Max-Planck-Institut für extraterrestrische Physik

Unification of radio-loud AGN: the X-ray perspective

Elisa Ferrero

August 2004

Max-Planck-Institut für extraterrestrische Physik

Unification of radio-loud AGN: the X-ray perspective

DISSERTATION

der Fakultät für Physik der Ludwig-Maximilians-Universität München zur Erlangung des Grades
Doktor der Naturwissenschaften
Dr. rer. nat.

 ${\bf vorgelegt} \ {\bf von}$

ELISA FERRERO aus Torino, Italien

1. Gutachter: Prof. Dr. Gregor Morfill

Gutachter: Dr. Hans Böhringer
 Tag der mündlichen Prüfung: 14. Januar 2005

Aknowledgement

I would like to especially express my gratitude to Dr. Wolfgang Brinkmann who constantly guided and supervised every phase of this work and who introduced me to astrophysical research.

I am grateful to Dr. Wolfgang Voges for performing the cross-correlations with the ROSAT catalogs and I also wish to thank Dr. Hans Böhringer for providing his cluster catalogs with useful X-ray data employed in this thesis. It is a pleasure to thank Dr. I. Papadakis at the University of Crete who made possible the Skinakas observations described in Appendix A.

My PhD work was carried out in the framework of the graduate program of the International Max-Planck Research School on Astrophysics to which I am therefore greatly indebted. I am also grateful to Prof. Dr. G. Morfill who welcomed me in his theory group and who provided financial support for the last months of my stay at MPE.

Finally, I would like to thank my family for the unconditional and uninterrupted support they give me, each of them by his own means and in his own way. A final thank goes to Mustapha who helped me to keep my feet firmly on the ground.

Abstract

In this thesis we address the subject of the unification of radio-loud Active Galactic Nuclei (AGN) (FRI/FRII galaxies, BL Lac objects and quasars) with a statistical and multiwavelength approach, paying particular attention to the X-ray band which carries precious information on the innermost regions of AGN. A large sample of 2260 AGN of different kinds was created by cross-correlating the ROSAT catalogs with various radio surveys and, for each source, data were collected in the radio, optical and soft X-ray bands. 1682 objects are formally classified as radio-loud and are analyzed in this thesis.

The main purpose of this thesis is to test the unified scheme for radio-loud AGN by investigating if the correlations between luminosities at different frequencies are consistent with the basic assumption that BL Lac objects and radio-loud quasars are relativistically beamed counterparts of FRI and FRII radio galaxies, respectively. Although this is the key hypothesis of the unification scheme for radio-loud AGN, these questions have not been carefully analyzed so far.

The results of this thesis are in general agreement with the relativistic beaming scenario, however, some complications have been highlighted. Tight relationships between the nuclear emission in the three wavebands considered are confirmed for all classes and we were able to better constrain the parameters of the correlations due to the larger number of objects compared to previous investigations. However, for FRI galaxies and BL Lac objects, more than one emission component is required, at least in the X-ray band, to explain in a relativistic beaming scenario the different parameters observed for the correlations. One component can easily be associated with the jet, whereas the other remains so far unknown.

A possible problematic aspect of the unified scheme is that, among the FRI galaxies, the counterparts of Low-energy-peaked BL Lacs have not been found.

Absorption with $N_{\rm H} \gtrsim 10^{22}~{\rm cm}^{-2}$ is present in FRII galaxies and plays, together with relativistic beaming, a major role in the unification with radio-loud quasars. Allowing for absorption, only one emission component is required at all frequencies to account for the observed correlations in both classes.

Flat-spectrum quasars (FSRQ) appear to be more beamed than steep-spectrum quasars (SSRQ) only at radio frequencies, but not in the optical and X-ray bands. This might imply that quasars are disk-dominated in the X-ray and optical band, and jet-dominated at radio frequencies. On the other hand, FRI galaxies and BL Lacs appear to be globally jet-dominated.

A parameter which might account for the FRI/BL Lac - FRII/quasar dichotomy is the accretion rate. At low, sub-Eddington values jets are weak but the emission from them dominates that from the disk and these sources are classified as FRI galaxies or BL Lacs, depending on the viewing angle. At values close to the Eddington limit the disk emission is comparable to that from the jet, which is also more powerful due to the higher accretion rate, and either a FRII galaxy or a radio-loud quasar is produced in this case.

Contents

1	Intr	roduction	1
2	Act	ive Galactic Nuclei: observational properties	3
	2.1	Historical background	3
	2.2	General properties of AGN	4
	2.3	Classification of AGN	6
		2.3.1 Radio-quiet AGN	7
		2.3.2 Radio-loud AGN	8
	2.4	Current interpretation	10
3	Uni	fication of AGN	13
	3.1	Sources of anisotropy	13
		3.1.1 Obscuration	13
		3.1.2 Relativistic beaming	14
	3.2	First attempts of unification	17
	3.3	Current unification schemes	18
		3.3.1 Radio-loud AGN	18
		3.3.2 Radio-quiet AGN	20
	3.4	Comments	20
4	The	e Spectral Energy Distribution of AGN	23
	4.1		23
		4.1.1 The non-blazar AGN	24
		4.1.2 The blazars	25
	4.2	Continuum emission mechanisms	26
	4.3	Emission lines	28
	4.4	Absorption lines	29
5	The	e sample and the data	31
	5.1	The sample	31
	5.2	Properties of the sample	34
	5.3		34
	5.4		36
	5.5	Statistical tools	37
		5.5.1 Estimate of the mean and dispersion	38
		5.5.2 Two-sample tests	38

ii CONTENTS

		5.5.3	Correlation analysis	39
		5.5.4	Regression analysis	39
6	The	data	the FRI/FRII dichotomy 4	! 1
U	6.1			11
	6.2			12
	0.2	6.2.1	v	12
		6.2.2	v v	14
		6.2.3	ı v	18
		6.2.4	· ·	51
	6.3		v	53
	0.0	6.3.1		54
		6.3.2	- "	56
		6.3.3		56
		6.3.4	· ·	30 30
	6.4		·	37 37
	6.5			38
	0.0	Discus		,0
7				1
	7.1			71
	7.2			72
		7.2.1		72
		7.2.2	v	74
		7.2.3		74
		7.2.4	v v	74
	7.3		g v	78
		7.3.1	·	78
		7.3.2	ı	30
		7.3.3	v i	34
		7.3.4	v v	34
	7.4	Unifica	J J	34
		7.4.1	0 1	39
		7.4.2		91
	7.5	Interp		93
		7.5.1	Low-energy and High-energy-peaked FRI galaxies	93
		7.5.2	The amount of beaming in BL Lacs	98
		7.5.3	v	98
	7.6	Summ	ary of results)1
8	The	data:	FRII galaxies vs. radio-loud quasars 10)5
	8.1		uction	
	8.2		osity distributions	
		8.2.1	The total radio luminosity distributions	
		8.2.2	The radio core luminosity distributions	
		8.2.3	The optical luminosity distributions	
		8.2.4	The X-ray luminosity distributions	

CONTENTS

	8.3	Correl	ation and regression analysis	111
		8.3.1	The radio - to - radio luminosity correlations	114
		8.3.2	The radio - to - optical luminosity correlations	114
		8.3.3	The X-ray - to - optical luminosity correlations	118
		8.3.4	The X-ray - to - radio luminosity correlations	118
	8.4	Unifica	ation of FRII galaxies and radio-loud quasars	124
		8.4.1	Interpretation of correlations	124
		8.4.2	The amount of beaming in radio-loud quasars	125
		8.4.3	Modeling the Spectral Energy Distributions	126
	8.5	Summ	ary of results	129
9	Con	clusio	ns and prospects	133
		9.0.1	Résumé	133
		9.0.2	Prospects	134
\mathbf{A}	Skir	nakas c	observations of 15 ROSAT sources	137
	A.1	The Sl	kinakas observatory	137
	A.2	The ol	bservations	138
	A.3	The da	ata reduction	139
	A.4	Result	s	140
Re	efere	nces		142
Lis	st of	public	eations	145
Cı	ırricı	ulum V	Vitae	146
\mathbf{T}	ne sa:	mple		148

Chapter 1

Introduction

Although the space and ground-based observatories of the new generation, such as, for example, XMM, Chandra, HST, VLT, etc., are providing us with high quality data which allow accurate and detailed studies of Active Galactic Nuclei (AGN), usually only the most luminous or nearby or peculiar objects are observed. Therefore, in spite of the precious information on the physics of these objects contained in such data, the conclusions that can be drawn from their analyses might not convey a faithful view of the typical properties of AGN. The best method to study these general features has proved to be the statistical analysis of large samples of AGN. This is the approach chosen for this work in order to tackle the problem of the unification of radio-loud AGN.

For a better understanding of the nature and the inter-relationships between different classes of AGN it is indispensable to use multiwavelength data. Only with the analysis and the comparison of the properties of AGN at different frequencies it is possible to clarify which emission mechanisms are operating in these objects and how the various classes are related to each other. The X-ray emission, in particular, is produced from the innermost regions, very close to the black hole at the center of every AGN and, therefore, it is potentially the richest carrier of information about the physics of their powerful engines. A large amount of data exist for a great number of AGN, both in the literature and in the archives available to the astrophysical community, as a result of many investigations of different samples of objects observed in various wavebands, each one created according to particular requirements. This work attempts to construct a very large, multiwavelength sample of AGN exploiting this huge data reservoir, especially in the X-ray band. The final aim is to build a functional database that can also be used for future studies beyond the scope of this work. The sample that we present (shown in Table 1 at the end of this thesis) contains 2260 sources for which information is available in the radio, optical and soft X-ray bands. The collected data constitute a good basis for the study of radio-loud AGN, which are the subject of this thesis. Nonetheless, as outlined in Chapter 9, the sample should be updated with new data, when they become available, and extended to other wavebands, including spectral information, absorption and variability properties, etc.

The unified scheme is a model which interprets the different observational properties of the various classes of AGN in terms of orientation effects. The main test which gives support to this scheme comes from the comparison of the luminosity functions of the different classes (Urry & Padovani 1995). However, more independent tests are needed to further 1 Introduction

corroborate the unification scenario. Furthermore, the statistical significance of these tests is somewhat limited by the small sizes of the samples used and by the employment of data in only one waveband at a time. Therefore, samples combining both large sizes and multi-wavelength information are desirable to test the validity of the unified scheme. This work aims at contributing to this through the study of a sample fulfilling both requirements.

For quite some time it is known that the emission from AGN at different wavelengths is tightly correlated and this has allowed to recognize the radiation mechanisms in these sources. However, only few studies investigated if the correlations observed are consistent with the hypothesis of the unified scheme claiming that, in the case of the radio-loud population, BL Lac objects and quasars are beamed and unabsorbed versions of FRI and FRII galaxies, respectively, oriented at small angle to the line of sight. However, relativistic beaming together with obscuration by dust and gas constitute the basis of any unification scheme and this point deserves a careful examination. Our sample is best suited for this analysis which is the main topic of this thesis. However, the potential of our database is not exhausted by such a study as stated above.

The structure of the thesis is the following: Chapter 2 describes the observational properties and the classification of AGN; Chapter 3 discusses the unified scheme; Chapter 4 illustrates the spectral energy distributions of AGN and the emission mechanisms in the various wavebands; in Chapter 5 the sample is presented and the statistical techniques employed in the subsequent analysis are described; in Chapter 6, 7 and 8 we show and discuss the results for the radio-loud AGN, comparing the properties of FRI and FRII galaxies, FRI galaxies and BL Lac objects, and FRII galaxies and radio-loud quasars, respectively; in Chapter 9 we give the conclusions and the prospects of this work.

Chapter 2

Active Galactic Nuclei: observational properties

The term Active Galactic Nucleus (commonly abbreviated as AGN) denotes a large variety of extragalactic objects. The objects of this class can have very different emission properties, however, they all share a striking characteristic which distinguishes them from all the other galaxies in the Universe: the emission from the nucleus largely outshines that of the whole galaxy. Various subclasses forming the AGN population, e.g. radio galaxies, quasars or Seyfert galaxies, have been known for quite a long time but only in relatively recent years attempts have been made to unify them in a coherent picture (see Chapter 3). According to this unified view all AGN subclasses share a common mechanism of energy production, the accretion of matter onto a supermassive black hole in their center. Their different observational properties arise, to a large degree, from their intrinsically anisotropic geometry and radiation pattern, from absorption as well as from relativistic effects.

In this chapter we will briefly summarize the historical background concerning the discovery and the study of AGN, then we will describe the observational properties common to all AGN subclasses and, finally, we will treat in detail the properties of each subclass and the related AGN taxonomy.

2.1 Historical background

Astronomers have been aware of the existence of AGN since the beginning of the 20th century, even though they could not recognize them as such. At that time their extragalactic nature was unknown, as it was for galaxies in general which were called *nebulae*. The starting date of the observational study of AGN may be set in 1908 thanks to the work of E. A. Fath on *spiral nebulae*. These objects showed absorption lines in their optical spectra and, since the same lines had also been observed in star clusters, their emission was interpreted analogously in terms of the integrated light from a large number of stars, too distant to be resolved individually. However, one nebula, NGC 1068, revealed some high-ionization emission lines in its optical spectrum. Later, in 1943, Carl Seyfert discovered that these "emission line" objects constituted a small fraction of the galaxies in general. He also argued that they showed emission lines wider than the absorption

lines in normal galaxies, with a wide range of ionization, originating in a small, bright nucleus of stellar appearance in the host galaxy. The discovery of these AGN traditionally dates back to this work and they were thus called *Seyfert galaxies* ever since (Seyfert 1943).

Radio galaxies have been known since the mid-1950s when the Third Cambridge Catalog (3C) was created. Cygnus A was the first detected radio source outside the solar system, however, its optical identification with an elliptical galaxy had to wait until 1954 (Baade & Minkowski 1954) followed by the identification of other strong radio sources soon after. In 1962 a lunar occultation of the radio source 3C 273 allowed an accurate determination of its radio position and consequently the identification of its optical counterpart. This turned out to be of stellar-like appearance, but its optical spectrum contained several strong emission lines unlike stellar spectra where only absorption lines are detected. For this reason 3C 273 and similar objects were called quasars which stands for quasi-stellar radio sources (QSR). It was only in 1963 that quasars' spectra were interpreted in terms of cosmological redshift by Maarten Schmidt and that these objects were recognized to be extragalactic, at extremely large distances from our Galaxy (Schmidt 1963). Later on, with the discovery of many stellar-like objects, which lacked strong radio emission, it was understood that this is not a general feature of quasars, but only for $\sim 10-15\%$ of them. The new objects were named Quasi-Stellar Objects (QSO), a term which became frequently used for radio-quiet quasars only, whereas the term quasar is reserved for the radio-loud quasars. The term quasar is also used to indicate both classes in general when we do not need to specify their radio properties. The terms radio-loud and radio-quiet *quasars* are used when an explicit distinction is necessary.

With the advent of the Einstein Observatory in 1980 it was realized that a general feature of quasars is their X-ray emission and that this waveband carries useful information on the energy production mechanisms, on the circumnuclear matter and on the internal structure of AGN.

A final remark is necessary on *BL Lac objects*, the most peculiar members of the AGN class. BL Lacertae (or BL Lac) was at first believed to be a variable star in the constellation of Lacerta due to its stellar appearance. In 1968 its radio counterpart was found (MacLeod & Andrew 1968, Schmidt 1968) and in 1969 the optical continuum was found to be featureless without either emission or absorption lines (Visvanathan 1969). Together with its variability and high degree of polarization, this established the unusual nature of BL Lac. In 1974 Adams identified a faint nebulosity around it with color and brightness distribution consistent with that of an elliptical galaxy, thus proving its extragalactic nature. When similar sources were discovered afterwards they inherited the name *BL Lac objects* from it.

2.2 General properties of AGN

The separately discovered types of AGN actually share some remarkable properties which eventually led to grouping them together into a common class. In the following we list these general properties and discuss them briefly.

¹For a quantitative definition of radio-loudness see §2.3.

The first remarkable property of all AGN is the emission of radiation over the entire electromagnetic spectrum with bolometric luminosities $L \gtrsim 10^{44} \ \rm erg \ s^{-1}$, sometimes reaching $L \sim 10^{47} - 10^{48} \ \rm erg \ s^{-1}$. In comparison, normal galaxies have $L \lesssim 10^{42} \ \rm erg \ s^{-1}$ and the bulk of their luminosity is emitted in the visible band, essentially produced by stars.

The second remarkable property is the high variability of their emission observed at all frequencies, on time scales ranging from years down to hours. Such short time scales imply that the region from which the luminosity is emitted is very compact. If R is the linear dimension of this region and $\Delta t_{\rm var}$ is some characteristic variability timescale, a simple light travel time argument demands that $R \lesssim c\Delta t_{\rm var}$ for the variability to be observed (where c is the speed of light). From the measured $\Delta t_{\rm var}$ in AGN it is usually found that $R \lesssim 0.1$ pc, i.e. the emission region is contained well within the nucleus of the galaxy (a fact that justifies the name of AGN).

The spectra of AGN over the whole electromagnetic band are essentially of non-thermal origin (however, see also Chapter 4 on the SED of AGN), contrary to normal galaxies where the spectrum is given by the integration of the stars' thermal spectra. In a given waveband the AGN spectra can usually be well described by a power law with flux density of the form $f(\nu) \propto \nu^{-\alpha}$ (erg s⁻¹ cm⁻² Hz⁻¹) where α is called the *spectral index*. An equivalent parameterization of the spectrum of an AGN, preferred at high energies, is given by $N(E) \propto E^{-\Gamma}$, where E is the energy, N(E) is the number of photons s⁻¹ cm⁻² keV⁻¹ and Γ is called the *photon index*. The spectral index is related to the photon index by $\Gamma = \alpha + 1$.

Together with the non-thermal continuum, the optical spectrum of an AGN usually shows strong emission lines. Both permitted and forbidden narrow emission lines are observed, whereas only permitted broad emission lines have been seen. The widths of the emission lines yield information on the velocity properties of the emitting material. Interpreting the line widths in terms of Doppler broadening, velocity dispersions of the order of $\sigma \sim 300-400~{\rm km~s^{-1}}$ are found in the case of narrow lines and an order of magnitude higher, i.e. $\sigma \sim 3000-4000~{\rm km~s^{-1}}$, for the broad lines.

Some AGN also reveal strong radio emission in the form of spectacular jets and extended lobes (see Fig. 2.2). These radio structures can reach distances from the center of the AGN of the order of ~ 100 kpc up to ~ 1 Mpc, well beyond the optical extension of the host galaxy. However, the majority of AGN seem to be radio-quiet.

All properties listed above are indicators of powerful physical mechanisms acting at the centers of active galaxies producing such highly energetic phenomena in a very compact region. Clearly, nuclear processes in the cores of stars cannot account for the enormous AGN energy output and in §2.4 the current model for the central engine of an AGN will be discussed.

The fraction of galaxies which show these peculiar properties is only $\sim 1\%$ of the total population, however, they are outstanding and intriguing objects providing insight into yet unexplored physical processes. As extremely luminous and distant objects they are also unique probes of the Universe at early stages and thus useful cosmological tools. A

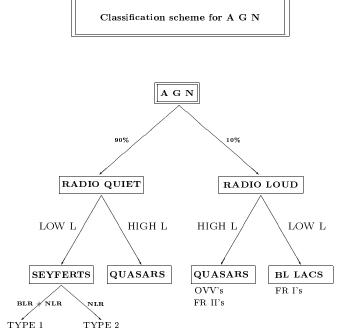


Figure 2.1: The AGN taxonomy. See text for the explanation of the various classes.

key question regarding the galaxy evolution is: does every galaxy pass through an activity phase or can only a small fraction of galaxies become active, for example due to special environmental conditions?

In the following section we will give a more detailed classification scheme for the AGN, based on their observed radio and optical properties. This scheme will be useful to understand the AGN terminology and it has helped to uncover some order behind the various manifestations of the AGN phenomenon and eventually to develop a unification scheme, which relates the observed properties to both geometrical and physical causes (see Chapter 3).

2.3 Classification of AGN

Fig. 2.1 gives the principal classification of AGN based on radio emission and optical spectral properties. It must be noticed that the X-ray properties of the objects are normally not taken into account for this classification scheme.

The first rough division is made according to the parameter called *radio-loudness*, defined as:

$$R_{\rm L} = \log \left(\frac{f_{\rm 5GHz}}{f_{\rm B}} \right) \tag{2.1}$$

where $f_{5\mathrm{GHz}}$ is the radio flux at 5 GHz and f_{B} is the optical flux in the B band, centered on the wavelength $\lambda = 4400 \mbox{Å}$. If an AGN has $R_{\mathrm{L}} \gtrsim 1$ it is conventionally said to be radio-loud, whereas if it has $R_{\mathrm{L}} \lesssim 1$ it is said to be radio-quiet (Kellermann et al. 1989). The radio-loud objects represent a small percentage ($\sim 10-15\%$) of all AGN.

However, it must be pointed out that the sharp separation into these two classes has been questioned following the results of the FIRST survey (Brinkmann et al. 2000, White et al. 2000). The AGN could instead follow a continuous distribution in radio-loudness, rather than being sharply divided into two populations. However, it has been argued recently that the lack of a bimodality in radio loudness as inferred from FIRST data could be due to an intrinsic insensitivity of the survey to the extended emission (Laor 2003).

It has been thought for some time that the physical basis for the radio-loud classification was that, whenever the host galaxy could be imaged, radio-quiet AGN were found to reside in spiral galaxies, whereas radio-loud AGN were usually housed by ellipticals. However, HST observations recently allowed the accurate measurement of the AGN host galaxies' luminosity profiles (for $z \lesssim 0.5$), unambiguously revealing that both radio-loud and radio-quiet quasars with nuclear $M_V < -23.5$ inhabit massive ellipticals with negligible disc components (Dunlop et al. 2003). The current picture thus appears to be that above a given optical nuclear luminosity threshold AGN can only reside in massive ellipticals regardless of their radio power. At lower optical nuclear luminosities spiral host galaxies become more common within the radio-quiet population, whereas radio-loud AGN are always hosted in ellipticals.

The second basic classification, independent from the previous one and valid for both radio-loud and radio-quiet AGN, is made according to the optical spectra. AGN with a bright continuum and both broad and narrow emission lines are called type 1 AGN, those with a weak continuum and only narrow emission lines are called type 2 AGN. Some AGN, BL Lacs and flat-spectrum quasars (FSRQ), show very unusual spectra and peculiar properties, such as featureless spectra, strong variability on very short time scales (i.e. hours), strong and variable polarization. These objects are collectively called blazars. BL Lacs, however, lack the strong emission lines observed in FSRQ, suggesting a fundamental difference between the two classes in spite of their similar peculiar properties. As we will see in Chapter 3 it is currently believed that the separation into type 1, type 2 and blazars is due, at least partly, to orientation and obscuration effects.

Keeping in mind the classification criteria above, we now discuss the various subclasses of AGN and their main properties.

2.3.1 Radio-quiet AGN

Type 2 objects: The radio-quiet type 2 AGN are the Seyfert 2 galaxies, hosted in nearby spiral galaxies, showing only narrow emission lines with $FWHM \lesssim 1000 \text{ km s}^{-1}$. They are mostly seen at small cosmic distances because of their low luminosities. This subclass also includes the Narrow Emission Line Galaxies (NELG) (Mushotzky 1982) also called Narrow Line X-ray Galaxies (NLXG). They have optical spectra similar to the Seyfert 2 with narrow emission lines only (a part from a broad wing in the H α line in some cases) but their hard X-ray emission is stronger, more typical to that of the Seyfert 1 (see below).

At first they were thought to constitute a separate class, but nowadays they are usually considered as intermediate Seyferts (i.e. Sy 1.8, 1.9 or 2; Osterbrock 1989).

Type 1 objects: The lower-luminosity radio-quiet type 1 AGN are called Seyfert 1 galaxies. They are similar to the Seyfert 2, but with broad emission lines in their optical spectra ($FWHM \gtrsim 1000$) in addition to the narrow lines. At higher luminosities we find the radio-quiet quasars or QSO. Unlike the Seyfert 1 galaxies these objects are usually very distant and it is very difficult to image the host galaxy around them. However, apart from their pointlike appearance they are undistinguishable from the Seyfert 1^2 .

Other classes: An interesting subgroup of radio-quiet quasars (not shown in Fig. 2.1) are the so called Broad Absorption Line Quasars (BAL QSO). These are objects showing broad P-Cygni-like features in their optical-UV spectra with deep, wide absorption troughs on the blue side of the corresponding emission lines indicating outflow velocities of $v \sim 0.1-0.2c$. They constitute $\sim 10-15\%$ of the optically selected quasars and they are almost exclusively radio-quiet. The BAL phenomenon is believed to be caused by orientation effects, with the line of sight passing through a high column density ($N_{\rm H} \gtrsim 10^{23}~{\rm cm}^{-2}$) absorber flowing outwards with high velocity (Weymann et al. 1991, Hamann et al. 1993). According to a recent model (Elvis 2000), which is still under debate, all radio-quiet quasars possess high-velocity outflows rising vertically (possibly due to disk instabilities) at some radius of the accretion disk and then bending outwards. Only when they are seen through the outflow they show BAL properties.

The Low Ionization Nuclear Emission Line Regions (LINERs) are the least luminous AGN known. They are considered as transition objects with a weak non-thermal AGN-like continuum component together with a starburst component. They have low ionization emission lines ([OI]/[OIII] > 1/3 and [OII]/[OIII] > 1) with somewhat narrower widths ($\sim 200-400~{\rm km~s^{-1}}$) than those of the narrow lines in Seyfert 1. Some of them show weak broad emission lines.

Narrow Line Seyfert 1 Galaxies (NLSy1) are a very interesting subgroup of Seyfert 1 galaxies, having widths of the Balmer lines between $\sim 500-2000$ km s⁻¹, narrower than typical broad lines, FeII multiplet emission and $[OIII]/H\beta < 3$. They are extremely variable in X-rays and have the steepest soft and hard X-ray spectra (for an extensive review see, for example, Boller 2000).

2.3.2 Radio-loud AGN

Type 2 objects: The radio-loud type 2 AGN are the classical radio galaxies, which in this context will be more precisely called Narrow Line Radio Galaxies (NLRG). According to their radio properties, they are further divided into Fanaroff-Riley type 1 (FRI) and Fanaroff-Riley type 2 (FRII) (Fanaroff & Riley 1974). The FRII have radio morphologies characterized by powerful edge-brightened double lobes with prominent hot spots and tend to be found in poor environments; the FRI have radio emission peaking near the nucleus, have rather diffuse edge-darkened lobes and frequently inhabit rich environments. An example for each class is shown in Fig. 2.2.

A subgroup of the FRII radio galaxies have low excitation optical spectra with [OIII] lines

 $^{^2\}mathrm{An}$ object is classified as QSO if its absolute optical magnitude is $M_\mathrm{V}\lesssim~-23.$

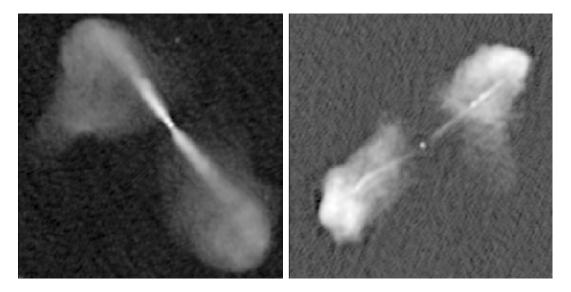


Figure 2.2: The radio galaxies 3C 296 (left panel) and 3C 438 (right panel), examples of a FRI and of a FRII radio source, respectively.

very weak compared to the hydrogen lines ($[OIII]/H\alpha < 0.2$ and $EW_{[OIII]} < 3$ Å, Hard-castle & Worrall 1999). They can either be called Weak Line Radio Galaxies (WLRG) or Low Excitation Radio Galaxies (LERG) (Laing et al. 1994). In spite of their FRII radio morphology they have optical spectra resembling those of FRI galaxies and this will have some implications on the unified scheme (see § 3.3.1).

Type 1 objects: The radio-loud type 1 AGN are called *Broad Line Radio Galaxies* (*BLRG*) at low luminosity and *radio-loud quasars* at high luminosity³. The latter are further separated into *Steep-Spectrum Radio Quasars* (*SSRQ*) with radio spectral index $\alpha_{\rm r} \gtrsim 0.5$ and *Flat-Spectrum Radio Quasars* (*FSRQ*) with $\alpha_{\rm r} \lesssim 0.5$. The SSRQ are basically more luminous BLRG and both classes (as observed so far) display exclusively FRII radio morphologies. FSRQ on the other hand appear compact in the radio band with no extended lobes. They have broad emission lines in their optical spectra and can thus be classified as type 1 objects, but their continuum spectrum has the peculiar properties of blazars (see below).

Blazars: They include the FSRQ, also grouped with type 1 objects as described above, and the BL Lacertae (BL Lac) objects. It must be remarked that the optical spectra of BL Lacs and FSRQ differ greatly. In fact, whereas FSRQ show strong broad emission lines, BL Lacs have only weak (typical $EW < 5\mathring{A}$) or no emission lines in their optical spectra. Therefore grouping them together in a common optical spectral class might be confusing. The reason why they are commonly put together in the blazar class is that, in spite of the dissimilarity of their optical spectra, they share the same peculiar continuum properties (e.g. strong variability and polarization properties). As we will see in Chapter 3, the unification scheme interprets both FSRQ and BL Lacs as AGN observed at a small

 $^{^3}$ An object is classified as a quasar if its absolute optical magnitude is $M_{
m V} \lesssim -23$.

viewing angle so that the continuum emission is dominated by the jet. However, the lack of emission lines in BL Lacs indicates that they are not just lower-luminosity versions of FSRQ but that fundamental differences exist between the two classes.

Further objects such as Optically Violently Variable Quasars (OVV), Highly Polarized Quasars (HPQ) and Core Dominated Quasars (CDQ) turned out to be different empirical definitions of the same kind of objects and are now included in the FSRQ class.

Other classes: A peculiar subclass of radio-loud AGN is formed by the so-called GHz-Peaked Spectrum (GPS) sources and the Compact Steep-Spectrum (CSS) sources (for a review see O'Dea 1998). They constitute a non-negligible fraction of the cm-wavelength selected radio sources ($\sim 10\%$ and $\sim 30\%$, respectively) and they are characterized by strong radio power ($\gtrsim 10^{25} \mathrm{~W~Hz^{-1}}$ at 1.4 GHz) originating from a very compact region ($R \lesssim 1$ kpc and $R \lesssim 20$ kpc, respectively). Their most puzzling property is a convex radio spectrum peaking around few GHz for the GPS and below $\sim 500 \mathrm{~MHz}$ for the CSS. The convex shape is commonly interpreted in terms of synchrotron self-absorption and the GPS/CSS sources are supposed to be young progenitors of the classical radio galaxies and radio-loud quasars. An alternative hypothesis is that they are frustrated sources confined by a very dense gas.

Given the properties above, we will describe in the next paragraph the standard interpretation for the central engine powering the AGN and we will introduce the unified scheme.

2.4 Current interpretation

Any model for the AGN must be able to explain the peculiar properties discussed in the previous paragraphs. The fundamental question is: what kind of source is capable to produce such a large amount of energy from such a compact region?

Initially, astronomers tried to explain the AGN energy source in terms of very massive stars evolving into super-supernovae (Hoyle & Fowler 1962), populations of massive O stars, and collections of supernovae. All these scenarios failed to account for the high emission efficiency implied by the AGN luminosity. In fact, any spherical object held together by gravitational forces must radiate below a well defined luminosity limit dependent on its mass, called the *Eddington luminosity*. Beyond the Eddington limit the radiation pressure would be larger than the gravitational force and the object would be disrupted. The Eddington limit is obtained imposing the equilibrium between the gravitational force acting on the protons (neglecting the small contribution from the electrons) and the radiation pressure acting on the electrons (assuming that the interaction between the radiation and the protons is negligible). This yields:

$$L \lesssim L_{\rm E} = \frac{4\pi c G m_{\rm H} M}{\sigma_{\rm T}} = 1.26 \times 10^{38} \frac{M}{M_{\odot}}$$
 (2.2)

where $\sigma_{\rm T}$ is the Thomson cross section. For a typical AGN luminosity of $10^{12}L_{\odot}$ this implies a lower limit for the mass of the star of $M \gtrsim 3 \times 10^7 M_{\odot}$. If we write for the AGN luminosity:

$$L = \epsilon M c^2 \Delta t^{-1} \tag{2.3}$$

where ϵ is the efficiency of the energy production mechanism, $\Delta t \sim 10^8$ yrs is the typical lifetime of an AGN and we take $L \approx L_{\rm E}$, substituting Eq. (2.2) into Eq. (2.3) we get $\epsilon \approx 0.4$, independent of the AGN mass. This value largely exceeds that for thermonuclear processes in stars and demands other mechanisms for the energy production.

In 1963 Hoyle & Fowler proposed that the energy source in AGN was of gravitational origin from the collapse of very massive objects in analogy to what happens in the early stages of star formation. Later on this idea was developed into the so called black hole-accretion disk paradigm which was already working well for the X-ray binaries in our Galaxy. According to this model the core of an AGN is a supermassive black hole $(M_{\rm BH} \sim 10^6 - 10^9 M_{\odot})$ onto which matter is accreted by its strong gravitational force. If this matter possesses angular momentum it cannot fall directly towards the black hole but rotates around it on nearly Keplerian orbits at different radii forming an accretion disk. As a consequence of losing angular momentum due to viscosity it slowly spirals in and finally falls into the black hole. The liberated gravitational energy is mostly emitted in the form of radiation and supplies the kinetic power of the jets. How the gravitational energy is transformed into kinetic and radiative energy is still poorly understood. However from general relativity it is known that the efficiency of such a mechanism can be $\sim 10\%$ in the case of a Schwarzschild black hole and as high as $\sim 40\%$ in the case of a maximally rotating Kerr black hole. Therefore, it can easily account for the large amount of energy emitted from an AGN.

There have been suggestions that the energy source of AGN could be of gravitational origin but without the need for supermassive black holes. The central engine could be a cluster of compact objects, i.e. neutron stars or neutron stars and stellar-mass black holes. However, the small dimensions of the source would force the system to collapse anyway into a supermassive black hole. Due to the large masses required by the Eddington limit argument and the extreme compactness of the emitting regions inferred from the variability timescales, it seems very difficult to avoid the formation of supermassive black holes in the nuclei of active galaxies independently of the initial configuration we start from (Rees 1984). The black hole-accretion disk paradigm is thus the currently best accepted interpretation of the AGN phenomenon. Furthermore, there is mounting evidence for the existence of supermassive black holes at the center of many normal galaxies (Kormendy & Gebhardt 2001, Richstone 2002 and Schödel et al. 2002 for the Galactic center) providing experimental support for this scenario.

In this chapter we have discussed the observational properties and classification of AGN and we have described the black hole-accretion disk paradigm which explains the extreme properties of AGN. This model identifies the source of energy of AGN, but cannot account as such for the observed diversity described in §2.3 and their broad spectral energy distribution (see Chapter 4). The *unified scheme* (see Chapter 3), based on the black hole-accretion disk paradigm, attempts to explain the various AGN manifestations by adding some other structural elements. In Chapter 4 we will treat in more detail the emission

properties in different wavebands, i.e. the spectral energy distribution of AGN, in the framework of the unified scheme.

Chapter 3

Unification of AGN

In Chapter 2 we have seen that the black hole-accretion disk paradigm is the favored interpretation of the AGN phenomenon, capable to account for the high luminosity and compactness. However, various different types of AGN have been defined (described in Chapter 2) according to their distinct observational properties. Since the discovery of AGN evidence has been accumulating that their emission is not isotropic and the reasons for the anisotropy have been mainly attributed to obscuration by dust or gas and relativistic beaming. As a consequence the belief grew that the large variety of AGN types resulted from a family of intrinsically similar objects seen with different orientations with respect to the observer's line of sight. Some classes of AGN were recognized to be intrinsically similar once obscuration and relativistic beaming effects were removed. The models describing this scenario became known as the unified schemes.

In the following we will first discuss the evidence for anisotropic emission in AGN and then the various steps undertaken towards the currently best accepted version of the unified scheme. We will concentrate mainly on the unified schemes for radio-loud AGN which constitute the principal subject of our work. A brief review of the tests which support the unified scheme and of the remaining unsolved problems will be given at the end of the chapter. For the radio-quiet population we will limit ourselves to describe the basic elements of their unification and refer to the literature for a more extensive treatment.

3.1 Sources of anisotropy

Obscuration (provided that the absorber has anisotropic geometry) by intervening gas or dust and relativistic beaming will result in enhanced emission along a preferential direction and in a different appearance of the object depending on the viewing angle. In the next paragraph we discuss in more detail these two points and their supporting evidence.

3.1.1 Obscuration

Direct evidence for obscuration comes from spectropolarimetric studies of type 2 AGN. Their optical/UV spectra observed in polarized light show broad emission lines as strong as those observed in type 1 AGN. The first object for which scattered broad emission lines have been seen is the Seyfert 2 galaxy NGC 1068 (Antonucci & Miller 1985). Later, a

hidden Broad Line Region (BLR) was revealed as well in the radio galaxy 3C 234 (Antonucci 1984) where it was also found that the plane of polarization is perpendicular to the radio jet axis, suggesting that the absorber's axis must coincide with that of the jet. The polarization is mostly wavelength independent, favoring an electron scattering origin, but in other sources scattering by dust seems to be also present (Miller et al. 1991). An important remark is that all radio galaxies in which a hidden BLR has been detected are so far FRII and not FRI galaxies.

If type 2 AGN are obscured they should shine brightly in the infra-red band, where the optical depth is much lower than in the optical case. This in fact has been observed in a few NLRG (see for example Antonucci & Barvainis 1990) together with broad Paschen lines in some cases, indicating the presence of a hidden BLR (Hill et al. 1996).

Optical images of some type 2 objects reveal a conical or biconical structure of the extended Narrow Line Region (NLR), for example the HST image of NGC 1068 in the light of [OIII] (Wilson et al. 1993). The suggestion is that the emission from the nuclear source is emerging through a torus-like absorber, photo-ionizing the gas in the NLR which will shine in a conical shape with apex at the obscured nucleus.

Soft X-ray observations of type 2 objects showed that they are systematically less luminous than the type 1 objects and that their spectra are consistent with being absorbed by high column densities of gas (Mulchaey et al. 1992).

3.1.2 Relativistic beaming

If a source of radiation moves with relativistic velocities towards the observer a series of relativistic effects will take place. The radiation will be collimated in the direction of motion into a cone with opening angle $\theta \sim 1/\Gamma$ where Γ is the bulk Lorentz factor and the intensity of the radiation will be amplified by Doppler boosting in the direction of motion. The time intervals measured in the observer's frame will be shorter than in the rest frame of the source and consequently the measured frequencies will be higher. These effects are all direct consequences of the Lorentz transformations of special relativity and they are known as relativistic beaming. The parameter which quantifies the relativistic beaming is the Doppler factor:

$$\delta = \frac{1}{\Gamma(1 - \beta \cos \theta)} \tag{3.1}$$

where θ is the angle between the line of sight of the observer and the direction of motion of the source. Time intervals and frequencies will transform as:

$$\Delta t = \delta^{-1} \Delta t' \tag{3.2}$$

$$\nu = \delta \nu' \tag{3.3}$$

where primed quantities refer to the rest frame of the source.

The specific intensity, flux density (of the form $f(\nu) \propto \nu^{-\alpha}$) and the total flux transform as:

$$I(\nu) = \delta^3 I'(\nu')$$
 (erg s⁻¹ cm⁻¹ Hz⁻¹ sr⁻¹) (3.4)

$$f(\nu) = \delta^{3+\alpha} f'(\nu')$$
 (erg s⁻¹ cm⁻¹ Hz⁻¹) (3.5)

$$f = \delta^4 f'$$
 (erg s⁻¹ cm⁻¹) (3.6)

The monochromatic luminosity and the total luminosity transform as in Eq. (3.5) and (3.6), respectively. These formulae are valid for a point source (i.e. a blob in a radio jet), whereas for a continuous jet the exponent of δ in Eq. (3.5) and (3.6) becomes equal to $2 + \alpha$ and 3 respectively.

Relativistic beaming affects the isotropy of the radiation if the emitting material has relativistic bulk velocities and it has thus been proposed as one of the probable reasons of the aspect dependence of AGN. The main evidence for relativistic beaming relies on the detection (in blazars) of superluminal motion, on observations of jets' asymmetries, on the "Compton catastrophe" argument, on brightness temperature calculations and on observations of extremely rapidly variable gamma-ray sources.

Superluminal motion: In many blazars single radio components (i.e. blobs) have been seen moving at apparent velocities greater than c. This has been interpreted as an effect of relativistic beaming in the following way. When a source is moving at a velocity close to c along a direction which forms a small angle with the observer's line of sight it "runs after" the photons it emits. This reduces the time intervals between the emission of two photons as measured in the observer's frame and the source appears to move faster than it actually does. The apparent speed is given by:

$$\beta_{\rm app} = \frac{\beta \sin \theta}{1 - \beta \cos \theta} \tag{3.7}$$

and β_{app} reaches a maximum for $\cos \theta = \beta$. It must be kept in mind, however, that an apparent superluminal speed might also be obtained by subsequent illumination of different jet regions without the need for actual motion of matter.

Jet asymmetries: Radio jets in AGN are often one-sided, which means that the brightness of the jets on both sides of the radio core is significantly different. The one-sidedness usually holds at pc and kpc scales, implying that relativistic velocities are maintained over large distances from the core. If jets are really moving at relativistic speeds one-sidedness is expected. Further supporting evidence that jets are affected by relativistic beaming comes from frequently detected depolarization asymmetries in the radio lobes of a single source. The radiation coming from the lobe connected with the bright jet is usually less depolarized than that coming from the opposite lobe. This finds a natural explanation if we assume that the bright jet is moving towards us and the invisible counter-jet is moving away from us and that the radio source is embedded in a hot gaseous halo. Then the lobe with the jet is closer to us and its radiation has to pass through a smaller amount of

depolarizing material than that from the opposite, more distant lobe. It seems thus that jet one-sidedness can more likely be attributed to relativistic beaming than to an intrinsic origin.

Gamma-ray variability: In many cases the emission from blazars is dominated by gamma-rays which typically show very short variability timescales of the order of days or less. This constrains the emitting region to be very compact and, consequently, the density of gamma-ray photons to be very high. In these conditions the optical depth for pair production via interaction of gamma-ray photons with X-ray photons is larger than unity and would prevent gamma-rays from escaping the emission region. However, the fact that we observe gamma-ray photons means that the actual optical depth must be less than unity. This paradox is easily solved if we take into account relativistic beaming which has the effect of both reducing the intrinsic variability time scale (see Eq. (3.2)) and boosting the gamma-ray luminosity. As a consequence, in the restframe of the source the upper limit on its dimensions ($R \lesssim c\Delta t_{\rm var}$) will be larger and both the gamma-ray luminosity and optical depth will be lower.

Compton catastrophe: As we will see in Chapter 4 radio emission from AGN is believed to be produced by accelerated electrons in a magnetic field via the synchrotron process. The X-ray emission can then be generated through inverse Compton scattering of low-frequency photons off relativistic electrons. If the photons are the synchrotron ones scattered by the same electron population (Synchrotron Self-Compton scenario) it is possible to predict the amount of X-ray emission from the energy density of radio synchrotron photons, assuming energy equipartition between the magnetic fields and the particles. In some radio-loud AGN the predicted X-ray flux strongly exceeds the observed flux (Compton catastrophe). The easiest explanation is that the radio flux is intrinsically weaker than observed, but enhanced by relativistic beaming.

Brightness temperature: The same inconsistency between predictions and observations is found when calculating the brightness temperature from radio measurements. The energy density of the magnetic fields must be larger than the energy density of the photons. If the opposite is true the inverse Compton scattering would rapidly prevail and the energy of the electrons would decrease rapidly, eventually quenching the synchrotron emission. The energy density of the magnetic fields is:

$$u_{\rm B} = \frac{B^2}{8\pi} \tag{3.8}$$

The energy density of the photons is given by:

$$u_{\rm ph} = \Delta \Omega c I(\nu) \tag{3.9}$$

where $I(\nu)$ is the specific intensity which is taken to follow a black body law. At radio frequencies, this reduces to the Rayleigh-Jeans formula:

$$I(\nu) = \frac{8\pi\nu^2}{c^3} k_{\rm B} T \tag{3.10}$$

where T is the brightness temperature. The condition that $u_{\rm ph} < u_{\rm B}$ translates into an upper limit for the brightness temperature of the source of $T_{\rm B} \lesssim 10^{11}$ K. In numerous blazars we still see synchrotron radiation with $T_{\rm B}$ greater than this value. The problem is overcome by taking into account relativistic beaming. The condition $u_{\rm ph} < u_{\rm B}$ is satisfied in the rest frame of the source, but $u_{\rm ph}$ is boosted by relativistic beaming in the observer's frame, causing the apparent violation of the upper limit on the brightness temperature.

3.2 First attempts of unification

As we have seen in the previous paragraphs quite reliable evidence exists that the radiation we receive from AGN is emitted anisotropically, either due to relativistic beaming or to obscuration or both. The consequent idea is that intrinsically similar AGN appear different depending on the viewing angle, giving rise to the different classes of objects we see.

A first attempt of unification was made by Scheuer & Readhead (1979). These authors put forward the hypothesis that flat-spectrum radio-loud quasars were the beamed counterparts of radio-quiet quasars. They calculated the expected relative numbers of FSRQ and radio-quiet quasars from a population of randomly oriented sources. Comparing them with those actually observed they concluded that the bulk Lorentz factor required to match the observations was $\Gamma \sim 5$. This simple unification scheme failed mainly for two reasons. The first was that the predicted luminosity distribution function was a simple power law, not consistent with the observations. The second reason was that at that time, prior to VLA, the FSRQ appeared as compact radio sources with no trace of extended emission. When this was finally detected by VLA it was much stronger than the weak (but not absent) extended radio emission of radio-quiet quasars. However, according to the proposed scheme the extended radio emission of both the beamed and parent populations are expected to be unbeamed and, therefore, comparable.

Lobe-dominated SSRQ, on the other hand, have extended radio luminosities in accordance with those of FSRQ and it was first suggested by Perley et al. (1979) that the former could constitute the parent population of the latter. Orr & Browne (1982) developed this idea further into a unifying relativistic beaming model. However, even this model was not satisfactory, because the linear sizes of SSRQ were systematically smaller than the deprojected linear sizes of FSRQ, whereas they were expected to match. Another problem was that even lobe-dominated quasars had one-sided jets on large scales, as if they too were observed at a small viewing angle sufficient for relativistic beaming to play a role.

FRII radio galaxies also have extended radio emission comparable to those of FSRQ and SSRQ and Barthel (1989) tried to include them into a unified scheme as the parent population of both SSRQ and FSRQ, in a progression from larger to smaller viewing angles. This was now consistent with observations, however, FRII radio galaxies lack the broad emission lines in the optical/UV spectra which are found in quasars. A gas/dust torus was then invoked (the supporting evidence is discussed above), coaxial with the radio jet, obscuring the broad line region at large (i.e. in FRII galaxies), but not at small,

18 3 Unification of AGN

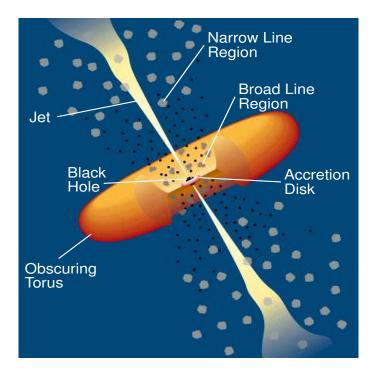


Figure 3.1: Scheme of an AGN from Urry & Padovani (1995).

viewing angles.

Barthel's model was leaving out many AGN classes, such as FRI radio galaxies, BLRG, BL Lacs and of course the whole radio-quiet population, but it formed the basis for further developments and improvements. In the following chapter we will discuss the currently accepted version of the unified scheme for radio-loud and radio-quiet objects and related problems.

3.3 Current unification schemes

3.3.1 Radio-loud AGN

The components of the unification scheme for the radio-loud AGN are shown in Fig. 3.1 and an exhaustive review is given, for example, by Urry & Padovani (1995).

A supermassive black hole $(M_{\rm BH} \sim 10^6 - 10^9 M_{\odot})$ is located at the center of an AGN. An accretion disk of matter falling onto the black hole is surrounding it and, for a black hole of mass $M_{\rm BH} \sim 10^8 M_{\odot}$ with a Schwarzschild radius¹ of $R_{\rm S} \sim 3 \times 10^{13}$ cm, it extends from $\sim 3 - 100 R_{\rm S}$. The accretion disk emits UV up to soft X-ray radiation and perhaps hard X-ray radiation in the innermost region from a hot corona above the disk. Within

$$R_{\rm S} = \frac{2GM_{\rm BH}}{c^2} \tag{3.11}$$

¹The Schwarzschild radius is defined as:

a radius of $\sim 2-20 \times 10^{16}$ cm several gas clouds form the Broad Line Region (BLR) emitting broad emission lines in the UV/optical band with typical widths of the order of several thousands km s⁻¹. Surrounding the BLR is a dusty torus with inner radius of the order of $\sim 10^{17}$ cm. Outside the torus we find the Narrow Line Region (NLR) made of gas clouds producing the narrow emission lines with widths of the order of several hundred km s⁻¹. It extends from $\sim 10^{18}-10^{20}$ cm. Two radio jets flow from the black hole in opposite directions feeding the radio lobes (not shown in the figure). The radio jets can extend up to 0.1-1 Mpc, well outside the size of the optical galaxy.

Given this structure, the separation of AGN into type 1, type 2 objects and blazars is just a matter of viewing angle. If the viewing angle is large the observer's line of sight will intercept the dusty torus and both the optical continuum from the central region and the BLR will be hidden. In this case the object will be classified as type 2 or NLRG. At intermediate angles the line of sight will be affected by absorption in the dusty torus but it will avoid the radio jet; both NLR and BLR plus optical continuum will be observed, but relativistic beaming effects will not be relevant. In this case the object will be classified as type 1, as BLRG or as SSRQ. When the line of sight intercepts the radio jet which is then viewed along its axis, relativistic beaming strongly amplifies the luminosity and produces strong variability, polarization, superluminal motion and all the other effects described for the blazar class.

As already predicted in Barthel's model, FRII radio galaxies are considered as the parent population of BLRG, SSRQ and FSRQ in order of decreasing angle with the line of sight. The FRII lack the broad emission lines because they are obscured by the dusty torus.

Similarly, for the low-luminosity radio-loud objects, the FRI radio galaxies are believed to be the misaligned parent objects of BL Lacs. BL Lacs have featureless spectra, with no or weak emission lines, so obscuration of a BLR by a dusty torus, like in the FRII case, does not need to be invoked in this case, neither is there observational evidence for it. It has been proposed that the FRI/BL Lacs intrinsically lack a BLR, maybe because of a weaker ionizing continuum (Chiaberge et al. 1999). The intermediate-angle equivalents of the BLRG are missing in this case. A possible complication of this model is that a fraction of BL Lacs show a radio morphology of FRII type in contrast to the commonly observed FRI morphology. It could well be that the parent AGN of some BL Lacs are FRII radio galaxies and possible candidates are the WLRG, which have line properties more consistent with those of BL Lacs.

The parameters governing the physical division into low-power and high-power objects (i.e. FRI/BL Lacs vs. FRII/SSRQ/FSRQ) are still unknown.

The unification scheme for radio-loud AGN has been tested by calculating the predicted luminosity functions for the beamed sources, starting from a randomly oriented population of objects with an intrinsic power law luminosity function to which relativistic beaming is applied (Urry & Padovani 1995). The obtained beamed luminosity function is a broken power law steepening at higher luminosities. Taking the FRI and FRII galaxies as the unbeamed objects, it is possible to compare their predicted luminosity, boosting their observed luminosity function with the observed ones of BL Lacs and quasars, respectively.

In this process the bulk Lorentz factor Γ and the fraction f of intrinsic luminosity of the jet are free parameters and adjusted to match the observed luminosity functions. A range of values $\Gamma \sim 5-40$ is required for the high-luminosity objects and $\Gamma \sim 5-32$ for the low-luminosity objects.

The predictions seem to agree quite well with the observations thus supporting the proposed unification model. Further support comes from the comparison of the angle-independent properties of the beamed and the parent AGN. They generally seem to be consistent with each other in agreement with the predictions of the unified scheme. Some of these properties are the extended radio emission, the narrow emission line luminosities, the infra-red emission and the host galaxy types.

3.3.2 Radio-quiet AGN

We will just outline the unified scheme for radio-quiet AGN, since we are mainly interested in the radio-loud population. A complete review of the classical unified scheme for radio-quiet AGN can be found in Antonucci (1993).

The same angle dependence as for the radio-loud AGN is thought to explain the division into type 2 and type 1, but in this case relativistic beaming is not invoked. In fact, strong relativistic jets are absent in radio-quiet objects and, therefore, no radio-quiet equivalent of the blazars are expected. Unification relies instead on obscuration alone and objects with type 2 spectra are seen through the absorber whereas type 1 objects are seen at lines of sight free from absorption. At intermediate angles broad wings can appear in the narrow lines, becoming progressively stronger as the angle decreases, leading to intermediate classifications such as Seyfert 1.2, 1.5, 1.8, 1.9 (Osterbrock 1989). It could also be the case for the existence of both obscured Sy1-like Seyfert 2 galaxies and unobscured intrinsic Seyfert 2 type galaxies (Tran 2001). The role of BAL QSO is still uncertain.

3.4 Comments

The unification schemes proposed so far seem to be capable to explain the most general properties of AGN. Little doubt is left that orientation plays a major role in determining the appearance of an AGN, so that some kind of unification scheme is certainly needed. The schemes are still rather simple and it is not surprising that a large variety of observational data remains to be explained. With further work and improved data it will perhaps be possible to develop more complex models and tackle finer details. However, it is improbable that the whole picture will be modified dramatically.

Nonetheless, there are some very basic questions which the current unified schemes cannot answer. The unified schemes explain the type 2/type 1/blazars separation, but nothing is said about the distinction between radio-loud and radio-quiet AGN. There are many ideas and hypotheses, such as different environments or different spins of the black holes, but this dichotomy is essentially unexplained. Related to this is also the question of how jets are formed. Quite uncertain is as well the role of evolution of AGN, which must be of fundamental importance for objects which have the highest redshifts in the Universe.

3.4 Comments 21

Finally, some objects have not yet found a place within the AGN unification scheme, such as the BAL QSO or the ${\rm GPS/CSS}$ sources in the radio-loud class.

Chapter 4

The Spectral Energy Distribution of AGN

AGN are powerful emitters in every energy band of the electromagnetic spectrum, from radio frequencies up to gamma-ray energies. A correct understanding of the AGN physics and a reliable estimate of the total emitted power strongly depend on a detailed knowledge of the emission properties in every region of the spectrum and therefore on the quality of the observations available in each band. Some wavebands are better studied than others, like the radio, the optical and the X-rays, whereas some are inaccessible by our instruments, like the extreme UV beyond the Lyman limit of 912 \mathring{A} , due to the high opacity of the interstellar medium in our Galaxy. Understandably, we have a better knowledge of the multiwavelength properties of the brightest AGN, i.e. blazars. In the following paragraphs I will give an overview of these properties as they are presently known, starting with a general description of the spectral energy distribution of AGN and I will then discuss the emission mechanisms in each band. The last two paragraphs will concentrate on the emission and absorption lines observed in AGN.

4.1 The shape of the SED

The usual way to illustrate the multiwavelength energy output of AGN is through the so called Spectral Energy Distribution (SED). This is a broad band spectrum covering the whole range of frequencies, from radio to gamma-rays, generally represented in a $\log \nu - \log \nu f_{\nu}$ (or $\log \nu E_{\nu}$) plot. Such a plot has the advantage of approximately showing the energy emitted per unit logarithmic frequency interval (or per decade of frequency), which immediately indicates in which band most of the energy is released.

Two general remarks can be made. The first is that all AGN emit almost constant power per decade of frequency between $\sim 100~\mu m$ and $\sim 100~keV$, whereas at radio and gamma-ray energies they show quite different behaviors, with some sources being strong radio or gamma-ray emitters whereas others are not. The second important remark is that the spectral features, across the largest part of the electromagnetic spectrum, show close similarities for AGN spanning a range of luminosities over about seven orders of magnitude. It thus seems that a scaling relation with luminosity must exist in the central

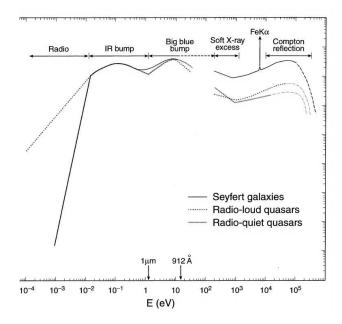


Figure 4.1: Schematic Spectral Energy Distribution for different types of non-blazar AGN (from Koratkar & Blaes 1999).

engines of AGN.

Apart from these overall similarities, the SEDs of AGN can be recognized to belong to two different classes: the *blazars*, which are dominated by non-thermal emission processes in the jets and the "non-blazar" AGN, in which the dominating process is the thermal emission from the accretion disk. In the following we will treat these two cases separately and describe them in more detail.

4.1.1 The non-blazar AGN

This class includes radio-quiet quasars, Seyfert galaxies, radio galaxies and steep-spectrum quasars. In Fig. 4.1 a schematic representation of the SED for Seyfert galaxies, radio-quiet and radio-loud quasars is shown.

The continuum can be quite well modeled with a flat underlying power law from the infrared band up to the X-rays plus some evident spectral features deviating from it.

The first one is the drop in flux in the sub-millimeter band (mm-break) which distinguishes radio-loud from radio-quiet objects. In fact, in radio-loud quasars the drop is of the order of about two decades, whereas for the radio-quiet it is of the order of $\sim 5-6$ decades. It must be noted, however, that although the emitted radio power in radio-quiet objects is small compared to the total, it is not completely absent and it is still larger than in normal galaxies.

Fig. 4.1 shows that the flux between ~ 1 and $\sim 100~\mu m$ for both classes (radio-loud and radio-quiet) rises, reaches a peak and decreases to a local minimum at $\sim 1~\mu m$, forming the so called *infra-red bump*. The infra-red bump typically contains one third of the total

bolometric luminosity of the thermally dominated objects.

A second prominent peak is situated between the near-infrared, around $\sim 1~\mu\text{m}$, and the UV, past $\sim 1000 \text{Å}$. This feature is called the *Big Blue Bump (BBB)*. In some objects the flux is still rising beyond $\sim 1000 \text{Å}$ and probably peaks in the unobservable extreme UV region. The strength of the BBB is generally comparable to that of the infra-red bump. On top of the BBB, placed around $\sim 3000 \text{Å}$, there is another small bump.

Beyond the Lyman limit at 912\AA up to the soft X-ray band ($\sim 0.1 \text{ keV}$) no radiation can reach us because of the absorption by the Galactic interstellar medium. This is unfortunate as the radiation in this frequency range is responsible for the ionization of the BLR and of the NLR. An analysis of the emission lines can, however, provide insight into the properties of the extreme UV radiation.

In the soft X-ray domain an excess of emission appears with respect to the extrapolation of the hard X-ray power law to lower energies. This *soft X-ray excess* is sometimes believed to be the high energy tail of the BBB peaking in the extreme UV.

In the hard X-rays a component with flat slope ($\alpha_x \sim 0.9$) emerges and sometimes additional features like the Fe K α emission line and a Compton reflection hump above ~ 10 keV.

Above few hundred keV the non-blazar AGN are not strong emitters, contrary to the blazars (see §4.1.2).

Objects observed at a large angle with the line of sight (type 2) appear to have less prominent BBBs and stronger soft X-ray absorption than more aligned objects (type 1) in agreement with the unification scenario.

4.1.2 The blazars

Blazars are the most radio-loud AGN and therefore are regarded as jet-dominated objects. An example of their typical SED is given in Fig. 4.2. The typical shape is that of a "camel's back" with two broad bumps.

BL Lacs are currently classified either as Low-energy-peaked BL Lacs (LBL) or as High-energy-peaked BL Lacs (HBL) according to the definition proposed by Padovani & Giommi (1995). The bump at lower energies peaks typically at infra-red/optical wavelengths in LBL and in the UV/soft X-rays band in HBL. LBL are more extreme objects than HBL in having higher polarization, higher variability, larger bolometric luminosity and larger core dominance¹. Compared to LBL, FSRQ have both similar broad band spectra, with the first peak falling in the IR/optical, and extreme properties.

Contrary to non-blazar objects the radio emission joins smoothly the infra-red emission suggesting a common non-thermal origin. After the peak the continuum falls gradually towards a minimum and rises again reaching a second peak in the gamma-ray band. Blazars are in fact strong emitters at $E \gtrsim 100$ MeV as discovered by the EGRET experiment on board the Compton Gamma-Ray Observatory (von Montigny et al. 1995). In many cases the gamma-ray luminosity is even dominating that in the other wavebands.

 $^{^{1}}$ The *core dominance* of a source is defined as the ratio of its core to its extended radio emission, usually measured at 5 GHz.

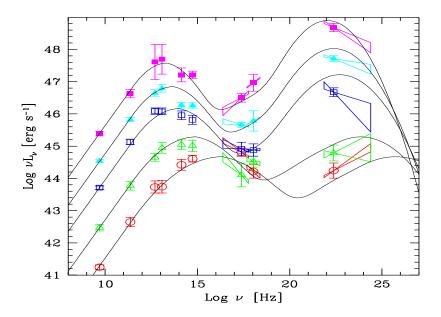


Figure 4.2: Average spectral energy distributions of blazars from Donato et al. (2001).

4.2 Continuum emission mechanisms

In the previous section we have given a general description of the AGN SED without discussing which emission mechanisms could produce it. In the following we treat the most plausible emission mechanisms proposed for each waveband.

Radio: Radio emission in radio-loud AGN is firmly believed to be synchrotron emission from a population of relativistic electrons residing in jets. The radio spectral index is usually flat ($\alpha_{\rm r} \lesssim 0.5$) in the core of a radio source and steep ($\alpha_{\rm r} \gtrsim 0.5$) in the outer lobes. The power law form of the spectrum results naturally if the energy distribution of the emitting particles is also a power law, that is, if the number of particles per energy interval is given by:

$$N(E) \sim E^{-p} \tag{4.1}$$

The particle distribution index p is related to the spectral index α through $\alpha = (p-1)/2$ (Rybicki & Lightman 1979).

The steeper slope of the lobes is believed to be the result of the aging of the plasma. At higher energies electrons cool faster and the energy distribution is thus depleted, directly reflecting in a steepening of the emitted spectrum.

In blazars, observed at small angles, the synchrotron radio emission from the jet is highly beamed.

As we have seen in Chapter 2, GPS and CSS differ from the classical radio sources because they are compact, with a convex radio spectrum around few GHz and an overall steep spectral index at energies above the peak. Synchrotron self-absorption seems to be the likely cause of this behavior.

Radio-quiet AGN rarely show a jet+lobes radio structure similar to classical radio sources

and at a considerable lower luminosity level. Frequently, the radio emission has a complex diffuse morphology. In these cases it is conjectured that the radio emission originates from a mixture of thermal and non-thermal processes associated with starbursts.

Infra-red: Since in radio-quiet AGN the extrapolation of the radio emission into the IR band lies far below the observed IR flux and since the IR emission shows no rapid variability, the IR bump is generally attributed to thermal emission by dust, heated by the optical/UV radiation from the central energy source. The range of temperatures required is wide, from ~ 50 to ~ 1000 K. In this scenario the drop in flux around $\sim 1~\mu m$ is easily explained by the maximum temperature of ~ 2000 K that dust can reach before sublimation takes place and both the dust opacity to UV/radiation and its radiative efficiency decline.

In blazars the non-thermal radio emission smoothly merges with the infra-red emission, which is therefore naturally interpreted as the high energy continuation of the synchrotron emission.

The IR emission in non-blazar radio-loud AGN is likely a combination of both the thermal and non-thermal components discussed above.

Optical/UV: The currently most favored interpretation for the BBB in radio-quiet and non-blazar radio-loud AGN is thermal radiation produced by the gas in the accretion disk. The small bump at $\sim 3000 \mbox{\normalfont\AA}$ is the sum of the contributions from the Balmer continuum, the blending of higher order Balmer lines and the blending of the Fe II lines.

The blazars lack the BBB and their optical/UV radiation is just the steepening side of the synchrotron bump.

X-rays and gamma-rays: Radio-quiet AGN usually exhibit a soft X-ray excess which is generally believed to be the high energy tail of the BBB, whose peak is situated in the unobservable extreme UV band. Lobe-dominated radio-loud AGN often show the same soft X-ray excess.

In the hard X-rays, the spectrum of radio-quiet AGN is usually a power law with $\alpha_{\rm x} \sim 0.9$ (Williams et al. 1992). This X-ray radiation is mainly regarded as the result of inverse Compton scattering of optical/UV photons from the disk off electrons in a hot corona above the disk. Above ~ 10 keV a hump is usually observed originating from reflection from cold material (the accretion disk or the torus). In association with this, a fluorescence Fe K α emission line is often observed at 6.4 keV. The non-blazar radio-loud AGN have similar X-ray spectra, but with somewhat flatter slopes ($\alpha_{\rm x} \sim 0.7$), weaker Fe lines, and usually no reflection humps. No strong emission is known above ~ 100 keV for radio-quiet and lobe-dominated radio-loud AGN.

As we have seen, blazars have very peculiar overall spectra compared to other AGN. The first bump is thought to originate from synchrotron emission whereas the second from inverse Compton scattering of photons which could either be the synchrotron photons themselves (Synchrotron Self-Compton, SSC) or external photons either from the accretion disk or reprocessed in the emission lines region (External Compton, EC). In LBL and FSRQ this second peak is situated in the hard X-ray/gamma-ray band, at lower energies with respect to the HBL. As a consequence, for blazars, the X-ray band contains contributions from both the synchrotron emission and the inverse Compton emission, giving

Figure 4.3: Optical spectra of a Seyfert 1 galaxy (left panels) and of a Seyfert 2 galaxy (right panels) (Osterbrock 1989).

rise to a wide range of slopes. In HBL the X-ray emission is the high energy tail of the synchrotron emission and the resulting slope is steep; for LBL and FSRQ it is the rising part of the inverse Compton bump and thus the slope is flat. The strong gamma-ray emission is produced in all blazars through inverse Compton scattering.

4.3 Emission lines

As we have seen in Chapter 2 a distinguishing property of all AGN (except the BL Lacs) is the presence of strong emission lines in their spectra, rarely seen in normal galaxies. The emission lines consist basically of two types and are used for the definition of type 1 and type 2 AGN: lines with broad profiles and lines with narrow profiles. In Fig. 4.3 two examples of type 1 and type 2 spectra are shown.

The broad lines have $FWHM \gtrsim 1000~\rm km~s^{-1}$ and originate mainly from H, He, C, O, Mg, Si. No forbidden lines are detected among the broad emission lines, which means that the density in the BLR must be high in order to rapidly collisionally de-excite the energy levels which could give rise to the forbidden transitions on longer time scales. From this argument a lower limit to the electron density is $n_{\rm e} > 10^8~\rm cm^{-3}$. However, the detection of the CIII] semi-forbidden emission lines implies $n_{\rm e} < 10^{10}~\rm cm^{-3}$.

The narrow lines have $FWHM \lesssim 1000 \ \mathrm{km\ s^{-1}}$, still broader though than those of normal galactic nuclei. Typical narrow lines are those produced by H, He, FeII, MgII, CIV. Several forbidden lines are also detected as narrow emission lines like the prominent [OIII], O[II] and [NII], [OI] and [SII]. From the intensity ratios of the forbidden lines it is found that in the NLR the electron density is $n_{\rm e} = 10^3 - 10^4 \ \mathrm{cm^{-3}}$.

It must be noted that both the broad and the narrow emission lines have profiles too broad to be interpreted as thermal motion. Instead, it is believed that the Doppler broadening is caused by the high bulk velocity of the gas moving in the deep gravitational potential well of the supermassive black hole.

The lines are emitted from the gas in the NLR and BLR photo-ionized by the continuum emission from the center of the AGN. The main supporting evidence for this scenario is the simultaneous presence of a wide range of ionization stages which cannot be obtained by collisional ionization at the temperatures inferred from the line ratios. The broad band continuum from the central engine of the AGN can, on the other hand, supply the high energy photons necessary to overcome the high ionization potentials.

The broad emission lines are known to be variable and to respond to the variations of the continuum flux, accordingly to the photoionization scenario, with a certain delay. Measuring this delay and assuming that the BLR clouds follow Keplerian orbits around the black hole, it is possible to estimate the size of the BLR. This technique is known as reverberation mapping and the inferred BLR sizes are of the order of light-days up to lightmonths. No variability has been observed in the narrow lines so far. They are produced much farther from the center than the broad lines and do not respond to continuum variations. The NLRs usually have dimensions of the order of few kpc, in some cases they extend up to 10-100 kpc.

4.4 Absorption lines

We will only briefly mention the absorption lines in AGN. Some are intrinsic to the AGN and some are believed to originate from matter along the path of the light from the AGN to us.

The latter are detected mostly in high-z quasars, whose light has the highest probability to interact with the intergalactic medium in between. Two kinds of absorption lines are observed in these cases, metal absorption line systems and the Ly α forest.

The metal line systems are groups of many absorption lines in the quasars' spectra with a common redshift (smaller than the quasar's redshift) produced by elements like CIV and MgII.

The Ly α forest is a closely-packed sequence of absorption lines bluewards of the quasars' Ly α emission line. They do not belong to a single redshift system as in the case of the metal lines. It is believed that they are produced through Ly α absorption of the redshifted quasar radiation at shorter wavelengths than the Ly α emission line by many intergalactic clouds situated along the line of sight at lower redshifts.

BAL QSO show broad absorption lines bluewards of the corresponding emission lines in a sort of P-Cygni profile. As we have seen in Chapter 2 these lines are regarded as intrinsic to the quasars, produced in a high velocity outflow in the direction towards the observer. The connection with the emission line is the main evidence for an intrinsic origin.

Chapter 5

The sample and the data

For the study of AGN two different approaches are generally followed. The first is to analyse a large number of objects, either by studying the collective properties of sources belonging to a certain class or to highlight common/different trends for separate classes which can be interpreted in terms of unified schemes.

The second approach is to concentrate on interesting individual objects by performing accurate spectroscopic, spatial and timing analyses, a work favored by the new generation of both space and ground based observatories (XMM-Newton, *Chandra*, VLT, HST, INTEGRAL, etc.), which combine a high degree of sensitivity with good spatial, spectral and temporal resolution. This approach provides direct insight into the physics and the structure of an AGN testing its various components (see Fig. 3.1). However, the objects under study are usually, for obvious reasons, the most luminous or the most peculiar ones, therefore their properties might not be typical for the majority of AGN.

In this work we want to explore the issue of AGN unification from an X-ray perspective. In fact, although the X-ray properties of AGN have been investigated by now for about three decades, the results have not been included in the description of the standard picture.

In the following we describe the construction of the sample to be studied and its properties. We explain what data were collected for each source and we discuss the advantages and the limitations of such a sample.

5.1 The sample

For the above purposes we require a very large sample of AGN for which X-ray data are available. The ROSAT satellite performed an All-Sky Survey (RASS) in the soft 0.1-2.4 keV X-ray band in 1990/91 (Trümper 1983). The second RASS processing yielded 145,060 sources with detection likelihood ≥ 7 (Voges et al. 1999), of which a large fraction are AGN. Additional data from several years of ROSAT pointed observations are also available. No previous or subsequent X-ray satellite accomplished an equivalent survey in terms of combined sensitivity and sky coverage and the data are now entirely stored in an easily accessible public archive. The ROSAT archive was thus the main source of the objects for our sample.

We are primarily interested in radio-loud AGN, so the second requirement was the detec-

Name of survey/catalog	Frequency
3rd Cambridge Radio Catalog (3C)	178 MHz
4th Cambridge Radio Catalog (4C)	178 MHz
5th Cambridge Radio Catalog (5C)	408 MHz, 1.407 GHz
6th Cambridge Radio Catalog (6C)	151 MHz
7th Cambridge Radio Catalog (7C)	151 MHz
8th Cambridge Radio Catalog (8C)	38 MHz
Strong Radio Source Surveys	5 GHz
(S1, S2, S3, S4, S5)	
Parkes Radio Catalog (PKS)	Several frequencies
Molonglo Reference Catalogue of	408 MHz
Radio Sources (MRC)	
Bologna Catalogs of Radio Sources	408 MHz
(B2, B3)	
MIT-Green Bank 5 GHz Surveys	5 GHz
(MG1, MG2, MG3, MG4)	
Faint Images of the Radio Sky at	1.4 GHz
Twenty Centimeters (FIRST)	
1987 Green Bank Radio Survey (87GB)	4.85 GHz

Table 5.1: The radio catalogs searched with NED.

tion of radio emission from each source (which, however, does not necessarily imply that the object is radio-loud).

To select X-ray (in the ROSAT band) and radio emitting AGN we made use of the NASA Extragalactic Database (NED). We selected all sources in NED either defined as galaxies or quasars¹ which were labeled both as X-ray sources and radio sources belonging to one of several well known radio catalogs. The searched radio catalogs together with the observing frequencies are listed in Table 5.1.

Among the objects returned by NED we chose only those fulfilling some further requirements. We selected only the ROSAT sources (and not, for example, *Einstein* or ASCA sources). We required from all sources to have a measured optical magnitude and excluded those for which no redshift is available because we wanted to calculate luminosities. For 15 objects we performed a series of optical spectroscopical observations at the Skinakas Observatory in Crete (see Appendix A for an extensive report). We were able to measure the redshift and give a classification for 13 of them.

In the radio-loud AGN unification scheme the FRI/FRII classification holds a fundamental role, but unfortunately only for a relatively small number of sources in our sample this information is available. We searched the literature for FRI/FRII sources that were not listed as X-ray sources in NED and we performed a cross-correlation with the RASS and other ROSAT catalogs (the first and the second ROSAT source catalogues of pointed PSPC observations, the ROSAT Wide Field Camera catalogue, the Supper-Voges cat-

¹In NED the difference between quasars and galaxies is that *quasars* are pointlike AGN whose host galaxy is not visible, whereas *galaxies* appear extended.

5.1 The sample 33

Classification	Number
Quasars	943
BL Lacs	270
Radio galaxies	131
GPS/CSS	68
Seyfert galaxies	383
NLSy1s	31
LINERs	37
Starbursts	14
HII galaxies	10
AGN	36
No classification	337

Table 5.2: The composition of the database in terms of the classification of the sources from the literature.

alogues of pointed HRI observations, the first ROSAT HRI catalogue and the White, Giommi & Angelini ROSAT source catalogue of pointed PSPC observations) to look for possible X-ray detections that could be added to our sample. This attempt yielded a few dozen additional sources.

We have searched the literature and the ROSAT archive for the required data and additional information for every single source. We recorded the redshift, the optical magnitude, the radio flux, the radio spectral index when measured, the optical position, the X-ray count rate/flux and the X-ray position. The V magnitude was preferred, however, if this was not available, the B magnitude was used and extrapolated to the V band assuming a power law spectrum with energy index $\alpha_{\rm o}=0.5$. We collected radio fluxes at 5 GHz or, when these were not found, at other frequencies such as at 1.4 GHz and 408 MHz. We recorded separately the core and the extended radio fluxes whenever they were given. References were carefully kept for all data. The ROSAT X-ray count rate between 0.1-2.4 keV and the X-ray position were mostly extracted from the ROSAT archive. Some sources detected by ROSAT and for which results from their data analysis are reported in the literature do not turn up as X-ray sources in NED. Therefore we searched systematically papers reporting on ROSAT observations of large samples of AGN to look for such sources which could be added to our sample. In these cases the X-ray flux, luminosity or an upper limit given in the paper was used.

We also checked the literature for any possible information about the AGN classification, radio morphology, host galaxy type and cluster/group membership.

The resulting sample consists of 2260 sources of different types with known redshift, optical, radio and X-ray fluxes. The total sample is given in Table 1 at the end of the thesis, with the data and relevant information for each source. The composition of the sample according to the classification of the sources given in the literature is summarized in Table 5.2.

5.2 Properties of the sample

Our sample selection certainly has some limitations but we believe that this does not dramatically influence the results of our work. It is clear that the objects in our sample are heterogeneously selected, originally belonging to different radio catalogs with different observational frequencies, sensitivities, level of completeness, etc. This fact leads to unknown selection biases and we cannot easily define the degree of completeness. One selection biase clearly present in our sample is the exclusion of highly obscured AGN, due to the soft X-ray selection of our objects. As a consequence, the relative numbers of type 1 and type 2 AGN in our sample do not reflect the real relative numbers according to the unified scheme. However, we believe that our sample is representative of the AGN population, at least the radio-loud, because its heterogeneity tends to minimize any systematic selection bias.

The strongest quality of our sample is its large size compared to previous works which allows both a good statistical treatment with the determination of the bulk trends and the location of "outliers". These atypical objects, while not affecting the determination of the collective properties of the sources, have to be investigated in more detailed studies. Furthermore, objects from all AGN classes are contained within our sample as a consequence of its heterogeneity. Basically all radio-loud AGN types and also radio-quiet objects (but not radio-silent!) are present with quite a significant number of objects each, allowing the study of subsamples and tests for the unified scheme.

A critical issue is related to the errors given for the fluxes. They are beyond our control, in many cases they are not available and they reflect the heterogeneity of the original measurements. Therefore, for our analysis we have used error estimates based on conservative assumptions which will be discussed later on.

As a final remark it must be noted that the collected information is not always complete and may change. New sources are constantly observed and better data are steadily supplied. However, "real-time" updates are not feasible and we think that, due to the large size of our sample, our results are quite robust with respect to the progressive improvement of the databases. Nonetheless, the sample should be updated whenever new data become available.

5.3 Calculation of luminosities

For the calculation of the X-ray, radio and optical luminosities we assume a Friedmann cosmology with $H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1}$ and $q_0 = 0.5$. We do not use the cosmological parameters from recent WMAP data in order to facilitate comparisons with previous studies. The effects of different cosmologies are especially evident at high redshifts, but negligible at low redshifts. As all FRI galaxies in our sample have z < 0.25 and most of the BL Lacs ($\sim 86\%$) have z < 0.5 we are confident that the cosmology used does not significantly affect the main results for these sources. The FRII galaxies have a mean redshift of ~ 0.3 and a maximum value of ~ 0.7 , whereas the mean redshift of the quasars is ~ 0.8 and the maximum value is ~ 1.9 . Therefore, for these two classes of objects the choice of the cosmology might be critical. Using a WMAP cosmology would produce higher luminosities than those calculated with our adopted cosmology, especially for objects at redshift $\gtrsim 0.5$. The mean luminosities and, consequently, also the beaming factors for FRI galaxies

and radio-loud quasars (see Chapter 8) might thus be underestimated. However, the main results about both, the spectral energy distributions of these sources and the correlations between their luminosities in different bands should not be significantly affected, as the choice of a different cosmology would modify all luminosities by the same amount.

From the 0.1-2.4 keV count rate we calculate the corresponding X-ray flux using the ROSAT PSPC energy-to-counts conversion factor (ECF) (ROSAT AO-2 technical appendix, 1991), assuming absorption by the galactic neutral hydrogen column density $(N_{\rm H})$ and a power law photon index of $\Gamma_{\rm X}=2.1$ for all sources. The dependence of the ECF on Γ_X is described by curves in the Γ_X -ECF plane corresponding to different values of constant $N_{\rm H}$. For a given photon index, the ECF for the galactic $N_{\rm H}$ towards a source is derived by interpolation between the given curves of constant $N_{\rm H}$. For sources observed with the ROSAT HRI the corresponding ECF was used. Allowing for a range of photon indices of $\Gamma_{\rm X} \sim 1.5-2.5$, including the typical values for different AGN classes (Brinkmann et al. 1994, Brinkmann et al. 1995), does not appreciably change the ECF; the variations in the X-ray flux are only of the order of $\sim 5\%$. A more critical parameter is the amount of galactic absorption towards the source. At a photon index $\Gamma_{\rm X}=2.1$ changes in the galactic $N_{\rm H}$ of $\sim 10^{20}~{\rm cm}^{-2}$ produce flux differences of the order of 10%. We used FTOOLS to obtain the galactic $N_{\rm H}$ for each source. This is derived from the HI maps by Dickey & Lockman (1990) averaging the available $N_{\rm H}$ measurements within 1 degree from the position of the source, weighted by the inverse of the distance from it. For some prominent objects, accurate $N_{\rm H}$ measurements towards the sources from Elvis et al. (1989), Lockman & Savage (1995) and Murphy et al. (1996) are available. Having calculated the ECF the 0.1 - 2.4 keV X-ray flux is obtained by:

$$f_{\rm X} = \frac{CR}{ECF} \tag{5.1}$$

where CR is the X-ray count rate.

The monochromatic 2 keV flux is calculated from the X-ray flux in Eq. (5.1) or from the flux given in the literature (see §5.1) by adopting $\Gamma_{\rm X}=2.1$.

The 0.1-2.4 keV and the monochromatic luminosities are calculated according to:

$$L_{\rm X} = f_{\rm X} 4\pi D_{\rm L}^2 K(z) \tag{5.2}$$

where $f_{\rm X}$ is either the 0.1-2.4 keV flux or the 2 keV flux, $D_{\rm L}$ is the luminosity distance and K(z) is the K-correction term:

$$K(z) = (1+z)^{-(1-\alpha_{x})}$$
(5.3)

for which we used the energy index $\alpha_x = \Gamma_X - 1 = 1.1$.

The optical luminosity is calculated in the V band, centered on a wavelength of $\lambda =$ 5500Å, by converting magnitudes to fluxes and then fluxes to luminosities using an equation analogous to Eq. (5.2), but with an optical energy index $\alpha_0 = 0.5$ (Worrall et al. 1987, Brotherton et al. 2001) for the K-correction.

When only the B ($\lambda = 4400 \text{Å}$) magnitude is available we convert B fluxes to V fluxes

assuming again a power law with $\alpha_0 = 0.5$.

A similar procedure is followed for the 5 GHz radio luminosities. Both the radio core luminosity (when available) and the total radio luminosity are calculated. In cases where we only know the radio flux at 1.4 GHz or 408 MHz we extrapolate the flux to 5 GHz assuming a power law with slope $\alpha_{\rm r}=0.5$ (see §5.4 for a discussion on the error committed with such an assumption). The same value is taken for the K-correction.

5.4 Errors

Our sample is selected such that we cannot rely on accurate determinations of the errors on fluxes and luminosities. The errors on the measurements quoted in the literature are heterogeneous and, in many cases not available. Furthermore, to calculate fluxes and luminosities, we need to make general assumptions on the spectral and absorption properties of the sources. In fact, the possibility of performing a detailed X-ray, radio and optical spectral analysis of all 2260 sources is precluded by the large size of the sample, the often limited statistical quality of the data and the inaccessibility of the radio and optical data. Only for a minority of objects in our sample spectral and absorption data are provided in the literature. For a consistent approach we made the same assumptions about the spectral and absorption properties for all sources and we are confident that our results do not depend dramatically on them.

Variability, commonly found in AGN, might affect as well the calculated fluxes and luminosities, which are obtained from non-simultaneous data. In the X-rays a large fraction of radio-loud quasars show variability, however by less than a factor of two (Brinkmann et al. 1997) and only few objects by more than a factor of 4 or 5.

We therefore used the following conservative estimates for the total errors:

Errors on the optical measurements quoted in the literature can vary from very small (~ 0.01 mag) up to large values (~ 0.10 mag) in a few cases. With a conservative value of $\Delta V \sim 0.10$ mag, we get a $\sim 4\%$ error on the flux. The error on flux might be larger for sources for which we have to transform B band into V band fluxes due to the assumption made on the optical spectral shape. If we assume $\Delta B \sim 0.10$ mag, a power law spectrum with spectral index $\alpha_0 = 0.5$ and possible variations of the optical slope of $\Delta \alpha_0 = 0.5$ we obtain errors of the flux of $\sim 6\%$. When we calculate the luminosity a further contribution to the total error originating from the uncertainty of the spectral index comes from the K-correction term. This error will be larger for sources at higher redshifts. Assuming as before $\alpha_0 = 0.5$ and $\Delta \alpha_0 = 0.5$ leads eventually to a total error in the range $\sim 6-38\%$ corresponding to the minimum and maximum redshift in our sample ($z_{\rm min} = 0.0007$, $z_{\rm max} = 4.715$). Using the average redshift of our sample ($\bar{z} = 0.5$) the error is $\sim 11\%$. To account for other possible sources of uncertainty such as, for example, variability we will adopt a 20% total error on the optical luminosity as a conservative estimate.

The errors on the radio fluxes quoted in the literature are usually smaller than $\sim 5\%$ and only in few cases they are as large as $\sim 15\%$. However, the radio spectral index $\alpha_{\rm r}=0.5$ used for the extrapolation of fluxes to 5 GHz and for the K-correction can actu-

5.5 Statistical tools 37

ally vary a lot among different kinds of AGN and among different radio source components (e.g. the core and the lobes). Assuming, like in the optical case, variations of $\Delta\alpha_{\rm r}=0.5$ and a typical 5% error on the measured flux we obtain an uncertainty of $\sim 28\%$ on the extrapolated flux. However, the extrapolation to 5 GHz applies only for less than 1/4 of our sample. The contribution from the K-correction at $\bar{z}=0.5$ yields 10% and 29% errors on the radio luminosity in the case where we use the direct flux measurement at 5 GHz with 5% error and in the case where we use the extrapolated flux with 28% error, respectively. As a conservative estimate we use a 30% total error on the radio luminosity for all sources.

The uncertainty on the X-ray flux, calculated through the energy-to-counts conversion factor, is dependent on variations of both the photon index $\Gamma_{\rm X}$ and the hydrogen column density $N_{\rm H}$. As discussed in §5.3 the corresponding errors on the estimated flux are of the order of 5 and 10%, respectively. Combining them leads to a $\sim 11\%$ error for the flux. Taking into account the K-correction term at $\bar{z}=0.5$ with, as in §5.3, a possible range of photon indices of $\Gamma_{\rm X} \sim 1.5-2.3$ (Brinkmann et al. 1994, Brinkmann et al. 1995) the total error on the X-ray luminosity is $\sim 14\%$. Allowing for variability and further possible sources of uncertainty the total error will be taken as 20%.

5.5 Statistical tools

To address the problem of AGN unification we use a statistical approach. In this paragraph we describe the statistical methods applied in the analysis of our sample reported in the following chapters. These typically involve the estimate of mean luminosities and dispersions, two-sample tests for the hypothesis that two populations have the same distribution, correlation and regression analyses.

Statistical techniques can be divided in two large groups, parametric and non-parametric. Parametric methods assume that the data are drawn from a known distribution function (e.g. Gaussian or exponential). Non-parametric methods make no assumptions and derive the parent distribution function from the data themselves. They are frequently based on Maximum-Likelihood techniques and they can be used when the underlying distribution of a population of objects is a priori unknown.

A frequent problem in the analysis of astronomical data is the presence of upper limits or "left-censored data". Excluding these data points leads to significant loss of information and sometimes to misleading results. A branch of statistics, called *Survival Analysis*, has been developed at first by scientists working in biomedical and clinical research fields as well as in industrial reliability testing and econometrics and was later adapted for astronomical applications. Most of the survival analysis techniques for astronomical usage are implemented in the stand-alone package ASURV developed by Isobe T., LaValley M. & Feigelson E., available to the astronomical community without charge from StatCodes, the statistical website located at Penn State University (http://www.astro.psu.edu/statcodes/) Since the underlying distribution functions for the astronomical objects are usually unknown only the non-parametric methods are implemented in ASURV. In our statistical analysis we have made extensive use of ASURV rev. 1.2, which provides the methods

presented in Feigelson & Nelson (1985) and Isobe, Feigelson & Nelson (1986) as discussed below.

In spite of the ability of ASURV to deal with upper limits, it does not take into account the errors in the analysis. However, the estimated errors on the luminosities for our sample are not negligible (see §5.4) and their inclusion might influence the results of the statistical methods used. Therefore, as a complementary approach, we have applied additional methods which cannot account for upper limits but include errors, a Maximum-Likelihood technique for the calculation of the means and the Fasano & Vio (1988) Orthogonal Distance Regression (ODR) analysis code (see §§ 5.5.1 and 5.5.4). In this case only the detections were considered. Conclusions are finally drawn from the comparison of the various methods.

5.5.1 Estimate of the mean and dispersion

The ASURV package provides routines to calculate the so called *Kaplan-Meier estimator*, a non-parametric Maximum-Likelihood estimate of the true distribution. Once known, an estimate of the mean and of its error can be calculated taking properly into account the upper limits (Feigelson & Nelson 1985), however, not the measurement errors. If no upper limits are present the results are consistent with the standard formula $\bar{x} = \sum x_i/n$ for the mean.

We also evaluate jointly the 90% confidence level contours of the best-fit values of the mean and intrinsic dispersion, i.e. deconvolved from the measurement errors, of the distributions through a Maximum-Likelihood technique (Avni 1976, Maccacaro et al. 1988, Worrall & Wilkes 1990), excluding objects with upper limits that cannot be treated with this method. In the following chapters both results from the Kaplan-Meier estimator and the Maximum-Likelihood technique will be shown for comparison.

5.5.2 Two-sample tests

The most often used standard procedure to test the hypothesis that two populations are drawn from the same distribution is Student's t-test. However, when the underlying distribution is not known it cannot be applied. When all data points are detections a Wilcoxon test (also called Mann-Whitney U-test) can instead be performed. This is the non-parametric equivalent of the t-test, however, it is not adequate to work in the presence of upper limits. The software in ASURV provides four different two-sample tests which are both non-parametric and can deal with censored data. These are the Gehan's test, either with permutation or hypergeometric variance, the logrank test, the Peto & Peto and the Peto & Prentice tests. Except for the logrank test, they are all generalizations of the Wilcoxon test. They differ in the way the censored data points are scored and in the formula for the variance. All of them consist of calculating a quantity called the test statistic L and a variance σ directly from the data. The ratio L/σ is, under the null hypothesis that the two samples belong to the same parent population, approximately normally distributed when the number of objects is large. The null hypothesis is rejected at the significance level α when $|L/\sigma| \geq z_{\alpha/2}$, where $z_{\alpha/2}$ is the value for which the area

5.5 Statistical tools 39

under a standard Gaussian distribution in the interval $[-z_{\alpha/2}, z_{\alpha/2}]$ is $1 - \alpha$.

These tests show different efficiencies in the determination of reliable significance levels depending on several factors, such as the censoring pattern and the relative size of the two samples, the shape of the true underlying distribution and the weights assigned to the censored data. However, all of them perform better than the parametric tests when the assumed model is incorrect. In general, in the absence of a well-defined criterium to choose a certain test, a frequently adopted procedure is to apply all tests and compare their results. If large discrepancies are observed there are reasons to believe that some of the requirements for the correct application of the test are not fulfilled and firm conclusions cannot be drawn from their results. In the following analysis we will adopt this procedure and, since good agreement is reached by all tests in all cases, we will show for simplicity only the results from the Peto & Prentice test, which has proven to be less vulnerable to small sizes and heavy and unequal censoring of the samples (Latta 1981). When no upper limits are present we will give results from the Gehan's test, to which the Peto & Prentice test reduces in the absence of censoring.

5.5.3 Correlation analysis

The purpose of correlation analysis is to determine the existence of a relationship between two variables. The standard non-parametric techniques involve the calculation of, for example, the Spearman's ρ or Kendall's τ correlation coefficients. Generalized versions of both for the case of censored data are implemented in ASURV (Feigelson & Nelson 1985). A frequent question in the analysis of correlations is whether they are induced by a common dependence on a third variable. This is typically the case for correlations between luminosities in different wavebands in flux-limited samples, which can originate from the common dependence on redshift. To deal with this problem partial correlation coefficients have been used and Akritas & Siebert (1996) developed a method to determine the partial Kendall's τ correlation coefficient in the presence of upper limits. In our study we will first calculate the generalized Kendall's τ correlation coefficient with the code of Akritas & Siebert (1996) to check if the correlation between the luminosities at two given frequencies is still significant after the exclusion of the effect of redshift.

5.5.4 Regression analysis

If a correlation is present, the regression analysis yields the parameters of the relation between the variables. ASURV provides three methods to perform a linear regression analysis. The EM (Expectation-Maximization) algorithm is a parametric method which calculates the regression coefficients assuming a normal distribution for the residuals. The Buckley & James (1979) method is similar to the previous one but makes use of the Kaplan-Meier distribution derived from the data and is, thus, non-parametric. The Schmitt (1985) regression method allows the use of upper limits for both the dependent and independent variables. An estimate of the significance level of the linear relationship can be found treating the quantity $z = b/[Var(b)]^{1/2}$ (where b is the slope of the regression line and Var(b) its variance) as an approximately normal distributed variable, in the same way as for the two-sample tests (Isobe et al. 1986). In the following chapters we will present

the results of the regression analysis with the non-parametric Buckley & James method when only one variable is affected by upper limits and the Schmitt regression when both variables are censored. The EM algorithm gave very similar results to the Buckley & James method in most cases, however, since we do not know a priori the true distribution of the residuals, the use of the second is conceptually more correct.

The drawback of all techniques above is that they do not take into account the errors on the variables. Since we estimated errors for the luminosities of the order of 20 - 30% this might be a severe limitation. Another disadvantage is that the regression lines appear to change according to the choice of the independent and dependent variables, i.e. the slope of a regression line is not the inverse of the slope obtained exchanging the variables. In this case the bisector of the two fitted lines can be a better representation of the data (Feigelson & Babu 1992).

In order to include the errors we have also performed a linear regression using the code of Fasano & Vio (1988). It uses errors on both variables and carries out an Orthogonal Distance Regression (ODR), which minimizes the residuals perpendicular to the line. Furthermore, the regression line is not affected by the exchange of the variables. However, since it cannot distinguish between upper limits and detections, only the latter are used for the calculation of the regression parameters.

In what follows we will show the results from the Buckley-James or Schmitt regression, giving the parameters of the bisector of the two fitted lines obtained alternating the dependent and independent variable. We will also show the results from the Fasano & Vio technique and we will draw conclusions from the comparison of the two methods.

Chapter 6

The data: the FRI/FRII dichotomy

6.1 Introduction

In the unification scheme for radio-loud objects, the Fanaroff-Riley classification, based on radio morphology and 178 MHz flux density, plays a crucial role. In fact, the unification acts separately on two different populations of objects, those with FRI morphology (FRI galaxies and BL Lacs) at lower radio luminosities and those with FRII morphology (FRII galaxies and radio-loud quasars) at higher luminosities. The reason for this dichotomy is not understood and it is a key problem in the study of AGN unification. Nonetheless, several explanations have been proposed for it, falling into one of two categories, extrinsic or intrinsic.

Intrinsic explanations attribute the dichotomy to fundamental differences in the jets or in the engines of the two classes. Possible differences could be the jet composition, the black hole masses and spins, and details of the geometrical and physical properties of the accretion process (Celotti & Fabian 1993, Reynolds et al. 1996, Wilson & Colbert 1995, Meier 1999). The extrinsic explanations assume that the central engines of FRI and FRII sources are similar, possibly differing only in power, and that the type of radio source depends on the kind of interactions with the ambient medium. Therefore, weaker jets will be more easily disrupted and produce FRI morphologies, whereas more powerful jets will be able to dig through the surrounding matter for longer distances producing FRII morphologies (Bicknell 1995).

The strongest evidence for an extrinsic origin comes from observations of sources with mixed morphologies, i.e. of FRI and FRII type on opposite sides of the core (Gopal-Krishna & Wiita 2000). An extrinsic explanation, however, does not seem to be able to account for the basic difference between FRI/BL Lacs and FRII/radio-loud quasars, i.e. the absence of optical/UV lines in the first class of objects compared to the strong emission features observed in the second. Of course, both intrinsic and extrinsic effects might play a role in determining the appearance of a radio source.

Finally, Owen & Ledlow (1994) found that the break between FRI and FRII sources shifts to higher radio luminosities for higher optical magnitudes of the host galaxies, as if producing a powerful FRII radio source would become increasingly more difficult for

larger galaxy masses.

Among our sample 177 sources are classified either as FRI or FRII (2 of them have an intermediate morphology, but will be included in the FRI group). The majority of them, 139 objects, have an absolute magnitude $M_{\rm V} > -23$ and we will refer to them as the FRI or FRII galaxies. The remaining 38 objects have $M_{\rm V} < -23$ and thus are formally defined as quasars. From the galaxies, 57 are FRI whereas 82 are FRII. Among the quasars, 26 have FRII morphology, whereas 12 belong to the FRI class. The latter are not really a new class of objects (so far no radio-loud quasars with FRI morphology are known). They are optically much brighter than typical FRI galaxies but they do not differ from them in other properties, like the radio and X-ray luminosities (see below for a discussion). The host galaxies of these objects are usually ellipticals with peculiar features, such as dust lanes or distorted morphologies due to interactions with a companion galaxy. Apart from their optical properties, they could be regarded as normal FRI galaxies. As an example, Centaurus A belongs to this group.

54 of the 139 galaxies are also known to reside in a cluster (36 FRI and 18 FRII).

In this chapter we present the analysis of the data for the FRI and FRII radio sources. We will discuss and compare their luminosity properties and the results from their regression and correlation analyses.

6.2 Luminosity distributions

It must be remarked that the shapes of the luminosity distributions for our sample might not be representative for the true distributions because they could be biased by various selection effects. For example, radio-quiet AGN are included in our database only if they are radio detected, so that, amongst the radio-quiet population, we are selecting the most nearby and prominent objects.

However, we can investigate the ranges of luminosities and calculate the mean and related scatter, and then compare the results for the different classes. The ranges of luminosities cover several orders of magnitude, therefore, to avoid that the statistical parameters are dominated by the largest values giving misleading results, we calculate the logarithmic means and dispersions.

Two methods are used to this purpose, described in §5.5. The first involves the calculation of the Kaplan-Meier estimator for the distribution of luminosities and it includes the upper limits. The second calculates the mean and intrinsic dispersion of the distribution together with the 90% confidence level contours through a Maximum Likelihood technique (Avni 1976, Maccacaro et al. 1988, Worrall & Wilkes 1990), with the underlying assumption that the points follow a Gaussian distribution around the mean. In this case, only the detections have been utilized and it is found that the two methods give results which are in very good agreement when no upper limits are present.

6.2.1 The X-ray luminosity distributions

In Table 6.1 we list the average values of the logarithm of the X-ray luminosity for different subclasses; in Fig. 6.1 we show the distribution of radio-loud/radio-quiet and FRI/FRII sources compared to the total sample. In Fig. 6.2 the 90% confidence level contour plots

of the mean luminosities and intrinsic dispersions for the FRI/FRII population are presented, distinguishing between quasars and galaxies and between cluster and non-cluster sources.

The X-ray luminosity distribution for the total sample is the sum of different contributions, stretching over ~ 8 orders of magnitude. There is significant overlap between the distributions of radio-quiet and radio-loud objects. However, radio-quiet objects extend to slightly lower luminosities than the radio-loud which, on the other hand, reach luminosities of the order of $L_{\rm X} \sim 10^{48}$ erg s⁻¹, about two orders of magnitude higher than the most X-ray luminous radio-quiet objects. A two-sample Peto-Prentice generalized Wilcoxon test (see Table 6.5 and the description of the test in §5.5) rejects the hypothesis that radio-quiet and radio-loud objects are drawn from the same X-ray luminosity distribution. Zamorani et al. (1981) found from a study of quasars observed by Einstein that the average luminosity of radio-loud AGN is about three times higher than that of radio-quiet objects, whereas in our sample the difference is only of ~ 1.5 times. This is not surprising since we are selecting only the most radio and X-ray luminous radio-quiet objects.

As can be seen in Fig. 6.1, FRI radio galaxies are on average less X-ray luminous than the FRII, but with some overlap. However, Fig. 6.2 shows that the 90% confidence contour plots of FRI and FRII galaxies, either in cluster or not, are well separated, implying a significant difference between the X-ray luminosities of these two classes. The FRI "quasars" do not differ significantly from the FRI galaxies in terms of their X-ray luminosities, whereas the hypothesis that FRII quasars belong to the same population as the FRII galaxies is rejected at 5% significance level by a two-sample test. It therefore seems that the atypical features of FRI "quasars" are limited to the optical band and do not extend to the soft X-rays. In the case of FRII quasars, on the other hand, the larger X-ray luminosities are in agreement with the scenario in which these sources are observed at smaller viewing angles with respect to the galaxies of same morphology and, therefore, their emission is beamed.

The intrinsic dispersion of FRI galaxies is rather large, with $\log \sigma \gtrsim 1$, whereas for the FRII galaxies it is lower ($\log \sigma \sim 0.9$), but still consistent inside the errors with that of the FRI sources.

A significant contribution to the X-ray luminosity of radio galaxies, especially of FRI class, could come from clusters. In order to investigate the effects of cluster emission on the X-ray luminosities we have cross-correlated our sample of radio galaxies with three cluster catalogs (Böhringer et al. 2000, Böhringer et al. 2004). For 26 sources we could find a measurement of the cluster X-ray luminosity in which they reside, ranging from $\sim 10^{42} - 10^{44} \text{ erg s}^{-1}$. With such values clusters might contribute significantly to the emission from the active nucleus in the radio galaxies. However, when we compare the luminosities of cluster and non-cluster FRI galaxies, a two-sample test does not reject the hypothesis that they are both drawn from the same parent distribution (see Table 6.5). For 4 sources we could use the fluxes found in the literature, from accurate spatial analyses (mostly from ROSAT-HRI data), which should exclude most of the cluster contribution. For most of the other sources the X-ray count rate has been obtained from pointed PSPC observations using a small extraction radius (~ 20 arcsec) and thus also likely avoiding a considerable contamination from cluster emission. Therefore, although the presence of a cluster certainly affects to a certain amount the X-ray luminosity of the FRI sources, we judge that the effect is not so strong as to significantly alter the results of the following

		- 0		
Group	$N_{ m tot}$	N_{up}	$\log L_{ m X}^{ m KM}$	$\log L_{ m X}^{ m ML\dagger}$
(1)	(2)	(3)	(4)	(5)
Total sample	2260	85	44.53 ± 0.03	44.57 ± 1.32
Radio-loud	1682	85	44.91 ± 0.03	44.97 ± 1.08
Radio-quiet	578	0	43.48 ± 0.05	43.47 ± 1.30
FRI galaxies	36	2	42.79 ± 0.21	42.88 ± 1.22
(in cluster)				
FRI galaxies	21	2	42.43 ± 0.27	42.56 ± 1.14
(not in cluster)				
FRI galaxies	57	4	42.66 ± 0.17	42.77 ± 1.20
FRII galaxies	18	6	43.73 ± 0.25	44.14 ± 0.85
(in cluster)				
FRII galaxies	64	26	43.38 ± 0.19	44.02 ± 0.89
(not in cluster)				
FRII galaxies	82	32	43.46 ± 0.16	44.05 ± 0.89
FRI quasars	12	0	42.29 ± 0.32	42.29 ± 1.06
FRII quasars	26	6	44.59 ± 0.26	45.01 ± 0.75

Average X-ray luminosities

† Detections only.

Table 6.1: Column 1: group of objects. Column 2: total number of objects. Column 3: number of upper limits. Column 4: mean of the 0.1 - 2.4 keV luminosity in erg s^{-1} and related error from the generalized Kaplan-Meier estimator. Column 5: mean luminosity and intrinsic dispersion from the Maximum-Likelihood technique (see § 5.5.1).

correlation analysis. Further proof for this comes from the strong correlation with the radio core emission, of certain non-thermal origin, found in § 6.3.3. The presence of such a correlation argues in favor of a mainly non-thermal origin also for the X-ray emission. The effect of cluster emission might be to increase the scatter of the X-ray luminosities, but the slopes of the correlations will be unaffected. Therefore, for the purposes of the subsequent analysis, we will not exclude cluster sources in order to be able to apply the regression techniques to a statistically more significant number of objects, which would be drastically reduced taking only non-cluster sources.

FRII galaxies are less affected by cluster emission even if a tendency, however not significant according to a two-sample test (see Table 6.5), for sources in cluster to be on average brighter can also be observed.

6.2.2 The optical luminosity distributions

In Table 6.2 we list the average optical luminosities for the various subclasses considered and in Fig. 6.3 and 6.4 we show the luminosity distributions and 90% confidence level contour plots of the mean luminosities and intrinsic dispersions, respectively.

The optical luminosity distribution of the whole sample extends over a wide range, from

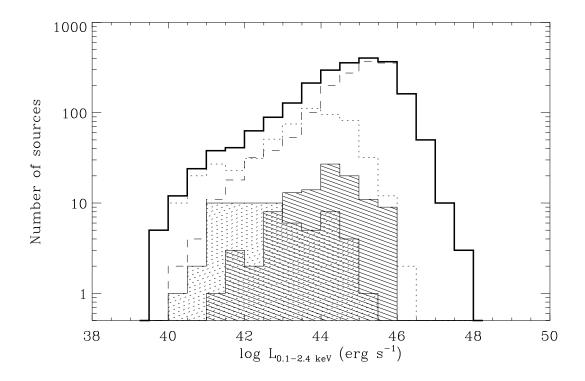


Figure 6.1: X-ray luminosity distributions for the FRI (dotted area) and FRII (dashed area) radio sources, superposed on that for the total sample (thick line). The dotted and the dashed lines show the X-ray luminosity distributions of radio-quiet and radio-loud objects, respectively.

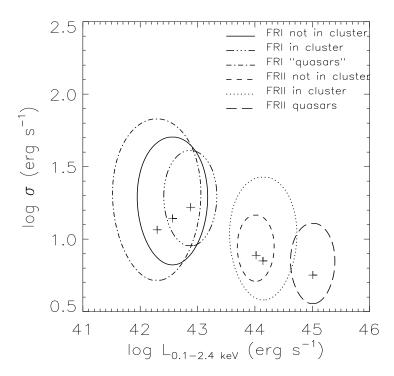


Figure 6.2: 90% confidence level contour plots for the 0.1-2.4~keV X-ray luminosity and intrinsic dispersion of FRI/FRII radio galaxies, in clusters and not in clusters, and for FRI/FRII quasars. The crosses indicate the average log $L_{\rm X}$ and log σ .

Average optical luminosities

Group	$N_{ m tot}$	$\log L_{ m V}^{ m KM}$	$\log L_{ m V}^{ m ML}$		
(1)	(2)	(3)	(4)		
Total sample	2260	30.09 ± 0.02	30.10 ± 0.85		
Radio-loud	1682	30.26 ± 0.02	30.26 ± 0.85		
Radio-quiet	578	29.61 ± 0.03	29.60 ± 0.69		
FRI galaxies	36	29.47 ± 0.05	29.47 ± 0.30		
(in cluster)					
FRI galaxies	21	29.44 ± 0.05	29.44 ± 0.19		
(not in cluster)					
FRI galaxies	57	29.46 ± 0.04	29.48 ± 0.27		
FRII galaxies	18	29.46 ± 0.08	29.46 ± 0.32		
(in cluster)					
FRII galaxies	64	29.41 ± 0.04	29.41 ± 0.32		
(not in cluster)					
FRII galaxies	82	29.42 ± 0.04	29.42 ± 0.29		
FRI quasars	12	30.05 ± 0.05	30.05 ± 0.13		
FRII quasars	26	30.54 ± 0.10	30.54 ± 0.48		

Table 6.2: Column 1: group of objects. Column 2: total number of objects. Column 3: mean of the V-band luminosity in erg s^{-1} Hz^{-1} and related error from the generalized Kaplan-Meier estimator. Column 4: mean luminosity and intrinsic dispersion from the Maximum-Likelihood technique (see § 5.5.1). All optical luminosities are detections.

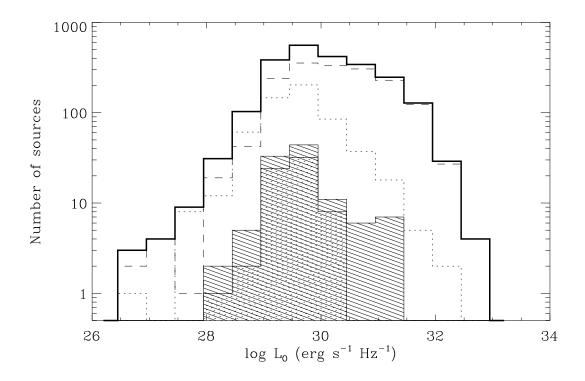


Figure 6.3: Optical V-band luminosity distributions for the FRI (dotted area) and FRII (dashed area) radio galaxies, superposed on that for the total sample (thick line). The dotted and the dashed lines show the optical luminosity distributions of radio-quiet and radio-loud objects, respectively.

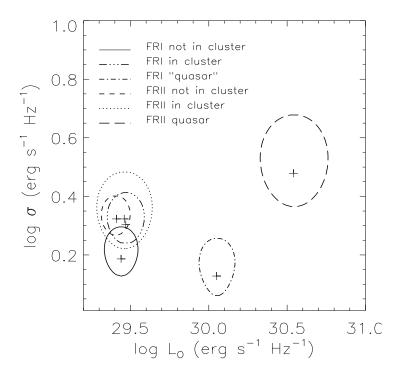


Figure 6.4: 90% confidence level contour plots for the optical V-band luminosity and intrinsic dispersion for FRI/FRII radio galaxies, in clusters and not in clusters, and for FRI/FRII quasars. The crosses indicate the average log $L_{\rm O}$ and log σ .

 $\sim 10^{27}$ to $\sim 10^{33}$ erg s⁻¹ Hz⁻¹. Radio-quiet and radio-loud objects share a common range of values, except for the highest luminosity bin ($\sim 10^{33}$ erg s⁻¹ Hz⁻¹), occupied only by radio-loud objects. Radio-quiet objects have a significantly lower mean optical luminosity than radio-loud objects, confirmed by a Peto-Prentice two-sample test.

Fig. 6.4 shows that, if we exclude the quasars, both the FRI and FRII galaxies cluster in the same relatively narrow range of luminosities and their intrinsic dispersions are small and very similar, with $\log \sigma = 0.27$ and $\log \sigma = 0.29$, respectively. A two-sample test excludes at 5% significance level that their average optical luminosities belong to different populations. No difference is found for cluster and non-cluster sources.

The quasars clearly exhibit larger optical luminosities, which is not surprising since they are defined to be brighter than $M_{\rm V}=-23$.

The optical luminosities of the FRI/FRII galaxies agree well with those of normal non-active ellipticals, whose optical magnitudes in the B band can range from about -15 to -23. In fact, the FRI/FRII galaxies in our sample cluster around $M_{\rm B} \sim -22$. The above results all suggest that in FRI and FRII galaxies we are probably observing the stellar emission from the host galaxies, whereas the optical emission from the active nucleus is either hidden (for example via obscuration), too weak to be resolved or the nucleus radiates anisotropically.

In the case of FRII quasars (as we have remarked above FRI quasars are all peculiar objects and do not constitute a separate class from the FRI galaxies) we are likely observing a beamed non-thermal optical component outshining the stellar emission.

6.2.3 The total radio luminosity distributions

Fig. 6.5 shows the total radio luminosity distributions for the various classes considered. The average luminosities and the 90% confidence level contour plots of the mean luminosities and intrinsic dispersions are presented in Table 6.3 and Fig. 6.6, respectively.

The radio luminosity distribution of the whole sample, extending over about ten orders of magnitude, appears to be the superposition of two distinct broad distributions, the radio-quiet and the radio-loud populations. The separation between the two is not clear-cut as there is a region of overlap around $\sim 10^{30}-10^{31}~{\rm erg~s^{-1}~Hz^{-1}}$. The hypothesis that the two classes belong to the same population can be rejected at the 5% significance level by a Peto-Prentice two-sample test.

The distributions for FRI and FRII galaxies are also well distinct, although they overlap between $\sim 10^{31}-10^{33}~{\rm erg~s^{-1}~Hz^{-1}}$. However, the original FRI/FRII classification is based on 178 GHz luminosities, whereas we use here a frequency of 5 GHz. Furthermore, subsequent studies (Owen & Ledlow 1994) revealed that the FRI/FRII separation actually also depends on the optical luminosity of the galaxy. This and the existence of intermediate or anomalous objects (like Hercules A, an FRI radio galaxies with radio power typical of an FRII) contributes to the blurriness of the FRI/FRII boundary.

The FRI/FRII dichotomy is more evident considering the mean luminosities of the objects. In Fig. 6.6 the sources nicely separate into two groups regardless of the quasar or galaxy classification.

The intrinsic dispersions of the total luminosities for both FRI and FRII sources are very similar and cluster around $\log \sigma \sim 1$.

Average total radio luminosities

Group	$N_{ m tot}$	$\log L_{ m 5GHz,tot}^{ m KM}$	$\log L_{ m 5GHz,tot}^{ m ML}$				
(1)	(2)	(3)	(4)				
Total sample	2260	32.23 ± 0.04	32.15 ± 1.94				
Radio-loud	1682	33.08 ± 0.03	33.02 ± 1.38				
Radio-quiet	578	29.73 ± 0.04	29.72 ± 0.92				
FRI galaxies	36	31.59 ± 0.18	31.58 ± 0.84				
(in cluster)							
FRI galaxies	21	31.59 ± 0.19	31.58 ± 0.84				
(not in cluster)							
FRI galaxies	57	31.59 ± 0.13	31.58 ± 1.00				
FRII galaxies	18	33.62 ± 0.24	33.64 ± 1.02				
(in cluster)							
FRII galaxies	64	33.50 ± 0.10	33.50 ± 0.80				
(not in cluster)							
FRII galaxies	82	33.53 ± 0.10	33.52 ± 0.85				
FRI quasars	12	31.51 ± 0.28	31.50 ± 0.92				
FRII quasars	26	33.86 ± 0.18	33.86 ± 0.90				

Table 6.3: Column 1: group of objects. Column 2: total number of objects. Column 3: mean of the 5 GHz total luminosity in erg s^{-1} Hz^{-1} and related error from the generalized Kaplan-Meier estimator. Column 4: mean luminosity and intrinsic dispersion from the Maximum-Likelihood technique (see § 5.5.1). No upper limits are present.

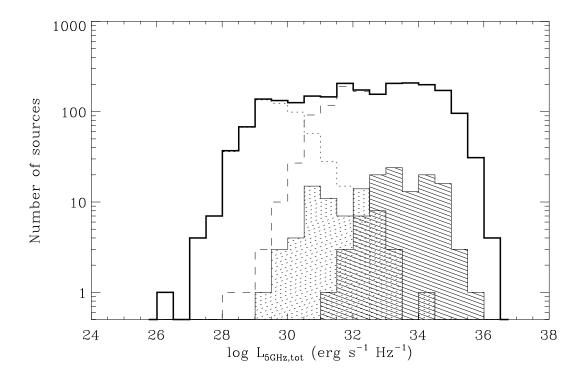


Figure 6.5: Total 5 GHz radio luminosity distributions for the FRI (dotted area) and FRII (dashed area) radio galaxies, superposed on that for the total sample (thick line). The dotted and dashed lines show the total radio luminosity distributions of radio-quiet and radio-loud objects, respectively.

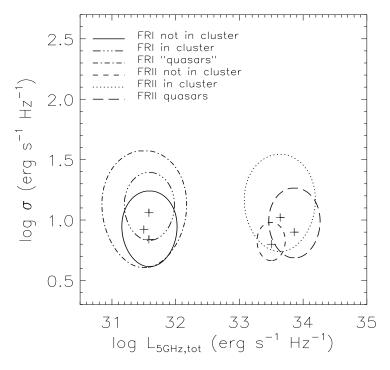


Figure 6.6: 90% confidence level contour plots for the total 5 GHz luminosity and intrinsic dispersion for FRI/FRII radio galaxies, in clusters and not in clusters, and for FRI/FRII quasars. The crosses indicate the average log $L_{\rm R,tot}$ and log σ .

Average core radio luminosities						
Group	$N_{ m tot}$	$\log L_{ m 5GHz,core}^{ m KM}$	$\log L_{ m 5GHz,core}^{ m ML}$			
(1)	(2)	(3)	(4)			
Total sample	2260	32.30 ± 0.06	32.30 ± 1.62			
Radio-loud	1682	32.47 ± 0.05	32.47 ± 1.47			
Radio-quiet	578	29.39 ± 0.21	29.40 ± 1.42			
FRI galaxies	36	30.46 ± 0.19	30.46 ± 1.02			
(in cluster)						
FRI galaxies	21	30.85 ± 0.26	30.84 ± 1.06			
(not in cluster)						
FRI galaxies	57	30.60 ± 0.16	30.60 ± 1.05			
FRII galaxies	18	31.56 ± 0.26	31.56 ± 0.92			
(in cluster)						
FRII galaxies	64	31.36 ± 0.15	31.36 ± 0.88			
(not in cluster)						
FRII galaxies	82	31.42 ± 0.13	31.42 ± 0.90			
FRI quasars	12	30.74 ± 0.31	30.74 ± 0.86			
FRII quasars	26	32.39 ± 0.28	32.38 ± 1.22			

Table 6.4: Column 1: group of objects. Column 2: total number of objects. Column 3: mean of the 5 GHz core luminosity in erg s^{-1} Hz⁻¹ and related error from the generalized Kaplan-Meier estimator. Column 4: mean luminosity and intrinsic dispersion from the Maximum-Likelihood technique (see § 5.5.1). No upper limits are present.

6.2.4 The core radio luminosity distributions

The average core radio luminosities for different groups of objects are presented in Table 6.4, whereas Figs. 6.7 and 6.8 show their distributions and 90% confidence level contour plots, respectively.

Core fluxes are available for 789 sources ($\sim 35\%$) of our sample, of which 744 radio-loud and only 45 radio-quiet. Among the 177 sources with known Fanaroff-Riley morphology, 45 FRI and 49 FRII galaxies as well as 9 FRI and 10 FRII quasars have measured core fluxes.

The core radio luminosity distribution of the whole sample extends over the same range as the total radio luminosity distribution, with the radio-loud sources having significantly brighter cores by ~ 3 orders of magnitude.

Fig. 6.8 shows that FRI and FRII sources separate less sharply according to their radio morphology than in the case of the total radio luminosity (Fig 6.6). However, from a two-sample test, there seems to be a significant difference in the core luminosity distributions of FRI and FRII galaxies, with the FRII having brighter cores. This might suggest that the radio total luminosity which, for these sources, is basically produced by the extended lobes, is correlated with the core luminosity. This is indeed what is found in § 6.3.4.

The FRII quasars clearly display larger core luminosities than galaxies of the same radio morphology. Like in the optical and X-ray bands this can be interpreted in terms of smaller viewing angles and larger beaming factors for the quasars than for the FRII galaxies.

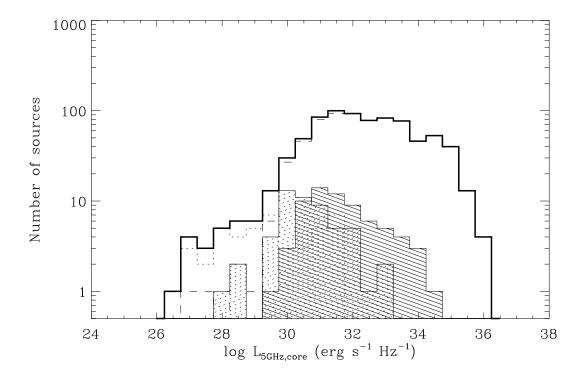


Figure 6.7: 5 GHz core radio luminosity distributions for the FRI (dotted area) and FRII (dashed area) radio galaxies, superposed on that for the total sample (thick line). The dotted and dashed lines show the core radio luminosity distributions of radio-quiet and radio-loud objects, respectively.

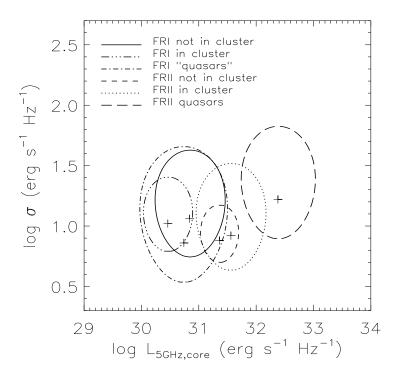


Figure 6.8: 90% confidence level contour plots for the 5 GHz core luminosity and intrinsic dispersion for FRI/FRII radio galaxies, in clusters and not in clusters, and for FRI/FRII quasars. The crosses indicate the average $\log L_{\rm R,core}$ and $\log \sigma$.

1 wo-sample tests								
	$\log L_{0.1}$	1-2.4 keV	$\log L_{ m V}$		$\log L_{ m 5GHz,tot}$		$\log L_{ m 5GHz,core}$	
Groups	Stat.	Prob.	Stat.	Prob.	Stat.	Prob.	Stat.	Prob.
(1)	(2)	(3)	(4)	(5)	(6)	(7)		
Radio-loud vs.	23.83	0.0	16.15	0.0	34.30	0.0	9.79	0.0
radio-quiet								
Cluster vs.	0.90	0.37	1.01	0.31	0.05	0.96	0.57	0.57
non-cluster FRI								
Cluster vs.	0.82	0.41	0.72	0.47	1.11	0.27	0.54	0.59
non-cluster FRII								
FRI galaxies vs.	0.99	0.32	5.21	0.0	0.45	0.65	0.19	0.85
FRI quasars								
FRII galaxies vs.	4.71	0.0	7.66	0.0	1.87	0.06	2.84	0.0
FRII quasars								
FRI vs. FRII	3.40	0.0	0.53	0.60	8.55	0.0	3.72	0.0
(all sources)								

Two-sample tests

Table 6.5: Results of the Peto-Prentice generalized Wilcoxon tests. Column 1: the two samples tested. Columns 2 and 3, 4 and 5, 6 and 7, 8 and 9: the test statistics and the probability that the two samples belong to a common distribution (null hypothesis). For the optical and radio case we give results from a Gehan's Wilcoxon test (see §5.5.2).

The FRI "quasars" do not show different core properties from those of the FRI galaxies, a further evidence that the active nucleus in these sources has not dissimilar properties than those in FRI galaxies and that their anomalous optical luminosities have to be attributed to peculiarities of the host galaxies.

As already noted for the optical, X-ray and total radio luminosities, cluster and non-cluster sources have average core luminosities consistent with each other.

As in the case of the total luminosities the intrinsic dispersions of both FRI and FRII sources are significantly large and close to $\log \sigma \sim 1$.

6.3 Correlation and regression analysis

Unified schemes of AGN predict the existence of correlations between the emission in different wavebands. The study of these correlations can provide information about the emission mechanisms, the connection between them and, eventually, on what are the beamed and parent populations of the AGN unified scheme. The existence of a good correlation between the X-ray and radio core luminosity is well established by previous works. From the analysis of Einstein data of a sample of 3CR radio galaxies Fabbiano et al. (1984) found tight correlations for both FRI and FRII galaxies, with slopes $b = 0.77 \pm 0.18$ and $b = 1.05 \pm 0.15$, respectively. The X-ray luminosity was also discovered to be correlated with the total radio emission, but through the dependence on the core luminosity. Fabbiano et al. (1984) also obtained weaker correlations between the optical and both the X-ray and radio core luminosities. Later on, Brinkmann et al. (1994) confirmed a tight

X-ray -to - radio core luminosity relationship for FRI and FRII radio galaxies together, with slope $b = 0.89 \pm 0.11$, whereas the X-ray - to - optical correlation ($b = 0.70 \pm 0.43$) was attributed to the presence of some outliers. Separating FRI and FRII galaxies, Siebert et al. (1996) found statistically significant correlations between the X-ray and radio core luminosities of slopes $b = 1.00 \pm 0.18$ and $b = 0.58 \pm 0.26$, respectively. However, no correlation could be determined with the optical luminosity. The weak relationship between the optical and radio core luminosities found by Fabbiano et al. (1984) could not be confirmed by subsequent works.

Figs. 6.9-6.15 show the correlations between luminosities at different frequencies for the objects in our sample. In the top panel of each figure the data for the FRI and FRII sources are superposed onto those for the total sample, to highlight the regions where they lie. In the bottom panels, only the FRI and FRII radio galaxies are plotted for clarity. In the following we present the results from the correlation and regression analyses for the subsamples of FRI and FRII sources. In order to check if a correlation between two variables exists we calculate the Kendall's τ correlation coefficient. To determine if the correlations could be induced by the effect of a third variable (redshift) we calculate also the partial Kendall's τ correlation coefficient. We use generalized versions applicable to censored data for both methods (see §5.5).

For the regression analysis we present results from two techniques, described in § 5.5: the non-parametric Buckley-James and the Fasano & Vio regressions. When using the first method we will include the upper limits and we will show the parameters of the bisector of the two regression lines obtained by taking each variable as the independent or dependent one. For the second method we use only detections and errors on both variables.

The results from the correlation and regression analyses are given in Table 6.6 and 6.7, respectively.

6.3.1 The radio - to - optical luminosity correlations

The top panel of Fig. 6.9 shows the total radio versus the optical luminosity for the FRI and FRII sources superposed onto the total sample, whereas the bottom panel shows the FRI and FRII objects only. No clear trend is visible when taking together all sources. At a given optical luminosity, the radio galaxies (the objects to the left of the vertical line in the bottom panel of Fig. 6.9) can have a wide range of total radio power, with the FRII basically found above $L_{5\text{GHz,tot}} \sim 10^{32} \text{ erg s}^{-1} \text{ Hz}^{-1}$ and the FRI below it. The boundary between FRI and FRII galaxies is not neat, as already remarked in § 6.2.3, resembling more a transitional region where both types of sources coexist.

A small subgroup is separated from the bulk of the FRII galaxies into the quasar region and, in this case, the radio emission appears to be correlated to the optical one with a rather steep slope of $b=2.18\pm0.38$ (from the Fasano & Vio regression). This is confirmed by a Kendall's τ test at the 5% level and the effect of redshift does not alter the significance of the correlation (see Table 6.6).

The FRI "quasars" move from the FRI galaxies region towards quasar-like optical luminosities, however, with comparable radio luminosities as discussed previously.

Considering the core radio luminosity, there is some indication for a trend with op-

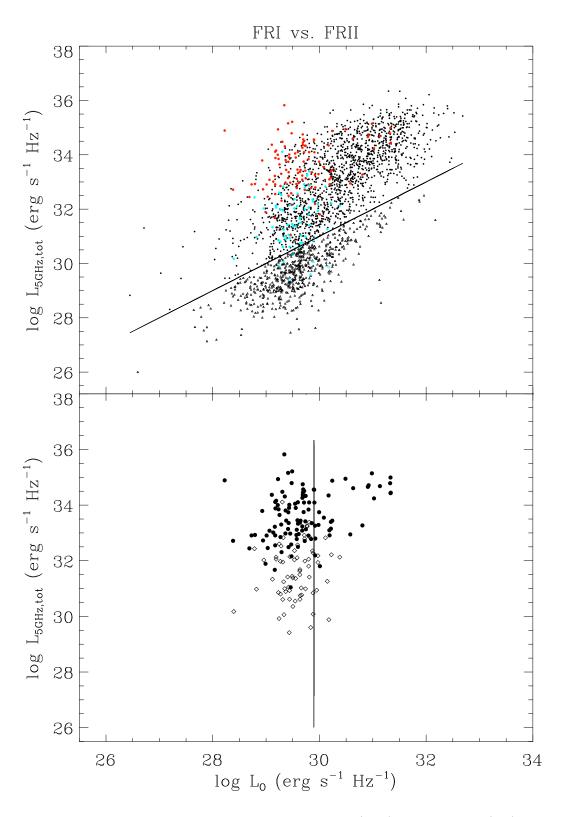


Figure 6.9: Top panel: the $L_{R,tot}$ - L_O plane for the FRI (blue) and the FRII (red) galaxies superposed on the rest of the sample (black). The straight line is the formal division between radio-loud (circles) and radio-quiet (triangles) objects (see § 2.3). Bottom panel: the $L_{R,tot}$ - L_O plane for FRI (diamonds) and FRII (circles) galaxies only. Also shown is the line for which $M_V = -23$, which conventionally separates galaxies from quasars.

tical luminosity when all sources are taken together (see Fig 6.10). The presence of a correlation is confirmed by both a Kendall's τ and a partial Kendall's τ test for the FRII sources, quasars and galaxies, but not for the FRII galaxies alone. For the FRII quasars this correlation might be induced by the redshift dependence of both luminosities. No correlation is found for the FRI sources.

The absence of a correlation between the optical and radio luminosities in FRI and FRII galaxies is not surprising considering that the optical emission originates from the stars (see § 6.2.2), whereas the radio emission is connected with the AGN and therefore they are not intimately related. As we will see in Chapters 7 and 8, a tight correlation is observed between the optical and radio emission when core fluxes are taken in both wavebands. We will see in Chapter 8 that a significant correlation is actually found for quasars, even allowing for redshift effects, when a much larger number of objects is analyzed.

6.3.2 The X-ray - to - optical luminosity correlations

Fig. 6.11 shows the X-ray versus optical luminosity for the FRI and FRII sources compared to the rest of the sample (top panel) and for FRI and FRII sources only (bottom panel). It appears that no common trend is present when all FRI/FRII sources are taken together, but a correlation might be present for the FRII quasars with a Fasano & Vio slope of $b = 1.86 \pm 0.33$. However, this is not significant at the 5% level if the redshift is included, probably due to the reduced number of objects used (see Chapter 8 for the analysis of a larger sample of quasars).

The narrow range in optical luminosities for the FRI and FRII galaxies is again evident. The FRII galaxies are mostly found at higher and the FRI at lower X-ray luminosities, however, the boundary between the two classes is even more ill-defined than in the case of the radio luminosities (§ 6.3.1), with several FRI galaxies lying within the FRII X-ray luminosity range. It is interesting to note, that these sources are the same that are found at the boundary between the FRI and FRII regions in the $L_{\rm R,tot}$ - $L_{\rm O}$ plane (Fig. 6.9) and they might well represent transitional objects.

6.3.3 The X-ray - to - radio luminosity correlations

The X-ray versus total radio luminosity plane is shown in Fig. 6.12. This figure indicates that, unlike in the previous cases, a common trend exists for all sources. Separating the objects according to their radio morphology results in a significant correlation for the FRI sources, quasars plus galaxies, with a slope $b = 1.48 \pm 0.16$, whereas for the FRII sources it is likely induced by a common redshift dependence of L_X and $L_{R,tot}$.

The correlation is confirmed for the FRI galaxies alone with a slope similar to that including also FRI "quasars", whereas no correlation is found for the FRII galaxies, perhaps due to the numerous X-ray upper limits. The FRII quasars appear to be correlated only through the effect of redshift. This is not what is usually obtained for radio-loud quasars (Zamorani et al. 1981, Worrall et al. 1987, Brinkmann et al. 1997), however, the best correlation is observed between the X-ray and the radio core luminosities and the number of objects considered here is small.

The bottom panel of Fig 6.13 shows a much clearer trend, similar for FRI and FRII sources, between the X-ray and core radio luminosities than when the total radio luminosity is used. For FRI and FRII galaxies alone the slopes of the observed correlations are

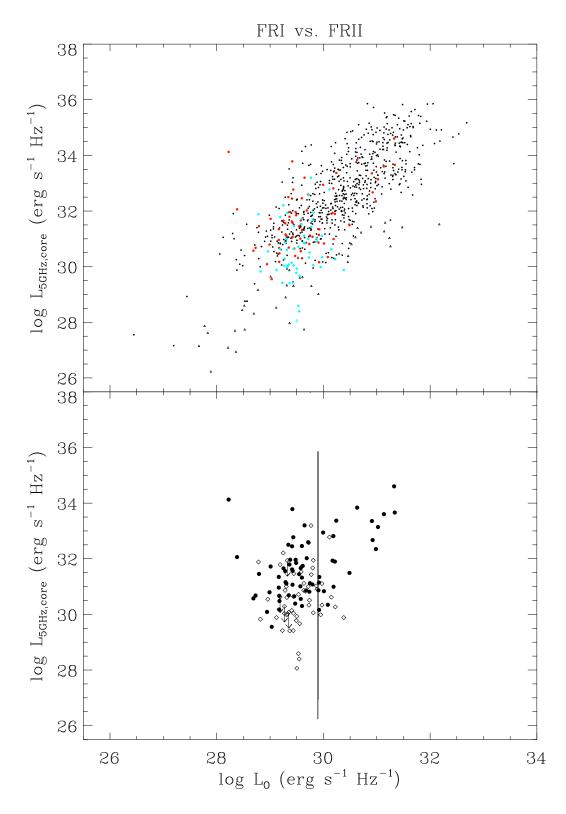


Figure 6.10: Top panel: the $L_{R,core}$ - L_O plane for the FRI (blue) and the FRII (red) galaxies superposed on the rest of the sample (black). Bottom panel: the $L_{R,core}$ - L_O plane for FRI (diamonds) and FRII (circles) galaxies only. Also shown is the line for which $M_V = -23$, which conventionally separates galaxies from quasars.

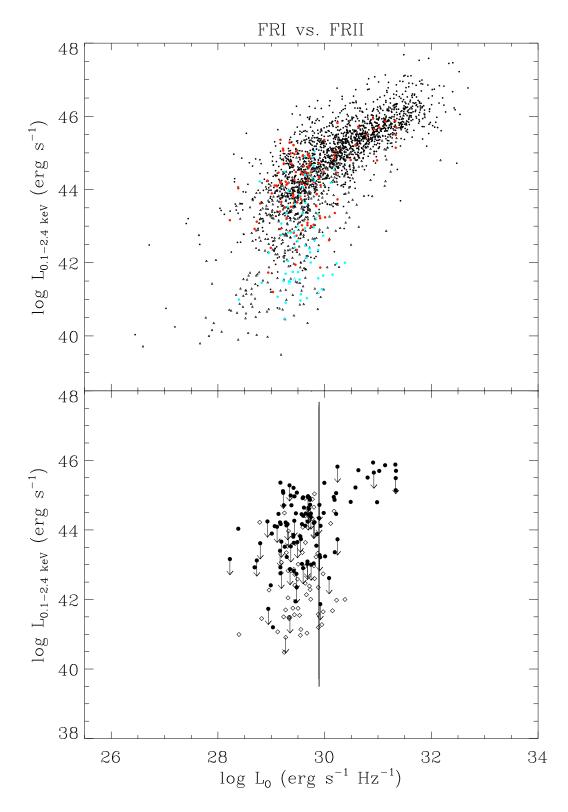


Figure 6.11: Top panel: the $L_{\rm X}$ - $L_{\rm O}$ plane for the FRI (blue) and the FRII (red) galaxies superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{\rm X}$ - $L_{\rm O}$ plane for the FRI (diamonds) and FRII (circles) galaxies only. Also shown here is the line for which $M_{\rm V}=-23$, which conventionally separates galaxies from quasars, and the upper limits on the X-ray luminosities

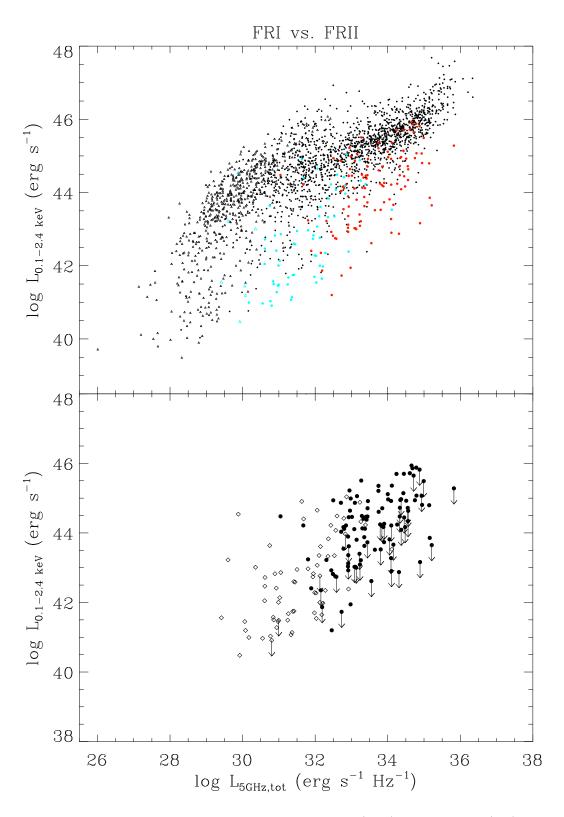


Figure 6.12: Top panel: the $L_{\rm X}$ - $L_{\rm R,tot}$ plane for the FRI (blue) and the FRII (red) galaxies superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{\rm X}$ - $L_{\rm R,tot}$ plane for the FRI (diamonds) and FRII (circles) galaxies only. Also shown here are the upper limits on the X-ray luminosities (arrows).

consistent with each other ($b=1.16\pm0.13$ and $b=1.23\pm0.15$, respectively), whereas for the FRII quasars the slope of the regression line is flatter ($b=0.78\pm0.09$). All correlations are significant according to the Kendall's τ test, also after taking into account possible redshift effects. A better determination of this correlation for the FRII quasars is given in Chapter 8.

6.3.4 The radio - to - radio luminosity correlations

The total versus core radio luminosities are plotted in Fig. 6.14. The top panel shows the FRI/FRII sources and the rest of the objects in the sample with an available core flux measurement. Many sources are distributed along a straight line of approximately a slope of unity. These are mostly flat-spectrum quasars and BL Lacs, i.e. core-dominated sources, for which the total flux almost coincides with the strongly beamed core flux. The FRI/FRII sources are lobe-dominated objects and, in fact, are found at larger total luminosities with respect to this line. In the bottom panel of Fig. 6.14 only the FRI/FRII sources are plotted.

We have subtracted the core radio luminosity from the total one and used this as a measure of the extended luminosity. Fig. 6.15 shows the dependence of $L_{\rm R,ext}$ on $L_{\rm R,core}$. The difference in extended luminosity between FRI and FRII sources is evident. The galaxies of both classes are found to follow linear correlations with similar slopes inside the errors ($b = 0.86 \pm 0.11$ and $b = 0.98 \pm 0.13$, respectively). However, the correlation for FRII sources is only marginally significant when the redshift is included in the analysis. No correlation is found for the FRII quasars, probably smeared by relativistic beaming which is likely relevant in these sources.

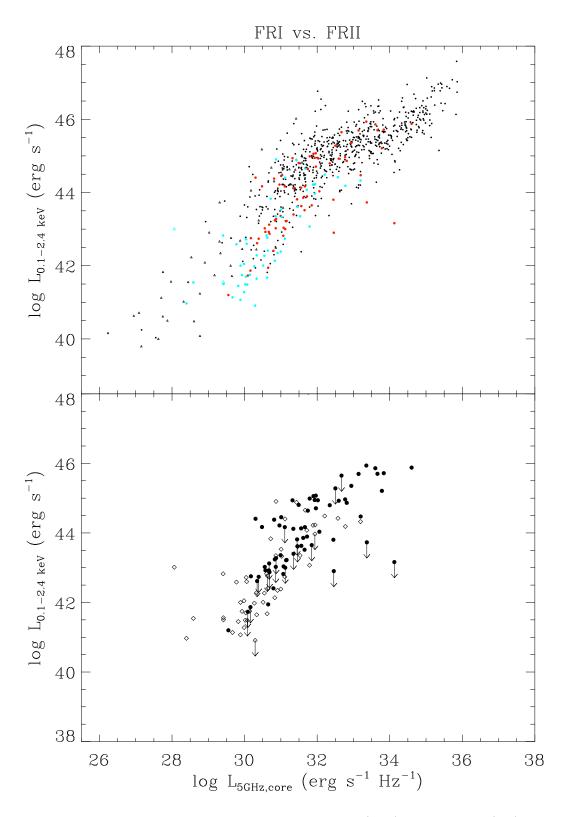


Figure 6.13: Top panel: the $L_{\rm X}$ - $L_{\rm R,core}$ plane for the FRI (blue) and the FRII (red) galaxies superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{\rm X}$ - $L_{\rm R,core}$ plane for the FRI (diamonds) and FRII (circles) galaxies only. Also shown here are the upper limits on the X-ray luminosities (arrows).

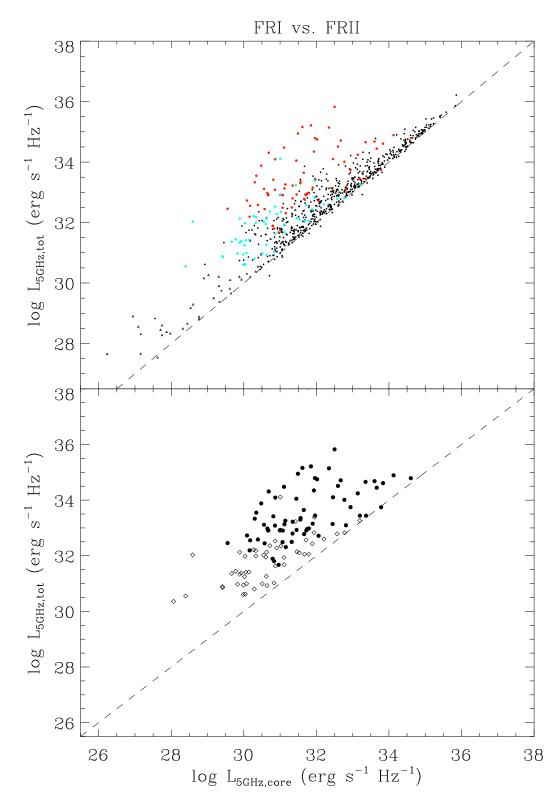


Figure 6.14: Top panel: the $L_{R,tot}$ - $L_{R,core}$ plane for the FRI (blue) and the FRII (red) galaxies superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{R,tot}$ - $L_{R,core}$ plane for the FRI (diamonds) and FRII (circles) galaxies only. In both panels the line for which $L_{R,tot} = L_{R,core}$ is drawn.

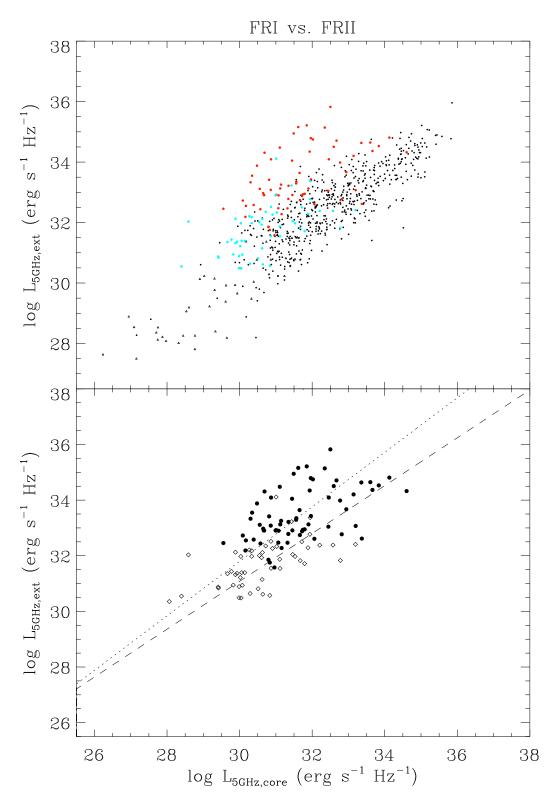


Figure 6.15: Top panel: the $L_{\rm R,ext}$ - $L_{\rm R,core}$ plane for the FRI (blue) and the FRII (red) galaxies superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{\rm R,ext}$ - $L_{\rm R,core}$ plane for the FRI (diamonds) and FRII (circles) galaxies only. The regression lines for FRI (dashed) and FRII (dotted) galaxies are also plotted.

Correlation analysis

Correlation analysis					
		Kendall's τ		Partial Kendall's τ	
Correlation	Groups	Stat.	Prob.	Stat.	Prob.
(1)	(2)	(3)	(4)	(5)	(6)
	FRI galaxies	1.75	0.08	1.80	0.06
Radio (total)/optical	FRII galaxies	2.37	0.02	1.06	0.28
	FRII QSO	3.51	0.0	2.53	0.01
	FRI galaxies	1.51	0.13	1.70	0.08
Radio (core)/optical	FRII galaxies	0.90	0.37	0.34	0.74
	FRII QSO	3.32	0.0	2.02	0.04
	FRI galaxies	3.57	0.0	4.43	0.0
X-ray/optical	FRII galaxies	0.93	0.35	0.69	0.48
	FRII QSO	3.22	0.0	1.83	0.07
	FRI galaxies	5.10	0.0	3.98	0.0
	FRI galaxies+QSO	4.80	0.0	2.98	0.0
X-ray/radio (total)	FRII galaxies	1.20	0.23	1.14	0.26
	FRII QSO	2.41	0.02	0.01	0.98
	FRI galaxies	5.32	0.0	4.54	0.0
	FRI galaxies+QSO	5.84	0.0	4.80	0.0
X-ray/radio (core)	FRII galaxies	3.99	0.0	3.83	0.0
	FRII QSO	4.08	0.0	3.18	0.0
	FRI galaxies	5.85	0.0	5.40	0.0
	FRI galaxies+QSO	6.10	0.0	4.94	0.0
Radio (total)/radio (core)	FRII galaxies	3.64	0.0	2.59	0.01
	FRII QSO	2.48	0.01	1.08	0.28
	FRI galaxies	4.93	0.0	4.31	0.0
	FRI galaxies+QSO	4.97	0.0	3.83	0.0
Radio (extended)/radio (core)	FRII galaxies	3.27	0.0	1.76	0.08
	FRII QSO	1.64	0.10	0.37	0.70

Table 6.6: Column 1: type of correlation. Column 2: groups of objects. Columns 3 and 4, 5 and 6: test statistics and relative probability that a correlation is not present for the generalized Kendall's τ and generalized partial Kendall's τ test, respectively. The hypothesis of zero correlation coefficient is rejected at 5% significance level if the probability does not exceed 0.05.

Table 6.7: Regression analysis

Correlation	Group	Buckley-James	Fasano & Vio
(1)	(2)	(3)	(4)
$= \frac{1}{\log L_{\rm R,tot} - \log L_{\rm O}}$	FRII galaxies	$\begin{vmatrix} a = -10.36 \\ b = 1.50 \pm 0.37 \end{vmatrix}$	$a = -129.2 \pm 22.88$ $b = 5.52 \pm 0.78$
- , -		$\sigma = 0.921$	$\sigma_{\text{int}} = 2.44 \pm 0.62$ Weighted rms= 1.610
	FRII QSO	$a = -21.11 b = 1.80 \pm 0.26$	$a = -32.95 \pm 11.60$ $b = 2.18 \pm 0.38$
		$\sigma = 0.774$	$\sigma_{\text{int}} = 0.62 \pm 0.15$ Weighted rms= 0.782
$\log L_{ m R,core} - \log L_{ m O}$	FRII QSO	$\begin{vmatrix} a = -42.72 \\ b = 2.46 \pm 0.38 \end{vmatrix}$	$a = -62.09 \pm 15.72$ $b = 3.10 \pm 0.51$
,		$\sigma = 0.956$	$\sigma_{\text{int}} = 1.09 \pm 0.32$ Weighted rms= 1.027
		a = -57.24	$a = -202.1 \pm 32.11$
$\log L_{ m X} - \log L_{ m O}$	FRI galaxies	$b = 3.26 \pm 0.70$ $\sigma = 1.152$	$\begin{vmatrix} b = 8.31 \pm 1.09 \\ \sigma_{\text{int}} = 4.73 \pm 1.48 \end{vmatrix}$
			Weighted rms= 2.253
	FRII QSO	$\begin{vmatrix} a = -10.43 \\ b = 1.81 \pm 0.28 \end{vmatrix}$	$\begin{vmatrix} a = -119.4 \pm 10.03 \\ b = 1.86 \pm 0.33 \end{vmatrix}$
	ritii Q50	$\sigma = 1.81 \pm 0.28$ $\sigma = 0.713$	$\sigma_{\rm int} = 0.47 \pm 0.14$
			Weighted rms= 0.677
lam I lam I	EDI malarias	a = 5.95	$a = -1.48 \pm 5.04$
$\log L_{ m X} - \log L_{ m R,tot}$	FRI galaxies	$b = 1.16 \pm 0.12$ $\sigma = 1.228$	$\begin{vmatrix} b = 1.40 \pm 0.16 \\ \sigma_{\text{int}} = 1.29 \pm 0.30 \end{vmatrix}$
			Weighted rms= 1.133
	FRI galaxies+QSO	a = 6.158 $b = 1.15 \pm 0.13$	$\begin{vmatrix} a = -4.05 \pm 5.24 \\ b = 1.48 \pm 0.16 \end{vmatrix}$
	Titi galaxies+Q50	$\sigma = 1.13 \pm 0.13$ $\sigma = 1.314$	$\sigma_{\rm int} = 1.65 \pm 0.40$
			Weighted rms= 1.284
	FRII QSO	a = 13.21 $b = 0.93 \pm 0.15$	$\begin{vmatrix} a = 13.69 \pm 5.65 \\ b = 0.92 \pm 0.17 \end{vmatrix}$
		$\sigma = 0.900$	$\sigma = 0.32 \pm 0.17$ $\sigma_{\rm int} = 0.41 \pm 0.14$
			Weighted rms= 0.627
$\log I_{x} = \log I_{z}$	FRI galaxies	$\begin{vmatrix} a = 10.25 \\ b = 1.06 \pm 0.10 \end{vmatrix}$	$\begin{vmatrix} a = 7.27 \pm 3.90 \\ b = 1.16 \pm 0.13 \end{vmatrix}$
$\log L_{ m X} - \log L_{ m R,core}$	FILI galaxies	$\sigma = 1.00 \pm 0.10$ $\sigma = 1.082$	$\sigma = 1.10 \pm 0.13$ $\sigma_{\text{int}} = 0.75 \pm 0.26$
			Weighted rms= 0.864
	FRI galaxies+QSO	a = 9.66 $b = 1.08 \pm 0.09$	$\begin{vmatrix} a = 5.16 \pm 3.62 \\ b = 1.23 \pm 0.12 \end{vmatrix}$
	1101 garastes + &500	$\sigma = 1.05 \pm 0.09$ $\sigma = 1.054$	$\sigma_{\rm int} = 0.75 \pm 0.24$
			Weighted rms= 0.873

Table 6.7: Continued on next page.

Table 6.7: (continued)

		D 11 T	0.17
Correlation	Group	Buckley-James	Fasano & Vio
(1)	(2)	(3)	(4)
		a = 13.58	$a = 5.24 \pm 4.68$
	FRII galaxies	$b = 0.96 \pm 0.11$	$b = 1.23 \pm 0.15$
		$\sigma = 0.984$	$\sigma_{\rm int} = 0.61 \pm 0.15$
			Weighted rms= 0.781
		a = 15.74	$a = 19.70 \pm 3.12$
	FRII QSO	$b = 0.89 \pm 0.08$	$b = 0.78 \pm 0.09$
		$\sigma = 0.700$	$\sigma_{\rm int} = 0.15 \pm 0.05$
			Weighted rms= 0.380
		a = 6.70	$a = 5.80 \pm 2.83$
$\log L_{ m R,tot} - \log L_{ m R,core}$	FRI galaxies	$b = 0.82 \pm 0.08$	$b = 0.85 \pm 0.09$
_ ,,	_	$\sigma = 0.953$	$\sigma_{\rm int} = 0.41 \pm 0.12$
			Weighted rms= 0.648
		a = 7.11	$a = 6.33 \pm 2.58$
	FRI galaxies+QSO	$b = 0.81 \pm 0.07$	$b = 0.83 \pm 0.08$
	•	$\sigma = 0.932$	$\sigma_{\rm int} = 0.38 \pm 0.10$
			Weighted rms= 0.629
		a = 2.63	$a = -2.64 \pm 4.90$
	FRII galaxies	$b = 0.98 \pm 0.14$	$b = 1.15 \pm 0.16$
	_	$\sigma = 1.117$	$\sigma_{\rm int} = 0.95 \pm 0.17$
			Weighted rms= 0.975
		a = 8.18	$a = 7.27 \pm 2.58$
	FRII QSO	$b = 0.79 \pm 0.15$	$b = 0.82 \pm 0.16$
		$\sigma = 1.261$	$\sigma_{\rm int} = 0.75 \pm 0.23$
			Weighted rms= 0.834
		a = 6.47	$a = 5.28 \pm 3.33$
$\log L_{\mathrm{R,ext}} - \log L_{\mathrm{R,core}}$	FRI galaxies	$b = 0.83 \pm 0.09$	$b = 0.86 \pm 0.11$
- , ,	_	$\sigma = 1.081$	$\sigma_{\rm int} = 0.58 \pm 0.14$
			Weighted rms= 0.763
		a = 6.96	$a = 5.97 \pm 3.12$
	FRI galaxies+QSO	$b = 0.81 \pm 0.09$	$b = 0.84 \pm 0.10$
		$\sigma = 1.076$	$\sigma_{\rm int} = 0.57 \pm 0.13$
			Weighted rms= 0.759
		a = 0.60	$a = 2.40 \pm 4.16$
	FRII galaxies	$b = 1.04 \pm 0.15$	$b = 0.98 \pm 0.13$
		$\sigma = 1.111$	$\sigma_{\rm int} = 1.01 \pm 0.17$
			Weighted rms= 1.003
		1	ı
	*		

Table 6.7: Results of the regression analysis for the subsamples of Table 6.6. Column 1: type of correlation. Column 2: groups of objects. Column 3: Buckley-James regression parameters of the bisector of the two fitted lines (see § 5.5.4). Column 4: Fasano & Vio regression parameters. Only detections have been used for the Fasano & Vio regression.

6.4 Summary of results

From the above discussion, the following results can be summarized:

- No dependence of the optical luminosity on the radio morphology is observed. The optical emission of radio galaxies is likely dominated by the stellar emission of the host galaxies with luminosities typical of the most massive non-active ellipticals.
- At a given optical luminosity, a wide range of both, total radio and X-ray luminosities, are observed for the radio galaxies. FRI and FRII galaxies clearly form two distinct groups, with the latter having significantly larger X-ray and total radio luminosities.
- The difference between the core radio luminosities of FRI and FRII galaxies is less pronounced than that observed for the total radio luminosities, with some indications that the radio cores of FRII galaxies are brighter.
- The luminosity properties of the radio galaxies in and outside clusters do not differ significantly. Only for FRI galaxies there is some indication of a cluster contribution to their X-ray luminosity, which might be unresolved.
- A subgroup of FRI and FRII sources formally classify as quasars with properties which distinguish them from the galaxies. All FRI "quasars" are objects with peculiar host galaxies and they differ from the galaxies only in having enhanced optical luminosity, whereas they are basically undistinguishable considering their radio and X-ray properties.
 - The FRII quasars have a total radio power typical of FRII galaxies, but their X-ray, optical and radio core luminosities are significantly larger, indicative of the presence of relativistic beaming.
- The X-ray luminosity is correlated with the core radio luminosity of FRI and FRII galaxies. No good correlation is observed with the total radio luminosity for the galaxies. This supports the scenario in which the X-ray emission is also mainly non-thermal connected to the active nucleus and not to a hot gaseous corona.
- For the FRII quasars the data suggest a linear relation of the X-rays with both the total and core radio luminosities, with slopes of $b \sim 0.9$ and $b \sim 0.8$, respectively, however, the hypothesis that the observed relationship with the total radio luminosity is induced by redshift cannot be rejected. The X-ray luminosity as well seems to be correlated to the optical through a common redshift dependence. However, the number of FRII quasars considered is not sufficiently large to draw firm conclusions.
- There are indications that the extended/lobe radio power is positively correlated with the core luminosity only in FRI sources, whereas for the FRII galaxies this is probably caused by redshift effects.
- In general, the correlations for sources with FRII morphology are more affected by redshift. This might be due to their larger redshift range ($z \sim 0.03 1.9$) compared to that of FRI sources which have $z \lesssim 0.25$.

6.5 Discussion

We have seen that FRI and FRII galaxies show comparable optical luminosities which can be attributed to the stellar emission of the host galaxies. The majority of them have absolute magnitudes around $M_{\rm V}=-22.0$, falling in the range of massive ellipticals. On one hand, this result suggests that strong radio sources can only be sustained when a certain galaxy mass is reached. On the other hand, the masses of the supermassive black holes are correlated to the bulge magnitudes (Kormendy & Richstone 1995, Ferrarese & Merritt 2000), therefore our findings support a substantial similarity of black hole mass ranges in FRI and FRII galaxies. This is in agreement with recent results by Marchesini, Celotti & Ferrarese (2004) who estimate black hole masses for a sample of FRI and FRII galaxies and radio-loud quasars through the use of the black hole mass - host bulge magnitude correlation. Therefore an intrinsic explanation for the FRI/FRII dichotomy relying on the black hole mass only seems unlikely.

The dependence of the FRI/FRII classification on the optical luminosity of the host galaxy found by Owen & Ledlow (1994) has been interpreted by Bicknell (1995) and Gopal-Krishna et al. (1996) in terms of extrinsic models in which the environment plays the decisive role. From our data we cannot confirm a clear optical luminosity dependence of the dichotomy. However, we use 5 GHz and V-band frequencies instead of the 1.4 GHz and R magnitudes originally adopted by Owen & Ledlow (1994), where the dichotomy might be more apparent. Recent results by Lara et al. (2004) actually favor a sharp break between FRI and FRII sources in total radio power at 1.4 GHz in contrast with Owen & Ledlow (1994), so that this issue is still being debated.

The X-ray luminosity appears to be well correlated to the core radio luminosity in all sources. This is commonly taken as an indication for a non-thermal origin, likely from inverse Compton or Synchrotron-Self Compton scattering of the radio synchrotron photons. Therefore, contrary to what is observed for the optical band, both the X-ray and radio emission are closely related to the central AGN. Furthermore, FRI galaxies are found to have lower luminosities than the FRII at both frequencies, implying lower power engines.

FRII quasars have higher optical, X-ray and radio core luminosities compared to FRII galaxies. The optical luminosity appears to be correlated with both the total and core radio power and possibly with the X-ray luminosity, implying that in these sources a nuclear component boosted by relativistic beaming is dominating in the optical band, contrary to the case of the galaxies. The stronger X-ray and core radio emission compared to the FRII galaxies also suggest that in FRII quasars relativistic beaming plays a non-negligible role. The presence of beaming is also in agreement with the lack of a correlation between the extended and core radio luminosities in these sources.

The results discussed above suggest that FRI and FRII sources have similar black hole masses but different powers. The extrinsic scenario assumes that both FRI and FRII galaxies have similar engines, possibly differing only in power, and that the interactions of the jets with the environment determine the resulting radio morphology. The similarity in black hole masses inferred from our data apparently supports an extrinsic explanation.

6.5 Discussion 69

However, at a closer look, this is not capable to account for the rather sharp division into high-power (FRII) and low-power (FRI) objects. In fact, in this scenario, a significant overlap, tracing that observed for the black hole masses, of their luminosity distributions would be expected but not the observed bimodal behavior with FRI and FRII sources found separately at low and high luminosities. The only way to reproduce this bimodal distribution given a common range of black hole masses would be to vary some other fundamental parameter (e.g. the accretion rate or the black hole spin), leading eventually to an intrinsic scenario. We therefore believe that some intrinsic explanation is required and is more consistent with the observations.

A possible parameter which could explain the dichotomy might be the accretion rate. Objects with higher accretion rates would have disks with higher bolometric luminosities and, likely, more powerful outflows/jets. With black hole masses of the order of $10^8-10^9 M_{\odot}$ the emission of the disk would be mostly in the optical/UV range, providing the photons necessary to ionize the emission line regions. The higher the accretion rate, the higher the ionizing flux and the stronger the emission lines. At the same time, a higher accretion rate would imply more powerful jets with higher radio and X-ray luminosity, capable of producing a FRII morphology.

The case with lower accretion rate would, on the other hand, result in lower bolometric luminosities, lower ionizing flux, weaker emission lines and weaker jet power and X-ray/radio luminosities. The radio morphology associated to this case would then be of FRI type.

Chapter 7

The data: FRI galaxies vs. BL Lac objects

7.1 Introduction

In the context of the unification scheme for AGN BL Lac objects are the beamed counterparts of FRI galaxies. Two kinds of BL Lacs are found, X-ray selected (XBL) and radio-selected (RBL), depending on the waveband of their discovery. RBL show extreme properties (i.e. polarization, variability, etc.) whereas XBL are more "quiet". A quantitative classification of BL Lacs separates these objects into *High-energy-peaked (HBL)* and *Low-energy-peaked (LBL)* (Padovani & Giommi 1995) depending on whether the synchrotron peak frequency falls into the IR/optical or into the UV/X-ray band, respectively. Most of the RBL are LBL and most of the XBL are HBL.

Recently it has been proposed (Fossati et al. 1998, Donato et al. 2001) that HBL, LBL and flat-spectrum radio-loud quasars (FSRQ) belong to a single family of objects whose emission is governed by similar physical processes. They form the so called blazar sequence in which, going from HBL to LBL to FSRQ, the synchrotron peak frequency moves from $10^{16}-10^{17}$ Hz to $10^{13}-10^{14}$ Hz, the inverse Compton peak frequency shifts from $10^{24}-10^{25}$ Hz to $10^{21}-10^{22}$ Hz and the ratio of the inverse Compton and synchrotron peak luminosities (the γ -ray dominance) increases. The fundamental parameter governing the blazar sequence is believed to be the source luminosity, independent of its classification. Sources with higher luminosities have lower peak frequencies, stronger γ -ray emission and more extreme properties.

As the parent population of BL Lac objects, FRI galaxies are expected to show similar SEDs as Low-energy and High-energy-peaked objects. The SEDs of FRI galaxies are, how-ever, only poorly sampled and thus this issue can currently not be investigated directly. Trussoni et al. (2003) analyzed the SEDs of a few FRI galaxies and found indications that they are not monotonic with peaks and minima of emission, like the BL Lacs. However, only few data points are available so that large uncertainties remain.

The unification scheme for FRI galaxies and BL Lac objects has been tested in several ways, such as by comparing the isotropic properties of the two classes or by analyzing their luminosity functions taking into account relativistic beaming (Urry & Padovani 1995). Another way has been to compare the nuclear properties of BL Lacs with those of FRI

galaxies, after correcting for relativistic beaming effects (Chiaberge et al. 2000, Capetti et al. 2000). In order to match the luminosity properties of FRI galaxies with those of "de-beamed" BL Lacs the authors postulate the presence of a velocity structure in the jet, with a fast spine dominating the emission of BL Lacs and a slow layer, dominant in FRI galaxies. This jet structure might be able to explain the discrepant values of the beaming factors obtained for the BL Lacs and FRI galaxies with different methods. In fact, higher beaming factors ($\delta = 15-20$) result from the observation of superluminal motions or from accurate fits of the SEDs, whereas lower values $\delta = 4-6$ are required from the simple comparison of the luminosities of BL Lac objects and FRI galaxies in a given waveband (see Eq. (3.5)). The existence of such a velocity structure is currently an open question.

In this chapter we want to address the subject of BL Lac/FRI galaxy unification with a multiwavelength approach, using radio, optical and X-ray data. There are 270 BL Lac objects in our sample and 68 sources with FRI morphology. The objects that we defined in Chapter 6 as FRI "quasars" are here included in the group of FRI galaxies due to their similar properties (see Chapter 6). One FRI source resulted to be also optically classified as a BL Lac and is included in the first group. 3 BL Lacs turned out to have wrong redshift measurements and are excluded from the analysis. Among the BL Lacs, 24 are classified either as RBL or LBL and 49 either as XBL or HBL. To further increase the number statistics of each of these two classes we have defined the BL Lacs in our sample lacking a classification as LBL or HBL according to the criterium of Fossati et al. (1998): objects having $\alpha_{\rm rx} \gtrsim 0.75$ are labeled as LBL and those with $\alpha_{\rm rx} \lesssim 0.75$ as HBL. We obtain in total 179 HBL and 88 LBL. The HBL are more numerous as a consequence of the X-ray selection of our sample.

Core radio fluxes are available for 105 BL Lac objects (38 LBL and 67 HBL) and 54 FRI galaxies. The core optical fluxes from HST observations of 25 FRI galaxies are given in Chiaberge et al. (1999) and Capetti et al. (2002). These fluxes will be used to compare the nuclear properties of BL Lacs and FRI galaxies.

7.2 Luminosity distributions

We study the properties of the luminosity distributions of BL Lac objects compared to those of FRI galaxies as described in § 6.2. The average luminosities from the Kaplan-Meier estimator and the Maximum Likelihood technique for the two classes are given in Table 7.1. Upper limits are present in the X-rays for 4 FRI galaxies only.

The optical luminosities of the FRI galaxies are calculated from the core fluxes given in Chiaberge et al. (1999) and Capetti et al. (2002) extrapolated to the V band. The luminosities of the BL Lac objects are calculated from their total magnitudes, since in these objects the contribution of the host galaxy is negligible.

7.2.1 The total radio luminosity distributions

Fig. 7.1 displays the total radio luminosity distributions for the various classes and Fig. 7.2 the 90% confidence level contour plots of their mean luminosities and intrinsic dispersions. An inspection of Fig. 7.2 shows that BL Lacs have larger total radio luminosities than FRI galaxies and the difference is found to be significant at the 5% level. However, the total

Average	luminos	ities
Average	iummos.	LUICS

Luminosity	Group	$\log L^{\mathrm{KM}}$	$\log L^{ m ML}$	
(1)	(2)	(3)	(4)	
$L_{0.1-2.4 \text{ keV}}$	FRI galaxies	42.59 ± 0.15	$42.68 \pm 1.18^{\dagger}$	
(erg s^{-1})	BL Lacs	44.90 ± 0.05	44.90 ± 0.85	
	LBL/RBL	44.54 ± 0.10	44.53 ± 0.97	
	HBL/XBL	45.07 ± 0.05	45.07 ± 0.71	
$L_{\rm O,core}$	FRI galaxies	26.95 ± 0.19	26.94 ± 0.93	
$(\text{erg s}^{-1} \text{ Hz}^{-1})$	BL Lacs	29.81 ± 0.04	29.81 ± 0.67	
	LBL/RBL	30.07 ± 0.09	30.07 ± 0.85	
	HBL/XBL	29.69 ± 0.04	29.69 ± 0.52	
$L_{5\mathrm{GHz,tot}}$	FRI galaxies	31.57 ± 0.12	31.57 ± 0.96	
$(\text{erg s}^{-1} \text{ Hz}^{-1})$	BL Lacs	32.00 ± 0.07	32.01 ± 1.06	
	LBL/RBL	32.89 ± 0.13	32.88 ± 1.18	
	HBL/XBL	31.56 ± 0.05	31.57 ± 0.66	
$L_{5\mathrm{GHz,core}}$	FRI galaxies	30.62 ± 0.14	30.62 ± 1.02	
$(\text{erg s}^{-1} \text{ Hz}^{-1})$	BL Lacs	31.96 ± 0.09	31.96 ± 0.90	
	LBL/RBL	32.42 ± 0.18	32.42 ± 1.10	
	HBL/XBL	31.70 ± 0.08	31.70 ± 0.64	

[†] Detections only.

Table 7.1: Column 1: luminosity. Column 2: group of objects. Column 3: mean of luminosity and related error from the generalized Kaplan-Meier estimator. Column 4: mean of luminosity and intrinsic dispersion from the Maximum-Likelihood technique (see \S 5.5.1).

radio emission in FRI galaxies is dominated by the extended lobes and in BL Lacs by the core, so that the comparison might be misleading. A separate comparison of the extended and core emission in the two classes is more meaningful and will be discussed in §§ 7.2.2 and 7.3.1. Among BL Lacs, LBL have larger total radio luminosities than HBL at 5% significance level, consistently with the different shapes of their SEDs. Since their emission in the radio band is dominated by the core this also implies that LBL have stronger cores than HBL (see also § 7.2.2).

The intrinsic dispersion for FRI galaxies is large (log $\sigma_{intr} \sim 1$) and comparable to that for all BL Lacs taken together. However, when LBL and HBL are separated the intrinsic dispersion is much lower for the HBL (log $\sigma_{intr} = 0.66$) than for the LBL (log $\sigma_{intr} = 1.18$)

7.2.2 The radio core luminosity distributions

Considering the radio core luminosity distributions (Fig. 7.3) and the 90% confidence level contour plots of the mean luminosities and intrinsic dispersions (Fig. 7.4) the discrepancy between FRI galaxies and BL Lacs is larger than in the case of the total luminosities. The core luminosities of LBL are significantly higher than those of HBL, but the difference appears to be less pronounced than in the case of total radio luminosities. However, the average radio core luminosity of HBL is unexpectedly larger than their average total luminosity, in contradiction with the fact that the core emission constitutes only part of the total emission. The reason for this is probably that, due to their low radio brightness, core luminosities are available only for a fraction of HBL and therefore the average core luminosity quoted in Table 7.1 is probably only an upper limit.

The intrinsic dispersions of FRI galaxies and all BL Lacs are close to unity and LBL have a much larger value ($\log \sigma_{\rm intr} = 1.10$) than HBL ($\log \sigma_{\rm intr} = 0.64$), similar to the case of the total radio luminosities.

7.2.3 The optical luminosity distributions

The optical luminosity distributions for the various classes are shown in Fig. 7.5, whereas the 90% confidence level contour plots for the mean luminosities and intrinsic dispersions are presented in Fig. 7.6.

The (total) luminosities of BL Lacs are significantly larger than those of the FRI galaxies when only their optical cores are considered. If the optical emission of BL Lacs, as usually found, is dominated by the active nucleus, then the above result means that the cores of BL Lacs are optically more luminous than those of FRI galaxies, in agreement with the relativistic beaming scenario. LBL have significantly larger optical luminosities than HBL at 5% level, as expected from their different SEDs.

The FRI galaxies have quite large intrinsic dispersion (log $\sigma_{intr} = 0.93$), more similar to that of LBL (log $\sigma_{intr} = 0.85$) than to that of HBL (log $\sigma_{intr} = 0.52$).

7.2.4 The X-ray luminosity distributions

Fig. 7.7 shows the X-ray luminosity distributions for the various classes, whereas Fig. 7.8 displays the 90% confidence level contour plots of their mean luminosities and intrinsic dispersions.

The X-ray emission of BL Lacs is thought to be non-thermal, a fact supported by the

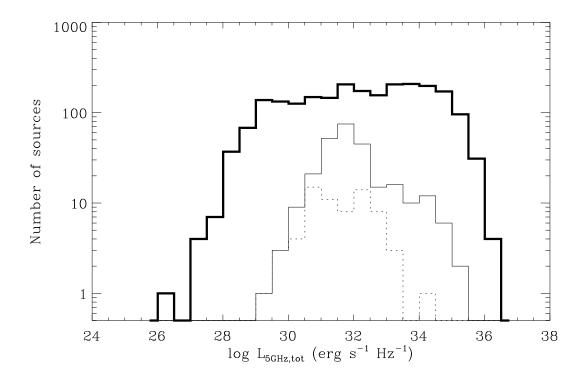


Figure 7.1: Total 5 GHz radio luminosity distributions for the FRI galaxies (dotted line), the BL Lacs (thin solid line) and the total sample (thick solid line).

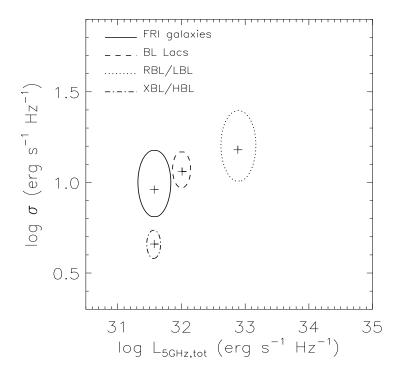


Figure 7.2: 90% confidence level contour plots for the total 5 GHz luminosity and intrinsic dispersion of FRI galaxies and BL Lacs. Also shown are the contours for LBL/RBL and HBL/XBL, separately. The crosses indicate the average log $L_{\rm R,tot}$ and log σ .

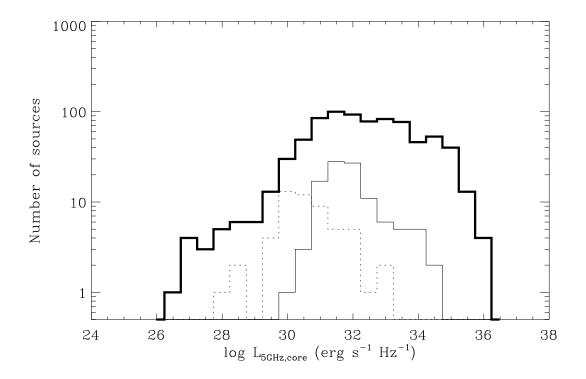


Figure 7.3: 5 GHz core radio luminosity distributions for the FRI galaxies (dotted line), the BL Lac objects (thin solid line) and the total sample (thick solid line).

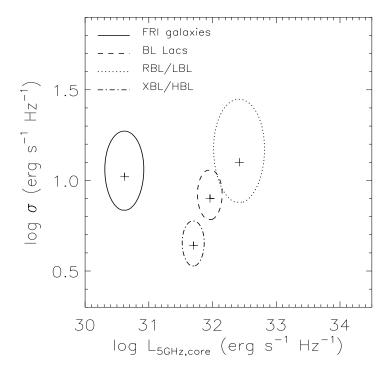


Figure 7.4: 90% confidence level contour plots for the 5 GHz core luminosity and intrinsic dispersion of FRI galaxies and BL Lacs. Also shown are the contours for LBL/RBL and HBL/XBL, separately. The crosses indicate the average log $L_{\rm R,core}$ and log σ .

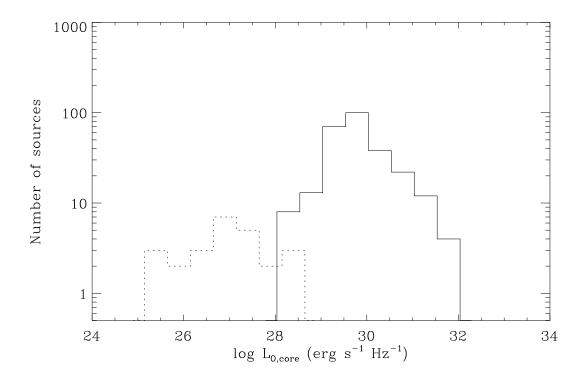


Figure 7.5: Optical V-band luminosity distributions for the FRI galaxies (dotted line) and the BL Lac objects (solid line).

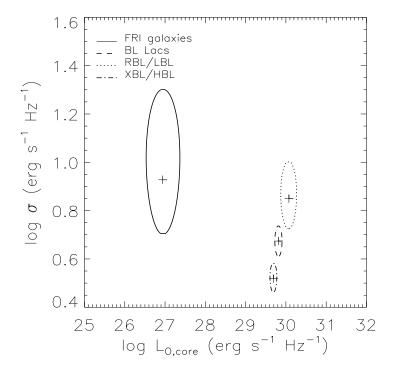


Figure 7.6: 90% confidence level contour plots for the optical V-band luminosity and intrinsic dispersion of FRI galaxies and BL Lacs. Also shown are the contours for LBL/RBL and HBL/XBL, separately. The crosses indicate the average $\log L_O$ and $\log \sigma$.

shape of their SEDs (see Chapter 4) and by the correlation with the core radio emission (see § 7.3.4). We have seen in Chapter 6 that also in the FRI sources the X-ray luminosity appears to correlate with the radio luminosity, likely implying a non-thermal origin from the nucleus rather than a thermal origin from the hot corona of the host galaxy (Hardcastle & Worrall 1999). We can therefore conclude that the X-ray luminosities of both FRI galaxies and BL Lacs originate mostly from their active nuclei and that also in X-rays the cores of BL Lac objects are brighter than those of FRI galaxies. HBL are significantly more X-ray luminous than LBL, consistently with their SEDs and observational classifications. FRI galaxies show a large intrinsic dispersion of $\log \sigma_{\rm intr} = 1.18$, whereas LBL and HBL display lower values of $\log \sigma_{\rm intr} = 0.97$ and $\log \sigma_{\rm intr} = 0.71$, respectively.

7.3 Correlation and regression analysis

Previously, the X-ray and total radio luminosities of the BL Lac objects were found to be tightly correlated by Brinkmann et al. (1996) with slopes $b = 0.53 \pm 0.14$ and $b = 1.09 \pm 0.11$ for XBL and RBL, respectively. These authors also obtained weaker correlations of the optical with both the X-ray and radio luminosities, however, without a clear separation between XBL and RBL.

The correlation between the X-ray and radio core luminosities of FRI galaxies is known to exist since Einstein and ROSAT observations (Fabbiano et al. 1984, Brinkmann et al. 1994, Siebert et al. 1996) as discussed briefly in § 6.3. The almost linear correlation of the radio with the optical core luminosities of FRI galaxies has been evidenced by Chiaberge et al. (1999) and has been used to support the non-thermal origin of the optical core emission in these objects.

In this section we present the results of the correlation and regression analyses for FRI galaxies and BL Lacs using the statistical methods described in Chapter 5. To determine the statistical significance of the correlations we calculate generalized versions for censored data of both the Kendall's τ and partial Kendall's τ coefficients. We perform both the Buckley-James regression, allowing for the presence of upper limits, and the Fasano & Vio regression, considering only detections and including the errors on the variables. The Fasano & Vio regression also provides an estimate of the intrinsic dispersion of the correlation. The results are given in Table 7.2 and will be discussed in § 7.5.

7.3.1 The radio - to - radio luminosity correlations

Figs. 7.9 and 7.10 show the total versus core and the extended versus core radio luminosities for the whole sample (Fig. 7.9, top panel) and for FRI galaxies and BL Lacs only (bottom panel of Fig. 7.9 and Fig. 7.10), where the extended luminosity is obtained by subtracting the core from the total luminosity. The luminosities of the BL Lac objects appear to be dominated by the core, whereas the FRI galaxies are lobe-dominated. In fact, at a given core luminosity the FRI galaxies have on average an extended luminosity about an order of magnitude larger than that of BL Lacs. LBL appear to be the objects with the largest core luminosities, reaching $L_{\rm R,core} \gtrsim 10^{34}$ erg s⁻¹ Hz⁻¹, about an order of magnitude higher than the maximum value reached by HBL. A few FRI galaxies appear to be more

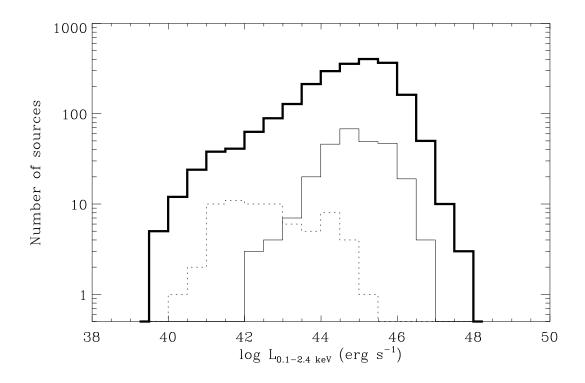


Figure 7.7: X-ray luminosity distributions for the FRI galaxies (dotted line), the BL Lacs (thin solid line) and the total sample (thick solid line).

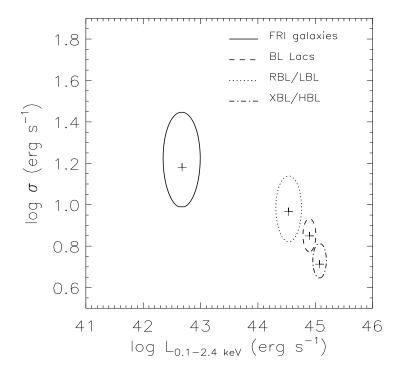


Figure 7.8: 90% confidence level contour plots for the 0.1-2.4 keV X-ray luminosity and intrinsic dispersion of FRI galaxies and BL Lacs. Also shown are the contours for LBL/RBL and HBL/XBL, separately. The crosses indicate the average log $L_{\rm X}$ and log σ .

core-dominated, suggesting that they could be beamed, perhaps because they are observed at smaller viewing angles.

FRI galaxies and BL Lacs have comparable ranges of extended luminosities, following almost parallel trends of $L_{\rm R,ext}$ versus $L_{\rm R,core}$ (see Fig. 7.10). These results are expected in the framework of the unified scheme where the isotropic radiation from the extended lobes is of comparable intensity for all viewing angles, whereas the strongly beamed core emission from the relativistic jets is dominant in objects observed at small angles, i.e. BL Lacs. Therefore, with decreasing viewing angle a source will move progressively to the right of Fig. 7.10 at constant extended luminosity.

Both LBL and HBL lie approximately on the same correlation between $\log L_{\rm R,ext}$ and $\log L_{\rm R,core}$ (Fig. 7.10) of slope $b\sim 1$. This implies that $L_{\rm R,core}\propto L_{\rm R,ext}$ and that the core-dominance, defined as $R_{\rm C}=L_{\rm R,core}/L_{\rm R,ext}$, is approximately constant and equal in both classes. As $R_{\rm C}$ is usually taken as an indicator of the amount of beaming (Urry & Padovani 1995), this cannot account for the different properties of LBL and HBL. The correlation seems to be less tight for HBL, for which a significant dispersion is observed.

7.3.2 The radio - to - optical luminosity correlations

In Fig. 7.11 the relation between the total radio and optical luminosities for BL Lac objects and FRI galaxies is shown with respect to the rest of the sample; Fig. 7.12 shows the relation between the radio core and optical luminosities for the BL Lacs and the FRI galaxies only.

FRI galaxies and BL Lacs occupy approximately the same region in the $L_{\rm R,tot}$ - $L_{\rm O,tot}$ plane. Some BL Lacs, however, reach higher luminosities than the galaxies at both frequencies. It has already been remarked that the similar ranges of $L_{R,tot}$ observed in FRI galaxies and BL Lacs is a coincidence, since their radio emission arises mostly from spatially well separated regions, the lobes in the first class and the core in the second one. When considering only the core luminosities a clear separation between FRI galaxies and BL Lacs becomes apparent. LBL/RBL separate neatly from HBL/XBL with the first ones lying above, and the second ones below, an approximate luminosity between $\sim 10^{32} - 10^{33}$ erg s⁻¹ Hz⁻¹. The radio core luminosity seems to be well correlated with the optical in both, FRI galaxies and BL Lacs (see Table 7.2). The slope of the Fasano & Vio regression line is $b \sim 1$ for the galaxies and steeper for the BL Lacs. However, amongst the BL Lacs, sources classified either as LBL or HBL appear to follow separate correlations (see Fig. 7.12). HBL follow a correlation with very similar slope $(b = 1.09 \pm 0.08)$ to that of the FRI galaxies ($b = 1.13 \pm 0.18$) inside the errors, whereas LBL have a much steeper slope $(b = 1.51 \pm 0.15)$. FRI galaxies and LBL show a large dispersion (log $\sigma_{\rm intr} = 0.70 \pm 0.42$ and $\log \sigma_{\rm intr} = 0.56 \pm 0.19$, respectively) about the regression line, whereas for the HBL it is much smaller (log $\sigma_{\rm intr} = 0.16 \pm 0.04$). All correlations are highly significant at the 5% level.

The slope of the correlation for the FRI galaxies is comparable to that found by Chiaberge et al. (1999), whereas we cannot confirm the close similarity found by Brinkmann et al. (1996) between the correlations for LBL and HBL, which appear instead to be clearly different.

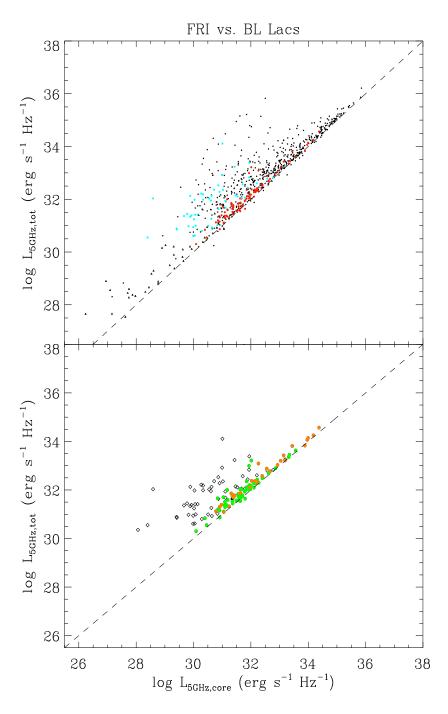


Figure 7.9: Top panel: the $L_{\rm R,tot}$ - $L_{\rm R,core}$ plane for the FRI galaxies (blue) and the BL Lacs (red) superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{\rm R,tot}$ - $L_{\rm R,core}$ plane for the FRI galaxies (diamonds) and BL Lacs (circles) only. LBL/RBL are plotted in yellow and HBL/XBL in green. In both panels the line for which $L_{\rm R,tot} = L_{\rm R,core}$ is drawn.

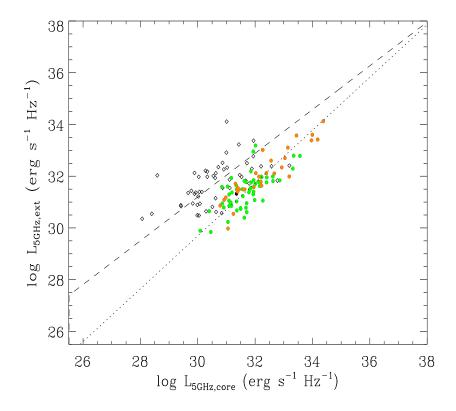


Figure 7.10: The $L_{R,ext}$ - $L_{R,core}$ plane for the FRI galaxies (diamonds) and the BL Lacs (circles). LBL/RBL are plotted in yellow and HBL/XBL in green. The regression lines for FRI galaxies (dashed) and BL Lacs (dotted) are also plotted, with slopes of $b=0.84\pm0.11$ and $b=1.02\pm0.06$, respectively.

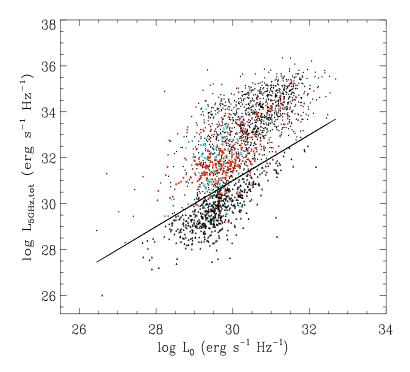


Figure 7.11: The $L_{R,tot}$ - L_O plane for the FRI galaxies (blue) and the BL Lacs (red) superposed on the rest of the sample (black). The straight line represents the formal division between radio-loud (circles) and radio-quiet (triangles) objects (see §2.3).

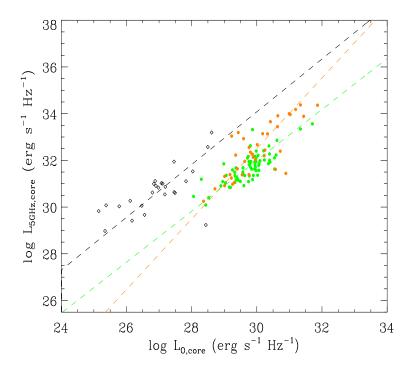


Figure 7.12: The $L_{R,core}$ - $L_{O,core}$ plane for the FRI galaxies (diamonds) and the BL Lacs (circles). HBL/XBL are plotted in green and LBL/RBL in yellow. The total optical luminosity is used for the BL Lacs. Also plotted are the Fasano & Vio regression lines for FRI galaxies (black), HBL (green) and LBL (yellow).

7.3.3 The X-ray - to - optical luminosity correlations

Fig. 7.13 shows the X-ray versus optical luminosities for FRI galaxies and BL Lac objects superposed on the rest of the sample, where the total optical luminosity has been used for both classes. Fig. 7.14 shows the X-ray - to - optical plane for FRI galaxies and BL Lacs only, where the optical core emission has been considered in the case of the galaxies. Figs. 7.13 and 7.14 clearly show that FRI galaxies have on average lower X-ray luminosities than all BL Lacs taken together and of both HBL and LBL taken separately, as already found in § 7.2.4. Considering only the optical core luminosities (see Fig. 7.14), the FRI galaxies follow a trend with intermediate slope ($b = 1.33 \pm 0.20$) with respect to LBL ($b = 1.25 \pm 0.09$) and HBL ($b = 1.72 \pm 0.11$) (see also Table 7.2). The intrinsic dispersion is larger for the galaxies ($\log \sigma_{\rm intr} = 0.88 \pm 0.22$), whereas LBL and HBL have $\log \sigma_{\rm intr} = 0.46 \pm 0.09$ and $\log \sigma_{\rm intr} = 0.61 \pm 0.07$. In all cases we find that the correlations are highly significant.

7.3.4 The X-ray - to - radio luminosity correlations

The top and bottom panels of Fig. 7.15 show, respectively, the X-ray versus total radio luminosities for FRI galaxies and BL Lacs superposed on the rest of the sample and for FRI galaxies and BL Lacs only. The X-ray versus core radio luminosity plane is shown in Fig. 7.16. In these two figures the different trends for LBL and HBL appear more clearly. A linear relationship with slope $b=1.23\pm0.12$ is found between the X-ray and radio core luminosities of FRI galaxies. The correlation is significant at 5% level. The luminosities of BL Lacs are also correlated, but they separate into two branches corresponding to LBL and HBL, with much flatter ($b=0.79\pm0.06$) and steeper ($b=1.32\pm0.12$) slope than that for the galaxies, respectively.

As in the previous cases, the FRI galaxies are the objects showing the largest intrinsic dispersion, with $\log \sigma_{\rm intr} = 0.75 \pm 0.24$, compared to LBL and HBL with $\log \sigma_{\rm intr} = 0.16 \pm 0.03$ and $\log \sigma_{\rm intr} = 0.35 \pm 0.09$, respectively.

7.4 Unification of FRI galaxies and BL Lac objects

To test the unified scheme for BL Lacs and FRI galaxies we will compare the nuclear properties of the two classes. We include in the analysis all BL Lacs with given radio core fluxes and we use their total X-ray and optical luminosities. In fact, the nuclear origin of the emission in the X-ray and optical bands is quite reliably established for these sources. For the FRI galaxies, where the contribution from the host galaxy is usually not negligible, the situation is somewhat more complicated. We select only those sources for which optical and radio core fluxes are available. For the X-ray luminosities we rely on the results of Chapter 6 and of previous works (e.g. Hardcastle & Worrall 1999) which showed that the X-ray emission is mainly non-thermal, originating from the nucleus rather than from a hot gaseous corona.

The final subsample of sources with available nuclear luminosities thus consists of 25 FRI galaxies and 105 BL Lac objects.

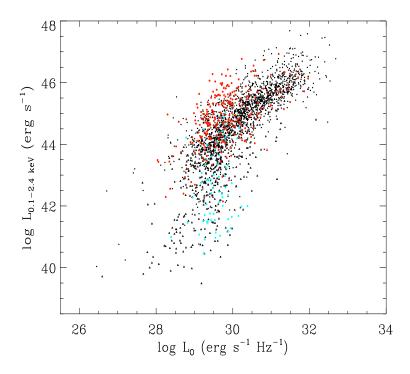


Figure 7.13: The $L_{\rm X}$ - $L_{\rm O,tot}$ plane for the FRI galaxies (blue) and the BL Lac objects (red) superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles.

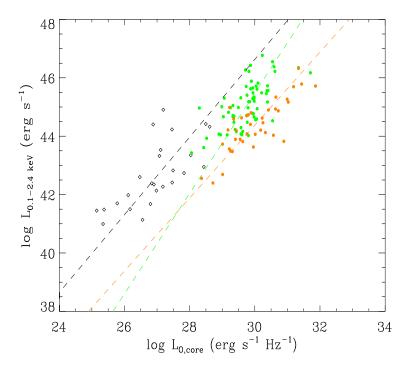


Figure 7.14: The L_{X} - $L_{O,core}$ plane for the FRI galaxies (diamonds) and the BL Lac objects (circles). HBL/XBL are plotted in green and LBL/RBL in yellow. The total optical luminosity is used for the BL Lacs. Also plotted are the Fasano & Vio regression lines for FRI galaxies (black), HBL (green) and LBL (yellow).

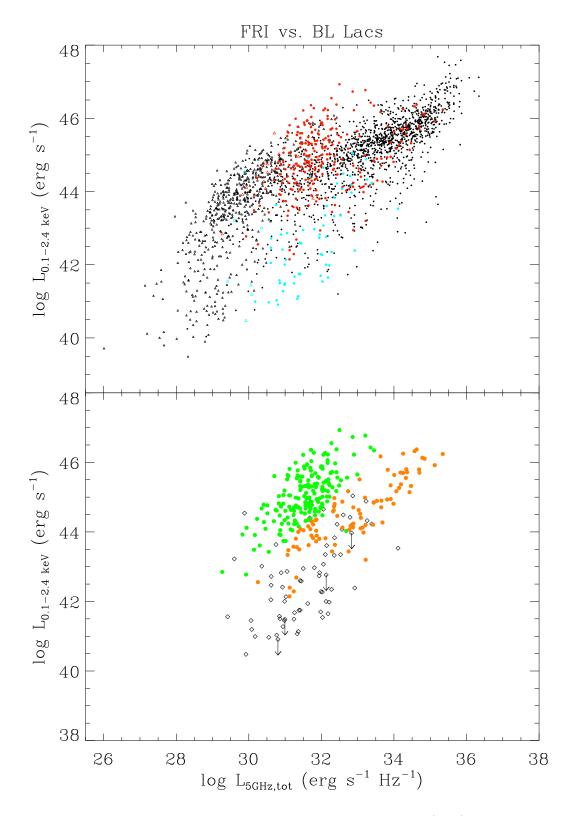


Figure 7.15: Top panel: the $L_{\rm X}$ - $L_{\rm R,tot}$ plane for the FRI galaxies (blue) and the BL Lacs (red) superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{\rm X}$ - $L_{\rm R,tot}$ plane for the FRI galaxies (diamonds) and BL Lacs (circles) only. HBL/XBL are plotted in green and LBL/RBL in yellow. Arrows indicate upper limits on the X-ray luminosities.

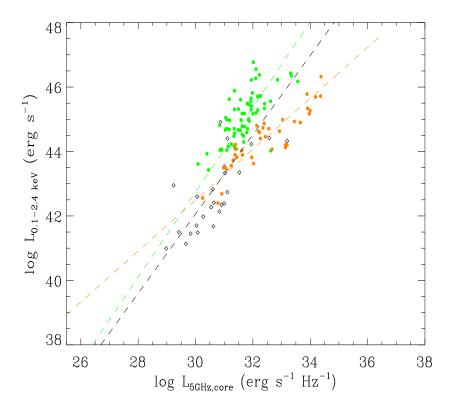


Figure 7.16: The $L_{\rm X}$ - $L_{\rm R,core}$ plane for the FRI galaxies (diamonds) and the BL Lacs (circles). HBL/XBL are plotted in green and LBL/RBL in yellow. Also shown here are the upper limits on the X-ray luminosities (arrows). Also plotted are the Fasano & Vio regression lines for FRI galaxies (black), HBL (green) and LBL (yellow).

\mathbf{T}	•	1	
к	egression	ana	VSIS

Regression analysis					
Correlation	Group	Buckley-James	Fasano & Vio		
(1)	(2)	(3)	(4)		
		a = 3.13	$a = 0.18 \pm 4.95$		
$\log L_{ m R,core} - \log L_{ m O,core}$	FRI galaxies	$b = 1.03 \pm 0.16$	$b = 1.13 \pm 0.18$		
		$\sigma = 1.032$	$\sigma_{\rm int} = 0.70 \pm 0.42$		
			Weighted $rms = 0.820$		
		a = -8.67	$a = -12.79 \pm 4.65$		
	LBL	$b = 1.37 \pm 0.12$	$b = 1.51 \pm 0.15$		
		$\sigma = 0.852$	$\sigma_{\rm int} = 0.56 \pm 0.19$		
			Weighted rms= 0.750		
		a = 0.75	$a = -0.70 \pm 2.53$		
	HBL	$b = 1.04 \pm 0.07$	$b = 1.09 \pm 0.08$		
		$\sigma = 0.552$	$\sigma_{\rm int} = 0.16 \pm 0.04$		
			Weighted rms= 0.427		
		a = 10.41	$a = 6.73 \pm 5.48$		
$\log L_{\rm X} - \log L_{\rm O,core}$	FRI galaxies	$b = 1.20 \pm 0.17$	$b = 1.33 \pm 0.20$		
		$\sigma = 1.073$	$\sigma_{\rm int} = 0.88 \pm 0.22$		
			Weighted rms= 0.909		
		a = 9.88	$a = 6.88 \pm 2.75$		
	LBL	$b = 1.15 \pm 0.07$	$b = 1.25 \pm 0.09$		
		$\sigma = 0.822$	$\sigma_{\rm int} = 0.46 \pm 0.09$		
			Weighted rms= 0.684		
		a = 6.10	$a = -6.12 \pm 3.21$		
	HBL	$b = 1.31 \pm 0.08$	$b = 1.72 \pm 0.11$		
		$\sigma = 0.758$	$\sigma_{\rm int} = 0.61 \pm 0.07$		
			Weighted rms= 0.795		
		a = 9.66	$a = 5.16 \pm 3.62$		
$\log L_{ m X} - \log L_{ m R,core}$	FRI galaxies	$b = 1.08 \pm 0.09$	$b = 1.23 \pm 0.12$		
		$\sigma = 1.054$	$\sigma_{\rm int} = 0.75 \pm 0.24$		
			Weighted rms= 0.873		
		a = 19.17	$a = 18.79 \pm 1.98$		
	LBL	$b = 0.78 \pm 0.05$	$b = 0.79 \pm 0.06$		
		$\sigma = 0.656$	$\sigma_{\rm int} = 0.16 \pm 0.03$		
		0.0-	Weighted rms= 0.408		
	*****	a = 8.27	$a = 3.14 \pm 3.76$		
	HBL	$b = 1.16 \pm 0.09$	$b = 1.32 \pm 0.12$		
		$\sigma = 0.709$	$\sigma_{\rm int} = 0.35 \pm 0.09$		
			Weighted rms= 0.619		

Table 7.2: Results of the regression analysis for FRI galaxies and BL Lacs. Column 1: type of correlation. Column 2: groups of objects. Column 3: Buckley-James regression parameters of the bisector of the two fitted lines (see \S 5.5.4). Column 4: Fasano & Vio regression parameters. For the Fasano & Vio regression only detections have been used.

7.4.1 Modeling the Spectral Energy Distributions

Following a common approach (Landau et al. 1986, Comastri et al. 1995, Sambruna et al. 1996, Fossati et al. 1998, Wolter et al. 1998) we have parameterized the synchrotron peak of the Spectral Energy Distribution (SED) of all BL Lacs and FRI galaxies in our subsample with a parabola of the form:

$$\log(\nu L_{\nu}) = a(\log \nu)^2 + b\log \nu + c \tag{7.1}$$

The coefficients of the parabola are calculated solving the system of three equations in three unknowns for each source. This approach ignores the measurement errors and can thus lead to incorrect results. However, due to the paucity of data points, a fitting procedure including these errors yields coefficients of the parabolae basically undistinguishable from those obtained from a simple parameterization. The resulting parabolae are shown in Fig. 7.17 and 7.18 for the FRI galaxies and the BL Lac objects, respectively.

All of the SEDs of BL Lacs and most of those of FRI galaxies can be modeled by convex (downward) parabolae. However, 6 FRI galaxies require concave (upward) parabolae. A concave shape might be obtained if the frequency of the minimum between the synchrotron and the inverse Compton peaks falls close to the V-band and we observe the rising side of the inverse Compton bump in the X-rays (see Fig. 4.2). This might happen for FRI galaxies considering that, in the relativistic beaming scenario, the double-peaked shape of the SED is expected to be preserved but shifted to lower frequencies with respect to the BL Lacs. However, the required beaming factor would be quite large, at least of the order of ten or more.

Another possibility is that, since the data points are from non-simultaneous observations, variability might have affected the true shape of the SED. In this case our parabolic model would not be reliable. On the other hand, this is usually not a problem for the FRI galaxies which do not show strong variability.

The most likely possibility is that the SEDs of these objects are atypical. In fact, almost all of them show peculiar features, such as dust lanes (M 84, 3C 270, 4C +26.42), highly distorted radio structures (3C 288) or intermediate FRI/FRII radio properties (Her A). Therefore, these objects are probably not representative of the FRI class and we will consider the parameterization of their SEDs as not reliable.

From the parabolic model it is in principle possible to calculate the peak frequency $\nu_{\rm peak}$ and the corresponding power $\nu_{\rm peak}L_{\nu_{\rm peak}}$. By applying the parabolic parameterization to the curves in Fig. 4.2 from Donato et al. (2001) it can be found that, in general, the thus calculated $\nu_{\rm peak}$ agrees with the true peak position within an error of $\sim 10\%$ and the $\nu_{\rm peak}L_{\nu_{\rm peak}}$ within $\lesssim 10\%$. Therefore, $\nu_{\rm peak}$ can be used in the majority of cases as a good criterium to distinguish between LBL and HBL. In fact, it can be seen from Fig. 7.19 that most of the objects with $\alpha_{\rm rx} \lesssim 0.75$ corresponding to the definition of HBL (Fossati et al. 1998) have $\nu_{\rm peak} \gtrsim 10^{14-15}$ Hz, whereas those with $\alpha_{\rm rx} \gtrsim 0.75$ corresponding to LBL have $\nu_{\rm peak} \lesssim 10^{14-15}$ Hz. Only the FRI galaxies have too high or too low $\nu_{\rm peak}$ with respect to their $\alpha_{\rm rx}$. Those with very low $\nu_{\rm peak}$ are the peculiar objects discussed above, for which the parabolic parameterization of their SED very likely cannot be applied. However, the $\alpha_{\rm rx}$ criterium has been defined for BL Lacs and not for the FRI galaxies. The fact that at a given peak frequency the FRI galaxies have larger $\alpha_{\rm rx}$ than BL Lacs might be an indication that the X-ray emission is more beamed than the radio emission when the viewing angle

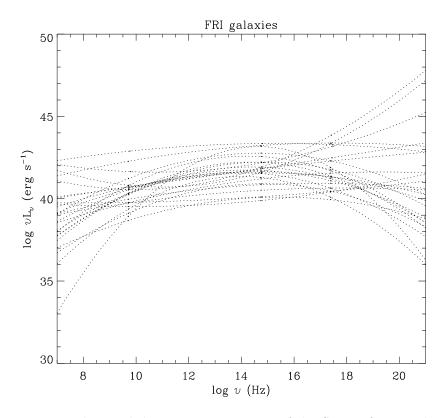


Figure 7.17: The parabolic parameterizations of the SEDs of FRI galaxies.

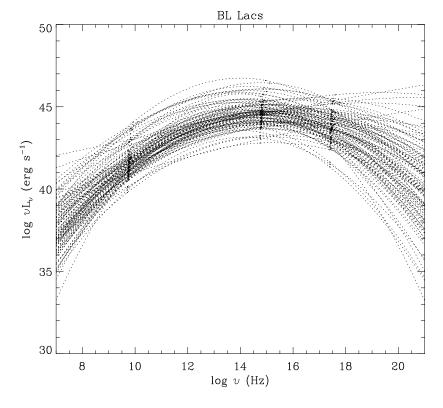


Figure 7.18: The parabolic parameterizations of the SEDs of BL Lacs.

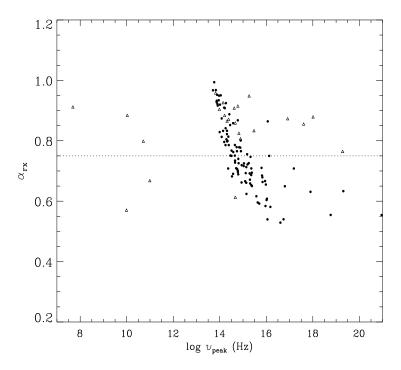


Figure 7.19: The broad band spectral index α_{rx} , calculated at 5 GHz and 1 keV, plotted versus $\log \nu_{peak}$ as obtained from the parabolic parameterization of the SEDs of the FRI galaxies (triangles) and BL Lac objects (circles).

becomes smaller.

Excluding the peculiar sources with a concave parabola, the $\nu_{\rm peak}$ of both BL Lacs and FRI galaxies fall in the range from $\sim 10^{13}$ to 10^{20} Hz with no statistically significant difference ($z=0.27,\ prob.=0.79$ from a two-sample test) at the 5% level between the two classes. On the other hand, BL Lacs have significantly higher $\nu_{\rm peak}L_{\nu_{\rm peak}}$ than FRI galaxies ($z=7.04,\ prob.=0$, see Fig. 7.20). This is in agreement with the beaming model where the luminosities are shifted to higher values by an amount δ^4 (in the case of an isotropic source) and the frequencies only by δ (see Eq. 3.6 and 3.3). The largest discrepancies between the two classes are therefore expected in the luminosities and not in the peak frequencies where a significant overlap should be observed.

7.4.2 Beaming the SEDs of FRI galaxies

If, as currently believed, the FRI galaxies are the parent population of BL Lac objects their nuclear properties should be consistent with those of BL Lacs after relativistic beaming has been taken into account. Therefore, to test if the results are consistent with the claim that BL Lacs are the beamed counterparts of FRI galaxies, we apply relativistic beaming to the parabolic SEDs of FRI galaxies from § 7.4.1 and we calculate the "beaming tracks" in the various luminosity-luminosity planes. The frequencies and the monochromatic luminosities are beamed according to Eq. (3.3) and (3.5). As a first step the same amount of beaming, i.e. the same δ , has been used in all three wavebands. For the spectral indices α we use the slopes calculated locally from the parabolic parameterization of the SED of each source.

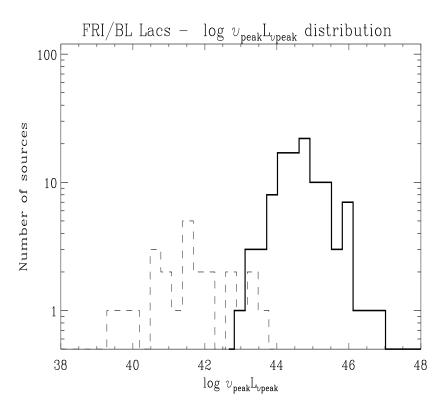


Figure 7.20: The $\nu_{\rm peak}L_{\nu_{\rm peak}}$ distributions of FRI galaxies (dashed line) and BL Lacs (solid line).

We checked if the use of these slopes is appropriate by comparing those inferred from the SEDs in Fig. 4.2 with those obtained from their parabolic parameterization. In general the parabolic slopes can differ considerably from the true ones, however, the discrepancies in the beaming tracks obtained in the two cases do not significantly affect the results. The resulting beaming tracks for five selected objects with $\nu_{\rm peak}$ which are representative of the whole range of values obtained for the FRI galaxies are shown in Figs. 7.21-7.23.

In every luminosity-luminosity plane the beamed FRI galaxies appear to fall into the BL Lac region for $\delta=4-10$. However, most of the objects with beaming tracks crossing the HBL region of the $L_{\rm X}-L_{\rm O}$ plane tend to fall in the LBL region of the $L_{\rm X}-L_{\rm R}$ and $L_{\rm R}-L_{\rm O}$ planes, as if the radio emission were too much enhanced with respect to that in the other two bands. We therefore apply different beaming factors in the three wavebands to see if better results could be obtained. As shown in Fig. 7.24-7.26, we find good agreement between the luminosities of "beamed" galaxies and BL Lacs for $\delta_{\rm x}=4$, $\delta_{\rm o}=5$ and $\delta_{\rm r}=2$ (assuming p=2, see Eq. (3.5)). The majority of the beamed objects fall now consistently in the HBL regions in all of the luminosity-luminosity planes. The objects with a concave SED also fall mostly in the HBL regions, however, the results are in this case not reliable since we are not sure that their SEDs can be well represented by a parabola.

In § 7.5 the choice of these beaming factors will be further justified.

7.5 Interpretation of results

In this section we discuss the main results of the regression analyses and of the modeling of the SEDs of the objects, reported in §§ 7.3 and 7.4.1, in the context of the unification scheme for FRI galaxies and BL Lacs.

7.5.1 Low-energy and High-energy-peaked FRI galaxies

Since two kinds of BL Lac objects exist, LBL and HBL, if the unification scheme is valid it is expected to find these subclasses also among their parent objects, i.e. the FRI galaxies. As remarked in the introduction of this chapter, there is some evidence, although still not constraining, that this is the case (Trussoni et al. 2003). From the parabolic parameterization of the SED of the FRI galaxies in our sample, described in § 7.4.1, we find that 19 have $\nu_{\rm peak} \gtrsim 10^{14-15}$ Hz, and would thus be associated to HBL since beaming would shift it to even higher values. The only objects with unusual $\nu_{\rm peak} << 10^{14}$ Hz are those with a concave parabolic SED that, as we have already remarked in § 7.4.1, are all atypical FRI galaxies. Leaving them aside, it seems that only HBL-like galaxies are present in our sample. This is also supported by the results of § 7.4.2 where we have found that almost all objects would fall in the HBL region if their luminosities were beamed. The absence of Low-energy-peaked FRI galaxies might, however, be the consequence of selection effects. From the average luminosities listed in Table 7.1 it is possible to estimate the "amount of beaming" using Eq. (3.5) which, taking the logarithms, transforms into:

$$\log L_{\nu}^{\text{beamed}} - \log L_{\nu}^{\text{unbeamed}} = (p + \alpha_{\nu}) \log \delta_{\nu} = \Delta_{\nu}$$
 (7.2)

The quantity Δ_{ν} depends both on the beaming factor δ_{ν} and on the spectral slope α_{ν} . Since we have found that our FRI galaxies are essentially all High-energy-peaked objects,

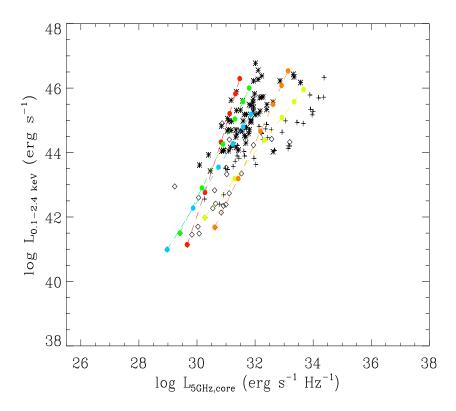


Figure 7.21: Beaming tracks in the $L_{\rm X}$ - $L_{\rm 5GHz,core}$ plane for 5 FRI galaxies. FRI galaxies are represented by diamonds, LBL by crosses and HBL by stars. The colored circles lying on the beaming tracks correspond to increasing values of $\delta = 0, 2, 4, 6, 8, 10$.

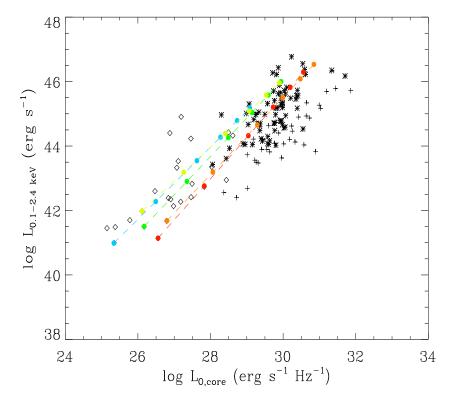


Figure 7.22: Beaming tracks in the $L_{\rm X}$ - $L_{\rm O,core}$ plane for 5 FRI galaxies. FRI galaxies are

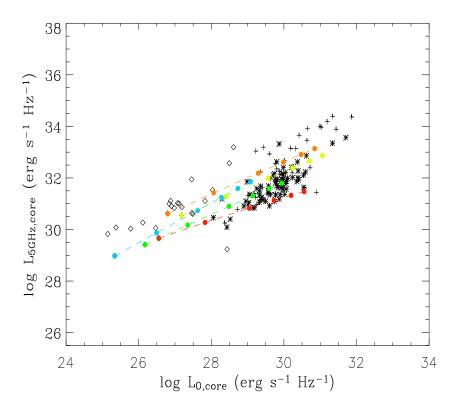


Figure 7.23: Beaming tracks in the $L_{\rm R,core}$ - $L_{\rm O,core}$ plane for 5 FRI galaxies. FRI galaxies are represented by diamonds, LBL by crosses and HBL by stars. The colored circles lying on the beaming tracks correspond to increasing values of $\delta = 0, 2, 4, 6, 8, 10$.

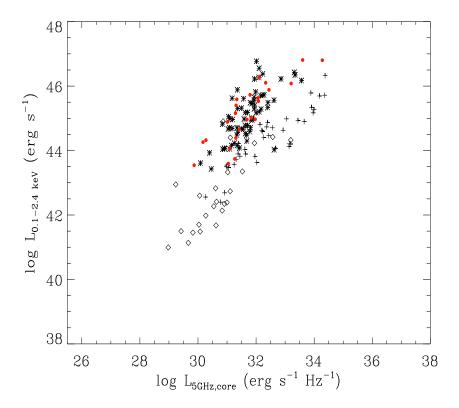
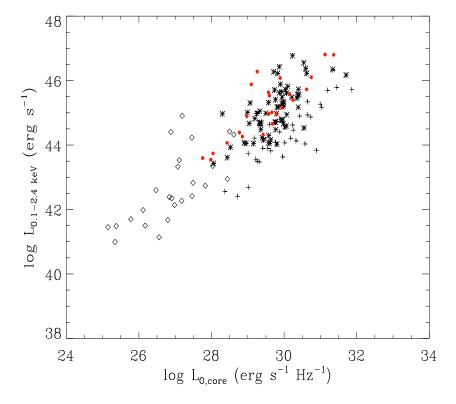



Figure 7.24: Results from the application of relativistic beaming to the FRI galaxies with $\delta_r=2$ and $\delta_x=4$ (red circles) compared to the BL Lacs. FRI galaxies are represented by diamonds, LBL by crosses and HBL by stars.

 $Figure \ 7.25: \ Results \ from \ the \ application \ of \ relativistic \ beaming \ to \ the \ FRI \ galaxies \ with$

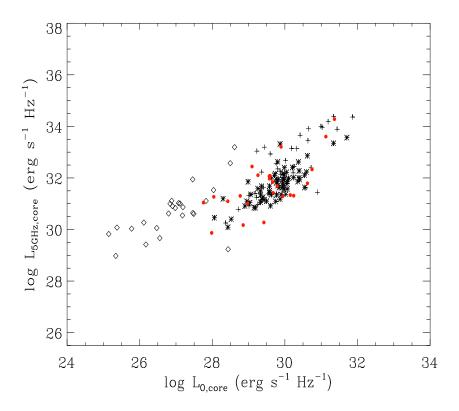


Figure 7.26: Results from the application of relativistic beaming to the FRI galaxies with $\delta_r=2$ and $\delta_o=5$ (red circles) compared to the BL Lacs. FRI galaxies are represented by diamonds, LBL by crosses and HBL by stars.

in order to get δ_{ν} we compare their luminosities with those of HBL only. As spectral slopes we use the average values of those obtained from the parameterized SEDs of the single objects, namely $\alpha_{\rm x}=1.0$, $\alpha_{\rm r}=0.6$ and $\alpha_{\rm o}=0.9$. For p=3(2) we get $\delta_{\rm x}\sim4(8)$, $\delta_{\rm r}\sim2(3)$ and $\delta_{\rm o}\sim5(10)$. Assuming, in agreement with the currently accepted scenario, that the same amount of beaming applies to both HBL and LBL we can use these values to calculate the expected luminosities of LBL-like FRI galaxies from those of LBL. We obtain luminosities $L_{\rm X}\sim10^{42}$ erg s⁻¹, $L_{\rm R,core}\sim10^{31}$ erg s⁻¹ Hz⁻¹ and $L_{\rm O,core}\sim10^{28}$ erg s⁻¹ Hz⁻¹. These are of the same order as those of FRI galaxies in our sample. In particular, LBL-like objects do not seem to be excluded because of too low X-ray or optical core luminosities and, even using a higher radio beaming factor comparable to those in the other two bands would still lead to detectable cores. On the other hand, the assumption that the same beaming factors apply to both LBL and HBL could be incorrect.

A possibility with important consequences for the unified scheme might be that LBL-like FRI galaxies do not exist. The best way to further investigate this point would be to perform a detailed sampling of the SEDs of radio galaxies at as many frequencies as possible, with both high spatial resolution and sensitivity. It is hopeful that this will become feasible in the future with the help of improved instrumentation, both in space and on the ground.

7.5.2 The amount of beaming in BL Lacs

Comparing the nuclear luminosities of HBL with those of FRI galaxies we find that $\delta_{\rm x}=4(8), \, \delta_{\rm r}=2(3)$ and $\delta_{\rm o}=5(10)$ for p=3(2) (see § 7.5.1). Beaming the FRI luminosities using these Doppler factors reproduces quite well the behavior of HBL in the various luminosity-luminosity planes. Therefore it appears that our data indicate a similar amount of beaming in the X-ray and optical bands, but lower at radio frequencies. To estimate the beaming in the radio band we have used an average spectral index $\alpha_{\rm r}=0.6$, but the value obtained from measurements is $\alpha_{\rm r}=0.14$. Using this, however, does not change much the inferred $\delta_{\rm r}$ which remains of the order 2(3).

This low beaming factor might also be explained by the presence of a decelerating jet, as proposed for example by Georganopoulos & Kazanas (2003) and supported also by VLBA (Marscher 1999) and VLBI (Edwards & Piner 2002) observations. We know from variability studies that the X-rays are produced much closer to the central black hole than the radio emission. Therefore, if the jet is decelerating between these two emission regions, a lower beaming factor is expected in the radio band. However, this model cannot be proved by our data.

7.5.3 Luminosity correlations and unification scheme

We will now analyze wether the correlations found for FRI galaxies and BL Lacs are in agreement with the predictions of the unified scheme.

In the extremely simple model in which only one component is responsible for the emission at all observed wavelengths, the slopes of the correlations should not change when relativistic beaming is applied to the luminosities of the objects. FRI galaxies and BL Lacs should therefore exhibit correlations with similar slopes inside the statistical errors. In fact, assuming that a certain class of objects follows the correlation:

$$\log \mathcal{L}_1 = a + b \log \mathcal{L}_2 \tag{7.3}$$

applying Eq. (3.5) to \mathcal{L}_1 and \mathcal{L}_2 would lead to a relationship between the beamed luminosities:

$$\log L_1 = \alpha + \beta \log L_2 \tag{7.4}$$

where:

$$\alpha = a + (p + \alpha_1)\log \delta_1 - b(p + \alpha_2)\log \delta_2 \tag{7.5}$$

and $\beta = b$. The slope b does not change, independently of the values adopted for the spectral slopes α_1 and α_2 and the beaming factors δ_1 and δ_2 . The effect of beaming is simply to shift the intercept of the regression line, either to higher or to lower luminosities.

To better show the effect of relativistic beaming on the luminosity correlations we have performed a few simulations. We consider, as an example, the case of the X-ray - to - radio core correlation of FRI galaxies but the results can be generalized to any pair of luminosities. Fig. 7.27 shows the case in which the luminosities of the parent population are beamed assuming that the Doppler factors and spectral indices are the same for all sources, but different in the two wavebands. Values corresponding to $\delta_{\rm r}=2$ and $\delta_{\rm x}=12$ have been chosen to make the effect of beaming more evident and $\alpha_{\rm r}=0.0$ and $\alpha_{\rm x}=1.0$ have been used to approximately mimic the case of High-energy-peaked objects. As it can be seen, the effect of beaming has, in this case, the only effect of moving the regression line to higher luminosity in the vertical direction, but the slope is unchanged.

We can therefore compare the regression parameters (given in Table 7.2) of the FRI galaxies with those of BL Lacs and check if they are consistent with this model. We will use the results for the HBL only since, as discussed above, the FRI galaxies in our sample are exclusively associated with this class.

Only in the case of the $L_{\rm R,core}$ - $L_{\rm O,core}$ correlation the slopes for FRI galaxies and HBL are similar within the errors, consistently with the hypothesis that the same component is responsible for the emission at both wavelengths. In the other two cases the slope of the HBL is significantly steeper than that of the FRI galaxies.

To investigate how, in the context of a simple beaming model involving only one emission component, the slope of a correlation can vary we have performed further simulations changing the assumptions on the beaming factors and the spectral indices of the sources. Figs. 7.28 and 7.29 show the results obtained assuming that, in the first case, the beaming factors differ among the sources and are gaussianly distributed, and, in the second case, that the beaming factor is a linear function of the luminosity of the objects. In both simulations there are some indications that the slope changes, however, the scatter of the beamed objects is too large with respect to what is actually found and the overall behavior does not reproduce well that observed for the HBL in our sample. Therefore, although a range of Doppler factors might contribute to modify the slope of a correlation, the results above do not provide strong evidence that this is decisive. We also remark that using different distributions for the beaming factors (i.e. uniform, bimodal, etc.) or beaming

Figure 7.27: Simulation of the effect of relativistic beaming onto a population of objects characterized by a linear correlation between two given luminosities. Unbeamed and beamed objects, together with their best fit regression lines, are plotted in black and red, respectively. The black dots are the real X-ray and radio core luminosities of the FRI galaxies. The same beaming factors ($\delta_1 = 12$ and $\delta_2 = 2$) and spectral indices ($\alpha_1 = 1.0$ and $\alpha_2 = 0.0$) have been used for all sources.

only 10% of one of the luminosities or using a range of spectral indices for the sources, all lead to very little changes in the slope of the correlations.

None of the attempts to interpret the different slopes of the correlations of the unbeamed and beamed populations in terms of simple relativistic beaming models with only one emission component have been successful. It seems, therefore, that more emission components are required. Since different slopes are found for both correlations involving the X-ray luminosity it is reasonable to postulate the existence of (at least) an additional X-ray component. The simplest model capable to explain the observed change in slope would thus be that in FRI galaxies the first component is dominant, whereas the second one is too weak or hidden, and in BL Lacs the second component becomes prominent with respect to the first one due, for example, to relativistic beaming. Both components should be correlated to the radio and optical emission but with different slopes, as observed. A similar two-component model has been suggested before for the radio-loud quasars (Zamorani et al. 1981, Browne & Murphy 1987, Kembhavi 1993, Baker et al. 1995) a fact which would establish a close relationship between the emission mechanisms in the two classes of objects (but see also the discussion of § 8.4.1).

A possible candidate for this additional component is unresolved thermal emission from the hot corona of the host galaxy. However, it is difficult to explain how this could be so tightly correlated with the radio and optical emission. A tentative and qualitative justification for such correlations might be that with larger gas masses of the hot corona, and thus larger X-ray luminosities, more fuel is available for the AGN, consequently resulting in an overall increased power and therefore also in larger radio and optical luminosities. However, the nature of such a component cannot be established by these data and it would be desirable to determine it through a detailed X-ray spectral analysis, either from XMM or Chandra observations, of a large sample of FRI galaxies, with both higher sensitivities and spatial resolution than ROSAT.

7.6 Summary of results

- BL Lac objects, both LBL and HBL, differ from FRI galaxies in having brighter cores at all wavelengths, in agreement with the relativistic beaming scenario. LBL are brighter than HBL in the optical and in the radio bands, whereas HBL are significantly brighter in X-rays, consistently with the different shapes of their SEDs.
- BL Lac objects and FRI galaxies have a comparable range of extended radio luminosities, however, the objects in the second class are less core-dominated, as predicted by the unified scheme. LBL and HBL appear similarly core-dominated.
- The nuclear luminosities at all wavelengths are highly correlated in both, BL Lacs and FRI galaxies. HBL and FRI galaxies follow a similar $L_{\rm R,core}$ - $L_{\rm O,core}$ correlation with a slope $b\sim 1$, whereas the slopes of the $L_{\rm X}$ - $L_{\rm O,core}$ and $L_{\rm X}$ - $L_{\rm R,core}$ are different for FRI galaxies ($b=1.33\pm0.20$ and $b=1.23\pm0.12$, respectively) and HBL ($b=1.72\pm0.11$ and $b=1.32\pm0.12$, respectively). All slopes found for the LBL differ from those of the other two classes ($b=1.51\pm0.15$, $b=1.25\pm0.09$ and $b=0.79\pm0.06$ for the $L_{\rm R,core}$ - $L_{\rm O,core}$, $L_{\rm X}$ - $L_{\rm O,core}$ and $L_{\rm X}$ - $L_{\rm R,core}$ correlations, respectively).
- From the modeling of the SEDs of the FRI galaxies the estimated synchrotron peak

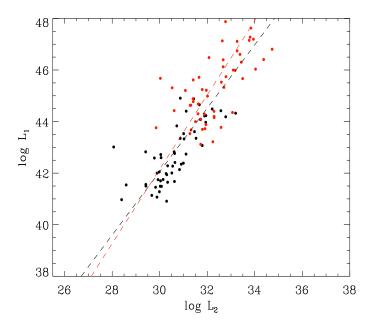


Figure 7.28: Simulation of the effect of relativistic beaming onto a population of objects characterized by a linear correlation between two given luminosities. Unbeamed and beamed objects, together with their best fit regression lines, are plotted in black and red, respectively. The black dots are the real X-ray and radio core luminosities of the FRI galaxies. A Gaussian distribution of beaming factors is assumed and the same spectral indices ($\alpha_1 = 1.0$ and $\alpha_2 = 0.0$) for all sources have been used.

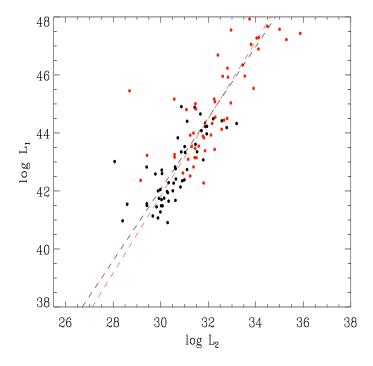


Figure 7.29: Simulation of the effect of relativistic beaming onto a population of objects characterized by a linear correlation between two given luminosities. Unbeamed and beamed objects, together with their best fit regression lines, are plotted in black and red, respectively. The black dots are the real X-ray and radio core luminosities of the FRI galaxies. A

frequencies are consistent with those of HBL-like objects except for a few peculiar sources. Selection effects seem not to have played any role in excluding LBL-like objects from our sample. A better sampling of the SEDs of FRI galaxies is needed to further investigate the existence of Low-energy-peaked objects in this class.

- Similar beaming factors ($\delta \sim 4-5$) are required in the X-ray and optical bands in order to interpret the BL Lacs (HBL) as the beamed counterparts of the FRI galaxies. A lower value appears to be required in the radio band ($\delta \sim 2-3$). A possible way to explain such a lower value is by means of a jet decelerating between the regions of X-ray and radio emission.
- The analysis of the correlations in the three wavebands leads to the requirement of (at least) two emission components in the X-ray band. Both components have to be correlated with the radio and optical emission. The nature of this second component cannot be determined from our data.

Chapter 8

The data: FRII galaxies vs. radio-loud quasars

8.1 Introduction

In the context of the unified scheme for radio-loud AGN FRII radio galaxies are considered to be the unbeamed counterparts of radio-loud quasars. With decreasing viewing angle the same object would be classified progressively as a Narrow Line Radio Galaxy (NLRG), then as a Broad Line Radio Galaxy (BLRG) or, at higher luminosities, as a Steep Spectrum Radio Quasar (SSRQ), and finally as a Flat Spectrum Radio Quasar (FSRQ). BLRG and SSRQ show both broad and narrow emission lines in their optical spectra contrary to the NLRG which have only narrow lines. However, the radio emission of all these three classes is dominated by the extended lobes and not by the core as in FSRQ.

The unification of SSRQ with FSRQ dates back to the relativistic beaming model proposed by Orr & Browne (1982). They determined the distribution of the core-dominance, defined as $R_{\rm C} = L_{\rm R,core}/L_{\rm R,extended}$ for a sample of randomly oriented sources and fitted it to the observed one for a complete sample of quasars. Using 5 GHz luminosities they found $R_{\rm C}(90^{\circ}) = 0.024$ at transverse orientation and a bulk Lorentz factor of $\Gamma \sim 5$.

Later on, Browne & Murphy (1987) developed this model further including also the X-ray emission, which is postulated to have two components, one directly proportional to the radio core emission and beamed at small viewing angles, and the other isotropic. Only for angles $\lesssim 15^{\circ}$ the beamed X-ray emission appears to be dominant with respect to the isotropic component. Different correlations are found between the X-ray and radio core luminosities of SSRQ and FSRQ, with slopes $b=0.40\pm0.06$ and $b=0.70\pm0.07$, respectively.

Kembhavi (1993) refined the Browne & Murphy (1987) model in order to estimate the separate contributions of the two X-ray components using the radio data.

Baker et al. (1995) confirmed the existence of tight correlations between the X-ray and the radio core luminosities of radio-loud quasars, with a slope ($b = 0.36 \pm 0.10$) in the case of SSRQ, flatter than that for FSRQ ($b = 0.79 \pm 0.05$). The presence of both an isotropic and a beamed anisotropic component for the X-ray emission is capable to explain such behavior supporting the Kembhavi (1993) model.

It must also be remarked that, from the analysis of Einstein data, two X-ray components

were already proposed for the quasars by Zamorani et al. (1981) in order to explain the larger X-ray luminosities of radio-loud with respect to the radio-quiet objects and their different spectral properties.

FSRQ are also included in the blazar sequence (Fossati et al. 1998, Donato et al. 2001, see § 7.1) with Low-energy-peaked and High-energy-peaked BL Lacs. They are the objects with the lowest synchrotron peak frequencies ($\nu_{\rm peak} < 10^{14}$ Hz) and the highest bolometric luminosities. Recently, however, Padovani et al. (2003) discovered some FSRQ with broad band spectral indices $\alpha_{\rm ro}$ and $\alpha_{\rm ox}$ typical of HBL, a fact which might question the blazar sequence scenario if supported by more data.

Our sample contains 94 FRII radio galaxies and 862 radio-loud quasars (RLQ) (of which 14 are also classified as FRII). We could collect radio core fluxes from the literature for 380 quasars and 56 FRII galaxies. Among these galaxies, 23 also have optical core fluxes (of which 8 are upper limits) from HST observations, reported in Chiaberge et al. (2002).

In X-rays many FRII galaxies have only upper limits, with 37 non-detections out of 94 objects, representing $\sim 39\%$ of the total. A radio spectral index is available for 608 quasars: 387 are FSRQ ($\alpha_{\rm r} < 0.5$) and 221 are SSRQ ($\alpha_{\rm r} \geq 0.5$). For 286 quasars (187 FSRQ and 99 SSRQ) we have information on both the core flux and radio spectral index. 33 radio galaxies are also classified as NLRG and 17 as BLRG. Radio core fluxes are available for 23 NLRG and 13 BLRG and optical core fluxes for 8 NLRG and 9 BLRG only.

8.2 Luminosity distributions

In this section we analyse the properties of the luminosity distributions of FRII galaxies and radio-loud quasars. In Figs. 8.1-8.8 the histograms of the radio core, optical and X-ray luminosities and the 90% confidence contour plots of their means and intrinsic dispersions are presented; numerical values of the means and dispersions from both the Kaplan-Meier estimator and the Maximum Likelihood technique are given in Table 8.1. Results are shown separately for SSRQ, FSRQ, NLRG and BLRG. The optical luminosities of FRII galaxies are calculated from the core fluxes given in Chiaberge et al. (2000) extrapolated to the V band; those of radio-loud quasars are calculated from their total magnitudes.

8.2.1 The total radio luminosity distributions

Fig. 8.1 shows the distributions of the total radio luminosities of FRII galaxies and radio-loud quasars compared to the total sample and Fig. 8.2 displays the 90% confidence level contour plots of the mean luminosities and intrinsic dispersions. It seems that both, FRII galaxies and radio-loud quasars, share a common range of total radio luminosities, from $\sim 10^{30}$ to $\sim 10^{36}$ erg s⁻¹ Hz⁻¹. However, a two-sample test finds a difference between the average luminosities for the two classes, which is significant at the 5% level (z=3.17, prob.=0.001). NLRG and SSRQ have comparable total radio luminosities, whereas BLRG appear to have slightly lower values. However, the difference with NLRG is only marginally significant (z=1.93, prob.=0.05) at the 5% level. FSRQ have significantly higher values than all other classes.

A	1	•	• , •
Average	100	mın	osities

	Average fun		
Luminosity	Group	$\log L^{\mathrm{KM}}$	$\log L^{ m ML}$
(1)	(2)	(3)	(4)
$L_{0.1-2.4 \text{ keV}}$	FRII galaxies	43.46 ± 0.15	$44.09 \pm 0.87^{\dagger}$
(erg s^{-1})	NLRG	42.89 ± 0.28	$43.75 \pm 1.00^{\dagger}$
	BLRG	44.24 ± 0.17	$44.32 \pm 0.65^{\dagger}$
	SSRQ	45.43 ± 0.04	45.43 ± 0.56
	FSRQ	45.69 ± 0.03	45.72 ± 0.60
$L_{\rm O,core}$	FRII galaxies	27.25 ± 0.30	$28.06 \pm 0.97^{\dagger}$
$({\rm erg}\ {\rm s}^{-1}\ {\rm Hz}^{-1})$	NLRG	26.06 ± 0.23	$26.47 \pm 0.05^{\dagger}$
	BLRG	28.68 ± 0.16	$28.68 \pm 0.46^{\dagger}$
	SSRQ	30.72 ± 0.04	30.72 ± 0.57
	FSRQ	30.89 ± 0.03	30.90 ± 0.61
$L_{5\mathrm{GHz,tot}}$	FRII galaxies	33.53 ± 0.09	33.53 ± 0.86
$(\text{erg s}^{-1} \text{ Hz}^{-1})$	NLRG	33.70 ± 0.18	33.71 ± 1.06
	BLRG	33.17 ± 0.10	33.17 ± 0.40
	SSRQ	33.71 ± 0.05	33.71 ± 0.68
	FSRQ	34.37 ± 0.04	34.37 ± 0.80
$L_{5\mathrm{GHz,core}}$	FRII galaxies	31.43 ± 0.13	31.44 ± 0.94
$(\text{erg s}^{-1} \text{ Hz}^{-1})$	NLRG	31.12 ± 0.17	31.20 ± 0.80
	BLRG	31.82 ± 0.23	31.82 ± 0.82
	SSRQ	32.79 ± 0.08	32.78 ± 0.76
	FSRQ	33.99 ± 0.07	34.00 ± 0.90

[†] Detections only.

Table 8.1: Column 1: luminosity. Column 2: group of objects. Column 3: mean of luminosity and related error from the generalized Kaplan-Meier estimator. Column 4: mean and intrinsic dispersion of luminosity from the Maximum-Likelihood technique.

The intrinsic dispersions are significantly different from zero for all objects, with NLRG reaching a value of $\log \sigma_{\rm intr} \sim 1.1$ and the BLRG a much lower value of $\log \sigma_{\rm intr} \sim 0.4$. However, the total luminosities in the radio band are dominated by the core in FSRQ and by the lobes in the other classes, therefore it is necessary to compare separately the emission of these two components. This will be done in §§ 8.2.2 and 8.3.1.

8.2.2 The radio core luminosity distributions

The radio core luminosity distributions of FRII galaxies and radio-loud quasars are presented in Fig. 8.3 and the 90% confidence contour plots of the mean luminosities and intrinsic dispersions in Fig. 8.4.

It appears that, unlike what was observed for the total luminosities, the distributions of core luminosities for the two classes are more distinct, with that of the FRII galaxies moving to lower values in the range from $\sim 10^{29}$ to $\sim 10^{34}$ erg s⁻¹ Hz⁻¹.

The hypothesis that the radio core luminosities of NLRG and BLRG belong to the same distribution can formally not be rejected ($z=2.19,\,prob.=0.03$). The core luminosities of SSRQ are significantly larger than those of both NLRG and BLRG and those of FSRQ are larger than for the SSRQ. These findings support the scenario in which NLRG, BLRG, SSRQ and FSRQ constitute a sequence of objects observed at progressively smaller viewing angles and therefore with increasingly beamed and more luminous cores.

As further support to this unified scheme, the hypothesis that the extended luminosities of FRII galaxies and radio-loud quasars, calculated by subtracting the core from the total luminosity, belong to the same distribution cannot be rejected at the 5% significance level ($z=0.69,\ prob.=0.49$).

The differences between intrinsic dispersions for the various classes are small, falling in a narrow range between $\log \sigma_{\rm intr} \sim 0.75-0.95$. Since NLRG and BLRG have very different intrinsic dispersions of the total but not of the core luminosities (see § 8.2.1) the former discrepancy has to be attributed to the extended emission. However, this is not easily explained in the context of the unified scheme.

8.2.3 The optical luminosity distributions

The optical luminosity of the host galaxy of a radio-loud quasar is usually dominated by the active nucleus. We can therefore compare the total optical luminosity of RLQ with the core optical luminosity of FRII radio galaxies.

The optical luminosity distributions of both FRII galaxies and radio-loud quasars are depicted in Fig. 8.5, whereas Fig. 8.6 shows the 90% confidence level contour plots of the mean luminosities and intrinsic dispersions for the various classes.

The distribution of the radio-loud quasars is situated at much larger optical luminosities than that of the galaxies, reaching $\sim 10^{33}$ erg s⁻¹ Hz⁻¹, even if a few objects are found at values of $\sim 10^{27}$ erg s⁻¹ Hz⁻¹, more typical of FRII galaxies.

FSRQ appear to have only a slightly higher average optical luminosity than SSRQ, however, a two-sample test finds this difference significant at the 5% level ($z=3.10,\,prob.=0.0$). Much larger, about three orders of magnitude, is the discrepancy between the optical core luminosities of FRII galaxies and those of both, SSRQ and FSRQ. Considering separately BLRG and NLRG it can be seen in Fig. 8.6 that the first class of objects has

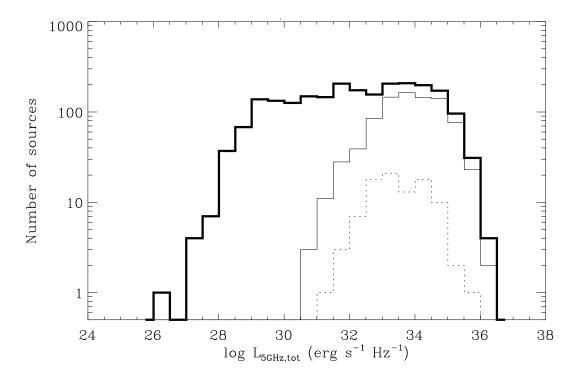


Figure 8.1: Total 5 GHz radio luminosity distributions for the FRII galaxies (dotted line), the radio-loud quasars (thin solid line) and the total sample (thick solid line).

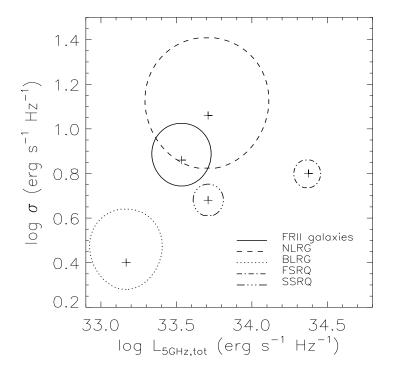


Figure 8.2: 90% confidence level contour plots for the total 5 GHz luminosity and intrinsic dispersion of all FRII galaxies, NLRG, BLRG, SSRQ and FSRQ. The crosses indicate the average $\log L_{R,tot}$ and $\log \sigma$.

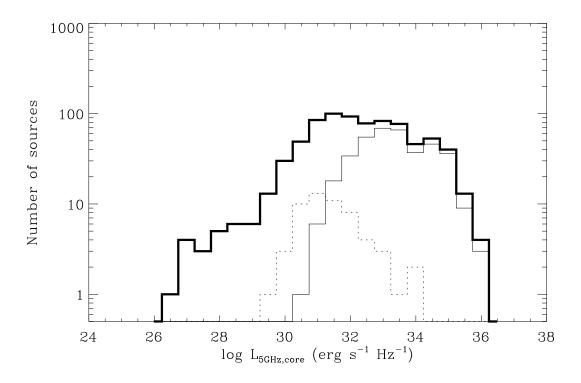


Figure 8.3: 5 GHz core radio luminosity distributions for the FRII galaxies (dotted line), the radio-loud quasars (thin solid line) and the total sample (thick solid line).

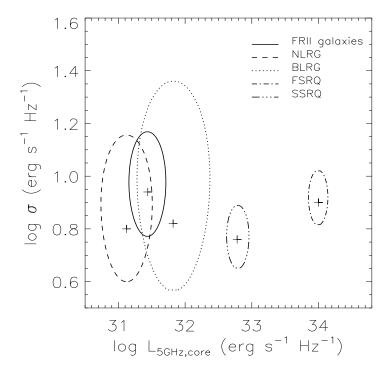


Figure 8.4: 90% confidence level contour plots for the 5 GHz core luminosity and intrinsic dispersion of all FRII galaxies, NLRG, BLRG, SSRQ and FSRQ. The crosses indicate the average log $L_{\rm R,core}$ and log σ .

luminosities more than two orders of magnitude larger than the second. However, it must be remarked that the number statistics is rather poor in this case, with only 9 and 8 objects in each class, respectively. The intrinsic dispersion is consistent with zero in the case of the NLRG alone, whereas it is larger for the BLRG. SSRQ and FSRQ have similar values around $\log \sigma_{\rm intr} \sim 0.6$.

8.2.4 The X-ray luminosity distributions

Similar to what was discussed in Chapter 7 for FRI galaxies and BL Lac objects, we can reasonably suppose that the X-ray emission in both, FRII galaxies and RLQ, is mainly non-thermal and of nuclear origin because it is known to be tightly correlated with that in the radio band (e.g. Hardcastle & Worrall 1999), also confirmed by the regression analysis discussed in § 8.3.4. We can therefore directly compare the X-ray properties of FRII galaxies with those of radio-loud quasars. Figs. 8.7 and 8.8 show their X-ray luminosity distributions and the 90% confidence level contour plots of their means and intrinsic dispersions, respectively.

The luminosities of FRII galaxies cover an interval of $\sim 10^{40}-10^{46}~{\rm erg~s^{-1}}$, whereas those of radio-loud quasars range from $\sim 10^{42}~{\rm to} \sim 10^{48}~{\rm erg~s^{-1}}$, with a wide overlap with the first class of objects.

The X-ray emission of both SSRQ and FSRQ is significantly stronger than that of FRII galaxies with luminosities higher by about two orders of magnitude, when upper limits are properly taken into account. SSRQ are less luminous than FSRQ and, according to a two-sample test, the difference is significant at the 5% level (z = 4.75, prob. = 0.0). Among the galaxies, BLRG have larger X-ray luminosities than NLRG and the hypothesis that they are drawn from the same distribution is also rejected at 5% significance level (z = 3.18, prob. = 0.0).

The above results are all in qualitative agreement with the unified scheme. The intrinsic dispersions of BLRG, SSRQ and FSRQ are approximately similar, around a value of $\log \sigma_{\rm intr} \sim 0.6$, whereas the NLRG show larger scatter with $\log \sigma_{\rm intr} \sim 1.0$.

8.3 Correlation and regression analysis

As we have seen in the introduction of this chapter good correlations of the X-ray with the radio core luminosity have been found for both SSRQ and FSRQ, however, with different slopes. This has suggested the existence of two X-ray components in radio-loud quasars. Significant correlations of the optical emission with both the X-ray and radio core emission have also been found (Browne & Murphy 1987, Baker 1997, Siebert et al. 1996, Brinkmann et al. 1997, Hardcastle & Worrall 1999) and are discussed in the various subsections below.

A good X-ray - to - radio core correlation is also known to exist for the FRII galaxies (Siebert et al. 1996, Hardcastle & Worrall 1999) and the close relationship between the optical and radio core luminosities was discussed in Chiaberge et al. (2000), although different trends were identified for BLRG and NLRG, with the first objects showing an optical excess with respect to the regression line obtained for the latter, coincident also with that found for FRI galaxies.

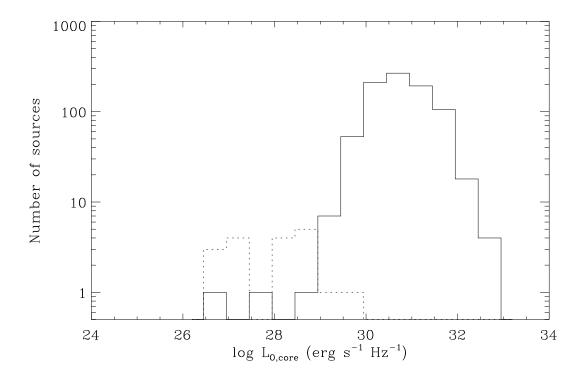


Figure 8.5: Optical V-band luminosity distributions for the FRII galaxies (dotted line) and the radio-loud quasars (solid line). The total and core luminosities are used for the radio-loud quasars and the FRII radio galaxies, respectively.

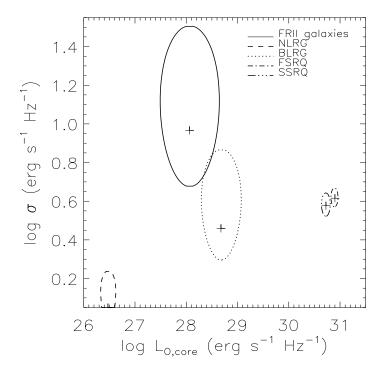


Figure 8.6: 90% confidence level contour plots for the optical V-band luminosity of FRII galaxies, NLRG, BLRG, SSRQ and FSRQ. The total and core luminosities are used for the radio-loud quasars and the FRII radio galaxies, respectively.

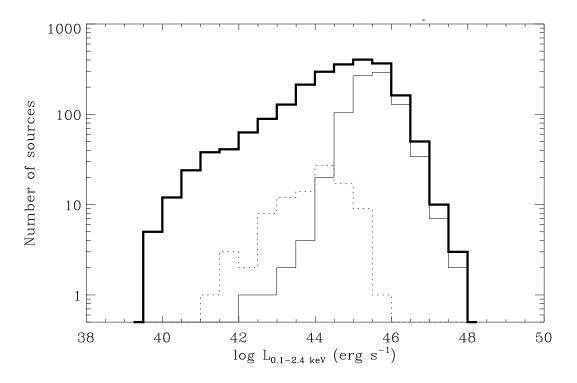


Figure 8.7: X-ray luminosity distributions for the FRII galaxies (dotted line), the radio-loud quasars (thin solid line) and the total sample (thick solid line).

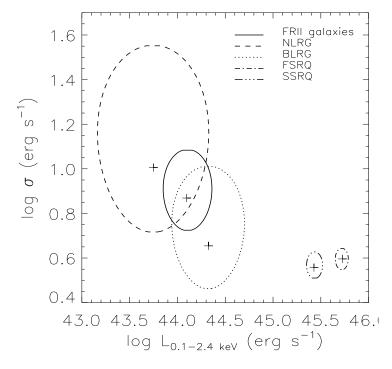


Figure 8.8: 90% confidence level contour plots for the 0.1 – 2.4 keV X-ray luminosity and intrinsic dispersion of FRII galaxies, NLRG, BLRG, SSRQ and FSRQ. The crosses indicate the average log $L_{\rm X}$ and log σ .

In this section we present the results from the correlation and regression analyses for FRII galaxies and radio-loud quasars, using the statistical methods described in Chapter 5 and already utilized in Chapters 6 and 7. To determine the statistical significance of the correlations we calculate generalized versions of both the Kendall's τ and partial Kendall's τ coefficients for censored data. We perform both the Buckley-James regression, allowing for the presence of upper limits, and the Fasano & Vio regression, including errors on the variables and a calculation of the intrinsic dispersion of the correlation. The results are given in Table 8.2 and will be discussed in § 8.4.1.

We do not show the parameters of the regression lines for BLRG and NLRG separately because, in all cases, no significant correlations could be found due to the small number of objects with available radio and optical core fluxes. In all the other cases the correlations are significant at the 5% level.

8.3.1 The radio - to - radio luminosity correlations

Fig. 8.9 shows the radio total versus core luminosity for the whole sample (top panel) and for FRII galaxies and radio-loud quasars only (bottom panel). FRII radio galaxies appear as objects essentially dominated by their extended emission, FSRQ are core-dominated, whereas SSRQ display lower core luminosities with respect to their total emission, but still higher than those of the FRII galaxies. These are likely objects observed at intermediate viewing angles with respect to the galaxies and the core-dominated quasars.

Fig. 8.10 gives the radio extended versus core luminosities of the various objects and illustrates well the similarity of the extended emission of radio-loud quasars, both FSRQ and SSRQ, and FRII galaxies compared to the large range of their core emission. The slopes of the regression lines are similar within the errors for all the three classes and close to unity ($b = 1.24 \pm 0.16$ for the FRII galaxies, $b = 1.12 \pm 0.11$ for SSRQ, $b = 1.01 \pm 0.05$ for FSRQ). Going from the FRII galaxies to the SSRQ to the FSRQ the regression lines are just shifted towards higher core luminosities in agreement with the hypothesis that the core emission is enhanced by relativistic beaming, whereas the extended emission remains constant.

8.3.2 The radio - to - optical luminosity correlations

Figs. 8.11 and 8.12 show, respectively, the radio - to - optical planes for FRII galaxies and radio-loud quasars superposed on the rest of the sample and of FRII galaxies and radio-loud quasars only. In Fig. 8.11 the total luminosities are used for all objects in both wavebands, whereas in Fig. 8.12 the optical core luminosities are taken for the FRII galaxies and the radio core luminosities for both classes.

The radio and optical core luminosities appear to be correlated in both, FRII galaxies and radio-loud quasars. However, the results for FRII galaxies are based on only 23 objects of which 8 are upper limits (in the optical band). A clear trend is observed for radio-loud quasars, with FSRQ and SSRQ following almost parallel lines with similar slopes (within the statistical errors) of $b=1.90\pm0.12$ and 2.18 ± 0.20 , respectively. FSRQ are found at the higher end of the radio core luminosity distribution of radio-loud quasars. The FRII galaxies clearly do not follow the same correlation as the quasars, but have a much flatter trend with $b=0.84\pm0.27$ (when the optical upper limits are considered). This

ъ .	1 •
Regression	analysis
I CEI COSIOII	anarysis

Regression analysis							
Correlation	Group	Buckley-James	Fasano & Vio				
(1)	(2)	(3)	(4)				
		a = 8.23	$a = 16.48 \pm 4.28$				
$\log L_{ m R,core} - \log L_{ m O,core}$	FRII galaxies	$b = 0.84 \pm 0.27$	$b = 0.52 \pm 0.15$				
		$\sigma = 1.058$	$\sigma_{\rm int} = 0.30 \pm 0.06$				
			Weighted rms= 0.529				
		a = -11.91	$a = -34.03 \pm 6.13$				
	SSRQ	$b = 1.46 \pm 0.15$	$b = 2.18 \pm 0.20$				
		$\sigma = 0.791$	$\sigma_{\rm int} = 0.85 \pm 0.12$				
			Weighted rms= 0.943				
		a = -9.80	$a = -24.66 \pm 3.68$				
	FSRQ	$b = 1.42 \pm 0.09$	$b = 1.90 \pm 0.12$				
		$\sigma = 0.915$	$\sigma_{\rm int} = 0.95 \pm 0.11$				
			Weighted rms= 0.993				
		a = 21.71	$a = 16.36 \pm 6.96$				
$\log L_{ m X} - \log L_{ m O,core}$	FRII galaxies	$b = 0.79 \pm 0.09$	$b = 0.97 \pm 0.25$				
			$\sigma_{\rm int} = 0.65 \pm 0.36$				
			Weighted rms= 0.749				
		a = 15.47	$a = 13.01 \pm 1.61$				
	SSRQ	$b = 0.98 \pm 0.04$	$b = 1.05 \pm 0.05$				
		$\sigma = 0.573$	$\sigma_{\rm int} = 0.19 \pm 0.02$				
			Weighted rms= 0.452				
		a = 16.27	$a = 13.43 \pm 1.36$				
	FSRQ	$b = 0.95 \pm 0.04$	$b = 1.05 \pm 0.04$				
		$\sigma = 0.679$	$\sigma_{\rm int} = 0.27 \pm 0.03$				
			Weighted rms= 0.538				
		a = 13.58	$a = 5.24 \pm 4.68$				
$\log L_{ m X} - \log L_{ m R,core}$	FRII galaxies	$b = 0.96 \pm 0.11$	$b = 1.23 \pm 0.15$				
		$\sigma = 0.948$	$\sigma_{\rm int} = 0.61 \pm 0.15$				
		22.72	Weighted rms= 0.781				
	CCDC	a = 23.50	$a = 23.58 \pm 1.59$				
	SSRQ	$b = 0.67 \pm 0.04$	$b = 0.66 \pm 0.05$				
		$\sigma = 0.621$	$\sigma_{\rm int} = 0.12 \pm 0.02$				
		22.54	Weighted rms= 0.367				
	EGDO	a = 22.94	$a = 22.87 \pm 1.11$				
	FSRQ	$b = 0.67 \pm 0.03$	$b = 0.67 \pm 0.03$				
		$\sigma = 0.693$	$\sigma_{\text{int}} = 0.15 \pm 0.02$				
			Weighted rms= 0.408				

Table 8.2: Results of the regression analysis for FRII galaxies and radio-loud quasars. Column 1: type of correlation. Column 2: groups of objects. Column 3: Buckley-James regression parameters of the bisector of the two fitted lines (see \S 5.5.4). Column 4: Fasano & Vio regression parameters. For the Fasano & Vio regression only detections have been used.

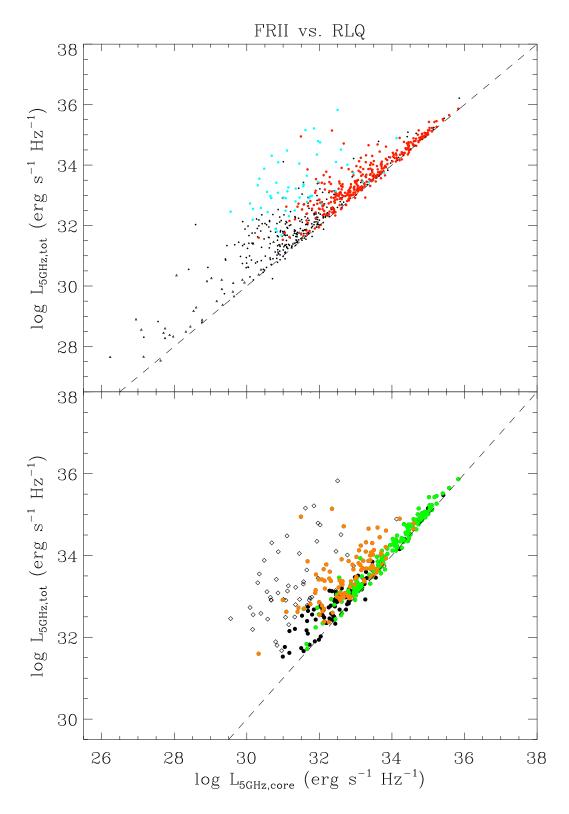


Figure 8.9: Top panel: the $L_{\rm R,tot}$ - $L_{\rm R,core}$ plane for the FRII galaxies (blue) and the radio-loud quasars (red) superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{\rm R,tot}$ - $L_{\rm R,core}$ plane for FRII galaxies (diamonds) and radio-loud quasars (circles) only. FSRQ are plotted in green and SSRQ in yellow. In both panels the line for which $L_{\rm R,tot} = L_{\rm R,core}$ is drawn.

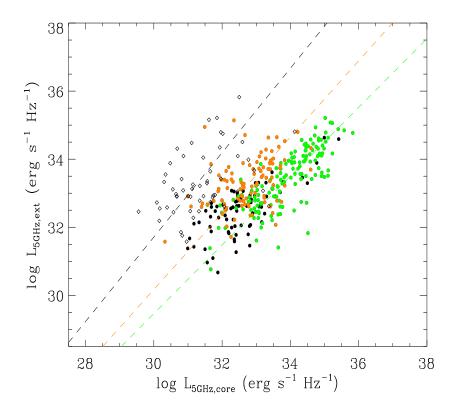


Figure 8.10: The $L_{\rm R,ext}$ - $L_{\rm R,core}$ plane for the FRII galaxies (diamonds) and the radio-loud quasars (circles). FSRQ are plotted in green and SSRQ in yellow. The regression lines for the three classes are also drawn.

relationship is consistent inside the errors, with what has been found for the FRI galaxies $(b=1.03\pm0.16)$, see Chapter 7). The regression analyses for NLRG and BLRG do not yield well constrained parameters due to their low number, however, the NLRG appear to follow a correlation with slope $b\sim0.8$, which is not very dissimilar from that of the FRI galaxies as a whole, considering the large errors. On the other hand, the BLRG show an optical excess with respect to this correlation. These results are in agreement with those of Chiaberge et al. (2000), however, it must be stressed that the samples considered are still too small to draw firm conclusions.

Browne & Murphy (1987) found correlations with slopes $b = 1.67 \pm 0.22$ for core-dominated quasars and $b = 3.45 \pm 0.87$ for lobe-dominated quasars¹. These slopes are not much different from ours if we take into account the errors. However, we have a much larger sample of objects. Baker (1997) finds, using the EM algorithm and the Buckley-James method, that core-dominated quasars follow a correlation with slope $b = 1.43 \pm 0.20$, well in agreement with our result for FSRQ from the same regression technique.

8.3.3 The X-ray - to - optical luminosity correlations

In Figs. 8.13 and 8.14 the X-ray versus optical luminosities are plotted. In the first case, total luminosities are used for all objects in the V band and, in the second case, core luminosities are taken for the FRII galaxies.

The X-ray luminosity correlates with the optical one with a slope of about $b \sim 1$ for both SSRQ and FSRQ and small dispersions. The slope for the FRII galaxies ($b = 0.97 \pm 0.25$) is similar to that for the quasars, although with larger dispersion ($\log \sigma_{\rm intr} = 0.65 \pm 0.36$), when the Fasano & Vio regression is performed. However the number of objects is very small. When the upper limits in the optical and X-ray band are taken into account through a Schmitt's regression (Isobe et al. 1986) the slope becomes flatter ($b = 0.79 \pm 0.09$) than that found for the FRI galaxies ($b = 1.20 \pm 0.17$, see Chapter 7), probably due to the much more numerous X-ray upper limits.

The result that the slopes for FSRQ and SSRQ are essentially similar appears to be in disagreement with previous works by Brinkmann et al. (1997) who report values of $b = 0.86 \pm 0.11$ and $b = 0.79 \pm 0.16$, respectively. However, they are still consistent inside the errors and our determination of the regression parameters relies on larger samples of objects of both classes.

8.3.4 The X-ray - to - radio luminosity correlations

The X-ray versus the radio total and core luminosities are shown, respectively, in Figs. 8.15 and 8.16.

The bottom panel of Fig. 8.15 shows that the range of total radio luminosities is similar for FRII galaxies, SSRQ and FSRQ, ranging from $\sim 10^{32}$ to 10^{37} erg s⁻¹ Hz⁻¹. However, the radio emission in the different classes originates from spatially well separated regions, mostly from the lobes in FRII galaxies and SSRQ, and mostly from the cores in FSRQ. The total luminosities of these objects are, therefore, as already discussed in § 8.2, not well suited to investigate their different properties.

¹ We have transformed to our notation the regression coefficients given in Browne & Murphy (1987) where the optical and radio luminosities were used as the dependent and independent variables, respectively.

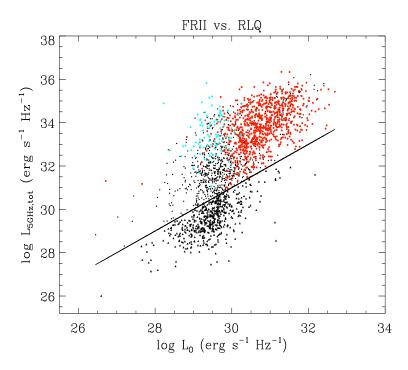


Figure 8.11: The $L_{R,tot}$ - $L_{O,tot}$ plane for the FRII galaxies (blue) and the radio-loud quasars (red) superposed on the rest of the sample (black). The straight line is the formal division between radio-loud (circles) and radio-quiet (triangles) objects (see § 2.3).

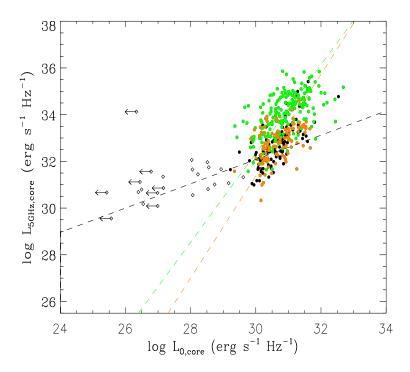


Figure 8.12: The $L_{R,core}$ - $L_{O,core}$ plane for the FRII galaxies (diamonds) and the radio-loud quasars (circles). Flat-spectrum quasars ($\alpha_r < 0.5$) are plotted in green and steep-spectrum quasars ($\alpha_r \geq 0.5$) in yellow. The total optical luminosity is used for the radio-loud quasars. The regression lines for the three classes are also drawn.

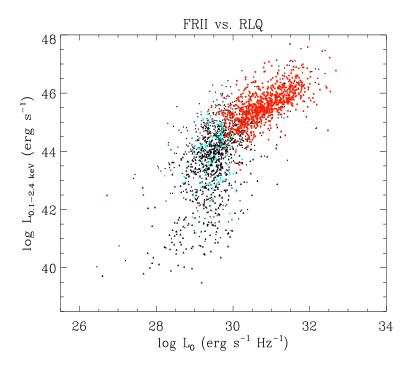


Figure 8.13: The L_X - L_O plane for the FRII galaxies (blue) and the radio-loud quasars (red) superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles.

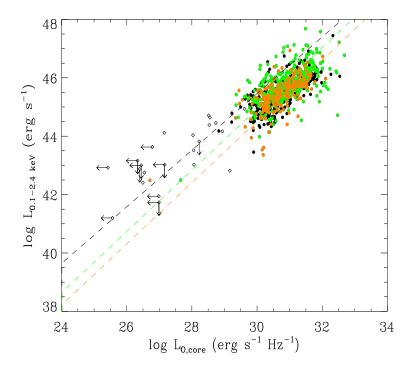


Figure 8.14: The $L_{\rm X}$ - $L_{\rm O,core}$ plane for the FRII galaxies (diamonds) and the radio-loud quasars (circles). Flat-spectrum quasars ($\alpha_{\rm r} < 0.5$) are plotted in green and steep-spectrum quasars ($\alpha_{\rm r} \geq 0.5$) in yellow. The total optical luminosity is used for the radio-loud quasars. The regression lines for the three classes are also drawn.

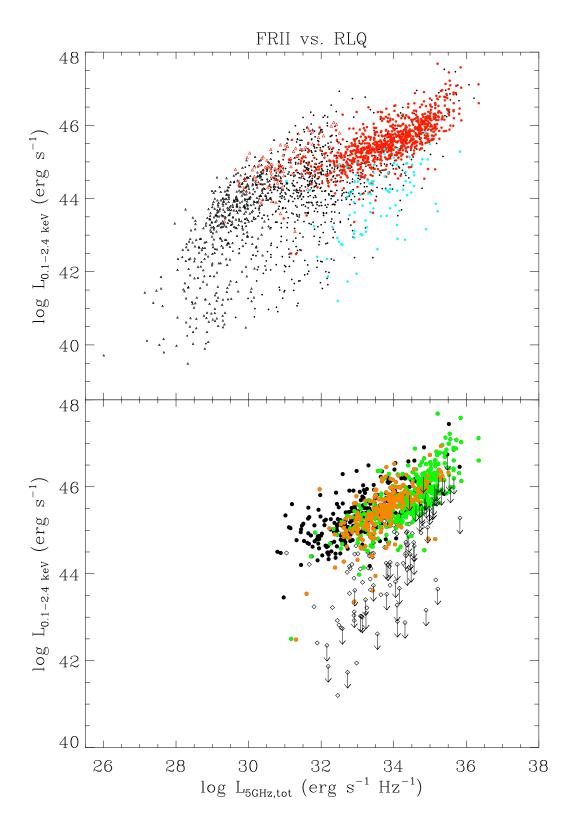


Figure 8.15: Top panel: the $L_{\rm X}$ - $L_{\rm R,tot}$ plane for FRII galaxies (blue) and radio-loud quasars (red) superposed on the total sample (black). Radio-loud objects are shown as circles and radio-quiet as triangles. Bottom panel: the $L_{\rm X}$ - $L_{\rm R,tot}$ plane for FRII galaxies (diamonds) and radio-loud quasars (circles) only. Flat-spectrum quasars ($\alpha_{\rm r} < 0.5$) are plotted in green and steep-spectrum quasars ($\alpha_{\rm r} \ge 0.5$) in yellow. Also shown here are the upper

A correlation seems to be present between the X-ray and core radio luminosities of the FRII galaxies, with a slope of $b=0.96\pm0.11$. Also in this case SSRQ and FSRQ turn out to follow basically the same correlation of slopes $b=0.66\pm0.05$ and $b=0.67\pm0.05$, respectively with small dispersions (log $\sigma_{\rm intr}=0.12\pm0.02$ for SSRQ and log $\sigma_{\rm intr}=0.15\pm0.02$ for FSRQ). The FRII galaxies, therefore, do not show the same trend as the quasars. Siebert et al. (1996) found for a sample of 30 FRII galaxies a slope of $b=0.58\pm0.26$, whereas from a similar survival analysis we obtain a slightly steeper value, however for 56 objects. Hardcastle & Worrall (1999) find, for 41 FRII galaxies, an even steeper slope of b=1.52 from a Schmitt regression but with a rather large error.

In the case of radio-loud quasars several authors report different slopes for SSRQ and FSRQ, in contrast with our results. Browne & Murphy (1987) quote slopes of $b=0.70\pm0.07$ for core-dominated quasars and $b=0.40\pm0.06$ for lobe-dominated quasars. The first value is well in agreement with that found here for the FSRQ, but the second is significantly flatter than for the SSRQ in our sample. Baker et al. (1995) confirm the discrepancy between FSRQ and SSRQ, with $b=0.79\pm0.05$ and $b=0.36\pm0.10$, respectively. Siebert et al. (1996) and Hardcastle & Worrall (1999) find slopes for the quasars, without distinguishing between FSRQ and SSRQ, of $b=0.58\pm0.26$ and b=0.69, respectively, consistent with our results. Brinkmann et al. (1997) obtain $b=0.68\pm0.13$ for FSRQ and $b=0.47\pm0.14$ for SSRQ, but consistent with a single slope within the mutual 1σ errors and with some indication for a steepening towards higher luminosities. However, a clear separation of SSRQ and FSRQ could not be confirmed.

As we have seen, our data argue in favor of similar X-ray - to - radio core correlations for both SSRQ and FSRQ in contrast with previous results. However, the discrepancy resulted to be weaker in Brinkmann et al. (1997) who analyzed much larger samples than those of Browne & Murphy (1987) and Baker et al. (1995), and, from the analysis of our even bigger sample, it seems to disappear. Therefore, the apparent discrepancy between the two classes might be the result of the small sizes of the samples combined with selection effects. In fact, Baker et al. (1995) select objects from two flux limited catalogs, the Molonglo Quasar Sample and the Parkes Flat-spectrum Sample, probably causing the inclusion of only the brightest SSRQ, truncating the low luminosity tail of their distributions. On the other hand, the luminosities of FSRQ usually lie above the flux limits of the samples, therefore their distribution is probably well reproduced. If SSRQ and FSRQ actually follow parallel correlations in the X-ray - to - radio core luminosity plane, as it is found in this work, with FSRQ just displaced towards higher values in both wavebands, the elimination of the low luminosity steep-spectrum objects would generate an artificial curved trend. Our sample, however, contains many more sources than those of Browne & Murphy (1987) and Baker et al. (1995), selected from several different radio catalogs and is therefore less affected by such selection effects, reproducing more realistically the trends for SSRQ and FSRQ.

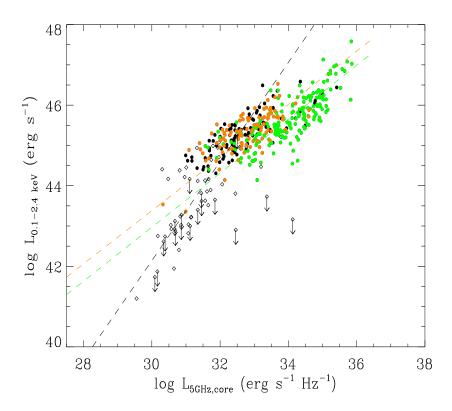


Figure 8.16: The L_X - $L_{R,core}$ plane for the FRII galaxies (diamonds) and the radio-loud quasars (circles). Flat-spectrum quasars ($\alpha_r < 0.5$) are plotted in green and steep-spectrum quasars ($\alpha_r \geq 0.5$) in yellow. Also shown here are the upper limits on X-ray luminosities (arrows). The regression lines for the three classes are also drawn.

8.4 Unification of FRII galaxies and radio-loud quasars

8.4.1 Interpretation of correlations

In § 7.5.3 we have seen that, in a simple beaming model in which only one component is responsible for the emission at all wavelengths, the slopes of the correlations between luminosities at two different frequencies for the unbeamed and beamed populations should be the same. This behavior is observed for FRII galaxies and radio-loud quasars in the case of the correlation between the radio extended and core luminosities (see Fig. 8.10), supporting, as discussed in § 8.3.1, the view that FSRQ, SSRQ, BLRG and NLRG are simply increasingly beamed versions of the same kind of objects.

The same behavior is also observed in the case of the X-ray - to - optical correlations, but not in the case of the radio - to - optical and X-ray - to - radio correlations, where the FRII galaxies show different slopes than the quasars.

In Chapter 7 we have interpreted the different slopes of the correlations for FRI galaxies and BL Lacs as a possible indication for the presence of more than one emission component. However, in the case of FRII galaxies and radio-loud quasars we propose a different scenario in which multiple emission components are not required. This is attained by taking into account absorption by gas or dust which, contrary to the case of FRI/BL Lacs, is believed to be substantial in FRII galaxies. Absorption is mostly effective at optical and soft X-ray wavelengths. The steeper slope of the X-ray - to - radio correlation for the FRII galaxies with respect to SSRQ and FSRQ might be explained in the context of this model by considering that two kinds of objects, BLRG and NLRG, actually constitute the group of FRII galaxies. BLRG are thought to be unbeamed quasars which, however, are observed at smaller viewing angles than the NLRG so that the obscuring region is, at least partially, out of sight, whereas NLRG are highly absorbed. Therefore the BLRG are expected to follow the same correlation as both FSRQ and SSRQ, only extrapolated at lower luminosities. On the other hand, since they are highly absorbed, NLRG should display smaller X-ray luminosities than expected from the extrapolation of this correlation. If we perform a regression analysis for BLRG and NLRG taken together we would obtain a steeper slope than the one found for the quasars. To test this we have attempted to calculate the regression parameters for the BLRG and the NLRG separately, although the number statistics of the two classes is rather small, especially for the BLRG (13 objects). The correlation for the BLRG is not statistically significant at the 5% level, however, the slope obtained from a Buckley-James regression, $b = 0.76 \pm 0.25$, is within the errors in good agreement with those for SSRQ and FSRQ, supporting the model above. The slope for the NLRG (23 objects) is much steeper ($b = 1.16 \pm 0.21$) and the correlation is, in this case, statistically significant at 5% level.

The slope of the radio - to - optical correlations for the various classes can be explained by the above model in a similar way. Absorption affects the optical emission from NLRG, but not from BLRG, resulting in a flatter slope for the FRII galaxies with respect to those found for SSRQ and FSRQ. In this case, however, the regression analyses performed for NLRG and BLRG separately do not reliably determine the parameters due to the very small number of objects in both classes (8 and 9 objects, respectively) and the presence of many upper limits.

The fact that the slopes of the X-ray - to - optical correlations are comparable for FRII

galaxies, SSRQ and FSRQ when the Fasano & Vio regression is used, suggests that both the optical and X-ray emission is absorbed by similar amounts. However, if the upper limits are taken into account with a Buckley-James regression, the slope for the FRII galaxies appears to be flatter than for the quasars, as if the optical emission were more absorbed.

The radio emission is unaffected by absorption, therefore, we would expect to observe similar extended - to - core luminosity correlations for FRII galaxies, SSRQ and FSRQ. This is indeed what we found in § 8.3.1.

We can estimate the amount of absorption in the optical and soft X-ray band in the following way. We assume that the X-ray - to - radio correlation for FSRQ also applies to FRII galaxies, if they are unobscured. The expected unabsorbed average X-ray luminosity can be calculated from the observed average radio core luminosity, which is unaffected by absorption. From the comparison with the observed X-ray luminosity we obtain the average neutral hydrogen column density for the FRII galaxies in our sample from $N_{\rm H} = -\ln(L_{\rm X}^{\rm abs}/L_{\rm X}^{\rm unabs})/\sigma_{\rm T})$ where $\sigma_{\rm T}$ is the Thomson cross-section. Using the Fasano & Vio regression parameters for FSRQ given in Table 8.2 we get $\log L_{\rm X}^{\rm unabs} = 43.71$ and taking the average X-ray luminosity of NLRG listed in Table 8.1 as $L_{\rm X}^{\rm abs}$ we finally obtain $N_{\rm H} \sim 3 \times 10^{22}$ cm⁻².

To estimate the absorption in the optical band we use the radio - to - optical correlation of FSRQ and we determine the expected unabsorbed average optical luminosity of NLRG, which turns out to be $\log L_{\rm O}^{\rm unabs} = 29.35$. Comparing this value with the observed, $\log L_{\rm O}^{\rm abs} = 26.06$, we obtain the extinction of $A_{\rm V} \sim 2.81$. Next we calculate the reddening due to dust from the equation $R_{\rm V} = A_{\rm V}/E(B-V)$, taking the standard Galactic value of $R_{\rm V} = 3.1$ (Schultz & Wiemer 1975). The result is E(B-V) = 0.91 which can be converted into a neutral hydrogen column density through the gas - to - dust ratio given by $N_{\rm H}/E(B-V) = 5.8 \times 10^{21}$ cm⁻² (Bohlin et al. 1978), in the case of the Milky Way. We finally obtain $N_{\rm H} \sim 5.27 \times 10^{21}$ cm⁻², a lower value than that found from the X-rays. However, the standard Galactic gas - to - dust ratio might not apply to AGN and there is indeed some evidence that it might be higher (Maiolino et al. 2001, Willott et al. 2004), more similar to that found for the Small Magellanic Cloud. Using this ratio $(N_{\rm H}/E(B-V) = 5.2 \times 10^{22}$ cm⁻², Bouchet et al. 1985) instead of the Galactic one, the neutral hydrogen column density would be $N_{\rm H} \sim 4.72 \times 10^{22}$ cm⁻², well in agreement with the value found in the X-rays.

8.4.2 The amount of beaming in radio-loud guasars

To investigate the amount of beaming in radio-loud quasars we can apply Eq. 7.2 using the average radio core luminosities of radio-loud quasars, either SSRQ or FSRQ, and of NLRG as the beamed and unbeamed luminosities, respectively. We estimate the beaming factor in this band, under the assumption that $\alpha_r = 0.5$. For FSRQ we find $\delta_r = 7(14)$ and for SSRQ $\delta_r = 3(4)$ for p = 3(2).

In the X-ray and optical band we can repeat the calculus above, however, to correct for the effect of obscuration, we have to use the unabsorbed luminosities of NLRG estimated in § 8.4.1. For FSRQ we get $\delta_x = 3(5)$ and $\delta_o = 3(4)$ and for SSRQ $\delta_x = 3(4)$ and $\delta_o = 2(3)$

for p = 3(2), where we have assumed $\alpha_{\rm x} = 1.0$ and $\alpha_{\rm o} = 0.5$. The values found in the three bands for SSRQ are well consistent with each other, whereas in the case of FSRQ the radio beaming factor is higher than those at X-ray and optical frequencies. Furthermore, the X-ray and optical beaming factors of both SSRQ and FSRQ are similar, contrary to the hypothesis that the latter are more beamed than the former. It appears that, going from SSRQ to FSRQ, only the radio emission is further boosted.

The simple relativistic beaming scenario is not capable to explain these findings. Interestingly, the result above could be explained by a model in which the radio emission of quasars is dominated by the jet and that in the optical and X-ray bands by the accretion disk. In this scenario the X-ray and optical luminosities of SSRQ and FSRQ are expected to be comparable because the disk emission is not beamed. The lower X-ray luminosities of the FRII galaxies are interpreted both in terms of intervening absorption and of an anisotropy of the disk emission due to purely geometrical reasons. Maraschi & Tavecchio (2003) actually proposed a model in which FSRQ are disk-dominated objects, contrary to BL Lacs which are jet-dominated. In their model both FSRQ and BL Lacs have similar masses of $10^8 - 10^9 M_{\odot}$, but the latter have accretion rates much lower than the Eddington limit. A further attractive aspect of this scenario is that it would also agree with the results of Chapter 6 for the parent populations of radio-loud quasars and BL Lacs, namely FRII and FRI galaxies for which a similar case has been envisaged.

It must be remarked that the validity of this model is not in contrast with the observed properties of the correlations discussed in § 8.4.1. Even if we assumed a "pure" beaming scenario the correlations can be equally well interpreted in the context of the disk model. In fact, recalling Eq. 7.4, we see that the effect of beaming on a correlation, independent of the choice of the Doppler factors and of the spectral indices in the two bands, is just to shift the regression line either to higher or to lower values. However, the effect would be the same if the enhancement of the luminosities in radio-loud quasars were due to a disk viewed pole-on instead of edge-on through obscuring matter. Therefore, neither the conclusions of § 8.4.1 about the amount of absorption in the galaxies and about the increasingly smaller viewing angles of NLRG, BLRG, SSRQ and FSRQ are affected by the chosen model. The only difference is that relativistic beaming is required in the radio band, but it is not the main cause of the larger luminosities of SSRQ and FSRQ in the optical and X-ray bands, even if it might contribute to the emission.

8.4.3 Modeling the Spectral Energy Distributions

In this section we discuss the Spectral Energy Distributions of FRII galaxies and radioloud quasars. Although a disk or a jet origin of the emission from FSRQ in the optical and X-ray band is still discussed and investigated they usually show double-peaked SEDs similar to those of BL Lacs. In a pure beaming model, i.e. in the jet scenario, the same shape should be observed for SSRQ, BLRG and NLRG. However, in the disk scenario a dependence of the luminosities on the viewing angle, similar to the case of relativistic beaming, is also present and we could expect that the general shape of the SEDs of the galaxies is also preserved. We can thus apply the same parabolic parameterization of the synchrotron peak that we have used for BL Lacs and FRI galaxies in § 7.4.1. However, we have seen that NLRG are likely strongly absorbed in the X-ray and optical bands. BLRG are probably partially obscured, since the expected unabsorbed luminosities of FRII galaxies are still larger than those observed for these objects (see § 8.4.1). As a consequence, the shape of the SEDs might be altered, strongly in NLRG and less heavily in BLRG, but still sufficient to produce misleading results.

Nonetheless, we attempt to parameterize the SEDs of the 9 BLRG in our sample to further investigate this point, but not those of NLRG because 6 out of 8 objects have upper limits either in the optical or the X-ray band or in both. The results for BLRG, SSRQ and FSRQ separately are shown in Figs. 8.17-8.19.

The SEDs of both FSRQ and SSRQ appear to be well represented by a parabolic form in all cases except two FSRQ for which we obtain an upward parabola. For one of these objects, PKS 0528+134, we could retrieve a well sampled SED from NED which shows that the minimum between the synchrotron and inverse Compton peaks might occur around the V band. In this case, we could be actually parameterizing this minimum explaining why we find a concave parabola. The same might be true for the second object, S5 0212+73, however, its SED is less well determined than in the previous case. Variability can also have affected the shape of these SEDs, which is obtained from non-simultaneous data.

For BLRG we find convex parabolae for all of them, however 6 out of 9 objects have a rather flat curvature. This might have been produced as a consequence of the suppression of some of the optical flux due to obscuration as discussed above. On the other hand, the three BLRG with larger curvature are the most luminous in our sample, more similar to SSRQ, and probably obscuration in these objects is negligible, if not absent.

Therefore, these results suggest that we can rely on the parabolic parameterization of the SEDs only in the case of radio-loud quasars, but not in the case of BLRG for which absorption effects are important.

Fig. 8.20 shows the distributions of $\log \nu L_{\nu}$ calculated at the peak frequency for FSRQ and SSRQ. Both classes share a wide range of values, from $\sim 10^{44}-10^{46.5}~{\rm erg~s^{-1}}$, however, FSRQ reach luminosities of $\sim 10^{48}~{\rm erg~s^{-1}}$, about two orders of magnitude higher than SSRQ.

Fig. 8.21 shows the broad band spectral index $\alpha_{\rm rx}$ calculated at 5 GHz and 1 keV plotted versus $\log \nu_{\rm peak}$. A part from PKS 0528+134 and S5 0212+73 which are discussed above and which have a peak (actually a minimum) frequency of $\sim 10^{12.7}$ and $\sim 10^{10.5}$ Hz, respectively, most $\nu_{\rm peak}$ of both FSRQ and SSRQ fall in the range between $\sim 10^{13}-10^{15}$ Hz, with only a few objects having $\nu_{\rm peak} > 10^{15}$ Hz.

The large majority of FSRQ have $\alpha_{\rm rx} > 0.75$ and $\nu_{\rm peak} < 10^{15}$ Hz as typically found for these objects. 14 of them have $\alpha_{\rm rx} < 0.75$ among which, however, only three have also $\nu_{\rm peak} > 10^{15}$ Hz. The others have $\nu_{\rm peak} \gtrsim 10^{14}$ Hz, close to the boundary usually taken to distinguish between Low-energy-peaked and High-energy-peaked objects. Therefore, our data do not provide strong evidence in favor of the existence of High-energy-peaked FSRQ as proposed by Padovani et al. (2003).

The significant absorption found in FRII galaxies implies that we cannot model their SEDs reliably and, consequently, we are unable to construct their beaming tracks similarly to what was done for the FRI sources. We do not know their intrinsic luminosities and we cannot evaluate from their SEDs the spectral indices in the various wavebands needed to apply Eq. 3.5.

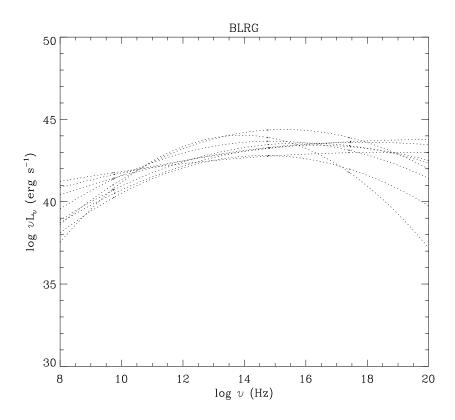


Figure 8.17: The parabolic parameterizations of the SEDs of BLRG.

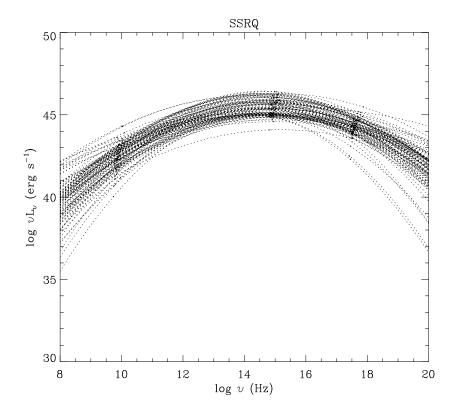


Figure 8.18: The parabolic parameterizations of the SEDs of SSRQ.

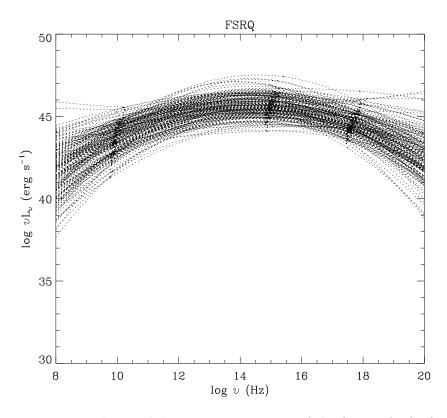


Figure 8.19: The parabolic parameterizations of the SEDs of FSRQ.

8.5 Summary of results

- At all wavelengths considered NLRG, BLRG, SSRQ and FSRQ form a sequence of increasing core luminosities, supporting the unified scheme scenario that these are intrinsically similar objects observed at decreasing viewing angles.
- We find significant correlations at the 5% level for all classes and between luminosities at all wavelengths.
- From the correlation analyses between luminosities it is inferred that absorption is significant in NLRG with estimated hydrogen column densities of the order of $N_{\rm H} \gtrsim 10^{22}~{\rm cm}^{-2}$. Obscuration is also found to affect the BLRG, at least partially.
- Similar beaming factors are required in the X-ray and optical bands for SSRQ and FSRQ, whereas further beaming appears to be present in the radio band to go from SSRQ to FSRQ. This is best interpreted by a model in which the radio emission comes from the jet and is more boosted in FSRQ than in SSRQ, whereas the emission in the other two bands is mainly produced by the disk viewed pole-on in the radio-loud quasars and observed edge-on through obscuring matter in the galaxies.
- Taking into account the absorption in FRII galaxies the parameters of the regression lines for the various classes are in agreement with both, a pure simple beaming model involving only one emission component in all wavebands, and with a model in which the disk and the jet are responsible for the emission at different frequencies.

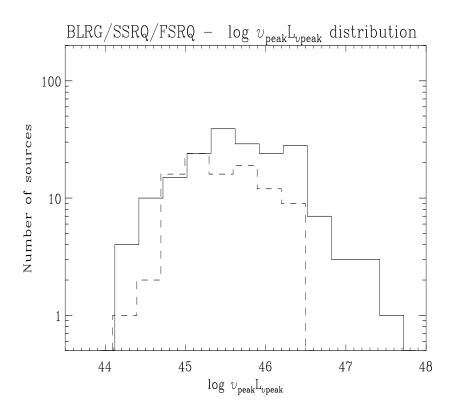


Figure 8.20: The $\nu_{\rm peak}L_{\nu_{\rm peak}}$ distributions of SSRQ (dashed line) and FSRQ (solid line).

- A parabolic model appears to be applicable to the SEDs of both SSRQ and FSRQ in analogy to the BL Lacs. The model is not appropriate, however, for most BLRG, probably due to the effect of absorption which significantly decreases the optical flux.
- The synchrotron peak frequencies obtained from the parabolic models of the SEDs of FSRQ are almost all typical of Low-energy-peaked objects ($\nu_{\rm peak} \lesssim 10^{15}$ Hz). Only for three objects we find higher values characteristic of High-energy-peaked objects, in contrast with the existence of a blazar sequence. However, the small number of such objects does not provide strong evidence in support of the existence of High-energy-peaked FSRQ.
- We are unable to calculate the beaming tracks of FRII galaxies because the presence of significant absorption in these objects hampers the correct determination of their optical and X-ray luminosities.

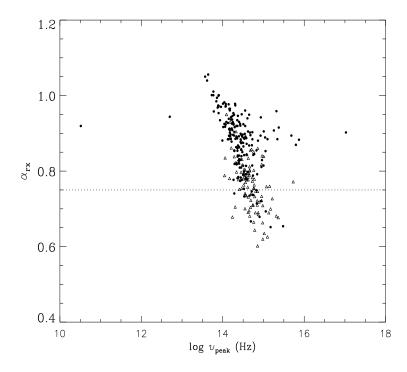


Figure 8.21: The broad band spectral index α_{rx} , calculated at 5 GHz and 1 keV, plotted versus $\log \nu_{peak}$ as obtained from the parabolic parameterization of the SEDs of the SSRQ (triangles) and FSRQ (circles) in our sample.

Chapter 9

Conclusions and prospects

The multiwavelength study of large samples of AGN, as carried out in this work, has proved to be a powerful method to analyse the properties of these objects and to test unification schemes, which aim at explaining the AGN classification in terms of orientation effects. At the same time it can provide a broad view on the general features of AGN, a framework for detailed studies of single sources and a sound starting point for more refined investigations. In spite of the limited information available for each single source this approach is capable of leading to important conclusions without the need to know the properties of the objects in detail. Although it cannot convey precise information as deeper studies of single AGN, these acquire more significance if interpreted in the light of the broader picture supplied by such a method.

In \S 9.0.1 we summarize the main results from this thesis concerning the unification of radio-loud AGN and in \S 9.0.2 we outline possible future developments.

9.0.1 Résumé

The results of this thesis, reported in the previous chapters, are in general agreement with the standard unified scheme in which FRI and FRII galaxies are the misaligned counterparts of BL Lac objects and radio-loud quasars, respectively. However, the details of such unification have been found to diverge in some cases from previous knowledge and potential complications have been highlighted, requiring further deep investigations. Due to the increased number of objects in all classes with respect to previous works we were able to better constrain their properties in the different wavebands considered and the correlations between them. Tight relationships are confirmed to exist for the emission at different wavelengths from the nucleus of all sources. However, the parameters can vary a lot, depending on the frequencies and on the classes considered.

The luminosity properties of FRI galaxies and BL Lacs generally appear to support their unification based on the relativistic beaming scenario alone. However, BL Lacs are usually divided into Low-energy-peaked and High-energy-peaked objects and an analogous separation might be supposed among the FRI galaxies. Contrary to the expectations all of them seem to be High-energy-peaked. Even if selection effects are not completely excluded to have produced such a result, due to the important consequences on the FRI/BL Lac unified scheme, this point certainly needs a thorough investigation.

Although relativistic beaming is sufficient to account for the different observational prop-

erties of BL Lacs and FRI galaxies, simple one-component models for the emission at all frequencies fail to explain the correlations found. Only the introduction of more emission components could provide a better interpretation of the calculated parameters of the regression lines. In particular, at least two components are required in the X-ray band, whereas, in the radio and optical bands, the data are still consistent with the presence of only one emission component.

Contrary to the case of FRI galaxies and BL Lacs, absorption by dust or gas appears to play a major role in the unification of FRII galaxies and radio-loud quasars. Accounting for this, only one emission component, relativistically boosted in the quasars and obscured in the galaxies, is needed to explain the observed correlations. Apparently, this is in disagreement with previous results claiming that two X-ray components should be present, one dominant in SSRQ and the other in FSRQ. However, we have seen that the results from previous works might originate from the much smaller sizes of the samples studied combined with selection effects due to the flux limitations of the catalogs from which the sources were drawn. From the estimate of the relative amount of beaming in SSRQ and FSRQ we found that the data are inconsistent with the hypothesis that the latter are more beamed than the first, except in the radio band. We have suggested that these results might be in better agreement with a model in which the radio-loud quasars are disk-dominated objects (at least in the X-ray and optical band) and not jet-dominated like the BL Lacs.

The comparison of our data for FRI and FRII galaxies argue in favor of fundamental differences in the central engines of these sources. The discrepancy, however, can probably not be ascribed to different black hole masses, which, on the contrary, can be inferred to be similar. The determining parameter might be the accretion rate, high, close to the Eddington limit in FRII sources and low, sub-Eddington, in FRI galaxies. This would also be in nice agreement with the results described above indicating that the emission from FSRQ is disk-dominated and that from BL Lacs is jet-dominated. Could it also be that the large amount of absorbing matter in FRII galaxies/FSRQ is related to the high accretion rate postulated in these objects?

9.0.2 Prospects

An immediate possible future development of this work is the extension and updating of the database to other wavelengths, such as the infra-red, hard X-rays and gamma-rays, covering as much of the electromagnetic spectrum as possible. Data on emission lines should also be added when available. Spectral information in every waveband might also be included, especially exploiting new, high quality data from the current observatories and telescopes. In particular, new X-ray data from Chandra and XMM could be used.

A general impression originating from this work is that the unified scheme is essentially based on the study of relatively few, well observed "parent" objects, i.e. FRI and FRII galaxies, whereas the majority of them are not considered for various reasons. For example, only a minority of both FRI and FRII galaxies are detected in X-rays, and are thus included in this work, and only for an even smaller number of objects the photon counts are high enough to allow a spectral analysis. For many radio galaxies a clear Fanaroff-Riley

classification is not possible, either because of peculiar morphologies or because they are unresolved in the radio band. Therefore, detailed studies of more of these objects should be promoted at all wavelengths. This would allow to construct their SEDs, thus determining directly if both Low-energy-peaked and High-energy-peaked FRI galaxies exist, and to better identify their emission mechanisms. XMM and Chandra observations would be crucial because they would allow to resolve the various X-ray components and to determine the amount of absorption, two topics that this work has revealed to be fundamental to correctly interpret the observed luminosity correlations. However, a part from a few nearby objects these topics are still poorly analyzed.

Equally deep studies of BL Lacs and FSRQ, more easily available than for the galaxies due to their much higher luminosities, are helping and will help in the near future to better understand the relative importance of the jet and disk emission in these objects.

Furthermore, several minor AGN classes are not considered by the unification scheme but are emerging to be a non negligible fraction of the total population and are promising carriers of information on the AGN phenomenon. Some examples are Low Luminosity AGN, LINERs, the long known Low Excitation Radio Galaxies, the Gigahertz-Peaked and Compact Steep-Spectrum sources. Since all classes are present in our database with a significant number of objects each, the next step would be to concentrate on them, performing a statistical study that can be compared to that described in this work. At the same time it would be very useful to propose sufficiently large samples of these sources for detailed systematic observations.

In the present study we have not investigated the role played by cosmic evolution in determining the properties of the different classes of radio-loud AGN. However, its effects might be considerable, especially for the quasar class, which shows the largest redshifts. A further development of this work thus might be the analysis of the properties of the objects in our sample, divided into several redshift bins. This is certainly possible for the quasar and BL Lacs subsamples formed by hundreds of objects, whereas it might be problematic for the much less numerous FRI and FRII galaxies.

From the detailed analyses of the XMM observations of four high-redshift objects (z > 2) we already found indications that quasars' properties might evolve with cosmic epoch (Ferrero & Brinkmann 2003). The two radio-loud quasars analyzed in this work present X-ray spectral slopes of $\Gamma \lesssim 1.5$ in the 0.2-10 keV band, flatter than what is usually observed at low redhifts. They are also X-ray brighter, with luminosities of the order of $L_{2-10~\rm keV} \sim 10^{45}~\rm erg~s^{-1}$. The absorption properties of high-redshift quasars are also different from those of their low-redshift counterparts, frequently showing neutral hydrogen column densities exceeding the Galactic value. However, Ferrero & Brinkmann (2003) find extra absorption only in one object, classified as a GPS source, suggesting an interesting connection between the early stages of radio-loud AGN and the presence of large amounts of absorbing matter. As stated above, GPS sources certainly deserve a thorough investigations.

Appendix A

Skinakas observations of 15 ROSAT sources

For the calculation of the X-ray, radio and optical luminosities of the sources in our sample their redshifts are needed, however, for some of them, no redshift was given in NED or in the literature. Since our aim was to have as many sources as possible in our database to allow an accurate statistical study, we checked which, among the objects in our sample without redshift, could be observed from the Skinakas observatory in Crete. The basic requirements for their observability were: an apparent optical magnitude $m_{\rm V} \leq 17$, declination $\delta \geq 10^{\circ}$ and visibility at night in the summer period during which the observatory is operative. 15 sources resulted to be observable and we thus organized an observation campaign at the Skinakas observatory to directly observe them and take their spectra. For 13 sources for which at least one emission or absorption line was clearly detected we could determine the redshift.

In the following we will give a description of the Skinakas observatory, of the telescope and the CCD camera used. A summary of the observations and the data reduction will be also presented together with the results.

A.1 The Skinakas observatory

The Skinakas observatory has been built as a result of a scientific collaboration between the University of Crete, the Foundation for Research and Technology-Hellas and the Max-Planck-Institut für extraterrestrische Physik in Germany. It is located about 60 km from Heraklion, in Crete, on the Ida mountain (1750 m.) at a longitude of 24^h 53' 57" East and at a latitude of 35° 12' 43" North.

The main instrument is a modified Ritchey-Cretien 1.3 m telescope with a focal length of 985.7 cm and an equatorial mount. A second instrument is also available, a Schmidt-Cassegrain flat field 30 cm telescope with focal length of 940 cm and equatorial mount as well.

For our observations we made use of the 1.3 m telescope, equipped with a ISA CCD camera, with 2000×800 15 μ m pixels, back illuminated and cooled by means of liquid nitrogen. On the light path a reflection grating is introduced. When used in the 0th order mode it simply works like a mirror reflecting the light on the CCD to produce an image.

Name	$m_{ m V}$	Date of obs.
MCG +05-33-047	15.50	
CGCG 195-013	15.60	22nd June
NPM1G + 29.0397	16.27	2002
CGCG 170-018	15.60	
CGCG 435-002	15.70	
LEDA 214269	15.48	25th July
2MASXiJ1611392+381241	16.35	2002
UGC 10782	15.60	
4C + 26.11	16.50	
CGCG 1556.3+2019	15.70	26th July
RGB J1652+403	16.40	2002
MCG + 06-37-023	15.00	
CGCG 0250.9+3613	15.20	
PKSJ 2130+0308	17.00	4th August
CG 1329	17.00	2002

Table A.1: The sample of sources observed at the Skinakas observatory

When used in the 1st order mode it works as a spectrometer, dispersing the light into its wavelength components. In this case, in order to get only the light coming from the interesting object, a slit (with several possible widths) is positioned before the grating. The spectrum of the source will be seen on the CCD as a horizontal strip, where the pixels in the x-direction will correspond to different wavelengths.

A filter wheel with 6 positions, a flat spectrum lamp and a calibration lamp are also provided.

A.2 The observations

We have observed in total 15 sources during four nights. The names of the sources and the dates of the observations are given in Table A.1. These are all of the sources from our sample without redshift, with $m_{\rm V} \leq 17.0$ and declination $\delta \geq -10^{\circ}$, the requirements for the feasibility of their observations at Skinakas.

Each night of observations we followed the steps described below:

- refilling of liquid nitrogen to cool down the CCD camera.
- 1 sec exposure taken with the closed mirror in the 0th order mode to check the *bias*, due to the read-out noise of the CCD; five 1 sec exposures were actually taken in order to make an average.
- short exposure of a flat spectrum lamp in the 1st order mode to measure the response of the system formed by the CCD plus the grating; the response is not flat and because the CCD is much more sensitive to the red wavelengths, five exposures were

taken to increase the signal-to-noise in the blue band; a light diffusor was simulating the incidence of light from infinity.

- five short exposures in the 1st order mode of a calibration lamp with known emission lines; this enables to assign the correct wavelength to each pixel of the CCD for the data reduction.
- centering of the telescope on a bright star both to calibrate the coordinate system and to focus the telescope; to focus the telescope an exposure of 1 sec is taken in order to check the FWHM of the PSF of the star, then the focus is changed to reduce it as much as possible.
- approximate centering of telescope on the first interesting object and short exposures (in the imaging mode) of the slit alone and the field, to check for the position on the CCD of the slit and the object; the object is then moved in the center of the slit; we used a slit 320 μ m wide.
- finding of a guiding star in the neighboring field of the object and start of *guiding* (the telescope and the dome follow the object in its movement through the sky).
- two exposures of ~ 30 min of the object in 1st order mode. Two exposures are necessary to identify and eliminate cosmic rays, because it is very unlikely that two cosmic rays hit the same pixel in both exposures.
- two 1 sec exposures for the bias and one short exposure for the calibration lamp as at the beginning of the observation.
- start with a new object

In addition to the studied sources the spectrum of one standard star is also taken during each night. This is a star for which its flux at certain wavelengths is known and this allows the flux calibration during the data analysis. All the data related to the observations were subsequently transferred to CD-roms.

A.3 The data reduction

To analyse the data we used FIGARO, a data reduction software created at Caltech and further developed at the Anglo-Australian Observatory. It is mainly conceived for processing optical and infrared data.

After transforming each data file into a format readable by FIGARO, we followed the same procedure of analysis for each source. We first calculated the mean value of the intensity of all the bias images and we subtracted them to all the corresponding images/spectra (i.e. flats, lamps, fields, slits and data). We then cleaned all the flats from cosmic rays and we took their median. We added all the counts of the pixels of this average spectrum on the x-axis and we divided it by the number of pixels in the y-direction. The result is used to divide every row of the average flat spectrum by it in order to correct for the different sensitivity of different pixels. This yielded a calibrated flat spectrum which we used to divide the data and the lamp files. These files were then cleaned from cosmic rays.

After checking again for the respective positions of the slit and the source (in the field file), we added the counts of all pixels of the data images on the y-axis. This allowed us to identify the position of the source in the y-direction and consequently select the regions from which to extract the source spectrum and the background (or the sky). Two background regions, one on the left and one on the right of the source position, were generally chosen and then averaged. Both the skies' and the sources' spectra were divided by the number of pixels in each selected area, then the background was subtracted and the net spectra originating from the two 30 min exposures were averaged.

Having finally obtained the spectrum of the source, we proceeded with the wavelength and flux calibration. The wavelength calibration was performed averaging the five initial lamp exposures and taking the spectrum from the central rows of the CCD where the source was usually positioned. We then identified some known emission lines and got the others by fitting. The whole procedure can be performed by the FIGARO command *arc*. This first wavelength calibrated spectrum was used afterwards to calibrate all the other lamp spectra taken during the observation and these in turn were used to calibrate the sources' spectra.

To calibrate the flux the standard star was used. Its spectrum was retrieved from the Internet in form of a table and compared to the observed one. With a series of FIGARO commands the flux calibration was generated and then applied to the sources' spectra. As a final step we checked if we observed the right object by retrieving finding charts from the NED or SkyView and comparing with our field images.

A.4 Results

The redshifts determined with the spectral analysis are listed in Table A.2. The classification for each object is also given.

The redshifts have been obtained on the base of the detection of at least two features, either emission or absorption lines, except for 2MASXiJ1611392+381241, for which only one feature has been clearly detected.

A classification as a *normal galaxy* means that only absorption features were observed in the spectra. The presence of narrow emission lines led to the classification of type 2 AGN or starburst; a further distinction between the two classes would imply the determination of line ratios, not done so far. Type 1 AGN are the sources for which broad emission lines were detected.

For two objects we could not determine the redshifts: 4C + 26.11, the faintest object in the sample, and RGB J1652+403 now classified as a BL Lac in the literature, so that its spectrum could be intrinsically featureless.

A.4 Results

Table A.2: Redshifts and classifications for the sample of sources observed at the Skinakas observatory $\,$

Name	z	Class
CGCG 435-002	0.0375	AGN type 2/Starburst
CGCG 0250.9+3613	0.0471	Normal galaxy
4C + 26.11		
MCG + 05-33-047	0.0639	Normal galaxy
CGCG 1556.3+2019	0.0461	AGN type 2/Starburst
PKSJ 2130+0308	0.0877	Normal galaxy
LEDA 214269	0.0295	AGN type 1
CG 1329	0.0475	AGN type 1
CGCG 195-013	0.0296	AGN type 1
2MASXiJ1611392+381241	0.0647	Normal galaxy
RGB J1652+403		BL Lac?
NPM1G + 29.0397	0.0680	AGN type 2/Starburst
MCG + 06-37-023	0.0628	Normal galaxy
UGC 10782	0.0379	AGN type 1
CGCG 170-018	0.0452	Normal galaxy

References

Adams T.F., 1974, ApJ 188, 463

Akritas M.G. & Siebert J., 1996, MNRAS 278, 919

Antonucci R., 1984, ApJ 278, 499

Antonucci R. & Miller J.S., 1985, ApJ 297, 621

Antonucci R. & Barvainis R., 1990, ApJ 363, L17

Antonucci R., 1993, ARA&A 31, 473

Avni Y., 1976, ApJ 210, 642

Baade W. & Minkowski R., 1954, ApJ 119, 206

Baker J., Hunstead R.W. & Brinkmann W., 1995, MNRAS 277, 553

Baker J., 1997, MNRAS 286, 23

Barthel P.D., 1989, ApJ 336, 606

Bicknell G.V., 1995, ApJS 101, 29

Bohlin R.C., Savage B.D. & Drake J.F., 1978, ApJ 224, 132

Boller T., 2000, NewAR 44, 387

Bouchet P., Lequeux J., Maurice E., et al., 1985, A&A 149, 330

Böhringer, H., Voges, W., Huchra, J.P., et al. 2000, ApJS, 129, 435

Böhringer, H., Schücker, P., Guzzo, L., et al. 2004, A&A, 425, 367

Brinkmann W., Siebert J. & Boller T., 1994, A&A 281, 355

Brinkmann W., Siebert J., Reich W., et al., 1995, A&AS 109, 147

Brinkmann W., Siebert J., Kollgaard R.I. & Thomas H.C., 1996, A&A 313, 356

Brinkmann W., Yuan W. & Siebert J., 1997, A&A 319, 413

Brinkmann W., Laurent-Muehleisen S.A., Voges W., et al., 2000, A&A 356, 445

Brotherton M.S., Green R.F., Kriss G.A., et al., 2001, AAS 33, 1514

Browne I.W.A. & Murphy D.W., 1987, MNRAS 226, 601

Buckley J. & James I., 1979, Biometrika 66, 429

Capetti A., Trussoni E., Celotti A., et al., 2000, MNRAS 318, 493

Capetti A., Celotti A., Chiaberge M., et al., 2002, A&A 383, 104

Celotti A., Maraschi L., Ghisellini G., et al., 1993, ApJ 416, 118

Celotti A. & Fabian A.C., 1993, MNRAS 264, 228

Chiaberge M., Capetti A. & Celotti A., 1999, A&A 349, 77

Chiaberge M., Celotti A., Capetti A. & Ghisellini G., 2000, A&A 358, 104

Chiaberge M., Capetti A. & Celotti A., 2002, A&A 394, 791

Comastri A., Molendi S. & Ghisellini G., 1995, MNRAS 277, 297

Dickey J.M. & Lockman F.J., 1990, ARA&A 28, 215

Donato D., Ghisellini G., Tagliaferri G. & Fossati G., 2001, A&A 375, 739

Dunlop J.S., McLure R.J., Kukula M.J., et al., 2003, MNRAS 340, 1095

Edwards P.G. & Piner B.G., 2002, ApJ 579, L67

Elvis M., Lockman F.J. & Wilkes B.J., 1989, AJ 97, 777

Elvis M., 2000, ApJ 545, 63

Fabbiano G., Miller L., Trinchieri G., et al., 1984, ApJ 277, 115

Fanaroff B.L. & Riley J.M., 1974, MNRAS 167, 31

Fasano G. & Vio R., 1988, BICDS 35, 191

Feigelson E.D. & Nelson P.I., 1985, ApJ 293, 192

Feigelson E.D. & Babu G.J., 1992, ApJ 397, 55

Ferrarese L. & Merritt D., 2000, ApJ 539, L9

Ferrero E. & Brinkmann W., 2003, A&A 402, 465

Fossati G., Maraschi L., Celotti A., et al. 1998, MNRAS 299, 433

Georganopoulos M. & Kazanas D., 2003, ApJ 594, 27

Ghisellini G. & Maraschi L., 1989, ApJ 340, 181

Gopal-Krishna, Wiita P.J. & Hooda J.S., 1996, A&A 316, L13

Gopal-Krishna & Wiita P.J., 2000, A&A 363, 507

Hamann F., Korista K.T. & Morris S.L., 1993, ApJ 415, 541

Hardcastle M.J. & Worrall D.M., 1999, MNRAS 309, 969

Hill G.J., Goodrich R.W. & DePoy D.L., 1996, ApJ 462, 163

Hoyle F. & Fowler W.A., 1962, MNRAS 125, 169

Hoyle F. & Fowler W.A., 1963, Nature 197, 533

Isobe T., Feigelson E.D. & Nelson P.I., 1986, ApJ 306, 490

Kellermann K.I., Sramek R., Schmidt M., et al., 1989, AJ 98, 1195

Kembhavi A., 1993, MNRAS 264, 683

Koratkar A. & Blaes O., 1999, PASP 111, 1

Kormendy J. & Gebhardt K., 2001, 20th Texas Symposium on Relativistic Astrophysics, AIP Conf. Proc. 586, eds. J.C. Wheeler & H. Martel (Melville, NY:AIP), 363

Kormendy J. & Richstone D.O., 1995, ARA&A 33, 581

Laing R.A., Jenkins C.R., Wall J.V. & Unger S.W., 1994, The First Stromlo Symposium: The Physics of Active Galaxies, ASP Conference Series, Vol. 54, 1994, G.V. Bicknell, M.A. Dopita, and P.J. Quinn, Eds., p.201

Landau R., Golisch B., Jones T.J., et al., 1986, ApJ 308, 78

Laor A., 2003, astro-ph 0312417

Lara L., Giovannini G., Cotton W.D., et al., 2004, A&A 421, 899

Latta R.B., 1981, J. Am. Statistical Association 26, 713

Lockman F.J. & Savage B.D., 1995, ApJS 97, 1

Maccacaro T., Gioia I.M, Wolter A., et al., 1988, ApJ 326, 680

MacLeod J.M. & Andrew B.H., 1968, ApL 1, 243

Maiolino R., Marconi A., Salvati M., et al., 2001, A&A 365, 28

Maraschi L. & Rovetti F., 1994, ApJ 436, 79

Maraschi L. & Tavecchio F., 2003, ApJ 593, 667

Marchesini D., Celotti A. & Ferrarese L., 2004, MNRAS 351, 733

Marscher A.P., 1999, APh 11, 19

Meier D.L., 1999, ApJ 522, 753

Miller J.S., Goodrich R.W. & Mathews W.G., 1991, ApJ 378, 47

Mulchaey J.S., Mushotzky R.F. & Weaver K.A., 1992, ApJ 390, L69

Murphy E.M., Lockman F.J., Laor A. & Elvis M., 1996, ApJS 105, 369

Mushotzky R.F., 1982, ApJ 256, 92

O'Dea C.P., 1998, PASP 110, 493

Orr M.J.L. & Browne I.W.A., 1982, MNRAS 200, 1067

Osterbrock D.E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University Science Books

Owen F.N. & Ledlow M.J.,1994, The First Stromlo Symposium: The Physics of Active Galaxies, ASP Conference Series, Vol. 54, 1994, G.V. Bicknell, M.A. Dopita, and P.J. Quinn, Eds., p.319

Padovani P. & Giommi P., 1995, ApJ 444, 567

Padovani P., Perlman E.S., Landt H., et al., 2003, ApJ 588, 128

Perley R.A., Fomalont E.B & Johnston K.J, 1979, AJ 85, 649

Rees M.J., 1984, ARA&A 22, 471

Reynolds C.S., Di Matteo T., Fabian A.C., et al., 1996, MNRAS 283, 111

Richstone D.O., 2002, Reviews in Modern Astronomy 15, ed. R.E. Schielicke (Wiley), 57

Rybicki G. & Lightman A.P., 1979, Radiative Processes in Astrophysics, New York, John Wiley and Sons

Sambruna R.M., Maraschi L. & Urry C.M., 1996, ApJ 463, 444

Scheuer P.A.G & Readhead A.C.S, 1979, Nature 277, 182

Schmidt M., 1963, Nature 197, 1040

Schmidt M., 1968, ApJ 151, 393

Schmitt J.H.M.M., 1985, ApJ 293, 178

Schödel R., Ott T, Genzel R., et al., 2002, Nature 419, 694

Schultz G.V. & Wiemer W., 1975, A&A 43, 133

Seyfert C.K., 1943, ApJ 97, 28

Siebert J., Brinkmann W., Morganti R., et al., 1996, MNRAS 279, 1331

Tran H.D., 2001, ApJ 554, L19

Trümper J., 1983, Adv. Space Res. 27, 1404

Trussoni E., Capetti A., Celotti A., et al., 2003, A&A 403, 889

Urry C.M. & Padovani P., 1995, PASP 107, 803

Vèron-Cetty M.P. & Vèron P., 1993, A Catalogue of Quasars and Active Galactic Nuclei, 6th edition, ESO Scientific Report No. 13, ESO Publications

Visvanathan N., 1969, ApJ 155, L133

Voges W., Aschenbach B., Boller T., et al., 1999, A&A 349, 389

von Montigny C., Bertsch D.L., Chiang J., et al., 1995, ApJ 440, 525

Weymann R.J., Morris S.L., Poltz C.B., et al., 1991, ApJ 373, 23

White R.L., Becker R.H., Gregg M.D., et al., 2000, ApJS 126, 133

Williams O.R., Turner M.J.L., Stewart G.C., et al., 1992, ApJ 389, 157

Willott C.J., Simpson C., Almaini O., et al., 2004, ApJ 610, 140

Wilson A.S., Braatz J., Heckman T.M., et al., 1993, ApJ 419, L61

Wilson A.S. & Colbert E.J.M., 1995, ApJ 438, 62

Wolter A., Comastri A., Ghisellini G., et al., 1998, A&A 335, 899

Worrall D.M., Giommi P., Tananbaum H. & Zamorani G., 1987, ApJ 313, 596

Worrall D.M. & Wilkes B.J., 1990, ApJ 360, 396

Zamorani G., Henry J.P., Maccacaro T., et al., 1981, ApJ 245, 357

List of publications

Brinkmann W., Ferrero E., Gliozzi M., XMM-Newton observation of the BAL Quasar PHL 5200: The big surprise, 2002, A&A 385, 31

Brinkmann W., Grupe D., Branduardi-Raymont G., Ferrero E., XMM-Newton observation of PG 0844+349, 2003, A&A 398, 81

Ferrero E., Brinkmann W., XMM-Newton observations of four high-z quasars, 2003, A&A 402, 465

Brinkmann W., Papadakis I. E., Ferrero E., XMM-Newton observations of the two X-ray weak quasars PG 1411+442 and Mrk 304, 2004, A&A 414, 107

Brinkmann W., Arévalo P., Gliozzi M., Ferrero E., X-ray variability of the Narrow Line Seyfert 1 Galaxy PKS 0558-504, 2004, A&A 415, 959

Curriculum Vitae

I. Personal data

Name: Elisa Ferrero

Date of birth: December 9th, 1973

Place of birth: Pinerolo (Torino), Italy

Nationality: Italian

Home address: Marktplatz 1, 69117 - Heidelberg, Germany

Work address: Landessternwarte - Königstuhl, 69117 - Heidelberg, Germany

Telephone numbers: +49 (0)6221 4322257 (home), +49 (0)6221 509223 (office)

E-mail: eferrero@lsw.uni-heidelberg.de

Fax: +49 (0)6221 509202

II. Education

- November 1st, 2004 present date: post-doctoral position at the Landessternwarte in Heidelberg.
- September 1st, 2001 October 31st, 2004: PhD student at the International Max-Planck Research School on Astrophysics (IMPRS) and at the Max-Planck-Institut fuer extraterrestrische Physik, Garching (Germany) with a thesis on the subject: "AGN unification - the X-ray perspective". Supervisors: Dr. Wolfgang Brinkmann, Prof. Gregor Morfill
- January 25th, 2001: Italian Physics Diploma (Diploma di Laurea) at the University of Turin (Universita' degli Studi di Torino), with a final mark of 110/110 e lode. Subject of the thesis: "X-ray emission properties of extragalactic radio sources in the context of unified schemes for the Active Galactic Nuclei". Supervisors: Prof. Silvano Massaglia, Prof. Edoardo Trussoni.
- July 1992: Italian High School Diploma (scientific area) at Liceo Scientifico Marie Curie in Pinerolo (Torino), with a final mark of 60/60.

The sample

The sample of AGN

Descri	ption	of '	Table	1:

Col.	Units	Label	Explanations
1		RXJ Name	ROSAT name
2		Name	Alternative name
3		RA(J2000)	Right ascension at epoch J2000
4		DEC(J2000)	Declination at epoch J2000
5		z	redshift
6	$_{ m mag}$	$m_{ m V}$	Apparent V magnitude
7	Jy	$F_{ m 5GHz}^{ m core}$	5 GHz core flux
8	Jy	$F_{ m 5GHz}$	5 GHz total flux
9		$lpha_{ m r}$	radio spectral index
10	${ m erg~s^{-1}~cm^{-2}}$	$F_{0.1-2.4 \text{ keV}}$	unabsorbed $0.1 - 2.4 \text{ keV}$ flux
11		Type	NED classification
12		Host	Type of host galaxy
13		Class.	Spectral classification
14		FR	Fanaroff-Riley classification

Note on m_V: a * denotes a B apparent magnitude.

Note on F_{5GHz}^{core} and F_{5GHz} : a # indicates a flux at 1.4 GHz; a & indicates a flux at 408 MHz.

Note on $\mathbf{F_{0.1-2.4~keV}}$: for some sources the $0.1-2.4~\mathrm{keV}$ luminosity is given instead of the flux and this is indicated by a *.

Note on Type: G=galaxy, Q=quasar, C=in cluster.

Note on Host: E=elliptical, S=spiral, θ =S0 galaxy, c=cD galaxy, N=N galaxy, p=peculiar or irregular, d=dwarf galaxy.

Note on Class.: q=quasar, z=BL Lac, a=AGN, n=NLRG, w=WLRG, g=GPS/CSS, b=BLRG, 1=Seyfert 1, 2=Seyfert 2, s= Seyfert galaxy, 9=Seyfert 1.9, 8=Seyfert 1.8, 5=Seyfert 1.5, l=LINER, r=radio galaxy, *=starburst, h=HII galaxy, !=NLSy1.

Note on FR: I=Fanaroff-Riley 1 radio galaxy, II=Fanaroff-Riley 2 radio galaxy.

Table A.3: The sample

RXJ name (1)	Name (2)	RA(J2000) (3)	DEC(J2000) (4)	z (5)	$m_V $ (6)	$F_{5GHz}^{core} \ (7)$	$F_{5GHz} $ (8)	$\frac{\alpha_r}{(9)}$	$F_{0.1-2.4\ keV} \ (10)$	Type H (11)	Host (12)	Class. (13)	FR (14)
0000.0 + 0816	MCG + 01-01-006	0.70 00 00	08 16 45.1	0.0387	16.00*	0.048	0.052	0.00	0.5084E-11	5	田		
0001.5 + 2113	TXS 2358+209	00 01 32.3	13	1.1060	19.10	0.108	0.119	0.60	0.2145E-11	or (ζ	Ъ	
0000 4 - 00001	ESO 409- G 003	00 01 55.8	-27 37 38.0	0.0284	13.72	0.000	0.030#	0.00	0.9179E-12 0.4831E-11	ي دي ر	ν Θ	ы	
0002.4 ± 0321 0003.1 ± 2157	NGC /811 UGC 6	00 03 09.6		0.0219	15.00° 14.62	0.000	0.000#	0.00	0.2313E-11	5 C	⊃ v	ဂ œ	
-	ESO 349- G 022	00 03 12.9	56	0.0498	14.62*	0.000	0.517#	1.30	0.6044E-11	CC	0)	
0003.8 + 0203	RBS 7	00 03 49.7	$02 \ 03 \ 59.9$	0.0978	16.39*	0.000	0.011#	0.00	0.4150E-11	CC	၁		
	NVSSJ000409+	04	26	0.1204	16.90	0.000	0.004#	0.00	0.4769E-11	ŭ		1	
0004.2 + 4526		04	$45\ 26\ 25.6$	0.1209	16.90*	0.000	0.004#	0.00	0.5300E-11	U		1	
0004.9 + 1142	UGC 00032	$00\ 04\ 58.5$	$11\ 42\ 03.3$	0.0760	17.00	0.027	0.033	0.00	0.3922E-11	U	臼	6	
0005.1 - 0133	LBQS 0002-0149		-013246.4	1.7100	19.10	0.000	0.061	0.00	0.5727E-12	°		ď	
	UM 18	$00 \ 05 \ 20.2$	$05\ 24\ 10.8$	1.8870	16.21	0.000	0.296	0.00	0.4883E-12	o		Ъ	
	PKS 0003-282	$00 \ 05 \ 58.7$	-27 59 00.6	0.6250	17.20	0.000	0.309#	0.70	0.9294E-12	o		ď	
0005.9 + 1609	$PG\ 0003+158$	$00 \ 05 \ 59.2$	60	0.4509	16.40	0.121	0.350	0.50	0.7766E-11	0		Ъ	
0006.2 - 0623	PKS 0003-066	90	-062335.3	0.3470	18.50	0.000	1.580	-0.13	0.1439E-11	Ü		Z	
0006.3 + 2012	MRK 335	$00\ 06\ 19.5$	$20\ 12\ 10.5$	0.0258	13.85	0.000	0.008#	0.00	0.5545E-10	U	∞	1	
0006.3 + 1052	NVSS J000620+	$00\ 06\ 20.3$	51	0.1676	17.30*	0.000	0.012#	0.00	0.4200E-11	CC		z	
0006.3 + 1236	RGB $J0006+125$	$00\ 06\ 23.0$	$12\ 35\ 53.1$	0.9800	17.40	0.156	0.209	0.00	0.7755E-12	IJ		ď	
0007.4 + 0240	LBQS~0004+0224		$02\ 41\ 12.0$	0.3000	18.00	0.000	0.007#	0.00	0.2479E-11	0		Ъ	
	RGB $J0007+472$	$00\ 07\ 59.9$	$47\ 12\ 07.8$	0.2800	18.30	0.067	0.000	0.63	0.1393E-11	o		Z	
0008.2 - 0057	FIRSTJ000813.1		-005753	0.1390	18.50	0.000	0.005 #	0.00	0.1068E-11	IJ		1	
	$\operatorname{RBS} 16$	$00 \ 08 \ 35.4$	-23 39 28.2	0.1470	17.90	0.000	0.036 #	0.00	0.4004E-11	Ü		Ŋ	
0009.5 + 1803	$RGB\ J0009+180$	$00 \ 09 \ 34.9$	$18\ 03\ 43.0$	0.3100	17.00	0.070	0.270	0.00	0.1755E-11	Ü		ď	
0009.5 - 3216	IC 1531	$00\ 09\ 35.5$	-32 16 36.7	0.0256	13.32*	0.000	0.350	-0.50	0.5163E-12	U	d		
	MRK 937	$00\ 10\ 09.9$	-044237.6	0.0295	13.80	0.000	0.007#	0.00	0.4682E-11	೮	∞	—	
0010.4 + 2047	RGB $J0010 + 207$	$00\ 10\ 28.7$	47	0.009.0	17.80	0.089	0.121	0.19	0.9794E-12	Ü		ď	
0010.5 + 1058	MRK 1501	$00\ 10\ 31.0$	105829.5	0.0893	15.40	0.151	0.435	-0.29	0.1341E-10	ŭ	闰	1	
0010.5 + 1724	4C + 17.04	$00\ 10\ 33.9$	$17\ 24\ 18.8$	1.6010	17.33	0.960	0.989	-0.10	0.1226E-11	o		ď	
	PKS 0008-307	$00\ 10\ 35.7$	$-30\ 27\ 45.9$	1.1900	19.10	0.000	0.270	0.00	0.2816E-12	o		Ъ	
	PMN J0011-3620	00 11 14.7	$-36\ 20\ 39.4$	2.3240	21.30	0.000	#990.0	0.00	0.2842E-13	o		Ъ	
	ESO 409- G 025	$00\ 11\ 21.7$	-28 51 15.8	0.0609	12.90	0.000	0.011#	0.00	0.5854E-12	CC	囝		
0011.5 + 0058	PMN J0011+0058	$00\ 11\ 30.4$	$00\ 57\ 51.9$	1.4941	17.88	0.000	0.135 #	0.00	0.5245E-12	ඊ			
0011.9 + 2903	RGB $J0012 + 290$	$00\ 12\ 01.9$	03	0.2760	16.60*	0.000	0.027	0.00	0.1659E-11	೦		ď	
	PMN J0012-1628	00 12 33.8	-16 28 06.5	0.1510	17.52*	0.000	0.095#	1.60	0.1616E-11	5			

Table A.3: (continued)

RXJ name	Name	RA(J2000)	DEC(J2000)	z	m_V	F_{5GHz}^{core}	F_{5GHz} α	$\alpha_r = F_0$	$F_{0.1-2.4\ keV}$	Type H	Host	Class.	FR
(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8) (8)		(10)	(11)	(12)	(13)	(14)
0013.5 + 4051	4C +40.01	00 13 31.1	40 51 37.1	0.2550	17.90	0.388	1.034	0.44	0.2025E-11	ŭ	田	ф	
	PKS 0011-304	$00\ 13\ 41.2$	$-30\ 09\ 26.5$	1.1110	20.21	0.000	0.223#	0.00	0.7712E-13	o		Ъ	
	NPM1G -19.0008	$00\ 13\ 56.0$	-18 54 06.8	0.0944	17.00*	0.000	0.029 #	0.00	0.1026E-10	U		z	
	PKS 0012-312	$00\ 14\ 37.9$	-30 59 18.8	2.7850	19.70	0.000	0.193#	0.00	0.2131E-12	o		Ъ	
	TXS 0012 + 305	$00\ 15\ 36.1$	30524.1	1.6190	16.30	0.000	0.081#	0.70	0.4977E-12	0		Ъ	
0016.3 - 1430	PKS 0013-14	$00\ 16\ 19.8$	-14 30 11.8	0.7664	17.00	0.000	0.250	1.14	0.2160E-11	0		Ъ	
0018.4 + 2947	RBS 42	$00\ 18\ 27.7$	$29\ 47\ 30.4$	0.1000	19.10	0.000	0.034 #	0.00	0.1185E- 10	o		Z	
0019.5 + 2956	NGC 0076	$00\ 19\ 37.8$	$29\ 56\ 01.7$	0.0244	14.00*	0.083	0.095	0.00	0.1088E-11	ŭ	\mathbf{v}		
0019.6 + 2602	4C + 25.01	$00\ 19\ 39.8$	$26\ 02\ 52.3$	0.2840	15.90	0.310	0.435	0.23	0.3591E-11	೦		ď	
	[HB89] 0016+731	$00\ 19\ 45.8$	$73\ 27\ 30.0$	1.7810	19.00	0.000	1.889	0.00	0.2926E-12	o		Ъ	
	IC 1543	$00\ 20\ 55.4$	$21\ 51\ 57.7$	0.0187	14.30*	0.000	#800.0	0.00	0.1160E-12	U	∞		
0021.1 - 1909	PGC 001348	$00\ 21\ 07.5$	$-19\ 10\ 05.6$	0.0952	17.00*	0.000	1.082 #	0.00	0.1700E-11	ŭ	囝		
0023.6 - 1753		002339.4	-175353.9	0.0535	15.40*	0.000	0.042 #	0.00	0.1880E-11	U		က	
0024.4 - 2928	PKS 0021-29	002430.1	-29 28 54.3	0.4060	20.00	0.000	1.000	99.0	0.4254E-11	0		Ъ	
0024.7 + 0032	$LBQS\ 0022+0015$	$00\ 24\ 44.1$	$00\ 32\ 21.3$	0.4040	17.20	0.000	0.027#	0.00	0.8843E-12	o		Ъ	
	MRC 0023-333	$00\ 25\ 31.2$	-33 02 47.9	0.0498	14.23*	0.000	0.410	1.23	0.3585E-11	CC	臼	r	
	PKS 0023-26	$00\ 25\ 49.1$	$-26\ 02\ 12.3$	0.3220	19.50	0.000	3.410	0.70	< 0.1700E-12	U		90	
0027.6 + 4514	RGB $J0027+452$	$00\ 27\ 42.3$	$45\ 14\ 57.1$	0.9710	17.80	0.091	0.073	0.00	0.1448E-11	U		Ъ	
0028.1 + 3103	RGB $J0028 + 310$	$00\ 28\ 10.7$	$31\ 03\ 47.0$	0.5000	15.42	0.044	0.088	0.92	0.4490E-11	0		Ъ	
	PSGS 0026+0453	00 29 03.6	05 09 34.9	1.6330	19.80	0.000	0.352	0.20	0.1329E-12	o		Ъ	
	$PG\ 0026+129$	$00\ 29\ 13.6$	$13\ 16\ 03.0$	0.1420	15.41	0.000	#200.0	0.00	0.1187E-10	~		Ъ	
	$S4\ 0026 + 34$	$00\ 29\ 14.2$	345632.2	0.6000	20.20*	0.000	1.219	0.26	0.1118E-12	U		50	
0029.7 + 0554	PKS 0027 + 056	$00\ 29\ 45.9$	055440.7	1.3170	15.92	0.374	0.500	0.20	0.5831E-12	0		ď	
0030.2 + 3804	$B3\ 0027 + 377$	$00\ 30\ 18.8$	$38\ 03\ 55.4$	1.4500	18.40	0.047	0.054	0.80	0.1073E-11	0		Ъ	
	NVSSJ003035	$00\ 30\ 35.9$	-24 11 13.3	0.1381	17.43*	0.000	0.008#	0.00	0.1616E-11	CC			
0031.3 + 3015	RGB $J0031 + 302$	$00\ 31\ 21.9$	16	0.2000	18.20	0.076	0.044	0.10	0.1329E-11	U		1	
	PMN J0032-2649	$00\ 32\ 33.0$	-26 49 17.6	1.4700	18.30	0.000	0.135 #	0.00	0.2053E-12	o		ď	
	PMN J0032-2849	$00\ 32\ 33.1$	$-28\ 49\ 20.2$	0.3239	18.80	0.000	0.161 #	0.00	0.2522E-12	o		Z	
	NPM1G -20.0015	$00\ 33\ 22.5$	-20 39 08.2	0.0727	17.10*	0.000	#600.0	0.00	0.4567E-11	CC		2	
	ESO 540- G 001	$00\ 34\ 13.8$	-21 26 20.6	0.0268	13.70	0.000	0.043 #	0.00	0.4578E-11	CC	\mathbf{v}	∞	
0034.2 + 0118	FBQS J0034+0118	$00\ 34\ 19.2$	$01\ 18\ 35.8$	0.8700	18.56	0.038	0.204	1.00	0.7137E-12	o		ď	
	PMN J0034-2134	00 34 30.8	33	0.7640	22.90	0.000	0.168#	0.00	0.4379E-13	o		ď	
0034.7 - 0054	FBQS J0034-0054	$00\ 34\ 43.9$	-005413.0	0.6560	20.00	0.067 #	0.070#	0.00	0.7322E-12	Ü		ď	
0035.8+5950	RGB J0035+598	00 35 52.6	59 50 04.6	0.0860	19.50	0.049	0.123	0.45	0.2776E-10	3		Z	

Table A.3: (continued)

11		ı							Π					Н				Π	Π																
FR	(14)	d	ď	ď		ď	ď	ď	þ	ď	ď	ಬ			ď	Z	я	p	W		2		ď	ಬ	ď	1		ď		ď		ď	ď	ď	đ
Class.	(13)																																		
Host	(12)				S				田				0							d							C								
(n)	(11)	O	O	o	ŭ	0	o	o	ŭ	o	O	ŭ	ŭ	ŭ	O	ŭ	C C C	U	U	CC	U	U	U	U	0	U	CC	U	ŭ	U	U	o	o	O	0
		7E-12	3E-12)E-12	3E-13	3E-12	3E-11)E-11	7E-11)E-12	5E-12	3E-11	3E-11	2E-12)E-12	5E-11)臣-11	SE-11	LE-12	3E-10	3臣-11	<0.3100E-12)E-11	E-11	3E-12	3E-11	5E-10	臣-11)E-12	IE-12	7E-12	3E-11	E-12	3E-11	5E-12
$F_{0.1-2.4\ keV}$	(10)	0.5007E-1	0.5233E-12	0.6090E-12	0.8723E-1	0.6033E-1	0.2073E-1	0.2040E-1	0.1737E-1	0.7600E-1	0.9405E-1	0.1986E-1	0.2333E-1	0.1182E-12	0.8900E-12	0.4275E-1	0.8900E-1	0.3048E-1	0.6651E-12	0.8758E-10	0.2453E-11	<0.310	0.1920E-11	0.3604E-1	0.7223E-12	0.3153E-1	0.1135E-10	0.1441E-1	0.2970E-12	0.2371E-12	0.5737E-12	0.1673E-1	0.9881E-12	0.3653E-11	0.8045E-12
F_0 .		0.00	0.88	1.08	0.00	0.44	-0.80	-0.80	0.72	0.05	0.55	0.00	0.00	0.70	0.00	0.00	0.00	0.72	0.99	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.24	0.00	0.00	0.80	0.80	0.00	0.00
	(6)	0.094#	53	10	0.020 #	22	00	0.413#	20	143	40	0.005#	0.117#	0.650	0.092 #	0.160 #	0.015#	1.835	50	0.058#	0.017#	1.169	0.004#	0.005#	0.078#	0.021#	#09	41	52	0.040#	55	28	82	24	0.157#
F_{5GHz}	(8)	0.0	0.153	0.610	0.0	0.457	0.300	0.4	2.720	1.1	0.440	0.0	0.1	0.0	0.0	0.1	0.0	1.8	1.250	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.041	0.152	0.0	0.055	0.228	0.082	0.024	0.1
F_{5GHz}^{core}	(7)	0.000	0.123	0.000	0.000	0.172	0.000	0.000	2.814	0.950	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.061	0.000	0.036 #	0.000	0.000	0.000	0.000	0.000#	0.000	0.032 #	0.016	0.025	0.000	0.000	0.017	0.027	0.007	0.000
mv	(9)	20.00	18.00	20.00	13.70*	18.00	20.70	17.50*	18.02	19.90	16.29	17.00	14.50*	12.21	17.86	19.20	16.00*	18.50	20.00*	13.50	15.70	19.50	17.10*	17.40	17.34	17.40	17.20	17.50	17.30*	18.59	15.70*	19.00	18.40	17.00	17.20
z	(5)	1.0040	1.1600	1.4690	0.0161	0.3660	1.1960	1.1960	0.2197	1.3530	0.5960	0.0725	0.0644	0.0145	0.8360	0.1720	0.0713	0.1880	0.4820	0.0557	0.0711	0.3460	0.2903	0.1408	1.0020	0.0799	0.0830	0.6310	0.1117	0.9300	0.0375	0.2280	0.5830	0.1810	1.5380
2000)			3 17.0	9.89	9 16.1	9 10.9	9 02.2	9 02.2	7 40.7	0.90 2	3 46.2	3 50.3	01.3	952.0	3 03.2	19 12.2	3 21.2	3 22.7	0.80 (17.9	115.4	5 33.9	751.6		5 20.0		7 20.0	1 52.8	1 41.0	156.6		5 53.7	1 40.8	3 55.0
DEC(J2000)	(4)	-09 11	1553	$18\ 37$	23 59	3659	-24 59	-2459	-02 0'	$41\ 37$	-38 59	4128	-22 20	03 19	-35 28	-27 19	+2933	10 03	$33\ 10$	-09 18	4021	-44 14	-1335	$30 \ 1$	-26 39	37.25	2424	31 3'	01 01	0051	1034	$12\ 11$	1026	19 21	-22 43
RA(J2000)	(3)	00 35 52.9	00.35.55.5	$00\ 36\ 06.5$	3651.9	. 46.1	14.7	14.7	20.2	24.8	26.9	33.1	08.2	18.6	42.9	16.4	28.3			50.5	53.4	09.4	27.0	39.9	22.6	42.5	$43\ 52.1$	$43\ 59.8$	00 44 04.7	00 44 13.7	$00\ 44\ 16.5$	004434.9	004458.7	004459.1	39.6
RA(J		00 35	00 35	0036		0037	00 38	00 38	00 38	00 38	0038	00 38	00 39	00 39	00 39	00 40	00 40	00 40	00 40	00 41	00 41	00 42	0042	0042	0043	0043	00 43	00 43	00 44	00 44	00 44	00 44	00 44	00 44	00 45
		911	156				52	52					520		;					98				399	55	425	44	16	~	0052	~1	119	101	93	
Name	(2)	FBQS J0035-0911	HB89] 0033+156		82	.01	HB89] 0035-252	[HB89] 0035-252		5 + 413	35 - 39	304	PMN J0039-2220	93	NVSSJ003942-		0428			MCG -02-02-086	157	39-44		2MASXiJ0042399	LBQS 0040-2655	2MASXiJ0043425.	RGB J0043+244	RGB J0043+316	PKS 0041 + 007	FBQS J0044+0052	CGCG 435-002	HB89] 0041 + 119	HB89] 0042+101	3GB J0044+193	HE 0043-2300
		FBQS.	[HB89]	3C14	ARP 282	4C + 36.01	[HB89]	[HB89]	3C 17	B3 0035+413	PKS 0035-39	PGC 2304	PMN J	NGC 193	NVSSJ	RBS 91	UGC 00428	3C018	3C19	MCG -	MRK 957	PKS 0039-44		2MASY	rbos (2MAS	RGB J	RGB J	PKS 00	FBQS.	CCCC	[HB89]	[HB89]	RGB J	HE 004
ame		0912	-1553	-1838		-3659		2458		-4136	3859	-4128					-2933	-1003	-3310	0918	-4021		1335	-3017		-3725	-2424	-3137	-0102		-1036	-1211	-1026	-1921	
RXJ name	(1)	0035.9-0912	0035.9 + 1553	0036.0 + 1838		0037.7 + 3659		0038.8 - 2458		0038.4 + 4136	0038.4 - 3859	0038.5 + 4128					0040.3 + 2933	0040.8 + 1003	0040.9 + 3310	0041.8 - 0918	0041.8 + 4021		0042.6 - 1335	0042.6 + 3017		0043.7 + 3725	0043.8 + 2424	0043.9 + 3137	0044.0 + 0102		0043.9 + 1036	0044.5 + 1211	0044.9 + 1026	0044.9 + 1921	
1	ı	l																																	1

Table A.3: (continued)

1.	_	Ξ_												П		Н			Ι	П		Ι									П		Π		1
'	(14)		ď	1	ø	2	ď	ď	Ъ	Ъ		1	5	1	ď	W	Ŋ	ď		_	1	r	ď	đ	ф		r	1	ď	ď	W			ď	z
Class.	(13)																																		
Host	(12)	田		∞	∞	0						∞		\mathbf{x}		闰			囝								闰				0				
d)		CC	O	U	ŭ	ŭ	0	ŭ	o	0	CC	ŭ	ŭ	ŭ	o	CC	U	o	CC	CC	U	CC	o	o	ඊ	U	CC	U	o	o	C	CC	Ü	c	o
keV	(10) (11)	<0.2000E-12	0.1171E-11	0.1668E-11	0.3943E-11	0.2425E-12	0.9200E-13	0.1860E-12	0.8769E-12	0.8008E-12	0.3010E-11	0.2294E-11	0.4027E-11	0.2094E-10	0.1059E-11	0.5989E-11	0.8099E-11	0.6089E-12	0.2500E-12	0.1175E-11	0.2696E-11	0.1010E-12	0.2254E-11	0.8750E-12	0.1207E-12	0.2168E-11	0.1385E- 10	0.2190E-10	0.1624E-11	0.8420E-12	0.3182E-11	0.1721E-11	< 0.2200 E-12	0.3964E-12	0.8937E-11
F_0		0.87	0.90	0.00	0.62	-0.40	0.00	0.00	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.97	0.00	0.00	0.76	0.33	0.00	1.00	0.10	0.36	0.00	0.00	1.72	0.00	0.00	-0.65	0.52	0.00	1.10	0.02	0.00
Z I	(8) (9)	2.980	0.062	0.003#	2.439	0.244	#960.0	0.003#	2.480	0.057#	0.032 #	0.011#	0.004#	#600.0	0.004#	0.450	0.201 #	0.004#	2.200	0.914	0.004#	4.900&	1.070	1.393	0.130	0.034 #	2.470&	#900.0	0.277#	0.850	2.084	#600.0	1.169	4.179	0.000
F_{5GHz}^{core}	(7)	0.000	0.037	0.000	0.130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.093	0.590	0.000	0.008	0.000	1.370	0.000	0.000	0.000	0.000	0.000	0.000	0.092	0.000	0.000	3.841	0.082
mv (e)	(9)	17.00*	16.37	15.28	13.97	14.59	21.50	17.20*	18.50	18.77	17.50*	14.50	17.70	14.36*	17.70	17.50	16.70	18.30	14.14	12.50	16.60	13.00	18.00*	17.33	20.20	15.28*	15.10	15.70*	18.04	18.20	12.20	16.39	20.00	18.39	16.20
N ((2)	0.1160	0.6233	0.0393	0.0008	0.0150	1.4720	0.2898	1.7970	0.7800	0.11111	0.0359	0.0590	0.0611	0.6468	0.1953	0.1010	0.5590	0.0450	0.0164	0.0728	0.0474	0.0180	0.7190	0.8740	0.0553	0.0570	0.0666	0.4690	0.5840	0.0170	0.1217	0.4000	2.0990	0.1450
DEC(J2000)	(4)	-42 07 51.5	$03\ 19\ 55.0$	$14\ 42\ 12.7$	-25 17 17.6	$31\ 57\ 25.1$	$-25\ 09\ 34.8$	-184752.6	-57 38 27.3	$-25\ 41\ 23.0$	-28 31 33.1	292404.5	$43\ 36\ 14.3$	124136.2	$00\ 01\ 10.7$	$26\ 24\ 34.4$	$-09\ 36\ 31.1$	$-09\ 32\ 58.7$	-012327.9	$30\ 21\ 08.8$	-024141.6	$26\ 51\ 55.0$	-565911.5	$00 \ 06 \ 51.6$		-15 17 57.5	-215255.8	$-14\ 16\ 13.5$	-103409.8	-403419.9	322445.2	-36 43 23.6	04	$01\ 35\ 00.3$	18 16 06.6
RA(J2000)	(3)	00 46 17.7	$00\ 47\ 05.9$	$00\ 47\ 19.4$	$00\ 47\ 33.1$	00 48 47.1	004933.7	004937.0	$00\ 49\ 59.5$	$00\ 50\ 40.9$	$00\ 51\ 15.6$	$00\ 51\ 35.0$	005250.5	005334.9	005441.2	005550.3	00 56 20.1	$00\ 57\ 29.1$	$00\ 57\ 34.9$	$00\ 57\ 48.9$	005822.4	005822.7	005846.6	005905.5	$01 \ 00 \ 09.4$	$01\ 00\ 15.9$	$01\ 02\ 41.7$	$01\ 05\ 38.8$	$01\ 06\ 44.1$	$01 \ 06 \ 45.1$	$01\ 07\ 24.9$	$01\ 07\ 50.4$	$01 \ 08 \ 16.9$	$01 \ 08 \ 38.8$	01 09 08.2
Name	(2)	PKS 0043-42	PG 0044+030	UGC 488	NGC 0253	NGC 262	PMN J0049-2509		PKS 0047-579	NVSSJ005040	EDCC 485:004849	UGC 524	NPM1G + 43.0016	UGC 545	LBQS 0052-0015	3C 28	RBS 133	FBQS J0057-0932	3C 29	NGC 0315	NPM1G - 02.0022	NGC 0326	PKS 0056-572	LBQS~0056-0009	PKS B0057-338	MCG - 03 - 03 - 017	MRC 0100-221		PMN J0106-1034	PKS 0104-408	3C 31	GSN 93	3C 32	$LBQS\ 0106+0119$	RBS 157
RXJ name	(1)		0047.0 + 0319	0047.3 + 1442	0047.5 - 2517			0049.9 - 1847	0050.0 - 5738		0051.2 - 2830	0051.5 + 2924	0052.8 + 4336	0053.5 + 1241	0054.6 + 0000			0057.5 - 0932		0057.8 + 3021		0058.9 + 2657		0059.1 + 0006			0102.7 - 2152	0105.7 - 1416	0106.7 - 1033		0107.4 + 3227			0108.6 + 0135	0109.0 + 1815

Table A.3: (continued)

, ,	П			Π																									Π					
FR (14)	đ	đ	1	p		z	đ	Z	_		2	z	ď	ď	ď	ď	ď		ಬ	1	ď	ď	1	1	ď		ď	z		z		ď	ď	đ
Class. (13)																																		
Host (12)				田					田		\mathbf{v}							0	\mathbf{v}	$\mathbf{\Omega}$						Z		0			ပ			
Type H (11) (1	ŭ	U	U	U	CC	U	o	o	CC	U	U	o	o	o	o	o	o	CC	U	U	o	Ç	U	U	o	U	U	U	Ü	QC	CC	Ç	o	೦
$F_{0.1-2.4\ keV}$ Ty (10)	0.2882E-11	0.1445E-11	0.1518E-11	0.8286E-12	0.1375E-11	0.2660E-11	0.2985E-11	0.1317E-10	0.3540E-11	0.1951E-11	0.7616E-12	0.3768E-11	0.9076E-12	0.1308E-11	0.1241E-11	0.1699E-11	0.2351E-11	0.1860E-11	0.1370E-10	0.6885E-12	0.1243E-11	0.1591E-11	0.2300E-11	0.4364E-11	0.1873E-11	0.2550E-11	0.1377E-11	0.7848E-12	< 0.3000E-12	0.1354E-11	0.6101E-11	0.1387E-11	0.8440E-12	0.9751E-12
F_0 .	0.00	0.13	0.00	0.80	0.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	-0.09	0.00	0.71	-0.22	0.00	0.00	0.00	-0.24	-0.09	0.00	0.00	1.30	0.60	0.00	0.00	0.90	-0.33	0.00	0.89	0.90	0.20
$F_{5GHz} \qquad \alpha_r \\ (8) \qquad (9)$	0.003#	0.212	0.001#	0.854	0.119	0.040	0.106 #	0.017#	#900.0	0.002 #	0.023 #	0.016 #	0.242#	0.364	0.000	0.341	0.717	0.022 #	0.004 #	0.012 #	1.100	1.879	0.014#	0.001#	0.614	1.171#	0.002 #	0.004#	1.600	1.179	0.008#	0.297	0.390	0.970
F_{5GHz}^{core} I	0.000	0.181	0.000	0.000	0.016	0.018	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.312	0.113	0.077	0.680	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.269	0.000	0.000	0.001 #	#000.0	#000.0	#000.0	0.026	0.000	0.000
m_V	16.80	18.10	17.50	19.50*	16.50*	17.60	15.60	17.90	12.50*	16.00	14.12	19.90	17.20	18.87	17.30	17.00	19.20	12.59*	15.00	14.95	17.50	19.00	16.70	15.90	18.82	18.00*	16.90	14.10	20.00	15.56	14.00*	18.09	17.90	19.70
z (5)	0.2270	1.7100	0.0929	0.1810	0.0610	0.0960	0.7800	0.2340	0.0177	0.0518	0.0117	0.3460	0.7460	0.4500	0.3330	0.3630	0.3890	0.0194	0.0527	0.0496	1.3650	0.6700	0.0990	0.0456	0.6720	0.2800	0.4461	0.0452	0.5650	0.5590	0.0513	0.7650	0.8370	0.5700
$ DEC(J2000) \\ (4) $	-32 32 43.0	$31\ 49\ 56.0$	005950.3	$73\ 11\ 56.0$	135841.4	$41\ 49\ 50.9$	-164831.3	-12504.9	$+33\ 09\ 08.3$	$-16\ 15\ 54.2$	$-38\ 05\ 00.5$	$05\ 36\ 26.5$	$20\ 20\ 21.0$	$35\ 22\ 19.3$	$38\ 18\ 56.0$	$29\ 58\ 15.0$	$49\ 48\ 24.0$	-31 44 49.7	-145044.1	$13\ 16\ 18.2$	$-01\ 27\ 04.6$	-113615.4	$25\ 49\ 28.7$	00	025805.9	-18 49 14.8	-184332.2	$-01\ 00\ 07.3$	$-15\ 20\ 16.6$	$-27\ 01\ 24.6$	-135100.5	44	$-63\ 09\ 00.1$	11 49 50.4
RA(J2000) (3)	01 09 11.2	$01 \ 09 \ 27.8$	01 09 39.0	$01 \ 09 \ 43.6$	$01\ 10\ 03.2$	$01\ 10\ 04.8$	$01\ 10\ 35.1$	$01\ 10\ 49.9$	$01\ 10\ 58.9$	$01\ 11\ 14.2$	$01\ 11\ 27.6$	$01\ 11\ 30.3$	$01\ 12\ 10.1$	$01\ 12\ 12.9$	$01\ 12\ 18.0$	$01\ 13\ 24.2$	$01\ 13\ 27.0$	$01\ 13\ 47.3$	$01\ 13\ 50.1$	$01\ 13\ 51.0$	$01\ 15\ 17.1$	$01\ 16\ 12.5$	16	17	$01\ 18\ 18.5$	$01\ 18\ 34.4$	$01\ 18\ 36.0$	$01\ 18\ 53.6$	$01\ 20\ 27.1$	$01\ 20\ 31.7$	$01\ 20\ 58.5$	$01\ 21\ 01.2$	$01\ 21\ 40.2$	01 21 41.6
Name (2)	HE 0106-3248	RGB $J0109 + 318$	FIRSTJ010939.0+.	3C 33.1	RGB J0110+139	RGB J0110+418	RBS 159	RBS 161	NGC 0410	NPM1G - 16.0043	NGC 424	NVSSJ011130+	[HB89] 0109 + 200	$B2\ 0109 + 35$	$GB6\ J0112 + 3819$	4C + 29.02	$S4\ 0110+49$	NGC 439	MRK 1152	UGC 774	$\overline{ m UM}~310$	PKS 0113-118	2MASXiJ0116540	RBS 0175	3C 37	PKS 0116-19	NVSS J011836	UGC 842	3C 38	PKS 0118-272	69 NIS	3C 39	PKS 0119-63	PKS 0119+11
RXJ name (1)		0109.4 + 3149	0109.6 + 0059		0110.0 + 1359	0110.0 + 4149			0110.7 + 3309				0112.1 + 2020	0112.1 + 3522	0112.2 + 3819	0113.4 + 2958	0113.4 + 4948				0115.2 - 0126	0116.2 - 1136	0116.9 + 2549	0117.0 + 0000	0118.3 + 0257	0118.7 - 1849		0118.9 - 0100				0121.0 + 0344	0121.6 - 6309	

Table A.3: (continued)

								Η															Ι											\Box .
FR (14)			ਨਾਂ	ਨਾਂ	2	1	2		ਨਾਂ	6	ਨਾਂ			2		ਨ	ਨਾਂ	ਨਾਂ	ਨਾਂ		10	c.	×	ਨਾਂ	ਨਾਂ		ਨਾਂ		1	ਨਾਂ	c.	ਨਾਂ		
Class. (13)			Ū	J	.,				Ū		J					Ū	Ū	Ŭ	Ū			J		J	J		J			J	J	J		
Host (12)		∞						0		d		\mathbf{v}	d		0					ပ	\mathbf{v}		0			田		\mathbf{v}	\mathbf{v}					d
$\frac{\text{Type}}{(11)} (1)$	O	. ი	o	U	o	U	U	CC	U	U	o	CC	U	OC	CC	o	0	o	OC	CC	U	0	CC	0	0	CC	0	U	U	U	0	0	o	CC
$F_{0.1-2.4\ keV}$ T (10)	0.7591E-12	0.3704E-11	0.1908E-11	0.4376E-11	0.5082E-10	0.1763E-11	0.9043E-11	0.8871E-11	0.7079E-12	0.2074E-11	0.5235E-12	0.1559E-12	0.1470E-12	0.3470E-12	0.4312E-12	0.1191E-11	0.3275E-12	0.2144E-12	0.1664E-11	0.5073E-11	0.2227E-11	0.1511E-11	0.4022E-12	0.6142E-12	0.1587E-11	0.1280E-12	0.7353E-12	0.1526E-10	0.1088E-10	0.4170E-11	0.1760E-11	0.1567E-11	0.1392E-11	<0.1900E-12
F_0	-0.16	0.00	0.70	0.00	0.00	0.00	0.00	0.00	-0.18	0.00	0.00	0.00	1.10	0.00	0.00	0.43	09.0	0.10	0.23	0.00	0.00	0.00	0.91	0.00	0.13	1.46	1.00	0.00	0.00	0.00	0.80	0.52	0.00	0.51
$ \begin{array}{ccc} F_{5GHz} & \alpha_r \\ (8) & (9) \end{array} $	0.900	0.005#	0.670	0.004 #	#000.0	0.023	0.027 #	0.690&	0.255	0.014#	0.003#	0.003#	0.087 #	0.001	0.003#	0.171	0.079	0.230	1.290	0.029 #	#900.0	0.039 #	1.879	#090.0	1.302	0.580	0.330	0.005#	0.002 #	0.307 #	1.179	0.262	0.069	4.080
F_{5GHz}^{core} (7)	0.000	0.004#	#000.0	#000.0	0.040	0.004	0.000	0.001	0.173	0.000	0.000	0.000	0.000	0.000	0.000	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.000	0.777	0.000	0.000	0.000	0.000	0.000	0.000	0.049	0.000	0.038
$\begin{pmatrix} m_V \\ (6) \end{pmatrix}$	19.50	15.17	16.88	18.80	18.46	17.94	19.00	12.89	18.60	14.60	18.50	11.73	11.42	19.98	10.25	17.80	19.86	19.50	16.70	11.39	13.96	16.42	13.34	18.30	17.50	15.15*	17.25	14.22	14.52	16.50*	20.30	17.40	18.10	13.15
z (5)	0.6370	0.0543	1.9250	0.4170	0.2720	0.0760	0.4040	0.0164	0.8490	0.0191	0.3360	0.0167	0.0076	0.3390	0.0079	0.6540	1.5590	2.2783	1.0800	0.0185	0.0155	0.3120	0.0180	0.4110	2.3580	0.0427	1.0990	0.0174	0.0930	0.1485	0.0200	0.4570	0.3081	0.0298
$\frac{\text{DEC}(J2000)}{(4)}$	04 22 24.7	-01 02 24.1	$-04\ 21\ 27.5$	$-26\ 46\ 46.0$	$34\ 20\ 47.5$	$31\ 49\ 13.0$	$-23\ 10\ 59.4$	$33\ 15\ 20.0$	$26\ 15\ 22.4$	$-35\ 03\ 55.6$	$03\ 43\ 34.4$	$01\ 43\ 53.0$	$03\ 47\ 32.7$	$09\ 18\ 50.0$	$09\ 32\ 19.0$	$32\ 07\ 27.3$	$01\ 46\ 26.5$	-00 18 28.9	-00 05 55.9	$01\ 45\ 32.8$	$32\ 08\ 11.4$	$35\ 10\ 36.7$	-012034.0	01	59	$19\ 12\ 52.9$	$-41\ 12\ 42.0$	$19\ 10\ 43.8$	$-21\ 41\ 56.8$	-08 04 04.7	$-52\ 00\ 03.9$	$24\ 27\ 41.0$	$01\ 13\ 45.4$	-36 29 35.7
RA(J2000) (3)	01 21 56.9	$01\ 21\ 59.8$	$01\ 22\ 27.9$	$01\ 22\ 37.4$	$01\ 23\ 08.5$	$01\ 23\ 08.8$	01 23 38.3	$01\ 23\ 40.0$	$01\ 23\ 43.0$		$01\ 24\ 33.2$	$01\ 24\ 33.8$	$01\ 24\ 35.1$	$01\ 24\ 44.5$	$01\ 24\ 47.8$	$01\ 24\ 47.8$	$01\ 25\ 05.5$	$01\ 25\ 17.1$	$01\ 25\ 28.8$	$01\ 25\ 31.4$	25	25	25	$01\ 26\ 15.2$		$01\ 26\ 54.4$	$01\ 27\ 14.3$	$01\ 27\ 32.5$	$01 \ 29 \ 11.0$	$01\ 32\ 41.1$		$01\ 33\ 24.6$	$01\ 33\ 52.6$	01 33 57.7
Name (2)	PKS 0119+041	MRK 1503	4C -04.04	RBS 187	RGB J0123+343	RGB $J0123 + 318$	RBS 193	NGC 0507	RGB $J0123 + 262$	NGC 526A	[HB89] 0121 + 034	NGC 521	NGC 520	$MS\ 0122.1+0903$	NGC 524	MRK 992	PMN J0125 + 0146	$_{ m UM}$ 320	UM 321	NGC 533	NGC 987	NVSSJ012555+	3C 40	NVSSJ012615	[HB89] 0123 + 257	IC 115	[HB89] 0125-414	$UGC\ 1032$	$\operatorname{RBS}\ 0207$	PKS 0130-083	PKS 0131-522	$PKS\ 0130 + 24$	\overline{UM} 338	NGC 612
$\begin{array}{c} \hline \text{RXJ name} \\ (1) \\ \end{array}$	0121.9+0422	0122.0 - 0004	0122.4 - 0421		0123.0 + 3420	0123.0 + 3149		0123.6 + 3315	0123.6 + 2615						0124.8 + 0932	0124.7 + 3207		0125.3 - 0018	0125.4 + 0005	0125.4 + 0146	0125.5 + 3208	0125.9 + 3510			0126.7 + 2558		0127.2 - 4112	0127.5 + 1910		0132.5 - 0804	0133.0 - 5159	0133.4 + 2427	0133.8 + 0113	

Table A.3: (continued)

	П																																П	1
FR (14)	· · · · · · · · · · · · · · · · · · ·	ಚ	đ	đ		d		đ	50		2	đ	đ	d	d		đ	z	1	ī	2	ď	2				đ		ď	ď	ď	z	2	ď
Class. (13)																																		
Host (12)							S			•	\mathbf{v}									S	\mathbf{v}		\mathbf{v}			\mathbf{v}		H					H	
[ype] (11)	U	ŭ	Ü	o	U	0	Ü	o	o	CC	Ü	0	o	U	U	U	o	8	U	U	U	c	U	U	U	U	S	Ü	U	0	0	U	CC	0
$F_{0.1-2.4\ keV}$ T (10)	0.8776E-12	0.1730E-11	0.7738E-11	0.4435E-11	0.1196E-11	0.2780E-11	0.8203E-11	0.1874E-11	0.1567E-10	0.6751E-12	0.1256E-12	0.4989E-12	0.1011E-11	0.3048E-11	0.1626E-11	0.3170E-11	0.5190E-11	0.4416E-12	0.1146E-11	0.2376E-12	0.1323E-11	0.6820E-12	0.3284E-11	0.2728E-11	0.1862E-11	0.2898E-11	< 0.2430E-12	0.1724E-11	0.1261E-10	0.7837E-12	0.4993E-12	0.5866E-11	0.1473E-10	0.6300E-12
F_0	0.00	0.00	0.00	0.90	0.74	-0.27	0.00	-0.30	0.80	0.00	0.00	0.00	0.21	0.59	0.00	0.00	0.00	-0.50	0.31	0.00	0.00	-0.15	0.00	0.00	0.00	0.00	-0.02	0.00	0.00	0.13	0.00	0.00	0.00	0.11
$\frac{F_{5GHz}}{(8)} \qquad \alpha_r$	0.011#	0.010#	0.008#	1.100	0.399 #	1.811#	0.180 #	1.649	5.718	0.021 #	#690.0	0.045 #	0.520	0.665	0.233#	0.005#	0.003#	1.189	080.0	0.184	0.025 #	0.900	0.014#	#600.0	0.012 #	0.003#	0.730	0.019	0.005#	0.611	0.001#	#000.0	#290.0	0.860
F_{5GHz}^{core} (7)	0.000	0.000	0.000	0.000	0.000	0.000	0.053	0.000	5.610	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.000	0.080	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.017	0.000	0.470	0.000	0.065	0.131#	#000.0
m _V (6)	14.00	18.00	16.20	18.10	15.20	19.50	15.00	17.33	16.20	19.20	15.90	18.70	18.70	17.07	16.30	16.20*	16.49	16.55	16.01	11.86	14.07	18.30	14.00	16.00	16.30*	15.50*	20.10	13.77*	15.60	18.20	17.50	16.60	12.03	18.60
z (5)	0.0199	0.1480	0.1547	0.4250	0.1461	0.8590	0.0412	0.8370	0.3670	0.2125	0.0404	0.4500	2.7300	0.2600	0.8188	0.0650	0.3340	0.7330	0.0800	0.0028	0.0173	1.1550	0.0182	0.0827	0.0862	0.0178	2.3450	0.0172	0.1130	2.4310	0.8500	0.0800	0.0162	0.6100
$ DEC(J2000) \\ (4) $	-15 49 08.8	$06\ 25\ 47.0$	$-04\ 26\ 35.0$	$20\ 57\ 27.0$	-08 06 06.8	$47\ 51\ 29.1$	-09 11 51.7	$-24\ 30\ 53.9$	$33\ 09\ 35.1$	-124910.4	-125211.1	$06\ 21\ 32.2$	175307.5	31	32	+112927.0	-00503.0	-09 28 43.7	$39\ 23\ 29.1$	$13\ 38\ 44.4$	$02\ 20\ 59.6$	33	$-03\ 49\ 37.6$	-00 40 43.2	-04 07 46.9		055553.6	$36\ 16\ 32.9$	19	$33\ 50\ 33.1$	43	$01\ 47\ 17.2$	360006.6	-33 10 25.9
RA(J2000) (3)	01 34 25.2	$01\ 35\ 21.1$	$01\ 35\ 27.0$	$01\ 36\ 24.4$	$01\ 36\ 35.6$	$01\ 36\ 58.6$	$01\ 37\ 15.4$	$01\ 37\ 38.3$	$01\ 37\ 41.3$	$01\ 37\ 56.0$	01 38 05.4	01 38 55.8	$01\ 39\ 41.9$	$01\ 39\ 57.2$	01 40 04.4	$01\ 40\ 05.1$	01 40 17.1	$01\ 41\ 25.8$	$01\ 41\ 57.7$		$01\ 43\ 57.8$	$01\ 45\ 03.4$	$01\ 45\ 25.5$	01 46 44.8	014827.6	01 49 08.6	01 49 22.4	015051.2	015227.1	015234.6	015237.1	015239.6	015246.5	01 53 10.1
Name (2)	MCG -03-05-007	$HS\ 0132+0610$	RBS 219	3C47	MRC 0134-083	[HB89] 0133+476	MRC 0134-094	[HB89] 0135-247	3C 48	NVSS J013756	KUG 0135-131	$GB6\ J0138+0621$	[HB89] 0136 + 176	$\overline{ ext{UM}}$ 355	PMN J0140-1533	RX J0140.1 + 1129	$\overline{\mathrm{UM}}$ 357	PKS 0139-09	RGB $J0141 + 393$	NGC 660	UGC 1214	[HB89] 0142-278	MCG -01-05-031	NPM1G-00.0070	LEDA 094078	NGC 675	PKS 0146+056	RGB $J0150 + 362$	RBS 247	[HB89] 0149 + 335	FBQS J0152-0143	RGB $J0152+017$	NGC 0708	PKS 0150-334
RXJ name (1)	,	0135.3 + 0625						0137.6 - 2430	0137.6 + 3309				0139.7 + 1753	0139.9 + 0131		0140.0 + 1129			0141.9 + 3923		0143.9 + 0220								0152.4 - 2319	0152.5 + 3350	0152.6 - 0143	0152.6 + 0147		

Table A.3: (continued)

ىہ				Η																															1
. FR	(14)	N	Ŋ	\mathbf{r}	1	đ	đ	ď	r	ď	2	∞	Z	Z		ಇ	Ъ	Ъ	ದ	Ŋ	Ъ	<i>₽</i> 0	1	∞	ф	ಬ	∞	Ŋ	Ъ		*	_	ď	*	đ
Class.	(13)																																		
Host	(12)	田		田		团			闰		闰	囝			၁											0				闰	d	d		d	
Type I		U	U	CC	U	CC	O	o	U	U	CC	U	o	o	CC	U	o	o	CC	٠.	U	o	U	o	o	U	U	o	o	Ü	CC	CC	o	C	೦
$F_{0.1-2.4\ keV}$ Ty	(11) (11)	0.1188E-11	0.2563E-11	0.1975E-11	0.2104E-11	0.6933E-11	0.9125E-12	0.6301E-11	0.5693E-12	0.3757E-11	0.3797E-11	0.7318E-11	0.6366E-11	0.6600E-11	0.4780E-11	0.1298E-11	0.2704E-11	0.2650E-11	0.7620E-11	0.1960E-11	0.2677E-11	0.1033E-11	0.1131E-11	0.5451E-12	0.1000E-11	0.6720E-11	0.5532E-11	0.6371E-11	0.6641E-12	0.4230E + 02*	0.2549E-12	0.7207E-13	0.1076E-12	0.3762E-13	0.2133E-12
F_0		0.47	0.00	1.56	0.00	0.00	0.81	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	09.0	0.50	0.00	0.00	0.00	0.52	0.00	0.30	0.02	0.00	1.43	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00
α_r	(6)		#	_	. 11				_	#	#	#	#	#	#	#			#	#									#	3			#	#	#
F_{5GHz}	(8)	0.643	0.106#	0.280	0.003#	0.030	0.414	1.548	0.220	0.027#	0.007	#900.0	0.013#	0.013#	0.012#	0.022#	1.350	0.800	0.025#	#890.0	0.002#	1.199	0.008#	2.299	1.379	0.004#	0.681	0.002#	0.219#	4.559	0.088#	0.034 #	0.266#	#600:0	0.003#
F_{5GHz}^{core}	(7)	0.291	0.000	0.000	0.000	0.023	0.290	0.000	0.074	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.066	0.000	0.000	0.106	0.000	0.000	0.000	0.000	0.000
m_V	(9)	15.50	19.00	12.82	17.00	13.80	18.00	16.50	18.15*	15.69	11.45	15.30*	17.96	18.00*	16.70*	20.20	16.40	16.90	16.00*	19.10*	16.50	19.50	16.50	21.00	17.90	14.30*	16.80	19.24	17.20	13.00	12.95	13.13	19.70	13.04	18.75
z	(5)	0.0220	0.2458	0.0185	0.1550	0.0810	0.3730	2.3380	0.1597	0.1630	0.0166	0.0788	0.2984	0.2990	0.1959	0.2090	0.6690	0.3890	0.0650	0.2600	0.1781	3.6100	0.0720	0.4050	1.7400	0.0424	0.1096	0.3180	1.1280	0.0377	0.0129	0.0131	1.9760	0.0133	1.2100
DEC(J2000)	(4)	71 15 06.5	-01 18 08.8	$05\ 37\ 44.2$	$24\ 18\ 36.0$	$41\ 20\ 30.4$	$31\ 54\ 17.7$	$74\ 42\ 43.2$	$-21\ 02\ 17.1$	002340.6	$31\ 25\ 46.0$	$02\ 40\ 09.8$	003400.2	+003400.2	$-02\ 11\ 47.6$	-014013.4	-113233.6	$-76\ 20\ 03.0$	$+19\ 04\ 01.7$	-022321.2	$-24\ 02\ 11.0$	$11\ 34\ 45.4$	-11 59 43.4	14	-17 01 19.8	$-00\ 17\ 29.2$	30	$35\ 23\ 12.7$	38	$35\ 47\ 50.1$	-10 08 49.1	11	$-10\ 03\ 53.9$	-10 19 17.2	-10 15 38.9
RA(J2000)	(3)	01 53 25.8	015334.3	015621.0	015621.3	$01\ 57\ 05.0$	015715.3	015734.9	$01\ 57\ 53.4$	015950.2	$02\ 00\ 14.9$	$02\ 00\ 26.3$	$02\ 01\ 06.2$	$02\ 01\ 06.2$	$02\ 01\ 43.1$	01	$02\ 01\ 57.1$	$02\ 02\ 13.7$	$02\ 02\ 18.9$	$02 \ 02 \ 52.3$	$02 \ 03 \ 00.7$	03	04	04	04	$02\ 06\ 15.9$	07	08	60	02 09 38.6	00			$02\ 10\ 17.6$	02 10 28.3
Name	(2)	RGB J0153+712	PMN J0153-0117	NGC 0741	NVSS J015620+	RGB J0157+413	[HB89] 0154 + 316	[HB89] 0153 + 744	PKS 0155-212	MRK 1014	NGC 777	MRK 584	RBS 267	$MS\ 0158.5+0019$	FIRSTJ020143.1+.	2MASXiJ0201456	3C 57	[HB89] 0202-765	$UGC\ 01518$		$RBS\ 273$	PKS 0201+113	KUG 0202-122	4C + 15.05	PKS 0202-17	$\overline{\mathrm{UGC}}$ 01597	RBS 281	MS 0205.7 + 3509	FBQS J0209-0438	$B2\ 0206+35$	NGC 838	NGC 839	PMN J0209-1003	NGC 848	FBQS J0210-1015
RXJ name	(1)	0153.3+7115		0156.3 + 0537	0156.3 + 2418		0157.3 + 3154		0157.9 - 2101	0159.8 + 0023	0200.2 + 3126	0200.4 + 0240	0201.1 + 0034	0201.3 + 0034		0201.7 - 0139	0201.9 - 1132	0202.3 - 7619	0202.9 + 1904	0202.9 - 0223					0204.9 - 1701	0206.9 - 0017	0207.0 + 2930	0208.5 + 3523	0209.5 - 0438						

Table A.3: (continued)

	ı						Π													Ξ		Н												
FR (14)	z	d	ď	z	1	1		ď	z		ď	z	ď	ď	ď	ď	z	z	d	n	z	1	r	ď	ಬ	ď	ď	ď	ď	ď	ď	1		đ
Class. (13)																																		
Host (12)						∞	田			闰															\mathbf{v}							∞		
	೦	o	o	U	U	U	U	o	೦	g_{C}	o	Ç	o	O	U	o	೦	U	Ç	$^{\rm CC}$	QC	U	U	೦	U	Ç	Ç	Ç	o	U	U	U	U	೦
Type (11)	-	1	7	11	1	07	-12	12	01	1	11	11	11	[2		11	11	[2	[2	12	11	[2	1	[]	11	1	11	1	12	11	12	01		7
$F_{0.1-2.4\ keV} \ (10)$	0.1316E-1	0.1611E-11	0.4733E-12	0.3004E-11	0.2834E-11	0.5464E-10	< 0.2500 E - 12	0.3036E-12	0.1167E-10	0.2194E-11	0.7426E-1	0.1550E-1	0.2642E-1	0.9385E-1	0.2365E-1	0.1047E-1	0.1327E-1	0.7741E-15	0.5387E-1	0.8833E-1	0.5836E-1	0.9546E-1	0.1197E-1	0.1878E-1	0.4360E-1	0.6929E-1	0.7873E-1	0.1358E-1	0.4026E-12	0.3441E-1	0.5092E-12	0.1025E-10	0.3001E-11	0.4487E-12
F_0	0.20	0.00	0.00	0.00	0.00	0.00	0.74	0.00	0.00	0.60	0.84	90.0	-0.13	-0.60	0.00	0.21	0.00	-0.02	-0.10	0.77	0.03	1.04	0.56	0.04	0.00	0.65	0.21	0.70	0.00	0.00	0.00	0.00	0.00	0.00
α_r (9)		_	_	#6	3 #	#2	_	#1	3#	_	_	~ 1	_	_	#7	_	#7	~	_	280		280	○ 1		#1	_	_		3#	3#	#7	#9	#(#(
$F_{5GHz} $ (8)	3.209	0.000	0.051	0.019#	0.003	0.017#	1.800	0.141 #	0.036	0.790	0.460	0.462	0.000	1.060	0.142#	0.360	0.062 #	1.498	0.380	17.600	0.806	19.230	0.252	0.770	0.031 #	0.780	0.580	0.420	#990.0	#900.0	0.132 #	0.015#	0.010#	0.110#
$F_{5GHz}^{core} \ (7)$	0.000	0.082	0.024	0.000	0.004#	0.007#	0.024	0.000	0.000	0.000	0.000	0.296	2.412	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.917	0.182	0.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
m _V (6)	16.93	18.20	18.55	18.70	18.00	13.81	18.50	17.80	17.90	14.36*	16.46	17.90	20.00	16.09	17.10	19.10	17.25	20.00	15.00	19.00	15.21	14.81	19.80*	20.70	15.33	18.50	18.90	19.70	17.30	17.10	19.34	14.74	15.50*	18.70
z (5)	0.9990	0.4900	0.5128	0.3930	0.1921	0.0264	0.1470	1.4800	0.2890	0.0640	0.4080	1.4000	2.3670	1.7150	0.4680	0.5157	0.1280	0.6847	0.7000	0.1878	0.4440	0.0212	0.2200	0.5110	0.0337	0.2300	2.6900	0.6870	2.2280	0.1754	1.0380	0.0166	0.0381	0.6200
$ DEC(J2000) \\ (4) $	$-51\ 01\ 01.9$		$01\ 00\ 56.1$	$-35\ 03\ 32.7$	$00\ 42\ 26.8$	-004600.1	-125930.5	$-01\ 05\ 18.9$	$23\ 14\ 47.0$	-47 49 09.8	$11\ 04\ 10.1$	$08\ 37\ 03.6$	$73\ 49\ 32.6$	$01\ 44\ 49.7$	-195819.0	$-16\ 31\ 10.5$	$-17\ 25\ 13.7$	355613.7	$-16\ 15\ 16.5$	$86\ 19\ 08.0$	$43\ 02\ 07.8$	425931.5	$39\ 36\ 03.8$	59	08	-23 12 47.9	$18\ 46\ 48.8$	-003531.4	-08 48 12.9	$44\ 09\ 57.2$	-10 38 36.9	18	05	-10 27 48.0
RA(J2000) (3)	$02\ 10\ 46.2$	$02\ 12\ 09.7$	$02\ 12\ 25.6$	$02\ 12\ 30.5$	$02\ 13\ 59.8$	$02\ 14\ 33.6$	$02\ 15\ 37.5$	$02\ 16\ 12.2$	$02\ 16\ 32.1$	$02\ 16\ 45.2$	$02\ 17\ 07.7$	$02\ 17\ 17.1$	$02\ 17\ 30.8$	$02\ 17\ 48.9$	$02\ 17\ 53.5$	$02\ 17\ 57.2$	$02\ 19\ 05.5$	$02\ 21\ 05.5$	02 22 00.7	$02\ 22\ 36.0$	02 22 39.6	$02\ 23\ 11.4$	022334.1		022440.6	$02\ 25\ 02.7$	$02\ 25\ 04.7$	$02\ 25\ 08.1$	$02\ 27\ 32.1$	$02\ 27\ 39.6$	$02\ 27\ 59.2$	$02\ 28\ 14.5$	29	02 29 21.2
Name (2)	[HB89] 0208-512	RGB $J0212+364$	RGB $J0212+010$	RBS 292	NVSSJ021359+	NGC 863	3C 62	UM 416	RBS 298	PKS 0214-48	PKS 0214+10	ZS 0214 + 083	$S5\ 0212+73$	PKS 0215+015	NVSS J021753	PKS 0215-16	NVSSJ021905	$S4\ 0218+35$	PKS 0219-164	3C 61.1	3C066A	3C 66B	$B3\ 0220 + 393A$	[HB89] 0221 + 067	ESO 545- G 013	PKS 0222-23	RBS~315	PKS 0222-00	PMN J0227-0847	NVSS J022739+	PMN J0228-1038	NGC 931	VV 107a	[HB89] 0226-106
RXJ name (1)	0210.7 - 5100	0212.1 + 3625	0212.3 + 0101		0214.0 + 0042	0214.6 - 0046			0216.5 + 2314	0216.7 - 4749	0217.1 + 1104	0217.2 + 0837	0217.5 + 7349			0217.9 - 1630							0223.5 + 3935	0224.4 + 0659		0225.0 - 2312		0225.1 + 0035				0228.2 + 3118		0229.3-1027

Table A.3: (continued)

FR	(14)	1	1		Z	z	1	ď		2	ď	6	ď		I	ď		20	1	z	z	ď	ď	6.0	_	1		ď	ď	ಇ	2	ď	z	1	
Class.	(13)																											-							
Host	(12)	G S	でち	GC GC	IJ	~	75	~	75	G S	~	CS	\sim	CE	てち	\sim		CS	75	\sim	でち	~	2	~	GC E	でち	0	Z	\sim	\sim	CS	U	でち	G S	اح
Type	(11)		_	Ö	_	_	_	_	_	J	_	Ö	_			_	G	Ö	_	_	_		_	_	Ö	_	_	_	_	_	Ö	_	0	_	•
F _{0.1} -2.4 keV	(10)	0.4342E-10	0.3026E-11	0.4245E-11	0.1455E-10	0.8615E-12	0.2000E-11	0.3554E-11	0.2514E-12	0.2521E-10	0.2128E-11	0.5328E-11	0.3327E-12	0.9824E-13	< 0.4300 E - 12	0.1429E-11	0.3688E-12	0.6578E-11	0.3523E-11	0.2463E-11	0.2134E-11	< 0.4130 E-12	<0.1070E-1	0.1696E-11	0.5640E-12	0.1370E-10	0.8240E-12	0.4298E-11	0.3702E-11	0.4250E-11	0.3573E-10	0.5004E-10	0.1905E-11	0.2881E-11	O 5020F-11
F_{0}		0.00	0.00	0.00	0.00	0.22	0.50	0.70	0.00	0.00	0.49	0.00	0.00	0.60	0.87	-0.20	0.00	0.00	0.72	-0.20	0.00	-0.10	-0.09	-0.70	-2.90	0.00	0.00	0.27	0.00	0.00	0.80	-0.36	0.00	0.00	000
F_{5GHz} α_r		0.003#	0.003#	#800.0	0.045 #	0.179	0.212#	0.110	0.005#	0.002#	0.620	0.158 #	0.530	0.070	1.439	2.794	#800.0	#800.0	0.128	1.639	0.077#	1.159	0.680	1.510	1.399	0.003#	0.590	0.820	#800.0	#800.0	1.919	0.376	0.211	0.150	0.041#
Hz.	(7)	0.001#	#000.0	#000.0	#000.0	0.123	0.000	0.000	0.000	0.000	0.000	0.106	0.000	0.000	0.000	2.091	0.000	0.000	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.307 #	0.300	0.000	0.126	0000
mv	(9)	14.29	16.30	17.73*	18.00	20.80	17.00*	17.30	16.10*	14.28	16.46	14.90	18.30	12.71	20.30	19.30	11.60	14.95	17.70	15.50	17.60	19.90	18.30	16.63	11.24	15.90*	20.00*	17.00	16.52	16.60*	10.83	12.19	16.50	9.75	16.50*
Z	(5)	0.0164	0.0788	0.0708	0.1400	0.4580	0.7786	0.3210	0.0222	0.0431	1.4500	0.0591	2.1020	0.0216	0.6200	1.2130	0.0219	0.0242	0.2090	0.9400	0.1951	1.1160	0.9780	2.2230	0.0049	0.0685	2.6940	0.3140	0.5692	0.5690	0.0038	0.0440	0.0700	0.0043	0.1883
DEC(J2000)	(4)	-08 59 52.6	$34\ 04\ 28.9$	$06\ 37\ 42.8$	$20\ 17\ 16.2$	$34\ 42\ 53.9$	-045505.4	$02\ 29\ 24.6$	$01 \ 08 \ 13.8$	-08 47 15.4	$-04\ 02\ 05.7$	$-29\ 36\ 17.2$	-295355.7	015831.1	$-19\ 32\ 33.3$	$28 \ 48 \ 08.9$	$02 \ 07 \ 09.3$	015427.8	$02\ 33\ 48.8$	$16\ 36\ 59.3$	-125849.1	-023440.9	$04\ 16\ 21.4$	00	$-08\ 15\ 20.7$	$+05\ 30\ 36.0$	$11\ 01\ 00.7$	$-21\ 32\ 26.2$	005727.2	$+00\ 57\ 27.2$	-00 00 47.8	$62\ 28\ 06.5$	$10\ 47\ 22.8$	$-30\ 16\ 28.7$	-03 31 45 0
RA(J2000)	(3)	02 30 05.4	$02\ 32\ 33.1$	$02\ 32\ 46.2$	$02\ 32\ 48.5$	$02\ 33\ 20.4$	$02\ 33\ 22.5$	$02\ 33\ 48.9$	$02\ 33\ 51.6$	$02\ 34\ 37.8$	$02\ 35\ 07.4$	$02\ 35\ 13.5$	$02\ 36\ 31.2$	$02\ 37\ 41.8$	$02\ 37\ 43.4$	$02\ 37\ 52.4$	$02\ 38\ 19.6$	$02\ 38\ 27.4$	$02\ 38\ 32.7$	$02\ 38\ 38.9$	$02\ 38\ 49.3$	$02\ 39\ 45.5$	$02\ 39\ 51.3$	$02 \ 40 \ 08.2$	$02\ 41\ 04.8$	$02\ 42\ 14.6$	024229.2	024235.9	024240.3	024240.3	024240.7	024457.7	$02\ 45\ 13.5$	$02\ 46\ 18.9$	02 48 03 4
Name	(2)	MRK 1044	IRAS $02295 + 3351$	NPM1G + 06.0105	1ES 0229 + 200	RGB J0233+347	PKS 0230-051	[HB89] 0231 + 022	CGCG 388-052	NGC 985	4C -04.06	ESO 416- G 002	[HB89] 0234-301	NGC 1004	PKS 0235-19	$B2\ 0234 + 28$	NGC 1016	NGC 1019	PC 0235 + 0220	PKS $0235+164$	TXS 0236-131	PKS 0237-027	PKS 0237 + 040	PKS 0237-23	$NGC\ 1052$	$\operatorname{RBS}\ 0345$	PKS 0239+108	MRC $0240-217$	PHL 1443	E 0240 + 007	$3C\ 071/NGC1068$	[HB89] 0241 + 622	4C + 10.08	NGC 1097	[CGH98] 10248-
RXJ name	(1)	0230.0-0859			0232.8 + 2017	0233.3 + 3442	0233.6 - 0454	0233.8 + 0229			0235.1 - 0401					0237.8 + 2848		0238.4 + 0154	0238.4 + 0233					0240.1 - 2309	0241.0 - 0815	0242.2 + 0530		0242.6 - 2131	0242.6 + 0057	0242.2 + 0057	0242.6 + 0000	0244.9 + 6228		0246.3 - 3016	0248 6-0332

Table A.3: (continued)

																											Ι		Π				Π	I
FR (14)	5	z	ď	50	đ	đ	50		ď		ď	ಬ	ď	1	đ	z			z	z	z	ď	n		*	ď	1	ď	2	ď	1	đ	1	z
Class. (13)																																		
Host (12)	∞							田		0				\mathbf{x}			၁							∞			0		Z					
Type I (11) (Ü	ŭ	U	o	o	o	U	C	o	U	U	U	o	Ü	U	o	CC	CC	OC OC	o	o	ඊ	U	C	U	0	ŭ	0	U	o	U	o	Ü	ŭ
	0.7954E-11	0.4373E-11	0.3965 E - 11	0.9861E-12	0.2713E-12	0.1549E-11	<0.2400E-12	0.3933E-11	0.1350E-11	0.2293E-11	0.3229E-11	0.3216E-11	0.3150E-12	0.5761E-11	0.4435E-11	0.1618E-11	0.6375E-11	0.6030E-11	0.9774E-11	0.1130E-10	0.1671E-11	0.7636E-12	0.2027E-12	0.3180E-11	0.2206E-11	0.9008E-12	0.6290E-11	0.1253E-11	<0.2031E-12	0.3104E-11	0.1597E-10	0.5928E-11	0.8022E-11	0.5148E-11
$F_{0.1-2.4\ keV}$ (10)						_	·																						•					
α_r (9)	0.00	0.00	0.00	-0.42	0.00	0.90	1.14	0.00	-0.80	0.22	-0.3	0.00	-0.57	0.00	0.00	0.00	0.96	1.29	0.47	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.64	-0.10	0.91	0.13	0.00	-0.60	0.65	0.50
$F_{5GHz} \qquad \alpha $ (8)	0.004#	0.004 #	0.040	1.413	0.053	0.310	1.580	0.008#	0.800	0.063	0.352	0.011 #	0.980	0.004#	0.009	0.010	0.500 #	0.230	0.390	0.030 #	0.019#	0.103#	0.102 #	0.036	0.004#	0.121 #	3.649	0.700	14.000	0.090	0.005#	0.590	0.859	0.065
$F_{5GHz}^{core} \ (7)$	0.000	0.000	0.035	0.000	0.000	0.000	0.000	0.000	0.000	0.073	0.273	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.964	0.000	0.010	0.015	0.000	0.000	0.056	0.037
$m_V $ (6)	14.81	20.10	17.50	17.60	18.50	17.00	19.00*	12.26	17.80	15.20	16.30	16.00	19.00	16.20	16.10	18.53	18.50	15.65*	16.18	17.90*	19.80	17.80	18.80	13.60*	17.87*	18.63	13.90	18.40	18.75	18.60	16.47	16.10	18.20	17.60
z (5)	0.0310	0.4980	1.1003	1.3100	0.7610	1.0020	0.5680	0.0232	0.5390	0.0474	0.2890	0.0680	0.8930	0.0350	0.1897	0.2450	0.1700	0.0469	0.2600	0.1960	0.3300	0.5630	0.2110	0.0210	0.1073	1.1060	0.0286	0.8630	0.2559	0.3700	0.0660	0.2230	0.1610	0.0715
$ DEC(J2000) \\ (4) $	19 18 14.1	-21 29 37.7	$17\ 12\ 08.5$	$43\ 15\ 15.8$	-205149.0	$-67\ 18\ 00.1$	-710432.3	-01 16 28.8	$-54\ 41\ 51.4$	$36\ 25\ 52.0$	$39\ 31\ 34.7$	$-16\ 30\ 46.0$	074739.6	$-24\ 22\ 53.6$	$38\ 54\ 57.7$	$34\ 41\ 00.9$	015516.5	35 50 30.0	$-24\ 07\ 11.0$	+055417.0	-005404.2	02	-24 21 34.5	$-39\ 02\ 11.0$	$00 \ 03 \ 43.2$	$-30\ 37\ 29.6$	$04\ 06\ 39.3$		$17\ 05\ 58.3$	$39\ 10\ 58.0$	$-20\ 46\ 18.2$	-765150.8	$39\ 16\ 30.4$	$36\ 15\ 19.5$
RA(J2000) (3)	02 49 20.7	$02\ 50\ 18.9$	025037.9	025134.5	025154.9	025155.8	025246.1	025251.8	025329.2	025400.0		025740.8	025927.1	025930.5	$03\ 00\ 20.0$	$03\ 01\ 03.8$	$03\ 01\ 38.5$	$03\ 01\ 51.5$	$03 \ 03 \ 26.5$	$03 \ 03 \ 30.1$	04		$03\ 05\ 19.5$	$03\ 06\ 06.0$		$03\ 07\ 08.4$	$03 \ 08 \ 26.2$	$03\ 09\ 03.6$	$03\ 10\ 00.1$	$03\ 10\ 24.5$	$03\ 11\ 18.8$	$03\ 11\ 55.2$	$03\ 12\ 26.5$	$03\ 12\ 50.3$
$\begin{array}{c} \text{Name} \\ (2) \end{array}$	IC 1854	RBS 361	RGB $J0250+172$	B3 0248+430	PMN J0251-2052	$[{ m HB89}]~0251-675$	PKS 0252-71	NGC 1132	PKS 0252-549	CGCG 0250.9+3613	RGB $J0254 + 395$	LEDA 097508	PKS 0256+075	RBS 377	NVSS J030020+	MS 0257.9 + 3429	4C + 01.06	$RGB\ J0301 + 358$	RBS 0383	$RBS \ 0384$	FBQS J0304-0054	US~3621	PMN J0305-2421	NGC 1217	NVSSJ030639+	PKS 0305-308	3C 078	PKS $0306 + 102$	3C 79	RGB $J0310 + 391$	RBS 392	LEDA 088074	4C + 39.11	V ZW 326
RXJ name (1)	0249.3 + 1918		0250.6 + 1712			0251.9 - 6718			0253.4 - 5441	0253.9 + 3625	0254.6 + 3931						0301.6 + 0155		0303.4 - 2407	0303.0 + 0554	0304.5 - 0054			0306.3 - 3902	0306.6 + 0003		0308.4 + 0406	0309.0 + 1029		0310.3 + 3911	0311.3 - 2046	0311.9 - 7651	0312.4 + 3916	0312.8 + 3615

Table A.3: (continued)

ı	1	ı							П			П					П						П					П							ı
. `	(13) (14)	1	z	ಹ	ď	œ			W	h	ď	ಬ	N		ď	ď	_	1	ď	∞	z	Z	n		1	N	Ŋ	r	ಬ	ď	ď	ď	N	2	
			闰			∞	0	0	闰	\mathbf{x}		ပ		日			\mathbf{v}			d			囝					0						C	田
	(12)	ŋ	U	Ü	o	Ü	GC	CC	CC	ŋ	Ü	CC	U	CC	0	0	CC	U	0	U	U	U	CC	ŭ	Ü	o	o	CC	U	ŭ	Ü	o	Ü	CC	СС
Type	(11)	11	12	11	12	12	11	01	12	11	11	60	01	11	11	12	11	11	12	10	10	01	12	11	01	11	11	11	11	10	11	11	11	6(
$F_{0.1-2.4\ keV}$	(10)	0.7241E-1	0.9539E-12	0.1732E-1	0.8824E-12	0.5488E-12	0.9979E-1	0.1029E-10	0.1828E-12	0.5145E-1	0.4423E-1	0.1981E-09	0.2273E-10	0.1763E-1	0.1179E-1	0.1142E-12	0.2324E-1	0.9654E-1	0.2279E-12	0.1140E-10	0.5418E-10	0.3035E-10	0.6406E-12	0.1083E-1	0.1040E-10	0.1207E-1	0.1191E-1	0.1719E-1	0.9200E-1	0.1280E-10	0.1063E-1	0.8603E-1	0.1870E-1	0.1520E -09	0.3960E-1
F_0		-0.08	0.00	0.00	0.80	0.00	1.10	0.45	0.54	0.00	0.00	0.14	0.00	0.00	0.34	0.00	0.52	-0.08	0.00	0.00	0.00	0.00	0.79	0.96	0.00	0.00	-0.46	0.95	0.00	0.00	0.41	0.10	0.00	0.00	0.00
α_r	(6)	16	00	44	02	0.082 #	0.258 #	20	59	00	0.004#	93	17	90	00	64	00	64	0.100 #	0.030 #	0.027 #	47	06	1.700#	0.004#	60	00	10	0.005#	0.005#	82	00	0.014#	0.038#	0.004#
F _{5GHz}	(8)	0.516	0.000	0.044	0.370	0.0	0.2	0.620	3.529	0.100	0.0	46.893	0.017	0.406	0.0	0.164	72.000	0.364	0.1	0.0	0.0	0.047	1.990	1.7	0.0	0.009	2.600	0.810	0.0	0.0	0.078	0.000	0.0	0.0	0.0
F_{5GHz}^{core}	(7)	0.408	0.048	0.006	0.000	0.000	0.000	0.000	0.040	0.000	0.000	28.489	0.000	0.010	1.620	0.000	0.026	0.304	0.000	0.000	0.000	0.068	0.159	0.548	0.000	0.000	0.000	0.728	0.000	0.000	0.064	3.326	0.000	0.000	0.000
mv (e)	(9)	18.00	17.00	18.30	18.80	14.00*	12.74	13.90	14.70*	8.71	16.20	12.48	18.12	16.10	18.30	22.00	10.60	15.72*	17.80	15.10*	16.70	16.55	15.50	18.50	16.70*	18.00	17.50	16.00	15.40*	16.50*	17.80	17.50	19.10*	16.00*	10.90*
N S	(2)	0.1340	0.0294	0.0542	1.0720	0.0073	0.0189	0.0759	0.0251	0.0016	0.1894	0.0175	0.1900	0.0517	2.6620	1.4680	0.0059	0.0610	2.8280	0.0341	0.2910	0.1470	0.0302	0.2010	0.0460	0.3080	1.4450	0.1386	0.0348	0.1901	0.5630	1.2580	0.2509	0.0346	0.0065
(0003		20 01.2	24.1	33.1	1646.0	38.5	29.4	17.4	27.8	53.7	0.80	42.1	34.2	44.0	13.9	17.7	1229.6	$10\ 45.8$	41.5	08 38.7	15.7	14.7	41.8	$01\ 43.1$	25.6	48.0	25.4	56.4	39.8	28.0	35.0	29.3	50.3	11.6	39.8
DEC(J2000	(4)	41 20	$41 \ 15$	24 44	-03 16	-0225	41 19	-44 14	41 51	-66 29	-2122	$41\ 30$	1845	43 04	$12\ 21$	-1335	-37 12	$34\ 10$	-21 40 41.5	-06 08	-16 46	0225	$02 \ 33$		+0538	-36 19	-40 08	-01 10	-15 13		$22\ 35$	$32 \ 18$	-24 43	+0958	-35 35
(0002		01.9	57.6	02.7	22.7	2.00	43.0	57.7	$18\ 15.9$	$18\ 16.0$	1828.1	1948.2	1951.8	$20\ 38.2$	2153.1	38.4	$22\ 41.7$	$24\ 41.2$	25 00.8	$25\ 25.3$	$25\ 41.1$	$26\ 13.9$	2754.2	$30\ 27.6$	$30\ 52.2$	$33\ 12.2$	13.6	$34\ 15.6$	3424.5	35 22.5	3604.8	$36\ 30.1$	12.5	40.5	51.9
RA(J2000)	(3)	03 13 01.9	$03\ 13\ 57.6$	$03\ 14\ 02.7$	$03\ 15\ 22.7$	$03\ 16\ 00.7$	$03\ 16\ 43.0$	03 17 57.7	03 18	$03 \ 18$	$03 \ 18$	$03 \ 19$		$03 \ 20$	$03\ 21$	22		0324	03 25	0325	03 25				$03\ 30$	$03 \ 33$	$03\ 34$	$03\ 34$	$03\ 34$		$03\ 36$	$03\ 36$	$03\ 38\ 12.5$	03 38 40.5	03 38
Name	(2)	S4 0309+41	V Zw 331	RGB J0314+247	4C -03.11	NGC 1266	IC 310	MRC 0316-444	3C 83.1	NGC 1313	RBS 410	3C 084/PERSEUS A	LEDA 138616	RGB J0320+430	PKS 0319+12	PMN J0322-1335	Fornax A	RGB J0324+341	PMN J0325-2140	MRK 0609	RBS 421	RGB $J0326+024$	UGC 02748	4C + 40.11	$RX\ J0330.8+0538$	MS 0331.3-3629	PKS 0332-403	3C 089	IRAS 03321-152		$RGB\ J0336 + 225B$	B2 0333+32	E 0336-248	PGC 013424	NGC 1404
RXJ name	(1)					0316.0 - 0226		0317.9 - 4414				0319.8 + 4131	0319.8 + 1845	0320.6 + 4305	0321.8 + 1221		0322.7 - 3712	0324.6 + 3410		0325.2 - 0608		0326.2 + 0225	0327.9 + 0233	0330.5 + 4102	0330.9 + 0538		0334.2 - 4007	0334.2 - 01111	0334.5 - 1513	0335.6 + 1907	0336.0 + 2235	0336.5 + 3218	0338.1 - 2443	0338.1 + 0958	0338.5-3535

Table A.3: (continued)

	11							Π					Π			Π										Π								Ξ,
FR (14)		ď	z	œ		1	ď	r	1	22	ď	z		1	ď	n	Z				1	1	1	ď	œ	n	2	z	<i>9</i> 0	ď	ď	œ	ď	n
Class. (13)																																		
Host (12)	0					$\mathbf{\Omega}$										囝		田	ပ		\mathbf{v}				田	田								
	ŭ	೦	೦	ŭ	g_{C}	ŭ	೦	U	ŭ	ŭ	೦	U	ŭ	U	೦	U	೦	$^{\rm CC}$	g_{C}	U	U	U	U	o	U	U	U	U	o	o	೦	U	o	U
$\begin{array}{c} \text{Type} \\ (11) \end{array}$	11	11	.12	13	10	11	11	11	11	11	111	.10	12	11	11	5-12	12	11	10	11	11	10	11	.12	11	.13	111	11	7-12	111	11	10	.12	7-12
$F_{0.1-2.4\ keV}$ (10)	0.4340E-1	0.1762E-1	0.8513E-12	0.6687E-13	0.2360E-10	0.5170E-1	0.1763E-1	0.2177E-1	0.8620E-1	0.1203E-1	0.1448E-11	0.2661E-10	< 0.3000 E - 12	0.6350E-11	0.2423E-11	< 0.2800 E-12	0.5000E-12	0.1951E-11	0.1090E-10	0.4300E-1	0.5158E-11	0.1490E-10	0.4650E-11	0.2031E-12	0.1409E-11	0.3927E-13	0.4113E-11	0.5040E-11	< 0.1810E-12	0.2356E-11	0.1962E-11	0.1212E-10	0.4040E-12	<0.3700E-12
	0.10	-0.05	-0.22	3.40	0.00	0.00	0.31	0.00	0.00	0.00	0.22	0.00	0.78	0.00	1.40	0.59	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.16	-0.47	-0.05	0.57	-0.06	09.0
α_r (9)	0.171#	00	40	48	0.021#	0.004#	10	37	0.003#	0.032 #	30	80	30	0.019#	01	40	17	43	0.020#	0.023#	#800.0	0.007#	0.016#	0.118#	0.005#	<i>3</i> 0%	0.013#	0.013#	30	90	40	70	30	90
$F_{5GHz} $ (8)	0.1	3.000	0.940	0.148	0.0	0.0	0.710	0.067	0.0	0.0	0.960	0.008	1.260	0.0	0.810	2.040	0.017	0.243	0.0	0.0	0.0	0.0	0.0	0.1	0.0	25.300&	0.0	0.0	1.030	1.290	3.240	1.020	1.060	2.390
$F^{core}_{5GHz} \ (7)$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.000	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.000	0.000	0.000	0.000	0.621	0.000	0.014
(6)	16.20*	18.41	17.10	19.60	17.00*	12.90*	18.60	18.50*	16.70*	14.64	20.00	19.10	20.90	17.20*	16.22	16.00	18.50	16.40	18.30*	16.00*	15.40	16.30*	16.60*	20.90	16.40	15.41	17.20	19.60*	20.10	17.17	17.09	18.50	19.30	18.50
z (5)	0.0655	0.8520	0.0480	0.1950	0.0290	0.0145	0.2840	0.1280	0.1090	0.0310	0.9910	0.1850	0.3390	0.1110	0.6162	0.0662	0.1650	0.1324	0.1080	0.0694	0.0288	0.0360	0.0766	1.2710	0.0140	0.0304	0.1135	0.2149	1.2880	1.4170	0.5705	0.0550	1.2850	0.0890
$ DEC(J2000) \\ (4) $	-17 36 00.8	-01 46 35.8	$-21\ 19\ 31.2$	-18 14 00.3	52351.0	-21 14 39.7	-370322.5	$63\ 39\ 33.5$	8 58 26.4	$01\ 05\ 14.0$	$27 \ 49 \ 13.6$	15927.0	$05\ 51\ 42.3$	$-22\ 17\ 22.0$	-14 29 08.7	27 44 34.7	37 03 46.0	$21\ 26\ 09.8$	9 41 00.0	325631.4	195826.4	2 49 30.7	-13 40 07.8	115901.0	11	26	$30\ 41\ 21.3$	315321.5	47	$-36\ 05\ 01.9$	-13 08 13.7		$38\ 26\ 28.0$	3 42 25.7
DE	-	9	-2	7	+15	-2	က္	9	+18	0	-2	7	0	-2	7	-27	-37	2	+19	+82	П	+05	-	-41	9	_	ຕວ	+81	-31	r.	-1	ຕວ	Ϋ́	
RA(J2000) (3)	03 39 13.7	$03\ 39\ 30.9$	$03\ 40\ 35.6$	$03\ 40\ 48.0$	$03\ 41\ 17.5$	$03\ 42\ 03.7$	$03\ 42\ 05.4$	$03\ 42\ 10.1$	$03\ 43\ 08.3$	$03\ 47\ 40.2$	$03\ 48\ 38.1$	$03\ 49\ 23.2$	$03\ 49\ 46.5$	035019.2	$03\ 51\ 28.5$	$03\ 51\ 35.8$	$03\ 51\ 53.8$	035241.0	035258.9	035308.4	035346.3	035409.5	035432.8	$03\ 57\ 36.8$	22	035854.4	04 00 19.1	$04\ 01\ 32.5$	$04\ 02\ 21.3$	$04 \ 03 \ 53.7$	$04\ 05\ 34.0$	$04\ 05\ 49.3$	04 06 59.0	04 07 16.5
Name (2)	APMBGC 548-090-	PKS 0336-01	PKS 0338-214	MRC $0338-183$	III Z_{W} 054 $NED0$	ESO 548- G 081	[HB89] 0340-372	RGB J0342+636	RX J0343.1 + 1858	IRAS $03450 + 0055$	PKS 0346-27	1ES 0347-121	PKS 0347 + 05	HE 0348-2226	3C 95	PKS 0349-27	MS 0350.0-3712	$RGB\ J0352 + 214$	$RX\ J0352.9+1941$		CGCG 0350.8+1949	PGC 014064		PKS 0356-421	NPM1G -00.0144	3C 98	NVSS J040019+		PKS 0400-319	m RBS~505	PKS 0403-13	4C + 37.11	PKS 0405-385	3C 105
RXJ name (1)	0339.4-1735	0339.4 - 0145			0341.9 + 1524	0342.8 - 2114		0342.0 + 6339	0343.0 + 1858	0347.6 + 0105				0350.4 - 2217	0351.4 - 1429				0352.9 + 1941	0353.3 + 8256	0353.7 + 1958	0354.1 + 0249	0354.5 - 1340		0357.9 - 0011			0401.1 + 8153			0405.5 - 1308	0405.8 + 3803		

Table A.3: (continued)

			Π				Π							Π													Τ							
FR (14)	ď	ď	n	z	r	ď	p		ď	ď	ď	z	đ	p	r	z	z		z	ď	ď	ď	z	1	ď	z	Р	ď	ಬ			1		ď
Class. (13)																																		
Host (12)					囝			ပ						Z				0									0			∞		\mathbf{x}		
Type I (11) (O	OC OC	CC	o	U	U	ŭ	ŭ	o	o	o	o	o	U	U	U	U	U	o	c	Ç	c	c	o	o	o	U	o	U	U	c	U	ŭ	೦
$F_{0.1-2.4\ keV}$ Ty (10)	0.1363E-11	0.9277E-11	< 0.4200 E-12	0.1934E-11	0.1375E-11	0.1640E-11	0.4825E-11	0.7440E-11	0.6490E-12	0.8162E-12	< 0.2500 E-12	0.5785E-10	0.2671E-11	0.1042E-10	0.2002E-12	0.5340E-11	0.1260E-12	0.2860E-11	0.7625E-11	0.5000E-12	0.3632E-11	0.1339E-11	0.1636E-11	0.4570E-11	0.4193E-12	0.7453E-12	0.6461E-10	0.8661E-13	0.5999E-11	0.1156E-10	0.3016E-12	0.1580E-10	0.4115E-11	<0.3050E-12
F_0 .	0.70	0.42	0.86	-0.20	0.80	0.16	0.85	0.00	1.10	0.45	-0.17	0.00	0.50	0.95	0.51	0.00	0.00	0.00	0.00	-2.20	-0.18	-2.10	-0.04	0.00	0.00	-0.15	0.30	0.10	0.00	0.00	0.00	0.00	-0.30	-0.20
$\frac{F_{5GHz} \alpha_r}{(8)} \tag{9}$	0.197	1.830	4.250	1.620	0.380	0.068	1.391	0.005#	0.300	1.360	1.310	0.074	0.320	5.168	0.330	0.016#	0.116#	0.041#	#600.0	0.670	4.150	0.810	0.000	0.003#	0.075 #	1.139	8.599	0.210	0.008#	0.018#	0.051 #	0.017#	0.046	1.189
$\frac{F_{5GHz}^{core}}{(7)}$	0.083	0.760	0.000	0.000	0.000	0.068	0.219	0.000	0.000	0.000	0.000	0.048	0.000	1.139	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.100	0.000	0.000	0.000	3.458	0.000	0.000	0.000	0.000	0.000	0.029	0.000
$m_V $ (6)	16.70	14.86	21.70	20.20	16.50	15.60	18.01	15.10*	17.50	19.70	18.20	16.38	15.94	18.05	22.00*	18.70	18.80	16.20*	20.26	19.50	17.00	18.08	16.98	16.50	21.00	19.00	15.05	21.20	16.50	15.20	21.10	14.51	18.50	18.50
z (5)	0.3460	0.5726	0.6930	1.0200	0.0570	0.3090	0.3056	0.0498	1.6300	0.8080	1.5360	0.2870	0.7750	0.0485	0.8150	0.3907	0.0590	0.0954	0.5120	2.2770	0.9140	0.7820	0.3100	0.0900	1.3750	1.0300	0.0330	1.8990	0.0248	0.0207	0.7910	0.0355	0.1590	2.7020
$\frac{\text{DEC(J2000)}}{(4)}$	06 38 04.6	-12 11 36.6	-75 07 19.3	$12\ 17\ 39.8$	$-64\ 36\ 23.4$	$23\ 43\ 35.3$	$11\ 12\ 13.8$	$-38\ 05\ 45.1$	-29 29 02.9	-205627.5	-18 51 08.3	$01\ 05\ 23.5$	-055345.0	$38\ 01\ 32.6$	$17\ 53\ 47.0$	$-06\ 29\ 06.2$	$14\ 33\ 54.4$	-18 19 33.1	$19\ 50\ 55.8$	$02\ 19\ 26.9$	20	-37 56 20.8	$00\ 36\ 06.3$	$07\ 16\ 32.7$	-075624.1	-375619.6	$05\ 21\ 15.6$	-144255.3	712802.0	$40\ 14\ 21.8$	11	$-10\ 22\ 33.8$	10 03 09.6	-18 44 48.6
RA(J2000) (3)	04 07 37.9	$04\ 07\ 48.4$	04 08 48.5	04 09 22.0	$04\ 11\ 59.4$	$04\ 13\ 22.5$	$04\ 13\ 40.4$	$04\ 13\ 58.9$	$04\ 15\ 08.7$	$04\ 16\ 04.3$	$04\ 16\ 36.5$	$04\ 16\ 52.5$	$04\ 17\ 16.7$	$04\ 18\ 21.1$	$04\ 20\ 21.0$	21	21	$04\ 21\ 57.7$	$04\ 22\ 18.3$	04 22 52.2	$04\ 23\ 15.8$	042442.2		$04\ 27\ 04.5$	$04\ 27\ 14.2$	$04\ 28\ 40.4$	$04\ 33\ 11.1$	$04\ 34\ 19.0$	$04\ 34\ 29.2$	$04\ 34\ 41.5$		$04 \ 36 \ 22.2$	$04\ 36\ 44.2$	04 37 01.5
Name (2)	HS 0404+0629	RBS 511	PKS 0410-75	PKS $0406+121$	MRC 0411-647	RGB J0413+237	$3C\ 109$	ESO 303- G 005	PKS 0413-296	[HB89] 0413-210	PKS 0414-189	[HB89] 0414+009	3C 110	3C 111	3C 114	${\rm RBS}\ 537$	$GB6\ J0421+1433$	APMBGC 550-098-	MS 0419.3 + 1943	PKS 0420 + 022	MRC 0420-014	[HB89] 0422-380	[HB89] 0422 + 004	KUV 04244+0710	PMN J0427-0756	PKS 0426-380	$3C\ 120$	PKS 0432-148	IRAS $04288 + 7121$	IRAS $04312+4008$	PMN J0435-0811	MRK 618	MRC $0433+099$	PKS 0434-188
RXJ name (1)	0407.6 + 0637	0407.8 - 1211			0412.0 - 6436	0413.3 + 2343	0413.6 + 1112	0413.5 - 3805	0415.1 - 2928	0416.1 - 2056		0416.8 + 0105	0417.2 - 0553	0418.3 + 3801				0421.8 - 1819			0423.2 - 0120		0424.7 + 0036	0427.0 + 0716		0428.6 - 3756	0433.1 + 0521			0434.7 + 4014				

Table A.3: (continued)

	II											Ξ																		П				
FR (14)	W	ď	ď	ď	ď	Z	1	2	ď	50		n		1	ď	ď	ď	ď	1		1	1	1		2	ď	ď	ď	*		ď	ď	ď	
Class. (13)																																		
Host (12)	С			C				\mathbf{x}				臼								E				田					∞					С
Type (11)		Ç	o	Ö	O,	G	IJ	U	o	o	G	U	IJ	G	0	0	U	o	0	Ğ	U	U	U	U	U	o	o	0	U	Ğ	೦	o	9	U
$F_{0.1-2.4\ keV}$ (10)	< 0.6364 E - 13	0.2106E-11	0.2407E-11	0.6052E-11	0.5692E-12	0.3765E-11	0.1320E-10	0.2199E-11	0.2772E-11	0.3771E-11	0.6933E-11	0.1344E-11	0.7354E-13	0.2500E-11	0.2149E-11	0.1665E-12	0.1539E-11	0.1693E-11	0.1038E-11	0.7460E-11	0.7270E-11	0.5415E-10	0.3200E-11	0.3079E-12	0.1283E-12	0.1128E-11	0.3790E-12	0.1106E-11	0.2793E-12	0.3500E-12	0.1292E-11	0.3779E-11	0.5375E-12	0.1006E-10
F_0	0.83	1.38	0.00	0.00	-0.12	0.00	0.00	0.00	0.00	0.20	0.00	0.93	0.00	0.00	0.00	0.40	-0.01	0.10	0.30	0.94	0.00	0.00	0.00	0.00	0.00	0.90	-0.08	0.70	0.00	0.73	-0.10	0.46	-0.21	1.00
$\begin{pmatrix} \alpha_r \\ (9) \end{pmatrix}$	29&	00	30	49	00	0.013#	0.034#	#600.0	50	1.399	0.014#	2.160	0.022 #	0.027#	0.087#	80	42	06	80	95	#800.0	0.015#	0.010#	0.104 #	#900.0	09	00	09	0.047 #	10	40	00	00	34
$\frac{F_{5GHz}}{(8)}$	134.259&	0.500	0.130	0.149	7.000	0.0	0.0	0.0	0.450	1.3	0.0	2.1	0.0	0.0	0.0	0.280	0.042	0.890	1.280	0.195	0.0	0.0	0.0	0.1	0.0	0.260	2.500	0.260	0.0	1.810	1.840	0.900	2.000	0.034
$F_{5GHz}^{core} \ (7)$	6.599	0.000	0.000	0.139	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.039	0.000	0.000	0.000	0.000	0.057	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.000	0.000	0.000	0.000
m_V	21.70	17.50	20.50	16.10	19.50	18.60	16.50*	14.10	18.00	19.22	16.15	18.20	12.48	16.60*	15.94	18.60	16.90	16.46	19.70	19.00*	15.00*	17.10	16.00*	13.00*	15.00	18.10	18.20	17.60	12.66	14.00	16.90	16.10	18.90	19.10
z (5)	0.2177	1.3280	1.4450	0.2080	2.8630	0.6000	0.0835	0.0289	1.9520	0.8440	0.0889	0.1470	0.0153	0.1144	0.7740	1.9710	1.4620	1.3020	0.4440	0.0222	0.0159	0.0290	0.2860	0.0148	0.0158	0.8980	2.5590	1.1570	0.0153	0.0354	0.8580	0.5335	1.0030	0.1950
RA(J2000) DEC(J2000) (3) (4)	$29\ 40\ 13.9$		-472802.0	$05\ 20\ 43.7$	$-43\ 33\ 08.6$	-245934.7	-27~08~20.1	-01 18 06.6	$-28\ 25\ 30.8$	$-00\ 17\ 43.4$	$12\ 21\ 11.4$	$-28\ 09\ 54.3$	$-04\ 47\ 19.6$	-265734.0	$-03\ 22\ 42.0$	-21 09 44.7	$07 \ 29 \ 10.5$	$-39\ 11\ 10.0$	-81 01 02.2	$45\ 03\ 05.8$	48	$49\ 32\ 45.2$	-295335.0	90	$-03\ 12\ 57.3$	$-22\ 01\ 19.0$	-28 07 37.3		$03\ 16\ 04.7$	$-20\ 34\ 16.2$		59	$-23\ 24\ 52.0$	46 24 31.8
RA(J2000) (3)	$04\ 37\ 04.4$	$04\ 37\ 36.5$	$04\ 38\ 47.0$	$04\ 39\ 02.3$	$04\ 40\ 17.2$	$04\ 40\ 18.3$	$04\ 41\ 22.6$	$04\ 41\ 48.3$	$04\ 42\ 37.6$	$04\ 42\ 38.7$	$04\ 44\ 28.7$	$04\ 44\ 37.7$	$04\ 46\ 29.9$	$04\ 47\ 09.6$	$04\ 47\ 54.7$	$04\ 48\ 17.4$	$04\ 49\ 21.1$	$04\ 49\ 42.2$	045005.4	04 50 06.7		$04\ 52\ 05.0$		045231.1	045244.5		045314.6	045336.5	045438.3	045523.7		$04\ 56\ 08.9$	045703.2	04 58 26.7
Name (2)	3C 123	PKS 0435-300	PMN J0438-4728	RGB $J0439 + 053$	[HB89] 0438-436	RBS 570	IRAS $04392-271$	UGC 3134	$[{ m HB89}]~0440-285$	PKS 0440-00	IRAS $04416+1215$	MRC $0442-282$	NGC 1659	IRAS $04451-270$	PMN J0447-0322	PKS 0446-212	RGB $J0449 + 074$	[HB89] 0448-392	PKS 0454-81	$3C\ 129.1$	MCG -01-13-025	LEDA 168563	$[{ m HB89}]~0450-299$	NGC 1684	IRAS $04502-0317$	PKS 0450-220	PKS 0451-28	PKS 0452-515	NGC 1691	NGC 1692	PKS 0454-46	MRC $0454-220$	PKS 0454-234	4C + 46.09
RXJ name (1)		0437.6 - 2954		0438.9 + 0520	0440.3 - 4333		0441.7-2708					0444.6 - 2810		0447.2 - 2657			0449.3 + 0728				0451.3-0348	0452.0 + 4932	0452.4 - 2953			0452.7 - 2200		0453.5 - 5130			0455.8 - 4616	0456.1 - 2159		

Table A.3: (continued)

(1) UGC 3223 PKS 0457+024 0459.8-2439 MRC 0457-247 4C -02.19 LEDA 075258 3C 133 MRC 0500+019 0505.5+0416 PKS 0502+049 0505.5+0416 PKS 0502+049 0507.7-3730 NVSS J050648 0507.7-3730 NGC 1808 0507.9+6737 RGB J0507+676 0508.3+1721 RGB J0507+676 0508.3+1721 RGB J0508+173 S5 0454+84 0508.9+2113 NVSS J050855+ 1H 0506-039 PKS 0507+17 0513.8+0156 4C +01.13 0514.6-4903 FAIRALL 0790 0515.7-4556 PKS 0514-459 ARK 120	(5) 04 59 09.4 04 59 09.4 04 59 55.2 05 01 12.8 05 02 09.0 05 02 58.5 05 02 58.5 05 03 21.2 05 05 23.2 05 06 47.9 05 06 47.9 05 07 42.3 05 07 42.3 05 08 42.4 05 08 20.5 05 08 42.4 05 08 42.4	(4) 04 58 30.0 02 29 31.2 -24 39 39.7 -01 59 14.2 03 31 50.0 25 16 24.7 02 03 04.7 04 59 42.7 04 15 54.7 -61 09 40.9 -19 36 50.9 -37 30 45.7 67 37 24.4	(5) 0.0156 0.0156 0.1860 0.1860 0.22860 0.0160 0.2775 0.5846 0.9540 0.0272 1.0930 0.0941 0.0033 0.3140 0.0182	(9) 14.41 18.04 18.24* 18.26 18.06 14.80 20.00* 17.60 17.60 16.50	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(8) (9) (9) (100 (100 (100 (100 (100 (100 (100 (10	' '	(10) (1) (1) (11) (11) (1369E-10 <0.3940E-12 0.59592E-12 0.6945E-11 0.1345E-11 0.3778E-12 0.1520E-11 0.8299E-11 0.786E-11		о <u>н</u> н	(13) 5 8	[14]
	04 59 04 59 04 59 04 59 05 01 05 02 05 02 05 05 05 05 05 06 05 08 05 08 05 08	58 29 39 33 31 16 03 59 60 93 30 37	0.0156 2.3840 0.1860 0.1860 0.2775 0.5846 0.9540 0.0272 1.0930 0.0941 0.0033 0.3140	14.41 18.00 18.24* 18.06 14.80 20.00* 21.20 18.90 17.60 16.50 12.55	0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.020# 1.159 0.250 2.189 0.019# 2.145 2.040 1.014 0.112 1.459 0.004# 0.220	0.00 0.17 0.20 0.20 0.00 0.47 -0.53 0.00 0.00 0.00 0.00	0.1369E-10 <0.3940E-12 0.7261E-12 0.9592E-12 0.6945E-11 0.1345E-11 0.3778E-12 0.1520E-11 0.8299E-11 0.786E-11	u & p & o u u o o u	х <u>н</u> н	വ ഇ	
	04 59 04 59 04 59 05 01 05 02 05 03 05 04 05 04 05 08 05 08 05 08 05 08 05 08 05 08 05 08	29 339 331 116 03 159 09 36 37	2.3840 0.1860 0.01860 0.0160 0.2775 0.5846 0.9540 0.0272 1.0930 0.0941 0.0033 0.3140	18.00 18.24* 18.06 14.80 20.00* 21.20 18.90 17.60 16.50 12.55	0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.159 0.250 2.189 0.019# 2.145 2.040 1.014 0.112 1.459 0.004# 0.220	0.17 0.50 0.20 0.00 0.56 0.47 -0.53 0.00 0.00 0.00 0.00	<0.3940E-12 0.7261E-12 0.9592E-12 0.6945E-11 0.1345E-11 0.3778E-12 0.1520E-11 0.8299E-11 0.1786E-11	00000000000000000000000000000000000000	<u> 되</u>	90	<u> </u>
	04 59 05 01 05 02 05 02 05 05 05 05 05 07 05 08 05 08 05 08 05 08 05 08 05 08	339 31 31 16 03 55 09 09 33 37	0.1860 2.2860 0.0160 0.2775 0.5846 0.9540 0.0272 1.0930 0.0941 0.0033 0.3140 0.0182	18.24* 18.06 14.80 20.00* 21.20 17.60 16.50 12.55	0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.017	0.250 2.189 0.019# 2.145 2.040 1.014 0.112 1.459 0.004# 0.220	0.50 0.20 0.00 0.56 0.47 -0.53 0.00 0.00 0.00 0.00	0.7261E-12 0.9592E-12 0.6945E-11 0.1345E-11 0.3778E-12 0.1520E-11 0.8299E-11 0.1786E-11	^U	<u> </u>		_
	95 01 95 02 95 02 95 05 03 95 05 05 95 05 05 95 08 95 08	59 31 16 03 59 59 15 09 36 37	2.2860 0.0160 0.2775 0.5846 0.9540 0.0272 1.0930 0.0941 0.0033 0.3140 0.0182	18.06 14.80 20.00* 21.20 18.90 17.60 16.85 16.50	0.000 0.000 0.000 0.000 0.747 0.090 0.000 0.000 0.001 0.017	2.189 0.019# 2.145 2.040 1.014 0.112 1.459 0.004# 0.220	0.20 0.00 0.56 0.47 -0.53 0.00 0.00 0.00 0.00	0.9592E-12 0.6945E-11 0.1345E-11 0.3778E-12 0.1520E-11 0.8299E-11 0.1786E-11	8566666	田		1
	03 02 05 02 05 03 05 03 05 05 05 05 05 05 05 05 05 08 08 08 08 08 08 08 08 08 08 08 08 08	31 16 03 59 15 09 36 37	0.0160 0.2775 0.5846 0.9540 0.0272 1.0930 0.0941 0.0033 0.3140 0.0182	14.80 20.00* 21.20 18.90 17.60 16.50 12.55	0.000 0.000 0.000 0.747 0.090 0.000 0.000 0.001 0.017	0.019# 2.145 2.040 1.014 0.112 1.459 0.004# 0.220	0.00 0.56 0.47 -0.53 0.00 0.00 0.00 0.00	0.6945E-11 0.1345E-11 0.3778E-12 0.1520E-11 0.8299E-11 0.1786E-11	U U G G U	臼	Ъ	
	03 02 05 03 05 03 05 05 05 05 05 05 05 05 05 08 05 08 05 08	16 03 59 15 09 36 30 37	0.2775 0.5846 0.9540 0.0272 1.0930 0.0941 0.0033 0.3140 0.0182	20.00* 21.20 18.90 17.60 16.85	0.000 0.000 0.747 0.090 0.000 0.000 0.021 0.017	2.145 2.040 1.014 0.112 1.459 0.004# 0.220	0.56 0.47 -0.53 0.00 0.00 0.00 0.00 0.00	0.1345E-11 0.3778E-12 0.1520E-11 0.8299E-11 0.1786E-11	U & & C		П	
	05 03 05 05 05 05 05 05 05 05 05 05 05 05 05	03 59 15 09 36 36 37	0.5846 0.9540 0.0272 1.0930 0.0941 0.0033 0.3140 0.0182	21.20 18.90 17.60 16.85 16.50	0.000 0.747 0.090 0.000 0.000 0.001 0.017	2.040 1.014 0.112 1.459 0.004# 0.220	0.47 -0.53 0.00 0.00 -0.68 0.00 0.00	0.3778E-12 0.1520E-11 0.8299E-11 0.1786E-11	~ ~~			Π
	05 05 05 05 05 05 05 05 05 05 05 05 05 0	59 15 09 36 30 37	0.9540 0.0272 1.0930 0.0941 0.0033 0.3140 0.0182	18.90 17.60 16.85 16.50 12.55	0.747 0.090 0.000 0.000 0.000 0.021 0.017	1.014 0.112 1.459 0.004# 0.220	0.00 0.00 0.00 0.00 0.00 0.00	0.1520E-11 0.8299E-11 0.1786E-11 0.2264E-11	೦ ೮		50	
	05 05 05 05 06 05 06 05 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08	15 09 36 30 37	0.0272 1.0930 0.0941 0.0033 0.3140 0.0182 0.1120	17.60 16.85 16.50 12.55	0.090 0.000 0.000 0.000 0.021 0.017	0.112 1.459 0.004# 0.220	0.00 0.80 0.00 0.00 0.00	0.8299E-11 0.1786E-11 0.2264E-11	U		ъ	
	06 06 07 07 08 08 08	09 36 30 37	1.0930 0.0941 0.0033 0.3140 0.0182 0.1120	16.85 16.50 12.55	0.000 0.000 0.000 0.021 0.017	1.459 $0.004#$ 0.220	0.80	0.1786E-11)		N	
	06 07 07 08 08 08	36 30 37	0.0941 0.0033 0.3140 0.0182 0.1120	16.50 12.55	0.000 0.000 0.021 0.017	0.004#	0.00	O 2264E_11	°		ď	
	07 07 08 08 08 08	30 37	0.0033 0.3140 0.0182 0.1120	12.55	0.000 0.021 0.017	0.220	0.00	0.440±11-11	ŭ		5	
	07 08 08 08 08 09	37	0.3140 0.0182 0.1120		0.021	0.007	0.00	0.1064E-11	ŭ	\mathbf{x}	h	
	80 80 00 00 00 00 00 00 00 00 00 00 00 0		0.0182 0.1120	18.50	0.017	0.027	0.00	0.3348E-10	೦		Z	
	80	$17\ 21\ 58.0$	0.1120	15.40*		0.039	1	0.2958E-11	IJ		2	
	80	$84\ 32\ 04.5$		16.50	0.000	1.409	0.00	0.1537E-12	o		Z	
9	60	$21\ 13\ 02.4$	0.1900	17.70	0.000	0.003#	0.00	0.3509E-11	U		1	
9		$-04\ 00\ 45.5$	0.3040	19.50	0.000	0.071 #	0.00	0.2502E-10	o		Z	
9	$05\ 10\ 02.4$	$18\ 00\ 41.6$	0.4160	20.00	0.000	1.040	-0.20	0.1367E-11	0		50	
	$05\ 13\ 52.5$	$01\ 57\ 10.4$	0.0840	14.80	0.007	0.131	0.68	0.1083E-11	U	臼	Ъ	
_ , _	$05\ 14\ 39.4$	-49~03~29.6	0.0910	17.00	0.000	0.280	0.40	0.2088E-11	U	臼		
ARK 120	$05\ 15\ 45.3$	-45 56 43.3	0.1940	17.50	0.000	0.790	0.50	0.2116E-11	o		ď	
000 11 00 0011	$05\ 16\ 11.4$	-00 0859.4	0.0323	13.92	0.000	0.003	0.00	0.8284E-10	U	∞	1	
MCG -02-14-009	$05\ 16\ 21.2$	$-10\ 33\ 41.4$	0.0284	15.50	0.000	0.004 #	0.00	0.8446E-11	U		1	
MRC 0515+063	$05\ 18\ 15.9$	$06\ 24\ 22.6$	0.8910	19.00	0.000	0.239 #	1.74	0.2649E-12	o		Ъ	
0519.8-4546 PICTOR A	$05\ 19\ 49.7$	-45 46 44.5	0.0350	15.77	1.000	15.369	1.07	0.1462E-10	CC	d	1	Π
0521.1 + 1638 3C 138	$05\ 21\ 09.9$	$16\ 38\ 22.0$	0.7590	18.84	1.088	3.584	0.71	0.2197E-11	~		50	
0521.1 + 6718	$05\ 21\ 34.6$	$+67\ 18\ 07.9$	0.0147	17.60*	0.000	0.004#	0.00	0.6120E-11	U		က	
PMN J0522-0725	22	$-07\ 25\ 13.4$	0.1642	16.50	0.000	0.056 #	0.00	0.6079E-11	U		1	
0522.9-3627 ESO 362- G 021	$05\ 22\ 57.9$	-36 27 30.8	0.0553	14.62	1.399	9.349	0.49	0.1876E-10	U	Z	Z	
PKS 0524-460	25	-45 57 54.7	1.4790	18.00	0.000	0.990	1.20	0.8353E-12	~		Ъ	
0527.4 + 0412	27	$+04\ 12\ 34.3$	0.1537	17.30*	0.000	#200.0	0.00	0.8380E-11	U			
RBS 653	$05\ 28\ 53.0$	-39 28 17.9	0.2839	19.10	0.000	0.002 #	0.00	0.5372E-11	0			
IRAS 05262+4432	05 29	$44\ 34\ 39.0$	0.0318	13.60	0.000	0.023 #	0.00	0.4276E-11	U	\mathbf{x}		
PKS 0528-250	$05\ 30\ 07.9$	$-25\ 03\ 29.9$	2.8130	17.34	0.000	1.129	0.25	< 0.3390 E-12	o		50	

Table A.3: (continued)

(1)	(2)	(3)	(4)	3	(9)	ŽUDS -	(6) (8)		(10)	(11) (12)	(12)	(13)	(14)
0530.9+1332	PKS 0528+134	05 30 56.4	13 31 55.1	2.0600	20.00	4.299	0.000	0.07	0.3235E-11				
	PMN J0535-0239	$05\ 35\ 12.3$		1.0330	18.70	0.000	0.099	0.00	0.3941E-12	· 0		, <u>p</u> .	
0535.3 - 3743	MRC 0533-377	$05\ 35\ 22.4$	-37 43 14.0	0.0964	16.00	0.000	0.160	0.70	0.2211E-12	CC	囝	r	
0538.8 - 4405	PKS 0537-441	$05\ 38\ 50.4$	-44 05 08.9	0.8940	16.48	0.000	3.799	0.19	0.3501E-11	O		Ъ	
	PKS 0537-344	$05\ 39\ 05.4$	$-34\ 27\ 11.4$	0.2630	19.90	0.000	0.236 #	0.00	0.2635E-12	o		1	
0539.5 - 1550	PKS 0537-158	$05\ 39\ 32.0$	-155030.3	0.9470	17.30	0.000	0.610	0.05	0.1581E-11	\cap \cap \cap \cap \cap \cap \cap \cap		5	
0539.9 - 2839	PKS 0537-286	$05\ 39\ 54.3$	-28 39 55.9	3.1040	19.00	0.000	0.990	-0.47	0.1451E-11	C		5	
	3C 147	$05\ 42\ 36.1$	495107.2	0.5450	17.80	0.000	8.179	0.00	0.9800E-12	\cap \cap \cap \cap \cap \cap \cap \cap		0.00	
	PKS 0541-24	$05\ 43\ 07.6$	$-24\ 21\ 02.9$	0.5230	18.00	0.069	0.350	0.92	0.2920E-12	ŭ	Z	r	
	PMN J0544-2241	$05\ 44\ 07.5$	$-22\ 41\ 09.0$	1.5370	17.00	0.000	0.134 #	0.00	0.7636E-12	o		5	
	IRAS $05472-2426$	$05\ 49\ 14.9$	$-24\ 25\ 51.6$	0.0448	17.80	0.000	0.003#	0.00	0.4742E-11	C			
0550.6 - 3216	PKS 0548-322	05 50 40.8	-32 16 17.8	0.0690.0	15.50	0.000	0.230	0.00	0.4593E-10	OC		Z	
	IRAS $05480 + 5927$	05 52 28.0	$59\ 28\ 32.1$	0.0585	15.80	0.000	0.004#	0.00	0.1552E-10	U		1	
	LEDA 165443	055401.2	605840.9	0.0910	16.30	0.000	#600.0	0.00	0.2144E-11	U		∞	
	UGC 3374	055453.6	$46\ 26\ 21.6$	0.0205	14.62	0.000	0.083 #	0.90	0.8339E-10	U	0	rΟ	
	$[{ m HB89}]~0552{+398}$	055530.8	$39\ 48\ 49.2$	2.3650	18.30	0.000	5.424 #	-1.00	0.2827E-11	c		910	
	CTS 84	05 58 02.0	20	0.0339	14.98	0.000	0.035 #	0.00	0.2397E-11	U		1	
	$GB6\ J0558+5328$	05 58 11.8	$53\ 28\ 17.7$	0.0360	14.00	0.000	0.238 #	0.60	0.2472E-12	ී		Z	
0559.6 - 1652	PKS 0557-16		52	1.2400	18.27	0.000	0.150	0.98	0.1409E-11	Ç		5	
	$[{ m HB89}]~0558-504$		26	0.1370	14.97	0.000	0.113	0.80	0.1006E-09	Ç		Ъ	
	PKS 0558-396		$-39\ 37\ 02.4$	1.6610	18.60	0.000	0.300	-0.80	0.7066E-12	c		Ъ	
	PKS 0602-31	$06\ 04\ 14.5$	-31558.0	0.4520	18.60	0.000	1.250	0.93	0.4319E-12	ඊ		Б	
3607.9 + 6720	S4 0602+67	$06\ 07\ 52.7$		1.9700	20.60	0.495	0.581	-0.06	0.7913E-12			5	
0607.9-0834	PKS 0605-08	$06\ 07\ 59.7$	-08 34 49.9	0.8720	17.60	0.000	3.390	0.40	0.8453E-12			5	
0607.9 + 3058	$RGB\ J0608 + 309$	$6.00 \ 80 \ 90$	30.5842.0	0.0730	17.30	0.059	0.076	0.00	0.9631E-11	U		1	
	PKS 0606-223	06 08 59.7	$-22\ 20\ 20.9$	1.9260	20.00	0.000	1.360	0.80	0.7711E-12	o		Ъ	
0609.6 - 1542	MRC 0607-157	06 09 40.9	$-15\ 42\ 40.7$	0.3240	18.00	0.000	1.770	-0.20	0.2352E-11	o		Ъ	
	MS 0607.9 + 7108	$06\ 13\ 43.3$	$71\ 07\ 26.7$	0.2670	18.50	0.000	0.024	0.00	0.6462E-12	o		Z	
0613.8 + 2604	3C 154	$06\ 13\ 49.1$	$26\ 04\ 37.6$	0.5800	18.00	0.000	2.020	0.69	0.1989E-11	o			
	$8C\ 0609+607$	$06\ 14\ 23.9$	$60\ 46\ 21.7$	2.7020	18.60	0.921	1.058	0.00	0.4450E-12	0		Ъ	
0615.6 + 7102	MRK~0003	$06\ 15\ 36.4$	$71\ 02\ 15.1$	0.0135	13.35	0.361	0.363	1.05	0.1821E-11	U	0	2	
	NGC 2146	$06\ 18\ 38.2$	$78\ 21\ 21.6$	0.0029	10.59	0.000	1.020 #	0.00	0.1298E-11	CC	∞	p	
0621.6 - 5241	PKS 0620-52	$06\ 21\ 43.2$	41	0.0511	15.50	0.260	1.250	0.87	0.3510E-11	CC			
	TR A S 06205_2316	2 66 66 20	00 11 71 1	0000		0 0 0				•			

Table A.3: (continued)

						71100	~ 7					Class.	71.7
	(2)	(3)	(4)	(2)	(9)	(7)	(8)		(10)	(11)	(12)	(13)	(14)
	MRC 0622-44	06 23 31.8	-44 13 02.5	0.6880	16.93	0.000	0.890	-0.24	0.1436E-11	ဝ		р	
\sim	NVSS J062335+	$06\ 23\ 35.1$	$64\ 45\ 36.2$	0.0860	17.20	0.000	0.004#	0.00	0.7989E-11	ŭ		1	
Щ	PMN J0624-3231	$06\ 24\ 44.9$	-32 30 53.6	0.2750	19.70	0.000	0.044 #	0.00	0.1647E-11	o		ď	
4	MRC $0625-536$	$06\ 26\ 19.0$	-534132.0	0.0539	15.40	0.042	1.850	1.17	0.5283E-11	CC	d		
4	MRC $0625-545$	$06\ 26\ 49.4$	$-54\ 32\ 34.6$	0.0517	16.00	0.000	0.870	06.0	0.1627E-11	CC	臼		
~	MRC 0625-354	$06\ 27\ 06.7$	$-35\ 29\ 15.3$	0.0546	17.60*	0.600	2.120	0.53	0.1257E-10	CC	闰	r	
3	3C 162	$06\ 31\ 22.7$	$25\ 01\ 06.7$	0.0830	16.80	0.039	0.381	0.81	0.1833E-10	CC	闰		
1	UGC 3478	$06\ 32\ 47.2$	$63\ 40\ 25.2$	0.0128	12.90	0.000	0.013#	0.00	0.1129E-10	ŭ	\mathbf{v}	1	
Ц	PMN J0633-2333	$06\ 33\ 12.8$	-23 33 09.0	2.9280	21.50	0.000	0.224 #	0.00	0.1078E-12	O		ď	
4	MRC~0637-752	$06\ 35\ 46.5$	-75 16 16.8	0.6530	15.75	0.000	5.490	-0.10	0.7295E-11	೦		ď	
H	ESO 490-IG 026	$06\ 40\ 11.7$	-25 53 43.3	0.0248	15.00	0.000	0.039 #	0.00	0.1025E-10	CC	d	1	
Щ	$B3\ 0639 + 423$	$06\ 43\ 26.8$	$42\ 14\ 18.8$	0.0893	17.00	0.033	0.038	0.00	0.3124E-10	U		Z	
Щ	B3 0642+449	$06\ 46\ 32.0$	$44\ 51\ 16.6$	3.3960	18.49	0.000	1.191	-0.56	0.7200E-12	೦		Ъ	
∞	8C 0641+681	$06\ 46\ 42.4$	$68\ 07\ 41.0$	0.9270	19.70	0.000	0.074	0.50	0.2035E-12	೦		ď	
4	NGC 2258	$06\ 47\ 45.8$	$74\ 28\ 54.0$	0.0133	13.00*	0.000	0.010#	0.00	0.1796E-11	ŭ	0		
Ц	PKS 0646-437	$06\ 48\ 13.4$	$-43\ 47\ 15.0$	1.0290	18.30	0.000	0.126 #	1.00	0.7503E-12	೦		ď	
Щ	PKS 0646-306	$06\ 48\ 14.1$	-30 44 19.6	0.4550	18.60	0.000	1.060	0.00	0.7367E-12	o			
S	$S4\ 0646+60$	065031.2	$60\ 01\ 44.5$	0.4550	18.60	0.000	0.916	0.88	0.1289E-11	o		90	
∞	8C 0646+699	$06\ 51\ 54.6$	695526.4	1.3600	20.00	0.000	0.127	0.70	0.4369E-12	o		Ъ	
4	MRK~0006	065212.2	$74\ 25\ 37.5$	0.0188	14.19	0.100	0.105	0.79	0.1777E-11	U	∞	ರ	
4	4C +69.08	065321.4	$69\ 19\ 51.8$	0.1100	15.20*	0.005	0.435	0.87	0.2148E-11	CC			
Щ	B3 0651+428	065443.5	$42\ 47\ 58.7$	0.1260	17.00	0.134	0.190	0.44	0.8994E-12	U		Z	
3	3C 171	$06\ 55\ 14.8$	$54\ 09\ 00.1$	0.2384	19.08	0.002	8.400	0.90	< 0.2708 E-13	U	Z	n	
1	UGC 3601	065549.5	40 00 00.8	0.0171	14.80	0.000	0.005#	0.00	0.3913E-11	U	∞	က	
4	4C + 42.22	065610.7	$42\ 37\ 02.7$	0.0590	16.90	0.138	0.480	0.56	0.3463E-11	U		Z	
~	MRK 0374	065938.1	$+54\ 11\ 47.9$	0.0435	15.00*	0.000	0.014#	0.00	0.2550E-10	U	∞	1	
4	4C + 68.07	$07\ 02\ 54.2$	$68\ 41\ 16.5$	0.1100	16.00	0.119	0.610	0.66	0.7265E-12	U		r	
\cup	CGCG 0700.2+5418	$07\ 04\ 16.3$	$54\ 13\ 21.4$	0.0368	15.00	0.013	0.028	0.00	0.8229E-12	ŭ	田		
ıΣ	$KUG\ 0659+633$	07 04 28.8	$63\ 18\ 39.1$	0.0949	17.40*	0.000	0.037 #	3.00	0.9414E-11	CC			
4	NVSS J070702+	$07 \ 07 \ 02.9$	$27\ 06\ 48.4$	0.0623	16.40*	0.000	0.046 #	0.00	0.6059E-11	ŭ			
<u> </u>	VII Zw 118	$07\ 07\ 13.1$	$64\ 35\ 59.1$	0.0797	14.61	0.000	0.003#	0.00	0.2204E-10	U		ď	
_	(HB89) 0704+384	$07\ 07\ 32.9$	$38\ 22\ 13.4$	0.5790	17.50	0.061	0.321	0.80	0.1314E-11	O		ď	
Щ	$RGB\ J0709 + 486$	07 09 08.0	$48\ 36\ 55.5$	0.0193	13.70*	0.069	0.259	0.30	0.3247E-11	CC	0		
Щ	DCB 10710 500	07 10 06 0	EO 03 46 0	0 1 1 7 10	000	7	0 0 1		F F EL 0010	7		(

Table A.3: (continued)

1																											Π							
FR (14)	z	2	5	മ	ם.	2	ъо	ď			ď	10	x	5	5		1	1		1	r	ď			z	ď	ď	ם.	2		N	z		i i
Class. (13)		•						Ī							•																			
Host (12)		闰				\mathbf{x}													∞														0	
	ŋ	U	o	o	U	U	0	0	g_{C}	U	U	U	U	U	o	U	U	U	GC	o	U	0	g_{C}	g_{C}	U	0	೦	0	U	0	o	U	g_{C}	CC
$\frac{\text{Type}}{(11)}$	0			2		2	2		1		1	0	1	2	2	1	1	2	2	П	1	1			1	2	12	2	1	2	1	1	1	_
$F_{0.1-2.4\ keV}$ (10)	0.2803E-10	0.9520E-11	0.1550E-1	0.5833E-12	0.3329E-1	0.2469E-12	0.1828E-12	0.3092E-1	0.2244E-1	0.4704E-1	0.1483E-1	0.2060E-10	0.1881E-1	0.1765E-12	0.7551E-12	0.5734E-1	0.3412E-1	0.9345E-12	0.3669E-12	0.3987E-1	0.1477E-1	0.3300E-1	0.2362E-11	0.2362E-11	0.1273E-11	0.9077E-12	< 0.3385 E-12	0.7858E-12	0.4898E-11	0.5073E-12	0.3280E-11	0.5165E-1]	0.1678E-11	0.1804E-11
F_0	0.00	0.00	0.51	0.09	0.00	0.00	0.37	-0.50	0.76	1.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.68	0.00	0.90	0.90	0.80	0.30	1.00	0.70	2.20	0.00	0.00	0.00	0.00	1.40
$\begin{array}{ccc} F_{5GHz} & \alpha_r \\ (8) & (9) \end{array}$	0.080	0.039	0.208	1.629	0.011 #	0.023 #	0.901	0.216	0.649	0.070	0.018	0.032	0.003 #	0.061#	0.358 #	0.007#	0.001#	0.335	0.057 #	#900.0	0.359	0.331 #	1.425 #	0.246	2.060	0.288	0.660	0.898	#690.0	0.001#	#600.0	0.047	0.003 #	0.035
$\begin{array}{cc}F_{5GHz}^{core}&F_{1}\\(7)\end{array}$	0.034	0.023	0.000	0.000	0.000	0.000	0.000	0.065	0.015	0.000	0.008	0.029	0.000	0.000	0.000	0.000	0.000	0.130	0.000	0.000	0.050	0.000	0.248	0.006	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.048	0.000	0.020
m_V	18.40	15.80	15.66	19.70	16.30	14.80	18.20	17.10	14.00	16.60*	17.70	15.50	17.40	17.70	17.05	17.20*	17.00	19.66	13.41*	16.20	18.70	18.00	17.60	18.30	18.00	19.50	18.92	18.40	18.20	17.70	17.00*	17.60	10.99	17.90*
z (5)	0.1250	0.0672	0.4870	0.5180	0.1230	0.0157	1.6200	0.3710	0.0642	0.0652	0.6330	0.0614	0.0660	1.4190	0.7790	0.1660	0.1520	0.4830	0.0101	0.1000	0.2184	0.2700	0.0872	0.0870	0.1280	2.4600	1.3820	0.8460	0.1630	0.1500	0.1130	0.2500	0.0065	0.1680
$\frac{\text{DEC}(J2000)}{(4)}$	59 08 19.6	$32\ 18\ 35.9$	365606.8	$43\ 49\ 17.2$	$38\ 20\ 39.7$	$35\ 16\ 45.4$	$35\ 34\ 39.8$	74~08~10.1	$53\ 23\ 09.4$	$44\ 05\ 02.3$	$64\ 30\ 48.4$	$44\ 05\ 27.1$	705921.2	712418.0	$33\ 07\ 09.7$	$23\ 49\ 03.7$	$30\ 28\ 48.4$	$65\ 44\ 05.0$	$-29\ 14\ 08.0$	30	04	15	59	59	-005456.5	$48\ 44\ 10.1$	37	$67\ 48\ 47.5$	$24\ 36\ 23.6$	$30\ 46\ 45.1$	$+33\ 07\ 22.7$	$28\ 04\ 32.6$	$85\ 42\ 31.9$	39 25 06.3
RA(J2000) (3)	07 10 30.0	07 11 47.7	$07\ 13\ 09.5$	07 13 38.2	07 13 40.3	$07\ 14\ 03.9$	$07\ 14\ 24.8$	$07\ 14\ 36.1$	$07\ 16\ 41.2$	$07\ 17\ 26.7$	$07\ 17\ 54.0$		07 18 57.8	$07\ 18\ 59.6$	07 19 19.4	$07\ 20\ 18.6$	$07\ 20\ 40.5$	$07\ 20\ 49.2$	22	22	23	$07\ 24\ 17.3$	24	24	07 25 50.6	27	07 28 10.3	07 28 11.6	$07 \ 29 \ 27.8$	07 29 52.3	$07\ 30\ 26.0$	$07\ 31\ 52.7$	07 32 20.5	07 33 00.7
Name (2)	EXO 0706.1+5913	$RGB\ J0711+323$	$B2\ 0709 + 37$	B3 0710+439	IRAS $F07102 + 3825$	UGC~3752	B2 0711+35	RGB J0714+741	4C + 53.16	B3 0713+441	RGB J0717+645	IRAS F07144+4410	NVSS J071858+	8C 0713+714	$GB2\ 0716+332$	NVSS J072018+	FIRSTJ072040.4	$8C\ 0715+658$	ESO 428- G 023	HS 0719 + 3036	RGB $J0723+650$	PMN J0724-0715	4C + 67.13	RGB $J0724+669$	PKS 0723-008	$GB1\ 0723+488$	3C 181	$3C\ 179$	TXS $0726 + 247$	FBQS $J0729 + 3046$		2MASXiJ0731526	NGC 2300	RGB J0733+394
RXJ name (1)	0710.4+5908	0711.7 + 3219	0713.1 + 3655					0714.5 + 7408	0716.5 + 5323		0717.8 + 6430	0718.0 + 4405		0719.0 + 7124		0720.3 + 2349	0720.7 + 3028	0720.7 + 6543		0722.3 + 3030	0723.8 + 6504		0724.8 + 6659	0725.0 + 6658					0729.5 + 2436	0729.9 + 3046	0730.0 + 3307	0731.8 + 2804		

Table A.3: (continued)

ı	II.														Π																			
FR (14)		' 13	ď	ָּם ה	5	N	N	×	N	ď	ಹ		1	ď	p	ď	ď	z	<i>5</i> 0	ď		<i>5</i> 0	ď	ď		1		1	ď	ď	ď		ď	ď
Class. (13)																																		
Host (12)					d			0			田	С	\mathbf{x}		田										0	\mathbf{x}	Z					田		\mathbf{v}
Type F (11) (ŭ	o	U	ŭ	o	o	ŭ	o	o	U	ŭ	ŭ	o	U	o	0	O	o	o	U	Ç	Ç	U	U	ŭ	CC	U	o	O	U	U	ඊ	Ü
$\overline{F_{0.1-2.4\ keV}}$ T (10)	033E-11	0.3450E-11	0.1788E-11	0.9521E-11	0.3230E-11	0.1412E-11	0.2157E-11	0.1561E-11	0.1953E-11	0.5810E-11	0.1400E- 10	0.5201E-11	0.6033E-10	0.7246E-12	0.1645E-12	0.2239E-11	0.6395E-12	0.1158E-10	0.4232E-11	0.2973E-11	0.8338E-12	0.1715E-11	0.8493E-12	0.1024E-11	0.2036E-11	0.1426E-10	0.7143E-10	0.6480E-12	0.2532E-11	0.2843E-11	0.2484E-11	0.7651E-12	0.5610E-12	0.1299E-10
F_0	0.30	0.31	0.15	0.00	0.00	0.00	0.00	0.34	0.02	0.40	0.00	0.00	0.00	-0.43	0.00	0.30	1.00	0.00	1.04	0.49	0.00	-1.10	0.30	0.00	0.00	0.00	0.99	0.00	0.03	0.28	0.00	-1.00	0.00	0.00
$\frac{F_{5GHz} \alpha_r}{(8)} \tag{9}$	0.120	0.070	0.511	0.004 #	0.085 #	0.015#	0.019	0.370	1.812	1.891	0.053#	0.023 #	0.022 #	#000.0	7.599&	1.510	0.196	0.023 #	0.380	0.941	0.001#	1.310	0.000	0.057	0.001#	#900.0	0.410	0.005#	1.262	0.113	0.001#	0.091	0.002#	0.011#
$\frac{F_{5GHz}^{core}}{(7)}$	0.000	0.048	0.499	0.000	0.000	0.000	0.016	0.299	1.290	1.754	0.000	0.000	0.000	0.279	0.006	0.000	0.127	0.000	0.000	0.150	0.000	0.000	0.124	0.008	0.000	0.000	0.000	0.000	0.719	0.051	0.000	0.005	0.000	0.000
m _V (6)	18.20	17.70*	17.60	16.00	14.37	19.50	18.90	15.17*	16.22	16.47	15.40*	17.70*	14.27	16.90	17.00	16.37	19.30	16.89	17.60	15.63	17.50	18.10	17.80	18.40	10.30*	14.71	19.60*	17.20	19.60	16.60	17.40*	14.07*	17.59	15.20
z (5)	0.6600	0.1769	0.7820	0.1180	0.0399	0.2730	0.2130	0.0405	0.4240	0.1910	0.0338	0.2160	0.0222	0.7200	0.1182	1.5100	0.7700	0.3150	1.0630	0.4611	0.1580	0.9940	0.6100	0.5420	0.0290	0.0292	0.1028	0.1300	0.4100	0.1900	0.1320	0.0193	1.1840	0.0990
$\frac{\text{DEC}(J2000)}{(4)}$	39 05 04.8	$35\ 15\ 42.9$	475008.4	$39\ 26\ 17.1$	$58\ 46\ 13.4$	$28\ 46\ 45.9$	$35\ 17\ 41.4$	$59\ 41\ 03.2$	174218.9	$01\ 37\ 04.6$	$+55\ 25\ 37.6$	$74\ 14\ 39.5$	49 48 34.7	$54\ 44\ 24.7$	$80\ 26\ 26.3$	$-67\ 26\ 25.5$	58	$74\ 33\ 57.6$	$37\ 53\ 17.1$	$31\ 42\ 56.6$	$28 \ 48 \ 38.0$	-00 44 17.5	$33\ 13\ 34.5$	$52\ 46\ 19.9$	$41\ 32\ 10.2$	60.5600.6	$-19\ 17\ 39.9$	245637.6	$24\ 00\ 24.1$	$45\ 10\ 33.0$	345443.8	$55\ 23\ 02.9$	30	03 20 40.9
RA(J2000) (3)	07 33 20.8	073329.6	$07\ 35\ 02.3$	$07 \ 36 \ 23.1$	$07\ 36\ 56.9$	$07\ 37\ 01.9$	$07\ 37\ 21.0$	$07\ 37\ 30.1$	073807.4	$07\ 39\ 18.0$	$07\ 40\ 58.3$	07 41 44.5	074232.8	074239.8	074301.3	074331.6	074344.9	074405.3	07 44 17.4	$07\ 45\ 41.7$	074548.3	$07 \ 45 \ 54.1$	074559.3	$07\ 46\ 57.1$	074702.0	$07\ 47\ 29.1$	074731.3	$07\ 47\ 38.4$	074836.1	$07\ 49\ 06.4$	074948.2	075008.4	50	07 51 00.7
Name (2)	B3 0729+391	RGB J0733+352	$S4\ 0731+47$	FBS $0732 + 396$	MRK 9	FIRST $J073701.8+$	GB6 J0737+3517	CGCG 0733.1+5949	$MRC\ 0735+178$	PKS 0736+01	$\mathrm{UGC}~03957$	4C + 74.13	UGC~03973	IVS B0738+548	3C 184.1	MRC $0743-673$	[HB89] 0740 + 235	MS 0737.9 + 7441	$3C\ 186$	4C + 31.30	2MASXiJ0745482	PKS 0743-006	HS 0742 + 3320	RGB $J0746 + 527$	UGC 04018	UGC 04013	MRC 0745-191	NVSS J074737+	PKS 0745 + 241	B3 0745+453	FBQSJ074948.1	CGCG 0746.1+5530	FBQS J075047.3+.	IRAS 07483+0328
$\begin{array}{c} \hline \text{RXJ name} \\ \hline (1) \\ \end{array}$	0733.2+3904	0733.4 + 3515	0735.0 + 4750		0736.9 + 5846	0737.0 + 2846	0737.3 + 3518	0737.4 + 5941	0738.1 + 1742	0739.2 + 0136	0740.5 + 5525			0742.6 + 5444		0743.5 - 6726	0743.7 + 2329			0745.6 + 3142	0745.8 + 2848		0745.9 + 3313	0746.8 + 5246	0747.0 + 4132	0747.4 + 6055		0747.6 + 2456	0748.6 + 2400	0749.0 + 4510	0749.8 + 3454	0750.1 + 5522	0750.8 + 4130	0750.9 + 0320

Table A.3: (continued)

1	ı															П									П				Π					ı
FR (14)		2		6	6	Ŋ	đ	ď	z	đ	*	ಚ	Ŋ	đ	d			1	ಬ	z	ď	50		d		2	ď	z	n			ದ	*	ď
Class. (13)																																		
Host (12)	С	C C C	U	IJ	7 5	\sim	~	7 5	\sim	\sim	7 5	ڻ ت	\sim	ڻ ت	\sim	0	7 5	S	7 5	\sim	\sim	\sim	0		E E	C C	\sim	♂	U	ŭ	でち	ŭ	7 5	\sim
Type (11)		IJ	<u> </u>	<u> </u>	0	0	0	<u> </u>	0	0	<u> </u>	<u> </u>	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0	0	0	0	<u> </u>	0	<u> </u>	<u> </u>	0	J		<u> </u>	<u> </u>	_	0	
$F_{0.1-2.4\ keV}$ (10)	0.3547E-11	0.3460E-11	0.1732E-11	0.4857E-11	0.5760E-11	0.8330E-12	0.1015E-11	0.3011E-11	0.9016E-12	0.1657E-11	0.8254E-12	0.7545E-12	0.2090E-11	0.2007E-11	0.3669E-11	0.6791E-12	0.8035E-12	0.1442E-11	0.3946E-11	0.1357E-11	0.7672E-11	0.5551E-12	0.2271E-11	0.1965E-11	0.7635E-12	0.6679E-12	0.8725E-12	0.7570E-11	< 0.3385E-13	0.1950E-11	0.3019E-11	0.2314E-11	0.1199E-11	0.6484E-12
F_0	0.00	0.00	0.00	0.66	0.66	-0.27	0.80	0.00	0.00	-0.60	0.00	0.00	-0.13	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.14	1.00	-1.10	0.00	0.00	1.26	0.53	0.00	0.40	0.00	0.00	0.58	0.00	-0.25
$\begin{pmatrix} \alpha_r \\ (9) \end{pmatrix}$	0.010#	0.010#	0.004#	98	98	64	61	0.016	0.043#	0.114	0.001#	0.016	0.000	0.011	0.004#	1.104	0.001#	0.012#	#900.0	0.013#	0.065	0.820	0.052	9200	0.320&	0.059	44	0.053#	2.199&	0.041#	0.026	0.344	0.001#	21
$\frac{F_{5GHz}}{(8)}$	0.0	0.0	0.0	0.286	0.286	0.964	0.061	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.3	0.0	0.244	0.0	12.1	0.0	0.0	0.3	0.0	1.221
$F_{5GHz}^{core} \ (7)$	0.002#	0.000	0.000	0.061	0.061	0.907	0.029	0.000	0.000	0.108	0.000	0.011	1.250	0.000	0.000	0.163	0.000	0.000	0.000	0.000	0.042	0.000	0.003	0.008	0.003	0.057	0.078	0.000	0.008	0.000	0.020	0.081	0.000	0.000
$m_V $ (6)	17.00	18.20*	15.16	16.20	16.20*	18.50	18.20	17.30	15.90	18.07	17.50*	14.00*	15.00	14.36	16.13	14.10*	17.00*	13.20	16.40	18.76	15.73	20.30	13.40*	17.10	15.70*	13.70	18.50	18.10*	17.10	16.90*	17.70	18.50	15.80*	18.27
z (5)	0.0640	0.1863	0.0244	0.0600	0.0517	0.2000	2.0700	0.3474	0.0960	0.8000	0.1130	0.0720	0.6600	0.0960	0.2100	0.0428	0.1330	0.0269	0.0478	0.2000	0.1567	1.1950	0.0287	0.2090	0.0446	0.0135	0.6890	0.1210	0.0598	0.1038	0.0980	0.2700	0.0670	1.4300
DEC(J2000) (4)	$55\ 12\ 08.9$	$+17\ 30\ 51.1$	$49\ 48\ 51.6$	455657.3	+455657.3	$53\ 52\ 59.6$	$33\ 50\ 51.0$	$43\ 16\ 10.0$	$39\ 10\ 47.6$	$30\ 33\ 55.1$	$35\ 26\ 35.2$	$41\ 02\ 10.5$	095634.8	$39\ 20\ 29.1$	$42\ 19\ 35.0$	$37\ 47\ 12.0$	$41\ 50\ 23.6$	$26\ 36\ 48.5$	$10\ 13\ 08.9$		$47\ 36\ 15.0$	14	$56\ 33\ 13.9$	47	40	$05\ 06\ 49.7$	40	$+75\ 34\ 23.8$	$24\ 09\ 49.9$	$+17\ 25\ 04.0$	724820.6	$48\ 41\ 49.1$	$38\ 32\ 10.9$	$49\ 50\ 36.5$
RA(J2000) (3)	075122.3	075125.1	075151.9	075244.2	075244.2	075301.4	075328.1	075407.9	075437.1	075448.8	075551.3	075630.4	075706.6		$\frac{5}{8}$	075828.1	075939.4	$08\ 00\ 20.9$	00		01	01	01	02			04	05	05	$08 \ 06 \ 24.9$	$08\ 06\ 38.9$	08 06 44.4	$08\ 07\ 52.3$	08 08 39.7
$ \begin{array}{c} \text{Name} \\ (2) \end{array} $	1RXSJ075122.1		SBS $0748+499$	RGB $J0752+459$	NPM1G + 46.0092	4C + 54.15	$[{ m HB89}]~0750{+339}$	NVSS J075407+	FIRST $J075437.0+$	GB6 $J0754 + 3033$	FIRSTJ075551.3	2MASXiJ0756304	MRC $0754+100$	B3 0754+394	IRAS $F07548+4227$	3C 189	FIRSTJ075939.3	IC 486	NPM1G + 10.0129	NVSSJ080102+	RBS 688	3C 190	NGC 2488	$GB6\ J0802 + 6747$	CGCG 118-054	MRK 1210	8C 0800+608	$RX\ J0805.4 + 7534$	$3C\ 192$		$RGB\ J0806 + 728$	RGB J0806+486	2MASXiJ0807522	OJ +508
RXJ name (1)		0751.3 + 1730		0752.6 + 4556	0752.6 + 4556	0753.0 + 5352	0753.4 + 3350		0754.6 + 3911	0754.7 + 3033	0755.9 + 3526	0756.4 + 4102	0757.1 + 0956		0758.3 + 4219	0758.4 + 3747	0759.7 + 4149	0800.3 + 2636		0801.0 + 6444	0801.4 + 4736		0801.7 + 5633	0802.7 + 6747		0804.0 + 0506	0804.4 + 6040	0805.8 + 7534		0806.4 + 1725	0806.6 + 7248	0806.6 + 4841	0807.9 + 3832	

Table A.3: (continued)

(1) (2)		(3)	$\mathbb{Z}[4]$	(5)	(9)		$\begin{array}{ccc} F_{5GHz} & \alpha_r \\ (8) & (9) \end{array}$		$r_{0.1-2.4\ keV} = 10$	(11)	H.	(13)	(14)
3C 195 R3 0805±410		08 08 53.6 08 08 56 6	$-10\ 27\ 40.2$	0.1100	18.80	0.055	1.629	0.72	< 0.7500E-12	<u>ა</u>	Z	C	Ι
MG2 J080937+3455		08 09 38.9	55	0.0820	17.37	0.000	0.176	0.00	0.8013E-11	y U		7 2	
RBS 692	<u> </u>	08 09 49.1	$52\ 18\ 58.7$	0.1380	15.30	0.123	0.184	-0.07	0.1682E-10	o		N	
RGB J0810+504		08 10 02.7	$50\ 25\ 38.0$	1.2000	16.96	0.012	0.023	0.00	0.6244E-12	Ü		Ъ	
PG 0804+761		$08\ 10\ 58.6$	$+76\ 02\ 42.0$	0.1000	15.10*	0.000	0.004#	0.00	0.2930E-10	o		Ъ	
SBS 0806+573		$08\ 11\ 00.6$	$57\ 14\ 12.5$	0.6110	17.70	0.306	0.375	0.12	0.1567E-11	o		ď	
RGB J0811+575		08 11 10.2	$57\ 30\ 10.0$	0.0820	19.33	0.035	0.054	0.00	0.1327E-11	Ü		· w	
RGB J0811+700		08 11 12.4	70 02 30.6	0.2230	18.60*	0.004	0.032	-0.10	0.2981E-11	CC	С		
PKS 0808+019		08 11 26.7	$01\ 46\ 52.2$	0.9300	17.20	0.000	0.590	-1.60	0.6672E-12	o		Ŋ	
MS 0808.0 + 4840		$08\ 11\ 37.2$	$48\ 31\ 33.9$	0.7000	17.96	0.020	0.076	0.00	0.8639E-12	U		Ъ	
3C 196)	$08\ 13\ 36.0$	$48\ 13\ 02.6$	0.8710	17.79	0.007	4.360	0.90	0.1354E-12	o		Ъ	Ι
$B2\ 0810 + 32$		$08\ 14\ 09.2$	$32\ 37\ 31.9$	0.8420	18.20	0.140	0.194	0.23	0.5498E-12	o		Ъ	
FIRST J081425.8		$08\ 14\ 25.9$	$29\ 41\ 15.8$	0.3720	18.80	0.000	0.005#	0.00	0.1793E-11	ŭ		Ъ	
RGB J0814+561		$08\ 14\ 32.1$	$56\ 09\ 56.8$	0.5110	18.10	0.049	0.043	0.00	0.1295E-11	ŭ		Ъ	
KUG 0811+462		$08\ 15\ 16.9$	460430.6	0.0409	15.20	0.000	#800.0	0.00	0.3379E-11	U	∞	J.	
PKS 0812+02		$08\ 15\ 22.9$	015459.6	0.4020	17.10	0.196	0.845	0.90	0.3647E-11	o		Ъ	
B2 0812+36		$08\ 15\ 25.9$	$36\ 35\ 15.1$	1.0250	19.00	0.000	0.980	0.04	0.4164E-12	o		Ъ	
$3C\ 196.1$)	08 15 27.8	$-03\ 08\ 26.7$	0.1980	16.94	1.860 #	0.480	1.10	0.5590E-11	CC		r	
$RGB\ J0816+660$		$08\ 16\ 21.1$	$66\ 00\ 49.6$	0.2510	18.95	0.012	0.058	0.00	0.7436E-12	U		1	
)	08 18 14.7	$+01\ 22\ 27.1$	0.0890	16.50*	0.000	0.021 #	0.00	0.8530E-11	U		∞	
$S4\ 0814+42$		$08\ 18\ 15.9$	$42\ 22\ 45.4$	0.2453	18.18	0.000	1.877#	-0.10	0.6358E-12	o		Z	
TXS 0816+268		$08\ 19\ 16.7$	$26\ 42\ 01.1$	0.5270	17.90	0.000	0.120 #	0.83	0.6053E-12	0			
MCG + 11-10-073		$08\ 19\ 17.6$	$64\ 29\ 40.2$	0.0390	16.00	0.000	0.016#	0.00	0.3736E-11	U		1	
KOS NP6 038		$08\ 19\ 25.7$	$63\ 37\ 28.0$	0.1183	15.00	0.000	0.035 #	0.00	0.4004E-11	CC	闰		
IRAS F08168+3738		08 20 07.8	372839.0	0.0810	21.60	0.000	0.001#	0.00	0.3993E-12	U		1	
RGB J0820+488		$08\ 20\ 28.1$	$48\ 53\ 47.5$	0.1300	17.50	0.000	#060.0	0.61	0.5763E-12	U		ದ	
$3C\ 197.1$	0	$08\ 21\ 33.7$	47~02~36.9	0.1280	16.50	0.000	0.860	0.80	0.4656E-12	ŭ	臼		Ι
RGB J0822+470		$08\ 22\ 09.6$	47~05~53.0	0.1267	15.90	0.078	0.096	0.00	0.7519E-11	CC		Ъ	
$5C\ 07.194$)	$08\ 22\ 14.4$	$25\ 38\ 32.6$	1.7380	18.70	0.000	0.111	0.80	0.8048E-12	o		Ъ	
4C + 22.21)	$08\ 23\ 24.7$	22 23 03.3	0.9510	19.50	0.000	1.590	0.40	0.4142E-12	o		Ъ	
RGB J0824+616		$08\ 24\ 06.5$	$61\ 36\ 19.6$	0.4010	18.18	0.007	0.018	0.00	0.1559E-11	U		Ъ	
SBS $0820 + 560$		08 24 47.2	$55\ 52\ 42.7$	1.4170	18.20	1.000	1.155	-0.14	0.1212E-11	o		Ъ	
4C + 39.23		$08\ 24\ 55.5$	$39\ 16\ 41.9$	1.2160	17.71	0.880	1.030	-0.37	0.2035F-11			_	

Table A.3: (continued)

	(3) 08 25 17.6	(4) 44 36 26.8	(5)	(6)	(7)	(8) (9) 0.236	1.07	(10) 0.1075E-11	(11) (12) QC	(13)	(14)
	08 25 38.6	57	0.5420	17.70	0.464	0.619	0.11	0.1481E-11	· °	O	
	08 25 47.4	04	2.0600	18.70	0.133	0.150	0.00	0.1166E-11	o	0	-
	08 25 50.3	60	0.5060	16.80	0.000	0.940	-0.42	0.3118E-11	♂	Z	N2
	08 26 01.6	30	0.9100	16.20	0.000	1.219	0.50	0.4617E-11	ଫ (IN.	N
<u>``</u>	27 17.4	26	0.8220	17.00	0.000	1.199	0.96	0.1216E-11	೦	U	
\approx	28 14.2	415351.9	0.2230	18.90	0.007	0.047	0.00	0.2011E-11	o	I.N	N
\approx	29 04.8	175415.6	0.0894	13.90	0.120	0.210	0.11	0.2991E-11	U	N	N
53	$29\ 30.3$	085821.0	0.8660	21.50	0.000	0.169	0.60	0.4101E-12	ඊ		
8	3052.1	$24\ 10\ 59.8$	0.9390	17.26	1.661	0.000	0.00	0.2350E-11	0	O	~
31	3148.9	$04\ 29\ 39.1$	0.1800	16.40	1.000	1.913	-0.15	0.1052E-11	0	IX.	N
32	23.2	$49\ 13\ 21.0$	0.5480	18.82	0.000	0.349	0.50	0.3083E-12	0	N	N
$\frac{3}{2}$	$32\ 25.3$	$37\ 07\ 36.7$	0.0906	16.61	0.000	0.012#	0.00	0.9125E-11	Ů		_
\tilde{z}	3246.9	285312.7	0.2260	17.80	0.000	0.001#	0.00	0.2172E-11	ŋ		
32	52.0	$+33\ 00\ 11.0$	0.6710	20.70*	0.000	0.004#	0.00	0.3380E-11	0	IX.	N.
33 5	53.9	$42\ 24\ 01.8$	0.2530	18.60	0.310	0.390	-0.10	0.1357E-11	0	N	N
34 4	34 47.6	$39\ 28\ 17.7$	0.1720	17.40*	0.000	0.003#	0.00	0.7113E-12	ŋ		
3454.9	4.9	$55\ 34\ 21.1$	0.2420	18.50	5.599	5.740	0.74	0.2394E-11	CC		
$35\ 38.8$	8.8	$-04\ 05\ 17.6$	0.0143	14.00*	0.000	0.029#	0.00	0.4650E-11	ŭ	∞	~
3552.4	2.4	$29\ 57\ 16.0$	0.0770	14.70*	0.000	0.003#	0.00	0.1453E-11	ŗ	*	v
3622.9	2.9	27 28 52.5	0.7650	19.10	0.000	0.301 #	0.00	0.4280E-12	ඊ	O	-
36 3	36.9	25	1.2980	18.11	0.269	0.385	0.35	0.1383E-11	o	O	T
36	3650.8	$-22\ 33\ 10.1$	0.8370	18.00*	0.000	0.470	0.80	0.1536E-11	0	O	-
98	36 58.8	26	0.2550	15.60*	0.000	0.007	0.00	0.9070E-11	o	O	-
37	3744.9	$65\ 13\ 34.9$	1.1120	18.21	0.027	0.340	1.00	0.6202E-12		O	I
38	10.9	53	0.0286	14.12	0.063 #	0.068	0.00	0.4529E-11	S	ω	~
39	$39\ 06.4$	$57\ 54\ 17.1$	1.5340	17.62	0.000	0.670	0.90	0.3738E-12	o	G	50
39	$39\ 30.7$	$18\ 02\ 47.1$	0.2800	17.00	#000.0	0.350	0.10	0.8539E-12	0	Z	N 7
39	$39\ 49.2$	$03\ 19\ 53.8$	1.5700	20.70	#000.0	0.580	0.25	0.7971E-12	0	O	~
39	3950.6	$-12\ 14\ 33.9$	0.1976	15.76	#000.0	0.720	0.70	0.1015E-10	OC	O	_
\subseteq	08 40 47.5	$13\ 12\ 23.0$	0.6808	18.15	0.657	1.244	0.44	0.1793E-11	0	0	~
Ξ	08 41 24.4	70 53 42.2	2.1720	17.30	3.742	0.000	0.34	0.1030E-10	o	U	_
Π	08 41 27.0	-75 40 27.9	0.5210	18.40	0.590	1.399	0.70	0.2956E-11	0	O	-
41	53.9	$23\ 19\ 55.1$	1.1830	17.20	0.000	0.108	0.60	0.3081E-11	0	O	~

Table A.3: (continued)

														\square		\Box			Π					П		Π				Π				
FR (14)		ď	,0		<u></u>	_	,0	~	C.		,0	87	<i>E</i>			_	N	,0	<i>C</i>	_	C.	2			С.	С.		<i>C</i> *	<i>C</i> *		С.	~	8	5
Class. (13)		J	12.5		0		1.0	O	Ü	Ü	1.7		Ŭ				IX.	Δ.	Ü		Ü				O	O		Ü	Ü		Ü	O		
Host (12)				ပ		$\mathbf{\alpha}$									0																			
	O	o	U	U	೦	ŭ	Ü	o	೦	೦	ŭ	U	o	g_{C}	Ü	Ü	o	U	o	Ü	0	o	U	U	o	o	U	o	o	U	0	೦	o	0
Type (11)	11	11	11	11	12	12	11	11	11	11	10	10	11	12	13	12	11	11	12	11	12	11	11	12	11	12	11	11	12	-12	11	12	11	12
$F_{0.1-2.4\ keV}$ (10)	0.4741E-1	0.1015E-1	0.9100E-1	0.3150E-1	0.6158E-1	0.3274E-15	0.9700E-1	0.3420E-1	0.3840E-1	0.4490E-1	0.1260E-10	0.2150E-10	0.1799E-1	0.8596E-12	0.5405E-13	0.3433E-12	0.1157E-1	0.2520E-1	0.6269E-12	0.4150E-1	0.4948E-12	0.3150E-1	0.2120E-1	0.6915E-12	0.1905E-1	0.7447E-12	0.4899E-11	0.2440E-1	0.8491E-12	<0.3400E-12	0.1418E-11	0.5140E-12	0.4053E-11	0.8325E-12
$F_{0.1-}$	0.00	0.10	0.00	0.00	0.94	0.00	0.00	0.00	0.30	0.30	0.00	0.00	0.00	0.70	0.00	0.24	0.00	0.00	1.10	0.00	0.22	-0.30	0.00	0.93	0.40	1.00	0.00	0.00	0.00	1.08	0.40	0.25	0.00	0.77
α_r (9)	2	0	#2	#0	∞		#8	2#	#0	#9	#9	2	7#	∞	2#	Ţ	0	2#	5	#9	33	7	9	6	0	0	0	#9	2#	0	0	0	#9	0
$\frac{F_{5GHz}}{(8)}$	0.042	1.120	0.017#	0.020#	0.238	0.037	#800.0	0.055#	0.250 #	0.336#	0.016#	0.032	0.002#	0.328	0.002#	0.391	0.000	0.005#	0.545	#900.0	1.183	2.907	0.026	0.549	0.330	0.890	0.050	#900.0	0.512#	1.740	2.290	0.000	0.026#	0.180
$\frac{F_{5GHz}^{core}}{(7)}$	0.015	0.000	0.000	0.000	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.000	0.035	0.000	0.224	0.028	0.000	0.090	0.000	0.900	2.299	0.014	0.000	0.000	0.150	0.000	0.000	0.000	0.000	0.000	1.645	0.000	0.000
$m_V $ (6)	16.20	16.36	17.70*	17.00	17.85	11.88	15.00*	16.60*	17.60	16.60*	16.50*	16.90	17.70	14.99*	14.82*	19.50	17.50	17.50*	17.42	16.50*	18.30	15.43	15.00*	22.00	17.57	19.06	15.40*	16.80*	18.90	18.50	16.59	19.20	18.70	18.20
z (5)	0.1520	1.2700	0.1339	0.1980	0.8620	0.01111	0.0278	0.4690	0.3400	0.3418	0.1076	0.1990	0.4510	0.0673	0.0406	0.4070	0.1490	0.0640	1.1100	0.0649	1.3220	0.3060	0.2539	0.7500	0.4900	1.0480	0.0131	0.2520	0.8940	0.3050	1.3330	1.4620	0.1882	0.7580
(000	31.4	40.9	25.6	27.2	43.7	20.0	12.9	00.5	24.6	24.6	10.4	50.1	17.8	08.2	19.2	09.5	22.8	25.0	55.5	21.8	29.9	30.6	56.2	9.90	31.9	43.9	51.9	52.0	59.2	18.7	30.9	04.1	59.7	56.9
$\frac{\text{DEC}(J2000)}{(4)}$	40 18	35	59	2927	6129	50 12	-1402	-02 41	07 04	04	-12 14	11 33	$37\ 32$	$31\ 47$	$37\ 45$	$37\ 47$	3455	+5228	1352	+1741	5757	90	18	04	-77 19	00	47	54	17	-25 55	-14 15	51	4055	-19 57
2000)	03.7	05.1	05.6	55.9	12.0	38.1	06.5	53.4	00.4	00.4	28.5	12.9	$47\ 16.0$	4759.1	$48\ 10.3$	5024.7	$50\ 36.2$	5151.4	53 08.8	$54\ 39.2$	$54\ 41.9$	54 48.9	5608.2	$57\ 40.6$	$57\ 42.5$	5841.5	59 19.2	$59\ 31.0$	15.3	47.5	16.8	03.9	14.7	04 40.7
$\frac{\text{RA}(J2000)}{(3)}$	08 42 03.7	$08 \ 42 \ 05.1$	$08\ 42\ 05.6$	$08\ 42\ 55.9$	$08\ 43\ 12.0$	08 43 38.	08 44 06.5	08 45 53.4	08 46 00.4	08 46 00.4	$08\ 46\ 28.5$	08 47 12.9	08 47	08 47	08 48	$08 \ 50$	$08 \ 50$	0851	0853	0854	0854					08 58	$08 \ 50$	$08 \ 50$	$09\ 00\ 15.5$	09 01 47.5	$09\ 02\ 16.8$	09 03 03.9	09 03 14.7	09 04
Name (2)	718	339+18	$RX\ J0842.1 + 0759$	139129	.19	639	IRAS 08417-135		HS 0843+0715	PMN J0846+0704	RAS F08440-120	RGB J0847+115	(HB89) 0844+377	01		.25	RGB J0850+349	$RX\ J0851.8 + 5228$		220	3.17	37	$RGB\ J0856+543$		358-77		CGCG 0856.8+0059	$RX\ J0859.5 + 7455$	PMN J0900-2818	359-25	359-14	9+470	6:	002-19
	RBS 0718	PKS 0839 + 18	RX J08	LEDA 139129	4C + 61.19	NGC 2639	IRAS 0		HS 084.	PMN J	IRAS F	RGB J([HB89]	IC 2402	IC 2401	4C + 37.25	RGB J(RX J08	3C 208	MRK 1220	4C + 58.17	OJ $+287$	RGB J(3C211	PKS 0858-77	3C212	CCCC	RX J08	PMN J.	PKS 0859-25	PKS 0859-14	B3 0859+470	RBS739	PKS 0902-19
RXJ name (1)	0842.0+4018		0842.6 + 0759	0842.9 + 2927	0843.2 + 6129		0844.3 - 1402	0845.0 - 0241		0846.6 + 0704	0846.5 - 1214	0847.1 + 1133	0847.3 + 3732	0848.0 + 3147		0850.4 + 3746	0850.5 + 3455	0851.5 + 5228		0854.9 + 1741	0854.6 + 5757	0854.8 + 2006	0856.0 + 5418	0857.6 + 3404	0857.7-7719		0859.3 + 0047	0859.1 + 7455			0902.2 - 1415	0903.0 + 4650	0903.2 + 4056	0904.6-1957

Table A.3: (continued)

1	П																																	- 1
FR (14)	r	1	ď	ď		đ		ď		Ŋ	đ		ď	20	z	r	z	ď	đ		2		ď	*	ď	z	l	ಬ	đ		ď	Р	ď	ď
Class. (13)																																		
Host (12)					臼				0															\mathbf{v}			\mathbf{v}							
$\begin{array}{c} \text{Type} & \text{I} \\ (11) & (\end{array}$	ŭ	CC	O	OC OC	CC	o	ŭ	o	ŭ	o	o	o	ŭ	o	o	CC	o	o	U	U	CC	U	o	ŭ	o	o	CC	U	o	CC	o	CC	o	0
T, T	F-13	3-11	9-11	<u>3</u> -11	5-11	E-12	E-12	<u>-</u> -12	5-12	B-12	3-11	<u>3</u> -12	<u>3</u> -12	E-12	<u></u> 3-11	3-11	3-11	3-11	3-12	3-11	<u></u> 3-11	9-11	9-11	E-12	<u></u> 3-12	~111	4-10	₹-10	<u>3</u> -12	3-12	5-11	₽-111	3-12	∃-12
$F_{0.1-2.4\ keV}$ (10)	0.2146E-13	0.3050E-11	0.2349E-11	0.3532E-11	0.3220E-11	0.1247E-12	0.6852E-12	0.9197E-12	0.5503E-12	0.9041E-12	0.1237E-1	0.9767E-12	0.8621E-12	0.5277E-12	0.5808E-11	0.2927E-11	0.2311E-1	0.1533E-11	0.4572E-12	0.1694E-11	0.1140E-11	0.2050E-1	0.2659E-11	0.1072E-12	0.3084E-12	0.5954E-11	0.5950E-10	0.1760E-10	0.6415E-12	0.4069E-12	0.1599E-1	0.1675E-1	0.6118E-12	0.3600E-12
$F_{0.1-5}$ (1								_																										
$\begin{pmatrix} \alpha_r \\ (9) \end{pmatrix}$	06.0	0.00	0.00	1.00	0.20	0.60	0.00	0.21	0.00	0.00	-0.03	-0.42	0.00	0.70	0.70	0.20	0.00	0.65	0.00	0.00	0.00	0.00	0.12	0.00	0.28	0.00	0.90	0.00	0.00	0.00	-0.30	1.08	0.15	-0.06
	0.100	0.019#	#00000	0.378	0.652#	0.085#	0.002#	0.222	0.002#	0.032	0.000	0.111	0.048	1.810	0.096	0.120	0.102	0.157	0.126	0.001#	0.017#	0.017#	0.217	0.047	0.000	0.069	13.779	0.007#	#000.0	0.002#	#00000	1.998	0.295	1.322
$\frac{F_{5GHz}}{(8)}$		0	0	_	0)	0	0)	0)	0	0		0	_	_	0	0	0	0	_	0	_	_	_	T	_	0	0	0		0	
$F_{5GHz}^{core} \ (7)$	0.000	0.000	0.079	0.026	0.000	0.000	0.000	0.114	0.000	0.000	1.002	0.078	0.033	0.000	0.078	0.000	0.000	0.031	0.104	0.000	0.000	0.000	0.054	0.000	0.620	0.046	0.217	0.000	0.045	0.000	1.310	0.005	0.200	0.000
m_V	24.00	16.20*	16.42	18.27	15.00*	20.80	15.80*	19.40	14.80*	16.20	17.79	19.30	18.60	18.10	17.80	15.50*	16.50	17.20	18.80	16.60	18.00*	16.10*	17.43	13.45	20.00	19.50	14.80	15.40*	17.70	13.20*	19.20	17.44	18.70	19.50
z (5)	3.3909	0.1228	1.2060	0.4121	0.0533	0.9170	0.1120	0.7325	0.0143	0.2230	1.0200	3.2000	0.4110	0.6700	0.2740	0.0921	0.3540	0.2976	1.0800	0.1070	0.4420	0.0511	0.3030	0.0085	1.2500	0.1900	0.0538	0.0299	0.6880	0.0194	2.1800	0.1744	0.5940	1.4460
(000	56.9	02.7	42.0	11.4	37.6	06.2	39.5	46.2	34.4	12.0	35.6	42.9	32.0	46.1	59.0	56.8	24.5	50.9	25.1	17.3	28.0	06.2	50.5	49.2	28.1	27.9	43.9	19.2	55.4	27.2	53.9	57.4	12.4	52.2
DEC(J2000) (4)	34 07	+1840	1941	1646	-0959	$50 \ 31$	$30\ 26$	4150	$32\ 35$	$23\ 11$	0121	0354	$52\ 16$	4253	$31 \ 05$	-10 34	33 29	44 22	68 34	3658	+4056	+4742	$05 \ 07$		3854	5238	-1205	+1618	$23 \ 25$	$33\ 47$	44 41	$45\ 38$	71 36	62 15
(000	30.1	33.6	3.6	31.9	2.2	16.7	29.5	35.9	88.4	9.00	10.1	[5.9	24.6	33.5	53.4	35.9	37.1	33.9	9.98	13.7	15.4	15.4	91.8	5.1	6.8	52.0	5.7	0.95	58.1	27.3	58.4	9.8	23.9	36.2
$\frac{RA(J2000)}{(3)}$	09 05 30.1	$09\ 05\ 33.6$	$09\ 06\ 03.6$	$09\ 06\ 31.9$	09 08 02.2	$09\ 08\ 16.7$	09 08 29.5	09 08 35.9	09 08 38.4	$9.00\ 60\ 60$	09 09 10.1	$09\ 09\ 15.9$	09 09 24.6	09 09 33.5	09 09 53.4	$09\ 10\ 35.9$	09 10 37.1	09 11 33.9	$09\ 12\ 36.6$	09 13 13.7	09 13 45.4	$09\ 13\ 45.4$	09 14 01.8	09 14 05.1	09 16 48.9	$09\ 16\ 52.0$	$09\ 18\ 05.7$	$09\ 18\ 26.0$	09 18 58.1	09 19 27.3	$09\ 20\ 58.4$	$09\ 21\ 08.6$	21	09 21 3
																														_				
ne ($RX\ J0905.5 + 1840$	3 + 198		9.0307	-507	829.5	20		+231	.01	+039	+522			103		45	+685	313.7	1+410		1 + 053				d A		+234	IRAS 09164+3400	7 + 449		18	21
Name (2)	B2 0902+34	10905.5	[HB89] 0903+198	15	NPM1G -09.0307	TXS 0904+507	FIRSTJ090829.5	$B3\ 0905+420$	439	RGB J0909+231	PKS 0906+01	RGB J0909+039	RGB J0909+522	16	B2 0906+31	MRC 0908-103	TON 1015	B3 0908+445	RGB J0912+685	FIRSTJ091313.7	IRAS 09104+410		[HB89] 0911+053	NGC 2782	4C + 38.28	RBS 760	3C 218/Hyd A	MRK 0704	RGB J0918+234	30916	[HB89] 0917+449	19	8C 0916+718	S4 0917+62
	B2 0	RX J	[HB8]	3C215	NPN	$_{ m TXS}$	FIRE	B3 0.	IC 2439	RGB	PKS	RGB	RGB	$3C\ 216$	B2 0:	MRC	TON	B3 0.	RGB	FIRE	IRAS		[HB8]	NGC	4C+	RBS	3C2	MRK	RGB	IRAS	[HB8]	3C219	8C 0	S4 09
name)		⊦1840	⊦1941	⊢1646	0959		⊢3026	+4150	⊦3235	⊢2311	⊢0121	⊢0354	⊢5216		⊦3105			⊦4423	⊢6834	⊦3658	+4056	⊦4742	+0507		⊦3854	⊦5238	1205	⊢1618	+2325	⊢3347	⊦4441	⊦4538	⊦7136	
RXJ name (1)		0905.4 + 1840	0906.0 + 1941	0906.5 + 1646	0908.1 - 0959		0908.5 + 3026	0908.5 + 4150	0908.7 + 3235	0908.9 + 2311	0909.1 + 0121	0909.2 + 0354	0909.3 + 5216		0909.8 + 3105			0911.5 + 4423	0912.5 + 6834	0913.2 + 3658	0913.0 + 4056	0913.4 + 4742	0914.0 + 0507		0916.8 + 3854	0916.8 + 5238	0918.1-1205	0918.2 + 1618	0918.9 + 2325	0919.4 + 3347	0920.9 + 4441	0921.1 + 4538	0921.3 + 7136	
		_	_	_	_		_	_	_	_	_	_	_		_			_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	

Table A.3: (continued)

0.00 0.4820E-12 Q q
0.4820E-12 Q
0.4820E-12 Q
0.4820E-12
30
0.
0.001#
0.001
0.000
18.50
0.4610
40.2
35
24.3
09 43
4.3+.
J09432
FBQS J094324.3+
0943.4 + 2835
2 4 l
0943 3+3615 NGC 2965 0 00 43 10 1 36 14 52 3 0 0224 14 70 0 237

Table A.3: (continued)

							Ξ				Π																							
FR (14)	2	2	1	ď	_	1	Р	ď	1	ď	n	1	z	ත		1	z	ď	ď	*		ď		ď	S	ď	ď	ď	z	z	1		1	q
Class. (13)																																		
Host (12)	\mathbf{x}						Z					∞																					∞	
	ŋ	U	U	U	ŭ	U	U	೦	೦	QC	U	U	U	U	U	೦	೦	೦	Ç	$^{\rm CC}$	$^{\rm CC}$	೦	U	o	U	೦	೦	Ç	o	U	U	g_{C}	U	೦
Type (11)	11	1	1	11	11	11	*2	2	11	11	-12	11	11	-1		11	11	11	1	01	11	2	11	2	2	1	2	2	1	1	0]	11	1	11
$F_{0.1-2.4\ keV} \ (10)$	0.8470E-1	0.1260E-1	0.5900E-1	0.1490E-11	0.4519E-11	0.5770E-11	0.4445E + 02*	0.4123E-12	0.1010E-11	0.1283E-11	< 0.1496E-12	0.6950E-11	0.4174E-11	0.1920E-1	0.2690E-1	0.1958E-1	0.2075E-1	0.1798E-1	0.1502E-1	0.2054E-1	0.4240E-1	0.9050E-1	0.2776E-1	0.7875E-1	0.2060E-1	0.1091E-1	0.7290E-1	0.2289E-1	0.1225E-1	0.7786E-1	0.2120E-10	0.2477E-1	0.4900E-1	0.1080E-1
$F_{0.1-}$	0.00	0.00	0.00	0.00	0.00	0.00		-0.24	-0.24		·	0.00	0.00	0.00	0.00	0.51	0.00	0.78	0.00	0.72	0.00	-0.07	0.00	0.39	0.00	0.00	0.00	0.26	0.09	0.00	0.00	0.00	0.00	0.80
α_r (9)	#,	#	*	#8	#3	#1	_	•		•	_	#9	#3	#1	#(•	~	_	_	٠.	#1	#(#9	#(#1	01	_	_	٠.	٠.	*		#	, 0
$F_{5GHz} = (8)$	0.227#	0.003#	#800.0	0.003	0.022 #	0.004#	2.640	1.800	0.295	0.116	0.994	#900.0	0.012#	0.004#	0.010#	0.336	0.003	0.139	0.029	3.795	0.094#	#000:0	#900.0	#000.0	0.024#	0.032	1.004	0.000	1.125	0.035	#800.0	0.025	0.003#	0.345
$F_{5GHz}^{core} \ (7)$	0.000	0.000	0.000	0.000	0.000	0.000	0.032	1.227	0.127	0.000	0.000	0.000	0.000	0.000	0.000	0.033	0.000	0.007	0.000	0.042	0.000	1.439	0.001 #	2.568	0.026	0.000	0.700	1.100	0.480	0.033	0.000	0.008	0.000	0.077
(9)	13.10*	16.30*	16.00*	18.10*	19.20	16.00*	16.33	18.37	18.67	17.60	16.00*	13.50*	19.90	17.10*	17.10*	20.00	19.30	17.24	16.70	9.20*	17.60*	17.21	15.80	17.40	20.40	20.10	18.65	15.78	16.81	17.40	10.90*	18.40*	14.30*	17.57
z (5)	0.0077	0.0740	0.1310	0.5410	0.3540	0.1392	0.0862	1.2520	0.5837	0.5190	0.0581	0.0145	0.1813	0.0441	0.0983	0.2954	0.2070	0.2980	0.2590	0.0007	0.1585	0.7120	0.0820	0.9090	0.4180	0.6480	1.8730	0.5305	0.3680	0.3646	0.0370	0.2449	0.0354	0.9053
DEC(J2000) (4)	-14 19 34.9	+423839.9	$+13\ 20\ 26.1$	$+47\ 21\ 43.0$	762312.5	$+10\ 05\ 09.0$	07 25 20.6	$40\ 39\ 44.6$	$00\ 22\ 25.5$	-195711.0	$73\ 14\ 23.1$	-064922.5	$75\ 02\ 13.5$	$+25\ 39\ 42.0$	+014202.3	$21\ 22\ 36.0$	$49\ 14\ 59.4$	$09 \ 29 \ 55.2$	$45\ 32\ 16.0$	$69\ 40\ 46.9$	-095719.3	$25\ 15\ 16.0$	33	$55\ 22\ 57.8$	$47\ 45\ 49.9$	08	$47\ 25\ 07.8$	322402.2	$65\ 33\ 54.8$	23	$-31\ 12\ 58.4$	24	$+13\ 02\ 37.8$	00 05 23.7
RA(J2000) (3)	$09\ 45\ 42.0$	$09\ 45\ 54.4$	$09\ 46\ 51.9$	$09\ 47\ 04.5$	$09\ 47\ 12.5$	$09\ 47\ 33.2$	$09\ 47\ 45.1$	$09\ 48\ 55.3$	$09\ 48\ 57.3$	$09\ 49\ 05.8$	$09\ 49\ 45.9$	$09\ 51\ 55.0$	095224.3	095331.3	095341.4	095407.0		095456.8	095539.8	095552.2	095628.2			$09\ 57\ 38.2$	$09\ 57\ 46.6$	$09\ 58\ 17.5$	095819.7	095820.9	095847.2	$09\ 59\ 29.9$	$09\ 59\ 42.6$	095946.9	$09\ 59\ 55.8$	10 00 17.7
Name (2)	NGC 2992	IRAS $F09427 + 425$	MS 0944.1 + 1333	IRAS F09438+473	RBS 797	$RX\ J0947.5+1005$	3C 227	4C + 40.24	RGB $J0948+003$	MRC $0946-197$	4C + 73.08	NGC 3035	1RXSJ095225.8	$RX\ J0953.5 + 2539$		4C + 21.26	$MS\ 0950.9 + 4929$	$[{ m HB89}]~0952{+}097$	$B3\ 0952+457$	M 82		$[{ m HB89}]~0953{+}254$	2MASXiJ0957072	$[{ m HB89}]~0954{+}556$	87GB 095433.0+	$B3\ 0955 + 464$	$B3\ 0955 + 476$	4C + 32.33	$S4\ 0954+65$	87GB 095643.1	RX J0959.7-3113	RGB $J0959 + 224$	NGC 3080	4C +00.34
RXJ name (1)	0945.9-1419	0945.9 + 4238	0946.0 + 1320	0947.7 + 4721		0947.2 + 1005		0948.9 + 4039	0948.8 + 0022	0949.0 - 1957		0951.9 - 0649	0952.4 + 7502	0953.5 + 2539	0953.4 + 0141	0954.1 + 2122		0954.9 + 0930	0955.6 + 4532	0955.8 + 6940	0956.2 - 0957	0956.8 + 2515	0957.1 + 2433	0957.6 + 5523	0957.7 + 4745	0958.2 + 4608	0958.3 + 4725	0958.3 + 3223	0958.7 + 6533	0959.4 + 2123	0959.1 - 3113	0959.7 + 2223	0959.4 + 1302	1000.3+0005

Table A.3: (continued)

П	П				Π																													1
FR (14)	ď			z	n	2	ď	1		ď	ď	đ	đ		W	ď	ď	r	ď		z	r	1	ď	ď	ď	ď	z		ď	ď	ď	N	ď
Class. (13)																																		
Host (12)					Z	$\mathbf{\alpha}$								∞				囝				Z											田	
$ \begin{array}{cc} \Gamma \text{ype} & \overline{\Pi} \\ (11) & (11) \end{array} $	o	GC	o	o	U	ŭ	೦	ŭ	GC	೦	o	o	o	ŭ	ŭ	o	o	CC	o	U	o	GC	U	o	o	o	o	o	U	o	o	೦	O O	೦
$F_{0.1-2.4\ keV}$ T_{5} (1)	0.9172E-12	0.2270E-11	0.1324E-11	0.6632E-12	0.4667E-12	0.4935E-12	0.1316E-11	0.6510E-11	0.2560E-11	0.8224E-13	0.1144E-11	0.1615E- 11	0.7909E-12	0.7486E-11	< 0.5281E-13	0.7071E-12	0.2563E-12	0.3573E-11	0.6325E-12	0.7730E-12	0.1080E-10	0.1004E-11	0.6650E-11	0.2176E-11	0.2981E-11	0.1273E-12	0.5537E-12	0.7636E-11	0.8075E-12	0.3624E-11	0.1074E-11	0.9103E-12	0.1899E-10	0.1808E-11
F_{0}	08.0	0.00	0.80	0.00	0.90	0.00	0.30	0.00	0.00	0.40	0.90	0.00	0.00	0.00	09.0	0.67	0.00	1.90	0.00	0.00	0.00	0.51	0.00	0.00	0.70	-0.20	1.07	0.44	0.00	0.70	-0.37	0.20	0.27	-0.21
$ \begin{array}{ccc} F_{5GHz} & \alpha_r \\ (8) & (9) \end{array} $	0.390	0.004#	0.208	0.002	1.540	0.320	0.830	0.013#	0.008#	0.316#	0.180	0.003#	0.001#	0.003#	6.139	0.231	0.181	0.050 #	0.021	0.001#	0.005#	0.194	0.003#	0.001#	0.854	0.210	0.753	0.046	0.026	0.290	0.937	0.000	0.299	0.174
$\frac{F_{5GHz}^{core}}{(7)}$	0.000	0.000	0.017	0.000	0.000	0.065	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.084	0.058	0.000	0.000	0.018	0.000	0.000	0.073	0.000	0.000	0.200	0.000	0.669	0.029	0.019	0.000	0.800	1.300	0.242	0.173
$m_V $ (6)	18.00	19.10*	16.70	19.84	17.27	12.18	15.10	15.20*	15.40*	19.30	18.10	16.86	18.08	16.39	17.91	18.10	21.70	15.50*	17.70	17.70*	19.00*	16.90*	15.90*	17.39	15.97	20.00	17.60	18.27	17.77*	16.88	16.57	17.80	16.15	17.20
z (5)	0.4190	0.1530	1.4141	0.3460	0.1848	0.0038	0.8370	0.0152	0.0506	1.6820	0.9740	0.1620	0.3170	0.1782	0.1005	1.0200	1.2160	0.1165	0.5490	0.1300	0.3430	0.0977	0.0575	0.2600	0.6123	1.5880	1.1920	0.3640	0.1710	0.2530	1.6360	0.5650	0.2000	0.7790
DEC(J2000) (4)	22 33 18.7	$+44\ 09\ 10.0$	55536.5	20.4817.8	$28\ 47\ 09.3$	$55\ 40\ 47.1$	-44 38 00.6	$-08\ 09\ 41.6$	$32\ 42\ 24.2$	$32\ 44\ 03.5$	$22\ 25\ 19.4$	$34\ 14\ 24.1$	40.5834.5	$43\ 32\ 40.5$	$34\ 54\ 10.4$	$32\ 36\ 26.9$	$05\ 09\ 53.9$	255444.0	$27\ 01\ 15.3$	$30\ 40\ 02.3$	+47~05~20.0	$00\ 29\ 59.9$	-095451.2	$30 \ 03 \ 21.5$	$41\ 32\ 38.9$	$-04\ 23\ 27.7$	712441.0	$42\ 29\ 57.0$	$39\ 32\ 38.9$	-28 31 25.7	$24\ 49\ 16.4$	01	$49\ 26\ 00.7$	01 09 13.7
RA(J2000) (3)	10 00 21.9	$10\ 00\ 28.9$	$10\ 01\ 20.9$	$10\ 01\ 42.4$	$10\ 01\ 49.5$	$10\ 01\ 57.8$	$10\ 01\ 59.9$	$10\ 02\ 00.0$	$10\ 02\ 36.5$	10 03 57.6	$10\ 04\ 45.7$	$10\ 05\ 07.9$	$10\ 05\ 22.9$	$10\ 05\ 41.9$	$10\ 06\ 01.7$	$10\ 06\ 07.5$	$10\ 06\ 37.6$	$10\ 06\ 38.9$	10~06~42.6	$10\ 07\ 53.3$	10~08~11.3	10~08~11.4	$10\ 08\ 48.6$	$10\ 10\ 00.7$	$10\ 10\ 27.5$	$10\ 11\ 30.2$	$10\ 11\ 32.5$	$10\ 12\ 44.3$	$10\ 12\ 58.4$	$10\ 13\ 29.6$	$10\ 13\ 53.4$	$10\ 14\ 47.0$	$10\ 15\ 04.1$	10 15 57.1
Name (2)	[HB89] 0957+227	RX J1000.5+4409	SBS $0957 + 561$	$MS\ 0958.9 + 2102$	$3C\ 234$	NGC 3079	PKS 0959-443	IRAS $09595-075$	NGC 3099	$7C\ 1001 + 3258$	PKS $1002+22$	FBQS J100507.9+.	FBQS J100522.9+.	IRAS $10026+4347$	$3C\ 236$	$7C\ 1003+3251$	PMN J1006+0509	$B2\ 1003 + 26$	$7C\ 1003+2716$	FIRSTJ100753.2	RX J1008.1 + 4705	PKSJ $1008+0029$	NPM1G -09.0361	TON 0488	4C + 41.21	PKS B1008-041	4C + 71.09	$B3\ 1009+427$	RGB J1012+395	[HB89] 1011-282	TON 0490	[HB89] 1012+232	[HB89] 1011 + 496	LBQS 1013+0124
$\begin{array}{c} \hline \text{RXJ name} \\ \hline (1) \\ \end{array}$	1000.3+2233	1000.9 + 4409	1001.3 + 5553			1002.0 + 5541	1001.9 - 4437	1002.3 - 0809	1002.5 + 3242		1004.8 + 2224	1005.1 + 3414	1005.3 + 4058	1005.7 + 4332		1006.0 + 3236		1006.7 + 2554	1006.6 + 2701	1007.9 + 3039	1008.5 + 4705	1008.1 + 0030	1008.8 - 0954	1010.0 + 3003	1010.4 + 4132		1011.5 + 7124	1012.6 + 4229	1012.9 + 3932	1013.5 - 2831	1013.8 + 2449	1014.7 + 2301	1015.0 + 4926	1015.9+0109

Table A.3: (continued)

_												Π																Π						
FR (14)	þ	z	2		ď	ď	ď		1	ď	ď	n	z	ď	ď	ď	ď	2	ď	ď	ď	ď	z		h	1	ď	r	1	ď	ď	ď	z	5
Class. (13)																																		
Host (12)			∞						\mathbf{S}					田		۲)		S							c p							7)		
Type (11)	Ö	O,	U	U	o	o	c	G,	CC	Ç	U	U	U	o	o	Ö	c	U	♂ ○	o	O,	♂	U	U	ŭ	♂	c	U	U	o	U	CC	o	U
$F_{0.1-2.4\ keV}$ T (10)	0.2710E-12	0.5657E-11	0.4497E-11	0.7007E-11	0.1716E-11	0.4433E-12	0.1202E-11	0.1009E-10	0.6221E-11	0.8429E-12	0.7813E-12	< 0.1015 E-12	0.5110E-11	0.5670E-11	0.5337E-12	0.1382E-12	0.8002E-12	0.1612E-11	0.1116E-11	0.7605E-12	0.6225E-12	0.5720E-13	0.5700E-11	0.3572E-12	0.2111E-11	0.1508E-11	0.7821E-12	0.4594E-12	0.3110E-11	0.1971E-11	0.7518E-12	0.7122E-11	0.5327E-10	0.1935E-11
F_0	0.70	0.00	0.00	0.00	0.90	-0.14	0.66	0.00	0.00	-0.90	0.00	1.20	0.00	0.43	0.00	0.80	-0.43	0.00	-0.21	0.00	0.00	0.38	0.00	0.78	-0.34	1.10	0.00	0.56	0.00	09.0	0.19	0.39	0.09	0.28
$F_{5GHz} \qquad \alpha_r \\ (8) \qquad (9)$	0.159	0.015#	0.040	0.002#	0.494	0.000	0.117	0.003#	0.004#	1.199	0.082	6.299	0.005#	0.490	0.048	0.169	0.789	0.048	0.765	0.001#	0.655 #	0.130 #	0.011#	0.327	0.250	0.170	0.032	0.659 #	0.002#	0.080	0.128	0.161	0.034	0.250
$F_{5GHz}^{core} \ (7)$	0.000	0.000	0.009	0.000	0.014	0.900	0.016	0.000	0.000	0.000	0.023	0.003	0.000	0.000	0.041	0.000	0.574	0.032	0.581	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.032	0.332	0.000	0.007	0.103	0.091	0.023	0.124
(9)	19.40	17.30	12.65	15.70	18.90	18.64	17.93	17.20	15.09	18.80	18.16	23.50*	18.10*	16.11	17.04	18.60*	18.17	11.79	17.49	17.18	18.20	15.00*	16.60*	21.70*	11.51	20.10	18.20	18.40	16.50*	17.80	18.40	16.71	17.00	17.20
z (5)	0.3850	0.2700	0.0094	0.0476	0.4690	1.2260	0.3800	0.1330	0.0417	1.2800	0.3640	1.6170	0.1410	0.1970	0.6050	0.5800	1.2540	0.0039	0.8280	0.4100	0.6630	1.1780	0.1142	0.2800	0.0091	0.3090	1.0550	0.3610	0.0384	0.4354	0.5180	0.1782	0.3610	0.1230
$ DEC(J2000) \\ (4) $	48 38 00.4	41~08~12.2	732402.6	$29\ 14\ 33.8$	$27\ 32\ 04.0$	$35\ 42\ 39.4$	$38\ 05\ 32.6$	375240.4	635802.8	-425130.7	$45\ 23\ 20.7$	21 59 30.1	+512400.3	$-10\ 37\ 44.2$	$39\ 31\ 50.5$	$47\ 51\ 46.1$	$39\ 48\ 15.0$	195153.9	$19\ 12\ 20.4$	$40\ 12\ 43.5$	125349.0	$67\ 46\ 11.1$	-17 48 58.5	$48\ 17\ 18.5$	-43 54 08.7		$01\ 30\ 05.8$	$38\ 44\ 36.7$	$+27\ 28\ 51.6$	$55\ 16\ 22.7$	$51\ 32\ 32.3$	$31\ 02\ 55.7$	505336.4	$74\ 41\ 58.3$
RA(J2000) (3)	$10\ 15\ 57.6$	$10\ 16\ 16.8$	$10\ 16\ 53.6$	$10\ 17\ 18.2$	$10\ 17\ 49.3$	$10\ 18\ 10.9$	$10\ 18\ 25.4$	$10\ 19\ 00.4$	$10\ 19\ 12.5$	$10\ 20\ 03.9$	$10\ 21\ 05.8$	$10\ 21\ 54.5$	$10\ 22\ 12.6$	$10\ 22\ 32.8$	$10\ 22\ 37.4$	$10\ 23\ 10.4$	$10\ 23\ 11.5$	$10\ 23\ 30.6$		$10\ 25\ 53.6$	$10\ 25\ 56.3$	$10\ 26\ 33.5$	$10\ 26\ 58.5$	$10\ 27\ 33.6$	$10\ 27\ 51.8$	$10\ 27\ 54.9$	$10\ 28\ 15.9$	$10\ 28\ 44.3$	$10\ 29\ 01.6$	$10\ 30\ 24.9$	$10\ 30\ 35.1$	$10\ 30\ 59.1$	$10\ 31\ 18.5$	$10\ 31\ 22.0$
Name (2)	4C +48.28	RBS 0844	NGC 3147	IRAS F10144+2929	$3C\ 240$	$B2\ 1015 + 35B$	B2 1015+38	RBS 852	MRK 141	PKS 1018-42	RGB $J1021+453$	$3C\ 241$	MS 1019.0 + 5139	$RBS \ 0862$	B3 1019+397	$GB1\ 1020+481$	$S4\ 1020+40$	NGC 3227	[HB89] 1022+194	HS 1022+4027	IVS $B1023+131$	$8C\ 1022+680$		4C + 48.30	NGC 3256	MRC 1025-229	LBQS 1025 + 0145	4C + 39.32		SBS $1027 + 555$	RGB $J1030 + 515$	m RBS~0875	RBS 877	LEDA 100167
RXJ name (1)		1016.3 + 4108	1016.9 + 7323	1017.3 + 2914	1017.8 + 2732	1018.1 + 3542	1018.4 + 3805	1019.0 + 3752	1019.2 + 6358		1021.1 + 4523		1022.5 + 5124	1022.5 - 1037	1022.5 + 3932		1023.1 + 3948	1023.5 + 1952	1024.7 + 1912	1025.8 + 4013		1026.5 + 6746	1026.5 - 1749	1027.4 + 4817	1027.8 - 4354	1027.9 - 2311	1028.2 + 0130	1028.7 + 3844	1029.4 + 2729	1030.3 + 5516	1030.5 + 5132	1030.9 + 3103	1031.3 + 5053	1031.3 + 7442

(14)Class. (13)闰 Host (12)OC $\frac{\text{Type}}{(11)}$ <0.4180E-12 0.3529E-100.6932E-120.3612E-110.4789E-130.3860E-12 0.5534E-120.7154E-12 0.1812E-12 0.2265E-120.7071E-12 0.1650E-10 0.4360E-11 0.4918E-120.4130E-110.1595E-11 0.1625E-11 0.7405E-11 0.1621E-110.4760E-12 0.3734E-11 0.1714E-11 0.1940E-110.5310E-11 0.1124E-11 0.6280E-110.1257E-11 0.1288E-11 0.4865E-11 0.1359E-11 0.1527E-11 0.4030E-11 0.1747E-12 $\overline{F_{0.1-2.4~keV}}$ 0.600.00 0.00 0.00 0.00 -0.070.500.40-0.210.630.00 0.00 0.00 0.00 0.00 -0.550.04 -0.400.00 0.00 0.500.00 0.050.00 -0.27#000.0 0.001# 0.003#0.001#0.004#0.024#**#**200.0 0.098#0.024 #0.033#0.733 #0.0040.290 #0.03#0.033 #0.002##900.0 1.5100.0191.3891.1490.2220.0900.1051.110 0.4370.2640.077 1.040 $\overline{F_{5GHz}}$ 8 F_{5GHz}^{core} (7) 0.0000.0240.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0580.000 0.149 0.000 0.000 0.000 0.0230.910 0.000 0.6090.3080.000 0.000 0.000 0.0430.000 0.0490.000 0.000 0.000 0.000 0.000 7.30* 7.07* 5.40*19.20* 16.20* 6.10**00.9 4.10*20.10 13.90 5.6018.20 19.80 8.30 6.46|2.15|19.00 17.98 5.80 17.29 17.69 17.90 14.90 18.10 19.20 5.5019.27 18.20 8.20 16.80 0.13862.19800.57700.6800..1730 0.06490.20821.02900.73000.5600..8970 1.26001.05001.7040 0.24900.07760.11140.16900.00390.04240.13730.31200.00330.07000.03580.59500.62000.01530.37000.11830.0854 $+21\ 21\ 48.0$ 35 55 09.5 -08 41 13.1 39 57 11.1 27 18 05.4 38 45 34.5 40 16 16.4 $+73\ 45\ 53.9$ $39\ 38\ 28.2$ -20 11 34.3 56 52 57.9 -293402.839 01 19.9 $12\ 03\ 31.2$ +005420.5 $24\ 08\ 35.4$ 53 22 20.5 805439.4525112.653 54 26.2 54 49 44.5 $35\ 15\ 21.0$ $-41\ 13\ 59.6$ 30 41 38.2 $24\ 22\ 40.3$ -19 09 35.7 -125042.353 30 11.7 $+80\ 11\ 50.7$ DEC(J2000) $34\ 06\ 25.1$ 10 32 13.9 10 32 14.0 10 35 06.2 10 35 11.7 RA(J2000) $32\,38.0$ $10\ 33\ 59.5$ $10\ 34\ 38.6$ 10 40 44.5 10 42 44.6 $10\ 43\ 03.8$ 104309.0 $10\ 45\ 42.2$ 10 46 24.0 103500.210 38 45.9 $10\ 39\ 41.9$ $10\ 39\ 43.4$ 10 44 10.7 10 44 23.1 10 44 39.2 $10\ 46\ 28.8$ $10\ 47\ 03.3$ 10 48 06.6 104838.3 $10\ 35\ 02.1$ 10 37 16.1 10 41 49.1 10 44 27.7 $MG2\ J103513+3406$ IRAS F10378+4012 FIRSTJ103213.9+.1RXSJ104427.6+.. RAS 10311+3610 RGB J1045+528A RAS F10460+802 RAS 10298+213 [HB89] 1040+011 GB6 J1046+5354 MCG -01-27-030 NVSS J105036-.. [HB89] 1034-293 RGB J1043+241 MS 1044.2+3531 [RAS 10295-183] KUG 1031+398 CGCG 212-045 TXS 1041 + 5367C 1043+5505 7C 1029+2813 7C 1031+5708 7C 1036+2438 MRC 1045-188 PKS 1032-199 LEDA 093943 PKS 1046-409 Name B3 1038+392 $S5\ 1039 + 81$ B2 1048+34 NGC 3252 NGC 3310 NGC 3411 3C 2451046.3 + 54491034.0 + 35551034.1 + 73451034.6 + 39381035.1 + 34061038.7 + 53301039.7 + 24221043.0 + 00541043.0 + 24081044.5 + 27181044.6 + 38451045.6 + 52511047.1 + 35151050.1 + 80121032.1 + 27561032.1 + 21211034.9 + 30411041.8 + 39011044.1 + 53221050.7-1250 1031.6 - 18461039.0 - 08401048.1-1909 1048.6 - 4114RXJ name

Table A.3: (continued)

Table A.3: (continued)

	I																		Π						\equiv									1
FR (14)	5	o'	Ct	æ	~	- R	2		82	83	~	2	2	_	~	C.	~	83	U	~	~	~	~		ď	~	2	~	87	~	~	_	,0	~
Class. (13)		J	Ū		Ū						Ū		-		Ū	Ū	Ū			J	J	Ū	Ū		J	Ū		J		Ū	Ū			
Host (12)	Õ	C	\sim	7 B	\sim	78	7 B	7 B	\sim	7 K	\sim	\sim	7 B	7 B	7 K	\sim	\sim	\sim	U	\sim	\sim	\sim	\sim	7 K	U	Ü	\sim	\sim	U	ŭ	\sim	7 K	0	\sim
Type (11)		o	o	U	J	0	0	0	0	0	J	J	0	<u> </u>	0	J	0	0		J	J	0	O	U	0	0	J	0	0	0	0	0	0	
$F_{0.1-2.4\ keV}$ (10)	< 0.2090E-12	0.5253E-11	0.5551E-12	0.1838E-13	0.3421E-11	0.6454E-14	0.1322E-11	0.1600E-11	0.1162E-11	0.1480E- 10	0.5376E-12	0.1772E-12	0.4550E-11	0.2490E-11	0.5075E-12	0.2096E-11	0.1969E-11	0.4333E-11	< 0.1354 E - 13	0.1080E-11	0.1297E-11	0.1054E-11	0.7110E-12	0.1435E-11	0.9839E-12	0.4532E-11	0.4447E-10	0.7272E-11	0.9303E-10	0.1499E-11	0.1647E-12	0.1325E-11	0.3310E-11	0.7884E-12
$F_{\mathbb{C}}$	0.15	0.90	-0.08	0.00	0.78	0.00	0.07	0.00	0.08	0.00	0.00	0.40	0.00	0.00	0.36	0.48	-0.03	-0.05	0.70	0.80	1.01	0.23	-0.13	0.00	-0.33	0.39	0.00	0.00	0.07	0.00	0.00	0.00	0.00	1.00
α_r (9)	30	00	92	0.154#	33	0.059 #	59	74#	99	0.004#	14	00	0.064#	0.003#	20)4)3	17	61	31	30	28	00	#200.0)2	30	36	22	23	36	86	91	0.032 #	59
$F_{5GHz} $ (8)	0.730	0.700	1.076	0.18	0.363	0.0	0.059	0.004#	0.056	0.0	0.044	0.400	0.0	0.0	0.770	1.504	3.403	0.247	6.919	0.161	0.260	0.858	0.700	0.0	0.202	0.730	0.066	0.775	0.723	0.036	0.198	0.316	0.0	2.029
$F_{5GHz}^{core} \ (7)$	0.000	0.000	0.900	0.000	0.132	0.000	0.029	0.000	0.048	0.000	0.016	0.000	0.000	0.000	0.341#	0.768	2.641	0.178	0.003	0.000	0.000	0.530	0.285	0.000	0.106	0.000	0.000	0.000	0.600	0.021	0.000	0.000	0.000	0.000
m_V	19.40	16.79	19.00	22.90	16.48	20.90	16.90	17.00*	16.93	18.30*	18.70	21.00	17.80*	15.90*	20.00	17.07	18.28	15.80	21.50*	17.20	17.10	17.88	17.70	15.10*	18.00	16.30	16.55	15.72	12.90	16.40	19.20	17.98*	12.50*	18.60
z (5)	1.4290	0.3440	1.3000	0.9900	0.4220	0.7080	0.1400	0.0920	1.3630	0.2363	1.3320	0.1810	0.0920	0.0662	0.7060	1.1100	0.8880	0.1440	0.7489	1.3170	0.4230	1.4600	0.6630	0.0308	0.3800	0.3554	0.1860	0.3115	0.0300	0.1876	1.3630	0.1066	0.0088	1.5980
$ DEC(J2000) \\ (4) $	-31 38 14.3	-09 18 10.0	$21\ 19\ 52.3$	$57\ 32\ 48.4$	$61\ 25\ 21.0$	$57\ 31\ 04.1$	$49\ 29\ 56.1$	+694920.8	$38\ 55\ 21.7$	+025213.0	$31\ 19\ 07.8$	-77 24 29.0	-275410.8	$+20\ 29\ 13.9$	$81\ 14\ 32.7$	195150.9	$01\ 33\ 58.8$	$56\ 28\ 11.2$	$43\ 01\ 23.1$	$09 \ 49 \ 35.1$	$10\ 46\ 13.2$	25	41	42	14	-325116.7	29	76.58.58.0	$38\ 12\ 31.8$	$21\ 24\ 18.0$	38	$02 \ 02 \ 57.5$	+723406.9	-44 49 07.6
RA(J2000) (3)	10 51 04.8	$10\ 51\ 29.9$	$10\ 51\ 48.8$	$10\ 51\ 48.8$	105232.7	105237.4	$10\ 53\ 44.1$	105430.4	105431.9	$10\ 56\ 06.6$	$10\ 57\ 05.2$	$10\ 57\ 33.4$	$10\ 57\ 50.8$	105801.2	105811.5	105817.9	105829.6	105837.7	105858.8	$11\ 00\ 20.2$	11 00 47.8	11 01 48.8	$11\ 01\ 53.4$	$11\ 03\ 11.0$	$11\ 03\ 13.3$	$11\ 03\ 31.5$	$11\ 03\ 37.6$	$11\ 04\ 13.7$	$11\ 04\ 27.3$	$11\ 04\ 36.2$	$11\ 04\ 53.7$	$11\ 05\ 38.9$	$11\ 06\ 47.5$	11 07 08.7
Name (2)	PKS 1048-313	PG 1048-090	4C + 21.28	$7C\ 1048+5749$	4C + 61.20	$7C\ 1049+5746$	RGB $J1053+494$	$RX\ J1054.5+6949$	$GB6\ J1054 + 3855$	RBS 0921	RGB J1057+313B	PKS 1056-771	$RX\ J1057.8-2753$	MRK 0634	$S5\ 1053 + 81$	[HB89] 1055 + 201	4C + 01.28	RBS 926	3C 247	PMN J1100+0949	PKS 1058+110	[HB89] 1058+726	4C + 62.15	CGCG 1100.3+4158	$B2\ 1100 + 30B$	MRC 1101-325	PMN J1103-2329	3C 249.1	MRK 0421	RGB J1104+214	$7C\ 1101+6054$	PMN J1105+0202	NGC 3516	PKS 1104-445
RXJ name (1)		1051.4 - 0918	1051.8 + 2119	1051.8 + 5733	1052.5 + 6125			1054.0 + 6949	1054.4 + 3855	1056.0 + 0252	1057.0 + 3119		1057.7 - 2753	1058.2 + 2029		1058.2 + 1951	1058.5 + 0134	1058.5 + 5628			1100.7 + 1046	1101.7 + 7225	1101.8 + 6241	1103.1 + 4141	1103.2 + 3014	1103.5 - 3251	1103.6 - 2329		1104.4 + 3812	1104.5 + 2124	1104.8 + 6038	1105.6 + 0202	1106.5 + 7234	

Table A.3: (continued)

ı	1	l		Π					Т																										1
FR	(14)	ď	ď	b	ď	z	1	Ŋ	r	1	Ŋ		b	ಬ	ď		ď		1	ď	ď	1	1	ď	ъо 00	ı	Ŋ	1	ď	1	ď	ď	1	N	d
Class.	(13)																																		
Host	(12)						Z		田					闰		ပ		р					田			∞							∞		
Type H	(11)	ರ	0	ŭ	0	o	U	U	CC	CC	೦	CC	o	U	o	CC	o	CC	U	0	o	U	o	o	o	CC	o	U	o	U	c	o	U	ŭ	U
$F_{0.1-2.4\ keV}$ T		0.2029E-11	0.4614E-11	0.1424E-11	0.1057E-11	0.5940E-11	0.9792E-12	0.3500E-11	0.3496E-12	0.7840E-11	0.7162E-11	0.4361E-11	0.4908E-12	0.4770E-11	0.1502E-11	0.2393E-11	0.1167E-11	0.6200E-13	0.4004E-11	0.2601E-11	0.7645E-12	0.3153E-11	0.1200E-10	0.2903E-11	0.9889E-12	0.2105E-11	0.1363E-10	0.2878E-11	0.6806E-12	0.8070E-11	0.4560E-12	0.7209E-12	0.1060E-10	0.5120E-11	0.6555E-12
$F_{0.}$		0.10	0.29	0.80	0.00	0.00	0.46	0.00	0.40	0.00	0.00	1.30	0.00	0.00	0.30	0.70	1.10	0.50	0.00	0.44	90.0	0.00	0.00	0.00	0.80	0.62	-0.18	0.00	0.90	0.00	0.00	0.00	0.00	0.00	0.38
F_{5GHz} α_r	(8) (8)	1.370	0.561	0.216	0.260	0.037	0.490	0.082 #	0.270	0.015 #	0.005#	0.264	0.028	0.044#	0.495	0.016	0.790	4.950	0.016#	1.300	0.000	0.002 #	#900:0	0.138	0.730	0.147	0.030	0.003#	0.122	0.003#	0.744	0.200	0.015 #	0.039 #	0.330
F_{5GHz}^{core}	(7)	0.000	0.388	0.012	0.000	0.030	0.674	0.000	0.000	0.000	0.000	0.036	0.000	0.000	0.436	0.003	0.000	0.041	0.000	0.000	1.887	0.000	0.000	0.104	0.000	0.005	0.019	0.000	0.007	0.000	0.700	0.000	0.000	0.000	0.355
mv	(9)	19.20	15.70	18.00	20.20	18.00*	18.01	18.00*	10.91	14.20*	19.50	17.00*	18.26	14.00*	17.90	14.00	17.98	14.90	16.50	17.00	19.25	18.00	15.20*	17.31	17.07	11.94	17.30	16.00	19.30	15.10*	18.30	19.10	14.90*	19.00*	17.70
z	(5)	0.5880	0.6320	0.3930	0.7400	0.2594	0.1570	0.1056	0.0102	0.0245	0.2120	0.0737	0.7280	0.0292	0.8690	0.2060	0.7340	0.0490	0.1060	0.7130	2.1180	0.0951	0.1765	0.4220	0.4660	0.0024	0.1240	0.1027	0.6850	0.0502	1.0400	0.6750	0.0372	0.2786	1.8110
DEC(J2000)	(4)	-68 20 50.7	$16\ 28\ 02.2$	$36\ 16\ 11.7$	-30 43 36.8	$+15\ 02\ 10.0$	$02 \ 02 \ 40.6$	-014931.9	$-37\ 32\ 21.0$	-28 30 03.8	$34\ 52\ 03.4$	$40\ 50\ 24.2$	$26\ 01\ 13.0$	$+09\ 35\ 10.7$	$14\ 42\ 26.9$	$58\ 23\ 19.0$	$40\ 37\ 20.3$	$29\ 15\ 08.0$	45~06~46.8	-463415.0	$12\ 34\ 41.7$	$41\ 30\ 14.6$	$+21\ 19\ 18.0$	$22\ 26\ 49.3$	08	125929.5	$42\ 12\ 12.4$	$53\ 51\ 16.9$	$12\ 36\ 17.4$	+11418.3	$18\ 05\ 26.3$		$+06\ 12\ 53.3$	-074221.1	45 16 06.3
RA(J2000)	(3)	11 07 12.7	$11\ 07\ 15.0$	$11\ 07\ 26.9$	$11\ 07\ 43.9$	$11\ 07\ 48.0$	11.0845.5	$11\ 08\ 58.4$	$11\ 09\ 57.6$	11 10 48.0	$11\ 11\ 30.9$	$11\ 11\ 39.8$	$11\ 12\ 20.7$	$11\ 13\ 49.7$	$11\ 13\ 58.7$	$11\ 14\ 21.9$	$11\ 14\ 38.5$	$11\ 16\ 34.8$	$11\ 18\ 03.3$	$11\ 18\ 26.9$	11 18 57.3	$11\ 19\ 07.1$	$11\ 19\ 08.6$	$11\ 19\ 30.3$	$11\ 20\ 09.1$	$11\ 20\ 15.0$	$11\ 20\ 48.1$	$11\ 21\ 08.7$	$11\ 21\ 29.8$	$11\ 21\ 47.1$	$11\ 22\ 29.7$	112403.9	$11\ 24\ 08.7$	$11\ 25\ 51.9$	11 26 57.6
Name	(2)	PKS 1105-680	4C + 16.30	4C + 36.18	MRC 1105-304	87GB 110510.0+1	PKSJ $1108+0202$		NGC 3557	ESO 438- G 009	RBS 946	RGB J1111+408	$GB6\ J1112 + 2601$	IC 2637	[HB89] 1111+149	RGB J1114+583	$3C\ 254$	B2 1113+29	$LEDA\ 139560$	[HB89] 1116-462	4C + 12.39	$\operatorname{RBS}\ 0964$	$PG\ 1116+215$	RBS~966	MRC 1117-248	NGC 3627	RBS 970	1RXSJ112109.9+	PKS 1118+128	PG 1119+120	[HB89] 1119+183	PMN J1124-2405	CGCG 039-167		B3 1124+455
RXJ name	(1)		1107.2 + 1628	1107.4 + 3616		1107.2 + 1502	1108.7 + 0202	1108.0 - 0149		1110.1 - 2830	1111.5 + 3452	1111.6 + 4050		1113.5 + 0935	1113.9 + 1442	1114.2 + 5823	1114.6 + 4037		1118.0 + 4506	1118.4 - 4634	1118.9 + 1234		1119.1 + 2119	1119.4 + 2226	1120.1 - 2507	1120.2 + 1259	1120.7 + 4212	1121.1 + 5351	1121.5 + 1236	1121.3 + 1144	1122.4 + 1805	1124.0-2404	1124.9 + 0612	1125.6 - 0742	1126.8 + 4516

10.03 0.040 1.77 0.1073E-10 16.10* 0.000 0.0678# 0.05 0.138E-11 16.28 0.000 0.678# 0.95 0.138E-11 16.75 0.000 0.002# 0.00 0.5750E-12 16.90 0.000 0.378 0.20 0.8082E-12 18.30 0.000 0.378 0.20 0.6238E-12 17.00 0.000 0.003 0.003 0.2016E-11 16.80 0.000 0.003# 0.00 0.2016E-11 17.00 0.000 0.003# 0.00 0.2016E-11 17.50 0.000 0.007# 0.00 0.1431E-11 17.50 0.000 0.003# 0.00 0.164E-11 17.50 0.000 0.003# 0.00 0.164E-11 17.50 0.000 0.003# 0.00 0.124E-11 19.60* 0.019 0.024 0.00 0.134E-11 17.50 0.000 0.003# 0.00 0.124E-13
0.000 0.678# 0.95 0.000 0.0678# 0.95 0.000 0.0378 0.14 0.000 0.378 0.20 0.869 0.000 -0.22 0.000 0.003# 0.00 0.000 0.007# 0.00 0.000 0.303 0.60 0.000 0.303 0.60 0.019 0.034 0.00 0.000 0.003# 0.00 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.004 0.00 0.000 0.003# 0.00 0.019 0.024 0.20 0.019 0.004 0.00 0.000 0.003# 0.00 0.019 0.004 0.000 0.000 0.003# 0.00 0.000 0.003# 0.00 0.000 0.003# 0.00
0.000 0.002# 0.00 0.000 5.459 0.14 0.000 0.378 0.20 0.869 0.000 -0.22 0.000 0.003# 0.00 0.084 0.311 -0.04 0.000 0.007# 0.00 0.000 0.333 0.60 0.019 0.024 0.00 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.024 0.00 0.019 0.004 0.000 0.000 0.009 0.000 0.000 0.009 0.000 0.000 0.001# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00
0.000 5.459 0.14 0.000 0.378 0.20 0.869 0.000 -0.22 0.000 0.003# 0.00 0.084 0.311 -0.04 0.000 0.400 0.70 0.000 0.303 0.60 0.019 0.034 0.00 0.019 0.034 0.00 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.003# 0.00 0.019 0.004 0.00 0.000 0.003 0.00 0.000 0.0047 -0.02 0.000 0.003# 0.00 0.040 0.047 -0.02
0.000 0.378 0.20 0.869 0.000 -0.22 0.000 0.003# 0.00 0.084 0.311 -0.04 0.000 0.007# 0.00 0.000 0.303 0.60 0.019 0.034 0.00 0.019 0.034 0.00 0.019 0.024 0.00 0.019 0.024 0.00 0.019 0.024 0.00 0.019 0.024 0.00 0.019 0.003# 0.00 0.019 0.003# 0.00 0.000 0.003# 0.00 0.000 0.003# 0.00 0.000 0.001# 0.00 0.000 0.003# 0.00
0.869 0.000 -0.22 0.000 0.003# 0.00 0.084 0.311 -0.04 0.000 0.007# 0.00 0.000 0.303 0.60 0.019 0.034 0.00 0.019 0.034 0.00 0.019 0.034 0.00 0.019 0.024 0.00 0.019 0.024 0.00 0.019 0.024 0.00 0.019 0.003# 0.00 0.019 0.004 0.00 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000
0.000 0.003# 0.00 0.084 0.311 -0.04 0.000 0.007# 0.00 0.000 0.303 0.60 0.019 0.034 0.00 0.000 0.003# 0.00 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.024 0.00 0.019 0.024 0.00 0.000 0.003# 0.00 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.003# 0.00
0.084 0.311 -0.04 0.000 0.007# 0.00 0.000 0.303 0.60 0.019 0.034 0.00 0.000 0.003# 0.00 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.024 0.20 0.019 0.024 0.20 0.000 0.003# 0.00 0.038 0.000 0.011# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00
0.000 0.007# 0.00 0.000 0.400 0.70 0.000 0.303 0.60 0.019 0.034 0.00 0.000 0.003# 0.00 0.019 0.024 0.20 0.000 0.009 0.00 0.139 0.267 0.38 0.000 0.011# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00
0.000 0.400 0.70 0.000 0.303 0.60 0.019 0.034 0.00 0.000 0.003# 0.00 0.019 0.024 0.20 0.000 0.009 0.00 0.139 0.267 0.38 0.000 0.011# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00
0.000 0.303 0.60 0.019 0.034 0.00 0.000 0.003# 0.00 0.019 0.024 0.20 0.000 0.009 0.00 0.139 0.267 0.38 0.000 0.011# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00
0.019 0.034 0.00 0.000 0.003# 0.00 0.019 0.024 0.20 0.000 0.009 0.00 0.139 0.267 0.38 0.000 0.011# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00
0.000 0.003# 0.00 0.019 0.024 0.20 0.000 0.009 0.00 0.139 0.267 0.38 0.000 0.011# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00
(0.019) 0.024 0.20 (0.000) 0.009 0.00 (0.139) 0.267 0.38 (0.000) 0.011# 0.00 (0.040) 0.047 -0.02 (0.000) 0.003# 0.00 (0.000) 0.045# 0.00
0.000 0.009 0.00 0.139 0.267 0.38 0.000 0.011# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00
0.139 0.267 0.38 0.000 0.011# 0.00 0.040 0.040 0.047 -0.02 0.000 0.003# 0.00 0.000 0.045# 0.00
 0.000 0.011# 0.00 0.040 0.047 -0.02 0.000 0.003# 0.00 0.000 0.045# 0.00
0.040 0.047 -0.02 0.000 0.003# 0.00 0.000 0.045# 0.00
0.000 0.003# 0.00 0.000 0.045# 0.00
0.000 0.045# 0.00
0.000 2.220 0.35
0.000 0.011# 0.00
0.162 1.139 0.79
0.000 0.001#
0.000 0.070# 0.00
0.000 0.002#
14.90* 0.000 0.005# 0.00 0.2620E-10
19.00 0.006 0.039 0.00 0.1084E-11
16.40 0.043 0.053 0.00 0.2030E-11
0.000 0.060
* 0.003 0.780
0.100 0.146 0.00
16.50* 0.000 0.003# 0.00 0.2040E-10

Table A.3: (continued)

		Ι						Π			Η																							
FR (14)		W	5	ď		ದ	1	5.0	5.0	ď	2	đ	đ	ď	ď	ď		ď	ď	*	ď	ď	1	ď	∞	ď	ď	ď	ď	đ	50	ď		d
Class. (13)		_	•	-			•		Í	-	-,	-	-	-	-	-		-	-		-	-		-		-	-	-	-	-	Í	•		_
Host (12)		闰					d										0								\mathbf{v}									
	CC	$^{\rm CC}$	U	o	$^{\rm CC}$	U	U	Ü	o	o	U	o	o	U	o	o	ŭ	o	c	U	Ç	c	ŭ	U	U	o	o	o	o	o	o	o	$^{\rm CC}$	೦
$\frac{\text{Type}}{(11)}$	E-11	E-11	P-11	E-12	E-11	E-11	E-10	SE-13	0E-12	E-11	E-12	E-12	P-11	E-12	P-11	P-11	E-12	E-12	臣11	E-12	E-12	E-12	E-10	臣11	P-11	E-12	E-12	臣11	臣11	<u> </u> 무11	0E-12	E-12	E-10	E-11
$F_{0.1-2.4\ keV}$ (10)	0.5062E-1	0.3290E-1	0.6845E-1	0.4517E-12	0.2964E-1	0.7320E-1	0.7580E-10	<0.2708E-13	< 0.2410 E-15	0.3582E-11	0.6667E-12	0.3430E-12	0.2577E-11	0.8025E-12	0.1138E-1	0.2128E-1	0.4647E-12	0.3044E-12	0.3516E-1	0.8212E-12	0.9015E-12	0.7186E-12	0.1410E-10	0.3308E-11	0.1930E-11	0.5017E-12	0.7186E-12	0.1664E-11	0.6100E-11	0.1389E-11	< 0.7200E-12	0.8469E-12	0.1176E-10	0.1297E-11
	1.10	0.20	0.00	0.00	0.50	0.00	0.00	1.20	0.18	-1.18	0.27	-0.17	0.00	-0.20	0.00	0.30	0.00	09.0	0.00	0.00	0.44	1.27	0.00	0.00	0.00	0.00	0.09	0.00	-0.31	0.00	0.69	1.03	0.00	0.50
α_r (9)	0.087	5.500&	0.003#	0.049	0.187	0.020#	0.010#	0.320	1.179	0.900	699.0	1.209	0.024	0.420	0.000	0.340	0.029	0.090	0.022#	0.001#	1.899	0.147	0.011#	0.036	0.012#	0.161#	1.343#	0.109	0.717	090.0	2.779	0.167	0.001#	920.0
$\frac{F_{5GHz}}{(8)}$	0.0	15.8	0.0	0.0	0.1	0.0	0.0	0.5	1.1	0.5	0.6	1.5	0.0	0.4	0.0	0.5	0.0	0.0	0.0	0.0	1.8	0.]	0.0	0.0	0.0	0.]	1.5	0.]	0.7	0.0	2.7	0.1	0.0	0.0
$\frac{F_{5GHz}^{core}}{(7)}$	0.019	0.200	0.000	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.363	0.000	0.000	0.329	0.096	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.046	0.000	0.000	0.000	0.000	0.500	0.049	0.000	0.000	0.000	0.070
m _V (6)	12.80	13.97	16.00	21.10*	17.00*	17.20*	14.70*	22.00*	18.00	16.20	16.60	18.70	16.30	17.70	17.30	16.90	13.83*	19.50	17.50	14.90*	17.60	18.00	15.50*	17.50	14.70*	16.30	19.40	17.30	17.10	17.90	17.84	18.10	18.00*	16.90
z (5)	0.1158	0.0217	0.0596	0.6261	0.0679	0.1675	0.0330	1.2750	1.9400	1.0480	0.0630	1.3420	0.3630	0.8670	0.5490	0.3400	0.0261	1.5020	1.0180	0.0710	1.9828	0.8670	0.0490	0.3740	0.0192	1.4000	1.2500	0.2023	0.3340	1.3360	0.2580	1.1990	0.1429	1.0189
2000)	1 20.8		7.17.4	56.3	43.6	01.7	7 15.5	3 08.2	7 32.9		07.5	41.1	0.00 9	5 42.3	8.60 1	9.60 1	01.1	16.4	140.1	17.1	54.2	3 55.7		59.3	25.2	7 18.8	3 29.1	38.5	8.80	7 26.2		, ,	18.2	42.2
$\frac{\text{DEC}(J2000)}{(4)}$	67 24	$19 \ 36$	3047	01 10	15 29	-03 40	-18 27	49 46	-24 47	-38 12	$35 \ 01$	-0724	27 15	26.35	3154	-04 04	$21 \ 20$	0156	4154	$34\ 11$	-00 23	4728	-11 22	3209	-0512	$33 \ 07$	80 28	58 31	$49\ 31$	3617	-35 05	$65\ 30$	2324	19 39
RA(J2000) (3)	11 44 36.8	114505.0	114510.3	$45\ 10.4$	4522.2	35.1	40.5	43.4	08.1	01.4	22.1	51.5	58.6	59.8	18.9	55.9	59.3	24.8	34.8	$50\ 43.8$	43.9	09.3	03.5	27.5	38.2	51.9	12.5	23.9	24.5	$53\ 26.7$	5421.8	55 17.7	$55\ 18.0$	18.3
RA(J	11 44	11 45	11 45	11 45	11 45	1145	1145	11 45	11 46	11 47	11 47	11 47	11 47	1147	11 48	11 48	11 49	11 50	1150	1150	11 50	1151	11 52	1152	1152	1152	1153	1153	1153	1153	1154	11 55	11 55	11 55
	574		-310	011	-100	1.7-	-181		١.	6.		_		2		_		0156)439	200)41	4	-812	585	2	362		-629	-097	196
Name (2)	RGB J1144+674		HB89] 1142+310	RGB J1145+011	MCG + 03-30-100	CRS B114301.7-	RAS F11431-181	"	PKS 1143-245	MRC 1144-379	B2 1144+35B	PKS 1145-071	34	$7C\ 1145+2652$	15 + 32	PKS 1146-037	3910	PMN J1150+0156	040	2MASXiJ1150439	LBQS 1148-0007	B3 1148+477	PG 1149-110	045	MCG -01-30-041	7C 1150+3324	HB89] 1150+812	RGB J1153+585	SBS 1150+497	RGB J1153+362	PKS 1151-34	HB89] 1152+659	MCG + 04-28-097	3GB J1155+196
	RGB J	$3C\ 264$	[HB89]	RGB J	MCG.	LCRS	IRAS]	3C266	PKS 1	MRC .	B2 114	PKS 1	US 2964	7C 114	B2 1145+32	PKS 1	NGC~3910	PMN .	RBS 1040	2MAS	$_{\rm LBQS}$	B3 114	PG 11	$RBS\ 1045$	MCG -	7C115	[HB89]	RGB J	SBS 11	RGB J	PKS 1	[HB89]	MCG.	RGB J
name)	+6724		+3047	1145.1 + 0110		-0339	-1827				+3500		+2715	+2635	+3154	-0404	+2119		+4154	+3411		+4729	-1122	+3209	-0512	+3307		+5831	+4931	+3617		+6538	+2324	+1939
RXJ name (1)	1144.7+6724		1145.1 + 3047	1145.1		1145.8 - 0339	1145.5-1827				1147.3 + 3500		1147.9 + 2715	1147.9 + 2635	1148.3 + 3154	1148.9-0404	1149.9 + 2119		1150.5 + 4154	1150.7 + 3411		1151.1 + 4729	1152.9-1122	1152.3 + 3209	1152.2 - 0512	1152.9 + 3307		1153.3 + 5831	1153.4 + 4931	1153.4 + 3617		1155.2 + 6538	1155.3 + 2324	1155.2+1939
	11																																	

Table A.3: (continued)

FR (14)				_	_	_	_						_		_						_	_	_		_	_	_		_	; II	_	_	Ι	-
Class. (13)			1	0.	0.	0.	0.	1	Z	П		П	0.	0.	0.	0.	1	_		0.	0.	0.	0,		0.	O)	0.	ıΩ	0.	OL.	0.	0,		
Host (12)			0							田	. .								\mathbf{x}			. .		E		\mathbf{v}						•	田	
Type (11)	C	U	U	o	o	0	o	Ü	U	U	G	Ü	o	o	0	o	ŭ	ŭ	U	Ü	U	Ü	ඊ	Ü	O,	ŭ	ී	U	o	U	c	CC	U	۲
$F_{0.1-2.4\ keV}$ T. (10)	0.2630E-11	0.9940E-12	0.6832E-11	0.9242E-12	0.1131E-11	0.1302E-11	0.6930E-11	0.2680E-11	0.1710E-11	0.1520E-10	0.8050E-12	0.2440E-11	0.8669E-12	0.5319E-11	0.1680E-11	0.4877E-12	0.1900E-11	0.1228E-11	0.4963E-10	0.1755E-11	0.6637E-12	0.3688E-11	0.1077E-11	0.1424E-10	0.1352E-11	0.3509E-12	0.1341E-11	0.2728E-11	0.1928E-12	< 0.4739 E-13	0.4125E-12	0.1033E-11	0.5040E-12	O 0190E 19
$F_{\mathbb{C}}$	0.00	0.00	0.12	0.89	0.60	0.30	0.00	0.00	0.00	0.00	-0.40	0.00	0.00	0.14	0.00	0.60	0.00	0.05	0.00	-1.03	-0.08	0.00	0.00	0.00	0.70	0.00	0.49	0.00	0.00	0.80	0.10	0.00	1.10	
$\begin{array}{ccc} F_{5GHz} & \alpha_r \\ (8) & (9) \end{array}$	0.005#	0.026 #	0.088	0.269	0.081	1.461	0.010#	0.040 #	0.071#	0.004#	0.258	0.015 #	#000.0	0.460	0.082	0.049	0.003#	0.182	0.170&	0.164	0.043	0.002#	0.004#	0.073	0.111	0.005 #	0.990	0.001#	0.030 #	1.090	0.457	0.001#	0.185	0000
F_{5GHz}^{COF}	0.000	0.000	0.053	0.013	0.000	1.457	0.000	0.000	0.000	0.000	0.007	0.000	0.156	0.000	0.070	0.000	0.000	0.146	0.032	0.232	0.053	0.000	0.000	0.000	0.040	0.000	0.000	0.000	0.000	0.000	0.440	0.000	0.044	010
(6)	16.00*	19.80*	12.10	17.79	16.90	14.41	16.20*	17.50*	18.70*	14.50*	15.40	17.90*	18.90	17.30	17.70	18.20	16.40*	17.00	12.92	16.40	17.20	17.79	18.57	13.21*	18.19	14.01	19.50	15.28	19.50	20.00	18.43	17.33	14.36*	16.01
(5)	0.1419	0.3010	0.0035	0.5940	0.3490	0.7290	0.4500	0.1791	0.1651	0.0194	0.1028	0.1510	0.6720	0.3810	0.4780	1.1940	0.0645	0.0656	0.0023	0.8133	1.0700	0.3730	0.4010	0.0198	0.4460	0.0250	0.7890	0.0537	0.7080	0.3710	2.1770	0.3540	0.0226	0.400
DEC(J2000) (4)	$+24\ 15\ 37.0$	$28\ 22\ 00.8$	$55\ 27\ 12.7$	625427.0	$21\ 06\ 55.0$	$29\ 14\ 43.8$	-195924.0	-004638.7	$-00\ 07\ 01.6$	$-03\ 40\ 41.4$	$58\ 02\ 09.3$	$-01\ 29\ 15.4$	275626.0	$-05\ 28\ 02.5$	31	$37\ 35\ 51.7$	$-03\ 47\ 21.3$	$60\ 31\ 19.1$	$44\ 31\ 52.8$	$48\ 03\ 13.6$	$45\ 10\ 50.0$	$28\ 35\ 55.0$	$37\ 11\ 37.4$	53	$48\ 56\ 54.0$		$-26\ 34\ 04.5$	$35\ 10\ 45.7$	$28\ 22\ 54.6$	$64\ 13\ 36.8$	275458.8	$28\ 02\ 59.9$	$25\ 14\ 14.1$	TO 10 TO E
KA(J2000) (3)	$11\ 56\ 55.6$	115709.5	$11\ 57\ 56.1$	115839.8	115926.2	115931.8	115941.0	$12\ 00\ 14.1$	$12\ 01\ 06.2$	$12\ 01\ 14.4$	$12\ 02\ 03.8$	$12\ 02\ 26.8$	$12\ 02\ 34.0$	120234.2	$12\ 02\ 40.7$	$12\ 02\ 43.5$	$12\ 02\ 45.3$	$12\ 03\ 03.5$	120309.6	120329.9	12 03 35.4	120343.2			120436.2	120443.3	$12\ 05\ 33.2$	120549.8	$12\ 06\ 19.6$	$12\ 06\ 24.7$	$12\ 07\ 27.9$	$12\ 07\ 54.7$	$12\ 08\ 05.6$	7 00 00 01
$ \begin{array}{c} \text{Name} \\ (2) \end{array} $	RX J1157.0+2415	FBQSJ1157 + 2822	NGC 3998	[HB89] 1156+631	$7C\ 1156+2123$	FBQS J1159+2914	IRAS $F11571-194$			MRK 1310	RGB $J1202 + 580$	IRAS $11598-011$	$7C\ 1159 + 2813$	RBS 1059	RGB $J1202 + 265$	B3 1200+378	LCRS B120011.5-	SBS $1200+608$	NGC 4051	RGB J1203+480	RGB $J1203+451$	1RXSJ120343.3+	FBQS J120354.7+.	RGB $J1204+018$	SBS $1202 + 492$	UGC 07064	PKS 1203-26	MRK 0646	$GB6\ J1206 + 2823$	3C 268.3	$B2\ 1204 + 28$	FIRSTJ120754.8	CGCG 1205.5+2531	TVO 1908 0 1 8986
RXJ name (1)	1156.6 + 2415	1157.1 + 2821	1157.9 + 5527	1158.6 + 6254		1159.5 + 2914	1159.4 - 1959	1200.5 - 0046	1201.6 - 0006	1201.3 - 0340	1201.9 + 5802	1202.9 - 0129	1202.5 + 2756	1202.5 - 0528	1202.6 + 2631	1202.7 + 3735	1202.0 - 0347	1203.0 + 6031	1203.1 + 4432	1203.4 + 4803	1203.5 + 4511	1203.7 + 2836	1203.8 + 3711	1204.4 + 0153	1204.5 + 4856	1204.6 + 3110	1205.5 - 2633	1205.8 + 3510			1207.4 + 2755	1207.8 + 2802	1208.0 + 2514	0.000

Table A.3: (continued)

_	(4)	$(4) \qquad (5)$	(c)		(o)	(7)	(8)		$(10) \qquad ($	(11) $(1$	(12)	$(13) \qquad ($	(14)
	PKS J1209-2406	12 09 02.4	-24 06 20.7	1.2990	18.00	0.000	0.710	1.30	0.5466E-12	ರ		z	
	3C 268.4	$12\ 09\ 13.5$	$43\ 39\ 18.4$	1.4000	18.42	0.050	0.600	0.90	0.5349E-12	o		ď	Ξ
	RBS 1071	120945.2	$32\ 17\ 00.9$	0.1450	17.70	0.000	0.002#	0.00	0.7756E-11	Ü			
	IRAS $F12073+064$	12 09 54.6	+062813.3	0.0796	16.80*	0.000	0.004#	0.00	0.2030E-11	Ü		П	
1210.4 + 3929	[HB89] 1207 + 397	$12\ 10\ 26.7$	39 29 09.0	0.6150	20.30	0.000	0.015#	0.00	0.4382E-11	OC		Z	
1210.5 + 3924	NGC 4151	$12\ 10\ 32.6$	$39\ 24\ 20.6$	0.0033	11.85	0.125	0.139	0.88	0.3755E-11	Ů	\mathbf{v}	2	
1210.6 + 3157	[HB89] 1208+322	$12\ 10\ 37.6$	$31\ 57\ 06.0$	0.3880	16.68	0.000	0.160	1.59	0.1378E-11	o		ď	
1211.0 + 3520	7C 1208+3536	$12\ 11\ 08.3$	$35\ 19\ 59.3$	0.1400	17.40*	0.000	0.034	2.60	0.1498E-11	Ü			
	$MG2\ J121300 + 3247$	12 13 03.8	$32\ 47\ 36.9$	2.5020	19.90	0.000	0.063	0.70	0.1834E-12	O		ď	
	GB6 J1213+1444	$12\ 13\ 14.9$	14 44 00.0	0.7180	21.00	0.000	0.065	0.70	0.3829E-12	o			
213.6-2618	RBS 1080	$12\ 13\ 23.0$	-26 18 07.0	0.2780	19.00*	0.000	#200.0	0.00	0.1060E-10	o		z	
1213.2 + 3637	NGC 4190	12 13 44.7	$+36\ 38\ 02.9$	0.0008	13.90*	0.000	#200.0	0.00	0.1900E-11	Ü	d		
213.7 + 0001	RGB J1213+000	$12\ 13\ 47.5$	$00\ 01\ 30.0$	0.9610	18.20*	0.050	0.103	0.00	0.6236E-12	೦		ď	
215.0 + 3311	NGC 4203	$12\ 15\ 05.0$	$33\ 11\ 50.0$	0.0036	11.99	0.000	#200.0	0.00	0.6273E-11	Ü	0	-	
215.1 + 0732	RGB J1215+075	$12\ 15\ 10.9$	$07\ 32\ 03.8$	0.1300	16.00	0.084	0.117	0.55	0.4955E-11	Ü		Z	
216.6-0243		$12\ 16\ 03.3$	-024305.7	0.1690	18.00*	0.000	0.011#	0.00	0.2200E-11	Ü		Z	
1216.0 + 0929	RGB J1216+094	$12\ 16\ 06.2$	$09\ 29\ 09.4$	0.0935	13.20	0.074	0.157	0.29	0.1681E-11	Ü		Z	
1216.8 + 3754	IRAS F12144+3811	$12\ 16\ 51.8$	375437.9	0.0620	16.68	0.000	0.001#	0.00	0.4888E-12	Ü		2	
	WGA J1217.1+2925	$12\ 17\ 08.2$	$29\ 25\ 33.5$	0.9740	19.90	0.000	0.037 #	0.00	0.1821E-12	o		ď	
1217.0 + 0711	NGC 4235	$12\ 17\ 09.9$	$+07\ 11\ 29.1$	0.0080	12.60*	0.000	0.015#	0.00	0.1390E-11	U	\mathbf{x}	_	
1217.3 + 3056	RBS 1090	$12\ 17\ 21.4$	305630.6	0.3074	17.00	0.000	#800.0	0.00	0.2979E-11	o		ď	
1217.6 + 0339	PGC 039445	$12\ 17\ 41.1$	$+03\ 39\ 21.9$	0.0759	14.90*	0.000	1.117#	0.00	0.2110E-10	Ü	闰		
1217.8 + 3007	7C 1215+3023	$12\ 17\ 52.1$	$30\ 07\ 00.6$	0.1300	15.62	0.353	0.478	0.15	0.3921E-10	o		Z	
	PKS 1215-45	$12\ 18\ 06.2$	$-46\ 00\ 29.0$	0.5290	20.30	0.000	1.990	-0.50	0.1213E-11	o		ಡ	
1218.4 + 2948	NGC 4253	$12\ 18\ 26.5$	$29\ 48\ 46.3$	0.0129	13.57	0.000	0.038 #	0.00	0.6893E-10	U	\mathbf{x}	က	
	RGB $J1218+052$	$12\ 18\ 52.1$	$05\ 14\ 43.3$	0.0752	17.11	0.010	0.271	0.30	0.5700E-12	CC			
1219.0 + 4717	MESSIER 106	$12\ 18\ 57.5$	$47\ 18\ 14.2$	0.0015	11.65	0.792 #	0.305	0.00	0.2344E-11	Ü	\mathbf{x}	2	
1219.4 + 0549	3C 270	$12\ 19\ 23.2$	$05\ 49\ 30.8$	0.0074	12.87	0.285	4.043	0.86	0.1199E-11	CC	臼	_	Ι
1220.0 + 2916	NGC 4278	$12\ 20\ 06.8$	$29\ 16\ 50.7$	0.0022	10.87	0.283	0.372	0.62	0.5862E-12	Ü	闰	_	
1220.1 + 0203	MRC $1217+023$	$12\ 20\ 11.9$	02 03 42.2	0.2390	16.53	0.257	0.572	0.36	0.4919E-11	o		ď	
1220.5 + 3343	$3C\ 270.1$	$12\ 20\ 33.8$	$33\ 43\ 10.0$	1.5190	18.61	0.174	0.842	0.88	0.6782E-12	೦		ď	
1221.9 + 4742	$RX\ J1221.1+4742$	$12\ 21\ 07.8$	$+47\ 42\ 28.6$	0.2099	19.00*	0.000	0.042#	0.00	0.1450E-11	IJ			
1221.3 + 3010	PG 1218+304	$12\ 21\ 21.9$	$30\ 10\ 37.1$	0.1820	15.85	0.060	#000.0	0.00	0.2302E-10	o		z	
1221.5 + 2813	B2 1219+28	$12\ 21\ 31.7$	$28\ 13\ 58.5$	0.1020	16.11	0.940	1.084	0.14	0.2238E-11	o		Z	

Table A.3: (continued)

بے	(1)						Ι											П																	
. FR	(14)	z	П	2	ď	ď		ď	ď	Ъ	ď	z	ď		_	ď	ď	M	ď	Z	ď	ď	ď	2	ď		П			ď	ď	ď	n	2	
Class.	(13)																																		
Host	(12)		\mathbf{x}	∞			囝											Ξ						\mathbf{x}		∞								田	田
		U	U	CC	o	0	U	0	U	0	0	0	o	U	U	0	o	CC	ŭ	U	o	o	o	U	U	CC	U	0	GC	0	U	0	U	GC	CC
Type	(11)	-11	-10	-12	-11	-12	-13	-11	-11	-12	-12	-11	-12	-12	-12	-12	-111	-11	-11	-11	-12	-12	-11	-12	-11	-12	-11	-12	-11	-12	-12	-00	-12	-10	-12
$4 \ keV$		0.1804E-1	0.1740E-10	0.6530E-12	0.1446E-1	0.2454E-12	0.2941E-13	0.1018E-1	0.2643E-1	0.6255E-12	0.2582E-12	0.2592E-1	0.4709E-12	0.2186E-12	0.8352E-12	0.9481E-12	0.3334E-1	0.1868E-1	0.2354E-1	0.1370E-1	0.4178E-12	0.1459E-12	0.2180E-1	0.5845E-12	0.4864E-1	0.4356E-12	0.4840E-1	0.9112E-12	0.2111E-1	0.2883E-12	0.3106E-12	0.1024E-09	0.2080E-12	0.1453E-10	0.6534E-12
$F_{0.1-2.4\ keV}$	(10)	0.	0	0	0	0.	0.	0.	0	0	0.	0.	0.	0.	0	0.	0	0.	0	0	0.	0	0	0.	0	0	0	0.	0.	0.	0.	0.	0.	0	0.
		0.00	0.00	1.46	-0.10	0.00	1.10	0.82	0.00	0.00	0.00	0.00	0.00	1.44	0.00	-0.10	-0.20	0.50	0.00	0.00	0.80	0.00	0.75	0.00	0.00	0.00	0.00	0.00	3.00	0.00	0.02	-0.05	0.20	0.85	0.00
	6)	58	#800°C	0.365 #	51	63	82	53	40	24	82	27	37	20	33	21	53	39	47	0.005#	34	55	37	06	0.001#	0.226 #	0.004#	#900.0	71	45	26	72	52	98	84
F_{5GHz}	(8)	0.058	0.0	0.3	1.351	0.063	0.082	0.153	0.140	0.024	0.285	0.027	0.037	0.270	0.033	1.221	1.153	2.839	0.047	0.0	0.034	0.055	0.137	0.090	0.0	0.2	0.0	0.0	0.071	0.345	0.856	43.572	0.152	0.086	0.184
F_{5GHz}^{core}	(7)	0.030	0.000	0.153	0.665	0.000	0.000	0.014	0.042	0.000	0.000	0.025	0.031	0.000	0.047	1.000	0.480	0.000	0.072	0.000	0.026	0.000	0.004	0.000	0.000	0.075	0.000	0.000	0.005	0.305	0.608	26.399	0.000	0.012	0.019
$F_{\mathbb{B}}$		0		0	0	0		0	0	0	0	0	0	0	0		0	0			0	0	0	0						0	0	26	0	0	0
m_V	9	17.10	14.50*	12.60	17.98	18.70	13.70*	18.35	18.50	17.30	21.20	17.37	17.79	21.30	19.65	18.79	17.50	12.31	13.00	16.30*	17.30	21.30	17.12	13.90	17.01	10.96*	16.80*	17.20	15.50*	15.87	18.40	12.85	19.20	9.37*	17.18
z	(2)	0.1320	0.0709	0.0052	0.9650	0.7870	0.0154	0.4890	0.1570	0.6810	1.1890	0.2180	0.4150	0.6870	0.0750	0.9570	0.4350	0.0035	0.0610	0.1138	1.2840	1.1200	0.2680	0.0084	0.2420	0.0024	0.0852	0.1370	0.1453	2.2190	1.5150	0.1583	0.4900	0.0033	0.0873
(00		43.8	38.5	25.1	15.8	41.5	40.7	01.9	0.90	07.2	02.6	23.5	10.7	15.6	48.5	50.3	46.4	13.1	01.7	8.1	25.3	52.0	36.4	3.5	29.4	24.3	49.8	59.0	05.3	37.6	12.1	9.80	56.4	01.5	38.8
DEC(32000	(4)	21	+75183	04282	$04\ 13\ 1$	29 34 4	58264	7 07 0	54090	09 23 0	50	24362	$40\ 15\ 1$	26 13 1	$38\ 32\ 4$	$03\ 30\ 5$	22	12531	$32\ 14\ 0$	21448.1	$31\ 45\ 2$	07 155	24583	$12\ 39\ 43.5$	44	$31\ 13\ 2$	41	$32\ 14\ 5$	63 23 0	31283	37061	02 03 0	$27\ 11\ 5$	0 00 80	1 44 3
DE		08	+	0	0	2	ŭ	Š	υĊ	0	90	2	4	Ö	ç	0	21	-	3	+72	3	0	2	-	ಣ	3	+08	8	9	က	Š	0	2	Õ	Π
RA(J2000)	(3)	32.1	12 21 44.0	12 21 54.9	$12\ 22\ 22.5$	22 43.2	01.9	11.2	13.2	17.8	54.6	2424.2	2424.2	33.5	50.2	52.4	54.4	03.8	13.1	14.1	16.3	$25\ 31.2$	$25\ 39.5$	$25\ 46.7$	2624.2	$26\ 27.1$	27 44.8	$27 \ 49.1$	2751.2	2824.9	28 47.4	2906.7	2 29 34.2	2 29 46.8	$30\ 11.6$
RA(J)		12 21 32.1	$12\ 21$	$12\ 21$	$12\ 22$	12 22	12 23	$12\ 23\]$	1223	1223	12 23	1224	1224	1224	1224	1224	1224	$12\ 25$	$12\ 25$	$12\ 25$	1225	$12\ 25$	1225	12 25	1226	1226	$12\ 27$	$12\ 27$	1227	1228	1228	12 29	12 29		$12\ 30$
		821	,0							6	0.0											,0					1	÷					711		W0.
Name	(2)	$MG1\ J122131 + 0821$	[HB89] 1219+755		-04	$GB6\ J1222 + 2934$			RGB J1223+541	LBQS 1220+0939	PMN J1223+0650	RGB J1224+246			RGB J1224+385		216		RGB J1225+322		2B	GB6 J1225+0715					RX J1227.7+0841	FBQS J122749.1+.	RGB J1227+633		.373		MG2 J122932+2711		[OLK95]1227+120W
Na	· ·	J122	9] 121	NGC 4303	PKS 1219+04	J1222	NGC 4335	B2 1220+37	J122	S 122(J122	$J122^{2}$	CSO 1316	4C + 26.37	$J122^{2}$	4C + 03.23	PG 1222+216		J1228		B2 1222+32B	J1225	TON 0616	NGC 4388	RBS 1112	NGC 4414	1227.	S J12	J122'	B2 1225+31	CJ2 1226+373	73	J1229	NGC 4472	[95]12
		MG1	[HB8	NGC	PKS	GB6	NGC	B2 1;	RGB	ΓBQ	PMN	RGB	CSO	4C +	RGB	4C +	PG 1	M 84	RGB		B2 1;	GB6	$_{ m LON}$	NGC	RBS	NGC	RX J	FBQ	RGB	B2 1;	CJ2	3C273	MG2	NGC	[OLK
rme		0821	7518	0429	0413			3706	5409	3922		2436	4015		3832	0330	2122		3213	7214	3146		2458		3244	3113	0841	3214	5323	3128	3706	0203		0759	1145
RXJ name	Ξ	1221.4 + 0821	1221.4+7518	221.9 + 0429	1222.3 + 0413			1223.1 + 3706	1223.1 + 5409	1223.2 + 0922		1224.4 + 2436	1224.3 + 4015		1224.7 + 3832	1224.8 + 0330	1224.9 + 2122		1225.1 + 3213	1225.5 + 7214	1225.2 + 3146		1225.6 + 2458		1226.3 + 3244	1226.4 + 3113	1227.1 + 0841	1227.8 + 3214	1227.8 + 6323	1228.4 + 3128	1228.7 + 3706	1229.1 + 0203		1229.7 + 0759	1230.1 + 1145
R		12.	12.	12.	12.			12.	12.	12.		12.	12.		12.	12.	12.		12.	12.	12.		12.		12.	12.	12.	12.	12.	12.	12.	12.		12.	12.

Table A.3: (continued)

RXJ name	Name	RA(J2000)	DEC(J2000)	z	m_V	F_{5GHz}^{core}	F_{5GHz} α_r		$F_{0.1-2.4\ keV}$	Type Host		Class. FR
(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)		(10)	(11) (12)		(13) (14)
1230.2 + 2517	RBS 1121	12 30 14.1	25 18 07.1	0.1350	15.60	0.351	0.000	0.00	0.3429E-11	ರ		z
	$RGB\ J1231+006$	$12\ 31\ 08.4$	$00 \ 36 \ 49.4$	0.0231	14.90*	0.000	0.081	0.00	0.5806E-12	ŭ		
	$GB6\ J1231+1421$	$12\ 31\ 23.9$	$14\ 21\ 24.4$	0.2600	17.70	0.000	0.058	0.00	0.3101E-11	ŭ		z
1231.5 + 6414	[HB89] 1229+645	$12\ 31\ 31.4$	$64\ 14\ 18.3$	0.1700	16.90	0.034	0.036	0.40	0.4409E-11	o		z
1231.6 + 4017	$B3\ 1229 + 405$	$12\ 31\ 40.4$	$40\ 17\ 32.9$	0.6490	20.00	0.052	0.109	0.90	0.5288E-12	o		ď
1231.6 + 2847	RGB $J1231 + 287$	$12\ 31\ 43.6$	28 47 49.7	1.0000	16.40	0.060	0.114	0.55	0.2114E-11	೦		ď
1231.9 + 3530	CSO 0900	$12\ 31\ 55.9$	$35\ 30\ 15.1$	0.1310	15.24	0.000	0.003#	0.00	0.9630E-12	o		ď
	PKS 1229-02	$12\ 32\ 00.0$	-022405.3	1.0450	16.75	0.000	0.900	0.38	< 0.5250 E-12			ď
1232.0 + 2009	MRK 771	$12\ 32\ 03.6$	$20\ 09\ 29.2$	0.0630	15.30	0.000	0.003#	0.00	0.1162E-10	ŭ	∞	1
	NGC 4535	$12\ 34\ 20.3$	$08\ 11\ 51.9$	0.0065	96.6	0.000	0.038 #	0.00	0.2995E-12	CC	\mathbf{x}	
1234.6 + 2350	NGP9F378-0239966	$12\ 34\ 38.6$	$23\ 50\ 13.0$	0.1320	19.30*	0.000	0.015#	0.00	0.2368E-11	ŭ		
1235.6 + 1233	NGC 4552	$12\ 35\ 39.8$	$12\ 33\ 22.6$	0.0011	11.20	0.081	0.067	0.00	0.1948E-11	CC	囝	2
1236.3 + 2559	NGC 4565	$12\ 36\ 20.8$	$25\ 59\ 15.7$	0.0043	12.43	0.007	0.024	0.00	0.5226E-12	ŭ	∞	6
1236.3 + 1632	4C + 16.33	$12\ 36\ 27.8$	$16\ 32\ 04.5$	0.0684	17.30	0.640	0.710	3.10	0.2762E-11	CC	р	
1236.8 + 4539	CGCG 244-033	$12\ 36\ 51.2$	$45\ 39\ 04.1$	0.0305	16.00	0.000	0.004#	0.00	0.6826E-11	ŭ		ಬ
1236.8 + 2507	$7C\ 1234+2524$	$12\ 36\ 51.6$	$25\ 07\ 50.7$	0.5460	17.60	0.015	0.109	0.00	0.1500E-11	ŭ		ď
1236.9 + 6311	${ m ABELL1576[HHP90]}$		$63\ 11\ 13.6$	0.3019	21.50*	0.000	0.020#	0.00	0.1501E-11	CC		
1237.0 + 3020	RBS 1133	$12\ 37\ 05.6$	$30\ 20\ 05.2$	0.7000	21.10	0.000	0.003#	0.00	0.6649E-11	o		z
1237.6 + 6258	[HB89] 1235 $+632$	$12\ 37\ 38.8$	625843.1	0.2970	18.52	0.000	0.007	0.00	0.3658E-11	ඊ		z
	M 58	$12\ 37\ 43.6$	$11\ 49\ 05.1$	0.0051	11.72	0.000	0.054	0.00	0.6793E-11	ŭ	\mathbf{x}	_
1238.0 + 5326	RGB $J1238+534$	$12\ 38\ 07.7$	$53\ 25\ 55.0$	0.3473	18.30	0.037	0.056	0.00	0.2921E-11	Ü		ď
1239.2 + 4049	$GB6\ J1239 + 4050$	$12\ 39\ 15.0$	49	1.3100	18.90	0.000	0.074	0.00	0.2649E-12	೦		ď
1239.4 + 0730	[HB89] 1236 $+077$	$12\ 39\ 24.6$	$07\ 30\ 17.2$	0.4000	19.18	0.700	0.000	-0.10	0.7128E-12	c		
1239.6 - 0520	NGC 4593	$12\ 39\ 39.4$	20	0.0000	11.70*	0.000	0.005#	0.00	0.6000E-10	U	∞	1
1239.8 - 1137	MESSIER 104	$12\ 39\ 59.4$	-11 37 22.9	0.0036	8.00*	0.000	0.094 #	0.00	0.2700E-11	Ü	\mathbf{x}	_
1240.1 + 2425	RGB $J1240 + 244$	$12\ 40\ 09.1$	$24\ 25\ 31.1$	0.8290	17.30	0.077	#000.0	0.00	0.6945E-12	ී		ď
1240.2 + 3502	B2 1237+35	$12\ 40\ 21.1$	$35\ 02\ 58.8$	1.1940	17.24	0.063	0.065	0.00	0.5499E-12	ඊ		ď
1240.8 - 3334	ESO 381- G 007	$12\ 40\ 47.0$	-33 34 10.8	0.0500	15.90*	0.000	0.003#	0.00	0.1380E-10	CC	0	ಬ
1241.2 + 5141	SBS $1238 + 519$	$12\ 41\ 16.4$	$51\ 41\ 29.0$	0.8180	18.30	0.000	0.081#	0.00	0.1011E-11	ŭ		ď
1241.4 + 3132	FBQSJ124121.7	$12\ 41\ 21.7$	$31\ 32\ 03.6$	0.0720	18.17	0.000	0.003#	0.00	0.7547E-12	Ü		œ
1241.5 + 4934	RGB $J1241 + 495$	$12\ 41\ 39.7$	$49\ 34\ 05.0$	0.4600	17.70	0.007	0.040	0.00	0.1147E-11	Ü		ď
1241.7 + 3503	NGC 4619	$12\ 41\ 44.6$	$35\ 03\ 43.6$	0.0231	13.50	0.000	0.001#	0.00	0.2886E-11	IJ	\mathbf{x}	1
1241.8 + 3202	MCG + 05-30-060	41	$32\ 02\ 56.3$	0.0530	17.08	0.000	0.002#	0.00	0.5943E-12	U		1
1241.3+0636	RX J1241.8+0636	12 41 48.3	+06 36 01.0	0.1500	19.40*	0.000	0.016#	0.00	0.1630E-11	0		z

Table A.3: (continued)

1	П													Ι										Π			Н							Ξ.
FR (14)		1	∞		ď	ď	ď	ď	5	đ	ď	ď	1		đ	\mathbf{x}	1	ď	ъо	z	z		r	n	z				ď			ď	œ	n
Class. (13)																																		
Host (12)	∞	囝	∞	0										∞		∞	∞					田				0		d		\mathbf{x}	\mathbf{x}		\mathbf{x}	
n)	ŭ	ŭ	U	CC	o	OC OC	o	o	U	o	o	o	o	CC	o	U	U	U	o	o	U	U	U	ŭ	U	CC	U	U	o	CC	U	o	U	Ü
$F_{0.1-2.4\ keV}$ Type (11)	0.1097E-10	0.1370E-10	0.2870E-11	0.6303E-11	0.5381E-12	0.7512E-12	0.3232E-12	0.7244E-12	0.4597E-12	0.2915E-11	0.9896E-12	0.6843E-12	0.8149E-12	0.1025E-09	0.1013E-11	0.3392E-11	0.2300E-10	0.1696E-11	0.2492E-11	0.1132E-11	0.5483E-11	0.2510E -11	0.5303E-12	< 0.1327 E - 13	0.2860E-11	0.9051E-11	0.5700E-12	0.1491E-11	0.1153E-11	0.1105E- 10	0.3150E-11	0.3393E-10	0.7513E-12	0.1151E-13
$F_{0.1-2}$ (1	0.00	0.00	0.00	0.00	0.15			-0.55		-0.24 C	0.90	0.46	0.00	0.85	0.93	0.63	0.00	0.00		0.10	0.00				0.00				0.20	1.31				0.80
$F_{5GHz} \qquad \alpha_r \\ (8) \qquad (9)$	#900.0	#620.0	#600.0	0.037	0.279	1.022	0.002#	1.110	0.005#	1.550	0.183	0.130	0.035	1.330	0.205	0.106	0.014#	0.025	0.819	0.490	0.005#	0.005#	0.040	0.580	0.107#	0.333#	2.500	14.699&	0.724	0.240	0.003#	13.000	0.055	12.199&
$F_{5GHz}^{core} \ (7)$	0.000	0.000	0.000	0.016	0.158	0.095	0.000	0.000	0.000	0.000	0.000	0.016	0.000	0.000	0.000	0.004	0.000	0.026	0.700	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.088	0.000	0.641	0.000	0.000	0.000	0.017	0.001
m_V	15.40	10.40*	12.20*	10.30*	19.20*	19.00	17.52	18.90	17.61	17.41	17.54	17.80	18.61	11.75*	17.70	10.85	14.30*	17.70	17.93	21.50	19.40	13.50*	17.70*	22.00	15.70*	14.53*	13.00*	12.36	16.64	14.20*	14.50*	17.75	12.14	22.00
z (5)	0.0439	0.0037	0.0034	0.0037	0.7820	0.5551	0.7170	1.2860	0.0667	0.6330	0.9490	0.7230	0.2060	0.0099	0.7990	0.0010	0.0146	0.3130	0.3210	0.8590	0.3720	0.0142	0.1210	0.7660	0.0654	0.0541	0.0150	0.0154	0.8710	0.0574	0.0129	0.5362	0.0014	0.9960
$ DEC(J2000) \\ (4) $	33 17 02.2	$+02\ 41\ 16.0$	$+13\ 15\ 26.9$	$11\ 33\ 09.4$	744237.1	$16\ 22\ 53.2$	335610.2	$-07\ 30\ 46.6$	41~08~12.7	-25 47 49.3	320859.3	$18\ 38\ 12.6$	362423.9	-41 18 40.0	$44\ 44\ 50.0$	$41\ 07\ 13.6$	-132453.0	$64\ 51\ 38.0$	$56\ 34\ 19.7$	$-33\ 19\ 59.3$	$38\ 26\ 25.9$	-09 11 54.7	505428.2	42	$+03\ 26\ 30.1$	-29 00 47.0	$-12\ 33\ 48.0$	-123328.2	$11\ 41\ 05.9$	$-29\ 13\ 39.2$	-08 09 04.8	$-05\ 47\ 21.5$	40	47 20 19.6
RA(J2000) (3)	12 42 10.6	$12\ 42\ 49.9$	$12\ 42\ 52.4$	$12\ 43\ 39.7$	$12\ 43\ 45.0$	$12\ 43\ 57.7$	$12\ 45\ 11.3$	$12\ 46\ 04.2$	$12\ 46\ 12.1$	$12\ 46\ 46.8$	$12\ 47\ 20.7$	$12\ 48\ 06.9$	$12\ 48\ 13.9$	124849.3	$12\ 49\ 23.4$	125053.1	125212.5	12523.7	125226.3	12528.4	125300.9	125309.9	125326.2	125333.0	125346.9	125422.2	125436.1	125436.6	125438.2	125441.0	125610.1	125611.2	125643.8	12 56 57.1
Name (2)	CG 1043	NGC 4636	NGC 4639	NGC 4649	RGB J1243+747	$3C\ 275.1$	CSO 0919	MRC $1243-072$	IRAS $12438+4124$	PKS 1244-255	4C + 32.41	[HB89] 1245 + 189	RGB J1248+364	NGC 4696	4C + 45.26	NGC 4736	NGC 4748	RGB $J1252+648$	SBS $1250 + 568$	PKS 1250-330	RBS 1176	NGC 4761	$RGB\ J1253+509$	3C 277.2	CGCG 043-056	MRC 1251-287	3C 278	NGC 4783	MRC $1252+119$	MRC 1251-289	MCG -01-33-054	3C 279	NGC 4826	3C 280
RXJ name (1)	1242.1+3317	1242.7 + 0241	1242.5 + 1315	1243.6 + 1133	1243.7 + 7442	1243.9 + 1623	1245.2 + 3356	1246.0-0730	1246.2 + 4108	1246.7 - 2548	1247.3 + 3208	1248.1 + 1838	1248.1 + 3624	1248.7-4118	1249.3 + 4444	1250.8 + 4107	1252.5 - 1324	1252.3 + 6451	1252.4 + 5634		1253.0 + 3826	1253.0-0912	1253.4 + 5055		1253.3 + 0326			1254.6 - 1233	1254.6 + 1141	1254.6 - 2913	1256.5 - 0809	1256.1-0547	1256.7 + 2141	

Table A.3: (continued)

RXJ name	Name	RA(J2000)	DEC(J2000)	z	mv	France	F _{5GHz} α_r	F_0	F0.1-2.4 keV	Type Host	Class.	s. FR
(1)	(2)	(3)	(4)	(5)	(9)	(7)			(10)	(11) (12)	(13)	(14)
1257.6-1339	NGC 4825	12 57 12.2	-13 39 53.4	0.0149	12.60*	0.000	0.013#	0.00	0.3150E-11	CC	∞	
1257.3 + 3647	[BLS68] 142	125716.6	$36\ 47\ 15.2$	0.2800	17.84	0.000	0.065 #	0.00	0.7247E-12	8		
1257.3 - 3334	PKS 1254-333	125720.7	34	0.1900	18.60	0.000	0.540	0.47	0.1720E-11	ඊ		П
1257.5 + 6930	ZwCl 1255.4+694	125721.6	$+69\ 30\ 19.1$	0.2770	19.00*	0.000	0.003#	0.00	0.1520E-11	CC	С	
1257.7 + 2412	RX $J1257.5+2412$	125731.9	$+24\ 12\ 40.1$	0.1410	15.40*	0.000	0.015#	0.00	0.1160E-10			Z
	PKS 1255-316	$12\ 57\ 59.1$	-31 55 16.8	1.9240	18.30	0.000	1.679	-0.19	$< 0.5060 \mathrm{E} - 12$	°		ď
1258.4 + 6521	RGB $J1258+653$	125825.0	$65\ 21\ 38.4$	0.2339	19.70	0.005	0.020	0.00	0.8779E-12	CC		
	MS 1256.3 + 0151	125852.4	$01\ 34\ 57.0$	0.1620	20.00	0.000	0.008	0.00	0.4479E-12	0		Z
	PKS B1256-229	125908.5	-23 10 38.6	1.3650	16.72	0.000	0.540	-0.12	0.1504E-11	0		ď
	NGC 4874	125935.7	$27\ 57\ 33.8$	0.0241	13.62	0.001	0.500	1.90	0.4097E + 02*		С	
1259.6 + 3848	IC 4003	125939.3	$38\ 48\ 55.8$	0.0335	15.40*	0.000	0.001#	0.00	0.2838E-12	CC		
1259.8 + 3423	BSO 201	125948.8	$34\ 23\ 22.6$	1.3750	16.79	0.000	0.010#	0.00	0.6261E-12	o		d
	PKS 1257-326	$13\ 00\ 42.4$	-325312.0	1.2560	18.70	0.000	0.238 #	0.00	0.4536E-12	o		d
1300.9 - 2312	MRC 1258-229	$13\ 00\ 58.5$	-23 12 14.5	0.1300	17.50*	0.000	0.390	0.60	0.3835E-11	ŭ	囝	r
1301.4 + 7120	RGB J1301+713	$13\ 01\ 30.3$	$71\ 20\ 13.0$	0.2750	16.40	0.030	0.027	0.00	0.1023E-11	ŭ		ď
1301.9 + 3915	$B3\ 1259 + 395$	$13\ 02\ 01.2$	$39\ 15\ 25.6$	0.5770	20.60	0.018	0.023	0.00	0.3078E-12	ඊ		
1302.2 + 4819	RGB J1302+483	$13\ 02\ 17.2$	$48\ 19\ 17.6$	0.8771	18.20	0.090	0.218	0.00	0.5236E-12	ŭ		d
1302.6 + 5056	$RX\ J1302.9+5056$	$13\ 02\ 55.5$	$+50\ 56\ 17.0$	0.6880	20.20*	0.000	0.003#	0.00	0.6000E-11	o		Z
1302.8 + 1624	MRK 0783	$13\ 02\ 58.8$	$+16\ 24\ 27.5$	0.0672	16.00*	0.000	0.033#	0.00	0.4570E-11	ŭ		ಬ
1304.8 + 2454	HS 1302 + 2510	$13\ 04\ 51.4$	245445.9	0.6050	18.00	0.000	0.048#	0.00	0.2005E-11	ඊ		ď
1305.0 - 0332	LCRS B130235.1-	$13\ 05\ 09.9$	$-03\ 32\ 09.5$	0.0837	16.40*	0.000	0.005#	0.00	0.3100E-11	ŭ		ರ
1305.4 - 4928	NGC 4945	$13\ 05\ 27.5$	$-49\ 28\ 05.6$	0.0019	14.40	0.000	2.839	0.80	0.3639E-11	ŭ	\mathbf{x}	\mathbf{s}
	PG 1302-102	$13\ 05\ 33.0$	-10319.4	0.2784	15.23	0.000	1.000	0.20	0.7501E-11	0	田	ď
1305.2 - 1033	PG 1302-102	$13\ 05\ 33.0$	-103319.4	0.2784	14.90*	0.000	0.712#	-0.19	0.8140E-11	o		ď
1305.8 + 3054	MCG + 05-31-128	$13\ 05\ 50.7$	$30\ 54\ 19.0$	0.1816	18.00*	0.000	0.049#	-1.30	0.2665E-11	CC		
1306.0 + 5529	RGB $J1306 + 554$	13~06~03.3	$55\ 29\ 43.9$	1.6000	17.90	0.282	0.249	-0.38	0.2672E-12	ŭ		ď
1307.8 + 0642	3C 281	$13\ 07\ 54.0$	$06\ 42\ 14.3$	0.6020	17.02	0.000	0.340	0.95	0.1087E-11	OC		ď
1308.3 + 3546	5C 12.291	13~08~23.7	$35\ 46\ 37.2$	1.0550	21.50	0.449	0.461	-0.68	0.3295E-12			ď
	PKS 1306-09	13~08~39.1	-095032.5	0.4640	20.50	0.000	1.899	0.65	< 0.5100 E-12			<i>5</i> 0
	[HB89] 1306 + 274	13~08~56.8	27 08 11.5	1.5370	18.34	0.000	0.151	0.70	0.3923E-12	o		ď
1309.0 + 5557	SBS $1307 + 562$	$13\ 09\ 09.7$	$55\ 57\ 38.2$	1.6290	18.20	0.256	0.423	0.05	0.8123E-12	°		ď
1310.4 - 1157		$13\ 10\ 12.2$	-11 57 48.9	0.1397	16.50*	0.000	0.083#	0.00	0.2300E-11	ŭ		Z
1310.1 - 0727	MCG -01-34-008	$13\ 10\ 17.1$	-07 27 15.5	0.0224	14.50*	0.000	#600.0	0.00	0.2580E-11	ŭ	\mathbf{x}	2
1310.4 + 3220	7C 1308+3236	13 10 28.7	32 20 43.8	0.9960	15.24	1.970	#000.0	-0.71	0.7882E-12	ී		ď

Table A.3: (continued)

| | | Π | | | | | | | | | |

 | | |
 | | | | | | | Ι

 | |
 | | | Ι | Ι | |
 | | | |
|-------------|---|--|---|--|--|--|--|--|--|--|--
--
--
--
--|--|---|---|--|--|--
---|---|--
--
--
--|---|--|--|---|--|--
--|--|--|--
--|
| | ď | n | ď | | ď | Z | ď | 5 | 6 | ď | Z |

 | _ | ď | ď
 | ď | ಬ | z | ď | 1 | ď |

 | 25 | 1
 | z | ď | | 2 | ď | z
 | 1 | | |
| | | | | | | | | | | | |

 | | |
 | | | | | | |

 | |
 | | | | | |
 | | | |
| ∞ | | 闰 | | 田 | \mathbf{v} | | | | \mathbf{v} | | | 田

 | \mathbf{v} | |
 | | | | | | Z | 田

 | |
 | | | 0 | 0 | |
 | | 田 | \mathbf{v} |
| IJ | 0 | CC | U | U | o | o | o | U | U | U | o | g_{C}

 | U | 0 | Ü
 | 0 | U | o | o | U | U | CC

 | U | ŭ
 | U | o | U | g_{C} | U | o
 | U | U | g_{C} |
| 8E-12 | 19E-12 | 70E-13 | I8E-12 |)7E-12 | 59E-11 | HE-11 | 15E-12 | 7E-12 | 8E-11 | 11E-12 | 31E-10 | 30E-10

 | 85E-12 | 30E-12 | 15E-12
 | 35E-12 | 50E-11 | 71臣-11 | 18E-12 | 32E-11 |)0E-12 |)0E-11

 | 3E-11 | 28E-12
 | 70E-11 | [8E-11 | $^{1E+02*}$ | 59E-10 | 59E-12 | 32E-11
 | 30E-11 | 54E-12 | 0.3120E-11 |
| 0.72 | 0.164 | <0.67 | 0.851 | 0.28(| 0.155 | 0.114 | 0.571 | 0.251 | 0.371 | 0.204 | 0.216 | 0.523

 | 0.768 | <0.45 | 0.264
 | 0.48 | 0.265 | 0.917 | 0.60^{2} | 0.798 | 0.336 | 0.18(

 | 0.296 | 0.455
 | 0.237 | 0.12 | <0.409 | 0.135 | 0.285 | 0.373
 | 0.443 | 0.745 | 0.315 |
| 0.00 | 0.00 | 0.90 | 0.00 | 0.23 | 0.23 | 0.30 | 0.00 | 0.20 | 0.36 | 0.00 | 0.00 | 0.00

 | 0.00 | -0.45 | 0.39
 | 0.11 | 0.00 | 0.00 | 0.57 | 0.00 | 0.00 | 0.96

 | 0.00 | 0.00
 | 0.00 | 0.00 | 0.60 | 1.20 | 0.00 | 1.10
 | 0.00 | 0.00 | 0.00 |
| 55 | 34 | 30 | 35 | 90 | 98 | 86 | 32# | 23# | 62 | 32# | 18 | #98

 | 83 | 70 | 22
 | 00 | 33# | 22 | 55 | 74# | 90 | 00

 | #01 | #10
 | 42 | 40 | 10& | 59 | 94# | 32 #
 | 74# | 30 | 0.016# |
| 0.0 | 0.68 | 5.0 | 0.0 | 0.10 | 0.0 | 0.18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0

 | 0.0 | 1.3 | 0.2
 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.58 | 1.7

 | 0.0 | 0.0
 | 0.0 | 0.0^{-2} | 1.7 | 62.8 | 0.0 | 0.0
 | 0.0 | 0.3 | 0.0 |
| 0.017 | 0.000 | 0.003 | 0.062 | 0.032 | 0.032 | 0.000 | 0.000 | 0.000 | 0.014 | 0.000 | 0.000 | 0.000

 | 0.000 | 0.000 | 0.277
 | 0.350 | 0.000 | 0.052 | 0.000 | 0.000 | 0.000 | 0.580

 | 0.000 | 0.000
 | 0.025 | 0.000 | 0.150 | 6.984 | 0.000 | 0.000
 | 0.000 | 0.000 | 0.000 |
| 13.67 | 20.96 | 18.00* | 17.60 | 15.50* | 15.64 | 18.90 | 17.70 | 18.86 | 12.03 | 19.26 | 17.00 | 11.80*

 | 9.70* | 18.70 | 18.50
 | 18.70 | 18.40* | 17.80 | 16.79 | 17.30 | 20.20 | 11.51

 | 15.56 | 18.20
 | 17.30 | 18.50 | 13.90* | 86.9 | 17.80 | 19.80
 | 15.40* | 18.00 | 15.00* |
| 0.0032 | 1.6500 | 0.2394 | 0.7160 | 0.0356 | 0.1840 | 1.4910 | 0.6560 | 0.3030 | 0.0029 | 0.7887 | 0.1080 | 0.0000

 | 0.0017 | 1.2100 | 1.5600
 | 1.0500 | 0.1372 | 0.5720 | 1.0600 | 0.0920 | 1.2350 | 0.0114

 | 0.0640 | 0.2150
 | 0.1150 | 0.8720 | 0.0174 | 0.0018 | 1.9340 | 0.4310
 | 0.0410 | 0.2000 | 0.0418 |
| 33.1 | 34.4 | 07.7 | 25.0 | 21.3 | 21.2 | 24.4 | 57.2 | 23.2 | 38.1 | 29.9 | 49.7 | 6.70

 | 49.3 | 59.2 | 28.0
 | 15.9 | 40.9 | 33.0 | 05.8 | 34.0 | 36.8 | 16.4

 | 28.1 | 41.3
 | 16.5 | 23.1 | 41.7 | 8.80 | 20.9 | 30.0
 | 40.7 | 16.7 | 54.9 |
| 37 03 | 33 | $\frac{5}{8}$ | 48 09 | 4450 | $35\ 15$ | 56 | 3753 | 3155 | 36.35 | 31 18 | -42 36 | -16 23

 | 4201 | -33 38 | 25
 | $34\ 25$ | $+60\ 10$ | 05 | 48 | 35 | 40 | 42

 | 5455 | $38\ 16$
 | 5739 | -1049 | 3622 | -4301 | $34\ 13$ | 29 33
 | -2451 | -30 18 | -27 19 |
| 0.56.2 | 1059.4 | 1104.7 | 2 11.1 | 216.9 | 2 17.8 | $12\ 31.5$ | .3 14.3 | 13 27.3 | .3 27.5 | 3 44.2 | 503.4 | 523.9

 | 549.2 | 6.709 | .7 18.6
 | 7 36.5 | 7 50.4 | 9 31.8 | 9 46.2 | .9 57.1 | 20.26.8 | 21 12.8

 | 2 49.2 | 3 36.4
 | 94 00.9 | 2425.8 | 2451.4 | 2527.6 | 547.6 | 615.0
 | 27 12.7 | 27 44.7 | $28 \ 09.9$ |
| 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1

 | 13 1 | 13 1 | 13 1
 | 13 1 | 13 1 | 13 1 | 13 1 | 13 1 | 13 2 | 13.2

 | 13 2 | 13 2
 | 13 2 | 13 2 | 13 2 | 13 2 | 13 2 | 13 2
 | 13 2 | 13 2 | 13 2 |
| 005 | J1310 + 3233 | | 1312 + 481 | 1310.0 + 4507 | 9+355 | 309-216 | J131314.2+. | 1 + 3211 | 033 | J131344.1+. | 12.1 - 4221 | 044

 | ER 63 | 313-333 | 9.38
 | 1315 + 346 | 317.8 + 6010 | 248 | 7+52 | 131957.2+ | 317 + 019 | 060

 | 132248.5+ | J132336.4
 | 1324 + 576 | 1321-105 | 141 | $128/\mathrm{CenA}$ | J132547.6 | 265
 | 717 00254 | 324-300 | $(RAS\ F13253-270)$ |
| NGC 5 | JVAS. | 3C 284 | RGB J | CCCC | PG 13(| PKS 1. | FBQS | 7C131 | NGC 2 | FIRST | MS 13. | NGC 2

 | MESSI | PKS 1. | 4C + 39
 | [HB89] | RX J1; | RBS 1; | S4 131 | 1RXSJ | PKS 1. | NGC 2

 | 1RXSJ | FIRST
 | RGB J | PKS B | NGC 2 | NGC 2 | ${ m FIRST}$ | RBS 1;
 | GSC 6 | PKS 1. | IRAS 1 |
| 1310.9+3703 | | | 1312.1 + 4809 | 1312.2 + 4449 | 1312.2 + 3515 | | 1313.2 + 3753 | | 1313.4 + 3635 | | 1315.0 - 4236 | 1315.8 - 1623

 | 1315.8 + 4201 | | 1317.2 + 3925
 | 1317.6 + 3425 | 1317.4 + 6010 | 1319.4 + 1405 | 1319.7 + 5148 | 1319.9 + 5235 | |

 | 1322.8 + 5455 | 1323.6 + 3816
 | 1324.0 + 5739 | | | 1325.5 - 4301 | 1325.8 + 3413 | 1326.2 + 2933
 | 1327.7 - 2451 | | 1328.6 - 2719 |
| | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q q q | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q q 3 C 284 13 11 04.7 27 28 07.7 0.2394 18.00^* 0.003 5.030 0.90 <0.6770E-13 GC E n | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 1 10 4.7 13 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q Q Q 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.003 5.030 0.90 $<0.6770E-13$ GC E n RGB J1312+481 13 12 11.1 48 09 25.0 0.7160 17.60 0.062 0.085 0.00 0.8518E-12 G Q Q | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q q 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.003 5.030 0.90 <0.6770E-13 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q q 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.003 5.030 0.90 <0.6770E-13 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q q 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.003 5.030 0.90 <0.6770E-13 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q q 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.003 5.030 0.90 <0.6770E-13 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.003 5.030 0.90 <0.6770E-13 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.003 5.030 0.90 <0.6770E-13 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.003 5.030 0.90 <0.6770E-13 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q q 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.0062 0.09 0.065FBE-12 Q q RGB J1312+481 13 12 11.1 48 09 25.0 0.7160 17.60 0.062 0.095 0.00 0.8518E-12 G F CGCG 1310.0+4507 13 12 11.3 48 09 25.0 0.7160 17.60 0.032 0.106 0.8518E-12 G E PG 1309+355 13 12 17.8 35 15 21.2 0.1840 15.64 0.032 0.036 0.23 0.1559E-11 Q S q PKS 1309-216 13 12 14.3 37 53 57.2 0.6560 17.70 0.000 0.023 0.1141E-11 Q S q FRQS 13141+3211 <t< td=""><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.062 0.085 0.00 0.8518E-12 Q 9 RGB J1312+481 13 12 11.1 48 09 25.0 0.7160 17.60 0.062 0.085 0.00 0.8518E-12 Q 9 CGCG 1310.0+4507 13 12 11.1 48 09 25.0 0.7160 17.60 0.032 0.106 0.8518E-12 G P CGCG 1310.0+4507 13 12 17.8 35 15 21.2 0.1840 15.64 0.032 0.036 0.23 0.1369E-11 Q P PKS 1309-216 13 12 17.8 35 15 21.2 0.1840 15.64 0.036 0.23 0.141E-11 Q A FRQS 131314.2+ 13 13 27.3</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.062 0.085 0.00 0.1649E-12 Q 9 RGB J1312+481 13 12 11.1 48 09 25.0 0.7160 17.60 0.062 0.085 0.00 0.8518E-12 G P CGCG 1310.0+4507 13 12 11.1 48 09 25.0 0.7160 17.60 0.062 0.085 0.00 0.8518E-12 G F CGCG 1310.0+4507 13 12 17.8 35 15 21.2 0.1840 15.64 0.032 0.036 0.23 0.2807E-12 G F PG 1309+355 13 12 17.8 35 15 21.2 0.1840 18.90 0.000 0.198 0.03 0.1141E-11 Q A F</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q G 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.062 0.00 0.0545E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q <</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33.44 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q Q Q 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.002 0.00 0.1649E-12 Q Q Q RGB J1312+481 13 12 11.1 48 69 25.0 0.7160 17.60 0.025 0.00 0.884E-12 G G G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q<</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 594 32 33 344 1.6500 2.096 0.000 0.684 0.00 0.1649E-12 Q Q 3C 284 13 11 104.7 27 28 07.7 0.2994 18.00* 0.000 0.01649E-12 Q Q Q RGB J1312+481 13 12 11.1 48 09 25.0 0.7160 0.062 0.085 0.00 0.8518E-12 G P CGCG 1310.0+4507 13 12 11.1 48 09 25.0 0.7160 0.085 0.03 0.2807E-12 G F PG 1309+355 13 12 11.2 45 00 13 0.032 0.036 0.23 0.2807E-12 G F PKS 1309-216 13 12 11.2 44 50 21.3 0.035 15.64 0.032 0.036 0.23 0.2807E-12 G F PKS 1309-216 13 12 11.2 44 50 21.2 0.144 0.03 0.836</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.0649E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 16500 0.096 0.000 0.084 0.00 0.149E-12 Q Q JVAS J1310+3233 13 10 59.4 32 33 34.4 16500 0.096 0.008 0.010 0.149E-12 Q Q Q RCB J1312+481 13 12 16.9 44 50 21.3 0.750 17.60 0.085 0.00 0.818E-12 G E D Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q</td><td>NGC 5005 NGC 5005 NGC 5005 NGC 5005 NGC 5005 NGC 5005 NGG 5006 NGG 50</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E12 G S 1 JVAS J1310+3233 13 10 59.4 32 33.4.4 1.6500 20.96 0.000 0.0449E-12 G G 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 9 4 9 9 9 9 4 9 9 9 9 4 9 9 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <t< td=""><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 C S 1 JVAS 1310+3233 13 10 59.4 32 33.44 1.600 20.96 0.000 0.684 0.00 0.7268E-12 C S 1 ACS 1310+3233 13 10 64.7 27 28 07.7 0.2394 18.00* 0.006 0.00 0.5818E-12 Q C RCB J1312+481 13 12 10.4 48 09 25.0 7.760 1.00 0.085 0.00 0.5818E-12 Q C PKS 1309+355 13 12 17.5 2.056 1.50* 0.00 0.108 0.2807E-12 G D C D C D C D D C D D D D D D D D D D D D D D D D D D D D D D D D D D D D</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 C S 1 JAAS 1310+3233 13 10 56.2 37 03 33.1 0.003 0.006 0.0649E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q<</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 1367 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS 1310+3233 13 10 56.2 37 03 33.1 0.0032 1300 0.064 0.00 0.7268E-12 G S 1 RCB J1312+481 13 10 59.4 2.294 1.003 0.003 0.00 0.8518E-12 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13 05.5 0.007 0.055 0.00 0.7288E-12 G S 1 QX 284 13 10 54.2 37 33.4 1.80 50.4 28.03 0.000 0.054 0.00 0.7288E-12 G S 1 RGB J1312+481 13 11 104.7 27 28 07.7 0.2034 18.00 0.005 0.000 0.8518E-12 G G G CGCT 1300-44507 13 12 16.9 44 50 13.3 0.002 0.005 0.006 0.8518E-12 G G G CGCT 1300-4505 13 12 16.9 44 50 13.3 0.002 0.006 0.23 0.2307E-12 G G G CGCT 1300-4516 13 12 17.8 35 15 21.2 0.130 0.000 0.002 0.006 0.23 0.2307E-12 G G G G G G G G G G G G G G G G G G G G G</td></t<><td>NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGS 110649233 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5007 NGC 5006 NGC 5007 N</td><td>NGC 5006 13 10 56.2 37 03 33.1 0 6002 13 10 56.2 37 03 33.1 0 6002 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 14 14910 18 18 0.0000 18 0.0004 18 0.0009 18 0.0004 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.00</td><td>NGC 5005 NGC 5005 NGG 50</td><td>NGC 5006 NGC 50</td><td>NGC 5066. NGC 5067. NGC 5067.</td><td>NGC 5606. NGC 5606. NGC 5607. NGC 5607. NGC 5608. NGC 5608.</td><td>NGC 5006 NGC 5006 NGG 50</td></td></t<> | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.062 0.085 0.00 0.8518E-12 Q 9 RGB J1312+481 13 12 11.1 48 09 25.0 0.7160 17.60 0.062 0.085 0.00 0.8518E-12 Q 9 CGCG 1310.0+4507 13 12 11.1 48 09 25.0 0.7160 17.60 0.032 0.106 0.8518E-12 G P CGCG 1310.0+4507 13 12 17.8 35 15 21.2 0.1840 15.64 0.032 0.036 0.23 0.1369E-11 Q P PKS 1309-216 13 12 17.8 35 15 21.2 0.1840 15.64 0.036 0.23 0.141E-11 Q A FRQS 131314.2+ 13 13 27.3 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.062 0.085 0.00 0.1649E-12 Q 9 RGB J1312+481 13 12 11.1 48 09 25.0 0.7160 17.60 0.062 0.085 0.00 0.8518E-12 G P CGCG 1310.0+4507 13 12 11.1 48 09 25.0 0.7160 17.60 0.062 0.085 0.00 0.8518E-12 G F CGCG 1310.0+4507 13 12 17.8 35 15 21.2 0.1840 15.64 0.032 0.036 0.23 0.2807E-12 G F PG 1309+355 13 12 17.8 35 15 21.2 0.1840 18.90 0.000 0.198 0.03 0.1141E-11 Q A F | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q G 9 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.062 0.00 0.0545E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q < | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33.44 1.6500 20.96 0.000 0.684 0.00 0.1649E-12 Q Q Q 3C 284 13 11 04.7 27 28 07.7 0.2394 18.00* 0.002 0.00 0.1649E-12 Q Q Q RGB J1312+481 13 12 11.1 48 69 25.0 0.7160 17.60 0.025 0.00 0.884E-12 G G G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q< | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 594 32 33 344 1.6500 2.096 0.000 0.684 0.00 0.1649E-12 Q Q 3C 284 13 11 104.7 27 28 07.7 0.2994 18.00* 0.000 0.01649E-12 Q Q Q RGB J1312+481 13 12 11.1 48 09 25.0 0.7160 0.062 0.085 0.00 0.8518E-12 G P CGCG 1310.0+4507 13 12 11.1 48 09 25.0 0.7160 0.085 0.03 0.2807E-12 G F PG 1309+355 13 12 11.2 45 00 13 0.032 0.036 0.23 0.2807E-12 G F PKS 1309-216 13 12 11.2 44 50 21.3 0.035 15.64 0.032 0.036 0.23 0.2807E-12 G F PKS 1309-216 13 12 11.2 44 50 21.2 0.144 0.03 0.836 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 1.6500 20.96 0.000 0.0649E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS J1310+3233 13 10 59.4 32 33 34.4 16500 0.096 0.000 0.084 0.00 0.149E-12 Q Q JVAS J1310+3233 13 10 59.4 32 33 34.4 16500 0.096 0.008 0.010 0.149E-12 Q Q Q RCB J1312+481 13 12 16.9 44 50 21.3 0.750 17.60 0.085 0.00 0.818E-12 G E D Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q | NGC 5005 NGC 5005 NGC 5005 NGC 5005 NGC 5005 NGC 5005 NGG 5006 NGG 50 | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E12 G S 1 JVAS J1310+3233 13 10 59.4 32 33.4.4 1.6500 20.96 0.000 0.0449E-12 G G 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 9 4 9 9 9 9 4 9 9 9 9 4 9 9 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <t< td=""><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 C S 1 JVAS 1310+3233 13 10 59.4 32 33.44 1.600 20.96 0.000 0.684 0.00 0.7268E-12 C S 1 ACS 1310+3233 13 10 64.7 27 28 07.7 0.2394 18.00* 0.006 0.00 0.5818E-12 Q C RCB J1312+481 13 12 10.4 48 09 25.0 7.760 1.00 0.085 0.00 0.5818E-12 Q C PKS 1309+355 13 12 17.5 2.056 1.50* 0.00 0.108 0.2807E-12 G D C D C D C D D C D D D D D D D D D D D D D D D D D D D D D D D D D D D D</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 C S 1 JAAS 1310+3233 13 10 56.2 37 03 33.1 0.003 0.006 0.0649E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q<</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 1367 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS 1310+3233 13 10 56.2 37 03 33.1 0.0032 1300 0.064 0.00 0.7268E-12 G S 1 RCB J1312+481 13 10 59.4 2.294 1.003 0.003 0.00 0.8518E-12 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G</td><td>NGC 5005 13 10 56.2 37 03 33.1 0.0032 13 05.5 0.007 0.055 0.00 0.7288E-12 G S 1 QX 284 13 10 54.2 37 33.4 1.80 50.4 28.03 0.000 0.054 0.00 0.7288E-12 G S 1 RGB J1312+481 13 11 104.7 27 28 07.7 0.2034 18.00 0.005 0.000 0.8518E-12 G G G CGCT 1300-44507 13 12 16.9 44 50 13.3 0.002 0.005 0.006 0.8518E-12 G G G CGCT 1300-4505 13 12 16.9 44 50 13.3 0.002 0.006 0.23 0.2307E-12 G G G CGCT 1300-4516 13 12 17.8 35 15 21.2 0.130 0.000 0.002 0.006 0.23 0.2307E-12 G G G G G G G G G G G G G G G G G G G G G</td></t<> <td>NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGS 110649233 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5007 NGC 5006 NGC 5007 N</td> <td>NGC 5006 13 10 56.2 37 03 33.1 0 6002 13 10 56.2 37 03 33.1 0 6002 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 14 14910 18 18 0.0000 18 0.0004 18 0.0009 18 0.0004 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.00</td> <td>NGC 5005 NGC 5005 NGG 50</td> <td>NGC 5006 NGC 50</td> <td>NGC 5066. NGC 5067. NGC 5067.</td> <td>NGC 5606. NGC 5606. NGC 5607. NGC 5607. NGC 5608. NGC 5608.</td> <td>NGC 5006 NGC 5006 NGG 50</td> | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 C S 1 JVAS 1310+3233 13 10 59.4 32 33.44 1.600 20.96 0.000 0.684 0.00 0.7268E-12 C S 1 ACS 1310+3233 13 10 64.7 27 28 07.7 0.2394 18.00* 0.006 0.00 0.5818E-12 Q C RCB J1312+481 13 12 10.4 48 09 25.0 7.760 1.00 0.085 0.00 0.5818E-12 Q C PKS 1309+355 13 12 17.5 2.056 1.50* 0.00 0.108 0.2807E-12 G D C D C D C D D C D D D D D D D D D D D D D D D D D D D D D D D D D D D D | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13.67 0.017 0.055 0.00 0.7268E-12 C S 1 JAAS 1310+3233 13 10 56.2 37 03 33.1 0.003 0.006 0.0649E-12 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q< | NGC 5005 13 10 56.2 37 03 33.1 0.0032 1367 0.017 0.055 0.00 0.7268E-12 G S 1 JVAS 1310+3233 13 10 56.2 37 03 33.1 0.0032 1300 0.064 0.00 0.7268E-12 G S 1 RCB J1312+481 13 10 59.4 2.294 1.003 0.003 0.00 0.8518E-12 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G | NGC 5005 13 10 56.2 37 03 33.1 0.0032 13 05.5 0.007 0.055 0.00 0.7288E-12 G S 1 QX 284 13 10 54.2 37 33.4 1.80 50.4 28.03 0.000 0.054 0.00 0.7288E-12 G S 1 RGB J1312+481 13 11 104.7 27 28 07.7 0.2034 18.00 0.005 0.000 0.8518E-12 G G G CGCT 1300-44507 13 12 16.9 44 50 13.3 0.002 0.005 0.006 0.8518E-12 G G G CGCT 1300-4505 13 12 16.9 44 50 13.3 0.002 0.006 0.23 0.2307E-12 G G G CGCT 1300-4516 13 12 17.8 35 15 21.2 0.130 0.000 0.002 0.006 0.23 0.2307E-12 G G G G G G G G G G G G G G G G G G G G G | NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGS 110649233 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5006 NGC 5007 NGC 5006 NGC 5007 N | NGC 5006 13 10 56.2 37 03 33.1 0 6002 13 10 56.2 37 03 33.1 0 6002 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 13 10 54.2 14 14910 18 18 0.0000 18 0.0004 18 0.0009 18 0.0004 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.0009 18 0.00 | NGC 5005 NGG 50 | NGC 5006 NGC 50 | NGC 5066. NGC 5067. NGC 5067. | NGC 5606. NGC 5606. NGC 5607. NGC 5607. NGC 5608. NGC 5608. | NGC 5006 NGG 50 |

Table A.3: (continued)

	1	_I										Π																Τ							1
FR	(14)	_ d	ď	2	d	50	50	1	đ	r	ď	q	1	ď		ď	n	ď		z	ď		ď	*	ď	ď	ď	W		z	1	r	ď	6	ф
Class.	(13)																																		
Host	(12)			∞				\mathbf{v}				Z			闰							田		\mathbf{v}					闰					0	
a)	(11) (1	ဝ	o	Ü	o	೦	o	CC	o	Ü	o	Ü	0	o	CC	U	U	0	CC	o	c	CC	U	U	U	o	o	CC	U	o	U	CC	o	U	0
keV		0.5243E-12	0.2524E-12	0.1827E-11	0.2578E-11	0.4497E-12	0.3228E-12	0.2200E-10	0.1861E-11	0.1016E-11	0.4655E-12	0.3683E-11	0.5967E-12	0.3159E-12	0.9221E-12	0.6258E-12	0.7595E-14	0.6945E-14	0.4154E-11	0.6524E-11	0.3215E-12	0.1290E-11	0.8458E-12	0.5875E-11	0.2892E-10	0.3465E-11	0.5295E-12	0.5743E-12	0.6934E-12	0.7622E-11	0.9480E-11	0.7656E-11	0.9109E-12	0.2499E-12	0.5092E-12
F_0		0.00	0.00	0.00	1.12	0.00	0.60	0.00	0.70	1.57	-0.26	0.55	0.00	0.00	0.00	0.00	0.00	0.00	0.97	0.00	0.00	0.79	0.00	0.00	0.00	-0.13	0.00	1.11	0.00	0.00	0.00	1.51	0.00	0.00	0.00
z_I	(8)	0.046#	0.140 #	0.210	0.900	3.289	0.000	0.013#	0.150	0.480	0.333	1.429	0.002#	0.073#	0.001#	0.107	0.015 #	0.001 #	0.225	0.011	0.037	6.299	0.069	0.760	0.018	2.180	0.980	0.942	0.002#	0.034	#900.0	0.106	0.032	0.003#	0.247
F_{5GHz}^{core}	(7)	0.000	0.000	0.015	0.000	2.998	7.541	0.000	0.000	0.103	0.312	0.000	0.000	0.000	0.000	0.036	0.000	0.000	0.017	0.000	0.000	0.297	0.000	0.000	0.006	0.000	0.000	0.034	0.000	0.034	0.000	0.006	0.024	0.000	0.280
m_V	(9)	18.50	18.10	13.47	16.74	17.67	17.25	14.70*	17.70	18.00	19.30	18.27	18.30	18.90	14.40*	17.90	17.74	20.91	17.70*	19.10	19.40	10.57	18.20	7.89	15.00	19.00	17.68	18.30*	15.70*	18.50	16.00*	15.30*	16.89	13.12	18.13
z	(5)	0986.0	2.6540	0.0015	0.5240	1.0550	0.8490	0.0260	0.3290	0.1900	0.6680	0.2156	0.2250	1.3520	0.0240	0.3430	0.2350	2.0070	0.2278	0.2500	1.1170	0.0125	0.4360	0.0017	0.1076	0.5390	0.6250	0.2460	0.0372	0.1630	0.0418	0.0757	1.1060	0.0035	1.1850
DEC(J2000)	(4)	25 31 09.6	$50\ 09\ 26.4$	$47\ 11\ 42.6$	-214201.0	$25\ 09\ 10.9$	$30\ 30\ 32.9$	$-25\ 24\ 10.0$	-173635.0	$-25\ 59\ 49.4$	$47\ 22\ 22.7$	$02\ 00\ 45.6$	$41\ 41\ 28.2$	$30\ 44\ 12.4$	$34\ 41\ 25.8$	$56\ 31\ 47.9$	$38\ 06\ 27.1$	$38\ 04\ 30.3$	$41\ 00\ 03.8$	-295039.0	$27\ 27\ 46.6$	22	$65\ 41\ 16.1$	-295158.6	$24\ 23\ 03.3$	-12 57 24.7	$-06\ 27\ 10.9$	$38\ 51\ 09.2$	21	395935.2	-14 38 40.6	22	$37\ 07\ 10.2$	$35\ 39\ 15.2$	27 09 30.6
RA(J2000)	(3)	13 29 03.2	$13\ 29\ 05.8$	$13\ 29\ 52.7$	$13\ 30\ 07.1$	$13\ 30\ 37.7$	$13\ 31\ 08.3$	$13\ 31\ 13.9$	$13\ 31\ 36.1$	$13\ 32\ 32.0$	$13\ 32\ 45.2$	$13\ 32\ 53.3$	$13\ 33\ 45.5$	$13\ 34\ 22.5$	$13\ 34\ 25.2$	$13\ 34\ 37.5$	$13\ 34\ 38.5$	$13\ 34\ 58.4$	$13\ 35\ 20.1$	$13\ 35\ 29.7$	$13\ 36\ 02.8$	$13\ 36\ 39.0$	$13\ 36\ 55.5$	$13\ 37\ 00.8$	$13\ 37\ 18.7$	$13\ 37\ 39.8$	$13\ 38\ 08.0$	$13\ 38\ 49.9$	$13\ 39\ 31.5$	$13\ 41\ 04.9$	$13\ 41\ 12.9$	$13\ 41\ 49.7$	$13\ 41\ 59.9$	$13\ 42\ 08.3$	13 42 08.4
Name	(2)	MS 1326.6+2546	IVS $B1327 + 504$	m NGC~5194/M51a	[HB89] 1327-214	3C 287	3C 286	ESO 509- G 038	OP -148	PKS 1329-25	$B3\ 1330 + 476$	$3C\ 287.1$	FBQS J133345.4+.	$MG2\ J133418+3043$	NGC 5223	RGB $J1334+565$	FIRSTJ133438.5+.	$1WGA\ J1334.9+380$	RGB $J1335+409$	RBS 1291	87GB 133344.0+	IC 4296	RGB $J1336+656$	M83/NGC 5236	RGB J1337+243	PKS 1335-127	PKS 1335-06	3C 288	CGCG 161-108	B3 1338+402	CTS 0023	$RGB\ J1341 + 263$	$7C\ 1339 + 3723$	NGC 5273	[HB89] 1339+274
RXJ name	(1)	1329.0 + 2531		1329.8 + 4711	1330.1 - 2141	1330.6 + 2508	1331.1 + 3030	1331.6 - 2524	1331.5 - 1736	1332.5 - 2559	1332.6 + 4722	1332.8 + 0200	1333.7 + 4141	1334.4 + 3044	1334.4 + 3441	1334.5 + 5631			1335.2 + 4100		1336.0 + 2727		1336.8 + 6541	1337.0 - 2952	1337.3 + 2423	1337.6 - 1257		1338.8 + 3851	1339.4 + 2920		1341.5 - 1438		1341.9 + 3707		1342.1+2709

Table A.3: (continued)

	П				Π				Ι																									
FR (14)	1	ď			n	1	p	ď	I		J	1	ď	6	ď	W	z	5	z	ದ	z	ď	1	d		2	r	d	œ	ď	50	ď	d	d
Class. (13)																																		
Host (12)	Z			∞					ပ	\mathbf{v}	田	\mathbf{v}						0		0			\mathbf{v}		\mathbf{x}				∞					
e (Ŋ	0	U	U	U	U	ŭ	o	CC	CC	ŭ	CC	0	U	0	U	0	U	U	CC	0	~	U	°	U	U	U	U	CC	~	o	o	0	O
$F_{0.1-2.4\ keV}$ Typ (11)	0.8022E-12	0.1054E-11	0.5172E-12	0.1041E-11	<0.2099E-13	0.2943E-11	0.1250E-11	0.4304E-12	0.4543E-10	0.1292E-12	0.1510E-12	0.8050E- 10	0.5525E-12	0.6104E-11	0.1498E-11	<0.4468E-13	0.5282E-11	0.4150E- 10	0.8765E-12	0.5211E-12	0.2990E-11	0.2819E-11	0.1027E- 10	0.3520E-11	0.6397E-11	0.2412E-11	0.1625E- 11	0.9837E-12	0.7426E-12	0.2000E-11	$< 0.5590 \mathrm{E} - 12$	<0.6220E-12	0.5755E-12	0.3848E-12
$F_{0.1-}$	0.50	-0.01	0.00	0.00	1.00	0.00	4.50	0.00	1.20	0.24	0.50	0.00	0.30	-0.40	0.27	·	0.10	0.00	0.00	0.00	0.00	0.67	0.00	-0.35	0.00	0.00	-0.07	-0.33	0.00	0.37	0.45	1.20	1.12	0.90
$F_{5GHz} \qquad \alpha_r $ (8) (9)	0.780	0.174	0.001#	0.002#	0.600	0.223	0.068	0.015#	0.250	0.120	0.048	#290.0	#000.0	0.472 #	0.141	1.870	0.760	0.024#	0.027	0.033	0.015#	0.085	0.001#	0.980	#900.0	0.014#	0.670	0.040	0.001#	2.617	0.970	1.209	0.136	0.094
$F_{5GHz}^{core} \ (7)$	0.000	0.141	0.000	0.000	0.000	0.070	0.007	0.000	0.043	0.051	0.000	0.000	0.900	0.000	0.070	0.100	0.000	0.000	0.024	0.000	0.000	0.025	0.000	0.000	0.000	0.000	0.000	0.047	0.000	1.308	0.000	0.000	0.039	0.063
m_V	17.80	17.07	18.40*	13.14	23.00*	17.80*	17.90	16.23	15.50	13.70*	10.23	14.00*	17.39	18.10	16.60	15.60*	16.37	14.60*	18.30	11.80*	18.80*	17.18	15.40	18.40	17.10	17.95	18.50	16.69	15.70	16.03	18.40	18.10	17.37	19.40
z (5)	0.1360	0.9050	0.2950	0.0086	0.9674	0.1600	0.1170	0.1200	0.0632	0.0090	0.0059	0.0161	0.9800	0.1325	0.5289	0.4550	0.0520	0.0294	0.2160	0.0077	0.3700	0.3100	0.0260	0.3320	0.1220	0.0510	0.2230	0.6970	0.0348	0.7200	3.1470	1.8900	1.3710	0.8000
$ DEC(J2000) \\ (4) $	$05\ 04\ 32.0$	44	39~06~39.1	41 42 44.4	$49\ 46\ 32.6$	$53\ 32\ 52.3$	$62\ 20\ 45.5$	$30\ 12\ 52.2$	$26\ 35\ 33.9$	395906.4	$60\ 11\ 25.5$	$-30\ 18\ 34.0$	$53\ 41\ 17.0$	$09\ 40\ 10.6$	$23\ 31\ 45.1$	$31\ 26\ 46.5$	-44 12 40.4	$+69\ 18\ 29.6$	$37\ 41\ 13.7$	$40\ 16\ 58.9$	$+56\ 00\ 55.0$	31	55	41	$56\ 12\ 44.6$	34	$-34\ 21\ 10.9$	$41\ 36\ 15.3$	31	$19\ 19\ 07.4$	-17402.2	-15 27 28.8	$57\ 52\ 04.9$	$39\ 04\ 03.3$
RA(J2000) (3)	$13\ 42\ 43.6$	$13\ 43\ 00.2$	$13\ 44\ 19.2$	$13\ 45\ 19.1$	$13\ 45\ 26.4$	$13\ 45\ 45.4$	$13\ 46\ 17.6$	$13\ 47\ 37.4$	$13\ 48\ 52.4$	$13\ 48\ 56.1$	$13\ 49\ 15.2$	$13\ 49\ 19.3$	$13\ 49\ 34.6$	135022.1	135045.7	$13\ 52\ 17.8$	$13\ 52\ 56.5$	135303.4	135314.1	135326.7	135328.0	135335.9			$13\ 55\ 16.5$		$13\ 56\ 05.4$	135607.4	135625.3	135704.4	$13\ 57\ 06.0$	$13\ 57\ 11.2$	135817.6	$13\ 58\ 47.9$
Name (2)	4C + 05.57	$B2\ 1340 + 29$	$7C\ 1342 + 3921$	NGC 5290	3C 289	RGB $J1345+535$	RGB $J1346+623$	FBQS J1347+3012	4C + 26.42	NGC 5311	NGC 5322	IC 4329A	8C 1347+539	RBS 1322	$7C\ 1348 + 2346$	3C 293	PKS 1349-439	UGC~08823	RGB $J1353 + 376$	NGC 5353	$RX\ J1353.4+5601$	RBS 1328	m NGC~08829	[HB89] 1352-104	1RXSJ135515.9+	MRK 0464	MRC 1353-341	RGB $J1356+416$	VV 158b	PKS 1354+19	PKS 1354-17	PKS 1354-152	4C + 58.29	$B3\ 1356 + 393$
RXJ name (1)	1342.7 + 0504	1343.0 + 2844	1344.3 + 3907	1345.3 + 4142		1345.7 + 5332	1346.2 + 6220	1347.6 + 3012	1348.8 + 2635	1348.9 + 3958		1349.0 - 3018	1349.5 + 5341	1350.3 + 0940	1350.7 + 2331			1353.8 + 6918	1353.2 + 3741	1353.5 + 4016	1353.2 + 5601	1353.6 + 2631	1354.3 + 3255	1354.7 - 1040	1355.2 + 5612	1355.8 + 3834	1356.0 - 3420	1356.0 + 4136	1356.4 + 2831	1357.0 + 1919			1358.2 + 5752	1358.7 + 3904

Table A.3: (continued)

	Name	RA(J2000)	DEC(J2000)	N (nu Nu	F_{5GHz}^{core}	z F		$F_{0.1-2.4\ keV}$	Type	Host	Class.	FR
(2)		(3)	(4)	(2)	(9)	(7)	(8)		(10)	(11)	(12)	(13)	(14)
RBS 1334		13 58 51.9	25 11 39.9	0.0886	17.00	0.000	0.003#	0.00	0.2795E-11		75		
PKS 1355-41		135900.2	-415252.6	0.3130	15.86	0.037	1.439	0.93	0.4879E-11		\sim	O	-
MRC $1356 + 022$		135927.1	015954.6	1.3290	18.27	0.000	0.680	0.00	0.7830E-12		\sim	O	-
IVS $B1357 + 404$		13 59 38.1	$40\ 11\ 38.2$	0.4070	19.20	0.000	0.279	0.00	0.1621E-12		\sim		
$B3\ 1357 + 394B$		$14\ 00\ 03.1$	$39\ 10\ 55.8$	0.8040	19.60	0.000	0.084	0.80	0.2172E-12		\sim	O	-
PMN J1400+0425		$14\ 00\ 48.4$	$04\ 25\ 30.9$	2.5500	21.30	0.000	0.288	0.40	0.1436E-12		\sim	O	-
GSC 5557 00266		$14\ 01\ 36.4$	-11 07 43.4	0.0691	14.60*	0.000	0.005#	0.00	0.1020E-10	Ğ (C		
MCG + 03-36-031		$14\ 02\ 44.5$	15 59 58.3	0.2442	16.74	0.000	0.470	0.60	0.4340E-12		\sim		N 2
[HB89] 1401+098		$14\ 04\ 10.6$	$09\ 37\ 45.0$	0.4410	17.22	0.019	0.027	0.00	0.1002E-11	_	C	J	-
$7C\ 1402 + 3427$		$14\ 04\ 16.7$	13	0.9370	18.60	0.000	0.061	0.70	0.1288E-12		\sim	Ü	_
RGB J1404+270		$14\ 04\ 36.9$	$27\ 01\ 40.0$	0.1360	18.40*	0.012	0.031	0.00	0.3659E-12		\sim	I.V.	N 2
RBS 1342		$14\ 04\ 50.9$	02	0.2000	16.61	0.000	0.021	0.00	0.3725E-11		\sim		N 2
RX J1404.8+6554		$14\ 04\ 51.6$	+655435.0	0.3640	19.40*	0.000	0.015#	0.00	0.2850E-11		\sim		N 2
MCG + 05-33-047		$14\ 05\ 12.9$	$29\ 25\ 03.1$	0.0639	15.00*	0.000	0.097	0.00	0.3735E-12		S		
PG 1404+226		14~06~21.8	$22\ 23\ 46.0$	0.0980	15.82	0.000	0.002#	0.00	0.7243E-11	<u>ე</u>	7 h	Ü	~
$3C\ 294$		14~06~44.0	$34\ 11\ 25.1$	1.7790	22.00	0.000	0.280	1.30	< 0.2234 E-13		てち		ı II
GB2 1404+347		14~06~53.8	$34\ 33\ 37.3$	2.5560	18.20	0.000	0.211	0.00	0.1642E-12		\sim	Ü	~
RX J1408.4+2409	($14\ 08\ 27.8$	$+24\ 09\ 24.4$	0.1310	16.60*	0.000	0.004#	0.00	0.3680E-11		7 h		
PKS 1406-076		14~08~56.5	-07 52 26.7	1.4940	19.60	0.000	1.050	-0.15	< 0.2350 E-12		~	Ū	T.
MS 1407.9 + 5954		$14\ 09\ 23.4$	$59\ 39\ 40.8$	0.4950	19.67	0.000	0.016	0.00	0.1687E-11		C	IX.	N 2
PG 1407+265		$14\ 09\ 23.9$	$26\ 18\ 21.0$	0.9400	15.74	0.000	0.006	0.00	0.2197E-11		\sim	Ŭ	~
NGC 5490		$14\ 09\ 57.3$	$17\ 32\ 43.7$	0.0162	11.92	0.000	0.620	0.00	0.3294E-12		CE		Ι
RX J1410.5+6100	0	$14\ 10\ 31.7$	00	0.3840	20.10*	0.000	0.011#	0.00	0.2740E-11	_	\sim		N
3C 295		$14\ 11\ 20.6$	12	0.4641	20.20	0.010	6.764	1.14	0.1027E-11	_	CE		
B3 1409+429		$14\ 11\ 59.7$	$42\ 39\ 50.4$	0.8880	17.40	0.046	0.050	0.49	0.8295E-12		r h	Ü	~
NGC 5515		$14\ 12\ 38.2$	$39\ 18\ 36.9$	0.0253	13.70	0.015	0.024	0.00	0.3624E-12	C C		0.	
Circinus Gal		$14\ 13\ 09.3$	$-65\ 20\ 20.6$	0.0015	9.84	0.000	0.610	0.40	0.6554E-11	<u>.</u>	S	. 4	01
NGC 5506		$14\ 13\ 14.9$	$-03\ 12\ 26.9$	0.0062	13.40*	0.000	0.339 #	0.00	0.2730E-11		S	0.	•
RGB J1413+436		$14\ 13\ 43.7$	$43\ 39\ 45.1$	0.0890	18.03	0.034	0.039	0.18	0.4661E-11		C		0
FBQS J141409.2+	<u>.</u>	$14\ 14\ 09.3$	$34\ 30\ 57.7$	0.2750	19.42	0.000	0.003#	0.00	0.5866E-12	٥.	\sim	IX.	N
[HB89] 1413+092	2	$14\ 15\ 44.2$	03	0.2000	19.30	0.000	#960.0	0.00	0.6519E-12	<u>ح</u>	\sim		د.
[HB89] 1413+135		$14\ 15\ 58.8$	20	0.2467	20.50	0.000	0.640	0.50	0.5303E-13	~	\sim		N
B3 1414+375		$14\ 16\ 30.7$	21	0.9210	18.80	0.041	0.045	0.00	0.6125E-12	~1	\sim	Ü	7
LCRS B141408.4-		$14\ 16\ 50.0$	-11 58 58.4	0.0986	15.70*	0.000	0.003#	0.00	0.5720E-11		7 K		

Table A.3: (continued)

FR	[4)	Π												П																	Ι			
	(1		Ъ	Ъ	Ъ	Ŋ	ಬ	50	ਰ	ď	1	ď	Z	ಬ		n	ď			1	ď	Z	∞		Ъ	ď		1		ď		ď	ď	
	(13)	田				田	\mathbf{S}				\mathbf{S}			z				c	ပ	\mathbf{S}			\mathbf{x}								臼			
Host	(12)	CC	~	ී	o	SC	Ü	♂	~ ~	೦	Ş	♂	O'	ŭ	ŭ	Ç	O'	Ş	CC	ŭ	O'	O'	ŭ	ŭ	U	<u>م</u>	GC.	ŭ	U	<u>م</u>	CC	<u>م</u>	C5	U
Type	(11)	<u> </u>				O					<u> </u>							0	0								\cup							
Λ		0.3913E-12	0.2980E-12	0.8295E-13	0.3450E-12	0.2410E-10	0.7062E-10	0.5415E-11	0.1566E-12	0.2492E-12	0.3510E-10	0.3156E-12	0.1253E-11	0.1115E-10	0.5470E-12	<0.1151E-13	0.4784E-12	0.5071E-11	0.3385E-11	0.1357E-11	0.8352E-12	0.2544E-10	0.3333E-12	0.1560E-11	0.5388E-11	0.3297E-12	0.2240E-11	0.2410E-11	0.2138E-12	0.4882E-12	0.4107E + 02*	0.1323E-11	0.7254E-12	0.1998E-12
$F_{0.1-2.4\ keV}$	(10)	0.391	0.298	0.826	0.345	0.241	0.70	0.541	0.156	0.249	0.351	0.315	0.125	0.111	0.547	<0.11	0.478	0.507	0.338	0.135	0.835	0.254	0.335	0.156	0.538	0.329	0.224	0.241	0.215	0.488	0.4107	0.132	0.725	0.199
$F_{0.1}$		0.10	0.32	0.00	0.48	00.0	0.00	1.10	0.00	0.00	0.00	-0.17	-0.10	0.46	0.00	0.80	-0.73	0.00	0.00	0.00	0.48	0.00	0.00	0.00	0.36	09.0	0.00	0.00	0.00	0.20	1.09	06.0	0.00	0.00
α_r												'									#													#
F_{5GHz}	(&)	6.799	0.910	0.074	0.000	0.045	0.011#	2.075	0.326	0.007#	0.013#	0.871	0.000	0.830	0.207	7.700	0.103	0.004#	0.002#	0.002#	#000.0	0.095	0.002#	0.015#	0.232	0.102	0.008#	0.002#	0.003#	0.548	0.367	0.520	0.057	0.003#
		7	0	0	1	0	0	0	0	0	0	6	6	0	0	0	6	0	0	0	00	9	0	0	α	0	0	0	0	10	က	6	6	0
F_{5GHz}^{core}	\mathcal{L}	0.077	0.000	0.000	0.181	0.040	0.000	1.700	0.000	0.000	0.000	0.719	1.399	0.000	0.000	0.050	0.099	0.000	0.000	0.000	0.368	0.006	0.000	0.000	0.128	0.000	0.000	0.000	0.000	0.305	0.013	0.059	0.019	0.000
mv (e)	(o)	12.19*	8.15	21.90	17.90	17.20	13.30*	62.91	20.50	16.30	3.30*	9.30	5.65	99.9	17.50	19.40	8.74	*00.9	7.20*	5.85	7.50	00.61	4.42	5.10*	02.9	19.40	3.60*	16.50*	*00.8	6.50	15.62	17.93	8.80	.3.10*
				-					-		_					-								П										
Z ((c)	0.0237	1.5520	1.4550	0.4510	0.2370	0.0171	1.4360	2.3890	0.3770	0.0224	1.8320	0.1510	0.1200	0.2360	0.3670	0.4900	0.0710	0.1600	0.0533	0.6850	0.6380	0.0342	0.0375	0.2740	0.5690	0.0820	0.1348	0.1890	3.6200	0.0371	0.6490	0.6640	0.0295
5000)		11.0	05.4	57.0	21.0	24.7	12.4	34.8	30.0	03.0	41.0	48.5	14.8	8.92	59.4	48.5	23.0	02.0	30.7	55.0	10.4		02.7		37.3	15.9		2.00	46.9	9.00		03.9	32.0	09.4
$\overline{\mathrm{DEC}(\mathrm{J2000})}$	(4)	10 48	4607	2644	$38 \ 18$	2543	25 08	0628	0603	3203	-2638	$38 \ 21$	5423	-1928	0650	41 44	3855	$49 \ 33$	37 17	$29 \ 42$	$32\ 23$	$58 \ 01$	3251	$+26\ 15$	5055	48 30	$40\ 15$	+5953	3858	2256	26 37	24 04	4024	3554
		2	2	4	4	2	نت	2	ಛ	<u></u>	4	9	9	7	6.	9	0.	∞i	5	2	4	<u>ن</u>	4.	භ 	2	1	5	· -	4		ъ	7	7	က်
RA(J2000)	(3)	$14\ 16\ 53.2$	14 17 08.2	$14\ 17\ 30.4$	$14\ 17\ 40.4$	$14\ 17\ 56.7$	$14\ 17\ 59.5$	$14\ 19\ 08.2$	14 19 09.5	14 19 16.7	14 19 22.4	14 19 46.6	$14\ 19\ 46.6$	$14\ 19\ 49.7$	14 20 40.9	21 05.6	21 06.0	$21\ 35.8$	$21\ 40.5$	$22\ 20.2$	22	2238.9	2255.4	23 10.5	23 14.2	23 18.	2351.5	24 24.	2425.4	24 38.1	$24 \ 40.5$	$14\ 25\ 50.7$	142606.2	142704.5
R_I		14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
			463	-2659					5090		30	385		~1	20		1	021	405	201					60	2	515		253	+2256			.04	
Name	(2)		1415+	1415+	+385	99	848		419+(82	1- G 0	1417 +	+54	117-19	118+07		19 + 39	08-26-	iJ1421	iJ1422	+32	83	214	94	423+5	21 + 48	iJ1423		iJ1424	J1424	22 + 26	23 + 24	456 + 4	14269
		3C 296	[HB89] 1415+463	WB92] $1415+2659$	$B3\ 1415 + 385$	RBS 1366	NGC 5548	3C 298	PMN J1419+0603	PB 03578	ESO 511- G 030	HB89] 1417+385	S4 1418+54	MRC 1417-192	MRC 1418+070	3C 299	TXS 1419+391	MCG + 08-26-021	2MASXiJ1421405	2MASXiJ1422201	B21420 + 32	RBS 1383	UGC~09214	NGC 5594	RGB J1423+509	TXS 1421 + 487	2MASXiJ1423515.		2MASXiJ1424253	CLASS J1424+2256	PKS 1422+26	PKS $1423 + 24$	RGB J1426+404	LEDA 214269
a)		3						-	Ъ		_				Z	3	-					Ξ.	_			Τ		52		-	P			
RXJ name	(T)		1417.1 + 4606		1417.6 + 3818	1417.9 + 2543	1417.9 + 2508	1419.1 + 0628		1419.3 + 3202	1419.5-2638	1419.8 + 3822	1419.7 + 5423	1419.8-1928			1421.0 + 3855	1421.6 + 4933	1421.6 + 3717	1422.3 + 2942	1422.5 + 3223	1422.6 + 5801	1422.9 + 3251	1423.0 + 2615	1423.1 + 5055		1423.8 + 4015	1424.2 + 5952	1424.4 + 3858	1424.6 + 2255		1425.8 + 2404	1426.0 + 4024	1427.1 + 3553
RX			1417		1417	1417	1417	1419		1419	1419	1419	1419	1419			1421	1421	1421	1422	1422	1422	1422	1423	1423		1423	1424	1424	1424		1425	1426	1427

FR (14)																										=								
		г о	' b'	Z	П	ď			ď	ď	ಬ			ď	ಬ	ď	ď	ď	ď	Н	ď		ď		z	р	ď		z		90	<i>9</i> .0	ď	d
Class. (13)							\mathbf{x}	ပ							\mathbf{x}						\mathbf{x}	ω.		\mathbf{x}		Z				臼				
Host (12)		r (~	~	~	てち	~			o	~	てち	ũ	Ö	~		~	てち	\sim	てち				<u>ر</u>		~		לז	CC C	\sim		\sim	てち	~	3
$\frac{\text{Type}}{(11)}$				•	•	•	•	O	•	•	•	O	O	•	•	Ī	•	•	•	•	•	•	•		•	•	•	O	•	•		•	Ī	
$F_{0.1-2.4\ keV} = (10)$	0.1758F-11	0.5284E-11	0.8241E-12	0.5453E-10	0.2060E-10	0.5986E-12	0.7811E-11	0.4353E-11	0.7461E-12	0.4880E-12	0.9371E-12	0.2293E-11	0.1735E-11	0.7528E-12	0.1380E-11	0.2080E-10	0.7176E-12	0.4424E-12	0.6370E-12	0.2640E-11	0.6283E-10	0.5859E-11	0.2239E-12	0.3772E-12	0.1232E-10	0.4738E-11	0.3159E-12	0.9095E-12	0.2128E-11	0.1329E-11	0.6000E-12	0.9410E-13	0.2943E-11	0.4161E-11
F_0	1.00	0.85	0.00	0.00	0.00	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.40	0.03	0.00	0.00	0.00	0.73	0.00	0.00	0.00	-0.07	09.0	0.00	0.00	0.49	0.33	-0.30	0.00	-0.20	0.50	1.30	0.00	0.00
α_r		0	#2	11	4#	2:	4#	#2	4#	11#	11#	#2	∞.	0	2#	#0	ಛ	55	ಬ	4#	4#	#2	#0	4	3	0.	∞.	9	2	0	63	55	4#	11#
$\frac{F_{5GHz}}{(8)}$	0.330	2.120	0.017#	0.031	0.004#	0.337	0.004#	#200.0	0.164#	0.001#	0.001#	#200.0	0.148	0.540	0.012#	0.100 #	0.023	0.165	0.045	0.004#	0.004#	0.007	0.110#	0.034	0.053	1.070	0.448	0.126	0.01	0.160	1.149	0.155	0.014#	0.001#
F_{5GHz}^{core} (7)	0.000	0.000	0.000	0.021	0.000	0.132	0.000	0.000	0.000	0.000	0.000	0.000	0.015	0.000	0.000	0.000	0.008	0.000	0.016	0.000	0.000	0.000	0.000	0.002 #	0.045	0.065	0.000	0.026	0.000	0.000	0.000	0.000	0.000	0.000
<i>vm</i> (6)	16.49	18.90	18.10	16.45	17.50*	20.90	14.68	16.30*	17.90	16.84	15.50	16.06*	15.20*	18.20	14.50*	15.80*	17.66	20.40	18.26	16.40*	14.58	17.32	19.30	15.51	17.10	17.29	17.90	16.00	19.65	17.60*	17.78	17.90	18.20	16.06
z (5)	0.8060	1.5220	0.5680	0.1290	0.0865	4.7150	0.0461	0.0964	0.4080	0.7040	0.0551	0.1313	0.1402	1.2030	0.0315	0.1440	0.7850	1.0100	0.4250	0.2760	0.0790	0.0968	1.8000	0.0739	0.1620	0.1410	1.3800	0.1906	0.2990	0.1059	3.5220	0.1800	0.6590	0.1130
(000	50.0	19.4	41.6	20.6	06.5	36.5	14.1	01.3	20.5	50.3	04.8	49.0	52.1	32.3	39.4	41.0	55.9	$39\ 05.8$	59.1	33.0	2622.9	$18 \ 13.1$	21.0	2048.0	40.4	37.3	26.4	21.4	3605.6	01.3	36.1	45.7	5506.8	47.2
$\overline{\mathrm{DEC}(\mathrm{J2000})}$	-12 03	90	32 47	42 40	+0117	42 04 3	28 17	25 38 (24 42	$34\ 16$	$31\ 35$	$31\ 38$	07	17 29	+58 47	-16 13	$50\ 45\ 55.9$		58 27 59.1	+61 56 33.0	35 26	22 18	52 36	29 20	12 00 40.4	$52\ 01$	63 32	19 21	63 36	-03 12 01.3	58	40 47 45.7	3455	35 59
(000	38.1	56.3	58.7	32.7	9.90	23.7	04.8	8.90	25.9	67.9	6.80	87.9	28.5	2.99	22.1	9.6	20.5	18.6	12.9	12.7	7.5	19.4	9.61	39.6	18.2	8.20	58.6	33.7	34.9	2.99	16.5	12.7	33.0	25.1
$\frac{\mathrm{RA}(\mathrm{J2000})}{(3)}$	14 27 38.1	14 27 56.3	$14\ 27\ 58.7$	$14\ 28\ 32.7$	$14\ 29\ 06.6$	$14\ 30\ 23.7$	14 31 (14 31 (14 31	14 31	14 32 (14 32 37.9	$14\ 35\ 28.5$	$14\ 35\ 56.7$	$14\ 36\ 22.1$	14 36 49.6	14 37 26.2	14 37 48.6	14 39 42.9	14 40 12.7	14 42 07.5	14 42 19.4	14 42 19.6	14 42 ;	14 42 48.2	14 43 02.8	14 43	14 44 33.7	14 44 34.9	$14\ 44\ 56.7$	14 45 16.5	14 47 12.7	$14\ 47\ 33.0$	14 48 ;
Name (2)	PKS 1424-11	PKS 1424-41	WGA J1427.9+3247	RBS 1399	PG 1426+015	B3 1428+422	MRK 684	2MASXiJ1431068	$MG2\ J143127 + 2441$	FBQS J143157.9+.	CGCG 163-074	1RXSJ143236.0+	RGB J1435+551	[HB89] 1433+177	UGC 09412	EC 14340-1600	RGB $J1437 + 507$	B2 1435+24	RGB $J1439 + 584$	IRAS $F14390+620$	MRK 0478	UGC09480	TXS 1440 + 528	IRAS $F14405+2933$	RBS 1420	3C 303	TXS 1442+637	RGB J1444+193	MS 1443.5 + 6349	MRC 1442-029	PKS 1442+101	B3 1445+410	$RBS\ 1430$	RBS 1433
RXJ name (1)	1427.6-1203			1428.5 + 4240	1429.7 + 0117	1430.3 + 4203	1431.0 + 2817	1431.1 + 2538	1431.4 + 2442	1432.0 + 3416	1432.1 + 3135	1432.5 + 3138	1435.4 + 5507	1435.9 + 1729	1436.2 + 5847	1436.6 - 1613	1437.4 + 5045	1437.8 + 2439	1439.7 + 5827	1440.6 + 6156	1442.1 + 3526	1442.2 + 2218		1442.6 + 2920	1442.8 + 1200	1443.0 + 5201			1444.5 + 6336	1444.9 - 0311				

Table A.3: (continued)

FR	(14)																																		
Class.	(13) (N		က	q	Ъ	Ъ	Ъ	Ъ	Ъ	ď	ď	Z	Z	Ъ	50	Ъ		Z		ದ	Ъ	Ъ	Ъ		_	Ъ	1	ď	ď	Z	Ъ		
		田					∞												0		臼					田	闰		∞					c	
e Host	(12)	IJ	o	Ü	U	ŭ	U	o	ŭ	U	0	0	0	0	o	0	0	U	CC	0	CC	U	o	o	U	U	$_{\rm GC}$	o	ŭ	0	U	0	0	CC	
Type	(11)	.02*	.11	.11	.11	-12	-10	.11	.12	.11	-12	.11	.12	.10	.11	.11	.11	.11	.11	.11	.10	.10	.11	-12	.12	-12	-10	-11	.11	-12	.12	-11	5-11	.10	-10
$F_{0.1-2.4\ keV}$	(10)	0.4165E + 02	0.6840E-11	0.1840E-1	0.4290E-1	0.8574E-12	0.1553E-10	0.2670E-1]	0.2291E-12	0.2287E-1]	0.5097E-12	0.7530E-11	0.7104E-12	0.2160E-10	0.6110E-1	0.1434E-1	0.1316E-1	0.1558E-1	0.8878E-1	0.7341E-1	0.1430E- 10	0.3060E-10	0.4411E-11	0.2779E-12	0.4399E-12	0.1896E-12	0.1240E-10	0.2819E-11	0.3558E-11	0.2620E-12	0.4273E-12	0.3936E-11	<0.1130E-11	0.6626E-10	O 1062E-10
F_0		0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.00	-0.20	0.60	80.0	0.00	0.16	0.68	0.00	0.00	0.00	0.00	0.00	0.65	-0.20	0.00	0.20	0.00	0.26	0.00	0.70	0.00	0.00	0.36	0.61	-0.49
	(6)	7.200&	0.091#	0.004#	0.004#	0.022	0.003#	0.010#	0.025 #	0.219	31	1.840	90	0.232	0.003#	0.615	3.567	0.048	0.027 #	0.030	0.016#	0.062 #	0.227	2.040	0.061	23.399&	0.022 #	1.960	0.004#	0.213#	0.046	0.003#	2.330	3.740&	0.202
F_{5GHz}	8	7.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.031	1.8	0.406	0.2	0.0	0.6	3.5	0.0	0.0	0.0	0.0	0.0	0.2	2.0	0.0	23.3	0.0	1.9	0.0	0.2	0.0	0.0	2.3	3.7	0.5
F_{5GHz}^{core}	(7)	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.124	0.016	0.000	0.202	0.212	0.000	0.493	0.804	0.105	0.000	0.000	0.000	0.000	0.069	0.000	0.006	0.080	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.084	0.006
m_V	(9)	13.74	19.10*	18.00*	16.60*	19.47	15.01	19.60*	18.00	17.80	19.20	16.69	19.03	19.30	20.20*	20.15	16.78	17.60	15.60*	16.79	11.40*	16.40*	17.10	18.56	17.00	15.24*	11.10*	18.50	14.86	18.50	18.50*	17.70	17.21	15.40*	15.50
z	(5)	0.0416	0.2250	0.2920	0.0722	0.4330	0.0650	0.6500	0.4840	0.4690	1.1610	0.3210	0.5800	0.4800	0.5390	0.3940	0.9050	0.6440	0.1532	0.2350	0.0064	0.2169	0.3180	1.8390	0.3600	0.0538	0.0061	0.8760	0.0460	1.4780	0.8140	0.1148	1.1850	0.0779	0.0809
(000		14.0	20.0	21.0	12.7	53.0	26.7	26.2	32.0	23.7	29.1	33.1	58.5	36.3	46.2	13.8	19.9	01.6	2.60	06.5	07.1	16.5	12.0	39.2	20.0	58.3	20.7	30.3	10.3	34.3	11.9	04.5	07.5	41.2	54.8
DEC(J2000	(4)	16	$+27\ 46$	+4635	-07 14	5333	27 09	+6354	3402	4522	47.35	-37 47	29 55	5048	+4832	$04\ 16$	71 40	$33\ 37$	21 22	$22\ 38$	+0142	-02 48	6856	10 29	5649	2600	+0136	-1652	5127	62 13	57 18	$33\ 35$	-0543	0544	06 20
RA(J2000)	(3)	14 49 21.7	$14\ 49\ 32.7$	145005.1	145054.0	$14\ 51\ 06.4$	51 08.8	$51\ 27.8$	$51\ 31.9$	5224.7	5247.4	5427.4	$54\ 32.3$	5608.1	5827.3	5859.3	5907.6	145958.5	0.19.5	1 01.8	1 11.3	150407.5	$4\ 12.7$	4 24.9	150455.5	457.1	6 29.3	7 04.8	745.0	$15\ 07\ 57.3$	940.7	15 10 41.2	15 10 53.6	$15\ 10\ 56.1$	1 26.5
RA(14 4	14 4	14 5	14 5	14 5	14 5	145	145	14 5	14 5	145	145	145	14 5	14 5	14 5	14 5	15 0	15 0	15 0	150	15 0	15 0	15 0	15 0	15 0	15 0	150	15 0	150	15 1	15 1	15 1	15 1
						535		3354	1.9	153	7	20	301		1832			336				1.5-	691	9	899						573				903
Name	(2)	,-	434	287		RGB J1451+535	PG 1448+273	RX J1451.4+6354	FIRSTJ145131.9	RGB J1452+453	PC 1451+4747	MRC 1451-375	[HB89] 1452+301	444	RX J1458.4+4832	4.49	1.1	RGB J1459+336	LEDA 140447	452	6813	LCRS B150131.5-	[HB89] 1503+691	PKS 1502+106	$RGB\ J1504 + 568$	_	1846	PKS 1504-167	845	8C 1506 + 624	RGB J1509+573	469	PKS 1508-05	6.53	RGB J1511+063
		3C305	RBS 1434	CBS 0287		RGB J	PG 14	RX J1	FIRST	RGB J	PC 14	MRC :	[HB89]	RBS 1444	RX J1	4C + 04.49	$3C\ 309.1$	RGB J	LEDA	RBS 1452	NGC 5813	LCRS	[HB89]	PKS 1	RGB J	$3C\ 310$	NGC 5846	PKS 1	MRK~845	8C15C	RGB J	RBS 1469	PKS 1	4C + 06.53	RGB J
ame			-2746	-4635	0714	-5333	-2709	-6354	-3402	-4522	-4736	3747	-2955	-5048	-4832	-0416	-7140	-3336	-2122	-2238	-0141	0248	-6856		-5649		-0136		-5127		-5718			-0544	
RXJ name	(1)		1449.3 + 2746	1450.5 + 4635	1450.0-0714	1451.0 + 5333	1451.1 + 2709	1451.5 + 6354	1451.5 + 3402	1452.3 + 4522	1452.7 + 4736	1454.4-3747	1454.5 + 2955	1456.0 + 5048	1458.3 + 4832	1458.9 + 0416	1459.1 + 7140	1459.9 + 3336	1500.3 + 2122	1501.0 + 2238	1501.6 + 0141	1504.4 - 0248	1504.1 + 6856		1504.8 + 5649		1506.3 + 0136		1507.7+5127		1509.6 + 5718			1510.9 + 0544	

Table A.3: (continued)

15.00 0.000 0.477# 0.00 15.50* 0.000 0.047# 0.00 18.50 0.130 0.510 0.00 18.50 0.130 0.510 0.00 18.80 0.000 0.700 -0.36 18.80 0.000 0.001# 0.00 18.00 0.000 0.001# 0.00 15.80 0.762 0.87 0.87 17.40 0.000 0.021# 0.00 15.80 0.762 1.585 0.90 15.80 0.762 1.585 0.90 18.70 0.000 0.021# 0.00 18.70 0.000 0.040 0.05 17.77 0.000 0.013# 0.00 17.54 0.029 0.044 0.01 17.50 0.000 0.023 1.40 17.54 0.029 0.044 0.00 16.00* 0.000 0.023 1.40 17.54 0.000 0.023 1.40 16.00* 0.000 0.023 1.40	(3) (4) (4) (5) (14) (4) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	DEC(J2000) (4)	EC(J2000) (4)	(5)		(6)	$\frac{F_{5GHz}^{core}}{(7)}$	$F_{5GHz} \alpha_r \\ (8) (9)$		$F_{0.1-2.4\ keV} = (10)$	Type (11)	Host (12)	Class. (13)	FR (14)
0.2190 18.50 0.130 0.510 0.40 0.1542E-11 G 8 0.3600 16.54 1.613 3.240 -0.13 0.1542E-11 G 9 0.3600 16.54 1.613 3.240 -0.33 <0.1040E-11	'	'	$\frac{05}{21}$	$05\ 18\ 09.3$ $21\ 19\ 01.7$	0.0840 0.0446	19.00 $15.50*$	0.000	$0.496 \\ 0.047 \#$	0.00	0.1911E-12 $0.1350E-10$	<u></u> უ ტ		·	
8 0.3600 16.54 1.613 3.240 -0.13 0.3151E-11 Q 8 1.5130 18.80 0.000 0.700 -0.36 <0.1040E-11	22 15 12 15.7 02	02	05 03	$03\ 17.0$	0.2190	18.50	0.130	0.510	0.40	0.1542E-11	ŭ		I	
1.1.15.0 1.5.00 0.000	PKS 1510-08 15 12 50.5 -09 05 DKS 1511 100 15 13 44 0 10 19	-09	10 05	5 59.8	0.3600	16.54	1.613	3.240	-0.13	0.3151E-11	_		0.	
0.3707 16.27 0.068 0.351 0.87 0.3357E-11 Q 0.9140 17.40 0.000 0.068 0.90 0.3512E-12 G 0.9140 17.40 0.000 0.021# 0.00 0.4060E-11 G 0.0133 12.50* 0.000 0.021# 0.00 0.4060E-11 G 0.0130 18.20 0.034 0.082 0.77 0.2101E-11 G 0.0344 14.17 0.256 0.947 0.84 0.4879E-10 G 0.0386 18.65 0.000 0.0460 0.020 0.4879E-11 G 0.0286 18.67 0.000 0.040 0.0524E-12 G G 0.0286 1.070 0.040 0.0524E-11 G G G 0.0286 1.070 0.000 0.013# 0.00 0.245E-11 G 0.0387 1.504* 0.000 0.0110E-10 G G G 0.0550 17.24	+4255 15 14 20.5 42	42	42 4		0.1520	18.00	0.000	0.001#	0.00	0.2022E-11	4		<i>,</i> 02	.
9 (0.914) 17.40 0.000 0.068 0.90 0.3512E-12 G 9 (0.0113) 12.50* 0.000 0.021# 0.00 0.4060E-11 G 0 (0.0525) 15.80 0.762 1.585 0.90 0.1928E-11 G 0 (0.0525) 15.80 0.762 1.585 0.90 0.1928E-11 G 0 (0.034) 1.177 0.256 0.947 0.84 0.4879E-10 G 0 (0.034) 1.870 0.000 0.0460 0.020 0.0485E-12 G 0 (0.036) 1.0700 18.70 0.000 0.040 0.0482E-12 G 0 (0.048) 1.0700 18.70 0.000 0.013# 0.00 0.4879E-11 G 0 (0.048) 1.0700 0.035 0.06 0.1877E-10 Q G 0 (0.0500 1.774 0.000 0.013# 0.00 0.2450E-11 G 1 (0.0550 1.754 0.000 0.023 1.40 0.110E-10 G	36	36	36	5050.4	0.3707	16.27	0.068	0.351	0.87	0.3357E-11	O		0	
8 0.0113 12.50* 0.000 0.021# 0.00 0.4060E-11 G 9 0.0525 15.80 0.762 1.585 0.90 0.1928E-11 GC 9 0.0525 15.80 0.762 1.585 0.90 0.1928E-11 GC 9 0.0344 14.17 0.256 0.947 0.84 0.4879E-10 GC 1 1.0700 18.70 0.000 0.460 -0.20 0.854E-12 Q 1 1.0700 18.70 0.000 0.400 0.048 0.4879E-12 Q 1 1.0700 18.70 0.000 0.048 0.0874E-12 Q 0 0.0387 15.60* 0.000 0.0357E-11 GC G 0 0.0387 15.60* 0.000 0.0345 0.00 0.2450E-12 Q 1 0.0550 17.74 0.000 0.024 0.01 0.0450E-11 G 1 0.0570 17.24	47	47	47	$55\ 09.2$	0.9140	17.40	0.000	0.068	0.90	0.3512E-12	U		0	
0.0525 15.80 0.762 1.585 0.90 0.1928E-11 GC 0.1300 18.20 0.034 0.082 0.77 0.101E-11 G 0.0344 14.17 0.256 0.947 0.84 0.4879E-10 GC 0.0344 14.17 0.256 0.947 0.84 0.4879E-10 GC 0.02080 18.65 0.000 0.001# 0.00 0.4862E-12 Q 0.02080 18.65 0.000 0.001# 0.00 0.4862E-11 GC 0.0286 17.77 0.000 0.013# 0.00 0.2450E-11 GC 1 0.0387 15.60* 0.000 0.013# 0.00 0.2450E-11 GC 1 0.0570 17.24 0.029 0.044 0.01 0.2450E-12 G 1 0.0570 17.24 0.029 0.044 0.01 0.2450E-11 G 1 0.0570 17.24 0.029 0.044 0.01 0.2450E-12	$15\ 15\ 23.3 +55$	+55	55		0.0113	12.50*	0.000	0.021 #	0.00	0.4060E-11	U		П	
0.1300 18.20 0.034 0.082 0.77 0.2101E-11 G 0.0344 14.17 0.256 0.947 0.84 0.4879E-10 GC 1.0700 18.70 0.000 0.460 -0.20 0.8654E-12 Q 0.2080 18.65 0.000 0.001# 0.00 0.4082E-12 Q 0.0286 14.80 0.000 0.035 0.16 0.1877E-10 Q 0.0486 14.80 0.000 0.013# 0.0242E-11 GC 0.0387 15.60* 0.000 0.013# 0.00 0.242E-11 GC 0.0387 15.60* 0.000 0.0187E-12 G G 0.0550 17.74 0.029 0.044 0.01 0.8520E-12 G 0.0570 17.24 0.029 0.044 0.01 0.8520E-12 G 0.0570 17.25 0.000 0.223 1.40 0.1110E-10 Q 0.070 17.70 0.000 0.0	$15\ 16\ 40.2$		00	15	0.0525	15.80	0.762	1.585	0.90	0.1928E-11	CC	7)	_	
5 0.0344 14.17 0.256 0.947 0.84 0.4879E-10 GC 9 1.0700 18.70 0.000 0.460 -0.20 0.8654E-12 Q 9 0.2080 18.65 0.000 0.001# 0.00 0.4082E-12 Q 9 0.2080 18.65 0.000 0.001# 0.00 0.4082E-12 Q 9 0.2080 18.65 0.000 0.0035 0.16 0.1877E-10 Q 1 0.7720 17.77 0.000 0.013# 0.00 0.2450E-11 GC 1 0.5760 18.40 0.005 0.034 0.00 0.2450E-12 G 1 0.5760 17.54 0.029 0.044 0.01 0.2450E-12 G 1 0.0550 17.54 0.029 0.044 0.01 0.3850E-12 G 1 0.0550 0.729 0.044 0.01 0.3850E-12 G 2 0.050 <	516+293 15 16 41.6		53	1809.5	0.1300	18.20	0.034	0.082	0.77	0.2101E-11	U		Z	
1.0700 18.70 0.000 0.460 -0.20 0.8654E-12 Q 0.2080 18.65 0.000 0.001# 0.00 0.4802E-12 Q 0.2080 18.65 0.000 0.001 0.05 0.242E-11 GC 0.0486 14.80 0.000 0.035 0.16 0.1877E-10 Q 0.07020 17.77 0.000 0.013# 0.00 0.2450E-11 GC 1 0.5760 18.40 0.005 0.034 0.00 0.2450E-11 GC 1 0.5760 18.40 0.005 0.034 0.00 0.3876E-12 G 1 0.5760 18.40 0.005 0.044 0.01 0.8520E-12 G 0 0.0550 0.729 0.044 0.01 0.8520E-12 G 0 0.2700 17.22 0.000 0.223 1.40 0.1110E-10 G 0 0.2700 17.22 0.000 0.028# 0.00	15 16 44.5 07	20	02 ($01\ 16.6$	0.0344	14.17	0.256	0.947	0.84	0.4879E-10	CC		2	Ι
0.2080 18.65 0.000 0.001## 0.00 0.4082E-12 Q 0.0486 14.80 0.000 1.940 0.05 0.2642E-11 GC 0.0486 14.80 0.000 1.940 0.05 0.2642E-11 GC 0.07020 17.77 0.000 0.013# 0.00 0.2450E-11 GC 1 0.5760 18.40 0.005 0.034 0.00 0.2450E-12 G 1 0.0550 17.54 0.029 0.044 0.01 0.8520E-12 G 1 0.0650 17.54 0.029 0.044 0.01 0.8520E-12 G 2 0.0700 0.223 1.40 0.110E-10 GC G 3 0.1740 17.22 0.000 0.024 0.00 0.732E-12 G 4 0.5700 0.000 0.023 1.00 <0.732E-11	15 16 56.8 19	19	19	32 12.9	1.0700	18.70	0.000	0.460	-0.20	0.8654E-12	o		Z	
5 0.0486 14.80 0.000 1.940 0.05 0.2642E-11 GC 9 0.7020 17.77 0.000 0.035 0.16 0.1877E-10 Q 8 0.0387 15.60* 0.000 0.013# 0.00 0.2450E-11 G 1 0.5760 18.40 0.005 0.034 0.00 0.9876E-12 G 1 0.0550 17.54 0.029 0.044 0.01 0.8520E-12 G 1 0.0650 17.54 0.029 0.044 0.01 0.8520E-12 G 2 0.1021 15.20* 0.000 0.223 1.40 0.1110E-10 GC 3 0.15740 20.90 0.000 0.750 1.00 0.7420E-12 G 4 0.5700 0.000 0.750 1.00 0.7324E-12 G 5 0.0738 16.00* 0.000 0.126# 1.38 0.3314E-10 G 6 0.0743	+2856 15 17 28.5 28	28	28		0.2080	18.65	0.000	0.001#	0.00	0.4082E-12	o			
0 0.7020 17.77 0.000 0.035 0.16 0.1877E-10 Q 8 0.0387 15.60* 0.000 0.013# 0.00 0.2450E-11 G 1 0.0550 18.40 0.005 0.034 0.00 0.9876E-12 G 1 0.0650 17.54 0.029 0.044 0.01 0.8520E-12 G 2 0.1021 15.20* 0.000 0.223 1.40 0.1110E-10 GC 3 0.1021 15.20* 0.000 0.0223 1.40 0.1110E-10 GC 3 0.2700 17.22 0.000 0.0223 1.40 0.1110E-10 GC 3 0.2700 17.22 0.000 0.750 1.00 <0.7324E-12	AE 15 17 41.8 -24	-24	.24 2	$22\ 19.5$	0.0486	14.80	0.000	1.940	0.05	0.2642E-11	CC		Z	
8 0.0387 15.60* 0.013# 0.00 0.2450E-11 G 1 0.5760 18.40 0.005 0.034 0.00 0.9876E-12 G 1 0.0650 17.54 0.029 0.044 0.01 0.8520E-12 G 8 0.1021 15.20* 0.000 0.223 1.40 0.1110E-10 GC 9 0.2700 17.22 0.000 0.025# 0.00 0.7420E-12 G 9 0.2700 17.22 0.000 0.750 1.00 <0.7420E-12 G 1 0.2700 17.22 0.000 0.750 1.00 <0.7324E-12 G 1 0.7700 0.000 0.754 0.00 0.7324E-12 G 2 0.7738 16.00* 0.082# 0.00 0.7326E-11 G 3 0.7738 16.00* 0.000 0.154# 0.00 0.5860E-11 G 4 0.0453 15.50* 0.000	15 17 47.6 65	65	652	25 23.9	0.7020	17.77	0.000	0.035	0.16	0.1877E-10	o		Z	
1 0.5760 18.40 0.005 0.034 0.00 0.9876E-12 G 1 0.0650 17.54 0.029 0.044 0.01 0.8520E-12 G 2 0.1021 15.20* 0.000 0.223 1.40 0.1110E-10 GC 3 0.1720 17.22 0.000 0.022# 1.00 0.7420E-12 Q 3 1.5740 20.90 0.000 0.750 1.00 0.7426E-11 Q 4 0.7990 16.50 0.000 0.514 0.96 0.1326E-11 Q 5 0.0738 16.00* 0.082# 0.00 0.5860E-11 G 6 0.0738 16.00* 0.082# 0.00 0.5860E-11 G 9 0.0738 14.90* 0.000 0.154# 0.00 0.5860E-11 G 9 0.0830 14.90* 0.000 0.15# 0.00 0.5860E-11 G 1 0.0830 17.70	$15\ 17\ 51.7 + 05$	+05	05	$06\ 27.8$	0.0387	15.60*	0.000	0.013#	0.00	0.2450E-11	U		0	
1 0.0650 17.54 0.029 0.044 0.01 0.8520E-12 G 3 0.1021 15.20* 0.000 0.223 1.40 0.1110E-10 GC 9 0.2700 17.22 0.000 0.025# 1.00 0.7420E-12 Q 8 1.5740 20.90 0.000 0.750 1.00 <0.724E-12	$15\ 18\ 30.9$		48 32	2 14.4	0.5760	18.40	0.005	0.034	0.00	0.9876E-12			0.	_
0.1021 15.20* 0.000 0.223 1.40 0.1110E-10 GC 0.2700 17.22 0.000 0.0750 1.00 0.7420E-12 Q 1.5740 20.90 0.000 0.750 1.00 <0.7420E-12	$15\ 18\ 38.9$		40 4	$40\ 45\ 00.1$	0.0650	17.54	0.029	0.044	0.01	0.8520E-12			П	
0.2700 17.22 0.000 0.002# 0.00 0.7420E-12 Q 1.5740 20.90 0.000 0.750 1.00 <0.3724E-12			06 13	3 55.8	0.1021	15.20*	0.000	0.223	1.40	0.1110E-10		<i>r</i> >	8	
1.5740 20.90 0.0000 0.750 1.00 <0.3724E-12 G 0.7990 16.50 0.000 0.514 0.96 0.1326E-11 Q 0.0738 16.00* 0.000 0.082# 0.00 0.580E-11 QC 0.0453 15.50* 0.000 0.126# 1.38 0.3314E-10 GC 0.0830 14.90* 0.000 0.015# 0.00 0.5340E-11 G 0.0710 17.70 0.000 0.218 0.66 0.4209E-11 G 0.6290 17.70 0.000 0.218 0.65 0.1170E-11 G 0.2040 16.80 0.014 0.236 1.17 0.518E-11 G 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.3310 18.30 0.246 0.286 0.40 0.285E-12 G 0.0083 1	11519+2838 15 19 36.1 28	28	28	38 27.9	0.2700	17.22	0.000	0.002#	0.00	0.7420E-12			0,	_
0.7990 16.50 0.000 0.514 0.96 0.1326E-11 Q 0.0738 16.00* 0.002# 0.00 0.5860E-11 GC 0.0453 15.50* 0.000 0.126# 1.38 0.3314E-10 GC 0.0830 14.90* 0.000 0.015# 0.00 0.5340E-11 G 0.0710 17.70 0.000 2.279 0.66 0.4209E-11 G 0.6290 17.70 0.000 0.218 0.65 0.1170E-11 G 0.2040 16.80 0.014 0.236 1.17 0.5718E-11 G 0.6280 17.50 0.208 0.350 0.10 0.1239E-11 Q 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.3310 18.30 0.246 0.286 0.40 0.225E-12 G 0.0083 14.00 0.000 0.065# 0.00 0.4809E-12 Q 0.0990 16.08	$15\ 20\ 05.4$	20	20	1605.8	1.5740	20.90	0.000	0.750	1.00	< 0.3724E-1			u	Ξ
0.0738 16.00* 0.000 0.082# 0.00 0.5860E-11 GC 0.0453 15.50* 0.000 0.126# 1.38 0.3314E-10 GC 0.0830 14.90* 0.000 0.015# 0.00 0.5340E-11 G 0.0710 17.70 0.000 2.279 0.66 0.4209E-11 Q 0.6290 17.70 0.000 0.218 0.65 0.1170E-11 G 0.2040 16.80 0.014 0.236 1.17 0.5718E-11 G 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.0083 14.00 0.000 0.065# 0.00 0.2125E-12 G 1.3580 18.40 0.000 0.005# 0.09326E-11 G 0.0990 16.08 0.000 0.9326E-11 G	15 20 47.7 72	72	72	25 05.3	0.7990	16.50	0.000	0.514	0.96	0.1326E-11	♂		0.	_
0.0453 15.50* 0.000 0.126# 1.38 0.3314E-10 GC 0.0830 14.90* 0.000 0.015# 0.00 0.5340E-11 G 0.0710 17.70 0.000 2.279 0.66 0.4209E-11 Q 0.6290 17.70 0.000 0.218 0.65 0.1170E-11 G 0.2040 16.80 0.014 0.236 1.17 0.5718E-11 G 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.3310 18.30 0.246 0.286 0.40 0.3207E-11 Q 0.0083 14.00 0.000 0.065# 0.00 0.125E-12 G 1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0.0990 16.08 0.000 0.9326E-11 G	$3-28-020$ $15\ 20\ 52.2$ $+48$	+48	48	39 38.2	0.0738	16.00^{*}	0.000	0.082#	0.00	0.5860E-11	9	7)		
0.0830 14.90* 0.000 0.015# 0.00 0.5340E-11 G 0.0710 17.70 0.000 2.279 0.66 0.4209E-11 Q 0.6290 17.70 0.000 0.218 0.65 0.1170E-11 G 0.2040 16.80 0.014 0.236 1.17 0.5718E-11 G 0.6280 17.50 0.258 0.350 0.10 0.139E-11 Q 0.3310 18.30 0.246 0.286 0.40 0.3207E-11 Q 0.0083 14.00 0.000 0.065# 0.00 0.125E-12 G 1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0.0990 16.08 0.000 0.9326E-11 G	$15\ 21\ 51.9$ 07	02	02	$42\ 31.9$	0.0453	15.50*	0.000	0.126 #	1.38	0.3314E-10	Ö		I	
3 0.0710 17.70 0.000 2.279 0.66 0.4209E-11 Q 0.6290 17.70 0.000 0.218 0.65 0.1170E-11 G 0.2040 16.80 0.014 0.236 1.17 0.5718E-11 G 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.3310 18.30 0.246 0.286 0.40 0.3207E-11 Q 1 0.0083 14.00 0.000 0.065# 0.00 0.2125E-12 G 1 1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0 0.0990 16.08 0.000 0.341# 0.60 0.9326E-11 G	65 15 22 28.7 -	'	90:	44	0.0830	14.90*	0.000	0.015#	0.00	0.5340E-11	U			
0.6290 17.70 0.000 0.218 0.65 0.1170E-11 G 0.2040 16.80 0.014 0.236 1.17 0.5718E-11 G 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.3310 18.30 0.246 0.286 0.40 0.3207E-11 Q 1 0.0083 14.00 0.000 0.065# 0.00 0.2125E-12 G 1 1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0.0099 16.08 0.000 0.005# 0.00 0.9326E-11 G	273 15 22 37.7 -27	-27		$30\ 10.8$	0.0710	17.70	0.000	2.279	0.66	0.4209E-11	c		010	
0.2040 16.80 0.014 0.236 1.17 0.5718E-11 G 0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.3310 18.30 0.246 0.286 0.40 0.3207E-11 Q 1 0.0083 14.00 0.000 0.065# 0.00 0.2125E-12 G 1 1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0.0090 16.08 0.000 0.005# 0.09326E-11 G	15 22 59.6 66	99	99	45 06.9	0.6290	17.70	0.000	0.218	0.65	0.1170E-11	U		0.	_
0.6280 17.50 0.258 0.350 0.10 0.1239E-11 Q 0.3310 18.30 0.246 0.286 0.40 0.3207E-11 Q 1 0.0083 14.00 0.000 0.065# 0.00 0.2125E-12 G 1 1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0 0.0990 16.08 0.000 0.005# 0.00 0.9326E-11 G	15 23 45.8 63	63		3924.0	0.2040	16.80	0.014	0.236	1.17	0.5718E-11	U		0.	_
0.3310 18.30 0.246 0.286 0.40 0.3207E-11 Q 1 0.0083 14.00 0.000 0.065# 0.00 0.2125E-12 G 1 1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0 0.0990 16.08 0.000 0.005# 0.00 0.9326E-11 G	22+155 15 24 41.6 15	15		$21\ 21.0$	0.6280	17.50	0.258	0.350	0.10	0.1239E-11	0		0.	
0.0083 14.00 0.000 0.065# 0.00 0.2125E-12 G 1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0.0990 16.08 0.000 0.005# 0.00 0.9326E-11 G	15 25 02.9 11	11		07 44.1	0.3310	18.30	0.246	0.286	0.40	0.3207E-11	O		0.	_
1.3580 18.40 0.000 0.341# 0.60 0.4809E-12 Q 0.0990 16.08 0.000 0.005# 0.00 0.9326E-11 G	$15\ 26\ 06.2$ 41	41	41	40 14.4	0.0083	14.00	0.000	0.065 #	0.00	0.2125E-12	U	d	-	
0.0990 16.08 0.000 0.005# 0.00 0.9326E-11 G	$15\ 26\ 46.3$		60	59	1.3580	18.40	0.000	0.341 #	0.60	0.4809E-12	o		0.	_
	IRAS F15279+5626 15 29 07.4 56	26		16 06.0	0.0990	16.08	0.000	0.005#	0.00	0.9326E-11	Ü	\mathbf{x}	ca	

Table A.3: (continued)

FR [14]	\parallel		Π	Π																														
Class. F (13) (1	 	П		n	Z	_	ď	Z	ď	ď	Ŋ	Ŋ	ಬ	Ŋ	1	ď		Z	Ъ	ס			Ъ	Ъ	Ъ	Ъ	П	ď	П	Ъ	2		ď	ō
		∞		d									田									闰												
pe Host .) (12)	U	IJ	U	U	U	U	0	o	o	o	o	o	U	o	ŭ	o	CC	o	U	o	CC	U	0	Ç	0	o	U	OC	U	0	U	U	o	C
$F_{0.1-2.4\ keV}$ Type (11)	0.7442E-12	0.6270E-11	0.4851E-12	0.2600E-12	0.6152E-11	0.3918E-11	0.1356E-11	0.3833E-12	0.7095E-12	0.2523E-12	0.1750E-10	0.2268E-11	0.1535E-10	0.1036E-10	0.5470E-11	0.1170E-11	0.7696E-11	0.3304E-12	0.7664E-12	0.1493E-11	0.2424E-11	0.1186E-11	0.2374E-12	0.2294E-11	0.5518E-12	0.1490E-11	0.1490E-11	0.7182E-11	0.3560E-11	0.8441E-12	0.9690E-11	0.1150E- 10	0.6588E-12	0.2761E-11
F_0 .	99.0	0.00	0.78	1.14	0.00	0.00	0.90	0.00	0.17	0.00	0.00	0.00	0.00	-0.48	0.00	0.66	0.00	0.00	0.00	0.40	0.00	0.03	0.40	0.00	0.24	0.00	0.00	0.81	0.00	0.50	0.00	0.00	-0.38	0.50
$F_{5GHz} \qquad \alpha_r $ (8) (9)	0.027	#600.0	0.500	360.7	0.042	0.020	0.380	0.024	1.284	0.000	0.018#	0.019#	0.002#	0.045	0.004#	0.032	#900.0	0.019#	0.002#	1.209	0.027 #	0.293	0.294	0.003#	0.387	0.004#	0.003#	0.870	0.004#	0.107	0.031 #	0.012#	#000.0	#000.0
$F_{5GHz}^{core} \ (7)$	0.021	0.000	0.555	0.030	0.047	0.008	0.000	0.020	0.800	0.150	0.000	0.000	0.000	0.035	0.000	0.015	0.000	0.000	0.000	0.716	0.000	0.154	0.000	0.000	0.358	0.000	0.000	0.039	0.000	0.060	0.000	0.000	0.934	1.147
m_V	16.80	14.30*	18.00*	16.00	15.60	19.10	18.74	18.30	20.20	18.30	17.60*	18.46	14.96	18.70	16.70*	15.81	18.10*	17.32	16.80	17.30	16.60*	15.10	19.50	17.91	18.90	16.00*	16.60*	16.69	16.80*	18.26	14.50*	14.50*	18.40	17.79
z (5)	0.4520	0.0337	0.3420	0.0961	0.0640	0.3611	0.7110	0.1430	1.4350	1.8950	0.8900	0.2570	0.0296	0.3120	0.1958	0.7721	0.0968	0.1200	0.3300	0.6050	0.1102	0.0399	1.3960	0.3180	2.1820	0.4000	0.1390	0.2643	0.0980	0.4800	0.0252	0.0489	2.1690	0.4130
DEC(J2000) (4)	43 56 37.0	$+07\ 27\ 27.9$	$35\ 33\ 39.9$	$24\ 04\ 19.1$	$30\ 16\ 28.9$	$30\ 20\ 59.5$	$13\ 32\ 23.9$	$37\ 15\ 54.8$	$01\ 31\ 04.2$	$58\ 39\ 23.5$	$+53\ 20\ 35.0$	$39\ 22\ 46.7$	575409.2	$01\ 37\ 59.5$	$-10\ 26\ 21.3$	$47\ 35\ 31.0$	$30\ 43\ 03.9$	$41\ 43\ 25.5$	$33\ 49\ 30.0$	$14\ 47\ 45.9$	$04\ 43\ 56.0$	045219.2	$18\ 47\ 19.8$	$40\ 13\ 24.9$	$04\ 07\ 46.3$	$+48\ 46\ 09.0$	+102451.2	$20\ 52\ 16.7$	+025550.8	$35\ 11\ 28.3$	$-13\ 45\ 27.9$	$-32\ 07\ 12.0$	$50\ 38\ 05.8$	$02\ 37\ 01.2$
RA(J2000) (3)	15 31 02.4	$15\ 31\ 18.1$	$15\ 31\ 25.4$	$15\ 31\ 43.4$	$15\ 32\ 02.2$	$15\ 32\ 53.8$	$15\ 33\ 15.1$	$15\ 34\ 47.2$	$15\ 34\ 52.4$	$15\ 34\ 57.2$	$15\ 35\ 00.8$	$15\ 35\ 29.0$	$15\ 35\ 52.4$	$15\ 36\ 46.7$	$15\ 38\ 46.7$	$15\ 39\ 34.8$	$15\ 39\ 50.8$	$15\ 39\ 51.4$	$15\ 39\ 52.2$	$15\ 40\ 49.5$	$15\ 41\ 26.5$	$15\ 43\ 33.9$	$15\ 43\ 43.8$	$15\ 43\ 48.6$	$15\ 44\ 59.4$	$15\ 45\ 30.2$	$15\ 47\ 32.2$	$15\ 47\ 43.5$	$15\ 47\ 51.9$	$15\ 48\ 17.9$	$15\ 48\ 24.9$	$15\ 48\ 43.1$	$15\ 49\ 17.5$	$15\ 49\ 29.4$
Name (2)	RGB J1531+439	NGC 5940	$3C\ 320$	$3C\ 321$	RBS 1508	RBS 1509	$[{ m HB89}]~1530{+}137$	RGB J1534+372	PKS $1532+01$	SBS 1533 + 588	$RX\ J1535.0+5320$	FBQS J153529.0+.	MRK 290	RBS 1517		$[{ m HB89}]~1538{+477}$	LEDA 140531	FIRST $J153951.3+$	FIRSTJ153952.2	MRC $1538+149$	$NVSS\ J154126+$	CGCG 1541.1+0501	$MG1\ J154345+1847$	FBQS J154348.5+.	4C + 04.53	PG 1543+489		PG 1545+210	MS 1545.3 + 0305	[HB89] 1546+353	NGC 5995	ESO 450-PN?016	S4 1547+50	[HB89] 1546+027
RXJ name (1)	1530.9 + 4356	1531.2 + 0727			1531.9 + 3016	1532.8 + 3020	1533.2 + 1332	1534.7 + 3716	1534.9 + 0130	1534.9 + 5839	1535.1 + 5320	1535.4 + 3922	1535.8 + 5754	1536.7 + 0137	1538.0 - 1026	1539.5 + 4735	1539.8 + 3043	1539.8 + 4143	1539.8 + 3349	1540.8 + 1447		1543.5 + 0452		1543.8 + 4013	1545.0 + 0406	1545.7 + 4846	1547.3 + 1024	1547.7 + 2051	1547.7 + 0255	1548.3 + 3511	1548.9 - 1345	1548.3 - 3207	1549.2 + 5038	1549.4 + 0236

Table A.3: (continued)

П	1	Ξ	Π					П							Ι											Π						Π			1
FR	(14)	n	ď	ď	ď	*	ď	W	ď	ಡ	Ŋ	ď		Z		*		d	5		ď			ත			ď	ď		50	ď	p		h	
Class.	(13)																																		
	(12)		Z				田								囝				囝			∞			၁	0			田				၁		
		CC	U	0	o	Ü	Ü	Ü	o	U	Ü	o	ŭ	0	Ü	U	U	o	Ü	U	0	U	U	Ü	CC	U	o	U	U	0	0	U	CC	U	U
Type	(11)	B-13	-12	-12	-12	-12	-12	-13	B-12	-111	-11	-12	B-12	-10	-12	-11	-11	3-12	-11	-10	-12	-11	-11	-12	-10	D-12	-12	-11	-11	-12	-12	-12	-10	-12	-12
F _{0.1-2.4} keV	(10)	<0.4468E-13	0.1422E-12	0.5000E-12	0.9003E-12	0.8570E-12	0.5460E-12	0.2437E-13	< 0.2390 E-12	0.1710E-11	0.6350E-11	0.4912E-12	< 0.5900 E-12	0.3339E-10	0.3238E-12	0.2750E-11	0.2992E-11	< 0.2200 E-12	0.4164E-11	0.2320E-10	0.4394E-12	0.8410E-11	0.2546E-11	0.8500E-12	0.1090E-10	< 0.2000 E-12	0.5734E-12	0.1685E-11	0.7519E-11	0.4550E-12	0.5234E-12	0.8100E-12	0.1264E-10	0.5380E-12	0.5380E-12
$F_{0.1}$		1.00	0.90	-0.28	0.57	0.00	80.0	0.00	0.27	0.00	-1.41	0.80	0.85	-0.11	0.20	0.00	0.70	-0.21	0.00	0.20	0.00	0.00	0.00	0.70	0.00	0.95	0.00	0.67	-0.96	0.36	0.0	1.07	1.02	0.00	0.00
α_r	(6)	10	200%	30	43	0.005#	48	9.640&	39	0.002#	51	40	62	10	60	0.005#	0.078#	10	0.002#	0.461 #	#980.0	0.003#	43	80	0.011#	02	0.001#	0.103#	0.269 #	35	00	59	00	0.001#	2.980#
F_{5GHz}	(8)	0.610	10.000	2.180	0.543	0.0	0.348	9.6	1.139	0.0	0.051	0.540	1.379	0.510	0.109	0.0	0.0	1.010	0.0	0.4	0.0	0.0	0.043	0.080	0.0	2.870	0.0	0.10	0.20	0.365	0.000	1.129	0.200	0.0	5.98
F_{5GHz}^{core}	(7)	0.000	0.001	0.000	0.176	0.000	0.263	0.013	0.000	0.000	0.020	0.000	0.000	0.398	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.028	0.000	0.000	0.000	0.265	0.384	0.065	0.212	0.000	0.000
mv	(9)	21.70	19.00	19.50	17.23	16.50*	16.73	17.00*	19.60	15.70*	17.70	20.10	19.90	15.00	15.42*	15.30*	14.70	20.70	17.10	17.30*	17.00	15.06	16.00*	18.40*	14.20*	16.31	18.05	17.30	15.50	17.20	18.00	20.30	14.90*	18.20*	15.60*
z	(2)	1.2063	0.8600	1.4220	0.4360	0.0930	1.3240	0.0895	2.1450	0.0475	0.2220	1.3400	0.4830	0.3600	0.0426	0.0423	0.1579	1.7700	0.0719	0.0970	1.6460	0.0313	0.0684	0.6590	0.0347	0.1048	0.8100	0.4880	0.1095	2.8500	0.7200	0.4620	0.0319	0.0910	0.0296
DEC(J2000)	(4)	25 38.1	$41\ 20.6$	27 10.4	2047.4	4851.6	0644.5	0523.7	04 40.2	38 37.8	1125.4	47 19.1	4036.3	1124.4	2652.9	03 18.8	3024.7	0150.4	5124.4	0959.0	23 18.8	$01\ 47.5$	54 14.9	54	$\frac{5}{2}$	5756.2	38	09 00 37.7	5402.4	3054.4	14	1751.0	5556.4	39 22.4	39 40.9
DEC		21	62	05	11	35	58	20	-27	32	20	19	-79	11	24	60+	35	-00	25	-14 09	33	$35 \ 01$	53	17	+15	01	30	60	15	22	22	01	23		32
RA(J2000)	(3)	15 49 48.9	$15\ 49\ 58.6$	15 50 35.3	15 50 43.6	155135.6	55158.2	5 52 09.1	55402.5	55417.4	55424.1	55439.2	55521.6	55543.0	55603.9	55625.9	55742.1	55751.4	5 58 18.8	55821.9	155855.1	$.5\ 59\ 09.6$	$16\ 01\ 28.4$)]	02	16 02 27.3	$16\ 02\ 57.4$	$16\ 03\ 17.7$	$16\ 03\ 38.1$	160355.9	160437.3	160445.3	$16\ 04\ 56.8$	$16\ 05\ 08.9$	16 05 34.6
		1		П	1	1	1	1	1	1	1	1	1	_	_	Т	Т	П	1	Т	Т	1	1	1	Т			1	T	1	1	1	1	1	1
1e				056	114	2MASXiJ1551356	+581		69		+201	+199	6	+1113	CGCG 1554.0+2435		38	001		40	+335		6-046	180			FBQS J1602+3038	+00000		929	22			08.8	013
Name	(2)	24	25	PKS 1548+056	PKS 1548+114	SXiJ15	RGB J1551+581	56	PKS 1550-269	329	RGB J1554+201	HB89] 1552+199	PKS 1547-79	HB89] 1553+113	G 1554	MRK 0863	7C 1555+3538	PKS $1555+001$	864	PKS 1555-140	HB89] 1556+335	JGC 10120	MCG + 09-26-046	$\Gamma XS 1559 + 180$	UGC 10143	27	§ J160;	PMN J1603+0900	463	SBS 1602 + 576	7C 1603+5722	27.1	NGC 6051	FBQSJ160508.8.	CGCG 195-013
		3C 324	3C325	PKS	PKS	2MA	RGB	3C326	PKS	CG 1329	RGB	[HB8]	PKS	[HB8:	CCC	MRK	7C 1E	PKS	MRK 864	PKS	[HB8:	Ω CC	MCG	TXS	Ω CC	3C 327	FBQ	$_{ m PMN}$	GIN 463	SBS	7C16	$3C\ 327.1$	NGC	FBQ	CGC
tame					⊢1120	⊦3548	-5806			∟3238	-2011			-11111	-2426	⊢0903			-2551	1410	⊢3323	⊢3501		⊢1754	⊦1558		⊢3039	0060⊣		⊢5730	⊢5714		⊢2355	⊢3239	-3239
RXJ name	(1)				1550.7 + 1120	1551.6 + 3548	1551.9 + 5806			1554.2 + 3238	1554.4 + 2011			1555.7 + 11111	1556.0 + 2426	1556.4 + 0903			1558.3 + 2551	1558.4 - 1410	1558.9 + 3323	1559.1 + 3501		1601.7 + 1754	1602.3 + 1558		1603.0 + 3039	1603.2 + 0900		1603.9 + 5730	1604.5 + 5714		1604.9 + 2355	1605.2 + 3239	1605.5+3239
I																																			-

Table A.3: (continued)

									Π					П							Н	П												
FR (14)	đ	ď	1	Z	*	ď	ď	ď	n	z	1	2			1	ď	ď	500	ď	z		ď	1	ď		ď	ď	ď		ď	2	ď		ъ0
Class. (13)																																		
Host (12)	~	<u>ئ</u>	r h	o	IJ	7.ħ	\sim	\sim	Ç	7 h	7 h	IJ	r h	C C	7 h	\sim	\sim	\sim	\sim	\sim	田田		IJ	_ල	ŭ	°	C	\sim	c C	IJ	IJ		CC E	\sim
Type (11))	0	<u> </u>	0	0	0	J			0	0	0	<u> </u>		0	J	J	J	0	J	0	0	0	J	<u> </u>	J	c	0	U	0	0	0	U	
$F_{0.1-2.4\ keV}$ (10)	0.9875E-13	0.1254E-12	0.3170E-12	0.1059E-11	0.4253E-12	0.1759E-11	0.1035E-11	0.6730E-12	< 0.8801E-13	0.4245E-11	0.3420E-11	0.3620E-11	0.4810E-12	0.4156E + 02*	0.1800E-10	0.1100E-10	0.3156E-12	0.7917E-12	0.1775E-12	0.2106E-11	0.8124E-13	0.2136E-12	0.1630E-10	0.1342E-11	0.1020E-10	0.5232E-12	0.1433E-11	0.2170E-12	0.6051E-11	0.1549E-11	0.2320E-11	0.4930E-12	0.9927E-12	0.5863E-12
F_0	0.00	0.40	0.65	0.30	0.00	0.00	0.05	0.56	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.26	90.0	-0.01	-0.08	0.78	0.74	0.00	0.00	0.00	0.65	0.80	0.36	0.00	0.88	0.00	0.43	0.82	0.20
α_r (9)	0.031#	0.178 #	0.089	0.510	0.002#	#6200	1.411	38	2.350	0.036	0.005 #	0.004#	0.007#	#000.0	0.004#	0.018#	0.049#	0.916	0.286	24	0.470	0.830	#900.0	5.549	0.003#	0.044	0.584	51	0.004#	0.201	0.005#	0.058	1.090&	0.481
$\frac{F_{5GHz}}{(8)}$	0.0	0.1	0.0	0.5	0.0	0.0	1.4	0.238	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.124	0.4	0.8	0.0	5.5	0.0	0.0	0.5	0.051	0.0	0.2	0.0	0.0	1.0	0.4
$F_{5GHz}^{core} \ (7)$	0.000	0.000	0.061	0.000	0.000	0.000	1.347	0.015	0.001	0.013	0.000	0.000	0.000	0.006	0.000	0.000	0.000	0.711	0.269	0.081	0.028	0.010	0.000	0.000	0.000	0.038	0.195	0.000	0.000	0.155	0.000	0.030	0.174	0.243
(6)	20.00	18.30	17.10	18.00	16.30*	16.00	18.70	18.00	21.00	18.40	16.70*	15.80*	14.20*	14.80*	15.20*	15.40*	16.87	19.60	18.60	16.20*	14.90*	16.00	16.50*	19.20	16.90*	17.24	16.41	16.51	18.10*	17.28	18.80*	18.30*	14.10*	18.60
z (5)	1.8130	0.3830	0.8780	0.3570	0.0540	0.1780	1.2260	0.3460	0.5500	0.0670	0.0970	0.0321	0.0647	0.0318	0.1290	0.1310	1.5320	3.1970	2.2590	0.2670	0.0295	0.1515	0.0380	1.7100	0.0340	1.2860	0.5551	1.4900	0.0954	0.3400	0.0501	0.6870	0.0310	0.2010
DEC(J2000) (4)	17 47 40.6	$20\ 32\ 09.3$	$54\ 05\ 55.5$	$15\ 51\ 34.5$	$34\ 50\ 48.8$	$60\ 18\ 28.0$	$10\ 29\ 07.8$	175616.0	$65\ 56\ 43.6$	$67\ 10\ 29.8$	$+33\ 03\ 37.7$	+585101.6	$38\ 12\ 41.7$	29 29 04.3	$+65\ 43\ 09.6$	$+26\ 04\ 16.4$	$37\ 46\ 07.3$	045932.7	$36\ 21\ 34.5$	41.0647.0	$35\ 00\ 15.4$	$32\ 22\ 34.8$	03	17	$+36\ 19\ 57.9$	$30\ 30\ 51.5$	$17\ 36\ 24.0$	$69\ 04\ 47.6$	295327.6		$+54\ 27\ 23.7$	90	37550.4	66 24 01.1
RA(J2000) (3)	$16\ 06\ 01.3$	$16\ 06\ 05.7$	$16\ 06\ 23.5$	$16\ 07\ 06.4$	$16\ 07\ 46.0$	160820.5	$16\ 08\ 46.2$	$16\ 09\ 11.2$	$16\ 09\ 36.6$	$16\ 10\ 02.6$	$16\ 10\ 47.7$	$16\ 11\ 24.6$	$16\ 11\ 39.2$	$16\ 12\ 35.6$	$16\ 13\ 57.2$	$16\ 14\ 13.2$	$16\ 14\ 46.9$	$16\ 16\ 37.5$	$16\ 16\ 55.6$	$16\ 17\ 06.3$	$16\ 17\ 40.6$	$16\ 17\ 42.5$	$16\ 17\ 45.6$	$16\ 17\ 49.3$	$16\ 18\ 09.4$	$16\ 19\ 02.5$	$16\ 20\ 21.9$	$16\ 20\ 26.3$	$16\ 20\ 31.1$	$16\ 21\ 11.3$	$16\ 21\ 45.1$	$16\ 22\ 29.3$	$16\ 23\ 03.1$	16 23 04.5
Name (2)	[HB89] 1603+179	$MG2\ J160607 + 2031$	RGB $J1606 + 540$	PKS 1604+159	2MASXiJ1607459	2MASXiJ1608205	4C + 10.45	PKS 1606+180	3C 330	$7C\ 1609+6718$	RX J1610.7 + 3303	SBS $1610 + 589$	2MASXiJ1611392	NGC 6086	PG 1613+658	PG 1612+261	FBQS J161446.9+.	[HB89] 1614+051	EF $B1615 + 3628$	B3 1615+412	NGC 6109	3C 332	$RX\ J1617.7+0603$	PKS 1610-77	$RX\ J1618.1 + 3619$	FBQS J1619+3030	3C 334	$GB6\ J1620+6905$	LEDA 140601	4C + 37.46	SBS $1620 + 545$	RGB J1622+401	NGC 6137	RGB J1623+664
RXJ name (1)			1606.3 + 5405		1607.8 + 3450	1608.3 + 6018	1608.7 + 1028	1609.1 + 1756		1609.9 + 6710	1610.7 + 3303	1611.8 + 5851	1611.7 + 3812		1613.0 + 6543	1614.0 + 2604	1614.8 + 3745	1616.6 + 0459	1616.8 + 3621	1617.0 + 4106	1617.6 + 3501		1617.7 + 0603		1618.2 + 3619	1618.9 + 3031	1620.3 + 1736	1620.4 + 6904	1620.5 + 2953	1621.1 + 3745	1621.2 + 5427	1622.4 + 4006	1623.0 + 3755	1623.0+6624

Table A.3: (continued)

FR	(14)	ď	ď	b	ď	5	1	ď	Z	ď	ď	ď	ď	ď	ď	р	z	ď	œ		ď	n	ď		ď		ď	6	ď	ď	Z	ъ0	W		d
Class.	(13)																																		
Host	(12)	್ದ	o	o	o	田田	てち	てち	c	C	てち	C	ڻ ص	<u>ئ</u>	U	ŭ	C	G S	てち	ပို	C	E E	てち	IJ	C	o C	0	G 0	~	IJ	C	Ç	E E	CC	<u>ح</u>
Type	(11)	21				~1	_	~1	~1	~1	_	_	•	_	_	_															_	_			
$F_{0.1-2.4\ keV}$	(10)	0.5634E-12	0.2664E-12	0.3271E-12	0.2374E-12	0.3663E-12	0.6210E-1	0.1127E-12	0.4110E-12	0.6142E-12	0.1477E-1	0.1900E-1	0.1411E-12	0.1830E-1	0.1693E-1	0.1904E-1	0.1419E-1	0.4698E-12	0.3173E-12	0.7563E-12	0.6177E-12	0.1185E-12	0.5581E-12	0.8094E-1]	0.6653E-12	0.4145E-12	0.3130E-12	0.9420E-12	0.5482E-12	0.1877E-12	0.5680E-1	0.2029E-1	0.2702E-1	0.2479E-10	0.3616E-12
		0.15	0.00	0.00	0.70	0.00	0.00	-0.13	0.26	1.11	0.78	0.19	0.17	0.00	0.00	0.29	0.41	0.43	0.00	0.00	0.00	1.75	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.69	0.13	1.70	0.49
F_{5GHz} α_r	(8)	0.000	#800.0	0.003#	0.146#	0.001 #	0.004#	0.590	0.031	0.233	0.210	2.029	1.362	1.860	0.003#	0.035	0.019	0.328	0.001#	0.001#	0.036	0.463	0.068	0.020	0.174	#200.0	0.105 #	0.021	0.020#	0.003#	#200.0	0.864	0.802 #	0.065	0.035
F_{5GHz}^{core}	(7)	0.292	0.000	0.000	0.000	0.000	0.000	0.714	0.014	0.032	0.031	0.000	0.000	0.000	0.000	0.014	0.014	0.000	0.000	0.000	0.000	0.106	0.018	0.021	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.359	0.000	0.010	0.021
m_V	(9)	15.91	17.80	16.66	17.91	15.11	16.80*	18.86	18.20	17.50	18.41	20.60	22.00	19.50	15.80	19.50	19.20	16.37	19.04	14.80*	17.00	12.61	17.40	18.30	20.70	14.00*	21.50	14.43	16.59	19.60	19.80*	18.40	14.00	17.10*	16.00
Z	(5)	1.9800	0.9000	1.6200	0.8700	0.0342	0.0400	0.7890	0.2000	0.7790	0.5250	0.7860	2.5500	0.8150	0.2040	0.1780	0.5000	0.7480	0.1900	0.0317	0.3150	0.0303	0.4000	0.2720	0.7000	0.0293	0.8330	0.0375	0.3940	0.8020	0.4680	1.7950	0.0249	0.1511	1.0230
DEC(J2000)	(4)	39 09 32.4	$40\ 22\ 58.3$	$41\ 17\ 02.8$	$35\ 59\ 33.1$	$41\ 04\ 56.7$	$+26\ 04\ 32.8$	$57 \ 41 \ 16.3$	$37\ 26\ 42.4$	265027.7	$27\ 05\ 46.0$	-25 27 38.3	$41\ 34\ 40.6$	-295126.9	$33\ 59\ 15.0$	$51\ 20\ 38.3$	$35\ 13\ 41.5$	$58\ 09\ 17.7$	$35\ 08\ 15.8$	$40\ 55\ 37.0$	$54\ 19\ 12.0$	$39\ 33\ 05.6$	$56\ 29\ 29.0$	$40\ 07\ 59.6$	$74\ 30\ 57.5$	40 48 41.8	21 17 17.7	$24\ 26\ 38.2$	56	02	$+42\ 17\ 03.0$	115602.9	32	$05\ 34\ 32.6$	$39\ 24\ 27.6$
RA(J2000)	(3)	16 23 07.6	$16\ 23\ 18.9$	162319.9	162330.6	$16\ 23\ 45.9$	162409.2	$16\ 24\ 24.8$	$16\ 24\ 43.3$	$16\ 25\ 14.3$	$16\ 25\ 30.7$	$16\ 25\ 46.9$	$16\ 25\ 57.7$	$16\ 26\ 06.0$	$16\ 26\ 07.2$	$16\ 26\ 11.6$	$16\ 26\ 25.8$	$16\ 26\ 37.2$	$16\ 27\ 26.6$	$16\ 27\ 41.1$	$16\ 27\ 52.1$	$16\ 28\ 38.5$	162850.3	$16\ 29\ 01.3$	$16\ 29\ 07.9$	$16\ 29\ 44.9$	$16\ 29\ 47.6$	$16\ 29\ 52.8$	$16\ 30\ 20.8$	$16\ 30\ 58.0$	$16\ 31\ 24.7$	$16\ 31\ 45.3$	$16\ 32\ 31.9$	$16\ 32\ 46.9$	$16\ 33\ 02.1$
Name	(2)	B3 1621+392	KUV 16216+4030	KUV 16217 + 4124	[HB89] 1621+361	MRK 699	IRAS $F16221 + 261$	7C1623+5748	$B3\ 1622 + 375$	4C + 26.48	MS 1623.4 + 2712	PKS 1622-253	4C + 41.32	PKS 1622-29	FIRSTJ162607.0	RGB $J1626+513$	EF B1624 + 3520	$7C\ 1625+5815$	FBQSJ162726.6	NGC~6160	87GB 162642.7+	3C 338	RGB $J1628 + 564$	EXO 1627.3+4014	$7C\ 1630+7437$	NGC 6173	$MG2\ J162944 + 2117$	MRK 0883	FBQS J163020.7+.	RIXOS F212_025	$RX\ J1631.4+4217$	4C + 12.59	NGC 6251	RGB $J1632 + 055$	RGB J1633+394
RXJ name	(1)	1623.1 + 3909	1623.3 + 4022	1623.3 + 4116	1623.5 + 3559		1624.7 + 2604		1624.7 + 3726	1625.2 + 2650	1625.4 + 2705				1626.1 + 3359	1626.1 + 5120	1626.4 + 3513		1627.4 + 3507	1627.6 + 4055	1627.8 + 5419		1628.7 + 5629	1629.0 + 4007	1629.1 + 7431	1629.7 + 4048		1629.8 + 2426	1630.3 + 3756	163057.7.	1631.7 + 4216	1631.7 + 1157		1632.7 + 0534	1633.0 + 3924

Table A.3: (continued)

	1										Π									Τ	\Box									Ι				
FR (14)			50	ď	ď	þ	đ	đ	1	d	50		1		d	ď	ď	ď	ď	n	r	Z		1	1	1	ď	z	ď	W	ď	d	d	_
Class. (13)																																		
Host (12)	S		-									7)		7)						田										c C				ď
Type (11)	S	U	Ç	9	IJ	o	O,	O,	O	o	O	Ğ	o	Ğ	o	o	9	o	0	U	U	Ç	U	U	U	U	9	0	U	CC	9	0	c	5
$F_{0.1-2.4\ keV}$ (10)	0.2222E-12	0.2605E-11	<0.3114E-13	0.7490E-12	0.1005E-11	0.9897E-12	0.7372E-12	0.2300E-12	0.3556E-11	0.1733E-11	< 0.8395 E-13	0.6180E-12	0.7420E-12	0.8259E-11	0.2800E-12	0.4950E-12	0.6161E-12	0.3782E-12	0.3429E-11	0.1719E-11	0.2082E-11	0.2644E-11	0.2521E-11	0.9760E-11	0.3010E-11	0.1526E-11	0.8491E-12	0.2715E-12	0.1002E-11	0.4353E + 02*	0.1292E-11	0.1572E-11	0.3831E-12	0.2277E-11
F_0 .	0.00	1.19	0.70	0.19	0.66	1.12	0.00	-0.27	0.00	-0.13	0.90	-1.80	0.00	1.10	-0.54	0.00	0.08	-0.01	0.24	0.52	0.62	0.38	-0.57	0.00	0.00	-0.21	0.36	0.00	0.44	1.16	0.00	0.00	0.00	0.45
$\begin{array}{ccc} F_{5GHz} & \alpha_r \\ (8) & (9) \end{array}$	#090.0	0.035	1.490	0.146	0.193	0.340	#200.0	1.330	0.062	1.750	1.199	0.223	0.001#	0.084	1.284	0.052	1.526	0.480	8.718	1.619	2.609	0.109	0.099	0.040#	0.003#	0.191	0.189	0.004#	0.136	12.740	0.097	0.030 #	0.001#	0.164
$F_{5GHz}^{core} \ (7)$	0.000	0.030	0.105	0.000	0.109	0.000	0.000	0.599	0.011	1.233	0.000	0.013	0.000	0.009	0.000	0.047	0.999	0.000	8.500	1.389	0.184	0.064	0.092	0.000	0.000	0.178	0.000	0.000	0.101	0.010	0.000	0.000	0.000	0.042
(6)	14.50*	16.90	20.61	18.20	15.84	17.75	16.60	18.73	16.50	16.90	20.70	14.90	18.36	17.00*	19.37	18.30	20.50	18.20	15.96	17.20	15.50	17.60	17.10	15.90*	16.60*	17.00	20.40	17.51	17.30	18.25	19.29	17.00*	17.79	16.30
z (2)	0.0343	0.1163	0.9880	1.0900	0.1710	0.5610	0.7650	0.7400	0.1460	0.7506	0.7500	0.1103	0.1430	0.2344	1.6600	0.5400	0.7510	1.7250	0.5928	0.1620	0.0427	0.2230	0.1450	0.0750	0.2150	0.0475	0.8508	0.0700	0.5860	0.1540	1.6322	0.1475	0.5900	0.0245
$ DEC(J2000) \\ (4) $	$35\ 20\ 32.4$		$62\ 45\ 35.8$	$18\ 31\ 03.7$	71.2853.7	$26\ 48\ 09.2$	$41\ 40\ 30.6$	$47\ 17\ 33.8$	$11\ 49\ 49.7$	$57\ 20\ 23.9$	$62\ 34\ 44.2$	$53\ 46\ 45.0$	$39\ 08\ 45.4$	$46\ 42\ 46.2$	$39\ 46\ 46.0$	$39\ 35\ 03.4$	26	$25 \ 23 \ 07.7$	48	$17\ 15\ 49.0$	-77 15 48.4	$45\ 46\ 44.5$	19	-112359.1	$+69\ 39\ 59.2$	495000.6	$41\ 04\ 05.5$	395437.0	$41\ 40\ 32.6$	045933.3	$62\ 32\ 09.0$	$40\ 09\ 12.9$	$31\ 23\ 43.9$	$02\ 24\ 03.4$
RA(J2000) (3)	16 33 17.8	$16\ 33\ 23.5$	$16\ 34\ 33.8$	$16\ 35\ 39.1$	$16\ 35\ 52.1$	$16\ 36\ 36.4$	$16\ 37\ 09.3$	$16\ 37\ 45.1$	$16\ 37\ 46.5$	$16\ 38\ 13.4$	$16\ 38\ 28.2$	$16\ 39\ 30.1$	$16\ 39\ 31.8$	$16\ 40\ 22.1$	$16\ 40\ 29.6$	$16\ 41\ 47.5$	$16\ 42\ 07.8$	$16\ 42\ 40.4$	$16\ 42\ 58.8$	$16\ 43\ 48.6$	$16\ 44\ 16.1$	$16\ 44\ 19.9$	164442.5	$16\ 46\ 10.1$	$16\ 46\ 12.2$	$16\ 47\ 34.9$	$16\ 48\ 29.2$	$16\ 48\ 55.9$	165005.5	$16\ 51\ 08.1$	165201.5	165253	165255.9	16 52 58.9
Name (2)	NGC 6185	RGB $J1633+473$	3C 343	[HB89] $1633+186$	RGB J1635+714	3C 342	KUV 16355+4146	[HB89] $1636+473$	[HB89] $1635+119$	$7C\ 1637+5726$	3C 343.1	4C + 53.37	FBQS J163931.8+.	RGB $J1640+467$	B3 1638+398	[HB89] 1640 + 396	$8C\ 1642+690$	TXS $1640 + 254$	3C 345	$3C\ 346$	MRC 1637-771	B3 1642+458	RGB J1644+263	IRAS 16433-111	$RX\ J1646.2+6939$	SBS 1646 + 499	B3 1646+411	FIRST $J164855.9+$	RGB $J1650 + 416$	3C 348/HerA	87GB 165132.6+	FIRST $J165253.2+$	FBQS J165255.9+.	NGC 6240
RXJ name (1)	1633.3 + 3520	1633.3 + 4718		1635.6 + 1831	1635.8 + 7128	1636.6 + 2648	1637.1 + 4140		1637.8 + 1150	1638.2 + 5720		1639.6 + 5347	1639.5 + 3908	1640.3 + 4642		1641.7 + 3934	1642.1 + 6856	1642.7 + 2522	1642.9 + 3948		1644.2 - 7715	1644.2 + 4546	1644.6 + 2619	1646.3 - 1124	1646.2 + 6939	1647.5 + 4950		1648.9 + 3954	1650.0 + 4140	1651.1 + 0459	1651.9 + 6231	1652.9 + 4009	1652.9 + 3123	1652.9 + 0223

Table A.3: (continued)

												Π																							
FR.	(14)	z	ď	ď	ď	ď	ď		ď	ď	ď		ď		ď	r	ď	ಹ	20	ď		1	1	ದ		ď	1	z	ď	ď	ď	h	ď		4
Class.	(13)																																		
Host	(12)					囝		၁							田	闰					ပ	∞					∞							闰	
		U	o	0	0	0	o	CC	0	o	0	U	o	CC	U	CC	U	U	U	U	CC	U	U	U	U	o	U	0	U	U	o	U	°	CC	U
Type	(11)	E-10	E-12	E-12	E-12	E-12	E-12	F-11	E-12)E-12	B-11	E-12	E-12	P-11	E-12	E-13	<u> 주</u> 11	<u> </u> 무111	₽-11	<u> 유11</u>	E-10	₽-10	F-11	E-12	E-10	E-12	<u> 유11</u>	E-11	E-12	E-12	E-12	E-12	E-12	P-11	유11
$F_{0.1-2.4\ keV}$	(10)	0.6071E-10	0.6890E-12	0.5384E-12	0.2662E-12	0.5329E-12	0.5300E-12	0.2053E-11	0.5037E-12	<0.3280E-12	0.3399E-11	0.1633E-12	0.3873E-12	0.3770E-1	0.3063E-1	0.2789E-1	0.1711E-1	0.2315E-1	0.3195E-1	0.9987E-1	0.1671E-10	0.1040E-10	0.3607E-1	0.8869E-12	0.1546E-10	0.6731E-12	0.4610E-1	0.1705E-1	0.5080E-12	0.5840E-12	0.4609E-12	0.3767E-12	0.2997E-12	0.2576E-1	0.2597E-1
$F_{0.1}$		0.18	0.00	0.14	0.00	0.00	0.17	0.00	0.09	-0.39	0.18	0.85	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88	0.00	0.00	0.00	0.00	0.43	0.00	0.00	1.10	0.00
α_r	(6)	,,	3 #	#(#(#(1#			_	38	8 #	#5	_	280	#1	#2	₩.	5 #	#7	1 #	5 #	1#	280	<u></u>	1 #	~1	_	~1		#7	#1	_	1#
F_{5GHz}	(8)	1.375	0.003#	#000.0	0.170#	#000.0	0.764	0.014#	1.244	1.600	1.381	8.599 &	0.018#	0.015#	0.380	0.600	0.001#	0.002#	0.024	0.002#	0.002#	0.004#	0.002#	0.004#	0.190	1.219	0.004#	0.002	0.027	0.062	0.000	0.002#	0.001#	0.201	0.004#
F_{5GHz}^{core}	(7)	0.450	0.000	0.207	0.000	0.213	0.425	0.000	1.199	0.000	1.300	0.025	0.000	0.000	0.313	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.008	0.000	0.000	0.015	0.020	0.650	0.000	0.000	0.005	0.000
m_V	(9)	13.78	18.21	19.11	19.20	19.00	18.28	13.73	17.60	20.00	16.54	19.00	17.45	16.50*	17.00	16.10	16.00	15.00*	19.40	16.30	19.40	15.70*	16.60	15.00	15.10	15.28	15.60*	19.40	18.20	17.10	17.30	16.82	17.36	15.30*	15.82
z	(5)	0.0336	0.4050	1.0400	1.5530	0.6230	1.2810	0.0348	1.6220	0.6210	0.8790	0.2050	0.7750	0.0984	0.3010	0.1020	0.1420	0.0680	0.0900	0.1640	0.0974	0.0530	0.0650	0.0628	0.0604	0.3719	0.0308	0.2800	0.9170	1.0700	0.6480	0.1270	0.8370	0.0808	0.2080
(000		36.6	$30 \ 40.6$	3004.4	48.8	16.4	53.5	15.6	49.2	27.5	16.4	44.1	28.9	54.9	6.90	14.9	56.5	26.5	59.0	47 19.6	47.1	29.5	24.8	19.9	47.3	30.5	28.6	15.8	0.80	22.7	10.5	29.2	09.5	53.8	02.8
DEC(J2000)	(4)	39 45 36.6	$30\ 30$	$54\ 30$	$53\ 21$	$60\ 12$	5705	2751	47 37	41	$05\ 15$	05	35	$32\ 36$	68 30	$32\ 35$	3552	29 19	34 03	$32\ 47$	03	+7253	37	3604	45 40 47.3	44	-01 32	60 42	$36\ 15$	14	$45\ 36$	10		3425	33 44
(000		52.2	00.2	59.2	39.6	48.2	20.7	58.1	8.20	0.60	$58\ 33.4$	29.5	31.9	43.9	09.3	11.2	33.3	46.8	02.3	31.0	41.9	44.2	20.2	27.8	30.4	41.4	00.4	34.8	34.2	48.1	17.7	59.7	23.1	38.4	13.4
RA(J2000)	(3)	16 53 52.2	165500.2	16559.2	165639.6	165648.2	165720.7	1657	1658	16 58	1658	1659	1659	1659	17 00	17 00	17 00	17 00	$17\ 01$	1702	17 02	1702	17 03	17 03	17 03	17 04 41.4	$17\ 05\ 00.4$	17 05 34.8	$17\ 06\ 34.2$	$17\ 06\ 48.1$	17 07 17.7	$17\ 07\ 59.7$	17 08 23.	60	17 10
			.2+.		4	02				_	~		.9+.		85		332	1397	40		5)23			SALC	46	62	22	156	-3914	1.1+.		4
Name	(2)	101	165500	+5434	55+53	656 + 6	28	69	+47	5+077	90+95		165931	52C	9+002	52E	J1700	+29.0	701 + 3	8	170242	269	55	06-37-(+457		883 N	6.9 + 60	500 + 3	200 + 3	1705+4	17063+	170823	45	71013.
		MRK 0501	FBQS J165500.2+.	7C 1654+5434	IVS $B1655 + 534$	RGB $J1656+602$	4C + 57.28	NGC 6269	$S4\ 1656+47$	PKS 1655+077	PKS 1656+053	3C 349	FBQS J165931.9+.	4C + 32.52C	RGB J1700+685	4C + 32.52E	2MASXiJ1700332.	NPM1G + 29.0397	RGB J1701+340	RBS 1618	FIRSTJ170242.5	UGC 10697	RBS 1622	MCG + 06-37-023	B3 1702+457	$3C\ 351$	UGC 10683 NOTES	MS 1704.9 + 6046	RGB J1706+362	RGB J1706+322	[HB89] 1705+456	IRAS F17063+3914	FBQS J170823.1+.	4C + 34.45	FBQSJ171013.4.
ıme		3945	3030	5430		5012	5705	2751	4737		0515		3735	3236	5830		3553	2919	3403	3247	3403	7253	3737	3604	4540	5044	132		3615	3214	4535	3910	4123	3425	3344
RXJ name	(1)	1653.8 + 3945	1655.0 + 3030	1655.9 + 5430		1656.7 + 6012	1657.3 + 5705	1658.0 + 2751	1658.0 + 4737		1658.5 + 0515		1659.5 + 3735	1659.7 + 3236	1700.1 + 6830		1700.6 + 3553	1700.7 + 2919	1700.9 + 3403	1702.5 + 3247	1702.7 + 3403	1702.5 + 7253	1703.3 + 3737	1703.4 + 3604	1703.5 + 4540	1704.6 + 6044	1705.2 - 0132		1706.5 + 3615	1706.7 + 3214	1707.2 + 4535	1708.0 + 3910	1708.4 + 4123	1709.5 + 3425	1710.2+3344
		1																																	I

Table A.3: (continued)

16.50*	33 35 43.0 0.4710 1 44 13 36.9 0.8740	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	ĮΩ	33 35
0.0373 14.72*	$38\ 01\ 13.3$	44 15 38 01
0.0830 16.84	$35\ 23\ 33.4$	35 23
0.1020	325632.0	32 56
0.5549		36
0.0274	24	57 24
0.0379	23	36 23
0.1110	12	31 12
0.7770	36	98 30
0.1829 1	27	42 27
0.2800	42	42
0.2830	$69\ 29\ 37.2$	69 29
0.0242	$\frac{28}{28}$	58
	10	$25\ 10$
	04	48 04
	37	26.37
0.0304	$\frac{28}{2}$	$20\ 28.1$ -00 58
0.2630	42	$21\ 09.5$ $35\ 42$
0.6280	11	21 33.2 21 11
0.0467 1	$30\ 42\ 39.7$	$22\ 15.4 \qquad 30\ 42$
0.2240	02	$22\ 27.1$ $32\ 07$
0.0430	52	$22\ 39.9$ $30\ 52$
0.1750 1	$24\ 36\ 19.4$	$22\ 41.2$ $24\ 36$
0.2060	$34\ 17\ 57.9$	$23\ 20.8$ $34\ 17$
0.0400	30	$23\ 23.2$ $36\ 30$
0	$37\ 48\ 41.6$	$23\ 54.3 \qquad 37\ 48$
9 1.8700 20.80	$33\ 03\ 03.9$	03
3 1.0790 21.50	$50\ 57\ 40.3$	57
2 0.0180 15.77	115215.2	11 52
	22	39 57
0.7170 1	$45\ 30\ 36$	30
10.5 0.0554 15.97	50 13	13

Table A.3: (continued)

(14)	b	ď	ď	đ	$_{ m r}$		ď	ď	q II		b II	z	ď	1	ď	ď	1	ď	z	ď		а	z	ď	Z	z		1	ď	ď	1	ď	Ъ	
(12) (13)										田												∞												
$(11) \qquad (12)$	O	೦	o	o	U	CC	o	0	o	ŭ	U	0	0	U	o	o	CC	0	U	o	CC	CC	U	o	~	Ü	CC	U	U	o	U	0	೦	U U
(10)	0.1457E-11	0.7866E-12	0.1023E-11	0.4423E-11	0.2495E-12	0.3031E-11	0.5891E-11	0.3365E-12	0.3250E-12	0.1427E-11	0.1460E-11	0.3985E-12	0.1070E-11	0.3250E- 10	0.5888E-11	0.2642E-12	0.8238E-12	0.1926E-11	0.9474E-11	0.3730E-11	0.1701E-10	0.9472E-12	0.1449E-11	0.6782E-12	0.1407E-11	0.3878E-11	0.4651E-11	0.9360E-11	0.1520E-11	0.2950E-11	0.1993E-13	0.2083E-11	0.6246E-12	0.1382E-11
	0.40	0.23	0.81	0.00	-0.02	0.00	-0.35	0.27	1.20	0.00	0.73	-0.27	-0.17	0.00	0.10	0.85	1.30	0.74	0.45	-0.30	0.42	0.31	0.69	0.07	0.07	0.00	0.00	0.00	-0.01	-0.58	0.60	-0.17	-0.04	0.90
$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	0.000	0.219	0.414	0.224	0.187	0.020 #	4.099	0.555	0.320	0.066	3.370	0.815	1.899	0.014#	0.333	0.531	0.062	0.329	0.353	2.299	0.077	0.562	0.249	0.589	0.715	0.046	0.032	0.011#	0.049	2.455	0.058	0.437	1.000	0.066
r_{5GHz} (7)	0.980	0.172	0.038	0.037	0.004	0.000	0.000	0.000	0.016	0.043	0.680	0.000	0.000	0.000	0.025	0.000	0.000	0.000	0.157	0.000	0.070	0.292	0.118	0.452	0.610	0.010	0.027	0.000	0.034	1.695	0.000	0.364	0.900	0.004
(9)	16.99	17.19	17.50	17.80	16.00*	16.60*	19.50	20.60	19.60	14.25*	17.00	17.50	18.70	15.30*	17.50	18.50	21.50	17.70	16.80	20.40	13.50*	14.60*	18.30	18.80	17.01	19.00	11.60*	15.40*	17.10	16.78	17.00	16.60	19.68	18.90*
(5)	0.2960	1.3900	1.1070	0.3750	0.0590	0.1361	0.9020	0.9700	1.8800	0.0216	0.0980	0.3160	1.3750	0.0300	0.1860	0.5230	0.3240	0.3720	0.0840	1.0540	0.0757	0.0304	0.2670	3.8890	0.7700	0.1600	0.1705	0.2997	1.4800	0.3220	0.2940	0.5040	0.8710	0.2276
(4)	04 27 04.9	$38\ 38\ 26.4$	$50\ 07\ 34.0$	$32\ 32\ 48.0$	$71\ 24\ 10.4$	$40\ 36\ 43.4$	-130449.5	$38\ 57\ 51.4$	$16\ 00\ 31.2$	$11\ 07\ 18.3$	$-56\ 34\ 03.1$	$47\ 37\ 58.4$	$52\ 11\ 43.4$	$+03\ 48\ 52.9$	$18\ 27\ 20.7$	$61\ 45\ 54.0$	$63\ 42\ 58.6$	275249.9	$19\ 35\ 09.0$	-035004.6	325929.4	$55\ 42\ 17.1$	$39\ 51\ 31.7$	26	02	00	$35\ 04\ 58.7$	+504537.3	$47\ 13\ 22.0$	7009300.7	645433.3	$17\ 34\ 20.3$	$44\ 09\ 45.7$	58 05 08.1
(3)	17 28 24.9	$17\ 28\ 59.1$	$17\ 31\ 03.6$	$17\ 31\ 14.5$	$17\ 32\ 33.0$	$17\ 33\ 00.5$	$17\ 33\ 02.7$	$17\ 34\ 20.6$	$17\ 34\ 42.6$	$17\ 37\ 33.4$	$17\ 37\ 35.8$	$17\ 39\ 57.1$	$17\ 40\ 36.9$	$17\ 41\ 28.3$	$17\ 42\ 06.9$	$17\ 42\ 51.5$	$17\ 43\ 23.1$	174356.5	$17\ 43\ 57.8$	$17\ 43\ 58.8$	174414.5	174456.6	$17\ 45\ 37.6$	$17\ 46\ 14.0$	174832.8	50	$17\ 50\ 16.8$	$17\ 51\ 16.6$	175131.6	175132.8		175246.0	175322.6	17 53 58.9
(2)	[HB89] 1725+044	[HB89] 1727+386	[HB89] 1729+501	RBS 1652	MCG + 12-16-046	FIRSTJ173300.4+.	[HB89] 1730-130	B3 1732+389	4C + 16.49	CGCG 1735.2+1110	PKS 1733-56	$S4\ 1738+47$	4C + 51.37	IRAS $F17389 + 035$	PKS 1739 + 184	4C + 61.34	$7C\ 1743+6344$	B2 1741+27	NPM1G + 19.0510	MRC 1741-038	RGB $J1744+329$	NGC 6454	$B3\ 1743 + 398B$	4C + 62.29	[HB89] 1749+701	B3 1748+470	RGB $J1750 + 350$	IRAS $17500 + 504$	RGB J1751+472	4C + 09.57	$7C\ 1751 + 6455$	[HB89] 1750 + 175	B3 1751+441	RGB J1753+580
(1)	1728.4+0426	1728.9 + 3838	1731.0 + 5007	1731.2 + 3232	1732.2 + 7123		1733.0 - 1304			1737.5 + 1107			1740.5 + 5211	1741.1 + 0348	1742.1 + 1827	1742.7 + 6146		1743.9 + 2751	1743.8 + 1935	1743.9 - 034	1744.1 + 3259	1744.9 + 5542	1745.5 + 3951	1746.1 + 6226	1748.5 + 7005	1750.0 + 4700	1750.2 + 3504	1751.3 + 5045	1751.4 + 4713	1751.5 + 0938		1752.7 + 1733	1753.3 + 4409	

Table A.3: (continued)

RXJ name	Name	RA(J2000)	DEC(J2000)	N	m_V	F_{5GHz}^{core}	z.		$F_{0.1-2.4\ keV}$	Type	Host	Class.	FR
(1)	(2)	(3)	(4)	(2)	(9)	(7)	(8)		(10)	(11)	(12)	(13)	(14)
	7C 1754+6737	175422.3	67 37 35.8	3.6000	19.80	0.000	0.032	0.00	0.1814E-12	2 Q			
	IRAS $17550+6520$	$17\ 55\ 05.6$	$65\ 19\ 54.8$	0.0803	15.50*	0.000	0.001#	0.00	0.2107E-11		\mathbf{o}		_
1755.1 + 3351	RGB $J1755 + 338$	175511.2	335059.8	0.2420	17.90	0.158	0.139	-0.05	0.1329E-11	_		0.	_
	NGC 6521	175548.4	$62\ 36\ 44.1$	0.0275	13.90	0.000	0.189	0.28	0.1403E-11) GC	0	0,	•
	WN $B1756+6531$	175640.1	$65\ 31\ 46.2$	2.7900	22.00*	0.000	0.047	0.00	0.3367E-13			0.	~
	$RGB\ J1757 + 538$	$17\ 57\ 06.7$	$53\ 51\ 37.7$	0.1190	13.40*	0.031	0.042	0.29	0.2616E-1	_	C		
1757.2 + 7033	MS 1757.7 + 7034	175713.2	$70\ 33\ 37.4$	0.4070	18.27	0.000	0.007	0.00	0.8061E-1	<u>ර</u>		Z	N
1757.4 + 5522	$RGB\ J1757 + 553$	175728.3	$55\ 23\ 12.1$	0.0650	13.70*	0.040	0.073	0.07	0.1660E-12			60	دم
1800.1 + 6636	NGC 6552	$18\ 00\ 07.3$	$66\ 36\ 54.3$	0.0265	14.60	0.000	0.040	0.00	0.1137E-12	G G	\mathbf{v}	6.4	01
1800.3 + 3848	$B3\ 1758 + 388B$	$18\ 00\ 24.8$	$38\ 48\ 30.7$	2.0920	17.98	0.800	0.000	-0.66	0.1195E-11	_		0.	7
1800.7 + 7828	[HB89] $1803+784$	$18\ 00\ 45.7$	$78\ 28\ 04.0$	0.6800	15.90	0.000	2.222#	-0.28	0.1484E-1	_		0	-
	8C 1801+690	$18\ 01\ 14.6$	$69\ 02\ 44.0$	1.2710	19.70	0.000	0.132 #	09.0	0.1384E-12			0	-
1801.5 + 4404	[HB89] $1800+440$	$18\ 01\ 32.3$	$44\ 04\ 21.9$	0.6630	17.90	0.600	1.193	-0.14	0.1335E-1			0.	_
1804.0 + 0042	RGB J1804+007	$18\ 04\ 09.0$	004222.1	0.0700	13.90*	0.158	0.155	0.02	0.1627E-10		臼		
	TXS 1802+179	$18\ 04\ 42.5$	$17\ 55\ 59.0$	0.4350	19.40	0.000	0.090	-0.77	0.2873E-12				_
1804.8 + 5224	RGB $J1804+524$	$18\ 04\ 52.7$	$52\ 24\ 29.4$	0.5160	17.00	0.007	0.024	0.00	0.6752E-12			0	-
1807.0 + 6949	UGC 11130	$18\ 06\ 50.6$	$69\ 49\ 28.1$	0.0510	14.22	0.950	2.121	-0.02	0.3698E-11	_	<i>T</i>)	Z	N 7
1807.9 + 4349	B3 1806+438	$18\ 07\ 59.8$	$43\ 50\ 36.0$	0.8150	17.10	0.000	0.054	0.00	0.5391E-12			0.	-
1808.7 + 6634	EF B1808+6633	18 08 49.5	$66\ 34\ 29.0$	0.6970	17.50	0.006	0.021	1.35	0.5281E-12	G		O.	-
1811.0 + 4954	NGC 6582 NED01	18 11 01.8	54	0.0481	16.00*	0.000	0.018#	0.00	0.6640E-11		田		
1813.5 + 3144	EXO 1811.7+3143	$18\ 13\ 35.2$	$31\ 44\ 17.7$	0.1170	17.40	0.074	0.127	0.24	0.1244E-11			Z	N
1814.5 + 4057	RGB J1814+409B	$18\ 14\ 34.5$	$40\ 57\ 46.4$	0.9710	19.00	0.007	0.022	0.00	0.5251E-12			0.	-
1815.3 + 6806	4C + 68.20	$18\ 15\ 24.8$	$68\ 06\ 32.0$	0.2300	17.80	0.053	0.187	0.39	0.5637E-12			П	
	PKS 1814-63	$18\ 19\ 35.0$	-63 45 48.2	0.0627	16.00	0.000	4.370	0.92	< 0.7600 E - 12			ω υ	50
1819.6 + 6708	RGB $J1819+671$	18 19 44.4	67~08~47.2	0.2200	17.54	0.102	0.162	0.80	0.1005E-12		田	ου	50
1821.8 + 6419	RGB $J1821+643$	$18\ 21\ 57.3$	$64\ 20\ 36.4$	0.2970	14.24	0.007	0.070	0.00	0.2412E-10	Ŭ	<i>T</i> >	0.	-
1823.1 + 3324	RGB $J1823 + 334$	$18\ 23\ 09.8$	$33\ 24\ 39.1$	0.1080	14.90*	0.003	0.051	1.10	0.2163E-11				-
1824.0 + 1044	[HB89] 1821+107	$18\ 24\ 02.8$	104423.8	1.3600	17.27	1.300	0.000	-0.30	0.1170E-11	°		0.	~
1824.1 + 5650	$S4\ 1823+56$	$18\ 24\ 07.1$	$56\ 51\ 01.5$	0.6640	19.30	1.120	1.262	-0.23	0.2310E-1	_	<i>T</i> >	0.	~
	NVSSJ182608	$18\ 26\ 08.1$	-36 50 49.0	0.8880	18.80	0.000	0.514#	0.00	0.5918E-12	°		0.	_
1826.5 + 6706	$7C\ 1826+6704$	$18\ 26\ 37.5$	$67\ 06\ 45.0$	0.2870	17.70	0.013	0.071	0.00	0.5666E-12		田	0.	-
	PKS 1823-455	$18\ 27\ 10.2$	$-45\ 33\ 09.5$	1.2440	18.10	0.000	0.470	0.40	0.6896E-12	ر م		O.	-
1829.4 + 4843	3C 380	$18\ 29\ 31.8$	48 44 46.6	0.6920	16.18	4.500	5.519	0.58	0.4868E-11			ου	50
1832.1+6848	87GB 183253.8+6	18 32 35.5	$+68\ 48\ 07.1$	0.2050	15.70*	0.000	0.150#	0.00	0.5170E-11	OD I	田	Z	

Table A.3: (continued)

Table A.3: (continued)

RXJ name	Name	RA(J2000)	DEC(J2000)	Z	m_V	F_{5GHz}^{core}	F_{5GHz} α_r		$F_{0.1-2.4\ keV}$ T:	Type Host		Class.	FR
(1)	(2)	(3)	(4)	(2)	(9)	(7)	(8)			$(11) \qquad (12)$		(13)	(14)
	3C 403	$19\ 52\ 15.8$	$02\ 30\ 24.5$	0.0590	16.50	0.010	2.390	0.73	0.3667E-12	Ŋ	田	n	П
	[HB89] 1951 + 498	195235.8	495813.9	0.4660	18.40	0.000	0.206	0.52	0.2035E-11	o		Ъ	
1955.6 + 5131	[HB89] 1954+513	195542.7	$51\ 31\ 48.5$	1.2200	18.50	1.100	1.675	-0.12	0.1548E-11	o		Ъ	
	PKS 1954-388	195759.8	-384506.3	0.6300	17.07	0.000	2.000	0.00	0.1461E-11	o		Ъ	
	PKS 1954-55	195829.1	$-55\ 09\ 12.5$	0.0584	16.50*	0.050	2.310	0.78	0.1470E-11	CC	0		Ι
	Cygnus A	195928.3	$40\ 44\ 01.9$	0.0561	15.10	0.776	415.000	0.74	0.6245E-10	CC	田	n	Π
	$TXS\ 1959+650$	195959.8	$65\ 08\ 54.6$	0.0470	12.80	0.000	0.246	0.00	0.9478E-10	ŭ	田	Z	
	[HB89] 1958-179	$20\ 00\ 57.1$	-17 48 57.7	0.6500	18.60	0.000	1.169	-1.50	0.3443E-11	೦		Ъ	
	PKS 2000-330	$20\ 03\ 24.1$	-325145.1	3.7730	17.30	0.000	1.199	-0.85	0.3500E-12	°		50	
2003.5 - 0857		$20\ 03\ 54.4$	-08 56 42.9	0.0572	16.50*	0.000	#600.0	0.00	0.5790E-11	ტ		Ŋ	
2005.2 - 1821	[HB89] 2002-185	$20\ 05\ 17.3$	$-18\ 22\ 03.3$	0.8680	19.20	0.000	0.480	0.47	0.9578E-12	೦		Ъ	
	$S5\ 2007+77$	$20\ 05\ 30.9$	775243.1	0.3420	16.70	0.000	1.950	0.00	0.1084E-11	೦		Ŋ	
2006.1 - 3433	ESO 399-IG 020	$20\ 06\ 57.9$	-34 32 54.7	0.0250	17.00*	0.000	#600.0	0.00	0.1320E-10	ტ		1	
2009.4 - 4849	[HB89] 2005-489	$20\ 09\ 25.4$	-48 49 53.7	0.0710	12.81	0.000	1.189	-0.20	0.6653E-10	೦		Ŋ	
	PKS 2008-159	$20\ 11\ 15.7$	$-15\ 46\ 40.2$	1.1800	18.30	0.000	1.350	-0.40	0.3631E-11	°		Ъ	
2016.4 - 3035	PKS 2013-307	$20\ 16\ 29.8$	$-30\ 35\ 18.5$	0.9780	20.10	0.000	0.340	0.00	0.8836E-12	೦		Ъ	
2017.1 + 7440	4C + 74.25	$20\ 17\ 13.1$	74 40 47.9	2.1870	18.10	0.273	0.535	0.06	0.9723E-12	°		Ъ	
2020.1 + 2942	3C410	$20\ 20\ 06.5$	$29\ 42\ 14.2$	0.2485	19.50	3.827	3.790	0.81	0.4320E-11	ტ		r	Π
2022.1 + 1001	3C 411	$20\ 22\ 08.4$	$10\ 01\ 11.7$	0.4670	19.40	1.006	0.920	0.82	0.1706E-11	U	Z	Ъ	
2024.3 - 5723	IRAS $F20203-5733$	$20\ 24\ 20.6$	-572343.5	0.3520	18.50	0.000	1.050	0.70	0.1387E-11	U			
	PKS $2022+031$	$20\ 25\ 09.6$	$03\ 16\ 44.5$	2.2100	19.40	0.000	0.310	-0.40	0.9470E-12	o		Ъ	
2027.0 - 2136	MRC 2024-217	$20\ 27\ 04.3$	-21 36 19.2	0.4630	19.60	0.000	0.430	1.13	0.1912E-11	0			
	PKS $2029+121$	$20\ 31\ 54.9$		1.2150	19.20	0.000	1.290	0.00	0.1388E-11	°		Ъ	
2033.2 - 2253	MRC 2030-230	$20\ 33\ 16.6$	53	0.1319	18.00	0.000	0.950	0.39	0.2042E-11	ŭ	Z	q	П
2034.1 - 3037	PGC 064989	$20\ 34\ 31.3$	-30 37 28.8	0.0190	13.30*	0.000	0.003#	0.00	0.5020E-11	IJ		1	
	PKS $2032+107$	$20\ 35\ 22.3$	$10\ 56\ 06.8$	0.6010	16.37	0.000	0.770	0.20	0.9042E-12	0		Ъ	
	PMN J2038-2011	$20.38\ 27.7$	$-20\ 11\ 07.0$	0.5200	17.70	0.000	0.374	1.59	0.2634E-11	o		Ъ	
	3C 418	20.38.37.0	$51\ 19\ 12.7$	1.6860	21.00	0.000	3.810	0.40	0.4685E-12	0		Ъ	
2039.2 - 3018	RBS 1688	$20\ 39\ 27.0$	$-30\ 18\ 53.0$	0.080.0	16.00*	0.000	#900.0	0.00	0.1260E- 10	ტ			
	PKS 2037-253	20 40 08.8	-25 07 46.7	1.5740	20.30	0.000	1.169	-0.37	< 0.2260 E-12	0		ď	
2040.1 - 0247	4C -03.72	$20\ 40\ 08.9$	-02 47 38.8	0.1920	18.50	0.000	0.240	0.50	0.9535E-12	U		r	
	4C + 74.26	204237.3		0.1040	15.13	0.000	0.363	1.15	0.2245E-10	೦		Ъ	
	MRC 2040-219	$20\ 43\ 14.6$	-21 44 34.1	0.2040	17.20*	0.000	0.098	1.20	0.3951E-11	ŭ		r	
2044.9-1043	MRK 0509	20 44 09.7	-10 43 24.5	0.0344	13.00*	0.000	0.019#	0.00	0.9800E-10	C			

Table A.3: (continued)

Class. FR (13) (14)	(14)	ı 50	$_{ m r}$ II	đ	Ι	ď		ಬ	II	1	ď	1 I	d	ď	đ			N	z oʻ	z p d	г р т	8 D D D	z d d d d	II D D D D D D D D D	II D D D D D D D D D D D D D D D D D D D	II D D D Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	II z z z z z z z z z z z z z z z z z z	II D D D D D D D D D D D D D D D D D D	H z p p p p p p p p p p p p p p p p p p p	H	H 2 D D D D D D D D D D D D D D D D D D D		
			闰		囝																						豆	ப	ப	요	臣	ם 요	ם 요
Host (12)	(21) O	, G	ŭ	O,	CC	0	U	ŭ	CC	ŭ	0	ŭ	0	o	ŭ	ζ	5	ט ט	りひぴ) U & U) U C U C) U O U O O O	, n a a a a a) U G G G G G G) U G U G G G G G G) U O U O O O U O O O) U G G G G G G G G G G	, a d a d d d d d d d d	, n a a a a a a a a a a a a a a	, n a n a a g a a a a a a a	, n a n a a a a a a a a a a a a a a a	, n a n a a p a a a a a a a a a a a	, n d n d d n n n n n n n n n n n n n n
keV Type (11)	540E-11	0.2100E-12	0.2539E-11	0.1129E-11	<0.8400E-12	0.1212E-11	0.6140E-11	0.7070E-11	0.1270E-11	0.5180E- 10	0.1008E-11	0.1420E-10	0.4625E-12	0.1719E-11	0.3132E-11	0.9341E-12		0.1370E- 10	0.1370E-10 0.6658E-12	0.1370E-10 0.6658E-12 0.9652E-12	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12 <0.8801E-13	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12 <0.8801E-13	0.1370E-10 0.6658E-12 0.9652E-12 0.9779E-11 0.9779E-12 0.1712E-11 0.3023E-11	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12 0.1712E-11 0.3023E-11 0.9730E-12	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12 <0.8801E-13 0.1712E-11 0.3023E-11 0.9730E-12	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12 <0.8801E-13 0.1712E-11 0.3023E-11 0.9730E-12 0.2245E-11	0.1370E-10 0.6658E-12 0.9652E-12 0.9779E-12 0.9779E-12 0.1712E-11 0.3023E-11 0.52245E-11 0.6909E-12	0.1370E-10 0.6658E-12 0.9652E-12 0.9759E-12 0.9779E-12 0.1712E-11 0.3023E-11 0.9730E-12 0.9730E-12 0.5523E-11 0.3841E-12	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12 0.1712E-11 0.3023E-11 0.9730E-12 0.2245E-11 0.6909E-12 0.5523E-11 0.3841E-12	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12 0.1712E-11 0.3023E-11 0.5245E-11 0.5523E-11 0.3841E-12 0.1943E-11	0.1370E-10 0.6658E-12 0.9652E-12 0.1657E-11 0.9779E-12 0.1712E-11 0.3023E-11 0.9730E-12 0.9730E-12 0.52245E-11 0.6909E-12 0.5523E-11 0.1943E-11 0.116E-10
$F_{0.1-2.4\ keV}$					•																								V V				V
$\begin{pmatrix} \alpha_r \\ 0 \end{pmatrix}$	0.00		0.54	0.70	0.74	-0.29	0.00	0.00	0.89		-0.13	0.22	-0.21	0.00				0.00				·	•	'		•	'	'	·			, , , , , , , , , , , , , , , , , , , ,	1
F_{5GHz}	382	0.830	0.990	2.450	2.000	1.362	#690.0	#200.0	4.309	#900.0	2.310	0.376	1.165	0.860	0.075#	0.280#		0.119#	$0.119# \\ 0.527$	$0.119# \\ 0.527 \\ 0.071$	0.119# 0.527 0.071 $0.001#$	0.119# 0.527 0.071 0.001# 3.160	0.119# 0.527 0.071 0.001# 3.160 28.000&	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553#	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 1.240	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 1.240	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 1.240 0.006#	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 1.240 0.006# 0.140	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 1.240 0.006# 0.140 0.140	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 0.553# 0.006# 0.140 0.140 0.140	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 1.240 0.006# 0.140 0.140 0.480 2.000 2.669	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 1.240 0.006# 0.140 0.480 2.000 2.669 10.938	0.119# 0.527 0.071 0.001# 3.160 28.000& 0.553# 1.240 0.140 0.140 0.480 2.000 2.669 10.938 1.379
F_{5GHz}^{core}	0.000	0.000	0.000	0.000	0.063	0.500	0.000	0.000	0.058	0.000	0.000	0.155	0.000	0.000	0.000	0.051		0.000	0.000	0.000 0.301 0.011	0.000 0.301 0.011 0.000	0.000 0.301 0.011 0.000	0.000 0.301 0.011 0.000 0.000	0.000 0.301 0.011 0.000 0.000 0.005	0.000 0.301 0.011 0.000 0.000 0.005 0.000	0.000 0.301 0.011 0.000 0.000 0.000 0.000	0.000 0.301 0.011 0.000 0.000 0.000 0.000 0.000	0.000 0.301 0.011 0.000 0.000 0.000 0.000 0.000	0.000 0.301 0.011 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.301 0.011 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.301 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.301 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.301 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
m _V	(9)	20.30	19.00*	18.10	15.60	17.78	16.50*	15.40*	16.80	14.30*	20.30	15.70	20.60	16.47	17.00	18.90		17.56*	17.56* 19.30	17.56* 19.30 18.00	17.56* 19.30 18.00 19.36	17.56* 19.30 18.00 19.36 20.40	17.56* 19.30 18.00 19.36 20.40 15.70*	17.56* 19.30 18.00 19.36 20.40 15.70*	17.56* 19.30 18.00 19.36 20.40 15.70* 18.10	17.56* 19.30 18.00 19.36 20.40 15.70* 17.00 20.00	17.56* 19.30 19.30 19.36 20.40 15.70* 17.00 20.00	17.56* 19.30 18.00 19.36 20.40 15.70* 17.00 20.00 17.00	17.56* 19.30 18.00 19.36 20.40 15.70* 17.00 20.00 17.00 17.00	17.56* 19.30 18.00 19.36 20.40 15.70* 17.00 20.00 17.00 16.11	17.56* 19.30 18.00 19.36 20.40 15.70* 17.00 20.00 17.00 17.00 19.20 19.20 16.11	17.56* 19.30 19.30 19.36 20.40 15.70* 17.00 20.00 17.00 17.00 19.20 16.11 19.00	17.56* 19.30 19.30 19.36 20.40 15.70* 17.00 20.00 17.00 17.00 17.00 19.20 16.79 16.79
z (5)	0.2740	0.9420	0.1560	1.4890	0.0397	1.0130	0.1899	0.0287	0.0388	0.0268	1.0580	0.0840	1.5140	0.9790	0.3280	0.3430		0.0227	0.0227 0.9320	$\begin{array}{c} 0.0227 \\ 0.9320 \\ 0.1860 \end{array}$	$\begin{array}{c} 0.0227 \\ 0.9320 \\ 0.1860 \\ 0.4940 \end{array}$	0.0227 0.9320 0.1860 0.4940 1.8780	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680 0.4250	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680 0.4250 0.9900	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680 0.4250 0.9900 0.5010	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680 0.4250 0.9900 0.5010 1.2850	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680 0.4250 0.0877 0.9900 0.5010 1.2850 1.9320	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680 0.4250 0.0877 0.9900 0.5010 1.2850 1.9320	0.0227 0.9320 0.1860 0.4940 1.8780 0.1016 1.7740 3.2680 0.4250 0.0877 0.9900 0.5010 1.2850 1.9320 0.2003
DEC(J2000) (4)	-61 33 04.6	36	99	-47 14 47.6	$-28\ 01\ 54.9$	$03\ 41\ 31.3$	$-24\ 32\ 01.0$	$+10\ 58\ 16.0$	-25 25 39.9	-09 40 14.7	-41 10 20.6	$82\ 04\ 48.3$	$29\ 33\ 38.4$	-30 19 11.6	-06 36 19.1	-262854.3		-103649.4	36	36 07 46	36 07 46 39	36 07 46 39 35	36 07 46 39 35 04	36 07 46 39 35 04 38	36 07 46 39 35 04 38 38	36 07 07 46 39 35 38 38 38	36 07 07 39 35 38 38 38 38 37 07	36 07 46 39 35 35 38 38 38 38 37 07 07	36 07 07 39 39 38 38 38 37 07 07	36 07 07 39 39 39 38 38 38 37 07 07 07 07 53	36 07 07 33 35 35 38 38 38 37 07 07 41	36 07 07 33 33 38 38 38 38 37 07 07 07 32 33 33 33 33 33 34 35 34 36 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	36 07 07 33 33 33 33 33 35 07 07 07 41 41 42 42
RA(J2000)	20 45 44.5	20 47 10.3	$20\ 56\ 04.3$	26	$21\ 01\ 37.7$	$21\ 01\ 38.8$	$21\ 02\ 09.8$	$21\ 02\ 21.6$	$21\ 07\ 25.3$	$21\ 09\ 09.9$	$21\ 09\ 33.2$	$21\ 14\ 01.2$	$21\ 15\ 29.4$	$21\ 18\ 10.6$	$21\ 18\ 43.2$	$21\ 21\ 18.4$		21 23 07.2	21 23 07.2 21 23 13.3	21 23 07.2 21 23 13.3 21 23 19.3	21 23 07.2 21 23 13.3 21 23 19.3 21 23 36.0	21 23 07.2 21 23 13.3 21 23 19.3 21 23 36.0 21 23 44.5	21 23 07.2 21 23 13.3 21 23 19.3 21 23 36.0 21 23 44.5 21 23 44.5	23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	23 23 23 23 25 25 26 27	23 23 23 23 25 29 29	23 23 23 23 23 23 23 23 23 23 23 23 23 2	23 23 23 23 23 23 25 25 29 29 30 31	23 23 23 23 23 25 25 25 25 25 26 27 28 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	23 23 23 23 23 24 25 25 26 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	23 23 23 23 23 23 23 23 30 31 33 33 33 33	$\begin{array}{c} 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 24 \\ 25 \\ 23 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25$	$\begin{array}{c} 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 24 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25$
Name (2)	(Z) [HB89] 2041-617	3C 422	MRC $2053-201$	PKS 2052-47	PKS 2058-28	[HB89] 2059+034	QW 2059-247	CGCG 425-034	NGC 7018	H 2106-099	PKS 2106-413	S5 2116+81	$B2\ 2113+29B$	PKS 2115-30	FBQS J2118-0636	$MRC\ 2118-266$		PMN J2123-1036	PMN J2123-1036 PKS 2120+09	PMN J2123-1036 PKS 2120+09 RGB J2123+067	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158 FBQS J2129+0035	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158 FRQS J2129+0035 PKS J2130+0035	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158 FBQS J2129+0035 PKS J2130+036 MRC 2128-315	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158 FBQS J2129+0035 PKS J2130+0308 MRC 2128-315 RBS 1753	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158 FBQS J2129+0035 PKS J2130+035 RKS J2130+035 RKS J2130+035 RKS J2130+035 RKS J2130+035	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158 FBQS J2129+0035 PKS J2130+035 RKS J2130+838 MRC 2128-315 RBS 1753 [HB89] 2131-021	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158 FBQS J2129+0035 PKS J2130+035 RKS J2130+035 RKS J2130+035 PKB J2130+035 PKB J2130+035 PKB J2130+035 PKB J2130+035	PMN J2123-1036 PKS 2120+09 RGB J2123+067 FBQS J2123-0139 PKS 2121+053 3C 433 PMN J2125-2338 [HB89] 2126-158 FBQS J2129+0035 PKS J2130+035 RKS J2130+035 PKS J2130+035
RXJ name (1)	2045.7-6133		2056.0 - 1956	2056.2 - 4714		2101.6 + 0341	2102.4 - 2432	2102.7 + 1058		2109.1 - 0940	2109.5 - 4110			2118.1 - 3019	2118.7 - 0636	2121.3 - 2629		2123.4 - 1036	2123.4 - 1036 $2123.2 + 1008$	2123.4-1036 2123.2+1008 2123.2+0646	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139 2129.7+0035	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139 2129.7+0035 2130.0+0307	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139 2129.7+0035 2130.0+0307 2131.4-3121	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139 2129.7+0035 2130.0+0307 2131.4-3121 2131.5-1207	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139 2129.7+0035 2130.0+0307 2131.4-3121 2131.5-1207	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139 2129.7+0035 2130.0+0307 2131.4-3121 2131.5-1207 2136.6+0042	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139 2129.7+0035 2130.0+0307 2131.4-3121 2131.5-1207 2136.6+0042	2123.4-1036 2123.2+1008 2123.2+0646 2123.6-0139 2129.7+0035 2130.0+0307 2131.4-3121 2131.5-1207 2136.6+0042

Table A.3: (continued)

PKS 2138-377 21 41 52.4 -47 291 1.9 0.4250 18.06 0.000 0.530 0.20 MRC 2138-377 21 41 55.4 -43 56.9 -143 48.0 0.2111 15.73 0.386 1.006 0.239 0.00 MRC 2140-588 21 43 35.5 17 43 48.0 0.2111 15.73 0.386 1.006 0.01 FRE 2140-588 21 43 53.4 -14 3 48.0 0.2111 15.73 0.386 1.006 0.01 NPMIC -04.0578 21 45 52.3 0.71 12.72 0.000 0.0584 0.00 RGB J2145+073 21 45 52.3 0.71 12.72 0.000 0.0294 0.00 RGB J2145+073 21 45 52.3 0.71 12.72 0.000 0.0204 0.00 RGB J2145+073 21 45 52.3 0.72 11.130 18.54 0.000 0.0204 0.00 PKS 2146+087 21 47 10.2 25 43.9 0.7301 17.27 0.000 0.0204 0.00 PKS 2146+067 21 48 65.4 0.700 1.130 1.730 0.000	RXJ name (1)	Name (2)	RA(J2000) (3)	DEC(J2000) (4)	(5)	(6)	$F_{5GHz}^{core} \ (7)$	$\frac{F_{5GHz}}{(8)} \alpha_r$		$F_{0.1-2.4\ keV} = (10)$	$\begin{array}{cc} \text{Type} & \text{Hc} \\ \text{(11)} & \text{(1)} \end{array}$	Host (12)	Class. (13)	FR (14)
MRC 2143-048 MRC 2141-174 MRC 2142-410 MRC 2141-174 MRC 2141-175 MRC 2	2141.8-3729	PKS 2138-377	21 41 52.4	29	0.4250	18.06	0.000	0.350	0.20	0.5605E-12	° (Ъ	
MRC 2140-588 21 45 59.2 -56 37 20.8 0.0811 1.54.% 0.000 0.039 0.000 PMRG 2142+110 21 45 18.8 11 15 27.3 0.5500 18.80 0.367 0.414 -0.10 NPMIG 2142+173 21 45 13.4 -04 34 39.1 0.6697 16.20* 0.0008# 0.00 RGB 12145+073 21 46 52.9 -15 25 43.9 0.7010 17.27 0.000 0.029 MRC 2143-166 21 46 54.1 09 20 48.9 0.9810 17.10 0.050 0.000 PKS 2144+092 21 47 10.4 -10 19 11.9 0.797 16.10 0.000 0.020# 0.00 PKS 2144-92 21 47 12.7 -75 86 13.2 1.130 17.30 0.000 0.100 0.100 PKS 2144-92 21 47 12.7 -75 86 13.2 1.130 17.30 0.000 0.100 0.000 PKS 2144-96 21 47 12.7 -75 86 13.2 1.130 17.30 0.000 0.110 0.10 PKS 2145-17 21 48 65.4 06 57 38.6 0.990	2142.0 - 0431	MRC 2139-048 MRC 2141+174	21 42 30.9 21 43 35 5	5. 43.	0.5440	15.73	0.000	0.800	-0.21	0.3042E-11 0.1544E-11	3 C		ם כ	
(HB89] 2142+110 21 45 18.8 11 15 27.3 0.5500 18.80 0.367 0.414 -0.10 RCB J2145+073 21 45 33.4 -04 33.91 0.0697 16.29* 0.000 0.068## 0.00 RCB J2145+073 21 45 52.3 0.7307 17.27 0.000 0.068## 0.00 RCB J2145+073 21 46 52.1 0.9 20 48.9 0.7301 17.27 0.000 0.020 0.049 RCB J2146+093 21 47 10.2 -10 19 11.9 0.7701 17.27 0.000 0.020 0.00 PKS 2142-75 21 47 10.2 -10 19 11.9 0.7707 16.10* 0.000 0.020 0.00 PKS 2142-75 21 47 10.2 -75 36 13.2 1.130 17.24 0.000 0.020 0.00 PKS 2142-75 21 47 10.2 -75 36 13.2 1.130 1.57 0.000 0.020 0.00 PKS 2145-17 21 48 36.8 -17 23 44.0 2.130 1.50 0.000 0.020 0.00 PKS 2145-17 21 48 36.8 -17		MRC 2140-568	$21 \ 43 \ 59.2$	37	0.0815	15.40*	0.000	0.039	0.00	0.9180E-11	, C		7 14	
NPMIG-04.0578 2145 33.4 -04 34 39.1 0.0697 16.20* 0.006 0.0068 0.00 RGB 2145+073 2145 52.3 0.719 72.2 0.2370 18.04 0.037 0.006 0.006 0.006 0.00 MRC 2143-156 21 46 52.9 -15 25 43.9 0.7010 17.10 0.050 0.070 0.00 MRC 2144-092 21 47 00.4 -10 19 11.9 0.0797 16.10* 0.000 0.020# 0.00 PKS 2144-092 21 47 10.7 -75 36 13.2 1.130 18.54 0.000 0.200 0.00 PKS 2145-17 21 48 36.8 -17 23 44.0 2.1300 19.50 0.000 1.280 0.00 PKS 2145-17 21 48 36.8 -17 23 44.0 2.1300 19.50 0.000 0.228 0.00 PKS 2145-17 21 50 15.5 -14 10 50.1 1.20 0.000 0.228 0.00 PKS 2145-17 21 50 15.5 1.41 10 50.1 1.27 2.220 1.280 0.00 0.229 PKS 2145-17	2145.3 + 1115	[HB89] 2142+110	21 45 18.8	15	0.5500	18.80	0.367	0.414	-0.10	0.1584E-11	0		Ъ	
RGB J2145+073 21 45 52.3 07 19 27.2 0.2370 18.04 0.037 0.066 0.00 MIRC 2143-156 21 46 52.1 -15 25 43.9 0.7010 17.27 0.000 0.820 0.49 RGB J2146+093 21 47 00.4 -10 1911.9 0.7977 16.07 0.000 0.020# 0.00 PKS 2144+092 21 47 10.2 09 29 46.7 1.1130 18.54 0.000 0.020# 0.00 PKS 2145-75 21 47 12.7 -75 36 13.2 1.130 18.54 0.000 0.200 0.00 PKS 2145-17 21 48 86.8 -17 23 4.0 2.300 1.57 0.000 0.100 0.00 PKS 2145-067 21 48 86.8 -17 23 4.0 2.300 0.000 0.245 0.00 PKS 2145-067 21 48 86.8 -17 23 4.0 2.300 0.000 0.245 0.00 PKS 2145-067 21 50 15.5 -14 10 50.1 0.220 0.000 0.224 0.00 PKS 2146-306 21 50 15.5 -14 10 50.1 0.2290 0	2145.6 - 0434	NPM1G -04.0578	$21\ 45\ 33.4$	34	0.0697	16.20*	0.000	#890.0	0.00	0.3740E-11			Z	
RGB J2146+093 21 46 22.9 -15 25 43.9 0.7010 17.27 0.000 0.820 0.49 RGB J2146+093 21 46 54.1 09 20 48.9 0.9810 17.10 0.050 0.070 0.00 PKS 2144+092 21 47 10.2 -10 19 11.9 0.077 16.10* 0.000 0.020# 0.00 PKS 2142-75 21 47 10.2 -75 86 13.2 1.1390 17.30 0.000 1.010 -0.10 PKS 2142-75 21 47 10.2 -75 86 13.2 1.1390 17.30 0.000 1.010 -0.10 PKS 2142-76 21 48 65.4 0.65 738.6 0.9900 16.47 2.656 4.134 -0.64 MRC 2147-192 21 48 56.1 1.7234.0 0.000 0.200 0.790 0.000 RBS 178-7 21 50 15.5 -14 10 50.1 0.2290 18.50* 0.000 0.204 0.00 PKS 2149-069 21 51 31.2 -42 33.4 0.0401 18.50* 0.000 0.204 0.00 PKS 2149-069 21 51 31.2 -42 3	2145.8 + 0719	RGB J2145+073	$21\ 45\ 52.3$	$07\ 19\ 27.2$	0.2370	18.04	0.037	0.066	0.00	0.9331E-11	T C		Z	
RGB J2146+093 21 46 54.1 09 20 48.9 0.9810 17.10 0.050 0.070 0.00 PKS 2144+092 21 47 00.4 -10 19 11.9 0.0797 16.10* 0.000 0.020# 0.00 PKS 2144+092 21 47 10.2 -90 29 46.7 1.1130 1.53 0.000 1.200 -0.10 PKS 2142-75 21 48 05.4 -05 73.86 0.9900 16.47 2.656 1.334 -0.64 PKS 2145-17 21 48 36.8 -17 23 44.0 2.1300 16.50 0.000 0.790 0.06 PKS 2145-17 21 48 36.8 -17 23 44.0 2.1300 16.50 0.000 0.790 0.00 PKS 2146-19 21 49 58.1 -18 59 23.8 0.1581 17.90 0.000 0.245 0.00 PKS 2149-069 21 50 15.5 -14 10 50.1 0.220 1.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	2146.3 - 1525	MRC $2143-156$	$21\ 46\ 22.9$	$-15\ 25\ 43.9$	0.7010	17.27	0.000	0.820	0.49	0.1003E-11	ر ا		20	
21 47 00.4 -10 19 11.9 0.0797 16.10* 0.000 0.020# 0.00 PKS 2144+092 21 47 10.2 09 29 46.7 1.1130 18.54 0.000 1.010 -0.10 -0.10 PKS 2144-092 21 47 10.2 -75 36 13.2 1.1390 17.30 0.000 1.010 -0.10 -0.10 PKS 2145-057 21 48 05.4 0.65 73 8.6 0.9900 16.47 2.656 4.134 -0.64 PKS 2145-17 21 49 58.1 -17 23 44.0 2.1300 18.50* 0.000 0.245 0.000 PKS 2145-17 21 49 58.1 -18 59 23.8 0.1581 17.90 0.000 0.245 0.000 PKS 2149-069 21 51 51 21.8 -4.2 33 34.7 0.0610 16.10 0.000 0.245 0.000 PKS 2149-069 21 51 31.4 07 09 26.8 1.3640 18.80 0.000 0.240 0.099 PKS 2149-069 21 51 31.4 07 09 26.8 1.3640 18.80 0.000 0.0340 -0.09 PKS 2149-069 21 51 37.9 0.55 21 2.9 0.7400 19.50 0.000 0.340 -0.09 PKS 2149-069 21 51 37.9 0.55 21 2.9 0.7400 19.50 0.000 0.340 -0.09 PKS 2151-153 21 54 07.5 -15 0.132 1.20 0.000 0.149 0.000 0.340 0.000 PKS 2151-153 21 23 12.70 0.1924 19.00* 0.153 0.684# 1.00 PKS 2151-152 21 55 2.3 38 00 29.6 0.2900 19.34 1.692 1.540 1.25 PKS 215-152 21 55 2.3 38 00 29.6 0.000 0.149 0.000 0.000 PKS 215-152 21 55 2.3 38 00 29.6 0.000 0.000 0.000 0.000 PKS 215-152 21 58 25.3 20 0.010 0.000 0.000 0.000 0.000 PKS 215-152 21 58 25.3 20 0.013 0.000 0.000 0.000 0.000 PKS 215-152 21 58 25.3 20 0.013 0.000 0.000 0.000 0.000 PKS 215-152 21 58 25.4 26 5 2 37.5 0.130 0.000 0.000 0.001# 0.000 PKS 215-80 0.000 0.000 0.000 0.000 PKS 215-80 0.000 0.000 0.000 0.000 0.000 PKS 215-80 0.000 0.000 0.000 0.000 0.000 PKS 215-80 0.000	2146.8 + 0920	RGB $J2146+093$	$21\ 46\ 54.1$	$09\ 20\ 48.9$	0.9810	17.10	0.050	0.070	0.00	0.1821E-11	ر ا		ď	
PKS 2144+092 21 47 10.2 09 29 46.7 1.1130 18.54 0.000 1.010 -0.10 PKS 2142-75 21 47 12.7 -75 36 13.2 1.1390 17.30 0.000 1.280 -0.60 MRC 2145-067 21 48 36.3 1.75 34.0 2.1390 17.30 0.000 0.745 0.00 MRC 2145-17 21 48 36.8 1.75 34.0 2.1300 1.000 0.745 0.00 MRC 2147-192 21 49 58.1 1.72 34.0 2.1300 0.000 0.245 0.00 RBS 1787 21 50 15.5 -14 10 50.1 0.2290 18.50* 0.000 0.045 0.00 PKS 2148-427 21 51 21.8 -42 33 34.7 0.0610 16.10 0.000 0.245 0.00 PKS 2149-069 21 51 37.9 0.709 26.8 1.3640 18.80 0.000 0.340 0.00 PKS 2149-069 21 51 37.9 0.709 26.8 1.3640 18.80 0.000 0.340 0.00 PKS 2149-069 21 55 52.3 3.07 53.1 1.200 </td <td>2147.0 - 1019</td> <td></td> <td></td> <td>-10 19 11.9</td> <td>0.0797</td> <td>16.10*</td> <td>0.000</td> <td>0.020 #</td> <td>0.00</td> <td>0.4300E-11</td> <td></td> <td></td> <td>Z</td> <td></td>	2147.0 - 1019			-10 19 11.9	0.0797	16.10*	0.000	0.020 #	0.00	0.4300E-11			Z	
PKS 2142-75 21 47 12.7 -75 36 13.2 1.1390 17.30 0.000 1.280 -0.60 MRC 2145-067 21 48 05.4 06 57 38.6 0.9900 16.47 2.656 4.134 -0.64 PKS 2145-17 21 48 36.8 -17 23 44.0 2.1300 19.50 0.000 0.290 0.000 0.290 0.000 MRC 2147-192 21 50 15.5 -14 10 50.1 0.230 18.50* 0.000 0.294 0.00 RBS 1787 21 50 15.5 -14 10 50.1 0.2290 18.50* 0.000 0.2940 0.09 PKS 2149-069 21 51 37.9 0.5 52 12.9 0.7400 18.80 0.000 0.2940 0.09 PKS 2149-069 21 51 37.9 0.5 52 12.9 0.7400 18.80 0.000 0.149 0.09 PKS 2149-069 21 55.5 -30 27 53.7 2.3450 17.90 0.000 0.149 0.09 PKS 2149-069 21 55.2 -30 27 53.7 2.3450 1.790 0.000 0.149 0.00		PKS $2144+092$		29	1.1130	18.54	0.000	1.010	-0.10	$< 0.2690 \mathrm{E} - 12$	12 Q		ď	
MRC 2145+067 21 48 05.4 06 57 38.6 0.9900 16.47 2.656 4.134 -0.64 PKS 2145-17 21 48 36.8 -17 23 44.0 2.1300 19.50 0.000 0.790 0.06 MRC 2147-192 21 49 58.1 -18 59 23.8 0.1581 17.90 0.000 0.245 0.00 RBS 1787 21 50 15.5 -14 10 50.1 0.2290 18.50* 0.000 0.2290 0.000 0.220 0.000 PKS 2148-427 21 51 21.8 -42 33 34.7 0.0610 18.50* 0.000 0.220 0.000 0.220 0.000 0.220 0.000 0.220 0.000 0.220 0.220 0.000 0.247 0.00 0.000 0.220 0.220 0.000 0.220 0.220 0.000 0.220 0.220 0.000 0.220 0.220 0.000 0.220 0.220 0.000 0.220 0.220 0.000 0.220 0.220 0.000 0.220 0.220 0.000 0.220 0.220 0.000		PKS 2142-75		36	1.1390	17.30	0.000	1.280	-0.60	0.1410E-11	ر ا		ď	
PKS 2145-17 21 48 36.8 -17 23 44.0 2.1300 19.50 0.000 0.790 0.006 MRC 2147-192 21 49 58.1 -18 59 23.8 0.1581 17.90 0.000 0.245 0.00 RBS 1787 21 50 15.5 -14 10 50.1 0.2290 18.50* 0.000 0.0245 0.00 PKS 2149+069 21 51 31.4 07 09 26.8 1.3640 18.80 0.000 0.220 0.50 PKS 2149+069 21 51 37.9 0.522 0.000 0.220 0.520 0.000 0.040 0.09 PKS 2149+069 21 51 37.9 0.526.8 1.3640 18.80 0.000 0.240 0.00 PKS 2149+069 21 51 55.5 -30 27 53.7 2.3450 17.90 0.000 1.149 0.02 PKS 215-153 21 56 52.3 38 00 29.6 0.200 0.153 0.020 0.153 0.000 0.14 0.00 3C 438 125 52.3 38 00 29.6 0.200 0.153 0.020 0.000 0.25 0.00	2148.0 + 0657	$MRC\ 2145+067$		22	0.9900	16.47	2.656	4.134	-0.64	0.2851E-11			ď	
MMC 2147-192 21 49 58.1 -18 59 23.8 0.1581 17.90 0.000 0.245 0.00 RBS 1787 21 50 15.5 -14 10 50.1 0.2290 18.50* 0.000 0.068# 0.00 PKS 2148-427 21 51 21.8 -42 33 34.7 0.0610 16.10 0.000 0.220 0.50 PKS 2149+069 21 51 21.8 -42 33 34.7 0.0610 16.10 0.000 0.240 0.00 PKS 2149+069 21 51 31.4 0.09 26.8 1.3640 18.80 0.000 0.140 0.027 0.00 PKS 2149+056 21 51 37.9 0.52 12.9 0.7400 19.50 0.000 1.149 0.27 0.02 PKS 2149-056 21 51 37.9 0.7400 19.50 0.000 1.149 0.22 PKS 2151-153 21 54 07.5 -15 01 31.0 1.2080 16.50 0.000 1.149 0.22 PKS 2151-153 21 55 2.3 38 02 26 0.2300 19.34 1.692 1.540 1.25 PKS 2155+152 <t< td=""><td>2148.5 - 1723</td><td>PKS 2145-17</td><td></td><td>23</td><td>2.1300</td><td>19.50</td><td>0.000</td><td>0.790</td><td>0.00</td><td>0.4491E-12</td><td>ල 2</td><td></td><td>Ъ</td><td></td></t<>	2148.5 - 1723	PKS 2145-17		23	2.1300	19.50	0.000	0.790	0.00	0.4491E-12	ල 2		Ъ	
RBS 1787 21 50 15.5 -14 10 50.1 0.2290 18.50* 0.000 0.068# 0.00 PKS 2148-427 21 51 21.8 -42 33 34.7 0.0610 16.10 0.000 0.220 0.50 PKS 2149-069 21 51 31.4 07 09 26.8 1.3640 18.80 0.000 0.940 -0.09 PKS 2149-056 21 51 37.9 05 52 12.9 0.7400 19.50 0.000 1.189 -0.27 PKS 2149-366 21 51 55.5 -30 27 53.7 2.3450 17.90 0.000 1.149 0.22 PKS 2151-153 21 54 07.5 -15 01 31.0 1.2080 16.50 0.000 1.149 0.22 PKS 2151-153 21 54 07.5 -15 01 31.0 1.2080 16.50 0.000 1.149 0.22 PKS 2151-153 21 54 07.5 -15 01 31.0 0.1924 19.00* 0.159 40.684# 1.00 AC +12.76 21 55 2.3 38 00 29.6 0.290 1.59 0.000 1.149 1.25 AC +38 21 55 2.3		MRC 2147-192	49	59	0.1581	17.90	0.000	0.245	0.00	0.1069E-10			1	
PKS 2148-427 21 51 21.8 -42 33 34.7 0.0610 16.10 0.000 0.220 0.50 PKS 2149+069 21 51 31.4 07 09 26.8 1.3640 18.80 0.000 0.940 -0.09 PKS 2149+069 21 51 37.9 05 52 12.9 0.7400 19.50 0.000 1.189 -0.27 PKS 2149-306 21 51 55.5 -30 27 53.7 2.3450 17.90 0.000 1.149 0.22 PKS 2151-153 21 54 07.5 -15 01 31.0 1.2080 16.50 0.000 1.149 0.22 PKS 2151-153 21 55 42.3 12 31 27.0 0.1924 19.00* 0.153 4C 42 3C 438 2C 52.3 38 00 29.6 0.2900 19.34 1.692 1.540 1.25 3C 438 3C 438 3C 52.3 33 18 35.9 0.0790 16.20* 0.005 0.007 0.007 0.007 0.007 0.00 0.007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	2150.6 - 1410	RBS 1787	50	10	0.2290	18.50*	0.000	#890.0	0.00	0.1510E-10			Z	
PKS 2149+069 21 51 31.4 07 09 26.8 1.3640 18.80 0.000 0.940 -0.09 PKS 2149+056 21 51 37.9 05 52 12.9 0.7400 19.50 0.000 1.189 -0.27 PKS 2149-306 21 51 55.5 -30 27 53.7 2.3450 17.90 0.000 1.149 0.22 PKS 2151-153 21 54 07.5 -15 01 31.0 1.2080 16.50 0.000 1.149 0.22 PKS 2151-153 21 55 42.3 12 31 27.0 0.1924 19.00* 0.153 0.684# 1.00 3C 438 21 55 52.3 38 00 29.6 0.2900 19.34 1.692 1.540 1.25 RCB J2156+333 21 56 23.0 33 18 35.9 0.0790 16.20* 0.005 0.027 0.10 PKS 2155-152 21 58 06.3 -15 01 09.3 0.7610 17.70 0.363 0.00 0.00 PKS 2155-152 21 58 06.3 -15 01 09.3 0.6720 18.30 0.000 0.035 0.00 APWBGC 601+092+ 21 58 2		PKS 2148-427	51	33	0.0610	16.10	0.000	0.220	0.50	0.4976E-13		田	n	
PKS 2149+056 21 51 37.9 05 52 12.9 0.7400 19.50 0.000 1.189 -0.27 PKS 2149-306 21 51 55.5 -30 27 53.7 2.3450 17.90 0.000 1.149 0.22 PKS 2151-153 21 54 07.5 -15 01 31.0 1.2080 16.50 0.000 0.310 1.20 4C +12.76 21 55 42.3 12 31 27.0 0.1924 19.00* 0.153 0.684# 1.00 3C 438 21 55 52.3 38 00 29.6 0.2900 19.34 1.692 1.540 1.25 3C 438 21 56 23.0 33 18 35.9 0.0790 16.20* 0.005 0.00 </td <td></td> <td>PKS $2149+069$</td> <td>51</td> <td>60</td> <td>1.3640</td> <td>18.80</td> <td>0.000</td> <td>0.940</td> <td>-0.09</td> <td>< 0.4190 E-12</td> <td>12 Q</td> <td></td> <td>ď</td> <td></td>		PKS $2149+069$	51	60	1.3640	18.80	0.000	0.940	-0.09	< 0.4190 E-12	12 Q		ď	
PKS 2149-306 21 51 55.5 -30 27 53.7 2.3450 17.90 0.000 1.149 0.22 PKS 2151-153 21 54 07.5 -15 01 31.0 1.2080 16.50 0.000 0.310 1.20 4C +12.76 21 55 42.3 12 31 27.0 0.1924 19.00* 0.153 0.684# 1.00 3C 438 21 55 52.3 38 00 29.6 0.2900 19.34 1.692 1.540 1.25 RGB J2156+333 21 56 23.0 33 18 35.9 0.0790 16.20* 0.005 0.027 0.10 PKS J156+130 21 57 12.9 10 14 24.8 0.7610 17.70 0.363 0.000 0.00 PKS 2155-152 21 58 06.3 -15 01 09.3 0.6720 18.30 0.000 0.035# 0.00 APMBGC 601+092+ 21 58 22.5 -20 06 14.6 0.0578 15.50* 0.000 0.035# 0.00 AC +26.59 21 58 22.1 -30 13 32.1 0.1160 13.09 0.000 0.011# 0.00 RBS 1807 22 01 03.1 <td></td> <td>PKS $2149 + 056$</td> <td>51</td> <td>52</td> <td>0.7400</td> <td>19.50</td> <td>0.000</td> <td>1.189</td> <td>-0.27</td> <td>< 0.4130 E-12</td> <td></td> <td></td> <td>90</td> <td></td>		PKS $2149 + 056$	51	52	0.7400	19.50	0.000	1.189	-0.27	< 0.4130 E-12			90	
PKS 2151-153 21 54 07.5 -15 01 31.0 1.2080 16.50 0.000 0.310 1.20 4C +12.76 21 55 42.3 12 31 27.0 0.1924 19.00* 0.153 0.684# 1.00 3C 438 21 55 52.3 38 00 29.6 0.2900 19.34 1.692 1.540 1.25 RGB J2156+333 21 56 23.0 33 18 35.9 0.0790 16.20* 0.005 0.027 0.10 HBS J2156+333 21 56 23.0 33 18 35.9 0.0779 16.20* 0.005 0.027 0.10 PKS 2156-152 21 58 06.3 -15 01 09.3 0.6720 18.30 0.000 0.035 0.00 APMBGC 601+092+ 21 58 22.5 -20 06 14.6 0.0578 15.50* 0.000 0.035 0.00 AC +26.59 21 58 25.4 26 52 37.5 0.7130 17.40 0.148 0.500# 0.00 RBS 1807 21 58 52.1 -30 13 32.1 0.1160 13.09 0.000 0.001# 0.00 FBQS 32201-0652 22 01 03.1	2151.9 - 3027	PKS 2149-306	51	27	2.3450	17.90	0.000	1.149	0.22	0.7618E-11			₽0	
4C +12.76 21 55 42.3 12 31 27.0 0.1924 19.00* 0.153 0.684# 1.00 3C 438 21 55 52.3 38 00 29.6 0.2900 19.34 1.692 1.540 1.25 RGB J2156+333 21 56 23.0 33 18 35.9 0.0790 16.20* 0.005 0.027 0.10 [HB89] 2154+100 21 57 12.9 10 14 24.8 0.7610 17.70 0.363 0.000 0.00 PKS 2155-152 21 58 06.3 -15 01 09.3 0.6720 18.30 0.000 0.09 APMBGC 601+092+ 21 58 22.5 -20 06 14.6 0.0578 15.50* 0.000 0.035# 0.00 4C +26.59 21 58 22.4 26 52 37.5 0.7130 17.40 0.148 0.500# 0.69 RBS 1807 21 58 52.1 -30 13 32.1 0.1160 13.09 0.000 0.310 0.00 IRAS F21568+0058 21 59 24.0 0.113 05.3 1.0000 16.60 0.000 0.001# 0.00 FBQS J2201-0052 22 01 03.1 -0.052 59.6 0.2130 17.90* 0.000 0.0014# 0.00		PKS 2151-153		01	1.2080	16.50	0.000	0.310	1.20	0.7580E-12			ď	
3C 438 21 55 52.3 38 00 29.6 0.2900 19.34 1.692 1.540 1.25 RGB J2156+333 21 56 23.0 33 18 35.9 0.0790 16.20* 0.005 0.027 0.10 [HB89] 2154+100 21 57 12.9 10 14 24.8 0.7610 17.70 0.363 0.000 0.00 PKS 2155-152 21 58 06.3 -15 01 09.3 0.6720 18.30 0.000 1.580 0.09 APMBGC 601+092+ 21 58 22.5 -20 06 14.6 0.0578 15.50* 0.000 0.035# 0.00 4C +26.59 21 58 22.4 26 52 37.5 0.7130 17.40 0.148 0.500# 0.69 RBS 1807 21 58 52.1 -30 13 32.1 0.1160 13.09 0.000 0.310 0.00 IRAS F21568+0058 21 59 24.0 0.113 05.3 1.0000 16.60 0.000 0.001# 0.00 FBQS J2201-0052 22 01 03.1 -0.052 59.6 0.2130 16.70* 0.000 0.001# 0.00 PMN J2201+0504 22 01 55.8 -17 07 00.3 0.1686 16.70* 0.000 0.005# <	2155.6 + 1231	4C + 12.76		31	0.1924	19.00*	0.153	0.684#	1.00	0.4528E-11	DD 1	田		
RGB J2156+333 21 56 23.0 33 18 35.9 0.0790 16.20* 0.005 0.027 0.10 [HB89] Z154+100 21 57 12.9 10 14 24.8 0.7610 17.70 0.363 0.000 0.00 PKS 2155-152 21 58 06.3 -15 01 09.3 0.6720 18.30 0.000 1.580 0.00 APMBGC 601+092+ 21 58 22.5 -20 06 14.6 0.0578 15.50* 0.000 0.035# 0.00 4C +26.59 21 58 22.4 26 52 37.5 0.7130 17.40 0.148 0.500# 0.69 RBS 1807 21 58 24.0 0.1160 13.09 0.000 0.310 0.00 IRAS F21568+0058 21 59 24.0 0.113 05.3 1.0000 16.60 0.000 0.001# 0.00 FBQS J2201-0052 22 01 03.1 -06 52 59.6 0.2130 16.70 0.000 0.001# 0.00 PMIN J2201+0504 22 01 55.8 -17 07 00.3 0.1686 16.70* 0.000 0.005# 0.005# 20 05 4.3 27 05 4.3	2155.8 + 3759	3C 438		00	0.2900	19.34	1.692	1.540	1.25	0.3877E-11			r	П
[HB89] 2154+100 21 57 12.9 10 14 24.8 0.7610 17.70 0.363 0.000 0.00 PKS 2155-152 21 58 06.3 -15 01 09.3 0.6720 18.30 0.000 1.580 0.09 0.09 APMBGC 601+092+ 21 58 22.5 -20 06 14.6 0.0578 15.50* 0.000 0.035# 0.00 0.035 4C +26.59 21 58 25.4 26 52 37.5 0.7130 17.40 0.148 0.500# 0.69 PKBS 1807 21 58 52.1 -30 13 32.1 0.1160 13.09 0.000 0.310 0.00 PKBS 1807 22 01 03.1 0.052 59.6 0.2130 16.70 0.000 0.001# 0.00 PKBS 1807 22 01 07.5 05 04 43.4 0.2330 17.90* 0.000 0.0134# 0.37 0.00 0.014 0.00 0.001# 0.00 0.014 0.00 0.001# 0.00 0.001# 0.00 0.001# 0.00 0.00	2156.3 + 3318	RGB J2156+333		18	0.0790	16.20*	0.005	0.027	0.10	0.1814E-10	<u>ن</u>			
PKS 2155-152 21 58 06.3 -15 01 09.3 0.6720 18.30 0.000 1.580 0.09 APMBGC 601+092+ 21 58 22.5 -20 06 14.6 0.0578 15.50* 0.000 0.035# 0.00 4C +26.59 21 58 22.4 26 52 37.5 0.7130 17.40 0.148 0.500# 0.69 RBS 1807 21 58 52.1 -30 13 32.1 0.1160 13.09 0.000 0.310 0.00 IRAS F21568+0058 21 59 24.0 01 13 05.3 1.0000 16.60 0.000 0.001# 0.00 FBQS J2201-0052 22 01 03.1 -00 52 59.6 0.2130 16.70 0.000 0.001# 0.00 PMN J2201+0504 22 01 07.5 05 04 43.4 0.2330 17.90* 0.000 0.0134# 0.30 22 01 55.8 -17 07 00.3 0.1686 16.70* 0.000 0.005# 0.00 22 01 55.8 -17 07 00.3 0.1686 16.70* 0.000 0.005# 0.00	2157.2 + 1014	[HB89] 2154+100		$10\ 14\ 24.8$	0.7610	17.70	0.363	0.000	0.00	0.7815E-12			ď	
APMBGC 601+092+ 21 58 22.5 -20 06 14.6 0.0578 15.50* 0.000 0.035# 0.00 4C +26.59	2158.1 - 1500	PKS 2155-152		$-15\ 01\ 09.3$	0.6720	18.30	0.000	1.580	0.09	0.1526E-11	ر ا		Ъ	
4C +26.59 21 58 25.4 26 52 37.5 0.7130 17.40 0.148 0.500# 0.69 RBS 1807 21 58 52.1 -30 13 32.1 0.1160 13.09 0.000 0.310 0.00 IRAS F21568+0058 21 59 24.0 01 13 05.3 1.0000 16.60 0.000 0.001# 0.00 FBQS J2201-0052 22 01 03.1 -00 52 59.6 0.2130 16.70 0.000 0.001# 0.00 PMN J2201+0504 22 01 07.5 05 04 43.4 0.2330 17.90* 0.000 0.134# 0.37 22 01 55.8 -17 07 00.3 0.1686 16.70* 0.000 0.005# 0.005	2158.5 - 2006	APMBGC 601 + 092 +		-20~06~14.6	0.0578	15.50*	0.000	0.035 #	0.00	0.2420E-11	U U	田		
RBS 1807 12 58 52.1 13 013 32.1 10.1160 13.09 0.000 0.310 0.000 10.00 10.001 10.000	2158.3 + 2652	4C + 26.59		52	0.7130	17.40	0.148	0.500 #	0.69	0.1454E-11			ದ	
IRAS F21568+0058 21 59 24.0 01 13 05.3 1.0000 16.60 0.000 0.001# 0.00 FBQS J2201-0052 22 01 03.1 -00 52 59.6 0.2130 16.70 0.000 0.001# 0.00 PMN J2201+0504 22 01 07.5 05 04 43.4 0.2330 17.90* 0.000 0.134# 0.37 22 01 55.8 -17 07 00.3 0.1686 16.70* 0.000 0.005# 0.00 DI I ACEDIARE 0.20 3.3 4.316.30 0.686 14.73 9.07 9.04 0.13		RBS 1807	$\frac{5}{8}$	$-30\ 13\ 32.1$	0.1160	13.09	0.000	0.310	0.00	0.8039E-10	°		Z	
FBQS J2201-0052 22 01 03.1 -00 52 59.6 0.2130 16.70 0.000 0.001# 0.00 0.001 PMN J2201+0504 22 01 07.5 05 04 43.4 0.2330 17.90* 0.000 0.134# 0.37 0.17 07 00.3 0.1686 16.70* 0.000 0.005# 0.00 0.005# 0.00	2159.4 + 0113	IRAS $F21568+0058$		13	1.0000	16.60	0.000	0.001#	0.00	0.1410E-11			b	
PMN J2201+0504 22 01 07.5 05 04 43.4 0.2330 17.90* 0.000 0.134# 0.37 0.22 01 55.8 -17 07 00.3 0.1686 16.70* 0.000 0.005# 0.00 0.00 0.005# 0.00	2201.1 - 0053	FBQS J2201-0052		52	0.2130	16.70	0.000	0.001#	0.00	0.3782E-11	ı G		ď	
22 01 55.8 -17 07 00.3 0.1686 16.70* 0.000 0.005# 0.00 DI I ACEDITAE 32 43.3 43.16.30 0.0686 14.73 3.307 3.040 0.13	2201.0 + 0504	PMN J2201+0504	$22\ 01\ 07.5$	$05\ 04\ 43.4$	0.2330	17.90*	0.000	0.134#	0.37	0.1666E-11	ت ا		q	
DITACEDHAE 39 03 43 9 43 16 90 0 0 0686 14 79 3 907 0 13	2201.0 - 1706		$22\ 01\ 55.8$	-17 07 00.3	0.1686	16.70*	0.000	0.005#	0.00	0.4330E-11	ر ر		Z	
DL LACERIAE 22 02 45.3 42 10 39.9 0.0080 14.12 2.301 2.340 -0.13	2202.7 + 4216	BL LACERTAE	$22\ 02\ 43.3$	$42\ 16\ 39.9$	0.0686	14.72	2.307	2.940	-0.13	0.5545E-11	7		Z	

Table A.3: (continued)

ı	1	ı																	Π	Ι												Π			1
FR	(14)	b	đ	∞	z	ď	1	ď	d	ď	1	r	ď	ď	1	ď	1	ď	n		ď	ď	ď	ď	1	ď	ď	z	Р	ď	ď	p	ъ0	ď	
Class.	(13)																																		
Host	(12)				囝						∞	Z								0												Z			
		ဝ	o	ŭ	ŭ	o	ŭ	o	o	0	$_{\rm GC}$	U	0	0	U	o	U	o	U	CC	~	0	U	o	U	~	U	U	U	0	U	U	°	o	CC
V Type		8E-11	0.5000E-12	0.3730E-11	2E-11	0.1600E-12	0E-11	4E-11	0.6115E-12	0.9150E-12	0.1010E-10	0.7753E-12	0.2944E-11	0E-11	0.6037E-11	0.1636E- 11	0.7870E-11	<0.3360E-12	0.2334E-11	< 0.1015E-12	0.3286E-11	0.1748E-11	0.1145E-11	<0.4700E-12	0.3770E-11	0.1656E -11	0.7854E-12	5E-11	0E-11	0.1389E-11	0.1048E-11	0.4708E-12	0.3101E-11	0.1775E- 11	0.4433E-11
$F_{0.1-2.4\ keV}$	(10)	0.8588E-1	0.500	0.373	0.1532E-1	0.160	0.1480E-1	0.1434E-1	0.611	0.915	0.101	0.775	0.294	0.1160E-1	0.603	0.163	0.787	<0.33	0.233	< 0.10	0.328	0.174	0.114	< 0.47	0.377	0.165	0.785	0.2045E-1	0.2470E-1	0.138	0.104	0.470	0.310	0.177	0.443
		0.11	0.15	0.00	0.84	0.33	0.00	-0.60	0.00	0.50	0.00	0.70	0.50	0.00	-0.22	0.50	0.00	-0.10	0.88	0.85	0.74	0.00	0.83	0.00	0.00	-0.36	0.00	-0.03	0.46	0.69	0.00	0.70	0.56	0.14	0.00
	(6)	2.806	0.590	0.003#	0.653	4.280	0.011#	0.240	0.143	1.320	0.029 #	0.270	0.530	0.187 #	0.134	0.742	0.003#	1.020	2.140	0.333	0.177	0.290	0.072	0.630	0.004#	3.629	0.023	0.123	0.810	0.686	0.360	2.279	0.000	5.519	.034
F_{5GHz}	(8)	2.8	0.5	0.0	9.0	4.2	0.0	0.2	0.1	1.3	0.0	0.2	0.5	0.1	0.1	0.7	0.0	1.0	2.1	0.3	0.1	0.2	0.0	0.6	0.0	3.6	0.0	0.1	8.0	0.6	0.3	2.2	0.0	5.5	0.0
F_{5GHz}^{core}	(7)	1.399	0.000	0.000	0.264	0.000	0.000	0.000	0.000	0.000	0.000	0.015	0.000	0.000	0.117	0.225	0.000	0.000	0.002	0.040	0.103	0.000	0.019	0.000	0.000	0.000	0.010	0.098	0.230	0.105	0.000	0.086	1.766	0.000	0.000
m_V	(9)	15.58	19.50	16.10*	15.20	18.50	19.10*	18.70	20.20	18.40	13.10*	18.00	17.00	16.10*	15.44	19.10	16.70*	19.00	17.80*	14.30	16.60	18.00	17.80	21.10	16.60*	16.38	19.00	18.70	17.00	17.90	16.60	15.77	17.50	18.39	15.10*
z	(5)	0.2950	1.0750	0.1154	0.0270	0.6200	0.1650	0.5760	1.8800	1.2060	0.0231	0.1580	0.3920	0.3200	0.0700	0.4840	0.1460	1.8330	0.1530	0.0263	0.2288	0.9480	0.4050	3.5720	0.1200	0.9010	1.2600	0.2000	0.0850	0.6550	0.2980	0.0562	1.9590	1.4040	0.1070
DEC(J2000)	(4)	45 38.3	2548.2	$57\ 11.2$	$04\ 40\ 02.0$	$35\ 38.7$	05 06.5	$19\ 40.0$	4156.9	46	$48\ 34.1$	$53\ 33.0$	$28 \ 09.7$	07 04.0	41	19	$10\ 17.7$	29	$-17\ 01\ 35.9$	50	$29\ 02\ 36.1$	03	39	20	$02\ 15.8$	35	59	2053.3	$13\ 27.9$	$48\ 47.1$	$55\ 47.3$	$-02\ 06\ 12.3$	1806.4	$57\ 01.4$	22 09.0
DEC		31	17	-08	04	-18	-30	-21	00	-53	-27	-24	-13	-37 (18	08	-17	-25	-17	13	29	-28	22	+02	+08	-03	22	21	26	39	-34	-02	21	-04	17
RA(J2000)	(3)	22 03 14.9	$22\ 03\ 26.9$	$22\ 04\ 07.5$	$22\ 04\ 17.6$	$22\ 06\ 10.4$	$22\ 06\ 11.0$	$22\ 06\ 41.3$	$22\ 07\ 19.8$	$22\ 07\ 43.7$	$22\ 09\ 07.7$	$22\ 09\ 22.9$	$22\ 11\ 24.1$	$22\ 11\ 50.5$	$22\ 11\ 53.7$	$22\ 12\ 01.6$	$22\ 13\ 00.3$	$22\ 13\ 02.5$	$22\ 14\ 25.7$		$22\ 15\ 36.8$	$22\ 15\ 59.9$	$22\ 17\ 10.9$	$22\ 17\ 48.2$	$22\ 18\ 38.5$	$22\ 18\ 52.0$	$22\ 19\ 21.0$	$22\ 19\ 44.2$	$22\ 19\ 49.7$	$22\ 20\ 31.4$	22 23 05.9	$22\ 23\ 49.6$	$22\ 25\ 38.0$	$22\ 25\ 47.2$	22 26 03.4
Name	(2)	4C +31.63	PKS 2201+171		4C + 04.77	PKS 2203-18	RX J2206.1-3005	LBQS 2203-2134	PMN J2207+0042	MRC $2204-540$	NGC 7214	$MRC\ 2206-251$	MRC $2208-137$	CTS 0377	RGB J2211+186	PKS 2209+08		PKS 2210-25	3C 444	3C 442A	4C + 28.53	PKS 2213-283	RGB $J2217 + 226$	PKS $2215+02$	RX J2218.6+0802	$MRC\ 2216-038$	RGB $J2219+229$	RGB J2219+213	RGB J2219+262		20-351		2223 + 210	3C 446	4C +17.89
RXJ name	(1)	2203.2 + 3145		2204.6 - 0857	2204.2 + 0439		2206.3 - 3005			2207.6 - 5346	2209.9 - 2748	2209.4 - 2453		2211.5 - 3707	2211.9 + 1841	2212.0 + 0819	2213.5 - 1710		2214.4 - 1701	2214.8 + 1351	2215.5 + 2902	2216.0 - 2803	2217.1 + 2239		2218.1 + 0802	2218.9 - 0335	2219.2 + 2259	2219.7 + 2120	2219.8 + 2613	2220.5 + 3948	2223.1 - 3455	2223.8 - 0206	2225.6 + 2118	2225.8 - 0457	2226.0+1722

Table A.3: (continued)

	II									Ι											Ι							Π						ı
FR (14)		ď	n			ď	ď	ď	ď		50	Ŋ	ď	ď	6	ď	Ŋ	1	∞	I		∞	ď	r		ď	đ	n	50	1	∞	ď	ď	z
Class. (13)																																		
Host (12)				0						田					∞			S	∞			∞			∞			田						
Type (11)	R	0	U	U	U	U	Ç	Ç	O	ŭ	0	o	Ç	O	U	o	Ç	ŭ	U	U	O U	ŭ	U	U	U	O	S	U	o	U	ŭ	U	O,	U
	E-11	E-11	E-12	E-12	F-11	E-12	E-11	E-12	E-11	E-12	E-11	E-11	E-11	E-12	F-11	E-12	E-11	E-11	E-11	E-11	5+02*	E-10	E-11	E-11	E-09	E-12	E-12	5+02*	E-11	F-11	E-11	E-11	0E-12	臣111
$F_{0.1-2.4\ keV}$ (10)	0.3070E-1	0.1460E-11	0.5671E-12	0.8941E-12	0.4660E-11	0.9285E-1	0.2165E-1]	0.5000E-12	0.6748E-1	0.1083E-12	0.2513E-11	0.5768E-1	0.2035E-11	0.5511E-12	0.3090E-1]	0.6382E-12	0.1322E-11	0.3560E-11	0.7100E-11	0.1731E-11	0.4150E + 02*	0.1640E-10	0.1959E-11	0.1251E-11	0.1097E-09	0.7217E-12	0.5087E-12	0.4363E + 02*	0.2749E-11	0.4465E-11	0.3590E-1]	0.3068E-11	< 0.2380 E-12	0.7076E-11
$F_{0.1-}$ (0.00	0.50	0.00	0.00	0.00	0.00	0.31	0.09	1.00	1.58	0.40	0.00	-0.50	0.84	0.00	-0.63	-0.32	0.00	0.00	09.1	0.54 (0.00	0.00	0.46	0.00	0.12	-0.90	0.94 (0.23	0.46	0.00	0.00	0.18	0.14
α_r (9)					. 11																				#									
$\frac{F_{5GHz}}{(8)}$	#2200	0.126#	0.000	0.032	0.004#	0.132 #	0.143	1.409	1.020	6.450	0.000	0.033	0.870	0.128	0.034#	1.478#	0.610	0.071#	#200.0	0.080 #	0.770	0.016#	0.046	0.114	0.029	1.000	0.320	28.199	2.379	0.147	0.016#	0.018#	1.800	0.112
$F_{5GHz}^{core} \ (7)$	0.000	0.000	0.022	0.004	0.000	0.000	0.059	0.000	0.000	0.037	6.468	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.035	0.041	0.000	0.000	0.000	0.130	0.000	0.013	0.000	0.000	0.000	0.060
$m_V $ (6)	18.50*	17.76	19.00	14.12*	16.40*	18.50	16.80	18.10	17.80	13.15*	17.33	18.58	18.10	19.50	11.90*	19.00	19.00	14.80*	14.90*	10.35	15.00*	14.20*	17.60	16.80*	14.16	18.40	18.00	16.56	16.45	17.10	15.90*	17.00	19.10	16.00
z (5)	0.1678	1.2490	0.3190	0.0344	0.0897	0.6390	0.3196	1.5620	0.3230	0.0171	1.0370	0.2140	0.5100	2.0900	0.0047	0.7950	0.3250	0.0241	0.0337	0.0027	0.0276	0.0246	0.4930	0.0680	0.0247	0.7740	1.3400	0.0811	0.6320	0.1470	0.1173	0.2910	2.2680	0.1187
(000)	46.0	55.2	12.4	59.3	2.80	46.5	12.1	54.4	52.1	48.0	50.9	01.0	58.8	1007.9	6.00	57.4	22.2	3242.6	14.8	56.3	40.7	14.1	59.0	10.2	31.3	30.7	6.80	15.7	51.3	6.70	29.8	47.0	52.2	37.1
$ \begin{array}{c} \text{DEC(J2000)} \\ (4) \end{array} $	+25 49 46.0	0355	2421	1646	$+33\ 35$	-07 53	3057	-08 32	-39 42	39 21	11 43	$13\ 36$	-48 35	40 10	-26 03 00.9	28 28	-14 33	-12 32	-22 13 14.8	3424	35 19	+0803	$27 \ 32$	0453	2943	-25 44	0324	$39\ 41$	-1206	$31\ 42$	-17 28	-10 15	-32 35	38 24
RA(J2000) (3)	57.0	05.1	47.9	29.5	2846.3	2852.6	$29\ 34.1$	$29\ 40.1$	3040.3	3120.9	$32\ 36.4$	01.1	35 13.2	$35\ 17.4$	$35\ 46.2$	3622.5	$36\ 34.1$	$36\ 46.5$	55.9	3704.1	38 29.5	17.0	0.20	4134.2	39.3	26.4	28.3	48.8	18.2	21.7	04.1	17.5	38.7	50 05.8
RA(J	22 26 57.0	$22\ 27\ 05.1$	$22\ 27\ 47.9$	$22\ 28\ 29.5$	22 28	22 28	22 29	22 29	$22 \ 30$	$22\ 31$	$22\ 32$	$22\ 33\ 01.$	$22\ 35$	$22 \ 35$	$22\ 35$	$22 \ 36$		$22\ 36$	$22\ 36\ 55.9$	$22\ 37$	22 38	22 40 17.0	22 41 02.0	2241	$22\ 42\ 39.3$	$22 \ 43 \ 26.4$	$22\ 45\ 28.3$	22 45 48.8	$22\ 46\ 18.2$	$22\ 46\ 21.7$	$22\ 48\ 04.1$	$22\ 48\ 17.5$	$22\ 48\ 38.7$	22 50
	3+2	356	43			753	60					+		399					31				75	48			3		23	17	74	015		
Name (2)	22433.6	227+0	227 + 2	167		2228-0	229 + 3	80-22	29		2	23033.7	32-488	2233+3	14	+28A	33-148	915	2- G 03	31	127	138	241 + 2	241 + 0	4	40-260	242+0		2243-12	246 + 3	2453-17	2248-1	45-328	+381
	87GB 222433.6+2	PMN J2227+0356	RGB J2227+243	NGC 7291		FBQS J2228-0753	RGB J2229+309	PKS 2227-08	RBS 1867	3C 449	CTA 102	87GB 223033.7+	PKS 2232-488	[HB89] 2233 $+399$	NGC 7314	B2 2234+28A	PKS 2233-148	MRK 0915	ESO 602- G 031	NGC 7331	UGC 12127	UGC 12138	RGB J2241+275	RGB J2241+048	ARK 564	PKS 2240-260	PKS $B2242+03$	3C452	[HB89] 2243-123	RGB J2246+317	IRAS 22453-174	FBQS J2248-1015	PKS 2245-328	B3 2247+381
ame	2549	0355	2420	1647	3335	753	3057				1143	1335	835		603			232	213	3425		0803	2732	0453	2943				206	3142	728	015		3824
RXJ name (1)	2226.0 + 2549	2227.0 + 0355	2227.7 + 2420	2228.4 + 1647	2228.3 + 3335	2228.9-0753	2229.5 + 3057				2232.5 + 1143	2233.0 + 1335	2235.2-4835		2235.0-2603			2236.3-1232	2236.5-2213	2237.0 + 3425		2240.7 + 0803	2240.9 + 2732	2241.5 + 0453	2242.6 + 2943				2246.3-1206	2246.2 + 3142	2248.1-1728	2248.3-1015		2250.0 + 3824
.	[]	2	2	2	2	2	2				2	2	2		2			2.	2	2		2	2	2	2				2.	2	2	2		2

Table A.3: (continued)

			Π								Π																							
FR (14)		_	വർ	<i>C</i> .		<i>C</i> *	T	_	~	<u></u>	ഫ		0	_	N	_	<i>C</i>	_	æ		С.	,0	_	,0	C.	,0	,,	<i>C</i> *	<i>C</i> *		<i>C</i> *	σ.	N	<u></u>
Class. (13)				J		Ū	Ū		Ŭ	Ū		Ū					Ū				Ū				Ū			J	J		J	Ū	.,	
Host (12)	田													臼						∞		\mathbf{v}	Z	\mathbf{v}		d				臼				
Type I (11) (ಿ	U	o	o	U	o	o	ŭ	O	o	o	o	U	CC	o	U	U	U	U	U	U	U	U	U	o	U	U	o	o	U	U	U	c	ŭ
$F_{0.1-2.4\ keV}$ Ty (10)	0.1500E-12	0.4390E-11	< 0.1354 E-12	0.4530E-11	0.4070E-11	0.1031E-11	0.1755E-10	0.2030E-10	0.1385E-11	0.4732E-12	< 0.1354 E-12	0.1024E-11	0.1420E-11	0.1386E-11	0.7903E-12	0.3950E-11	0.2720E-11	0.1090E-10	0.1234E-11	0.1570E-10	0.5783E-12	0.8220E-11	0.8842E-11	0.4704E-10	0.2018E-11	0.4160E-11	0.4030E-10	0.2563E-11	0.7481E-12	0.9039E-12	0.8731E-12	0.1814E-11	0.6960E-11	0.1557E-11
$F_{0.1}$	0.50	0.00	0.61	0.00	0.00	-0.10	0.17	0.00	0.40	0.86	0.90	0.19	0.00	0.21	1.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.00	0.10	0.00	0.00	0.80	0.30	1.91	0.74	0.02	0.00	0.11
$F_{5GHz} \qquad \alpha_r $ (8) (9)	1.110	#090.0	0.790	0.002#	0.002#	0.357	14.468	0.017#	0.869	0.572	2.899	1.120	0.046	0.720	0.480	0.003#	#900.0	0.003#	0.025	0.004#	0.023	#900.0	0.890	0.070	0.340	0.023#	0.034 #	0.150	0.450	0.187	0.394	0.163	#900.0	0.045
F_{5GHz}^{core} $F_{\mathbb{F}}$	0.000	0.000	0.000	0.000	0.000	0.254	12.189	0.000	0.800	0.021	0.000	0.000	0.040	0.000	0.000	0.000	0.000	0.000	0.017	0.000	0.013	0.000	0.000	0.018	0.000	0.000	0.000	0.000	0.000	0.083	0.081	0.177	0.000	0.012
m_V	16.93	16.60*	18.40	16.30*	18.20*	18.00	16.10	14.40*	18.50	15.82	19.50	19.40	19.10	11.85	16.36	16.30*	15.80*	16.10*	17.60*	15.90*	18.60	14.00*	17.82	13.04	16.38	14.80*	15.00*	17.50	19.70	18.00	17.50	17.60	17.50*	17.90
z (5)	0.2370	0.1348	1.7570	0.1300	0.0670	0.2840	0.8590	0.0680	2.3280	0.3255	0.5430	1.4760	0.1210	0.0056	0.1900	0.1167	0.2150	0.0760	0.1320	0.0345	1.1400	0.0106	0.1283	0.0163	0.5120	0.0389	0.0473	0.3840	1.1390	0.1531	0.3130	0.2342	0.1370	0.4360
$ DEC(J2000) \\ (4) $	14 19 50.1	-38 27 06.8	18 48 40.1	+145449.6	+264241.3	$19\ 42\ 34.6$	16~08~53.6	-173455.0	$24\ 45\ 23.4$	$11\ 36\ 38.3$	$13\ 13\ 34.2$	$42\ 02\ 52.5$	$26\ 18\ 43.8$	-36 27 44.0	074312.3	$-01\ 15\ 15.5$	-07 07 08.3	$-26\ 09\ 15.0$	$18\ 57\ 30.6$	+245505.6	$31\ 24\ 52.1$	-125506.7	$-18\ 41\ 26.0$	085226.4	07	$+22\ 37\ 27.5$	-08 41 08.0	$-71\ 03\ 10.4$	-04 59 48.3	$04\ 06\ 25.7$	$19\ 01\ 20.6$	08	$-22\ 19\ 49.0$	10 47 24.3
RA(J2000) (3)	22 50 25.4	$22\ 51\ 19.0$	225134.7	225208.1	22529.4	225307.4	225357.7	225405.8	225409.3	225410.4	225503.8	225536.7	225639.2		$22\ 57\ 17.3$	225810.0		225845.3	225919.1	225932.9	225950.8	$23\ 00\ 47.8$	$23\ 03\ 02.9$	$23\ 03\ 15.6$	$23\ 03\ 43.6$	$23\ 04\ 02.6$	$23\ 04\ 43.4$	$23\ 05\ 41.2$	$23\ 06\ 15.3$	$23\ 07\ 26.3$	$23\ 07\ 45.6$	$23\ 08\ 11.6$	$23\ 08\ 46.8$	23 10 09.7
Name (2)	PKS 2247+14	LCRS B224829.3-	3C 454	IRAS $F22496+143$	IRAS $22497 + 262$	$MG1\ J225308+1942$	3C 454.3	[HB89] 2251-178	B2 $2251 + 24$	PG 2251+113	3C 455	$B3\ 2253+417$	RGB $J2256+263$	MRC $2254-367$	PKS $2254+074$				$RGB\ J2259+189$	PGC 070195	$RGB\ J2259+314$	NGC 7450	MRC 2300-189	NGC 7469	[HB89] 2300-683	MRK~0315	MRK 0926	PKS 2302-713	$[{ m HB89}]~2303-052$	4C + 03.56	4C + 18.68	RGB $J2308+201$	MS 2306.1-2236	RGB J2310+107
RXJ name (1)		2251.5 - 3827		2252.7 + 1454	2252.6 + 2642	2253.0 + 1942	2253.9 + 1608	2254.7 - 1734	2254.1 + 2445	2254.1 + 1136			2256.5 + 2618	2257.1 - 3627		2258.9 - 0115	2258.8 - 0707	2258.8 - 2609	2259.2 + 1857	2259.9 + 2455	2259.7 + 3125	2300.1 - 1255	2303.0 - 1841	2303.2 + 0852	2303.7 - 6807	2304.8 + 2237	2304.8 - 0841		2306.2 - 0459	2307.4 + 0406	2307.7 + 1901	2308.1 + 2008	2308.7 - 2219	2310.1+1047

Table A.3: (continued)

1	111												Π										Ι											,
FR (14)		· o	ָם ק		ď	5	ы	ď		đ	ದ		Р	ď	r	p		5		z		ď		ď		ď	ď	ď	z	20	W	N	1	
Class. (13)																																		
Host (12)									0			0	Z		0		田	\mathbf{x}	闰		田		田			田					田			臼
Type F (11) (, _O	o	Ü	Ü	Ü	o	Ü	GC	o	0	CC	U	o	CC	U	U	ŭ	U	o	CC	o	CC	o	Ü	OC	o	U	U	ŭ	CC	೦	Ü	CC
$F_{0.1-2.4\ keV}$ Ty (10)	584E-12	0.4757E-11	0.6657E-12	0.4816E-12	0.4660E-11	0.2950E-11	0.1718E-11	0.5352E-12	0.3038E-10	<0.2170E-12	0.3530E-11	0.5700E-11	<0.2300E-12	0.4358E-12	0.4413E-13	0.2272E-11	0.1100E-10	0.1060E- 10	0.4774E-11	0.6118E-11	0.3780E-11	0.2960E-12	0.4145E + 02*	0.1217E-11	0.5790E-12	0.1015E-11	0.2815E-12	0.1821E-11	0.2560E-11	0.4690E-11	0.5143E-12	0.8480E-11	0.6630E-11	0.2350E-10
	-0.10	0.70	0.00	0.00	0.00	0.00	0.84	0.00	0.00	-0.60	0.00	0.00	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.04	0.00	0.07	0.17	0.00	0.05	0.00	0.58	0.00	0.00	1.30
$\frac{F_{5GHz}}{(8)} \qquad \alpha_r$	1.016	0.291	0.023	0.028	0.817#	#200.0	0.798	0.083	0.049	1.429	0.019#	0.004#	1.330	0.003#	0.115#	0.021	0.004#	0.025 #	0.040 #	0.046	0.021#	0.076 #	0.210	1.048	0.062	1.016	0.095	0.001#	0.078	0.238#	0.346	0.011#	0.253#	1.875#
F_{5GHz}^{core} (7)	0.000	0.093	0.018	0.013	0.000	0.000	0.353	0.035	0.000	0.000	0.000	0.000	1.129	0.000	0.000	0.022	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.728	0.006	0.000	0.000	0.000	0.030	0.000	0.114	0.000	0.000	0.000
<i>m</i> _V	19.50	16.00	17.60	15.00*	16.60*	15.20*	18.20	17.90	14.60	19.60	16.30*	13.80*	16.68	19.30	15.65*	16.73	14.90*	14.00*	14.02*	18.50	12.10*	18.90	12.80*	19.00	19.90	19.00	16.96	17.70	18.15	16.60*	15.50	17.00*	17.00*	15.40*
z (5)	1.8170	0.4333	1.3900	0.0163	0.3370	0.0409	0.7420	0.4560	0.0564	2.8840	0.1692	0.0250	0.2199	0.5900	0.0560	0.1030	0.0169	0.0295	0.0173	0.1520	0.0127	1.8940	0.0113	0.6220	0.1240	1.2530	0.7070	0.7450	0.0980	0.1674	0.0380	0.0590	0.2160	0.0822
DEC(J2000) (4)	34 25 10.9	08	$35\ 35\ 41.0$	$14\ 36\ 33.6$	-31 57 48.6	$+14\ 01\ 22.7$	$47\ 12\ 15.2$	$10\ 19\ 09.8$	-42 43 38.0	-445549.2	$+22\ 43\ 25.0$	-02223.4	$04\ 05\ 18.1$	$-10\ 05\ 04.1$	$-42\ 13\ 33.4$	$30\ 48\ 36.7$	+425728.9	$+00\ 14\ 38.2$	$42\ 51\ 09.5$	$41\ 46\ 05.3$	$+08\ 12\ 22.5$	$00\ 31\ 39.0$	13	13	$08\ 29\ 30.6$	32	$21\ 13\ 56.0$	$-10\ 37\ 24.1$	36	38	35	10	$-32\ 36\ 34.0$	-12 07 26.4
RA(J2000) (3)	23 11 05.3	23 11 17.7	$23\ 11\ 48.9$	$23\ 12\ 21.4$	$23\ 13\ 10.1$	$23\ 13\ 40.4$	$23\ 13\ 48.1$	$23\ 13\ 55.7$	$23\ 13\ 58.7$	$23\ 14\ 09.4$	$23\ 14\ 55.7$	$23\ 15\ 44.5$	$23\ 16\ 35.2$	$23\ 17\ 33.2$	$23\ 17\ 56.4$	$23\ 18\ 36.9$	$23\ 18\ 38.2$	$23\ 18\ 56.6$	$23\ 19\ 47.2$	$23\ 20\ 12.2$	$23\ 20\ 14.5$	$23\ 20\ 38.0$	$23\ 20\ 42.3$	$23\ 20\ 44.8$	$23\ 20\ 50.2$	$23\ 21\ 59.9$	$23 \ 22 \ 02.5$	$23\ 22\ 14.7$	$23\ 22\ 44.0$	$23\ 22\ 45.2$	$23\ 23\ 20.3$	$23\ 23\ 52.1$	$23\ 25\ 11.8$	23 25 19.8
Name (2)	B2 2308+34	PG 2308+098	RGB J2311+355	NGC 7509	[HB89] 2310-322	NGC 7525	4C + 46.47	RGB J2313+103	MRC 2311-429	PKS 2311-452	IRAS F23124+222	NGC 7556	3C459	FBQS J2317-1005	MRC 2315-425	RGB J2318+308	UGC 12491	NGC 7603	NGC 7618	RGB $J2320+417$	NGC 7619	PMN J2320+0031	NGC 7626	[HB89] 2318+049	RGB $J2320 + 084$	4C + 27.50	TXS 2319 + 209	FBQS J2322-1037	RGB $J2322 + 346$		PKS J2323 + 2035	H 2321 + 419	PMN J2325-3236	NPM1G -12.0625
RXJ name (1)	(+)	2311.3 + 1008	2311.7 + 3535	2312.3 + 1436	2313.7 - 3158	2313.0 + 1401	2313.8 + 4712	2313.8 + 1019	2313.9 - 4243		2314.0 + 2243	2315.4 - 0222		2317.6 - 1004		2318.5 + 3048	2318.4 + 4257	2318.8 + 0014		2320.2 + 4147	2320.5 + 0810			2320.7 + 0513	2320.7 + 0829			2322.3 - 1037	2322.6 + 3436	2322.1-1738	2323.3 + 2035	2323.2 + 4210	2325.2 - 3236	2325.4-1207

Table A.3: (continued)

ı	1																Ι																		1
FR	(14)	1	1	ď	2	ď	ď	ď	N	ď	ď	ď	S		h	ď	W	z	z	ď	ď	1	r	ď	1	ď	N	ď	z	ď		ക	1	N	Z
Class.	(13)																																		
دد	2)				\mathbf{v}								闰	၁	∞								田							囝	ပ				
	(12)	U	U	ŭ	U	o	o	o	ŭ	o	o	o	U	CC	U	0	CC	0	o	ී	0	U	CC	o	U	o	o	o	o	U	CC	o	U	೦	0
Type	(11)	-10	-10	-11	-12	-11	-12	-11	-12	-12	-12	-12	-11	-11	-12	-12	-11	-11	-12	D-12	-11	-11	-11	-111	-11	-12	-111	-111	-10	-11	-10	-111	-111	-12	-11
$F_{0.1-2.4\ keV}$	(10)	0.1770E-10	0.1600E-10	0.1804E-1	0.5414E-12	0.1693E-1	0.1162E-1	0.2959E-1	0.4507E-15	0.6455E-12	0.2690E-12	0.2956E-12	0.6401E-1	0.3170E-1	0.5307E-12	0.7196E-12	0.5342E-1	0.6825E-1	0.8088E-12	< 0.3380E-12	0.1611E-1	0.6440E-1	0.2489E-1	0.4013E-1	0.2740E-1	0.7574E-12	0.1263E-1	0.2318E-1	0.2519E-10	0.1193E-1	0.2910E-10	0.2040E-1	0.4910E-1	0.7388E-12	0.6700E-11
F_0 .		0.00	0.00	0.00	1.78	1.00	0.00	0.20	-0.20	-0.10	-0.08	-0.50	-0.03	0.00	0.00	0.25	0.98	0.00	0.00	0.24	0.00	0.00	0.30	0.30	0.00	0.00	0.00	0.19	0.20	0.00	0.00	0.26	0.00	0.00	0.00
α_r	(6)	4#	#9	#9.	#98	#2	1#	6	6	0	0.	0	0	#8.	#6	0	286	99	55	6	0	#2	0.	0	#0	#2	<u>∞</u>	6.	4	2	#0	0.	#2	33	#27
F_{5GHz}	(8)	0.004#	#900.0	0.276#	#980.0	0.427#	0.311#	2.459	0.229	0.960	1.030	0.290	1.060	0.078	#680.0	0.590	20.199	0.036	0.005	1.169	0.240	0.002#	0.310	0.220	0.010#	0.017#	0.008	1.419	0.224	0.052	#060.0	3.470	0.002#	0.003	0.025#
F_{5GHz}^{core}	(7)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.270	0.020	0.000	0.000	0.000	0.000	0.277	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
m_V	(9)	14.90*	15.90*	12.60	14.38	17.30	20.50	16.79	16.60	18.50	20.00	19.60	16.50	13.50*	14.36	17.34	13.30	17.00	20.30	22.50	19.00	16.20*	19.00	16.02	16.00*	17.50	19.20	15.97	15.50	17.10	13.60*	18.41	16.90*	19.93	19.50*
Ŋ	(2)	0.0359	0.1202	0.0400	0.0289	1.0150	0.9480	1.2990	0.2790	1.4890	1.1530	1.0620	0.0477	0.0613	0.0093	1.4460	0.0302	0.2910	0.7400	1.8020	0.4460	0.0421	0.2769	0.8960	0.6220	0.5027	0.2240	0.6770	0.0440	0.2920	0.0288	0.009.0	0.1350	0.5150	0.5150
(000		49.2	14.0	37.3	44.5	0.60	15.8	$30\ 19.1$	38.1	18.7	57.0	07.4	40.6	20.5	18.6	20.4	55.9	2441.4	04.0	17.0	42.0	$38 \ 09.4$	33.4	26.0		31.7	28.7	45.5	17.9	46.8	26.7	12.0	44.0	36.0	28.0
DEC(J2000)	(4)	-38 26 49.2	+2153	1524	08 46	29 37	08 34	-47 30	-37 24	11 00	-1556	-01 31	43	+2722	$02 \ 09$	52	27 01	2124	0534	-33 10	-28 48	+0938	00 18	-03 22	-36 37	-00 32	49	06 30	$51\ 42$	0852	-28 08	-16 31	-33 11	19 41	-05 59
(0007		24.2	54.2	21.9	56.7	9.01	2905.8	$29\ 17.7$	$30\ 35.8$	$30 \ 40.8$	$31\ 38.6$	$33\ 16.7$	55.2	$35\ 01.5$	14.1	3756.6	$38\ 29.5$	3856.4	3906.7	3954.5	51.0	9.90	6.90	56.5	13.5	40.0	38.4	36.8	04.8	38.1	45.0	02.6	07.5	2.00	50 17.9
RA(J2000)	(3)	23 25 24.2	$23\ 25\ 54.2$	$23\ 27\ 21.9$	$23\ 27\ 56.7$	$23\ 28\ 10.6$	23 29	23 29	$23 \ 30$	23 30	$23\ 31$	$23 \ 33$	$23\ 33\ 55.2$	$23\ 35$	$23\ 36\ 14.1$	$23\ 37$	$23 \ 38$	$23 \ 38$	$23 \ 39$	$23 \ 39$	23 40 51.0	$23\ 41\ 06.6$	$23\ 41\ 06.9$	23 42 56.5	23 43 13.5	23 44 40.0	23 45 38.4	23 46 36.8	$23\ 47\ 04.8$	$23\ 47\ 38.1$	$23\ 47\ 45.0$	$23\ 48\ 02.6$	$23\ 49\ 07.5$	$23\ 50\ 00.7$	23 50
		2.2-		_			834					131							17			919	0	36		032				853		37		24	
Name	(5)	232245	55	24 + 151	74	89	329 + 0	0]	37-376	8 + 10	29-16	2333-0	31 - 240	1807	14	35-18		31	5.5 + 05	37-334	38 - 290	+09.0	38+000	340-03	01	2344-0	3-151	1+092	14+51	347 + 0		345-16	02	.4+19	12
		LCRS B232242.2-	RBS 2005	TXS 2324+151	NGC 7674	4C + 29.68	PMN J2329+0834	$RBS\ 2010$	PKS 2327-376	PKS 2328+10	PKS 2329-16	FBQS J2333-0131	MRC 2331-240	PGC 071807	NGC 7714	PKS 2335-18	3C465	RBS 2031	MS 2336.5+0517	PKS 2337-334	MRC 2338-290	NPM1G + 09.0618	PKS 2338+000	[HB89] 2340-036	$\operatorname{RBS}\ 2040$	FBQS J2344-0032	1ES 2343-151	PG 2344+092	TXS 2344+514	PMN J2347+0853	IC 5358	[HB89] 2345-167	CTS 0120	MS 2347.4 + 1924	RBS 2051
me		826	2153	1524		3937		730					343	2722)209	752		2124			848	938	9018		338)32)930			808	331	311		559
RXJ name	(1)	2325.6-3826	2325.6 + 2153	2327.3 + 1524		2328.1 + 2937		2329.2-4730					2333.9-2343	2335.0 + 2722	2336.2 + 0209	2337.9-1752		2338.8 + 2124			2340.8-2848	2341.5 + 0938	2341.1 + 0018		2343.3-3638	2344.7-0032		2346.5 + 0930			2347.2-2808	2348.0 - 1631	2349.7-3311		2350.0-0559
	1	1																																	1

Table A.3: (continued)

	П			Π									Π			
FR (14)		N		ď	ď	ď	ď	ď		Z	ď	ď		N	1	r
Class. (13)																
Host (12)	С			Z					ပ				闰		∞	
7pe F 1) (CC	O	CC	ŭ	o	o	O	o	CC	ŭ	O	o	CC	O	ŭ	U
$F_{0.1-2.4} \ keV \qquad { m Ty} \ (10) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.1940E-11	0.2905E-12	0.1230E-10	0.1161E-10	0.8058E-12	0.1673E-11	0.6841E-12	0.1251E-11	0.2510E-10	0.2130E-10	0.5480E-12	0.8876E-12	0.3900E-12	0.6636E-10	0.9040E-11	0.1539E-11
F_0 .	0.00	0.32	4.40	0.84	0.24	0.00	-0.10	0.00	1.70	0.00	0.20	0.70	1.36	0.00	0.00	0.48
$\begin{array}{ccc} \gamma_{5GHz} & \alpha_r \\ (8) & (9) \end{array}$	#2000	0.149#	0.056 #	0.680	0.930	0.390	1.070	0.521 #	1.286 #	0.044#	1.389	0.220	4.559	0.065 #	0.004#	0.256 #
F_{5GHz}^{core} $F_{(7)}^{core}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.035	0.000	0.000	0.000
$m_V $ (6)	16.80*	19.60	15.00*	15.33	18.80	16.40	17.00	20.30	13.90*	17.40*	18.50	17.50	16.00*	17.00	13.90*	17.97*
(5)	0.1930	0.3170	0.0561	0.1740	2.6680	0.7020	1.7160	1.3440	0.0491	0.3899	0.9600	0.2110	0.0963	0.1650	0.0193	0.0960
$ DEC(J2000) \\ (4) $	$-24\ 35\ 50.0$	$36\ 22\ 10.9$	$+06\ 08\ 58.5$	-010913.4	-15 13 11.2	-33 57 57.3	$-68\ 20\ 03.5$	$81\ 52\ 52.2$	$-34\ 45\ 33.1$	-171805.3	-112539.2	-08 00 04.0	-605459.3	-30 37 40.0	$-04\ 07\ 37.2$	$-20\ 47\ 56.1$
RA(J2000) (3)	23 50 22.9	$23\ 50\ 36.7$	$23\ 50\ 50.5$	$23\ 51\ 56.1$	235430.2	$23\ 55\ 25.5$	$23\ 56\ 00.7$	$23\ 56\ 22.8$	$23\ 57\ 00.7$	$23\ 57\ 29.7$	$23\ 57\ 31.2$	235809.6	$23\ 59\ 04.4$	235907.8	$23\ 59\ 10.7$	$23\ 59\ 19.5$
$\begin{array}{c} \text{Name} \\ (2) \end{array}$	[CM98] R843053	$MG3\ J235037 + 3622$	MCG + 01-60-039	4C -01.61	PKS 2351-154	$[{ m HB89}]~2352-342$	PKS 2353-68	S52353+81	ESO 349- G 010		PKS 2354-11	$MRC\ 2355-082$	PKS 2356-61	RBS 2070	IC 1524	MRC 2356-210
RXJ name (1)	2350.6-2435		2350.3 + 0609	2351.9 - 0109	2354.4 - 1513				2357.0 - 3445	2357.1-1718		2358.1 - 0759			2359.6 - 0407	