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in jedem Schritt liebevoll unterstützt und dafür bin ich ihnen sehr dankbar.

Leyre Estı́baliz Osuna Echavarrı́a

München, August 2004



7

Zusammenfassung

Zähldaten Modelle finden zahlreiche Anwendungen in der Praxis. Dennoch steht man

oft einem oder mehreren der folgenden Probleme gegenüber, die von der Benutzung

der Standard Poisson Regression abraten. Individuum spezifische unbeobachtete Het-

erogenität, verursacht durch nichtvorhandene Kovariablen, und/oder Exzess von Null–

Beobachtungen könnten in den Daten festgestellt werden. Beide Verteilungsprobleme be-

wirken Abweichungen der Verteilung der Responsevariable von der klassischen Poisson

Annahme. Andererseits wollen wir den Prädiktor vielleicht mit zeitlichen oder räum-

lichen Korrelationen und möglicherweise Effekten von stetigen Kovariablen oder Zeit-

skalen, vorhanden in den Daten, zusätzlich erweitern.

Hier werden semiparametrische Zähldaten Modelle entwickelt, die diese Probleme lösen

können. Die Poisson Verteilung wird erweitert, um Überdispersion und/oder Exzess

von Null–Beobachtungen aufzufassen. Zusätzlich werden entsprechende Komponen-

ten in strukturierter additiver Form in den Prädiktor eingefügt. Die Modelle sind völlig

Bayesianisch und Inferenz wird mit Hilfe von effizienten Markov Chain Monte Carlo

(MCMC) Methoden durchgeführt. Mit Simulationsstudien wird untersucht, wie gut die

verschiedenen Komponenten mit den vorliegenden Daten erkannt werden. Die Ansätze

werden zum Schluß auf zwei Datensätze angewendet: auf Patentdaten und auf die An-

zahl der Schäden eines großen Kfz-Datensatzes.

Abstract

Count data models have a large number of pratical applications. However there can

be several problems which prevent the use of the standard Poisson regression. We may

detect individual unobserved heterogeneity, caused by missing covariates, and/or excess
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of zero observations in our data. Both distributional issues results in deviations of the

response distribution from the classical Poisson assumption. We may in addition want

to extend our predictor to model temporal or spatial correlation and possibly nonlinear

effects of continuous covariates or time scales available in the data.

Here we study and develop semiparametric count data models which can solve these

problems. We have extended the Poisson distribution to account for overdispersion

and/or zero inflation. Additionally we have incorporated corresponding components

in structured additive form into the predictor. The models are fully Bayesian and infer-

ence is carried out by computationally efficient MCMC techniques. In simulation studies,

we investigate how well the different components can be identified with the data at hand.

Finally, the approaches are applied to two data sets: to a patent data set and to a large

data set of claim frequencies from car insurance.



Contents

1 Introduction 1
1.1 Count data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Log–linear Poisson Regression and extensions . . . . . . . . . . . . 2
1.1.2 Problems with classical count data regression . . . . . . . . . . . . 4

1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Overdispersion 9
2.1 Negative Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Latent variables approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Poisson–Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Poisson–Inverse Gaussian . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Poisson–Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Hierarchical centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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Chapter 1

Introduction

For count data, e.g. insurance claims frequencies, often a Poisson regression model is

used. But the assumption of the Poisson distribution for the response variable is generally

too restrictive in practice. Usually one has to deal with problems like overdispersion and

zero inflation. In this thesis, several semiparametric approaches are introduced which

take overdispersion and zero inflation of the data into account. We propose a flexible

generalized regression approach, for which maximum likelihood estimation is not feasi-

ble as the likelihood does not belong to an exponential family and as the used predictor

structures are very complex. We therefore define a Bayesian hierarchical model, which

allows to estimate model parameters and all covariate effects simultaneously in an easy

way. Because direct analyze of the posterior of the parameters will not be possible for

all the models presented here, we use Markov Chain Monte Carlo (MCMC) methods for

taking inference.

1.1 Count data analysis

In this section we shortly present the classical and well known Poisson regression model,

which is the basis for the models presented in the next chapters. Additionally we give an

overview of the problems that are related to it.

1



2 1. Introduction

1.1.1 Log–linear Poisson Regression and extensions

Suppose we are given data (yi, ri, z′i), i = 1, . . . , n, for each of the units under investi-

gation. In detail, yi is the response variable and stores the number of observed events

for the ith unit, ri > 0 is a unit specific offset, for example time of exposure, and zi is a

column vector of covariates. Additionally suppose that the data yi given the covariates

z′i are independently distributed for i = 1, . . . , n.

To define a Generalized Linear Model (GLM) we have to make the following three as-

sumptions. First, the response or target variable is assumed to have a distribution from

the exponential family (EF). Second, given a covariate situation, we have to build a linear

predictor, denoted by ηi for each observation. And third we have to choose a link func-

tion that relates the predictor η and the mean of the response variable, say µ, through

g(µ) = η.

Because of the count nature of the data presented above, the most appropriate distribu-

tion from the EF for the observation model is the Poisson distribution.

yi|zi ∼ Po(µi) (1.1)

p(yi|zi) = exp{yi ln(µi)−µi − ln(yi!)}

µi = ri λi.

The predictor is a linear combination of the observed covariates and some unknown pa-

rameters and is therefore called a linear predictor.

ηi = α + z′iβ. (1.2)

The mean of the response variable µi is related with the linear predictor through the

so called link function. As µi has to be positive, an appropriate choice is the logarithmic

function, so that we do not need further restrictions on the parametersβ. It is well known

from the literature (see Fahrmeir and Tutz (2001)) that this is the natural link function for

the Poisson distribution.

µi = exp(log(ri) + ηi). (1.3)
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The model described in this section is also called log–linear Poisson regression. To make

inference, the vector β̂ that maximizes the whole likelihood of the model has to be found.

In practice β̂ is the solution of the estimating equations obtained by differentiating the

likelihood in terms ofβ and solving them to zero. These equations are nonlinear inβ and

iterative algorithms like Fisher scoring, Newton–Raphson or modified versions have to

be applied in order to find a solution (Fahrmeir and Tutz, 2001).

Asymptotic theory related to GLMs is also applicable for the estimates β̂. These are

consistent and efficient, provided that the mean and variance function of the model are

correctly specified, even if the underlying data generating process is not Poisson dis-

tributed. Moreover in order to obtain consistency only the correct specification of the

mean function is required. And the estimates are asymptotically normal distributed. This

last property is very useful as it allows the construction of simple significance t–tests on

the parameters (Fahrmeir and Tutz, 2001).

Suppose now that we are given data (yi, ri, z′i , x′i), i = 1, . . . , n, for each of the units under

investigation. This time xi and zi are column vectors of continuous and respectively cat-

egorical covariates. We suppose that the data sequences (yi, ri, z′i , x′i) are independently

and identically distributed for i = 1, . . . , n. The aim is to design a regression model in-

cluding the information contained in the observed covariates in a more flexible way, that

explains the variability in the yi and is easy to interpret. Including nonlinear effects in the

predictor to model the continuous covariates is a natural alternative to the fixed effects

modeling. Generalized Additive Models (GAM) are a useful tool for this purpose.

GAMs extend standard regression in two ways. The first extension is, as in GLMs, given

by the word ’generalized’ and it refers to the distribution of the response variable. In

classical regression it is restricted to be normally distributed. Here members of the EF

are allowed as distributions for the target variable. The second extension is in the word

’additive’ and concerns the terms of the predictor. In contrast to linear models or GLMs,

the predictor is a sum of terms that may include linear terms and nonlinear functions

of the covariates. To define a GAM we have to make the same three assumptions as
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for a GLM. The distribution and the link function remain the same as given in (1.1) and

(1.3). The predictor is a sum of linear combinations of the observed covariates categorical

covariates z′i and some unknown parameters, denoted by β, and some nonlinear smooth

functions, denoted by f ( j) of x′i . This results in a semiparametric predictor

ηi = α + z′iβ+ ∑
j

f ( j)(xi j). (1.4)

There are several approaches to estimate the smooth functions f ( j), see Fahrmeir and

Tutz (2001) and Lang (2004) for a review. In order to ensure that the estimated functions

are smooth, in most of the approaches penalty terms and/or smoothing parameters are

introduced for each function when maximizing the log–likelihood, to obtain the so called

penalized log–likelihood.

Inference is made by maximizing the penalized log–likelihood through iterative meth-

ods, like e.g. Fisher scoring with backfitting. Presentation of these maximum likelihood

estimation (MLE) methods is beyond the scope of this work. For detailed theory about

GLMs and GAMs see for example McCullagh and Nelder (1989) and Hastie and Tibshi-

rani (1990) respectively, or Fahrmeir and Tutz (2001).

1.1.2 Problems with classical count data regression

In practice, classical Poisson regression has two strong restrictions when working with

practical applications. The first restriction is given by the predictor in the presence of

complex covariate structures. Despite their flexibility there are data situations where

even GAMs are not appropriate. For example, linear or one–dimensional smooth model-

ing are clearly not appropriate in the presence of some set of observed spatial covariates

or group indicators, among the usual metrical and categorical variables. In the car insur-

ance application of Section 7.2 we find metrical (driven kilometers per year) and dummy

(garage) covariates, as well as group indicators (car classification) and spatial information

(district). The aim is on including all these covariates in the predictor and on modeling
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their effects simultaneously. In (1.5) we give an example for such an intended predictor.

µi = riλi

λi = exp(ηi)

ηi = α + zi
′β+ ∑ f ( j)(xi j) + ρgi . (1.5)

There we find linear effects represented by the term zi
′β. The functions f ( j) are sup-

posed to be one–dimensional smooth functions for one–dimensional covariates x j and

two-dimensional smooth curves if x j are two-dimensional covariates, as for example

spatial covariates are. The term ρgi represents the group indicator effects. To overcome

this problem, we present in this work Bayesian count data regression models. Bayesian

regression allows for flexible predictor structures with the help of appropriate prior as-

sumptions, according to the nature of the covariates (see Section 4.2 for a description of

the priors used in this work).

The second restriction is the mean variance equality of the Poisson distribution and, in

general, its lack of flexibility. Observed data sets tend to be overdispersed, which means,

that the variance in the data exceeds the assumed variance of the Poisson distribution.

As mentioned before, misspecification of the variance function does not affect the consis-

tency of β̂, but leads to misspecification of the asymptotic covariance matrix of β̂. As a

result we have loss of efficiency, confidence intervals or the usual tests for significance are

no longer feasible. In the concrete case of overdispersion the variances of the estimates

are set to be smaller as they actually are. Hence usual t–tests tend to be inflated which

implies artificial statistical significance for the parameters (Cameron and Trivedi, 1998).

There are several possibilities for data to be overdispersed. We discuss them here in an

informal way.

Positive contagion: This concept refers to the underlying count data generating process.

Contagion denotes the dependence between the occurrence of successive events.

We will talk about positive contagion when the observing of realizations of the
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process increases the probability of new events. The interpretation in case of car

accidents is that an individual causing an accident is more likely to produce another

accident. See Cameron and Trivedi (1998) for more details.

Unobserved heterogeneity: We assume that the data generating process corresponds to

a Poisson distribution. Some unobserved covariates are the source of the hetero-

geneity in the data and responsible for the observed overdispersion. This is a very

intuitive explanation and easy to interpret when applying it to the data.

Excess of zero counts: Another departure from the Poisson distribution is an excess of

observed zero counts (zero inflation) with respect to the distributional assumption.

This also leads to overdispersion although the nature of the problem is not based

on heterogeneity among the observations (Mullahy, 1997). We will introduce alter-

natives to overcome zero inflation problems in Chapter 3.

Now we briefly resume possible approaches to handle overdispersion. The approaches

will be divided in three groups reflecting our belief of how overdispersion arises in the

data. In the first group we renounce any distributional assumptions about the underly-

ing distribution of the data. We choose some mean function, that relates the covariates

with the mean of the data in our regression model and some variance function generally

depending on the mean and a dispersion parameter.

Quasilikelihood approaches avoid making assumptions about the underlying generat-

ing process of the data (see McCullagh and Nelder (1989), Brockman and Wright (1992)

and Renshaw (1994) for theory and applications to car insurance data). The motivation

for these methods is that only a correct specification of the mean function is needed to

guaranty consistency of the estimates in maximum likelihood estimation for exponen-

tial families. The name Poisson Quasilikelihood estimation means that the parameter

estimates are defined by the first order conditions of a Poisson maximum likelihood re-

gression but the data generating process does not need to be Poisson distributed. In

practice, the mean function is chosen to be similar to the mean of the Poisson regression
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in (2.1). The variance function is the product of some functional of µ and a dispersion

parameterφ. The estimating equations for the parameters in η do not depend on the dis-

persion parameter φ. Hence it is handled as a nuisance parameter. Because its estimate

is based on η̂, it can only be calculated at the end and so the estimation of the parame-

ters is not simultaneous. This approach is described in Cameron and Trivedi (1998) for

different variance functions. They also discuss appropriate estimators for the dispersion

parameter depending on the form of the variance functions.

In the second group we suppose that the data does not follow a Poisson distribution at

all. A search for alternative and more flexible count distributions that relax the strong

variance assumption of the Poisson distribution is therefore necessary. As there are a

multitude of ways to achieve this we treat the most common: the negative binomial. For

more examples, we refer to Cameron and Trivedi (1998) or Johnson and Kotz (1969). If we

have information in our data set about occurrence times of events, we could generalize

the underlying waiting time distribution assumption for the Poisson and thus obtain

less restrictive associated count data distributions (Winkelmann, 1995). Poisson mixtures

are also an interesting alternative for a more flexible analysis of the data. We refer to

Viallefont, Richardson and Green (2002), Deb and Trivedi (1997) and Aitkin (1996).

And in the third group we assume that overdispersion arises from covariates not avail-

able in the data. This approach will be presented in the next chapter in a general form as

well as in three concrete cases.

1.2 Overview of the thesis

This work is structured as follows. We begin with a theoretical overview about more flex-

ible count data distributions such as the Poisson. In Chapter 2 we present distributions

that are able to account for overdispersion in the data, Chapter 3 covers distributions that

are able to model zero inflation in the data.

Priors for the definition of a count data regression model with flexible predictor structures
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in a Bayesian framework are given in Chapter 4. Chapter 5 describes the posteriors of the

different presented regression models based on the prior assumptions of the Chapters 2 to

4. It also shows the implemented algorithms using Markov Chain Monte Carlo (MCMC)

methods for estimation. A short overview of the theory on MCMC is given in Appendix

C.

Chapter 6 resumes the results of the simulation studies for testing the performance of

overdispersion and zero inflation models. In Chapter 7 the developed models are applied

on two real data sets. Firstly, a patent data set, without spatial information, but with

binary and metrical covariates. The aim is on modeling the number of forward citations

for a patent depending on the given covariates. Secondly, a massive car insurance data

set, with a lot of covariates containing information about the policyholders. The aim is

on modeling the number of expected claims for an insured depending on the observed

information.

The approaches presented in Chapters 2 and 3 have been implemented in the statistical

software BayesX. The analyzes of Chapter 6 as well as Chapter 7 are also carried out with

this program. BayesX is available at http://www.stat.uni-muenchen.de/˜lang/ .

In Chapter 8 we present a tutorial based on the patent data to exemplify the using of

BayesX.



Chapter 2

Overdispersion

We recall the definition of overdispersion given in the previous chapter. Given a distribu-

tional assumption in a regression model, we find overdispersion if the observed variance

of the data is greater than the variance supposed by the model. As this work deals with

count data, our basic model will be the classical Poisson regression, presented in Section

1.1.1. Overdispersion occurs if the variance in the data is greater than the mean. Possi-

ble sources of overdispersion in our data, possible approaches to solve this problem, and

consequences of ignoring overdispersion in our model were presented in an informal

way Section 1.1.2.

Recall the notational agreements of the last chapter. We are given data (yi, ri, z′i , x′i), i =

1, . . . , n, with yi the number of observed events for the ith unit, ri > 0 is a unit specific

offset, and zi and xi are column vectors of categorical and continuous covariates respec-

tively.

For later use we recall the mean structure given in (1.5) in Subsection 1.1.2:

µi = riλi

λi = exp(ηi) (2.1)

ηi = α + zi
′β+ ∑ f ( j)(xi j) + ρgi .

9
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The scope of this chapter is to present two main approaches to account for overdispersion

in the data. The first one is to substitute the Poisson by a Negative Binomial distribution,

which has a more flexible variance function. This approach is presented in Section 2.1.

The second approach introduces latent variables in the Poisson regression in a multiplica-

tive way. More details about this can be found in Section 2.2. And finally, in Section 2.3

we present the hierarchical centered versions of the models of Subsections 2.2.1 and 2.2.2.

2.1 Negative Binomial

The Negative Binomial (NB) distribution has two parameters, µi and δ, both with strictly

positive real values. We will write

yi|ηi, δ ∼ NB(µi, δ). (2.2)

Note, that we will allow µi to vary with the observations (denoted by the subindex i) as

in (2.1) but δ will be an overall parameter in the model.

The density, mean and variance of a NB distribution are given by

P(yi|ηi, δ) =
Γ(yi + δ)

Γ(yi + 1)Γ(δ)

(
µi

µi + δ

)yi
(

δ

µi + δ

)δ
(2.3)

E(yi|ηi, δ) = µi

V(yi|ηi, δ) = µi +
µ2

i
δ

for all yi ∈ IN ∪ {0}. Comparing the first two moments with those of the Poisson dis-

tribution Po(µi), we see that the mean is equal and the difference appears in the second

moment. As the variance is greater than the mean this distribution is able to account for

overdispersion in the data with respect to the classical Poisson assumption.

The joint likelihood of the model is the product of the individual likelihoods of the units

under investigation and is proportional to:

l(y|η, δ) =
n

∏
i=1

l(yi|ηi, δ)
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∝ exp
{ n

∑
i=1

(
log(Γ(yi + δ))− log(Γ(δ))

+yi log(µi)− yi log(δ+µi) + δ log(δ)− δ log(δ+µi)
)}

= exp
{

n
(
− log(Γ(δ)) + δ log(δ)

)
(2.4)

+
n

∑
i=1

(
log(Γ(yi + δ)) + yi log(µi)− (yi + δ) log(δ+µi)

)}
.

The terms that only depend on the data can be omited because the likelihood will only

appear in quotients in the estimation algorithm of the model (see Appendix C).

The NB distribution belongs to the exponential family as long as δ is known. For a proof,

see Appendix B, where we rewrite the density given in (2.3) by assuming that δ is known:

p(yi|µi, δ) =
Γ(yi + δ)

Γ(δ)Γ(yi + 1)

(
µi

δ+µi

)yi
(

δ

δ+µi

)δ
= exp {c(yi, δ) + yiθ− b(θ)} .

Here, θ = log( µi
µi+δ

) is the natural parameter, c(.) depends only on δ (which is assumed

to be known!) and the data, and b(.) is a function that depends only on the natural pa-

rameter. If the δ–parameter is known, estimation can easily be done by maximizing the

likelihood over η. But if δ is unknown, which will be the standard situation, there is

no possibility to rewrite (2.3) and find such functions b(.) and c(.) and we are not in an

exponential family framework anymore. Estimation can now be based on the maximiza-

tion of the likelihood over both parameters η and δ as proposed for example by Cameron

and Trivedi (1998). We will take advantage of this property of the NB distribution when

implementing the regression models in the next chapters.

The NB distribution can be derived in several ways. One possibility is to consider it as

the marginal distribution of the response variable of a Poisson Gamma model, as we will

demonstrate in Subsection 2.2.1. Without further explanations, we annotate here that the

NB distribution can also arise in the context of positive contagion or modeling of waiting

times (Cameron and Trivedi, 1998; Winkelmann, 1995).
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2.2 Latent variables approach

In the following, we assume that overdispersion in the model is caused by heterogeneity

in the data due to unobserved covariates. The natural solution is to maintain the Poisson

distribution in the observation model and to introduce independent and identically dis-

tributed unit specific latent variables νi. They enter the model as multiplicative random

effects and should capture the effect of the unobserved covariates and make the model

more flexible to account for overdispersion. In this section we give a general representa-

tion and show first consequences of this model. More details are given in the following

subsections.

In a first short representation, we will write

yi|ηi,νi ∼ Po(νi µi)

νi| · ∼ D(·) i = 1, . . . , n,
(2.5)

where D(·) may depend on some parameters. The latent variables have to fulfill two

very intuitive conditions. First, νi > 0 ensures that the mean of yi is properly defined.

Secondly, if we want to avoid problems with the identifiability of the intercept, we should

impose ED(νi| ·) = 1.

With these restrictions we can calculate the first two moments of the marginal distribu-

tion of yi. The mean is given by

E(yi|ηi, ·) = ED (E(yi|νi, ηi)|·)

= µiED(νi| ·) (2.6)

= µi.

There are no changes in the mean structure compared to (2.1) in the Poisson regression.

The marginal variance is calculated as follows:

V(yi|ηi, ·) = ED (V(yi|νi, ηi)|·) + VD (E(yi|νi, ηi)|·)
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= µiED(νi| ·) +µ2
i VD(νi| ·) (2.7)

= µi +µ2
i VD(νi| ·).

The variance is a second order polynomial in the mean µi whereby µ2
i VD(νi| ·) is always

strictly positive. This implies V(yi| ·) > E(yi| ·), so that overdispersion can be explained

through this new formulation.

Note that if VD(νi| ·) goes to zero, the distribution of νi is degenerated into one and

hence the marginal distribution of yi is the Poisson distribution once again. The variance

of νi gives us a ’relative measure’ of the amount of overdispersion in the data. Relative,

because the marginal variance also depends on µ2
i .

In the next subsections we present four distributions that are derived from three candi-

date distributions D(·) for the νi. The most commonly used is the Poisson Gamma distri-

bution, which also induces the negative binomial distribution. Poisson Inverse Gaussian

and Poisson LogNormal are more unusual but not less interesting alternatives. Kaas and

Hesselager (1995) have compared the tails of the Gamma, Inverse Gaussian and LogNor-

mal distributions with equal means and variances and obtained the order given above

for increasing tails. This order can be transferred to the corresponding mixtures with

Poisson distribution, resulting in Poisson–Gamma, Poisson–Inverse Gauss, and Poisson–

LogNormal with increasing tails.

2.2.1 Poisson–Gamma

The Poisson–Gamma (POGA) model arises as the mixture of a Poisson and a Gamma

distribution, i.e.

yi|ηi,νi ∼ Po(νi µi) (2.8)

νi|δ ∼ G(δ, δ), (2.9)

where (2.8) is the distributional assumption for the response variable in the POGA model.

The yi, i = 1, . . . , n are mutually independent andµi is defined as in (2.1). The conditional
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density function, mean and variance of yi, i = 1, . . . , n for all i are given by:

P(yi|ηi,νi) =
exp(−νiµi) (νiµi)yi

yi!
for yi ∈ IN ∪ {0} (2.10)

E(yi|ηi,νi) = V(yi|ηi,νi) = νi µi.

The joint likelihood of the data is the product of the individual likelihoods. Due to the

same reasons as in the NB model we can again consider the whole likelihood up to a

proportionality constant.

l(y|η,ν) =
n

∏
i=1

l(yi|ηi,νi)

∝ exp
{ n

∑
i=1

(
− νiµi + yi log(νiµi)

)}
(2.11)

In (2.9) we have specified a Gamma distribution as distribution for the νi terms. As the

mean has to be one, the Gamma distribution is no longer a two–parameter distribution.

Only the parameter δ is free and acts as a dispersion parameter, since it explains the

variance of the νi’s. It follows from (2.9):

g(νi|δ) =
δδ

Γ(δ)
νδ−1

i exp(−δ νi)

E(νi|δ) = 1

V(νi|δ) =
1
δ

.

For δ going to infinity, the variance of νi goes to zero, and we approximate the Poisson

distribution. The marginal moments of the response variable are easily calculated by

substituting V(νi|δ) = 1
δ

in (2.7):

E(yi|ηi, δ) = µi

V(yi|ηi, δ) = µi +
µ2

i
δ

.
(2.12)

Note that the mean and the variance of the NB distribution are equal to those obtained

here for the marginal distribution of the POGA model. We remind the reader, that the

NB model can be derived from a POGA model by marginalizing the distribution of the
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response variable with respect to the multiplicative random effects. For this purpose

we calculate the expectation of (2.10) respecting νi as is shown in Appendix A.1. This

explains, why the marginal moments of the response variable of the POGA model and

the moments of the NB model are identical.

2.2.2 Poisson–Inverse Gaussian

Following the same idea as with the POGA model, we now choose another appropriate

distribution for the νi terms. This time, they are supposed to be Inverse Gaussian dis-

tributed. This distribution has heavier tails than the Gamma distribution, which may be

of advantage in some applications. More details on the Inverse Gaussian distribution are

given in Appendix A.2. The POIG model is given by

yi|ηi,νi ∼ Po(νi µi) (2.13)

νi|δ ∼ IGaussian(1, δ), (2.14)

with µi defined as in (2.1). The observational assumption in (2.13) is equal to the assump-

tion for the POGA model given by (2.8) and therefore (2.10) is also valid here. Conse-

quently the likelihood l(y|η,ν) is proportional to (2.11).

The mean of the prior distribution of the νi’s has to be one to ensure that the intercept re-

mains identifiable. With this restriction the two parameter Inverse Gaussian distribution

has then only one parameter, say δ, which is, similarly as in the POGA model, a sort of

scale parameter since it controls the variance of the distribution. It follows from (2.14):

g(νi|δ) =

√
δ

2πν3
i

exp
(
−δ(νi − 1)2

2νi

)
E(νi|δ) = 1

V(νi|δ) =
1
δ

.

Note that the first two moments of the Gamma and Inverse Gaussian distribution are

equal, if the mean is supposed to be one, as is the case here. This implies that also the first
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two moments of the response variable conditioned only on the δ parameter are identical

with those of the POGA model and therefore also with those of the NB model (see (2.3)).

2.2.3 Poisson–Gaussian

Finally we connect the standard Poisson regression with Gaussian latent variables. For

this purpose we assume a LogNormal distribution for the νi. Kaas and Hesselager (1995)

have shown, that this distribution is heavier in its tails than the Gamma and the Inverse

Gaussian are for equal mean and variance. In Section A.3 we present the general form of

a LogNormal distribution. Here we have to adjust the parameters to obtain E(νi|δ) = 1

and V(νi|δ) = 1
δ

in order to be able to compare the results with those of the other mix-

tures. Note that due to the mean restriction, we work with a one parameter LogNormal.

Looking at A.3, it is easy to show, that for

νi|δ ∼ LogN
(
−0.5 log

(
1 +

1
δ

)
, log

(
1 +

1
δ

))
(2.15)

we get the desired mean and variance assumptions given above. We rewrite the param-

eter assumption given in (2.5)

νi µi = riνi exp(ηi)

= ri exp(ηi + log(νi))

= ri exp(ηi +κi) (2.16)

We can now exploit the fact that κi = log(νi) follows a Gaussian distribution, if νi is

LogNormal distributed, as given in (2.15), i.e.

κi ∼ N
(
−0.5 τ2

κ , τ2
κ

)
(2.17)

with τ2
κ = log

(
1 + 1

δ

)
. Thus, we can convert a Poisson–LogNormal model with multi-

plicative random effects into a Poisson–Gaussian one with additive random effects. As

we will see in the next chapter, the common prior assumption for additive random ef-

fects is a normal distribution with mean zero. The difference to (2.17) does not represent
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a problem for the further regression. The mean is constant for all the κi and thus will

be captured by the intercept α in the implementation. The following table resumes both

model formulations:

Poisson–Gaussian

yi|ηi,κi ∼ Po(µi)

µi = ri λi

λi = exp(ηi +κi)

κi|δ ∼ as given in (2.17)

E(κi|δ) = −0.5τ2
κ

V(κi|δ) = τ2
κ

Poisson–LogNormal

yi|ηi,νi ∼ Po(νi µi)

µi = ri λi

λi = exp(ηi)

νi|δ ∼ as given in (2.15)

E(νi|δ) = 1

V(νi|δ) =
1
δ

for i = 1, . . . , n. We can now interpret the model in two ways. First as a standard Poisson

regression with a random effect for each unit under investigation, that is additive in the

predictor. And secondly as a latent variables approach, where the terms that multiply

the µ parameter of the Poisson distribution are LogNormal distributed.

Now it is clear why this model works as a connection between standard models with

additive random effects in the predictor and our multiplicative models presented here.

Both model formulations are equivalent. Therefore we decided to work with the first one,

which is based on standard methods and already implemented in the program BayesX.

The main observational assumption does not have to be changed, that means, the re-

sponse variable remains Poisson distributed. Due to the conditional independence of the

observations given the parameters, the likelihood of the whole sample l(y|η,κ) can be

calculated as the product of the individual likelihoods l(yi|ηi,κi), as given in (2.11).

2.3 Hierarchical centering

In some applications a new parameterization of the latent variable models may work

better than the one explained above. The idea of hierarchical centering is to omit the
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intercept in the predictor and to let the mean of the multiplicative effects account for it in

the model. Formally this means:

νi µi = ri νi exp (α + f (xi, zi))

= ri νi exp(α) exp( f (xi, zi))

= ri ν̃i exp(η̃i)

= ν̃iµ̃i

with ν̃i = νi exp(α), η̃i = f (xi, zi) and µ̃i = ri exp(η̃i). The new model formulation is

equivalent to the old one given in (2.5) in the distributional assumption for the response,

but differs in the prior distribution of the νi:

yi|ν̃i, η̃i ∼ Po(ν̃i µ̃i)[
∼ Po(νi µi)

]
(2.18)

ν̃i| exp(α), · ∼ D̃
(

exp(α), ·
)
.

The first two moments of the marginal distribution of the response variable are

E(yi|η̃i, exp(α), ·) = ED̃ (E(yi|ν̃i, η̃i)| exp(α), ·)

= ED̃ (ν̃i η̃i| exp(α), ·)

= η̃i exp(α)

= µi

and

V(yi|η̃i, exp(α), ·) = ED̃ (V(yi|ν̃i, η̃i)| exp(α), ·) + VD̃ (E(yi|ν̃i, η̃i)| exp(α), ·)

= µ̃iED̃(ν̃i| exp(α), ·) + µ̃2
i VD̃(ν̃i| exp(α), ·)

= µ̃i exp(α) + µ̃2
i exp(2α)VD(νi| ·)

= µi +µ2
i VD(νi| ·).

The reparameterization does not affect the marginal distribution of the response variable.
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We have implemented this reparameterization for the POGA and the POIG model, which

yields their hierarchical variations, the POGAH and POIGH model respectively. If νi ∼

G(δ, δ), then it is well known that

ν̃i|δ, exp(α) ∼ G
(
δ,

δ

exp(α)

)
. (2.19)

If νi ∼ IGaussian(1, δ), we obtain

ν̃i|δ, exp(α) ∼ IGaussian
(

exp(α), exp(α)δ
)
, (2.20)

as is shown in Section A.2,

2.4 Résumé

In this chapter we have given an overview about overdispersion and developed the latent

variable methods in more detail. Some comments on the models will be made here.

The first question is why do we use NB and POGA models, although we know that these

models are equivalent. Actually we should take advantage of the fact that there exists

a closed form of the marginal distribution of the POGA model, namely, the NB model.

The theoretical advantage of the NB model is that the number of parameters to estimate

in the model is much smaller as for the POGA model. Remember that we have an extra

parameter per unit in the POGA model, which means n further parameters to estimate

compared to the NB model. And with a massive data set, like the car insurance data

set, it is an important matter to reduce computating time and resources. Finally, as we

can obtain the NB distribution in several ways, we can also justify its application and

interpret it in several ways. With the car insurance data set for example, using NB as the

distribution arising from positive contagion will be interpreted as providing increase for

the probability of producing another accident after having had one. In case we consider

the NB as marginal distribution for yi proceeding from a POGA model, we will interpret

its use as accounting for missing information in the model. On the other side, the POGA
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model is favorable in two aspects. First, the computations that we need to calculate for

the likelihood of a NB model are quite intensive, due to the Gamma functions that are

involved. And secondly, it would be a nice idea to exploit the information obtained from

the estimates ν̂i to make further analysis of the data, and try, for example, to deduce

which unobserved covariates are responsible for the overdispersion, or to group the ob-

servations in clusters in terms of the ν̂i. We can even use the ν̂i in model assessment

and deduce if the preliminary assumptions are satisfied. We will revisit this problem in

Section 7.2.

For the POIG model we have no closed form of the marginal probabilities of yi, but we

can calculate them recursively (Dean, Lawless and Willmot, 1989). Of course it is a time–

consuming process in case the observed counts are shifted to the right, that means in case

they take large values.

For the POIG and the POLN models we do not have the alternative of working with the

marginal model. It would be interesting to compare the behavior of the three mixture

models and to analyze through simulation studies how robust the models are in case the

data are not distributed as supposed.

Excess of zeros may be a consequence of positive contagion (see Zorn (1998)) and there-

fore appear as overdispersion in the data. In Section A.4 we prove that modeling overdis-

persion with latent variables also accounts for excess of zeros in the model. This proof is

based on the one given in Mullahy (1997).

A final remark: The hierarchical versions POGAH and POIGH are not new models on

their own, but it may be possible to improve the mixing of the chains for some parameters

(specially intercept and multiplicative random effects) through the new parametrization.

More information about count data models can be found in: Winkelmann and Zimmer-

mann (1995); Hinde and Demétrio (1998); Podlich, Faddy and Smyth (1999); Alexander,

Moyeed and Stander (2000); Thurston, Wand and Wiencke (2000); Sutradhar and Jowa-

heer (2001); Karlis (2001) and Booth, Casella, Friedl and Hobert (2003).



Chapter 3

Excess of Zero Counts

We talk about excess of zero counts if the number of observed zero counts exceeds the

number of zero counts expected by the model. Recall the notation of the last two chapters.

We are given data (yi, ri, z′i , x′i), i = 1, . . . , n, with yi number of observed events for the

ith unit, ri > 0 is a unit specific offset, and zi and xi are column vectors of categorical

and continuous covariates respectively. We also keep the same mean structure of the last

chapter given in (2.1).

µi = riλi

λi = exp(ηi)

ηi = α + zi
′β+ ∑ f ( j)(xi j) + ρgi .

Juts as with the overdispersion case, the underlying factors that cause excess of zeros in

the data can be of very different nature. In the following we describe the most usual

sources in praxis.

Unobserved heterogeneity: As is informally shown in Section A.4, unobserved hetero-

geneity in the model implies excess of observed zero counts. A more formal proof

of this assertion is given by Shaked’s theorem (Shaked, 1980). Mullahy (1997) ex-

21
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amines the implications of unobserved heterogeneity for the probability structure

of count data models.

Selectivity: The observed outcomes are produced by two latent processes, a count data

process and a selection process, generally independent from each other. The selec-

tion process modifies the count data process in such a way, that we can not directly

observe it.

Unobserved heterogeneity as the origin of the excess of zero counts has already been

discussed in the last chapter. In the following we will briefly present some possibilities

to define how the selection process affects the underlying count data process under the

assumption of selectivity.

The first approach reflects the belief that only the selection process determines whether

we observe a zero outcome or not, independently from the underlying count data pro-

cess. These models are called hurdle models in the literature (Winkelmann, 1998; Gurmu,

1997; Ridout, Demétrio and Hinde, 1998; Zorn, 1998). In this case the selection processωi

can be modeled as a 0/1 variable. Ifωi = 0, then we have a zero outcome. Otherwise we

observed a strictly positive count that can be modeled as a Poisson or Negative Binomial

truncated at zero, for example. Note also data with too few zeros can be analyzed with

hurdle models, because the probability of a zero outcome is given only by the probability

of the binary variableωi to be 0, without further restrictions.

In contrast to hurdle models zero outcomes are not only determined by the selection

process in the next approach. If ωi = 0, then we have a zero outcome. Otherwise, if

ωi = 1, our outcome comes directly from the underlying count data distribution. That

means, we have two types of zero outcomes: those generated by the selection variable

and those generated by the count data distribution. These models are called zero inflated

(or with zeros). We are going to develop them later in this chapter.

Finally, underreporting can also be seen as a case of selectivity (Winkelmann, 1998). The

idea is to assume that not all of the produced outcomes are reported. The underlying
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count data process gives the number of real occurrences yunder
i . The selection process

is now a vector ωi = (ωi j) j of length yunder
i with 0/1 entries, where 0 indicates ’not

reported’ and 1, ’reported’. The selection process is assumed to be independent from the

counts. Thus, the observed number of counts is given by yi = ∑
yunder

i
j=1 ωi j. The resulting

marginal distribution of the yi is a mixture of a binomial distribution and the underlying

count data process.

In this chapter, only zero inflated models will be considered. We will first describe the

idea in more detail and then apply the model to several underlying count data distribu-

tions.

3.1 Zero Inflated Models

As said before, in many count data applications we observe excess of zero counts. To

overcome this problem zero inflated models (ZIM) introduce a latent binary variable that

’inflates’ the number of zero counts expected by the observational assumption. This can

be interpreted as a two step data generating process. Each observation in our data set is

the result of the product of two independent processes: an underlying count data gener-

ating process and a 0/1 ’selection’ process, say yunder
i andωi respectively.

yi = ωi yunder
i

ωi ∼ Bern(1−θ). (3.1)

We have called ωi ’selection’ variable for the purpose of interpretation. It classifies the

units in our data set into those with ωi = 0, that can not produce outcomes, and those

with ωi = 1, that are able to produce outcomes, but do not necessarily have to. The

response variables yi are the outcomes that we observe for each unit under investigation.

With their help we can partially win information about the underlying count process and

about the classification variable.

The conditional distribution of the response variable is given by the following expression,



24 3. Excess of Zero Counts

where ’·’ is placed to indicate that the count data distribution followed by yunder
i may (and

will!) depend on further parameters.

P(yi|ωi, ·) =


P(yunder

i = yi| ·) ωi = 1, ∀yi

0 ωi = 0, yi > 0

1 ωi = 0, yi = 0.

(3.2)

With the help of the indicator function I(x) = 0 for x = 0 and I(x) = 1 else, we can

rewrite (3.2) in a more compact form as

P(yi|ωi, ·) = P(yunder
i = yi| ·)I(ωi) +

(
1− I(ωi)

)(
1− I(yi)

)
. (3.3)

A problem in the context of car insurance is the interpretation of this conditional distri-

bution. We could implement an algorithm similar to the algorithm for POGA, POIG or

POLN to estimate the unobservedωi for each unit in the data set. If ω̂i = 0, the ith unit

can not produce any outcomes, and this, applied to our car insurance data set, would

mean that some policy holders can not produce any accidents. This result would be very

difficult to interpret. On the other hand, we can calculate the marginal distribution of

yi with respect to the selection variablesωi. The resulting distribution is much easier to

interpret, because we get modified probabilities of the underlying count data distribu-

tion for yunder
i instead of results on some latent variables that may make no sense in this

context. Note that in any other data set the information delivered by the ωi estimates

may be of great relevance and easy to interprete, but this is not the case here. Therefore

we concentrate on the marginal distribution of yi|θ, ·.

As said above, the marginal distribution of the observed counts is of prime interest now.

We can calculate it by combining (3.3) with the prior information given in (3.1)

P(yi|θ, ·) = P(ωi = 0|θ)
{

P(yunder
i = yi| ·)I(0) +

(
1− I(0)

)(
1− I(yi)

)}
+ P(ωi = 1|θ)

{
P(yunder

i = yi| ·)I(1) +
(
1− I(1)

)(
1− I(yi)

)}
= θ

(
1− I(yi)

)
+ (1−θ)P(yunder

i = yi| ·) (3.4)
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We are going to analyze how zero inflation affects the first two moments of the underly-

ing count data distribution. For the marginal mean of the response variable, we get

E(yi|θ, ·) = Eω
(
E(ωi yunder

i |ωi, ·)
)

= Eω
(
ωiE(yunder

i |ωi, ·)
)

= Eω
(
ωi
)
E(yunder

i | ·)

= (1−θ)E(yunder
i | ·). (3.5)

This is an important result, since it shows that ignoring zero inflation in the model will

lead to inconsistent estimators for the parameters, independently from the underlying

count data distribution. Some more comments on this result are given in Section 3.3.

For the marginal variance we get

V(yi|θ, ·) = Eω
(
V(ωi yunder

i |ωi, ·)
)

+ Vω
(
E(ωi yunder

i |ωi, ·)
)

= Eω
(
ω2

i V(yunder
i |ωi, ·)

)
+ Vω

(
ωiE(yunder

i |ωi, ·)
)

= (Vω(ωi) + E2
ω(ωi))V(yunder

i | ·) + Vω(ωi)E2(yunder
i | ·)

= (θ(1−θ) + (1−θ)2)V(yunder
i | ·) +θ(1−θ)E2(yunder

i | ·)

= (1−θ)V(yunder
i | ·) +θ(1−θ)E2(yunder

i | ·). (3.6)

Due to its complicated form, it is not easy to make comparisons between the variances

of the underlying count data distribution and the zero inflated model for the general

case. Hence we will discuss each case separately in the following subsections, where we

specify concrete distributions for yunder
i .

In the next subsections we are going to present several alternatives for the underlying

count data distribution and the corresponding zero inflated versions. Of these alterna-

tives, the mixture with Poisson and the mixture with Negative Binomial are the most

commonly used in the literature. But all the results of the previous chapter provide new

models to test.
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3.1.1 Zero Inflated Poisson

The zero inflated Poisson model (ZIP) is a ZIM with an underlying Poisson distribution.

We will denote it by

yi| ηi,θ ∼ ZIP(ηi,θ). (3.7)

The density distribution can be derived from (3.4) by inserting the density of a Poisson

distribution in P(yunder
i = yi|·) and its given by

P(yi| ηi,θ) = θ
(
1− I(yi)

)
+ (1−θ)

exp(−µi)µ
yi
i

yi!
. (3.8)

The mean of the ZIP model is the mean of the Poisson multiplied by (1−θ) as given in

(3.5)

E(yi| ηi,θ) = (1−θ)µi (3.9)

We could not draw great conclusions for the variance of ZIM in the general case. But

now, with the ZIP model, we see that with the help of (3.6) and (3.9) it takes the form

V(yi| ηi,θ) = (1−θ)µi +θ(1−θ)µ2
i

= E(yi| ηi,θ) + E2(yi| ηi,θ)
θ

1−θ . (3.10)

The variance is a squared polynomial in the mean µi. This is a nice result, since it shows

that ZIP models are able to account for overdispersion. With the same arguments as in

Section 2.2, we see that V(yi| ηi,θ) > E(yi| ηi,θ) and θ
1−θ plays the role of the δ parameter

in the models for unobserved heterogeneity.

For the later implementation of the model we need the whole likelihood of the data under

the ZIP distributional assumption. Taking the product of (3.8) over all units we get

l(y|η,θ) =
n

∏
i=1

P(yi| ηi,θ)

= exp

{
n

∑
i=0

log

(
θ(1− I(yi)) + (1−θ)

exp(−µi)µ
yi
i

yi!

)}
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= exp

{
∑

yi=0
log (θ+ (1−θ) exp(−µi))

+ ∑
yi 6=0

log

(
(1−θ)

exp(−µi)µ
yi
i

yi!

)}

∝ exp

{
∑

yi=0
log (θ+ (1−θ) exp(−µi)) (3.11)

+ Z0 log(1−θ) + ∑
yi 6=0

(−µi + yi log(µi))

}
,

where Z0 represents the number of units with strictly positive response. Note that we

consider the likelihood only up to a proportionality constant for the same reasons as

indicated in the previous chapter.

3.1.2 Zero Inflated Negative Binomial

The second most commonly used model in the literature is the zero inflated negative

binomial (ZINB). It comes from a zero inflation on a negative binomial distribution. We

will represent this model by

yi| ηi,θ, δ ∼ ZINB(ηi,θ, δ). (3.12)

Note that the ZINB distribution depends on two more parameters together with those in

the predictor. The density of a ZINB model is given by

P(yi| ηi,θ, δ) = θ
(
1− I(yi)

)
+ (1−θ)

Γ(yi + δ)
Γ(yi + 1)Γ(δ)

(
δ

δ+µi

)δ (
µi

δ+µi

)yi

.(3.13)

The mean structure of the negative binomial distribution is equal to the one of the Poisson

distribution. Thus the mean of the ZINB is also given by (3.9). We can proceed with the

variance similarly as before. Then we get from (3.6) and (3.9)

V(yi| ηi,θ, δ) = (1−θ)

(
µi +

µ2
i
δ

)
+θ(1−θ)µ2

i

= (1−θ)µi +µ2
i (1−θ)

(
1
δ

+θ
)
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= E(yi| ηi,θ) + E2(yi| ηi,θ)
(

θ

1−θ +
1

(1−θ)δ

)
. (3.14)

Consequently, the ZINB offers a more flexible way to model the variability of the data,

using the two parameters θ and δ. We see that there is some similarity to the variance

structure of the ZIP model given in (3.10). The coefficient of the squared mean is extended

by the 1
δ(1−θ) term. This could provide some reference point to compare the results from

a ZIP and a ZINB in an informal way, and maybe to decide if the ZIP is enough to explain

the variability in the data (if this term is small), or if a ZINB works better (otherwise).

The likelihood of the ZINB model is also calculated by the product of (3.13) over all units.

After some calculations we get:

l(y|η,θ, δ) =
n

∏
i=1

P(yi| ηi,θ, δ)

∝ exp

{
∑

yi=0
log

(
θ+ (1−θ)

(
δ

δ+µi

)δ)
+ Z0

(
log(1−θ)− log(Γ(δ)) + δ log(δ)

)
(3.15)

+ ∑
yi 6=0

(
log(Γ(yi + δ)) + yi log(µi)− (yi + δ) log(δ+µi)

)}
,

where Z0 is the number of units with strictly positive response. We see from the form

of the likelihood that the calculating time for this model is highly influenced by the

loggamma functions, which require a great computational effort.

3.1.3 Zero Inflated-Poisson with latent variables

In this subsection we present jointly the zero inflated models derived from a POGA, POIG

or POLN assumption for the underlying count data distribution.

The first two models are the zero inflated POGA (ZIPGA) and the zero inflated POIG

(ZIPIG). The common structure at the first hierarchical level is given by

yi| ηi,θ,νi ∼ ZIP(ηi,θ,νi), (3.16)
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where the difference is given by the prior assumptions for the νi, Gamma (2.9) and In-

verse Gaussian (2.14) for ZIPGA or ZIPIG respectively. The density is given by

P(yi| ηi,θ,νi) = θ
(
1− I(yi)

)
+ (1−θ)

exp(−νi µi)(νi µi)yi

yi!
. (3.17)

The mean and variance of the response variable are given by

E(yi| ηi,θ,νi) = (1−θ)νi µi (3.18)

V(yi| ηi,θ,νi) = E(yi| ηi,θ,νi) + E2(yi| ηi,θ,νi)
(

θ

1−θ

)
. (3.19)

Note that they have the same structure as with the ZIP model. So θ
1−θ could also be inter-

preted as a sort of dispersion parameter. But it is not the only source of extra variability.

We have to consider that the inclusion of the νi terms also influences the flexibility of the

model to account for heterogeneity.

For both models the likelihood is the product of (3.17) over all observations in our data,

and it is, up to a proportionality constant, given by

l(y|η,θ,ν) =
n

∏
i=1

P(yi| ηi,θ)

= exp

{
n

∑
i=0

log
(
θ(1− I(yi)) + (1−θ)

exp(−νi µi)(νi µi)yi

yi!

)}

∝ exp

{
∑

yi=0
log (θ+ (1−θ) exp(−νi µi)) (3.20)

+ Z0 log(1−θ) + ∑
yi 6=0

(
− νi µi + yi(log(µi) + log(νi))

)}
,

with Z0 defined as above.

The zero inflated POLN model (ZIPLN) can be implemented in a similar way as the ZIP.

The κi in (2.17) are an additive part of the predictor and they do not destroy the basic

model structure given in Subsection 3.1.1. Hence it is not necessary to rewrite the hole

model once again.
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3.2 Hierarchical centering

Applying the same idea as in Section 2.3, we reparameterize the models ZIPGA and

ZIPIG by moving the intercept from the predictor to the νi terms. We then obtain the

priors given in (2.19) and (2.20) for the new ν̃i and the modified predictor η̃i without

intercept term respectively. The resulting models will be called ZIPGAH and ZIPIGH.

Since the only differences to the ZIPGA and ZIPIG models lie in the prior of the ν̃i and

presence or absence of an intercept in the model, the density and likelihood presented in

the last section are valid for the new models.

Note that these models could also be obtained by applying zero inflation to the POGAH

and POIGH. Both procedures are equivalent.

The ZIPGAH and ZIPIGH are not of great relevance, because they are not new models on

their own but rather reparameterized versions of the ZIPGA and ZIPIG models. Never-

theless it may be interesting to test them on data, where their nonhierarchical equivalents

do not work properly.

3.3 Résumé

The focus of this chapter was to present excess of zeros in count data and the zero inflation

as a solution to this problem. As we have seen, zero inflated models are able to account

for some amount of overdispersion in the data.

In this work we have modeled the selection variables ωi independently from any ob-

served covariates. A desirable extension is to include a second predictor in the model,

linked to the θ parameter through a logit function. In this case we will have a parameter

θi for each unit in the model, see Lambert (1992).

Another important item is the inconsistency of estimates when ignoring the presence of

zero inflation. Note that in our modeling the mean of the underlying count data distri-

bution is transformed by the factor (1 − θ), as given in (3.5). As long as θ is equal for
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all units in the data set, this factor will only affect the estimation of the intercept, but not

the estimation of other parameters in the predictor. We can directly compare the estima-

tion results for the rest of the terms in the predictor from the ’normal’ model with those

obtained from the zero inflated model. But if we introduce a second predictor in the

model, the mean of the underlying count data distribution will be multiplied by (1−θi),

affecting all effects in the predictor and not only the intercept. That makes comparison

more difficult, but is of course a very interesting point that could be considered in future

research.

After analysing the results obtained by applying ZIM to the car insurance data (see Sec-

tion 7.2), it turns out that it could also be of interest to implement and apply hurdle

models to this data.

Underreporting may be a very interesting approach to the car insurance data, in particu-

lar due to its elemental interpretation: Maybe some low costs for car body damages are

not reported to the company by the policy holders so as to avoid higher premiums in the

coming years. That would mean, that not all accidents are reported and it would explain

the large amount of zero counts in the data.

For more literature about excess of zeros, see Lee, Stevenson, Wang and Yau (2002), Rid-

out, Hinde and Demétrio (2001), Agarwal, Gelfand and Citron-Pousty (2002) and Wikle

and Anderson (2003, to appear)
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Chapter 4

Priors and modeling of covariate

effects

In a Bayesian regression framework the parameters in the model are supposed to follow

some underlying distributions, called priors. To complete the exposition of our Bayesian

generalized regression models, we have to discuss these priors. They should account

for available information and reflect our prior knowledge about the parameters. Often,

these priors will depend on further parameters, called hyperparameters. This reflects the

hierarchical structure of the model. Of course it is possible and sometimes desirable to

put also prior distributions on these hyperparameters. We are then talking about hyper-

priors. We may distinguish between priors for the covariates in the predictor and priors

for the model specific parameters. The first group imposes structures on the covariates

and thus is an important and active part of the model construction. Priors in second

group may be more determined by the nature of the parameter. In any case it is always

recommended to take care and not to put too much information on the prior.

The scope of this chapter is to complete the formulation of the models. In Chapters 2

and 3 we have described several possibilities to model a count response variable, that are

more flexible as the common Poisson assumption. Now we first present priors for the

33
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model specific parameters, and then priors for the parameters and functions in the pre-

dictor. We will deal with the first type of priors in Section 4.1. The predictor is common

for all model formulations presented here and depends on the data situation or, more

precisely, on the covariate situation given by the data. We give an overview of possible

terms in Section 4.2, where we will present the elements which form the predictor and

their priors to complete the Bayesian formulation of the models. In Section 4.3 we give a

graphical representation of the hierarchy of the models, that will help us to factorize the

posterior in the next chapter.

4.1 Priors

This section will make some comments on the choice of the prior distributions for the

model specific parameters. The terms in the predictor and their priors will be explained

in the next subsection. The individual specific random effects are already commented on

each model in the preceding subsections in case they are present. So the only two pa-

rameters that have to be considered here are the scale parameter δ and the zero inflation

parameter θ.

The parameter δ has common properties for all the models where it is present, so the

assumptions below are also valid for all of them (see the comments about the Poisson–

Normal model below). Because δ > 0, only distributions with positive domain are ap-

propriate priors. If we do not have any knowledge about the parameter, which will be

the normal situation, a proper distribution is the best option. More precisely we choose a

gamma distribution

δ ∼ G(a, b) (4.1)

with density

g(δ) =
ba

Γ(a)
δa−1e−b δ
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E(δ) =
a
b

(4.2)

V(δ) =
a
b2 .

The parameters a and b can be fixed for the model. Standard values in the literature are

for example a = 1 and b = 0.005. For a fully Bayesian approach, they can be considered

as hyperparameters and some hyperpriors should then be introduced in the model. In

this work we are going to treat only b as a hyperparameter. Reasons for this decision are

given in Subsection 5.3.2, when posteriors are analyzed in more detail. As hyperprior we

choose once again a gamma distribution

b ∼ G(α1,α2) (4.3)

with α1 = 1 and α2 = 0.005 because the hyperparameter b can only take positive values

and we obtain a known form for the full conditional distribution of b easy to work with, as

explained in Chapter 5. In the following we will write the distribution and the moments

of δ given in (4.2) conditional on b. In case of νi = exp(κi), δ is not modeled directly,

but τ2
κ = log(1 + 1

δ
). The implemented hyperprior is an inverse gamma distribution

τ2
κ ∼ IG(a, b) with fixed a = 1 and b = 0.005. As we will see in Subsection (4.2.1), this

is the standard choice of hyperprior for the variance of random effects. Note that the

inverse gamma defined here does not have a properly defined mean nor a variance.

For the parameter θ the prior assumption must also respect its nature. Since θ indicates

a probability, only values between 0 and 1 are allowed. The prior we have chosen is a

uniform distribution over the interval [0, 1]. We will write

θ ∼ U[0, 1] (4.4)

with density g(θ) = 1, mean E(θ) = 0.5 and variance V(θ) = 1
12 . A Beta distribution

may be also a good alternative for the zero inflation parameter. However, our opinion is

that the next extension of this model in further work should not be concerned with the

investigation of prior distributions for θ, but the extension to two predictors to include

covariates in the modeling of θ.
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4.2 Predictors

After we have presented the different observation models we are going to work with,

it is time to take a look at the predictor. As said before, it mainly depends on the type

of covariates that we have observed, and on how we want to model their effects on the

response variable. First we make some comments on the covariate types, fix the notation

for the predictor and then describe which priors are appropriate in each case.

The covariates are in general either discrete or metrical. Discrete covariates may be

dummy variables (0/1) or categorical. In the latter case they may be interpreted as some

group indicator and handled as a random effect. If these group indicators refer to some

spatial information, then we talk about spatial covariates. Metrical covariates may be

characterized by some timescale (e.g. car age in the application of Chapter 7) or another

metrical quantity (e.g. number of driven km per year also in Chapter 7).

Now we fix the notation for this section. Suppose we have data (yi, ri, xi
′, zi

′) for i =

1, . . . , n, where yi is the response variable for the unit i, ri is an unit specific offset, metrical

and spatial covariates are given in xi
′ = (xi1, . . . , xiP) and further covariates in the vector

zi
′ = (zi1, . . . , ziQ). The additive predictor is then given by

ηi = α + zi
′β+ ∑ f ( j)(xi j) + ρgi (4.5)

for i = 1, . . . , n. In (4.5) α is an intercept, common to all units, β is the vector of length

Q of parameters for fixed effects, f ( j) are unknown smooth functions, and ρg are random

effects for the groups g = 1, . . . , G. The prior distribution for the parameters should

reflect the information available about the covariate.

4.2.1 Fixed and random effects

In this subsection we define some priors for fixed and random effects. For the first case

the usual choice are diffuse priors which do not give any information about the effects.

p(βq) ∝ constant, (4.6)
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where the priors are supposed to be independent for each q = 1, . . . , Q. Independent flat

Gaussian priors are also a good choice for this case.

For the random effects we will take Gaussian independent priors

ρg ∼ N(0, τ2
ρ ), (4.7)

for g = 1, . . . , G. The parameter τ2
ρ is a hyperparameter, and we will assume an improper

inverse gamma hyperprior with parameters a = 1 and b = 0.005 (as a standard option).

4.2.2 Metrical covariates

Suppose first that x is a metrical covariate with a vector of ordered equidistant observed

values (x(1), . . . , x(m), . . . , x(M)). Then we will denote the vector of function evaluations

on these values of x by f = ( f (x(1)), . . . , f (x(m)), . . . , f (x(M))). To simplify the notation

let f = ( f1 . . . fm . . . fM). In this situation it is natural to suppose that function evalua-

tions of two consecutive values of x can not extremely differ, that means, f is a smooth

function. To implement this intuitive assumption we distinguish two approaches. Note

that both approaches can be presented in a unified matrix notation.

Random walk of first or second order

The easiest form of representing this intuitive approach is to penalize the differences

between two consecutive values of x. Formally

f1 ∝ constant

fm − fm−1 ∼ N(0, τ2
f ),

(4.8)

for m = 2, . . . M. This is called a first order random walk prior, in short RW1. By taking

second differences into account, we get

f1, f2 ∝ constant
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( fm − fm−1)− ( fm−1 − fm−2) =

fm − 2 fm−1 + fm−2 ∼ N(0, τ2
f ), (4.9)

for m = 3, . . . , M. This approach is called a second order random walk, in short RW2. A

RW1 penalizes too big jumps between fm−1 and fm. On the other hand a RW2 penalizes

deviations from the linear trend. Therefore a RW2 imposes a smoother function f than a

RW1 does. The influence of this penalty is controlled through the parameter τ2
f in both

cases. The bigger the variance of the normal distribution, the rougher is the function f .

The hyperprior for τ2
f is an improper inverse gamma distribution, chosen in a similar

way as the hyperprior for τ2
ρ given in Subsection 4.2.1.

We now rewrite the formulations above in matrix notation. The joint distribution of f in

the RW1 case can be factorized as follows:

p( f ) = p( fM| fM−1) . . . p( fm| fm−1) . . . p( f2| f1)p( f1)

∝ exp

(
1

2τ2
f

M

∑
m=2

( fm − fm−1)2

)

∝ exp

(
1

2τ2
f

f ′KRW1 f

)
∼ N

(
0, τ2

f K̃RW1

)
,

where 1
τ2

f
KRW1 is the precision matrix of the Gaussian distribution. The so called penalty

matrix KRW1 is given by:

KRW1 =



1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1


The same procedure applied to the RW2 gives the joint density

p( f ) = p( fM| fM−1, fM−2) . . . p( fm| fm−1, fm−2) . . . p( f3| f2, f1)p( f2)p( f1)
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∝ exp

(
1

2τ2
f

M

∑
m=3

( fm − 2 fm−1 + fm−2)2

)

∝ exp

(
1

2τ2
f

f ′KRW2 f

)
∼ N

(
0, τ2

f K̃RW2

)
.

In this case KRW2 is given by:

KRW2 =



1 −2 1

−2 5 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 5 −2

1 −2 1


Note that neither KRW1 nor KRW2 have full rank. Hence their inverse does not exist and

what we have defined is a partially improper prior. Both are sparse diagonal matrices

which is a good property for efficient implementation.

If the observed values of the covariate x are not equidistant, both RW1 and RW2 can be

reformulated by including appropriate weights in the penalties (see Fahrmeir and Lang

(2001a) and Knorr-Held (1997)).

Bayesian P–Splines

In the following a nonparametric approach for estimation of smooth functions is briefly

introduced. For a complete review on Bayesian P–splines see Lang and Brezger (2004)

and Biller (2000) for Bayesian spline regression. The main idea is to represent the un-

known smooth function f (·) as a linear combination of some known basis functions, say

B1(·), . . . , BS(·):

f (·) =
S

∑
s=1
γsBs(·) (4.10)
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Among all the possible basis functions we are going to focus our attention on B–splines.

First we have to fix the degree of the splines, say d, and K + 2d equally spaced knots as

follows

ζ1 < . . . < ζ1+d = x(1) < . . . < ζk < . . . < ζK+d = x(M) < . . . < ζK+2d

Now the basis consists of S = K + d splines of degree d, denoted by Bd
s . Each spline is

nonzero on a compact domain over 2 + d knots. Figure 4.1 gives an example for B–splines

of degree 3.

0 2 4 6

0
.
0

0
.
5

1
.
0

1
.
5

0 1 2 3 4 5 6 7

B5B3 B4 B6 B7 B8

f

Figure 4.1: B–Splines basis of degree 3

It also gives a graphical description of the spline estimation idea: the smooth function

f should be represented as a linear combination of the splines basis functions. For this

purpose we have to estimate the coefficient vector γ = (γ1, . . . ,γs, . . . ,γS) for (4.10).

Note that if no further restriction is made, we may get a rather rough estimate for f .

In maximum likelihood approaches a penalty term depending on a so called smoothing

parameter is added to the likelihood of the model (see for example Eilers and Marx (1996)

and Hastie and Tibshirani (1990)). As we are working in a Bayesian framework, we

can control the roughness of the estimation by imposing an appropriate prior on the

coefficients γ. The two possibilities we consider here are a RW1 or RW2 as defined before
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in (4.8) and (4.9). Thus we can take advantage of the Bayesian approach and avoid the

calculation of an optimal smoothing parameter.

For implementation it is interesting to show that the P–spline approach can be written in

matrix notation. Define f as in the RW situation and

B =


B11 . . . B1S

... Bms
...

BM1 . . . BMS


with Bms = Bs(x(m)) . For simplicity we have omitted the degree of the basis functions.

As the splines have only positive values on a compact interval and are zero elsewhere, the

matrix B has some sort of band structure that can be used to improve the computational

implementation. With these reformulations we get:

f = Bγ.

The prior for γ is

γ ∼ N
(

0, τ2
γK̃RW

)
, (4.11)

where 1
τ2
γ

KRW is the precision matrix of the Gaussian distribution. For the penalty matrix

KRW we have to set KRW1, if we have chosen a RW1 prior for the coefficients, or KRW2, if

we have chosen a RW2.

4.2.3 Spatial covariates

The data situation with spatial covariates can be resumed as follows. Let z be a covariate

with spatial information for each unit in the dataset. Usually, z is an index for the regions1

to R of a geographical map, so that zi ∈ {1, . . . , R} for i = 1, . . . , n. Let Ωr be the set of

neighbors of region r, Nr the number of elements inΩr, and define f = ( f1, . . . , fr, . . . , fR)

as the vector of effects of each region.
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The aim is to find a prior that reflects the natural assumption, that effects of neighboring

regions should be similar. The candidate we are going to consider here is a Gaussian

intrinsic autoregression prior given by:

fr| f−r ∼ N

(
1

Nr
∑

s∈Ωr

fs,
1

Nr
τ2

f

)
. (4.12)

It says that the effect in region r has to be ’similar’ to the mean of the effects of its neigh-

bors. The amount of ’similarity’ is controlled by the variance. It depends on the number

of neighbors and may be problematic at the boundary regions, where there may be only

few neighbors for some regions. It also depends on the parameter τ2
f . In a fully Bayesian

analysis, an inverse gamma prior is assigned to this hyperparameter.

We use (4.12) to write the joint density of f in matrix form similar to the random walks

as

p( f ) ∝ exp

(
− 1

2τ2
f

f ′K f f

)
. (4.13)

The matrix K f has Nr entries for the elements in the main diagonal, Krs = 1 if regions

r and s are neighbors and zero elsewhere. By definition K f is a sparse band matrix. By

reordering the regions an optimal form for K f with minimal bandwidth can be found,

which helps to improve the efficiency of computations. Note that the matrix K f has no

inverse because it is not of full rank. So the Gaussian distribution defined here is not

proper.

Often an unstructured spatial term is also introduced, which should model extreme de-

viations from the imposed structured spatial prior. This term is considered as a random

effect per region and is implemented as given in (4.7) at the beginning of this subsection.

Notice that both terms are based on the same covariate, namely the regional information.

Despite this fact they are at least at the prior level identifiable, due to the different prior

assumptions.
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4.3 Hierarchy of the models
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Figure 4.2: Representation of the hierarchy for the models with (right) or without (left)

latent variables and with (bottom) or without (top) zero inflation

In Figure 4.2, we find a graphical representation of the different hierarchies of the mod-

els. This is important for the next chapter because the factorization of the posterior of

the parameters depends on this structure. The difference is mainly given by the presence

or absence of the latent variables or zero inflation in the model. In Figure 4.2, the first
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row represents models with no zero inflation, and the second row models with zero in-

flation. Furthermore, the first column gives the models without latent variables, and the

second the models where latent variables are present. So we can classify our models in

to four groups. The first group only consists of the NB model, since it is the only model

where no latent variables and no zero inflation are present. Its hierarchical structure is

given by Picture A in Figure 4.2. There we see that the influence of the scale parameter δ

directly affects the response variable. The dots in both pictures represent further hyper-

parameters which may also be implemented for the priors of the elements in η. Picture

B represents the second group and there we find the POGA, POIG and POLN models.

The parameter δ appears a level beneath in the model hierarchy compared to Picture A.

Now the individual specific random effects directly influence the response variable and

they depend on δ. The third group contains the ZINB model and is given in Picture C.

Its hierarchical structure is similar to the one in Picture A, but we find a new parameter

θ in the model, that directly affects the response variable. The last group, given in Pic-

ture D, comprises the models ZIPGA, ZIPIG and ZIPLN, where latent variables and zero

inflation are present.
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Figure 4.3: Representation of the hierarchy for the ZIP model
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Note that the ZIP model can not be represented by any of the given pictures because of

the absence of a dispersion parameter. Thus we add a fifth group E and give the graphical

design of this model separately in Figure 4.3.

4.4 Résumé

In this chapter we have shown a small part of the potential flexibility of hierarchical

Bayesian approaches for modeling data with complex covariate structure. We have seen

that priors have to respect the underlying nature of the parameters and at the same time

can force them to satisfy restrictions that may be desirable for some covariates.

We have to remark that the aim of a prior is to incorporate information in the model

about the parameters, but it is important not to choose too informative priors, if we do

not know how the parameter is actually distributed. The amount of ’information’ of

a prior is generally controlled through its hyperparameters and can be determined by

examining the first moments or the shape of the density function, for example.

For γ, f and ρ an unified form for their priors is possible using a matrix representation.

Note that with

p(v|τ2
v ) ∝ exp

{
− 1

2 τ2
v

v′Kvv
}

(4.14)

we can represent all three priors (4.7), (4.11) and (4.13) by taking v ∈ {ρ,γ, f}, the penalty

matrix Kv ∈ {IG, Kγ , K f } and the hyperparameter τ2
v ∈ {τ2

ρ , τ2
γ , τ2

f } respectively. This fact

is very useful for the posterior inference in the next Chapter.

Another important fact for an unified representation is given by the matrix notation of the

predictor. Note that in the presence of some fixed effects parametrized by β, a metrical

covariate x with parameter vector γ for the spline, a random effect represented by ρ and

spatial information modeled by f , we will have the predictor

η = Xββ+ Xγγ + Xρρ+ X f f . (4.15)
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For the fixed effects, Xβ is a nxQ matrix, where Q is the number of discrete covariates,

with entries

(Xβ)iq = ziq. (4.16)

From (4.10) we can derive Xγ as a nxS matrix (S = number of basis functions for the

Spline) with entries given by

(Xγ)is = Bs(xi), (4.17)

which means that the ith row of Xγ are the values of the basis functions on the observed

value of x for the ith unit.

Xρ is a nxG 0/1 incidence matrix with

(Xρ)ig =

 1 gi = g

0 otherwise.
(4.18)

Remember that G is the observed number of different categories for the discrete covariate

defining the random effect ρ.

X f is also nxR 0/1 incidence matrix with following entries

(X f )ir =

 1 ri = r

0 otherwise.
(4.19)

We will use this unified representation in the next chapter, where we present the algo-

rithms for posterior inference on our models.



Chapter 5

Posterior inference

In Bayesian regression inference is based on the analysis of the posterior distribution of

the parameters given the data. In general this high dimensional posterior will not have

a known closed form but rather a complicated high dimensional density only known up

to the proportionality constant, which makes direct inference almost impossible. Markov

Chain Monte Carlo (MCMC) Methods are sophisticated techniques that have been devel-

oped to resolve this problem. A brief overview about MCMC theory and some biblio-

graphic information are given in Appendix C.

For practical applications of MCMC methods we proceed as follows. First we build the

joint posterior of the parameters in the model. Then we derive the full conditional dis-

tribution for each natural group of parameters, that is the conditional distribution of this

group of parameters given the data and all the other parameters in the model. If the full

conditional is proportional to a known distribution, we can apply Gibbs–sampling (see

Section C.1 in Appendix C). If not, then Metropolis–Hastings (M–H) sampling has to be

implemented (Section C.2) and we need to find a so called proposal distribution for the

algorithm.

In Section 5.1 we first calculate the joint posterior distributions for the models. After-

wards we derive the full conditionals for each parameter block from these posteriors

47
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and, if Gibbs–sampling is not possible, appropriate proposal distributions are given in

Section 5.3. The last section gives an overview of the sampling algorithms.

5.1 Posteriors

Once we have the model structure and priors for the parameters, we can calculate the

joint posterior distribution of the parameters in the model given the data. In a short

form:

π(ξ |y) =
l(y|ξ)P(ξ)

P(y)
∝ l(y|ξ)P(ξ),

with ξ denoting the parameters in the model and P(ξ) their prior distribution. The like-

lihood of the data given the parameters is l(y|ξ) and P(y) is the marginal distribution of

the data.

For the calculations of the posteriors in this work we must differentiate between the five

groups represented in Figures 4.2 and 4.3, because the hierarchical structure determines

the form of factorizing the joint distribution. The five possibilities were: First the group

A (NB model), without latent variables and zero inflation but with overdispersion pa-

rameter. Second, group B (POGA, POIG and POLN models) with latent variables but

still without zero inflation. Third the group C (ZINB model) without latent variables,

but with overdispersion and zero inflation. Fourth, group D (ZIPGA, ZIPIG and ZIPLN

models) with latent variables and zero inflation. And last, group E, the fifth group, where

we have the ZIP model without overdispersion, but with zero inflation.

For convenience, we will classify the groups in three blocks. The first block is presented

in Subsection 5.1.1 and contains the hierarchical groups A and C. In Subsection 5.1.2 we

calculate the posteriors for the second block of groups, namely B and D. And the third

block contains the hierarchical group E and is shown in Subsection 5.1.3.
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For the following we remember thatβ denotes the parameter vector of fixed effects, γ the

vector of coefficients for the splines, f the structured spatial effects and ρ some random

effects in the model. Please note that without loss of generality all together can be shortly

represented by η (see (4.5)). If present, ν or κ refer to the unit specific latent variables, δ

to the dispersion parameter and θ to the zero inflation parameter.

5.1.1 Posteriors for groups A and C

Under reasonable conditional independence assumptions the posterior distribution for

the NB model (group A) is given by:

π(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ , δ, b| y) ∝ l(y|β,γ, f ,ρ, δ)

P(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ , δ, b)

= l(y|η, δ) p(β) p(γ|τ2
γ) g(τ2

γ)

p( f |τ2
f ) g(τ2

f ) p(ρ|τ2
ρ ) g(τ2

ρ ) (5.1)

g(δ|b) g(b).

A similar result holds for the ZINB model (group C), where in addition we have the zero

inflation parameter θ.

π(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ , δ, b,θ| y) ∝ l(y|β,γ, f ,ρ, δ,θ)

P(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ , δ, b,θ)

= l(y|η, δ,θ) p(β) p(γ|τ2
γ) g(τ2

γ)

p( f |τ2
f ) g(τ2

f ) p(ρ|τ2
ρ ) g(τ2

ρ ) (5.2)

g(δ|b) g(b) g(θ).

All the factors in these products of distributions are presented in Chapters 2, 3 and 4. The

likelihood of the model l(y|η, δ) is in the first case the density of a Negative Binomial

distribution and is given in (2.4). Or in case of the ZINB model, l(y|η, δ,θ) is as given
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in (3.15). For g(δ|b) and g(b) two Gamma distributions were chosen as respectively ex-

plained in (4.2) and (4.3). If we have zero inflation, g(θ) is defined in (4.4). For the fixed

effects we assume a diffuse prior p(β) ∝ constant as said in (4.6), and for the random

effects p(ρ|τ2
ρ ) as in (4.7). The prior p(γ|τ2

γ) of the coefficients for the P–splines is given

in (4.11). The structured spatial effects prior p( f |τ2
f ) is the GMRF described in (4.13).

Finally, all the g(τ2
· ) are distributed as IG(a, b), with hyperparameters a, b. Standard

choices are a = 1, b = 0.005 or a = b = 0.001; with the latter choice the IG prior is nearer

to Jeffrey’s noninformative prior.

5.1.2 Posteriors for groups B and D

Due to the notational remarks made in Subsection 2.2.3 about implementation of the

POLN model, we need two posterior forms for the latent variables cases: one for the

POGA and POIG models and another one, similar in interpretation but in some nota-

tional aspects different, for the POLN model. Of course we get the same classification for

the corresponding zero inflated versions.

In the presence of latent variables ν without zero inflation and under conditional inde-

pendence assumptions the posterior generally looks like:

π(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,ν, δ, b| y) ∝ l(y|β,γ, f ,ρ,ν)

P(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,ν, δ, b)

= l(y|η,ν)p(β)p(γ|τ2
γ)g(τ2

γ)

p( f |τ2
f )g(τ2

f )p(ρ|τ2
ρ )g(τ2

ρ ) (5.3)

g(ν|δ)g(δ|b)g(b).

Adding zero inflation to the model, we obtain

π(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,ν, δ, b,θ| y) ∝ l(y|β,γ, f ,ρ,ν,θ)

P(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,ν, δ, b,θ)
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= l(y|η,ν,θ)p(β)p(γ|τ2
γ)g(τ2

γ)

p( f |τ2
f )g(τ2

f )p(ρ|τ2
ρ )g(τ2

ρ ) (5.4)

g(ν|δ)g(δ|b)g(b)g(θ).

As before, all the factors in (5.3) and (5.4) are already explained in the last chapter. They

essentially remain the same as in (5.1) and (5.2), with some slight differences. The likeli-

hood terms are now l(y|η,ν), which is a Poisson distribution common for all the latent

variables models, given in (2.11), and l(y|η,ν,θ), a zero inflated Poisson distribution,

given in (3.20). For the prior distribution denoted by g(ν|δ) = ∏n
i=1 g(νi|δ) we can choose

a Gamma prior as given in (2.9) or an Inverse Gaussian as in (2.14).

For the POLN model, the posterior is calculated in a similar way:

π(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,κ, τ2

κ | y) ∝ l(y|β,γ, f ,ρ,κ)

P(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,κ, τ2

κ )

= l(y|η,κ)p(β)p(γ|τ2
γ)g(τ2

γ)

p( f |τ2
f )g(τ2

f )p(ρ|τ2
ρ )g(τ2

ρ ) (5.5)

g(κ|τ2
κ )g(τ2

κ ).

For the ZIPLN, where zero inflation is included in the model, we have

π(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,κ, τ2

κ ,θ| y) ∝ l(y|β,γ, f ,ρ,κ,θ)

P(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,κ, τ2

κ ,θ)

= l(y|η,κ,θ)p(β)p(γ|τ2
γ)g(τ2

γ)

p( f |τ2
f )g(τ2

f )p(ρ|τ2
ρ )g(τ2

ρ ) (5.6)

g(κ|τ2
κ )g(τ2

κ )g(θ).

In these cases, the likelihood l(y|η,κ) is the product of the individual likelihood contri-

butions, defined in the table of Subsection 2.2.3 as Poisson densities, and l(y|η,κ,θ) is

the term given in (3.11). The vector of parameters κ is handled as a common vector of
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random effects for each unit, and therefore g(κ|τ2
κ ) and g(τ2

κ ) are specified by (4.7) and

by a IG(a, b) distribution, respectively. The rest of the factors remains as explained in

Subsection 5.1.1.

5.1.3 Posterior for group E

Finally, we present here the posterior for the basic ZIP, which can be easily derived from

the hierarchy given in Figure 4.3.

π(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρθ| y) ∝ l(y|β,γ, f ,ρ,θ)

P(β,γ, τ2
γ , f , τ2

f ,ρ, τ2
ρ ,θ)

= l(y|η,θ)p(β)p(γ|τ2
γ)g(τ2

γ)

p( f |τ2
f )g(τ2

f )p(ρ|τ2
ρ )g(τ2

ρ ) (5.7)

g(θ).

The products used here are the same as in Subsection 5.1.1. The difference is given by the

likelihood term l(y|η,θ), which is defined as in (3.11).

5.2 Full conditionals

It is clear that none of the possible posteriors described before has a ’nice’ closed form,

from which we could directly draw samples for inference. Therefore we must proceed

with the analysis of the full conditionals of blocks of parameters as explained in this

section.

5.2.1 Predictor terms and their hyperparameters

This part of the calculation of the full conditionals is well known in the standard liter-

ature. The elements in the predictor are common for all models presented here. The
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difference in the full conditionals calculated from (5.1) to (5.7) for these terms is only

given by the likelihood factor, which is the product of Poisson, Negative Binomial, zero

inflated Poisson or zero inflated Negative Binomial densities. This likelihood term will be

represented in this Subsection jointly for all the models by l(y|η, ·), where ’·’ represents

• δ or δ,θ in a NB or ZINB model

• ν or ν, θ for a POGA, POIG or ZIPGA, ZIPIG models

• κ or κ, θ for the POLN or ZIPLN formulation

• only θ for the ZIP model.

Consequently we are only going to write down the full conditionals for each block of

parameters in a general form, which is valid for all the models.

Let us begin with the block β. Its full conditional is given by

π(β| . . .) ∝ l(y|η, ·) p(β)

∝ l(y|η, ·), (5.8)

resulting from p(β) ∝ constant that the full conditional of β is proportional to the likeli-

hood of the model.

Using the unified form for the priors of γ, f and ρ given in (4.14) we can represent their

full conditionals in a compact way as product of the joint likelihood and the prior,

π(v| . . .) ∝ l(y|η, ·) p(v|τ2
v )

∝ l(y|η, ·) exp
{
− 1

2 τ2
v

v′Kvv
}

(5.9)

for v ∈ {γ, f ,ρ}, the penalty matrix Kv ∈ {Kγ , K f , IG} and the hyperparameter τ2
v ∈

{τ2
γ , τ2

f , τ2
ρ} respectively.

The joint posterior distribution only depends on the hyperparameter τ2
v through its prior

and the prior for v. The first distribution is the same for τ2
γ , τ2

f and τ2
ρ , and for the second
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we have a unified representation for all three values in (4.14). It is clear that we can also

write down a general form for the full conditional, valid for all τ2
v = τ2

γ , τ2
f , τ2

ρ and given

by

π(τ2
v | . . .) ∝ p(v|τ2

v )g(τ2
v )

∝ exp
{
− rank(Kv)

2
ln(τ2

v )− 1
2 τ2

v
v′Kvv− (a + 1) ln(τ2

v )− b
τ2

v

}
= exp

{
−(a +

rank(Kv)
2

+ 1) ln(τ2
v )− 1

τ2
v

(
1
2

v′Kvv + b)
}

∝ IG
(

a +
1
2

rank(Kv),
1
2

v′Kvv + b
)

. (5.10)

As said in Subsections 2.2.3 and 3.1.3, we are going to work with the POLN and ZI-

PLN models by assuming that the random effects κ are added into the predictor and are

normally distributed. In fact they are nothing else as common random effects defined

in Subsection 4.2.1. Therefore, although they are model ’specific’ parameters, we make

some remarks about their full conditional here and not in the next section as for the other

models.

Obviously, if κ is a vector of random effects the full conditional can be also represented

by (5.9) by setting v = κ, Kv = In and τ2
v = τ2

κ .

The same generalization holds for the full conditional of τ2
κ , which is also given by (5.10).

5.2.2 Model specific parameters

Because the following parameters are specific for the models and can not be found in the

standard literature, this subsection describes in more detail how to calculate the full con-

ditionals. First we indicate for each parameter which terms of the general joint posterior

build the full conditional and then we move on to the concrete models.

We begin with the vector ν. Its components are supposed to be independent a priori.

Hence we can sample and update each component separately. Of course, to calculate

the full conditionals for ν only the posteriors given in (5.3) and (5.4) are relevant. Hence
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we distinguish between the full conditional in a general case for a single component i

with (from (5.4)) or without (from (5.3)) zero inflation. We eliminate all factors from the

posteriors, that do not depend on νi and obtain following expressions

π(νi| . . .) ∝ l(yi|ηi,νi,θ)g(νi|δ) (5.11)

π(νi| . . .) ∝ l(yi|ηi,νi)g(νi|δ), (5.12)

respectively. Now we analyze the concrete models, first with zero inflation, namely

ZIPGA and ZIPIG models, and second without, for POGA and POIG.

For the ZIPGA model the likelihood l(yi|ηi,νi,θ) is given in (3.17) and the prior g(νi|δ)

in (2.9). Putting these expressions together in the product (5.11), we get:

π(νi| . . .) ∝ l(yi|ηi,νi,θ)g(νi|δ)

=
{
θ
(
1− I(yi)

)
+ (1−θ)

exp(−νi µi)(νi µi)yi

yi!

}
δδ

Γ(δ)
νδ−1

i exp(−δ νi)

∝
{
θ
(
1− I(yi)

)
+ (1−θ)

exp(−νi µi)(νi µi)yi

yi!

}
exp {(δ− 1) log(νi)− δ νi} . (5.13)

Without great effort we see that, due to the complicated form of the likelihood, this ex-

pression can not be rewritten to be proportional to any known distribution from which

we could easily take samples. Thus we have to implement a M–H step for the update.

In a similar way, we obtain the result for the ZIPIG model. The full conditional is the

same as before, but with an Inverse Gaussian distribution for the νi.

π(νi| . . .) ∝ l(yi|ηi,νi,θ)g(νi|δ)

=
{
θ
(
1− I(yi)

)
+ (1−θ)

exp(−νi µi)(νi µi)yi

yi!

}
√

δ

2 π ν3
i

exp
{
−δ (νi − 1)2

2νi

}
∝

{
θ
(
1− I(yi)

)
+ (1−θ)

exp(−νi µi)(νi µi)yi

yi!

}
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exp
{
−3

2
ln(νi)− δ

(νi − 1)2

2νi

}
. (5.14)

There is no closed form for this expression and M–H update step will be presented in the

next section.

We now concentrate on the full conditionals for νi in the models without zero inflation

POGA and POLN.

In a POGA formulation the likelihood term l(yi|ηi,νi) comes from a Poisson distribu-

tion with parameter νi µi (see (2.11)), and g(νi|δ) is Gamma distributed. Including this

information in (5.12) gives the full conditional for νi:

π(νi| . . .) ∝ l(yi|ηi,νi)g(νi|δ)

=
exp{−νi µi}(νi µi)yi

yi!
δδ

Γ(δ)
νδ−1

i exp{−δ νi}

∝ exp{−νi µi + yi ln(νi) + (δ− 1) ln(νi)− δ νi}

∝ exp{(yi + δ− 1) ln(νi)− (µi + δ)νi}

∼ G(yi + δ,µi + δ) (5.15)

In this particular case, the full conditional is proportional to a Gamma distribution with

parameters yi + δ and µi + δ. Therefore, Gibbs sampling can be used to update the νi’s

in a POGA formulation.

For a POIG model the procedure is the same. The likelihood term in (5.12) is similar as be-

fore, with the difference given only by the factor g(νi|δ), which is now Inverse Gaussian

distributed. After substituting these terms the full conditional is:

π(νi| . . .) ∝ l(yi|ηi,νi)g(νi|δ)

=
exp{−νi µi}(νi µi)yi

yi!

√
δ

2 π ν3
i

exp
{
−δ (νi − 1)2

2νi

}
∝ exp

{
− νi µi + yi ln(νi)−

3
2

ln(νi)− δ
(νi − 1)2

2νi

}
(5.16)

This time we are not able to find a known distribution that is proportional to this full

conditional. Hence Gibbs sampling is not possible and a M–H step must be implemented.
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The parameter δ is present in the NB, POGA, POIG models and their zero inflated ver-

sions. We first present the full conditional in the hierarchical groups A and C (NB and

ZINB respectively) and finally in the groups B (POGA and POIG) and D (ZIPGA and

ZIPIG).

We can calculate the full conditional for δ in the NB formulation by eliminating all factors

that do not depend on it from the joint posterior given in (5.1) as follows:

π(δ| . . .) ∝ l(y|η, δ) g(δ|b)

∝ exp
{

n
(
δ log(δ)− log Γ(δ)

)
+

n

∑
i=1

(
− log Γ(yi + δ)− (yi + δ) log(δ+µi)

)
(5.17)

+(a− 1) log(δ)− b δ
}

.

For its zero inflated version ZINB we have to proceed in a similar way but using the

posterior given in (5.2) instead:

π(δ| . . .) ∝ l(y|η, δ,θ) g(δ|b)

∝ exp

{
∑

yi=0
log

(
θ+ (1−θ)

(
δ

δ+µi

)δ)
+ Z0

(
log(1−θ)− log(Γ(δ)) + δ log(δ)

)
+ ∑

yi 6=0

(
log(Γ(yi + δ)) + yi log(µi)− (yi + δ) log(δ+µi)

)
+ (a− 1) log(δ)− bδ

}

∝ exp

{
∑

yi=0
log

(
θ+ (1−θ)

(
δ

δ+µi

)δ)
+ Z0

(
δ log(δ)− log(Γ(δ))

)
+ ∑

yi 6=0

(
log(Γ(yi + δ))−(yi + δ) log(δ+µi)

)
+ (a− 1) log(δ)− bδ

}
. (5.18)

Neither (5.17) nor (5.18) are proportional to any distribution from which it is easy to

sample. They both have a rather complicated form, that will increase computation time.
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An appropriate M–H step must be implemented in both cases following the explanations

in the next section.

The general form of the full conditional for δ in a model formulation of the groups B and

D is

π(δ| . . .) ∝ g(ν|δ) g(δ|b). (5.19)

The factor g(δ|b) is given in (4.2) and common for all four models. The difference is given

by the factor g(ν|δ) and this is the same for POGA and ZIPGA (a Gamma distribution)

and for POIG ans ZIPIG (an Inverse Gaussian distribution).

We begin with the POGA and ZIPGA formulations. As said before, g(ν|δ) comes from a

Gamma distribution and the full conditional is proportional to

π(δ| . . .) ∝ g(ν|δ) g(δ|b)

=
n

∏
i=1

{
δδ

Γ(δ)
νδ−1

i exp{−δ νi}
}

ba

Γ(a)
δa−1 exp{−b δ}

∝ exp
{ n

∑
i=1

(
δ log(δ)− log Γ(δ) + (δ− 1) log(νi)− δ νi

)
+(a− 1) log(δ)− b δ

}
∝ exp

{
n
(
δ log(δ)− log Γ(δ)

)
+ δ

n

∑
i=1

(
log(νi)− νi

)
(5.20)

+(a− 1) log(δ)− b δ
}

It is not possible to find an appropriate distribution proportional to this full conditional,

and we need the help of the M–H algorithm.

Finally, in the last two formulations (POIG and ZIPOIG) ν|δ is Inverse Gaussian dis-

tributed. From substituting it appropriately in (5.19) we get:

π(δ| . . .) ∝ g(ν|δ) g(δ|b)

=
n

∏
i=1

{√
δ

2 π ν3
i

exp
{
−δ (νi − 1)2

2νi

}}
ba

Γ(a)
δa−1 exp{−b δ}
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∝ exp
{ n

∑
i=1

(
1
2

log(δ)− δ (νi − 1)2

2νi

)
+ (a− 1) log(δ)− b δ

}
= exp

{(
n
2

+ a− 1
)

log(δ)− δ
( n

∑
i=1

(νi − 1)2

2νi
+ b
)}

∼ G

(
n
2

+ a,
n

∑
i=1

(νi − 1)2

2νi
+ b

)
. (5.21)

Hence a simple Gibbs step can be used to update δ in the POIG and ZIPIG models. If we

take a look at this full conditional it is also clear why we just sample b as hyperparameter

and not both a and b: a is not relevant because in normal cases n
2 will be much larger than

a. But the sum ∑n
i=1

(νi−1)2

2νi
can be very close to 0 when the νi are all close to 1 and they

are supposed to have mean 1 a priori. So the parameter b may play an important role in

the full conditional of δ.

For the other formulations we could not find such an argumentation by analyzing the

full conditionals that justify sampling only for b. Nevertheless we decided to proceed in

a similar way to unify the model formulations. The full conditional for b is similar in all

the cases because it only depends on the prior for b and the prior for δ, and they remain

the same for all models.

π(b| . . .) ∝ g(δ|b)g(b)

=
ba

Γ(a)
δa−1 exp{−b δ}

α
α1
2

Γ(α1)
bα1−1 exp{−α2 b}

∝ exp{a log(b)− b δ+ (α1 − 1) log(b)−α2 b}

∝ exp{(a +α1 − 1) log(b)− (δ+α2) b}

∝ G(a +α1, δ+α2). (5.22)

Finally, we concentrate on the zero inflation parameter θ. First, we recover the notation

of Section 3.1 and give a general structure for the full conditional of θ in zero inflated

models.

π(θ| . . .) ∝
n

∏
i=1

P(yi|·,θ)g(θ)
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= ∏
yi=0

{
θ+ (1−θ)P(yunder

i = 0|·)
}

∏
yi 6=0

{
(1−θ)P(yunder

i = yi|·)
}

∝ exp

{
∑

yi=0
log

(
θ+ (1−θ)P(yunder

i = 0|·)
)

+ Z0 log(1−θ)

}
, (5.23)

with g(θ) = 1 as given in (4.4), and Z0 as the number of nonzero counts in the data.

Remember that with yi we have denoted the observed count data outcome and with

yunder
i the underlying count data process. For the last one we have chosen several options:

Poisson, Poisson with latent variables and Negative Binomial.

Now it is easy to calculate the full conditional of θ in the different models. We only need

to replace P(yunder
i = 0|·) by the corresponding count data distribution. We first examine

the full conditional for the hierarchical group C (ZINB model), then for the group D

(ZIPGA and ZIPIG models), and finally for the group E (ZIP model) separately.

In a ZINB model, the underlying count data distribution is a Negative Binomial. From

(5.23) we get

π(θ| . . .) ∝ l(y|η, δ,θ)g(θ)

∝ exp

{
∑

yi=0
log

(
θ+ (1−θ)

(
δ

δ+µi

)δ)
+ Z0 log(1−θ)

}
. (5.24)

For the models in group D we need the probability of zero counts from a Poisson distri-

bution with mean νiµi

π(θ| . . .) ∝ l(y|η,ν,θ)g(θ)

∝ exp

{
∑

yi=0
log

(
θ+ (1−θ) exp(−νiµi)

)
+ Z0 log(1−θ)

}
. (5.25)

Next we calculate the full conditional forθ in a ZIP model. Similar as before, we need the

probability of zero counts of a Poisson distribution, but this time with mean given by µi.

π(θ| . . .) ∝ l(y|η,θ)g(θ)

∝ exp

{
∑

yi=0
log

(
θ+ (1−θ) exp(−µi)

)
+ Z0 log(1−θ)

}
. (5.26)
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These full conditionals have a rather complicated functional form inθ. In the next Section

the corresponding M–H update steps will be presented.

5.3 Sampling Schemes

In this section we use the results obtained in Section 5.2 and the theory of Appendix C

to find convenient update steps. Some general comments have already been made about

how to proceed, but nothing has been said about the choice of proposal distributions,

when needed. In the following we use θ∗ to denote the proposed value for the parameter

θ in the update step.

5.3.1 Predictor terms and their hyperparameters

Gamerman’s IWLS proposals (Gamerman, 1997a) combine the likelihood and the prior

information to approximate the full conditional of the parameters. They allow the update

of parameters in a M–H step without any tuning. Thus convergence and mixing behavior

of the chains using IWLS proposals is very satisfactory. For more information about IWLS

proposals see Subsection C.2.4 in Appendix C.

We can give a general form of the IWLS proposals used for the update of the terms in the

predictor almost irrespectively of the model we have chosen. For notational convenience

we will use v to denote one of the parameter vectors β, γ, f or ρ. The proposed value v

will be drawn from a multivariate normal distribution as follows:

v∗ ∼ N(m(v), M̃(v)), (5.27)

M(v) is meant to be a precision matrix defined as

M(v) = FE(v) +
1
τ2

v
Kv

= X′vW(v)Xv +
1
τ2

v
Kv,
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where, FE(v) is the corresponding block of the expected Fisher information matrix as

given in (B.2) in Appendix B. For v=γ, ρ or f , τ2
v and Kv are the elements of the prior for

v as given in Subsections 4.2.2 and 4.2.3. Note that for β we have chosen a flat prior and

therefore if v=β then the form of M(v) simplifies to FE(v). The first equality is explained

in Appendix B where we analyze the general form of the Fisher information matrix in our

models. The components Xv represent the design matrices given in (4.16), (4.17), (4.18)

and (4.19) for v equal β, γ, ρ or f respectively. And W(v) = diag(wi(v)) is a diagonal

weight matrix with entries given in Table 5.1 for the different model formulations.

The mean vector m(v) is given by

m(v) = M(v)−1 (S(v) + FE(v)v)

=
(

X′vW(v)Xv +
1
τ2

v
Kv

)−1 (
S(v) + X′vW(v)Xvv

)
noting that if v = β, we have a simplified form for M(v). In this expression, S(v) repre-

sents the score vector of the models, whose components are defined as ∑n
i=1

∂li
∂v j

and are

also given in Appendix B for all the models considered in this work.

From a computational point of view this proposal demands a great effort. Each step

requires the sampling from a multivariate Gaussian distribution and for the densities

q(v∗ → v) the calculating of the determinants of the M(v) matrices are needed. This dis-

advantage is compensated by fast convergence and good mixing behavior of the obtained

chains. Furthermore, with IWLS proposals we do not need any tuning for the variance of

the proposal.

As the covariance matrix and the mean of the proposal depend on the current values

through the weights the quotient

q(v∗ → v)
q(v→ v∗)

does not simplify to one. The acceptance probability for the block v, given in (C.5) for the

general case, is

α(v, v∗) = min
{
π(v∗| . . .)q(v∗ → v)
π(v| . . .)q(v→ v∗)

, 1
}

, (5.28)
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yi = 0 y 6= 0

wNB
i (v)

δµi

δ+µi

δµi

δ+µi

wPO*
i (v) νiµi νiµi

wZIP
i (v) µi (1−θ) exp(−µi)µi

exp(li)−µiθ

exp(2li)

wZIP*
i (v) νiµi (1−θ) exp(−νiµi)νiµi

exp(li)− νiµiθ

exp(2li)

wZINB
i (v)

δµi

δ+µi
(1−θ)

(
δ

δ+µi

)δ+2

µi
exp(li)−µiθ

exp(2li)

Table 5.1: Weights for the IWLS proposals

with π(v| . . .) given by (5.8) if we are updating the fixed effects in the model and by (5.9)

otherwise. The acceptance probabilities are typically quite high for this proposal.

Updating τ2
v is straightforward with a Gibbs step. The full conditional in (5.10) is propor-

tional to an inverse gamma, and sampling proceeds as follows:

τ2
v
∗ ∼ IG

(
a +

1
2

rank(Kv),
1
2

v′Kvv + b
)

. (5.29)

At this point we make some comments about the update of κ, the vector of unit specific

random effects in the POLN model, and its hyperparameter τ2
κ . As it has a random

effects prior,κ can be sampled following the same scheme as explained above. The design

matrix Xκ is a nxn matrix and equal the identity matrix, so that we can write Xκ = In. For

τ2
κ the Gibbs sampling step given in (5.29) is also valid.

5.3.2 Model specific parameters

The update of the parameter vector ν is done by updating each component separately.

Depending on the model definition we will use three different update schemes for these
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parameters.

The first one is a Gibbs sampling step and is used for the POGA model. The full condi-

tional for the ith component of the vector is given by (5.15). Therefore to update νi we

sample the new value

ν∗i ∼ G(yi + δ,µi + δ) (5.30)

and accept it as the next stage in the chain for νi.

The second and third update schemes for νi are used for the POIG and ZIPGA, ZIPIG

respectively. They are both M–H update steps with uniform proposals. These are of

course restricted to deliver only strictly positive values. The update steps differ from

each other in the way of calculating the central point of the uniform proposal.

For the POIG model the full conditional for νi is given by (5.16), and it is not proportional

to any known distribution. The aim is to find an appropriate proposal that improves

the convergence of the chain. We decided to implement an uniform proposal with the

maximum of the full conditional νmax
i as central point. This value is calculated as fol-

lows. First, it is well known that maximizing the full conditional π(νi| . . .) is equivalent

to maximizing its logarithm. To find νmax
i we differentiate f (x) = log(π(x| . . .)) with re-

spect to x and calculate the zeros of f ′(x). We begin with the derivative of f (x). Note that

working with proportionalities does not affect the calculation of the maximum, because

by differentiating the proportionality constants will disappear.

f (x) = −xµi +
(

yi −
3
2

)
ln(x)− δ (x− 1)2

2 x

f ′(x) = −µi +
(

yi −
3
2

)
1
x
− δ

2

(
1− 1

x2

)
= −

(
µi +

δ

2

)
+
(

yi −
3
2

)
1
x

+
δ

2x2

= 0

Because x > 0, it is equivalent to find the zeros of the following second order polynomial

g(x) =
(
µi +

δ

2

)
x2 −

(
yi −

3
2

)
x− δ

2
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= 0.

It is easy to see that the polynomial always cuts the axis of abscissae two times, indepen-

dently of the values of yi, δ and µi. Thus we find two solutions for this equation, but only

the positive one is admissible for our problem. This solution is given by

νmax
i =

yi − 1.5 +
√

(yi − 1.5)2 + δ(2µi + δ)
2µi + δ

(5.31)

The uniform proposal with central point in νmax
i is then given by

ν∗i ∼ U (max{νmax
i − pi, 0},νmax

i + pi) , (5.32)

to ensure that the proposed values are all positive. In (5.32), pi is a sort of tuning pa-

rameter, that controls the acceptance rate of νi. The parameter pi is chosen adaptively in

the burnin phase in order to achieve a final rate between 30% and 60% (as explained in

Section C.2). After each 100th iteration in the burnin phase the acceptance rate for νi is

calculated. Is this rate below 30%, the value of pi is reduced, and if the rate is above 60%,

pi is incremented. The proposal density is given by

q(νi → ν∗i ) =
1

νmax
i + pi −max{νmax

i − pi, 0} . (5.33)

Since q(·) does not depend on νi and ν∗i , we always have q(νi → ν∗i ) = q(ν∗i → νi), and

herewith the acceptance probability for each ν∗i simplifies to

α(νi,ν∗i ) = min
{
π(ν∗i | . . .)
π(νi| . . .)

, 1
}

(5.34)

with π(νi| . . .) from (5.16). This proposal has two main advantages. It is easy to imple-

ment and fast in the calculations. And the proposed ν∗i values make sense because they

have the current maximum of the full conditional as reference point, which improves the

convergence of the chain.

Now we present the proposal for νi if we work with ZIPGA or ZIPIG models. As we

said before, we have also chosen an uniform proposal, but in this case we can not easily
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calculate the maximum of the full conditional and we prefer to fix the current value νi as

the central point. Formally the proposal is given by

ν∗i ∼ U (max{νi − pi, 0},νi + pi) . (5.35)

The parameters pi’s play the same role as explained before. The proposal density is

q(νi → ν∗i ) =
1

νi + pi −max{νi − pi, 0} . (5.36)

Note that in this case q(νi → ν∗i ) = q(ν∗i → νi) holds only if both νi and ν∗i are greater

that pi. Otherwise we can not simplify the quotient in the acceptance probability and in

general it will be

α(νi,ν∗i ) = min
{
π(ν∗i | . . .)q(ν∗i → νi)
π(νi| . . .)q(νi → ν∗i )

, 1
}

(5.37)

This proposal is easy to implement but convergence may be slightly slower.

For the scale parameters δ we have two sorts of full conditionals. Those for the NB,

ZINB, POGA and ZIPGA, were we have no closed form, and those for the POIG and

ZIPIG models, were a closed form is found.

The full conditionals in the first group are calculated in (5.17), (5.18), and (5.20) respec-

tively. For all these models a M–H step is necessary and thus we need a proposal for δ.

We have implemented two options. Following the same idea as for νi, the first option is

an uniform proposal. The construction of this proposal is similar in all the steps to the

one presented in (5.35) and (5.36), but substituting νi and ν∗i by δ and δ∗ respectively and

with the corresponding tuning parameter pδ.

δ∗ ∼ U (max{δ− pδ , 0}, δ+ pδ) . (5.38)

The second proposal is based on a gamma distribution. The parameters of this gamma

proposal are functions of δ and pδ so that its mean is the actual value δ and the variance

is given by pδ. Similar as for the νi’s, pδ is a sort of tuning parameter, which controls the



5.3. Sampling Schemes 67

acceptance rate for δ and again is chosen adaptively in the burn in phase. The proposal

distribution is

δ∗ ∼ G
(
δ2

pδ
,
δ

pδ

)
(5.39)

E(δ∗) = δ

V(δ∗) = pδ

q(δ → δ∗) =
( δpδ )

δ2
pδ

Γ( δ2

pδ
)
δ
∗ δ2

pδ
−1 exp{− δ

pδ
δ∗}

The acceptance probability for both proposal options is the same, because in general

q(δ → δ∗) = q(δ∗ → δ) does not hold for any of the options, so that the quotient does

not simplify.

α(δ, δ∗) = min
{
π(δ∗| . . .)q(δ∗ → δ)
π(δ| . . .)q(δ → δ∗)

, 1
}

(5.40)

with π(δ| . . .) from (5.17) for the NB model, (5.18) for the ZINB model, or (5.20) for the

POGA and ZIPGA models, and q(δ → δ∗) from (5.38) or (5.39).

The difference between the presented proposals for δ is not of great importance for the

results, as we could expect from the M–H algorithm. The first ones works quite good and

is fast in the computations. The second one respects the nature of δ as positive parameter

but may lead two computational problems if the values for δ are quite close to zero and

due to the gamma functions requires a greater computational effort. Therefore we have

mostly worked with the first option.

In a POIG and ZIPIG formulations the full conditional for δ is proportional to a gamma

distribution as given in (5.21). A Gibbs step is implemented by drawing

δ∗ ∼ G

(
n
2

+ a,
n

∑
i=1

(νi − 1)2

2νi
+ b

)
. (5.41)

The update step for the parameter b is common for all model formulations. To update b

we refer to its full conditional given in (5.22). It is proportional to a gamma distribution
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and we use this fact to implement a Gibbs sampling for b through

b∗ ∼ G(a +α1, δ+α2). (5.42)

Finally, we analyze the update step for the zero inflation parameter θ. From the form of

the full conditionals given in (5.24) through (5.26) we know that a M–H step is needed.

The proposal distribution will be the same for all the zero inflated models. It have to

respect the probability nature of θ, that means, only proposed values between zero and

one have the chance to be accepted. We have implemented an uniform proposal that,

with the help of some restrictions, overcomes this matter. Formally, we will sample the

proposed values from

θ∗ ∼ U (max{θ− pθ , 0}, min{θ+ pθ , 1}) , (5.43)

with

q(θ → θ∗) =
1

min{θ+ pθ , 1} −max{θ− pθ , 0} . (5.44)

Note that q(θ → θ∗) = q(θ∗ → θ) only holds when 1− pθ < θ,θ∗ < pθ. Hence, in general

the acceptance probability does not simplify and remains

α(θ,θ∗) = min
{
π(θ∗| . . .)q(θ∗ → θ)
π(θ| . . .)q(θ → θ∗)

, 1
}

(5.45)

with π(θ| . . .) as given in a general form in (5.23) and q(θ∗ → θ) from (5.44).

5.4 Algorithms

We summarize with an overview of the sampling algorithms for each of the nine models.

To simplify the representation we always refer to the proposals and acceptance probabil-

ities given in the last sections.

An important matter for convergence of the chain are the starting values. For the terms

in the predictor the starting values are the posterior mode estimates (Brezger and Lang,

2003).
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For the parameter vector ν we take a vector of length n with 1 in all the entries, that is

their prior mean.

For the parameter δ we have experimented with the starting value

δ(0) = ∑n
i=1 yi

∑n
i=1(yi − µ̂i)− ∑n

i=1 yi
(5.46)

(Cameron and Trivedi, 1998) with µ̂i obtained from the posterior mode estimation, but

we did not obtained satisfactory results. Clearly, in (5.46) it is not always sure that δ > 0.

So we have set δ(0) = 0.1 for all runs.

For θ we have chosen

θ(0) =
n− Z0

n

with Z0 the number of nonzero counts in the data. Hence, θ(0) is the proportion of zero

counts in the data. Of course this starting value will be better for a large mean of the

underlying count data distribution than for a small one. However convergence of the

chain seems to remain unaffected by this fact.

In the following we set the number of iterations to J and use j to denote each of them.

The number of items in our data set is n, that is at the same time the length of the vector

of multiplicative random effects ν. We suppose that in our model there are some fixed

effects, a linear covariate modeled through a P–spline, a random effect and we have geo-

graphical information. Of course in real data applications we may have more than one of

these types, but extension to this case is straightforward.

Note that the update steps for the terms in the predictor are similar in its algorithmic

structure for all the models. Thus we are only going to describe them for the NB model

and then refer to them for the other models. The sampling step of b remains the same

with a Gibbs step for all the models.

We begin with the NB model. Its sampling algorithm is given below.

NB model
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1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, δ(0), b(0)

and set j = 0

2. Set j = j + 1

3. Update v=β, γ, f and ρ with M--H step

(a) Sample v∗ ∼ N(·, ·) as in (5.27)

(b) v( j+1)=v∗ with probability α
(
v( j) , v∗

)
given by (5.28),

otherwise let v( j+1)=v( j)

(c) If v 6=β: update τ2
v with Gibbs step

Sample τ2
v

( j+1) ∼ IG (·, ·) as in (5.29)

4. Update δ with M--H step

(a) Sample δ∗ ∼ U(·, ·) as in(5.38) or δ∗ ∼ G(·, ·) as in (5.39)

(b) δ( j+1) = δ∗ with probability α
(
δ( j), δ∗

)
given by (5.40)

otherwise let δ( j+1) = δ( j)

5. Update b with Gibbs step

Sample b( j+1) ∼ G(·, ·) as in (5.42)

6. Go to 2. till j = J

Note that we give two possibilities for the update of δ, because both are described above,

but only one is used in the practice.

For the ZINB model the algorithm is similar as for the NB model. The difference is given

by the initialization and introduction of the update step for the zero inflation parameter

θ. The position where we introduce it is not relevant for the algorithm.

ZINB model

1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, δ(0), b(0), θ(0)

and set j = 0

2. Set j = j + 1

3. Update v=β, γ, f and ρ with M--H step : like NB model.

4. Update δ with M--H step : like NB model.

5. Update b with Gibbs step : like NB model.
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6. Update θ with M--H step

(a) Sample θ∗ ∼ U(·, ·) as in (5.43)

(b) θ( j+1) = θ∗ with probability α
(
θ( j),θ∗

)
given by (5.45)

7. Go to 2. till j = J

For the POGA model we must incorporate the sampling of the components for the pa-

rameter vector ν. This is done through a Gibbs step for each νi, as explained in the last

section.

POGA model

1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, ν(0), δ(0), b(0)

and set j, i = 0

2. Set j = j + 1

3. Update v = β,γ, f ,ρ with M--H step : like NB model

4. Update ν with Gibbs step

(a) Set i = i + 1

(b) Sample ν
( j+1)
i ∼ G(·, ·) as in (5.30)

(c) Go to 5.a if i < n. Otherwise set i = 0

5. Update δ with M--H step : like NB model

6. Update b with Gibbs step : like NB model

7. Go to 2. till j = J

For the update of the νi in the ZIPGA model we can not use a Gibbs step similar as in the

POGA model, so a M–H step is needed. In addition we also have the initialization and

update step of the zero inflation parameter θ.

ZIPGA model

1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, ν(0), δ(0), b(0), θ(0)

and set j, i = 0

2. Set j = j + 1
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3. Update v = β,γ, f ,ρ with M--H step : like NB model

4. Update ν with Gibbs step

(a) Set i = i + 1

(b) Sample ν
( j+1)
i ∼ G(·, ·) as in (5.35)

(c) ν
( j+1)
i = ν∗i with probability α

(
ν

( j)
i ,ν∗i

)
given by (5.37)

otherwise let ν
( j+1)
i = ν

( j)
i

(d) Go to 4.a if i < n. Otherwise set i = 0

5. Update δ with M--H step : like NB model

6. Update b with Gibbs step : like NB model

7. Update θ with M--H step : like ZINB model

8. Go to 2. till j = J

The algorithm for the POIG model differs from the POGA one in the sampling method

for ν and δ. This time we loose the Gibbs sampling for ν and use a componentwise M–H

step to update the components νi based on the maximum of the full conditional. On the

other side we can take advantage of a Gibbs step for the sampling δ.

POIG model

1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, ν(0), δ(0), b(0)

and set j, i = 0

2. Set j = j + 1

3. Update v = β,γ, f ,ρ with M--H step : like NB model

4. Update ν with M--H step

(a) Set i = i + 1

(b) Sample ν∗i ∼ G(·, ·) as in (5.32)

(c) ν
( j+1)
i = ν∗i with probability α

(
ν

( j)
i ,ν∗i

)
given by (5.34)

otherwise let ν
( j+1)
i = ν

( j)
i

(d) Go to 4.a if i < n. Otherwise set i = 0

5. Update δ with Gibbs step

Sample δ( j+1) ∼ G(·, ·) as in (5.41)
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6. Update b with Gibbs step : like NB model

7. Go to 2. till j = J

For the ZIPIG we change the update step for the νi parameters. Now we can not easily

calculate the maximum of the full conditionals, and therefore we use a similar M–H step

as in the ZIPGA model, taking the current value as central point for the proposal. Addi-

tionally, we introduce the zero inflation parameterθ in the algorithm, with a similar M–H

update step as for the ZINB.

ZIPIG model

1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, ν(0), δ(0), b(0), θ(0)

and set j, i = 0

2. Set j = j + 1

3. Update v = β,γ, f ,ρ with M--H step : like NB model

4. Update ν with M--H step : like ZIPGA model

5. Update δ with Gibbs step : like POIG model

6. Update b with Gibbs step : like NB model

7. Update θ with M--H step : like ZINB model

8. Go to 2. till j = J

In the ZIP model we do not have overdispersion terms but the zero inflation parameter

remains in the model. The algorithm is given by:

ZIP model

1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, θ(0)

and set j = 0

2. Set j = j + 1

3. Update v = β,γ, f ,ρ, with M--H step : like NB model

4. Update θ with M--H step : like ZINB model
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5. Go to 2. till j = J

We consider now the sampling algorithm for the POLN model. As explained in Section

5.2 the vectorκ can be sampled analogously as the termsγ, f andρ. Thus we can simplify

the representation of the algorithm and put all these terms together in the fourth step.

POLN model

1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, κ(0), τ2

κ

(0)

and set j = 0

2. Set j = j + 1

3. Update v = β,γ, f ,ρ,κ with M--H step : like NB model

4. Go to 2. till j = J

Finally, if we are working a ZIPLN model, we can consider it as an extension of a ZIP

with random effects for each item. Therefore, we extend the algorithm of the ZIP to have

a new vectorκ which is sampled analogously as in the POLN model, as explained before.

ZIPLN model

1. Initialize β(0), γ(0), τ2
γ

(0)
, f (0), τ2

f
(0)

, ρ(0), τ2
ρ

(0)
, κ(0), τ2

κ

(0)
, θ

and set j = 0

2. Set j = j + 1

3. Update v = β,γ, f ,ρ,κ with M--H step : like NB model

4. Update θ with M--H step : like ZINB model

5. Go to 2. till j = J



Chapter 6

Simulation studies

The aim of this study is to explore the performance of the proposed methodology for

complex predictor structures, similar to those which will be used in the real data applica-

tion in the next chapter. In particular, we will investigate how well different components

in the predictor can be identified and separated from each other.

As a goodness of fit measure for single components in the predictor, we use their relative

mean square errors (MSE). If f is an effect on x with K different values, its MSE f is defined

as

MSE f =

√
∑K

k=1( f̂k − fk)2

∑K
k=1 f 2

k

with f̂k the estimated value for fk.

First we test the models on data that fulfill the model assumptions. Then we investigate

how robust these models are if the data generating process is not the same as supposed

by the model.

75
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6.1 Overdispersion

In this section, the proposed models for overdispersion are tested in the presence of com-

plicated predictor structures like the ones we are going to find in a real data situation.

Therefore, the simulation study is conducted with a covariate situation similar to the

structure of the car insurance data. The overdispersion component should be recognized

as well as the individual specific random effects, when they are present.

6.1.1 Data simulation

We generate data sets from POGA and POIG models with µi = νi exp(ηi), where νi

are Gamma and Inverse Gaussian distributed respectively, and from POLN model with

µi = νi exp(ηi) = exp(ηi +κi), where κi are Gaussian random effects. The predictor ηi is

the same for all three models and is defined by

ηi = oi +α +βzi + sin(xi) + ρgi + fstr(si) + funstr(si), (6.1)

for i = 1, ..., 1920. The offsets oi are obtained by i.i.d. sampling from a uniform distri-

bution on the interval [3,6]. The values zi are obtained as i.i.d. samples from a binary

random variable z ∼ B(1; 0.5). The intercept and slope areα = −5 and β = 0.5.

The realizations of the metrical covariate x are the 26 knots of an equidistant grid on

the interval [-3,3]. The observations xi, i = 1, ..., 1920, are generated by systematically

repeating these 26 values until 1920 observations are reached. The nonlinear effect f (x)

of x is assumed to be a sine–curve f (x) = sin(x).

The covariate ρ represents a group indicator, as for the covariate type class of car in our

car insurance application. It has 7 levels g = 1, ..., 7, with 7 equidistant effects

ρ(1) = −0.3, ρ(2) = −0.2, ..., ρ(6) = 0.2, ρ(7) = 0.3.

The observations ρgi , i = 1, ..., 1920, are generated as a random sample from these values.
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The structured spatial effects fstr(si) are evaluations of the function

fstr : IR2 −→ IR

s = (u, v) 7−→ c0 sin(5 u v)− c1

at the coordinates si = (ui, vi), i = 1, ..., 96, of the standardized centroids of the 96 dis-

tricts in Bavaria. The normalizing constants c0 and c1 are chosen so that the function

values are centered about 0 and have approximate empirical variance 0.25. These struc-

tured spatial effects fstr(s), s = 1, ..., 96, are visualized in Figure 6.12. For each district i,

we assign fstr(si) to 20 observations.

To generate the unstructured effects funstr(si), we draw funstr(s), s = 1, ..., 96, as an i.i.d.

sample from N(0, τ2). Then these values are assigned to the same 20 observations per

district as in the case of structured spatial effects. To investigate the impact of unstruc-

tured effects, we generate data for three values

τ2 = 0, τ2 = 0.01, τ2 = 0.25

of the variance τ2, corresponding to no, small and large unstructured effects. For τ2 =

0.25, the unstructured effects have the same variability as the structured effects. A partic-

ular reason for this choice is that we want to see whether fstr and funstr can be separately

identified in the sum

fspat = fstr + funstr

of total spatial effects.

The random effects νi, i = 1, ..., 1920, for the POGA and POIG model are obtained as

i.i.d. samples from a G(δ, δ) or a IGaussian(1, δ) distribution respectively with

E(νi) = 1

V(νi) =
1
δ

in both cases. In a similar way as for funstr, we generate data for

δ = 0.5, δ = 1, δ = 2
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corresponding to large, medium and small individual specific effects. Random effects in

the POLN model are obtained as i.i.d. samples

κi = log(νi) ∼ N
(
−τ

2
κ

2
, τ2
κ

)
with

τ2
κ = log

(
1 +

1
δ

)
,

leading to

τ2
κ = 1.098, τ2

κ = 0.6931, τ2
κ = 0.4055.

Then the log–normal effects have

E(νi) = 1

V(νi) =
1
δ

just as the Gamma or Inverse Gaussian random effects. Combining the possible values

of the variance τ2 of the unstructured spatial effects with those of the scale parameter δ,

we obtain data for 9 different NB, POGA, POIG and POLN models. For the discussion of

simulation results, we denote them by M(τ2; δ). For example, M(0; 1) is a (NB, POGA,

POIG or POLN) model without (τ2 = 0) unstructured spatial effects and individual

random effects with medium (δ = 1) variability, and M(0.25; 2) is a model with high

variability (τ2 = 0.25) of unstructured spatial effects and low (δ = 2) variability of

individual random effects. With this simulation design, we can assess the impact of the

relative magnitude of spatial and individual random effects on estimation of the various

components.

For each model, we generate counts

{y(r)
i , i = 1, ..., 1920},

for simulation runs r = 1, ..., R = 100. For each simulation run r, we calculate posterior

means, standard deviations, quantiles and the DIC criterion (see Section C.3). From R =
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100 simulation runs, we obtain then measures such as: overall empirical bias, MSE, box

plots etc. for the estimates of all unknown parameters and functions.

6.1.2 Results

This subsection consists of two blocks. In the first block we will show the results for

the POIG and POIGH models and in the second one the results for the NB, POGA and

POLN models. The reason for this partition is that the results for the POIG model are not

as satisfactory as we expected, and we try to improve them by introducing the POIGH

model. The other models work quite well and hence we present and compare their results

together at the end of this subsection.

POIG

As said before, the POIG model did not fit the simulated data good enough. In the fol-

lowing we present some results and some attempts to improve these results. We can say

in advance that the efforts did not lead to any significant improvements.

1. The POIG model failed in the estimation of both δ and ν. The fact that the failure

affects both parameter blocks is a natural consequence of the hierarchical structure

of the model. The main problem is that δ is always overestimated and therefore ν

has not enough variability on the prior assumption to reach the original values.

In Figure 6.1 we show box plots for the estimated posterior mean values for δ from

the different simulated models M(·; ·). In the optimal case, the first group of three

box plots should be placed around the reference line δ = 0.5, the second one around

the line δ = 1 and the third one around δ = 2. But here we have a different

situation. The model has difficulties to find the overdispersion in the data for all

tested values of δ delivering in all the cases larger posterior mean estimates than

the orginal values.
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Figure 6.1: Box Plots for posterior means of δ of the simulation results for each POIG

model. Plotted are also the reference lines δ = 0.5, 1 and 2.
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Figure 6.2: Diagonal plots for ν (true versus estimated effects) obtained for selected mod-

els from M(0.25; ·).

It is evident how overestimation of the scale parameter affects the individual spe-

cific random effects. They are not able to jump to the original value and remain

near to 1, their prior mean. See for example Figure 6.2.

The conclusion is that δ is always overestimated, which means that not all the

overdispersion in the data is recognized by the model.

We have tried to improve these results by implementing other proposal distribu-

tions for ν that may draw better candidates for the chain, and by implementing a



6.1. Overdispersion 81

��� �

��� �

��� �

��� �

��� �

��� �

��� �

δ = 0.5 δ = 1 δ = 2

Figure 6.3: Box Plots for posterior means of δ of the simulation results with simple linear

predictor for each POIG model. Plotted are also the reference lines δ = 0.5, 1 and 2.
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Figure 6.4: Diagonal plots for ν (true versus estimated effects) obtained from the POIG

model for selected models with simple linear predictor.

M–H step for δ (instead of the Gibbs step), but we have found no differences in the

results.

2. If we take a look at the bibliography referring to POIG models in Chapter 2, we see

that none of the papers uses such complicated predictor structures in the models,

as we did. Hence we have simulated three new data sets, all of them with the same

simple linear predictor

ηi = α +βzi, (6.2)
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Figure 6.5: Box Plots for the posterior means of δ of the simulation results with simple

linear predictor for each POIGH model. Plotted are also the reference lines δ = 0.5, 1, 2.
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Figure 6.6: Diagonal plots for ν (true versus estimated effects) obtained from the POIGH

model for selected models with simple linear predictor.

whereα = 3, β = 0.5 and zi ∼ B(1, 0.5). The dispersion parameter takes the values

δ = 0.5, 1 or 2. The results obtained from the POIG model applied to these data

sets are much better than the results for data with a more complicated predictor

structure presented before.

In Figure 6.3 we see box plots for the estimated posterior mean values for δ and the

reference lines for δ = 0.5, δ = 1 and δ = 2. We can see here that the box plots are

better placed compared to Figure 6.1, although they are still not optimal at all.
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Figure 6.7: Diagonal plots for ν (true versus estimated effects) obtained from the POIGH

model for selected models M(0.25; ·).

We can also confirm improvements in Figure 6.4. The diagonal plots for selected

models show that the larger δ, the better the posterior mean estimates for ν.

3. A new idea is to reparameterize the POIG model by modifying its hierarchical struc-

ture, as explained in Section 2.3. The results for the POIGH model with a simple

linear predictor are presented in Figures 6.5 and 6.6. The first figure shows a sub-

stantial improvement in the box plots for δ. All of them indicate some bias, imply-

ing a small overestimation for δ, but the bias is much smaller compared to the POIG

case in Figure 6.3. In the second figure we have an absolutely better alignment of

the estimates for ν to the diagonal line, which means an important improvement

with respect to the POIG model. Particularly for the small δ a better performance is

evident.

4. Finally, we assert the performance of the POIGH model on data with complicated

predictor structure. We have tried the POIGH model on the M(·, ·), described at

the beginning of this chapter. Surprisingly the results are even worse as those of

the POIG model. We had numerical problems with running the algorithm of most

of the models. After some trials, we found out that for large and medium δ the

POIGH model was generally not able to achieve convergence for the dispersion
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parameter. So we can not show the figure corresponding to 6.1 for the POIGH

model. In Figure 6.7 we have the plot for the POIGH model equivalent to Figure

6.2. As we can see comparing both plots, there is no correction at all for the results

using POIGH instead of POIG if the predictor structure of the data is complex and

not only linear. And as said before, in general the estimates are even worse as those

of the POIG model.

Other models

Some important results arise from this simulation study with the NB, POGA, POGAH

and POLN models applied to the M(·; ·) data.

1. The POGA model and its hierarchical version POGAH do not differ in their results

applied to the same data sets. Therefore we will show only results from the POGA

model.

2. Results for NB and POGA models applied to the same data sets are virtually in-

distinguishable. Therefore, if one is not interested in the latent individual random

effects, a NB model may be preferable. Also, computation time and storage require-

ments may be an issue, depending on the sample size. The computation time for

POGA is lower than for the NB, due to the gamma functions that have to be im-

plemented for the latter model. However, this difference obviously decreases while

increasing the number of observations in the data set, because in consequence this

also increases the number of parameters to be estimated in the POGA model.

3. Unknown fixed effects α, β and the scale parameter δ are estimated very well, re-

gardless of the specific model. This is illustrated for a sample of models in Table

6.1. Note that for the POLN model we have other reference values as for the NB and

POGA ones. Remember that if δ = 0.5, 1 or 2 then τ2
κ = 1.0986, 0.6931 or 0.4055

respectively. Note also that the intercept α is inflated for the results of the POLN
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M(0.01; 1) M(0.25; 1) M(0.25; 2)

NB

α -5.02 (0.0543) -5.008 (0.0551) -5.001 (0.0473)

β 0.511 (0.0706) 0.518 (0.0716) 0.504 (0.0591)

δ 1.028 (0.0764) 0.979 (0.0726) 2.013 (0.1846)

POGA

α -5.019 (0.0543) -5.009 (0.0558) -5.002 (0.0475)

β 0.512 (0.0705) 0.515 (0.0719) 0.502 (0.0591)

δ 1.029 (0.0771) 0.981 (0.0718) 2.013 (0.1841)

POLN

α -5.352 (0.101) -5.341 (0.1014) -5.209 (0.0999)

β 0.499 (0.0662) 0.507 (0.0666) 0.502 (0.0571)

τ2
κ 0.687 (0.0567) 0.693 (0.0574) 0.400 (0.0391)

Table 6.1: Posterior means and standard deviations (in brackets) for selected models.

model. The reason for this fact is that the Gaussian distributed random effects κ

have not mean 0 but −0.5 τ2
κ and therefore this term is integrated in the intercept

during estimation, as we see in the table.

4. Estimating the nonlinear sine curve f (x) = sin(x), see Figures 6.8 and 6.9, works

also very well for all the models. A reason for this obviously quite stable identi-

fication of both fixed effects and the nonlinear effect of the metrical covariate x is

that the priors are rather different from the priors for the remaining effects, which

supports separation from the latter ones.

5. The effects ρg of the group indicator g can still be estimated quite well, but they

seem to be more sensitive to the specific model. Figure 6.10 displays box plots of

mean square errors for the 9 models. It seems that variation of the scale parameters
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has some impact, while results are comparably insensitive to variations in disper-

sion of unstructured spatial effects. Figure 6.11 shows true effects (dot lines) and

averaged posterior mean effects for selected models together with pointwise 10%–

and 90%–posterior credible intervals. We can observe a shrinkage effect towards

zero which becomes larger for smaller δ, i.e. larger individual random effects. Com-

paring POGA with POLN, the lastest seems to fit better the random effect ρg.

6. Separation of structured and unstructured spatial effects is generally very unreli-

able. In particular, unstructured spatial effects are always underestimated, partly

to a large extent. Obviously their influence is already captured by structured spatial

and by individual effects. This can be particularly well recognized in the ’diagonal

plots’ of Figures 6.12 to 6.15 where true and estimated unstructured random effects

are plotted against each other. Ideally, the scatter plots should be near to the diago-

nal, but they are almost horizontal for the unstructured effects! For models with no

(τ2 = 0) or small (τ2 = 0.01) unstructured effects, the structured spatial effects are

still recovered satisfactorily (Figures 6.12 and 6.13). For models M(0.25, ·), where

variability of structured and unstructured effects is the same, most of unstructured

spatial variability is captured by overestimating structured spatial effects, see Fig-

ure 6.14, 6.15 and 6.16.

However, as Figure 6.17 shows, it makes always sense to include structured and

unstructured effects, because the sum

fspat = fstr + funstr (6.3)

has always the lowest MSE. Of course, then only the total spatial effects fspat can be

interpreted.

6.1.3 Résumé

We give a short overview of the consequences drawn from this simulation study.
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Figure 6.8: Average posterior mean estimates with pointwise 80% credible interval and

MSE Box Plots for the nonlinear sine–term of models M(0.01; 1) (top), M(0; 0.5) (center)

and M(0.01; 2) (bottom).
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Figure 6.9: Selected estimates with pointwise 80% credible interval for the nonlinear sine-

term of models M(0.01; 1) (top), M(0; 0.5) (center) and M(0.01; 2) (bottom).
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Figure 6.10: MSE Box Plots for posterior mean estimates of group indicator effects.
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Figure 6.11: True effects and average posterior means of group indicator effects with

pointwise 80% credible interval for selected models: M(0.01; 1), M(0.01; 0.5) and

M(0.25; 1) from the top to the bottom respectively.
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Figure 6.12: True (first row) and estimated (second row) structured, unstructured and

total spatial effects together with diagonal plots (last row, true versus estimated effects)

obtained for the POGA model M(0.01; 1).
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Figure 6.13: True (first row) and estimated (second row) structured, unstructured and

total spatial effects together with diagonal plots (last row, true versus estimated effects)

obtained for the POLN model M(0.01; 1).
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Figure 6.14: True (first row) and estimated (second row) structured, unstructured and

total spatial effects together with diagonal plots (last row, true versus estimated effects)

obtained for the POGA model M(0.25; 1).
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Figure 6.15: True (first row) and estimated (second row) structured, unstructured and

total spatial effects together with diagonal plots (last row, true versus estimated effects)

obtained for the POLN model M(0.25; 1).
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Figure 6.16: MSE Box Plots for posterior mean estimates of structured spatial effects.
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Figure 6.17: MSE Box Plots for posterior mean estimates of total spatial effects.
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• After some preliminary analysis we found out that the performance of the POIG

model decreases considerably by adding random or nonparametric terms in the

predictor. The scale parameter is overestimated in the presence of random compo-

nents and nonparametric terms.

• The hierarchical version of POIGH satisfactorily improves results only for simple

linear predictor structures. For more complex predictor structures there is no im-

provement.

• The performance of POGA, NB and POLN models is quite satisfactorily on all pre-

sented data sets. Only following problem was found.

• The separation of the regional effects in a structured and an unstructured part as

assumed by the predictor was not possible. The latter effects were not recognized

and absorbed by the structured ones.

6.2 Zero inflation

In this second part of the simulation study we concentrate on models with zero infla-

tion, with and without overdispersion. We keep the complicated covariate structures

in the predictor. Zero inflation and overdispersion components should be recognized

and properly separated. As a final test, the models should find out, applied to the ade-

quate data, which source of variation the data contains. Is there only zero inflation, only

overdispersion or both?

6.2.1 Data simulation

We generate data sets following the models ZIP, ZIPGA, ZIPIG and ZIPLN. We carry out

the generation of the data in three steps, according to the definition of zero inflation given

in (3.1) of Section 3.1. In the first step we generate values from the underlying count data

distribution process yunder. Then we generate the w 0/1–vectors for a given θ. In the
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third step we multiply the entries from w with those from yunder to obtain the true vector

of observed responses y.

The first step depends on the distributional assumption for the underlying count data

process and is therefore different for every data set. We describe each of them separately.

We take advantage of the simulated data from the last section. This saves computation

time and simplifies comparison, if desired. With the estimation experience of the last

section and because here the focus is on the separation of δ and θ, we only use the data

sets with τ2 = 0.01.

For the ZIP data set, we exploit the created vector of linear predictors η for τ2 = 0.01 from

the last section, which, has length 1920. With its help we generate 100 replications from

a Poisson distribution with mean exp(ηi). Let us denote each replication with {y(r)
i , i =

1, ..., 1920}under for r = 1, . . . , 100, where under still denotes the underlying process.

For the ZIPGA, ZIPIG and ZIPLN we can even use the generated replications from the

corresponding POGA, POIG and POLN with τ2 = 0.01. Note that, in contrast to the ZIP

data, we have three groups of replications for each model here, as we take three values

for δ = 0.5, 1, and 2 to draw them. We use the same notation for the response vectors as

in the ZIP case: {y(r)
i , i = 1, ..., 1920}under for r = 1, . . . , 100.

In addition, we have to generate binary vectors with 0/1 entries w(r) for each vector of

responses yunder of the last step. All the entries are Bern(1 − θ) distributed. For θ we

use three probability values θ =0.2, 0.5, and 0.8 in order to examine how many informa-

tion we can loose through the selection process and nevertheless obtain good estimation

results.

In the last step the observed response observations y(r) are calculated as a product of w(r)

and y(r)under for r = 1, . . . , 100 and each underlying count data distribution. We combine

the possible values of the zero inflation parameter θ with those for the scale parameter δ

and get data for 6 different ZINB, ZIPGA, ZIPIG and ZIPLN models.
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For the ZIP we have only two data sets. We obtain

{y(r)
i , i = 1, ..., 1920} r = 1, . . . , 100.

All four models have the same predictor, given by

ηi = oi +α +βzi + sin(xi) + ρgi + fstr(si) + funstr(si), (6.4)

for i = 1, ..., 1920. For more information about the individual terms we refer to Subsec-

tion 6.1.1.

For the discussion of simulation results, we denote the generated data sets by M(θ; δ)

or M(θ). For example, M(0.5; 1) is a (ZINB, ZIPGA, ZIPIG or ZIPLN) model with 50%

zero inflation (θ = 0.5) and individual random effects with medium (δ = 1) variability.

M(0.2) is a ZIP model with a low zero inflation (θ = 0.2). With this simulation design, we

can assess the impact of the relative magnitude of zero inflation and individual random

effects on estimation of the various components.

For each simulation run r, we calculate posterior means, standard deviations, quantiles

and the DIC criterion. From R = 100 simulation runs, we obtain overall empirical bias,

MSE, box plots etc. for the estimates of all unknown parameters and functions.

6.2.2 Results

In the following the results and conclusions for the simulation study on zero inflated

data are presented. Already in the first runs we have seen that θ = 0.8 does not work

well at all. From an interpretational point of view, it would mean that we have lost

about 80% of the information in the data. This was too much to keep the models work

properly and we restrict the exposition to the models with θ = 0.2 and θ = 0.5. This is

presented in several blocks. The first block concentrates on the ZIP. As it does not have

an overdispersion parameter it is not easy to compare its estimation results with those of

the other models. The second block briefly gives some comments about the results of the
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ZIPLN model. Finally, the third block present the main findings of the ZINB, ZIPGA and

ZIPIG models jointly.

ZIP

Here we summarize the results of the simulation for the ZIP model. The aim is to check,

how the model fits, and how the goodness of fit varies with the predetermined values

of θ. According to our findings, we can divide this block of results into two groups,

depending on the sensitivity with respect to the zero inflation parameter. The first one

sums up the results for the fixed effects and the zero inflation parameter, and the second

one the rest of the terms in the predictor.

1. The results of the simulations for the fixed effectsα,β and the zero inflation param-

eter are summarized in Table 6.2. We see that for both of them the ZIP works very

well independently of the proportion of zero counts we have in the model.

ZIP

M(0.5) M(0.2)

α -5.003005 (0.1001695) -4.99105 (0.0920597)

β 0.5051805 (0.0617621) 0.4958 (0.0460211)

θ 0.498956 (0.0188491) 0.203506 (0.0174884)

Table 6.2: Posterior means and standard deviations (in brackets) for the fixed effects and

the zero inflation in the ZIP model.

2. The estimation of the other effects in the predictor seems to be more sensitive to

the value of θ than the estimation of the fixed effects or θ itself. First, we consider

the nonlinear curve f (x) = sin(x). Although both average posterior means for the

splines have a very good shape, the MSE box plot in Figure 6.18 reveals that the fit

of model M(0.2) is on average better than the fit of model M(0.5).
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Figure 6.18: Average posterior mean estimates with pointwise 80% credible interval and

MSE Box Plots for the nonlinear sine-effect of models M(0.5) and M(0.2).

Looking at Figure 6.19 we can draw the same conclusion as for the fit of nonlinear

terms. There we show posterior mean estimates with pointwise 80% credible in-

tervals for the group indicator effects. In the two left plots we see that the average

fit is quite good for both models, but in the MSE box plot on the right, we see that

the corresponding box for the M(0.2) is placed in a lower position in the plot than

for the M(0.5). The finding is that the ZIP fits the group indicator effects better for

M(0.2) as for M(0.5).

The same conclusion can be drawn from Figure 6.20, showing plots for the spatial

effects. In the first column we find the diagonal plots for the average estimates of

the structured spatial effect (first row), of the unstructured spatial effects (second

row), and of the total spatial effects (third row) corresponding to the M(0.5) model,

in the second column we see the equivalent plots for the M(0.2) model, and in the

third column the box plots for the posterior mean estimates of the different spatial

effects (structured: top; unstructured: middle; total: bottom) for both M(0.5) and

M(0.2). The structured as well as the total spatial estimates are fitted very well, but

we recognize the same identification problem for the unstructured spatial effects

as in overdispersion models, so that in practical applications only the sum of both
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Figure 6.19: Average posterior mean estimates with pointwise 80% credible intervals and

MSE Box Plots for the group indicator effect of models M(0.5) and M(0.2).

effects (total spatial effect) can be interpreted. From the box plots on the right side

we deduce that the ZIP fits better for M(0.2).

That the results for M(0.2) are better than those for M(0.5) is a logical result: The

higher the proportion of zeros through increasing θ, the more information is lost

about the generating process of the data depending on the covariates. So the fit for

complex structures in the predictor becomes worse when θ increases.

ZIPLN

Recall, that the ZIPLN model is equivalent in its implementation to a ZIP model with

gaussian distributed random effects for each observed unit in our data set. Although

the results of the simulation study for the ZIP were very satisfactory, we could not carry

out a similar study for the ZIPLN. There were numerical problems, that we could not

solve. In Table 6.3 we present a part of the results obtained by running the ZIPLN model

on the first replication of our six simulated data sets M(θ, τ2
κ ), with θ = 0.2, 0.5 and

τ2
κ = 1.098, 0.6931, 0.4055.

We see that none of the θ or δ parameters are estimated properly. For the zero inflation



6.2. Zero inflation 103

� � � � � � � � � � � �

� � � � �

� � �

� � � �

� � � � � � � � � � � �

� � � � �

� � �

� � � �

� � �

� � �

� � �

� � �

� � 	

� � �

� � �


 � � � � � 
 � � � � �

� � � � � � � � � � � �

� � � � �

� � �

� � � �

� � � � � � � � � � � �

� � � � �

� � �

� � � �

� � �

� � �

� � �

� � �

� � 	

� � �

� � �


 � � � � � 
 � � � � �

� � � � � � � � � � � �

� � � � �

� � �

� � � �

� � � � � � � � � � � �

� � � � �

� � �

� � � �

� � �

� � �

� � �

� � �

� � 	

� � �

� � �


 � � � � � 
 � � � � �

Figure 6.20: Diagonal plots of average posterior mean estimates and MSE Box Plots for

models M(0.5) and M(0.2).
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M(0.2; 1.098) M(0.2; 0.6931) M(0.2; 0.4055)

τ2
κ 0.501349 (0.0471057) 0.325239 (0.0354098) 0.166588 (0.0242277)

θ 0.998736 (0.00126418) 0.998605 (0.00140245) 0.99835 (0.00160501)

M(0.5; 1.098) M(0.5; 0.6931) M(0.5; 0.4055)

τ2
κ 0.482469 (0.0607495) 0.340732 (0.047905) 0.168726 (0.0303825)

θ 0.999026 (0.00102598) 0.998862 (0.00115092) 0.99888 (0.00107578)

Table 6.3: Posterior means and standard deviations (in brackets) for selected models.

parameter θ the model does not recognize its original value at all and delivers cases

estimates arround the value 1 in all the cases. This causes numerical instability of the

log–likelihood, that moves in a range of extremely small negative values, due to the term

log(1 − θ). The estimation results for other parameters are very unreliable as well, see

for example overdispersion parameter τ2
κ in Table 6.3. We know that both parameters are

somehow related and see that for overestimated θ parameter τ2
κ is underestimated.

Other models

Finally, we present the results for ZINB, ZIPGA and ZIPIG models jointly.

1. We observed slight differences between the estimates of ZINB and the ZIPGA mod-

els, and hence we present both separately, when needed.

2. Table 6.4 shows the results for the ZINB, ZIPGA and ZIPIG models applied to

M(0.2; 1), M(0.5; 1) and M(0.5; 0.5). The first two data sets are presented to com-

pare how an increase of θ influences the estimates while keeping δ fixed. The third

data set M(0.5; 0.5) is the most extreme case of information loss and overdisper-

sion we have presented and is therefore interesting to proof the performance of the

models on difficult situations. Analyzing Table 6.4, we see that in general fixed

effects as well as overdispersion and zero inflation parameters are recovered very
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well by the ZINB and ZIPGA models, may be with the exception of the last data set

M(0.5; 0.5). The ZINB model seems to recover overdispersion and zero inflation

parameters a little bit better than the ZIPGA model.

A surprise comes up with the ZIPIG model, wich works excellent on all tested data

sets, even in the worst case M(0.5; 0.5). Remember that in Subsection 6.1.2 the

results for the POIG model were not satisfactory at all. The introduction of the zero

inflation parameter seems to improve its performance considerably. Table 6.4 also

shows that the quality of the estimates decreases with increasingθ, which we know

is equivalent to increase information loss.

3. Looking at Figure 6.21 we get the general impression that estimating the sine curve

works very well for all the models. Figure 6.22 reveals that the quality of the esti-

mation for the nonparametric terms depends also strongly on the value of θ used

for the simulation, as it was the case with the fixed effects estimates. Increasing the

zero inflation parameter from θ = 0.2 to θ = 0.5 worsens the estimates and places

the box plots in a higher position on the plot. We also see a sensibility of the box

plots with respect to the overdispersion parameter. Increasing the overdispersion in

the model (setting a smaller δ) pushes the box plots upwards. Another interesting

fact is that ZINB, ZIPGA and ZIPIG do not displays differences in the estimation of

the sine curve.

4. Figures 6.23 and 6.24 summarize the results for the effects ρg of the group indicator

g. Both figures clearly show that the quality of the results varies strongly depending

on the values of the overdispersion and zero inflation parameters. The last row of

Figure 6.23 corresponds to the model M(0.2; 2), which has the lowest zero inflation

and the lowest overdispersion among all the models. We see that the alignment

of the black and dotted line are much better than in the other rows. Figure 6.24

confirms the first consequences drawn from Figure 6.23 and their extension to all

the models. The variation of overdispersion and zero inflation has a great impact on
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Figure 6.21: Average posterior mean estimates with pointwise 80% credible interval for

the nonlinear sine–term of models M(0.2; 0.5) (top), M(0.2; 1) (center) and M(0.2; 2)

(bottom).
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Figure 6.22: MSE Box Plots for posterior mean estimates of the nonlinear sine–term.
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Figure 6.23: Average posterior mean estimates with pointwise 80% credible interval for

the group indator effects of models M(0.2; 0.5) (top), M(0.2; 1) (center) and M(0.2; 2)

(bottom).
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Figure 6.24: MSE Box Plots for posterior mean estimates of group indicator effects.
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M(0.2; 1) M(0.5; 1) M(0.5; 0.5)

ZINB

α -5.0363 (0.1145) -5.0549 (0.1453) -5.0973 (0.2153)

β 0.5032 (0.0827) 0.5107 (0.1103) 0.4915 (0.1347)

δ 0.9966 (0.1742) 0.9659 (0.2336) 0.4321 (0.1527)

θ 0.1895 (0.0484) 0.4755 (0.0496) 0.4439 (0.1127)

ZIPGA

α -5.0235 (0.1115) -5.0150 (0.1269) -4.8305 (0.1334)

β 0.5072 (0.0821) 0.5061 (0.1085) 0.4821 (0.1276)

δ 1.0190 (0.1629) 1.0759 (0.2108) 0.7720 (0.1084)

θ 0.1961 (0.0414) 0.4959 (0.0350) 0.5758 (0.0300)

ZIPIG

α -5.0060 (0.1011) -5.0231 (0.1178) -5.0089 (0.1357)

β 0.4989 (0.0815) 0.5173 (0.1082) 0.4923 (0.1308)

δ 1.0083 (0.1454) 1.0015 (0.1863) 0.5026 (0.1040)

θ 0.1935 (0.0284) 0.4911 (0.0281) 0.5003 (0.0356)

Table 6.4: Posterior means and standard deviations (in brackets) for selected models.

the fit of the random effects. In contrast to the estimation of nonparametric terms,

there does not seem to be a difference in the quality of fit between the ZIPIG model

and the ZINB and ZIPGA models.

5. Finally, we present the estimation results for the spatial term. Remember that we

have split the total spatial effect in two further effects: a structured and an unstruc-

tured. Figures 6.25 and 6.26 show that the separation of structured and unstruc-

tured effects is also very unreliable in zero inflated models. The unstructured spa-

tial component is integrated in the structured one, so that at least the sum of both
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Figure 6.25: Diagonal plots of average posterior mean estimates of structured (first col-

umn), unstructured (second column), and total (third column) spatial effects for ZIPGA

(first row) and ZIPIG (second row) models on M(0.5; 0.5).

remains a good estimator for the total spatial effect of the regions. Comparing the

two figures, sensitivity of the models with respect of overdispersion and zero infla-

tion becomes clear. The first figure presents results from ZIPGA and ZIPIG models

on data with high overdispersion and high zero inflation (M(0.5; 0.5)). The second,

on data with low overdisperion and low zero inflation (M(0.2, 2)). The dotted lines

match the diagonal black line in the second figure much better.

Figures 6.27 and 6.28 show box plots for structured and total spatial effects, respec-

tively. Both figures reflect the impact of amount of overdisperion and zero inflation

on the box plots. With increasing θ (from left to right) the box plots are pushed

upwards. The interpretation: increasing zero inflation worsens the fit. With in-
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Figure 6.26: Diagonal plots of average posterior mean estimates of structured (first col-

umn), unstructured (second column), and total (third column) spatial effects for ZIPGA

(first row) and ZIPIG (second row) models on M(0.2; 2).

creasing δ (from the top to the bottom) the box plots are pushed downwards. The

interpretation: decreasing overdispersion betters the fit.

From the box plots we can also see that the estimation results for spatial effects in

ZINB, ZIPGA and ZIPIG models are quite similar.

6. As explained in the Chapters 2 and 3, overdispersion implies excess of zeros in the

observed data and zero inflation implies overdispersion in the data. The question is

how reliable the models are in discovering the right source for zero inflation and/or

overdispersion in the data. The ZIPGA model is able to estimate both overdisper-

sion and zero inflation parameters and it has provided good results in this simula-

tion study. Therefore we check its reliability by applying a ZIPGA model to four
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Figure 6.27: MSE Box Plots for posterior mean estimates of structured spatial effects.
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Figure 6.28: MSE Box Plots for posterior mean estimates of total spatial effects.
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data sets with different generating processes. Each one is the first replication of the

data sets described during this chapter. The first data set (PO) is Poisson distributed

and is the first step in a ZIP generating process, before we multiply the data by the

0/1 vector. This data has no overdispersion and no zero inflation. The second data

set (ZIP) is zero inflated Poisson distributed and extracted from M(0.5); thus it has

zero inflation with θ = 0.5 but no overdispersion. The third data set (POGA) is

the first replication from M(0.01, 1), generated in Subsection 6.1.1. It has overdis-

persion with δ = 1 but no zero inflation. And finally, the fourth data set (ZIPGA)

shows both zero inflation withθ = 0.5 and overdisperion with δ = 1 and is the first

replication from M(0.5, 1) generated in Subsection 6.2.1.

In Table 6.5 we list the results from applying the ZIPGA model to the four data sets.

Remember that in our notation a large value for δ is a signal of no overdispersion in

the data, and a small value for θ indicates no zero inflation. We see that the ZIPGA

model is able to recognize what is actually hidden in the data. For the PO data,

estimation results show no overdispersion and no zero inflation, in accordance with

the data. On ZIP data, the estimated posterior mean for δ is 130.326, which is

a sign for no overdispersion. On the other hand, the estimate for θ is 0.508053,

which is very close to the real value 0.5. Applied to POGA data, the ZIPGA model

finds no trace of zero inflation (with an estimate for θ near zero) and estimates

the scale parameter δ by approximately 1, its real value. For ZIPGA data, both

overdispersion and zero inflation are well recognized.

6.2.3 Résumé

In the following a summary of the results presented in the last subsection is given.

• The performance of ZIP models was very satisfactory.

• The results achived by ZINB, ZIPGA and ZIPIG are also in general quite correct.
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ZIPGA model

Mean STD 2.5%-Quant. Median 97.5%-Quant.

on PO data

δ 130.326 100.259 31.0548 87.557 366.721

θ 0.00652863 0.00570259 0.000225573 0.00505018 0.0213395

on ZIP data

δ 111.305 133.924 20.8465 43.564 417.572

θ 0.508053 0.0198114 0.468088 0.50795 0.548033

on POGA data

δ 1.0342 0.109076 0.854555 1.02085 1.26776

θ 0.0470683 0.0276712 0.00336344 0.0447656 0.105396

on ZIPGA data

δ 1.14479 0.206438 0.78946 1.12776 1.56934

θ 0.54088 0.0311651 0.473972 0.544119 0.5945

Table 6.5: Results for the zero inflation and overdispersion parameters in the ZIPGA

model

• All the models show sensitivity problems with the amount of zero inflation and

overdispersion.

• As expected, the separation of spatial effects in structured and unstructured effects

was not possible.

• The ZIPLN model did not achieve the desired results. The estimation of θ was not

appropriate at all and hence other parameters could not be estimated as desired.



Chapter 7

Case studies

In this chapter we apply the developed models to two real data sets. In Section 7.1 we will

work with a patent data set, also used in Jerak and Wagner (2003). We apply Bayesian

generalized additive mixed models for count data using some of the distributions pre-

sented in Chapters 2 and 3. The data contains metrical and binary covariates and we can

build a semiparametric predictor structure as explained in Chapter 4. The second data set

is described in Section 7.2. It is a massive car insurance data set, that has been analyzed

previously in Fahrmeir, Lang and Spies (2003) using a Bayesian generalized geoadditive

Poisson regression. It contains a lot of covariates, among others also geographical in-

formation. In this work we apply a Bayesian generalized geoadditive mixed count data

regression to capture possible overdispersion or zero inflation in the data.

In both sections we first present and describe the data, as well as the models we are going

to apply. Second, we describe part of the results and draw some conclusions.

7.1 Patent Data

Analysis of patent data has a long tradition in economic research. The number of patents

can be seen as a sort of measure for the innovative activity or inventiveness and hence

117
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somehow for scientific development. To apply for a patent, the inventor must cite all

related already existing patents where his new patent is based on. All the citations in-

cluded in new patents that refer to an already existing patent are called forward citations,

and can be understood as a good indicator for the patent’s social and monetary value, or,

in other words, as an indicator for its quality.

First we will apply a classical Poisson (PO) regression model, where the data given the co-

variates are supposed to be Poisson distributed. Second we use further regression models

that allow for overdispersion in the data, namely NB, POGA, POIG and POLN regression

models, and compare the results. In the NB model, the data given the covariates are sup-

posed to follow a negative binomial distribution. In the POGA, POIG and POLN models,

the data are supposed to be Poisson distributed given the covariates and random effects.

The difference to the classical Poisson regression (PO) is that in addition to the given co-

variates we also estimate a vector of individual specific random effects, that is supposed

to have i.i.d. components with gamma (POGA), inverse Gaussian (POIG) or LogNormal

(POLN) prior respectively. Actually, the NB and POGA formulations are equivalent from

a theoretical point of view, but depending on the situation it may be more interesting to

use the NB (algorithms converge faster) or the POGA model (provides more informa-

tion). All three models are described in Chapter 2. Finally, we try the ZIPGA model (see

Chapter 3) on the patent data. The aim is to detect whether there is zero inflation together

with overdispersion in the data or not on the basis of the estimates for θ and δ from the

ZIPGA model.

For a more detailed description of the patent data and its institutional background we

refer to Jerak and Wagner (2003). In their work, they apply a Bayesian semiparametric

binary regression model for the event ’opposition or not’. Here we consider this variable

as a binary effect in our predictor. Guo and Trivedi (2002) apply (among others) a NB

and a POIG regression models to two cross–sectional long-tailed patent data sets to ac-

count for overdispersion. They model the number of patents applications of companies

depending on the research and development (R&D) spendings among other covariates,
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but only with linear predictors. In the next subsection we describe the patent data used

here (see also Jerak and Wagner (2003)) and the models that we have applied. Afterwards

we present the results.

7.1.1 Data and model description

We will analyze the dependence between the number of forward citations ( f orwcits) for

a patent and the variables given in Table 7.1, based on 4805 observations. Before we

proceed with the analysis, we first take a look at the raw data.

Metrical covariates

gryear Grant year

nstat Number of designated states

claims Number of EPO claims

Binary covariates (1 = Yes / 0 = No)

biopharm Patent from biotech/pharma sector

ustwin US twin exists

cntry us Holder of the patent from US

cntry ch de gb Patentholder from Switzerland, Germany or Great Britain

accexam Accelerated exam requested

accsrch Accelerated search requested

pct Patent Cooperation Treaty (PCT) application filed

opp Opposition(s)

Table 7.1: Variables in the patent data set.

The response variable f orwcits has mean 1.6289 and variance 7.3541, i.e. the variance

exceeds the mean by far. Its minimum is 0 and its maximum is 40. About 46% of the

observations are zero and 95% are smaller or equal 6, which is a sign for long tails. These
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facts are an indication for possible overdispersion. As the number of zero counts is large

it may make sense to explore zero inflation in the data as well.

The data set contains three metrical variables. First, we have the grant year for the patent

(gryear), with the values 1980 to 1997. Second, the number of designated states in Europe

(nstat), which is a sort of territorial measure, ranging from 1 to 17. Third, the number

of patent claims (claims), which define and set boundaries to the invention, and may be

considered as a measure for the patent value. The variable claims assumes the values 1

to 50. In Figure 7.1 we show some plots of the distribution of f orwcits for the different

observed values of the metrical covariates. The plots show pointwise mean (black line),

and 5% and 95% quantiles (grey area) of f orwcits for each different observed value of

the metrical covariates. In the first plot, the black line indicating the pointwise mean of

f orwcits seems to decrease for increasing values of gryear. In the second, the black line

has an increasing trend with respect to nstat. Finally, in the third plot we observe a more

or less increasing trend till claims = 40.

In Table 7.1, we also have 8 dummy covariates. In Figure 7.2 the distribution of f orwcits

within the two values (0 or 1) of each covariate is given. The most important fact we

observe in this plot is that in the category 1 of the covariate pct there are extremely few

values different of zero for f orwcits compared with the number of zero observations in

this category. This can lead to problems in the estimation because of the almost missing

variability of the data within this level. Nevertheless we include the variable in the model

and will carefully observe the results. Changing from the value 0 to the value 1 in the

covariates accsrch, biopharm, and opp seems to have a positive impact on the response

variable f orwcits. On the other hand, changing from 0 to 1 in accexam seems to have a

negative impact. By the covariates cntry us, cntry ch de gb, and ustwin we do not find

any visible behavior pattern.

Before we present the results, we give some commenst about the models we have applied.

The number of forward citations was analyzed with structured additive NB, POGA,

POIG, and POLN regression. We additionally apply ZIP, ZIPGA and ZIPIG to check
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Figure 7.1: Plots for f orwcits versus gryear (top), nstat (center) and claims (bottom).

Given are pointwise mean (black line), and 5% and 95% quantiles (grey area) of f orwcits

for each different observed value of the metrical covariates.
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Figure 7.2: Box plots for f orwcits within the different categories of the binary covariates.

for zero inflation in the model. All the binary covariates are modeled as fixed effects

with diffuse priors as given in (4.6). We include nonparametric terms in our regression

to study nonlinear dependencies between the response variable ( f orwcits) and the met-

rical covariates gryear, nstat and claims. All estimated models have the same predictor

structure given by

ηi = z′iβ+ f1(gryeari) + f2(nstati) + f3(claimsi) (7.1)

ηi = z′iβ+ f1(gryeari) + f2(nstati) + f3(claimsi) +κi, (7.2)

where the second row is used for the POLN model. The vector zi contains the binary

covariates and also an intercept term, and f j are cubic P–splines with 14, 14 and 20 knots

for j = 1, 2, 3 respectively. We have choosen 20 knots for claims because it has 50 different

observed values in contrast to the 17 different values of gryear and nstat.



7.1. Patent Data 123

All estimations are based on 5000 iterations and a burn in period of 1000 to ensure conver-

gence. Each 4th iteration value was stored to reduce the dependence of the chains, so that

we have a sample of size 1000 for each parameter. The sampling paths show convergence

for these values and the autocorrelations are satisfactory.

In the next subsection we present the results of the models. We first give some relevant

conclusions for a preliminary analysis with the POGA model, concerning the covariate

pct. Finally, present the results in more detail for the rest of the models.

7.1.2 Results

Preliminary analysis

In a first step we present the results obtained from a POGA model on our patent data.

However, we found problems with the covariate pct, and recall the remarks made in the

last subsection about the distribution of f orwcits within the two categories of pct. We

take a look at Table 7.2 and Figure 7.3.

Figure 7.3 presents an interesting problem. The top panel gives a single point plot for the

means of the posteriors for the νi terms in the given data order. We observe some sort

of structure of the points on this plot. To make this structure clearer we ordered the data

twice. First by f orwcits = 0 or otherwise and second by pct = 0 or otherwise. The first

ordering process provides two logical and clearly different regions on the bottom plot: on

the left, the νi corresponding to patents with f orwcitsi = 0 displaying a sort of ’broken

line’ form, and on the right for the rest, having a more or less ’cloudy’ form. Accordingly

Mean STD 2.5%-Quant. Median 97.5%-Quant.

POGA pct -2.9867 0.1148 -3.2171 -2.9875 -2.7656

POLN pct -3.1601 0.1200 -3.4088 -3.1580 -2.9363

Table 7.2: Results for pct from the POGA and POLN models
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Figure 7.3: Mean of the posterior distribution for the multiplicative random effects in the

POGA model. Top: in the given data order. Bottom: in the following order, f orwcits = 0

and pct = 0, f orwcits = 0 and pct = 1, f orwcits 6= 0 and pct = 0, f orwcits 6= 0 and

pct = 1

with the data, the region on the left has smaller values (for the patents without forward

citations) than the region on the right (for the patents with forward citations). The second

ordering process is highlighted by the colors black (for patents with pct = 0) and grey

(for patents with pct = 1). This second ordering causes the jumps in the by the first
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ordering originated regions and is more visible in the left region because of the small

number of patents with f orwcits 6= 0 and pct = 1. As we can see in the plot, the values

corresponding to pct = 1 are larger as those for pct = 0 within the same f orwcits–

group. This is a useful feature of models with latent variables: It allows us to explore

the results for the νi terms and try to discover some new facts about the given data or

possible missing covariates. The question now is what are the reasons for the observed

patterns. It seems to be an identification problem due to the lack of variability of the

response variable within the category 1 for pct. We have examined the same plot for the

POIG and POLN model and found similar patterns. The estimated posterior mean for

pct has similar values for all the models, but in Table 7.2 we only give the results for the

POGA and POLN model. The posterior mean estimates are negative and therefore the

terms νi exp(ηi) are smaller for patents with pcti = 1. But on the other side, exactly these

patents get a slightly larger νi term as those with pct = 0, what makes νi exp(ηi) increase.

The solution to overcome this problem is to split the data set into two parts. The first

one for observations with pct = 0 is the data set that we will use in the remaining of this

section for further analysis. The second data set contains all observations with pct = 1.

Doing so, we have now 3900 observations in our data, corresponding to pct = 0. The

mean of the response variable f orwcits is 1.9831 and its variance 8.2941. Its minimum

and its maximum remain 0 and 40 respectively. With about 35% of the observations

being zero and 95% being smaller or equal 7, the hypothesis of overdispersion persists.

Final models

From the results of our models on the patent data set with pct = 0 we obtain some main

conclusions. We present them divided into three blocks. The first block contains the

results concerning the models PO, NB, POGA and POLN. The second block is refered to

the results from the ZIPGA model. Finally, the third block present the conclusions of the

POIG and POIGH models.



126 7. Case studies

First block: PO, NB, POGA and POLN

The results from the NB and POGA models are quite similar, as it was to be expected

from the theory and confirmed by the simulation results of the last chapter.

Estimates for fixed effects from PO, NB and POGA models are very similar. We therefore

only show the posterior mean estimations for POGA and POLN in Table 7.3. Both tables

show some noticeable differences.

The first one is the posterior mean for the intercept. We should remember that the priori

assumptions for the POLN were in some way different as for the POGA model. Actually

every κi should have a N(−0.5τ2
κ , τ2

κ ) prior. But in our practical implementation their

prior is N(0, τ2
κ ). The −0.5τ2

κ term is equal for all κi and is therefore included in the

intercept. Now we can adjust the posterior mean of the intercept in the POLN model by

adding 0.5τ̂2
κ = 0.36955 and see that it takes a similar value as in the POGA model.

To compare the posterior means of δ and τ2
κ we have the priori relationship δ = 1

exp(τ2
κ )−1 .

Using the stored sampled values for τ2
κ and calculating the mean, we get 0.9170, which is

smaller and not very close to δ = 1.2014. This result is somehow a contradiction with the

heavier tails of the LN distribution compared to those of the Gamma distribution. One

could expect that the POLN distribution is able to capture the same amount of overdis-

persion in the data with a larger dispersion parameter as the POGA does.

From Table 7.3 we also see that zero is included in the credible intervals of the covariates

ustwin, accexam and accsrch, so none of them has a significant effect.

Figure 7.4 shows that the observed problem with individual specific random effects has

been eliminated for this model. The plots do not show any suspect pattern.

For the POLN model, we have transformed the estimated posterior means of the κi

through the prior relationship νi = exp(κi) in order to compare results with the POGA

model. The patterns of their plot are similar to those presented here. The values range

between 0.19 and 36.61 in the POLN model, and 0.12 and 13.11 in the POGA model, due

to the smaller overdispersion parameter in the POLN than its equivalent in the POGA
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POGA

Mean STD 2.5%-Quant. Median 97.5%-Quant.

const 0.6710 0.0820 0.5017 0.6729 0.8276

biopharm 0.2260 0.0575 0.1178 0.2250 0.3388

ustwin -0.0625 0.0428 -0.1421 -0.0640 0.0227

accexam -0.0994 0.1275 -0.3484 -0.1075 0.1428

accsrch 0.1028 0.1311 -0.1416 0.1019 0.3625

cntry us 0.1568 0.0464 0.0667 0.1556 0.2473

cntry ch de gb -0.1957 0.0531 -0.3043 -0.1962 -0.0894

opp 0.4372 0.0405 0.3597 0.4377 0.5156

δ 1.2014 0.0474 1.1130 1.1986 1.3026

POLN

Mean STD 2.5%-Quant. Median 97.5%-Quant.

const 0.2949 0.0824 0.1204 0.2999 0.4492

biopharm 0.2058 0.0584 0.0990 0.2018 0.32323

ustwin -0.0497 0.0440 -0.1369 -0.0484 0.0396

accexam -0.0593 0.1288 -0.3107 -0.0563 0.1906

accsrch 0.1242 0.1482 -0.1773 0.1268 0.4061

cntry us 0.1155 0.0489 0.0251 0.1160 0.2124

cntry ch de gb -0.2114 0.0537 -0.3176 -0.2129 -0.1051

opp 0.4690 0.0445 0.3800 0.4692 0.5513

τ2
κ 0.7391 0.0351 0.6718 0.7377 0.8093

Table 7.3: Results for fixed effects and dispersion parameter from the POGA and POLN

models
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Figure 7.4: Mean of the posterior distribution for the multiplicative random effects in

the POGA model. Top: in the given data order. Bottom: ordered by f orwcits = 0 or

f orwcits 6= 0

one.

For the nonparametric terms, only the PO model shows relevant differences with the

other models NB, POGA and POLN, that provide very similar results for the P–splines.

Hence we only present the results for the NB and the PO models in Figure 7.5.

The credible intervals are constructed by computing the lower and upper posterior quan-



7.1. Patent Data 129

tiles corresponding to the respective nominal level, namely 2.5% and 97.5% quantiles for

a nominal level of 95%. Note that the functions are centered about zero.

We observe that the estimated functions for the NB model are much smoother than those

for the PO model.

The effect of gryear remains almost constant until approximate by 1987 and then begins

to decrease. For nstat the effect also remains near constant for the first 11 values. And

then it decreases when nstat goes toward 17. The estimated effect of claims is almost

linear except at the end, which might result from the sparse data in the large categories,

so the use of a spline is not necessary.

In Figure 7.6 we compare the results for ν̂iµ̂i from POGA and POLN. As a consequence

of the smaller estimated overdispersion parameter for the POLN model, the latter one

seems to fit better, especially for large values of f orwcits.

ZIPGA

Mean STD 2.5%-Quant. Median 97.5%-Quant.

θ 0.005293 0.004507 0.000165 0.004248 0.016614

δ 1.2285 0.0514 1.1350 1.2266 1.3378

Table 7.4: Results for the zero inflation and overdispersion parameters in the ZIPGA

model

Second block: ZIPGA

We have also experimented with zero inflated models on the patent data. Table 7.4 gives

the results for the zero inflation and overdispersion parameters. The estimated posterior

mean for θ is almost zero. Hence we can conclude that there is no zero inflation in the

model. Note that the estimated value for δ is very similar to that given in Table 7.3 for

the POGA model.

It would be interesting to compare the obtained results with those of another statistical

software. For this purpose we have used the zero inflated negative binomial regression
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Figure 7.5: Estimated P–splines for the nonparametric terms in the PO and NB models

together with pointwise 95% confidence intervals.

of Intercooled Stata 7.0. Unfortunately we can only specify a linear predictor, but we can

take advantage of the robustness of the models with respect to the terms in the predictor.

We have introduced the estimated posterior mean vector η̂i for the ηi terms from the NB
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Figure 7.6: Response variable f orwcits versus posterior mean estimations for µ from NB,

POGA and POLN models

model as a fixed effect (linpred) in the predictor. We expect to get the estimate of the

intercept about zero, the coefficient for the η̂i vector about 1 and similar values as those

given in Table 7.4 for the parameters θ and δ. Table 7.5 gives a summary of the results

obtained with Stata.

Zero-inflated negative binomial regression Number of obs = 3900
Nonzero obs = 2559
Zero obs = 1341

Inflation model = logit LR chi2(1) = 697.12
Log likelihood = -7061.339 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
forwcits | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
forwcits |

linpred | 1.013013 .0377229 26.85 0.000 .9390771 1.086948
_cons | -.0091485 .0310178 -0.29 0.768 -.0699422 .0516452

-------------+----------------------------------------------------------------
inflate |

_cons | -27.74988 87782.29 -0.00 1.000 -172077.9 172022.4
-------------+----------------------------------------------------------------

/lnalpha | -.202745 .0431269 -4.70 0.000 -.2872721 -.1182179
-------------+----------------------------------------------------------------

alpha | .8164864 .0352125 .7503076 .8885024
------------------------------------------------------------------------------

Table 7.5: Results for the zero inflation negative binomial regression model of Stata

The coefficient for the linpred is very close to 1 and the estimated intercept has no sig-

nificance in the model because it is almost zero. We transform alpha and the inflate term
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(in f late) in order to compare them with the corresponding δ and θ from our model. The

expression δ = 1
alpha links both overdispersion parameters. We obtain 1.2285 for our

ZIPGA model and 1.2248 for the ZINB of the Stata software. For the zero inflation pa-

rameters the linking function is θ = exp(in f late)
exp(in f late)+1 . Setting the value for in f late we obtain

8.879331e−013 for the Stata model and the given 0.005293 for the ZIPGA model. Here

the estimated parameters are not as close as for the overdispersion case. But both results

point out that there is no indication of zero inflation in the data.

Third block: POIG and POIGH

We have also applied the POIG and POIGH models to the data. A consequence from

the simulation study of the last chapter was that in the presence of nonparametric terms

in the predictor using of POIGH does not improve the quality of the results compared

with the POIG model. As expected the behavior of both models here is similar, both

with inflated dispersion parameter when comparing it with the estimate from the NB or

POGA models.

Summary

We conclude this section with a brief summary of our findings:

• The NB, POGA and POLN models could clearly identify overdispersion in the data.

So they are preferable to a classical PO model.

• NB, POGA and POLN show similar estimation results for the predictor terms,

which confirms the robustness of the models with respect to the underlying dis-

tribution for the multiplicative random effects.

• It also seems reasonable to include nonparametric terms in the predictor, as shown

through the form of the estimated nonparametric effects for the metrical covariates.

• Concerning the estimation of the overdispersion parameter, the POGA and the NB

model give similar results. The POLN model seems to fit better with a smaller δ.
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• No indication of zero inflation could be found by running a ZIPGA model on the

data.

As a last conclusion, it is always recommended to run a POGA or POLN model on the

data and analyze the estimates for the individual specific random effects. With their help,

we can identify outliers in the data or may discover specific patterns for some units.

7.2 Car insurance

Two main quantities are needed by a company to fix the premium for a policyholder: the

estimated claim risk and estimated amount of loss per claim. These must be calculated

very carefully to guarantee the competitive position of the insurance company on the

market. If the insurer charges too large premiums, the policyholders will change their

insurance company. But on the other side the firm has to keep profitable.

In this work we are going to concentrate on the modeling of claim frequencies and cal-

culate the expected claim risk for each of the policyholders in the portfolio of a German

insurance company. The response variable in the analysis is clearly of a count nature. We

will apply both models for overdispersion and for zero inflation, presented in Chapters

2 and 3 respectively.

In the literature a large amount of papers concerned with car insurance analysis can be

found. Dionne and Vanasse (1989) present the Poisson and the Negative Binomial re-

gression with a linear predictor and use this regression to develop a bonus malus system

on an individual basis. Tremblay (1992) also uses bonus malus system, but this time

without covariates and based on a Poisson model, whose parameter is inverse Gaussian

distributed. Schlüter, Deely and Nicholson (1997) fit a Bayesian Negative Binomial re-

gression on the cumulated number of claims over 35 sites in Auckland, New Zealand.

They do not include any spatial correlation or further covariates in the model. Jørgensen

and Paes de Souza (1994) present a Tweedie’s compound Poisson model to fit simultane-
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ously claim frequency and claim severity. Their regression model has three parameters:

a mean, a dispersion and a shape parameter. They only implemented parametric mod-

eling of the covariates for the mean parameter. Smyth and Jørgensen (2002) extended

the model presented in Jørgensen and Paes de Souza (1994) to include covariates in the

modeling of the dispersion parameter. Brockman and Wright (1992) and Renshaw (1994)

use Generalized Linear Models for the modeling of the claim frequency based on rating

factors. The former article gives also a large overview in calculating premium rates for

car insurance. Both indicate extensions for the response distribution as well as for the es-

timation methods to account for overdispersion. Boskov and Verrall (1994) have applied

a spatial effect decomposition in structured (with a Markov Random Field, MRF) and un-

structured (random effects) effect for a Poisson regression without further covariates and

used Bayesian methods to make inference. Brouhns, Denuit, Masuy and Verrall (2002)

have extended the Boskov and Verrall model by introducing a previous step. First, they

fit a classical GLM Poisson regression, without spatial information. Afterwards, the re-

sults from the first model are included as an offset in the second step as described above.

It is interesting that in their application they are not able to find significant unstructured

spatial effects, which would be consistent with our simulation results.

Dimakos and Frigessi (2002) model claim frequency and claim severity through a hier-

archical Bayesian model. They include the geographical information of the data set as

a MRF, without estimating its hyperparameter in the model (ad hoc procedure), and as

independent random effects per region, separately, but not both effects together.

In this section, we will base our analysis of the car insurance data set on the work of

Fahrmeir, Lang and Spies (2003). They have implemented a hierarchical Bayesian re-

gression with a Poisson assumption for the response variable. They included fixed and

random effects as well as nonparametric effects (modeled through P–Splines) and spatial

information (split up in structured and unstructured effects) in what is called a geoaddi-

tive model. Our expansion of the model is based on the generalization of the response

distribution to account for overdispersion or/and zero inflation, as presented in Chap-



7.2. Car insurance 135

ters 2 and 3. In the following, we present the data and the models in some detail, and

afterwards the obtained results and the conclusions we can draw from them.

7.2.1 Data and model description

We apply structured count data regression models to a data set of 200681 individual claim

frequencies of a sample of policyholders with full comprehensive car insurance for one

year. Among others, the covariates given in Table 7.6 were included in the predictor. The

aim is to analyze the dependency of the number of claims claims, as response variable, on

these covariates. To make the data source anonymous, some additional covariates used

for the analysis are not described in the paper.

The covariate driven kilometers per year (km) is a metrical variable. It is conceivable that

increasing the number of driven kilometers also increases the probability of having acci-

dents. The covariate car classification (car) is an ordinal covariate indicating the potential

risk of a car type, from low to high and bonus reflects how long an insured car has been

driven without accident until now in increasing order.

The car insurance data set that we are going to analyze is not free of problems. For the

response variable claims we have over 96% zero observations, its mean is 0.03987, its

variance 0.04133948 and its maximum 4. The maximum is observed only three times.

That means, we have not too much variation in the data to discover effects.

In Figure 7.7 we have three plots of the mean (black line) and the 5% and 95% quantiles

(grey area) of claims within the different observed values of the metrical covariates. These

plots reflect the main problem of the car insurance data commented above. The mean of

the response variable within the categories is very small.

The same information is reproduced in Figure 7.8. There we have box plots for claims

within the two categories of the three binary covariates, noting that all the principal quan-

tities in all the six box plots (upper extreme, upper quartile, median, lower quartile, and

lower extreme) are zero.
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The response variable exhibits an extremely large proportion of zeros. On the other hand,

the fact that the maximum of claims is 4 and that its mean is quite low (0.03987) but

smaller than its variance leads to the conclusion that both overdispersion and zero infla-

tion should be studied here.

Claim frequencies were analyzed with structured additive NB, POGA, POIG and POLN

regression. We use some of the results obtained in Fahrmeir, Lang and Spies (2003) about

the PO model for comparison. ZIP, ZINB and ZIPGA models were also tested to check

for zero inflation. The predictor is defined for all the models by

ηi = lnduri + z′iβ+ f1(kmi) + f2(bonusi) + cari + fspat(districti) + . . . (7.3)

Offset

lndur logarithmed duration of the policy (in days)

Metrical covariates

km kilometers driven per year in thousands

car car classification, measured by G = 31 scores from 10-40

bonus no–claims bonus, defined by 27 classes from 0–25

others

Binary covariates (yes = 1, no = -1)

garage garage available

tariff civil servants and coequal professionals/others

ownpart deductible

others

Spatial covariate

district district in Germany (’Zulassungsbezirk’ resp. ’Landkreis’), with

S = 438 districts

Table 7.6: Some of the variables in the car insurance data set.
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Figure 7.7: Plots for km (top), bonus (center) and car (bottom) versus claims.

ηi = lnduri + z′iβ+ f1(kmi) + f2(bonusi) + cari + fspat(districti) +κi + . . . . (7.4)

The second row is used if the model is POLN. The dots indicate that the predictor com-

prises additional metrical and binary covariates not shown for reasons of confidentiality.
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Figure 7.8: Plots for the mean (black line) and the 5% and 95% quantiles (grey area) of

claims within the different categories of the binary covariates.

The spatial effect fspat(district) is further split up into the sum of structured and unstruc-

tured effects, i.e.

fspat(district) = fstr(district) + funstr(district).

The vector zi contains the categorical covariates and an intercept term const. The effects

f1 and f2 of the metrical covariates are modeled by cubic P–splines, each of them with

20 knots. The effect car of car classification and the unstructured spatial effect funstr are

treated as i.i.d. random effects, and for the structured spatial effect fstr a Markov random

field prior is used.

All estimations were executed with 30000 iterations and a burn in period of 5000 to ensure

convergence. Each 25th iteration was stored to reduce the dependence of the chains, so

that we have a sample of size 1000 for each parameter to make inference. For the POGA

and POLN models the mixing of the chains for these inputs was not satisfactory enough,

so we rerun the programs with 75000 iterations, 5000 burnin and a thinning of 70.

The posterior estimates presented in the following are calculated as the empirical corre-

sponding values from the stored chains of the posterior distributions.
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7.2.2 Results

In the following we summarize the results from the different models on the car insurance

data set. The results are presented in three blocks. The first block contains the PO, NB,

POGA and POLN models. The second block summarizes the results for the zero inflated

models (ZIM) ZIPGA and ZINB. And the third block gives some comments about the

results of the POIG and POIGH models.

First block: PO, NB, POGA and POLN

POGA and NB model are very close in their results. The main difference between both

models is given by the posterior distribution of the scale parameter. For the NB model the

sampling path shows convergence and the posterior mean estimate is 1.4275, while the

sampling path in the POGA model is far from convergence, even for the 75000 iterations

case, and the posterior mean estimate is 1.3312. This divergence may be due to the large

number of parameters, where the estimation of δ in the POGA model is based on. But

both values for the posterior mean estimate of δ are consistent with the hypothesis of

overdispersion.

We take a look at Table 7.7. There we find a summary for the fixed effects and the dis-

persion parameters for the NB and POLN models. The immediate conclusion is that the

results are very robust, independent of the model we are using. For the difference be-

tween the intercepts we must argue as explained in Section 7.1. The estimated posterior

mean for the POLN model should be corrected by adding 0.5τ̂2
κ = 0.226 before we can

compare it with the value resulting from the NB model.

As we know, the priori relationship between δ and τ2
κ is given by δ = 1

exp(τ2
κ )−1 . Plugging

the corresponding sample values for τ2
κ into this formula and calculating the mean, we

obtain 1.8033. This value is larger than the estimate 1.4275 for δ in the NB model.

In this application the POLN model behaves completely different as in the patent data

application of Subsection 7.1,which could be a consequence of the difference in the ranges

for the response variables between both data sets.
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NB

Mean STD 2.5%-Quant. Median 97.5%-Quant.

const -8.2047 0.1865 -8.5581 -8.2014 -7.8594

garage -0.0263 0.0142 -0.0534 -0.0262 0.0009

tari f f 0.0209 0.0145 -0.0066 0.0210 0.0489

ownpart -0.0304 0.014 -0.0587 -0.0303 -0.0025

δ 1.4275 0.2080 1.1029 1.4009 1.8993

POLN

Mean STD 2.5%-Quant. Median 97.5%-Quant.

const -8.4352 0.1932 -8.8447 -8.4285 -8.0670

garage -0.0251 0.0146 -0.0539 -0.0246 0.0039

tari f f 0.0210 0.0139 -0.0056 0.0202 0.0502

ownpart -0.0305 0.0142 -0.0569 -0.0304 -0.0011

τ2
κ 0.4521 0.0662 0.3031 0.4586 0.5731

Table 7.7: Results for fixed effects and dispersion parameter from the NB and POLN

models

From Table 7.7 we also see that the covariates garage and tari f f are not significant because

zero is included in their credible intervals. To have a policy with cost sharing seems to

reduce the risk of reporting a claim.

The posterior mean estimates of the functions f1 and f2 and of the random effect for the

car classification variable, together with 95% pointwise credible bands are displayed in

Figure 7.9 for the PO and NB. The credible intervals are constructed in a similar way as

described in the patent data application. The functions are centered about zero. In con-

trast to the patent data application in the last section, we do not see relevant differences

between the results for the nonparametric terms from the PO and the rest of the models.

The effect of kilometers driven per year shows a distinct, almost linear increase until
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Figure 7.9: Estimated P–splines (black lines) for the nonparametric terms km, bonus, and

car in the PO and NB models together with pointwise 95% credible intervals (grey areas)

about 20 000 km/year. Thereafter, the increase becomes much smaller. Looking at the

credible bands, even a constant effect cannot be rejected. A possible explanation is that

these frequently used cars are driven by experienced persons and, probably, to a larger
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-0.34 0.330

Figure 7.10: Structured spatial effect for POLN. The left panel shows the posterior mean,

the left panel displays posterior probabilities based on nominal levels of 95%. White col-

ored regions correspond to strictly negative credible intervals and black colored regions

to strictly positive intervals. Districts with credible intervals containing zero are colored

in grey.

extent on a freeway than others.

The form of the effect for the covariate bonus confirms the classification of the insurance

company. Clearly, the effect decreases for increasing value of bonus, what means that for

cars, which have not reported a claim for a long period, the risk decreases.

Because the covariate car classification was considered as a group indicator with a ran-

dom effects assumption, the estimated function looks considerably rougher than the

other function. It shows an increasing trend until about category 33 that is coherent with

the intended definition of the groups. The decreasing trend of the posterior mean line

and the wider credible bands after this category may be due to sparse data in these last

categories.
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-0.03 0.07

Figure 7.11: Unstructured spatial effect for POLN. The left panel shows the posterior

mean, the right panel displays posterior probabilities based on nominal levels of 95%.

White colored regions correspond to strictly negative credible intervals and black colored

regions to strictly positive intervals. Districts with credible intervals containing zero are

colored in grey.

Let us now turn to the geographical, district-specific effects. In Figures 7.10-7.12 we have

displayed the results for the POLN model only, as there are no great differences between

the models. The left map of Figure 7.10 shows the posterior means for the structured

effects fstr displaying a smooth but very clear regional pattern: there is a clear decline

from southwest to northeast. This is confirmed by the 95% ’significance maps’ in the

right map of Figure 7.10. White colored regions correspond to strictly negative credible

intervals (i.e. a ’significant negative effect’) and black colored regions to strictly positive

credible intervals (i.e. a ’significant positive effect’). Districts with credible intervals con-

taining zero are colored in grey. The left map in Figure 7.11 shows the posterior means

of the unstructured effects funstr. We cannot observe any typical pattern in this plot, and



144 7. Case studies

-0.346 0.3530

Figure 7.12: Sum of the structured and the unstructured spatial effect for POLN. The left

panel shows the posterior mean, the right panel displays posterior probabilities based

on nominal levels of 95%. White colored regions correspond to strictly negative credible

intervals and black colored regions to strictly positive intervals. Districts with credible

intervals containing zero are colored in grey.

accordant with the results of the simulation study in Chapter 6, the unstructured, local

effects are much smaller than the corresponding structured effects. This is confirmed by

the significance map in the right part: no district has significant effect for a nominal level

of 90%. The maps for the sum fspat of structured and unstructured effects in Figure 7.12

resemble the maps in Figure 7.10, but are less smooth. Table 7.8 gives a summary of the

significant positive/negative or non significant effects for the total geographical effect

in the PO, NB, POGA and POLN models. There we see that particularly the last three

models mostly agree in the classification.

Figure 7.13 displays box plots for the estimated posterior means of the multiplicative

random effects within the different observed values for claims from 0 to 4 for the POGA
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sign. negative non sign. sign. positive

PO 45 383 10

POGA 46 384 8

NB 46 384 8

POLN 46 383 9

Table 7.8: Number regions with negative significant, no significant and positive signifi-

cant total geographical effect in the different models.

and POLN models. For the latter one, the values have been transformed in order to

compare them with the POGA results. The transformation is based on their prior relation,

given by νi = exp(κi). For claims = 4 we have only plotted the estimated posterior

means for the three observed values. The pattern is clearly shown. The νi build clusters

associated with the value of the response variable. This is an undesirable effect, because

this is a sign for insufficient explanation of the response variable through the covariates.

The estimated values for µi are not large enough to fit observed responses greater than

zero, and the νi have to account for this lack of approximation, as we see in the well

defined jumps between the box plots for increasing response value.

We suggest two interpretations for this behavior. The first one is related to the lack of

information available in the model. The used covariates can explain only a very small

part of the response variable and the main explanation relays on the individual specific

random effects, which by their definition should account for unavailable information in

the model. In this case there is no much statistical work to do. It would be important

to consider, which covariates could be strongly related to the number of claims and to

collect new information.

The second interpretation is related to the immense amount of zero observations in the

data set. We may have too little variation in the response, dominated by zero responses,

to extract the information contained in the covariates. One solution to this problem is to
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Figure 7.13: Box plots for the estimated posterior means of the individual specific random

effects of the POGA (top) and POLN (bottom) models split by the response variable.

test zero inflated models on the data. These could account for a differentiating modeling

for zero and non zero observations.

Second block: ZIPGA and ZINB

From an interpretational point of view, ZIMs are attractive in car insurance applications.

We can differentiate between two kind of zero observations: The first class consists on



7.2. Car insurance 147

those zeros, where actually no accidents have been produced, which corresponds to the

situation where the underlying count data process is zero, independently of the value of

the latent selection process. The second class consists on those claims caused e.g. by small

car body damages that were not reported to preserve the no–claim bonus of the insured.

In this case, the underlying count data process is not zero, but the selection process.

We have tested both models ZINB and ZIPGA. As the results for both are very similar,

we present the results for the ZIPGA model only.

In Table 7.9 we give the results for the fixed effects, zero inflation and overdispersion

parameter for the ZIPGA model applied to the car insurance data set. As we see, there

are only minor differences between the results exposed in Table 7.7. Note the discrepancy

in the intercepts: We have already explained this for the POLN case. Now, for the ZIPGA

model, we must recall that in zero inflated models the marginal mean assumption is

different from the one in overdispersion models. In the former we have E(yi| ·) = (1−

θ)µi and in the later we have E(yi| ·) = µi. Because our modeling implies a constant θ for

all the observations, the factor that precedes µi will be compensated with the intercept

by log(1−θ) = −0.072809. So adjusting the intercept of the ZIPGA model by adding

-0.07280889 bring us closer to the estimated posterior mean of the intercept in the NB

model. The rest of the fixed effects remains quite unaltered, which is once again a proof

of the robustness of the estimation for the predictor, independently of the chosen model.

The estimation of the P–splines and the random effect term results in very similar plots

as presented in Figure 7.9, which also holds for the results of the geographical terms.

In Table 7.9 we also see the estimated posterior means for θ and δ. The value for θ is very

small, but even large enough to increase the value of δ with its presence in the model,

when comparing it with the value of the overdispersion parameters in Table 7.7. That

means, running the model under the assumption of zero inflation decreases the estimated

overdispersion parameter. In ideal case, the box plots in the Figures 7.13 and 7.14 should

be placed around the base line 1. In Figure 7.14 we can see that the range of the estimated
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ZIPGA

Mean STD 2.5%-Quant. Median 97.5%-Quant.

const -8.1420 0.2102 -8.5765 -8.1381 -7.7271

garage -0.0254 0.0150 -0.0545 -0.0257 0.0040

tari f f 0.0211 0.0146 -0.0074 0.0208 0.0500

ownpart -0.0309 0.0141 -0.0590 -0.0308 -0.0016

θ 0.0702 0.0472 0.0038 0.0636 0.1810

δ 1.7244 0.1829 1.4511 1.6834 2.0856

Table 7.9: Results for the fixed effects, zero inflation and overdispersion parameters in

the ZIPGA model

posterior means for the random effects shrinks to about 3. But we still have the jumps

between the classes defined by the response variable and the model is far away from the

optimal case.
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Figure 7.14: Box plots for the estimated posterior means of the individual specific random

effects of the ZIPGA model split by the response variable.
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Now we would like to compare our results with those of other statistical software. For

this purpose we have run some tests using Intercooled Stata 7.0. With this software we

can calculate generalized regression models with a zero inflated Poisson or zero inflated

negative binomial response distribution. The problem is that only linear terms are al-

lowed in the predictor. So we can not estimate exactly the same model as with BayesX.

What we have done is to run a zero inflated negative binomial regression model only

with a linear effect in predictor (linpred), given by the vector of estimates η̂i from the NB

model, and a constant intercept.

Zero-inflated negative binomial regression Number of obs = 200681
Nonzero obs = 7719
Zero obs = 192962

Inflation model = logit LR chi2(1) = 1084.54
Log likelihood = -33395.85 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
sh | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
sh |

linpred | .544745 .01809 30.11 0.000 .5092892 .5802007
_cons | -1.415536 .0589386 -24.02 0.000 -1.531054 -1.300019

-------------+----------------------------------------------------------------
inflate |

_cons | -9.81249 48.78934 -0.20 0.841 -105.4378 85.81286
-------------+----------------------------------------------------------------

/lnalpha | -.4613818 .1514733 -3.05 0.002 -.7582641 -.1644996
-------------+----------------------------------------------------------------

alpha | .6304119 .0954906 .468479 .8483181
------------------------------------------------------------------------------

Table 7.10: Results for the zero inflation negative binomial regression model of Stata

As we observed in the output of Table 7.10, the estimated coefficient for linpred is 0.544745

and thus far away from 1. And the estimate for the intercept is not zero, as we could

expect, but has a negative value. This is somehow surprising, because if the information

in the covariates is not enough to explain the response variable (as the multiplicative

random effects from the ZIPGA model insinuate), then we would not expect, that the

new estimated predictor adopts smaller values than the old one.

We recall the formula that related δ and θ with the parameters alpha and in f late. For the
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former δ = 1/alpha. Plugging in the corresponding value we get 1.5863 for the overdis-

persion parameter from the Stata model and 1.7244 for the ZIPGA model. For the zero

inflation parameter it holds θ = exp(in f late)
exp(in f late)+1 . Consequently we have 0.00005476032 for

the Stata model and 0.0702 for the ZIPGA one. There are significant differences between

the results of both models. This gives further evidence for the insufficiency of the ZIPGA

model for this car insurance data set.

Third block: POIG and POIGH

As expected, POIG and POIGH are not able to find overdispersion in the data. POIG

could not be applied for the planned 25000 iterations. A test run with 2000 iterations

shows that the posterior estimate for δ moves around 2.39729e+06. This extreme large

value causes numerical problems in the program and produces its crash. The POIGH

model shows in this aspect a slightly but not relevant improvement. The program also

did not run for the desired 25000 iterations, but with a shorter run of 2000 we obtained

207980 as posterior mean estimate for δ, which is anyway a smaller value as the one

obtained from the POIG model.

Summary

We conclude with a short overview of the presented results.

• First, none of the models is optimal for the car insurance data set. This may be

due to the structure of the data, with a great disproportion of zero counts versus

nonzero counts.

• Second, we can say that NB, POGA, ZIPGA and POLN models could clearly iden-

tify overdispersion in the data. So they are preferable to a classical PO model.

• All of them show similar estimation results for the predictor, for the fixed effects,

for the random effects, for the P–Splines, as well as for the geographical covariate.

This gives evidence for the robustness of the models with respect to the underlying

distribution of the multiplicative random effects.
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• The inclusion of nonparametric terms in the predictor seems to be reasonable, as it

is shown through the form of the estimated nonparametric effects for the metrical

covariates. Also the spatial effects account for significant differences between the

regions.

• For the estimation of the overdispersion parameter we find some discrepancies.

The POGA and the NB model give similar estimates, but not the same. The POLN

model seems to fit better with a smaller δ.

• By introducing zero inflation in the model (ZIPGA) we do not get a large value for

the θ parameter, but it is enough to alter the estimate of δ and make it larger. So we

can not ensure that there is almost no zero inflation in the model.

• Comparing the results with those of the Stata software confirms us, that even the

more complete model presented here (ZIPGA) is not good enough for this car in-

surance data set. A possible alternative for the modeling of this car insurance data

set are underreporting models (see Winkelmann (1996)).

We have experienced that it is always recommended to run a ZIPGA, POGA or POLN

model on the data and analyze the estimates for the individual specific random effects.

Together with the advantages stated at the end of the last section, they are also very

helpful in model assertion.

An interesting further development for the presented overdispersed and zero inflated

models would be the implementation of possible dependences of overdispersion and

zero inflation parameters on covariates. This may improve the estimation results, bring

more flexibility in to the models and could be interesting for the interpretation of the

results.
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Chapter 8

Bayesian Count Data Regression

with BayesX: A tutorial

The focus of this chapter is on showing how count data can be analyzed in BayesX. For

this purpose, we describe how to estimate some of the regression models discussed in

Section 7.1 to analyze the patent data. All the models presented in this work are imple-

mented in this program. Three semiparametric regression models are selected. First, we

apply a classical Poisson (PO) regression model, where the data given the covariates are

supposed to be Poisson distributed. Second, we estimate a regression model that allow

for overdispersion in the data, namely, a Poisson–Gamma (POGA) regression. In this

model the data are supposed to be Poisson distributed given the covariates. The differ-

ence to the Poisson regression is that in addition to the given covariates we also estimate

a vector of individual specific random effects, that is supposed to have i.i.d. components

with gamma prior. Finally, the data will be tested for zero inflation with the help of a

Zero Inflated Poisson–Gamma (ZIPGA) model. This is an extension of the POGA model,

where a zero inflation parameter is introduced. For a more detailed explanation of the

models we refer to Chapters 2 and 3.

This chapter is structured as follows. Section 8.1 presents the software package BayesX.

153
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A description of the general use of BayesX and some comments about its structure are

given in Section 8.2. Section 8.3 describes how to handle and manipulate data sets with

the program. The main aspects on count data regression are shown in Section 8.4. In the

last sections we describe the methods that are implemented in BayesX to plot and analyze

regression results.

8.1 BayesX

BayesX is a software tool for performing complex Bayesian inference. Among other

features BayesX supports Bayesian semiparametric regression based on Markov Chain

Monte Carlo (MCMC) simulation techniques, handling and manipulation of data sets,

and visualizing data. More information about further features available in the program

can be found in the manual (Brezger, Kneib and Lang, 2003). The full Bayesian approach

is described in detail in this work and in Fahrmeir and Lang (2001a), Fahrmeir and Lang

(2001b), Lang and Brezger (2004) and Brezger and Lang (2003). Details about the estima-

tion techniques for the empirical Bayes approach can be found in Fahrmeir, Kneib and

Lang (2003). Survival models are treated in Hennerfeind, Brezger and Fahrmeir (2003)

and Fahrmeir and Hennerfeind (2003). Count data regression is covered in Fahrmeir and

Osuna Echavarrı́a (2003). BayesX is available at http://www.stat.uni-muenchen.de/

˜lang/bayesx/bayesx.html .

8.2 Getting started

After having started BayesX, a main window with four sub–windows appears on the

screen. In the command window we enter and execute commands. A command will be

executed by pressing the return key. The review window enable easy access to past com-

mands. Click on the desired command and it will appear in the command window. There

one can modify and/or execute it. The object browser displays all objects currently avail-
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able. This window has two sub–windows. In the left one the different object types sup-

ported by BayesX are shown. By selecting one type in this left window with a mouse click,

a list of the available objects of this type is displayed. In the output window commands

and results are displayed. It may be desirable to save the output window contents in a a

file. To do this we open a so called log–file.

> logopen using d:\patent\results\patent.log

After opening a log–file, all commands entered and all program output appearing on the

screen will be saved in this file. If the file already exists, BayesX will be append the new

contents to those in the old file. If we want to replace the old file, then we have to add

the option replace as follows

> logopen, replace using d:\patent\results\patent.log

Having finished the estimation we may close the log–file by typing logclose . Note, that

the log–file is closed automatically when exiting BayesX. If a log–file was not opened at

the beginning of the session but we are interested in storing the contents of the output

window, we will always be asked by leaving out BayesX to save the output.

BayesX is object oriented although the concept is limited, i.e. inheritance and other con-

cepts of object oriented languages like C++ or S–plus are not supported. For every object

type a number of object-specific methods may be applied to a particular object. For esti-

mating Bayesian regression models we need at least a dataset object to incorporate, handle

and manipulate data, a bayesreg object to estimate semiparametric regression models, and

a graph object to visualize part of the results with some plots. The syntax for generating a

new object in BayesX is

> objecttype objectname

where objecttype is the type of the object, e.g. dataset , and objectname is the name to be

given to the new object.
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8.3 Dataset object

First we create a dataset object. This is done by typing

> dataset patent

in the command window, where patent is the name of the dataset object. Several methods

are available for dataset objects.

We first read the data using method infile . It allows us to read the data from the file

patent.raw into patent , for example with

> patent.infile using d:\patent\data\patent.raw

This command supposes that the variable names are given in the first row of the file, as

is the case in patent.raw. Otherwise we would have to write the names of the variables

right after infile .

If our data set has more than 10.000 observations it is recommended to set the option

maxobs to the number of rows in our data. This option allows BayesX to allocate enough

memory to store all the data.

We can take a look at our data by executing describe .

> patent.describe

Note that the variable cntry ch de gb given in Table 7.1 does not exist in the read data,

but only three dummies cntry ch, cntry de and cntry gb. Using method generate we

can create this variable and add it to the dataset object patent . The command for this

operation is

> patent.generate cntry_ch_de_gb = cntry_ch + cntry_de + cntry_gb

We can examine any continuous covariate from our data with the help of descriptive .

> patent.descriptive claims

Variable Obs Mean Median Std Min Max
claims 4805 12.326535 10 8.1304757 1 50
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Or may be we want to obtain the frequency table of a dummy covariate. In this case

method tabulate is appropriate.

> patent.tabulate pct
Variable: pct

Value Obs Freq Cum
0 3900 0.8117 0.8117
1 905 0.1883 1

In Section 7.1 we run a preliminary model and discovered that it is better to drop the

observations in our data corresponding to pct = 1. Following output

> patent.tabulate pct if forwcits!=0

Variable: pct

Value Obs Freq Cum
0 2559 0.9865 0.9865
1 35 0.01349 1

confirms this decision. Dropping these observations is an easy matter in BayesX.

> patent.drop if pct = 1

Because we do not need the variables cntry ch, cntry de, and cntry gb any more, we may

delete them from the data.

> patent.drop cntry_ch cntry_de cntry_gb

Note that method drop allows to delete variables as well as observations from our data

set.

We can save the modified data set in the file patent.dat using outfile .

> patent.outfile, replace header using d:\patent\data\patent.dat

8.4 Bayesreg object

We want to estimate three regression models for the patent data, a Poisson, a POGA

and a ZIPGA regression. To fit these models we need to fix some regression specific



158 8. Bayesian Count Data Regression with BayesX: A tutorial

elements and some options for the MCMC estimating algorithm. The only difference

between the specifications of these models is the determination of the distribution family

for the response variable. The rest (predictor, priors for the predictor terms and MCMC

options) are similar. For the PO model the distributional assumption for the response

is the classical yi| . . . ∼ Po(µi). The POGA model is characterized by the assumption

yi| . . . ∼ Po(νi µi), where νi|δ ∼ G(δ, δ) are independent individual specific random

effects. The ZIPGA model will be represented by yi| . . . ∼ ZIPGA(µi,νi,θ), with µi

being the mean, νi the multiplicative random effects with the same prior assumption as

for the POGA model, and θ the zero inflation parameter.

To estimate the regression models we have to create three bayesreg objects which we name

po, poga and zipga :

> bayesreg po
> bayesreg poga
> bayesreg zipga

By default estimation results are written to the subdirectory output of the installation

directory. In this case the default filenames are composed of the name of the bayesreg

object and the type of the specific file. However, it is usually more convenient to store the

results in a user–specified directory. To define this directory we use method outfile for

bayesreg objects:

> po.outfile = d:\patent\results\po\po
> poga.outfile = d:\patent\results\poga\poga
> zipga.outfile = d:\patent\results\zipga\zipga

Note, that outfile does not only specify a directory but also a base filename (the char-

acters ’po’, ’poga’ and ’zipga’ in our example) and that it may of course be different from

the name of the bayesreg object. Therefore executing the second command above leads

to storage of the results in the directory ’d:\papent\results\poga\ ’ and all filenames

start with the characters ’poga’.

Now we estimate our semiparametric regression models using the regress method. We

list below the commands for each model.
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> po.regress forwcits = biopharm + accexam + accsrch + cntry_us + opp
+ cntry_ch_de_gb + ustwin + claims(psplinerw2)
+ gryear(psplinerw2, nrknots=14) + nstat(psplinerw2, nrknots=14),
iterations=5000 step=4 burnin=1000 family=poisson predict using patent

> poga.regress forwcits = biopharm + accexam + accsrch + cntry_us + opp
+ cntry_ch_de_gb + ustwin + claims(psplinerw2)
+ gryear(psplinerw2, nrknots=14) + nstat(psplinerw2, nrknots=14),
iterations=5000 step=4 burnin=1000 family=nbinomial distopt=poga
predict using patent

> zipga.regress forwcits =biopharm + accexam + accsrch + cntry_us + opp
+ cntry_ch_de_gb + ustwin + claims(psplinerw2)
+ gryear(psplinerw2, nrknots=14) + nstat(psplinerw2, nrknots=14),
iterations=5000 step=4 burnin=1000 family=zip zipdistopt=zipga
predict using patent

These models are explained at the end of Subsection 7.1.1. The syntax for all three models

is similar. The difference relies only on the family option, as we will explain bellow.

The first lines of this commands define the response variable together with the predic-

tor and the priors for each term. The semiparametric predictor is common for all three

models and is given by:

η = γ0 + f1(claims) + f2(gryear) + f3(nstat)

+γ1 biopharm +γ2 accexam +γ3 accsrch +γ4 cntry us

+γ5 opp +γ6 cntry ch de gb +γ7 ustwin

The three continuous covariates of Table 7.1 are assumed to have a possibly nonlinear

effect on the response variable (forwcits) and are therefore modeled by P–splines (with

second order random walk prior). With the option nrknots=14 the number of knots is

set to 14 for gryear and nstat. For claims the P–spline has 20 knots, which is the default

value. The reasons for this choice are given in Subsection 7.1.1. The remaining variables

are dummies and modeled as linear effects.

The options iterations , burnin and step define properties of the MCMC-algorithm

that is used to estimate the model. The total number of MCMC iterations is given by



160 8. Bayesian Count Data Regression with BayesX: A tutorial

iterations while the number of burnin iterations is given by burnin . Therefore we

obtain a sample of 4000 random numbers with the above specifications of these options.

Since, in general, these random numbers are correlated we do not use all of them but

thin out the Markov chain by the thinning parameter step . Specifying step=4 as above

forces BayesX to store only every 4th sampled parameter which leads to a random sam-

ple of length 1000 for every parameter in our example. If the option predict is speci-

fied, samples of the deviance, the effective number of parameters pD, and the deviance

information criteria DIC of the model are computed, see Spiegelhalter, Best, Carlin and

van der Linde (2002). In addition, estimates for the predictor and the expectation of every

observation are obtained.

The option family specifies the distribution family for the response variable. There are

several possibilities implemented in BayesX for this option and we refer to the manual

(Brezger et al., 2003) for more details. As we are interested in analizing count data, three

families are of main interest here: the Poisson, the overdispersion and the zero inflation

families. For a Poisson regression model with loglink we have to set family=poisson ,

as we did in the first command. Other link functions than the loglink are not supported

by BayesX.

For a regression model with overdispersion we set the family for the response distribu-

tion to family = nbinomial . The link function is also here the logarithm, for the same

reasons as for the Poisson distribution. For this family we have two further options. The

option aresp , which can be used to set the hyperparameter a of the gamma prior for the

scale parameter to the desired value. Note that only positive values are allowed. The

default is aresp = 1 . The second option is distopt . It allows to work directly with a

negative binomial density (distopt = nb ) for the NB model or indirectly with a Poisson-

Gamma mixture (distopt = poga ) for the POGA model. Setting distopt = poig al-

lows us to work with a Poisson–Inverse Gaussian mixture.

Zero inflated models are also implemented in a family in BayesX. To use them we have to

set family = zip . Within this family we have the option zipdistopt , that offers four
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alternatives for the distribution of the response variable. The first one assumes a zero

inflated Poisson distribution for the response variable and is given by zipdistopt=zip .

The second alternative allows us to change to a zero inflated negative binomial distribu-

tion (zipdistopt=zinb ). Zero inflation with latent variables is also possible by setting

zipdistopt=zipga , for a zero inflated Poisson–Gamma formulation, or alternatively

zipdistopt=zipig , for a zero inflated Poisson–Inverse Gauss.

BayesX calculates the posterior mean and median, the posterior 2.5%, 10%, 90% and 97.5%

quantiles, and the corresponding 95% and 80% posterior probabilities of the estimated

effects. The nominal levels of the posterior quantiles may be changed by the user using

the options level1 and level2 . For example specifying level1=99 and level2=70 in

the option list of the regress command leads to the computation of 0.5%, 15%, 85% and

99.5% quantiles of the posterior. The defaults are level1=95 and level2=80 .

8.5 Post estimation commands and results

After estimation, results for each effect are written to an external ASCII file, together

with the information written in the output window. These files contain the posterior mean

and median, and the indicated posterior quantiles. In addition to the files for the different

effects two files with endings .tex and .ps are created and stored in the outfile directory.

The tex file contains a summary of the estimation results which may be compiled using

LATEX, the ps file contains figures of the nonparametric effects.

For the POGA model four more files are additionally created, when comparing results

with the PO model. Two of them contain the estimation results for the multiplicative

random effects and the sampling paths of ten of them, if the number of observations

is larger than 500 (as is the case here) and of all them otherwise. The other two store

estimation results and sampling path for the scale parameter. Compared to the POGA

model, we find two additional files in the results for the ZIPGA model, which store the

summarized results and the sampling paths for the zero inflated parameter.
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To save memory, the sampling paths of the other estimated parameters are only stored

temporarily by default. If we want to store them, we have to execute the getsample

command

> po.getsample
> poga.getsample
> zipga.getsample

which stores the sampled parameters in ASCII files. To avoid too large files, the samples

are typically partitioned into several files. It is always recommended to take a look at

some of the sampling paths of the parameters to ensure convergence is achieved. With the

method autocor BayesX calculates and stores autocorrelation functions of all sampled

parameters in a file named autocor.raw.

> po.autocor
> poga.autocor
> zipga.autocor

As we will see in the next section, this file is also created when plotting autocorrelations

with the command plotautocor .

8.6 Plots and Graph objects

BayesX provides three possibilities to visualize estimation results:

• As mentioned in the previous section, certain results are automatically visualized

by BayesX and stored in ps files.

• Post estimation plots of bayesreg objects allow to visualize results after having exe-

cuted a regress command.

• Graph objects may be used to produce graphics using the ASCII files containing the

estimation results. In principle graph objects allow the visualization of any content
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of a dataset object. Graph files are also used in the batch file containing the commands

to reproduce the automatically generated graphics.

In Subsection 8.6.1 we explain how to create and modify post estimation plots in BayesX.

In Subsection 8.6.2 some comments about graph objects are given. We refer the reader to

the Manual (Brezger et al., 2003) for more information.

8.6.1 Post estimation plots

After having executed a regress command simple plots for nonparametric effects can

be produced. Through executing the commands

> poga.plotnonp 1
> poga.plotnonp 3
> poga.plotnonp 5

we obtain plots for the covariates claims, gryear and nstat respectively. The graphs pro-

duced for this commands appears in an Object-Viewer window and are shown in Figure

8.1. By default these plots contain the posterior mean and pointwise credible intervals

according to the levels specified in the regress command. So by default the plot in-

cludes pointwise 80% and 95% credible intervals.

BayesX enables the user to customize this basic graph style. For example, we may only

want to plot one of the confidence intervals. The options levels=1 or levels=2 produce

plots with the 95% or the 80% confidence intervals respectively.

Sometimes it may be convenient to give a title to the graph or to indicate what is plotted

in the x- or y-axis. With the options title , xlab and ylab is this matter is easy to solve.

Following options can be used to modify axis labels and tick marks. xlimtop gives the

upper and xlimbottom the lower limit for the x-axis in the graph. xstep gives the dis-

tance between tick marks in the x-axis. Of course ylimtop , ylimbottom and ystep are

equivalent expressions for the y-axis.
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Figure 8.1: Effect of the number of EPO claims, grant year and number of designated

states together with pointwise 80% and 95% credible intervals for the model POGA.

If we want to store a plot we may either do this by using the dialog that appears on closing

the Object-Viewer window or by using the outfile option. Again specifying replace

allows BayesX to overwrite an existing file. Note, that if the option outfile is specified,

BayesX does not display the graph on the screen.

The usage of this options is illustrated in Figure 8.2, for which we have executed follow-

ing command. The plot is stored in the file d:\patent\results\po\po_nstat.ps .

> po.plotnonp 5, levels=2 xstep=2 ylimtop=0.6 ystep=0.2 ylimbottom=-1.0

xlab="nstat" ylab="f_nstat" title="Poisson:Nr. of designated States"

replace outfile=d:\patent\results\po\po_nstat.ps

Another method for bayesreg objects is the function plotautocor . It computes and dis-

plays the autocorrelation functions for all estimated parameters with maxlag specifying
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Figure 8.2: Effect of number of designated states together with pointwise 80% credible

intervals for the PO model.

the maximum lag number.

> po.plotautocor, maxlag=250
> nb.plotautocor, maxlag=250
> poga.plotautocor, maxlag=250

Figure 8.3 shows the autocorrelation plot corresponding to the scale parameter in the

POGA model.

Note, that executing the plotautocor command also stores the computed autocorrela-

tion functions in a file named autocor.raw in the output directory of the bayesreg object.

From this plot we can see that the autocorrelations for the scale parameter are not so

good. In such a case it would be recommended to run the POGA model once again with

a larger number of iterations and a larger number for step .

8.6.2 Graph objects

Graph objects are used to visualize data and estimations results. These objects enable us

to create equivalents to the post estimation plots of the last subsection from estimation

results of past regression analyzes. We can also visualize sampling paths for parameters,
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Figure 8.3: Autocorrelation function for the scale parameter in the POGA model

draw maps if geographical information is available or create scatterplots from some given

data. In this tutorial we introduce the methods plotsample and plot .

To create a graph object we execute

> graph g

Now we need a new dataset object to store the data we want to plot.

> dataset d

After having executed the method getsample on a bayesreg object, plotsample can be

used to visualize the sampling paths for the parameters. The plots of Figure 8.4 have

been created by the following code:

> d.infile using d:\patent\results\zipga\zipga_scale_sample.raw
> g.plotsample using d
> d.infile using d:\patent\results\zipga\zipga_theta_sample.raw
> g.plotsample using d

Of course we may save these plots in files using the options outfile and replace as

already mentioned in the last subsection. No further options are allowed fot this method.
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Figure 8.4: Sampling paths for the scale parameter (left) and the zero inflation parameter

(right) of the ZIPGA model

Other method that we can apply to a graph object is the method plot . It is used to draw

scatterplots between two or more variables. All options described in Subsection 8.6.1

for the method plotnonp are also valid here among others. For example we can use

the option connect to specify how points in scatterplot are connected. To see the four

implemented specifications we refer to the BayesX manual. For the plot in Figure 8.5 we

used connect=p , which means that points are not connected. The commands to obtain

this figure are indicated below.

> d.infile using d:\patent\results\poga\poga_nu.res
> g.plot nu pmean, outfile=d:\patent\results\poga\nu_scatter.ps
connect=p replace xlab="Index" ylab="posterior mean"
title="Multiplicative random effects" using d
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Figure 8.5: Scatterplot for the estimated posterior mean of the multiplicative random

effects in the model POGA.



Appendix A

Remarks on distributions

A.1 Derivation of the Negative Binomial distribution

For simplicity, we leave out the subscript in this section to show how the Negative Bino-

mial distribution is derived through integration from the mixed Poisson–Gamma distri-

bution. Consider the variables

y|ν,µ ∼ Po(νµ) and

ν|δ ∼ G(δ, δ)

with densities

P(y|ν,µ) =
exp(−νµ)(νµ)y

y!
for y ∈ IN ∪ {0}

and

g(ν|δ) =
δδ

Γ(δ)
νδ−1 exp(−δ ν) for ν > 0

respectively. Then the dependency of y on ν can be eliminated by taking the expectation

of P(y|ν, µ) over ν as follows

P(y|µ) = Eν(P(y|ν, µ))

169
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=
∫

P(y|ν ,µ)g(ν)dν

=
∫ ∞

0

exp(−νµ)(νµ)y

y!
δδ

Γ(δ)
νδ−1 exp(−δ ν)dν

=
µy δδ

y!Γ(δ)

∫ ∞
0

exp(−(µ + δ)ν)νy+δ−1dν

=
µy δδ

Γ(y + 1) Γ(δ)
Γ(y + δ)

(µ + δ)y+δ

=
Γ(y + δ)

Γ(y + 1) Γ(δ)
µy δδ

(µ + δ)(y+δ)

=
Γ(y + δ)

Γ(y + 1) Γ(δ)

(
µ

µ + δ

)y (
δ

µ + δ

)δ
for y ∈ IN ∪ {0}

A.2 General form of the inverse Gaussian distribution

Is X an inverse Gaussian distributed variable with parameters µ > 0 and δ > 0, X ∼

IGauss(µ, δ), then its density is of the form

g(x) =

√
δ

2π x3 exp
(
−δ(x−µ)2

2 xµ2

)
x ∈ IR+.

The mean and variance are

E(X) = µ

V(X) =
µ3

δ
.

Studying the distribution of Y = aX if X ∼ IGauss(µ, δ) and a > 0:

g(y) =
√

δ

2π
( y

a

)3 exp

(
−
δ( y

a −µ)2

2 y
a µ

2

)
1
a

=

√
δa3

2π y3 a2 exp
(
−δ a (y− aµ)2

2 y a2µ2

)

=

√
δa

2π y3 exp
(
−δ a (y− aµ)2

2 y (aµ)2

)
It turns out that Y ∼ IGauss(aµ, aδ).
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A.3 General form of the LogNormal distribution

If Y is N(µ,σ2) distributed, then X = exp(Y) is a LogNormal distributed variable with

parameters µ ∈ IR and σ > 0, denoted X ∼ LogN(µ,σ2). Its density is of the form

g(x) =

√
1

2π σ2 x2 exp
(
− 1

2σ2 (log(x)−µ)2
)

for x ∈ IR+. The mean and variance are given by

E(X) = exp
(
µ +

σ2

2

)
V(X) = exp

(
2µ +σ2

) (
exp

(
σ2
)
− 1
)

.

A.4 Zero inflation with latent variables

We will show that the probability of zero counts for the marginal distribution of a mix-

ture distribution as given by (2.5) exceeds the probability for zero counts in the Poisson

distribution. Formally, we proof:

P(yi = 0) < P(yi = 0| ·) = E(P(yi = 0|νi)| ·) (A.1)

Define

f (νi) = P(yi|νi)

=
exp(−µiνi)(µiνi)yi

yi!

A Taylor series approximation for f (νi) around νi = 1 gives

f (νi) = f (1) + f ′(1)(νi − 1) +
1
2

f ′′(ξ)(νi − 1)2 (A.2)

with ξ between νi and 1. Furthermore it holds

f ′(νi) =
exp(−µiνi)(µiνi)yi

yi!

(
−µi +

yi

νi

)
= f (νi)

(
−µi +

yi

νi

)
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and

f ′′(νi) = f ′(νi)
(
−µi +

yi

νi

)
+ f (νi)

(
− yi

ν2
i

)

= f (νi)

((
−µi +

yi

νi

)2

−
(
− yi

ν2
i

))

Taking expectations on νi in (A.2) and considering that E(νi) = 1, we obtain

E( f (νi)) = f (1) + f ′(1)E(νi − 1) +
1
2

f ′′(ξ)V(νi)

= f (1) +
1
2

V(νi) f (ξ)

(
yi

ξ2 +
(

yi

ξ
−µi

)2
)

For yi = 0 and rewriting f in its original form we have

P(yi = 0| ·) = P(yi = 0|νi = 1) +
1
2

V(νi) f (ξ)µ2
i

= P(yi = 0) +
1
2

V(νi) f (ξ)µ2
i

with 1
2 V(νi) f (ξ)µ2

i always being positive. Hence (A.1) can be asserted.



Appendix B

Calculation of IWLS weights

In this Chapter we are going to analyze the form of the expected Fisher information ma-

trix FE for our models. We have stated in Subsection 5.2.1 that the Fisher Information

matrix has the general form FE = X′WX. The aim is to prove this assertion and to calcu-

late the weights matrix W needed for the implementation of the IWLS proposals used in

Subsection 5.2.1. For this purpose some notation has to be introduced. Recall the notation

for the predictor given in (4.15):

η = Xββ+ Xγγ + Xρρ+ X f f

=
(
Xβ, Xγ , Xρ, X f

)

β

γ

ρ

f


= XΨ

With K = Q + S + G + R, X is a nxK matrix and Ψ a Kx1 vector. The observed Fisher

information matrix FE(Ψ) is a KxK matrix defined as

FE(Ψ) = −E

(
∑

i

∂2li

∂Ψk∂Ψ j

)
jk

(B.1)
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where li is the loglikelihood of observation i in our data. We will see from our calcula-

tions, that a general form for FE(Ψ) common for all the models can be found, namely

FE(Ψ) = X′WX

=


X′βWXβ · · · · · · · · ·

· · · X′γWXγ · · · · · ·

· · · · · · X′ρWXρ · · ·

· · · · · · · · · X′f WX f



=


FE(β) · · · · · · · · ·

· · · FE(γ) · · · · · ·

· · · · · · FE(ρ) · · ·

· · · · · · · · · FE( f )

 (B.2)

Note that only the diagonal blocks given in (B.2) will be relevant in our implementation.

This form permits a fast implementation of the algorithm. The X matrix is constant along

all the iterations. And the W matrix is a nxn diagonal matrix W = diag(w1, . . . , wn). In

an exponential family framework, the form of the weights wi is well known

wi =
(

b′′(θi)
(

g′(µi)
)2
)−1

(B.3)

with the usual notation for exponential families: θ natural parameter, g(·) link function,

and b(·) depending only on the natural parameter. But here we do not have underlying

exponential family distribution in general. So we have to calculate the weights by the

direct way: differentiating the loglikelihood twice. As known from Chapter 3, in a zero

inflated model we have different forms for the likelihood of a zero response or other-

wise. Therefore we have to distinguish between the two possibilities when calculating

the weights.

In the next subsections we calculate E
(

∂2 li
∂Ψk∂Ψ j

)
for our distributions and obtain

− E
(

∂2li

∂Ψk∂Ψ j

)
= xi jxikwi (B.4)
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for all the models. This justifies the form FE(Ψ) = X′WX. Note that when ∂2 li
∂Ψk∂Ψ j

does not

depend on yi, then E
(

∂2 li
∂Ψk∂Ψ j

)
= ∂2 li

∂Ψk∂Ψ j
and we can omit taking expectations. Another

conclusion from the results obtained in the following sections is that wi always depends

on µi and hence on Ψ. That is the reason why we write FE(Ψ) and wi(Ψ).

B.1 NB

For a known scale parameter the Negative Binomial distribution is an exponential family

member. Hence two possibilities to calculate the weights exist. The exponential family

properties can be exploited or a direct calculation is made. We present both approaches.

B.1.1 Considered as exponential family member

We first rewrite the density of an observation in an exponential family form, supposing

that the δ parameter is known.

p(yi| . . . , δ) =
Γ(yi + δ)

Γ(δ)Γ(yi + 1)

(
µi

δ+µi

)yi
(

δ

δ+µi

)δ
= exp

{
ln Γ(yi + δ)− ln Γ(δ)− ln Γ(yi + 1)

+yi ln
(

µi

δ+µi

)
+ δ ln

(
δ

δ+µi

)}
= exp {c(yi, δ) + yiθi − δ ln(δ+µi)}

The obtained link function g(·) and the natural parameter θi from the expression below

are given by

µi = h(ηi) = exp(ηi)

ηi = g(µi) = ln(µi)

θi = ln
(

µi

δ+µi

)
µi =

δ exp(θi)
1− exp(θi)
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From the last equality above we see that the logarithm is not the natural link function of

the Negative Binomial distribution. Despite this fact we prefer it because of its simple

form and because it ensures that µi is positive. Now we calculate the elements of the

product given in (B.3), namely g′(µi) and b′′(θi):

g′(µi) =
1
µi

b(θi) = δ ln(δ+µi)

= δ ln
(
δ+

δ exp(θi)
1− exp(θi)

)
= δ ln(δ) + δ ln

(
1− exp(θi) + exp(θi)

1− exp(θi)

)
= δ ln(δ) + δ ln

(
1

1− exp(θi)

)
= δ ln(δ)− δ ln (1− exp(θi))

b′(θi) = −δ 1
1− exp(θi)

(− exp(θi)) =
δ exp(θi)

1− exp(θi)

b′′(θi) = δ
exp(θi)(1− exp(θi))− exp(θi)(− exp(θi))

(1− exp(θi))2

=
δ exp(θi)

(1− exp(θi))2

= δ

µi
δ+µi

(1− µi
δ+µi

)2

=
δµi(δ+µi)2

(δ+µi)δ2

=
µi(δ+µi)

δ

wNB
i (Ψ) =

δ

µi(δ+µi)
µ2

i

=
δµi

δ+µi
(B.5)
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B.1.2 Direct method

Here the weights for the Negative Binomial are calculated directly, namely differentiating

the loglikelihood of an observation twice.

li = log

(
Γ(yi + δ)

Γ(yi + 1)Γ(δ)

(
µi

δ+µi

)yi
(

δ

δ+µi

)δ)
= log

(
Γ(yi + δ)

)
− log

(
Γ(yi + 1)

)
− log

(
Γ(δ)

)
+ yi log(µi) + δ log(δ)− (yi + δ) log(δ+µi)

∂li

∂Ψ j
= yixi j − (yi + δ)

µixi j

δ+µi

= xi j

(
yi − (yi + δ)

µi

δ+µi

)
∂2li

∂Ψk∂Ψ j
= −xi j(yi + δ)

µixi j(δ+µi)−µiµixi j

(δ+µi)2

= −xi jxikµi(yi + δ)
δ+µi −µi

(δ+µi)2

= −xi jxikµi(yi + δ)
δ

(δ+µi)2

Because ∂2 li
∂Ψk∂Ψ j

depends on the response we have to take expectations.

(FE(Ψ)) jk = −
n

∑
i=1

E
(

∂2li

∂Ψk∂Ψ j

)
=

n

∑
i=1

xi jxik
δµi

(δ+µi)

wNB
i (Ψ) =

δµi

δ+µi
(B.6)

B.2 Poisson with latent variables

For the POGA and POIG models (shorthand denoted PO* in the formulas below) we

could exploit the fact that the response is Poisson distributed with parameter νiµi. Re-

sults for the Poisson distribution are well known. We have preferred to present few cal-
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culations required to obtain the result.

li = log
(

exp(−νiµi)(νiµi)yi

yi!

)
−νiµi + yi log(νi) + yi log(µi)− log(yi!)

∂li

∂Ψ j
= −νiµixi j + yixi j

= xi j(yi − νiµi)

∂2li

∂Ψk∂Ψ j
= −xi jxikνiµi

wPO*
i (Ψ) = νiµi. (B.7)

B.3 ZIP

As explained before, we have to calculate the weights for zero or nonzero observations

separately, because of the different likelihood forms. We begin with the weights for the

zero observations.

yi = 0

li = log (θ+ (1−θ) exp(−µi))

exp(li) = θ+ (1−θ) exp(−µi)
∂li

∂Ψ j
= −xi j(1−θ)

µi exp(−µi)
θ+ (1−θ) exp(−µi)

∂2li

∂Ψk∂Ψ j
= −xi j(1−θ)

1

(θ+ (1−θ) exp(−µi))
2(

xikµi exp(−µi)−µi exp(−µi)µixik
)
−µi exp(−µi)

(
− (1−θ) exp(−µi)µixik

)
= −xi jxik(1−θ) exp(−µi)µi

(1−µi) exp(li) + (1−θ) exp(−µi)µi

exp(2li)

= −xi jxik(1−θ) exp(−µi)µi
(1−µi) exp(li) +µi(exp(li)−θ)

exp(2li)

= −xi jxik(1−θ) exp(−µi)µi
exp(li)−µiθ

exp(2li)

wZIP
i (Ψ) = (1−θ) exp(−µi)µi

exp(li)−µiθ

exp(2li)
(B.8)
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Now the weights for the nonzero observations. The term log(1−θ) disappears with the

differentiation, thus the calculations here are actually equivalent with those for a Poisson

model.

yi 6= 0

li = log

(
(1−θ)

exp(−µi)µ
yi
i

yi!

)
= log(1−θ)−µi + yi log(µi)− log(yi!)

∂li

∂Ψ j
= −µixi j + yxi j

= xi j(yi −µi)

∂2li

∂Ψk∂Ψ j
= −xi jxikµi

wZIP
i (Ψ) = µi (B.9)

B.4 ZIP with latent variables

We will denote the weights with wZIP*
i (Ψ) leading to wZIPGA

i (Ψ) and wZIPIG
i (Ψ) for ZIPGA

and ZIPIG respectively. For these models we also have to distinguish between zero or

nonzero observations, but we are going to exploit the last results and avoid the calcula-

tions. As the νi are only a factor of µi independent of Ψ, we can take the weights for the

ZIP model and complete them by multiplying µi by νi as follows.

yi = 0

li = log (θ+ (1−θ) exp(−νiµi))

wZIP*
i (Ψ) = (1−θ) exp(−νiµi)νiµi

exp(li)− νiµiθ

exp(2li)
(B.10)

yi 6= 0

li = log
(

(1−θ)
exp(−νiµi)(νiµi)yi

yi!

)
wZIP*

i (Ψ) = νiµi (B.11)
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B.5 ZINB

The weights for the ZINB model are obtained following the same scheme as before except

that the calculations are a little more complicated. For the zero observations we have:

yi = 0

li = log

(
θ+ (1−θ)

(
δ

δ+µi

)δ)
= log

(
θ(δ+µi)δ + (1−θ)δδ

)
− δ log(δ+µi)

exp(li) = θ+ (1−θ)
(

δ

δ+µi

)δ
∂li

∂Ψ j
=

δθµixi j(δ+µi)δ−1

θ(δ+µi)δ + (1−θ)δδ
−
δµixi j

δ+µi

= xi jδµi
θ(δ+µi)δ −θ(δ+µi)δ − (1−θ)δδ

θ(δ+µi)δ+1 + (1−θ)δδ(δ+µi)

= −xi j(1−θ)δδ+1 µi

θ(δ+µi)δ+1 + (1−θ)δδ(δ+µi)
∂2li

∂Ψk∂Ψ j
= −xi j(1−θ)δδ+1 1

(δ+µi)2 ((δ+µi)δθ+ (1−θ)δδ)2{
µixik

(
θ(δ+µi)δ+1 + (1−θ)δδ(δ+µi)

)
−µi

(
(δ+ 1)θµixi j(δ+µi)δ + (1−θ)δδµixi j

)}
= −xi jxik(1−θ)δδ+1µi

1
(δ+µi)2 exp(2li)(δ+µi)2δ{

(δ+µi) exp(li)(δ+µi)δ −µi

(
θδ(δ+µi)δ +θ(δ+µi)δ + (1−θ)δδ

)}
= −xi jxik(1−θ)δδ+1µi

1
exp(2li)(δ+µi)2+2δ

(δ+µi)δ+1 exp(li)−µi

(
θδ(δ+µi)δ + exp(li)(δ+µi)δ

)
= −xi jxik(1−θ)δδ+1µi

(δ+µi) exp(li)−µi exp(li)−µiθδ

exp(2li)(δ+µi)2+δ

= −xi jxik(1−θ)
(

δ

δ+µi

)δ+2

µi
exp(li)−µiθ

exp(2li)

wZINB
i (Ψ) = (1−θ)

(
δ

δ+µi

)δ+2

µi
exp(li)−µiθ

exp(2li)
(B.12)
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For nonzero observations we can use the results obtained for the NB model. The term

log(1 − θ) does not depend on Ψ and therefore disappears in the first differentiation

with respect to Ψ. The rest of the calculations are then similar as for the NB model and

we can take the results obtained there.

yi 6= 0

li = log

(
(1−θ)

Γ(yi + δ)
Γ(yi + 1)Γ(δ)

(
µi

δ+µi

)yi
(

δ

δ+µi

)δ)

wZINB
i (Ψ) =

δµi

δ+µi
(B.13)
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Appendix C

MCMC

It is not the aim of this work to present Markov Chain Monte Carlo (MCMC) methods

in detail. Therefore only a brief overview is given here. For more detailed information

see Casella and George (1992), Chib and Greenberg (1995), Gamerman (1997b), Gelman,

Carlin, Stern and Rubin (1995), and Spiegelhalter et al. (2002).

A motivation for MCMC theory is the following: In some applications we may have a

target distribution with density π(θ) which is numerically intractable. Note that with θ

we may refer to a parameter or parameter vector. This is the usual situation for the pos-

terior distribution in Bayesian statistics. This posterior is generally a high dimensional

distribution obtained through

π(θ|y) =
p(y|θ)p(θ)

p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

∝ p(y|θ)p(θ)

The problem arises with the high dimensional integral
∫

p(y|θ)p(θ)dθ, which is not di-

rectly calculable in most of the cases. In a usual Bayesian analysis we have a high di-

mensional posterior distribution known up to a constant from which information about

the parameters has to be obtained. MCMC methods allow us to obtain a sample of this

183
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posterior. So the advantage compared to other estimation methods is that we achieve

pointwise estimators with some confidence intervals for the parameters in our model

and also a whole sample as large as desired from their posterior distribution. When

pointwise estimators are needed, empirical equivalents of them can be calculated from

the sample with the desired accuracy. Furthermore, quantiles or inclusive the density

trough nonparametric estimation techniques can be computed.

In the following two sections we present the main sampling methods: Gibbs–sampling

and the Metropolis–Hastings–algorithm. In the last section we given some comments

about model selection.

C.1 Gibbs–sampling

Suppose we are given a multidimensional density, say π(θ) = π(θ1, . . . ,θp). Each of the

full conditional distributions of this density, in the following denoted by πi(θi|θ−i) =

πi(θi|θ1, . . . ,θi−1,θi+1, . . . ,θp), is of a well known form and can be sampled from. Sup-

pose we are interested in one or more of its marginal distributions, say πi(θi), which are

given by

πi(θi) =
∫
π(θ1, . . . ,θp)dθ1, . . . dθi−1dθi+1 . . . dθp (C.1)

for i = 1, . . . , p or in π self. These usually high dimensional integrals are very compli-

cated in most of the cases and difficult to solve. Gibbs–sampling (see Casella and George

(1992)) allows us to indirectly get a sample from the marginal distribution πi(θi) and thus

avoids the calculation of (C.1). The algorithm can be resumed as follows

1. Initializeθ(0)
−1 and set i = 0 and j = 0

2. Set j = j + 1

3. Set i = i + 1

4. Sample θ( j)
i ∼ πi(θi|θ

( j+1)
1 , . . . ,θ( j+1)

i−1 ,θ( j)
i+1, . . . ,θ( j)

p )
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5. If i = p, set i = 0 and go to 2.

Otherwise go to 3.

The algorithm ends when j arrives at a predetermined value, say J, which gives the

desired length of the sample. As the values of the jth iteration only depend on the values

of the last iteration, Gibbs–sampling provides a homogeneous Markov chain. For each

component θi the transition kernels are given in the 4th step of the algorithm and their

stationary distributions are the corresponding marginal distributions πi. The transition

kernel of the whole chain is the product of the individual component transition kernels

p(θ( j),θ( j+1)) =
p

∏
i=1
πi(θ

( j+1)
i |θ( j+1)

1 , . . . ,θ( j+1)
i−1 ,θ( j)

i+1, . . . ,θ( j)
p ),

and it has π as its stationary distribution. The first Jb iterations are called burn in and

are not taken into account for later inference to ensure that convergence is achieved. In

the following and in order to avoid notational complications we are going to assume that

θ
(1)
i is the first value of the chain for πi after the burnin phase. A typical output from this

algorithm is then given by

θ
(1)
1 . . . θ

(1)
i . . . θ

(1)
p

...
...

...

θ
( j)
1 . . . θ

( j)
i . . . θ

( j)
p

...
...

...

θ
(J)
1 . . . θ

(J)
i . . . θ

(J)
p .

So under convergence the ith column of this matrix represents a sample from πi(θi) for

each i = 1, . . . , p, and the jth row of the matrix is a draw from π for j = 1, . . . , J.

C.2 Metropolis–Hastings–sampling

The starting point for the Metropolis–Hastings–algorithm (M–H) is a target density π(θ)

known up to the normalizing constant from which no direct sampling is possible. In
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a more general framework as Gibbs–sampling, not all the full conditionals πi(θi|θ−i) =

πi(θi|θ1, . . . ,θi−1,θi+1, . . . ,θp) have to be completely known or can be sampled from. The

M–H–algorithm describes how to iteratively obtain a sample from π(θ) by generating a

Markov chain θ(0), . . . ,θ( j), . . . whose stationary distribution coincides with the target

distribution π . Just as every Markov chain it can be characterized through its transition

kernel p(θ,θ∗). First we are going to describe how to appropriate build the transition

kernel of this chain and then justify this choice.

C.2.1 Construction of the transition kernel

Two distributions are necessary to construct the kernel. These are a so called proposal

distribution q(θ→θ∗) and an acceptance probability α(θ,θ∗). By each step of the algorithm

a θ∗ value is drawn from the proposal distribution. This θ∗ can be seen as a sort of

candidate to the next stage of the chain. For the moment, no restrictions are made for the

choice of the proposal distribution, but some comments about it will be given bellow in

subsections C.2.2 and C.2.4. Whether this candidate becomes a next stage in the chain or

not is stored through the acceptance probability defined by

α(θ,θ∗) = min
{

1,
π(θ∗) q(θ∗ → θ)
π(θ) q(θ → θ∗)

}
(C.2)

Note that the normalizing constant for π(θ) is not needed because it only appears in a

quotient. This fact is very important since this normalizing constant is often unknown

for the posterior distributions in Bayesian analysis as mentioned at the beginning of this

appendix. So the algorithm works quite easy: just take a value for θ∗ from q and accept

it with probabilityα as the new stage of the chain.

Algorithm

1. Initializeθ(0) and set j = 0

2. Set j = j + 1

3. Sampleθ∼ q(θ( j) → θ∗)
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4. Acceptθ( j+1)=θ∗ with probabilityα(θ( j),θ∗),

otherwise letθ( j+1)=θ( j)

The algorithm stops when the chain has the predetermined length J. Following the same

notation as in Section C.1, the first Jb iterations are the so called burn in and are not

used for further analyses to ensure convergence is achieved. So the output of the M–H–

algorithm is some vectorθ(0) , . . . ,θ( j), . . . ,θ(J), whose components can be interpreted as

drawn from π and therefore having the same dimension.

Now lets take a look on the transition kernel

p(θ, A) =
∫

A
q(θ → x)α(θ, x)dx

+ IA(θ)
[

1−
∫

q(θ → x)α(θ, x)dx
] (C.3)

where A is a subset of the parameter space. If the proposal is a discrete distribution, then

we have sums instead of integrals. The first line in (C.3) is the probability that the chain

moves from θ to any point in A. The second line gives the probability that the chain

remains inθ if it is a point in A. So p(θ, A) is the probability to get fromθ to A.

C.2.2 Justification of the transition kernel

It is now time to explain, why this transition kernel in (C.3) has exactly the target distri-

bution π(θ) as stationary distribution. From the general Markov chain theory it is known

that an irreducible and aperiodic chain has a stationary distribution. And if in addition

the reversibility condition holds

π(θ) p(θ,θ∗) = π(θ∗) p(θ∗,θ) (C.4)

for everyθ andθ∗ from the support of π , then π is the stationary distribution of the chain.

Irreducible means that one can get from every θ to every θ∗ in the support of the chain

in a finite number of steps. And aperiodicity says that the number of moves to get from
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θ to θ∗ are not required to be a multiple of some integer. Both properties are ensured if

the support of the proposal distribution covers or is at least equal to the support of the

target distribution. They hold also for uniform proposals with center in the current point

and finite window width. Hence irreducibility and aperiodicity are guaranteed through

an appropriate choice of the proposal distribution.

To demonstrate that the reversibility condition given in (C.4) holds, note first that the

transition kernel defined in (C.3) can also be written as

p(θ,θ∗) =

 q(θ → θ∗)α(θ,θ∗) if θ 6= θ∗

1−
∫

q(θ → θ∗)α(θ,θ∗)dθ∗ if θ = θ∗

In this form it is easily shown that the reversibility condition holds. For θ = θ∗ it is

obvious and for the caseθ 6= θ∗ just very few lines are needed:

π(θ) p(θ,θ∗) = π(θ) q(θ → θ∗)α(θ,θ∗)

= min
{

1,
π(θ∗) q(θ∗ → θ)
π(θ) q(θ → θ∗)

}
π(θ) q(θ → θ∗)

= min {π(θ) q(θ → θ∗), π(θ∗) q(θ∗ → θ)}

= min
{

1,
π(θ) q(θ → θ∗)
π(θ∗) q(θ∗ → θ)

}
π(θ∗) q(θ∗ → θ)

= π(θ∗) q(θ∗ → θ)α(θ∗,θ)

= π(θ∗) p(θ∗,θ)

The choice of this special form for the acceptance probability is hence justified. We have

thus shown that the transition kernel p(θ,θ∗) has an invariant distribution and this dis-

tribution is π(θ).

C.2.3 Some remarks

Convergence behavior

Although it is theoretically proved that the iterations of the transition kernel converge

to the target distribution, convergence behavior must be controlled for each particular
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analysis. This should be done at least with the help of two tools: the acceptance rate and

some graphical analysis. The acceptance rate is defined as the proportion of accepted

changes of stage in the chain. A high acceptance rate means that too many of the pro-

posed values are accepted. Or equivalently, that the proposed values are very close to

the current ones. So the support of the target density will be covered very slowly because

of the small steps, and hence the chain will have a poor mixing behavior. On the other

hand, if the acceptance rate is too low, then the chain does not change often enough the

states because the proposed values may fall in low probability zones of the support of the

target distribution, far away from the current value. As a consequence slow convergence

and poor mixing are achieved. After these considerations it is clear that the variance

of the proposal distribution plays an important role in controlling this acceptance rate.

Hence it can be considered as a sort of tuning parameter. For an optimal mixing the ac-

ceptance rate should be as a rule of thumb between 30% and 60%. A complement to the

acceptance rate, a graphical monitoring is always strongly recommended. Some plots of

the sampling paths and analysis of the autocorrelation functions will provide evidence

whether the chain shows good convergence behavior or not. If the autocorrelations are

too high then some lag should be introduced, that means, only the value of each iteration

multiple of l after the burn in phase will be taken as a stage in the chain. The question

how many iterations should be calculated cannot be answered.

Block move and hybrid algorithms

Suppose we are given the target distribution π(θ) as explained in the beginning of this

section C.2 and in the easiest case that we can divide the parameter vector θ in two

components θ1 and θ2. Suppose also that for a fixed θ2 there exists a transition kernel

p1(θ1,θ∗1 |θ2) which has as invariant distribution π(θ1|θ2). Analogous the same holds

for θ2 for fixed θ1 and a transition kernel p2. Under these conditions, the product of the

transition kernels p1(θ1,θ∗1 |θ2) and p2(θ2,θ∗2 |θ1) has π(θ1,θ2) as invariant distribution.

For the proof of this result see for example Chib and Greenberg (1995) or Gamerman

(1997b). The practical advantage of this situation is that we can divide θ into blocks,
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say (θ1, . . . ,θD) where the block size do not need to be the same for every θd, and al-

ternatively run a M–H–step over all components in each iteration. The order in which

we run the components may be random or fixed in each iteration. Note that the block

size can also be 1; this would mean that some single parameters are updated alone. The

acceptance probability for the dth block in a general case is now given by

αd(θd,θ∗d) = min
{

1,
π(θ∗d |θ−d) q(θ∗d → θd)
π(θd|θ−d) q(θd → θ∗d)

}
(C.5)

To better visualize how the blockwise algorithm works it is written down for the simple

case of a fixed order for the blocks.

1. Initializeθ(0) and set d = 0 and j = 0

2. Set j = j + 1

3. Set d = d + 1

4. Sampleθd∼ q(θ( j)
d → θ∗d)

5. Acceptθ( j+1)
d =θ∗d with probabilityα(θ( j)

d ,θ∗d),

otherwise letθ( j+1)
d =θ( j)

d

6. If d = D set d = 0 and go to 2

otherwise go to 3.

The same comments about length of the chain or lag for the samples are valid here. A

consequence of this result is that Gibbs–sampling can be seen as a special case of the M–

H–algorithm. If π(θ) is a target distribution appropriate for Gibbs–sampling, we choose

the distributions given by q(θi → θ∗i ) = πi(θ∗i |θ−i) as proposals for the components of

θ. By putting these proposals in (C.5) it is clear that the αi are always 1, that is all the

proposed candidates are accepted. As a further but very important extension we remark

that for all blocks different sampling methods or different proposals may be used, so

called hybrid algorithms. This makes the whole implementation of the algorithm more

efficient because the best possibility in fit and in velocity of convergence can be taken for

each block.
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C.2.4 Proposals

The choice of the proposal distribution is arbitrary up to certain mild restrictions. Some

general characteristics for a distribution to be an appropriate proposal are somehow in-

tuitive and not very restrictive. First it must have an easy form to sample from. The

support of the target distribution should be covered by the support of the proposal, al-

though in general an uniform distribution with finite window width and center on the

current value also works good. Of advantage is also that the tails of the proposal dom-

inate the tails of the target distribution to ensure that every point of the support of the

target distribution is visited often enough. Whether these points are accepted or not is

of course controlled through the acceptance probability. Finally, the variance of the pro-

posal is a tuning parameter controlling the acceptance rate of the chain. There are some

common possibilities for these proposals, and some of them are presented below. For the

notation, the subindexes are omitted and the θ can be parameter vectors, blocks of any

size or just one parameter.

Independent proposal: The proposal distribution just gives a value for θ∗ independent

of the current value θ, that means q(θ → θ∗) = q(θ∗). In this case the probability to

accept θ∗ as the next value in the chain is given by

α(θ,θ∗) = min
{

1,
π(θ∗) q(θ)
π(θ) q(θ∗)

}
.

Random Walk proposal: The proposed value θ∗ is sampled from a normal distribution

with mean θ and variance p. In this case, the proposal is proportional to (θ −θ∗)2

for both q(θ → θ∗) and q(θ∗ → θ). In other words, the proposal density is symmet-

ric with respect to θ and θ∗. Therefore theα(θ,θ∗)–quotient simplifies as follows

α(θ,θ∗) = min
{

1,
π(θ∗)
π(θ)

}
.

Conditional prior proposal: Suppose that θ represents a block of parameters with prior

given by π(θ). In general, the prior will have a Gaussian form, so that π(θi|θ−i)
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are again Gaussian distributed for i = 1, . . . , p. The idea of using conditional prior

proposals is to sample θ∗i from q(θi → θ∗i ) = π(θi|θ−i) (Knorr-Held, 1999; Knorr-

Held, 1997). The main advantage is celerity of computations, due to the sampling

from a Gaussian distribution and the form of the acceptance rate that simplifies to

α(θi,θ∗i ) = min
{

1,
p(y|θ∗i )
p(y|θi)

}
.

IWLS proposal: The idea in Gamerman (1997a) is to take into account the prior informa-

tion, as well as the likelihood structure of the model. The proposal distribution is

then a single iterative step by combining the prior and the iterativly weighted least

squares of the common likelihood approaches. The algorithm has the advantage

that the variance of the proposal is given by the covariance matrix of the IWLS al-

gorithm and the one of the prior distribution, and thus it has not to be tuned by the

user.

C.3 Model comparison

The Deviance Information Criterion (DIC) is a common choice for comparison of com-

plex hierarchical Bayesian models. It was developed by Spiegelhalter et al. (2002). For

notational simplicity, we denote the set of parameters in the model with M = {µ,θ},

where µ is the mean and θ the rest of parameters in the model. The DIC is defined as

DIC = D(M) + pD.

There, D(M) is the deviance of the model and is given by D(M) = −2 log L(y|M) in

the unstandardized case or by D(M) = −2 log L(y|M) + 2 log L(y|µ = y,θ) for the

saturated case. The deviance D(M) is a function of the parameters in the model and can

be calculated in each iteration step. Hence, D(M) is the posterior mean of the stored

deviance samples. The term pD = D(M)− D(M) is the effective number of parameters

in the model and can be interpreted as a sort of complexity measure of the model. Note

that D(M) is the deviance function applied on the posterior estimates of the parameters.
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In their work Spiegelhalter et al. (2002) analyzes the theoretical properties of the DIC cri-

terion only on exponential families. In our work, we are far away from an exponential

family frame work. Nevertheless both versions of the DIC are standard calculated for

each model. But after preliminary analysis we detect an important instability of the cal-

culated DICs (even with negative values for the estimated pD) and we cannot use this

criterion to make assertion about model selection or comparison.
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Schlüter, P. J., Deely, J. J. and Nicholson, A. J. (1997), ‘Ranking and selecting motor vehicle

accidents sites by using a hierarchical Bayesian model’, The Statistician 46(3), 293–

316.

Shaked, M. (1980), ‘On mixtures from exponential families’, Journal of the Royal Statistical

Society, Series B 42, 192–198.

Smyth, G. K. and Jørgensen, B. (2002), ‘Fitting Tweedie’s compound Poisson model to

insurance claims data: dispersion modelling’, ASTIN Bulletin 32, 143–157.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002), ‘Bayesian mea-

sures of model complexity and fit’, Journal of the Royal Statistical Society, Series B

64(3), 1–34.

Sutradhar, B. C. and Jowaheer, V. (2001), ‘Log normal versus gamma random effects in a

familial longitudinal Poisson mixed model’, unpublished manuscript .

Thurston, S. W., Wand, M. P. and Wiencke, J. K. (2000), ‘Negative binomial additive mod-

els’, Biometrics 56, 139–144.

Tremblay, L. (1992), ‘Using the Poisson inverse Gaussian in bonus–malus systems’,

ASTIN Bulletin 22, 97–106.

Viallefont, V., Richardson, S. and Green, P. J. (2002), ‘Bayesian analysis of Poisson mix-

tures’, Journal of Nonparametric Statistics 14(1–2), 181–202.

Wikle, C. K. and Anderson, C. J. (2003, to appear), ‘Climatiological analysis of tornado

report counts using a hierarchical Bayesian spatio–temporal model’, Journal of Geo-

physical Research .

Winkelmann, R. (1995), ‘Duration dependence and dispersion in count models’, Journal

of Business and Economic Statistics 13(4), 467–474.



Bibliography 201

Winkelmann, R. (1996), ‘Markov Chain Monte Carlo analysis of underreported count

data with an application to worker absenteeism’, Empirical Economics 21(4), 575–587.

Winkelmann, R. (1998), ‘Count data models with selectivity’, Econometric Reviews 17, 339–

359.

Winkelmann, R. and Zimmermann, K. F. (1995), ‘Recent developments in count data

modelling: theory and application’, Journal of Economic Surveys 9(1), 1–24.

Zorn, C. (1998), ‘Evaluating zero–inflated and hurdle Poisson specifications’, Sociological

Methods and Research 26, 368–400.



202 Bibliography

bla



Lebenslauf
Leyre Estı́baliz Osuna Echavarrı́a

geboren am 01. Dezember 1975 in Sevilla (Spanien)

Schulausbildung

09/1981–06/1989 Grundschule in Córdoba (Spanien)
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Studium und Promotion

09/1993–07/1998 Studium im Fach Mathematik mit Fachrichtung Statistik an der Uni-

versidad Complutense de Madrid

10/1996–11/1997 Studienaustausch mit der TU München im Rahmen des ERASMUS–

Programmes

Seit 10/1999 Promotion an der LMU München

Arbeitserfahrung

01/1999–07/1999 Studentische Hilfskraft im Statistischen Beratungslabor (STABLAB)

09/1999–01/2001 Wissenschaftliche Mitarbeiterin im SFB 386

02/2001–01/2004 Stipendiatin im Graduiertenkolleg Angewandte Algorithmische bla

Mathematik an der TU München

München, 5. August 2004


	Introduction
	Count data analysis
	Log--linear Poisson Regression and extensions
	Problems with classical count data regression

	Overview of the thesis

	Overdispersion
	Negative Binomial
	Latent variables approach
	Poisson--Gamma
	Poisson--Inverse Gaussian
	Poisson--Gaussian

	Hierarchical centering
	Résumé

	Excess of Zero Counts
	Zero Inflated Models
	Zero Inflated Poisson
	Zero Inflated Negative Binomial
	Zero Inflated-Poisson with latent variables

	Hierarchical centering
	Résumé

	Priors and modeling of covariate effects
	Priors
	Predictors
	Fixed and random effects
	Metrical covariates
	Spatial covariates

	Hierarchy of the models
	Résumé

	Posterior inference
	Posteriors
	Posteriors for groups A and C
	Posteriors for groups B and D
	Posterior for group E

	Full conditionals
	Predictor terms and their hyperparameters
	Model specific parameters

	Sampling Schemes
	Predictor terms and their hyperparameters
	Model specific parameters

	Algorithms

	Simulation studies
	Overdispersion
	Data simulation
	Results
	Résumé

	Zero inflation
	Data simulation
	Results
	Résumé


	Case studies
	Patent Data
	Data and model description
	Results

	Car insurance
	Data and model description
	Results


	Bayesian Count Data Regression with BayesX: A tutorial
	BayesX
	Getting started
	Dataset object
	Bayesreg object
	Post estimation commands and results
	Plots and Graph objects
	Post estimation plots
	Graph objects


	Remarks on distributions
	Derivation of the Negative Binomial distribution
	General form of the inverse Gaussian distribution
	General form of the LogNormal distribution
	Zero inflation with latent variables

	Calculation of IWLS weights
	NB
	Considered as exponential family member
	Direct method

	Poisson with latent variables
	ZIP
	ZIP with latent variables
	ZINB

	MCMC
	Gibbs--sampling
	Metropolis--Hastings--sampling
	Construction of the transition kernel
	Justification of the transition kernel
	Some remarks
	Proposals

	Model comparison


