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Abstract

Due to the singularities arising in quantum field theory and the difficulties in
quantizing gravity it is often believed that the description of spacetime by a
smooth manifold should be given up at small length scales or high energies.
In this work we will replace spacetime by noncommutative structures arising
within the framework of deformation quantization. The ordinary product
between functions will be replaced by a x-product, an associative product for
the space of functions on a manifold.

We develop a formalism to realize algebras defined by relations on func-
tion spaces. For this porpose we construct the Weyl-ordered x-product and
present a method how to calculate x-products with the help of commuting
vector fields.

Concepts developed in noncommutative differential geometry will be ap-
plied to this type of algebras and we construct actions for noncommutative
field theories. In the classical limit these noncommutative theories become
field theories on manifolds with nonvanishing curvature. It becomes clear
that the application of x-products is very fruitful to the solution of noncom-
mutative problems. In the semiclassical limit every x-product is related to
a Poisson structure, every derivation of the algebra to a vector field on the
manifold. Since in this limit many problems are reduced to a couple of differ-
ential equations the x-product representation makes it possible to construct
noncommutative spaces corresponding to interesting Riemannian manifolds.

Derivations of x-products makes it further possible to extend noncommu-
tative gauge theory in the Seiberg-Witten formalism with covariant deriva-
tives. The resulting noncommutative gauge fields may be interpreted as one
forms of a generalization of the exterior algebra of a manifold. For the For-
mality x-product we prove the existence of the abelian Seiberg-Witten map
for derivations of these x-products. We calculate the enveloping algebra val-
ued non abelian Seiberg-Witten map pertubatively up to second order for the
Weyl-ordered x-product. A general method to construct actions invariant un-
der noncommutative gauge transformations is developed. In the commutative
limit these theories are becoming gauge theories on curved backgrounds.

We study observables of noncommutative gauge theories and extend the
concept of so called open Wilson lines to general noncommutative gauge
theories. With help of this construction we give a formula for the inverse
abelian Seiberg-Witten map on noncommutative spaces with nondegenerate
*-products.
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Chapter 1

Introduction

All experiments in physics support the assumption that spacetime should
be described by a differential manifold and all successful theories may be
formulated as field theories on such manifolds. But in quantum field theories
there are some intrinsic difficulties at high energy or short distances that
can not be resolved. No hints are given by experiment where and how these
difficulties should be solved. But there are other fomulations of successful
theories like the algebraic approch to quantum mechanics that leave the
setting of differential manifolds.

In the early days of quantum field theory it was already suggested by
Heisenberg that spacetime might be modified at very short distances by al-
gebraic properties that could lead to uncertainty relations for the space coor-
dinates. The first one to write an entire article about this subject was Snyder
[1]. The idea behind spacetime noncommutativity is mainly inspired by quan-
tum mechanics. Quantum phase space is defined by replacing canonical vari-
ables ¢', p; by hermitian operators which obey the Heisenberg commutation
relations [¢¢, Dl = zhé; Now the space becomes smeared out and the notion
of a point is replaced by a Planck cell. In the limit # — 0 one can recover
the ordinary phase space. In its simplest form spacetime noncommutativity
can be described in the same way by replacing the commutative coordinate
functions ¢ by operators Z* of a general algebra obeying the relations

[2%,27] = ¢v.

The righthand side of this equations should tend to zero in a certain limit
and one recovers in this way the classical commuting space. Although this
idea seemed quite promising the progress was very slow due to the success
of renormalization theory on the one hand and the mathematical complexity
of noncommutative structures on the other hand. It took a long time until
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noncommutative geometry was mathematically defined and physical models
were formulated (2, 3, 4, 5, 6].

Perhaps one reason for the slow progress is that postulating an uncertainty
relation between position measurements will lead to a nonlocal theory, with
all of the resulting difficulties. A secondary reason is that noncommutativ-
ity of the spacetime coordinates generally conflicts with Lorentz invariance.
Although it is not implausible that a theory defined using such coordinates
could be effectively local on length scales longer than that of the uncertainty,
it is harder to believe that the breaking of Lorentz invariance would be un-
observable at these scales.

One big hope associated with the application of noncommutative geome-
try in physics is a better description of quantized gravity. Quantum gravity
has an uncertainty principle which prevents one from measuring positions
to better accuracies than the Planck length: the momentum and energy re-
quired to make such a measurement will itself modify the geometry at these
scales [7]. At least it should be possible to construct effective actions where
traces of this unknown theory remain. If one believes that quantum gravity
is in a sense a quantum field theory, then its observables are operators on a
Hilbert space and therefore elements of an algebra. Some properties of this
algebra should be reflected in the noncommutative geometry the effective
actions are constructed on. As in this case the noncommutativity should be
induced by background gravitational fields, the classical limit of the effective
actions should reduce to actions on curved spacetimes [8, 9.

A related motivation is that quantum gravity might not be local in the
conventional sense. Nonlocality brings with it deep conceptual and practi-
cal problems which have not been well understood, and one might want to
understand them in the simplest examples first, before proceeding to a more
realistic theory of quantum gravity. Further there is an interesting similiar-
ity in the gauge structure of general relativity and noncommutative gauge
theory. In the later gauge transformations can be interpreted as a special
subgroup of the group of diffeomorphisms. Again with the growing under-
standing of noncommutative theories one perhaps improves the knowledge
about diffeomorphism invariant theories like general relativity.

There are other reasons for introducing noncommutativity into physics.
One of the simplest is that it might improve the renormalizability properties
of a theory at short distances or even render it finite. However it is known
today that certain models develop new devergencies absent in commutative
theories [10, 11].

At the moment most of the applications of noncommutativity to physics
are done with noncommutative field theory [12, 13]. As one thinks of these
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models as analogs to classical physics there are also attempts to quantize
these theories [14, 15, 16]. A new approach is to treat noncommutative
geometries as matrix models and take advantage of the noncommutativity
to quantize them [17, 18] since they have finite dimensional representations.
Noncommutative field theory is also known to appear naturally in condensed
matter physics. One example is the theory of electrons in a magnetic field
projected to the lowest Landau level, which is naturally thought of as a
noncommutative field theory. Thus these ideas are relevant to the theory
of the quantum Hall effect, and indeed, noncommutative geometry has been
found very useful in this context [19].

Symmtries have always played a very important role in physical models.
But noncommutative spaces mostly are not compatible with the symmetry
groups of their commutative counterparts. One way to circumvent these
problems are quantum groups. One does not only deform the space but
also the symmetry group acting on it. Beginning with the noncommutative
plane a large number of deformed spaces with deformed symmetries have
been constructed. Among others there are for example the g-deformed Lie
algebra of rotations [20] and g-deformed Euclidean space [21], the g-deformed
Lorentz algebra [22| and ¢-deformed Minkowski space 23], the g-deformed
Poincare algebra [24], k-deformed Poincare invariant space [25|, to name only
a few.

Noncommutative geometry may be useful to describe effective field the-
ories derived from the low energy limit of loop quantum gravity. Since here
geometric objects are replaced by operators on a Hilbert space [26], it would
not be very unexpected if noncommutative structures appeared in the contin-
uum limit of this theory. However the relation between loop quantum gravity
and noncommutative geometry has not been explored very well. Neverthe-
less there are hints that an effective theory should be a noncomutative one.
For example there exists a nonperturbative quantization of gravity with an
isolated horizon as inner boundary within the formalism of loop quantum
gravity. The quantum geometry of the horizon looks like a noncommutative
torus [27].

String theory made its first contact with noncommutative geometry with
a conjecture called M-theory. It was proposed that all known string theo-
ries are the low energy limit of this theory. Further it was conjectured that
this M-theory may be formulated in the framework of matrix quantum me-
chanics leading to the name M(atrix)-theory [28]. It was found in [29] that
noncommutative geometry arises very naturally in M (atrix)-theory.

Noncommutative geometry entered string theory a second time with the
descriptions of open strings in a background B-field [30, 31]. The D-brane is
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then a noncommutative space whose fluctuations are governed by a noncom-
mutative version of Yang-Mills theory [32] and noncommutativity is induced
by a so called x-product. On a curved brane the B-field becomes position de-
pendent [33]. In the case of a constant B-field it has been shown quite soon
that there is an equivalent description in terms of ordinary gauge theory.
The two pictures are releated by a choice of regularization [34]. Therefore
there must exist a field redefinition mapping the one picture to the other,
the Seiberg-Witten map [32].

Most of the noncommutativity in this work will be formulated with the
help of x-products, i. e. with associative products defined on function spaces.
Throughout this work we will formulate them with the help of differential
operators

frg=1rfg+500:fOi9+ -

and assume that they may be expanded in some parameter of noncommu-
tativity. *-products first emerged from quantum mechanics. Due to Weyl’s
quantization procedure [35] one was able to pull back noncommutativity to
the classical phase space and the first x-product was formulated [36], an as-
sociative product between functions on phase space. In this formulation the
classical limit of quantum mechanics is very intuitive, the x-product depends
on h and for this parameter tending to zero it becomes the ordinary product
between functions. The Poisson bracket can be obtained by looking at the
first order deviation in A. With this in mind deformation quantization [37]
was formulated. One has to look for defomations of algebras of functions of
Poisson manifolds and realize quantum mechanics on this manifolds in this
way. A more abstract picture of x-products was developed being now an
associative product on the space of functions on a manifold.

The formulation of gauge theories in this work will be done with the men-
tioned Seiberg-Witten map formalism emerging from string theory. After its
discovery the Seiberg-Witten map has been extensivly studied and applied
to noncommutative field theory. An interesting approch is set within the
Kontsevich *-product formalism [38]. Here the Seiberg-Witten map is found
to be a part of the Formality map [39, 40, 41, 42|. In particular these studies
show that the Seiberg-Witten map is an integral feature of any noncom-
mutative geometry obtained through deformation quantization of a Poisson
manifold. Additionally the Seiberg-Witten map was extended to nonabelian
gauge groups. The noncommutative gauge transformations are not longer
Lie-algebra valued and have to be defined on the enveloping algebra [43].

On noncommutative R) which is characterized by constant parameters
0% the Seiberg-Witten map can be constructed using various techniques. The
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Seiberg-Witten equations lead to a consistency condition which may be solved
order by order [44]. Further it can be solved with a cohomological approach
within the BRST formalism [45]. There exist few Seiberg-Witten maps on
other noncommutative spaces. On the fuzzy sphere a Seiberg-Witten map
was constructed up to second order for a x-product that does not truncate
the space of functions and for the finite dimensional representations S% [46].
On k-Minkowski spacetime it has been calculated in [47, 48|. There are
extensions of the constant case Seiberg-Witten map to supersymmetric gauge
theories [49, 50]. Another remarkable aspect of Seiberg-Witten gauge theory
is that it is sensitive to the representation of the gauge group. Due to this
grand unified theories do not have unique noncommutative analogs [51].

The first attempt to quantize noncommutative field theories in the x-
product representation was done in [52]. This was done similar to the per-
turbative way interacting commutative field theories are treated and Seiberg-
Witten gauge theories are mostly quantized using this method. However it is
not quite clear how the quantization of Seiberg-Witten gauge theory can be
done in a consistent way since the solution of the Seiberg-Witten equations
is not unique and other solutions are related by nonlocal field redefinitions
[53]. Nevertheless this was used in [54] to show that noncommutative abelian
gauge theory on the RY in the x-product representation is renormalizable.
The same was done for U(n) gauge groups up to one loop level in [55].

After this general introduction we begin to deal with x-products and the
representation of algebras by them. We begin with the definition and first
properties like the semiclassical limit and the equivalence of x-products with
respect to linear transformations on function space. The semiclassical limit
will be crucial to all applications throughout this work. In this limit the
*-products are in one-to-one correspondence to Poisson structures up to the
mentioned linear transformations on function space. After that we start with
the representation of algebras defined by relations on function spaces and
calculate the Weyl-ordered x-product up to second order. The Weyl-ordered
*-product will be very important for us to give explict formulas in noncom-
mutative gauge theory. In the end we give closed formulas for x-products for
several algebras, mainly quantum spaces like M (s0,4(3)), M(so,4(1,3)) and
M (so,(4)). For this we generalize the Moyal-Weyl product with the help
of commuting vector fields and give a method how to calculate this type of
*-representation for relation-defined algebras. It will become clear that a big
amount of the information we have about the algebra is already contained in
the Poisson structure of the x-product.

The purpose of chapter 3 is to relate noncommutative differential ge-
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ometry and x-product algebras. After a short introduction to aspects of
noncommutative differential geometry we need later, we apply the x-product
formalism to the commuting frame formalism developed in [6]. We will see
that in the semiclassical limit, an algebra with nonconstant commutator and
therefore nonconstant Poisson structure will in general yield a curved back-
ground. With the application of the commuting frame formalism we are
now able to construct noncomutative spaces with interesting classical limit.
The general considerations yield a system of partial differential equations,
which we can try to solve for certain interesting geometries. In two dimen-
sions we are quite successful and we are able to construct algebras for all
spaces of constant curvature. In four dimensions this is not the case, since
the mentioned system of partial differential equations is getting more and
more overdetermined in higher dimensions. At the end of the chapter we
give another very interesting application for x-products in noncommutative
geometry. We calculate rotational invariant Poisson structures in four di-
mensions and quantize them with the help of x-products. On the resulting
algebra we construct a first order differential calculus having a frame for the
Schwarzschild metric as classical limit.

We will see in chapter 3 that derivations are very useful for formulating
noncommutative geometry on quantized Poisson manifolds. In chapter 4
therefore we make general considerations about derivations of x-products. We
again come to the conclusion that the important informations are included in
the semiclassical limit of the x-product. Vector fields in a sense compatible
with the Poisson structure of the x-product and derivations are in one-to-one
correspondence. We apply our results to the Formality x-product and the
Weyl-ordered x-product from the second chapter. An alternative definition
of noncommutative forms will be later useful in combination with Seiberg-
Witten gauge theory. To make contact with physical application we introduce
traces on x-products at the end of the chapter. With them we start to
construct actions on noncommutative spaces having field theories on curved
backgrounds as classical limit. As an example we give an noncommutative
action being the deformation of ¢*-theory on a space of constant curvature.

Chapter 5 is dedicated to the application of x-products to noncommuta-
tive gauge theory. We start with a introduction to noncommutative gauge
theory and the special case of Seiberg-Witten gauge theory, a fomulation of
noncommutative gauge theory only possible in the x-product representation.
Only in Seiberg-Witten gauge theory at the moment it is possible to for-
mulate noncommutative analogs to general nonabelian gauge theories. Our
main purpose in the following is the extension of the Seiberg-Witten map
to derivations of x-products. Then we give a closed formula for the abelian
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Seiberg-Witten map for the Fomality x-product. The Seiberg-Witten map
for the Weyl-ordered x-product is calculated up to second order. We relate
the resulting objects to the noncommutative forms introduced in the chapter
4. Now we are able to construct actions on noncommutative spaces invariant
under noncommutative gauge transformations. The actions have as classi-
cal limit a gauge theory on a curved background. We give an example of a
noncommutative version of electrodynamics on a background with constant
curvature. At the end we deal with observables of noncommutative gauge
theories. Most useful in this context are the so called open Wilson lines in-
troduced in the case of constant commutator. We will generalize them to
general x-product algebras. With these observables we are able to give a
formula for the inverse abelian Seiberg-Witten map on symplectic manifolds.
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Chapter 2

*-products

The first x-product emerged from Weyl’s quantization procedure [35]. As-
sume that f(g¢;, p;) is a function on a classical phase space and associate the
following operator with it

~

f=af) = / e vy F(€, ) enE€5. (2.1)

Here f (&,m) is the Fourier transform of f, the operators ¢; and p; should
fulfill the canonical commutation relations [¢;, p;] = ¢fid;; . In this case it is
possible to give an inverse operation

07(f) = [weanr (jeteesn) dosr,

Here T'r is the trace on the Fock space representation of the operator algebra.
Now one can pull back the product between two operators to a product
between two functions on phase space

fxr g =071 (Q(N)QA9)),

which yields the Moyal product on classical phase space. If P!/9; A 0,
(0r = (0Oq;,0p,) ) is the Poisson structure of the classical phase space, i. e.
{f,g9} = P"Y0;f0;9 and {gi, p;j} = dij, it is possible to write down an explicit
formula

f*Mg=Z P’”l--PI"J"azl---aznfaJl---aJng (2.2)

n=0

for the Moyal product. A good introduction to this is [36] and references
therein. The generalization of the above construction is called deformation
quantization [37, 56|, where one tries to quantize phase spaces by finding
appropriate x-products for functions on phase space.
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2.1 Definition and first properties

The Moyal product (2.2) is a special case of a x-product. To define more
general x-products let M be an arbitrary (sufficiently smooth) finite dimen-
sional manifold. A x-product on M is an associative, C-linear product on
the space of functions (with values in C) on M given by

h

Fro=fo+ 2Bi(f.0)+ (YBalrg) -

where f an g are two such functions and the B; are bidifferential operators
on M. The parameter h is called deformation parameter. There is a natural
gauge group acting on x-products consisting of C-linear transformations on
the space of functions

f—= [+ hDi(f)+h*Dy(f) + -

where the D; are differential operators. They may be interpreted as a gener-
alization of coordinate transformations. If D is such a linear transformation
it maps a x-product to a new x-product

f#g=D (D(f)» D(g)). (2.3)

If one expands this equation in A one sees that a linear transformation D
acting on % only affects the symmetric part of B;

Bi(f,9) = B:i(f,9) + D:i(fg) — fDi(g9) — Di(f)g

and one can show that the symmetric part of B; may be canceled by a linear
transformation. For this we may assume B; to be antisymmetric. Since % is
associative, the commutator

[fsg]l=fxg—gxf=hBi(f,g)+---
has to be a derivation
[fxg3hl=fxlgshl+[f%h]xg.

Up to first order this means that the antisymmetric part of B; is a derivation
with respect to both functions f and g. Additionally the Jakobi-identity is
fulfilled for the commutator

[frlgrpll+Thyf5all+1g3[hy fI =0
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Up to second order this implies that B; is a Poisson structure

{£:{g,h}y +{nAf. 93} +{9.{h. f}} =0

where {f, g} = Bi(f,g). Therefore after a certain linear transformation we
can always write on a local patch of the manifold (here locally {f,g} =

110, f0;9) .
17 .
frg="rfg+S1U"0:f0ig+ -

with . ' - ' .
Mo, I7% 4 ¥ g ITY + TG II% = 0 (2.4)

We have seen that x-products up to second order are classified by Poisson
structures on the manifold. On the other hand, if there is a manifold with a
given Poisson structure {, } on it, it is possible to construct x-products with

h
f*g=fg+%{f,g}+“--

This was first done for symplectic manifolds (manifolds with invertible IT)
in [57, 58|. In [38] a general construction for arbitrary Poisson manifolds has
been given (see also [59]). It makes use of the so called formality map that
we will use later for constructing noncommutative gauge theories, too.

2.2 Algebras and x-products

Suppose we are taking RY as the manifold and parametrize it by N co-
ordinates z'. Then 69 = const.(i,j = 1---N) clearly fulfills the Poisson
condition (2.4). With a view to the original Moyal product (2.2) we can
write down a x-product for this Poisson structure

= (Gh)" »
f*g=2%9”l---9“7"@ 203 f Oy -+ O0s9 (2:5)
n=0 )

where f and g are functions on RY. We will again call it Moyal-Weyl *-
product. A proof that it is really associative will be given in (2.3.1). Since

[2° * 27] = ih6",

the space of functions on R" together with the x-product forms a realization
of the algebra

A=C<z',--- 2V > /([2" 7] — iho").
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In opposite to the representation on a Hilbert space we will call it a x-product
representation. Now the question arises if we can do the same with other
relation-defined algebras. We will see that this is possible if we invent an or-
dering description. Other possibilities for relations are Lie algebra structures
with

(2", 2] = ihC"Y 2", h,CY, € C
and quantum space structures [60, 61, 62, 22| with
#'37 = qRY 3k 3!, g=¢" R7,€C

Instead of considerering these special relations we will in the following
discuss a more general case. We assume that the algebra A is generated by
N elements #° and relations

(41, 47] = ¢ () = ihe" ()

where we assume that the right hand side of this formula is containing a
parameter h, and is becoming in a sense small if this parameter approches
zero. Mathematically more correct we have to use a h-adic expanded algebra

A=C< il 2V > [[R]/(F, 3] — ihe’ (2)) (2.6)

where it is possible to work with formal power series in h. Note that this kind
of algebras all have the Poincare-Birkhoff-Witt property since a reordering
of two 4* never affects the polynomials of same order in h. An algebra with
Poicare-Birkhoff-Witt property possesses a basis of lexicographically ordered
monomials. For an algebra generated by two elements z and ¢ this means
that the monomials Z"¢™ constitute a basis. For example the algebra defined
by the relations [, 4] = #? + §? does not have this property. An example
of an algebra that is not included in the above three cases but fulfilling the
property (2.6) is given later in (3.3.2).

2.2.1 Algebra generator orderings

Note that Weyl’s quantization procedure (2.1) does not make reference to
any algebra relation. So let us calculate what Weyl is doing on an algebraic
level with this formula. For this let

1) = [ &2 pz)en

be the Fourier transform of f. Formally we get for a monomial in RY

/dnxxl g™ P = (=id), ) - (=i, )S(p).
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The Weyl operator associated to a function f is defined by

W(f)= / (;i:r];nf(p)e—ipm 2.7)

(see e. g. [63]). For a monomial we get

1

W) =

Ai)m

8pi1 o 'apim (pix

and therefore the Weyl operator really maps monomials to the corresponding
symmetrical ordered polynomial in the algebra, e. g. for three generators

i j Loiiis i nk A o j ad i i o
W (z'ziak) = g(x’x’xk + 3'3%37 + #F3080 4+ 29588 + 295k at + #4937,
A similar calculation may be done for normal ordering with the result that

In the end we see that for calculating a x-product like Weyl we need a ordering
description ) that maps monomials in the coordinates z* to polynomials in
the algebra generators 2°. Then the x-product is defined by

Qf xa g) = Q(f)29) (2.8)

for two functions f and g. If we have used another ordering description ',
the resulting x-product is gauge equivalent to this x-product by the linear
transformation

D=

since
frar g =D (D(f) % D(g))-

The choice of different ordering descriptions is equivalent to taking a different
gauge of x-product.

For calculating the x-product in the constant and Lie algebra case with the
Weyl-ordering operator see e. g. [63]. There a normal ordered x-product is
calculated for the Manin plane, too. For the influence of ordering descriptions
in the constant case see e. g. [64]. Many examples of x-products for algebras
and corresponding ordering descriptions are given in [65].
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2.2.2 Weyl-ordered x-products

In this section we will calculate a x-product generated by symmetric order-
ing (2.7) of the generators of the algebra (2.6), the Weyl-ordered x-product
[66]. The algebra of functions equipped with the Weyl-ordered x-product is
isomorphic by construction to the noncommutative algebra it is based on.

With look to (2.8) we start with

— d"k d”p 1 e*ikiﬁiefipiii
Fra=[ G [ Gt Raln) W )

2m)» ) (2m)n

where we have used
W( eikizi) — ez'lcm
We are therefore able to write down the x-product of the two functions if

we know the form of the last expression. For this we expand it in terms of

commutators. We use o o
eef = e"BR(A, B)

with
~ A 1 . A
R(A,B) = 1+§[A,B]
1 . A A A 1 -~ ~ . .
— ([A+2B,[4, B+ (A, BJI4, B + 0(3),
If we set A = —ik;2" and B = —ip;#* the above mentioned expression be-
comes

W—l (e—iki.’iie—ipiii) —

e~ ikitpi)zt _(_iki)(_ipj)W—l(e—Z(kH-Pz)z (2%, 27))

2
‘é (=) (km + 2Pim) (— ki) (—ip )W (e BP0 [, [37, 37]))
* é (—ikm) (—ipn) (—iks) (—ipy) W " (e PTG 37 (37, 47])
+O(3).

If we assume that the commutators of the generators are written in Weyl
ordered form - -
¢’ =W(cV),
we see that o -
(2™, 2", 27]) = W (™) + O(3),
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[2™ 4][27, 2] = W (™) + O(3).
Further we can derive
1, i _ d"p
w 1/ ,%1q;T w = W 1 /
(¢ W () ([ o

f(p)e™ (@t R( g3, —z‘p@i))
o 1
= e "B (f + 5(—zqi)c”8jf> + 0(2)

Putting all this together yields

W*l(e*Zkiw e Py = e kitpi)z (1+—c”(—z'ki)(—z'pj)

2

b Lo (i) ip) (-ik) (i)

+ %cm’alcij(—i) (km — pm)(—iki)(—ipj))
+ 0(3),

and we can write down the Weyl ordered *-product up to second order for
an arbitrary algebra

1 ..
fxg = fg+50”5if5jg

1 ..
+  O0,0,0,0;9 (2.9)

1 .
+ Ecmlalc“(amai f0,9 — 0:f0,,0;9) + O(3).

Let us collect some properties of the just calculated x-product. First
o't 0] =

is the Weyl ordered commutator of the algebra. Further, if there is a conju-
gation on the algebra and if we assume that the noncommutative coordinates
are real 2¢ = 2°, then the Weyl ordered monomials are real, too. This is also
true for the monomials of the commutative coordinate functions. Therefore
this x-product respects the ordinary complex conjugation

fxg=gx].

On the level of the Poisson tensor this means

i = —cY,
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It is very instructive to calculate the action of a linear transformation
(2.3)

O = egman+9mnaman+---
1 1
= 14 (@7 + 2000 + (U + Q")
Ol = 00—
1 1
= 1-(Q" = Q0,070 — (™" = JQ" )9,
+ PR

on the Weyl ordered x-product. We find

QN Q) x2g) = fxg
+%(ci"8an — "9, — Q"@ncij) 0;f 09
—QQU 8zf 8jg
+-.-.

The first deviation is the Lie derivative of the vector field Q'9; for ¢¥/. Later
we will compare the Weyl ordered x-product to another one and give in this
case an explicit formula for the transformation €2.

2.2.3 Example: M(so,(n))

Here we will start the example of a quantum space introduced in [25]. Al-
though this quantum space is covariant under the quantum group SO,(n),
we will never use this property. We have taken it because of its simple re-
lations. Further it has a nontrivial center and there exist outer derivations
that will below serve as a useful example.

Since we are using the n-dimensional generalisation introduced in [48,
47] we will simply call it SO,(n) covariant quantum space or abreviated
M (so,(n)). The relations of this quantum space are

[2°,7"] = iaz" for i#0,

with @ a real number. The Z' simply commute with each other. In the
following of the example Greek indices will run from 0 to n — 1, whereas
Latin indices will run from 1 to n — 1. It is easy to see that the Poisson
tensor corresponding to the algebra is

M = izt (515Y — 845L).
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Since we are dealing here with the case of a Lie algebra we surely have
W(c*) = [##,2"]. In this case the Weyl ordered x-product takes the following
form (compare [48])

a ; ;
frg = fo+5 (0of 2" 0i9 — 20, f Dog)
2

2
_% (03 f 3" 0:9 — Do fOo ' 0;9 — Dox' Oi f Dog + ' 0i f D3 9)
+0(a®).

We will continue the example when we have derivations of the x-product
algebra.

2.3 *-products with commuting vector fields

The x-products of the last section are only given up to second order and
we have not been able to derive closed formulas. Here we present a closed
formula for x-products that generalise the Moyal-Weyl-x-product (2.5) in a
simple way. [67] We only have to replace the partial derivatives in the formula
by commuting vector fields, since they have the same algebraic properties.
We will prove the associativity of this x-product and make considerations of
how to get desired algebra relations. After that we calculate x-products for
some examples like the so(3) Lie algebra and several quantum spaces.

2.3.1 Definition and proof of associativity

Let X be a vector field. Then it is easy to show that

0

X)L (F(@) o) = (K)o + X' (2)

-+ X' .
8yz+ (2)821

) (f(y)g(2))

YT,z

To write the last formula in a more compact way we introduce the following
notation

lelgl = (XQ + X3)f2.g3‘2_>173_;1 -

With this we can derive a kind of Leibniz rule

X{flgl = (X2+X3)lf293‘2—>1,3—>1
P(X1)fign = P(X2+X3)f293|2—>1,3—>1
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where P is a polynomial in X. The last equation can also be written in the
form

P(X;) (f191‘2—>1,3—>1) = P(X;, +X3)f2g3|2—>1,3—>1- (2.11)

Let now be X, = X!0; n commuting vector fields, i. e. [X,, Xy] = 0.
Note that then locally always a coordinate system y®(z) may be found with
X, = Oya. Globally this does not have to be the case. Further let 0% be a
constant matrix. Then we define a x-product via

ab
(f*g)l, = e 2% fogy . (2.12)
2=3=1
This * product is associative since
I A G T
4—3,5—3 251,31

ab X o (Xpa+X, cd X 4 X,
7" Xa2(Xpat b5)f260' c4Xas g s

4—3,5—3,2—1,3—1

ab ab cd
e’ Xa1Xp2to XalesetT Xc2Xd3f1g2h3

2—1,3—1

and

(fxg)xh)|, = egabXGIsz <€UCdX”3Xd4f3g4‘ ) ho
31,41

ab cd
e’ (Xa3+Xa4)Xb2€0 Xc3xd4f3g4h2‘

2—1

3—1,4—1,2—1

ab ab cd
e’ Xa1Xp3t+o Xa2X536¢T Xchd2f192h3

2—1,3—1

where in the second step we used the relation (2.11). The two expressions
are equal since the vector fields commute.
For future use we calculate the x-commutator

[f )’\, g] — (eo'a’bXale2 _ eo'abXGQXtd) f1g2
= 2sinh(0™ X, X32) f192

2—1
|2—>1 ’
The last line is only valid for an antisymmetric matrix o.

For the case of two vector fields, which we call X; = X and X, =Y, we
write down the explicit formula for o2 = h,0?' =0

o0 n

frg=3 " (X7) (V) (2.13)

n=0
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the asymmetric *-product and for 02 = 2, 0% = 2
N if T n—iv i ivn—i
f*g:Zany (=1) (i)(X Y (XY™ g) (2.14)
n=0 T =0

which yields the antisymmetric x-product. Both x-products have the same
Poisson tensor [I = X A Y.

2.3.2 Linear transformations

If we have a x-product, we have seen that we simply can produce a new *-
product by a linear transformation on the space of functions (2.3). Suppose
that D is such an invertible operator and that its expansion in derivatives
starts with 1. Additionally we now assume, that D is of the form

D= e’T(Xa) D—l — e—T(Xa)

?

where 7 is a polynomial of the vector fields X,. Then for the x-product (2.12)

we see that
2—)1,3—)1)

f*g = DT(D(f)xDl(9))
— e—T(Xal) (eo'abXa2Xb3eT(Xa2)f267'(Xa3)g3
—T(Xaz+Xa3)+0“bXa2Xb3+T(Xa2)+T(Xa3)f2g3

=€

2—1,3—1

For 7 only quadratic in the X, (note that 73° is symmetric)

1
T = TfXa+§T2(1bXaXb

we have
T(Xal) + T(XaQ) - T(Xal + XaZ) = _TQGbXaleQ

and the new x-product becomes

f*lg — e(o'“b—Tgb)XaleQ

2—1

So we see that the antisymmetric x-product (2.14) and the asymmetric x-
product (2.13) are related by a linear transformation in function space.

As already mentioned locally commuting vector fields can be represented
by a coordinate transformation. It is very important that this need not to be
the case globally. This is the reason that the algebras resulting from the %-
product are not isomorphic to the constant case algebra. We will see explicit
examples for this later.
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2.3.3 Differences to other x-products

The Poisson tensor of the above defined x-product (2.12) is T1¥ = g% X! X7
with 0% antisymmetric. This we can plug into the formula of the Weyl
ordered x-product (2.9) and make a linear transformation. We can compare
the result to the x-product (2.12). After some calculations we get

e 7 () *Weyl €(9)) = f % 9
with

1 . .
p = 1+EaabGCd(XgnamX;)(XfanXé)@aj

1 . . . . .
+ﬂaabacd(xgxgx,?anxg + XEXIXP0,X) + XIXFX]0,X1)0,0;04

+0(d?).
Therefore this two x-products are equivalent at least up to second order.

Later we will define the Kontsevich x-product. This x-product can be
constructed on every Poisson manifolds and proves that one is able to find
a *-product for every Poisson structure. We were not able to show, that
there is a equivalence between the Kontsevich x-product and the x-product
constructed by commuting vector fields. There may be obstructions since the
equivalence is dependent of the Poisson cohomology of the Poisson manifold.

2.3.4 Some examples in two dimensions

We calculate some examples in two dimensions with the asymmetric x-product
(2.13).

X =axd; , Y =0,
We get
[z 1 y] = az,

the algebra of two dimensional a-euclidian space. The algebra relations follow
from

Txxr = 2%,
rxy = xyY-+ax,
Yyxr = 2z,

y*xy = y.
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X =(a+b2)0; ,Y = (c+dy)o,
This is the general linear case. We get

c a
zxy=e(y+ ) x(z+ ),

d b
which follows from
rxkr = 2,
pry = M+ )t ),
yxr = my,
yxy = y’.
X = 22— (20, +y0y) , Y = 20, — yOy

/$2+y2
These are the derivatives 0, and 0y of the coordinate transformation z =
rcosf, y =rsinf. We get

[z 3yl =avrxz+y*y,

which follows from

T
TxT = xQ—a—y,
r
2
rxy = xYy+a—,
r
2
Yyxr = xy—ay—,
r
T
Yyxy = yz—i-aTy.

X =a(z0, +y0y) , Y =20, — Y0,
This is a simplification of the previous case. We get
[z 7y] = (tana)(z xz +y *y),

which follows from
2

T*Tr = cosax”—sinaxy,
Txy = cosazy+sinay?,
yxx = cosazy—sinay?,

yxy = cosay’+sinazy,
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rxx+y*xy = cosa(z®+y?),
rxy—yxxr = sina(z+y?).

It is interesting that this algebra does not have the Poincare-Birkhoff-Witt
property for tana = 1.

We have seen that even in this simple cases very rich structures surface.
But it is not quite clear what happens if we try to replace the formal param-
eter in the x-product expansion by a number. In the last case we see, that
in this case higher order relations can arise.

2.3.5 Realization of algebras

If we want to represent an algebra with the help of a *-product, we have
seen that this is possible if we use an ordering description. In this section we
propose an other method of how to calculate a x-product with the property,
that it reproduces the algebra relations of some desired algebra. With this
second approach no ordering description is needed. It is even not quite clear
in the end, if there would be an ordering description that would yield the
same *-product with the first approach.

We know that the x-commutator of a x-product is a Poisson tensor up to
first order

[f 5 9] = h{f, g} + O(h?) = RII(f, 9) + O(h?).
where II is the Possion-bivector of the Poisson structure. If we would have
a x-product that reproduces the algebra relations, the right hand side of the
previous equation would be a polynomial in the generators of the algebra, i.
e.
[2* 3 27] = hed (2).

The * in the index of ¢/ indicates that all products between the coordinate
functions in it are x-products. To calculate the leading order of ¢/ () it is not
necessary to know the explicit form of the x-product, since it always starts
with the ordinary product of functions. We can conclude that

{2*, 27} =TIV = Y (), (2.15)
For the special case for the x-products (2.12) it is
II=0"X, A X,

If we are able to write a general Poisson bivector in this form, we can try
to reconstruct the algebra relations with the help of the *-products (2.12).
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For this let f be a function and X; = {f, -} the Hamiltonian vector field
associated to f. Then the commutator of vector fields is

[Xfa Xg] = X{f,g}’

due to the Jakobi identity of the Poisson bracket. If we can find functions
with
{fir9;} =dijs {f: i} =0, {919} =0,

this implies that all commutators between the associated Hamiltonian vector
fields vanish. Now one can deduce from the splitting theorem for Poisson
manifolds [68| that this is possible in a neighborhood of a point if the rank of
the Poisson tensor is constant around this point. Since we do not want to find
a %x-product on RY | but a x-product with certain commutation relations, we
can reduce RY by the set of points where the rank of the Poisson tensor jumps

and we have a good chance to find functions with the desired properties on
the new manifold. In this case we can write the Poisson tensor as

T=> X;AX,.

In the following we will find functions f; anf g; for Poisson tensors of several
algebras and will use the corresponding Hamiltonian vector fields in the x-
products (2.12). We will calculate the resulting algebra relations from the
*-product and compare them to the original algebra relations.

2.3.6 The quantum space M (so,(n))

We will start our examples by giving a closed formula for a second x-product
for the quantum space introduced in (2.2.3). It is closely related to the x-
product for the two dimensional a-euclidean space given above. As manifold
we take RY with coordinates z° and z* with ¢ = 1,..., N — 1 and use the
asymmetric x-product (2.13) with the two vectorfields

X =iaz'0;, Y =0,.

With this we get . .
[z * 2°] = iaa’,

the algebra of M(so,(n)). The algebra relations follow from

r'xx! = z'a,
i .0 i 0 o i
rxxr = xx +10r,
D xrt = 220,

yxy = y-.
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To show the usefulness of the approach proposed in the last section we
now make a generalization of the above defined algebra. The new relations
are

(2%, 2P] = i(a®2? — aP3%)

where a®* are now n deformation parameters. For this relations to be con-
sistent the Jacobi identities have to be fulfilled, which easily can be proofed.
In this case the commuting vector fields can not so easy guessed like in the
special case.

Since the right hand side of the relation is linear and we are therefore
dealing with a Lie algebra the Poisson tensor associated with the algebra is
simple

{z%,2°} = a®2? — dPz*.

If we want to find commuting vector fields that reproduce this Poisson tensor
we now follow the way outlined in the previous section. The rank of this
matrix is 2. Therefore we have to find two functions fulfilling { f, g} = 1. We
make a guess and define

with a? = a®a®. These functions have commutation relations very similar to
the special case of M (so,(n)).

{f,#*} =a*2* {3*,3°} =0
If we define g = a%ln VZeT* we see that

{f9}=1 (2.16)

and the desired functions are found. The commuting vector fields are now
easy calculated

X={f,-} = a®aP0s— (as")a"0
V={,9} = __aﬁaﬂ
In this case we are lucky since no singularities have shown up and the -

product can be defined on whole R*. Again we may use the asymmetric
x-product (2.13) and see that the algebra relations are reproduced.
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2.3.7 ¢-deformed Heisenberg algebra
If we take the g-deformed Heisenberg algebra [60] in two dimensions
i = qid + 0

we very easily can calculate a x-product in A = Ing and 6. The Poisson
tensor II is

H:@m+%@A@.

We see that with f = In(zy + %) and g =Iny

{frgt =1

The Hamiltonian vector fields are
X =Xy =y0y — 20, Y=X,=~(+ )0,

To calculate the x-products we note
X"z)=(-1)"z, X"(y) =v,

Y'(z) = (-1)"(z + h%;) forn >0, Y"(y)=d%.

For the asymmetric x-product (2.13) this yields
Txy = xy,
~h ~h 4
yxx = e 'zy+ (e " — 1)E

For the antisymmetric x-product (2.14) we get

vl

6
zxy = ezy+ (et — 1)5,
0
yxz = e rzy+ (e — 1)E
Both x-products have therefore the algebra relation

m*y:ehy*x—k(eh—l)ﬁ

and by a redefinition of 6 the original alegebra relations are reproduced.
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2.3.8 The Lie algebra so(3)
First try

The algebra relations of the eveloping algebra of so(3) are [2¢, 27] = i€k 3k,

The corresponding poisson tensor is
IT =20y A O, + 1y0, A\ Oy + 1205 N\ 0.
For f = —iarctan { we have {2, f} = 1. The Hamiltonian vector fields are
z
X = Xf = —0,+ W(xax + yay)a
Y =X, = i(yd, —z0,).

We calculate (p = /22 + y2)

Y™(2) = 6"z,  X"(2) = 6"z + 6",
x, Y2n+1(x) — _(_l)ny’

Y (z) = (1)
Y'y) = (D", Y"y)=(-1)"z,
X(z) = év%, Y(y) = y%,
22 22
X"(z) ==z(1+ ;)fn(p, z), X"(y)=y(1+ ;)fn(p, z),
fZZ_%a fn+1:%fn+azfn_%apfna
1 522
f3 %a fa= E(l—i—p—i)

If we transform to the z*, 2~ coordinate system we are now able to calculate
the commutator of z7and z~and get

N 0 h2n+1 0 n + )
s57] = 2 (XizH)(X"~ig~
e 1e] = 2 gy ,Z() )
h? 22
= —2hz+ 6(1+E

)(=5) + O(h).

4z
ra

In this case the original algebra relations are not reproduced.

Second try

After a linear basis transformation we now can start with the algebra relations
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2,57 = 4", [547]=—-3", [T,47] =%

With f = Inz~we have {f,z} = 1. The Hamiltonian vector fields become
now

X=Xf=8z—i_8+, Y=X,=2"0, — 27 0,-.
x

Therefore
X"(2) =6z 46, Y™(2) = 6%,
1
Xn($+) = —5”14 + (5"0$+ — 5”2;, Yn($
x
X"z )=6z", Y™z )= (-1)"z".

4
N

Il

8

+ N

and with the asymmetric x-product (2.13) we get

zxxt =zat +hat, atxz=2Tz,
zxx” =zxr —hx, 1 xz=21x 2
2
x+*m’:x+af+hz—5, x xxt =atx.
and therefore
h2
[zrat]=hat, [z¥27]=—hz™, [z7 *27])=hz— —.
2

With z = z — % now the correct algebra relations are reproduced.

2.3.9 The quantum space M (so,(3))

Here we give as a second example the *-product for the quantum space
M (s0,4(3)) invariant under the quantum group SO,(3). |21] The algebra re-
lations in the basis adjusted to the quantum group terminology are

287 =¢*273, 23T =q %3, [27,2%] = (¢ — q’1)22.
For the commutators we get
1
2,81 = (" - 1)&*2, 2,2 ]=(P-1i 2 [27,i%]=(¢— )%
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and therefore the Poisson brackets are
{2,027} = 222, {2,207} =222, {z ,27} =22~
For f =Inz and g = Inz we have {f, g} = 1 and the Hamiltonian vector
fields become

27* n _
X;=220,+—0;, X,=2"0y—2"0_.
x

For the x-product we try now

X =20, + O;—ZQBJF, Y =a"0, —x70_.
We have
Y2t =2, Y*a)=(-1)"z", Y"(2) =6,
X"(z7) =60, X"(z2) =z,
X™(z) = a2”_lz—i forn >0

X

For the asymmetric x-product (2.13) we calculate

ztxz=2a%2z, zxzt =eztz,
T *xz=x z, Z2xI = e_hx_z,
+ =gt

_ _ «, _
rtx2 =ztx +§(e h 122, 2 xx

Z*Z:,22

and get algebra relations
+_ _ho+ o ho— a1 Y —2n
zxxT =€l T kz, zxxT =eMrxz, [zT %z ]=§(e -1z xz.

If we set

this reproduces the algebra relations.
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For the antisymmetric x-product (2.14) we calculate

h b
ztxz=e 22"z, z2xzT =e2a2tz,
_ ho_ R
T kz=e2x"z, z*xx =€ 21 2,
- _ «, _ _ _ o
rtxz =ztr +§(e o122z xzt =22 +§(eh—1)22,
_ 2
Zxz=2"
The algebra relations now are
b hot - - —h— + ok Qo h_ h
zxaxT =€ kz, xTzrkaxT =e MxTkz, [T rx ]=—§(e —e Mz xz.

Here we can reproduce the algebra relations when we set

2
-
q+ty

h
q:€2, o= —

2.3.10 The quantum space M (so,(1,3))

We try to generalize the previous example and start with the more general
commuting vector fields

1
X =20, +—(az®+B2)0,, Y =z%0, -2 0_.
x
The only relation, that is changed is
1
X"(z%) = — (2" 'az? + B2)
x

and we calculate with the antisymmetric x-product (2.14)

_h h
ztxz=e22%z, zxzt =e2xtz,
_ b .
T kz=e:x 2, Z*xT =e€ 2T 2,
2xz =2,
_ _ o, _ _h
ttxrT =a'x +§(e h—1)22+B(e2 — 1)z,
— et — b= Eh 2 b
zTxxt=x"x +§(e —1)z° + B(e2 —1)z.
The relations become
+_ ho+ h

2xxT =ex" xz, Z2xX =e T xz,
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h

2 2)z.

_5(

The algebra relation of M(so,(1,3)) are [21, 23]

h h)z*z+—ﬁ(e% —e

e’ —e

We can define

These relations are reproduced by the x-product if we set
2., B=-1.

1
(H-q

oa=—

2.3.11 The quantum space M (so,(4))
The algebra relations of M (so,(4)) are |20, 69

1T = G221, T1T3 = qT3%1,
T3T4 = qT4T3, Toly = qT4T2,
ToT3 = T3T2, [334,551] = (q - 5)332333-

The Poisson brackets are
{z2, x4} = xo24,
{333, 964} = X374,
{LL‘4,.7)1} = 2.732333.

{371,332} = T1%2,
{z1,23} = 2173,
{3’)2,373} = Oa
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Since the Poisson tensor has two Casimir functions, two vector fields will
suffice. We take

f=Inzy, g=Inxy,
{f.g} =1,
Tol3
X:Xf:x484—x181, Y:Xg:—($282+$383)+2 e 81.
Therefore
n n n n0 ni iX2T3
X (.’1?1) = (—1) Iy, Y ($1) :5 $1+5 (—2) 74 y
Xn(.’EQ) = (5n0x2, Yn(Z'Q) = (-1)”.@2,
Xn(.’lfg) = 6”01‘3, Y"(acg) = (—1)n$3,
Xn($4) = T4, Yn($4) = 5n0$4.
For the asymmetric x-product (2.13) we get
T1*x Ty = 6h$1$2, To*xT1 = T1X2,
T * T3 = etz xs, T3 *x T = T1X3,
Ty Kk Ty = T1Ty,  Tyk Ty = 2124 + (€2 — 1) 2073,
To *x T3 = Tol3, XT3 *x To9 = ToX3,
X9 * Ly = Toly, Ty * Ty = e’hx2x4,
T3 * T4 = T3T4, Ty *Tg = e_hx3x4
which yields the algebra relations
T *$2:€hl‘2*$1, T *$3:€hl‘3*$1,
Ty k Ty = Ty x T3,  Tox Ty = €Ty K o,
To *x T3 = T3 * Ta, [x1 ¥ x4] = (6_2h — 1)zg % z3.
For the antisymmetric x-product (2.14) we calculate
B _h
T1*x Xy = €2X1Ty, ToxX1 =€ 2T1To,
XT1*x Ty = e%xlmg, T3 *T1 = 6_%.7)1.T3,
T1xTy = 2124 + (7" = Daoxs,  z4xx1 = 21204 + (" — 1) 2023,
To * T3 = Loz,  T3*Tog = Tok3,
To * Ty = 6%.’E1$2, Ty * Ty = e_%xlxz,

h _bh
T3 *x Ty = €213, Ty *Tg =€ 21173
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and we get the relations
_ _h

T1*To =€ 'T9 %I,

T3 * Ty = 6h$4 * T3,

To x X3 = T3 x T2,

T1 X% XT3 = €h$3 * T,
To *x Ty = 6h$4 * T,

[T1 % x4) = (eh — e_h)xg * T3.

In this case the relations are exactly reproduced.

2.3.12 Fourdimensional g-deformed Fock space

The algebra relations are |70, 71|

. 1, .

T1T2 = —ToT1,

1Z2 = qT201,

G121 = ¢*%19: + 0,

The Poisson tensor becomes
{$1,332} = —T1%2,
{$2,y1} = —T2Y1,
{y1, 21} = 2z191 + 6,

U192 = qU2Y1,
YoZ1 = qT1Y2,

JoB2 = ¢° Bl + (¢* — 1)&191 + 0.

{y1,y2} = Y1Y2,
{xlay2} = —21Y2,
{y27 552} = 2(961y1 + .TQyQ) + 6.

After some calculations we find the desired functions

1
fi=—Inz, fo= §ln(2$13/1+9)a
1. 2(zyr + z2y2) + 0
= —1 = —1
g1 = fo nro, g2 5 n 22101 + 0

with {f1, fo} =1, {91,92} = 1, the other brackets vanish. The Hamiltonian
vector fields are

2z + 0
X1 = Xy, = 2905, + Y20y, + %ayu Yi = Xyp, = 210z, — y10y,,
1
2T+ +6
Xy =Xy, = =2 x ) Oy, Yo+ Xgy = 2205, — Y20,
2

We calculate

X (z1) =61,  Y"(21) = a1,
Xln(.’ll'g) = T9, len(.’lfg) = (5”0372,
n 0
XT'(y1) = — (211 + 5) (n>0), Y"(y)=(-1)"y,
Xln(yQ) = Yo, Yln(yQ) = 5n0y2’
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X3 (z,) = 6™ Vi (z1) = 6™z,
X2 (2q) = 6™ Yo' (z2) = 9,
X (yl) =" an(yl) = 5n0yla
" 0
X3 (y2) = $—2($1y1 + Tay2 + 5) forn >0, Y3(y2) = (=1)"y

Since we now have four vector fields we use a generalization of the asymmetric

*-product
0 hntm
fra= 3 T s o)

n=0,m=0

and get

Ty * To = T1Ty,  To kT = €'T12o,
Yi*Yo = YiYa, Yok Y1 =€ "Yi1Ya,
Yi % Ty = Y1Ta,  Tox Ty =€ "Toy,
Yo * X1 = €h$1y2, T1* Y2 = T1Y2,
T1*x Y1 = T1Y1, Lo * Yo = T2Y2,
eh —1
2

Y1 * 7 = 2wy + 0,

e —1
2

Yo * To = e Toys + (€ — 1)1y + 6.

The algebra relations for this x-product are

—_ _—h _ _h

Ty *xTy =€ "T9x 2Ty, Y1 * Y2 = €7Y2 * Y1,
h h

Y1 % Ty = € T % Y1, Yo % T1 = € T % Y3,

o 62h—1
Y1*xx1 =€ Ty XY + 2

0,

2h
e —_

2 2
Yo x Ty = €Ty x Yo + (e

6.

— 1).{171 * Y1 +

And we get the same relations as in the original algebra if we set




34

2. x-products




35

Chapter 3

Geometry

To study physics in the noncommutative realm, one replaces the commutative
algebra of functions on a space with a noncommutative algebra. Such a
replacement is generally controlled by a parameter so that in some limit we
can get back a commutative space. The same we expect from theories built
an a noncommutative space: In the commutative limit they should reduce to
a meaningful commutative theory. x-products have shown to be very useful
tools for constructing such deformations since their classical limit is very
easily calculated. In this chapter we apply *-products to the commuting
frame formalism developed in [6]. For a noncommutative space where the
commutator of the coordinates is constant, the commutative limit of this
formalism is the usual flat spacetime. For noncommutative spaces with more
complicated, non-constant commutators this limit can be a curved manifold.

After a short introduction to noncommutative differential geometry where
we fix our notation, we will calculate the semi-classical limit of the commut-
ing frame formalism. In this limit we will see that the construction of a
Poisson tensor for a given frame reduces to solving a couple of differential
equations. The deformation quantization of the Poisson tensor gives us a
*-product and we have constructed a noncommutative space with desired
classical limit. We give some examples and we will see that the formalism
works well in two dimensions, but has its restrictions in four dimensions. In
the end we will construct Poisson structures having the same symmetries as
the Schwarzschild metric. Here we are able to give a first order differential
calculus with the desired classical limit.
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3.1 Noncommutative differential geometry

Locally every manifold can be described by N coordinates z'. The set of
all derivations acting on functions on the manifold forms a module over the
algebra of functions. The partial derivatives 0; form a basis for all these
derivations. Dual to the space of derivations is the space of one forms. The
differentials dz* form a basis of this space and they are dual to the partial
derivatives

With help of the differentials one is able to introduce the de Rham differential
mapping functions to one-forms

df = dz'0;f.
If one introduces higher order forms with the rule
drtda’ = —da’ds,

one can extend the de Rham differential to a nilpotent graded derivation.
The differential d and all higher order forms are the exterior algebra of the
manifold. One can show that the whole topology of the manifold is encoded
in the properties of d or the exterior algebra respectively.

In noncommutative geometry one replaces the commutative algebra of
functions on the manifold by an noncommutative algebra. Here we again
restrict ourself to algebras defined by relations

A=C<z'--- 3V > /R. (3.1)

To find something similar to differential geometry one can go on and construct
differential calculi to these type of algebras. Just like in the commutatitve
case a differential calculus on A is a Z-graded algebra

QA) = P (4)

r>0

where the spaces Q7(A) are A-bimodules with Q°(A) = A. The elements of
Q" (A) are called r-forms. There is a linear map

d: U (A) — QH(A)

with the same properties as the commutative differential. It is nilpotent

=0
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and graded X X X
d(wlwz) = (dwl)wg + (_1)TW1dWQ (32)

where w; € Q(A) and w, € Q(A). Additionally we assume that d generates
the spaces Q"(A) for r > 0 in the sense that

QO A) = A-dU(A) - A

Using the Leibniz rule (3.2), every element of Q"(A) can be written as a
linear combination of monomials f(#)dZ"*di" ---di*. The action of d is
determined by

A A

d(f(&)dz"dz™ - - - dz'r) = d(f(z))dz" dz™ - - - dz™

To construct a differential calculus on the algebra A (3.1) one starts with
a first oder differential calculus, that means one restricts to the 1-forms and
the differential
d: A— Q'A).

The Leibniz rule (3.2) and the relations R of the algebra have to be consistent
with the bimodule structure of Q'(A). In the following all relations will be
given in terms of commutators [2?, 2] = ¢¥/ (), therefore

[di?, &%) + [#%, d27] = dc (&).

For the higher order differential calculus one has to go on in the same way.
The relations of the bimodule structure again have to be consistent with
d? = 0 and the Leibniz rule.

3.2 Commuting frame formalism

Surely in commutative differential geometry one is not forced to use the
partial derivatives of the coordinates as basis for the space of derivations.
One can also use a comoving frame

e, = €,°0; (3.3)

where e,’ is an invertible matrix. Here @ = 1--- N is an index numbering
the derivations of the frame. The dual frame is therefore (e,%¢e,* = 0¥)

6* = e, (x)dz".
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The differential can be written only with this new basis elements

df = 0%, (f).

These formulas all have global extensions to the whole manifold. To go on
we can restrict ourselves to special differential calculi related to derivations
of the algebra. The set of all derivations on the algebra is not any more a
module. But we can take a special set of linear independent derivations é,
and introduce a first order differential calculus in the following way. The
space of one forms should be a bimodule over the algbra generated by g° and
the differential is defined by

The components of the frame may be defined by
€aT% = €,%.

Since the é, are derivations it is consistend to let the 6% commute with all
generators of the algebra

i,aeb — ebi,a

The 6* form a commuting frame for the algebra. The differential d and the
forms 6% constitute a first order differential calculus on the algebra. To con-
struct an analog to the exterior algebra a higher order calculus is necessary.
As we have seen relations for the §¢ among themselves and df%in terms of
two forms have to be given in a consistent way.

A very important structure for physical applications is a metric on the
manifolds which turns it into a (pseudo-) Riemannian manifold. It can be
shown that there always exists a dual frame

0 = e, (x)dz*
for which the metric is constant
gudxtdz” = Nap0*6° = nabe“ueb,,dx“dx”.
Note that there are many frames resulting in the same metric. If M%(z) is
a local SO(n) gauge transformation the metric stays the same if we use the

transformed frame

0’“ = M“b(x)eb. (34)
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With the above construction it is very easy to generalize this to the noncom-
mutative case. We simply assume that the frame is always adapted to the
metric

g == nabéaéb'

If the derivations are all inner derivations

éof = [Aa, [, (3.5)
the algebra has to have a trivial center, if the module of one forms should
have the same number of generators as in the commutative case. Otherwise
one is not able to find enough linear independent derivations. We will call the
Ae “momentum maps”. The components of the frame are now commutators

Ea2® = [Ng, 3% = &,°
and the differential may be written as a commutator with a one form
df = 6%, f = [0°\,, f].

We will call § = é“j\a the Dirac operator of the differential calculus. For a
Dirac operator in the sense of [2] more conditions have to be fulfilled. It is
not clear how to generalize the notion of a local frame transformation (3.4),
since after that the frame will not commute any more with functions.

3.2.1 Semiclassical limit of x-product representations

Here we assume that the noncommutative frame consists of inner derivations
(3.5). If we have represented the algebra with a x-product then to first order
the algebra relations define a Poisson structure

[2% % 2°] = h{z®, 2"} + - = hTI*(z) + - --

Further there are functions A\, that correspond to the momentum maps of
the algebra. We now have

{)‘aa f} = 6a“auf

and we can identify the functions e,* with the coframe of the first section.
In the semiclassical limit there is direct correspondence between a frame and
the momentum maps.

On the other hand one can ask the question if it is possible to construct
a Poisson structure and momentum maps that reproduce with the above
formalism a given frame. We know that

{Ag, 2*} = IO Ay = €* (3.6)
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has to be fullfilled. If we introduce the closed symplectic form w = IT~! we
can translate the last equation into

u)ag = —(8a)\a)e“g.

From this we derive two equations that have to be fullfilled for A\, and the
frame e®. w has to be antisymmetric and closed

Saﬂ = (aa)‘a)eaﬂ + (aﬂ)‘a)eaa = Wga + Wap = 0,

dw = 0.

Since the algebra has trivial center it is neccessary that the dimension of our
space is even-dimensional N = 2M. The equation S = 0 has ;N(N + 1)

N
and dw = 0 has (3) = ¢N(N — 1)(N — 2) components. Even in two

dimensions these are 3 partial differential equations for the 2 functions A, .
We see that in higher dimensions it will become very difficult to find a frame
in which the above system of equations may be solved. Further we are free
to make local frame transformations and coordinate transformations on our
classical manifold and there are no hints which frame to use for quantizing
the geometry.

3.2.2 The flat metric

First suppose we want to apply the formalism to the frame #° = §°,dz®.
Then for S =0 we get
aa)\g + ag/\a = 0.

After some calculations one finds that
Ao = Caﬂlﬁ + g

is the most general solution. c is a constant antisymmetric matrix and J,, are
some constants. For the inverse of II this yields

Wap = Cap,

which is clearly a closed form. We have reproduced the formalism with
constant invertible Poisson tensor.

Secondly we want to investigate the case of a holonomic frame 6% =
Onf%dz®. After a coordinate transformation one sees immediatly that now

)\a = Cabfa + 511
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with ¢ and ¢ again constant. Therefore

Wap = aafaa,@fbcaba

which is again closed. The first order formalism is invariant under coordinate
transformations, which we could have seen from the definitions of S and w,
too.

3.2.3 Two dimensional examples
In the following we will apply the formalism to some two dimensional ex-
amples. We will see that it works quite well in this case since the equation
dw = 0 is fulfilled for all two forms in two dimensions.
Sphere
The metric of the sphere in polar coordinates is
ds* = dv? + sin? 9dy?.
The most obvious frame is

' =dv, 6% =sindde.

S = 0 yields
Oy A + Oy A1 = 0,
819)\2 sin ¢ + aw)\l = 0,
OpAa + 0,00 = 0.
Therefore
M=ot b, Opha(9) = —
LT TR o VAT hsind
and w may be calculated )
UJg(p = E

In two dimensions every two form is closed and therefore

{19’ (P} =h

fulfills the Jacobi-identities. An algebra having this Poisson structure is the
Heisenberg algebra [19, ¢] = h in two dimensions. Since the second momen-
tum map Ao is not a polynomial in the algebra generators a quantization of
this momentum map seems to be very unnatural.
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Constant curvature

It is known that all two dimensional spaces with constant curvature can be
written in the following form (see e. g. [6])

ds® = f2(u,v)(du® + dv?)

with
f=— h
=————  sphere,
14+ u? + 02 P
1
f=——— Poincare disk,

1
= - Lobachewski plane.
v

For the sphere this are stereographic coordinates. We use the frame

0' = fdu, 6= fdv.

S =0 yields
1 1
)\1=—ﬁv+51, )\2=Eu+52
and we can calculate
{u,v} = ﬁ
’ f

This Poisson bracket easily may be generalized to algebra relations. All
the momentum maps are linear in the coordinates. Therefore they correspond
to the algebra generators, no ordering ambiguity is present. For the sphere
in stereographic coordinates we get

(6, 9] = h(1 + 4% + 0%).

Since we have started from the stereographic projection of the sphere the
resulting algebra for the sphere makes no reference to the different topology.
The resulting algebra is a noncommutative sphere with a hole at the south
pole and in this sense a noncommutative plane with a non constant metric.
Similar we get for the Poincare disk

and for the Lobachewski plane
{a,0} = ho.

The resulting noncommutative Lobacheweski plane is known to the literature
[72].
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Metric with one translational symmetry
We start with the rather general ansatz
ds® = £e®) dt? 4 22 qp?

which is invariant under translations ¢ — ¢ + ¢ in the ¢ direction. We use the
frame

0! = e¥dt, 0" = e®dr.

S = 0 yields
1 1
/\r = Et, 8T/\t(’l“) = —Eetb_w
and the Poisson structure becomes
{t,r} = he™®.

Two dimensional Schwarzschild

We specialise now to the case of the t-r-slice through the Schwarzschild met-
ric. Here

2 _ To 26 _
eV =1-— e
r’ -

{t,r} = hy/1— :—0 (3.7)

This is well defined if we restrict the manifold to ¢t € R and r > ry. In
the limit r — oo this Poisson structure tends to the constant one. The
momentum maps are

and we get

1
At = _E(l + 7o In(r — 1)).

We can write down an algebra which has this Poisson bracket as semiclassical

limit
[fv TA] = h\/ 1—- T_Ao; (38)
T

where the square root is considered as a Taylor series in 7. This algebra may
be represented with a x-product constructed out of the Poisson bracket (3.7).
We will use the resulting algebra in (3.3.3) to construct a noncommutative
frame for the four dimensional Schwarzschild metric.
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Higher order differential calculus

We want to construct a higher order differential calculus for the algebra (3.8)
for

df = 0, f1+ 0, ]
with
. . 1 .
)\T:—t, )\t:—ﬁ(l-f-T'()]n(’f'—T())).

First we calculate

From this we derive

~

odt di = 4di dr p'(7),

The first condition implies
0 = [{, di di] = 4di d? [t, p' (7).
Therefore
dt di =0,

which has not the desired classical limit.

3.2.4 Metrics in four dimensions

Although the formalism works well in two dimensions we will see that this
is not the case in four dimensions. We tried to solve the system of partial
differential equations for diverse physically interesting frames but we never
were really successful.
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Schwarzschild metric
The best known form of the Schwarzshild metric is

1
ds? = —(1— 29)dt? + T dr? .
. T

r

Here the most obvious frame is

0t = e¥dt, 0" =e Vdt,
0% =dy, 0¥ =sinddop,

with e¥ = /1 — 2. Here the S = 0 equations have no solution for arbitrary
1 except ©» = 0. In another coordinate sytem the Schwarzschild metric

becomes [73]
: . /2
ds® = —di® + (dz* — o | r—?dt)Z.

A more general frame ist
° =dt, 0 =dz' —2"f(r)dt,
with f = QT—’?? For general f again the S = 0 equations imply f = 0.

Kasner metric

One form of the Kasner metric is [73]
ds® = —dt* + (dz" — p;-%jdt)Q.
To be more flexible we start with the following frame
0° =dt, 0 =dz"+ P'(t)zldt.
The S = 0 equations become

80)\() + ao/\iPijxj = 0,
80)\1' + Bi)\llexm + 81)\0 = 0,
ONj + 9\ = 0.

From the last equation we deduce that
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We make the ansatz

A =—at)y Ay =at)r A, =B(),
p(t) O 0
P(t) = p(t) 0

and the S = 0 equations reduce to

&=pa, B=-—qp,
with '
Ao =—Bz+7.

The two form w becomes

w = —a&(ydx —zdy) A dt — adx A dy + Bdz A dt

= (xdy — ydz) AN da — adz A dy + dz A dp.

It is not closed. To cure this problem we make a slight modification

w= (axdy — (1 — a)ydz) N — adx ANdy + dz AN df

with a some constant. We get now
o 1
{z,2} =a—z, {zt}=—,
af g

1

{z,y} = aa%y, {z,y} = >

If we use the definitions for the A\, from above, we can calculate the coframe

1 —alz —(1-a)%y —gz
D, 2% = 0 1 0 —agy
0 0 1 (1- a)%x
0 0 0 1
The frame becomes
9 = dt,
0* = dr+ oz dt,
«
a
0 = dy+(1- a)aydt,
. '2
6 = dz+ (é —(a* — (1 — a)2)a—.my)dt
p of

+%(aydx — (1 — a)zdy.
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We see that with the commuting frame formalism it is impossible to construct
a frame, becoming in the classical limit the above given frame of the Kasner
metric.

In |74] a noncommutative version of the Kasner algebra was constructed
using the commuting frame formalism we started from. To relate our example
to the one there we now further assume

a t’ «
Therefore
o & a=te
a 1—a
Further we set .
p_ps
Bt
SO
8=t
Now
% = Byfom
5 a
and the frame becomes
¢ = dt,
z
0* = dr+p ?dt,
l1—0a
0 = dy+m %dt,

p?

6° = dz +p3%dt +(a* — (1 - a)Q)—Qt%l_psa:ydt
a

+&t%_p3_1(ayd:r — (1 — a)zdy).
a
The last term of #* has the same order of magnitude as the ordinary deviation
from the flat metric in #* and 6.
With this solution the commutation relations become

{Zﬂ x} = pltipf;ilx’ {Z’ t} = tipgi
l—-a .. o
{zy} = pt Py, oy =t

If one sets the parameters p; and p3 to zero the above relations become
constant commutator relations between the coordinates. If we let ¢ go to
infinity we can fit the parameters p;,p3 and a in such a way that all relations
vanish.

a
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3.3 SO(3) x T invariant Poisson structures and
algebras

In this section we try to construct algebras having the same symmetries
as the Schwarzschild metric. Meaning invariance under rotations and time
translations. For this we first construct non-degenerate Poisson structures
with these properties. Since we know that every Poisson structure may be
quantized by a x-product we are able to write down all possible algebras with
trivial center. We will see that these are quite unique. With the help of one
of these algebras, we propose a non-commuting frame, that becomes in the
classical limit a frame for the Schwarzschild metric.

3.3.1 The Poisson structures
We start with following Ansatz
{xiaa:j} = /B(Ta t)eijkxk:
{t,z'} = afrt)2".

where i = z,y,z and r = /2? + y? + 22. These equations are obviously
covariant under rotations. It would be invariant under translations in the ¢
direction if o and 8 do not depend on ¢, but we keep them in this form to
be more general. The bracket with a function f is

{2, f} = —a2'd,f + Be’},0;f,
{t’ f} = a.’l;zazf_
With this the Jacobi identities are
{xia {:vj,xk}} teye. = —ad, B *r?,
{ta {:Ej, ack}} +cyc. = Oz(Tarﬁ _ ﬁ)eijkxk.

The brackets become a Poisson structure if the right hand side of the above
equations vanishes. This is the case if either

a =0, ﬂ:ﬁ(rat)
or
a=alrt), B=br

where b is a constant. In the first case ¢ commutes with all functions. Only
in the second case, there is the possibility for all derivations to be inner
derivations. Therefore we will later restrict us to this case.
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3.3.2 Algebras and isomorphisms

After quantization the Poisson structures become algebras. Note that in both
cases
{r,z'} =0

and there is no ordering problem on the right hand side of the algebra rela-
tions if @ and B do not depend on t. We will assume from now on that £
does not depend on ¢ . The first case is now

[, 37) = B(F)ed®,  [E,2']=0
with 3 # bf. If we define §° = 371(7)2’ these relations become
8,8 = 78", 28] =0.

Therefore this algebra is isomorphic to U(su(2)) x C.
The second case is

[2°,27] = bie 2%, [t 3" = alF, 1).

If we again define ' = 7712’ we get the constraint §3; = 1. The relations

become

5%, 5] = b 8%, [5,7] =0,

[£,8 =0, [i,7] = i)

This algebra is isomorphic to S, x C? for « = 0 or S, X A otherwise. For
b=,/ ﬁ and N an integer Sy is a fuzzy sphere with deformation parameter
b and has finite dimensional representations. A can be any two dimensional
algebra.

3.3.3 Rotational invariant metrics with a minimal non-
commuting frame

In the last section we have seen that the second algebra decomposes into a

three dimensional rotational covariant algebra and a two dimensional algebra

for which we can now use the algebra from Section 3.2.3. The relations
become now (&* = 7§, §;;5'57 = 1)

[8°,87] = be'} 8%, [§,7] =0,

[£,5]=0, [t,7]=he?®.
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We now use five inner derivations to define a frame

at

é? = [%, ] — —Eijkﬂfjak,

< t
ér = [)\7‘1 ] = [Ea ] — €_¢67-,
ét = [S\t, ] — €_wat.

The arrows indicate the classical limit. ;\t is defined in the classical limit via

8,«)\,;(7') = —Eeqb_w.

In the classical limit z°e; = 0 and the derivations are linearly dependent. The
dual one forms to the é; are well known, they form the differential calculus
on the fuzzy sphere. The dual forms of é, and é; are easily constructed. The
classical limit of these forms is

gi L dak

b — —2€ ke da”,

0" — e%dr,

0" — e%dt.
We know
We define now some forms that do not commute with functions

0" = 765,

f0' =o't fr

Only ¢ does not commute with g'. With these forms we can now construct a
noncommutative version of the four dimensional metric

ds® = —(0Y)2 + (67)% + 6,007 — —e®dt® + e2*dr? + r2d2.
Note that dual to the §% are the following deformed derivations

_1.S 1 .
l[g, ] — ;eijkxj(?k

with
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The inner isomorphism defined by 7 is

In the case of the Schwarzschild metric this becomes

~. .~ h T
PR =1+ /1 - 2
T T

Again this only makes sense if the spectrum of 7 has no values smaller than
To. In the limit r — oo this tends to the identity.

If we define the one form

it follows that (a = r,t)
0, f]=0'e.f + 6°e.f = df
0 is the Dirac operator of the differential calculus.

It would be nice to have a higher order differential calculus for the first
order one. To construct this we note that

A 1 .
[eiaej] = f_injkeka
6, &] = 0,
A L 1,
[er: €i] = (er;)rei = —gei,
[ér’ét] — _%[e—wm,.],
It is consistent to define
6'67 079,
éaéi — _ézea
and
1hk 1 kaidi 1 1 arsk
db = 2A2€ij 99]+799 y
T 7
dom = 0.

The claim d2 = 0 reduces to
dote,f — 6°0%¢ve, f = 0.
In (1.5.4) we have shown that this implies (07)2 = (") = 679" = 66" =

dft = 0. Again we are not able to extend the first order differential calculus
to a differnential calculus of higher order.
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Chapter 4

Derivations of x-products

We have seen that if we want to make noncommutative geometry in the %-
product formulation we have been very successful interpreting derivations as
a noncommutative analog of frames. In the last chapter we used invertible
Poisson structures, the resulting algebras therefore had trivial center and all
derivations have been inner derivations. To be more general we now relax
our restrictions and take degenerated Poisson structures in consideration.
Consequently the algebras will have central elements. This is due to the fact
that in the classical limit all vector fields formed from the inner derivations
will commute with the functions associated to these central elements. We
are forced to deal with outer derivations and in this chapter we first will
examine derivations of x-products without referring to any abstract algebraic
construction.

In the beginning we will introduce Kontsevich’s Formality map [38] to
make some statements about derivations on quantized Poisson manifolds.
Then we will calculate the general form of derivations on the Weyl ordered
*-product. Knowing the restrictions and the form of the derivations we are
able to construct an interesting differential calculus on the x-product algebra.
This will be used later to make contact with Seiberg-Witten gauge theory.
After some considerations how to construct traces for x-product algebras
we are able to write down consistent actions for noncommutative theories
becoming non abelian gauge theories on curved manifolds in the classical
limit.

4.1 The Formality Map

Kontsevich’s Formality map [38] is a very useful tool for studying the rela-
tions between Poisson tensors and x-products. To make use of the Formality
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map we first want to recall some definitions. A polyvector field is a skew-
symmetric tensor in the sense of differential geometry. Every n-polyvector
field o may locally be written as

a=a""m 0 AN...AD;,.

We see that the space of polyvector fields can be endowed with a grading
n. For polyvector fields there is a grading respecting bracket that in a nat-
ural way generalizes the Lie bracket [-, -], of two vector fields, the Schouten-
Nijenhuis bracket (see A.1). If 7 is a Poisson tensor, the Hamiltonian vector
field H; for a function f is

Hf = [71', f]s = —’ﬂ'ijaifaj.
Note that [7,7]s = 0 is the Jakobi identity of a Poisson tensor.

On the other hand a n-polydifferential operator is a multilinear map
that maps n functions to a function. For example, we may write a 1-
polydifferential operator D as

D(f) = Dof + Di0;f + D¥;0,f + ...

The ordinary multiplication - is a 2-polydifferential operator. It maps two
functions to one function. Again the number n is a grading on the space of
polydifferential operators. Now the Gerstenhaber bracket (see A.2) is natural
and respects the grading.

The Formality map is a collection of skew-symmetric multilinear maps
U,,n=0,1,..., that maps n polyvector fields to a m-differential operator.
To be more specific let ay,...,a, be polyvector fields of grade ki,...,k,.
Then U, (a4, ...,a,) is a polydifferential operator of grade

m=2-2n+ Z k;.
In particular the map U; is a map from a k-vectorfield to a k-differential
operator. It is defined by
Ur(@ 0, Ao N0 ) (frs oy fo) = @28, fr -0 Oy, foe

The formality maps U, fulfill the formality condition [38, 75]

1
QllUn(ala---aa’n) + 5 Z 6([, J)QIQ(U\II(al)aUU\(aJ)) (41)
TuJ={1,..., n}
I,J#0
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1 .. i) “~ ~ ~
= §Ze(z,j,...,2,...,j,...,n)Un,l(QQ(ai,aj),al,...,ai,...,aj,...,an).
1£]
The hats stand for omitted symbols, @} (Y) = [T, ] with p being ordinary
multiplication and Q)(Y, Tg) = (—1)(T1=DIT2{[, Ty with || being the
degree of the polydifferential operator Yy, i.e. the number of functions it is

acting on. For polyvectorfields a?'"iks Oiy N\ ... N0, of degree ks, we have

Qa(an, ap) = —(—1)*1=Dk2 [0y )] .

For a bivectorfield 7 we can now define a bidifferential operator

*:i—'Un(’ﬂ', ...,’ﬂ')

n.
n=0

i.e.
frg= Z%Un(w, ™).
n=0 "

We further define the special polydifferential operators

Q(a) =

3
Il
—

hE
~
=
D
B
3

‘Il(ozl,ag) = Un(al,ag,ﬂ',...,ﬂ').

n

M]3
[ | =

3
[|
o

2)!
For g a function, X and Y vectorfields and 7 a bivectorfield we see that
ox = ®(X)

is a 1-differential operator and that both ¢(g) and ¥(X,Y") are functions.
We now use the formality condition (4.1) to calculate

[x*le = @(n,7ls), (4.2)
[@(f).,*]c = —2([f.7s), :
[5}(,*](; = (D([X, 7T]5), (44)

[0x,0yv]c + [Y(X,Y),x|g
= ix,v1s + ([0, Y]s, X) = ¥([0, X]s,Y), (4.5)
[@(7), ®(9)]e + [¥(7, 9), *]a
= —0irgls — Y([0, gls,m) — ¥([0, 7]s, 9),
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[6x, ®(9)]c
= #([X, gls) — ¥([0, g]s, X) — ([0, X]s, 9)- (4.6)

If 7 is Poisson, i. e. [m,7|s = 0 and if X and Y are Poisson vector fields, i.
e. [X, s =[Y,7|s =0, the relations (4.2) to (4.5) become

frlgxh) = (fxg)*h,
ony(9) = —[®(f)7 gl
ox(frg) = ox(f)xg+f*dx(g), (4.7)
([6x,0v] = ox 1) (9) = [P(X,Y) 7 gl
when evaluated on functions. [-,-] are now ordinary brackets. * defines

an associative product, the Hamiltonian vector fields are mapped to inner
derivations and Poisson vector fields are mapped to outer derivations of the
*-product. Additionally the map 0 preserves the bracket up to an inner
derivation. The last equation can be cast into a form which we will use in
the definition of deformed forms in (4.3)

[0x,0v] = Ox,v).

with
(X, Y], = [X,Y]r + He-1y(xy)-

For every Poisson manifold there not only exists a quantization with the For-
mality x-product, but additionally there is a deformation of the Lie bracket
going with the derivations of this x-product.

4.2 Weyl-ordered x-products

The formality x-product is the obvious choice if we start from a Poisson man-
ifold and therefore if we only need a x-product that reproduces the Poisson
structure to first order. But starting from an algebra, we need a x-product
that reproduces the whole algebra, not just the Poisson structure. If we ex-
tract a Poisson structure from an algebra generated by noncommutative co-
ordinates fulfilling certain commutation relations, there’s no way of knowing
if the formality x-product built from this Poisson structure will reproduce the
commutation relations or not. For this purpose the Weyl ordered x-product
(2.2.2) is more suitable. In the following we will calculate the derivations for
this type of x-product.

We have shown that for the Formality *x-product there exists a map ¢
from the derivations of the Poisson manifold 7, M = {X € TM|[X,7]|s = 0}
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to the derivations of the x-product T, M = {§ € Tppy|[d, *|¢ = 0}. Since an
arbitrary x-product is equivalent to the Formality x-product, we can expect
that such a map exists for every x-product. Here we state some facts, that
we can say about such a map in general. For this we expand it on a local
patch in terms of partial derivatives

Ox = 0%0; + 0%0,0; + -+ -.

Due to its property to be a derivation, it is now easy to see that dx is
completely determined by the first term 6% 0;. This means that if the first
term is zero, the other terms have to vanish, too. If further e is an arbitrary
derivation of the x-product there must exist a vector field X, such that

5)( = €.

€

If XY € T, M, then [dx, dy] is again a derivation of the x-product and we
can conclude that

[0x,0yv] = Oix,v),, (4.8)
where [X, Y], is a deformation of the ordinary Lie bracket of vector fields.
Obviously it is linear, antisymmetric and fulfills the Jacobi identity.

We will now calculate ¢ and [+, -], up to second order for the Weyl ordered
*-product. We assume that dx can be expanded in the following way

Ox = X'0; + 6%.0,0; + 645 0;0;0, + - - -
Expanding the equation

ox(f*g) =0x(f)xg+ f*0x(g)
order by order and using [ X, c¢]s = 0 we find that

. 1 ; .
5X = XZ(?,-— Eclkakczmalaijﬁiﬁj (49)

1 . .
+ﬁclkc’m6181~XJ8k8m8j + 0(3) .

For [-, -], we simply calculate [0x,dy] and get

[X’ Y]* = [X’ Y]L

1 . . . .
~19 (* O™ 00 X7 0;0;Y™ — *0p ™00, Y7 0,0, X™)0,,

1 . : ) .
+ﬂ(clkc’m816,-X36k8m8jY" — ClkszalaiYJakamann)an

+0(3).
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4.3 Forms

Now we want to introduce noncommutative forms, which will later be used
in Seiberg-Witten gauge theory (5.3). If we have a map § from the Poisson
vector fields to the derivations of the x-product, we have seen that there is
a natural Lie-algebra structure [-,-], (4.8) over the space of Poisson vector
fields, the space of derivations of the Poisson structure. On the space of
derivations of the x-product we can easily construct the Chevalley cohomol-
ogy. Further, again with the map ¢, we can lift derivations of the Poisson
structure to derivations of the x-product. Therefore it should be possible to
pull back the Chevalley cohomology from the space of derivations to vector
fields. This will be done in the following.

A deformed k-form is defined to map k Poisson vector fields to a function
and has to be skew-symmetric and linear over C. This is a generalization
of the undeformed case, where a form has to be linear over the algebra of
functions. Functions are defined to be 0-forms. The space of forms €2, M is
now a x-bimodule via

(frw*xg)(X1,..., Xg) = frw(Xy, ..., Xg) *g. (4.10)
As expected, the exterior differential is defined with the help of the map J.

k
5(,()(X(), ceey Xk) == Z(—l)l 5Xiw(X0, cee ,X,’, ceey Xk)

i=0
+ Z Z+JUJ [XZ,X]*,XO,...,)A(,...,XJ‘,...,X]C). (411)
0<i<j<k
With the properties of § and [-, -], it follows that
8%w = 0.

To be more explicit we give formulas for a function f, a one form A and a
two form F'

6f(X) = oxf,
SA(X,Y) oxAy — oy Ax — Aix,y,
SF(X,Y,Z) = O0xFyvz—6vFxz+0zFxy,
—Fixy),z + Fix,z1.,y — Flv,2).,x-

A wedge product may be defined

wl/\LL)Q(Xl,... p+q ' 'Z I J w1 Zl,...,X' )*UJQ(X]'I,...,qu)
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where (I,J) is a partition of (1,...,p + ¢) and &(I,J) is the sign of the
corresponding permutation. The wedge product is linear and associative and
generalizes the bimodule structure (4.10). We note that it is no more graded
commutative. We again give some formulas.

(fAa)x = fxax,
(aNf)x = ax*f,
(CI,/\b)X’Y = ax*by—ay*bx.

The differential (4.11) fulfills the graded Leibniz rule

d(w1 A we) = dwy Awy + (—1)k2 wi A dws.

4.4 Construction of actions

All field theories in physics may be formulated by an action principle. For
field theories on a curved manifold the action is of the form

5= / &' /G L(gY, 6, 0:0)

with ¢ the determinant of the metric. £ is a local Lagrange density depending
on the fields and its partial derivatives. A simple examples is a single scalar
field ¢. In this case we have £ = ¢"0;,¢0;¢ + p(¢) where p is a polynomial
in the field . We can formulate the action in the language of frames and in
this case

S = /d"meﬁ(qﬁ,eaqﬁ)

where e, are the vectorfields of the frame as defined in (3.3). Now e is the
determinant of the frame and in the example of the single scalar field the
Lagrange density becomes £ = n%e,de,¢ + p(¢).

If we do not want to give up the action principle we have to generalize the
notion of an action functional to noncommutative geometry. The generaliza-
tion of the Lagrange density is quite clear. We only have to replace the fields
by algebra elements and if we believe that the commuting frame formalism
is the right one we can use derivations of the algebra as a substitute for the
frame of derivations .

What to use for the integral and the measure function e is not so clear
in the beginning. As an action maps fields to numbers from an algebraic
point of view, the most obvious candidate is a trace on a representation of
the algebra. A trace is cyclic with respect to the product of algebra elements

Trfg=Trgf.
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Therefore it is possible to do partial integration with inner derivations
Ir [)‘a f]g =-Tr f[)‘a g]

Another argument for using a trace comes from noncommutative gauge the-
ory (5.2): Suppose we have a field invariant under the following transforma-
tion R X

5d¢ = Z[&’ ¢]a
then the trace of a polynomial in ¢ is invariant under this type of gauge
transformations. We will see in the following that the use of a trace in the

*-product representation will solve the problem with the measure function
in a quite remarkable way.

4.4.1 Traces for x»-products

If the algebra is in the x-product representation, the algebra elements are
functions on some manifold and we are able to integrate them. But the
pure integral is not cyclic with respect to the x-product. To cure this we
introduce a measure function {2 and make the following ansatz for the trace
of the x-product

tr f = /d":r Qz) f(z).
If we expand the equation of cyclicity
[ 9@ (@) 19t =0
up to first order we see that 2 has to fulfill
0;(QM¥) = 0, (4.12)
where I1% is the Poisson structure corresponding to the x-product [f * g] =
RITY0;f 0;g9 + ---. It is known [76] that there is always a gauge equivalent

*-product in the sense of (2.3) for which cyclicity is guaranteed to all orders.

If the Poisson structure II% is invertible then a solution to the equation
(4.12) can be given. In this case the inverse of the Pfaffian

1 o ) .
5 = Pf(H) =/ det(H) = —2 '6,'12'2...,'2"1_[“22 N
n!

is the measure function.
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4.4.2 Commuting frames from inner derivations

Form (3.6) we know that in the commuting frame formalism with inner
derivations e,’ = [1%9;\,. In two dimensions we have

; —ObA —O1A
T 12 2N 1M1
¢ =11 ( 0ds B ) ’
671 = det(eai) = (H12)2(61/\1 82/\2 — 82A1 81/\2).
e~! is the inverse of the measure function induced by the metric. On the
other hand the inverse of the measure function induced by the trace is

1 .
Q_l = 562']']._[2‘7 = H12.

If we want these two measure functions to be equal,

1

81)\1 62/\2 - 82)\1 81)\2 == ﬁ

(4.13)

has to be fulfilled. This is not the case in any of the examples from (3.2.3).

In four dimensons the measure function induced by the trace is
Qfl — 16"lein“ — H12H34 o H13H24 + H14H23
8 ) 9

which is quadratic in the elements of II. Due to (3.6) the measure function
induced by the metric contains monomials of order four. Again there are
constraints of the form (4.13) if want the two functions to be equal. This is
also the case in higher dimensions.

4.4.3 Commuting frames and quantum spaces

We will now propose another method how to find Poisson structures with
compatible frames. On several quantum spaces deformed derivations have
been constructed [62, 21, 77]. In many cases the deformed Leibniz rule may
be written in the following form

~

au(fg) = aufg + Tuu(f)a,,g,
where T is an algebra morphism from the quantum space to its matrix ring

T,7(f9) = T2 (NTa" (9)-
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Again in some cases it is possible to implement this morphism with some
kind of inner morphism

Tuu(f) =é,"fed",
where é,* is an invertible matrix with entries from the quantum space. If we
define

A~
A

€q = €410,
the é, are derivations

éa(fg) = éa(f)g + féa(g)'
The dual formulation of this with covariant differential calculi on quantum
spaces is the formalism with commuting frames investigated for example in
[78, 5, 79, 6].

We can now represent the quantum space with the help of a x-product.
For example, we can use the Weyl-ordered x-product we have constructed
in section 2.2.2. Further we can calculate the action of the operators é,
on functions. Since these are now derivations of a x-product, their classical

limits are necessarily a Poisson vector fields e, for the Poisson structure of
the *-product and with (4.9) the derivations are represented by

€qa = O, -

4.4.4 Example: M (so,(n))

Now we continue the example (2.2.3). As a special frame we take the de-
formed commuting derivations acting on the coordinates like

0,2 = 1+4+2%,
)
9,3t = 29,
A y A
8,~x’ = 5,-4—3:]81-,

120 = (2% +ia)d;.

Note that the 5, are not derivations on the quantum space. But we can apply
the procedure described previously. If we define

b= 3@

%

and assume that it is invertible, we can write the above formulas for éz in
another way

A~

ifg=0f-g+p " fp-dig,
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since

Al

2% = 2% +da, p !

ip= g,

P Z

Therefore as we have seen
€o = 0o, € = po;
is a frame on the quantum space. The classical limit of this is obviously

eo =0, e = po;.

The derivations (4.9) going with the Weyl ordered *-product are identical up
to third order

o = 0,+0(d®,
5 = pdi+ O(dd).

In the classical limit we have n linear independent derivations and we can
apply the commutating frame formalism. The forms dual to the derivations
are

. 1. .
0° =dt, 0 =—da,
p

and the classical metric (with 74, = diag(1, —1,—1,---) ) becomes
0= a0 = (da)” = p*(d') + -+ (da")).
We know that we can write
(dz')® + -+ + (da" ™) = dp + p*d

where dQ2_, is the metric of the n — 2 dimensional sphere. Therefore in this
new coordinate system

g = (da")? — (dInp)? +dO2_,

and we see that the classical space is a cross product of two dimensional
Euclidean space and a (n — 2)-sphere. Therefore it is a space of constant non
vanishing curvature. Further we calculate that

Vdetg = p~(@=1
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fulfills the equation for the measure function (4.12) of the x-product trace.
Here we are lucky and are able to write down actions for field theories on
this special quantum space with the correct classical limit. For example

S = Tr(n*®e,ééyd + m*$® + ag?)
d™x

B /Wéocb*éoas—6i¢*5i¢+m2¢*¢+a¢*¢*¢*¢

is a well defined action with the x-product (2.10) and reduces in the clas-
sical limit to ¢*-theory on above described manifold. We will continue this
example at (5.3.7), where we will have explicit formulas for the Seiberg-
Witten-maps and we are able to do gauge theory.
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Chapter 5

(Gauge theory

In this chapter we will investigate noncommutative gauge theory formulated
in the x-product formalism, where it is possible to formulate general non-
abelian gauge theories on noncommutative spacetime. Nonexpanded the-
ories can in general only deal with U(n)-gauge groups, but using Seiberg-
Witten-maps relating noncommutative quantities with their commutative
counterparts makes it possible to consider arbitrary nonabelian gauge groups
[32, 63, 44].

The case of an algebra with constant commutator has been extensively
studied. This theory reduces in the classical limit to a theory on a flat
spacetime. Therefore it is necessary to develop concepts working with more
general algebras, since one would expect that curved backgrounds are re-
lated to algebras with nonconstant commutation relations. We present here
a method using derivations of x-products to build covariant derivatives for
Seiberg-Witten gauge theory. Further we are able to write down a non-
commutative action by linking the derivations to a frame field induced by
a nonconstant metric as explaned in the last chapter. An example is given
where the action reduces in the classical limit to scalar electrodynamics on
a curved background.

5.1 Classical gauge theory

First let us recall some properties of a general classical gauge theory. A
non-abelian gauge theory is based on a Lie group with Lie algebra

[T, T° =i f*.T°.
Matter fields transform under a Lie algebra valued infinitesimal parameter

¥ =iy, o=, (5.1)
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in the fundamental representation. It follows that

(50455 - 5ﬁ5a)w = 5—i[a,ﬂ]w- (5'2)

The commutator of two consecutive infinitesimal gauge transformation closes
into an infinitesimal gauge transformation. Further a Lie algebra valued
gauge potential is introduced with the transformation property

ai = a;l",
dati = O;a+i[a, q;l. (5.3)

With this the covariant derivative of a field is
Dy = 0pp — iaz.

The field strength of the gauge potential is defined to be the commutator of
two covariant derivatives

ZE] = [DZ, D]] = 81‘%’ — 8ja'i — i[ai, aj].

The last equations can all be stated in the language of forms. For this a
connection one form is introduced

a = a;,T%dx".
The covariant derivative now acts as

Dy = dip — ia).
The field strength becomes a two form

F =da—iaAa.

We note that all this may be formulated with finite gauge transformations
g. They are related to the infinitesimal gauge parameter by

g= eia — ez’aa(w)ta

With this finite gauge transformations for the covariant derivative and a field
in the fundamental representation are
—1
T,D, = g¢gD,g -,
T,a, = gag ' +igdug ",
Ty gY.
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5.2 Noncommutative gauge theory

In a gauge theory on a noncommutative space, fields should again transform
like (5.1)

A A

i =i

>

0. (5.4)

It follows again that

~

Since multiplication of a function with a field is not again a covariant
operation we are forced to introduce a covariantizer with the transformation
property

o3 D(f) = i[A, D(f)]. (5.6)

From this it follows that

~

5.(D(/)¥) = iAD(f)E. (5.7)
If we covariantize the coordinate functions 4 we get covariant coordinates
X'=D@E) ="+ A (5.8)

where the gauge field now transforms according to

A

6 AT = —i[7, A + i[A, A7). (5.9)

Unluckily, this does not have a meaninful commutative limit, a problem
that can only be fixed for the canonical case (i.e. [T°,77] = i0Y with 6 a
constant) and invertible 6.

For noncommutative algebras where we already have derivatives with a
commutative limit, it therefore seems natural to gauge these. But due to their
nontrivial coproduct the resulting gauge field would have to be derivative-
valued to match the rather awkward behaviour under gauge transformations.
The physical reason for this might be the following: The noncommutative
derivatives are in general built to reduce to derivatives on flat spacetime,
which might not be the correct commutative limit.

We therefore advocate a solution using derivations that will later on (see
section 5.3.6) be linked to derivatives on curved spacetime:

If we have a derivation 5, i. e. a map with the property

~ A A A~

d(fg) = (0f)g+ F(99)

@
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for arbitrary elements f and ¢ of the algebra, we can introduce a noncom-
mutative gauge parameter A5 and demand that the covariant derivative (or
covariant derivation) of a field

again transforms like a field
6, DV = iAD.
From this it follows that flé has to transform like
03 A5 = 0A; +i[A, Ay. (5.10)

This is the transformation property we would expect a noncommutative
gauge potential to have, and in the next section we will show that for this
object we can indeed construct a Seiberg-Witten map in a natural way. If we
have an involution on the algebra, we can demand that the gauge potential

is hermitian flé = flé . Additionally the field ¥ transforms on the right hand
side. In this case expressions of the form

U@ and DUDY

become gauge invariant quantities.

5.3 Seiberg-Witten gauge theory

In [44] a method how to construct noncommutative non abelian gauge theo-
ries using Seiberg-Witten-maps was presented. In the case of constant Pois-
son structure treated there, it is possible to introduce the momenta via co-
variant coordinates: J; = [Hl-_jlxj ,-]. In general this approach does not yield
the desired classical limit. The momentum operators have to be introduced
in another way. We will approach the problem by considering derivations of
*-products.

5.3.1 Gauge transformations and derivations

If we have a look at (5.5), we see that the commutator of two gauge transfor-
mations only closes into the Lie algebra in the fundamental representation of
U(n). For non abelian gauge groups, we are forced to go to the enveloping
algebra, giving us infinitely many degrees of freedom. But this problem can
be solved using Seiberg-Witten maps [32, 44].
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The noncommutative gauge parameter and the noncommutative gauge
potential will be enveloping algebra valued, but they will only depend on
their commutative counterparts, therefore preserving the right number of
degrees of freedom. These Seiberg-Witten maps A, ¥ and D are functionals
of their classical counterparts and additionally of the gauge potential a;.
Their transformation properties (5.6) and (5.7) should be induced by the
classical ones (5.1) and (5.3) like

Rpla] +3ahsla] = Agla+ daal,
Uyla] + 0aVyla] = Uyis,pla+ dadl,

Ala] + 6,Ala] = Ala + bqal.

The Seiberg-Witten maps can be found order by order using a *-product
to represent the algebra on a space of functions. Translated into this language
we get for the fields [44]

da¥yla] = iAy[a] x Uylal. (5.11)

From (5.11) we can derive a consistency condition for the noncommuative
gauge parameter [43]. Insertion into (5.5) and the use of (5.2) yields

iéaAﬂ - i55Aa =+ [Aa * Ag] = Z'A_i[a”g]. (5.12)
The transformation law for the covariantizer is now
6a(D[a](f)) = i[Aala] ¥ D[a](f)]. (5.13)

We now want to extend the Seiberg-Witten-map to derivations of the -
product. In the next section we will see that we are able to identify deriva-
tions of a x-products with Poisson vector fields of the Poisson structure as-
sociated with the x-product. To be more explicit, let us assume that X is a
Poisson vector field

X'0{f, g} ={X'0:if, g} + {f, X" 0ig},

then we know that there exists a polydifferential operator 6y with the fol-
lowing property (see chapter 4.1 esp. (4.8) and 4.2)

Sx(fxg)=0xf*g+ f*dxyg.

It is easy to see that all derivations of this kind exhaust the space of deriva-
tions of the x-product. Since the commutator of two derivations is again a
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derivation we have concluded that there has to be a deformed Lie bracket
[-, -]« with the following property

[6x,0y] = Orx,v], -

With help of the operator dx we can now introduce the covariant deriva-
tive of a field and the gauge potential in the following way

Dx[a]Vyla]l = xVyla] —iAx]a] x ¥ylal. (5.14)
It follows that the gauge potential has to transform like
doAx|a] = dxAnla] + i[An]a] ¥ Ax[a]l. (5.15)
A field strength may be defined
iFxyla] = [Dxla] ¥ Dyla)] — Dix,y),[al- (5.16)

The properties of §. and [-, -], ensure that this is really a function and not a
polydifferential operator

nyy[a,] = (SxAy[CL] — 5yAx[CL] — Z[AX [CL] ’;‘ Ay[a” — A[X,y]*[a].

We are able to translate Seiberg-Witten gauge theory into the language
of the forms introduced in (4.3). Ax is the connection one form A evaluated
on the vector field X. It transforms like

00 A =0Ay +iALNA—ANA,.
The covariant derivative of a field ¥ is now
DU =60 — ANV,
and the field strength becomes
F=DF=§A—iANA.
One easily can show that the field strength is covariant constant

DF =0F —iANF =0.
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5.3.2 Finite Seiberg-Witten gauge transformations

[i is interesting that noncommutative infinitesimal and finite gauge transfor-
mations may be related like in the classical case. To show this let us first
define noncommutative finite gauge transformations similar to the classical
case [42]
Tg\IIT/J[a] = \IITQT/’[TQG] = Gg [a] * ‘Ilw[a]:
T,Dx[a] = Dx[T,a] = Gyla] x Dx[a] x G,4la]™".

If we apply two consecutive gauge transformations on a field
Tg2Tgl ‘ij[a] = Gg1 [nga] * (Gg2 [a] * \Ilw[a'])’

we can derive a consistency condition for finite Seiberg-Witten gauge trans-
fomations
G9192 [a] = G!Jl [ng a] * ng [CL]

Now we are able to relate finite and infinitesimal gauge transformations. In
the classical case

Ty = e = e’
where d, is the action of the infinitesimal gauge transformation on the field
1. We can use the same fomula to define the noncommutative gauge trans-

formations
Giala] % Uyla] = €2 x W, [a).

To get an explicit formula we note that
(00 — iAafa]) x ¥ulal =0
and calculate

e xWyla] = eloxefatiheldy y [g]

eteldtatadalelt g 1)

where we have used the Baker-Campbell-Hausdorff formula.

5.3.3 Enveloping algebra valued gauge transformations

Gauge theories on noncommutative spaces cannot be formulated with Lie al-
gebra valued infinitesimal transformations and therefore not with Lie algebra
valued gauge fields. To see this we assume that the noncommutative gauge
parameter is Lie algebra valued

&= a,1"°,
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where the @&, are elements of the algebra describing the noncommutative
space and the T are generators of a Lie algebra with [T, T°] = if Tc.
We have seen (5.5) that due to consistency the commutator of two gauge
parameters again has to be a gauge parameter, but now

0,51 = Sl ST+ Sla0, AT ')

where {,} denotes the anticommutator. All higher powers of the generators
T® of the gauge group may be created in this way. Thus the enveloping
algebra of the Lie algebra seems to be a proper setting for nonabelian non-
commutative gauge theory. In general this is not very attractive because
the enveloping algebra is infinite dimensional and consequently requires an
infinite number of gauge parameters and gauge potentials.

In Seiberg-Witten gauge theory, however, it is possible to restrict the
number of infinitesimal enveloping algebra valued gauge parameters to the
usual ones [43]. In this case the gauge parameter depends on the Lie alge-
bra valued parameters and its derivatives of the corresponding commutative
gauge theory. The construction of this kind of enveloping valued gauge pa-
rameter is based on the Seiberg-Witten map. We have seen that in Seiberg-
Witten gauge theory the gauge parameter A,[a] is a functional of the classical
one o = o, T'® and the classical potential a; = a;,T*. We expand it order by
order in the expansion parameter

Agla) = A2la] + Alfa] + - --. (5.17)

Further it has to fulfill the consistency condition (5.12). If we plug (5.17)
into this equation we get to zeroth and first order

100y = 1050 + [Ag, A = iA20 5

) ) ) 1.
i} — iy AL, + [A2, A] — [AS, AL] — AL g, = — LI [AL, ;0]

where we have assumed that we use as usual fx g = fg+ 3¢90, f0;9 + - -.
The first equation is fulfilled by the commutative gauge parameter. Since
this yields additionally the correct classical limit we set

0 _
A, =
With this, a solution to the first order equation is
1

Ay = =300 05} = _%Cijaiaa ap{T*,T"}.
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This is now obviously enveloping algebra valued. The solution is not unique,
since a solution to the homogeneous part of the first order equation may be
added.

We have made the above considerations only for the noncommutative
gauge parameter. It should be clear that the method can be extended to
the gauge potential with help of (5.15), to fields with (5.11) and to the
covariantizer with (5.13). This will be done in (5.3.4) for the special case
of the Weyl-ordered x-product. Again all these solutions are not unique,
due to cohomologies induced by the homogeneous parts of the equations.
Other methods have to be used to restrict the possible solutions. In [54]
this is done for the constant case by demanding that the resulting action is
renormalizable up to all orders.

5.3.4 Seiberg-Witten map for Weyl-ordered x-product

With the methods developed in the last section we will now present a con-
sistent solution for the Seiberg-Witten maps up to second order for the Weyl
ordered x-product and non-abelian classical gauge transformations. The so-
lutions have been chosen in such a way that they reproduce the ones obtained
in [44] for the constant case. In the following we will use the Weyl-ordered
*-product expanded order by order

frxg=fg+fxg+frg+---
with e. g.
1 ..
f*lg: icmazfajg

Noncommutative gauge parameter

As we have seen we have to expand A in terms of the deformation parameter
Aufa] = a+ AlL[a] + A%la] +

To zeroth order the consistency condition (5.12) is equal to the commutative
one (5.2). Therefore, we already have set A = a.
To first order we obtain

(0o — i0gAL + [, Aj] — [B,AL] —iN 5 = —[a % B]

_ —%cij[aia, 9,6]
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and to second order
i6a 0 — i0pAL + [ AG] — [B, AZ] — iAo 4
= —[a% ARl = [B% AL — [AL A — [a % 8]
= —3 100, 0,05] = 5108, 901 (AL, A}
—écm”cij [0 0sx, 0,0, 8] — %cmla,cij ([Om0scx, 0; 8] — [Bicv, 0 ; B]).
A solution to this is
Aola] = a— icij{a,-a, a; }

1 ..
+3—20Z]ckl (4{8@, {ak, Oa;}} — 2i[0;0kcv, Ojai]

+2[0;a, [Oicv, ax]] — 2i[[aj, ai], [O;cx, ax]]
+i{0se, {on, [, ]} } + {ag, {ar, (910, ]} })
+21—40kl8lcij ({&a, {U,k, Clj}} — 2i[8i8koa, CLj]) + 0(3)

Noncommutative matter field

Now we derive formulas for fields that transforms according to (5.11). We
again expand the noncommuting field in terms of the deformation parameter

Uylal = ¢ + \Ilqlp[a] + \Ilfp[a] + -

To first order (5.11) reduces again to the classical transformation law (5.1).
To first order we obtain

1 ..
5, — i W] = i (k4 ALg) = i (§czjaioz8j1/) n Agw)
and to second order

504‘11; —ia\Ili =i(ak+ax \Ilqlp+A(11*“/,+A(11\I,11p + A2y))
; 1 mn ij 1 mi ij
= i( 50000, 0,059 + T3¢0 (Indi00i1) — DOyt

1. 1
59000, + SN + AT + Agw).



5. Gauge theory 75

A solution for the noncommutative field is
1 ..
\Ifq/, [a] = ”(/J -+ ZCU (2m,8]1[) + CL,(Lj’(ﬁ)
1 ..
4okl (4¢aiakaja,¢ — 40,040,000 — 8a:0;a500

32
+4a;0ra;01% + 4ia;a;0,019 — diaga;a; 00

+4z'ajakai8ﬂ/1 - 48jakai8ﬂﬁ + 28,-ak8jalw
—4ia,00ka;0) — 4ia,0ka;a10) + 4ia,;0;arap7)

—3a;aq05% — 4a;apa;a) — 2a,~alakaj¢>

1 .
+ﬂckl@c” (2za]6k81w + 218ka,8]w + 28kaiaj1/)

—akaiajw - 3aiak8jw - Qiajakaiw> + 0(3)

Covariantizer

As in the preceeding cases we again expand the covariantizer in terms of the
deformation parameter

D(f)=f+D'(f)+D*(f)+---.

Since the transformation law (5.13) to zeroth order is trivial we can assume
that D starts with the identity. To first order we get

5D (f) = il f]+ i, D(f)] = LV, 0,f] + ifo, D'(P)]
and to second order
0aD*(f) = ila* fl+ilos DY(F)] +ilAg % f]+iloy, D*(f)] + i[Ag, D*(f)]
_ écm”c’j [Onhat, 0,0, f] + %cmlalciﬂ'([amaia, 8, f] — [0, Omd; ])

500, 0,0 ()] + 5[0}, 95 ] + ilor, DX(f)] + ik, D).
A solution to this is
Dla](f) = f+ic7a;0;f
+icijckl( — 2{a;, 0;a}O,f + {a;, Oka;} O f

+i{ai, [a;, ax]}OLf — {ai, ak}ajalf)
+3c O {a;, an}0; f + O(3).
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Noncommutative gauge potential

Again we expand the noncommutative gauge potential, starting with the
usual one
Ax = X"a, + A + A% +---.

Since it is a noncommutative form in the sense of (4.3), we have to evaluate
it on a Poisson vector field X. We again expand the equation (5.15) and
obtain to first order

SaAy = X'OAL + 6% +ila ) X a,] +i[a, A%] +i[AL, X"a,]

= X9AL + %CU [Bicx, 0;(X"an)] + ifa, AL] + i[AL, X"ay).
For the second order we get
§aA% = i[a*2 X"a,] +i[a* A%] +i[AL % X"a,]

+X'OA2 + 6% o+ S AL +i[a, A%] +d[AL, A%] +4[A2, X a,,]

- écm"cij [0, 8,0;(X "))

+écmlalcij ([OmBscr, 3 (X" an)] — [Bict, 0y (X "))

+%cij[8,~oz, 9;AL] + %cij [B:AL, 0;(X"an)]
1 ) . 1 . .
—Eclkakc’mﬁlaijaﬁja + ﬂclkc’malainﬁkamaja
+XOA2 + S5 AL +ifa, AX] +[AL, AY] +i[AZ, X a,).
We found the following solution to the noncommutative gauge potential
?
4
+icklcin"( — 4i[0x 00, Oya;]
39 1Un, g
—|—2z[6k8na,, 8laj] — 4{ak, {0,,', 6]fln}}
—2[[0kai, an), Ora;] + 4{01an, {Oiar, a;}}
—4ag, { fii, fin}} + {0na;, {as, [ai, ax] }}
‘f‘i{az‘; {Gk; [8na'ja al]}} - 4i[[az‘, Gl]; [am 8;‘%]]
+2i[[ai, ai], [ag, Onaj]] + {ai, {ax, [ar, [aj, an]]}}

—{ak, {ar, ail, (a7, an]}} — [[ai, ai], [ax, [ay, an]”)

1
Ax = X"a, + - X" ay, Oan + fin} + chlalX"{ak,an}
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1 .
+3—26klcz‘78an (2i[6kai, 8lan] + 2i[8iak, alan]

+2i[aiak> Oian, — ana'l] + 4{%, {fll, aka'i}}
+4{aka {% Onay — alan}} - Qi{ak; {ai, [a’na al]}}

+ifas, o, [an, @i} + i{an, {a, as, i} })
+21—4c“cija,ajxn(aiakan — 24l Ohan] — {an, {ar. a1} })
+21—4c“alc“X" (2i[aj, OkOian] + 2i[Okai, fin]

~{Bym, {an, ai}} + 2{as, {a, fus}})
+21—4¢klalcz’jajxn( ~ dilas, ] + 21, Bn] — {an, {1, 0:}) )

1 L.
~ 5 HAT9,0X" D + O(3).

5.3.5 Seiberg-Witten map for Formality x-products

We will now apply the formalism of Seiberg-Witten gauge theory to Kontse-
vich’s formality x-product. Here we are able to calculate the abelian Seiberg-
Witten map up to all orders. We have seen that derivations for this x-product
are easily obtained from Poisson vector fields. With them we have all the
key ingredients to do noncommutative gauge theory on any Poisson mani-
fold. To relate the noncommutative theory to commutative gauge theory, we
need the Seiberg-Witten maps for the formality x-product. In [40] and [41]
the Seiberg-Witten maps for the noncommutative gauge parameter and the
covariantizer were already constructed to all orders in 6 for abelian gauge
theory. We will extend the method developed there to the Seiberg-Witten
map for covariant derivations.

Semi-classical construction

We will first do the construction in the semi-classical limit, where the star
commutator is replaced by the Poisson bracket. As in [40] and [41], we define,
with the help of the Poisson tensor 6 = %leak A O

dg = _[" 0]

and (locally)

g = Waj(?i.
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Note that the bracket used in the definition of dy is not the Schouten-
Nijenhuis bracket (A.1). For polyvectorfields m; and 9 it is

[71, 72] = —[72; 7T1]5,

giving an extra minus sign for m; and 7y both even (see A.5.2). Especially,
we get for dy acting on a function g

dﬁg = _[g: 9] = [gae]s = Hklalgak-

Now a parameter ¢ and ¢-dependent 6, = 36/'9; A 0, and X, = X[O, are
introduced, fulfilling

0:0; = fo=—0:f0; and 0 Xy = - X, f0y,

where the multiplication is ordinary matrix multiplication. Given the Poisson
tensor # and the Poisson vectorfield X, the formal solutions are

0, =0 (—t fO)" = 5(9“ — 0¥ £,67 + .. )0 A O
n=0
and
Xe =X (—t fO" = X" — tX' f;67°0, + ...
n=0

0, is still a Poisson tensor and X; is still a Poisson vectorfield, i.e.
[Qt, Qt] =0 and [Xt, 0,5] =0.

For the proof see A.3.
With this we calculate

fg = atgt == _gtfgt == —[ag, 0] = dgag. (518)

We now get the following commutation relations

[a’at + 0, dat(g)] = dat((a’at + at)(g))v (5'19)
[ag, + 0, Xi] = —do,(XFa),

where g is some function which might also depend on t (see A.5.1).
To construct the Seiberg-Witten map for the gauge potential Ay, we first
define
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1 n
Kt = nz:% (n+1)‘(a9t +(9t) .

With this, the semi-classical gauge parameter reads [40, 41]

A,\[CL] = Kt()\)

=0

To see that this has indeed the right transformation properties under gauge
transformations, we first note that the transformation properties of ay, and
XFay, are

5,\a9t == Hflal)\ak = dat)\ (5.21)

and
5>\(Xfak) = Xfak)\ = [Xt, )\] (5.22)

Using (5.21), (5.22) and the commutation relations (5.19), (5.20), a rather
tedious calculation (see A.4) shows that

K (Xfar) = XFORK(N) + do, (K (V) Ky (Xf ).
Therefore, the semi-classical gauge potential is

Axla) = Ky(XFay)

t=0

Quantum construction

We can now use the Kontsevich formality map to quantise the semi-classical
construction. All the semi-classical expressions can be mapped to their coun-
terparts in the x-product formalism without loosing the properties necessary
for the construction. One higher order term will appear, fixing the transfor-
mation properties for the quantum objects.

The star-product we will use is

* = Z —Un(ﬁt, . ,Ht).
n=0

n!
We define
d* == _['a*]G )

which for functions f and ¢ reads
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di(g) f=[f7 gl

The bracket used in the definition of d, is the Gerstenhaber bracket (A.2).
We now calculate the commutators (5.19) and (5.20) in the new setting (see
A.5.2). We get

[®(ag,) + O, di(@(9))] = di((®(ag,) + )P (f)),
[®(ag,) + 0, ®(Xy)] = —du(®(Xfax) — ¥(ag, Xy)).
The higher order term W(ay,, X;) has appeared, but looking at the gauge

transformation properties of the quantum objects we see that it is actually

necessary. We get
5>\<I>(a5t) = (I)(dat)\) = d*(I)()\)
with (4.8) and (5.21) and
S\ B(XFay) — V(ag, X)) = ®([X, N]) — ¥(do), Xy)
= [®(Xy), R(N)] = W([6s, A], Xi)
+U([0;, Xi], A) — U(dgA, X3)
= [®(Xy), 2(N)]
= 6th)(/\)7
where the addition of the new term preserves the correct transformation
property. With
* — 1 n
Kf = nz_; W) (®(ag,) + 6)",
a calculation analogous to the semi-classical case gives
(K ((Xfar) — Y(ag, X)) = Ox, K7 (2(N))
+di (K7 (V) K7 (2(Xfax) — U(ag,, Xr))-
As in [40, 41], the noncommutative gauge parameter is

Axla] = K7 (2()))

Y
=0
and we therefore get for the noncommutative gauge potential

Axlal = K (@(XFa) = W(a, XD)| .

transforming with

MWAx = dx Ay — [Ax T Ax].
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5.3.6 Construction of gauge invariant actions

We have seen that in the noncommutative realm the integral may be replaced
by a trace on a representation of the algebra describing the noncommutative
space. In the x-product formalism this has been the ordinary integral to-
gether with a measure function (4.12). With the covariantizer D|a](f) (5.13)
for functions at hand it is now easy to construct actions invariant under
noncommutative gauge transformations that reduce in the classical limit to
gauge theory on a flat space. For example the measure function can be
compensated by D[a](27!(z)). But from the point of view of noncommu-
tative gauge theory this looks quite unnatural. To make contact with the
commuting frame formalism we will have to go another way.

First we want to translate classical gauge theory (5.1) into the language
of frames. Since forms are dual to vector fields, they may be evaluated on a
frame. In the special case of the connection one form this yields

aq = a(ey) = a;dz’(e,) = a;€y.
The same we can do with the covariant derivate
(DY) (eq) = eqt) — iagh.
The field strength becomes
f(easen) = fab = €atty — epaq — a([eq; ep]) — i[aq, as).

Since in scalar electrodynamics we do not need a spin connection, it is simple
to write down its action on an curved manifold with the frame formalism

1 _ _
§= [ e (- 0 fucfua-+ 1 DuBDsG + 1%50).

e = (det e,*) ™t = y/det (g,)

is the measure function for the curved manifold.

Here again

The considerations above can be generalized to a curved noncommutative
space, i.e. a noncommutative space with a Poisson structure that is compat-
ible with a frame e,. For a curved noncommutative space we are now able to
mimic the previous classical constructions and evaluate the noncommutative
covariant derivative (5.14) and field strength (5.16) on it

D,® =6, ® — iA,, x®,



82 5. Gauge theory

Fab = F(ea,eb).

Using the measure function and our noncommutative versions of field strength
and covariant derivative we end up with the following action

1 _ _
S=tr / d"z (—Znabnchac *x Fyq + n®Dy® x Dy® — m?® x ®).  (5.23)

tr is the trace of the Lie algebra representation. By construction this action
is invariant under noncommutative gauge transformations

0aS = 0.

To lowest order we obtain
1 (e Q n n
80 =1tr /dnx Q (_Zg ﬂg’yafavfﬂﬁ + g ﬁDa¢Dﬂ¢ - m2¢¢),

with g,p the metric induced by the frame. If g = €2, the commuting frame
formalism yields the desired classical limit.

5.3.7 Example: M (s0,(n))

We have seen that the components of the frame (e, = X,*0,) are

Xt = oF,
Xt = pok.

These we can plug into our solution of the Seiberg-Witten map and the
derivation corresponding to the Weyl-ordered x-product and get

Aya] = A+ %xi{ﬁo)\, a;} — %xi{@-}\, ap} + O(a?),
a i a ; wa 2
Q4la] = ¢— §ac ao0; 0 + 5:6 a;0p + ZCU [ag, a;]¢ + O(a?),

a . a -
AXO = ag— sz{ao, 0;a¢ + fzo} + Z.’L'Z{ai, 80a0} + 0((1,2),

a a
Ax; = paj — gp{aj, a0t — 7 pa'{ao, Oia; + fis}
a .
+prz{ai, doaj + foi} + O(a?),
by, = X', +0(d?).

The action (5.23) becomes up to first order

1 —n ii 1 —-n ij
S = / d"x( —§p3 noonJTr(fOiij)—Zp5 0 0 Tr ( frifi)
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+p' """ Dyd Do + p* """ Dy d Dy

a o ..
—§p3 "0 2T (fop foi fo;)

+%p5_"7)klnij$pT7“(fOpfkiflj)
—gpf”*”??kl??ijxpTT(fjp{fki, fio})

50" " n"a D fis it + 5 p*"1"s D fi Do
—gp?’*n??klxiD—i(/ﬁfloDk(ﬁ i gpiifnnkl‘riD—oqﬁflkaqﬁ
—ap3fn77kl$iD—k</5f0iDl¢) +O(a?).

We know that in the classical limit ¢ — 0 the action reduces to scalar electro-
dynamics on a curved background or its nonabelian generalization, respec-
tively.

5.4 Observables

In the previous sections we have seen that gauge theory on noncommuta-
tive spaces is a very interesting and fruitful subject. Nevertheless we need a
method to extract physical predictions from the theory. Since a gauge trans-
formation should not affect the predictions we make, we have to find gauge
invariant objects. Such observables are not easy to find if we want them to
have a sensible classical limit.

A second reason for studying observables is the similarity between non-
commutative gauge theory and gravity in view of the gauge structure. The
equations of general relativity transform covariantly under coordinate trans-
formations. Therefore the group of local diffemorphisms is part of the gauge
group. Now take a gauge transformation in the x-product representation of a
noncommutative U(1)-gauge theory. Then we have seen that the coordiantes
are not invariant under gauge transformations

zt — €0y gl x e W) = 4t 4+ 090,00+ - - - (5.24)
In the whole section we will assume that the x-product looks up to first order
like ]
1 ..
where 6% is antisymmetric and fulfills the Poisson equation. In the semi-

classical limit the transformations (5.24) become the Hamiltonian flows of
the Poisson manifold. In a sense the gauge group of noncommutative gauge
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theories contains a large class of diffeomorphisms. Since it is not easy to find
a full set of meaningful observables in general relativity (see e. g. [80] and
for a more general review [81]), the study of nonncommutative gauge theory
will perhaps give new insights into this subject.

In the case of constant commutator so called open Wilson lines [82] have
been introduced as observables of noncommutative gauge theory. We will
use covariant coordinates (5.8) to generalize this construction to general -
products. In [83| they were used to give an exact formula for the inverse
Seiberg-Witten map. We will generalize this construction for x-products
with invertible Poisson structure §%.

5.4.1 Classical Wilson lines

Let us first recall some aspects of the commutative gauge theory. For this let
a, be a gauge field. Then an infinitesimal parallel transporter (infinitesimal
wilson line) may be defined via

Ul,z+1) = 1+ilta,(x)
eil“a”(z) + 0([2),

where [# is an infinitesimal constant vector. The infinitesimal Wilson line
transforms like

T,U(z,z +1) = g(x)U(z,z +1)g ' (z +1) + O@?).

Now let I'y, a Path connecting the points a and b. And let {z;};co..n be a
partition of this Path. Then we define

N
Un[ly] = HU(sz‘—hl"i)
i=1

= H (1 + (! — 555_1)@#(%))
= 1] (1 +ill'a,(y + Z li)) :

Uy transforms in the following way
T,Un[Tay] = 9(z)Un[Taylg ™ () + O1).
Further the Wilson line of the Path I';, is the continuum limit of the Uy
U[Pwy] = ]}1_1)20 UN[F:vy]

= Pexp(i/dx“au),
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where P denotes path ordering of the exponential. If one acts with a gauge
transformation on the Wilson line

TUCwy] = g(x)UTaylg™ (1),

one sees that it transforms only at its endpoints.

5.4.2 Noncommutative Wilson lines

In the case 0 = const. the basic observation was that translations in space
are gauge transformations [82]. They are realized by

Ta? = 27 + 1,69 = e x f x e~

Now one can pose the question what happens if one uses covariant coordinates
|84]. In this case the inner automorphism

X il; X¢

f—e™ % fxe

should consist of a translation and a gauge transformation dependent of the
translation. If we subtract the translation again only the gauge transforma-
tion remains and the resulting object

VVl = eiliXi * e—iliz‘i
has a very interesting transformation behavior under a gauge transformation
W/(z) = g(z) * Wi(x) g *(z + ;67).

It transforms like a Wilson line starting at « and ending at = + 6.
As in the constant case we can start with

1.1 S 1
W, = eff’X *e*”’z,

where now e, is the x-exponential. Every multiplication in its Taylor series
is replaced by the x-product. In contrast to the constant case, ei® = el

isn’t true any more. The transformation property of W, is now
W(z) = g(z) x Wi(w) x g~ (T1z),

where
T’ = i % gl x e=ti®
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is an inner automorphism of the algebra, which can be interpreted as a
quantized coordinate transformation. If we replace commutators by Pois-
son brackets, the classical limit of this coordinate transformation may be

calculated
T il [z —{zt ) 1098,
lxk — elile' 3]k oy oli{nt i o lif ajxk’

the formula becoming exact for #% constant or linear in z. We see that the
classical coordinate transformation is the flow induced by the Hamiltonian
vector field —1;600;. At the end we may expand W, in terms of § and get

W = et 4 O(@P),

where we have replaced A* by its Seiberg-Witten expansion. We see that for
[ small this really is a Wilson line starting at = and ending at x + [6.

5.4.3 Observables

Now we are able to write down a large class of observables for the above
defined noncommutative gauge theory, namely

U = /d”x Q(z) Wi(z) * el*’ = /d"x O(z) e X'@)

or more general
f— / s Q(z) F(X7) % iX'@

with f an arbitrary function of the covariant coordinates. Obviously they
are invariant under gauge transformations.

5.4.4 Inverse Seiberg-Witten-map

As an application of the above constructed observables we generalize |83]
to arbitrary x-products, i. e. we give a formula for the inverse Seiberg-
Witten map for x-products with invertible Poisson structure. In order to
map noncommutative gauge theory to its commutative counterpart we need
a functional f;;[X] fulfilling

fiflg* X x g7 '] = fi(X],
df =0

and

fij = aiaj — 8jai + 0(92)
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f is a classical field strength and reduces in the limit § — 0 to the correct
expression.

To proove the first and the second property we will only use the algebra
properties of the x-product and the cyclicity of the trace. All quantities
with a hat will be elements of an algebra. With this let X' be covariant
coordinates in an algebra, transforming under gauge transformations like

X’il — gXigfl
with ¢ an invertible element of the algebra. Now define
P = i, )

and .
rn—1y _ - [riia || i2n—3%2n—2
(F™ )i = 9n—1(n — 1)!6131122---12n_2F F .

Since an antisymmetric matrix in odd dimensions is never invertible we have
assumed that the space is 2n dimensional. The expression

Fylk) = strp (P )™ (5.26)

clearly fulfills the first property due to the properties of the trace. str is the
symmetrized trace, every monomial in Fiiand X* should be symmetrized.
For an exact definition see [83]. Note that symmetrization is only necessary
for spaces with dimension higher than 4 due to the cyclicity of the trace. In
dimensions 2 and 4 we may replace str by the ordinary trace tr. F;;(k) is
the Fourier transform of a closed form if

ki F i = 0
or if the current
Jz'1.--i2n72 — StT‘p,X (ﬁ’[hiz . .Fizn—sim—z}eikjﬁﬁ)

is conserved, respectively
ki J" =0.

This is easy to show, if one uses
Sty % ([k)A(,Xl]eiijj » ) = strix ([Xl, eiijj] » ) = strp (eiijj (Xt ]) ,

which can be calculated by simple algebra.
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To show the last property we have to switch to the x-product formalism
and expand the formula in . The expression (5.26) now becomes

The expression in brackets has to be symmetrized in F*/ and X* for n > 2.
Up to third order in 6%, the commutator F¥/ of two covariant coordinates is

) sym F,X

F9 = —[X"* X7 = 0" — 0% f,0" — 0"9,0" ay, + O(3)
with f;; = 0,a; — 0;a; the ordinary field strength. Furthermore we have
eRXT = it (1 4 k07 a,) + O(2).

If we choose the antisymmetric *-product (5.25), the symmetrization will
annihilate all the first order terms of the x-products between the F¥ and X*,
and therefore we get
—F[X]i(k) =
d*x

. / i (et = (n = D)™ 2050 — M9y (ci0" )a) M+ O(1)

_ d* "z -1 (o 1\, gn—2 _1_, n—1 ki \ ikiat
=-2n g €i;0 (n—1)¢;0" “0f6 26”0 fuf®™ | e + O(1)

eijQ"_Q()fH 1

= d*z (eigl +2n(n —1) T EH;jlfkle’”) e*iv' 1 O(1),

using partial integration and 0;(efm0%) = 0. To simplify notation we intro-
duced

Y S i1, ., Pin—1Jn-1
€i;0 = €ijirgrin_1jn10 gin—1in
etc. In the last line we have used

0" 1)y 5 eijen_l_

-1 _
% = Pf(0) "t

We will now have a closer look at the second term, noting that

5" 2000 1 grgiry gL g g
0 efn o 2n0k19 Jrs0” = anme

and therefore
eijQ"_QGfH . a€ij0n_1
e N e

frsers + bfz] (527)
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with a + b = —%. Taking e. g. 1 = 1,5 = 2 we see that
€19 10" 20 £,,0° = €19 0" 2 (0510% — 0¥20") f15 + terms without fs.

Especially there are no terms involving f120'? and we get for the two terms
on the right hand side of (5.27)

2@6120n_1f12012 = —2nb6120129"_1f12

and therefore b = —%. This has the solution

1
a__Q(T—]_) and b—m

With the resulting

e,-jH”_QOfG 1

2n(n — 1) o = iei;lfkle’“l + fij

we finally get
_FIX]iy (k) = / Pz (07 + ) €5 + O(1).

Therefore
f1X1ij = FIXi; (k) — Flali; (k)

is a closed form that reduces in the classical limit to the classical Abelian
field strength. We have found an expression for the inverse Abelian Seiberg-
Witten map.
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Appendix A

Definitions and calculations

A.1 The Schouten-Nijenhuis bracket

The Schouten-Nijenhuis bracket for multivector fields 72 9;, A ...

can be written as ([75], IV.2.1):

[1, ma]s = (—1)k1_17T1 ° Ty — (—l)kl(kz_l)m o,

k1

T @My = Z(—l)l_lﬁilmiklazwglmjkzail A NO AL A Oigy NOjy -

=1

where the hat marks an omitted derivative.

A 0

st

!

ko

For a function g, vectorfields X = X*0, and Y = Y*0, and a bivectorfield

= %ﬁkl(?k A O, we get:

(X,gls = X0y,
[m,9ls = _ﬂ'klalcgal:
1 .. . . . .
[X,ﬂ']s = §(Xk8k7r” —WZkakXJ +7r9k8sz)8i/\8j,

1 . . . . ]
[7‘(,71']5 = g(w’“lanr”+7r”8l7r7k+7r”8l7r“)8k/\8i/\8]-.

A.2 The Gerstenhaber bracket

The Gerstenhaber bracket for polydifferential operators A can be written as

([75], IV.3):
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[A1, A2]G =A0A, — (_1)(\A1\—1)(\A2\—1)A2 o Ay,
(A1 0A9)(f1y- - fmitme—1) =

Z(_l)(mz_l)(j_l)Al(fla .. fj—la AZ(fja CE) fj+m2—1)a fj+m27 s afml-l-mz—l)a
7j=1
where |A| is the degree of the polydifferential operator A;, i.e. the number
of functions it is acting on.

For functions g and f, differential operators D;and D, of degree one and
P of degree two we get

[D,gle = Dl(g),
[P,gla(f) = Plg,f)—P(f,9)
[D1, Dola(g9) = Di(Da(g)) — Da(Di(9)),
[P, Dla(f,9) = P(D(f),9)+ P(f,D(g9)) — D(P(f,9)). (A1)

A.3 Calculation of [6;,6;] and [6;, X{|

We want to show that 6; is still a Poisson tensor and that X; still com-
mutes with 6;. For this we first define O(n)f = (0f)" = 6% f;;... 0" fy =
fub7 ... frs0°F = (f0)" and O(n)* = 0(fO)" = 0% f;; .. fm&sz. In the calcula-
tions to follow we will sometimes drop the derivatives of the polyvectorfields
and associate 7F1#» with 7ki-kn %akl A ... O, for simplicity. All the cal-
culations are done locally.

We evaluate

[0,,60,]s = eklal0§j+cp in (kij)

m

_ D (=)™ t™0(n)E0(0)10(m — 0)I0™ 00 + c.p. in (kij)
n,m=0 o=0
N Z Z £y 0(n)HG(0) 50 (m — 0)PI8, f,p + c.p. in (Kij)
n,m=0 o=0
=3 () 0(0):0(m)I67 6 + . in (kij)
n,m,0=0

- Z (=)oY (n)k9(0) 50 (m) 7P, fop + c.p. in (Kkij).

n,m,0=0
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The first part vanishes because 6; is a Poisson tensor, i.e.
[6,0]s = 00,0 + c.p. in (kij) = 0, (A.2)
the second part because of
Ok fij + c.p. in (kij) = 0. (A.3)

To prove that X; still commutes with 6;, we first note that
Xy =X (—tf0) = X(1—tf6,).
n=0

With this we can write

[X:, 6] = [X, 0] —t[X [6;,0/] (A.4)
= X"0,0F - 00, X" + 60, X"
—tX™ 00,08 4+ 10F" 0, (X™ £ ) — 10170, (X™ fi01F)
= X"0.0;" — 0"0, X' + 6;"0, X"
+10F" 0 X™ friO2 — 10170, X™ fi 02
+OF X0, frniO — 10" X ™0, il

In the last step we used (A.2). To go on we note that
P X ™0, frib — 0™ X0, frni01F = X050, frnib?,

where we used (A.3). Making use of the power series expansion and the fact
that X commutes with 0, i.e.

[X,0] = X"8,0% — 0¥79, X" + 09, X* = 0,

we further get

X"0,08 + X 00, fritl = Y (—)T0(r)EX"8,070(s)’
r,s=0
= 3 (~0)0(r)Ee" 9, X76(s),
r,s=0
= (=t)0(r)F6" 9, X760 s)"
r,s=0
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Therefore (A.4) reads

(X, 0] = D (=t)T0(r)k0(s):0m0, X7 = Y (—t)"H0(r)E0(s) 600, X
r,s=0 r,s=0
—0F9, X + 00, X* + 1050, X £, 0% — 10770, X ™ f,,; 0
= 0.

A.4 The transformation properties of K;

To calculate the transformation properties of K;(XFay), we first evaluate

6x((ag + 0,)") X*a, = Z(aa + 0,)tdg(N) (ag + 0,)" " X *ay

and

(ag + 0,)"6x(X " ay,)
= (ag+ )" X" O\

[ary

= Xkak(aa + at)" — (ag + at)idg(Xkak) ((Za —+ at)nflfi)\

i

I
<)

= X*0(ap+0p)"

¥

1n—1—2
=0

(ae +0,)"dp((ag + 0)" " (X ax)) (V)
= X*O(ag+ 0,)"

n—1n—1—

B (71 s

=0 45=0
(ag + 0,) T dg(A\) ((ag + 0)" "7 (X*ay))
= X*0y(ag + d,)"
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EER ) )er
dy((ag + 8:) (X)) ((ag + 0)" (X ).

We go on by simplifying these expressions. Using

? 1—1 1—1 ,
(Z) = ( ) ) + (l B 1) for i>1, (A.5)
we get

S5 (L) (e =B (e

m=l i=0 m=l

Using (A.5) again two times and then using induction we go on to

S () (e (),

m=l 1=

giving, after using (A.5) again
i n—1-12\ (n
—~\n-1-1)  \1)
()= (0)
l I+1

1=

Together with

these formulas add up to give

and therefore

Ox(Ki(XFay)) = XF0,(Kp (M) + do(K: (V) Ky (XFay).

A.5 Calculation of the commutators

A.5.1 Semi-classical construction

We calculate the commutator (5.19) (see also [41]), dropping the t-subscripts
on 6; for simplicity and using local expressions.
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[ag, dg(g)] = —eijajaiek’akgal — eiﬂ'aje’“la,-akgal
+0kl(9kg(9l0ijaj8,- + 0kl8k99ijalaj8i
= —HklakOijajaigﬁl — okleifajakaigal — leQijGjak@-g@
= +0Y f;x0%0,90, — 0" 0, (0" a;0;9)0,
= —doseg + do(as(g))
= —0i(do)g + do(as(9))-

For (5.20) we get

lag, Xi] = 07a;0;X*0, — X*0,0"a;0; — X*0" Oa;0;
—ain’“akajai — Hikakaaj(?i

= X*f1,070; + 070;(X*ay,)0,

= -0 X —dyp(X*ay).

A.5.2 Quantum construction

In [85], (4.3,4.4,4.6) have already been calculated, unluckily (and implicitly)
using a different sign convention for the brackets of polyvectorfields. In [41],
again a different sign convention is used, coinciding with the one in [85] in
the relevant cases. In order to keep our formulas consistent with the ones
used in [85, 41|, we define our bracket on polyvectorfields 7; and 75 as in [85]
to be
(71, To] = —[m2, m1]s,
giving an extra minus sign for m; and 75 both even. The bracket on polydif-
ferential operators is always the Gerstenhaber bracket.
With these conventions and

dy = _["*]a

we rewrite the formulas (4.6,4.5,4.3,4.4) so we can use them in the fol-
lowing

[@(X), ®(9)le = @([X,g]) +¥([0,9], X) - ¥([0, X], 9), (A-6)

[@(X),2(Y)le = d¥(X,Y) (A7)
+O([X,Y]) +¥(0,Y], X) — ([0, X],Y),

d,®(g) = ®(do(9)), (A-8)

LO(X) = D(ds(X)). (A.9)
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For the calculation of the commutators of the quantum objects we first define

a, = D(ay,)
and
f* = ®(f0t)
With (A.9) we get the quantum version of (5.18)
f* = d, 0.

For functions f and g we get

O(fxg) = Z —OUn (0, -, 0)(f,9)

o

_Z faa---aet)(fag):f*(f,g)'

With these two formulas we can now calculate the quantum version of (5.19)
as in [41]. On two functions f and g we have

w(f*g) = fulfs9)
= d*a*(f,g)
= —[a,,%(f,9)
= —ai(f*g) +a(f)* g+ f*a(g),

where we used (A.1) in the last step. Therefore

lax, di(9)](f) = a(di(9)(f)) — di(9)(as(f))
= alf 3 9]) = [ac(f) 7 4]
= —0[f % 9] —lag) % f]
= _at ( )( ) *(a'*( ))( )

For a function g which might also depend on ¢ the quantum version of (5.19)
now reads

[ax + 0y, di(9)] = di(ax(9))-
We go on to calculate the quantum version of (5.20). We first note that

Ms

at Xt -

Xta Ht, ey 975) - @(atXt) + \I](fg, Xt)

S
Il
—
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With this we get

[®(ag), ®(X)] = d¥(ag, Xy) + B([ag, Xi]) — W([0; ag]) + U([0r, Xi], a)
= d,Y(ag, X;) + ®(—dp(XFay)) + (-0, X;) — V(fp, X;)
—d (®(XFag) — U(ag, X;)) — 0,D(Xy),

where we have used (A.7).
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