Logo
DeutschClear Cookie - decide language by browser settings
Koch, Claus-Jürgen (2002): Asymmetrische Synthese von 1-Aminocyclobutancarbonsäuren. Dissertation, LMU München: Faculty of Chemistry and Pharmacy
[img]
Preview
PDF
Koch_ClausJuergen.pdf

1595Kb

Abstract

Ziele dieser Arbeit waren zunächst die Optimierung der Synthese der razemischen 2- Hydroxy-2,3,3-trimethyl-butansäure (4) sowie die Entwicklung einer effizienten Razematspaltung dieser Säure. Nach dem Aufbau des Glycinäquivalents sollte dieses für den stereoselektiven Aufbau 2-substituierter 1-Aminocyclobutancarbonsäuren verwendet werden. Dabei sollte zum einen auf bereits bestehende Synthesemethoden zurückgegriffen, als auch ggf. neue Synthesewege entwickelt werden. Die 1-Aminocyclobutancarbonsäuren sollten anschließend auf ihre biologische Aktivität hin untersucht werden. Razemische 2-Hydroxy-2,3,3-trimethyl-butansäure (4) konnte in einer zweistufigen Synthese dargestellt werden, indem zunächst in Anlehnung an eine literaturbekannte Methode Pinakolon (5) mit KMnO4 zur 3,3-Dimethyl-2-oxobutansäure (13) oxidiert und diese dann mit einem Überschuß MeMgCl zur gewünschten razemischen Carbonsäure 4 umgesetzt wurde (Abb. 112). Für die Razematspaltung der razemischen α-Hydroxycarbonsäure 4 erwies sich Phenylalaninol (22) als am günstigsten. Damit konnte in zwei Schritten, durch Ausfällen und Umkristallisation, die enantiomerenreinen Carbonsäuren (S)-4 und (R)-4 nach Ansäuern in einer Enantiomerenreinheit von ≥ 99.5:0.5 erhalten werden. (S)-4 wurde durch Ausfällung mit (R)-Phenylalaninol ((R)-22, Abb. 112) und (R)-4 mit (S)-22 erhalten und dies in Ausbeuten von größer 70%. Nach der Synthese des chiralen Glycinäquivalents 2 in beiden enantiomeren Formen – (S)-2 und (R)-2 – nach einem Verfahren von A. Grandl wurde als Modellreaktion für die Synthese von Cyclobutylderivaten zunächst mit 1,3-Diiodpropan (41) als 1,3-Biselektrophil umgesetzt. Als Deprotonierungsreagenz diente Phosphazenbase (tBu-P4). Dabei entstand die spiro- Verbindung (R)-42 ohne erkennbare Nebenprodukte in einer Ausbeute von 35%. Nach Hydrolyse und Elution über einen Ionenaustauscher, konnte die freie Aminocyclobutancarbonsäure 48 in Ausbeuten bis zu 92% isoliert werden (Abb. 113). Anschließend wurden weitere Biselektrophile eingesetzt, welche mit dem Glycinäquivalent 2 2-substituierte spiro-Cyclobutanderivate liefern sollten. Zunächst wurden die mit einer geschützten Hydroxymethylenseitenkette versehenen 1,3-Biselektrophile (RS)-54 und (RS)- 65 eingesetzt. Diese waren aus 1,2,4-Butantriol ((RS)-49) in Synthesen von je 6 Stufen und in Ausbeuten von 32% ((RS)-65) und 25% ((RS)-54) zugänglich (Abb. 114). Trotz ausführlicher Variation der Versuchsbedingungen ließen sich diese mit 2 nicht zu den gewünschten spiro- Cyclobutanderivaten (ent)-64a/b umsetzen (Abb. 114). Als weiteres Biselektrophil kam trans-1,4-Dichlorbut-2-en (68) zum Einsatz. Anstelle der erwünschten diastereomeren Monoalkylierungsprodukte (ent)-69a/b wurden jedoch die vier diastereomeren spiro-Cyclopropylverbindungen (ent)-71a/b/c/d in einer Gesamtausbeute um 32% und in einem Isomerenverhältnis von 60:35:4:1 erhalten (Abb. 115). Da der Einsatz von Biselektrophilen nicht zu den gewünschten Verbindungen führte, wurde im Weiteren mit funktionalisierten Monoelektrophilen alkyliert. Der Ringschluß hatte dann in einem Folgeschritt zu erfolgen. Als Modell diente das allylierte Glycinderivat 83. Dieses wurde mit mCPBA zu den diastereomeren Epoxiden 84 und 85 umgesetzt (Ausbeuten >80%). Die anschließende Cyclisierung führte jedoch nicht zu den spiro-Cyclobutylverbindungen, was nicht unerwartet war, sondern zu den bereits bekannten spiro-Cyclopropylverbindungen 88 und 89 (Abb. 116). Aufgrund dieser Ergebnisse wurden vergleichbare Versuche mit dem homologen Alken (ent)- 135a/b durchgeführt. Das dafür erforderliche butenylsubstituierte Glycinderivat (ent)-135a/b ließ sich mit Phosphazenbase tBu-P4 als Deprotonierungsreagenz und Butenylbromid (134) in 60% Ausbeute darstellen, wobei jedoch das Auftreten des doppelt alkylierten Produktes (ent)- 82 nicht vermieden werden konnte. Mit Butentriflat (136) als Elektrophil – unter Verwendung von sBuLi als Base – ließ sich dieses Nebenprodukt vermeiden und die Ausbeute an (ent)- 135a/b betrug 69% (Abb. 117). Die Verbindung (ent)-135a ließ sich mit mCPBA in einer Ausbeute von 86% in ein Gemisch der isomeren Epoxide (ent)-97a/b überführen, wobei die Diastereoselektivität etwa 1:1 betrug (Abb. 118). Alle Versuche, die Verbindungen (ent)-97a/b zu den spiro- Cyclobutylverbindungen (ent)-139a/b zu cyclisieren blieben aber erfolglos (Abb. 118). Eine Umsetzung des monobutenylierten chiralen Glycinäquivalents (ent)-135a mit Iod, in der Absicht, das Diiodaddukt des Alkens zu erhalten, führte zu den diastereomeren monoiodierten Bicyclen (ent)-145a/b in Ausbeuten von etwa 70 % und Diastereoselektivitäten von etwa 65:35 ds (Abb. 119). Bei einer weiteren Route wurden (R)-2 und (S)-2 zunächst mit Iodessigsäureethylester alkyliert, was in sehr guten Ausbeuten (85% und 83%) gelang (Abb. 120, nur Alkylierung an (R)-2 dargestellt). Versuche, (ent)-98a/b mit 1,2-Dibromethan als Biselektrophil zur spiro- Cyclobutylverbindung (ent)-100 umzusetzen, blieben trotz Variation der Reaktionsbedingungen erfolglos (Abb. 120). In Analogie zur Arbeit von O. Achatz ließ sich jedoch der Syntheseweg zu den spiro- Cyclobutylphenylsulfonylverbindungen 133a/b erfolgreich nachvollziehen. Das Glycinäquivalent (S)-2 wurde dazu zunächst mit den silylgeschützten Iodethanolderivaten 108 und 109, und anschließend mit Iodmethylphenylsulfid (116) alkyliert und die Produkte anschließend zu den entsprechenden Sulfonen 119 und 120 oxidiert. Abspaltung der Silylschutzgruppe lieferte dann das Derivat 121 (Abb. 121). 121 war jedoch noch über eine weitere Syntheseroute zugänglich. Dazu wurde das allylierte chirale Glycinäquivalent 83 zunächst ebenfalls mit Iodmethylphenylsulfid (116) alkyliert. Anschließend wurde die dann vorliegende Verbindung 123 oxidiert und damit die Sulfidfunktion in ein Sulfon überführt und die Doppelbindung zum Aldehyd gespalten. Nach Reduktion des Produktes 128 gelangte man zum oben beschriebenen Derivat 121 mit Sulfonund OH-Funktion. Diese wurde anschließend in das Iodid 132 überführt, welches nach Behandlung mit Base (tBu-P4) in guten Ausbeuten zu den gewünschten diastereomeren spiro- Cyclobutylverbindungen 133a/b cyclisiert werden konnte. Die Hydrolyse zu den freien 1- Amino-2-phenylsulfonylcyclobutylcarbonsäuren 102a/b steht noch aus (Abb. 121). Schließlich wurde noch eine weitere Syntheseroute entwickelt, welche letztendlich zu den gewünschten diastereomeren 1-Amino-2-hydroxymethylencyclobutancarbonsäuren 150, (ent)-150, 151 und (ent)-151 führte. Für diese Route wurde von den diastereomeren butenylsubstituierten Verbindungen 135a/b, bzw. (ent)-135a/b ausgegangen und diese zunächst mit OsO4 und Trimethylamin-N-oxid behandelt, wodurch die Doppelbindung bishydroxyliert wurde. Die dabei gebildeten vicinalen Diole entstanden in einer Gesamtausbeute bis zu 90% und in einem Verhältnis von etwa 4:4:1:1. Im nächsten Schritt wurde das Isomerengemisch 146a/b/c/d, bzw. (ent)-146a/b/c/d, ohne sie zu trennen, selektiv an der primären Hydroxyfunktion mit einem Silylrest geschützt (90% Ausbeute). Die sekundäre Hydroxyfunktion wurde dann in ein Iodid überführt. Die Ausbeute des Isomerengemisches 148a/b/c/d, bzw. (ent)-148a/b/c/d lag bei 90% und das Isomerenverhältnis bei etwa 4:4:1:1. Die Produkte wurden dann mit der Phosphazenbase tBu- P4 zu den gewünschten spiro-Cyclobutylverbindungen 149a/b/c/d, bzw. (ent)-149a/b/c/d cyclisiert (Ausbeute über 80%, Isomerenverhältnis etwa 45:35:15:5). Nach Desilylierung wurden in 90%iger Ausbeute Isomerengemische der freien Alkohole 139a/b/c/d, bzw. (ent)- 139a/b/c/d erhalten, die durch präparative HPLC in ihre Einzelkomponenten getrennt wurden (Isomerenverhältnis: 48:31:18:3 , Abb. 122, die Synthesesequenz ausgehend von (S)-2 ist dargestellt). Da die beiden Nebendiastereomere 139c/d, bzw. (ent)-139c/d nur in einem Anteil von zusammen 21% anfielen, wurden diese nicht für die Generierung der freien Aminosäuren verwendet. Hydrolyse der Hauptdiastereomere 139a und 139b lieferte die freien Aminosäuren 150 und 151. Zur Darstellung der spiegelbildlichen Aminosäuren (ent)-150 und (ent)-151 wurden die für diesen Zweck dargestellten Enantiomere (ent)-139a und (ent)-139b der vorgenannten Hauptisomere hydrolysiert. Die Ausbeuten für die freien Aminosäuren lagen bei über 70% (Abb. 123). Zudem wurde noch versucht, die Cyclobutaneinheit über eine thermische [2+2]-Cycloaddition aufzubauen. Angewendet wurde dabei eine Methode von Ghosez. Dabei wurde die Ethylidenverbindung (R)-154, die durch eine Aldolkondensation von (R)-2 mit Acetaldehyd (153) zugänglich war (78%), mit dem Keteniminiumsalz des N-Propionylpyrrolidins, das in situ erzeugt wurde, umgesetzt. Es entstand jedoch nur ein Produktgemisch der verschiedenen möglichen Diastereomere und dies auch nur in einer Gesamtausbeute von etwa 10%. Deshalb wurden keine weiteren Versuche in dieser Richtung unternommen (Abb. 124).