
On Extensions of AF2 with Monotone and
Clausular (Co)inductive Definitions

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften an der Fakultät für

Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universität München

vorgelegt von

Favio Ezequiel Miranda Perea

aus Mexiko-Stadt

im September 2004

1. Berichterstatter: Prof. Dr. Helmut Schwichtenberg
2. Berichterstatter: Prof. Dr. Wilfried Buchholz
Tag des Rigorosums: 12. November 2004

Contents

Abstract vii

Zusammenfassung ix

Acknowledgements xi

Agradecimientos xiii

Introduction xv

1 Preliminaries 1
1.1 Categorical Interlude . 1

1.1.1 M-(Co)algebras . 5
1.1.2 Dialgebras . 9

1.2 The Type System F . 12
1.2.1 Adding Sum and Product Types 14
1.2.2 Adding Existential Types 22
1.2.3 On Embeddings . 23

1.3 Second Order Logic AF2 . 24
1.3.1 Definition of the System 24
1.3.2 Strong Normalization of AF2 29
1.3.3 Adding Conjunctions and Disjunctions 29

2 Extensions of System F with Monotone (Co)inductive Types 31
2.1 From Categories to Types . 31

2.1.1 Representing (Co)algebras 32
2.1.2 Representing Dialgebras 35

2.2 The System MICT . 37
2.2.1 Definition of the System 37
2.2.2 Strong Normalization of MICT 39

2.3 The System MCICT . 52
2.3.1 Definition of the System 52
2.3.2 Strong Normalization of MCICT 57
2.3.3 On η-rules . 62
2.3.4 Canonical Monotonicity Witnesses 65
2.3.5 (Co)recursive Programming in MCICT 68

2.4 The System MCICTM . 75

iii

iv CONTENTS

2.4.1 Definition of the System 75

2.4.2 Strong Normalization of MCICTM 76

2.5 The Hybrid System MCICTµMν 77

3 Monotone and Clausular (Co)inductive Definitions 79

3.1 Fixed-Point Theory . 79

3.2 The Logic MCICD . 80

3.3 Strong Normalization of MCICD 86

3.4 Canonical Monotonicity Witnesses 87

4 Realizability for MCICD 93

4.1 The Logic MCICD? . 93

4.1.1 Definition of the Logic . 93

4.1.2 Strong Normalization of MCICD? 95

4.1.3 Subject Reduction for MCICD? 95

4.2 The Realizability Interpretation 104

4.2.1 Realizing the Axioms . 106

4.2.2 The Soundness Theorem 120

5 Programming with Proofs 127

5.1 Semantics . 127

5.1.1 Syntactical Models for the Term System 127

5.1.2 Semantics for the Logic MCICD? 132

5.2 Formal Data Types . 142

5.2.1 A Connection with Modified Realizability 143

5.2.2 The Canonical Model . 144

5.2.3 Examples of Data Types 145

5.3 Programming with Proofs in MCICD 150

5.3.1 Programming Functions with Iteration or Recursion . . . 151

5.3.2 Programming Functions with Coiteration or Corecursion . 156

6 A System with Mendler-style Coinduction 159

6.1 Fixed-Point Theory . 159

6.2 The Logic MCICDµMν . 160

6.3 Realizability for MCICDµMν . 162

6.3.1 Realizing the Axioms . 162

6.3.2 The Soundness Theorem 164

6.4 Semantics . 165

6.5 Programming with Proofs in MCICDµMν 169

6.5.1 Data types with Equality 170

6.5.2 Programming with Mendler-style Coiteration or Corecur-
sion . 175

CONTENTS v

7 Conclusions and Future Work 179
7.1 Conclusions . 179
7.2 Related Work . 181
7.3 Future Work . 182

Bibliography 187

Symbol Index 193

Index 195

Lebenslauf 199

vi CONTENTS

Abstract

This thesis discusses some extensions of second-order logic (AF2) with primitive
constructors representing leastand greatest fixed points of monotone operators,
which allow to define predicates by induction and coinduction. Though the ex-
pressive power of second-order logic has been well-known for a long time and
suffices to define (co)inductive predicates by means of its (co)induction princi-
ples, it is more user-friendly to have a direct way of defining predicates induc-
tively. Moreover recent applications in computer science oblige to consider also
coinductive definitions useful for handling infinite objects, the most prominent
example being the data type of streams or infinite lists. Main features of our
approach are the use clauses in the (co)inductive definition mechanism, concept
which simplifies the syntactic shape of the predicates, as well as the inclusion
of not only (co)iteration but also primitive (co)recursion principles and in the
case of coinductive definitions an inversion principle. For sake of generality we
consider full monotone, and not only positive definitions —after all positivity is
only used to ensure monotonicity.
Working towards practical use of our systems we give them realizability inter-
pretations where the systems of realizers are strongly normalizing extensions of
the second-order polymorphic lambda calculus, system F, in Curry-style, with
(co)inductive types corresponding directly to the logical systems via the Curry-
Howard correspondence. Such realizability interpretations are therefore not
reductive: the definition of realizability for a (co)inductive definition is again a
(co)inductive definition. As main application of realizability we extend the so-
called programming-with-proofs paradigm of Krivine and Parigot to our logics,
by means of which a correct program of the lambda calculus can be extracted
from a proof in the logic.

vii

viii 0. ABSTRACT

Zusammenfassung

Diese Dissertation beschäftigt sich mit Erweiterungen der Logik zweiter Stufe
(AF2) mit primitiven Konstruktoren, die kleinste und größte Fixpunkte mono-
toner Operatoren repräsentieren, mit denen Prädikate durch Induktion und
Koinduktion lassen sich definieren. Obwohl die Ausdrucksfähigkeiten der zweit-
stufiger Logik schon seit lange Zeit bekannt sind und reichen um (ko)induktive
Prädikate, mittels ihre (ko)induktion Prinzipien zu definieren, es ist freundlicher,
eine direkte Weise zu haben, Prädikate induktiv zu definieren. Darüber hin-
aus fordern letzte Anwendungen in der Informatik koinduktive Definitionen
zu betrachten, welche nützlich für die Behandlung unendlicher Objekte sind,
das bedeutendste Beispiel sei die Datentyp von Ströme oder unendliche Lis-
ten. Hauptbeiträge unsere Behandlung sind der Gebrauch von Klauseln in dem
Mechanismus (ko)induktiver Definierung. Konzept, das die syntaktische Form
der Prädikate vereinfacht, sowie die Betrachtung nicht nur von (Ko)iteration
sondern auch von Prinzipien primitiver (Ko)rekursion. Im Interesse der All-
gemeinheit, betrachten wir voll monoton, und nicht nur positive Definitionen,
immerhin die syntaktische Beschränkung zu positiven Definitionen ist nur ver-
wendet, um Monotonie sicherzustellen.
In Richtung praktischer Anwendungen unserer Systemen geben wir ihnen Re-
alisierbarkeitsinterpretationen, wobei die Systeme von Realisierern stark nor-
malisierende Erweiterungen des polymorphen Lambda Kalküls zweiter Stufe,
System F á la Curry, mit (ko)induktive Typen sind, die direkt den logischen
Systemen durch die Curry-Howard Korrespondenz entsprechen. Solche Real-
isierbarkeitsinterpretationen sind folglich nicht reduktive: die Definition der
Realisierbarkeit für eine (ko)induktive Definition ist wieder eine (ko)induktive
Definition. Als Hauptanwendung der Realisierbarkeit werde das sogenannte
programmieren-mit-Beweise Verfahren von Krivine und Parigot auf unsere Logik
erweitert, mit welchem ein korrektes Programm des Lambda-Kalküls aus einem
Beweis in der Logik gewonnen werden kann.

ix

x 0. ZUSAMMENFASSUNG

Acknowledgements

When the moment came for me to choose where to go to pursuit my doctoral
studies my main concern was the fact that up to that moment I had enjoyed
a big freedom in my academical life and certainly wanted to keep it. Now
after four and a half years and with this piece of work under my arm I can
only say that I made the right decision by coming to München. I am very
thankful to Prof. Dr. Helmut Schwichtenberg for accepting me as Ph. D.
student but mainly for the excellent research environment he has formed at the
Mathematics Institute of the Ludwig-Maximilians-Universität in München in
the Theresienstraße. Specially for the very famous “Mitarbeiterbesprechung”
every thursday where more than once I got inspiring ideas which are part of this
work.

Dr. Ralph Matthes deserves a special mention. This work would have never
been finished without his help, by explaining to me concepts which now seem
a child’s game but that on the beginning of my research were so difficult like
the correct use of prepositions and declensions in the german language still is,
and specially for telling me to start my research with something very easy, even
trivial, but something that I could tell to be mine. I am also thankful to him
for getting me an office at the chair for Theoretical Computer Science in the
Computer Science institute at the Oettingenstraße. Room D.11 has been a very
comfortable scientific home during this time and I will certainly miss it.
I thank Prof. Dr. Wilfried Buchholz in München and Prof. Dr. Michel Parigot
in Paris for taking the time to reviewing my work.
Being an associated member of the Graduiertenkolleg Logik in der Informatik
(GKLI) allowed me to attend several summer schools and conferences which
improved substantially my spirit of research. The GKLI’s colloquium every
friday morning provided me with a deep overview of the very different branchs
of research on logic and theoretical computer science.
Dr. Olha Shkaravska provided me with an oasis full of jokes and nonsense which
took the stress away in many occasions.
Last but not least I dedicate this work to my family and friends in Mexico and
München, for supporting me even in the darkest moments when I thought I
would never finish this research.
I gratefully acknowledge the funding of the joint program between the Mexican
National Council of Science and Technology (CONACYT) and the German
Academic Exchange Service (DAAD) by credit grant 154186.

xi

xii 0. ACKNOWLEDGEMENTS

Agradecimientos

Este trabajo no es sólo mio, en cada página y cada śımbolo matemático están
escondidos muchos momentos, momentos de alegria y tristeza, de calma y deses-
peración, de incertidumbre y seguridad, los cuales se crearon gracias a muchas
personas que me encontré en el camino sin las cuales jamás hubiera llegado al
final. Ellos me sacaron del mundo matemático, de diversas maneras, en los
momentos más obscuros cuando parećıa que jamás podŕıa terminar mi investi-
gación. Agradezco a todos aquellos que estuvieron conmigo en algun momento,
y sobre todo a los que siguen ah́ı, en especial a Aura Mireles por los tragos y
los partidos de Scrabble, pero sobre todo por la amistad, A Maria Angelica y
Erwin Fellermier por darme no sólo una habitación, sino un hogar en la Dob-
mannstraße 10 en diversas ocasiones. A Helen Briseño, Jimie, Daniel y Jaime
Roura por las inolvidables tertulias en Germering. A Giovanni e Ivonne Barrios
Salas por las parrandas y el delicioso sancocho. A Jorge Medina por los partidos
de “gana pierde” y las exquisitas cenas los fines de semana en la Auenstraße 104,
Al Dr. Jorge Galindo por dejarme hechar un vistazo al mundo de las ciencias
sociales, pero sobre todo por las profundas discusiones frente al televisor en la
Finauerstraße 4.

En México agradezco a mi familia y amigos quienes, cada vez que volv́ı de
vacaciones, me hicieron sentir como si nunca me hubiera ido. En especial dedico
este trabajo a mamá quien me enseño los primeros números y a papá quien me
enseño lógica y teoŕıa de conjuntos por primera vez, gracias por el infinito amor
que he recibido. A Lupilla por todo el amor que me has dado, por enseñarme
el mundo del teatro y sobre todo por seguir ah́ı a pesar de la distancia. A la
facultad de ciencias de la UNAM, en especial a mis maestros José Alfredo Amor,
Carlos Torres y Elisa Viso por su amistad y apoyo continuo, y a mi alumna más
brillante Liliana Reyes por tu sonrisa.

xiii

xiv 0. AGRADECIMIENTOS

Negrita de mis pesares, ojos de papel volando,
a todos d́ıles que śı, pero no les digas cuando,
aśı me dijiste a mı́, por éso vivo penando!

Son de la negra, Jalisco México

Habich ist ein schöner Vogel, Hättich nur ein Nestling.

Deutsches Sprichwort

Introduction

The Curry-Howard correspondence ([Ho80]) or formulas-as-types paradigm is
a powerful tool relating logical systems, handling mathematical proofs, with
the world of programs, represented as systems of lambda calculi. It considers
specifications of programs as formulas in a given logic and allows to extract
programs, written as lambda terms, from proofs of these formulas.
This thesis addresses some extensions of this famous correspondence with (co)in-
ductive types/definitions. First we extend the second-order polymorphic lambda
calculus, system F, with (co)inductive types taking as motivation the categori-
cal approach ([JaRu97]): an inductive type represents a (weak) initial algebra
of a functor, whereas a coinductive type dually represents a (weak) final coal-
gebra. Our main extension, inspired by [Mat98] and [Hag87a], includes full-
monotone types with a clausular feature. Moreover we define also an extension
with Mendler-style co(induction) principles ([Men87, Men91]).
Next we move to the realm of formulas, introducing a concept of monotone and
clausular (co)inductive definition/predicate and extending the Curry-Howard
correspondence by defining an extension of second-order logic AF2 with pri-
mitive constructors for (co)inductive definitions representing least and greatest
fixed points of monotone, and not only positive, operators.
Our choice for the system of second-order logic is not accidental. AF2, being a
constructive logic, has been proved suitable for extracting programs from proofs.
Building on the work of Krivine and Parigot [KrPa90, Par92] we extend their
so-called programming-with-proofs paradigm to our system of (co)inductive de-
finitions. The importance of such paradigm is that it neccesarily produces pro-
grams which do what one expects, not magically, but for mathematical reasons.
A cornerstone of the method is the use of realizability ([Tro98]) (called “se-
mantic notion of type” in [KrPa90]), this is an important technique to make
explicit the computational content hidden in a proof. If a logic is constructive1

and has a sound realizability interpretation we can produce a program and its
verification proof effectively from a proof of the specification formula using the
realizability interpretation.
The programming-with-proofs paradigm uses some kind of semantics, in our case
a tarskian one, to formulate, in a given model, a concept of formal data type,
which is a unary predicate having a special property with respect to realizability,
namely the inhabitants of the data type are realizers of its own inhabitation.

1Some research has been done also on extracting programs from classical proofs, see for
example [BBS02]

xv

xvi 0. INTRODUCTION

This self-realizing property allows to obtain programs without calculate reali-
zers explicitly.

To finish this introduction we give an overview of the contributions and an
outline of the contents.

Contributions

As the main contributions of this thesis I consider:

◦ A formulation of a strongly normalizing type system in Curry-style MCICT,
extending system F, with both inductive and coinductive types including
(co)iteration, (co)recursion and inversion principles as well as monotone
and clausular features.

◦ The concept of monotone and clausular (co)inductive definition is intro-
duced and added to second-order logic AF2 getting an extension MCICD

corresponding to the type-system MCICT under the Curry-Howard corres-
pondence.

◦ A realizability interpretation for the system of (co)inductive definitions
MCICD using as term language the corresponding system of (co)inductive
types, i.e. the realizers are terms of MCICT. This interpretation is not
reductive, meaning that the realizability of a (co)inductive predicate is
again defined (co)inductively.

◦ As main application of our realizability interpretation the extension of the
programming with proofs method to MCICD.

◦ Formulation of a system of (co)inductive definitions with coinduction prin-
ciples in Mendler-style together with its realizability interpretation suita-
ble for extracting programs from proofs of specifications including coin-
ductive definitions.

We give more details of the contributions on chapter 7.

Chapter Outline

Chapter one introduces the basic concepts on category theory, lambda calculus
and logic needed later, in particular we present basic definitions on (co)algebras
and dialgebras, the definition of system F including a direct strong normaliza-
tion proof which will be extended later to the basic system with (co)inductive
types, and the basics about the second-order logic AF2.
Chapter two is devoted to type systems, in the spirit of [Mat98, Mat99] we
present two extensions of system F with monotone (co)inductive types: the first
one, called MICT, includes traditional (co)inductive types of the form µαρ, ναρ.

xvii

To prove the strong normalization of this system we proceed directly exten-
ding the proof for F via saturated sets and the SN-method. The second sys-
tem, called MCICT extends F with monotone (co)inductive types of the form
µα(ρ1, . . . , ρk), να(ρ1, . . . , ρk) in a similar way to the extension of simply typed
lambda calculus presented in [Hag87a]. Using the categorical concept of dialge-
bra as background we obtain the main feature of the type system, the definition
of (co)inductive types by means of a tuple of types avoiding the use of sums
or products. We call these types clausular in analogy to the clausular defini-
tions presented later on chapter three. The strong normalization of the system
is proved by embedding it into the first system MICT. Furthermore we sketch
another two useful extensions, the first one, MCICTM , includes only Mendler-
style (co)induction principles whereas the second one, MCICTµMν is a hybrid
system with conventional induction and Mendler-style coinduction principles.
On chapter three we present the first part of the main contribution of this work,
an extension of AF2 with monotone and clausular (co)inductive definitions called
MCICD which corresponds to the type system MCICT under the Curry-Howard
correspondence. The use of clauses in the mechanism of (co)inductive defini-
tions allows to set a direct analogy with informal (co)inductive definitions and
simplifies the definition of predicates.
The second part of our main contribution, a realizability interpretation for the
logic MCICD, is presented on chapter four, the target logic being an extension of
MCICD with existential and restricted formulas and where the term language,
that is the language of realizers, is nothing but our term system MCICT. Ins-
tead of the more frequently used modified realizability interpretation, we use a
version of realizability where the first-order universal formulas do not have com-
putational content. A nice application of the realizability soundness theorem is
the extension of Krivine and Parigot’s programming with proofs method to our
logic. This method, first presented in [KrPa90], allows to obtain programs over
formal data types from proofs in the logic without calculate a single realizer.
To illustrate the method a serie of examples is provided.
Problems arised when trying to obtain programs from proofs involving coinduc-
tive definitions lead us to chapter six where a solution is provided by means of
a hybrid logical system MCICDµMν wich includes conventional induction prin-
ciples and Mendler-style coinduction principles corresponding, of course, to the
type system MCICTµMν . We present the system and give it a realizability inter-
pretation used again to program with proofs. This time specifications involving
coinductive definitions are satisfactory programmed.
The thesis concludes with chapter seven which presents some conclusions, re-
lated work as well as some suggerences for future work.

xviii 0. INTRODUCTION

No quiso escribir más. Fijó, nuevamente, los ojos en el
sol. Se sintió pequeño y rid́ıculo; pequeños y rid́ıculos
deb́ıan sentirse cuantos trataran de explicar algo de
este páıs. ¿ Explicarlo ? No -se dijo –, creerlo, nada
más. México no se explica; en México se cree, con
furia, con pasión, con desaliento. Dobló sus cuartillas
y se puso de pie.

Carlos Fuentes, La región más transparente.

1
Preliminaries

This chapter is devoted to recall concepts needed later, we assume knowledge
of basic logic (in a natural deduction approach) and lambda calculus. Every
non-defined concept is assumed to be known. When in doubt the reader should
consult the given references.

1.1 Categorical Interlude

We assume some knowledge of category theory, here we only state the basic
concepts needed later, for full details on category theory see for example [Mac98].
We will use the categorical approach to (co)induction to formulate our systems
of (co)inductive types, this can be briefly stated as follows:

◦ Induction is the use of initiality for algebras

◦ Coinduction is the use of finality for coalgebras

For an excellent tutorial for (co)induction from the categorical point of view see
[JaRu97], here we give only the basic definitions.

Fix a category C, with products and coproducts for our purposes.

Definition 1.1 Let T : C → C be a functor. A T -algebra is a pair 〈A, f〉 such
that f : TA→ A. Analogously a T -coalgebra is a pair 〈B, g〉 with g : B → TB.

Definition 1.2 Given two T -algebras 〈A, f〉, 〈B, g〉 a morphism from 〈A, f〉 to

1

2 1. PRELIMINARIES

〈B, g〉 is a C-morphism h : A→ B such that the following diagram commutes:

TB B

TA A...
...........

.
f

...
...........

.
g

..

......
.
.....
......
.

Th

..

......
.
.....
......
.

h

We say that the algebra 〈A, f〉 is initial if it is the initial object of the category
of T -algebras, i.e., if for every given algebra 〈B, g〉 there is a unique h such that
the above diagram commutes, in this case the h is denoted Itg and called the
iteratively defined morphism with step function g.
If exists, the initial T -algebra is unique and is denoted as 〈µT, inT 〉, so that
Itg : µT → B and

Itg ◦ inT = g ◦ T (Itg) (1.1)

this equation is called principle of iteration.
Dually a morphism of coalgebras from 〈B, g〉 to 〈A, f〉 is a C-morphism h : B →
A such that the following diagram commutes:

B TB

A TA...
..........

..
f

...
..........

..
g

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.....

....

................

............

Th

....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.....

....

................

............

h

We say that the coalgebra 〈A, f〉 is final if it is the final object of the category
of T -algebras, i.e., if for every given coalgebra 〈B, g〉 there is a unique h such
that the above diagram commutes., in this case we denote such h with CoItg and
call it the coiteratively defined morphism with step function g.
If exists, the final T -coalgebra is unique and denoted with 〈νT, outT 〉, so that
CoItg : B → νT and

outT ◦CoItg = F (CoItg) ◦ g (1.2)

this equation is called principle of coiteration.

Proposition 1.1 inT , outT are isomorphisms, therefore there exist inverse mor-
phisms inT

−1, outT
−1 such that inT

−1 ◦ inT = IdTµT and outT ◦ outT
−1 = IdνT .

These equations are called the principle of inductive and coinductive inversion
respectively.
Proof.

Consider the following diagram

1.1. CATEGORICAL INTERLUDE 3

T (TµT)

TµT

TµT

TµT

µT

µT...
..........

..
inT

...
..........

..
inT

..
...........

.
T (inT)

..
.....
..

.....
.......

T (inT ◦h)

..

......
.
.....
......
.

T (h)

..
.....
..

.....
.......

inT ◦h

..

......
.
.....
......
.

h

The lower diagram commutes by the universal property of the initial algebra,
therefore we have

h ◦ inT = T (inT) ◦ T (h) = T (inT ◦h)

the second equality due to the second functor law.
The upper diagram commutes, with help of the lower one, as follows:

(inT ◦h) ◦ inT = inT ◦(h ◦ inT) = inT ◦(T (inT ◦h))

Next observe that the upper diagram also commutes with Id instead of inT ◦h,
which by the universal property of the initial algebra implies inT ◦h = Id, which
implies

h ◦ inT = T (inT ◦h) = T (Id) = Id

the last equality given by the first functor law.
Therefore h is an inverse for inT and we denote it with inT

−1.
The case for the final coalgebra is analogous. a

The extended (co)induction principles will be justified by means of (co)recursive
algebras:

Definition 1.3 Define ΠD : C → C as ΠDC := C × D. We say that the
T -algebra 〈A, f〉 is recursive if for every TΠA-algebra 〈B, g〉 there exists a mor-
phism h : A→ B such that:

T (A×B) B

TA A...
..........

..
f

..
..........

..
g

..

......
.
.....
......
.

T 〈Id, h〉

..

......
.
.....
......
.

h

(1.3)

4 1. PRELIMINARIES

Set ΣD : C → C with ΣDC := C + D. We say that the T -coalgebra 〈A, f〉 is
corecursive if for every TΣA-coalgebra 〈B, g〉 there exists a morphism h : B → A
such that:

B T (A + B)

A TA...
..........

..
f

..
..........

..
g

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

................

............

T [Id, h]

....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

................

............

h

(1.4)

Proposition 1.2 〈µT, inT 〉 is recursive and 〈νT, outT 〉 is corecursive.
Proof. Let 〈B, g〉 be a TΠµT -algebra, i.e. g : T (µT ×B)→ B. It is easy to see
that inT ◦T (π1) : T (µT ×B)→ µT , so that we get the following T -algebra:

〈inT ◦T (π1), g〉 : T (µT ×B)→ µT ×B

Therefore by iteration there is a unique h : µT → µT ×B such that

h ◦ inT =
〈
inT ◦T (π1), g

〉
◦ T (h) (1.5)

The goal is to show that for the given g there is a h′ : µT → B such that

T (µT ×B) B

TµT µT...
...........

.
inT

..
..........

..
g

..

......
.
.....
......
.

h′

..

......
.
.....
......
.

T (〈id, h′〉)

(1.6)

Set h′ : µT → B defined as h′ := π2 ◦ h, we will show that the diagram
commutes, i.e.,

h′ ◦ inT = g ◦ T (〈Id, h′〉)

First we show that π1 ◦ h = Id, by initiality, i.e. we have to show that the
following diagram commute:

TµT µT

TµT µT...
..........

..
inT

...
..........

..
inT

...

......
..
....
......
..

π1 ◦ h

...

......
..
....
......
..

T (π1 ◦ h)

1.1. CATEGORICAL INTERLUDE 5

we have by equation (1.5)

(π1 ◦ h) ◦ inT = π1 ◦ (h ◦ inT) = π1 ◦
(
〈inT ◦T (π1), g〉 ◦ T (h)

)
=

=
(
π1 ◦ 〈inT ◦T (π1), g〉

)
◦ T (h) =

(
inT ◦T (π1)

)
◦ T (h) = inT ◦T (π1 ◦ h)

Therefore the diagram commutes and by uniqueness we have π1 ◦ h = Id.

Next observe that h = 〈π1 ◦ h, π2 ◦ h〉 = 〈Id, h′〉. Now we can show that
diagram (1.6) commutes:

h′ ◦ inT =
(
π2 ◦ h

)
◦ inT

= π2 ◦
(
h ◦ inT

)

= π2 ◦
(
〈inT ◦T (π1), g〉 ◦ T (h)

)

=
(
π2 ◦ 〈inT ◦T (π1), g〉

)
◦ T (h)

= g ◦ T (h)
= g ◦ T (〈Id, h′〉)

Therefore diagram (1.6) commutes.
The case for the final coalgebra is similar.

a

For the cases of the initial algebra and the final coalgebra, the h that makes
diagrams (1.3), (1.4) commute is denoted Recg , CoRecg respectively and we refer
to them as the (co)recursively defined morphism with step function g, so that
we have Recg : µT → B, CoRecg : B → νT such that the following principles
hold:

◦ Principle of Primitive Recursion

Recg ◦ inT = g ◦ T (〈Id, Recg〉) (1.7)

◦ Principle of Primitive Corecursion

outT ◦CoRecg = T ([Id, CoRecg]) ◦ g (1.8)

1.1.1 M-(Co)algebras

In this section we justify categorically the concept of Mendler-style (co)induction
([Men87, Men91]),which will provide an important tool for coinductive progra-
mming. For a deep explanation of Mendler-style from the categorical point of
view see [UV99, UV00].

Definition 1.4 A T -Mendler-style-algebra, for short T -M-algebra, is a pair
〈A, Φ〉 with

Φ : Hom(·, A)→ Hom(T ·, A)

6 1. PRELIMINARIES

that is, Φ is a transformation taking morphisms f : C → A to morphisms Φf :
TC → A, for every object C, and such that for every object B and morphism
g : B → A we have:

TB

TA

A...
..........

..
Φ(g)

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.............
............

Φ(Id)

..

......
.
.....
......
.

Tg

Φ(g) = Φ(Id) ◦ Tg

A morphism of T -M-algebras 〈D, Ψ〉, 〈C, Φ〉 is a morphism h : D → C such
that:

TD

C

D...
...........

.
Ψ(Id)

..

......
.
.....
......
.

h

..
.....
..

Φ(h)

h ◦Ψ(Id) = Φ(h)

Proposition 1.3 Let T be a functor with initial algebra 〈µT, inT 〉. Then for
every T -M-algebra 〈C, Φ〉 there is a unique morphism MItΦ : µT → C such that

TµT µT

C

...
..........

..
inT

..

......
.
.....
......
.

MItΦ

...
....
..

Φ(MItΦ)

so that the principle of Mendler-style iteration holds:

MItΦ ◦ inT = Φ(MItΦ) (1.9)

MItΦ is the morphism defined by Mendler-style iteration with step function
Φ.

1.1. CATEGORICAL INTERLUDE 7

Definition 1.5 A T -algebra 〈A, f〉 is M-recursive if for every object C and
every transformation

Φ : Hom(·, A)→ Hom(·, C)→ Hom(T ·, C)

there exists an h : A→ C such that:

TA A

C

...
...........

.
f

..

......
.
.....
......
.

h

..
.....
..

Φ(Id)(h)

(1.10)

f ◦ h = Φ(Id)(h)

Proposition 1.4 The initial algebra 〈µT, inT 〉 is M-recursive.In this case the
h of diagram (1.10) is denoted MRecΦ and the equation

inT ◦MRecΦ = Φ(Id)(MRecΦ) (1.11)

is called the principle of Mendler-style recursion, whereas MRecΦ is called the
morphism defined by Mendler-style recursion with step function Φ.

Dualizing the previous definitions we justify Mendler-style coinduction.

Definition 1.6 A T -Mendler-style-coalgebra, for short T -M-coalgebra, is a pair
〈D, Φ〉 with

Φ : Hom(D, ·)→ Hom(D, T ·)

and such that for every object A and morphism g : D → A we have:

D

TD

TA...
..........

..
Φ(g)

...

......
..
....
......
..

Φ(Id)

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.............
............

Tg

Φ(g) = Tg ◦ Φ(Id)

8 1. PRELIMINARIES

A morphism of T -M-coalgebras 〈D, Φ〉, 〈E, Ψ〉 is a morphism h : D → E
such that

D

E

TD...
..........

..
Φ(Id)

..

......
.
.....
......
.

h

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.............
............

Ψ(h)

Ψ(h) ◦ h = Φ(Id)

Proposition 1.5 Let T be a functor with final coalgebra 〈νT, outT 〉. Then for
every T -M-coalgebra 〈D, Φ〉 there is a unique morphism MCoItΦ : D → νT such
that

TνT D

νT

...
.

............

Φ(MCoItΦ)

...

......
.
.....
......
.

MCoItΦ

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.........................

outT

so that the principle of Mendler-style coiteration holds:

outT ◦MCoItΦ = Φ(MCoItΦ) (1.12)

MCoItΦ is the morphism defined by Mendler-style iteration with step function
Φ.

Definition 1.7 A T -coalgebra 〈A, f〉 is M-corecursive if for every object D and
every transformation

Φ : Hom(A, ·)→ Hom(D, ·)→ Hom(D, T ·)

there exists an h : D → A such that

A TA

D

...
..........

..
f

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.........................

h

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

..............

............

Φ(Id)(h)

(1.13)

1.1. CATEGORICAL INTERLUDE 9

f ◦ h = Φ(Id)(h)

Proposition 1.6 The final coalgebra 〈νT, outT 〉 is M-corecursive. In this case
the h of diagram (1.13) is denoted MCoRecΦ and the equation

outT ◦MCoRecΦ = Φ(Id)(MCoRecΦ) (1.14)

is called the principle of Mendler-style corecursion,whereas MCoRecΦ is called
the morphism defined by Mendler-style corecursion with step function Φ.

1.1.2 Dialgebras

The concept of dialgebra, introduced in [Hag87b], is a straightforward gene-
ralization of (co)algebras with stronger expressive power (see [PZ01]). With
dialgebras we can represent products, coproducts and even exponential objects
(see [DM93]). We will serve later from this concept to justify the clausular
feature of our type/logic systems.

Definition 1.8 Let F, G : C → D covariant functors between two categories
C,D. A F, G-dialgebra is a pair 〈A, f〉 where A is a C-object and f : FA→ GA
is a D-morphism.

Definition 1.9 A morphism between two F, G-dialgebras 〈A, f〉, 〈B, g〉 is a C-
morphism h : A→ B such that:

FB

FA GA

GB

...
..........

..
f

...
..........

..
g

..

......
.
.....
......
.

Fh

..

......
.
.....
......
.

Gh

Observe that if I is the identity functor then a T, I-dialgebra 〈A, f〉 is a
T -algebra and a I, T -dialgebra is a T -coalgebra.

We are specially interested in dialgebras where the functors F, G : C → Cn

are of the form

F ≡ 〈F1, . . . , Fn〉 G ≡ 〈I, . . . , I〉

with Fi : C → C.
The final G, F -dialgebra, if exists, will be denoted with 〈ν(F1, . . . , Fn), outn〉
The finality of ν(F1, . . . , Fn) is given by the following diagram, where V :=

ν(F1, . . . , Fn)

10 1. PRELIMINARIES

〈B, . . . , B〉 〈F1B, . . . , FnB〉

〈F1V, . . . , FnV 〉〈V, . . . , V 〉

..
...........

.
g

...
..........

..
outn

.....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.....

....

.....

.....

..............

............

〈h, . . . , h〉

.....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.....

....

.....

.....

..............

............

〈F1h, . . . , Fnh〉

where h : B → V is the unique function such that:

outn ◦〈h, . . . , h〉 = 〈F1h, . . . , Fnh〉 ◦ g

Observing that the morphisms outn, g are neccesary of the form

outn = 〈outn,1, . . . , outn,n〉 g = 〈g1, . . . , gn〉.

The previous diagram can be splitted into the following n-diagrams, denoting
with CoItng to the unique h above.

B FiB

Fi

(
ν(F1, . . . , Fn)

)
ν(F1, . . . , Fn)

..
..........

..
gi

..
..........

..
outn,i

....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.............

............

CoItng

....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.............

............

Fi(CoItng)

outn,i ◦CoItng = Fi(CoItng) ◦ gi (1.15)

These equations represent the coiteration principle on dialgebras
Analogously corecursion is introduced by the following n-diagrams :

B Fi

(
ν(F1, . . . , Fn) + B

)

Fi

(
ν(F1, . . . , Fn)

)
ν(F1, . . . , Fn)

..
...........

.
gi

..
...........

.
outn,i

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.................

............

CoRecn
g

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.................

............

Fi

(
[Id, CoRecn

g]
)

1.1. CATEGORICAL INTERLUDE 11

outn,i ◦CoRecn
g = Fi

(
[Id, CoRecn

g]
)
◦ gi (1.16)

This equations represent the principle of primitive corecursion on dialgebras

Finally the coinductive inversion principle is given by this equations:

outk ◦ out−1
k = Id〈F1V,...,FnV 〉 (1.17)

Similarly denoting with 〈µ(F1, . . . , Fn), inn〉 the initial F, G-dialgebra we ar-
rive to the following diagrams:

FiB B

µ(F1, . . . , Fn)Fi

(
µ(F1, . . . , Fn)

)

...
..........

..
gi

...
..........

..
inn,i

...

......
.
.....
......
.

Fi(It
n
g)

...

......
.
.....
......
.

Itng

representing the iteration principle:

Itng ◦ inn,i = gi ◦ Fi(It
n
g) (1.18)

Fi

(
µ(F1, . . . , Fn)×B

)
B

µ(F1, . . . , Fn)Fi

(
µ(F1, . . . , Fn)

)

...
..........

..
gi

...
..........

..
inn,i

...

......
.
.....
......
.

Fi

(
〈Id, Recn

g 〉
)

...

......
.
.....
......
.

Recn
g

representing the recursion principle

Recn
g ◦ inn,i = gi ◦ Fi

(
〈Id, Recn

g 〉
)

(1.19)

Finally the inductive inversion principle is given by:

in−1
k ◦ ink = Id〈µ(F1,...,Fn),...,µ(F1,...,Fn)〉 (1.20)

12 1. PRELIMINARIES

Mendler Style (Co)induction on Dialgebras

In an analogous way to the results in section 1.1.1 we can define Mendler-
style (co)iteration and (co)recursion on dialgebras, here we only state such
principles. For F = 〈F1, . . . , Fn〉, G = 〈I, . . . , I〉 with initial F, G-dialgebra
〈µ(F1, . . . , Fn), inn〉 where inn = 〈inn,1, . . . , inn,n〉, given the step function Φ =
〈Φ1, . . . , Φn〉 we have the following principles:

◦ Mendler-Style Iteration

MItnΦ ◦ inn,i = Φi(MItnΦ) (1.21)

◦ Mendler-Style Recursion

MRecn
Φ ◦ inn,i = Φi(Id)(MRecn

Φ) (1.22)

Analogously for the final G, F -dialgebra 〈ν(F1, . . . , Fn), outn〉 where outn =
〈outn,1, . . . , outn,n〉 and given the step function Φ = 〈Φ1, . . . , Φn〉 we have the
following principles:

◦ Mendler-Style Coiteration

outn,i ◦MCoItnΦ = Φi(MCoItnΦ) (1.23)

◦ Mendler-Style Corecursion

outn,i ◦MCoRecn
Φ = Φi(Id)(MCoRecn

Φ) (1.24)

This finishes our categorical interlude, in the next two section we introduce
our basic type system as well as the second-order logic AF2.

1.2 The Type System F

Our basic type system is the second order polymorphic lambda calculus, also
known as system F, introduced independently by Girard [Gir72] (see also [GLT89])
and Reynolds [Rey74]. Like all systems in this work we present system F in
Curry-style (see [Bar93] for an explanation of this terminology), that is, as a
type assignment system.

The types are generated by the following grammar:

σ, ρ ::= α | σ → ρ | ∀ασ

The set of free variables of σ denoted FV (σ) is defined as usual, as well as
the substitution concept ρ[~α := ~σ] avoding the capture of bounded variables.

The terms are defined as follows:

t, r, s ::= x | λxr | rs

1.2. THE TYPE SYSTEM F 13

The set FV (t) and the concept t[~x := ~s] are defined as usual.

The type assignment relation between a context
�

= {x1 : ρ1, . . . , xk : ρk} a
term t and a type ρ, denoted

�
� t : ρ

which can be read as “The term t inhabits the type ρ in the context
�
“, is

defined as usual:

�
, x : σ � x : σ

(V ar)

�
, x : σ � t : ρ

�
� λxt : σ → ρ

(→ I)

�
� r : σ → ρ

�
� s : σ

�
� rs : ρ

(→ E)

�
� t : ρ α /∈ FV (

�
)

�
� t : ∀αρ

(∀I)

�
� t : ∀αρ

�
� t : ρ[α := σ]

(∀E)

The reduction relation →β , which provides the operational semantics of the
language, is the term closure of the following relation 7→β between terms:

(λxr)s 7→β r[x := s]

As our presentation is in Curry-style the pure term system corresponds to
the untyped lambda calculus, there is neither type decorations in terms like
λxρr nor type abstractions or applications like Λαr, rσ.

This finish the definition of our language as a typed term rewrite system
〈F,→β , �〉.

To show the expressive power of F we give some examples of interesting types

Natural Numbers in F

Define the type of natural numbers as follows:

nat := ∀α.α→ (α→ α)→ α

The canonical inhabitants of this type are the Church numerals defined as:

ñ := λxλf.fn(x)

where f0(x) := x and fn+1(x) := f(fn(x)).

The constructors of nat are defined as:

0 := 0̃ := λxλf.x

s := λnλxλf.f(nxf)

It is easy to check that �0 : nat and �s : nat→ nat.

14 1. PRELIMINARIES

Streams in F

The type of streams (infinite lists) of objects of type ρ is defined as follows:

stream(ρ) := ∀γ.
(
∀α.(α → ρ)→ (α→ α)→ α→ γ

)
→ γ

with destructors tail, head defined as:

head := λs.s
(
λhλtλx.hx

)

tail := λs.s
(
λhλtλx.buildht(tx)

)

where build := λhλtλxλf.(fhtx) with

�build : ∀α.(α → ρ)→ (α→ α)→ α→ stream(ρ).

With this definitions we get � head : stream(ρ)→ ρ and � tail : stream(ρ)→
stream(ρ).

Two very important properties of typed term rewrite systems are strong nor-
malization (termination of rewriting) and subject reduction (type preservation),
the latter property being not trivial in type assignment systems, like the ones
considered here, because of the presence of implicit polymorphism, a typed term

�
� t : ∀αρ inhabits also all the instances of ρ, i.e.,

�
� t : ρ[α := σ] for every

σ, due to this feature the application of an introduction or elimination rule for
universal types cannot be traced by only looking at the terms, such rules are
called non-traceable.

Let us recall the definitions of both properties.

Definition 1.10 A typed term rewrite system 〈T , , �〉 has subject reduction
if the following holds: If

�
� r : ρ and r s then

�
� s : ρ.

Definition 1.11 A typed term rewrite system 〈T , , �〉 is strongly normalizing
if for every typable term

�
� t : σ there is no infinite reduction sequence (ri)i∈ �

with r0 ≡ t and ri ri+1 for every i ∈
�
. That is, every reduction sequence

starting in t terminates.

It is well-known that system F enjoys subject reduction and strongly nor-
malizes (see for example [Kri93], a direct proof of strong normalization is given
by corollary 1.3 below).

1.2.1 Adding Sum and Product Types

Although system F is highly expressive we prefer to add sum and product types
to our basic framework for comfort and because of some technicalities that will
be clear later.

1.2. THE TYPE SYSTEM F 15

Extend system F as follows:

Types:

σ, ρ ::= . . . | σ + ρ | σ × ρ

Terms :

t, r, s ::= . . . | inl r | inr s | case(r, x.s, y.t) |

〈r, s〉 | π1r | π2r

Type Assignment:

�
� r : ρ

�
� inl r : ρ + σ

(+IL)

�
� r : σ

�
� inr r : ρ + σ

(+IR)

�
� r : ρ + σ

�
, x : ρ � s : τ

�
, y : σ � t : τ

�
� case(r, x.s, y.t) : τ

(+E)

�
� r : ρ

�
� s : σ

�
� 〈r, s〉 : ρ× σ

(×I)

�
� s : ρ× σ

�
� π1s : ρ

(×EL)

�
� s : ρ× σ

�
� π2s : σ

(×ER)

Reduction Relation:

case(inl r, x.s, y.t) 7→β s[x := r]
case(inr r, x.s, y.t) 7→β t[y := r]

π1〈r, s〉 7→β r
π2〈r, s〉 7→β s

We call to this extension F+,×.

F+,× enjoys subject reduction which can be proven by adapting the method
for system F in [Kri93].
Strong normalization can be proved by embedding it into system F. Nevertheless
and in the spirit of modularity we reprove strong normalization via Matthes’
SN-method developed in [Mat98], later we will extend this proof to the basic
system of (co)inductive types.

Strong Normalization for F+,×

Definition 1.12 Let ? be a new symbol. An elimination is an expression of
one of the following forms:

?s, case(?, x.t, y.r), π1?, π2?

eliminations are denoted with the letter e.

16 1. PRELIMINARIES

Definition 1.13 Multiple eliminations are defined as follows:

E ::= ? | e[? := E]

where e[? := E] is defined as if ? were a term variable. From now on we will
use E[r] to denote E[? := r].

Definition 1.14 The set SN is inductively defined as follows:

x ∈ SN

E[x], s ∈ SN

E[x]s ∈ SN

E[x], s, t ∈ SN

case(E[x], x.s, y.t) ∈ SN

E[x] ∈ SN

π1(E[x]) ∈ SN

E[x] ∈ SN

π2(E[x]) ∈ SN

r ∈ SN

λxr ∈ SN

E
[
r[x := s]

]
, s ∈ SN

E[(λxr)s] ∈ SN

t ∈ SN

inl t ∈ SN

t ∈ SN

inr t ∈ SN

E
[
r[x := t]

]
, s ∈ SN

E[case(inl t, x.r, y.s)] ∈ SN

E
[
s[y := t]

]
, r ∈ SN

E
[
case(inr t, x.r, y.s)

]
∈ SN

r, s ∈ SN

〈r, s〉 ∈ SN

E[r], s ∈ SN

E[π1〈r, s〉] ∈ SN

E[s], r ∈ SN

E[π2〈r, s〉] ∈ SN

Definition 1.15 (Saturated Set) A set M of terms is saturated iff:

M⊆ SN

and if the following closure conditions hold:

E[x] ∈ SN

E[x] ∈ M

E
[
r[x := s]

]
∈M s ∈ SN

E[(λxr)s] ∈ M

E
[
r[x := t]

]
∈ M s ∈ SN

E[case(inl t, x.r, y.s)] ∈ M

E
[
s[y := t]

]
∈M r ∈ SN

E
[
case(inr t, x.r, y.s)

]
∈M

E[r] ∈ M s ∈ SN

E[π1〈r, s〉] ∈M

E[s] ∈ M r ∈ SN

E[π2〈r, s〉] ∈ M

the set of saturated sets will be denoted with SAT,

Lemma 1.1 The following holds:

◦ SN ∈ SAT

◦ If U ⊆ SAT then
⋂
U ∈ SAT

1.2. THE TYPE SYSTEM F 17

Proof. Straightforward a

Definition 1.16 Given a set of terms M we define the saturated closure of M
as follows:

cl(M) :=
⋂
{N ∈ SAT |M ∩ SN ⊆ N}

cl(M) is the least saturated set which contains M ∩ SN. Observe that M ⊆
cl(M) if and only if M ⊆ SN.

Definition 1.17 Given a variable x and M,N ∈ SAT we define

Sx(M,N) := {t | ∀s ∈M. t[x := s] ∈ N}

Definition 1.18 Given M,N ∈ SAT, we define the following sets:

I→(M,N) := {λxt | t ∈ Sx(M,N)}

I+(M,N) := {inl t | t ∈ M}∪ {inr t | t ∈ N}

I×(M,N) := {〈s, t〉 | s ∈M and t ∈ N}

M→ N := cl(I→(M,N))

M+N := cl(I+(M,N))

M×N := cl(I×(M,N))

E→(M,N) := {r ∈ SN | ∀s ∈M. rs ∈ N}

E+(M,N) := {r ∈ SN | ∀P∀x∀s ∈ Sx(M,P)∀y∀t ∈ Sy(N ,P).

case(r, x.s, y.t) ∈ P}

E×(M,N) := {r ∈ SN | π1r ∈ M and π2r ∈ N}

Lemma 1.2 For � ∈ {→, +,×} we have I�(M,N) ⊆ SN.
Proof. The proof is straightforward, as example we show the case � = ×. Take
〈s, t〉 ∈ I×(M,N), i.e., s ∈ M and t ∈ N , but as M,N ∈ SAT we have
M,N ⊆ SN. Therefore s, t ∈ SN which implies 〈s, t〉 ∈ SN. a

18 1. PRELIMINARIES

Corollary 1.1 For � ∈ {→, +,×} and the same in both choices, we have

I�(M,N) ⊆M�N .

Proof. Again we only treat the case for � = ×. We have to show that
I×(M,N) ⊆M×N , but by definition M×N = cl(I×(M,N)) and we know
that I×(M,N)∩SN ⊆ cl(I×(M,N)), which by the previous lemma is the same
as I×(M,N) ⊆ cl(I×(M,N)) and we are done. a

Lemma 1.3 For � ∈ {→, +,×} we have E�(M,N) ∈ SAT.
Proof. The proof is straightforward, as example we treat the case for � = ×.
E×(M,N) ⊆ SN is clear. Take E[

[
r[x := s]

]
∈ E×(M,N) and s ∈ SN, we

have to show E[(λxr)s] ∈ E×(M,N). As E[
[
r[x := s]

]
∈ E×(M,N) we have

π1(E[
[
r[x := s]

]
) ∈ M and π2(E[

[
r[x := s]

]
) ∈ N . Observe that π1(E

[
r[x :=

s]
]
) ≡ (π1?)

[
? := E

[
r[x := s]

]]
≡ (π1?)[? := E]

[
r[x := s]

]
and that (π1?)[? :=

E] is again a multiple elimination say E ′, therefore we have E ′
[
r[x := s]

]
∈M,

and as s ∈ SN and M ∈ SAT we get E ′[(λxr)s] ∈ SN, i.e., π1(E[(λxr)s]) ∈
M. Analogously we show that π2(E[(λxr)s]) ∈ N . Therefore E[(λxr)s] ∈
E×(M,N). The other rules for SAT sets are proved similarly. a

Lemma 1.4 For � ∈ {→, +,×} and the same in both choices, we have

I�(M,N) ⊆ E�(M,N).

Proof. For � = × take 〈s, t〉 ∈ I×(M,N). We have to show that 〈s, t〉 ∈
E×(M,N), i.e., π1〈s, t〉 ∈ M and π2〈s, t〉 ∈ N . As 〈s, t〉 ∈ I×(M,N) we have
s ∈ M and t ∈ N . Observe that s ≡ ?[s] ∈ M is a multiple elimination and
t ∈ SN, because N ⊆ SN. Therefore asM∈ SAT, we have ?[π1〈s, t〉] ∈M. i.e.,
π1〈s, t〉 ∈ M and analogously π2〈s, t〉 ∈ N . a

Corollary 1.2 For � ∈ {→, +,×} and the same in both choices, we have

M�N ⊆ E�(M,N).

Proof. We have to show that M�N ≡ cl(I�(M,N)) ⊆ E�(M,N). But by the
previous lemmas we have that I�(M,N) ⊆ E�(M,N) and that E�(M,N) ∈
SAT therefore by minimality of the closure we are done. a

Proposition 1.7 (Saturated Sets Properties) Assume M,N ∈ SAT, then

1. M→N ∈ SAT

2. If r ∈ M→ N and s ∈M then rs ∈ N .

3. If t ∈ Sx(M,N) then λxt ∈M→ N .

1.2. THE TYPE SYSTEM F 19

4. M+N ∈ SAT

5. If t ∈ M then inl t ∈ M+N .

6. If t ∈ N then inr t ∈M+N .

7. If r ∈ M+N , s ∈ Sx(M,P), t ∈ Sy(N ,P) then case(r, x.s, y.t) ∈ P

8. M×N ∈ SAT

9. If s ∈ M and t ∈ N then 〈s, t〉 ∈ M×N

10. If r ∈ M×N then π1r ∈M and π2r ∈ N

Proof.

1. Clear.

2. Immediate fromM→N ⊆ E→(M,N).

3. Take t ∈ Sx(M,N), this implies λxt ∈ I→(M,N) ⊆M→ N .

4. Clear.

5. t ∈ M implies inl t ∈ I+(M,N) ⊆M+N .

6. t ∈ N implies inr t ∈ I+(M,N) ⊆M+N .

7. Immediate fromM+N ⊆ E+(M,N).

8. Clear.

9. s ∈ M, t ∈ N imply 〈s, t〉 ∈ I×(M,N) ⊆M×N .

10. Immediate fromM×N ⊆ E×(M,N).

a

Definition 1.19 A candidate assignment is a finite set of pairs of the form
α :M where α is a type variable andM∈ SAT such that no type variable occurs
twice. Candidate assignments are denoted with Γ, in the expression Γ, α :M is
understood that α /∈ Γ.

Definition 1.20 (Strong Computability Predicates) Given a type ρ and
a candidate assigment Γ we define the saturated set of strongly computable terms

20 1. PRELIMINARIES

with respect to ρ and Γ,denoted SCρ[Γ], as follows:

SCα[Γ] :=

{
M if α :M∈ Γ
SN otherwise.

SCρ→σ [Γ] := SCρ[Γ]→ SCσ[Γ]

SCρ+σ [Γ] := SCρ[Γ] + SCσ [Γ]

SCρ×σ [Γ] := SCρ[Γ]× SCσ [Γ]

SC∀αρ[Γ] :=
⋂

M∈SAT SCρ[Γ, α :M]

Lemma 1.5 (Coincidence) If α /∈ FV (ρ) then SCρ[Γ, α :M] = SCρ[Γ].
Proof. Induction on ρ.
If ρ ≡ β 6= α we have two possibilites, if β : N ∈ Γ then SCβ[Γ, α :M] = N =
SCβ [Γ], otherwise SCβ [Γ, α :M] = SN = SCβ [Γ]. For ρ ≡ ∀βσ, we can assume
β /∈ Γ and α 6= β, then SC∀βσ[Γ, α :M] =

⋂
N∈SAT SCσ [Γ, α :M, β : N] which

by IH, as α /∈ FV (σ), equals
⋂

N∈SAT SCσ [Γ, β : N] = SC∀βσ[Γ]. a

Lemma 1.6 (Substitution) SCρ[α:=σ][Γ] = SCρ[Γ, α : SCσ [Γ]].

Proof. Induction on ρ. If ρ = α then SCα[α:=σ][Γ] = SCσ [Γ] which by definition

is the same as SCα[Γ, α : SCσ [Γ]]. If ρ ≡ β 6= α we have SCβ[α:=σ][Γ] ≡ SCβ [Γ]
which by the coincidence lemma is the same as SCβ [Γ, α : SCσ [Γ]].

Case ρ ≡ ∀βτ . We can assume β 6= α and β /∈ FV (σ). SC(∀βτ)[α:=σ][Γ] =⋂
N∈SAT SCτ [α:=σ][Γ, β : N], which by IH equals

⋂
N∈SAT SCτ [Γ, β : N , α :

SCσ [Γ, β : N]] =
⋂

N∈SAT SCτ [Γ, α : SCσ [Γ, β : N], β : N], which using the
coincidence lemma (β /∈ FV (σ)) simplifies to

⋂
N∈SAT SCτ [Γ, α : SCσ[Γ], β : N].

But this is exactly SC∀βτ [Γ, α : SCσ[Γ]].
a

Lemma 1.7 (Main Lemma) If
�

� r : ρ with
�

= {x1 : ρ1, . . . , xk : ρk} and
si ∈ SCρi [Γ], for 1 ≤ i ≤ k, then r[~x := ~s] ∈ SCρ[Γ].
Proof. Induction on �. Case (→ I) Assume

�
� λxt : ρ → σ from

�
, x :

ρ � t : σ. Our goal is (λxt)[~x := ~s] ∈ SCρ→σ [Γ], i.e., λx.t[~x := ~s] ∈ SCρ[Γ] →
SCσ [Γ]. Using the proposition 1.7, part 3, it suffices to show t[~x := ~s] ∈
Sx(SCρ[Γ], SCσ [Γ]). Take r ∈ SCρ[Γ], we have to prove that t[~x := ~s][x :=
r] ∈ SCσ [Γ]. The IH implies t[~x, x := ~s, r] ∈ SCσ [Γ], but we have x /∈ ~x and
w.l.o.g. also x /∈ FV (~s) therefore t[~x, x := ~x, r] ≡ t[~x := ~s][x := r] and we are
done.
Case (∀I) Assume

�
� t : ∀ατ from

�
� t : τ and α /∈ FV (

�
). si ∈ SCρi [Γ] and

α /∈ FV (ρi) imply by the coincidence lemma si ∈ SCρi [Γ, α :M], which by IH
implies t[~x := ~s] ∈ SCτ [Γ, α :M] for allM∈ SAT, i.e., t[~x := ~s] ∈ SC∀ατ [Γ].
Case (∀E). Assume

�
� t : τ [α := σ] from

�
� t : ∀ατ . By IH we have

t[~x := ~s] ∈ SC∀ατ [Γ] which implies t[~x := ~s] ∈ SCτ [Γ, α :M] for all M ∈ SAT.

1.2. THE TYPE SYSTEM F 21

In particular we have t[~x := ~s] ∈ SCτ [Γ, α : SCσ [Γ]] which, using the substitu-

tion lemma, is the same as t[~x := ~s] ∈ SCτ [α:=σ][Γ].
a

Proposition 1.8 If
�

� r : ρ then r ∈ SN.
Proof. Assume

�
= {x1 : ρ1, . . . , xk : ρk}. As the set of variables is contained in

every saturated set we have xi ∈ SCρi [∅] therefore as
�

� r : ρ the main lemma
yields r[~x := ~x] ∈ SCρ[∅] ⊆ SN. Therefore r ∈ SN. a

Terms in SN are Strongly Normalizing

Definition 1.21 The set sn of strongly normalizing terms is inductively defined
as follows:

If for every r′ such that r →β r′ we have r′ ∈ sn then r ∈ sn.

Lemma 1.8 sn is the set of terms r such that there is no infinite β-reduction
sequence starting in r.
Proof. To prove that given a term r ∈ sn there is no infinite reduction sequence
starting in r we simply do induction on r ∈ sn. For the reverse inclusion use
bar induction, i.e., show that {s|r →?

β s} ⊆ sn by induction on →β . a

Lemma 1.9 Variables belong to sn.
Proof. Clear a

Lemma 1.10 If E[x], s ∈ sn then E[x]s ∈ sn.
Proof. Main Induction on E[x] ∈ sn, side induction on s ∈ sn. a

Lemma 1.11 If r ∈ sn then λxr ∈ sn.
Proof. Induction on r ∈ sn. a

Lemma 1.12 If E[r[x := s]], s ∈ sn then E[(λxr)s] ∈ sn.
Proof. Main Induction on s ∈ sn, side induction on E[r[x := s]] ∈ sn. a

Lemma 1.13 If r, s ∈ sn then 〈r, s〉 ∈ sn.
Proof. Main Induction on r ∈ sn, side induction on s ∈ sn. a

Lemma 1.14 If E[x] ∈ sn then π1(E[x]) ∈ sn and π2(E[x]) ∈ sn.
Proof. Induction on E[x] ∈ sn. a

Lemma 1.15 If E[r], s ∈ sn then E[π1〈r, s〉] ∈ sn

Proof. Main induction on s ∈ sn, side induction on E[r] ∈ sn. a

Lemma 1.16 If E[s], r ∈ sn then E[π2〈r, s〉] ∈ sn

Proof. Analogous to the previous lemma a

Lemma 1.17 If E[x], r, s ∈ sn then case(E[x], y.r.z.s) ∈ sn.
Proof. Induction on E[x], r, s ∈ sn. a

22 1. PRELIMINARIES

Lemma 1.18 If r ∈ sn then inl r ∈ sn and inr r ∈ sn.
Proof. Induction on r ∈ sn. a

Lemma 1.19 If E[s[y := t]] ∈ sn and r ∈ sn then E[case(inr t, x.r, y.s)] ∈ sn

Proof. Main induction on r ∈ sn, side induction on E[s[y := t]] ∈ sn. a

Lemma 1.20 If E[r[x := t]] ∈ sn and s ∈ sn then E[case(inl t, x.r, y.s)] ∈ sn

Proof. Analogous to the previous lemma a

Proposition 1.9 SN ⊆ sn

Proof. The above lemmas show that sn is closed under the defining rules of SN,
therefore the claim follows by minimality of SN. a

Proposition 1.10 F+,× strongly normalizes.
Proof. Immediate from propositions 1.8 and 1.9 a

Corollary 1.3 F is strongly normalizing.

1.2.2 Adding Existential Types

Another useful extension of system F or of any other system treated in this work
will be obtained by adding existential types. This is a not essential extension
as existential types can be defined in system F.

Add to system F the following:

◦ Types: If α is a type variable and ρ is a type then ∃αρ is a type.

◦ Terms: pack r, open(r, x.s)

◦ Typing Rules:
�

� r : ρ[α := σ]
�

� pack r : ∃αρ
(∃I)

�
� r : ∃αρ

�
, z : ρ � s : σ

�
� open(r, z.s) : σ

(∃E)

The last rule with the proviso α /∈ FV (
�
, σ).

◦ β-reduction:

open(pack r, z.s) 7→β s[z := r]

The extension will be denoted with F∃. Moreover given a type system T we
denote with T∃ the extension of T with existential types.
Strong normalization will be proved in the next subsection whereas subject
reduction is again obtained by adapting the proof for AF2..

1.2. THE TYPE SYSTEM F 23

1.2.3 On Embeddings

As we have seen in section 1.2.1 direct proofs of strong normalization are quite
complicated. Fortunately we have a simpler technique to get such proofs which
will be used frequently later in this work, namely the embedding of typed term
rewrite systems. Here we give the definitions and justification of this technique.

Definition 1.22 (Embedding of Typed Term Rewrite Systems) An em-
bedding from a typed term rewrite system 〈T , T , �T 〉 into a typed term rewrite
system 〈T ?, T ? , �T ?〉 is a function (·)′ : T → T ? which assigns a term t′ ∈ T ?

to every term t ∈ T and a type ρ′ ∈ T ? to every type ρ ∈ T such that

◦ x′ := x

◦ (·)′ is type-respecting, i.e. If
�

�T r : ρ then
� ′

�T ? r′ : ρ′.
where if

�
= {x1 : σ1, . . . , xk : σk} then

� ′ = {x1 : σ′
1, . . . , xk : σ′

k}

◦ (·)′ is reduction-preserving, i.e. If s T t then s′ +

T ? t′. In words every
reduction step in T is mapped into at least one reduction step in T ?.

Proposition 1.11 (Inheritance of Strong Normalization) Assume the ty-
ped term rewrite system T ? strongly normalizes and (·)′ : T → T ? is an embed-
ding then T is strongly normalizing.
Proof. Clear as an infinite reduction sequence in T would generate an infinite
reduction sequence in T ?, which is absurd as T ? strongly normalizes. a

Strong Normalization for F∃

We proof now the strong normalization of F∃ via an embedding into system F.
The non-homomorphic rules of an embedding into system F are:

◦ Types:

(∃αρ)′ := ∀β.(∀α.ρ′ → β)→ β

where β /∈ FV (ρ, α).

◦ Terms:
(pack r)′ := λx.xr′

(open(r, x.s))′ := r′(λz.s′)

The following lemma will be needed to prove that the above function is really
an embedding.

Lemma 1.21 The following properties hold

◦ ρ[α := σ]′ = ρ′[α := σ′].

◦ r[x := s]′ = r′[x := s′].

24 1. PRELIMINARIES

Proof. Induction on ρ and r respectively. a
With help of the previous lemma the following is easy to proof.

Proposition 1.12 ·′ : F∃ → F is an embedding.

Finally using prop 1.11 we get

Corollary 1.4 F∃ strongly normalizes.

1.3 Second Order Logic AF2

The basic logic that we will use is the system AF2 due to Leivant [Lei83] and
Krivine [Kri93]. It is a natural deduction proof system for second-order logic
with a proof trace mechanism by means of terms used as labelsfor formulas,
called proof-terms. The main feature of the system is the inclusion of equational
reasoning by means of second-order defined Leibniz’ equality.

1.3.1 Definition of the System

Formulas are generated as follows:

A, B, C ::= X~t | A→ B | ∀xA | ∀XA

where x (X) is first-order (second-order) variable and in X~t, the arity of X
is equal to the length of ~t. The term system is a static one generated by

r, s, t ::= x | f~t

where f belongs to a given set of function symbols.
The sets FV (t) and FV (A) of free variables of t and A are defined as usual.

Observe that in this case FV (t) consists of all variables occurring in t.

On Substitution

Definition 1.23 Given a term t, variables ~x and terms ~s we define the simul-
taneous substitution of ~x with ~s in t denoted t[~x := ~s] as follows:

x[~x := ~s] =





si If x ≡ xi

x If x /∈ ~x

(f~t)[~x := ~s] = f(~t [~x := ~s])

Definition 1.24 Given a formula A, variables ~x and terms ~s we define the
substitution of ~x with ~s in A, denoted A[~x := ~s] as follows:

(X~t)[~x := ~s] = X~t [~x := ~s].

1.3. SECOND ORDER LOGIC AF2 25

(A→ B)[~x := ~s] = A[~x := ~s]→ B[~x := ~s]

(∀xA)[~x := ~s] = ∀x.A[~x := ~s], always assuming x /∈ ~x ∪ FV (~s).

(∀XA)[~x := ~s] = ∀X.A[~x := ~s]

The following concept provides an important tool to define sets in second-
order logic.

Definition 1.25 A comprehension predicate is an expression of the form

λ~yF

where ~y are first-order variables and F is a formula. With calligraphic letters
F ,G,H, . . . , we denote the comprehension predicates generated by the formulas
F, G, H, . . . , respectively. The arity of λ~yF is the length of ~y.
Intuitively λ~yF represents the set {~t | F [~y := ~t]}, therefore (λ~y.F)~t should
be understood as F [~y := ~t]. The set of free variables of λ~yF is defined as
FV (λ~yF) := FV (F) \ {~y}.
A predicate is either a second-order variable or a comprehension predicate.

Definition 1.26 Given a formula A, variables ~X and predicates ~F we define
the substitution of ~X with ~F in A, denoted A[~X := ~F] as follows:

(X~t)[~X := ~F] =





Fi~t If X ≡ Xi

X~t If X /∈ ~X

(A→ B)[~X := ~F] = A[~X := ~F]→ B[~X := ~F]

(∀xA)[~X := ~F] = ∀x.A[~X := ~F], always assuming x /∈ FV (~F).

(∀XA)[~X := ~F] = ∀X.A[~X := ~F], always assuming X /∈ ~X ∪ FV (~F).

Lemma 1.22 (Substitution Properties) The following properties hold:

◦ If ~x /∈ ~y ∪ FV (~s) then

t[~x := ~r][~y := ~s] = t[~y := ~s][~x := ~r [~y := ~s]] (SwP1)

◦ If ~β /∈ ~γ ∪ FV (~ζ) then

A[~β := ~χ][~γ := ~ζ] ≡ A[~γ := ~ζ][~β := ~χ [~γ := ~ζ]] (SwP2)

where ~β,~γ can be first or second order variables and ~χ, ~ζ are terms or
comprehension predicates respectively, so that every substitution makes
sense.

26 1. PRELIMINARIES

Proof. Induction on t and A respectively. a

The particular feature of AF2 is the use of equations between terms s = t
defined in the next section. The judgments of the logic are of the form

Γ ` � t : A

where

◦ A is a formula.

◦ Γ is a given context of formulas of the form {x1 : A1, . . . , xn : An}.

◦
�

is a given context of equations of the form {s1 = t1, . . . , sk = tk}.

◦ t is a lambda-term encoding the derivation of A. Such terms are called
proof-terms.

The relation Γ ` � t : A, read as “the formula A is derivable from the assumptions
Γ,

�
and the term t is a code for such derivation”, is inductively defined from

Γ, x : A ` � x : A (V ar)
s = t ∈

�

Γ ` � s = t
(start)

as follows:

Γ, x : A ` � r : B

Γ ` � λxr : A→ B
(→I)

Γ ` � r : A→ B Γ ` � s : A

Γ ` � rs : B
(→ E)

Γ ` � t : A

Γ ` � t : ∀xA
(∀I)

Γ ` � t : ∀xA

Γ ` � t : A[x := s]
(∀E)

Γ ` � t : A

Γ ` � t : ∀XA
(∀2I)

Γ ` � t : ∀XA

Γ ` � t : A[X := F]
(∀2E)

Γ ` � r : A[x := s] Γ ` � s = t

Γ ` � r : A[x := t]
(Eq)

Important remarks are:

◦ In the rule (∀I), x /∈ FV (Γ,
�
).

◦ In the rule (∀2I), X /∈ FV (Γ) (Observe that X /∈ FV (
�
) always holds).

◦ In the rule (Eq), Γ ` � s = t means nothing but a derivation with the rules
being defined with the difference that we get rid of the proof-terms. Indeed
we could isolate the context of equalities and perform only derivations of
the form

�
` s = t but in extensions of the system needed later this is not

possible anymore, therefore we prefer this general formulation.

1.3. SECOND ORDER LOGIC AF2 27

◦ Although we make no syntactic distinction between object and proof-term
variables we consider both sets as disjunct.

◦ From now on we will make explicit the context
�

only if neccesary, but
usually we will only write ` instead of ` � .

◦ Rules like (Eq) and the four rules for ∀, ∀2 whose application is not re-
flected in the proof-term system are called non-traceable., in other case a
rule is called traceable.

The proof reduction is given by the following β-reduction rule between proof-
terms:

(λxr)s 7→β r[x := s]

To see the expressive power of AF2 we define natural numbers and streams.

Natural Numbers in AF2

Given a constant symbol 0 and a unary function symbol s, we define the unary
predicate of natural numbers as:

�
:= λz.∀X.X0→ (∀x.Xx→ Xsx)→ Xz

It is easy to see that ` 0̃ :
�
0 and ` s̃ : ∀x.

�
x →

�
sx. where 0̃ := λxλf.x

and s̃ : λnλxλf.f(nxf).

Streams in AF2

Given unary function symbols head, tail, we define the unary predicate of streams
of elements of the predicate A as:

SA := λu.∀Z.
(
∀X.(∀x.Xx→ A head x)→ (∀x.Xx→ X tailx)→

∀x.Xx→ Zx
)
→ Zu

We can see that ` h̃ead : ∀x.SAx→ A head x and ` t̃ail : ∀x.SAx→ SA tailx,

where h̃ead := λs.s(λhλtλx.hx) and t̃ail := λs.s(λhλtλxλf.fht(tx)).

On Leibniz’ Equality

The particular feature of AF2 is the use of Leibniz’ equality, which is defined
for given terms s, t as:

s = t := ∀X.Xs→ Xt

A formula of the form s = t will be called equation.
The following derived rules will be very useful when handling equations:

28 1. PRELIMINARIES

Γ ` � t = t
(refl)

Γ ` � s = t

Γ ` � t = s
(symm)

Γ ` � r = s Γ ` � s = t

Γ ` � r = t
(trans)

Γ ` � si = ti, 1 ≤ i ≤ k

Γ ` � f~s = f~t
(comp)

Proposition 1.13 The above rules for equational reasoning can be derived in
AF2.
Proof. We derive each rule

◦ (refl). Clearly Γ ` � ∀X.Xx→ Xx.

◦ (trans). It suffices to show

Γ, ∀X.Xr → Xs, ∀X.Xs→ Xt ` � ∀X.Xr → Xt,

which is clear.

◦ (symm). It suffices to show Γ ` � s = t→ t = s. The goal is then

Γ, ∀X.Xs→ Xt ` � t = s.

We have by (∀E)

Γ, ∀X.Xs→ Xt ` � (Xs→ Xt)[X := λz.z = s],

i.e.,
Γ, ∀X.Xs→ Xt ` � s = s→ t = s

Finally using (refl) we can eliminate the implication getting

Γ, ∀X.Xs→ Xt ` � t = s

which was the goal.

◦ (comp). Assume Γ ` � si = ti for 1 ≤ i ≤ k. In particular we have
Γ ` � s1 = t1, which implies Γ ` � (Xs1 → Xt1)[X := λz.Xfzs2 . . . sk],
that is Γ ` � Xf~s→ Xft1s2 . . . sk, which can be rewritten as

Γ ` � (Xf~s→ Xft1z2 . . . zk)[z2 := s2] . . . [zk := sk]

Therefore as the ~z are fresh variables then after applying the rule (Eq)
with Γ ` � sj = tj for 2 ≤ j ≤ k and permuting some substitutions we get

Γ ` � (Xf~s→ Xft1z2 . . . zk)[z2 := t2] . . . [zk := tk]

i.e.,
Γ ` � Xf~s→ Xft1t2 . . . tk

Finally by (∀2I) as X /∈ FV (Γ), we get Γ ` � ∀X.Xf~s → Xf~t, which is the
same as Γ ` � f~s = f~t. a

1.3. SECOND ORDER LOGIC AF2 29

Subject Reduction

This important property was proved in [Kri93].

1.3.2 Strong Normalization of AF2

The logic AF2 considered as a term rewrite system 〈AF2,→β , `〉 will be embe-
dded into the strongly normalizing system 〈F,→β , �〉.

The embedding will be the first-order forgetful map on formulas, defined as:

r′ := r

(X~t)′ := X
(A→ B)′ := A′ → B′

(∀xA)′ := A′

(∀XA)′ := ∀X.A′

where on the right-hand side the X is a type variable with the same name
as the predicate variable X on the left-hand side, which can be assumed w.l.o.g.
Observe that the embedding in proof-terms is the identity.

To prove that we really have an embedding we need the following

Lemma 1.23 The following properties hold,

◦ A[~x := ~t]′ = A′

◦ A[X := F]′ = A′[X := F ′], where (λ~yF)′ := λ~y.F ′.

Proof. Induction on A a
The following two lemmas prove that we have an embedding.

Lemma 1.24 If Γ ` � t : A then Γ′
� t : A′.

Proof. Induction on `. Observe that an application of the rules (∀I), (∀E), (Eq)
dissapear in system F. a

Lemma 1.25 If r →AF2
β s then r →F

β s.
Proof. Trivial as the embedding on terms is the identity. a

Proposition 1.14 AF2 strongly normalizes.
Proof. Immediate from prop 1.11 and lemmas 1.24 and 1.25. a

1.3.3 Adding Conjunctions and Disjunctions

Although disjunction and conjunction can be defined within AF2 we prefer to
have them as primitives getting a system AF2∧,∨.

The additional inference rules are:

Γ ` � r : A Γ ` � s : B

Γ ` � 〈r, s〉 : A ∧ B
(∧I)

Γ ` � r : A ∧B

Γ ` � π1r : A
(∧1E)

Γ ` � r : A ∧ B

Γ ` � π2r : B
(∧2E)

30 1. PRELIMINARIES

Γ ` � s : A

Γ ` � inl s : A ∨ B
(∨LI)

Γ ` � s : B

Γ ` � inr s : A ∨ B
(∨RI)

Γ ` � r : A ∨ B Γ, y : A ` � s : C Γ, z : B ` � t : C

Γ ` � case(r, y.s, z.t) : C
(∨E)

The additional proof-reduction rules are given by:

case(inl r, x.s, y.t) 7→β s[x := r]
case(inr r, x.s, y.t) 7→β t[y := r]

π1〈r, s〉 7→β r
π2〈r, s〉 7→β s

This system is also strongly normalizing, suffices to extend the embedding
for AF2 as follows:

(A ∧B)′ := A′ ×B′

(A ∨B)′ := A′ + B′

Lemmas 1.24,1.25 are still valid, therefore we have an embedding from
AF2∧,∨ into F+,×, which by proposition 1.10 strongly normalizes.

Subject Reduction

It can be proven by extending the proof for AF2.

Ein Bier, das macht den Durst erst schön,
Drum nehmt das Glas und trinket!
Wie herrlich ist es anzusehn,
Wenn golden im Glase es blinket!

Deutsches Trinklied

2
Extensions of System F with Monotone

(Co)inductive Types

In [Mat98, Mat99] Matthes presents several extensions of system F with induc-
tive and coinductive types in Church-style. We take the basic ideas of that
work and present some extensions of system F with monotone and clausular
(co)inductive types in Curry-style, which model the (co)iteration/(co)recursion
principles given in section 1.1.

2.1 From Categories to Types

Let us adopt an informal categorical view of our typable term language, the
types will be objects of a category C, such categories and its features are well-
known, see for example [Cro93], here we only assume its existence, whereas the
morphisms will be functions (terms) from one type to another and composition
will be the usual function composition that is, if f : σ → ρ and g : ρ → τ then
we set g ◦ f := λz.g(fz) and get g ◦ f : σ → τ .
A functor T : C → C is then a transformation between types. We are specially
interested in functors obtained by abstracting type variables, i.e., functors of
the form λαρ where (λαρ)σ means ρ[α := σ]. Such an abstraction is not im-
mediate a functor because we only know its action on objects (types) but not
on morphisms. To ensure that λαρ behaves really as a functor, specifically to
ensure a functorial action on morphisms, the syntactical restriction of α being
positive in ρ is usually required —with this proviso there is a canonical defini-
tion of what is the action of such functors on morphisms. In our treatment we
prefer to follow [Mat98, Mat99] and use full monotonicity instead of positivity:

31

32 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

the functoriality of λαρ on morphisms is represented internally by means of a
term m : ρ monα in a given context, where its type, defined as

ρ monα := ∀α∀β.(α → β)→ ρ→ ρ[α := β],

expresses the fact that λαρ is monotone (covariant) with respect to α. Such
terms are called monotonicity witnesses.

Therefore a functor in this framework is a pair 〈λαρ, m〉 where m is a term of
type ρ monα (in a given context). This way of defining functors is reminiscent
of the way functors are defined in some functional programming languages like
Haskell, where this concept is captured by the following class definition:

class Functor f where

fmap :: (a -> b) -> f a -> f b

Therefore a functor is not only a function f between categories but a pair
composed of a function f and a mapping fmap who plays the role of the functor
on morphisms.

The reader will confirm later that all usual examples of coinductive types
are positive. What are then the advantages of using full monotonicity ? Two
satisfactory answers are:

◦ Specific monotonicity witnesses are not involved in proofs, we can even
have hypothetical monotonicity, i.e. just an additional assumption x :
ρ monα in our context. Therefore the generality of our approach simplifies
proofs.

◦ For higher-order systems there is no fixed concept of positivity. With full
monotonicity we can generalize directly the systems presented in this work.
Moreover, sometimes different witnesses are useful for programming, see
the example on power list reverse in [AMU04].

We have now a fixed definition of functors in type systems, the next step is
to represent initial (final) algebras (coalgebras).

2.1.1 Representing (Co)algebras

Representing Initial Algebras

Given a functor 〈λαρ, m〉 we denote with 〈µαρ, in〉 the (weak) initial algebra
of λαρ. The universal property of the universal algebra which corresponds to
iteration is represented by the following diagram:

2.1. FROM CATEGORIES TO TYPES 33

ρ[α := σ]

ρ[α := µαρ]

σ

µαρ

...
..........

..s

...
...........

.in

..

......
.
.....
......
.

m(Its)

..

......
.
.....
......
.

Its

which generates the principle of iteration, corresponding to equation (1.1):

Its ◦ in = s ◦m(Its) (2.1)

Moreover as the initial algebra 〈µαρ, in〉 is recursive the principle of primitive
recursion holds:

ρ[α := µαρ× σ]

ρ[α := µαρ]

σ

µαρ

...
..........

..s

...
..........

..in

..

......
.
.....
......
.

m(〈Id, Recs〉)

..

......
.
.....
......
.

Recs

which generates the principle of primitive recursion, corresponding to equa-
tion (1.7)

Recs ◦ in = s ◦m(〈Id, Recs〉) (2.2)

We can only state the existence of the morphisms It, Rec, getting only weak
algebras, because to model uniqueness would cause some technical problems
later. Therefore we cannot get a full inverse in−1. However based on the proof
of proposition 1.1 we can get a morphism in−1 : µαρ → ρ[α := µαρ] such that
the principle of inductive inversion holds:

in−1 ◦ in = m(Id). (2.3)

Now we are able to develop the formal extension in system F. We will follow
a natural deduction approach, so instead of constants in, in−1, It, Rec we will
have a unary term constructor in · , a binary constructor in−1(·, ·) and ternary
constructors It(·, ·, ·), Rec(·, ·, ·).

The morphisms are represented as follows:

in λz. in z

in−1 λz. in−1(m, z)
Its λz.It(m, s, z)

Recs λz.Rec(m, s, z)

34 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

To represent the induction and inversion principles we do not use an exact
correspondence with the equations above but we apply an argument t to both
sides of the equation, we do so for all systems in this work.

The Iteration Principle

Equation (2.1) becomes

It(m, s, in t) = s
(
m

(
λx.It(m, s, x)

)
t
)

The Primitive Recursion Principle

Equation (2.2) becomes:

Rec(m, s, in t) = s
(
m

(
〈Id, λz.Rec(m, s, z)〉

)
t
)

The Inductive Inversion Principle

Equation (2.3) becomes:

in−1(m, in t) = m(λz.z)t

Representing Final Coalgebras

Dually to the treatment on the previous section given a functor 〈λαρ, m〉 the
pair 〈ναρ, out〉 represents the (weak) final coalgebra of λαρ. Here we state the
formal representations together with the corresponding diagrams.

The morphisms are represented as follows:

out λz. out z
out−1 λz. out−1(m, z)
CoIts λz.CoIt(m, s, z)

CoRecs λz.CoRec(m, s, z)

The Coiteration Principle

The coiteration principle is represented by the following diagram:

ρ[α := ναρ] ναρ

ρ[α := σ] σ...
.

............ s

..
..............

λz. out z

...

......
.
.....
......
.

λz.CoIt(m, s, z)

...

......
.
.....
......
.

m
(
λz.CoIt(m, s, z)

)

2.1. FROM CATEGORIES TO TYPES 35

which generates the equality:

outCoIt(m, s, t) = m
(
λz.CoIt(m, s, z)

)
(st)

corresponding to equation (1.2).

The Primitive Corecursion Principle

The corecursion principle is represented by the following diagram:

ρ[α := ναρ] ναρ

ρ[α := ναρ + σ] σ..
.............. s

..
..

............

λz. out z

..

......
..
....
......
..

λz.CoRec(m, s, z)

..

......
..
....
......
..

m
(
[Id, λx.CoRec(m, s, x)]

)

which generates the equality:

outCoRec(m, s, t) = m
(
[Id, λx.CoRec(m, s, x)]

)
(st)

corresponding to equation (1.8)

The Coinductive Inversion Principle

The equation

out out−1(m, t) = m(λz.z)t

representing coinductive inversion is obtained from the dual equation to (2.3)

2.1.2 Representing Dialgebras

The morphisms of dialgebras are represented as follows, for 1 ≤ i ≤ k:

ink,i λz. ink,i z

Itks λz.Itk(~m,~s, z)

Reck
s λz.Reck(~m,~s, z)

outk,i λz. outk,i z

CoItks λz.CoItk(~m,~s, z)

CoReck
s λz.CoReck(~m,~s, z)

The (co)inductive principles become:

◦ Iteration

36 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Itk(~m,~s, ink,i t) = si

(
mi

(
λx.Itk(~m,~s, x)

)
t
)

corresponding to equation (1.18)

◦ Primitive Recursion:

Reck(~m,~s, ink,i t) = si

(
mi

(
〈Id, λz.Reck(~m,~s, z)〉

)
t
)

corresponding to equation (1.19)

◦ Coiteration

outk,i CoItk(~m,~s, t) = mi

(
λz.CoItk(~m,~s, z)

)
(sit)

corresponding to equation (1.15)

◦ Primitive Corecursion

outk,i CoReck(~m,~s, t) = mi

(
[Id, λz.CoReck(~m,~s, z)]

)
(sit)

corresponding to equation (1.16)

A representation of the (co)inductive inversion principles will be discussed
in section 2.3.1.

Representing M-dialgebras

The morphisms of M-dialgebras are represented as follows:

MItks λz.MItk~s z

MReck
s λz.MReck~s z

MCoItks λz.MCoItk~s z

MCoReck
s λz.MCoReck~s z

The principles are:

◦ Mendler-Style Iteration. Equation (1.21) becomes

MItk~s(ink,i r) = si

(
MItk~s

)
r

◦ Mendler-Style Recursion. Equation (1.22) becomes

MReck~s(ink,i r) = si(λyy)
(
MReck~s

)
r

◦ Mendler-Style Coiteration. Equation (1.23) becomes

outk,i(MCoItk~s r) = si

(
MCoItk~s

)
r

◦ Mendler-Style Corecursion. Equation (1.24) becomes

outk,i(MCoReck~s r) = si(λyy)
(
MCoReck~s

)
r

In the next sections we add the previous concepts to system F getting ex-
tensions with monotone (co)inductive types.

2.2. THE SYSTEM MICT 37

2.2 The System MICT

This is our basic extension with traditional (i.e. not clasular) (co)inductive
types and conventional (co)induction principles taken from section 2.1.1. The
resulting term rewrite system is called MICT a system of Monotone Inductive
and Coinductive Types.

2.2.1 Definition of the System

We add the following to system F+,×:

◦ If α is a type variable and ρ is a type then µαρ and ναρ are types.

◦ If m, r, s, t are terms then

It(m, s, t), Rec(m, s, t), in t, in−1(m, t)
CoIt(m, s, t), CoRec(m, s, t), out t, out−1(m, t)

are terms.

We add eight typing rules for inductive and coinductive types:

�
� t : ρ[α := µαρ]

�
� in t : µαρ

(µI)

�
� t : µαρ

�
� m : ρ monα

�
� in−1(m, t) : ρ[α := µαρ]

(µEi)

�
� t : µαρ

�
� m : ρ monα

�
� s : ρ[α := σ]→ σ

�
� It(m, s, t) : σ

(µE)

�
� t : µαρ

�
� m : ρ monα

�
� s : ρ[α := µαρ× σ]→ σ

�
� Rec(m, s, t) : σ

(µE+)

�
� s : σ → ρ[α := σ]

�
� m : ρ monα

�
� t : σ

�
� CoIt(m, s, t) : ναρ

(νI)

�
� s : σ → ρ[α := ναρ + σ]

�
� m : ρ monα

�
� t : σ
�

� CoRec(m, s, t) : ναρ
(νI+)

38 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

�
� t : ρ[α := ναρ]

�
� m : ρ monα

�
� out−1(m, t) : ναρ

(νI i)

�
� r : ναρ

�
� out r : ρ[α := ναρ]

(νE)

Finally the equalities given in section 2.1.1 are added to the system as β-
reduction rules:

It(m, s, in t) 7→β s
(
m

(
λx.It(m, s, x)

)
t
)

Rec(m, s, in t) 7→β s
(
m

(
〈Id, λz.Rec(m, s, z)〉

)
t
)

in−1(m, in t) 7→β m(λz.z)t

outCoIt(m, s, t) 7→β m
(
λz.CoIt(m, s, z)

)
(st)

out CoRec(m, s, t) 7→β m
(
[Id, λx.CoRec(m, s, x)]

)
(st)

out out−1(m, t) 7→β m(λz.z)t

where for given f : ρ→ τ, g : σ → τ we define [f, g] : ρ + σ → τ as

[f, g] := λz.case(z, x.fx, y.gy).

Analogously for f : τ → ρ, g : τ → σ, 〈f, g〉 : τ → ρ× σ is defined as

〈f, g〉 := λz.〈fz, gz〉.

Proposition 2.1 (Subject Reduction) If
�

�r : ρ and r →β s then
�

�s : σ

Proof. This property can be proved with the same method of section 4.1.3. a

The Natural Numbers in MICT

The natural numbers are represented in MICT as follows:

nat := µα.1 + α

where 1 is the unit type defined as 1 := ∀α.α→ α which has only one inhabitant,
namely ? := λxx. This type generates a constructor � := λx. in x such that

� � : 1 + nat→ nat

The usual constructors for the natural numbers are encoded in the construc-
tor � , and are defined as

0 := � (inl ?) s := λx. � (inr x)

Observe that we have to work with injections.

2.2. THE SYSTEM MICT 39

Streams in MICT

Given a type ρ the type of streams (infinite lists) of elements of ρ is defined in
MICT as follows:

stream(ρ) := να.ρ× α

This type generates a destructor � := λx. out x such that

� � : stream(ρ)→ ρ× stream(ρ)

The usual destructors are encoded in the destructor � and are defined as

head := λx.π1(� x) tail := λx.π2(� x)

As this example shows, the use of projections is essential to obtain the actual
destructors.

More (Co)inductive Types in MICT

◦ Lists of objets of type ρ: list(ρ) := µα.1 + ρ× α

◦ Well-founded ρ-branching trees: tree(ρ) := µα.1 + (ρ→ α)

◦ Infinite depth ρ-labelled trees: inftree(ρ) := να.ρ× list(α)

with α /∈ FV (ρ) in all cases.

2.2.2 Strong Normalization of MICT

This will be the last system for which we give a direct proof of strong normali-
zation. We proceed by extending the proof for F+,× given in section 1.2.1.

The concept of elimination is extended with the following expressions:

It(m, s, ?), Rec(m, s, ?), in−1(m, ?), out ?

The definition of the set SN is extended with the following rules:

m, s, E
[
x
]
∈ SN

It(m, s, E
[
x
]
) ∈ SN

m, s, E
[
x
]
∈ SN

Rec(m, s, E
[
x
]
) ∈ SN

m, E
[
x
]
∈ SN

in−1(m, E
[
x
]
) ∈ SN

E
[
x
]
∈ SN

outE
[
x
]
∈ SN

t ∈ SN

in t ∈ SN

E
[
s
(
m

(
λx.It(m, s, x)

)
t
)]
∈ SN

E
[
It(m, s, in t)

]
∈ SN

E
[
s
(
m

(
〈Id, λx.Rec(m, s, x)〉

)
t
)]
∈ SN

E
[
Rec(m, s, in t)

]
∈ SN

E
[
m(λzz)t

]
∈ SN

E
[
in−1(m, in t)

]
∈ SN

40 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

m, s, t ∈ SN

CoIt(m, s, t) ∈ SN

m, s, t ∈ SN

CoRec(m, s, t) ∈ SN

m, t ∈ SN

out−1(m, t) ∈ SN

E
[
m

(
λz.CoIt(m, s, z)

)
(st)

]
∈ SN

E
[
outCoIt(m, s, t)

]
∈ SN

E
[
m

(
[Id, λz.CoRec(m, s, z)]

)
(st)

]
∈ SN

E
[
outCoRec(m, s, t)

]
∈ SN

E
[
m(λzz)t

]
∈ SN

E
[
out out−1(m, t)

]
∈ SN

The definition of SAT sets is extended with the following clauses:

E
[
s
(
m

(
λx.It(m, s, x)

)
t
)]
∈ M

E
[
It(m, s, in t)

]
∈M

E
[
s
(
m

(
〈Id, λx.Rec(m, s, x)〉

)
t
)]
∈M

E
[
Rec(m, s, in t)

]
∈M

E
[
m(λzz)t

]
∈M

E
[
in−1(m, in t)

]
∈M

E
[
m

(
λz.CoIt(m, s, z)

)
(st)

]
∈M

E
[
outCoIt(m, s, t)

]
∈M

E
[
m

(
[Id, λz.CoRec(m, s, z)]

)
(st)

]
∈ M

E
[
outCoRec(m, s, t)

]
∈M

E
[
m(λzz)t

]
∈ M

E
[
out out−1(m, t)

]
∈M

Saturated Sets for Inductive Types

From now on, we fix Φ : SAT→ SAT.

Definition 2.1 Given M∈ SAT we define

Iµ(M) := {in r | r ∈ Φ(M)}

and ΨI : SAT→ SAT as

ΨI(M) := cl(Iµ(M)).

As we do not know if ΨI is monotone we proceed as follows:
set

mon(Φ) :=
⋂

P,Q∈SAT

(P → Q)→ (Φ(P)→ Φ(Q))

and define Φ⊇ : SAT→ P(SN) as:

Φ⊇(M) := {t ∈ SN | ∀m ∈ mon(Φ), ∀N ∈ SAT, ∀s ∈M→ N .mst ∈ Φ(N)}

2.2. THE SYSTEM MICT 41

Lemma 2.1 For all P ,Q,N ∈ SAT. If P ⊆ Q then Q → N ⊆ P → N .
Proof. Assume P ⊆ Q. It suffices to show I→(Q,N) ∩ SN = I→(Q,N) ⊆ P →
N . Take λxt ∈ I→(Q,N), i.e., t ∈ Sx(Q,N). To show λxt ∈ P → N it suffices
to prove t ∈ Sx(P ,N). Therefore we take p ∈ P and show t[x := p] ∈ N , but
this is clear from t ∈ Sx(Q,N) because by assumption we also have p ∈ Q. a

Corollary 2.1 Φ⊇ is monotone, i.e., for all P ,Q,∈ SAT, if P ⊆ Q then
Φ⊇(P) ⊆ Φ⊇(Q).
Proof. Assume P ⊆ Q and take t ∈ Φ⊇(P). Take also N ∈ SAT, m ∈ mon(Φ)
and s ∈ Q → N . We need to show mst ∈ Φ(N). By the previous lemma
s ∈ Q → N implies s ∈ P → N . The claim follows now from the assumption
t ∈ Φ⊇(P). a

Next define
I⊇µ (M) := {in r | r ∈ Φ⊇(M)}

and Ψ⊇
I : SAT→ SAT as

Ψ⊇
I (M) := cl(I⊇µ (M))

Clearly Ψ⊇
I is monotone, because so is Φ⊇, therefore the following definition

is correct

µ(Φ) := lfp(Ψ⊇
I).

i.e. µ(Φ) is the least fixed point of Ψ⊇
I .

Lemma 2.2 Iµ(M) ⊆ SN and I⊇µ (M) ⊆ SN.

Proof. We show the second claim. Take t ∈ I⊇µ (M), that is, t ≡ in r with

r ∈ Φ⊇(M). As Φ⊇(M) ⊆ SN we have r ∈ SN, which by definition of SN

implies in r ∈ SN, i.e., t ∈ SN. a

Corollary 2.2 Iµ(M) ⊆ ΨI(M) and I⊇µ (M) ⊆ Ψ⊇
I (M).

Proof. We proof the second claim. By definition of the closure we have I⊇µ (M)∩

SN ⊆ Ψ⊇
I (M). But the previous lemma yields I⊇µ (M) ∩ SN = I⊇µ (M). a

Definition 2.2 Given Φ : SAT→ SAT and M∈ SAT we define

Eµ(M) :=
{

r ∈ SN
∣∣∣ ∀m ∈ mon(Φ). ∀N ∈ SAT.(
∀s ∈ Φ(N)→ N . It(m, s, r) ∈ N

)
∧(

∀s ∈ Φ(M×N)→ N . Rec(m, s, r) ∈ N
)
∧

in−1(m, r) ∈ Φ(M)
}

and ΨE : SAT→ SAT as

ΨE(M) := cl(Eµ(M)).

42 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Lemma 2.3 Eµ(M) ∈ SAT.
Proof. Is clear that Eµ(M) ⊆ SN.
Take E[x] ∈ SN. We have to show that E[x] ∈ Eµ(M). Fix m ∈ mon(Φ),N ∈
SAT.

◦ Assume s ∈ Φ(N)→ N .
The goal is It(m, s, E[x]) ∈ N . Observe that this term is again a multiple
elimination say E′[x]. As N ∈ SAT it suffices to show that E ′[x] ∈ SN.
We have E[x] ∈ SN and s ∈ Φ(N) → N ⊆ SN implies s ∈ SN, similarly
m ∈ mon(Φ) ⊆ SN. Therefore all m, s, E[x] ∈ SN which by properties of
SN implies It(m, s, E[x]) ∈ SN.

◦ Assume s ∈ Φ(M×N) → N . The goal is Rec(m, s, E[x]) ∈ N . As in
the previous case we obtain m, s ∈ SN, therefore by properties of SN we
conclude E′[x] := Rec(m, s, E[x]) ∈ SN. Therefore, as N ∈ SAT we get
E′[x] ∈ N .

◦ Goal is in−1(m, E[x]) ∈ Φ(M). Again we have m ∈ SN therefore, as
E[x] ∈ SN by properties of SN we get E ′[x] ≡ in−1(m, E[x]) ∈ SN, which
implies E′[x] ∈ Φ(M), because Φ(M) ∈ SAT.

The other closure rules for SAT sets are proved in a similar way. a

Corollary 2.3 Eµ(M) = ΨE(M).
Proof. ⊆). we have Eµ(M) = Eµ(M) ∩ SN ⊆ cl(Eµ(M)) ≡ ΨE(M).
⊇). By the previous lemma we have Eµ(M) ∈ SAT. Therefore by minimality of
the closure we get ΨE(M) ≡ cl(Eµ(M)) ⊆ Eµ(M).

a

Lemma 2.4 ΨI(M) ⊆M⇔ ∀t ∈ Φ(M). in t ∈M.
Proof. ⇒) Assume ΨI(M) ⊆ M, i.e., cl(Iµ(M)) ⊆ M. Take t ∈ Φ(M), this
implies in t ∈ Iµ(M), which, by corollary 2.2, implies in t ∈ ΨI(M) ⊆ M.
Therefore in t ∈M.
⇐) Assume ∀t ∈ Φ(M). in t ∈ M and take r ∈ ΨI(M) ≡ cl(Iµ(M)). Goal is
r ∈ M. As M ∈ SAT it suffices to show Iµ(M) ∩ SN ⊆ M, the goal follows
by minimality of the closure. By lemma 2.2 we have Iµ(M) ⊆ SN, thus we
only have to show Iµ(M) ⊆ M. Take in t ∈ Iµ(M), so t ∈ Φ(M) which by
assumption implies in t ∈ M. Therefore Iµ(M) ⊆M. a

Lemma 2.5

M⊆ ΨE(M)⇔ ∀r ∈ M.∀m ∈ mon(Φ). ∀N ∈ SAT.(
∀s ∈ Φ(N)→ N . It(m, s, r) ∈ N

)
∧(

∀s ∈ Φ(M×N)→ N . Rec(m, s, r) ∈ N
)
∧

in−1(m, r) ∈ Φ(M)

Proof. Call �(r) to the condition on the right hand side for a given r ∈ M.
⇒). AssumeM⊆ ΨE(M). We have to show �(r) for all r ∈ M. Take r ∈M,

2.2. THE SYSTEM MICT 43

by corollary 2.3 we haveM⊆ Eµ(M). Observing that Eµ(M) = {r ∈ SN| �(r)}
we are done.
⇐) Assume ∀r ∈ M.�(r) and take r ∈ M, we have to show that r ∈ ΨE(M).
By corollary 2.3 suffices to show that r ∈ Eµ(M). We have r ∈ SN because
M⊆ SN. Moreover �(r) holds by assumption, which implies r ∈ Eµ(M). a

Lemma 2.6 µ(Φ) is a pre-fixed point of ΨI . i.e.,

ΨI

(
µ(Φ)

)
⊆ µ(Φ)

Proof. By definition of µ(Φ) it suffices to show

ΨI

(
Ψ⊇

I

(
µ(Φ)

))
⊆ Ψ⊇

I

(
µ(Φ)

)
,

to show this we will use the lemma 2.4. Take t ∈ Φ
(
Ψ⊇

I

(
µ(Φ)

))
, this implies

in t ∈ I⊇µ

(
Ψ⊇

I

(
µ(Φ)

))
⊆ Ψ⊇

I

(
Ψ⊇

I

(
µ(Φ)

))
, the last inclusion given by corollary

2.2. Therefore by definition of µ(Φ) we conclude in t ∈ Ψ⊇
I

(
µ(Φ)

)
. a

Lemma 2.7 µ(Φ) is a post-fixed point of ΨE. i.e.,

µ(Φ) ⊆ ΨE(µ(Φ))

Proof. Our goal is µ(Φ) ⊆ ΨE

(
µ(Φ)

)
. To prove this we will use extended

induction on µ(Φ). Therefore the goal becomes

Ψ⊇
I

(
µ(Φ) ∩ΨE

(
µ(Φ)

))
⊆ ΨE

(
µ(Φ)

)

Set L := µ(Φ), L′ := L∩ΨE(L). The goal is Ψ⊇
I (L′) ⊆ ΨE(L). By monotonicity

of the closure it suffices to show

I⊇µ (L′) ⊆ Eµ(L).

Take t ∈ I⊇µ (L′), i.e., t ≡ in r with r ∈ Φ⊇(L′). We need to show in r ∈ Eµ(L).

First observe that in r ∈ SN because r ∈ Φ⊇(L′) ⊆ SN and by properties of SN.
Next we have to prove that �(in r) (cf. proof of lemma 2.5), so fix m ∈ mon(Φ)
and N ∈ SAT.

◦ Take s ∈ Φ(N) → N . We want to show that It(m, s, in r) ∈ N . Using
that N ∈ SAT, it suffices to show that s

(
m

(
λx.It(m, s, x)

)
r
)
∈ N . As

s ∈ Φ(N) → N we only have to show m
(
λx.It(m, s, x)

)
r ∈ Φ(N) but

observing that r ∈ Φ⊇(L′) we only have to show that m ∈ mon(Φ),N ∈
SAT and λx.It(m, s, x) ∈ L′ → N . The first two claims are given and
to prove the last one we will show that It(m, s, x) ∈ Sx(L′,N). Take
q ∈ L′ we prove It(m, s, x)[x := q] ∈ N , w.l.o.g. x /∈ FV (m, s) therefore
we show It(m, s, q) ∈ N . We have L′ ⊆ ΨE(L) = Eµ(L), the equality
given by corollary 2.3. Therefore q ∈ Eµ(L) which immediately yields
It(m, s, q) ∈ N .

44 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

◦ Take s ∈ Φ(L × N) → N . We need to prove Rec(m, s, in r) ∈ N . By a
similar reason as the previous case we only have to show

λz.〈(λyy)z, (λx.Rec(m, s, x))z〉 ∈ L′ → L×N .

It suffices to prove 〈(λyy)z, (λx.Rec(m, s, x))z〉 ∈ Sz(L
′,L×N), so we take

q ∈ L′ and show 〈(λyy)q, (λx.Rec(m, s, x))q〉 ∈ L × N . For this we prove
two things:

– (λyy)q ∈ L. Clearly we have λyy ∈ L → L and as q ∈ L′ ⊆ L we get
(λyy)q ∈ L.

– (λx.Rec(m, s, x))q ∈ N . It suffices to show λx.Rec(m, s, x) ∈ L′ →
N , that is Rec(m, s, x) ∈ Sx(L′,N). Take p ∈ L′, we will show
Rec(m, s, x)[x := p] ∈ N , where w.l.o.g. x /∈ FV (m, s) so we prove
Rec(m, s, p) ∈ N . We have L′ ⊆ ΨE(L) = Eµ(L), the equality given
by corollary 2.3. Therefore p ∈ Eµ(L) which immediately yields
Rec(m, s, p) ∈ N .

◦ Goal is in−1(m, in r) ∈ Φ(L). As r ∈ Φ⊇(L′) and m ∈ mon(Φ) it suffices
to show λzz ∈ L′ → L, i.e., z ∈ Sz(L

′,L), so we take s ∈ L′ and want to
show s ∈ L, but this is obvious because L′ ⊆ L.

Therefore �(in r) and we are done. a

Saturated Sets for Coinductive Types

Definition 2.3 Given Φ : SAT→ SAT,M∈ SAT, define

Iν(M) := {CoIt(m, s, t) | m ∈ mon(Φ), s ∈ N → Φ(N), t ∈ N ,N ∈ SAT}
∪ {CoRec(m, s, t) | m ∈ mon(Φ), s ∈ N → Φ(M+N), t ∈ N ∈ SAT}
∪ {out−1(m, t) | m ∈ mon(Φ), t ∈ Φ(M)}

and ΨI : SAT→ SAT with

ΨI(M) := cl(Iν(M)).

Lemma 2.8 Iν(M) ⊆ SN.
Proof. Take r ∈ Iν(M). We have three cases:

◦ r ≡ CoIt(m, s, t). We have m, s, t ∈ SN because they belong to some
saturated set. Therefore by properties of SN we also have CoIt(m, s, t) ∈
SN.

◦ r ≡ CoRec(m, s, t). Similarly m, s, t ∈ SN implies CoRec(m, s, t) ∈ SN.

◦ r ≡ out−1(m, t). Again m, t ∈ SN implies out−1(m, t) ∈ SN.

a

2.2. THE SYSTEM MICT 45

Corollary 2.4 Iν(M) ⊆ ΨI(M).
Proof. By definition of closure we have Iν(M)∩ SN ⊆ cl(Iν(M)) which, by the
previous lemma is the same as Iν(M) ⊆ cl(Iν(M)) ≡ ΨI(M). a

Definition 2.4 Given Φ : SAT→ SAT,M∈ SAT, define

Eν(M) := {r ∈ SN | out r ∈ Φ(M)}

and ΨE : SAT→ SAT, with

ΨE(M) := cl(Eν(M)).

As we do not know if ΨE is monotone we proceed as follows:
Define Φ⊆ : SAT→ SAT as

Φ⊆(M) := cl(A(M))

with

A(M) := {mqr | m ∈ mon(Φ), q ∈ N →M, r ∈ Φ(N) for some N ∈ SAT}

Lemma 2.9 For all M∈ SAT, A(M) ⊆ Φ(M).
Proof. Take t ∈ A(M), i.e.,t ≡ mqr with m ∈ mon(Φ), q ∈ N →M, r ∈ Φ(N)
for some N ∈ SAT. m ∈ mon(Φ) ⇒ m ∈ (N → M) → (Φ(N) → Φ(M)) ⇒
mq ∈ Φ(N)→ Φ(M) ⇒ mqr ∈ Φ(M), i.e. t ∈ Φ(M). a

Corollary 2.5 For all M∈ SAT, A(M) ⊆ SN.
Proof. A(M) ⊆ Φ(M) ⊆ SN. a

Corollary 2.6 For all M∈ SAT, Φ⊆(M) ⊆ Φ(M).
Proof. As Φ(M) ∈ SAT, by minimality of the closure it suffices to show A(M)∩
SN ⊆ Φ(M), but by the previous corollary we only need to show A(M) ⊆ Φ(M)
but this is the statement of the lemma. a

Corollary 2.7 For all M∈ SAT, A(M) ⊆ Φ⊆(M).
Proof. A(M) = A(M) ∩ SN ⊆ cl(A(M)) ≡ Φ⊆(M). a

Lemma 2.10 For all P ,Q,N ∈ SAT. If P ⊆ Q then N → P ⊆ N → Q.
Proof. It suffices to show that I→(N ,P) ∩ SN = I→(N ,P) ⊆ I→(N ,Q). Take
λxt ∈ I→(N ,P), i.e., t ∈ Sx(N ,P). Therefore we have ∀s ∈ N .t[x := s] ∈ P
which by assumption implies ∀s ∈ N .t[x := s] ∈ Q. That is t ∈ Sx(N ,Q) ⇒
λxt ∈ I→(N ,Q). a

Corollary 2.8 Φ⊆ is monotone, i.e., for all P ,Q ∈ SAT, if P ⊆ Q then
Φ⊆(P) ⊆ Φ⊆(Q).
Proof. Assume P ⊆ Q. Take mqr ∈ Φ⊆(P), then m ∈ mon(Φ), q ∈ N →
P , r ∈ Φ(N). q ∈ N → P implies by the previous lemma q ∈ N → Q. There-
fore we have mqr ∈ Φ⊆(Q). a

46 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Next set
E⊆ν (M) := {r ∈ SN | out r ∈ Φ⊆(M)}

and define Ψ⊆
E : SAT→ SAT as

Ψ⊆
E(M) := cl(E⊆ν (M)).

Clearly Ψ⊆
E is monotone, because so is Φ⊆, therefore the following definition

is valid:

ν(Φ) := gfp(Ψ⊆
E).

i.e., ν(Φ) is the greatest fixed point of Ψ⊆
E.

Lemma 2.11 Eν(M), E⊆ν (M) ∈ SAT.
Proof. We show the first part. Clearly we have Eν(M) ⊆ SN.
Take E[x] ∈ SN. Goal is E[x] ∈ Eν(M), i.e., outE [x] ∈ Φ(M). By properties of
SN, E[x] ∈ SN implies outE [x] ∈ SN, but outE [x] is a multiple elimination say
E′[x] ∈ SN. Therefore, as Φ(M) ∈ SAT, we get E ′[x] ∈ Φ(M). The remaining
rules are easily proved.

a

Corollary 2.9 Eν(M) = ΨE(M), E⊆ν (M) = Ψ⊆
E(M)

Proof. We show the first part.
⊆) We have Eν(M) ∩ SN ⊆ cl(Eν(M)), which, as Eν(M) ⊆ SN, is the same as
Eν(M) ⊆ cl(Eν(M)) ≡ ΨE(M).
⊇). By the previous lemma, using the minimality of the closure we have
ΨE(M) = cl(Eν(M)) ⊆ Eν(M). a

Lemma 2.12 M⊆ ΨE(M)⇔ ∀t ∈ M. out t ∈ Φ(M)
Proof. ⇒) Take t ∈M, by assumption we get t ∈ ΨE(M), and by the previous
corollary t ∈ Eν(M), which by definition of Eν(M) yields out t ∈ Φ(M).
⇐) Take t ∈ M, by assumption we get out t ∈ Φ(M). On the other hand, as
M⊆ SN, we get t ∈ SN. Therefore t ∈ Eν(M), which by the previous corollary
is the same as t ∈ ΨE(M). a

Lemma 2.13

ΨI(M) ⊆M⇔ ∀m ∈ mon(Φ). ∀N ∈ SAT.(
∀t ∈ N ∀s ∈ N → Φ(N). CoIt(m, s, t) ∈M

)
∧(

∀t ∈ N ∀s ∈ N → Φ(M+N). CoRec(m, s, t) ∈ M
)
∧(

∀t ∈ Φ(M). out−1(m, t) ∈ M
)

Proof. ⇒). Assume ΨI(M) ⊆M. By corollary 2.4 we get Iν(M) ⊆M.
Take m ∈ mon(Φ),N ∈ SAT. We prove every part of the conjunction:

◦ Take t ∈ N , s ∈ N → Φ(N). From this we get CoIt(m, s, t) ∈ Iν(M),
therefore CoIt(m, s, t) ∈M.

2.2. THE SYSTEM MICT 47

◦ Take t ∈ N , s ∈ N → Φ(M +N). Analogously to the previous case we
get CoRec(m, s, t) ∈ Iν(M) ⊆M.

◦ Take t ∈ Φ(M). This yields out−1(m, t) ∈ Iν(M) ⊆M.

⇐) Assume the condition on the right hand side. We have ΨI(M) = cl(Iν(M)).
By minimality of the closure it suffices to show Iν(M) ∩ SN ⊆ M. But by
lemma 2.8 this is the same as Iν(M) ⊆M. But this follows immediately from
the assumption and the definition of Iν(M). a

Lemma 2.14 ν(Φ) is a pre-fixed point of ΨI . i.e.,

ΨI(ν(Φ)) ⊆ ν(Φ)

Proof. We will use extended coinduction. Therefore the goal becomes

ΨI

(
ν(Φ)

)
⊆ Ψ⊆

E

(
ν(Φ) ∪ΨI

(
ν(Φ)

))

Set G := ν(Φ), G′ := G ∪ ΨI(G). The goal becomes ΨI(G) ⊆ Ψ⊆
E(G′). By

monotonicity of the closure it suffices to show

Iν(G) ⊆ E⊆ν (G′)

Assume r ∈ Iν(G). To show r ∈ E⊆ν (G′) it suffices out r ∈ Φ⊆(G′) (r ∈ SN

because Iν(G) ⊆ SN). We have three cases:

◦ r ≡ CoIt(m, s, t) with m ∈ mon(Φ), s ∈ N → Φ(N), t ∈ N . By proper-
ties of saturated sets it suffices to show m

(
λz.CoIt(m, s, z)

)
(st) ∈ Φ⊆(G′)

and using corollary 2.7 we will prove only m
(
λz.CoIt(m, s, z)

)
(st) ∈ A(G′).

We have by assumption m ∈ mon(Φ) and easily we get st ∈ Φ(N). To
prove λz.CoIt(m, s, z) ∈ N → G ′, we show CoIt(m, s, z) ∈ Sz(N ,G′). Ta-
king q ∈ N we show CoIt(m, s, z)[z := q] ≡ CoIt(m, s, q) ∈ G ′. Clearly
CoIt(m, s, q) ∈ Iν(G), therefore by corollary 2.4 we have CoIt(m, s, q) ∈
ΨI(G) ⊆ G′.

◦ r ≡ CoRec(m, s, t) with m ∈ mon(Φ), s ∈ N → Φ(G + N), t ∈ N . By
similar reasoning as the previous case we only need to show

m
(
[Id, λz.CoRec(m, s, z)]

)
(st) ∈ A(G′).

We have m ∈ mon(Φ) and easily we get st ∈ Φ(G +N). Remains to show
that [Id, λz.CoRec(m, s, z)] ∈ G+N → G ′. We have [Id, λz.CoRec(m, s, z)] ≡
λx.case(x, y.y, z.CoRec(m, s, z)) therefore the goal reduces to show

case(x, y.y, z.CoRec(m, s, z)) ∈ Sx(G +N ,G′).

So we take q ∈ G+N and prove case(x, y.y, z.CoRec(m, s, z)) ∈ G ′, which,
by properties of saturated sets, reduces to the next two claims:

48 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

– y ∈ Sy(G,G′). This holds trivially because G ⊆ G ′.

– CoRec(m, s, z) ∈ Sz(N ,G′). For this we take p ∈ N and show
CoRec(m, s, z)[z := p] ≡ CoRec(m, s, p) ∈ G ′. Clearly we have
CoRec(m, s, p) ∈ Iν(G). Therefore by corollary 2.4 we have

CoRec(m, s, p) ∈ ΨI(G) ⊆ G
′.

◦ r ≡ out−1(m, t) with m ∈ mon(Φ) and t ∈ Φ(G). By properties of satu-
rated sets it suffices to show m(λzz)t ∈ Φ⊆(G′). Using corollary 2.7 we
show m(λzz)t ∈ A(G′). We have m ∈ mon(Φ) and t ∈ Φ(G), only remains
to show λzz ∈ G → G′, but this is consequence of G ⊆ G ′.

a

Lemma 2.15 ν(Φ) is a post-fixed point of ΨE. i.e.,

ν(Φ) ⊆ ΨE(ν(Φ))

Proof. By lemma 2.12 it suffices to show ∀t ∈ ν(Φ). out t ∈ Φ
(
ν(Φ)

)
. By defi-

nition we have ν(Φ) = Ψ⊆
E

(
ν(Φ)

)
and by corollary 2.9 Ψ⊆

E

(
ν(Φ)

)
= E⊆ν

(
ν(Φ)

)
.

So take t ∈ ν(Φ) = E⊆ν
(
ν(Φ)

)
⇒ out t ∈ Φ⊆

(
ν(Φ)

)
. Finally by corollary 2.6 we

get out t ∈ Φ
(
ν(Φ)

)
. a

Proposition 2.2 (Properties of Saturated Sets) Given Φ : SAT → SAT

the following holds.

1. µ(Φ) ∈ SAT.

2. If t ∈ Φ(µ(Φ)) then in t ∈ µ(Φ).

3. If r ∈ µ(Φ), m ∈ mon(Φ),N ∈ SAT and s ∈ Φ(N) → N then It(m, s, r) ∈
N .

4. If r ∈ µ(Φ), m ∈ mon(Φ),N ∈ SAT and s ∈ Φ(µ(Φ) × N) → N then
Rec(m, s, r) ∈ N .

5. If m ∈ mon(Φ) and r ∈ µ(Φ) then in−1(m, r) ∈ Φ(µ(Φ)).

6. ν(Φ) ∈ SAT.

7. If t ∈ ν(Φ) then out t ∈ Φ(ν(Φ)).

8. If N ∈ SAT, r ∈ N , m ∈ mon(Φ) and s ∈ N → Φ(N) then CoIt(m, s, r) ∈
ν(Φ).

9. If N ∈ SAT, r ∈ N , m ∈ mon(Φ) and s ∈ N → Φ(ν(Φ) + N) then
CoRec(m, s, r) ∈ ν(Φ).

10. If m ∈ mon(Φ) and r ∈ Φ(ν(Φ)) then out−1(m, r) ∈ ν(Φ).

2.2. THE SYSTEM MICT 49

Proof.

1. Is clear.

2. By lemma 2.6 we have ΨI

(
µ(Φ)

)
⊆ µ(Φ). The claim follows from lemma

2.4.

3. Analogous to 4.

4. By lemma 2.7 we have µ(Φ) ⊆ ΨE

(
µ(Φ)

)
. The claim follows from lemma

2.5.

5. Analogous to 4.

6. Is clear.

7. By lemma 2.15 we have ν(Φ) ⊆ ΨE

(
ν(Φ)

)
. The claim follows from lemma

2.12.

8. Analogous to 9.

9. By lemma 2.14 we have ΨI

(
ν(Φ)

)
⊆ ν(Φ). The claim follows from lemma

2.13.

10. Analogous to 9.

a

Definition 2.5 (Strong Computability Predicates) We add the following
to the definition of SCρ[Γ]:

SCµαρ[Γ] := µ(Φλαρ
Γ)

SCναρ[Γ] := ν(Φλαρ
Γ)

where Φλαρ
Γ : SAT→ SAT is defined as:

Φλαρ
Γ (M) := SCρ[Γ, α :M]

Lemma 2.16 (Coincidence) If α /∈ FV (ρ) then SCρ[Γ, α :M] = SCρ[Γ].
Proof. Induction on ρ.
Case ρ ≡ νβτ , with α /∈ FV (νβτ) and α 6= β. We have SCνβτ [Γ, α : M] =

ν
(
Φλβτ

Γ,α:M

)
with

Φλβτ
Γ,α:M(N) = SCτ [Γ, α :M, β : N] =

IH (α/∈FV (τ))
SCτ [Γ, β : N]

On the other hand we have

SCνβτ [Γ] = ν
(
Φλβτ

Γ

)

with Φλβτ
Γ (N) = SCτ [Γ, β : N]. Therefore Φλβτ

Γ (N) = Φλβτ
Γ,α:M(N) for all N ∈

SAT and the claim follows. a

50 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Lemma 2.17 (Substitution) SCρ[α:=σ][Γ] = SCρ[Γ, α : SCσ[Γ]].
Proof. Induction on ρ. If ρ = µβτ then assuming w.l.o.g. β 6= α and β /∈ FV (σ)

we have SC(µβτ)[α:=σ][Γ] = SCµβ.τ [α:=σ][Γ] = µ(Φ
λβ.τ [α:=σ]
Γ), with

Φ
λβ.τ [α:=σ]
Γ (M) = SCτ [α:=σ][Γ, β :M] =

IH
SCτ [Γ, β :M, α : SCσ [Γ, β :M]].

But observe that as β /∈ FV (σ) by the coincidence lemma we have SCσ[Γ, β :
M] = SCσ[Γ], therefore:

Φ
λβ.τ [α:=σ]
Γ (M) = SCτ [Γ, β :M, α : SCσ [Γ]]

On the other hand we have SCµβτ [Γ, α : SCσ [Γ]] = µ
(
Φλβτ

Γ,α:SCσ [Γ]

)
where

Φλβτ
Γ,α:SCσ[Γ](M) = SCτ [Γ, α : SCσ [Γ], β :M].

Therefore Φ
λβ.τ [α:=σ]
Γ (M) = Φλβτ

Γ,α:SCσ [Γ](M) and we are done.

a

Lemma 2.18 (Main Lemma) If
�

� r : ρ with
�

= {x1 : ρ1, . . . , xk : ρk} and
si ∈ SCρi [Γ], for 1 ≤ i ≤ k, then r[~x := ~s] ∈ SCρ[Γ].
Proof. Induction on �. Case (µI). Assume

�
� in t : µαρ from

�
� t : ρ[α := ρ].

Our goal is (in t)[~x := ~s] ∈ SCµαρ[Γ], i.e., in t[~x := ~s] ∈ µ(Φλαρ
Γ

)
. Using the

proposition 2.2, part 2, it suffices to show t[~x := ~s] ∈ Φλαρ
Γ

(
µ(Φλαρ

Γ

))
.

Observe that

SCρ[α:=µαρ][Γ] = SCρ[Γ, α : SCµαρ[Γ]] = Φλαρ
Γ

(
SCµαρ[Γ]

)
= Φλαρ

Γ

(
µ(Φλαρ

Γ

))

and by IH we have t[~x := ~s] ∈ SCρ[α:=µαρ][Γ]. The claim follows.
Case (νI+). Assume

�
� CoRec(m, s, t) : νατ from

�
� m : τ mon α,

�
� s :

σ → τ [α := νατ + σ],
�

� t : σ. By IH we have m[~x := ~s] ∈ SCτ mon α[Γ], s[~x :=

~s] ∈ SCσ→τ [α:=νατ+σ][Γ], t[~x := ~s] ∈ SCσ [Γ].
Our goal is CoRec

(
m[~x := ~s], s[~x := ~s], t[~x := ~s]

)
∈ SCνατ [Γ] = ν

(
Φλατ

Γ

)
. By

proposition 2.2 it suffices to show

1. m[~x := ~s] ∈ mon(Φλατ
Γ)

2. s[~x := ~x] ∈ SCσ[Γ]→ Φλατ
Γ

(
ν
(
Φλατ

Γ

)
+ SCσ [Γ]

)

For the first part is not difficult to show that

SCτ mon α[Γ] =
⋂

P,Q∈SAT

(P → Q)→ SCτ [Γ, α : P]→ SCτ [Γ, α : Q] =

=
⋂

P,Q∈SAT

(P → Q)→ Φλατ
Γ

(
P

)
→ Φλατ

Γ

(
Q

)
= mon(Φλατ

Γ)

Therefore the claim follows from the IH.

2.2. THE SYSTEM MICT 51

The second part follows from the IH by observing that

SCτ [α:=νατ+σ][Γ] = SCτ [Γ, α : SCνατ+σ[Γ]] = SCτ [Γ, α : SCνατ [Γ] + SCσ[Γ]] =

= SCτ [Γ, α : ν
(
Φλατ

Γ

)
+ SCσ [Γ]] = Φλατ

Γ

(
ν
(
Φλατ

Γ

)
+ SCσ [Γ]

)

a

Proposition 2.3 If
�

� r : ρ then r ∈ SN.
Proof. The same as for proposition 1.8. a

Terms in SN are Strongly Normalizing

Lemma 2.19 If m, s, E[x] ∈ sn then It(m, s, E[x]) ∈ sn and Rec(m, s, E[x]) ∈
sn.
Proof. Induction on m, s, E[x] ∈ sn. a

Lemma 2.20 If m, E[x] ∈ sn then in−1(m, E[x]) ∈ sn

Proof. Induction on m, E[x] ∈ sn a

Lemma 2.21 If E[x] ∈ sn then outE[x] ∈ sn

Proof. Induction on E[x] ∈ sn a

Lemma 2.22 If t ∈ sn then in t ∈ sn

Proof. Induction on t ∈ sn. a

Lemma 2.23 IfE
[
s
(
m

(
λx.It(m, s, x)

)
t
)]
∈ sn then E

[
It(m, s, in t)

]
∈ sn

Proof. Induction on E
[
s
(
m

(
λx.It(m, s, x)

)
t
)]
∈1 sn+. a

Lemma 2.24 If E
[
s
(
m

(
〈Id, λx.Rec(m, s, x)〉

)
t
)]
∈ sn then E

[
Rec(m, s, in t)

]
∈

sn

Proof. Induction on E
[
s
(
m

(
〈Id, λx.Rec(m, s, x)〉

)
t
)]
∈ sn+. a

Lemma 2.25 If E
[
m(λzz)t

]
∈ sn then E

[
in−1(m, in t)

]
∈ sn

Proof. Induction on E
[
m(λzz)t

]
∈ sn a

Lemma 2.26 If m, s, t ∈ sn then CoIt(m, s, t) ∈ sn and CoRec(m, s, t) ∈ sn

Proof. Induction on m, s, t ∈ sn. a

Lemma 2.27 If m, t ∈ sn then out−1(m, t) ∈ sn

Proof. Induction on m, t ∈ sn a

Lemma 2.28 If E
[
m

(
λz.CoIt(m, s, z)

)
(st)

]
∈ sn then E

[
out CoIt(m, s, t)

]
∈

sn

Proof. Induction on E
[
m

(
λz.CoIt(m, s, z)

)
(st)

]
∈ sn+ a

1The set sn+ is defined as sn but with the relation →
+

β
. The proof needs it as there are

two occurrences of s in the canonical reduct of E[It(m, s, in t)]. On the other hand it is easy
to prove that sn = sn+.

52 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Lemma 2.29 If E
[
m

(
[Id, λz.CoRec(m, s, z)]

)
(st)

]
∈ sn then E

[
outCoRec(m, s, t)

]

∈ sn

Proof. Induction on E
[
m

(
[Id, λz.CoRec(m, s, z)]

)
(st)

]
∈ sn+ a

Lemma 2.30 If E
[
m(λzz)t

]
∈ sn then E

[
out out−1(m, t)

]
∈ sn

Proof. Induction on E
[
m(λzz)t

]
∈ sn a

Proposition 2.4 SN ⊆ sn

Proof. Proposition 1.9 and the above lemmas show that sn is closed under the
defining rules of SN, therefore the claim follows by minimality of SN. a

Proposition 2.5 MICT is strongly normalizing.
Proof. Immediate from propositions 2.3 and 2.4. a

2.3 The System MCICT

This is an extension of F with initial/final dialgebras, represented by clausular
(co)inductive types, and only conventional (co)induction principles taken from
section 2.1.2.

2.3.1 Definition of the System

We add the following to system F+,×:

◦ If α is a type variable and ρ1, . . . , ρk are types then

µα(ρ1, . . . , ρk), να(ρ1, . . . , ρk)

are types. Where each ρi is called a clause.

◦ If ~m, r, ~s, t are terms and k, i ∈
�

with i ≤ k then

ink,i t, in−1
k (~m, t), Itk(~m,~s, t), Reck(~m,~s, t)

CoItk(~m,~s, t), CoReck(~m,~s, t), out−1
k (~m,~t), outk,i t

are terms.

We extend the typing relation with eight rules:

�
� t : ρi[α := µα(ρ1, . . . , ρk)]
�

� ink,i t : µα(ρ1, . . . , ρk)
(µI)

�
� t : µα(ρ1, . . . , ρk)

�
� mi : ρi monα 1 ≤ i ≤ k

�
� si : ρi[α := σ]→ σ 1 ≤ i ≤ k

�
� Itk(~m,~s, t) : σ

(µE)

2.3. THE SYSTEM MCICT 53

�
� t : µα(ρ1, . . . , ρk)

�
� mi : ρi monα 1 ≤ i ≤ k

�
� si : ρi[α := µα(ρ1, . . . , ρk)× σ]→ σ 1 ≤ i ≤ k

�
� Reck(~m,~s, t) : σ

(µE+)

�
� si : σ → ρi[α := σ] 1 ≤ i ≤ k

�
� mi : ρi monα 1 ≤ i ≤ k

�
� t : σ

�
� CoItk(~m,~s, t) : να(ρ1, . . . , ρk)

(νI)

�
� si : σ → ρi[α := να(ρ1, . . . , ρk) + σ] 1 ≤ i ≤ k

�
� mi : ρi mon α 1 ≤ i ≤ k

�
� t : σ

�
� CoReck(~m,~s, t) : να(ρ1, . . . , ρk)

(νI+)

�
� r : να(ρ1, . . . , ρk)

�
� outk,i r : ρi[α := να(ρ1, . . . , ρk)]

(νE)

The last two rules deserve a detailed discussion

The Principles of (Co)inductive Inversion

Inductive Inversion

Equation (1.20) is not suitable to be represented directly in our framework.
The reason is that there is no satisfactory way to represent the tuples of objects
〈F1µ, . . . , Fkµ〉 Observe that the inverse in section 2.1.2 is a function in−1

k :
〈µ, . . . , µ〉 → 〈F1µ, . . . , Fkµ〉 such that

in−1
k ◦〈ink,1, . . . , ink,k〉 = Id〈F1µ,...,Fkµ〉

So that we would need a rule like this:

�
� t : 〈µα(ρ1, . . . , ρk), . . . , µα(ρ1, . . . , ρk)〉

�
� mi : ρi monα 1 ≤ i ≤ k

�
� in−1

k (~m, t) : 〈ρ1[α := µα(ρ1, . . . , ρk)], . . . , ρk[α := µα(ρ1, . . . , ρk)]〉

Of course we would need to give sense to a tuple of objects as a type, but
this would complicate the system only to be able to model this principle.

On the other hand the main application of such rule is to define inductive
destructors following the reasoning:

“If we have an inductive object t : µα(ρ1, . . . , ρk) then it was generated by a
clause in−1

k t : ρi[α := µα(ρ1, . . . , ρk)] for some 1 ≤ i ≤ k”.

which implies, for instance, the fact that if t is a natural number then t is either
0 or a succesor sn.

This reasoning corresponds to an inverse in−1
k : µ → F1µ + . . . + Fkµ such

that

54 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

in−1
k (~m, ink,i t) = injki

(
mi(λz.z)t

)

where injki is the canonical ith-injection.

We model this kind of inverse instead of the one given by equation (1.20).

�
� t : µα(ρ1, . . . , ρk)

�
� mi : ρi monα 1 ≤ i ≤ k

�
� in−1

k (~m, t) : ρ1[α := µα(ρ1, . . . , ρk)] + . . . + ρk[α := µα(ρ1, . . . , ρk)]
(µEi)

The main application of this rule can be easily achieved using primitive re-
cursion, so that we will omit the rule in later systems as it would cause more
problems than profits. One of the main disadvantages of this rule is that gene-
rates a term inhabiting a sum type in an unusual way. So that inhabitants of
sum types are not only generated by the typing rules for sums.

Coinductive Inversion

Analogously the rule corresponding to equation (1.17) would be:

�
� t : 〈ρ1[α := να(ρ1, . . . , ρk)], . . . , ρk[α := να(ρ1, . . . , ρk)]〉

�
� mi : ρi mon α 1 ≤ i ≤ k

�
� out−1

k (~m, t) : 〈να(ρ1, . . . , ρk), . . . , να(ρ1, . . . , ρk)〉

Instead we use a rule able to construct coinductive objects following the
reasoning:

“If we have all pieces ti : ρi[α := να(ρ1, . . . , ρk)] for 1 ≤ i ≤ k then we can
construct a coinductive object out−1

k (~m,~t) : να(ρ1, . . . , ρk).”

For instance using this principle we can construct a stream given its head
and tail.

This principle corresponds to an “inverse” out−1
k : 〈F1ν, . . . , Fkν〉 → ν such

that

outk,i out−1
k (~m,~t) = mi(λz.z)ti

Therefore we arrive to this rule:

�
� ti : ρi[α := να(ρ1, . . . , ρk)] 1 ≤ i ≤ k

�
� mi : ρi mon α 1 ≤ i ≤ k

�
� out−1

k (~m,~t) : να(ρ1, . . . , ρk)
(νI i)

To finish the definition of this system we add six rules to the β-reduction
relation, which are generated by the equalities in sections 2.1.2 and 2.3.1.

2.3. THE SYSTEM MCICT 55

Itk(~m,~s, ink,i t) 7→β si

(
mi

(
λx.Itk(~m,~s, x)

)
t
)

Reck(~m,~s, ink,i t) 7→β si

(
mi

(
〈Id, λz.Reck(~m,~s, z)〉

)
t
)

in−1
k (~m, ink,i t) 7→β injki

(
mi(λz.z)t

)

outk,i CoItk(~m,~s, t) 7→β mi

(
λz.CoItk(~m,~s, z)

)
(sit)

outk,i CoReck(~m,~s, t) 7→β mi

(
[Id, λz.CoReck(~m,~s, z)]

)
(sit)

outk,i out−1
k (~m,~t) 7→β mi(λz.z)ti

This finish the definition of the system MCICT. A system of Monotone and
Clausular Inductive and Coinductive Types.

Subject Reduction for MCICT

To prove this property suffices to simplify the proof for the logic MCICD pre-
sented in section 4.1.3.

The subsystem without inductive inversion will play an important role later
and will be denoted MCICT−

The Natural Numbers in MCICT

The natural numbers are defined as follows:

nat := µα(1, α)

This time the constructors are defined directly:

0 := in2,1? s := λx.in2,2x

Streams in MCICT

stream(ρ) := να(ρ, α)

The destructors are defined directly as

head := λx.out2,1x tail := λx.out2,2x

56 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Degenerated Types

The degenerated types µα(), να() having no clauses can be considered as the
empty and the unit type respectively. Setting 0 := µα() we have no constructors
but the degenerated iteration principle gives a derived rule

t : 0

It0(t) : σ
(0E)

for every type σ. Of course 0 cannot be inhabited.

Analogusly setting 1 := να() there are no destructors but the coiteration
principle degenerates to the following

t : σ

CoIt0(t) : 1

for every type σ. In some sense there is only one inhabitant of 1 as the term t
does not play an important role, just to fix the definition we set ? := CoIt0(λxx),
so that we have the usual rule:

? : 1

More (Co)inductive Types in MCICT

◦ Lists of objects of type ρ: list(ρ) := µα(1, ρ× α)

◦ Well-founded ρ-branching trees: tree(ρ) := µα(1, ρ→ α)

◦ Infinite depth ρ-labelled trees: inftree(ρ) := να(ρ, list(α))

with α /∈ FV (ρ) in all cases.

On Sum and Product Types

Our type system MCICT has a strong expressive power, so that we could even
get rid of sums and products as basic type constructors, in the following way:

ρ + σ := µα(ρ, σ) ρ× σ := να(ρ, σ)

with α /∈ FV (ρ, σ)
The constructors for the sum are inl := λx. in2,1 x, inr := λx. in2,2 x, analo-

gously the destructors for the product are π1 := λx. out2,1 x, π2 := λx. out2,2.
The pair and case analysis are defined as:

〈r, s〉 := out−1
2 (� triv, � triv, r, s)

case(r, x.s, y.t) := It2(� triv, � triv, λx.s, λy.t, r)

The reader can verify that the β-reduction rules from page 15 still hold. The
only reason to consider × and + as basic type constructors is to avoid problems
(ad-hoc definitions) in the embedding from MCICT into MICT presented in next
section.

2.3. THE SYSTEM MCICT 57

2.3.2 Strong Normalization of MCICT

As usual, this is achieved by means of an embedding, this time into the already
strongly normalizing system MICT.
From now on we agree to associate sum and product to the right, that is,

ρ1 + . . . + ρk := ρ1 + (ρ2 + (. . . + ρk) . . .)
ρ1 × . . .× ρk := ρ1 × (ρ2 × (. . .× ρk) . . .)

Definition 2.6 The following syntactic sugar will be useful, where k ≥ 2:

injkj := λz. inrj−1(inl z), 1 ≤ j < k

injkk := λz. inrk−1 z
πk,j := λz.π1(π2

j−1z), 1 ≤ j < k
πk,k := λz.π2

k−1z

These are, of course, the canonical injections and projections for a k-sum and
k-product.

Definition 2.7 (MICT) Given variables x1, . . . , xk, y1, . . . , yk, f, u, v, w, z we de-
fine, for k ≥ 2 and 1 ≤ i ≤ k, the following families of terms ti, ri, qi, pi:

tj [u] := injkj (xjfu) 1 ≤ j ≤ k

r0[v] := tk[v]
rj+1[v] := case(v, x.tk−(j+1) [x], y.rj [y]) 0 ≤ j < k − 1

q0[w] := ykw
qj+1[w] := case(w, x.yk−(j+1)x, y.qj [y]) 0 ≤ j < k − 1

pj [z] := xjf(πk,jz) 1 ≤ j ≤ k

Observe that

FV (ti[u]) = {xi, f, u}
FV (ri[v]) = {xk−i, . . . , xk , f, v}
FV (qi[w]) = {yk−i, . . . , yk, w}
FV (pi[z]) = {xi, f, z}

Definition 2.8 Given variables ~x, ~y with |~x| = |~y| = k define the following
terms:

� +[~x] := λfλz.rk−1[z]
� +[~y] := λw.qk−1[w]

� ×[~x] := λf.λz.〈p1[z], . . . , pk[z]〉
� ×[~y] := λw.〈y1w, . . . , ykw〉

Observe that
FV (� +[~x]) = FV (� ×[~x]) = ~x
FV (

�
+[~y]) = FV (

� ×[~x]) = ~y

These terms will be needed for the embedding of (co)iterators, (co)recursors
and in / out functions, the next proposition give us its needed typings.

58 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Proposition 2.6 Given types µ := µα.ρ1 + . . . + ρk, ν := να.ρ1 × . . .× ρk and
contexts �

:= {f : α→ β, z : ρ1 + . . . + ρk}�
′ := {f : α→ β, z : ρ1 × . . .× ρk}�

:= {xi : ρi monα} 1 ≤ i ≤ k
�

:= {yi : ρi[α := γ]→ γ} 1 ≤ i ≤ k
� ′ := {yi : γ → ρi[α := γ]} 1 ≤ i ≤ k

�
:= {zi : ρi[α := µ× γ]→ γ} 1 ≤ i ≤ k

� ′ := {zi : γ → ρi[α := ν + γ]} 1 ≤ i ≤ k

we have the following typings
�
, xj : ρj monα, u : ρj � tj [u] : ρ1[α := β] + . . . + ρk[α := β]�
,

�
, v : ρk−j + . . . + ρk � rj [v] : ρ1[α := β] + . . . + ρk[α := β]

�
, w : (ρk−j + . . . + ρk)[α := γ] � qj [w] : γ

�
, w : (ρk−j + . . . + ρk)[α := µ× γ] � qj [w] : γ�
′, xj : ρj mon α � pj [z] : ρj [α := β] for 1 ≤ j ≤ k

�
� � +[~x] : (ρ1 + . . . + ρk) monα

�
� � ×[~x] : (ρ1 × . . .× ρk) monα

�
�

�
+[~y] : (ρ1 + . . . + ρk)[α := γ]→ γ

� ′
�

� ×[~y] : γ → (ρ1 × . . .× ρk)[α := γ]
�

�
� +[~z] : (ρ1 + . . . + ρk)[α := µ× γ]→ γ

� ′
�

� ×[~z] : γ → (ρ1 × . . .× ρk)[α := ν + γ]

Proof. Straightforward. a

Proposition 2.7 For every term t, s and for 0 ≤ i < k−1 we have the following
reductions:

ri+1[inrj+1t]→+ ri[inrj]

qi+1[inrj+1s]→+ qi[inrjs]

and therefore for 2 ≤ j ≤ k:

rk−2[inrj−2t]→? rk−j [t]

qk−2[inrj−2s]→? qk−j [s]

Proof.

ri+1[inrj+1t] → case(inr j+1t, x.tk−(i+1)[x], y.ri[y])

≡ case(inr(inr jt).x.tk−(i+1)[x], y.ri[y])→ ri[inrjt]

qi+1[inrj+1s] → case(inr j+1s, x.yk−(i+1)x, y.qi[y])

≡ case(inr(inr js), x.yk−(i+1)x, y.qi[y])→ qi[inrjs]

a

Proposition 2.8 For k ≥ 2 and every 1 ≤ i ≤ k we have

rk−1[injki s]→+
β ti[s]

Proof. By case analysis on i and proposition 2.7. a

2.3. THE SYSTEM MCICT 59

Definition 2.9 The embedding (·)′ : MCICT → MICT is defined in two parts,
first we define it for the special cases of empty and unit types which are special
encoded types. Then we give the general definition which excludes the previous
cases.

(µα())′ := ∀αα
It0(t)

′ := t′

Rec0(t)
′ := t′

(να())′ := ∀α.α→ α
CoIt0(t)

′ := λzz
CoRec0(t)

′ := λzz

Next the general definition where k ≥ 1

α′ := α
(σ → ρ)′ := σ′ → ρ′

(∀αρ)′ := ∀α.ρ′

(ρ× σ)′ := ρ′ × σ′

(ρ + σ)′ := ρ′ + σ′

(
µα(ρ1, . . . , ρk)

)′
:= µα.ρ′1 + . . . + ρ′k(

να(ρ1, . . . , ρk)
)′

:= να.ρ′1 × . . .× ρ′k
x′ := x

(λxr)′ := λx.r′

(rs)′ := r′s′

〈r, s〉′ := 〈r′, s′〉
(π1r)

′ := π1r
′

(π2r)
′ := π2r

′

(inl r)′ := inl r′

(inr r)′ := inr r′(
case(r, x.s, y.t)

)′
:= case(r′, x.s′, y.t′)

in1,1 t′ := in t′

ink,i t′ := in(injki t′) k ≥ 2

in−1
k (~m, t)′ := in−1(� +[~m′], t′)

It1(m, s, t)′ := It(m′, s′, t′)
Itk(~m,~s, t)′ := It(� +[~m′],

�
+[~s ′], t′) k ≥ 2

Rec1(m, s, t)′ := Rec(m′, s′, t′)
Reck(~m,~s, t)′ := Rec(� +[~m′],

�
+[~s ′], t′) k ≥ 2

(out1,1 t)′ := out t′

(outk,i t)′ := πk,i(out t′) k ≥ 2

out−1
k (~m,~t)′ := out−1(� ×[~m′], 〈t′1, . . . , t

′
k〉)

CoIt1(m, s, t)′ := CoIt(m′, s′, t′)
CoItk(~m,~s, t)′ := CoIt(� ×[~m′],

� ×[~s ′], t′) k ≥ 2
CoRec1(m, s, t)′ := CoRec(m′, s′, t′)
CoReck(~m,~s, t)′ := CoRec(� ×[~m′],

� ×[~s ′], t′) k ≥ 2

where the terms � +, � ×,
� +,

� × are taken from definition 2.8.

Proposition 2.9 (Substitution Properties) The following holds:

60 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

◦ (ρ[α := σ])′ = ρ′[α := σ′]

◦ r[x := s]′ = r′[x := s′]

◦ (ρ mon α)′ = ρ′ mon α

Proof. The first part by induction on ρ, the second part by induction on r, the
third part is immediate from the first part. a

Proposition 2.10 If
�

�MCICT r : σ then
� ′

�MICT r′ : σ′.

Proof. Induction on �MCICT. a

Proposition 2.11 If r →β s in MCICT then r′ →+
β s′ in MICT.

Proof. Induction on →β in MCICT.

Case Itk(~m,~s, ink,i t) 7→β si

(
mi

(
λx.Itk(~m,~s, x)

)
t
)

The cases for k = 0, 1 are trivial. Assume k ≥ 2. Set � := � +[m′
1, . . . , m

′
k],

�
:=

�
+[s′1, . . . , s

′
k] taken from definition 2.8. We have three subcases:

◦ Subcase i = 1.

(
Itk(~m,~s, ink,1 t)

)′
≡ It(� ,

�
, (ink,1 t)′) ≡ It

(
� ,

�
, in(injk1 t′)

)
→

� (
� (λx.It(� ,

�
, x))(inl t′)

)
→ case

(
� (λx.It(� ,

�
, x))(inl t′), x.s′1x, y.qk−2[y]

)

case
(
case(inl t′, x.t1[x], y.rk−2[y]), x.s′1x, y.qk−2[y]

)
→

case
(
t1[t

′], x.s′1x, y.qk−2[y]
)
→ case

(
inl(m′

1(λx.It(� ,
�
, x))t′), x.s′1x, y.qk−2[y]

)

s′1

(
m′

1(λx.It(� ,
�
, x))t′

)
≡

(
s1

(
m1(λx.Itk(~m,~s, x))t

))′

.

2.3. THE SYSTEM MCICT 61

◦ Subcase 1 < i < k.

(
Itk(~m,~s, ink,i t)

)′

≡ It(� ,
�
, (ink,i t)′) ≡

It(� ,
�
, in(injki t′)) →

�
(

� (λx.It(� ,
�
, x))(injki t′)

)
→

case
(

� (λx.It(� ,
�
, x))(injki t′), x.s′1x, y.qk−2[y]

)
→

case
(
case(inri−1(inl t′), x.t1[x], y.rk−2[y]), x.s′1x, y.qk−2[y]

)
≡

case
(
case(inr(inri−2(inl t′)), x.t1[x], y.rk−2[y]), x.s′1x, y.qk−2[y]

)
→

case
(
rk−2[inri−2(inl t′)], x.s′1x, y.qk−2[y]

)
→?

prop 2.7

case
(
rk−i[inl t′], x.s′1x, y.qk−2[y]

)
→

case
(
case(inl t′, x.ti[x], y.rk−i−1[y]), x.s′1x, y.qk−2[y]

)
→

case
(
ti[t

′], x.s′1x, y.qk−2[y]
)
→

case
(

inri−1(inl(m′
i(λx.It(� ,

�
, x))t′)), x.s′1x, y.qk−2[y]

)
≡

case
(

inr(inri−2(inl(m′
i(λx.It(� ,

�
, x))t′))), x.s′1x, y.qk−2[y]

)
≡

qk−2[inri−2(inl(m′
i(λx.It(� ,

�
, x))t′))] →?

prop 2.7

qk−i[inl(m′
i(λx.It(� ,

�
, x))t′)] →

k−i>0

case
(

inl(m′
i(λx.It(� ,

�
, x))t′), x.s′ix, y.qk−i−1[y]

)
→

s′i

(
m′

i(λx.It(� ,
�
, x))t′

)
≡

(
si

(
mi(λx.Itk(~m,~s, x))t

))′

.

62 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

◦ Subcase i = k.

(
Itk(~m,~s, ink,k t)

)′

≡ It(� ,
�
, (ink,k t)′) ≡

It(� ,
�
, in(injkk t′)) →

�
(

� (λx.It(� ,
�
, x))(injkk t′)

)
→

case
(

� (λx.It(� ,
�
, x))(injkk t′), x.s′1x, y.qk−2[y]

)
→

case
(
case(inrk−1 t′, x.t1[x], y.rk−2[y]), x.s′1x, y.qk−2[y]

)
≡

case
(
case(inr(inrk−2 t′), x.t1[x], y.rk−2[y]), x.s′1x, y.qk−2[y]

)
→

case
(
rk−2[inrk−2 t′], x.s′1x, y.qk−2[y]

)
→?

prop 2.7

case
(
r0[t

′], x.s′1x, y.qk−2[y]
)
≡ case

(
tk[t′], x.s′1x, y.qk−2[y]

)
→

case(inrk−1(m′
k(λx.It(� ,

�
, x))t′), x.s′1x, y.qk−2[y]) ≡

case(inr(inrk−2(m′
k(λx.It(� ,

�
, x))t′)), x.s′1x, y.qk−2[y]) →

qk−2[inrk−2(m′
k(λx.It(� ,

�
, x))t′)] →?

prop 2.7

q0[m
′
k(λx.It(� ,

�
, x))t′] ≡

s′k
(
m′

k(λx.It(� ,
�
, x))t′) ≡

(
sk

(
mk(λx.Itk(~m,~s, x))t

))′

.

The remaining cases are solved analogously.
a

Proposition 2.12 MCICT is strongly normalising.

Proof. Immediate from propositions 2.5 and 2.11. a

2.3.3 On η-rules

In this section we introduce some η-rules for the system MCICT.

The so-called η-rules of reduction are added to a type system to represent
extensionality principles, which, from the categorical point of view means that

2.3. THE SYSTEM MCICT 63

some morphisms are unique. They identify certain functions (terms) which have
the same behaviour, yet which are represented in different ways.

The first such rule is the one for λ-abstractions:

λx.rx 7→η r with x /∈ FV (r) (η→)

and guarantees extensionality for functions, i.e. allows to conclude that two
functions f and g are equal if they coincide in all arguments, that is, if fx = gx
for all suitable arguments x.

Similarly we have η-rules for sums and products:

〈π1r, π2r〉 7→η r (η×)

case(r, y. inl y, z. inr z) 7→η r (η+)

The rule for pairing is usually called surjective pairing.

To finish the system of η-rules for MCICT, we define η-rules for iteration and
coinductive inversion.

The η-rule for iteration is:

Itk(~m, � k
1 . . . � k

k, r) 7→η r (ηµ)

where � k
i := λz. ink,i z.

This rule is justified as follows: Doing iteration over the inductive type
µα(ρ1, . . . , ρk) with step-functions � k

i yields the diagram

ρi[α := µα(ρ1, . . . , ρk)]

ρi[α := µα(ρ1, . . . , ρk)]

µα(ρ1, . . . , ρk)

µα(ρ1, . . . , ρk)

...
..........

..
� k

i

...
...........

.
� k

i

...

......
.
.....
......
.

mi

(
λz.Itk(~m, � k

1 , . . . , � k
k, z)

)

...

......
.
.....
......
.

λz.Itk(~m, � k
1 , . . . , � k

k , z)

The iteration principle guarantees that this diagram commute, however,
assuming the first functor law (mi(Id) = Id) the identity function also makes
the diagram commutative:

64 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

ρi[α := µα(ρ1, . . . , ρk)]

ρi[α := µα(ρ1, . . . , ρk)]

µα(ρ1, . . . , ρk)

µα(ρ1, . . . , ρk)

...
..........

..
� k

i

...
..........

..
� k

i

...

......
.
.....
......
.

mi

(
Id

)

...

......
.
.....
......
.

Id

Therefore if we want the iterative morphism to be unique we have to settle
λz.Itk(~m, � k

1 . . . � k
k , z) = λzz, which implies that for every r we have,

Itk(~m, � k
1 . . . � k

k , r) = r.

The η-rule for iteration follows from this last equality.

By dualizing we can get an η-rule for coiteration CoItk(~m, � k
1 . . . � k

k, r) 7→η r,
where � k

i := λz. outk,i z. However for our purposes, this rule is not neccesary,
instead we need to consider the following η-rule for coinductive inversion:

out−1
k (~m, � k

1r, . . . , � k
kr) 7→η r (ην)

The justification of this rule is similar to the last one: In this case the
composition

(
λ~x. out−1

k (~m, ~x)
)
◦ 〈 � k

1 , . . . , � k
k〉 : να(ρ1, . . . , ρk)→ να(ρ1, . . . , ρk)

should be equal to the identity to guarantee that out−1
k is an inverse of

〈 � k
1 , . . . , � k

k〉, so we settle
(
λ~x. out−1

k (~m, ~x)
)
◦ 〈 � k

1 , . . . , � k
k〉 = λzz, which implies

that for every r we have

out−1
k (~m, � k

1r, . . . , � k
kr) = r

The η-rule follows by directing this equation. A more intuitive justification
of this rule is the following: If we take a coinductive object r and destruct it
getting all its pieces � k

1r, . . . , � k
kr and then with these pieces we construct a

coinductive object out−1
k (~m, � k

1r, . . . , � k
kr) this should be exactly the original

object r.
The system MCICT with η-rules will be denoted MCICTη. We do not know

anything about the strong normalization of the βη-reduction. Moreover the
subject-reduction fails already for system F, i.e., with the first η-rule, as the
following example shows:

�λxλy.xy : (∀α.σ → τ) → ∀ασ → ∀ατ

2.3. THE SYSTEM MCICT 65

λxλy.xy →η λxx

but

6�λxx : (∀α.σ → τ)→ ∀ασ → ∀ατ

In general η-rules are evil for Curry-style systems as they destroy the type-
preservation property.
However the use of η-rules is still of interest to us. We will see in the follo-
wing section that in MCICTη we can prove the first functor law for the so-called
canonical monotonicity witnesses, fact that will be useful in chapter 4 to formu-
late a nice soundness theorem for realizability.

It is not clear if η-rules are rules of computation. Moreover, to our knowledge,
it is a piece of folklore to say that the β-rules are computationally sufficient to
ensure the same results from the application of η-equivalent terms (functions).
For the cases of the rules (η→), (η×), (η+) this is more or less clear as an η-redex
can be avoided with β-reduction. For instance for surjective pairing the η-
reduction π2〈π1r, π2r〉 →η π2r is clearly also a β-reduction π2〈π1r, π2r〉 →β π2r.
This folkloric view is not so clear for the new rules (ηµ), (ην) and needs further
study. In [Ho92] (theorem 3.3.5, page 35) B. Howard claims to justify the
redundancy of a system of η-rules, including some rules for (co)inductive types,
with respect to essentially the same β-rules of MCICT. However we were not
able to understand the proof-sketch he gives.

2.3.4 Canonical Monotonicity Witnesses

In this section we present a canonical selection for monotonicity witnesses which
essentially corresponds to the usual definitions for the positive cases, we do not
restrict ourselves to strict positivity and define also antimonotonicity. Moreover
we define witnesses for interleaving types.

Definition 2.10 (Antimonotonicity) Given a type ρ and a type variable α,
we define the type ρ mon− α as:

ρ mon− α := ∀α.∀β.(α → β)→ ρ[α := β]→ ρ

If a term m inhabits the type ρ mon− α in a given context, then the functor
〈λαρ, m〉 will be antimonotone (contravariant) in the same context.

Definition 2.11 (Generic (Anti)monotonicity Witnesses) We define the
following MCICT-terms:

◦ � id := λxx

◦ � triv := λfλxx

66 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

◦ � → := λm1λm2λfλxλy.m2f(x(m1fy))

◦ � ∀ := λmλfλx.mfx

◦ � × := λm1λm2λfλx〈m1f(π1x), m2f(π2x)〉

◦ � + := λm1λm2λfλx.case(x, y. inl m1fy, z. inrm2fz)

◦ � k
µ := λ~mλ~nλfλx.Itk(~m,~s, x), where si := λz. ink,i(nifz).

◦ � k
ν := λ~mλ~nλfλx. out−1

k (~m,~s) where si := nif(outk,i x).

Proposition 2.13 We have the following derivations:

◦ � � id : α monα

◦ If α /∈ FV (ρ) then � � triv : ρ monα and � � triv : ρ mon− α

◦ � � → : σ mon− α→ τ monα→ (σ → τ) mon α
� � → : σ monα→ τ mon− α→ (σ → τ) mon− α

◦ � � ∀ : (∀γ.σ monα)→ (∀γ.σ) mon α
� � ∀ : (∀γ.σ mon− α)→ (∀γ.σ) mon− α

◦ � � × : σ mon α→ τ monα→ (σ × τ) mon α
� � × : σ mon− α→ τ mon− α→ (σ × τ) mon− α.

◦ � � + : σ monα→ τ monα→ (σ + τ) mon α
� � + : σ mon− α→ τ mon− α→ (σ + τ) mon− α.

◦ � � µ : (∀α.τi mon γ)→ (∀γ.τi mon α)→ µγ(τ1, . . . , τk) monα
� � µ : (∀α.τi mon γ)→ (∀γ.τi mon− α)→ µγ(τ1, . . . , τk) mon− α

◦ � � k
ν : (∀α.τi mon γ)→ (∀γ.τi monα)→ νγ(τ1, . . . , τk) monα

� � k
ν : (∀α.τi mon γ)→ (∀γ.τi mon− α)→ νγ(τ1, . . . , τk) mon− α

Proof. Straightforward a

Corollary 2.10 (Derived Typing Rules for (Anti)monotonicity) The fo-
llowing rules are derivable:

◦
�

� � id : α mon α

◦ If α /∈ FV (ρ) then
�

� � triv : ρ monα and
�

� � triv : ρ mon− α

◦ If
�

� m1 : σ mon− α and
�

� m2 : τ monα then

�
� � →m1m2 : (σ → τ) mon α

◦ If
�

� m1 : σ monα and
�

� m2 : τ mon− α then

�
� � →m1m2 : (σ → τ) mon− α

2.3. THE SYSTEM MCICT 67

◦ If
�

� t : ∀γ.σ mon α then
�

� � ∀t : (∀γ.σ) mon α

◦ If
�

� t : ∀γ.σ mon− α then
�

� � ∀t : (∀γ.σ) mon− α

◦ If
�

� m1 : σ monα and
�

� m2 : τ monα then
�

� � ×m1m2 : (σ × τ) mon α

◦ If
�

� m1 : σ mon− α and
�

� m2 : τ mon− α then
�

� � ×m1m2 : (σ × τ) mon− α

◦ If
�

� m1 : σ monα and
�

� m2 : τ monα then
�

� � +m1m2 : (σ + τ) mon α

◦ If
�

� m1 : σ mon− α and
�

� m2 : τ mon− α then
�

� � +m1m2 : (σ + τ) mon− α

◦ If
�

� mi : (∀α.τi mon γ) and
�

� ni : (∀γ.τi monα) then
�

� � k
µ ~m~n : µγ(τ1, . . . , τk) monα

◦ If
�

� mi : (∀α.τi mon γ) and
�

� ni : (∀γ.τi mon− α) then
�

� � k
µ ~m~n : µγ(τ1, . . . , τk) mon− α

◦ If
�

� mi : (∀α.τi mon γ) and
�

� ni : (∀γ.τi monα) then
�

� � k
ν ~m~n : νγ(τ1, . . . , τk) mon α

◦ If
�

� mi : (∀α.τi mon γ) and
�

� ni : (∀γ.τi mon− α) then
�

� � k
ν ~m~n : νγ(τ1, . . . , τk) mon− α

Proof. Trivial a

Definition 2.12 We will write
�

�
can m : ∀~γ.ρ monα if m was obtained by

one of the rules of the previous corollary (possibly using also the rules for
universal quantifiers). We say that a monotonicity witness m is canonical if
�

canm : ρ monα.

The importance of the η-rules is made explicit in the following proposition which
provides the first functor law for canonical witnesses by means of βη-reductions.

Proposition 2.14 (First Functor Law) If
�

�
can m : ∀~γ.ρ monα and

�
�

canm− : ∀~γ.σ mon− α then m and m− satisfy the first functor law in MCICTη,
that is:

m(λz.z)→?
βη λy.y m−(λz.z)→?

βη λy.y

Proof. Induction on �
can (see page 89 for essentially the needed proof). a

68 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

2.3.5 (Co)recursive Programming in MCICT

In this section we give some examples of how to program with (co)induction
principles in the type system MCICT.

Given an inductive type µα(ρ1, . . . , ρk) the goal is to program functions

g : µα(ρ1, . . . , ρk)→ σ

To do this we have two tools available: iteration and primitive recursion. In
this kind of definitions the consstructors of the type play an important role: to
define a function g by iteration or recursion, one defines the value of g on all
constructors.

Recall that the constructors of µα(ρ1, . . . , ρk),

� k
i : ρi[α := µα(ρ1, . . . , ρk)]→ µα(ρ1, . . . , ρk)

are defined as � k
i := λz. ink,i z

The easiest way to program functions is by iteration, this scheme provides
a mean to define functions g : µα(ρ1, . . . , ρk) → σ which satisfy the following
recurrence equations:

g(� k
1x) = s1(m1gx)

...
g(� k

kx) = sk(mkgx)

where si : ρi[α := σ] → σ and mi : ρi mon α, 1 ≤ i ≤ k are the fixed monotoni-
city witnesses used to eliminate the type µα(ρ1, . . . , ρk).

If these conditions hold, then the categorical machinery says that we can
define g := λz.Itk(~m,~s, z) and we will obtain the desired reduction behaviour:

g(� k
i x)→+

β si(migx)

Analogously primitive recursion provides a mean to program functions g :
µα(ρ1, . . . , ρk)→ σ which satisfy the following recurrence equations:

g(� k
1x) = s1(m1〈Id, g〉x)

...
g(� k

kx) = sk((mk〈Id, g〉x)

with si : ρi[α := µα(ρ1, . . . , ρk) × σ] → σ. In this case g can be defined as
g := λz.Reck(~m,~s, z), and we get:

g(� k
i x)→+

β si(mi〈Id, g〉x).

In a dual way given a coinductive type να(ρ1, . . . , ρk) the goal is to program
functions

g : σ → να(ρ1, . . . , ρk)

2.3. THE SYSTEM MCICT 69

To do this we have two tools available: coiteration and corecursion. In this
kind of definitions the destructors of the type play an important role: to define a
function g by coiteration or corecursion, one defines the values of all destructors
on each outcome gx.

Recall that the destructors of να(ρ1, . . . , ρk),

� k
i : να(ρ1, . . . , ρk)→ ρi[α := να(ρ1, . . . , ρk)]

are defined as � k
i := λz. outk,i z

The first way to program functions is by coiteration, this scheme provides
a mean to define functions g : σ → να(ρ1, . . . , ρk) which satisfy the following
recurrence equations:

� k
1(gx) = (m1g)(s1x)

...
� k

k(gx) = (mkg)(skx)

where si : σ → ρi[α := σ] and mi : ρi monα, 1 ≤ i ≤ k are the fixed monotoni-
city witnesses used to introduce the type να(ρ1, . . . , ρk).

If these conditions hold, then the categorical machinery says that we can
define g := λz.CoItk(~m,~s, z) and we will obtain the desired reduction behaviour:

� k
i (gx)→+

β (mig)(six)

Analogously corecursion provides a mean to program functions g : σ →
να(ρ1, . . . , ρk) which satisfy the following recurrence equations:

� k
1(gx) = (m1[Id, g])(s1x)

...
� k

k(gx) = (mk[Id, g])(skx)

with si : σ → ρi[α := να(ρ1, . . . , ρk) + σ]. In this case g can be defined as
g := λz.CoReck(~m,~s, z), and we get:

� k
i (gx)→+

β (mi[Id, g])(six)

Let us see some examples

Examples with Inductive Types

Consider the inductive types bool, nat, list(ρ) defined together with its construc-
tors and monotonicity witnesses as follows:

bool := µα(1, 1) true false � triv � triv

nat := µα(1, α) 0 s � triv � id

list(ρ) := µα(1, ρ× α) nil cons � triv � ρ×α := � 2
×

� triv � id

where the witnesses are the canonical ones obtained with the rules in section
2.3.4.

70 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Negation

The negation function not : bool→ bool is defined as

not(true) = false not(false) = true

This is an instance of iteration and is programmed as:

not := λy.It2(� triv, � triv, � 2
2, � 2

1, y)

Boolean Conditional

Given a type σ we want to define the conditional function

if then else : bool→ σ → σ → σ

with the following behaviour, for r, s : σ:

if true then r else s = r
if false then r else s = s

This is easily defined by iteration as:

if then else := λzλxλy.It2(� triv, � triv, λu.x, λv.y, z)

where u 6= x, v 6= y.

The Predecessor function

This is the inductive destructor for naturals pred : nat→ nat defined as:

pred(0) = 0 pred(sn) = n

The usual way to program this function is with recursion as

pred := λx.Rec2(� triv, � id, λz.0, λz.π1z, x)

Another way to program the predecessor is by using inductive inversion
getting:

pred := λz.case(in−1
2 (� triv, � id, z), x.0, y.y)

Zero-check

The function zero? : nat→ bool is defined as

zero?(0) = true zero?(sn) = false

zero? is programmed via inductive inversion as:

zero? := λx.case(in−1
2 (� triv, � id, x), y.true, z.false)

2.3. THE SYSTEM MCICT 71

Equality of Natural Numbers

We would like to define a function eq? : nat× nat→ bool such that eq?〈n, m〉 =
true if and only if n = m. We do not have a direct way to program this function,
we only know how to define functions from inductive types and to coinductive
types but eq? is a function from a product to an inductive type. The solution
is to program the curried version eq? : nat → nat → bool, which is a function
from an inductive type. This is defined as:

eq?(0) = zero?
eq?(sn) = λm.if zero?m then false else eq?(n)(pred m)

This is an instance of iteration with step functions

s1 := λz.zero?
s2 := λgλm.if zero?m then false else g(predm)

With this definition we get eq?(n) : nat→ bool such that

eq?(0)(0) = true eq?(0)(sn) = false

eq?(sm)(0) = false eq?(sm)(sn) = eq?(m)(n)

Testing for ≤

The function leq? : nat→ nat→ bool such that

leq?mn = true if and only if m ≤ n

is defined as:

leq?(0)(0) = true leq?(0)(sn) = true

leq?(sm)(0) = false leq?(sm)(sn) = leq?(m)(n)

This function is defined by iteration analogous to eq? as

leq? := λz.It2(� triv, � id, s1, s2, z)

where the steps functions are

s1 := λz.true

s2 := λgλm.if zero?m then false else g(predm)

Minimum Function

The minimum function min : nat→ nat→ nat can be directly defined with help
from leq? as:

min := λyλz.if leq? y z then y else z

We can also define a non-curried version min : nat× nat→ nat as

min := λz.if leq?(π1z)(π2z) then π1z else π2z

72 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Append of Lists

The function append is usually defined as append : list(ρ)× list(ρ)→ list(ρ) with:

append〈nil, l〉 = l append〈cons〈a, l1〉, l2〉 = cons〈a, append〈l1, l2〉〉

This function cannot be defined directly as neither its domain is an inductive
type nor its codomain is a coinductive type. The solution is to program the
curried version append : list(ρ)→ list(ρ)→ list(ρ) defined as:

append nil l = l append cons〈a, l1〉 l2 = cons〈a, append〈l1 l2〉〉

Now we have a function with an inductive type as domain, which can be
iteratively defined with the step functions

s1 : 1→ list(ρ)→ list(ρ) s1 := λz.z

s2 : ρ× (list(ρ)→ list(ρ))→ list(ρ)→ list(ρ) s2 := λxλy. cons〈π1x, (π2x)y〉

Examples with Streams

Given a type ρ the type of streams (infinite lists) of elements of ρ is defined as:

stream(ρ) := να(ρ, α)

where α /∈ FV (ρ). The monotonicity witnesses needed to introduce this type
are canonical, we have: �C � triv : ρ monα, �C � id : α monα.

The associated destructors are head, tail defined as head := � 2
1, tail := � 2

2

such that

� head : stream(ρ)→ ρ
� tail : stream(ρ)→ stream(ρ)

To define a function g : σ → stream(ρ), the equations for coiteration are
simplified to:

head(gx) = s1x
tail(gx) = g(s2x)

with s1 : σ → ρ, s2 : σ → σ,

whereas the equations for corecursion are:

head(gx) = s1x
tail(gx) = [Id, g](s2x)

with s1 : σ → ρ, s2 : σ → stream(ρ) + σ.
Let us program some functions involving streams.

2.3. THE SYSTEM MCICT 73

A Stream of Constants

Given a constant c : ρ we want to define the stream cst(c) := 〈c, c, c, c, . . .〉.
That is we want to define a function cst : ρ→ stream(ρ) such that:

head(cst x) = x
tail(cst x) = cst x

The step functions are therefore s1, s2 : ρ → ρ with s1, s2 := λx.x and we
define cst := λz.CoIt2(� triv, � id, s1, s2, z).

The Stream of Naturals from a given one

The function from : nat → stream(nat) with from n = 〈n, n + 1, n + 2, . . .〉 is
destructed as follows:

head(from n) = n
tail(from n) = from sn

From these equations we identify the step functions s1 : nat → nat, s2 :
nat→ nat with s1 := λzz, s2 := s (the succesor function on nat). from can then
be defined coiteratively.
The stream of natural numbers is

ω := from 0 ≡ CoIt2(� triv, � id, λzz, s, 0).

The Append Function

The function app : stream(ρ)× stream(ρ)→ stream(ρ) is destructed as follows:

head(app x) = head(π1x)
tail(app x) = app 〈tail(π1x), π2x〉

Therefore its coiterative definition is app := λz.CoIt2(� triv, � id, s1, s2, z),
where s1 := λz. head π1x, s2 := λz.〈tail π1z, π2z〉.

The Map Head Function

Given a function h : ρ → ρ, the map head function maphdh : stream(ρ) →
stream(ρ) maps a stream 〈a1, a2, a3, . . .〉 into the stream 〈h(a1), a2, a3, . . .〉. This
function is destructed as follows:

head(maphdh x) = h(head x)
tail(maphdh x) = tail x

This function can be defined by corecursion as

maphdh := λz.CoRec2(� triv, � id, s1, s2, z)

74 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

taking s1 := h ◦ head : stream(ρ) → ρ and s2 := inl ◦ tail : stream(ρ) →
stream(ρ) + stream(ρ). We have

head(maphdhx)→β (h ◦ head)x→β h(head x)

tail(maphdhx)→β [Id, maphdh]((inl ◦ tail)x)→β [Id, maphdh]((inl(tail x))

→β Id(tail x)→β tail x.

The cons Function

The cons function cons : ρ× stream(ρ)→ stream(ρ) is destructed as:

head(cons x) = π1x
tail(cons x) = π2x

Then cons can be corecursively defined from s1 := λz.π1z, s2 := λz. inlπ2z as
cons := λx.CoRec2(� triv, � id, s1, s2, x).

However a more efficient cons function can be programmed using the in-
version rule as follows: If z : ρ × stream(ρ) then obviously π1z : ρ and π2z :
stream(ρ), therefore we can define cons := λz. out−1

2 (π1z)(π2z) : ρ×stream(ρ)→
stream(ρ).

Sorted Insertion

Given a natural number n and a stream of naturals s we want to insert the
number n exactly before the first element of s greater or equal than n. We
define a function si : stream(nat)× nat→ stream(nat) such that:

head(si〈s, n〉) = min〈n, head s〉

tail(si〈s, n〉) =





s if n ≤ head s

si〈tail s, n〉 if n > head s

We assume some given programs for the functions leq? : nat × nat →
bool, min : nat × nat → nat. The condition to define the tail of si〈s, n〉 is
controlled by the function h := λw.leq?〈π2w, head π1w〉. Now set

s1 := λz. min〈π2z, headπ1z〉

s2 := λz.[λu. inlπ1z, λv. inr〈tail π1z, π2z〉](h z)

Finally si is defined as λz.CoRec2(� triv, � id, s1, s2, z).

2.4. THE SYSTEM MCICTM 75

2.4 The System MCICTM

We present in this section another extension of system F, this time with (co)in-
duction principles in Mendler-style. The section is mainly informative, we only
give the definition of the system and sketch its normalization proof which is of
theoretical interest, for it uses a non-homomorphical embedding on (co)inductive
types by means of syntactical Kan extensions.

2.4.1 Definition of the System

We define a system, denoted MCICTM , of monotone and clausular (co)inductive
types with Mendler-style (co)iteration and (co)recursion as explained in section
2.1.2 extending F with clausular inductive types keeping the rules (µI), (νE)
and (νI i) and substituting the rules for (co)iteration and (co)recursion with the
following ones:

�
� si : ∀α.

(
α→ σ

)
→

(
ρi → σ

)
, 1 ≤ i ≤ k

�
� MItk~s : µα(ρ1, . . . , ρk)→ σ

(MµE)

�
� si : ∀α.

(
α→ µα(ρ1, . . . , ρk)

)
→(

α→ σ
)
→

(
ρi → σ

)
, 1 ≤ i ≤ k

�
� MReck~s : µα(ρ1, . . . , ρk)→ σ

(MµE+)

�
� si : ∀α.

(
σ → α

)
→

(
σ → ρi

)
, 1 ≤ i ≤ k

�
� MCoItk~s : σ → να(ρ1, . . . , ρk)

(MνI)

�
� si : ∀α.

(
να(ρ1, . . . , ρk)→ α

)
→(

σ → α
)
→

(
σ → ρi

)
, 1 ≤ i ≤ k

�
� MCoReck~s : σ → να(ρ1, . . . , ρk)

(MνI+)

All rules with the proviso α /∈ FV (
�
, σ).

These rules express Mendler-style (co)iteration and (co)recursion respec-
tively.

The reduction behaviour is given by:

MItk~s(ink,i r) 7→β si

(
MItk~s

)
r

MReck~s(ink,i r) 7→β si(λyy)
(
MReck~s

)
r

outk,i

(
MCoItk~s r

)
7→β si

(
MCoItk~s

)
r

outk,i

(
MCoReck~s r

)
7→β si(λyy)

(
MCoReck~s

)
r

Observe that in MCICTM we do not have neither sums nor products as they
were only needed to define conventional (co) recursion. On the other hand we
have neither inductive inversion as this rule cannot be faithfully embedded into
MCICT.

76 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

2.4.2 Strong Normalization of MCICTM

We give an embedding from MCICTM to MCICT∃ which uses syntactical Kan
extensions along the identity, for a discussion about them see [AMU04]. Here
we only state the cases involving (co)inductive types/terms.

Types:

µα(ρ1, . . . , ρk)′ := µα(Lan ρ′
1, . . . , Lan ρ′k)

Lan ρ := ∃β.(β → α)× ρ[α := β]

να(ρ1, . . . , ρk)′ := να(Ran ρ′
1, . . . , Ran ρ′k)

Ran ρ := ∀β.(α→ β)→ ρ[α := β]

Terms:

(ink,i r)′ := pack〈λxx, r′〉

(MItk~s)
′ := λx.Itk(~� Lan, ~s#, x)

� Lan := λyλz.open
(
z, w. pack〈λx.y

(
(π1w)x

)
, π2w〉

)

s#
i := λy.open

(
y, z.s′i(π1z)(π2z)

)

(MReck~s)′ := λx.Reck(~� Lan, ~s�, x)

s�i := λy.open
(
y, z.s′i

(
λu.π1

(
(π1z)u

))(
λv.π2

(
(π1z)v

))
(π2z)

)

(outk,i r)′ := (outk,i r′)(λz.z)

(MCoItk~s)′ := λx.CoItk(~� Ran,~̂s, x)

� Ran := λgλyλf.y(λz.f(gz))

ŝi := λxλf.s′ifx

(MCoReck~s)′ := λx.CoReck(~� Ran,~̃s, x)

s̃i := λxλf.s′i

(
λy.f(inl y)

)(
λz.f(inr z)

)
x

(
out−1

k (~m,~t)
)′

:= out−1
k (~� Ran,

~̂t)

t̂i := λg.m′
igt′i

2.5. THE HYBRID SYSTEM MCICTµMν 77

We leave the details of proving that we have indeed an embedding to the
reader.

2.5 The Hybrid System MCICTµMν

This system combines conventional iteration/recursion with Mendler-style co-
iteration/corecursion. On a first look it seems strange to combine a system in
this way, the reason to do it will be clear when first order objects appear in
section 6.2.

The system MCICTµMν is obtained by extending F× with clausular (co)-
inductive types through the rules of conventional iteration/recursion (µE), (µE+)
and the rules for Mendler-style coiteration/corecursion (MνI), (MνI+) as well
as with the rules (µI), (νE), (νI i). Observe that again there is no inductive
inversion in this system.

It is obvious that this system still enjoys of strong normalization as can be
embedded into MCICT for example.

78 2. EXTENSIONS OF SYSTEM F WITH MONOTONE (CO)INDUCTIVE TYPES

Zehn Ziegen zogen zehn Zentner Zucker zum Zoo.

Deutscher Zungenbrecher

Y cada fin de semana queda el negrito con la ucra-
niana, y bailan polka y pasito, y soplan vodka y mojito
y vuelven trompas por la mañana.

La Casa por la ventana
Joaquin Sabina.

3
Monotone and Clausular (Co)inductive

Definitions

We come to the main contribution of this work, an extension of AF2 with a
special kind of (co)inductive definitions, namely full-monotone (co)inductive
definitions given by clauses, feature which simplifies the mechanism of defini-
tion as well as the syntactical shape of the monotonicity witnesses.
Although the extension was designed having in mind the Curry-Howard corres-
pondence starting from the type system MCICT, instead of the terminology of
category theory, we use here that of fixed-point theory, which is more usual in
logical systems with first-order objects.

3.1 Fixed-Point Theory

Let us recall the basic definitions of fixed-point theory.

Definition 3.1 Let P(A) be the power of the set A. A function Γ : P(A) →
P(A) is called an operator over A. Such operator is monotone if X ⊆ Y ⊆ A
implies Γ(X) ⊆ Γ(Y).

Definition 3.2 Let Γ : P(A)→ P(A) be an operator. A subset K ⊆ A is called

◦ Γ-closed or pre-fixed point of Γ if Γ(K) ⊆ K.

◦ Γ-supported or post-fixed point of Γ if K ⊆ Γ(K)

◦ fixed point of Γ if Γ(K) = K

79

80 3. MONOTONE AND CLAUSULAR (CO)INDUCTIVE DEFINITIONS

◦ Γ-inductive if it is included in every pre-fixed point of Γ, i.e. if Γ(X) ⊆ X
implies K ⊆ X.

◦ Γ-coinductive if it contains every post-fixed point of Γ, i.e. if X ⊆ Γ(X)
implies X ⊆ K

Lemma 3.1 The following holds:

◦ There is at most one inductive pre-fixed point and at most one coinductive-
post-fixed point.

◦ Inductive pre-fixed points and coinductive post-fixed points of monotone
operators are fixed points.

Proof. Clear a

The previous lemma implies that an inductive (coinductive) fixed point is a
least (greatest) fixed point of an operator.

Theorem 3.1 (Knaster-Tarski) Every monotone operator has an inductive
and a coinductive fixed point.
Proof. Straightforward. a

Extensions of AF2 with least fixed-point primitive constructors have been de-
veloped in [Par92, Mir02]. An extension of AF2 with both least and greatest
fixed-point primitive constructors can be found in [Raf94].

3.2 The Logic MCICD

In this section we present an extension of AF2∧,∨ with monotone and clausular
inductive and coinductive predicates.

Definition 3.3 A clause is a tuple

〈F , � 1, . . . , � m〉

such that F is a predicate of arity m and � i are given unary function symbols
associated to F called tags. The arity of a clause is the arity of its defining
predicate F , which is also the number of tags in that clause. Clauses will be
denoted with the letters Ci,Dj .

The following notation will be useful:

If Ci = 〈Fi, � i
1, . . . , � i

m〉 we set

~� i := � i
1, . . . , � i

m,

and if ~t := t1, . . . , tm, we define

~� i~t := � i
1t1, . . . , � i

mtm.

3.2. THE LOGIC MCICD 81

Definition 3.4 An expression of the form

µX(C1, . . . , Ck),

where Ci := 〈Fi, ~� i〉 and X and all the k clauses have the same arity m, is called
an inductive predicate. The arity of an inductive predicate is the arity of the
variable X. In this case the tags of a clause are called constructors. Analogously
a coinductive predicate is an expression of the form

νX(D1, . . . ,Dk)

and we speak of destructors instead of tags.

The predicate µX(C1, . . . , Ck) represents the least fixed point of the operator
generated by F1 ∨ . . . ∨ Fk via the constructors ~� 1, . . . , ~� k. Analogously the
predicate νX(D1, . . . ,Dk) represents the greatest fixed point of the operator
generated by F1 ∧ . . . ∧ Fk via the destructors ~� 1, . . . , ~� k. The inference rules
below will make this intuition clear.

We fix some notation:

F ∧ G := λ~z.F~z ∧ G~z
F ∨ G := λ~z.F~z ∨ G~z
K~�

i := λ~y.K(~� i~y)
F ⊆ G := ∀~y.F~y → G~y

F monX := ∀X∀Y.X ⊆ Y → F ⊆ F [X := Y]

The (co)inductive definitions µX(C1, . . . , Ck), νX(D1, . . . ,Dk) where Ci :=

〈Fi, ~� i〉 and Di := 〈Gi, ~�
i〉 are ruled by:

◦ Folding of the Least Fixed Point: for 1 ≤ j ≤ k

Γ ` � r : Fj [X := µX(C1, . . . , Ck)]~t

Γ ` � ink,j r : µX(C1, . . . , Ck)~� j~t
(µI)

◦ Iteration:

Γ ` � r : µX(C1, . . . , Ck)~r
Γ ` � mi : FimonX, 1 ≤ i ≤ k
Γ ` � si : Fi[X := K] ⊆ K~�

i , 1 ≤ i ≤ k

Γ ` � Itk(~m,~s, r) : K~r
(µE)

◦ Primitive Recursion:

Γ ` � r : µX.(C1, . . . , Ck)~r
Γ ` � mi : FimonX, 1 ≤ i ≤ k
Γ ` � si : Fi[X := µX(C1, . . . , Ck) ∧ K] ⊆ K~�

i , 1 ≤ i ≤ k

Γ ` � Reck(~m,~s, r) : K~r
(µE+)

82 3. MONOTONE AND CLAUSULAR (CO)INDUCTIVE DEFINITIONS

◦ Coiteration:

Γ ` � r : K~t
Γ ` � mi : GimonX, 1 ≤ i ≤ k

Γ ` � si : K ⊆ Gi[X := K]
~�
i , 1 ≤ i ≤ k

Γ ` � CoItk(~m,~s, r) : νX(D1, . . . ,Dk)~t
(νI)

◦ Primitive Corecursion:

Γ ` � r : K~t
Γ ` � mi : GimonX, 1 ≤ i ≤ k

Γ ` � si : K ⊆ Gi[X := νX(D1, . . . ,Dk) ∨ K]
~�
i , 1 ≤ i ≤ k

Γ ` � CoReck(~m,~s, r) : νX(D1, . . . ,Dk)~t
(νI+)

◦ Folding of the Greatest Fixed Point (Inversion):

Γ ` � ri : Gi[X := νX(D1, . . . ,Dk)]~
�

i~t, 1 ≤ i ≤ k
Γ ` � mi : Gi monX, 1 ≤ i ≤ k

Γ ` � out−1
k (~m,~r) : νX(D1, . . . ,Dk)~t

(νI i)

◦ Unfolding of the Greatest Fixed Point: for 1 ≤ j ≤ k

Γ ` � r : νX(D1, . . . ,Dk)~t

Γ ` � outk,j r : Gj [X := νX(D1, . . . ,Dk)]~
�

j~t
(νE)

The reader may have noticed that the symmetry between the inductive and
coinductive parts is lost because we did not give a rule for unfolding of the least
fixed point (inductive inversion) like we did for the corresponding type system
MCICT. This rule, having a bad reduction behaviour, would produce more pro-
blems than benefits, its main application — to define inductive destructors (like
the predeccesor in naturals), can be achieved in a satisfactory way with the rule
for primitive recursion. In contrast the rule for coinductive inversion has a good
reduction behaviour and it is neccesary to obtain coinductive constructors (like
the cons function on streams) in an optimal way.

The proof-reduction is given by the following β-reduction rules between
proof-terms:

3.2. THE LOGIC MCICD 83

Itk(~m,~s, ink,i t) 7→β si

(
mi

(
λx.Itk(~m,~s, x)

)
t
)

Reck(~m,~s, ink,i t) 7→β si

(
mi

(
〈Id, λz.Reck(~m,~s, z)〉

)
t
)

outk,i CoItk(~m,~s, t) 7→β mi

(
λz.CoItk(~m,~s, z)

)
(sit)

outk,i CoReck(~m,~s, t) 7→β mi

(
[Id, λz.CoReck(~m,~s, z)]

)
(sit)

outk,i out−1
k (~m,~t) 7→β mi(λz.z)ti

These rules are obtained, as usual, by normalizing proofs which contain
consecutive ocurrences of an introduction and elimination rule for the same
formula constructor. They also have a categorical interpretation which was
discussed in section 2.1.2.

The described logical system will be called MCICD, a system of Monotone
and Clausular Inductive and Coinductive Definitions.

Definition 3.5 Given an inductive predicate µX(C1, . . . , Ck) with Ci := 〈Fi, ~� i〉,
we define the closure, induction and strong induction axioms for µX(C1, . . . , Ck)
as follows1:

ClµX(C1,...,Ck),i := Fi[X := µX(C1, . . . , Ck)] ⊆ (µX(C1, . . . , Ck))~�
i

IndµX(C1,...,Ck) := ∀Z. F1 monX, . . . ,Fk monX,
F1[X := Z] ⊆ Z ~�

1 , . . . ,Fk[X := Z] ⊆ Z ~�
k

→ µX(C1, . . . , Ck) ⊆ Z

Ind
+

µX(C1,...,Ck) := ∀Z. F1 monX, . . . ,Fk monX,

F1[X := µX(C1, . . . , Ck) ∧ Z] ⊆ Z ~�
1 ,

...
Fk[X := µX(C1, . . . , Ck) ∧ Z] ⊆ Z ~�

k

→ µX(C1, . . . , Ck) ⊆ Z

Analogously, given a coinductive predicate νX(D1, . . . ,Dk) with Di := 〈Gi, ~�
i〉,

we define the coclosure, coinduction and inversion axioms for νX(D1, . . . ,Dk)

1Recall that A1, . . . , Ak → B means A1 → . . . → Ak → B.

84 3. MONOTONE AND CLAUSULAR (CO)INDUCTIVE DEFINITIONS

as follows:

CoClνX(D1,...,Dk),i := νX(D1, . . . ,Dk) ⊆ (Gi[X := νX(D1, . . . ,Dk)])
~�
i

CoIndνX(D1,...,Dk) := ∀Z. G1 mon X, . . . ,Gk monX,

Z ⊆ G1[X := Z]
~�
1 , . . . , Z ⊆ Gk[X := Z]

~�
k

→ Z ⊆ νX(D1, . . . ,Dk)

CoInd
+

νX(D1,...,Dk) := ∀Z. G1 mon X, . . . ,Gk monX,

Z ⊆ G1[X := νX(D1, . . . ,Dk) ∨ Z]
~�
1 ,

...

Z ⊆ Gk[X := νX(D1, . . . ,Dk) ∨ Z]
~�
k

→ Z ⊆ νX(D1, . . . ,Dk)

InvνX(D1,...,Dk) := ∀~z. G1 mon X, . . . ,Gk monX,

G1[X := νX(D1, . . . ,Dk)]~
�
1~z,

...

Gk[X := νX(D1, . . . ,Dk)] ~
�

k~z
→ νX(D1, . . . ,Dk)~z

Proposition 3.1 The following holds:

` λx. ink,j x : ClµX(C1,...,Ck),j

` λ~mλ~x.λz.Itk(~m, ~x, z) : IndµX(C1,...,Ck)

` λ~mλ~x.λz.Reck(~m, ~x, z) : Ind
+

µX(C1,...,Ck)

` λx. outk,j x : CoClνX(D1,...,Dk),j

` λ~mλ~x.λz.CoItk(~m, ~x, z) : CoIndνX(D1,...,Dk)

` λ~mλ~x.λz.CoReck(~m, ~x, z) : CoInd+

νX(D1,...,Dk)

` λ~mλ~z. out−1
k (~m,~z) : InvνX(D1,...,Dk)

Proof. Straightforward. a

The pet examples of (co)inductive predicates are the natural numbers and the
streams of elements of a given set A:

3.2. THE LOGIC MCICD 85

Natural Numbers in MCICD

Given the unit predicate
�

with X /∈ FV (
�
) whose unique inhabitant is an

object ? (see page 145) and two unary function symbols 0g, s we define the
predicate of natural numbers as

�
:= µX

(
〈

�
, 0g〉, 〈X, s〉

)

The closure axioms are:

◦ Cl � ,1 := ∀x.
�
x→

�
0gx

◦ Cl � ,2 := ∀x.
�
x→

�
sx

The first axiom is reminiscent of the use of global elements in category theory,
we do not have a 0-ary constructor 0 but a unary constructor 0g representing a
global zero. Observe that as

�
only has one inhabitant the axiom Cl � ,1 implies

that
�
(0g?), Now we define 0 := 0g? so that

�
0 holds.

The induction axiom is:

Ind � := ∀Z.
�

mon X, X mon X,
�
⊆ Z0g , Z ⊆ Zs →

�
⊆ Z

It is easy to see that the monotonicity hypothesis are trivially derivable (see
section 3.4), therefore the axiom Ind � implies the following formula:

∀Z.Z0, (∀x.Zx→ Zsx)→
�
⊆ Z

which is the usual induction axiom for natural numbers.
Analogously the strong induction axiom

Ind
+

� := ∀Z.
�

monZ, Z monZ,
�
⊆ Z0g ,

�
∧ Z ⊆ Zs →

�
⊆ Z

implies the usual strong induction axiom for the natural numbers:

∀Z.Z0, (∀x.
�
x ∧ Zx→ Zsx)→

�
⊆ Z

Streams in MCICD

Given a predicateA such that X /∈ FV (A) and unary function symbols head, tail
we define the predicate of streams of elements of A as

SA := νX
(
〈A, head〉, 〈X, tail〉

)

The coclosure axioms are:

◦ CoclSA,1 := ∀x.SAx→ A headx

◦ CoclSA,2 := ∀x.SAx→ SA tail x

86 3. MONOTONE AND CLAUSULAR (CO)INDUCTIVE DEFINITIONS

These axioms show how a stream can be destructed.

The coinduction axiom is

CoIndSA
:= ∀Z.AmonX, X monX, Z ⊆ Ahead, Z ⊆ Ztail → Z ⊆ SA

which implies the usual one:

∀Z.Z ⊆ Ahead, Z ⊆ Stail
A → Z ⊆ SA

i.e.,

∀Z.(∀x.Zx→ A headx), (∀x.Zx → SA tail x)→ ∀x.Zx→ SAx

Analogously the strong coinduction axiom

CoCl
+

SA
:= ∀Z.Amon X, X monX, Z ⊆ Ahead, Z ⊆ (SA ∨ Z)tail → Z ⊆ SA

implies the usual one

∀Z.Z ⊆ Ahead, Z ⊆ (SA ∨ Z)tail → Z ⊆ SA

The usual axioms are easily obtained because the monotonicity assumptions
are derivable in an automatic way as we will see in section 3.4.

Subject Reduction

To get this property we just had to simplify the proof for MCICD? given in
section 4.1.3.

3.3 Strong Normalization of MCICD

We use again a first-order forgetful map on formulas as embedding, obtained by
extending the embedding for AF2∧,∨ (see pages 29,30) as follows:

µX(C1, . . . , Ck)~t ′ := µX(F ′
1, . . . ,Fk)

νX(D1, . . . ,Dk)~t ′ := νX(F ′
1, . . . ,F

′
k)

where if Ci := 〈Fi, ~� i〉 and Fi := λ~y.G then F ′
i := G′.

The details of the proof are left to the reader.

3.4. CANONICAL MONOTONICITY WITNESSES 87

3.4 Canonical Monotonicity Witnesses

This section is esentially the same as section 2.3.4. Nevertheless as we have now
first-order objects we repeat here some details.

Definition 3.6 (Antimonotonicity) Given an inductive predicate F and a
variable X, we define the formula F mon− X as:

F mon− X := ∀X.∀Y.(X ⊆ Y)→ F [X := Y] ⊆ F

Definition 3.7 (Generic (Anti)monotonicity Witnesses) We define the fo-
llowing MITC-terms:

◦ � id := λxx

◦ � triv := λfλx.x

◦ � → := λm1λm2λfλxλy.m2f(x(m1fy))

◦ � ∀ := λmλfλx.mfx

◦ � ∧ := λm1λm2λfλx.〈m1f(xπ1), m2f(xπ2)〉

◦ � ∨ := λm1λm2λfλx.case(x, y. inl m1fy, z. inr m2fz)

◦ � k
µ := λ~mλ~nλfλx.Itk(~m,~s, x), where si := λz. ink,i(nifz).

◦ � k
ν := λ~mλ~nλfλx. out−1

k (~m,~s) where si := nif outk,i x.

Proposition 3.2 We have the following derivations:

◦ ` � id : (λ~y.X~t) monX

◦ If X /∈ FV (F) then ` � triv : (λ~yF) monX and ` � triv : (λ~yF) mon− X

◦ ` � → : (λ~yA) mon− X → (λ~yB) mon X → (λ~y.A→ B) monX
` � → : (λ~yA) monX → (λ~yB) mon− X → (λ~y.A→ B) mon− X

◦ If ξ is a first or second-order variable, but the same on every formula then:
` � ∀ : (∀ξ.(λ~yA) monX)→ (λ~y.∀ξA) monX
` � ∀ : (∀ξ.(λ~yA) mon− X)→ (λ~y.∀ξA) mon− X

◦ ` � ∧ : (λ~yA) mon X → (λ~yB) monX → (λ~y.A ∧ B) monX
` � ∧ : (λ~yA) mon− X → (λ~yB) mon− X → (λ~y.A ∧B) mon− X.

◦ ` � ∨ : (λ~yA) mon X → (λ~yB) monX → (λ~y.A ∨ B) monX
` � ∨ : (λ~yA) mon− X → (λ~yB) mon− X → (λ~y.A ∨B) mon− X.

88 3. MONOTONE AND CLAUSULAR (CO)INDUCTIVE DEFINITIONS

◦ If Ci := 〈λ~yBi, ~� i〉 then

` � k
µ : (∀X.(λ~yBi) mon Z)→ (∀Z.(λ~yBi) monX)

→ (λ~y.µZ(C1, . . . , Ck)~t) monX
` � k

µ : (∀X.(λ~yBi) mon Z)→ (∀Z.(λ~yBi) mon− X)

→ (λ~y.µZ(C1, . . . , Ck)~t) mon− X

◦ If Di := 〈λ~yBi, ~�
i〉 then

` � k
ν : (∀X.(λ~yBi) monZ)→ (∀Z.(λ~yBi) monX)

→ (λ~y.νZ(D1, . . . ,Dk)~t) mon X
` � k

ν : (∀X.(λ~yBi) monZ)→ (∀Z.(λ~yBi) mon− X)

→ (λ~y.νZ(D1, . . . ,Dk)~t) mon− X

Proof. Straightforward a

Corollary 3.1 (Derived Rules for (Anti)monotonicity) The following rules
are derivable:

◦ Γ ` � id : (λ~y.X~t) monX

◦ If X /∈ FV (F) then Γ ` � triv : (λ~yF) monX and Γ ` � triv : (λ~yF) mon− X

◦ If Γ ` m1 : (λ~yA) mon− X and Γ ` m2 : (λ~yB) mon X then

Γ ` � →m1m2 : (λ~y.A→ B) mon X

◦ If Γ ` m1 : (λ~yA) mon X and Γ ` m2 : (λ~yB) mon− X then

Γ ` � →m1m2 : (λ~y.A→ B) mon− X

◦ If ξ is a first or second-order variable, but the same in every formula then:

Γ ` t : ∀ξ.(λ~yA) monX implies Γ ` � ∀t : (λ~y.∀ξA) mon X

Γ ` t : ∀ξ.(λ~yA) mon− X implies Γ ` � ∀t : (λ~y.∀ξA)) mon− X

◦ If Γ ` m1 : (λ~yA) mon X and Γ ` m2 : (λ~yB) mon X then

Γ ` � ∧m1m2 : (λ~y.A ∧ B) monX

◦ If Γ ` m1 : (λ~yA) mon− X and Γ ` m2 : (λ~yB) mon− X then

Γ ` � ∧m1m2 : (λ~y.A ∧ B) mon− X

3.4. CANONICAL MONOTONICITY WITNESSES 89

◦ If Γ ` m1 : (λ~yA) monX and Γ ` m2 : (λ~yB) mon X then

Γ ` � ∨m1m2 : (λ~y.A ∨ B) monX

◦ If Γ ` m1 : (λ~yA) mon− X and Γ ` m2 : (λ~yB) mon− X then

Γ ` � ∨m1m2 : (λ~y.A ∨ B) mon− X

◦ If Γ ` mi : (∀X.(λ~yBi) monZ), Γ ` ni : (∀Z.(λ~yBi) monX) and Ci :=
〈λ~yBi, ~� i〉, then

Γ ` � k
µ ~m~n : (λ~y.µZ(C1, . . . , Ck)~t) mon X

◦ If Γ ` mi : (∀X.(λ~yBi) mon Z), Γ ` ni : (∀Z.(λ~yBi) mon− X) and Ci :=
〈λ~yBi, ~� i〉, then

Γ ` � k
µ ~m~n : (λ~y.µZ(C1, . . . , Ck)~t) mon− X

◦ If Γ ` mi : (∀X.(λ~yBi) monZ), Γ ` ni : (∀Z.(λ~yBi) mon X) and Di :=

〈λ~yBi, ~�
i〉, then

Γ ` � k
ν ~m~n : (λ~y.νZ(D1, . . . ,Dk)~t) mon X

◦ If Γ ` mi : (∀X.(λ~yBi) mon Z), Γ ` ni : (∀Z.(λ~yBi) mon− X) and Di :=

〈λ~yBi, ~�
i〉, then

Γ ` � k
ν ~m~n : (λ~y.νZ(D1, . . . ,Dk)~t) mon− X

Proof. Trivial a

Definition 3.8 We will write Γ `can m : ∀~ξ.F monX if m was obtained from
Γ by one of the rules of the previous corollary (possibly using also the rules for
universal quantifiers). We say that a monotonicity witness m is canonical if
`can m : F mon X.

The following proposition corresponds to proposition 2.14.

Proposition 3.3 (First Functor Law) If Γ `can m : ∀~ξ.F monX and
Γ `can m− : ∀~χ.G mon− X then m and m− satisfy the first functor law in
MCICTη, that is:

m(λz.z)→?
βη λy.y m−(λz.z)→?

βη λy.y

Proof. Induction on `can. The cases for (∀I), (∀E) are trivial from the IH, the
other cases can be distinguished according to the form of F .

90 3. MONOTONE AND CLAUSULAR (CO)INDUCTIVE DEFINITIONS

◦ Case F ≡ X~t. We have m ≡ � id ≡ λx.x. Therefore

m(λz.z) ≡ (λx.x)(λz.z)→β λz.z =α λy.y

◦ Case X /∈ FV (F). Then m ≡ m− ≡ � triv ≡ λf.λx.x. Therefore

m(λz.z) ≡ m−(λz.z) ≡ (λf.λx.x)(λz.z) →β λx.x =α λy.y

◦ Case F ≡ A → B. We have Γ `can m1 : (λ~yA) mon− X, Γ `can m2 :
(λ~yB) monX and m ≡ � →m1m2. By IH we have mi(λz.z)→?

βη λu.u, i =
1, 2. Therefore

m(λz.z) ≡ � →m1m2(λz.z) ≡
(λm1.λm2.λf.λx.λy.m2f(x(m1fy)))m1m2(λz.z)→?

β

λx.λy.m2(λz.z)(x(m1(λz.z)y))→?
βη λx.λy.(λu.u)(x(m1(λz.z)y))→?

βη

λx.λy.(λu.u)(x((λu.u)y)) →?
β λx.λy.xy →η λx.x =α λy.y

The subcase for m− is analogous.

◦ Case F ≡ ∀ξA. Then m− ≡ � ∀m1 with Γ `can m1 : ∀ξ.(λ~y.A) mon− X ,
by IH we have m1(λz.z)→?

βη λu.u. Therefore

m−(λz.z) ≡ � ∀m1(λz.z) ≡ (λm.λfλx.mfx)m1(λz.z)→?
β

λx.m1(λz.z)x→?
βη λx.(λu.u)x →β λx.x =α λy.y

The subcase for m is analogous.

◦ Case F ≡ A ∧ B. Then m ≡ � ∧m1m2 with Γ `can m1 : (λ~yA) monX,
Γ `can m2 : (λ~yB) monX . By IH we have mi(λz.z) →?

βη λu.u, i = 1, 2.
Therefore

m(λz.z) ≡ � ∧m1m2(λz.z) ≡
(λm1.λm2.λf.λx.〈m1f(xπ1), m2f(xπ2)〉)m1m2(λz.z)→?

β

λx.〈m1(λz.z)(xπ1), m2(λz.z)(xπ2)〉 →
?
β λx.〈(λu.u)(xπ1), (λu.u)(xπ2)〉 →

?
β

λx.〈xπ1, xπ2〉 →η λx.x =α λy.y

The subcase for m− is analogous.

◦ Case F ≡ µZ(C1, . . . , Ck)~t. Then m ≡ � k
µ ~m~n with

Γ `can mi : ∀X.(λ~yBi) monZ, Γ `can ni : ∀Z.(λ~yBi) monX.

By IH we have ni(λz.z) →?
βη λu.u.

m(λz.z) ≡ � k
µ ~m~n(λz.z) ≡ (λ~m.λ~y.λf.λx.Itk(~m,~s, x))~m~n(λz.z)→?

β

(λf.λx.Itk(~m,~s, x))(λz.z) ≡ (λf.λx.Itk(~m, (λw. ink,i(nifw)), x))(λz.z)
→β λx.Itk(~m, (λw. ink,i(ni(λz.z)w)), x)→?

βη λx.Itk(~m, (λw. ink,i((λu.u)w)), x)

→β λx.Itk(~m, (λw. ink,i w), x) ≡ λx.Itk(~m, � k
1 . . . � k

k, x)→η λx.x =α λy.y

3.4. CANONICAL MONOTONICITY WITNESSES 91

◦ Case F ≡ νX(D1, . . . ,Dk)~t. Then m ≡ � k
ν ~m~n with

Γ `can mi : ∀X.(λ~yBi) monZ, Γ `can ni : ∀Z.(λ~yBi) monX.

By IH we have ni(λz.z) →?
βη λu.u.

m(λz.z) ≡ � k
ν ~m~n(λz.z) ≡

(
λ~m.λ~n.λf.λx. out−1

k (~m,~s)
)
~m~n(λz.z)→?

β(
λf.λx. out−1

k (~m,~s)
)
(λz.z) ≡

(
λf.λx. out−1

k (~m, nif outk,i x)
)
(λz.z)

→β λx. out−1
k (~m, ni(λz.z)(outk,i x))→?

βη λx. out−1
k (~m, (λu.u)(outk,i x))

→β λx. out−1
k (~m, outk,i x) ≡ λx. out−1

k (~m, � k
1x, . . . , � k

kx)→η λx.x =α λy.y

a
The following proposition implies that our framework includes all positive

definitions.

Proposition 3.4 If X ocurrs positively in F then there exists an m such that
`can m : F mon X.
Proof. This well-known fact is proved by induction on F . a

92 3. MONOTONE AND CLAUSULAR (CO)INDUCTIVE DEFINITIONS

Je weniger die Leute davon wissen, wie Würste und
Gesetze gemacht werden, desto besser schlafen sie.

Otto von Bismarck (1815-1898).

En el ll-Ahau es cuando salió Ah mucen cab a poner
vendas en los ojos de Oxlahun ti ku, Trece-deidad...

Poema maya.

4
Realizability for MCICD

Realizability has been used extensively in proof theory to prove consistency and
proof-theoretical strength of logical systems (see [Tro98]) and recently also as
a tool in computer science to extract programs from proofs (see for example
[Ber93, BBS02, Tat93, KrPa90]).
Realizability interpretations are given by saying what it means for computa-
tional objects of some kind to realize logical formulas. In our case the compu-
tational objects (programs) are modelled by terms taken from the type system
MCICT− whereas the specifications are formulas of the logic MCICD. The con-
cept ”the program t realizes the specification A” will be formalized by means of
a new formula t r A, which belongs to an extended logic MCICD?.

4.1 The Logic MCICD?

MCICD? is an extension of MCICD over the term system MCICT− and with first
order existential formulas and restricted formulas.

4.1.1 Definition of the Logic

We extend MCICD as follows:

◦ We add first-order existential and restricted formulas (defined below)

◦ We extend the term system to MCICT−.

◦ Tags in clauses can be either function symbols (considered as constants
added to MCICT−) or closed terms of MCICT−.

93

94 4. REALIZABILITY FOR MCICD

Existential Formulas

Existential formulas are ruled by:

Γ ` � t : A[x := s]

Γ ` � pack t : ∃xA
(∃I)

Γ ` � t : ∃xA Γ, z : A[x := u] ` � r : B

Γ ` � open(t, z.r) : B
(∃E)

where in the (∃E) rule, u /∈ FV (Γ, B, ∃xA).

Proof reduction is given by the following β-reduction rule:

open(pack t, z.r) 7→β r[z := t]

The reader may have noticed that the rules for existential formulas are given
only in partial Curry-style, i.e. the rules are traceable. The reason is that the
rules in full Curry-style will cause the subject reduction property to fail, as in
the following example:

The rules for existential in full Curry-style are:

Γ ` � t : A[x := s]

Γ ` � t : ∃xA
(∃I ′)

Γ ` � t : ∃xA Γ, z : A[x := u] ` � r : B

Γ ` � r[z := t] : B
(∃E′)

where in the (∃E′) rule, u /∈ FV (Γ, B, ∃xA).

Take Γ = {x : ∀x.C → C → A, y : B → ∃xC, z : B} with x /∈ FV (A, B) and
therefore x /∈ FV (Γ). We have

Γ ` (λuu)yz : ∃xC Γ, v : C `: xvv : A.

Therefore by (∃E′) we get

Γ `
(
xvv

)
[v := (λuu)yz] : A

that is,

Γ ` x
(
(λuu)yz

)(
(λuu)yz

)
: A.

We have x
(
(λuu)yz

)(
(λuu)yz

)
→β x

(
(λuu)yz

)(
yz

)
, but

Γ 6` x
(
(λuu)yz

)(
yz

)
: A

This can be seen because due to the variable condition we cannot get neither
Γ ` x : ∃xC → ∃xC → A nor Γ ` (λuu)yz : C, Γ ` yz : C.

Restricted Formulas

We will need Parigot’s restriction to be able to formulate realizability for dis-
junctions:

4.1. THE LOGIC MCICD
? 95

Restricted formulas are expressions of the form

A�s1 = t1, . . . , sk = tk

The restricted formula represents a conjunction

A ∧ s1 = t1 ∧ . . . ∧ sk = tk.

Restriction behaves according to the following rules, where we abbreviate
the sequence of equations as ~s = ~t:

Γ ` � r : A Γ ` � ~s = ~t

Γ ` � r : A�~s = ~t
(�I)

Γ ` � r : A�~s = ~t

Γ ` � r : A
(�E)

Observe that the treatment of equalities cannot be independent in this sys-
tem as before, because now we have equalities inside restricted formulas which
may appear in a context Γ. The notation Γ ` � s = t ocurring in the (Eq) rule
means now a derivation obtained with the above rules, the derived rules given
in page 27 or the following rule:

Γ ` � r : A�~s = ~t

Γ ` � si = ti
(�ER)

We fixed now a basic context of equalities:

�
β := {t = r | t→β r or r →β t},

Therefore we have β-equality but only for one-step reduction.
Unless stated otherwise, while working in MCICD?, we will write ` for ` �

β
.

4.1.2 Strong Normalization of MCICD?

This is proven as for MCICD by an embedding into MCICT−. The case for
restricted formulas being: (

A�~s = ~t
)′

:= A′

4.1.3 Subject Reduction for MCICD?

In this section we prove subject reduction for MCICD? the proof is based in
both Krivine’s Proof for system F (see [Kri93]) and the proof for Rafalli’s sys-
tem AF2µν (see [Raf94]). MCICD? is the most complex system in this work, the
subject-reduction of the source logic MCICD and of the type system MCICT can
be easily achieved by adapting (simplifying) the proof in this section.

96 4. REALIZABILITY FOR MCICD

We fix some notation, if Γ = {x1 : A1, . . . , xk : Ak} then

Γ[γ := χ] := {x1 : A1[γ := χ], . . . , xk : Ak[γ := χ]}.

Γ[~y/~x] := {y1 : A1, . . . , yk : Ak}.

Definition 4.1 If Π is a derivation of Γ ` � r : A we will denote with Π[γ := χ]
the derivation obtained by substituting every judgement ∆ ` � ′ s : B in Π with
∆[γ := χ] ` � ′[γ:=χ] s : B[γ := χ].

The next lemma shows that Π[γ := χ] is indeed a derivation of

Γ[γ := χ] ` � [γ:=χ] r : A[γ := χ].

Moreover the proof implies that the structure of such derivation remains the
same, i.e. if ∆ ` s : B was obtained by the inference rule R within Π then
∆[γ := χ] ` � [γ:=χ] s : B[γ := χ] is also obtained by R in Π[γ := χ].

Lemma 4.1 (Substitution Properties for Derivations) The following pro-
perties hold:

◦ If Γ, x1 : A1, . . . , xk : Ak ` � r : B and Γ ` � si : Ai then

Γ ` � r[~x := ~s] : B. (Dsp1)

◦ If Π is a derivation of Γ ` t : A then Π[x := r] is a derivation of

Γ[x := r] ` � [x:=r] t : A[x := r]. (Dsp2)

◦ If Π is a derivation of Γ ` t : A then Π[X := F] is a derivation of

Γ[X := F] ` � t : A[X := F]. (Dsp3)

◦ If Γ ` � r : A then

Γ[~y/~x] ` � r[~x := ~y] : A. (Dsp4)

◦ If Γ ` � s = t and Γ, x : A[x := s] ` � r : B[x := s] then

Γ, x : A[x := t] ` � r : B[x := t]. (Dsp5)

Proof.

◦ (Dsp1). Induction on Γ, x1 : A1, . . . , xk : Ak ` r : B.
Simultaneously we need to prove that if Γ, x : 1 : A1, . . . , xk : Ak ` � s = t
and Γ ` � si : Ai then Γ ` � s = t.

◦ (Dsp2). Induction on `. Simultaneosly we need to prove that if Γ ` � s = t
then Γ[x := r] ` � [x:=r] s[x := r] = t[x := r].

4.1. THE LOGIC MCICD
? 97

◦ (Dsp3). Induction on `. Proving simultaneouly that if Γ ` � s = t then
Γ[X := F] ` � s = t.

◦ (Dsp4). Induction on `. Proving simultaneously that if Γ ` � s = t then
Γ[~y/~x] ` � s = t.

◦ (Dsp5). By weakening we have Γ, x : A[x := s] ` � s = t, therefore using
(Eq) we get Γ, x : A[x := s] ` � r : B[x := t] and again by weakening we
have

Γ, y : A[x := t], x : A[x := s] ` � r : B[x := t].

Next observe that from the trivial Γ, y : A[x := t] ` � y : A[x := t] we get
by (Eq) (weakening needed again in the equality derivation)

Γ, y : A[x := t] ` � y : A[x := s],

Applying (Dsp1) we conclude

Γ, y : A[x := t] ` � r[x := y] : B[x := t],

Finally (Dsp4) yields Γ, x : A[x := t] ` � r : B[x := t].

a

Definition 4.2 Given a formula A, a context Γ and an equational context
�

we define the set CΓ, � (A) of Γ,
�
-instances of A as the least class of formulas

such that:

◦ A ∈ CΓ, � (A) (I1)

◦ If B ∈ CΓ, � (A) and x /∈ FV (Γ,
�
) then B[x := t] ∈ CΓ, � (A). (I2)

◦ If B ∈ CΓ, � (A) and X /∈ FV (Γ) then B[X := F] ∈ CΓ, � (A). (I3).

◦ If B[x := r] ∈ CΓ, � (A) and Γ ` � r = s then B[x := s] ∈ CΓ, � (A). (I4)

To prove an inclusion between two sets of Γ,
�
-instances say CΓ, � (A) ⊆

CΓ, � (B) we will use the minimality of the class CΓ, � (A). Therefore it suffices to
show that the four defining properties of CΓ, � (A) hold for CΓ, � (B). But I2− I4
obviously hold for CΓ, � (B), for they are also part of its definition. Therefore we
only need to prove (I1) in detail, namely that A ∈ CΓ, � (B). This remark will
be useful to prove the following

Lemma 4.2 (Properties of CΓ, �) The following properties hold:

1. If x /∈ FV (Γ,
�
) then CΓ, � (B[x := s]) ⊆ CΓ, � (B).

2. If X /∈ FV (Γ) then CΓ, � (B[X := F]) ⊆ CΓ, � (B).

3. If Γ ` � r = s then CΓ, � (B[x := s]) ⊆ CΓ, � (B[x := r]).

98 4. REALIZABILITY FOR MCICD

Proof. We will use the previous remark.

1. By I1, B ∈ CΓ, � (B) which implies, as x /∈ FV (Γ,
�
), that B[x := s] ∈

CΓ, � (B).

2. By I1, B ∈ CΓ, � (B) which implies, as X /∈ FV (Γ), that B[X := F] ∈
CΓ, � (B).

3. By I1, B[x := r] ∈ CΓ, � (B[x := r]) which implies, as Γ ` � r = s, with I4,
that B[x := s] ∈ CΓ, � (B[x := r]).

a

Definition 4.3 A formula A is an open formula if it is neither an universal
quantification nor a restricted formula. The interior of a formula A, denoted
A◦ is defined as follows:

A◦ := A, if A is open.
(∀γA)◦ := A◦

(A�~s = ~t)◦ := A◦

Observe that existential formulas ∃xA are open.

Lemma 4.3 A[~x := ~s]◦ = A◦[~x := ~s].
Proof. Induction on A. If A is open then A ≡ A◦ and the claim is obvious.(
(∀γB)[~x := ~s]

)◦
≡ (∀γ.B[~x := ~s])◦ ≡ B[~x := ~s]◦ ≡

IH
B◦[~x := ~s] ≡ (∀γB)◦[~x :=

~s].(
(B�~r = ~t)[~x := ~s]

)◦
≡

(
B[~x := ~s]�~r [~x := ~s] = ~t [~x := ~s]

)◦
≡ B[~x := ~s]◦ ≡

IH

B◦[~x := ~s] ≡ (B�~r = ~t)◦[~x := ~s]. a

Lemma 4.4 B[X := F]◦ =





B◦[X := F] If B◦ 6= X~t

B◦[X := F◦] If B◦ = X~t

Proof. First assume B◦ = X~t. Then B is either of the form ∀~γ.X~t or ∀~γ.X~t �
~s = ~r . We analize the second case, as the first is easier:

B[X := F]◦ = (∀~γ.X~t�~s = ~r)[X := F]◦ = (∀~γ.(X~t)[X := F]�~s = ~r)◦ =

(∀~γ.F~t �~s = ~r)◦ = (F~t)◦ = F [~y := ~t]◦ = F ◦[~y := ~t] = F◦~t =

(X~t)[X := F◦] = B◦[X := F◦]

For the case B◦ 6= X~t we show B[X := F]◦ = B◦[X := F] by induction on
B.

4.1. THE LOGIC MCICD
? 99

◦ If B is open then B◦ = B. The assumption B◦ 6= X~t implies that B[X :=
F] is of the same form as B, i.e., is also open, therefore

B[X := F]◦ = B[X := F] = B◦[X := F].

◦ If B ≡ ∀γA then B◦ = A◦ 6= X~t and

B[X := F]◦ = (∀γ.A[X := F])◦ = A[X := F]◦ =
IH

A◦[X := F] = B◦[X := F]

◦ If B ≡ A�~s = ~t then B◦ = A◦ 6= X~t. Then

B[X := F]◦ = (A[X := F]�~s = ~t)◦ = A[X := F]◦ =
IH

A◦[X := F] = B◦[X := F]

a

The concept of non-traceable rule is generalized as follows,

Definition 4.4 We say that an inference rule is non-traceable if its application
is not reflected in the proof-term system, i.e. if the proof-term of its conclusion
equals that of its non-equational premiss. In our system the non-traceable rules
are the four rules for ∀, ∀2, the rule for equality (Eq) an the rules for restriction
(� I), (� E). A not non-traceable rule is called traceable.

Lemma 4.5 (Main Lemma) Let Ã be an open formula. If Γ ` � t : Ã is

derived from Γ ` � ? t : A using only non-traceable rules then Ã ∈ CΓ, � (A◦)

Proof. Induction on the number of steps in the derivation of Γ ` � t : Ã from
Γ ` � ? t : A. Case Analysis on the first rule used in that derivation.

◦ (∀I). We have Γ ` � t : Ã from Γ ` � ? t : ∀xA where x /∈ FV (Γ), therefore

by IH we get Ã ∈ CΓ, � ((∀xA)◦). But (∀xA)◦ ≡ A◦ therefore Ã ∈ CΓ, � (A◦).

◦ (∀I2) Analogous to (∀I).

◦ (∀E). We have A ≡ ∀xB. Γ ` � t : Ã is obtained Γ ` � ? t : B[x := s].

Therefore by IH we get Ã ∈ CΓ, � (B[x := s]◦), which by lemma 4.3 is the

same as Ã ∈ CΓ, � (B◦[x := s]). Finally by property 1 of lemma 4.2 as

w.l.o.g. x /∈ FV (Γ) we conclude Ã ∈ CΓ, � (B◦). That is Ã ∈ CΓ, � (A◦).

◦ (∀2E). We have A ≡ ∀XB and after (∀2E),Γ ` � ? t : B[X := F]. By IH

we have Ã ∈ CΓ, � (B[X := F]◦). We have two subcases:

100 4. REALIZABILITY FOR MCICD

– B◦ 6= X~t. Lemma 4.4 implies that B[X := F]◦ = B◦[X := F].

Therefore we have Ã ∈ CΓ, � (B◦[X := F]), which implies by lemma

4.2 part 2, as w.l.o.g. X /∈ FV (Γ), that Ã ∈ CΓ, � (B◦) i.e.,Ã ∈
CΓ, � (A◦)

– B◦ ≡ X~t. Lemma 4.4 yields B[X := F]◦ = B◦[X := F◦]. Hence we

have Ã ∈ CΓ, � (B◦[X := F◦]),which implies by lemma 4.2 part 2, as

w.l.o.g. X /∈ FV (Γ), that Ã ∈ CΓ, � (B◦) i.e.,Ã ∈ CΓ, � (A◦)

◦ (Eq). We have A ≡ B[x := r] and
�

Γ,
� ? ` r = s. Γ ` � t : Ã is obtained

from Γ ` � ? t : B[x := s]. By IH we get Ã ∈ CΓ, � (B[x := s]◦), lemma

4.3 yields Ã ∈ CΓ, � (B◦[x := s]). Finally by property 3 of lemma 4.2, as
�

Γ,
�
` r = s (because

� ? ⊆
�
), we conclude Ã ∈ CΓ, � (B◦[x := r]) which

by lemma 4.3 yields Ã ∈ CΓ, � (B[x := r]◦), i.e., Ã ∈ CΓ, � (A◦).

◦ (�I). we have Γ ` � ? t : A�~s = ~t obtained from Γ ` � ? t : A,
�

Γ,
� ? ` ~s =

~t. The IH yields Ã ∈ CΓ, �
(
(A�~s = ~t)◦

)
, i.e. Ã ∈ CΓ, � (A◦).

◦ (�E). We have A ≡ B�~s = ~t and Γ ` � ? t : B coming from Γ ` � ? t : B�

~s = ~t . The IH yields Ã ∈ CΓ, � (B◦). But B◦ = A◦, therefore we are done.

a

Definition 4.5 A proof-term t is called an I-term if it was generated by an
introduction rule, i.e., I-terms are terms of the following shapes:

λxr, 〈r, s〉, inl r, inr s, pack r, ink,j r, CoItk(~m,~s, r), CoReck(~m,~s, r), out−1
k (~m,~r)

Analogously E-terms are terms generated by an elimination rule, i.e. are terms
of the following shapes:

rs, π1r, π2r, case(r, x, s, y.t), open(r, z.t), Itk(~m,~s, r), Reck(~m,~s, r), outk,j r

Lemma 4.6 (Generation Lemma) If Γ ` � t : A, where A is an open formula
then:

◦ If t is the variable x then there exists a declaration x : B ∈ Γ such that
A ∈ CΓ, � (B◦).

◦ If t is an I-term then Γ ` � t : A is the conclusion of an instance of the
rule generating t.

◦ if t is an E-term then there exists a formula B such that Γ ` � t : B is the
conclusion of the rule generating t and A ∈ CΓ, � (B◦).

Proof. Consider in the derivation Γ ` � t : A the last step where a traceable rule
R occurs, thus R is the rule generating t. Suppose that the conclusion of R is
Γ ` � ? t : B. The main lemma implies that A ∈ CΓ, � (B◦). Case Analysis on t.

4.1. THE LOGIC MCICD
? 101

◦ t ≡ x. Then R is (V ar) and therefore exists x : B ∈ Γ and as mentioned
before A ∈ CΓ, � (B◦).

◦ t is an E-term. This case is immediate as R is the rule generating t.

◦ t is an I-term. Case analysis on the shape of t. We concentrate on
t ≡ ink,j r. In this case R is (µI), B ≡ µY (D1, . . . ,Dl)~� j~r and Γ `
r : Gj [Y := µY (D1, . . . ,Dl)]~r. Clearly B ≡ B◦, therefore A ∈ CΓ, � (B).
Let

C = {(µX(C1, . . . , Ck)~� j~s |Γ ` � r : Fj [X := µX(C1, . . . , Ck)]~s,

for some k, Ci, ~s },

we need to show that A ∈ C. We claim that CΓ, � (B) ⊆ C.

(I1) Obviously B ∈ C.

(I2) Assume R ∈ C and x /∈ FV (Γ,
�
). We have

R[x := t] ≡ (µX(C1, . . . , Ck)~� j~s)[x := t] =

(µX(C1, . . . , Ck)[x := t])~� j~s [x := t].

R ∈ C implies Γ ` r : Fj [X := µX(C1, . . . , Ck)]~s. Next by (Dsp2), as
x /∈ FV (

�
, Γ) we get

Γ ` � r : (Fj [X := µX(C1, . . . , Ck)][x := t])~s [x := t].

Using lemma 1.22 we obtain that

Γ ` � r : Fj [x := t][X := µX(C1, . . . , Ck)[x := t]]~s [x := t],

which is the same as

Γ ` � r : Fj [x := t][X := µX(C1[x := t], . . . , Ck[x := t])~s [x := t].

Therefore R[x := t] ∈ C.

(I3) Assume R ∈ C and Y /∈ FV (Γ). We have

R[Y := K] ≡
(
µX(C1, . . . , Ck)~� j~s

)
[Y := K] ≡

µX
(
C1[Y := K], . . . , Ck[Y := K]

)
~� j~s.

R ∈ C implies Γ ` � r : Fj [X := µX(C1, . . . , Ck)]~s which by (Dsp3)
as Y /∈ FV (Γ), implies

Γ ` � r : Fj [X := µX(C1, . . . , Ck)][Y := K]~s.

102 4. REALIZABILITY FOR MCICD

Using lemma 1.22 we obtain

Γ ` � r : (Fj [Y := K][X := µX(C1, . . . , Ck)[Y := K])~s,

i.e.

Γ ` � r : (Fj [Y := K][X := µX(C1[Y := K], . . . , Ck[Y := K])]~s

Therefore R[Y := K] ∈ C.

(I4) Assume R[x := s] ∈ C and Γ ` � s = t. We have R[x := s] ≡
µX(C1, . . . , Ck)~� j~s with Γ ` � r : Fj [X := µX(C1, . . . , Ck)]~s. As
first order substitutions do not change the shape of the formulas
we also have R ≡ µX(C ′1, . . . , C

′
k)~� j~q such that Ci = 〈F ′

i , ~� i〉 with
F ′

i [x := s] ≡ Fi, ~q [x := s] ≡ ~s. Therefore the above derivation can
be rewritten as Γ ` � r : (F ′

j [X := µX(C′1, . . . , C
′
k)]~q)[x := s], Now

using (Eq) we get Γ ` � r : (F ′
j [X := µX(C′1, . . . , C

′
k)]~q)[x := t] i.e.

Γ ` � r : (F ′
j [x := t][X := µX(C′1, . . . , C

′
k)[x := t]])~q [x := t] Therefore

R[x := t] ∈ C.

This concludes the proof of CΓ, � (B) ⊆ C. Therefore A ∈ C.

Proposition 4.1 (One-step Subject Reduction) If Γ ` t : A and t →1
β t̂

(i.e. t→β t̂ in one step) then Γ ` t̂ : A.
Proof. Induction on `.

◦ The case of (V ar) is trivial as there is no redex.

◦ (→ I). We have A ≡ B → C, Γ ` λxr : B → C from Γ, x : B ` r : C and
λxr →β λxr̂ with r →β r̂. By IH we get Γ, x : B ` r̂ : C which implies
Γ ` λxr̂ : B → C.

◦ (→ E). We have Γ ` rs : A from Γ ` r : B → A, Γ ` s : B. The cases
rs → rŝ, rs → r̂s are immediate from IH. We analyze the case r ≡ λxq
with rs ≡ (λx.q)s →β q[x := s]. We have Γ ` λxq : B → A. As B → A is
obviously open the generation lemma implies Γ, x : B ` q : A. Therefore
as Γ ` s : B (Dsp1) yields Γ ` q[x := s] : A.

◦ (∧I). IH.

◦ (∧1E). We have t ≡ π1r. The interesting case r ≡ 〈s, t〉 and t̂ ≡ s is
solved applying the generation lemma.

◦ (∧2E). Analogous to the previous case.

◦ (∨LI). IH.

◦ (∨RI). IH.

4.1. THE LOGIC MCICD
? 103

◦ (∨E). We have Γ ` case(s, x.p, y.q) : A from Γ ` s : B ∨ C, Γ, x : B ` p :
A, Γ, y : C ` q : A. The interesting cases are s ≡ inl r, inr r. We analyze
the case s ≡ inl r and t̂ ≡ p[x := r]. From the assumption Γ ` inl r : B ∨C
the generation lemma yields Γ ` r : B, this together with Γ, x : B ` p : A
yields by (Dsp1), Γ ` p[x := r] : A, i.e., Γ ` t̂ : A.

◦ (∀I). We have Γ ` t : ∀xA from Γ ` t : A with x /∈ FV (Γ). By IH we get
Γ ` t̂ : A therefore by (∀I) we get Γ ` t̂ : ∀xA.

◦ (∀E). We have Γ ` t : A[x := s] from Γ ` t : ∀xA. By IH we get
Γ ` t̂ : ∀xA, therefore by (∀E) we conclude Γ ` t̂ : A[x := s].

◦ (∀2I). Analogous to (∀I).

◦ (∀2E). Analogous to (∀E).

◦ (�I). IH.

◦ (�E). IH.

◦ (Eq). IH.

◦ (µI). IH.

◦ (µE). A ≡ K~t, Γ ` Itk(~m,~s, r) : K~t, from Γ ` mi : Fi monX, Γ ` si :
Fi[X := K] ⊆ K~� i and Γ ` r : µX(C1, . . . , Ck)~t. The only interesting case
is r ≡ ink,i q, so that t̂ ≡ si

(
mi(λz.Itk(~m,~s, z))q

)
.

It is easy to see that Γ ` λz.Itk(~m,~s, z) : µX(C1, . . . , Ck) ⊆ K, therefore
Γ ` mi(λz.Itk(~m,~s, z)) : Fi[X := µX(C1, . . . , Ck)] ⊆ Fi[X := K].
On the other hand from Γ ` ink,i q : µX(C1, . . . , Ck)~t the generation lemma
yields Γ ` q : Fi[X := µX(C1, . . . , Ck)]~r and ~t ≡ ~� i~r.
Therefore we get Γ ` mi(λz.Itk(~m,~s, z))q : Fi[X := K] which implies
Γ ` si

(
mi(λz.Itk(~m,~s, z))q

)
: K~� i~r, i.e., Γ ` t̂ : A.

◦ (µE+). Similar to the previous case.

◦ (νI). IH.

◦ (νI+). IH.

◦ (νI i). IH.

◦ (νE). We have A ≡ Fi[X := νX(D1, . . . ,Dk)]~� i~t and Γ ` outk,j s : A
coming from Γ ` s : νX(D1, . . . ,Dk)~t.
The interesting cases are s ≡ CoItk(~m,~s, r), CoReck(~m,~s, r), out−1(~m,~r).
We analyze the case s ≡ CoItk(~m,~s, r) and t̂ = mi

(
λz.CoItk(~m,~s, z)

)
(sir).

From the assumption Γ ` CoItk(~m,~s, r) : νX(D1, . . . ,Dk)~t, the generation
lemma yields Γ ` mi : Fi monX, Γ ` si : K ⊆ Fi[X := K]~

�
i , Γ ` r : K~t. It

is easy to see that Γ ` λz.CoItk(~m,~s, z) : K ⊆ νX(D1, . . . ,Dk), which im-
plies Γ ` mi

(
λz.CoItk(~m,~s, z)

)
: Fi[X := K] ⊆ Fi[X := νX(D1, . . . ,Dk)].

On the other hand we have Γ ` sir : Fi[X := K]~� i~t. Therefore Γ `
mi

(
λz.CoItk(~m,~s, z)

)
(sir) : Fi[X := νX(D1, . . . ,Dk)]~� i~t, i.e. Γ ` t̂ : A.

104 4. REALIZABILITY FOR MCICD

a

Corollary 4.1 (Subject Reduction for MCICD?) If Γ ` � r : A and r →β r̂
then Γ ` � r̂ : A.
Proof. Induction on the length of the reduction sequence r →β r̂. a

4.2 The Realizability Interpretation

To define realizability we will use the following notation: given a n-ary predi-
cate variable X , we denote with X+ a (n + 1)-ary predicate variable uniquely
associated with X . We also set:

� k
i := λx. ink,i x

� k
i := λx. outk,i x

Definition 4.6 Given an MCICT−-term t and an MCICD−formula A we define
the MCICD?−formula t r A as follows:

t r X~s := X+~s t
t r A→ B := ∀z.z r A→ tz r B

t r ∀xA := ∀x.t r A
t r ∀XA := ∀X+.t r A

t r A ∧ B := (π1t r A) ∧ (π2t r B)
t r A ∨ B := ∃z.(z r A� t = inl z) ∨ (z r B�t = inr z)

t r µX(C1, . . . , Ck)~s := µX+(Cr1 , . . . , C
r

k)~s t
t r νX(D1, . . . ,Dk)~s := νX+(Dr

1, . . . ,D
r

k)~s t

where for a comprehension predicate F := λ~y.F we define

Fr := λ~y, z.z r F, z /∈ ~y ∪ FV (F),

and if Ci := 〈Fi, ~� i〉, Di := 〈Gi, ~�
i〉 then

Cri := 〈Fr

i , ~� i, � k
i 〉, Dr

i := 〈Gri , ~�
i, � k

i 〉.

Observe that the last tag in the clauses Cri ,Dr

i is a closed-term and that
existential and restricted formulas are only needed to define realizability for dis-
junctions. For more interesting applications of restricted formulas see [Par92]
and the appendix C of [Raf94]. As we can see the definition of realizability for a
(co)inductive definition is again a (co)inductive definition naturally correspon-
ding to the original definition. Therefore the definition of realizability for these
cases is not reductive as in [Par92, Mir02].

Lemma 4.7 (Substitution Properties) The following properties hold:

(i) (t r A)[x := s] ≡ t[x := s] r A[x := s].

4.2. THE REALIZABILITY INTERPRETATION 105

(ii) (t r A)[X+ := Fr] ≡ t r A[X := F].

Proof. Induction on A. For part (i). Case A ≡ µX(C1, . . . , Ck)~r.

(t r A)[x := s] ≡
(
µX+(Cr1 , . . . , C

r

k)~rt
)
[x := s]

≡ µX+
(
Cr1[x := s], . . . , Crk[x := s]

)
~r [x := s]t[x := s]

t[x := s] r A[x := s] ≡ t[x := s] r
(
µX(C1, . . . , Ck)~r

)
[x := s]

≡ t[x := s] r µX
(
C1[x := s], . . . , Ck[x := s]

)
~r [x := s]

≡ µX+
(
C1[x := s]r, . . . , Ck[x := s]r

)
~r [x := s]t[x := s]

By IH we get Ci[x := s]r = Cri [x := s], therefore the equality holds.
We prove part (ii) in detail.

Case A ≡ X~r.

(t r A)[X+ := Fr] ≡ (X+~r t)[X+ := Fr]
≡ Fr~r t
≡ t r F~r
≡ t r (X~r)[X := Fr]
≡ t r A[X := F]

Case A ≡ Y ~r.

(t r A)[X+ := Fr] ≡ (Y +~r t)[X+ := Fr]
≡ Y +~r t
≡ t r Y ~r
≡ t r (Y ~r)[X := F]
≡ t r A[X := F]

Case A ≡ B → C.

(t r A)[X+ := Fr] ≡ (∀z.z r B → tz r C)[X+ := Fr]
≡ ∀z.(z r B)[X+ := Fr]→ (tz r C)[X+ := Fr]
≡
IH
∀z.z r B[X := F]→ tz r C[X := F]

≡ t r (B[X := F]→ C[X := F])
≡ t r A[X := F]

Case A ≡ ∀Y B.

(t r A)[X+ := Fr] ≡
(
∀Y +.t r B

)
[X+ := Fr]

≡ ∀Y +.(t r B)[X+ := Fr]
≡
IH
∀Y +.t r B[X := F]

≡ t r ∀Y.B[X := F]
≡ t r A[X := F]

Case A ≡ B ∨ C.

(t r A)[X+ := Fr] ≡
(
∃z.(z r B�t = inl z) ∨ (z r C� t = inr z)

)
[X+ := Fr]

≡ ∃z.
(
(z r B)[X+ := Fr]� t = inl z

)
∨

(
(z r C)[X+ := Fr]� t = inr z

)

≡
IH
∃z.

(
z r B[X := F]� t = inl z

)
∨

(
z r C[X := F]� t = inr z

)

≡ t r
(
B[X := F] ∨ C[X := F]

)
≡ t r A[X := F]

106 4. REALIZABILITY FOR MCICD

Case A ≡ νY (D1, . . . ,Dk)~r.

(t r A)[X+ := Fr] ≡
(
νY +(Dr

1, . . . ,D
r

k)~r t
)
[X+ := Fr]

≡ νY +(Dr

1[X
+ := Fr], . . . ,Dr

k[X+ := Fr])~r t

Now if Di ≡ 〈Gi, ~� i〉 with Gi ≡ λ~yGi then Dr

i ≡ 〈G
r

i , ~�
i, � k

i 〉. Therefore

Dr

i [X
+ := Fr] ≡ 〈Gri [X+ := Fr], ~�

i, � k
i 〉 and observe that

Gri [X+ := Fr] ≡ (λ~y, z.z r Gi)[X
+ := Fr]

≡ λ~y, z.(z r Gi)[X
+ := Fr]

≡
IH

λ~y, z.z r Gi[X := F]

≡ (λ~y.Gi[X := F])r

≡ Gi[X := F]r

Therefore we have

Di[X := F]r ≡ 〈Gi[X := F], ~�
i〉r

≡ 〈Gi[X := F]r, ~�
i, � k

i 〉

≡ 〈Gri [X+ := Fr], ~�
i, � k

i 〉
≡ Dr

i [X
+ := Fr]

and

t r A[X := F] ≡ t r νY (D1, . . . ,Dk)~r [X := F]
≡ t r νY (Di[X := F], . . . ,Dk[X := F])~r
≡ νY +(D1[X := F]r, . . . ,Dk[X := F]r)~r t
≡ νY +(Dr

1[X
+ := Fr], . . . ,Dr

i [X
+ := Fr])~r t

≡ (t r A)[X+ := Fr]

a

4.2.1 Realizing the Axioms

In this section we look for realizers of the closure and induction axioms.

Proposition 4.2 Given an inductive predicate µX(C1, . . . , Ck) we have:

` λx. ink,j x : � k
j r ClµX(C1,...,Ck),j

Proof. � k
j r ClµX(C1,...,Ck),j unfolds to:

∀~y ∀z.z r Fj [X := µX(C1, . . . , Ck)]~y → � k
j z r (µX(C1, . . . , Ck))~� j~y

which by lemma 4.7 and definition of realizability for inductive predicates is the
same as:

∀~y ∀z.Fr

j [X+ :=
(
µX(C1, . . . , Ck)

)
r

]~yz → µX+(Cr1 , . . . , C
r

k)(~� j~y)(� k
j z)

4.2. THE REALIZABILITY INTERPRETATION 107

which equals

∀~y ∀z.Fr

j [X+ := µX+(Cr1 , . . . , C
r

k)]~yz → µX+(Cr1 , . . . , C
r

k)(~� j~y)(� k
j z)

This proves that

� k
j r ClµX(C1,...,Ck),j ≡ ClµX+(Cr

1
,...,Cr

k
),j

Therefore the claim follows from proposition 3.1.
a

Proposition 4.3 Given a coinductive predicate νX(D1, . . . ,Dk) we have:

` λx. outk,j x : � k
j r CoClνX(D1,...,Dk),j

Proof. Analogous to proposition 4.2. a

Proposition 4.4 If Ci = 〈Fi, ~� i〉, � ` mi : Fr

i monX+ for 1 ≤ i ≤ k and

�
:= λ~xλ~y λz.Itk(~x, ~y , z), � := λ~xλ~y λz.Reck(~x, ~y , z)

then

(i). � ` λ~x.λ~y .λz.Itk(~m,~s, z) :
�
r IndµX(C1,...,Ck)

(ii). � ` λ~x.λ~y .λz.Reck(~m,~s, z) : � r Ind
+

µX(C1,...,Ck)

where si := λui.yi(xi(λv.v)ui) (1 ≤ i ≤ k) (si is some kind of η-expansion of yi).

◦ Proof of part (i).

Set µ := µX(C1, . . . , Ck) and µr := µX+(Cr1 , . . . , C
r

k). We want to show:

� `MCICD?

�
r ∀Z. . . . ,Fi monX, . . .(1≤i≤k) →

. . . ,Fi[X := Z] ⊆ Z ~�
i , . . .(1≤i≤k) →

µX(C1, . . . , Ck) ⊆ Z

which unfolds to

∀Z+.∀~m. . . . , mi r Fi monX, . . .(1≤i≤k) →

∀~f. . . . , fi r Fi[X := Z] ⊆ Z ~�
i , . . .(1≤i≤k) →�

~m~f r µX(C1, . . . , Ck) ⊆ Z

(4.1)

Assume
xi : mi r Fi monX (1 ≤ i ≤ k) (4.2)

and yi : fi r Fi[X := Z] ⊆ Z ~�
i , that is

yi : ∀~v.∀u.u r Fi[X := Z]~v → fiu r Z(~� i~v) (1 ≤ i ≤ k) (4.3)

108 4. REALIZABILITY FOR MCICD

we need to show
�

~m~f r µX(C1, . . . , Ck) ⊆ Z, i.e.

∀~v.∀w.w r (µX(C1, . . . , Ck))~v →
�

~m~fw r Z~v

Assume

z : w r (µX(C1, . . . , Ck))~v ≡ (µX+(Cr1 , . . . , C
r

k))~vw, (4.4)

and let
Q := λ~x, z.

�
~m~fz r Z~x,

Set
Γ := � , xi : mi r Fi monX(1 ≤ i ≤ k),

yi : fi r Fi[X := Z] ⊆ Z ~�
i (1 ≤ i ≤ k),

z : (µX+(Cr1, . . . , C
r

k))~vw

We need to prove Γ ` Q~vw.

Obviously Γ ` mi : Fr

i monX+ and Γ ` z : (µX+(Cr1 , . . . , C
r

k))~vw, there-
fore using the elimination rule (µE) it suffices to show

Γ ` Fr

i [X+ := Q] ⊆ Q~�
i, � k

i , (1 ≤ i ≤ k)

that is
∀~x.∀z.Fr

i [X+ := Q]~xz → Q(~� i~x)(� k
i z)

Assume
ui : Fr

i [X+ := Q]~xz, (4.5)

and set Π := Γ, ui : Fr

i [X+ := Q]~xz. We need to prove

Π ` Q(~� i~x)(� k
i z) (4.6)

The assumptions (4.2) unfold to:

∀X+∀Y +∀z.(∀~y ∀w.w r X~y → zw r Y ~y) →
(∀~y ∀u.u r Fi~y → mizu r Fi[X := Y]~y)

(4.7)

Next we instantiate the predicate variables X+ := Q, Y + := Zr, to obtain:

xi : ∀z.(∀~y ∀w.Q~y w → Zr~y (zw))→
(∀~y ∀u.Fr

i [X+ := Q]~y u→ mizu r Fi[X := Z]~y)

Next we substitute z :=
�

~m~f :

xi : (∀~y ∀w.Q~y w → Zr~y ((
�

~m~f)w))→

(∀~y ∀u.Fr

i [X+ := Q]~y u→ mi(
�

~m~f)u r Fi[X := Z]~y)

4.2. THE REALIZABILITY INTERPRETATION 109

Observing that Zr~y (
�

~m~fw) ≡
�

~m~fw r Z~y we see that the antecedent
of this implication is of the form ∀~y ∀w.A → A, therefore we can eliminate
the implication and obtain:

Π ` xi(λv.v) : ∀~y ∀u.Fr

i [X+ := Q]~y u→ mi(
�

~m~f)u r Fi[X := Z]~y

Instantiating ~y , u := ~x, z and using assumption (4.5) we get

Π ` xi(λv.v)ui : mi(
�

~m~f)z r Fi[X := Z]~x

On the other hand, from assumption (4.3), with ~v, u := ~x, mi(
�

~m~f)z we
get:

Π ` yi : mi(
�

~m~f)z r Fi[X := Z]~x→ fi(mi(
�

~m~f)z) r Z(~� i~x)

Therefore
Π ` yi(xi(λv.v)ui) : fi(mi(

�
~m~f)z) r Z(~� i~x)

But
�

β ` fi(mi(
�

~m~f)z) =
�

~m~f(� k
i z). Hence, by (Eq)

Π ` yi(xi(λv.v)ui) :
�

~m~f(� k
i z) r Z(~� i~x),

That is Π ` yi(xi(λv.v)ui) : Q(~� i~x)(� k
i z) and the goal (4.6) is proved.

Therefore Γ ` λui.yi(xi(λv.v)ui) : Fr

i [X+ := Q] ⊆ Q~�
i, � k

i , which by
(µE+) yields:

Γ ` Itk(~m,~s, z) : Qvw

Finally discharging the assumptions ~x, ~y, z, we get:

� `MCICD? λ~x.λ~y .λz.Itk(~m,~s, z) :
�
r IndµX(C1,...,Ck)

◦ Proof of part (ii).
Set µ := µX(C1, . . . , Ck) and µr := µX+(Cr1 , . . . , C

r

k), we want to show:

� `MCICD? � r ∀Z. . . . ,Fi monX, . . .(1≤i≤k) →
. . . ,Fi[X := µ ∧ Z] ⊆ Z ~�

i , . . .(1≤i≤k) →
µX(C1, . . . , Ck) ⊆ Z

which unfolds to

∀Z+.∀~m. . . . , mi r Fi mon X, . . .(1≤i≤k) →

∀~f. . . . , fi r Fi[X := µ ∧ Z] ⊆ Z ~�
i , . . .(1≤i≤k) →

� ~m~f r µX(C1, . . . , Ck) ⊆ Z

(4.8)

Assume for 1 ≤ i ≤ k
xi : mi r Fi monX (4.9)

110 4. REALIZABILITY FOR MCICD

and yi : fi r Fi[X := µ ∧ Z] ⊆ Z ~�
i , that is

yi : ∀~v.∀u.u r Fi[X := µ ∧ Z]~v → fiu r Z(~� i~v). (4.10)

We need to show � ~m~f r µX(C1, . . . , Ck) ⊆ Z, i.e.

∀~v.∀w.w r (µX(C1, . . . , Ck))~v → � ~m~fw r Z~v

Assume

z : w r (µX(C1, . . . , Ck))~v ≡ (µX+(Cr1, . . . , C
r

k))~vw, (4.11)

and let
Q := λ~x, z. � ~m~fz r Z~x,

Set
Γ := � , xi : mi r Fi monX (1 ≤ i ≤ k),

yi : fi r Fi[X := µ ∧ Z] ⊆ Z ~�
i (1 ≤ i ≤ k),

z : (µX+(Cr1, . . . , C
r

k))~vw

We need to prove Γ ` Q~vw.

Obviously Γ ` mi : Fr

i monX+ and Γ ` z : (µX+(Cr1 , . . . , C
r

k))~vw, there-
fore using the elimination rule (µE+) it suffices to show

Γ ` Fr

i [X+ := µr ∧ Q] ⊆ Q~�
i, � k

i , (1 ≤ i ≤ k)

that is
∀~x.∀z.Fr

i [X+ := µr ∧ Q]~xz → Q(~� i~x)(� k
i z).

Assume
ui : Fr

i [X+ := µr ∧ Q]~xz (1 ≤ i ≤ k) (4.12)

and set Π := Γ, ui : Fr

i [X+ := µr ∧Q]~xz. We need to prove

Π ` Q(~� i~x)(� k
i z) (1 ≤ i ≤ k) (4.13)

The assumptions (4.9) unfold to:

xi : ∀X+∀Y +∀z. (∀~y ∀w.w r X~y → zw r Y ~y)→
(∀~y ∀u.u r Fi~y → mizu r Fi[X := Y]~y)

(4.14)

Next we instantiate the predicate variables X+ := µr∧Q, Y + := (µ∧Z)r

to obtain:

xi : ∀z.(∀~y ∀w.(µr ∧ Q)~y w → (µ ∧ Z)r~y (zw))→
(∀~y ∀u.Fr

i [X+ := µr ∧Q]~y u→ mizu r Fi[X := µ ∧ Z]~y)

4.2. THE REALIZABILITY INTERPRETATION 111

Instantiate now z := λx.〈x, � ~m ~fx〉:

xi : (∀~y ∀w.(µr ∧Q)~y w → (µ ∧ Z)r~y ((λx.〈x, � ~m ~fx〉)w)) →

(∀~y ∀u.Fr

i [X+ := µr ∧ Q]~y u→ mi(λx.〈x, � ~m~fx〉)u r Fi[X := µ ∧ Z]~y)

Observing that (F ∧ G)r ≡ λ~z, u.Fr~z(π1u) ∧ Gr~z(π2u) and

�
β ` π1

(
(λx.〈x, π2 ~m~fx〉)w

)
= w

�
β ` π2

(
(λx.〈x, π2 ~m~fx〉)w

)
= π2 ~m~fw

using (Eq) it is easy to see that

` λv.v : ∀~y ∀w.(µr ∧Q)~y w → (µ ∧ Z)r~y ((λx.〈x, � ~m ~fx〉)w)

therefore we can eliminate the implication and obtain

Π ` xi(λv.v) : ∀~y ∀u.Fr

i [X+ := µr ∧ Q]~y u→

mi(λx.〈x, � ~m~fx〉)u r Fi[X := µ ∧ Z]~y

Instantiating ~y , u := ~x, z and using assumption (4.12) we get

Π ` xi(λv.v)ui : mi(λx.〈x, � ~m~fx〉)z r Fi[X := µ ∧ Z]~x.

On the other hand, from assumptions (4.10), with ~v, u := ~x, mi(λx.〈x, � ~m ~fx〉)z
we get:

Π ` yi : mi(λx.〈x, � ~m ~fx〉)z r Fi[X := µ∧Z]~x→ fi(mi(λx.〈x, � ~m~fx〉)z) r Z(~� i~x).

Therefore

Π ` yi(xi(λv.v)ui) : fi(mi(λx.〈x, � ~m~fx〉)z) r Z(~� i~x).

But it is easy to see that
�

β ` fi(mi(λx.〈x, � ~m~fx〉)z) = � ~m~f(� k
i z), hence

using (Eq) we get:

Π ` yi(xi(λv.v)ui) : � ~m~f(� k
i z) r Z(~� i~x),

That is Π ` yi(xi(λv.v)ui) : Q(~� i~x)(� k
i z) and the goal (4.13) is proved.

Therefore Γ ` λui.yi(xi(λv.v)ui) : Fr

i [X+ := µr ∧ Q] ⊆ Q~�
i, � k

i ,

which by (µE+) yields:

Γ ` Reck(~m,~s, z) : Qvw

Finally, discharging the assumptions ~x, ~y, z, we get:

� `MCICD? λ~x.λ~y .λz.Reck(~m,~s, z) : � r Ind
+

µX(C1,...,Ck)

a

112 4. REALIZABILITY FOR MCICD

Proposition 4.5 If Di = 〈Fi, ~� i〉, � ` mi : Fr

i monX+ for 1 ≤ i ≤ k, and

�
:= λ~xλ~yλz.CoItk(~x, ~y, z), � := λ~xλ~yλz.CoReck(~x, ~y, z)

then

(i). � ` λ~xλ~yλz.CoItk(~m,~s, pack z) :
�
r CoIndνX(D1,...,Dk)

(ii). � ` λ~xλ~yλz.CoReck(~m,~q, pack z) : � r CoInd
+

νX(D1,...,Dk)

where for 1 ≤ i ≤ k, we set:

si := λv.open(v, w.xi(λu. pack u)(yiw)),

qi := λv.open
(
v, w.xi

(
λu.open

(
u, v.case(v, v1. inl v1, v2. inr pack v2)

))
(yiw)

)

Proof. Set ν := νX(D1, . . . ,Dk) and νr := νX+(Dr

1, . . . ,D
r

k). For the first part
we want to show:

� ` �
r ∀Z. . . . ,Fi monX, . . .(1≤i≤k) →

. . . , Z ⊆ Fi[X := Z]~
�

i , . . .(1≤i≤k) →
Z ⊆ νX(D1, . . . ,Dk)

which unfolds to

∀Z+.∀~m. . . . , mi r Fi mon X, , . . .(1≤i≤k) →

∀~f. . . . , fi r Z ⊆ Fi[X := Z]~
�

i , . . .(1≤i≤k) →�
~m~f r Z ⊆ νX(D1, . . . ,Dk)

(4.15)

Assume
xi : mi r Fi monX (1 ≤ i ≤ k) (4.16)

and yi : fi r Z ⊆ Fi[X := Z]~
�

i , that is

yi : ∀~v.∀u.u r Z~v → fiu r Fi[X := Z](~� i~v) (1 ≤ i ≤ k) (4.17)

we need to show
�

~m~f r Z ⊆ νX(D1, . . . ,Dk), i.e.

∀~v.∀w.w r Z~v →
�

~m~fw r νX(D1, . . . ,Dk)~v

Assume
z : w r Z~v ≡ Z+~vw, (4.18)

We will prove
�

~m~fw r νX(D1, . . . ,Dk)~v ≡ νr~v(
�

~m~fw) via the (νI) rule
with the following predicate:

Q := λ~v, y.∃u.u r Z~v �y =
�

~m~fu,

Set
Γ := � , xi : mi r Fi monX, (1 ≤ i ≤ k)

yi : fi r Z ⊆ Fi[X := Z]~
�

i , (1 ≤ i ≤ k)
z : w r Z~v

4.2. THE REALIZABILITY INTERPRETATION 113

We need to prove Γ ` νr~v(
�

~m~fw).
Clearly Γ ` mi : Fr

i monX+ and easily we can derive

Γ ` pack z : Q~v(
�

~m~fw),

therefore using the introduction rule (νI) it suffices to show

Γ ` Q ⊆ Fr

i [X+ := Q]~
�

i, � k
i , (1 ≤ i ≤ k)

that is
∀~x.∀z.Q~xz → Fr

i [X+ := Q](~� i~x)(� k
i z)

Assume
v : Q~xz (4.19)

and set Π := Γ, v : Q~xz. We need to prove

Π ` Fr

i [X+ := Q](~� i~x)(� k
i z) (4.20)

The assumptions (4.16) unfold to:

xi : ∀X+∀Y +∀z.(∀~y ∀v.v r X~y → zv r Y ~y) →
(∀~y ∀v.v r Fi~y → mizv r Fi[X := Y]~y).

(4.21)

We instantiate the predicate variables X+ := Z+, Y + := Q to obtain:

xi : ∀z.
(
∀~y ∀v.v r Z~y → Q~y(zv)

)
→(

∀~y ∀v.v r Fi[X := Z]~y → Fr

i [X+ := Q]~y(mizv)
)
.

Next we substitute z :=
�

~m~f :

xi :
(
∀~y ∀v.v r Z~y → Q~y

(
(

�
~m~f)v

))
→(

∀~y ∀v.v r Fi[X := Z]~y → Fr

i [X+ := Q]~y
(
mi(

�
~m~f)v

))
.

The antecedent of this implication unfolds to:

∀~y ∀v.v r Z~y → ∃u.u r Z~y �
�

~m~fv =
�

~m~fu

which is easily derivable:

u : v r Z~y ` packu : ∃u.u r Z~y �
�

~m~fv =
�

~m~fu

that is,
` λu. packu : ∀~y ∀v.v r Z~y → Q~y

(�
~m~fv

)
.

Therefore we can eliminate the implication and obtain

Π ` xi(λu. pack u) : ∀~y ∀v.v r Fi[X := Z]~y

→ Fr

i [X+ := Q]~y
(
mi(

�
~m~f)v

)
.

(4.22)

114 4. REALIZABILITY FOR MCICD

Obviously

Π, w : u r Z~x�x =
�

~m~fu ` w : u r Z~x

which allows to conclude by (4.17)

Π, w : u r Z~x�z =
�

~m~fu ` yiw : fiu r Fi[X := Z]~� i~x

and using (4.22) we get

Π, w : u r Z~x�z =
�

~m~fu `

xi(λu. packu)(yiw) : Fr

i [X+ := Q](~� i~x)
(
mi(

�
~m~f)(fiu)

)
.

We have

�
β ` mi(

�
~m~f)(fiu) = out

k,i
(

�
~m~fu) and

�
β ` out

k,i
(

�
~m~fu) = � k

i (
�

~m~fu)

and by (�ER),

Π, w : u r Z~x�z =
�

~m~fu ` z =
�

~m~fu,

therefore
Π, w : u r Z~x�z =

�
~m~fu ` mi(

�
~m~f)(fiu) = � k

i z

and (Eq) yields

Π, w : u r Z~x�z =
�

~m~fu `
xi(λu. packu)(yiw) : Fr

i [X+ := Q](~� i~x)(� k
i z).

Now we proceed to eliminate the extra assumption w using (∃E), with the

previous derivation and the obvious Π ` v : ∃u.u r Z~x �z =
�

~m ~fu The proviso
for (∃E) holds:

u /∈ FV
(
Π, ∃u.u r Z~x�z =

�
~m~fu,Fr

i [X+ := Q](~� i~x)(� k
i z)

)

Therefore

Π ` open
(
v, w.xi(λu. packu)(yiw)

)
: Fr

i [X+ := Q](~� i~x)(� k
i z)

and the goal (4.20) is proved.
Therefore

Γ ` λv.open
(
v, w.xi(λu. pack u)(yiw)

)
: Q ⊆ Fr

i [X+ := Q]~
�

i, � k
i ,

that is Γ ` si : Q ⊆ Fr

i [X+ := Q]~
�

i, � k
i , which by (νI) yields:

Γ ` CoItk(~m,~s, pack z) : νr~v(
�

~m~fw).

Finally discharging the assumptions ~x, ~y, z we get:

� ` λ~x.λ~y.λz.CoItk(~m,~s, pack z) :
�
r CoIndνX(D1,...,Dk).

4.2. THE REALIZABILITY INTERPRETATION 115

Next we prove part (ii):
We want to show:

� ` � r ∀Z. . . . ,Fi monX, . . .(1≤i≤k) →
. . . , Z ⊆ Fi[X := ν ∨ Z]~

�
i , . . .(1≤i≤k) →

Z ⊆ νX(D1, . . . ,Dk)

which unfolds to

∀Z+.∀~m. . . . , mi r Fi monX, . . .(1≤i≤k) →

∀~f. . . . , fi r Z ⊆ Fi[X := ν ∨ Z]~
�

i , . . .(1≤i≤k) →

� ~m~f r Z ⊆ νX(D1, . . . ,Dk)

(4.23)

Assume for 1 ≤ i ≤ k
xi : mi r Fi monX (4.24)

and yi : fi r Z ⊆ Fi[X := ν ∨ Z]~
�

i , that is

yi : ∀~v.∀u.u r Z~v → fiu r Fi[X := ν ∨ Z](~� i~v). (4.25)

We need to show � ~m~f r Z ⊆ νX(D1, . . . ,Dk), i.e.

∀~v.∀w.w r Z~v → � ~m~fw r νX(D1, . . . ,Dk)~v

Assume
z : w r Z~v ≡ Z+~vw, (4.26)

and let
Q := λ~v, y.∃u.u r Z~v �y = � ~m~fu

Set
Γ := � , xi : mi r Fi monX, (1 ≤ i ≤ k)

yi : fi r Z ⊆ Fi[X := ν ∨ Z]~
�

i , (1 ≤ i ≤ k)
z : w r Z~v

We need to prove Γ ` � ~m~fw r νX(D1, . . . ,Dk)~v, i.e., Γ ` νr~v(� ~m~fw)
Obviously Γ ` mi : Fr

i monX+ and easily we can derive

Γ ` pack z : Q~v(� ~m~fw),

therefore using the introduction rule (νI+) it suffices to show

Γ ` Q ⊆ Fr

i [X+ := νr ∨ Q]~
�

i, � k
i , (1 ≤ i ≤ k)

that is
∀~x ∀z.Q~xz → Fr

i [X+ := νr ∨ Q](~� i~x)(� k
i z).

Assume
v : Q~xz (4.27)

and set Π := Γ, v : Q~xz. We need to prove

116 4. REALIZABILITY FOR MCICD

Π ` Fr

i [X+ := νr ∨ Q](~� i~x)(� k
i z), (1 ≤ i ≤ k) (4.28)

The assumptions (4.24) unfold to:

xi : ∀X+∀Y +∀z. (∀~y ∀v.v r X~y → zv r Y ~y)→
(∀~y ∀v.v r Fi~y → mizv r Fi[X := Y]~y).

(4.29)

We instantiate the predicate variables X+ := (ν ∨ Z)r, Y + := νr ∨ Q to
obtain:

xi : ∀z.
(
∀~y ∀v.(ν ∨ Z)r~y v → (νr ∨ Q)~y (zv)

)
→(

∀~y ∀v.v r Fi[X := ν ∨ Z]~y → Fr

i [X+ := νr ∨ Q]~y (mizv)
)
.

(4.30)
Now let us derive

` ∀~y ∀v.(ν ∨ Z)r~yv → (νr ∨ Q)~y([Id, � ~m~f]v). (4.31)

The following derivations are easy:

v1 : u r ν~y �v = inl u ` [Id, � ~m~f]v = u

v2 : u r Z~y �v = inr u ` [Id, � ~m~f]v = � ~m~fu.

From these it follows, using (�E), (Eq) and (�I), respectively:

v1 : u r ν~y �v = inl u ` v1 : νr~y([Id, � ~m~f]v)

v2 : u r Z~y �v = inr u ` v2 : u r Z~y � [Id, � ~m~f]v = � ~m~fu

and therefore

v1 : u r ν~y �v = inlu ` inl v1 : (νr ∨ Q)~y([Id, � ~m~f]v)

v2 : u r Z~y �v = inr u ` pack v2 : ∃u.u r Z~y � [Id, � ~m~f]v = � ~m~fu.

The last derivation implies:

v2 : u r Z~y �v = inr u ` inr pack v2 : (νr ∨ Q)~y([Id, � ~m~f]v).

Using the two previous derivations by (∨E) we get:

u : (ν ∨ Z)r~y v, v : u r ν~y �v = inl u ∨ u r Z~y �v = inr u `

case(v, v1. inl v1, v2. inr pack v2) : (νr ∨ Q)~y([Id, � ~m~f]v),

by (∃E) using the previous derivation and the obvious

u : (ν ∨ Z)r~y v ` u : ∃u.u r ν~y �v = inl u ∨ u r Z~y �v = inr u

we get:

4.2. THE REALIZABILITY INTERPRETATION 117

u : (ν ∨ Z)r~y v `

open
(
u, v.case(v, v1. inl v1, v2. inr pack v2)

)
: (νr ∨ Q)~y([Id, � ~m~f]v)

and descharging the assumption u we conclude

` λu.open
(
u, v.case(v, v1. inl v1, v2. inr pack v2)

)
:

∀~y ∀v.(ν ∨ Z)r~y v → (νr ∨ Q)~y([Id, � ~m~f]v)

and (4.31) is derived.

Next we instantiate z := [Id, � ~m~f] in (4.30) and eliminate the implication
using (4.31) obtaining:

Π ` xi

(
λu.open

(
u, v.case(v, v1. inl v1, v2. inr pack v2)

))
:

∀~y ∀v.v r Fi[X := ν ∨ Z]~y → Fr

i [X+ := νr ∨ Q]~y (mi[Id, � ~m~f]v).

On the other hand, from (�E) and assumption (4.25) we get:

Π, w : u r Z~x�z = � ~m~fu ` yiw : fiu r Fi[X := ν ∨ Z](~� i~x),

therefore

Π, w : u r Z~x �z = � ~m~fu `

xi

(
λu.open

(
u, v.case(v, v1. inl v1, v2. inr pack v2)

))
(yiw) :

Fr

i [X+ := νr ∨Q](~� i~x)(mi[Id, � ~m~f](fiu)).

Now observe that

�
β ` mi[Id, � ~m~f](fiu) = outk,i(� ~m~fu)

�
β ` outk,i(� ~m~fu) = � k

i (� ~m~fu)

and therefore

Π, w : u r Z~x �z = � ~m~fu ` z = � ~m~fu

yields
Π, w : u r Z~x �z = � ~m~fu ` mi[Id, � ~m~f](fiu) = � k

i z.

Now (Eq) leads us to:

Π, w : u r Z~x �z = � ~m~fu `

xi

(
λu.open

(
u, v.case(v, v1. inl v1, v2. inr pack v2)

))
(yiw) :

Fr

i [X+ := νr ∨Q](~� i~x)(� k
i z).

118 4. REALIZABILITY FOR MCICD

Next using Π ` v : Q~xz by (∃E) we get:

Π ` open
(
v, w.xi

(
λu.open

(
u, v.case(v, v1. inl v1, v2. inr pack v2)

))
(yiw)

)
:

Fr

i [X+ := νr ∨ Q](~� i~x)(� k
i z)

and the goal (4.28) is proved.
Therefore

Γ ` λv.open
(
v, w.xi

(
λu.open

(
u, v.case(v, v1. inl v1, v2. inr pack v2)

))
(yiw)

)
:

Q ⊆ Fr

i [X+ := νr ∨ Q]~
�

i, � k
i ,

which by definiton of qi and (νI+) yields:

Γ ` CoReck(~m,~q, pack z) : νr~v(� ~m~fw)

Finally, discharging the assumptions ~x, ~y, z, we get:

� ` λ~x.λ~y.λz.CoReck(~m,~q, pack z) : � r CoInd
+

νX(D1,...,Dk)

a

Proposition 4.6 If Di = 〈Fi, ~� i〉, � ` mi : Fr

i monX+ for 1 ≤ i ≤ k, and

�
:= λ~xλ~y .out−1

k (~x, ~y).

then

� ` λ~xλ~y .out−1
k (~m,~s) :

�
r InvνX(D1,...,Dk)

where si := xi(λzz)yi (1 ≤ i ≤ k).
Proof. We have to proof

�
r InvνX(D1,...,Dk), that is

�
r ∀~z. . . . ,Fi mon X, . . .(1≤i≤k) →

. . . ,Fi[X := νX(D1, . . . ,Dk)]~� i~z, . . .(1≤i≤k) →
νX(D1, . . . ,Dk)~z

which unfolds to:

∀~z ∀~m. . . . , mi r Fi monX, . . .(1≤i≤k) →

∀~f. . . . , fi r Fi[X := νX(D1, . . . ,Dk)]~� i~z, . . .(1≤i≤k) →
�
~m~f r νX(D1, . . . ,Dk)~z

Set

Γ := � , xi : mi r Fi monX, (1 ≤ i ≤ k)
yi : fi r Fi[X := νX(D1, . . . ,Dk)]~� i~z}, (1 ≤ i ≤ k)

4.2. THE REALIZABILITY INTERPRETATION 119

Our goal is then

Γ ` out−1
k (~m,~s) :

�
~m~f r νX(D1, . . . ,Dk)~z. (4.32)

Obviously we have

Γ ` mi : Fr

i mon X+, 1 ≤ i ≤ k (4.33)

On the other hand from Γ ` xi : mi r Fi monX is easy to derive

Γ ` xi(λzz)yi : mi(λzz)fi r Fi[X := νX(D1, . . . ,Dk)](~� i~z),

which by lemma 4.7 simplifies to:

Γ ` xi(λzz)yi : Fr

i [X+ := νX+(Dr

1, . . . ,D
r

k)](~� i~z)(mi(λzz)fi) (4.34)

Now observe that

�
β ` mi(λzz)fi = outk,i out−1

k (~m, ~f)
�

β ` outk,i out−1
k (~m, ~f) = � k

i

(
out−1

k (~m, ~f)
)
,

therefore we get

�
β ` mi(λzz)fi = � k

i

(
out−1

k (~m, ~f)
)

and derivation (4.34) becomes

Γ ` xi(λzz)yi : Fr

i [X+ := νX+(Dr

1, . . . ,D
r

k)](~� i~z)
(

� k
i

(
out−1

k (~m, ~f)
))

(4.35)

From derivations (4.33) and (4.35) and definition of si we get by rule (νI i):

Γ ` out−1
k (~m,~s) : νX+(Dr

1, . . . ,D
r

k)~z out−1
k (~m, ~f)

which as
�

β `
�
~m~f = out−1

k (~m, ~f) is the same as

Γ ` out−1
k (~x, ~y) : νX+(Dr

1, . . . ,D
r

k)~z (
�
~m~f)

But by definition of realizability this is the same as derivation (4.32), which
was our goal.

a

The additional requirements Fr

i monX+ in propositions 4.4, 4.5 and 4.6 are
somehow unpleasing, we would like to obtain them from the fact that Fi mon X
is realizable. Unfortunately, this is not true in general but we have the following
result:

Proposition 4.7 If � `MCICD? m̂ : m r F mon X and
�
` m(λxx) = λxx then

� `MCICD?, � m̂ : Fr monX+.

120 4. REALIZABILITY FOR MCICD

Proof. Instantiating z := λxx in m r F monX (cf. formula (4.14), page 110)
and using that

�
β ` (λxx)w = w we get

� `MCICD? m̂ : ∀X+.∀Y +.(∀~y ∀w.w r X~y → w r Y ~y)
→ (∀~y ∀u.u r F~y → m(λxx)u r F [X := Y]~y)

By lemma 4.7 we have

m(λxx)u r F [X := Y]~y ≡ (m(λxx)u r F~y)[X+ := Y r]

But Y r ≡ Y +, therefore we obtain:

� `MCICD? m̂ : ∀X+.∀Y +.(∀~y ∀w.X+~y w → Y +~y w)→
(∀~y ∀u.Fr~y u→ Fr[X+ := Y +]~y (m(λxx)u)

But
�
,

�
β ` m(λxx)u = u, because by assumption

�
` m(λxx) = λxx and

�
β ` (λxx)u = u. This yields

� `MCICD?, � m̂ : ∀X+.∀Y +.X+ ⊆ Y + →
Fr ⊆ Fr[X+ := Y +]

That is Fr monX+ and the proposition follows. a

This proposition says that, assuming the first functor law, the realizability of
the monotonicity of F with respect to X implies the monotonicity of the reali-
zability predicate Fr with respect to X+.
This result allows to obtain a realizability soundness theorem where both source
and target logical differ essentially only on the underlying object-term system.
This is an important difference with the treatment in [Tat94].

4.2.2 The Soundness Theorem

We come to the main result of this chapter, a soundness theorem for our reali-
zability interpretation, which guarantees the correctness of program extraction.

Definition 4.7 Given an MCICD-proof-term r we define the MCICD?-proof-
term r̃ as follows:

x̃ := x λ̃x.r := λx.r̃

r̃s := r̃ s̃ 〈̃r, s〉 := 〈r̃, s̃ 〉
π̃1r := π1 r̃ π̃2r := π2 r̃

ĩnl s := pack(inl s̃) ĩnr s := pack(inr s̃)

˜case(r, y.s, z.t) := open(r̃, w.case(w, y.s̃, z.t̃))

4.2. THE REALIZABILITY INTERPRETATION 121

˜ink,i t := ink,i t̃

˜Itk(~m,~s, t) := Itk(~̃m,~s [~m,~s], t̃)

˜Reck(~m,~s, t) := Reck(~̃m,~s [~m,~s], t̃)

õutk,i t := outk,i t̃

˜CoItk(~m,~s, t) := CoItk(~̃m,~r [~m,~s], pack t̃)

˜CoReck(~m,~s, t) := CoReck(~̃m,~q [~m,~s], pack t̃)

˜out−1
k (~m,~s) := out−1

k (~̃m,~t [~m,~s])

where in the cases for (co)iteration, (co)recursion and inversion we have:

s[x, y] := λu.ỹ(x̃(λv.v)u)
r[x, y] := λv.open

(
v, w.x̃(λu. pack u)(ỹw

)

q[x, y] := λv.open
(
v, w.x̃

(
λu.open

(
u, v.case(v, v1. inl v1, v2. inr pack v2)

))
(ỹw)

)

t[x, y] := x̃(λzz)ỹ

and we define ~s [~x, ~y] := s[x1, y1], . . . , s[xk, yk] (the same for r, q).

Definition 4.8 Given a proof-term t, and a subterm m of t such that m occurs
in ~m for some subterm of t of one of the following forms

Itk(~m,~s, r), Reck(~m,~s, r), CoItk(~m,~s, r), CoReck(~m,~s, r), out−1
k (~m,~s),

we say that m is an on-display monotonicity witness of t. The set of all on-
display monotonicity witnesses of t will be denoted by W(t).

Observe for example that

W(Itk(~m,~s, r)) =W(~m) ∪W(~s) ∪W(r) ∪ {~m}

Definition 4.9 Given a derivation Γ ` � s : A we define
�����

(s) := {m(λzz) = λy.y | m ∈ W(s)}

� ?(s) :=
�
∪
�����

(s)

� ?(~s) :=
� ?(s1) ∪ . . . ∪

� ?(sk)

The equations in
�����

(s) represent the first functor law for every on-display
monotonicity witness m occurring in s.

Given a context Γ = {x1 : A1, . . . , xk : Ak} we set

Γr := {x1 : x1 r A1, . . . , xk : xk r Ak},

where w.l.o.g. xi /∈ FV (Ai).

We are now ready to prove the soundness theorem of our realizability inter-
pretation.

122 4. REALIZABILITY FOR MCICD

Theorem 4.1 (Soundness of Realizability for MCICD) If Γ `MCICD, � s :
A then Γr `MCICD?, � ?(s) s̃ : s r A
Proof. Induction on `MCICD, � .
Case (V ar) If Γ, x : A ` x : A then obviously also

Γr, x : x r A ` x̃ : x r A.

because x̃ = x.
Case (→ I). We have Γ ` λxs : A → B coming from Γ, x : A ` s : B. The IH
yields Γr, x : x r A ` � ?(s) s̃ : s r B. which by (→ I) yields

Γr ` � ?(s) λxs̃ : x r A→ s r B

We have
�

β ` s = (λxs)x and w.l.o.g. x /∈ FV (Γr,
� ?(s)). therefore we get

Γr ` � ?(s) λxs̃ : ∀x.x r A→ (λxs)x r B

But as
� ?(s) =

� ?(λxs) this is the same as Γr ` � ?(λxs) λ̃xs : λxs r A→ B.
Case (→ E). We have Γ ` st : B coming from Γ ` s : A → B, Γ ` t : A. The
IH yields Γ ` � ?(s) s̃ : s r A → B, that is Γ ` � ?(s) s̃ : ∀z.z r A → sz r B, and

Γr ` � ?(t) t̃ : t r A. Instantiating z := t and eliminating the implication we get

Γr ` � ?(s)∪ � ?(t) s̃t̃ : st r B, which is the same as Γr ` � ?(st) s̃t : st r B.
Case (∀I). Assume Γ ` � s : ∀xA coming from Γ ` � s : A where x /∈ FV (Γ,

�
).

The IH yields Γr ` � ?(s) s̃ : s r A. We can assume w.l.o.g. x /∈ FV (Γr,
� ?(s)),

therefore by (∀I) we get Γr ` � ?(s) s̃ : ∀x.s r A, i.e. Γr ` � ?(s) s̃ : s r ∀xA.
Case (∀E). We have Γ ` � s : A[x := r] coming from Γ ` � s : ∀xA. The IH
yields Γr ` � ?(s) s̃ : s r ∀xA, i.e. Γr ` � ?(s) s̃ : ∀x.s r A, which by (∀E) implies
Γr ` � ?(s) s̃ : (s r A)[x := r]. As we can assume w.l.o.g. x /∈ FV (s) then, by
lemma 4.7, we conclude Γr ` � ?(s) s̃ : s r A[x := r].
Case (∀2I). Assume Γ ` � s : ∀XA coming from Γ ` � s : A where X /∈ FV (Γ).
The IH yields Γr ` � ?(s) s̃ : s r A. As X /∈ FV (Γ) then X+ /∈ FV (Γr) therefore
(∀2I) yields Γr ` � ?(s) s̃ : ∀X+.s r A. But this is exactly Γr ` � ?(s) s̃ : s r ∀XA.
Case (∀2E). We have Γ ` � s : A[X := F] coming from Γ ` � s : ∀XA. The
IH yields Γr ` � ?(s) s̃ : s r ∀XA. i.e. Γr ` � ?(s) s̃ : ∀X+.s r A, which by (∀2E)
yields Γr ` � ?(s) s̃ : (s r A)[X+ := Fr], which by lemma 4.7, is the same as
Γr ` � ?(s) s̃ : s r A[X := F].
Case (Eq). We have Γ ` � s : A[x := t] coming from Γ ` s : A[x := r] and

�
` r = t. The IH yields Γr ` � ?(s) s̃ : s r A[x := r]. Observe now that

w.l.o.g. x /∈ FV (s) therefore we have Γr ` � ?(s) s̃ : (s r A)[x := r]. Now by
weakening we get

� ?(s) ` r = t which implies Γr ` � ?(s) r = t, therefore by (Eq)
we get Γr ` � ?(s) s̃ : (s r A)[x := t] which again as x /∈ FV (s) is the same as
Γr ` � ?(s) s̃ : s r A[x := t].
Case (∧I). Assume Γ ` 〈s, t〉 : A ∧ B from Γ ` s : A, Γ ` t : B. The IH yields
Γr ` � ?(s): s̃ : s r A and Γr ` � ?(t): t̃ : t r B. As

�
β ` s = π1〈s, t〉,

�
β ` t =

π2〈s, t〉. then we have Γr ` � ?(s): s̃ : π1〈s, t〉 r A and Γr ` � ?(t): t̃ : π2〈s, t〉 r B

and by (∧I) we get Γr ` � ?(s)∪ � ?(t): 〈s̃, t̃〉 : 〈s, t〉 r A ∧ B, which is the same as

4.2. THE REALIZABILITY INTERPRETATION 123

Γr ` � ?(〈s,t〉): 〈̃s, t〉 : 〈s, t〉 r A ∧B.
Case (∧2E). We have Γ ` π2s : B from Γ ` s : A ∧ B. The IH yields
Γr ` � ?(s) s̃ : s r A ∧ B, i.e., Γr ` � ?(s) s̃ : (π1s r A) ∧ (π2s r B) which by (∧2E)
yields Γr ` � ?(s) π2s̃ : π2s r B. But this is the same as Γr ` � ?(π2s) π̃2s : π2s r B.
Case (∧1E). Analogous to the previous case.
Case (∨LI) Assume Γ ` � inl s : A ∨ B coming from Γ ` � s : A. The IH yields

Γr ` � ?(s) s̃ : s r A.

from this and the obvious ` inl s = inl s we get Γr ` � ?(s) s̃ : s r A� inl s = inl s
and (∨LI) yields

Γr ` � ?(s) inl s̃ : (s r A� inl s = inl s) ∨ (s r B� inl s = inr s)

which is the same as

Γr ` � ?(s) inl s̃ :
(
(z r A� inl s = inl z) ∨ (z r B� inl s = inr z)

)
[z := s]

Therefore (∃I) yields

Γr ` � ?(s) pack(inl s̃) : ∃z.(z r A� inl s = inl z) ∨ (z r B� inl s = inr z)

But as
� ?(s) =

� ?(inl s) this is exactly Γr ` � ?(inl s) ĩnl s : inl s r A ∨ B.
Case (∨RI). Analogous to the previous case.
Case (∨E). Assume Γ ` � case(q, y.s, z.t) : C from Γ ` � q : A ∨ B, Γ, y : A ` �

s : C, Γ, z : B ` � t : C. The IH yields

Γr ` � ?(q) q̃ : q r A ∨ B (4.36)

Γr, y : y r A ` � ?(s) s̃ : s r C (4.37)

Γr, z : z r B ` � ?(t) t̃ : t r C (4.38)

Set D := (u r A�q = inlu) ∨ (u r B�q = inr u). We have

Γr, v : D[u := y] ` v : (y r A�q = inl y) ∨ (y r B�q = inr y) (4.39)

On the other hand we have

Γr, u : y r A�q = inl y ` u : y r A

and by (4.37)

Γr, u : y r A�q = inl y, y : y r A ` s̃ : s r C,

Now from

Γr, u : y r A�q = inl y ` q = inl y

124 4. REALIZABILITY FOR MCICD

and s = case(inl y, y.s, z.t) ∈
�

β we get

Γr, u : y r A�q = inl y ` s = case(q, y.s, z.t),

therefore

Γr, u : y r A�q = inl y, y : y r A ` s̃ : case(q, y.s, z.t) r C,

and by (Dsp1) (cf. lemma 4.1)

Γr, u : y r A�q = inl y ` � ?(s) s̃ [y := u] : case(q, y.s, z.t) r C. (4.40)

Now using (4.38) and assuming w.l.o.g. y /∈ FV (Γr, B, C) we get by (Dsp2)

Γr, z : y r B ` � ?(t)[z:=y] t̃ : t[z := y] r C

On the other hand using t[z := y] = case(inr y, y.s, z.t) ∈
�

β we get

Γr, w : y r B�q = inr y ` � ?(t)[z:=y] t[z := y] = case(q, y.s, z.t).

The two previous derivations imply by weakening and (Eq):

Γr, w : y r B�q = inr y, z : z r B ` � ?(t)[z:=y] t̃ : case(q, y.s, z.t) r C

and from the obvious Γr, w : y r B� q = inr y ` � ?(t)[z:=y] w : y r B, (Dsp1)
yields

Γr, w : y r B�q = inr y ` � ?(t)[z:=y] t̃[z := w] : case(q, y.s, z.t) r C (4.41)

Derivations (4.40),(4.41) and (4.39) yield by (∨E):

Γr, v : D[u := y] ` case(v, u.s̃ [y := u], w.t̃ [z := w]) : case(q, y.s, z.t) r C,

which making explicity the equational contexts and by α-conversion is the same
as

Γr, v : D[u := y] ` � ?(s)∪ � ?(t)[z:=y] case(v, y.s̃, z.t̃) : case(q, y.s, z.t) r C.

Next observe that derivation (4.36) unfolds to Γr ` � ?(q) q̃ : ∃u.D.
Therefore, as u /∈ FV (Γr, case(q, y.s, z.t) r C, ∃u.D), (∃E) yield

Γr ` � ?(s)∪ � ?(t)[z:=y]∪ � ?(q) open(q̃, v.case(v, y.s̃, z.t̃)) : case(q, y.s, z.t) r C.

Finally, as w.l.o.g. y /∈ FV (Γr, s, q, C), (Dsp2) yield

Γr ` � ?(s)∪ � ?(t)∪ � ?(q) open(q̃, v.case(v, y.s̃, z.t̃)) : case(q, y.s, z.t) r C.

which is the same as

4.2. THE REALIZABILITY INTERPRETATION 125

Γr ` � ?(case(q,y.s,z.t))
˜case(q, y.s, z.t) : case(q, y.s, z.t) r C

Case (µI). We have Γ ` ink,j t : µX(C1, . . . , Ck)~� j~s coming from Γ ` t : Fj [X :=
µX(C1, . . . , Ck)]~s.
By IH we have Γr ` � ?(t) t̃ : t r Fj [X := µX(C1, . . . , Ck)]~s and by proposition
4.2

` λx. ink,j x : ∀~y ∀z.z r Fj [X := µX(C1, . . . , Ck)]~y
→ � k

j z r (µX(C1, . . . , Ck))~� j~y

Therefore instantiating ~y, z := ~s, t and eliminating the implication we have

Γr ` � ?(t) (λx.ink,jx)t̃ : � k
j t r µX(C1, . . . , Ck)~� j~s

Finally using subject reduction, the definition of ĩnk,j t and observing that
� ?(ink,j t) =

� ?(t) and � k
j t = ink,j t ∈

�
β we get

Γr ` � ?(ink,j t) ĩnk,j t : ink,j t r µX(C1, . . . , Ck)~� j~s.

Case (µE). We have Γ ` Itk(~m,~s, r) : K~t from Γ ` r : µX(C1, . . . , Ck)~t,
Γ ` mi : Fi monX, Γ ` si : Fi[X := K] ⊆ K~�

i , 1 ≤ i ≤ k.
By IH we have

Γr ` � ?(mi) m̃i : mi r Fi monX (1 ≤ i ≤ k)

which by proposition 4.7 leads to

Γr ` � ?(mi)∪{mi(λz.z)=λy.y} m̃i : Fr

i mon X+, (1 ≤ i ≤ k)

therefore, by proposition 4.4, part (i), we get

Γr ` � \ λ~x.λ~y .λz.Itk(~m,~s, z) :
�
r IndµX(C1,...,Ck)

with mi := m̃i, si := (λui.yi(xi(λv.v)ui)) and

� \ :=
� ?(~m) ∪ {mi(λz.z) = λy.y | 1 ≤ i ≤ k}.

Instantiating Z+ := Kr in
�
r IndµX(C1,...,Ck) (cf. formula (4.1), page 107) and

using lemma 4.7 we get:

Γr ` � \ λ~x.λ~y .λz.Itk(~m,~s, z) : ∀~n. . . . , ni r Fi monX, . . .(1≤i≤k) →

∀~f. . . . , fi r Fi[X := K] ⊆ K~�
i , . . .(1≤i≤k) →�

~n~f r µX(C1, . . . , Ck) ⊆ K

Next instantiate ni, fi := mi, si:

Γr ` � \ λ~x.λ~y .λz.Itk(~m,~s, z) : . . . , mi r Fi monX, . . .(1≤i≤k) →
. . . , si r Fi[X := K] ⊆ K~� i , . . .(1≤i≤k) →�

~m~s r µX(C1, . . . , Ck) ⊆ K

126 4. REALIZABILITY FOR MCICD

By IH we have Γr ` � ?(si) s̃i : si r Fi[X := K] ⊆ K~� i , hence we can eliminate

both implications with
� \ ∪

� ?(~s) and apply subject reduction of the logic to
get:

Γr ` � \∪ � ?(~s) λz.Itk(~m, ~ts, z) :
�

~m~s r µX(C1, . . . , Ck) ⊆ K

where mi := m̃i, tsi
:= λui.s̃i(m̃i(λv.v)ui), that is,

Γr ` � \∪ � ?(~s) λz.Itk(~m, ~ts, z) :
∀~y ∀u.u r (µX(C1, . . . , Ck))~y →

�
~m~su r K~y

Again by IH we have Γr ` � ?(r) r̃ : r r µX(C1, . . . , Ck)~t. Next instantiating

~y, u := ~t, r and eliminating the implication we obtain:

Γr ` � \∪ � ?(~s)∪ � ?(r)

(
λz.Itk(~m, ~ts, z)

)
r̃ :

�
~m~s r r K~t

Finally, observing that
� \ ∪

� ?(~s) ∪
� ?(r) =

� ?(Itk(~m,~s, r)) and
�

~m~s r =

Itk(~m,~s, r) ∈
�

β , using subject reduction and the definitions of
�
, ˜Itk(~m,~s, r) we

get

Γr ` � ?(Itk(~m,~s,r))
˜Itk(~m,~s, r) : Itk(~m,~s, r) r K~t.

Case (µE+). Use the IH and part (ii) of proposition 4.4.
Case (νI). Use the IH and part (i) of proposition 4.5.
Case (νI+). Use the IH and part (ii) of proposition 4.5.
Case (νI i). Use the IH and proposition 4.6.
Case (νE). Use the IH and proposition 4.3. a

De flores es la alfombra: muchas hay en tu casa y
entre el musgo acuático canta y trina Xayacamachan:
embriaga su corazón la flor de cacao.

Poema Nahuatl

Es gibt nichts praktischeres als eine gute Theorie.

Immanuel Kant (1724-1804)

5
Programming with Proofs

The applications of lambda calculus to computer science and logic via the Curry-
Howard correspondence are well-known, see for example [Bar97, Ber97]. In
this chapter we consider a nice application, namely a version of the progra-
mming with proofs paradigm which was introduced by Krivine and Parigot in
[KrPa90] for AF2 (see also [Lei83] for a first explicit formulation of the method).
Later in [Par92] Parigot extends the method to conventional inductive defini-
tions whereas in [Raf94] Raffalli adds conventional coinductive definitions. Our
contribution is to extend the paradigm to our system of clausular (co)inductive
definitions, being this extension the main application of our realizability inter-
pretation.

5.1 Semantics

In this section we define a classical tarskian semantics for MCICD?, and therefore
for MCICD also, needed to present the important concept of data type in a
model, which is central for programming with proofs (see [Kri93, Par92]), and
allows to establish a relation between modified realizability and our realizability
concept.

5.1.1 Syntactical Models for the Term System

We start the semantics definition by given a syntactical model of the term system
MCICT.

Definition 5.1 (Valuation) Given a set D, a D-valuation is a function ν :
V ar → D. Given a valuation ν, a variable x and d ∈ D we define the valuation

127

128 5. PROGRAMMING WITH PROOFS

ν[x/d] : V ar → D as:

ν[x/d](y) =

{
d if y ≡ x
ν(y) otherwise

The set of D-valuations will be denoted with Val(D).

Definition 5.2 (Applicative Structure) An applicative structure is a tuple

D =
〈
D, app, π?

1 , π2
?, inl?, inr?, in?

k,i, out?k,i

〉

where

◦ D has at least two elements.

◦ app : D × D → D and we agree to represent app as concatenation, i.e.,
for d1, d2 ∈ D we set d1d2 := app(d1, d2).

◦ π?
1 , π2

?, inl?, inr?, in?
k,i, out?k,i : D → D.

Definition 5.3 (Syntactical Model) A Syntactical Model for MCICT is a
pair

D =
〈
D, SemD

〉

such that

◦ D is an applicative structure with universe D.

◦ SemD : ΛMCICT × Val(D)→ D and we agree to denote

SemD(t, ν) =: tD[ν]

◦ xD[ν] = ν(x). (MV ar)

◦ If ∀x ∈ FV (r).ν(x) = ν′(x) then rD[ν] = rD[ν′]. (Coinc)

◦ (rs)D[ν] = app(rD[ν], sD[ν]) ≡ rD[ν]sD[ν]. (MApp)

◦ (π1r)
D[ν] = π?

1(rD[ν]) and (π2r)
D[ν] = π2

?(rD[ν]). (MProj)

◦ (inl s)D[ν] = inl?(sD[ν]) and (inr s)D[ν] = inr?(sD[ν]). (MInj)

◦ (ink,i s)D[ν] = in?
k,i(s

D[ν]). (MIn)

◦ (outk,i s)D[ν] = out?k,i(s
D[ν]). (MOut)

◦ ∀d ∈ D. app
(
(λxr)D[ν], d

)
= rD[ν[x/d]]. (Mβ→)

◦ π?
1

(
〈r, s〉D[ν]

)
= rD[ν] and π2

?
(
〈r, s〉D[ν]

)
= sD[ν]. (Mβ×)

◦ case(inl r, x.s, y.t)D[ν] = sD[ν[x/rD[ν]]] and

case(inr r, x.s, y.t)D[ν] = tD[ν[y/rD[ν]]]. (Mβ+)

5.1. SEMANTICS 129

◦ Itk(~m,~s, ink,i t)D[ν] =
(
si

(
mi

(
λx.Itk(~m,~s, x)

)
t
))D

[ν]. (MβIt)

◦ Reck(~m,~s, ink,i t)D[ν] =
(
si

(
mi

(
〈Id, λz.Reck(~m,~s, z)〉

)
t
))D

[ν]. (MβRec)

◦
(

outk,i CoItk(~m,~s, t)
)D

[ν] =
(
mi

(
λz.CoItk(~m,~s, z)

)
(sit)

)D

[ν]. (MβCoIt)

◦
(

outk,i CoReck(~m,~s, t)
)D

[ν] =
(
mi

(
[Id, λz.CoReck(~m,~s, z)]

)
(sit)

)D

[ν].

(MβCoRec)

◦
(

outk,i out−1
k (~m,~t)

)D

[ν] =
(
mi(λz.z)ti

)D

[ν]. (MβInv)

◦ If ∀d ∈ D.rD[ν[x/d]] = sD[ν′[x/d]] then

(λxr)D[ν] = (λxs)D[ν′]. (Mξ→)

◦ If rD
1 [ν] = rD

2 [ν′] and sD
1 [ν] = sD

2 [ν′] then

〈r1, s1〉
D[ν] = 〈r2, s2〉

D[ν′]. (Mξ×)

◦ If tD1 [ν] = tD2 [ν′], ∀d ∈ D.qD
1 [ν[y/d]] = qD

2 [ν′[y/d]] and

∀d ∈ D.rD

1 [ν[z/d]] = rD

2 [ν′[z/d]]

then

case(t1, y.q1, z.r1)
D[ν] = case(t2, y.q2, z.r2)

D[ν′]. (Mξ+)

◦ If ~mD
1 [ν] = ~mD

2 [ν′], ~s1
D[ν] = ~s2

D[ν′] and rD
1 [ν] = rD

2 [ν′] then the follo-
wing four equalities hold

Itk(~m1, ~s1, r1)
D[ν] = Itk(~m2, ~s2, r2)

D[ν′] (MξIt)
Reck(~m1, ~s1, r1)

D[ν] = Reck(~m2, ~s2, r2)
D[ν′] (MξRec)

CoItk(~m1, ~s1, r1)
D[ν] = CoItk(~m2, ~s2, r2)

D[ν′] (MξCoIt)
CoReck(~m1, ~s1, r1)

D[ν] = CoReck(~m2, ~s2, r2)
D[ν′]. (MξCoRec)

◦ If ~mD
1 [ν] = ~mD

2 [ν′], ~t1
D[ν] = ~t2

D[ν′] then

out−1
k (~m1,~t1)D[ν] = out−1

k (~m2,~t2)
D[ν′] (MξInv)

Definition 5.4 (Extensionality) We say that a syntactical model D is exten-
sional if the following holds

◦ (λx.rx)D [ν] = rD[ν], if x /∈ FV (r). (Mη→)

◦ 〈π1r, π2r〉D[ν] = rD[ν]. (Mη×)

130 5. PROGRAMMING WITH PROOFS

◦ case(r, y. inl y, z. inr z)D[ν] = rD[ν]. (Mη+)

◦ Itk(~m, � k
1 , . . . , � k

k, r)D[ν] = rD[ν]. (Mη It)

◦ out−1
k

(
~m, outk,1 r, . . . , outk,k r

)D
[ν] = rD[ν]. (Mη Inv)

Lemma 5.1 (Term Substitution Properties) The following properties hold
for every syntactical model D:

◦ If ~x /∈ FV (r) then tD[ν[~x/~d]] = tD[ν]. (Tsp1)

◦ t[x := s]D[ν] = tD[ν
[
x/sD[ν]

]
]. (Tsp2)

Proof. For (Tsp1) we have ~x /∈ FV (r) implies ν(y) = ν[~x/~d](y) for all y ∈
FV (r). Therefore by the (Coinc) property we are done.
(Tsp2) is proved by induction on t.
Case t ≡ x).

t[x := s]D[ν] = sD[ν] = ν
[
x/sD[ν]

]
(x) =

(MV ar)
xD[ν

[
x/sD[ν]

]
]

Cases t ≡ rs, π1r, π2s, inl s, inr s, ink,i r, outk,i r).
Use IH and (MApp), (Mproj), (Minj), (MIn), (MOut) respectively.
Case t ≡ λyr). Goal is (λy.r[x := s])D[ν] = (λyr)D[ν

[
x/sD[ν]

]
].

By IH we have r[x := s]D[ν[y/d]] = rD[ν[y/d][x/sD[ν]]] = rD[ν[x/sD[ν]][y/d]]
for all d ∈ D. Therefore by (Mξ→) we are done.
The remaining cases are solved similarly to the previous one via the IH and the
respective (Mξ) rule. a

Proposition 5.1 (Soundness of Term Interpretation) For every two given
terms r, s, if r →βη s then ∀ν ∈ Val(D).rD[ν] = sD[ν].
Proof. Induction on →βη. a

Definition 5.5 We define the applicative structure

DT := 〈DT , app, π?
1 , π2

?, inl?, inr?, in?
k,i, out?k,i〉

as follows:

◦ For a given term r set ‖r‖:= {s ∈ ΛMCICT|r =βη s}.

◦ DT := {‖r‖ |r ∈ ΛMCICT}.

◦ app : DT ×DT → DT , ‖r‖‖s‖=‖rs‖.

◦ π?
1 : DT → DT , π?

1 ‖r‖=‖π1r‖.

◦ π2
? : DT → DT , π2

? ‖r‖=‖π2r‖.

◦ inl? : DT → DT , inl? ‖s‖=‖ inl s‖.

5.1. SEMANTICS 131

◦ inr? : DT → DT , inr? ‖s‖=‖ inr s‖.

◦ in?
k,i : DT → DT , in?

k,i ‖r‖=‖ ink,i r‖.

◦ out?k,i : DT → DT , out?k,i ‖r‖=‖outk,i r‖.

Definition 5.6 Define SemDT
: ΛMCICT × Val(DT)→ DT as

tD[ν] :=‖ t[~x := ~s]‖,

where FV (t) = ~x and ν(xi) =‖si ‖ for 1 ≤ i ≤ k.

Proposition 5.2 DT = 〈DT , SemDT
〉 is an extensional syntactical model.

Proof. We prove the properties of the definition:

◦ (MV ar). xD[ν] =‖ x[x := s] ‖=‖ s ‖, but by definition of xD[ν] we have
ν(x) =‖s‖. Therefore xD[ν] = ν(x).

◦ (Coinc). Assume ∀x ∈ FV (r).ν(x) = ν ′(x). We have rD[ν] =‖r[~x := ~s]‖
with FV (r) = ~x and ν(xi) =‖ si ‖ and as xi ∈ FV (r) we also have
ν′(xi) =‖si ‖. Therefore rD[ν] =‖r[~x := ~s]‖= rD[ν′].

◦ (MApp). Take FV (rt) = ~x, ν(~x) =‖ ~s ‖, FV (r) = ~y, ν(~y) =‖ ~s1 ‖,
FV (t) = ~z, ν(~z) =‖ ~s2 ‖. So we have ~x = ~y,~s and ‖~s‖=‖ ~s1, ~s2 ‖.

(rt)D[ν] =‖(rt)[~x := ~s]‖
=‖r[~x := ~s]t[~x := ~s]‖
=‖r[~x := ~s]‖‖ t[~x := ~s]‖
=‖r[~y := ~s1]‖‖ t[~z := ~s2]‖
= rD[ν]tD[ν]

◦ (MProj), (MInj), (MIn), (MOut). These cases are solved analogously
to (MApp).

◦ (Mβ→). Take d :=‖ t‖∈ DT , FV (λxr) = ~y, ν(~y) =‖~s‖.

app
(
(λxr)D[ν], ‖ t‖

)
= app

(
‖(λxr)[~y := ~s]‖, ‖ t‖

)

=‖(λx.r[~y := ~s])t‖
=‖r[~y := ~s][x := t]‖

Next observe that FV (r) = ~y, x and ν[x/ ‖ t ‖](~y) = ν(~y). Moreover, as
x /∈ ~y ∪ FV (~s) (by definition of substitution) we have r[~y := ~s][x := t] =
r[~y, x := ~s, t]. Therefore

‖r[~y := ~s][x := t]‖ =‖r[~y, x := ~s, t]‖
= rD[ν[x/ ‖ t‖]].

Therefore app
(
(λxr)D[ν], ‖ t‖

)
= rD[ν[x/ ‖ t‖]].

◦ (Mβ×), (Mβ+), (MβIt), (MβRec), (MβCoIt), (MβCoRec), (MβInv). These cases
are similar to (Mβ→).

132 5. PROGRAMMING WITH PROOFS

◦ (Mξ→). Assume ∀ ‖ t ‖∈ DT .rD[ν[x/ ‖ t ‖]] = sD[ν′[x/ ‖ t ‖]]. In
particular we have rD[ν[x/ ‖ x ‖]] = sD[ν′[x/ ‖ x ‖]]. So if FV (r) =
~x, FV (s) = ~y, ν[x/ ‖x‖](~x) =‖~t‖, ν[x/ ‖x‖](~y) =‖~q‖ we have

‖r[~x := ~t]‖=‖s[~y := ~q]‖

So we have r[~x := ~t] =βη s[~y := ~q], which implies λx.r[~x := ~t] =βη

λx.s[~y := ~q]. Therefore

‖(λxr)[~x := ~t]‖=‖(λxs)[~y := ~q]‖ (5.1)

As x /∈ FV (λxr, λxs) by (Coinc) it suffices to show

(λxr)D[ν[x/ ‖x‖]] = (λxs)D[ν[x/ ‖x‖]].

Assume that (λxr)D[ν[x/ ‖ x ‖]] =‖ λx.r[~z := ~s] ‖, so we have ~z =
FV (λxr) = {~x}\{x} and ν[x/ ‖x‖](~z) = ~s. But as ν[x/ ‖x‖] =‖x‖ and
FV (r) = ~z, x we conclude r[~x := ~t] = r[~z, x := ~s, x] = r[~z := ~s]. Therefore
‖ λx.r[~z := ~s] ‖=‖ λx.r[~x := ~t] ‖. Analogously we get (λxs)D[ν[x/ ‖ x ‖
]] =‖(λxs)[~y := ~q]‖ and by (5.1) we are done.

◦ The remaining (Mξ) rules are solved analogously.

Finally we show that the model is extensional, which is easy because our defi-
nition of extensionality is just saying that the η equalities must hold, we show
for example (Mη It).
First observe that if ~x := FV (Itk(~m, � k

1 , . . . , � k
k, r)) and ~z := FV (r) we have

~z ⊆ ~x. So if ν(~z) =‖~t‖ and ν(~x) =‖~s‖ then w.l.o.g. ~t ⊆ ~s. So we can assume
r[~x := ~s] = r[~z := ~t].

Itk(~m, � k
1 , . . . , � k

k, r)D[ν] =‖ Itk(~m, � k
1 , . . . , � k

k, r)[~x := ~s]‖
=‖ Itk

(
~m[~x := ~s], � k

1 , . . . , � k
k, r[~x := ~s]

)
‖

=‖r[~x := ~s]‖

=‖r[~z := ~t]‖
= rD[ν].

a

5.1.2 Semantics for the Logic MCICD?

Now that we have a notion of term interpretation we can introduce a notion of
satisfaction for MCICD?-formulas.

Definition 5.7 (Valuation) The concept of valuation is extended as follows:
A valuation in a set D is a function ν : V ar → D ∪ P(D) such that if x (X) is
a first-order (second-order) variable then ν(x) ∈ D (ν(X) ∈ P(D)).

5.1. SEMANTICS 133

Definition 5.8 (Satisfaction) The notion of satisfaction

ν |=M A

between a model M, a valuation ν ∈ Val(M), and a formula A is the usual one
for formulas of second order logic, defined with help of the previously developed
term interpretation, and for restrictions and (co)inductive definitions is defined
as follows:

ν |= A�~s = ~t :⇔ ν |= A and ν |= ~s = ~t

ν |= (µX(C1, . . . , Ck))~t :⇔ ν |= (∀X. ~F monX, ~F ⊆ X~�
→ X~t)

ν |= (νX(D1, . . . ,Dk))~t :⇔ ν |= (∃X. ~F monX ∧X ⊆ ~F~�
∧X~t)

where
~F monX := F1 monX, . . . ,Fk monX

~F ⊆ X~�
:= F1 ⊆ X ~�

1 , . . . ,Fk ⊆ X ~�
k ,

X ⊆ ~F~�
:= X ⊆ F ~�

1

1 ∧ . . . ∧X ⊆ F ~�
k

k

Lemma 5.2 (Substitution Properties) The following properties hold:

◦ If ∀γ ∈ FV (A).ν(γ) = ν ′(γ) then

ν |= A if and only if ν ′ |= A. (FCoinc)

◦ If ~x /∈ FV (A) and ~d ∈ |M| then

ν |= A if and only if ν[~x/~d] |= A. (Fsp1)

◦ If ~X /∈ FV (A) and ~R ⊆ |M|n then

ν |= A if and only if ν[~X/ ~R] |= A. (Fsp2)

◦ ν |= A[x := s] if and only if ν
[
x/sM[ν]

]
|= A. (Fsp3)

◦ Set Fν := {~d ∈ |M|n | ν[~x/~d] |= F~x}. Then

ν |= A[X := F] if and only if ν[X/Fν] |= A. (Fsp4)

◦ If u /∈ FV (A) then

ν[x/a] |= A if and only if ν[u/a] |= A[x := u]. (Fsp5)

134 5. PROGRAMMING WITH PROOFS

◦ If Y /∈ FV (A) then

ν[X/R] |= A if and only if ν[Y/R] |= A[X := Y]. (Fsp6)

Proof.

◦ (FCoinc). Induction on A.

◦ (Fsp1). Immediate from (FCoinc).

◦ (Fsp2). Immediate from (FCoinc).

◦ (Fsp3). Induction on A.

◦ (Fsp4). Induction on A.

◦ (Fsp5). Immediate from (Fsp3).

◦ (Fsp6). Immediate from (Fsp4).

a

Identity Models

Definition 5.9 An identity model is a model M such that for all valuation
ν ∈ Val(M):

ν |=M r = s ⇔ rM[ν] = sM[ν]

Definition 5.10 Given an arbitrary model M we define the model M? as fo-
llows:

◦ Define the relation ∼ on |M| as follows:

a ∼ b :⇔ ν[x, y/a, b] |=M x = y

for some valuation, and therefore for all valuations ν ∈ Val(M).
It is clear that ∼ is an equivalence relation, and we set

‖a‖= {b | a ∼ b} and ‖A‖= {‖a‖ | a ∈ A}

◦ Define the universe of M? as:

|M?| := |M|/ ∼

◦ Given a valuation ν ∈ Val(M) define the valuation ν̃ ∈ Val(M?) as fo-
llows:

ν̃(x) =‖ν(x)‖ ν̃(X) =‖ν(X)‖

5.1. SEMANTICS 135

◦ Given a valuation ν ∈ Val(M?) define a valuation ν] ∈ Val(M) as follows:

ν](x) = a :⇔ ν(x) =‖a‖
ν](X) = A :⇔ ν(X) =‖A‖

Observe that ν] is not uniquely determined and that

ν(x) =‖ν](x)‖ ν(X) =‖ν](X)‖

◦ Define the term interpretation as follows:

rM
?

[ν] :=‖rM[ν]]‖

Proposition 5.3 The following properties hold:

1. The term interpretation in M? is well-defined, that is, if both ν]
1, ν

]
2 work

as in the previous definition then ‖rM[ν]
1]‖=‖rM[ν]

2]‖.

2. ν |=M A if and only if ν̃ |=M? A.

3. M and M? are elementary equivalent, that is:

M |= A ⇔ M? |= A.

4. M? is an identity model.

Proof.

1. Induction on r.

2. Induction on A.

3. From part 2.

4. Take µ ∈ Val(M?) we have to show that

µ |=M? r = s ⇔ rM
?

[µ] = sM
?

[µ].

It is easy to see that there is a ν ∈ Val(M) such that µ = ν̃.
We have rM

?

[µ] = rM
?

[ν̃] =‖rM[ν]‖ and analogously sM
?

[µ] =‖sM[ν]‖.
So it suffices to show

ν̃ |=M? r = s ⇔ ‖rM[ν]‖=‖sM[ν]‖

ν̃ |=M? r = s ⇔ ν |=M r = s

⇔ ν
[
x, y/rM[ν], sM[ν]

]
|=M x = y

⇔ rM[ν] ∼ sM[ν]

⇔ ‖rM[ν]‖=‖sM[ν]‖ .

136 5. PROGRAMMING WITH PROOFS

a

The last two properties of the previous proposition shows that to consider
only identity models is a harmless restriction, so we can work with every model
and assume that it is an identity model.

We present now the main result of this section:

Theorem 5.1 (Soundness of the Logic MCICD?) If Γ `MCICD?, � s : A then
Γ,

�
|= A.

Proof. Induction on `MCICD?, � . The case (V ar) as well as those involving →,∧
and ∨ are straightforward.
Case (∀I). Assume ν |= Γ,

�
and observe that as x /∈ FV (Γ,

�
) by lemma (5.2),

property (Fsp1), we get ν[x/a] |= Γ,
�

for every a ∈ |M|. Therefore the IH
yields ν[x/a] |= A for every a ∈ |M|, which by definition lead us to ν |= ∀xA.
Case (∀E). Assume ν |= Γ,

�
. The IH yields ν |= ∀xA which in particular lead

us to ν
[
x/sM[ν]

]
|= A. Finally by (Fsp3) we get ν |= A[x := s].

Case (∀2I). Analogous to (∀I) using (Fsp2).
Case (∀2E). Analogous to (∀E) using (Fsp4).
Case (Eq). Assume ν |= Γ,

�
then the IH yields ν |= A[x := s] and ν |= s = t.

By (Fsp3), ν |= A[x := s] is the same as ν
[
x/sM[ν]

]
|= A and as ν |= s = t and

we can assume that M is an identity model then sM[ν] = tM[ν], hence we get
ν
[
x/tM[ν]

]
|= A, which again by (Fsp3) equals ν |= A[x := t].

Case (�I). Assume ν |= Γ,
�
. The IH yields ν |= A and ν |= ~s = ~t, therefore by

definition we get ν |= A�~s = ~t.
Case (�E). Assume ν |= Γ,

�
. The IH yields ν |= A�~s = ~t which by definition

implies in particular ν |= A.
Case (∃I). Assume ν |= Γ,

�
. The IH yields ν |= A[x := s]. Hence, by (Fsp3)

we have ν
[
x/sM[ν]

]
|= A, which implies by definition ν |= ∃xA.

Case (∃E). We have Γ ` � B coming from Γ ` ∃xA and Γ, A[x := u] ` B with
u /∈ FV (Γ, B, ∃xA).
Assume ν |= Γ,

�
. The first premisse yields, by IH, ν |= ∃xA, i.e.,

ν[x/a] |= A for some a ∈ |M|. (5.2)

The goal is ν |= B. We analyse two cases:

◦ x ≡ u. In this case the second premisse becomes Γ, A ` B and we have
x /∈ FV (Γ), hence as ν |= Γ we get, by (Fsp1), ν[x/a] |= Γ. This together
with (5.2) yields ν[x/a] |= Γ, A, which by the second premisse and IH
leads to ν[x/a] |= B. Finally as x /∈ FV (B), (Fsp1) yields ν |= B.

◦ x 6≡ u. As u /∈ FV (∃xA), this case implies u /∈ FV (A). Next observe that

a = uM
[
ν[u/a]

]
, which by (5.2) yields ν

[
x/uM

[
ν[u/a]

]]
|= A. Observe

now that as u /∈ FV (A), we get, using (Fsp1),

ν
[
u/a

][
x/uM

[
ν[u/a]

]]
|= A

5.1. SEMANTICS 137

and by (Fsp3) we conclude ν[u/a] |= A[x := u]. This together with
ν[u/a] |= Γ (recall that u /∈ FV (Γ)) yield, by the second premisse and IH,
ν[u/a] |= B. Finally as u /∈ FV (B), (Fsp1) yields ν |= B.

Case (µI). Assume ν |= Γ,
�
. By IH we have

ν |= Fi[X := µX(C1, . . . , Ck)]~t (5.3)

Our goal is to prove
ν |= µX(C1, . . . , Ck)~� i~t

Take R ⊆ |M|n, we will show

ν[X/R] |= ~F monX, ~F ⊆ X~�
→ X~� i~t (5.4)

Assume

ν[X/R] |= ~F monX (5.5)

and

ν[X/R] |= ~F ⊆ X~�
(5.6)

The goal becomes
ν[X/R] |= X~� i~t (5.7)

by (5.3),using (Fsp4), we have

ν[X/µX(C1, . . . , Ck)ν] |= Fi~t. (5.8)

Assumption (5.5) implies

ν[X, Y/µX(C1, . . . , Ck)ν ,R] |= X ⊆ Y → Fi ⊆ Fi[X := Y] (5.9)

Take ν′ := ν[X, Y/µX(C1, . . . , Ck)ν ,R], we will show ν′ |= X ⊆ Y .
Take ~r ∈ |M| and assume ν ′[~z/~r] |= X~z. This yields by (Fsp4) ν[Y/R][~z/~r] |=

µX(C1, . . . , Ck)~z which in particular implies

ν[Y/R][~z/~r][X/R] |= ~F monX → ~F ⊆ X~�
→ X~z.

Now we can eliminate both implications using (5.5),(5.6) after applying
(Fsp1),(Fsp2) , getting ν[Y/R][~z/~r][X/R] |= X~z, that is ~r ∈ R which yields
ν′[~z/~r] |= Y ~z and therefore ν ′ |= X ⊆ Y .

From this, by (5.9), we get ν ′ |= Fi ⊆ Fi[X := Y]. On the other hand by
(5.8) using (Fsp2), we get ν ′ |= Fi~t, so we conclude ν′ |= Fi[X := Y]~t which, by
(Fsp2) , coincides with ν[Y/R] |= Fi[X := Y]~t. But, by (Fsp6), the last fact is
the same as ν[X/R] |= Fi~t. Therefore by (5.6) we get ν[X/R] |= X ~� i~t, which is
the same as ν[X/R] |= X~� i~t and (5.7), and therefore (5.4), is proved.
Case (µE). Take a valuation ν such that ν |= Γ,

�
. By IH we have

ν |= µX(C1, . . . , Ck)~t (5.10)

138 5. PROGRAMMING WITH PROOFS

ν |= Fi[X := K] ⊆ K~�
i (5.11)

ν |= Fi monX (5.12)

Our goal is ν |= K~t.
By (5.10) we have

ν[X/Kν] |= ~F monX → ~F ⊆ X~�
→ X~t

which by (Fsp4) yields

ν |= Fi monX,Fi[X := K] ⊆ K~�
i → K~t.

(5.12) lead us to

ν |= Fi[X := K] ⊆ K~�
i → K~t.

Therefore by (5.11) we conclude

ν |= K~t

Case (µE+). Take a valuation ν such that ν |= Γ,
�
. By IH we have

ν |= µX(C1, . . . , Ck)~t (5.13)

ν |= Fi[X := µX(C1, . . . , Ck) ∧ K] ⊆ K~�
i (5.14)

ν |= Fi monX (5.15)

Our goal is ν |= K~t.
It is obvious that ν |= µX(C1, . . . , Ck) ∧ K ⊆ µX(C1, . . . , Ck), therefore by

(5.15), using (Fsp4), we conclude

ν |= Fi[X := µX(C1, . . . , Ck) ∧ K] ⊆ Fi[X := µX(C1, . . . , Ck)]

Next observe that by the previous case (µI),

ν |= Fi[X := µX(C1, . . . , Ck)] ⊆ µX(C1, . . . , Ck)~�
i

holds, which by transitivity of ⊆ yields

ν |= Fi[X := µX(C1, . . . , Ck) ∧ K] ⊆ µX(C1, . . . , Ck)~� i

This fact together with (5.14) and observing that

µX(C1, . . . , Ck)~�
i ∧ K~� i ≡ (µX(C1, . . . , Ck) ∧ K)~�

i

allow to conclude

ν |= Fi[X := µX(C1, . . . , Ck) ∧ K] ⊆ (µX(C1, . . . , Ck) ∧ K)~�
i (5.16)

On the other hand (5.13) and (5.15), using (Fsp4), imply

5.1. SEMANTICS 139

ν |= Fi[X := µX(C1, . . . , Ck)∧K] ⊆ (µX(C1, . . . , Ck)∧K)~� i → (µX(C1, . . . , Ck)∧K)~t

Therefore by (5.16) we conclude

ν |= (µX(C1, . . . , Ck) ∧ K)~t

which clearly implies ν |= K~t.
Case (νE). Assume ν |= Γ,

�
. The IH yields ν |= νX(D1, . . . ,Dk)~t, therefore

there exists R ⊆ |M|n such that

ν[X/R] |= ~F monX (5.17)

ν[X/R] |= X ⊆ F ~� i

i (5.18)

ν[X/R] |= X~t (5.19)

By (5.18), (5.19) we have

ν[X/R] |= Fi~� i~t (5.20)

We prove now ν[X, Y/R, νX(D1, . . . ,Dk)ν] |= X ⊆ Y . Take

ν′ := ν[X, Y/R, νX(D1, . . . ,Dk)ν] and ν′′ := ν′[~z/~r].

We assume ν′′ |= X~z, the goal is ν′′ |= Y ~z. By the previous assumption,
using (Fsp2), we have ν[X/R][~z/~r] |= X~z; by (5.18),using (Fsp1), we get
ν[X/R][~z/~r] |= X ⊆ F ~�

i

i , analogously by (5.17) we have ν[X/R][~z/~r] |=
~F mon X . Therefore ν[X/R][~z/~r] |= ~F monX ∧ X ⊆ ~F~�

∧ X~z, which leads
to ν[~z/~r] |= νX(D1, . . . ,Dk)~z. This fact, using (Fsp4),implies

ν[Y/νX(D1, . . . ,Dk)ν][~z/~r] |= Y ~z

and by (Fsp2), we conclude ν ′′ |= Y ~z.
Therefore we have ν ′ |= X ⊆ Y which by (5.17) yields

ν′ |= F ~�
i

i ⊆ F
~�
i

i [X := Y]

and by (5.20), using (Fsp2),

ν′ |= F ~�
i

i [X := Y]~t

which, again by (Fsp2), implies

ν[Y/νX(D1, . . . ,Dk)ν] |= F ~� i

i [X := Y]~t,

but, by (Fsp4) this is the same as

ν[X/νX(D1, . . . ,Dk)ν] |= F ~�
i

i
~t.

140 5. PROGRAMMING WITH PROOFS

and by (Fsp4) we conclude

ν |= F ~�
i

i [X := νX(D1, . . . ,Dk)]~t.

and we are done.
Case (νI). Take a valuation ν such that ν |= Γ,

�
. By IH we have

ν |= K~t (5.21)

ν |= K ⊆ Fi[X := K]~
�

i (5.22)

ν |= Fi monX (5.23)

Our goal is ν |= νX(D1, . . . ,Dk)~t.
The three previous facts yield, using (Fsp4),

ν[X/Kν] |= Fi monX ∧X ⊆ F ~�
i

i ∧X~t

for every 1 ≤ i ≤ k. Therefore

ν |= ∃X. ~F monX ∧X ⊆ ~F~�
∧X~t

and the goal is proved.

Case (νI+). Take a valuation ν such that ν |= Γ,
�
. By IH we have

ν |= K~t (5.24)

ν |= K ⊆ Fi[X := νX(D1, . . . ,Dk) ∨ K]~
�

i (5.25)

ν |= Fi monX (5.26)

Our goal is ν |= νX(D1, . . . ,Dk)~t, i.e.,

ν |= ∃X. ~F monX ∧X ⊆ ~F~�
∧X~t (5.27)

It is obvious that

ν |= νX(D1, . . . ,Dk) ⊆ νX(D1, . . . ,Dk) ∨ K,

therefore by (5.26), using (Fsp4), we conclude

ν |= Fi[X := νX(D1, . . . ,Dk)]~
�

i ⊆ Fi[X := νX(D1, . . . ,Dk) ∨ K]~
�

i

Next observe that by the previous case (νE),

ν |= νX(D1, . . . ,Dk) ⊆ Fi[X := νX(D1, . . . ,Dk)]~
�

i

holds, which by transitivity of ⊆ yields

ν |= νX(D1, . . . ,Dk) ⊆ Fi[X := νX(D1, . . . ,Dk) ∨ K]~
�

i

This fact and (5.25) allow to conclude

5.1. SEMANTICS 141

ν |= νX(D1, . . . ,Dk) ∨ K ⊆ Fi[X := νX(D1, . . . ,Dk) ∨ K]~
�

i (5.28)

On the other hand (5.24) implies ν |= (νX(D1, . . . ,Dk)∨K)~t, which together
with (5.28) and (5.26), using (Fsp4), yield

ν[X/(νX(D1, . . . ,Dk) ∨ K)ν] |= ~F monX ∧X ⊆ ~F~�
∧X~t

and the goal (5.27) is proved.

Case (νI i). Assume ν |= Γ,
�
. by IH we have

ν |= Fi[X := νX(D1, . . . ,Dk)]~� i~t (1 ≤ i ≤ k) (5.29)

ν |= ~F monX (5.30)

By the previous case (νE) we also have

ν |= νX(D1, . . . ,Dk) ⊆ F ~�
i

i [X := νX(D1, . . . ,Dk)] 1 ≤ i ≤ k

which implies

ν |= νX(D1, . . . ,Dk) ⊆
∧

1≤i≤k

F ~� i

i [X := νX(D1, . . . ,Dk)]

which by (5.30), using (Fsp4), implies

ν |= F ~� i

i [X := νX(D1, . . . ,Dk)] ⊆ F ~�
i

i

[
X :=

∧

1≤i≤k

F ~�
i

i [X := νX(D1, . . . ,Dk)]
]
.

Obviously

ν |=
∧

1≤i≤k

F ~� i

i [X := νX(D1, . . . ,Dk)] ⊆ F ~� i

i [X := νX(D1, . . . ,Dk)]

Therefore

ν |=
∧

1≤i≤k F
~� i

i [X := νX(D1, . . . ,Dk)]

⊆ F ~�
i

i

[
X :=

∧
1≤i≤k F

~�
i

i [X := νX(D1, . . . ,Dk)]
] (5.31)

On the other hand (5.29) yields

ν |=
(∧

1≤i≤k

F ~�
i

i [X := νX(D1, . . . ,Dk)]
)
~t

This fact together with (5.30) and (5.31), using (Fsp4), lead us to

142 5. PROGRAMMING WITH PROOFS

ν
[
X/

(∧

1≤i≤k

F ~�
i

i [X := νX(D1, . . . ,Dk)]
)ν]
|= ~F monX ∧X ⊆ ~F~�

∧X~t

Therefore

ν |= ∃X. ~F monX ∧X ⊆ ~F~�
∧X~t

and the case is done. a

Proposition 5.4 (Validity of the First Functor Law) If `can m : F monX
then M |= m(λx.x) = λy.y.
Proof. Immediate from propositions 3.3 and 5.1 assuming thatM is an identity
model. a

Proposition 5.5 (Semantical Soundness of Realizability) If Γ `MCICD, �

s : A, W(s) comprises only canonical witnesses and M |= Γr,
�

then M |=
s r A.
Proof. Assume Γ `MCICD, � s : A, theorem 4.1 implies Γr ` � ?(s) s̃ : s r A, and
theorem 5.1 implies Γr,

� ?(s) |= s r A. By hypothesis we haveM |= Γr and as
W(s) comprises only canonical witnesses we have, by prop. 5.4, M |=

��� �
(s).

By assumption we also have M |=
�

therefore we conclude M |=
� ?(s), then

M |= Γr,
� ?(s) and thereforeM |= s r A. a

Corollary 5.1 (Conservation Lemma) Let
�

be a set of equations such that
M |=

�
. If ` � s : A and W(s) comprises only canonical witnesses then M |=

s r A.
Proof. Immediate from proposition 5.5. a

5.2 Formal Data Types

We come to the central concept of the programming with proofs paradigm, that
of formal data type.

Definition 5.11 Let D[x] be a formula with FV (D) = {x}. We say that D is
a data type in M if

M |= ∀x∀y.y r D[x]↔ y = x ∧D[x]

With this concept we can represent typed terms in our untyped setting. The
direction (←) of this definition can be simplified to D[x] → x r D[x] which
means that every inhabitant of the type D realizes its own inhabitation. The
direction (→) says that every realizer y of the inhabitation of D by x is already
that inhabitant x.
As a consequence of realizability soundness and conservation lemma we have
the following

5.2. FORMAL DATA TYPES 143

Corollary 5.2 (Correctness Lemma) Let f be a function symbol, Di, E data
types in M and si an inhabitant of Di (i.e. M |= Disi).
If W(t) comprises only canonical witnesses, M satisfies

�
and

`MCICD, � t : ∀x1 . . . ∀xn.D1x1, . . . ,Dnxn → Ef(x1, . . . , xn),

then
M |= ts1 . . . sn = f(s1, . . . , sn).

Therefore the MCICT-term t is a program to compute the function fM.

Proof. Use the conservation lemma and observe that M |= Disi implies M |=
si r Disi. a

This corollary provides a method of programming: to obtain a program for
a function f we just have to derive

D1x1, . . . ,Dnxn `MCICD Ef(x1, . . . , xn).

5.2.1 A Connection with Modified Realizability

The soundness theorem 4.1 shows that our realizability interpretation is good
to extract program from proofs. However, the methods of program extraction
via realizability are often developed with Kreisel’s modified realizability (see
[Ben98, Ber93, BBS02]). In this section we show a connection between both
concepts of realizability.
Modified realizability (mr) is usually defined in a typed setting, the definition
of t mr A for first order formulas is the same as for t r A except for the case of
a universal quantifier. For this case we have

tρ→τ(A) mr ∀xρ.A := ∀xρ.(tx)τ(A) mr A

where τ(A) is a type assigned to A. The essential point is that the realizer is a
function with domain ρ.
The quantification over typed variables can be represented in our untyped set-
ting with a universal quantifier relativized to a data type D corresponding to ρ,
by defining

∀Dx.A := ∀x.Dx→ A.

If we want to consider now a definition in the spirit of modified realizability for
the relativized universal formula ∀Dx.A we must state

t r ∀Dx.A := ∀Dx.tx r A,

Note that here the realizer t also behaves as a function with domain D. However
this definition is not neccesary, for it is equivalent to the original one as the
following proposition shows.

144 5. PROGRAMMING WITH PROOFS

Proposition 5.6 Let D be a data type in M. Then

M |=
(
∀Dx.tx r A

)
↔ t r ∀Dx.A

Proof. ⇒) Assume thatM |= ∀x.Dx → tx r A. It suffices to showM[x, y/r, s] |=
y r Dx→ ty r A for every r, s ∈ |M|. SupposeM[x, y/r, s] |= y r Dx, as D is a
data type thenM[x, y/r, s] |= y = x ∧ Dx. HenceM[x, y/r, s] |= Dx, which by
the main assumption yields M[x, y/r, s] |= tx r A and as M[x, y/r, s] |= y = x
we concludeM[x, y/r, s] |= ty r A. ThereforeM |= t r ∀Dx.A.
⇐) SupposeM |= t r ∀x.Dx→ A. It suffices to show thatM[x/s] |= Dx→

tx r A for s ∈ |M|. SupposeM[x/s] |= Dx, this implies thatM[x/s] |= x r Dx,
for D is a data type. Our main assumption implies that M[x/s] |= x r Dx →
tx r A. Thus M[x/s] |= tx r A, and thereforeM |= t r ∀Dx.A. a

5.2.2 The Canonical Model

We define now the canonical model which will be used to apply the programming
with proofs paradigm to obtain some programs.

Definition 5.12 The canonical model of MCICD? is the full identity model for
second order logic M with universe DT , i.e, the universe is the set of MCICT-
terms modulo βη-equivalence.

Our logic has some parameters not determined a priori but only when defining a
new data type or a function to be programmed, these are the names of functions
to be programmed like pred, add, append, length, or the names for tags of a data
type, like nil, cons, head, tail. Every time that we define a data type or want to
program a function, we will add these parameters and their interpretations to
the canonical model, this expansion is called the intended model . As the canon-
ical model alone is not of our interest, we agree to denote the intended model
with M exactly like the canonical model.

The following proposition will be useful later (see page 150).

Proposition 5.7 Let D be a data type with tags C = { � 1, . . . , � n} and having
at least two elements. Let

�
be a set of equations of the language L = C ∪

{f1, . . . , fk}. Assume that there are interpretations of f1, . . . , fk in the intended
domain TD satisfying

�
. Then there are extensions of the interpretations of

� 1, . . . , � n, f0, . . . , fk to the intended model satisfying
�
.

Proof. The intended domain is the term model TD with universe

TD := {t | ` Dt}

and interpretations for every tag in C. Denote with T ?
D the expansion of TD to

the language L. As by assumption we have TD |=
�

then also T ?
D |=

�
. Set

� ? = {r = s | r, s ∈ Term(L) and T ?
D |= r = s}

5.2. FORMAL DATA TYPES 145

So
� ? is the set of equalities between terms of L which are valid in T ?

D . In
particular

�
⊆

� ? and clearly we have T ?
D |=

� ?.
Now take K = {cn | n ∈

�
} a set of constants such that K ∩ L = ∅ and set

L′ = L ∪ K.
For r, s ∈ Term(L′) define the equivalence relation ∼ as:

r ∼ s ⇔ ` � ? r = s

We denote with T ??
D the model with universe |T ??

D | = Term(L′)/ ∼. The model
T ??
D has the following properties:

◦ T ??
D |=

� ?.
Take r = s ∈

� ?, therefore
� ? ` r = s, i.e. r ∼ s which, using a similar

reasoning as in section 5.1.2, yields T ??
D |= r = s.

◦ If t1, t2 ∈ |TD| and TD 6|= t1 = t2 then T ??
D 6|= t1 = t2. We prove the con-

trapositive, assume T ??
D |= t1 = t2, this implies ` � ? t1 = t2 and therefore

T ?
D |= t1 = t2. But as t1, t2 ∈ |TD| we also get TD |= t1 = t2.

◦ If t ∈ |TD| and c ∈ K then T ??
D 6|= t = c.

If we assume T ??
D |= t = c then

� ? ` t = c which, as c has no ocurrence
in

� ?, t allows to get ` � ? ∀x.t = x, which yields TD |= ∀x.t = x. But this
contradicts the fact that D has at least two elements.
This fact implies that in |T ??

D | the constants of K are not interpreted as
elements of TD.

◦ If c, d ∈ K then T ??
D 6|= c = d. Otherwise we get ` � ? c = d which yields

` � ? ∀x, y.x = y. But this contradicts the fact that |TD| has at least two
elements.

The second property helps to construct an isomorphism h between TD and a
submodel of T ??

D .
By the last two properties there are countable many elements in |T ??

D |that are
not interpretations of the terms in TD. Therefore we can extend the isomor-
phism h to a bijection ĥ : |T ??

D | → MCICT/βη which preserves the interpretation
of elements of TD.
Finally as

�
⊆

� ? the first property yields T ??
D |=

�
and as terms ocurring in

equations in
�

belong to TD and |M| = MCICT/βη we get using ĥ that M |=
�
.

a

5.2.3 Examples of Data Types

In this section we show some examples of useful data types in the intended
model M. Through the whole section data type will mean data type in M.

The Unit Predicate

The first example of a data type is the unit predicate defined as
�

:= λy.? = y.

146 5. PROGRAMMING WITH PROOFS

It is obvious that M |= ∀z.
�
z ↔ ? = z. Therefore to prove that

�
is a data

type it suffices to show that

M |= ∀y.y r
�
?↔ y = ? ∧

�
?.

This will hold if we interpret ? as the (equivalence class of the) identity, ?M :=
λzz.
Take an arbitrary valuation ν and a term r, set ν ′ := ν[r/y]. We prove ν ′ |=
y r

�
?↔ y = ? ∧

�
?. First assume ν ′ |= y = ? ∧

�
?. As ν′ |= y = ? it suffices to

show ν′ |= ? r
�
?. We have

? r
�
? ≡ ? r (? = ?)
≡ ? r ∀X.X?→ X?
≡ ∀X+.∀u.u r X?→ ?u r X?.

But as ?M ≡ λzz it suffices to show

ν′ |= ∀X+.∀u.u r X?→ u r X?,

which is trivial.
Next assume that ν ′ |= y r

�
?, that is

ν′ |= ∀X+.∀u.u r X?→ yu r X?

in particular if X+ := λu1, u2.u2 = u1u ∧
�
u1 we have that

ν′ |= ∀u.u = ?u ∧
�
?→ yu = ?u ∧

�
?.

It is clear that the antecedent holds, therefore from the succedent we get in
particular ν′ |= ∀u.yu = ?u which by the interpretation of ? leads to ν ′ |=
∀u.yu = u, this implies that rs =βη s for all terms s which leads to ν ′(y) =
r =βη λzz. Hence ν′ |= y = ? and the proof is finished.

The above proof also shows that the predicate
�
r := λy, z.z r

�
y only holds

for y, z := ?, ?.

The Booleans

The Predicate
�

:= µX
(
〈

�
, trueg〉, 〈

�
, falseg〉

)

representing booleans is a data type if we interpret trueM
g := � 2

1, false
M

g := � 2
2.

We will show
M |= ∀x∀y.y r

�
x↔ y = x ∧

�
x

Take r, s arbitrary terms and a valuation ν, set ν ′ := ν[r, s/x, y]. Assume
ν′ |= y = x ∧

�
x. We will show ν ′ |= x r

�
x. By hypothesis we have ν ′ |=

�
x

which by definition is the same as

ν′ |= ∀X.
�
⊆ X trueg ,

�
⊆ X falseg → Xx.

5.2. FORMAL DATA TYPES 147

which, as
�

holds only for ?, simplifies to

ν′ |= ∀X.X(trueg?), X(falseg?)→ Xx,

in particular if X := λz.z r
�
z we have

ν′ |= trueg? r
�
(trueg?), falseg? r

�
(falseg?)→ x r

�
x.

Therefore it suffices to show ν ′ |= trueg? r
�
(trueg?) and ν′ |= falseg? r

�
(falseg?).

ν′ |= trueg? r
�
(trueg?)⇔

ν′ |= µX+(〈
�
r, true, � 2

1〉, 〈
�
r, false, � 2

2〉)(trueg?)(trueg?)⇔
ν′ |= ∀X+.X+(trueg?)(� 2

1?), X+(falseg?)(� 2
2?)→ X+(trueg?)(trueg?)

But as trueM
g := � 2

1 it suffices to show

ν′ |= ∀X+.X+(trueg?)(� 2
1?), X+(falseg?)(� 2

2?)→ X+(trueg?)(� 2
1?)

which obviously holds. Similarly we conclude ν ′ |= falseg? r
�
(falseg?).

Now assume ν′ |= y r
�
x. We will prove ν ′ |= y = x ∧

�
x. The assumption

is equivalent to

ν′ |= ∀X+.X+(trueg?)(� 2
1?), X

+(falseg?)(� 2
2?)→ X+xy

which in particular with X+ := λu1, u2.u2 = u1 ∧
�
u1 implies

ν′ |= � 2
1? = trueg? ∧

�
(trueg?), � 2

2? = falseg? ∧
�
(falseg?)→ y = x ∧

�
x.

Next observe that
�
(trueg?),

�
(falseg?) are trivially satisfied and by the interpre-

tations of trueg, falseg also ν′ |= � 2
1? = (trueg?) and ν′ |= � 2

2? = (falseg?) hold.
Therefore the antecedents of the implication are satisfied and we can conclude
ν′ |= y = x ∧

�
x.

The Natural Numbers

If 0M
g := � 2

1, s
M := � 2

2 then

�
:= µX

(
〈

�
, 0g〉, 〈X, s〉

)

is a data type representing natural numbers.

Take r, t ∈ |M| and a valuation ν. Set ν ′ := [x, y/r, t].
Assume ν′ |= y r

�
x. Our goal is to show ν ′ |= y = x ∧

�
x. We have

ν′ |= y r
�
x⇔

ν′ |= µX+
(
〈

�
r, 0g, � 2

1〉, 〈X
+, s, � 2

2〉
)
xy ⇔

ν′ |= ∀X+.
�
r ⊆ X+0g, � 2

1 , X+ ⊆ X+s, � 2

2 → X+xy

148 5. PROGRAMMING WITH PROOFS

which as
�
r only holds for ?, ? simplifies to

ν′ |= ∀X+.X+(0g?)(� 2
1?), X

+ ⊆ X+s, � 2

2 → X+xy

In particular setting X+ := λu1, u2.u2 = u1 ∧
�
u1, we have

ν′ |= � 2
1? = 0g? ∧

�
(0g?), (λu1, u2.u2 = u1 ∧

�
u1) ⊆ (λu1, u2.u2 = u1 ∧

�
u1)

s, � 2

2

→ y = x ∧
�
x

That is,
ν′ |= � 2

1? = 0g? ∧
�
(0g?),

∀uv.v = u ∧
�
u→ � 2

2v = su ∧
�
su

→ y = x ∧
�
x

(5.32)

ν′ |=
�
(0g?) holds trivially and ν ′ |= � 2

1? = 0g? holds, because 0M
g = � 2

1.
Take p, q ∈ |M| and set ν ′′ := ν′[u, v/p, q] and assume ν′′ |= v = u ∧

�
u.

As |=
�
⊆

� s and ν′′ |=
�
u we get ν′′ |=

�
su. Moreover as ν ′′ |= v = u then

ν′′ |= � 2
2v = � 2

2u, which as sM := � 2
2 yields ν′′ |= � 2

2v = su. Therefore ν ′′ |=
� 2

2v = su ∧
�
su, the anteccedents of (5.32) hold and we get ν ′ |= y = x ∧

�
x.

Now assume ν′ |= y = x ∧
�
x. The goal is to show ν ′ |= y r

�
x. As

ν′ |= y = x it suffices to show ν ′ |= x r
�
x.

ν′ |=
�
x⇔

ν′ |= ∀X.
�
⊆ X0g , X ⊆ Xs → Xx⇔

ν′ |= ∀X.X(0g?), (∀z.Xz → Xsz)→ Xx

This implies in particular for X := λz.z r
�
z

ν′ |= 0g? r
�
(0g?), (∀z.z r

�
z → sz r

�
sz)→ x r

�
x

We prove the anteccedents of this implication

◦ ν′ |= 0g? r
�
0g?. We have

ν′ |= 0g? r
�
0g?⇔

ν′ |= µX+
(
〈

�
r, 0g, � 2

1〉, 〈X
+, s, � 2

2〉
)
(0g?)(0g?)⇔

ν′ |= ∀X+.
�
r ⊆ X+0g, � 2

1 , X+ ⊆ X+s, � 2

2 → X+(0g?)(0g?)⇔

ν′ |= ∀X+.X+(0g?)(� 2
1?), X

+ ⊆ X+s, � 2

2 → X+(0g?)(0g?) ⇔
0M

g ≡ � 2

1

ν′ |= ∀X+.X+(0g?)(0g?), X+ ⊆ X+s, � 2

2 → X+(0g?)(0g?)

and the last claim is trivial. Therefore we are done.

◦ ν′ |= ∀z.z r
�
z → sz r

�
sz. Set ν ′′ := ν[z/t] with t ∈ |M|, and assume

ν′′ |= z r
�
z i.e.

ν′′ |= ∀X+.X+(0g?)(� 2
1?), X+ ⊆ X+s, � 2

2 → X+zz (5.33)

5.2. FORMAL DATA TYPES 149

The goal is to show ν ′′ |= sz r
�
sz, i.e.

ν′′ |= ∀X+.X+(0g?)(� 2
1?), X+ ⊆ X+s, � 2

2 → X+(sz)(sz)

Take ν∗ := ν′′[X+/R] with R ⊆ |M|2 and assume ν∗ |= X+(0g?)(� 2
1?)

and ν∗ |= X+ ⊆ X+s, � 2

2 . These assumptions together with (5.33) yield
ν∗ |= X+zz which, by the second assumption, implies ν? |= X+(sz)(� 2

2z).
Finally as sM ≡ � 2

2 we get ν∗ |= X+(sz)(sz) and we are done.

We leave to the reader the verification of the remaining examples.

Sum of Data Types

If A,B are data types then their sum (disjoint union)

A+ B := µX
(
〈A, inl〉, 〈

�
, inr〉

)

is a data type if we set inlM := � 2
1, inr

M := � 2
2.

Product of Data Types

If A,B are data types then their product

A×B := νX
(
〈A, � 1〉, 〈

�
, � 2〉

)

is a data type if we set � 1
M := � 2

1, � 2
M := � 2

2. The proof relies on the follo-
wing consequence of the extensionality property (Mη Inv) of M: If ν |= � 1 v =
� 1 u, ν |= � 2 v = � 2 u then ν |= v = u.
For another concept of product data type which do not need this extensional
property see page 170

Function Space of Data Types

If A,B are data types then their function space

A → B := λf.∀z.Az → Bfz

is a data type. Observe that this predicate is not (co)inductive.

Lists

Given a data type A we set

LA := µX
(
〈

�
, nilg〉, 〈A×X, cons〉

)
.

LA defines the set of lists of elements of the data type A, which is again a data
type if nilMg := � 2

1, consM := � 2
2.

150 5. PROGRAMMING WITH PROOFS

Streams

Given a data type A we would like the predicate of A-streams

SA := νX
(
〈A, head〉, 〈X, tail〉

)

to be again a data type if we interpret head := � 2
1, tail := � 2

2. However even if
A is a data type we cannot prove that SA is a data type. When trying to prove

M |= ∀xy.y r SA[x]↔ y = x ∧ SA[x]

in the direction from left to right we cannot get y = x ∧ SA[x] but only

A head tailk x for every k ∈
�

and Leibniz’ equality is to weak to conclude SA[x] from this fact.

A solution to this problem will be given in section 6.5.1.

5.3 Programming with Proofs in MCICD

Now that we have data types at hand we can program some functions on them
following the programming with proofs method of [KrPa90, Par92].

We proceed as follows to program a function

f : D1, . . . ,Dn → E

between data types in M:

1. The specification of the function f is given by some equations
�
(f), se-

mantically defining it.

2. Prove that ` � (f) t : ∀~x.D1x1, . . . ,Dnxn → E(f~x)

3. IfW(t) contains only canonical witnesses andM |=
�
(f) then the correct-

ness lemma (p. 143) guarantees that t is a program for f .

We will denote with f the program t for f extracted from the proof in the
step 2 above.
Observe that the program f is obtained from the proof of the formula express-
ing the fact that the function f has the intended type. According to the step
3 above, to guarantee the correctness of the program f we need to prove the
satisfiability of the specification set

�
(f), the usual way to do this is to obtain

first the program f and then check that setting fM := f the set
�
(f) is satisfied.

Due to proposition 5.7 it suffices to check satisfiability in the intended domain
only.

5.3. PROGRAMMING WITH PROOFS IN MCICD 151

This method differs from the usual program extraction methodology, as men-
tioned in [Par92], in that we consider the specification of an algorithm as pri-
mitive. Instead of getting a program directly from the specification of the task
to be programmed, which usually lead us to extract programs from proofs of
the form ∀~x ∃~y.Φ(~x, ~y), involving unpleasant existential formulas, we extract a
program from the specification of an algorithm solving the original task, in our
case the algorithms are specified by equations. To construct a program we give
a equational specification of an algorithm, which defines a function, and then
write a proof of the fact that the function has the intended type. The program is
automatically generated from the proof, so that we do not have to work within
the programming language (i.e. within the lambda calculus), in particular with
this approach we do not need to calculate explicitly a single realizer, a big ad-
vantage in comparison to the method in [Tat93], for example.

Let us see some examples.

5.3.1 Programming Functions with Iteration or Recursion

The Negation on Booleans

We define a unary function not :
�
→

�
such that:

◦ not truegx = falsegx

◦ not falsegx = truegx

Let
�
(not) the set containing these two equations.

We have

` � (not) λy.It2(� triv, � triv, falseg, trueg, y) : ∀x.
�
x→

�
not x

Therefore not := λy.It2(� triv, � triv, falseg, trueg, y) is a function computing the
negation.

Even test function

We define a unary function even? such that:

◦ even? 0gx = truegx

◦ even? sx = not(even?x)

Let
�
(even?) the set containing these two equations.

We have

` � (even?) λy.It2(� triv, � Id, trueg, not, y) : ∀x.
�
x →

�
even?x

152 5. PROGRAMMING WITH PROOFS

Addition of Natural Numbers

We need to define a binary function ad such that

◦ ad(x, 0gy) = x

◦ ad(x, sy) = s(ad(x, y))

Let
�
(ad) be the set containing the two equations above. We start by proving

that
` � (ad) ∀x.∀y.

�
x,

�
y →

�
ad(x, y).

We will prove u :
�
x, v :

�
y ` � (ad)

�
ad(x, y), using the rule (µE) with

K := λy.
�
ad(x, y).

◦ u :
�
x, v :

�
y ` � (ad)

�
⊆ K0g we have

u :
�
x, v :

�
y, w :

�
z ` � (ad) u :

�
x

u :
�
x, v :

�
y, w :

�
z ` � (ad) u :

�
ad(x, 0gz)

u :
�
x, v :

�
y, w :

�
z ` � (ad) u : K0gz

u :
�
x, v :

�
y ` � (ad) λw.u :

�
⊆ K0g

◦ u :
�
x, v :

�
y ` � (ad) K ⊆ K

s we have

u :
�
x, v :

�
y, w : Kz ` � (ad) w :

�
ad(x, z)

` � (ad) � 2
2 :

�
⊆

� s

` � (ad) � 2
2 :

�
ad(x, z)→

�
s(ad(x, z))

u :
�
x, v :

�
y, w : Kz ` � (ad) in2,2 w :

�
s(ad(x, z))

u :
�
x, v :

�
y, w : Kz ` � (ad) in2,2 w :

�
ad(x, sz)

u :
�
x, v :

�
y, w : Kz ` � (ad) in2,2 w : Ksz

u :
�
x, v :

�
y ` � (ad) λw. in2,2 w : K ⊆ Ks

u :
�
x, v :

�
y ` � (ad) � 2

2 : K ⊆ Ks

Therefore by (µE), we have u :
�
x, v :

�
y ` � (ad) It2(λw.u, � 2

2, v) : Ky, and
finally

` � (ad) λu.λv.It2(� triv, � id, λw.u, � 2
2, v) : ∀x∀y.

�
x,

�
y →

�
ad(x, y)

Now we can simplify the first equation defining 0 := 0g?, in this way the
program adM := ad := λu.λv.It2(� triv, � id, λw.u, � 2

2, v) computes the sum of two
naturals given by:

ad(x, 0) = x

ad(x, sy) = s(ad(x, y))

We have for any terms t, r:

ad t 0M →+
β t.

ad t (sMr)→+
β sM(ad t r)

5.3. PROGRAMMING WITH PROOFS IN MCICD 153

Multiplication of natural numbers

We need to define a binary function pd such that

◦ pd(x, 0gy) = 0gy

◦ pd(x, sy) = ad(pd(x, y), x)

We can prove that:

` � (pd) λu.λv.It2(� triv, � id, 0g, λw.adwu, v) : ∀x∀y.
�
x,

�
y →

�
pd(x, y)

Therefore the term pd := λu.λv.It2(� triv, � id, 0g, λw.adwu, v) is a program
for the product.

The Predecessor

We need to define a unary function pred such that

◦ pred(0gy) = 0gy

◦ pred(sy) = y

The program is obtained from:

` � (p) λu.Rec2(� triv, � id, λv.0g, λv.π1v, u) : ∀x.
�
x→

�
px

The Factorial

We need to define a unary function fac such that

◦ fac(0gy) = s(0gy)

◦ fac(sy) = pd(sy, fac(y))

The program is obtained from:

` � (fac) λu.Rec2

(
� triv, � id, λv.s0g, λw.pd(s(π1w))(π2w), u

)
: ∀x.

�
x→

�
facx

The Length of a List

We need to define a unary function len such that

◦ len(nilgz) = 0gz

◦ len(consz) = s(len(� 2 z))

We obtain:

` � (len) λx.It2(� triv, � A×X , 0g, λz.s(� 2z), x) : ∀x.LAx→
�
lenx

where � A×X := λfλx.〈| out2,1 x, f(out2,2 x)|〉, with 〈|r, s|〉 := out−1
2

(
� triv, � triv, r, s

)

and `can � A×X : (A×X) monX .

154 5. PROGRAMMING WITH PROOFS

Append of Lists

We need to define a binary function app such that

◦ append〈nilgz, y〉 = y

◦ append〈cons z, y〉 = cons〈 � 1 z, append〈 � 2 z, y〉〉

We cannot program this function directly because it has neither an induc-
tive domain nor a coinductive codomain. Instead we will program the curried
version:

◦ append(nilgz) y = y

◦ append cons z y = cons〈 � 1 z, append(� 2 z) y〉

We can prove that:

` � (app) λx.It2

(
� triv, � A×X , λuλz.z, λuλz.cons〈| � 1u, (� 2u)y|〉, x

)
:

∀x∀y.LAx,LAy → LA append x y

Reverse of a List

We need to define a unary function rev such that

◦ rev nilgz = nilgz

◦ rev cons z = append(rev � 2 z) cons〈 � 1 z, nil〉

We can prove that:

` � (rev) λx.It2

(
� triv, � A×X , nilg, λz.append(� 2 z) cons〈| � 1 z, nilg|〉, x

)
:

∀x.LAx→ LArev x

Filter

Given a unary predicate P over a data type A the function filterP from LA to
LA such that

filterP nil := nil

filterP cons(x, l) := if Px then cons(x, filterP l) else filterP l

We represent a predicate P as a function p : A →
�

and define a curried
version:

filter : (A →
�
)→ LA → LA

such that

5.3. PROGRAMMING WITH PROOFS IN MCICD 155

filter p nilgw = nilgw

filter p consw = if p(� 1 w) then cons〈 � 1 w, filter p(� 2 w)〉 else filter p(� 2 w)

The following holds:

` λxλy.It2
(

� triv, � A×X , nilg, λz.if
(
x(� 1z), cons〈| � 1 z, � 2 z|〉, � 2 z

)
, y

)
:

∀p∀y.(A →
�
)p,LA, y → LA filter p y

Quicksort

Given an order ≤ over a data type A we define the quicksort operation from
LA to LA as follows:

quicksort nil = nil

quicksort cons(x, l) = append
(

append
(
(filter ≤x quicksort l) [x]

)
,

(filter >x quicksort l)
)

We program a curried version as follows: we represent the relation ≤ as a
function F≤ such that x ≤ y holds if and only if F≤xy = true. Analogously
we also have a function F>. Now given a x such that Ax hold we define the
functions F≤x := λy.F≤yx and F>x := λy.F>yx. The quicksort operation is
defined as follows:

quicksort nilgw = nilgw

quicksort consw = append
(

append
(
(filter F≤ � 1 w quicksort � 2 w) [� 1 w]

)
,

(filter F> � 1 w quicksort � 2 w)
)

where [� 1 w] := cons〈 � 1 w, nil〉 is the list which unique element is � 1 w
To get a program for quicksort we assume that the functions F≤, F< are

computable by programs F≤, F>, such that ` F≤ : ∀x∀y.Ax,Ay →
�

F≤xy
and ` F > : ∀x∀y.Ax,Ay →

�
Fx > y. From these programs we get the needed

programs F≤x := λy.F≤yx and F >x := λy.F >yx such that

` F≤x : (A →
�
)F≤x ` F >x : (A →

�
)F>x

Finally a program for quicksort is:

quicksort := λx.It2

(
� triv, � A×X , nilg,

λy.append
(
append (filter F≤(� 1y) � 2y) cons 〈| � 1y, nil|〉

)
(
filter F > � 1y � 2y

)

x
)

156 5. PROGRAMMING WITH PROOFS

5.3.2 Programming Functions with Coiteration or Core-
cursion

As we have seen in some of the examples presented in the previous section,
the programs obtained via the derivations in the logic coincide with those ob-
tained in the type system using the categorical point of view. This does not
seem surprising as the logic was designed having in mind the Curry-Howard
correspondence.

Let us analize the particular case for programming unary functions (other
cases can be solved by currying). The goal is to obtain derivations of the form

` t : ∀x.Dx→ Efx

The cases where D is an inductive data type, say D := µX(C1, . . . , Ck), have
not possesed a problem. The obvious choice is to use iteration or recursion with
the predicate K := λx.Efx.
For iteration, the goal is to obtain the following:

x : µX(C1, . . . , Ck)x ` x : µX(C1, . . . , Ck)x
x : µX(C1, . . . , Ck)x ` mi : FimonX, 1 ≤ i ≤ k
x : µX(C1, . . . , Ck)x ` si : Fi[X := K] ⊆ K~�

i , 1 ≤ i ≤ k

x : µX(C1, . . . , Ck)x ` Itk(~m,~s, x) : K~x

which yields

` λx.Itk(~m,~s, x) : ∀x.µX(C1, . . . , Ck)x→ Efx

This kind of proofs are quite easily achieved if E is again an inductive data
type and although it could work in some cases where E is coinductive the natural
thing for that case would be to use coiteration/corecursion. For these cases the
goal is to get derivations of the form:

` t : ∀x.Dx→ νX(D1, . . . ,Dk)fx

Using coiteration/corecursion, the obvious choice will be to get:

x : Dx ` x : K(fx)
x : Dx ` mi : FimonX, 1 ≤ i ≤ k
x : Dx ` si : K ⊆ Fi[X := K]~

�
i , 1 ≤ i ≤ k

x : Dx ` CoItk(~m,~s, x) : νX(D1, . . . ,Dk)(fx)

which allows to conclude

` λx.CoItk(~m,~s, x) : ∀x.Dx → νX(D1, . . . ,Dk)fx

But in this case there is no obvious choice for K such that the derivation
x : Dx ` x : K(fx) holds. Moreover the restriction given by the proof-term x
leave us with very few possibilities.

We could also add some features to the logic, like restricted formulas, that
would help to obtain some examples but we do not see a general pattern to

5.3. PROGRAMMING WITH PROOFS IN MCICD 157

obtain the desired programs.

The example which led us to find this problem was the from function which
takes a natural number and returns the stream of naturals starting in the given
number. This function is destructed as

head from x = x
tail from x = from sx

This function can be easily programmed within the term system MCICT (see
page 73), which give us a clue about the proof-term we are looking for.

Let us forget for a moment that we were not able to prove that the streams
are a formal data type and try to program the function from. The goal is to get
a term from such that ` from : ∀x.

�
x→ S � from x. We would like to derive the

premisses of the following instance of (νI):

x :
�
x ` x : K from x

x :
�
x ` m1 :

�
monX

x :
�
x ` m2 : X monX

x :
�
x ` s1 : K ⊆

�
head

x :
�
x ` s2 : K ⊆ Ktail

x :
�
x ` CoItk(~m,~s, x) : S � from x

The first premisse restricts us to take K := λx.
�

head x, so that K from x ≡
�

head from x ≡
�
x. The monotonicity proofs are trivially accomplishable, as

well as the first step contention for which we have x :
�
x ` λzz : K ⊆

� head.
The problem arises when trying to prove the last premisse:

x :
�
x `? : ∀y.

�
head y →

�
head tail y

The proof in the term system indicates us that the proof-term should be a
program for the succesor function s, which obviously lead us to get

x :
�
x ` s : ∀y.

�
head y →

�
head tail from head y

from the equations s(head y) = head from s(head y) = head tail from head y.
This is the best we can do as to get

�
head tail y the obvious way would be to

get S � tail y and then apply a coclosure axiom, but the only fact we now about
y is that

�
head y and from this we will never get the required S � tail y. For to

get S � tail y either we get S � y and apply a coclosure axiom or we try to prove
�

head tail y and S � tail tail y and use inversion, both tasks are not derivable from
the only premisse

�
head y.

If we see how easy was to obtain the program directly in the type system, we
realize that the problem here is caused by the first-order objects. In that case
the second step function is only �s : nat → nat, the type is the same on both
sides of the arrow. On the other hand in the logic the first order-objects cause
to have different predicates on both sides of the inclusion symbol, namely K and
Ktail. I like to refer to this kind of problems as the evilness of first-order objects

158 5. PROGRAMMING WITH PROOFS

for conventional coinduction.
A similar problem was detected when trying to prove the streams of succesors
of a stream of natural numbers in [Tat93], where a tailor-made quite complex
solution was provided.
Fortunately we can get rid of this evilness by defining an alternative system
which allows to do some easy programming with coinductive data types, namely
a system including coiteration and corecursion principles in the sense of Mendler.
Next chapter is devoted to this question.

-Hace calor aqúı -dije.
-Śı, y esto no es nada me contestó el otro-. Cálmese.
Ya lo sentirá más fuerte cuando lleguemos a Comala.
Aquello está sobre las brasas de la tierra, en la mera
boca del infierno. Con decirle que muchos de los que
alĺı se mueren, al llegar al infierno regresan por su
cobija.

Juan Rulfo, Pedro Paramo.

6
A System with Mendler-style

Coinduction

At the end of the last chapter we have seen that the principles of coitera-
tion/corecursion in MCICD are not useful to program functions into coinductive
predicates. In this chapter we give a solution based on Mendler’s approach.

6.1 Fixed-Point Theory

As we will see later, the Mendler-style coinduction principles are related to
the construction of the greatest-fixed point by means of transfinite induction,
process that we recall here.

Definition 6.1 Given a monotone operator Γ : P(A)→ P(A). The downward
or greatest fixed point hierarchy of Γ consists of the sequence of sets Γ�

α defined
by transfinite recursion as follows:

Γ�

0 := A

Γ�

α+1 := Γ(Γ�
α)

Γ�

λ :=
⋂

α≤λ Γ�
α with λ a limit ordinal

Analogously the upward or least fixed point hierarchy of Γ is the sequence
(
Γ�

α

)
α∈On

159

160 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

defined as:
Γ�

0 := ∅

Γ�

α+1 := Γ(Γ�
α)

Γ�

λ :=
⋃

α≤λ Γ�
α with λ a limit ordinal

The following fact is easy to prove.

Proposition 6.1 Let Γ : P(A) → P(A) be a monotone operator. Set Γ� :=⋂
α∈On Γ�

α and Γ� :=
⋃

α∈On Γ�
α. Then Γ� is the least fixed point of Γ and Γ� is

the greatest fixed point of Γ.

6.2 The Logic MCICDµMν

This system is obtained by eliminating the conventional coinduction principles
of MCICD and introducing instead Mendler-style coinduction principles. Mo-
notonicity is not needed to formulate these principles, however our choice of
semantics will require a syntactical restriction to build coinductive predicates.
The necessity for this condition, which we call admissibility, is made clear in
the proof of lemma 6.1

Definition 6.2 Given a formula F and a second order variable X we define
the relation “X is admissible in F” denoted X admisF as follows:

◦ X admisX~t

◦ If X /∈ FV (F) then X admisF .

◦ If X /∈ FV (G) and X admisH then X admisG→ H.

◦ If X admisF then X admis ∀xF .

◦ If X admisF then X admis ∀Y F .

◦ If X admisG and X admis H then X admisG ∧H.

◦ If X admisFi and Z admis Fi then X admisµZ(C1, . . . , Ck)~t

◦ If X admisGi and Z admis Gi then X admis νZ(D1, . . . ,Dk)~t

where in the last two cases Ci := 〈λ~y.Fi, ~� i〉, Di := 〈λ~y.Gi, ~� i〉.
If F := λ~y.F then we define X admisF := X admisF .

Observe that the essential difference with the definition of strict positivity
is the case for (co)inductive predicates.

Proposition 6.2 If X admisF then ` F monX.
Proof. Induction on F , where F := λ~yF . a

6.2. THE LOGIC MCICDµMν 161

Proposition 6.3 If X admisF then |= F monX.
Proof. Analogous to the previous proposition. a

We define the new system by eliminating disjunctions from MCICD and re-
placing two introduction rules for coinductive predicates (those for coiteration
and corecursion) with the following rules:

Γ ` si : ∀X.
(
∀~x.K~x→ X~t

)
→

(
∀~x.K~x→ F ~�

i

i
~t
)
, 1 ≤ i ≤ k

Γ ` MCoItk~s : ∀~x.K~x→ νX(D1, . . . ,Dk)~t
(MνI)

Γ ` si : ∀X.νX(D1, . . . ,Dk) ⊆ X →(
∀~x.K~x→ X~t

)
→

(
∀~x.K~x→ F ~�

i

i
~t
)
, 1 ≤ i ≤ k

Γ ` MCoReck~s : ∀~x.K~x→ νX(D1, . . . ,Dk)~t
(MνI+)

Both rules with the proviso X /∈ FV (Γ,K) and X admisFi for 1 ≤ i ≤ k.
These rules express Mendler-style coiteration and corecursion respectively (see
[Men87, Men91]).
The intuition behind the rule for coiteration can be explained as follows: looking
at the construction of the greatest fixed point by transfinite recursion given
in section 6.1 we see that the coinductive predicate νX(D1, . . . ,Dk) can be
intuitively “defined” as the infinite intersection (conjunction)

νX(D1, . . . ,Dk) :=
∧

α∈On

Gα,

where Gα := Gα(>) (with > the true predicate) and G := F ~�
1

1 ∧ . . . ∧ F ~�
n

n . In
this way a formula of the form ∀~x.K~x → νX(D1, . . . ,Dk)~t can be obtained by
constructing “approximations” ∀~x.K~x→ Gα~t for every α ∈ On.
What the premisses of the rule (MνI) ensure is the construction of a formula

(∀~x.K~x→ Gα~t)→ (∀~x.K~x→ Gα+1~t).

Now observe that the case for α = 0 is trivially provable as G0 = >. Therefore
the last formula guarantees the existence of every approximation ∀~x.K~x→ Gα~t.
As this process cannot be justified syntactically, we do it semantically in lemma
6.2 below. A justification for the rule (MνI+) is similar but this time the
premisses guarantee the construction of approximations only if we start with a
set which already includes the coinductively defined set.

By dualizing we can get similar rules for inductive predicates. For expla-
nations on Mendler-style induction/recursion from this point of view see [Urz99].

The proof-reduction behaviour is given by:

outk,i

(
MCoItk~s r

)
7→β si

(
MCoItk~s

)
r

outk,i

(
MCoReck~s r

)
7→β si(λy.y)

(
MCoReck~s

)
r

162 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

The just described logical system will be called MCICDµMν .

The rules for elimination of coinductive predicates generate the following
axioms.

Definition 6.3 The Mendler-style coinduction axioms are:

MCoIndνX(D1,...,Dk) := ∀X∀~z.
((
∀~x.K~x→ X~z

)
→

(
∀~x.K~x→ F ~�

i

i ~z
))

→
(
∀~x.K~x→ νX(D1, . . . ,Dk)~z

)

MCoInd
+

νX(D1,...,Dk) := ∀X∀~z.
(
νX(D1, . . . ,Dk) ⊆ X →
(
∀~x.K~x→ X~z

)
→

(
∀~x.K~x→ F ~� i

i ~z
))

→
(
∀~x.K~x→ νX(D1, . . . ,Dk)~z

)

Subject Reduction and Strong Normalization

Subject reduction can be proved by the method of section 4.1.3, indeed the
proof is simpler.
By forgetting first-order objects we get an embedding of this logic into MCICTµMν

(see page 77), which proves strong normalization.

6.3 Realizability for MCICDµMν

As in section 4 the realizability interpretation of MCICDµMν will be given into
an extended system MCICD?

µMν which is the same system but over the term
system MCICTµMν . This time we do not need an extension with existential
and restricted formulas, because the system does not have disjunctions.
The definition of realizability, which gives MCICD?

µMν-formulas t r A where t
is a MCICTµMν-term and A is a MCICDµMν -formula, is just definition 4.6 lea-
ving out the case for disjunctions which simplifies the target logic considerably,
we do not need neither existential nor restricted formulas. Therefore the only
difference now between source and target logics is the underlying type system.

6.3.1 Realizing the Axioms

Proposition 6.4 Let
�

:= λ~z.MCoItk~z and � := λ~z.MCoReck~z. Then

(i) ` λ~y.MCoItk~y :
�
r MCoIndνX(D1,...,Dk)

(ii) ` λ~y.MCoReck~y : � r MCoInd
+

νX(D1,...,Dk)

6.3. REALIZABILITY FOR MCICDµMν 163

Proof. We prove part (ii), the first part is easier.
We need to proof � r MCoInd

+

νX(D1,...,Dk), that is

� r ∀X∀~z.
(
νX(D1, . . . ,Dk) ⊆ X →
(
∀~x.K~x→ X~z

)
→

(
∀~x.K~x→ F ~� i

i ~z
))

→
(
∀~x.K~x→ νX(D1, . . . ,Dk)~z

)

which unfolds to

∀X+∀~z∀~f.
(
∀y∀w.y r νX(D1, . . . ,Dk) ⊆ X → w r

(
∀~x.K~x→ X~z

)

→ fiyw r
(
∀~x.K~x→ F ~� i

i ~z
))

→ � ~f r
(
∀~x.K~x→ νX(D1, . . . ,Dk)~z

)

Set

Γ :=
{

yi : ∀y∀w. y r νX(D1, . . . ,Dk) ⊆ X → w r
(
∀~x.K~x→ X~z

)

→ fiyw r
(
∀~x.K~x→ F ~� i

i ~z
)}

The goal is

Γ ` MCoReck~y : � ~f r
(
∀~x.K~x→ νX(D1, . . . ,Dk)~z

)
(6.1)

Now observe that

y r νX(D1, . . . ,Dk) ⊆ X ≡ ∀~x ∀z.z r νX(D1, . . . ,Dk)~x→ yz r X~x
≡ ∀~x ∀z.νX+(Dr

1, . . . ,D
r

k)~xz → X+~x(yz)

w r
(
∀~x.K~x → X~z

)
≡ ∀~x ∀z.z r K~x→ wz r X~z
≡ ∀~x ∀z.Kr~xz → X+~z(wz)

fiyw r
(
∀~x.K~x→ F ~� i

i ~z
)
≡ ∀~x ∀z.z r K~x→ fiywz r F ~�

i

i ~z
≡ ∀~x ∀z.Kr~xz → Fr

i (~� i~z)(fiywz)

Therefore instantiating y := λuu, w := MCoReck
~f we get

Γ ` yi : ∀~x ∀z.νX+(Dr

1, . . . ,D
r

k)~xz → X+~x
(
(λuu)z

)
→

∀~x ∀z.Kr~xz → X+~z
(
(MCoReck

~f)z
)
→

∀~x ∀z.Kr~xz → Fr

i (~� i~z)
(
fi(λuu)(MCoReck

~f)z
)

but we have both (λuu)z = z ∈
�

β and

fi(λuu)(MCoReck
~f)z = outk,i,

(
MCoReck

~fz
)

= � k
i (MCoReck

~fz) ∈
�

β

164 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

and simplifying we get

Γ ` yi : ∀~x ∀z.νX+(Dr

1, . . . ,D
r

k)~xz → X+~xz →

∀~x ∀z.Kr~xz → X+~z
(
(MCoReck

~f)z
)
→

∀~x ∀z.Kr~xz → Fr

i (~� i~z)
(

� k
i (MCoReck

~fz)
)
,

that is,

Γ ` yi : νX+(Dr

1, . . . ,D
r

k) ⊆ X+ →

∀~x ∀z.Kr~xz → X+~z
(
(MCoReck

~f)z
)
→

∀~x ∀z.Kr~xz → Fr

i (~� i~z)
(

� k
i (MCoReck

~fz)
)
,

Therefore the rule (MνI+) yields

Γ ` MCoReck~y : ∀~x ∀z.Kr~xz → νX+(Dr

1, . . . ,D
r

k)~z
(
MCoReck

~fz
)

Now observing that � ~f = MCoReck
~f ∈

�
β and using the definition of reali-

zability we obtain

Γ ` MCoReck~y : ∀~x ∀z.z r K~x→ � ~fz r νX(D1, . . . ,Dk)~z

But this is exactly derivation (6.1).
a

Observe that in comparison to proposition 4.5 the proofs of realizability for
the Mendler-style coinduction axioms are quite simple.

6.3.2 The Soundness Theorem

Definition 6.4 Given an MCICDµMν -proof-term r we define the MCICD?
µMν-

proof-term r̃ as follows:

x̃ := x λ̃x.r := λx.r̃

r̃s := r̃ s̃ 〈̃r, s〉 := 〈r̃, s̃ 〉
π̃1r := π1 r̃ π̃2r := π2 r̃

˜ink,i t := ink,i t̃

˜Itk(~m,~s, t) := Itk(~̃m,~s [~m,~s], t̃)

˜Reck(~m,~s, t) := Reck(~̃m,~s [~m,~s], t̃)

õutk,i t := outk,i t̃

M̃CoItk ~t := MCoItk ~̃t

˜MCoReck ~t := MCoReck ~̃t

˜out−1
k (~m,~s) := out−1

k (~̃m,~t [~m,~s])

where in the cases for iteration and recursion, we have:

s[x, y] := λu.ỹ(x̃(λv.v)u)
t[x, y] := x̃(λzz)ỹ

6.4. SEMANTICS 165

and we define ~s [~x, ~y] := s[x1, y1], . . . , s[xk, yk] (the same for t).
The definition 4.8 of W(s) is adapted accordingly and the definition 4.9 of

� ?(~s) remains the same.

Given a context Γ = {x1 : A1, . . . , xk : Ak} we set

Γr := {x1 : x1 r A1, . . . , xk : xk r Ak},

where w.l.o.g. xi /∈ FV (Ai).

Theorem 6.1 (Soundness of Realizability for MCICDµMν) If Γ `MCICDµMν

s : A then Γr `MCICD?
µMν

, � ?(s) s̃ : s r A

Proof. Induction on `MCICDµMν
. The cases for rules (MνI), (MνI+) are solved

with the help of proposition 6.4. a

6.4 Semantics

The main goal of this section is to prove the soundness of the logic MCICDµMν

with respect to the same tarskian semantics given for MCICD?. We will see that
to be able to prove the validity of the Mendler-style coinduction axioms, we
need some continuity property guaranteed to hold by the syntactic condition of
admissibility.

Lemma 6.1 (Continuity Lemma) Let F be a predicate such that X admisF
and

(
Pα

)
α∈On

a family of sets with
⋂

α∈On Pα 6= ∅. If ν[X/Pα][~x/~r] |= F~x for
all α ∈ On, then

ν[X/
⋂

α∈On

Pα][~x/~r] |= F~x.

Informally
⋂

α∈On F(Pα) ⊆ F
(⋂

α∈On Pα

)
.

Proof. Induction on F , with F := λ~yF , for every family of sets (Pα)α∈On with⋂
Pα 6= ∅. Set P :=

⋂
α∈On Pα.

Case F := λ~y.νZ(D1, . . . ,Dk)~t. with Di := 〈Gi, ~� i〉. As X admisF we have also
that X admisGi, Z admisGi.

By assumption we have ν[X/Pα][~x/~r] |= νZ(D1, . . . ,Dk)~t, i.e.,

ν[X/Pα][~x/~r] |= Gi monZ ∧ ∃Z.Z ⊆ G ~� i

i ∧ Z~t [~y := ~x], for all α ∈ On

This implies that for all α there exists a set Qα such that

ν[X/Pα][~x/~r][Z/Qα] |= Z ⊆ G ~�
i

i ∧ Z~t [~y := ~x]

The goal is

ν[X/P][~x/~r] |= Gi monZ ∧ ∃Z.Z ⊆ G ~�
i

i ∧ Z~t [~y := ~x]

Set Q :=
⋂
Qα. Clearly Q 6= ∅.

166 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

◦ ν[X/P][~x/~r] |= Gi monZ. Clear.

◦ ν[X/P][~x/~r][Z/Q] |= Z ⊆ G ~� i

i

Assume ν[X/P][~x/~r][Z/Q][~y/~s] |= Z~y. This implies

ν[X/P][~x/~r][Z/Qα][~y/~s |= Z~y, for all α,

which by the previous assumption implies

ν[X/P][~x/~r][Z/Qα][~y/~s] |= G ~� i

i ~y,

therefore by IH as Z admisGi we get

ν[X/P][~x/~r][Z/Q][~y/~s] |= G ~�
i

i ~y.

◦ ν[X/P][~x/~r][Z/Q] |= Z~t [~y := ~x]. This is clear from the fact that

ν[X/Pα][~x/~r][Z/Qα] |= Z~t [~y := ~x] for all α ∈ On.

a
Now we relate the definition of the greatest fixed point in section 6.1 with

the Mendler-style coinduction principles. We will see that the rule for Mendler-
style induction is semantically justified by the construction of the greatest fixed
point by transfinite induction

Definition 6.5 Given a coinductive predicate νX(D1, . . . ,Dk) with Di := 〈Fi, ~� i〉
and a valuation ν we define the semantical downward hierarchy

(
Pα

)
α∈On

of

νX(D1, . . . ,Dk) with respect to ν as follows:

P0 := |M|n

Pα+1 :=
⋂k

i=i Sat(F ~� i

i , ν[X/Pα])

Pλ :=
⋂

α<λ Pα with λ a limit ordinal

where

Sat(F , ν) := {~r ∈ |M|n | ν[~z/~r] |= F~z}.

Lemma 6.2 Let
(
Pα

)
α∈On

be the semantical downward hierarchy of the predi-

cate νX(D1, . . . ,Dk) with respect to ν. If

ν |= ∀X.(∀~x.K~x→ X~t)→ (∀~x.K~x→ F ~�
i

i
~t), 1 ≤ i ≤ k

then the following holds:

6.4. SEMANTICS 167

1. For all α ∈ On, if ν[X/Pα] |= ∀~x.K~x→ X~t then

ν[X/Pα+1] |= ∀~x.K~x → X~t.

2. For all α ∈ On, ν[X/Pα] |= ∀~x.K~x→ X~t.

Proof. The second part follows from the first part by observing that as P0 =
|M|n we have ν[X/P0] |= ∀~x.K~x→ X~t.
We prove the first part, assume ν[X/Pα] |= ∀~x.K~x → X~t which, using the main
assumption, implies

ν[X/Pα] |= ∀~x.K~x→ F ~�
i

i
~t. (6.2)

Next assume
ν[X/Pα+1][~x/~r] |= K~x,

so that the goal becomes

ν[X/Pα+1][~x/~r] |= X~t. (6.3)

As X /∈ FV (K), from this assumption we get ν[X/Pα][~x/~r] |= K~x. Therefore,
using (6.2) we get ν[X/Pα][~x/~r] |= F ~�

i

i
~t which by substitution properties is the

same as
ν[X/Pα][~z/~tM[ν[~x/~r]]] |= F ~� i

i ~z.

But this fact means that ~tM[ν[~x/~r]] ∈ Sat(F ~� i

i , ν[X/Pα]) and as this happens
for 1 ≤ i ≤ k we conclude ~tM[ν[~x/~r]] ∈ Pα+1, which is the same as our goal
(6.3). a

Proposition 6.5 If Di := 〈Fi, ~� i〉 for 1 ≤ i ≤ n, ν |= Fi monX and

ν |= ∀X.(∀~x.K~x→ X~t)→ (∀~x.K~x→ F ~� i

i
~t) 1 ≤ i ≤ k,

then
ν |= ∀~x.K~x→ νX(D1, . . . ,Dk)~t.

Proof. Assume
ν |= Fi monX (6.4)

and

ν |= ∀X.(∀~x.K~x→ X~t)→ (∀~x.K~x→ F ~� i

i
~t) (6.5)

We need to show

ν |= ∀~x.K~x→ νX(D1, . . . ,Dk)~t.

Therefore set ν′ := ν[~x/~r] and assume

ν′ |= K~x (6.6)

168 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

Our goal becomes ν ′ |= νX(D1, . . . ,Dk)~t, i.e.,

ν′ |= ∃X.Fi monX ∧X ⊆ F ~�
i

i ∧X~t (6.7)

Let P :=
⋂

α∈On Pα be the intersection of the semantical downward hierarchy
of νX(D1, . . . ,Dk) w.r.t. ν. We prove:

1. ν′[X/P] |= Fi monX .
Clear by (6.4), because X,~x /∈ FV (Fi monX).

2. ν′[X/P] |= X~t.
Using the second part of lemma 6.2 and (6.6) as X /∈ FV (K) we get

ν[X/Pα][~x/~r] |= X~t for all α, i.e. ~tM
[
ν[~x/~r]

]
∈ Pα, for all α. Therefore

~tM
[
ν[~x/~r]

]
∈

⋂
α Pα which is the same as ν′[X/P] |= X~t.

3. ν′[X/P] |= X ⊆ F ~� i

i .

Suffices to prove ν[X/P] |= X ⊆ F ~�
i

i . Assume ν[X/P][~y/~s] |= X~y, i.e., ~s ∈⋂
α Pα. This implies ~s ∈ Pα+1 for all α, which by definition of Pα+1 leads

to ν[X/Pα][~x/~s] |= F ~�
i

i ~x for all α, which is the same as ν[X/Pα][~y/~s] |=

F ~�
i

i ~y for all α. Therefore by the continuity lemma 6.1, as P 6= ∅, we get

ν[X/P][~y/~s] |= F ~�
i

i ~y and we are done.

Therefore (6.7) is proved. a

Lemma 6.3 Let
(
Pα

)
α∈On

be the semantical downward hierarchy of the pre-

dicate νX(D1, . . . ,Dk) with respect to ν and Di := 〈Fi, ~� i〉. If ν |= Fi monX
1 ≤ i ≤ k then for all α ∈ On,

ν[X/Pα] |= νX(D1, . . . ,Dk) ⊆ X.

Proof. Induction on α. The case α = 0 is obvious as P0 = |M|n.
The case for α = λ a limit ordinal follows directly from the IH by definition of Pλ.
We detail the case for a succesor. Assume ν[X/Pα+1][~x/~r] |= νX(D1, . . . ,Dk)~x,
which, as X is not free in νX(D1, . . . ,Dk)~x, is the same as

ν[X/Pα][~x/~r] |= νX(D1, . . . ,Dk)~x.

Using this and the obvious |= νX(D1, . . . ,Dk) ⊆ F ~� i

i [X := νX(D1, . . . ,Dk)] we
get

ν[X/Pα][~x/~r] |= F ~�
i

i [X := νX(D1, . . . ,Dk)]~x.

On the other hand, using IH and the fact that ν |= Fi mon X we conclude

ν[X/Pα][~x/~r] |= F ~� i

i [X := νX(D1, . . . ,Dk)] ⊆ F ~� i

i .

Therefore we get
ν[X/Pα][~x/~r] |= F ~�

i

i ~x,

6.5. PROGRAMMING WITH PROOFS IN MCICDµMν 169

but this happens for 1 ≤ i ≤ k, which implies ~r ∈ Pα+1, i.e.,

ν[X/Pα+1][~x/~r] |= X~x

and we are done.
a

Proposition 6.6 If ν |= Fi monX and

ν |= ∀X.νX(D1, . . . ,Dk) ⊆ X → (∀~x.K~x → X~t)→ (∀~x.K~x→ F ~�
i

i
~t) 1 ≤ i ≤ k,

then
ν |= ∀~x.K~x→ νX(D1, . . . ,Dk)~t.

Proof. Immediate from the proof of proposition 6.5 and lemma 6.3. a

Theorem 6.2 (Soundness of the Logic MCICD?
µMν) If Γ `MCICD?

µMν
, � s :

A then Γ,
�
|= A.

Proof. Induction on `MCICD?
µMν

, � .

Case (MνI). Assume ν |= Γ,
�
. By IH we have

ν |= ∀X.
(
∀~x.K~x→ X~t

)
→

(
∀~x.K~x→ F ~�

i

i
~t
)
, 1 ≤ i ≤ k

As the rule (MνI) requires X admisFi, proposition 6.3 implies ν |= Fi monX .
Therefore by proposition 6.5 we have

ν |= ∀~x.K~x→ νX(D1, . . . ,Dk)~t

Case (MνI+). Assume ν |= Γ,
�
. By IH we have

ν |= ∀X.νX(D1, . . . ,Dk) ⊆ X → (∀~x.K~x→ X~t)→ (∀~x.K~x→ F ~�
i

i
~t) 1 ≤ i ≤ k

As the rule (MνI+) requires X admisFi, proposition 6.3 implies ν |= Fi monX .
Therefore by proposition 6.6 we have

ν |= ∀~x.K~x→ νX(D1, . . . ,Dk)~t

a

6.5 Programming with Proofs in MCICDµMν

To finalize the chapter we extend the programming with proofs paradigm to our
new logic. We start by observing that as both realizability and logic soundness
hold for the logic MCICDµMν , (theorems 6.1 and 6.2) the semantical soundness
theorem (proposition 5.5) and the conservation lemma (corollary 5.1) hold also
for the new logic, therefore we obtain again as a corollary the correctness lemma
which is the cornerstone of the programming method. Here we state it again:

170 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

Corollary 6.1 (Correctness Lemma for MCICDµMν) Let f be a function
symbol, Di, E data types in M and si an inhabitant of Di (i.e. M |= Di).
If W(t) comprises only canonical witnesses, M satisfies

�
and

`MCICDµMν , � t : ∀x1 . . . ∀xn.D1x1, . . . ,Dnxn → Ef(x1, . . . , xn),

then

M |= ts1 . . . sn = f(s1, . . . , sn).

Therefore the MCICTµMν-term t is a program to compute the function fM.

However although the correctness lemma holds and we have different coinduc-
tion principles our new logic is still not useful to program functions involving
coinductive predicates as we have not solved the problem of getting formal data
types from coinductive predicates. This question will be addressed in the next
section.

6.5.1 Data types with Equality

As mentioned in page 150 when trying to prove that if A is a data type then

SA := νX
(
〈A, head〉, 〈X, tail〉

)

is again a data type we are not able to do it due to the fact that Leibniz’ equality
is not good for infinite data types. In this section we give a solution to this
problem by generalizing the concept of formal data type to defined equalities.
Similar solutions can be found in chapter eight of [Raf94].

Definition 6.6 Given a unary predicate A := λx.A[x] with FV (A) = {x} we
say that the binary predicate ≈A defines an equality for A if the following holds:

◦ FV (x ≈A y) = {x, y}.

◦ ` ∀x∀y.x ≈A y → Ax ∧ Ay.

◦ ` ∀x.Ax → x ≈A x.

◦ ` ∀x∀y.x ≈A y → y ≈A x.

◦ ` ∀x∀y∀z.x ≈A y, y ≈A z → x ≈A z.

Given a predicate A := λx.A[x] there is a trivial way of defining an equality
for A, just take the Leibniz Equality restricted to A, i.e.,

≈A:= λxy.Ax ∧ Ay ∧ x = y

An equality for the product predicate can be defined as follows

6.5. PROGRAMMING WITH PROOFS IN MCICDµMν 171

Proposition 6.7 If ≈A,≈B are equalities for A,B respectively then

≈×:= νY
(
〈λx, y.x ≈A y, � 1, � 1〉, 〈λx, y.x ≈B y, � 2, � 2〉

)

is an equality for their product A×B, defined as

A×B := νX
(
〈A, � 1〉, 〈B, � 2〉

)

Proof. Straightforward a

With this definition we do not need extensionality to get an equality for the
product predicate.

The problem of an adequate equality for the streams predicate is solved in
the following

Proposition 6.8 Given the coinductive predicate defining A-streams

SA := νX
(
〈A, head〉, 〈X, tail〉

)

and ≈A an equality for A[x], the binary predicate

≈SA
:= νY

(
〈λx, y.x ≈A y, head, head〉, 〈Y, tail, tail〉

)

defines an equality for SA in the system MCICDµMν .

Proof. We prove the five properties of an equality:

◦ FV (x ≈SA
y) = {x, y}. Is clear.

◦ `MCICDµMν
∀xy.x ≈SA

y → SAx ∧ SAy.
We prove ` ∀xy.x ≈SA

y → SAx, using (MνI). We need to show

(A). ` ∀X.(∀x, y.x ≈SA
y → X tail x)→ ∀x, y.x ≈SA

y → A head tailx

(B). ` ∀X.(∀x, y.x ≈SA
y → X tail x)→ ∀x, y.x ≈SA

y → X tail tailx

Set Γ := {(∀x, y.x ≈SA
y → X tail x), x ≈SA

y}. For (A) we have

Γ ` tail x ≈SA
tail y (Coclosure Ax.)

Γ ` head tailx ≈A head tail y (Coclosure Ax.)
Γ ` A head tailx ∧ A head tail y (≈A is an equality)
Γ ` A head tailx

For (B) we have

Γ ` tail x ≈SA
tail y (Coclosure Ax.)

Γ ` tail x ≈SA
tail y → X tail tailx

Γ ` X tail tailx

Analogously we get ` ∀x, y.x ≈SA
y → SAy and we are done.

172 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

◦ ∀x.SAx → x ≈SA
x. We use (MνI) with K := λx, y.SAx, so we need to

prove

(A). ` ∀Y.(∀x, y.SAx → Y tailx tail x) → ∀x, y.SAx → head tail x ≈A

head tailx

(B). ` ∀Y.(∀x, y.xSAx→ Y tail x tailx)→ ∀x, y.SAx→ Y tailx tail x

Set Γ := {(∀x, y.SAx→ Y tailx tail x),SAx}.
For (A) we have

Γ ` SA tail x (Coclosure Ax.)
Γ ` A head tailx (Coclosure Ax.)
Γ ` head tail x ≈A head tailx (≈A is an equality)

For (B),

Γ ` SA tailx (Coclosure Ax.)
Γ ` SA tailx→ Y tail tailx tail tailx
Γ ` Y tail tailx tail tailx

◦ ∀x, y.x ≈SA
y → y ≈SA

x. Again we use (MνI) with K := λxy.x ≈SA
y,

so it suffices to prove

(A). ` ∀Y.(∀x, y.x ≈SA
y → Y yx)→ ∀x, y.x ≈SA

y → head y ≈A headx

(B). ` ∀Y.(∀x, y.x ≈SA
y → Y yx)→ ∀x, y.x ≈SA

y → Y tail y tailx

Set Γ := {∀x, y.x ≈SA
y → Y yx, x ≈SA

y}.
For (A) we have

Γ ` x ≈SA
y

Γ ` head x ≈A head y (Coclosure Ax.)
Γ ` head y ≈A headx (≈A is an equality)

For (B),

Γ ` tailx ≈SA
tail y (Coclosure Ax.)

Γ ` tailx ≈SA
tail y → Y tail y tailx

Γ ` Y tail y tailx

◦ ∀x, y, z.x ≈SA
y ∧ y ≈SA

z → x ≈SA
z.

Again we use (MνI) with K := λxz.x ≈SA
y ∧ y ≈SA

z.

a

The concept of formal data type is generalized as follows:

6.5. PROGRAMMING WITH PROOFS IN MCICDµMν 173

Definition 6.7 Given a predicate D := λx.D[x] with FV (D) = {x}, an equality
≈D for D and a model M, we say that 〈D,≈D〉 is a data type with equality in
M if and only if:

M |= ∀x∀y.y r D[x]↔ x ≈D y.

Observe that we do not require now D[x] on the right hand side of the above
equivalence because this is derivable from x ≈D y.

Proposition 6.9 If 〈A,≈A〉, 〈B,≈B〉 are data types with equality and � 1
M :=

� 2
1, � 2

M := � 2
2 then their product 〈A × B,≈×〉 is a data type with equality.

Proof. Straightforward a

Proposition 6.10 If 〈A,≈A〉 is a data type with equality, headM := � 2
1 and

tailM := � 2
2 then 〈SA,≈SA

〉 is a data type with equality.
Proof. Assume that 〈A,≈A〉 is a data type with equality. The goal is to prove

M |= ∀xy.y r SAx↔ y ≈SA
x

Take a valuation ν and r, s ∈ |M| and set ν ′ := ν[x, y/r, s].
⇒) Assume ν′ |= y r SAx. That is there exists a Q ⊆ |M|2 such that

ν′[X+/Q] |= Ar monX+ ∧X+ monX+ ∧X+ ⊆ Arhead, � 2

1

∧ X+ ⊆ X+tail, � 2

2 ∧X+xy

The goal is to prove ν ′ |= y ≈SA
x.

◦ ν′[Y/Q] |= (λx, y.x ≈A y) monY . Is clear.

◦ ν′[Y/Q] |= Y monY . Is clear.

◦ ν′[Y/Q] |= Y ⊆ (λx, y.x ≈A y)head,head. From the assumption we get

ν′[X+/Q] |= X+ ⊆ Arhead, � 2

1 which by (Fsp6) is the same as ν ′[Y/Q] |=

Y ⊆ Arhead, � 2

1 which as headM := � 2
1 equals ν′[Y/Q] |= Y ⊆ Arhead,head.

Now assume ν′[Y/Q] |= Y uv, this implies ν′[Y/Q] |= Arhead,headuv. But
as 〈A,≈A〉 is a data type with equality the last fact yields ν ′[Y/Q] |=
head u ≈A head v, that is, ν′[Y/Q] |= (λx, y.x ≈A y)head,headuv.

◦ ν′[Y/Q] |= Y ⊆ Y tail,tail. By assumption we have ν ′[X+/Q] |= X+ ⊆

X+tail, � 2

2 which by (Fsp6) and as tailM := � 2
2 is the same as ν′[Y/Q] |=

Y ⊆ Y tail,tail and we are done.

◦ ν′[Y/Q] |= Y yx. Analogously from the assumption ν ′[X+/Q] |= X+xy
and (Fsp6).

The previous five facts prove ν ′ |= x ≈SA
y. Finally as ≈SA

is an equality we
conclude ν′ |= y ≈SA

x.

174 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

⇐) Assume ν′ |= y ≈SA
x, this implies ν′ |= x ≈SA

y, i.e. there is a Q ⊆ |M|2

such that

ν′[Y/Q] |= (λx, y.x ≈A y) monY ∧ Y monY ∧ Y ⊆ (λx, y.x ≈A y)head,head

∧ Y ⊆ Y tail,tail ∧ Y xy

Goal is ν′ |= y r SAx, i.e.

ν′ |= X+
(
〈Ar, head, � 2

1〉, 〈X
+, tail, � 2

2〉
)
xy.

We prove now:

◦ ν′[Y/Q] |= Ar monY . Is clear.

◦ ν′[Y/Q] |= Y mon Y . Is clear.

◦ ν′[Y/Q] |= Y ⊆ Arhead, � 2

1 . Assume ν′[Y/Q] |= Y uv, the main assumption
yields ν′[Y/Q] |= head u ≈A head v. But 〈A,≈A〉 is a data type with
equality, therefore we get ν ′[Y/Q] |= head v r A[headu], i.e., ν ′[Y/Q] |=
Arhead,headuv and we are done as headM := � 2

1.

◦ ν′[Y/Q] |= Y ⊆ Y tail, � 2

2 . Immediate from the assumption ν ′[Y/Q] |= Y ⊆
Y tail,tail, as tailM := � 2

2.

◦ ν′[Y/Q] |= Y xy. Is part of the main assumption.

These facts prove ν ′ |= νY
(
〈Ar, head, � 2

1〉, 〈Y, tail, � 2
2〉

)
xy. Therefore we are

done.
a

Now that we have solved the problem of equality in streams with the concept
of data type with equality, we would like to program with these kind of data
types. The following generalization of the correctness lemma allow us to do it.

Proposition 6.11 (Correctness Lemma for Data Types with Equality)
Let f be a function symbol, 〈Di,≈i〉, 〈E ,≈E〉 data types with equality inM and
si an inhabitant of Di (i.e. M |= Disi).
If W(t) comprises only canonical witnesses, M satisfies

�
and

`MCICDµMν , � t : ∀x1 . . . ∀xn.D1x1, . . . ,Dnxn → Ef(x1, . . . , xn),

then
M |= ts1 . . . sn ≈E f(s1, . . . , sn).

Therefore the MCICTµMν-term t is a program to compute the function fM.

Moreover, f is compatible with respect to ≈i,≈E , i.e.,

M |= ri ≈i si → f~r ≈E f~s

6.5. PROGRAMMING WITH PROOFS IN MCICDµMν 175

6.5.2 Programming with Mendler-style Coiteration or Core-
cursion

Observe that the goal for programming functions into a coinductive predicate

` t : ∀x.D[x]→ νX(D1, . . . ,Dk)(fx)

is now achieved very easily using Mendler-style coiteration or corecursion,
the obvious choice for the predicate K is K := λx.D[x].

Let us develop some examples.

A Stream of Constants

We want to program a function cst from a data type D into the data type SD
of streams of elements of D, such that cst(a) ≈SD

〈a, a, a, . . .〉. The function is
destructed as follows:

head(cst a) = a
tail(cst a) = csta

The goal is to obtain ` t : ∀x.Dx→ SD[cst x].
We need to derive the premises of the Mendler-style coiteration rule for

Γ = ∅,K := D, t := cstx.

x : ∀x.Dx → X cstx, y : Dx ` ? : D head(cst x)
x : ∀x.Dx → X cstx, y : Dx ` y : Dx
x : ∀x.Dx → X cstx, y : Dx ` � (cst) y : D head(cstx)

x : ∀x.Dx→ X cst x ` � (cst) λyy : ∀x.Dx→ D head(cst x)

Therefore

` � (cst) λxλyy : ∀X.(∀x.Dx→ X cst x)→ ∀x.Dx→ Dhead(cst x)

x : ∀x.Dx→ X cstx, y : Dx ` ? : X tail(cst x)
x : ∀x.Dx→ X cstx, y : Dx ` xy : X cst x
x : ∀x.Dx→ X cstx, y : Dx ` � (cst) xy : X tail(cst x)

x : ∀x.Dx→ X cst x ` � (cst) λy.xy : ∀x.Dx → X tail(cstx)

Therefore

` � (cst) λxλy.xy : ∀X.(∀x.Dx → X cstx)→ ∀x.Dx → X tail(cst x)

Both derivations yield

` � (cst) MCoIt2(λxλyy)(λxλy.xy) : ∀x.Dx → SD cst x

Now if we set cst := MCoIt2(λxλyy)(λxλy.xy) we get

head cstx→β out
2,1

cstx→β (λxλyy)(cst)x→β x.

tail cstx→β out2,2cstx→β (λxλy.xy)(cst)x→β cstx.

176 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

Stream of natural numbers from a given one

The from function can now be programmed very easily by means of Mendler-
style coiteration. from is a function from

�
into S � such that

from n ≈S � 〈n, n + 1, n + 2, . . .〉.

This function is destructed as:

head(from n) = n
tail(from n) = from s(n)

The goal is to obtain ` t : ∀x.
�
x→ S � from x.

x : ∀x.
�
x→ X from x, y :

�
x ` ? :

�
head(from x)

x : ∀x.
�
x→ X from x, y :

�
x ` y :

�
x

x : ∀x.
�
x→ X from x, y :

�
x ` � (from) y :

�
head(from x)

x : ∀x.
�
x→ X from x ` � (from) λyy : ∀x.

�
x→

�
head(from x)

Therefore

` � (from) λxλyy : ∀X.(∀x.
�
x→ X from x)→ ∀x.

�
x→

� head(from x)

x : ∀x.
�
x→ X from x, y :

�
x ` ? : X tail(from x)

x : ∀x.
�
x→ X from x, y :

�
x ` s y :

�
s(x)

x : ∀x.
�
x→ X from x, y :

�
x ` x(s y) : X from s(x)

x : ∀x.
�
x→ X from x, y :

�
x ` � (from) x(s y) : X tail(from x)

x : ∀x.
�
x→ X from x ` � (from) λy.x(s y) : ∀x.

�
x→ X tail(from x)

Therefore

` � (from) λxλy.x(s y) : ∀X.(∀x.
�
x→ X from x)→ ∀x.

�
x→ X tail(from x)

Both derivations yield

` � (from) MCoIt2(λxλyy)(λxλy.x(s y)) : ∀x.
�
x→ S � from x

Now if we set from := MCoIt2(λxλyy)(λxλy.x(s y)) we get

head from x→β out2,1from x→β (λxλyy)(from)x→β x.

tail from x→β out2,2from x→β (λxλy.x(s y))(from)x→β from (s x).

6.5. PROGRAMMING WITH PROOFS IN MCICDµMν 177

Stream of Succesors

The function ss from S � into S � such that

ss〈a1, . . . , an, . . .〉 ≈S � 〈sa1, . . . , san, . . .〉,

is destructed as:

head(ss x) = s(head x)
tail(ss x) = ss(tail x)

This apparently simple example causes important problems in the formalism
of [Tat93] and forced the author to develop a complex tailor-made system for
extracting program from streams. In contrast the stream of successors can easily
be programmed with Mendler-style coiteration:

x : ∀x.S � x→ Xssx, y : S � x ` ? :
�

head(ss x)

x : ∀x.S � x→ Xssx, y : S � x ` heady :
�

head x

x : ∀x.S � x→ Xssx, y : S � x ` s heady :
�
s(head x)

x : ∀x.S � x→ Xssx, y : S � x ` � (ss) s heady :
�

head(ss x)

x : ∀x.S � x→ Xssx ` � (ss) λy.s heady : ∀x.S � x→
�

head(ss x)

Therefore

` � (ss) λxλy.s heady : ∀X.(∀x.S � x→ Xssx)→ ∀x.S � x→
� head(ssx)

x : ∀x.S � x→ Xssx, y : S � x ` ? : X tail(ss x)

x : ∀x.S � x→ Xssx, y : S � x ` tail y : S � tail x

x : ∀x.S � x→ Xssx, y : S � x ` x(tail y) : Xss(tail x)

x : ∀x.S � x→ Xssx, y : S � x ` � (ss) x(tail y) : X tail(ss x)

x : ∀x.S � x→ Xssx ` � (ss) λy.x(tail y) : ∀x.S � x→ X tail(ss x)

Therefore

` � (ss) λxλy.x(tail y) : ∀X.(∀x.S � x→ Xssx)→ ∀x.S � x→ X tail(ss x)

Both derivations yield

` � (ss) MCoIt2

(
λxλy.s heady

)(
λxλy.x(tail y)

)
: ∀x.S � x→ S � ss x

Now if we set ss := MCoIt2

(
λxλy.s heady

)(
λxλy.x(tail y)

)
we get

head ssx→β

(
λxλy.s heady

)
(ss)x→β s headx

tail ssx→β

(
λxλy.x(tail y)

)
(ss)x→β ss(tail x)

178 6. A SYSTEM WITH MENDLER-STYLE COINDUCTION

The Map Head Function

As an example of programming with Mendler-style corecursion we program the
map head function (see page 73 for a program with conventional corecursion).
Given a function h : A → A the map head function maphdh : SA → SA is
destructed as follows:

head(maphdh x) = h(head x)
tail(maphdh x) = tail x

Of course we need to assume that the function h is computable by a program
h such that ` h : ∀x.Ax → Ahx.

The following derivations are easy to obtain:

` λxλyλz.h(headz) : ∀X.SA ⊆ X → (∀x.SAx→ Xmaphdhx)→

(∀x.SAx→ Aheadmaphdhx)

` λxλyλz.x(tailz) : ∀X.SA ⊆ X → (∀x.SAx→ Xmaphdhx)→

(∀x.SAx→ X tailmaphdhx)

Therefore by (MνI+) we get

` MCoRec2

(
λxλyλz.h(headz)

)(
λxλyλz.x(tailz)

)
: ∀x.SAx→ SAmaphdhx

and

maphdh := MCoRec2

(
λxλyλz.h(headz)

)(
λxλyλz.x(tailz)

)

is a program for maphdh.

Wir behalten von unseren Studien am Ende doch nur
das, was wir praktisch anwenden.

Johann Wolfgang von Goethe (1749-1832)

7
Conclusions and Future Work

7.1 Conclusions

The initial goal of this project was to solve the following problem left open in
[Mat98] (p. 178), I quote:

“One should work out modified realizability for monotone inductive definitions
using the term language of systems of monotone inductive types and prove
soundness of this interpretation. (For interleaving positive inductive definitions
without “extended induction” and without second-order universal quantification
this is sketched in [Ber95].)”

When doing the initial research I was pointed to the work by Krivine and
Parigot ([KrPa90, Par92]). After reading these papers I was fascinated with the
programming with proofs paradigm and decided to pursuit something in this
direction too. The result is this thesis, which contributions are now stated with
details:

◦ Inspired by [Mat98, Mat99] and [Hag87a] we formulate the following ex-
tensions of system F including the following (co)inductive types and prin-
ciples:

– MICT. Traditional (co)inductive types, conventional (co)iteration,
conventional (co)recursion and (co)inductive inversion.

– MCICT. Clausular (co)inductive types, conventional (co)iteration,
conventional (co)recursion and (co)inductive inversion.

179

180 7. CONCLUSIONS AND FUTURE WORK

– MCICTM Clausular (co)inductive types, Mendler-style (co)iteration,
Mendler-style (co)recursion and coinductive inversion.

– MCICTµMν . Clausular (co)inductive types, conventional iteration,
Mendler-style coiteration, conventional recursion, Mendler-style core-
cursion and coinductive inversion principles.

all systems use full-monotonicity witnesses and are type-preserving and
strongly normalizing.

◦ I introduce a concept of monotone and clausular inductive definition which
syntactically simplifies the way to define predicates and the monotonicity
witnesses required. This concept was initially inspired by Berger’s un-
published draft [Ber95] and by Hagino’s categorical type system [Hag87a].
Due to the clausular feature coinductive definitions are easily obtained by
dualizing.

◦ Using the Curry-Howard correspondence I introduce a logic MCICD, co-
rresponding to the type system MCICT, which extends the second-order
logic AF2 with monotone and clausular (co)inductive definitions. The
duality between inductive and coinductive definitions allows to get coin-
ductive predicates by means of its destructors. In my opinion this is the
most natural way to define sets coinductively, an important difference with
[Raf94] where coinductive definitions are obtained via constructors.

◦ Based on the semantic notion of type in [KrPa90, Par92] I define a syn-
tactical notion of realizability where first-order universal formulas do not
have a computational content. Moreover, based on [Ber95] and [Tat93],
I extend the realizability interpretation to (co)inductive definitions in a
non-reductive way, i.e., the definition of realizability for (co)inductive pre-
dicates is again (co)inductive, using as target language the system MCICT

of clausular (co)inductive types.

◦ Although the use of η-rules destructs the subject-reduction of the type
systems I still study this kind of rules, which in the case of (co)inductive
types guarantee the uniqueness of the initial algebra and final coalgebra,
as far as the computational aspect is concerned.
This additional study of the type systems pays off allowing to obtain the
first functor law for canonical monotonicity witnesses via βη-reductions.
As this fact guarantees the validity of the first functor law in the canonical
model of the logic, using some instances of the first functor law as equa-
tions in the logic I was able to obtain a realizability soundness theorem
where both source and target logics differ essentially only on the underly-
ing object-term system and on the equational theory. This is an important
improvement with respect to the system in [Tat94].

◦ With respect to data types, the use of clauses allows to prove in an easy
way that some usual inductive predicates are formal data types, and there-
fore are suitable to program with them. On the other hand the weakness of

7.2. RELATED WORK 181

Leibniz’ equality forbids to prove that the coinductive predicate of streams
is a formal data type. This problem of equality for infinite datatypes is
solved by means of a concept of datatype with equality, solution inspired
by [Raf94].

◦ The problems arised while trying to program with coinductive predicates
in MCICD using conventional coiteration are solved by means of a new
logic MCICDµMν , corresponding to the type system MCICTµMν , which
includes conventional induction principles and Mendler-style coinduction
principles. As the only reason to include disjunctions and existentials
as primitive formula constructors in the target logic for the realizability
interpretation was to be able to define the conventional corecursion prin-
ciples, we eliminate these conflictive formula constructors and therefore
obtain a simpler realizability interpretation in comparison to the original
interpretation for MCICD.

Although it was not, the original goal can be completely achieved with the
tools developed in this thesis. However I think the realizability interpretation
presented here offers more advantages than modified realizability, in particular
the programming with proofs paradigm allows to extract programs from proofs
without calculate a single realizer, an important improvement in comparison
with [Tat93], for example. Moreover the extracted program is exactly the code
for the original proof of the specification.

7.2 Related Work

Logical systems related to MCICD are presented in [Par92, Raf94, Tat93, Tat94,
Uus98]. The system TTR sketched in [Par92] is an extension of AF2 with positive
inductive definitions (called there “recursive types”), the associated proof-term
system uses a fixed-point operator and is therefore non strongly normalizing,
although some weak normalization results are stated. This paper also mentions
some additional rules between them the ones for Mendler-style iteration and
recursion. Based on [Par92], Raffalli presents in [Raf94] another extension of
AF2, which includes not only inductive but also positive coinductive definitions
but does not include primitive (co)recursion and we have again a fixed point
operator within the proof-term system. On the other hand it includes a Läuchli-
style realizability semantics based on the untyped lambda calculus.
In [Tat93] Tatsuta develops several extensions of Beeson’s EON with positive
inductive, monotone inductive and positive coinductive definitions, all three
independent, there is no treatment of proof-terms and only partial terms of
combinatory logic are used in a q-realizability interpretation which needs a fixed
point operator to realize the induction axiom. In particular the system for
coinductive definitions is not suitable for extracting programs about streams,
which obliges the author to formulate a tailor-made solution.
[Uus98] presents several extensions of first order intuitionistic logic with positive
inductive and coinductive definitions. The system MCICD could be seen as a

182 7. CONCLUSIONS AND FUTURE WORK

monotone version of a fusion of the systems NIp(µ, ν) and NIp(µ
q, νq), but it

uses minimal second-order logic.
The use of clauses to get inductive definitions is already present in [Ber95], this
paper also sketches a modified realizability interpretation which inspires my
definition of realizability for the case of (co)inductive predicates although mine
is based in the semantic notion of type of [KrPa90, Par92], the main difference
being that the first order universal quantifier does not have a computational
content.
With respect to the type systems, MCICT is essentially a monotone version of the
system developed in [Hag87a], but includes polymorphism and primitive (co)re-
cursion and uses a natural deduction approach, following [Mat98, Mat99] very
closely. This allows to establish a direct Curry-Howard correspondence between
MCICT and MCICD. On the other hand systems of higher-order polymorphism
including (co)iteration principles, useful for programming with nested data types
have been developed in [AM03, AMU04].

7.3 Future Work

To finish this thesis I mention some problems left open, some of them are easily
achieved by adapting the work done here, other are interesting open questions.

More Logics

With the results developed in this work we can formulate different versions of
logics with (co)inductive definitions corresponding, for instance, to some of the
logic systems of [Uus98] or to the type systems in [Mat98]. In particular posi-
tive versions of all systems presented here are easily definable. The immediate
work is to define logics for the type systems MCICTM using only Mendler-style
principles and MICT, involving traditional, i.e. non-clausular, (co)inductive de-
finitions, a starting point for this last system is my paper [Mir02].

Subtyping and η-rules

It is well-known that η-rules cause the subject-reduction property to fail already
in system F. However with some notion of subtyping this property is recovered
(see [Mit88, Raf98, Raf99]). The goal is to formulate an adequate notion of
subtyping such that MCICTη preserves the subject-reduction property. For a
subtyping notion including (co)inductive types with approximations see [Ab03].
Of more interest is a notion of “subtyping” for the logic MCICD∃ such that
the rules in full Curry-style for existential formulas (see page 94) preserve the
subject-reduction. The advantages of having a notion of subtyping in a logic
can be seen, for example, in [Raf03].

7.3. FUTURE WORK 183

On restricted formulas

Restricted formulas were introduced by Parigot in [Par92] with the purpose of
hiding the computational content of some parts of a proof. I used them in this
work only to define realizability for disjunctions (see page 104) mainly to avoid
the occurrence of projections in the proof-terms. However later when proving
the realizability of coinduction axioms the proof-terms obtained are anyway
quite complicated due to the use of existential formulas in our framework. The
goal is to find more useful and interesting applications of restricted formulas,
like those described in appendix C of [Raf94].

The Inductive Inversion Rule

When developing the original version of MCICD I came out with the following
rule for inductive inversion:

Γ ` r : µX(C1, . . . , Ck)~t
Γ ` mi : FimonX, 1 ≤ i ≤ k

Γ ` in−1
k (~m, r) : ∃~u.

∨k
i=1

(
Fi[X := µX(C1, . . . , Ck)]~u � ~t = ~� i~u

) (µEi)

This rule was left out later because it causes more problems than advantages,
for example we would need to have existentials and restrictions on the source
logic and it is not compatible (avoids the generation of neccesary redexes) with
the existential rules. On the other hand its main application – to define inductive
destructors – can be achieved with primitive recursion.
The goal is to define a better rule for inductive inversion. Observe that the rule
would work better if the existential rules in full Curry-style, given in page 94,
were available.

Improvements on the Definition of Clause

An unpleasant technicality in this work is the presence of global constructors,
inherited from the category theory intuition. It would be nice to generalize the
defining mechanism to allow constructors of different arity in each clause of a
(co)inductive definition, in this way we could get rid of global constructors and
have, for example, 0 as constructor of arity 0 and s of arity 1 in the definition
of natural numbers.
In other direction, what advantages would bring a generalization of the con-
cept of clause with several defining predicates ? that is clauses with the form
〈F1, . . . ,Fn, � 1, . . . , � m〉. An application of this kind of clause would be an in-

ductive definition of the product of predicates as: A×B := µX (2).
(
〈A,B, pair〉

)
,

with pair a binary constructor. The immediate condition here would be that
the sum of the arities of all constructors in a clause has to coincide with the
arity of the variable X .

184 7. CONCLUSIONS AND FUTURE WORK

Conservativity of Subject Reduction

Every system in this work posses the subject-reduction property. However I
only developed the direct proof for the most complex system, namely MCICD?,
and argue that the proofs for simpler systems can be obtained by simplifying
that proof. The goal is to find a general method to guarantee the inheritance
of subject-reduction, something similar to the embeddings to prove strong nor-
malization. In particular the method should guarantee that a subsystem of a
given system inherits the subject-reduction property.

Semantics

I have used a classical tarskian semantics for the systems in this work. Indeed
the satisfiability definition for (co)inductive predicates is a reductive one. The
goal is to analyze the advantages of an intuitionist semantics, given directly
by the realizability interpretation, i.e. a semantics in Läuchli style as the one
presented in [Raf94]

Simultaneously Defined Predicates

The goal here is to extend our defining mechanism to include simultaneous
definitions, for example trees T and tree lists LT , informally defined with the
following closure axioms, where leaf, nil are 0-ary constructors, branch is unary
and tcons is binary:

T (leaf)

LT (nil)

∀x.LT x→ T branchx

∀x∀y.T x,LT y → LT tconsx y

For inductive predicates in free-algebra style this has been done in chapter five
of [Sch04].

Inductive Predicates as Free Algebras

In which way is related the approach to inductive definitions via free-algebras
(see [Sch04], chapter 5), implemented in the MINLOG system (http://www.
minlog-system.de/) with mine? Does there exist an approach to coinductive
definitions from free-algebras?

Implementation

The goal is to implement the method of program extraction for the system
MCICDµMν (recall that MCICD has problems with coinductive programming).
Pointers in this direction are the systems ProPre described in [MPS92], which

7.3. FUTURE WORK 185

implements Parigot’s TTR and SKIL reported in [GaHe93], which implements
only AF2. For an strategy for proving termination of functions defined by re-
cursive equations implemented in ProPre see [MaSi95], whereas a proof search
strategy for AF2 can be found in [GaHe96].

Proof-Theoretical Analysis

From the proof-theoretical point of view it is of interest to establish the strength
of the theory MCICD as well as the relationships with traditional systems of
inductive definitions. The standard reference is [BFPS81].

Extensions to Higher Order Logic

Would it be useful to extend my approach to (co)inductive definitions to higher-
order logic? From the type-theoretical perspective, systems of higher-order poly-
morphism, extending Fω with several (co)iteration schemes, are useful to handle
nested data types (see [AM03, AMU04]) and would serve as systems of realizers.

Systems for Course of values (Co)induction

In [Uus98] Uustalu develops logics NIp(µ
?, ν?) and NIp(m

?,n?) for conven-
tional and Mendler-style course of values (co)induction. The goal is to extend
system F as well as AF2 with similar principles.

Systems with both conventional and Mendler-style (co)induction

The system AF2µν developed in [Raf94] has inference rules for conventional as
well as for Mendler-style (co)iteration, the former ones being non-traceable. The
goal is to formulate such a system and to analyze the advantages it brings.

186 7. CONCLUSIONS AND FUTURE WORK

Por ah́ı pasa la escalera espiral, que se abisma y se
eleva hacia lo remoto. En el zaguán hay un espejo, que
fielmente duplica las apariencias. Los hombres suelen
inferir de ese espejo que la Biblioteca no es infinita (si
lo fuera realmente, ¿ a qué esa duplicación ilusoria ?);
yo prefiero soñar que las superficies bruñidas figuran
y prometen el infinito ...

Jorge Luis Borges, La Biblioteca de Babel. Bibliography

[Ab03] A. Abel. Termination and Productivity Checking with Continuous
Types. In M.Hofmann. Ed. Typed Lambda Calculi and Applications,
6th International Conference, TLCA 2003, Valencia, Spain. LNCS
2701 Springer Verlag 2003.

[AM03] A.Abel, R. Matthes. (Co-)iteration for higher-order nested
datatypes. In H. Geuvers and F. Wiedijk, editors, Types for Proofs
and Programs, International Workshop, TYPES 2002. LNCS 2646,
pages 1-20, Berg en Dal, The Netherlands. Springer Verlag 2003.

[AMU04] A. Abel, R. Matthes, T. Uustalu. Iteration and Coiteration Schemes
for Higher-Order Nested Datatypes. Accepted for publication in
Theoretical Computer Science. Elsevier 2004.

[Bar93] H. Barendregt. Lambda Calculi with Types. In S. Abramski, D. M.
Gabbay, T. S. E. Maibaum, editors.Handbook of logic in Computer
Science, Vol. 2 Background: Computational Structures. Oxford Uni-
versity Press 1993.

[Bar97] H. Barendregt. The Impact of Lambda Calculus in Logic and Com-
puter Science. Bulletin of Symbolic Logic 3(2). pp 181-214. Associ-
ation for Symbolic Logic 1997.

[Ben98] Holger Benl. Konstruktive Interpretation induktiver Definitionen.
(Constructive Interpretation of Inductive Definitions) (In German).
Diplomarbeit, Mathematisches Institut der LMU München. June
1996.

[Ber93] Ulrich Berger. Program Extraction from normalization proofs. In
M. Bezem and J.F. Groote, editors. Typed Lambda Calculus and
Applications. LNCS 664, Springer Verlag. 1993.

[Ber95] Ulrich Berger. A constructive interpretation of positive inductive
definitions. Unpublished Draft. March 1995.

[BBS02] U. Berger, W. Buchholz, H. Schwichtenberg. Refined Program Ex-
traction from Classical Proofs. In Annals of Pure and Applied Logic
114(1-3), pp. 3-25. Elsevier Science B.V. April 2002.

187

188 BIBLIOGRAPHY

[Ber97] C. Berline. A presentation of the Curry-Howard Correspon-
dence. Unpublished note available via http://www.pps.jussieu.

fr/~berline/Cur-How.ps

[BFPS81] W. Buchholz, S. Feferman, W. Pohlers, W. Sieg. Iterated Inductive
Definitions and Subsystems of Analysis: Recent Proof-Theoretical
Studies. LNM 897, Springer Verlag, 1981.

[Cro93] R.L. Crole. Categories for Types. Cambridge Mathematical Text-
books. Cambridge University Press, 1993.

[DM93] H. Dybkjær, A. Melton. Comparing Hagino’s Categorical Progra-
mming Language and Typed Lambda-Calculi.Theoretical Computer
Science 111 pp. 145-189. Elsevier 1991.

[GaHe93] D. Galmiche, O. Hermann. SKIL: A System for Programming with
Proofs. In LPAR’93, International Conference on Logic Progra-
mming and Automated Reasoning, LNAI 698. Springer Verlag 1993.

[GaHe96] Proof search and induction choices in AF2 system D. Galmiche and
O. Hermann. Technical report, march 1996. A preprint is available
in http://ww.loria.fr/~galmiche/oldpapers.html

[Geu92] H. Geuvers. Inductive and coinductive types with iteration and re-
cursion. In B. Nordström, K. Petterson, G. Plotkin, Eds. Proceedings
of the 1992 Workshop on Types for Proofs and Programs B̊astad,
Sweden June 1992, pp. 183-207. Available Via http://www.cs.kun.

nl/~herman/BRABasInf_RecTyp.ps.gz.

[Gir72] J.Y. Girard. Interprétation fonctionelle et élimination des coupures
dans l’arithmét ique d’ordre supérieur. Thèse de Doctorat d’État,
Université de Paris VII. 1972.

[GLT89] J.Y. Girard, Y. Lafont, P. Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science. Cambridge University
Press 1989.

[Gre92] J. Greiner. Programming with Inductive and Co-Inductive Types.
Technical Report CMU-CS-92-109, Carnegie-Mellon University.
January 1992

[Hag87a] T. Hagino. A Typed Lambda Calculus with Categorical Type Con-
structors. In D.H. Pitt, A. Poigné, D.E. Rydeheard. Category Theory
and Computer Science. LNCS 283 Springer Verlag 1987.

[Hag87b] T. Hagino. A Categorical Programming Language. Ph.D. Thesis
CST-47-87 (also published as ECS-LFCS-87-38). Department of
Computer Science, University of Edinburgh 1987.

BIBLIOGRAPHY 189

[Ho92] B.T. Howard. Fixed Points and Extensionality in Typed Func-
tional Programming Languages. Ph. D. Thesis, Stanford Univer-
sity 1992. Available via http://www.cis.ksu.edu/~bhoward/ftp/

sudiss.ps.Z

[Ho80] W.A. Howard. The Formulae-as-Types Notion of Construction. In
J.P. Seldin and J.R. Hindley, editors. To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism pp. 479–490.
Academic Press 1980.

[JaRu97] B. Jacobs, J. Rutten. A Tutorial on (Co)Algebras and
(Co)Induction. EATCS Bulletin 62. p. 222-259. 1997.

[KrPa90] J.L. Krivine, M. Parigot. Programming with Proofs. In Journal of
Information Processing and Cybernetics EIK (Formerly Elektron-
ische Informationsverarbeitung und Kybernetik) 26(3) pp. 149-167.
1990.

[Kri93] J.L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood
Series in Computers and their Applications. Ellis Horwood, Masson
1993.

[Lei83] D. Leivant. Reasoning about Functional Programs and Complexity
Classes associated with Type Disciplines. Proceedings of 24th Annual
Symposium on Foundations of Computer Science pp.460-469 IEEE
Computer Science Press. 1983.

[MPS92] P. Manoury, M. Parigot, M. Simonot. ProPre A Programming Lan-
guage with Proofs. In A. Voronkov, editor, International Conference
on Logic Programming and Automated Reasoning LPAR 92. LNAI
624 Springer Verlag 1992.

[MaSi95] P. Manoury, M. Simonot. Automatizing Terminations Proofs of Re-
cursively Defined Functions. In Theoretical Computer Science 135,
Elsevier 1995.

[Mac98] S. Mac Lane. Categories for the Working Mathematicioan. 2nd. Edi-
tion. Vol. 5. Graduate Texts in Mathematics, Springer Verlag 1998.

[Mat98] Ralph Matthes, Extensions of System F by Iteration and Primi-
tive Recursion on Monotone Inductive Types, Dissertation Univer-
sität München, 1999. Available via http://www.tcs.informatik.

uni-muenchen.de/~matthes/dissertation/matthesdiss.ps.gz

[Mat99] Ralph Matthes. Monotone (co)inductive types and positive fixed-
point types. In Theoretical Informatics and Applications 33(4-5) pp.
309-328. EDP Sciences. 1999.

190 BIBLIOGRAPHY

[Mat01] Ralph Matthes. Parigot’s second order lambda-mu-calculus and in-
ductive types. In Samson Abramsky, editor, Proceedings of TLCA
2001, volume 2044 of Lecture Notes in Computer Science, pages
329-343. Springer Verlag, 2001.

[Men87] N.P. Mendler. Recursive Types and Type Constraints in Second-
Order Lambda Calculus. In Proceedings of the 2nd Annual Sym-
posium on Locig in Computer Science,Ithaca N.Y. pp. 30-36 IEEE
Computer Society Press, Washington D.C. 1987.

[Men91] N.P. Mendler. Inductive Types and Type Constraints in the Second-
Order Lambda Calculus. Annals of Pure and Applied Logic 51(1-2)
pp. 159-172. North-Holland 1991.

[Mir02] F.E. Miranda Perea. A Curry-Style Realizability Interpretation for
Monotone Inductive Definitions. In Malvina Nissim, editor. Proceed-
ings of the 7th. ESSLLI Student Session. Trento Italy 2002.

[Mit88] John C. Mitchell. Polymorphic Type Inference and Containment.
Information and Computation 76 pp. 211-249. 1988.

[Par92] M. Parigot, Recursive programming with proofs. In Theoretical
Computer Science 94, pp.335-356. Elsevier. 1992.

[PZ01] E. Poll, J. Zwanenburg. From Algebras and Coalgebras to Dialge-
bras. In Coalgebraic Methods in Computer Science (CMCS’2001).
Electronic Notes in Theoretical Computer Science 44. Elsevier,
2001.

[Raf94] C. Raffalli. L’ Arithmétique Fonctionnelle du Second Ordre avec
Points Fixes, Thèse de l’Université Paris VII. 1994. Available via
http://www.lama.univ-savoie.fr/~RAFFALLI/

[Raf98] C. Raffalli. Type Checking in System Fη . Unpublished draft. 1998.
Available via http://www.lama.univ-savoie.fr/~RAFFALLI/

[Raf99] C. Raffalli. An Optimized Complete Semi-Algorithm for system Fη .
Unpublished draft. Available via http://www.lama.univ-savoie.

fr/~RAFFALLI/

[Raf03] C. Raffalli. System ST, Toward a Type System for Extraction and
Proofs of Programs. Annals of Pure and Applied Logic 122(1–3),
pp. 107-130. Elsevier 2003.

[Rey74] J. C. Reynolds. Towards a Theory of Type Structure. In B. Robinet,
editor. Programming Symposium, LNCS 19. Springer Verlag 1974.

[Sch04] H. Schwichtenberg. Minimal Logic for Computable Funtionals. Un-
published notes from january 2004. Available via http://www.

mathematik.uni-muenchen.de/~minlog/minlog/mlcf.ps

BIBLIOGRAPHY 191

[Tat93] M. Tatsuta, Realizability of Inductive Definitions for Constructive
Programming. PhD Thesis, University of Tokyo, 1993.

[Tat94] M. Tatsuta, Two Realizability Interpretations of Monotone Induc-
tive Definitions. In International Journal of Foundations of Com-
puter Science 5(1), pp. 1-21. 1994.

[Tho91] S. Thompson. Type Theory and Functional Programming. Addison-
Wesley International Computer Science Series. 1991.

[Tro98] A.S. Troelstra, Realizability. In S.R. Buss, editors. Handbook of
Proof Theory. Elsevier, 1998.

[Urz99] P. Urzyczyn. The Curry-Howard Isomorphism: Remarks on Re-
cursive Types. Lecture Notes for the EEF Trends School in Logic
and Computation, Heriot-Watt University, Edinburgh, April 1999.
Available via ftp://ftp.mimuw.edu.pl/People/urzy/edynburg.

ps.gz

[UV99] T. Uustalu, V Vene. Mendler-style Inductive Types, categorically.
In Nordic Journal of Computing 6(3), pp. 343-361, 1999.

[UV00] T. Uustalu, V. Vene. Coding Recursion á la Mendler (extended ab-
stract). In J. Jeuring, ed. Proc. of 2nd Workshop on Generic Pro-
gramming WGP 2000. Technical Report UU-CS-2000-19, Dept. of
Computer Science, Utrecht University pp. 69-85. 2000.

[Uus98] T Uustalu. Natural deduction for intuitionistic least and greatest
fixedpoint logics, with an application to program construction (PhD
thesis). Dissertation TRITA-IT AVH 98:03, Dept. of Teleinformat-
ics, Royal Inst of Technology (KTH), Stockholm, 1998.

[Wra89] G.C. Wraith. A note on categorical datatypes. In D.Pitts et al, edi-
tors. Category Theory and Computer Science. LNCS 389, Springer
Verlag 1989.

192 BIBLIOGRAPHY

Symbol Index

A◦, 98
AF2, 24
AF2∧,∨, 29
A → B, 149
A+ B, 149
A×B, 149
A[~X := ~F], 25
A[~x := ~s], 24

CΓ, � (A), 97
� k

i , 68, 104
~� i~t, 80
cl(M), 17
ClµX(C1,...,Ck),i, 83
CoClνX(D1,...,Dk),i, 84
CoIndνX(D1,...,Dk), 84

CoInd
+

νX(D1,...,Dk), 84

[f, g], 38
Cri , 104

`can, 89
� k

i , 69, 104
Dr

i , 104
DT , 130

E, 16
e, 15

�
β, 95

� ?(s), 121
�
, 26

=, 27
E[r], 16

F, 12
F mon− X , 87
��� �

(s), 121
F ⊆ G, 81
F mon X , 81
Fν , 133

f , 150
F ∨ G, 81
Fr, 104
F+,×, 15
FV (A), 24
FV (σ), 12
FV (t), 13, 24
F ∧ G, 81

Γ, 26
Γ�

α, 159
Γ ` � t : A, 26
Γ[γ := χ], 96
Γr, 121
Γ�

α, 160
Γ[~y/~x], 96

IndµX(C1,...,Ck), 83

Ind
+

µX(C1,...,Ck), 83

InvνX(D1,...,Dk), 84

K~�
i , 81

λαρ, 31
λ~yF , 25
LA, 149

MCICD, 83
MCICDµMν , 162
MCICD?, 93
MCICT, 55
MCICTη, 64
MCICTM , 75
MCICT−, 55
MCICTµMν , 77
MCoIndνX(D1,...,Dk), 162

MCoInd+

νX(D1,...,Dk), 162

M, 144
MICT, 37

193

194 SYMBOL INDEX

µX(C1, . . . , Ck), 81

νX(D1, . . . ,Dk), 81
ν |=M A, 133

Π[γ := χ], 96
〈f, g〉, 38

ρ[~α := ~σ], 12
‖r‖, 130
7→β , 13
→β , 13
�, 13
ρ monα, 32
r̃, 120, 164

SAT, 16
SCρ[Γ], 20
s = t, 27

�
, 13

�
� t : ρ, 13

SN, 16
sn, 21
?, 15
SA, 150
Sx(M,N), 17

tD[ν], 131
t r A, 93, 104
t[~x := ~s], 13, 24

W(t), 121

X admisF , 160
X+, 104

Index

Algebra, 1
initial, 2
recursive, 3

Antimonotonicity, 65, 87
Antimonotonicity witness

typing rules for, 66, 88
Applicative structure, 128
Axiom

closure, 83
coclosure, 84
coinduction, 84

Mendler-style, 162
strong, 84

induction, 83
strong, 83

Realizability for, 106

Candidate assignment, 19
Church numerals, 13
Clause, 52, 80
Coalgebra, 1

final, 2
corecursive, 4

Coinduction, 1
á la Mendler, 159

Coinductive predicate, 81
Coinductive set, 80
Coiteration

Mendler-style, 161
Comprehension

predicate, 25
Conservation lemma, 142
Constructor, 81
Continuity lemma, 165
Corecursion, 35

Mendler-style, 161
Correctness lemma, 143

for MCICDµMν , 170
for data types with equality, 174

Data types, 142
examples, 145
function space of, 149
product of, 149
sum of, 149
with equality, 170, 173

Degenerated type, 56
Destructor, 81
Dialgebra, 9
Downward hierarchy, 159

semantical, 166

Elimination, 15
multiple, 16

Embedding, 23
Equation, 27
E-term, 100
Existential formula, 94
Extensionality, 129

First functor law, 67, 89
Fixed point, 79

coinductive, 80
greatest, 80, 160
inductive, 80
least, 80, 160

Formula
existential, 94
open, 98
restricted, 94

Greatest fixed point, 80, 160
hierarchy, 159

Induction, 1
Inductive predicate, 81
Inductive set, 80
Instances

Γ,
�
-, 97

195

196 INDEX

Inversion
coinductive, 35
inductive, 33, 34

Iteration, 33
I-term, 100

Kan extension, 76

Least fixed point, 80, 160
hierarchy, 160

Leibniz Equality, 27
Lemma

coincidence, 20, 49
conservation, 142
continuity, 165
correctness, 143, 170
generation, 100
main

for strong normalization, 20,
50

for subject reduction, 99
substitution, 20, 50

Logic
second order, 24

Model
canonical, 144
extensional, 129
identity, 134
intended, 144
syntactical, 128

Modified realizability, 143
Monotone operator, 79
Monotonicity witness, 32

canonical, 65, 89
generic, 65, 87
on-display, 121
typing rules for, 66, 88

Morphism
of F, G-dialgebras, 9
of T -M-algebras, 6
of T -M-coalgebras, 8
of algebras, 1
of coalgebras, 2

Multiple elimination, 16

Natural Numbers

in AF2, 27
in F, 13
in MCICD, 85
in MCICT, 55
in MICT, 38

Open formula, 98
Operator, 79

monotone, 79

Post-fixed point, 79
Pre-fixed point, 79
Predicate, 25

coinductive, 81
comprehension, 25
inductive, 81
of strong computability, 19

Principle
of coinductive inversion, 2, 35,

54
on dialgebras, 11

of coiteration, 2, 34, 36
in Mendler-style, 8, 12, 36
on dialgebras, 10

of inductive inversion, 2, 33, 34,
54

on dialgebras, 11
of iteration, 2, 33

in Mendler-style, 6, 12, 35,
36

on dialgebras, 11
of primitive corecursion, 5, 35,

36
in Mendler-style, 9, 12, 36
on dialgebras, 11

of primitive recursion, 5, 33
in Mendler-style, 7, 12, 36
on dialgebras, 11

Proof-term, 24, 26

Realizability, 93
modified, 143
semantical soundness, 142
soundness theorem, 120

Recursion, 33
Reduction rules

INDEX 197

β, 13, 38, 54, 75, 83, 94
η, 62

Restricted formula, 94
Rule

non-traceable, 14, 27, 99
traceable, 27

Rules
for monotonicity witnesses, 88

Satisfaction, 133
Saturated closure, 17
Saturated set, 16

for coinductive types, 44
for inductive types, 40
properties, 18, 48

Set
coinductive, 80
inductive, 80
saturated, 16

SN-method, 15
Soundness

of term interpretation, 130
of the logic MCICD?, 136
of the logic MCICD?

µMν , 169
Streams

in AF2, 27
in F, 14
in MCICD, 85
in MCICT, 55
in MICT, 39

Strong computability
predicate, 19

for coinductive types, 49
for inductive types, 49

Strong Normalization
for AF2, 29
for AF2∧,∨, 30
for F, 14
for F∃, 23
for F+,×, 15
for MCICD?, 95
for MCICDµMν , 162
for MCICT, 57
for MCICTM , 76
for MICT, 39
inheritance of, 23

Strong normalization, 14
Subject Reduction, 14

for AF2, 29
for AF2∧,∨, 30
for F, 14
for F∃, 22
for F+,×, 15
for MCICD, 86
for MCICD?, 104
for MCICDµMν , 162
for MCICT, 55
for MICT, 38

Substitution
properties, 25, 104, 133

for derivations, 96
Surjective pairing, 63
System

AF2, 24
AF2∧,∨, 29
F, 12
F∃, 22
F+,×, 15
MCICD, 83
MCICD?, 93
MCICDµMν , 162
MCICTM , 75
MCICTµMν , 77
MICT, 37

Tag, 80
T -algebra, 1

M-recursive, 7
recursive, 3

T -coalgebra, 1
M-corecursive, 8
corecursive, 4

Termination, 14
Theorem

Knaster-Tarski, 80
T -M-algebra, 5
T -M-coalgebra, 7
Type Preservation, 14

Upward hierarchy, 160

Valuation, 127, 132

198 INDEX

Variable
second order

admissible, 160

Lebenslauf

Persönliche Daten

◦ Name: Favio Ezequiel Miranda Perea

◦ Geburtsdatum: 20.12.1972

◦ Geburtsort: Mexiko Stadt, Mexiko.

◦ Staatsangehörigkeit: mexikaner

◦ Familienstand: ledig

Schulbildung

◦ 1979-1984 staatliche Grundschule:
Escuela Primaria “Ignacio Ramirez”, Mexiko Stadt

◦ 1984-1987 staatliche Sekundarschule (Zwischenstufe):
Escuela Secundaria Diurna No. 36 “Cuauhtemoc”, Mexiko Stadt

◦ 1987-1990 staatliche Oberschule (Gymnasium):
Escuela Nacional Preparatoria No. 6 “Antonio Caso”, Mexiko Stadt

Studium

◦ 1990-1995 Studium der Mathematik an der Wissenschafts Fakultät der
Nationale Autonom Universität Mexikos (UNAM).
Abschluß: Licenciatura (Bachelor of Science).

◦ 1997-2000 Studium der Mathematik an der Wissenschafts Fakultät der
Nationale Autonom Universität Mexikos (UNAM).
Abschluß: Maestŕıa en Ciencias (Master of Science)

◦ 2000-2004 Promotionsstudium der Mathematik an der Ludwig-Maximilians
Universität München.

199

200 . LEBENSLAUF

Beruf

◦ 1994-1997 Lehrauftrag an der Universität Mexiko als Assistent.

◦ 1997-2000 Lehrauftrag an der Universität Mexiko als Dozent.

◦ 2000-2004 assoziierter Mitglied des GKLI (Wissenschaftliche Mitarbeiter
am LFE Theoretische Informatik, Institut für Informatik LMU München)

