Logo
DeutschClear Cookie - decide language by browser settings
Mais, Stefan (2000): Spektroskopie und Mikroskopie einzelner Farbstoffmoleküle im Festkörper zwischen 1,4 Kelvin und Raumtemperatur. Dissertation, LMU München: Faculty of Chemistry and Pharmacy
[img]
Preview
PDF
Mais_Stefan.pdf

3669Kb

Abstract

Die spektroskopische Untersuchung einzelner Moleküle in kondensierter Phase erstreckt sich erst über einen Zeitraum von zehn Jahren. In dieser verhältnismäßig kurzen Zeit vollzog sich eine rasante Entwicklung mit einer Vielzahl von Ergebnissen. Dies findet seinen Ausdruck in eigenen Tagungen und Zeitschriften und nicht zuletzt auch in einer Nobelkonferenz im Jahre 1999. Während sich anfangs die Untersuchungen auf eine Reihe faszinierender Tieftemperaturexperimente mit spektraler Selektion der einzelnen Moleküle beschränkten, verschob sich seit Mitte der 90er Jahre der Schwerpunkt der Forschung auf diesem Gebiet hin zu Experimenten mit räumlicher Selektion bei Raumtemperatur, die seit kurzer Zeit auch relativ uneingeschränkt bei Tieftemperatur möglich sind. Diese Entwicklung spiegelt sich auch in dieser Dissertation wider. Zu Beginn dieser Arbeit stand eine spektral hochauflösende Apparatur zur Einzelmolekülspektroskopie bei kryogenen Temperaturen zur Verfügung. Mit dieser wurden Einzelmoleküluntersuchungen an dem neu synthetisierten Farbstoff Terrylendiimid (TDI) durchgeführt. TDI ist kein reiner Kohlenwasserstoff, wie die bis dahin üblicherweise verwendeten Chromophore, und lässt sich durch seine Seitengruppen an andere Systeme anbinden. Er zeigt neben exzellenten Fluoreszenzeigenschaften die zur spektralen Selektion nötigen schmalen Absorptionslinien. Wegen seiner Struktur lässt sich TDI nicht in einen Kristall einlagern. Mit Polyethylen und Hexadecan wurden jedoch zwei Matrizen gefunden, die es erlauben, Fluoreszenzanregungsspektren von einzelnen Molekülen zu detektieren. In Hexadecan konnte bei Sättigungsuntersuchungen das theoretisch vorhergesagte Verhalten nachgewiesen werden. Dabei wurden Zählraten von fast 500 000 Counts pro Sekunde von einem einzelnen Molekül erreicht. Durch die Aufnahme und Auswertung der Fluoreszenzintensitäts-Autokorrelationsfunktion konnten die Populations- und Depopulationsraten der Triplett-Subniveaus bestimmt werden. Dabei wurde auch spektrale Diffusion der Moleküle beobachtet, die mit Hilfe von Two-Level Systems (TLS) erklärt werden konnte. Mit einem komplexen theoretischen Modell und aufwendigen numerischen Berechnungen konnte die bei 2,5 K auftretende Verteilung von Linienbreiten der beobachteten Moleküle simuliert werden. Damit konnte den beiden Matrizen über die Analyse ihrer TLS-Dichte ein unterschiedlicher Grad an Unordnung zugeordnet werden. In temperaturabhängigen Untersuchungen der Linienform konnte der Unterschied im Ordnungsgrad der Matrizen bestimmt werden. Ferner konnten die Theorie von Hsu und Skinner in der Tieftemperaturnäherung bestätigt werden und ein tieferer Einblick in die auftretende Dynamik gewonnen werden. In der Auswertung der temperaturabhängigen Linienverschiebung wurde erstmals der Einfluss von Matrixexpansion berücksichtigt und als unverzichtbar für eine gute Beschreibung des Systems erkannt. Parallel zu den ersten Experimenten wurde eine aktive Stabilisierung des Farbsto?asers aufgebaut. Damit konnte eine Verfälschung der Ergebnisse durch Laserdrift ausgeschlossen werden. Weitere Tieftemperaturuntersuchungen hatten die Beobachtung von Förster Energietransfer (oder FRET, Fluorescence Resonance Energy Transfer) an einem individuellen Donor-Akzeptor-Paar in seiner speziellen Konformation zum Ziel. Als Farbstoffmolekül stand ein Bichromophor aus Perylen und kovalent angebundenem TDI zur Verfügung. Obwohl beide Chromophore sich für Einzelmoleküluntersuchungen eignen und inzwischen schon mehrfach verwendet wurden, gelang es nicht, ein bezüglich Linienbreite und Frequenzposition identisches Fluoreszenzanregungsspektrum sowohl über Perylen-Fluoreszenz als auch über TDI-Fluoreszenz (nach Energietransfer) zu detektieren. Der Energietransferprozess scheint mit einem Linienverbreiterungsmechanismus verknüpft zu sein, so dass eine Beobachtung mit dem Aufbau in der Anfangsphase der Dissertation nicht möglich war. Eine Wiederaufnahme dieser Untersuchungen mit der neuen Apparatur ist zukünftigen Doktoranden vorbehalten. Um allgemein temperaturabhängige Untersuchungen an fluoreszierenden Molekülen durchführen zu können, wurde ein Tieftemperaturmikroskop aufgebaut. Dafür wurde die Rastertechnik gewählt. Um die bekannten Probleme des Probenscannens im Kryostaten, wie kleiner Scanbereich und fehlender Zugang im abgekühlten Zustand, zu vermeiden, wurde ein konfokales Laserscanning-Mikroskop entworfen und aufgebaut. Zur Strahlablenkung wurden zwei Galvanometerspiegel gewählt und der Drehpunkt über ein telezentrisches System in das Objektiv abgebildet, das gemeinsam mit der Probe im Kryostaten sitzt. Die Detektion des Fluoreszenzlichts wird von einer hochempfindlichen Avalanche-Photodiode mit geringer Dunkelzählrate übernommen. Die Funktion des Scanners und des gesamten optischen Aufbaus konnte an Testmustern und Testproben erfolgreich demonstriert werden. Einschränkend muss jedoch erwähnt werden, dass die erreichte DetektionseŽzienz die Erwartungen nicht erfüllte. Das liegt im Wesentlichen am Objektiv, aber auch an den Abbildungsfehlern und Reflexionen der zahlreichen Elemente im Strahlengang. Die maximal erreichten Zählraten lagen bei 50 000 Counts pro Sekunde am System Terrylen in Polyethylen. Für Systeme mit einer ausreichend hohen Fluoreszenzrate ist es mit dieser Apparatur möglich, Fluoreszenzbilder, Zeitspuren, spektral hochauflösende Fluoreszenzanregungsspektren, Fluoreszenzspektren und Fluoreszenzkorrelationsfunktionen von einzelnen Molekülen aufzunehmen, um damit spektrale und dynamische Eigenschaften der Moleküle zu bestimmen. Durch Variation der Temperatur können die Temperaturabhängigkeit der Messgrößen und Barrierenhöhen ermittelt werden. Mit der neuen Apparatur wurden Untersuchungen in zwei neuen Themenbereichenbegonnen, nämlich an einzelnen Sondenmolekülen in Nanoporen und an den fluoreszierenden Proteinen GFP (Grün Fluoreszierendes Protein) und PEC (Phycoerythrocyanin). Erste Fluoreszenzanregungsspektren einzelner Terrylen-Moleküle in den Kanalstrukturen von mesoporösen Systemen der M41S-Klasse konnten beobachtet werden. Dabei ist die hohe spektrale Auflösung von großem Vorteil bei der Untersuchung der spektralen Dynamik der Sondenmoleküle. Im Bereich biologischer Proben konnten einzelne Moleküle des Grün Fluoreszierenden Proteins isoliert beobachtet werden. Die Anzahl an Fluoreszenzphotonen pro Molekül, die vor dem ¨Ubergang in einen Dunkelzustand an diesem System detektiert werden konnten, war allerdings sehr gering. Deshalb wurden Untersuchungen an einzelnen Proteinen aus dem Lichtsammelkomplex von Cyanobakterien begonnen, die in einer laufenden Doktorarbeit von P. Zehetmayer fortgeführt werden. Bei den Proteinproben handelt sich um Untereinheiten von Phycoerythrocyanin: die ‹-Untereinheit und das Trimer bzw. Monomer, in denen offenkettige Tetrapyrrhol-Moleküle als Farbstoffe an die Proteinmatrix angebunden sind. Neben Fluoreszenzbildern und Zeitspuren konnten bereits Anregungsspektren detektiert werden, die starke spektrale Dynamik zeigen und weitere Untersuchungen herausfordern. Wesentliche Teile dieser Arbeit wurden bereits in internationalen Zeitschriften und auf Tagungen veröffentlicht. Eine Übersicht befindet sich am Ende unter Veröffentlichungen und Tagungsbeiträge.