Logo
DeutschClear Cookie - decide language by browser settings
Mathias, Gerald (2004): Elektrostatische Wechselwirkungen in komplexen Flüssigkeiten und ihre Beschreibung mit Molekulardynamiksimulationen. Dissertation, LMU München: Faculty of Physics
[img]
Preview
PDF
Mathias_Gerald.pdf

5Mb

Abstract

Wasser ist eine hochpolare Flüssigkeit. Ihre ungewöhnlichen elektrostatischen Eigenschaften haben das organische Leben, das sich dort entwickelt hat, geprägt. Daher bestimmen beispielsweise die elektrostatischen Wechselwirkungen zwischen der wässrigen Zellflüssigkeit und den darin gelösten Proteinen, den molekularen Funktionsträgern der Biologie, sowohl die Struktur als auch die Dynamik dieser Makromoleküle. Mikroskopische Simulationsbeschreibungen der in Protein-Lösungsmittel Systemen ablaufenden Prozesse müssen deshalb jene Probleme lösen, welche durch den sehr langsamen 1/r Abfall der Coulomb Wechselwirkung und die endliche Größe von Simulationsmodellen aufgeworfen werden. Die vorliegende Arbeit fasst eine Reihe von Publikationen zusammen, in denen zunächst mit dem sog. SAMM/RF Algorithmus eine genaue und recheneffiziente Lösung für die angesprochenen methodischen Probleme vorgeschlagen und verifiziert wird [G. Mathias, B. Egwolf, M. Nonella, P. Tavan, J. Chem. Phys. 118, 10847-10860 (2003)]. Bei molekularmechanischen (MM) Molekulardynamik (MD) Simulationen ermöglicht dieser Algorithmus die Beschreibung sehr großer Systeme mit mehr als 10^5 Atomen auf einer Nanosekunden-Zeitskala. Für flüssiges Wasser konnten damit winkelaufgelöste Korrelationsfunktionen, die von mir vorgeschlagen wurden, auch bei großen Abständen statistisch genau berechnet werden [G. Mathias, P. Tavan, J. Chem. Phys. 120, 4393-4403 (2004)]. Damit ließ sich die dipolare Struktur der Solvatschalen um ein gegebenes Wassermolekül analysieren. Darüber hinaus wurde nachgewiesen, dass sich Wasser ab Distanzen von etwa 15 A° wie ein homogenes Dielektrikum verhält. Die SAMM/RF Methode wurde ferner zur Beschreibung der langreichweitigen Elektrostatik bei Hybridrechnungen eingesetzt, welche Dichtefunktional Methoden mit MM Kraftfeldern kombinieren, um so Schwingungsspektren biologischer Chromophore in polaren und in komplexen Lösungsmitteln quantitativ genau berechnen zu können. An den Beispielen des Retinalchromophors im Meta-III Zustand des Rhodopsins [R. Vogel, F. Siebert, G. Mathias, P. Tavan, G. Fan, M. Sheves, Biochemistry 42, 9863-9874 (2003)], der Chinone im bakteriellen Reaktionszentrum [M. Nonella, G. Mathias, M. Eichinger, P. Tavan, J. Phys. Chem. B 107, 316-322 (2003)] und eines Chinonmoleküls in wässriger Lösung [M. Nonella, G. Mathias, P. Tavan, J. Phys. Chem. A 107, 8638-8647 (2003)] wird gezeigt, wie elektrostatische Wechselwirkungen eines Moleküls mit seiner Lösungsmittelumgebung seine Schwingungsspektren modifizieren.