
Advanced Data Mining

Techniques for

Compound Objects

Dissertation im Fach Informatik

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Matthias Schubert

Tag der Einreichung: 7. Oktober 2004

Tag der mündlichen Prüfung: 9. November 2004

Berichterstatter:

Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Martin Ester, Simon Fraser University, British Columbia (Kanada)



ii



Acknowledgement

There are many people who supported me while I was working on my thesis
and I am sorry that I cannot mention all of them in the following. I want to
express my deep gratitude to all of them.

First of all, I would like to thank Prof. Dr. Hans-Peter Kriegel, my supervisor
and first referee. He made this work possible by offering me the opportunity
to work on my own choice of problems in his excellent research group. I
benefitted a lot from the opportunities he provided for all of us and enjoyed
the inspiring working atmosphere he created.

I want to extend my warmest thanks to Prof. Dr. Martin Ester. He not
only willingly agreed to act as my second referee but also shared a lot of his
knowledge about scientific work and data mining with me. His encourage-
ment during our cooperation helped me a lot in doubtful times.

Most of the solutions in this thesis were developed in a team and I want to
especially thank the people I published with. I know that working with me
sometimes demands a lot of endurance and often the willingness to follow
my rather broad excursions. I am trying to improve. I especially want to
mention Alexey Pryakhin. The cooperation with him during the supervision
of his diploma thesis and afterwards as a member of our group was a major
influence on the second part of this thesis which I do not want to miss.
Scientific research lives in discussions and therefore I want to thank all of my
colleagues for many interesting conversations and arguments, not to mention
the good times we had.

I would also like to express my deep gratitude to Susanne Grienberger who
was a big help in writing down this thesis. She aided me a lot by carefully
reading the thesis and offering useful hints for polishing my English. Further-
more, she often shouldered the administrative burdens for me that are part
of working at an university. An invaluable assistance for technical problems

iii



iv

I received from Franz Krojer. He always came up with fast solutions if more
computing power or additional disc space was needed. So, thank you for
always providing running systems in critical times.

I want to thank my parents for their affection and their help for managing
my life in busy times. Without you, it would have been very difficult to
focus on my research. At last, I want to thank the rest of my family and my
friends. Their belief in me was a driving force behind my efforts.

September 2004,

Matthias Schubert



Abstract

Knowledge Discovery in Databases (KDD) is the non-trivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns
in large data collections. The most important step within the process of
KDD is data mining which is concerned with the extraction of the valid
patterns. KDD is necessary to analyze the steady growing amount of data
caused by the enhanced performance of modern computer systems. However,
with the growing amount of data the complexity of data objects increases
as well. Modern methods of KDD should therefore examine more complex
objects than simple feature vectors to solve real-world KDD applications ad-
equately. Multi-instance and multi-represented objects are two important
types of object representations for complex objects. Multi-instance objects
consist of a set of object representations that all belong to the same feature
space. Multi-represented objects are constructed as a tuple of feature rep-
resentations where each feature representation belongs to a different feature
space.

The contribution of this thesis is the development of new KDD meth-
ods for the classification and clustering of complex objects. Therefore, the
thesis introduces solutions for real-world applications that are based on multi-
instance and multi-represented object representations. On the basis of these
solutions, it is shown that a more general object representation often provides
better results for many relevant KDD applications.

The first part of the thesis is concerned with two KDD problems for which
employing multi-instance objects provides efficient and effective solutions.
The first is the data mining in CAD parts, e.g. the use of hierarchic cluster-
ing for the automatic construction of product hierarchies. The introduced
solution decomposes a single part into a set of feature vectors and compares
them by using a metric on multi-instance objects. Furthermore, multi-step
query processing using a novel filter step is employed, enabling the user to
efficiently process similarity queries. On the basis of this similarity search
system, it is possible to perform several distance based data mining algo-
rithms like the hierarchical clustering algorithm OPTICS to derive product
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hierarchies.
The second important application is the classification and search for com-

plete websites in the world wide web (WWW). A website is a set of HTML-
documents that is published by the same person, group or organization and
usually serves a common purpose. To perform data mining for websites, the
thesis presents several methods to classify websites. After introducing naive
methods modelling websites as webpages, two more sophisticated approaches
to website classification are introduced. The first approach uses a preprocess-
ing that maps single HTML-documents within each website to so-called page
classes. The second approach directly compares websites as sets of word vec-
tors and uses nearest neighbor classification. To search the WWW for new,
relevant websites, a focused crawler is introduced that efficiently retrieves
relevant websites. This crawler minimizes the number of HTML-documents
and increases the accuracy of website retrieval.

The second part of the thesis is concerned with the data mining in multi-
represented objects. An important example application for this kind of com-
plex objects are proteins that can be represented as a tuple of a protein
sequence and a text annotation. To analyze multi-represented objects, a
clustering method for multi-represented objects is introduced that is based
on the density based clustering algorithm DBSCAN. This method uses all
representations that are provided to find a global clustering of the given
data objects. However, in many applications there already exists a sophisti-
cated class ontology for the given data objects, e.g. proteins. To map new
objects into an ontology a new method for the hierarchical classification of
multi-represented objects is described. The system employs the hierarchical
structure of the ontology to efficiently classify new proteins, using support
vector machines.



Zusammenfassung

Knowledge Discovery in Datenbanken (KDD) ist der nicht-triviale Prozess,
neues, gültiges und bisher unbekanntes Wissen aus großen Datenmengen zu
extrahieren. Der wichtigste Schritt im KDD Prozess ist das Data Mining,
das die in den Daten geltenden Muster findet. KDD ist notwendig, um
die stetig wachsenden Datenmengen zu analysieren, die durch die wach-
sende Leistungsfähigkeit moderner Rechensysteme entstanden sind. Aller-
dings steigt auch die Komplexität der Objektdarstellung einzelner Datenob-
jekte an. Moderne KDD Verfahren sollten daher auch mit komplexeren Ob-
jekten als einfachen Merkmalsvektoren umgehen können, um reale KDD Ap-
plikationen adäquat zu lösen. Zwei wichtige Arten von komplexen Datenmod-
ellierungen sind mengenwertige und multirepräsentierte Objekte. Mengen-
wertige Objekte bestehen dabei aus einer Menge von Objektrepräsentationen,
die alle demselben Vektorraum angehören. Multirepräsentierte Objekte sind
durch einen Tupel von Objektrepräsentationen gegeben, die jeweils aus un-
terschiedlichen Merkmalsräumen stammen.

Das Ziel dieser Doktorarbeit ist es, neue KDD-Verfahren im Bereich Clus-
tering und Klassifikation von komplexen Objekten zu entwickeln. Ausgehend
von der Modellierung der Daten als mengenwertige und multirepräsentierte
Objekte, werden Lösungen zu realen Anwendungen vorgestellt. Anhand
dieser Lösungen wird gezeigt, dass eine allgemeinere Datenmodellierung für
viele relevante Anwendungen zu besseren Ergebnissen führt.

Der erste Teil der Doktorarbeit beschäftigt sich mit zwei KDD Prob-
lemen, die unter Verwendung von mengenwertigen Datenobjekten besser
als durch etablierte Verfahren gelöst werden können. Das erste Problem
ist Data Mining von CAD-Bauteilen, wie z.B. das automatische Erstellen
von Produkthierarchien mit Hilfe des Clustering. Hierzu werden eine Zer-
legung der Bauteile in Mengen von Merkmalsvektoren, eine Metrik auf Vek-
tormengen und passende Methoden zur Ähnlichkeitssuche eingeführt. Auf
Basis dieses Suchsystems sind dann viele distanzbasierte Data Mining Al-
gorithmen anwendbar, wie zum Beispiel der Clustering-Algorithmus OP-
TICS zur Erstellung von Teilhierarchien. Die zweite Anwendung ist die
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Kategorisierung und Suche von kompletten Websites im World Wide Web
(WWW). Eine Website stellt dabei eine Menge von HTML-Dokumenten dar,
die von der gleichen Personengruppe mit demselben Zweck im WWW pub-
liziert wurde. Zunächst werden mehrere Methoden zur Klassifikation von
Websites vorgestellt. Die einfachsten versuchen dabei Websites genauso wie
einzelne HTML-Dokumente zu klassifizieren. Desweiteren werden zwei fort-
geschrittenere Ansätze von Klassifikatoren für Websites eingeführt. Der erste
Ansatz verwendet einen Vorverarbeitungsschritt, der die einzelnen HTML-
Dokumente auf sogenannte Seitenklassen abbildet. Der zweite Ansatz ver-
gleicht Websites direkt als Mengen von Wortvektoren und wendet Nächste-
Nachbar-Klassifikation an. Zur Suche neuer Websites im WWW wird ein
fokusierter Webcrawler vorgestellt, der möglichst schnell große Mengen rele-
vanter Websites findet. Das vorgestellte Verfahren minimiert dabei die An-
zahl der geladenen Einzeldokumente und erhöht die Trefferrate unter den
gefundenen Ergebnissen.

Der zweite Teil der Arbeit beschäftigt sich mit dem Data Mining mul-
tirepräsentierter Objekte. Eine wichtige Anwendung für diesen Bereich ist
das Data Mining von Proteinen, die durch Aminosäuresequenzen und Text
beschrieben werden. Zunächst, wird eine Clustering-Methode vorgestellt, die
auf dem dichtebasierten Clustering-Algorithmus DBSCAN basiert. Dabei
werden alle vorhandenen Repräsentationen verwendet, um eine globale Ein-
teilung der Proteine zu finden. Häufig besteht allerdings schon eine von
Experten erstellte Kategorisierung in so genannten Ontologien. Um bisher
noch nicht eingeordnete Objekte in diese Ontologien einzusortieren, wird ein
Verfahren zur hierarchischen Klassifikation von multirepräsentierten Objek-
ten vorgestellt. Dieses System nutzt die hierarchische Struktur einer gegebe-
nen Ontologie aus, um die Objekte einer Menge von Klassen mit Hilfe von
Support Vektor Maschinen zuzuordnen.
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Chapter 1

Introduction

In recent years the amount of data that is collected by advanced information

systems has increased tremendously. To analyze these huge amounts of data,

the interdisciplinary field of Knowledge Discovery in Databases (KDD) has

emerged. The core step of KDD is called Data Mining. Data Mining applies

efficient algorithms to extract interesting patterns and regularities from the

data. Besides the sheer size of available data sources, the complexity of data

objects has increased as well. Thus, new data mining methods are necessary

to draw maximum benefit from this additional information. In this chapter

the KDD process is introduced and described. Then data mining and its

key tasks are surveyed. Clustering and classification are discussed in detail,

because these are the tasks the thesis deals with. Afterwards the idea of

using compound data objects for the representation of complex objects is

introduced. Finally the chapter concludes with an outline of the thesis,

offering a brief overview of the introduced solutions.
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4 1 Introduction

1.1 Knowledge Discovery in Databases

In recent years the amount of data collected and stored by electronic devices

has risen tremendously. For example, earth observation satellites retrieving

images, bar code scanners collecting costumer data, and companies map-

ping costumer preferences in data warehouses are generating gigabytes of

data every day. Another rapidly growing information collection is the World

Wide Web (WWW). Currently the web provides more than 4 billions [Cen]

webpages containing information about almost any imaginable topic.

All of these data collections are far to large to be examined manually

and even the methods for automatic data analysis based on classical statis-

tics and machine learning often face problems when processing large, dy-

namic data collections consisting of complex objects. To analyze these large

amounts of collected information, the area of Knowledge Discovery in Da-

tabases (KDD) provides techniques which extract interesting patterns in a

reasonable amount of time. Therefore, KDD employs methods at the cross-

point of machine learning, statistics and database systems. In [FPSS96] KDD

is defined as follows :

Knowledge Discovery in Databases is the non-trivial process of iden-

tifying valid, novel, potentially useful, and ultimately understandable patterns

in data.

According to this definition, data is a set of facts that is somehow accessi-

ble in electronic form. The term ”patterns” indicates models and regularities

which can be observed within the data. Patterns have to be valid, i.e. they

should be true on new data with some degree of certainty. A novel pattern

is not previously known or trivially true. The potentially usefulness of pat-

terns refers to the possibility that they lead to an action providing a benefit.

A pattern is understandable if it is interpretable by a human user. At last

KDD is a process, indicating that there are several steps that are repeated

in several iterations.

Figure 1.1 displays the process of KDD in its basic form. The process
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Knowledge

Data

Patterns
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Data Mining
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Feature
Representations

Figure 1.1: The process of KDD.

comprises the following steps:

• Focussing

The first step is to define the goal of the particular KDD task. Another

important aspect of this step is to determine the data to be analyzed

and how to obtain it.

• Preprocessing

In this step the specified data has to be integrated, because it is not

necessarily accessible on the same system. Furthermore, several objects

may be described incompletely. Thus, the missing values need to be

completed and inconsistent data should be corrected or left out.

• Transformation

The transformation step has to assure that each data object is repre-

sented in a common form which is suitable as input in the next step.

Thus, certain attributes are selected and others are left out. Further-

more, some attribute values have to be discretized, depending on the
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algorithms used in the next step. Note that the chosen features and

the type of object representation can have a major influence on the

resulting patterns. Prominent examples of object representations that

are results of the transformation step are feature vectors or itemsets.

• Data Mining

Data mining is the application of efficient algorithms to detect the de-

sired patterns contained within the given data. Thus, the data mining

step is responsible for finding patterns according to the predefined task.

Since this step is the most important within the KDD process, we are

going to have a closer look at it in the next section (1.1.1).

• Evaluation

At last, the user evaluates the extracted patterns with respect to the

task defined in the focussing step. An important aspect of this eval-

uation is the representation of the found patterns. Depending on the

given task, there are several quality measures and visualizations avail-

able to describe the result. If the user is satisfied with the quality of the

patterns, the process is terminated. However, in most cases the results

might not be satisfying after only one iteration. In those cases, the

user might return to any of the previous steps to achieve more useful

results.

The quality of the results varies, depending on the right choice of feature

transformations, feature selections and data mining algorithms. A user must

decide which techniques should be employed and select the step where the

KDD process should be modified to improve the result after each iteration.

Thus, the number of iterations and the quality of the results strongly depend

on the user directing the KDD process.
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1.1.1 Data Mining

Since data mining is the most important step within the KDD process, we

will treat it more carefully in this section. In [FPSS96] Data Mining is defined

as follows:

Data mining is a step in the KDD process consisting of applying data

analysis and discovery algorithms that, under acceptable computational ef-

ficiency limitations, produce a particular enumeration of patterns over the

data.

According to this definition data mining is the step that is responsible for

the actual knowledge discovery. To emphasize the necessity that data mining

algorithms need to process large amounts of data, the desired patterns has to

be found under acceptable computational efficiency limitations. Let us note

that there are many other definitions of data mining and that the term data

mining and KDD are often used in a synonymous way.

In the following, we will describe the most important data mining meth-

ods with respect to the kind of knowledge they mine:

• Classification (also called supervised learning)

Classification is the task of learning a function that maps data objects

to one or several classes in a predefined class set. To learn this function,

classification methods need a training set, containing data objects that

are already mapped to the class they belong to. After analyzing the

training set, classification methods can map new unknown objects to

the classes. A second purpose of classification is, deriving class models

to explain why the objects are mapped in this way. In section 1.1.2

and chapter 2.3, classification is treated more precisely.

• Clustering (also called unsupervised learning)

Clustering is the task of identifying a finite set of categories (or clusters)

to describe the data. Thus, similar objects are assigned to the same

category and dissimilar ones to different categories. Clustering is also
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called unsupervised learning because the data objects are mapped to

a set of clusters which can be interpreted as classes as well. In section

1.1.2 and chapter 2.2, clustering and cluster algorithms will be discussed

more exhaustive.

• Association Rules

Finding Association rules is the task of identifying rules that express

co-occurrences within transaction databases. A transaction is a set of

items where each item has a different type. Association rules express

that in the given database a specified set of items appears together

in the same transaction with a certain support/probability. The most

important example of transaction data is market basket data.

• Data Generalization

Data Generalization derives compact representations for a subset of

data objects.

• Regression

The task of regression is to learn a function which maps data objects to

a real value. To find a regression function, a training set of data objects

that are already mapped to a real value is necessary. An additional

goal of regression is to discover functional relationships between the

feature values of the underlying training objects. Regression is related

to classification, since both tasks learn functions from a training set.

• Dependency Modelling

Algorithms in this category are designed to find a model which describes

significant dependencies between variables, e.g. learning or believe net-

works.

A second important categorization is to distinguish the databases a data

mining algorithm is build on. The characterization of the database can have

a major effect on the data mining algorithm, since data objects in varying
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kinds of databases usually are represented in a different way and contain

different kinds of information. Important groups of databases are relational,

object-relational, spatial and deductive databases. Most of the so far pro-

posed data mining methods are developed for spatial and pure relational

databases. [CHY96] surveys data mining techniques for relational databases

and [KAH96] contains an overview of spatial data mining techniques.

1.1.2 Clustering and Classification

The main contribution of this thesis is the development of new methods for

clustering and classification. Therefore, these very important data mining

tasks and their relation to each other are described more closely in the fol-

lowing.

Clustering

Clustering is the process of grouping the data records into meaningful sub-

classes (clusters) in a way that maximizes the similarity within clusters and

minimizes the similarity between two different clusters [KHK99].

Other names for clustering are unsupervised learning (machine learning)

and segmentation. Clustering is used to get an overview over a given data

set. A set of clusters is often enough to get insight into the data distribution

within a data set. Another important use of clustering algorithms is the pre-

processing for some other data mining algorithm. In chapter 2.2.2 a general

categorization and important examples of clustering algorithm are described

more closely.

Example applications of clustering are the grouping of costumers for tar-

get marketing, grouping HTML-documents to order the answer sets of search

engines [BGG+99a, BGG+99b] or finding clusters of proteins and genes hav-

ing a similar function [HKKM98, SCC+95, NRS+95].
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Classification

Classification is the process of learning a function that maps data objects

to a subset of a given class set. Therefore, a classifier is trained with a la-

belled set of training objects, specifying each class. There are two goals of

classification:

• Finding a good general mapping that can predict the class of so far

unknown data objects with high accuracy. For this goal, the classifier

is a mere function. To achieve this goal, the classifier has to decide

which of the characteristics of the given training instances are typical

for the complete class and which characteristics are specific for single

objects in the training set.

• The other goal of classification is to find a compact and understand-

able class model for each of the classes. A class model should give an

explanation why the given objects belong to a certain class and what

is typical for the members of a given class. The class model should be

as compact as possible because the more compact a model is, the more

general it is. Furthermore, small and simple class models are easier to

understand and contain less distracting information.

Of course, a good classifier should serve both purposes, but for most

practical applications finding an accurate mapping is more important than

developing understandable class models. Thus, multiple techniques are used

to classify objects that do not offer an understandable class model. A cat-

egorization of different kinds of classification methods is given in chapter

2.2.3.

Example applications of classification methods are mapping emails into

one out of a determined set of folders, predicting the functional class of

proteins [DK02, JH98], finding relevant information in the WWW [CDI98,

CvdBD99a, CvdBD99b], and predicting the costumer class for a new cus-

tomer.
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Figure 1.2: Classification separates the data space (left) and clustering

groups data objects (right).

Classification and Clustering are strongly connected. Classification tries

to learn the characteristics of a given set of classes, whereas clustering finds

a set of classes within a given data set. An important feature of clustering

is that it is not necessary to specify a set of example objects. Therefore,

clustering can be applied in applications where there is no or little prior

knowledge about the groups or classes in a database. However, the usefulness

of a found clustering is often subject to individual interpretation and strongly

depends on the selection of a suitable similarity measure. In applications for

which the existence of a dedicated set of classes is already known, the use of

classification is more advisable. In these cases providing example objects for

each class is usually much easier than constructing a feature space in which

the predefined classes are grouped into delimited clusters. Furthermore, the

performance of a classifier can easily be measured by the percentage of correct

class predictions it achieves. To conclude, clustering and classification are

related data mining tasks that are used in different situations. Figure 1.2

displays class separation by a classifier on the left side and the grouping of

two clusters in a noisy data set on the right side.
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1.1.3 Data Mining and Complex Objects

For many standard applications, like market basket analysis, constructing a

usable KDD process is a rather well determined task. However, the data to

be processed in real-world applications is getting more and more complex and

is yielding more potential knowledge. With advancing processors, memory

and disc space, the detail level of objects is increasing as well as their plain

numbers. For example, companies acquire more detailed information about

their costumers, sky telescopes offer pictures with higher resolutions and

HTML-documents use structural tags, embedded multimedia content and

hyperlinks which makes them much more complicated than ordinary text

documents.

All these additional information yields new challenges to KDD. Though it

is basically desirable to have more information about given data objects, the

selection of characteristics that are used in data mining gets more difficult.

Additionally, many complex objects provide structural information as well

as plain features. For example, a gene sequence is characterized by the order

of nucleotides instead of their plain appearance in the gene.

To analyze complex objects, the most established way is to map any

complex object to a feature vector. The idea is to span a vector space in

which each relevant object characteristic or feature provides a dimension.

Thus, an object is represented by the vector of its feature values. Since this

is the most common feature representation, there is a wide variety of data

mining algorithms that can process vectors as input representation. Though

this method offers good results in many application areas, the data transfor-

mation becomes more and more difficult with increasing object complexity.

Since data transformation usually is not informed about the purpose of the

KDD task, it is difficult to decide which characteristic of an object should be

preserved and which can be neglected. Furthermore, structural information

is very difficult to express using a single feature vector. For example, it is not

possible to model an arbitrary sized set within a feature vector without loos-
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ing information. Thus, transforming complex objects into a feature vector

and employing vector-based data mining often spends large efforts for data

transformation and provides suboptimal results.

For several applications, it is more beneficial to employ specialized data

mining algorithms that can process more complex input representations than

plain feature vectors. Employing structured object representations like graphs,

sequences or relational data, often provides an more natural view on real-

world complex objects. The type of data representation discussed in this

thesis is called compound object representation and is also capable to model

structural information. A compound data object is defined in the following

way:

Compound Data Objects are built of concatenations and sets of other

compound data objects. Basic compound objects can consist of any object

representation that can be processed by a data mining algorithm.

The most simple type of compound object is a value v for a given object

domain D. A concatenation of this basic type is a feature vector (v1, . . . , vd) ∈
D1 × . . .×Dd. However, the idea of compound objects is not limited to this

kind of basic objects. Other examples are trees, graphs, and sequences that

could be used as basic objects, too. Figure 1.3 illustrates two basic types of

compound objects, concatenated or multi-represented objects and set-valued

or multi-instance objects. The following directions are capable to process

compound objects for data mining.

Distance based data mining algorithms like the density-based clustering

algorithms DBSCAN, OPTICS, k-medoid clustering or k nearest neighbor

(kNN) classification can process any data objects as long as there is a suitable

distance function. For this approach, the treatment of the structural infor-

mation completely relies on the distance function. For some kinds of com-

pound objects, there already exist several distance functions [EM97, RB01],

each offering a different interpretation of the structure. The challenge of this

approach is to find out which distance function is suited best for a given

application.
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Compound Object
Representation

Complex Object

vector space R2

graph space R3

relation R1

Figure 1.3: Multi-represented and multi-instance objects are basic types

of compound objects.

Another approach considering compound data is multi-instance learn-

ing. A multi-instance learner tries to solve a two class classification problem

in which each training object is given by a bag or set of feature vectors

[DLLP97]. An object is relevant, if there is at least one relevant instance

within the set. An object is irrelevant, if there is none relevant instance

within the set. Thus, the problem of the classifier is to find out which kind

of instance makes an object relevant in order to decide the class of new sets

of instances. There have been several methods developed so far to solve this

problem [DLLP97, WZ00, CZ00, GFKS02]. However, this direction treats

only a very specialized interpretation of data mining in multi-instance ob-

jects. Other directions that are related to data mining in compound objects

are generalization [HNKW98], ensemble learning [VM02] and relational data

mining [DL01].
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1.2 Outline of the Thesis

This thesis is aimed at the development of methods for classification and

clustering of two basic types of compound objects: multi-instance objects

and multi-represented objects.

Multi-instance objects are given by a set of object representations similar

to the objects mined in multi-instance learning. However, the goal of multi-

instance data mining is much more general. Therefore, multi-instance data

mining algorithms should consider a wide variety of dependencies between the

instances of two objects. An example for multi-instance objects are websites

which can be described as sets of HTML-documents. Therefore, websites can

be represented as sets of feature vectors.

Multi-represented objects are concatenations of several different kinds of

object representation. Unlike modelling an object by spanning a single fea-

ture space, multi-represented objects are given by a tuple of feature represen-

tations. Each of these feature representations exists in a separated feature

space. For some objects, there exists no feature representation in some of

these data spaces. Thus, methods of multi-represented data mining have

to cope with missing object representations. An example for data objects

that can be transformed into multi-represented form are proteins which can

be described by text annotations, the amino acid sequence and structural

feature representations.

The use of data mining methods using compound objects depends on the

given application. For many applications, data mining based on feature vec-

tors offers very good results because the structural information is not relevant

for the given task. To demonstrate the need for data mining using compound

objects, this thesis introduces new methods of clustering and classification

of compound objects that offer advanced solutions to important data min-

ing applications. Each of the introduced solutions is capable to exploit the

structure of the given input data and to outperform conventional approaches

using feature vectors.
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The thesis consists of four parts. The rest of the first part (chapter 2)

contains a brief overview of feature transformations, classification and clus-

tering algorithms that are necessary to understand the methods introduced

in the next two parts of the thesis.

The second part describes methods employing multi-instance objects to

offer solution to two important applications. The part starts with a chapter

(3) that formally introduces multi-instance data mining, describes several

important applications, and distinguishes the introduced solution from the

area of classical multi-instance learning.

Chapter 4 is concerned with shape-based data mining in CAD parts.

It starts by introducing a representation of CAD parts as sets of covers.

To measure the similarity between two multi-instance objects, the ”mini-

mal matching distance” is used which is a metric on sets of vectors that is

computable in polynomial time. Based on this representation and distance

function, an efficient similarity search system is introduced that uses multi-

step query processing. Given the similarity search system, various distance

based data mining algorithms are applicable.

In chapter 5 we introduce data mining aimed at the efficient retrieval of

relevant websites or so-called website mining. A website is a set of HTML-

documents that is published by the same person group or institution and is

usually serving a common purpose. Websites are interesting objects for data

mining, since there are many important applications directed at websites

instead a single HTML-documents. A basic task of website mining is the

classification of websites. After discussing naive approaches, we introduce

two more sophisticated solutions to website classification. The first approach

employs a preprocessing step that maps the webpages of a website to a pre-

defined set of page classes. Based on this preprocessing step, multiple meth-

ods of website classification are discussed. The second approach to website

classification does not employ any preprocessing step, but directly compares

websites as multi-instance objects of text feature vectors. To further improve

the performance of website classification, a method for reducing the number
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of webpages that are needed for the classification of a website is introduced.

The last and most important contribution of this chapter is a focused crawler

that is specialized on retrieving new relevant websites from the WWW while

reading as few webpages as possible. The idea of the crawler is to employ

a two level architecture. The first level, called the external crawler, ranks

candidates for relevant websites and decides which of these candidates has

to be explored next. The second level, called the internal crawler, examines

these candidates and decides if they are indeed relevant.

Chapter 6 concludes the part about data mining in multi-instance ob-

jects. Since the last two chapters contain solutions to real-world problems

containing aspects that are not specific to multi-instance objects, the solu-

tions to multi-instance data mining are especially summarized. Furthermore,

the chapter draws general conclusion from the introduced techniques.

The third part of the thesis is concerned with data mining in multi-

represented objects. The first chapter (7) of this part gives an introduction

to multi-represented objects and names several important applications.

Chapter 8 introduces a method for density-based clustering of multi-

represented objects. Therefore, two new methods are introduced that are

based on the density-based clustering algorithm DBSCAN. Both methods

are capable to find more meaningful clusters based on more than one object

representation. The introduced clustering methods are applied to a protein

database, consisting of text annotations and amino acid sequences. Further-

more, the usefulness of the method is demonstrated on an image database

where each image is described by a color histogram and a segmentation tree.

In chapter 9, we introduce a solution to ontology-based data integration

of biomolecular databases. Therefore, we introduce a classification method

for mapping multi-represented objects into large class ontologies. The intro-

duced classification system is based on support vector machines (SVM) and

utilizes the inheritance relationships within the given class ontology. Fur-

thermore, the system is able to predict a set of classes for each data object

which is an important requirement for protein classification. To draw max-
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imum knowledge from multiple representations, a technique called ”object-

adjusted weighted”(OAW) is introduced. OAW recombines the classification

results achieved in each representation for each object and uses the reliability

of the results for finding a global class prediction. The system is evaluated

by mapping entries of the SWISS-PROT protein database [BBA+03] to the

classes of Gene Ontology [Con00].

The part of the thesis that deals with multi-represented data objects is

concluded by chapter 10. This chapter contains a brief summary of the

introduced data mining techniques with respect to multi-represented data

mining. Furthermore, a categorization of problems in multi-represented data

mining is provided.

The fourth and final part contains a summary of the thesis. The last

chapter (11) sums up the introduced methods and draws general conclusions.

Afterwards ideas for future work are presented that contain several interest-

ing directions for data mining of compound objects and for the introduced

KDD applications.



Chapter 2

Basic Techniques of Knowledge

Discovery and Data Mining

There are many established data mining algorithms that can be applied to

a given data mining task. In this chapter well established data transforma-

tions and data mining techniques that are used by the novel solutions are

described. The first section illustrates the basic idea of data transforma-

tion more formally. Additionally, similarity measures and basic similarity

queries are described. Finally, data transformation, feature selection and

distance functions for text documents are introduced. The next section gives

a brief overview and categorization of clustering algorithms. To understand

the contribution of the thesis, it is necessary to discuss the clustering al-

gorithms DBSCAN and OPTICS more closely. The last section deals with

classification algorithms. It begins with a small introduction about the gen-

eral characteristic of classification and its evaluation. Afterwards important

directions, like kNN classification, statistical classifiers, support vector ma-

chines and decision trees, are surveyed.

19
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2.1 Feature Spaces and Data Transformation

for KDD

2.1.1 Feature Transformation and Similarity Search

This section describes the idea of data transformation. Additionally, sim-

ilarity measures are described to compare the given data objects. Finally,

similarity search and basic types of similarity queries are explained.

In most KDD applications, the data objects are not provided in a form

that can be processed by a data mining algorithm. Therefore, the data

objects have to be transformed into a more meaningful representation that

directly expresses the potentially relevant characteristics. For example, im-

ages are transformed into feature vectors that describe shape, texture or

color [HSE+95, NBE+93, SH94] or text documents in word vectors [Sal89].

In general, a feature transformation is a function of the following form.

Definition 2.1 (feature transformation)

Let o ∈ O be an object of the object space O and let F be a feature space.

Then, feature transformation is a function, mapping the objects of O to F :

FT : O → F

The object space O can be given by any object representation that is

processable by a computer. The feature space F might be a vector space, a

compound object or any other arbitrary form that is processable by the cho-

sen data mining algorithm. An important assumption about feature spaces

is that object similarity is reflected within the distance of feature represen-

tations. In other words, two objects that are similar should be transformed

to feature representations that are close with respect to a suitable distance

function. On the other hand, the feature representations of dissimilar objects

should be far away from each other. To fulfill this assumption, a suitable dis-

tance measure has to be selected. For most types of feature spaces there

exist multiple distance measures that are suitable for certain applications,
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but do not reflect object similarity in other cases. Formally, distance based

similarity can be defined as follows:

Definition 2.2 (distance based similarity)

Let O be the set of data objects and let FT : O ⇒ F be a feature trans-

formation into the feature space F . Furthermore, let dist : F × F → IR be

a distance measure in the feature space F . The similarity of objects obj1,

obj2 ∈ O is defined as follows:

simdist(obj1, obj2) = dist(FT (obj1), FT (obj2))

The most established type of distance functions are the lp distance func-

tions which are defined as follows:

Definition 2.3 (lp-distance metrics)

lp : IRd × IRd → IR : lp(x, y) =

(
d∑

i=1

|xi − yi)
p

) 1
p

, p > 1

For p = 2 the lp is called Euclidian distance function and is used as

the default distance function for most applications using vector spaces. The

lp distance functions are metric which means that they fulfill the following

conditions:

Definition 2.4 (Metric Distance Function)

Let dist : F × F → IR be a distance function. dist is called a metric iff

1. dist(x, y) = 0 ⇔ x = y ∀x, y ∈ F

2. dist(x, y) = dist(y, x) ∀x, y ∈ F

3. ∀x, y, z ∈ F : dist(x, z) ≤ dist(x, y) + dist(y, z)

Using metric distance functions provides many benefits like the use of

efficient indexing and data structures [BKK96, CPZ97, LJF94, BBJ+00],

but it is not mandatory for achieving good data mining results.
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Having a notion of similarity that is processable by a computer, many data

mining algorithms become applicable. On the other hand, it is not necessary

to define an explicit distance measure for a wide variety of data mining

algorithms like kernel based methods or decision trees. To distinguish these

two directions of data mining algorithms, we call all data mining algorithms

that demand the selection of a distance function distance based data mining

algorithms.

Distance based data mining algorithms often use similarity queries as

basic operations. The two most important types of similarity queries are:

1. Definition 2.5 (ε-range queries)

Let DB ⊂ F be a set of objects that is given in feature space F and

let simdist : F × F → IR a similarity measure. Then, the result of an

ε range query to the set DB with respect to an query object q ∈ F is

defined as follows:

Nε(q) = {x|x ∈ DB ∧ simdist(q, x) < ε}

The result of an ε range query is the subset of a data set that is con-

tained within the hypersphere around the querypoint q having the ra-

dius ε.

2. Definition 2.6 (k nearest neighbor (kNN) queries)

Let DB ⊂ F be a set of objects that is given in feature space F and

let simdist : F × F → IR a similarity measure, then the result of an

k nearest neighbor query to the set DB with respect to an query object

q ∈ F is defined as follows:

NNk(q) = {x1, . . . , xk|x ∈ DB∧ 6 ∃ x′ ∈ DB \ {x1, . . . , xn}
∧ 6 ∃ i, 1 ≤ i ≤ k : simdist(xi, q) > simdist(x′, q)}

In other words, a kNN query for the query object q returns k objects

having the minimal distance to q.
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In the following, we will call a system that enables us to process similarity

queries a similarity search system.

2.1.2 Data Transformation for Text Documents

An important part of this thesis deals with processing text data. There are

several established techniques that are aimed at increasing the performance

for this important application area [Sal89, YL99, DMS98, Lar98]. The fol-

lowing section gives an introduction to data transformation methods for text

documents which we use in this thesis.

The most established way to process text documents is to treat each

document as a so-called ”bag of words”. In this representation, each word

occurring in any document provides a dimension for a vector space. A doc-

ument can be represented as a feature vector where each dimension provides

the number of occurrences of the word corresponding to this dimension. A

more general approach to text mining is to use terms instead of words. A

term can be a small sequence of words or a single word. The techniques

processing more complicated terms are the same as for single words.

Since most documents contain only a limited number of terms, the feature

vectors that are build in this way contain an extraordinary high percentage

of zero-valued dimensions. Therefore, the feature vectors are called sparse

and need to be processed by methods that can cope with this extraordinary

characteristic. An example effect that occurs data spaces of sparse feature

vectors is that usually all objects are placed on the surface of the feature

space, since there is no document that contains all words.

Another problem of text feature spaces is the number of possible dimen-

sions. Obviously, it does not make sense to use every possible term. Most of

the dimensions would be used for almost no text document and the extremely

high dimensionality of the feature space would make efficient calculation very

difficult.

There are several techniques that reduce the number of terms that have to
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be considered. A method that can be used especially for words is stemming

which is the reduction of each word to its basic word stem. Using stemming

reduces the number of terms by mapping several words into the same dimen-

sion. There are two directions to achieve stemming: lexical and algorithmic

stemming. Algorithmic stemming employs rules to reduce a word, whereas

lexical stemming does rely on dictionaries to find out if a word is derived

from a particular word stem. Since algorithmic stemming is not applicable

for all languages and large dictionaries are hard to acquire, both directions

have their drawbacks. Professional text mining tools usually use a mixture

of both. [Tom04] compares stemming for nine European languages.

Another established approach to reduce the dimensionality of a feature

space is the deletion of stop words like ”to”, ”like” or ”would”. These words

usually do not give a hint to the topic of a given text document. Stop words

lists for common languages can be found on the WWW, e.g. [Con].

Though stemming and the removal of stop words reduce the potential

candidates for spanning a feature space, the number is usually still very big.

Thus, most text transformations use methods of feature selection to select

the most meaningful terms for building a feature space. The research com-

munity has spent a lot of attention on feature selection and there are several

techniques that have proven to be useful. [YP97] contains an comparative

study of some of the most established methods of feature selection for text

mining.

In the following, we will introduce the feature selection methods that

achieved the best results in [YP97].

The first is called ”feature selection by document frequency”. For each

term t the number of text documents in the database DB that the term

occurs in, is counted denoted as cont(t,DB). Afterwards, the terms are

sorted descending with respect to cont(t,DB) and each term is given a rank

with respect to its order. Thus, the term occurring in the most documents,

receives the top rank (rank 1) and so on. To find the final score for each

term, the rank is multiplied with cont(t,DB). To select k features, the k



2.1 Feature Spaces and Data Transformation for KDD 25

terms providing the highest values of (k · contt,DB) are chosen. The idea

is that terms that occur in almost any given document are not well suited

to distinguish them. On the other hand, terms that occur in only a view

documents are too special to be used for a general comparison. Though this

technique is very simple, it achieves remarkable results and is applicable for

text clustering since it does not rely on the existence of document classes like

the following two approaches.

The following feature selection techniques are for text classification only

since they weight the significance of each term for a given class. Afterwards

the top k significant terms for each class are chosen as dimensions of the

resulting feature space.

To decide the significance of a given term for a class, there exist multiple

solutions. All of them begin with counting the number of documents of class

ci containing a particular term wj denoted as occci
wj

. Example methods to

calculate the significance of a term wj with respect a class ci are:

χ2 statistic

This method measures the level of independence between a term t and a class

ci and is computable in quadratic time.

Definition 2.7 (χ2 statistics)

Let DB a labelled text collection and let Ci ⊂ DB be the documents of

DB belonging to class ci. Furthermore let cont(t, S) = {d ∈ S|t ∈ d} de-

note the subset of set S that contains a term t and let cont(t, S) denote the

S \ cont(t, S). Then the χ2 statistics for class Ci and term t is defined as

follows:

A = |cont(t, Ci)|
B = |⋃l 6=i cont(t, Cl)|
C = |cont(t, Ci)|
D = |⋃l 6=i cont(t, Cl)|
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χ2(t, Ci) =
|DB|(A ·D − C ·B)2

(A + B)(B + D)(A + B) · (C + D)

Information Gain

The information gain is measure for the degree a given term is capable to

distinguish the classes. It is based on the entropy as a measure of pureness

with respect to set of classes C.

Definition 2.8 (entropy)

Let DB be a set of documents and let C = {C1, ..Cm} with DB =
⋃

1≤i≤m Ci

be a disjunctive partitioning of DB. Then the entropy of DB with respect to

the partitioning C is defined as follows:

entropy(C) = −
m∑

i=1

Pr[Ci] · log PR[Ci]

where Pr[Ci] denotes |Ci|
|DB| .

Definition 2.9 (Information Gain)

Let t be a term and let cont(t, S) = {d ∈ S|t ∈ d} denote the subset of

set S that contains a term t and let cont(t, S) denote S \ cont(t, S). The

information gain of t with respect to the disjunctive partitioning C is:

GC(t) = entropy(C)−
|cont(t,DB)|

|DB|
· entropy(cont(t,DB)

−|cont(t,DB)|
|DB|

· entropy(cont(t,DB))

The idea of information gain is to split a given set according to the oc-

currence of a given term and afterwards compare the weighted average of the

resulting subsets to the entropy of the unsplitted set. If the entropy in the

subsets decreases significantly, the term provides a higher information gain

and is better suited as a feature. We will need the information gain again in

section 2.3 for constructing decision tree classifiers.
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To conclude, there are multiple techniques for reducing the dimensionality of

text feature spaces. However, to find a suitable document representation it

is often necessary to still employ between 5,000 and 20,000 terms to achieve

good results.

After introducing techniques of feature selection, we will turn to the fea-

ture values that are stored in a feature vector. The most common approach

is to count the appearances of the terms within a document to determine the

feature value. This approach is called term frequency (TF) and is denoted

by n(t, d). However, for text collections containing documents that strongly

vary in size, the appearance of a word should be measured by the length

of the document. A word appearing in a small document should have more

impact to the document length than the same word appearing in a large doc-

ument containing a large number of words. Therefore, the document vector

is often normalized with respect to the document length f = n(t,d)∑
w∈d

n(w,d)
.

Another commonly used technique is to additionally consider the inverse

document frequency (IDF) of a term. The IDF factor is defined as follows:

IDF (t) = |DB|
|cont(t,DB)|

where DB is a data collection and cont(t,DB) denotes the set of elements

in DB that contains a given term t. The idea of IDF is to treat each di-

mension with a different weight. If a term appears very often, its weight is

reduced. This way, terms that appear very often in all kinds of documents

are considered as less important than terms appearing in specific documents

only. Often TF and IDF are used together. The TDIDF score of a term

appearance in a document is calculated by:

TDIDFD(t) = TFD(t) · IDF (t)

Though text documents are reduced to feature vectors, comparing those

vectors using the established lp distance measures does not perform very well.
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The sparseness of feature spaces has the effect that the feature values in the

majority of the dimension is equally set to zero. Thus, lp distance measures

tend to consider the distance between most documents as very small. How-

ever, this effect is not wanted, since two documents should be compared by

counting the words that appear in both of them. Therefore, there exists

several special distance function that are suitable for sparse vectors and es-

pecially for text documents. [Dun03] lists some of the most common distance

functions for text documents. The most established distance function is the

cosine coefficient which is defined as follows:

Definition 2.10 (cosine coefficient)

distcos : IRd × IRd → IR : distcos(x, y) = 1−
∑d

i=1 xi · yi√
‖x‖ ·

√
‖y‖

The idea of the cosine coefficient is to consider the sum of the products of

the term frequencies of each document. This way, only words that occur in

both documents are accounted for an increasing similarity. To consider the

document size, the product is divided through the product of the length of

each feature vector. Thus, the fraction has a value between one and zero. To

turn the similarity measure to a distance function, the fraction is subtracted

from one. The cosine coefficient is metric and has proven to be a suitable

distance for many text mining application like clustering and classification.

2.2 Clustering Algorithms

Clustering or cluster analysis is one of the data mining tasks in this thesis.

Therefore, this section provides a brief review about the purpose of clustering,

a categorization of directions in clustering, and a discussion of the density-

based clustering algorithms.
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2.2.1 The Task of Clustering

Clustering is the process of grouping a given data set into classes or clusters.

The objects within a cluster should be similar to each other and the objects

of different clusters should be dissimilar to each other. Thus, similarity is a

very important aspect for clustering objects. In most cases, clustering relies

on distance based similarity as is described in the previous section. There

are multiple algorithms for clustering data and the choice of a suitable one

depends on both, the type of data and the application. An overview about

clustering algorithms can be found in [HK01].

2.2.2 Directions of Clustering Algorithms

Over the last decades the research community proposed a variety of clustering

algorithms which can be categorized with respect to varying aspects. In the

following, we will use the categorization provided by [HK01].

1. Partitioning Methods

Partitioning clustering algorithms partition a database of n objects

into k disjunctive clusters. Each cluster contains at least one object

and each object belongs to exactly one cluster. In order to find a good

clustering, partitioning methods divide the data set into k initial parti-

tions and afterwards optimize the cluster quality in several iterations.

In each iteration some objects are moved from one cluster to another

one, improving the quality of the clusterig. If it is not possible to aug-

ment the quality by relocating any object, the algorithm terminates.

Note that partitioning clustering algorithms are often heuristic and usu-

ally not guarantee to find the clustering having the maximal quality.

The most prominent examples of this direction are k-Means clustering

and k-Medoid methods like PAM or CLARANS [HK01]. Partitioning

clustering algorithms are well suited for small to medium sized data-

bases and are useful to find k spherical clusters to describe a data set.
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However, partitioning clustering algorithms need a predefined number

of clusters to be found and do not find arbitrary shaped clusters in

large databases without extension.

2. Hierarchical Methods

Hierarchical methods create a hierarchical decomposition of the data

set. A hierarchical clustering allows that smaller clusters are part of

bigger clusters which are more general. There are two approaches to

hierarchical clustering, agglomerative and divisive clustering. Agglom-

erative clustering follows a bottom-up approach. Each object is a clus-

ter of its own. In the next step, the two clusters are merged that are

closest to each other. The merging of clusters is repeated until either a

complete tree of clusters is built or a termination condition is reached.

This cluster tree is called dendrogram and contains clusters of varying

size. Divisive methods follow a top-down approach and successively

divide already found clusters into smaller clusters. The clustering ter-

minates if each cluster consists of exactly one object or a termination

condition is reached. In basic hierarchical clustering algorithms the

decision that an object belongs to a cluster cannot be revised. Though

this characteristic helps to find clusters efficiently, the quality of the

clustering might suffer. Thus, there are more sophisticated approaches

that analyze the object linkages like in CURE [GRS98] or Chameleon

[KHK99] or additionally use iterative relocation like BIRCH [ZRL96].

3. Density-Based Methods

Density-based clustering algorithms define clusters according to the

dense areas in the database. They are capable of finding an arbitrary

number of arbitrary shaped clusters. Another advantage of density-

based clustering is its capability to consider noise which is not to

be counted to any cluster. In order to identify dense areas in the

database, density-based algorithm employ ε-range queries to decide if

the ε-neighborhood of a data object contains a sufficient number of
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other data objects. Clusters are defined by connected areas where the

data objects contain objects with dense ε-neighborhoods. In the next

section, we will have a closer look at the most prominent examples for

density-based clustering algorithms DBSCAN [EKSX96] and OPTICS

[ABKS99].

4. Grid-Based Methods

Grid-based methods divide the object space into a finite number of cells

that form a grid structure. All clustering operations are performed on

this grid structure. The advantage of grid-based clustering is the fast

computation. The drawback of these approaches is that the result is

strongly dependent on the size and placement of the grid. Important

examples for grid-based clustering algorithms are Sting [WYM97] and

CLIQUE[AGGR98].

5. Model-Based Methods

This approach is based on the construction of a (statistical) model that

explains the data distribution in a given data set as good as possible.

The common way to construct such a model is using a mixture of sev-

eral density functions, containing a density function for each Cluster.

Often an additional uniform distributed density function is added to

consider noise objects. A further extension determines the most likely

number of clusters in the database. Examples for model based clus-

tering algorithms are COBWEB [Fis87] and expectation maximization

clustering(EM Clustering) [DLR77]. Though model-based clustering

algorithms create very expressive models, their computational costs are

often very high. Thus, model-based clustering algorithms are usually

not applicable to very large databases.

Though the given categorization surveys the most important directions of

clustering, many clustering algorithms employ ideas of more than one of the

mentioned categories. For example, the density-based algorithm OPTICS
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database 1 database 2 database 3 database 4

Figure 2.1: Sample databases.

provides a cluster hierarchy as a result and EM Clustering has a similar

algorithmic scheme as partitioning clustering algorithms, e.g. k-Means.

2.2.3 Density-Based Clustering

Density-based clustering algorithms are the foundation of the clustering so-

lutions that are proposed in this thesis. Additionally, to the advantages

of density-based clustering named above, this approach is very general and

therefore well suited for clustering complex and compound objects. As men-

tioned above, the basic idea of density-based clustering is the observation

that inside a cluster the density of points is considerably higher than outside

a cluster. Furthermore, different clusters are separated by areas of noise.

This observation can be validated by looking at the two dimensional sample

databases displayed in figure 2.1).

DBSCAN

The key idea of density-based clustering is that for each member of a cluster

the neighborhood of a given radius has to contain a minimum number of

objects, i.e. the density in the neighborhood has to exceed a density thresh-

old. This threshold is determined by two user defined input parameters ε

specifying the size of the neighborhood and MinPts specifying the minimum

number of objects the neighborhood must contain.

Definition 2.11 (ε-neighborhood)
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Let ε ∈ IR. The ε-neighborhood of an object p ∈ D, denoted by Nε(p), is

defined by

Nε(p) = {o ∈ D | dist(p, o) ≤ ε}

As claimed above, an object should be inside a cluster if its neighborhood

contains at least a given number of objects.

Definition 2.12 (core object)

An object q ∈ D is a core object w.r.t. ε ∈ IR and MinPts ∈ IN , denoted by

Coreden(q), if its ε-neighborhood contains at least MinPts points, formally:

Coreden(q) ⇔ |Nε(p)| ≥ MinPts

Let us note that the acronym den in the definition refers to the density

parameters ε and MinPts. In the following, we omit the parameters ε and

MinPts wherever the context is clear and use den instead. The core point

concept is visualized in Figure 2.2(a).

A naive approach could require the core object property for each member

of a cluster. However, this approach fails because there are some objects on

the border of the cluster (- so called border objects) that do not fit the core

point property but are intuitively part of a cluster. In fact, a cluster has

two properties: density and connectivity. The first one is captured through

the core object property. The second one is captured through the following

concepts.

Definition 2.13 (direct density-reachable)

An object p ∈ D is direct density reachable w.r.t. ε ∈ IR and MinPts ∈ IN

from q ∈ D, denoted by DirReachden(q,p), if q is a core object and p is in

the ε-neighborhood of q, formally:

DirReachden(q, p) ⇔ Coreden(q) ∧ p ∈ Nε(q).

The concept of direct density reachability is depicted in Figure 2.2(b).

Obviously, directly density reachable is a symmetric relation for pairs of core

objects. However, it is not symmetric in general.
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Definition 2.14 (density-reachable)

An object p ∈ D is density-reachable from q ∈ D w.r.t. ε ∈ IR and MinPts ∈
IN , denoted by Reachden(q,p), if there is a chain of objects p1, . . . , pn ∈ D,

p1 = q, pn = p such that pi+1 is directly density reachable from pi, formally:

Reachden(q, p) ⇔

∃p1, . . . , pn ∈ D : p1 = q ∧ pn = p ∧

∀i ∈ {1, . . . , n− 1} : DirReachden(pi, pi+1).

Density reachability is illustrated in Figure 2.2(c). It is the transitive

enclosure of direct density reachable but it is not symmetric in general (again

only for pairs of core points). Thus, we have captured the connectivity of core

points so far. But two border objects of the same cluster C are not density

reachable from each other. However, there must be a core point in C from

which both border points are reachable. Therefore, the following definition

captures general connectivity of points within a cluster.

Definition 2.15 (density-connected)

An object q ∈ D is density-connected to another object p ∈ D w.r.t. ε ∈ IR

and MinPts ∈ IN , denoted by Connectden(q,p), if there is an object o ∈ D
such that both p and q are density reachable from o, formally:

Connectden(q, p) ⇔

∃o ∈ D : Reachden(o, q) ∧ Reachden(o, p).

Density connected is in general a symmetric relation. The concept is

visualized in Figure 2.2(d).

Now, the density-based notion of a cluster can be defined using the in-

troduced concepts. Intuitively, a cluster is defined to be a set of density

connected objects which is maximal w.r.t. density- reachability. The objects

in D, not belonging to any of its density-connected sets are defined as noise.

Definition 2.16 (density-connected cluster)

A non-empty subset C ⊆ D is called a density connected cluster w.r.t. ε ∈ IR
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Figure 2.2: Illustration of density-based clustering concepts

and MinPts ∈ IN , denoted by ConSetden(C), if C is a density connected set

and C is maximal w.r.t. density-reachability, formally:

ConSetden(C) ⇔

(1) Connectivity: ConSetden(C)

(2) Maximality: ∀p, q ∈ D : q ∈ C ∧Reachden(q, p) ⇒ p ∈ C.

The algorithm DBSCAN is proposed in [EKSX96] and computes all density-

based clusters w.r.t. the user-specified parameters ε and MinPts by one single

pass over the data. For that purpose, DBSCAN uses the fact that a density

connected set can be detected by finding one of its core objects p and com-

puting all objects which are density reachable from p. The pseudo code of

DBSCAN is depicted in Figure 2.3. The method ExpandCluster which com-

putes the density connected cluster, starting from a given core point, is given

in Figure 2.4.

The correctness of DBSCAN can be formally proven (cf. Lemmata 1 and

2 in [EKSX96], proofs in [SEKX98]). Although DBSCAN is not in a strong

sense deterministic (the run of the algorithm depends on the order in which
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algorithm DBSCAN(SetOfObjects D, Real ε, Integer MinPts)

// each point in D is marked as unclassified
generate new clusterID cid;
for each p ∈ D do

if p.clusterID = UNCLASSIFIED then
if ExpandCluster(D, p, cid, ε, MinPts) then

cid := cid + 1
end if

end if
end for

Figure 2.3: The DBSCAN algorithm.

the points are stored), both the run-time as well as the result (number of

detected clusters and association of core objects to clusters) are determi-

nate. The worst case time complexity of DBSCAN is O(n log n) assuming

an efficient spatial index (e.g. [BKK96] or [BBJ+00]) and O(n2) if no index

exists.

OPTICS

DBSCAN computes a flat density-based decomposition of a database. It de-

tects each density connected set w.r.t. a global density parameter specified

by ε and MinPts. However, there may be clusters of different density and/or

nested clusters in the database (cf. “database 3” and “database 4” in Figure

2.1). If the densities of different clusters vary significantly, the parameteriza-

tion of DBSCAN is problematic. A less strict density threshold would detect

also the clusters of lower density but may merge clusters of higher density.

On the other hand, a more strict density threshold would partition the denser

clusters but would miss clusters with lower density. In addition, the infor-

mation of nested clusters, i.e. denser clusters within less dense clusters, may

be missed.

In [ABKS99] the density connected clustering notion is extended by hi-

erarchical concepts. Based on these concepts, the algorithm OPTICS is pre-

sented. The key idea is that (for a constant MinPts-value) density-based

clusters w.r.t. a higher density, i.e. a lower value for ε, are completely con-
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boolean ExpandCluster(SetOfObjects D, Object start, Integer cid, Real ε, Integer MinPts)

SetOfObjects seeds := Nε(start);
if |seeds| < MinPts then

start.clusterID := NOISE;
return false;

end if
for each o ∈ seeds do

o.clusterID := cid;
end for
remove start from seeds;
while seeds 6= ∅ do

o := first point in seeds;
neighbors := Nε(o);
if |neighbors| ≥ MinPts then

for each p ∈ neighbors do
if p.clusterID ∈ {UNCLASSIFIED, NOISE} then

if p.clusterID = UNCLASSIFIED then
insert p into seeds;

endif
p.clusterID := cid;
endif

end for
end if
remove o from seeds;

end while
return true;

Figure 2.4: Method ExpandCluster.

tained in density-based clusters w.r.t. a lower density, i.e. a higher value

for ε. Figure 2.5 illustrates this observation: C1 and C2 are density-based

clusters w.r.t. eps1 < eps2 and C is a density-based cluster w.r.t. eps2

completely containing C1 and C2.

The algorithm OPTICS extends DBSCAN by computing the density con-

nected clusters w.r.t. all parameters εi that are smaller than a generic value

ε. In contrast to DBSCAN, OPTICS does not assign objects to clusters, but

stores the order in which the data objects are processed and the information

which would be used by an extended DBSCAN algorithm to assign objects

to clusters. This information consists of only two values for each object, the

core distance and the reachability distance.

The core distance is based on the concept of k-nearest neighbor distances.
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C

C1 C2

eps1 eps2

Figure 2.5: Nested clusters of different density.

Definition 2.17 (k-nearest neighbor distance)

The k-nearest neighbor distance of p, denoted by nn-distk(p), is defined as

follows:

nn-distk(p) = max{dist(o, p) | o ∈ NNk(p)}.

Let us note that in Definition 2.17 it is implicitly assumed that D contains

at least k elements, i.e. k ≤ n.

Definition 2.18 (core distance)

The core distance of an object q ∈ D w.r.t. ε ∈ IR and MinPts ∈ IN is

defined as

CoreDistden(q) =

 nn-distMinPts(q) if |Nε(q)| ≥ MinPts

∞ else.

The core distance of an object q is the smallest threshold ε̂ ≤ ε such that

q is a core object w.r.t. ε̂ and MinPts. If ε̂ would be greater than the generic

ε value, the core distance of q is set to ∞.

Definition 2.19 (reachability distance)

The reachability distance of a point p ∈ D relative from another object q ∈ D
w.r.t. ε ∈ IR and MinPts ∈ IN is defined as

ReachDistden(q, p) = max(CoreDistden(q), dist(q, p)).



2.2 Clustering Algorithms 39

core-distance(o)

reachability distance(o,p)

reachability distance(o,q)

MinPts = 5

o
p

q
eps

generic eps value

Figure 2.6: Illustration of core distance and reachability distance.

The reachability distance of an object p w.r.t. another object q is the

smallest threshold ε̂ ≤ ε such that p is directly density reachable from q.

Obviously, to achieve this relation, q has to be a core object. Thus, the

reachability distance cannot be smaller than the core distance of q. As a

consequence, if dist(q, p) ≤ CoreDistden(q), the reachability distance of

p w.r.t. q is set to CoreDistden(q). Otherwise, the smallest threshold

ε̂ ≤ ε, where p is directly density reachable from q, is exactly dist(q, p).

Let us note that if q is not a core point w.r.t. the generic ε-value, i.e.

CoreDistden(q) = ∞, we get ReachDistden(q, p) = ∞ indicating that the

smallest threshold ε̂ is in fact greater than ε, i.e. p cannot be directly reached

from q w.r.t. the generic threshold ε.

Both the core distance of an object o and the reachability distances of

the objects p and q relative to o are illustrated in Figure 2.6.

The OPTICS algorithm computes a so-called cluster ordering of a database

w.r.t. the two input parameters ε and MinPts. In addition, the core distance

and a “suitable” reachability distance is stored for each object. The pseudo

code of the OPTICS algorithm is depicted in Figure 2.7. It starts with an

arbitrary object o ∈ D, assigns a reachability distance of ∞ to o and expands

the cluster order if the core distance of o is smaller than the generic input

parameter ε. The expansion is done by inserting each object p ∈ Nε(o) into

a seed list OrderedSeeds. This seed list is organized as a heap, storing that

object q, having the minimum reachability distance to the already processed

objects as first object in the list. The heap structure is maintained by the
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algorithm OPTICS(SetOfObjects D, Real ε, Integer MinPts)

CO := empty cluster ordering;
while |CO| < n do

o := arbitrary not yet handled point in D;
neighborso := Nε(o);
o.R := ∞;
o.C := Coreden(o);
mark o as handled;
append o to CO;
if o.C 6= ∞ then

OrderedSeeds.update(neighborso, o);
while OrderedSeeds 6= ∅ do

p := OrderedSeeds.first();
neighborsp := Nε(p);
p.C := Coreden(p);
mark p as handled;
append p to CO;
if p.C 6= ∞ then

OrderedSeeds.update(neighborsp, p);
end if

end while
end if

end while

Figure 2.7: The OPTICS algorithm.

procedure OrderedSeeds::update (cf. Figure 2.8) which updates the reachabil-

ity distances of the objects that are already in the seed list if their according

values decrease. The next object to be inserted in the cluster ordering is

always the first object in the seed list. If the core distance of this object is

smaller or equal to ε, all objects in the ε-neighborhood are again inserted

into or updated in the seed list. If the seed list is empty and there are still

some not yet processed objects in D, we have a so-called “jump”. OPTICS

selects another arbitrary not yet handled object in D and proceeds extending

the cluster ordering for the remaining objects.

Definition 2.20 (cluster ordering)

Let MinPts ∈ IN , ε ∈ IR, and CO be a permutation of the objects in D. Each

o ∈ D has additional attributes o.P , o.C and o.R, where o.P ∈ {1, . . . , n}
symbolizes the position of o in CO. We call CO a cluster ordering w.r.t. ε
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method OrderedSeeds::update(SetOfObjects neighbors, Object center)

cdist := center.C;
for each o ∈ neighbors do

if o is not yet processed then
rdist := max{cdist, dist(o, center)};
if o is already in OrderedSeeds then

if o.R > rdist then
o.R := rdist;
decrease(o);

end if
else

o.R := rdist;
insert(o);

end if
end if

end for

Figure 2.8: Method OrderedSeeds::update.

and MinPts if the following three conditions hold:

(1) ∀p ∈ CO : p.C = CoreDistden(p)

(2) ∀x, y ∈ CO : 1 < x.P < y.P ⇒

∃o ∈ CO : o.P < x.p ∧ ReachDistden(o, x) ≤ Reachden(o, y)

(3) ∀p ∈ CO :

p.R = min{ReachDistden(o, p) | o ∈ CO ∧ o.P < p.P},

where min ∅ = ∞

Condition (2) states that the cluster ordering CO is built by selecting

the object o for position i that yields the smallest reachability to each of the

objects that are already ordered so far, i.e. all objects in position j < i.

o.C symbolizes the core distance of an object o in CO whereas o.R is the

reachability distance assigned to the object o during the generation of CO.

A cluster ordering contains sufficient information to extract all density-

based clusterings w.r.t. any ε′ ≤ ε. The density-based clustering w.r.t.

a particular ε′ ≤ ε can be extracted by scanning the cluster ordering and

checking the reachability distance and the core distance of each object. If
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Figure 2.9: Reachability plot (right) computed by OPTICS for a sample

two dimensional data set (left).

the reachability distance of the current object is larger than ε′, we have to

check its core distance. If the core distance of this object is also larger than

ε′, this object is assigned to noise. Ohterwise, the object is a core object and

we start a new cluster. If the reachability of the current object is smaller than

ε′, it can be assigned to the current cluster because it is density reachable

from a preceding core object in the cluster ordering. Let us note that the

resulting clusters may miss some border objects, because border objects can

belong to multiple density connected clusters.

A breakthrough advantage of OPTICS is that the resulting cluster or-

dering can be visualized very intuitively using a so-called reachability plot.

A reachability plot is a two dimensional visualization of a cluster ordering

where the objects are plotted according to the sequence specified in the clus-

ter ordering along the x-axis and the y-values are given by the reachability

distances. Figure 2.9 (right) depicts the reachability plot based on the clus-

ter ordering computed by OPTICS for the sample two dimensional data set

in Figure 2.9 (left). Intuitively, clusters are “valleys” or “dents” in the plot

because sets of consecutive objects with a lower reachability value are packed

more densely. In particular, to manually obtain a density-based clustering

w.r.t. any ε′ ≤ ε by visual analysis, one simply has to cut the reachability

plot at y-level ε′ i.e. parallel to the x-axis. The consecutive valleys in the

plot below this cutting line contain the according clusters. An example is

presented in Figure 2.9: For a cut at the level ε1, we find two clusters de-
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noted as A and B. Compared to this clustering, a cut at level ε2 would yield

three clusters. The cluster A is split into two smaller clusters denoted by A1

and A2 and cluster B decreased its size. This illustrates how the hierarchical

cluster structure of a database is revealed at a glance and could be easily

explored by visual inspection.
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2.3 Classification Algorithms

This section contains a brief introduction to classification which is the other

data mining task that is discussed in this thesis. First of all classification will

be described in general and methods to evaluate the quality of a classifier are

discussed. Afterwards main directions of classification are surveyed, includ-

ing the classification methods used as foundation for the novel techniques of

this thesis.

2.3.1 General Aspects of Classification

The task of classification is to learn a function that maps data objects to

their correct class(es) in a predefined class set. A classifier learns from a so-

called training set, containing a sufficient number of already mapped objects

for each class. The training objects are considered to be ”labelled” with

the name of the class they belong to. Classification is also called supervised

learning because it is directed by these labelled objects. Formally, a classifier

is a function of the following form:

Definition 2.21 (Classifier)

Let O be the set of objects, C the set of classes and let G : O → C be the true

mapping of all objects o to their correct class co. Furthermore, let T ⊂ O×C

with T = {(o, c)|o ∈ To ⊂ O∧G(o) = c} be the set of already labelled training

objects. Then a classifier is a function CLT : O → C that maps the objects

of O to a class ci ∈ O.

G is also called the ground truth. The goal of classification is to train FT

in a way that CLT can reproduce the ground truth G as good as possible.

One of the most important aspects for evaluating classifiers is that the

quality of prediction for the objects oi ∈ To is not significant for the perfor-

mance observed for the objects oj ∈ O \ To. Since the correct class for the

objects in To is already known, it is easy to find a classifier that achieves
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maximum performance on the training data. However, for reliable class pre-

dictions on unknown data objects o ∈ O \ To a classifier has to offer good

generalization. The key to build up a good classifier is to find out which of the

characteristics are significant for a class and which are typical to individual

data objects. If the classifier is based on too many individual characteristics,

it will fit too accurately to the elements of To and the performance for new

data objects o ∈ O\To degenerates. This effect is known as overfitting and is

one of the central problems of classification. A good theoretical description

to this problem is found in the introduction of [Bur98].

To measure classification performance without overfitting, the set of ob-

jects where the correct class is already known To, is split into a training set

TR and a test set TE. The training set is used to train the classifier. After-

wards the elements of the test set are classified and the following measures

for the classification performance can be calculated:

• Classification Accuracy

Acc(FTR) =
|{o|G(o) = FTR(o) ∧ o ∈ TE}|

|TE|

• Precision

Precision(FTR, c) =
|{o|G(o) = FTR(o) = c ∧ o ∈ TE}|

|{o|CLT (o) = c}|

• Recall

Recall(FTR, c) =
|{o|G(o) = FTR(o) = c ∧ o ∈ TE}|

|{o|GT (o) = c}|

• F-Measure

F −Measure(FTR, c) =
2 · Precision(FTR, c) ·Recall(FTR, c)

Precision(FTR, c) + Recall(FTR, c)
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The classification accuracy is a performance measure considering all classes.

It is the percentage of correct predictions for the test set TE. However, if

the number of test objects for each class varies very strongly, considering the

accuracy tends to be misleading. Consider a test set for two classes A and B

that consists of 95 % objects for class A and only 5% percent of the objects

belong to class B. By always predicting class A, it is possible to achieve 95 %

classification accuracy for this test set without having a reasonable classifier.

This example illustrates that considering the accuracy is only advisable if

the number of test objects in TE is approximately similar for each of the

classes. Additionally to the accuracy, the most important measures for clas-

sification performance are precision and recall. The precision for a class c

indicates the percentage of correct classified objects among the objects that

where predicted to belong to class c. The recall for class c is the percentage

of correctly classified objects among all objects that really belong to class c.

Naturally, there is a trade-off between precision and recall. Most classifiers

can be adjusted to increase the precision of a class c while decreasing its

recall or the other way around. To have a measure considering both aspects,

the f-measure was introduced. The f-measure is the harmonic mean value of

precision and recall and reaches its maximum when both measures reach the

same value.

Another problem of testing classifiers is that the set of already labelled

instances T usually tends to be very limited. Thus, training the classifier

with only a subset of T will decrease the classification performance. On the

other hand, it is not possible to measure the classification performance cor-

rectly without already labelled data that are not part of the training set.

To limit this problem, the technique of stratified k-fold cross validation was

introduced. First of all, stratified k-fold cross validation divides T into k

stratified folds. Each stratified fold contains approximately the same per-

centage of objects from each of the classes as it is found in the complete set

T . Now the classifier is trained k times with k−1 folds and each time another

fold is left out for testing. Thus, for each run and for each fold there is an
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Figure 2.10: Illustration for 3-fold cross validation.

classification result that can be used to calculate the introduced performance

measures for the complete data set T . Figure 2.10 illustrates the building of

stratified folds.

Additional to the quality of prediction, there are other important aspects

of a classifier. Especially for database application efficiency is an important

aspect. The efficiency of a classifier is measured by the time it takes to clas-

sify a new unlabelled object. This so-called classification time is important,

since a classifier is considered to be applied to large numbers of objects, with-

out being modified. The time that is spent for the training of a classifier, the

so-called training time, is considered as less important in most cases, because

the training set is considered to consist of a minor number of objects only.

However, if the training of a classifier is very time consuming, the complete

KDD process is slowed down. Therfore, the time to train a classifier has to

be considered for several application as well. The last important aspect of

classification is the understandability of the found class model. Though accu-

rate classification is the primary goal of classification, for many applications

explicit knowledge about characteristics of the treated classes are needed.

Thus, providing class models that are easily understood by human users is
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an important feature of a classifier. Unfortunately, many of the established

methods do not provide this feature.

2.3.2 Important Directions of Classification

The following section gives a brief overview of established methods of classi-

fication. Though the methods to achieve classification are strongly varying,

all classifiers have something in common. They divide the given object space

into disjunctive sections that are associated to a given class.

In the following, the most important approaches to classification are sur-

veyed:

Bayes Classifiers

Statistical or Baysian classifiers are based on the assumption that the objects

of a class can be modelled by a statistical process. Each data object o has

its origin in the process of a given class ci with a certain probability Pr[o|ci]

and each process of a class ci generates objects with a certain probability

Pr[ci] called a priori probability. To decide which class is to be predicted

for object o, it is necessary to determine the probability Pr[ci|o] called a

posteriori probability. It describes the probability that an object o has its

origin in class ci. To determine the a posteriori probability based on Pr[ci]

and Pr[o|ci], the rule of Bayes is used:

Definition 2.22 (Rule of Bayes)

Let o ∈ O be an object and let ci ∈ C be a class. Then the a posteriori

probability Pr[ci|o] can be calculated by:

Pr[ci|o] =
Pr[ci] · Pr[o|ci]∑|C|

j=1 Pr[cj] · Pr[o|cj]

where Pr[ci] denotes the a priori probability of class ci and Pr[o|ci] denotes

the probability that o was generated by the model of class ci.
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The class providing the maximum likelihood for an object o is predicted.

Formally the decision rule of this so-called maximum likelihood classifier is

the following:

argmaxci∈CPr[ci] · Pr[o|ci]

Note that the denominator is equal for each of the classes and can there-

fore be neglected when calculating the most likely class.

This method of classification is optimal since no other classifier can achieve

a better average accuracy using the same a priori knowledge.

The problem of maximum likelihood classification is to find a proper

statistical process to describe the data objects of a class. Established methods

for calculating Pr[o|ci] are:

• Naive Bayes Classification

This is the most established way to calculate Pr[o|ci] for vector spaces.

An object o is described by a vector (o1, . . . , od). The classifier is called

naive because it assumes that each dimension is independently dis-

tributed for each class. Thus,

Pr[o|ci] =
d∏

j=1

Pr[oj|ci]

describes the probability for an object o and the class ci. The distri-

bution within each dimension can be chosen freely. Commonly used

examples are the Gauss distribution or the multi-nomial distribution.

Naive Bayes offers good accuracy for many application even, if the

assumption of independent dimension does not hold.

• Markov Processes

A Markov model is a probabilistic Moore automata that is often used

to model sequential data. A first order Markov model is given by a

triple (S, T, π). S is a set of states corresponding to discrete number

elements of the modelled sequence. T is a |S|×|S|matrix containing the
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transition probabilities for each pair of states. π is the start distribution

indicating the probability that a sequence starts with state si for all

states in S. Thus, a first order Markov model models the sequential

character of an input sequence by considering the previous state for each

transition. Markov models of order k consider the k last steps when

calculating the probability of a new state. A Markov model with k = 0

models the probability of a multiset of states without any sequential

character.

Other important methods for calculating Pr[o|ci] are Baysian belief net-

works [HK01] that model the dependency of certain dimensions in a vector

space and general multi-dimensional Gauss distribution that are capable to

consider any probability. Generally, any stochastic process generating valid

data objects can be used to construct a Bayes classifier as long as its param-

eters can be determined with statistic methods.

The performance of a Bayes classifier is strongly dependent on the used

statistical process. If a good model is found for all of the classes, Bayes

classifiers offer accurate prediction. To explain the found knowledge a user

can analyze the statistical model of each class. For example, the mean value

and the variance of a multi-dimensional Gauss distribution might yield im-

portant insight into the structure of a class. The classification using Bayes

classifiers is usually very fast because the calculation of Pr[o|ci] can be done

very efficiently for most statistical processes.

k Nearest Neighbor (kNN) Classification

Nearest neighbor classifiers are based on the idea that an object should be

predicted to belong to the same class as the objects in the training set with

the biggest similarity. To use kNN classification, it is enough to have a

suitable similarity search system in which the training data is stored. Classi-

fication is done by analyzing the results of a kNN query. The simplest way to

determine a classification result of a kNN classifier is the majority rule. The
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class A
class B

Figure 2.11: The Voronoi cells mark the class borders of an NN classifier

in this two dimensional example.

objects in the query result are counted for each class and the class having

the majority count is predicted to be the class of the object.

Another more sophisticated method is to consider the distances to the

object to weight the impact of each neighboring object. Thus, a close object

contributes more to the decision than an object having a large distance. This

decision rule can be formulated as follows:

prediction(o) = argmaxc∈C(
∑

q∈NNk(o)∧G(q)=c

1

d(o, q)2
)

kNN classifiers use the class borders given by the Voronoi cells of the

objects within the training set and thus, do not need any training or model

building. Figure 2.11 displays the Voronoi cells of a simply two dimensional

example for a NN classifier. As a result, kNN classifiers cannot be used to

gain explicit class knowledge to analyze the structure of the classes. kNN

classification is also known as lazy learning or case based reasoning.

The parameter k is very important to the classification accuracy achieved

by a kNN classifier. If k is chosen too small, classification tends to be very
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decision set for k = 7

decision set for k = 17

Figure 2.12: The figure illustrates the effect of 3 different values for k.

sensible to noise and outliers. On the other hand, a too large value for k

might extend the result set of the k nearest neighbor by objects that are too

far away too be similar to the classified object. Figure 2.12 illustrates the

influence of the parameter k. For k = 1 the decision sphere is too small and

for k = 17 the decision sphere is too big for a correct prediction. For k = 7

the object is classified correctly.

Since kNN classification works directly on the training data, the classifi-

cation time is very dependent on the efficiency of the underlying similarity

search system. Especially for the case of large training sets linear search

becomes very inefficient. Using suitable index structures [CPZ97, LJF94,

BKK96, BBJ+00] can offer a solution to this problem. However, for complex

objects the usefulness of index structures is limited. Another approach to

speed up kNN classification is to reduce the training set. This can be done

by deleting unimportant objects as described in [BM02]. Another way to

speed up classification is to build the centroid for the objects of each class

and afterwards use only the centroids and NN classification. In [HK00] it

was demonstrated that this rather simple approach still yields accurate clas-

sification for text data.
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Figure 2.13: Arbitrary separating hyper planes(left). Maximum margin

hyperplane (right).

Support Vector Machines

In [CV95] support vector machines (SVM) were introduced for the classifica-

tion of feature vectors. Basic SVMs distinguish the objects of two classes by

linear separation which is achieved by determining a separating hyperplane

in the object space. The idea of SVMs is to find the hyperplane providing

the maximum level of generalization and thus avoids overfitting as good as

possible. In [CV95] it is shown that this most generalizing hyperplane is the

hyperplane with a maximum margin between the classes. Figure 2.13 dis-

plays an illustration of a maximum margin hyperplane in a two dimensional

example. The vectors in the training set having the minimal distance to the

maximum margin hyperplane are called support vectors. The location of the

maximum margin hyperplane does only depend on these support vectors and

thus, the classifier was named support vector machine.

To determine the exact position of the maximum margin hyperplane and

to find out the support vectors, a dual optimization problem is formulated

which can be solved by algorithms like SMO [Pla98].

A major problem of linear separation is that there is not always a hyper-

plane that is able to separate all training instances. Therefore, two improve-

ments for SVMs have been introduced that enable SVMs to separate almost
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separating 
hyperplane

Figure 2.14: Example for a SVM using a soft margin for an inseparable

data set(left).The dashed lined illustrates a strictly separating SVM(Right).

The bold black line displays the more general SVM using soft margins.

any kind of data.

The first improvement is the introduction of soft margins. The idea of soft

margins is to penalize, but not prohibit classification errors while finding the

maximum margin hyperplane. Thus, the maximum margin hyperplane does

not necessarily separate all training instances of both classes. If the margin

can be significantly increased, the better generalization can outweigh the

penalty for a classification error on the training set. Figure 2.14 illustrates

that the use of soft margins enables the calculation of general separating

hyperplanes (left side) and can increase the generalization of a classifier, even

if the classes are linear separable (right side). To conclude, SVMs using soft

margins are still able to find a general model even in noisy data containing

many outliers.

The second improvement is the introduction of kernel functions. For

many real-world applications, it is not possible to find a hyperplane that

separates the objects of two classes with sufficient accuracy. To overcome this

problem the feature vectors are mapped into a higher dimensional space by

introducing additional features that are constructed out of the original ones.

Since this mapping is not linear, hyperplanes in the so-called kernel spaces
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(a) Quadratic kernel (b) Radial basis kernel

Figure 2.15: Visualization of the separation when using a quadratic kernel

(left) and a radial basis kernel(right).

provide much more complicated separators in the original space. This way the

data in the original space is separated non linear. An import characteristic

of the use of kernel functions is that the calculation of a maximum margin

hyperplane in the kernel space is not much more expensive than in the original

space. The reason for this effect is that it is not necessary to calculate the

feature vectors in the kernel space explicitly. Since the optimization problem

calculating the maximum margin hyperplane does only use a scalar product

in the feature space, it is enough to replace this scalar product with a so-called

kernel function to calculate the maximum margin hyperplane in the kernel

space. Figure 2.15 displays the effects of two established kernel functions, a

quadratic kernel and a radial basis kernel, to the separation in the original

feature space.

SVMs have been extended to multi-class problems as well [PCST00]. A

good introduction to SVMs is found in [Bur98] and in [CST00]. The perfor-

mance of SVMs has been tested for various application like text categoriza-

tion [Joa98], function prediction for protein data [JH98] and image recogni-

tion [PV98]. In general, SVMs demonstrated superior classification accuracy

compared to most other classification systems. For the case that the data ob-

jects are given in a non-feature vector form, additional kernel function were

introduced. For example, in [GFKS02] a kernel for mult-instance objects is
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proposed that is capable to the multi-instance learning problem (see chapter

3.2).

Additionally to their exceptional accuracy, SVMs provide fast classifica-

tion. However, the training of SVMs tends to take large periods of time,

especially for multi-class variants calculating many binary separators. Last

but not least, the models built by SVMs do not provide any explicit knowl-

edge that might help to understand the nature of the given classes.

Decision Trees

This direction of classification tries to find a set of rules distinguishing the

classes. A decision tree is a tree with the following characteristics:

• Each inner node corresponds to one attribute.

• Each leaf is associated with one of the classes.

• An edge represents a test on the attribute of its father node.

For classification, the attribute values of a new object are tested beginning

with the root. At each node the data object can pass only one of the tests

that are associated to the departing edges. The tree is traversed along the

path of successful tests until a leaf is reached.

To construct a decision tree there are multiple approaches like [Qui93,

BFOS84, GRG98]. Most of these split the training set recursively by selecting

an attribute. The training set is now split by the values of the selected

attribute. To determine the attribute the most promising candidate with

respect to a given quality criteria is determined. An example quality criteria

is the information gain, we introduced in section 2.1.2. This split step is done

recursively for all subsets until a breaking criteria is reached or the members

of a subset strictly belong to a class. Finally, more sophisticated approaches

prune the decision tree to avoid overfitting and find a smaller model. Note

that this approach to decision tree construction does not necessarily create
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the smallest decision tree possible. However, the problem of finding a minimal

decision has an exponential time complexity and the introduced heuristic

solutions yield good classification accuracy in many cases.

The advantages of decision trees are that they are very robust against

attributes that are not correlated to the classes because those attributes will

not be selected for a split. Another more important feature is the induction

of rules. Each path from the root to a leaf provides a rule that can be easily

interpreted by a human user. Thus, decision trees are often used to explain

the characteristics of classes.

The drawback of decision trees is that they are usually not capable to

consider complex correlations between attributes because they only consider

one attribute at a time. Thus, decision trees often model correlated data

by complex rules which tend to overfitting. An more detailed discussion of

decision trees is found in [HK01].

There are several additional approaches that are used for classification.

For example, Neural networks are a very powerful direction of machine learn-

ing trying to rebuild the learning mechanism that can be found in the human

brain. Among several other tasks, neural networks are applicable to classifi-

cation. There are multiple variants of neural networks. An overview of neural

networks can be found in [Big96]. Another direction that can be applied to

classificaiton is inductive logical programming (ILP). ILP is often used for

data mining in multi-relational data and employs search algorithms that find

logical clauses that are valid in a database of facts [MDR94]. To conclude

there are multiple solutions to find classifiers each having its advantages and

disadvantages.
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Part II

Data Mining in Multi-Instance

Objects
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Chapter 3

Multi-Instance Objects

One important type of compound object representations are multi-instance

objects. Multi-instance objects describe each data object as an arbitrary

sized set of feature representations. The following chapter motivates the

use of multi-instance objects and lists example applications. Furthermore, it

describes multi-instance learning as a special case of data mining in multi-

instance objects and explains differences to the introduced solutions.
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3.1 Motivation

Modern KDD applications need to process more and more complex objects

containing more and more detailed information. The most established way

of representing complex objects are feature vectors. However, feature vec-

tors are often not capable to comprise all relevant characteristics of complex

objects. Therefore, the use of compound object representations for complex

objects often yields advantages by offering a richer object model. Multi-

instance objects are a basic type of compound objects that consist of a set of

feature representations {r1, . . . , rk} where all instances ri ∈ F belong to the

same feature space F . Examples for objects that can be transformed into a

multi-instance representation are:

• CAD parts

CAD parts are three dimensional objects that can be viewed as a com-

position of spatial primitives. Thus, representing CAD parts as sets

of spatial primitives provides a meaningful object representation that

allows effective similarity search and data mining. KDD in CAD parts

has applications like automatically deriving geometric and functional

hierarchies to allow the user to browse CAD databases. We will intro-

duce a solution for this application in the next chapter (4).

• Websites

A website is a set of HTML-documents that is published by the same

group or institution and usually serves a common purpose. A good

representation for a website is a set of feature vectors corresponding to

its HTML-documents. Data mining for websites is useful for several

purposes, e.g. searching the WWW for companies or institutions. In

chapter 5 we are going to discuss this application extensively.

• Webpages

Unlike common text documents, most webpages provide a rich struc-

ture given by HTML-tags. According to this structure, a webpage can
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be split into several blocks. Each block is likely to contain information

about the same topic. Thus, similar to websites, single webpages can

be treated as sets of feature vectors by transforming each block into a

text feature vector.

• Images

There are several methods of transforming images into a more suitable

form for data mining or content based image retrieval [VT00]. Some of

these methods extract sets of shapes or partition an image into a set

of regions in order to find a better description of the image content.

• Protein Structures

Proteins can be described by various representations. One of the most

meaningful description for a protein is the three dimensional structure.

The structure of a protein is of special interest in many applications,

since it is strongly connected to its function. Unfortunately, the three

dimensional structure of a protein is not necessarily the same under

all conditions. The structure of a protein may change significantly for

different docking partners or cell environments. In most cases, a differ-

ent structure changes the function as well. To consider this effect, it is

possible to treat a protein as set of all possible three dimensional struc-

tures. Each structure represents the protein having another docking

partner or being in a different environment. This problem led to the

development of multi-instance learning which is an important special

case of data mining in multi-instance objects.

The presented list of applications for multi-instance objects is not ex-

haustive and there are many other scenarios where employing multi-instance

objects might be beneficial. Generally, modelling complex objects as set of

instances preserves more information than using a single feature vector. On

the other hand, the processing of multi-instance objects is not as computa-

tionally demanding as processing graphs or trees. Figure 3.1 illustrates the
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Figure 3.1: Webpages as well as websites can be transformed into multi-

instance objects.

transformation of websites and webpages into a multi-instance representa-

tion.

3.2 Multi-Instance Learning

Multi-instance learning is an established direction of data mining in multi-

instance objects. However, the problem that is solved by multi-instance

learning is only a subproblem of classification of multi-instance objects. Multi-

instance learning was introduced in [DLLP97] and tries to solve the following

problem. Consider a set of objects O where each object o is represented by

a set of feature vectors {v1, . . . , vn} with vi ∈ F and F is a feature space.

Each object has a label l = G(o) with l ∈ {relevant, other}. The class of an

object o is determined by the existence of an instance vi ∈ o that is specific

to the relevant class. If o contains at least one such instance, o is considered
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to be relevant. If o does not contain any relevant instance, it is considered

to belong to the other class. Thus, the classifier has to find out which of the

instances in the training set of relevant multi-instance objects are specific to

the relevant class.

To solve this problem, multiple solutions has been proposed. [DLLP97]

proposes a solution, employing axis-parallel rectangles. [WZ00] introduced

several methods of kNN classification based on the minimal Hausdorff dis-

tance. In [CZ00] a method is proposed to derive noise tolerant rules for

multi-instance data. [GFKS02] introduces a specialized kernel function to

enable support vector machines and other kernel based learning algorithms

to learn from multi-instance examples.

Though multi-instance learning algorithms have been successfully used

in special drug prediction examples, the assumption that a single instance

can determine the class of a complete object does not hold in many ap-

plications. For example, in protein classification and drug prediction one

structural description might not be enough to predict the class of a given

molecule. So-called allosteric proteins change their shape depending on a

particular binding partner and therefore need more than one instance to fit

into a certain pattern in order to be properly described. Furthermore, this

assumption does not hold for the applications that are treated in the follow-

ing two chapters. The class of a website cannot be determined in a reliable

way by examining one webpage and CAD parts are not necessarily similar if

they share one out of several similar spatial primitives. To solve the problems

in the next two chapters, more than one instance of a multi-instance object

has to be considered to achieve best possible results.
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Chapter 4

Clustering and Similarity

Search

in CAD Databases using

Multi-Instance Representations

CAD Databases are an important application area of spatial data min-

ing. Clustering and classification algorithms are used to organize the huge

amounts of three dimensional objects or retrieve objects of similar shape. In

this chapter, a new approach to represent three dimensional parts as multi-

instance objects is introduced. To compare these multi-instance objects,

the minimal matching distance is used, providing a metric distance measure

for multi-instance objects that is computable in cubic time. Furthermore,

a selective filter step is introduced that increases the efficiency of similarity

queries that are used in distance based data mining algorithms like kNN clas-

sifiers or density based clustering algorithms. The evaluation uses OPTICS

to demonstrate the superior quality of the new similarity measure compared

to three established methods on two real-world CAD data sets. Furthermore,

the efficiency of the filter step is compared to the performance of similarity

search methods employing a one vector representation.
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4.1 Motivation

In the last ten years, an increasing number of data mining techniques has

emerged for which efficient and effective support of similarity queries is sub-

stantial. In general, the importance of similarity search grows in applica-

tion areas such as multimedia, medical imaging, molecular biology, computer

aided engineering, marketing and purchasing assistance, etc. [Jag91, AFS93,

MG93, FBF+94, FRM94, ALSS95, BKK97, BK97, Kei99]. Particularly, the

task of finding similar shapes in two dimensional and three dimensional spaces

becomes more and more important. Examples for new applications that re-

quire the data mining of similar three dimensional objects include databases

for molecular biology, medical imaging and computer aided design.

Especially, the development, design, manufacturing and maintenance of

modern engineering products is a very expensive and complex task. Effective

similarity models are required for two- and three-dimensional CAD applica-

tions to cope with rapidly growing amounts of data. Shorter product cycles

and a greater diversity of models are becoming decisive competitive factors

in the hard-fought automobile and aircraft market. These demands can only

be met if the engineers have an overview of already existing CAD parts.

In this chapter, we introduce an effective and flexible similarity model for

complex three dimensional CAD data which can be used for distance based

data mining algorithms such as density based clustering [EKSX96, ABKS99]

and kNN classification. This model is particularly suitable for voxelized data

that often occurs in CAD applications. It is based on the idea of represent-

ing a three dimensional part as multi-instance object and was published in

[BKK+03].

The remainder of the chapter is organized as follows: In section 4.2 we

shortly review already existing spatial similarity models and provide a cate-

gorization of the techniques into feature-based models and direct geometric

models. Section 4.3 provides the basis for similarity models based on vox-

elized CAD objects. We address the issues of translation, rotation, reflection
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and scaling invariances. Furthermore, we adapt three known similarity mod-

els to voxelized three dimensional data. Based on the most promising of these

three models, we explain in section 4.4 our new approach based on multi-

instance objects. In section 4.5, we analyze the different similarity models by

means of hierarchical clustering. We show that our new similarity approach

efficiently generates more significant results compared to the traditional ap-

proaches based on single feature vectors and is thus more suitable for data

mining. The experiments are based on two real-world test data sets of our

industrial partners, a German car manufacturer and an American aircraft

producer.

4.2 Related Work

In recent years, considerable work on similarity search in database systems

has been published. Many of the previous approaches, however, deal with

one dimensional or two dimensional data, such as time series, digital images

or polygonal data. Most of them do not support three dimensional objects

or are not suitable for voxelized data. In this section, we shortly list different

approaches to establish similarity measures. We provide a classification of

the techniques into feature-based models and direct geometric models.

4.2.1 Feature-Based Similarity

A widely used class of similarity models is based on the paradigm of feature

vectors as it is described in chapter 2.1.1. The paradigm of feature-based

similarity has been successfully applied to the retrieval of similar spatial ob-

jects. Examples include structural features of TWO DIMENSIONAL con-

tours [MG93], angular profiles of polygons [BMH92], rectangular covers of

shapes [Jag91], algebraic moment invariants [FBF+94], two dimensional sec-

tion coding [BK97, BKK97], and three dimensional shape histograms for

biomolecular objects [AKKS99]. Non-geometric applications include similar-
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ity search on time series [AFS93, FRM94, ALSS95] and color histograms in

image databases [NBE+93, FBF+94] among several others.

4.2.2 Geometry-Based Similarity

A class of models that is to be distinguished from the feature-based tech-

niques are the similarity models that are defined by directly using the ge-

ometry of the objects. Two objects are considered similar if they minimize

a distance criterion that is purely defined by the geometry of the objects.

Examples include the similarity retrieval of mechanical parts [SKSH89], the

difference volume approach [KSF+96, Kei99], and the approximation-based

similarity model for three dimensional surface segments [KSS97].

4.3 Similarity Models for

Voxelized CAD Objects

In this section, we describe three established similarity models. The first two

models (the volume and the solid-angle approach) are based on an paraxial,

equi-sized space partitioning. Then, the voxel approximations of the objects

are transformed into shape histograms. These histograms are used as intu-

itive feature vectors. In the third model (the cover sequence approach), we

do not need this space partitioning but obtain our feature vectors directly

from the rectangular covers which approximate our object by minimizing the

symmetric volume difference. This third model forms the starting point for

our new approach based on vector sets which is introduced in section 4.4.

4.3.1 Shape Histograms

Histograms are usually based on a complete partitioning of the data space

into disjoint cells which correspond to the bins of the histograms.
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Figure 4.1: Space partitioning with 4 cells. The feature vector generated

by the volume model is depicted on the right hand side.

We divide the data space into paraxial, equi-sized partitions (cf. Figure

4.1). This kind of space partitioning is especially suitable for voxelized data,

as cells and voxels are of the same shape, i.e. cells can be regarded as coarse

voxels.

Each of these partitions is assigned to one or several bins in a histogram,

depending on the specific similarity model. By scaling the number of parti-

tions, the number of dimensions of the feature vector can be regulated (cf.

Figure 4.1). Obviously, the more partitions we use, the more smaller differ-

ences between the objects become decisive. The resulting feature vectors are

compared by means of distance based similarity as was introduced in chapter

2.1.1. Throughout this chapter, we will use Euclidian distance to calculate

the similarity of feature vectors.

4.3.2 Normalization

Similarity models for CAD data should recognize similar parts, independently

of their spatial location. The four respectively five tires of a car are similar,

although they are located differently. Furthermore, reflected parts, e.g. the
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right and left front door of a car, should be recognized as similar as far as

the design is concerned. If we look at the production, reflected parts are no

longer similar and have to be treated differently. Likewise, the actual size of

the parts may or may not have an influence on the similarity model. To sum

up, a similarity model for CAD data should take translation and rotation

invariances into account, whereas reflection and scaling invariances have to

be adjustable.

CAD objects are usually designed and constructed in a standardized po-

sition in the center of the coordinate system. We store each object in this

standard position and normalize it with respect to scaling. Furthermore,

we store the scaling factors for each of the three dimensions. Thus, we can

(de)activate the scaling invariance depending on the user’s needs at runtime.

In the case of CAD applications, not all possible rotations are considered, but

only 90◦-rotations. This yields 24 different possible positions for each object.

For similarity search where we are not confined to 90◦-rotations, we can ap-

ply principal axis transformation in order to achieve invariance with respect

to rotation. Taking also reflection into account, we may obtain 24 · 2 = 48

varying positions. We could achieve 90◦-rotation and reflection invariance

by storing 48 different feature vectors for each object in the database or by

carrying out 48 different permutations of the query object at runtime. As

we want to decide at runtime whether we want to consider reflection in-

variance or not, we chose the second variant. Throughout our experiments,

we considered invariance with respect to translation, reflection, scaling and

90◦-rotation.

Taking all these transformations into account, we get the following ex-

tended similarity definition.

Definition 4.1 (Extended Feature-Based Object Similarity)

Let O be the domain of the objects, F : O → IRd a mapping of the objects

into the d-dimensional feature space, and dist : IRd × IRd → IR a distance

function between two d-dimensional feature vectors. Furthermore, let T be
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a set of all user-dependent combinations of translation, scaling, rotation and

reflection transformations. Then, simdist: O×O → IR is defined as follows:

simdist(Obj1, Obj2) = min
T∈T

{dist(F (Obj1), F (T (Obj2)))}.

4.3.3 Spatial Features

After partitioning the data space, we have to determine the spatial features

of the objects for each grid cell depending on the chosen model. In order to

do that, we first have to introduce some notations:

The data space is partitioned in each dimension into p grid cells. Thus,

our histogram will consist of k · p3 bins where k ∈ IN depends on the model

which specifies the kind and number of features extracted from each cell.

For a given object o, let V o = {V o
i | 1 ≤ i ≤ p3} be the set of voxels that

represents o where V o
i are the voxels covered by o in cell i. V̄ o ⊆ V o denotes

the set of voxels at the surface of the objects and V̇ o ⊆ V o denotes the set of

the voxels inside the object such that V̄ o ∪ V̇ o = V o and V̄ o ∩ V̇ o = ∅ holds.

Let fo be the computed feature vector of an object o. The i-th value of

the feature vector of object o is denoted by f (i)
o .

Let r be the number of voxels of the dataspace in each dimension. In

order to ensure a unique assignment of the voxels to a grid cell, we assume

that r
p
∈ IN .

The Volume Model

A simple and established approach to compare two objects is based on the

number of the object voxels |V o
i | in each cell i of the partitioning. In the

following, this model is referred to as volume model. Each cell represents

one dimension in the feature vector of the object. The i-th dimension of the

feature vector (1 ≤ i ≤ p3) of object o can be computed by the normalized

number of voxels of o lying in cell i, formally:

f (i)
o =

|V o
i |

K
where K = (

r

p
)3
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K

Figure 4.2: A sample object with different shapes at the surface-points p1

and p2.

Figure 4.1 illustrates the volume model for the TWO DIMENSIONAL

case.

The Solid-Angle Model

The solid-angle method [Con86] measures the concavity and the convexity

of geometric surfaces. Let Kc be a set of voxels that describes a three dimen-

sional voxelized sphere with central voxel c. For each surface-voxel v̄ of an

object o, the so-called solid-angle value is computed as follows. The voxels

of o which are inside Kv̄ are counted and divided by the size of Kv̄, i.e. the

number of voxels of Kv̄. The resulting measure is called the solid-angle value

Sa(v̄) and can be computed as follows:

Sa(v̄) =
|Kv̄ ∩ V o |
|Kv̄ |

, where:

Kv̄ ∩ V o =

{w ∈ Kv̄ | ∃v ∈ V o : w.x = v.x ∧ w.y = v.y ∧ w.z = v.z}
A small solid-angle value Sa(v̄) indicates that an object is convex at voxel

v̄. Otherwise, a high value of Sa(v̄) denotes a concave shape of an object at
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voxel v̄. Figure 4.2 illustrates this behavior.

The solid-angle values of the cells are transferred into the according his-

togram bins as described in the following. We distinguish between three

different types of cells:

1. Cell i contains surface-voxels of object o, i.e. V̄ o
i 6= ∅. The mean of all

Sa-values of the surface-voxels is computed as the feature value of this

cell:

f (i)
o =

1

m

m∑
j=1

Sa(v̄ij)

where V̄ o
i = {v̄i1 , . . . , v̄im}.

2. Cell i contains only inside-voxels of object o, i.e. V̄ o
i = ∅ and V o

i 6= ∅.
The feature value of this cell is set to 1, i.e. f (i)

o = 1.

3. Cell i contains no voxels of object o,i.e. V o
i = ∅. The value of the

according bin of the histogram is 0, i.e. f (i)
o = 0.

The Cover Sequence Model

The two models described above are based on a complete partitioning of

the data space into disjoint cells. In this section, we adapt a known model

[Jag91, JB91] to voxelized three dimensional data which is not restricted to

this rigid space partitioning but rather uses a more flexible object-oriented

partitioning approach. This model is in the following referred to as cover

sequence model.

As depicted in Figure 4.3, each edge of an object can be extended infinitely

in either direction to obtain a grid of lines. Each rectangle in this grid is called

a grid primitive, and is located either entirely inside the object or entirely

outside of the object. Furthermore, any pair of adjacent grid primitives must

also form a rectangle, respectively a cuboid in the three dimensional data

space. The basic idea of this model is to find large clusters of grid primitives,

called covers which approximate the object as good as possible [JB91].
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S1=(C0+C1)     Err1=21
S2=((C0+C1)+C2)  Err2=16
S3=(((C0+C1)+C2)-C3)    Err3=12
...

C6

C1

C2

C3 C5

C4

C7

Figure 4.3: Cover sequence model.

The quality of such a cover sequence Sk is measured by the symmetric

volume difference Errk between the object O and the sequence Sk (cf. Fig-

ure 4.3). Formally, let the covers be drawn from the set C of all possible

rectangular covers. Then each unit i of the cover sequence comprises a pair

(Ci ∈ C, σi ∈ {+,−}), where “+” represents set union and “−” represents

set difference. The sequence after k units is:

Sk = (((C0σ1C1)σ2C2) . . . σkCk),

where C0 is an initial empty cover at the zero point.

The symmetric volume difference after k units is:

Errk = |O XOR Sk|

, where O is the approximated object.

Jagadish and Bruckstein [JB91] suggest two algorithms for the retrieval

of Sk: a branch and bound algorithm with exponential runtime complexity,

and a greedy algorithm with polynomial runtime complexity which tries to

minimize Erri in each step i ≤ k. Throughout our experiments we used this

second algorithm.
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In [Jag91], Jagadish sketches how a three dimensional cover sequence

Sk = (((C0σ1C1)σ2C2) . . . σkCk) of an object o, can be transformed into a

6 ·k-dimensional feature vector. Thereby, each cover Ci+1 with 0 ≤ i ≤ k− 1

is mapped onto 6 values in the feature vector fo in the following way:

f 6i+1
o = x-position of Ci+1

f 6i+2
o = y-position of Ci+1

f 6i+3
o = z-position of Ci+1

f 6i+4
o = x-extension of Ci+1

f 6i+5
o = y-extension of Ci+1

f 6i+6
o = z-extension of Ci+1

If an object O can be described by a sequence Sj with j < k covers and

Errj = 0, we assign ((Sjσj+1C0) . . . σkC0) to Sk. These dummy-covers C0

do not distort our similarity notion (cf. Definition 4.1), but guarantee that

all feature vectors are of the same dimensionality. Thus, we can use com-

mon spatial index-structures [BKK96, LJF94, BBJ+00] in order to accelerate

similarity queries.

4.4 A Multi-Instance Representation for CAD-

Parts

As proposed in [Jag91] a data object is now represented as a feature vector.

For similarity queries, this method yields a major problem. Always com-

paring the two covers having the same ranking according to the symmetric

volume difference does not make sense in all cases. Two objects can be con-

sidered very different because of the order of their covers, although they are

very similar by intuition. The reason for this effect is that the order of the

covers does not guarantee that the most similar covers due to size and posi-

tion will be stored in the same dimensions. Especially for objects generating
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two or more covers and having almost the same volume, the intuitive notion

of similarity can be seriously disturbed. Thus, the possibility to match the

covers of two compared objects with more degrees of freedom might offer a

better similarity measure. Figure 4.4 displays a two dimensional example

of a comparison between a query object and a very similar database object.

The first sequence (cf. Figure 4.4(a)) represents the covers of the query

object in the order given by the symmetric volume difference. Cover C2,

C3 and C4 in sequence (a) are not very similar to the corresponding covers

of the database object, displayed in the second sequence and therefore the

calculated similarity is relatively weak. By rearranging the order of these

covers, the total distance between the query object and the database object

is considerably decreasing, which is displayed in Figure 4.4(b). Thus, the

new order preserves the similarity between the objects much better.

To overcome the problem, the author in [Jag91] proposes to generate sev-

eral good representations of the query object and then process a query for

each of the representations. Afterwards the union of the returned database

objects is taken as a result. We can obtain different representations by per-

muting the order of the found covers and choose the most “promising” order-

ings to create the query vectors. Though, the method may offer reasonable

results in many cases, there is no guarantee that the ordering providing the

minimum distance is included within this selection. Thus, the whole similar-

ity measure is dependent on the criteria used to select the most “promising”

orderings. Since there is no well defined selection criterion known so far, the

solution does not necessarily offer a precisely defined similarity measure.

Another solution for the problem is to consider all possible permutations.

Since the distance between two objects can now be considered as the mini-

mum distance over all possible orderings, the distance is defined as follows.

Definition 4.2

Let exch : IN × IN × IR(d·k) → IR(d·k) be a function, where exch(i, j, ~x) ex-

changes the d successive components beginning with dimension i·d+1 (0 ≤ i ≤
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S4
query (original) = ((((C0 + C1) – C2) – C3) – C4)

S4
query (optimal) = ((((C0 + C1) – C3) – C4) – C2)

(a)

(b)
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C2C4
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Figure 4.4: Examples demonstrating the advantage of free permutations.

k−1) with the d successive components beginning with dimension j ·d+1(0 ≤
j ≤ k − 1) of a vector ~x ∈ IR(k·d).

Exch : IR(k·d) → 2IR(k·d)
is the function that generates the set of all vectors

that can be generated by applying exch(i, j, ~x) arbitrarily many times to a

vector ~x using any combination for i and j.

Definition 4.3

(minimum Euclidian distance under permutation)

Let O be the domain of the objects, let F : O → IR(k·d) be a mapping of the

objects into the k·d-dimensional feature space, and let dist : IR(k·d)×IR(k·d) →
IR be a distance function between two k ·d-dimensional feature vectors. Then
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distπ−eucl.: O ×O → IR is defined as follows:

distπ−eucl.(Obj1, Obj2) = min
~y∈Exch(F (Obj2))

{dist(F (Obj1), ~y)}

With a growing number of describing covers k, the processing time of

considering all possible permutations increases exponentially, since there are

k! many permutations. With computation cost rising this rapidly, it is obvi-

ous that the description length k has to be kept low which is not acceptable

for all applications.

To guarantee that the permutation with the minimal distance is used,

our approach does not work with one single feature vector, but with a set of

feature vectors in lower dimensions. By treating the data objects as sets of

d-dimensional feature vectors with a maximum cardinality of k, we introduce

a new model for representing data objects in similarity search systems, the

so called multi-instance model. In the following sections, we will discuss the

concept of multi-instance representation in detail with the goal of defining a

similarity search system that can be used as efficient foundation of distance

based data mining algorithms.

4.4.1 Reasons for the Use of

Multi-Instance Objects

The representation of extracted features as a multi-instance object is a gen-

eralization of the use of just one large feature vector. It is always possible

to restrict the model to a feature space in which a data object will be com-

pletely represented by just one feature vector. In this applications, the use

of multi- instance representations is able to avoid the problems that occur

by storing a set of covers according to a strict order. Therefore, it is possible

to compare two objects more intuitively, causing a relatively small increase

of calculation costs compared to the distance calculation in conventional fea-

ture vector models. Another advantage of this approach is the better storage

utilization. It is not necessary to force objects into a common size if they are
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represented by sets of different cardinality. For our current application, there

is no need for dummy covers to fill up the feature vectors. If the quality of the

approximation is optimal with less than the maximum number of covers, only

this smaller number of vectors has to be stored and loaded. In the case of a

one-vector representation, avoiding dummies is not possible without further

modifications of the employed search system. Furthermore, we are able to

distinguish between the distance measure used on the feature vectors of a set

and the way we combine the resulting distances between the single feature

vectors. For example, this possibility might be useful when defining partial

similarity where it is only necessary to compare the closest i < k vectors of

a set.

4.4.2 Distance Measures on Multi-Instance Objects

There are already several distance measures proposed on sets of objects. In

[EM97] the authors survey the following three which are computable in poly-

nomial time: the Hausdorff distance, the sum of minimum distances and

the (fair-)surjection distance. Furthermore, they introduce the link distance

which is computable in polynomial time, too. The Hausdorff distance does

not seem to be suitable as a similarity measure, because it relies too much on

the extreme positions of the elements of both sets. The last three distance

measures are suitable for modelling similarity, but are not metric. This cir-

cumstance makes them unattractive, since there are only limited possibilities

for processing similarity queries efficiently when using a non-metric distance

function. In [EM97] the authors also introduce a method for expanding

the distance measures into metrics, but as a side effect the complexity of

distance calculation becomes exponential. Furthermore, the possibility to

match several elements in one set to just one element in the compared set,

is questionable when comparing sets of covers as in our application.

A distance measure on vector sets that demonstrates to be suitable for

defining similarity in our application is based on the minimum weight perfect



82
4 Clustering and Similarity Search

in CAD Databases using Multi-Instance Representations

matching of sets. This well-known graph problem can be applied here by

building a complete bipartite graph G = (S1∪S2, E) between the vector sets

S1 and S2. The weight of each edge (x, y) ∈ E with x ∈ S1 and y ∈ S2 in

this graph G is defined by their distance dist(x, y). A perfect matching is

a subset M ⊆ E that connects each x ∈ S1 to exactly one y ∈ S2 and vice

versa. A minimum weight perfect matching is a matching with a minimum

sum of weights of its edges. Since a perfect match can only be found for sets

of equal cardinality, it is necessary to introduce weights for unmatched nodes

when defining a distance measure.

Definition 4.4 (enumeration of a set)

Let S be any finite set of arbitrary elements. Then π is a mapping that

assigns s ∈ S to a unique number i ∈ {1, .., |S|}. This is written as π(S) =

(s1, .., s|S|). The set of all possible enumerations of S is named Π(S).

Definition 4.5 (minimal matching distance)

Let O be the domain of the objects and X be a set with |X| ≤ k and X ⊆ 2V

with V ⊂ IRd. Furthermore, let F : O → X be a mapping of the objects into

X, and dist : IRd × IRd → IR a distance function between two d-dimensional

feature vectors. We assume w.l.o.g. |F (Obj1)| = m ≥ n = |F (Obj2)|, and

F (Obj1) = {x1, .., xm} and F (Obj2) = {y1, .., yn}.

Then distw,dist
mm : O ×O → IR is defined as follows:

distw,dist
mm (Obj1, Obj2) =

min
π∈Π(F (Obj1))

 n∑
i=1

dist(xπ(i), yi) +
m∑

l=n+1

w(xπ(l))


where w : IRd → IR+ is a weight function for the unmatched elements.

The weight function w provides the penalty given to every unassigned

element of the set having a larger cardinality. Let us note that minimum

matching distance is a specialization of netflow distance which is introduced

in [RB01]. In [RB01] it is proven that netflow distance is a metric and that it
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is computable in polynomial time. Therefore, we derive the following lemma

without further proof.

Lemma 4.1 The minimal matching distance is a metric if dist : IRd×IRd →
IR is a metric and w : IRd → IR+ meets the following conditions:

• w(~x) > 0, for each ~x ∈ V

• for ~x, ~y, with ~y, ~x ∈ V the following inequality holds : w(~x) + w(~y) ≥
dist(~x, ~y)

In our application, the minimum Euclidian distance under permutation

can be derived from the minimum matching distance. By selecting the

squared Euclidian distance as distance measure on V and taking the squared

Euclidian norm as weight function, the distance value calculated by the min-

imum matching distance is the same as the squared value of the minimum

Euclidian distance under permutation. This follows from the definitions of

both distance measures. Let us note that it is necessary to extract the square

root from this distance value to preserve the metric character.

Though it was shown that the netflow distance can be calculated in poly-

nomial time, it is not obvious how to achieve it. Since we are only interested

in the minimum matching distance, it is enough to calculate a minimum

weight perfect matching. Therefore, we apply the method proposed by Kuhn

[Kuh55] and Munkres [Mun57]. The method is based on the successive aug-

mentation of an alternating path between both sets. Since it is guaranteed

that this path can be expanded by one further match within each step taking

O(k2) time and there is a maximum of k steps, the all over complexity of a

distance calculation using the method of Kuhn and Munkres is O(k3) in the

worst case. Let us note that for larger numbers of k this is far better than

the previously mentioned method on k! many permutations.
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4.4.3 Answering Similarity Queries on Vector Set Data

Efficiently

Though we discussed the time for a single distance calculation, the problem of

efficiently processing similarity queries in large databases is still unanswered.

Since it is necessary here to locate the objects belonging to the result in com-

parably short time, the use of index structures that avoid comparing a query

object to the complete database is mandatory. For one-vector-represented

data objects there exists a wide variety of index structures that are suitable

for answering similarity queries efficiently, e.g. the TV-Tree [LJF94], the

X-Tree [BKK96] or the IQ-Tree [BBJ+00]. But unfortunately, those index

structures cannot be used directly to retrieve multi-instance objects.

To accelerate similarity queries on multi-instance objects, the simplest

approach is the use of more general access structures. Since the minimal

matching distance is a metric for the right choice of distance and weight func-

tion, the use of index structures for metric objects like the M-Tree [CPZ97]

offers a good possibility. Another approach is the use of the above mentioned

high-dimensional index structures for querying sub tasks of the complete sim-

ilarity query. In the following, we will introduce a filter step that is based on

the relation between a set of d-dimensional vectors and its extended centroid.

Definition 4.6

Let V ⊂ IRd be a set of d-dimensional vectors. Then w~ω : V → IR denotes

a set of weight functions having the following properties: ~ω ∈ IRd\V and

w~ω(~x) = ‖~x − ~ω‖2, where ‖~x − ~y‖2 denotes the Euclidian distance between

~x, ~y ∈ IRd.

Definition 4.7 (extended centroid)

Let V ⊂ IRd and X ⊂ 2V with |X| ≤ k be a set. Then the extended centroid

Ck,~ω(X) is defined as follows:

Ck,~ω(X) =

∑|X|
i=1 xi + (k − |X|) · ~ω

k
,
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where X = {x1, .., x|X|} and ~ω ∈ IRd\V .

Lemma 4.2 Let V ⊂ IRd be a set and ~ω ∈ IRd\V . Furthermore, let X,Y be

two vector sets with ~xi ∈ X,~yi ∈ Y , let Ck,~ω(X), Ck,~ω(Y ) be their extended

centroids and let distdistEucl.,w~ω
mm be the minimal matching distance using w~ω

as weight function defined on V . Then the following inequality holds:

k · ‖Ck,~ω(X)− Ck,~ω(Y )‖2 ≤ distdistEucl.,w~ω
mm (X,Y ).

Proof. Let π be the enumeration of the indices of X that groups the xi to

yi according to the minimum weight perfect matching. w.l.o.g. we assume

|X| = n ≥ m = |Y | and n−m = δ.

k · ‖Ck,~ω(X)− Ck,~ω(Y )‖2 =

k · ‖
∑n

i=1
xπ(i)+

∑k−n

i=1
~ω

k
−
∑m

i=1
yi+
∑k−m

i=1
~ω

k
‖2

= ‖∑m+δ
i=1 xπ(i) +

∑k−m−δ
i=1 ~ω −∑m

i=1 yi −
∑k−m

i=1 ~ω‖2

= ‖∑m
i=1 xπ(i) −

∑m
i=1 yi +

∑m+δ
i=m+1 xπ(i) −

∑m+δ
i=m+1 ~ω‖2

tri. ineq.
≤ ‖∑m

i=1(xπ(i) − yi)‖2 + ‖∑m+δ
i=m+1(xπ(i) − ~ω)‖2

tri. ineq.
≤ ∑m

i=1 ‖xπ(i) − yi‖2 +
∑m+δ

i=m+1 ‖xπ(i) − ~ω‖2

=
∑m

i=1 ‖xπ(i) − yi‖2 +
∑m+δ

i=m+1 w~ω(xπ(i))

= distdistEucl.,w~ω
mm (X, Y )

�

The lemma proves that the Euclidian distance between the extended cen-

troids multiplied with the cardinality of the larger set is a lower bound for

the minimal matching distance under the named preconditions. Therefore,

when computing e.g. ε-range queries, we do not need to examine objects

whose extended centroids have a distance to the query object q that is larger

than ε/k. A good choice of ~ω for our application is ~0 because it has the
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shortest average distance for the position and has no volume. Additionally,

the conditions for the metric character of minimum matching distance are

satisfied because there are no covers having no volume in any data object.

To implement the filter step, we stored the extended centroids in a 6-

dimensional X-Tree [BKK96]. Since this index structure provides high per-

formance for similarity queries, it offers an efficient way to determine the keys

of the candidate multi-instance objects. Afterwards we loaded the multi-

instance objects themself to determine the membership of the object within

the result. Using established algorithms for ε-range [KSF+96] and kNN-

queries [SK98] that employ filter steps, both kinds of queries can be answered

efficiently.

4.5 Evaluation

In this section, we present the results of our experimental evaluation. We

apply the hierarchical clustering algorithm OPTICS [ABKS99] for a objective

evaluation of similarity models to show that the multi-instance representation

is a better foundation for clustering. The resulting reachability plot can be

used to derive a meaningful geometric hierarchy that can be used to organize

the clustered CAD parts. To demonstrate the efficiency of the introduced

filter, we performed kNN queries.

4.5.1 Data Sets

We evaluated the three proposed models on the basis of two real-world data

sets. The first one, in the following referred to as car data set, contains

approximately 200 CAD objects from a German car manufacturer. The car

data set contains several groups of intuitively similar objects, e.g. a set of

tires, doors, fenders, engine blocks and kinematic envelopes of seats.

The second data set contains 5,000 CAD objects from an American air-

craft producer and in the following is called Aircraft Data set. This data set
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(a) car data set (volume model) (b) aircraft data set (volume model)

(c) car data set (solid angle model) (d) aircraft data set (solid angle model)

Figure 4.5: Reachability plots computed by OPTICS, using the volume

(a,b) and solid angle (c,d) model [KKM+03].

contains many small objects, e.g. nuts, bolts, etc. and a few large ones, e.g.

wings.

Using the cover sequence model and the multi-instance model, the data

space of both data sets contains objects represented as voxel approximations

using a raster resolution of r = 15. For the volume model and the solid-angle

model, we used a raster resolution of r = 30. These values were optimized

to the quality of the evaluation results.

4.5.2 Clustering CAD-Parts

For the evaluation of the various similarity models, the density-based, hierar-

chical clustering algorithm OPTICS [ABKS99] (see. chapter 2.2.3) was used.

OPTICS is well suited to derive a meaningful hierarchy of CAD parts, since

it is insensitive to its parameters. Furthermore, it is likely that geometric

shapes contain nested clusters. At last, the number of clusters is not known

in advance and thus the ability of OPTICS to find an arbitrary number of
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(a) car data set (b) aircraft data set

Figure 4.6: Reachability plots computed by OPTICS, using the cover se-

quence model with 7 covers.

(a) car data set (b) aircraft data set

Figure 4.7: Reachability plots computed by OPTICS, using the cover se-

quence model with the minimum Euclidian distance under permutation with

7 covers.

clusters is very beneficial as well.

The reachability plots generated by OPTICS for all models are depicted

in Figure 4.5, 4.6, 4.7 and 4.8.

Obviously, the volume model performs rather ineffective. The plots com-

puted by OPTICS when applying the model on the car data set and the

aircraft data set are depicted in Figure 4.5(a) and 4.5(b). Both plots show a

minimum of structure, indicating that the volume model cannot satisfyingly

represent the intuitive notion of similarity.

The solid-angle model performs slightly better. On the car data set,

OPTICS found three clusters denoted as A, B, and C in Figure 4.5(c). We

analyzed these clusters by picking out some samples of the objects grouped in

each cluster. The result of this evaluation on the car data set is presented in
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(a) car data set (3 covers) (b) aircraft data set (3 covers)

(c) car data set (7 covers) (d) aircraft data set (7 covers)

Figure 4.8: Reachability plots computed by OPTICS using the multi-

instance model with 3 and 7 covers.

Figure 4.9(a). As it can be seen, the objects in clusters A and C are intuitively

similar but the objects in B are not. Furthermore, there are clusters of

intuitively similar objects, e.g. doors, which are not detected. Evaluating the

solid-angle model using the aircraft data set, we made similar observations.

The reachability plot computed by OPTICS (cf. Figure 4.5(d)) yields a

clustering with a large number of hierarchical classes. But the analysis of

the objects within each cluster displays that intuitively dissimilar objects

are treated as similar. A further observation is the following: objects that

are intuitively similar are clustered in different groups. This suggests the

conclusion that the solid-angle model is also rather unsuitable as a similarity

model for our real-world test data sets.

The plots computed by OPTICS for the cover sequence model, the cover

sequence model using the minimum Euclidian distance under permutation

and the multi-instance model (cf. Figure 4.6, 4.7 and 4.8) look consider-

ably better. We will confirm this observation by evaluating the effectiveness

of the different models in the following. We analyzed the cover sequence
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(a) Classes found by OPTICS in the car data

set using the solid-angle model (cf. Figure

4.5(c)) [KKM+03].

(b) Classes found by OPTICS in the car data

set using the cover sequence model (cf. Figure

4.6(a)).

(c) Classes found by OPTICS in the car

data set using the multi-instance model

with 7 covers (cf. Figure 4.8(c)).

Figure 4.9: Evaluation of classes found by OPTICS in the Car Data set.
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model without permutations as well as under full permutations, i.e. using

the Euclidian distance under permutation. Note that the Euclidian distance

under permutation is too time consuming for a straightforward calculation,

since the runtime complexity increases with the faculty of the number of

chosen covers. Therefore, we used the possibility of deriving this distance

measure from the matching distance by employing the calculation via the

Kuhn-Munkres algorithm, as described in section 4.4.2. Remember that this

is achieved by using the squared Euclidian distance for comparing single fea-

ture vectors and drawing the square root from the result. The resulting plots

(cf. Figure 4.7) look quite similar to the ones we derived from employing

the minimal matching distance based on the normal Euclidian distance, i.e.

using the multi-instance model (cf. Figure 4.8(c) and 4.8(d)). A careful

investigation of the parts contained in the clusters showed that the cover se-

quence model using the minimum Euclidian distance under permutation and

the multi-instance model lead to basically equivalent results. Due to this

observation and the better possibilities for speeding up k-nn queries, we con-

centrated on the evaluation of the multi-instance model. We first compared

the multi-instance model to the cover sequence model without permutations

(cf. Figure 4.6). Furthermore, we used different numbers of covers for the

multi-instance model (cf. Figure 4.8) in order to show the benefits of a

relatively high number of covers for complex CAD objects.

Comparing the multi-instance model with the cover sequence model on

the car data set (cf. Figure 4.6(a), 4.8(a), and 4.8(c)) we conclude that the

multi-instance model is superior. All plots look similar on the first glance.

When evaluating the clusters (cf. Figure 4.9(b) and 4.9(c)), it turned out that

there are clusters which are detected by both approaches and thus appear

in both plots, e.g. classes E in Figure 4.9(b) and 4.9(c). Nevertheless, we

observed the following three shortcomings of the cover sequence model:

1. Meaningful hierarchies of clusters detected by the vector set model, e.g.

G1 and G2 in Figure 4.8(c) which are visualized in Figure 4.9(c), are
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lost in the plot of the cover sequence model (Class G in Figure 4.6(a)

evaluated in Figure 4.9(b)).

2. Some clusters found by the multi-instance model are not found when

using the cover sequence model, e.g. cluster F in Figure 4.9(c).

3. Using the cover sequence model, objects that are not intuitively similar

are clustered together in one class, e.g. class X in Figure 4.6(a) which

is evaluated in Figure 4.9(b). This is not the case when using the

multi-instance model.

A reason for the superior effectiveness of the multi-instance model compared

to the cover sequence model is the role of permutations of the covers. This

is supported by the observations which are depicted in Table 4.1. In most

of all distance calculations carried out during an OPTICS run, there was at

least one permutation necessary to compute the minimal matching distance.

The plots in Figure 4.8(a) and 4.8(c) compare the influence of the number

of covers used to generate the multi-instance representations on the quality of

the similarity model. An evaluation of the clusters yields the observation that

7 covers are necessary to model real-world CAD objects accurately. Using

only 3 covers, we observed basically the same three problems which we had

already noticed when employing the cover sequence model for 7 covers.

All the results of the evaluation on the car data set can also be observed

when evaluating the models on the Aircraft data set. As a consequence,

the evaluation shows that the multi-instance model outperforms the other

models with respect to effectiveness. Furthermore, we see that we need about

7 covers to model similarity most accurately.

4.5.3 Evaluation of the Efficiency

The most effective results on our test data sets were generated with k =

7 covers, entailing an average permutation rate of 99.0% (cf. Table 4.1).

This observation leads to the conclusion that the cover sequence model can
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No. of covers Permutations

3 68.2%

5 95.1%

7 99.0%

9 99.4%

Table 4.1: Percentage of proper permutations.

only compete with the multi-instance model with respect to quality if all

permutations are taken into account. Obviously, the multi-instance model

using the minimal matching distance approach is much more efficient than

the cover sequence model (one-vector model) using the minimum Euclidian

distance under permutation.

To analyze the performance of the filter step that was introduced in sec-

tion 4.4, we evaluated k-NN queries. Since the car data set consists of only

some 200 objects, it is not suitable for efficiency evaluation. Thus, we ran

our efficiency experiments on the aircraft data set only. We took 100 ran-

dom query objects from the database and examined 10-NN queries. Our

test machine was equipped with an INTEL XEON 1.7 GHZ processor and 2

GByte main memory. Since data and access structures fitted easily into the

main memory, we calculated the I/O cost. One page access was counted as

8 ms and for the cost of reading one byte we counted 200 ns. The results are

shown in Table 4.2.

It turns out that the filter step yields a speed-up of factor 10 on the CPU

time, but suffers from a higher I/O-time. Nevertheless it provides a speed up

factor of about 2 for total time. Furthermore, Table 4.2 demonstrates that

the runtime using the multi-instance model with filter step is in the same

order of magnitude as the one-vector model even without permutation. In

our experiments, the multi-instance approach even outperformed the one-

vector model in both CPU time and I/O time. Let us note that in our

experiments we based the implementation of the one-vector model on the
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Model CPU time I/O time total time

1-Vect. 142.82 2632.06 2774.88

Vect. Set w. filter 105.88 932.80 1038.68

Vect. Set seq. scan 1025.32 806.40 1831.72

Table 4.2: Runtimes for sample 10-nn queries in s.

X-Tree [BKK96] which is penalized by the simulation of I/O time. Since it

does not take the idea of page caches into account, an implementation of

the one-vector model using the sequential scan exhibited a slightly better

performance for some combinations of dimensionality and data set size, but

the performance was still in the same order of magnitude.

4.6 Summary

In this chapter, we surveyed three feature transformations that are suitable

for data mining on voxelized CAD data: the volume model, the solid angle

model and the cover sequence model. The cover sequence model generates

a set of covers of a three dimensional object that can be stored in a feature

vector. In comparison to the other two models, it offers a better notion

of similarity. A major problem of the cover sequence model is the order

in which the covers are stored within the feature vector. For calculating the

similarity of two objects, the order realizing minimum distance offers a better

similarity measure, but is prohibitive in calculation cost. To represent an

object as a set of feature vectors avoids this problem. Furthermore, it offers a

more general approach for applications working with multi-instance objects.

We described a metric distance measure on multi-instance objects, called

minimal matching distance. Minimal matching distance is computable in

O(k3). Furthermore, we introduced a highly selective filter step that is able to

speed up similarity queries by the use of spatial index structures. To evaluate

our system, we used two CAD data sets. To demonstrate the good notion of
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similarity provided by the combination of the cover sequence model and the

multi-instance representation, we applied hierarchical clustering to examine

similarity measures. We evaluated the efficiency of the filter step using 100

sample 10-NN queries. It turned out that our new approach yields more

meaningful results without sacrificing efficiency and thus a good foundation

for distance based data mining on CAD-parts.
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Chapter 5

Website Mining

The world wide web (WWW) is currently the largest source of information

that is available to a broad public. Web content mining is concerned with

applying the principles and solutions of KDD and data mining in order to

extract specific knowledge from the WWW. Most established approaches

of web content mining are concerned with the efficient retrieval of specific

HTML-documents. In this chapter, we will introduce Website Mining as a

new direction of web content mining that aims at the effective recognition

and efficient retrieval of specific websites. A website is a set of HTML-

documents that is published by the same person, group or organization and

usually serves a common purpose. The chapter starts with providing a mo-

tivation and pointing out the advantages of treating websites as objects of

interest. To distinguish relevant from irrelevant websites several methods of

website classification are introduced. After describing two naive solutions,

two more sophisticated directions of website classification are introduced.

Finally, a novel focused crawler is introduced that is capable to efficiently

retrieve relevant websites from the WWW.

97
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Figure 5.1: Numbers of registered international top level domains (.com,

.net, .org, .biz, .info, .edu)[Pro] .

5.1 Motivation

In recent years the world wide web (WWW) has turned into one of the most

important distribution channels for private, scientific and business informa-

tion. One reason for this development is the relatively low cost of publishing

a website. Compared to other ways like brochures or advertisements in news-

papers and magazines, the web offers a cheaper and more up-to-date view on

a business for millions of users. Thus, large numbers of companies, private

persons and other organizations publish information via the WWW. As a

result the WWW has been growing tremendously for the last five years. The

search engine Google [Cen] recently reported that it is currently indexing

over 4 billion text documents. Another statistic, demonstrating the enor-

mous expansion of the WWW, is displayed in figure 5.1. According to [Pro],

the number of registered international top level domains has increased more

than 7 times over the last 5 years.

To find specific information in this vast amounts of information, there are

several established solutions to retrieve interesting content from the WWW.

Search engines like Google[Goo] download a large amount of webpages and

index them with respect to the words occurring within them. To retrieve
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webpages treating a specific content, a user provides one or several key terms

that have to be contained in the wanted document. The search engine returns

links to all documents containing these key terms. Since the number of

webpages containing the key terms can exceed several thousands, modern

search engines employ sophisticated ranking algorithms that try to ensure

that the list of results starts with the most relevant pages.

A more novel approach to retrieve relevant webpages from the WWW are

focused web crawlers [CvdBD99b]. A focused web crawler explores only a

small portion of the web, using a best-first search guided by the user interest.

Compared to web search engines, focused crawlers obtain a much higher

precision and return new pages which are not yet indexed. We will give a

more detailed introduction to focused crawling in section 5.4.

Another approach to answer user queries on the web are so-called web

directories like Yahoo [Yah] or DMOZ [DMO]. The idea of a web directory

is to organize important topics into a class hierarchy or taxonomy. For each

of these topics, the web directory contains a number of links leading to rel-

evant web content. The web content linked by a web directory might be a

single HTML-document containing specific information, but more often web

directories link to complete websites.

A website is a linked set of webpages that is published by the same person,

group or institution and usually serves a common purpose, e.g. to present a

whole organization or company.

Focusing on websites offers a more abstract view on the web and is use-

ful for many applications. Companies are represented by websites and not

by single webpages. Thus, companies that are looking for new costumers,

suppliers or competitors, screen the WWW for interesting websites instead

of single HTML-documents. For example, in the IT-business where products

and services can change quickly, a system that spots special kinds of websites

and offers the opportunity to search them will turn out to be very useful.

Other reasons for focusing on whole sites instead of single pages are: There

are much less sites than single pages on the WWW, reducing the search space
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dramatically. The mining for whole websites offers a filter step when search-

ing for detailed information. For example, when looking for the price of a new

computer, it is very helpful to search only the websites of computer retailers

instead of searching the whole WWW. One final reason is the higher stability

of websites. Sites appear, change and disappear less often then single pages

which might be updated daily. Thus, the retrieved or indexed knowledge is

up-to-date for a longer time period.

The problem of spotting new websites of special interest to a user is not

handled adequately yet. Though directory services like Yahoo [Yah] and

DMOZ [DMO] are useful to find relevant websites for a listed topic, they

have major drawbacks. Web directories offer in most cases only a very small

portion of the websites that are relevant to a given topic. Furthermore, the

categorization of the web directory might totally lack the topic a user is

interested in. Last but not least, web directories might not be up-to-date

due to manual maintenance.

To solve these problems, the area of website mining aims at applying KDD

techniques to the retrieval and analysis of relevant websites. Therefore, the

following chapter introduces solutions for two important applications of web-

site mining. The first is the classification of websites which can be employed

to maintain web directories automatically, increasing the recall of this es-

tablished method for searching the web. The second application proceeds

a step further and combines the technique of focused crawling and website

classification to efficiently retrieve relevant websites with high accuracy.

The rest of the chapter is organized as follows. The next section pro-

vides general definitions. Section 5.3 will introduce the problem of website

classification and surveys corresponding related work. Afterwards several ap-

proaches to website classification will be discussed and evaluated. Section 5.4

concludes the chapter by introducing a focused website crawler. First, this

section will introduce focused crawling and discuss related work. Afterwards

our new solution to retrieve relevant websites employing focused crawling is

discussed in detail. At last, the introduced focused crawler is compared to
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established methods of focused crawling that are applied to the retrieval of

websites. The chapter concludes with a summary of the introduced tech-

niques of website mining.

5.2 A Graph-Oriented View of the WWW

We identify a webpage p by its URL. Then, content(p) → σ ∈ Σ∗ denotes

the string we receive when trying to download p. Furthermore, we assume a

feature transformation FT : Σ∗ → T ⊆∼= INd which transforms a string, for

example, the contents of a webpage, into a d-dimensional feature vector. Let

Λ(p) be the set of all links (p, q1), (p, q2), . . . , (p, qn) from p to qi 6= p. The link

(p, q) points from the source page p to the destination page q. Links within

the same webpage are ignored. We define the webpage graph as a directed

graph G = (V, E) with V being the set of all existing webpages, extended by

a special element which is needed to represent broken links, and E being the

union of Λ(p) for all p ∈ V .

A website is a linked set of webpages that is published by the same person,

group or institution and usually serves a common purpose, e.g. to present

a whole organization or company. Unfortunately, this intuitive definition is

not well suited for automatic retrieval. Since there is no reliable way to find

out who really published a webpage and to what purpose, there is no exact

method to determine the webpages belonging to a certain site. Nonethe-

less, no one would deny the existence of websites. In order to recognize and

retrieve relevant sites it is necessary to find a pragmatic definition that is

suitable for the majority of cases. For our solutions, we benefit from the

characteristic that a very large percentage of all websites is published under

one dedicated domain or subdomain. In case a website is spread over several

domains/subdomains, we do not lose any results, but may have some dupli-

cates in the result set. However, if large websites are classified more than

once, their chance of being part of the result increases as well. The other

problem of our definition is the case that one domain hosts several websites.



102 5 Website Mining

Thus, websites without a domain of their own are not treated as separated

websites. However, websites without a domain of their own are important in

rare cases only and there is no search system on the WWW that can claim

to achieve 100% recall.

Definition 5.1 (Website)

For each page p host(p) returns the domain or subdomain of p, i.e. the

substring of the URL of p between the protocol and the file section. We

define a website W as a subgraph W = (V ′, E ′) of the webpage graph with

the following properties:

∀u, v ∈ V ′ : host(u) = host(v)

∀u ∈ V ′, v 6∈ V ′ : host(u) 6= host(v)

∀(p, q) ∈ E ′ : p, q ∈ V ′

We define the homepage as the webpage that is referenced by the URL,

consisting of the domain name only, e.g. ”http://www.cs.sfu.ca”. Thus,

each website has a unique homepage that can be accessed by knowing the

website name. Compared to the webpage graph, the website graph which is

the conceptual view of website mining onto the WWW has several important

differences: We distinguish two different types of nodes at different levels of

abstraction, page nodes and site nodes. We distinguish two different types

of edges, representing inter-site links and intra-site links. Edges for intra-

site links point to page nodes, but edges representing inter-site links point

to site nodes. For a more formal definition, let G = (V, E) be the webpage

graph. We distinguish between intrinsic links (p, q) with host(p) = host(q)

and transversal links with host(p) 6= host(q). Let U denote the union of V

and let W be the set of all existing websites.

Definition 5.2 (Website Graph)

We define the website graph as a directed graph WG = (U,D) with the set of

edges D given as follows:
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Figure 5.2: Sample portion of the website graph.

∀(p, q) ∈ E ′ : host(p) = host(q) ⇒ (p, q) ∈ D

∀(p, q) ∈ E ′ : host(p) 6= host(q) ⇒ (p, host(q)) ∈ D

Figure 5.2 depicts a small sample portion of the website graph consisting

of three websites. Intrinsic links are represented by dashed arrows, transver-

sal links by solid arrows.

5.3 Classification of Websites

Web directories like DMOZ [DMO] or YAHOO [Yah] provide thousands of

classes organized in a hierarchy or taxonomy. To manually map new web-

sites to the classes they belong to is a very time consuming task. However,

most established web directories categorize their entries manually or semi-

automatically. A classifier that automatically maps new websites into the

class hierarchy would speed up the insertioninto a web directory. Princi-

pally, website classification is one of the key tasks of website mining, since

it is necessary to distinguish relevant and irrelevant sites in order to retrieve

relevant sites. Parts of this work were published in [EKS02] and [KS04].
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5.3.1 Related Work on Website Classification

In this subsection, we briefly review related work on text classification, and

on the classification of sequential data which is related to the classification

of website trees. Text classification has been an active area of research for

many years. The common approach to transform text documents to feature

vectors is surveyed in chapter 2.1.2. After the feature transformation is

applied, documents can be classified by any classification method. However,

not all classifiers can cope with the sparse nature of text feature vectors very

well. Classifiers that are reported to be well suited for text classification are

naive Bayes [MCN98, YL99], support vector machines [Joa98] and centroid

based kNN classification [HK00].

While most of the above methods have been applied to pure text docu-

ments, an increasing number of publications especially deals with the classi-

fication of webpages. Several authors have proposed methods to exploit the

hyperlinks to improve the classification accuracy, e.g. [CDI98] and [CDF+99].

[CDF+99] introduces several methods of relational learning, considering the

existence of links to webpages of specific classes. [CDI98] presents techniques

for using the class labels and the text of neighboring, i.e. linked, webpages.

However, all these methods aim at classifying single webpages not complete

websites.

In one of the approaches to website classification, we will represent web-

sites as so-called website trees and use the paths within these trees for clas-

sification. Therefore, we briefly survey methods for classification of sequence

data. [DK02] discusses and evaluates several methods for the classification

of biological sequence data, e.g. the kNN classifier, Markov classifiers and

support vector machines. Whereas biological sequences tend to be very long,

paths in a website tree are relatively short. Furthermore, in biological se-

quence classification the data are given and labelled a priori, whereas in

website mining loading and labelling the data is an expensive procedure.

Classification algorithms are difficult to apply to sequential data because of
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the extremely large number of potentially useful features. [LZO99] proposes a

sequence mining technique to act as a preprocessor to select features for stan-

dard classification algorithms such as naive Bayes. Several techniques have

been introduced in the literature for efficiently determining the frequent se-

quences within some database, e.g. [Zak01]. However, these techniques only

find the frequent patterns but do not build a classifier.

5.3.2 General Aspects of Website Classification

The classification of complete websites is in many aspects different from the

classification of single webpages. Sites may strongly vary in size, structure

and techniques. Another aspect is the used language. Many professional

sites, especially in the non-English-speaking regions, are at least bilingual

to provide international usability. Most page classification projects use only

text documents in a single language which may prove insufficient when trying

to handle whole sites.

To download a site from the web, the following algorithm can be applied.

First, examine the homepage, since it is the only page that can be directly

derived from the domain name . After reading it, we can use a HTML-parser

to determine the links to the other pages within a site. Note that considering

FRAME- and EMBED-tags as links is necessary to get a picture of a site that

is as complete as possible. After link extraction, we follow every intrinsic link

and explore the corresponding webpages in the same way as the homepage.

It is necessary to mark the pages already visited, since a webpage might be

reachable by following more than one link.

The most common way to classify single HTML-documents is to use naive

Bayes classifiers [YL99] or support vector machines [Joa98] on a feature space

of terms. Here the quality of the results depends highly on the right choice

of terms. Thus, we employ the techniques introduced in chapter 2.1.2 to find

a good selection. Another interesting possibility is to expand the feature

space to include structural components. The number of words and images,
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the occurrence of forms or frames or the number of links from a page can

offer vital information depending on the specified classes.

Website classification is task to map a complete website W to the element

ci of a determined set of website classes C which describes the purpose of W

in a best possible way.

5.3.3 Naive Approaches to Website Classification

The simplest way to classify websites is to apply established techniques of

webpage classification to the homepage of a website. This approach is simple

and efficient, but it depends on the assumption that the homepage contains

the information to identify the purpose of the complete website. Unfortu-

nately, this assumption does not hold for many real-world websites. A home-

page might only consist of structural information, e.g. frame tags, or provide

not much text. Furthermore, the homepage of many websites provides only

an introduction, but does not describe the purpose of a website. Last but

not least, the purpose of a website may not be given by the contents of a

single webpage within this site. If no single document contains information

about the purpose of the website, it has to be discovered by examining sev-

eral pages. Thus, to make reliable class predictions for real-world websites,

it is necessary to employ more than one webpage of the website.

Another way of classifying a website is to apply the methods used for

page classification to our definition of websites. We just generate a single

feature vector, counting the frequency of terms over all webpages of the

whole site, i.e. we represent a website as a single ”superpage”. Therefore,

we call this simple approach ”classification of superpages”. The advantage

of this approach is that it is not much more complex than the classification

of single pages. The user just have to walk through the nodes of the site and

count terms. Afterwards the vector can be classified by any standard data

mining package, e.g. the weka-package [WF99] we used in our experiments.

However, the superpage classifier has several conceptual drawbacks. The
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approach is very sensitive to the right selection of key terms. As mentioned

before, sites can contain documents in several languages. Structural features

like the occurrence of frame tags lose most of their significance. Another

very important problem is the loss of local context. Keywords appearing

anywhere within the site are aggregated to build up a bag-of-words view of

the whole website. As shown in the evaluation (section 5.3.7), this simple

classifier achieved insufficient accuracy in most experiments.

5.3.4 Classification using Page Classes

The main reason why the superpage approach does not perform well is the

fact that it makes no difference between an appearance within the same

sentence, the same page or the same site. However the context plays an

important role because sites can spread over several thousand single HTML-

documents, containing information about various topics. For example, the

meaning of the terms ”network administration” and ”services” on the same

page implies that this company offers network administration as one of its

services. But without the constraint that both terms appear on the same

page, the implication is much weaker. Any company offering any service and

looking for a network administrator will provide those terms, too.

To overcome these problems, we need more natural and more expressive

representations of websites. In this section, we introduce two kinds of such

representations. Then, we present two advanced methods of website classi-

fication based on these representations. For the rest of this section, we use

the discovery of potential customers, competitors or suppliers as our running

application. However, all the proposed methods for website classification

are not restricted to corporate websites and have a much broader range of

applications.
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Representations of Websites

Compared to the superpage approach, we change the focus of site classifi-

cation from single key terms to complete HTML-documents. In order to

summarize the content of a single webpage, we map the webpage to a so-

called page class. A page class represents a certain type of webpage that is

likely to appear in a certain type of website. Since the terms only influence

the page class of a webpage, the local context is preserved. Actually, the pre-

processing step can use all mentioned techniques for the selection of terms

introduced for webpage classification without any restriction. To conclude,

we introduce page classes besides the website classes and label each webpage

within a website with the most likely page class.

The choice of page classes for our experimental evaluation was based upon

the observations that we made during the examination of many business

sites in several trades. Although their trades varied widely, the following

categories of pages are to be found in most classes of business-sites: company,

company philosophy, online contact, places and opening hours, products and

services, references and partners, employees, directory, vacancies and other.

The ”other”-category stands for any topic not specified more precisely. Note

that we used these page classes only for the purpose of illustration, but our

method is generally applicable for any website class as well as any set of

webpage classes. Since the features representing a page class will vary from

trade to trade, every category except ”other” has to be specialized for each

trade we want to investigate. For example, we distinguished between the

products and services of a florist and an IT-service provider (our examples

in the evaluation).

To determine the page class of a given webpage, we use text-classification

on terms, using naive Bayes classification. Since there is always a classifica-

tion error for each page, the probability that the complete graph is correctly

labelled is rather low. But the average number of correctly labelled nodes is

about the mean classification accuracy of the page classification. This can be
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shown when treating the problem as a Bernoulli chain. We will soon discuss

the impact of this effect on our main classification problem. Based on the

labelled pages of a website, we propose the following representations of a

website:

• Feature vector of topic frequencies

Each considered page class defines a dimension of the feature space.

For each page class or topic, the feature values represent the number

of pages within the site. This representation does not exploit the link

structure of the site, but it considers a website as a set of labelled

webpages. In other words, we treat a website as a multi-instance object

and use a webpage classifier to condense this set into a single feature

vector.

• Website trees

To capture the essence of the link structure within a site, we represent

it as a labelled tree. The idea is that the structure of most sites is

more hierarchic than network-like. Sites begin with a unique root node

provided by the homepage and commonly have directory-pages that

offer an overview of the topics and the links leading to them. Further-

more, in most sites the information in the area around the homepage is

very general and gets more and more specific with increasing distance.

For example, we observed that pages regarding the company itself are

found more often only a few links away from the homepage than ones

about specific product features.

For building website trees, we use the minimum number of links as a

measure of distance between two pages of a site. To construct a website tree

the minimal paths from the homepage to every page in the website are joined.

Therefore, we perform a breadth-first search through the graph of a website

and ignore the links to pages we already visited. Note that in the case of

two paths of equal length leading to the same webpage, the path occurring
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Figure 5.3: Example of website trees. A typical small IT-service provider

(above) and a typical small florist site (below).

first is chosen. Though there is no way to tell which path preserves more

information, this definition was made to make tree derivation deterministic.

The trees in figure 5.3 are generated by this method.

Classification of Topic Frequency Vectors

After the transformation of websites into topic frequency vectors, most gen-

eral classifiers such as Bayes classifiers and decision tree classifiers are ap-

plicable. Especially tree classifiers like C4.5 [Qui93] showed an enormous

improvement of classification accuracy compared to the simple superpage

approach. Let us note that the dimensionality of the topic frequency vectors

is much smaller than the dimensionality of the term frequency vectors which

are used in the superpage approach.

Classification of Website Trees

In this paragraph, we present a method of website classification based on

the website tree representation, i.e. exploiting the links within a site. Our

method is based upon the idea of Markov chains in combination with Bayesian
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classification. Therefore, we first follow the Bayesian decision rule:

c∗ = maxargci∈CPr[ci|S] = maxargci∈C(Pr[ci] · Pr[S|ci])

Here the predicted class c∗ of the site S is the class ci that explains the

occurrence of the given site S best. Due to the Bayesian rule, the probability

Pr[ci|S] is the product of the a priori probability Pr[ci] and the probability

Pr[S|ci] that the class model for ci constructed the website tree of S. There-

fore, we estimate Pr[ci] as the relative frequency of websites in the class ci.

The approximation of Pr[S|ci] depends on the chosen model.

The concept of k-order Markov chains is applied to website trees using

the following procedure. Beginning with the probability for the label of our

root node we multiply the probabilities of the transition between the k last

nodes and their successor. Note that these transition probabilities only use

the static link structure of the webpages. They do not use any dynamic

click-through probabilities. In the simple case of 1-order Markov chains, the

transition probability for the page classes pci and pcj with respect to site

class cl is the probability that within a website of class cl a link from a page

belonging topci is directed at a page belonging to pcj. Since there can be

more than one successor in the tree, we multiply the transition probabilities

for every child node, traversing along every path to a leaf node. Let us note

that the probability for reaching each node is accounted only once. This

Markov tree model is very similar to the concept of branching Markov chains

[MV97], but does not take branching probabilities into account.

The statistical process to calculate the probability P [S|ci] is the following:

Let P be the set of page classes extended by the element ”none”. The ”none”-

class acts as a fill-in for paths shorter than k and is used to simplify the

calculation. Furthermore, let pc be the label of a node t and let ci be the i-th

site class. The function pre (with pre(k, t) = pc ) returns the page class pc of

the k-th predecessor of the node t with respect to the website containing t.

If there is no such predecessor, it returns ”none”. Note that the predecessor

is uniquely defined because we have a tree structure. Then the conditional
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Figure 5.4: The calculation of the model probability Pr[t|ci] for two site

classes (I and J) and three page classes (a, b, c).

probability of the website tree S can be calculated as:

Pr[S|ci] =
∏
t∈S

Pr[pct|pre(k − 1, t), . . . , pre(1, t)]

Thus, for every node t in the site tree S, the probability that its label pct

occurs after the occurrence of the labels of its k predecessors is multiplied.

Figure 5.4 visualizes the calculation of Pr[S|ci] for two site classes.

This method does not use the possible correlations between siblings and

thus, the context taken into account is limited to the path from the homepage.

To estimate the transition probabilities, we calculate the mean distribution

of the occurring transition of length k. Note that this is a difference to

the relative occurrence of the transitions in class ci. Due to the classification

error in the preprocessing step (when assigning page classes to the webpages),

the probability for ”phantom transitions” that are generated accidentally is

rather high. Especially in site classes where the average number of pages

is rather high, the absolute number of certain transitions can accidentally

match the number in site classes trained on sites having fewer pages. Thus,

a problem appears when the matched transition is highly specific for the

class consisting of smaller sites. In this case, the significance is distorted.
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To smooth this effect, the mean distribution uses the size of a site as a

measure for the number of transition occurrences and normalizes the number

of transition occurrences within a site to one. Therefore, the appearance in

a site class for which the total number of transitions is higher is given less

importance. Note that the information about the number of pages within

a site is not taken into account. The use of the mean distribution proves

to be superior in every approach based upon the preprocessing step in all

experiments.

For the choice of the degree k of the Markov chains, we tested the values

zero, one and two. According to our results and a consideration discussed

in the evaluation, a higher degree was not reasonable. For every choice

of k, this model yields comparably good results to the standard classifiers

applied to the distribution vectors. For k = 0 it even outperformed the other

approaches.

Since the concept of the 0-order Markov tree shows similarities to the

naive Bayes classifier applied to topic frequency vectors, we examined their

differences more closely. For a better understanding of the following compar-

ison, we will present the calculation of the single probabilities in a 0-order

Markov tree.

Pr[S|ci] =
∏
t∈S

pci

pageclass(t) = (pci
1 )r1 · . . . · (pci

k )rk

given
∑

j∈Li
= |S|

Here, S is the site to be classified, ci a site class and pci

pageclass(t) is the

probability of the occurrence of the page class for page t in class ci. Further-

more, let rj be the number of occurrences of the topic j ∈ PC in the site S

and let PC be the set of page classes. Thus, the probability is calculated by

taking the rj-th power of every page class probability and then multiplying

those factors for every topic. This is equivalent to a multinomial process

except for the difference that the multinomial coefficient can be neglected

due to its equal occurrence in every class ci.
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To explain the different results compared to naive Bayes, the following

differences can be pointed out. Naive Bayes considers the occurrence of a

topic to be independent from the occurrences of the other topics. But since

naive Bayes calculates the probability of the total number of occurrences

within the site, the probability of just one occurrence is not independent

from other occurrences of the same topic. Depending on the used distribution

model for one dimension, a further occurrence of a topic that is very typical

for a certain site class will even decrease the probability for that class if the

number of occurrences differs strongly from the estimated mean value. On

the other hand, the 0-order Markov tree always increases the conditional

probability Pr[S|ci] if a further page class specific to the site class ci occurs

in the site S. A further important difference is the consideration of the

number of total pages of a site. Since a large number of occurrences will

automatically decrease the number of occurrences in all other page classes,

the 0-order Markov tree uses additional knowledge compared to naive Bayes.

A further interesting property of 0-order Markov trees is the possibility to

calculate the probabilities incrementally. For every disjunctive segmentation

(s1, . . . , sm) of our site S, the following equation holds:

∏
sj∈S

Pr[sj|ci] = Pr[S|ci]

In other words, if the probability Pr[sj|ci] for the class ci is higher than

for any other class, the subset sj will increase the probability that Pr[S|ci] is

also higher than for any other class. This property will be useful in section

5.3.6.

5.3.5 Classification without Page Classes

Though transforming a website into a labelled website tree enables us to

classify websites with high accuracy, it demands expensive preprocessing. To

train the page classifier, it is necessary to determine a set of page classes

characterizing each website class. Afterwards additional effort has to be
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spent to label a sufficient set of training documents for each page class to

train the page classifier. For most practical applications, a less expensive

solution for training a website classifier has to be found in order to make

website classification applicable.

Turning away from the concept of page classes leaves us without an ap-

propriate feature transformation for websites. Thus, there is no feature space

that most of the well-established classification methods like Bayes classifiers

or SVMs require. Therefore, we adopt the paradigm kNN classification that

only assumes a pairwise distance function. For the classification of an un-

known object, a basic kNN classifier performs a kNN query on the training

database and predicts the most frequent class in the result set. The key to

the effectiveness of kNN classification is an intuitive distance function. Since

the content of each single page p ∈ S can be represented by a feature vector

of term frequencies, a whole website is represented by a multi-instance ob-

ject. Several distance measures for sets of vectors in a metric space have been

introduced in the literature [EM97, RB01]. From these distance measures,

the Sum of Minimum Distances (SMD) [EM97] most adequately reflects the

intuitive notion of similarity between two websites. In the context of website

classification, it can be defined in the following way.

Definition 5.3 (Sum of Minimal distances (SMD))

Let S1 and S2 be two websites and let FT : P → IRd be a feature transforma-

tion that returns the feature vector of a page p ∈ P , where P is the set of all

webpages. Furthermore, let d(x, y) be a distance measure on feature vectors.

The SMD of S1 and S2 is given by:

SMD(S1, S2) =∑
vi∈S1

min
wj∈S2

d(FT (vi), FT (wj)) +
∑

wj∈S2

min
vi∈S1

d(FT (vi), FT (wj))

|S1|+ |S2|

The idea of SMD is to map every element of both sets to the closest

element in the other set. This means that several pages belonging to the
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Figure 5.5: Centroid set of a sample website class.

website S1 might be mapped to the same page in the other site S2 or vice

versa. This is quite adequate for websites because the number of different

webpages describing the same information may vary among different websites

belonging to the same class. Furthermore, sites of very related content but

varying size will become very similar w.r.t. SMD since the cardinality of the

set is not considered. The SMD is reflexive and symmetric, but does not fulfill

the triangle inequality, i.e. it is not metric. The SMD distance calculation

for a pair of websites S1 and S2 has a quadratic runtime complexity O(w2),

where w denotes the maximum of the numbers of webpages of S1 and S2.

As distance measure between the single feature vectors we use the cosine

coefficient (compare chapter 2.1.2) which is well-established for text data.

Improving Efficiency Using Centroid Sets

Though the basic kNN classifier is very accurate, the computational cost

for classifying a website is very high. The standard approach of speeding-

up kNN queries by using a multi-dimensional index structure such as the

M-tree [CPZ97] is infeasible because SMD is not metric. An alternative to

speed up classification is to reduce the size of the training database to one

representative per website class.

Therefore, we introduce centroid sets to summarize and represent a web-

site class. The idea is that each website class provides several groups of

webpages that are somehow related and can be summarized by one common

representative. Let us note that these groups of pages are somewhat similar to
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the manually assigned page classes to the TFV and Markov tree approaches,

but refer to one site class only and are derivable without manual interaction.

In [HK00], the authors show that the centroid of several text documents is

a useful representative for a complete class in terms of kNN- classification.

Furthermore, the paper mentions clustering to treat multi-modal classes in

its conclusion chapter. However, to our knowledge the authors did not fol-

low this direction any further. To speed up website classification and find

meaningful descriptions of websites, we take up this idea.

Given some groups of related elements, we calculate one mean vector for

the training pages of each group and define the centroid set for a website

class as the set of all such mean vectors.

Definition 5.4 (Centroid Set)

Let S be a set of sets si with vectors vj,si
and let πl(si) = {v|g(v) = l ∀v ∈ si}

be the restriction of si to group l, where g is a mapping from a vector v to a

group l ∈ G, the set of all groups. Then the centroid set CS of S is defined

as:

CS(S) =

cj | ∀j ∈ G, cj =
1

|⋃
∀i

πl(si)|
·

∑
x∈
⋃
∀i

πl(si)

x


Figure 5.5 illustrates the centroid set for a sample website class using

a two-dimensional feature space for the webpages. The remaining problem

is now to determine the grouping within the training pages of a website

class. Fortunately, the task of identifying similar groups of instances within

a database of feature vectors is known as clustering. Though there are many

established clustering algorithms, the choice of a suitable algorithm for our

problem is limited by two requirements. First, the number of clusters should

be determined by the clustering algorithm. Since there is no a priori knowl-

edge about the groups within a site class, we are unable to input the number

of clusters. Second, the cluster algorithm should be able to deal with noise.
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In our context, noise represents webpages that are uncommon for the class

of websites they occur in. To provide relevant generalization, noise should

not be considered within the constructed centroid set. We choose the density

based clustering algorithm GDBSCAN [SEKX98] to group the training pages

within each website class, because of its ability to find an arbitrary number

of clusters and to filter out noise. The parameters of GDBSCAN are used

to adjust the number of centroids per class and to control how much noise is

eliminated. Thus, the centroid set for a website class ci is derived as follows:

1. Join the (feature vectors of the) webpages found in the training websites

of class ci into one set.

2. Determine clusters in this set of feature vectors using GDBSCAN.

3. For each cluster, calculate the centroid and insert it into the centroid

set of class ci.

Incremental Distance Calculation

When using this compact representation of website classes, the website clas-

sifier has to calculate the SMD between a test website and all website classes,

each represented by a centroid set. Now the following problem occurs espe-

cially when classifying objects belonging to the obligatory ”other” class that

is trained on a random mix of different types of websites that are not further

distinguished. Consider a website, only consisting of a few webpages that can

even be contained in the training set. The portion of the SMD that sums up

the distance of the webpages of this website to the centroid set will be rather

small because the website is part of the training set. However, the second

sum consisting of the distances of all centroids to the few specialized pages in

the website will be very large, since we might have many other topics in the

representative object that are not obligatory for websites belonging to the

site class. This contradicts our intuition because an instance belonging to a

class should be very similar to the class representative. To avoid this effect,
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Figure 5.6: Illustration of SMD (left) and HSMD (right).

we replace the SMD by the half-SMD (HSMD) as a more adequate distance

measure for calculating the distance of test websites to centroid sets.

Definition 5.5 (Half-Sum of minimal Distances (HSMD))

Let S be a website, let CS be a centroid set and let FT : P → IRd be a

transformation that returns the feature vector of p ∈ P where P is the set

of all pages and centroids respectively. Furthermore, let d(x, y) be a distance

measure on feature vectors. The HSMD of S to CS is given by:

HSMD(S, CS) =

∑
vi∈S

min
wj∈CS

d(f(vi), f(wj))

|S|

Figure 5.6 illustrates the calculation of SMD and HSMD. In the following,

we will call the NN-classifier using centroid sets and HSMD the centroid set

classifier.

A further advantage of HSMD is a faster calculation, especially for in-

cremental classification. Classifying a website incrementally using the in-

troduced methods of NN-classification is basically possible for all variants

mentioned above. Since the view of a website as a set of pages allows us to

treat the already retrieved part as a website, the distances can be calculated

for each subset, too. However, the variant using centroid sets and HSMD is

suited best for incremental classification, due to the following reasons. By

limiting the training set to just one instance per site class, we can store the

HSMD values of the subset retrieved so far with each centroid set. Since
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the HSMD only considers the distance from the page to its nearest neigh-

bor in the representative object, the distance can be summed up during the

traversal. Thus, the effort for extending the classification to an additional

webpage is limited to one NN-query for each class. This ability will be very

useful in the next section where we will turn to the reduction of the number

of webpages examined for website classification.

5.3.6 Pruning the Irrelevant Area of a Website

The efficiency of website classification crucially depends on the number of

downloaded webpages, since the download of a remote webpage is orders of

magnitude more expensive than in-memory operations. Therefore, we in-

troduce a classification method, downloading only a small part of a website,

which still achieves high classification accuracy. This method performs incre-

mental classification and stops downloading additional pages when an area

around the homepage is visited that is likely to be a good representation of

the purpose of a website. The existence of such an area is very likely due to

the hierarchical design of most sites. The challenge is to detect a reasonable

border of this area.

For the following reasons, the naive approach of reading the first n pages

of a website does not yield a good accuracy. First, the topology of a website

is a matter of individual design and therefore tends to be very heterogeneous.

Many sites contain large amounts of pages providing only structure but no

content. For example, animated introductions or frames are instruments of

making a site more usable or attractive, but in most cases they do not contain

any content recognized by a page classifier. Another important aspect is how

much content is provided on a single page. The same amount of information

could be spread over several pages or be contained in one large webpage.

Consequently, the total number of pages already read is not a good indicator

for pruning a website.

The homepage is always the first page to be read when traversing a web-
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site. Additional pages are found by following the links on the homepage.

Therefore, the question is, how to traverse the website and where to stop.

A breadth-first traversal (used already to build the website trees) seems to

be a promising approach. Since this traversal strategy orders the pages with

respect to their distance to the homepage, the more general and therefore

more important pages are visited first. Thus, the traversal offers a reasonable

guidance for the classification process. The key to efficient classification is

to prune certain subgraphs or subtrees in the graph of the website. Note

that the site tree is derived from the graph of a website during classification

and that its topology depends on such a pruning criteria. Thus, a node can

only be ignored when every path leading to it is pruned. Therefore, the trees

derived by the breadth-first traversal in combination with pruning can vary

from those derived by a pure breadth-first traversal.

Our pruning method is based on the following two propositions about the

paths from the homepage to the following pages:

• Case I: The membership of a complete path in some site class strongly

depends on the pages closest to the homepage. As mentioned before,

general information about the class of a website is most likely placed

within a few links from the homepage. If a new topic follows, it appears

in the context of the former topic.

• Case II: There are cases where a whole subtree and the path leading

to it does not show any clear class membership at all. Though it is

obvious to a human user that its impact on classification is rather

low. Recognizing this kind of subtree is a difficult problem. A tree

could always become highly specific after the next node. But after a

reasonable length of the path, the probability that the meaning of the

subtree is of general nature is significantly decreasing. Therefore, the

strength of the class information has to be measured by the length of

the path.

To exploit these propositions, it is necessary to measure the degree of
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class membership for a path and its impact on site classification. Here the

ability of a website classifier to incrementally calculate the class membership

is very useful. The 0-order Markov tree and the centroid set classifier can

calculate the probability for the occurrence of a path for each class although

they might be trained on complete sites. To derive class probabilities from

the centroid set classifier, we used the inverse distance to the centroid set

of each class 1 − HSMD(S, CSi) as class probability Pr[s|ci]. Let us note

that pruning can be applied to the other classifiers as well. However, for

some classifiers the already examined part of a website has to be reevaluated

after each step, which might be very time consuming. Therefore, we applied

pruning to the methods of both cases that performed best. The 0-order

Markov tree when using page classes and the centroid set classifier for the

case without page classes.

The conditional probabilities Pr[s|ci] yield the information about the

degree that a path s supports a site class ci. Since the focus lies on the

importance of a path for site classification, the actual class or classes it

supports are not relevant. To quantify the importance for the complete site,

we use the variance of the conditional probabilities over the set of all website

classes. Since the variance is a measure for the heterogeneity of the given

values, it mirrors the ability of a path to distinguish between the different site

classes. A high variance of the probabilities of the website classes indicates

a high distinctive power of that particular path. Let s be any path in the

site tree S and let Pr[s|ci] be the probability that s will be generated by the

model for class ci, then

weight(s) = varianceci∈C(Pr[s|ci]
1

lenght(s) )

which is a measure for the importance of the path s for site classification.

Let length(s) be the number of nodes in path s. The (1/length(s))th-power

is taken to normalize weight(s) with respect to length(s). This is necessary

for comparing weights of paths of varying length.

To determine weight(s) according to the above propositions (cases I and
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II), we have to show that we can recognize a change in the class membership

and recognize the occurrence of unimportant paths. The last requirement

is obvious since a low variance means that the path is treated similar by

the model of any class. The first requirement is not as easy to fulfill, but is

provided with high probability after a certain length of the path is reached.

With increasing length(s), Pr[s|ci]
1

lenght(s) becomes less sensitive to the

multiplication of a further factor within in the calculation of Pr[S|ci]. The

chance of a single node changing the predicted class and keeping up the

variance at the same time therefore decreases with increasing length(s). An

additional webpage that is more likely to be found in a site class different

from the currently predicted class of s, will most likely decrease the weight(s).

Thus, after a few nodes on a path s a decreasing value of weight(s) indicates

a changing topic. Now our first proposition can be applied, i.e. the path can

be pruned.

Due to the important role length(s) plays for estimating the importance

of the observed path s, it is an essential ingredient for the pruning criterion.

Let s1 and s2 be paths within the site tree S where s2 is an extension of s1

by exactly one node. Then we stop the traversal at the last node of s2 iff:

weight(s2) < weight(s1) ·
length(s2)

ω

where ω ∈ IR+ .

For suitable values of ω (ω ≥ 3), the criterion will very likely allow the

extension of shorter paths which should not be pruned for the following

reasons. Due to the small number of nodes, the membership can strongly be

influenced by the classification error of the preprocessing step. Furthermore,

our weight function cannot recognize a change in the membership in very

short paths. In addition, the question of the importance of those paths for

site classification cannot be decided in such an early state. Thus, applying

the pruning rule makes no sense until some nodes are descended along every

path. Figure 5.7 illustrates the proposed pruning method on a small sample

website tree and a 0-order Markov tree classifier. In particular, it shows
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following paths 
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certain length.

Figure 5.7: The effects of the pruning method on the 0-order Markov tree

classifier with ω = 3. The dashed nodes are to be pruned.

the weight(s) for each path s. For a path s with length(s) smaller than

ω, this rule will stop the traversal only if a relevant decrease in variance is

observed. As mentioned above, this is interpreted as a change of the site

class and we can prune any following nodes due to our first proposition.

For length(s) ≥ ω, the criterion is likely to prohibit the extension of a path

unless a topic occurs that can significantly raise the variance. With increasing

length(s) it is more and more unlikely that an additional factor can increase

the variance strongly enough. Due to the required growth of variance and

the decreasing influence of the additional factor, most paths are cut off after

a certain length. This corresponds to the requirement made by our second

proposition that a path will not provide general information about the class

of the website after a certain length. Hence, we avoid reading large subtrees

without any impact on site classification.

The parameter ω is used to adjust the trade-off between classification

accuracy and the number of downloaded webpages. Since the tolerance for

the change of weight(s) depends on the ratio length(s)
ω

, ω is the length from
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which an extension of the path is only permitted if the variance increases.

Thus, a good estimate for ω is the distance from the homepage in which the

relevant information is assumed. Our experiments will show that the interval

of reasonable values for ω is relatively wide.

Pruning does not only increase the efficiency of website classification, but

it can also improve the classification accuracy. When classifying a complete

website, all introduced methods (with the exception of Markov trees with k ≥
1) consider all pages equally important and independently from their position

within the site. Thus, unspecific subtrees can drive the classification process

into the wrong direction. By providing an effective heuristic to disregard

areas that are unlikely to contain the relevant information, the classifier gets

a better description of the website and therefore it will offer better accuracy.

To conclude, the introduced pruning rule tries to cut off misleading areas from

the website tree and thus can reduce the processing time and also increase

the classification accuracy.

5.3.7 Evaluation of Website Classifiers

This section presents the results of our experimental evaluation of the pro-

posed methods of website classification. Our classifiers were tested on two

scenarios.

First, we will focus on the case that page classes and corresponding train-

ing pages are available. We compared the accuracy of the introduced classi-

fiers and examined the performance of the introduced pruning method and

its parameter ω. In the second part of our evaluation, we will turn to the

case that no page classes are specified. In this scenario, we also compared

the classification accuracy and examined the classification time of kNN-based

classifiers, since this is a general weakness of this direction of classification

algorithms. The classifiers were implemented in Java 1.3 and were tested on

a workstation equipped with 2 Pentium 4 processors (2,4 GHZ) and 4 GB

main memory.



126 5 Website Mining

classifier accuracy other IT serv.prov. florists.
pre. rec. pre. rec. pre. rec.

naive Bayes 55.6 % 0.80 0.32 0.48 0.89 0.57 0.62
(superpage)
naive Bayes 63.0 % 0.70 0.53 0.65 0.68 0.54 0.73
(homepage)
2-ord. Mark. tr. 76.7 % 0.73 0.92 0.85 0.62 0.83 0.48
centroid set Cl. 77.1 % 0.76 0.87 0.80 0.70 0.75 0.45
naive Bayes 78.7 % 0.74 0.95 0.88 0.61 0.92 0.57
(TVF)
1-ord. Mark. tr. 81.7 % 0.79 0.95 0.85 0.56 1.00 0.92
C4.5 (TVF) 82.6 % 0.80 0.90 0.83 0.73 1.00 0.76
0-ord. Mark. tr. 86.0 % 0.83 0.94 0.89 0.76 1.00 0.81
0-ord. Mark. tr. 87.0 % 0.84 0.94 0.96 0.77 1.00 0.86
(pruned)

Table 5.1: Accuracy for the first testbed using 10-fold cross-validation.

Experiments using Webpage classes

Our first testbed provides page classes and consists of 82,842 single HTML-

documents representing 207 websites. For the considered trades, we chose

florists and IT-service providers to have a significant distinction in the busi-

ness. The distribution of the website classes was: 112 ”other”, 21 ”florist”

and 74 ”IT-service provider”. The websites for the other class were taken

randomly from various categories in Yahoo [Yah]. To make the experiments

reproducable, the downloaded information was stored locally. To classify

the pages into the page classes listed in section 5.3.4, we labelled about 2%

of the pages in the testbed and obtained a classification accuracy of about

72% using 10-fold cross-validation with naive Bayes on the manually labelled

pages. As implementation for this and the rest of the standard algorithms,

we used the well-implemented weka-package [WF99]. The remaining 98% of

the pages were labelled by the naive Bayes classifier based upon this training

set.

Table 5.1 shows the overall classification accuracy as well as precision and
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recall for the single site classes. Since the superpage approach provided only

an accuracy of about 55%, it seems not to be well-suited for website classifi-

cation. Webpage classification of the homepage using naive Bayes (homepage

naive B.) performed similarly bad by achieving only a classification accuracy

of 63%, which underlines the assumption that more pages than the homepage

are necessary for accurate website classification.

All approaches based on the preprocessing step (introducing page class

labels, etc.) obtained reasonable results. The best method using the com-

plete website turned out to be the 0-order Markov tree which yielded 3.4%

more classification accuracy than the C4.5 [Qui93] decision tree classifier

on TFVs. It also clearly outperformed the 1-order Markov tree by 4.3%.

As a comparison the 0-order Markov tree, applying the introduced pruning

method, increased the accuracy by one percent to 87% by reading only 57%

of the data. To compare the methods using page classes with those ones

that do not, we additionally applied the centroid set classifier which is the

best performing type of this direction to this testbed. Though the centroid

set classifier offered reasonable results as well, it was outperformed by the

0-order Markov tree by about 10%. Thus, employing page classes increases

the effort spent on preprocessing, but is likely to increase the classification

accuracy as well.

Our experimental evaluation demonstrates that using higher values than

0 for the order k did not improve the results when applying a Markov tree

classifier. This is due to the following reasons. First of all, the above men-

tioned problem of ”phantom paths” increases with the length of the consid-

ered context (represented by the order k), depending on the error rate of

page classification. We already noted that the overall error rate p of wrongly

recognized pages in the site is about the same as the classification error for

the single pages. But the probability of a correctly observed transition is

only (1− p)2, since it takes two correctly classified pages to recognize a tran-

sition. This problem gets worse with increasing order k. Thus, a distribution

based upon observed transitions will model reality only poorly. A further
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Figure 5.8: Effect of the parameter ω on the classification accuracy and the

percentage of downloaded webpages.

reason is caused by the specific characteristics of the application. The ques-

tion of the class membership of a site is mostly decided in the area around

the homepage. Since the nature of the information specifying the business is

rather general, most designers are placing the purpose of a website near to the

homepage. Hence, the area relevant for site classification is not characterized

by long paths and the use of considering them is questionable. To conclude,

the most effective classification method is based on the representation of a

website as a multi-instance object.

The second set of experiments demonstrates the effects of the pruning

method when applied to the most promising approach in this scenario, the

0-order Markov tree. Figure 5.8 shows the percentage of the downloaded

webpages for varying values of ω . Additionally, the corresponding classifi-

cation accuracy for each ω is depicted. Note that for values of 5 ≤ ω ≤ 15

the achieved accuracy exceeds 86%, which is the accuracy when reading all

webpages. The accuracy for these values is around 86.4%. For ω = 8, it

even reaches 87.0%. Thus, pruning a website tree has the advantage of im-

proving the accuracy of the 0-order Markov tree classifier. The efficiency of
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the method can obviously be improved too. When reading only 30% of the

pages (ω = 5), the classifier already provides the accuracy observed on the

complete data or even exceeds it. Thus, reading more pages is not necessary.

Even when choosing ω = 4, i.e. reading only 17% of the pages, this classifica-

tion method still outperforms the second best of the introduced approaches

(84.1% against 82.4% for C4.5). Note that reading only 17% of the pages

implies a speed-up factor of more than 5, since loading the webpages is the

major cost of website classification. Determining a reasonable choice for ω is

not very difficult. Since the accuracy did not react very sensitive to varying

values for ω after a reasonable value (about 4) was reached, it is relatively

easy to make a choice that favors accuracy and/or efficiency. Therefore,

the 0-order Markov tree classifier employing the introduced pruning rule is

able to offer superior classification accuracy, only using a minor part of the

I/O operations for reading complete websites. Let us note that we apply

the introduced pruning method on centroid set classifier as well in the next

paragraph, but will not discuss the influence of ω again.

Evaluation without explicit Page Classes

To provide classes and corresponding training sites for the second scenario,

we employed the Yahoo [Yah] hierarchy. In our testbed, we chose 6 different

website classes and built an additional ”other”-class from a randomly chosen

mixture of other Yahoo [Yah] classes. Our training database consisted of 86

websites for the category ”other” and between 12 and 47 example sites for

the 6 classes. The total number of sites was 234, comprising a total of about

18,000 single webpages. In this testbed, no page classes were provided to

label single webpages within a website.

The first set of experiments tested precision and recall for each of the 6

website classes only for the two-class case. The comparison partners included

a 0-order Markov tree classifier and a basic 5-NN classifier using SMD (5-

NN for short). Furthermore, we tested an incremental centroid set classifier.
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0-ord-Mark. T. 5-NN Cent.S.Cl.
class prec. rec. prec. rec. prec. rec.

busin.sch. 0.74 0.98 0.75 0.89 0.87 0.96
horse deal. 0.80 0.86 0.95 0.78 0.95 0.78
game retail. 0.75 0.75 0.92 0.60 0.77 0.85
ghosts 0.50 0.92 0.60 0.75 0.90 0.75
astron. 0.63 0.92 0.79 0.88 0.88 0.88
snowboard 0.61 0.75 0.86 0.60 0.93 0.70

Acc. 7-Cl. 0.65 0.76 0.81

Table 5.2: Comparison of precision and recall. Last line: Accuracy for the
7-class problem.

Without having appropriate page classes and training pages, we used the

site classes also as page classes for the 0-order Markov tree. The topics of

the single webpages were determined by another naive Bayes classifier. Note

that only the 0-order Markov tree and the centroid set classifier employed

incremental classification, using only a reduced portion of the website as

shown in the last section. A second set of experiments investigated the ability

of the above three classification methods to handle more than one class by

giving the complete training set to the classifier as a 7-class problem. Both

experiments used 10-fold cross-validation. The results displayed in Table 5.2

document the ability of the basic 5-NN classifier to provide good precision and

recall without using page classes. The 0-order Markov tree classifier using

the provisional page classes still shows acceptable results, but the 5-NN-

classifier achieves a better trade-off between precision and recall in most of

the cases. The incremental centroid set classifier provided very good accuracy

and outperformed the other two classifiers. Let us note that the results of the

incremental centroid set classifier, displayed in table 5.2, do not belong to the

parameter setting offering the best accuracy, but to the setting with the best

trade-off between classification time and accuracy. The accuracies achieved

for the 7-class problem, listed in the last line of Table 5.2, follow the trend

observed in the 2-class problem and underline the capability of the centroid



5.3 Classification of Websites 131

website class 5-NN Cent.S.Cl. 0-ord.-Mark.T.

business school 39.16 0.37 0.12

horse dealer 22.40 0.28 0.02

game retailer 22.27 0.34 0.09

ghosts 28.67 0.38 0.03

astronomy 36.99 0.42 0.24

snowboarding 31.59 0.36 0.04

Table 5.3: Classification time in seconds per website for the two class prob-

lems.

set classifier to handle larger classification problems. The accuracy is used

to measure this experiment because it the most common quality measure for

classification problems distinguishing more than two classes.

In Table 5.3, we display the average time spent on the classification of

one website for the 2-class problems. The results clearly show that the basic

5-NN classifier takes a considerable amount of time for classification. On

the other hand, the incremental centroid set classifier performed pretty well

compared to the extremely fast 0-order Markov tree and offered a speed-up

of about 100 compared to the basic 5-NN approach. This enormous speed

up is due to the small average number of centroids (about 180 per centroid

set) and the use of incremental classification considering only few pages of a

website (about 20) for very accurate classification. Summarizing the centroid

set classifier offered a remarkable classification accuracy in an efficient time.

A third experiment investigated the effects of the parameter setting of

GDBSCAN [SEKX98] which is the clustering algorithm used to derive the

centroid sets. For the astronomy example, Figure 5.9 shows the dependency

of accuracy and classification time on the number k of neighbors needed to

define a core point and the radius ε. The shape of the graph indicates that the

influence of the radius is very stable within the interval from 0 to 0.5 which

is half of the possible target interval of the cosine coefficient. On the other
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Figure 5.9: Accuracy and classification time depending on the parameter

setting for GBDBSCAN for the Astronomy example.

hand, the influence of the number of neighbors k shows an obvious decrease

of accuracy for k = 3 and no significant efficiency gain for k < 2. Therefore,

setting k = 2 and ε = 0.4 offered a good trade-off between classification time

and accuracy.

Conclusions on Website Classification

To conclude, the simple methods of website classification like the homepage

and the superpage approach were not suitable to achieve reliable website

classification. For the scenario that page classes and corresponding train-

ing pages can be provided, the 0-order Markov tree performed best. Since

this approach does not employ the link structure like other Markov trees,

it treats websites as multi-instance objects, i.e. sets of feature vectors. For

the scenario without page classes, the centroid set classifier outperformed all

other classifiers and demonstrated classification times that are suitable for

real-world applications. Last but not least, the introduced pruning method

is capable to reduce the classification time and to increase the accuracy.
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5.4 Focused Crawling for Relevant Websites

5.4.1 Motivation

Focused web crawlers have recently emerged as an alternative to the es-

tablished web search engines like Google [Goo]. A focused web crawler

[CvdBD99b] takes a set of well selected webpages, exemplifying the user

interest. Searching for further relevant webpages, the focused crawler starts

from a set of given pages and recursively explores the linked webpages.

While the crawlers used for refreshing the indices of web search engines per-

form a breadth-first search of the whole web, a focused crawler explores

only a small portion of the web using a best-first search guided by the

user interest. Compared to web search engines, focused crawlers obtain a

much higher precision and return new pages which are not indexed yet.

Recently, focused web crawlers have received a lot of attention in the re-

search areas of database systems, information retrieval and data mining

[CvdBD99a, CvdBD99b, CPS02, Cha03, CGMP98, RM99].

As mentioned before, using a web directory for the search of relevant

websites has several drawbacks. Web directories offer in most cases only a

very small portion of the websites that are relevant to a given topic. The given

categorization might totally lack the topic a user is interested in. Last but not

least, web directories might not be up-to-date due to manual maintenance.

In this section, we therefore extend focused crawling to the search for relevant

websites, offering a method to significantly increase the recall of existing web

directories. Additionally, such a crawler can act as an alternative approach

for searching the web for topics not listed yet in any web directory.

To adopt focused crawling for website retrieval, the simplest way is to

use one of the well-established methods for focused webpage crawling and,

in a step of post-processing, analyse the resulting webpages in order to find

relevant sites. This analysis can be done by looking for relevant homepages

or by applying a website classifier to all pages retrieved from a given web-
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site. However, this approach is severely limited by the fact that there is

no guarantee that the crawled webpages are representatives of their corre-

sponding websites. We argue that in order to achieve efficient and accurate

website crawling, the concept of websites has to be integrated into the fo-

cused crawler. Therefore, we introduce a novel focused crawler that directly

searches for relevant websites instead of single pages. The proposed focused

website crawler is based on the website graph, introduced in section 5.2. The

website graph is a two-level graph abstraction of the WWW, representing

both webpages and websites together with their links. The crawling task is

divided into two major subtasks corresponding, to the two different levels of

abstraction:

• An internal crawler views the webpages of a single given website and

performs focused (page) crawling within that website.

• The external crawler has a more abstract view of the web as a graph of

linked websites. Its task is to select the websites to be examined next

and to invoke internal crawlers on the selected sites.

The proposed two-level architecture allows the crawler to control the number

of pages to be downloaded from each website and enables it to find a good

trade-off between accurate classification and efficient crawling. Our exper-

imental evaluation demonstrates again that website classification based on

the homepages is considerably less accurate than classification methods em-

ploying more than on webpage. Furthermore, we compare our prototype of

a focused website crawler to a focused webpage crawler with website post-

processing and show that the introduced methods of focused website crawling

clearly increase the efficiency as well as the accuracy of retrieving relevant

websites from the WWW. The solutions in this section were published in

[EKS04]. The outline of the section is as follows. After this introduction, we

briefly survey related work on focused crawling. Afterwards, we define the

task of focused website crawling and a basic solution. Section 5.4.5 presents
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our novel approach to focused website crawling and section 5.4.6 reports the

results of our experimental evaluation.

5.4.2 Related Work on Focused Crawling

One of the first focused web crawlers was presented by [CGMP98] which in-

troduced a best-first search strategy based on simple criteria such as keyword

occurrences and anchor texts. Later, several papers such as [CvdBD99a] and

[CvdBD99b] suggested to exploit measures for the importance of a webpage

(such as authority and hub ranks) based on the link structure of the WWW

to order the crawl frontier. These measures, which are very successfully used

to rank result lists of web search engines, also proved to be very effective in

focusing a crawler on the topic of interest of a user. Recently, more sophis-

ticated focused crawlers such as [CPS02], [DCL+00] and [RM99] incorporate

more knowledge gained during the process of focused crawling. [DCL+00]

introduced the concept of context graphs to represent typical paths leading

to relevant webpages. These context graphs are used to predict the link dis-

tance to a relevant page and, consequently, are applied to order the crawl

frontier. [RM99] explored a reinforcement learning approach, considering the

successful paths observed, to weight the links at the crawl frontier based on

the expected number of relevant and reachable webpages. [CPS02] extends

the architecture of a focused crawler by a so-called apprentice which learns

from the crawler’s successes and failures and is later consulted by the crawler

to improve the ratio of relevant pages that are visited. Like a human user, the

apprentice analyses the HTML structure of a webpage to judge the relevance

of the outlinks of this page. To the best of our knowledge, all focused crawlers

presented in the literature search for individual webpages and not for whole

websites. The only site-oriented features of established page crawlers are the

measures to prevent so-called spider traps and the prevention of host-to-host

reinforcement proposed by Bharat and Henzinger [BH98]. A spider trap is

an infinite loop within a website that dynamically produces new pages trap-
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ping a web crawler within this website. Therefore, the common approach to

prevent spider traps limits the maximum number of pages to be downloaded

from a given website in order to escape the trapping situation [Cha03]. How-

ever, these crawlers do not have any means to control the search within a

website.

5.4.3 Retrieving Websites with Focused Crawling

A focused webpage crawler [CvdBD99b] takes a set of well selected webpages,

exemplifying the user interest. Searching for further relevant webpages, the

focused crawler starts from the given pages and recursively explores the linked

webpages. The conceptual view of the WWW of a focused page crawler is

the webpage graph (compare section 5.2). The crawl frontier consists of all

hyperlinks (or the referenced webpages) from downloaded pages pointing to

not yet visited pages. The performance of the crawler strongly depends on

the crawling strategy, i.e. the way the frontier is ordered. There are several

ways of post-processing the results of focused page crawlers to adapt them

for the task of retrieving relevant websites. The simplest way is to select

all homepages of websites found within the relevant pages of a crawl and to

conclude that all corresponding websites are relevant. However, the classifi-

cation of websites based on the homepage alone is not as accurate as more

sophisticated methods of website classification. This was demonstrated in

the former section.As a consequence, this approach to extract relevant web-

sites from the results of a focused webpage crawl suffers from inaccurate

results. Furthermore, since the webpage crawler does not prefer homepages

over other webpages, the rate of newly discovered websites tends to be rather

low. Another approach of post-processing is to group the resulting webpages

by their website, i.e. domain, and apply a more sophisticated website classi-

fier. Though this approach promises better classification accuracy, it still has

drawbacks. Since the set of downloaded webpages for each site is controlled

by the page crawler which is not conscious of websites at all, this selection
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of pages might not be well suited for representing the website. Thus, the

crawler does not guarantee that enough webpages per site are downloaded.

In our experiments, it turned out that usually more than 50% of the web-

sites that were classified as relevant by this method were represented by only

one webpage. On the other hand, the efficiency suffers from the effect that

very relevant websites might be scanned completely due to the high relevance

scores of most of their pages. In addition to the number of examined page,

the selection of webpages of a conventional focused crawler causes a problem

as well. Since a focused crawler prefers relevant pages, a website might be

represented by the pages closest to the relevant topic. But this selection is

not a good representation for websites that are irrelevant. Thus, websites

containing some pages with relevant information, belonging to the ”other”

class are misclassified. For example, a university might be classified as rele-

vant for skiing because there are some student pages referring to this topic.

We argue that in order to achieve high classification accuracy and to control

the number of pages to be downloaded, a focused website crawler requires

an explicit concept of websites and corresponding crawl strategies.

5.4.4 Preliminaries to Focused Website Crawling

Website crawling can be considered as the process of successively transform-

ing a subgraph G0 of the website graph WG with V0 = W1, . . . ,Wn, n ≥ 1,

where Wi is a website, 1 ≤ i ≤ n, into a sequence of subgraphs G1, . . . , Gm

such that in each step exactly one website node from WG is added to Gi to

obtain Gi+1. V0 is called the set of start websites. In the context of focused

website crawling, we assume two classes of websites. A class of relevant sites

(the target class) and a class of irrelevant sites (the ”other”-class) with re-

spect to some user interest. The set of start sites V0 should (mainly) consist

of relevant sites. To distinguish between relevant and irrelevant websites, a

website classifier is required which predicts the class of a website (V ′, E ′)

based on the feature vectors FT (p) of the pages p ∈ V ′. In the context of
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focused website crawling a website classifier is a function that takes a website

from W and a website class from the set of classes C and returns a numerical

confidence value for this website w.r.t. the given class.

confidence : W × C → [0, . . . , 1]

A website is called relevant if its confidence for the target class ctarget exceeds

its confidence for the ”other” class.

relevance : W → {true, false}

The website classifier is trained using the start websites that can be provided

either explicitly by the user (if available) or implicitly by selecting some sub-

trees (and the corresponding websites listed in these subtrees) of a directory

service like [Goo, DMO, Yah]. Based on website classification and the no-

tion of relevant websites, we introduce the following performance measure

for focused website crawlers.

Definition 5.6 (PPRS-Rate)

The pages per relevant site rate (pprs-rate) of the website crawler after step

s is defined by the ratio of the number of downloaded webpages to the number

of relevant websites found, i.e.

pprs(Gs) =

∑
W∈(G\Gs−w) |pages(W )|

|{W ∈ (G \Gs−w)|relevance(W ) = true}|

where pages(W ) = {p ∈ W ∩ (Gs \ Gs−w)} denotes the set of pages in W

that were visited so far and w is the beginning of the time interval that is

observed.

The pprs-rate measures the average effort to retrieve one additional rele-

vant website. It depends on two factors: (1) the number of pages that have

to be downloaded within a relevant website (to be controlled by an internal

crawler) and (2) the number of pages downloaded from irrelevant websites

that were examined before finding the relevant website (to be controlled by
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Figure 5.10: Architecture of the focused website crawler.

the external crawler). The task of a focused website crawler is to find as

many relevant sites as possible while downloading as few webpages as pos-

sible. A website crawl terminates if the wanted number of relevant sites is

found or the pprs-rate decreases significantly. In the next section, we will

introduce our architecture of a focused website crawler

5.4.5 A Focused Website Crawler

The Architecture

Focused website crawling is performed on two levels. The external or website

level traverses the first level of the website graph. The external crawl orders

the (hyperlinks to) yet unknown websites and invokes internal crawls on the

top-ranked ones. Since there are much less domains than webpages, the

external crawl frontier is rather small compared to the crawl frontier of an

ordinary focused crawler. Thus, even for large crawls ranking can be done on-

the-fly and sophisticated ranking algorithms can be applied. The second level

is the internal or webpage level. It examines the current website to identify

its purpose and extracts links to other websites while downloading as few

webpages as possible. Since the webpages within the internal crawl frontier
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are only needed for a limited time and their number is usually small, it can be

stored in the main memory. Thus, expensive I/O operations are avoided and

the crawl frontier can be accessed and updated very fast. Let us note that

several internal crawlers examine different websites simultaneously. Thus, it

is guaranteed that the data is drawn from several remote hosts at the same

time which ensures a high overall download rate. Furthermore, controlling

the number of visited pages from each website helps to keep the additional

load at each website as low as possible, helping to increase the acceptance of

the focused crawler within the webmaster community. Figure 5.10 shows our

architecture for a focused website crawler. The external crawler stores the

external frontier consisting of websites only. To decide which website has to

be examined next, it ranks the external frontier. To expand the frontier and

to decide if a chosen site is relevant, the external crawler invokes an internal

crawler. The internal crawler traverses the website, building an internal crawl

frontier that is restricted to the pages of this site. During this traversal, it

examines the webpages to determine the site class. Furthermore, it collects

all transversal links to other unexplored websites together with the confidence

w.r.t. the target class of their source pages. As a result, the internal crawler

returns information about the website class and the set of transversal links

from the domain to new unexplored domains. Note that these transversal

links are not real hyperlinks, but an aggregation of all hyperlinks that are

found within the website directing to pages located within another website.

Thus, the number of transversal links from one site to another website is

limited to one.

The External Crawler

The task of the external crawler is to order the external crawl frontier (con-

sisting of links to not yet visited websites) and to decide which site has

to be examined next by an internal crawler. The external crawler starts

its traversal of the website level from the user-specified start websites and
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expands the graph by incorporating the newly found websites. Since the

task of the external crawler is similar to the task of a focused crawler for

webpages, most of the methods mentioned in section 5.4.2 are applicable to

order the external frontier. The major difference is that distillation takes

place at another more abstract level. Thus, the relevance scores attached to

nodes and edges may be determined in a different way in order to achieve

good results. During a crawl, we distinguish two different sets of nodes of

the website graph: Nodes corresponding to already examined websites are

elements of Vex and so-called border nodes that have not yet been exam-

ined are elements of Vbd. The task of the crawler is to rank the elements

of Vbd with respect to the information, gained while examining the elements

of Vex. Each website W ∈ Vbd is reachable by at least one link contained

in some website Vi ∈ Vex. The (external) crawling strategy employed in

this paper is simple but effective and is very similar to the basic crawler

proposed in [CPS02]. Note that most of the established crawling strategies

[CvdBD99a, CvdBD99b, CPS02, Cha03, CGMP98, RM99] are applicable as

well. For every node W ∈ Vbd, a ranking score is calculated as follows:

rank(W ) =

∑
Vi∈Lex(W ) weight(Vi, W )

|Lex(W )|

where Lex(W ) = {V |V ∈ Vex ∧ ∃edge(V, W )} and edge(Vi, W ) denotes

that there is at least one link from node Vi to node W . Furthermore,

weight(V, W ) is a function that determines the confidence for each edge that

its destination is relevant to the topic. In other words, an unknown website

is judged by the average weight of the known edges referencing it. Thus, the

website W with the highest rank(W ) should be crawled first. The edges do

not directly correspond to the hyperlinks, but represent an aggregate of all

hyperlinks, leading from one website to another. Let us note that this method

solves the same problem as the host-to-host cleaning improvement suggested

in [BH98], i.e. it avoids that strongly connected domains are overemphasized.

The remaining task is how to determine the weights for the edges. To answer

this question, we investigated the following three approaches :
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• Global edge weights: Each edge is weighted by the confidence w.r.t.

the target class of the website the edge is contained in:

weightglobal(W, V ) = confidence(W, ctarget)

where confidence(W, ctarget) denotes the confidence value for website

W w.r.t. the target class ctarget.

• Local edge weights: Each edge is weighted by the average confidence

w.r.t. the target class of the webpages containing links pointing to the

given website:

weightlocal(W, V ) =

∑
p∈{p∈W |∃(q∈V ∧(p,q))} Pr[target|p]

|{p ∈ W |∃(q ∈ V ∧ (p, q))}|

where Pr[target|p] is the confidence of page p being contained in a

target class website. These confidences for single webpages are also

collected within the website classifier, but do not correspond to the

complete set of webpages downloaded for classification.

• Combined edge weights: This is a combination of both methods inte-

grating both scores to combine local and global aspects by taking the

average weight of both methods:

weightcombined(W, V ) =
weightlocal(W, V ) + weightglobal(W, V )

2

The advantage of local edge weights is that they distinguish the transver-

sal links according to the relevance of the source pages of a link. Thus,

transversal links found on irrelevant pages are weighted less than those found

on highly relevant webpages. On the other hand, local edge weights might

consider the links from source pages containing only sparse text as irrelevant

since the page itself can be classified only poorly. This shows the strength

of global edge weights. Since global edge weights consider the relevance of

the complete site, they transfer relevance from other relevant pages to the

link pages which do not provide enough content for proper classification.
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Figure 5.11: The three variants of edge weights for two sample websites W

and U .

Combined edge weights incorporate both aspects. The links found in pages

containing not enough text for reliable classification are at least judged by

the relevance of the website and relevant pages transfer more importance to

the links than irrelevant ones. Figure 5.11 displays an example for all three

methods of edge weighting. The confidence of W w.r.t. the target class is 0.6.

There are two pages in W referencing pages in U , one page with confidence

(w.r.t. the target class) 0.9 and the other with confidence 0.5.

The performance of the external crawler influences one important aspect

of the pprs-rate: the number of relevant sites that are examined compared to

all websites that are crawled by an internal crawler. We will refer to this ratio

as the website harvest rate. However, this aspect is not the only influence

on the pprs-rate. Even an optimal external crawler will achieve very bad

pprs-rates, if the internal crawler explores large numbers of webpages per

site.

The Internal Crawler

The internal crawler is responsible for the main advantage of a dedicated

website crawler namely that the results are more reliable due to better clas-
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sification accuracy. On the other hand, the efficiency strongly depends on

the ability of the internal crawler to restrict the number of downloaded web-

pages per site to as few pages as possible. Furthermore, additional aims have

to be achieved like the avoidance of spider traps and the retrieval of new

promising transversal links. The main task of the internal crawler is to select

a representative sample set of webpages from a website W and determine for

each page pi the likelihood (called confidence in this context) of pi appearing

in website class ck. To determine this probability Pr[wi|wi ∈ W ∧W ∈ ck],

we employ a text classifier. To choose the sample set, we employ focused

crawling using a so-called internal crawl strategy. To determine the class of

an entire website W , we calculate the probability that W was generated by

the process corresponding to class ck for each class ck. Additionally, there are

several other side goals of the internal crawler like collecting new transversal

links and avoiding spider traps.

The Webpage Classifier

The task of the webpage classifier is to decide how likely it is that a certain

webpage pi appears in a website W of Class ck. The task of this classifier is

slightly different from the task of the classifier in an ordinary focused crawler.

A webpage that is likely to appear in a typical website does not necessarily

have to be relevant for the user interest. The page classifier should be capable

to handle multi-modal classes, i.e. classes that are strongly fractioned into

an unknown number of subclasses. This feature is important because the

webpages found in websites of a common class provide several page classes,

e.g. contact-pages, directory pages, etc.. For our crawler, we employed a

centroid based kNN classifier as described in [HK00]. This variant of kNN

classification constructs the centroid of the training word vectors for each

class. The class is now determined by choosing the class that belongs to

the closest centroid. In order to achieve multi-modality, we adopted an idea

mentioned in the summary of [HK00]. We clustered each training set, using

the k-means algorithm and represented a class as the set of centroids of the

resulting clusters. Let us note that we started our prototype by using naive
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Bayes classification, but changed to this classifier due to better accuracy.

Formally, each class ck of our classifier is represented by a set of centroids

CSk. Let dmin(p, CSk) denote the distance of the word vector p of a given

webpage to the closest element of CSk. Then, we estimate the confidence

value for p belonging to ck as follows:

Pr[p|ck] =
ln (dmin(p, ck))∑

cj∈CSk
ln (dmin(p, cj))

In other words, we use the logarithm of the distance to the closest centroid

in CSk and normalize over all classes. Let us note that we use the logarithm

to weight close distances higher than far distances. Therefore, if a page

has a large distance to the centroids of all classes, the confidence values

are very similar for all classes. The closer the distance to a centroid is the

more sensible the distance is measured. The resulting confidences are used

by the local and combined edge weights for determining the weights of the

transversal links. To train the classifier, we first select a set of relevant

websites. The websites in our experiments, for example, were taken from

common directory services [Yah, Goo, DMO]. To represent the ”other”-class,

we chose several websites belonging to a variety of other non-relevant topics.

Since we need to learn which types of webpages might occur in a relevant

site and which not, we have to draw a representative sample of webpages

from each training website. The pages downloaded during the process of

classification of a website are limited to a small set around the homepage,

since these pages are most likely connected to the purpose of the site. Thus,

we should use these pages for training as well. We restrict the training pages

to the first k pages when traversing the website using breadth-first search.

This simple method worked out well in our experiments.

The Internal Crawl Strategy

The internal crawl strategy determines the sample of pages downloaded from

the website to be classified. Each internal crawl is started at the homepage.

As mentioned before, the information about the purpose of a website is usu-

ally located around the homepage since most publishers want to tell the user
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what a website is about, before providing more specific information. Analo-

gously to a focused page crawler, the internal crawler traverses the web using

a best-first search strategy. However, the internal crawl is restricted to the

webpages of the examined site. The goal is to find a set of webpages reflect-

ing the site’s purpose in a best possible way. This is a major difference to

focused page crawlers which try to find as many relevant pages as possible.

However, looking for relevant pages is only appropriate for site classification

if the examined website belongs to the target class. If the given website be-

longs to the other class, the crawler should prefer pages that typically occur

in non-relevant websites in order to find a good representation. Thus, the

internal crawler should rank the pages by their confidences for any class com-

pared to the average confidence over all classes. To solve this problem, our

internal crawling strategy works as follows. Like in the external crawler, we

again use a crawling strategy similar to the basic crawler in [CPS02]. The

ranking score of a webpage p is defined as the average weight of the links

referencing p:

rank(p) =

∑
qi∈Lin(p) weight((qi, p)

|Lin(p)|
where Lin is the set of pages read so far that link to p. To represent the

contribution of a page for the decision in favor of either class, we determine

the weight of link (qi, p) as:

weight(qi, p) = variancecj∈C(Pr[qi|cj])

where Pr[qi|cj] is the confidence of qi w.r.t. to class cj obtained by the

page classifier. The internal frontier is sorted in decreasing order of these

confidence values.

The Website Classifier

The combination of the page classifier and the internal crawl strategy pro-

duces a sequence of webpages downloaded from the site. Furthermore, each

webpage is classified and is associated with a confidence w.r.t. the target

class. The following statistical model incrementally, i.e. after each down-
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load of a new page aggregates these page confidences to calculate an overall

confidence w.r.t. the target class for the entire website. In our model, each

website class defines a statistical process that can generate any webpage with

a certain probability. A website W belonging to class ck is a set of webpages

generated by drawing pages from the corresponding probability distribution.

In the following, we present a maximum-likelihood classifier that assigns a

website to the class with the highest probability of having generated the

observed website W . Let Wt denote the sample of site W that the inter-

nal crawler has retrieved by time t. The probability that the class ck has

generated Wt is given by:

Pr[Wt|ck] =
∏

pi∈W

Pr[pi|ck].

Applying the Bayes theorem, the desired probability is:

Pr[ck|Wt] =
Pr[ck] · Pr[Wt|ck]∑

ci∈C Pr[ci] · Pr[Wt|ci]

Unfortunately, this formalization suffers from two practical limitations:

• The a priori probabilities Pr[ck] are unknown for the WWW. However,

the application of focused crawling enables us to make a suitable es-

timation. Since the focused website crawler focuses relevant sites, the

probability distribution within the whole web is expected to be very

different from the probability distribution within relevant sites close to

the frontier. Thus, we can use the rate of relevant sites found so far as

an estimate for Pr[ck].

• Since there is no classifier guaranteeing 100 % accurate class predic-

tions, the confidence values are not always realistic as well. The class

prediction values generated by the classifier always suffer from a cer-

tain classification error. Thus, the combination of these results should

consider this inaccuracy.

To incorporate the possibility of classification errors, we extend our model

by integrating the classification error observed on the training data into the
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model. Thus, we obtain an error corrected probability for the occurrence of

page p in a website of class ck and the classification error perr:

Pr[p|ck ∧ perr] = Pr[p|ck] · (1− perr) + Pr[p|cother] · perr

The idea is that the probability for a correct prediction is calculated by

multiplying the confidence value with the probability that the webpage clas-

sifier made no mistake. Additionally, we have to consider the case that the

classifier made a wrong prediction. Thus, we have to add the confidence

value of the ”other”-class multiplied with the error probability perr. To es-

timate perr, we calculate the accuracy of the page classifier on the set of

webpages in the training websites using 10-fold cross-validation. Using the

error corrected probabilities avoids the effect that the influence of a single

page is overestimated during classification. Even if the classifier outputs are

1.0 and 0.0, our process does not automatically overestimate the impact of

a single page. Thus, the calculated value for Pr[Wt|ck] will usually produce

meaningful values after some pages have been considered.

To stop classification, we define a certain confidence threshold pthreshold

and the internal crawl stops classification as soon as this confidence level

is reached. By choosing pthreshold, the internal classifier can be adjusted to

find an appropriate trade-off between accuracy and efficiency. However, if its

value is chosen too high, the crawler will require too many pages with respect

to a website’s purpose. This is a problem, because the performance suffers

significantly and the reservoir of characteristic pages within one website is

limited. To conclude, after the confidence for Wt reaches pthreshold, we assume

that the class of W is identical to the class of Wt and we denote:

confidence(W, ctarget) = Pr[ctarget|Wt]

and

relevance(W ) = (Pr[ctarget|Wt] > Pr[cother|Wt])

Figure 5.12 illustrates the complete process of website classification. The

displayed example describes the common case that a website starts with a
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Figure 5.12: Illustration of website classification during an internal crawl.

frame page and, thus, the prediction of the class based only on the homepage

would be wrong.

Retrieving Transversal Links

and Terminating the Internal Crawler

Besides the primary goal to achieve accurate classification of the exam-

ined website, the internal crawler has another purpose of retrieving enough

transversal links for extending the external crawl frontier. Therefore, the

internal crawler collects all transversal links, i.e. the links leading to new

unexplored websites. Additionally, the crawler stores the confidence values

Pr[p|ctarget] of the source pages of the link. These values are used to cal-

culate local and combined edge weights. Since, according to the above stop

condition, classification might be finished after a few pages, it is possible that

the internal crawler has not yet found enough interesting transversal links.

In such cases, we want to continue the crawl until a reasonable number of

transversal links has been extracted. To decide if enough links have been

found within a website, we define the linkWeight as a measure for the con-

tribution of page p to the set of relevant transversal links found within the

site:
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linkWeight(p) = (Pr[p|ctarget] · |LTp|+ c)

where LTp is the set of transversal links found in p and c ≥ 1 is a constant.

Furthermore, we define the LinkRank for the set of webpages Wt as:

LinkRank(Wt) =
∑

p∈Wt

linkWeight(p) · 1

Pr[ctarget|Wt]

To employ the LinkRank for ensuring that enough relevant links are

found, we continue the internal crawl even after classification has finished

until it reaches a certain level lthreshold. The idea of this heuristic is that

each webpage contributes its linkWeight to the LinkRank of the website.

The more links are contained in p and the more relevant p is, the more will

p contribute to the LinkRank. The constant c is added to ensure that the

linkWeight has at least some value and thus the LinkRank grows constantly

until lthreshold is reached. The LinkRank increases slower for relevant websites

and faster for irrelevant ones. Thus, an internal crawl of a relevant website

will encompass more webpages than an internal crawl of an irrelevant site

which usually terminates after classification. This way relevant websites add

more new links to the external frontier than irrelevant ones. Let us note that

we continue the crawl to reach lthreshold by employing the mentioned internal

crawling strategy. We argue that if a website is relevant, the crawling strategy

is targeted to find new relevant pages which are most likely to contain relevant

links. For websites classified to the other class, lthreshold is reached rather fast

and switching the crawl strategy is not necessary. An additional benefit of

the internal crawler is that it makes the website crawler robust against spider

traps. Since the number of webpages retrieved from one website is explicitly

controlled, the crawler might run into a spider trap only in those rare cases

where a site consists mostly of pages without any meaning to the classifier.

To ensure termination in such cases, it is sufficient to restrict the number of

pages downloaded from one domain. Unlike in page crawlers, no additional

database table is needed to store websites containing a spider trap. This is
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Figure 5.13: Architecture of our focused webpage crawler.

not necessary within the focused website crawler, since the crawler will not

visit a website more than once.

5.4.6 Experimental Evaluation

for Focused Website Crawling

The Test Environment

We performed our experiments for the topics listed in Table 5.4. For each

topic, we first acquired a sample set of relevant websites taken from a category

in a web directory. Additionally, we selected a random mixture of websites to

represent all other topics on the web. For each category, Table 5.4 provides

the number of training websites, and the web directory service the websites

were taken from. We stored the websites in a training database to have

a stable test environment consisting of 20,793 HTML-documents from 335

websites and we implemented 2 focused crawlers. The first is our prototype

of a focused website crawler. The second is a focused webpage crawler that

crawls the internet by using only one frontier of webpages. To provide a fair

comparison, both crawlers are based on the same algorithm for page classifi-
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cation and ranking. The design of our focused webpage crawler is illustrated

in Figure 5.13. The system starts its crawl on a defined set of webpages, in

our case the homepages of the websites found in a directory service. Each

new unexplored webpage is stored in the crawling frontier. The page clas-

sifier generates confidence values for each webpage that is explored. Within

the frontier, each unexplored webpage is measured by the average confidence

value for the target class of the webpages linking it. The webpage providing

the highest average confidence value within the frontier is examined next.

In order to prevent spider traps and to keep the load for each website at an

acceptable level, we implemented a guard module as described in [Cha03].

This guard module prevents the page crawler from accessing webpages in

websites that already contributed an extraordinarily high number of web-

pages to the already explored part of the web graph. To test the crawlers,

we performed various crawls on the WWW. This testbed seemed to be suited

best, although it is not guaranteed that the web stays the same between two

crawls. However, due to the more stable character of the website graph, we

argue that the influence to the results is negligible. Let us note that we

performed some of the experiments again after several weeks and achieved

almost identical results. On the other hand, downloading a representative

section of the website graph to provide a static test environment is difficult.

Since the part of the WWW visited by a website crawler tends to be spread

over several thousands hosts, it is difficult to find a closed section that allows

a realistic behavior of the tested crawlers. Our experiments were run on a

workstation that is equipped with two 2.8 GHZ Xeon processors and 4 GB

main memory. As a database system we used an ORACLE 9i database server

hosted on the same machine. Both crawlers were implemented in Java 1.4

with the exception of the ranking algorithms and the guard module which

were partly implemented in PL/SQL to improve the runtime performance.
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topic number of websites websites provided by

horses 32 YAHOO

astronomy 39 YAHOO

sailing 39 Google

mountain biking 34 DMOZ

skate boarding 35 DMOZ

boxing 33 DMOZ

other 132 all

Table 5.4: Overview over the training database.

Accuracy of the Website Crawler

Our first experiment demonstrates the higher accuracy that can be achieved

for website classification by using the internal crawler compared to a home-

page classifier. The homepage classifier uses the same centroid based kNN

classifier as the internal crawler, but is trained and tested on homepages only.

The internal crawler used in these experiments terminates its crawl after a

confidence threshold of pthreshold is reached and does not continue the crawl to

find interesting links. Since this test needs labelled test data, we performed

10-fold cross-validation on the topics stored in the training database (Table

5.4). Table 5.5 displays the precision, recall and f-measure (as trade-off be-

tween precision and recall) for the tested topics when employing the website

classifier and the homepage classifier. Additionally, the table reports the

classification error perr and the average number of webpages that the website

classifier downloaded per website. For the training of the page classifier of

the internal crawler, we used the first 25 webpages of each training website

when applying a breadth-first traversal. For all of the tested topics, the in-

ternal crawler obtained significantly higher f-measures than the homepage

classifier. For the topic horses, it even increased the f-measure from 0.63 to

0.9, i.e. by 0.27. Thus, by classifying the websites by more than one page,

the classification accuracy was substantially increased. Let us note that a
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topic perr pthres. pages internal crawler. homepage classifier
per site prec. rec. f-mea. prec. rec. f-mea.

horses 0.85 0.9 6.9 0.84 0.97 0.90 0.49 0.88 0.63
astronomy 0.90 0.9 6.3 1.00 0.90 0.95 0.86 0.79 0.83
sailing 0.88 0.9 6.3 0.90 0.97 0.94 0.77 0.92 0.84
mountain 0.86 0.8 6.3 0.81 0.97 0.88 0.76 0.83 0.79
biking
skate 0.88 0.8 3.2 0.76 1.00 0.86 0.74 0.89 0.81
boarding
boxing 0.88 0.9 7.4 0.79 0.79 0.79 0.74 0.72 0.73

Table 5.5: Classification results using 10-fold cross validation within the
training database for the internal crawler and the homepage classifier.

manual analysis of the crawled websites confirmed the hypothesis that es-

pecially commercial websites often do not provide a meaningful homepage.

The average number of pages used for classification was between 3.2 and

7.4, indicating that website classification does not require large numbers of

webpages per site for making more accurate predictions.

Evaluation of the Crawling Performance

To demonstrate the performance of the complete focused website crawler,

we performed numerous crawls. Since we retrieved a total number of ap-

proximately 50,000 potentially relevant websites, we could manually verify

only samples from each crawl. Table 5.4.6 displays a sample of relevant web-

sites retrieved for the topic horses. The first five domains were retrieved

after approximately 250 websites were visited, the last five at the end of the

crawl after about 2,500 relevant websites were retrieved. This example illus-

trates that the crawler started to discover relevant websites early and kept

his good accuracy until the end of the crawl. Our first crawling experiment

compares the three different weightings introduced in section 4.2 for ranking

the external frontier. Therefore, we started each crawler using the parame-

ters achieving maximum accuracy for the internal crawler and stopped the

crawler after approximately 2,500 relevant websites were found. To compare

the effect of each of the weightings, we compared the website harvest rate,

i.e. the ratio of relevant websites to all websites that were screened. Figure
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website visited pages confidence

www.tbart.net 4 0.65

www.socalequine.com 6 0.59

www.thehalterhorse.com 4 0.65

www.thejudgeschoice.com 4 0.75

www.thehorsesource.com 3 0.68

. . .

www.laceysarabians.com 5 0.71

www.baroquehorses.com 5 0.60

www.knightmagicfarms.com 4 0.67

www.pccha.com 7 0.64

www.danddhorsetransport.com 4 0.70

Table 5.6: Example websites returned for the topic horses.

5.14 displays the average website harvest rate aggregated over the last 1,000

pages. For the topics horses and astronomy, all three weightings performed

very similar, although the global edge weights achieved a small advantage,

especially at the beginning of the crawl. However, for the topic sailing, the

combined edge weights were able to compensate some of the weaknesses of

both underlying methods. The experiments for the topic mountain biking

displayed a strong advantage for the local edge weights. However, the com-

bined edge weights were still able to compensate some of the weaknesses of

the global edge weights. Though our experiments did not reveal that one of

the mentioned weightings showed superior results, we advise to employ the

combined edge weights function, since it was always at least the second best

and sometimes outperformed the other methods.

The next series of experiments was conducted to back up our claim that

common focused (webpage) crawlers are unsuitable for retrieving websites

and that the proposed focused website crawler overcomes the problems of

page crawlers, providing a more efficient and accurate retrieval of relevant
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Figure 5.14: Website harvest rates (average of the last 1,000 pages) for each

topic each weighting.

websites. In our first experiment, we have already demonstrated that the

accuracy of the internal crawler is superior to the accuracy achieved by the

homepage classifier. Thus, the post-processing counting relevant homepages

is unlikely to produce the same quality of results either. To show that ap-

plying a website classifier is not sufficient for providing comparable accuracy,

we determined the percentage of websites that were classified by one single

webpage. For all four examples approximately 50% of the resulting websites

where classified by using only one page. Thus, in half of the cases applying

a more sophisticated website classifier to the websites being aggregated from

the results of a page crawl cannot perform any better than the homepage

classifier. This behavior of the page crawler can be explained as follows.

Most transversal links referencing a new site are directed at one special en-
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try page (usually the homepage) and most other webpages found within this

website are linked only via internal links. A page crawler examining a web-

site visits this entry page first and classifies it. The ranking score of the

other webpages within the website now strongly depend on the confidence

value of the entry page. If the confidence w.r.t. the target class is rather

high, then additional pages are examined also. If the classification result is

rather uncertain, however, the ranking scores tends to be rather low and it

is likely that the additional pages will not be visited during the crawl. For

the task of website retrieval this behavior is unsuitable. If the relevance of

the entry page is hard to decide, it would make sense to examine additional

pages from the site in order to achieve more reliable classification. On the

other hand, if the relevance of the entry page is very certain, it is wasteful

to proceed crawling to discover the obvious. Our proposed website crawler

handles candidate sites that cannot be reliably classified, based on the entry

page more carefully than those where a certain classification can immediately

be obtained.

To demonstrate this difference, we ran the focused webpage crawler for

each of the first 4 topics listed in Table 5.4 and applied a website classifier

to the results. Additionally, we performed two different website crawls to

demonstrate the capability of the website crawler to find a suitable trade-

off between accuracy and efficiency by adjusting the confidence threshold.

The first one uses again the parameter setting providing maximum accuracy

(pthreshold 90%). Thus, we can judge the overhead for the additional accu-

racy. The second crawl used a confidence value of 70 %. Due to this rather

soft breaking condition, the second crawl usually visited very few pages per

website, but provided less reliable results. Figure 5.15 displays the average

pprs-rate over the last 5,000 webpages for the first four topics displayed in Ta-

ble 5.4. Recall that the pprs-rate measures the average number of additional

webpages that are downloaded until a new relevant website is discovered.

Let us note that the crawls vary in length, since we terminated crawling af-

ter reaching at least 2,500 relevant websites regardless how many webpages
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Figure 5.15: Pprs-rates (average of the last 5,000 pages) for each topic and

each crawler.

where downloaded. For three out of four topics even the website crawler aim-

ing at more accurate results (pthreshold 90%) achieved a lower pprs-rate than

the page crawler. For the topic mountain biking, it needed approximately

7 pages less than the page crawler to find an additional relevant domain at

the end of the crawl. Thus, even when returning more reliable results, in

most cases the website crawler gained an efficiency advantage compared to

the page crawler. For all topics, the website crawler with a 70% confidence

threshold clearly outperformed the two comparison partners with respect to

efficiency. For the topic astronomy, it visited only about five additional web-

pages until it retrieved another relevant site. Due to the large number of

results, we could not verify the entire result set, but a manual analysis of a

sample supported our claim of more reliable results even for the 70% web-
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site crawler. To conclude, our experimental evaluation demonstrates that a

focused website crawler is, for similar accuracy requirements, clearly more

efficient for retrieving relevant websites than a focused webpage crawler with

website post-processing. In an alternative scenario, when achieving a com-

parable pprs-rate, the focused website crawler returns more accurate results.

5.5 Summary

In this chapter, we introduced a new direction of web content mining called

website mining. While most directions of web content mining are concerned

with the retrieval, classification and grouping of single webpages, website

mining is aimed at websites. A website is a linked set of webpages that

is published by the same group, person or organization and usually serves

a common purpose. The retrieval of websites answers queries one a more

abstract level than webpages. For example, the search for companies of a

certain business is answered best by returning the websites of the companies

instead of every single HTML document these companies publish. Other ap-

plications of website mining are the automatic extension of directory services

and the restriction of the search space for the search of specific webpages.

To retrieve websites that are relevant to a certain topic, it is necessary

to distinguish relevant from irrelevant websites. Therefore, the classification

of websites is a key task of website mining. For example, a website classifier

could be used to map new websites to the classes in a web directory. To solve

this problem, we proposed several new solutions. The classification of the

homepage turned out to be not sufficient for reliable classification results.

The reason for the bad performance of this approach is that the homepage is

not necessarily a good representation of the purpose of a website. Thus, to

improve the results, it is advisable to employ more than one webpage of each

website to determine the correct class. The next approach is called superpage

classification. This approach condenses all webpages of the website into one

word vector. However, the classification of this superpage does not yield
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good classification accuracy either.

After introducing these naive solutions, we introduced two directions of

website classification that provide better results. The first uses a prepro-

cessing step by assigning page classes to each webpage of the website to be

classified. To achieve this labelling for each website class, a set of specific

page classes is specified. Afterwards a text classifier is used to map the web-

pages to the specified page classes. A website can now be represented as

a so-called website tree or as a topic frequency vector (TVF). TVFs can be

classified by established classification methods like naive Bayes classifiers. To

classify website trees, we applied Markov classifiers of varying order to have

the possibility to consider the tree structure for the classification result.

The second direction of website classification does not need the use of page

classes and is therefore much easier to apply. It is based on kNN classification

and treats a website directly as multi-instance object or set of feature vectors.

The proposed kNN classifier uses a distance function for sets of vectors that

is called ”sum of minimum distances”(SMD). To increase the performance

of this approach the training set for each class is condensed into a so-called

centroid set. A website is compared to a centroid set by a modification of

SMD called half-SMD.

After introducing classification methods, we introduced a pruning method

that restricts the number of webpages that is used for website classification.

This method is applied to incremental website classifiers and is capable to

reduce the classification time and to increase the accuracy. The idea is that

a website is descended, beginning with the homepage. After each additional

webpage the path from the homepage to this page is measured with respect

to its use to make a class decision. Thus, pathes that do not provide useful

information are pruned and therefore not followed any further.

To compare the introduced methods, we evaluated our classifiers on two

testbeds. One provided page classes and the other did not. It turned out

that the method using page classes performed best if the effort is spent to

specify page classes and label enough training documents to achieve suitable
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webpage labels. On the second testbed, the kNN classification was compared

to the methods using page labels by taking the website classes as page classes

as well. In these experiments, it turned out that this simple solution is not

sufficient to label the webpages well enough and that in the case that no page

classes are provided the kNN approach using centroid sets, called centroid

set classifier, is the better choice.

After we treated the problem of recognizing relevant websites, we turned

to the task of actively searching the WWW for relevant sites. For that pur-

pose, we introduced a focused crawler searching for relevant websites instead

of webpages. The proposed two-level architecture allows us to control the

number of pages to be downloaded from each website and to find a good

trade-off between accurate classification and efficient crawling. The external

crawler views the web as a graph of linked websites, selects the websites to

be examined next and invokes internal crawlers. An internal crawler views

the webpages of a single given website and performs focused page crawling

within that website. In our experimental evaluation, we demonstrated that

reliable website classification requires to visit more than one but less than

all pages of a given site. Furthermore, we compared our proposed crawler to

a focused webpage crawler that handles the concept of websites in a corre-

sponding step of post-processing. For the same efficiency (measured by the

number of pages downloaded per relevant site), the website crawler achieved

significantly higher classification accuracy than its comparison partner. For

comparable accuracy, the website crawler needed a considerably smaller rate

of visited pages per relevant site. These results support our claim that in

ordear to achieve high classification accuracy and efficiency of crawling, a

focused website crawler requires a two-level architecture and corresponding

crawl strategies with an explicit concept of websites.
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Chapter 6

Conclusions about

Multi-Instance Data Mining

This chapter concludes the part of the thesis that deals with data mining in

multi-instance objects. The solutions described in the former two chapters

solve practical applications and thus also contain methods solving problems

that are not directly related to multi-instance data mining. This chapter

sums up the introduced methods from the multi-instance point of view. Fur-

thermore, we draw general conclusions about multi-instance data mining by

analyzing the developed solutions.
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6.1 Summary of the Introduced Multi-Instance

Data Mining Techniques

As mentioned in the introduction, the usefulness of compound object repre-

sentations for data mining strongly depends on the given application. Thus,

the former two chapters provided advanced solutions for two real-world ap-

plications. Our experimental results underline the benefits of the introduced

data mining methods. However, real-world problems demand solutions for

several problems which are specific for the given application. In the following,

we will sum up the multi-instance aspects of our solutions and draw general

conclusions about multi-instance data mining.

In this part, we introduced solutions for clustering and classification of

multi-instance objects. In chapter 4, we introduced a new similarity search

system for multi-instance objects. This system is based on the minimal

matching distance and uses multi-step query processing to speed up similar-

ity queries. The evaluation of our approach used the density-based cluster-

ing algorithms OPTICS [ABKS99] and demonstrated that employing multi-

instance representations is capable to provide a more intuitive notion of sim-

ilarity.

In chapter 5, we employed multi-instance objects to represent websites.

To classify multi-instance objects, we pursued two different strategies, ag-

gregation and kNN classification. Aggregation-based classifiers like the topic

frequency vector approach and the 0-order Markov tree, do not directly em-

ploy multi-instance objects but aggregate each multi-instance object into a

single feature vector. Afterwards the multi-instance objects are represented

as one single feature vector that can be used as input for established classi-

fication methods. In our solution, this aggregation was achieved by defining

groups of instances for each website class which are called page classes. Then,

another classifier is used to map each instance to the page class it most likely

belongs to. To derive a feature vector, we built the histogram with respect
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to these groups. We employed varying classifiers to process this group. The

0-order Markov tree does not exactly match into this pattern because it does

not explicitly build up a histogram, but incrementally derives a class predic-

tion at each step. However, the method also employs a page classifier that

maps each object to a page class.

The second approach used kNN classification directly on the multi-instance

objects. Therefore, we employed a distance function called sum of minimum

distances. To speed up this classification approach, we applied the idea of

centroid based kNN classification to multi-instance objects. Since it is not

possible to directly derive a centroid from several multi-instance objects, we

introduced the centroid set to represent a set of multi-instance objects. The

centroid set is built by clustering the union of the instances of a set of multi-

instance objects and then calculating the set of cluster centroids. Therefore,

it contains a representative for each important type of instance occurring

in the set of multi-instance objects. Based on the centroid set, classification

was improved with respect to accuracy and efficiency compared to plain kNN

classification.

In the last section of this chapter, a focused website crawler is described.

A core component of this crawler is the so-called internal crawler that clas-

sifies websites while crawling them. From the multi-instance data mining

point of view, the internal crawler offers another approach to multi-instance

classification. The idea is to treat a class of multi-instance objects as a sta-

tistical process that generates different instances with varying probabilities.

A multi-instance object is now the result of employing this process several

times. This model is based on the assumption that the average number of

instances is approximately the same for each class. Furthermore, we assume

that the instances are independently generated, i.e. the occurrence of one

instance does not influence the occurrence probability of any other instance

within the same object. This approach can be used to define a Bayes classifier

for multi-instance objects. Furthermore, the approach is useful to point out

in which cases multi-instance classification yields benefits and how it does
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relate to classical multi-instance learning.

Assuming a two class problem of multi-instance objects where the number

of instances within an object is approximately equal for both classes and the

instances are generated independently. If the probability that the processes

of both classes generate the same instance is rather low, the benefit from

having more than one instance is rather low as well. In this setting a single

instance is usually sufficient to make an accurate class prediction. However,

if the probability that both processes generate the same instance with a high

probability, it becomes more unlikely that a single instance might contain the

information that is necessary for a correct class prediction. In these cases,

employing additional instances increases the probability that some of the

treated objects are specific for one of the classes.

In this model multi-instance learning is a special case in which the statis-

tical processes provide the following characteristics. The process modelling

the irrelevant class cannot generate relevant objects or generates them with

a zero probability. All other instances i can be generated by both processes

with some probability Pr[i|c] > 0 where Pr[i|relevant] ≤ Pr[i|irrelevant].

If a relevant instance occurs within a classified object the probability of the

irrelevant class drops to zero. In all other cases, the irrelevant class is pre-

dicted because the probability for irrelevant instances tends to be higher for

the irrelevant class.

6.2 Conclusion about Multi-Instance

Data Mining

The above contributions lead us to some general conclusions about multi-

instance data mining. Several distance measures on multi-instance objects

have been introduced that are suitable for different applications. The mininal

Hausdorff distance is known to provide a suitable kNN classifier for classical

multi-instance learning[WZ00]. In chapter 4, we use minimal matching dis-
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tance for clustering and in chapter 5 we use the sum of minimum distances

for kNN classification. Thus, distance based data mining proves to be a valu-

able approach for multi-instance data mining. However, this approach still

suffers from the following drawbacks:

• Though for a some of the mentioned problems a suitable distance mea-

sures was found, it is not clear which of the distance measures is suited

best for a new application. This drawback is a general problem of

distance based data mining. However, for multi-instance problems it

is very critical because the ideas of the distance measures vary very

strongly. For example, the minimal Hausdorff distance defines a dis-

tance value of two objects as the distance of the closest pair of in-

stances while minimal matching distance compares disjoint pairs of all

instances.

• Another problem of distance based data mining is efficiency. Many data

mining algorithms need large numbers of distance calculations and most

distance measures for multi-instance objects are very expensive, i.e.

one distance calculation has quadratic or even cubic time complexity

with respect to the maximum number of instances in the compared

objects. Furthermore, often similarity queries are difficult to speed up

because the used similarity measures might not even be metric. To

avoid this problem, we introduced a filter step and kNN classification

based on centroid sets. However, a general approach for speeding up

distance based multi-instance data mining is unlikely to exist due to

the strongly varying notion of multi-instance distance functions.

Besides distance based data mining, we applied an aggregation-based ap-

proach to handle multi-instance classification. Aggregation can be considered

as an additional preprocessing step that transforms a multi-instance object to

a feature vector. The resulting feature vector is used to represent the multi-

instance object when applying standard data mining algorithms. Though we
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found a solution for the given application, aggregation is not generally ap-

plicable. Finding a suitable aggregation function is also strongly application

dependent like the selection of a suitable distance measure. Furthermore, not

all relationships between sets of instances are expressible by a single feature

vector.

The internal crawler used a statical process to model a class of multi-

instance objects. This approach is the most general of the introduced tech-

niques for multi-instance data mining because it can handle different kinds

of relationships between the instances of two object. Depending on the used

distribution function for each process this approach is capable to decide the

specificity of a single instance for a class. However, this approach is suit-

able for classification only and is based on the assumption of independence

between the instances of one object. Another important problem is the se-

lection of the distribution function that is used to generate the instances of

a class. Last but not least, the number of instances of an object is treated

as equally distributed for each class which might not be realistic.

To conclude, for classification and clustering of multi-instance objects a

careful examination of the given application is necessary. Depending on the

relationships between the instances of two compared objects and the degree

the instances within an object are correlated, varying methods or similarity

measures are applicable. Thus, finding a proper solution depends on the

given application to a very high degree.
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Data Mining in

Multi-Represented Objects
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Chapter 7

Multi-Represented Objects

Multi-represented objects are the second basic type of compound objects

besides multi-instance objects. A multi-represented object consists of a tuple

of feature representations. Each feature representation belongs to a different

feature space and represents another view on the object. In this chapter, we

give a brief introduction to multi-represented objects and survey important

applications.
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7.1 Multi-Represented Objects

Many important areas of KDD are concerned with finding useful patterns

in large collections of complex objects. Images, biomolecules or CAD parts

are only some examples of complex objects that are in the center of interest

of many researchers. However, the more complex a type of object is the

more feature transformations exist that try to extract relevant features and

construct a meaningful object representation. For example, [VT00] surveys a

variety of systems for content based image retrieval and their various feature

transformations. Other examples are the feature transformations of CAD-

parts described in chapter 4.3. All of these feature transformations are well

suited for different applications and treat a data object from another point

of view. For example, shape descriptors are well suited for spotting certain

objects on images, whereas color histograms are better suited to compare

complete sceneries.

For data mining, the existence of multiple feature transformations is of-

ten problematic because it is not clear which of the representations contains

the features that are needed to achieve the desired results. Thus, the selec-

tion of a feature transformation is often a difficult and crucial decision that

strongly influences the resulting patterns. Clearly, incorporating all avail-

able feature transformations offers a more complete view of a data object

and minimizes the hazard that the information that is necessary to derive

meaningful patterns are not contained in the object representation. On the

other hand, considering too many aspects of an object is often problematic

as well. The found patterns are often very complicated and lose generality.

Furthermore, the efficiency of the data mining algorithms suffers strongly

since much more features have to be processed. Thus, integrating multiple

representation yields chances as well as drawbacks.

In this chapter, we introduce data mining techniques that allow data min-

ing for multi-represented objects. The idea of multi-represented data mining

is to use compound objects, i.e. the tuples of all available object repre-
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sentations as input for the data mining algorithms. The use of this object

representation yields solutions that can draw advantages out of additional

information, as we will see in the next two chapters.

Formally, we define a multi-represented object o as a tuple (r1, . . . , rk) ∈
R1 × . . . × Rk . The representation space Ri = Fi ∪ {” − ”} consists of a

feature space Fi for a given representation and a symbol ”− ” to symbolize

missing representation vectors. The consideration of missing objects is an

important case that must be considered to solve real-world problems. For

example, in image databases new images often lack a text annotation, or

in protein databases the three dimensional structure of an already known

protein is not explored yet.

7.2 Applications of Multi-Represented Objects

As mentioned above, one reason for the occurrence of multi-represented ob-

jects is the existence of several useful feature transformations that model

different, important aspects of the same data objects, e.g. shape and color

of an image. Another reason for the occurrence of multi-represented objects

is the existence of different measuring techniques for an object. A satellite

might offer several pictures of the same area for varying color spectra like

infrared or ultraviolet. One final reason for the occurrence of multi-instance

objects is that several databases store the same data object independently. If

these databases are integrated into a global data collection, the global view

contains a representations from each of the source database. For example,

the efforts to build up integrated databases for terror prevention provide a

picture of various facets of a person after data linkage is done. Each data

source represents another type of information about a potential terrorist.

Thus, this highly delicate application uses multi-represented data as well.

Important applications providing multi-represented objects are:

• Biomolecules
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proteins images

Figure 7.1: Proteins and images can be described by multi-represented

objects.

Biomolecules are described by various representations like text anno-

tations, sequential data, e.g. genes or amino acid sequences, or struc-

tural features,e.g. the secondary structure or the three dimensional

structure.

• General Images

As mentioned before, for images there exists a large variety of possible

feature transformations that try to express different kinds of content of

an image like shapes, textures and colors.

• CAD-Parts

CAD-parts can be transformed into feature representations by a variety

of transformations. Furthermore, CAD parts are often described by

text containing structural, functional and commercial information.

• Biometry

Another interesting area providing multi-represented data are biometric

applications. A person can identify herself by finger prints, her iris

pattern, her voice or her face.

• Satellite Images
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Satellites often make several pictures of an area using different fre-

quency spectra like infrared or ultraviolet.

This enumeration lists only some of the applications of multi-represented

objects and is far from being complete. In the following, we will concentrate

us on the first two applications. Data mining in molecular biological data-

bases and image databases. For those two applications, we will introduce

techniques that are capable to draw advantages out of the more meaningful

input space. Figure 7.1 illustrates the first two examples.
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Chapter 8

Clustering of

Multi-Represented Objects

Clustering is one of the most important data mining tasks and many cluster-

ing algorithms were introduced by the research community so far. Usually,

these methods are targeted at finding groups of similar objects in one type of

object representation using one distance function. In this chapter, density-

based clustering of multi-represented objects is examined and two clustering

methods that are based on DBSCAN are introduced. The introduced meth-

ods are applied to two important types of multi-represented data, protein

data and images.
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8.1 Introduction

In recent years, the research community spent a lot of attention to clus-

tering resulting in a large variety of different clustering algorithms [DLR77,

EKSX96, ZRL96, WYM97, AGGR98, GRS98, ABKS99, HK01]. However,

all those methods are based on one representation space, usually a vector

space of features and a corresponding distance measure. But for a variety

of modern applications such as biomolecular data, CAD-parts or multimedia

files mined from the internet, it is problematic to find a common feature

space that incorporates all given information. In this chapter, we therefore

introduce a clustering method that is capable to handle multiple representa-

tion.

To cluster multi-represented data, using the established clustering meth-

ods would require to restrict the analysis to a single representation or to

construct a feature space comprising all representations. However, the re-

striction to a single feature space would not consider all available informa-

tion and the construction of a combined feature space demands great care

when constructing a combined distance function. Since the distance func-

tions best-suited for each representation might not even provide the same

value set, it is difficult to find a proper combination that gives a meaningful

distance. Another important problem is that several data objects might not

provide all possible representations. For example, finding all representations

of a protein is expensive and time consuming. Thus, there are much less

three dimensional models of proteins than there are amino acid sequences

available so far. In these cases, the combined distance function would need

to handle missing representations adequately. A last drawback of combined

feature spaces is the following. Since many clustering algorithms are based

on similarity queries, the use of index structures is usually very beneficial

to increase the efficiency, especially for large data sets. For the design of a

proper combined distance measure, this is another important constraint to

consider, since the combination of the distance functions needs to be at least
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metric to allow the use of an index structure.

In this chapter, we propose a method to integrate multiple representa-

tions directly into the clustering algorithm. Our method is based on the

density-based clustering algorithm DBSCAN [EKSX96] that provides sev-

eral advantages over other algorithms, especially when analyzing noisy data.

Since our method employs a separated feature space for each representa-

tion, it is not necessary to design a new suitable distance measure for each

new application. Additionally, the handling of objects that do not provide

all possible representations is integrated naturally without defining dummy

values to compensate the missing representations. Last but not least, our

method does not require a combined index structure, but benefits from each

index that is provided for a single representation. Thus, it is possible to em-

ploy highly specialized index structures and filters for each representation.

We evaluate our method for two example applications. The first is a data

set consisting of protein sequences and text descriptions. Additionally, we

applied our method to the clustering of images retrieved from the internet.

For this second data set, we employed two different similarity models. The

introduced solutions were published in [KKPS04a].

The rest of the chapter is organized as follows. After this introduction,

we present related work. Section 8.3 formalizes the problem and introduces

our new clustering method. In our experimental evaluation that is given

in section 8.4, we introduce a new quality measure to judge the quality of

a clustering with respect to a reference clustering and display the results

achieved by our method in comparison with the other mentioned approaches.

The last section summarizes the chapter.

8.2 Related Work

As mentioned in the introduction, the research community has developed

a variety of algorithms to cluster data for various applications [ABKS99,

EKSX96, HK98, GRS98, ZRL96, XEKS98]. Most of these algorithms are
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designed for one feature space and one distance function to represent the

data objects. Thus, to apply these algorithms to multi-represented data, it

is necessary to unite the representations into one common feature space.

A similar setting to the clustering of multi-represented objects is the

clustering of heterogenous or multi-typed objects [WZC+03, ZCM02] in web

mining. In this setting, there are also multiple databases, each yielding ob-

jects in a separated data space. Each object within these data spaces may be

related to an arbitrary amount of data objects within the other data spaces.

The framework of reinforcement clustering employs an iterative process based

on an arbitrary clustering algorithm. It clusters one dedicated data space

while employing the other data spaces for additional information. It is also

applicable for multi-represented objects. However, due to its dependency on

the data space, it is not well suited to solve our task. Since to the best of

our knowledge reinforcement clustering is the only other clustering algorithm

directly applicable to multi-represented objects, we use it for comparison in

our evaluation section.

The goal of clustering multi-represented objects is to find a global cluster-

ing for data objects that might have representations in multiple data spaces.

The setting of reinforcement clustering is to cluster the data within one data

space while using the related data spaces for additional information. Since

the results may vary for different starting representations, the application of

reinforcement clustering is problematic. It is unclear how many iterations

are needed until a common clustering for all representations is found and if

the algorithm reaches a common clustering at all for an arbitrary number

of iterations. Let us note that this is not a problem in the original use of

reinforcement clustering, but causes a major problem when applying it to

multi-represented objects.

Our method is based on the density based clustering algorithm DBSCAN,

that was introduced in chapter 2.2.3.
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8.3 Clustering Multi-Represented Objects

Let DB be a database consisting of n objects. Let R := {R1, ..., Rm} be

the set of different representations existing for objects in DB. Each object

o ∈ DB is therefore described by maximally m different representations,

i.e. o := {R1(o), R2(o), ..., Rm(o)}. If all different representations exist for

o, than |o| = m, else |o| < m. The distance function is denoted by dist.

We assume that dist is symmetric and reflexive. In the following, we call

the εi-neighborhood of an object o in one special representation Ri its local

ε-neighborhood w.r.t. Ri.

Definition 8.1 (local εi-neighborhood w.r.t Ri )

Let o ∈ DB, εi ∈ IR+, Ri ∈ R, and disti the distance function of Ri. The

local εi-neighborhood w.r.t. Ri of o, denoted by NRi
εi

(o), is defined by

NRi
εi

(o) = {x ∈ DB | disti(Ri(o), Ri(x)) ≤ εi}.

Note that εi can be chosen optimally for each representation. The simplest

way of clustering multi-represented objects is to select one representation Ri

and cluster all objects according to this representation. However, this ap-

proach restricts data analysis to a limited part of the available information

and does not use the remaining representations to find a meaningful clus-

tering. Another way to handle multi-represented objects is to combine the

different representations and use a combined distance function. Then, any

established clustering algorithm can be applied. However, it is very diffi-

cult to construct a suitable combined distance function that is able to fairly

weight each representation and handle missing values. Furthermore, a com-

bined feature space does not profit from specialized data access structures

for each representation.

The idea of our approach is to combine the information of all different

representations as early as possible, i.e. during the run of the clustering

algorithm, and as late as necessary, i.e. after using the different distance

functions of each representation. To do so, we adapt the core object property
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Figure 8.1: Local clusters and a noise object that are aggregated to a multi-

represented cluster C.

proposed for DBSCAN. To decide whether an object is a core object, we use

the local ε-neighborhoods of each representation and combine the results to

a global neighborhood. Therefore, we have to adapt the predicate direct

density-reachability as proposed for DBSCAN. In the next two subsections,

we will show how we can use the concepts of union and intersection of local

neighborhoods to handle multi-represented objects.

8.3.1 Union of Different Representations

This variant is especially useful for sparse data. In this setting, the clustering

in each single representation will provide several small clusters and a large

amount of noise. Simply enlarging ε would relief the problem, but on the

other hand, the separation of the clusters would suffer. The union-method

assigns objects to the same cluster if they are similar in at least one of the

representations. Thus, it keeps up the separation of local clusters, but still

overcomes the sparsity. If the object is placed in a dense area of at least

one representation, it is still a core object regardless of how many other

representations are missing. Thus, we do not need to define dummy values.

Figure 8.1 illustrates the basic idea of the union method. We adapt some of
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the definitions of DBSCAN to capture our new notion of clusters. To decide

whether an object o is a union core object, we unite all local εi-neighborhoods

and check whether there are enough objects in the global neighborhood, i.e.

whether the global neighborhood of o is dense.

Definition 8.2 (union core object)

Let ε1, ε2, ..., εm ∈ IR+, and MinPts ∈ IN . An object o ∈ DB is called

union core object, denoted by CoreUMinPts
ε1,..,εm

(o), if the union of all local

ε-neighborhoods contains at least MinPts objects, formally:

CoreUMinPts
ε1,..,εm

(o) ⇔ |
⋃

Ri(o)∈o

NRi
εi

(o) | ≥ MinPts.

Definition 8.3 (direct union-reachability)

Let ε1, ε2, .., εm ∈ IR+, and MinPts ∈ IN . An object p ∈ DB is directly

union-reachable from q ∈ DB if q is a union core object and p is an element

of at least one local NRi
εi

(q), formally:

DirReachUMinPts
ε1,..,εm

(q, p) ⇔ CoreUMinPts
ε1,..,εm

(q)∧∃ i ∈ {1, ..,m} : Ri(p) ∈ NRi
εi

(q).

The predicate direct union-reachability is obviously symmetric for pairs

of core objects because the disti are symmetric distance functions. Thus,

analogously to DBSCAN reachability and connectivity can be defined.

8.3.2 Intersection of Different Representations

The intersection method is well suited for data containing unreliable repre-

sentations, i.e. there is a representation, but it is questionable whether it is

a good description of the object. In those cases, the intersection-method re-

quires that a cluster should contain only objects which are similar according

to all representations. Thus, this method is useful if all different representa-

tions exist but the derived distances do not adequately mirror the intuitive

notion of similarity. The intersection-method is used to increase the cluster

quality by finding purer clusters.
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Figure 8.2: The right figure illustrates, how the intersection-method divides

a local clustering into clusters C1 and C2.

To decide, whether an object o is an intersection core object, we examine

whether o is a core object in each involved representation. Of course, we use

different ε-values for each representation to decide whether there are locally

enough objects in the ε-neighborhood. The parameter MinPts is used to

decide, whether there are globally still enough objects in the ε-neighborhood,

i.e. the intersection of all local neighborhoods contains at least MinPts

objects.

Definition 8.4 (intersection core object)

Let ε1, ε2, ..., εm ∈ IR+, and MinPts ∈ IN . An object o ∈ DB is called

intersection core object, denoted by CoreISMinPts
ε1,..,εm

(o), if the intersection of

all its local εi-neighborhoods contain at least MinPts objects, formally:

CoreISMinPts
ε1,..,εm

(o) ⇔ |
⋂

i=1,..,m

NRi
εi

(o) | ≥ MinPts.

Using this new property, we can now define direct intersection-reachability

in the following way:

Definition 8.5 (direct intersection-reachability)

Let ε1, ε2, ..., εm ∈ IR+, and MinPts ∈ IN . An object p ∈ DB is directly
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Figure 8.3: A 2D example data set and the corresponding 3nn-distance

diagram.

intersection-reachable from q ∈ DB if q is an intersection core object and p

is an element of all local N q
ε , formally:

DirReachISMinPts
ε1,..,εm

(q, p) ⇔ CoreISMinPts
ε1,..,εm

(q) ∧ ∀i = 1, ..,m : Ri(p) ∈ NRi
εi

(q) .

Again, reachability and connectivity can be defined analogously to DB-

SCAN. Figure 8.2 illustrates the effects of this method.

8.3.3 Determination of Density Parameters

In [EKSX96], a heuristic is presented to determine the ε-value of the ”thinnest”

cluster in the database. This heuristic is based on a diagram that represents

sorted knn-distances of all given objects. In the case of multi-represented ob-

jects, we have to choose ε for each dimension separately, whereas MinPts can

be chosen globally. A user determines a value for global MinPts. The system

computes the kNN-distance diagrams for the given global MinPts, i.e. one

diagram for every representation. The user has to choose a so-called border

object oborder for each representation. The ε for the i-th representation is

given by the kkNN-distance of the border object of Ri. An example of a

kNN-distance diagram is shown in figure 8.3. Let us note that this method

still allows a certain range of ε-values to be chosen. The selection should

mirror the different requirements of the proposed methods. For the union
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Set 1 Set 2 Set 3 Set 4 Set 5

Name Isomerase Lyase Signal Oxido- Transferase
Transducer reductase

Classes 16 35 39 49 62
Objects 501 1,640 2,208 3,399 4,086

Table 8.1: Description of the protein data sets.

method, it is more advisable to choose a lower or conservative value, since its

characteristic demands that the elements of the local ε-neighborhood should

really be similar. For the intersection-method, the ε-value should be selected

progressively, i.e. at the upper rim of the range. This selection reflects that

the objects of a cluster need not to be too similar for a single representation

because it is required that they are similar with respect to all representations.

8.4 Performance Evaluation

To demonstrate the capability of our method, we performed a thorough ex-

perimental evaluation for two types of applications. We implemented the

proposed clustering algorithm in Java 1.4. All experiments were processed

on a work station with a 2.6 GHZ Pentium IV processor and 2 GB main

memory.

8.4.1 Deriving Meaningful Groupings in Protein Da-

tabases

The first set of experiments was performed on protein data that is represented

by amino acid sequences and text descriptions. Therefore, we employed en-

tries of the SWISS-PROT protein database [BBA+03]and transformed each

protein into a pair of feature vectors. Each amino acid sequence was mapped

into a 436 dimensional feature space. The first 400 features are 2-grams of

successive amino acids. The last 36 dimensions are 2-grams of 6 exchange

groups that the single amino acids belong to [DK02]. To compare the de-
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rived feature vectors, we employed the Euclidian distance. To process text

documents, we rely on projecting the documents into the feature space of

relevant terms. Documents are described by a vector of term frequencies

weighted by the inverse document frequency (TFIDF) [Sal89]. We chose 100

words of medium frequency as relevant terms and employed cosine distance

to compare the TFIDF-vectors. Many SWISS-PROT entries are mapped to

the classes of Gene Ontology [Con00]. To have a reference clustering for eval-

uation, we chose five different functional groups of Gene Ontology which are

linked by SWISS-PROT (cf. Table 8.1) and used the subclasses within these

groups as clusters in the reference clustering. Thus, we are able to measure

a clustering of SWISS-PROT entries by the degree it reproduces the class

structure provided by Gene Ontology.

To have an exact measure for this degree, we employed the class entropy

in each cluster. Let us note that we chose the entropy as measure for cluster

quality because our reference clustering does not provide real clusters but

classes. Many classes in Gene Ontology do not have a consistent character

and are divided into sub classes itself. The entropy considers a cluster as

good as long as its objects belong to the same class. The effect that the

ideal cluster consists of a clustering where each object corresponds to its own

cluster, is avoided by the constraint that any type of core object needs at

least k elements in its ε-neighborhood in one of the representations. Thus,

each cluster consists of at least k objects.

There are two effects that have to be considered to obtain a fair measure

of a clustering with noise. First, a large cluster of a certain entropy should

contribute more to the overall quality of the clustering than a rather small

cluster providing the same quality. The second effect is that a clustering

having a 5 % noise ratio should be ranked higher than a clustering having

the same average entropy for all its clusters, but contains 50 % noise. To

consider both effects, we propose the following quality measure for comparing

different clusterings with respect to a reference clustering.
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Definition 8.6 Let O be the set of data objects, let C = {Ci|Ci ⊂ O} be the

set of clusters and let K = {Ki|Ki ⊂ O} be the reference clustering of O.

Then we define:

QK(C) =
∑

Ci∈C

|Ci|
|O|

· (1 + entropyK(Ci))

where entropyK(Ci) denotes the entropy of cluster Ci with respect to MinPts.

The idea is to weight every cluster by the percentage of the complete data

objects that are part of this cluster. Thus, smaller clusters are less important

than larger ones and a clustering providing an extraordinary amount of noise

can contribute only the percentage of clustered objects to the quality. Let

us note that we add 1 to the cluster entropies. Therefore, we measure the

reference clustering MinPts with the quality score of 1 and a worst case

clustering with the score of 0, e.g. no clusters are found at all.

To relate the quality of the clustering achieved by our methods to the

results of former methods, we compared it to four alternative approaches.

First, we clustered text and sequences separately, using only one of the rep-

resentations. A second approach combines the features of both representa-

tions into a common feature space and employs the cosine distance to relate

the resulting feature vectors. As this is the only other clustering method

that is able to handle multi-represented data, we additionally compared re-

inforcement clustering using DBSCAN as underlying cluster algorithm. For

reinforcement clustering, we ran 10 iterations and tried several values of the

weighting parameter α. The local ε-parameters were selected as described

above and we chose k = 2. To consider the different requirements of both

methods, for each data set a progressive and a conservative ε-value was de-

termined. All approaches were run for both settings and the best results are

displayed.

The left diagram of figure 8.4 displays the derived quality for those four

methods and the two variants of our method. In all five test sets, the union-

method using conservative ε-values outperformed any of the other algorithms.
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Figure 8.4: Clustering quality and noise ratio.

The improvement rates of the cluster quality for the union method were be-

tween 3% and 19%. Furthermore, the noise ratio for each data set was

between 16% and 28% (cf. figure 8.4, right), indicating that the main por-

tion of the data objects belongs to some cluster. The clustering based on

a merged feature space always performed worse than clustering each of the

representations one its own and was neither capable to outperform the inter-

section nor the union method. Reinforcement clustering was not well-suited

to improve the clustering performance in any of the test sets either. The

intersection method using progressive ε-parameters performed comparably

well, but was to restrictive to overcome the sparseness of the data as good

as the union-method.

8.4.2 Clustering Images by Multiple Representations

Clustering image data is a good example for the usefulness of the intersection-

method. A lot of different similarity models exists for image data, each having

its own advantages and disadvantages. Using for example text descriptions

of images, the user is able to cluster all images related to a certain topic,

but these images need not to be similar. Using color histograms instead,

the images are clustered according to the distribution of color in the image.

But as only the color information is taken into account a green meadow with
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some flowers and a green billiard table with some colored shots on it can of

course not be distinguished by this similarity model. On the other hand, a

similarity model taking content information into account might not be able

to distinguish images of different colors.

Our intersection approach is able to get the best out of all these different

types of representations. Since the similarity in one representation is not

really sound, the intersection-method is well-suited to find clusters of better

quality for this application. For our experiments, we used two different rep-

resentations. The first representation was a 64-dimensional color histogram.

In this case, we used the weighted distance between those color histograms,

represented as a quadratic form distance function as described for example in

[HSE+95]. The second representation were segmentation trees. An image was

first divided into segments of similar color by a segmentation algorithm. In a

second step, a tree was created from those segments by iteratively applying a

region-growing algorithm which merges neighboring segments if their colors

are alike. In [KKSS04] an efficient technique is described to compute the

similarity between two such trees, using filters for the complex edit-distance

measure. Since our image data set was retrieved from the WWW, there does

not exist any objective reference clustering. Thus, we simply describe the

results we achieved. In general, the clusters we got using both representa-

tions were more accurate than the clusters we got using each representation

separately. Of course, the noise ratio increased for the intersection-method.

To demonstrate the improved cluster quality, figure 8.5 displays a sample

cluster of images, we found with the intersection-method. The left rectangle

contains images clustered by the intersection-method. The right rectangles

display additional images that were grouped with the corresponding cluster

when clustering the images with respect to a single representation. Using

this method, very similar images are clustered together. When clustering

each single representation, a lot of additional images were added to the cor-

responding cluster. As we can see, using the intersection-method the most

similar images of both representations still belong to the cluster.
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Image samples that are in the corresponding
cluster built on histograms but not added to IC 5

Image Samples that are in the corresponding
cluster built on trees but not added to IC 5

……..

……..

Cluster IC5 created by intersection of trees
and histograms representations

……..

Figure 8.5: Example of an image cluster.

8.5 Conclusions

In this chapter, we discussed the problem of clustering multi-represented ob-

jects. A multi-represented object is described by a set of representations

where each representation belongs to a different data space. Contrary to

existing approaches, our proposed method is able to cluster this kind of data

using all available representations without forcing the user to construct a

combined data space. The idea of our approach is to combine the information

of all different representations as early as possible and as late as necessary.

Thus, the core object property that was proposed for DBSCAN, is adapted

to handle multi-represented objects. To decide whether an object is a core

object, we use the local ε-neighborhoods of each representation and combine

the results to a global neighborhood. Based on this idea, we proposed two

different methods for varying applications. For sparse data, we introduced

the union-method that assumes that an object is a core object, if MinPts
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objects are found within the union of its local ε-neighborhoods. Respectively,

we defined the intersection-method for data where each local representation

yields rather big and unspecific clusters. Therefore, the intersection-method

requires that at least MinPts objects are within the intersection of all lo-

cal ε-neighborhoods of a core object. In our experimental evaluation, we

introduced an entropy based quality measure that compares a given clus-

tering with noise to a reference clustering. Employing this quality measure,

we demonstrated that the union method was most suitable to overcome the

sparsity of a given protein data set. To demonstrate the ability of the in-

tersection method to increase the cluster quality, we applied it to a set of

images using two different similarity models.



Chapter 9

Database Integration using

Classification of

Multi-Represented Objects

Biological databases provide large collections of complex objects like genes

and proteins. Though these databases are publicly available, their use is

limited due to their varying data formats and access facilities. Thus data

integration is an important task in bioinformatics. A promising approach to

solve this problem is ontology-based data integration. In this chapter, we

introduce a classification system mapping protein data into large ontologies

of protein classes that can be used for ontology-based data integration. The

introduced method is based on support vector machines and uses the class

hierarchy within an ontology to speed up classification. Since biomolecules

are often described by more than one representation, our approach uses

multi-represented classification. Therefore, we introduce a technique called

object-adjusted weighting that increases the classification accuracy by locally

weighting the classification results in each representation. The methods were

implemented and tested by mapping entries of the SWISS-PROT protein

database [BBA+03] to the protein classes in Gene Ontology [Con00].

193
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9.1 Introduction

In recent years, the amount of publicly available biological information has

increased dramatically. As a consequence, many databases have emerged,

offering diverse information on all kinds of biological entities such as proteins,

nucleotides, pathways, etc. Though most of these information sources are

accessible via the web, the use of the information is strongly limited due to

the heterogeneity of data formats, data models, and access facilities between

these sources [BK03].

A promising approach for overcoming these problems is the use of on-

tologies and taxonomies for data integration. Several ontologies have been

developed for molecular biology but only a small fraction of them is widely ac-

cepted. One of the most popular ontologies in molecular biology is Gene On-

tology (GO) [Con00] which models the function of genes and gene products,

e.g. proteins. Most of the major protein databases such as SWISS-PROT

[BBA+03] provide a mapping of their entries to GO. However, not all of the

entries are already mapped and biologists all over the world produce new

entries every day. To obtain a mapping of a so far unlinked protein database

entity into GO, usually some information about the biological function of

the protein representing this entry has to be explored. Since this usually has

to be done manually throughout a series of biological experiments and tests,

it is a very time consuming and costly task. It would be of great benefit if

the mapping could be done automatically by computer-supported prediction

of the biological function out of the raw data stored in the major protein

databases, e.g. the amino acid sequence of a protein which can be obtained

very easily, without laborious experiments. More generally, a framework for

the automatic prediction of the function of biological entities such as proteins

is needed to classify these entities according to ontologies such as GO.

In this chapter, we introduce a classification system that provides a good

mapping for so far unlinked biological entities and gives a prediction of the

biological function. The fact that the objects are not linked to classes or
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other entities yet, restricts the use of general relationships modelled in the

ontology. Thus, our system exploits the class inheritance of the ontology for

classification, i.e. the taxonomic part of it.

Due to the nature of biological entities, our system copes with the fol-

lowing demands: Several instances may belong to more than one class in the

taxonomy. Different instances might be placed at varying abstraction levels.

At last, biological ontologies may employ multiple inheritance in order to

model their classes.

Another important aspect is that the representations of biological entities

can usually be derived from multiple sources, e.g. for most proteins, the

amino acid sequence data and a textual descriptions of experimental results

are available from databases such as SWISS-PROT [BBA+03]. For a smaller

number of proteins additional data is available, e.g. the three dimensional

structure. Usually such data can be derived from other public databases

such as the Protein Data Bank (PDB) [BWF+00]. An important reason for

the diversity of biological object representations is the fact that they are not

directly observable. Thus each measuring technique might reveal another

important aspect of these complex objexts that can be used for data mining.

To use all those different aspects for accurate class predictions, a flexible

classifier has to be found that is capable to deal with the following problems.

As the quality of each type of representation may vary for different entries and

types of representations, the classifier should automatically weight the influ-

ence of each representation. Furthermore, the framework should be flexible

enough to handle missing representations, i.e. if one of the object represen-

tations is missing, the classifier should still be able to make a prediction.

Since biological ontologies are built of large numbers of classes and bi-

ological entities occur in large cardinalities, good efficiency is mandatory

to handle large problems in applicable time. To meet these challenges, we

present a novel approach to hierarchical classification based on support vector

machines which provides the following features:
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• An efficient and accurate method for handling multi-classified instances

employing support vector machines.

• A method for the classification of multi-represented objects that is ca-

pable to cope with missing representations.

• A discussion of methods for hierarchical classification under the aspect

of large classification problems and taxonomic directed acyclic graphs

instead of strict taxonomy trees.

• A thorough experimental evaluation, demonstrating effectiveness and

efficiency of our prototype on several subsections of GO.

Our prototype was designed to automatically map proteins based on their

SWISS-PROT entries into GO. We use sequence data and the text annota-

tions as different representations for proteins. Let us note that further data

sources such as secondary and tertiary structures can easily be incorporated

into the prototype. The methods described in this chapter were published

in [KKPS04b]. The rest of the chapter is organized as follows. In Section

9.2, we briefly review related work. In Section 9.3, the major concepts of our

approach that cope with the challenges mentioned above are presented. The

proposed prototype is evaluated based on a realistic experimental setting in

section 9.4. Section 9.5 offers a summary of the presented work and gives

perspectives for future work.

9.2 Related Work

Classifying biological sequences such as nucleotide or protein sequences is

an active area of research. Common approaches are based on k-nearest

neighbor classifiers (KNN) and all kinds of Markov models (MM), includ-

ing simple MM, selective MM and higher-order MM. Examples of KNN and

MM approaches are given by [DEKM98, Mou01]. KNN-methods for biolog-

ical sequence classification usually use edit distance as similarity function.
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Although being simple and comprehensible to biologists, these approaches

suffer from the expensive computation. MM are widely used for biological

sequence classification since they have an inherent ability to model sequential

constraints in the data. Recently, SVMs have been applied to sequence clas-

sification by [DK02, SCW+03] and demonstrated excellent accuracy when a

suitable feature extraction method is employed. To be suitable for sequence

classification, an extraction method should model the sequential nature of

the data. Since finding such an adequate extraction is not a trivial task, re-

cent research addresses this challenge, e.g. [KH98, LZO99, WMSW01, DK02,

SCW+03].

Text descriptions of biomolecules are transformed to feature vectors by

the methods introduced in chapter 2.1.2. For the classification of the resulting

vectors, several approaches have been proposed [HK00, Yan97, Roc71]. SVMs

have also demonstrated their high value for making very accurate predictions

in the field of text classification [Joa98].

Employing class hierarchies to improve large scale classification problems

has predominantly been used in text classification. Therefore, the used tax-

onomies are taken from directory services for HTML documents [MRMN98,

DC00], structural class systems like the U.S. patent codes or are constructed

to have a proper testbed [Lar98]. The idea of hierarchical classification is that

solving a set of small problems with less classes can be achieved faster and

more effective than solving one large scale classification problem distinguish-

ing a large amount of classes. To do so, several approaches have been intro-

duced by [MRMN98, DC00, Lar98, KS97, DMS98, VMD00, WZL99]. Most

of them achieved a big performance improvement and some gain in classifi-

cation accuracy. However, none of these approaches examined an arbitrary

shaped class system of functional data types employing multiple inheritance

so far. Furthermore, only [DC00] examines the combination of support vec-

tor machines and class hierarchies, but the evaluation is based on a strict two

level taxonomy tree. There have been several approaches to employ general

ontologies for classification via relational learning like [CDF+99]. However,
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since those approaches rely on general relations, the problem they try to solve

is dissimilar to the task that is described in this chapter.

The task of learning from objects given by multiple representations has re-

cently drawn some attention in the pattern recognition community [KHDM98,

Dui02, KBD01]. In [Dui02] the author describes the method of classifier fu-

sion to combine the results from multiple classifiers for one and the same ob-

ject. Furthermore, [Dui02] surveys the four basic combination methods and

introduces a combined learner to achieve combination rules offering better

accuracy. However, the introduced methods does not adjust to the reliability

of a local class prediction. Furthermore, the combination methods described

in [Dui02] are based on the combination of distribution vectors for each rep-

resentation and deriving distribution vectors from the type of multi-class

SVMs, we use in our method is a not yet solved problem. In our evaluation

section, we therefore compare our method to an unweighted average voting

vector which is the easiest way to apply the already published methods.

9.3 Classification of Biological Objects

In this chapter, we address the problem of classifying biological objects like

genes or proteins into a large class system like Gene Ontology [Con00].

The goal of classification is to learn a function F : O → C that maps as

much objects o ∈ O to their correct class c ∈ C as possible. For training,

a set of tuples (o, c) of objects o and their correct classes c is given to the

classifier, the so-called training set. A variant of simple classification is multi-

classification Fmulti : O → 2C which maps each object o to a subset of C. In

our application, multi-classification is mandatory because large parts of the

objects are associated with more than one class C.

In most application domains, the objects are represented by one (possibly

complex) data type. Thus, the established way to process the objects o ∈ O

is to extract a set of meaningful features from the object representation.

For most types of data representations, e.g. text, there already exist several



9.3 Classification of Biological Objects 199

approaches of feature extraction. The derived features span the so-called

feature space. Each dimension of the feature space represents a feature.

Thus, an object o is represented by a feature vector. A classifier is trained

on the set of feature vectors derived from the training set.

As stated above, biological entities are often built of multiple data types

(representations), such as sequence data, text, etc. Thus, the input space O

of our classifier F (analogously for Fmulti) is composed of the set of differ-

ent representations an object in O might have. Though building one joined

feature space for all different representations like texts or sequences is prin-

cipally applicable, the corresponding feature vectors might mirror the prop-

erties of the data object only poorly. We argue that classification benefits

from incorporating the knowledge about the structure of the input space, i.e.

the knowledge about the representation a feature is extracted from, into the

classifier. In other words, features from the same representation should be

treated in a more similar way than those from different representations.

A second property of biological entities could be utilized to enhance the

performance of our prototype. Not only the input space O but also the output

space C of F (analogously for Fmulti) is structured. In fact, the classes in

C are usually organized in a sophisticated class system like a taxonomy or

an ontology (in our case the GO). To solve a classification problem, it is not

necessary to consider any relations between the classes ci ∈ C. But the fact

that the classes in C are structured can be exploited for dealing with large

cardinalities of C more efficiently.

In the following, we will first introduce an approach for multi-classification

based on Support Vector Machines. Afterwards we will integrate the knowl-

edge about varying object representations, i.e. the structure of the input

space, to enable the accurate incorporation of as much information about

the objects as possible into the classification process. Finally, hierarchical

classification is discussed, utilizing the structure of the output space in order

to enhance the performance of our framework.
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9.3.1 Using Support Vector Machines for

Making Set-Valued Predictions

Support Vector Machines (SVMs) are capable of providing superior accuracy

compared to other classification methods for most representations of biologi-

cal objects [Joa98, DK02]. Standard SVMs, also called binary SVMs, classifiy

objects into two classes by finding a hyperplane that separates a given train-

ing set according to these classes in the best possible way. Since SVMs are

only capable of making binary decisions, it is necessary to enhance them to

distinguish between more than two classes and to make set-valued predic-

tions. In [PCST00] three methods for implementing SVMs are compared

that distinguish more than two classes. The first, the so-called one-versus-

rest approach employs one binary SVM for each class to decide if an object

belongs to that class or not. Thus, this approach is capable to predict any

class combinations possible. For example, an object could be mapped to all

classes, if all binary SVMs predict the class they distinguish from the rest

of the classes. The second approach, the so-called one-versus-one approach

uses N ·(N−1)
2

many binary SVMs for distinguishing between each pair of the

given N = |C| classes. When classifying an object, the results are aggre-

gated into a so-called voting vector. This vector provides a dimension for

each class and its components correspond to the number of binary SVMs

that have predicted this class. Thus, there are N ·(N−1)
2

votes. Since there are

only N −1 binary SVMs distinguishing a class from the other classes, a class

can attain a maximum of N−1 votes. A single class decision is accomplished

by returning the class having the maximum number of votes in the vector.

Note that this maximum vote is not necessarily N − 1. The last approach

uses decision directed acyclic graphs to reduce the number of binary SVMs

considered for classification to N − 1 out of N ·(N−1)
2

trained SVMs. The ap-

proach trains the same number of SVMs, but does employ only a fraction of

them for classification.
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We choose the one-versus-one approach for our system, since voting vec-

tors provide a meaningful intermediate result. To enable our classifier to

predict a set of class combinations, we collect the set of all class combina-

tions that occur within the training data. Afterwards, we extend the set of

original classes by those class combinations. Thus, all valid combinations are

predictable. This general approach is especially suitable for our application

because there are several class combinations that do not make sense. For

example, an object that is predicted to be a dog is unlikely to be a cat at

the same time. Thus, we can limit the set of valid class combinations to all

class combinations which occur in the training data. Let us note that the

one-versus-rest approach also solves the problem of set-valued predictions,

but offered inferior results due to the prediction of invalid class combinations

(see Section 9.4 for experimental results).

A drawback of all of the mentioned approaches of multi-class SVMs is that

the extra effort for introducing another class leads to the use of additional

binary SVMs distinguishing the new class. To avoid this additional overhead,

we do not extend the class set at once. Instead we refine the post processing

of the voting vectors gained from the one-versus-one approach. Thus our

classification function has the following form:

Let O be the set of objects, let C be the set of classes, let C∗ be the

extended class set including all valid class combinations and let V with

dim(V ) = |C| be the vector space of voting vectors. Then our classifier

has the following form:

Cl : O → C∗

Cl(o) = F2(F1(o))

where F1 : O → V and F2 : V → C∗ are classifiers. For F1 and F2, our

prototype employs a one-versus-one multi-class support vector machine.

The vector space of voting vectors is well suited to describe the results

of the first classifier. A one-versus-one multi-class SVM partitions the fea-

ture space along each of its binary SVMs. A voting vector corresponds to a
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Figure 9.1: Three binary SVMs distinguish the classes A, B and C.

partition of the feature space. Note that those partitions might not be con-

tinuous, but are placed between a certain set of classes. Since the partitions

are made to separate the objects with respect to their class, it is very likely

that the majority of objects belonging to a partition belong to the same class

combination. Figure 9.1 display an example of three classes that are sepa-

rated by three binary SVMs. For each partition the corresponding voting

vector is given. Note that voting vector (2,0,1) describes a partition where

the majority of objects belongs to both classes A and C.

The reason why the classifier F2 still offers better efficiency than using

just one function F : O → C∗ is that usually the cardinality of the output

space C and therefore that of V is much smaller than the number of features

describing an object o. Though F2 might employ many additional SVMs, in

most cases the method offers a performance benefit due to the much simpler

input space V .

9.3.2 Multi-Represented Classification using SVMs

An important aspect of the proposed system is that the classification of

biological objects should be based on all available information. Thus, the
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classifier should be able to use as much different representations as possible

or if the object is described in more than one form, it should use all available

representations. For proteins, common representations are describing text,

sequence data, secondary and three dimensional foldings. Our prototype

uses text and sequence data but the introduced method for multi-represented

objects is capable to handle any number of representations.

To extract features from each representation, there are several standard

techniques for each kind of representation (see Section 9.2). Thus, the first

step is to extract features from the objects in the training set for each rep-

resentation. As mentioned before, a simple solution is given by building up

one feature space incorporating the features drawn from all the represen-

tations. However, for the following reasons, a more sophisticated approach

offers better results. The number of features best suitable for each represen-

tation yields an unbalanced weighting of the impact of each representation.

For example, the number of features used for a suitable text representation

might be orders of magnitude higher than those used for three dimensional

foldings. Thus, most classifiers will favor the representation providing more

features instead of the representation carrying more information. Further-

more, the techniques proposed to handle different representations vary in

the parametrization of the classifiers. For example, the SVM for text and

sequence data may use different kernel functions to distinguish the objects.

By using a combined feature space, we are forced to find a compromise for

these tuning decisions that might not offer optimal results. Last but not

least, the handling of missing representations of a data object is difficult,

since the classifier expects at least some values in the missing dimensions of

the input space.

As a consequence our classification system considers varying represen-

tations separately. The idea is that each data source is handled by some

specialized classifier first. Afterwards the results are combined to build up a

prediction for the object.

Thus, our classifier has the following form: Let O = R1 × ..× Rn be the
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set of objects o = (r1, . . . , rn) represented by an n-tuple of feature vectors

r1, . . . , rn drawn from the single representations R1, . . . , Rn. Furthermore,

let C be the set of classes, let C∗ be the extended class set including all

valid class combinations and let V with dim(V ) = |C| be the vector space of

voting vectors. Then our classifier has the following form:

Cl : O → C∗

Cl((r1, .., rn)) = F2(comb(F1,1(r1)), .., F1,n(rn))

where F1,j : Rj → V , F2 : V → C∗ and comb : 2V → V .

Each of the feature vectors rj is classified by a specialized classifier F1,j

into a voting vector. The function comb combines the voting vectors of each

available representation into one common voting vector which is afterwards

mapped into the expanded class space C∗ by F2.

Due to this design each representation can be classified in the best possible

way by a specially tuned SVM and the resulting voting vectors are combined

without any influence of the dimensionalities of the feature spaces. Last but

not least, missing representations can be handled by a properly designed

combination function. Since the combination function is designed to handle

an input of j voting vectors with 1 ≤ j ≤ n and generates an output vector

that is independent from j, missing representations are processable. Note

that though the missing representations can be processed, the quality of

the prediction is still likely to suffer, depending on the significance of the

remaining descriptions.

Our general combination function has the following form:

comb : 2V → V, where

comb(o) =


f1(r1,1, . . . , r1,m)

...

fN(rN,1, . . . , rN,m)


and V is the feature space of voting vectors for N base classes. f is

a normalized function to combine the components of the m input vectors,



9.3 Classification of Biological Objects 205

where 1 ≤ m ≤ n and n is the number of representations. Common choices

for f are the minimum, the product, the sum and the maximum, where the

sum and the product have to be normalized by m. [Dui02] offers a survey

which of those four strategies is suited best for which kind of object. Fur-

thermore, [Dui02] introduces the idea of employing an additional learner to

improve predictions. This idea is maintained by our second classifier as long

as it does not collide with the requirement of handling objects with missing

representations. As a result, we lose the possibility to consider correlations

between votes for different classes drawn from different representations.

Since the results achieved by employing the methods described in [Dui02]

were not capable to improve accuracy, we introduce a weighted strategy to

achieve much better results. The main problem of the basic strategies is that

each data source always has the same impact on the result without consider-

ing the reliability of the class prediction in each representation. For example,

consider a two class classification task based on two representations. If both

local voting vectors indicate different classes, an unweighted combination

rule cannot predict any class. For this case, it would make sense to favor the

voting vector offering more reliable information. Thus, we should increase

the impact of each voting vector dependent on its reliability.

To model the influence of different data sources, we introduce weight

factors for each representation j and each object o. These weight factors

reflect the following aspect: How confident is a specialized classifier F1,j

about the voting vector it produced for a special feature vector rj. Our rule

for calculating the components of the general voting vector is:

fi(ri,1, . . . , ri,m) =

∑m
j=1 wrj

· (F1,j(rj)i)

m

where wrj
is a weight describing the confidence of the prediction derived

from F1,j for rj and F1,j(rj)i is the i-th component of the voting vector derived

from the j-th data source. Note that we choose the sum-function as base

combination strategy, since all data sources should contribute to the result.

Let us note that using the confidence vectors derived by a statistical classifiers
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as proposed [Dui02] also weights the impact of representation. However, since

these confidence vectors are the foundation of the class decision itself, they

are often too unreliable to judge the class decision. In other words, if a

statistical classifier predicts the wrong class, it often judges the reliability of

the prediction still as very high because both aspects are judged considering

the same model.

Our method to find a meaningful weighting uses an established method

for deriving confidence values for binary SVMs. This method calculates the

distance of the feature vector to the separating hyperplane. The idea is

that the closer the feature vector is to the separating hyperplane the less

confident is the prediction. This is based on the characteristic of SVMs that

objects which are difficult to decide are placed in the surrounding of the

hyperplane. To derive confidence values and to model the effect that after

a certain distance to the separating hyperplane the decision is considered as

secure, a sigmoid function is usually applied to the distance. Furthermore,

the closer surrounding of the hyperplane is treated in a more sensitive way.

Thus, the confidence conf of a SVM svm is given by:

confsvm(o) =
1

1− eα·svmdist(o)

for object o, svmdist(o) the distance of o to the separating hyperplane of

svm and α a parameter for regulating the sensitivity.

Since our system employs multi-class SVMs that usually consist of more

than one binary SVM, the process of deriving a proper weight has to con-

sider several distances. Therefore, we determine the class having the maxi-

mum vote in the voting vector derived from one data source. For this class,

we determine the minimum confidence value belonging to the SVMs that

characterize the predicted class (cf. Figure 9.2).

Let F1,j be the multi-class SVM treating the representation j. Then F1,j

is built from the following matrix of binary SVMs:
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F1,j =



− svm1,2 . . . svm1,N

svm2,1 − svm2,3 . . .

. . . . . .
. . . . . .

svmN,1 . . . svmN,N−1 −


Note that this matrix of SVMs is symmetric, since the classifier distin-

guishing i from j is the same as the one distinguishing j from i. Then we

determine the weight in the following way:

wrj
= min

svmi,maxdim(vj)∈F1,j

confsvmi,maxdim(vj)
(rj)

where vj is the voting vector derived by F1,j for rj and maxdim(vj) is the

class in vj having the maximum number of votes.

The idea is that the class having the maximum count is most likely part of

the prediction. If the feature vector is predicted with a high confidence value,

it needs to have a sufficient distance from any of the other classes. Afterwards

the weights are normalized and used in comb as described above. Thus,

classifiers offering highly reliable results have significantly more impact on

the resulting voting vector. Since the weights are calculated for every single

instance to be classified, our combination function adjusts to the current

object and does not prejudge complete representations. Thus, each object

is predicted on the representation that is most significant for the current

task. Therefore, we call this new method object-adjusted weighting. Let us

note, that object-adjusted weighting in the introduced form implies that all

weights are derived using the same method.

9.3.3 Structuring the Output Space

Classification into large class sets providing over 100 classes is a very time

consuming task. Remember that a one-versus-one multi-class SVM needs
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β

Figure 9.2: Illustration of the class confidence estimation (see text for de-

tails).

4,950 binary SVMs for 100 classes. Thus, to make the system scalable, it is

necessary to find an efficient way to classify into large class sets. One way

to speed up classification is to employ additional knowledge about the class

set. Considering a class system like an ontology or a taxonomy and not just

a simple set of classes, opens the possibility to split the large classification

problem into several smaller ones which are faster to process. Let us note

that the accuracy achieved on smaller systems also tends to be significantly

higher because of the smaller problem.

Ontologies are a common approach to model class information in molec-

ular biology. Though an ontology usually models all kinds of relations, most

of them are not useable for classification in our system. The problem is that

the objects we want to classify do not have any link to any other object yet.

Thus, exploiting general relations to determine the class of an object is very

difficult in our application. On the other hand, we can use the inheritance

relations of the ontology because of our knowledge that an object which is

part of a supertype opens up the possibility that it is part of a subtype, too.

Thus, we use the taxonomy part of the given ontology. This taxonomy varies
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from the majority of class hierarchies used in other projects, regarding the

following three aspects:

• Instances can be placed at varying abstraction levels. It is common to

biological ontologies to collect entities not further specified in non-leaf

nodes of the ontology though there might be several refinements of the

class.

• It is possible that database entries may link to varying classes in the

class system. Thus, we have to treat multi-classified objects belonging

to one or more classes.

• A class hierarchy of an ontology might use multiple inheritance for

some of its classes. This characteristic leaves us without a taxonomy

tree and demands a taxonomic graph.

According to these characteristics, we restrict a given ontology to a taxo-

nomic directed acyclic graph. A directed acyclic graph (DAG) is a connected,

directed graph that does not contain any cycles. An entry node to a DAG

is a node without any incoming edge. If there is only one entry point, the

node is called root and we have a rooted DAG. A taxonomic directed acyclic

graph (TDAG) is a rooted DAG where each node is connected to a class

of objects. The class of a predecessor node is a supertype to the classes of

its successor nodes. Furthermore, we require that the entries belonging to

the supertype are exactly the union of the entries belonging to its subtypes.

Though this requirement is not fulfilled in the first place, we can easily fix it

by introducing additional leaf nodes to the supertypes having instances that

do not belong to any of the subtypes. Thus, we get a TDAG which is our

choice of class system, providing a more general setting. A sample TDAG is

depicted in Figure 9.3.

To find out which method of hierarchical classification is best suited for

exploiting TDAGs, we will discuss two basic approaches and their ability to

support our setting.
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Figure 9.3: A sample TDAG.

The basic approach of hierarchical classification is to decompose a flat N

class problem to several smaller problems of the size ni � N . Thus, common

hierarchical classifiers are class hierarchies where each supertype provides a

classifier that predicts the subtypes a given object belongs to. The idea

is that these smaller problems are easier and faster to decide than one big

problem. The differences between the majority of introduced methods for

hierarchical classification are mostly within the part of the class system that

is traversed during classification. Principally, there are two strategies to

tackle the problem:

• The probabilities (or a combination of classifier outputs) are considered

for each leaf in the class hierarchy. Thus, the whole class hierarchy is

visited and leaves getting smaller confidence values by the top-level

classifiers might still be considered if the classifiers are confident on the

rest of their decision paths.

• Step by step at each level, the sub-classes that are considered unlikely
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are pruned. Thus, only a small portion of the classifiers in the system

is employed for classification.

The first approach tries to achieve the best possible accuracy while the

second approach offers better efficiency, but might lose accuracy due to its

restrictiveness. Thus, the second approach is favorable for our target to

employ large TDAGs providing over 100 classes if accuracy does not suffer

too much. Further reasons for employing the second approach to achieve

classification into large TDAGs are:

• The occurrence of multiple inheritance and leaves on varying abstrac-

tion levels makes it computationally demanding to calculate compara-

ble probabilities for all leaves. To achieve such a calculation implies

knowledge about all pathes leading to a leaf. Furthermore, the fact

that leaves are placed at different abstraction levels requires proper

normalization of the probabilities.

• Employing classifiers that do not consider the possibility that the ob-

ject belongs to none of its classes, might generate confidence values

that do not reflect a realistic estimation. Figure 9.4 shows an example

of a hierarchical classifier based on SVMs employing the distance to

the hyperplane as confidence value. In the described case, an object

is misclassified due to an unrealistically high second level confidence

value.

• The possibility of multiple paths leading to a class is able to compensate

a wrong decision in the second approach. If one path to reach a class

is pruned, it still might be reachable via another path in the TDAG.

Thus, we choose the second approach for building a classifier that employs

TDAGs as a class system. Our System now consists of a TDAG organizing

the classes we want to predict. At each node a classifier designed as described

in the previous subsection is trained to decide the correct subtypes under the
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Figure 9.4: Example for a wrong decision due to a very high 2nd level

confidence value.

precondition that the object already belongs to the class the node is attached

to. Hierarchical classification is now achieved by starting the traversal of the

TDAG at the root node and following all predicted paths until every branch

of the process reaches a leaf. The set of reached leaf nodes is the prediction

of the class set made by the system.

9.4 Experimental Evaluation

9.4.1 Testbed

In order to demonstrate the advantages of our system, we carried out a

versatile experimental evaluation. The experiments were performed on five

different classification problems. The testbeds consist of 17 to 107 Gene

Ontology classes [Con00] and their “is-a“ relationships. The corresponding
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Set 1 Set 2 Set 3 Set 4 Set 5

Name Response
to external
stimulus

Protein
binding
activity

Receptor
binding
activity

Oxidore-
ductase

Biosyn-
thesis

Number of
Goal Classes

17 19 26 94 107

References
to proteins

1,832 1,166 1,857 9,907 18,111

Multi-class
Proteins (%)

5.36 13.63 14.29 17.97 20.58

Table 9.1: Details of the test environments

objects were taken from the SWISS-PROT [BBA+03] protein database and

consist of a describing text and the amino acid sequence of the described

protein. The properties of each testbed is shown in Table 9.1. In order

to obtain a TDAG with sufficient training objects per class, the original

environment was pruned. The result of the pruning is a TDAG that fulfills

the following conditions:

1. Every leaf class refers to at least MinSupport proteins.

2. Every inner node in the TDAG has at least MinSonNumber direct son

classes.

3. The pruning process contains as much training objects as possible. This

condition is fulfilled by moving proteins from pruned classes to their

direct parent.

The details of the classification problems are listed in Table 9.1.

All algorithms are implemented in Java and were tested on a work station

that is equipped with a 1.4 GHZ Pentium IV processor and 2 GB main

memory. To measure the accuracy for multi-classified objects, we used the

following definition of classification accuracy:

Accuracy = 1−
∑

o∈T (|(A(o) ∪B(o))− (A(o) ∩B(o))|)∑
o∈T |A(o)|+ |B(o)|
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where o is a test object, T is the set of test objects, A(o) is the correct

class set for object o and B(o) is the predicted class set of object o. In order

to avoid overfitting, the evaluation used 10-fold cross-validation.

To classify protein sequences, we employed the approach described in

[DK02]. The basic idea is to use local (20 amino acids) and global (6 exchange

groups) characteristics of a protein sequence. To construct a meaningful fea-

ture space, we formed all possible 2-grams for each kind of characteristic

which provided us the 436 dimensions of our sequence feature space. For

text descriptions, we employed a TFIDF vector for each description that was

built of 100 extracted terms. Both representations were classified, employing

a degree 2 polynomial kernel. Due to the superior results of the described hi-

erarchical approach, all of the following experiments use a structured output

space with the exception of the flat classifier approach. The feature selections

were applied to each node separately as described in [KS97].

9.4.2 Experimental Results

To show that the one-versus-rest approach is not suitable for our application,

we compared its accuracy on the text descriptions to the one-versus-one ap-

proach. Since it offered significantly inferior results to the settings employing

an extended class set and the one-versus-one approach (4.49% - 12.01% less

accuracy), we did not follow this approach any further (cf. Figure 9.5). For

example, the classification accuracy achieved for the Set 4 testbed by the

one-versus-one strategy was 82.12%, whereas the one-versus-rest approach

only reached 70.11%.

Our second experiment demonstrates that a two-step classifier offers bet-

ter results compared to a single classifier using a direct extension of the class

set (cf. Section 9.3). The two-step approach achieved comparable accuracy

and superior efficiency for all test sets (cf. Figure 9.6). In particular, our

approach showed for Set 5 with 107 goal classes the classification accuracy
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Figure 9.5: Classification accuracy (in %) of our method compared to the

one-versus-rest approach.

of 81.37% and took on average 1.75 seconds as classification time per object.

The competing method using only one classifier and a direct extension of

the class set achieved ca. 1 % less classification accuracy and was evidently

slower - 2.66 seconds as average classification time per object. According to

our results, the two-step approach improved both efficiency and effectiveness

of the classifier.

In order to show the advantages of the hierarchical approach against an

unstructured class system, we compared both approaches for the introduced

classifier on both representations. We observed better accuracy in most cases

and an enormous improvement in classification time, especially when working

with large class systems (cf. Figure 9.6). In case of Set 4 providing 94 target

classes the flat-classifier achieved 69.92% accuracy and took on average 5.97

seconds for the classification of an object. The hierarchical approach achieved

on the same data significantly higher accuracy (82.65%) and needed 0.85

seconds per object. Thus, hierarchical classification was processed up to 7
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Figure 9.6: Accuracy and runtime for hierarchical classification employing

a one-versus-one SVM with an extended class set (direct extension) and two

subsequent one-versus-one SVMs (our approach). Additionally, we compare

our approach without using a TDAG (flat classifier).

times faster than flat classification. Note that this considerable speed up was

achieved especially in the large TDAGs where the performance is much more

critical than in smaller problems. Furthermore, the classification accuracy

surpassed the accuracy observed for the other approaches in the majority of

test sets.

The next experiment compares the use of a compound input space for clas-

sification. Therefore, we compared the accuracy achieved by employing only

the text part, only the sequence part, a combined feature space that incorpo-

rates the features of both representations and our combined classifier. The

combined classifier was evaluated with and without object-adjusted weights

(cf. Table 9.2). In all of our test environments, the classification of text was

more accurate than that of sequence data based on the employed 436 dimen-

sional feature space. Furthermore, the combination without object-adjusted

weights and the variant employing a combined feature space were not capable

to improve accuracy towards the text description in all cases. Thus, it would

be more promising to restrict the classifier to employ text descriptions only.

On the other hand, the variant that employs the object-adjusted weighting
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Method Set 1 Set 2 Set 3 Set 4 Set 5

text only 90.82 80.5 80.71 82.12 80.55
sequence only 89.4 80.3 77.96 75.22 71.09
combined feature space 88.6 80.56 74.76 77.87 77.89
combination with average 87.92 78.61 72.97 76.68 75.35
object-adjusted weighting 92.52 84.71 81.65 82.65 81.37

training on text and sequ. 89.32 80.66 76.44 69.56 73.41
classif. on sequ. only

Table 9.2: Classification Accuracy (in %) for text descriptions, sequence
data and varying combination methods.

increases the accuracy in all 5 testbeds up to 4%. Thus, it was the only

examined method that was able to dynamically decide which representation

is suited best and draw advantages from all representations.

Our last experiment examines the capability of the system to cope with

incomplete data objects. Therefore, we trained the classifiers on both data

sources and tested them by only classifying the sequence part of the test

instances. For the majority of testbeds it turned out that the accuracy ap-

proximately reached the level achieved by classifying the sequence data alone

(see last line of Table 9.2). In the case of Set 5, the classification accuracy

of 73.41% even exceeded the values observed for sequences only (71.09%).

Thus, the system is able to handle incomplete data. Let us note that this

capability gets more and more important with an increasing number of repre-

sentations, since it is very demanding to train classifiers that can handle the

remaining representations with increasing numbers of representations in the

best possible way. Furthermore, when incorporating several representations,

the remaining representations are more likely to compensate the missing in-

formation.
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9.5 Conclusions

In this chapter, we proposed a prototype for classifying data objects into

taxonomic directed acyclic graphs and applied it to biological entities in

molecular biological ontologies. Our method addresses the following prob-

lems: First, biological instances often consist of multiple representations such

as sequence, text, etc. The classification process within our prototype is able

to integrate all possible representations of an instance and can also handle

the frequently occurring case when one or more representations are miss-

ing. Second, our prototype handles multi-classified objects, the occurrence

of multiple inheritance and leaf nodes on different abstraction levels.

A thorough experimental evaluation of our prototype based on a versa-

tile testbed for classifying proteins from SWISS-PROT into Gene Ontology

is presented. Based on this testbed, we demonstrated that our method is

capable to classify new entries with high accuracy and an efficiency adequate

for real-world applications.



Chapter 10

Conclusions about

Multi-Represented Data

Mining

This part of the thesis discusses data mining in multi-represented objects. It

is concluded by the following chapter which provides an overview of the in-

troduced techniques with respect to multi-represented aspects. Furthermore,

we draw general conclusions that are based on the analysis of the introduced

solutions.
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10.1 Summary of the Introduced Techniques

Before drawing general conclusions, we will briefly review the two solutions

for multi-represented classification and clustering which are introduced in

this thesis.

In chapter 8 density-based clustering of multi-represented data was intro-

duced. To extend the established algorithm DBSCAN to this type of input

data, we redefined the core-object property by the union and the intersec-

tion method. The idea of the intersection method is that in order to be a

core object a data object should be placed in a dense region in all repre-

sentations. Additionally, there have to at least k objects within in the local

ε-neighborhood in all representations. Thus, it is well suited for applica-

tions in which the proximity of two object representations is necessary but

not sufficient to indicate the proximity of the original objects. On the other

hand, the union method defines a core object based on the presumption that

it is enough that an object is placed in a dense region with respect to all

representations. Thus, there have to be at least k objects in the union of

all local ε-neighborhoods. The experimental evaluation demonstrated that

our solution is capable to derive more meaningful clusterings compared to

several other clustering methods.

Chapter 9 describes a solution for ontology based data integration for bi-

ological databases. To automatically map proteins to there ontology classes,

we use multi-represented classification of text annotations and amino acid se-

quences. Our approach to multi-represented classification builds a multi-class

support vector machine (SVM) for each representation. Afterwards a voting

vector is derived from each multi-class SVM. To combine the voting vec-

tors, we build a weighted average vector. The key to success is the so-called

object-adjusted weighting which weights each representation depending on

the reliability of the local class predictions. Therefore, the voting vector of

a SVM predicting the class of a given object with more confidence provides

more influence to the final class prediction. Our experiments indicate that
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combining classification results without object-adjusted weighting often pro-

vides less accuracy than classification with respect to only one representation.

However, by using object-adjusted weighting it is possible to increase the ac-

curacy compared to separated classification in each of the representations.

10.2 Conclusions about Multi-Represented

Data Mining

When using multiple representations for data mining there are two main

problems that have to be solved in order to draw maximum benefits from

the additional information.

10.2.1 Comparability of Local Results

and Data Objects

Considering different aspects of the same data objects allows us to use widely

varying object representations like vectors, graphs and sequences. To com-

bine these representations for deriving a global pattern, the meaning of each

representation has to be made comparable. To achieve comparability there

exist several approaches:

• Joined Data Spaces

In this approach, the features of underlying representations are joined

into one feature space. This technique is quite common for a set of

vector representations. However, by simply joining the data spaces

into a single high dimensional vector space, we loose the information

that different features are derived from different representations. Thus,

we loose the ability to treat the same type of feature in a specialized

way. For example, joining text and spatial features is technically easy.

However, it is difficult to find a standard distance function that treats

both types of features in a well-balanced way. On the other hand, there
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are some data mining algorithms that are suitable for analyzing joined

data spaces. For example, decision tree classifiers treat each available

feature separately and thus do not suffer from these negative effects.

• Combined Distance Functions

Another approach to achieve comparability is to use the local special-

ized distance functions in each representation and combine the local

distance values to a global distance. The advantage of this approach

is that we can use established techniques for each type of representa-

tion. However, a distance measure allows us only to use distance based

data mining algorithms. Furthermore, in order to find a well-balanced

influence of each representation, it is necessary to find suitable meth-

ods for normalization. Unfortunately, this is rather difficult in many

cases. There are two ways to normalize distance values. The first is

to use the theoretical maximum distance in a representation for nor-

malization. The drawback of this approach is that for some distance

measures like edit distance, there is no theoretical upper limit. Further-

more, the maximum distance in a data space is not necessarily a good

upper bound for normalization. If all distances that actually appear

in a given data set are much smaller, the comparability to other data

spaces cannot be guaranteed. Therefore, another approach is to calcu-

late the maximum and minimum distance for each representations and

use these to normalize the distances. Though this approach avoids the

problems of the former approach, it yields other drawbacks. Calculat-

ing the maximum and minimum distance in each representation has a

quadratic time complexity with respect to the database size. Thus, this

approach to normalization is rather inefficient. Furthermore, incremen-

tal algorithms might not be applicable because deletions an insertions

into the database might change the normalization function.

• Recombination of Local Patterns

The last approach employs data mining algorithms or parts of them
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to derive local patterns and recombines them to a global result. Since

calculating the distance between two objects can be considered as de-

riving a local pattern as well, this approach can be considered to be

a generalization of the former approach. Examples for usable local

patterns are the ε-neighborhood of an object like in our density based

clustering method or a voting vector like in the introduced approach

to multi-instance classification. Other meaningful patterns are predi-

cates like the core object property, the class membership of an object

and the confidence vector of a distribution based classifier. The ad-

vantage of this approach is that local patterns provide a higher level

of abstraction and are rather independent from the data distribution

in the single representations. Thus, comparability is unproblematic in

these methods.

10.2.2 Semantics of the Representations

Besides the different techniques to store and compare the objects in the used

representations, another problem is the meaning of a representation. Some

representation might contain less reliable information than others. Another

important question is the relationship of the given application to each of

the representations. The following example illustrates the importance of the

semantics of representations. Consider the case that there are two object

representations and we want to compare these representations by the predi-

cate ”is similar” and ”is dissimilar”. In this simply case, there are two basic

interpretations for the meaning of the local results. First, two data objects

are similar if there exists at least one representation that states that they are

similar. The second is, in order to be similar two objects have to be similar

with respect to all of the given representation. Both methods allow valid

interpretations of the data set but will provide strongly varying results. Let

us note that this example is a simplification of the ideas behind the union

and the intersection method. To conclude, integrating the correct semantics
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is often mandatory to derive useful patterns.

In many applications, the meaning of each representation might be un-

known or difficult to describe in advance. In these cases, finding the correct

semantics should be estimated by the data mining algorithm. For classifi-

cation the problem is easier to handle than for clustering. Since the com-

bination can be optimized with respect to the correct classification of the

training objects, the semantics can be discovered automatically. The intro-

duced technique of object-adjusted weighting for SVMs derives the semantics

of each representation by estimating the reliability of the local class decision.

Therefore, the semantics varies for each object depending on the local char-

acteristics of the underlying class models.

For clustering, finding an automatic way to discover the semantics of

individual representations and their relationships is rather difficult. Since

there is no information available which of the possible interpretations might

provide the best clustering, it is hard to decide the semantics offering the best

results. Therefore, we employ additional domain knowledge in our introduced

method for multi-represented density-based clustering by selecting the union

or the intersection method to handle one of two basic semantics. For the

case, that similarity with respect to one representation is enough to indicate

object similarity, the union method is selected. For the case, that similarity

with respect to all available representations is necessary to indicate object

similarity, the intersection method is chosen.
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Chapter 11

Summary and Future Work

The area of KDD deals with analyzing large data collections to extract in-

teresting, potentially useful, so far unknown and statistical correct patterns.

Data mining is the most important step within the process of KDD. Often

the data objects to be analyzed are of complex nature. Thus, they are not

represented in the best possible way by the common approach using feature

vectors. Therefore, data mining algorithms have to handle more complex in-

put representations. This thesis contributes to the development of clustering

and classification algorithm that employ more complex input representations

to achieve enhanced results. This chapter concludes the thesis by summariz-

ing the introduced methods and presents several directions for future work.
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11.1 Summary of Contributions

Recent technological advances have tremendously increased the amount of

collected data. Besides the sheer amount of collected information, the com-

plexity of data objects increases as well. To analyze these data collections,

new data mining methods are needed that are capable to draw maximum

advantage out of the richer object representations. This thesis contributes

to the field of data mining of complex objects by introducing methods for

clustering and classification of compound objects. In particular, it provides

solutions for important data mining problems that employ multi-instance

and multi-represented data objects as input for the introduced data mining

methods. In the following, we give a summary of these contributions.

Preliminary

The first part of this thesis describes the area of KDD, the step of data mining

and general data mining tasks. Furthermore, it contains a motivation why

data mining using compound objects is a promising approach to cope with

the increasing complexity of real-world data objects. The second chapter

surveys important foundations of KDD and provides an introduction to the

tasks of clustering and classification.

Data Mining in Multi-Instance Objects

Part II of the thesis deals with the data mining in multi-instance objects.

Chapter 3 introduces the ideas of multi-represented objects and names several

application areas for which the data objects can be naturally modelled as

multi-instance objects.

Chapter 4 presents a solution for data mining in CAD databases that is

based on multi-instance objects. Many established data mining algorithms

are applicable for any kind of data objects as long as there is a distance

measure describing the intuitive similarity of data objects. Therefore, the
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chapter introduces a similarity search system that supports effective and

efficient similarity queries which are the foundation of distance based data

mining algorithms. In this system, a CAD part is described as a set of covers,

and the distance between two parts is calculated using the so-called ”minimal

matching distance”. To speed up similarity queries, a powerful filter step is

introduced that is employed in multi-step query processing. An extensive

evaluation is based on two real-world CAD data collections and demonstrates

that the new similarity search system based on multi-instance objects offers a

more intuitive notion of similarity. Therefore, it is more suitable for distance

based data mining than the compared approaches based on feature vectors.

The next chapter deals with another important application area that

can be significantly improved by using multi-instance objects which is called

website mining. Website mining is a new direction within web content mining

and is concerned with the data mining for websites. A website is a linked

set of webpages that is published by the same person, group or organization

and usually serves a common purpose. Websites often represent companies

and other organizations in the WWW. In order to find these entities the web

is searched for websites instead of single webpages. The chapter starts by

introducing the idea of website mining and names additional advantages of

this new approach.

To find a relevant website in the WWW, it is important to distinguish

relevant from irrelevant sites. Thus, after giving some formalizations of the

WWW, several methods of classification of websites are discussed. The first

method tries to classify websites as homepages, i.e. the page that is found

under the domain name of a website. Another simple approach is to con-

dense the word vectors of all webpages into a so-called superpage and classify

websites as superpages. Besides this very simple approaches, the chapter in-

troduces two more sophisticated directions of website classification. The first

uses a preprocessing step, using so-called page classes. A webpage classifier

labels each webpage in a website with its most likely page class. Afterwards

the website can be condensed into a so-called topic frequency vector that can
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be classified by established classification methods. Another representation

of websites are so-called website trees. A website tree incorporates the link

structure that can be derived by a breadth-first search through a website to

generate a labelled tree. To classify a website tree, Markov tree classifiers of

varying orders are applied. The last direction of website classification that

is described does not employ any page classes, since the effort of providing

page classes and additional training pages tends to be very great. The idea is

to transform each webpage into a feature vector and represent the website as

set of the resulting feature vectors. This representation can be directly clas-

sified by using kNN classification based on a distance measure called ”sum

of minimum distance” (SMD). Though SMD provides a suitable notion of

similarity for two websites, the efficiency of kNN classification of websites

tends to be insufficient for real-world applications. Therefore, a solution of

reducing all training websites of a website class into a so-called centroid set

is proposed. After the reduction of ”SMD” to the so-called ”half-SMD”, this

centroid set classifier offers faster and more accurate classification than the

ordinary kNN classifier using SMD. An important aspect of website classifi-

cation is the number of webpages that has to be employed for the accurate

prediction of the class of a website. Often it is not necessary to employ the

complete set of webpages in a site, but only a minor fraction. Thus, a prun-

ing rule is introduced that significantly restricts the area of a website that

is used for classification. Using this pruning method in combination with an

incremental website classifier provides faster and more accurate classification

as it is shown in the evaluation section. In the evaluation, it turns out that

the simple approaches achieved the worst classification results. The most

accurate prediction was achieved by the approaches using the preprocessing

step based on page classes. For the case that no page classes are provided,

the centroid set classifier offered the best trade-off between accuracy and

classification time.

After discussing website classification in general, a focused website crawler

is introduced that efficiently extracts new unknown websites from the WWW
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with high accuracy. This crawler is based on a two-level architecture which

allows us to control the number of pages to be downloaded from each website.

Thus, it is possible to achieve a good trade-off between accurate classification

and efficient crawling. The first level is called external crawler and treats the

web as a graph of linked websites. The task of the external crawler is to

select the websites to be examined next and to invoke internal crawlers.

The second level of the crawler consists of so-called internal crawlers. An

internal crawler views the webpages of a single given website and performs

focused page crawling within that website. Note that the internal crawler

classifies a website as set of webpages, since it employs the crawling for

page selection only. The experimental evaluation of the crawler demonstrates

that reliable website classification requires to visit more than one but less

than all pages of a given site. Furthermore, the introduced crawler was

compared to a focused webpage crawler that handles the concept of websites

in a corresponding step of post-processing. The website crawler achieved

significantly higher classification accuracy than this comparison partner. For

comparable accuracy, the website crawler needed a considerably smaller rate

of visited pages per relevant site.

At the end of this part, chapter 6 sums up the introduced techniques with

respect to the multi-instance specific solutions. Furthermore, several conclu-

sion about multi-instance data mining and possible solutions are drawn.

Data Mining in Multi-Represented Objects

Part III of this thesis deals with data mining methods that employ multi-

represented object representations to integrate more available knowledge into

the KDD process. Chapter 7 motivates the use of multi-represented objects

and names reasons for their appearance in real-world applications. Addition-

ally, several important applications for this basic type of compound objects

are surveyed.

After this introduction, chapter 8 discusses the problem of density based
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clustering of multi-represented objects. To integrate the information pro-

vided by multiple representations, we adapted the core object property pro-

posed for DBSCAN. We proposed two different methods for determining

the core objects property for multi-represented objects that both rely on

the local ε-neighborhoods of each representation. For sparse data, we in-

troduced the union-method that is based on the assumption that an object

should be a core object, if k objects are found within the union of its local

ε-neighborhoods. Respectively, the intersection-method was introduced for

data where each local representation yields rather big and unspecific clus-

ters. The intersection-method requires that at least k objects are within the

intersection of all local ε-neighborhoods of a core object. Thus, this method

is much more restrictive. In our experimental evaluation, we introduced an

entropy based quality measure that compares a given clustering with noise

to a reference clustering. Employing this quality measure, we demonstrated

that the union method was most suitable to overcome the sparsity of a given

protein data set. To demonstrate the ability of the intersection method to

increase the cluster quality, a set of images using two different similarity

models was clustered.

In chapter 9, a solution to ontology-based data integration for biomolecu-

lar databases is proposed. Therefore, we developed a prototype for classifying

multi-represented data objects into taxonomic directed acyclic graphs that

is capable to provide the following requirements of this important applica-

tion. Since the number in classes is rather big in biological ontologies, our

method employs hierarchical classification to speed up the classification pro-

cess. Another common characteristic of this type of problem is that many

data objects belong to more than one class at the same time. Thus, our

introduced method is capable to predict a set of classes a data object does

belong to. Last but most important, we introduce the technique of object-

adjusted weighting to draw maximum benefit from all object representations

that are provided. The idea of object-adjusted weighting is to classify all

object representations separately and than recombine the classification re-
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sults with respect to the confidences in each representation. In an versatile

evaluation, the developed prototype was tested by mapping entries of the

SWISS-PROT [BBA+03] protein database to the corresponding classed in

Gene Ontology [Con00]. The results demonstrate that our method is capa-

ble to classify new entries with high accuracy and an efficiency adequate for

real-world applications.

Chapter 10 summarizes the introduced solutions to multi-represented

data mining. Furthermore, a categorization of problems in multi-represented

data mining is provided and approaches to solve these problems are surveyed.

11.2 Ideas for Future Work

The following section surveys ideas for further research in the area of data

mining in compound objects and some of the mentioned application areas.

For the area of data mining in multi-instance objects, the following di-

rections offer interesting opportunities for future work:

• In chapter 4, we introduced a filter step for efficient multi-step queries

based on the minimal matching distance. However, there are additional

distance measures on multi-instance objects that are suitable for other

applications like the ”sum of mininal distances ” in chapter 5. Thus,

an interesting area of research is the extension of well-known meth-

ods to speed up similarity queries to various similarity measures for

multi-instance objects. To achieve faster similarity queries a possible

direction is the development of new search algorithms that are based

on established index structures storing the single instances of all ob-

jects. Another direction is the development of additional filter steps

for multi-instance query processing.

• As mentioned in chapter 4, distance based data mining can be applied

to a variety of complex object representations as long as there is a
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suitable distance function, modelling a suitable notion of object simi-

larity. However, for data mining in multi-instance objects there exists a

variety of distance functions, each providing a different notion of sim-

ilarity that is suitable for another object representation. For a new

application, it is unclear which of these distance measures provides the

best possible results. Therefore, an interesting area of research is the

development of classification algorithms that are capable of learning

a suitable distance function to provide the best possible results. To

do so, it is necessary to find a general model for distance measures on

set-valued objects. Within this general model each notion of similarity

should be expressible. A data mining algorithm for multi-instance ob-

jects should be able to tune the general model to optimize its results.

This approach is especially suitable for classification because the qual-

ity of the results achieved on the training set can be used to adjust the

notion of similarity.

For the more particular area of website mining, there are the following

additional developments that could further extend the usefulness of the re-

sults:

• A website crawler usually retrieves thousands of websites belonging to

a special area of interest. However, within the result set of a crawl

there are several types of websites that belong to a certain subgroup

of relevant sites. Furthermore, a user interested in a certain kind of

website has to be enabled to get convenient access to the structure

of the result set. A possible solution to this problem is offered by

clustering the resulting websites. By finding groups of closely related

websites within the result set of a crawler, a user learns about the

types of retrieved websites. Furthermore, a user can screen cluster

representations and then investigate interesting clusters more closely.

• Another extension of focused website crawling is the use of website

crawling to enhance the crawling for specific information. The more
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specific a topic is the less likely it is that highly relevant webpages are

directly linked with each other. For example, a webpage containing

information about a product that was published by a dealer is unlikely

to contain a link to a webpage published by another dealer presenting

the same product. Thus, to reach a highly specific webpage, many less

specific webpages must be crawled that are connected to the relevant

topic in a more general sense. In our, example we could search the

WWW for the websites of other dealers. Thus, one solution to solve

this problem is to use a crawler with a three level architecture. The first

two levels are the same as in the focused website crawler and are used

to spot websites that are likely to contain the highly specific content.

The third and new level of the crawler extends the search by screening

the resulting websites for the highly specific content.

For future work on multi-represented objects, we plan to examine the

following problems :

• In chapter 8, density-based clustering of multi-represented objects was

introduced. However, there exist other directions of clustering (com-

pare chapter 2.2) that are suitable for other kinds of applications. To

exploit multiple representation in these applications, researching the

use of multi-represented objects in combination with other directions

of clustering yields many interesting aspects. Especially, partitioning

clustering like k-Means is one of the most established approaches to

clustering. Therefore, an interesting task for future work is the devel-

opment of methods for partitioning clustering that are capable to find

meaningful global clusterings for multi-represented objects.

• When classifying multi-represented objects into large class hierarchies

like in chapter 9, the use of support vector machines (SVMs) tends to be

very inefficient. The number of binary SVMs employed in established

methods for multi-class SVMs increases with the square of the class
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numbers. Since not all classification scenarios can provide a hierarchy

of classes, an other solution for the efficient classification for problems

providing very large class sets have to be found. A classification method

that is able to cope with those large class sets is kNN classification.

A kNN classifier only employs the kNN sphere of the object to be

classified, regardless how many classes exist in the given problem. Thus,

we plan to develop new classifiers for multi-represented objects that use

kNN classification and are well suited for very large class spaces.

Last but not least, we plan to combine the introduced methods for data

mining in multi-represented and multi-instance objects into a general ap-

proach for data mining in compound objects. For this approach, an object

could be constructed arbitrarily of concatenations and sets of other feature

representations like graphs, tree and feature vectors. Especially in the area

of protein databases many representations in a multi-represented view might

be modelled more precisely by an multi-instance object, e.g. the three di-

mensional structure. Thus, the use of even richer protein descriptions could

yield an even better approach to clustering and classification of this kind of

data.
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[BBJ+00] S. Berchtold, C. Böhm, H.V. Jagadish, H.-P. Kriegel, and
J. Sander. ”Independent Quantization: An Index Compres-
sion Technique for High-Dimensional Data Spaces”. In Proc.
Int. Conf. on Data Engineering (ICDE 2000), San Diego, CA,
USA, pages 577–588, 2000.

[BFOS84] L Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. ”Clas-
sification and Regression Trees”. Wadsworth, 1984.

[BGG+99a] D. Boley, M.L. Gini, R. Gross, E.-H. Han, K. Hastings,
G. Karypis, V. Kumar, B. Mobasher, and J. Moore. ”Document
Categorization and Query Generation on the World Wide Web
Using WebACE”. Artificial Intelligence Review, 13(5-6):365–
391, 1999.

[BGG+99b] D. Boley, M.L. Gini, R. Gross, E.-H. Han, K. Hast-
ings, G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
”Partitioning-based clustering for Web document categoriza-
tion”. Decis. Support Syst., 27(3):329–341, 1999.

[BH98] K. Bharat and M.R. Henziger. ”Improved Algorithms for Topic
Distillation in a Hyperlinked Environment”. In Proc. 21st ACM
SIGIR Conf. on Research and Development in Information Re-
trieval (SIGIR’98), Melbourne, Australia, pages 104–111, 1998.

[Big96] J.P. Bigus. ”Data mining with neural networks: solving busi-
ness problems from application development to decision sup-
port”. McGraw-Hill, Inc., 1996.

[BK97] S. Berchtold and H.-P. Kriegel. ”S3: Similarity Search in CAD
Database Systems”. In Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’97), Tucson, AZ, USA, pages
564–567, 1997.
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