreme droughts such as in 2002-2003 are likely to result in the conversion 

of the forest ecosystem into grasslands and steppe. The analysis based on advanced remote sensing has 

shown that the area burned in the 2003 fire outbreak is one order of magnitude larger than that 

reported in official statistics. The increasing human pressure on Siberia’s forest resources, coupled 

with recurrent fire and climate change, i.e. increasing occurrence of summer droughts, will reduce the 

carbon sequestration potential of this region. 
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CHAPTER 5---SUMMARY AND DISCUSSION 
 

Currently plenty of satellite data from hundreds of sensors (approximately 320) can be used. It may 

seem to be more than the demand from the Earth observing community. But actually none of the 

satellites will provide all of the data characteristics needed by the broad range of user requirements. 

The reasons of the need for satellite multi-sensor are due to the negative effects of the cloud cover, and 

the requirement of different ground resolution, different spectral region, different swath width, and 

different repeat period by the user. The shortcomings of one single sensor in these aspects can be 

compensated by multiple sensor combination. 

 

The advantage of the multi-sensor satellite remote sensing lies in the combination of specific 

temporal, spatial and spectral characteristics of different satellite systems: In temporal dimension, 

environment change phenomenon continuously develops, and the users concern on different 

monitoring periods such as monthly or annual update, however, a satellite image is only a ‘snapshot’ 

of the Earth at a given time point; In the spatial dimension, users concern on diverse scale (global, 

regional, local) monitoring, however, high ground resolution data are too expensive over large area 

while low ground resolution data are not accurate enough; In spectral dimension (wavelengths), the 

same environment objects on the Earth's surface can be detected by both optical and radar sensor, 

however, they look quite different because the scattering or reflection mechanisms of electromagnetic 

waves are quite dependent upon wavelength. These three temporal, spatial and spectral characteristics 

make multi-sensor satellite data more useful than single sensor in environmental monitoring because 

multi-sensor data improve the monitoring capability in temporal, spatial and spectral dimensions. 

Taking the Siberia Fire as an example, the optical sensor of MODIS underestimated the burnt area 

because of coarse resolution of 1 km, sensitivity and response time, cloud coverage and the satellite 

overpass frequency, while MERIS and ASTER are more accurate because of their higher ground 

resolutions. However these optical sensors can not penetrate the cloud and smoke whilst microwave 

sensor of ASAR is able to do this. Taking these multi-sensor covering different spectral wavelengths 

with various ground resolution and diverse revisit time, it is more accurate to analyze the fire 

phenomenon in Siberia. 

 

In multi-sensor satellite data for environmental monitoring, there are different kinds of data 

fusion techniques: 1.) Different ground resolution images are fused. For example, using the higher 

resolution PAN band to improve the resolution of other spectral bands; combining coarse resolution 

and fine resolution data in a multi-scale monitoring system. 2.) Multitemporal images are fused. For 

example, using images acquired in different periods to monitor the land cover change, to monitor the 

vegetation dynamics, or detect the fire spread etc. 3.) Images acquired in different spectral region are 

fused. For example, combining the visible and thermal bands to identify the fire hotspots; selecting 
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suitable bands to create best colorful images for identifying the expected target; retrieving important 

information from hyperspectral images; fusing optical images and radar images to improve the 

interpretation. 4.) Data with different file formats are fused. Besides remote sensing data in raster 

format, other data such as GIS layer in vector format, GPS signal in database format, text description 

in ASCII format, video sequence in animation format, or atlas in analog map are needed to help 

interpretation. How to combine these data with different formats to get the accurate result is important. 

 

This thesis demonstrates different types of multi-sensor data applications in environmental 

monitoring. In chapter 2 (land cover assessment in Salonga national park), Landsat 15 m Pan band 

and other 30 m spectral bands were combined to improve the spatial resolution; remote sensing raster 

data, GPS signal database, digital photos and continuous video sequence were fused to map and 

validate the land cover. The technique shown in this study demonstrated that the land cover and 

vegetation could be accurately assessed in a region which is unknown by people or inaccessible on 

ground if the satellite images, global position system and aero-video are well harmonized. This is 

important to such developing countries where baseline data are absent and war breaks out often. The 

results of this study show 98.5% of the national park itself was covered by undisturbed, pristine 

evergreen lowland and swamp forests. No logging or mining activities were detected. However, many 

human-related land covers were found around the park and this indicates that the Salonga national 

park is currently under the threat from human beings. According to the talk with the local staff, the 

derived maps are the first high-resolution land cover and land use products since the national park was 

established. 

 

In chapter 3 (desertification monitoring in North China), time series coarse resolution images 

were composited to monitor the temporal vegetation dynamics at large scale, while high resolution 

infrequent images and ground survey were used for validation. In processing multitemporal images, 

the cloud influence was eliminated using the Bidirectional Reflectance Distribution Function (BRDF) 

model, and the time series vegetation indices were improved by the Harmonic Analysis of NDVI Time 

Series (HANTS) algorithm. This multitemporal data fusion technique is useful in long-term 

environmental monitoring. The author used a full year of 2000 time series of SPOT VEGETATION 

images with 1 km spatial resolution to produce a land cover map with special emphasis on the 

detection of sparse vegetation as indicator for identifying areas at risk of desertification. The identified 

‘hotspots’ can then be analyzed by higher resolution images. This technique demonstrates a 

framework of combining the low-cost coarse resolution images covering large area with high-cost fine 

resolution images covering sample plots. This combination would decrease the investment which is 

important in developing countries. The results presented show that within a satellite based multi-scale 

monitoring system SPOT VEGETATION imagery can be very useful to detect large scale dynamic 

environmental changes and desertification process. This helps establish a multi-scale environmental 
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monitoring system. To the author’s knowledge, this research is very new in operational application of 

SPOT VEGETATION to desertification monitoring in China after the multi-scale monitoring system 

was proposed. 

 

In chapter 4 (fire monitoring and impact assessment), multi-sensor satellite data with different 

spectral region (optical and radar, visible and thermal), different ground resolution (15 m, 25 m, 150 

m, 300 m, 1000 m) were demonstrated to derive the burnt area at large scale.  

 

In chapter 4.1, a time series of ASAR wide swath images for investigating the temporal 

variation of fire scars’ backscatter were analyzed. Multitemporal comparison was used to monitor fire-

induced backscatter changes before and after a fire event. The backscatter changes of fire scars formed 

in different years were compared. The results show that ASAR WSM on ENVISAT is useful for 

operational burnt area mapping and monitoring in the boreal forests of Siberia. Until recently 

application of this technique in Russian boreal forests has not been done very often, and use of 

ENVISAT is also new and enlightening.  

 

In chapter 4.2, the applicability of ENVISAT MERIS for fire scar mapping in Siberian forest 

ecosystems was investigated. The results show that MERIS is a promising instrument for fire scar 

mapping, which supplements current fire monitoring systems based on the AVHRR and MODIS 

instruments. Although the fact presented in this section that the NIR reflectance decrease almost half 

after fire event is well known based on similar analyses of other sensors, the MERIS analysis is still 

useful since there is little information available in literature about MERIS image. 

 

In chapter 4.3, the first results on the performance of the ENVISAT satellite to detect 

wildland fires are presented. Three ENVISAT instruments were used to investigate the extent and 

impact of the forest and peatland fires in Indonesia. The results show that the capability of ENVISAT 

to acquire data from different sensors simultaneously or within a short period of time significantly 

enhances the possibilities to monitor fire occurrence and assess fire impact. To the author’s 

knowledge, this is the first publication reported for ENVISAT multi-sensor potential in wildland fire 

detection. 

 

In chapter 4.4, based on multiresolution satellite imagery (a combination of the TERRA 

ASTER, ENVISAT MERIS and TERRA MODIS instruments), the burnt area was rapidly assessed in 

very detail over a large area with the support of aerial and ground field surveys. The techniques 

demonstrated in this study show the inter-sensor correlation of low, medium, and high resolution 

satellite imagery is a straightforward, quick and an efficient method to assess burnt areas on regional 

or even global scale. The fire disaster of 2003 in Eastern-Siberia happened almost unnoticed from the 
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public. There is an unexpected increase in carbon dioxide levels between 2002 and 2003 by 2.54 ppm, 

especially a particular significant ∆ CO2 of 3.4 ppm increase between August 2002 and August 2003, 

but the reason is not clear (ABC, 2004; BBC 2004). Some scientists are speculating that something 

unusual happened in Northern Hemisphere and fire might be a reason. This study shows an 

exceptional large fire damage in Southern Siberia in 2003 which supports these findings and 

conjectures. The main point is that recurrent wildland fires in Siberia threaten the largest extent of 

boreal forest worldwide and its carbon sequestration potential. It highlights the importance of the 

boreal ecosystem in Russia as carbon store and indicates the sensitive nature of this resource and its 

vulnerability to fire. The major finding is that recurrent fires in short intervals caused by increasing 

human pressure on Siberia’s forest resources, coupled with fire and climate change will further 

degrade forests and thus reduce the carbon sequestration potential of this region. 

 

It is shown from these studies that the investment of satellite data application to environmental 

monitoring can be decreased when multi-sensor satellite data are combined. This is very important to 

developing countries who have no adequate financial support for environmental monitoring. 

 

Although the multi-sensor satellite data are advantageous because of the integrated 

information in spatial, temporal and spectral dimension, the indirect satellite measurements and thus 

uncertainties on environment phenomena as well as the undetectable environment cause are two main 

disadvantages in multi-sensor satellite application in environment monitoring.  

 

The fundamental problem of remote sensing is to establish to what extent the radiation 

measurements made in space can in fact provide useful information and to design the tools and 

techniques for extracting such information. Satellite remote sensing observations are merely radiation 

measurements made hundreds of kilometers away from the targets of interest, and they are not direct 

samples of the observed phenomenon. However most users in environment monitoring are ultimately 

interested in some form of high level information, such as the temporal evolution of the spatial 

distribution of biomass burning. The dichotomy between the natures of the measured signals and of 

the variables of interest prompted a discussion of the feasibility of retrieving useful information on the 

variables of interest from the space measurements (Verstraete et al., 1996). The only way to ascertain 

exactly what information can be retrieved for environment monitoring from the satellite measurement 

(and therefore to determine the range of applicability of remote sensing) is to understand the physical 

processes that control or affect the emission of radiation at the source, its transfer within the relevant 

media, and its absorption in the detector (Verstraete et al., 1996). That is to say, when we use satellite 

technology to monitor the environment, we need to understand theoretically how the instrument is 

making the measurements and the possible sources of the measurement uncertainties, and the satellite 

measurements must be calibrated against reality to retrieve the useful information. However this 
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calibration is never exact and measurement uncertainty can be large, which make data interpretation 

sometimes difficult. Lack of personnel skilled in these technologies in remote sensing data were noted 

as one of the common barriers for adoption of satellite technology, especially in developing countries 

/regions (Kalluri et al., 2003). For one example in the fire monitoring case, we need to know the 

theory of wildland fire detection from space described by Cahoon et al. (2000) as well as the sensor’s 

characteristics, and then the optimised algorithm for the corresponding sensor can subsequently be 

designed. 

 

Another disadvantage of satellite is that satellite image can detect the environment change, but 

the cause of environment is difficult to detect from the space. Millette et al. (1995) showed 30 meter 

resolution satellite data can provide useful information associated with broad land management 

practices and land cover changes, but it was needed to be combined with ground truth fieldwork, and 

interviewing to provide an assessment of types and causes of environmental change. For one example 

in the desertification monitoring, we can identify the desertification risk area, but why the 

desertification develops on the region can only be ascertained by standard method such as ground 

survey and interviewing. 

 

In spite of these two disadvantages, satellite technology are demonstrated very useful for 

environment monitoring in less developed countries/regions of North-China, Siberia, Africa Congo 

and Indonesia. The future of multi-sensor satellite application to environment monitoring in 

developing countries is challenging. For accurate interpretation on remote sensing images, it is 

important to knowing the satellite measurements and its’ uncertainties (Verstraete et al., 1996). 

Further, the multi-sensor data fusion method is currently not satisfactory and still developing in the 

image processing communities (Pohl and Genderen, 1998; Ehlers, 1991). The lack of personnel skilled 

in multi-sensor satellite processing is the biggest barrier of environment monitoring in developing 

countries/regions, so the technology transfer from the developed countries is needed. 
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APPENDIX 
Appendix 1--- Some popular satellite sensors in land application 
 
Instrument  
 

Mission Type Measurements 
/application 

Technical 
characteristics 

AATSR 
Advanced 
Along-Track 
Scanning 
Radiometer 
 
 

Envisat Imaging 
multi-spectral 
radiometer 
(vis/IR) 

Measurements of sea surface 
temperature, land surface 
temperature, cloud top 
temperature, cloud cover, 
aerosols, vegetation, atmospheric 
water vapour and 
liquid water content 

Waveband: VIS-NIR: 0.555, 0.659, 0.865 µm, 
SWIR: 1.6 µm, MWIR: 3.7 µm, TIR: 10.85, 12 µm 
Resolution: IR ocean channels: 1 km x 1 km 
Visible land channels: 1 km x 1 km 
Swath: 500 km 
Accuracy: Sea surface temperature: <0.5K 
over 0.5 deg x 0.5 deg (lat/long) area with 80% cloud 
cover, Land surface temperature: 0.1K (relative) 

ASAR 
Advanced 
Synthetic 
Aperture Radar 

Envisat Imaging radar - Earth Observation 
- Site specific investigations 
- Land, sea, ice and ocean 
monitoring and surveillance 

Waveband: active microwave C-Band .331 GHz 
Operational Modes:  Image, Wide Swath, Wave, 
Alternating Polarisation, Global Monitoring 
Geometrical Resolution: 
Image mode: 30 m x 30 m 
Wide swath mode: 150 m x 150 m  
Global mode: 1 km x 1 km   

ASTER 
Advanced 
Spaceborne 
Thermal 
Emission and 
Reflection 
Radiometer 
 

Terra High 
resolution 
imager 

Surface and cloud imaging with 
high spatial resolution, 
stereoscopic observation of local 
topography, cloud heights, 
volcanic plumes, and generation 
of local surface digital elevation 
maps. Surface temperature and 
emissivity 

Waveband: VIS&NIR: 3 bands in 0.52-0.86 µm 
SWIR: 6 bands in 1.6-2.43 µm, TIR: 5 bands in 8.125-
11.65 µm 
Resolution: VNIR: 15 m, stereo: 15 m horizontally and 
25 m vertical, SWIR: 30 m, TIR: 90 m 
Swath: 60km, 
Accuracy: VNIR & SWIR: 4% (absolute) TIR: 4K 
Geolocation: 7 m 

ATSR-2 
Along Track 
Scanning 
Radiometer - 2 
 
 

ERS-2 Imaging 
multispectral 
radiometer 
(vis/IR) 

Provides measurements of sea 
surface temperature, land surface 
temperature, cloud top 
temperature and cloud cover, 
aerosols, vegetation, atmospheric 
water vapour and liquid water 
content 
 

Waveband: VIS-SWIR: 0.65, 0.85, 1.27, and 1.6 µm 
SWIR-TIR: 1.6, 3.7, 11 and 12 µm 
Microwave: 23.8, 36.5GHz 
(bandwidth of 400MHz) 
Resolution: IR ocean channels: 1 km x 1 km, 
Microwave near-nadir viewing: 20 km 
Swath: 500 km 
Accuracy: Sea surface temperature to <0.5 K 
over 0.5 deg x 0.5 deg (lat/long) area 
with 80% cloud cover 
Land surface temperature: 0.1 K 

AVHRR/2 
Advanced Very 
High 
Resolution 
Radiometer/2 

NOAA-
11, 12, 14 

Imaging 
multi-spectral 
radiometer 
(vis/IR) 

Provides measurements of land 
and sea surface temperature, 
cloud cover, snow and ice cover, 
soil moisture and vegetation 
indices. Data also used for 
volcanic eruption monitoring 

Waveband: VIS: 0.58-0.68 µm, NIR: 0.725-1.1 µm, 
MWIR: 3.55-3.93 µm, TIR: 10.3-11.3 µm, 11.5-12.5 
µm 
Resolution: 1.1 km 
Swath: 3000 km approx 

AVHRR/3 
Advanced Very 
High Resolution 
Radiometer/3 
 
 

NOAA-
15,16,M,
N,N' 
METOP-
1,2,3 
 

Imaging 
multi-spectral 
radiometer 
(vis/IR) 

Provides measurements of land 
and sea surface temperature, 
cloud cover, snow and ice cover, 
soil moisture and vegetation 
indices. Data also used for 
volcanic eruption monitoring 

Waveband: VIS: 0.58-0.68 µm, NIR: 0.725-1.1 µm, 
SWIR: 1.58-1.64 µm, MWIR: 3.55-3.93µm, TIR: 10.3-
11.3 µm, 11.5- 12.5 µm 
Resolution: 1.1 km 
Swath: 3000 km approx, Ensures full global 
coverage twice daily 

ETM 

Enhanced 
Thematic 
Mapper  

Landsat 7 High 
resolution 
imager 

Measures surface radiance and 
emittance, land cover state and 
change (eg vegetation type). Used 
as multipurpose imagery for land 
applications 

Waveband and resolution 
 Band 1: 0.450 - 0.515 um Blue 30 m 
 Band 2: 0.525 - 0.605 um Green 30 m 
 Band 3: 0.630 - 0.690 um Red 30 m 
 Band 4: 0.760 - 0.900 Near IR 30 m 
 Band 5: 1.550 - 1.750 um Mid IR 30 m 
 Band 6: 10.40 - 12.5 um Thermal 60 m 
 Band 7: 2.080 - 2.35 um Mid IR 30 m 
 Band 8: 0.52 - 0.92 um Pan 
Swath: 185 km 

HRV 
High Resolution 
Visible Imaging 

SPOT High 
resolution 
imager 

 Waveband and resolution 
Multispectral mode  
  0.50 - 0.59 µm  20 m  
  0.61 - 0.68 µm 20 m 
  0.79 - 0.89 µm 20 m 
Panchromatic mode  
0.51 - 0.73 µm  10m  
Swath: 60 km 

HSRS 
Hot Spot 
Recognition 
Sensor 

BIRD  
 

Imaging 
multispectral 
radiometer 
(vis/IR) 

Detection of hot spots (forest 
fires, volcanic activities, burning 
oil wells or coal seams) 

Waveband: MWIR: 3.4-4.2 µm, TIR: 8.5-9.3 µm 
Resolution: 370 m 
Swath: 190 km 
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Instrument  
 

Mission Type Measurements 
/application 

Technical 
characteristics 

Hyperion 
Hyperspectral 
Imager 
 
 

NMP EO-
1 

Imaging 
multispectral 
radiometer 
(vis/IR) 

Hyperspectral imaging of land 
surfaces 

Waveband: TVIS-NIR: 400-1000 nm; 
NIR-SWIR: 900-2500 nm; 10nm 
spectral resolution for 220 bands 
Resolution: 30 m 
Swath: 7.5 km 
Accuracy: SNR: 10% refl target: vis 10-40, swir 10-20 

MODIS 
Moderate- 
Resolution 
Imaging 
Spectro 
Radiometer 
 
 

Terra, 
Aqua 

Imaging 
multispectral 
radiometer 
(vis/IR) 

Data on biological and physical 
processes on the the Earth surface 
and in the lower atmosphere, and 
on global dynamics. Surface 
temperatures of land and ocean, 
chlorophyll fluorescence, land 
cover measurements, cloud cover 
(day and night) 

Waveband: VIS-TIR: 36 bands in range 0.4-14.4 µm 
Resolution: Cloud cover: 250 m (day) and 1000 m 
(night), Surface temperature: 1000 m 
Swath: 2330 km 
Accuracy: Long wave radiance: 100nW/m2, 
Short wave radiance: 5%, Surface 
temperature of land: <1K, Surface 
temperature of ocean: <0.2K, Snow and ice cover: 10% 

MERIS 
Medium- 
Resolution 
Imaging 
Spectrometer 
 
 

Envisat Imaging 
multi-spectral 
radiometer 
(vis/IR) 

Main objective is monitoring 
marine biophysical and 
biochemical parameters. 
Secondary objectives are related 
to atmospheric properties such as 
cloud and water vapour and to 
vegetation conditions on land 
surfaces 

Waveband: VIS-NIR: 15 bands selectable across 
range: 0.4-1.05 µm (bandwidth 
programmable between 0.0025 and 0.03 µm) 
Resolution: Ocean: 1040 m x 1200 m, Land & coast: 
260 m x 300 m 
Swath: 1150 km, global coverage every 3 days 
Accuracy: Ocean colour bands typical S:N = 1700 

SAR 
(RADARSAT) 
Synthetic 
Aperture 
Radar (CSA) C 
band 
 
 

RADARS
AT-1 

Imaging radar Provides all-weather images of 
ocean, ice and land surfaces. Used 
for monitoring of coastal zones, 
polar ice, sea ice, sea state, 
geological features, vegetation 
and land surface processes 
 

Waveband: Microwave: C band: 5.3GHz, HH 
polarisation 
Resolution: Standard: 25 x28 m (4 looks), 
Wide beam (1/2):48-30 x 28 m/32-25 x 28 m (4 looks), 
Fine resolution: 11-9 x 9 m (1 look), ScanSAR (N/W): 
50 x 50 m/ 100 x 100 m (2-4/4-8 looks), Extended 
(H/L): 22-19x28 m/ 63-28 x 28 m (4 looks) 
Swath: Standard: 100 km, Wide: 150 km 
Fine: 45 km, ScanSAR Narrow: 300 km 
ScanSAR Wide: 500 km Extended (H): 75 km 
Extended (L): 170km  
Accuracy: Geometric distortion: < 40m, Radiometric: 
1.0 dB 

SAR 
(RADARSAT-
2) 
Synthetic 
Aperture 
Radar (CSA) C 
band 
 

RADARS
AT-2 

Imaging radar 
 

Provides all-weather images of 
ocean, ice and land surfaces. Used 
for monitoring of coastal zones, 
polar ice, sea ice, sea state, 
geological features, vegetation 
and land surface processes 
 

Waveband: Microwave: C band 5.405 GHz: HH, VV, 
HV, VH polarisation includes fully polarimetric 
imaging modes, and leftand right-looking capability 
Resolution: Standard: 25 x 28 m (4 looks), Wide beam 
(1/2):48-30 x 28 m/ 32-25 x 28 m (4 looks), Fine 
resolution: 11-9 x  9m (1 look), ScanSAR (N/W): 50 x 
50 m/ 100 x 100 m (2-4/4-8 looks), Extended (H/L): 
22-19 x 28 m/ 63-28 x 28 m (4 looks) Ultrafine: 3 m 
Swath: Standard: 100 km (20-49deg), Wide beam (1/2): 
165 km/ 150 km (20-31/ 31-39deg), Fine resolution: 45 
km (37- 48deg), ScanSAR (W): 510 km (20-49deg), 
Extended (H/L): 75 km/170 km (50-60/ 10-23deg) 
Ultrafine: 10-20 km 
Accuracy: Geometric distortion: < 40 m, Radiometric: 
1.0 dB 

SAR 
(JERS) 

JERS Imaging radar Map the topography and 
geological characteristics of the 
earth's surface. Also well suited to 
land based studies 

Active  L band  
Swath width: 75 km  
Resolution: 18 m x 18 m  
Off nadir angle: 35deg 
Observation frequency: 1,275MHz 
Wavelength: 235 mm 

SAR 
(ERS) 

ERS Imaging radar Meteorology, geology, vegetation 
change, crop monitoring, 
hydrology, land use,  
oeanography and glaciology 

Active microwave sensor C band 
Frequency: 5.3 GHz  
Wavelength: 56 mm  
Incidence Angle: 23 deg (mid swath)  
Polarisation: VV 
Swath width: 100 km  
Resolution: 30 m (azimuth), 26.3 m (range) 

SEVIRI 
Spinning 
Enhanced 
Visible and 
Infrared 
Imager 
 
 

MSG-1, 2, 
3 

Imaging 
multi-spectral 
radiometer 
(vis/IR) 

Measurements of cloud cover, 
cloud top height, precipitation, 
cloud motion, vegetation, 
radiation fluxes, convection, air 
mass analysis, cirrus cloud 
discrimination, tropopause 
monitoring, stability  monitoring, 
total ozone and sea surface 
temparature 
 

Waveband: VIS: 0.56-0.71 µm, 0.5-0.9 µm(broadband), 
NIR: 0.74-0.88 µm, SWIR 1.5-1.78 µm, SWIR: 3.48-
4.36 µm, TIR: 5.35-7.15 µm, 6.85-7.85 µm, 8.3-9.1 µm, 
9.38-9.94 µm, 9.8-11.8 µm, 11-13 µm, 12.4-14.46 µm 
Resolution: 1 km (at SSP) for one broadband visible 
channel HRV, 5 km (at SSP) for all other channels 
Swath: Full Earth disk 
Accuracy: Cloud cover: 10%, Cloud top height: 1 km, 
Cloud top temparature: 1 K, Cloud type: 8 classes, 
Surface temparature: 0.7-2.0 K, Specific humidity 
profile: 10%, Wind profile (horizontal component): 2-
10 m/s, Long wave Earth surface radiation: 5 W/m2 
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Instrument  
 

Mission Type Measurements 
/application 

Technical 
characteristics 

TM 
Thematic 
Mapper 
 

Landsat - 
4, 5 

High 
resolution 
imager 

Measures surface radiance and 
emittance, land cover state and 
change (eg vegetation type). Used 
as multipurpose imagery for land 
applications 

Waveband: VIS-TIR: 7 channels: 0.45-12.50 um 
Resolution: VIS-SWIR, 30 m; TIR: 120 m 
Swath: 185 km 
 

 
VEGETATION  
 

SPOT-4, 5 Imaging 
multi-spectral 
radiometer 
(vis/IR) 

Data of use for crop forecast and 
monitoring, vegetation 
monitoring, and biosphere/ 
geosphere interaction studies 

Waveband: Operational mode: VIS: 0.61-0.68 µm, 
NIR: 0.78-0.89 µm, SWIR: 1.58-1.75 µm, 
Experimental mode: VIS: 0.43-0.47 µm 
Resolution: 1.15 km at nadir - minimal variation for 
off-nadir viewing 
Swath: 2200 km 

WAOSS-B 
Wide-Angle 
Opteoelectronic 
Stereo Scanner 

BIRD Imaging 
multispectral 
radiometer 
(vis/IR 

Vegetation and Cloud  coverage Waveband: 1 x VIS: 600-670 nm, 1 x NIR: 840-900nm 
Resolution: 185 m 
Swath: 533 km 

WiFS 
Wide Field 
Sensor 
 

IRS-
1C,D,P3,P
4 

Imaging 
multispectral 
radiometer 
(vis/IR) 

Vegetation monitoring, 
environmental monitoring, 
drought monitoring, snow melt 
run-off forecasting, global green 
cover assessment, agro-climatic 
regional planning 

Waveband: VIS: 0.62-0.68 µm NIR: 0.77-0.86 µm 
SWIR: 1.55-1.7µm (IRS P3 only) 
Resolution: 188 m 
Swath: 810 km 
 

 
 
X-Band SAR 
X-Band 
Synthetic 
Aperture Radar 
 

TerraSAR
-X 

Imaging radar 
 

Provides images for  monitoring 
of land surface and coastal 
processes and for agricultural, 
geological and hydrological 
applications.  
Instrument modes: Spotlight, 
Stripmap, ScanSAR 

Waveband: Microwave: 9.6 GHz (X-band), 4 
polarisation modes: HH, VV, HV, VH 
(selectable or twin) 
Resolution: Spotlight: 1, 2 m x 1-4 m,  
Stripmap: 3 m x 3-6 m, ScanSAR: 16m x 16m 
Swath: Spotlight: 5-10 km x 10 km, 
Stripmap: 30 km, ScanSAR: 100 km 
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Appendix 2---Image-based ground reflectance retrieval from the ASTER 
measurement  
 

The different data of ASTER L1A and ASTER 1B need to be unified as quantitative 

ground reflectance from the digital number (DN) of the ASTER for improved interpretation and 

comparison. This appendix describes the algorithm to calculate the ground reflectance from 

ASTER 1A in the visible and near-infrared portion of the spectrum based on the experience of 

Landsat COST model. Sensor calibration, Sun elevation correction, Earth-Sun distance 

correction, and atmospheric correction are taken into account in the algorithm. The advantage 

of the developed algorithm is that no additional information other than those provided by the 

imagery itself is required.   

 

Introduction 

 

ASTER covers a wide spectral region with 14 bands from the visible to the thermal infrared with high 

spatial, spectral and radiometric resolution. It consists of three subsystems with different spatial 

resolution: VNIR (visible and near infrared - 0.55 to 0.80um) subsystem with 15-m resolution; SWIR 

(short wave infrared-1.65 to 2.4um) subsystem with 30-m resolution; and TIR (thermal infrared - 8.3 

to 11.32um) subsystem with 90-m resolution (Yamaguchi et al., 1998). The bands are centered at 

approximately 0.56, 0.66, and 0.81 µm for the VNIR subsystem (with band passes of 0.08, 0.06, and 

0.10 µm respectively); 1.65, 2.165, 2.205, 2.26, 2.330, 2.395 µm for the SWIR (with band passes of 

0.10, 0.04, 0.04, 0.05, 0.07, and 0.07 µm ); and 8.30, 8.65, 9.10, 10.60, 11.30 µm for the TIR (with 

band passes of 0.35, 0.35, 0.35, 0.70, and 0.70 µm ). The bands and corresponding resolution are 

shown in Table 1. 

 

Table 1. Spectral range and ground resolution for ASTER instruments 
 

 VNIR SWIR TIR 

Band 1: 0.52 - 0.60 µm

Nadir looking 
Band 4: 1.600 - 1.700 µm Band 10: 8.125 - 8.475 µm 

Band 2: 0.63 - 0.69 µm

Nadir looking 
Band 5: 2.145 - 2.185 µm Band 11: 8.475 - 8.825 µm 

Band 3: 0.76 - 0.86 µm

Nadir looking 
Band 6: 2.185 - 2.225 µm Band 12: 8.925 - 9.275 µm 

Band 3: 0.76 - 0.86 µm

Backward looking 
Band 7: 2.235 - 2.285 µm Band 13: 10.25 - 10.95 µm 

 Band 8: 2.295 - 2.365 µm Band 14: 10.95 - 11.65 µm 

Spectral Range 

 Band 9: 2.360 - 2.430 µm  

Ground Resolution 15 m 30m 90m 
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        In remote sensing, any given digital image data set varies widely among sensors. Other things 

being equal, the radiance measured by any given system over a given object is influenced by such 

factors as changes in scene illumination, atmospheric conditions, viewing geometry, and instruments 

response characteristics. In the case of satellite sensing in the visible and near-infrared portion of the 

spectrum, it is often desirable to generate mosaics of images taken at different times or study the 

changes in the reflectance of ground features at different times or locations. In such applications, it is 

usually necessary to apply a Sun elevation correction and an Earth-Sun distance correction. The Sun 

elevation corrections accounts for the seasonal position of the Sun relatively to the Earth. Through this 

process, image data acquired under different solar illumination angles are normalized by calculating 

pixel brightness values assuming the Sun was at the zenith on each date of sensing. The correction is 

usually applied by dividing each pixel value in a scene by the sine of the solar elevation angle for the 

particular time and location of imaging. The Earth-Sun distance correction is applied to normalize for 

seasonal changes in the distance between the Earth and the Sun. The Earth-Sun distance is usually 

expressed in astronomical units. The irradiance from the Sun decreases as the square of the Earth-Sun 

distance. Furthermore, the influence of solar illumination variation is also compound by atmospheric 

effects. The “path radiance” effect introduces ‘haze’ in the imagery and reduces image contrast, so the 

haze compensation procedure should be designed to minimise the influence of ‘path radiance’ effect 

(Lillesand & Kiefer, 1994), and the image-based haze compensation (Chavez, 1996) has been widely 

used for this effect. 

 

      When comparing images from different sensors, image standardization is the fundamental step in 

putting image data from multiple sensors and platforms into a common radiometric scale, normalizing 

image pixel values for differences in Sun illumination geometry, atmospheric effects and instrument 

calibration. Proportional ground reflectance is the best unit for comparing the different sensors. First, 

the different instrument characteristics can be minimised; second, it compensates for different values 

of the exoatmospheric solar irradiances arising from spectral band differences; third, the atmosphere 

conditions when images are acquired at different times can be removed; and fourth, the satellite-Sun-

object geometry influence to image information is decreased; fifth, Almost all of the canopy radiative 

transfer models that are used for inverting land surface biophysical parameters are based on surface 

reflectance(Liang et al., 2001). 

 

     ASTER L1B data are defined as “registered radiance at the sensor”, however ASTER L1A data are 

defined as reconstructed, unprocessed instrument data at full resolution, and it consist of the image 

data, the radiometric coefficients, the geometric coefficients and other auxiliary data without applying 

the coefficients to the image data, thus maintaining original data values (Aster user handbook). The 

influence of scene illumination, atmospheric conditions, viewing geometry, and instruments response 

characteristics are therefore contained in ASTER L1A, which decreases the quality and limit the use.  
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      In this study, the Landsat data were firstly converted to ground reflectance using the COST model 

whose details are described in the work of Chavez (1996), Markham & Barker (1986), and Moran et 

al. (1992) (http://support.erdas.com/downloads/models/user_models/user_model_2.html). Most of the 

ASTER data in the study are in L1A data and some of the data are in Level 1B data, and the 

comparison and interpretation between these two types data result in accuracy uncertainties, therefore 

they need to be unified. An algorithm was thus developed to retrieve the ground reflectance from the 

original satellite measurement of ASTER 1A based on the COST model experience of Landsat 

(Chavez, 1996). This algorithm is based on the parameters which are provided by the ASTER 1A data 

itself instead of other sources. It mainly consists of two steps: 1.) converting the DN of ASTER 1A to 

at-sensor radiance, namely converting ASTER L1A to ASTER L1B, and 2.) converting the at-sensor 

radiance to ground reflectance. In this method, the instruments response characteristics, scene 

illumination, viewing geometry, atmospheric conditions are considered. 

 

Method 

 

2.1 Instrument calibration--- Converting the DN of ASTER to at-sensor radiance 

 

Radiometric correction data processing activity involved in many quantitative applications of digital 

image data is conversion of DNs to absolute radiance values. This operation accounts for the 

extraction form of the A-to-D response functions for a given sensor and is essential in applications 

where measurements of absolute radiance is required. ASTER 1A original DN can be converted to raw 

radiance using unit conversion coefficients which is defined as radiance per 1DN. Radiance (spectral 

radiance) is expressed in unit of W/(m2•sr•µm), and the value can be obtained from DN values as 

follows, 

 

                          Radiance = (DNvalue -1) x Unit conversion coefficient                                               (1) 

 

Unit conversion coefficients are provided by ASTER user handbook shown in Table 2. For each 

scene, specific conversion coefficients are bundled in each scene header file for its conversion.  

 

Table 2. Unit conversion coefficients from ASTER bands and gain mode. Unit: (W/(m 2 *sr*µm)/DN) 
Band No. High gain Normal gain Low gain1 Low gain 2 

1 0.676 1.688 2.25 N/A 

2 0.708 1.415 1.89 N/A 

3N 0.423 0.862 1.15 N/A 

3B 0.423 0.862 1.15 N/A 

4 0.1087 0.2174 0.290 0.290 
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Band No. High gain Normal gain Low gain1 Low gain 2 

5 0.0348 0.0696 0.0925 0.409 

6 0.0313 0.0625 0.0830 0.390 

7 0.0299 0.0597 0.0795 0.332 

8 0.0209 0.0417 0.0556 0.245 

9 0.0159 0.0318 0.0424 0.265 

10 N/A 6.882 x 10-3 N/A N/A 

11 N/A 6.780 x 10-3 N/A N/A 

12 N/A 6.590 x 10-3 N/A N/A 

13 N/A 5.693 x 10-3 N/A N/A 

14 N/A 5.225 x 10-3 N/A N/A 

Source: ASTER product user handbook 

 

     The resulted radiance from DN in equation 1 includes the radiometric artifacts (e.g. striping) caused 

from instrument system error. ASTER L1A data is bundled with the radiometric coefficients but 

without applying these coefficients to the image data. These coefficients can be extracted from Aster 

1A itself and applied to correct the radiometric and produce the at-sensor radiance, which is an 

improved version of original radiance, using equations 2, 3 and 4. 

 

         To VNIR bands:             Lv = Av * V / Gv + Dv                                                                   (2) 

         To SWIR bands:             Ls = As * V / Gs + Ds                                                                    (3) 

         To TIR bands:                Lt = C0 + C1 * V + C2 * V * V                                                      (4) 

 

Where V is each pixel DN value in 1A scene; Lv, Ls and Lt are at-sensor radiances for VNIR, SWIR 

and TIR channels respectively, Av; Gv and Dv are calibration coefficients for detectors of VNIR 

channels; As, Gs and Ds are calibration coefficients for detectors of SWIR channels; C0, C1 and C2 are 

calibration coefficients for detectors of TIR channels. These coefficients are bundled with each band.    

 

     When the ASTER sensor acquire data from the Earth, scanned linear detector arrays for VNIR and 

SWIR subsystems are arranged one linear array for each band to obtain one line data in the cross-

track, which means one line of image data of all VNIR/SWIR bands in the along-track direction are 

acquired by one detector because of pushbroom scanning method. For TIR subsystem ten detectors for 

each band are arranged to obtain ten lines in the cross-track direction for each scan period because of 

the whiskbroom scanning method. Therefore, when calibrating these bands using above equations, 

VNIR and SWIR detector calibrations are applied to each line in along-track direction; TIR detector 

calibration is repeatedly applied to every 10 lines in across-track direction. An Interactive 

Development Language (IDL) programming was developed to carry out the calibration. After the 

calculation, the level 1A raw digital numbers were converted to at-sensor radiance. TIR is used for 
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temperature instead of ground reflectance, so the followed processing is only applied to VNIR and 

SWIR. 

 

2.2 Atmosphere correction--Converting the at-sensor radiance to ground reflectance 

 

For relatively “clear” ASTER scenes, after the at-sensor radiance is calculated, it can be converted to a 

planetary or exoatmospheric reflectance through a normalization for solar irradiance using the below 

equation 5,   

                         ρAT-SENSOR = π * d2 * Lsatλ / (ESUNλ * cosθ)                                                             (5) 

where ρAT-SENSOR is the anticipated at-sensor reflectance, Lsatλ is the at-sensor radiance resulted from 

radiometric correction processing; d is the Earth-Sun distance in astronomical units, which is 

presented in Table 3; θ is the Solar zenith angle in degrees which is a supplementary angle of solar 

elevation angle when the image were acquired. ESUNλ is the mean solar exoatmospheric spectral 

irradiance for ASTER which will be described later. 

 

Table 3. Earth-Sun Distance in Astronomical Units for various days throughout a year 
 

Julian 

Day 

Distance Julian 

Day 

Distance Julian 

Day

Distance Julian 

Day

Distance Julian 

Day 

Distance

1 0.9832 74 0.9945 152 1.0140 227 1.0128 305 0.9925

15 0.9836 91 0.9993 166 1.0158 242 1.0092 319 0.9892

32 0.9853 106 1.0033 182 1.0167 258 1.0057 335 0.9860

46 0.9878 121 1.0076 196 1.0165 274 1.0011 349 0.9843

60 0.9909 135 1.0109 213 1.0149 288 0.9972 365 0.9833

 

       Although the solar irradiance was normalised, the above converted reflectance still has the 

problem of atmospheric effect. Accurate atmospheric correction can remove the effects of changes in 

satellite-Sun geometry and atmospheric conditions (Teillet, 1992). Atmospherically corrected surface 

reflectance images improve the accuracy of surface type classification (Fraser et al., 1977; Kaufman, 

1985) and are also a basis for estimating the radiation budget of the Earth (Kimes & Sellers, 1985). 

Full use of satellite data for agricultural resource management also requires atmospheric correction 

(Moran et al., 1990). However, the atmospheric correction for the VNIR and SWIR of the ASTER 

atmosphere team is based upon a LUT approach using results from a Gauss-Seidel iteration radiative 

transfer code (RTC) (ASTER user handbook), and this method currently assumes atmospheric 

scattering optical depths and aerosol parameters are known from outside sources. Using these 

parameters, a set of piecewise-linear fits are determined from the LUT that relate the measured at-

sensor radiances to surface radiance and surface reflectance. The sources of this information are results 

from other AM-1 platform sensors such as the Multi-Angle Imaging Spectroradiometer (MISR) and 
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the MODIS or global assimilation model (GAM) results. Difficulties arise when these sources of 

information are not available. To the users of Aster 1A, collecting in-situ atmospheric measurements 

and radiometric transfer code (RTC) is normally difficult and more costly to implement. One 

popularly used means of atmospheric correction (Kaufman & Sendra, 1988; Kaufman et al., 2000; 

Liang et al., 1997; Teillet & Fedosejevs, 1995; Edirisinghe at al., 2001) in multispectral data is to 

observe the radiance recorded over target areas of essentially very low reflectance in the visible 

spectrum, namely dark-Object atmospheric correction method (Chavez, 1988).  

 

    The image-based atmospheric correction method based on Dark-Object theory can be used to 

remove the atmospheric effect, requiring no additional information other than that provided by the 

imagery. The first step of this method is to Compute haze correction coefficient for each band based 

on equation 6 (Chavez, 1996), and equation 7 is used to compute radiance of a dark object [assumed to 

have a reflectance of 1% by Chavez (1996) and Moran et al. (1992)] for each band. 

                     Lλ,HAZE  = Lλ,MIN – Lλ,1%                                                                                                        (6) 

in which  

                     Lλ,1% = 0.01 * ESUNλ * COS2 θ / (π * D2)                                                                  (7) 

  

Where Lλ,MIN is the corresponding radiance representing dark object, which normally has the lowest 

radiance, in the scene. The lλ,min choice will be the lowest value at the base of the slope of the 

histogram, where slope of the histogram begins to increase more dramatically. 

 

After the haze correction coefficient is calculated, equation 8 instead of equation 5 is used to convert 

the at-sensor radiance to ground reflectance ρ GROUND (Chavez, 1996): 

  

            ρ GROUND= π * d2 * (Lsatλ – Lhazeλ) / (ESUNλ * cosθ * cosθ)                                                (8) 

 

where the second cosθ in the equation is introduced for estimating the outgoing path of radiance 

affected by the atmosphere. In order to get the ground reflectance, the Exoatmospheric Spectral 

Irradiance (ESUNλ) for each ASTER VNIR and SWIR should be firstly produced. In our work, Solar 

Spectrum database used at the World Radiation Center was downloaded from 

ftp://ftp.pmodwrc.ch/pub/data/irradiance/spectral_irradiance/  and then they are used to calculate the 

ASTER Exoatmospheric Spectral Irradiance for each VNIR and SWIR channels. Fig. 1 is the curve 

covering the ASTER VNIR and SWIR spectral range from this data source.  
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Fig. 1.    The Exoatmospheric Spectral Irradiance curve (original data Source: WRC) 
 

     For each band, the Exoatmospheric Spectral Irradiance in this bandwidth was summarised and the 

mean value was calculated. The result is taken as the mean exoatmospheric Spectral Irradiance 

coefficient shown in Table 4. 

 

Table 4. ASTER band and MEAN exoatmospheric Spectral Irradiance 
 

Band NO. Band width (µm) WRC average (W/m2/um) 

VNIR01 0.52-0.60 1850 

VNIR02 0.63-0.69 1560 

VNIR3N 0.76-0.86 1110 

VNIR3B 0.76-0.86 1110 

SWIR04 1.600-1.700 233 

SWIR05 2.145-2.185 80.1 

SWIR06 2.185-2.225 74.7 

SWIR07 2.235-2.285 68.7 

SWIR08 2.295-2.365 60.0 

SWIR09 2.360-2.430 57.3 

 

3. Case study and result  

 

The method described above is applied to the ASTER 1A archive. One ASTER 1A scene, which 

covers HeLan mountain of China acquired on 18 April 2001, has 4100 X 4200 DN value for VNIR 



Appendix--- Image-based ground reflectance retrieval from the ASTER measurement 

 135

bands 1, 2 and 3N, and 2048 X 2100 DN value for SWIR bands 4, 5, 6, 7, 8 and 9; furthermore, 3 X 

4100 coefficients for each VNIR and 3 X 2048 coefficients for each SWIR are bundled. The along-

track direction is in the column, so each column would be converted using the same three coefficients 

(Table 5). TIR can not be used for the ground reflectance, but their radiometric correction is also 

shown in Table 5. 

 

Table 5. The ASTER 1A data and the radiometric correction   

Image  

dimension 

Coefficientdi

mension 

Col line col line 

Data matrix Radiometric correction method Comments 

4100 4200 3 4100 VNIRIMG[4100,4200] 

VNIRCOE[3,4100] 

Lv(C,L)= 

VNIRIMG(C,L)*VNIRCOE(2,C)/ 

VNIRCOE(3,C)+ VNIRCOE(1,C) 

Equation 2 

2048 2100 3 2048 SWIRIMG[2048,2100] 

SWIRCOE[3,2048] 

Ls(C,L)= 

SWIRIMG(C,L)*SWIRCOE(2,C)/ 

SWIRCOE(3,C)+ SWIRCOE(1,C) 

Equation 3 

700 700 3 10 TIRIMG[700,700] 

TIRCOE[3,10] 

Lt(C,L)= 

TIRCOE(1,REST(L/10))+ TIRCOE(2, 

REST(L/10))*TIRIMG(C,L)+ TIRCOE(3, 

REST(L/10))* TIRIMG(C,L)* TIRIMG(C,L) 

Equation 4 

 Rest calculates the 

rest of a division 

*VNIR/SWIR data were scanned in pushbroom, TIR data were scanned in Whiskbroom; 

*The satellite flight direction is along column; 

*L(C,L) is the element of  L matrix which column=C and line=L 

 

After this radiometric correction, the DN was converted to at-sensor radiance and the stripes in the 

original DN image will be removed. Fig. 2 is one case which shows the improvement of the VNIR 

channel 1.  
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Fig. 2. The VNIR band 1 image (Comparison between before and after the calibration). The vertical stripe 

is removed after applying radiometric coefficients. 

 

Equation 6 and 7 was used for converted the at-sensor radiance to ground reflectance. From Table 3, 

the Earth-Sun distance is about 1.0033, and the solar elevation angle 59.472389 from the header file 

was found. To determine the dark object at-sensor radiance, each band histogram was plotted and the 

value where slope of the histogram begins to increase dramatically was chosen for the Lλ,MIN in 

equation 6. Fig. 3 shows the choice of 44.0754 as the Lλ,MIN for VNIR band 1.  
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Fig. 3. The histogram of VNIR band1 for choosing the Lλ,min parameter 

 

Table 6 summarized the relevant values in image-based atmospheric correction.  

 

Table 6. Values used for image-based atmospheric correction of the case ASTER 1A scene acquired on 

April 18, 2001 

 VNIR01 

(0.52-0.60) 

VNIR02 

(0.63-

0.69) 

VNIR03

(0.76-

0.86) 

SWIR04

(1.600-

1.700) 

SWIR05

(2.145-

2.185) 

SWIR06

(2.185-

2.225) 

SWIR07 

(2.235-

2.285) 

SWIR08 

(2.295-

2.365) 

SWIR09

(2.360-

2.430) 

L~,min 44.0754 32.0838 38.3498 7.4959 2.3442 2.0245 1.8317 1.2868 1.1633 

L~,1% 4.3406 3.6602 2.6044 0.5467 0.1879 0.1753 0.1612 0.1408 0.1344 

L~,min

-L~,1% 39.7348 28.4236 35.7454 6.9492 2.1562 1.8492 1.6705 1.1460 1.0288 

 

After the Atmosphere correction, the influence of Atmosphere effect can be decreased, and the data 

quality can be improved. Fig. 4 is the comparison between the at-sensor radiance color image and the 

ground reflectance color image. 
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Fig. 4. The data quality improvement after calculating the ground reflectance from at-sensor radiance. 

Left is the ASTER VNIR at-sensor radiance color image (Red band3, Green band 2, Blue band 1), and 

right is the ASTER VNIR ground reflectance color image (Red band3, Green band 2, Blue band 1). Both 

image use standard-deviation histogram stretch. 

 

4. Summary and discussion 

 

With the characteristics of high spatial resolution, wide spectral range of visible, near IR, short wave 

IR and thermal IR, and stereo view in the same orbit, ASTER has provided information to complement 

data from other sensors to monitor the Earth. As a comparable radiometric scale, ground reflectance 

retrieval from ASTER is an important process for change detection using different sensors or 

mosaicing images taken at different times or locations. The factors such as instruments characteristics, 

viewing geometry, atmospheric conditions influence the satellite measurement of ASTER. The 

radiometric coefficients for each detector bundled with the original DN can be used to remove the 

stripes caused from the instrument characteristics. Solar elevation angle and Earth-Sun distance can be 

normalized using the solar angle and Earth-Sun distance for the particular time and location of 

imaging. To decrease the atmospheric conditions effect in ASTER, the haze compensation procedure 

is designed based on the dark-object atmospheric correction method. The advantage of the ground 

reflectance retrieval described above is that all the parameters adopted is easily available, thus the 

method is widely operational. 

 

       However, some points in the retrieval processing should be discussed here. In equation 8, the 

cosine of the solar zenith angle θ in the Chavez (1996) method for atmospheric correction is 
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introduced for estimating the outgoing path of radiance affected by the atmosphere. But some 

researches on Landsat TM/ETM+ have indicated that cosθ overestimates the amount of outgoing 

radiance of affected by the atmosphere.  This seems to be especially true when imagery was captured 

on especially clear days or when the solar zenith angle is high. The deviation of cosθ influence on 

ASTER correction was not studied in our work. Furthermore, the topography features also influence 

the satellite radiance, especially in the rugged mountainous area, because the flux of incident sunlight 

over a given area reaches a maximum when that area is oriented perpendicular to the Sun's rays. No 

matter the surface type or atmospheric conditions, if more light is incident upon a surface, more light 

will be scattered back into space (Reeder at al., 1999; Ekstrand, 1996). High-resolution digital 

elevation models provide a means to correct the data in a satellite image for the topographic effect. By 

calculating the slope and aspect of a surface, the Sun-surface-sensor orientation can be determined, 

and its effects can be estimated. ASTER provide a stereo pair of VNIR band 3, which can be used for 

extracting high resolution relative DEM and thus no other information is required for this topographic 

correction. The topographic influence was tried to correct based on the assumption that the surface is a 

lambertian, which reflects incident solar energy uniformly in all directions and that variations in 

reflectance are due to the amount of incident radiation, but the result always shows the overcorrection 

which occurs in areas with steep slopes oriented away from the Sun.   
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ABBREVIATION 
 
AATSR   Advanced Along-Track Scanning Radiometer 
APP Alternating Polarisation Precision 
ASAR     Advanced Synthetic Aperture Radar 
ASTER     Advanced Spaceborne Thermal Emission and Reflection 
ATSR       Along Track Scanning Radiometer 
AVHRR Advanced Very High Resolution Radiometer 
BIRD Bi-spectral Infra-Red Detection 
BRDF  Bidirectional Reflectance Distribution Function 
C    Celsius, centigrade 
CARPE Central African Regional Program for the Environment  
CCD Charged Coupled Device 
CO2   Carbon Dioxide 
DEM  Digital Elevation Model 
DN Digital Number 
ECMWF European Centre for Medium-term Weather Forecast  
ENVISAT  Environmental Satellite 
EOS  Earth Observing System 
EROS     Earth Resources Observation System 
ERS-1     European Remote-Sensing Satellite-1 
ERS-2      European Remote-Sensing Satellite-2 
ERTS Earth Resources Technology Satellite 
ESA         European Space Agency 
ETM+  Enhanced Thematic Mapper Plus 
FAO Food and Agriculture Organization of the United Nations 
GCP  Ground Control Point 
GEMI Global Environment Monitoring Index 
GIS  Geographical Information System 
GMS Geostationary Meteorological Satellite 
GPS Global Positioning System 
GTZ GTZ (Deutsche Gesellschaft für technische Zusammenarbeit mbH) 
HDF Hierarchical Data Format 
H Horizontal 
HIRS High Resolution Infrared Radiation Sounder 
HTE High Temperature Events 
ICSU  International Council of Scientific Unions 
IDL Interactive Development Language  
IFOV   Instantaneous Field of View 
IGBP International Geosphere - Biosphere Programme 
IIASA International Institute for Advanced Systems Analysis  
IPCC Intergovernmental Panel on Climate Change 
JERS-1 Japanese Earth Remote-sensing Satellite-1 
Kg      Kilogram 
Km       Kilometer 
Landsat  Land Remote Sensing Satellite 
LCCS Land Cover Classification System 
LUT LookUp Table 
MERIS MEdium Resolution Imaging Spectrometer 
MIR Middle Infrared Red 
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MISR Multi-Angle Imaging Spectroradiometer  
MODIS  Moderate Resolution Imaging Spectroradiometer 
MSG Meteosat Second Generation 
MSS      Multispectral Scanner (Landsat) 
MVC Maximal Value Composition 
NASA      National Aeronautics and Space Administration (US) 
NDVI  Normalized Difference Vegetation Index 
NIR  Near InfraRed 
NOAA  National Oceanic and Atmospheric Administration 
OLS Operational Linescan System 
PAN panchromatic 
PCA Principle Component Analysis 
Radarsat Canadian Synthetic Aperture Radar Satellite 
ROI  Region of Interest 
RMS      Root-Mean-Square 
RTC Radiative Transfer Code  
SAA Solar Azimuth Angle 
SAR  Synthetic Aperture Radar 
SeaWiFS  Sea-viewing Wide Field of View Sensor 
SEVIRI Spinning Enhanced Visible and Infrared Imager 
SMAC Simplified Method for Atmospheric Correction 
SNP Salonga National Park 
SPOT  System Probatoire pour l’Observation de la Terre 
SRTM  Shuttle Radar Topography Mission 
SWIR  Short Wave Infrared 
SZA      Solar Zenith Angle 
TIR       Thermal InfraRed 
TM  Thematic Mapper 
TREES  Tropical Ecosystem Environment Observations by Satellites 
TRMM Tropical Rainfall Measuring Mission 
UN United Nations 
UNCED United Nations Conference on Environment and Development 
UNCOD United Nations Conference on Desertification 
UNEP United Nations Environment Programme  
UNESCO   United Nations Educational Scientific, and Cultural Organization 
USGS  United States Geological Survey 
UTM  Universal Transverse Mercator 
V Vertical 
VAS      Visible Infrared Spin Scan Radiometer Atmospheric Sounder 
VCF Vegetation Continuous Fiels 
VI Vegetation Index/Indices 
VIRS Visible and InfraRed Scanner 
VIS       Visible 
VNIR  Visible Near InfraRed 
VAA View Azimuth Angle 
VZA View Zenith Angle 
WAOSS Wide-Angle Optoelectronic Stereo Scanner 
WRC World Radiation Center 
WSM Wide Swath Mode 
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