Logo
DeutschClear Cookie - decide language by browser settings
Kratzer, Robert Georg (2001): Entwicklung einer High-Throughput-Sequenzierungsmethode für die Proteomanalytik. Dissertation, LMU München: Faculty of Chemistry and Pharmacy
[img]
Preview
PDF
Kratzer_Robert.pdf

13Mb

Abstract

Ziel dieser Arbeit sollte die Entwicklung einer automatisierten, hochparallelen und nachweis-starken Sequenzierungsmethode für Proteine im Rahmen der Proteomanalytik sein. Zur Kon-zeption der Methodik sollte dabei mit der sogenannten Leitersequenzierung eine Kopplung aus enzymatischem Aminosäureabbau und MALDI-Massenspektrometrie zum Einsatz kom-men. Die experimentellen Grundparameter für die Leitersequenzierung im Bezug auf die nasschemischen Sequenzierungsschritte und die massenspektrometrischen Messung wurden dabei im ersten Teil der Arbeit zunächst manuell ausgearbeitet. Im zweiten Abschnitt wurden dann die Möglichkeiten einer Automatisierung der so erarbeiteten Methode zur Leitersequen-zierung auf verschiedenen Ebenen evaluiert. Da der enzymatische Abbau eines Gesamtproteins durch dessen intrinsische Eigenschaften wie Sekundärstruktur, Tertiärstruktur (Zugänglichkeit der Proteintermini für die Exopepti-dase) oder Lösungsverhalten erschwert ist, wurden die Sequenzierungsprotokolle der Leiter-sequenzierung für proteolytisch erzeugte, RP-HPLC-gereinigte Spaltfragmente von Proteinen optimiert. Zudem besitzt die MALDI-MS, wie auch andere gängige massenspektrometrische Verfahren, im Massenbereich über ca. 5-10 kDa eine zu geringe Auflösung und Genauigkeit, um eine eindeutige Zuordnung der Massendifferenzen in den Leiterpeptidspektren zu den durch Exopeptidase abgespaltenen Aminosäure zu erlauben. Bei Versuchen mit verschiede-nen Endopeptidasen stellte sich – entgegen theoretischen Erwartungen – heraus, dass vor allem auch Proteinspaltungen mit Endoproteinase GluC (im Phosphatpuffer) und Chymotrypsin, neben Spaltungen mit Endoproteinase LysC, gute Voraussetzungen für die nachfolgende enzymatische Sequenzierung liefern. Mit den Proteinfragmenten aus Spaltungen der Endoproteinasen GluC (im Phosphatpuffer) und Chymotrypsin wurden bei den enzymatischen Sequenzierungen die höchsten Sequenzabdeckungen erzielt. In der technischen Ausführung wurden alle Experimente im Hinblick auf eine Sequenzierung direkt auf dem Target (on-target) optimiert. Geringfügige Anpassungen der erarbeiteten Methoden erlaubten jedoch auch eine Sequenzierung von Peptiden, die zuvor auf PVDF-Membran (Immobilon PSQ) aufgetragen wurden. Ein relativ kontrollierter und reproduzierba-rer Abbau war in einem Temperaturbereich von ca. 25-35°C möglich. Die enzymatischen Sequenzierungen erfolgten ausschließlich mit kommerziell erhältlichen Exopeptidasepräpara-tionen. Eine zusätzliche Aufreinigung der eingesetzten Enzyme erwies sich als nicht notwen-dig. Um eine einfache Interpretation der massenspektrometrischen Resultate zu gewährleisten, wurden nur Monopeptidylpeptidasen eingesetzt. Für C-terminale Sequenzierungen wurden mit CPY, CPP, CPW, CPA und CPB Carboxypeptidasen unterschiedlicher Spezifität einzeln und in verschiedenen Kombinationen untersucht. Von der N-terminal Seite aus wurden Sequenzierungen mit APM, LAP, API und AAP durchgeführt. Eine Betrachtung der Sequen-zierungen zeigt dabei, dass zumeist nur aus kombinierten Resultaten der Anwendung verschiedener Carboxy- beziehungsweise Aminopeptidasen eine ausreichende Sequenzinfor-mation erhalten werden kann. C-terminal ist der Anteil sequenzliefernder Fragmente bei der Verwendung von CPY, sowie bei den sequenziellen Peptidasenkombinationen sb(CP-I) und den Peptidasenmischungen pb(CP) mit maximal 42% am höchsten. Hier treten auch vermehrt längere Teilsequenzen mit bis zu 12 AS auf. N-terminal hebt sich APM als Einzelpeptidase mit überdurchschnittlich guten Sequenzresultaten gegenüber den anderen Aminopeptidasen ab. Bis zu 34% der getes-teten Peptide liefern allein schon mit diesem Enzym eine Sequenzinformation. Zudem wurden längere Teilsequenzen mit bis zu 9 AS im Vergleich zu anderen Aminopeptidasen häufiger erhalten. Sequenzierungen mit Aminopeptidasenmischungen bei N-terminaler Sequenzierung brachten im Gegensatz zu Carboxypeptidasenmischungen bei C-terminaler Sequenzierung kaum deutliche Vorteile. Auch sehr lange Sequenzabschnitte mit bis zu 16 AS N-terminal und bis zu 25 AS C-terminal wurden in Einzelfällen erhalten. C- und N-terminal am häufigsten wurden jedoch aus den Leiterspektren Teilsequenzen mit bis zu 6 AS erhalten (85% aller sequenzliefernden Proteinfragmente). Der größte Teil der Sequenzabdeckung stammt mit 70% aus Teilsequenzen mit 3-9 AS. Unter dem Hauptaspekt einer möglichen Steigerung der Sequenzinformation bei den Leiter-sequenzierung wurden unterschiedliche Peptidderivatisierungen untersucht. Die gezielte N-terminale Modifizierungen brachte in vielen Fällen durch die resultierende Massenverschie-bung des derivatisierten Peptids einen Gewinn an C-terminaler Sequenzinformation. Gegen-über entsprechend nicht-modifizierten Peptiden konnten durch die Massenverschiebung auch Leiterpeptide beobachtet werden, die sonst mit Signalen der MALDI-Matrix interferieren. Bei Modifikationsreagenzien, die eine fixierte positive Ladung oder ein ausgedehntes, delokali-siertes Elektronensystem ins Peptid einbrachten, wie z.B. Sulforhodamin B oder FMOC-NHS wurde dabei zusätzlich auch eine sehr gute Response im Massenspektrum beobachtet. Die Empfindlichkeiten lagen selbst bei der Sequenzierung der Rohprodukte solcher Derivate im unteren fmol-Bereich. Das charakteristische Isotopenmuster Brom-haltiger Peptidderivate erlaubte weiterhin ein stark vereinfachtes Auslesen der Leitersequenz aus dem Massenspekt-rum. Während die Leitersequenzierung allgemein keine Unterscheidung der isobaren Aminosäuren Leucin und Isoleucin erlaubt, gelang die Unterscheidung der ebenfalls isobaren Aminosäuren Lysin und Glutamin nach einer schnellen und selektiven Acetylierung des Lysins mit anschließender C-terminaler Sequenzierung.Im Hinblick auf die Analyse post-translationaler Modifikationen wurden insbesondere Phosphorylierungen eingehender untersucht. Dabei war sowohl bei der N-terminalen, als auch bei der C-terminalen Leitersequenzierung ein enzymatischer Abbau der phosphorylierten Aminosäuren zu beobachten und damit die entsprechende Phosphorylierungsstelle schnell und eindeutig zu identifizieren. Die N-terminale Sequenzierung mit APM lieferte die besten Resultate und ermöglichte sowohl den Abbau von Phosphotyrosin wie auch Phosphoserin, während der C-terminale Abbau sich auf Phosphotyrosin beschränkt zeigte. Aus der Summe der erhaltenen Resultate (Sequenzen) folgt, dass die Leitersequenzierung unter den gegebenen Voraussetzungen – insbesondere der limitierenden Verfügbarkeit zusätzlicher Exopeptidasen mit ergänzenden Spaltungsspezifitäten – im wesentlichen als Instrument zur schnellen Generierung kurzer Sequenztags geeignet ist. Auf diesem Gebiet stellt die erarbeitete Leitersequenzierung im Vergleich zur Edman-Sequenzierung eine wesentlich schnellere Alternative dar. Im Gegensatz zu rein massenspektrometrischen Sequenzierungen ist die Interpretation der Sequenzen im Massenspektrum stark vereinfacht und daher zumeist eindeutig. Die Empfindlichkeit der Methode ist stark von der untersuchten Peptidsequenz abhängig. Generelle Werte für die Empfindlichkeit lassen sich somit nicht angeben, die Resultate lassen jedoch für eine Peptidausgangsmenge im oberen fmol-Bereich (1000-500fmol) eine Leitersequenzierung ausnahmslos möglich erscheinen. Die Ergebnisse von Verdünnungsreihen zeigen zudem, dass auch nach Sequenzierung von Peptidmengen im mittleren bis unteren fmol-Bereich (50-10fmol) ein Auslesen der Peptidsequenz aus dem Massenspektrum zumeist möglich ist. Zum Erreichen solcher Empfindlichkeiten ist die weit-gehende Minimierung von Suppressionseffekten und damit die Verwendung von DHB als MALDI-Matrix eine notwendige Voraussetzung. Eine Evaluierungsstudie mit vier verschiedenen Proteinen führt zum Schluss, dass die Metho-dik auch für die de novo Sequenzierung unbekannter Proteine ein hohes Potential birgt. Die ermittelte Sequenzabdeckung der überlappenden Spaltfragmente lag bei maximal 80%. Im Bereich prolinhaltiger Sequenzabschnitte fehlen Überlappungen dabei am häufigsten, da auf Seiten der N-terminalen Sequenzierung geeignete Exopeptidasen zu Spaltung der Iminbindung nicht verfügbar waren. Zur Herstellung von Oligonucleotidsequenzen, die dann als Hybridisierungssonden in der Nucleinsäureanalytik eingesetzt werden, ist die Länge der erhaltenen Sequenzabschnitte jedoch in fast allen Fällen ausreichend. Die Methoden „MALDI-LS 1.42s“ für die Probenpräparation mit dem Pipettierroboter MultiPROBE II, sowie „multiprobe_5“ für die MALDI-MS Messung mittels AutoXecute auf dem Bruker Reflex III Massenspektrometer, erlauben eine Umsetzung der manuell ausgear-beiteten Methodik auf ein vollständig automatisiertes System. Eine Excel-Tabellenvorlage, die in konvertierter Form von beiden beteiligten Geräten gelesen werden kann, ermöglicht eine zentrale und einfache Dateneingabe für die Proben. Diese Art der Dateneingabe erlaubt im Zusammenspiel mit dem ausgearbeitetem Automatisierungspro-gramm eine vollkommen flexible, individuelle Behandlung der einzelnen Proben. Die erfor-derliche „Ortspräzision“ bei der Abgabe der Flüssigleiten auf dem MALDI-Target konnte durch eine entsprechenden ausgelegte Performance-Datei für den Pipettiervorgang erreicht werden. Querkontaminationen beim Pipettieren wurden durch organische Spülschritte in der Methode eliminiert. In der Summe lieferten die auf dem automatischen Pipettiersystem mit der Methode MALDI-LS 1.42s präparierten Proben im Massenspektrum vergleichbare Abbauspektren und somit auch die gleiche Sequenzinformation, wie entsprechend manuell präparierte Proben. Bei den automatischen MALDI-MS Messungen war eine Anpassung der Parameter insbeson-dere aufgrund der bevorzugten Verwendung der DHB-Matrix notwendig. Ein erhöhter Aceto-nitrilgehalt von 50% im Lösungsmittel der DHB sorgte für eine Verbesserung der Präparation im Bezug auf die automatische AutoXecute Messung. Mit speziellen Rasterkoordinaten, die bei der Laserabtastung der einzelnen Probenspots auf die besonderen Kristallisationseigen-schaften der DHB-Matrix zugeschnitten wurden, konnten gute Ergebnisse erzielt werden. Vorteile zeigten die DHB-Präparationen, im Vergleich zu CHCA-Präparationen, in der Toleranz gegenüber geringfügigen Mengen von Puffersalzen, wie sie bei der enzymatischen Sequenzierung üblich sind. Die Toleranzschwelle für den Abbruch der automatischen Messung musste jedoch bei den enzymatisch sequenzierten Proben und Verwendung von DHB-Matrix im Vergleich zu Messungen salzfreier Peptidproben in CHCA-Matrix erhöht werden, was im Durchschnitt zu etwas längeren Messzeiten führte. Die in dieser Arbeit weiterentwickelten Methoden zur enzymatischen on-target Sequenzie-rung von Peptiden erlauben somit, in Verbindung mit den beschriebenen Hard- und Software-komponenten zur automatischen Probenpräparation und MALDI-MS Messung, deren Einsatz für eine schnelle Sequenzierung in der Proteinanalytik. Zusätzliche Verbesserungen könnten jedoch, bei entsprechender Verfügbarkeit, noch durch Exopeptidasen mit ergänzender Spaltungsspezifität (z.B. X-Pro Aminopeptidase, EC 3.4.11.9) erzielt werden. Auf Seiten der Automatisierung ergäben sich durch die ausschließliche Ver-wendung eines 96er oder 384er Mikrotiterplattenformat auf allen Geräten (Pipettierrobot und MALDI-MS) deutliche Vereinfachungen in der Methode, bei gleichzeitig noch höherem Probendurchsatz.