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1 Introduction 

1.1 Requirements during pregnancy 

During pregnancy nutritional and energy requirements increase, primarily due to ma-

ternal and foetal tissue accretion (1). In Europe pregnant women can easily meet 

their enhanced energy and protein needs (2), with the exception of special subgroups 

such as women with eating disorders or gastrointestinal diseases. However, the 

pregnancy associated increase of the requirements of some micronutrients and n-3 

fatty acids is far higher than the enhancement in energy requirement (1). The rec-

ommended increase of energy intake during pregnancy is 17-22%, whereas the ref-

erence intakes for protein, and some vitamins and minerals, as folate, iodine, vitamin 

B-6 and iron, increase by approximately 50% and for DHA by approximately 40% 

(Table 1.1) (1;3).  

 
Table 1.1: Comparison of recommended daily energy and nutrient intakes of adult and pregnant 
women (1;3). 

Energy / Nutrient Adult Pregnancy  Nutrient Adult Pregnancy 
Pantothenate (mg)2 5 6 Energy1 19-50 y + 340 kcal/d 

2nd trimester 

 

Biotin (µg)2 30 30 
Vitamin A (µg)1 30 30   + 450 kcal/d 

3nd trimester 
 

Vitamin D (µg)2 5 5 
    Vitamin E (mg)1 15 15 
Protein (g)1 46 71  Vitamin K (µg)2 90 90 
DHA (mg)2 220 300  Calcium (mg)2 1000 1000 
Vitamin C (mg)1 75 85  Phosphorus (mg)2 700 700 
Thiamin (mg)1 1.1 1.4  Magnesium (mg)1 310 350 
Riboflavin (mg)1 1.1 1.4  Iron (mg)1 18 27 
Niacin (ng)1 14 18  Zinc (mg)1 8 11 
Vitamin B6 (mg)1 1.3 1.9  Iodine (µg)1 150 220 
Folate (µg)1 40 600  Selenium (µg)1 55 60 
Vitamin B12 (µg)1 2.4 2.6  Fluoride (mg)2 3 3 
 

1Recommend Dietary Allowance (RDA), average daily dietary intake level that is sufficient to meet 
the nutrient requirements of almost all (97-98%) individuals in a life stage and gender group 
based on Estimated Average Requirements (EAR) (3). 
 
2Adequate Intake (AI), the value used instead of RDA, if adequate scientific evidence is not avail-
able to calculate EAR (1). 

 

 



Introduction 2 

1.2 Docosahexaenoic acid during late uterine and early postnatal life 

The n-3 fatty acid docosahexaenoic acid (DHA) is the predominant long-chain poly-

unsaturated fatty acid (LC-PUFA) in the central nervous system. It accumulates rap-

idly in brain and retina during late intrauterine and early postnatal growth (4-6). Avail-

able estimates suggest that approximately 67 mg n-3 fatty acids per day are accumu-

lated in foetal tissue during the last semester of gestation (7). Estimates for the 

amounts of n-3 fatty acids accumulated in placental and maternal tissue are not 

available. Reduced brain and retinal DHA results in declined visual function and al-

tered learning, behaviour, and neurotransmitter metabolism (8-10). It was reported 

that a dietary source of DHA increases n-3 LC-PUFA concentrations in foetal and 

infant plasma (11;12), which is associated with the improvement of an early devel-

opment of visual acuity and other indexes of neurodevelopment in premature infants 

(13;14). In contrast to essential fatty acids (EFA), LC-PUFA percentages in the lipids 

of cord plasma are higher than in maternal plasma at the time of birth (15;16). Since 

the ability of the foetus and the human placenta to desaturate and elongate EFA, i.e. 

linolenic acid (LA, 18:2n-6) and α-linolenic acid (ALA, C18:3n-3), is limited (17), a 

selective materno-foetal transfer of DHA and arachidonic acid (AA) has been sug-

gested. Despite this, the maternal dietary intake and plasma concentrations of DHA 

directly influence the DHA status of the developing foetus (18-20). Furthermore, re-

cent studies have reported more mature electroencephalography patterns in new-

born infants with higher plasma phospholipid DHA (19).  

As structural components of cell membranes, LC-PUFA, as DHA and AA, influence 

membrane permeability, receptor functions and membrane associated enzyme activi-

ties (21). DHA and AA can be formed in the liver from the dietary EFA, α-linolenic 

acid (ALA, C18:3n-3) and linoleic acid (LA, 18:2n-6) (22) (23)(Figure 1.1). Although 

LA and ALA are formed in plants, they cannot be formed in mammalian cells because 

of the absence of the ∆12 and ∆15 enzymes necessary to insert a double bond at the 

n-6 or n-3 position of a fatty acid carbon chain. Stable isotope tracer studies suggest 

that less than 1-4% of dietary ALA is converted to DHA (24;25), raising the question 

of the possible importance of dietary DHA in humans (26). In this regard, dietary DHA 

results in higher concentrations of DHA in tissue phospholipids (PL) and higher DHA 

accretion than does its ALA precursor (27). Higher intakes of ALA fail to enhance 

plasma DHA in infants and adults (28).  
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Figure 1.1: Biosynthesis of long-chain polyunsaturated fatty acids 

 

1.3 Fatty acid transfer across the placenta 

Fatty acids for placental transfer derive from a mixture of triglycerides (TG) and non-

esterified fatty acids (NEFA) from maternal circulation. Only NEFA can enter the tro-

phoblast, but the presence of lipoprotein lipase on the maternal surface enables the 

utilisation of TG (29;30). The placental uptake of fatty acids is a complex process in-

volving several cytosolic and membrane associated fatty acid binding proteins 

(FABP) and transfer proteins (31). Observational studies indicate a preferential trans-

fer of LC-PUFA to the foetal circulation relative to EFA (15;32). This is in agreement 

with in vitro studies, which have described a higher affinity and binding capacity of 

individual FABP for AA and DHA compared with LA and ALA (33). Furthermore, in 

experiments using placenta perfusion techniques, different transfer rates for individ-

ual fatty acids are described (34). The selectivity for PUFA is DHA>ALA>LA>AA, if 

the placenta is perfused with fatty acids mixtures reflecting the maternal TG composi-

tion in the last trimester of pregnancy, whilst the preference changes to 
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DHA>AA>ALA>LA, if the maternal perfusate contains fatty acids in the same ratios 

as found in circulating NEFA (35).  

Once in the placenta, NEFA bound to FABP or transfer proteins, cross placental tis-

sue in either direction, or are incorporated into PL, TG and cholesterolesters (CE) 

(36) (Figure 1.2).  

 
Figure 1.2: Distribution of fatty acid binding proteins in placental membrane (plasma membrane fatty 
acid binding protein; FAPBpm, fatty acid translocase; FAT, and fatty acid transfer protein; FATP) and 
within the cytoplasm (Liver and Heart fatty acid binding protein; L- and H-FABP) of the trophoblast 
(31;37). Only fatty acids (FA) are released from maternal TG by lipoprotein lipase on the maternal 
surface of the placenta and the liberated FA, as well as NEFA from the circulation can be utilised by 
the placenta (38). The export of PL, CE and TG into the foetal circulation was reported (39). Adapted 
from (38). 

 

The fatty acid composition of the NEFA pool is determined by NEFA derived from the 

maternal circulation. On the other hand, placental phospholipase A2 or triacylglycerol 

hydrolase activity suggests that fatty acids could also be liberated from PL and TG 

(31;40), with subsequent accumulation in the NEFA pool. It was reported that DHA is 

incorporated in higher rates in TG than in PL (41), whereas AA is preferred esterifi-

cated in PL than in TG (39;41). Therefore, it is assumed that not only the NEFA frac-
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the PL and TG fraction. Data about the fatty acid compositions of placental NEFA, 
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placental functions and transfer mechanisms, are not available and although the pla-

cental tissue is well-investigated, the underlying processes for placental fatty acid 

transfer, metabolism and accumulation have not been elucidated yet. 

 

1.4 Effect of additional n-3 LC-PUFA intakes during pregnancy 

The maternal plasma concentration of DHA directly influences the foetal DHA status 

(16), and the maternal fatty acid intake correlates with the n-3 LC-PUFA levels in 

their neonates (12). An additional daily intake of 1.2 g DHA or 2.7 g total n-3 LC-

PUFA during pregnancy enhances concentrations of DHA in umbilical cord blood PL 

by 23% or 37%, respectively, compared with control groups (20;42). In contrast, the 

daily intake of 40 mg DHA from week 15 of pregnancy until birth was reported to in-

crease only maternal plasma PL DHA levels by 27%, but not those of their new-born 

infants (43). Several authors reported beneficial effects of a high intake of seafood or 

DHA supplementation during gestation. In women with zero or low fish consumption, 

small amounts of n-3 LC-PUFA, provided as fish or fish oil, may improve the protec-

tion against preterm delivery and low birth weight (44).(45) Smuts et al. (2003) ob-

served prolongation of pregnancy when DHA intake was increased during the last 

trimester (45). Such effects are not observed with the habitual intake of 25 mg DHA 

per day (46). A Norwegian study reported that a daily supply of 10 ml cod liver oil dur-

ing pregnancy and lactation, improved Kaufman Assessment Battery for Children at 

four years of age by four percentages points (47). In these studies, adverse effects of 

the n-3 LC-PUFA supplementation on foetal growth and development have not been 

described (44;45;48). 

 

1.5 Supplementation of 5-MTHF during pregnancy 

Periconceptional folic acid supplementation decreases the occurrence of neural tube 

defects (49) and an additional folate intake during pregnancy may reduce pregnancy 

complications and adverse neonatal outcomes (50). Folate can enhance the conver-

sion of homocysteine to methionine, yielding a reduction of plasma concentration of 

homocysteine (Figure 1.3).  
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Figure 1.3: Remethylation of Homocysteine (51) 

 

Moderately elevated plasma homocysteine concentrations are linked to propagation 

of vascular damage and increased rates of coronary heart disease (52). During preg-

nancy, reduction of elevated plasma concentrations of homocysteine might improve 

placental vascularisation, placental circulation and hence efficacy of materno-foetal 

substrate transfer. Indeed, a negative correlation between maternal plasma homo-

cysteine and DHA-percentage in erythrocyte membrane PL of their new-borns was 

found, suggesting a possible positive influence of folate on DHA concentrations in 

cord blood of full term new-born infants (53). Thus, it appears possible that maternal 

folate supplementation during pregnancy additionally improves the DHA status of the 

neonate. 
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by senescence and death within nine month. The process of apoptosis (programmed 

cell death) was first described by Kerr et al. (1971) (54). Apoptosis is an active, regu-

latory response of inducible cells to specific stimuli that occurs only in cells having 

relevant response pathways (55). Several features of apoptosis distinguish the proc-

ess from necrosis (56).  
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Proper placental function is of major importance for nutritional supply of the foetus. 

The morphological architecture and function of the human placenta depends on an 

adequate balance of proliferation, differentiation and apoptosis. In early pregnancy 

placenta cell proliferation, especially of cytotrophoblasts, is very high and then dimin-

ishes constantly with duration of pregnancy (57). In contrast, the apoptosis rate is low 

throughout early pregnancy and only increases shortly before delivery (58). 

Recently, a number of studies have suggested that apoptosis plays a role in the nor-

mal development, remodelling, and ageing of the placenta (59-61). Villous cytotro-

phoblasts proliferate, differentiate, and merge into the syncytial layer by fusion. Aged 

syncytioplasm and nuclei are focally isolated within syncytial buds and are shed into 

the maternal circulation as syncytial sprouts (62) (Figure 1.4).  

 

Most of these aged nuclei are in some stage of apoptosis (60). Trophoblast turnover 

in villous tissue changes throughout normal pregnancy and some observations sug-

gests that the rate of trophoblast apoptosis may change under certain pathologic 

conditions, such as spontaneous abortion, preeclampsia, preterm delivery or intrau-

terine growth retardation (63-65). 

 

1.7 Objectives of this work 

This work is intended to contribute a better understanding of the placental role by the 

supplementation of pregnant women with n-3 LC-PUFA. In a multicentre prospective 
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Figure 1.3: Full term pla-
centa stained with Mayer’s 
haemalumn (original mag-
nification x 400).CT: cyto-
trophoblast; ST: syncyti-
otrophoblast; IVS: intervil-
lous space; SSp: syncytium 
sprout; FBV: foetal blood 
vessel 
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cohort study in Germany, Hungary, and Spain, pregnant women are consuming dif-

ferent diets supplemented from week 20 of pregnancy until child birth with either n-3 

LC-PUFA, 5-MTHF, both or a placebo. The following questions define the objectives 

of this work: 

 

1. The evaluation of a method for the analysis of fatty acid concentrations in placen-

tal tissue. 
 

2. Comparison of the placental PL fatty acid pattern in the placebo supplemented 

group between the centres in relation to their different dietary backgrounds. 
 

3. Effect of the additional intake with n-3 LC-PUFA and/or 5-MTHF on individual fatty 

acids in placental PL. 
 

4. Influence of n-3 LC-PUFA and/or 5-MTHF on apoptosis and proliferation in pla-

centa
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2 Materials and Methods 

2.1 Study design 

2.1.1 Inclusion criteria 

Eligible for the study were pregnant women, who fulfil the indicated inclusion criteria 

and were not going to participate in another clinical trial. Inclusion criteria were: 
 

• Apparently healthy women with an uncomplicated singleton pregnancy  

• Age >18 and <40 years at study entry 

• weight >50 kg and <90 kg at study entry  

• No use of fish oil supplements since the beginning of pregnancy 

• No regular use of folate and/or vitamin B12 supplements after week 16 of ges-

tation 

• Intention to deliver in one of the obstetrical study centres 

 

2.1.2 Application of the study diet 

From November 2001 until September 2003 pregnant women were recruited be-

tween week 12 and week 20 of gestation in the University Hospitals of Granada, 

Spain, in the University of Pécs, Hungary, and in the Ludwig-Maximilians-University; 

Munich, Germany. All women habitually consumed an omnivorous diet. The partici-

pants were randomly and double blind assigned to one of four parallel study groups: 

 

- n-3 LC-PUFA 500 mg DHA 

- 5-MTHF 400 µg 5-MTHF 

- Combined 500 mg DHA + 400 µg 5-MTHF 

- Placebo - 

 

The supplement was applied daily from week 20 of pregnancy. 

 

Trough a lipase catalysed reesterification technique n-3 LC-PUFA was highly con-

centrated in triglycerides. The supplements contained an oil highly enriched with n-3 

LC-PUFA (>60% of fatty acids, Pronova Biocare, Lysaker, Norway). The fatty acid 
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composition of the placebo and the n-3 LC-PUFA supplements are shown in Table 

2.1.  

 
Table 2.1: Fatty acid composition of the applied dietary supplements according to the manufactures 
analyses (% w/w). n.d.: not detected 

 

 

The most active and abundant form of folate in tissues is 5-methyl-tetrahydro-folate. 

A new innovative technique enabled the enrichment in foods (BASF, Ludwigshafen, 

Germany). The components were supplied as 15 g milk based portions (Blemil plus, 

Ordesa Laboratorios, Barcelona, Spain), which contained vitamins and minerals in 

amounts meeting the estimated additional requirements during the second half of 

pregnancy (2) (Table 2.2).  

 

 

 

 

Fatty acid

C4:0 0.92 (0.02) 0.83 (0.07)
C6:0 1.41 (0.01) 0.92 (0.07)
C8:0 1.16 (0.01) 0.64 (0.02)
C10:0 3.07 (0.02) 1.57 (0.03)
C12:0 3.94 (0.03) 1.98 (0.01)
C14:0 12.88 (0.04) 7.33 (0.04)
C15:0 1.31 (0.00) 0.85 (0.00)
C16:0 36.55 (0.08) 22.05 (0.16)
C17:0 0.85 (0.00) 0.88 (0.01)
C18:0 10.37 (0.04) 8.82 (0.06)
C20:0 0.21 (0.00) 0.36 (0.01)
C16:1 n-7 2.13 (0.00) 1.63 (0.01)
C18:1n-9 + n-7 22.48 (0.05) 20.76 (0.13)
C20:1 n-9 1.01 (0.02)
C22:1 n-9 0.17 (0.01)
C18:2 n-6 1.74 (0.04) 2.02 (0.01)
C20:4 n-6 0.13 (0.00) 1.16 (0.01)
C22:4 n-6 1.01 (0.01)
C18:3 n-3 0.52 (0.02) 0.69 (0.02)
C20:5 n-3 5.58 (0.04)
C22:5 n-3 0.11 (0.00) 1.66 (0.02)
C22:6 n-3 17.84 (0.13)

mean (SD) mean (SD)

control DHA / Combined

n.d

n.d
n.d

n.d

n.d
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Table 2.2: Nutrition, mineral and vitamin contents of the supplements 

 

 

2.1.3 Investigated parameters in placental tissue 

- Fatty acid profile (fatty acids with a chain-length of 14-24 carbon atoms) of PL, 

NEFA, TG and CE 

- Total protein content  

- Expression of proliferation cell nuclear antigen (PCNA) and p53 

- Cleavage of cytokeratin 18 neoepitope 

 

2.1.4 Parameters from the subject files 

- Length of gestation (d) 

- Placental weight (g) 

- Infants’ birth weight (g) 

- Infants’ birth length (cm) 

- Maternal age (y) 

- Body mass index at study entry (kg/m2) 

- Body mass index at delivery (kg/m2) 

- Maternal and foetal plasma folate 

(ng/ml) 
 

Nutrient content per sachet Combined DHA 5-MTHF Control

DHA (mg) 500 500 - -
5-MTHF (µg) 400 - 400 -

Energy (kcal) 71 71 70 70
Protein (g) 2.5 2.5 2.9 2.9
Fat (g) 3.1 3.1 2.9 2.9
Carbohydrates (g) 8.2 8.2 8 8

Vitamin A (µg) 330 330 330 330
Vitamin D (µg) 1.5 1.5 1.5 1.5
Vitamin E (mg) 3 3 3 3
Thiamin (mg) 0.36 0.36 0.36 0.36
Riboflavin (mg) 1.5 1.5 1.5 1.5
Niacin (mg) 4.5 4.5 4.5 4.5
Vitamin B6 (mg) 1.9 1.9 1.9 1.9
Vitamin B12 (µg) 3.5 3.5 3.5 3.5
Vitamin C (mg) 270 270 270 270

Calcium (mg) 300 300 300 300
Phosphorus (mg) 240 240 240 240
Magnesium (mg) 93 93 93 93
Zinc (mg) 3 3 3 3
Iodine (µg) 66 66 66 66
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The study protocol was approved by the local Ethical Committees of the participating 

centres. After a careful explanation of the study details, written consent was obtained 

from all participating women. 

2.2 Materials and Equipment 

2.2.1 Fatty acid analysis 

2.2.1.1 Chemicals 
Table 2.3: Chemical list for fatty acid analysis 

 

 

2.2.1.2 Consumables supplies 
Table 2.4: List for consumables supplies for fatty acid analysis 

 

Chemicals Source Quality

2.6 Di-tert.-buthyl-p-cresol (BHT) Fluka, Neu-Ulm     99% GC
2.7 Dichlorofluorescein Merck, Darmstadt GR for analysis
2-Propanol Merck, Darmstadt LiChrosolv gradient grade
Acetic acid Merck, Darmstadt GR for analysis
Chloroform Merck, Darmstadt extra pure
Diisopropyl ether Merck, Darmstadt GR for analysis
Ethanol Merck, Darmstadt absolut p.a.
Methanol Merck, Darmstadt GR for analysis
Methanolic HCL (3N) Supelco, PA, USA p.a.
n-Heptane Merck, Darmstadt GR for analysis
n-Hexane Merck, Darmstadt LiChrosolv gradient grade
Potassium chloride Merck, Darmstadt GR for analysis
Sodium carbonate Merck, Darmstadt anhydrous GR for analysis
Sodium hydrogene carbonate Merck, Darmstadt GR for analysis
Sodium sulfate Merck, Darmstadt anhydrous GR for analysis
Water Braun, Melsungen ad injectabilia

Materials Source

Bottle G4, braun CS-Chromatographie, Langerwehe
Bottle R1, braun/ 6.2 mm-BF CS-Chromatographie, Langerwehe
Crimp cap R11-1.0 CS-Chromatographie, Langerwehe
Fiber glass filter, GMF 1, diameter: 100 mm Sartorius, Bärenstein
Micro inlay G30/6 CS-Chromatographie, Langerwehe
Pasteur pipette Brand, Wertheim
Pipette tip Greiner, Frickenhausen
Screw cap G 13 CS-Chromatographie, Langerwehe
Sealing disc G13 CS-Chromatographie, Langerwehe
TLC plates, silica gel 60 Merck, Darmstadt
Tube for vacuum pump Stricker, Oberschleißheim



Materials and Methods 13 

2.2.1.3 Equipment 
Table 2.5: Equipment list for fatty acid analysis 

 

2.2.1.4 Standards 
Table 2.6: List for fatty acid analysis standards 

 

Standard Source

Internal standard:

Phosphatidylcholine Dipentadecanoyl Sigma, Deisenhofen
Pentadecaonic acid Sigma, Deisenhofen
Tripentadecanoin Sigma, Deisenhofen
Cholesteryl Pentadecanoate Sigma, Deisenhofen

Standard for fatty acid identification:

Adrenic acid Sigma, Deisenhofen
Docosapentaenoic acid Omega Tech, CO, USA
GLC-85 (reference standards) NuChek, MN, USA
Lignoceric acid Sigma, Deisenhofen
n-3 eicosapentaenoic acid Sigma, Deisenhofen
stearidonic acid Sigma, Deisenhofen
trans-docosenoic acid Sigma, Deisenhofen
trans-hexadecenoic acid Sigma, Deisenhofen
trans-tetradecenoic acid Sigma, Deisenhofen
trans-trans-octadecadienoic acid Sigma, Deisenhofen

Equipment Source

Analytical balance, R-200 D Sartorius, Göttingen
Capper Hewlett Packard, Böblingen
Centrifuge tube Schmitz, Munich
Centrifuge, Universal 30 F Hettrich, Tuttlingen
Di-Capper Hewlett Packard, Böblingen
Megafuge, 1.0-R Heraeus, Munich
Membrane vakuum pump, MZ 2c Vacuubrand, Wertheim
Metal-block thermostat, Typ 2102 Bachhofer, Reutlingen
Metal-blade homogeniser, DIAX 100 + 8G/100 Heidolph Schwabach
Pipette 10-100µl, 50-250µl, 200-1000µl, 500-2500 µl Eppendorf, Wesseling-Berzdorf
Rotavapor, R-114 Büchi, Flawil, Switzerland
Solvent chamber for thin layer chromatography Desega, Heidelberg
Thermo plate, S Desega, Heidelberg
Ultrasonic bath, Sonorex Super Badelin, Berlin
Ultraviolet lamp Benda, Wiesloch
Vortexter, VF 2 IKA, Heitersheim
Waterbath, B-480 Büchi, Flawil, Switzerland

Gas chromatograph

Autosampler, 7673 Hewlett Packard, Böblingen
Capillary column, BPX-70, 60m, diameter 0.32 mm, SGE, Weiterstadt
film thickness 0.25
Gas chromatograph, 5890, Series 2 Hewlett Packard, Böblingen
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2.2.2 Western blot and Immunohistochemistry 

2.2.2.1 Chemicals 
Table 2.7: List of chemicals for Western blot and immunochemistry 

 

2.2.2.2 Consumables supplies 
Table 2.8: List of consumables supplies for Western blot and immunohistochemistry 

 

Chemicals Source

AEC substrate system Lab Vision, Vienne, Austria
Antibody diluent DAKO, Glostrup, Denmark
Biotinylated Goat Anti-Polyvalent Lab Vision, Vienne, Austria
Bovine serum albumin Sigma, Deisenhofen
Copper sulfate Merck, Darmstadt
Developer for photography Ilford, Chesire, England
Di-sodiumhydrogenephosphate-decahydrate Merck, Darmstadt
DMEM culture medium Invitrogen, CA, USA
Fetal calf serum Hyclone, Utah, USA
Fixer for photography Ilford, Chesire, England
Fungizone Sigma, Deisenhofen
Kaiser glycerolgelatin Merck, Darmstadt
Medium 199 Invitrogen, CA, USA
NuPAGE antioxidant Invitrogen, CA, USA
NuPAGE LDS SDS sample buffer Invitrogen, CA, USA
NuPAGE MES SDS running buffer Invitrogen, CA, USA
NuPAGE reducing agent Invitrogen, CA, USA
NuPAGE transfer buffer Invitrogen, CA, USA
Penicilin/Streptomycin Sigma, Deisenhofen
Phenolic reagent Merck, Darmstadt
Potassium sodium tartrate Merck, Darmstadt
Potassium hydrogenephosphate Merck, Darmstadt
Proteatic Inhibitor Cocktail Roche, Mannheim
Sodium carbonate Merck, Darmstadt
Sodium chloride Sigma, Deisenhofen
Sodium dodecyl sulfate Sigma, Deisenhofen
Sodium orthovanadate Sigma, Deisenhofen
Streptavidin peroxidase Lab Vision, Vienne, Austria
Tris (hydroxymethyl)-aminomethan Merck, Darmstadt
Ultra V block Lab Vision, Vienne, Austria
Water, Milli-Q Millipore, Schalbach

Test kit for Immunodetection:

Western Breeze Invitrogen, CA, USA

Material Source

Hyper film ECL Amersham, Buckinghamshire, England
Nitro-cellulose membranes Invitrogen, CA, USA
NuPAGE 4-12% bis-tris gel Invitrogen, CA, USA
Tissue tek Sakura, Zoeterwoude, Netherlands
Pipette tip Eppendorf, Wesseling-Berzdorf
Safe look tubes (2ml) Eppendorf, Wesseling-Berzdorf
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2.2.2.3 Equipment 
Table 2.9: List of equipment for Western blot and immunohistochemistry 

 

2.2.2.4 Antibodies and Marker 
Table 2.10: List of antibodies and marker for Western blot and immunochemistry 

 

2.2.3 Computer programs 

Table 2.11: List of the applied PC programs 

Programs Manufacturer

AlphaEaseFC, Version 3.2.3 Alpha Innotech, CA, USA
AxioVision 3.0 Carl Zeiss, Oberkochen
Corel paint 8.0 Microsoft GmbH, Unterschleißheim
Excel 97, SR-2 Microsoft GmbH, Unterschleißheim
EZChrom Elite Client, Version 2.61 Scientific Software, CA, USA
Power Point 97 Microsoft GmbH, Unterschleißheim
SPSS, Version 11.5.1 SPSS GmbH, Software
Word 97, SR-2 Microsoft GmbH, Unterschleißheim

Equipment Source

Analytical balacance, Model 770 Kern, Balingen
Biofuge, Model 15 Heraeus, Wien, Austria
Centrifuge, Avanti 30 Beckmann, Krefeld
Centrifuge, CS-6R Beckmann, Krefeld
Certomat TC 2 Braun, Melsungen
Decloaking chamber Biocare Medical, Vienna, Austria
Digitalcamera Olympus, Hamburg
Electrophoresis cell + Equipment Invitrogen, CA, USA
Embedding apparatus, Citadel 1000 DAKO, Golstrup, Denmark
Gel dryer, Model 543 Biorad, Munich
Hypercassette TM Amersham, Buckinghamshire, England
Metal blate homogeniser, T18, basic IKA, Heitersheim
Microscpoe, BX 41 Olympus, Hamburg
Microtom, HM 440 E DAKO, Golstrup, Denmark
Microwave, MWD 1820 DUO Bauknecht, Vienna, Austria
Milli-Q, Biocel Millipore, Eschborn
Minishaker, MS-1 IKA, Heitersheim
Powersupply, Powerpac 1000 Biorad, Munich
Spectrometer, DU 640 Beckmann, Krefeld
Thermomixer Eppendorf, Wessling-Berzdorf

Source

Antibodies (Monoclonal)
PCNA (PC 10) Santa Cruz Biotech., CA, USA
Cytoceratin 18 neoepitope Roche, Mannheim
p53 (D0-1) Santa Cruz Biotech., CA, USA

Marker
Magic Mark Invitrogen, CA, USA
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2.3 Placental tissue sampling 

2.3.1 Sampling of placental tissue for fatty acid analysis 

Placental tissue was obtained within 10 minutes after delivery thus minimising meta-

bolic changes in the tissue. Placenta samples were collected from the central paren-

chyma in each woman, chorionic plate, and areas with pathological abnormalities 

and/or calcified areas were excluded (Figure 2.1).  

  
Figure 2.1: Placental sample preparation. View on the basal plate (A) and chorionic plate (B). Con-
nective tissue and chorionic plate were removed (C) and approximately 2 g (0.5x0.5x0.5 cm) were 
selected for analysis (D).  

 

The pieces (approximately 0.3 g) were washed several times in cold sodium chloride 

solution (0.9%, 4°C) to eliminate blood residues. Subsequently, it was frozen in liquid 

nitrogen and stored at –80°C.  

 

2.3.2 Sampling of placental tissue for Western blot 

The placental tissue was prepared as described above, but in respect to the hetero-

geneity of total protein contents in the organ, samples for Western blot were collected 
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from different locations, which included the centre of parenchyma as well as periph-

eral locations (Figure 2.2).  

 
Figure 2.2: Samples for Western blot were collected from different placental locations (peripheral, BP 
basal plate, V Villi, and CP chorionic plate) and pooled previous to protein analysis. UC umbilical cord. 

 

2.3.3 Sampling of placental tissue for immunohistochemistry 

Placental tissue was collected from the central parenchyma as described in 2.3.1, 

and afterwards to the washing procedure, fixed in neutral buffered 4% paraformalde-

hyde for 12 h. For dehydrated, the tissue was immersed in gradually increasing con-

centrations of alcohol to remove the water (starting with 70% alcohol increasing to 

100% alcohol). The alcohol in the tissue was replaced by xylene and subsequently 

embedded in paraffin. 

 

2.4 Fatty acid analysis 

2.4.1 Preparation of internal standard 

Several approaches were described for internal standards (66;67). C15:0, C17:0 or 

C19:0 methyl ester were accepted for the quantification of long chain fatty acids 

(>C14). Also C23:0 or C24:1 were suggested (68). The addition of a single standard 

assumed no discrimination of individual fatty acids during the processes of extraction, 

derivatisation and gas liquid chromatography (GLC), furthermore the compensation 

for any partial hydrolysis that might occur (69). Normally, most of this fatty acids oc-

curred in biological samples, coeluate with other fatty acids in the chromatography or 

peripheral

UC

CP

V

BP

central
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are hardly soluble (70). Thus, C15:0 methyl ester is a suitable choice as an internal 

standard (Figure 2.3). It presented good soluble features in polar solvents, it is a mi-

nor fatty acid in biological material (<1%) and in spite of short chain length it did not 

evaporate during sample preparation.  

 

Figure 2.3: Chromatogram of the PL fatty acid profile in a full term placenta (C15:0 internal standard) 

 

For the quantification of fatty acids in PL, NEFA, TG and CE, defined concentrations 

of phosphatidylcholine dipentadecanoyl, docosapentaenoic acid, tripentadecanoin, 

and cholesteryl pentadecanoic acid were used. Individual amounts (Table 2.12) were 

dissolved in 50 ml methanol/chloroform (35:15 v/v).  

 
Table 2.12: Composition of the internal standard in 50ml methanol/chloroform (35:15 v/v) 
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molecular weight weighted sample 
Lipid [g/mol] [g]

phosphatidylcholine dipentadecanoyl 706,0 5,0
docosapentaenoic acid 242,4 5,2
tripentadecanoin 765,3 12,4
cholesteryl pentadecanoic acid 611 7,3
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250 µl of the mixture (≙ 0.025 µg pentadecanoic acid) were added at the beginning 

of the extraction step to the solution. The concentrations (wet weight) of individual 

fatty acids were calculated as follow: 

 

 peak area (fatty acid X) * standard [mg] 
 fatty acid X [mg/ml]  =  
 peak area (standard) * placental sample weight [g] 
 

 
and the proportional contents (wet weight) of individual fatty acids: 

 

 fatty acid X [mg/g]  
 fatty acid X [%] = * 100 
 total fatty acid content [mg/g] 
 

Individual fatty acids were identified by comparison with authentic standards (Table 

2.6). The elution sequence of the standard mixture is shown in Figure 2.4. 

 

Figure 2.4: Elution sequence and retention times of the standard mixture 
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2.4.2 Sample preparation 

The analysis of fatty acids in biological samples involves mainly three steps: extrac-

tion of lipids into an organic solvent (71;72), acid or base catalysed derivatisation to 

obtain volatile fatty acid methyl esters (FAME) (69;73) and the quantification of indi-

vidual FAME by gas chromatography with flame ionisation detection (68;74). Until 

now, there is no validated method for the analysis of the fatty acid content in placen-

tal tissue (75-77). 

Fatty acids of placental tissue were extracted using a modification of the method of 

Folch et al. (72). Approximately 0.3 g of tissue was weighed and internal standard 

was added. Samples were homogenised for 1 min in 12 ml chloroform/methanol mix-

ture (2:1 v/v) with butylated hydroxy toluene (BHT) using a metal-blade homogeniser. 

Different concentrations (0.5, 2, 3.5, 5, 6 g/l) of BHT were used to avoid oxidation of 

PUFA during sample preparation. Subsequently, the mixture was heated to 35°C for 

20 min, filtered through a glass fibre filter and 4 ml potassium hydroxide solution 

(0.1 M) were added. The samples were shaken carefully and centrifuged at 900 x g 

at 10°C for 30 min. Thereafter the aqueous phase was discarded, the organic phase 

containing the lipids was filtrated over sodium sulfate and taken to dryness under re-

duced pressure. The remaining lipids were dissolved in 400 µl of chloro-

form/methanol (1:1 v/v) and carefully deposited on a TLC plate. PL, free cholesterol, 

NEFA, TG and CE were separated using heptane, diisopropylether and acetic acid 

(60+40+3, v/v/v) as mobile phase (78). After visualisation of the components with 

2´,7´-dichlorofluorescein the bands with the lipid fractions were scraped from the TLC 

plate and transferred into 4 ml glass tubes equipped with teflon-lined screw caps 

(69). Methylesters of fatty acids from the fractions were obtained by reaction with 

3 M methanolic hydrochloric acid at 85°C for 45 min in closed glass tubes. After neu-

tralisation with sodium carbonate/sodium hydrogen carbonate/sodium sulfate buffer, 

1 ml hexane was added. After centrifugation at 400 x g for 3 min the hexane layer 

was transferred into another vial, the extraction was repeated and the combined ex-

tracts were taken to dryness under a gentle stream of nitrogen. Profiling of FAME 

was performed by capillary GLC, equipped with a Hewlett-Packard 5890 Series 2 gas 

chromatograph, equipped with a 60 m x 0.32 mm (inside diameter) polar cyanopropyl 

silicone-coated column (BPX-70). Fatty acid determinations were processed at a col-

umn-head pressure of 1.3 bar and an initial temperature of 130°C, followed by an 

increase of 3°C/min to 180°C, consequently raised to 220°C at 4°C/min.  
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2.5 Western blot 

2.5.1 Positive control (external standard) for the comparison of different blots  

For positive control apoptosis was induced in placental explants by incubation with 

1.5 mM MgCl2 (79). Small pieces of villous tissue from the centre of placental paren-

chyma were incubated in medium M199 supplemented with 1% (v/v) fungizone and 

1% (v/v) penicillin/streptomycin for 1 hour. After two washings in PBS villi were 

placed in 1,5 mM MgCl2 DMEM medium, supplemented with 10% (v/v) foetal calf se-

rum, 1% (v/v) fungizone and 1% (v/v) penicillin/streptomycin at 37°C under 5% CO2 

for 48 h (80).  

 

2.5.2 Preparation of placental tissue for Western blot 

The samples from different placenta locations were pooled. Approximately 200 mg of 

placental tissue was boiled in lysis buffer for 5 min, containing 0.01 M Tris (pH 7.4), 

1% SDS (w/v), 1 mM Na-Orthovanadate (0.184 g dissolved in 10 ml Tris, pH 10.0) 

and complete protease inhibitor cocktail. The mixture was homogenised carefully with 

an metal-blade homogeniser, chilled on ice, centrifuged at 1000 x g at 4°C for 15 min 

and the aliquots of supernatant was transferred in Eppendorf cups. 

 

2.5.3 Protein analysis 

The protein concentrations of all samples was estimated according to Lowry (81). 

Under alkaline conditions, copper build complexes with protein. When Folin-phenol-

reagent is added, the reagent binds to the protein. Bound reagent is slowly reduced 

and changes colour from yellow to blue.  
 

Lowry’s stock reagent: 
 

- Lowry A: 2% Na2CO3 in 0.1 M NaOH  

- Lowry B: 1% CuSO4 in H2O  

- Lowry C: 2% sodium potassium tartrate (NaKC4H4O6 x 4H2O) 
 

⇒ Lowry’s stock reagent: 49 ml Lowry A + 0.5 ml Lowry B + 0.5 ml Lowry C 
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Protein concentrations were calculated related to a calibration curve (Figure 2.5). For 

this approach, bovine serum albumin (BSA) concentrations were dissolved in lysis 

buffer (10 µl lysis buffer + 90 µl bidest. water, 1:10) (Table 2.13). 

 
Table 2.13: Bovine serum albumin (BSA) concentration for the calibration curve 

 

From each of the solutions described in Table 2.13, 10 µl were incubated for 10 min 

in 250 µl Lowry’s stock reagent and subsequently 30 min in 25 µl Folin-phenol re-

agent (diluted 1:1 with bidest. water before use). The extinction was measured in a 

spectrometer at 750 nm. 

Figure 2.5: Calibration curve for protein analysis in the range of 0.01 to 3.0 µg/µl protein. 
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The protein concentrations of the placenta samples were calculated as follow: 

 

 Protein [µg/µl] = Extinction / 0.404 
 
 
2.5.4 Western blot analysis 

Equal amounts of protein (40 µg per lane) from each sample were used for electro-

phoresis. The sample solution (25 µl) was calculated and prepared as follow: 

 

 

 

Ultrapure water (y) was added up to 25 µl. The mixture was heated for 10 min at 

70°C and subsequently loaded on 4-12% Bis-Tris polyacrylamide gradient gels. The 

electrophoresis was accomplished under reducing conditions. Afterwards, the pro-

teins were transferred to nitro-cellulose membranes. The membranes were treated 

with primary antibodies, as listed in Table 2.10, and incubated with a alkaline phos-

phatase labelled goat-anti-mouse chemiluminescent kit. Incubation times were 

slightly changed to the manufacturer’s protocol (Figure 9.1, p. 81). High performance 

chemiluminescence films were used for exposure. Times for film exposure and de-

velopment varied (Table 2.14) 

 
Table 2.14: Film treatment for different antibodies  

 

Bands corresponding to specific proteins were quantified densidometrically using Al-

phaEaseFC, Version 3.2.3. For negative control experiments the primary antibodies 

were exchanged for mouse IgG negative controls. The intensities of the analysed 

sample x µl
ultrapure water y µl
sample buffer (4x) 6.25 µl
reducing agent (10x) 2.5 µl

sample solution 25 µl

 40 µg (protein per lane) 
x [µl] = 
 Protein concentration [µg/µl] 

Antibody Exposure Development Fixation
(min) (min) (min)

PCNA 1 1 10
p53 5 1.5 10
Cytokeratin 18 neoepitope 10 1.5 10
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samples were compared with positive controls and expressed as percentages related 

to the external standard (arbitrary units).  

 

2.6 Immunochemistry 

With a microtome, sections of 5 µm were cut, floated on water and dried at 50°C over 

night on object slides. The samples were de-paraffinised in xylene and rehydrated in 

a graded series of alcohol, incubated in 10 mM citrate buffer (pH 6.0) and boiled un-

der pressure in an autoclave at 120°C for 3 min. Unspecific protein binding was 

blocked with activated human serum (20%) and diluted in V-blocking reagent. Pri-

mary antibodies as used for Western blot were diluted in background reducing agent, 

their binding was detected by biotinylated goat anti-mouse antibody and streptavidin-

HRP. After treatment with AEC, slight counterstaining was performed with Mayer’s 

haemalumn (Figure 9.2, p. 82). Slides were mounted with Kaiser’s glycerol gelatine. 

Cells, e.g. trophoblasts, endothelial and other stromal cells, such as blood cells or 

macrophages, were determined by counting under a light microscope three represen-

tative visual fields for each placenta (n=3) per group (original magnification x 400). 

The low number of samples was considered as sufficient, as the results were verified 

by Western blot analyses. The proportion of labelled nuclei was expressed to the to-

tal number of cells in the field. 
 

2.7 Statistics 

For pre-tests, results of fatty acid analysis were expressed as absolute (mg/g wet 

weight) and as percentage (% w/w) of all detected fatty acids with a chain length of 

14-24 carbon atoms. Data of intra- and inter-assay are presented as mean and stan-

dard deviation. Time dependent experiments are evaluated using paired t-test. 

 

All data of the intervention study are presented as mean and standard error of mean 

(SEM). For comparison between groups ANOVA was used and “post-hoc” tests were 

performed with Bonferroni’s correction. Differences between the n-3 LC-PUFA and 

“non-fish oil” groups were evaluated using unpaired t-tests. Correlation coefficients 

were calculated according to Pearson. For statistical evaluations SPSS for Windows, 

Release 11.5.1 was used, with P-values < 0.05 considered statistically significant.
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3 Results 

3.1 Methodological development of fatty acid analysis 

3.1.1 NEFA content at different time points after placenta delivery 

If a lipid degradation caused by enzyme activity, e.g. phospholipase A2 (PLA2) or 

triacylglycerol hydrolyses takes place, the resultant free fatty acids should accumu-

late in the NEFA fraction. Results indicated a significant increase of the NEFA con-

tent after 14.5, 24.5, 34.5, and 44.5 min compared with the initial content (Figure 3.2). 

Furthermore, accumulation of individual NEFA was shown. The most striking in-

crease was observed for AA, dihomo-γ-linolenic acid and DHA percentages, while 

percentages of all saturated fatty acids decreased (Table 9.1, p. 84). Therefore, all 

placental samples were obtained within 10 minutes after delivery. 

 

Figure 3.1: NEFA content (mean ± SD) in central placenta parenchyma samples (n=4) over 45 min-
utes after placenta delivery. Significant alterations are related to the first sample obtained immediately 
after delivery (4.5 min). *P<0.05. 

 

3.1.2 BHT prevent oxidation of polyunsaturated fatty acids 

In order to prevent oxidation of PUFA during sample preparation, BHT at concentra-

tions of 0.5, 2.0, 3.5, 5.0, and 6.0 g/l were added to the chloroform methanol mixture. 

The variation of the results, expressed by coefficient of variation (CV; n=8), was im-

proved for DHA with increasing concentrations of BHT in the solvent. The CV de-

creased from 13% (0.5 g/l BHT) to 5.5% (5 g/l BHT) (Figure 3.1).  
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Figure 3.2: Influence of BHT addition to the chloroform methanol mixture for the extraction step. The 
loss of docosahexaenoic acid decreased depending on the anti-oxidant concentration in the solvent, 
whereas the other selected fatty acids were hardly influenced (n=8). 

 

The CVs of stearic acid and AA concentrations were lower than 5% in all cases which 

indicated a small variation and independence from the BHT content. If 6 g BHT per 

litre were added to the extraction solution, the antioxidant displaced the TG on the 

TLC-plate leading to a distribution of TG over a larger area and a clear identification 

of the band under ultraviolet light was no longer possible. Therefore, all further sam-

ples were processed with 5g/l BHT in the extraction solution. 
 

3.1.3 Fatty acid content in randomly chosen locations of placental tissue 

In order to clarify whether the lipid contents in various parts of the placenta are simi-

lar, 2 x 12 randomly chosen samples from two placentas were analysed (Table 9.2, 

p. 85). The relative composition of the fatty acids with a concentration > 0.01 mg/g in 

all studied lipid fractions showed a high reproducibility (CV 0.5% - 9.9%) and no sys-

tematic pattern was detected. This indicates that the proportional distribution of fatty 

acids in all locations of the placenta was similar.  

The absolute fatty acid concentration in the PL fraction showed a low variation (7.0% 

- 9.3%) with the exception of docosahexaenoic acid (12.8%). This indicates a ho-

mogenous concentration of fatty acids in PL in the whole placenta. However, NEFA, 
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TG and CE showed differences in the fatty acid content which result in a high varia-

tion (CV 6.1% - 42.1%). 
 

3.1.4 Validation of method: intra-assay 

The absolute fatty acid content (mg/g) of the different lipid fractions studied in placen-

tal tissue are presented in Table 9.3 (p. 86). PL comprised the major part of lipids in 

placental tissue with 87.5 ± 4.2% (mean ± SD), followed by NEFA (5.7 ± 0.4%), TG 

(3.8 ± 0.2%) and CE (3.1 ± 0.4%). The detection limit for the analyses was 0.001 

mg/g, but the limit of quantification was approximately 0.01 mg/g based on CVs less 

than 10%. Many of the NEFA, TG and CE fatty acids showed concentration 

< 0.01 mg/g, and with some exceptions quantification of these fractions was not re-

producible. For fatty acid concentrations > 0.01 mg/g, the method indicated a good 

reproducibility for the PL fatty acids of 4.6% – 11.0% (CV), for NEFA 6.4% – 9.3%, 

(DHA 13.9%), TG 6.1% - 8.9%, and CE 11.4% - 16.3%. Table 9.4 (p. 87) shows the 

relative fatty acid composition of the lipid fractions of placental tissue. In PL, NEFA 

and TG, palmitic acid and AA were the quantitatively most important fatty acids. In 

contrast, CE showed a different fatty acid pattern with a high abundance of linoleic 

acid and oleic acid. The CVs for the relative fatty acid composition were for PL 0.4% - 

10.5%; NEFA 1.2% - 9.7%; TG 1.8% - 9.0%; CE 2.0% - 7.5%, for fatty acids found in 

concentrations > 0.01 mg/g. 
 

3.1.5 Validation of the method: inter-assay 

In order to determine inter-assay variation, eight tissue samples of one placenta were 

analysed within a two month period (Table 9.5, p. 88). The reproducibility of fatty ac-

ids of the PL and CE fractions was similar compared with the results of intra-assay. 

However, the fatty acids from NEFA and TG fractions showed higher CVs which 

might be due to lipolytic alterations during storage. 
 

3.1.6 Determination of the inter-assay during the analyses period 

During the analyses period, the inter-assay was determined by samples of one pla-

centa in consistent intervals (one of nine, n=23). By comparison with the inter-assay 

of the pre-tests, for DHA and AA the reproducibility was slightly improved in PL (CV 

5.0% vs. 4.7% and 5.3% vs. 2.1%), NEFA (13.5% vs. 8.7% and 12.1% vs. 7.3%,) 
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and TG (20.8% vs. 16.5% and 12.3% vs. 11.6%), whereas in CE a higher variation 

was determined (6.7% vs. 16,4% and 7.2% vs. 8.2%, Table 9.6, p. 89). 

 

3.2 Methodological development of Western blot 

3.2.1 Comparison of the intensities of individual lanes  

The transfer of proteins from the electrophoreses gel (10 lanes) to the membrane 

varied per lane. To determine the differences, equal amounts of protein (40 µg) per 

lane were loaded on the gel and the membrane was incubated with PCNA (n=5). The 

intensities of lanes 1-9 were compared with lane 10 (Figure 3.3), which was set as 

100%. The intensity percentages ranged between 87.5% and 112.5% (lane 1 and 

lane 5, respectively), therefore for comparisons of different blots, the external stan-

dard (see section 2.5.1) was placed on lane 1 and 5. The intensities of the bands of 

each sample were compared with the mean standard band intensity and expressed 

as percentages of standard (arbitrary unit). 

Figure 3.3: Intensity differences of individual lanes compared with lane 10 (mean±S.D., n=5). 

 

3.2.2 Pre-test with selected antibodies 

3.2.2.1 Proliferating cell nuclear antigen (PCNA, PC 10) 

The antibody PCNA (PC 10) reacts with the PCNA p36 protein expressed at high 

levels in proliferating cells by Western blotting. It is a marker for cells in early G1 and 

S phases of the cell cycle. A final dilution of 1:10000 was used for Western blot 
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analysis (Figure 3.4). In placental tissue an unspecific band at 27 kDa was caused by 

the second antibody (alkaline phosphatase-conjugated anti-mouse) used by anti-

mouse Western Breeze kit (bands were not detected with anti-goat Western Breeze 

kit).  

 

 
 

 

 

 

 

 

 
Figure 3.4: PCNA bands of placental posi-
tive control cells (external standard) by 
Western blot (dilution 1:10,000). Bands at 27 
kDA were unspecific bands. 

 

 

3.2.2.2 Tumor suppressor gene p53  

The antibody p53 (DO-1) reacts with an amino terminal epitope mapping between 

amino acid residues 11-25 of wt and mutant p53 of human origin by Western blotting. 

A final dilution of 1:500 was used for Western blot analysis (Figure 3.5). 
 

 

 

 

 

 

 

 
Figure 3.5: P53 bands of placental positive 
control cells (external standard) by Western 
blot (dilution 1:500). Bands at 27 kDa were 
unspecific bands. 
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3.2.2.3 Cytokeratin 18 neoepitope  

The antibody (clone M30) binds to a caspase cleaved epitope of the human cy-

tokeratin 18 cytoskeletal protein. The immunoreactivity of the antibody is confined to 

the cytoplasma of apoptotic cells. A final dilution of 1:50 was used for Western blot 

analysis. The method was developed by using a human choriocarcinoma cell line 

(JAR) established from the trophoblastic tumor of the placenta (Figure 3.6) 

 
 

 

 

 

 

 

 
Figure 3.6: Bands of cy-
tokeratin 18 neoepitope in tro-
phoblastic tumor cells (JAR) by 
Western blot (Dilution 1:50). 
Bands at 27 kDa in placental 
tissue were unspecific bands, in 
the culture cells (JAR) such 
bands were not detected. 

 

 

 

3.3 Intervention study 

3.3.1 Placental fatty acid profile 

3.3.1.1 Subjects 

A total of 302 pregnant women were recruited for the study, 224 participated until 

giving birth. All placentas of these women were scheduled for fatty acid analysis in 

the lipid fractions. 22 placental samples could not be analysed, because they were to 

small for fatty acid analysis or tissue was not collected. Thus, 202 placental samples 

were available for fatty acid determination. Significant differences between the popu-

lation from the three study centres were observed for length of gestation and mater-

nal age (Table 3.1).  

 

  20 kDa

  30 kDa

  40 kDa

  50 kDa

  60 kDa

  80 kDa
100 kDa
120 kDa

Cytokeratin 18
neoepitope
43 kDa

  Marker
Placental Tissue

  Jar



Results 31 

Table 3.1: Characteristics of study population 

 

* Not all data were available for the Spanish population: BMI at study entry (98), BMI at delivery (92), 
placental weight (97), birth weight (99) and birth length (91). ** The German placental weights were 
available for 47 subjects. Identical superscripts indicate significant differences between: a) Spain and 
Germany, b) Germany and Hungary, c) Spain and Hungary, p < 0.05.  

 

On average, the Hungarian pregnancies were approximately ten days shorter than in 

the other countries. Pre-term deliveries or prolonged gestations were not excluded, 

because restrictions to deliveries only at term (37-42 weeks of pregnancy) did not 

significantly change the average placental PL fatty acid pattern of our study popula-

tion. The mean age of German mothers was approximately four years higher than in 

the other countries. No significant differences between centres were observed for 

maternal BMI, placental weight and the anthropometric measures of the infants (Ta-

ble 3.1). 

 

3.3.1.2 Relationship between the habitual diet and the placental PL fatty acid profile 

The fatty acid composition in placental PL in German, Spain and Hungarian women 

not consuming supplemented n-3 fatty acids or 5-MTHF are listed in Table 9.7 (p. 

90). The total content of n-6 and n-3 fatty acids in PL was similar in German and 

Spanish women. The Hungarian placentas contained significantly less DHA than 

those from the other countries and also showed significantly lower total n-3 fatty acid 

contents. Total amounts of saturated fatty acids (SFA) and monounsaturated fatty 

acids (MUFA), the trans fatty acids and n-9 polyunsaturated fatty acids (PUFA) were 

not different between the three countries. 

 

3.3.1.3 Supplementation effects on the fatty acid pattern of placental PL 

The supplementation effects were compared in the whole study population (Table 

9.8, p. 91). The additional intake of the n-3 LC-PUFA increased DHA, EPA and total 

Length of gestation (d) 276,8 (1,1)c 275,5 (2,2)b 266,8 (2,0)b,c

Maternal age (y) 30,3 (0,5)a 33,7 (0,5)a,b 29,8 (0,7)b

BMI at study entry (kg/m2) 25,6 (0,4) 24,8 (0,5) 25,5 (0,6)
BMI at delivery (kg/m2) 29,5 (0,5) 28,8 (0,6) 29,0 (0,6)
Placental weight (g) 549 (14) 554 (17) 519 (12)
Infants' birth weight (g) 3275 (47) 3369 (79) 3270 (71)
Infants' birth length (cm) 50,6 (0,2) 52,0 (0,5) 49,5 (0,4)
Smoking during pregnancy (%)

Germany**

(n=54)

Spain*

(n=100) (n=48)

Hungary

4,2 1,818
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of n-3 fatty acids in PL (p<0.05). The AA content and the total n-6 fatty acids were not 

affected by the supplementation, which led to lower n-6/n-3 ratios. The additional in-

take of DHA and EPA did not influence the ratio of the n-3 to n-6 fatty acid precursors 

linoleic acid (LA, 18:2n-6) to α-linolenic acid (ALA, 18:3n-3), respectively, as well as 

the ratio of AA (20:4n-6) to dihomo-γ-linolenic acid (DGLA, 20:3n-6), which may re-

flect ∆5-desaturase activity. The DHA/EPA ratio (22:6n-3/20:5n-3) was not signifi-

cantly different between groups, but the supplemented groups tended to show lower 

quotients. AA/EPA and AA/DHA rations reflected the additional DHA and EPA intake, 

resulting in lower ratios. 

No significant differences were found between the placebo and the 5-MTHF supple-

mented group as well as for the n-3 LC-PUFA and the n-3 LC-PUFA / 5-MTHF sup-

plemented group for each country. There were no significant differences between the 

countries for the supplemented groups, except for the placebo group, where the DHA 

contents in Hungarian placental PL were significantly lower compared with German 

and Spanish placentas. The Hungary placebo group indicated significantly lower 

DHA contents, whereas the supplemented group with n-3 LC-PUFA or the combina-

tion showed similar levels to the supplemented groups from Germany and Spain 

(Figure 3.7). 

 

 
Figure 3.7: Comparison of the DHA and 5-MTHF supplementation in placental phospholipids in Ger-
many, Spain and Hungary. n.s no significance within the supplied group and the different study popu-
lations. *P < 0.05. 
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3.3.1.4 Supplementation effects on the NEFA, TG and CE fatty acid pattern 

As described above, 5-MTHF did not significantly change the fatty acid profile of pla-

cental PL, thus for further investigation, the n-3 LC-PUFA treated group and the 

group which received both n-3 LC-PUFA and 5-MTHF were combined to the n-3 LC-

PUFA group and the groups which received the placebo or the 5-MTHF supplement 

were combined to the control group.  

In the whole population the DHA contents were significantly higher in placental PL, 

NEFA, TG and CE in the n-3- LC-PUFA treated group as compared with the placebo 

group (5.88±0.11% vs. 4.77±0.10%, 5.28±0.15% vs. 4.12±0.13%, 6.80±0.33% vs. 

4.64±0.22%, and 3.98±0.14% vs. 3.00±0.10%, respectively, Figure 3.8).  

 

Figure 3.8: Comparison of the placental lipid fraction docosahexaenoic acid (DHA) contents between 
the placebo group (A) and the n-3 LC-PUFA supplemented group (B) (*p<0.05).n.s. not significant. 
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Furthermore, the low EPA content (approximately 150 mg) in the supplement in-

creased also the EPA content in any placental lipid fraction. The total n-3 LC-PUFA 

content in all lipid fractions was significantly enhanced in the n-3 LC-PUFA treated 

group. The additional uptake of n-3 LC-PUFA did not change the proportions of other 

fatty acids, with exception of n-6 docosapentaenoic acid (n-6 DPA, C22:5n-6), which 

was higher in the placebo group compared with the supplemented group (PL 

1.11%±0.04% vs. 0.80±0.01%, NEFA 0.95±0.04% vs. 0.68±0.03%, TG 1.18±0.06% 

vs. 0.86±0.04% and CE 1.03±0.05% vs. 0.77±0.04%). Therefore, the ratio of n-3 to n-

6 polyunsaturated fatty acids (PUFA) in the n-3 LC-PUFA treated group was lower in 

all lipid fractions (p<0.05), whereas the ratio of PUFA to saturated fatty acids (SFA) 

was not affected (Table 9.9, p. 92).  

To test the potential relation of AA and DHA compositions between NEFA, TG and 

PL, correlation analyses between percentages of individual values were performed. 

Correlation between NEFA and PL (r2 = 0.003) were not significant for AA, whereas 

correlation was significant for DHA (r2 = 0.506; P<0.01). Correlation between NEFA 

and TG were significant for AA (r2 = 0.110; P<0.01) and DHA (r2 = 0.302; P<0.01, 

Figure 3.9 and 3.10). 

 
Figure 3.9: Dependence of AA percentages in PL and TG from their corresponding proportion in the 
NEFA pool (n=202). n.s not significant. 
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Figure 3.10: Dependence of DHA percentages in PL and TG from their corresponding proportion in 
the NEFA pool (n=202). 

 

The AA and EPA content was negatively correlated in PL (r2=0.069; P<0.01) and in 

CE (r2=0.069, P<0.01), whereas no correlations in NEFA (r2=0.016; P>0.05) and in 

TG (r2= 0.004, P>0.05) were found (Figure 3.11). 

 

Figure 3.11: Relationship between eicosapentaenoic acid (EPA) and arachidonic acid (AA) in different 
placental lipid fractions (n=202). 
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The comparison of the placental lipid fractions without differentiating between the 

three centres showed that the supplementation with n-3 LC-PUFA did not alter the 

concentrations of individual fractions: PL 7.36±0.11 mg/g wet weight vs. 

7.44±0.12 mg/g, NEFA 0.30±0.01 mg/g vs. 0.31±0.01 mg/g, TG 0.17±0.01 mg/g vs. 

0.18±0.01 mg/g, and CE 0.42±0.02 mg/g vs. 0.40±0.02 mg/g (placebo group vs. n-3 

LC-PUFA group). Therefore, the contribution of the fractions to the total lipid content 

was not different between the groups: PL 89.3±0.3% vs. 89.3±0.3%; NEFA 5.0±0.2% 

vs. 4.7±0.2%, TG 3.7±0.1% vs. 3.7±0.1%, and CE 2.0±0.1% vs. 2.2±0.1% (placebo 

group vs. n-3 LC-PUFA group). 

 

3.3.2 Western blot and Immunohistochemistry 

3.3.2.1 Subjects 

Placental apoptosis and proliferation was determined in a subgroup of the Spanish 

population. Out of the total of 154 studied women, eight did not finish the clinical trial. 

The sample collection was limited due to logistic restrictions, thus 105 samples were 

available for fatty acids analysis. For apoptosis and cell cycle analyses only 91 

pieces of placental tissue were collected in the strict random sampling mode de-

scribed above. Eleven of the samples were too small for the analyses of all parame-

ters. The full set of parameters was investigated for 54 women. Characteristics of the 

study population are given in table 3.2. 

 
Table 3.2: Characteristics of the study population, mean (SEM). No statistically differences were found 
between the groups. 

 

 

Length of gestation (d) 281.5 (2.0) 274.0 (3.9) 279.4 (2.3) 276.1 (9.8)
Maternal age (y) 31.6 (0.8) 30.8 (1.3) 28.1 (1.3) 29.0 (1.3)
BMI at study entry (kg/m2) 25.2 (1.1) 25.8 (0.9) 25.2 (1.1) 25.1 (1.0)
BMI at delivery (kg/m2) 29.7 (1.5) 29.1 (0.8) 29.1 (0.5) 27.6 (2.5)
Placental weight (g) 586 (24) 551 (52) 553 (34) 527 (41)
Infants' birth weight (g) 3316 (71) 3110 (191) 3288 (127) 3215 (129)
Infants' birth length (cm) 51.0 (0.6) 49.9 (0.7) 50.6 (0.5) 50.9 (0.6)
Smoking during pregnancy (%)

(n=16)
folate
(n=15)

supplement

placebo
(n=12)

fish oil / folate
(n=11)

fish oil

0 27.3 12.5 16.6
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3.3.2.2 Results of the fatty acid analyses of the subgroup 

The fatty acid patterns of the evaluated 54 subjects are representative for the total 

collective. Fatty acid compositions in the subgroup were determined in placental PL, 

NEFA and TG fractions. The individual fatty acids composition showed no differences 

between the four treatment groups, with the exception of the supplemented fatty ac-

ids, DHA and EPA (Figure 8.1). The proportion of DHA in the placental PL indicated 

similar contents for n-3 LC-PUFA treated groups (n-3 LC-PUFA 5.9±0.3%, combined 

6.2±0.3%), which were different (p<0.05) to “non-fish oil” supplemented groups (pla-

cebo 4.8±0.2%, 5-MTHF 4.9±0.2%). Differences (p<0.05) were also measured for 

EPA (n-3 LC-PUFA 0.2%±0.0 and combination 0.3±0.0% vs. placebo 0.1±0.0% and 

5-MTHF 0.1±0.0%). In the cytosolic NEFA pool EPA contents differed (p<0.05) be-

tween placebo group (0.4±0.1%) and n-3 LC-PUFA / 5-MTHF group (0.6±0.1%). This 

was also observed for the DHA contents in the TG fractions (combination group 

7.9±0.7%, 5-MTHF group 5.2±0.5%), furthermore differences (p<0.05) were indicated 

for EPA contents between placebo (0.2±0.0%) and n-3 LC-PUFA (0.6±0.1%) sup-

plementation. The additional uptake of EPA could displace the arachidonic acid in the 

different lipid fractions, respectively, in the present study this effect was not observed 

(Table 3.3).  

 
Table 3.3: Contents of arachidonic acid in different placental lipid fractions (w/w in %).  

 

3.3.2.3 Folate concentrations 

The folate concentration in maternal and foetal blood of 142 available samples were 

analysed by the Department of Clinical Medicine, Trinity College Dublin. The data 

showed that the evaluated subgroup (n=54) are representative for the total popula-

tion. The additional intake of folate was reflected in maternal blood plasma concen-

trations, i.e. the folate supplemented groups (folate 12.6±1.3 ng/ml and combination 

16.0±1.8 ng/ml) indicated higher (p<0.05) contents compared with the untreated 

Lipid fraction

PL 21,2 ± 0,4 21,8 ± 0,4 21,3 ± 0,4 22,2 ± 0,3

NEFA 17,6 ± 0,7 17,9 ± 0,5 18,5 ± 0,5 18,0 ± 0,6

TG 12,6 ± 0,5 12,3 ± 0,6 12,9 ± 0,6 12,1 ± 0,8

Supplement

(n=12) (n=11) (n=16) (n=15)
Placebo fish oil / folate fish oil folate
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groups (placebo 4.5±0.8 ng/ml and n-3 LC-PUFA 6.6±1.1 ng/ml). Contrary, in foetal 

plasma no differences were found (Figure 3.12). The ratio of the plasma folate con-

centration between mother and child decreased significantly after 5-MTHF supple-

mentation (folate 1.2%±0.1 and combined 1.3%±0.1 vs. placebo 4.2%±0.9 and n-3 

LC-PUFA 3.0%±0.3). 

 

Figure 3.12: Folate supplementation effect on foetal and maternal plasma folate concentrations. In 
maternal plasma higher concentrations are measured in the 5-MTHF supplemented groups. In foetal 
plasma no differences are found between the four groups. Ratio of maternal and foetal plasma folate 
concentration was reduced by additional 5-MTHF uptake. Identical superscripts indicated significant 
differences. (*p<0.05). 

 

3.3.2.4 Western blot and immunohistochemistry  

The proliferation marker PCNA, the tumor suppressor p53, and the caspase cleavage 

product of cytokeratin 18 (clone M30, apoptosis marker), were immunolocalised to 

determine proliferation and apoptosis in term placenta. The expression of PCNA in 

the DHA / 5-MTHF treated group was higher in 66.3% (p<0.05) compared with the 

placebo group (Figure 3.12). Cytokeratin 18 neoepitope and p53 levels by western 

blot were unaffected by treatment (Figures 3.13 and 3.14). 
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Figure 3.13: Immunoblot and 
densitometric analysis of the 
protein bands of PCNA 

 

 

 

 

 

 

 

 
Figure 3.14: Immunoblot and 
densitometric analysis of the 
protein bands of cytokeratin 
18 neoepitope (clone M30) 

 

 

 

 

 

 

 

 

 

 
Figure 3.15: Immunoblot and 
densitometric analysis of the 
protein bands of p53 
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The Western blot results were confirmed by immunohistochemical analyses (Figures 

3.16, 3.18 and 3.19). The proportion of cells of PCNA was determined for the DHA/5-

MTHF treated group and the placebo group (Figure 3.16). 

 
 

Figure 3.16: Immunolocalisation with antibody PCNA (proliferation) in full term placenta. PCNA immu-
nostaining was stronger in placental tissue of the n-3 LC-PUFA/5-MTHF supplemented group (A) then 
in the placebo group (B). PCNA in endothelium and other cells showed no differences between both 
groups. Panels C and D shows IgG isotype matched negative controls from a parallel section. black 
arrowhead: syncytiotrophoblast, thin arrow: cytotrophoblast, bold arrow: endothel and other cells. 

 

The proportions of nuclei labelled for PCNA were higher (p<0.05) in the combination 

supplemented group (12.8%) compared with the placebo treated group (7.3%) in the 

trophoblast compartment, which was the result of changes in total, whereas similar 

proportions of nuclei was stained in endothel and other stromal cells (Figure 3.16).  
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Figure 3.17: A higher proportion of nuclei were immunolabelled in the n-3 LC-PUFA / 5-MTHF (n=3) 
group as compared to placebo (n=3), because of an exclusive increase in the trophoblast compart-
ment. The labelling of endothel cells and other cells, such as blood cells and macrophages, remained 
unchanged. (*p<0.05; n.s: not significant). 

 

The staining intensity of p53 positive nuclei was similar in all four study groups (Fig-

ure 3.17), which is in agreement with the similar apoptosis rates, defined by were 

found almost exclusively among extra villous trophoblasts (Figure 3.18).  

 
Figure 3.18: Immunolocalisation with antibody p53 (key regulator). P53 was only rarely detected in all 
study groups and found mainly within specific trophoblasts (A). Panel B shows IgG isotype matched 
negative controls a parallel section. black arrowhead: syncytiotrophoblast. 
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Figure 3.19: Immunolocalisation of cytokeratin 18 neoepitope (clone M30, apoptosis). Cytokeratin 18 
neoepitope (A) was rarely labelled in trophoblast cells. Panel B shows IgG isotype matched negative 
controls a parallel section. red arrowhead: apoptotic extra villous trophoblast cells. 

 

Folate and fatty acid concentrations were correlated with PCNA and p53 expression, 

the ratio PCNA/p53 and cytokeratin 18 neoepitope. No relationship was found for 5-

MTHF supplementation and the expression levels of the proteins. These also did not 

correlate with the altered proportions of DHA and EPA of the analysed placental lipid 

fractions. However, EPA within the TG fraction and PCNA levels showed a strong 

trend for correlation (R2=0.05, p=0.051) (Figure 3.20). 

 

 
Figure 3.20: Correlation between PCNA expression and EPA content in triglycerides fraction depend-
ing on the n-3 LC-PUFA supplementation during the second half of pregnancy. 
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4 Discussion 

4.1 Method development 

The described method enabled the analysis of absolute concentrations of fatty acids 

from placental tissue lipid fractions with a satisfactory precision.  

Lakin et al. (1998) determined the relative fatty acid composition of total placental 

lipids in 10 English women (76), which were similar to our results. This similarity 

might reflect an almost identical daily intake of fatty acids reported in the Lakin study 

and in Germany (82). Matorras et al. (2001) described the relative fatty acid composi-

tion in placental PL of 78 Spanish women. Differences from these results may be ex-

plained by a higher consumption of sea fish and olive oil in Spain compared with 

Germany (82;83), resulting in higher contents of oleic (13.88% vs. 12.10%), ei-

cosapentaenoic (0.40% vs. 0.11%) and docosahexaenoic acid (5.63% vs. 4.72%), 

and lower contents of arachidonic acid (22.56% vs. 24.96%) in the Spanish samples. 

Such diet induced effects have been observed with respect to plasma lipid composi-

tion in supplementation studies with fish oil and olive oil (84).  

Data on the precision of tissue fatty acid analysis could not be found, but such data 

have been reported for the analysis of relative fatty acid content in foods. CVs rang-

ing from 0.6% to 10.7% were reported only for those fatty acids with concentrations 

above 0.1 mg per g fresh sample (85). With the presented method here the quantifi-

cation limit was lower at only 0.01 mg per g sample. A CV of 10% is sufficient for the 

detection of clinically relevant differences of the fatty acid content in biological sam-

ples in physiological or nutritional studies. 

A few papers have reported absolute fatty acid concentrations in plasma or isolated 

lipoproteins, respectively (86;87). Only one publication has reported absolute fatty 

acid concentrations in placental tissue (88). Absolute concentrations may be more 

informative than the percent composition for studying time-dependent processes as 

well as placental transfer mechanisms. Our method has a good precision for the de-

termination of absolute fatty acid concentrations in PL, TG and NEFA. CE showed a 

higher variation, possibly because their solubility in methanolic hydrogen chloride is 

more limited. A higher derivatisation temperature and a longer incubation time might 

enhance the precision here (78).  

The inter-assay shows the same precision as the intra-assay only in the PL fraction. 

Possibly, the high amount of PL in placental tissue compensated for small alterations 
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during storage and sample preparation, whereas changes in the NEFA, TG, and CE 

fractions led to stronger relative variations of the results. CVs of inter-assay for C8-

C26 fatty acids in plasma were reported to range from 4.6% to 22.9% (89), compared 

with the CVs in our study ranging from 4.6% to 30.5%.  

With respect to the particular importance of NEFA in the placental fatty acid transfer 

and metabolism, it is very important to avoid alterations in this fraction as much as 

possible. PLA2 and triacylglycerol hydrolase catalyse the cleavage of fatty acids from 

PL and TG, which accumulate in the NEFA fraction (40;90). Within 45 min after deliv-

ery the NEFA concentration increased significantly, but within the first 10 min no sig-

nificant changes occurred (Figure 3.1). We did not observe significant alterations in 

the quantitatively small TG fraction, which indicates a low activity of triacylglycerol 

hydrolase. Therefore fatty acids appear to be contributed primarily by hydrolysis from 

the PL fraction, which is abundant in placental tissue. The proportional composition of 

total PL and of liberated fatty acids differs because of the preference of PLA2 for the 

sn-2 position (91) and the asymmetric distribution of acyl chains in PL. Saturated fatty 

acids are generally esterified at the sn-1 position, while unsaturated fatty acids are 

preferentially esterified at the sn-2 position (92). This is in agreement with our results 

where in NEFA arachidonic acid showed the highest proportional increase over time 

followed by dihomo-γ-linolenic acid and linoleic acid, while the proportions of all satu-

rated fatty acids decreased. We conclude that in order to minimise alterations in the 

NEFA fraction, placental tissue should be sampled as fast as possible and frozen 

immediately.  

It has been reported that addition of EDTA to the washing solution inhibits PLA2 ac-

tivity in a concentration dependent manner (93). It was assumed that the penetration 

of EDTA through an intact plasma membrane is limited, therefore the effect of EDTA 

in the washing solution to inhibit enzyme activity should be of little benefit, and this 

was therefore not used. 

The distribution of fatty acids in different regions of the placenta is determined by 

transfer, placental metabolism, and release to the foetal circulation (38). Data on the 

fatty acid distribution are not available, but differences across the placenta might be 

assumed. Thus samples from different randomly chosen locations of the placenta 

were analysed, including central and peripheral locations of maternal and foetal side 

and the parenchyma. The analysis of the relative fatty acid composition of all lipid 

fractions indicated no significant differences between the investigated locations. The 
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absolute concentrations of the PL bound fatty acids showed a homogeneous distribu-

tion, in contrast to the fatty acids in NEFA, TG and CE. Therefore for investigations of 

the relative fatty acid composition in placental lipid fractions, the location of sampling 

does not need to be exactly defined, while determinations of absolute fatty acid con-

centrations require explicit definition of the location, usually the centre of the paren-

chyma. 

 

4.2 Intervention study: placental fatty acid contents 

4.2.1 Influence on the placental PL fatty acid profile 

4.2.1.1 Comparison of placental PL contents within the placebo group 

The main dietary sources for n-3 LC-PUFA are fish and sea food (94). Fatty fish, e.g. 

salmon, herring, mackerel and anchovy contains the highest amount of DHA and 

EPA with approximately 1.2 g and 0.8 g per 100 g fish, respectively, whereas white 

fish like sole, plaice and cod comprises approximately 0.1 g DHA and 0.6 g EPA per 

100 g fish (95). In Spain white fish preferentially is consumed, whilst in Germany fatty 

fish is preferred (95). In Hungary the fish consumption is negligible, which could be 

related to the availability of food. For example, daily per capita availability of fish in 

Spain is 75 g, whereas in Hungary only 4 g are available (96). These nutritional hab-

its are reflected in placental PL DHA and EPA contents. The levels of DHA were sig-

nificantly lower in the Hungarian placentas than in German and Spanish samples and 

comparable with the placental DHA contents of vegetarians, who exclude meat and 

fish from their diet (76). 

In the study population of Germany and Spain the same contents of n-3 fatty acids in 

placental PL were found. Matorras et al. reported higher placental DHA contents 

(5.63±0.86%, mean±S.D.) in a Spanish population recruited in the same area (77) 

than we have found (4.91±0.19%). However, large variations of daily fish consump-

tion in the Spanish population have been described, which relate not only to geo-

graphical region, but also to socio-economical status (97;98). 

The maternal intake of n-6 fatty acids seems not to influence the fatty acid pattern in 

placental PL to the same extent as the n-3 fatty acids. The habitual diet of the Hun-

garian population contains much more red meat and poultry, the main AA sources 

(99), compared with the diets in Germany and Spain (96). However, AA contents in 

placental tissue did not differ significantly between the study populations. This is in 
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agreement with the observation that only LA content of placental PL differ signifi-

cantly between vegetarians and omnivores, while AA was very similar (76). This sug-

gests some metabolic regulation of the tissue AA content. 

 

4.2.1.2 Supplementation effect of n-3 LC-PUFA in placental PL fatty acids 

After supplementation with n-3 LC-PUFA the DHA contents were similar at approxi-

mately 6% in the three national groups. It is unlikely that placental tissue presented 

an incorporation limit for DHA in membrane PL, because in the retina of five-week-old 

rats much higher contents up to 42% have been measured (100). The supplementa-

tion with daily 500 mg DHA might converge different habitual DHA intake to an aver-

age uptake of DHA in the total study population, which is reflected in very similar pla-

cental PL contents. This suggested that in all countries the supplementary DHA in-

take contributed the major portion to the total intake. 

It is well documented that the supplementation of DHA and EPA in fish oil enhances 

the n-3 fatty acid status in plasma in the foetus, which is correlated with beneficial 

effects for the infant (46;101;102). The group of van Houwelingen supplemented 

women with fish oil (0.92 g DHA and 1.28 g EPA / d) after week 30 of pregnancy, 

DHA and EPA concentrations increased in venous umbilical plasma PL in neonates, 

whereas the arachidonic acid contents decreased (20). Similar results were found in 

a further cohort study where women were supplemented from week 18 of pregnancy 

with 1.2 g DHA and 0.8 g EPA per day, (47). The decrease of arachidonic acid in the 

neonates is not unproblematic, because reduced contents of this n-6 fatty acid may 

be related to lower growth during the first year of live (103). In our study the supple-

mentation with n-3 LC-PUFA (approximately 500 mg DHA and 150 mg EPA, daily) 

significantly increased the content of DHA and EPA in membrane PL, whereas in TG 

and NEFA fractions slight enhancements were measured. However, the supplemen-

tation did not alter the arachidonic acid content in the examined placental lipid frac-

tions. This could be related to the high ratio of DHA to EPA by approximately 4:1 in 

the supplement (104). The supplement used here contained three times more DHA 

than EPA. Although this caused significant accumulation of n-3 LC-PUFA in placental 

PL, it did not affect the AA content. AA is of major importance for growth and devel-

opment of the fetus, and its metabolites influence brain signal transduction in animals 

(105), thus a limited placental availability of AA might have adverse effects on the 

neonatal outcome. 
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4.2.1.3 Influence of the additional 5-MTHF intake on placental PL 

Maternal homocysteine concentrations correlated negatively with the DHA contents 

in foetal erythrocyte PL (53). The presence of 5-MTHF and cobalamine enhanced the 

re-methylation of homocysteine to methionine (51). Therefore, if maternal 5-MTHF 

intake improves the foetal DHA status, and the foetal DHA is limited by placental 

transfer, 5-MTHF might be a factor that improves placental DHA transfer. According 

to the present data the additional intake of 5-MTHF did not have an influence on the 

incorporation of the n-3 fatty acids of the placental lipid fractions. Thus, 1) DHA trans-

fer is not influenced or 2) improved DHA transfer is independent of placental DHA 

content. 

 

4.2.2 Effects of n-3 LC-PUFA intake on placental NEFA, TG and CE fractions 

Serum TG and NEFA fatty acid profiles reflect the most recent dietary intake, 

whereas the fatty acid composition of serum PL and CE change more slowly and re-

flect the fatty acid compositions of the diet during the preceding weeks. (106). As de-

scribed above, the dietary fatty acid pattern of the pregnant women was reflected in 

n-3 LC-PUFA contents in placental PL. However, the placebo groups showed differ-

ences of the DHA content in NEFA and TG similar to PL. Although differences be-

tween the countries were not statistically significant, DHA content showed the same 

tendency. The proportions of DHA in NEFA, TG and CE varied more widely (1.9-

8.8%, 1.4-17.2% and 1.4-9.3%, respectively) than DHA in PL (3.1-8.1%). This could 

be related to the much larger PL pool compared with the other lipids fractions. Pla-

cental PL seem to reflect the fatty acid profile of the maternal diet over a longer time 

period, whereas the fatty acid composition of TG and NEFA are more dependent on 

the most recent diet. The DHA proportion in placental CE seemed to be independent 

from the recent dietary DHA intake of the mother. The maternal supplementation with 

n-3 LC-PUFA affected each placenta lipid fraction, which suggested a extensive ex-

change of fatty acids between the lipid fractions.  

The additional n-3 LC-PUFA uptake did not affect the total content of saturated fatty 

acids, but other n-3 and n-6 LC-PUFA, mainly n-6 DPA. This could be related to the 

preferential incorporation of saturated fatty acids at the sn-1 position of TG and PL, 

whereas unsaturated fatty acids are preferentially found at the sn-2 position (92). 
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Human and animal studies suggested that additional uptake of EPA decreased the 

AA contents of PL in different tissues, e.g. skeletal muscle, liver and placenta, as well 

as in maternal and foetal plasma (20;42;107;108). As described above, the low EPA 

concentration in the supplement did not significantly change the AA content of PL, as 

well as in NEFA, TG and CE, but a slightly negative correlation between AA and EPA 

was found in the placental PL and the CE fraction. However, our placental data did 

not document an effect of the low additional EPA concentration on the AA content in 

foetal plasma PL. For intervention studies it is of major interest not to change AA con-

tents in placental tissue, considering the importance of this LC-PUFA for foetal 

growth and development (5). 

 

4.2.3 Distribution of DHA and AA in placental tissue 

Differences in the fatty acid composition between lipid fractions resulted from differ-

ent incorporation rates from the NEFA pool into PL, TG and CE (31). A direct ex-

change of fatty acids between the esterified placental lipid fractions has not been 

previously described. Thus, if the NEFA pool was the fatty acid source, its composi-

tion should influence the composition of the other fractions. The AA contents corre-

lated between the NEFA and TG fraction, but not between NEFA and PL. This sug-

gested that mechanisms of AA incorporation into TG and PL were different. This was 

in agreement with a preferential incorporation of AA into the PL fraction, as described 

in the perfused placenta model (39). Furthermore, in BeWo cells AA was esterified 

mainly into PL (almost 60%), while less than 35% were found in the TG fraction (41). 

The latter study also reported that 60% of DHA was incorporated into TG and only 

37% were esterified into the PL fraction. This was in agreement with the observations 

that the DHA content in TG was closely related to the NEFA DHA content.  

The selective transfer for individual fatty acids by FABP and fatty acid translocase 

across the placenta has been suggested as one mechanism to achieve higher LC-

PUFA percentages in the foetal than in the maternal circulation (31;38). Mechanisms 

for a selective release of LC-PUFA to the foetal circulation are not known. In placen-

tal tissue AA and DHA were highly enriched in all lipid fractions relative to maternal 

and foetal plasma lipids (15). Take together, this suggested a preferential uptake 

rather than a preferential release, as mechanism for the selective LC-PUFA transfer 

across the placenta. Selectivity for the accumulation of AA and DHA might be impor-
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tant functions of placental tissue, to maintain a constant supply of the fetus with n-3 

and n-6 LC-PUFA. 

 

4.3 Intervention study: Western blot and Immunohistochemistry 

One of the important questions of this study was the potential effect of supplementa-

tion with n-3 LC-PUFA (DHA and EPA) and/or folic acid on proliferation and apop-

tosis of different cells in the human placenta. To address this, key proteins were se-

lected that reflect the extent of both processes as well as their regulators. PCNA is a 

well-known cell cycle marker.  In different studies PCNA has been shown to be a 

useful tool in evaluating the proportion of proliferating cells (109) and it is immunolo-

calised mainly in the nuclei of cytotrophoblast cells (57). Although the long half-life of 

about 20 hours may lead to absolute overestimations (57), this is unlikely to affect 

group comparisons. Interestingly, PCNA levels were only high in the mixed n-3 LC-

PUFA and 5-MTHF group, whereas the treatment with either n-3 LC-PUFA or 5-

MTHF had no effect. P53 levels were not changed in the combination group, thus it is 

unclear at present what might have caused the increase in PCNA levels in these 

group. Particularly, p53 is a master switch regulator in the cell and plays an important 

role as a cell cycle checkpoint protein, and in invasion and apoptosis. The protein is 

localised mainly in nuclei of extravillous trophoblasts, in low proportions also in cyto-

trophoblast and syncytiotrophoblast cells (110). The ratio of PCNA protein and p53 

decided the function of PCNA. If the ratio was low, DNA repair took place and if the 

ratio was high, DNA replications occurred (111). However, a high abundant appear-

ance of PCNA in the cell induces proliferation (111). Apoptotic cells were detected 

using an antibody for cytokeratin 18 neoepitope, this neoepitope is only formed by 

caspase activity when cells undergo apoptosis and immunolocalised by M30 antibody 

in cyto- and syncytiotrophoblast cells as well as in extravillous trophoblast cells 

(112;113). The detection of cytokeratin 18 neoepitope now is more reliable to identify 

apoptosis then the TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyu-

ridine triphosphate nick end labelling) method in placental tissue (112-114). In addi-

tion, this antibody for cytokeratin 18 neoepitope can be used in both immunohisto-

chemistry as well as in western blot (114), which was a criteria when choosing the 

method. 

It was shown that a high intake of fish oil, especially DHA, during pregnancy led to an 

elongation of pregnancy and an increase of birth weight (45). Therefore, we expected 
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that the proliferation rate in the placenta at the end of pregnancy must be enhanced. 

Our results demonstrated increased proliferation rates in women who have had an 

additional uptake of n-3 LC-PUFA and folic acid in combination, but not in women 

who supplemented either n-3 LC-PUFA or 5-MTHF. The enhanced proliferation was 

only related to trophoblastic cells, which was reflected in the total proportion, whereas 

endothel and other stromal cells were not affected. These findings are notable, be-

cause in fish oil supplementation studies enhanced DHA contents were measured in 

the foetal circulation (20). Thus, if the effect would depend on the additional intake of 

DHA, increased proliferation rates should also exist in endothel cells. Complemen-

tary, enhanced PCNA contents were found in third trimester trophoblasts of women, 

who smoked during gestation (115). It is unlikely that smoking have caused the 

changes seen here, because the distribution of the smokers in the four groups was 

not different (Χ2 = 0.680). The data suggested that the combination of folic acid and 

DHA plays an important role in this processes, but mechanism remained unclear. 

On the other hand, EPA inhibited cell proliferation while DHA increased apoptosis 

(116;117) and the influence of DHA and EPA on apoptosis seems to be mediated by 

different mechanism. While DHA effects on apoptosis are attributed mainly to its in-

corporation into the PL bilayer, EPA apoptotic effects are associated to TG of lipid 

bodies within the cell. Furthermore, controversially effects of DHA on the apoptosis 

rate are described in different tissues. Dietary supplementation increased apoptotic 

cell death in colonic and hepatocarcinoma cells (116;118), whereas other studies 

demonstrated inhibitory effects on apoptosis in neuronal and lymphoma cells 

(119;120). In the present study the higher DHA contents in membrane PL as well as 

the slightly enhanced DHA proportions in cytosolic TG and NEFA, had no effect on 

apoptosis rates in full term placentas.  

The uptake of high concentrations of DHA or low ratios of DHA to EPA (~1:1) de-

creased the concentration of arachidonic acid in plasma PL and TG (20;42;104). It 

was demonstrated that an increase of arachidonic acid in NEFA or altered arachi-

donic acid pools in individual membrane phospholipids induce apoptosis in different 

cell types (121). Here we found no effect of DHA and EPA on arachidonic acid con-

tents in placental lipid fractions analysed. The absence of such changes may explain 

the lack of effect on proliferation and apoptosis. 

In vitro studies indicated that folate deficiency induces apoptosis in human tro-

phoblastic cells, but there are no data available how folate supplementation in vivo 
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affects placental apoptosis and proliferation (122). The supplementation of folic acid 

did not alter apoptosis, reflecting well-known differences between the conditions in 

vivo and in vitro.  

 

4.4 Conclusion 

The evaluated method for placental tissue fatty acid analysis presented here shows a 

reasonable precision for the analysis of fatty acids in different lipid fraction of placen-

tal tissue. The good reproducibility of the absolute fatty acid concentrations offers 

opportunities for further investigations of time-dependent processes, placental trans-

fer functions and for the study of different nutritional and physiological factors.  

The additional intake of n-3 LC-PUFA enhanced the DHA and EPA contents in pla-

cental PL, NEFA, TG and CE, with no adverse effect on the AA content. Considering 

the importance of AA and DHA for foetal growth and development, women with a low 

intake of n-3 fatty acids could increase their DHA status in placenta with an additional 

intake of 500 mg DHA per day during the second half of pregnancy.  

Details of the placental transfer mechanisms remain to be elucidated, but it could be 

shown that fatty acids from the maternal circulation are reflected in placental PL, TG 

and NEFA fractions, and placental uptake seems to be more selective than release. 

The PL fraction (or total placental lipids) is best used for studying maternal dietary 

background. The supplementation with 5-MTHF did not affect the PL fatty acid pat-

tern in placenta.  

The effect of an additional intake of n-3 LC-PUFA and folic acid on placental apop-

tosis and proliferation remained unclear. No changes of proliferation were found if 

pregnant women were supplemented either with n-3 LC-PUFA or folic acid. Com-

bined administered n-3 LC-PUFA and 5-MTHF enhanced the proliferation rate in tro-

phoblast cells, but not in endothel cells or other stromal cells. In contrast, the apop-

tosis rates were not affected in all treatment groups, which indicated for the combined 

supplemented group a changed homeostasis. 
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5 Summary 

A controlled double-blind randomised clinical trial was accomplished, which com-

pared the effects of dietary supplementation with docosahexaenoic acid (DHA) 

and/or 5 methyl-tetrahydrofolate (5-MTHF) from week 20 of gestation until child birth 

in mothers from different countries and corresponding dietary differences. Women 

from Spain (n=100, high intake of sea fish, major DHA source), Germany (n=48, me-

dium intake) and Hungary (n=54, low intake) were enrolled in the study. The offered 

dietary supplement contained micronutrients according to European recommenda-

tions, but differed in their DHA and folate contents: a) 500 mg DHA per day, b) 400 

µg 5-MTHF / d c) 500 mg DHA + 400 µg 5-MTHF / d) control (0 g DHA, 0 mg 5-

MTHF). Placental tissue was collected at child birth and the fatty acid profiles of dif-

ferent lipid fractions, e.g. phospholipids (PL), nonesterified fatty acids (NEFA), 

triglycerides (TG), and cholesterolesters (CE), were analysed by gas chromatogra-

phy. Furthermore, in placentas of a Spanish subgroup, the apoptosis- and prolifera-

tion rates were determined using the antibodies against PCNA (proliferation cell nu-

cleus antigen), p53 (tumor suppressor gene) and cytokeratin 18 neoepitope (apop-

tosis marker). 

 

5.1  Method development for fatty acid analysis in placental tissue 
A critical point was to develop and evaluate a method for the determination of fatty 

acid concentrations in placental tissue. Lipids were extracted from placental tissue 

with a chloroform methanol mixture and PL, NEFA, TG, and CE were isolated by thin 

layer chromatography. Individual lipid fractions were derivatised with methanolic hy-

drochloric acid and the fatty acid methyl esters were quantified by gas chromatogra-

phy with flame ionisation detection.  

 

- The coefficient of variation (CV of intra-assay, n=8) of absolute concentrations 

were evaluated for fatty acids showing a tissue content > 0.01 mg/g. CV ranged 

from 4.6% – 11.0% for PL, 6.4% – 9.3% for NEFA, 6.1% - 8.9% for TG, and 

11.4% - 16.3% for CE.  

- The relative fatty acid composition across a term placenta indicated no differ-

ences between samples of central and peripheral locations of maternal and foetal 
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site (CVs 0.5% – 9.9%), whereas the absolute fatty acid concentrations were only 

reproducible in the PL fraction (CVs 7.0% – 12.8%).  

 

The method showed a reasonably high precision that was well suitable for physio-

logical and nutritional studies. 

 

5.2 Differences of the placental PL fatty acid profile between the centres 
It was hypothesised that differences in habitual diets in different parts of Europe in-

fluence the fatty acid content of placental phospholipids.  

 

- In the placebo groups, DHA proportions were similar in Germany and Spain 

(5.04±0.28% vs. 4.91±0.19%, respectively), but lower in Hungary (3.95±0.18%, 

p<0.05). The similarity between Germany and Spain could be related to large 

variations of daily fish consumption in the Spanish population, which not only de-

pend on geographical region, but also to socio-economical status. 

- Arachidonic acid (AA) contents in placental tissue did not differ significantly be-

tween the study populations, which is in agreement with some metabolic regula-

tion of the tissue AA content.  

 

Thus, the maternal intake of n-6 fatty acids seems not to influence the fatty acid pat-

tern in placental PL to the same extent as the n-3 fatty acids. 

 

5.3 Effect of the supplementation on the placental fatty acid profile 
It was hypothesised that the supplementation with n-3 fatty acids changes the fatty 

acid profile in placental lipid fractions.  

 

- In the total study population DHA contents were higher in placental PL, NEFA, TG 

and CE after n-3- LC-PUFA supplementation compared with the non-fish oil sup-

plemented group (5.88%±0.11 vs. 4.77%±0.10, 5.28%±0.15 vs. 4.12%±0.13, 

6.80%±0.33 vs. 4.64%±0.22, and 3.98%±0.14 vs. 3.00%±0.10, respectively, 

p<0.05).  

- Although the enhancement of n-3 LC-PUFA was shown in each placental lipid 

fraction, the PL fraction (or total placental lipids) are best used for studying mater-

nal dietary background. 
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- In placental tissue AA and DHA were highly accumulated in all lipid fractions rela-

tive to maternal and foetal plasma lipids.  

The results suggest that the placental uptake is more selective than release.  

 

5.4 Effect of the supplementation on the placental arachidonic acid content 

- AA percentages in placental phospholipids (Placebo: 22.2%±0.3; DHA: 

22.3%±0.3; 5-MTHF: 22.1%±0.2; Combined: 21.6%±0.3) were not significantly 

different between groups, whereas the EPA contents in the “fish-oil” groups 

(0.17%±0.01, 0.20%±0.02, DHA and combined, respectively) were higher 

(P<0.05) than in the “non-fish oil” groups (0.11%±0.01, 0.12%±0.01, Placebo and 

5-MTHF, respectively).  

- Negative correlations between the fatty acids were observed in phospholipids (r=-

0.263) and cholesterolesters (r=-0.262) but not in the other fractions.  

- In phospholipids an EPA increase of 0.1% was associated with a lowering of AA 

content by approximately 0.5%. 

 

N-3 fatty acid supplementation up to the tested dose seems not to interfere with AA 

dependent processes in the placenta and might be recommended. 

 

5.5 Determination of apoptosis and proliferation in placental tissue 
The effect of an additional intake of n-3 LC-PUFA and 5-MTHF on placental apop-

tosis and proliferation remained unclear. No changes of proliferation were found if 

pregnant women were supplemented either with n-3 LC-PUFA or 5-MTHF. Combined 

administered n-3 LC-PUFA and 5-MTHF enhanced the proliferation rate in tro-

phoblast cells (combined group 12.8%, placebo group 7.3%), but not in endothel 

cells or other stromal cells. In contrast, the apoptosis rates were not affected in all 

treatment groups, which indicated for the combined supplemented group a changed 

ratio between apoptosis and cell proliferation. 
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6 Zusammenfassung 

In einer in Spanien, Ungarn und Deutschland durchgeführten Interventionsstudie 

wurden Frauen während der zweiten Schwangerschaftshälfte mit Docosahexaensäu-

re (DHA) und/oder 5-Methyltetrahydrofolsäure (5-MTHF) supplementiert. Die zusätz-

lich zur täglichen Nahrung verabreichten Präparate enthielten jeweils die den europä-

ischen Empfehlungen entsprechenden Mikronährstoffe. Der Gehalt an DHA und 5-

MTHF war gruppenspezifisch unterschiedlich: 1) 500 mg DHA, 2) 400 µg 5-MTHF, 3) 

500 mg DHA + 400 µg 5-MTHF, 4) Placebo. Die Zuteilung der Schwangeren zu einer 

der vier Gruppen erfolgte randomisiert und doppelblind. 

Im Rahmen dieser Arbeit wurde in der Plazenta das Fettsäurenprofil in Phospholipi-

den (PL), nicht veresterten Fettsäuren (NEFA), Triglyzeriden (TG) und Cholestero-

lestern (CE) mittels Gaschromatographie analysiert. Darüber hinaus erfolgte bei ei-

nem Teil der spanischen Plazenten die Bestimmung der Apoptose- und Proliferati-

onsrate mittels Western Blot und Immunhistologie. 

 

6.1 Methodenentwicklung für die Bestimmung von Fettsäuren in Gewebe 
Die Entnahme des Probenmaterials aus der Plazenta erfolgte innerhalb von 10 Minu-

ten nach der Geburt (Zentrum, 0,3 g/Probe). Mittels Chloroform-Methanol-Gemisch 

(2:1 v/v + 5g/l Buthylhydroxytoluol) wurden die Lipide aus dem Gewebe extrahiert 

und durch Dünnschichtchromatographie in Phospholipide (PL), NEFA, TG und CE 

aufgetrennt. Die sich anschließende Umesterung der Lipidfraktionen zu leicht flüchti-

gen Fettsäuremethylestern (FAME) erfolgte säurekatalysiert in 3 M methanolischer 

HCl (45 min, 85°C). FAME mit einer Kettenlänge von 14-24 Kohlenstoffen wurden 

mittels Gaschromatographie quantifiziert. 

 

- Der Variationskoeffizient (VK) des Intra-Assays von Fettsäuren mit einer Konzent-

ration größer als 0,01 mg pro g Gewebe betrug in PL 4,6% - 11,0%, NEFA 6,4% - 

9,3%, TG 6,1% - 8,9% und CE 11,4% - 16,3% (n=8). 

- Die prozentuale Zusammensetzung des Fettsäurenmuster über die Plazenta 

(Zentrum, Randbereiche, mütterliche und foetale Seite, n=12) war in den unter-

suchten Lipidfraktionen einheitlich (VK 0,5% - 9,9%), während die einzelnen Fett-

säurekonzentrationen in NEFA (VK 8,0% - 13,4%), TG (6,1% - 27,9%) und CE 
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(10,7% - 42,1%) stark variierten und nur in den PL eine ausreichende Reprodu-

zierbarkeit erzielten (VK 5,7% - 12,8%). 

- Der Vergleich von Fettsäurekonzentration in NEFA, TG und CE zwischen ver-

schiedenen Plazenten erfordert eine definierte Stelle der Probenentnahme. Für 

die Bestimmung der Fettsäuren in PL oder in Gesamtlipiden spielt die Entnahme-

stelle keine Rolle. Die Methode zur Fettsäurebestimmung in plazentarem Gewebe 

erzielte in allen untersuchten Lipidfraktionen eine ausreichend hohe Präzision und 

ist für physiologische und ernährungsbezogene Studien anwendbar. 

 

6.2 Unterschiedliche Fettsäuremuster der Plazenten in Deutschland, Spanien 
 und Ungarn 
Es wurde vermutet, dass die unterschiedlichen Ernährungsgewohnheiten der einzel-

nen Länder das Fettsäuremuster der Plazenta Phospholipide beeinflusst.  

 

- In der mit Placebo behandelten Gruppe war der DHA Gehalt in den Plazenten der 

ungarischen Mütter wesentlich niedriger (3,95%±0,18, p<0,05) als der der deut-

schen und spanischen Mütter (5,04%±0,28% vs. 4,91±0,19%). Dies stand im Ge-

gensatz zur ursprünglichen Überlegung, dass die DHA-Aufnahme über die Nah-

rung in Spanien gegenüber Deutschland erhöht ist. Die Beobachtungen dieser 

Studie sind vermutlich auf die in Spanien gewöhnlich großen regionalen Unter-

schiede im Fischkonsum als auch auf den sozio-ökonomischen Status zurückzu-

führen. 

- Der prozentuale Anteil der Arachidonsäure (AA) in den Plazenta Phospholipiden 

unterschied sich im Mittel nicht zwischen den einzelnen Zentren.  

- Die Aufnahme von langkettigen n-6 Fettsäuren mit der mütterlichen Nahrung be-

einflusst das Fettsäurenprofil der Plazenta nicht im gleichen Umfang wie das der 

langkettigen n-3 Fettsäuren. 

 

6.3 Einfluss der Supplementation auf das Fettsäurenprofil der Plazenta 
Es wurde überprüft, welchen Einfluss die Supplementation auf die Fettsäurenmuster 

der einzelnen Lipidfraktionen hat. Dafür sind die Mütter, die das modifizierte Fischöl 

einnahmen, zu einer Gruppe zusammengefasst worden. Die Kontrollgruppe bekam 

die Folsäure und Placebo Präparate. 
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- Nach der Intervention stieg der DHA Gehalt der mit n-3 Fettsäuren supplementier-

ten Gruppe gegenüber der Kontrollgruppe an (PL 5.88%±0.11 vs. 4.77%±0.10, 

NEFA 5.28%±0.15 vs. 4.12%±0.13, TG 6.80%±0.33 vs. 4.64%±0.22, and CE 

3.98%±0.14 vs. 3.00%±0.10, p<0.05). 

- Für die Untersuchung nahrungsbedingter Einflüsse auf das Fettsäuremuster der 

Plazenta eignen sich Phospholipide (bzw. der Gesamtlipidgehalt) aufgrund des 

hohen Anteils am Gesamtlipidgehalt am besten. 

- AA und DHA werden gegenüber dem mütterlichen und dem foetal Kreislauf stark 

angereichert, was in Bezug auf den Transfer eher auf eine selektive Aufnahme 

als auf eine selektive Abgabe an bestimmten Fettsäuren schließen lässt. 

 

6.4 Der Einfluss der Supplementierung auf den Arachidonsäure Gehalt in der 
 Plazenta 
- Die prozentualen Anteile der Arachidonsäure in den Phospholipiden zwischen 

den Gruppen (Placebo: 22,2%±0,3; n-3 LC-PUFA: 22,3%±0,3; 5-MTHF: 

22,1%±0,2; Kombinierte Gruppe: 21,6%±0,3; mean±SEM) waren nicht signifikant 

unterschiedlich, während die Eicosapentaensäure Gehalte der kombinierten 

Gruppe (0,20%±0,02) und der DHA Gruppe (0,17%±0,01) höher (P<0,05) als die 

der 5-MTHF Gruppe (0,12%±0,01) und Placebo Gruppe (0,11%±0,01) waren.  

- Eine negative Korrelation zwischen Arachidonsäure und Eicosapentaensäure 

wurde in den Phospholipiden (r= -0,263) und den Cholesterolestern (r= -0,262) 

berechnet, während die beiden Fettsäuren in den anderen Lipidfraktionen nicht 

miteinander korrelierten.  

- Eine Erhöhung der Eicosapentaensäure um 0,1 % in den Phospholipiden ernied-

rigte den Arachidonsäure Gehalt um etwa 0,5%. 

- Die Studie zeigt, dass während der Schwangerschaft eine tägliche Aufnahme von 

etwa 150 mg EPA zwischen den Gruppen keinen Unterschied im AA Gehalt in 

den Phospholipiden der Plazenta bewirkt, obwohl eine negative Korrelation zwi-

schen den Anteilen der beiden Fettsäuren aufgezeigt werden konnte. Der Einfluss 

der verabreichten EPA Dosis auf den AA Gehalt, und damit auf AA abhängige 

Prozesse, scheint klein zu sein 
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6.5 Bestimmung der Apoptose und Proliferationsrate in Plazentagewebe 
- Die Proliferationsrate der Trophoblasten wird durch die kombinierte Gabe von n-3 

Fettsäuren und 5-MTHF gesteigert (12,8% vs. 7,3%), während Endothelzellen 

und Stromazellen nicht beeinflußt waren.  

- Es konnte keine veränderte Apoptoserate nachgewiesen werden 

- Einflüsse auf Apoptose- und Proliferationsvorgänge in der Plazenta durch die zu-

sätzliche DHA und Folsäure Einnahme während der Schwangerschaft bleiben 

zum jetzigen Zeitpunkt ungeklärt. 
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9 Attachment 

9.1 Figures 

 
Figure 9.1: Western blot: flow sheet of the membrane treatment 
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Figure 9.2: Flow sheet for immunohistochemistry 
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Figure 9.3: Proportions of DHA and EPA (% w/w) in placental tissue PL, TG and NEFA. The groups 
were supplemented either with placebo (n=12), n-3 LC-PUFA / 5-MTHF (n=11), n-3 LC-PUFA (n=16) 
or 5-MTHF (n=15). (*p<0.05). 
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9.2 Tables 

Table 9.1: Fatty acid content of the placental NEFA pool 4.5 min (t1) vs. 44.5 min (t2) after delivery (% 
w/w). Paired t-test was used to determine differences between the time points (n=4, *p<0.05). 

 

 

 

mean ± SD mean ± SD

C14:0 0.89 ± 0.12 0.79 ± 0.17
C16:0 40.92 ± 5.96 36.62 ± 3.61
C18:0 17.23 ± 2.43 16.34 ± 1.83
C20:0 0.81 ± 0.28 0.64 ± 0.06
C22:0 2.98 ± 0.63 2.13 ± 0.21
C24:0 2.02 ± 0.52 1.53 ± 0.37*

C16:1n-7 0.76 ± 0.26 0.78 ± 0.21
C18:1n-9 8.51 ± 2.03 9.25 ± 1.50
C18:1n-7 1.11 ± 0.30 1.22 ± 0.24*
C20:1n-9 0.18 ± 0.08 0.23 ± 0.05
C24:1n-9 0.59 ± 0.19 0.54 ± 0.15

C18:1 t 0.20 ± 0.10 0.23 ± 0.06

C20:3n-9 0.13 ± 0.06 0.17 ± 0.06

C18:2n-6 6.05 ± 0.80 7.16 ± 0.38*
C18:3n-6 0.74 ± 0.82 0.58 ± 0.56
C20:3n-6 2.77 ± 0.88 3.74 ± 1.03
C20:4-n6 9.91 ± 3.29 12.75 ± 2.05
C22:4n-6 0.66 ± 0.29 0.80 ± 0.09
C22:5n-6 0.48 ± 0.16 0.58 ± 0.07

C18:3n-3 0.12 ± 0.05 0.14 ± 0.03
C20:5n-3 0.17 ± 0.08 0.27 ± 0.09
C22:5n-3 0.30 ± 0.21 0.43 ± 0.13
C22:6n-3 1.94 ± 0.80 2.58 ± 0.82

Trans fatty acids

n-9 PUFA

n-6 PUFA

n-3 PUFA

t1 t2

Saturated fatty acids

Monounsaturated fatty acids
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Table 9.2: Variations of selected fatty acids within different placenta locations in two placentas (CV in %) 

 

 

 

fatty acid PL NEFA TG CE PL NEFA TG CE

C16:0 7,0 12,2 25,0 31,5 0,5 3,9 5,9 6,6
C18:0 7,1 10,0 17,3 31,0 2,7 3,4 6,9 14,1
C18:1n-9 7,1 10,3 25,1 37,7 1,7 4,3 5,3 1,8
C18:2n-6 7,2 10,4 27,9 42,1 1,8 4,0 7,6 7,5
C18:3n-6 26,6 n.d n.d n.d 23,5 n.d n.d n.d
C20:4n-6 7,4 13,4 21,1 35,8 1,3 4,5 5,8 8,7
C22:5n-6 8,3 8,3 12,8 31,7 4,9 6,1 18,9 19,6
C18:3n-3 15,4 n.d n.d n.d 15,7 n.d n.d n.d
C20:5n-3 16,0 n.d n.d n.d 11,2 n.d n.d n.d
C22:5n-3 9,3 14,5 20,9 n.d 5,0 10,1 12,7 n.d
C22:6n-3 12,8 11,6 15,9 40,4 9,1 11,7 20,8 9,1

fatty acid PL NEFA TG CE PL NEFA TG CE
C16:0 5,7 8,0 6,3 11,4 1,6 2,7 4,0 8,7
C18:0 5,6 8,2 10,4 23,6 1,9 3,5 4,3 17,2
C18:1n-9 5,9 11,3 6,1 13,4 3,4 4,9 5,8 9,3
C18:2n-6 6,9 12,9 7,7 10,7 1,8 5,5 2,8 9,9
C18:3n-6 11,0 n.d n.d n.d 11,1 n.d n.d n.d
C20:4n-6 9,0 13,0 12,7 14,0 3,2 4,7 7,4 8,5
C22:5n-6 6,3 17,7 11,4 23,6 5,8 10,0 8,3 19,1
C18:3n-3 15,1 n.d n.d n.d 10,4 n.d n.d n.d
C20:5n-3 14,3 n.d n.d n.d 10,1 n.d n.d n.d
C22:5n-3 8,6 16,0 20,1 n.d 5,1 9,6 14,9 n.d
C22:6n-3 9,0 16,2 18,2 17,5 5,6 8,5 14,4 14,2

Bold data show the coefficient of variation of concentrations < 0.010 mg/g. n.d: concentrations < 0.001 mg/g not detected

* The total fatty acid content of one sample differed more than four standard deviations from the mean and therefore was considered an outlier 
  and excluded from the results.

Placenta 1 (n=12):

Placenta 2 (n=11):

coefficient of variation of the fatty acid concentration coefficient of variation of the fatty acid composition

PL: phospholipids, NEFA: non-esterified fatty acids, TG: triglycerides, CE: cholesterol esters

coefficient of variation of the fatty acid concentration coefficient of variation of the fatty acid composition
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Table 9.3: Intra-Assay (n=8) Reproducibility of Fatty Acid Concentrations of Placental Phospholipids, 
Non-esterified Fatty Acids, Triglycerides and Cholesterolesters (mg/g) 

 
fatty acids  PL  NEFA  TG  CE 

    mean  CV  mean CV mean CV  mean  CV

Saturated fatty acids        

 C14:0  0.031  6.9  0.003 10.6 0.004 5.6  0.004  19.2
 C16:0  1.728  5.3  0.102 7.5 0.075 6.5  0.038  15.5
 C18:0  0.771  5.3  0.064 6.4 0.031 7.4  0.008  29.7
 C20:0  0.023  9.1  0.002 16.3 n.d   n.d   
 C22:0  0.089  4.9  0.003 10.2 n.d   n.d   
 C24:0  0.121  5.8  0.004 13.8 n.d   n.d   
              

Monounsaturated fatty acids* 
 C16:1n-7  0.028  4.9  0.004 6.4 0.004 7.0  0.007  8.8
 C18:1n-7  0.100  5.0  0.007 7.2 0.005 8.4  0.004  21.7
 C18:1n-9  0.523  4.8  0.051 6.5 0.045 8.5  0.042  16.3
 C20:1n-9  0.015  6.3  0.001 8.1 n.d   n.d   
 C24:1n-9  0.089  7.1  0.003 12.1 n.d  n.d   
               

n-9 PUFA               
 C20:3n-9  0.013  11.0  0.001 9.4  n.d  n.d   
                 

n-6 PUFA               
 C18:2n-6  0.500  4.6  0.033 6.4 0.026 6.7  0.078  11.4
 C18:3n-6  0.005  16.9  0.001 9.8 0.001 7.3  0.002  8.9
 C20:3n-6  0.309  5.9  0.019 9.3 0.017 6.1  0.006  25.6
 C20:4n-6  1.591  5.9  0.088 8.0 0.042 8.9  0.023  12.4
 C22:5n-6  0.062  5.4  0.004 9.5 0.003 10.5  0.001  14.9
                 

n-3 PUFA               
 C18:3n-3  0.003  14.4  0.001 9.3 0.001 7.8  0.001  16.6
 C20:5n-3  0.007  6.3  0.002 7.6 0.001 8.4  0.001  16.2
 C22:5n-3  0.053  5.8  0.003 9.7 0.003 7.3  n.d   
 C22:6n-3  0.301  7.4  0.017 13.9 0.012 7.0  0.005  21.9

 
*Erucic acid (C22:1n-9) content is not reported because of the coelution with an unidentified peak. 
n.d: concentrations < 0.001 mg/g not determined 
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Table 9.4: Intra-Assay (n=8) Reproducibility of the Fatty Acid Composition of Placental Phospholipids 
Non-esterified Fatty Acids, Triglycerides and Cholesterolesters (% w/w) 

 
fatty acids  PL    NEFA   TG   CE   

    mean  CV  mean CV mean CV  mean  CV

Saturated fatty acids             
 C14:0  0.48  7.0  0.77 8.0 1.47 8.2  1.71  8.8
 C16:0  27.10  0.4  24.67 2.3 26.97 1.8  17.02  2.0
 C18:0  12.10  2.4  15.45 3.1 11.28 3.0  3.58  17.6
 C20:0  0.35  10.5  0.40 14.9 n.d   n.d   
 C22:0  1.39  2.7  0.81 7.0 n.d   n.d   
 C24:0  1.90  4.1  0.91 9.3 n.d   n.d   

           

Monounsaturated fatty acids*           
 C16:1n-7  0.43  4.8  0.86 3.4 1.34 3.6  3.34  7.5
 C18:1n-7  1.58  1.1  1.59 1.2 1.93 2.4  1.65  8.9
 C18:1n-9  8.21  2.3  12.30 2.2 16.26 3.0  18.87  2.7
 C20:1n-9  0.24  6.4  0.34 3.2 n.d   n.d   
 C24:1n-9  1.39  7.0  0.66 7.7 n.d  n.d   

           

n-9 PUFA            
 C20:3n-9  0.20  8.8  0.29 10.4  n.d  n.d   

           

n-6 PUFA            
 C18:2n-6  7.84  1.9  8.00 2.2  9.30 5.3  35.23  5.1
 C18:3n-6  0.07  14.2  0.10 7.4  0.20 7.5  0.69  6.4
 C20:3n-6  4.85  2.1  4.64 4.9  6.18 4.9  2.60  13.3
 C20:4n-6  24.96  2.7  21.32 2.3  15.22 4.5  10.56  4.5
 C22:5n-6  0.98  4.3  0.92 5.9  1.22 6.5  0.64  9.1

           

n-3 PUFA             
 C18:3n-3  0.04  13.2  0.22 11.7  0.30 7.7  0.54  3.7
 C20:5n-3  0.11  8.3  0.41 6.5  0.27 4.5  0.45  4.7
 C22:5n-3  0.83  3.3  0.77 4.8  1.02 4.2  n.d   
 C22:6n-3  4.72  5.5  3.99 10.7  4.50 9.0  2.08  11.3

 
*Erucic acid (C22:1n-9) content is not reported because of the coelution with an unidentified peak. 
n.d: concentrations < 0.001 mg/g not determined 
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Table 9.5: Inter-Assay (n=8) of the Fatty Acid Content in Placental Tissue Expressed as Coefficient of Variation (CV in %) 

   CV of the absolute fatty acid concentration  CV of the relative fatty acid composition 
fatty acid  PL  NEFA  TG  CE   PL  NEFA  TG  CE 
saturated fatty acids 
C14:0   7.5  10.6  14.3  16.4  10.9  20.4  20.4  12.8 
C16:0   4.6  17.4  13.7  8.0  1.8  6.3  12.4  3.6 
C18:0   5.4  18.7  22.4  12.9  1.7  4.4  6.5  14.0 
C20:0   13.5  10.7  n.d  n.d  14.3  14.4  n.d  n.d 
C22:0   7.6  14.1  n.d  n.d  7.2  16.3  n.d  n.d 
C24:0   8.2  26.1  n.d  n.d  11.6  20.4  n.d  n.d 
Monounsaturated fatty acids 

C16:1n-7   6.5  36.3  18.0  16.9  8.5  20.6  31.9  14.3 
C18:1n-7   6.2  31.0  16.9  14.1  5.3  10.4  11.2  10.4 
C18:1n-9   5.5  26.6  16.8  13.8  4.4  5.9  5.4  4.4 
C20:1n-9   5.2  27.7  n.d  n.d  6.0  9.6  n.d  n.d 
C24:1n-9   10.2  33.1  n.d  n.d  12.8  21.3  n.d  n.d 
n-9 PUFA 
C20:3n-9   14.3  n.d  n.d  n.d  12.7  n.d  n.d  n.d 
n-6 PUFA 
C18:2n-6   6.2  28.2  21.7  9.7  3.0  8.5  4.7  2.5 
C18:3n-6   10.2  n.d  n.d  n.d  11.1  n.d  n.d  n.d 
C20:3n-6   12.0  36.1  30.5  14.0  12.8  15.4  16.5  12.3 
C20:4n-6   9.5  31.2  30.5  13.8  5.3  12.1  12.3  7.4 
C22:5n-6   12.9  30.2  36.9  17.9  9.8  15.9  24.3  17.3 
n-3 PUFA 
C18:3n-3   13.5  n.d  n.d  n.d  13.2  n.d  n.d  n.d 
C20:5n-3   11.5  34.1  35.0  31.3  7.0  19.6  24.1  23.1 
C22:5n-3   10.4  33.9  35.8  15.8  10.1  19.2  19.2  18.2 
C22:6n-3   9.0  32.9  35.4  12.9  5.0  13.5  20.8  6.7 
 

Bold data show the coefficient of variation of concentrations < 0.01 mg/g. n.d: concentrations < 0.001 mg/g not detected 
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Table 9.6: Inter-assay (n=23) of fatty acids during the study period expressed as coefficient of varia-
tion (CV in %) 

 

Bold data show the coefficient of variation of concentrations < 0.01 mg/g. n.d: concentrations  

< 0.001 mg/g not detected  

PL NEFA TG CE

C14:0 6,9 6,9 12,9 8,9
C16:0 1,2 10,7 5,5 10,6
C17:0 5,2 17,4 n.d n.d
C18:0 5,2 4,4 7,3 19,0
C20:0 10,7 23,8 n.d n.d
C22:0 13,2 30,5 n.d n.d
C24:0 6,4 19,3 n.d n.d

C16:1n-7 4,0 28,8 13,1 7,4
C18:1n-9 3,2 7,6 10,0 5,4
C18:1n-7 9,1 5,6 5,5 13,8
C20:1n-9 9,2 10,9 n.d n.d
C22:1n-9 11,3 n.d n.d n.d
C24:1n-9 14,8 18,8 n.d n.d

C18:1 t 13,2 n.d n.d n.d

C20:3n-9 8,2 n.d n.d n.d

C18:2n-6 2,8 6,3 6,4 7,5
C18:3n-6 12,0 n.d n.d n.d
C20:2n-6 8,8 8,3 n.d n.d
C20:3n-6 6,0 7,3 14,8 13,1
C20:4n-6 2,1 7,3 11,6 8,2
C22:2n-6 28,1 n.d n.d n.d
C22:5n-6 14,0 9,1 19,1 17,4

C18:3n-3 14,3 15,9 20,6 14,9
C18:4n-3 38,4 n.d n.d n.d
C20:3-n3 12,3 n.d n.d n.d
C20:5n-3 12,2 29,8 39,8 25,8
C22:5n-3 5,9 10,3 18,6 29,5
C22:6n-3 4,7 8,7 16,5 16,4

CV of the relative fatty aicd composition

n-3 PUFA

n-6 PUFA

n-9 PUFA

Trans fatty acids

Monounsaturated fatty acids

Saturated fatty acids
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Table 9.7: Fatty acid composition of phospholipids in term placenta of women in Germany, Spain and 
Hungary not receiving n-3 LC-PUFA or 5-MTHF supplement (% w/w, mean ± SEM). Identical super-
scripts indicate significant differences between populations. P < 0.05. (PUFA: polyunsaturated fatty 
acids). 

 

N

Saturated fatty acids
14:0 0,44 ± 0,02a 0,32 ± 0,01a,c 0,38 ± 0,02c

16:0 25,10 ± 0,16 25,35 ± 0,17 25,51 ± 0,18
17:0 0,33 ± 0,02 0,32 ± 0,01 0,29 ± 0,01
18:0 12,47 ± 0,25a 13,05 ± 0,18a 12,85 ± 0,13
20:0 0,30 ± 0,01 0,32 ± 0,02 0,29 ± 0,02
22:0 1,59 ± 0,04 1,62 ± 0,04 1,49 ± 0,06
24:0 0,75 ± 0,03 0,61 ± 0,02 0,60 ± 0,03
TOTAL 40,98 ± 0,22 41,59 ± 0,27 41,41 ± 0,26

Monounsaturated fatty acids
16:1n-7 0,56 ± 0,04a 0,38 ± 0,02a 0,47 ± 0,03
18:1n-9 8,16 ± 0,13 8,27 ± 0,18 7,56 ± 0,19
18:1n-7 1,65 ± 0,07 1,55 ± 0,03c 1,74 ± 0,04c

20:1n-9 0,17 ± 0,01 0,18 ± 0,01 0,15 ± 0,01
22:1n-9 0,09 ± 0,00 0,10 ± 0,00 0,09 ± 0,01
24:1n-9 1,37 ± 0,04 1,51 ± 0,06 1,31 ± 0,07
TOTAL 12,01 ± 0,22 11,98 ± 0,22 11,32 ± 0,30

Trans fatty acids
18:1 t 0,18 ± 0,02 0,14 ± 0,01 0,18 ± 0,01

n-9 PUFA
20:3n-9 0,21 ± 0,01 0,18 ± 0,01 0,16 ± 0,01

n-6 PUFA
18:2n-6 8,61 ± 0,33 9,25 ± 0,24 9,14 ± 0,38
18:3n-6 0,09 ± 0,00 0,09 ± 0,00 0,09 ± 0,00
20:2n-6 0,36 ± 0,01a,b 0,45 ± 0,01a 0,41 ± 0,02b

20:3n-6 5,52 ± 0,25 5,06 ± 0,15 5,29 ± 0,28
20:4n-6 22,10 ± 0,40 21,40 ± 0,25 22,90 ± 0,35
22:2n-6 0,05 ± 0,02 0,05 ± 0,00 0,05 ± 0,00
22:5n-6 1,96 ± 0,07 2,03 ± 0,06 1,70 ± 0,08
TOTAL n-6 38,68 ± 0,42 38,33 ± 0,25c 39,58 ± 0,38c

n-3 PUFA
18:3n-3 0,03 ± 0,00 0,02 ± 0,00 0,02 ± 0,00
18:4n-3 0,01 ± 0,00a 0,04 ± 0,00a,c 0,01 ± 0,00c

20:3n-3 0,15 ± 0,01b 0,14 ± 0,00 0,12 ± 0,01b

20:5n-3 0,14 ± 0,01b 0,11 ± 0,01 0,06 ± 0,01b

22:5n-3 1,01 ± 0,05 0,98 ± 0,06 0,75 ± 0,03
22:6n-3 5,04 ± 0,28b 4,91 ± 0,19c 3,94 ± 0,18b,c

TOTAL n-3 6,38 ± 0,29b 6,20 ± 0,21c 4,91 ± 0,18b,c

n-6/n-3 6,1 ± 0,4b 6,2 ± 0,2c 8,1 ± 0,4b,c

15 26 13

Germany Spain Hungary
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Table 9.8: Comparison of the fatty acid profiles of placental PL between the supplementation groups 
without differentiation according to the country of origin (% w/w, mean ± SEM). Individual groups were 
supplemented with a placebo or n-3 LC-PUFA or 5-MTHF or n-3 LC-PUFA and 5-MTHF. Identical 
superscripts indicate significant differences between the supplemental groups. P < 0.05. Total satu-
rated fatty acids (SFA) represent the sum of: C14:0, C16:0, C17:0, C18:0, C20:0, C22:0 and C24:0. 
Total monounsaturated fatty acids (MUFA): C16:1, C18:1, C20:1, C22:1, C22:0 and C24:1. 

 

 

 

N

C18:1 t 0,15 ± 0,01 0,15 ± 0,01 0,15 ± 0,01 0,15 ± 0,01
C18:2n-6 (LA) 8,92 ± 0,21 9,20 ± 0,16 8,99 ± 0,16 9,08 ± 0,15
C18:3n-3 (ALA) 0,02 ± 0,00 0,02 ± 0,00 0,03 ± 0,00 0,02 ± 0,00
C18:3n-6 0,09 ± 0,00 0,08 ± 0,00 0,09 ± 0,00 0,09 ± 0,00
C18:4n-3 0,03 ± 0,00 0,02 ± 0,00 0,03 ± 0,00 0,02 ± 0,00
C20:2n-6 0,41 ± 0,01 0,42 ± 0,01 0,40 ± 0,01 0,42 ± 0,01
C20:3n-9 0,18 ± 0,01 0,16 ± 0,01 0,17 ± 0,01 0,17 ± 0,00
C20:3n-6 (DGLA) 5,24 ± 0,12 4,92 ± 0,11 4,95 ± 0,11 5,23 ± 0,15
C20:4n-6 (AA) 22,20 ± 0,27 21,57 ± 0,23 22,26 ± 0,26 22,14 ± 0,23
C20:3n-3 0,14 ± 0,00 0,14 ± 0,00 0,14 ± 0,00 0,14 ± 0,00
C20:5n-3 (EPA) 0,11 ± 0,01a,b 0,20 ± 0,02a,c 0,17 ± 0,01b,d 0,12 ± 0,01c,d

C22:2n-6 0,05 ± 0,00 0,04 ± 0,00 0,04 ± 0,00 0,05 ± 0,00
C22:5n-6 (DPA) 1,17 ± 0,08a,b 0,83 ± 0,08a 0,78 ± 0,05b,d 1,05 ± 0,05d

C22:5n-3 (DPA) 0,64 ± 0,02 0,69 ± 0,03 0,68 ± 0,02 0,71 ± 0,02
C22:6n-3 (DHA) 4,73 ± 0,14a,b 6,02 ± 0,16a,c 5,77 ± 0,15b,d 4,81 ± 0,13c,d

SUM SFA 41,86 ± 0,16 41,90 ± 0,22 41,44 ± 0,18 41,87 ± 0,21
SUM MUFA 11,74 ± 0,16 11,36 ± 0,15 11,41 ± 0,13 11,58 ± 0,14
SUM n-6 38,08 ± 0,20 37,06 ± 0,25 37,51 ± 0,23 38,06 ± 0,24
SUM n-3 5,66 ± 0,15a,b 7,10 ± 0,18a,c 6,81 ± 0,16b,d 5,76 ± 0,15c,d

n-6/n-3 ratio 6,7 ± 0,2a,b 5,2 ± 0,2a,c 5,5 ± 0,2b,d 6,6 ± 0,2c,d

18:2n-6/18:3n-3 420,5 ± 18,2 411,5 ± 18,3 389,0 ± 15,5 419,9 ± 20,1
20:4n-6/20:3n-6 4,4 ± 0,1 4,5 ± 0,1 4,6 ± 0,1 4,4 ± 0,1
22:6n-3/20:5n-3 57,5 ± 4,3 42,5 ± 4,3 45,4 ± 4,7 57,7 ± 5,1
20:4n-6/20:5n-3 295,7 ± 28,6a 162,9 ± 33,2a,c 194,1 ± 30,0 295,2 ± 19,2c

20:4n-6/22:6n-3 4,9 ± 0,2a,b 3,7 ± 0,1a,c 4,0 ± 0,1b,d 4,8 ± 0,2c,d

5-MTHF

Supplement

Placebo

53

n-3 LC-PUFA / n-3 LC-PUFA

54 43 52

5-MTHF
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Table 9.9: Fatty acid profiles of placental lipid fractions in Germany, Spain and Hungary (% w/w, mean 
± SEM). T-test was used to determine differences between placebo and n-3 LC-PUFA supplementa-
tion for each centre, respectively (*p<0.05). Total saturated fatty acids (SFA) represent the sum of: 
C14:0, C16:0, C17:0, C18:0, C20:0, C22:0 and C24:0. Total monounsaturated fatty acids (MUFA): 
C16:1, C18:1, C20:1, C22:1, C22:0 and C24:1. Total of n-6 poly unsaturated fatty acids (PUFA) was 
calculated with C18:2n-6; C18:3n-6, C20:3n-6, C20:4n-6, C20:5n-6 and 22:2n-6, total of n-3 PUFA 
with C18:3n-3, C18:4n-3, C20:3n-3, C20:5n-3, C22:5n-3 and C22:6n-3. 

 

N

C18:2n-6 8,27 ± 0,34 8,66 ± 0,19 9,28 ± 0,16 9,23 ± 0,17 9,07 ± 0,21 9,23 ± 0,23
C18:3n-6 0,09 ± 0,00 0,08 ± 0,00 0,09 ± 0,00 0,09 ± 0,00 0,09 ± 0,00 0,09 ± 0,00
C20:3n-6 5,46 ± 0,21 5,08 ± 0,14 5,12 ± 0,12 4,81 ± 0,12 5,27 ± 0,21 5,02 ± 0,13
C20:4n-6 22,12 ± 0,56 21,64 ± 0,34 21,73 ± 0,19 21,61 ± 0,21 23,03 ± 0,24 22,86 ± 0,42
C22:5n-6 1,15 ± 0,14 0,91 ± 0,12 0,94 ± 0,04 0,65 ± 0,03* 1,40 ± 0,05 0,98 ± 0,10*
C18:3n-3 0,03 ± 0,00 0,03 ± 0,00 0,02 ± 0,00 0,02 ± 0,00 0,02 ± 0,00 0,02 ± 0,00
C20:5n-3 0,16 ± 0,01 0,22 ± 0,02* 0,11 ± 0,01 0,19 ± 0,01* 0,07 ± 0,01 0,13 ± 0,02*
C22:5n-3 0,77 ± 0,03 0,81 ± 0,03 0,61 ± 0,01 0,66 ± 0,02 0,61 ± 0,02 0,62 ± 0,02
C22:6n-3 5,11 ± 0,21 6,16 ± 0,19* 4,94 ± 0,13 5,70 ± 0,17* 4,17 ± 0,16 5,96 ± 0,21*

total SFA 41,89 ± 0,43 41,57 ± 0,32 41,75 ± 0,17 41,87 ± 0,20 42,05 ± 0,15 41,03 ± 0,23
total MUFA 11,81 ± 0,21 11,56 ± 0,17 11,85 ± 0,15 11,63 ± 0,15 11,19 ± 0,19 10,77 ± 0,17
total n-6 PUFA 38,21 ± 0,46 37,77 ± 0,33 38,68 ± 0,17 38,11 ± 0,25 39,67 ± 0,21 39,27 ± 0,29
total n-3 PUFA 6,23 ± 0,22 7,37 ± 0,19* 5,86 ± 0,14 6,75 ± 0,18* 5,01 ± 0,17 6,88 ± 0,22*

n-6 / n-3 6,32 ± 0,25 5,21 ± 0,16* 6,80 ± 0,16 5,87 ± 0,20* 8,15 ± 0,25 5,88 ± 0,23*
PUFA / SFA 1,07 ± 0,02 1,09 ± 0,01 1,07 ± 0,01 1,08 ± 0,01 1,07 ± 0,02 1,12 ± 0,02
AA / DHA 4,48 ± 0,20 3,59 ± 0,13* 4,57 ± 0,13 3,98 ± 0,15* 5,72 ± 0,19 4,00 ± 0,20*

total (mg/g) 6,41 ± 0,25 7,33 ± 0,30 7,41 ± 0,14 7,21 ± 0,17 8,07 ± 0,16 7,96 ± 0,13

N

C18:2n-6 7,93 ± 0,46 8,11 ± 0,38 9,93 ± 0,22 9,89 ± 0,21 8,80 ± 0,23 8,45 ± 0,28
C18:3n-6 0,11 ± 0,01 0,11 ± 0,02 0,14 ± 0,01 0,14 ± 0,01 0,10 ± 0,00 0,09 ± 0,01
C20:3n-6 4,99 ± 0,51 4,32 ± 0,20 4,99 ± 0,18 5,15 ± 0,19 5,01 ± 0,24 4,14 ± 0,20
C20:4n-6 16,89 ± 0,91 17,66 ± 0,88 18,97 ± 0,41 19,69 ± 0,39 19,55 ± 0,52 17,34 ± 0,61*
C22:5n-6 0,77 ± 0,07 0,69 ± 0,12 0,83 ± 0,06 0,64 ± 0,03* 1,32 ± 0,06 0,74 ± 0,06*
C18:3n-3 0,12 ± 0,01 0,13 ± 0,01 0,09 ± 0,00 0,09 ± 0,00 0,10 ± 0,01 0,10 ± 0,01
C20:5n-3 0,28 ± 0,03 0,59 ± 0,09* 0,35 ± 0,03 0,45 ± 0,03* 0,20 ± 0,02 0,33 ± 0,04*
C22:5n-3 0,66 ± 0,06 0,72 ± 0,05 0,48 ± 0,02 0,60 ± 0,02* 0,54 ± 0,04 0,53 ± 0,03
C22:6n-3 4,13 ± 0,28 4,93 ± 0,30* 4,27 ± 0,19 5,60 ± 0,22* 3,86 ± 0,25 5,02 ± 0,26*

total SFA 45,79 ± 1,41 45,04 ± 1,16 42,82 ± 0,86 40,84 ± 0,83 43,84 ± 0,80 44,82 ± 0,98
total MUFA 15,09 ± 1,06 14,82 ± 0,89 14,32 ± 0,33 14,22 ± 0,31 14,39 ± 0,77 15,84 ± 1,41
total n-6 PUFA 32,05 ± 1,54 32,10 ± 1,28 35,89 ± 0,61 36,64 ± 0,58 34,99 ± 0,62 31,67 ± 0,82*
total n-3 PUFA 5,39 ± 0,35 6,51 ± 0,39* 5,40 ± 0,21 6,83 ± 0,25* 4,82 ± 0,28 6,07 ± 0,31*

n-6 / n-3 6,29 ± 0,33 5,19 ± 0,26* 7,11 ± 0,26 5,73 ± 0,26* 7,73 ± 0,32 5,54 ± 0,29*
PUFA / SFA 0,87 ± 0,07 0,90 ± 0,06 1,01 ± 0,04 1,11 ± 0,04 0,93 ± 0,03 0,85 ± 0,03
AA / DHA 4,34 ± 0,25 3,79 ± 0,23 4,82 ± 0,19 3,78 ± 0,17* 5,45 ± 0,26 3,69 ± 0,23*

total (mg/g) 0,30 ± 0,03 0,31 ± 0,02 0,25 ± 0,01 0,28 ± 0,01 0,41 ± 0,02 0,37 ± 0,02

placebo n-3 fatty acids placebo n-3 fatty acids

Germany Spain Hungary

phospholipids

non-esterified fatty acids

24 24 54 46 29 25

25

Germany Spain Hungary

placeboplacebo n-3 fatty acids n-3 fatty acids placebo n-3 fatty acids

24 24 54 46 29

n-3 fatty acidsplacebo
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Table 8.9 (contd.): 

 

 

N

C18:2n-6 9,40 ± 0,42 9,21 ± 0,52 10,85 ± 0,25 11,50 ± 0,25 12,03 ± 0,30 11,41 ± 0,36
C18:3n-6 0,20 ± 0,01 0,18 ± 0,02 0,24 ± 0,01 0,27 ± 0,01 0,21 ± 0,01 0,18 ± 0,01
C20:3n-6 6,28 ± 0,52 5,97 ± 0,32 5,98 ± 0,25 5,99 ± 0,28 8,10 ± 0,53 7,12 ± 0,32
C20:4n-6 12,91 ± 0,57 13,25 ± 0,45 11,94 ± 0,31 12,24 ± 0,33 15,72 ± 0,50 14,86 ± 0,53
C22:5n-6 1,06 ± 0,09 0,76 ± 0,06* 0,96 ± 0,06 0,74 ± 0,04* 1,69 ± 0,12 1,18 ± 0,12*
C18:3n-3 0,19 ± 0,01 0,21 ± 0,02 0,14 ± 0,01 0,17 ± 0,01 0,17 ± 0,01 0,16 ± 0,01
C20:5n-3 0,24 ± 0,02 0,37 ± 0,03* 0,23 ± 0,03 0,40 ± 0,05* 0,15 ± 0,01 0,25 ± 0,03*
C22:5n-3 0,86 ± 0,09 1,12 ± 0,13 0,63 ± 0,05 0,86 ± 0,06* 0,71 ± 0,05 0,85 ± 0,06
C22:6n-3 4,92 ± 0,49 7,10 ± 0,79* 4,60 ± 0,32 6,63 ± 0,48* 4,49 ± 0,36 6,81 ± 0,52*

total SFA 40,21 ± 0,88 40,07 ± 1,12 39,82 ± 0,92 39,62 ± 0,71 37,21 ± 0,49 37,94 ± 0,70
total MUFA 21,67 ± 1,05 19,32 ± 0,55 18,86 ± 0,47 19,35 ± 0,40 17,64 ± 0,73 16,91 ± 0,56
total n-6 PUFA 29,88 ± 1,13 29,78 ± 0,78 30,18 ± 0,52 31,12 ± 0,48 37,10 ± 0,76 34,75 ± 0,77
total n-3 PUFA 6,32 ± 0,59 8,93 ± 0,92* 5,66 ± 0,37 8,13 ± 0,55* 5,61 ± 0,41 8,15 ± 0,58*

n-6 / n-3 5,58 ± 0,44 3,99 ± 0,32* 6,32 ± 0,33 4,64 ± 0,32* 7,49 ± 0,49 4,74 ± 0,32*
PUFA / SFA 0,93 ± 0,05 1,01 ± 0,06 0,94 ± 0,03 1,02 ± 0,04 1,16 ± 0,04 1,15 ± 0,04
AA / DHA 3,29 ± 0,34 2,37 ± 0,25 3,13 ± 0,18 2,30 ± 0,17* 4,12 ± 0,34 2,49 ± 0,21*

total (mg/g) 0,17 ± 0,01 0,15 ± 0,01 0,15 ± 0,01 0,19 ± 0,01 0,19 ± 0,01 0,19 ± 0,01

N

C18:2n-6 29,64 ± 1,11 30,04 ± 1,05 31,05 ± 0,63 32,47 ± 0,83 31,35 ± 0,97 31,00 ± 1,10
C18:3n-6 0,79 ± 0,09 0,74 ± 0,09 1,06 ± 0,06 0,84 ± 0,05 0,61 ± 0,03 0,59 ± 0,03
C20:3n-6 3,57 ± 0,22 3,31 ± 0,22 3,62 ± 0,15 3,42 ± 0,18 4,27 ± 0,35 3,93 ± 0,29
C20:4n-6 10,16 ± 0,48 9,83 ± 0,51 9,86 ± 0,22 9,31 ± 0,26 11,50 ± 0,29 10,76 ± 0,36
C22:5n-6 0,85 ± 0,09 0,64 ± 0,05* 0,95 ± 0,06 0,68 ± 0,04* 1,34 ± 0,10 1,06 ± 0,09*
C18:3n-3 0,44 ± 0,03 0,40 ± 0,03 0,29 ± 0,01 0,34 ± 0,02 0,32 ± 0,02 0,30 ± 0,03
C20:5n-3 0,33 ± 0,04 0,52 ± 0,05* 0,28 ± 0,03 0,50 ± 0,03* 0,13 ± 0,01 0,30 ± 0,04*
C22:5n-3 0,30 ± 0,03 0,39 ± 0,05 0,21 ± 0,02 0,30 ± 0,02* 0,28 ± 0,03 0,29 ± 0,03
C22:6n-3 2,64 ± 0,16 3,74 ± 0,26* 2,92 ± 0,15 3,91 ± 0,20* 3,45 ± 0,20 4,27 ± 0,32*

total SFA 24,45 ± 0,56 24,10 ± 0,47 23,30 ± 0,37 22,56 ± 0,46 23,43 ± 0,60 24,26 ± 0,74
total MUFA 25,92 ± 0,53 25,38 ± 0,47 25,56 ± 0,38 24,63 ± 0,46 22,63 ± 0,41 22,26 ± 0,61
total n-6 PUFA 44,89 ± 0,88 44,59 ± 0,88 46,39 ± 0,50 46,81 ± 0,67 48,41 ± 0,72 46,99 ± 0,88
total n-3 PUFA 3,70 ± 0,20 5,05 ± 0,33* 3,71 ± 0,16 5,06 ± 0,22* 4,18 ± 0,22 5,17 ± 0,35*

n-6 / n-3 12,88 ± 0,67 9,96 ± 0,90* 13,73 ± 0,60 10,16 ± 0,52* 12,46 ± 0,70 10,49 ± 0,95*
PUFA / SFA 2,03 ± 0,07 2,09 ± 0,07 2,19 ± 0,05 2,36 ± 0,07 2,31 ± 0,09 2,22 ± 0,09
AA / DHA 4,20 ± 0,33 2,98 ± 0,28* 3,88 ± 0,24 2,65 ± 0,15* 3,58 ± 0,20 2,95 ± 0,30

total (mg/g) 0,35 ± 0,04 0,31 ± 0,03 0,40 ± 0,03 0,41 ± 0,03 0,52 ± 0,04 0,46 ± 0,03

Hungary

placebo n-3 fatty acids placebo n-3 fatty acids placebo n-3 fatty acids

Germany Spain

Germany Spain Hungary

24 24 54 46

placebo n-3 fatty acids

29 25

placebo n-3 fatty acids

24 24 54 46 29 25

placebo n-3 fatty acids

triglycerides

cholesterolesters
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