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  SUMMARY 
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Summary 
 

The Ku protein from Saccharomyces cerevisiae (Yku) forms, like its human homologue 

hKu, a heterodimer comprised of a 70kD and an 80 kD subunit. In yeast and mammals, the 

Ku heterodimer is required for the repair of DNA double strand breaks (DSBs) via 

nonhomologous end-joining (NHEJ). Interestingly, Ku has been shown to bind to the native 

chromosome ends. It contributes to the maintenance of wild type telomere length and, 

moreover, has been implicated in the protection of the telomeres from end-to-end fusions. 

Telomere-bound Yku delocalizes from telomeric foci in response to DNA damage and 

accumulates at the sites of a DNA break. This thesis aimed to further characterize the Yku 

heterodimer and its function at DSBs and the native chromosome ends. 

In a genetic screen for mutations that - in combination with a yku deletion - lead to cell 

death, a novel mutation in the yeast telomerase subunit CDC13/EST4 has been identified 

earlier in the laboratory. Cdc13p binds to the single stranded DNA overhang at telomeres and 

is required to recruit the yeast telomerase to chromosome ends. The results presented here 

suggest that the mutant protein, Cdc13-4p, can still bind to the telomere and does interact with 

the telomerase subunit Est1p in vivo. A model is proposed in which the mutant Cdc13p is 

altered in its binding to a regulatory protein, thereby modulating telomerase access to the 

chromosome ends. The lethal effect in yku mutants is discussed to result from the loss of 

additional telomere sequences at the already very short telomeres of yku mutants. 

In order to fulfill its opposite functions at the ‘different’ DNA ends, Yku might depend on 

larger protein networks. Putative Yku interacting proteins have been identified in a two hybrid 

screen. One interactor, Sir4p, has previously been implicated in NHEJ. The Sir4p domain 

identified could be shown to interact with the Yku heterodimer via the Yku80p subunit. 

Experiments that allowed the separation of phenotypes caused by the loss of the Sir4 protein 

itself and phenotypes induced by a de-repression of silencing in sir4 mutants revealed no 

direct involvement of Sir4p in the repair of DSBs. In contrast to Cdc13p, Sir4p acts epistatic 

with Yku at the telomeres, indicating that the protein-protein interaction detected by two 

hybrid criteria might take place at telomeres. 

Besides defects in DNA repair and telomere protection, mice deficient for Ku have been 

reported to exhibit phenotypes indicative of premature aging. Loss of yku70 or overexpression 

of the Yku heterodimer effects life span in yeast. Experiments presented here rise the 

possibility that the premature aging is correlated with Ku’s function at the telomere. 
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1. The organization of genetic information - linear and circular chromosomes 
 

It is usually assumed that prokaryotic cells have circular chromosomes, whereas 

eukaryotic nuclear chromosomes are linear. However, there are exceptions to this rule. The 

existence of linear chromosomes has been detected by pulse-field gel electrophoresis in very 

distantly related bacteria as Borrelia burgdorferi (Ferdows et al., 1996) and Streptomyces 

lividans (Lin et al., 1993). Furthermore, Agrobacterium tumefaciens has been shown to harbor 

both a circular chromosome of ~ 3 Mbp and a non-homologous linear chromosome of ~ 2,1 

Mbp (Allardet-Servent et al., 1993; Goodner et al., 1999). 

Linear chromosomes, however, face a problem during replication, foreshadowed by James 

Watson (1972), who noted that if conventional DNA polymerases rely on RNA primers 

placed at the very 5’ ends of chromosomes, chromosome ends might not be fully replicated 

and might shorten during each round of replication (Watson, 1972). Studies in a variety of 

organisms have revealed different strategies to circumvent this problem. The genome of 

adenoviruses is a double-stranded linear DNA molecule with inverted terminal repeats about 

100 base pairs (bp) in length and a terminal protein covalently linked to the 5' nucleotide of 

each strand (Challberg et al., 1980; Lichy et al., 1981). This terminal protein forms a covalent 

bond with the 5’-OH of dNMP and DNA polymerase uses this base as the first nucleotide to 

be incorporated into the newly synthesized DNA strand (Salas, 1991). The linear 

chromosomes of Streptomyces also appear to contain terminal inverted repeats and covalently 

bound terminal proteins (Bao and Cohen, 2001), which might suggest a similar replication 

mechanisms as it has been detected for adenoviral replication. However, in contrast to 

adenovirus, replication at Streptomyces chromosomes is not initiated at the end but starts at an 

internal replication origin (Musialowski et al., 1994). In Borrelia burgdorferi the 

chromosome ends form a hairpin structure, suggesting that the back-looped DNA strand is 

used as a primer for replication, one possible mechanism discussed to achieve end replication. 

A hairpin structure has indeed been reported to be used as a priming site for replication of a 

viral genome, Vaccinia virus (Baroudy et al., 1983; Winters et al., 1985). 
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Simple physical ends of DNA, such as those generated by DNA double-strand breaks 

(DSBs), are genetically unstable, mutagenic and sometimes oncogenic (reviewed in de Lange, 

1995). Interestingly, Streptomyces has been shown to have an exceptionally high genetic 

instability (Leblond and Decaris, 1994; Leblond et al., 1990). The linear chromosome shows 

an increased frequency of deletion that can remove up to 25% of the genome (Leblond et al., 

1991). Most of these deletions have been detected at the chromosome ends and can result in 

chromosome circularization (Lezhava et al., 1997; Lin et al., 1993; Redenbach et al., 1993). 

Thus, higher eukaryotes have to cope with a variety of problems that arise due to the 

linear nature of their genome. A special enzyme has evolved to ensure proper replication of 

chromosome ends and a large protein network is required to protect the chromosomes from 

degradation and from being mistakenly sensed as a DNA damage. Therefore, the question 

arises why eukaryotes use linear DNA molecules to pass genetic information to the next 

generation. The first experimental evidence that shed light on the advantage of having linear 

chromosomes versus circular chromosomes was obtained from studies in the yeast 

Schizosaccharomyces pombe. Mutations in the telomere binding protein Taz1 were identified 

in a screen for mutants defective in the ability to impose transcriptional silencing on genes 

placed near telomeres (Nimmo et al., 1998). These taz1- cells failed to form telomere clusters 

in pre-meiosis, where the six telomeres of the S. pombe chromosomes attach to the spindle 

pole body (Nimmo et al., 1998). Clustering of telomeres that is accompanied by oscillating 

chromosome movements (Chikashige et al., 1994) is mandatory for a proper chromosome 

alignment in S. pombe. The defects in taz1- strains led to a reduction in recombination and 

enhanced chromosome missegregation through meiosis which resulted in a low spore viability 

(Nimmo et al., 1998). Furthermore tel1 rad3 mutants have been described that have telomeric 

DNA loss and an increased formation of circular chromosomes (Naito et al., 1998). These 

mutants were not able to form any viable spores (Naito et al., 1998), indicating that the 

linearity of chromosomes is somehow required for the meiotic division in S. pombe. 

Mitosis is relatively easy in terms of chromosome segregation. Two sister chromatids that 

have recently replicated and are attached to one another by cohesins, align on the metaphase 

spindle before being partitioned to either side of a dividing cell. In Meiosis the replication is 

followed by two nuclear and cellular divisions, Meiosis I and Meiosis II. For the first nuclear 

division, homologous chromosomes must find each other and pair together in order for a 

reductional division to occur. 
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Following chromosome pairing, chromosomes synapse and undergo recombination, which 

enables both a genetic exchange and a physical linkage of two homologous chromosomes 

during nuclear division at metaphase I. Recombination and segregation are interdependent 

since the covalent associations between the two homologues are thought to be required for 

proper segregation (Figure 1A). 

 

 

 
 

FIG. 1 [I]. Meiosis I of linear chromosomes and possible models for meiosis I of circular chromosomes. 
Taken from Ishikawa and Naito, 1999. 
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Some organisms such as S. pombe provide evidence that telomeres might play a role in 

homologue alignment. If pairing of two circular chromosomes lacking telomere sequences 

cannot be achieved, random segregation of the homologous chromosomes would occur 

(Figure 1B). If pairing and recombination of circular chromosomes can occur, dicentric 

chromosomes would be generated which can be resolved by a random break, if the two 

centromeres are pulled toward opposite poles (Figure 1B). Or the dicentric chromosome 

might end up in one daughter cell with the other daughter missing the genetic information 

(Figure 1B). Both models, however, suggest that circular chromosomes induce a strong non-

disjunction phenotype during meiosis and would thereby lead to a strongly reduced spore 

viability and a progeny, if not lethal, that might have increased or reduced gene dosages. Thus 

linear chromosomes might be essential for a successful meiotic event and might therefore be 

prerequisites for sexual reproduction and genetic diversity. Strikingly, not all organisms 

require homologous recombination in order for chromosome pairing and synapsis to occur. In 

Drosophila, no recombination is detectable in male flies or on chromosome IV in females 

(reviewed in Roeder, 1997). How appropriate segregation of homologues is achieved here is 

largely unknown. 

 
 
2. The solution to the end – telomere replication and telomere capping 
 
While linear chromosomes seems to enable sexual reproduction and genetic diversity, they 

are the origin for at least two major problems: i) how to replicate ends of linear DNA 

molecules without loss of genetic information and ii) how to prevent chromosome ends to be 

recognized as DNA double strand breaks that have to be repaired. 

 

2.1. End replication 

 

During DNA replication the two DNA strands of a chromosome are separated and serve 

as single stranded templates for newly synthesized DNA. A large protein complex containing 

a DNA polymerase assembles at the replication fork and polymerizes complementary 

nucleotides in an unidirectional 5’-3’ manner to synthesize the new DNA strands. 
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FIG. 2 [I]. Mechanism of telomere elongation. (A) The parental DNA double strand. (B) During replication 

the leading strand is synthesized as a single DNA strand, whereas the lagging strand is synthesized in short DNA 
fragments, the Okazaki fragments, using a RNA primer for replication initiation. (C) After RNA primers are 
removed, a 3’ overhang is present at the parental strand due an unreplicated region at the 5’ end of the lagging 
strand. (D) and (E) Telomerase reverse transcriptase uses its RNA subunit to anneal to the GT-rich parental 
strand and to elongates the strand in the 5’ to 3’ direction. (F) The CA-rich strand can be filled in by the lagging-
strand replication mechanism. 

 

While one daughter strand, the leading strand is continuously generated as the replication 

fork proceeds, the lagging strand is made discontinuously as short DNA fragments, called 

Okazaki fragments, using RNA primers to initiate DNA synthesis (Figure 2B). The RNA 

primers are later removed, the gaps between the Okazaki fragments are filled in and the DNA 

fragments are joined by a DNA ligase. However, at the very 5’ end of the newly synthesized 

DNA strand a gap remains caused by the removal of the RNA primer (Figure 2C). This short 

DNA strand would be used as a template in the next round of replication leading to a 

shortened chromosome end. Different mechanisms have evolved to avoid such DNA loss. In 

most eukaryotes a telomere specific reverse transcriptase, telomerase, has been identified that 
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Telomerase recognizes the G-rich parental strand via its RNA subunit. Telomerase RNA 

forms base pairs with the G-rich single stranded overhang (Figure 2D) and a translocation 

step allows several rounds of extension of the single stranded DNA (ss DNA) (Figure 2E). 

Replication of the chromosome is then completed by DNA polymerase using the extended 

strand as a template for lagging strand elongation (Figure 2F). This replication mechanism 

leads to a simple, repetitive DNA sequence at the ends of eukaryotic linear chromosomes. The 

sequence and the length of these repeats varies greatly between different organisms (see Table 

I), indicating that the RNA template is not identical among species and that different repeat 

lengths might be required to ensure end protection. However, a 3’ single stranded overhang 

comprised of a few to several repeats of the telomerase synthesized strand has been shown to 

be present at telomeric DNA in ciliates, yeast and humans (Hemann and Greider, 1999). 

 

 

TABLE I [I]. Telomere repeat sequences and repeat length in various eukaryotes.  

Organism Sequence Length of telomeric 
sequence 

References 

 
Tetrahymena thermophila 
 

 
TTGGGG 

 
300 – 400 bp 

 
(Blackburn and Gall, 1978) 

Oxytricha  
 

TTGGGG 3 – 20 kb (Klobutcher et al., 1981; Murti 
and Prescott, 1999) 

Trypanosoma brucei 
 

TTAGGG 10 – 20 kb (Munoz-Jordan et al., 2001) 

Saccharomyces cerevisiae (TG)1-6TG2-3 300 ± 75 bp (McEachern and Hicks, 1993; 
Shampay et al., 1984) 
 

Schizosaccharomyces pombe 
 

TTAC(AG)2-5 200 – 300 bp Sugawara and Szostak, 1986 

Caenorhabditis elegans TTAGGC 2 – 4 kb (Cangiano and La Volpe, 
1993) 
 

Bombyx mori 
 

TTAGG 6 – 8 kb (Okazaki et al., 1993) 

Arabidopsis thaliana TTTAGGG 2 – 4 kb (Richards and Ausubel, 1988) 

Mus ssp. TTAGGG 10 – 60 kb (Kipling and Cooke, 1990; 
Starling et al., 1990; Zijlmans 
et al., 1997) 
 

Homo sapiens 
 

TTAGGC 10 – 15 kb (Moyzis et al., 1988) 
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2.2. Telomerase – the enzyme that ensures complete end replication 
 

The telomere-specific DNA polymerase, telomerase, was identified in 1985 by Greider 

and Blackburn in Tetrahymena using biochemical assays designed to test for an activity that 

incorporates radioactively labeled dGTP in chromosome ends (Greider and Blackburn, 1985). 

This incorporation could be abolished by treatment of Tetrahymena extracts with RNAse, 

suggesting that the enzyme activity is dependent on an RNA subunit as proposed for reverse 

transcriptases (Greider and Blackburn, 1987). The activity was purified and a ~ 160 bp RNA 

co-purified with the enzymatic activity (Greider and Blackburn, 1989). Single nucleotide 

exchanges in the telomerase RNA gene were generated and the re-introduction of these 

mutated RNA genes into Tetrahymena resulted, dependent on the mutation, in both shortened 

or elongated telomeres or the addition of an altered telomere sequence, providing evidence 

that this RNA is indeed used as a template for telomere replication (Yu et al., 1990). 

Over the past 12 years telomerase RNA has been isolated from a variety of different 

organisms (see Chen et al., 2000). The telomerase RNAs from different species all contain a 

domain longer than one full telomere repeat, which is predicted to serve as the template for 

telomere addition (Greider, 1996). The template region of human telomerase RNA (hTR) 

encompasses 11 nucleotides 5'-CUAACCCUAAC- 3' complementary to the human telomere 

sequence (TTAGGG)n (Feng et al., 1995). However, this template sequence is not highly 

conserved among species, which explains the diversity of telomere repeats observed for 

different organisms (see Table I). Furthermore, telomerase RNAs have diverged greatly not 

only in sequence but also in length, varying from 159 nucleotides in Tetrahymena (Greider 

and Blackburn, 1989), 450 nucleotides in mammals (Blasco et al., 1995; Feng et al., 1995) to 

up to 1.3 kb in Saccharomyves cerevisiae (Singer and Gottschling, 1994). Strikingly, recent 

data predict that the secondary structure of this RNA has been conserved during evolution 

(Chen et al., 2000; Lingner et al., 1994; Romero and Blackburn, 1991). A pseudoknot 

structure has been proposed for ciliate and vertebrate telomerase RNA containing a single 

stranded template region (Bhattacharyya and Blackburn, 1994; Chen et al., 2000). Several 

other conserved domains, i.e. helices or stem-loops, are present that might play a role in 

function or stability of the telomerase RNA or might be required for the interaction with the 

protein subunit of telomerase (Sperger and Cech, 2001). 
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The catalytic protein component, telomerase reverse transcriptase (TERT), was first 

identified in Euplotes aediculatus (Lingner et al., 1997b). The protein that was purified with 

telomerase activity contains a protein motif essential for reverse transcriptases. The Euplotes 

protein showed homology to a yeast protein, Est2p. Mutations in EST2 had been previously 

identified as leading to replicative senescence (Lingner et al., 1997a). Homology searches 

allowed the cloning of S. pombe and human TERT (Nakamura et al., 1997), indicating that 

the catalytic protein subunits of telomerase enzymes are phylogenetically conserved reverse 

transcriptases. Together the two telomerase components, TR and TERT, are necessary and 

sufficient to produce telomerase activity in vitro (Autexier et al., 1996; Bachand and 

Autexier, 1999; Bachand et al., 2000). 

In the yeast Saccharomyces cerevisiae the TLC1 gene, encoding the telomerase RNA, was 

initially identified in a screen for genes that, when expressed in high amounts, would suppress 

telomeric silencing (Singer and Gottschling, 1994). The TLC1 RNA is ~ 1.3 kb and therefore 

significantly longer than telomerase RNAs from many other organisms (Lingner et al., 1994). 

It has an irregular 5’-CACCACACCCACACAC-3’ template sequence consistent with the 

irregular sequence of yeast telomeres (see Table I). A genetic screen that was designed to 

detect mutants that have a defect in telomerase activity, led to the discovery of mutations in 

four genes as well as in TLC1 (Lendvay et al., 1996). These mutations lead to ever shorter 

telomeres until senescence and the genes where therefore designated as EST1, EST2, EST3 

and EST4 (Lendvay et al., 1996). Because tlc1∆ and est∆ mutants have an identical phenotype 

and double mutants have no enhanced phenotype, the products encoded by these genes are 

thought to act in the same pathway of telomerase mediated replication (Counter et al., 1997; 

Singer and Gottschling, 1994; Zakian, 1996). 

However, as in higher eukaryotes, the yeast catalytic subunit Est2p and TLC1 alone can 

promote telomerase activity in vitro (Lingner et al., 1997a) whereas Est1p, Est3p and 

Est4p/Cdc13p are essential for telomerase activity in vivo but dispensable in vitro. Est1p and 

Est4p/Cdc13p, have the properties of single-strand telomere DNA-binding proteins (Virta-

Pearlman et al., 1996; Wang et al., 2000), but genetic analysis argues for different roles of 

these two proteins in vivo. Est1p has been proposed to function in directing telomerase to the 

chromosomal terminus (Zhou et al., 2000). In contrast, the Cdc13 protein has been proposed 

to play a dual role while bound to the telomere: it protects the end of the chromosome (Garvik 

et al.,  1995), and  regulates  telomerase by  mediating, either  directly  or  indirectly  through 
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Est1p, access of this enzyme to the terminus (Evans and Lundblad, 1999; Grandin et al., 

2000). EST3 encodes a novel 20-kDa protein, which besides its requirement for telomerase 

activity in vivo has not been further characterized. Thus, in the yeast S. cerevisiae more than a 

catalytic subunit and its RNA are required for telomerase activity in vivo. 

Interestingly the purification of Euplotes aediculatus telomerase yielded two proteins, 

p123, the telomerase reverse transcriptase, and p43, an uncharacterized protein (Lingner and 

Cech, 1996), indicating that additional proteins might contribute to telomerase function as 

described for S. cerevisiae. Recently, the first mutation in a C. elegans checkpoint gene was 

identified, which leads to progressive telomere shortening and chromosome end-to-end 

fusions (Ahmed and Hodgkin, 2000). This telomerase negative phenotype was caused by a 

mutation in the mrt-2 gene, the C. elegans homologue of the S. pombe rad1+ and the S. 

cerevisiae RAD17 checkpoint genes (Ahmed and Hodgkin, 2000). This finding raises the 

possibility that not yet identified proteins required for in vivo telomerase activity might also 

be present in higher eukaryotes. 

Little is known about how telomerase activity is regulated, especially how chromosome 

replication and telomere elongation are coupled. However, recent studies from yeast and 

humans suggest that telomerase does not act as a monomer but is present as a multimer in 

vivo (Beattie et al., 2001; Prescott and Blackburn, 1997; Wenz et al., 2001). It has been 

suggested that dimerization or multimerization serves as a control mechanism for telomerase 

activity (Beattie et al., 2001). 

 

 

2.3. Telomere structure and telomere associated proteins 
 

Telomeres, the ends of linear chromosomes are physically indistinguishable from DNA 

double strand breaks. The genetic information of the yeast Saccharomyces cerevisiae is 

packaged into 16 chromosomes bearing 32 telomeres in the haploid cell. A single DSB leads 

to death in cells incapable of repairing these breaks (Resnick and Martin, 1976). Thus, 

sensing the natural end as a break would be deleterious for the cell and therefore telomeres 

must have properties that preserve these ends from being detected as DSBs. 
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terminal single-stranded telomeric DNA in human telomeres might be in alternative forms: either bound by Pot1 
protein or engaged in T-loop formation. 

 

In mammalian cells double stranded telomeric DNA is bound by two Myb domain 

proteins, TRF1 and TRF2 (Broccoli et al., 1997; Chong et al., 1995). Overexpression of 

TRF1 or TRF2 has been shown to trigger telomere shortening (Smogorzewska et al., 2000; 

van Steensel and de Lange, 1997) indicating that these proteins negatively regulate telomere 

length and might inhibit telomerase function when bound to telomeres. In mammals, the 

duplex hexameric repeat TTAGGG runs 5’-3’ towards the chromosome end and terminates in 

a 75-300 nucleotide long single stranded (ss) overhang (Makarov et al., 1997; McElligott and 

Wellinger, 1997; Wright et al., 1999). Overexpression of TRF2 lacking a basic domain leads 

to loss of this ss-overhang at the telomere (van Steensel et al., 1998) and results in 

chromosome fusions and cell cycle arrest or apoptosis (Karlseder et al., 1999; van Steensel et 

al., 1998) without a detectable reduction of telomere length (van Steensel et al., 1998), 

indicating that TRF2 is not only involved in negative telomere length regulation but is also 

essential for telomere capping. Recently, electron microscopy of telomeric DNA purified 

from human and mouse cells led to the discovery of large loops at chromosome ends in vivo, 

so-called t-loops (telomere loops). TRF2 is capable of promoting and stabilizing the 

formation of a t-loop structure, whereby the single-stranded G-rich extension is buried into 

more proximal double stranded regions (Griffith et al., 1999; Stansel et al., 2001) (Figure 3). 

The TRF2 mutant, truncated for the basic domain might not be able to facilitate loop 

formation thereby opening up the chromosome end to fusion events. 
 

 
 

FIG. 3 [I]. Examples of interactions among the components of the structural DNA-protein complexes 
comprising the telomeres in humans. Red line: G-rich telomeric repeat strand synthesized by telomerase; green 
line, complementary C-rich strand of the telomeric repeats; heavy black lines, subtelomeric DNA. The 3' 
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T-loops, have also been detected in Oxytrichia (Murti and Prescott, 1999) and 

Trypanosomes (Munoz-Jordan et al., 2001), two organisms with a telomere repeat length of ~ 

10 kb (see Table 1). In organisms with very short telomere repeat tracts such as 

Saccharomyces cerevisiae, the presence of these usually very large t-loops seems to be 

unlikely. However, a variety of observations suggest that a back-folding of the telomeric 

sequence occurs in yeast. S. cerevisiae telomeres repress transcription of adjacent genes, a 

phenomenon called telomere position effect (TPE) (Gottschling et al., 1990). Very recently de 

Bruin and colleagues (2001) have shown that a reporter gene bearing an enhancer positioned 

1-2 kilobases downstream of the gene is activated if it is linked to the telomere. The effect is 

specific for telomeric regions and cannot be induced at internal chromosomal loci (de Bruin et 

al., 2001). This result strongly supports the suggestion that even in yeast the telomere folds 

back into subtelomeric regions. The finding that Rap1p, a protein that binds sequence-specific 

to telomeres (Conrad et al., 1990), can also be co-immunoprecipitated with subtelomeric 

chromatin (Strahl-Bolsinger et al., 1997) allows the prediction that a ~ 3 kb end structure 

exists in Saccharomyces cerevisiae (Strahl-Bolsinger et al., 1997). 

 

 

2.4. Telomere length regulation 

 

Within a cell population, telomere length is kept within a narrow size due to a balance 

between elongation and shortening, thereby preserving telomere structure. In mammals 

additional factors such as tankyrase (Smith et al., 1998), Ku (Hsu et al., 1999), the Mre11-

Rad50-NBS1 complex (Zhu et al., 2000), Tin2 (Kim et al., 1999) and hRap1 (Li et al., 2000) 

associate indirectly with telomeric DNA via TRF1 or TRF2 (see Figure 3). Furthermore a 

single stranded binding protein, Pot1, has recently been described to bind to the terminal 

telomere end (Baumann and Cech, 2001). 

A very complex picture of proteins that influence telomere length regulation can be drawn 

in the yeast Saccharomyces cerevisiae (see Figure 4). Several proteins have been shown to be 

responsible for the regulation of telomerase function at yeast telomeres. A mutation in 

Cdc13p/Est4p, a protein that binds ss telomeric DNA (Lin and Zakian, 1996) and is essential 

for in vivo telomerase activity (Lendvay et al., 1996), causes an increase in telomere length 

(Grandin et al., 1997). 
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When shifted to the restrictive temperature, this Cdc13-1p mutant accumulates unusually 

long telome et al., 1995; 

Polotnianka et al

., 2001). A temperature-

sensitive mu ulation of ss 

DNA (Grandin et al  mutation. Thus, 

ere by their 

interact with Cdc13p (Qi and Zakian, 2000). Mutations in the catalytic subunit of DNA 

polymerase α, POL1, that disrupt this interaction results in longer telomeres (Qi and Zakian, 

2000). The requirement for Est1p for in vivo telomerase activity can be overcome by the 

expression of a Cdc13p-Est2p fusion protein (Evans and Lundblad, 1999), suggesting that 

Est1p mediates an interaction between Cdc13p and the catalytic telomerase subunit Est2p in 

vivo. A variety of Cdc13p mutations have been studied to analyze certain protein domains. 

Strikingly, mutations in Cdc13p have been described to lead to telomere elongation while 

others lead to telomere shortening (Grandin et al., 2000; Meier et al., 2001). These 

observations provide strong evidence that Cdc13p may play a key role in regulating the access 

of telomerase by its interaction with additional proteins. 

Yeast telomeric DNA is assembled into a nonnucleosomal chromatin structure, the 

telosome (Wright et al., 1992). The major protein at the telomere, Rap1p, binds sequence-

specific to telomere repeats (Berman et al., 1986; Conrad et al., 1990; Wright et al., 1992). 

Rap1p was originally identified as a transcriptional regulator that can play a role in either 

repression or activation of transcription (Kurtz and Shore, 1991; Shore and Nasmyth, 1987). 

The consensus sequence for Rap1p (Buchman et al., 1988) is found approximately every 35 

bp in telomeric DNA (Wang and Zakian, 1990) and multiple Rap1 proteins bind at telomeres 

(Gilson et al, 1993). When a telomeric repeat sequence was inserted in the opposite 

orientation adjacent to telomere repeats, the length of the distal telomere repeat was 

significantly reduced, indicating that the misoriented repeats have been counted as a part of 

the telomere (Marcand et al., 1997). 

ric single-stranded extensions of the 3' G-rich strand (Garvik 

., 1998). A suppressor of this single-stranded phenotype, Stn1p, interacts 

with Cdc13p by two hybrid criteria (Grandin et al., 1997). A third protein, Ten1p, has 

recently been shown to be involved in this complex (Grandin et al

tation in Stn1p or Ten1p leads to telomere elongation and the accum

., 2001; Grandin et al., 1997) as described for the cdc13-1

Stn1p and Ten1p are thought to negatively regulate telomerase access to the telom

association with Cdc13p. In a two hybrid approach Pol1p and Est1p have been identified to 
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FIG. 4 [I]. A large protein netwo mere length in S. cerevisiae. 

 

Yeast strains carrying a C-term cated Rap1p have elongated telomere repeat 

tracts (Hardy et al tation has been described to abolish the 

interaction of Rap1p with the Sir3 protein (R eins interact with 

Rap1p at different sites in the genom ting type loci and the telomeres (Gotta et 

al., 1996). The Sir comp sir2, sir3 or sir4 mutants are 

no longer able to repress the m  (Ivy et al., 1986)or telomere 

adjacent genes (Aparicio et al tants show a slight but stable 

reduction in telomere length (Palladino 

Interestingly, certain com ge response pathways, originally 

identified by their involveme ir of DNA double strand breaks (DSBs) are found 

at telomeres and are required for wild-type telo re length and function. The Ku heterodimer, 

essential for the repair of DNA dam ologous end-joining, localizes to telomeres 

in budding yeast (Martin et al., 1999) and humans (Hsu et al., 1999). Yeast Ku is required for 

the normal localization of telomeres at the nuclear periphery and has been shown to interact 

with proteins of the nuclear matrix (Galy et al., 2000). A disruption of either the YKU70 or 

the YKU80 gene leads to a growth defect at elevated temperatures (Feldmann et al., 1996; 

Feldmann and Winnacker, 1993) and to enhanced sensitivity to the DNA damaging agents 

bleomycin and methyl methanesulfonate (MMS) (Feldmann et al., 1996; Mages et al., 1996). 

Ku is  furthermore required for the  maintenance of wild-type  telomere structure  and length. 

rk is required to maintain wild-type telo

inally trun

., 1992). This C-terminal mu

oy and Runge, 1999). Sir prot

e such as the ma

lex is essential for silencing in yeast and 

ating type loci HML and HMR

., 1991). Furthermore, sir4 mu

et al., 1993). 

ponents of the DNA dama

nt in the repa

me

age by nonhom
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Yeast strains deficient for YKU exhibit stable but shortened telomeres (Boulton and Jackson, 

1998; Porter et al., 1996) and a G-rich single stranded overhang is detectable in yku mutants 

over the entire cell cycle that in yeast is usually restricted to S-phase (Gravel et al., 1998). In 

cells deficient for Yku, subtelomeric silencing is severely compromised (Galy et al., 2000; 

Gravel et al., 1998; Laroche et al., 1998; Mishra and Shore, 1999; Nugent et al., 1998; Pryde 

and Louis, 1999). Lack of Ku function leads to telomere-telomere fusions in fission yeast and 

mammals (Baumann and Cech, 2000; Hsu et al., 2000; Samper et al., 2000). 

Another complex that is required for the repair of DNA damage and also needed for 

telomere length regulation is the Rad50p, Mre11 and Xrs2p (yeast)/Nbs1(human) complex, 

which is involved in the repair of DNA lesions. The localization of the Rad50/Mre11/Nbs1 

complex at the telomeres has been investigated in mammalian cells (Lombard and Guarente, 

2000; Zhu et al., 2000) and a deletion of the corresponding yeast genes leads to telomere 

shortening (Boulton and Jackson, 1998; Nugent et al., 1998). Mutations in TEL1 and TEL2, 

the first genes identified to contribute to telom

for temperature-sensitive m

these genes result in progressive telom eres 

reach a stable level (Lustig and Petes, tants of a Mre11p-Rad50p-Xrs2p 

(MRX) component with a re length similar to that 

caused by any of the single m plex act in the 

same pathway for telome

ere length 

regulation. Mutations in, i.e. et al., 2000), 

rad1+ and rad3+ of tations in human ATM 

(Vaziri et al ere instability. 

Furthermore tel1 mec1 S. cerevisiae 

show replicative senescence (Ritchie 

might influence telome ere 

shortening of S. cerevisiae

indicating that limiting dNTPs may cause a defect in DNA replication at the telomere 

(Longhese et al., 2000). 

ere length regulation, were isolated in a screen 

utants with short telomeres (Lustig and Petes, 1986). Mutations in 

ere shortening for ~ 150 generations and then telom

1986). Double mu

tel1 mutation cause a decrease in telome

utations, suggesting that Tel1p and the MRX com

re length regulation (Ritchie and Petes, 2000). 

Strikingly, checkpoint genes have been identified that contribute to telom

DDC1 and RAD53 of S. cerevisiae (Longhese 

S. pombe (Dahlen et al., 1998) as well as mu

., 1999) have been shown to induce telomere shortening and telom

 double mutants, defective in two ATM homologues of 

et al., 1999). The first evidence how a checkpoint gene 

re length regulation was provided by the finding that the telom

 rad53 mutants could be restored by increased dNTP pools, 

 - 15 - 



Introduction 
___________________________________________________________________________ 

 

However, ddc1 mutants exhibit short telomeres independent from the intracellular dNTP 

level, suggesting that the DDC1 checkpoint gene affects telomere ends by a different 

mechanism from that defective in rad53 mutants (Longhese et al., 2000). Thus checkpoint 

related genes, which ensure the proper order and timing of cell-cycle events, also play an 

important role in maintaining telomere length. 

 

 

point 
 

The RAD9 checkpoint in  (see Figure 5) serves to arrest the cell 

cycle in G2 phase when a DNA dam ent or when DNA replication is incomplete 

(Weinert and Hartwell, 1988; W osomes 

are capped and folded into a special structure and a large network of proteins is required to 

maintain telome tation, provided evidence that a defect 

at telomeres can trigger a cdc13-1 rad9 double mutants 

have a higher restrictive tem tants, although the proportion of 

viable cells in cdc13-1 rad9 perature. This finding 

suggested that the RAD9  activated to arrest the cell cycle at a level 

of DNA dama hen cdc13-1 cells 

where grown at a semiperm bination events could be 

detected at telomeric regions but ., 1995). Furthermore, an 

accumu peratures at the 

telomeres in cdc13-1 mu utants might be as large as 

17 kb (Garvik et al., 1995), suggesting that the terminal growth defect in cdc13-1 rad9 might 

be caused by the loss of essential DNA sequence. The loss of Stn1p, a Cdc13p interacting 

protein has also been shown to induce ss DNA formation at the telomeres and mutants show 

an activated RAD9 checkpoint (Grandin et al., 1997). Thus, single stranded DNA might be 

one lesion that activates the DNA damage checkpoint (Garvik et al., 1995; Lydall and 

Weinert, 1995). Recently, Teo and Jackson (2001) have provided evidence that the DNA 

damage checkpoint also becomes activated in yku mutants when shifted to elevated 

temperatures. 

3. Telomere dysfunction triggers the DNA damage check

Saccharomyces cerevisiae

age is pres

einert and Hartwell, 1993). The ends of linear chrom

re integrity. Analysis of the cdc13-1 mu

RAD9 dependent cell cycle arrest. 

perature than cdc13-1 single mu

 colonies is drastically reduced at higher tem

 checkpoint might become

ge that is still sublethal (Weinert and Hartwell, 1993). W

issive temperature an increase in recom

 not at the centromere (Garvik et al

lation of single stranded DNA was detectable at elevated tem

tants and the ss region in cdc13-1 rad9 m
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Yku mutants are temperature sensitive for growth and the temperature sensitive phenotype 

is proposed to be accompanied by additional telomere shortening (Fellerhoff et al., 2000). 

Rad53p phosphorylation, however, could only be detected in yeast cells grown at elevated 

temperatures whereas as single-stranded telomeric overhang is already detectable at the 

permissive temperature (Gravel et al., 1998; Teo and Jackson, 2001). Overexpression of 

telomerase has been shown to suppress the temperature sensitivity of yku mutants (Nugent et 

al., 1998) and can suppress the checkpoint activation, however, ss DNA is still present at 

telomeres (Teo and Jackson, 2001). Thus, telomerase might cap the telomere in yku mutants 

thereby preventing it from being recognized as a DNA break. 

 

FIG. 5 [I]. Complex formation of the yeast DNA damage checkpoint proteins. Budding yeast Rad17, Mec3 
and Ddc1 form a complex regardless of the checkpoint signal. Ddc1 is phosphorylated in a Mec1 dependent 
manner, which then transmits the checkpoint signal to Rad53 and Chk1. Rad9 is essential for the 
phosphorylation of Rad53. 

 

In mammalian cells there is some evidence that one critically short telomere may be 

recognized as a DNA damage and as a consequence induces a p53/p21WAF and p16 dependent 

cell-cycle arrest to cause senescence (Burkhart et al., 1999; Chin et al., 1999; Saretzki et al., 

1999). A dominant negative TRF2 gene has been shown to result in the degradation of the 

single stranded overhang (van Steensel et al., 1998) at human telomeres, which might 

interfere with t-loop formation. The truncated TRF2 leads to the formation of dicentric 

chromosomes and eventually to senescence (van Steensel et al., 1998) or apoptosis mediated 

by p53 (Karlseder et al., 1999). Thus increasing evidence arises that telomeres indeed are 

recognized by the DNA damage checkpoint and that a variety of changes at the telomere 

might contribute to the detection by the cellular repair machinery or the apoptotic pathway. 
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4. Telomeres, aging and cancer 
 

Early experime al human 

fibroblasts show a lim

num all portion of cells can 

escape this cell cycle arrest, term rtal, thus diving indefinitely. 

atic cells, whereas 

germline cells and tum line cells and in ~ 90% 

of all tumors. In contrast, m cant telomerase activity 

(Broccoli et al ., 1993; Vaziri et al., 

1993) and telome et al., 1992). Somatic 

cells, that escape crisis stabilize telom rase (Counter et al., 1994) 

comparable to germ mortal 

an fibroblasts restores telomerase 

activity, stabilizes telom et al., 1998; Vaziri 

and Benchimo erase is 

sufficient to induce im

In addition to the lim tic cells, Hayflick perceived that 

fibroblast cultures derived from  adults 

(Hayflick, 1965). This observation, namely that the replicative capacity of a cell correlated 

with donor age, led to the proposal that the cellular dividing capacity reflects the organismal 

aging process. However, in vivo a variety of somatic cells are quiescent and proliferate 

seldom if at all. Human fibroblasts taken from elderly individuals undergo an additional 20-50 

population doublings in culture (Dice, 1993), representing 40-70% of their replication 

capacity as defined by Hayflick. Thus, most telomerase-negative cells might never reach their 

Hayflick limit in vivo. A mouse strain deleted for the RNA component of telomerase showed 

no phenotype during the first 2-6 generations and age associated phenotypes, such as gray 

hair and wrinkled skin did not occur earlier than in control mice (Lee et al., 1998). Only in 

later mouse generations did the loss of telomerase lead to early-onset of hair graying, hair loss 

(Rudolph et al., 1999) and germline mortality, thereby inducing sterility (Lee et al., 

1998).These findings argue against a model in which the life span of an individual animal that 

is born with wild-type telomere length is determined by the activity of telomerase. 

nts by Hayflick and Moorehead have revealed that norm

ited dividing capacity and enter a non-diving state after a defined 

ber of passages (Hayflick and Moorehead, 1961). Only a very sm

ed crisis, and become immo

This effect observed by Hayflick and Moorehead, is restricted to som

ors are immortal. Telomerase is active in germ

ost human somatic cells lack signifi

., 1995; Counter et al., 1994; Kim et al., 1994; Shay et al

res shorten every round of DNA replication (Allsopp 

ere length and activate telome

line cells. Thus, telomerase is required for indefinite growth of im

cells in culture. Ectopic expression of hTERT in hum

ere length and induces indefinite growth (Bodnar 

l, 1998), providing strong evidence that the activation of telom

mortalization. 

ited division potential of soma

 embryos divided more often than those derived from
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The possibility that enhanced telomere shortening might play a role in human aging is 

supported by the analysis of telomeres from patients with premature aging syndromes. 

Telomere length of fibroblasts taken from patients with Hutchinson-Gilford progeria, a 

premature aging syndrome, was reduced as compared to age-matched control cells (Allsopp et 

al., 1992). Furthermore Werner’s and Ataxia telangiectasia patients, who experience both 

premature aging exhibit accelerated telomere shortening (Kruk et al., 1995; Smilenov et al., 

1997). Moreover, overexpression of telomerase could restore wild-type telomere length in 

Werner’s syndrome cells and compensated for the early onset of replicative senescence 

(Wyllie et al., 2000). 

Tumors are highly proliferative cells that have escaped growth control and keep diving 

indefinitely. Maintaining telomere stability is required for long term proliferation of tumors 

(Shay and Wright, 1996, Wright and Shay, 2001) and telomerase activity has been detected in 

approx. 90% of all tumors. However, another mechanism to stabilize telomere length, initially 

identified in telomerase negative yeast cells, has also been detected in tumor cells. This so 

called alternative lengthening of telomeres (ALT) mechanism is independent of telomerase 

and relies on homologous recombination (Bryan et al., 1995; Dunham et al., 2000). Thus, 

cancer cells seem to have circumvented the progressive telomere loss that is present in normal 

somatic tissues and is limiting for the cellular replicative potential. Reconstitution of 

telomerase has been shown to antagonize senescence however it is not sufficient to induce 

tumor formation (Hooijberg et al., 2000). Furthermore, transfection of embryo fibroblasts by 

a human ras oncogene does not convert them into tumor cells unless a second oncogene such 

as a viral or cellular myc gene is introduced together with the ras gene (Land et al., 1983). 

Recent studies have implicated c-myc in the transcription activation of hTERT (Greenberg et 

al., 1999; Wang et al., 1998; Wu et al., 1999). 

Tumor formation has been shown to be a multistep process in which telomere integrity 

plays an important role. Since telomerase is required for the proliferation of most tumors it is 

an attractive target for anti-cancer drug therapy. Interestingly, the inhibition of telomerase in 

tumor cancer cell lines by a hammerhead ribozyme can induce an immediate apoptotic signal 

without prior telomere shortening (Ludwig et al., 2001), suggesting that telomerase is not 

only required for telomere length but also involved in the capping of telomeres (Blackburn, 

2000) in the tumors studied. 
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Summary 
 

The high affinity DNA binding factor (HDF) protein of Saccharomyces cerevisiae is 

composed of two subunits and specifically binds ends of double-stranded DNA. The 

70-kDa subunit, HDF1, shows significant homology with the 70-kDa subunit of the 

human Ku protein. Like the Ku protein, HDF1 has been shown to be involved in 

recombination and double stranded DNA break repair. We have purified and cloned 

HDF2, the second subunit of the HDF protein. The amino acid sequence of HDF2 shows 

a 45.6% homology with the 80-kDa subunit of the Ku protein. HDF1 by itself does not 

bind DNA, while HDF2 protein on its own seems to displays DNA binding activity. 

Targeted disruption of the HDF2 gene causes a temperature-sensitive phenotype for 

growth comparable to the phenotype of hdf1- strains. The human Ku protein cannot 

complement this temperature-sensitive phenotype. hdf2- strains are sensitive to 

bleomycin and methyl methanesulfonate but this sensitivity is reduced in comparison 

with hdf1- strains. 
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INTRODUCTION 

 

As a safeguard against the occurrence of DNA damage prokaryotic and eukaryotic cells 

have developed at least three different DNA repair mechanisms. In Saccharomyces cerevisiae 

DNA double strand breaks are repaired mainly by the activities of the RAD52 epistasis group 

(1, 2). An evolutionary conservation of DNA double strand break pathways is suggested by 

the existence of eukaryotic homologues of S. cerevisiae DNA repair genes in this epistasis 

group (3-7). 

Recently, an activity distinct from the RAD52 group, the DNA-activated protein kinase 

and its regulatory subunit, the Ku heterodimer, was identified as a component involved in the 

repair of DNA double strand breaks and recombinational events in higher eukaryotes (8-15). 

The human Ku protein is a heterodimer composed of 70- and 80-kDa subunits (16). The 

Drosophila homologue of the human Ku protein, IRBP (17), has been shown to be involved 

in repair of DNA double strand breaks, too, indicating a conservation of repair functions in 

Drosophila and mammals (18). 

The notion that Ku protein may participate in recombination, replication, or DNA repair 

events (19, 20) is suggested by the observation that this protein binds to the ends of double-

stranded DNA, nicks, and hairpins (19-26). Several lines of evidence appear to corroborate 

this view. Ku p80 is not detectable in x-ray-sensitive xrs hamster cell lines known to be 

defective in normal V(D)J recombination processes (12, 13). Both mutant phenotypes in 

these hamster cells can be complemented by the human XRCC5 gene encoding Ku p80 (11). 

Cells derived from mice with severe combined immunodeficiency (SCID) have been shown 

to be sensitive for ionizing radiation and defective in V(D)J recombination. For theses SCID 

cells the catalytic subunit of the DNA-dependent protein kinase is a strong candidate for the 

afflicted gene (14, 15). A number of DNA-binding proteins, including human p53, have been 

identified as targets of the DNA-dependent protein kinase (27, 28). The DNA-dependent 

protein kinase and its regulatory subunit, Ku, may, therefore, play a key role in the signaling 

pathway of DNA damage (29). 
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It was shown recently that the Ku heterodimer and human RAD51 coelute with the largest 

subunit of RNA polymerase II (30). Moreover, DNA polymerase ε, which is involved in 

DNA repair synthesis (31) and also interacts with the Ku protein (32), is a component of this 

RNA polymerase II complex (30). 

A DNA-dependent protein kinase has not yet been described in S. cerevisiae. However, a 

yeast homologue of the human Ku heterodimer, a high affinity DNA binding factor (HDF), 

has been identified (33). HDF is a heterodimeric protein binding to the ends of double-

stranded DNA. The gene of the 70-kDa subunit, HDF1, has been cloned, and the predicted 

amino acid sequences share significant homology with the 70-kDa subunit of the human Ku 

protein (33). hdf1 mutant yeast strains are sensitive for the radiomimetic drug bleomycin (34), 

an agent causing DNA double strand breaks (35-37). The disruption of the HDF1 gene also 

affects mating-type switching and spontaneous mitotic recombination (34). hdf1 rad52 

double mutant strains show an increased sensitivity toward ionizing radiation (38). HDF1 has 

been shown also to be involved in illegitimate recombination (39). Another phenotype, which 

may not be related to the DNA repair activities of HDF, is the formation of substantially 

shorter telomeres in hdf1 mutant strains and a synthetic interaction of the hdf1 mutation with 

tel1 mutation, resulting in strains that grow slowly and have very short telomeres (40). 

Here we show the cloning of HDF2, the second subunit of the HDF heterodimer. HDF2 

displays significant homology to human Ku p80, comparable to the homology of HDF1 with 

Ku p70. While HDF1 does not bind DNA by itself, the HDF2 protein on its own displays 

DNA binding activity. Disruption of the HDF2 gene causes a temperature-sensitive 

phenotype for growth. This temperature sensitivity cannot be complemented by expression of 

the human Ku protein. hdf2 mutant strains are also sensitive toward bleomycin and methyl 

methane sulfonate but in comparison with hdf1 mutant strain this sensitivity is reduced. 

 

 

MATERIALS AND METHODS 
 

Yeast strains, Media, Growth Conditions, and Transformation-Strains used in this  study are shown in 

Table I. Only relevant genotypes are listed. The hdf2-disrupted strains W303h2a and WaLh2a were generated 

by one-step gene disruption of the wild-type HDF2 gene in  W303-1A and W303aL. Cells were  grown at 30 or 

37 °C in YPD  liquid  medium/plates containing  2% glucose,  1% yeast extract, 2% Bacto-peptone  or selective  
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medium/plates complemented with the appropriate nutrients (SD medium is 2% glucose, 0.67% nitrogen base 

without amino acids, plus nutrients) (41). Yeast transformation was performed by the lithium acetate method 

(42). 

Purification of the HDF Protein-Protein extracts for HDF purification were prepared from the protease-

deficient strain ABYS 60. Purification was performed as described previously (33). 

Gel Retardation Assay-A 39-bp long synthetic double-stranded oligonucleotide, designated PGK1,2 (33), 

was used for gel retardation assays. Protein extracts were incubated with DNA for 5-10 min at room 

temperature in a buffer containing 150-250 mM ammonium sulfate, 50mM Tris, pH 7.5, 5 mM EDTA, 1 mM 

dithiothreitol, and 10% glycerol. DNA-protein complexes were analyzed by gel retardation on 10 or 12% 

polyacrylamide gels in 1 x TBE (0.09 M Tris borate, 0.002 M EDTA). Gels were prerun at 80 V for 30 min and 

then at 120 V for 6-12 h. 

Cloning of the HDF2 Gene-Partial amino acid sequences of purified HDF2 protein were determined and 

used to identify an unknown open reading frame by a BLAST search. Oligonucleotides derived from the data 

base sequence information obtained were used for screening an EMBL3A genomic yeast library. A 2.4-kilobase 

SalI/SacI fragment was subcloned into pGEM4Z (Promega). To verify the sequence the fragment was 

sequenced from both ends as described previously (33). 

Disruption of the HDF2 Gene-A SalI/SacI fragment spanning 175 bp upstream of the ATG codon, the open 

reading frame of the HDF2 gene, and 387 bp downstream of the TAG stop codon were cloned into plasmid 

pGEM4Z. The plasmid was cleaved with SfuI, which cuts once inside the coding region of the HDF2 gene 300 

bp downstream of the ATG codon. 216 bp were removed by Bal31 endonuclease digestion and replaced by a 

functional kan resistance gene (43). The resulting plasmid, pHDF2kan1, was digested with BamHI/SalI and the 

DNA was used to transform the haploid yeast strains W303-1A and W303aL for G418 resistance for one-step 

gene disruption (44). Gene disruption was verified by Southern blot analysis and loss of HDF DNA binding 

activity in gel retardation assays. 

Plasmid Complementation-To complement the hdf2 deletion in the yeast strain W303h2 a 2.450-bp 

SalI/SacI fragment was cloned into the multiple cloning site of plasmid pRS313 (45). The fragment contains 

175 bp upstream of the HDF2 start codon, the entire HDF2 coding region, and 387 bp downstream of the stop 

codon. The resulting plasmid, pRS313HDF2, containing the HIS3 selection marker was transformed into the 

hdf2 deletion strain W303h2. Positive clones were selected by plating to His- SD plates. His+ colonies were 

tested for temperature sensitivity and HDF DNA binding activity in gel retardation assays. 

Expression of Human Ku p70 and Ku p80 in Yeast Cells-For expression of human Ku p80 protein the cDNA 

was cloned into the plasmid pRS316 (45) under control of the GAL1-10 promotor. For expression of the Ku p70 

protein the cDNA was cloned into the plasmid pRS313 under control of the ADH promotor. The resulting 

plasmids pRS316Galp80 containing the URA3 selection marker and pAHp70 containing the HIS3 selection 

marker were transformed into different yeast strains. Positive clones were selected by plating to Ura-, His-, or 

Ura-/His- SD plates. 
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Drop Titer Test-A single colony from a YPD or SD plate grown for 3 days was suspended in 500 µl of YPD 

medium. This cell suspension was diluted from 10-1 to 10-5. 10 µl of each dilution were dropped onto a YPD or 

SD plate. The plates were incubated at 30 or 37 °C for 3-6 days. 

If strains transformed with a galactose-inducible promotor were used, a single colony was resuspended in 

10-20 ml YP-Gal liquid medium (1% yeast extract, 2% Bacto-peptone, 2% galactose) and incubated with at 

30°C for 4 h. Cells were collected and resuspended in 500 µl YP-Gal. This cell suspension was diluted as 

described above and spread on YP-Gal or SD-Gal plates. 

Bleomycin and Methyl Methanesulfonate (MMS) Treatment-Cultures were grown in YPD medium at 30°C 

over night and diluted to an A600 of 0.2-0.3. Cells were grown to mid log phase (A600 = 2-3). Individual 

samples were diluted in water and different cell concentrations were spread immediately in duplicates on YPD 

plates in the presence or absence of varying concentrations of bleomycin. Plates were incubated for 5-7 days at 

30°C. The data from three experiments are given. 

Assays for MMS sensitivity were performed in triplicate and analogous to bleomycin treatment. The data of 

four experiments are given.  

For complementation assays cells were grown in selection medium. Samples were prepared as described 

above and spread on appropriate SD-plates. The data of two experiments are given. 

 
TABLE I [II] 

Relevant genotypes of used strains 
 

 
Strain 

 
Relevant genotype 

 
Source 

W303-1A Mata, ade2-1, his3-11, leu2-3,112, ura3-1, trp1 Ref. 34 

W303aL Mata, hdf1::LEU2, ade2-1, his3-11, ura3-1, trp1 Ref. 33 

W303h2 Mata, hdf2::KAN, ade2-1, his3-11, ura3-1,leu2-3,112, trp1 This study 

WaLh2 Mata, hdf1::LEU2, hdf2::KAN, ade2-1, his3-11, ura3-1, trp1 This study 

ABYS60 Mata, ade-, pra1-1, prb1-1, prc1-1, cpf1-3 Ref. 33 

 

 

RESULTS 
 

Cloning of the HDF2 Gene-HDF exists as a stable heterodimer. The purified protein 

displays two bands in SDS-gel electrophoresis of 70 (HDF1) and about 85 kDa (HDF2) (data 

not shown). To clone the HDF2 gene we purified the protein to homogeneity. The 

purification procedure included four column chromatography steps, phenyl-Sepharose, 

DEAE-cellulose, phosphocellulose, as well as DNA affinity chromatography on a column-

bound oligonucleotide (33). 
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Starting with crude extract prepared from 500 g of wet yeast cells we obtained about 20 µg 

of a highly purified protein preparation. The amino acid sequence of four HDF2 peptides 

were obtained by microsequencing of proteolytic cleavage products. These sequences were 

used for comparison with sequences in the protein data base. All four peptides matched to 

one sequence of an unknown protein. The sequence of this unknown protein was identified in 

connection with the yeast genome project (accession no. SC9718_5). The open reading frame 

contained 1.890 bp coding for 629 amino acids. The molecular mass predicted from this DNA 

sequence was 71.25 kDa. This is not in agreement with the molecular mass of about 85 kDa 

determined by SDS-polyacrylamide gel electrophoreses but may be due to unknown 

posttranslational modification or the result of an artifact of SDS-gel electrophoresis. 

Comparison of the amino acid sequence of the SC9718_5 open reading frame with 

sequences in the protein data base revealed a significant homology with the p80 subunit of 

the human Ku autoantigen of 45.6%. This is comparable with the homology of HDF1 with 

the p70 subunit of the Ku protein of about 46.5%. The amino acid sequence lacks a leucine 

zipper region shown to be present in the Ku p80 sequence. The SC9718_5 open reading 

frame sequence also lacks any other known protein domains. An EMBL3A genomic yeast 

library was screened using oligonucleotides derived from the data base sequence information. 

Four positive clones were isolated and a 2.450-bp SalI/SacI fragment was subcloned. The 

sequence was verified by sequencing from the 3´- and 5´-end. 

Disruption of the HDF2 Gene-The HDF2 gene was disrupted by employing the one-step 

disruption procedure of Rothstein (44) as described under “Materials and Methods”. As 

shown in Fig. 1, lane 4, crude extract of the HDF2-deficient strain did not show any HDF-

specific DNA binding activity. As a positive control the hdf2-deficient strain W303h2 was 

transformed with yeast expression plasmid pRS313 containing a 2.450-bp long DNA insert 

with the entire open reading frame as well as upstream and downstream regions of the HDF2 

gene. Crude extract from the transformed strain W303h2 displayed DNA binding activity in 

gel retardation assays which was indistinguishable from that observed with control strains 

(Fig. 1, lanes 1 and 5). 
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FIG. 1 [II]. HDF2 can bind to DNA on its own. Lane 1, wild-type W303-1A; lane 2, hdf1- W303aL;    
lane 3, hdf1- W303aL-pRS316HDF1; lane 4, hdf2- W303h2; lane 5, W303h2-pRS313HDF2; lane 6, hdf1- hdf2- 
WaLh2; lane 7, WaLh2-pRS316HDF1; lane 8, WaLh2-pRS313HDF2; lane 9, WaLh2-pRS316HDF1/ 
pRS313HDF2. 

 

HDF2 Can Bind to DNA on Its Own-Comparison of the DNA-protein complexes 

detectable in the crude extracts of hdf1- and hdf2-deficient strains showed an additional band 

formed by the crude extract of hdf1-deficient strain (Fig. 1, lane 2).These results suggest that 

HDF2 possesses a DNA binding activity of its own. This DNA binding activity of HDF2 was 

much weaker than the DNA binding activity of the HDF heterodimer in crude extract of wild 

type cells. (Fig. 1, lanes 1 and 2). To verify that the observed DNA-protein complex was 

formed by the HDF2 protein the hdf1 hdf2 double mutant strain WaLh2 was used. In crude 

extracts of the double mutant strain the HDF2-DNA complex was not detectable (Fig. 1, lane 

6). This complex was also absent if this strain was transformed with the HDF1 expression 

plasmid, pRS316HDF1 (33) (Fig. 1, lane 7). The complex reappeared in crude extracts of the 

double mutant strain transformed by the HDF2 expression plasmid, pRS313HDF2 (Fig. 1, 

lane 8). Transformation of the double mutant strain with both the HDF1 and HDF2 

expression plasmid led to HDF heterodimer DNA binding activity indistinguishable from that 

observed in the wild type (Fig.1, lanes 1 and 9). 
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HDF2- Strains are Temperature-sensitive for Growth-Since the HDF1-deficient strain 

W303aL showed a temperature-sensitive phenotype for growth (33), this growth phenotype 

was also studied in the hdf2-deficient strain W303h2. When haploid wild-type and hdf2-

deficient strains were kept at 30 °C for 3 days on YPD plates, suspended in liquid medium, 

and spot-plated onto YPD plates at different dilutions, the wild-type strain grew normally at 

37 °C, whereas the hdf2-deficient strain did not grow at this temperature. When kept at the 

permissive temperature (30 °C) both wild-type and hdf2-deficient strain grew normally (data 

not shown). This phenotype of the hdf2-deficient strain is similar to that observed for the 

hdf1-deficient strain. Growth of hdf2-deficient cells in liquid medium at 37°C for 10-12 h 

resulted in the development of enlarged single budded cells (data not shown, but see 

Feldmann and Winnacker (33)). This is in agreement with the phenotype of hdf1- cells. 

Growth phenotypes of the hdf1 hdf2 double mutant strains were identical with the phenotype 

of the single mutant strains. 

Human Ku Protein Cannot Complement Temperature Sensitivity of HDF-deficient Cells-

HDF is the homologue of the human Ku protein. The proteins share biochemical properties 

and structural homology. We therefore tested the ability of the human Ku subunits to 

complement the temperature-sensitive phenotypes caused by HDF2 and HDF1 deficiency. 

The hdf2- strain W303h2 was transformed with a yeast expression plasmid containing the 

Ku p80 cDNA under the control of a GAL1-10 promotor. The resulting strain W303h2-

pRS316Galp80 was tested for the ability to grow at 30 and 37 °C on Ura- SD plates 

containing 2% galactose. As shown in Fig. 2A, the hdf2- strain expressing the human Ku p80 

could not grow at 37 °C. When kept at the permissive temperature (30 °C) this strain grew 

normally. This result suggested that Ku p80 cannot complement the temperature sensitivity of 

hdf2- strains. We also tested whether Ku p70 could complement the hdf1- phenotype. The 

HDF1-deficient strain W303aL transformed with a yeast expression plasmid containing the 

cDNA of Ku p70 under control of an ADH promotor could not grow at 37 °C (data not 

shown), indicating that Ku p70 cannot complement HDF1 deficiency. Finally we tested the 

hdf2 mutant strain W303h2 transformed with both plasmids, pRS316Galp80 and pAHp70, for 

growth at 37 °C. As shown in Fig. 2B expression of both subunits of the Ku heterodimer 

cannot complement temperature sensitivity of the HDF-deficient strain. 
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FIG. 2 [II]. A, human Ku p80 cannot complement hdf2 deficiency. Lane 1, wild-type W303-1A-pRS316; 
lane 2, hdf2- W303h2-pRS316; lane 3, W303h2-pRS316Galp80 clone 1; lane 4, W303h2-pRS316Galp80 clone 
2. B, human Ku heterodimer cannot complement hdf2 deficiency. Lane 1, wild-type W303-1A-pRS316; 
lane 2, W303h2-pRS316Galp80/pAHp70 clone 1, lane 3, W303h2-pRS316Galp80/pAHp70 clone 2; lane 4, 
W303h2-pRS316/pAH. 

 

To verify that the Ku subunits were expressed in yeast cells, we tested DNA binding 

activity in crude extracts of the transformed strains using gel retardation assays. We could not 

detect an HDF1/Ku p80 corresponding DNA protein complex with crude extracts of the strain 

W303h2-pRS316Galp80 (Fig. 3, lanes 3 and 4). Extracts from strain W303aL-pAHp70 

displayed no HDF2/Ku p70 corresponding DNA binding activity (data not shown). In crude 

extract of the hdf2 mutant strain transformed with the Ku p70 and Ku p80 expression 

plasmids, a new DNA protein complex corresponding to the Ku p70/p80 heterodimer was 

detectable (Fig. 3, lanes 5 and 6). 
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FIG. 3 [II]. Human Ku heterodimer expressed in yeast cells can bind to DNA. Lane 1, wild-type W303-
1A-pRS316; lane 2, hdf2- W303h2-pRS316; lane 3, W303h2-pRS316Galp80 clone 1; lane 4, W303h2-
pRS316Galp80 clone 2; lane 5, W303h2-pRS316Galp80/pAHp70 clone 1; lane 6, W303h2-pRS316Galp80/ 
pAHp70 clone 2. 

 

hdf2 Mutants Are Sensitive to Bleomycin and MMS-Bleomycin is known to cause the 

introduction of double strand breaks into DNA molecules. We have shown previously, that 

the hdf1 mutant strain W303aL is strongly sensitive to bleomycin (34). Therefore, we studied 

the level of sensitivity for bleomycin of hdf2 and hdf1 hdf2 double mutant strains. Survival 

assays were carried out on solid medium in the presence or absence of varying concentrations 

of bleomycin. A marked reduction by 1.2 orders of magnitude in the survival rates of the 

haploid hdf2 mutant strain was observed at a bleomycin concentration of 4 µg/ml. This 

decrease is not as prominent as the decrease of survival rates in hdf1 or hdf1 hdf2 double 

mutant strains, which showed a reduction by 1.8-2.0 orders of magnitude at the same 

bleomycin concentration (Fig. 4). Transformation of a hdf2 mutant strain with a yeast single 

copy plasmid carrying a functional copy of the HDF2 gene restored the response to 

bleomycin to wild-type levels (data not shown). 
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FIG. 4 [II]. hdf1-and hdf2-deficient strains show different sensitivities for bleomycin. 1 wild-type 
W303-1A, 7 hdf1 mutant W303aL, # hdf2 mutant W303h2, and ∆ hdf1 hdf2 double mutant WaLh2 were 
plated on solid YPD media containing bleomycin in concentrations of 1-4 µg/ml. Colonies were counted after 5 
days of incubation at 30 °C. 

 

 

 
FIG. 5 [II]. A, hdf1- and hdf2-deficient strains are sensitive to MMS. 1 wild-type W303-1A, 7 hdf1 mutant 

W303aL, # hdf2 mutant W303h2, and ∆ hdf1 hdf2 double mutant WaLh2 were plated on solid YPD media 
containing 0.005-0.015% MMS. Colonies were counted after 5 days incubation at 30 °C. B, Expression of 
functional HDF1 or HDF2 genes complement hdf1 or hdf2 deficiency, respectively. 1 wild-type strain W303-
1A-pRS316, 7 hdf1 mutant W303aL-pRS316, 6 W303aL-pRS316HDF1, # hdf2 mutant W303h2-pRS313, and ' 
W303h2-pRS313HDF2 were plated on solid SD medium containing 0.005-0.015% MMS. Colonies were 
counted after 5 days incubation at 30 °C. 
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Another agent known to induce strand breaks in DNA is MMS. Accordingly, hdf1 and 

hdf2 mutant strains and the double mutant strains were also tested for MMS sensitivity. 

We observed a significant sensitivity of all three strains to MMS compared with the wild-

type strain (Fig. 5A). The decrease in survival rate of the hdf2 mutant strain in response to 

MMS treatment was not as pronounced as the decrease of the survival rates of the hdf1 and 

hdf1 hdf2 double mutant strains. Survival rates of the hdf2 mutant strain were reduced by 1 

order of magnitude while the decrease in survival rates of the hdf1 mutant strain and the 

double mutant strains was by 2-2.2 orders of magnitude. Sensitivity of the hdf1 and hdf2 

mutant strains to MMS could be restored to wild-type level by expression of a functional 

copy of the HDF1 or HDF2 gene, respectively, from a yeast single copy plasmid (Fig. 5B). 

 

 

DISCUSSION 
 

We have cloned HDF2 from S. cerevisiae, the gene encoding the second subunit of the 

HDF heterodimer, which is the homologue of the human Ku protein. HDF2 displays a 

homology of 45.6% with Ku p80. The molecular mass predicted from the sequence of the 

HDF2 gene is 71.25 kDa. This is substantially smaller than the mass of the Ku p80 subunit of 

82.5 kDa. The significance, if any, of the observed differences in the molecular masses of the 

two proteins remains unresolved as homology comparisons do not provide any indications for 

the presence of regional or local decreases in the homology of the two proteins. 

No DNA binding activity is detectable for HDF1 on its own. The analysis of extracts of 

hdf1-deficient cells reveals the presence of a weak DNA binding activity which is not 

detectable in extracts of hdf2-deficient cells. This DNA binding activity is also absent in cells 

of a double mutant strain but it can be restored by expression of a HDF2 gene from a single 

copy plasmid. These experiments indicate that HDF2 protein possesses a weak DNA binding 

activity of its own. Since the DNA binding activity of HDF2 alone is weak compared with the 

DNA binding activity of the heterodimer it may well be that HDF2 is the DNA binding 

subunit of the HDF heterodimer, while HDF1 is increasing the affinity of the heterodimer to 

DNA. 
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hdf2 mutant strains are temperature-sensitive for growth. Cells grown at 37 °C display the 

same phenotype as observed for hdf1 mutant cells, arresting as enlarged single-budded cells. 

hdf1 hdf2 double mutant strains display no additional growth defects. These results indicate 

that this phenotype depends on the missing HDF heterodimer activity. 

The temperature-sensitive phenotype for growth caused by HDF deficiency cannot be 

complemented by the expression of either the single subunits or the heterodimeric human Ku 

protein. A HDF/Ku corresponding DNA binding activity is not detectable in hdf1- or hdf2-

deficient strains transformed with plasmids expressing human Ku p70 or Ku p80, 

respectively. These results indicate that HDF1 and Ku p80 or HDF2 and Ku p70 cannot form 

functional heterodimers. Functional expression of the Ku heterodimer can be shown by 

detection of the DNA binding activity of the Ku protein in crude yeast extract. We suggest 

therefore that loss of HDF DNA binding is not responsible for temperature sensitivity but loss 

of protein-protein interactions. It appears that human Ku cannot take over the function of 

HDF in protein-protein complexes. One candidate for protein interaction with the HDF 

heterodimer is the catalytic subunit of a postulated DNA-dependent protein kinase. Until now 

it was not possible to show the existence of a DNA-dependent protein kinase in yeast. But the 

functional and structural homology of HDF and Ku heterodimers leads to the assumption that 

a DNA-dependent protein kinase activity exists in S. cerevisiae, as well. 

 

We have shown recently that hdf1 mutant strains are sensitive for the radiomimetic agent 

bleomycin and, in addition, show a reduced rate of mating-type switching and mitotic 

recombination (34). These experiments indicate that the HDF heterodimer is involved in 

DNA repair and recombination events. In this communication we show that hdf2-deficient 

strains are also sensitive to bleomycin and that hdf1- or hdf2- deficient strains are sensitive to 

MMS, an agent inducing DNA breaks. Surprisingly hdf1 mutant strains are about 10 times 

more sensitive toward both agents than hdf2 mutant strains. Deletion of both subunits in hdf1 

hdf2 double mutant strains only slightly increases sensitivities. This observation indicates that 

HDF1 is the critical component of HDF heterodimers functioning in DNA repair. In 

conjunction with the data reported for the DNA binding activity of the HDF2 subunit, these 

results suggest a mechanistic model of the function of the HDF heterodimer. 
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It may be that HDF2 is the DNA-binding component of the HDF heterodimer, while 

HDF1 is stabilizing the protein-DNA complex and is the active component in forming 

protein-protein complexes. In this case the HDF1 subunit alone could function in DNA repair 

but in a reduced manner. It may be that binding of the HDF heterodimer to DNA localizes the 

protein toward the position it is needed, and in hdf2-deficient cells the HDF1 subunit reaches 

this position only with a strongly reduced affinity. 
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ABSTRACT 
 

Two roles for the Saccharomyces cerevisiae Cdc13 protein at the telomere have 

previously been characterized: It recruits telomerase to the telomere and protects 

chromosome ends from degradation. In a synthetic lethality screen with YKU70, the 70-

kDa subunit of the telomere-associated Yku heterodimer, we identified a new mutation 

in CDC13, cdc13-4, that points toward an additional regulatory function of CDC13. 

Although CDC13 is an essential telomerase component in vivo, no replicative senescence 

can be observed in cdc13-4 cells. Telomeres of cdc13-4 mutants shorten for about 150 

generations until they reach a stable level. Thus, in cdc13-4 mutants, telomerase seems 

to be inhibited at normal telomere length but fully active at short telomeres. 

Furthermore, chromosome end structure remains protected in cdc13-4 mutants. 

Progressive telomere shortening to a steady-state level has also been described for 

mutants of the positive telomere length regulator TEL1. Strikingly, cdc13-4/tel1∆ double 

mutants display shorter telomeres than either single mutant after 125 generations and a 

significant amplification of Y´ elements after 225 generations. Therefore CDC13, TEL1, 

and the Yku heterodimer seem to represent distinct pathways in telomere length 

maintenance. Whereas several CDC13 mutants have been reported to display elongated 

telomeres indicating that Cdc13p functions in negative telomere length control, we 

report a new mutation leading to shortened and eventually stable telomeres. Therefore 

we discuss a key role of CDC13 not only in telomerase recruitment, but also in 

regulating telomerase access, which might be modulated by protein-protein interactions 

acting as inhibitors or activators of telomerase activity. 
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INTRODUCTION 
 

Ends of linear eukaryotic chromosomes form a special structure, the telomere. The 

telomeric DNA-protein complexes are essential for chromosome stability (49). They protect 

chromosomes from degradation, end-to-end fusion (54) and ensure their complete replication 

(41). In most eukaryotes, telomeric DNA contains a simple, repetitive sequence with the 

strand running toward the end of the chromosome being rich in G residues. For some 

organisms the configuration of the chromosome ends has been defined exactly. In 

hypotrichous ciliates the double-stranded region is followed by a 12- to 16-nucleotide-long 

single-stranded (ss) 3´-overhang (22, 24), whereas mouse and human chromosomes contain ss 

termini of 45 to 200 nucleotides (36, 39, 60). In the yeast Saccharomyces cerevisiae the 

telomere repeats consist of 300 ±75 bp of C1-3A/TG1-3 DNA. Detectable ss extensions of the 

G-rich strand are generated at telomeres specifically during S phase in a telomerase-

independent process (11, 57, 58). A specialized enzyme, telomerase, performs synthesis of 

telomeric DNA by extending the 3´ end of the G-rich strand of the telomere. Telomerase 

activity in S. cerevisiae depends on at least four protein subunits (encoded by EST1, EST2, 

EST3, and CDC13/EST4) (28, 34) and the RNA component (encoded by TLC1) (52). All 

subunits are essential for telomerase function in vivo, although only the catalytic subunit 

EST2 and the RNA template TLC1 are necessary for in vitro activity (6, 8, 30). Deletion of 

most individual components of the telomerase complex leads to inactivation of telomerase 

and thereby to a decrease in telomere length and to replicative senescence (28, 34). 

However, deletion of CDC13/EST4 leads to immediate cell cycle arrest and cell death (56). 

This phenotype is triggered by the accumulation of telomeric single-stranded DNA (ssDNA) 

that activates a RAD9-dependent G2 arrest (16). Therefore Cdc13p was proposed to provide 

protection of the telomere from nucleolytic degradation by DNA end binding. This role is 

consistent with the finding that Cdc13p binds ss telomeric DNA in vitro (29, 40) and binds 

exclusively to telomeric, but not to internal, C1-3A/TG1-3-repeat sequences (5). Very recently 

the DNA binding domain of Cdc13p has been mapped to amino acids 557 to 694. 
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Heterologous expression in Escherichia coli of a small, CDC13-derived polypeptide 

containing this region results in a protein that binds, like the full-length Cdc13p, with high 

affinity to ss telomeric DNA (23). A single amino acid missense mutation within this region 

of Cdc13p causes thermolabile DNA binding, and consistent with the presumption that 

Cdc13p DNA binding is essential to protect chromosome ends, this mutant is temperature 

sensitive for growth (23). 

Besides its role in chromosome end protection, Cdc13p is involved in recruiting 

telomerase to telomeric DNA. cdc13-2est mutant cells exhibit a senescence phenotype but can 

be rescued by expression of a Cdc13-2est-Est1 fusion protein (12). These data suggest that 

Cdc13p is essential for loading telomerase to the telomere and that this process is mediated 

via interaction with Est1p. Interaction of Cdc13p and Est1p has been shown by two-hybrid 

criteria. Additionally, hemagglutinin (HA)-tagged Cdc13p can be copurified with a 

glutathione S-transferase (GST)-Est1 fusion protein from yeast extracts, if both proteins were 

overexpressed (45). Furthermore, Cdc13p seems to be involved in the accurate regulation of 

telomerase recruitment, as several CDC13 mutations, not yet mapped at the genomic level, 

confer either elongated telomeres (41, 18) or shortened telomeres (18). 

In S. cerevisiae the steady-state level of telomeric GT repeat tract length seems to result 

from a balance between telomere elongation and telomere shortening (37). Many proteins 

involved in telomere length maintenance have been identified already. A major factor 

involved in negative telomere length regulation is the Rap1 protein, which binds with high 

affinity to specific sequences within the telomeric GT repeat tracts (7). Unregulated telomere 

elongation is prevented mainly by Rap1p and its interacting partners Rif1p and Rif2p (21, 31, 

59). It has been proposed that a negative feedback mechanism determines the exact number of 

Rap1p molecules bound to telomeric DNA and regulates telomerase activity (37, 38). 

Recently, a model has been suggested in which a special folded structure prevents telomere 

elongation (46). In this model, the formation of the folded structure of the chromosome end 

depends on the length of the GT repeat tract and on the number of bound Rap1p. At least two 

pathways are involved in positive telomere length control in S. cerevisiae. One pathway 

involves Tel1p and the Mre11-Rad50-Xrs2 complex, and disruption of any of these genes 

results in stable shortened telomeres (47). 
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A second pathway affecting positive telomere length regulation involves the Yku 

heterodimer, which is also an essential component of the nonhomologous end-joining 

pathway (2-4, 44). As shown by in vivo cross-linking experiments, Ykup binds directly to 

telomeric DNA (19). Yku mutant strains display short but stable telomeres, and the ss 

telomeric overhang of the G-rich strand, usually restricted to S phase in wild-type cells, is 

present in Yku- cells throughout the entire cell cycle (19). 

Using a genetic approach we identified a new mutation in CDC13, designated cdc13-4, 

that is lethal in combination with a deletion of either subunit of the Yku heterodimer. The 

telomeres of cdc13-4 mutants shorten continuously for about 150 generations before 

eventually reaching a stable level comparable to telomere length seen in Yku- mutants. cdc13-

4 causes no senescence phenotype and a cdc13-4/rad52 double mutant is viable for at least 

several hundred generations. A cdc13-4/tel1∆ double mutant displays enhanced telomere 

shortening compared to either single mutant and Y´ element amplification after 225 

generations of growth. Coimmunoprecipitations reveal that HA3-Cdc13-4p still associates 

with GST-Est1p when both proteins are overexpressed. In addition, in a cdc13∆ strain a 

Cdc13-4-Est1 fusion protein does not induce telomere elongation to the same extent as a 

wild-type Cdc13-Est1 fusion. The terminal chromosome configuration of cdc13-4 mutants 

seems, besides the telomere shortening, unchanged, since no ss G-rich overhang can be 

detected by native in-gel hybridization. Our data indicate that Cdc13p functions in telomere 

length regulation independent of its roles in chromosome end protection and telomerase 

recruitment. 

 

 

MATERIALS AND METHODS 
 

S. cerevisiae strains, media, growth conditions, and transformation. The strains used in this study are 

listed in Table 1. Cells were grown at 30°C using yeast extract-peptone-dextrose (YPD), yeast extract-peptone-

galactose, or selective media as described elsewhere (14). Screening for synthetic lethal mutations was 

performed on YPD plates (9). For counterselection plates, 5-fluorootic acid (5-FOA) (bts) was added to 

selective media at a concentration of 1 mg/ml as described previously (9). To examine telomere length and the 

senescence phenotypes of strains over many generations, colonies derived from freshly germinated spores were 

streaked on YPD plates. After 48 h incubation at 30°C, single colonies were restreaked on fresh YPD plates. 

This procedure was repeated up to nine times. 
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Single colonies from different generations were then used for overnight inoculation and treated for DNA 

preparation. Yeast transformation was performed by the lithium acetate method (50). 

Plasmids. The plasmid pCH-YKU70 used for the synthetic lethality screen was constructed as follows: a 

XhoI/EcoRI fragment containing a functional YKU70 gene was isolated from the plasmid pRS316-YKU70 (15) 

and blunted with Klenow enzyme. This fragment was then cloned into pCH1122 (26) linearized with SmaI. 

Expression of Yku70p from pCH-YKU70 was verified by complementation of the temperature sensitive 

phenotype of a yku70-deficient strain and by reconstitution of Yku heterodimer DNA binding activity in a gel 

retardation assay (15). The CDC13 expression plasmid pRS314-CDC13 was generated as follows: a 4.7 kb ApaI 

fragment containing 712 bp 5´ of the start codon, the entire open reading frame (ORF) of CDC13, and 1,200 bp 

3´ of the stop codon was isolated from the library plasmid GP2a. This fragment was ligated to pRS314 (51) 

linearized with KpnI/SacI and blunted with Klenow enzyme. To generate the plasmid pRS314-cdc13-4 

expressing the mutated CDC13 allele, a 900-bp DNA fragment was amplified by PCR from genomic DNA of 

mutant LDM29 by using the primers CDC13-ATG (5´-ACG TGT CGA CCC GGG ATG GAT ACC TAG AAG 

AGC CTG AG-3´) and CDC13-900  (5´-GAA ATA TTT CCC GGT AGA GGA GG-3´). The PCR product was 

subcloned into pZErO-2 (Invitrogen) and sequenced. A XhoI/NsiI fragment carrying the cdc13-4 point mutation 

was then excised from pZ-cdc13-4 and ligated to the vector pRS314-CDC13 digested with XhoI/NsiI. To 

generate several CDC13 disruption constructs, pRS314-CDC13 was digested with XhoI/AatII, thereby deleting 

the entire ORF of CDC13 except 57 bp at the 5´ end. This fragment was replaced by a marker cassette of either 

KanMX4 or URA3, resulting in plasmids p-cdc13∆::KanMX4 and p-cdc13 ∆::URA3, respectively. The plasmid 

pRS-cdc13-4-KanMX4 was generated for genomic integration of the cdc13-4 allele by linearizing pRS314-

cdc13-4 with AatII, blunting it with Klenow enzyme, and inserting the KanMX4 marker cassette. 

To generate CDC13-EST1 and cdc13-4-EST1 fusion constructs, the EST1 gene was amplified from genomic 

DNA of the strain W303a using primers Est1SacI (forward: 5’-GAG CTC ATG GAT AAT GAA GAA GTT 

AAC G-3’) and Est1SalISmaI (reverse: 5’-GTC GAC CCC GGG TCA AGT AGG AGT ATC TGG CAC-3’). A 

C-terminal fragment of CDC13 was amplified using primers Cdc13-P3 (5´-CTG GTG CCA GGC GTC AAT 

TGC-3´) and Cdc13-P4Sma (5´-ATC CCG GGC GAG GTG GGA ACG GCT CCG-3´) and cloned into plasmid 

pZErO-2. The EST1 fragment was digested using SmaI/HpaI and ligated into pZ-CDC13-P3P4Sma linearized 

with SmaI. The correct orientation of the construct was verified by restriction analysis. The plasmid was then cut 

with SacII/PstI, and the DNA fragment containing C-terminal-CDC13-EST1 was isolated. pRS314-CDC13 was 

digested with SacII/NotI and a 3.1-kb fragment containing the N-terminal part of CDC13 and the CDC13 

promoter was isolated. Both fragments were then ligated to pRS314 NotI/PstI, resulting in pRS314-CDC13-

EST1. To delete the HindIII vector site, pRS314-CDC13-EST1 was cut with PstI/ApaI, treated with T4-

Polymerase, and religated. The religated vector was cut with NotI/KpnI, and the CDC13-EST1 fragment was 

isolated and ligated to pRS316 NotI/KpnI to obtain pRS316-CDC13-EST1. The plasmid pRS316-cdc13-4-EST1 

was generated by restriction of pRS316-CDC13-EST1 with HindIII and replacing the resulting internal CDC13 

HindIII fragment by the corresponding cdc13-4 HindIII fragment. 
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The correct orientation of the cdc13-4 HindIII fragment was checked by restriction analysis, and sequencing 

confirmed the single base pair exchange in pRS316-cdc13-4-EST1. 
Gene disruption. The yku70-deficient strain KαL7 was generated by disruption of the YKU70 gene in 

K2348α as described previously (15). Gene disruption was verified by Southern blot analysis. To disrupt the 

CDC13 gene, plasmids pRS314-cdc13∆::URA3 and pRS-cdc13∆::KanMX4 were digested with ApaLI and 

KpnI, and the resulting linear disruption construct was used to transform several diploid strains to Ura+ or G418 

resistance (Table 1). Disruption of the CDC13 gene was verified by Southern blot analysis. The yeast strain 

BMY13 carrying a genomic integrated cdc13-4 allele was generated by transforming LDY50 using the 

ApaI/KpnI fragment excised from pRS-cdc13-4-KanMX4. The transformed cells were plated on synthetic-

dextrose minimal plates lacking uracil and containing 200 mg of G418/liter. Colonies arising from these plates 

were screened by PCR for correct integration of the marker gene. To verify the integration of the cdc13-4 point 

mutation, a PCR fragment spanning the corresponding part of the CDC13 gene was amplified and sequenced. 

BMY14 (W303aα cdc13::URA3/cdc13-4::kanMX4, rad52∆::His3MX6/RAD52) was generated by replacement 

of the RAD52 ORF in BMY13 by PCR-based gene disruption (55). Sporulation of BMY13 and BMY14 resulted 

in haploid spores carrying the cdc13-4 point mutation (BMY17) and double mutant cdc13-4/rad52∆ (BMY18), 

respectively. Strain BMY56 was generated by crossing BMY17 with W303a. This strain was propagated for 

several generations and then used to introduce either a tel1 or a est2 deletion. TEL1 was deleted by PCR-based 

replacement of the entire ORF with a His3MX marker (BMY57), and the EST2 gene was replaced by the TRP1 

selection marker (BMY58). Transformants arising after incubation on selective media were screened by PCR for 

integration of the disruption constructs. Both heterozygous strains were then sporulated, and tetratype tetrads 

BMY59 and BMY60 were used for growth studies and analysis of telomere length phenotypes. To analyze 

expression of Cdc13-Est1 fusion proteins in a cdc13∆ strain, BMY62 was transformed with pRS-CDC13-EST1 

or pRS316-cdc13-4-EST1 and sporulated on plates lacking uracil. BMY64 and BMY65 were isolated after 

tetrad dissection of BMY62+pRS-CDC13-EST1 and BMY62+pRS-cdc13-4-EST1, respectively. 

Induced expression of HA3-CDC13, HA3-cdc13-4, and GST-EST1. For induced overexpression of HA3-

tagged CDC13 and cdc13-4, the GAL1 promoter together with the HA3 tag was introduced in front of the 

genomic copy of CDC13 in W303aα or cdc13-4 in BMY56. Integration of GAL1-HA3 was performed by PCR-

based methods as described previously (32) using the HIS3MX6 marker for selection. Correct integration of the 

HIS3MX-GAL1-HA3 construct in the resulting strains HFY80 (HA3-CDC13) and HFY84 (HA3-cdc13-4) was 

verified by analytic PCR and sequencing of the PCR product. Expression of HA3-Cdc13p and HA3-Cdc13-4p 

was analyzed by Western blotting using monoclonal anti-HA antibody 9F10 (Roche). The same PCR-based 

strategy was used to generate strains expressing GST::Est1 fusion protein under control of the GAL1 promoter. 

The TRP1-GAL1-GST construct was introduced in W303aα, HFY80, and HFY84 resulting in the strains HFY81 

(GST::EST1/EST1), HFY82 (HA3-CDC13/CDC13, GST::EST1/EST1) and HFY86 (HA3cdc13-4/CDC13, 

GST::EST1/EST1). Correct integration was verified by analytic PCR and sequencing of the PCR product.  
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Expression of GST::Est1p was analyzed by Western blotting using monoclonal anti-GST antibody (Sigma). 

Strains were grown on yeast extract-peptone media containing 2% galactose for induced expression of HA3-

CDC13, HA3-cdc13-4, and GST::EST1. Strains HFY81, HFY82, and HFY86 were sporulated to generate 

haploid strains expressing the tagged Cdc13 and/or Est1 proteins. Tetrad analysis was performed on yeast 

extract-peptone plates containing galactose to allow expression of HA3-Cdc13p, HA3-Cdc13-4, and GST::Est1p. 
Spores expressing the tagged proteins were identified by marker analysis, and the resulting strains HFY81-8A 

(GST::EST1), HFY82-6B (HA3-CDC13), HFY82-4C (HA3-CDC13, GST::EST1), HFY86-3A (HA3-cdc13-4, 

GST::EST1), and HYF86-9D (HA3-cdc13-4, GST::EST1) were verified by Western blotting. 

Immunoprecipitation. Coimmunopreciptation experiments to analyze the interaction of GST-Est1p-HA3-

Cdc13p and GST-Est1p-HA3-Cdc13-4p were performed using strains HFY82-4C, HFY86-3A, HFY86-9D, and, 

as controls, HFY81-8A and HFY82-6B. Crude extracts were prepared as follows: yeast strains were grown 

overnight in YPGal, diluted to an optical density at 600 nm (OD600) of 0.2 and grown to an OD600 of 0.8 to 1.2 in 

yeast extract-peptone-galactose. Cells were lysed in 20 mM Tris (pH 8.0)-200 mM NaCl-1 mM EDTA-1 mM 

DTT-0.01% NP-40-10% gycerol with one protease inhibitor cocktail tablet per 5 ml (complete, Mini, EDTA-

free; Roche) in a bead beater. After centrifugation the soluble protein fraction was diluted 1:1 with lysis buffer 

containing 1% NP-40 and 0.2% Triton X-100. Crude extract (1,000 µg) was incubated with monoclonal anti-

GST antibody, clone GST-2 (Sigma), for 1 h at 4°C, and then G-sepharose (Pharmacia) was added. After 

incubation for 1 h at 4°C G-Sepharose beads were collected by centrifugation and washed twice with lysis 

buffer containing 0.5% NP-40-0.1% Triton X-100, twice with lysis buffer containing 1% NP-40, 0.1% Triton X-

100, and twice with lysis buffer containing 450 mM NaCl. The beads were treated with 1,000 U DNase I/ml in 

lysis buffer containing 1 mM MgCl2 and then washed twice with lysis buffer containing 450 mM NaCl and 350 

mM potassium acetate. After 15 µl of Laemmli buffer was added, beads were heated 3 min at 95°C and the 

supernatant was loaded onto an 8% sodium dodecyl sulfate gel. Proteins were visualized by enhanced 

chemiluminescence Western blotting using anti-HA antibody 9F10 (Roche) and anti-GST antibody clone GST-2 

(Sigma). 

Synthetic lethality screen. Stationary phase cells of KαL7 carrying the plasmid pCH-YKU70 were 

mutagenized with 3% ethyl methane sulfonate (EMS) for 90 min resulting in 15.6% survival. After EMS 

treatment, cells were plated on YPD plates containing 4% glucose to facilitate development of the red pigment. 

Uniformly red colonies were colony purified three times. Those which remained stably red under nonselective 

conditions were tested for sensitivity to 5-FOA. To test whether 5-FOA sensitive cells were dependent on 

YKU70 expression rather than other components of the plasmid pCH-YKU70, the mutants were transformed 

with a second plasmid, pRS314-YKU70, expressing Yku70p and containing TRP1 for selection. As a control, 

mutants were transformed with pRS314. Mutants carrying pRS314-YKU70 or pRS314 were retested for their 

ability to form red-white sectors and their growth on 5-FOA. Out of 20,520 mutagenized cells, five mutants 

were clearly dependent on YKU70 expression. These mutants were stably red on YPD and sensitive to 5-FOA if 

transformed with the pRS314 vector control, but displayed red-white sectoring colonies and growth on 5-FOA 

after transformation with pRS314-YKU70. 
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Complementation of YKU70 dependence. The mutant LDM29 was transformed using a single-copy 

genomic yeast library (ATCC 77164) and plated on Trp- media. Out of 12,500 primary transformants, 15 

plasmids were isolated leading to red-white sectoring colonies even after retransformation. In addition, these 15 

plasmids enabled LDM29 cells to grow on 5-FOA-containing media, indicating that those cells were 

independent of YKU70 expression. Restriction analysis revealed the isolation of three different genomic 

fragments capable of complementing the dependence on YKU70. To identify the isolated fragments, the 5´ and 

3´ ends of the fragments were sequenced using vector-specific primers. 

Identification of the cdc13-4 mutation. The genomic mutation in LDM29 was mapped by gap repair (42). 

Plasmid pRS314-CDC13 was digested using different combinations of restriction enzymes. The resulting linear 

plasmids were transformed into LDM29. Generation of a functional CDC13 gene by gap repair results in cells 

independent of YKU70 expression, therefore displaying a red-white sectoring phenotype. Only cells transformed 

with a pRS314-CDC13 with a XhoI/NsiI fragment spanning bp +57 - +830 of the CDC13 coding sequence 

deleted did not display red-white sectoring colonies and were sensitive to 5-FOA, indicating that a plasmid 

carrying the mutated allele of CDC13 was generated. To identify the mutation, a fragment corresponding to the 

mutated region in CDC13 was amplified by PCR from genomic DNA of LDM29 and was sequenced. 

Yeast DNA extraction and analysis of telomeric DNA. Genomic DNA was isolated from 5- to 7-ml 

overnight cultures using the nucleon MiY DNA extraction kit (Amersham Life Science). For analysis of 

telomere length, genomic DNA was digested overnight using XhoI and separated on an 1% agarose gel in 1x 

Tris-acetate-EDTA buffer. DNA was transferred to nylon membranes (HybondN+) by vacuum blotting using 0.4 

N NaOH. Detection of telomeric DNA fragments was performed as described elsewhere (2). Nondenaturing in-

gel hybridization was performed as described previously (11). 
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TABLE 1. Yeast strains used in this studya 

Strain Genotype(s) Reference 

K2348α matα ade2-1 ade3 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3 Gal+ psi+ (17) 
KαL7 K2348α yku70::LEU2 This study 
CEN.PK2aα mata/α ura3-52/ura3-52 his3-∆1/his3- ∆1 leu2-3,112/leu2-3,112 trp1-289/trp1-

289 MAL2-8c/MAL2-8c SUC2/SUC2 
(1) 

LDY05 CEN.PK2aα yku70::URA3/yku70::LEU2 This study 
LDY06 CEN.PK2aα yku80::kanMX4/yku80::kanMX4 This study 
LDY54 LDY05  cdc13::kanMX4/CDC13 This study 
LDY55 LDY06 cdc13::URA3/CDC13 This study 
W303aα mata/α leu2-3,112/leu2-3,112 ura3-1/ura3-1 his3-11,15/his3-11,15 trp1-1/trp1-

1 ade2-1/ade2-1 can1-100/can1-100 rad5-535/rad5-535 
(15) 

WaUαL W303aα yku70::URA3/yku70::LEU2 (15) 
LDY50 W303aα cdc13::URA3/CDC13  This study 
LDY46 W303aUαL cdc13::kanMX4 /CDC13 This study 
LDY53 W303 cdc13::URA3 + pRS314-cdc13-4 This study 
BMY13 W303aα cdc13::URA3/cdc13-4::kanMX4 This study 
BMY14 W303aα cdc13::URA3/cdc13-4::kanMX4, rad52∆::His3MX6/RAD52 This study 
BMY17 W303a cdc13-4::kanMX4 This study 
BMY18 W303 cdc13-4::kanMX4 rad52∆::His3MX6 This study 
BMY56 W303aα cdc13-4::kanMX4/CDC13 This study 
BMY57 W303aα cdc13-4::kanMX4/CDC13 tel1∆ ::His3MX6/TEL1 This study 
BMY58 W303aα cdc13-4::kanMX4/CDC13 est2∆ ::TRP1/EST2 This study 
BMY59-6A W303a wt spore derived from BMY58 This study 
BMY59-6B W303α cdc13-4::kanMX4 derived from BMY58 This study 
BMY59-6C W303a est2∆ ::TRP1 derived from BMY58 This study 
BMY59-6D W303α cdc13-4::kanMX4 est2∆ ::TRP1 derived from BMY58 This study 
BMY60-11F W303α tel1∆ ::His3MX6 spore derived from BMY57 This study 
BMY60-11G W303a cdc13-4::kanMX4 derived from BMY57 This study 
BMY60-11H W303α cdc13-4::kanMX4 tel1∆ ::His3MX6 derived from BMY57 This study 
BMY60-11I W303a wt derived from BMY57 This study 
BMY62 W303aα CDC13/cdc13∆::kanMX4 This study 
BMY64 W303 hap cdc13∆::kanMX4 + pRS316-CDC13-EST1 This study 
BMY65 W303 hap cdc13∆::kanMX4 + pRS316-cdc13-4-EST1 This study 
HFY80 W303aα HIS3MX6-GAL1-HA3::CDC13/CDC13  This study 
HFY81 W303aα TRP1-GAL1-GST::EST1/EST1 This study 
HFY81-8A W303 hap TRP1-GAL1-GST::EST1 derived from HFY81 This study 
HFY82 W303aα HIS3MX6-GAL1-HA3::CDC13/CDC13 TRP1-GAL1-GST::EST1/EST1 

derived from HFY81 
This study 

HFY82-6B W303 hap HIS3MX6-GAL1-HA3::CDC13 derived from HFY82 This study 
HFY82-4C W303 hap HIS3MX6-GAL1-HA3::CDC13 TRP1-GAL1-GST::EST1 This study 
HFY84 W303aα HIS3MX6-GAL1-HA3::cdc13-4/CDC13  derived from BMY56 This study 
HFY86 W303aα HIS3MX6-GAL1-HA3::cdc13-4/CDC13 TRP1-GAL1-GST::EST1/EST1 

derived from HFY84 
This study 

HFY86-3A W303 hap HIS3MX6-GAL1-HA3::cdc13-4 TRP1-GAL1-GST::EST1 derived 
from HFY86 

This study 

HFY86-9D W303 hap HIS3MX6-GAL1-HA3::cdc13-4 TRP1-GAL1-GST::EST1 derived 
from HFY86 

This study 

 
a wt, wild-type; hap, haploid. 
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RESULTS 
 

Isolation of the cdc13-4 mutant. Yku- mutant cells are temperature sensitive for growth 

(14, 15). To investigate the essential role of the Yku heterodimer at 37°C, we performed a 

synthetic lethality screen to isolate mutants in which YKU70 would be essential for viability. 

Therefore we disrupted the YKU70 gene in K2348α and tested the resulting mutant KαL7 for 

phenotypes specific for Yku- mutants. KαL7 is temperature sensitive for growth at 37°C, 

deficient in nonhomologous end joining, slightly sensitive to methyl methanesulfonate, and 

displays shortened telomeres (data not shown). The YKU70 gene cloned into plasmid 

pCH1122 (pCH-YKU70) complemented the phenotypes of KαL7, indicating a functional 

expression of YKU70 from the plasmid. KαL7-pCH-YKU70 colonies grown on YPD 

displayed a red-white sectoring phenotype, showing that pCH-YKU70 was not essential for 

growth at 30°C under nonselective conditions. 

After EMS mutagenesis of KαL7-pCH-YKU70 we isolated five stably red mutants, which 

clearly required YKU70 expression for viability (see Material and Methods). To identify the 

mutated gene causing the requirement for YKU70 expression we transformed one mutant, 

LDM29, with a single-copy yeast library and screened for sectoring colonies indicating that 

pCH-YKU70 was no longer essential for viability. Plasmids isolated from 15 sectoring 

colonies revealed three independent clones, two of them carrying a DNA fragment containing 

the full-length YKU70 gene. The third plasmid, GP2a, contained a fragment of chromosome 

IV from YDL57269 to YDL68607. This fragment encoded five ORFs among them YDL220c 

coding for CDC13/EST4. 

Cdc13p, like the Yku heterodimer, has been shown to be an important factor for telomere 

maintenance. Therefore we subcloned the CDC13 gene from plasmid GP2a into the single-

copy vector pRS314 (51). After transformation with the resulting plasmid pRS314-CDC13, 

LDM29 displayed a clear sectoring phenotype indicating that a mutation in CDC13 caused 

dependence on Yku70p expression (data not shown). Using the gap repair method (42) we 

identified a 773-bp fragment near the 5´ end of the CDC13 gene carrying the mutation. 
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Sequencing of this fragment revealed the presence of a single point mutation (at position 

703, changing a cytosine to a thymine) thereby leading to the amino acid exchange proline 

235 to serine (P235S). Since this mutation differs from the CDC13 mutants already described 

in the literature, we designated it cdc13-4. 

Synthetic lethality of cdc13-4 with Yku. We isolated the cdc13-4 mutation in a synthetic 

lethality screen with YKU70. To verify the synthetic lethal phenotype we reintroduced the 

cdc13-4 mutation in the homozygous yku70 strain WaLαU. Therefore we disrupted the 

CDC13 gene in WaUαL and transformed the resulting strain LDY46, heterozygous for 

CDC13, with pRS-cdc13-4. As expected we obtained only two colony-forming spores after 

sporulation and tetrad dissection of LDY46-pRS-cdc13-4 (data not shown). None of the 

viable spores was resistant to G418 (the KanMX marker gene was used for CDC13 

disruption), indicating that all viable spores contain the wild-type allele of CDC13. The 

nonviable spores were examined by microscopy. We found many of these spores germinated 

but arrested at a two-cell stage. In a very few cases we observed microcolonies containing up 

to 20 cells, which lysed after 2 to 3 days of incubation at 30°C. To show that these 

phenotypes were not due to synthetic effects caused by the RAD5 mutation in the W303 

background (13), we repeated the experiment in a CEN.PK2 strain. In this case we examined 

the synthetic lethality of cdc13-4 in a yku70- and a yku80-deficient CEN.PK2 strain, LDY54 

and LDY55, respectively. 

Again we found only two colony-forming spores for most of the dissected tetrads. In some 

cases one or two microcolonies arose (Fig. 1). Cells from these microcolonies were not viable 

after restreaking on YPD plates (data not shown). Our data show that cdc13-4 is synthetic 

lethal with either yku70 or yku80 deletion. Therefore we suggest that a cdc13-4 mutant is 

dependent on a functional Yku heterodimer. 
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FIG. 1 [III]. Synthetic lethality of cdc13-4 with the Yku heterodimer. Diploid strains CEN.PK2aα 
yku70/yku70 cdc13/CDC13 and CEN.PK2aα yku80/yku80 cdc13/CDC13 were transformed with plasmid 
pRS314-cdc13-4. Transformants were sporulated and tetrads were dissected using a Singer SMS 
Micromanipulator. Individual spores of each tetrad were placed down the columns on the YPD plates and 
incubated at 30°C for 3 to 4 days. 

 

Telomeres of cdc13-4 mutants shorten to a steady-state level. To investigate the 

phenotype of a cdc13-4 single mutant we generated a haploid strain expressing the mutated 

CDC13 gene (LDY53). One allele of CDC13 was deleted in W303aα and the resulting 

heterozygous strain LDY50 was transformed using pRS314-cdc13-4. After sporulation and 

tetrad dissection, some tetrads were able to form three viable colonies (data not shown). Since 

disruption of CDC13 is lethal, the tetrads resulting in three colony-forming spores should 

contain one spore carrying a disrupted cdc13 allele and the plasmid expressing cdc13-4. All 

three tetrads tested formed two colonies unable to grow on uracil- or tryptophan-lacking 

media and exhibited wild-type fragment size in a Southern blot. One colony was prototrophic 

for uracil and tryptophan and displayed a disrupted genomic CDC13 allele and Southern blot 

signals corresponding to the plasmid pRS314-cdc13-4 (data not shown). This colony 

corresponds to the cdc13-4 mutant LDY53. 

One important role of Cdc13p in telomere maintenance is loading telomerase to its ss 

template at chromosome ends. In cdc13-2est mutants the loading function is abolished, 

presumably by inhibition of the Cdc13p-Est1p interaction, thereby resulting in progressive 

telomere shortening and senescence (40). To investigate the effect of the cdc13-4 mutation on 

telomere stability we performed long-term growth experiments using strain LDY53. No 

growth reduction was observed for the cdc13-4 mutant for more than 250 generations, 

suggesting that this mutation causes no senescence phenotype (data not shown). 
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To better understand the effect of the cdc13-4 mutation, we examined telomere length in 

this mutant after various generations (Fig. 2). cdc13-4 cells displayed a significant shortening 

of the telomeric GT repeat tracts after approximately 50 generations (Fig. 2, lane 1). After 

150 generations (Fig. 2, lane 3), telomeric GT repeat tracts were almost as short as those 

observed for yku70-deficient strains (Fig. 2, lane 9). However, no further telomere shortening 

was observed after an additional 100 generations (Fig. 2, lane 5) and after several hundred 

generations (data not shown). Introduction of the cdc13-4 mutation in a CEN.PK2 genetic 

background resulted in a comparable telomere length phenotype (data not shown). 
 

 

FIG. 2 [III]. Long-term analysis of the telomere length of a cdc13-4 mutant. Southern blot of genomic 
yeast DNA, probed with a telomere-specific poly(GT)20 oligonucleotide, is shown. The bracket indicates the 
telomeric GT repeat band derived from Y´ element-containing chromosomes. Asterisks indicate terminal 
fragments derived from non-Y´ element-containing chromosomes. W303 wild-type (wt) and W303 
cdc13::URA3 + pRS314-cdc13-4 strains from one tetrad were propagated on YPD for 250 generations. 
Therefore colonies derived from freshly germinated spores were streaked on YPD plates. After 48 h of 
incubation at 30°C, single colonies were restreaked on fresh YPD plates. Cells were estimated to have 
undergone 20 to 25 divisions per streakout. Numbering at the top of the lanes (1x, 3x, etc) indicates the number 
of times of restreaking. Single colonies from different generations were then used for overnight inoculation and 
treated for DNA preparation. Genomic DNA was prepared as described in Materials and Methods. Lane 1, 
cdc13-4, 50 generations; lane 2, cdc13-4, 100 generations; lane 3, cdc13-4, 150 generations; lane 4, cdc13-4, 
200 generations; lane 5, cdc13-4, 250 generations; lane 6, W303 wt, 50 generations; lane 7, W303 wt, 150 
generations; lane 8, W303 wt, 250 generations; and lane 9, W303a yku70. 
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cdc13-4 mutants display no senescence phenotype. Telomerase deficiency results in 

replicative senescence. Telomeres shorten gradually with increasing generations, eventually 

leading to cell death (28, 34). However, a few survivors can arise in a senescent yeast culture. 

These survivors stabilize their telomeres by homologous recombination, adding Y´ elements 

or GT repeats to the shortened chromosome ends (33). This process is detectable by an 

increase in intensity of the Y´ element signals in a Southern blot. Deletion of RAD52 

completely abolishes homologous recombination, and therefore no survivors appear in an 

est2/rad52-negative strain (27). To verify the observation that cdc13-4 mutant cells display 

shortened telomeres but no senescence phenotype, we generated the diploid strain BMY58, 

heterozygous for est2∆ and cdc13-4 mutation. After sporulation we compared growth of an 

est2∆ spore and a cdc13-4 mutant spore (Fig. 3). 

 

 

FIG. 3 [III]. Viability of cdc13-4, est2∆ and cdc13-4 est2∆ strains. After sporulation, cdc13-4, est2∆, and 
cdc13-4/est2∆ mutant cells from a single tetrad were successively streaked on YPD plates to test senescence. 
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Whereas est2-negative cells displayed a significant growth reduction after 50 generations 

and survivor formation occurred after 75 generations, cdc13-4 mutant cells grew normally 

over the entire time frame tested (Fig. 3). We analyzed telomere repeat sequences in BMY59-

6C (est2∆) and BMY59-6B (cdc13-4) cells by Southern blotting after growth for 25, 50, 75, 

100, and 125 generations (Fig. 4). 

 

 
 
FIG. 4 [III]. Survivor formation in cdc13-4 and est2∆ mutants. Southern blot of XhoI-digested genomic 

yeast DNA probed with a poly(GT)20 oligonucleotide specific for telomeric repeats is shown. The bracket 
indicates the telomeric GT repeat band derived from Y´ element-containing chromosomes. Asterisks indicate 
terminal fragments derived from non-Y´ element-containing chromosomes. The arrows indicate restriction 
fragments corresponding to the subtelomeric Y´ elements. After tetrad dissection, spores W303 cdc13-4 and 
W303 est2∆ from one tetrad were grown for 150 generations as described in Materials and Methods. Lane 1, 
W303a wild-type (wt); lane 2, est2∆, 25 generations; lane 3, est2∆, 50 generations; lane 4, est2∆, 75 
generations; lane 5, est2∆-100 generations; lane 6, est2∆ 125 generations; lane 7, cdc13-4-25 generations; lane 
8, cdc13-4, 50 generations; lane 9, cdc13-4, 75 generations; lane 10, cdc13-4, 100 generations; lane 11, cdc13-4, 
125 generations. 
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As expected, telomeric GT repeat tracts shortened dramatically in an est2∆ mutant within 

50 generations (Fig. 4, lanes 2 and 3). Survivor formation became obvious by the appearance 

of randomly sized telomeric fragments after 75 generations and the significant amplification 

of Y´ elements after 100 and 125 generations (Fig. 4, lanes 4 to 6). In contrast, the rate of GT 

repeat shortening was clearly reduced in a cdc13-4 mutant (Fig. 4, lanes 7 to 11) compared to 

est2∆ cells and telomeres did not reach the critical length where Y´ element amplification 

starts in est2∆ strains. We observed no increase in Y´ element signals in BMY59-6B cells 

after growth for 125 generations (Fig. 4, lane 11) or 250 generations (compare Fig. 2, lane 5). 

Furthermore, a cdc13-4/rad52 double mutant, BMY18, displayed no growth reduction after 

several hundred generations (data not shown). Telomeres were as short as observed for the 

single cdc13-4 mutant and stayed stable at this short level (data not shown). 

To investigate whether the rate of telomere shortening is increased in a cdc13-4/est2 

double mutant, we compared the growth behavior of an est2∆ spore and a cdc13-4/est2∆ 

spore from a tetrad of strain BMY58. The double mutant displayed significant growth 

reduction after 50 generations and survivor formation after 75 generations comparable to the 

est2∆ single mutant (Fig. 3). In addition, telomere shortening was not accelerated and Y´ 

element amplification occurred in both strains after 75 generations (data not shown). 

Cdc13p and Tel1p function in different pathways of telomere length maintenance. 

The synthetic lethality of the cdc13-4 mutation with a yku70 or yku80 deletion indicates that 

Cdc13p and the Yku heterodimer have independent but in some way overlapping functions at 

the telomere. Along with the Yku heterodimer and Cdc13p, a pathway comprised of Tel1p 

and the Mre11p-Xrs2p-Rad50p complex is involved in telomere length maintenance (47). To 

investigate if CDC13 is epistatic to TEL1 we generated the diploid strain BMY57, 

heterozygous for tel1∆ and cdc13-4. Telomeres of BMY57 cells were shorter than the diploid 

wild-type (Fig. 5, compare lanes 1 and 2), indicating that reduced protein levels in the 

heterozygous strain already influence telomere length maintenance. For further analysis we 

used all four spores derived from a tetratype tetrad. 
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FIG. 5 [III]. Telomere length of cdc13-4, tel1∆, and cdc13-4/tel1∆ mutants. Southern blot of genomic 
yeast DNA, probed with a telomere specific poly(GT)20 oligonucleotide, is shown. Spores from a tetratype tetrad 
of BMY57 were propagated for 225 generations as described in Materials and Methods. The bracket indicates 
the telomeric GT repeat band derived from Y´ element-containing chromosomes. Asterisks indicate terminal 
fragments derived from non-Y´ element-containing chromosomes. The arrows indicate restriction fragments 
corresponding to the subtelomeric Y´ elements. Lane1, W303 aα wild-type; lane 2, W303 aα cdc13-4/CDC13 
tel1∆/TEL1 (BMY57); lane 3, W303α tel1∆, 50 generations; lane 4, W303α tel1∆, 125 generations; lane 5, 
W303α tel1∆, 225 generations; lane 6, W303a cdc13-4, 50 generations; lane 7, W303a cdc13-4, 125 
generations; lane 8, W303a cdc13-4, 225 generations; lane 9, W303α tel1∆/cdc13-4, 50 generations; lane 10, 
W303α tel1∆/cdc13-4, 125 generations; lane 11, W303α tel1∆/cdc13-4, 225 generations; lane 12, W303a wild-
type, 50 generations; lane 13, W303a wild-type, 225 generations. 

 

As shown in Fig. 5, the rate of GT repeat loss was accelerated in tel1∆ cells (Fig. 5, lane 3) 

compared to that in cdc13-4 mutant cells (Fig. 5, lane 6). At the steady-state level, telomeres 

of tel1∆ cells were significantly shorter than those of cdc13-4 mutant cells (Fig. 5, lanes 4, 5, 

7,  and 8). The  rate of telomere shortening in  the cdc13-4/tel1∆ double mutant  strain (Fig. 5, 
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lane 9) seemed to be not accelerated compared to that in tel1∆(Fig. 5, lane 3), but the 

telomeres of the double mutant were shorter than the telomeres of either single mutant after 

125 generations (Fig. 5, lanes 4, 7, and 10). After 225 generations we observed a dramatic 

increase in Y´ element signals in the cdc13-4/tel1∆ double mutant (Fig. 5, lane 11), indicating 

that telomeres were stabilized by Y´ element amplification. Although the growth of cdc13-

4/tel1∆ mutants seemed to be reduced after 100 generations, cells did not cease growth 

completely and no fast-growing survivors occurred. Instead, colonies of the double mutant 

formed during a further 100 generations of growth were significantly smaller than either 

single mutant or wild-type (data not shown). 

Cdc13-4p is not altered in its binding to Est1p. Expression of a Cdc13-Est1 fusion 

protein complements a cdc13 or est1 deletion and, moreover, results in a dramatic increase in 

telomere length (12). These data suggest that the telomere-bound Cdc13p recruits telomerase 

via interaction with Est1p to the ssDNA overhang at chromosome ends. To examine if a 

reduced association with Est1 causes the telomere shortening phenotype of a cdc13-4 mutant, 

we analyzed the effect of expressing a Cdc13-4-Est1 fusion on telomere length. Therefore a 

Cdc13-Est1 or Cdc13-4-Est1 fusion protein was expressed under the control of the CDC13 

promoter from a single-copy plasmid in wild-type, cdc13-4 and cdc13∆ cells. 

Expression of either fusion protein resulted in significant telomere elongation in wild-type 

and cdc13-4 strains (Fig. 6A). We observed no differences in telomere elongation between 

mutant Cdc13-4-Est1p- and wild-type Cdc13-Est1p-expressing cells (Fig. 6A, lanes 2, 3, 5, 

and 6), indicating that both proteins bind with comparable affinities to chromosome ends. The 

effects of the fusion proteins on telomere length were not as pronounced as expected, and 

although the expression of the Cdc13-Est1 fusion protein in cdc13-4 cells leads to GT tract 

elongation, the telomeres of these cells did not reach wild-type level. These results point 

toward a competition between the fusion protein and cellularly expressed Cdc13p alleles. 

When the influence of the fusion proteins on telomere maintenance was examined in a 

cdc13∆ strain, dramatically elongated telomeric GT repeat tracts were observed after 100 

generations. However, the Cdc13-4-Est1 fusion protein (Fig. 6B, lane 5) did not induce 

telomere elongation to the same extend as a Cdc13-Est1 fusion (Fig. 6B, lane 4). 
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These data suggest that the Cdc13-4-Est1 fusion is capable of binding the telomeric ends 

and provokes deregulated telomere elongation. Hence, since the Cdc13-4-Est1 fusion does not 

lead to telomere elongation as observed for Cdc13-Est1p, the establishment of a permanent 

interaction between Cdc13-4p and Est1p, thereby tethering telomerase to the telomere, seems 

not sufficient to complement the cdc13-4 mutation. 

 

 

 

FIG. 6 [III]. Influence of Cdc13-Est1 and Cdc13-4-Est1 fusion proteins on telomere length. (A) 
Southern blot of W303a wild-type (wt) and W303a cdc13-4 strains transformed with plasmids pRS316, p-
CDC13-EST1 and p-cdc13-4-EST1 probed with a poly(GT)20 oligonucleotide. Transformants were cultured for 
100 generations on selective media prior to DNA preparation. Lane 1, W303a wt + pRS316 control; lane 2, 
W303a wt + p-CDC13-EST1; lane 3, W303a wt + p-cdc13-4-EST1; lane 4, W303a cdc13-4 + pRS316 control; 
lane 5, W303a cdc13-4 + p-CDC13-EST1 and lane 6, W303a cdc13-4 + p-cdc13-4-EST1. (B) Southern blot of 
W303a cdc13∆ strains transformed with plasmids p-CDC13-EST1 and p-cdc13-4-EST1 probed with a 
poly(GT)20 oligonucleotide. Transformants were cultured for 25 or 100 generations prior to DNA preparation. 
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To verify that the Cdc13p-Est1p interaction is not altered in a cdc13-4 mutant, we 

performed coimmunoprecipitation experiments. Recently it was reported (45) that a Cdc13-

Est1 interaction can be detected biochemically if both protein are overexpressed. Therefore, 

we generated strains expressing the chromosomal copy of CDC13 or cdc13-4 as an N-

terminal HA3-tagged protein and Est1p as a GST fusion protein under control of the 

inducible, strong GAL1 promoter. Anti-GST monoclonal antibodies were used to precipitate 

GST-Est1 fusion proteins, and precipitates were analyzed by Western blotting for HA3-

Cdc13p or HA3-Cdc13-4p. 

 

 
 

FIG. 7 [III]. Coimmunoprecipitation of HA-cdc13-4 with GST-Est1. Ten-microgram samples of crude 
extracts were loaded to compare the protein amounts of different mutants used for coimmunoprecipitation 
experiments (lanes 1 to 5). Coimmunoprecipitation of Cdc13p and Est1p was performed as described in 
Materials and Methods (lanes 6 to 10). Crude extract (1,000 µg) was incubated with 5 µg of anti-GST antibody, 
and G-Sepharose beads were used to isolate antibody and bound proteins. After intensive washing, G-Sepharose 
beads were heated to 95°C in Laemmli buffer and the supernatant was loaded onto a 8% sodium dodecyl sulfate 
gel. (A) Lane 1, HFY86-3A (HA-cdc13-4p, GST-Est1p); lane 2, HFY81-8A (Cdc13p, GST-Est1p); lane 3, 
HFY82-6B (HA-Cdc13p, Est1p); lane 4, HFY82-4C (HA-Cdc13p, GST-Est1p); lane 5, HFY86-9D (HA-cdc13-
4p, GST-Est1p); lane 6, HFY86-3A (HA-cdc13-4, GST-EST1); lane 7, HFY81-8A (Cdc13p, GST-Est1p); lane 
8, HFY82-6B (HA-Cdc13p, Est1p); lane 9, HFY82-4C (HA-Cdc13p, GST-Est1p); lane 10, HFY86-9D (HA-
cdc13-4p, GST-Est1p). HA-Cdc13p and HA-Cdc13-4p were detected by anti-HA antibody. (B) The same blot 
as in panel A probed with an anti-GST antibody. Note that lanes 6 to 10 were exposed a significantly shorter 
time to detect the GST-Est1p signals than lanes 1 to 5 and blots probed with anti-HA antibody in panel A. Ab, 
antibody. 
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Although only a small portion of the GST-Est1 fusion protein interacts with Cdc13p, no 

differences in the amount of coimmunoprecipitated HA3-Cdc13p (Fig. 7, lane 9) or HA3-

Cdc13-4p (Fig. 7, lanes 6 and 10) protein were detectable. We did not observe cross-reaction 

of HA3-Cdc13p with the anti-GST antibody (Fig. 7, lane 8), and no signal was detectable 

when GST-Est1p was immunoprecipitated from extracts containing wild-type Cdc13 without 

the HA tag (Fig. 7, lane 7). From these data we conclude that the Cdc13-4 mutant protein is 

not altered in its ability to interact with Est1p. 

cdc13-4 mutation seems not to affect DNA binding. Very recently, different mutant 

alleles of CDC13 that cause stably shortened telomeres comparable to the cdc13-4 mutation 

have been described. These mutant Cdc13 proteins seem to display significantly reduced 

binding activity to telomeric DNA (18). Although expression of Cdc13-Est1p in cdc13-4 cells 

indicates that Cdc13-4p and Cdc13p compete for telomere binding, we wanted to determine if 

the DNA binding activity of Cdc13-4p is reduced compared to that of wild-type Cdc13p. 

Assuming that overexpression of Cdc13-4p should complement a reduced DNA binding 

activity, we analyzed telomere length in the diploid strain HFY82 expressing one wild-type 

copy of CDC13 and one copy of HA3-cdc13-4 under control of the inducible GAL1 promoter. 

After growth on glucose-containing media, the telomere length of HFY82 cells was 

comparable to that of wild-type (Fig. 8, lanes 1 and 4), indicating that one wild-type copy of 

CDC13 was sufficient for telomere stability. Strikingly, after growth under inducing 

conditions on galactose for approximately 50 generations, telomeres were significantly 

shorter than those of the wild-type (Fig. 8, lane 5). Telomere shortening is already obvious in 

the heterozygous strain BMY56, where Cdc13p and Cdc13-4p were expressed from the native 

CDC13 promoter (Fig. 8, lane 3), even though GT repeat tract loss was not as pronounced as 

seen in a haploid cdc13-4 mutant (Fig. 8, lane 2). In addition, cooverexpression of HA3-

Cdc13-4p and GST-Est1p could not restore wild-type telomere length, but it did induce 

telomere shortening (Fig. 8, lane 7). Therefore, Cdc13-4p is at least in part dominant on 

Cdc13p and might compete with Cdc13p for telomere binding. These data indicate that 

neither DNA binding activity nor interaction with Est1 is reduced in a Cdc13-4 mutant 

protein. 
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FIG. 8 [III]. Overexpression of cdc13-4 in a heterozygous mutant strain. Diploid strains W303aα, 
BMY56 (cdc13-4/CDC13), and BMY17 (cdc13-4) were grown on galactose-containing media, whereas HFY84 
(GAL1-cdc13-4/CDC13) and HFY86 (GAL1-cdc13-4/CDC13 GAL1-EST1/EST1) were simultaneously grown 
under inducing and noninducing conditions. Telomere length was investigated after 50 generations. Lane 1, 
W303 aα; lane 2, BMY17 (cdc13-4); lane 3, BMY56 (cdc13-4/CDC13); lane 4, HFY84 (GAL1-cdc13-
4/CDC13) grown on glucose; lane 5, HFY84 (GAL1-cdc13-4/CDC13) grown on galactose; lane 6, HFY86 
(GAL1-cdc13-4/CDC13 GAL1-EST1/EST1) grown on glucose; lane 7, HFY86 (GAL1-cdc13-4/CDC13 GAL1-
EST1/EST1) grown on galactose. Brackets indicate terminal GT repeats, asterisks non-Y´ elements, and the 
arrows represent Y´ elements bands. 

 

It has been proposed that Cdc13p protects chromosome ends from degradation by binding 

to the single-stranded 3´ GT overhang. At the restrictive temperature, cdc13-1ts cells exhibit 

an increased amount of ssDNA in telomeric and subtelomeric regions (16). 
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To investigate whether a cdc13-4 mutant displays an accumulation of ssDNA at the 

telomeres, we performed nondenaturing in-gel hybridization using a synthetic oligonucleotide 

specific for telomeric GT repeats. As a control we used yku80 mutant cells that have been 

shown to contain a long ss overhang of the G-rich strand throughout the cell cycle (19). 

In contrast to yku80 mutants, the ssDNA signal of the cdc13-4 mutant remained at a wild-

type level after growth for 40 (Fig. 9, lanes 2 and 4) and 260 (Fig. 9, lanes 3 and 5) 

generations. Therefore, chromosome ends still seem to be protected from nucleolytic 

degradation by the Cdc13-4 mutant protein. 

 

 

FIG. 9 [III]. Telomeric end structure in cdc13-4 mutant cells. W303 wild-type (wt) and W303 cdc13-4 
spores derived from one tetrad were streaked on YPD for 250 generations and used for genomic DNA 
preparation as described under Materials and Methods. (Left panel) After XhoI digestion, genomic DNA was 
separated by gel electrophoresis and analyzed by nondenaturing in-gel hybridization using a 22-mer C1-3A 
oligonucleotide as a probe. The arrow indicates terminal restriction fragments derived from Y´ element-
containing chromosomes. The strong signal in lane 6 corresponds to the elongated ss DNA overhang in yku80-
deficient cells. Lane 1, 1-kbp ladder DNA; lane 2, W303 wt, 40 generations; lane 3, W303 wt, 260 generations; 
lane 4, W303 cdc13-4, 40 generations; lane 5, W303 cdc13-4, 260 generations, lane 6, yku80 mutant; lane 7, 
control ssDNA; lane 8, control double-stranded DNA. (Right panel) The same gel as in the left panel, after 
denaturation of the DNA in the gel and rehybridization to the same probe. The bracket indicates the telomeric 
GT repeat band derived from Y´ element-containing chromosomes. Asterisks indicate terminal fragments 
derived from non-Y´ element-containing chromosomes. 

- 73 -  



CDC13 MUTANT DISPLAYING SHORT TELOMERES 
___________________________________________________________________________ 

 
 

 

DISCUSSION 
 

S. cerevisiae CDC13 is an essential gene involved in chromosome end replication and 

protection. The cdc13-4 allele, which we isolated in a synthetic lethality screen with YKU70, 

causes a dramatic shortening of GT repeats at the telomeres but the strain remains viable. 

Telomere shortening proceeds slowly over approximately 150 generations; however, telomere 

length is stabilized at a short level after 200 generations (Fig. 2). This telomere phenotype is 

distinct from the senescence phenotype of a cdc13-2est allele, which leads to progressive 

telomere shortening and eventually cell death (40). In a senescent yeast culture a few cells 

occasionally escape from cell death. These survivors stabilize their telomeres by either adding 

tandem copies of the subtelomeric Y´ elements or C1-3A/TG1-3 repeats in a RAD52-dependent 

recombination process (53). cdc13-4 mutants do not display Y´ element amplification in a 

Southern blot as observed in survivors of telomerase-negative yeast strains (Fig. 2 and 4). In 

addition, a cdc13-4/rad52 double mutant strain is viable for more than 250 generations while 

maintaining short telomeres (data not shown). Therefore, cdc13-4 mutants do not show 

characteristics of a senescent mutant and telomeres do not reach the critical length level 

which triggers telomere stabilization by homologous recombination. Compared to an est2∆ 

mutant, the rate of telomere shortening in a cdc13-4 mutant is clearly reduced (Fig. 4), 

indicating that telomerase activity is altered but not abolished. The stabilization of telomere 

length at a shorter level shows that telomerase is fully active at the new equilibrium length. 

Mutations in TEL1 and TEL2 have been reported to cause a progressive telomere 

shortening phenotype comparable to cdc13-4. Telomeres in tel1-1 and tel2-1 mutants shorten 

to a stable level within 150 generations (35, 48), and a tel1-1/tel2-1 double mutant has no 

telomeres shorter than those of tel1-1 cells. This suggests that Tel1p and Tel2p function in the 

same pathway of telomere maintenance (25, 35). In contrast, a cdc13-4/tel1∆ double mutant 

displays slightly shorter GT repeat tracts after 125 generations compared to those of a tel1∆ 

or a cdc13-4 single mutant. In addition, Y´ elements are amplified in the double mutant after 

225 generations (Fig. 5), indicating that telomeres have shortened to a critical level. These 

data point toward a function of CDC13 in telomere maintenance independent of the TEL1 

pathway. 
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The cdc13-4 mutation is synthetically lethal with yku70 or yku80 (Fig. 1). This might be 

explained by a reduced telomere capping ability of the Cdc13-4 protein, which becomes 

essential at the elongated ssDNA overhang in Yku- mutants (19). This would then lead to the 

degradation of chromosome ends and cell cycle arrest. However, our data do not support such 

a model. Formation of microcolonies from double mutant spores (Fig. 1) makes it more likely 

that accelerated senescence is the reason for the synthetic lethality. Telomeres in Yku- 

mutants are shortened severely, and any further GT repeat tract shortening by the cdc13-4 

mutation would result in reaching a lethal level within a few generations. 

Cdc13p has been proposed to control the susceptibility of chromosome ends to the specific 

degradation of the telomeric C1-3A strand at the end of S phase (57), and therefore a reduced 

DNA binding activity of Cdc13-4p could possibly cause a progressive telomere shortening as 

seen in cdc13-4 cells. The cdc13-4 mutation at position 235 is not located in the DNA binding 

domain of Cdc13p (23) (Fig. 10), although this does not exclude a conformational change in 

the Cdc13-4 mutant protein resulting in reduced DNA binding activity. Cdc13p protects 

chromosome ends from degradation and thereby prevents the generation of telomeric ssDNA 

(16, 40). Therefore we would expect at least a slight increase in ssDNA at the telomeres in 

cdc13-4 cells, if Cdc13-4p is reduced in DNA binding. However, native in-gel hybridization 

experiments revealed no increase in ssDNA formation in cdc13-4 mutants (Fig. 9). 

The expression of a Cdc13-Est1 or Cdc13-Est2 fusion protein in cdc13∆ strains has been 

shown to complement for telomerase deficiency and additionally results in strongly elongated 

telomeres. Therefore, the expression of a mutant Cdc13-4-Est1 fusion protein should exhibit 

telomere elongation comparable to that of a wild-type Cdc13-Est1 fusion protein, if DNA 

binding of Cdc13-4p is not reduced. In fact, telomere elongation was detected in strains 

expressing the mutant Cdc13-4-Est1 or the wild-type Cdc13-Est1 fusion protein (Fig. 6). 

Furthermore, GT repeat tract length in cdc13-4 cells expressing the wild-type Cdc13-Est1 

fusion protein, although significantly elongated, did not reach wild-type level after 100 

generations (Fig. 6B), suggesting that endogenous Cdc13-4p can compete with the Cdc13-

Est1 fusion protein for telomere binding thereby partially preventing telomere elongation. 
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FIG. 10 [III]. Functional domains and selected mutations of CDC13 mutants. AA, amino acids; n.d. not 
determined. 

 

Additional evidence that DNA binding is unchanged is provided by the finding that 

heterozygous CDC13/cdc13-4 diploid yeast strains show reduced telomere length (Fig. 8), 

indicating an at least partially dominant phenotype of the cdc13-4 mutation. Telomere 

shortening in the heterozygous CDC13/cdc13-4 diploid strains is not caused by a reduced 

amount of functional Cdc13p since a CDC13/GAL1-HA3-cdc13-4 strain exhibit wild-type 

telomere length (Fig. 8) on glucose where expression of HA3-cdc13-4 by the GAL1 promoter 

is repressed. The dominant phenotype of Cdc13-4p is even more pronounced if 

overexpression of HA3-cdc13-4 is induced in the heterozygous diploid (Fig. 8). This again 

indicates that Cdc13-4p competes with wild-type Cdc13p for telomere binding. Therefore, we 

present evidence that the mutant Cdc13-4 protein is capable of chromosome end binding with 

an affinity comparable to that of the wild-type Cdc13p. An alternative explanation for the 

partially  dominant phenotype  of the cdc13-4 mutation would be a  competition of wild  type  
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Cdc13p and mutant Cdc13-4p for a protein important for telomere elongation. Further 

experiments have to be performed to address this question. 

The recruitment of telomerase to chromosome ends seems to take place via the interaction 

of Cdc13p and Est1p. Therefore, an attenuated interaction of Cdc13-4p and Est1p could cause 

telomere shortening to a stable level. The telomerase recruitment site of Cdc13p was recently 

mapped to amino acids 211 to 331 (43). The cdc13-4 mutation (P235S) is located near the 

border of this domain; thus, the interaction of the mutant Cdc13-4 protein and Est1p might be 

reduced. Nevertheless, we found no reduced interaction of Cdc13-4p-Est1p in 

coimmunoprecipitation experiments (Fig. 7). In addition, overexpression of Cdc13-4p or 

cooverexpression of Cdc13-4p and Est1p induces telomere shortening in a heterozygous 

diploid strain (Fig. 8) and did not complement the cdc13-4 mutation as we would suggest for 

a weakened interaction. 

Significantly elongated telomeres, most likely the result of unregulated access of the active 

telomerase complex to the telomere, are detectable in yeast strain expressing a Cdc13-Est1 

fusion protein (12). Although the Cdc13-4-Est1 fusion protein causes a dramatic telomere 

elongation in a cdc13∆ strain, the effect is not as pronounced as that observed for a wild-type 

Cdc13-Est1 fusion. Therefore, establishing a permanent interaction of Cdc13-4p and Est1p is 

not sufficient to complement the cdc13-4 mutation to wild-type level, indicating that a 

function independent of interaction with Est1p is affected in Cdc13-4p. The DNA binding 

domain of Cdc13p has been mapped to an internal part of the protein (23); nevertheless, the 

N-terminal 251 amino acids of Cdc13p associate in vivo with the telomere (5), indicating tight 

interaction with telomere bound proteins. This N-terminal domain partially overlaps the 

telomerase recruiting domain of Cdc13p (43) (Fig. 10), but seems not to be sufficient for 

Cdc13p-Est1p interaction. Thus, the cdc13-4 mutation might influence interaction with other 

proteins at the telomere, thereby preventing appropriate activation of telomerase activity. 

In S. cerevisiae, telomere length seems to be maintained by the balance of two antagonistic 

processes - telomere elongation and telomere shortening. Many proteins are necessary to 

maintain normal telomere length. Deletion of one Yku subunit (3, 44) or inactivation of a 

member of the TEL1 pathway, comprised of Tel1p, Mre11p, Xrs2p, and Rad50p, leads to 

telomere shortening to a stable level (2, 20). 
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The additional telomere shortening seen in yku70/tel1 or yku70/rad50 double mutants 

indicates that the Yku heterodimer has a TEL1-independent role in telomere maintenance 

(47). In cdc13-4 mutant cells, telomerase seems to be inactive at normal telomere length, 

indicating that Cdc13p is involved in positive telomere length regulation by activating 

telomerase at short GT repeat levels. The further telomere shortening seen in cdc13-4/tel1∆ 

double mutants and the synthetic lethality of cdc13-4 with a Yku subunit deletion lead to the 

conclusion that at least three independent pathways are involved in positive telomere length 

regulation and that Ccd13p is an essential part of one of these pathways. 

However, the addition of telomeric GT repeats to telomeric ends depends not only on 

telomerase but also on DNA polymerases Pol α, Pol δ, and DNA primase, most likely by a 

coordinated regulation of C- and G-strand synthesis (10). Recently, it has been shown that 

Cdc13p interacts with Pol1p, the catalytic subunit of DNA polymerase α. Single point 

mutations in either CDC13 or POL1 that weaken the interaction of Cdc13p with Pol1p result 

in telomerase-dependent telomere lengthening (45). Therefore Cdc13p also seems to play an 

important role in negative telomere length control, presumably by coordinating telomeric C- 

and G-strand synthesis. 

Until now three different functions of Cdc13p in telomere maintenance have been defined 

by CDC13 mutations (Fig. 10): i) protection of chromosome ends from nucleolytic 

degradation (abolished in a cdc13-1ts mutant at the restrictive temperature), ii) loading of 

telomerase onto the ssDNA overhang at the telomere (prevented in cdc13-2est cells), and iii) 

regulation of telomere length. The role of Cdc13p in telomere length control seems to be 

multifaceted, since mutating CDC13 can cause either telomere lengthening, seen in cdc13-50 

mutants (45) and different mutant CDC13 alleles (18), or telomere shortening to a new 

steady-state level, seen in newly identified CDC13 mutants (18) and the cdc13-4 mutant 

reported here. Our data present evidence that Cdc13p plays a key role not only in recruiting 

telomerase but also in modulating its access to the telomere, which might be influenced by 

additional regulatory proteins. 
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ABSTRACT 

The Sir2-4 complex of Saccharomyces cerevisiae is required for telomere maintenance 

and silencing at telomeres and at HMLα and HMRa. The Yku heterodimer influences 

telomere length regulation and is essential for DNA repair via nonhomologous end-

joining. Recently, sir4∆ mutants have been described to display sensitivity to MMS and 

bleomycin, indicating a role of Sir4p in DNA repair. To further investigate Sir4p 

function, we analyzed sir4∆ and yku/sir4∆ double mutants for their capacity to repair 

DNA damage. 

Sir4∆ mutants display hardly any sensitivity to bleomycin or MMS, suggesting that 

Sir4p is not required for DNA repair processes. Surprisingly, yku/sir4∆ mutants are 

significantly more resistant to bleomycin than yku mutants. Deletion of HMLα in 

yku/sir4∆ mutants reconstitutes bleomycin sensitivity, indicating that the simultaneous 

expression of HMLα and HMRa causes resistance. Accordingly, episomal expression of 

HMLα in haploid Mata yku70 mutants leads to resistance to bleomycin comparable to 

yku70/sir4∆ mutants. 

Telomeres of yku/sir4∆ mutants are slightly elongated as compared to yku mutants 

and exhibit Y´-element amplification. Deletion of HMLα in Mata yku70/sir4∆ strain 

suppresses Y´-element amplification and telomeres become as short as in yku mutants, 

while episomal expression of HMLα results in slightly amplified Y´-elements in yku70 

single mutants. 
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INTRODUCTION 
 

In the yeast Saccharomyces cerevisiae two mechanistically related types of silencing have 

been described: the stable repression of the inactive mating type loci HMLα and HMRa and 

the repression of telomere adjacent genes, known as telomere positioning effect (TPE) 

(LUSTIG 1998). Four SIR genes (SIR1-4) have been identified as essential components for 

transcriptional repression of HMLα and HMRa (RINE AND HERSKOWITZ 1987), however 

SIR1 is dispensable for telomeric silencing while SIR2-4 are prerequisite for TPE (APARICIO 

et al. 1991). Two-hybrid analysis revealed that Sir3p and Sir4p associate with the sequence 

specific DNA-binding protein Rap1 (MORETTI et al. 1994), which is supposed to tether the 

Sir complex to HM silencers and the telomeric regions. Furthermore, the Sir2-4 complex has 

been shown to co-localize with Rap1p in distinct staining foci at the nuclear periphery, which 

coincides with telomeric repeat sequences (PALLADINO et al. 1993). Telomeric repeats are 

shortened in sir3 and sir4 mutant strains, and the mitotic stability of chromosome V is 

reduced (PALLADINO et al. 1993), indicating that the Sir complex is not only required for 

telomeric silencing but also important for chromosome integrity. 

A function in DNA repair has been proposed for the Sir proteins based on the finding that 

sir4 mutant cells display significantly reduced end-joining efficiency (TSUKAMOTO et al. 

1997). In addition, Sir4p has been shown to interact with Yku70p, the 70 kDa subunit of the 

Yku heterodimer, by two hybrid criteria (TSUKAMOTO et al. 1997). The Yku heterodimer of 

S. cerevisiae is an essential component of the nonhomologous end-joining (NHEJ) DNA 

repair pathway (BOULTON AND JACKSON 1996a; BOULTON AND JACKSON 1996b; MILNE et 

al. 1996). Yku mutants are deficient in plasmid end-joining and exhibit sensitivity to the DNA 

damaging agents bleomycin and methyl methanesulfonate (MMS) (FELDMANN et al. 1996; 

MAGES et al. 1996; MILNE et al. 1996). Furthermore, the Yku heterodimer localizes to the 

telomere (GRAVEL et al. 1998) and is involved in maintaining wild-type telomere length 

(BOULTON AND JACKSON 1996a; PORTER et al. 1996). Recently, it has been shown that 

Yku80p, Sir4p, Sir3p, and Rap1p are released from telomeric foci in response to bleomycin, 

MMS, or HO-endonuclease induced DNA damage (MARTIN et al. 1999; MCAINSH et al. 

1999; MILLS et al. 1999). 
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The delocalization of the Sir proteins from telomeres in response to DNA damage as well 

as the reduced end-joining capacity of sir mutants (TSUKAMOTO et al. 1997) argues in favor 

of a direct role of the Sir complex in DNA repair. However, recent studies reveal that a 

deletion of the de-repressed HMLα locus in Mata sir mutants suppresses the defect in plasmid 

end-joining (ASTROM et al. 1999; LEE et al. 1999) and that the Sir proteins have only minors 

effect on DNA repair (LEE et al. 1999). 

Here we analyzed the role of the Sir4 protein in the repair of chemical induced DNA 

damage. In our studies sir4∆ and sir4∆/hml∆ mutants exhibit hardly any sensitivity to 

bleomycin or MMS, suggesting that Sir4p is not required for the repair of chemical induced 

DNA double strand breaks (DSBs). Strikingly, yku/sir4∆ double mutants are more resistant to 

bleomycin and MMS than yku single mutants. Similar results were observed for sir3∆ 

mutants; single mutants displayed no sensitivity to bleomycin and MMS and the yku/sir3∆ 

double mutant strain exhibited increased resistance to chemical induced DNA damage. In this 

study we present evidence that the pseudo-diploid state resulting from the loss of silencing at 

HMLα and HMRa causes resistance to DNA damage in haploid yku mutants. Accordingly, 

episomal expression of HMLα in a Mata yku70 mutant results in significantly enhanced 

resistance to bleomycin or MMS. 

Telomere repeat tracts of yku/sir4∆ mutants are slightly longer than telomeres of yku single 

mutants and in addition, Y´-elements are significantly amplified. This seems at least partially 

be caused by co-expression of both mating type information’s in yku/sir4∆ strains, since 

deletion of HMLα in a Mata yku70/sir4∆ strain prevent Y´-element amplification and 

elongation of the terminal telomere GT repeats. 

 

 

MATERIALS AND METHODS 
 

Strains and plasmids: Yeast strains used in this study are listed in Table 1. The yku70 (BMY8) and yku80 

(SPY25) deficient strains were generated as described previously (FELDMANN et al. 1996; FELDMANN AND 

WINNACKER 1993). The sir3∆ (BMY44), sir4∆ (BMY39), and hml∆ (BMY49) strains were constructed using 

PCR-derived HisMX or kanMX6 modules flanked by short terminal sequences (80 bp) homologous to the ends 

of the corresponding open reading frame (WACH et al. 1994). To generate strains sir4∆/hml∆ (BMY51), 

yku70/sir4∆ (BMY40), and yku80/sir4∆ (BMY41) the sir4∆ deletion construct described above was transformed  
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into BMY49, BMY8, and SPY25, respectively. The hml∆ PCR product was integrated into BMY8 (yku70) to 

generate BMY50 (yku70/hml∆). Transformation of BMY50 (yku70/hml∆) with the sir4∆ construct resulted in 

BMY54 (yku70/sir4∆/hml∆). To generate strains yku70/sir3∆ (BMY45) and yku80/sir3∆ (BMY46) the sir3∆ 

deletion construct described above was transformed into BMY8 and SPY25, respectively. The correct targeting 

of the deletion constructs was confirmed by analytical PCR (WACH et al. 1994) and sequencing of the PCR 

products. The plasmid pRS314-C.a.URA3 used for plasmid rejoining experiments was generated as follows: The 

Candida albicans URA3 gene was isolated from plasmid Clp10 (MURAD et al. 2000) by digestion with SpeI, 

treatment with T4 polymerase followed by NotI digestion. The 1.3 kb DNA fragment containing the C.a. URA3 

gene was ligated to the plasmid pRS314 (SIKORSKI AND HIETER 1989) digested with SalI, treated with T4 

polymerase and cut with NotI. Plasmid pSH1127 used for vector based expression of HMLα was generously 

provided by James Haber and is described elsewhere (SUGAWARA et al. 1995). Plasmid YCp50 was used as a 

vector control (ROSE et al. 1987). 

 

TABLE 1 

Yeast strains used in this study 
 
Strain 

 
Genotype 

 
Source or Reference 

 
HKY 579-10A 

 
MATa ade2-1 ura3-1 his3-11 trp1-1 leu2-3,112 can1-100 

RAD5 

 
(FAN et al. 1996) 

BMY8 HKY579-10A yku70::LEU2 This study 

SPY25 HKY579-10A yku80::kanMX6 This study 

BMY39 HKY579-10A sir4∆::HisMX This study 

BMY40 HKY579-10A yku70::LEU2 sir4∆::HisMX This study 

BMY41 HKY579-10A yku80::kanMX6 sir4∆::HisMX This study 

BMY44 HKY579-10A sir3∆::HisMX This study 

BMY45 HKY579-10A yku70::LEU2 sir3∆::HisMX This study 

BMY46 HKY579-10A yku80::kanMX6 sir3∆::HisMX This study 

BMY49 HKY579-10A hml∆::kanMX6 This study 

BMY50 HKY579-10A yku70::LEU2 hml∆::kanMX6 This study 

BMY51 HKY579-10A hml∆::kanMX6 sir4∆::HisMX This study 

BMY54 HKY579-10A yku70::LEU2 hml∆::kanMX6 sir4∆::HisMX This study 

 

 

Drop titer test: A single yeast colony grown for 3-4 days on solid media was suspended in 500 µl of dH2O. 

This cell suspension was diluted five times by 10-fold serial dilutions. 10 µl aliquots of each dilution were 

dropped on YPD and YPD plates containing increasing concentrations of bleomycin or MMS. The plates were 

incubated at 30°C for 3-6 days. 

- 89 - 



Pseudo-diploidy and DNA Repair in yku- 
_______________________________________________________________________________________ 
 
 

Quantification of bleomycin sensitivity: Cultures were grown in YPD or the appropriate SD medium at 

30°C over night and diluted to an OD600 of 0.2 - 0.3. Cells were grown to mid log phase (OD600 = 1-1.5). 

Individual samples were diluted in water and different cell concentrations were plated in duplicates on solid 

YPD and solid YPD containing increasing amounts of bleomycin. Plates were incubated for 4-6 days at 30°C. 

Data from three independent experiments are given. 

Yeast DNA extraction and analysis of telomeric DNA: Genomic DNA was isolated from 5-7 ml over night 

cultures using nucleon MiY DNA extraction kit (Amersham Life Science). For analysis of telomere length 

genomic DNA was digested over night using XhoI and separated on a 1% agarose gel in 1 x TAE buffer. DNA 

was transferred to nylon membranes (HybondN+) by vacuum blotting using 0.4 N NaOH. Telomeric DNA 

fragments were detected as described elsewhere (BOULTON AND JACKSON 1998).  

End-joining assay: Plasmid pRS314-C.a.URA3 was digested with EcoRI to completion, separated on a 

0.8% agarose gel and purified using QIAquick gel extraction kit (Qiagen). End-joining assays were performed as 

described elsewhere (BOULTON AND JACKSON 1996b). Cells were plated onto SD medium lacking Uracil for 

selection of accurately repaired plasmids. The average from three independent experiments is given. 

 

 

RESULTS 
 

The Yku heterodimer, comprised of Yku70p and Yku80p, is an essential component for 

the repair of DNA double-strand breaks by NHEJ. Yeast cells deleted for either Yku subunit 

are impaired in rejoining of linear plasmids bearing overhanging complementary ends 

(BOULTON AND JACKSON 1996a; BOULTON AND JACKSON 1996b). In addition, yku mutant 

yeast cells exhibit sensitivity to the DNA damaging agents bleomycin and MMS (FELDMANN 

et al. 1996; MAGES et al. 1996). The Yku70 subunit has been shown to interact with Sir4p, a 

protein of the yeast silencing complex, by two hybrid criteria and sir4 strains have been 

reported to display a reduced end-joining efficiency (TSUKAMOTO et al. 1997). However, 

recent observation indicate that the dramatic decrease in plasmid re-joining efficiency in 

sir4 mutants is caused by a secondary effect namely the de-repression of the silent mating 

type loci (ASTROM et al. 1999; LEE et al. 1999). To further analyze the function of Sir4p in 

the repair of chemical induced DNA damage, we examined sir4∆ and yku/sir4∆  mutant 

strains for their sensitivity to bleomycin and MMS by drop titer tests. 
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The sir4∆ mutants tested exhibited no sensitivity to bleomycin as compared to wild-type 

(Figure 1, lanes 1 and 2). Furthermore we did not observe an increase in sensitivity to MMS. 

Strikingly, the deletion of SIR4 in yku70 or yku80 mutants resulted in decreased sensitivity to 

bleomycin and MMS as compared to yku70 and yku80 single mutants (Figure 1, lanes 4-7) - 

the yku70/sir4∆ and yku80/sir4∆ double mutant strains were nearly as resistant to bleomycin 

and MMS as wild-type cells. 

 

 

FIG. 1 [IV].- Drop titer assay examining bleomycin and MMS sensitivity. Serial 10-fold dilutions of 
various strains were grown on YPD plates containing the indicated amount of bleomycin or MMS. All strains 
were derived from the parental strain HKY 579-10A by gene disruption. The following strains were used: Lane 
1: HKY 579-10A (wild-type), lane 2: BMY39 (sir4∆), lane 3: BMY44 (sir3∆), lane 4: BMY8 (yku70), lane 5: 
SPY25 (yku80), lane 6: BMY40 (yku70/sir4∆), lane 7: BMY41 (yku80/sir4∆), lane 8: BMY45 (yku70/sir3∆), 
lane 9: BMY46 (yku80/sir3∆) lane 10: BMY54 (yku70/sir4∆/hmlα). 

 

Similar results were obtained when we analyzed sir3∆, yku70/sir3∆, and yku80/sir3∆ strains: 

While sir3∆ single mutant cells displayed no sensitivity to MMS or bleomycin (Figure 1, lane 

3), the yku70/sir3∆ and yku80/sir3∆ double mutants were significantly less sensitive 

compared to the yku single mutants (Figure 1, lanes 8 and 9). These data indicate that the Sir4 

protein is not essential for the repair of bleomycin or MMS induced DNA damage. A deletion 

of either SIR4 or SIR3 rather seems to be capable of complementing the repair deficiency in 

yku mutant cells. To verify that these results were not caused by a growth advantage of yku/sir 

double mutants we performed quantitative assays, where we measured the percentage of 

survival of the sir4∆ single and double mutant strains grown on solid media containing one or 

two µg/ml bleomycin (Figure 2). 
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FIG. 2 [IV]. - Survival of sir4∆ single and double mutant strains grown on bleomycin. Various dilutions 
of cells grown to mid log phase in liquid YPD were plated in duplicate on solid YPD and YPD containing one or 
two µg/ml bleomycin (see Materials and Methods). The row of dark bars indicate the percentage survival for the 
given strain on 1 µg/ml bleomycin, whereas the light bars indicate the percentage survival on 2 µg/ml 
bleomycin. The following strains were used: HKY 579-10A (wild-type), BMY39 (sir4∆), BMY8 (yku70), 
BMY40 (yku70/sir4∆), BMY51 (sir4∆/hmlα), BMY54 (yku70/sir4∆/hmlα); The average from three independent 
experiments is given. 

 

Sir4∆ cells were as resistant as wild-type cells to one µg/ml bleomycin and only a very 

slight decrease in survival rates could be observed for sir4∆ cells grown on two µg/ml 

bleomycin (Figure 2). In contrast, yku70 mutant cells displayed significant reduction of 

survival when grown on one or two µg/ml bleomycin compared to the wild-type. As already 

observed by drop titer tests, the resistance of yku70/sir4∆ double mutants to bleomycin was 

dramatically increased. No growth reduction was measurable for yku70/sir4∆ cells as 

compared to wild-type on one µg/ml bleomycin and survival rates were greatly enhanced 

compared to yku70 single mutant cells on plates containing two µg/ml bleomycin (Figure 2). 

These results are in contrast to recently published data (MARTIN et al. 1999) where sir4 

mutants have been shown to lead to MMS sensitivity and a hypersensitive phenotype was 

observed for yku/sir4 double mutants compared to either single mutant. However, we 

obtained similar results for sir4∆ mutants generated in a W303 rad5-585 background (data 

not shown). 
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In sir mutants silencing of the generally repressed mating type cassettes HMLα and 

HMRa is abolished (RINE AND HERSKOWITZ 1987), and the resulting co-expression of both 

mating types induces a reduction in plasmid end-joining efficiency (ASTROM et al. 1999; LEE 

et al. 1999). This pseudo-diploid state of sir mutants might not only lead to reduced NHEJ but 

also to an activation of the homologous recombination pathway. Since we observed 

bleomycin and MMS resistance analyzing a deletion of two different SIR genes in a yku 

mutant background, we investigated the influence of the pseudo-diploid state on the resistance 

to DNA damage in sir4∆ and yku70/sir4∆ mutants. Hence, we deleted the HMLα locus in 

Mata sir4∆ and yku70/sir4∆ mutants. End-joining experiments verified that the SIR4 deletion 

represses NHEJ efficiency in our genetic background by de-repressing the silent mating type 

loci. Error-free plasmid end-joining was reduced to 2% of the wild-type level in sir4∆ 

mutants, but was restored to ~ 88% in a sir4∆/hml∆ mutant showing that Sir4p is dispensable 

for NHEJ as described previously (LEE et al. 1999) (Figure 3). However, the repression of the 

HLMα and HMRa loci by the Sir complex is essential to maintain the plasmid end-joining 

capacity of haploid yeast cells. 

 

 

FIG. 3 [IV]. –End-joining efficiency of sir4∆ mutant strains. The plasmid pRS314-C.a.URA3 was 
digested with EcoRI, cutting within the coding region of the Candida albicans URA3 gene. Various strains were 
transformed with equal amounts of the linearized plasmid or supercoiled plasmid as a control. Cells were plated 
on uracil lacking SD plates. Only cells able to accurately re-join the linear plasmid were able to form colonies on 
SD-Ura- media. The following strains were used: HKY 579-10A (wild-type), BMY39 (sir4∆), BMY51 
(sir4∆/hmlα∆), BMY8 (yku70), BMY40 (yku70/sir4∆), BMY54 (yku70/sir4∆/hmlα); The average from three 
independent experiments is given. 
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Analyzing chemical induced DNA damage, we found resistance of Mata sir4∆ cells 

deleted for HMLα to bleomycin and MMS as seen for wild-type and sir4∆ cells (Figure 2 and 

data not shown). However, when HMLα was deleted in a Mata yku70/sir4∆  mutant, this 

strain became sensitive to bleomycin and MMS comparable to a yku70 mutant (Figure 1, lane 

10 and Figure 2). These data indicate that the simultaneous expression of a and α mating 

types is responsible for the resistance of a yku70/sir4∆ double mutant strain to DNA 

damaging agents. Furthermore we can conclude that the resistance of sir4 mutants to MMS 

and bleomycin, we and others (BENNETT et al. 2001) have observed is not due to an enhanced 

resistance, which might be caused by the pseudo-diploid stage of the cell as it can been seen 

in the yku/sir mutant. 

To determine whether the resistance to bleomycin only occurs in a yku70/sir4∆ double 

mutant or can also be detected in pseudo-diploid yku70 single mutants, we expressed HMLα 

from a CEN/ARS plasmid in haploid Mata wild-type and yku70 strains and quantified 

bleomycin sensitivity (Figure 4). 

 

 

FIG. 4 [IV]. -Bleomycin sensitivity of haploid Mata wild-type and yku70 mutants in comparison to 
pseudo-diploid wild-type and yku70 mutant cells. Strains HKY 579-10A (wild-type) and BMY8 (yku70) were 
transformed with the HMLα expression plasmid pJH1127 or plasmid YCp50 as a control. Various dilutions of 
cells were plated in duplicate on solid YPD and YPD containing one or two µg/ml bleomycin (see Materials and 
Methods). The row of dark bars indicate the percentage survival for the given strain on 1 µg/ml bleomycin, 
whereas the light bars indicate the percentage survival on 2 µg/ml bleomycin. The average from three 
independent experiments is given. 
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HMLα expression did not alter the resistance of wild-type Mata cells. However, Mata yku70 

mutants gained significant resistance to bleomycin, when expressing HMLα from the plasmid 

(Figure 4 ), providing additional evidence that the resistance of a Mata yku70/sir4∆ mutant to 

bleomycin is primarily induced by the de-repression of the silent mating type cassettes and 

does not require the loss of the Sir4 protein. 

 

The Yku heterodimer and the Sir4 protein have been shown to contribute to telomere 

length maintenance (BOULTON AND JACKSON 1996a; PALLADINO et al. 1993; PORTER et al. 

1996). To investigate the impact of a deletion of both activities at the telomere, we analyzed 

telomere length in sir4∆ and yku/sir4∆ strains. GT-repeats of sir4∆ mutants were only slightly 

shortened as compared to those of wild-type cells (Figure 5A, lanes 1 and 2), whereas yku70 

and yku80 mutants exhibited a significant telomere shortening (Figure 5A, lanes 3 and 5).  

Strikingly, telomeres of yku70/sir4∆ and yku80/sir4∆ mutants displayed no further GT-repeat 

tract shortening but telomeres were slightly elongated as compared to yku70 or yku80 mutants 

(Figure 5A, lanes 3-6). In addition, we observed an enhanced Y’-element signal, indicating 

that recombination events occur at telomeres in these double mutants. 

Since simultaneous expression of HMLα and HMRa significantly decreased the bleomycin 

sensitivity in yku/sir4∆ mutants, we also investigated the influence of a HMLα deletion on 

telomere length. As expected, we observed no changes in telomere length when HMLα was 

deleted in a Mata wild-type (Figure 5B, lanes 1 and 2) or yku70 mutant strain (Figure 5B, 

lanes 5 and 6) in which HML and HMR remain repressed (GRAVEL et al. 1998). Furthermore, 

telomere length was not altered in a sir4∆/hml mutant as compared to a sir4∆ mutant strain 

(Figure 5B, lanes 3 and 4). The deletion of HMLα in yku70/sir4∆ mutants had no detectable 

influence on cell viability at 30ºC (Figure 1, lane 10). However, telomeric GT-repeats were as 

short as those of yku70 single mutants and no Y’-element amplification was detectable 

(Figure 5B, lane 8). 
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From these data we suggest that homologous recombination takes place to a higher extent 

at the telomeres of a yku70/sir4∆ strain. Activation of homologous recombination seems not 

to be induced by an additive telomere shortening that could be caused by the simultaneous 

loss of  Ykup and Sir4p at the telomere, but is most likely due to the synchronic expression of 

both mating types. Telomeres of yku/sir4∆/hmlα cells displayed no additional shortening of 

telomere length, indicating that the Yku heterodimer and the Sir4 protein are epistatic for 

telomere maintenance. 
 

 

FIG. 5 [IV]. - Telomere length analysis of sir4∆, yku single and sir4∆ /yku double mutant strains. 
Southern blot of XhoI digested genomic yeast DNA probed with a poly(GT)20 oligonucleotide specific for 
telomeric repeats. The brackets indicate the telomeric GT-repeat band derived from Y´-element containing 
chromosomes. The arrows indicate restriction fragments corresponding to the subtelomeric Y´-elements. 
Genomic DNA was prepared as described in ‘Materials and Methods’. (A) Lane 1: HKY 579-10A (wild-type), 
lane 2: BMY39 (sir4∆), lane 3: BMY8 (yku70), lane 4: BMY40 (yku70/sir4∆), lane 5: SPY25 (yku80), lane 6: 
BMY41 (yku80/sir4∆). (B) Lane 1: HKY 579-10A (wild-type), lane 2: BMY49 (hmlα∆), lane 3: BMY39 
(sir4∆), lane 4: BMY51 (sir4∆/hmlα∆), lane 5: BMY8 (yku70), lane 6: BMY50 (yku70/hmlα∆), lane 7: BMY40 
(yku70/sir4∆), lane 8: BMY54 (yku70/sir4∆/hmlα); (C) HKY 579-10A (wild-type) and BMY8 (yku70) cells 
were transformed with the HMLα expression plasmid pJH1127 and YCp50 as a control. Cells were grown at 
least 100 generations before preparation of genomic DNA. Lane 1: HKY 579-10A + YCp50, lane 2: HKY 579-
10A + pJH1127, lane 3: HKY8 + YCp50, lane 4: BMY8 + pJH1127. 
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To further investigate the influence of pseudo-diploidy on telomere end structure we 

analyzed telomere length in Mata yku70 single mutants episomally expressing HMLα (Figure 

5C). We detected no changes in GT-repeat tract length in wild-type or yku70 mutant cells 

expressing HMLα or a control plasmid (Figure 5C, lanes1-4). Nevertheless, Y´-element 

signals were slightly increased in yku70 mutants transformed with the HMLα expression 

plasmid (Figure 5C, lane 4). From these data we conclude that although the pseudo-diploid 

state seems to be the reason for elevated recombination at the telomeres in yku70 mutants, the 

Sir4p at least partially protects chromosomes ends from recombination. 

 

 

DISCUSSION 
 

The Sir2-4 proteins of Saccharomyces cerevisiae have been described to be involved in the 

Yku heterodimer dependent nonhomologous end-joining pathway (TSUKAMOTO et al. 1997). 

Further investigations have provided evidence that the dramatic reduction of end-joining 

efficiency in sir2-4 mutants is caused by a secondary effect, namely the co-expression of both 

HMLα and HMRa resulting from the loss of silencing at the usually repressed mating type 

loci (LEE et al. 1999). However, several observations point toward a role of Sir proteins in 

double strand break repair. sir3, sir3 and sir4 mutants have been reported to be sensitive to 

the DNA damaging agent MMS and disruption of sir4 has been shown to enhance sensitivity 

in a yku70 mutant background (MARTIN et al. 1999). Moreover, Sir4p and Sir3p delocalize 

from telomeres (MARTIN et al. 1999; MCAINSH et al. 1999) and accumulate at sites of a DNA 

double stranded break (MARTIN et al. 1999; MILLS et al. 1999). The finding that a yku70/sir4 

double mutant displayed hypersensitivity to MMS and bleomycin compared to either single 

mutant and the observation that the Sir proteins are recruited to a DNA break with different 

kinetics than Yku (MARTIN et al. 1999), gave evidence for a Ykup independent role of Sir4p 

in DNA repair. We have investigated the interrelation between Sir4p and the Yku heterodimer 

on DNA repair and telomere length regulation. Therefore, we analyzed sir4∆ and sir3∆ 

mutant strains as well as yku/sir4∆ and yku/sir3∆ double mutant strains for their sensitivity to 

chemical induced DNA damage. 
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In contrast to recent data, sir4∆ and sir3∆ cells displayed hardly any sensitivity to the 

DNA damaging agents MMS and bleomycin. We observed no reduced survival of sir4∆ cells 

in drop titer tests (Figure 1) as well as in quantitative assays (Figure 2). Resistance of the 

sir4∆ and sir3∆ cells to MMS and bleomycin was not due to an active NHEJ pathway: 

Accurate recircularisation of a linear plasmid bearing cohesive ends was dramatically reduced 

in the sir4∆ strain (Figure 3), showing that the NHEJ pathway is inhibited. A deletion of 

HMLα in the Mata sir4∆ strain restored end-joining capacity nearly to wild-type level (Figure 

3) as described previously (LEE et al. 1999). This wild-type behavior of sir4∆ and sir3∆ 

strains to chemical induced DNA damage shows that the components of the Sir2-4 complex 

do not significantly influence DNA repair processes and indicates that solely preventing end-

joining by co-expression of both mating types is not sufficient to cause sensitivity to chemical 

induced DNA damage. Strikingly, the yku70/sir4∆ and yku80/sir4∆ double mutant strains 

generated in W303-1A rad5-535 (data not shown) or HKY579-10A RAD5 (Figure 1) 

displayed no increased sensitivity to DNA damage. Moreover, both double mutant strains 

were significantly more resistant to MMS and bleomycin as compared to yku70 and yku80 

single mutants (Figure 1 and Figure 2). Similar results were obtained when we deleted SIR3 

in yku deficient strains: yku70/sir3∆ and yku80/sir3∆ double mutants again were nearly as 

resistant as wild-type cells (Figure 1). Therefore, the independent deletion of two components 

of the yeast silencing complex significantly increased the repair capacity of yku deficient 

cells. 

To distinguish between phenotypes that are induced either directly by the absence of the 

Sir4 protein or indirectly by the de-repression of the mating type loci, we deleted the HMLα 

locus in the haploid Mata strains. When we analyzed a Mata yku70/sir4∆/hml∆  strain this 

mutant exhibited MMS and bleomycin sensitivity comparable to a yku70 single mutant 

(Figure 1 and Figure 2). From these results we suggest that the reduced sensitivity of 

yku70/sir4∆ mutants is caused by the pseudo-diploid state of theses cells and that Sir4p plays 

no detectable role in the repair of the DNA damage induced by MMS or bleomycin. These 

data are corroborated by the finding that an increased resistance can be induced in Mata 

yku70 single mutants by the expression of HMLα from a plasmid (Figure 4) thereby leading 

to a pseudo-diploid state in a yku mutant proficient for Sir4p. 
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The decrease in sensitivity to DNA damage seen in yku70/sir4∆ mutants and in Mata 

yku70 + HMLα mutants argues in favour of another repair pathway that becomes activated 

when both mating types are expressed in a haploid cell. The reduction in NHEJ observed in 

sir4∆ mutants might accompany the activation of this pathway. If this DNA repair mechanism 

that is induced by co-expression of HMLα and HMRa can compensate for the sensitivity in 

yku70, this effect might also be present in the sir4∆ mutant, leading to a wild-type sensitivity. 

However, Mata sir4∆/hml∆ mutants exhibit a comparable resistance to MMS and bleomycin 

(Figure 2) as sir4∆ mutant and wild type cells, indicating that the absence of Sir4p per se does 

not induce MMS or bleomycin sensitivity. Therefore, our data provide no evidence for a 

detectable involvement of Sir4p in the repair of a DNA damage. However, our data do not 

exclude the possibility that Sir proteins that are released from telomeric sites help to modify 

the DNA double strand break to ensure a more rapid repair process. 

In addition to the contribution of Sir4p to DNA repair processes we have addressed the 

impact of Sir4p on telomere length maintenance in yku deletion strains. sir4∆ single mutants 

exhibited only a slight and stable reduction in telomere length (Figure 5) as described before 

(PALLADINO et al. 1993). Strikingly, yku70/sir4∆ and yku80/sir4∆ double mutant strains 

exhibited no enhanced telomere shortening as compared to yku70 or yku80 mutants, but a 

contrary phenotype was observed: both yku70/sir4∆ and yku80/sir4∆ mutants displayed 

slightly elongated terminal telomere repeats and an enhanced Y’-element signal. Y’-element 

amplification has been shown to occur in colonies of telomerase negative strains that arise 

with a low frequency from a senescent culture (LUNDBLAD AND BLACKBURN 1993). This 

formation of survivors has been shown to depend on the homologous recombination pathway 

since a deletion of RAD52 in telomerase negative strains inhibits survivor formation (LE et al. 

1999). A comparable effect has been observed for yku70 mutants where a few cells do survive 

a shift to the restrictive temperature of 37°C in a RAD52 dependent manner (FELLERHOFF et 

al. 2000). These temperature-resistant strains also exhibit enhanced Y’-element signals 

(FELLERHOFF et al. 2000). Thus, as in telomerase mutants, the loss of telomere integrity in 

yku70 mutants at 37°C induces recombinative events that lead to the stabilization of the 

chromosome ends (FELLERHOFF et al. 2000). However, no reduced survival is observed for 

yku70/sir4∆ and yku80/sir4∆ mutants, which would be indicative for a grave loss of telomere 

repeats. 
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Since the results we obtained by analyzing yku/sir double mutants for chemical induced 

DNA damage pointed toward an activation of a repair pathway in these double mutants, we 

tested the effect of the mating type co-expression caused by the SIR4 deletion on telomeres. 

When we deleted SIR4 in a Mata yku70/hml∆ mutant we could not detect an increase in the 

Y’-element signal and the terminal telomere repeats were as short as in yku70 and yku70/hml∆ 

mutant strains (Figure 5). Moreover, we were able to induce a slight Y’-element amplification 

in a Mata yku strain by the expression of HMLα from a plasmid (Figure 5). These results 

provide evidence that the Y’-element amplification detectable in yku70/sir4∆ strains is indeed 

caused by the co-expression of both mating types and is not a primary effect of the SIR4 

deletion. Furthermore, from the fact that yku70/sir4∆/hml∆ mutants have short telomeres 

comparable to those in yku70 mutants (Figure 5), we conclude that Sir4p and Yku70p act in 

the same pathway of telomere length regulation. 

Interestingly, the recombination events at the telomeres of yku70/sir4∆ mutants seem to 

occur although telomeres are not shortened to a critical level since we do not observe a 

reduced viability in the yku70/sir4∆/hml∆ strain. However, no recombinational effect can be 

detected in sir4∆ mutants or in Mata wild-type strains expressing HMLα from the plasmid, 

both fulfilling the prerequisite of mating type co-expression. Thus, the recombination events 

at telomeres are not a general feature of the pseudo-diploid state, but seems to dependent on 

telomere length or structure. One reason that telomeres in yku mutants are targeted by 

recombination events might be the fact that an unusual end structure is present in these 

mutants throughout the cell-cycle namely a single-stranded overhang that is restricted to S-

phase in wild-type strains (GRAVEL et al. 1998). This overhang might be sensed by the via 

pseudo-diploidy induced repair machinery, which then leads to Y’-element amplification. 

However, several findings support the possibility that only the length of the telomeres in 

pseudo-diploid yku mutants induce Y’-element amplification. yku mutants exhibit synthetic 

accelerated inviability in combination with an est2 deletion, indicating that not much 

sequence loss can be tolerated in yku70 mutants (NUGENT et al. 1998). Furthermore, recently 

published data have shown that short telomeres in the yeast K. lactis are highly 

recombinogenic. Ter1 mutant cells with stable shortened telomeres display greatly enhanced 

subtelomeric recombination rates, whereas recombination at internal locations remains 

unaffected (MCEACHERN AND IYER 2001). 
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Based on these data it has been suggested that stable shortened telomeres have lost 

partially their capping function and might be therefore recognized occasionally by the 

recombination repair pathway (MCEACHERN AND IYER 2001). The appearance of large 

abnormal cells, comparable to senescent ter1 cells, in some mutants with stable shortened 

telomeres rise further evidence that short telomeres might be partially uncapped 

(MCEACHERN AND IYER 2001). A detectable percentage of large abnormal cells can also be 

observed in yku70 or yku80 mutants (unpubl. observations B. MEIER AND H. M. FELDMANN). 

The mammalian Ku86 protein already has been implicated in telomere capping based on the 

finding that deletion of Ku86 in mouse cells leads to enhanced telomere fusion (HSU et al. 

2000; SAMPER et al. 2000). Therefore, we suggest that the short telomeres in yku mutants are 

uncapped to an greater extent and together with an activated recombinational repair pathway 

in pseudo-diploid cells expressing both mating types this might result in an increase in 

recombinational events at the telomeres. 
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Introduction 
 
The ends of linear chromosomes of eukaryotic cells, the telomeres, are bound by large protein 

complexes. These proteins complexes ensure complete replication and protect the 

chromosome ends from exonucleolytic degradation, recombination and other potential errors, 

which could lead to a loss of DNA or to DNA rearrangements. Besides telomere specific 

proteins, however, several proteins implicated in the repair of double strand DNA breaks 

(DSBs) i.e. the Mre11p, Rad50p, Xrs2p complex and the Ku heterodimer, have been shown to 

localize to telomeric sites in yeast (Martin et al., 1999) and mammals (Hsu et al., 1999; 

Lombard and Guarente, 2000; Zhu et al., 2000). Mre11p, Rad50, Xrs2 and Ku are not only 

bound to telomeres but moreover contribute to the establishment of wild-type telomere length 

and structure (Boulton and Jackson, 1998; Nugent et al., 1998; Polotnianka et al., 1998; 

Porter et al., 1996). 

Mouse fibroblast deficient for the 80 kD subunit of the Ku heterodimer accumulate a 

significant percentage of telomere fusions, indicating that Ku is important for the protection 

of chromosome ends in mammalian cells (Hsu et al., 2000; Samper et al., 2000). In the yeast 

Saccharomyces cerevisiae a deletion of either subunit of the Yku heterodimer leads to short 

but stable telomeres (Porter et al., 1996) with unusual long G-rich single strand extensions 

(Gravel et al., 1998). Furthermore yku mutants are impaired for growth at elevated 

temperatures presumably due to further telomere shortening (Boulton and Jackson, 1998; 

Fellerhoff et al., 2000). Thus, the Ku protein, which was initially identified as an essential 

factor required for the repair of double strand breaks lacking homologous regions also 

facilitates the protection of a special DNA end, the telomere, from its recognition as a double 

strand break. Recent results provide evidence, that in Saccharomyces cerevisiae Yku is 

released from telomeric sites in response to DNA damage and accumulates at the DNA break 

(Martin et al., 1999). However, the mechanism how Yku fulfils both its protection and repair 

function is poorly understood. To get insights how Yku might act at different sites, we 

focused on the identification of proteins that interact with the Yku heterodimer. 
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The yeast two hybrid system allows the detection of a protein-protein interaction by 

transcription activation of certain reporter genes. One important step to understand how 

transcription factors initiate transcription came from the observation that the yeast 

transcription factor Gal4 consist of two separable domains, a DNA binding domain and a 

transcription activation domain (Brent and Ptashne, 1985; Hope and Struhl, 1986; Keegan et 

al., 1986). Further studies revealed that the DNA binding domain needs not to be covalently 

linked to the activation domain to induce transcription activation (Ma and Ptashne, 1988). 

Moreover, a Gal4 activation domain was able to confer transcription activation when fused to 

the DNA binding domain of the bacterial repressor LexA, thereby activating genes that 

contain upstream LexA binding sites (Brent and Ptashne, 1985). These findings provided the 

basis for the establishment of a system that allows to study the interaction of two proteins, one 

fused to a DNA binding domain (BD) and one fused to a transcription activation domain 

(AD) (Fields and Song, 1989; Zervos et al., 1993) by a transcriptional read out. If protein-

protein interaction occurs, the AD and the BD are brought in close proximity to each other, 

thereby leading to the assembly of an active transcription factor. The transcription of specific 

reporter genes is then used as a read out for the interaction of the two proteins (Fields and 

Song, 1989; Zervos et al., 1993). This system allows the study of protein interactions from 

any organism in the yeast Saccharomyces cerevisiae. 

In the Interaction Trap System (Zervos et al., 1993) the bait vector, pEG202, carries a 

LexA binding domain (BD) followed by a polylinker sequences that allows the in frame 

cloning of a gene of interest. An ADH1 promoter confers constitutive expression of a LexA-

BD fusion protein from this plasmid. The prey vector, pJG4-5, contains a nuclear localization 

signal, a B42 transcription activation domain (AD), and a HA-tag followed by a polylinker for 

in frame cloning of a DNA library or a gene that should be tested for interaction with the bait. 

A GAL1 promoter allows the expression of an AD-fusion protein from pJG4-5 on galactose 

containing plates but is inhibited if the yeast cells are grown on plates containing glucose as a 

carbon source. Two reporter genes, that contain upstream LexA binding sites, are used as a 

read out for protein interactions: the LEU2 gene that is integrated into the genome of the yeast 

strain EGY48 and an episomally encoded lacZ gene. Thus, cells containing an activation 

domain-tagged protein that interacts with the LexA-fusion protein, form colonies on leucine 

deficient galactose plates and accumulate a blue colour on galactose plates containing 5-

bromo-4-chloro-3-indolyl-β-D-galactopyranoside (x-Gal) (Figure 1). 
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FIG. 1 [V]. Interaction Trap Screening for Yku70p interacting proteins. The Yku70 full-length protein 

fused to a LexA binding domain (BD) is used as a bait to screen for Yku70p interacting proteins. (A) If Yku70-
BD is coexpressed with an unrelated protein fused to a transcription activation domain (AD) no transcription 
activation of the two reporter genes LEU2 and lacZ can occur. Therefore yeast cells do not grow on SC-ura-his-
trp-leu Gal and stay white on SC-ura-his-trp x-Gal Gal. (B) If a Yku70p interacting protein fused to the AD and 
LexA-Yku70p are present in the same cell, protein-protein interaction can be detected by the expression of the 
two different reporter genes. The expression of the LEU2 gene mediates growth on SC-ura-his-trp-leu Gal media 
and the expression of the lacZ gene leads to the accumulation of a blue pigment in yeast colonies grown on X-
Gal plates. 
 

 

Materials and methods 
 
S. cerevisiae strains, media, growth conditions and transformation 

Yeast strains used in this study are listed in Table I. Yeast strains were grown at 30°C using YPD or selective 

media as described elsewhere (Feldmann et al., 1996). Yeast transformation was performed by the lithium 

acetate method (Schiestl and Gietz, 1989) and the high efficiency transformation of the yeast genomic library 

was done as described in http://www.umanitoba.ca/faculties/medicine/biochem/gietz/2HS.html. 

 

Plasmid constructions 

Two hybrid vectors pEG202, pJG4-5 and pSH18-34 were generously provided by Dr. R. Brent and colleagues. 

The YKU70 gene was isolated from pGEM4ZHDF1 (Driller et al., 2000) with BamHI and SalI and was ligated 

to pEG202 cut with BamHI/ XhoI, leading to pEG-YKU70. pEG-YKU70 was then cut EcoRI and SalI, the 

Yku70 fragment was purified on an agarose gel and ligated to pJG4-5 linearized with EcoRI/XhoI to generate 

pJG-YKU70. The YKU80 bait and prey plasmids were generated as described previously (Walter, 1997). The N-

terminal SIR4 fragment, AA 1- 397 was PCR amplified from pJGSir4 –40 bp to AA 397 using primers Sir4Nter 

for 5'-ATC GGA ATT CAT GCC AAA TGA CAA TAA GAC ACC C-3' and Sir4Nter rev 5'-ATC CCT CGA 

GTG  TTT  TCT TGG  CCT TCA  TAT TCA  AC-3'.  The PCR  product  was  subcloned  into pZEROTM-2  
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(Invitrogen, San Diego USA) and re-isolated after digestion with EcoRI/ XhoI. This fragment was cloned in 

pJG4-5 EcoRI/ XhoI to generate pJG-SIR4 AA1-397. The C-terminal SIR4 domain described in Tsukamoto et 

al. (1997) was amplified from genomic yeast DNA with primers Sir4CterAA1205 5'-ATC CGA ATT CGA TCG 

TCG AGT GAA ACA ACT CG-3' and Sir4Cter rev 5'-ATC CCT CGA GGT CAA TAC GGT TTT ATC TCC 

TTA TTC AC-3'. After cloning into pZEROTM-2 the fragment was re-isolated by EcoRI/ XhoI digestion and 

ligated to pJG4-5 EcoRI/ XhoI. A ~ 2200 bp N-terminal SIR4 fragment was PCR amplified with primers 

Sir4Nter for and Sir4P2 rev 5'-CCA ATA CAG GAT CAA ACC ATT TGC-3' and a ~ 1900 bp C- terminal 

fragment with primers Sir4P3 for 5'-CCA GAA AAT AAG ACT GAT AAG G-3' and Sir4P4 rev 5'-GCG GCC 

GCT CAA TAC GGT TTT ATC TCC-3' to generate pJG-SIR4 AA1-1358. PCR products were ligated to 

pZEROTM-2. The N-terminal fragment was re-isolated by EcoRI/ BglII, the C-terminal part by BglII/ NotI 

digestion. Both fragments were then ligated to pEG202 cut with EcoRI/ NotI. pEG-SIR4 AA1-1358 was re-cut 

with EcoRI and XhoI, the entire SIR4 reading frame was purified from an agarose gel and ligated to pJG4-5 

digested with EcoRI/ XhoI. Plasmids were sequenced to ensure in-frame cloning. 

 

Gene disruption 

The yku70 and yku80 deficient strains were generated as described previously (Feldmann et al., 1996; Feldmann 

and Winnacker, 1993). The sir2∆ (BMY61), sir3∆ (BMY48), sir4∆ (BMY39) strains were constructed using a 

PCR-derived HisMX or kanMX6 module flanked by short terminal sequences (80bp) homologous to the ends of 

the corresponding reading frame (Wach et al., 1994). To introduce the rap1-17 mutation into CEN.PK2, a 

genomic fragment of rap1-17 was amplified from strain AJL278-4d (Kyrion et al., 1992) with primers rap1-17 

for: 5'-TGC CGA AGA GCA TGC AGC AC-3' and rap1-17 rev: 5'-CCC TTA GGT ACA CTC CTA CG -3'. 

The PCR fragment was cloned into pBluescript (Stratagene) and the kanMX4 marker was inserted into the 

unique HindIII restriction site of the genomic fragment. The plasmid pBSrap1-17Kan was digested using PvuII/ 

StuI and the resulting rap1-17::kanMX fragment was used to transform CEN.PK2. The correct integration of 

deletion constructs was confirmed by analytical PCR (Wach et al., 1994) and sequencing of the PCR products. 

 

Sensitivity assay 

Yeast colonies were picked, resuspended in dH2O and diluted five times by 10-fold serial dilutions. Aliquots (6 

µl) of each dilution were spotted in duplicate on YPD plates and on YPD plates containing increasing amounts 

of methyl methanesulfonate (MMS). MMS plates were incubated at 30°C and YPD plates were incubated at 

30°C or 37°C for 3-4 days. 

 

Yeast DNA extraction and analysis of telomeric DNA 

Genomic DNA was isolated from 5-7 ml overnight cultures using nucleonTM MiY DNA extraction kit 

(Amersham Life Science). For analysis of telomere length genomic DNA was digested overnight using XhoI and 

was separated on an 0,8% agarose gel in 1 x TBE buffer. DNA was transferred to nylon membranes (HybondN+) 

by vacuum blotting using 0.4 N NaOH. Detection of telomeric DNA fragments was performed as described 

previously (Boulton and Jackson, 1998). 
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Two hybrid screening 

Four independent overnight cultures of EGY48 carrying plasmids pEG-Yku70p and pSH18-34 were transformed 

(Agatep et al., 1998) with 2 µg of a yeast genomic library cloned into the prey plasmid pJG4-5 (Watt et al., 

1995). Cells were then plated at low density onto 16 SC-ura-his-trp plates (24 x 24 cm) and were incubated for 3 

days at 30°C. The amount of primary transformants was calculated by counting the colonies in a representative 

2,4x2,4 cm square from each plate. Colonies were scraped off the plates, washed twice with dH2O and were 

finally resuspended in one pellet volume of storage buffer (65% glycerol; 0.1 M MgSO4, 25 mM Tris pH 7.4). 

To induce gene expression from the library plasmid 100 µl of yeast cell suspension were added to 10 ml YPGal 

and incubated on a shaker at 30°C for 5 h. 2 ml and 200 µl culture where plated onto SC-ura-his-trp-leu Gal to 

select for the expression of the LEU2 marker gene or onto SC-ura-his-trp-leu Glc control plates. The plates were 

incubated at 30°C for 3 days. To enhance the stringency of the screening procedure 300 clones, that grew on SC-

ura-his-trp-leu Gal, were re-tested for their galactose dependent transcription activation of both marker genes 

LEU2 and lacZ. Therefore, colonies from SC-ura-his-trp-leu Gal plates were resuspendend in dH2O and spotted 

onto SC-ura-his-trp-leu Gal, SC-ura-his-trp x-Gal Gal and the control plates SC-ura-his-trp-leu Glc and SC-ura-

his-trp x-Gal, respectively. After 3 days 77 clones, ¼ of the tested colonies, exhibited no growth on SC-ura-his-

trp-leu Glc but grew on SC-ura-his-trp-leu Gal plates and gave rise to blue colonies specifically on SC-ura-his-

trp x-Gal Gal plates. From these 77 clones the prey plasmid, that allowed selective gene expression on galactose 

containing plates was isolated. 

Plasmid DNA was extracted from yeast as described (Adams et al., 1997) and was transformed in E. coli 

KC8 (Zervos et al., 1993), which allowed the selection of the prey-plasmid on tryptophane-lacking media. 

Plasmid preparations (QIAGEN Plasmid Mini Kit) from E. coli KC8 were then retransformed into E. coli 

XL1blue (Stratagene) to avoid DNAse mediated degradation. Plasmids isolated from XL1blue were 

retransformed into yeast strain EGY48 carrying pEG-Yku70 and pSH18-34 and transformants grown on SC-ura-

his-trp were again tested for their ability to activate reporter gene transcription. In addition, the plasmid DNA 

was digested with EcoRI as well as HindIII and was separated on a 0.8% agarose gel. To identify the 5’-ends of 

the isolated genomic yeast DNA fragments, plasmids were sequenced using the vector specific primer pJG-ATG: 

5’-TTG CTG AGT GGA GAT GCC TCC-3’. 

 

Blast search 

To search for homologues of or for sequence motives in the putative Yku70p interacting proteins protein blast 

searches were performed at http://www.ncbi.nlm.nih.gov/BLAST/. ‘Standard protein-protein BLAST’, ‘PSI- and 

PHI-BLAST’ and ‘Search for short nearly exact matches’ were used to search for local and overall homologies 

to the database. 
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Table I [V]. Yeast strains used in this study 
 

Strain 
 

Genotype 
 

Reference 
 
W303-1A 

 
Mat a leu2-3,112 ura3-1 his3-11,15 trp1-1 ade2-1 can1-100 

rad5-535 

 
(Fan et al., 1996) 

W303aL W303-1A yku70::LEU2 (Feldmann and Winnacker, 

1993) 

EGY48 Mat a trp1 ura3 his3 LEU2::pLexAop6-LEU2 (Zervos et al., 1993) 

CEN.PK2-1C Mat a ura3-52 his3-∆1 leu2-3,112 trp1-289 MAL2-8c SUC2 (Bojunga et al., 1998) 

CEN.PK2 aL CEN.PK2-1C yku70::LEU2 AG Feldmann, unpublished 

CEN.PK2 ah2 CEN.PK2-1C yku80::kanMX4 This study 

BMY48 CEN.PK2-1C sir3∆::kanMX6 This study 

BMY61 CEN.PK2-1C sir2∆::kanMX6 This study 

AJL278-4d Mat a rap1-17 ade2-1 ura3-1 HIS3 leu2-3,112 trp1 (Kyrion et al., 1992) 

HFY87 CEN.PK2-1C rap1-17::kanMX4 This study 

 

 

Results 
 

The Yku70 fusion protein expressed from pEG202 complements yku70 mutant phenotypes 

The YKU70 gene was cloned in frame into plasmids pEG202 and pJG4-5 (see Materials and 

Methods). To test whether the Yku70 fusion protein is expressed functionally, we transformed 

pEG-Yku70 and pJG-Yku70 into W303a yku70::LEU2 (aL) (Feldmann and Winnacker, 

1993) as well as pEG202 and pJG4-5 as vector controls. Cells were plated on SC-his and SC-

trp media to select for the pEG202 and pJG4-5 growth marker, respectively. After 3 days of 

growth at 30°C, transformants were resuspended in dH2O and serial dilutions were used to 

test the strains for their sensitivity to the DNA damaging agent MMS and for growth at 

elevated temperatures. 

The sensitivity of the W303-1A yku70 mutant to methyl methanesulfonate was already 

detectable on YPD plates containing 0,01% MMS (Figure 2A, lane 2). Yku70 mutants 

transformed with control plasmid pEG202 or pJG4-5 (Figure 2A, lanes 3 and 5) were as 

sensitive to MMS as the yku70 mutant. The introduction of either pEG-Yku70 or pJG-Yku70 

in yku70 strains, however, led to resistance to MMS (Figure 2A, lanes 4 and 6) comparable to 

wild-type. 
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Similar results were obtained when we analyzed the temperature-sensitivity of these 

strains. Yku70 mutants transformed with pEG202 and pJG4-5 did not grow at 37°C (Figure 

2B, lanes 2, 3 and 5) whereas yku70 mutant strains, which contained a pEG-Yku70 or pJG-

Yku70 plasmid expressing the LexA-Yku70p or AD-Yku70p fusion, respectively, exhibited 

growth at 37°C, which was almost comparable to wild-type (Figure 2B, compare lanes 4 and 

6 with lane1). 

 

 

FIG. 2 [V]. The LexA-Yku70 fusion protein complements yku70 mutant phenotypes. (A) 6 µl of 1:10 
serial dilutions of W303-1A wild-type, yku70 mutant and yku70 mutant strains carrying various two hybrid 
vectors were spotted onto YPGal plates and YPGal plates containing 0,01% MMS. (B) 6 µl of 1:10 serial 
dilutions of the W303-1A strains described in (A) were spotted in duplicate onto YPGal plates. Cells were 
incubated for 3 days at 30°C and 37°C. (C) Southern Blot of yeast genomic DNA probed with a poly (GT)20 
oligonucleotide. Genomic DNA from W303-1A wild-type and yku70 mutant strains carrying control, LexA-
Yku70 and AD-Yku70 expression plasmids was prepared as described in Materials and Methods. Arrows 
indicate subtelomeric Y’ element signals, brackets indicate terminal telomeric GT repeats. 
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Furthermore we examined the telomere length in yeast strains expressing the Yku70 

fusion proteins. In strains W303-1A yku70::LEU2 + pEG202 and W303-1A yku70::LEU2 + 

pJG4-5 we observed a yku70 corresponding telomere shortening (Figure 2C, lanes 2 and 4). 

The introduction of either bait or prey vector carrying a LexA- or AD-Yku70 fusion protein, 

respectively, confers significant telomere elongation (Figure 2C, lanes 3 and 5). Strikingly, 

telomeres in these strains did not reach wild-type telomere length even though growth at 

elevated temperatures and MMS sensitivity was rescued to wild-type levels. 

Thus, the N-terminal fusion of Yku70p to either the LexA binding domain in pEG202 or 

the acidic transcription activation domain in pJG4-5 was able to complement the yku70 

mutant sensitivity to the DNA damaging agent MMS, the growth defect at 37ºC and could 

partially rescue the telomere shortening caused by a deletion of the endogenous Yku70p. 

From these data we conclude, that the N-terminally fused Yku70p enters the yeast nucleus 

and can interact with endogenous Yku80p to fulfil its cellular function. 

 

The LexA-Yku70 fusion protein does not induce transcription of the LEU2 and lacZ 

reporter genes 

Since the bait protein cloned into pEG202 is expressed as a LexA binding domain fusion this 

fusion protein itself may activate transcription of the reporter genes i.e. by an intrinsic acidic 

domain. To verify that the Yku70p fusion does not activate transcription independent from an 

interaction with a second protein fused to the B42 activation domain, we transformed EGY48 

carrying pSH18-34 with either pSH17-4 (referred to as pGal4AD), pRFHM-1 (referred to as 

pBicoid AA 2-160), pEG202 or pEG-Yku70. Cells were plated on SC-his-ura and were 

incubated at 30°C for 3 days. From each transformation 5 independent transformants were 

resuspended in dH2O and spotted onto SC-his-ura-leu Glc, SC-his-ura-leu Gal, SC-his-ura x-

Gal Glc and SC-his-ura x-Gal Gal plates. 
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FIG. 3 [V]. The LexA-Yku70 bait protein does not activate reporter gene transcription. Yeast strain 
EGY48 carrying the lacZ reporter plasmid pSH18-34 was transformed with pGal4AD, pBicoid (AA 2-160), 
pEG202 or pEG-Yku70. Cells were plated on SC-ura-his and were incubated at 30°C for 3 days. (A) 5 
independent colonies from each transformation were resuspended in dH2O and spotted onto SC-ura-his-leu Glc 
and SC-ura-his-leu Gal to assay transcription activation of the genomically integrated LEU2 reporter gene and 
were (B) spotted onto SC-ura-his x-Gal Glc and SC-ura-his x-Gal Gal to test for an activation of the episomally 
encoded lacZ gene. 

 

The plasmid pGal4AD carries the Gal4 activation domain cloned into the pEG202 

backbone and is used as a positive control, leading to growth on SC-ura-his-leu glucose and 

SC-ura-his-leu galactose plates (Figure 3A, lane 1) and to the accumulation of a blue colour in 

colonies grown on SC-ura-his x-Gal/Glc and SC-ura-his x-Gal/Gal plates (Figure 3B, lane 1). 

In contrast EGY48 transformed with pBicoid (AA 2-160), encoding the homeodomain of the 

Drosophila protein bicoid fused to the LexA binding domain and serving as a negative control 

for transcription activation, showed strongly impaired growth on leucine lacking media and 

did not result in the formation of blue colonies (Figure 3A and B, lane 2). The plasmid 

pEG202, that expressed the LexA DNA binding domain, led to a weak but significant 

induction of the sensitive growth reporter LEU2 resulting in growth on Leu- plates (Figure 

3A, lane 3), but no induction of the lacZ reporter gene was visible in all five transformants 

tested (Figure 3B, lane 3). However, the LexA-Yku70p fusion protein overexpressed under 

the ADH1 promoter from plasmid pEG-Yku70 exhibited a complete deficiency for growth on 

leucine lacking media (Figure 3A, lane 4) and did not induce β-galactosidase expression on 

SC-ura-his x-Gal/Glc as well as on SC-ura-his x-Gal/Gal plates (Figure 3B, lane 4) on which 

interaction studies are performed. 
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Furthermore, analysis of reporter gene activation in EGY48 containing not only pSH18-

34, pEG-Yku70 but also the prey plasmid pJG4-5 on galactose containing media revealed that 

LexA-Yku70 did not activate transcription when the B42 activation domain was co-expressed 

(data not shown). Therefore, the LexA-Yku70p fusion protein did not induce transcription of 

the reporter genes, when bound to the LexA operator sequences and did not interact with the 

transcription activation domain expressed from pJG4-5. Thus, the pEG-Yku70 construct 

fulfils the preconditions to perform a two hybrid screen for Yku70p interacting proteins. 

 

Proteins that interact with Yku70p by two hybrid criteria 

To identify Yku70p interacting proteins four independent overnight cultures of EGY48 

containing pEG-Yku70p and pSH18-34 were each transformed with 2 µg of the pJG4-5 

derived yeast genomic library (Watt et al., 1995). Cells were plated on 16 SC-ura-his-trp 

plates (24 x 24 cm) to select for the three plasmids. Counting the colonies that arose on these 

plates after 3 days of growth at 30°C revealed approx. 790.000 primary transformants. The 

colonies were scraped off the plates and resuspended in one pellet volume storage buffer. To 

induce expression of the library plasmids, 100µl of this solution were used to induce protein 

expression from the prey plasmid in galactose containing media and two dilution steps were 

plated onto SC-ura-his-trp-leu Gal media. 300 colonies, able to grow on SC-ura-his-trp-leu 

Gal, were re-tested for galactose dependent activation of both reporter genes: LEU2 and lacZ. 

77 out of these 300 clones exhibited inducible growth on SC-ura-his-trp-leu Gal and 

accumulated a detectable blue colour on SC-ura-his-trp x-Gal/ Gal. Isolation of the library 

plasmid from the 77 colonies (see Material and Methods) and sequencing of the fusion part 

with pEG202/ATG, a primer ~ 40 bp upstream of the EcoRI cloning site, revealed various 

putative Yku70p interacting proteins (listed in Table II). 
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Table II [V]. Proteins that interact with Yku70p in the LexA two hybrid system. The column ‘size of EcoRI 
fragments’ allows to calculate the size of the genomic DNA fragment, that was ligated into the isolated pJG4-5 
plasmid. Due to the cloning procedure of the genomic library the DNA insert contains flanking EcoRI restriction 
sites but can also contain internal restriction sites. The ‘start’ determines the first amino acid (AA) from the 
genomic fragment that is fused to the transcription activation domain. Sequencing was performed using a primer 
that matches in close proximity to the fusion junction. The isolation frequency of the specific DNA fragment is 
eflected in ‘clones’.  r  
interacting 

protein 

 
size of EcoRI 

fragments (bp) 

 
start 

 
clones 

 
localization 

 
function 

      
Protein-

degradation 
     

      
RPN8 

(YOR261c) 
~ 1400 AA 229 14 nucleus; 

endoplasmic 
reticulum 

essential gene, non-ATPase subunit of 
the 26S proteasome-complex 
(Finley et al., 1998) 

 
Nuclear 
envelope 

     

      
NUP84 ~ 950 AA 542 7 nuclear pore nuclear pore component; part of 

complex with Nup120p, Nup85p, 
Sec13p, and a Sec13p homologue 
(Siniossoglou et al., 1996) 
• similar to mammalian Nup107p 
(Siniossoglou et al., 1996) 
• localizes symmetrically at both sides 
of nuclear pore (Rout et al., 2000) 

 
Telomere/ 
Silencing 

     

      
SIR4 ~ 1300 - 40 bp -AA 

397 
1 nucleus silencing information regulator, 

required for silencing at HMR, HML 
(Ivy et al., 1986) and at the telomeres 
(Aparicio et al., 1991) 
 

HAT1 
(YPL001W) 

~ 900 AA 103 1 component of 
two HAT 

complexes, one 
nuclear one 
cytoplasmic 

histone-acetyltransferase 
(Parthun et al., 1996) 
• involved in telomere silencing, but 
not in HMR silencing 
• affects telomere silencing through 
histone H4 Lys12 and any of five N-
terminal Lys of histone H3 (Kelly et 
al., 2000) 

 
Chromatin 
structure 

     

      
MCM6 

(YGL201c) 
750 and 300 bp AA 69 2 nucleus essential gene, mini chromosome 

maintenance, protein involved in 
DNA-replication (Chen et al., 1992) 
• interacts with Dna43p, Est1p, Krr1p 
and Spt2p in a two-hybrid assay 
(Uetz and Hughes, 2000) 
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TOF1 

(YNL273w) 
2200 AA 549 1 n.d. topoisomerase I interacting factor 

• null mutant is not sensitive to UV or 
MMS (Park and Sternglanz, 1999) 
• interacts with nucleoporin Nup100p 
(Allen et al., 2001) 

YNG2/NBN1 
(YHR090c) 

~ 950 AA 35 1 nucleus NuA4 histone acetyltransferase 
complex component 
• has over 50% identity to human 
candidate tumor suppressor p33-ING1 
over the C-terminal domain 
• null mutant is temperature-sensitive, 
sensitive to UV, but not to gamma 
irradiation or alkylating agents 
• null mutant displays a significant 
decrease in acetylation of histone H4 
residues K-5, K-8, and K-12 
(Loewith et al., 2000) 

      
Proteins of 
unknown 
function 

     

      
YDR014W/ 
YD8119.19 

~ 1300 and 500 AA 9 5 n.d. • 40% overall homology to S. pombe 
SPAC11E3.03 (blast search) 
• domain with 70% homology to 
integrase-recombinase protein from 
Ureaplasma urealyticum (blast 
search) 
 

YPR148c 2x 1400 
1x 1600 

2x AA 292 
1x AA 242 

3 n.d. short homology domain to high 
mobility group proteins (blast search) 
 

YLR440c 3 fragments 
< 400  

AA 49 2 n.d. essential gene, serine-threonine kinase 
domain (blast search) 
 

YKR077w ~ 1300 AA 79 1 n.d. unknown 
 

YPR097W 
 

~ 1750 AA 503 1 n.d. unknown 

YLR052w ~ 1000 and 300 AA 136 2 n.d. unknown 
 

YDR124W 
 

~ 2700 AA 135 1 n.d. unknown 

YDR520C/ 
D9719.25 

 

~ 1000 AA 532 1 n.d. protein with similarity to proteins with 
Zn-finger domains (blast search) 

      
Transcription/ 

drug 
resistance 

     

      
SWI6 ~ 900 AA 644 8 nucleus transcription factor 

(Partridge et al., 1997) 
• mutants have a 60% reduction in 
RAD51 and RAD54 transcripts 
(Leem et al., 1998) 
• suppressor of defective silencing 
(Laman et al., 1995) 
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MDS3 
(YGL197w) 

~ 900 AA 1048 2 n.d. putative transcription factor, 
• negative regulator of early meiotic 
genes (Benni and Neigeborn, 1997) 
 
 

PDR3 
(YBL005w) 

~ 600 and 450 AA 643 1 nucleus zinc-finger transcription factor  
• mutants exhibit multidrug resistance 
(Delaveau et al., 1994)  
• binds to an inverted palindrome 
(CCGCGG) (Hellauer et al., 1996) 
 

Fun30 
(YAL019) 

~ 950 n.d. 1 nucleus protein of Snf2p family (Clark et al., 
1992) 
• null mutant has increased resistance 
to UV (Barton and Kaback, 1994) 
• overproduction from the GAL1 
promoter causes chromosome 
instability (Ouspenski et al., 1999) 

      
Spindlepole      

      
ASE1 

(YOR058c) 
~ 1700 AA 654 1 nucleus microtubule-associated protein 

(Pellman et al., 1995) 
• loss of function destabilizes 
telophase spindles 
• null mutant is temperature-sensitive 
for growth (Juang et al., 1997) 

      
Vacuole      

      
VPS41 

(YDR080w) 
~ 1100, 850 

and 300 
AA 623 1 secretoric/ 

endocytotic 
vesicles 

"Vacuolar Protein Sorting", protein of 
the class C Vps protein complex 
(Pep3p, Pep5p, Vps16p, Vps33p, 
Vam6p, Vps41p) (Sato et al., 2000) 
• null mutant has abnormal vacuolar 
morphology 
• functions in post-Golgi protein 
processing (Radisky et al., 1997) 
 

PEP3 
(YLR148w) 

~ 1500 and 400  AA 462 1 lysosome/ 
vacuole; 

peripheral 
membrane 

protein of the class C Vps protein 
complex (see VPS41) 
• null mutant contains no vacuole 
(Srivastava et al., 2000) 

      
Mitochondria, 

cytoplasm 
     

      
DNM1 

(YLL001w) 
~ 900 AA 518 1 mitochondrial dynamin-related mitochondrial protein 

• required for mitochondrial division 
(Sesaki and Jensen, 1999) 
• regulates mitochondrial fission 
(Bleazard et al., 1999) 
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APG1 
(YGL180w) 

~ 250 AA 773 1 cytoplasmic serine/threonine protein kinase, 
mutants defective in vacuolar protein 
degradation during nitrogen starvation 
(Matsuura et al., 1997) 
• activation is required for induction 
of autophagy after nutrient limitation 
• activation is required for cytoplasm-
to-vacuole targeting pathway 
(Kamada et al., 2000) 
 

GPR1 
(YDL035c) 

~ 1100 AA 821 2 plasma 
membrane 

G protein-coupled receptor containing 
seven transmembrane domains 
• involved in the pathway of 
pseudohyphal differentiation in 
response to nutrient starvation 
• coupled to Gpa2p (Xue et al., 1998) 

      
transport      

      
GEA1 

(YJR031c) 
~ 800 AA 1284 4 n.d. component of a complex guanine 

nucleotide exchange activity for the 
ADP-ribosylation factor ARF 
• essential function in transport from 
ER to Golgi in vivo (Peyroche et al., 
1996) 

 

Interestingly, two proteins, the Sir4 protein and a protein of unknown function encoded by 

the open reading frame YKR077w, were also isolated in a screen using Yku80p as a bait by 

Kai Walter (Walter K., 1997). 

 

A Sir4p-Yku70p interaction identified by two hybrid criteria is mediated by Yku80p 

In the two independent screenings with either Yku70p or Yku80p as a bait, a N-terminal 

domain of Sir4p encompassing -40 bp to AA 397 was identified by sequencing to interact 

with Yku. This SIR4 fragment was isolated once in the screening for Yku70p interacting 

proteins, and 29 times when using Yku80p as a bait. 

Screening for putative interactors of a yeast protein by a two hybrid approach opens up 

the opportunity that endogenous factors expressed by the yeast strain, in which the screening 

is performed, can contribute to a protein-protein interaction. Therefore, indirect protein-

protein interactions, bridged by another cellular protein can be detected in this system 

(Moretti et al., 1994). To investigate whether the Sir4p domain interacts with both Yku 

subunits or whether interaction is mediated specifically by one subunit of the heterodimer, we 

performed two hybrid analysis in yku mutant strains. 
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Therefore, pSH18-34 carrying the lacZ reporter gene, pJG-Sir4(1-397) or full-length pJG-

Sir4(1-1358) and pEG-Yku70 or pEG-Yku80 were transformed into yeast strains CEN.PK2a 

(wild-type), CEN.PK2aL (yku70) or CEN.PK2ah2 (yku80). Protein-protein interactions were 

measured by the formation of blue yeast colonies on X-Gal/galactose plates. 

Co-expression of the Sir4 N-terminal domain Sir4(1-397) with Yku80p on galactose 

plates led to the accumulation of the blue pigment in wild-type cells (Figure 4A, right panel, 

lanes 1 and 2). Blue colonies were also detectable when either yku70 (Figure 4A, right panel, 

lanes 3 and 4) or yku80 (Figure 4A, right panel, lanes 5 and 6) deletion strains were used to 

test this interaction. Comparable results were obtained using the Sir4p full-length construct 

pJG-Sir4-1-1358. However, the intensity of the blue colour was more pronounced as 

compared to pJG-Sir4(1-397) indicating that a stronger interaction can be observed between 

Yku80p and full-length Sir4p as compared to Sir4Np. 
 

 

 

FIG. 4 [V]. The Yku80p subunit interacts with Sir4p in the absence of Yku70p whereas the Yku70p 
Sir4p interaction requires the presence of Yku80p. From each transformation of pEG-Yku80 with pJG Sir4 
AA 1-397, pJG4-5 and pJG Sir4 AA 1-1358 and pEG-Yku80 with pJG Sir4 AA 1-397, pJG4-5 and pJG Sir4 AA 
1-1358 6 independent transformants were resuspended in dH2O. 5 µl of the cell suspension were spotted onto 
SC-ura-his-trp-leu x-Gal Glc and SC-ura-his-trp-leu x-Gal Gal plates to test for inducible expression of β-
Galactosidase detectable by the formation of blue colonies on galactose containing plates. 
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Whether this reduction is due to a reduced stability of the N-terminal fragment or 

indicates that the Sir4 AA1-397 is sufficient but does not contain the entire Yku80p 

interaction domain has to be addressed. However, in both cases the presence of the cellular 

Yku70p is not necessary to allow interaction between Sir4p and Yku80p. Therefore Sir4p can 

interact with the Yku80p subunit independently from Yku70p and does not require the 

presence of a pre-assembled Yku heterodimer. 

In contrast, when Sir4(1-397) and Sir4 full-length Sir4(1-1358) were analyzed for their 

interaction with Yku70p on galactose plates, blue colonies arose in wild-type and the yku70 

mutant (Figure 4B, right panel lanes 1 –4) but not in the yku80 mutant strain (Figure 4B, right 

panel, lanes 5 and 6). Thus, the interaction between Sir4p and Yku70p occurs only in the 

presence of endogenous Yku80p. From these data we suggest that the Sir4p-Yku70p 

interaction, identified in our two-hybrid screen is bridged by Yku80p. 

 

Sir4p interacts directly with Yku80p 

A complex of four proteins, Sir1-4, is required to establish and maintain silencing at the 

mating type loci HML and HMR (Rine and Herskowitz, 1987) whereas Sir2p, Sir3p and Sir4p 

are sufficient to mediate silencing of telomere adjacent genes (Aparicio et al., 1991). None of 

the Sir proteins has been shown to display DNA binding properties. However, interaction of 

Sir3p with the DNA-binding protein Rap1 (Moretti et al., 1994) targets a Sir2-4 sub-complex 

to telomeric sites (Gotta et al., 1997; Maillet et al., 1996). A mutant Rap1 protein, rap1-17, 

that creates a stop codon at amino acid 663 (Kyrion et al., 1992) thereby lacking its Sir3p 

interaction domain (AA 679-827) (Moretti et al., 1994) results in the loss of telomeric 

silencing (Kyrion et al., 1993). Tethering a LexA-Sir3p fusion protein to telomere adjacent 

sites can restore telomeric silencing in a rap1-17 mutant (Lustig et al., 1996), indicating that 

indeed the binding of the Sir-complex to the telomere is abolished in this mutant. 

To investigate the requirement of additional components of the SIR complex for the 

interaction of Yku80p with Sir4p, we analyzed the Yku-Sir4p interaction in sir2∆, sir3∆ and 

rap1-17 mutant backgrounds. The reporter plasmid pSH18-34, pJG-Sir4(1-1358) and either 

pEG-Yku80 or pEG-Yku70 were transformed into CEN.PK2a sir2∆, CEN.PK2a sir3∆ and 

CEN.PK2a rap1-17 strains. 
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FIG. 5 [V]. The Yku-Sir4 interaction can be detected in the absence of endogenous Sir2p. Four 
independent transformants from each transformation reaction were resuspended in dH2O. 5 µl of the cell 
suspension were spotted onto SC-ura-his-trp-leu x-Gal Glc and SC-ura-his-trp-leu x-Gal Gal plates to test for 
inducible expression of β-Galactosidase detectable by the formation of blue colonies on galactose containing 
plates. Cells were grown at 30°C for 3 days. 

 

When full-length Sir4p was expressed together with either Yku80p or Yku70p in a sir2∆ 

strain on galactose containing plates, the lacZ reporter gene was expressed and resulted in the 

formation of blue colonies (Figure 5, right panel), indicating that the Yku-Sir4p interaction 

takes place in the absence of Sir2p. Identical results were obtained in sir3∆ and rap1-17 

mutant strains (data not shown). From these results we suggest that the protein-protein 

interaction observed between Sir4p and Yku80p is not bridged by other components of the 

SIR complex or by the Rap1 protein, that recruits the SIR complex to the chromosome ends. 

Thus, Sir4p seems to directly interact with the 80 kD subunit of the Yku heterodimer, 

mediated by the N-terminal domain of Sir4p. 

 

 

Discussion 
 

The Yku heterodimer, like its human homologue, is required for two important cellular 

processes, that require large protein complexes. It is i) an essential component of the repair of 

DNA breaks by non-homologous end-joining (Boulton and Jackson, 1996a; Boulton and 

Jackson, 1996b; Milne et al., 1996)) and is ii) involved in maintaining the chromosome end 

structure (Boulton and Jackson, 1996a; Gravel et al., 1998; Porter et al., 1996). 
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In a two hybrid screening performed with the 70 kD subunit of the Yku heterodimer, we 

revealed a variety of putative Yku70p interacting proteins. From 300 transformants that 

exhibited galactose induced growth on SC-ura-his-trp-leu Gal plates, 77 also showed induced 

expression of the lacZ gene, a reporter gene that is less sensitive than the Lexop-LEU2 

reporter (Estojak et al., 1995) and confers stringent selection. After re-testing of the isolated 

library plasmids in yeast and sequencing of the plasmid encoded DNA fragments, we 

identified 26 putative Yku70p interacting proteins, among them 11 proteins which have  been 

described to localize to the yeast nucleus (Table II). 

Strikingly no interaction between Yku70p and Yku80p, the second subunit of the 

functional Yku heterodimer, was observed in the screening for putative Yku70p interacting 

proteins. Furthermore, when we directly tested full-length Yku80p for its interaction with 

Yku70p in either bait or prey position no heterodimer formation was detectable (data not 

shown). Based on the observation that the LexA-Yku70p did complement yku70 mutant 

phenotypes (Figure 2), we suggest that the Yku70p fusion is proficient in its interaction with 

endogenous untagged Yku80p. Therefore, the Yku80p subunit carrying a N-terminal fusion in 

the two hybrid context might interfere with heterodimer formation. This hypothesis is 

supported by the finding that the N-terminally fused LexA-Yku80p fails to complement yku80 

mutant phenotypes (K. Walter, 1997). Nevertheless, a C-terminal fragment of Yku70p could 

be isolated to interact with LexA-Yku80p as a bait (Walter, 1997). Thus, the interaction 

between the two subunits of the Yku heterodimer, that have been shown to co-purify 

(Feldmann et al., 1996), cannot be shown in the Interaction Trap system most likely due to 

sterical hindrance of the two fusion domains. 

In a two hybrid screen for protein-protein interactions the occurrence of so called false 

positive interactors has been reported extensively. Among the most common false positives 

that have been found with various baits in screenings of independent laboratories are heat 

shock proteins, ribosomal proteins, mitochondrial proteins, proteasome subunits and Zinc 

finger proteins (http://www.fccc.edu/research/labs/golemis/InteractionTrapInWork.html). 

Since the two hybrid system is based on transcription activation all proteins that are expressed 

from the prey vector pJG4-5 are directed to the nucleus by a nuclear localization signal. Thus, 

proteins which in vivo localize to different cell compartments meet in the nucleus in the two 

hybrid context. 
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In our screening for Yku70p interacting proteins VPS41, PEP3, DNM1 and APG1 are 

found among the putative candidates. However, these proteins localize to the secretory 

vesicles (Rehling et al., 1999), the vacuole (Preston et al., 1991), the mitochondria (Otsuga et 

al., 1998) and the cytoplasm (Straub et al., 1997) respectively, and are therefore unlikely to 

interact with Yku70p in vivo. The RPN8 protein, a subunit of the 26s proteasome was 

identified 14 times independently in this screening. Proteasome subunits are known as a group 

of false positives that arise in two hybrid screenings, however, the observed interaction might 

indicate that Yku70p is degraded by the 26s proteasome. Nothing is known about Yku protein 

turnover during the cell cycle. However, Yku70p that is not assembled with Yku80p in the 

Yku heterodimer seems to be destabilized and preferentially degraded (H.M. Feldmann, pers. 

communication, Driller et al., 2000). 

Among the putative interactors we identified a large number of proteins of unknown 

function, i.e. YDR014w, that was isolated 5 times in the screen and shows homology to 

Schizosaccharomyces pombe SPAC11E3.03, YPR148c, that was isolated 3 times with two 

different start sites and YLR440c, an essential gene containing a serine-threonine kinase 

domain. To test whether these proteins contribute to the cellular function of Yku70p, single 

mutants and double mutants strains carrying an additional yku70 deletion need to be analyzed 

for DNA repair and telomere phenotypes. Some proteins were found to interact with Yku70p, 

which provide phenotypic evidence for a possible involvement in Yku mediated pathways. 

The MCM6 gene is a highly conserved gene, that is essential for the initiation of DNA 

synthesis at replication origins. The MCM complex is loaded onto chromatin and together 

with the origin recognition complex (ORC) assembles the pre-replication complex, that is 

crucial for limiting origin replication to only once per cell-cycle (for review see Lei and Tye, 

2001; Takisawa et al., 2000). The MCM6 protein has been found to interact with Est1p, a 

regulatory subunit of yeast telomerase by two hybrid criteria (Uetz and Hughes, 2000) and in 

this study as a putative interactor with Yku70p. Therefore it might be interesting to 

investigate the MCM6-Yku70p interaction and its contribution to telomere function by 

genetic and biochemical assays. Another interesting Yku70p interacting candidate identified 

in this screen links the Yku protein to the nuclear pore. In Saccharomyces cerevisiae it has 

been possible to reveal the localization of telomeres to the nuclear periphery using Rap1p 

antibodies (Klein et al., 1992; Palladino et al., 1993b). 
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Recently, Galy and colleagues identified two proteins that are located at the interface 

between the nuclear envelope and the nuclear interior to co-immunoprecipitate with the Yku 

heterodimer (Galy et al., 2000). Mutations in MLP1 and MLP2 lead to a significant 

mislocalization of telomeres detected by fluorescence in situ hybridisation (Galy et al., 2000). 

We have isolated a C-terminal fragment of the nucleopore protein Nup84p to interact with 

Yku70p. Disruption of the gene encoding Nup84p causes a temperature-sensitive phenotype, 

which is associated with defects in nuclear membrane and nuclear pore complex organization 

as well as poly(A)+ RNA export (Siniossoglou et al., 1996). Preliminary data suggest that 

nup84 mutants exhibit slightly elongated telomeres (data not shown). However, since a defect 

in RNA export can induce a variety of different pleiotropic effects the generation of a point 

mutant that disrupts Yku70p interaction would be an important tool to study the relevance of 

this interaction. 

In this study we have analyzed the Sir4 protein, which we isolated in both screenings with 

either Yku70p or Yku80p as a bait, in more detail. The Sir proteins Sir1p, Sir2p, Sir3p and 

Sir4p have been shown to be essential for the silencing of the mating type cassettes HML and 

HMR (Ivy et al., 1986). Moreover, loss of the SIR4 gene leads to shortened telomeres 

(Palladino et al., 1993a) and to the de-repression of telomere adjacent genes within 6-8 kb of 

telomeres (Wyrick et al., 1999). Sir4 mutants also exhibit a reduction in chromosome stability 

(Palladino et al., 1993a), indicating that a repressive chromatin structure at the telomere 

seems to be required to preserve chromosome integrity (Gartenberg, 2000). As the Yku 

heterodimer, Sir4p has been shown to be released from telomeric sites in response to DNA 

damage (Martin et al., 1999). In our screening for Yku interacting proteins, we identified a N-

terminal fragment of Sir4p - encompassing AA 1-397 - to interact with Yku70p (Table II) and 

as a major interactor with Yku80p (Walter, 1997) in the two hybrid assay. Previously, a C-

terminal domain of Sir4p has been described to interact with the Yku70 subunit by two hybrid 

criteria (Tsukamoto et al., 1997). This C-terminal domain (AA 1205-1358) overlaps with the 

Sir4p region required for dimerisation (Chien et al., 1991), for interaction with Sir3p and for 

the most likely indirect interaction with Rap1p (Moretti et al., 1994). We have not been able 

to reproduce the interaction of the Sir4p C-terminal region with Yku70p or Yku80p in the 

LexA based system (data not shown). However, the interaction between Yku80p and Sir4p 

full-length protein (AA 1-1358) leads to a stronger activation of the lacZ gene as compared to 

the interacting N-terminal domain (Figure 4). 
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This effect could i) be caused by a stability difference between the Sir4 (1-397) fusion and 

the Sir4 (1-1358) fusion or ii) the Sir4 (1-397) domain could be sufficient to mediate 

interaction but does not contain the entire interaction domain. Therefore our data do not 

exclude the presence of a second interaction domain as described by Tsukamoto and 

colleagues. A more detailed investigation of the Yku-interaction domain in the Sir4 N-

terminus isolated here indicates, that AA 1-287 are sufficient to facilitate the interaction with 

Yku80p (H.M. Feldmann, pers. communication). 

Our two hybrid results revealed an interaction of the Sir4p N-terminal domain with both 

the Yku70p and the Yku80p subunit. However, when we performed two hybrid studies in yku 

mutant strains, no interaction between Sir4p and Yku70p could be observed in a yku80 mutant 

(Figure 4B). These results were obtained using either the N-terminal domain or Sir4p full-

length. In contrast the Sir4(AA 1-397)-Yku80p as well as the Sir4(AA 1-1358)-Yku80p 

interactions did not require endogenous Yku70p (Figure 4A). From these data we conclude 

that the Yku70-Sir4p interaction identified in this approach is mediated by endogenous 

Yku80p. Strikingly, the isolation frequency of Sir4p in the two independent two hybrid 

experiments nicely reflects this observation. Furthermore, these results suggest that no direct 

interaction occurs between full-length Sir4p and Yku70p and that the interaction reported 

previously (Tsukamoto et al., 1996) is most likely indirect. 

We have further addressed the requirement of additional proteins involved in Sir4p 

function at the telomere. Neither a deletion of sir2, sir3 nor a mutation in RAP1 that abolishes 

Rap1p binding of the SIR complex abrogates Sir4p-Yku interaction (Figure 5 and data not 

shown). Therefore, the Yku-Sir4p interaction is not bridged by other components of the SIR 

complex or by Rap1p that localizes the Sir complex to the telomeres. In an attempt to 

biochemically evaluate the interaction between Sir4p and Yku80p detected by two hybrid 

criteria, we have performed co-immunoprecipitation experiments. However, we have not been 

able to detect the Sir4p protein in crude extracts using a variety of different approaches (data 

not shown). Thus the Sir4 protein seems to be very low abundant and its expression might be 

tightly regulated. 
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The Yku heterodimer and the Sir4 protein localize to telomeres in Saccharomyces 

cerevisiae (Gotta et al., 1996; Martin et al., 1999). Furthermore, both proteins have been 

shown to delocalize from telomeric foci in response to DNA damage and accumulate at sites 

of a DNA break (Martin et al., 1999). Thus, Sir4p might interact with the Yku heterodimer at 

both the telomere and at the site of a DNA double strand break. Our genetic analysis (see 

Chapter IV) did not provide evidence for a direct function of Sir4p in DNA repair, however, 

this does not exclude the possibility of an interaction between Sir4p and Yku at a DNA break. 

In collaboration with the laboratory of S.P. Jackson we are now in the process of 

characterizing Yku80p mutants, which influence Yku functions at the telomere (R. Roy and 

S.P. Jackson, pers. communication). These mutants exhibit a reduced interaction with full-

length Sir4p when overexpressed as a LexA fusion in the two hybrid system measured by 

quantitative β-galactosidase assays (data not shown). These mutants might allow the 

generation of second site mutations in Sir4p that would restore Sir4p-Yku70p interaction, 

thereby providing strong evidence for a direct interaction between the Yku80p subunit of the 

Yku heterodimer and the Sir4p, a component of the silencing information regulator complex 

in Saccharomyces cerevisiae. Furthermore the isolation of a yku80 point mutant that is 

abolished in its interaction with Sir4p would allow us to address the importance of the 

interaction between the Yku heterodimer and Sir4p at the telomere or at a double strand 

break. 
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Introduction 
 

Linear chromosomes face a problem every time they are duplicated prior to cell division. 

DNA polymerase, the enzyme replicating the DNA, relies on RNA primers and therefore 

cannot duplicate the last nucleotides of the lagging strand (Watson, 1972). A special reverse 

transcriptase, telomerase, fulfils this function by copying repetitive sequences from its RNA 

template to the DNA ends (Greider and Blackburn, 1985). 

Telomerase is absent in most human somatic tissues but is active in germ cells, which 

produce egg and sperm, to ensure that every generation starts with the same length of 

telomeres. Interestingly, B and T cells have been shown to activate telomerase during immune 

response, which requires rapid divisions (Buchkovich and Greider, 1996; Weng et al., 1997a; 

Weng et al., 1997b). Cancer cells can divide indefinitely and approximately 90% of all 

tumors have detectable telomerase activity (Kim et al., 1994). Most somatic cells, however, 

undergo a limited number of cell divisions that is accompanied by a gradual loss of telomere 

DNA sequences (Harley et al., 1990; Harley and Villeponteau, 1995; Prowse and Greider, 

1995). Interestingly, a knock out of the telomerase RNA template in mice did not lead to 

premature aging in the first few homozygous generations but showed wild-type characteristics 

for phenotypes associated with aging, such as gray hair and wrinkled skin as they grew older 

(Lee et al., 1998). Thus, the life span of an individual animal that is born with wild-type 

telomere length is not determined by the activity of telomerase in mice. Nevertheless, in later 

mouse generations the loss of telomerase did lead to early-onset of hair graying, hair loss 

(Rudolph et al., 1999) and germline mortality, thereby inducing sterility (Lee et al., 1998). 

The possibility, however, that enhanced telomere shortening might play a role in human 

aging, is supported by Werner’s and Ataxia telangiectasia patients, who experience both 

premature aging and accelerated telomere shortening (Kruk et al., 1995; Smilenov et al., 

1997). This correlation between telomere length and aging is further supported by the finding 

that overexpression of telomerase leads to a restoration of wild-type telomere length and 

compensates for the early onset of replicative senescence in Werner’s syndrome cells (Wyllie 

et al., 2000). 
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Recent data revealed an interaction between WRNp, the protein mutated in Werner’s 

syndrome patients, and the Ku heterodimer. The DNA binding protein Ku70/86 is the 

regulatory subunit of the catalytic active DNA-PKcs and this protein complex is essential for 

DNA double-strand break repair by nonhomologous end-joining (Chen et al., 1996; Finnie et 

al., 1995; Jeggo et al., 1994). Furthermore, the Ku heterodimer is required for the protection 

of the chromosome ends, it binds to telomeres (Hsu et al., 1999) and various cell types 

lacking Ku86 have been reported to show an increased rate of chromosome end-to-end fusion 

events (Bailey et al., 1999; Hsu et al., 2000). Mice deficient for either Ku70 or Ku86 are 

significantly smaller than their control littermates and fibroblasts derived from Ku80-/- 

embryos showed a reduced proliferative potential (Gu et al., 1997; Nussenzweig et al., 1996). 

Moreover, ku86-mutant mice have been reported to show an early onset of age-specific 

alteration, suggesting that the Ku heterodimer influences the senescence process (Vogel et al., 

1999). An interaction of WRNp and the Ku heterodimer has been determined by co-

immunoprecipitation (Cooper et al., 2000). In addition, WRNp is phosphorylated by DNA-

PK in vitro and requires DNA-PK for in vivo phosphorylation (Yannone et al., 2001). 

Biochemical data provide evidence that WRN exonuclease activity can be stimulated by Ku 

(Cooper et al., 2000) whereas DNA-PKcs inhibits WRN helicase activity (Yannome, 2001). 

In Saccharomyces cerevisiae, the entire yeast culture is immortal and yeast cells have 

active telomerase ensuring that telomere length stays stable in every generation. However, a 

individual yeast cell has a restricted dividing capacity. The number of cell divisions that 

mother cells undergo is relatively fixed and has been defined as their replicative life span 

(Mortimer and Johnston, 1959). The mean and the maximum life span for a given strain are 

characteristic for that strain but can vary widely from one strain to another (Kennedy et al., 

1995; Muller et al., 1980). Many gene products have been identified that affect life span in S. 

cerevisiae, among them proteins involved in DNA repair, telomere length maintenance or 

transcriptional silencing (reviewed in Jazwinski, 1999). 

A deletion of the SGS1 gene, the yeast WRN homologue, has been shown to induce a 

reduction in replicative life span (Sinclair et al., 1997). sgs1 mutants do not exhibit telomere 

shortening (Watt et al., 1996). However, the WRN homologue is required for chromosome 

stability (Watt et al., 1996) and telomere elongation by the addition of long tracts of telomere 

repeats, and thus for the generation  of type II survivors in the absence of the catalytic subunit 
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of telomerase, Est2p (Huang et al., 2001). The SIR2-4 complex, shown to localize to 

telomeres (Laroche et al., 1998) and to be required for telomere length maintenance and 

silencing (Palladino et al., 1993), has also been implicated in replicative life span (Kennedy et 

al., 1995). Yeast strains deficient for SIR2, SIR3 or SIR4 activity exhibit a life span reduction 

of about 20% as compared to their isogenic wild-type whereas a special mutation in SIR4 

leading to a C-terminally truncated protein has been shown to increase life span (Kennedy et 

al., 1995). The yeast Ku heterodimer (Yku) interacts with Sir4p in two hybrid assays 

(Tsukamoto et al., 1997 and Chapter V). Yku is, like human Ku, required for the repair of 

double-stranded DNA breaks by nonhomologous end-joining (Boulton and Jackson, 1996a; 

Boulton and Jackson, 1996b; Milne et al., 1996) and yku mutants exhibit stable but shortened 

telomeres (Boulton and Jackson, 1998; Porter et al., 1996). Both the Yku heterodimer and 

proteins of the SIR complex have been shown to delocalize from telomeric sites and 

accumulate at a DNA break (Martin et al., 1999; McAinsh et al., 1999; Mills et al., 1999). 

These findings link the Ku heterodimer to proteins that influence life span in yeast and 

humans and might point toward an involvement of Ku this process. Therefore, we wanted to 

address the role of Yku in replicative life span of Saccharomyces cerevisiae. 
 

 

Materials and methods 
 

S. cerevisiae strains, media, growth conditions and transformation 

Yeast strains used in this study are listed in Table I. Cells were grown at 30°C using YPD or selective media as 

described elsewhere (Feldmann et al., 1996). Yeast transformation was performed by the lithium acetate method 

(Schiestl and Gietz, 1989). 

 

Plasmid constructions 

Plasmid pFA6a-KanMX (Wach et al., 1994) was digested with BglII, treated with Klenow-enzyme and 

dephosphorylated. The 1,3 kb ADH1 promoter was isolated from pADH1001 (Lang and Looman, 1995) by 

HindIII-digestion, was blunted with Klenow-enzyme and ligated to pFA6a-kanMX4 BglII/Klenow leading to 

pFA6a-kanMX4-ADH1. The orientation of the ADH1 promoter was verified by an EcoRV digestion. Plasmid 

pGEM4Z (Promega Corporation, Madison) was digested with HincII, dephoshorylated and ligated to a blunt 

ended URA3 cassette. This plasmid, pGEM4Z-URA3HincII, was linearized with HindIII and dephosphorylated. 
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A 1,3 kb ADH1 promoter fragment was isolated from an agarose gel after pADH1001 digestion with HindIII. 

This DNA fragment was ligated to pGEM4ZUra3 HindIII/dephos. to generate pGEM4ZUra3-PADH1. The correct 

orientation of the ADH1 promoter was verified by restriction analysis. 

 

Gene disruption and genomic integration of overexpression constructs 

The yku70 deficient strains were generated as described previously (Feldmann and Winnacker, 1993). The 

genomic integration of the ADH1 promoter in front of the YKU70 or YKU80 gene was performed by the PCR 

based method (Wach et al., 1994). The PADH1-YKU70 integration construct was amplified from pGEM4ZUra3-

PADH1 using primers ADH1-YKU70for 5'-GAT TTG TTA AGT GAC TCT AAG CCT GAT TTT AAA ACG 

GGG AAG TGC AAG ATG GAA ACG C-3' and ADH1-YKU70rev 5'-CTC CAC TAT TGC CAA ATG CAT 

TAG TGA CTG AGC GCA TCC TTG ATG TAT GCT TGG TAT AGC-3’. The resulting PCR product was 

used as a template to generate a DNA fragment carrying 80 bp homology to the target sequence with primers 

ADH1-HDF1LFHfor: 5’-GAC ATT CTC TGT ATT ACT GTT CTA GTT TTC AAC AGT AAA GCT ATG 

ATT TGT TAA GTG ACT CTA AGC C- 3’ and ADH1-HDF1LFHrev: 5’-CAA ACT TCC TAT AAC CTG 

TTT CAT CCA CTT GAT CGT TAA GTT CTC CAC TAT TGC CAA ATG C-3’. The PADH1-YKU80 

integration construct was generated using plasmid pFA6a-kanMX4-ADH1 as described for PADH1-YKU70 with 

primers ADH1-HDF2for: 5’-CGA GAG TGC AGG ACA TAT GCA CAA ATA ATA TAT CTC ACA CCG 

CCG CAT AGG CCA CTA GTG G-3’ and ADH1-HDF2rev: 5’-GTG AAA CAT CCA CGA TGA AAG TTG 

TTG ACT CAC TTG ACA TGG TCG ACT CTA GAG GAT CC-3’ as well as ADH1-HDF2LFHfor: 5’-GAA 

TAA AAA AAA AGG GCA TCA TCA AGA GAA GAA AAC CTA ATT AAC GAG AGT GCA GGA CAT 

ATG CAC-3’ and ADH1-HDF2LFHrev: 5’-GCC ATA GAT TTG GAA ACA TTA TTA TTT TTC ATC ATT 

GAT GGT GAA ACA TCC ACG ATG AAA G- 3’. The PADH1-YKU70 PCR product was transformed into 

W303-1A leading to BMY9 and the PADH1-YKU80 PCR product was transformed into W303-1A and BMY9 to 

generate BMY10 and BMY11, respectively. The correct ADH1 integration was tested by the Yku70p and 

Yku80p overexpression in Western blots. Sequences of primers that are underlined represent the homology 

region to the chosen plasmid. 

 

Yeast DNA extraction and analysis of telomeric DNA 

Genomic DNA was isolated from 5- to 7-ml overnight cultures using the nucleon MiY DNA extraction kit 

(Amersham Life Science). For analysis of telomere length, genomic DNA was digested overnight using XhoI or 

PstI and was separated on an 1% agarose gel in 1x Tris-acetate-EDTA buffer. DNA was transferred to nylon 

membranes (HybondN+) by vacuum blotting using 0.4 N NaOH. Detection of telomeric DNA fragments was 

performed as described elsewhere (Boulton and Jackson, 1996a). 

 

EMSA 

Electrophoretic mobility shift assays were performed as described previously (Feldmann et al., 1996). 
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Sensitivity assays 

Yeast colonies were picked, resuspended in dH2O and diluted five times by 10-fold serial dilutions. Aliquots (6 

µl) of each dilution were spotted in duplicate on YPD plates and on YPD plates containing various amounts of 

bleomycin or methyl methanesulfonate (MMS). YPD plates were incubated at 30°C or 37°C and all other plates 

were incubated at 30°C for 3-4 days. 

 

Western blot 

40 µg crude extract were incubated with Laemmli loading buffer for 2 min at 95°C, separated on a 12% SDS gel 

and transferred to a PVDF membrane (NENTM Life Science Products) by western blotting. The membrane was 

blocked with 1x TBST (10 mM Tris-HCl, pH 8,0;150 mM NaCl; 0.05% Tween 20), 1.5% milk powder and was 

then incubated with the anti-Yku70 antibody HDF-5F2 (Driller et al., 2000) or a rat antibody raised against the 

N-terminus of Yku80p Ku80-6D4-1-1. A mouse monoclonal anti-actin antibody MAB1501 (CHEMICON 

International, Inc.) diluted 1:5000 in 1x TBST, 1.5% milk was used as a control for protein loading. The 

membrane was washed three times with 1x TBST and incubated with peroxidase conjugated goat anti-rat IgG 

and IgM (Dianova) as a secondary antibody diluted 1:5000 in 1x TBST, 1.5% milk. The membrane was washed 

twice with 1x TBST and the Western Blot Chemiluminescence Reagent Plus (NENTM Life Science Products) 

was used for protein detection. 

 

Life span analysis 

Yeast cells were taken from freshly restreaked colonies after one day of growth, resuspended in dH2O and plated 

at low density on YPD plates. After incubation at 30°C for 4-5 h, virgin cells were isolated as described 

previously (Kennedy et al., 1995) using a Singer MSM Micromanipulator. These starting cells were counted of 

age zero and the life spans were determined by counting and removing all subsequent daughters that they 

generated. During the hours of manipulation, the plates were incubated at 28°C; during the night they were 

incubated at 4°C, which does not influence life span (Muller et al., 1980). For each strain usually more than 50 

individual virgin cells were examined. To characterize the life span of a strain we determined the mean (average) 

life span, the age at which 50% of the cells still divide. Virgin cells that did not undergo a single cell division 

were not included in the calculations (Kennedy et al., 1995). 
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Table I [VI]. Yeast strains used in this study 
 

 
Strain 

 
Genotype 

 
Reference 

 
W303-1A 

 
Mata leu2-3,112 ura3-1 his3-11,15 trp1-1 ade2-1 can1-100 

rad5-535 

 
(Fan et al., 1996) 

W303aL W303-1A yku70::LEU2 (Feldmann and Winnacker, 

1993) 

W303aα Mata/Matα leu2-3,112/leu2-3,112 ura3-1/ura3-1 his3-11,15/ 

his3-11,15 trp1-1/trp1-1 ade2-1/ade2-1 can1-100/can1-100 

rad5-535/rad5-535 

Thomas und Rothstein, 1989 

 

W303aUαL W303aα yku70::LEU2/yku70::URA3 (Feldmann and Winnacker, 

1993) 

CEN.PK2-1C Mata ura3-52 his3-∆1 leu2-3,112 trp1-289 MAL2-8c SUC2 (Bojunga et al., 1998) 

CEN.PK2 aL CEN.PK2-1C yku70::LEU2 AG Feldmann, unpublished 

JC482a Mata ura3-52 leu2 his4-539 (Pichova et al., 1997) 

BMY7 JC482a yku70::LEU2 This study 

HKY579-10A Mata leu2-3,112 ura3-1 his3-11,15 trp1-1 ade2-1 can1-100 

RAD5 

(Fan et al., 1996) 

BMY8 HKY579-10A yku70::LEU2 This study 

BMY9 W303-1A PADH1-YKU70::URA3 This study 

BMY10 W303-1A PADH1-YKU80:: kanMX4 This study 

BMY11 W303-1A PADH1-YKU70::URA3 PADH1-YKU80:: kanMX4 This study 
 

 

 

Results 
 

A yku70 deletion leads to life span shortening in various genetic backgrounds of 

Saccharomyces cerevisiae 

The Yku heterodimer is an essential component of the nonhomologous DNA repair pathway 

(Boulton and Jackson, 1996a; Boulton and Jackson, 1996b; Milne et al., 1996) and is required 

for the maintenance of wild-type telomere length and structure (Gravel et al., 1998; Porter et 

al., 1996). To investigate the influence of the Yku heterodimer on replicative life span, yku70 

deletion strains were  generated for three different strain backgrounds W303-1A, JC482a  and  
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CEN.PK2-1C (Table 1). Furthermore HKY579-10A, a W303 derivative reverted in its rad5-

535 mutation (Fan et al., 1996) was included into the analysis. 

In wild-type W303-1A, life span determination led to a maximum replicative life span of 

38 generations and a mean life span of approximately 24 generations (Figure 1A) as observed 

previously (Kaeberlein et al., 1999). The introduction of a yku70 disruption in W303-1A 

decreased the mean life span to 18,5 generations, an average reduction of 24 % (Figure 1A). 

For HKY579-10A, a W303-1A RAD5+ strain, a maximum life span of 40 generations and a 

mean life span of 26,3 generations was observed for the wild-type (Figure 1B) and the 

isogenic yku70 disruption showed a reduction of average life span of about 26 % (Figure 1B 

and Table 2). Thus a comparable decrease in life span was observed for HKY579-10A 

yku70::LEU2 (Figure 1B) and W303-1A (Figure 1A), indicating that the reduced life span 

observed for W303 yku70::LEU2 is independent from the rad5-535 background mutation. 

When CEN.PK2, a yeast strain that has not been used for life span analysis before, was 

tested, the wild-type strain exhibited a maximum of only 25 and a mean life span of 15,6 

generations (Figure 1C). A yku70 deletion in this strain background did induce only a very 

slight reduction of one generation in mean and maximum life span whereas the median seems 

to be identical for wild-type and mutant strain. Due to the short overall life span of this strain, 

the reduction in mean life span is 8% in this genetic background, but the significance is 

difficult to evaluate based on the overall short replicative life span. 
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FIG. 1 [VI]. Effects of a YKU70 deletion on replicative life span. Survival curves are shown for four 
different S. cerevisiae strains carrying the yku70 disruption. The samples sizes for yeast strains were as follows: 
(A) W303 wild-type (wt), 36 cells; W303 yku70::LEU2, 51 cells. (B) HKY579-10A, 73 cells; HKY579-10A 
yku70::LEU2, 78 cells. (C) CEN.PK2a wild-type (wt), 50 cells; CEN.PK2a yku70::LEU2, 70 cells. (D) JC482a 
wild-type (wt), 67 cells; JC482a yku70::LEU2, 65 cells. 
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A reduced life span was also observed in JC482a yku70::LEU2 when compared to the 

isogenic wild-type (Figure 1D). The JC482a wild-type mean life span of 30,2 generations was 

reduced to 27,5 generations in JC482a yku70::LEU2. Although the maximum life span in this 

genetic background was about 54 generations, the effect of the yku70 disruption was only 9%, 

which is less severe than in the W303 background but comparable to the data observed in the 

CEN.PK2a background (see Table 2). In this strain, however, the curves of wild-type and 

yku70 mutants are clearly distinguishable and the median life span is reduced (Figure 1D). 

Taken together, our data reveal that the introduction of a yku70 mutation leads to a significant 

decrease in lifespan in at least two different genetic backgrounds (see Table 2). 

 
Table II [VI]. Mean and maximum life span obtained for wild-type and yku70 mutants in four different 

enetic backgrounds. Standard deviations were less than 15% of the mean. g
 

 
Strain 

 
Mean 

 
Maximum 

 
% Reduction in mean life span 

compared to wild-type 
 
W303-1A 

W303-1A yku70::LEU2 

 
24,3 

18,5 

 
38 

35 

 
 

23,9 % 

HKY579-10A  

HKY579-10A yku70::LEU2 

26,3 

19,4 

40 

37 

 

26,2 % 

JC482a 

JC482a yku70::LEU2 

30,2 

27,5 

54 

53 

 

8,9 % 

CEN.PK2-1C 

CEN.PK2-1C yku70::LEU2 

15,6 

14,4 

25 

24 

 

7,8 % 
    
 

 

The reduction in life span caused by the yku70 disruption is detectable in haploid and 

diploid cells 

The loss of the Sir4 protein, a Yku interacting protein (Tsukamoto et al., 1997 and Chapter 

V), has been reported to reduce the mean life span by 20% as compared to an isogenic haploid 

W303 RAD5+ wild-type (Kaeberlein et al., 1999). The Sir4 protein is, in association with 

Sir2p, Sir3p and Rap1p, required for silencing at the mating type loci HML and HMR (Rine 

and Herskowitz, 1987) and at the telomeres (Aparicio et al., 1991). 
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Sir4p is not only essential for silencing but is also involved in telomere length regulation 

(Palladino et al., 1993) and is, as Yku, released from telomeric sites in response to DNA 

damage (Martin et al., 1999). Strikingly, the sir4 deletion that leads to life span reduction in 

haploid cells does not alter the replicative capacity of diploid cells (Kaeberlein et al., 1999). 

Furthermore a deletion of the HMLα mating type locus in a sir4∆ strain led to a replicative 

life span comparable to wild-type (Kaeberlein et al., 1999), indicating that the mating-type 

heterozygosity induced by loss of silencing in sir4∆ mutants causes life span reduction. Cells 

lacking either subunit of the Yku heterodimer show reduced silencing in subtelomeric 

regions, however, no effect on silencing at HMLα and HMRa could be observed (Gravel et al., 

1998; Laroche et al., 1998; Nugent et al., 1998 and Chapter IV). Therefore, the life span 

reduction observed for yku70 mutants should also be detectable in homozygous diploid 

mutant strains. Indeed, we observed a life span reduction of 37% in a diploid W303aα 

yku70/yku70 strain. 

 
FIG. 2 [VI]. Homozygous diploid W303aα yku70/yku70 mutants exhibit a shorter life span than the 

isogenic wild-type strain. Survival curves are shown for W303aα wild-type, 72 cells, and W303aα 
yku70::LEU2/yku70::URA3, 71 cells. 
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Table III [VI]. Mean and maximum life span obtained for diploid W303 wild-type and yku70/yku70 
mutants. 

 
Strain 

 
Mean 

 
Maximum 

 
% Reduction in mean life span 

compared to wild-type 
 
W303aα wild-type 

W303 yku70::LEU2/yku70 ::URA3 

 
20,9 

13,1 

 
31 

21 

 
 

37,2 % 
    
 

The life span of the diploid W303 wild-type was ~ 15 % shorter than that of the isogenic 

haploid W303a strain consistent with results reported previously (Kaeberlein et al., 1999). 

Homozygous diploid yku70/yku70 mutants showed a mean life span of 13,1 generations 

compared to 20,9 generation in wild-type (Figure 2). The differences in mean and maximum 

life span between yku70 mutant and wild-type was more pronounced in the diploid than in the 

corresponding haploid strain (compare Figure 1 and 2). However, these data provide evidence 

that the reduced life span of yku70 mutants is not related to the life span phenotypes reported 

for sir4∆ mutant strains. 

 

The yku70 deletion induces different phenotypes in different strain backgrounds 

Whereas proteins involved in nucleotide excision and transcription coupled repair have no 

significant effects on yeast life span (Park et al., 1999), several proteins involved in the repair 

of double-stranded DNA breaks (DSBs) by homologous recombination have been reported to 

enhance premature aging in Saccharomyces cerevisiae (Park et al., 1999). Three types of 

DSB repair operate in S. cerevisiae: homologous recombination, Yku dependent end-joining 

and error-prone repair (see Boulton and Jackson, 1996b). The life span shortening of yku70 

mutants might indicate that the loss of the nonhomologous end-joining (NHEJ) pathway 

reduces yeast life span. However, Kaeberlein et al., (1997) demonstrated that a W303a strain 

deleted for Lig4p, the essential ligase for the end-joining mechanism (Schar et al., 1997; Teo 

and Jackson, 1997; Wilson et al., 1997), shows a life span comparable to wild-type. Therefore 

a loss of the NHEJ repair pathway per se seems not to influence replicative life span. To 

investigate what causes shortened life span in yku70 mutants, we phenotypically characterized 

all four yku70 deletion strains. 
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Yeast strains deleted for either subunit of the Yku heterodimer have been described to 

exhibit strongly reduced re-ligation of a linearized plasmid lacking homologous regions 

(Boulton and Jackson, 1996a; Milne et al., 1996), which reflects the defect in nonhomologous 

end-joining. All yku70 deletion strains tested exhibited a reduction in the plasmid repair assay 

(data not shown). Whereas the W303-1A, HKY579-10A and CEN.PK2 strains showed a 

comparable strong reduction in end-joining caused by the introduction of the yku70 deletion, 

the transformation efficiency of JC482a wild-type and yku70 mutant was extremely low (data 

not shown) probably caused by an enhanced temperature sensitivity of this yeast strain (see 

Figure 3). Therefore, reduction in end-joining efficiency could not be quantified for the 

JC482a yku70::LEU2 mutant. In addition, the sensitivity to the DNA damaging agents 

bleomycin and methyl methanesulfonate (MMS) has been used to assay a reduced DNA break 

repair capacity in yku mutants strains (Feldmann et al., 1996; Mages et al., 1996; Milne et al., 

1996). Surprisingly, although all strains exhibited reduced plasmid religation, only W303-1A 

and HKY579-10A displayed a significant MMS (Figure 3) and bleomycin (data not shown) 

sensitivity. 

 

 

FIG. 3 [VI]. Sensitivity differences of a yku70 disruption in different genetic backgrounds to the DNA 
damaging agent MMS and to elevated temperatures. Freshly grown yeast colonies were resuspended in dH2O 
and 1:10 serial dilutions were spotted in duplicate onto YPD plates and onto YPD plates containing increasing 
amounts of methyl methanesulfonate (MMS). MMS plates as well as a YPD control plate were incubated at 
30°C for 3 days. The second YPD plate was incubated at 37°C for 3 days to analyze the sensitivity of the various 
strains to elevated temperatures. 
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Besides its role in DNA repair Yku also contributes to the maintenance of wild-type 

telomere length. Accordingly, strains deleted for YKU70 or YKU80 show short telomere GT 

repeat tracts compared to those of wild-type when genomic DNA is analyzed in a Southern 

blot probed with a telomere specific probe (Boulton and Jackson, 1996a; Porter et al., 1996). 

Therefore we analyzed telomere length in all four genetic backgrounds. 

 

 

FIG. 4 [VI]. A broad telomere length variability is observed in various genetic backgrounds and the 
corresponding yku70 mutant strains. Southern blot of genomic yeast DNA, probed with a telomere-specific 
poly(GT)20 oligonucleotide, is shown. Genomic DNA was isolated as described in Materials and Methods, 
digested overnight with XhoI and run on a 0.8% agarose gel. The bracket indicates the telomeric GT repeat band 
derived from Y´ element containing chromosomes. Asterisks indicate terminal fragments derived from non-Y´ 
element containing chromosomes. Lane 1, W303-1A wild-type (wt); lane 2, W303-1A yku70::LEU2; lane 3, 
HKY579-10A wt; lane 4, HKY579-10A yku70::LEU2; lane 5, JC482a wt; lane 6, JC482a yku70::LEU2; lane 7, 
CEN.PK2-1C wt; and lane 8, CEN.PK2-1C yku70::LEU2. 
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Interestingly, wild-type telomeric GT repeat tracts varied in length in different genetic 

backgrounds (Figure 4, compare lane 1 and lane 7) and the telomere shortening reached 

different levels in yku70 mutants (Figure 4, lanes 2, 4, 6 and 8). We observed very short 

telomeres in the strains W303aL (Figure 4, lane 2) and HKY579-10A yku70 (Figure 4, lane 

4), whereas the yku70 disruption in JC482a and CEN.PK2 resulted in longer terminal 

restriction fragments and a significantly enhanced size distribution between individual 

chromosome ends as deduced by the broader smear of GT repeat tract signals (Figure 4, lanes 

6 and 8). Yku70 mutants have been shown to exhibit a growth defect at 37ºC (Feldmann and 

Winnacker, 1993). This temperature sensitivity can be overcome by a substantial 

amplification and redistribution of subtelomeric Y’elements (Fellerhoff et al., 2000) linking 

the temperature-sensitive phenotype to the telomere function of the Yku heterodimer. When 

wild-type and yku70 mutants were tested for temperature sensitivity, W303aL (W303-1A 

yku70::LEU2) and BMY8 (HKY579-10A yku70::LEU2) showed a significant growth 

reduction at elevated temperatures, whereas only a slight and no difference in temperature 

sensitivity was observed in the JC482a and CEN.PK2-1C background, respectively (Figure 

3). 

For life span experiments exponentially growing cells were plated at low density on non-

selective media. After 6 h at 30°C small colonies were grown from individual cells. 

Microscopic analysis of these microcolonies revealed a significant portion of cells that were 

enlarged in W303-1A yku70 (data not shown) and HKY579-10A yku70 (Figure 5) mutants 

compared to those of the corresponding wild-type. However, these changes were not 

detectable in the JC482a (Figure 5) and CEN.PK2-1C background (data not shown). 

Thus, a yku70 deletion introduced into different genetic backgrounds leads to impaired 

plasmid religation and telomere shortening, indicating that these phenotypes are general 

characteristics of yku70 mutants. Strikingly, several other phenotypes described for yku 

mutants are restricted to some of the characterized strains. CEN.PK2 yku70::LEU2 and 

JC482a yku70::LEU2, which exhibited a significant reduction in end-joining showed no 

sensitivity to MMS, bleomycin or elevated temperatures and displayed no morphological 

changes in the yeast culture (see Figures 3, 4, 5 and Table 4). Thus, these phenotypes seem to 

correlate with the W303 background strains W303-1A yku70::LEU2 and HKY579-10A 

yku70::LEU2, yeast strains also exhibiting very short terminal repeats at the telomere. 
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FIG. 5 [VI]. A significant percentage of enlarged cells are detectable in HKY579-10A yku70 but not in 

JC482a yku70 mutant strains. Yeast colonies were streaked onto fresh YPD media and incubated at 30°C for 
24-48 h. Cells were then suspended in dH2O to a low density and were spotted onto a microscope slide covered 
with a thin layer of solid YPD. After 6-10 hours of growth at 30°C, colonies were analyzed using a Leica DMLS 
microscope with a 40x/0,65 objective connected to the digital camera Leica DC100. The light arrow indicates 
cells of wild-type size, the bold arrows indicate significantly enlarged cells in one micro-colony. 
 

Table IV [VI]. A yku70 deletion shows phenotypic variations in different strain backgrounds. 

  
W303-1A 

yku70::LEU2 

 
HKY579-10A 

yku70::LEU2 

 
JC482a 

yku70::LEU2 

 
CEN.PK2-1C 

yku70::LEU2 
 
end-joining 

 
impaired 

 
impaired 

 
impaired 

 
impaired 

bleomycin sensitive sensitive wild-type wild-type 

methyl methanesulfonate sensitive sensitive wild-type wild-type 

telomere length very short very short short short 

elevated temperature sensitive sensitive slightly sensitive wild-type 

morphological abnormalities large budded cells large budded cells - - 

     

rad5-535 mutation + - - - 

 

- 151 - 



Influence of YKU70 on yeast life span 
___________________________________________________________________________ 

 
 

Overexpression of Yku70p and Yku80p from the ADH1 promoter leads to a 20-fold 

increase in heterodimer formation 

We also investigated the effect of an overexpression of the Yku heterodimer on replicative 

life span. Therefore we generated haploid W303 strains carrying a genomic integration of an 

ADH1 promoter in front of either YKU70, YKU80 or both genes, designated as BMY9, 

BMY10 and BMY11, respectively (see Materials and Methods). The enhanced expression of 

both Yku subunits was then analyzed using anti-Yku70 and anti-Yku80 antibodies. An anti-

actin antibody was used as a loading control. The affinity of the anti-Yku80 antibody Ku80-

6D4 did not allow a detection of wild-type amounts of the Yku80 protein, however, a clear 

Yku80p corresponding signal was observed in protein extracts from BMY10 (W303-1A 

PADH1-YKU80::kanMX4) and BMY11 (W303-1A PADH1-YKU70::URA3 PADH1-

YKU80::kanMX4) (Figure 6A, upper panel, lanes 3 and 4). The signal intensity of Yku80p 

was slightly enhanced in BMY11 when compared to BMY10, which might reflect a 

stabilization of the Yku80p when Yku70 is co-overexpressed. Analysis of the Yku70p 

expression levels revealed an approximately 50-fold stronger signal in BMY9 (W303-1A 

PADH1-YKU70::URA3) and BMY11 (W303-1A PADH1-YKU70::URA3 PADH1-

YKU80::kanMX4) (Figure 6A, lanes 6 and 8) when compared to wild-type and BMY10 

(W303-1A PADH1-YKU80::kanMX4). In both Yku70p overexpression extracts a strong 

degradation of the Yku70 protein was visible that was not significantly altered when the 

Yku80 subunit was co-overexpressed (Figure 6A, upper panel lane 8). 
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FIG. 6 [VI]. Overexpression of Yku70p and Yku80p from the ADH1 promoter. (A) 40 µg crude 

extracts prepared from W303-1A, BMY9, BMY10 and BMY11 were used to evaluate the expression levels of 
Yku70p and Yku80p by Western blot. Yku70p was detected using the rat monoclonal antibody HDF-5F2; 
Yku80p was detected using the rat monoclonal antibody Ku80-6D4 (upper panel). Actin levels were analyzed to 
ensure that identical amounts of protein extracts were loaded onto the gel (lower panel). (B) DNA end-binding 
assay with crude extracts from yeast cells overexpressing one or both subunits of the Yku heterodimer. A 39 bp 
ds DNA oligonucleotide, PGK 1,2, was labeled with Klenow polymerase and used as a probe for DNA end-
binding activity. 25 fmol oligonucleotide were incubated with 30 µg crude extract of W303-1A (lane 2), BMY9 
(lane 3) BMY10 (lane 4) and BMY11 (lane 5). Additionally, serial 1:10, 1:20 and 1:50 dilutions were analyzed 
for BMY11, the strain overexpressing Yku70p and Yku80p (lanes 6, 7 and 8). Arrows indicate the two protein-
DNA complexes, asterisks indicate the unbound oligonucleotide. 
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The Yku heterodimer was initially identified by its affinity to bind to double stranded 

DNA ends (Feldmann and Winnacker, 1993). To determine the binding activity of one or both 

overexpressed Yku subunits, 30 µg protein crude extracts from BMY9 (W303-1A PADH1-

YKU70::URA3), BMY10 (W303-1A PADH1-YKU80::kanMX4) and BMY11 (W303-1A PADH1-

YKU70::URA3 PADH1-YKU80::kanMX4) were tested for binding to the radioactive labeled 

PGK1,2 oligonucleotide (Feldmann and Winnacker, 1993). 

In gel retardation experiments the overexpression of a single subunit of the Yku 

heterodimers (Figure 6B, lanes 3 and 4) showed no significant increase in DNA binding of 

crude extracts as compared to wild-type (Figure 6B, lane 2). However, the same amount of 

crude extracts from cells overexpressing both subunits in the genomic context led to a 

strongly enhanced DNA binding and no unbound PGK1,2 oligonucleotide was detectable 

(Figure 6B, lane 5). Moreover, an additional slow migrating DNA-protein complex became 

prominent that has been described using high protein amounts (Feldmann and Winnacker, 

1993) and is caused by the binding of Yku molecules to both ends of the oligonucleotide 

(H.M. Feldmann, personal communication). This high molecular band disappeared upon 

progressive dilutions of the crude extract and at a 1:20 dilution the binding of the 

overexpressed Yku-heterodimer (Figure 6B, lane 7) was comparable to that of the wild-type 

extract (Figure 6B, lane 2). Thus, crude extracts from strains overexpressing both Yku 

subunits exhibited at least a 20-fold increase in DNA binding in an electrophoretic mobility 

shift assay (EMSA). 

Whereas protein levels of Yku70p were about 50-fold increased under the control of the 

ADH1 promoter, the titration experiments indicate that only a simultaneous overexpression of 

both subunits increases the amount of a functional heterodimer. The genomically integrated 

ADH1 constructs described in this study thereby led to the formation of a functional 

heterodimer that results in an at least 20-fold increase in Yku DNA binding activity. 

 

Overexpression of the Yku heterodimer induces a slight reduction in telomere length 

Since BMY11, carrying genomically integrated overexpression constructs for both Yku 

subunits, exhibited a strong increase in DNA binding in an EMSA, we tested this strain for 

Yku related phenotypes. Overexpression of the heterodimer did not induce sensitivity to 

elevated temperatures, bleomycin or MMS (see Table 5). 
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Furthermore this strain was morphologically indistinguishable from wild-type cultures 

(data not shown). However, when BMY11 was analyzed for telomere length, we revealed a 

slight reduction in length of the terminal GT repeat tract (Figure 7, lane 4) as compared to 

W303 wild-type (Figure 7, lane 1) and the strains overexpressing a single subunit of the Yku 

heterodimer (Figure 7, lanes 2 and 3). Thus, a strong overexpression of the Yku heterodimer, 

as in BMY11, does effect telomere length. 

 

 
FIG. 7 [VI]. Telomere length of W303a overexpressing one or both Yku subunits. Southern blot of 

genomic yeast DNA, probed with a telomere-specific poly(GT)20 oligonucleotide, is shown. Genomic DNA was 
digested overnight with PstI and run on a 1% agarose gel. Lane 1, W303a wild-type; lane 2, BMY9 (W303-1A 
PADH1-YKU70::URA3); lane 3, BMY10 (W303-1A PADH1-YKU80::kanMX4); and lane 4, BMY11 (W303-1A 
PADH1-YKU70::URA3 PADH1-YKU80::kanMX4). The bracket indicates the telomeric GT repeat band derived from 
Y´ element containing chromosomes. 
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Table V [VI]. Phenotypic comparison of W303-1A wild-type, yku70 mutant and a W303a strain overexpressing 
the Yku heterodimer. 
 
  

W303-1A 
 

W303-1A 

yku70::LEU2 

 
W303-1A PADH1-YKU70::URA3 

 PADH1-YKU80:: kanMX  
 
end-joining 

 
wild-type 

 
impaired 

 
n.d. 

bleomycin wild-type sensitive n.d. 

methyl methanesulfonate wild-type sensitive wild-type 

telomere length wild-type short slightly shortened 

elevated temperature wild-type sensitive wild-type 

morphology wild-type enlarged cells wild-type 

n.d. = not determined 

 

Overexpression of the Yku heterodimer induces life span shortening comparable to a yku70 

deletion 

We then investigated the influence of the Yku overexpression on replicative life span. 

BMY11 (W303-1A PADH1-YKU70::URA3 PADH1-YKU80::kanMX4) showed a significantly 

reduced life span when compared to the isogenic wild-type (Figure 6). The overexpression of 

both Yku subunits under the ADH1 promoter resulted in life span shortening of 26%, from 27 

generations in wild-type to 20 generations in BMY11 (Table 6). Thus the overexpression of 

the Yku heterodimer does not lead to MMS, bleomycin or temperature sensitivity, however 

the Yku overexpressing strain has slightly shortened telomeres and shows a life span 

comparable to the life span observed for isogenic yku70 mutants. 

 

Table VI [VI]. Mean and maximum life span obtained for W303-1A wild-type and BMY11. 
 

Strain 
 

Mean 
 

Maximum 
 

% Reduction in mean life span 

compared to wild-type 

    
W303-1A 
 

26,7 38  

BMY 11 (W303-1A PADH1-YKU70::URA3 
PADH1-YKU80::kanMX4) 
 

21 35 21,4 % 
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FIG. 8 [VI]. Overexpression of the Yku heterodimer leads to shortened life span in W303-1A. Survival 
curves are shown for W303-1A wild-type, 71 cells; and W303-1A PADH1-YKU70::URA3 PADH1-
YKU80::kanMX4, 67 cells. 

 

 

Discussion 
 

We have investigated the role of the Yku heterodimer on replicative life span in 

Saccharomyces cerevisiae. A deletion of YKU70 reduced the mean life span by 6 and 7 

generations in W303a rad5-535 (W303-1A) and W303a RAD5+ (HKY579-10A), 

respectively, whereas a JC482a yku70 mutant displayed a mean life span that was 

approximately 3 generations shorter than that of the isogenic wild-type (see Figure 1A, B, D 

and Table 2). A fourth strain tested, CEN.PK2, showed only a slight reduction of the 

replicative capacity in the yku70 mutant. Hence, the analysis of a larger cohort of cells might 

be necessary, although it will be difficult to evaluate the significance of small differences in 

generation time due to the very short mean (15 generations) and overall life span (25 

generations) of this yeast strain. The comparison of the two genetic backgrounds that exhibit a 

traceable shortening in life span revealed that the yku70 deletion reduced life span to a 

significantly smaller extend in the long living JC482a strain (9%) than in the W303 

background strains (24% and 26%) (see Table 2). However, previous experiments performed 

by  Pichova  et al., (1997)  have  shown  that  the deletion  of  ras2 increases  life span  in the 
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JC482a background, which has a maximum life span of over 50 generation, to a lower extend 

than in a KT308, a strain with a maximum life span of about 30 generations. Therefore, the 

severity of an alteration in life span caused by a specific mutation does not correlate with the 

overall dividing capacity of the given yeast strain but is influenced by the genetic background. 

In addition to the shortened life span in the different genetic backgrounds we obtained a 

shortened life span in a homozygous diploid yku70/yku70 mutant strain (Figure 2), indicating 

that the effect is not restricted to the haploid state as described for sir4∆ strains (Kaeberlein et 

al., 1999). Therefore, our data provide evidence that the loss of Yku70p function interferes 

with wild-type life span in Saccharomyces cerevisiae. 

To get insights how the yku70 deletion might influence replicative life span, we 

determined the phenotypes of all four yku70 mutant strains used in this study in more detail. 

Strikingly, several phenotypes that have been described for yku mutant strains are not 

detectable in all strain backgrounds. W303-1A yku70 and HKY579-10A yku70 mutants 

exhibited sensitivity to bleomycin, MMS and elevated temperatures (Figure 3) as described 

previously (Feldmann et al., 1996; Feldmann and Winnacker, 1993; Mages et al., 1996). 

Moreover, we observed an increased portion of enlarged cells in colonies that has been grown 

from singled cells (Figure 5). In contrast, no enhanced sensitivity to DNA damaging agents 

could be detected for JC482a and CEN.PK2 (Figure 3) and both strains had no visible 

morphological abnormalities compared to wild-type (Figure 5). Furthermore CEN.PK2 yku70 

did not exhibit any growth reduction at 37°C as compared to wild-type and only a very mild, 

if any, effect was detectable in JC482a yku70, a background that is per se very sensitive to 

elevated temperatures. The analysis of telomere length in the four mutant backgrounds 

showed that a broad variability in telomere length exists in different wild-type strains. A 

deletion of YKU70 in the two W303 background strains led to shorter terminal restriction 

fragments than in CEN.PK2 or JC482a. However, all four yeast strains exhibited shortened 

telomeres and were deficient for nonhomologous end-joining as indicated by a reduced 

efficiency in plasmid re-ligation (data not shown). Based on these analysis W303-1A yku70, 

HKY579-10A yku70 and JC482a yku70, which induce a life span reduction, shared only two 

phenotypes namely a defect in NHEJ and reduced telomere length. 
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Interestingly, the defect in NHEJ was not always accompanied with enhanced sensitivity 

of yku70 mutants to bleomycin and MMS. This enhanced sensitivity rather correlated with the 

appearance of enlarged cells in the culture, temperature sensitivity and very short telomeres. 

Several DNA repair proteins involved in homologous recombination have been reported 

to induce premature aging and early onset of reduced silencing at the mating type loci, 

whereas single-strand annealing factors and genes involved in nucleotide excision repair and 

transcription coupled repair do not influence life span (Park et al., 1999). Yeast strains deleted 

for rad52 show a 70% reduction in mean life span as compared to wild-type. Since a rad52 

mutation abolishes the repair of DNA lesions by homologous recombination (Borts et al., 

1986), these mutants are likely to be dying prematurely due to unrepaired DSBs (Park et al., 

1999). Hence, the loss of the non-homologous DNA repair pathway in yku70 mutants might 

also result in a reduction in replicative life span. However, a deletion of LIG4, the essential 

ligase for NHEJ, introduced into a haploid W303a strain does not influence replicative life 

span (Kaeberlein et al., 1999), indicating that a defect in NHEJ does not induce premature 

aging. 

Sgs1 mutants, deleted for the yeast WRNp homologue, exhibit a slow growth phenotype 

(Watt et al., 1995) and show a 40% reduced life span (Sinclair et al., 1997). They have been 

reported to stochastically stop dividing as large budded cells due to a G2/M cell cycle arrest 

(McVey et al., 2001). In the yku mutant colonies, however, the morphological phenotype is 

different: the occurrence of enlarged, sometimes mis-shaped cells in yku mutant colonies 

might more likely be a visible effect of an increased amount of old cells in the culture as 

described in Pichova et al. (1997). This effect is detectible only in the W303 background and 

not in JC482a, which might be correlated to the strong life span reduction. To determine 

whether these colonies indeed reflect late replicating cells, they could be analyzed for their 

mating ability, one hallmark phenotype in yeast aging (reviewed in Jazwinski, 1999). In 

contrast, if cells arrest more often thereby inducing reduced life span one must predict that 

this phenotype is not caused by a reduced DNA repair efficiency since it can not be detected 

in lig4 mutants. 
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Changes in telomere length and telomere silencing have been described to influence 

replicative life span in Saccharomyces cerevisiae (Kennedy et al., 1995; Kennedy et al., 

1997). Thus the loss of Yku70p function at the telomere might evoke shortened life span. This 

hypothesis is supported by the finding that lig4 mutants have been described to have wild-

type telomeres (Teo and Jackson, 1997) indicating that Lig4p does not share Yku function at 

the telomere. Besides telomere shortening, Yku mutants have been described to exhibit 

reduced telomere silencing (Gravel et al., 1998; Laroche et al., 1998; Nugent et al., 1998) and 

a special structure namely a ss-overhang at the chromosome ends that persists throughout the 

cell-cycle (Gravel et al., 1998). In our phenotypic analysis we have not investigated telomeric 

silencing. However, silencing at telomeres as well as at the mating type loci HML and HMR is 

fully dependent on the presence of a functional SIR complex. A disruption of the SIR4 gene 

results in the expression of telomere adjacent genes and HML and HMR. Loss of either SIR4 

or SIR3 results in a 20% reduction in mean lifespan (Kaeberlein et al., 1999), however, this is 

caused by the simultaneous expression of the usually silent mating type loci and can not be 

detected in diploids strains as shown for yku70 mutants (Figure 2). Therefore it seems 

unlikely that a loss of telomeric silencing causes life span reduction in yku70 mutants. 

Interestingly, BMY11, a W303 strain overexpressing Yku70p and Yku80p under control 

of a strong ADH1 promoter, shows a reduction in life span comparable to that seen in isogenic 

yku70 mutants (compare Figure 8 and Figure 1A). A strong overexpression of a protein can 

induce a variety of pleiotropic effects and might therefore lead to a significant decrease in cell 

viability. The Yku overexpression, however, did not lead to detectable growth defects and the 

microscopic analysis revealed no morphological differences between the wild-type and the 

Yku overexpression strain. In addition, no sensitivity to MMS, bleomycin or elevated 

temperatures could be observed. Thus, the overexpression did not induce these yku70 mutant 

associated phenotypes. Strikingly, when we analyzed the overexpression strains for telomere 

length, we could detect a slight but significant decrease in telomere length as compared to 

wild-type or strains overexpressing only one subunit of the Yku heterodimer (Figure 7). It is 

therefore tempting to speculate that the reduced telomere length induces premature aging in 

yku mutants. However, the telomere shortening in strains overexpressing the Yku heterodimer 

is very remote. 
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A comparable slight telomere shortening is observed in sir4 mutants even if only one 

MAT locus is expressed (see Chapter IV). Thus telomere shortening per se does not induce a 

life span reduction. Thus, the end structure of the telomere in yku mutants might be more 

likely influencing life span than the telomere length. The overall structure of the telomere is 

difficult to characterize, however, it would be interesting to determine whether a ss-overhang 

can be detected for the BMY11 strain overexpressing both Yku subunits. 

Preliminary data indicate that overexpression of Est2p under an ADH1 promoter can 

compensate for telomere shortening in yku mutants ( H. M. Feldmann, pers. communication). 

The life span analysis of a yku mutant overexpressing Est2p might therefore provide further 

evidence that a defect at the chromosome ends leads to a shortened life span in yku70 strains. 

Furthermore, the analysis of yku mutants which are only defective in telomere length 

regulation or DNA repair would not only allow to address the cause of MMS and bleomycin 

sensitivity but would moreover provide a useful tool to ascertain that the loss of yku telomere 

function correlates with reduced life span. The observation that Yku is not directly bound to 

subtelomeric regions but is recruited by the SIR complex (Martin et al., 1999) allows to 

predict that such separation of function mutants can be found. 
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