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1 Introduction 

1.1 Hematopoietic differentiation and acute myeloid leukemia (AML)  

A cellular evolution of the pluripotential haematopoietic stem cells 

(HSCs) that normally leads to mature functional blood cells constitutes 

what is termed as hematopoiesis. Hematopoiesis is a very elaborate, 

sophisticated and dynamic physiological process. The bone marrow of a 

normal man weighing 70 kg produces each day some 210 x 108 mature 

erythrocytes, 175 x 108 platelet, and 60 x 108 neutrophil granulocytes (Mary 

et al., 1980).  

 

 

Figure 1. Haematopoietic development from a stem cell and 

         role of transcription factors (Tenen, 2003) 

 

During a 70-year life of an individual, approximately 650 kg of erythrocytes 

and 1000 kg of white blood cells are produced by the hematopoitic system 

(Afenya, 1996). In the hematopoietic development model, mature myeloid 

cells develop from hematopoietic stem cells through progenitors that 
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include common myeloid progenitors (CMPs) and, subsequently, 

granulocyte/ macrophage progenitors (GMPs) (Tenen, 2003). Myeloid cells 

include the common precursor for monocytes and granulocytes, and their 

more mature progeny (Figure1). During the process of hematopoietic 

lineage development, various transcription factors have been found to be 

crucial from studies involving either targeted disruption or overexpression 

of these factors (Shivdasani and Orkin, 1996; Tenen, 2003). 

Acute myeloid leukemia (AML) is a disease that is characterized by a 

block in the normal process of myeloid differentiation thereby leading to the 

accumulation of immature cells termed blasts (Lowenberg et al., 1999; 

Tenen et al., 1997, Figure 2). The abnormal maturation in AML could result 

from disruption of the function of transcription factors, cytokine receptors 

and the cell cycle. In other words, leukemic transformation might involve 

abnormalities of the transcription factors that normally regulate myeloid 

development in a stepwise fashion. 

It has been postulated that the origins of AML can be found in 

pluripotent stem cells (McCulloch, 1983; McCulloch, 1984; McCulloch and 

Till, 1981). It is, therefore, suggestive that in the AML state, pluripotent 

stem cells in the bone marrow become malignant, proliferate, and give 

birth to leukemic blasts. These blasts have a growth advantage over their 

normal counterparts in part due to increased survival of leukemic blast 

cells (Ferrari et al., 1992). These leukemic blasts suppress and replace 

normal haematopoietic progenitors leading to haematopoietic insufficiency. 

The diagnosis of AML is made clinical: i) if at least 30% of nucleated cells 

in the bone marrow are myeloblasts or ii) in the case of bone marrow 

showing erythroid predominance, if at least 30% of nonerythroid cells are 
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myeloblasts, or iii) if the characteristic signs of hypergranular promyelocytic 

leukemia are present (Bennett et al., 1985). 

 

Figure 2. Differentiation block characterizes AML and its 

reversal constitutes differentiation therapy 

 

The French-American-British, or FAB, classification has been the 

standard system used to classify the acute leukemias. AML is divided into 

eight major FAB subtypes (M0- M7), which are defined by morphology and 

immunophenotype (Casasnovas et al., 1998; Harris et al., 1999). However, 

the choice of therapy often depends upon the specific cytogenetic 

abnormality found in the leukemc blasts rather than their morphology or 

degree of differentiation. More than half of the AML patients display 

detectable and usually single cytogenetic abnormalities (Olsson et al., 

1996). Balanced chromosomal translocations are the most specific genetic 

lesions in AML and may represent critical, early events in the genesis of 
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the leukemic clone. The most common translocations are listed (Table 1). 

Myeloid cell restricted transcription factors are prime targets for 

chromosomal translocations in AML, since disruption of these factors can 

give growth advantage due to lack of terminal development (Scandura et 

al., 2002). Disruption of some transcription factors such as SCL or AML1 

affects formation of the entire blood cell lineage while other transcription 

factors such as GATA1, PU.1 and C/EBPalpha usually affect only a single 

or small number of related lineages (Tenen, 2003).  

 

Table 1. Common translocations in AML (Lowenberg B, 1999) 

Translocation 
 

     Genes involved           Morphology 

t(8;21)(q22;q22) AML1/ETO M2 (90%), Mild narrow 
eosinophilia 

t(16;21)(q24;q22) 
t(3;21)(q26;q22) 

AML1/MTG16 
AML1/EV11 

Variable 
Variable 

Inv(16)(p13;q22) CFBβ/MYH11 M4Eo (almost 
exclusively), rarely M4, 
M5, M2 also with 
abnormal marrow 
eosinophilia 

t(16;16)(p13;q22) 
del(16)(q22) 

CFBβ/MYH11 
CFBβ? 

As for inv (16) 
M4, M2 (probably no) 
M4Eo with out 
CFBβ/MYH11 

t(15;17)(q22;q12) PML/RARα M3 (exclusively) 
t(11;17)(q23;q12) PMLF/RARα M3 (exclusively) 
t(5;17)(q35;q12) 
t(11;17)(q13;q12) 
t(17;17)(q11;q12) 
t(4;11)(q21;q23) 

NPM/ RARα 
NuMA/ RARα 
STAT5b/RARα 
MLL/AF4 

M3 (exclusively) 
M3 (exclusively) 
M3 (exclusively) 
Most commonly 
associated with infant 
ALL 

t(6;11)(q27;q23) MLL/AF6 M4 or M5 (& T-ALL) 
t(9;11)(q22;q23) MLL/AF9 M4 or M5 
t(11;19)(q23;p13;3) MLL/ENL Biphenotypic; Pre-B 

ALL; M4 or M5 
t(11;19)(q23;p13.1) MLL/ELL M4 or M5 



   
 

 9

t(11;19)(q23;p13.3) 
t(11;16)(q23;p13) 

MLL/EEN 
MLL/CBP 

M4 or M5 
M4 or M5, occasional 
dyserythropoiesis 

t(11;22)(q23;p13) MLL /p300  
t(7;11)(p15;p15) NUP98/HOXA9 M2 or M4 
t(2;11)(q31;p15) NUP98/HOXD13 Variable 
t(1;11)(q24;p15) NUP98/PMX1 M2 
inv(11)(p15;q22) 
t(6,9)(p23;q34) 

NUP98/DDX10 
DEK/CAN 
(NUP214) 

 
M2 or M4, bone marrow 
basophilia, 
myelodysplasia with 
ringed sideroblasts 

t(18;16)(p11;p13) MOZ/CBP FAB M4 or M5, bone 
marrow 
erythropagocytosis 

t(9;22)(q34;q11) 
t(3;3)(q21;q26) 

BCR/ABL 
EVI-1 (overexpression) 

M1 or M2 
Megakaryocytic 
dysplasia and often 
trilineage dysplasia  

inv(3)(q21;q26) EVI-1 (overexpression) Megakaryocytic 
dysplasia and often 
trilineage dysplasia 

t(16;21)(p11;q22) TLS/ERG Variable FAB; extensive 
bone marrow 
hemophagocytosis 

del(17p) P53 mutations Characteristic 
dysgranulopoiesis 

 
 

1.2 Induction of differentiation: Differentiation therapy in AML 

AML treatment is based on intensive chemotherapy administered as; 

a) induction treatment that aims to bring the patient into complete 

hematological remission, and b) treatment in remission that aims to 

eradicate residual disease and prevent AML relapse (Lowenberg et al., 

1999). Treatment in remission with intensive chemotherapy alone or in 

combination with stem cell transplantation is associated with a relatively 

high mortality (Bruserud et al., 2000; Lowenberg et al., 1999). The use of a 

less aggressive therapy is therefore, highly desirable. One potential 
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approach might be the induction of differentiation of leukemic blasts 

turning them into non-dividing end cells. 

In an experimental setting AML cells can be induced to differentiate 

with a variety of agents. In 1978, Sachs and co-workers demonstrated that 

mouse cells undergo differentiation in the presence of IL6 (Sachs, 1978). 

Later it was reported that the vitamin A metabolite, retinoic acid (RA), 

could induce differentiation in the betty-60 cell line (Breitman et al., 1980), 

with the effect mediated through the RAR (Collins et al., 1990). The 

application of differentiation therapy with ATRA is now regarded as choice 

for the treatment of AML-M3: APL (He et al., 1999; Lo et al., 1998; Kogan 

and Bishop, 1999). There are currently a large number of prototypes and 

second-generation agents that are capable of inducing differentiation in 

either myeloid or lymphoid cell lines (Hozumi, 1998; Tallman, 1996), many 

of which have been used in clinical situations, albeit in only few cases, 

often this is in combination with other factors (Table 2a & 2b). Going 

further ahead in differentiation induction, antibody-based therapy for acute 

leukemia has evolved as a possible means of decreasing both relapse 

rates and mortality (Ruffner and Matthews, 2000). Over the past 25 years, 

monoclonal antibodies have been evaluated as anti-leukemic therapy both 

in unmodified forms and as immunoconjugates labeled with either 

radioactive or cytotoxic moieties. For example, anti-GM-CSF antibody 

(Bouabdallah et al., 1998), humanized anti-CD33 antibody (HuM-195) 

(Caron et al., 1998) or 131I-labeled anti-CD33 (p67) (Sievers et al., 1999) 

and anti-CD45 antibody (Sievers, 2000). Most monoclonal antibody 

targeting approaches have been directed against normal hematopoietic 

cell surface antigens that are also expressed by leukemic blast cells 

(Sievers, 2000). 
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Table 2a: Differentiation inducers of AML (Hozumi, 1998)  

Direction of 
differentiation 

Soluble mediators used Detection of 
differentiation in native 
AML blasts 

Neutrophil granulocyte SCF or IL-3 
 
 
 
 
 
IL-3, G-CSF, or GM-CSF 
 
 
 
 
 
IFN- , TNF- , Vit-D3, or 
retinoic acid 
 
 
 
 
 
 
 
 
SCF 

Induction of CD15 
expression and 
promyelocyte-myelocyte 
morphology in CD34+ 
AML-M1/M2 blasts. 
 
Increased proportions of 
mature granulocytes for 
some patients, no 
correlation between 
differentiation induction 
and FAB class. 
 
Enhanceddifferentiation 
when G-CSF was 
combined with retinoic acid 
decreased colony 
formation in clonogenic 
assay; these effects were 
caused by single agents 
and/or by combinations of 
mediators. 
Differentiation into 
myelocyte- and 
metamyelocyte-like 
leukemic cells with 
disappearance of CD34 
and HLA-DR expression 
for a subset of patients. 

Eosinophil granulocyte IL-5 Induction of either pure or 
mixed leukemic 
eosinophilic colonies, no 
correlation with FAB 
classification. 

Basophilic granulocyte SCF 
 
 
 
 
 
IFN- , TNF- , 
  

Differentiation into cells 
with segmented nuclei and 
basophilic /metachromatic 
granules for a small 
minority of patients. 
 
Increased membrane 
expression of the 
monocyte marker CD14 in 
subsets of patients; effects 
were caused by single 
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agents or combinations of 
mediators. 

Monocyte Vit-D3, or retinoic acid  
TNF-  
 
 
 
 
 
IL-3, GM-CSF, G-CSF, or M-
CSF 
 
 
 
 
SCF 
Leukemia inhibitory factor 

Induction of monocytic 
morphology with increased 
phagocytic capacity and 
expression of CD11b and 
CD14. 
 
Induction of a macrophage-
like morphology and 
expression of CD13, CD14, 
and HLA-class II in a minority 
of patients. 
 
Expression of the Wilms' 
tumor suppression gene 
together with monocyte 
differentiation in the M1 AML 
cell line. 

Megakaryocyte Thrombopoietin + IL-3 or 
SCF 

Increased expression of 
platelet-specific antigens 
in the M-O7e AML cell line 

Erythroid differentiation Erythropoietin Further erythroid diff. for  
patients with erythroleuk.  

 

Table 2b: Candidate drugs for differentiation induction (Tallman, 1996) 

 

 

Cytotoxic drugs 

cytarabine, daunorubicin, 6-thioguanine

combinations of cytosine arabinoside

thioguanine plus retinoic acid plus 

hexamethylene or dimethylformamide 

Altered Histone Acetylation histone deacetylase inhibitors 

butyrates 

monosaccharide butyrate derivatives 

High-Dose Methylprednisolone  
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Metal Chelators dithizone  

ATRA and Vitamin D3 Analogs  

 

Recently, it has been shown that the ligation of the CD44 surface antigen 

by specific anti-CD44 monoclonal antibodies or with its natural ligand, 

hyaluronan, can induce myeloid differentiation in AML1/2 to AML5 

subtypes (Charrad et al., 1999). We and others could also show 

differentiation induction upon CD44 ligation with anti-CD44 antibody, A3D8 

in AML cell lines HL60, U937, THp-1, KG1-a and NB4 (Charrad et al., 

2002; Peer Zada et al., 2003). This shows a new development for targeted 

differentiation therapy in AML. 

 

1.3 Adhesion Receptor CD44  

CD44 is a ubiquitous multistructural and multifunctional cell surface 

adhesion molecule involved in cell-cell and cell-matrix interactions, cell 

traffic, lymph node homing, presentation of chemokines and growth factors 

to cells and transmission of growth signals mediating hematopoiesis and 

apoptosis (Denning et al., 1989; Ghaffari et al., 1997; Naor et al., 2002; 

Shimizu et al., 1989; Taher et al., 1996; Underhill, 1992). It is a widely 

distributed glycoprotein encoded by a single copy gene, located on the 

short arm of chromosome 11 in human (Goodfellow et al., 1982) and on 

chromosome 2 in mice (Colombatti et al., 1982), spanning approximately 

50 kb of human DNA (Screaton et al., 1992) and contains 20 exons 

(Ghaffari et al., 1999; Screaton et al., 1992). Differential splicing and post-

translational modifications (-N- and �O- glycosylations and 

glycosaminoglycanation) result in the generation of isoforms containing 
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variably sized extra and intra cellular domains (85-230 kda) (Brown et al., 

1991; Dougherty et al., 1991; He et al., 1992; Figure 3). The smallest 

CD44 molecule (85-95 kda), which lacks the entire variable region, is 

standard CD44 (CD44s). As it is expressed mainly on cells of 

lymphohematopoietic origin including those with functional properties of 

primitive progenitors, CD44s is also known as hematopoietic CD44 

(CD44H) (Harn et al., 1991; Naor et al., 2002).  

Hyaluronic acid (HA), an important component of the extracellular 

matrix (ECM), is the principal ligand of CD44 (Miyake et al., 1990a). Other 

CD44 ligands include the ECM components collagen, fibronectin, laminin 

and chondroitin sulfate, in addition to ECM-unrelated serglycin, addressin, 

osteopontin ligands (Naor et al., 2002; Underhill, 1992). Interaction 

between HA and CD44 delivers important signals to normal and 

transformed CD44-bearing cells (Lesley et al., 1993). As a target of 

mediating differentiation, CD44 deserves considerable attention in view of 

its role in transmitting signals that can modulate cell proliferation, survival 

and differentiation as well as their prevalence among leukemic cells 

(Liesveld et al., 1994; Moll et al., 1998; Reuss-Borst et al., 1992; Verfaillie, 

1998). A compelling body of evidence suggests outside-in signaling 

through CD44 (Lowell and Berton, 1999; Shattil et al., 1998) when ligated 

with its natural ligand, hyaluronic acid (Aruffo et al., 1990; Miyake et al., 

1990a) or with specific monoclonal antibodies (MoAb�s). Much interest was 

focused on CD44 when it was reported that an antibody directed against a 

particular variant of CD44 blocked metastasis of a rat carcinoma (Legras 

et al., 1998). Subsequent publications suggested that CD44 may have 

early diagnostic and prognostic value (Bendall et al., 2000a; Ghaffari et al., 

1995; Legras et al., 1998). 
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Figure 3. CD44 structure: transmembrane and cytoplasmic domains. ERM 
denotes ezrin, radixin, moesin (adapted from Naor D 2002).  
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1.3.1 CD44: Role in hematopoiesis 

It has been shown that CD44 is involved in the regulation of hematopoiesis 

(Khaldoyanidi et al., 1999). This was demonstrated in studies involving 

administration of anti-CD44 monoclonal antibodies to a mouse Dexter type 

long-term bone marrow culture (LTBMC), which prevented the formation of 

neutrophil granulocytes and macrophages (Miyake et al., 1990b; Naor et 

al., 2002). The production of B-lineage lymphocytes in White lock and 

White LTBMC was also blocked by anti-CD44 MoAb (Naor et al., 2002). 

Similar results were obtained from different species (Khaldoyanidi et al., 

1997; Miyake et al., 1990b; Moll et al., 1998). Other in vitro models of 

hematopoiesis have shown that the signals delivered by HA and 

transduced by the CD44 receptor of the precursor cells are involved in the 

augmented proliferation and differentiation of the cells (Miyake et al., 

1991). CD44 antibodies capable of stimulating hematopoiesis in LTBMC 

have also been described (Khaldoyanidi et al., 2002; Rossbach et al., 

1996). Taken together, these data indicate that CD44 is important for the 

interaction of hematopoietic cells with the bone marrow microenvironment 

and is involved in the regulation of hematopoietic cell production and 

differentiation (Moll et al., 1998; Rossbach et al., 1996; Sandmaier et al., 

1990). 

1.3.2 CD44 in AML: Role as therapeutic target  

In animal models, it was shown that CD44 specific antibodies inhibit local 

tumor growth and metastatic spread (Naor et al., 2002) indicating that 

CD44 may confer a growth advantage on some neoplastic cells and, 

therefore, could be used as a target for cancer therapy. When considering 

therapeutic targeting, the diversity of the CD44 molecule, because of its 

variable region, has an advantage over other proinflammatory molecules 
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(for example; L-selectins, integrins, mucosal addresin cell adhesion 

molecule-1, vascular cell adhesion molecule-1, TNF-alpha, IFN-y and IL-

6), which have a much more restricted structure. Hence, the molecular 

flexibility of the CD44 receptor provides us with an excellent opportunity to 

target pathological CD44, while leaving normal CD44 undamaged. The 

importance of CD44 in AML came to focus when it was reported that CD44 

delivers a differentiation signal to leukemic blast cells that may be 

exploited to create new therapies for AML (Charrad et al., 1999). CD44 

was previously known to be expressed by blast cells from most AML 

patients and is elevated in expression in patients with AML as well as 

chronic myeloid leukemia (Ghaffari et al., 1996; Kortlepel et al., 1993). 

Other studies have shown expression of CD44 variant exons in AML to 

correlate with poor prognosis (Bendall et al., 2000a; Ghaffari et al., 1995; 

Legras et al., 1998). 

 

1.4 Transcription factor c-Jun 

 Recent studies have revealed a number of mechanisms by which 

transcription factors regulate differentiation and these mechanisms provide 

a useful framework to discuss how hematopoietic differentiation proceeds 

in a largely irreversible fashion. These mechanisms include autoregulation, 

inhibition of alternative pathway, activation of lineage specific genes, 

inhibition of proliferation and induction of apoptosis. 

 Among various transcription factors, we focused our attention on c-

Jun, an AP-1 transcription factor which was one of the first mammalian 

transcription factors to be identified (Angel and Karin, 1992) and found to 

regulate a wide range of cellular processes including cell proliferation, 

death, survival, differentiation and cell cycle progression (Bakiri et al., 



   
 

 18

2000; Behre et al., 1999a; Kovary and Bravo, 1991a; Schreiber et al., 

1999a; Shaulian and Karin, 2001; Smith and Prochownik, 1992; Wisdom 

et al., 1999). This property stems primarily from its structural and 

regulatory complexity. AP-1 is not a single protein, but a menagerie of 

dimeric basic region leucine zipper (bZip) proteins that belong to the Jun 

(c-Jun, JunB, JunD), Fos (c-Fos, FosB, Fra-1 & Fra-2), Maf (c-Maf, MafB, 

MafA, MafG / F/ K & Nrl) and ATF (ATF2, LRF1 /ATF3, B-ATF, JDP1, 

JDP2) sub families which recognize either TPA responsive elements (5 

TGAG/ CTCA 3) or camp responsive elements (CRE, 5 TGACGTCA 3) 

(Ryseck and Bravo, 1991). c-Jun is the most potent transcriptional 

activator in its group (Hirai et al., 1989). Comparison of c-Jun sequences 

among species reveals high degree of homology. Mouse c-Jun protein 

shares 96, 81 and 72 % identity with its human, chicken and Xenopus 

counterparts respectively (Mechta-Grigoriou et al., 2001). c-Jun can form 

homo or heterodimers with other members of the Jun or Fos family (Hirai 

and Yaniv, 1989). The relative binding affinities of distinct dimer 

combinations depend on the specific DNA sequence and on the promoter 

context (Halazonetis et al., 1988; Kerppola and Curran, 1991).  

1.4.1 c-Jun: Role in proliferation and cell cycle progression 

The role of c-Jun in promoting normal cell growth was first 

demonstrated by the use of neutralizing antibodies or anti-sense RNA 

which block entry into S phase (Kovary and Bravo, 1991b; Riabowol et al., 

1992). Moreover, overexpression of c-Jun alters cell cycle parameters and 

increases the proportion of cells in S, G2 and M relative to G1 phases of 

the cell cycle (Pfarr et al., 1994). The role of c-Jun in promoting cell growth 

has been further highlighted from studies of c-Jun deficient mouse 

embryonic fibroblasts (Hilberg et al., 1993; Johnson et al., 1993). 
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Fibroblasts lacking c-Jun exhibit a severe proliferation defect. Cyclin D1 is 

only poorly activated in these cells leading to a cell cycle block (Wisdom et 

al., 1999). Other studies have demonstrated accumulation of p53 and its 

target, p21 in c-Jun deficient fibroblast (Schreiber et al., 1999a). On the 

role of c-Jun in the mammalian UV response, it was shown that c-Jun is 

necessary for UV-irradiated cells to escape from p53-dependent growth 

arrest and to re-enter the cell cycle (Shaulian et al., 2000). These 

observations link directly c-Jun dependent signaling to the cell cycle 

machinery (Figure 4). Alternatively, the cell cycle dependent variations in 

Jun protein levels would constitute a novel reciprocal link between the cell 

cycle machinery and a transcription factor (Bakiri et al., 2000; Peer Zada et 

al; 2003). 

G0 G1 S

p16Ink4a JunB

Cdk2/Cdk4/6
Cyclin D1

c-Jun

Ras

JunD p19Arf

Mdm2p53

p21

CD44
anti-CD44

 
Figure 4. Cell cycle gene regulation by Jun proteins (colour legends 

indicate the results of this study) 
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1.4.2 Cell cycle    

It is a universal process by which cells divide and participate to the 

growth and development of organism. G1 phase is precisely regulated to 

coordinate normal cell division with cell growth, whereas replication of 

DNA during S phase is precisely ordered to prevent inadequate events that 

will lead to genomic instability and cancer. The cell cycle machinery as 

such, is a highly coordinated process in which cyclins, cyclin dependent 

kinases (CDKs) and their inhibitors (CDKIs) are differentially regulated 

(Gitig and Koff, 2000; Koepp et al., 1999; Matsushime et al., 1994; Muller 

et al., 1993; Sherr, 1994). Each cyclin can associate with one or more of 

the Cdk family and successive ways of cyclin/CDKs complexes drive cells 

through the cell cycle, acting in G1 to initiate S phase and in G2 to initiate 

mitosis. While levels of CDKs remain constant through the cell cycle, 

expression of cyclins varies following periodic transcriptional or post-

transcriptional regulations so that each cyclin has a unique pattern of 

expression during the cell cycle. Since cyclin abundance is rate limiting, 

the different CDKs get activated upon binding to their specific cyclin 

partner provided that these subunits are available. During the G1 phase of 

the cell cycle, two classes of cyclins get successively activated: D type 

cyclins (cyclins D1, D2 and D3) (Steinman, 2002) and cyclin E (cyclins E1 

and E2) (Koepp et al., 1999). These cyclins associate with their respective 

partners, CDK4 or CDK6 for cyclin D and CDK2 for cyclin E to induce their 

kinase activities (Bates et al., 1994a; Meyerson and Harlow, 1994). 

Activated CDK4/CDK6 and CDK2 are required for phosphorylation of the 

retinoblastoma protein (pRb), an event that leads to the release of Rb-E2F 

repressor complex and hence, induction of E2F-dependent genes and cell 

cycle progression (Bates et al., 1994b). Cyclins D and CDK4/6 are 
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responsible for the first phosphorylation of pRb, while cyclin E/CDK2 

operates on both the second pRb phosphorylation and the control of S-

phase entry. The activity of G1 cyclin-Cdk complexes is regulated, at least 

in part, by CDKIs, among which two members, p21 and p27 play specific 

roles. Evidence is accumulating that CDKIs are targets of extracellular and 

intracellular signals that regulate cell growth and differentiation (Harper et 

al., 1993a; Nead et al., 1998; Nishitani et al., 1999; Steinman et al., 

1994a). The p21 inhibitor is known to be triggered by antiproliferative and 

differentiation signals and as a mediator of p53 induced cell cycle arrest 

after DNA damage (Steinman et al., 1998). 

 

1.4.3 Regulation of c-Jun 

The regulation of AP-1 activity in general and c-Jun in particular, is 

complex. Regulation can occur through: i) changes in gene transcription 

and mRNA turnover; ii) effects on protein turnover; iii) post-translational 

modifications that modulate its transactivation potential and iv) interactions 

with other transcription factors that can either synergize or interfere with 

AP-1 activity (Behre et al., 1999a; Rangatia et al., 2002). In addition to 

being a transcriptional activator, some biological effects of c-Jun are 

mediated by gene repression (Passegue and Wagner, 2000; Shaulian et 

al., 2000; Schreiber et al., 1999b).  

1.4.3.1 Transcriptional regulation  
The c-jun gene is expressed in many different cell types at low levels 

and its expression is enhanced in response to many stimuli inclunding TPA 

(in a protein-kinase C-dependent manner), growth factors (EGF, NGF, 

FGF), UV irradiation or cytokines (Hill and Treisman, 1995; Karin and 

Hunter, 1995). The c-jun promoter region is highly conserved between 
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mouse, rat and the human transcription initiation site share a 94% identity 

(Pfarr et al., 1994). The c-jun promoter (Figure 5) contains potential 

binding sites for several transcription factors, including SP1 (Rozek and 

Pfeifer, 1993), NF-Jun (nuclear factor jun) (Brach et al., 1992), CTF 

(CCAAT transcription factor) and AP-1 itself (Angel et al., 1988a). 

Induction of c-jun expression by extracellular stimuli is mediated through a 

TRE-like site (jun1) located in the proximal region of the murine c-jun 

regulatory sequences, which is preferentially recognized by a c-Jun/ATF2 

heterodimer (van Dam et al., 1998). In the distal part of the c-jun promoter, 

a second AP-1 like site (jun2) also mediates the c-jun responsiveness to 

TPA or insulin and growth factor stimulation (Hagmeyer et al., 1993; Stein 

et al., 1992). As ATF2 alone cannot confer TPA-inducibility of c-jun, the c-

jun gene is thus upregulated by its own product (Angel et al., 1988b). 

 
Figure 5: c-jun promoter and binding sites for transcription factors 

 
1.4.3.2 Posttranslational regulation  

Despite its inducible expression, most cell types contain a certain 

basal level of c-Jun protein prior to stimulation and the TRE site in its 

promoter is constitutively occupied (Angel et al., 1987; Rozek and Pfeifer, 

1993). Following exposure to stimuli, the N-terminal Jun Kinases (JNK) 

members of the MAPK family, are activated leading to rapid 
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phosphorylation of preexisting c-Jun and ATF2 proteins (Devary et al., 

1992; Gupta et al., 1995). Phosphorylation of c-Jun on residues Ser63 and 

Ser73, located within its transactivation domain, potentiates its 

transactivation properties by recruiting the coactvator protein, CBP, a 

histone acetylase (Arias et al., 1994), thereby enhancing c-jun 

transcription. This type of JNK mediated regulatory control involves two 

distinct steps; endogenous basal c-Jun protein is first activated by 

posttranslational modifications and the phosphorylated form of c-Jun 

induces subsequently its own transcription by a positive auto-regulatory 

loop. The JNKs are the only kinases that activate c-Jun; Erk1 and Erk2 

MAPKs are inefficient in phosphorylating the N-terminal part of c-Jun 

although they have been shown to phosphorylate a cluster of inhibitory 

residues located next to the basic domain (Mechta-Grigoriou et al., 2001).  

1.4.3.3 Regulation at the level of protein-protein interactions  

           Recent data (Peer Zada et al., 2003; Rangatia et al., 2002) 

suggests that c-Jun expression might be a key event in the decision of a 

myeloid cell to proliferate or to differentiate. These effects are mediated 

through protein-protein interactions. For example, c-Jun has been shown 

to interact with PU.1 and act as a JNK independent coactivator of PU.1 to 

induce monocytic differentiation (Behre et al., 1999a). c-Jun is reported to 

interact with C/EBPalpha, an important transcription factor involved in 

granulocytic differentiation. Downregulation of c-Jun by C/EBPalpha is an 

event that leads to granulocytic lineage commitment (Rangatia et al., 

2002). 
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1.5 Aim of the Study  

The aim of this study is to elucidate the molecular mechanisms 

involved in differentiation induction and proliferation arrest upon CD44 

ligation in human myeloid cell line models and thereby, help providing new 

insights into anti-proliferative and differentiation therapy of AML.  

In particular we sought to demonstrate the role of c-Jun in influencing 

cell proliferation and cell cycle progression in myeloid cells, since only 

scarce data are available in this field. Moreover, it would be of interest to 

investigate the role of c-Jun and cell cycle regulatory molecules in parallel 

to further strengthening our knowledge on this ubiquitous transcription 

factor. 
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2. Materials 
 

2.1 Mammalian cell lines 

 

HL60                  (human myeloid cell line, myeloblastic) 

U937                  (human myeloid cell line, monoblastic) 

                   

2.2 Plasmids 

pc-jun (-1780/+731) 

pc-jun (-952/+731) 

pc-jun (-716/+731) 

pc-jun (-345/+731) 

pc-jun (-180/+731) 

pc-jun (-63/+731) 

pc-jun (delpAP-1)-c-jun promoter with proximal AP-1 site deleted 

pc-jun (deldAP-1)-c-jun promoter with distal AP-1 site deleted 

pc-jun (delpdAP-1)-c-jun promoter with both AP-1 sites deleted 

pGL3 

pMV7-cjun 

pMV7 

 

2.11 Antibodies 

. Monoclonal anti-CD44 antibody, A3D8 (Sigma)  

Isotype matched antibody (IgG1, Sigma) or J173 (Immunotech) 

Fluorescein isothiocynate (FITC) MoAb�s to CD11b (FITC, 

immunotech, IgG1) and CD71 (FITC, DAKO, IgG1) 
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c-Jun (anti-rabbit, sc-45, Santa Cruz),  

c-Fos (anti-rabbit polyclonal, sc-52, Santa Cruz), 

JunB (anti-mouse monoclonal IgG1, sc-8051, Santa Cruz),  

CDK2 (anti-rabbit, sc-163),  

CDK4 (anti-rabbit, sc-260),  

cyclin D1 (ant-rabbit, sc-718), 

p21 (anti-mouse, sc-817) and  

pRb (anti-mouse monoclonal, sc-102 Santa Cruz).  

JNK1 (anti-rabbit, sc-474),  

ERK1 (anti-rabbit, sc-94 Santa Cruz), 

phospho-c-Jun (anti-mouse monoclonal, sc-822 Santa Cruz) and 

β -tubulin (anti-rabbit, sc-9104). 

 

3. Methods 

3.1 Proliferation assays: 

To assess the proliferation state of cells after various treatments, 

MTT proliferation assay kit (Boehringer Mannheim, Germany) and 

BrdU incorporation (FLUOS kit) were used according to 

manufacturer�s instructions with minor modifications. 
 

3.1.1 MTT assay:  

     It is a non-radioactive, colorimetric assay system used for the 

quantitative determination of cellular proliferation and activation. The 

assay is based on the reduction of the yellow tetrazolium salt MTT 

(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid) to 

purple formazan crystal by metabolic active cells involving NADH 
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and NADPH. The resulting solution can then be quantified by 

multiwell spectrophotometer.  

Cells were incubated with or without A3D8 for 1-4 days in 96 

well plates. 10µL MTT labeling reagent (5mg/ml) was added every 

day to each well and the plates were incubated at 37°C for 4 hours. 

The resulting formazon crystals were solubilized by adding 100µL of 

solubilization buffer (10% SDS in 0.01M HCl) per well and the plates 

were incubated at 37°C overnight. The absorbance of the formazon 

measured at 575 nm was used to account for the proliferation state 

of cells.  

3.1.2 BrdU incorporation: 

5-bromo-2´-deoxuridine (BrdU), a thymidine analogue, which 

gets incorporated into cellular DNA during the S phase of the cell cycle 

and thus, a direct measure of cell proliferation, was also used. The assay 

was performed by using in situ cell proliferation kit, FLUOS (Roche, 

Mannheim Germany, cat.no. 1810740). The BrdU assay involves: (i) 

labeling of the cells with BrdU, (ii) fixing and denaturating BrdU labeled 

cells by acid, (iii) detecting incorporated BrdU with a fluorescein-

conjugated anti-BrdU monoclonal antibody and (iv) analyzing the samples 

on a flow cytometer. 

3.2 Cell cycle analysis and Flow Cytometry 

To investigate the surface expression of myeloid differentiation and 

proliferation markers, FACS analysis was performed. HL60 and U937 cells 

(3X105 cells/ml) were stimulated for 36 hours with A3D8 (20µg/ml) and 

then stained with FITC or PE labeled antibodies at a concentration of 

10µg/ml at 4°C for 30 minutes and washed twice with FACS buffer (PBS, 
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3% FCS, 0.01% NaN3). Fluorescence was then analyzed on Coulter 

EPICS XL / XL- MCL SystemII Software. Data were collected after 5000 

cell analysis (per sample) and the results shown as scatter diagrams or 

expressed as D- value which is calculated as: 

Mean fluorescence intensity (MFI) ratio = Mean of sample stained 

with MoAb / Mean of isotype 

control MoAb 

Then the percentage of difference between MFI ratio of sample incubated 

with or without A3D8 was calculated, giving a D-value (Pisani et al., 1997) 

for each sample. The D-value for unstimulated control was arbitrarily 

chosen and that of stimulated sample expressed relative to it. Negative D-

values indicate more MFI of stimulated sample than unstimulated and 

hence, implies increased expression of the particular marker. Similarly, 

positive D values imply decreased expression of the marker. For the cell 

cycle analysis, cells with or without A3D8 treatment were centrifuged at 

1500 rpm for 3 min, washed with PBS and then the DNA was stained with 

100µg/ml propidium iodide for 30 min at 4°C protected from light. The cells 

were then analyzed with the FACScan (Beckton-Dickinson) for different 

cell populations. 

3.3 RNA isolation and semi-quantitative RT-PCR 

  Total RNA was isolated from 7X105 cells before and after treatment 

with A3D8 (20µg/ml) and IgG1 (20µg/ml) using RNeasy Mini kit (Qiagen). 

100 ng of RNA was used for first strand cDNA synthesis in a 20µL reaction 

with 10X RT buffer, dNTP (5mM), RNasin (1U/µL), oligo dT (1µM) and the 

reaction was incubated at 37°C for 90 minutes. Equal amounts of cDNA 

were taken for c-jun PCR amplification using a Qiagen kit. Aldolase was 

used as an internal control. The PCR cycling program consisted of 30 
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cycles of 94°C for 2 minutes, 55°C for 1 minute and 72°C for 80 seconds 

using DNA thermal cycler (Perkin Elmer). PCR products of ~971bp (c-jun) 

and ~580bp (Aldolase) were separated by 1.2% agarose gel 

electrophoresis and visualized by ethidium bromide staining with UV 

irradiation. The primers used for PCR amplification were for c-jun (Gene 

Bank ACC. No. J04111): forward primer 5`-ACT GCA AAG ATG GAA 

ACG AC- 3`(bp 1264-1283) and reverse primer 5`-AAA ATG TTT GCA 

ACT GCT GC- 3`(bp 2235-2254); and for aldolase: forward primer 5`-AGC 

TGT CTG ACA TCG CTC ACC G- 3` and reverse primer 5`-CAC ATA 

CTG GCA GCG CTT CAA G- 3`. 

3.4 Quantitative Real-time PCR in AML patient samples 

Quantitative Real-time PCR using the Light CyclerTM �Systems (LC) 

offers real time monitoring of PCR product formation. During the run the 

PCR product increases logarithmically which can be identified and the 

starting concentration of the target DNA determined. We used the Fast 

Start DNA SYBR Green I-Kit (Roche Diagnostics, Mannheim, Germany) as 

a mastermix. SYBR Green I Dye is a fluorescence dye, which binds to 

double-stranded DNA. The fluorescence signal was recorded at the end of 

each elongation phase and the increasing amounts of PCR product can be 

monitored from cycle to cycle. We quantified the expression of c-jun in 

AML patient samples as well as of the housekeeping gene G6PD to 

control for variances in the cDNA synthesis step. Thus, we performed 

relative measurement of the target gene expression by comparison to 

G6PD. G6PD plasmid: pGdBBX, kindly provided by A. Hochhaus, 

University of Mannheim was serially diluted to 10000fg, 1000fg and 100fg 

and used as a standard curve for the calculation of c-jun and G6PD 

concentrations.  
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 PCR was performed using 2µl master mix (LC Fast Start DNA 

Master SYBR Green 1 Cat. No: 3003230, Roche), 2µl of respective cDNA, 

4mM MgCl2, 7.5µM of each primer and water to a final volume of 20µl. 

Amplification occurred in a three step cycle procedure initiated by a 10 

minute denaturation at 95°C to activate the polymerase: 95°C, 0s, 

annealing 64°C, 10s, and extension 72°C, 25s for 35 cycles. Fluorescence 

of SYBR Green I was measured after each extension step at 530 nm in 

channel F1. The final PCR cycle is followed by a melting curve analysis to 

confirm PCR product identity and differentiate it from non-specific, e.g. 

primer-dimer products. For that, the products are denatured at 95°C, 

annealed at 65°C, and then slowly heated up to 95°C with fluorescence 

measurement at 0.2°C increments. Some amplified products were 

analysed by electrophoresis on 1% ethidium bromide stained agarose 

gels. The estimated size of the amplified fragments matched the 

calculated size: for c-jun (409 bp) and G6PD (343 bp). 

3.5 Immunoblot analysis 

Total cellular protein was extracted from HL60 and U937 cells before 

and after A3D8 treatment and subjected to electrophoresis on 10% SDS-

PAGE gels. The western blotting procedure was performed and the blots 

detected with the ECL system as described previously (Behre et al., 

1999b). Anti-β-tubulin antibody (Boehringer Mannheim) was used as 

internal loading control on the same blot after stripping. Immunoblot 

analysis was performed for c-Jun (anti-rabbit, sc-45, Santa Cruz), c-Fos 

(anti-rabbit polyclonal, sc-52, Santa Cruz), JunB (anti-mouse monoclonal 

IgG1, sc-8051, Santa Cruz), CDK2 (anti-rabbit, sc-163), CDK4 (anti-rabbit, 

sc-260), cyclin D1 (ant-rabbit, sc-718), p21 (anti-mouse, sc-817) and pRb 

(anti-mouse monoclonal, sc-102 Santa Cruz). The other antibodies used 
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for the Immunoblot analysis were JNK1 (anti-rabbit, sc-474), ERK1 (anti-

rabbit, sc-94 Santa Cruz), phospho-c-Jun (anti-mouse monoclonal, sc-822 

Santa Cruz) and ß -tubulin (anti-rabbit, sc-9104).  

3.6 Immunocomplex kinase assay 

After described treatments, HL60 cells were washed with cold PBS 

and RIPA lysates prepared at different time points. Lysates were collected 

by centrifugation for 30 min and protein concentrations were quantified by 

the Bradford assay (Bio-Rad Laboratories, Germany). 200 µg of protein 

was incubated with 2 µg of anti-CDK2 or anti-CDK4 antibody at 4° C for 2 

h with rotation. Protein A agarose beads (20 µl) was then added and the 

incubation continued for another 2 h. Immunocomplex beads were washed 

twice with PBS buffer and three times with kinase buffer (150 mM NaCl; 1 

mM EDTA; 50 mM Tris-HCl, pH 7.5; 10 mM MgCl2; and 10 mM DTT). 

Kinase activity was assayed by incubating the beads at 37° C for 30 min 

with 25 µl kinase buffer, 3 µg histone H1 (Upstate, Germany; CDK2) or Rb-

fusion protein (Santa Cruz; CDK4), 10 µM ATP, and 4 µCi [γ-32P] ATP 

(3000 Ci/mmol). Samples were then boiled for 5 min in 2X sample buffer, 

electrophoresed through a 12% SDS-polyacrylamide gel, dried, and 

phosphorylated histone H1 and Rb proteins were visualized by auto 

radiography and quantified by Aida 2.1 software program. 

3.7 Transient transfections using Effectene 

Effectene transfection reagent is a unique non-liposomal lipid 

formulation designed to achieve high transfection efficiencies. Effectene 

allows transfections in the absence of serum, which was important to rule 

out any serum-induced fluctuations in c-jun promoter activity used in this 

study. In the first step of Effectene-DNA complex formation, the DNA (in 
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this case c-jun promoter/luciferase constructs) was condensed by 

interaction with the Enhancer in a defined buffer system. Effectene reagent 

was then added to the condensed DNA to produce Effectene-DNA 

complexes, which are mixed with the medium and directly added to the 

cells. In this way, the cells were transiently transfected with 1µg c-jun 

promoter/luciferase constructs and pRL-0 plasmid per well of the six well 

plates. 18 hours after transfection, A3D8 was added to the wells to a final 

concentration of 20µg/ml for additional 6 hours. Promoter activities were 

determined by measuring the luciferase activity with the Dual Luciferase 

Assay System (Promega). Firefly Luciferase activities of different c-jun 

promoter constructs in pGL3 were normalized to the Renilla Luciferase 

values of pRL-0 (Behre et al., 1999c). 

3.8 Stable cell lines overexpressing c-Jun 

To generate cell lines overexpressing c-Jun, the retrovirus-derived 

cDNA expression vector was used for the study. This vector, designated 

pMV7-cjun was kindly provided by Dr. Yaniv. The vectors are described 

elsewhere (Kirschmeier et al., 1988). pMV7-cjun and the empty vector 

pMV7 (lacking the c-Jun cDNA insert) were transfected into HL60 cells by 

electroporation (300V/975µF). After 48 hours, the cells were transferred 

into selective medium containing 1 µg/ml G418. After 1 week in the 

selection medium, the cells transfected with pMV7 or pMV7-cjun were then 

stimulated with A3D8 or IgG with a final concentration of 20 µg/ml. 36 

hours after treatment with A3D8, the cells were analyzed for CD11b and 

CD71 expression. The expression of c-Jun in c-Jun overexpressing HL60 

cells was measured by Real-time PCR and western blot analysis. 
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4. Results 

4.1 CD44 ligation inhibits the proliferation and induces terminal 

differentiation of myeloid leukemia cells 

A reverse in blockage of differentiation of acute myeloid leukemia 

cells upon CD44 ligation led us to analyze the molecular mechanism of 

CD44 mediated effects. To achieving this, we used human myeloid cell 

lines HL60 (myeloblastic) and U937 (monoblastic) as our model systems in 

addition to anti-CD44 monoclonal antibody A3D8 to activate CD44 

signaling. To validate our system we first performed proliferation and 

differentiation studies. Treatment of HL60 and U937 cells with the anti-

CD44 MoAb antibody A3D8 for different time points resulted in a dramatic 

decrease of proliferation (Figure 6). We used the non-radioactive 

quantification of cell proliferation and cell viability (MTT assay) for 

investigating the proliferation state of HL60 (Figure 6A) and U937 cells 

(Figure 6C). The decreased proliferation of these myeloid cells also 

correlated with decreased CD71 (transferrin receptor) expression (Figure 

6B and 6D). CD71 is known to be a proliferation marker and transferrin 

receptor expression is related to the proliferative state of the cells as well 

as the induction of differentiation (Theil, 1990); thus, the number of CD71 

molecules is larger in cells with a high proliferation rate and vice versa. 

CD71 downregulation has been extensively characterized in cells treated 

with DMSO, ATRA and TPA (Horiguchi-Yamada and Yamada, 1993; 

Horiguchi-Yamada et al., 1994). Upon CD44 ligation by A3D8 in HL60 and 

U937 cells, we observed a drastic decrease in CD71 expression (47% and 

7%, respectively) compared to the controls. It is important to note that 

CD71 expression was higher in HL60 cells (>90%, Figure 6B, upper left 
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panel) as compared to U937 cells (<20%, Figure 6D, upper left panel). No 

inhibitory effect was observed with the isotype matched MoAb control.  

To rule out the possibility of a cytotoxic effect of A3D8 we performed 

differentiation studies. Treatment of human myeloid HL60 and U937 cells 

with A3D8 induced striking changes in the morphology of these cells 

characteristic of terminal differentiation (Figure 7A and 7C). For example, 

A3D8 treated cells showed decreased nucleus: cytoplasm ratios, 

segmented nuclei, few nucleoli and chromatin condensation. The effects 

like the formation of aggregates in culture and adherence became visible 

only after 12-18 hours of A3D8 treatment. We also analyzed the 

expression of the cell differentiation marker CD11b in HL60 and U937 cells 

(Figure 7B and 7D) and observed that its expression was increased in both 

cell lines after CD44 ligation. The expression of CD11b increased to ~31% 

after A3D8 treatment compared to unstimulated (~7%) and isotype control 

(~9.6%) in HL60 cells (Figure 7B, upper left panels). Corresponding to this, 

the D-value (calculated as described in the Materials and Methods) was 

found to be �57 after A3D8 treatment in HL60 cells compared to +30 for 

the control (Table 3). In U937 cells, the expression of CD11b increased to 

~22% after A3D8 treatment compared to unstimulated (~6%) and isotype 

control (~7%) (Figure 7D, upper left panels). Corresponding to this, the D-

value was found to be �78 after A3D8 treatment in U937 cells compared to 

+30 for the control (Table 3).   
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Figure 6. Decreased proliferation in myeloid leukemia cells upon        
CD44 ligation. 
A, C; MTT assay: Cells were cultured in 96-well plates with or without A3D8 and 
isotype control antibody (20 µg/ml) for 1-4 days and then MTT (3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromid) incorporation was measured. The absorbance 
at 575 nm (OD575), which is an estimate of the proliferation state of cells, was 
measured using an Elisa plate reader. Results are shown as mean ± SD of three 
independent experiments, each experiment in triplicate. B, D; FACS analysis: Cells 
were cultured 1X105/200 µL/well for 36 hours in the presence or absence of A3D8 (20 
µg/ml). They were then analyzed for their surface CD71 (transferrin receptor) 
expression and the results were presented as scatter diagrams. The percentage 
values (upper left panel) in each scatter diagram represents the % positive cells of 
the marker (i.e. cells on upper left quadrant). 
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Figure 7 (A & B). Differentiation induction in myeloid leukemia cells 
upon CD44 ligation. 
Morphological analysis of HL60 cells: A, Cytospin preparations of cells stained with 
May-Grünwald-Giemsa after in vitro treatment for 36 hours with medium alone, with 
isotype antibody (20 µg/ml), and A3D8 (20 µg/ml). B, Changes in the differentiation 
marker (CD11b) presented as scatter diagrams before and after CD44 ligation with 
A3D8, respectively.  
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Figure 7 (C & D). Morphological analysis of U937 cells: C, Cytospin preparations 
of cells stained with May-Grünwald-Giemsa after in vitro treatment for 36 hours with 
medium alone, with isotype antibody (20 µg/ml), and A3D8 (20 µg/ml). D, Changes in 
the differentiation marker (CD11b) presented as scatter diagrams before and after 
CD44 ligation with A3D8, respectively.  
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Table 3: 

HL 60 

           Mean fluorescence 
           Intensity (MFI) ratio  

          D-value 
             (%) 

Marker 

Unstim. Isotype A3D8 Unstim. Isotype   A3D8 

CD11b 1.11 1.03 1.41 30.00 + 23.00 - 57.00 

CD71  4.47 3.10 1.35 30.00 +25.00 +12.00 

 

 
 
U937 
 

           Mean fluorescence 
           Intensity (MFI) ratio  

          D-value 
             (%) 

Marker 

Unstim. Isotype A3D8 Unstim. Isotype   A3D8 

CD11b 1.07 1.02    1.32 30.00 + 20.00 - 78.00 

CD71  1.00 1.03 0.98 30.00 -  36.00 +24.00 

 

 

Table: This table represents the MFI ratios and the corresponding D-Values 
(calculated as in Materials & Methods Section) for CD11b and CD71 expressions as 
analyzed by Flow Cytometry. (+) Indicates decreased expression and (-) Indicates 
increased expression. 
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4.2 CD44 ligation with A3D8 induces a G0/G1 arrest in myeloid 

leukemia cell lines 

Cell cycle arrest is a common feature of cells undergoing terminal 

differentiation and defective proliferation. Based on the growth inhibitory 

and differentiation inducing effects of A3D8 on myeloid leukemia cell lines, 

we investigated their cell cycle progression in response to A3D8. The DNA 

content analysis showed that the myeloid cells underwent a G0/G1 arrest 

(Figure 8). Interestingly, we observed a change in cell cycle distribution at 

6 hours of A3D8 treatment in HL60 cells as compared to untreated cells or 

cells treated with the isotype antibody. The proportion of cells in G0/G1 

phase increased from 54% (controls) to 67% in A3D8 treated cells after 24 

hours (Figure 8A). This was mirrored by a decrease in the proportion of 

cells in the S and G2 phase from 13% (controls) to 2% in A3D8 treated 

cells and from 23% (controls) to 4% in A3D8 treated cells, respectively. 

The effect of A3D8 on cell cycle was dose dependent in the range from 5-

20 µg/ml. It is important to mention the increase in the proportion of dead 

cells to 14-27% after 24-36 hours of A3D8 treatment, which could be 

attributed to the induction of terminal differentiation. These data suggest 

that the growth inhibitory effect of A3D8 on myeloid cells is in part, due to 

its effect on cell cycle progression. 
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Figure 8. CD44 ligation arrests myeloid leukemia cells in the G1       
phase of cell cycle. 
A, The figure represents cell cycle distribution (propidium iodide staining) of 
HL60 cells before and after A3D8 treatment.  
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4.3 CD44 ligation with A3D8 induces the expression of p21 and 

downregulates the expression of major G1 regulatory proteins 

Based on the effects of A3D8 on G1 phase accumulation we 

hypothesized the role of major G1 regulatory proteins. We examined the 

effect of A3D8 on p21, pRb, cyclin D1, cyclin D2, CDK2 and CDK4 protein 

expression. Our results show that A3D8 treatment of HL60 cells caused 

marked upregulation of p21 protein expression after 6 hours (Figure 9A, 

lane 3). The increased p21 protein level persisted for 12 hours and was 

undetectable thereafter. The p21 level was undetectable in untreated or 

isotype treated cells (Figure 9A, lanes 1 and 2). Since HL60 cells are p53 

negative due to homozygous deletions (Steinman et al., 1998), it is 

conceivable that p21 induction by A3D8 is p53 independent. Our results 

also show that treatment of HL60 cells with A3D8 for 12 and 24 hours 

markedly decreases the expression of pRb (Figure 9D). It is important to 

note the presence of a slow migrating band (upper band) and a faster 

migrating band (lower band) when the blot was probed with anti-Rb 

antibody. The upper band corresponds to the hyperphosphorylated (*) form 

while the lower band corresponds to the hypophosphorylated form 

(Savatier et al., 1994; Slack et al., 1993). Inhibition of pRb correlated with 

decreased levels of CDK2 and CDK4 (Figure 9B and 9C). There was no 

effect on CDK6 expression (Figure 9D).  

4.4 CD44 ligation with A3D8 inhibits CDK2 and CDK4 activities 

CDK2 and CDK4 kinase activities have been shown to operate in the 

G1 phase. G0/G1 arrest by A3D8 led us to analyze the kinase activities 

associated with these CDKs. Antibodies against CDK4 and CDK2 were 

used to perform immunocomplex kinase assays using recombinant Rb 
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fusion protein and purified histone H1 protein as substrates, respectively. 

Consistent with its effect on cell cycle progression, A3D8 treatment 

inhibited CDK4 and CDK2 kinase activities (Figure 9G and 9H). The 

densitometry analysis showed that A3D8 treatment after 24 hours caused 

greater than 4-fold inhibition of CDK4 kinase activity. Interestingly, CDK2 

kinase activity showed similar results. To normalize for the 

immunoprecipitation (IP) efficiency, a western blot for the respective Cdks 

was also performed after IP. IgG served as IP control. The results (Figure 

9G and 9H) clearly show the specificity of our kinase reaction and that 

CDK2 and CDK4 were not degraded during the kinase reaction. It is 

important to note that it might seem surprising to correlate CDK activity 

with Rb phosphorylation after A3D8 treatment (Figure 9E) in which Rb IF8 

(anti-mouse, sc-102) was used. However, this is not the case. Western 

blot of the lysates when probed with phospho-specific Rb antibody (pRb 

Ser-780, sc-12901, Santa Cruz) gave the expected results. Our results 

show that treatment of the cells with A3D8 led to decreased Rb 

phosphorylation (Figure 9F) thereby correlating with decreased CDK 

activity. The difference in the two results could thus, be attributed to 

antibody specificities as well as to different readouts. These data suggest 

that induction of G0/G1 arrest by A3D8 in myeloid cells involves p21 

induction and/or inhibition of CDK activity. 
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Figure 9 (A, B, C & D). CD44 ligation induces the expression of p21 and 
downregulates the expression of major cell cycle regulatory proteins. 
The figure shows Immunoblot analysis from whole cell lysates of HL60 cells (p53 
negative), for A, p21, a cyclin dependent kinase inhibitor probed with anti p21 antibody 
(SC); B, Cdk2; C, Cdk4; D, Cdk6. Lanes: 1, 2, unstimulated and isotype control, 3-5, 
A3D8 stimulated (6, 12, 24 hours, respectively). The numbers underneath the blot 
indicate protein/ respective β-tubulin ratios after densitometric analysis (Aida 2.1 
software program).  
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Figure 9 (E, F, G & H). Immunoblot analysis from whole cell lysates of HL60 cells 
for E, pRb; F, phospho-Rb; G and H, in vitro kinase assay for CDK2 and CDK4 
respectively: HL60 cells were treated with 20 µg/ml A3D8 or isotype antibody for 
different time points. Whole cell lysates were then prepared and immunoprecipitated 
with CDK2 (G) and CDK4 (H) antibodies as described under Methods section. Histone 
H1 was used as substrate for CDK2 and Rb-fusion protein as substrate for CDK4 in the 
in vitro kinase assay. Also shown (in the right panel) is a western blot of CDK2 and 
CDK4 after IP of the respective kinases. 
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4.5 CD44 ligation downregulates c-jun mRNA and c-Jun protein 

expression 

The AP-1 transcription factor c-Jun functions as a proliferation-

promoting gene and is involved in cell cycle progression. Consequently, 

the expression of c-Jun would be expected to change in response to 

decreased proliferation and cell cycle arrest of HL60 and U937 cells upon 

CD44 ligation with A3D8. Our results show that there is a drastic decrease 

in c-jun mRNA expression (Figure 10A and 10B) upon A3D8 treatment of 

the myeloid cells. c-jun expression was also downregulated in AML patient 

blasts after 6 and 12 hours of A3D8 treatment in vitro (Figure 10C). We 

also observed a dramatic decrease in c-Jun protein expression upon CD44 

ligation (Figure 10A and 10B). To rule out a general toxic effect, we show 

that the expression of c-Fos (Figure 10C) is not altered in a similar fashion. 

These data suggest that the downregulation of c-Jun contributes to A3D8 

mediated growth arrest in myeloid cells.  

4.6 CD44 ligation downregulates human c-jun promoter activity via 

AP-1 sites 

To elucidate the molecular mechanisms underlying the 

downregulation of c-Jun expression by CD44 ligation, we performed 

promoter studies. U937 and HL60 cells were transiently transfected with 

different c-jun promoter/luciferase constructs and then subjected to A3D8 

treatment. The promoter constructs used in this study (Materials, 2.2) were 

kindly provided by Vedeckis (Wei, 1998). Our results show that the full-

length c-jun promoter (bp-1780/+731) activity was downregulated 12 fold 

after A3D8 treatment (Figure 11). It was not a vector effect since A3D8 had 

no effect on pGL3, in which c-jun promoter constructs were subcloned. 
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Figure 10 (A, B & C). CD44 ligation downregulates c-jun mRNA 
expression in myeloid leukemia cells and AML patient samples. 
Negative gel image showing c-jun mRNA transcript amplified with specific c-jun 
primers. A, HL60 cells; B, U937 cells; C, In AML patient samples the expression of c-
jun was measured by quantitative Real-time PCR. The bars represent the mean ratio 
of c-jun to G6PD of 4 AML patient samples.  
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Figure 10 (D, E & F). CD44 ligation downregulates c-jun protein 

expression in myeloid leukemia cells. D, Immunoblot analysis for c-Jun 

expression from whole cell lysates of HL60 cells and E, data from U937 cells; F, 

Immunoblot analysis for c-Fos from whole cell lysates of HL60 cells. The numbers 

underneath the blot indicate the c-Jun/ß-tubulin ratios after densitometric analysis 

(Aida 2.1 software program). 
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As a positive control for our promoter studies, we also show that TPA 

increases the c-jun promoter activity (data not shown). To map site(s) in 

the c-jun promoter responsible for the downregulation, a series of c-jun 

promoter deletion mutant-luciferase gene chimeric plasmids with variable 

ends (from bp -1780 to bp -63) (Wei et al., 1998) were also transiently 

transfected into the cells. The results show that the downregulation of c-jun 

promoter activity is lost after deletion of the region between bp -1780 to �

63 (with -63/+731 construct), where two AP-1 sites (bp -64 and bp -182) 

are located (Figure 11A and 11C). Various reports implicate AP-1 

modulation in the regulation of proliferation and differentiation. Among 

important regulatory elements previously identified in the c-jun promoter 

are two AP-1 sites, a proximal one (pAP-1) located between bp -71 and bp 

and a distal one (dAP-1) located between bp-190 and bp-183. Both AP-1 

sites are involved in transcriptional regulation in response to UV irradiation 

and phorbol esters. These data and our results led us to further map the 

AP-1 site responsible for the downregulation. Upon deletion of the proximal 

(delpAP-1) or the distal (deldAP-1) AP-1 sites in the c-jun promoter, we 

observed a similar downregulating effect, while the effect was lost upon 

deletion of both AP-1 sites (Figure 11B). The loss of repression effect 

cannot be a simple activation because the promoter activity in the 

presence of A3D8 is the same as that of the promoter alone (Figure 11B, 

last two bars), although in the presence of A3D8 antibody the activity of the 

promoter with two mutant AP-1 sites has a higher activity than either of the 

singly mutated constructs (Figure 11B, compare bars with A3D8 

treatment). These results show that both AP-1 sites are important for the 

downregulation of c-jun promoter activity upon CD44 ligation with A3D8. 
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Figure 11 (A). CD44 ligation downregulates c-jun promoter activity via 
AP-1 sites. 
The figure represents a series of c-jun promoter deletion mutants-luciferase gene 
chimeric plasmids with variable ends (from bp -1780 to bp -63).37 Each construct was 
transiently transfected into HL60 and U937 cells. Transfected cells were then treated 
with A3D8, six hours before measurement of luciferase activity. Promoter activity is 
normalized for transfection efficiency by dividing firefly luciferase activity by renilla 
luciferase activity of a co-transfected reporter plasmid pRL-0. Results are presented 
as mean± SD of at least three independent experiments. pc-jun represents the 
promoter constructs and pGL3 is the vector in which the promoter constructs were 
subcloned.  
A, Deletion analysis of c-jun promoter. 
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Figure 11 (B & C). Both AP-1 sites are required for c-jun promoter 
downregulation upon CD44 ligation. 
B, Mutagenesis analysis of the AP-1 sites in the c-jun promoter. 
C, A model of c-jun promoter showing AP-1 sites. 
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4.7 A3D8 treatment decreases c-Jun phosphorylation and JNK 

expression 

The decreased transactivation property of c-Jun by A3D8 could be 

mediated through a change in the phosphorylation status of c-Jun. To 

investigate if A3D8 treatment of the cells caused decreased c-Jun 

phosphorylation we performed Immunoblot analyses of cell lysates from 

HL60 cells using a phospho-specific (Ser63) anti-c-Jun antibody (Figure 

12). No phosphorylated c-Jun was detected at 12 or 24 hours after A3D8 

treatment (Figure 12, lanes 4 and 5), although c-Jun phosphorylation was 

detected at 6 hours and in the controls (Figure 12, lanes 1-3). Furthermore, 

our results showed that A3D8 treatment drastically decreased the 

expression of JNK1, ahead of decreased c-Jun phosphorylation (Figure 

12B). The effect seems to be JNK specific since only an insignificant effect 

on ERK1 expression could be detected (Figure 12C). These data suggest 

that inhibition of c-Jun expression by A3D8 result from inhibition of c-Jun 

phosphorylation via the JNK pathway. Taken together, our data indicate 

that inhibition of c-Jun/ AP-1 activity may be the mechanism by which 

A3D8 inhibits the proliferation and causes cell cycle arrest in myeloid cells.  

4.8 Overexpression of c-Jun in HL60 cells overcomes the 

proliferation-inhibiting effects of A3D8 

To further characterize the role of c-Jun biologically, we 

overexpressed c-Jun in HL60 cells to investigate if the effects of 

proliferation-inhibition and differentiation-induction by A3D8 can be 

overcome. HL60 cells were transfected with the pMV7-cjun retroviral 

construct as described in the Materials and Methods section.  
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Figure 12. CD44 ligation decreases c-Jun phosphorylation and JNK 
expression. 
The figure represents Immunoblot analysis of whole cell extract of HL60 cells probed 

with anti-phospho c-Jun (Ser 63), anti-JNK1 and anti-ERK1 antibodies (Santa Cruz 

Biotechnologies). A, phospho c-Jun, B, JNK1, and C, ERK1. Lanes: 1, 2, 

unstimulated and isotype control, 3-5, A3D8 stimulated (6, 12, 24 hours, respectively). 

The numbers underneath the blot indicate the protein/respective ß-tubulin ratios after 

densitometric analysis (Aida 2.1 software program). 
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After selection of the cells in G418, they were kept in G418 free media with 

and without A3D8. We observed that the expression of CD71 was 

markedly increased in pMV7-cjun transfected cells as compared to vector 

alone (Figure 13A). Moreover, c-Jun overexpressing HL60 cells showed 

increased cell numbers (trypan blue cell counting) as compared to cells 

containing vector alone over a period of 3 days (Figure 13B). We could 

clearly observe a slow growth in vector (pMV7) transfected cells under 

constant selection pressure whereas pMV7-cjun transfected cells showed 

a higher growth rate under similar conditions. As a more direct measure of 

cell proliferation, we also performed a bromodeoxyuridine (BrdU) 

incorporation assay. Our results clearly show that pMV7-cjun transfected 

cells incorporate more BrdU than pMV7 transfected cells and hence, the 

former have more proliferation potential than the later (Figure 8C). After 24 

hours post transfection, the percentage of pMV7-cjun transfected cells 

showed >50% BrdU incorporation as compared to <10% in the control. It is 

important to mention here that c-Jun overexpression in HL60 cells did not 

lead to any cell death as determined by propidium iodide staining (data not 

shown). Thus, c-Jun expression and cell proliferation in fact, do correlate in 

myeloid leukemia HL60 cells. The expression of c-Jun was 25 fold higher 

in pMV7-cjun transfected cells as compared to the controls (Figure 13D 

and 13E). Furthermore, we observed that A3D8 treatment of untransfected 

HL60 cells and the cells transfected with vector alone (pMV7) caused 

decreased proliferation and hence, decreased CD71 expression as 

compared to the isotype control (Figure 6 and 13E, panel i, ii). On the 

contrary, in HL60 cells overexpressing c-Jun (pMV7-cjun), A3D8 treatment 

did not lead to any changes in CD71 expression as compared to the 

isotype control (Figure 13E, panel iii). A similar pattern was observed with 
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CD11b expression (Figure 13F), although the differentiation-inducing ability 

of c-Jun in c-Jun overexpressing HL60 cells is not of the same extent as 

the proliferation-inducing ability. These results clearly indicate that 

downregulation of the proliferation promoting transcription factor c-Jun is a 

prerequisite for A3D8 mediated proliferation-inhibition in our settings.  
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Figure 13 (A, B & C). Ectopic overexpression of c-Jun in HL60 cells 
increases their proliferation and prevents A3D8 mediated inhibition of 
proliferation. 
A, The figure represents an overlay of different peaks (WinMDI 2.8 software program) 

from FACS analysis for CD71 expression of HL60 cells after electroporation with 

pMV7-cjun and pMV7 and selection in G418. In addition to empty vector control, 

untransfected HL60 cells also served as control. B, Trypan blue cell counting of cells 

transfected with pMV7 and pMV7-cjun when the cells were under selection pressure. 

C, pMV7 and pMV7-cjun transfected cells were also analyzed for BrdU-incorporation 

as a direct measure of proliferation. 
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Figure 13 (D, E, F & G). D, This figure represents Real time PCR for c-jun 
expression in c-Jun overexpressing HL60 cells. The bars represent c-jun/G6PD ratio of 
untransfected HL60 cells, transfected with empty vector, pMV7 and with pMV7-cjun. E, 
This represents western blot analysis for c-Jun expression in c-Jun overexpressing 
HL60 cells. Lanes: 1, in vitro-translated c-Jun, 2, reticulocyte lysate, 3, untransfected 
HL60 cells, 4, pMV7 transfected cells and 5, pMV7-cjun transfected cells. F, G, 
Overexpression of c-Jun in HL60 cells prevents A3D8 mediated growth inhibition 
and differentiation induction. The figure represents overlay from FACS analysis for 
CD71 and CD11b expression in c-Jun overexpressing HL60 cells before and after 
treatment with A3D8. After selection in G418 for 1 week, HL60 cells were stimulated 
with A3D8 at final concentration of 20 µg/ml for further 36 hours and the cells were 
analyzed for CD71 and CD11b expression by flow cytometry.  
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5. Discussion 

Hematopoiesis is a complex cellular evolutionary process in which 

pluripotent stem cells are committed to progenitor cells that proliferate and 

differentiate to generate the full complement of mature blood cells. A 

defect in this evolutionary tree characterizes acute myeloid leukemia 

(AML). As a result of a differentiation block in AML, there is an 

accumulation of immature cells (termed blasts), which remain in the 

proliferative pool and a suppression of normal hematopoiesis (Tenen et al., 

1997; Lowenberg et al., 1999). The stage at which the block occurs 

defines a particular AML subtype (AML1/2 to AML6). In experimental 

systems and in specific clinical settings the differentiation block can be 

overcome and leukemic cells can terminally differentiate after exposure to 

either chemical agents (Kantarjian, 1999) or by use of monoclonal 

antibodies (both conjugated and unconjugated). Any such agent (or 

treatment), which induces the differentiation of cancer cells, thus 

preventing further proliferation, is known as differentiation cancer 

therapy. In the case of AML, the single successful example of 

differentiation therapy is the use of all trans-retinoic acid (ATRA), which is 

used in the treatment of promyelocytic AML3 subtype (APL) (Waxman, 

2000). However, APL makes only 5-15 % of all leukemias and ATRA is 

ineffective in other subtypes of AML. The question arises: Is it possible to 

apply differentiation induction therapy to other subtypes of AML as well? 

The answer came from Charrad et al (Charrad et al., 1999) when they 

reported that it is possible to reverse the differentiation block in AML blasts 

from all AML subtypes by targeting an adhesion receptor CD44 with anti-

CD44 antibodies. This stimulated the clinical potential for CD44-targeted 
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differentiation therapy. However, owing to a number of complications 

CD44-targeted therapy has not yet been tested in patients. Moreover, with 

the fact that AML cells are responsive to factors that preferentially 

stimulate hematopoietic cells, one could argue in favour of more direct 

treatment strategies aimed downstream of CD44 ligation. Alternatively, 

understanding the mechanism of the CD44-mediated differentiation block 

reversal in AML could lead to novel therapeutic strategies. The present 

study was undertaken to address this aspect: to investigate the effect of 

CD44 ligation by the anti-CD44 monoclonal antibody A3D8 on the 

proliferation of myeloid leukemia cells and the underlying molecular 

mechanisms.  

Our results demonstrate that ligation of CD44 with A3D8 causes 

growth arrest and induces terminal differentiation of human myeloid 

leukemia cell lines HL60 and U937 through the downregulation of c-Jun 

expression via AP-1 sites (Figure 10 and 11). Furthermore, decreased JNK 

expression and a consequent decrease in c-Jun phosphorylation may be 

involved in A3D8 mediated downregulation of the c-Jun promoter activity 

(Figure 12). The downregulation of c-Jun expression is a prerequisite for 

the growth inhibitory effects of A3D8 since overexpression of c-Jun is able 

to prevent A3D8 mediated effects (Figure 13). We also show an induction 

of G0/G1 arrest by A3D8 (Figure 8), which is accompanied by induction of 

p21 and inhibition of pRb, CDK2 and CDK4 protein expression (Figure 9). 

Although our results show c-Jun as mediator of A3D8 mediated growth 

arrest, we do not rule out other mechanisms by which A3D8 can block 

proliferation of myeloid leukemia cells. 

Our results revealed that CD44 ligation with A3D8 decreases the 

proliferation and leads to the induction of terminal differentiation of HL60 
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and U937 cells (Figure 6 and 7). A3D8 and HA were previously shown to 

induce differentiation in AML blast and myeloid cell lines (Charrad et al., 

2002; Charrad et al., 1999). However, we did not use HA in our study 

because of its low affinity for CD44 expressed on myeloid cells (Allouche 

et al., 2000). The induction of differentiation after three days of A3D8 

treatment clearly shows that the anti-proliferative effect of A3D8 was not a 

toxic effect, but that differentiation commitment can be a stochastic 

process involving loss of proliferative potential (Liebermann and Hoffman, 

2002). In conjunction, CD44 ligation with A3D8 alone is sufficient to induce 

terminal differentiation in myeloid cell lines without the requirement of 

cofactors or the cytokine microenvironment niche as reported previously 

(Lemischka, 1997). It is also likely that differentiation induction via CD44 is 

epitope specific, since J173 (Immunotech), another monoclonal antibody 

against CD44, is unable to induce differentiation in myeloid cell lines and 

arrest cells in G1 phase. A3D8 and J173 have already been reported to 

bind different epitopes (Allouche et al., 2000). 

The growth inhibitory effect of A3D8 on myeloid cells is due to an 

arrest of these cells in G0/G1 phase, due to induction of p21 expression 

and /or inhibition of CDK2/CDK4 expression. These findings could be 

explained considering that an exit from the cell cycle is a prerequisite for 

growth arrest and cell differentiation. The treatment-induced cell cycle 

arrest was shown to be important for invitro and invivo AML cell sensitivity 

to other therapeutic agents. Cell cycle arrest with other potent inhibitors of 

proliferation and inducers of differentiation of human myeloid leukemia cell 

lines have also been reported, for example, TGFß1, RA, TPA and vitamin 

D analogs. p21 when overexpressed has been shown to mediate growth 

arrest, contribute to restriction point G1 arrest and is upregulated in 
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myeloid differentiation models (Steinman et al., 1994a; Steinman et al., 

2001; Steinman et al., 1994b; Steinman et al., 1998). A major target of p21 

inhibition is the cyclin-cdk2 kinase complex whose activity is required for 

G0/G1 progression into S-phase. P21 can interact with cyclin-cdk 

complexes and is capable of inhibiting kinase activity associated with 

these complexes (Harper et al., 1993b). A3D8 led to inhibition of CDK 

kinase activities. Thus, increase of p21 and/or the decrease of CDK2 and 

CDK4 expression in HL60 upon A3D8 treatment may be sufficient to inhibit 

kinase activity required for G0/G1 progression into S phase. Our results, 

taken together with other findings, suggest that induction of p21 and /or 

inhibition of CDK expression may play a causative role in CD44 mediated 

growth arrest. Interestingly, p21 induction seems to be a common 

mechanism of differentiation inducers of human myeloid leukemia cells 

(e.g; ATRA, AS2O3 etc), irrespective of whether the induction of p21 is p53 

dependent or independent (Jiang et al., 1994; Steinman et al., 1994a). For 

example, p21 induction by A3D8 is p53 independent since HL60 cells are 

p53 negative due to homozygous deletions. Furthermore, reduced kinase 

activities of CDK2 and CDK4 were accompanied with the 

underphosphorylation of retinoblastoma protein (Rb), which is known to 

sequester the transcription factor, E2F, thereby preventing cells from 

further entering the cell cycle progression. These results suggest a role of 

CDK/Rb pathway in cell cycle arrest by CD44 signaling (Figure 9F).  

Previous analyses have suggested an important role of activator-

protein-1 (AP-1) transcription factor, c-Jun in regulating proliferation, 

differentiation and cell cycle progression (Shaulian and Karin, 2001; 

Schreiber et al., 1999b; Mechta-Grigoriou et al., 2001). c-Jun acts as a 

convergence point of many signaling pathways and its activity is regulated 
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in a cell type-dependent manner by a variety of signals that are relayed 

through transcriptional and post-transcriptional mechanisms. In spite of 

wealth of knowledge regarding the regulatory mechanisms impinging on c-

Jun, not all the biological functions of the protein are accounted for 

satisfactorily in myeloid cells. For example, most of the studies concerning 

c-Jun and cell cycle have been performed in fibroblast cells (Kovary and 

Bravo, 1991a). We present here the first evidence linking c-Jun to 

proliferation and cell cycle in human myeloid cells via CD44 signaling. Our 

results demonstrate that the expression of c-Jun is downregulated upon 

CD44 ligation with A3D8, both at mRNA and protein level (Figure 10). The 

downregulation of c-jun upon A3D8 treatment was also observed in AML 

patient blasts (Figure 10C). However, the effect of CD44 ligation on c-jun 

expression in AML patients is less prominent than in myeloid cell lines. 

This could be because of the difference in cytogenetic set up in different 

AML patients. Moreover, the requirement of c-Jun could differ in normal 

versus transformed cells, in tumor cells of different cell lineages, or in cells 

having undergone transformation via different mechanisms. To rule out the 

downregulating effects on c-Jun as a consequence of A3D8 toxicity, we 

also show that A3D8 treatment does not downregulate the expression of c-

Fos and CDK6 non-specifically. 

 The downregulation of c-Jun by A3D8 could be the result of the 

inhibition of AP-1 transcriptional activity and/or block of JNK activity 

indirectly, given that JNK is proposed to bind tightly to c-Jun and release it 

only after phosphorylation. To explore these possibilities, transient 

transfections of c-jun promoter/ luciferase constructs in myeloid cells 

revealed that the downregulation effect of A3D8 on c-Jun expression might 

be a direct result of decreased c-jun promoter activity. The results revealed 
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that both AP-1 sites are responsible for the downregulation of c-jun 

promoter activity by CD44 signaling (Figure 11). Transcriptional activation 

of the c-Jun protein is dependent on phosphorylation at Ser 63 and Ser 73, 

located in its transactivation domain (TAD) (Smeal et al., 1991), a process 

mediated by c-Jun N-terminal Kinase (JNK). Phosphorylation of c-Jun is 

known to potentiate its transactivation properties (Binetruy et al., 1991; 

Hagmeyer et al., 1993). Conversely, downmodulation of transcriptional 

activity of c-Jun would mean decreased JNK and reduced c-Jun 

phosphorylation. Our results also show that the expression of JNK is 

decreased upon A3D8 treatment, with a consequent decrease in the level 

of c-Jun phosphorylation (Figure 12A and 12B). We used JNK1 since it 

has been shown to preferentially bind c-Jun and phosphorylate c-Jun 

(Minden et al., 1994; Kallunki et al., 1994). The role of other JNKs remains 

to be determined. The effect of A3D8 is JNK specific because ERK 

expression is not changed under similar conditions (Figure 12C). It is 

important to note here that c-Fos expression did not change upon A3D8 

treatment (Figure 9C). Fos is known to be regulated by the ERK pathway 

(Chou et al., 1992; Deng and Karin, 1994). The decreased JNK expression 

and hence, c-Jun phosphorylation could in turn, be because of the positive 

effect of A3D8 treatment on p21 protein level (Figure 4A). It has been 

reported that interaction of p21 with JNK inhibits JNK activity (Shim et al., 

1996; Patel et al., 1998). Thus, it is conceivable that the inhibition of JNK 

by p21 may be the mechanism for the downregulation of c-Jun 

phosphorylation and hence, the transactivation potential of c-jun. 

To prove the biological significance of downregulation of c-Jun 

expression by CD44 ligation in the context of myeloid cell growth arrest, we 

performed overexpression studies in HL60 cells. A3D8 mediated 
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proliferation-inhibition in HL60 cells was prevented by c-Jun 

overexpression (Figure 13E) suggesting that c-Jun/ AP-1 activity is one of 

the molecular targets downstream of CD44 signaling. BrdU incorporation, 

CD71 expression (Theil, 1990; Hochhaus et al., 2000) and Trypan blue cell 

counting which were used as a measure of cell proliferation clearly 

demonstrate that c-Jun in fact, increases the proliferation of myeloid cells. 

c-Jun overexpression had little effect on CD11b expression (Figure 13F). 

In the context of the role of c-Jun in myeloid cell differentiation, this might 

seem surprising. However, the role of c-Jun in differentiation could be time 

limiting. It is important to mention here that the downregulation of c-Jun 

expression upon CD44 ligation is in accordance with our recent findings in 

which the transcription factor C/EBPα was shown to downregulate c-Jun 

expression to induce myeloid differentiation (Rangatia et al., 2002).  

In summary, it is thus, conceivable to propose a model (Figure 14) 

which shows that the downregulation of c-Jun expression along a pathway 

which involves inhibition of JNK by p21 resulting in decreased c-Jun 

phosphorylation and hence decreased promoter activity concomitant with 

decreased cell cycle proteins may be an important mechanism for 

regulating CD44 mediated differentiation-induction and proliferation-arrest 

with A3D8. Our results provide a framework for further investigations and 

suggest that clarification of the mechanisms of regulation may reveal novel 

targets for anti-proliferative and /or differentiation therapy in AML. 

Elucidation of the basic pathways underlying myeloid differentiation and 

understanding how these pathways are disrupted in AML will help define 

future therapeutic approaches to AML. 
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Figure 14. Model of how CD44 ligation inhibits proliferation and 
blocks cell cycle of myeloid leukemia cells by downregulating c-Jun 
expression. 
The figure shows a possible mechanism for the growth inhibitory effect of anti-CD44 
antibody A3D8 in myeloid cells. The growth arrest involves decreased c-Jun 
expression along a pathway, which involves inhibition of JNK by p21 resulting in 
decreased c-Jun phosphorylation and hence decreased promoter activity concomitant 
with decreased cell cycle proteins. 
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6. Summary 
 

We present here the first evidence linking CD44 signaling to c-Jun 

expression and cell cycle progression in myeloid cell line models. CD44 

ligation with the anti-CD44 monoclonal antibodies have been shown to 

induce differentiation and inhibit the proliferation of human acute myeloid 

leukemia (AML) cells, and c-Jun is involved in the regulation of these 

processes. The effects of anti-CD44 monoclonal antibody A3D8, on 

myeloid cells were associated with specific disruption of cell cycle events 

and induction of G0/G1 arrest. Induction of G0/G1 arrest was accompanied 

by an increase in the expression of p21, attenuation of pRb 

phosphorylation and associated with decreased CDK2 and CDK4 kinase 

activities. We observed that A3D8 treatment of AML patient blasts and 

HL60/U937 cells led to the downregulation of c-Jun expression at mRNA 

and protein level. Transient transfection studies showed the inhibition of c-

jun promoter activity by A3D8, involving both AP-1 sites. Furthermore, 

A3D8 treatment caused a decrease in JNK protein expression and a 

decrease in the level of phosphorylated c-Jun. Ectopic overexpression of 

c-Jun in HL60 cells was able to induce proliferation and prevent the anti-

proliferative effects of A3D8. Targeting of G1 regulatory proteins and the 

resulting induction of G1 arrest by A3D8 may provide new insights into 

anti-proliferative and differentiation therapy of AML.  
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7. Zusammenfassung 
 

 Wir zeigen in dieser Arbeit zum ersten Mal, daß in myeloischen 

Zellmodellen die CD44-Signaltransduktion mit c-Jun und dem Zellzyklus 

verbunden ist. Es ist bekannt, daß die Bindung eines Antikörpers gegen 

CD44 an den CD44-Rezeptor in Zellen von akuten myeloischen Leukämien 

(AML) Differenzierung induziert und Proliferation inhibiert, sowie daß c-Jun 

in die Regulierung dieser Prozesse involviert ist. Die Effekte des Anti-CD44-

Antikörpers A3D8 auf myeloische Zellen waren mit einer spezifischen 

Störung von Ereignissen des Zellzyklus und der Induktion eines G0/G1-

Arrestes assoziiert. Die Induktion dieses G0/G1-Arrestes wurde von einer 

Erhöhung der Expression von p21, der Abschwächung der Phosphorylierung 

von Rb und von verminderten Niveaus der Expression von CDK2 und CDK4 

begleitet. Wir beobachteten, daß die Behandlung von Blasten von Patienten 

mit AML und Zellen der Zellinien HL60 und U937 zu einer Verminderung von 

c-Jun auf dem mRNA- und Proteinlevel führte. Transiente Transfektionen 

zeigten die Inhibierung der Aktivität des c-Jun-Promoters durch A3D8, die 

beide AP1-Seiten einschloss. Desweiteren verursachte Behandlung mit 

A3D8 eine verminderte Expression des Proteins JNK und eine 

Verminderung des phosphorylierten c-Jun. Ektopische Überexpression von 

c-Jun in Zellen der Zellinie HL60 konnte Proliferation induzieren und die 

antiproliferativen Effekte von A3D8 verhindern. Der gezielte Eingriff in die 

Regulation der die G1-Phase des Zellzyklus regulierenden Proteine könnte 

neue Einsichten in die antiproliferative und Differenzierung induzierende 

Therapie der AML ermöglichen. 
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Biologischer Wissenschaftler (post-doctoral fellow), Department of Medizin 
III, LMU Klinikum Grosshadern und GSF Hämatologikum, KKG Leukemia, 
München 
Projects:  

1. Proteomic analysis of PML-RARalpha target proteins 
2. Proteomic analysis of C/EBPalpha interacting proteins 

 
03/2000-01/2003 
 
Ph.D. Summa cum laude. Department of Medizin III, LMU Klinikum 
Grosshadern und GSF Hämatologikum, KKG Leukemia, München 
Thesis title: 
``Signaling through CD44 affects cell cycle progression and c-Jun 
expression in acute myeloid leukaemia``.  
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4/1998-07/1999 
 
Research Fellow, International Centre for Genetic Engineering and        
Biotechnology (ICGEB), New-Delhi, India Arbeit über Collaborative 
research project �cloning of antibody genes & generation of single 
chain antibodies.� 
 
10/1997-03/1998 
Junior Research Fellow, National Center for Cell Science, Pune, India 

 
Ausbildung: 

 
04/1994-08/1997 
Master of Science (Biochemistry), University of Kashmir, India--69% 
 
01/1993-12/1993 
Diploma training course in Medical Lab Technology (DMLT), Sheri-Kashmir 
Institute of Medical Sciences, India 
 
03/1989-12/1992 
Bachelor of Science (Phys, Chem., Math, Eng.), University of Kashmir, 
India--62% 
 
03/1986-03/1988 
All India Senior Secondary School Examination (Phys., Chem., Math. Biol., 
Eng.), CBSE, New Delhi, India--75% 
 
Awards: 
 
Deutsche Jose Carreras Leukämie-Stiftung (DJCLS) Stipendium die 
Referenznummer DJCLS-F 03/04 für the project, proteomics of 
C/EBPalpha interacting proteins. 

Junior Research Fellowship award by the Department of Biotechnology at 
NCCS, Pune, India. 

GK certificate by the United Nations Organization. 
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GK certificate by Andhra Pradesh Public Library, India. 
 
 
Vorträge und abstracts: 
 
 
1. 45th Annual meeting of the American Society of Hematology (ASH), San 
Diego, USA Dec. 2003. Titel: �Proteomic systems biology of acute 
promyelocytic leukemia reveals that PML-RARalpha induces cell cycle 
progression via activation of Stathmin. �Blood, Nov. 2003 (Abstract). 
 
2. Gemeinsame Jahrestagung der Deutschen, Österreichischen und 
Schweizerischen Gesselschaften für Hämatologie und Onkologie, Basel, 
Schweiz Oct. 2003. Titel: �Autoregulatory protein-protein interactions in 
myeloid stem cell development: Proteomic discovery of MAX as a co-
activator of C/EBPalpha. �Onkologie, Oktober 2003 p45 (Abstract). 
 
3. Fünftes Wissenschaftliches Symposium der Medizinischen Klinik III, 
Klinikum der Universität München, Grosshadern, Herrsching, Jul. 2003. 
Titel: �Downregulation of c-Jun expression and cell cycle regulatory 
molecules in acute myeloid leukemia cells upon CD44 ligation.� 
 
4. 3rd Wissenschaftliches Symposium der Medizinischen Klinik III, Klinikum 
der Universität München, Grosshadern, WILDBADKREUTH Jul. 2001. 
Titel: �Differentiation therapy of acute myeloid leukemia cells downregulates 
c-Jun expression.� 
 
5. 44th American Society of Hematology annual meeting (ASH), 
Philedelphia, USA Dec. 2002. Title: �Downregulation of c-Jun expression 
and cell cycle regulatory molecules in acute myeloid leukemia cells upon 
CD44 ligation. � Blood, Nov. 2002 (Abstract). 
 
6. Deutschen und Österreichischen Gesellschaften für Hemätologie und 
Onkologie (DGHO), Munich Germany, Oct. 2002. Title: �CD44 ligation 
inhibits proliferation in acute myeloid leukemia cells by downregulating c-Jun 
expression and blocking cell cycle. � Onkologie, Oktober 2002 p161 
(Abstract). 
 
7. Deutschen und Österreichischen Gesellschaften für Hemätologie und 
Onkologie (DGHO), Mannheim Germany, Oct. 2001. Title: 
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�Downregulation of c-Jun expression and cell cycle regulatory molecules in 
acute myeloid leukemia cells upon CD44 ligation. � Onkologie, Oktober 
2001 (Abstract). 
 
8. 43rd American Society of Hematology annual meeting (ASH), Orlando, 
USA Dec. 2001. Title: �Differentiation therapy of acute myeloid leukemia 
cells downregulates c-Jun expression. �Blood, Nov. 2001 (Abstract). 
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