Existence of Engel structures

Thomas Vogel






Existence of Engel structures

Dissertation zur Erlangung des Doktorgrades
an der Fakulit fur Mathematik, Informatik und Statistik
der Ludwig—Maximilians—Universitt Minchen

\Vorgelegt am 17. Mrz 2004 von

Thomas Vogel



Erstgutachter Prof. Dieter Kotschick, D. Phil.
Zweitgutachter Prof. Dr. Kai Cieliebak
ausvartige Gutachter Prof. Dr. Yakov Eliashberg (Stanford University, USA)
Prof. Dr. Michele Audin (Universigé Louis Pasteur, Strasbourg, France)

Tag der ntindlichen Piafung 13. Juli 2004



Contents

Chapter 1. Introduction
1.1. Contact topology
1.2. Firstresults on Engel structures
1.3. Constructions of Engel manifolds

Chapter 2. Contact topology
2.1. Basic results on contact structures
2.2. Legendrian curves
2.3. Facts from the theory of convex surfaces
2.4. Bypasses in overtwisted contact structures

Chapter 3. First results on Engel structures
3.1. Even contact structures
3.2. Engel structures — Definition and first examples
3.3. Topology of Engel manifolds
3.4. Deformations of Engel structures
3.5. Engel vector fields
3.6. Analogues of Gray’s theorem

Chapter 4. Round handles
4.1. Generalities
4.2. Model Engel structures on round handles
4.3. Relations between the modelsBnand R,

Chapter 5. Closed Engel manifolds from round handles
5.1. Gluing Engel structures
5.2.  Vertical modifications of transversal boundaries
5.3. Doubles
5.4. Modifications of rotation numbers and framings
5.5. New Engel manifolds — Doubles
5.6. Connected sums

Chapter 6. The existence theorem

6.1. Model Engel structures on round handles of in2lex

6.2. Toriin overtwisted contact manifolds
6.3. Model Engel structures dRy
6.4. Proof of Theorem 6.1

Chapter 7. Geometric examples
7.1. Geometric contact manifolds
7.2. Geometric Engel manifolds — Prolongation

7.3. Geometric Engel manifolds — Remaining geometries

Bibliography

Lebenslauf

104
107
110

117
118
124
129
136

143
144
149
155

163
165






CHAPTER 1

Introduction

Distributions are subbundles of the tangent bundle of a manifold. It is natural not to
consider general distributions but to make geometric assumptions, for example integrabil-
ity. In this case the distribution is tangent to a foliation. Another possibility is to assume that
a distribution is nowhere integrable. Important examples of this type are contact structures
on manifolds of odd dimension. Contact structures are hyperplane fields on manifolds of
odd dimension which are maximally non—integrable everywhere3-@imensional mani-
folds properties of contact structures reflect topological features of the underlying manifold
in a surprising way.

An Engel structure is a smooth distributiéhof rank2 on a manifoldM of dimension
4 which satisfies the non—integrability conditions

rank[D, D] = 3 rank[D, [D,D]] =4,

where[D, D] consists of those tangent vectors which can be obtained by taking commuta-
tors of local sections db.

If one perturbs a given Engel structure to a distribution which is sufficiently close to
D in the C?—topology, then the new distribution is again an Engel structure. Moreover all
Engel structures are locally isomorphic, i.e. every point has a neighbourhood with local
coordinatesr, y, z, w such that the Engel structure is the intersection of the kernels of the
one—forms

Q) a=dz — xdy 8 =dr— wdy .

This normal form was obtained first by F. Engel Eng].
The stability property described above is called stability in the sense of singularity
theory. R. Montgomery has classified the distributions with this stability property.

THEOREM 1.1 (Montgomery, Mo1l]). If a distribution of rankr on a manifold of
dimensiom is stable in the sense of singularity theory, thén — r) < n. It belongs to
one of the following types of distributions.

n arbitrary | r =1 foliations of rank one

n arbitrary | » = n — 1 | contact structures if is odd,
even contact structures otherwise
n=4 r=2 Engel structures

So Engel structures are special among general distributions and even among the stable
distribution types in Theorem 1.1 they seem to be exceptional. On the other hand they
appear very naturally. For example a generic plane field on a four—manifold satisfies the
Engel conditions almost everywhere. Engel structures can also be constructed from con-
tact structures in a natural way. Certain non—holonomic constraints studied in classical
mechanics also lead to Engel structures.

3



4 1. INTRODUCTION

One—dimensional foliations are extensively studied in the theory of dynamical systems.
Contact structures have attracted much interest during recent years. On manifolds of di-
mensiors the distinction between overtwisted and tight contact structures due to Y. Eliash-
berg has lead to many interesting results. Using convex integration, one can find even con-
tact structures on all manifolds with vanishing Euler characteristic. Therefore even contact
structures seem to be less interesting. In contrast to this, and just like for contact struc-
tures, the standard conditions which ensure the validity gi-grinciple are not satisfied
by Engel structures.

An Engel structure induces a flag of distributions

2 WcDcC&=[D,D]CTM

such that each distribution has corank one in the next one. Eédsean even contact
structure. We say that the foliation is associated to the even contact structure. Usually
it is called the characteristic foliation of the even contact strucfur@he flow of vector
fields tangent to the characteristic foliation prese&es

The existence of the flag (2) implies strong restrictions for the topology of Engel ma-
nifolds. The following theorem can be found KYIS]. It was known already to V. Gersh-
kovich. Unfortunately his preprinter] was not available to the author.

THEOREM1.2. An orientabled—manifold which admits an orientable Engel structure
has trivial tangent bundle. Every Engel manifold admits a finite cover which is paralleliz-
able.

According to KMS] the preprint [Ger] suggests an incomplete proof of the converse
of Theorem 1.2. The Euler characteristic of an Engel manifold vanishes since there is a
non-singular line field o/, or by parallelizability.

In the literature one can find two constructions of Engel structures. The first one is
called prolongation. With this method one finds Engel structures on ceftaibundles
over three—dimensional contact manifolds. The Engel structures obtained in this way
are relatively simple, for example their characteristic foliations are given by the fibers
of the S'—bundle. This method is described iN¢2]. The second construction is due
to H. J. Geiges, cf.Geli]. It yields Engel structures on parallelizable mapping tori. Its
major disadvantage is that one can say nothing about the characteristic foliation or other
properties of the Engel structure.

In this thesis we develop three new constructions of Engel manifolds. Our main result
is the converse of Theorem 1.2

THEOREM1.3. Every parallelizablel-manifold admits an orientable Engel structure.

Note that Theorem 1.3 can be proved on open manifolds usirtg-hrnciple for open,
Diff-invariant relations, cf.EIM]. Thus our proof of Theorem 1.3 treats the case of closed
manifolds.

1.1. Contact topology

In Chapter 2 we discuss contact structures. Contact structures are maximally non—
integrable hyperplane fields on manifolds of odd dimension. In Engel manifolds contact
structures appear naturally on hypersurfaces transverse to the characteristic foliation and
the theory of contact structures on three—dimensional manifolds will play an important
role in our constructions of Engel structures. Therefore we are mostly concerned with the
case of manifolds of dimensioh Much of the material presented here can be found in
[Aeb, EH, Girl, Ho].

One of the most important properties of contact structures on closed manifolds is
Gray'’s stability theorem which is valid in all odd dimensions.
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THEOREM 1.4 (Gray, [5r]). LetC; be a smooth family of contact structures on a
compact manifold. Then all contact structurgsare isotopic.

We will use this theorem frequently. In particular in our first construction of Engel
structures we need the construction of the isotopy. We also show that there is a one—to—
one correspondence between contact vector fields and differentiable functions on a contact
manifold. In Section 2.1.3 we derive the local normal form of contact structures from Dar-
boux’s theorem about local normal forms for symplectic manifolds. Like Gray’s theorems
these results are valid for contact structures on odd dimensional manifolds.

For the remaining part of Chapter 2 we discuss contact structurgsmanifolds.

In Section 2.2 we discuss Legendrian curves. Legendrian curves are curves which are
tangent to the contact structure. We show that every curve is isotopic to a Legendrian one
relative to the endpoints. The classical invariants of null-homologous Legendrian curves
in a contact manifold are the Thurston—Bennequin number and the rotation number from
[Ben]. These invariants allow us to distinguish between Legendrian curves up to isotopy
through Legendrian curves. Stabilization of Legendrian curves is an efficient method to
modify the Legendrian isotopy type of a Legendrian curve. It is explained in Section 2.2.4.
One particular property of Legendrian curves is that on a neighbourhood of a Legendrian
curve, the contact structure can be brought into a special normal form.

Next we consider convex surfaces in contact manifolds. Convex surfaces are embed-
ded surfaces with Legendrian boundary such that there is a contact vector field transversal
to the surface. In Section 2.3 we explain several results about convex surfaces without
proofs. Many of the results in this section are due to E. Giroux,Gif1]] for closed con-
vex surfaces. Later they were generalized by K. Honda to convex surfaces with Legendrian
boundary, cf.HOQJ.

Most of the results we mention here concern the relation between the contact structure
on the neighbourhood of a convex surface and a singular foliation on the surface itself. This
singular foliation is defined by those tangent vectors to the surface which are also tangent
to the contact structure. It turns out that much information is contained in an associated
submanifold — the dividing set — of the surface. For example if the boundary of the surface is
connected, then the Thurston—Bennequin invariant and the rotation number of the boundary
can be derived from the dividing set using results of Y. Kanddat]].

We also state Eliashberg’s classification theor&ti] for overtwisted contact struc-
tures on closed manifolds up to isotopy. This theorem will be used at the final stage of the
proof of Theorem 1.3.

The results about convex surfaces are used for the construction of bypasses in over-
twisted contact manifolds in Section 2.4. Bypasses were introduced by K. Honda in or-
der to relate the dividing sets on two convex surfaces which are isotopic but not isotopic
through convex surfaces. 1rp] bypasses are applied for the classification of tight contact
structures on lens spaces up to isotopy. Bypasses for convex surfaces can be thought of as
analogues of stabilization for Legendrian curves. A difference between these two construc-
tions is the fact that stabilization of a Legendrian curve is always possible independently
of the ambient contact structure while bypasses are not always available in tight contact
manifolds.

We show that bypasses can be constructed from overtwisted discs in overtwisted con-
tact manifolds. For this one forms the Legendrian connected sum of the boundary of an
overtwisted disc and a Legendrian unknot which is constructed from a Legendrian arc on
the surface. Contrary to tight contact manifolds, there are no restrictions for the existence
of bypasses.
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1.2. First results on Engel structures

In Chapter 3, we first define even contact structures and discuss some of their prop-
erties. Even contact structure are maximally non—integrable hyperplane fields on even di-
mensional manifolds. Thus the definition is similar to that of contact structures (just replace
even dimensional manifolds by odd dimensional manifolds). Just like contact structures,
even contact structures also admit a local normal form. However, there is an important
difference between even contact structures and contact structures:

Even contact structures induce a foliatibv of rank one tangent to the even contact
structure. Every vector field tangent to the characteristic foliatdmpreserves the even
contact structure. The presence of the characteristic foliation leads to a significant differ-
ence between even contact structures and contact structures. For even contact structures,
the analogue of Gray’s theorem (Theorem 1.4) is not true. When one modifies the even
contact structure, one also modifies the characteristic foliation. But one—dimensional foli-
ations are very sensitive with respect to perturbations. For example closed orbits can break
up.

In Section 3.2 we define Engel structures and explain prolongation and the construction
of Geiges. We derive Engel's normal form (1). By definitigf®, D] = £ is an even
contact structure ifD is an Engel structure. In this situation the characteristic foliation
of £ is tangent tdD. Recall that the characteristic foliation is tangent to the even contact
structure by definition. As well as in the case of even contact structures Gray’s theorem
(Theorem 1.4) is not true for Engel structures.

Several theorems which will be used in our constructions concern the behaviour of
Engel structures near hypersurfaces transversal to the characteristic foliation. Such a hy-
persurfaceV carries the contact structuéen T'N and the intersection line fiel® N T'NV
is Legendrian. The knowledge of this contact structure and of the intersection line field is
enough to reconstruct the germ of the Engel structuré.at

There is a geometric interpretation of the condition {#atD] is an even contact struc-
ture&. As one moves along a leaf of the characteristic foliation, one can compare the Engel
structureD at different points of the same leaf because every flow tangent to the charac-
teristic foliation preserves the even contact structure. The planeDietdates around the
leaf of the characteristic foliation within the even contact structure. As long as one keeps
moving in the same directioff) rotates without stopping. This is similar to a well known
interpretation of the non—integrability condition in the definition of contact structures. It
also shows that the even contact strucifirearries a distinguished orientation if it is in-
duced by an Engel structut®, i.e. £ = [D, D].

In the remaining sections of Chapter 3 we discuss further results about Engel mani-
folds. In Section 3.3 we prove Theorem 1.2. There is a relation between smooth functions
and Engel vector fields in Section 3.5 like for contact vector fields. For Engel structures,
the functions which yield Engel vector fields have to satisfy a differential equation which
leads to strong restrictions on the functions which really induce Engel vector fields. This
differential equation is explained in Section 3.5. Section 3.4 contains proofs of R. Mont-
gomery'’s results about deformations of certain Engel structuresyioR]l We finish this
chapter with a discussion of the following theorem in Section 3.6

THEOREM1.5.

() LetD; be asmooth family of Engel structures such that the characteristic foliation
is independent of. Then all Engel structure®; are isotopic.

(i) Let&; be a smooth family of even contact structures such that the characteristic
foliation is independent af Then all even contact structuré€g are isotopic.
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While the first part of this theorem was proved by GolubevGol], the second part
seems not to be discussed in the literature although it is analogous to (i).

1.3. Constructions of Engel manifolds

In this thesis we develop three new methods for the construction of Engel manifolds.
We describe them in Chapters 4 to 7. The first and the second construction are similar.
They are treated in Chapter 5 and Chapter 6 respectively. The third method is based on
Thurston geometries and it is covered in Chapter 7.

In Chapter 4 we explain some of the similarities of the first and the second construc-
tion. Here we will usually assume that all Engel structures, the Engel manifolds and the
characteristic foliations are oriented. We write for those boundary components where
the characteristic foliation points out of the manifold ahdfor the remaining boundary
components. In this situation, the Engel structures induce oriented contact structures and
oriented intersection line fields on all boundary components.

Assume we have an Engel manifold such that the boundary is transversal to the charac-
teristic foliation of the Engel structure. We attach a manifold with boundary to the boundary
of the Engel manifold. If we extend the Engel structure to the new manifold it is desirable
to achieve that the new boundary is again transversal to the characteristic foliation because
then we can repeat the process. This implies that we are not allowed to change the Euler
characteristic of\/ when we attach something along the boundary.

As building blocks we use round handles. A round handle of dimensiand index
k=0,....n—11is

R, = DF x Dk x g1,
It is attached along the boundary componén?, = S*~1 x D"~*~1 x S1. The other
boundary component dt;, is 9, R, = D* x S"*~2 x §1. Round handles of indeikand
n — 1 — k are dual to each other, henge Ry, ~ 0. R,, 1.

Attaching a round handle to a manifold with boundary does not change the Euler char-
acteristic. Therefore round handles are suitable building blocks for the construction of En-
gel manifolds. Conversely, every Engel manifold can be decomposed into round handles
by the following theorem.

THEOREM 1.6 (Asimov, [Asl]). Let M be a manifold of dimension # 3. ThenM
admits a decomposition into round handles if and only if its Euler characteristic is zero. In
this caseM admits a non—singular Morse Smale vector field.

In Section 4.1 we sketch a proof of Theorem 1.6. By a result of J. Morgan, the analo-
gous statement is wrong in dimensigncf. [Mor].

We will frequently use the fact that the diffeomorphism type of the manifold obtained
by the attachment of a round handle depends only on the isotopy class of the attaching
map. In contrast to ordinary handles, the order in which round handles of the same index
are attached is essential.

An important tool in the proof of Theorem 1.6 is the fundamental lemma on round
handles (Lemma 4.8). It asserts that if two ordinary handles of consecutive/iniex 1
are attached independently to the same connected component of the boundary, then the
resulting manifold can also be obtained by attaching one round handle of ind&Ris
lemma allows us to find the Kirby diagram of a round handle body. Conversely one can
sometimes find a round handle decomposition of a given manifold from a Kirby diagram.

The model Engel structures on round handles are constructed starting from the pro-
longation construction. We perturb such Engel structures slightly using a contact vector
field on the base manifold. This allows us to determine the characteristic foliation of the
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perturbed Engel structure. In Section 4.2 we introduce some of the model Engel structures.
The model Engel structures on rouhehandles will be used in both constructions.

The particular contact structures we use in the prolongation lead to model Engel struc-
tures with different properties. These account for the differences between our first and
second constructions.

Let M be an orientable Engel manifold whose boundary is transversal to the charac-
teristic foliation. The conditions under which an Engel structuréfican be extended to
M U Ry, by a fixed model Engel structure dt). using a fixed attaching map are

() the attaching map has to preserve contact structures together with their orienta-
tions induced by the Engel structure and

(i) the attaching map has to preserve the homotopy type of the intersection line field
as a Legendrian line field.

The reason why we do not require that the attaching map preserves the intersection line
field itself is the existence of a construction which allows us to change the intersection
line field on a transversal boundary within its homotopy class. This can be done without
changing the contact structure 8n . This construction is called vertical modification.

We explain it in Section 5.2.

1.3.1. The first construction — Connected sumsln Chapter 5 we describe our first
construction of Engel structures. In this approach we use model Engel structures on round
handles such that the contact structure on the boundary is tight. The model Engel structures
depend on a parameterc Z \ {0}.

For the model Engel structures on round handles of index zero and three, there is an
obvious identification betwee, Ry ando_ Rs which preserves the oriented contact struc-
ture and the intersection line fields if one considers the model Engel structures with the
same parameter.

The characteristic foliation of the model Engel structures on round handles of index
is spanned by the Liouville vector field” of a symplectic fornw on Ry, i.e. Lyyw is a
positive multiple ofw. The model Engel structures diy are very similar to the model
handles used inVjfei, EI2] for the construction of symplectic handle bodies: The round
1-handles with model Engel structures are also attached along tubular neighbourhoods of
Legendrian curves.

The properties of the model Engel structures on round handles of ihdeflect the
duality between round handles of indexand2. Unfortunately, they are not as symmetric
as in the case of round handles of indeand3. The characteristic foliation of the model
Engel structures o, is again related to a symplectic formon R,. But now that char-
acteristic foliation is spanned by a vector fiéld with the property thalyyw is a negative
multiple of w.

The symmetry between model Engel structures on round handles of ineex 2
allows us to construct Engel structures on closed manifolds by an iteration procedure. In
order to explain it, we consider first the situation without Engel structures.

Let M;, M, be two manifolds with boundary and lét: 0M; — OM> be a diffeo-
morphism. If we glue a round handle of index one with the attachingmap_R; —
0Ms, then we can attach a round handle of in@e® M, using the map

»2 :woipl :8+R2 —>8M2.
After smoothing corners we obtain new manifolds with boundary

Ml = My Uy, Ry MQZMZ Uy, Ro
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such that the new boundaries can be identified in a natural way by a dlffeomormhlsm
When we identify the boundaries M1 andM2 we obtain a new manifold/. We can
also apply the same procedure]\tﬁ, M, and the identification ma¢ of the boundaries.

Now let M7, M- be Engel manifolds with transversal boundaries and oriented charac-
teristic foliation. The diffeomorphisnp preserves the induced oriented contact structures
and oriented intersection line fields én M1, andd_ Ms.

AssumgthatRl carries a model Engel structure such that the Engel structurg,on
extends tal/;. In Theorem 5.6 we carry out the construction outlined above. We find an
attaching mapp, and a model Engel structure dty such that the Engel structure @i,
extends taV/,. Moreover we construct a map

{/;: 8+M1 — (‘3_MQ

with properties analogous to the diffeomorphigmve started with. From this we obtain a
smooth Engel structure aly.

Let us remark that this construction becomes trivial if we consider only the even contact
structures induced by the Engel structures. In this situation one can simply reverse the
orientation of the characteristic foliation and yse= v o 1. TheniE can be taken to be
the obvious identification between the boundaries of new even contact manifgldsd
M.

The case of Engel structures is more difficult. This is due to fact that an Engel structure
with an oriented characteristic foliation induces an orientation of the contact structure on
transversal boundaries. For example if one takes a copy,dhstead ofMs and identifies
the boundaries by the identity, then the orientations of the contact structures do not fit
together. Therefore one does not obtain an Engel structure on the doldlemthis way.

For the construction of attaching maps of rouréandles we use several facts from
contact topology. Every embedded circle in a contact manifold is isotopic to a Legendrian
curve. In order to change the isotopy classes of Legendrian curves we use stabilizations
from Section 2.2.4. It turns out that this method is enough to provide interesting applica-
tions of our iteration procedure. It is also sufficient for the proof of Theorem 1.3.

Our first construction can be used to construct Engel structures on manifolds which
are not accessible using prolongation or the construction of Geiges. We explain simple
examples of this kind in Section 5.5.

If M, M’ are two Engel manifolds then their connected sum does not admit an Engel
structure since the Euler characteristicAdt# M’ is not zero. This can be corrected by
adding.S? x S2. The main application of our first construction is the following theorem
from Section 5.6.

THEOREM 1.7. Let M, M’ be manifolds with Engel structuré®, D’ such that both
characteristic foliations admit closed transversals. ThdrtM'#(S? x S?) carries an
Engel structure which coincides with the old Engel structuredband M’ away from a
neighbourhood of the transversals where all connected sums are performed. The charac-
teristic foliation of the new Engel structure again admits a closed transversal.

If M andM’ are parallelizable then the same is truefég M'#(S? x S?) and there is
an Engel structure of/# M'#(S? x S?) by Theorem 1.3. The advantage of Theorem 1.7
is that the given Engel structures are not modified away from a neighbourhood of the closed
transversals and Theorem 1.7 does not rely on any specific decompositions of the Engel
manifolds into round handles.

The condition in Theorem 1.7 that the characteristic foliations of the Engel structures
admit closed transversals can be replaced by an assumption on the number of full twists of
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the Engel structureB, D’ in the even contact structur€sE’ when one moves along leaves

of the characteristic foliations. This condition as well as the presence of a hypersurface
transversal to the characteristic foliations ensure that we can apply vertical modifications.
In the proof of Theorem 1.7, we use vertical modification several times.

Let us mention a special property of our first construction. Assume the Engel structure
on M extends toM U R; by a model Engel structure. If the contact structuredqQd/
admits a symplectic filling then the same is true for the contact structuﬂ-:mAﬁ. Thus
attaching a round—handle with our model Engel structure preserves symplectic fillability
of the contact structure on the boundary, ef, EI2]. By a result of Y. Eliashberg and
M. Gromov, the contact structures on M; and ond, M, are tight. This is a difference
between our first and our second construction of Engel manifolds. In the second con-
struction we systematically produce and use overtwisted contact structures on transversal
boundaries.

Another difference concerns dynamical properties of the characteristic foliation. In
our first construction the characteristic foliation is described in a very explicit way in the
construction of the model Engel structures. In particular all to each round handle in the
round handle decomposition corresponds one closed leaf of the characteristic foliation. All
closed leaves are hyperbolic.

The constructions of model Engel structures in the second construction do not yield
hyperbolic closed leaves and there is no one—to—one correspondence between closed leaves
and round handles.

1.3.2. The second construction — Existence theorentn Chapter 6 we develop our
second method for the construction of Engel structures in the proof of the general existence
result, Theorem 1.3. One important feature is that in this construction the contact struc-
tures on the boundary componentsR;. will be overtwisted for many of the model Engel
structures. In particular this is the case for all model Engel structures on round handles of
index0 and3.

In the proof of Theorem 1.3 we need model Engel structures on round handles of in-
dex 3 such that the contact structure on the boundary is independent of the model Engel
structure and only the homotopy class of the intersection line field varies. With one excep-
tion, these model Engel structures can be obtained from the perturbation of a prolonged
Engel structure. But the remaining model Engel structure is difficult to find explicitly.
Therefore the construction in Section 6.3 is more complicated than the construction of the
other model Engel structures.

Another difference is a much larger variety of model Engel structures on rgund
handles. Many of these Engel structures induce an overtwisted contact structur&gn
In particular the induced contact structure@nR, depends on the model Engel structure.
Nevertheless, the induced contact structure8.oRs are essentially the same for all model
Engel structures.

The only model Engel structures which are used in both constructions in Chapter 5 and
Chapter 6 are the model Engel structures on ralsttandles, as in the first construction.
Also the method for the construction of attaching maps of ro#thndles will turn out to
be flexible enough in order to prove Theorem 1.3.

Let us briefly explain the proof of Theorem 1.3. We start with a round handle decom-
position of a parallelizable oriented manifald with only one round—handle and we fix
a trivialization of 7'M . Suppose we have an oriented Engel structure on a submanifold
of M. All distributions in (2) are then oriented. From this we obtain framings which are
adapted to the Engel structure. Such trivializations will be called Engel framings.
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First we equip the roun@-handle with a model Engel structure such that the Engel
framing on Ry and the given framing are homotopic. This shows that the Engel framing
extends fromR, to a global framing on\/. We homotop the given framing such that it
coincides with the Engel framing aR.

Then we attach the first rouriethandle. As in our first construction of Engel structures
we isotope the attaching map and choose a model Engel structiitesarch that the Engel
structure extends frorR, to Ry U R;. We can arrange the Engel structurefylJ R, such
that the given framing orRy U Ry and the Engel framing od/ are homotopic. The
analogous statement is true for all subsequent attachments of rebaddles. This can be
carried out such that the contact structure on the boundary remains overtwisted after each
attachment of a rounti-handle. We denote the union of the rourdhandle and all round
1-handles in the round handle decompositiodbby M.

Letps : O Ry — O+ M; be an attaching map. Recall that all model Engel structures
on round2—handles induce equivalent contact structure8.oRs. In particular the singular
foliation on the attaching torus is independent of the model Engel structure. If the contact
structure ord; M is overtwisted, then we can isotope such that the resulting embedding
preserves the singular foliations. At this point we use the fact that the contact structure on
0. M is overtwisted in an essential way. Using results from contact topology, we can
isotopey, further to obtain an attaching map which preserves contact structures.

Once this is achieved, the large variety of model Engel structureg,cailows us to
pick a model Engel structure such that preserves the orientations of the contact struc-
ture and the homotopy class of the intersection line fields. This way we obtain an Engel
structure onM; U Rs. This construction can be carried out such that the contact structure
on the boundary remains overtwisted. In contrast to the attachments of rehaddles,
the Engel framing ord/; U R and the given framing o/ are not homotopic in general.

The same procedure applies for all subsequent attachments of round handles &.index
Thus we can construct an orientable Engel structure on the uvipf round handles
with index0, 1, 2.

In order to show that we can extend the Engel structurkgftowe first show that the
Engel framing extends to a framing dd. This is not clear from the construction of the
Engel structure o/, since we cannot guarantee that the Engel framing and the given
framing on M, are homotopic. At this point the assumption that there is only one round
3—handle is important.

The fact that we can extend the Engel framing frdfg to M implies that the contact
structure ord M» extends taV/ as a plane field. But there is a uniqgue homotopy class of
plane fields ors? x S! which extends td? x S'. According to Eliashberg’s classification
of overtwisted contact structures, this determines the isotopy class of the contact structure
on o M, completely.

This enables us to extend the Engel structure fidpto M = M U R3 using a model
Engel structure oi?s.

1.3.3. The third construction — Thurston geometries.Our last construction is de-
scribed in Chapter 7. It treats contact structures and Engel structures from a different point
of view. In dimension3 there is the well known list of eight Thurston geometries. We
discuss which of these geometries are compatible with contact structures.

We then discuss prolongation in the context of Thurston geometries. This yields En-
gel structures which are compatible with certain four—dimensional Thurston geometries.
The remaining four—dimensional Thurston geometries are treated individually in the last
section. We show that the resulting Engel structures are sometimes very similar to Engel
structures obtained by the construction of H. J. Geiges. Some examples in this chapter
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illustrate a problem one encounters when one wants to construct an Engel structure on
connected suma/#M’'#(S? x S?%) without any additional assumptions on the Engel
structures as in Theorem 1.7.

I would like to take the opportunity to thank my advisor Dieter Kotschick for his con-
tinuous support, patience and help. | would like to thank all members of the Geometry and
Topology group of the LMU, in particular Kai Cieliebak for many discussions and Paolo
Ghiggini whose remarks helped me to improve the arguments in Section 2.4. | am also
grateful to the Studienstiftung des Deutschen Volkes for their financial support.



CHAPTER 2

Contact topology

In this chapter we summarize several facts from contact topology. After giving a pre-
cise definition we discuss some examples. In particular Example 2.3 of contact structures
on the projective bundle associated to a manifold is similar to the construction of Engel
structures from contact structures by prolongation in Proposition 3.2.2. In Section 2.1.1 we
give a proof of Gray’s stability theorem (Theorem 2.4). For us the importance of this the-
orem is due to the explicit construction of isotopies from families of contact structures. In
particular in our first construction of Engel manifolds in Chapter 5 we will use this method
frequently.

In Section 2.1.2 we show that there is a correspondence between contact vector fields
and differentiable functions. To each function corresponds a contact vector field and vice
versa. Locally all contact structures are equivalent and we discuss the normal form for con-
tact structures in Section 2.1.3. This normal form will be used in the theorems about normal
forms for even contact structures and Engel structures (Theorem 3.9 and Theorem 3.13).

The results mentioned up to now are valid for contact structures in all odd dimensions.
Since an Engel structure induces contact structures on hypersurfaces which are transversal
to the characteristic foliation, we will be concerned with contact structures on manifolds of
dimension3.

In the remaining part of this chapter we consider contact structures-manifolds.

We discuss Legendrian curves in Section 2.2. This is motivated by the fact that reund
handles with model Engel structure will be attached along neighbourhoods of Legendrian
curves in our constructions of Engel structures. We show that every curve is isotopic to a
Legendrian curve (Proposition 2.10).

The two classical invariants of Legendrian knots are the Thurston—Bennequin invariant
(Definition 2.15) and the rotation number (Definition 2.17). Using a normal form for con-
tact structures on tubular neighbourhoods of Legendrian curves (Corollary 2.19) explain
stabilizations of Legendrian curves. This operation changes the Legendrian isotopy type of
an embedded Legendrian curve. We use the Thurston—Bennequin invariant and the rotation
number to distinguish Legendrian knots. Stabilization of Legendrian curves is described in
Section 2.2.4. Since this operation changes the Thurston—-Bennequin invariant and the ro-
tation number, stabilization changes the Legendrian isotopy class. We will use this method
for the construction of attaching maps for routhandles with model Engel structures
(Theorem 5.7 and Theorem 5.8).

Section 2.3 contains some facts about convex surfaces in contact manifolds. An em-
bedded surface is called convex if there is a contact vector field transversal to the surface.
Most of the material from this section is contained@irfl, Ho]. The dividing set of a con-
vex surface consists of those points where the contact structure is tangent to the transversal
contact vector field. The results described in this section show that the essential informa-
tion about the contact structure on a neighbourhood of the convex surface is contained in
the dividing set of the surface.

A round 2—-handle with a model Engel structure is attached along neighbourhoods of
convex tori. The theorems from Section 2.3 will be used to isotop attaching maps of round

13
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2—handles such that they become contact embeddings and for the construction of bypasses
in overtwisted contact manifolds (Section 2.4).

We also state Eliashberg’s classification theorem for overtwisted contact structures on
closed manifolds (Theorem 2.3FI[L]). In the construction of model Engel structures
on round3—handles in Section 6.3 and at the final stage of the existence theorem (Theo-
rem 6.1) in Section 6.4 we obtain an overtwisted contact structu?on S! and we can
determine the homotopy class of this contact structure viewed as plane figiors?.

By Theorem 2.33 this determines the isotopy class of the contact structure.

In Section 2.4 we discuss bypasses in overtwisted contact manifolds. Bypasses were
introduced by K. Honda inHo]. They provide a possibility to isotope convex surfaces
through non—convex surfaces. After a bypass is attached to a convex surface it is possible
to determine the dividing set on the isotoped surface (Lemma 2.36). In tight contact struc-
tures the absence of overtwisted discs and the Bennequin inequality are obstructions to the
existence of bypasses. We show that bypasses can be found easily if the surface is disjoint
from an overtwisted disc (Proposition 2.37). This enables us to isotope embedded tori in
contact manifolds in order to obtain a particular dividing set (Section 6.2). In this way we
find attaching maps for rourzi-handles with model Engel structures in Section 6.4.

2.1. Basic results on contact structures

DEFINITION 2.1. A contact structur&€ on a2n — 1-dimensional manifoldV is a
smooth subbundle df NV with corank1l such that around every point &f there is al—
form « such that

(i) kera =C and
(i) da has maximal rank od.

The second condition is equivalentdon (da)"~! # 0 on the domain ofv. Notice
that if n is even, the sign ofv A (da)™~! is independent of the choice of Then a
contact structure induces an orientation of the underlying manifold. In particular every
3—dimensional manifold with contact structure has a preferred orientation. In dimension
three, orientability of\/ is the only obstruction for the existence of a contact structure.

THEOREM 2.2 (Martinet, Lutz, Mar]). On every closed oriented manifold of dimen-
sion 3, there exists a contact structure inducing the given orientation. There is a contact
structure in every homotopy class®fplane fields.

The analogous statement in the case of open manifolds is easily solved using Gro-
mov’s h—principle for openDiff—invariant differential relations as described EINI].
The following construction of contact structures is very similar to a construction of Engel
structures which we will encounter in Proposition 3.15.

ExaMPLE 2.3. Let M be ann—dimensional manifold and consider the projectivization
PT*M of T*M. The total space of the bundle pi?7*M — M has dimensiorzn — 1
and carries the distribution

C = {veTyPT"M |pr,(v) € ker(\)} .

Notice that kef)) is independent of the choice of a representativé\of In order to
show thatC is really a contact structure choose local coordinates. ., x, on M and

the induced local trivialization of * M. We writeyq, ..., y, for the coordinates in fiber
direction. Then(xy,...,z,,[y1 : ... : yy]) are partially homogeneous coordinates on
PT*M. Aroundp = (0,...,0,[1:0:...:0]) we obtain local coordinates

(T1y ey Ty Y2y ooy Yn) > (T, oy Ty [Liya st yn])
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In terms of these coordinates
3) a=dx; + yodxo + ... + Ypda,

is a defining form forC. On can easily check that A (da)”~! never vanishes on the
domain of our coordinates. We can coW&r* M with similar charts. Hencé is a contact
structure.

Every diffeomorphismp of the base manifold/ induces a diffeomorphism by

Al [p™"]
PT*M —= PT*M

@
v v
M——/M.

Letv € C([A]). Using the commutative diagram above we obtain

(()071*)‘) (pr*(a*v)) = (wil*A) (@*(pr*?})) =0.
Thereforep preserves the contact structures. Not every contact diffeomorphiS§rhaxt to
preserve the bundle structure®f™* M. Hence we do not obtain every contact diffeomor-
phism this way.

2.1.1. Gray'’s theorem. The theorem we are going to discuss now is one of the re-
markable properties of contact structures. It shows that it may be possible to classify
contact structures up to isotopy on compact manifolds. For us, the useful feature of the
theorem is the explicit construction of isotopigs from familiesC, of contact structures
such that),.Cy = Cs. This construction constitutes the proof.

THEOREM 2.4 (Gray, Br]). LetCs, s € [0, 1] be a family of contact structures a¥
which is constant outside of a compact subseWofThen there is an isotopy, with the
property

@Z}s*CO = Cs .

PrRooOF For the proof we assume th@f is defined by a smooth family of one—forms
a(s), i.e. we assume th&, is transversely orientable. The proof without this assumption
is slightly more complicated, it can be found ikar]. We construct the desired isotopy
as the flow of a time—dependent vector figlds). This is the unique vector field which is
tangent taC; = ker(a(s)) and satisfies

4 izs)da(s) = —a(s) onCs .

Becauseda(s) is a non—degenerate two—form @h, such a vector field exists and is
uniquely determined. Notice that if(s) changes while; is constant, the vector field
Z(s) is zero since ther(s) = 0 onCs. SinceZ(s) has compact support, the floyy is
well defined. By construction

1 ra(s) = ¥ (Lowalo) + 6(0))

S=0

ds
=0onCs.

This shows the existence of a smooth family of functigs) such that

1 ra(s) = f(0)a(0).

S=0

ds

Integrating this expression one can explicitly find a functfofs) with the property that
Yia(s) = F(s)a(0). Theny,.Cy = C; follows. O
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If one can solve (4) without restricting & for all s, thenf = 0 and the isotopy);
satisfiesy*a(s) = «(0). Under this assumptiotis preserves the contact forms and not
only contact structures.

2.1.2. Contact vector fields.Let C be a contact structure on @&k — 1-dimensional
manifold H. We assume that is coorientable. In particular it can be defined by a global
1-forma.

DEFINITION 2.5. A vector field X is a contact vector fieldf the local flow of X
preserveg.

Associated to a contact form there is a distinguished contact vector field.

LEMMA 2.6. Let M be an odd-dimensional manifold arda one-form defining a
contact structure. Then there exists a unique vector ffelduch thata(R) = 1 and
iRdOé =1.

PrRoOOF The rank of'M is odd andi« is a two-form. Since all two-forms have even
rank, da must have a non trivial kernel at every point &f. Furthermore, this kernel is
one-dimensional becaude is non degenerate @h= ker« andC has codimension one in
T M. Thus the kernel of« is transversal t@. SinceC is defined by a global form, kefo
is an orientable real line bundle. It is therefore trivial and admits a seafiaithout zeroes
anda(X) # 0 everywhere. Normalizind( we find a vector fieldR having the desired
properties. The construction also shows uniqueness. O

The vector fieldR from Lemma 2.6 is th&®eeb vector field aif a.

PROPOSITION2.7. The map which assigns to each contact vector fiélthe function
a(X) is a bijection.

PrROOF We denote the Reeb vector field @by R. Let X € X (C) be a vector field
such thatn(X) = 0. SinceX preserveg, there exists a functiofi such thatL xa = fa
and hence

) ixda = fo.

By assumptionX is tangent t&€ = ker a. On the other handi« is hon—degenerate @h
If X #£ 0, then there exists a vector fieldtangent taC such that

(ixda)(Y) = —a([X,Y]) £ 0.

Sincefa(Y') = 0, this contradicts (5) and shows injectivity.
Now let f be a smooth function of/. Sinceda\c is non—degenerate everywhere there
is a unique vector field tangent taC such that

(iyda) |, = —df|,.

The Reeb vector field spans a complemenf @f 7M. Furthermorejy da vanishes on
this complement. Therefolig-da = df (R)a — df . This implies thatX = Y + f R has the
properties

Lxa=dixa+ixda =df —df +df(R)a = df(R)a .

anda(X) = f. Beacusd.xa is a multiple ofa the vector fieldX preserves the contact
structure. This proves surjectivity. 0



2.1. BASIC RESULTS ON CONTACT STRUCTURES 17

2.1.3. Local normal form for contact structures. All contact structures ofin + 1—
dimensional manifolds are locally diffeomophic. The same is true for even contact struc-
tures and Engel structures. Although the Darboux theorem for contact structures is well
known we prove it since it will serve as starting point for the analogous theorems for even
contact structures and Engel structures. We use the Darboux theorem for symplectic struc-
tures.

THEOREM 2.8 (Darboux).Every symplectic forrw on the2n-dimensional manifold
M is locally diffeomorphic to the symplectic form

n
wo = Z dy; N\ dx;
=1

onR2",

The proof of the Darboux theorem for contact structures actually yields more than a
standard form for contact structures. As we shall see in the proof, everydateiining
the contact structure admits a standard coordinate expression locally. This is due to the
following facts.

(i) Every symplectic form has a standard coordinate expression.
(i) The Reeb vector field of a contact fomnpreserves the form and not only the
contact structure ket.

In the case of even contact structures or Engel structures we will only obtain normal forms
for distributions and not for defining forms.

THEOREM 2.9. Let N be a manifold carrying the contact structu€e Around every
pointp € N there exists a system of local coordinates:, y1, . . . , Zn, ¥ Such thatC is
defined by

a=dz— Zl’zdyz
=1

PROOF LetV be a neighbourhood @fc N such tha‘C\V is defined by a one—form.
OnV we consider the Reeb vector fiellof «. The flow of Z preserves the contact form
and not only the contact structure. We fix a contractible hypersuttace V' transversal
to Z throughp.

The restriction ofda to H is a closed two—form. Because the Reeb vector field is
transversal toH there is a unique real numberfor each vectorY’ € TH such that
Y — AZ € C. Sinceiyda = iy_)zda andda is non—degenerate ahthis shows that
(H, da{H) is a symplectic manifold. By Theorem 2.8 we can choose a coordinate system
(x1,y1,---,2n,yn) ON & neighbourhood gf in H such that

da‘H = —dei/\dyi.
i=1

We assume thatf is already small enough. Then= a|H + > xidy; is a closed form
and because we assumed tHais contractible we can choose a functioon H such that
o = ds. Choose: > 0 such that the time—t—flow, of Z is defined fort € (—¢,¢) on a
neighbourhood op. Let

(VR (—e,e) x H — N
(Za ($1ayly"'7$n7yn)) — ¢Z((x17y17"‘7xnayn)) .

BecauseZ is transversal tdd, the image ofy is a neighbourhood gf. By the implicit
function theorem) defines a system of local coordinates on some open neighbouthood
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of pin M and by the definition of) we haved, = Z. Now « is invariant under the flow of
Z anda(Z) = 1. We write pr for the projection of/ to H along the flow lines of;. The
expression fory in our coordinate system is

a=dz— indyi +pri(ds) =d(z + sopr) — indyi :
=1 =1
Sinces o pr does not depend on the Jacobian of the transformation

(37331:?/17". 7xn7yn) — (Z/ =z+ Sopr7$/1 = T1,. 7y’:’1 = Z/n)
atp is represented by the invertible matrix
Os .. Os
8$1 ayn
Hence(z', 2, ...,y,) is a system of local coordinates on a neighbourhogdsafch that

n
g N
a=dz — g x;dy; .
i=1

2.2. Legendrian curves

2.2.1. Existence of Legendrian curvesFrom now on we restrict ourselves to contact
structures ors—dimensional manifolds. The following statement remains true for higher
dimensions and for other non—integrable distributions. Results in this direction can be
found in Mo3].

PROPOSITION2.10. Lety : [0,1] — N be a smooth curve in a contact manifold
(N, C) of dimensiors. Thenyy is isotopic relative to the endpoints to a Legendrian cuyve
which can be chosefi®—close to the original curve

PrRooF By Theorem 2.9 we can cover the imagevith a finite number of open sets
U; of N such that on each; there are coordinates, y;, z; such that the contact structure
is defined byiz; — z;dy;. So we treat the cas® = R3,C = ker(dz — xdy) first.

Consider the front—projection &> to theyz—plane. A Legendrian curve can be re-
constructed from front—projection as follows. Thecoordinate is determined by the slope
of the front—projection since = j—;. Conversely, if we want to approximate a given curve
~ by a Legendrian curvé, the z—coordinate ofy has to approximate the slope of the
front—projection ofy.

Fix a piecewise linear curve in the—plane which isC%—close to the front projection
of 4. The slope of each linear segment is determined by:twordinate of a point on
whose front—projection is close to the front—projection of the segment. We obtain a piece-
wise linear curvey’ forming zig—zags close to the front—projection-pfike in Figure 1.

Now consider the Legendrian liff’ of each segment of the zig—zag curye Each of
these segments lifts to a straight Legendrian arc but these arcs do not fit together to form a
smooth curve.

In order to connect the endpoints of two consecutive Legendrian segments, we consider
the base—projection 6f to thexy—plane. When the endpoints of two linear segmentg of
meet, the corresponding endpoints of the Legendrian lift have eguahdz—coordinate.

Thus the base—projection 6f looks like the solid curves in Figure 2. In order to obtain
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FIGURE 1.

FIGURE 2.

a smooth Legendrian curve closetpwe have to join the endpoints of two consecutive
segments ofy’ by short Legendrian curves. Such curves can be easily constructed using
the projection to they—plane.

There is a unique Legendrian lift of the dashed loop in Figure 2 starting at the endpoint
of one Legendrian segment. If the area enclosed by the loop and the straight line between
the endpoints of the two Legendrian arcs is zero, the Legendrian lift of the loop connects
the endpoints of the two segments.

This proves the theorem fa¥ = R? with the standard contact structure. For gen-
eral N, C cover the image ofy with Darboux charts and use the construction above for
segments;, ¢; of v which are contained completely in the domain of one chart. In order
to obtain smooth curves one can choose a Darboux chart akgupd= p; and replace
the Legendrian curve, which is perhaps only piecewise smooth, by a smooth Legendrian
segment. O

2.2.2. Contact framings. Let~ be an embedded closed curve in an oriented manifold
N of dimension3. In particular we assumé # 0. Then~ admits a framing, i.e. a
trivialization of the normal bundle. We assume thas parameterized by, 2x].

DEFINITION 2.11. When two framinggS, T'), (S’, T") of a curvey are homotopic, we
write (S,T) ~ (S’,T"). On the set of framings of we define &-action by

(m - (S, 1)) (v(t)) = (cos(mt)S(y(t)) + sin(mt)T(y(t)

6
(6) — sin(mt)S(+(t) + cos(mt)T(v(t))) -
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When we reverse the orientation pfthe coorientation ofy changes. Therefore the
Z—action on the framings does not depend on the orientation of

LEMMA 2.12. ThisZ—action is free and transitive on the homotopy classes of framings
of v which induce the same orientation on the normal bundte. of

From now on we assume that carries an oriented contact structure which induces the
orientation of N. When-~ is tangent to the contact structure there is a distinguished class
of framings ofy.

DEFINITION 2.13. Curves, line fields or vector fields on a contact manifold are called
Legendrianif they are tangent to the contact structure.
A framing (S, T') of a closed Legendrian curveis anoriented contact framing

(i) Sistangent to the contact structure,
(i) T istransversaltoit,
(i) 4, .S represents the orientation of the contact structure,
(iv) 4,S,T represents the orientation of the three—manifold induced by the contact
structure.

LEMMA 2.14. Let~ be an embedded closed Legendrian curve in a manifolith
oriented contact structur€. Then+y has a contact framings and any two of them are
homotopic through contact framings.

PROOF The contact structure has a nowhere vanishing section ajpmgmely-.
Because the contact structure is oriented, we can choose a Legendrian vectoafiaidg
~ which is nowhere tangent tg such that the paif/, S induces the orientation @f. The
real line bundlél’ N/C is trivial since bottC and N are oriented. Therefore we can choose
a nowhere vanishing vector fielfl along~ which is transversal t@ such thaty, S, T
represents the contact orientation/of

Now suppose thatS,T") and(S’, T") are two contact framings of. SinceT and7”
represent the coorientation 6f the family (S, (1 — )T + 7T”), 7 € [0, 1] is a homotopy
between(S,T') and (S, T”") through contact framings. Now we have to homotopo 5’
within C. Fix an auxiliary Riemannian metric. The angles betwé&eand S respectively
4 and.S’” are contained in the open interv@, 7). Thus homotoping such that it points
into the same direction a& amounts to finding a homotopy between two functigns»
(0, ) x R* where the second factor corresponds to the length of a non—zero vector tangent
to C. Since(0,7) x R* is contractible, there is a homotopy betweéhT’) and (S’,7")
through contact framings. O

We write frz(+y) or simply fr() for the homotopy class of framings gfwhich contains
contact framings.

There are two famous classical invariants for null-homologous Legendrian curves in
3—manifolds with oriented contact structure, namely

e the Thurston—Bennequin invariant and
¢ the rotation number.

They were introduced ingen] and allow us to distinguish Legendrian curves up to iso-
topy through Legendrian curves. We will use slightly modified versions of these classical
invariants, but for matters of comparison we recall the definitions fieb].

DEFINITION 2.15. Let~y be a Legendrian curve homologous to zerd/inFix a relative
homology clas$X] € Ho(N,~;Z) which is represented by an oriented surfacsuch that
0% = ~ and~ is oriented as boundary af. A new curvey’ is obtained by pushing
slightly along a vector field which is transversal@o The Thurston—Bennequin invariant
tb(v, [X]) is the homological intersection number-gfwith 3.



2.2. LEGENDRIAN CURVES 21

If Hy(N;Z) = 0 the Thurston—Bennequin invariant can also be defined as linking
number ofy’ and~y.

REMARK 2.16. A surfaceX boundingy induces a framing of such thatSx;(¢) is the
inward pointing normal vector a3 and7x(t) is transversal t& such thaty, Sy, T, is
positively oriented. Theix is oriented byy, Ss;. We write frs(+y) for the homotopy class
of this framing ofy. The Thurston—-Bennequin invariant measures the difference between
the framing ofy which is induced by the surface and the contact frantingl

@) th(v, [2]) - frs(y) = fre(v) .

If a homotopy class of framings af is represented by a framing induced by a surface
¥ with 0¥ = v, we denote this homotopy class by fry). If ® is a diffeomorphism ofV,
the image of a framing i$..(S,T) = (9.5, ®.T).

The second classical invariant of a null-homologous oriented Legendrian curve is the
rotation number.

DEFINITION 2.17. Let ¥ be a connected orientable surface with = ~. Fix an
oriented trivializationX, Y’ ofc\z. Then there are unique functioffis, f, such thaty(t) =
fx ()X + fy(t)Y. The winding number of

§'— R\ {(0,0}
t— (fy (1), fr (1))
around(0, 0) is therotation numberrot(~y, [X]).

The rotation number changes sign when we change the orientatigrwdfile the
Thurston—-Bennequin invariant does not depend on the orientatipn of

2.2.3. Tubular neighbourhoods of Legendrian curves An example of a Legendrian
curve in a contact manifold is

70 = {(0,0)} x ST ¢ R? x St = N
ag = dy — xdt

with the usual coordinates y,t onR? x S'. The contact structure & = ker(ag). Now
suppose we are given a Legendrian curyen a second contact manifoldvy,C;). We
want to compare a tubular neighbourhoodypfwith (~y, Ny, Cp). Let

v :No — Ny
be an embedding which mapg to ;.

PROPOSITIONZ2.18. ¢ is isotopic relativey, to a contact embedding if and onlyf
maps a contact framing of, to a framing ofy; which is homotopic to a contact framing.

If in addition the contact structures are oriented then under the above condition on
framings,y Is isotopic to a contact map preserving oriented contact structures.

PROOF It is obvious that the condition on the framings is necessary. We now show
that it is also sufficient.

If the image of a contact framing of, is homotopic to a contact framing ef then
the pullback of the contact structugg ! (C1) is homotopic taCy along~g. This homotopy
induces a fibrewise linear isotofdy, of R? x S* such thatf, = id and

Hy1.(Co) = ¢ (C1) alongp -

Henceyp o H; is isotopic top via ¢ o Hs andy o Hy preserves the contact structure along
~0- Moreovery o Hy = ¢ along-y.
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From now on we assume thatpreserves the contact structures aleggExtend the
restriction of o~y to v; to a defining forma’ for the contact structure oiV;. For
s €0,1], let

Bs = (1—s)o ag + say .
By our assumptionpy maps contact framings ot to contact framings of;. In particular
© preserves the orientations which are induceddgndC;. Sincep~'*aq anda; define
the same coorientation 6f along~, d(go_l*ao andda; define the same orientation 6f
along~;. Hence all four summands in

Bs AdBs = (1 — 5)%p ™ag A dag + 521 Adoy
+5(1—8)ar A Hag+ (1 —8)sp™

are not negative and one of the first two is positive. There is a tubular neighbourhobd
~1 such that3, defines a contact structure éhfor all s.

Now we apply the proof of Theorem 2.4 t onU. The vector fieldZ; is the unique
time—dependent vector field with

ﬁs(Zs) =0

Z.stﬁs - _/Bs on ker(ﬁs) .

Let ¢)s be the local flow ofZ,. Along ~; the family 3 is constant. This implieg; = 0
along~;. All points on~; are fixed and

Vs« (ker(Bo)) = ker(Ss) .
Hencey o ¢ is isotopic top and on a neighbourhood 6f we have
(¥1 0 @)« (ker(ap)) = 1 (ker(p™*ag)) = ker(an) .
The statement about orientations follows from the fact that the map
No=R*x St —R?*x S' =N,
((z,9),t) — (==, —y), 1)
is homotopic to the identity relativg, and it reverses a given orientation@f. O

1*05() A doy

COROLLARY 2.19. Every closed Legendrian curve has a tubular neighbourhood
which is diffeomorphic as a contact manifold4g c R? x S! with the contact structure
dy — xdt.

2.2.4. Stabilization of Legendrian curves.We need to manipulate the Legendrian
isotopy type of Legendrian curves and Stabilization is a method to do so. Contact framings
and rotation numbers can be used to distinguish Legendrian isotopy classes of Legendrian
curves.

In order to explain stabilization of Legendrian curves, recall from Corollary 2.19 that
a Legendrian curve has a tubular neighbourh®3dx S! with coordinatese, y, ¢, such
that the contact structure is defined dy — xdt. The orientation induced by this contact
structure isiz A dy A dt. The curvey = {(0,0)} x St is Legendrian and oriented Igy,

We assume that the contact structure is cooriented, bfhis vector field points outwards
in Figure 3.

In order to represent Legendrian curves, we project tathspace. Lep, g € v. The
orientation of the contact structure itself projects to the orientationdx of thetz—space.

We modify the arc fromy to p of this Legendrian curve as shown by the dashed curve in
the upper part of Figure 3. The signed area enclosed by the dashed curve and the projection
of {(0,0)} x S! is zero. This ensures that the Legendrian lift of the dashed curve starting
at ¢ really meets the Legendrian curgé0,0)} x S'. The other stabilization operation
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o~ corresponds to the lower part of Figure 3.The orientationof is the orientation of

~ on the complementary ang g of v. Assume thatX is a nowhere vanishing section
of the contact structure oiv. We can homotopX such that on the part av where
the stabilization ofy is performedX = 0,. The stabilized Legendrian curve™ has an
additional twist compared te. With our choices of orientations and a similar argument for
o~ this leads to

rot(cty, X) = rot(y, X) + 1

(8) T
rot(c” v, X) =rot(y, X) — 1.

The signs in (8) explain the notatien™, c~. Now let (S, T') be a contact framing of. If
we homotopS, T on the arc betweegandp suitably, we can assume théit= 0,,, 7' = 9,
along this arc. We can also choose a contact frart#igl”) alongeo ™~ such thatl” = 9,
on the part ofr ™~ represented in Figure 3. If one performs an ambient isotapy <
[0, 1] deformingy to o, one obtains

) fre(o™y) =1+ (Yrafre(y))

The same statement holds tor .

Using (7) we now determine the effect of stabilization on the Thurston—Bennequin
invariant in the case when= 9. Let1) be an isotopy ofV deformingo "~ to . By (7)
we have

fre(v) = tb(v, [X]) - fre(v)
fre(o™y) = th(o™, [¥1(8)]) - fry, =) (0 ™)

Using (9) we obtain

th(o ", [Y1(2)]) = th(y, [X]) — 1.

The same expression holds tor~. When we apply stabilization, the Thurston—Bennequin
invariant always decreases. On the other hand the Bennequin inequali$edf.shows

that in some cases the Thurston—Bennequin invariant of all curves in the same (usual) iso-
topy class has an upper bound. Nevertheless, the following theorem indicates that positive
and negative stabilizatiom™ ando~ provide enough flexibility in many situations.
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THEOREM 2.20 (Fuchs, TabachnikovFT]). Let v1,~v2 be Legendrian knots ifR>
with the standard contact structure such thatand~, represent the same topological knot
type. If one applies™ ando~ to both~y; and~, often enough, the resulting curves become
isotopic as Legendrian curves.

Notice that stabilization does not change the parity of the sum of the rotation number
and the Thurston—-Bennequin invariant

th(v) + rot(y) = th(c™) + rot(cTy) mod 2

(10) _ _
=th(c™ ) +rot(c”y) mod 2.

For example this sum is always odd for Legendrian kno®3with the standard contact
structure.

Finally notice that the effect of stabilization on rotation numbers depends on the orien-
tation of the contact structure. If we orient the contact structure-tiy A dx, the effects
of o™ ando~ on rotation numbers would be interchanged. However there is always one
stabilizations™ which increases rotation numbers while decreases rotation numbers.

2.3. Facts from the theory of convex surfaces

In this section we recall several facts from the theory of contact structures which are
used in the proof of Theorem 6.1.

Let (M,C) be a contact manifold. Consider a properly embedded orientable surface
3. If ¥ has a boundary, it is assumed to be Legendrian.XQme consider the singular
foliation 7 = C N T'X. Usually this is called the characteristic foliationXf Since in the
context of Engel structures there is another characteristic foliation (without singularities),
we will refer to F simply as thesingular foliationon . The singularities ofF are those
pointsp € ¥ whereC, = T),X.

If 3> andC are oriented, the singular foliation is also oriented by the following conven-
tion. If p is a non—singular point oR, then choose

v € Fp, vy € T,X\ Fp andue € C, \ Fp

such thafv, vx,) orients¥ and(v, v¢) orientsC. Thenv represents the orientation &, if
(v,ve,vy) is the contact orientation.

Generically, singular points are non—degenerate. We say that a singular diiptic
if its index is +1 andhyperbolicif the index is—1. When the orientation of and the
orientation of the surface coincide at a singular poinfofwe say that this singularity is
positive otherwise it isnegative If we orientF according to our conventions, positive
elliptic points are sources and negative elliptic points are sinks.

DEFINITION 2.21. X is calledconvexf there is a contact vector field which is transver-
sal toX..

Giroux studied convex surfaces i®if1]. In particular he showed that a closed em-
bedded surface is generically convex (with respect tatfre-topology). For surfaces with
boundary, the analogous statement is not true in general. For each boundary component
~ C 9%, we can compare the contact framing with the framingdf v which is induced
by the surface. We writg(, fry;) for the number of counterclockwise full twists @fwith
respect to fr along~. If v is a Legendrian knot antl is a Seifert surface fof, then
t(v, fry) is the Thurston—Bennequin invariant.

PROPOSITION2.22 (Honda, IHo]). LetX be a compact oriented, properly embedded
surface with Legendrian boundary, and assuifne fry;) < 0 for all boundary components
of ¥. There exists @°—small perturbation near the boundary (fixi@) which puts an
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annular neighbourhood! of 9% into a standard form, and a subsequent perturbation of
the perturbed surface (fixing the annular neighbourhood¥j, which makes: convex.
Moreover, ifV is a contact vector field defined on a neighbourhood @ind transverse to

A C X, thenV can be extended to a contact vector field transverse to all of

DEFINITION 2.23. Given a convex surface with Legendrian boundary we fix a con-
tact vector field/ transversal t&. Thedividing setof X is

Iy ={peX|V(p)eCp)} .

Giroux showed in (irl] that 'y, is a submanifold o®> which is transverse to the
singular foliation. Its isotopy class depends onlyXoitself but not onV’. From his results
it follows immediately that the dividing set of closed convex surfacés not empty.

DEFINITION 2.24. Let F be a singular foliation ot such thaty: is tangent taF. A
collectionT” C ¥ of closed curves and arcs with end pointsidhis said todivide F if on
each connected component of the closur& §fI" there is a smooth volume formand a
vector fieldX tangent taF such that

() the divergence ok with respect tav is positive everywhere and
(i) X points out of the component where\&ris transversal to the boundary of the
component.

THEOREM 2.25 (Giroux, [Girl]). If ¥ is a convex surface in a contact manifdlgk
divides the singular foliation ofx.

If a singular foliationF on the closed oriented surfa¢eis divided byl", then there is
a positiveR—invariant contact structure oll x R such that: x {0} is convex, the induced
singular foliation on¥ x {0} is preciselyF and thatl" is the dividing set.

If C is cooriented by a contact form andX is a closed convex surface, we choose
a contact vector field” transversal t@ such thatl” followed by the orientation oE is
the contact orientation. The dividing déseparates the regidiy,. wherea(V) is positive
from the regionX_ wherea(V) is negative. Lety(C) be the Euler class df viewed as
oriented bundle. Then

(X(C), [E]) = x(34) — x(2-) .
If 2 is the Seifert surface of a Legendrian knot we can derive the classical invariahts of
from>,>_ andl as

th(9%) = —%#(r nox)

OUIE) = X(2+) — x(5-) -

These formulas are due to Kandap, Ho].
The singular foliation is enough to determine the contact structure on a small neigh-
bourhood of a convex surfa¢e

(11)

THEOREM 2.26 (Giroux, [Birl]). LetX be a closed orientable convex surface. Two
R—invariant contact structures oR x R that induce the same orientation and the same
singular foliation onX x {0} are isotopic. They are conjugate by a diffeomorphismid
and ¢ is isotopic to the identity through diffeomorphismsibthat preserve the singular
foliation.

Next we consider deformations of the singular foliation. Bebe a convex surface
with Legendrian boundary and fix a transverse contact vectoriieM/e write 7, for the
singular foliation onx.
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DEFINITION 2.27. An isotopy ®; of a surfaceX is called admissibleif ®,(X) is
transversal td/ for all s.

The following theorem is a generalization of the Giroux flexibility theorem. In Giroux’s
original statemenkt is assumed to be closed.

THEOREM 2.28 (Giroux, Hondabirl, Ho]). Assume thaf; is a singular foliation
which is divided by's;. Then there is an admissible isotofy, s € [0, 1], of ¥ such that
®, (F1) is the singular foliation orb, (X).

EXAMPLE 2.29. In this example we want to fix some terminology. Considerkhe

invariant contact structure
cos(p)dt + sin(p)dx
onT? x R wherez is the coordinate on thR—factor. We say that the singular foliatioh
onT? x {0} is in standard form The singularities of the singular foliation form two circles
{¢ =7/2} U{p = 371/2}. Theses are referred to Begendrian dividesThe dividing set
of T% x {0} is
Ire ={p=0}U{p=m}.

The curves tangent t@, are called thé.egendrian ruling By Theorem 2.28, the slope of
the Legendrian ruling can be changed as long as these Legendrian curves remain transversal
to the dividing set. However in our applications we will have an identificatiofi“ofvith
St x S1. We will assume that the Legendrian ruling of a torus in standard form is tangent
to the first factor.

Let X be a convex surface with Legendrian boundary in a contact manifold. We fix a
transversal contact vector field and I&8f be the corresponding dividing set.

DEFINITION 2.30. A union C of disjoint properly embedded arcs and closed curves
on X is callednon—isolatingf

(i) Cistransverse td'y, and every arc begins and endslon
(i) every component of \ (I's U C) has a boundary component which intersects
I's.

The Legendrian realization principle allows us to isokdpuch that we end up with a
collection of Legendrian arcs contained in the singular foliation of the isotoped surface.

THEOREM 2.31 (Kanda, HondaKal, Ho]). Consider C, a non-isolating collection
of properly embedded closed curves and arcs, on a convex surfagigh Legendrian
boundary. Then there exists an admissible isot®pys € [0, 1] so that

(i) ®9=1id
(i) @1(Ts) =Te, ()
(iiiy ®1(C) is Legendrian.

Let D? be an embedded disc with Legendrian boundary. The following dichotomy of
contact structures has turned out to be very fruitful.

DEFINITION 2.32. D? is called arovertwisted disdf all singularities on the boundary
have the same sign. A contact structure is catledrtwistedif it admits an overtwisted
disc. A contact structure igght if it is not overtwisted.

Overtwisted discs are often defined by requiring that there are no singularities on the
boundary. This is equivalent to our definition by Theorem 2.28. Tight contact structures are
more interesting than overtwisted ones in many aspects. More information about tight con-
tact structures can be found iH$] and the references therein. For our purposes however,
the flexibility of overtwisted contact structures will turn out to be very useful.
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At the final stage of the construction we will apply the following theorem. A discussion
of this theorem as well as of its generalizations can be founGir2]|.

THEOREM 2.33 (Eliashberg,HI1]). If two overtwisted contact structures on a closed
manifold are homotopic as plane fields then they are isotopic.

We will distinguish overtwisted contact structures from tight ones using the following
criterion. Sometimes this theorem is referred to as Giroux’s criterion.

THEOREM2.34 (Colin, [Col]). If ¥ # S? is a convex surface (closed or compact with
Legendrian boundary) in a contact manifald/, C), thenX has a tight neighbourhood if
and only if the dividing set of has no homotopically trivial closed curves. Jf = 52,

3 has a tight neighbourhood if and only if the dividing set has exactly one connected
component.

2.4. Bypasses in overtwisted contact structures

In our construction of Engel manifolds in Chapter 6 we need to manipulate convex
tori in overtwisted contact manifolds. This can be done using bypasses. Bypasses where
introduced by Honda and they turned out to be useful tools for the understanding of contact
structures, cfio].

Recall the following definition of HondaHo]. We consider a convex surfageC N
in a contact manifold V,C). The surface is either closed or the boundary consists of
Legendrian curves. We fix a contact vector fidddwhich is transversal t&. LetI's be
the corresponding dividing set &, i.e.

'y = {p € X|X(p) istangent t(p)} .

Recall thaf"y; is the union of pairwise disjoint embedded curves. Moredyeis transver-
sal to the singular foliation ok.

DEFINITION 2.35. A bypasdor ¥ is an embedded half digk with Legendrian bound-
ary with the following properties:

(i) 9D is the union of two arcs;, v2 which intersect at their endpoints.
(i) D intersects transversally along;. There are no other intersection points.
(i) D admits an orientation such that the singular foliation’bhlongdD has the
following properties.
— There are exactly two positive tangencies alengThese are the endpoints
of v1. They are elliptic.
— There is exactly one negative tangencyygnlt is elliptic.
— There are only positive tangencies alopg They alternate between elliptic
and hyperbolic.
(iv) v intersectsl's; in exactly three points. The intersections are transversal and
correspond to the tangenciesfalong-~; .
(v) The dividing set ofD has exactly one connected component.

Requirement (v) in this definition does not appearhio]. This is due to the fact the
in [Ho], all contact structures are tight. In this situation, the dividinglsgof D is deter-
mined (up to isotopy) by (i)—(iv). These assumptions imply that the only non—closed com-
ponent ofl'p is an arc lying on different connected componentsoivhen one removes
the point of tangency in the interior 6f . In overtwisted contact structures however, there
could be additional closed componentdip. These are excluded in tight contact mani-
folds since they would imply the existence of an overtwisted disk in a neighbourhdod of
by Theorem 2.34. The bypass attachment lemma (Lemma 2.36) holds only if the dividing
set of D has only one connected component.
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A bypass allows us to isotope in NV such that the resulting surface is again convex
and we can determine the dividing set of the new surface up to isotopy.

LEMMA 2.36 (Honda, Ho]). Assume thaD is a bypass for a convex surfake Then
there exists a neighbourhood Bfu D C N which is diffeomorphic t& x [0, 1] such that

(i) X x {3} is convex fofi = 0, 1.

(i) The dividing set oE x {1} can be obtained from the dividing set®fx {0} as
in Figure 4. (In this figure, the bypass is attached to the front. It represents only a
neighbourhood of the attaching region bf)

. a
" )

FIGUREA4.

If Dy, Dy are two bypasses for with D; N ¥ = Dy N ¥ which lie on different
sides of: such that they fit together smoothly along their intersection fher Ds is an
overtwisted disc. In this way, one can think of a bypass as one half of an overtwisted disc.
Thus it should be much easier to find bypasses in overtwisted contact manifolds than in
tight contact manifolds.

In tight contact structures, the absence of overtwisted discs and the Bennequin inequal-
ity lead to obstructions for the existence of bypasses. In overtwisted contact manifolds
bypasses are always available.

PROPOSITION2.37. Let X be a convex surface in a contact manifold, such that there
is an overtwisted disc disjoint fromi. Let~y; C X be an arc with endpoints ofi which
intersectd” transversely in three points. Then there is a bypas&famich intersect& in
the Legendrian curve;.

PROOF We can assume that is already Legendrian. If this is not the case, an appli-
cation of the Legendrian realization principle (Theorem 2.31) yields an admissible isotopy
such that the image af; in the isotoped surface is Legendrian. The isotopy can be chosen
in a small neighbourhood of the original surfd¢@and it does not change the dividing set
andX is still disjoint from D;.

Consider the imag® of v, under the flowp; of X for 0 < ¢ < . We choose > 0
so small that; = RN X. The singular foliation or? has the following properties.

(i) The curvesp(v1),0 <t < ¢ are Legendrian.
(i) Along the segmentg,(p),0 < t < ¢ of the flow line ofp € v N T, the contact
structure is tangent t&.

Thus R has Legendrian boundary and it is convex since it admits a dividing sef his
dividing set is uniquely determined up to isotopy. For example we can chigpsebe the
union of the two segments;(¢;),i = 1,2 with 0 < ¢ < ¢ for two pointsgy, g2 lying in

different connected componentsqaf\ (y; N T).
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We orientR such that the tangencies on the boundaryare positive. By (11), the
Thurston—Bennequin invariant and the rotation numbéi®are

th(OR) = —%#(FR NOR) = —2

(OdR) = x(R+) — x(R-) = 1

whereR ., R_ are the positive respectively negative partd0f I'x.
Let D, be a convex overtwisted disc iN which is disjoint fromR U X. We orient
D,; such that

tb(0Dy) =0
rot(0Dyt) = —1.

The idea is to perform a Legendrian connected sum of the kBtandoD,,. If one
constructs a Seifert surface carefully enough, one obtains a bypass from the Seifert surfaces
R and D;. Let us first explain the Legendrian connected sum of Legendrian knots in
a contact manifold. A more general construction for Legendrian knots in two different
contact manifolds can be found iEBH].

This construction is similar to the one in knot theory. The difference is that in usual knot
theory there are two different possibilities to construct the connected sum. The two possi-
bilities arise from the choice of orientations on the knots. For the connected sum of Leg-
endrian knots, there are infinitely many possibilities with different Thurston—Bennequin
invariants. One possibility for the Legendrian connected sum of two null-homologous
Legendrian knotg(;, K, yields a Legendrian kndk,# K5 characterized by

(12) tb(Kl#KQ) = tb(K1) + tb(Kz) +1
(13) rot(K1# Ko) = rot(Ky) + rot(Ks) .

We will use only this type of Legendrian connected sums. Let us describe it in a model
situation. ConsideR? with the contact formiz — x dt and two Legendrian knot&’;, K.

We assume that the front projection, i.e. the projection tatheplane, ofi;, K5 contains

two cusp pointy; € K; andps € K> lying on the Legendrian curvgr = 0,z = 0} as in
Figure 5. Ther—axis points inwards. We orient the knots as in Figure 5. The Legendrian

FIGURE 5.

connected sum is then formed using the dashed curves. The base projection, i.e. the projec-
tion to thez, t—plane, of this Legendrian connected sum is represented in Figure 6 where the
z—axis points inwards. I&®? with the standard contact structure, the Thurston—-Bennequin
invariant of a Legendrian knot can be derived from the front projection. Accordirfgip [

the Thurston—Bennequin invariant is

(14) th(K') = #(positive crossings) #(negative crossings} %(cusps).
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FIGURE 6.

For the definitions we refer td-[T]. Since in the Legendrian connected sum we remove
two cusps without introducing crossings or cusps, we obtain (12). Equation (13) can be
derived directly from Figure 6 or from the front projection using a statement similar to (14)
from [FT].

Now let us consider Seifert surfacgés of K; and X, of K5. We assume that;
respectively>; coincides with translates df; in the negative—direction respectively of
K5 in the positivet—direction on a neighbourhood gf respectivelyp,. We assume that
this is the case for the neighbourhood depicted in Figure 5 and Figure 6. If we Brient
and>; such that{; and K> are oriented as boundaries thgnis a negative tangency and
po IS @ positive tangency.

We use the ribbon which is bounded by the dashed curves in Figure 5 to form a Seifert
surfaceX #X, for the knot K1#K>. There are no tangencies of the ribbon along the
dashed curves. The Legendrian connected sum removes the tangenpieshich have
different signs. Counting the number of sign changes of the tangencies Alc#d -,
we recover (12) even if the ambient contact manifold is Rétwith its standard contact
structure.

Hence when we connect a negative tangencypbon K; with a positive tangency
of 35 on K> by a Legendrian curve we can form the desired Legendrian connected sum
of K1 andK>. We apply Corollary 2.19 showing that Legendrian curves have a standard
tubular neighbourhood equivalent to the standard contact structuR ere used above.

The cusps can be constructed using the base projection in this situation and this can be done
through Legendrian isotopies.

For the construction of bypasses we have to be more careful. Up to now all statements
concerned onlyi(; # K5 but not the interior of the Seifert surface. Condition (v) in Defi-
nition 2.35 concerns the interior of the Seifert surfagetY,: We have to ensure that the
dividing set on the boundary connected suntef= R andX, = D,; does not contain
any closed component.

The construction of the Legendrian connected sum is performed in a tubular neigh-
bourhood of a Legendrian curve. When we connect the two Seifert surfaces by a ribbon to
find aconvexSeifert surface foR#D,; we perturb the boundary connected sR# D.;.

We have to ensure that this perturbation can be carried out in a tight region of the contact
manifold.

We use the Legendrian Realization principle Theorem 2.31 and the Giroux flexibility
theorem Theorem 2.28 to bring the characteristic foliatiorDgnin the form indicated in
Figure 7. This way we decompose the overtwisted disc into two discs bounded by Leg-
endrian unknots with Thurston Bennequin—invariaritand rotation numbed. The two
discs are separated by straight Legendrian arcs. The thickened circle in Figure 7 represents
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the dividing set. The singular foliation near the unknots is in the standard form used in
Proposition 2.22. By the last statement in Proposition 2.22, we can now pretend that we

FIGURE Y.

do not form a connected sum of the surfaéeand D,; but a connected sum @ with the
left part of D,;. The presence of the Legendrian curves in the middI® gfprevents an
interaction between the left and the right part/;.

The union of tubular neighbourhoods Bf the Legendrian arc connectidgwith D,
and the left parD; of D,; can be recovered in tight contact manifold%: can be obtained
applying Theorem 2.28 to a bypass. By (12) the Legendrian connected stiyad D,
has the Thurston—Bennequin invariant

(15) th(OR#0D;) = th(OR) + th(dD;) + 1 = —2

This and the fact thakR#D; has a tight neighbourhood, implies that the dividing set on
R# D, (after this surface is perturbed to a convex surface) consists of exactly two arcs
with endpoints oro R#9D,; and no closed components, cf. Theorem 2.34. Note that the
notation R# D; and R# D, is misleading becausB, respectivelyD,; is hot a subset of
R# D, respectivelyR#D,; after these surfaces are smoothened and made convex.

If we considerR# D, there are only the two possibilities for the isotopy type of the
dividing set which are shown in Figure 8. These two possibilities can be distinguished

- D NIEEDENO

FIGURE 8.

using the rotation number. The boundary of the left part of Figure 8 has rotation namber
while the right part has rotation numbeg. By (13)

rot(OR#0Dyt) = rot(R) +rot(Dy) =2 —-1=1.
The remaining conditions (i), (ii) and (iv) in Definition 2.35 are satisfied by construction.

The remaining condition (iii) can be achieved using Theorem 2.28. Td,; is a
bypass. O






CHAPTER 3

First results on Engel structures

In this chapter we start our investigation of Engel structures. An Engel strubtiza
smooth plane field on &-dimensional manifold/ such that

rank[D, D] = 3 and rankD, [D,D]] = 4.

This property is sometimes called maximal non—integrability. The distribdtien[D, D]
is an even contact structure. Even contact structures are defined in a similar way as contact
structures on even dimensional manifolds. To each even contact structure one can asso-
ciate a one—dimensional foliatioy. Because of the importance of this foliation we start
Chapter 3 starts with a discussion of even contact structures in Section 3.1.

The characteristic foliationV of an even contact structuéeis tangent t€. All flows
which are tangent tdV preserve the even contact structure. This should be compared with
contact structures: No non-zero Legendrian vector field preserves the contact structure.
If N is a hypersurface transversal to the characteristic foliasdonthen& N TN is a
contact structure (Lemma 3.5). Using the normal form for contact structures discussed in
Theorem 2.9 we proof the analogous theorem for even contact structures (Theorem 3.9).

In Section 3.2 we explain the definition of Engel structures and discuss some examples.
Although the characteristic foliation of the even contact strucfure [D, D] depends only
on¢&, itis tangent taD. This important observation follows from the defining properties
of the characteristic foliation (Lemma 3.11) and the fact hat [D,D]. Like contact
structures and even contact structures all Engel structures are locally diffeomorphic. The
normal form for Engel structures (Theorem 3.13) was obtained first by F. Endehgj.|

A classical construction of Engel structures is called prolongation. Starting from a
contact structur€ one obtains an Engel structure on the space of Legendrianfithes$
C (Proposition 3.15). The characteristic foliation of these Engel structures is given by the
leaves of the circle bundlBC — N. Another construction of Engel structures is due to
H. J. Geiges (Gei]). From this method one obtains an Engel structure on the mapping torus
of a diffeomorphism of @—manifolds if the the mapping torus has trivial tangent bundle
(Proposition 3.17).

If one applies prolongation to the contact structure on a hypersuNatansversal to
the characteristic foliation, then one obtains a canonical form for the Engel structure on a
neighbourhood ofV (Theorem 3.19). The germ of the Engel structure al6ndgpends
only on the contact structu® N T'N and the intersection line fiel® N T'N. Later, we
will be concerned with the homotopy class of the intersection line field as Legendrian line
field. If D is oriented one can use rotation numbers to determine the homotopy class of
the intersection line field as a Legendrian line field (Section 3.2.4). We can define rotation
numbers even for Legendrian curves which are not null-homologous because the intersec-
tion line field and the orientation of the contact structure on a transversal boundary provide
a global trivialization of the contact structure (cf. Definition 2.17 and Definition 3.23).

In Section 3.2.5 we define the development map. This map can be used to compare
the Engel planes at different points of a leaf of the characteristic foliation. Intuitively

33
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the development map detects the rotatioriDofiround the characteristic foliation in the
associated even contact structure.

We fix some orientation conventions in Section 3.2.6. On an Engel manifold, the even
contact structur€ = [D, D] carries a canonical orientation. An orientation of the charac-
teristic foliation induces an orientation of the manifold and vice versa. If the characteristic
foliation is oriented, this also induces an orientation of the contact structure on a closed
transversal.

In Section 3.3 we discuss the topology of manifolds which admit an Engel structure.
Using the presence of the distributionls C D C £ and the relations between their orien-
tations one can easily show that an orientable manifold which admits an orientable Engel
structure has trivial tangent bundle (Theorem 3.37).

For Engel structures which are obtained by prolongation R. Montgomery has obtained
a complete description of the corresponding deformation germ of these Engel structures in
[Mo2]. It turns out that the space of possible deformations of prolonged Engel structures
has infinite dimension. We explain his results in Theorem 3.41 and Theorem 3.43.

In Section 3.5 we discuss vector fields which preserve a given Engel structure. The
results of this section should be compared with Section 2.1.2. We show that Engel vector
fields are related to functions which satisfy a condition on their behaviour along the leaves
of the characteristic foliation. It turns out that the dimension of the space of Engel vector
fields depends on the characteristic foliation. An example where the space of Engel vector
fields is1—dimensional was found by R. Montgomery M¢2]. We discuss this example
in Example 3.49 in a different way using our results about Engel vector fields.

The results about the deformations of prolonged Engel structures imply that Gray’s
stability theorem (Theorem 2.4) cannot be true for Engel structures without additional as-
sumptions. If one assumes that the characteristic foliation remains constant for a family of
Engel structures, then all of these Engel structures are isotopic. This was shd@ai]in [

In Section 3.6 we discuss stability theorems for contact structures, even contact structures
and Engel structures in a unified setup.

3.1. Even contact structures

DEFINITION 3.1. Let M be a2n—dimensional manifold ané a distribution on)/ of
codimension one€ is aneven contact structuré for every local definingl—form «, the
2—form da. has maximal rank o8.

In other words £ is an even contact structure if for every local defining faxmhe
(2n — 1)-forma A da™~! has no zeroes. In dimensidran equivalent formulation of this
condition is[€, ] = T'M. Here[€, £] atp consists of all vector which can be obtained as
commutators of local sectionsabf £.

Since& has dimensior2n — 1, the rank ofda}g is 2n — 2. Hencedoz\5 has a kernel
W c &€ of dimension one. Because

d(fo‘)‘g =/ (do“g) ,

the line field)V does not depend on the choice of a local defining farfor £.

DEFINITION 3.2. The line fieldV is the characteristic line fieldof £. The foliation
induced by this line field is called theharacteristic foliation

CoROLLARY 3.3. A manifold which admits an even contact structure has vanishing
Euler characteristic.

Very simple examples of even contact structures can be obtained from contact mani-
folds (N,C) as follows: Letr : M = M — N be a fibre bundle with one—dimensional
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fibre. Let
E={VeTM|mn(V)eC(r(p)forVeT,M} .
This distribution is an even contact structure/dn The tangent space Ker, ) of the fibers
is contained ir€ and spans the characteristic line fieldof
Now suppose thatl is a vector field tangent tb) and leta be a local defining form
of £. By definition of W we have

(Lwa) ‘g = (iwda) ‘g =0.

HenceLy « is a multiple ofa. This implies thail preserves the even contact structure.
Since we have chosédiiy arbitrary (but tangent tdV) we have

LEMMA 3.4. The characteristic foliation of an even contact structéirpreserves.
Another important property of the characteristic line field is the next lemma.

LEMMA 3.5. Let £ be an even contact structure dd and W be the characteristic
line field of£. If N is a hypersurface transversal W’ thenT N N £ is a contact structure
onH.

If N/ is another transversal such that two interior poipts& N andq € N’ lie on the
same leadV, of the characteristic foliation, then the map obtained by following nearby
leaves, and thereby identifying a neighbourhoog @fi N with a neighbourhood of in
N’, preserves the induced contact structures.

PROOF Letp € N anda a defining form for€ on a neighbourhood gf. Thena]N is
a defining form for the distributio™ N N £ on N. By the transversality assumption éfn
da is non—degenerate diN N €. Hencel'N N £ is a contact structure.

The statement about the identification of contact structures follows immediately from
Lemma 3.4. g

If n is even, a contact structure on a manifold of dimeng&n- 1 induces an orienta-
tion of this manifold. This has consequences for the relation between the orientability the
characteristic line field of an even contact structure and the underlying manifold.

PropPOSITION3.6. Let & be an even contact structure onta—manifoldM . Then an
orientation of M induces an orientation of the characteristic line figdd and vice versa.

PROOF Forp € M choose a local transversal to 1V containingp. By Lemma 3.5,
£ induces a contact structure & SinceN has dimensiodn — 1, the contact structure
induces an orientation a¥. Hencel,, N has a distinguished orientation. Moreover, again
since N is transversal taV, we havel,N @ W, = T,M. Thus an orientation oV,
induces an orientation df, M and vice versa.

Since we can identify germs of transversals thropgtsingV, this relation between
the orientation ofV,, andT, M is independent of the choice of the transversal through
by Lemma 3.5. O

Although the definition of even contact structures on even dimensional manifolds is
very similar to the definition of contact structures on odd dimensional manifolds, these
two structures are of very different nature. One indication for this is the existence of a
distinguished line field contained in an even contact structure. More evidence is contained
in the following theorem. For the definitions sé¢di¥l].

THEOREM 3.7 (McDuff, [McD]). The property of distributions of corank one to be an
even contact structure is ample. All forms of theorinciple apply. In particular every even
dimensional manifold with vanishing Euler characteristic admits an even contact structure.
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By Corollary 3.3, the condition on the Euler characteristic of the manifold is necessary.
The analogous theorem for contact structures or Engel structures is wrong.

Finally we give an example of how even contact structures may arise on exact sym-
plectic manifolds. We will use it in the construction of model Engel structures later.

ExampPLE 3.8. Let (M,w) be a symplectic manifold and” a Liouville vector field
without zeroes. Hence = iy w is a nowhere vanishing-form and

Lyw=diyw = w

by the definition of Liouville vector fields. Sincg = ker(«) has corank onef contains
a symplectic subbundle of codimension on€inSoda has maximal rank on két) and
« defines an even contact structure/dn SincelV is a Liouville vector fielda = iy da

vanishes on ké¢tv). SoW spans the characteristic line field of kej.

3.1.1. Local normal form for even contact structures. Just like contact structures,
even contact structures are locally isomorphic. Still there is a slight difference between the
proof of the Darboux theorem for even contact structures and the proof of Theorem 2.9
: Unlike in the case of contact structures, a given defining form does not have a standard
expression in general. This is due to the fact that vector fields tang&VitgreserveE but
they do not necessarily presemve

A slightly different proof of the Darboux theorem for even contact structures can be
found in BCG].

THEOREM 3.9. Let M be a2n-dimensional manifold carrying an even contact struc-
ture £ andp € M. Then there is a coordinate systemey, y1,...,Zn—1,Yn—1,w ON &
neighbourhood op such that

n—1
dz — Z ;dy;
i=1

define<t on this neighbourhood.

PrROOF Consider a foliated chart of the characteristic foliatidhof £ on a neigh-

bourhoodU of p
Y U — R 1 xR

such thaty(p) = (0,0). Letw denote the coordinate of the second factoR## ! x R.
Theny, (W) = span(d,,). Let N be the hypersurface correspondingd® —! x {0}. Itis
transversal to the distinguished line fieldbfAs was shown in Lemma 3.5, the distribution
TN NEonN is acontact structure.

By Theorem 2.9, there are coordinates:1, 1, ..., %n_1,yn_1 ON a neighbourhood
V' C N of pin the hypersurfacé&/ such that the contact structufév N € onV is defined
by the form

n—1
(16) a=dz— Z x;dy; .
=1
Consider the product coordinate systemx1, y1,...,Zn—1,yn—1,w ON a product neigh-

bourhood diffeomorphic t&” x R of p and let pr: V' x R—V be the projection on the first
factor. £ is invariant under the flow o¥; by Lemma 3.4. So

n—1

prio =dz — indyi

=1
is a defining form fo€ on a neighbourhood of. O
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3.2. Engel structures — Definition and first examples

Contact structures are hyperplane fields on manifolds of odd dimension. They usually
defined as the kernel of B-form without zeros. Therefore contact structures are usually
defined using defining forms. It is of course possible to define contact structure using only
the distribution it self.

DeFINITION 3.10. An Engel structure is a distributiof of rank two on a manifold
M of dimension four with the following properties.

(i) £ =[D,D] C TM is a subbundle of rank three.
(i) TM = [£,€].

By [D, D] we mean all tangent vectors which are commutators of local sectidhRs of
ObviouslyD C [D,D]. In general this is a sheaf of modules over the smooth functions
even if D is a subbundle. Our assumptions assure [fRaD] respectively&, £] are really
subbundles of M.

The second condition in the definition of Engel structures implies &higt an even
contact structure. Té corresponds a line fiel C £. The following simple observation
will turn out to be very important.

LEmMA 3.11. If £ is induced by an Engel structure theé¥i C D.

PROOF Suppose tha¥V, ¢ D,. Then choose a local fram¥€, Y of D aroundp and
fix a local defining fornm for £. Sinceda has maximal rank i&

da(X,Y) #0.
On the other hand we haV&, Y|(p) € &, by the definition of as[D, D]. So
0# da(X,Y) = Lx(a(Y)) — Ly (a(X)) — o[X,Y]) = —a([X,Y]) .
This would imply[ X, Y](p) & &,. Thisis a contradiction t6 = [D,D]. Sow Cc £. O

DEFINITION 3.12. The foliation induced byV will be called thecharacteristic folia-
tion of D. A hypersurface in an Engel manifoldtimnsversaif it is transversal to/V.

By Lemma 3.5 the even contact structdre= [D, D] associated to an Engel structure
D induces a contact structure on a transversal hypersurface.

A distribution of codimension two can by defined locally as the intersection of the
kernels of two linearly independemtforms. Leta;, as be 1-forms definingD locally.
The conditions for ket; N keray to be an Engel structur® — such thato; is a local
defining form for€ = [D, D] — are equivalent to

ag Nag Nday =0+ [D,D] C &
a1 A ag A dag # 0 < rank[D, D] = 3
ag Nday #0<=[E,E] =TM .
Let D be an Engel structure all. The result of a perturbation @ is again an Engel
structure if the perturbation is small enough (with respect toGReopology). As we

will see, the result of this perturbation is not equivalenttan general. Nevertheless, by
Theorem 3.13 the germs atc M of both Engel structures are equivalent.

3.2.1. Local normal form for Engel structures. Locally, Engel structures have a
standard form. According to E. CartarC@rl]), this normal form was found by Engel for
the study of the Monge equation iBfig].
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THEOREM3.13. Let D be an Engel structure on/. Every pointp € M has a neigh-
bourhoodU with coordinatesw, x, i, z such thatD}U is the intersection of the kernels of
the1-forms

o) =dz —xdy g =dxr —wdy .
The even contact structuge= D, D] is defined byy;.
ProOF By Theorem 3.9 we can choose local coordinates z, t on a neighbourhood
U ~ R* of p such that the even contact structde= [D, D] associated to the Engel
structure is defined by the form; = dz — xzdy. The characteristic line field of is
spanned by;.
The distributionD N T(R? x {t}) is a line field contained in the contact structure

ENT(R? x {t}) onR3 x {t}. Hence there are smooth functioms defined onl/ such
thatD N T(R? x {t}) is spanned by

0 0 0

By definition, a andb do not vanish simultaneously. Assume thgi) # 0. The Engel
structure is spanned by andd;. BecauseD is an Engel structure, the vector field

o1yl _0ad (0 0
v | T ot ver  \Taz T oy

is not contained irD. Therefore

The transformation

has the Jacobian

S O =
*x O = O
* = OO

o OO

*

At p this matrix is invertible. Hence, y, z,w = § is a coordinate system on a neighbour-
hood ofp. In particular the characteristic line field of the associated even contact structures
is spanned by,,. This is a non zero multiple a¥;.. The Engel structur® is spanned by

the vector fields
0 0 < 0 0 )
— and W— + | z2— + — | .
ow T Y

ThusD}U is the intersection of the kernels of the one-forms
o) =dz — xdy az =dxr —wdy .

Up to now, we have treated the cage) # 0. In the casé(p) = 0 anda(p) # 0 we
would have found the pair

a1 =dz — xdy Qo = dy — wdx

of defining forms ofD. These forms are equivalent to the one given in the theorem by the
coordinate transformation

(wayvzaw) — (—y,x,z — Yy, _w) :
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3.2.2. Examples of Engel structuresApart from the constructions we present in
later chapters, there are two other known construction methods for Engel structures. The
first one — called prolongation — is based on contact structur8smanifolds. The second
construction yields Engel structures on certain mapping tori induced by diffeomorphisms
1 : N— N of 3—manifolds.

Starting from a contact structu® on a 3—manifold N one can construct an Engel
structure. We consider the equivalence relation

v~wforv,weC\ {0} & v= A wforsomel € R

onC\ {0}. Then the spacBC = C\ {0}/ ~ of Legendrian lines is a closeld-dimensional
manifold. By construction, there is a fibration gPC — N sending each Legendrian line
to the corresponding base pointi\a The fiber iSRP!.

Lete : C\ N — PPC. One can define a distribution of rank two B@ by

De = {v e T.)PC|pr,(v) ec(l)} .
DEFINITION 3.14. This construction of a distribution dfC is calledprolongation
Prolongation really yields Engel structures.
PROPOSITION3.15. D¢ is an Engel structure ofC.

PROOF Letp € N. The fibers of°C are clearly tangent t®.. ThusD¢ is a subbundle
of rank two of TPC. Fore(v) € PC choose a local trivializatiohl, X of D¢ such thail’
is tangent to the fibers. Let; be the local flow ofi/’. Then by definition

pr. (X (¢e(e(v)))) € C(pr(e(v)))

is a curve transversal to the linév) in C. Hence

d
@, pr. (X (¢e(e(v))) = pr.(W, X]) € £(v) ,
so[W, X](p) is not contained irD¢. Thus[D¢, D¢] = priC. This shows that the leaves of
the characteristic foliation dP¢ are the fibers of prPC — N.
We have shown that pfX) and pt ([W, X]) spanC . Now we restrict pr to a hyper-
surface through which is tangent toX. This suffices for the calculation ¢, [IW, X]].
When we restrict pr to this hypersurface we obtain a local diffeomorphism. Then

pr..([X, W, X]]) = [pr.(X), pr.((W, X])] ¢ C
by the definition of contact structures. This shows {#at/D, D]| has full rank. O

The Engel structures obtained this way are not orientable since the restricfipntof
afiber of PC is the the Whitney sum GfFRP! and the tautological bundle ovB#!. While
the first bundle is trivial, the tautological bundle is not orientable. One obtaieatable
Engel structures when one does the same construction agergedLegendrian lines.

Engel structures constructed by prolongation provide local models for the Engel struc-
ture on tubular neighbourhoods of transversal hypersurfaces (cf. Theorem 3.19) and one
can obtain automorphisms of these Engel structures from diffeomorphisms a contact struc-
ture.

Let N; and N, be 3—manifolds with contact structur€s, C, and lety : Ny — N» be
a contact diffeomorphism. Frogp one can construct a diffeomorphism: PC; — PC,
which preserves the induced Engel structufgsD,. Fori = 1,2 we denote the maps
Ci \ N; — PPC; by k;. The following proposition can be found iMp2], according to this
paper it was known before.
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PROPOSITIONS.16. The diffeomorphism
0 :PC; — PCy
r1(v) — K2(x(v))

mapsD; to Dy. Every diffeomorphisi®C; — PC, preserving Engel structures is of this
form.

PrRooF Consider the map
12: PCy — PCy

ra(w) — k1 (py 'w) .
The compositionZ o ¢ is the identity ofPC; since

o (k1 (v) = (25 (pu(v))) = Fa (v)
and similarly for3 o ¢. Thus is a diffeomorphism. Now leY” with base point:; (v) be
tangent to the Engel structuf®, onPC;. The base point 0p.(Y) is k2(p«(v)). On the
other hand
17 PL. (£+(Y)) = ¢ (pr.(Y))

is contained inp. (k1 (v)) = k2(p«(v)) and this is the basepoint ¢{Y'). Thusy preserves
Engel structures.

Now let® : PC; — PCy be a diffeomorphism preserving Engel structures. Téen
preserves the characteristic foliations or — equivalentlytakes fibers ofC; to fibers of
PCs, thus the map

¢ : N1 — No
p—pry (@ (pry(p)))

is well defined. The inverse @f can be constructed in the same mannep3$s a diffeo-
morphism. The diagram

]P’Cl ? ]P)CQ
pry i iprQ
Ny —2> Ny

commutes. Agb preserves Engel structured,also preserves the induced even contact
structures. The even contact structéiy®n IPC; satisfies pr.&; = C; for i = 1,2. Hence

@*(Cl) = (p*(prl*gl) = prQ*((I)*(gl)) = Cz

S0 ¢ is a contact diffeomorphism. Lef : PC; — IPCy, be the induced Engel diffeo-
morphism. We want to show thgt—! o ® is the identity map ofPC,. It is clear that

o~ o ® preserves each fiber. We want to show that each fiber is preserved pointwise. Let
v € Dq(k1(1)) be such that gt (v) # 0. Recall

Dl(El(l)) = {w c Tel(l)IP’Cl ‘ pr,w e 61([)} .
Now &~ ! o ® preserved;. Suppose thap~! o ®(1(1)) = k1 (I'). By (17)

Pris(@5 1 (@a(v)) = 05 (PR (B4 (v)) = @2 (9 (Pr1. (1)) -

While on the left we have an elementof(l’), the expression on the right is an element of
x1(1). Thusg—! o @ preserves the fibers C; pointwise. O



3.2. ENGEL STRUCTURES — DEFINITION AND FIRST EXAMPLES 41

Another construction is due to H.—J. Geig&se]]. It shows that parallelizable map-
ping tori of compacB8—manifolds admit Engel structures without using contact structures.
Suppose thap : N — N is a diffeomorphism of a compagtmanifold. Let

M = (N x [0,1])/(z,1) ~ (¢(x),0) .
be the mapping torus af. The projection ofV x [0, 1] onto the second factor induces a
fibration M — S' = [0,1]/0 ~ 1. We writet for the coordinate o0, 1]. The vector
field 9; on N x [0, 1] induces a vector fiel&y, on M.
Now we assume thal/ is parallelizable. In order to construct a framingia¥/ such

that X is a component, we fix an arbitrary almost quaternionic structuve ~ M x H.
Then we obtain a framing

X, X1 =1Xp, X0 = 75Xy, X3 =kXj .
PrRoOPOSITION3.17 (Geiges, Gei]). If n € N is large enough, the distributio®,,
spanned by, and
Vo= 1 (cos (n%f) X1 + sin (1) Xo) + X
is an Engel structure.

PrRoOF In order to verify thatD,, is an Engel structure for large, we calculate the
commutators

[Xo, Y] = n (—sin(nt) X1 + cos(nt) X>)
+ % (cos(n?t)[Xo, X1] + sin(n?t)[Xo, Xa]) + [Xo, X3]

[Xo, [Xo, Yal] = n® (— cos(n®t) X1 — sin(n®t) Xs) + [Xo, [Xo, X3]]
+ 2n (= sin(n®t)[Xo, X1] + cos(n’t)[Xo, X>])

+ % (cos(n?t)[Xo, [Xo, X1]] + sin(n?t)[Xo, [Xo, X1]])

Notice that as: grows to infinity
Y, — X3

1
X, Yy] ~ —sin(n?t) X1 4 cos(n’t) X,
n
1 .
E[XO’ [Xo, Y]] ~ — cos(n?t) X1 — sin(n’t)Xs .
SinceM is compact, we can chooseso big that
X07 Yny [X07 Yn]a [X07 [X()v Yn]]
is a framing of " M. d

Unlike in the case of prolongation it is not possible to determine explicitly the charac-
teristic foliation of Engel structures obtained this way. This is a major disadvantage of this
construction.

REMARK 3.18. A mapping torus has vanishing Euler characteristic since there is a vec-
tor field without zeroes. One can show that the signature of a four dimensional orientable
mapping torus is always zero. However the following example shows that orientable map-
ping tori do not necessarily admit spin structures.

Let £ — T be a complex line bundle ov&r? with odd first Chern class and I€tbe
the trivial complex line bundle. Consider tf#'—bundleM = P (E & C) obtained from
E by fiberwise one—point compactification. Then the normal bundle of the image of the
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zero sectiorr of E'in M is the pull back ofF underos. Along o the tangent bundle o/
decomposes as a direct sGﬁM\(7 =Todo*E. HenceTM\(7 has odd first Chern class
and thereford” M does not admit a spin structure.

This shows that the condition on orientable mapping tori to be parallelizable is not
redundant in dimensiohand higher.

3.2.3. Tubular neighbourhoods of transversal hypersurfacesLet M be a manifold
with Engel structureD. Suppose thatV is a (potentially open) hypersurface which is
transversal to the characteristic foliatibvi of D. We have seen above tHatinduces

e a contact structuré = NTN on N and

e alegendrian line field =DNTN C C.
If one applies the prolongation constructiond@pone obtains the manifol®@C with its
canonical Engel structure. Let

e:C\N —PC
be the projection. We want to compare the Engel structures on a tubular neighbourhood of
N in M with the Engel structur®: onPC on a neighbourhood of the section
o: N —PC
pr—e(L(p)) .

The following theorem can be found iMp2] but according to this article it was known
before.

THEOREM 3.19. Any sufficiently small tubular neighbourhood @fin M is canoni-
cally diffeomorphic as an Engel manifold to a tubular neighbourhoodl. of

PROOF On N we sety) = o. SinceN is transversal tdV we can choose a tubular
neighbourhood/ of N such that the fibers df correspond to leaves of the characteristic
foliation. Letw : U — N be the bundle projection and: C\ N — PC. The leaves oV
are tangent t@. Hencer.(D(p)) is a Legendrian line at the pointp) € N forp € U.
We define

Yv:U—PC

pr— &(m(D(p))) -

On N this coincides with our previous definition. Let us first show thas a diffeomor-
phism onto its image iV is small enough. When restricted 1aV, the differential ofy
is injective. By the inverse function theorem it suffices to show thamaps non-zero
vectors which are tangent to the characteristic foliation to non—zero vectors transversal to
g.

Fix a local trivializationW, X of D aroundp € N such thafi¥ is tangent to/V. Let
¢ be the local flow ofi¥/. Then

X)) )
t=0

¢MW@D=m<m<i

= ko (. (W, X](p))) # 0

by the definition of Engel structures. (Here the differentialis the differential ofx at
X (p).) On the other hand the diagram

v —"spe

L,

N ——



3.2. ENGEL STRUCTURES — DEFINITION AND FIRST EXAMPLES 43

is commutative. Thus pfy.(W)) = 0. Thereforey, (W) # 0 is tangent to the fibers of
PC.

In order to show that) preserves Engel structures it suffices to prove thatX) is
tangent taD¢ since we have already dealt with. By definition, (X) = e.(m.(X (p)).
The Engel structure oRC is by definition

De(k(l)) = {v € ToyPC | pr.(v) € k(1) }
wherex(1) is a Legendrian line and piPC — N is the bundle projection.

Forv € C,\{0} we identifyT,,C with C,T,, N. With this identification, the differential
of the composed map

C\N-~>pc—">N
atv € C, \ H isjust the projectio?, & T,N — T,N. Thus

Pr(¢«(X)) = m(X) -
This vector is contained in the ling,(X)). Thusy,(X) is tangent tdD¢. O

3.2.4. Line fields on transversals — Rotation numberLet M be an oriented ma-
nifold with an oriented Engel structu® and letN be a hypersurface transverse to the
characteristic foliationV of D. We fix the canonical orientation of the characteristic foli-
ation. As we have seen, the distributidiv N £ is a contact structure oN'.

Since)V is contained irD, the intersectiod N N D C TN N & is a Legendrian line
field on N. We orient this line field by the requirement that the orientatiomofollowed
by the orientation of "'V N D is the orientation oD.

DEFINITION 3.20. The oriented Legendrian line fieldN N D will be called theinter-
section line fieldf D on N.

Of course the intersection line field induces a foliation of rardut this foliation will
not play an important role. We will only need the homotopy type of the intersection line
field as a Legendrian line field.

First we reduce the problem of distinguishing two Legendrian line fields up to homo-
topy to the classification of magé — S up to homotopy. For the second step we apply
Thom—Pontryagin theory to identify this set with! (IV; Z).

Let X be a nowhere vanishing Legendrian vector field on the contact manffald).
Choose a sectiol” of C such thatX,Y is an oriented framing of. For a Legendrian
vector fieldV there are uniquely determined smooth functfog such that

(18) V=FfX+gY.

We assume thdt” has no zeroes. Thefandg do not vanish simultaneously. Hence the
function

G(V,X,Y): N — R\ {0}
pr— (f(p),9(p))

is well defined. If we start wittkX’ = h X, Y’ = Y instead ofX, Y with a positive function
h, the corresponding ma@(V, X', Y) is

GV, X' Y") = <£,9> .

If we multiply X with a negative functiort then we také”™’ = —Y instead ofY” in order
to satisfy the orientation assumption. Then

GV, XY = (}i, —g) .
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In both cases the resulting m&y(V, X', Y”) is homotopic toG(V, X,Y) through maps
whose image does not contdin For fixed X, the second componeiit of the oriented
framing is well defined up to multiplication with a positive function and addition of an
arbitrary multiple ofX. If Y/ = hY + kX with A > 0 then

k
GV, X,Y') = ( - gh’Z) .
This is again homotopic t&'(V, X,Y). If we start withV/ = AV instead ofV for a
nowhere vanishing functioh we have
GV, X,Y)
h
and this is homotopic t6/(V, X, Y"). Thus the homotopy class of
G(V,X,Y): N — R?\ {0}

depends only on the Legendrian line fields spanned land X and the orientation of.
Hence the homotopy class of

F(V,X): N — S!
GV, X,Y)
F X)= —
VX = ew v

is well defined. In particular the line field spanned Wyis homotopic to the line field
spanned byX if and only if £(V, X') is homotopic to the constant map.
We denote the set of homotopy classes of maips: S* by [V; S!]. The map

[N;SY — HY(N;Z)
[F]— ((v: S'—H) — deg(Fo7)) .

is bijective. One way to see this is an application of the Thom—Pontryagin construction.
A detailed description of this method together with the following theorem can be found in
[Bre].

GV, XY)=

THEOREM3.21 (Thom, Pontryagin)lf N"** is a compact smooth manifold of dimen-
sionn + k, then the Thom—Pontryagin construction gives a one—to—one correspondence
between the se[tN"““; S”] and the set of smooth framed cobordism classes of smooth,
compact, normally framet-submanifolds oN"™**,

In our situationn = 1 andk = 2. The k—submanifolds in the theorem are preimages
of a regular value of a smooth map: N — S' representing a given homotopy class
[F] € [N;SY. The framed submanifolds are cooriented hypersurfacég.ifhese give
rise to cohomology classes ' (V;Z) as we have explained above. Summarizing we
have the following proposition.

PROPOSITION3.22. Two orientable Legendrian line fields,, 7> on N are homotopic
through Legendrian line fields if and only if the elementdn(N; Z) corresponding to
F(F1,Fy) is zero.

It is of course possible to compafg andF» with a third framing of the contact struc-
ture. ThenF; andF, are homotopic if and only if we obtain the same clas&fi(V; Z)
from the two line fields when we compafg and ., with the auxiliary Legendrian line
field.

Now let N be a transversal hypersurface in an Engel manifdldLety : S' — N
be an oriented Legendrian curve akidh nowhere vanishing section of the contact structure
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C = £ NTN spanning the intersection foliation. Singeés Legendrian;y is a Legendrian
vector field alongy.

DEFINITION 3.23. For a Legendrian curve in a transversal hypersurface of an Engel
manifold, the winding number of (4, X ) around0 is therotation numbeiof .

The rotation number changes sign when we reverse the orientation of the Legendrian
curve or when we change the orientation of the contact structure. In particular it changes its
sign when we change the orientation of the characteristic foliatidn. df is independent
of the orientation oD.

REMARK 3.24. Let us compare Definition 3.23 with the rotation number from contact
topology in Definition 2.17. In Definition 2.17 we fix an oriented trivialization of the
oriented contact structure on a Seifert surfatef the Legendrian knod>: = ~ and
comparey with this trivialization.

If C is the contact structure on a transversal hypersurface of an Engel manifold with
oriented characteristic foliation thehis oriented. WherD is oriented we can use the
intersection line field as the first component of the trivializatiod @ver Y. Thus in this
situation the two rotation numbers in Definition 3.23 and Definition 2.17 are equivalent.
When the orientation of the contact structure is changed the rotation number changes its
sign.

By Proposition 3.22, the homotopy type of a Legendrian line field near a Legendrian
curve is classified by the rotation number along this curve.

LeEmMmA 3.25. Let 1, F> be two oriented Legendrian line fields on a closed tubular
neighbourhood’/ of a Legendrian curve. ThenF;, F, are homotopic through Legendrian
line fields onU if and only if they have the same rotation number aleng

The use of the condition on the curydo be Legendrian is to single out a distinguished
framing of the contact structure along this curve. We then compare the framihglohg
~ defined byX with the framing defined by. If one has a Legendrian line field spanned
by V' along an arbitrary curve ifv one can similarly define a rotation number with respect
to this line field usingV instead ofy. Then one can also drop to assumption thas
Legendrian. This way we define tmetation number with respect t&'. The analogous
statement as Lemma 3.25 is of course true in this more general situation.

3.2.5. Development map.The development map allows us to compare the Engel
planesD, andD, if p andq lie on the same leakV, of the characteristic foliation of a
given Engel structure. It was introduced BrH, Mo2]. The definition of twisting number
appears in a slightly modified form irAfl] where it is used to classify Engel structures
whose characteristic foliation is given B x I or N x S! for a3—-manifold N.

Let M be a manifold with Engel structurB. As usual, we have the associated even
contact structuré = [D, D] and the characteristic foliatio”’ C D. If U is an open subset
of M such thatl//»V admits a smooth structure and pt/ — U/W is a submersion,
thenU /W carries the contact structure, pf) since€ is invariant along the leaves o¥.

DEFINITION 3.26. Thedevelopment magpf U is
oy : U — P(pr.€&)
q — [pr.D(q)] -

EXAMPLE 3.27. Let C be a contact structure a§ and pr: PC — N be the bundle
projection. The prolonged Engel structureletis defined by

D(\) = {v € TH\PC|pr,v € A} .
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ThenPC — PC/W = N is a submersion. In this case pr is simply the bundle projection.
Moreover pr& = C. Hence the development mapled is a map

dpc : PC — PC .
By the definition of the canonical Engel structurelth
dpe([l]) = [pr.(D()] =[] € PC,
s0dpc is the identity ofPC.

Letp € M andW, be the leaf of the characteristic foliation containimgIf W, is
closed we consider the universal covering of a tubular neighbourhodd, efith the lifted

Engel structure. The universal coveringlof, is )7\7,,.

If p,qg € Wp we choose a neighbourhoédof the unique segment cﬁ//p joining p and
g such that/. — U/WV is a submersion.

DEFINITION 3.28. Thedevelopment magf WV, is
Sp : Wy — P(E,/W,) ~ RP*
q+— dulq) -

dp(q) does not depend on the choiceldf Up to now we used only the fact thétis
invariant alongV andV C D. We did not use the properf, D] = £. If D is an Engel
structure we have the following proposition.

PROPOSITION3.29. The development map ¥, is an immersion.
PROOF Letp,q € W, and
© - P(gq/wq) - P(gp/wp)

the map induced by the leaves)df. Since€ andW are invariant under flows along/,
this is an isomorphism. Moreovéy = ¢ o §,. So in order to show thalt, is an immersion
it is enough to check this on a neighbourhoog af V.

Now choose a transversal hypersurfd€ehroughp and letC be the induced contact
structure on. ThenC, ~ &,/W,. By Theorem 3.19 there is an Engel embedding

Yv:U—PC
ofa Ebular neighbourhoaod of H. We write for the characteristic foliation oBC. The
leaf W (4 (p)) is the projectivization of the contact pladép). By Example 3.27
Su(w) : Wap) = BC(p) — PC(p)
is the identity map. Then
-1
Op = (¢*‘H) © Oy(p) 0 -
In particulars, is an immersion on a neighbourhoodof O

Fix an orientation of the leafV, of the characteristic foliation through p d|V|desW
into two arcs. 1fV, is closed Ieﬂ/\/+ be the maximal half-open oriented segmen’t/\e)f

starting afp such that the image mv; is mapped injectively toV,. If W, is open,l/\/];r is
the segment ofV,, which starts ap with respect to the given orientation &¥,,. Similarly

we defineVNVp—.
Let C, be the contact plane aton a local transversal through this point. Consider the
development maps

STWE — G,
6*:Wpf — Cp



3.2. ENGEL STRUCTURES — DEFINITION AND FIRST EXAMPLES 47
DEFINITION 3.30. Thetwisting numbersf p are

tw (p) = #{a € W | 6" (a) =07 (p)} € NU{oc}

tw(p) = # {q € Wy [07(0) = " (p)} €NU{oc}.

A leaf of the characteristic foliation is said to hafieite twisting numbeif the twisting
number is finite for some (and hence every) point on this 184, hasinfinite twisting
numberif tw™ (p) or tw™ (p) is infinite.

Notice thatp is contained in both sets appearing in this definition, so both twisting
number are at least By Proposition 3.29, the twisting number is a measure for the number
of full twists of the image ofD, in C, wheng moves alongV,, away fromp as long as it
does not reacp again. The last condition is meaningles3Vj, is not closed.

The twisting number has the following application. Consider a local transvérsal
of the characteristic foliation through We orient the contact structut®on U using
the orientation of the even contact structure and the orientatiofr,ofLet C, C> be an
oriented framing o such that’; spans the intersection line field éh

OnU x R consider the Engel structuf2,, spanned by

W = %, X = cos(27t)Cy + sin(27t)Cs .

The characteristic foliation of this Engel structure corresponds to the second faGteiin
we write ,° for the development map ¢p, 0) in U x R. For all points(p, t) € U x R the
twisting numbers are tW(p, t) = tw™ (p, t) = oo. There is a unique map

W, — 5 [p} xR CUxR
-k
Cp CP

with ¢(p) = (p, 0). By the definition of the twisting number and Proposition 3.29
@ (W) < {p} x [0.w* (p)
e (W) € {p} x [~tw= (), 0]

If W, is closed,» extends to an Engel embedding of a tubular neighbourhood of the seg-

mentW]jE. If W, is not closed, then for every< WV, the restriction ofp to the segment of
W, with endpointgp, ¢ extends to an Engel embedding of a tubular neighbourhood of this
segment.

Consider a local transversAl of the characteristic foliation of an Engel structure. We
write £, for its intersection line field. Now consider a homotafy through Legendrian
line fields. We try to find an isotopyf; of H along the leaves ofV such that, if we
identify Hy = H and H using the characteristic foliation, the intersection line fielddof
corresponds t&. But if one of the intersection numbersf,, p € H, is finite, such an
isotopy does not exist in general. Suppose for examplettiiatp) = 1 andL,(p) rotates
twice in the sense opposite to the orientatio@nfThen it is impossible to find the desired
isotopy.

The following examples show that all leaves of the characteristic foliation can have
finite twisting number even on compact manifolds.
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ExampPLE 3.31. Consider the Engel structure from the normal form for Engel struc-
turesD = ker(dz — zdy) N ker(dz — wdy) on R*. For every pointp € R*, we have
twh(p) =tw(p) =1.

ExXAMPLE 3.32. This example will appear again at the end of Chapter 7. Consider
the Lie group Nit. The Lie algebraiil* is spanned byV, X, Y, Z with the commutator
relations

W, X] =Y X, Y]=2
and all remaining commutators vanish. The left—invariant plane fietgpanned byV, X
is an Engel structure. Now Nilis a semidirect produd@®?® x R. The action ofR onR? is
given by

exp € Aut(R?) .

o O o

t
0
0

S =+ O

Thus the characteristic foliation dp preserves the hypersurfacés = ¢y}. The even
contact structuréD, D] is transversal to these hypersurfaces @his never tangent to
{t = to}. This shows

tw(z,y,z,w) =twW (2,9, 2,w) =1

Now Nil* contains a discrete subgroiisuch that Nit /T is a closed manifold. Thus even

on compact manifolds it may happen that every leaf of the characteristic foliation has finite
twisting number. Notice that this is also true for the universal coverings of closed leaves of
the characteristic foliation, both twisting numbers &re

We will encounter the difficulty we just described in Section 5.6. There is a second
aspect which makes Engel structures with the property(py = tw—(p) = 1 for all p
particularly interesting.

The following terminology is introduced irBfH] for the study of more general dis-
tributions of rank2. For us,D is always an Engel structure. B—curve is a differentiable
curve tangent t@. Let Qp(p, q) be the set oD—curves fronp to ¢. We equipQp(p, q)
with the C'—topology. By Chow’s theorenMo3] we know thatQp (p, ) is not empty.

DEFINITION 3.33. A D—curvey : [a,b] — M isrigid if there is a neighbourhood
of v in Qp(vy(a),v(b)) such that every’ € V is a reparameterization of

THEOREM3.34 (Bryant, HsuBrH]). LetD be an Engel structure on4manifold M
and let)V be the characteristic foliation. An immersian: [a,b] — M which is tangent
to D, is rigid if and only if

(i) ~istangenttoV and
(i) the development map

Oy(a) : V([a;]) — C(v(a))

is injective except possibly at the endpoints.

Suppose that for every closed lgaf, the twisting numbers oV, in the universal
covering of a tubular neighbourhood are both one. Assume furthermore that the twisting
numbers of the open leavesdf are also one. Then every immersion of a curve which is
tangent to)V is rigid. For example the standard Engel structuréRdrhas this property.

We have explained above that such Engel structures exist on compact quotients of Nil
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3.2.6. Orientation conventions.By Proposition 3.6, an orientation of the character-
istic foliation of an Engel structure induces an orientation of the underlying manifold and
vice versa. In addition we have an orientatior€of- [D, D).

ProPOSITION3.35. If D is an Engel structure, the even contact structéire- [D, D]
has a distinguished orientation.

PROOF Let X, Y be local sections 0P aroundp € M such thatX (p) andY (p) are
linearly independent. Then we oriefitp) by X (p), Y (p), [X, Y](p). We obtain the same
orientation if we interchang& andY. 0

Now let M be an oriented manifold with an oriented Engel strucreThis induces
an orientation of the characteristic line figld. Let W be a positive section ofy and letX
be a section oD which is transversal tél” such thal¥, X is an oriented framing db. By
the Engel conditionX, [W, X, [ X, [W, X]], W spans the tangent bundle of everywhere.
This orientation changes when the orientation/%fis changed but is independent of the
choice of the orientation db.

This leads to the following orientation conventions we will use from now on.

(i) We orient Engel manifolds by, [W, X, [ X, [W, X]], W.

(i) Hypersurfaces which are transversal to the characteristic line field are oriented by
the induced contact structure.

(i) The even contact structure associated to an Engel structure carries its canonical
orientation.

(iv) Contact structures on hypersurfaces which are induced by the even contact struc-
ture are oriented such that the orientation of the contact structure followed by the
orientation of the characteristic line field gives the canonical orientation of the
even contact structure.

(v) If in addition the Engel structur® is oriented, we orient the intersection line
field by the convention that the orientation)af followed by the orientation of
the intersection line field is the orientationDf

If M has a boundar§ M which is transversal tb} we could orient the boundary such that

the orientation ob M followed by a hormal vector pointing outwards is the orientation of
M. On the other hand, the boundary is oriented by the induced contact structure. If the
characteristic line field points outward, these two orientations coincidd) goints into

the manifold we obtain opposite orientations.

3.3. Topology of Engel manifolds

An Engel structuréd on M induces a flag of distributions
(29) oOocwcDcéECTM.

Each of these distributions has corank one in the distribution containing it. This has strong
implications for the topology of\/. In the following proposition we summarize some
relations between the bundlgg, D, £.

PROPOSITION3.36. Let D be an Engel structure on4manifold M.

(i) The is a natural isomorphism between the real line bundk® and&/D.
(i) There is an exact sequence
& ™

&
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PrROOF (i) ForX,Y < D, we choose local section%, Y of D such thav?(p) =X
andY (p) =Y. Then

A’*D, — &,/D,
XAY — [X,Y](p)

is well defined and it is surjective sin¢P, D] = £. Thus we have found a bundle isomor-
phism sinceA?D and& /D have ranki.

(i) For X € D, andV e &, choose local section& of D respectivelyl’ of &,
which extendX respectivelyy’. Then we define

f:Dy® &, TM,/E,
DP
XeV— [X,V](p).

This map is independent of the choice of extensions. Becdusk] = €&, it is also
independent of the choice of a representative &, of V € &£,/D,,.

By the condition[D, [D,D]] = [D,£] = TM on Engel structuresf is surjective.
Since€ /D has rank one, every elementBf @ &,/D,, can be written in the fornk ® V.
Hence the kernel of consists of vector® ® V such tha{lV, V](p) € &,. This is exactly
the condition that defines the line fiel (cf. Lemma 3.11). Therefore the kernellofs
W®E/D. O

If M andD are both orientable one obtains a stronger result. The following theorem
can be found inKMS]. It was already known to V. Gershkovic. Unfortunately his preprint
[Ger] was not available to the author.

THEOREM 3.37. Let D be an oriented Engel structure on an oriented four manifold
M. Then the tangent bundle &1 trivial.

PrRoOF Consider the flagV ¢ D ¢ £ C TM of subbundles o' M. The even
contact structure is oriented without any assumptions on the Engel structure or the un-
derlying manifold. An orientation ol induces an orientation 0f/ by our conventions.
The tangent bundle aff is isomorphic to the sum

D & TM
21 TM = — D =P —
(21) W o W @ D @ 5
of four real line bundles. Becauge is orientable so ar®/W and&/D. SoTM is
isomorphic to the sum of four trivial line bundles. O

Notice that under the assumption of the theor@m/ is trivial but moreover we can
single out a particular trivialization ¢f M up to homotopy. If we drop the orientability
assumptions ord/ andD we still have topological obstructions for the existence of an
Engel structure on a four—dimensional manifold.

COROLLARY 3.38. If M admits an Engel structure then there is a coverldg— M
with one, two or four sheets such that has trivial tangent bundle.

PrRoOF. Recall thatHom(m(M),Zs) = H'(M;Zs). First consider the—sheeted
coveringM — M which corresponds to the subgroup key(M)) C 1 (M). By con-
struction,M is orientable and we pull back the Engel structure.NIf the pulled back Engel
structureD is not yet orientable then ccmsider thresheeted coverinfjlf of M correspond-

ing to ker(wl(ﬁ)). If we pull backD to M we end up with a orientable manifold carrying
an orientable Engel structure. O
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Of course (21) follows directly from the existence of the flag (19). From this decom-
position of 7'M into line bundles we can obtain conditions on the Stiefel-Whitney classes
w; € H'(M;Zs) of an Engel manifold\/. By the Whitney formula

w(TM) =1+ wi(TM) +wa(TM) + w3(TM) + wy(TM)
=(1+w W)U (14 wi(D)+ wi(W))
UQ+wi (&) +wui(D)Ud+w(TM)+wi(E)).
Sincef is canonically orientedv; (£) = 0. Because transversal hypersurfaces in Engel
manifolds are canonically oriented by the induced contact structure we have the relation
wi(TM) = w1 (W). Hence
w(TM) =1+ w1 (TM) + wi(D) + wi (TM) Uwi (D) +wi(TM)
+ w3 (TM) + w?(D) Uw?(TM) + wy (D) Uwi(TM)
From this we obtain the following proposition
ProOPOSITION3.39. If M admits an Engel structure then
w3(TM) = wi(TM)
wy(TM) = wi(TM) 4wy (TM) Uw?(TM) .

3.4. Deformations of Engel structures

Let C be a parallelizable contact structure ofi-ananifold N and letVp, Vi be Leg-
endrian vector fields such th&t = RV, & RV;. We view the real projective line as
RP! = S!/{+1}, the circumference dRP! is 7. Let pr: PC — N be the projection.
Then

F:NxRP' — PC
(p, 0) — [cos(0) Vo (p) + sin(0)Vi(p)]
is a well defined diffeomorphism.

DEFINITION 3.40. The imageR(Vp, V1) of N x [0, 7/2] under this diffeomorphism is
called thestandard domaimssociated to the pair of Legendrian vector fildg V7). The
standard Engel structur®; in a standard domain is the restriction of the prolonged Engel
structure orPC.

(22)

Although the diffeomorphism above depends on the vector figd$;, the standard
domain depends only on the Legendrian line fields spanndd bi;. We will usel, V1
to denote the Legendrian vector fields as well as the Legendrian line fields. The projection
maps the intersection line fields on the boundary componerig f, V1) to 1, respec-
tively V7.

We equip the set of plane fields of clag$ on Q(Vp, V1) with the strong-?—topology.
In Theorem 3.41 and Theorem 3.43 we treat with deformations of the standard Engel struc-
ture onPC and on a standard domain.

It turns out that the space of infinitesimal deformation®gfon (1}, V1) up to iso-
topy has infinite dimension. P, is a deformation oDy, the characteristic foliation ab,
is diffeomorphic to the produch x I if |¢| is small enough. In this situation, the char-
acteristic foliation is not responsible for the large number of non—equivalent deformations
of Dy. The complexity is due to the presence of two Legendrian line fields on the bound-
ary components of the standard domain. The induced foliations and their relation induced
by the characteristic foliation dP; account for the fact that the space of infinitesimal de-
formations ofDy is infinite dimensional even after we quotient by a suitable equivalence
relation.
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THEOREM 3.41 (Montgomery,o2]).

() Let D; be any sufficiently small deformation of the canonical Engel structure
Dy on the standard domaifX(Vp, V7). Then there is a one—parameter family of
Legendrian line field$/{(¢) and Vi (¢) together with a family of Engel diffeomor-
phisms

P, (2(Vo, V1), Dy) — (2(Vo(t), Va(t)), Do) -

(if) For every small variatior{Vy(t), V1(t)) of pairs of Legendrian line fields there is
an Engel deformatio®; of the standard Engel structure on the standard domain
such that the correspondence constructed in the proof of (i) yiélgs), Vi (t)).

(i) LetD; be a small deformation of the canonical Engel structuré6m~ N xRP!.
If we viewNN as a section oPC then the Poinca return map o#V, is a contact
diffeomorphism of N, C;) withC; = TN N &;.

(iv) Any contact isotopy afV, C) which is close enough to the identity can be realized
as the Poincag return map as in (iii) for some Engel deformatit.

PROOF (i) We view N as the hypersurface if2(1, V1) corresponding taV x
{m/4}. As the Engel structure varies, the associated even contact strdgtarel the
characteristic line fieldV; also vary. If the variation is small enough(1;, V1) is foliated
trivially by W, and N intersects all leaves dfV, transversely and exactly once. Thus
C: = & NTN is a smooth family of contact structures 6h

As in Theorem 3.19 we construct an Engel embedding of a tubular neighbourhood
of N c Q(Vp, V1) with the Engel structur®;, into the Engel manifold®C; associated
to the contact structuré;,. The construction of this Engel embedding works for tubular
neighbourhood§’ of N such that

e U is foliated trivially by W,
e for all p € N, the segment oV, (p) which is contained i/ is embedded to
PC:(p) by the development map.

Obviously (©2(Vy, V1), Do) has these properties, $€(Vp, V1), D;) has these properties
too, provided thatt| is small enough. If the deformation is small enougliVy, V1) itself
has these properties since they are obviously satisfie@dorWe obtain a familyy; of
Engel embeddings

¢t : (Q(va Vl)apt) - ]P)Ct 3

the Engel structure ofC; is induced byC,.

SinceC, is a smooth family of contact structures dhwe can apply Gray’s theorem
2.4. In order to do so we have to impose an additional condition on the variRtion
The deformation has to be so small that the time—dependent vector field constructed in the
proof of Gray’s theorem can be integrated to an isotopy i compact, this condition is
automatically satisfied.

SinceC = Cy, there is an isotopy; of N such thatp;.C = C;. By Proposition 3.16
this induces a smooth family of diffeomorphisms

o : PC — PCy
preserving the canonical Engel structures. The composition
q)t = @_1 o wt : (Q(‘/Oa Vl)vpt) — PC

is an Engel embedding. Then gnaps the intersection line fields on the boundary compo-
nents of®,(2(Vo, V1)) to Legendrian line field¥,(¢) respectivelyl/; (¢) with the property
®4(2(Vo, V1)) = (Vo (1), Vi(t))-



3.4. DEFORMATIONS OF ENGEL STRUCTURES 53

(i) Consider a deformatiof\Vy(t), Vi(t)) of (Vp, V1) through Legendrian line fields.
We want to construct a deformatidp, of the standard Engel structure on the standard
domain2(Vy, V1) from this. Let

v QV(t), Va(t)) — Q(Vo, Vi)
be the diffeomorphism defined by the following conditions

° zpt preserves the leaves of the characteristic foliatiof» of
. zpt preserves the projective structure on the fiber&’ot RP! ~ PC — N.

. ¢t(p, [Vo(0,p) + Vi(0,p)]) = (p, [Vo(0,p) 4+ V1(0, p)]) independently of.
o Ui(p, [Vi(t,p)]) = (p, [Vi(0,p)]) fori =0, 1.

The last two conditions determmie on three disjoint sections &iC. Slnce;/zt is supposed
to preserve the prOJectlve structure on the leaveBd~ N x RP!, this determlnesbt
completely. In partlcularpo =id. LetD, = wt*D onQ(Vp, V1). This is a deformation of
the standard Engel structure oiVp, V1).

In the proof of (i) one can use the Engel embedding= @;1. Notice that the contact
structure onN x {7 /4} is constant. An application of (i) to the deformati@n yields
(Vo(t), Vi (1))

(iii) If the variation is small enoughV is transversal tdV; for all . The claim
follows directly from Lemma 3.5 which asserts that the holonomyAyf preserves the
contact structure on transversals.

(iv) We use the same notatidry, V; for the horizontal lifts ofV;,, V; to N x RP!.
The pull back under the diffeomorphismdefined in (22) of the canonical Engel structure
onPC at(p, 0) is spanned by

0
Wo(p, 0) = 50

X (p,0) = cos(0)Vo(p) + sin(0) Vi(p) .

Notice thatX (p, ) = —X (p, 0 + ) but (p, #) and(p, § + 7) represent the same point in
N x RP'. Since we are only interested in the spariiéfand X, this ambiguity does not
matter. We viewN as the hypersurfac& x {0}. Letp : [0,7] — [0, 1] be a smooth
function which is constant near the boundary af@) = 0, p(7) = 1.

Let®,,t € (—1,1) be a contact isotopy dfV, C). For fixedT' € (—1, 1) we construct
an Engel structur®r such that the Poincareturn map ofV is ®7. For this, we reparam-
eterize the isotopy connectirigy = id and®r usingp: ®; = 7. Consider the vector

field p
Vi) = G| B).

The flow of Y; at timeT is ®;. Let Y be the horlzontal vector f|eId ol x RP! with
Y(p,6) = Yy(p). We write Xy, Yy for the vector fieldsX (-,6),Y(-,6) on N x {6}.
Consider the distributio® spanned by

0
W(p,0) = 25+ (p.6)

X(p,0) = cos(0)Vo(p) + sin(0)Vi(p) .

Since®, is constant near the endpoints[6f], this is a smooth distribution of rank two
onPC. The calculation

(W, X](p,0) = — sin(0)Vo(p) + cos(0)Vi(p) + [V, X](p, 0)
X, (W, X])(p,8) = [Vo, il(p, 0) + [X, [V, X]](p, 0) .
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shows thatDy is an Engel structure it is small enough, or equivalently, if the isotopy
is close enough to the identity in the stro@g—topology. By construction, the Poinéar
return map is the flow ofV at timer induces the diffeomorphisnbr on N x {0}. It
remains to show thal’ spans the characteristic foliationBf-. The even contact structure
Er = [Dy, Dr] is spanned byV, X, [W, X|. Now

(W, [W, X]](p,0) = — cos(0)Vo(p) — sin(6) Vi (p)
(23) — sin(0)[Yp, Vol (p) + cos(6)[Yy, V1](p)
+ [Yo, [Yo, Xo]](p) ,

andYy is a contact vector field. The sum in the first line-is(, the second and the third

line are contained i&r sinceY; preserves the contact structdten N x {6}. HencelW

is tangent t&€r and its flow preserve§y. ThusW spans the characteristic foliation.
Applying the same procedure for &ll € (—1, 1) with the same functiop, we get

a smooth family of Engel structurd3; on PC such that the Poincarreturn map of the

characteristic line fieldVr is ®. O

We give an example of an Engel deformation similar to those considered in (iii) of
Theorem 3.41 in Example 3.49.

By Theorem 3.41 deformations of the prolonged Engel strudyren Q(Vp, V1) re-
spectively orlPC are equivalent to families of pairs of Legendrian line fields respectively to
contact isotopies. Next we define equivalence relations for these objects. In Theorem 3.43
shows that these equivalence relations are compatible.

DEFINITION 3.42. Two Engel deformation®, and ﬁt of an Engel structur® on
M represent the sandeformation gernmof D if there is an isotopy); of M such that
zpt*ﬁt = D, for all t in a neighbourhood df.

On a contact manifoldV, C), two deformationgVy(t), Vi (t)) and (Vo(t), Vi(t)) of
(Vb, V1) through pairs of Legendrian line fields arquivalent up to contact isotofifjthere
is an isotopyyp; of NV which preserve€ and

e (Vo(®), VA1) = (Vo(), (1))

for all t close enough t6. Two contact isotopiesy, p; areequivalent up ta—dependent
conjugationif there is a contact isotopy; of (IV, C) such thatf; o o, = f; o ¢y.

THEOREM 3.43 (Montgomery,f102]).

(i) The space of deformation germs(6¥(p, V1 ), D) with its standard Engel struc-
ture is canonically isomorphic to the space of deformation gefvaét), Vi (t))
of (Vp, V1) of pairs of Legendrian line fields ofiV, C) modulo contact isotopies.
This space has infinite dimension.

(i) The space of deformation germs of the standard Engel structuf€ amequal to
the space of deformation germs of the identity through contact isotop{@§ 6f)
modulot—dependent conjugatior®; ~ g; o ®; o gt_l.

PrROOF (i) We have constructed deformations of pairs of Legendrian line fields of
(N, C) from Engel deformations of€2(Vp, V1), Do) and vice versa in Theorem 3.41. We
show next that these constructions are compatible with the equivalence relations in Defini-
tion 3.42.

Let D, D; be two equivalent deformation germs of the standard Engel structure on
Q(Vo, V1). Then there is an isotopy

Py - Q(Vo, Vi) — Q(Vo, V1)
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such thatz/zt*Dt D;. By Theorem 3.41 (i) the deformatior;, D, correspond to Leg-
endrian line fieldgVy(t), Vi(t)) respectlvely(Vb( ), Vi(t)). We want to find a contact
isotopy f; of (IV, C) such thatf..(Vi(t)) = Vi(¢) fori = 0, 1. Let

272 (Q(‘/O) ‘/i)apt) - (Q(‘/O(t)a Vl(t))vpﬂ) cPC
Gt (QVo, V1), Dy) — (QVo(t), Vi(t)), Do) C IBC
be the Engel embeddings used in Theorem 3.41 (i). Then

Fy= oot Q(Vol(t), Vi(t)) — Q(Vo(t), Va(t))

is a diffeomorphism of two standard domaingfifi preservingD,. HenceF; preserves the
fibers of pr: PC — N and the map

fi=proF,opri:N—N

is a well defined contact map by Proposition 3.16. By the argument in the proof of Proposi-
tion 3.16, f; induces and Engel dlffeomorphlsfnof IPC which extends;. SinceF; maps
the boundary of)(Vy(t), Vi (t)) to the boundary of2(Vy(t), Vi (t)) we have

Fe(Vi()) = Vi(t) fori = 0,1 .

Thus the map from equivalent deformation germ&efVy, V1), Dy) to the set of deforma-

tions germs of pairs of Legendrian line fields modulo contact isotopy is well defined.
Conversely, le{Vo(t), Vi(t)) and (Vo(t), Vi(t)) be deformations ofVp, V1) through

pairs of Legendrlan line fields and let be a contact isotopy dfN, C) with the property

thate. (Vo(t), V(1)) = (Vo(t), Vi (t)). We write
o s QVo(0), Vi) — Vo, V1)
G V(1) Vi(1)) — Vo, V1)

for the maps constructed in Theorem 3.41 (ii). I&t= . Dy andD; = J*Dg be the
corresponding Engel deformations. By Proposition 3. 16 the contact isgtopyluces an
isotopy @, of the standard Engel structure BA. Theniy; ! o &; o zz;t mapsDt to D;. So
these deformation germs are equivalent.

It remains to show that the correspondence from Theorem 3.41 (i) and (ii) is inde-
pendent of choices up to Engel isotopy respectively contact isotopy. We only indicate the
argument. The only choice in the proof of Theorem 3.41 (i) was the choice of a section
N — Q(Vh, V1), we have chosen the sectidhx {7/4}. Any two sections of2(Vp, V1)
are isotopic through a familys, s = [0, 1] of sections which are transversalitg, for all
t close enough t0. In (i) of Theorem 3.41, the section is identified with The isotopy
can be used to construct a contact isotopy &fC) showing that the family of pairs of
Legendrian line fields obtained fromyy ~ N ando; ~ N are equivalent up to contact
isotopy.

Finally we have to show that the space of deformation germs of pairs of Legendrian
line fields modulo contact isotopies has infinite dimension. This is done in two steps. In
the first step we relate pairs of Legendrian line fields with ordinary differential equations
of second order

d*y dy
24 = )
( ) d(L’2 G <.’L’, Y, dl’)
The second step consists of the construction of functional moduli distinguishing equiva-

lence classes of differential equations of type (24). For the second step we refenio [
or [Car2].
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Let V5, V1 be a pair of Legendrian line fields @iV, C) such that these line fields span
the contact structure ande N. We consider a flow boxU, (z, y, z)) chart forV, around
p such thatl, = 0, andp has the coordinate®), 0, 0).

Let H be the plang{z = 0} throughp and pr: U — H the projection along the
z—direction. Sincd{ andV; span a plane field, the projection pv;(q)) is a well defined
line inTH and we may assume that pv; (0, 0,0)) is tangent to the—axes inH.

For (zo, yo, z0) € U let~ be the integral curve df; through this point. Iz, yo, 20)
is close enough t@0,0,0) we can view pfy) as the graph of a functiop, (z) with
y(x0) = yo. SinceVy, Vi span a contact structure, the slope of the graph varies when
the z—coordinate of the base point gfvaries, so

jz ((Zyw( 0)) #0.

Thus we can replace the-coordinate by = %”(xo) on a small neighbourhood of In
the new coordinates the contact structure is defined by+f@m dy — zdx. The second
derivative )

d

3 (w0)

is a smooth functior of (x¢, yo, Zo) while the slope of pry) atz is justz. The projec-
tion of an integral curve to H satisfies the differential equation

d’y dy
2 Y _F Wy
(25) =1 (0. )

Conversely, a solution of (25) with initial conditions

d ~
g9(z0) = Yo andﬁ(mo) =20

induces the integral curve:, g(z), ¢’'(x)) of V1 if (z¢, yo, 20) is close enough t¢0, 0, 0).

Now letp; be a contact |sotopy If we apply the procedure above to the pair of Legen-
drian line f|eldsV0 = ou V0, V1 = V1 We obtain coordinates, y, z and a function?
such that the differential equation

Py nf~-dy

corresponds tcffa,f/;. By definitiony; : U — U is a contact map which maps the
fibration pr: U — H to pr : U — H. Asin Example 2.3, this contact map is
actually induced by a local diffeomorphisHHﬁ which transforms (25) into (26). Hence
changingly, V; by a contact isotopy does not change the equivalence class of the resulting
differential equation.

(i) Choose a section : N — PC ~ N x RP! and lety; be the Poincdr return

map forW;. If f; is the isotopy from Gray’s theorem with the propeftyCo = C; then
fi o @i o f; 1 is the contact isotopy dfN, C) associated t®;. Then

prop oty Yy (N) — u(N)
is the Poinca® return map forp Wy of ¢ (N). Let hy : ¢ (N)—1o(N) be the map
induced by the leaves &; = . W;. Then
(hi 0 4p) 0 0r o (hy o )"+ ¢ho(N) =t (V)

is a contact map for the contact structure inducecfpym Yo(N) ~ N. Using Gray’s
theorem again we obtain a contact isotopy(6f,C) which is conjugate to the contact
isotopy obtained fronD;.
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We omit the converse direction, i.e. conjugate contact isotopies yield equivalent Engel
deformations. Finally we show that the correspondence in (ii) does not depend on the
choice of a section.

Let 0g, 01 be two sections oPC. For|t| small enoughg ando; are both transversal
to the characteristic foliation ab;, we write C; for the family of contact structures on
oi,# = 0,1. These two sections are identified by the leaves of the characteristic foliation
of D;. This induces a contact map

ft : (O'O(N),C?) - (O'l(N),Ctl)
depending smoothly oh If the deformations is small enough, we can apply Gray’s theo-
remtoCy, i = 0,1 and obtain diffeomorphism Let

1y : (90(N),Co) — (90(N),C7)

hi : (91(N),Co) — (01(N),C})
preserving the contact structures. Then the contact isotopy fprof (oo(N),Co) =
(N,C) and of(c1(N),Co) = (N, C) are conjugate by; = (hi)~Lo f, o hY.

Let D, andD; be equivalent germs of Engel deformations of the standard Engel struc-

ture onPC. By definition there is an isotopy; of PC such that);,D; = D;. O

3.5. Engel vector fields

In this section we want to investigate the set of vector fields preserving a given Engel
structure on some manifolt. We have already treated the case of contact vector fields in
Section 2.1.2. The results we obtain for Engel structures are similar.

DEFINITION 3.44. A vector field preserving the Engel structure is callejel vector
field. We denote the Lie algebra of Engel vector fields)g>). A vector field which
preserves an even contact structure i®aen contact vector field

Of course a vector field which preservBsalso has to preserve the associated even
contact structur€ = [D, D]. Conversely, starting from a vector field preservihge can
always find an Engel vector field.

LEMMA 3.45. Let X be a vector field preserving. Then there is a unique sectidi
of the characteristic line fiel3V such thatX = X — W preserved.

PROOF LetU be an open subset 8f such thatV admits a sectiofl” without zeroes
onU and such that there isla-form 5 with the property
D|,, = ker(c) Nker(3) .

We choose a—form~ such thaty vanishes oV such thaty, 3, v are linearly independent
at each point ot/. The characteristic foliatiohV of £ is defined by th&—form a A da.
Since X preserves the even contact structure it also preserves the characteristic foliation.
The conditions onX to preserveD are

(i) X preserves, i.e. there is a functiop such thatl ;o = go, and

(i) LgB = g1+ gof8 for smooth functiong, go.

Lx(is alinear combination ak, 5 and~y because it vanishes 6# by
(LxB)(W) = Lx(B(W)) — B(LxW) =0.

On the other handyy 5 = iy df also vanishes onV. Hence this form can also be written
asaa + b3 + cy with differentiable functions:, b,c on U. We fix a local sectiort” of
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D which is linearly independent d#/. Then the Engel conditions implyV, Y] ¢ D but
[W,Y] € €. Therefore

(LwB)(Y) = =B(W,Y])

has no zeros. This implies means thhahas no zeroes ofi. Hence there is a unique
function f with the property that

LxB— fLwpB=Lx_jwp

is a linear combination ak, 5. By definition of W, X=X — fW also preserveS. Hence
X satisfies condition (i), s& is an Engel vector field

Now we can covelM by open sets with the properties@f By the uniqueness of the
local construction we obtain a smooth global Engel vector fiele X — W fora unique
sectionV of the characteristic line field. O

We assume that = [D, D] is a coorientable even contact structure with an orientable
characteristic foliation. Let be a defining form of. As in the case of contact structures
treated in Section 2.7 we can associate the functi@hi) to each vector field which
preserves. Unlike in the case of contact structures this function is not arbitrary but it
has to satisfy a condition concerning its behaviour along the leavidg. dfet hy be the
function with the property

(27) Lwa = hwa .
If X preserveg, thena(X) satisfies the identity

Ly (a(X)) =iwdixa = iwLxa —iwixda
=ixiwda = hya(X) .

DEFINITION 3.46. We define the subspac&®(«) of C>°(M) by
C*(a)={f e C®M)|Lwf=hwf} .
Note that if we uséV’ = gWW with a nowhere vanishing functionthen
Lyra=ghwao .

If f satisfiesLy f = hy f then this function also satisfidsy f = hyf. SOC™(«)
depends only on the choice af The functions inC°(«) play the same role fox(D) as
C*°(H) for the space of contact vector fields.

THEOREM 3.47. The map which assigns to each Engel vector fi€ldhe function
a(X) is a bijection ontaC'> ().

PROOF Suppose thatv(X) = 0. ThenX is tangent to€ and it has the properties
which we used to defing). Therefore it is tangent tdV. On the other hand the proof
of Lemma 3.45 shows that if a vector field is tangen¥oand non—zero, then it does not
preserveD. SoX = 0. This shows injectivity.

In order to prove surjectivity, choose a gétof hypersurfaces transversal ¥t such
that every leaf of/V intersects at least one of these hypersurfaces. Noyw etC>(«).
We apply Proposition 2.7 t¢\ and the contact formu]T in order to obtain a contact
vector fieldX; onT;. Using the flow% of W we can extendX; to an even contact vector
field X/ on the orbit ofT;.
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We now show thaty(X/) = f. As a consequence @fyya = hyyoandLyy f = hy f
we obtain

(a(X]) (et (p) = (alenXi)) (ee(p) = (¥fa)(Xs)) (p)

—exn( | “h o s () (@l X)) (0
_ exp< / Chy o sosds) W) 1) = Fen))

for p € T;. HenceX! satisfiesy(X/) = f. By Lemma 3.45 we can find Engel vector fields
X; by subtracting appropriate local sectidms of W from X/.

It remains to show that the vector field§ are restrictions of one global Engel vector
field. This follows from injectivity which is already proved. Hence there is a global Engel
vector fieldX with a(X) = f. O

The setC*(a)) depends on the choice af A very simple situation occurs when we
can choose such thatLy (o A der) = 0. SinceLy (a A da) = iw (da?) this assumption
impliesW € ker(da). SoLwya = 0 andC*(«) consists of smooth functions which are
constant along the leaves B¥. Whether or not such a choice ofis possible depends
only on the characteristic foliation. Iy admits a closed defining form it is said to be
volume—preservingUnder these assumptions the Engel structure admits an Engel vector
field whose properties are similar to those of Reeb vector field, cf.Lemma 2.6.

The following proposition does not require titats induced by an Engel structure.

PrROPOSITION3.48. Let £ be a coorientable even contact structure od-amanifold
M and letVV be the characteristic foliation. Then the following conditions are equivalent.

(i) There is a defining fornx for £ and a vector fieldrk such thato(R) = 1 and
irda = 0. The vector fieldr is well defined only up to addition of a vector field
tangent tow.

If £ = [D, D] is induced by an Engel structufe then there is a unique Engel
vector field with the same properties &s
(i) W can be defined by a closed form.

PROOF (i) = (ii) Let « be a defining form fo€ and letR be a vector field as
in (i). The characteristic foliation is tangent to the kernel of 3f®rm o A (da). Then
d(a A da) = (da)? is a form of top degree of/. It is zero becausgr((da)?) = 0. Thus
W can be defined by a closed form.

(i) = () There is a closed defining form for W. Let o be a defining form for
E. Thena A da is another defining form foy). Hence there exists a functighwithout
zeroes such that = f (a A (da)"~'). Since both; and—n are closed and defing’, we

may assumg = e > 0. Thena = e//2a is a defining form foi€ such that
aNda = faANda=n

is closed. Hencéda)? = 0 and the kernel ofla is 2—dimensional. Using the non-
integrability of £ and the properties of the characteristic foliation one can show£that
ker(da) = W.

Choose a complement &V in ker da. This is also a complement &fin 7M. In par-
ticular it is orientable. Thus we can find a nowhere vanishing seétiohthis complement
such thate(R) = 1. By construction we havézda = 0 so R preservesy and the even
contact structure.
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If £ = [D, D] is induced by an Engel structure we use Lemma 3.45 to obtain a Reeb
vector field for the Engel structure which depends on the choice of the definingdform
within the class of one—forms whose exterior derivative has fank O

Let a be a contact form on &manifold N. When we apply the prolongation con-
struction discussed in Section 3.2.2 to the contact structuteker(a)) we obtain an Engel
structureD on the total space of the circle bundle:@C — N. Then pf« is a form onPC
which defines = [D, D]. Obviouslydpr*« has rank two everywhere. The characteristic
foliation of D is volume preserving since it corresponds to the fibers of a fibers bundle.
Among the different lifts of the Reeb vector fieltl of « to PC there is one unique lifR
which preserve®.

The following more interesting example is due to R. MontgomeryMpZ] it is used
to show that the space of infinitesimal automorphisms of an Engel structure can have finite
dimension. We use Theorem 3.47 to prove this fact.

ExAMPLE 3.49 (Mo2]). Let X be an orientable surface of gengs:) > 2 with a
hyperbolic Riemannian metric and 18t = 513> C T*X be the circle bundle of—forms
of unit length. On/NV there is al—form X defined by

AV)=a(pr,(V))forV e T,N .
The contact structure k&iis trivial because it is coorientable and it is tangent to the ori-
entable circle bundl&; T*X.
We fix a trivializationC', C5 of C. Let R be the Reeb vector field of The horizontal

lifts of these vector fields t&V x S! are denoted by the same symbols. We witier the
coordinate on the second factorfx S!. The vector fields

0
WEZ%—FER

X = cos(p)C1 + sin(p)Co

span an Engel structurB, if |¢| is small enough. The characteristic foliation Bf is
spanned byV.. A defining form of€. = [D., D] is

Ae = Prix —edp .

The characteristic foliatiomV. is volume preserving becausge,. has rank two for alk.
Since

a:(R)=a(R)=1
irdae = pr* (iRda) =0,

R preserveg,. HoweverR does not preservB. in general. By Lemma 3.45 we can find a
vector field preservin@®. if we subtract an appropriate multiple @f.. SinceR is a Reeb
vector field it preserveS. With

Y = [0,, X] = —sin(p)C1 + cos(p)Ca
we can decompogé®, X| = fX + gY as linear combination ok, Y. Then

g B fg g
ne e = (15 ) o (e () ) e

is tangent tdD... So the Engel vector field correspondingﬁcis

5 g
R——W,.
1+ ge c

One can easily check that+ ge never vanishes iD. is an Engel structure.
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We can view the characteristic foliation Dt as the foliation on the mapping torus of
the diffeomorphismps,.. wherey, is the flow of R on N. The flow of R on IV is conjugate
to the geodesic flow aof on the circle bundl&,T M. Since geodesic flow of a hyperbolic
surface is ergodic, cf.Hat], the only-,.—invariant functions oV are constant. Hence
C* (a.) contains exactly the constant functions g« 0.

By Theorem 3.47 this implies that the space of diffeomorphisms preserving the Engel
structureD, is one—dimensional far # 0. It has infinite dimension i€ = 0 by Proposi-
tion 3.16.

3.6. Analogues of Gray'’s theorem

We have already discussed Gray'’s theorem for contact structures in Section 2.1.1. Here
we give a proof for similar theorems for even contact structures and Engel structures. These
theorems and the proofs can be stated in a very similar way.

We have discussed a deformation of an Engel structure through Engel structures in
Example 3.49. In this example, the characteristic foliatio®gfconsists of closed leaves
while the characteristic foliations of all other Engel structures in the family have dense
leaves. Therefore the assumption on the characteristic foliation in (ii) and (iii) is really
necessary.

THEOREM 3.50 (Gray, Golubev,Gr, Gol]). The following smooth families of distri-
butions on a compact manifoltd are parameterized by < [0, 1].

(i) LetC, be a family of contact structures on an odd dimensional maniféldrhen
there is an isotopy; of M such thatp;.Cy = C;s.

(i) Let&; be a family of even contact structures on an even dimensional manifold
such that the characteristic line field; is constant. Then there exists an isotopy
¢¢ of M such thatp..&y = &:.

(iii) LetD, be a family of Engel structures on a four manifdldl such that the char-
acteristic line fieldV; is constant. Then there is an isotopy on M such that
¢t*DO = Dt-

The proof is based on the Moser method. The first case can be foulthinj.[ Part
(ii) of this theorem seems to be well known to the experts but we did not find a proof in
the literature. The third case was treated by A. Golubewiol] who uses defining forms.
Our proof is an adapted version of the method foundMar], this has the advantage that
we do not restrict ourselves to structures with global defining forms. We first explain some
propositions used in all three cases.

We need a description of the tangent bundle ofittdimensional real projective space
in terms of other canonical bundles oW&P"™. The tautological bundle is defined by

= {(v,[z]) € R"" x RP"|v € [z]} .
The other canonical bundle is the universal quotient buée B <EF"

PrRoPOsSITION3.51. The tangent bundle of the real projective space is canonically
isomorphic toHom(7, Q).

PROOF Letx : R*™1\ {0} — RP" be the projection map. The tangent bundle of
R™*1\ {0} is isomorphic to the trivial vector bundR*+1 \ {0} x R**! overR"*+1\ {0}.
We claim that

f:Hom(7, Q) — TRP"
(¥ : X — [Y]) — ry(X,Y) for X #£0
is a well defined isomorphism of vector bundles.
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LetY be another representative [of]. ThenY — Y is an element of i.e. a multiple
of X. Thereforex, maps this difference to zero. Now &t = A X with A\ # 0. Consider
the commutative diagram

R+ \ {O} _k RP™

g

R {0} —— RP"
where)- means multiplication by.. With zp(ff) = [}7] we have the relation
(X, Y) = 5y AX,AY) = £y (X, Y)

Thereforef is well defined. It is obviously linear and preserves base points.

Let ¢ € ker(f). For all X € 7 in the same fiber ag andy(X) = [Y], we have
k«(X,Y) = 0. This impliesY € [X] and therefore)(X) = 0 € Q. Hencey = 0 €
Hom(7, Q). This shows thaf is injective.

Finally, both bundles have rank so f is an isomorphism. d

Next we introduce some bundles associated to variations of a smooth distribution
on M. To this end, it is helpful to interpret a distribution of codimension one or-a
dimensional manifold as a section of the projective bufif& A/. A family of distribu-
tions corresponds to a famiby of sections of the projective bundle. Depending on the case
in questiong, will be a differentiable family of contact structures, even contact structures
or a subdistribution of an even contact structure (this is the Engel case).

Let pr: PT*M — M be the bundle projection. The kerriélof pr, is a subbundle
of T(PT*M). Elements of this bundle will be callegertical. Pulling backV by o, we
obtain a family of vector bundles; V" over M.

PROPOSITION3.52. There is a one—to—one correspondence between sectiarj$/of
and 1-jets of variations 0.

PROOF We may assume = 0. Let [o4] be thel-jet of a variation ofo represented
by o5 for s € (—¢,¢e) with e > 0. In order to obtain a section ofV, letp € M
and consider the differentiable cureg(p) € P7,;M. This curve represents a tangent
vector inT;, ., PT; M, the tangent vector depends only on thget of the curve. Since
pr(os(p)) = p for all possibles, it is a vertical tangent vector. Thus we get a section of
o,V depending only on thé-jet of o, ats = 0. We will denote this section byy.

Now let X : M — o3V be a section. We viewX as section o}” alongo,. Extend
this to a vertical smooth vector field on PT*M and let®, be the flow of X. Then
os = ®4 0 0y is a variation ofoyg. When we produced a section @fV from this variation
as in the beginning of this proof, we obtalif O

The following notation was already used in Proposition 3.51, nevertheless we hope that
no confusion is possible. The tautological bundieverPT* M is the real line bundle

7= {(e, [¥]) € prT"Mle € [¢]} .

The universal quotient bundle @@ = pr*T*M /7. Letx : T*M \ M — PT*M be the
projection map.

Denote by, 7, respectively®), the bundles/,  andQ restricted to the fibelP7,; M
of PT*M overp € M. ThusV,, 7, and@, are bundles over a real projective space. The
tangent bundle of the fibé¥7; M is V,,. By Proposition 3.51, there is a canonical isomor-
phism betweerV,, and Hon{r,, Q,) for all p € M. We can identify}” and Hontr, Q).
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Observe that a fiber of over a poiny € PT* M consists exactly of the cotangent vec-
tors of M whose kernel (this is a subspacelgf ) M) contains the hyperplane represented
by 0. The fiberQ, can be interpreted as dual vector space of the kernel of

REMARK 3.53. In order to apply the Moser method, we need to defihegealerivative
for sections inP7T*M. Let o be such a section and |&t be a smooth vector field of/
andp € M. Let ¢, be the flow ofX. Since every distribution of codimension one has
a local defining form, there is a neighbourhdddf p and a one—fornv on U such that
k(w) = o\U andw is unique up to multiplication with functions without zeroes@nThe
curve(¢iw)(p) represents a tangent vectoriin,, (7 M) and we defind. xo(p) by

d(¢jw)(p)

(Lx0) (p) = k. (dt

This does not depend on the choicewa$ince for a smooth function

WEGDO) _ (1,5) ot + o) (200 )

andw lies in the kernel ofc : T, (T*M) — T, PT*M. Furthermore(Lxo)(p) is
vertical since

> € Ta(p)PT*M .
t=0

pr((@fw)(p)) =p

for all t. ThusL xo is a well defined section af*V'.

LEMMA 3.54. Let oy with ¢ € [0, 1] be a differentiable family of smooth sections of
PT*M and letX; be a differentiable family of smooth vector fields ah Let ¢, be the
flow of X;. Then the following assertions

(i) ¢ro0 = o forallt e 0,1]
(i) Lx,00 =c¢forallt e [0,1]
are equivalent.

The notations; was defined in the proof of Proposition 3.52.

PrROOF Both conditions are local, thus we can prove the lemma using one—forms
representingr; on open sets. Let € M andt¢, € [0,1]. Choose a neighbourhodd
of p such that there exists a differentiable family of one-formsdefined ongzst‘lU for
t € (to — &, to + ) with £ > 0. We denote%w; by c. Then
4 4
dt |y, dt{,—y,

— ot (—Lx,,wto + Wto)

on the neighbourhood of p. This shows thaﬁ;l*at is constant if and only if. x,0¢ = o
for all t € [0,1], i.e. if and only if there is a family of functiong; such thatLx,w; =
d)t + ftwt. O

(67 "wr) = (657 (wio + (t — to )i, + o(t — t0)))

REMARK 3.55. Letw be a one-form o/ and¢ a diffeomorphism of\/. Then
(671W) (8:(Xp)) = w(9: (94(Xp))) = w(Xp).
Thus the map
ken(w) — ker(¢~*w)
X +— ¢ X

is a bijection. Ifoy, o1 are two sections adPT*M such thatp*cy = o1, then keroy =
¢« (keroq). This relates condition (i) in Lemma 3.54 to the conditions in Theorem 3.50.
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Given a family of contact structures respectively even contact struciyras a com-
pact manifold, we consider; and look for vector fieldsX; such thatL x,o; = &;. Then
the flow of X; is an isotopy with the properties stated in Theorem 3.50.

PROOF OFTHEOREM 3.50. (i) Let o be a family of contact structures on tfi+1)-
dimensional compact manifolt/. Consider the map

I'(ker(oy)) =T(C) — o}V
X — Lxoy.

This map is linear over smooth functions becaisse = 0 for all formsw representingr;
on some open set af/. Therefore, its value dtround0— — handlesp depends only on
X, and it can therefore be considered as a linear map

¢t; Ct — O'ZV
Xp— Lxoy = ks« ((ixdw)(p)) ,

wherew is al-form on a neighbourhood gfrepresenting;.

This map is injective becauge is hon-degenerate on kerby the definition of contact
structures. Furthermore, the rank@fis 2n and the rank o¥ is also2n. Hencey is an
isomorphism of vector bundles for &ll

Thus for allt € [0, 1], there is a unique sectial, of C; = ker(o;) such thatL x, oy =
o¢. Becausé’; is a differentiable family of contact structure’s; is a differentiable family
of smooth vector fields. Sinc& was assumed to be compact, the flowof X; is well
defined. By Lemma 3.54); has the desired properties. O

PROOF OFTHEOREM 3.50. (ii) Let & = ker(o;) be a family of even contact struc-
tures on the2n-dimensional compact manifold/. Recall that we identify Horfr, Q)
with V" and we will interpret the fibef),, overo € PT*M as dual vector space of Ker).
The bundles; V' contains all possible first order variationsagf cf. Proposition 3.52, this
includes variations of the distinguished line field.

We only consider variations af; such that the characteristic line field of the corre-
sponding even contact structure is constant. The subblfgle V'

Vv = {v € Hom(7,Q)|v(w) = 0onW forw € 7}

takes this restriction into account. It has codimension orié and the sections af; 1)y
correspond exactly to thodejets of variations of,such thadV is contained in all even
contact structures of the variation. In particulgy,is a section ot} Vyy for all t. Like in
the case of contact structures, we consider the linear map

1/}t2 ker(O't) =& — O';:VW
Xp — Lxoy = ki ((ixdw)(p)) -

wherew is representings, on a neighbourhood o € M. It is well defined since
(ixdw)\w = 0 by definition of W, recall thatX < &. Also by the definition of\V,
the kernel ofy, is preciselyW.

The rank of; is 2n — 1, the rank ofl/y, is therefore2n — 2. We choose a differentiable
family of complementsH; of VW in &. This can be done using a constant Riemannian
metric onM and taking orthogonal complements. On these complementis,injective
and bothH; ando; V) have rankkn — 2. Hencey, : & — o; Vyy is an isomorphism for
all ¢.

Define the vector field(; as the unique section &, satisfyingL x,o; = J;. Because
M is supposed to be compact, the flow of X; is well defined and is an isotopy with
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;o0 = oy and hencey..& = & by Lemma 3.54 and the remark following this lemma.
O

Note that in this case we had to choose complements. If we would have made another
choice for these complements we would have obtained a different vector field.

PROOF OFTHEOREM 3.50. (iii) Let D, be a differentiable family of Engel structures
on the compact four manifold/ such that the characteristic line field remains constant. By
the second case of Theorem 3.50, we can choose an isptapy)/ such thaip; & = &.
Thus we may assume that the associated even contact structibesa constant. We
denote this even contact structurefy

Now the Engel structure®, are subbundles of of codimension one and they can
therefore be interpreted as sectionspof: PE* — M. For this projective bundle we
define again the vertical tangent vectorsiby= ker(pr, ). OnPE*, there is the tautological
bundler defined by

7 ={(a, [¢]) € Pré¥la € [v]}

and the universal quotient bundjp= pré/T.

Again we can identifyl” with Hom(7, Q) by Proposition 3.51. Lek : £\ M —
PE* be the projection map. In order to finish the proof, we will need some refinements
of tools we have already used. The first concerns the definition of the Lie derivative in
Remark 3.53, the second refinement is a special version of Lemma 3.54. Although we will
use the notation adapted to our case, the refinements work in general and not only in the
case of even contact structures.

REMARK 3.56. Let £ be a distribution of corank one ifilM andY a vector field on
M which leavest invariant. We consider smooth sectioh®f PE*. The Lie derivative
Lyao can be defined as follows. Fix a compleméhtof £ in TM. On a small open
neighbourhood’ of p € M the sectiorﬁ\U can be represented be a one—fasron 5|U.
We extendw from £|,; to a one—formu defined onT'M|,; by requiring®|, = 0. We
define a Lie derivative by

Lyé(p) = fu ((Lx)
This does not depend on the choicefosince for a sectioX of €\U we have
(Lyw)(X) = Ly(0(X)) - &(Ly X) = Ly (w(X)) —w(Ly X) .

The last term vanishes sinéépreserves. HenceLyﬁ{U does not depend on the choice
of the extensiors. The proof that this definition does not depend on the choice isf
exactly the same as in Remark 3.53.

5p) S T5(p)]P)g* .

LEMMA 3.57. Leto; with ¢ € [0, 1] be a differentiable family of smooth sections of
PE* and letX; be a continuous family of smooth vector fields\drsuch thatX; preserves
E. Letg, be the flow ofX,. Then the following assertions are equivalent.
(i) ¢fo0 = o forallt e [0,1].
(i) Lx,00 =c¢forallt e [0,1].

The definition ofs; for sections ifPE* is similar to the definition in the case of sections
of PT*M.

PROOF We first fix a complement of in 7'M and we thereby obtain a smooth family
of local one—formsy; of locally defined representatives € T'* of 5. (We extendv, by
zero on the complement &f C T'M.) In this situation, we can do the same calculation as
in the proof of Lemma 3.54 withy; instead ofv;. The same arguments as in Lemma 3.54
prove the desired result. O
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We only allow variations of the Engel structure such thatC D, for all ¢. So, as
in the proof of the second case of Theorem 3.50, we will consider only a subburidle of
namely the bundl&), defined by

Viy = {’6 € Hom(7,Q)|v(@) = 0 onW for & € ?} .

The rank ofl3y is one. SinceV C D, = ker(;) and all sections ofV’ preservet, the
map
1/;15 W — 5:‘7)/\}
W —— Lwo; = Rs ((iwd&ﬂg)

is well defined as a map of vector bundles (cf. the proof of the first case of Theorem 3.50).
Note that we restrict ourselves¥®. We could have takept > W as domain, but sections
D, do not preserve while sections oV do. The map)y is surjective becausP, is an
Engel structure. Both bundles have the same rank.

Thusy, is an isomorphism of vector bundles. For every [0, 1] we can find a unique

sectionW; of W such thatLy,o; = Et. The flow of W; has the desired properties by
Lemma 3.57. ]



CHAPTER 4

Round handles

A round handle of dimension and indexk is R, = D* x D" %=1 x S!. Round
handle decompositions of manifolds were used by D. Asimas1[ Asq) for the study of
flow manifolds. A flow manifold is a manifold with a non—singular vector figldwhich
is transversal to the boundary. In particular Engel manifolds with transversal boundary
are flow manifolds if the characteristic foliation is orientable. We will always wyitéd/
for those boundary components whéi#é points outwards and_ M for the remaining
boundary components.

D. Asimov shows in As]l] that every flow manifold can be decomposed into round
handles and uses round handle decompositions for the construction of vector fields without
zeroes which are structurally stable. One of the most important resulésif is Theo-
rem 4.6 which says that every manifold of dimensiogt 3 with vanishing Euler charac-
teristic admits a round handle decomposition and a non—singular Morse Smale vector field.
J. Morgan showed that the analogous statement is wrong in dimehsidriMor ].

We sketch a proof of Theorem 4.6 using the close relation between ordinary handles
and round handles, cf. Lemma 4.8. For the proof of the existence theorem in Chapter 6
we will use round handle decompositions of closed parallelizable manifolds with only one
round handle of indeg. Starting from a convex contact structure o-ananifold N we
construct an Engel structure together with a round handle decompositignof!. The
characteristic foliation of this Engel structure is transversal to the boundary of submanifolds
which consist of the round handles. The same method will be used in the construction of
model Engel structures on round handles. In Section 4.1.2 we use it in the discussion of a
question of J. Adachi, cfAd].

In Section 4.2 we describe model Engel structures on round handles. Because of their
symmetry we discuss round handles of indeand 3 respectivelyl and?2 together. The
case of indeX), 3 in Section 4.2.1 uses a concrete example of a convex contact structure
on S3. In Section 4.2.2 and Section 4.2.3 we construct model Engel structures on round
handles of indext and2 which are compatible with a symplectic structurei.e. their
characteristic foliation is spanned by a vector fiBldsuch thatl.yw is a constant multiple
of w.

This leads to differences between our first and our second construction. In our first
construction there is a one—to—one correspondence between closed leaves of the character-
istic foliation and round handles. This is not the case in the second construction. Moreover,
in our second construction, the overtwistedness of the contact structures on the boundaries
will be important. In the first construction all contact structures on transversal boundaries
will be tight.

Some of the properties of the model Engel structures are summarized in Lemma 4.24
and Lemma 4.26. In Section 4.3 we discuss similarities between model Engel structures
on round handles of indekand?2. In particular we explain how to remove corners when
we attach round—handles. If we cut of suitable symmetric neighbourhood&,aR; res
0_ R», then the smoothened boundaries are again transversal to the characteristic foliation

67
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and we can compare the contact structure and the homotopy class of the intersection line
field on the new boundaries &f; .

These similarities will be used in our first construction of Engel structures in Chapter 5.
The model Engel structures on rouhehandles will also be used in our second construction
in Chapter 6. In Chapter 6 we will discuss more model Engel structures on round handles
of index2 and3.

4.1. Generalities

We have shown above that a manifold carrying an Engel structure also admits a line
field, namely the characteristic foliation of the Engel structure. Hence the Euler character-
istic of M has to vanish. We now look for decompositions of manifolds which reflect this
particular property of Engel manifolds.

DEFINITION 4.1. A flow manifolds a pair(M, 0_ M ) where)M is a smooth connected
manifold ando_ M is the union of some connected components of the boundary such that
there is a vector field” without zeroes onV/ pointing inward along_ M and outward
alongd; M := OM \ 0_M. (The casedM = 0),0-M = 0,0, M = () are allowed.)

For the proof of the following lemma we refer t8$1].

LEMMA 4.2. (M,0_M) is a flow manifold if and only ify(M) = x(0_-M) =
X(04M).

Recall that a handle of dimensienand indexk € {0,...,n} is defined to béy, =

DF x D"=*. We write
O_hy = 0DF x D"k
dihy = DFx oD F.

Suppose we have an Engel manifold with transversal boundary. If we attach a handle
hy = D¥ x D*=* ofindexk € {1,2, 3,4} to M, the Euler characteristic changes(byl ).
Therefore there is no Engel structure dhU Hy, such that the boundary dff U Hy, is
transversal. In view of the relative simplicity of Engel manifolds on transversal boundaries
it is nevertheless desirable to maintain this property.

So instead of attaching handles one should attach building blockswithout chang-

ing the Euler characteristic. Round handles have this property. They were first studied in
[Asl, Asd. In this section we explain the results &41] we are going to use later.

DEFINITION 4.3. A round handleof dimension: and indext € {0,...,n — 1} is
Ry = DF x D" k=1 » g1 |
The boundary) R, contains two subsets
O_Ry, = dD* x D k-1 gt
O R, = DFx oD *1txgt,
We writez1, . . ., zj, for the coordinates o®*, v, ..., y,_x_1 for the coordinates on
D"~*=1 andt for the usual parameterization §f.
SupposeV/ is a manifold of dimensiom and lety : 0_ R,—dM be an embedding.

Consider the equivalence relation 8hU Ry, generated by ~ ¢(x) for x € 0_ Rj. Just
like in the case of ordinary handles, the quotient space

M:MURk/N:MUWRk
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is a manifold with corners. The corners correspondff x 9D"*~1 x §1 ¢ Ry,. There
is a canonical procedure to obtain manifolds with boundary from manifolds with corners
which is described inpou]. However this method does not work well when one wants to
preserve structures on the boundary. In our situation it will be easier to cut off a gyt of
and we will describe the procedure for the attaching of round one—handles in detail later.
The attaching of round handle of ind2xfor round3 handles there are no corners. We say
that the resulting manifold/ is obtained from\/ by attaching a round handle of indéx
Attaching round handles to a flow manifdld/, 9_ M) one can easily obtain new flow
manifolds. Fix a vector field” on M with the properties of the definition above and
consider the vector field

Z$17+ Z yl*+*
1=1

on Ry. Notice thatWW}, points outward alon@, Ry and inward alond@_ R;. For a given
attaching mapy : 0_ R, — 0+ M one can refine the attaching procedure such that the
vector field W}, extendsV’ to a vector field onM/ which shows tha(M, 0_M) is a flow
manifold. The corners can be smoothened by the standard proceduredouhvwhile
keeping the vector field smooth and transversal to the boundary. Of course one can also
attachR;, by a mapd_ R, — 0_-M and use—W;, to show that the resulting manifold

(1\7, 8]\7\ 04+ M) is again a flow manifold.

If M is even—dimensional every component of the boundary/ohas odd dimen-
sionen. Therefore the Euler characteristicoofM vanishes. ThugM,0_M) is a flow
manifold if and only if (M) = 0, independently of the choice &M C OM. This
shows that attaching a round handle to an even—dimensional flow manifold again yields
a flow manifold (with vanishing Euler characteristic). We shall see in Lemma 4.8 that
attaching round handles to a compact manifold does never change the Euler characteristic.

REMARK 4.4. Let M' = M U R}, be an—dimensional manifold and < n — 2. We
attach a round handle of indéxo 0 M’ using an embedding : 0_ R, — 9, M'. Then
we can isotope such thatp (0D' x {0} x S1) is transversal t§0} x 9D"*~1 x St |f
l<k

dim(dD' x {0} x S') + dim({0} x OD" 1 x Sy =n -1 - (k-1),

henceyp can be isotoped such thatd D' x {0} x S1) is disjoint from{0} x 9D"*~1 x

S1 c 0, Ry. With the flow of a smooth vector field which points radially away from
{0} x 9D"*~1 x ST, we can isotope further to obtain an attaching mgpwhose image

does not meed; Ry. Thus(M U Ry) U, R; is diffeomorphic to(M Uz R;) U Ry,. Thus

we can rearrange a given round handle decomposition of a manifold such that the round
handles are ordered according to their index. Notice that contrary to the case of ordinary
handles, two round handles of the same index cannot be interchanged in general.

DEFINITION 4.5. If M is obtained from the disjoint union of finitely many round
handles of index by attaching round handles of higher index successively, i.e.

M= (... (URo) Ups By - -) Up, B,

with g; € {1,...,n — 1} fori =1,..., k we say that we haveraund handle decomposi-
tion of M.

If a closed manifold)M/ admits a round handle decomposition then the Euler charac-
teristic of M has to vanish because we can use the round handle decomposition for the
construction of a non—singular vector field. If the dimension\fis 2, one can prove
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the converse direction using explicit decompositions of the Klein bottle and the torus into
round handles. The following theorem treats manifolds whose dimension is at least four.

THEOREM 4.6 (Asimov, [Asl]). A closed, connected manifold of dimensior> 4
admits a decomposition into round handles if and only(i#/) = 0. This decomposition
can be chosen such that there is only one rodraldandle and one roung-handle.

The statement is trivial in dimension one and it can be checked directly in dimension
two, i.e. forT? and the Klein bottle. For manifolds of dimensigrthe analogous statement
is wrong.

THEOREM4.7 (Morgan, Mor]). LetP % S? x S! be an orientable primg—manifold.
M admits a decomposition into round handles if and onlk ifs the union of non—trivial
Seifert spaces attached to one another along components of their boundaries.

The manifolds formed from Seifert spaces form a special clagsmianifolds; they
were classified by WaldhauseWal]. The case of non—prime manifold3 is also solved
in [Mor] when no summand of the decomposition /af is diffeomorphic toS? x S*.
Moreover Morgan also shows thaf#k(S? x S') admits a round handle decomposition
if k£ is large enough.

One of the ingredients of the proof of Theorem 4.6 is the fact that every smooth mani-
fold admits a decomposition into ordinary handles. This can be shown using Morse theory.
Now let g : O_hy — OM andy; : d_h; — OM be attaching maps for ordinary

handles. We say that, and h; are attachedndependentlyf ¢, and ¢; have disjoint
images.

The second important ingredient of the proof of Theorem 4.6 is the following lemma.

LEMMA 4.8 (Asimov, As]]). Let M be a manifold and: > 1. Suppose thab! is
obtained fromM by attaching a handle of indéxand a handle of indek+1 independently
to the same connected componentdf. (If & = 1 it suffices that only one connected
component of_h; gets mapped to same connected componandbasd_hs.)

ThenM is diffeomorphic to a manifold obtained froid by attaching a round handle
of indexk.

Conversely a round handle of indéxcan be decomposed into a handle of indeand
a handle of indeX + 1. Attaching a round handle to a compact manifold does not change
the Euler characteristic.

This lemma allows us to obtain round handle decompositions of manifolds with a given
decomposition into ordinary handles. This will be useful for the construction of explicit
examples of Engel manifolds, so we sketch the proof Lemma 4.8.

SKETCH OF PROOF FORLEMMA 4.8. Fixp € ¢, 1(S* x{0}) and an embedded path
c: 1 — (M U, hy) with the properties
(i) c(0) =p
(i)) (1) = ¢r((q1,q2)) with (g1, g2) € S¥=1 x Sn=k=1 C 9_h,,
(i) ¢(1/2) = pp((—a1. 42))
(iv) cdoes not meepy1(S* x {0}) or o (S*—1 x S"~*=1) at other times.
(v) ¢is orthogonal tapy 1 (S* x {0}) andypy (S¥~1 x S?~*~1) with respect to some
metric.
Such a path exists becausg and h; are attached independently. Now fix a complete
vector fieldC' on9(M U, hy) extending:. Fore > 0 consider the flow), . of C at time
1+e. Let®, 1 = Y14e 0 prt1. SiNCEP, 1 IS isotopic topy,; we obtain diffeomorphic
manifolds when we attachy,; usingyy41 Or g, ;. So from now on we usg,_, ;. The
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effect of this operation is that we have dragged the attaching sphérg pfover 9, hy.
Now consider
h U hk+1 C (M Upy, hk) U¢k+1 hk+1 .
This set can be identified with a round handle of indexX\e explain this fom = 3 and
k = 1. The general case is carried out Asfl].
We focus on the situation neafl). The shape of the sefs (0_h1) andp,(0_ha) N
0+ M is drawn in Figure 1. The disc is a connected component;db_%;) and the

L(P)

FIGURE 1.

bold arcI" represents the part of the image of the attaching circke,afndery, which is
contained in a neighbourhood @fl) in 9M1. If one connects the endpointsibin the disc
©1(0—hq) as indicated by the dashed curve, we can identify the union of the two regions
depicted in the figure witiD! x S'. This corresponds to one connected component of
O_R; = OD' x D! x S'. This identification extends to an identification/af U hs with

R;.

Now we show how to decompose a round handle of indato two ordinary handles.
ConsiderRy, = D¥ x D" %=1 x §1. The last factotS' can be decomposed into a one—
dimensionalo—handle and a one—dimensioriathandle, both are diffeomorphic tB*.

Thus Ry, can be decomposed intg = D* x (D" %=1 x D') andh,; = (D* x D') x
Dn=(+1) ' In Figure 2 we give a picture of the case= 3, k = 1. The attaching circle of
the2—handle corresponds to the thick line. The Euler characteristic of a compact manifold

FIGURE 2.

is the difference between the number of handles with even index and the number of handles
with odd index in any decomposition of the manifold into ordinary handles. If we attach a
round handle of index this corresponds to the introduction of two handles of consecutive
index. Thus the Euler characteristic does not change when one attaches a round handle to
a compact manifold. O
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For a detailed proof of Theorem 4.6 we refer &s[l]. We just sketch the argument in
order to show that closed manifolds of dimension at ldastimit a round handle decom-
position with only one roun@-handle and one rourd-handle.

PROOF OFTHEOREM4.6. In order to obtain a round handle decompaositiodbivith
the desired property, we start with a decomposition\ffinto ordinary handles which
contains exactly one handlg of index0 and exactly ond—handle. Since the manifold
M is not simply connected, there is a hanéleof index one. Sincé/ is orientable, the
attachment of the first handle of indéxyields a round)—handle. If we apply Lemma 4.8
after introducing sufficiently many pairs of cancelling handles of irtlarnd3 respectively
3 and4, we obtain a decomposition éff into one round)—-handle, several round handles
of index1 together with some ordinary handles of indes, 4.

If we introduce a cancelling handle pair of ind&3 we can form a round handle of in-
dex3 from the4—handle together with th&-handle we just introduced. This is completely
analogous to the formation of a roufidhandle from a pair ordinaty- and1-handles.

Now we have obtained a decomposition\dfinto exactly one round handle of indéx
and3, several round handles of indéx2 and some ordinary handles of ind2x3. These
handles are attached to the boundary of the union of all round handles oftindeRince
the Euler characteristic of/ vanishes, there is an equal number of ordinary handles of
index2, 3. Introducing cancelling pairs of handles of inde&nd3, one can obtain a round
handle decomposition df/ without ever introducing an addition@-handle.

Thus we end up with a round handle decomposition\bfwith exactly one round
handle of index) and3. 0

On a manifold with a decomposition into round handles we can construct a non—
singular vector field using the vector field§, on round handles of indefx. Since vector
fields similar to the ones occurring this way will appear in the construction of Engel ma-
nifolds, we now explain dynamical properties of these vector fields. We first recall some
definitions. These can be found e. g. Rgm, Sm, Hal.

Let V' be a complete vector field on a manifold andJete the flow ofl/.

DEFINITION 4.9. Thenon—-wandering se&®(V') of V' consists of those poingsof M
with the property that for every neighbourhobidof p and everyl" € R there existg > T
such that),(U) N U # 0.

For example, every closed orbit &fis contained iM2(V). If X € T'M we write (X))
for the vector space spanned By
DEFINITION 4.10. A closed orbit ofi” of periodT" > 0 is called hyperbolic if the map
T,M T,M
Dypp e s E
(V(p)) (Vi(p)

has no (complex) eigenvalue with absolute value

For the definition of the stable and unstable manifold of a hyperbolic periodic orbit, as
well as for existence and uniqueness results we refé? $or{, Snj.

DEFINITION 4.11. A nowhere vanishing complete vector fidldon a manifold)M is
callednon—singular Morse—Smale vector figfd

(i) (V) consists of a finite number of closed hyperbolic orbits
(i) the stable and unstable manifolds of the periodic orbits intersect transversely.

DEFINITION 4.12. A vector fieldV on a compact manifold/ is structurally stablaf
for every vector field’’ which is sufficiently close td” in the C'—topology there exists a
homeomorphism o/ mapping flow lines o# to flow lines of V".
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Non-singular Morse—Smale vector fields on closed manifolds are structurally stable,
cf. [PSm]. On a closed manifold with a round handle decomposition we thus can construct
a structurally stable vector field without zeroes usikig on round handles of indek:

By definition of X, every closed orbit of the vector field constructed this way is hyper-
bolic. To each round handle corresponds precisely one closed orbit and by compactness we
have finitely many closed orbits. The transversality condition is easily achieved by small
perturbations of the attaching maps of the round handles.

COROLLARY 4.13 (Asimov, As1]). Every manifold of dimensiom > 4 with vanish-
ing Euler characteristic admits a structurally stable non—singular vector field.

Before we give examples of Engel manifolds with a round handle decomposition re-
lated to the Engel structure, we want to mention two other applications of round handle
decompositions.

THEOREM 4.14 (Asimov, AsZ]). Let V be a non-singular vector field on the flow
manifold (M, 0— M) with dim (M) > 4. ThenV is homotopic through non-singular vec-
tor fields to a non—singular Morse—Smale vector field pointing inward aleng/ and
outward alongdy M.

Starting from a round handle decomposition Thurston constructed foliations and proved
the following celebrated theorem.

THEOREMA4.15 (Thurston, Thul]). A closed manifold admits a foliation of codimen-
sion one if and only if its Euler characteristic vanishes.

4.1.1. Engel structures from convex contact structuresin this section we construct
first examples of Engel structures which are related to a round handle decompositions of
the underlying manifold. Recall the following definition frofal{5].

DEFINITION 4.16. A contact structur€ on a manifoldM is convexf there is a proper
Morse functionf : M — [0, 00) and a complete vector field such that

(i) V preserveg,
(i) V is a pseudo—gradient fof, i.e. there is a Riemannian metric and a positive
functions on M such that

Ly f > s|df|?.

Obviously, the zeroes df are critical points off. This can be used to show that the
zeroes ofl” are hyperbolic fixed points of the flow &f.

E. Giroux proved inirl] that on every oriented manifold of dimension three there is
a positive convex contact structure. In order to show this, a suitable handle—decomposition
of M is used. Let be a contact structure on themanifold M. Suppose that is trivial as
vector bundle and that there is a vector fields in Definition 4.16 which was constructed
in [Girl]. In particular, leth = D* x D3~* be a (standard) handle of indéxcontained in
the decomposition ak/. ThenV entersh through the boundary compones$it—! x D3~
and leaves throughD* x S2~F, Each zero o¥/ is in the center of a handle with the same
index as the index of the zero bf.

ConsiderS! x M with the round handle decomposition consisting of productS’of
with handles contained in the decomposition\éf We fix a trivializationX, Y of C and
we denote the horizontal lifts 8f, X, Y to S x M by the same letters. Using a calculation
analogous to (23)from the proof of Theorem 3.41 one can prove the following proposition.

PROPOSITION4.17. In this situation, the distributio®;, on S* x M spanned by

(28) W = 88t + Vand Xy = cos(kt)X + sin(kt)Y
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is an Engel structure o' x M if we choose/ small enough and € Z \ {0}. The
characteristic foliation oDy, is spanned byV. If £ = 0 we obtain an Engel structure only
of [V, X] is linearly independent fronX .

Note that we can multiply” with positive real numbers. The characteristic line field
of Dy, is spanned byV and we use this to orient the characteristic line fieldgf Here
we use the fact thalt” preserves the contact structute This is a simple instance of the
proof of Theorem 3.41 (iv).

Thus we obtain an Engel structure 6h4 x M together with a decomposition of this
manifold into round handles. Each of these round handles contains exactly one closed
orbit corresponding to the zero &f in the corresponding handle of the decomposition of
M. The characteristic line field is spanned by a vector field whose closed flow lines are
hyperbolic. The oriented characteristic line field enters a round hatidie D* x D3
throughS! x S*=1 x D3=* and leaves it through' x D* x §2~*,

4.1.2. A question of J. Adachi.At the end of Ad] one can find the following ques-
tion: Let Cy,Cq be contact structures on &manifold N, which are not isomorphic to
each other. Is there an Engel structufeon N x [0, 1] whose characteristic foliation is
transversal taV x {0} and N x {1} and which induces the given contact structufesn
N x {i}fori=0,17

For topological reasons the answer to this question is no in general.

LEMMA 4.18.If M = N x I is an Engel manifold with transversal boundary such
that for an orientation oWV, we have)_M = N x {0} andd;+ M = N x {1}. Then the
induced contact structureg, i = 0,1 on N x {i} ~ N are homotopic as plane fields on
N

PROOF SinceN is an orientablé—manifold, its tangent bundle is trivial. Fix a fram-
ing X,Y,Z of TN. ThenX,Y, Z, 0, is a framing of N x I. We fix a Riemannian metric
such that this framing is orthonormal.

Recall from HH] that the Grassmann manifolds of oriented planeRinmespectively
R3 are Gn(3) ~ S? respectively Gy(4) ~ S? x S2. The inclusionR? — R* induces the
diagonal map

A:Gry(3) ~ 8% — 5% x 5% ~ Gry(4) .
LetCoon N x {0} andC; on N x {1} be two contact structures afiland Engel structure
on N x I such that the induces contact struct@feon N x {:} for i = 0,1. Without
loss of generality we can assume that the characteristic foliatidn isftangent taJ; on
neighbourhoods ad(NV x I). Let€ = [D, D].

When we viewCy andC; as maps fromV to Gry(4) the orthogonal complement d¥
in £ induces a homotopy

H:N x1— Gry4)
betweerC, andC;. The composition off with the projection of pr 052 x 52 to the first

factor S? ~ Gry(3) is the desired homotopy betwe€nandC; viewed as distributions on
N. ([

If Co andC; are homotopic as plane fields, they can still be different as contact struc-
tures, for example i€ is tight andC; is overtwisted. We give an example showing that in
this situation(y, C; can be cobordant in Adachi’s sense.

EXAMPLE 4.19. Let r, ¢, z be cylindrical coordinates oR>. Consider the contact
form
o = cos(r?)dz — sin(r?)dy .
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Let S2(r) be the sphere of radiusaround the origin. The restriction ofto S?(r) defines
a one—dimensional foliation with two elliptic singularitieszat +r.
If r2 < /2, there are no closed leaves. Wheh = 7/2, there is one closed leaf
and if 2 > /2, there are at least two closed leaves. These bound overtwisted discs in
S2(r). Figure 3 shows the singular foliation fof = 37/2. Let S? = S%(\/37/2).
Using a theorem form the theory of contact structures (cf. Theorem 2.25) one can show

FIGURE 3.

that there is a contact vector fieldtransversal to these spheres. Without loss of generality
we choosé/ such that it has compact support and positive radial component. Moreover
we assume thal’ is invariant under rotations around theaxis. Fix a trivializatiorCy, Cy

of the contact structure di3. If ¢ > 0 is small enough,

W = gt + eV and Xy = cos(kt)Cy + sin(kt)Cy

span an Engel structure @t¥ x S'. The characteristic foliation is spannedi¥y. Consider
the submanifold

3
M:{lgrgg}:SQX[O,l}xSl

of R? x S! for anintegeik # 0. It carries an Engel structure and the boundary is transversal
to the characteristic foliation. The contact structures on

M = S x S

O_M = S*(1) x S*
are non—isomorphic: The contact structuredan/ is tight. On the other hand, the contact
structure ord, M is overtwisted since the overtwisted discs containesfif8/2) are still
present.

Let pr: R? x S' — RR3 be the projection. Thé—form 3; = pra — pr*(a(V))dt de-

fines an even contact structure BA whose characteristic foliation is transversabtoM/ .

SinceV anda are invariant under rotations around theaxis,« (V") does not depend on
. We use spherical coordinatgs, 9) € [0, 27) x [0, 7] on.S%. Then

;%:-@am(i%m%m)gmvmﬁ—gn<z%m%m>dw—gwmt
is a defining form for the contact structure @n)/ for all s € [0, 1]. Hence
. 3T . 2
(29) S+ = sin ~ sin (9) ) dp £ g(v)dt

defines an overtwisted contact structuresdnx S'. The contact orientations are different
for 54 andj_.
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4.2. Model Engel structures on round handles

4.2.1. Round handles of index zero and threeThe standard contact structufeon
S$3 c R* is defined by tha—form
o= —yldacl + xldyl — yzdxg + .%'Qdyg ,
the corresponding Reeb vector field is

0 0

R=—uy 0 va i—y2—+x2—.
Oz 0y

o1 oy,
A trivialization of C is given by

Cr=—Yor— —T2— + y1i + nr:1i
or1 8y1 0z 8y2

Cy = _$2i + Zni + 361i - 3/1i :
0y oY1 0 Y2

Together,R, C1, Cs form a framing ofS® such thafCy, Cs] = 2R, [R,C;] = 2C5 and
[R,C3] = —2Cy. In order to obtain a model Engel structure on round handles of index
0 and3 such that the boundary d?, respectivelyRs is transversal to the characteristic
foliation we consider firs62 x S'. The coordinate on the second factot.isNe denote
the horizontal lifts ofCy, Cs, R by the same symbols.

On S3 x S! the span ob; and

X = cos(kt)Cq + sin(kt)Co
is an Engel structure ik # 0. The characteristic foliation corresponds to the one—
dimensional foliation induced by the second factorsth x S'. We perturb this Engel
structure in a similar way as we did in Theorem 3.41 (iii). Eo£ 0 consider the distribu-
tion Dy, spanned by

0 Ty x2 Y2
W=t (FR-FO+T0)
X, = cos(kt)Cq + sin(kt)Cy .

This perturbation of the initial Engel structure is so small #gais still an Engel structure.

LEMMA 4.20. For k # 0, the sparD;, of W, X, is an Engel structure o582 x S'. The
characteristic foliation is spanned By'.

PROOF In order to show thatDy, Dy ] is a distribution of rank we calculate

(W, Xi] = (—k: sin(kt) + %yl cos(kt) — %xl sin(k:t)) Cq

1
+ (k cos(kt) + Zwl cos(kt) + e sin(kt)) Cy .

This is linearly independent df and X}, becauséW, X;| has no component in thie-
direction and
cos(kt) —ksin(kt) + ty; cos(kt) — 3aysin(kt) \ 3
det < sin(kt) k cos(kt) + 2z cos(kt) + sy sin(kt) ) — k+ 1 70

Thus& = [Dy, Dy is a distribution of rank3 spanned byC, Co, W. In particularé
is independent of. SinceC},C, span a contact structure ¥, £ is an even contact
structure.

LetZ = W — 9;. ThenZ can be obtained by applying Proposition 2.7 to the function
x1/2. S0Z is a contact vector field and, C;] and[W, C5] are both linear combinations



4.2. MODEL ENGEL STRUCTURES ON ROUND HANDLES e

of Cy,Cy. Hence[W,E] C &£. This shows thait’ spans the characteristic foliation of
Dy. O

The characteristic foliation db;, is transversal to the hypersurfagg = 0} C S®xS?

since
0 1 1 1
— W =_-Z= 2 -2 -2 0.
<8y1’ > 2<x1+2$2+2y2 <

The only zeroes of = W — 0, are(0, £1,0,0).
Cutting S3 x S! along{y; = 0} yields two copies o3 x S!. Both carry an Engel
structure and the boundary is transversal.

DEFINITION 4.21. The model Engel structuré;, on a round handl&?y, = D3 x
St (respectivelyR; = D? x S') of index 0 (respectively3) is the Engel structur®;,
constructed above ofy; > 0} (respectively{y; < 0}).

We orient the characteristic foliation @ on R, respectivelyRs by W. It points
outward alongd+ Ry = OR + 0 and inward along)_R3 = 0Rs. The characteristic
foliation on Ry and R3 has exactly one closed hyperbolic orbit in the centePdfx S!.
The model Engel structure itself is oriented 8% X.

REMARK 4.22. The model Engel structur€®, on round handles of index zero respec-
tively three induce equal structures on the boundary. This means that

Id:0;Ry~ {y1 =0} x S* — {y1 =0} x S' ~ 9_Ry
preserves the induced contact structure and the intersection foliation on the boundaries
together with their orientations.

4.2.2. Index one.On a round handle of index orde, = D! x D? x S! we denote the
coordinate oD by z, the coordinates o®? arey, y» and the coordinate ofi' is¢t. We
want to construct different Engel structuresi®nand discuss some of their properties. Our
choices here are motivated by/gi, EI2]We start with the construction of an even contact
structure.

Consider the symplectic form = dy; A dt + dx A dy». The vector field

o 1 0 0 1 9

Wi=—+-y1— — = —x—
! 8t+2y18y1+y28y2 2" o

is a Liouville vector field (up to a fact@®) for w, i.e.

LWlw = 5(&) .

Note thatWW; entersR; throughd_R; = {+1} x D? x S! and points outward along
0. Ry = D' x S x S'. By Example 3.8

1 1
a1 = iww = —dy1 + §y1dt — Yodz — §xdy2

defines an even contact structdr®n R; whose characteristic line field 1§7. A trivial-
ization of £ is given byl followed by

. 1
Cl =Yoo — — with [Wl,Cl] = 501

02 = T — — with [Wl,Cg] = —CQ .
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Now we look for Engel structures whose associated even contact structfireTisese
Engel structures have to be subbundle§ abntainingi¥’. For non—zero integets, let

X}, = cos(kt)C1 + sin(kt)Cs .

PrROPOSITION4.23. The sparD;, of W1, X}, is an Engel structure whose characteristic
line field isT/7.

PROOF SinceD; is contained in an even contact structure, it is enough to show that
[Dy, Di] = £. By definition of the characteristic line field of an even contact structure we
have[W,, D] C [W1,€&] = £. Furthermore

[(Wh, Xi] = (—k sin(kt) + ;cos(kt)> Cy + (k cos(kt) — sin(kt)) Cs .

Since[WW7, Xi] has nod,—component[WW;, Xi] is linearly independent dfi’;, X, if and
only if it is linearly independent ok, or, equivalently, if and only if the determinant

cos(kt) —ksin(kt) + §cos(kt) \ _, 3 .
det ( sin(kt) kcos(kt) — sin(kt) ) i 4 sin(2kt)

never vanishes. But sincgeis a non—zero integer, this condition is always satisfied. Hence

[Dy, Dx] = €. O

We orient the Engel structurB;, by W1, X;. The canonical orientation of the even
contact structuré€ = [Dy, Dy is given by, C1, kCs. Hence the canonical orientation
of £ depends on the sign &f

Next we summarize some properties@f. These properties will be used in later
constructions. Since the characteristic line fieldaé transversal to both boundary com-
ponents ofRR;, the even contact structufeinduces a contact structure 6n R, andd R;.

LEMMA 4.24. The Engel structur®;, on R, has the following properties.

(i) On botho_R; andd Ry, the orientation of the contact structure is positive with
respect tada; if £ > 0 and negative it < 0.
(i) The curvesyL = {+1} x {0} x S! are Legendrian. The rotation number along

them is—|k|.
(iii) The rotation number of the intersection line field with respect to
o 1 0
V= Y25, + DYAr

along{0} x {y1 = 0,y2 = 1} x Stis —|k| and it equal®) along{0} x S* x {0}.
PROOF (i) Let Xy, [mk] be the projections oKy, [W7, Xi] to 09— Ry alongW.
The contact structure of_ R, is spanned and oriented b§;,, [W, X;,]. Now we have to
find the sign ofda; ()N(k, (W1, Xk]>. By the definition of the characteristic line field of an
even contact structure we find
= 1 3 .
day (Xk, [Wl,Xk]> =3 (k - 4sm(2kt)>
>0 fE>0
Tl <0 ifk<O.

This proves the claim 08_ R;. The same argument works on R;.
(i) The contact structure ol Ry = {+1} x D? x S! is defined by thé—form

1 1
a|87R1 = —dy1 + §y1dt - §mdy2
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with =z € {£1}. The tangent space of. is spanned by, andy; vanishes along.. So

these curves are Legendrian. For the calculation of the rotation numbers we first need a
framing of the contact structures along such that the first vector spans the intersection
foliation. The intersection line field is spanned by

Xp = Xp — (= cos(kt)) <_925W1>

2 o 1 0
(30) = COS(th)a - cos(k:t)a—y1

, 2 1 0 0
+ (sm(kt) + ~u cos(kt)) (2x3y1 - 6y2> :

For later use we have calculatég, away fromv... Here we only need

X, = 2 cos(kt)aat + sin(kt)Co along~yx+ .
x

The second component of an oriented trivialization of the contact structuve Binis the
projection[IWy, X;] alongW to {£1} x D? x S'. For[Wy, X}] alongvy+ we obtain

(Wi, X3] = [Wh, Xa] — (k: sin(kt) — ;cos(kt)> <—iwl)
= % (k sin(kt) — ;cos(kt)> gt + (k cos(kt) — sin(kt)) Cy .

The tangent space of. is spanned and oriented By. This vector is the following linear
combination ofX}, and[W7;, X;]

9 = ((k cos(kt) — sin(kt)) X}, — sin(kt) [V[Z??;J)

ot —2k + 3sin(kt) cos(kt)

Finally, we get the rotation numbers alofg as the winding number arouricbf the map
e~ St — R\ {0}
z((k cos(kt) — sin(kt)), — sin(kt))
—2k + 3sin(kt) cos(kt)

Thus the winding number is |k|. In particular, the rotation number along is the same
as the rotation number along .

(iii)

V is obviously tangent té; R; and sincex; (V') = 0, it is a Legendrian vector field.
The curve

t—

y1={y1 =0,y2 =1} x {x =0} x S*
is Legendrian andf” equalsd; there. In order to find the rotation number of the intersection
line field alongy; we can use the result for the rotation number alendgorm (ii). Notice
that all curves
Ve ={y=0,p=ct x{z==+1}xS'Cco_R,

are isotopic toys through Legendrian curves. Hence the rotation number aidgngs
independent of. Forc > 0 we can transport together with{ys > 0} C 0_R; t0 04+ Ry
along the leaves of the characteristic foliation to the other boundary companéhtof
R;. The curveyi remains Legendrian throughout this process simce= 0 along the
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leaves ofWW; passing through$ and the rotation number is always well defined. Hence
the rotation number along the resulting curve

{11 =0,92 =1} x {& = f(e)} x S

is also—|k|. This curve is isotopic through Legendrian curvestoSo the rotation number
along~; is —|k|. Notice that if we had started with < 0 we would end up with a curve
in 0+ Ry havingys—coordinate-1. Since we obtain the same result if we start withor
v+, the argument above also shows that the rotation numbers of the intersection line field
alongvy_ and~, are equal.

In order to compare the intersection foliation @nR; with the Legendrian line field
V along

72 = {0} x St x {0}

we calculate a vector field spanning the intersection line field and then an oriented framing
of the contact structure am. R;. The first component of this framing is the projecti&n
of X, alongWW; to 04 R;. We obtain

2y192 0 0 2y3 ( 0 G, )
520t 9n s (g ——vey— |-

—y; Ot Or  2—vyj 01ya oy
alongy,. The second component of an oriented framing of the contact structute Bn
is the projectiorjiVy, X;] of [W1, X} alongW; to 04 R;. Along ~2 we find

2kys —t1y2 0 10 kyi +y3 0 0
Wi X = 2292 —J192 9 - 9 PALTS (L T
W1, X 2—y? Ot 20z 2 —y? 15y2 y23y1

For the calculation of the rotation number alof@} x S x {0} with respect tol/, we
express/ as linear combination ok, and[IW;, X;]. We obtain

X, =

1 ~
V= oo ((—hys = 93) X + 20301, X))

The induced ma!—R? \ {0} has winding number zero arouid Hence the rotation
number alond0} x S x {0} is zero. O

4.2.3. Index two. In this section we use the notatiobs, £, X;., C1, Cs for the defini-
tions of model Engel structures on round handles of irtlebater, when we deal with the
similarities between round handles of index one and two we will add appropriate indices.

In order to construct Engel structures & = D? x D' x S', we use the same
symplectic form as in the case of index oneuse: dy; A dt + dx A dy,. The coordinates
on D? arey, 32, the coordinate o' is 2 and the coordinate ofi! is . We orientR; by
Oy 5 Oyy, Ox, Oy Let
o 1 0 0 1 0
ot 2oy Vo T2V
Note that this vector field enter?, througho_ R, = S' x D! x S! and points outward
alongd, Ry = D? x {+1} x S*. Furthermore, this vector field satisfies

Wy =

1
LW2(.U = —5(4} .
By Example 3.8, the form
. 1 1
az = —iw,w = dy1 + Sy1dt — yode — Sxdys

defines an even contact structdren Rs whose characteristic line field is spannediby.
As defining form for the even contact structure we useinstead ofiyy,w becausex;
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defines a more convenient coorientation as we shall see in the next section. A trivialization
of £ is given byW followed by

0 0 . 1
1 yga—yl + % with [WQ, Cl] = —501
1 0 0 .
CQ = imaiyl + @ with [WQ, CQ] = CQ .

For non—-zero integerslet
Xy = cos(k(t —4))C1 + sin(k(t — 4))Cs .

The shift by4 in t—direction will be convenient when we compare the model Engel struc-
tures on round handles of index one and two, cf. for example Proposition 4.29 (ii).

PrROPOSITION4.25. The sparD;, of W5, X}, is an Engel structure o, whose char-
acteristic line field idl/s.

ProoF The distributionD,, is contained in an even contact structdrandD,, con-
tains the characteristic line field spannediby of £. This implies[Dy, D] C €. In order
to show[Dy, Dy| = £ we calculate

W), X)) = (—ksin(k(t _a))— %cos(k‘(t _ 4))) o)
+ (kcos(k(t —4)) +sin(k(t —4))) Ca

So [Wa, Xi] has nod,—component. It is linearly independentdf, X, if and only if it is
not a multiple ofX. But the determinant

cos(k(t —4)) —ksin(k(t —4) — Scos(k(t—4)) \ _ 3
det ( sin(k(t —4)) k cos(k(t —4)) isin(k(t —4)) > =k + —sin(2k(t — 4))

never vanishes becausec Z \ {0}. Hence[W>, X;] and X}, are linearly independent.
HenceDy, is an Engel structure. By constructighjs the associated even contact structure
and therefore the characteristic foliationZf is spanned byis. O

As in the case of round handles of indexve summarize the characteristic properties
of the Engel structureBy.

LEMMA 4.26. The Engel structur®;, on R defined above have the following prop-
erties.

(i) The orientation of the contact structure on R, and 0_ R, is positive with re-
spect tadas if k£ > 0 and negative it < 0.
(i) The curvesyy = {£1} x {0} x S are Legendrian. The rotation number along
them is—|k|.
(iii) The rotation number of the intersection line field with respect to

1
V = y20; + iylax

along{0} x{y; = 0,y2 = 1} x Stis —|k| and it equal®) alongd D? x {0} x {4}.

PrROOF The proof consists of similar calculations as in Lemma 4.24 for the case of
index one.
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(i) Let Xj, [mk] be the projections oK, [W2, Xj] to 94 Ry alongWs. As in
the case index, we calculatelas ()N(k, [Wa, Xk]). By the defining property of the char-
acteristic foliation

— —~ 1 3 .
das <Xk, [WQ,Xk]) =2 <k + S sin(2k(t - 4)))
>0 ifE>0
1 <0 ifk<O.

The same calculation yields the desired result aldng,.
(i) Both curvesy, and~_ are obviously Legendrian. We calculate the projections

Xy, [Wa, X3,] of Xz, [Wa, Xi] alongWs to 9, R,. For X, we obtain

X, = X, — cos(k(t — 4)) (im)

2 o 1 0
(31) = —— cos(k(t — 4))5 + —y1 cos(k(t — 4))8—y1
. 2 z 0 0
This will be needed in the next section. For the moment we need to know only
X, = 2 cos(k(t — 4)); + sin(k(t —4))C along~y. .
X

—_—

It suffices to calculatéi,, X} ] only alongy... We get

(W, Xy] = [Wa, Xi] — <—ksin(k(t _a))— %cos(k(t _ 4)) (im)

_ ; <k:sin(k(t —4) + %cos(k(f - 4”) %

+ (kcos(k(t —4)) + sin(k(t —4)))Co .

Next we expres$;, the tangent vector of.., in terms of the oriented basPEk, [Wa, X]
of the contact structure o R,

P ((k:cos(k(t —4)) + sin(k(t — 4)) Xy, — sin(k(t — 4))[@)@])

ot 2k + 3sin(k(t — 4)) cos(k(t — 4))
By definition, the rotation number along. is the winding number arour@of

v =~ St — R\ {0}

—x((kcos(k(t — 4)) + sin(k(t — 4))), —sin(k(t — 4)))
2k + 3sin(k(t — 4)) cos(k(t — 4)) '

Hence the rotation number along is —|k|.
(i) V is again a Legendrian vector field on R».The curve

v1={y1 = 0,90 =1} x {z =0} x §*

is Legendrian and” = 9; along this curve. Using the same argument as in Lemma 4.24
(iii) one can show that the rotation number along this curvelis.
For the calculation of the rotation number along

e = {0} x St x {4}

t—
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with respect td/ we first seek the projectionsy,, [Wa, X of X, [Wa, X;] alongWs to
0_Rs.
Along 2 we get

foowpd 0 2 ( 0 0

Fro 2ot ox 2—2 Moy, Moy
P 2kys —y1y2 0 10 y3s+ky 0 0
Wy, X = 2= 9192 ¢ 29  prbinf 9 9.
W Xl === 5 " 2ae T am \Yay %o

The rotation number of the intersection foliation with respedt'talong the circley,
is zero (as in the case of index one) since the siapR? \ {0} corresponding to

1 . e~
V= o ((nk +33) %0 + 2302, X,

is homotopic to a constant map. O

4.2.4. Derived models.We writeD,(gl) respectiverD,?) for the model Engel structure
with k£ € Z\ {0} on round handles of index one respectively two. We discuss now the case
of index one, the round handles of index two can be treated exactly in the same way.

For all possiblée:, the Engel structureE,(Cl) induce the same even contact structure. In
particular the contact structures 6n R; andd; R; are independent df. We can obtain
different isotopy classes of Engel structures if we apply self—diffeomorphismis.dfet

O: R =8"xD’xI—S'"'xD*xI=R;
(t,y,x) — (t,exp(it)y, x) .

This generates the isotopy classes of orientation preserving self-diffeomorphigtas of
We define

1 (1
(32) p) —empl)

The induced action on homotopy classes of framings.ofs the same as the action
defined in (6). By definition® preserve®, R; ando_ R; as well asy.. Asm € Z varies,

the contact framings of.. induced byD,(:T)n vary and we obtain all homotopy classes of
framings ofy,. inducing the same orientation. Of course the framingg,0dnd~_ do not

vary independently. Although the contact structures induceﬂ@g on the boundary are
different, they give the same orientation of the boundary.

REMARK 4.27. This is a difference between Weinstein‘'sl—surgery described in
[Wei] along one Legendrian knot and our method. In our situation one can realize ev-
ery oriented framing ofy,. together with an Engel structure and a symplectic structure on
the whole ofR;.

The—1-surgery on Legendrian curves preserves weakly symplectically fillable contact
structures. However, the model symplectic structures on ordixdrgndlesD? x D? from
[EI2, Wei] which induce contact structures on the boundary single out particular framings
of the attaching curve.

4.3. Relations between the models oR; and Ry

As we have shown in Lemma 4.24 and Lemma 4.26, our model Engel structures on
round handles of indek and index2 share many properties. Now we want to look closer
at the relations between the induced structures on the boundary components of the round
handles. In this section we identif§; and R, using the obvious map between the two
handles. When we still refer tR; or R, we mean some property of the model Engel
structures orR; respectivelyR, from the previous sections.
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We write D,(Cl) respectiverD,(f) for the model Engel structure with parameterc
Z\{0} on round handles of index one respectively two. When we use symbols appearing in
the constructions of the model Engel structures we add an additionalirad@depending
on the index of the round handle.

PrROPOSITION4.28. The contact structures induced by the Engel struct[DE% re-

spectiverD,(f) ond_ R, respectively, Ry are homotopic through contact structures. The
same is true for the paid; Ry, 0— Ro.

PROOF The even contact structures @y respectivelyR, induced byD,(j) respec-
tively D,(f) are defined by

1 1
ap = —dy; + §y1dt — yodx — ixdyg on R,
1 1
ar = dy + §y1dt — yodx — imdyg onkRky.
Consider the family of vector fields
o 1 0 0 1 0
W(s)=1-28)= 4+ y1— + 9o — —T— .
() = (1=2s) 5, +qng Fvg -~ 3%,

with s € [0,1]. For alls, W (s) is a Liouville vector field ofv = dy; A dt + dx A dy2 up to
afactorl/2 andW (s) is transversal to the boundary 8f for all s. SincelV(s) vanishes
ifand only if s = 1/2 andz = y; = y2 = 0, the family

1 1
a(s) =iy (w = —(1 — 2s)dy; + §y1dt — yodx — §:rdy2

defines a family of even contact structuresidhx D? x S\ ({0} x {0} x S') such that
the characteristic line field is spannedWB(s). So«(s) induces a family of contact forms
on both boundary components Bf. O

Note thato(0) = o anda(1) = as while W (0) = Wy but W (1) = —Ws.
In the following we want to compare the intersection line fields induceGD}j‘Q/ and

D,Ef) on both boundary components &f respectivelyR,. Since these line fields are
Legendrian line fields contained mhifferent contact structures, we need to identify the
contact structures first. To this end we will apply Gray’s theorem (Theorem 2.4) to the
family of contact forms used in Proposition 4.28.

Recall that the isotopy in Gray’s theorem is obtained as the flow of a time—dependent
vector fieldZ, associated to a family of contact formss). This vector field is the unique
vector field which is tangent to ket(s)) and satisfies

(33) i(Zs)da(s) = _do:l(ss) on kera(s)) .

It is an easy consequence of the proof of Theorem 2.4 that ifatisfies the stronger
equation
da(s)

ds

(without restricting to kef(s)), then the times=flow «(7) preserves contact forms and
not only contact structures since thére 0 in the proof of Theorem 2.4.

(34) i(Zs)da(s) = —
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4.3.1. The boundary component_R; = 0, Rs. First we consider the boundary

component)_R;. In order to have flows which are defined for all times, we suppose

(y1,92) € R? instead of(y;,y2) € D? for the moment. The family of contact forms is
the restriction ofx(s) from Proposition 4.28 té@_ R,;. We use the same notation for this
restriction. In order to findZ; we have to solve the equations

1 1
i(Zs) (—(1 — 28)dy; + =y1dt — yodx — :Udyg) =0
2 2
(35) )
i(Zs)idyl Adt = —2dy; on ker(a(s)) .
The solutionZ, of these equations defined ém = +1} x R? x St is

Zy=4o + —y1—
Y

and this vector field even satisfies equation (34). Notice Zhatoes not depend on So
we write Z_ referring tod_ R; instead ofZ,. The time-«+—flow of this vector field is given

by
_ 4
(36) V(1) (= £1,y1,y2,1) — (58 ==x1,y1,92 + xle’t+4T> .

On{zr = £1} x R? x S! this is defined for al- andv~ preservesy = {y1 = yo =
0,z = £1}. By construction, the time=—flow ¢y~ (7) of Z_ satisfies

(1)« (ker(a(0))) = ker(a(r)) .

The following proposition summarizes the relations between the image of the intersection

line field induced byD" under~(1) = 4~ and the intersection line field induced by
D,(f) ono_ R, respectivelyp, Ry. Fori = 1,2 let )?,ff) be the projection of the vector field
X ,5,” used in the construction a?p};) alongW; to 0_ R, respectivelyo, R,.

PROPOSITION4.29. The timed—flow«~ of Z_
(i) preserves the sefs;; = 0} and~.. Moreover it preserves the orientations of the
contact structure induced b?,(:) respectivelﬂ?,(f).

(i) mapsf(,gl) to a Legendrian vector field which is homotopici’éz) through Leg-
endrian vector fields. Ofly; = 0} the intersection line fields are preserved (with

their orientation given by?,gl) respectivelf(,f)). In particular )~ preserves the
homotopy type of the intersection foliation along.

PROOF (i) Thatvy~ preserveqy; = 0} and~4 is obvious from (36). The contact
structure alondy; = 0} induced byD,(;) is spanned and oriented by

L0 (L2 9
x Ot 2 0y1 Oy

as we have shown in Lemma 4.24 (i). A direct calculation shows
10 10
-1 1oy _ 190
(47 ))*< x8t> x Ot

v () (e )
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along~+. On the other hand we know from Lemma 4.26 (i) that the contact structure
induced byD,(f) is spanned and oriented by

1o, (10 9
x Ot 270y, Oya )
This proves (i).

(i) Inthe proofs of Lemma 4.24 and Lemma 4.26 we have given expressions for the
projectionsX,il) andX,gz). Along y; = 0 we get

v (X47) = —% cos(k(t - 4))% 4 <cos(k:(t )y + %xsin(k‘(t _ 4>)> 88@/1
. 2 0
+ <sm(k:(t —4)) + iz cos(k(t — 4))) e

Comparing this expression with (31) one sees that it eqﬁé:fé It is now clear that)~
preserves the homotopy type of the intersection foliation atong O

Away from {y; = 0} the statement (ii) of the last lemma is not true. We will use
the behaviour of the flow only on a small enough neighbourhooflypf= 0}. On this
hypersurface the flow of_ is complete even o' x D? x S' ¢ D! x R? x S,

4.3.2. The boundary component; R; = 0_Ry. Now we carry out the analogous
discussion for the other boundary compon@pi?;. This is more complicated because of
the following reason: When one glues a round handle to a manifold with boundary, one
obtains a manifold with corners. In order to get a smooth manifold without corners we
cut off a piece of the round handle. So in the case of round handles of indbg new
boundary component of the manifold with a round handle glued to it is not prec¢isély.

As a first approximation we first ignore the effect of smoothing and considetariy
respectively0_ R,. In order to obtain flows which are defined for all times we assume for

the moment that € (—oo, c0) rather thene € [—1,1]. The Engel structure@,(ﬁl) and

D,(f) are defined by the coordinate expressions from the sections above.
We apply the proof of Gray’s theorem to the restrictioftex 9D? x S* of the family
of 1-forms

1 1
a(s) = —(1 —2s)dy; + iyldt — yodx — 5xdyz i

The restricted family is again denoted bys). The kernel ofx(s) (restricted taR x St x
S1) is spanned by

o 1 0 0 0 0 0
37 — 4~y d (1-—2s)=— — —yy— =
(37) y28t+2y18x and ( S)aer(ylaw 928y1>+x8t
The vector field
8Yy2
Zy =
(38) 1+y3

is contained in keky(s)) and it solves even (34). Agaifi; does not depend of) we write
7 for this vector field. The time~—flow of Z is

+ t 1 t S 2
T): \T, Y1, Y2, xz ] 2 Ty Y1, Y2, ] 2 7 .

It has the propertyy)™ (7)) a(1) = «(0). The following lemma describes the behaviour
of the timed—flow ¢+ of Z with respect to intersection foliations.

PrRoOPOSITION4.30.
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(i) The line field spanned field = y20; + 1/2y,0, is Legendrian with respect to
the contact structur&er(a(s)) for all s and it is preserved by ™ (7).
(i) " preserves the contact structures inducedZhy; respectivelyD, ;. together
with the induced orientations.
(iii) The image undey™ of the intersection line field of the Engel structdﬁél) is

homotopic to the intersection line field inducedlby).

PROOF (i) V is obviously tangent té; R; anda(s)(V) = 0. SoV is Legendrian
andZ, is a multiple ofV by (38). Therefore the flow of ;. preserves the line field spanned
by V.

(i) Recall that a contact structure orBadimensional manifold induces a canonical
orientation of the base manifold. In Lemma 4.24 and Lemma 4.26 we showedthat

respectivelyasy defines the right coorientation of the contact structure induce(z{)gg/

respectivelnyf) ond, Ry if k> 0 and the wrong coorientation if < 0. Sincey ™y =
a1, the timed—flow of Z, preserves the orientation of the contact structures.

(i) The flow* () preserves the Legendrian curiee = y; = 0,3, = 1}, this curve
is Legendrian for all contact structures kefs)). So the rotation number of the image
undery ™ (7) of the intersection line field induced Hy,il) along this curve is independent
of 7. Hence it equals-|k|.

In Lemma 4.24 we have shown that alofig} x S' x {0} ¢ D! x D% x S, the
intersection line field oD,(:) is homotopic to the line field spanned by Since the flow
¥t (1) preserved/, the same is true for the image undet of this intersection line field
along the curve) ™ ({0} x S x {0}). Moreovery™ ({0} x S* x {0}) and{0} x S* x {0}
are isotopic. Together witfw = y; = 0,y2 = 1}, this curve generate; (04 R;; Z).

By Proposition 3.22 together with (i) and (i) this proves the claim. 0

Finally notice that if we consideb! x D2 x S' where the radius oD?2 is not1
but o, then the expression in (38) for the vector fi¢ld obtained by Gray’s argument is
replaced by

8y 8 1 8

Of course Proposition 4.30 applies in both situations (38) (where the radib$isfl) and
(39) (where the radius db? is oy).

As we have already mentioned, this discussion does only approximate the situation
we are in when we glue roung-handles to manifolds with boundary. In order to obtain
manifolds without corners we remove a certain part of the round handle. For the real

boundary components, the isotopy relating the two contact structures indu@@i)b;nd

D,f) is more complicated than in the situation above.
We now describe models for

¢ the gluing of round—-handles with the Engel struct@l) to 0, My alongd_R;.
e the gluing of roun@—handles with the Engel structt@” to 0_ Ms alongd; Rs.

Then we compare the resulting contact structures and intersection line fields on the bound-

ary of the smooth manlfoldMl =M UR; andM2 = M> U Rs.
Let M be the subsedtz| > 1 of R x R? x S'. Let M, be a copy ofM;. On M; we

consider the Engel structure defined by the same coordinate expression we u@éld for
while on M5 we use the expression of the Engel strucﬂ);&@.
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The round handle of indekis the subsef|z| < 1} x D? x S' of R x R? x S!. The
Engel structure o/, extends obviously to an Engel structure ®h U R; and the same
statement is true for round handles of indeand M.

In order to obtain smooth manifolds with boundary, we cut off piece®,chnd R, as
follows. Choose a functiom : D'—[1/2, 1] which is smooth on the interior ab! and
satisfies

(i) o(1) =1

(i) o(—z) = o(z)

(i) ¢(z) <0onz <0

(iv) o = ogis constant of—1/2,1/2].

Moreover we assume that
(40) B = {(177y17y2at)‘956 (_171)73/%—’_:‘/% :0'($)}
together with the part

{(z,y1,42,t)|z = £1 andy; +y3 > 1}

of the boundary of\/; respectivelyM, is a smooth submanifold d& x R? x S*. Itis
transversal tdV () for all s by condition (i) and (iii).

We remove the points with? + y3 > o(x) from Ry and R,. The remaining parts will
be denoted bﬁl respectivelyég only for the remaining part of this section. Afterwards
we will use R; respectivelyRs. We obtain smooth manifoldﬁl =M U El andﬁg =
M, U Ry. Both manifolds now carry smooth Engel structures and the new boundaries are
transversal to the characteristic foliation by the conditions (ii) and (iiiFon

The following theorem is a refinement of Proposition 4.30 for the situation of the
model. We fix some notation first. Lek be the curve{—1 < = < 1,t = 0,y; =
0,y = o(x)} C R; extended by two straight intervals contained{in = 0} pointing
away fromR; in radial direction, thus onlys is increasing along the intervals andis a
smooth curve ir9, M7 while y; = 0.

For the family of contact forms we use the restrictiordtal/, of

M@Z—@—%Mm+%mﬁ—mﬁ—%mw
with s € [0, 1]. We apply Gray’s theorem to this family in order to obtain an isotopy
P(T) Oy My — O_My
such that the image of the contact structure induceﬁ)ﬁglon 84%1 is defined by (s).

THEOREM4.31. The isotopy) () constructed above has the following properties.

(i) ¥(0) is the identity map; M;—0_ M, in terms of the coordlnatea Y1, Y2, t
(i) (1) preserves the contact structures mducedl]ﬁy) on 8+M1 respectlvely by
(2) ono_ Mg
(i) w( ) preserves the homotopy type of the intersection line fields.

(iv) ¥(7) preserveqy; = 0} and the line field spanned ldy along this hypersurface.
This line field is Legendrian with respectdds) for all s € [0, 1].

(v) (1) maps the intersection line field tﬁf,(cl) along A to a Legendrian line field

which coincides with the intersection line fieldlof) on the boundary points of
¥(A). The two Legendrian line fields are homotopic alaf@\) relative to the
boundary points of this arc.
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PrROOF The statement (i) is a reformulation of the identification bet\/\ﬁamndﬁg.
The proofs of (ii) and (iii) are the same as in Proposition 4.30.

(iv) Along {y1 = 0} we have clearlyx(s)(9;) = 0 for all s. In order to prove the
remaining part of (iv), notice that away from the attaching regio@pfrespectivelyEQ,
the claim is true since there the family of contact forms is precisely the one appearing in
Proposition 4.29. N

For the remaining patB of 0, M5 one can show by a direct calculation which can be
found below, that alongy; = 0} the vector field inducing the Gray isotopy equals

~ )
(41) Zy =45, .

This vector field obviously preservég; = 0} ando;.
One can expect (41) for the following reason : From Proposition 4.30 we know that the
Gray isotopy associated to the restrictiornd$) to 9 Ro preservegy; = 0} and the line
field spanned by,. Now {y; = 0} and the line field spanned Iy are invariant along the
characteristic foliationV(s) of the even contact structure defineddafs). This foliation
is spanned byV (s). By Lemma 3.5, we can identify the contact structure defined [y
on d_ R, with the contact structure defined bys) on the smoothened handle R,. We
can transfer the vector field which induced the Gray isotopy.oR, to O_ R,. The flow
(7) of the vector field ord, R, has the property

¥(7).ker(a(0)) = ker(a(r) .

Unfortunately it is not clear that the vector field we obtainedi®is the one we would
obtain from Gray’s theorem becausés) is not invariant alongV(s) sinceLyy (s)a(s) =

1/2a(s). Because we want to obtain smooth isotopie)on/, it is better to use one and

the same method ai. M, \ B and onB to construct the isotopy.

(v) The claim about the intersection line fields at the endpoint& akspectively
¥(A) follows from Proposition 4.29 (ii) because the endpointsfofie outside of the
attaching region of the round handles and they are containgg is- 0}.

We definedD,(;) on M, to be the span of

w9, L. 9 9 1.0
1=5, 2y18y1 y23y2 27 dx
0 o 19 alongA
ot y28 2 Oz J
. o Lo 0
X, cos(kt) <y28 81‘) + sin(kt) <2$8y1 8y2>
0
y287y1 - alongA

A nontrivial linear combination ofV andX,il) along A either has a;—component be-

causey- is never zero along\ or the linear combination is in fact a multiple @f;. In
both cases, the linear combination is not colinear wjth
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Similarly, we defined the Engel structure 8n]\72 to be the span of

w2+t 9o 90 1.9
2T ot " 2% 0y Py T2 0s
9 o 1

0
—a_QQain‘F?%%

XY = cos(k(t — 4)) <y286y1 + (%) + sin(k(t — 4)) <1x8 + 6)

3} 0
= <y28y1 + 8x> alongy(A) .

Note that thet—coordinate of)(A) is 4. The same argument as above shows that along
{t = 4,y1 = 0}, the Legendrian vector fielg is never contained i@,(f).

So both oriented line fields (the first is the image of the oriented intersection line field
on 8+J\71 undery and the second is the intersection line field induced);(g%} on 1\72) are
Legendrian for the contact structure inducedﬂzﬁ) on 0_ M, by construction and they
are equal at the end points©fA). Recall that the isotopy preserveg), along{y; = 0}
by (iv). Along this curve, both line fields are never colinead}o Sinced; is Legendrian
alongy(A), this proves (v). O

alongy(A)

PROOF OF(41). Away from the attaching region d&; the claim is true since we have
shown in Proposition 4.29

g 4 0
/A ot + ;y187y2
= 4Q alon =0

The remaining part of the boundary 1% (for the definition of B see (40)). The subset
{y1 = 0} of B has two connected components, we focus on the component with pgsitive
For the other component, the argument is analogous. The tangent sgace Bfx R? x S*

is spanned by

0 8_y16 yza 1 <8 _<y18 y28>>

9 g o 0pm ooy virez\oz ‘\oom o oy

We will write 0, for 1(y19y, + y20,,). Thus there are functiong g, » on B such that

Zo=f2 gl n (L (2,52
=T T8, Jitoz\azr ar)) -
This vector field has to satisfy the relations
(42) a(s)(Z4) =0
(43) i(Zy )da(s) = —c(s) on kea(s)) .
The first relation (42) yields
h 1 1o

1—2s)g— - = h=0

e XA
along{y1 = 0,42 > 0} (and hencey, = o(z)). Solving forh we obtain

2(1 —2s)V1+ 52
2y + 0

(44) h=

)
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note that the denominator is always positive by our assumptions amdy, > 0. The
relation (43) implies that

U o
on{y; = 0,52 > 0}. Now along{y; = 0}, the vector field), is tangent to the kernel

of a(s) for all s and it is of course tangent to the boundary of the smoothened handle.
Therefore we gey = 0. By (44) this impliesh = 0 on{y; = 0}. Allin all we have shown

—gdt — fdy, + dr = —24(s) = —4dy;

- 9
Z, =4—al = .
. =42 along{y = 0}

This proves (41). 0






CHAPTER 5

Closed Engel manifolds from round handles

In this chapter we discuss our first construction of Engel manifolds on closed mani-
folds. The main technical result is Theorem 5.6.

Usually we assume that the characteristic foliafiorof an Engel structure is oriented
and that all components of the boundary are transversal.t&Recall that we write), for
those boundary components where the characteristic foliation points outwards &md
the remaining boundary components.

In Section 5.1 we explain how one can glue a rourttandle with a model Engel
structure to the transversal boundary of an Engel manifold. The model Engel structure
extends an oriented Engel structure frdito an oriented Engel structure ad U, R if
the attaching map : - Ry — 04+ M has the following properties.

(i) ¢ preserves the oriented contact structures on the boundary.
(i) ¢ preserves the oriented intersection line fields.

There is a possibility to modify the Engel structure/anwithout changing the even contact
structure in order to change the intersection line fielde@d/ within its homotopy class.
This construction, which is described in Section 5.2, is referred to as vertical modification
of the boundary. It relies on the fact that M is a closed manifold. If we are allowed to
use vertical modifications of the boundary, then we can weaken (ii).

(i) ¢ preserves the homotopy class of oriented intersection line fields.

It is not always possible to use vertical modifications if we have to respect a boundary
condition when the boundary is not a closed manifold. In this thesis this situation arises
only in the proof of Theorem 5.17.

If one attaches a round handle to a manifold, one obtains a manifold with corners. We
smoothen corners by the procedure explained in Section 4.3.2.

AssumeM;, M, are Engel manifolds with transversal boundary and 0. My —

0_ M is a diffeomorphism which preserves oriented contact structures and the intersection
line fields. Then there is a smooth Engel structurdfm,, Ms. Lety; : - Ry — 0L M,

be an attaching map for a routedhandle such that a model Engel structurelancan be

used to extend the Engel structure framfy to My = M; U o1 R;. In Theorem 5.6 we
consider the mapy = 9 o 1 : 03 Ry — 0_M,. Recall that round handles of indéx

and2 are dual to each other.

In a first step we deform the Engel structure & on a neighbourhood ay_ M>
using Gray's theorem (Theorem 2.4). The symmetry between the model Engel structures
on round handles of indexand2 discussed in Section 4.3 allows us to find a model Engel
structure onR; such that the Engel structure d, extends tdf\\jg = M> Uy, Rs.

In order to remove the corners which appear when the round handles are attached we
cut off a suitable piece of?; and R,. This can be done in a symmetric way (we have
explained this in Section 4.3.2). Using Gray's theorem again we obtain a diffeomorphism
8+M1 — O_ M, which has the same properties as the diffeomorphisae started with.

Using the fact that every curve is isotopic to a Legendrian one and stabilizations, we
develop an algorithm which allows us to find attaching maps for raudhndles for the

93
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above procedure. This is summarized in Theorem 5.8. This method turns out to be suffi-
cient for the proof of the existence theorem (Theorem 6.1) in Chapter 6.

It turns out that one can obtain Engel structures on manifolds which are not accessi-
ble by prolongation or the construction of H. J. Geiges explained in Section 3.2.2. Such
examples are explained in Section 5.5. We use a theorem of J. Hempel who has classified
all Abelian groups which appear as subgroup of the fundamental group-ahanifold in
order to show that the resulting manifolds are not fibrations SVesr a3—manifold.

In Section 5.6 we discuss our main application of Theorem 5.6.7L&Y" be Engel
structures on the manifold®/, M’. If D, D’ satisfy an additional condition, then one can
use Theorem 5.6 to construct an Engel structuré\bgt M'#(S? x S?). This is possi-
ble if one assumes that the characteristic foliatiorDoind D’ admit closed transversals
(Theorem 5.14). Another possible assumptiorfarD’ is discussed in Theorem 5.17. In
both cases, the additional assumption is used when we apply vertical modifications of the
boundary. Using this construction we obtain an Engel structur@/@an #(S? x S?)
which coincides withD respectivelyD’ away from certain open subsetsidfandM’. The
Engel structure od/#M'#(S? x S?) satisfies the assumption of Theorem 5.14 respec-
tively Theorem 5.17 again.

In the proof of Theorem 5.14 and Theorem 5.17 the two manifolds are connected using
a round1-handle and a roung-handle. If one decomposes these round handles into
ordinary handles as in Lemma 4.8 one finds the additional sumistands?.

5.1. Gluing Engel structures

We first explain how to attach round handles of index one to an Engel manifold with
transversal boundary. Then we explain how to glue two Engel manifolds with equivalent
transversal boundaries together.

Let M be an Engel manifold with oriented characteristic foliation and transversal
boundaries. Assume that a map

w:0_-Ry — 0+ M

preserves oriented contact structures and intersection line fields WRhegearies the model

Engel structure®*D; ;.. Using this model Engel structure we want to extend the Engel
structure onM to an Engel structure on/ U, R;. Notice that this space is not really a
manifold because it has corners. The procedure how to smoothen corners was explained in
section 4.3.2.

By Theorem 3.19, the contact structure and the intersection line field on the boundary
determine the Engel structure on a collar up to diffeomorphism. We will use Theorem 3.19
to extend the Engel structure ad smoothly toM U, R;.

To this end we exten®; C R x R? x S! by the set of point$x, y1, 32, t) with

(i) 1 <|z| <1+ 0withé > 0 (we fix ¢ later),
(i) (y1,y2) € D?,
(iii) the leaf of the characteristic foliation of the Engel structlyg, onRR x R? x S!
through(z, y1, y2, t) intersect_ R .

We writef%l for the extended round one—handle, cf. Figure 1.

The contact structure ot R; respectivelyo, M will be denoted byC; respectively
Cyr and letfy; C Cy andL;; C Cyr be the intersection line fields of the Engel structures.
By Theorem 3.19 there is a diffeomorphisim between a neighbourhood 8f R; in R
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and a neighbourhood of the section
o1:0_-Ry — PC;
pr— [L1(p)]

such thaty; preserves Engel structures. The analogous statement is true of course for
0_ M but this time a collar neighbourhodd of 0_ M gets mapped by, on one side of
the sectiorv ), corresponding ta ;.

Recall from Proposition 3.16 that a contact map induces an Engel diffeomorphism
of the corresponding Engel manifold obtained by prolongation. Hence the embeglding
induces an embedding of a neighbourhood of the sectien C PC; to a subset oPC,;.

By definition of o we have

pooy=0p0Q

because preserves the intersection line fields.
Thuso; gets mapped te;. Up to now we have shown tha;%1 o @ o is adif-

feomorphism of a small enough neighbourhoodafR; in R, onto its image and this
diffeomorphism preserves Engel structures. We chdose that for the corresponding
extended round one—handTa the setﬁl \ R; is contained entirely in this neighbourhood.

The last thing we have to check is that pointsﬁn\ R, get mapped to the colldy
of 0. M. For this we use that fact that preserves the orientation of the contact structure
induced by the Engel structures and the characteristic foliations.

Notice thaw&1 o ¢ o 1y preserves Engel structures and in particular characteristic
foliations. Recall that we assumed that the characteristic foliations are oriented. Because
the orientation of the contact structure on a transversal hypersurface is induced by the
Engel structure and the orientation of the characteristic foliatiqr,}, o ¢ o)1 preserves
the orientation of the characteristic foliations. By definition, the characteristic foliation
on M points outward alon@, R, and it points inwardR; alongd_ R;. This shows that
Ry \ R; gets mapped on the collar 8f M by w;j o ¢ o 11. Thus we have shown

PROPOSITIONS.1. Let R; carry a model Engel structure and let: 0_ Ry — 0+ M
be an embedding which preserves oriented contact structures and oriented intersection line
fields. Then we can extend the Engel structure fidnto M Ug R canonically such that
the resulting Engel structure is orientable and smooth away from the corners.
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So under some assumptions on the attaching ma@_ R, — 0+ M we can extend
the Engel structure oM/ to an Engel structure on the manifold with corners

MU, R .

Now let M, and M> be two manifolds with oriented Engel structurBs, D, such
that the boundary of\/; is transversal to the characteristic foliation®f for i = 1, 2.
Moreover we suppose that the characteristic foliation is also orientedNLet 0, M,
and N, C 0_M> be unions of connected components of the boundaries. We denote the
induced contact structures on the boundargpgnd the intersection line—fields kfy; for
1=1,2.

THEOREM 5.2. Letp : Ny — N> be a diffeomorphism preserving the oriented
contact structures such that.(F;) = F» and the orientations of-;, 7, are preserved.
Then one can glué/; and M, together using such that the oriented Engel structur®s
andD; induce an oriented Engel structure dad = M; U, M.

PrROOF The procedure is similar to Proposition 5.1 but simpler because there are no
corners. We extendi/; alongN; vertically by N; x [0, ) wheres > 0. (If V; is not compact
it may be necessary to allowto vary on H;.) By Theorem 3.19 and Proposition 3.16
applied top : Ny — N,, we can identify tubular neighbourhoods&f and N,.

By the assumption thap preserves also the orientation of the intersection line field,
the Engel structure on/; U, M5 is canonically oriented. g

5.2. Vertical modifications of transversal boundaries

Using rotation numbers along Legendrian curves, one can distinguish homotopy classes
of oriented Legendrian line fields. Now we want to explain how one can modify the inter-
section line field within its homotopy class.

Let M be an Engel manifold with transversal boundary. As usual we assume that
the characteristic foliation and the Engel structure itself are oriented. This induces an
orientation of the contact structure on the boundary. In addition we assume now that the
boundary ofM is compact. We treat the boundary componéhtd/ where)V points out
of M. The component8_M = 9M \ 0. M can be treated similarly.

Notice that it is not always possible to realize a prescribed change of the intersection
line field by an isotopy of the hypersurface in the interiordéf However, when we deal
with a transversal boundary we can add an arbitrary number of twists to the leafs passing
through it by adding); M x [0, co) with a suitable Engel structure.

Because the characteristic foliatibv is transversal to the boundary &f, it is possible
to choose a collat/ = 0. M x (—1,0] of 9+ M such that the one—dimensional foliation
on U induced by the second factor corresponds to the characteristic foliation of the Engel
structure. Sincé, M consists of those boundary components whét@oints out ofM,
the orientation oV corresponds to the usual orientation(efl, 0]. We writew for the
coordinate corresponding to the second factdy of

Fix a positive sectior of the oriented intersection line field éh. M. Furthermore let
¢ be a vector field such that ¢ is an oriented trivialization of. The horizontal lifts of
s respectivelyc to 9 M x (—1,0] (or to 9 M x (—1, c0)) will be denoted by the same
letters. We identifyo, M andd; M x {0}. OnU the even contact structuéeis spanned
by s, ¢, Oy-

There is a unique smooth functigh: U ~ 9, M x (—1,0] — R such tha®,, and

(45) X (p,w) = cos(f(p,w))s(p) + sin(f(p, w))c(p)
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span and orienD, .,y such thatf(-,0) = 0. BecauseD is an Engel structure, the com-
mutator [0,,, X| must be linearly independent &f,, X everywhere. Nows andc are
horizontal lifts. Hence

X () = 5 ) sin( . 0))s(p) + cos( . w))e(r)

This vector field has no componentdp—direction. Thugd,,, X] is linearly independent
of 9,, and X if and only if

cos(f(p,w)) —%{,(p, w) sin(f(p, w))

0 # det
sin(f(p,w)) 2L (p,w) cos(f(p,w))
of
= %(pa w)

holds everywhere. Thugis either strictly increasing or strictly decreasing along the leaves
of W. According to our orientation conventiodsis oriented byo,,, X, [0, X] and this
orientation is the orientation given I8,, s, c. Thus thec—component ofd,,, X | has to be
positive fort = 0. This implies
(46) 9f >0.
ow

Thus we can reparameterige M x (—1,0] such that with the new coordinate =

f(p,w) on the second factor of the collar the Engel structure on the collar is defined by

(47) X (p,w) = cos(w)s(p) + sin(w)c(p) .

From now on we use the notatieninstead ofw. We attacho, M x [0, c0) to M along
01 M in the obvious way and extend the Engel structure frdfmto the new manifold
MuUoLM x [0,00) by the span 08,,, X whereX is defined as in (47) o8, M x [0, c0).
Note that nows, ¢ are horizontal lifts onM x [0,00). Now we have a smooth Engel
structure onJ U (0+ M x [0,00). The associated even contact structgiris the span of
OJw, s, ¢ and the characteristic foliation is spanneddy

For a functiong : 0. M — [0, c0) we define

Mg =M Uy {(p>w) € 6+M X [0,00)‘U} < g(p)} .
We will write N, for 9., M,. By definition of M, we have

Ny = {(p,9(p))|p € 04 M} .

Note that/N, is transversal to the characteristic foliation@fwhich, ond; M x [0, co)
is induced by the second factor. By Lemma 3.5 the contact strutard’ N, on IV, is
identified with the contact structure éh M by

Yg: 0 M — N,
p— (p,9(p))) -

The manifolds with boundary/ and M, can be identified using a diffeomorphism
M, — M which is a flow along the leaves of the characteristic foliation and such flows
preserve the even contact structure. Heafeand M, are equivalent as manifolds with
even contact structure. However they are not equivalent as Engel manifolds because the
foliations induced by the intersection line fields on the boundaries are not equivalent in
general.

DEeFINITION 5.3. The modification of an Engel manifold with boundary described
above will be calledrertical modification of the boundary
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Using this, we can show that every Legendrian line fieldeid/ which is homotopic
to the original intersection line field can be obtained as intersection line field of an Engel
manifold.

THEOREM5.4. Let (M, D) be an Engel manifold with transversal boundary and ori-
ented characteristic foliations. If the Legendrian line figlds homotopic to the intersec-
tion line fieldLp of D, then there is a function

g:0+M — [0,00)

such that the intersection foliation ai, M, is mapped to under the identification) :
04+ M—0, M, induced by the characteristic foliation of the Engel structurelépn

PrROOF We use parts of the discussion above and the notation introduced there. Let
us first assume that the intersection line field is orientable. The non—orientable case can be
reduced to this situation. Qm, M x [0, c0), the Engel structure is spanned &y and X
whereX (p, w) is defined by

(48) X (p,w) = cos(w)s(p) + sin(w)c(p) .

By assumption there is a homotogy of Legendrian vector fields such thég orientsCp
andZ; orientsC. There is a smooth family of functiong, s € [0, 1] such thaf, = 0 and
Z, is a positive multiple of

(49) cos(g¢(p))s(p) + sin(ge(p))c(p) -
Becausé), M is compact, there is» € N such thaly > —27m. Now let

g=9(,1)+2mm >0.

We claim thatg has the required properties. By definition of the Engel structuré/gn
the Engel structure is spanned 8y and Z; alongd, M,. But by definitionZ; spansc.
So there is\ € R such that the intersection line field alofig M, is spanned and oriented
by 71+ A0y

The projection ofZ; + \9,, along the leaves of the characteristic foliatiorotoM is
therefore’.

This finishes the proof under the assumption that th/e\i/ntersection line field is orientable.
If Lp is not orientable, we pass to a two—fold coveringef\/ x (—¢, o] of a collaroL M
and pull back the Engel structure and the homotéfyconnecting the pull back of the
intersection line field with the pull back of. Here H, is a family of Legendrian line
fields. We choose the covering such that the pull back of the intersection line field becomes
orientable.

Let f be the non-trivial deck transformation of the covering. We choose the oriented
trivialization s1, 55 such thats; spans the intersection line field and

(50) 5i(f(p)) = —f(5i(p)) andci(f (p)) = —fu(ci(p)) -

We also choose a family of Legendrian vector fielisspanning the pull back of the Leg-

endrian line fields such thaf(f(p)) = — f«(Z:(p)). If Z:(p) is a positive multiple of
cos(g¢(p))s(p) + sin(g:(p))c(p) »

thenZ;(f(p)) is a positive multiple of

cos(ge(p))s(f(p)) + sin(g:(p))c(f (p))

by (50). Comparing this with (49) we obtag(p) = g:(f(p)). Thus the vertical modifica-
tion of the boundary is actually well defined on M even if the intersection line field is
not orientable. O



5.3. DOUBLES 99

The assumption on the boundary/f to be compact can be weakened to the assump-
tion on the homotopy to be constant outside of a compact set. We will apply Theorem 5.4
also to embeddings

p:N— 9O M
whereN is a contact manifold with boundary carrying an oriented Legendrian line field
L. Assuming thaty preserves oriented contact structures one can compateand the
intersection line field o, M. If these Legendrian line fields are homotopicye(iV) one
choosegy as above op(N) C 9; M and extendg by a non—negative function @; M.
Using the identificationy, of 0, M, with 0, M induced by the leaves of the characteristic
foliation of the Engel structure we can consider

Ygop: N — 0L M,

This embedding preserves oriented contact structures and intersection line fields.
Notice that ifg(p) is a multiple of2x for p € 0, M, the identification), preserves the
intersection line field ap.

DEFINITION 5.5. If g is a multiple of27 on some subséf of 04 M we say that the
vertical modification does not change the intersection line fiel&on

5.3. Doubles

In the first part of this section we explain a major tool for the construction of closed
Engel manifolds. Choose a transversal hypersurfdda an Engel manifold/ and cut
M along this hypersurface. This induces an identification ppapN — N. Now glue
round1-handles to the domain and the target/asuch that the Engel structures extend to
the round handles. We obtain an Engel manifold which is cut along a hypersurface. Away
from a compact set the new hypersurface coincides Withif the round1-handles are
attached in a symmetric way we can construct an identification inagich coincides
with ) away from a compact subset of the interior/dfsuch that we obtain a new closed
Engel manifold. This is done in the proof of Theorem 5.6.

In the second part of this section we discuss the analogue of Theorem 5.6 for round
two handles. We show that this construction will only lead to Engel manifolds we could
also obtain from the original theorem for rouidhandles.

5.3.1. Adding a round1-handle. Let M; and M, be two manifolds with boundary
and oriented Engel structur@® respectivelyD,. We assume that the characteristic folia-
tion of both Engel structures is oriented and transversal to the boundary. Let

w . 8+M1 — 8,M2
be a diffeomorphism preserving the induced contact structures together with their orienta-
tions. In addition to this, we assume thapreserves oriented intersection line fields.
Our aim is to attach round handI&s, R> with model Engel structures to boft1; and

M> such that the boundaries of the new Engel manifﬂ)Alﬁs: M{UR, andﬁg = MyUR,
again admit a diffeomorphism

{/;: 8+M1 — ELMQ
preserving oriented contact structures and the homotopy types of the intersection line fields.
A vertical modification ofM, then leads to a pair of Engel manifolds which can be glued
together along their boundary.
Note thatR; is a round handle of index one ait has index two. We attacR; along

0_R;1t0 0. M7 and R, alongdy Ry ~ J_ Ry to 04 M>. So we will treatR, like a round
handle of index one.
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THEOREMS.6. In the situation above, suppose that: 0_R; — 04 M is an attach-
ing map which allows us to extend the Engel structure\dnto M, U, R; by the Engel

structure@TD,E}) on R;. Then there is an attaching map

2 : 04 Ry — O0_M>
isotopic toy o 1 and a Engel structur®), on M such thatD, extends taR, using the
model Engel structur@;”D,(f). D!, and D are isotopic. Moreover there is a diffeomor-
phism

0 My — 0_Mo
preserving the oriented contact structures on the boundaries.

The intersection line field ofi, M, is mapped by to a Legendrian line field which is

homotopic to the intersection line field én M.

Let us first sketch the different steps of the proof of Theorem 5.6. We now ide®iify
and R,. The proof consists of four steps:

(1) Modify the Engel structure od/> such thatpy = 1 o ¢ is a gluing map for

R, with the Engel structuré)TD,(f). To do so, use first Gray’'s theorem to adapt
contact structures and modify the boundaryMf vertically in order to achieve
thatyo preserves the intersection line field on a neighbourhoog of

(2) Glue R; to M, andR5 to Ms in order to obtairYT/ﬁ andﬁg. -

(3) Apply Gray's theorem again in order to isotope the obvious map betwhesnd
M5 to a map which preserves oriented contact structures.

(4) Show that the resulting map preserves the homotopy type of the intersection line
fields. This requires some analysis of the isotopy obtained in the third step.

PROOF OFTHEOREMb5.6. On Ry and R; we use the model Engel structure corre-
sponding to the same parametetsk. Our aim is of course to compare the present sit-
uation with the model discussed in Theorem 4.31. For this, it is convenient to use the
coordinates

xr = :|:1, G_m*yl, @_m*yg, t
on Ry and Rs. During this proof we use the notatiany, y2, t for the newcoordinates.

Then the Engel structur@TD,(;) is defined by the usual expressions &% and X,&l)
and the analogous statement is trueftyn By assumptiony; : 0_ Ry — d4 M7 preserves
oriented contact structures and oriented intersection line fields. Wsing identifyd_ R
withitsimagelU C 9. M;. In particular we obtain coordinates dwhich we denote again
by x = £1,41, 2, t. The contact structure dii is defined by thd—form

1 1
(51) Bo = —dy1 + §y1dt - §$dy2

with z = +1. Moreover, the intersection line field dnis the same as in the model, it is
spanned byx ",

So onU we have exactly the same situation as in the model for gluing roghdndles.
Now on(U) we have the coordinates

o =x =1y =y, gy =0 My, =07

But onv(U) the contact structure induced by the Engel structurdfrdoesnot have the
expression we used in the model for the gluing of ro@rdandles but it is defined hy.
In order to obtain the situation of the model on a subsep@f), we modify the Engel
manifold (Ms, D) in two steps.

For the first step choose a smooth functipnR=" — R= with the properties
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(i)
1 ifrelo,%
pr) _{ 0 ifre h%,lgl)
(i)
dp 1
%(7”) < B

A function p with the desired properties exists because

9/10 1
/ —dr >1.
1/10 2r

Using p we will define a family of1-forms 3s. The kernel of3, defines the original
contact structure. The conditions (i),(ii) ensure that the deformed distributio()s; kerre

also contact structures. Let= 1/v/,* 4 4> Fors € [0, 1] consider the family of—forms

1 1
(52) Bs = — (1 —2sp(r)) dy; + §y’1dt’ - §x’dy’z

By construction g, is constant on a neighbourhood of the boundary@/). We extend

(s to the whole ofd_ M> using a fixed defining form for the contact structure outside of
»(U) C 0- My coinciding with 3, near the boundary af (U). For alls € [0, 1], the
1-form 35 defines a contact structure 6n A/, since

(Wi dp 1
Bs NdfBs = <—sr27“dr(r) + ix’ dyy A dyb A dt’
_[> (—%2—1+i)dy’1AdygAdt':o ifal=1

< (53— 1) dyi Adyy Adt =0 ifa’ =—1.
On{r < 1/10} c ¥(U), 81 has the same coordinate expression as the contact structure
which appeared in the model for the gluing of rowidhandles. The homotopy is constant
away from the compact subsetU) C 0_M,. So we can apply Gray’s theorem to the
family G5 and we obtain an isotop¥ of 0_ M> with the property

b, (kerGy) = kerfs .

Using® we modify the Engel structure ailz. Choose a collad_ M x [0, 1] of 0_ My =

0_ M, x {0} such that the characteristic foliation of the Engel structure corresponds to the
foliation given by the second factor of the collar. Fix a smooth funcgian0, 1]—10, 1]

which is constant near the boundary of the interval with) = 1 andg(1) = 0. Let

o 8_M2 X {0, 1] —_— 8_M2 X [0, 1]

(pa 5) — ((I)g(s) (p)7 S)

and extend this diffeomorphism by the identity to the wholeMdf. Instead ofD, we
consider now the Engel structuf¥ = @ D, on M, but we do not change the coordinates.
Thus the contact structure induced and oriente®byn d_ M, is defined by3,. This1—
form defines the coorientation inducedBy if £ > 0. If k < 0, 8, andD), define opposite
coorientations of the contact structure. @n< 1/10} C ¢ (U) the Engel structuré,
induces a contact structure which is defined By-fBorm having the same expression as the
contact structure in the model.

Unfortunately, the intersection line field @h M, with the modified Engel structure
D), does not coincide with the intersection line field in the model for gluing ro2xd
handles even ofr < 1/10} where we have the right contact structure. However, by
Proposition 4.29 (ii), the intersection line field Y, is already the one appearing in the
model on the subsdt; = 0} of {r < 1/10}.
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In the second step of the modification of the initial Engel maniftdd, we use a
vertical modification of the boundary_ M5 to achieve that the intersection line field on
{r < 1/10} coincides with the intersection line field in the model for gluing ro@rd
handles o{r < 1/10}. By Theorem 5.4, this is possible since the rotation number of the
intersection line field o, along the Legendrian curver = £1,y; = y2 = 0} is —|k|.
On{y; = 0} N {r < 1/10}, the intersection line field already was the one of the model
situation. So we may assume that along = 0,7 < 1/10} the intersection line field
remains unchanged even ém = 0} C ¢(U). We also assume that the intersection line
field remains unchanged outsidewfU ).

From now on we use the notatiofs, and M, for the Engel structure on the manifold
obtained by vertical modification. By construction of the modified Engel maniféld

w2 =1 o1 :0rRyN{r <1/20} — 0_M>

is a gluing map for a rounghandle with the model Engel strucﬂ.@é@f). Let

—~ 1

M, = M, U<P1 ({ 0} N R1>
—~ 1
]\42:]\42@)02 T‘<% N Ry

be the manifolds obtained frod/; U,, R, and M, U,, Ro after smoothing corners as
in Section 4.3.1. We writé; respectivelyD), for the Engel structure obtained av;

respectivelyM,. We extend the coordinates= =1, y;, yo, ¢ respectivelyx’, v}, y5, ¢ to
a system of coordinates dry respectivelyR, in the obvious way. In particular varies
now. LetV be the complement df = (0 R;) in 04+ M;. There is a diffeomorphism

¢/ : (9+M1 — 8_]\72

defined as follows: Away fron lety = . OnU = M, \ V letv)’ be the identity map in
terms of the coordinates 1, y-, t. These two definitions fit to a smooth diffeomorphism
since we obtained the coordinates @nM> by ). OnV, ¢/ preserves oriented contact

structures but not ofy. .
The push—forward by’ of the contact structure ah, M7 and the contact structure on

d_ M, induced byﬁg are homotopic, the homotopy is given by the familyleforms
(53) By = —(1 = 2sp(r))dy; + %y’ldt’ - %w’dy’z — ypda’ .

As usual,ﬁs is constant on)(V'). Notice that3, = ES on{1/20 < r < 1} since we have
z’ = +1 and sodz’ = 0 there. The push forward of the contact structuredqu/; is
defined by3, while the actual contact structure 6n M5 is defined by, .

Applying Gray’s theorem to this family of contact forms we obtain an isotopy
&;s . 8_M2 — a_MQ .

On{r < 1/10}, the family 3, inducing this isotopy coincides with the family o£forms
in the proof of Theorem 4.31 apart from the fact that there we had r2uhdndlesD? x
D' x S' where the radius of th®?—factor is one while here it i5/20. Let

b= 09 1 94 My — d_My .

ThIS map preserves the contact structures induced by the Engel struDﬁuwespectlver
Moreoverq,z) preserves the orientation of the contact structures sincé,ome have
1/) = 1y and+ has this property by assumption.
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It remains to show thaﬁ preserves the homotopy type of the intersection line fields.
OnV we have by definition}’; =1 so{l)v has the desired property &h By Proposition 3.22
it now suffices to show that preserves the homotopy type of the intersection line field only
along some curves which me@t R;. These curves have to be chosen such that together
with the curves contained ii, they generatéfl(8+ﬁl; Z).

Let o be the function appearing in the smoothing procedure as explained bore formu-
lating Theorem 4.31 and let(0) = c. Lety = {z = y; = 0,y> = ¢} x S C R;. The
rotation number along this curve is preservecﬂblyy Theorem 4.31 (iii). The same is true
fory ={z =0} x 9D? x S'.

Now let v represent any homology class iy (9. M;;Z). Let A = {y1 = 0,t =
0} C 8+]\71 with endpoints{z = +1,y; = 0,y2 = 1/15,¢ = 0}, cf.Theorem 4.31. So the
endpoints ofA lie in the region where the isotopy of the model situation in Theorem 4.31
and our isotopy induced lﬁs coincide becausg(r) = 1 for r < 1/10. Since it is enough
to treat a complete set of generatora‘hf(mﬁl; Z) we can assume that

1
< = A
yﬂ{r_w}c
yAU C {y1 =0}

By Theorem 4.31 (v), the diﬁeomorphisﬁ]maps the intersection line field at the endpoints
of A to the intersection line oD}, at the endpoints oi(A). Moreover{E preserves the
homotopy type of the intersection line fields relative to the boundary points of
Now along{y; = 0,7 > 1/15} the isotopies induced h§; and ;s coincide and both
preserve{y; = 0}. This can be checked by a calculation similar to the construction of the
flow ¢~ in Proposition 4.29. Now on the one hand, we did not change the intersection line
field alongy; = 0 when we modified\/; vertically. On the other hand, the intersection line
field induced byD), on {y; = 0, > 1/15} is by definition the image of the intersection
line field induced byD; on 9, M; underd, o i) whered, is the isotopy obtained frorf.
Hencey preserves the intersection line field alopg A. This shows that) preserves
the homotopy type of the intersection line fields. O

5.3.2. Adding a round 2—handle. Whether Theorem 5.6 is also true for round
handles is not clear at least to the author. It seems to be difficult to find a deformation of
the contact structure which is constant away from a neighbourhood of the attaching region
of Ry like in (52) or (53). N

Assume that the construction of the magsand) in the proof of Theorem 5.6 also
works for round2—handles. We want to show that using this hypothetical construction we
obtain no new Engel manifolds.

Let M;, M, be oriented Engel manifolds with transversal boundaryand, M7, —
0_Ms; as in Theorem 5.6. The attaching map : d_Rs — 0, M is supposed to
preserve oriented contact structures and intersection line fields. We attach a+bandle
with some model Engel structure in order to obtain the Engel manild),, R,. Let

Y2 6+R1 — a_Mg
¢ 0y (My Uy, Rg) — 0_ (My Uy, Ry)

be the maps constructed as in the proof of Theorem 5.6. The dodiloie)/ U, Ro is

M = (My Uy, Ra) Uy (R1 Uy, My)
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We apply the argument from Remark 4.4toThe radial vector field

0
17— tY27—
Doy "oy,
on 04 Ry preserves the contact structure and we can extend this vector field to a global
contact vector field od, M by Proposition 2.7. Using the flow of this vector field we

deform) to U. Then obtain the Engel manifold
(M1 Ug, R2) Ug (B1 Ugy Ma)

But now we can interchang®, and R, and we end up with a double which is decomposed
into My U Ry and M, U R,. The attaching map aR; is the restriction o to 9_R; C
0_ (M3 Uy, Ry) and similarly for the attaching map &f;. The gluing map

8+(M1 U Rl) — 8_(M2 U RQ)

can be defined piecewise. Away fra R; it is ¥ while ond,.R; the gluing map ispo.
This is isotopic through contact diffeomorphisms to the result of the construction given in
the proof of Theorem 5.6 applied to the initial data

U:0_Ry — 9. M
Y0 My — 0_M> .

This is an Engel manifold we can obtain from Theorem 5.6 for roistthndles. Thus even
if Theorem 5.6 were true for rourzd-handles it would only lead to Engel manifolds which
can be obtained using Theorem 5.6.

5.4. Modifications of rotation numbers and framings

Let M be a manifold with boundary and an Engel structixeWe suppose thdP as
well as the characteristic line field is oriented. The other distributions associated to an
Engel structure are then oriented by our conventions. We suppose that the bountiary of
is transversal t¢V. Starting from an embedding

p:0_-Ry — 0+ M

we want to determine whether can be isotoped to a map which preserves oriented
contact structures and intersection line fields of a model Engel struﬂ@fne Then we
can attachR; usingp instead ofp and extend the Engel structure frabh to M Uz R1.
This manifold is diffeomorphic td/ U, R, sincey andy are isotopic.

A necessary condition is that preserves the orientations én R, respectivelyo, M

induced by the contact structures. Recall that all contact structures obtained)ffﬁ;bm
induce the same orientation on ;. 7

Letys = St x {0} x {#1} C 0_R;. Using Proposition 2.10 we can isotopéo an
embeddingy’ such thaty’(..) are two Legendrian curves. The next step would be a choice
of model Engel structure. Whether or ngtcan be isotoped to a contact embedding with
respect to the contact structure induced by the model Engel structuie ®nof course
depends on the choice of the model Engel structure. Here we want to determine under
which conditions it is possible to choose a model Engel structurB,osuch that we can
isotopey’ to an embedding allowing us to extend the Engel structure using the model. We
assume that the isotopy is constant along

The answer will be of course in terms of contact framings and rotation numbers of
¢'(v+). Although we have fixed particular Legendrian curves in the isotopy clasgaf),
it will turn out that the condition we will find will not depend on this choice. Itis a condition
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depending only on the isotopy class@fFrom now on we assume thatalready maps.
to Legendrian curves.
Recall thato_ R; has two connected components. We will wriie respectivelyy_
for the restriction ofp to {x = 1} x D! x S! respectively{z = —1} x D? x S1. A
contact framing ofy. induced by the model Engel structt@lr)n on R; will be denoted
by fr(y+,m). If o is a Legendrian curve in, M we write fr(c) for a contact framing
of o. When two framingg.5,7") and (S’,7") of a fixed curve are homotopic we write
(8,T) ~ (5, 1.
By Lemma 2.12 there exist,,n_ € Z such that
P (fr(74,0)) ~ ny - (g (4))
p—s(fr(v=,0)) ~n_-fr(p_(7-)) -
The following theorem gives a criterion whether one can stabglizeand¢_ in order to
meet the conditions on framings and rotation numbers.
THEOREM5.7. We can choosé € Z \ {0}, m € Z and stabilize the attaching map
w4 such that the modified maps have the following properties with respect to the Engel
structure’D,(iq)n on Ry

(i) the stabilized attaching map sends a contact framingsofo a framingy+ (v+)
which is homotopic to a contact framing,

(i) the rotation numbers db along the stabilized Legendrian curves obtained from
v+ (v4+) andy_(~-) are both equal td:

if and only if the condition

(54) ny + rot(p4(v4)) = n— +rot(p—(y-)) mod 2
is satisfied
PrRooOF Throughout this prook will denote a nonzero integer which will be fixed at
the end.
Recall thatv,n_ € Z satisfy
P (T (14, 0)) ~ np - (o4 (74))
i (fr(7=,0)) ~n_-fr(p-(y-))
Becausep_. is orientation preserving

m - (44(8,T)) ~ @s(m - (S, 7))

holds for every framingS, T') of 7. The analogous statement with , v_ is also true. If

we use the Engel structuié,(;; instead ofDSé on R; we obtain

P (fr(y,m)) ~ (m+ny) - fr(os(v4))
pix(fr(v=ym)) ~ (m+n_) -fr(p_(7-)) -
From the discussion in Section 2.2.4 it follows that both positive and negative twists have
the following effect on contact framings
(0%p1), (frive,m)) ~ (ny +m—1) -fr (0™ (p1(v1)))
(05¢p-), (friy=,m)) ~ (n-+m—1) -fr (0™ (p_(7-))) -
Since we want the stabilized embeddipg to map contact framings ofy. to a framing

of ¢+ (v+) which is homotopic to a contact framing, we have to apply positive or negative
stabilization(n + m)—times respectivelyn_ + m)-times top_. respectivelyy_. Since
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there is (in general) no inverse procedure to stabilization we have to achieve, thain
andn_ + m are both non—negative.

Depending on how often we appdy™ ando— respectively, we get different results for
the rotation numbers since by Section 2.2.4

rot (o™ (¢+)) (74)) = rot (4 (v4)) + 1
rot((o~(¢+))(74)) = rot(p4(v4)) = 1,
and similarly fory_. If n,n7,n*, n- € Ny satisfy
ny+m=nt+n;>0
(55) ' N
n.+m=n"+n_2>0,

we get the following effect on rotation numbers
+ n -
rot (((04)™ ()" ) (14)) = 10t (v4)) + nf = n3

rot (o)™ ()" ¢~ ) (1)) = rot(p- (3-)) + n* = n=

We want equal and non—zero rotation numbers after stabilization. This can be achieved if
and only if we can solve (55) and

nt —nZ —nf +ng = 1ot (14)) - rotle_(7-))

rot(y,) +nl —nl #0
with nonnegative integers!, n;,n*, n” andm € Z. Then we can take

k =rot(¢(y4)) +nl —ni
= rot(p—(y-)) +nt —nZ.
Considering the equations (55)nod 2 and comparing this with

nT —nZ —nl +n3 = rotpy(v4)) — rot(p_(y-)) mod 2

we see that (54) is a necessary condition for the solvability of (56) and (55). If (54) is
satisfied, this system of equations admits solutioris.iif we choosen large enough, we
can achieves”,n;,n*, n” € Ny. O

(56)

We want to explain the meaning of (54) in more topological terms. For this we consider
an orientation preserving attaching map : 0_R; — 0+ M. The Engel structure on/
determines a trivialization df M which is well defined up to homotopy. We can pull back
a trivialization of the boundary,; M. In order to obtain a trivialization of the tangent
bundle of R; on 9_R; we add an inward pointing vector field. If we want to extend an
Engel structure on\/ over R; we have to be able to extend the trivialization dhto
M U, Ry. This is possible if and only if the pull back trivialization TR, on {x = —1}
is homotopic to the pullback trivialization ofx = 1}. The homotopy between these two
trivializations then provides an obvious extension of the trivializatio®.oR; to R;.

Whether or not it is possible to extend the trivialization &hto M = M U, R,
depends only on the isotopy class@f and the trivialization on/.

Now assume that for an even contact structtfé(ker(a;)) on Ry we have isotoped
v+ to a map (again denoted lyy, ) that preserves contact structures together with their
orientations. This is always possible (for suitablby the arguments used in the proof of
Theorem 5.7. The present situation corresponds;to= n_ = 0 in the above notation.
The even contact structure Kef ) has a trivialization over the whole @t;. We compare
the pull back trivialization with a given trivialization af R; in order to see whether it is
possible to extend the pull back trivialization. Sir{é#, 0_ R;) retracts ontd{y; = y2 =
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0}, v+ U~-) it suffices to consider the extension problem on this cylinder. Comparing the
pull back framing with the given framing on, respectivelyy_, we obtain maps

fr:8t =~y — GL(4)
fo:S'=+y. — GL4)

and the extension problem can be solved if and only_ifand f,. represent the same
elementint (GL(4)) = m1(SO(4)) = Zs.

Now thaty. preserves contact structures and orientations, the homotopy class of the
pull back trivialization is fixed by the homotopy class of the trivialization of the contact
structure on the two components@f R;. The homotopy class of the pull back trivializa-
tion can be determined by the rotation number with respect to the given framifig of
So f_ and f, are homotopic if and only if

rot(¢4(v+)) = rot(p—_(7-)) mod 2.
Since we have achieved, = n_ = 0 this corresponds to (54).

Thus if we start with an attaching map. and end up with a map which violates (54)
then there is0 map isotopic top+ which could be used to glue a roufdhandle toM
and extend Engel structures an.

Since M has trivial tangent bundley,(7M) = 0. When we attach a round handle
of index1 to M we add the cylindefy; = y2 = 0} to the2-skeleton of (a triangulation
or CW—-decomposition ofM/. Condition (54) ensures that the given trivialization of the
tangent bundle extends over the cylinder. In particular, the tangent bundieistrivial
over the2—skeleton ofM/. Thus (54) makes sure that the second Stiefel-Whitney class
remains zero after we glued the round handl@fo

Now if ¢ : 0_R; — 04+ M is an embedding such tha{~. ) are Legendrian curves
and preserves contact framings and rotation numbers ajantipen by Proposition 2.18
we can isotope relative toy. such that the resulting map preserves the contact structure
on a tubular neighbourhood 6f.. For0 < s <1

8_R1 — 8_R1
(x = +1,y1,992,t) — (z, sy1, sya, t)
is a contact isotopy. This shows
THEOREM5.8. Assume thap : 0_ Ry — 0+ M is an embedding, the trivialization
of T'M induced by the Engel structure can be extendetl/to,, R;.

Then there is a model Engel structure Bq such thaty is isotopic to an embedding
which preserves contact structures.

5.5. New Engel manifolds — Doubles

As a first application, we give examples of Engel manifolds whose fundamental group
contains relatively big Abelian subgroups. This topological property can be used to show
that the manifolds we construct are not total spaces of fibrations over the circl8-or a
manifold. In particular, these Engel manifolds are not covered by the Geiges construction
or prolongation.

LEMMA 5.9. Let M be a manifold andd C M a connected component of the
boundary. Considet, = M Ujq,, M . Then:i : M — M induces an inclusion

iy s m (M) — (M) .

If all elements ofr; (M) have representatives which are containeddni.e. the inclusion
H — M induces an epimorphism of fundamental groups, theis bijective.
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PrRoOOF For all fundamental groups we use a fixed base poiifinLet N = 71 (H).
By the theorem of Seifert—van Kampen, the inclusionsfofespectivelyH into M induce
an isomorphism between the fundamental group/oand

T (M) xy 7 (M) .
Applying the universal property of the amalgamated product we can find a unique homo-
morphismm (M) *n 71 (M) — 71 (M) such that the diagram

m1 (M)

AN

T (M) —25 1y (M) sy 7 (M)

\\j
71 (M)

commutes.i; respectivelyis mapsm (M) to the first respectively second factor of the
amalgamated product. In particutay(M) — w1 (M) xn 71 (M) ~ 771(J\7) is induced by
the inclusionM — M and injective.

The amalgamated produet (M) xx 71 (M) can be defined as the free product of
71 (M) with itself divided by the normal subgroup generated by

{il(a) (is(a)) ae N = m(H)} .

If m(H) = N — m (M) is surjective, we can replace in every word representing an
element ofr (M) *xn 71 (M) all letters coming from the second factor in the free product
by elements coming from the first factor. Thignis also surjective. O

THEOREMb.10. Let G be a group which admits a presentation

G= <907gla"'>gk|rlv"-7rk>

such that for alli € {1,...,k} the relationr; involves only the generatogg), ..., g;—1.
Then one can obtain a closed Engel manifold whose fundamental group is isomorphic to
G using our first construction of Engel structures.

PrOOF We apply Theorem 5.6 inductively to construct a pair of Engel handle bodies
using only round handles of indéxand0. Starting point for the construction is the Engel
structure onS® x S! described in Section 4.2.1. The fundamental groys? x S!) ~ Z
satisfies the assumptions in the theorem and proves it fer0. Notice that{y; = 0} ~
S? x S'is transversal to the characteristic foliation. THifsx S! can be obtained from
one round handle of indeX and one round handle of ind&xby an identification of the
boundaries of the handles.

Now we come to the inductive step. Suppose that we have an Engel makifaldh
fundamental group

Gj=(90,---,94lr1,...,7j) .
We assume that/ can be cut along a connected transversal hypersuHao#o two pieces
My and M- which are diffeomorphic, and we assume that the characteristic foliation points
out of oM, and intoM, alongdM,. We denote the identification of the boundariesjby
This map preserves oriented contact structures and intersection line fields. In order to apply
Lemma 5.9 we suppose furthermore that if we idenfify with M, then with respect to
this identificationy is isotopic to the identity of the boundary. We assume also that the
generatorsy, ...,g; € m (M) have representatives which are contained.n/; (we
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choose the base point éh. M1). Notice that all these assumptions are satisfied in the case
of §3 x §1.

In order to apply Theorem 5.6 we need an attaching map 0_-R; — 04 M; for
a round handle of index one. Because the generators. , g; have representatives con-
tained ind; M7, the same is true for; ;. By Proposition 2.10 we can choose a Legendrian
representativé, of ;1 € G; and a homotopically trivial Legendrian curye. We push
away~q+ from the basepoint by a very short distance. For dimension reasons we can assume
that the curve§.. are now disjoint from a fixed set of curves representing . ., g;.

Fix a model Engel structure aRl; and an orientation preserving embedding

90,1 : 6_R1 I 8+M1
mappingy+ to 7+. We may assume that'; satisfies (54) in Theorem 5.7. If not, we
change the framing op; along~y_. Applying Theorem 5.7, Theorem 5.8 and a suitable
vertical modification ofd, My andd_ M-, we find a model Engel structure dty and an
attaching magp; such that the Engel structure extends fréfno M, =M Uy, R1.

By Theorem 5.6 we can attach a routxchandle tad_ M, such that we can extend the
Engel structure o/, to Mg = M> U R,. Moreover we obtain a diffeomorphism

¥ Oy My —> O_My
which allows us to glue’Tfl and Mo together along the boundary by Theorem 5.2. We
obtain a closed Engel manifoldi/. By construction,]\Ail and J\72 are diffeomorphic as
manifolds anc@ is isotopic to the identity with respect to this identification.

We now show thaf\/ has fundamental grou@; ;1. Notice that the round handle in-
duces the relatiom;; by sliding the curvey, fromz = 1tox = —1. This way, 74
becomes homotopically trivial. Choosing representatives of which lie on the bound-
ary of the attaching region, we can perform this homotopy completely in the boundary of
]\71. Moreover the fundamental group Efl has one additional generatgy, ; which is
represented by a curve joining the two end$%fin the round handle together with a curve
joining the two components of the attaching region in the remaining parfff. In par-
ticular, the new generator of the fundamental groupﬁzfoan be represented by a curve
which lies completely iroM,. ThusM; has fundamental grou;pl(J\Ail) = Gj41. Since
Mis isotopic to the double dﬁl, the fundamental group ot is Gj4+1 by Lemma5.9.

Finally note that we have shown thad satisfies the same hypothesisidsdid in the
inductive step if we cut anngNI = 9_M; C M. 0

We want to show that many of the Engel manifolds obtained from Theorem 5.10 do
not fiber overS! or a3—manifold. The next proposition shows that such fibrations have
special topological properties. It is based on the following theorem about the fundamental
group of3—manifolds.

THEOREMS5.11 (Hempel, iHem] p. 84). Let G be a finitely generated Abelian group.
If G is a subgroup ofr; (M) for some three—manifold/, thenG is isomorphic to one of

2, 2®L, LOL DL, Z.® L OF Ly,
for some integen. In particularrankG) < 3.

Using this theorem one could find several criteria for deciding whether a given four—
manifold fibers over the circle or over a three—manifold. In the following proposition we
explain one possibility.

ProrPOSITIONS.12. Let M be a connected—manifold. IfA/ is a fibration over a
three—manifold or a circle then the rank of every Abelian subgroup 0#/) is at mostd.
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PROOF. SupposeV! fibers over the circles! with fiber N. Leti : N — M be the
inclusion of a fiber anghr the bundle projection. Without loss of generality we assume that
N is connected. The long exact sequence of homotopy groups yields

B7)  m(SY) = {0} — > 11 (N) —F iy (M) o (1) ~ Z — {0} .

Let G be an Abelian subgroup af; (A). Either pr, is zero onG or the image pg (G) is
isomorphic toZ. In the first case';;(G) is isomorphic toG. Sincei;(G) is a subgroup
of 1 (N), we have raniG) < 3. In the second case choose a generbmfrpr;(l). The
mapZ — G which mapsn to n - h induces a splitting of the short exact sequence of
Abelian groups obtained from (57)
_ i pr

0—i3'(G) T G —"> Z = pry(G) —0 .
This induces an isomorphis@i ~ z;l(G) x Z. By Theorem 5.11 the rank @f is smaller
or equal than.

Now suppose that/ fibers over a three—manifol® with fiber S*. We use the same
notation for the inclusion of a fiber and the bundle projection as above. Applying the long
exact sequence of homotopy groups again we obtain

1 Ty Pry
(58) mo(N) —= m(St) 2 Z —— m (M) —— m(N) — {1} .
The image ofry (V) is a subgroup o¥, therefore it is eithef0} or isomorphic taZ. In
the first case, we have a short exact sequence

(59) {0} —Z ——=m(M) m(N) {0},

in the second case there is an integesuch thaim(m,(M)) = nZ and we get
(60) {0} — Z/nZ — m (M) — m(N) — {0}
from (58). Now letG; be an Abelian subgroup af (M ). The image py (G) is an Abelian
subgroup ofr; (N). We have ran(@;l(G)) < 1. Since (59) and (60) are exact
rank(i,,' (G)) — rankG) + rank(pr, (G)) = 0
and hence by Theorem 5.11
rank(G) <1+ rank(pry(G)) <4.
O

ExamMPLE 5.13. It is of course easy to find a presentation of a group satisfying the
assumption of Theorem 5.10 and containing an Abelian subgroup ofstatke of the
simplest is

(g0, -, g11|r2 = 909190 917,73 = gogago ' g2, . i1 = g3gags lga )

We havel0 relations. Hereyo, . . . , g4 generateZd.

5.6. Connected sums

Let M, M’ be two Engel manifolds with Engel structurBsD’. The connected sum
M+# M’ does not admit an Engel structure because the Euler characteristic of this connected
sum is—2. Introducing an additional summars# x 52, one can sometimes circumvent
this problem if some condition on the Engel structure is satisfied.
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THEOREM5.14. Let M, M’ be manifolds with Engel structurd®, D’ such that both
characteristic foliations admit closed transversals. ThertM'#(S? x S?) carries an
Engel structure which coincides with the old Engel structuregsband M’ away from a
neighbourhood of the transversals where all connected sums are performed. The charac-
teristic foliation of the new Engel structure again admits a closed transversal.

PROOFR Let us assume for the moment thaf, M’ are oriented. Fix the induced
orientation of the characteristic foliation’ of D respectivelyV’ of D’. Choose closed
transversalsV respectivelyN’ of W respectivelyV’. We cut the manifolds along these
hypersurfaces and obtain new manifolds with boundary. These will be denoted again by
M respectivelyM’. The boundary of each manifolel and M’ has two connected com-
ponents

O M ~N~90_M
o.M ~N'"~0_M".
There is a natural identification
YO MUILM — O_MUO_M

which satisfies the assumptions of Theorem 5.6. We choose contractible Darboux charts
(z,y,2),U C 0+ M and(z’,y/, 2"),U" C 0, M’ for the contact structures. We fix an orien-
tation of the intersection line fields dhandU’. Itis not necessary to orient the intersection
line field on the entire hypersurfac&g N’ for vertical modifications (cf. Theorem 5.4).

In each chart choose a Legendrian unkhbtrespectivelyK’ with rotation number
—1 and Thurston—Bennequin invarianR. According to EI3] this determinesk’ ¢ U
and K’ ¢ U’ uniquely up to Legendrian isotopy withiii, U’. One can obtairk, K’ by
negative stabilization of the Legendrian unknot with Thurston—-Bennequin invariant

We equipR; with model Engel structur@&). Recall
e = {+1} x {(0,0)} x S c D' x D* x S' =O_R; .

The contact framing ofy.. is S'—invariant. Choose an attaching map for R; which
preserves oriented contact framings and maps K and~_ to K’. The rotation number
along~4 is also—1.

Thusyq preserves ariented contact framings and the homotopy class of the intersection
line fields. As a consequence we can isotgpesuch that the resulting attaching map
preserves oriented contact structures. Throughout the isetosymapped tapg (74 ).

With a vertical modification ob; M U 9, M’ we can achieve that; also preserves
oriented intersection line fields and not only their homotopy types. After this vertical mod-
ification, ) no longer preserves the intersection line field. We apply a vertical modification
to 0_M U 0_ M’ to restore this property.

Using Theorem 5.6 we obtain an attaching map for a rowttndle with a model
Engel structure

w2 : 01 Ry — 0_M Uo_M'.
Fori = 1,2 we attachR; usingy;. The modified boundary components are denoted by
0+ M. Theorem 5.6 also yields a diffeomorphism

1;: 8+]T4/—>8,M

preserving oriented contact structures and intersection line fields up to homotopy. Using
a vertical modification for the last time in this proof, we finally obtain a closed connected
Engel manifoldM when we identify the two boundary componegisi/.
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The hypersurfaced’, N’ are still contained in/ and they are transversal to the char-
acteristic foliation of the Engel structure we have constructed. It remains to shoitisat
diffeomorphic toM # M'#(S? x S?). In order to show this, we construbf # M'# (S? x
S?%) using ordinary handles and we apply Lemma 4.8 to identifyt M’ # (S? x S?) with
the manifold obtained from the construction above.

Using an orientation preserving attaching ngap we attach a one—handle connecting
0+ M andd, M’'. We do the same with_M andd_ M’ using the attaching map, =
¥ o ¢1. If we identify the new boundaries now in the natural way, we obidig M.

Choose a ball i M which is disjoint from the attaching region of the one—handle.
Attach a2—handle along an unknot contained in this ball with framingjto 0. M. The

FIGURE 2.

handles of indext and2 are attached independently and we can use Lemma 4.8: As in
the proof of that lemma, we first slide ti2e-handle over thé—handle. Figure 2 shows

the attaching curve of the-handle after the slide. The framing is indicated by the dashed
curve and the two arcs represent the boundary of #iendle. After we identify the two
ordinary handles with a round handle of index one, we may assume that the attaching map
of the round two handle has framing@ at both ends. Then the attaching map of the round
one-handle is isotopic to the attaching mapwe started with at the beginning of this
proof.

Thus if we attach a one—handle and a two—handle as above toohdthU 9, M’
andd_M U d_M’ in a symmetric way and identify the new boundaries, then we obtain a
manifold diffeomorphic taVl.

On the othNer hand, the one—handles account for the directAdyal/’. When we
want to showM ~ M#M'#(S? x S?), we have to understand the two—handles. If one
attaches a two—handle #©* along an unknot with framing-4, the second two—handle
coming from the double is attached along a zero—framed meridian of the unknot. Two
consecutive handle slides show that one can use the zero—framing on both unknots without
changing the diffeomorphism type of the manifold, ¢&dS| p. 144. We obtain the usual
Kirby diagram ofS? x S2. This proves the claim under the assumption thiaand M/’ are
oriented.

We assume for simplicity that/’ is orientable. This assumption can be dropped in
the same way as fak/. If M is not orientable, there are two possibilities. EitiAéris
coorientable or not. IfV is coorientable, we orient the characteristic foliation on a tubular
neighbourhood ofV. This suffices to carry out the proof above.Nfis not coorientable,
the situation is slightly more complicated. If we dutalong/, the boundary of the result-
ing manifold is a connected two—fold covering 8t The non-trivial deck transformation
) interchanges points, which correspond to the same poif.inThe restriction ofV
to OM can be oriented by an outward pointing section. This orientatioWafearoM
induces an orientation of the contact structuredaa.
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Now we choose Darboux charté and«(U) and perform the same construction as
above. OnJ we orientV such that it points out of/ and onf(U) such that it points in-
wards. These orientations are not compatible with an orientatig¥i oh M but this does
not matter. Whenever we apply vertical modification to arrange the intersection line fields
on U, the intersection line field og(U) does not really change singe= 2km, k € N
there g is the function appearing in the vertical modification). The same statement is true
for vertical modifications ofy(U ). Thus we can pretend that we can apply vertical modifi-
cations on/ andv (U) independently. As before we do not need an oriented intersection
line field but only on orientable contact structure @h/. Then the proof carries over to
this situation. O

In order to apply Theorem 5.14, one has to find Engel structures whose characteristic
foliation admits a closed transversal. This is true for the Engel structures we shall construct
in the proof of Theorem 6.1. The following example shows that closed transversals do not
always exist.

ExAmMPLE 5.15. Let N be an orientabl8—manifold such thai’ N has an orientable
subbundle with non-trivial Euler clagsc H?(N;R). By Theorem 2.2, there is a contact
structureC on N which is homotopic to the original subbundle.

Now the prolongation construction yields an Engel structur®onThe leaves of the
characteristic foliation are the fibers of tsé—bundle pr: PC — N, the Euler class of
this S'—bundle ise # 0. In particular, the characteristic foliation of the Engel structure on
PC does not admit a closed transversal.

Engel structures obtained this way are so simple that they can be easily deformed to
Engel structures which satisfy the assumption of Theorem 5.14. For this, choose a con-
tractible Darboux chart(z,y, z),U) ~ R3 in M. Choose a contact vector field with
compact support iV such thafl” has a non—degenerate sink at the origin. Fix a trivializa-
tion pr-!(U) ~ U x S' and writet for the coordinate on thg'—factor.

On pr-}(U), the Engel structur® is spanned by/ = 9, and a second vector field.

Fore > 0 small enough, the distributioP. spanned byV. = 0; + eV and X is still an
Engel structure. Sinck is a contact vector field, the characteristic foliation on'gt/) is
spanned byV.. If S? is a small sphere around the originlhwhich is transversal td’,
then pr!(S?) ~ 52 x S!is a closed transversal df..

Hence we can apply Theorem 5.14 to Engel structures obtained by prolongation after
we perturb them slightly.

COROLLARY 5.16. If (N1,C1) and (N2, Cy) are manifolds with orientable contact
structure, therPCy #PCa#(S? x S2) admits an Engel structure.

Starting from contact structures 61, 73, S? x S! which are trivial as vector bundles,
we find Engel structures on manifolds like

N = T (8% x T?)#(5? x §?)
My, = k(S® x SYH#(k —1)(S? x S?)

using Corollary 5.16. One can show that it is impossible to construct an Engel structure on
M, using prolongation or the method of Geiges, althodghis the total space of a circle
bundle over &—manifold.

We return to the proof of Theorem 5.14 and discuss the meaning of the assumption that
both Engel structures have characteristic foliations which admit a closed transversal. We
do not make explicit use of the fact th&t and NV’ areclosedtransversals. But implicitly,
this assumption is used when we apply vertical modification.



114 5. CLOSED ENGEL MANIFOLDS FROM ROUND HANDLES

Let us recall the construction of vertical modifications of transversal boundaries from
Section 5.2. The aim is to change the intersection line field on a transversal boundary within
its homotopy class of Legendrian line fields. Assume for simplicity that the intersection
line field is orientable. When we modify, M vertically, we first attacld, M x [0, c0) to
0+ M. Ono M x [0,00), the Engel structure is spanned by

0
(61) W = ETe X = cos(t)s + sin(t)c
wheres spans the intersection foliation @n. M ands, ¢ is an oriented trivialization of the
contact structure. The modified Engel manifold is then defined using a positive function

g:0.M — R* as follows
M, = MU {(p,t) €04 M x [0,00)‘t < g(p)} :

Suppose that/ ¢ M andU’ ¢ M’ are compact hypersurfaces with boundary transversal
to the characteristic foliations. Then we can try to cut aléhgndU’ and perform the
construction of Theorem 5.14. When we cut alédhd/’ we do not obtain manifolds with
boundary, the problematic points are the boundary pointg, 6f', but if we carry out all
constructions in the interior df andU’ without changing anything on a neighbourhood of
OU andoU’, this does not cause problems. We origvitand)V’ nearU andU’. We use
the notation similar to the notation used in the proof of Theorem 5.14) .81 ~ U, etc.

Assume thatC is the intersection line field oy and £’ is another Legendrian line
field £ such that the homotop¥s, s € [0, 1] connecting them is constant away from a
compact subset iV. Now considerU as a hypersurface in the Engel maniféldx R
(notU x [0, c0)) with the Engel structure defined as in (61). Fréfmone can construct a
function g with the following properties.

(i) g has compact support .
(i) If one identifiesV x {0} andU, = {(p, g(p)) € U x R} using the characteristic
foliation of the Engel structure, the intersection line fieldignis mapped taZ'.

Then the intersection line field on the boundaryMf C U x R has the desired form.
Unfortunately it is not possible to perform this constructiodinu U x [0, co) in general.
If g(p) is negative, the corresponding point{@f would lie in the interior of the manifold
M with the original Engel structure. But it is not true in general that, as one moves along
W, C M, the Engel structure rotates arouridin £ often enough.

If for all p € U the twisting number defined in Definition 3.30 satisfies the condition

(62) tw(p) > lg(p)| + 1,
then it is possible to embed the relevant piec& ot R, namely

{(p,t)|g(p) <t} CUXR

into M UU x [0, 00) such that the Engel structures are preserved.

Using this observation, one can replace the assumption in Theorem 5.14 that the char-
acteristic foliations of the Engel structures admit closed transversals by a condition on the
twisting numbers of leaves 0fV respectivelyV’ passing trough a compact transversal
hypersurfacé/ respectivelyU’.

THEOREM 5.17. Let M, M’ carry Engel structuresD, D’ such that there are non-
closed leave®V), throughp, € M andW, throughqy € M’ of the characteristic foliations
such that

(63) twt(pg) > C andtw™(qo) > C

for some constant’ which is independent of the Engel structures.
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Then there is an Engel structure dW#M'#(S? x S?) which coincides with the
Engel structure onV/, M’ outside of neighbourhoods pf, g0 where all connected sums
are formed. There is a point itV # M'#(S? x S?) which satisfies conditio(63).

If W, or W) are closed, the same conclusion holds if one replacédsy 2(C' + 1) in
(63) in the condition on the closed leaf.

PrROOF We perform the construction in a model situation. The relevant part of this
model situation can be recovered in all Engel manifolds satisfying the assumptions of the
theorem. The constaidt will appear right after the discussion of the model construction.
We start with the description of the model situation and how it arises in Engel manifolds.
First we assume the case that bty andW/, are open.

Choose a chait’ ¢ M aroundpy and coordinates), x, y, z such that the Engel struc-
ture is defined as the intersection of the kernels of

(64) o =dz —xdyandf = dx — wdy .

We may assume that the coordinatepgfare (0,0,0,0). Let U be a closed—ball with
constantv—coordinate throughy. U is transversal to the characteristic foliation. We orient
the normal bundléV of U by d,,. In an analogous way we choose a charand a3—ball

U’ in M’ such thay, has the coordinatd$, 0, 0, 0).

By definition of the development map (cf. Definition 3.26) and of the twisting numbers
(cf. Definition 3.30), there is a neighbourhobidof W, such that7 /W is a well defined
smooth manifold and/ — ﬁ/W is a smooth submersion. We can identify a neighbour-
hood ofpg € (7/W with a neighbourhood g, € U. we assume that this neighbourhood
is actuallyU itself. According to the definition of tw and by continuity we can assume
that for all pointsp € U, the twisting numbers t#(p) > C — 1. On M’ we proceed in the
same manner.

Rescaling the coordinates appropriately, we can achieve tlwantains/—1, 1]3. We
carry out all constructions within this domain. EquipandV’ with a Riemannian metric
such thatd,,, 9., 9, 9, is an orthonormal frame. Let, s’ be sections of the intersection
line field onU, U’ with unit length and let, ¢’ be two sections of the contact structure on
U, U’ such thats, c respectivelys’, ¢ form an oriented orthonormal frame of the contact
structure or/ andU”.

Now consider the manifolds x R respectively/’ x R’ with the Engel structures

D= span{ai)u, cos(w)s(p) + sin(w)c(p)}

D = span{ail, cos(w')s(p') + sin(w')c(p’)} .
We apply the procedure the proof of Theorem 5.14 to the Engel manitbldsR and

U x R’. The only difference is the restriction to transversal modifications which do not
change anything on open neighbourhoods of the boundari€sanfdU’. The functiong
which characterizes the vertical modification has compact suppéftand similarly for

U’

There is yet another small complication when we want to apply vertical modifications.
This appears after we attach the round handles. To explain this we focus on thel+round
handle. With the exception of the unstable manifold of the periodic orbit in the center of
R, all leaves of the characteristic foliation contain a segmehtx (—oo, a(p)] C U x R.

For all pointsp on these leavesw™ (p) = oo follows. On the other hand all poings

on leaves o#V which are contained in the unstable manifold also have have the property
tw~(p) = oo. Hence we can apply vertical modification also after we attached the round
1-handle.
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Throughout this construction, vertical modification is applied several timesﬁl,.et
and C_ be the maximal and the minimal value of all the functions which occur when
vertical modifications of the boundary are applied.

We have performed the construction in a model situation. If

C>max{C,C_}+1,

this procedure can be carried out withC M and not only withU = U x {0} C U x R
since then we recover the relevant piece of the Engel manitold<R respectively/’ x R
in M respectivelyM’. The constanC does not depend on the Engel manifo(ds, D)
and(M',D').

If W) is not closed, we have to ensure that the vertical modifications on the boundary
0+ M (we use the terrboundaryalthough we do not really have a manifold with boundary)
and the vertical modifications éf_ M never interfere. This is ensured when we replace
by 2(C' + 1) in (63). O

We do not try to determine the constaritin this theorem. The theorem can be ap-
plied if tw*(py) = twt(go) = oo or when one can enlarge the twisting numbers by a
perturbation or an explicit construction like in the following example.

ExAMPLE 5.18. Let IV, C be a contact manifold and I€t;, C5 be a trivialization ofC.
Then onN x S' we have the usual Engel structure spanned by
cos(kt)Cy + sin(kt)Cy
and the tangent space of the fibers of the projecor S' — N. If we choosek big
enough we can apply Theorem 5.17.

Let us finally point out that the conditions (63) are not always fulfilled, e.g. the Engel
manifolds obtained from Nilin Example 3.32 or the standard Engel structuréRdrdo
not satisfy (63).



CHAPTER 6

The existence theorem

In this chapter we discuss our second construction of Engel structures. We prove the
converse of Theorem 3.37.

THEOREM 6.1. Every parallelizable closed manifold of dimensibradmits an ori-
ented Engel structure.

Note that on oped—manifolds with trivial tangent bundle, an Engel structure can be
constructed using the—principle for openDiff—invariant relations, cf.BIM]. The proof
of Theorem 6.1 covers this chapter. First we give an overview.

Let M be a closedi—-manifold with trivial tangent bundle. Fix a round handle de-
composition ofd/ with exactly one round—handle and a trivialization af A/. The round
handle decomposition can be chosen such that round handles are attached according to their
index. We writeM; for the manifold with boundary containing only the round handles of
index zero and onel/, will contain all round handles of index zero, one and two.

The strategy of the proof is to perform the attachments of round handles one after the
other and to show that each time the Engel structure we have already constructed can be
extended by a model Engel structure on the round handle.

We will show that until the last attachment of a round handle of indexe can homo-
top the original trivialization such that it coincides with a distinguis&edel trivialization
on the round handle body. In particular after we have attached the last tehaddle the
Engel trivialization extends to the entire manifald.

Then we attach the rourt:-handles. At this stage we will make use of the flexibility
of singular foliations of tori in overtwisted contact manifolds. Together with the fact that
the Engel trivialization oM/, extends ta/ this will allow us to show that when we attach
a round2-handleR, to M’ we can isotope the attaching map and find a suitable model
Engel structure extending the given Engel structurdftoJ Rs.

In general, the Engel trivialization oh/’ U Ry and the given trivialization are not
homotopic relative ta\/’. After the attachment of the last rougehandle with a model
Engel structure it is therefore not clear if the Engel trivializationidsn extends over the
whole of M. This is a necessary condition for the possibility to extend the Engel structure
on M5 to the whole of)M.

At this point we use the fact that we did not start with an arbitrary round handle de-
composition but one with only one rousehandle. So we are left with exactly one round
3—handle over which we have to extend the Engel structure as well as the Engel trivial-
ization. On the other hand the Engel trivialization bf3 is not arbitrary: The component
corresponding to the characteristic foliation of the Engel structure is transver@alio
Together these two facts will allow us to show that the Engel trivialization can be extended
to M.

This in turn will be used to pick a model Engel structure on the rad#ttandle such
that the Engel structure als can be extended to the whole bf. This finishes the proof.

Let us compare our proof and the following characterization of parallelizable mani-
folds.

117
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THEOREM 6.2 (Hirzebruch, Hopf,HiH]). An orientabled—manifold has trivial tan-
gent bundle if and only if

(i) the Euler characteristic vanishes,
(i) the second Stiefel-Whitney class is zerog.M) = 0 and
(iii) the signatures(M) of M is zero.

Since we start with a round handle decomposition, the condition on the Euler charac-
teristic is used throughout the proof, cf. Theorem 4.6. The second Stiefel-Whitney class
wy (M) of an orientable—manifold M is zero if and only ifl' M is trivial on the2—skeleton
of M. When one decomposes a round handle of indesspectively2 as in Lemma 4.8
one obtains an ordinard~handle and another handle of indexespectively3. Thus we
use condition (ii) at two stages of the proof: First when we attach rdwhandles (The-
orem 5.8) and later when we attach routxéhandles (Claim (1) and (2) of the proof of
Theorem 6.1 in Section 6.4). Finally we use the vanishing of the signature at the final stage
of the proof when we show that the Engel trivialization extends fidpto M.

We rely on several facts from the theory of contact structures. We have summarized
them in Chapter 2. On the rouridhandles we use the same model Engel structures as in
our first construction in Chapter 5. In Section 5.4 we have shown that when ever the Engel
trivialization extends frond/ to M U, R1, then we can isotope the attaching map such that
the Engel structure can be extendedfaJ, R; by a model Engel structure ag;.

In Section 6.1 and Section 6.3 we define model Engel structures on round handles of
index two and three. In particular for round handles of infexe obtain a large variety
of model Engel structures. Still the contact structuredomk, is equivalent for all model
Engel structures. We do not describe the characteristic foliation in the interigs bfit
we ensure only that it is transversal to both boundary components. At this point we use the
fact that every contact vector field on a submanifold can be extended to a global contact
vector field by Proposition 2.7.

In order to isotope attaching maps for routiehandles to contact embeddings we use
bypasses in overtwisted contact structures (Section 2.4) in Section 6.2. The proof of Theo-
rem 6.1 is given in Section 6.4.

6.1. Model Engel structures on round handles of index

In this section, we construct Engel structures on round handles of ihdegcall that
such a handle is defined to be
Ry=D*x1xS'.
We have already constructed model Engel structures on radmaindles in Section 4.2.3.
Now we want to get model Engel structures with properties as in the next proposition.

PROPOSITIONG.3. Given integers: € Z andk € Z \ {0}, there is a model Engel
structure onR, with the following properties.

() The characteristic foliation oP can be oriented such that it points
outwards along,; Ry = D? x oI x S!
inwards alongd_ Ry = dD? x I x S .

(i) The singular foliation of7j; = 9D? x {0} x S! is divided by two homotopically
non-—trivial curves. Itis in standard form. The Legendrian ruling corresponds to
the first factor ofl, = 9D? x {0} x S*. The dividing curves are tangent to the
last factor. In particularZ is convex.

(iii) The rotation number of the intersection line field alopg= 9D? x {0} x {0}
(with its orientation as boundar§D?) is 2n.
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(iv) The rotation number of the intersection line field along the Legendrian divides
(with the canonical orientation of the last factor@b? x {0} x S')isk # 0.
(v) The orientation of the contact structure 6n R, can be chosen freely.

All model Engel structures induce the same contact structure on a neighbourh@gdof
0_Ry.

REMARK 6.4. The conditions (iii),(iv) and the orientation of the contact structure on
0_ Ry determine the homotopy class of the intersection line field as Legendrian line field.
This is explained in Proposition 3.22.

PROOF The proof is by an explicit construction. We will choose the even contact
structure first. The rotation number alo@? x {0} x {1} is (up to sign) already deter-
mined by this choice. The starting point is a singular foliat®on a discD?. On D? we
use polar coordinates, ). ChooseF such that

(i) onthe collarA = {r > 1/2} = 9D? x (1/2,1], F is defined bycos(y)dr.
(i) F admits a dividing sel’ containing the straight arg, from (r = 1, = 0) to

(r=1p=m).
(iii) except foryg, all components of* are closed and bound a disc containing no
other components df. All closed components lie in the same part/af \ .

Figure 1 shows a possihlE such that the dividing set has two connected components in the
lower half disc. The thickened curves divideé Similar singular foliations can be found
for one or more such components. By Theorem 2.25 we can chod&e@rariant positive

—

FIGURE 1.

contact forma on D? x R such that the induced singular foliation &% x {0} is F. Let
C = ker(a). The coordinate corresponding to tRefactor isz. We may assume that on
A x R we have

a = cos(p)dr + sin(p)dz .

This choice fixes an orientation of the contact structure. In order to find a contact vector
field V and a2—-handleh, c D? x R such thatl/ is transversal t®hs, we need to take
some care since we know nothing about the region 1/2, except thav), is a contact
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vector field everywhere. We focus first ahx R. Let g1, g5 be functions depending only
onz. The contact vector fielé” associated to the function
h = g1(x) cos(p) + g2(x) sin()
can be determined using the proof of Proposition 2.7. We obtain
— 0 / 2 ! . 0 0
V = i), = (6h(@) cos’ () + gale) sin(e) cos()) 5+ g2(w) 5
We choose the functiong, g such that

{0 ol >1
g1 ~1 for|z| <3
a forx > %
(65) goz) =< —a forz<-3
0 for—3<az<3.

for a positive constant. For this choice of, g2, the contact vector fielt on A xR can be
extended by - sgn(x)d, on|z| > 1 to a smooth contact vector field which we still denote
by V. Finally we extend/ to a contact vector field on the whole B x R. For this it is
enough to extend the functiern(1") to a smooth function and then to apply Proposition 2.7,
the extension will have zeroes in general. Itis transversaid x [—3/4, 3/4] and points
inwards. Now consider the pair of hypersurfaces defined by the equation

2| 5 72

T =-——.

4 2

Sincer < 1, both are contained in the regign| > 3/4. Thusg, = +a depending on the
sign of z.

5 r? .
Ly |lz——+4+ = | =rgi(z)a if x>0
4 2
5 r? :
Lv<x+4—g>:—rgl(x)—a ifz<0.

Thus if we fixa big enough) is transversal to the hypersurfadgs| = 5/4 — 2/2} and
it points outwards. We define

hy = {(r,¢,2)| |2| <5/4—r%/2} .

hs is an ordinary handle of indexsuch thatl is transversal to both boundary components.
By our construction}’ has the desired orientations alofigh.. Figure 2 shows, andV

along the boundary df,.
r
i&iﬁ_ﬁ X
h

2

FIGURE 2.
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The rotation number a#D? C hy with respect to the contact structure key = C can
be determined using the formula in (11)I1f: contains» closed components lying in the
open half disdy € (0, 7)} then

rote(0D?) = (1 —n) — (1 +n) = —2n.
If all closed components df are contained in the open half di§g € (m, 27)} then we

obtain rot (0D?) = 2n.
Now fix an oriented trivializatior;, Co of C. We assume that

0 . 0 0
%, Cy = —Sln((p)a + COS((p)%

near the poinf{y = n/2,r = 1,z = 0} C 0_ha. We consider the horizontal lifts of
Cl, CQ, V on

(66) Cr =

Ry =hy x S*.
Let m : Ry — ho be the projection. The coordinate ¢f will be denoted byt. For
k € Z \ {0} the distributionD;, spanned by

0
W—a~l—sV

X}, = cos(kt)C1 + sin(kt)Cy
is an Engel structure # > 0 is small enough, cf. Proposition 4.17. Sinices a contact
vector field,
(W, X] = —ksin(kt)Cy + k cos(kt)Co
+ £ (cos(kt)[V, C1] + sin(kt)[V, Cy])
is tangent tar, }(C). The characteristic foliation of this Engel structure is spannet/by

This vector field is transversal . R, and it points in the desired directions. The even
contact structur€ = [Dy, Di] on R, is defined by

B=r"a—en"(a(V))dt.

LetA = A x {—1/2 <z < 1/2} x S*. Using the expressions faf, o, h and our choices
of g1, go we obtain

B = (cos(p)dr + sin(p)dzr) — e(g1(x) cos(p) + ga(x) sin(ep))dt
= cos(p)dr + sin(p)dx + € cos(p)dt .

(67)

on A. The contact structure ah_ R, is defined by
(68) ﬂ‘a_RQ = sin(p)dx + € cos(p)dt — ega(x) sin(yp)dt .
Restricting3 to 7 = 9D? x {0} x S* we obtain

ﬂ‘Tg = eccos(p)dt .

Thus the characteristic foliation dff? is in standard form. The curves = 7/2 and
¢ = 3w /2 are the Legendrian divides. The Legendrian ruling is tangent to the foliation
given by the first factor i = 9D? x {0} x St.

For £ > 0, the orientation of the even contact structurélisCy,Cs. If & < 0 we
obtain the converse orientatid#, C;, —Cs.

The rotation number of the intersection line field along the Legendrian @ubex
{0} x {1} compares the framing,, of £/ with the image ofD,, in £/)V. Notice that
d,, is nowhere tangent ti) and that is constant orD? x {0} x {1}. Hence the rotation
number along the boundary of this disc is independent.oBy Remark 3.24, we can
determine the rotation number from the singular foliat®rve started with.
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If £ > 0, the orientation of /W defined byC, C; (used in particular for the calcula-
tion (11)) and the orientation @& /v induced from the orientation & and)V coincide.
Thus if & > 0, the rotation number alongD? x {0} x {1} is the same as the rotation
number rog(0D2) we have obtained from (11).

If k < 0, the rotation number of the intersection line field aléhg? x {0} x {1} has
the opposite sign since now the orientatior€@¥V induced by the Engel structure and the
orientation defined by, C> are opposite.

Let us now calculate the rotation number along the Legendrian divide- 7/2} x
{0} x S' c TZ. Here we use the particular choice of the framifig Cy near{y =
/2,7 =1, = 0} € O_hy. SinceV = —9,, the terms in the second line of (67) vanish,
i.e.

[W, Xk] = -k Sin(k‘t)cl + kCOS(k‘t)CQ .
We write X}, [W, X;] for the projection ofXj,, [V, X;] to &_R; alongW. By our as-

sumption (66) on the framin@, Cy near{¢y = 7/2,r = 1,z = 1} € 0_ho, the contact
structure oro_ R, is spanned and oriented by

S sin(kt) .. 0 sin(kt) 9

X = X . W = cos(kt) a0 T
i kcos(kt) . _ 0 cos(kt) 0
W, Xy = [W, Xy| - ——W = ksm(kt)% k -

along the Legendrian divide i with ¢ = /2. Along this Legendrian divide we obtain
the following expression fad;:

0
ot
Hence the rotation number along the Legendrian diige= 7/2} C T2 is —|k|. One
obtains the same result fqrp = 37/2}. Together with the rotation number along the
Legendrian ruling®D? x {0} x {t} and the orientation of the contact structuretoni,
this determines the homotopy class of the intersection line field as Legendrian line field on
0— Ry completely.
Let us summarize the properties of the model Engel strucidase have obtained up
to now. Recall thaD, depends not only ok but also on the choice of the dividing set at
the beginning of the construction. We can chonse Z freely, |n| is the number of closed
components of. Since we have fixed the contact form dnx R, the contact structure on
0_ R depends only on the choice Bfnear the boundary.

. (- sin(kt) Xy — %cos(kt) [M]) .

Orientation of€ /W

Rotation number
0D? x {0} x {1}

Rotation number
Legendrian divides

k>0
k<0

Cy,Cy
Cla _02

2n
—2n

— k|
—|k|

The model Engel structures with positive rotation nhumbers along the Legendrian divides
can be obtained by applying the involution

t: Ry — Ry
(Tv @7I7t) — (Ta% -, _t) .

This diffeomorphism preserves the contact structurg¢-e/2 < = < 1/2} C J_ Ry, cf.

(68), but it reverses the orientation of the Legendrian divides. In particular we can compare
the orientations of the contact structure and the homotopy class of the intersection line
fields with the corresponding propertiesidf. The model Engel structuresD;, cover the
cases which are missing in the table above. O
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Let M be an Engel manifold with transversal boundary and fix a model Engel structure
on Ry. We want to determine under which conditions an attaching map

o : O—_Rg — 0+ M

can be isotoped so that the resulting mappreserves contact structures. The following
proposition is a first step in this direction. We assumethdf?) is a convex surface. This
can be achieved by@>—small perturbation ofy,.

PROPOSITIONG.5. If ¢y respects the orientations induced by the contact structures
and the restriction ofiy to 72 preserves the isotopy class of the dividing set, thgian
be isotoped to a contact embedding.

PROOF. Let 7%, = vo(T3) andT'y, be the dividing set ofZ,. We first isotopeyy
to a mapy which maps the dividing set of2 to the dividing set off’2,. We do this in
such a way that throughout the isotofd}, is mapped td’z,. SinceT’, is convex, it has a
tubular neighbourhooll ~ 7%, x R such that the contact structure bnis mapped to an
R-invariant contact structure @if; x R.

We isotopey in order to achieve that the image of the isotoped map is containgd in
This isotopy can be chosen to be constant aljig The map obtained from this isotopy
will still be denoted by). Now the image of the singular foliation ary undery and the
singular foliation oril’Z, have the same dividing set.

By Theorem 2.28, there is an isotopy@f: 0_Ry — T? x Rto an embeddin@?
such that this map preserves the singular foliatior7gn Since the isotopy is admissible,
the surface) is transversal to the second factorlof; x R.

We identify T3 andzZ(Tg). From this identification we get coordinatesz,t on U
such thafl? corresponds te = 0, 9, is the canonical vector field oif ~ T, x R which
is tangent to the second factor. By Giroux’s Theorem 2.26, we may assume that the contact
structure orlJ is defined by the—invariant contact form

Bo = € cos(p)dt + sin(p)dz .
Consider the embedding
Y 0_Ry — T? xR
(p,t,x) — (p,t,z =) .
§ince¢{J preserves the orientation induced by the contact structures, the restrictions of

1. andy. to T¢ are homotopic. By the uniqueness theorem for tubular neighbourhoods,
these maps are isotopic. The claim would follow immediately if the contact structure on
0_ Ry were invariant unded,.. Unfortunately we cannot make this assumption, but we can
modify ¢’ using Gray’s theorem.

For this, we use several constants and some notation from Proposition 6.3. We apply
Gray'’s theorem for the following family of contact structures. Let

Bs = e cos(p)dt + sin(p)dz — sega(z) sin(p)dt ,

wheregs is a smooth extension of the function we used in (65) suchghlfis compact
support and depends only ean When one compares, with the expression (68) for the
contact structure of_ Ry one has to remember that we assumed ghat 0 in (68) on
0_ Rs respectivel\p_h, . Recall also thair = 0 on these boundary components. Because

Bs NdBs =edp ANdz N\ dt

is independent of, the family 3 is a family of contact forms. Consider the induced isotopy
F, of T? x R. Sincega(z) = 0 for —1/2 < z < 1/2, Fy is the identity neafly x {0}
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and F; has compact support. Moreovey 3, is a multiple of3,. Hencey; = Fl‘l o)/
preserves contact structures and is isotopigitoelative to7}. O

Suppose we are given an attaching ngapo_ Ry — 94+ M. In order to find a model
Engel structure okR? and an attaching maﬁ isotopic toi such that the Engel structure
extends taV/ Ug Ry it is enough to understand how one can manipulate the isotopy class
of the dividing set of an embedded torus in a contact manifold. In an overtwisted contact
manifold this can be done efficiently using the bypasses we obtained in Proposition 2.37.
We will discuss this in Section 6.2.

Notice that in our list of model Engel structures on roadhandles the case that the
rotation number along the Legendrian divides is zero is not contained. It will turn out that
it is always possible to arrange the attaching ma@etuch that model Engel structures
of this type are not needed.

6.2. Tori in overtwisted contact manifolds

Our model Engel structures on rouxéhandles share one property, namely the singular
foliation on77? = 9D? x {0}S' C O_Ry is the same for all our models. Now suppose
that M is an Engel manifold with transversal boundary gnd: 0_Rs — 04+ M is an
attaching map which preserves the contact orientatiods & ando M.

If we want to attachR, to M and extend the Engel structure framhto M U R, then
we have to ensure that the attaching map preserves contact structures. By Proposition 6.5
it suffices to modifyy, such that after the deformation the imageZgfis convex and the
attaching map preserves the isotopy class of the dividing sets. Recall that the dividing set
of T¢ consists of two homotopically non-trivial circles.

Let (N,C) be an overtwisted contact manifold. Using Lemma 2.36 and Proposi-
tion 2.37 we can perform the desired modification. In the following proposition we focus
on the imagel™ of the attaching map and isotope only this torus. It is clear how to obtain
the desired isotopy from this.

The following example shows that Theorem 6.7 is wrong when one drops the assump-
tion thatC is overtwisted.

EXAMPLE 6.6. On 7% = R3/Z3 consider the contact structure defined dy =
cos(2nmz)dx + sin(2n7wz)dy for n € N. Using the results inKal], one can show that for
n > 2 the torusl™? = {y = 0} C T? is not isotopic to a convex surface whose dividing set
consists of two components.

THEOREM 6.7. Let T2 be an embedded torus in an overtwisted contact manifold
(N,C). Assume thaf is orientable and that the Euler class of the restriction(ofo
T? is zero. Then we can isotofi€¢ such that after the isotopy the singular foliation on the
torus is in standard form. Moreover we can prescribe the slope of the dividing curves.
After the isotopy, the complement of a tubular neighbourhodafontains an over-
twisted disc.

PROOF It suffices to find a convex torus which is isotopic to the original one such
that the dividing set consists of two homotopically non—trivial components which have
the desired slope. Using the Giroux flexibility theorem (Theorem 2.28) one can arrange
the singular foliation oril™? such that7? is in standard form. We will frequently use
Proposition 2.37. The following figures represent the dividing set on a torus before and
after the bypass attachment. The thickened curve represents the attaching;ovirtiee
bypass.

1% Step: Assume thaV \ 72 contains no overtwisted disc. L&L,; be an overtwisted
disc. We perturb the embedding @ such that it becomes transversaliy,. Using
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an extension of a radial vector field d»,; we can isotopd™? such that after the isotopy
T2 N Dot = @

Without loss of generality, we assume thag; is convex. In particular, there is a
neighbourhood diffeomorphic t®,; x (—1, 1) which is foliated by overtwisted discs. In
the following we will always ensure that after each modification of the embeddifi§ of
there is an overtwisted disc which is disjoint from the deformed torus? 1§ a bypass
for T2, we choose the neighbourhoodBf U D such that its complement still contains
overtwisted discs.

In the following steps we attach bypassegtoin order to obtain the desired config-
uration of dividing curves. Notice that the dividing set of a convex closed surface is never
empty. In all figures in this proof the rectangle represents the torus (i.e. opposite edges are
identified in the usual way). The thickened arc represents the segmefthe boundary
of a bypass.

2n Step: In this step we remove all homotopically non—trivial components of the
dividing set. If there are no such components we continue with step 3.

If the dividing set contains more than two homotopically non—trivial components, we
reduce the number of its components of the dividing set using the bypass attachments in
Figure 3 often enough. We end up with a dividing set which contains two homotopically

FIGURE 3.

non-trivial curves. We remove these components with the bypass attachment in Figure 4

S

FIGURE 4.

37 Step: Using the the bypass attachment in Figure 5, we obtain two new components
of the dividing set. Their slope depends on the bypass. When we fix an identification
T? ~ S' x S', we can achieve that the new components of the dividing set are isotopic to
{p} x S forp € S'. The dashed curve represents this circle.

4t Step: We are left with a convex torus whose dividing set contains exactly two
homotopically non—trivial dividing curves;, o, with the desired slope. If this is the entire
dividing set we are done. Otherwise we consider the two afifulj (o1 U 02).

If only one of these annuli contains other components of the dividing',set claim
that there is at least one componenfloivhich bounds a dis® which contains another
component of". Assume that this is not true. Théf? \ I' containsr > 0 discs, one
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|

FIGURE 5.

annulus and one annulus withholes. The annulus and the discs have the same sign when
one chooses a contact form and a contact vector field which is transveidsalltothis
situation, the Euler number of the restrictiontfo 72 is

(69) (X(©), [T?) = X(T?) — x(T?) = +2r £ 0.
The sign depends on the orientationsI8fand of the contact structure. But (69) contra-

dicts our assumption on the Euler clas<ofln order to reduce the number of connected
components of" we perform a bypass attachment as the one indicated in Figure 6. Notice

QO

O O

FIGURE 6.

that this does not affect the homotopically non—trivial dividing curves.
If both annuliT?\ (o Ucs) contain connected componentdofve reduce the number
of components using the bypass attachment in Figure 7. Again this does not change the

¥ -
5

FIGURE 7.

number and the slope of homotopically non—trivial dividing curves.
If we apply the last step often enough we end up with the desired configuration of
dividing curves ori 2. O

REMARK 6.8. P. Ghiggini has suggested a different approach to Theorem 6.7. For this,
assume thdl™ is convex and consider a tubular neighbourh@8dx [—1, 1] such that the
contact structure iRB—invariant. We want to replace the given contact structure by a contact
structure which is homotopic to the given contact structure relatil&te {+1} such that
the singular foliation o™ x {0} has the desired shape.
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Now the homotopy between the two contact structure induces an isotopy between the
two contact structures by Theorem 2.33. Actually this isotopy can be chosen to be constant
outside a larger tubular neighbourhoodTot as long as this neighbourhood contains an
overtwisted disc. This isotopy shows that the torus with the desired singular foliation is
also contained in the original contact manifold and it is isotopi€tox {0}.

It remains to construct the desired contact structur@dmx [—1, 1]. For this We start
with the layerT™ x [-1, —1/2] and attach bypasses as in the proof of Theorem 6.7. Here we
attach abstract bypasses, i.e. bypasses which are not conta{@éd’in Using the bypass
attachment lemma (Lemma 2.36) we obtain contact structures on l&yexs(t,t + ¢)
such that on one components of the boundary of the layer we have the dividing set before
the bypass attachment and on the other boundary component we have the dividing set
after the bypass attachment. After a finite number of bypass attachments, we have the
desired singular foliation. Then we perform more bypass attachments in order to get back
the old singular foliation orf™? x {1}. This block can be used to replace the original
contact structure ofi? x [—1, 1]. The new contact structure is homotopic to the old contact
structure.

Thus we can use bypasses effectively to modify singular foliations of tori in overtwisted
contact manifoldg NV, C) which are trivial as bundles. This will always be the case in
our applications. Now we show that a bypass attachment also affects framings. For our
purpose, it will be enough to show that a particular bypass attachment has an effect on
framings. Honda described this effect in more detail, cf. Proposition 4Hoh [

Let X be a nowhere vanishing section ©f If N is the transversal boundary of an
Engel manifold with orientable Engel structure, then we can take the intersection line field
for X.

Assume thal™? = S! x S! is an embedded surface Msuch that the singular foliation
is in standard form. We fix an identificati@? = S* x S! such that the Legendrian divides
are tangent to curve®} x S

We write v for the coordinate on the first factor andor the second. A small tubular
neighbourhood of? is diffeomorphic as a contact manifoldT& x R with theR—invariant
contact structure defined by

(70) agp = cos(v)dt — sin(v)dx

wherez is the coordinate ofR. The curves{v = 0} and{v = =} are the Legendrian
divides. Let

. 0 0
C = sm(v)& + cos(v)a—x
0

ov
This is a framing of the contact structure 6rsuch thatC; is tangent to the Legendrian
ruling andCs is tangent to the Legendrian divides. We ori€rty C, Cs.

The rotation numbers of alongS! x {0} and{0} x S* compare the framing induced
by X with the framingC1, Cs. In the following lemma we assume that the complement
of a tubular neighbourhood @f? contains an overtwisted disc. In our application this will
always be the case sin@# is obtained from an application of Theorem 6.7.

Co

LEMMA 6.9. Assume that the rotation number &f along the Legendrian divides is
zero and that it is even along' x {0}. We attach a bypass as in Figure 848 and bring
the characteristic foliation in standard form such that the Legendrian ruling is still tangent
to the foliation from the first factor is! x S*.
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FIGURE 8.

Then the rotation number along the Legendrian divides in the isotoped torus is odd
(and therefore non—zero) while the rotation number alsigx {0} remains even. After
the isotopy, the complement of a small tubular neighbourhood contains an overtwisted disc.

PrROOF We use some notation from the bypass attachment lemma and we extend the
coordinate system, v, t to T2 x I. The bypass attachment in Figure 8 changes the dividing
set by a right handed Dehn twist. By Proposition 2.37 such a bypass attachment is possible.
On a neighbourhood df? x {0}, the contact structure is defined by the fammfrom (70).

By Theorem 2.26, the contact structure on a neighbourho@e of {1} is isotopic to
the contact structure defined by

a1 = cos(v + t)dt — sin(v + t)dx
and we may therefore assume that it is really defined by this form. The two vector fields

C1 = sin(v + t)% + cos(v + t)%
0
/ e
C, = 50
define a framing of the contact structure on this neighbourhood. We want to compare the
framing C1, C;, of C with the vector fieldX. Let

_ 0 ) 0 2
R = COS(U)& — Sll’l(’l})% neal’T X {0}
0 0
/ = o 2
R’ = cos(v +t) T sin(v + t)—ax nearT” x {1} .

Both C1, Cy, R and Cf, C, R’ represent the contact orientation. Now we compare the
framingsC1, Cs, R respectivelyC}, CY, R with 9,,, 0, 0, this last framing is also com-
patible with the contact orientation & x 1.

Consider first the annulud = {0} x S* x I ¢ T? x I. We compare the framings
C1, Cq, R respectivelyC], C4, R' with 9, 0, 0., along the two circle®A (¢ is varying
while v is constant). The resulting maps

dA D {0} x ST x {0} — SQ(3)
dA D {0} x ST x {1} — SQ(3)

are not homotopic. The first map is actually constant while the second map represents the
non-zero element in (SO(3)) = Zs.

Hence the framing€';, Co, R andC', C5, R’ do not extend fron®4 to A. The same is
true if we take the framing'], —C%, — R’ instead ofC}, C’, R'. Now for one of these two
framings, the third component, i.&’ or — R/, can be extended froffi> x {1} to a vector
field onT? x I which is transversal to the contact structure diés< I and coincides with
RonT? x {0}. We will pretend that this is true faR’; for the converse situation, we can
argue similarly. The extension will be denoted By
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There is another framing &f M along A formed by X, Y, R, whereY is a section of
the contact structure such th&t Y, R represents the contact orientation. Now if the rota-
tion number ofX with respect to the framing, Cs, R along{0} x S* x {0} respectively
the framingCy, C%, R’ along{0} x S x {1} were both even, then this would imply that
the framingsCy, C2, R andCY, C), R’ of TN along9dA actually extend over. This is a
contradiction to the above. Thus the rotation numieslong{0} x S! x {1} is odd. We
write 71 for this number. B

Now consider the annulud = S x {0} x I. It is easy to show that the framings
C1, Cy, RrespectivelC’, C4, R of TN extend fromd A to A. This implies that the parity
of the rotation number o along the Legendrian curves' x {0} C T2 x {i} is the
same parity for = 0,1. By assumption it is even. Actually the rotation numbers along
both boundary components dfare equal (we orient both boundary components using the
orientation of theS'—factor inﬁ) since the bypass attachment in Figure 8 can be chosen
disjoint from A.

The Legendrian divides iit? x {1} are the curves

{(z,7/2 —x) C S* x S' =T?}
{(2,37/2 —x) c S' x S' =T%}

The rotation number along the Legendrian divide compafesith the framingC1, C, of
the contact structure ové@f? x {1}. It equals the difference of; and the rotation number
of X alongS! x {0} x {1}. Itis therefore odd (and non-zero). O

Using this lemma, we will be able to arrange an embedding of a torus in an overtwisted
contact manifold such that the rotation number along Legendrian divides is non—zero at the
expense of changing the slope of the Legendrian divides. This makes it unnecessary to close
the gap in our list of model Engel structures Bp. The construction of the corresponding
Engel structure on round handles of indekdicates that this would be complicated.

6.3. Model Engel structures onRg

In this section we want to construct model Engel structures on r@ahdndles
R3 = D3 X Sl

such that the characteristic foliation is orientable and transversal and inward pointing to
0_Rs = 5% x S1. We want the induced contact structure@nR; to be overtwisted. In
each homotopy class of plane fields$hx S' there is a unique (up to isotopy) overtwisted
positive contact structure by Theorem 2.33.

We show in Lemma 6.10 that there is a unique homotopy class of plane fields which
extends toD? x S'. This will be the homotopy class of plane fields 8nR3 which
will arise in our models as contact structure on the boundary. Unlike in the case of round
2—handles, we have to covall possible homotopy classes of intersection line fields.

It is possible to realize many homotopy classes of intersection line fields using by
the method used in Example 4.19. This way we obtain all but one homotopy class of
intersection line fields (the missing homotopy class corresponklst@ in Example 4.19)

. Of course one can try to guess an Engel structur®dn« S' whose intersection line
field represents the missing homotopy class. Unfortunately, it turns out to be difficult to do
this directly.

The idea in the following construction is to use a decompositioPdinto piecesZ
and hy. While hs is an ordinary handle of indeX and dimensior8, Z is a solid torus.
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Both pieces carry contact structures such that the boundaries are convex. We will apply the
Giroux flexibility theorem to find a gluing map

@:0thy — 0_Z

inducing a contact structure ofi Uy, hy. If we think of Z as an ordinary—handleD?
with a 1-handlel x D? attached to it, tha—handle and thé—handle form a cancelling
handle pair. So after the gluing we end up witi. However when one takes the contact
structures on the pieces into account, we will obtain an overtwisted contact structhre on
while initially, the contact structures on andhs are tight.

OnZ x St andR, = hy x S', the model Engel structures with transversal boundary
representing all homotopy classes of intersection fields can be found easily from additional
structures we will define oh, andZ. Fromy we obtain an attaching map

V:0.Ry — 0_Z x S

which preserves contact structures. From this construction one obtains model Engel struc-
tures representingll homotopy classes of intersection line fields on the boundary of

(Z x SY)YUy Ry = (ZUy hy) x S' ~ D? x S' = Ry

Let us first define some contact structures and vector fields andh,.

6.3.1. Structures onZ. OnRR? x S' we use the coordinates y, s. Letay = dx +
yds. This is a positive contact form. The induced contact strucfure ker(ayz) is
invariant under

for all ¢ > 0. The contact vector field’; is transversal and inward pointing along the
boundaryd_Z of the solid torusZ = D? x S'. The singular foliation ord_Z is in
standard form. It is represented in Figure 10, we wéitlor the angular coordinate in

R2. The dividing set corresponds to the two solid curves, the dashed curve and the two
thickened segments will be needed later. Consider the trivialization

0 0 0

These vector fields satisfy the commutator relations

V(2).C(2)) = 5 = 2C1(2)
[V(Z2),C2(2)] =0.
Forx € Z we consider
X(Z) = cos(ks)(C1(Z) + Ca(2)) + sin(ks)C1(Z) .
This vector field satisfies the commutator relation

V(Z),Xk(Z2)] = —ksin(ks)(C1(Z) + C2(Z)) + K cos(ks)C1(Z)
+ e(cos(ks) +sin(ks))C1(Z) .
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If we fix ¢ = 1/3, this is linearly independent of .(Z) for all x € Z since

. —ksin(ks) + k cos(ks)
ot cos(ks) + sin(ks) t(cos(ks) + sin(xs)) _
cos(ks) —rksin(ks)
= —k — g(cos®(ks) + sin(ks) cos(ks)) .

If k # 0the last expression is never zero since the absolute value of the last term is bounded
by 1/2. On the other hand, i = 0 then the last expression equals. So fore = 1/3 and
for all x € Z we have shown that

X.(2) and[V(Z), Xx(2)]
are linearly independent sections of the contact struégrd-rom now on we fix
o 1 ( 0 0

V=55 \"as Yoy

) onR? x St .
6.3.2. Structures onhy. The contact structure we use here is taken fr@ml]. Let
ho = D? x I C R? and equipho with the positive contact formy, = dz + y dx + 2z dy.
Note thath, not exactly the same as in the construction of model Engel structures on round
handles of inde®. The contact structur€, = ker(«) is invariant under the vector field
0 0 3}
V(h)=20——y—+2—
(h) xf)x y@y +Z@z
Lypan =dz+2zxdy +yde =a.

This vector field is transversal to both boundary components of
ho = {(z,y,2) € R¥z? + 2% < landly| <1} .

It points inwards along_hs = D? x {41} and outward along, hy = dD? x I. Later

we are going to attach, alongd, hs to 9_Z. This is different from the usual conven-
tions because in the end, we want an inward pointing contact vector field transversal to the
boundary ofZ U hy. The framingCi(h) = y0. — 0, C2(h) = 220, — 0, satisfies the
commutator relations

[Mowmz—ya—(ya—2a)=—%um

0z 0z ox
0 0 0
[u@mwm%,(w&+®) Co(h)
We fix the following vector fields and note the commutator relations
Xy (h) = C1(h) + Ca(h) [V(h), X+(h)] = =2C1(h) + C2(h)
X_(h) = Ci(h) — C2(h) [V(h), X_(h)] = =2C1(h) — Ca(h) .

The orientationX (h), [V (h), X+ (h)] of the contact structure is the same as the ori-
entationC (h), Ca(h) while X_(h), [V (h), X_(h)] represents the opposite orientation.
Figure 9 shows the singular foliation @h.h,. The dashed line i§y = 0}, the two
thickened segments correspond to the dividing set. There are two hyperbolic singular
points andé is the angular coordinate in the z—plane. It is defined by thé—form
(cos(0) — ysin(f))dd + 2 cos(0)dy.



132 6. THE EXISTENCE THEOREM

[ A

0 v 312

FIGURE 9.

6.3.3. CombiningZ and h,. The contact structure oy, and the contact vector field
V' (h) appear in the construction of convex contact structure&inl]]. The construction
of an attaching map fa, to a manifold with contact structure and convex boundary (like
Z) is carried out in detail inGirl]. We therefore give only an outline.

Following [Girl] we will construct an embedding of a neighbourh@dd: ho of 04 ho

¢ : (U,01hy) — (Z2',0-2")

which preserves contact structures and niafis) to V(7). As we have already mentioned
this is different form our usual convention that boundary where a certain vector field points
inwards is attached to a boundary component where the vector fields points inwards. We
write Z’ instead ofZ because the solid torus will be deformed while the contact vector
field V(Z) will remain unchanged.

Let A = 0, ho. We orientA andd_ Z so that the orientation ofl respectivelyo_Z
followed by the contact vector fieldig (%) respectivelyl’(Z) is the contact orientation.
Choose an orientation preserving embedding

p:A—0_Z
such thab Dy x {0} C 04hy gets mapped to a curvewith the following properties.

(i) o intersects one component of the dividing $et of 97 transversely in two
points. We denote this componenty
(i) o does not meet the other component’of.
(iii) o is isotopic toy.
The dashed curve in Figure 10 has these properties. Moreover we assume that the image of
@ is a tubular neighbourhodd of o whose intersection witl', consists of two segments
~v1,7v2. Let F, be the singular foliation o#_hs. We construct a singular foliatia® on
0+ Z such that

(i) Fisdivided byI.

(i) F coincides withp., (F).
Figure 11 shows such a singular foliation on one of the anmdli\ I';. Each annulus
contains an arc of.

On the other annulus we can choose a foliation in an analogous way such that the two
singular foliations form a smooth singular foliation 6nZ. If all singularities have the
same sign, the new singular foliation is again divided e The foliation in Figure 11 is
an instance of a more general construction on p. 66Gii[]. The dashed curve represents
a segment of. It passes through a hyperbolic singularity/6f A neighbourhood of the
dashed curve carries a foliation which is equivalent to the singular foliation on a part of
0+ ha.

Now we apply Giroux flexibility theorem t@Z. By Theorem 2.28, there is an ad-
missible isotopyf,, 7 € [0, 1], of 9Z such thatf; o ¢ preserves characteristic foliations.
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FIGURE 10.
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Moreover,f; o extends to a small neighbourhood4fn hs. The extensiory’ is uniquely
determined by the requirement thdt(V' (h)) = V(Z). The surfacef; (0 Z) is the bound-
ary of a solid torusZ’ whose boundary is also convex and transvers&l (g).

In order to find a mag which preserves contact structures and satisfig¥ (h)) =
V(Z) one applies Theorem 2.26. Now extend theZ)—invariant contact structure from
a neighbourhood af_ Z to anR—invariant contact structure éh. Z’ x R such that’(Z)
corresponds to the vector field induced by the second factér ¢ff x R.

On the image ofy/, the contact structure’,(C,) is alsoR—invariant. This contact
structure can be extended to Brinvariant contact structure ah_Z’ x R such that the
singular foliation ond_Z’ induced by this contact structure coincides with The pro-
cedure how to find this extension is described@irl] ("Sous—Lemma 3.3” of chapter
3). The application of Theorem 2.26 then yields the desired attachingsmtpnaps the
dividing set ofd ha to 1, 2.

We gluehs to Z' usingp. On the resulting space we get a contact structure and a
contact vector field” which coincides withi’(Z) on Z' and withV (h) on hy. After we
cut of a suitable piece df; in order to smoothen corners we obtain a manifold which can
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be identified withD3. This can be done in such a way tHatis transversal t&@D? and
inward pointing.

In particular the boundary af’ U hs is convex and we can deduce the dividing set
of 0_D3. From the component of I, we remove the two segments, v» when we
attachh,. The contact vector field ohs is tangent the contact structure along the band
{z = 0}. Hence onD?3, the endpoints of \ (v, U2) are connected such that we obtain
two components of the dividing set 6f D3. The other component from the dividing set
of Z' is not affected by the gluing procedure. Thus the dividing se?.ab3 has three
connected components. By Theorem 2.34, this implies that the contact structixeisn
overtwisted.

6.3.4. Model Engel structures.From now on we writeZ for the deformed solid torus
Z'. The original torus will play no role anymore. Let us consitieand”Z separately again.
We have an embedding of a neighbourh@ddf 0, hs

@ :(U,0:hy) — (R* x S,0_27)

which preserves contact structures and miafs) to 1V (Z). Now consider the vector field
X1 onhy. Its image undep is homotopic (as a section 6f) to

X.(Z) = cos(ks)(CL(Z) + Ca(Z)) + sin(ks)C1(Z)

for exactly ones € Z. We fix thisk. Let X (Z) = X, (Z). In Section 6.3.1 we showed that
V(Z),X(Z)]is linearly independent ok (Z) everywhere. This defines an orientation of
Cz. We chooseX (h) = X (h) or X(h) = X_(h) such thaty preserves the orientation

of the contact structures for the orientati&inr), [V (h), X (h)] of C,. Let

Y(h) = [V(h), X(h)]
Y(2)=[V(2),X(2)].
In the following we denote byX (h),Y (h), X (Z),Y(Z) also the horizontal lift of the

respective vector field th x S* respectivelyZ x S'. The coordinate on the second factor
will be denoted by. Fork € Z andn > 0 consider the distributions

0
=5 +nV(h) and

Xk (h) = cos(kt) X (h) + sin(kt)Y (h)

Dy.(h) spanned byV (h)

Dy (Z) spanned byV (Z) = gt +nV(Z) and

X(Z) = cos(kt) X (Z) + sin(kt)Y (Z)

onh x S! respectivelyZ x S'. These distributions are Engel structures forkalt Z if
n > 0 is small enough. In particular the case= 0 is allowed. For example

W (h), X (h)] = —ksin(kt) X (h) + k cos(kt)Y (h)
+ 1 (cos(kt)Y (h) + sin(kt)[V (h),Y (h)]) .

This shows that) > 0 can be chosen independently frdmThe commutator vector field
[W(h), Xi(h)] is linearly independent di'(h), X} (h) for k = 0 since

[W (h), Xo(h)] = nY (h) .

(71)

This is linearly independent ofo(jz) by construction and it has n@—component. For
k # 0 itis obvious from (71) thafX(h) and[W (h), Xi(h)] are linearly independent. In
the same way one sees tf3t(7) is an Engel structure for all € Z.
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Let£(Z) = [Dr(Z),Di(Z)]. This even contact structure is independenk off we
intersectt (Z) with the tangent bundle of the first factor Bfx S' we obtain a distribution
C. This is the horizontal lift of the contact structures@to Z x S*. We use the analogous
statements and notations feinstead ofZ. Consider the embedding

=¢xId: (U,d_hy) x S' — (R? x §') x S*.

It is clear from the construction @b and from the choice of structures éghrespectively
h- that this embedding has the following properties.

(i) It maps the even contact structuféh) to £(2).
(i) ¢.(W(h)) =W(Z). _ _
(iii) ¢ mapsXy(h) to asection of (Z) which is homotopic toX(Z) among nowhere
vanishing sections af(Z).
(iv) It preserves the orientations 6{h) respectivelye(Z) which are induced from
Dy (h) respectivelyDy (7).
Hence we can apply vertical modification from Theorem 5.4 in order to obtain Engel struc-
turesD;. on

Ry =D*x S' = (7' Uy ho) x S' = (Z' x S*) Uz (he x S1).

We write W for the vector field obtained fro’ (Z) andV (k). The even contact structure
which is spanned by the horizontal lifts 6f respectivel\C;, andWW will be denoted by¢.
This is the even contact structu®;, Dy|.

The vector fieldlV is transversal t@_ R3 and points intaR3;. LetCy be the contact
structure on the boundary. By construction B, the surfaced_D? x {p} is convex
for p € S'. Its dividing set has three connected components. By the Giroux criterion
(Theorem 2.34) the contact structure@nRs; = S? x S is overtwisted.

Let us summarize what we have. The induced orientation of the even contact structure
E(h) coincides with the orientatiold/ (h), X (h), Y (h) respectivelyW (Z), X(Z),Y (Z)
for k > 0. If £ < 0 we obtain the opposite orientations. As oriented bundle we can identify
the contact structure on the boundary wathiv. For each homotopy class of Legendrian
fields we have obtained an Engel structure whose intersection line fiefd &g is this
homotopy class and such that the contact structure carries an orientation induced by the
Engel structures. It remains to construct model Engel structures which induces the opposite
orientations.

This can be done in a similar way as in the case of roRHgandles at the end of
Proposition 6.3. We use a self diffeomorphismif which preserves the contact structure
on the boundary but reverses its orientation.

LEMMA 6.10. There is a unique homotopy class of orientable plane fields’onS! =
0D3 x S! which extends t®? x S'.

PrROOF. Recall from HH] that the Grassmann manifolds of oriented plane®in
respectivelyR* are Gr(3) ~ S? respectively Gf(4) ~ S? x S2. The inclusiorR? — R*
induces the diagonal map

A Gr2(3) ~ 52 — SQ X SQ ~ Gr2(4)

Let Cy andC; be two plane fields o052 x S' who extend to the interior ab3 x S'. We
view Co, C; as maps front? x S! to Gr(3) and their extensions as maps fram x S to
Gry(4). Becausg0} x S! is a strong deformation retract 6f x S and Gg(4) is simply
connected, the extensions@f andC; are homotopic. This way we obtain a homotopy of
Co andCy in T(D? x S')|, ., - Using the projection of G4) ~ 52 x S? onto the first
factor, we obtain a homotopy betwe€nand(C; . O
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Since the contact structure 6n R3 is overtwisted and represents the unique homotopy
class of plane fields which extends/ x S we can apply Theorem 2.33. It implies that
the contact structur@ on9_ R; = S? x S is isotopic to the contact structure defined by

B+ = sin (3; sin2(19)> do £ g(9)dt .

Here we use spherical coordinates) € [0, 27) x [0, 7] on S? and thel—forms from (29).
Whether one has to take, or 3_ depends on the relation between the contact orientation
of 0_ Rz and the identification ofRs with D? x S*.

Now consider the involution

18?2 x St — 82 x st
(9, a, t) — (¥, —a, —t)
It extends taD?3 x S, the pointsy = 0, 7 are fixed and it has the property

Uy =P+ .

We denote the extension 0® x S! also by:. Letp € S? such thatmapsy = {p} x S!
to itself. LetC' (), C2(7y) be a framing o along~ such that”; (v) is invariant undet
while 1. (Ca (7)) = —Ca(7).

Now the intersection line field D, along~ is homotopic to one of the following
(—invariant sections of

cos(It)C1 + sin(lt)Co

with [ € Z. Thus the intersection line field of the Engel structime= ¢, Dy, is homotopic
to the intersection line field db;,. But D;, andD;, induce different orientations aih We
have shown the following proposition.

ProOPOSITIONG.11. Fix an orientation of the contact structu@ on 9_R3 and an
orientable Legendrian line field. There is exactly one Engel structure among the model
Engel structure®;,, Dy, k € Z such that the intersection line field is homotopict@nd
the induced orientation df is the preassigned orientation.

6.4. Proof of Theorem 6.1

Before we put the ingredients together in order to prove Theorem 6.1, let us remark
that statements analogous to Proposition 5.1 are true for round handles oRiade3:
Assume a round handle carries a model Engel structure and leé an oriented Engel
manifold with transversal boundary and oriented characteristic foliation. Whenever an
attaching map

w:0-R— 04+ M

preserves contact structures, their orientation induced by the Engel structure and the ori-
ented intersection line field, we can attach the round handle such that we obtain an oriented
Engel structure o/ U, R. The characteristic foliation is again transversal to the boundary.

Recall from Theorem 3.37 that an oriented Engel structure on an oriented manifold
induces a decomposition

D & TM
72 TMW® —& =b ——
(72) © W © D © &
of oriented real line bundles. We fix a Riemannian metric. Then (72) induces a trivialization
of TM. Assume that we have an Engel structureddrc M. Then arEngel trivialization

on N is a trivialization which coincides with the trivialization avi we just described.
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PROOF OFTHEOREM®G6.1. Let M be a closed parallelizable manifold of dimensibn
and fix a trivialization' M ~ M x R* of the tangent bundle af/. We consider a round
handle decomposition a¥/ such that there is exactly one rousdhandle and one round
0—handle. Such a decompositionfdf exists by Theorem 4.6. Thud is decomposed

M= ( ((...(RO Uy R}) L Ugn R;l) Uy Rg) Uy Rgz) Ups Rs -

The attaching mapgi, ¢i are indexed by (and not powers of mapgi, p2). We will
frequently isotope the attaching maps but this will not be reflected in the notation.

Start with the round handles of indéxAs model Engel structure on a routehandle,
we take the model Engel structuf® from Section 6.3 which correspondso= 0 and
reverse the orientation of the characteristic foliation such that it points ofs of Ry
along the boundary. Assume that the orientation induce®$wn R, does not coincide
with the orientation of\/ given byT' M ~ M x R%. In this case consider an automorphism
1o of Ry which reverses the orientation &f. Then we equipR, with the Engel structure
1o« Dg instead. This way, we ensure that the Engel orientation and the orientatish of
coincide onR).

We compare the trivializatiod/ x R* and the Engel trivialization o, along the
curve{0} x S' ¢ D3 x S' C Ry. This defines a map

g1: S8t ={0} x S' — SO(4) .

Sincen;(SQO(4)) = Zo, this map is either homotopic to zero or it represents the non—zero
element ofr; (SO(4)). In the latter case we apply again an automorphisif= D3 x S*.
We use the usual coordinates y, z) on D3 andt on S*. Let

Fy:Ry=D3xS' — D?*x S' =R,
((:c, Y, 2), t) — ((Cos(t)x + sin(t)y, — sin(t)z + cos(t)y, 2), t) )

We push—forward the Engel structure & by Fy. The trivialization induced by the new
Engel structure and the given trivializatidh/ ~ M x R* are now homotopic along
{0} x St ¢ D3? x S* C Ry. Since this curve is a strong deformation retractpfwe
can homotop the given trivializatidfid/ ~ M x R* such that it coincides with the Engel
trivialization on Ry. The contact structure an. Ry is overtwisted by construction.

In the following we will assume that the attaching maps of the round handles preserve
the orientation induced by the contact structure on the boundary when we equip the round
handle with a model Engel structure. Since an orientation of the characteristic foliation
induces an orientation of an Engel manifold and vice versa, this condition ensures that
the Engel trivialization on the round handle and the trivializatiol'df define the same
orientation. If an attaching mapdoes not preserve the contact orientation, then we replace
© by p o« where is the orientation reversing involution on round handles induced by the
diffeomorphism.(t) = —t of the S'—factor.

Let M{~! be the round handle body obtained frag andR1, ..., R}"'. Assume that
we have attached all round handigswith j < i — 1 and that we have extended the Engel
structure over all these round handles of indesuch that the contact structure @M ;!
is overtwisted. Assume moreover that throughout this process we have homotoped the
trivialization of M such that it coincides with the Engel trivialization on the round handle
body we have treated so far.

Hence the Engel trivialization oi/; ™" can be extended to/; ' U; Rj. By Theo-

rem 5.8, we can isotopg} to an attaching map* such that the Engel structure M{‘l
extends to an Engel structure oy = Mj} U,i Rj using a model Engel structure diy
from Section 4.2.2.
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In order to ensure that the contact structureded/? is again overtwisted, we isotope
¢! before the application of Theorem 5.8 such that its image is disjoint from an overtwisted
disc inébrM{'*l. For this, assume that (7. ) is transversal to an overtwisted diBg; and
let p be a point onD,,; which does not lie o’ (v+). Then use the flow of a radial vector
field centered ap to isotopey® (1) such that the image of. becomes disjoint fronb,;.
The remaining steps, like making the attaching curves Legendrian and stabilization, can be
carried out in a small tubular neighbourhood which is also disjoint fieyn

Unfortunately, the Engel trivialization and the original trivializationf need not to
be homotopic onV/{ relative toM;~!. We can arrange this by applying a suitable self—
diffeomorphism ofR}. Let~. be the attaching curvegt1} x {0} x S' C 9_R} with
their orientation from thes'—factor and consider

Ix{0}xS'CR,=1xD?xS".

This cylinder can be decomposed intd-ecelle; = I x {0} x {1} and a2—celle5. The
1—cell is attached td/*~! using the restriction of%. The2—cell e, is attached along.
This path is formed from the consecutive pathhgrom —1 € Ito 1 € I, i () with the
positive orientation;-e; and finally? (v_) with the orientation inverse to the given one.
We first modify the Engel structure oR} such that the new Engel trivialization is
homotopic to the given orientation alomg relative to the endpoints af;. Letp : I =
[—1,1] — [0,27] be a smooth function which is constant near the boundsdryl) =
0, p(1) = 27. Then consider the diffeomorphism

Fi:R, =IxD*xS' —IxD*xS"'=R}

(x, cos(p(x))y1 + sin(p(x))ye,
—sin(p(z))y1 + cos(p(x))y2, 1)

As in the case of round zero handles we now use therfa@Q(4)) = Z. If the Engel
trivialization and the given trivialization af/ are not yet homotopic along relative to

the boundary points, then we push forward the model Engel structui; arsing .

The properties op ensure that we obtain again a smooth Engel structur&/émut the
trivialization induced by the new Engel structure is homotopic to the given trivialization
alonge; relative to the boundary.

Next consider the—cell e;. Both the Engel trivialization and the given trivialization
of M extend fromy = Jes to e2. Sincery(SO(4)) is trivial, this extension is unique up to
homotopy relative toy.

Now M;~! Ue; U ey is a strong deformation retract off; relative toM;~*. Thus
we can extend the Engel structure fro}‘n‘f‘1 to M} such that the Engel trivialization and
the given trivialization ofA/ are homotopic relative tM{’l. The attaching region of the
roundl-handle can be chosen so small that in its complement there is an overtwisted disc.
Thus the contact structure éh M is still overtwisted.

In the next step we attach rouddhandles. We are no longer able to ensure that the
Engel trivialization and the given trivialization i are homotopic after we attach round
2—handles. Assume that we have already attached the first round 2—handles such
that on the resulting handle bodyg‘l we have an Engel structure extending the Engel
structure onM;. The contact structure on the boundary is assumed to be overtwisted.
Consider the attaching map

(IE, y17y27t> —

@b 0_Ry — 0, ML

The contact structure o&+M§*1 is orientable and it has an oriented section, namely
the intersection line field. Thus the Euler class of the contact structure, viewed as bundle,
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vanishes. By assumption, the contact structure is overtwisted. According to Theorem 6.7
we can isotope, such that the singular foliation on the imagegf

T¢ ~0D* x {0} x S* C O_R},

is in standard form. Moreover, we can assume that the Legendrian dividesare tangent
to b ({p} x {0} x S') with p € dp. The Legendrian ruling can be chosen to be tangent to
the foliation induced by the first factor 8D? x {0} x S*. Finally, Theorem 6.7 ensures
that the attaching region ok} is contained in a neighbourhodd of ©%(7%) which is
disjoint from some overtwisted disc.

In order to find a model Engel structure 3 which extends the Engel structure on
M, to an Engel structure offy = M; ™' U_; R} we are left with several difficulties.
These concern the homotopy class of the intersection line field as a Legendrian line field.

(1) We have to show that the rotation number along the Legendrian rulings is even.
(2) We have to ensure that the rotation number along the Legendrian divides is not
zero.

If we can ensure these two additional conditions we can apply Proposition 6.3 and
Proposition 6.5 to find a model Engel structure ®nand an isotopy of%, such that the
new attaching map

e has an image which is contained in a tubular neighbourligod 72 x R.

e preserves the orientation 8f R} andd, M, which is induced by the respective
contact structure.

e preserves contact structures together with the orientations which are induced by
the Engel structures.

e maps the intersection line field ai_ R} to a Legendrian line field 0@ MJ
which is homotopic to the intersection line field of the Engel structurdgn’,
cf. Remark 6.4.

After a suitable vertical modification af, M. !, we can attactR} such that the model
Engel structure o}, extends the Engel structure Mé‘l smoothly. By Theorem 6.7 and
Lemma 6.9 the complement of a small tubular neighbourhood of the ima@g ohder
the isotoped attaching map contains an overtwisted disc. If we choose the attaching region
small enough, the contact structure@pl/s is still overtwisted. At this stage we use that
there is a trivialization of" M over all ordinary handles of index 2, this corresponds to
the condition that the second Stiefel-Whitney clasg/fo¥anishes, cf. Theorem 6.2.

We now show that we can always achieve the two conditions above with the following
assertions. Let

v =09D? x {0} x {1}.
Claim (1) : The Engel trivialization ong_1 extends to a trivialization df' M over D? x
{0} x S' C R}

PROOF OF CLAIM(1). Let S' = Iy U I be the union of two closed intervals which
have only boundary points in common. We assumelhatS! is contained in the interior
of Ip. We decompose the rourzéhandleR, into one ordinary handle of indexand one
ordinary handle of indeg

Ry =D%*x1IxS'=(D?x (I xIy))U((D?x 1) xI)
~ (D?*xD*)U(D3x1I)=hiUh}.
With this identification, the attaching curve 64 is 7. The attaching magp} of 7} is
the restriction ofyi, to 0_hi C O_R5. The attaching map of; can also be described
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using ¢} and an identification 0B, k% with parts of 0_h% which are obvious from the
decomposition. But we will not need the attaching mapoéxplicitly.

The claim only involves the—handleh}, but not the3—handleh}. Thus we can remove
.

Recall thatdy RS ! = D? x {1} x S' has dimension three. Thus if we pertas
slightly, the attaching curve of the 2-handle becomes disjoint from the circlé3} x
{#1} x S'in 8, RS"*. Thus using the flow of a vector field which points away from these
circles, we can isotopg}, such that its image does not interségcth‘l.

We removel%fg‘1 from our round handle body. Now we can apply the same procedure
with R’;Q. Iterating this procedure, we can isotopg such that in the end its image is
contained i M;.

As we have shown above, the Engel trivialization extends fiépto the whole of)M .

In particular it can be extended ovl&@ when this handle is attacheddq M. But in order
to achieve this, we have only isotoped the attaching map.

This shows that the Engel trivialization M§‘1 extends oveh}, also with the original
attaching map. O

Claim (2) : The rotation number alongs(v) is even.

PROOF OF CLAIM (2). For this let us fix a model Engel structure & and isotope
©b so that it preserves the contact structure on a neighbourhood of the image of R%.

We homotop the Engel trivialization dwg'*l such that the only component of the framing
which is not tangent t@, M:~* is . Then we pull back the Engel trivialization on
9. M2~ to a framing or)_ R},

Strictly speaking, this does not make sense becafjss a map t08+M§‘1 but the
Engel framing has one component which is transversal to this boundary. This is the vector
field W which orients the characteristic foliation. But since ®xnthe characteristic folia-
tion is also oriented by a vector fieléfz which is transversal t6_ R}, we can takéVr as
pull-back of V.

Since we have assumed that the attaching map preserves contact structures, the pull
back of the component of the Engel framing which is orthogonal to the even contact struc-
ture is transversal to the even contact structuréd?en Without loss of generality, we can
choose these components of the Engel framings such that they are presepiedTbys
by definition the pullback framing and the Engel framing®nhave two common compo-
nents. When we want to compare the pull back framing with the Engel trivialization along
~ it is therefore enough to consider the rotation numbers along

By the definition of the model Engel structures, the rotation number of the Engel trivi-
alization onR}, is even. If the rotation number of the pull back framing alarig odd, then
the pull back framing and the Engel framing are not homotopic atlonBut this implies
that the pull back framing can not be extended over the Bic< {0} C hy. Thisis a
contradiction to Claim (1). O

Claim (3) : We can isotope? such thaty’ (733) is in standard form and the rotation
number along the Legendrian divides is not zero.

PROOF OFCLAIM (3). Assumeyp}(T3) is in standard form and the rotation number
along the Legendrian divides is zero. By Claim (2), we can apply Lemma 6.9. Thus we
achieve that the rotation number along the Legendrian divides is not zero at the expense of
changing the slope of the dividing curves by a right handed Dehn twist. O

This shows that we can extend the Engel structure fiéfn’ to M} by a model Engel
structure from Section 6.1. If we really have applied Lemma 6.9 in Claim (3) then we have
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to modify our model Engel structures slightly by a push forward with the diffeomorphism
§:Ry=D*xIxS" — D*xIxS!
((y1,12), 2, t) — ((cos(t)ys — sin(t)ys, sin(t)y; + cos(t)y2), z, t) .

When we restrict this diffeomorphism to the to@®! x {0} x S! this performs a right
handed Dehn twist. }

Assume that we have an extension of the Engel trivializationgn'. This is the case
fori = 1. Then unfortunately the given trivialization and the Engel trivializatiod6pare
not homotopic relative tdZ; ! in general. This is due to the fact thaf(SO(4)) ~ Z x Z.
Hence if we decomposg} into ordinary handles?, b} of index2 and3, the extension
of the Engel trivialization on\Z:~! is unique up to homotopy oveé#, but there are many
non—homotopic possible extensions okér

After the last attachment of a rougdhandle, we have extended the Engel structure to
Ms. When we want to extend the Engel structure fridfp to M, the Engel trivialization
has to extend, too. Once we have shown that this is really the case, we can choose a model
Engel structure o3 such that the Engel structure extends\io

Claim (4) : The Engel trivialization extends froid; to M.

PROOF OFCLAIM (4). First we reduce the problem to bundles of rahkThe first
componentV of the Engel trivialization is transversal tiV/; by construction. Thugl’
extends to a vector field without zeroes bh We equipM with an almost quaternionic
structure such that the Engel framing did /W, JW, KW coincide onM; UA} .. .U hy?.
Then we can choose a trivialization of the orthogonal complevgntof 17 in M. (This
trick is from GeigesGei]). For the remaining part of the proof of Claim (4), we consider
w+.

We decompose all roungi-handles into ordinary handlés, i} for 1 < j < ry of
index 2 and3 and we rearrange the handles such thatthHeandles are attached id; .
We have already shown in Claim (1) that the Engel trivializatiomof on M; extends to
M; U RY U ... U AL and because,(SQ(3)) is trivial, the extension of the trivialization
over these handles is unique up to homotopy. Therefore, the Engel trivializatibf an
hiU...h5? also extends td/.

Finally we decompose the roughandle into an ordinar&—handleﬁg and one ordi-
nary4—handleh. We have shown that on tie-skeleton the S@)-bundleW is trivial.
Therefore we can liftit to $3—bundle. (Recall that Spif) = SU(2) = S3.) Sincers(S?)
is trivial, the trivialization oW1 extends from\/, to ﬁg. We fix such an extension.

The obstruction for the extension of the trivialization Yt from the union of all
ordinary handles of index 3 to M is a cochaine in the cellular cochain groug“ (M, Z)
which depends on the choice of extensions of the trivialization ove3-thandles and on
the handle decomposition itself. The cochairepresents a clags] € H*(M,73(S3%)) =
H*(M, Z) which does not depend on the choice of trivializations on3tHeandles or the
handle decomposition. According t&9S p. 31, [z] is the second Chern class of the
SU(2)-bundle. As we have showétl is trivial, hencelz] = 0.

Recall thate;(Wt) = p1 (W) = p1(TM) = 30(M) by the signature theorem of
Hirzebruch, so in this step of the proof we use the fact that the signature of a parallelizable
4—manifold is zero, cf. Theorem 6.2.

The handle decomposition éff contains exactly oné—handle andV/ is an oriented
closed manifoldC4(M,Z) = H*(M,Z). Thus[z] = 0 impliesz = 0. Therefore the
Engel trivialization ofW- extends from\/, to M although the Engel trivialization ohf,
may not be homotopic to the trivialization 81 we fixed at the beginning of the proof[]
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The contact structuré on M, = S? x S! is overtwisted. By Claim (4) the Engel
trivialization extends from\/; to M. By Lemma 6.1Q is contained in the unique homo-
topy class of orientable plane fields which extends figdx S! to D? x S'. According to
Theorem 2.33yp3 can be isotoped such that it preserves the contact structuRy aren
we equipR3; with a model Engel structure. (Recall that this contact structure is the same
for all models.)

Now we chose the model Engel structure/®nsuch that the orientation of the contact
structure as well as the homotopy type of the intersection line fields is preserved. This is
possible by Proposition 6.11. This proves the theorem. O



CHAPTER 7

Geometric examples

In this chapter we discuss Engel structures from a different point of view. If a manifold
X admits an Engel structure which is invariant under the action of a discrete group
such thatX//T" is again a smooth manifold, then we obtain an Engel structur® dn A
rich source of group actions are Thurston geometries. Let us summarize some facts about
Thurston geometriesThuZ2]).

DEFINITION 7.1. Let X be a simply connected, complete Riemannian manifold and
G the group of isometries oX. The pair(X, GG) is calledThurston geometrif

(i) G acts transitively onX
(ii) the stabilizer of a point € X

Stab(z) = {g € G ‘ gr =ux}

is compact
(lii) G contains a discrete subgrolipsuch thatX/T" is a compact manifold.

One Thurston geometrX;, G;) is said to beequivalentto another Thurston geometry
(X2, Gy) if there is a diffeomorphisny : X; — X5 such thatp o G1 o ¢y~ ! is a subgroup
in G>. Note that this isiotan equivalence relation. If is a lattice inG then X/T is said
to haveX—geometry.

If (X,G) is a Thurston geometry and C G is a subgroup such théa, /) is also
a Thurston geometry theiX, G) and (X, H) are equivalent. Therefore one usually only
considers Thurston geometrigk, G) whereG is the maximal group with the properties in
Definition 7.1. Notice tha{7 is not required to be connected. We wiitg for the identity
component of7 andH" for the hyperbolic space of dimensian

Fordim(X) = 3, Thurston classified all possible Thurston geometries up to equiva-
lence in [Thu2] as follows

We will describe the Riemannian metrics and isometry groups later. The source we use for

this is [ThuZ2]

In dimensior4, Filipkiewicz obtained the following classification of Thurston geome-

Isomorphism type oftabg(z) | Isometry class oX
SQ(3) S3,H3, R3
SQ(2) S? x R,H? x R
Nil3, S1(2, R)
{1} Sof

tries up to equivalence irFjl]. The following list can be found inWa1l].

Isomorphism type oftab(z) Isometry class o'
SO4) ST HY, R?
U(2) CP?, H?(C)
SO(2) x SO(2) 5% x 8% 52 x R%, S? x H?2, H? x R?, H? x H?
SO(3) S3 x R,H3 x R
SO(2) Nil? x R, S1(2,R) x R, Solt
{1} Nil4, Sol(m, n), Sok

143
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The geometries Stlm, n) are indexed by positive integers, . We will give more details

later in the discussion of Engel structures on geometric manifolds. The product geometry
SoP x Ris included in Sdl(m, ). The descriptions of the isometry groups are essentially
from [Wal, WaZ2].

We say that a contact structure respectively an Engel structu’ isrgeometric if it
is invariant under a subgroufi of the isometry groug- such that X, H) is a Thurston
geometry.

In Section 7.1 we discuss whigrdimensional Thurston geometries admit a geometric
contact structure. The contact structuresXn= S2, Nil3, §I(2,]R) will appear later in
Section 7.2 in the discussion of geometric Engel structures. For these geometries, the
contact plane at a point is invariant under d—dimensional subgroup of the isometry
group. The only other Thurston geometry which is compatible with a contact structure is
SoP.

Section 7.2 and Section 7.3 contain a discussion of Engel structures compatible with
Thurston geometries. Many of the-dimensional Thurston geometries do not admit an
Engel structure for topological reasons. The remaining geometries can be treated in two
different ways.

The geometries® x R, Nil® x R respectivelyél(Q, R) x R can be treated starting from
contact structures ofi®, Nil3 respectiver§I(2, R). Here we use a construction similar to
prolongation (cf. Proposition 3.15).

The other4—dimensional Thurston geometries are treated individually in Section 7.3.
It turns out that these geometries admit geometric Engel structures which are similar to
those obtained by the construction of H. J. Geiges (cf. Proposition 3.17).

Let us emphasize that we treat only the existence of geometric contact structures re-
spectively Engel structures but we do not classify them up to isomorphism.

7.1. Geometric contact manifolds

In the following we seek geometric contact structures in dimen3ioie show only
their existence but we do not classify them.

DEFINITION 7.2. A geometric contact structutis a triple( X, C, G) where(X,C) is a
contact manifold and- is a group of diffeomorphisms of which preserve&. Moreover,
(X,G) is assumed to be a Thurston geometry. A geometric contact structure is called
maximalif its isometry group consists of all orientation preserving isometrigs.in

When the identity componerif, C G acts freely, one cannot expect that geometric
contact structures are unique. Any sni@f—equivariant perturbation of the contact struc-
ture will yield again a geometric contact structure which is invariant under the action of the
identity component. The perturbed contact structure is no longer invariant under all con-
nected components 6f. We will show this in some cases but we do not classify geometric
contact structures up to equivalence. The following table summarizes the existence results.

Thurston geometry geometric contact structuremaximal
S3 yes no
R3, H? no no
52 x R,H? xR no no
Nil3, S1(2, R) yes yes
Sol? yes yes

The cases are grouped according to the corresponding maximal Thurston geometry.
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7.1.1. X = S3. The full isometry group i€ = O(4) acting onS® C R3. The metric
on S3 is a multiple of the standard metric with constant curvature.

We identify S® with SU(2). Choosing a plan€. in T.SU(2) = su(2) we obtain
a left—invariant distributiorC of rank2 on S3. If X,Y € su(2) spanC. then[X,Y] is
linearly independent o, Y. Hence the commutator of two linearly independent left—
invariant sections of is nowhere tangent t©. This shows thaf is a contact structure. By
definition itis invariant unde$U(2) C O(4). We want to determine the maximal subgroup
of isometries ofS® which preserve.

Using a suitable element @f € Stab(e) we can achieve that.C. is the complex
subspace of,S3. Thenh,C is the standard contact structure $hwhich is defined by

a = 21dy1 — y1dxe + rodys — yodxs .

The orthogonal complement of the standard contact structus® @tangent to the Hopf
fibration. The fiber of the Hopf fibration throughis the intersection of the orthogonal
complement®! of C(p) C T,C? = C? with $3 andC* is again a complex subspace of
C2. Moreover the map

conj : §% — S3
($17y171‘27y2) — (xly —Y1,T2, 73/2)

preserves kéry) but it reverses the coorientation ©f
Henceg € O(4) preserves.C if and only if g preserves the complex subspace€ &f
Becausgy is an isometry it also preserves the action ap to multiplication with+1. So
g preserveg if and only if
g€ Gl(2,C)NnO(4).
If g anticommutes with theng o conj € U(2). Thus we have shown that the subgroups of
isometries preserving is to

H =1TU(2) U (U(2) oconj) C O(4) .

So very latticel' ¢ H gives rise to a contact structure 6d/I". The manifolds obtained
this way include all lens spaces. IW§] one can find more spherical space forms corre-
sponding to subgrouds C H.

7.1.2. X = R3. The metric is the flat metric and the maximal group of isometries is
R3 x O(3) acting in the obvious way oR?.

Suppose thaty C R3 x O(3) acts transitively oiR3. ThenG must contairR? since
all elements ofO(3) fix the origin of R3. So a contact structure which is invariant under
the action ofG is invariant under the action & on itself. But every translation invariant
plane field orR? is integrable. Therefore there is no geometric contact structure which is
equivalent to the Thurston geometi3, R3 x O(3)).

7.1.3. X = H3. The metric onH? is the usual hyperbolic metric and its isometry
group isG ~ PSI(2,C) x Zs where the non-zero element # acts onPSl1(2,C) by
composition with a reflection along a fixed hyperbolic plane.

The maximal isometry group has two connected components and tékirg Gy
yields a non—-maximal Thurston geomet®, H ).

In order to show that there are no other non—-maximal geometries equival&rit to
we prove that there is no subgroiip of G which has codimension at least one and acts
transitively onH?® such that there is a latticE ¢ H. Assume thatd has the desired
properties.

Since Gy has finite index inG' we can assume thdif C Go. We fix a basepoint
ro € H3. ThenG is foliated by{g € Golgzo = =} for x € H3. A subgroupH which
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acts transitively ofil® has to be transversal to this foliation and in particular to the stabilizer
K = Stab(xzg) = SU(2)/{%1} ~ SQ(3) of z(. This is a maximal compact subgroup of
G. If H is not connected then by transversality each connected componEninafetsk .
SinceK is compact and{ is supposed to be a closed subgrotphas only finitely many
connected components.

Hencel'N Hy has finite index il and the same is true fdfy, ¢ H and we can restrict
ourselves to connected groufls The assumption thaf contains a lattice implies th&f
cannot be an algebraic subgroup(@f by the Borel density theorem:

THEOREM 7.3 (Borel,MGS]). Let G be a real algebraic group an@l a lattice inG.
Then the closurE” with respect to the Zariski topology @contains a normal cocompact
subgroupG’ of G.

It remains to show that every connected Lie subgréupf Gy which is transversal to
K is contained in an algebraic Lie subgroup of the same dimension. The question which
subalgebras of the Lie algebra of an algebraic group correspond to algebraic subgroups
is studied for example ingor]. Such subalgebras will be calledgebraic We use the
following results from chapter 11.7 oHor].

THEOREM 7.4 (Chevalley,Bor]). Letg be the Lie algebra of an algebraic Lie group
Gy andh a subalgebra which corresponds to a Lie subgroup-ef

() bis algebraic if it is spanned by algebraic Lie subalgebras.
(i) [h,b]is algebraic.

Since H acts transitively orH?, its dimension is at least three. We denote the Lie
algebra ofH by h andhM) = [h, ). Obviouslyh() is a subalgebra df.

If dim(H) = 3 andh(M) = b, thenH is algebraic. Ify(!) £ § thenh®) would be two
dimensional and solvable or Abelian. HenHeandT" would be solvable. This leads to
a compact hyperbolic manifold with solvable fundamental group and to a contradiction to
Preissmann’s theorem. Heng@) = h and} is algebraic.

If dim(H) = 5 then by transversality/ N K is a subgroup of< of dimensior2. But
K = SQ(3) has no such subgroups.

We are left with the caséim(H) = 4. If the dimension oh™) or [h(1) h(] is less
than three, then we obtain a hyperbolic manifold with solvable fundamental group and a
contradiction to Preissmann’s theorem (as above). The remaining ca'sﬁ(bs(l)) =3
and[pM, hM] = M. In particularh® is algebraic. In view of (i) of Theorem 7.4 it
suffices to find an algebraic complement®¥ in §.

Sincep is transversal t@ there is a vectol” spanningy N ¢. If we conjugateH with
arbitrary elementg of K we obtain subgroups daf which correspond to hon—maximal
geometries. Without loss of generality we can assume

V:(é 0 ) €5((2,C) .

Itis to see that the subgroupsi®$l(2, C) corresponding td” and:V" are algebraic. More-
overiV is not contained in the Lie—algebtaof K. We now show that one of the two
vectorsV, iV together withh(!) generate$.

Since} is transversal td, there is an element of the forify + W with W € ¢in b.
Consider

V,iV4+W]=[V,IW]et.

If V- andW were linearly independent then by the commutator relations (78)-0fu(2)
this would imply that[V, W] is linearly independent of". But thendim(¢Nh) > 2 and
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this is a contradiction to our assumptions Bn ThusV, W are not linearly independent
and we may assumé” = 0. LetV, (', Cs be a basis of such that

(73) [V,C1] =2Cy, [C1,C5] =2V, [Cy, V] =2C.
Thenp is generated as a real vector space by
V,iV, ‘71 =1iCq + (a101 + CLQCQ), ‘72 =1Cy + (5101 + 5202)

with real numbersi, as, b1, bo. It is clear from the commutator relations (73) that we can
obtain at most one of the vecto¥§iV by forming commutators of the basis vectorshof
described above. BecauseiV andh(!) are algebraic Lie algebras the same is truehfor
by Theorem 7.4.

Thus we have shown that, apart frakh = Gy, there is no non—maximal geometry
equivalent to(H3, G). Since there is no plane field which is invariant under the action of
Gy, there is no geometric contact structure equivaleritit, ).

7.1.4. X = S? x R. This is the obvious product geometry. The full isometry group is
the product of the isometry group 6f andR. It has four connected components.

Suppose thaf is a geometric contact structure 6h SinceG acts transitively(C is
either everywhere tangent to the foliation corresponding to the first factst of R or C
is everywhere transversal to it. The first case is impossible since contact structures have
no integral surfaces. The second case is impossible since it would imply the existence of a
nowhere vanishing line field N 7'S? on S2.

7.1.5. X = H? x R. This is the second product geometry. The isometry grGup
the product of the isometry groups of the factors. As in the cas¢?of S! it has four
connected components.

The subgroup$l of G for which (H? x R, H) is a Thurston—geometry have dimension
3 or4. In the four—dimensional cas#, is the union of several connected components of
Now we want to show that there is no three-dimensional grldwghich acts transitively
onH? x R and contains a cocompact lattice. Suppose ha such a group. TheH has
to be transversal to the stabilizer of a fixed paigte H?. Leth be the Lie algebra off .

SinceH acts transitivelyh)’ = h N sl(2,R) has dimension at least two. L&tspan the
Lie algebra oflsom(R). SinceH acts transitively along the real lir throughzo € H?,
we can consider a smooth pathfhsuch that the image afy under the action of the group
elements on this path is contained in the real line. Héncentains a vector of the form
T + w whereT corresponds to the Lie algebralfwhile w € s0(2) C s[(2,R) is tangent
to the stabilizer of.

Becausel’ lies in the center ofy andb’ is transversal tav, the Lie algebra generated
by T+ w andb’ actually contains[(2,R) for w # 0. This a contradiction to our initial
assumptions. Thus = 0 and the identity component éf is the product oR with a two—
dimensional subgroup @S1(2, R). In particularH andI" are solvable. Sincé&l has to be
transversal to the foliation d?S1(2, R) whose leaves are given Hy € PSI(2,R)|gzg =
x} for 2 € H?, the connected component of the identityrbhas finite index infl. Hence
we can assume thaf itself is connected. We apply the following theoremiie= R.

THEOREM 7.5 (Wang, Rag]). Let H be a connected Lie group and its radical.
Assume that{//R has no compact factors. L&€tbe a lattice ind andw : H—H/R the
natural map. Them (T") is discrete inH/R.

Hencer (T') is a discrete group. AH? is connected and the stabilizerof H? under
the action ofr (I") varies continuously with, the stabilizer ofc under the action of (I") is
independent of. We choose an elemegite T of this stabilizer. Thery preserves distinct
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points of the hyperbolic plan which means thjaacts by the identity ofil?>. Thus(I")
acts freely orH? with compact quotient. On the other ham@") is solvable. This leads to
a contradiction to Preissmann’s theorem.

The only plane field which is invariant under the action of the identity component of
G is tangent to the foliation induced by first factor#f x R. So there is no geometric
contact structure equivalent (&> x R, G).

7.1.6. X = Nil? SI(2,R). Here there are natural geometric contact structures. Re-
member that the stabilizer of a point is one—dimensional for these two geometries. In both
cases, the contact planeaat X is theStab(x)—invariant subspace @f, X .

The nilpotent3—dimensional Lie group Nilhas the description

1 =z =z
Nil? = 01 y z,y,z € R
0 0 1

with matrix multiplication. LetX,Y, Z be the left invariant vector fields witl (e) =
9z, Y (€) = 9y, Z(e) = 0,. The contact structure on Nils the left invariant plane field
spanned byX, Y. Since[X,Y] = Z, C is really a contact structure. There is a fibration

pr: Nil> — R?
1 > z
01 y |+ (2,y)
0 0 1

which is transversal to the contact structure. The assumption,df) Z to be an orthonor-
mal basis defines a metric on NilThen pr is a Riemannian submersion. The isometry
groupGyi of Nil? consists of lifts of those isometries Bf which lift to contact automor-
phisms of Nif. It has two connected components.

DEFINITION 7.6. Let I' be a lattice inG; such that the quotienk /T" is a smooth
manifold. ThenX/T is called aninfranil-manifold If T c Nil® then X/T" is a Nil-
manifold

By definition of NiP—geometry, every Infrani—manifold inherits a contact structure
from Nil®,

ExampLE 7.7. All diffeomorphism types of Nil-manifolds can be obtained by using
the latticel',, generated by
1 10 1 00 10 1/
a=|1010 |,b=(011],e=|101 0
0 01 0 0 1 00 1
for k € Z \ {0}. The quotientX /T’ is a,S'—bundle ovel™ with Euler numbet.

Now we turn toX = SI(2,R). Recall thatS1(2, R) acts freely and transitively on
the unit-tangent bundl§; TH? of the hyperbolic plangZ?. The connectiorl—form o
of the hyperbolic metric is a defining form for a distribution transversal to the fibers of
pr: S;TH? — H?. Because the curvaturgy is the lift of a non—zero multiple of the
volume form onH?, da is non-degenerate on Ker). HenceC = ker(«) is a contact
structure.

The metric onS;TH,, is defined to be left—invariant under the actiorSdf2, R) such
thatC is everywhere orthogonal to t/hgjbers&tTHQ. Now we lift the contact structure

and the metric to the universal co®TH2 = S1(2,R).
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The isometries of this Thurston geometry are lifts of isometries of the hyperbolic plane.
Again this group has two components.

ExampLE 7.8. All bundles of unit tangent vectors of closed hyperbolic surfaces are
examples of compact quotients of thE2, R)—geometry.

7.1.7. X = SoP. The group Sol can be described as semidirect prodRétx R.
We write z, y for the coordinates oiR? andt for the coordinate ofR. The action) :

R— Aut(RR?) is given by
et 0
=5 %)

For the metric onX we can take any left invariant metric. In order to have a simple
description of the isometry group we choose the metric on the Lie algebtauch that
the plane corresponding ®* and the line corresponding #® in the semidirect product
R? x R are orthogonal. Then we obtain the following additional isometrieX of

Ty ($ay7t) I (—l',y,t)
T2l ($ay7t) L (l‘,—y,t)
p: ($ay7t) L (y,a:, _t) .

The maximal isometry group of Sbhas eight connected components. Four of them con-
tain orientation preserving isometries.

If an isometry of Sol is preserves a contact structure, then it must be orientation
preserving. LetX,Y,T be the left-invariant vector fields induced by, 9,,0;. Then
[(X,Y]=0,[T,X] = X,[T,Y] = —Y. Adistribution which is invariant under Sok; ory
andp is

C=span(T, X +Y).
This defines a contact structure singe X + Y] = X — Y. Itis invariant under the action
of four of the eight connected components of the isometry group df Sol

7.2. Geometric Engel manifolds — Prolongation

DEFINITION 7.9. A geometric Engel structuiis a triple(X, D, G) where(X, D) is an
Engel manifold and~ is a group of diffeomorphisms oX which preserveD. Moreover,
(X, G) is supposed to be a Thurston geometry.

Generally we will always seek a connected group which is maximal among the isome-
tries preservingD. In order to find more connected components we use the following
remark. As in the case of contact structures we treat only the existence of geometric Engel
structures nut we do not classify them.

REMARK 7.10. Every isometry preserving an Engel struct@enhas to preserve the
induced flag of distributions
WcCcDcéECTX.

Hence the identity component of the stabilizer of a peirt X in the group of isometries
Gp preserving an Engel structufeacts trivially onT,. X . In particularGp has dimension
four.

An elementg of the isometry groupzp which fixes a pointr € X preserves the
subspace®V, D, £ of T, X. Suppose that/, VY, Z is an orthonormal basis @i, X such
that

W =RW D=WaoRV
E=DORY T, X=EDRZ.
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Then the action of7 has to preserve the badig, V| Y, Z of T, X. Now recall thatf is
canonically oriented and that an orientation/®finduces an orientation af, X, cf. Sec-
tion 3.2.6. If we reverse the orientationdf we also have to reverse the orientation’of
and every Engel diffeomorphism has to preserve the orientatiéh ©hus ifg € Stalfx)
acts non-trivially ori, X theng,is one of the following maps

o1 : T X — T, X o T X — T, X pr2 1 Tp X — T, X
Wir— —W Wir— —W Wr— W
Vi— -V Vi—V Vi— -V
Y +—Y Y+— -Y Y+— -Y
Z— —Z Z— —7 Z— 7

Notice thaty; o w3 = ¢15. The stabilizer ofc has either one, two or four elements. In the
last cas&Stab(z) ~ Zgy X Zs.

Let us summarize the result. The proof of the following theorem covers the remaining
part of this chapter. Note that Theorem 7.11 concerns only the existence of geometric Engel
structures. It does not contain a complete classification.

THEOREM7.11. (i) There is no geometric Engel structur&, D, G) such that
(X, G) is equivalent to one of the geometrigs H*, CPP2, H?(C), S? x 52, H? x
H2, $2 x H?, S2 xR%, R* H? xR?, H® xR.
(i) For each of the following geometries, there exists a geometric Engel structure
(X, D, G) such that X, G) is equivalent to it:

53 x R, Nil® x R, SI(2,R) x R, Sol*(m, n), Sof, Sof, Nil* .

The maximal group of isometries preserving the Engel structure constructed in
the proof has four components for all these geometries ex®ebtm, n) and
Sol.

(i) The only maximal Thurston—geometry which is compatible with a geometric En-
gel structure isNil*.

In a first step we will obtain geometric Engel structures for non—maximal geometries
equivalent toS® xR, Nil3 xR and§l(2, R) xR using a construction similar to prolongation.
The remaining cases will be treated in Section 7.3.

For the remaining part of this sectioi, will be one of the three—dimensional geomet-
ric contact structureS®, Nil®, §1(2, R). The contact structures described in the last section
all appear at the same stage of the proof of the classificatidadimensional Thurston
geometries inThu2] on p. 184. In these cases, prolongation can be modified such that it
gives rise to geometric Engel structures.

A modification is necessary since if we apply prolongation naively on the geometric
contact structure oX, then we obtain an Engel structure on the universal caver R of
S1C but the natural group action of x R on itself by left—-multiplication doesot preserve
the Engel structure since the Engel structure is not invariant under translationsRr the
direction. Recall that thR—factor corresponds to the characteristic foliation of a prolonged
Engel structure.

Recall that in the case¥ = Nil® and X = §1(2,R), the maximal isometry group
preserves a contact structure and that the stabilizer of a pointqrahkiiSNl(Q, R) acts by
isometries on the contact plane through this point. For the geometric contact structure on
S3, the maximal group of isometries preserving the contact structéfig (U (2)oconj).
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Now

(74) U(2)nStab(1,0) = { < 0 o ) ' R}

acts by rotations on the contact plane throgglo) € S* c C2?. Complex conjugation
induces a reflection of this contact plane.

Now consider the universal covérc of the identity componert¢ o of G¢ and its Lie
algebrag. The action ofG¢  is free and transitive on the unit sphere bung€. So the

universal covefic acts freely and transitively ofi!C ~ X x R. The choice of a basepoint
(p,0) € X x R yields an identificatiorGe ~ X x R as spaces. Notice that with the
obvious group structure o x R, this identification is not a homomorphism of groups.
Let pr: X x R—X be the projection onto the first factor. Then the following diagram
commutes

Gex (X xR)—= X xR .

i(A,pr) J{Pf

GQO x X X

Let0 # W € gbe tangenttStab(p) C G and let0 # V € gbe such that the vector field
V on X x R associated t& is projected ta by pr. At this point where we do something
very similar to prolongation (cf. Proposition 3.15). Liét be the vector field oiX x R
which corresponds tdl’. Since the stabilizer b € X under the action o6c acts by
rotation onC(p)

W, V,[W,V]
are linearly independent vector fields. Because the acti&a;cpfreserves the contact struc-
ture onC, the projection of px( [W, V]) is contained in the contact structure &h Again
sinceStab(p) acts by rotations on the contact plane thropghe commutato[W, [W, V]|
also projects to the contact structure ®n On the other hand, becauSés a contact struc-
ture, [V, [W, V]| is linearly independent frori/, v, [W, V/].

PROPOSITION7.12. The left-invariant plane field spanned~W, VonX xRisa
geometric Engel structure which is invariant under the actiorGgf The characteristic
foliation is tangent to the second factor &f x R.

PROOF Since the action of7c on X x R is free and transitive it remains only to
show that@c contains a cocompact lattice. F&F = S° we obtain a lattice from the
deck transformations of the universal coverifig — G¢. For X = Nil?, §1(2, R) we can
obtain a lattice as follows. 16r¢ consider a lattic& which exists by assumption. Then the
preimagef of I under the universal covering map is a latticeip. O

Before we continue with the remaining Thurston geometries let us explain how to
identify G with subgroup of the maximal isometry group &f x R. We will identify
X xR andéc several times. Moreover we obtain all connected components of the group
of Engel structure preserving isometries.

7.2.1. X = S3. The identity component ofi¢ of the geometric contact structure on

S3isU(2). In order to show that the universal coveritig2) occurs as a subgroup of the
isometry group of5® x S!, consider the subgroup

U(2) = {(A,1) € U(2) x R|det(A) = ¢} CU2) xR
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The mapﬁ(\f) — U(2) sending(A, t) to A is a universal covering d¥(2). It acts in the
obvious way onS? x R and it acts or5? if one drops théR—factor.

The stabilizer of(1,0) € S* ¢ C? was already described in (74). The group isomor-
phism

—_~—

SU(2) x R — U(2)
(A1) — (eit/QA,t>

shows thatS? x R, U(2)) and(S? x R, S® x R) are equivalent to each other.

Now we determine all components of the group of Engel structure preserving isome-
tries of S x R. Consider the Lie algebrai(2) of SU(2). We can describe this Lie algebra
using generators and relations

a=(V5) = (te) =0 %)
[A,B] = 2C [B,C] = 24 [C,A] =28 .

In order to obtain the Lie algebra 6f(2) we add a tangent vectd¥ of the stabilizer of

(1,0). Hence
0 0
W = < 0 i ) .

The new commutator relations are
[W,A] =—-B [W,B] = A [W,C] =0

—~

The span ofi¥, A is an Engel structure ofi(2) and A is tangent to the standard contact
structure onSU (2) = S3. The two isomorphisms df (2)

- a a a —a
A (AT) 1 11 12 11 12
a21 a2 —a21 a22

lift to isomorphisms ofU(2) such that the first (second) map realizes(y;2) from Re-
mark 7.10. Thus the group of Engel preserving isometries consists of four components.

The identity component i§ (2).

7.2.2. X = Nil3. We identify NiP® with the upper triangular matrices

1 =z 2
Nil>={[z,y,2]=| 0 1 y | withz,y,z€R
0 0 1

Let G be the group of isometries of NilRemember that every isometry of Npreserves
the contact structure on Nil There is a fibration

7 Nil? — R2
(z,y,2) — (7,y)

which is a Riemannian submersion for the flat metridR¥nand aG—invariant metric on
Nil 3.

We give an explicit description of the isometry group of‘Nijeometry. Every isom-
etry of Nil® projects to an isometry d&2. Conversely, we can lift every isometgyof R?
to an isometry of Nil® as follows. Fix a poiny; € 7—!((0)). Forp € Nil® choose
a Legendrian curve starting at(0,0,0) € Nil® and consider the image(r (7)) of its
projection. Since the contact structure is transversal to the fiberstbére is a unique lift
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of ¢(m(y)) to a Legendrian curve starting @t We definep(p) to be the endpoint of the
lifted curve.

This definition is independent of the choiceqfLet v,~' be two Legendrian curves
from (0,0, 0) to p. Then the signed area enclosed by the closed curve formeghofand
7(v') is zero. Sincep is an isometry, the same is true for the image of these two curves.
This ensures that the Legendrian lifts of these curves startindnate the same endpoint
in Nil3. Note that the lift of isometries d&? to isometries of Ni is unique up to shifts in
z—direction.

If we lift the standard representation©f2) onR? to an action of)(2) on Nil* we get
an explicit description of the isometry group of Nigeometry ag’ = Nil® x O(2) with

22 — 12
et [x + iy, z] = [(cos(t) + isin(t))(z + iy), z — sinQ(t)xy — sin(2t)m
- [l‘ + Zy,Z] = [_x + iy, —Z]

wherea denotes the reflection &2 along they—axis.
In order to show that the above geometric Engel structure induces a Thurston geometry
equivalent to Nit x R—geometry, consider the embedding

G = Nil®> x R — (Nil® x O(2)) x R c Isom(Nil® x R)
(9:8) — ((g.€") 1) -

The Lie algebra of is generated byX, Y, Z, W where X, Y, Z € nil® andW is tangent
to the stabilizer of the unit element in Riinder the action ofs. Then the Lie algebra of
G satisfies the commutator relations

(X, Y] =2 Y, Z] =0 (X,Z]=0

W, X]|=Y W, Y] =-X W, Z]=0.
In particular, this Lie algebra is solvable but not nilpotent. Hence this geometrgtis
equivalent tgNil3 xR, Nil3 xR). In [Wal] this Lie algebra is mentioned as a non-maximal
Thurston geometry (denoted WY) but in [Wa2], Wall claims that this is actually not a
geometry because it does not admit a lattice.

We now show that the group of isometries of Ni R which preserve the Engel struc-
ture has four components. The identity component i$ NiR. The maps

Nil® x R — Nil® x R
(2,9, 2),t) — ((~2,y, —2), —1)
(2,9, 2),t) — ((z,—y, —2), —t)
(2,9, 2),t) — ((z,—y, —2),1)
are group isomorphisms realizing all non—trivial possibilities in Remark 7.10.
Finally we consider the other non—-maximal Thurston geometry equivalentte Ri-

geometry, namelyNil® x R, Nil® x R). Let A, A, be left invariant vector fields spanning
the distributionD. ThusD? = D + [D, D] is spanned byl;, A; and

[T+ Ay, Ay) = \Z

for some\ € R. ButZ lies in the center ofiil>. ThereforeD3 = D? andD is not an Engel
structure. Thus there is no geometric Engel structiie® x R, D, Nil® x R).
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723.X = S~1(2,R). Let us first describe the isometry group §if(2,R). Recall
that the entire isometry group of this Thurston geometry preserves the contact structure on
SI(2,R). If we fix a pointp € H2 then we obtain a fibratiofl(2, R) — H2 such that the
fiber overq € H? is
{9 €SI2,R)|g-p=4q}
The typical fiber iR and the projection map is a Riemannian submersion.
The isometry groug of §1(2, R) is a semidirect product generated by three types of
isometries.
e The elements oB1(2,R) acting by left-translations o8l(2,R) are of course
isometries.
e If we lift a rotation of H? aroundp to a contact preserving isometry §I(2,R)
which preserves the unit element, we obtain isometri¢d(@f R). This group is
SQ(2).
. Tr?é Ii)ft of a reflection ofH? along a geodesic throughalso yields an isometry.
These lifts also have to reverse the orientation of the fibers.
However we do not work out the lifts explicitly. We will only treat the connected com-
ponent of the identity of the isometry group. The isometries of the second type form the
stabilizer of the unit element (2, R) under the action off = SI(2,R) x SO(2).
Again we want to find a concrete embeddingbinto the isometry group <§1(2, R) x

R such that the action of the stabilizer of a pajne S1(2,R) under the action o7 is a
translation of the real line lying over.
As generators fosl(2, R) we use

1/0 1 1/ 0 1 1/1 0
A_2<1 0> B_2<—1 0) 0_2<0—1>'

We write IV for the standard generator of the Lie algebra of the stabilizereofd? under
the action ofSI(2,R). Now B corresponds to rotations @i? aroundp. Thus the Lie
algebra of the isometry group 6f(2, R) satisfies the commutator relations

[C,A] =B [C,B]=A [A,B] = -C
(W, Al =C [W,B] =0 (W,C]=—A.
The embedding

G =S12,R) xR — (§1(2,R) . 30(2)) xR = Isom<§l(2,R) x ]R)
(g:t) — ((g,¢") ;1)

shows that we end up with a geometry which is equivalegﬂ([@, R) x R—geometry. The
map defined by

A— A B+—— B C—C
W+—T+B

is an isomorphism of the Lie algebras@fandgl(z R) x R where we writel” for a gen-
erator of the Lie algebra of the fact®: This shows that we actually obtained a geometric
Engel structure such that the induced Thurston geometry is isomorphic to the non—maximal
Thurston geometryS1(2, R) x R, SI(2,R) x R).

Thus the leftinvariant vector fields+ B, A on (S1(2, R) xR, SI(2, R)) xR is an Engel
structure whose characteristic foliation is tangerif'te B. In the notation of Remark 7.10,
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X corresponds tel and[T" + B, A] = C corresponds t&”. The maps
SI(2,R) x R — SI(2,R) x R

(Con o)) —(C ) =)
(A1) — ((AT)"1¢)

are isomorphisms c§1(2,R) x R which realizep; andpqs from Remark 7.10. Thus the
maximal group of Engel preserving isometries has four components.

7.3. Geometric Engel manifolds — Remaining geometries

For several Thurston—geometries, ) in dimensiond there is no invariant orientable

Engel structure sinc& has non-trivial tangent bundle. For the cases
st CP?, 8% x §*

this is obvious.

If X = S? x Y for a two—dimensional geometdy, then it is easy to show that there
is no geometric Engel structuf&, D, G): Assume tha®D were such an Engel structure.
Then[D,D] = £ is a G—-invariant even contact structure. SinGeis supposed to act
transitively onX, £ is either everywhere tangent to the first factordh x Y or it is
transversal to it. Since every surface tangent to an even contact structure must be tangent
to the characteristic foliation, we would obtain a line field on the sphere, which is of course
impossible. Thug is everywhere transversal to the spheres and hémmguces a foliation
on each spherg? x {y} for y € Y. Again this is a contradiction.

There are other geometries for which topological arguments show the non—existence
of Engel structures.

e Hyperbolic four-manifolds have positive Euler characteristic.
e According to Wa2], manifolds with anH? x H?-structure have positive Euler
characteristic.
¢ Manifolds with anH?(C)-structure have positive signature and Euler character-
istic, cf. [Waz2].
Hence the geometridg*, H? x H?2, H?(C) do not admit any Engel structure.
We have already covered the geometfiés R, Nil3 x R, §1(2, R) xR in the preceding
section. The remaining geometries are

R* H3 x R, H? x R?, Sol*(n, m), Sol, Solf, Nil* .
We will treat these geometries individually.

7.3.1. X = R*. All subgroups of the isometry group &* which act transitively on
R* must contain the translations Bf*. The only translation invariant plane fields &
are foliations. Thus there is no geometric Engel structure for this geometry.

7.3.2. X = H? x R. The maximal isometry group the product of the isometry groups
of each factor. It has four connected components and it has dimensidre subgroup&/
of G which consist of connected componentgbdbviously yield non—maximal Thurston
geometriesH? x R, H).

In order to show that there is no subgroipC G of codimension at least one such
that(H? x R, H) is a Thurston geometry we can argue like in the case of contact structures
on the three—dimensional geomeiily x R. Again we can assume théaf is connected
and apply Theorem 7.5 witR = Isomy(R) C Go. Thus(H?, H)) is a Thurston geometry
since, like in the casBl?> x R the imager(I") of a cocompact latticE€ c Gy is again a
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discrete group which acts freely with compact quotient. Sifi¢das no nontrivial subge-
ometries this implies that(H) is Isomy(H?). HenceH has at least dimensidh If the
dimension ofH is seven thetlH = G.

We are left with the case th&f has dimensio®. SinceH acts transitively ofil® x R,
the intersectior N Isomy(H?) has dimensio. In particular the intersection df with
the maximal compact subgroup ~ SO(3) of Isom(H?) has dimension two. But this is
impossible. The assumption thEthas dimensiot leads to a contradiction.

There is no plane field which is invariant under the actiorzgf Hence there is no
geometric Engel structure for the geomeky x R.

7.3.3. X = H? x R%. The maximal isometry grou@ is the product of the isometry
groups of the factors, it has dimensiérand four connected components. If a subgroup
H C G is the union of connected components(dfve have a Thurston geometf§ii? x
R?, H). The plane fields which are invariant undgs are tangent to one of the factors of
H? x R2. Thus there are no geometric Engel structures for these Thurston geometries.

We now look for Thurston geometri¢&l? x R2, H) such thati has dimension less
than6. Let H be such a subgroup @. Since the stabilizer of a point iH? x R? is
compact and{ has to be transversal to the stabilizers of pointE#x R?, we can assume
that H is connected (cf. the cag® x R).

Let h be the Lie algebra off. Sincel has dimensiod or 5 there is a non—zero vector
w € h which is tangent tal(2, R). On the other hand, by Theorem 7.5 and Preissmann’s
theorem, the projection of to Isom(H?) has dimensio. Thus there are elemerits +
v1, Ty + vy such thatl’, T are tangent to IsofiR?) and vy, ve, w spansi(2,R). Hence
w, [w, T1 + vi] = [w, V1], [w, T2 + v2] = [w,v2] spans((2,R). Sincel is a subalgebra,
sl(2,R) C b.

On the other hand if we apply Theorem 7.5 again, we sedthdR? is a lattice. Thus
H N 1som{R?) is a Thurston geometry which is equivalentRd. Thus H N Isom(R?)
containsR?. HenceH is eitherG, or the product Isorff?) x R2,

By Remark 7.10 there is no geometric Engel structure in this case.

7.3.4. X = Sol(m,n). Letm,n be positive integers such that the zeroes of
(75) P(m,n) = -\ +mA? —nA+1

are real numbers which are pairwise different. Other possible configurations of the zeroes
of P(m,n) will be discussed below. Let*, ¢, ¢7 be the zeroes aP(m, n) with a + 3 +

v = 0anda > 3 > . The solvable Lie group Stlm, n) is defined aR? x R with the

action

at 0 0
t—p(t)=exp| 0 [t 0O
0 0 ~t
of R onR3. The characteristic polynomial of
0 1 0
(76) Am,n)={( 0 0 1
1 —m m

is P(m,n). HenceA(m,n) andt(1) are conjugate. In particular, there is a matrix
2(m,n) € sl(3,R) such that ex{R{(m,n)) = A(m,n). The groups S8(m,n) and

R? x R with ¢t € R acting by ext2((m,n))
are isomorphic Lie groups. The second group contains the lattice Z.

For (m,n), (m’,n") as above we obtain isomorphic Lie groups if and only if the corre-
sponding triplegc, 3,~) and(«/, 5’,+') are proportional.
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In the casen = n > 4 we haves = 0 anda = —y € R. We obtain Sol x R, the
eigenvector ofi(1) for the eigenvalue” corresponds to the second factor of SelR.
In general, two Lie groups Stim, n), Sol*(m’, n’) are isomorphic if and only ifa, 3,7)
and(«/, 3',~') are proportional.

The Lie algebr&o[4(m,n) is generated by, X5, X3,7T and the commutator rela-
tions

[T, X1] = aXy [T, Xs] = BX> [T, X3] = vX3

and the remaining commutators vanish. The left—invariant planeBRletdspan (7T, X; +
X9 + X3) satisfies

D? =D+ [D,D] =D dR(aX; + BX2 +7X3)

D3 =D? 4+ [D,D? = D? @ R(®X1 + Xy + 72 X3) .
Sincea, (3, v are pairwise different, this implies th@t is an Engel structure. The charac-
teristic line field is spanned b¥; + X, + Xs.

The action ofp € Stab(e) onsol*(m,n) is given by
(77) Xl [ — :|:X1 XQ — :|:X2 X3 [ — :|:X3
T—1T.

Thus the isometry group of Sigin, n) has eight components. Two of these preserve the

Engel structure described above. In the notation of Remark 7.10@ntan be realized
by an isometry of SG(m, n).

735 X = Solé;We now treat the case whem, n are such that (75) has two different
complex solutions\, X and a real solutiop\| ~2 different from0, 1. The Lie group Sdli(\)
associated to these parameterRis« R = (C @ R) x R with the action ofR defined by

R — GI(Ca® R)
t— ((u,x) — (et’\u, 6_2%0\)%))

acts by isometries on a Riemannian manifold which is independent of the concrete values

of m, n. We thus get only one new maximal Thurston geometry which we denote py Sol
The Lie group Sd is the semidirect produdtC © R) x R with the action ofR on

C ®R = R? @ R given by

(78)

t 0 0

t—exp| 0 t O
0 0 —2t
This Lie group does not admit a lattice, cffi[] p. 137, but still we can obtain a Thurston
geometry from this Lie group. The metic? (dz? + dy?) + e*'dz? + dt? is left—invariant
and, compared with the geometries 3ot, n) from the previous section, it admits addi-
tional isometries of the complex plane. The identity component of the full isometry group
of Solj is the semidirect product
Isomy(Sol) = Solf x SO(2) ~ (CHR) x (R x S .
We can embed the group $6h) defined in (78) into Isog(Sok) by
(C®R) x R — Isom(Sof)
((u; @), t) — ((u, ), (R(N)L, exp(iS(A)t))) -

In this way we obtain discrete subgroups of I§&uol}) which act on Sgj such that the
quotient is a compact manifold. Hent®ol, Isom(Sol)) is really a Thurston geometry.
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The different parameter values, . such that (75) has two complex solutions\ with
IA| # 1 give rise to different non—maximal Thurston geometri€sk, Sol*(\)) which
depend on\.
The Lie algebra of SA()\) is generated by/;, U, V, T with the commutator relations
[T,U1] = RAN)U; + S(\)Us [T,Us] = =S(AN) U1 + R(N)Us
[T, V] = —2R(N\V
and all other commutators vanish. Now consider the plane &) on Sof which is
left—invariant under the action of Sigh) and which corresponds @, U; + V. By the
commutator relations given above
D* =D+ [D,D] =D SR RN)U; + I(\)Us — 2R(N)V)
D =D*+[D, D] =D* &R ((R*(\) — S*(N)) Ur + 2R(A) - S(\)Us + 4R*(N)V) .
SinceR(\) # 0 andI(\) # 0 we have a SOl \)—invariant Engel structur®()\) on Sof}
for all possible values ok. The characteristic foliation is spanned@y + V.
In order to determine the maximal subgroup of |$@mg) which preserves the Engel

structureD()\) it suffices to apply Remark 7.10. As in the case’Gal, n) we find only the
isometry

Solf — Sol}
((u’ I), t) — ((_uv _Jj)v t)
In the notation of Remark 7.10 this corresponds4o
7.3.6. X = Sol{. While in the last two sections we considered semidirect products of
R with R we now consider the semidirect product Sel Nil® x R where the action of

t € R on Nil® is defined by

t

t-[x,y,z] — [6_ x,ety,z] .

In this geometry points have discrete stabilizers. We wiite sol] for the generator of
the Lie algebra oR. For the generators afil> we write X, Y, Z. These generators satisfy
the commutator relations

[T, X]=-X [T.Y]=Y X,Y]=2.

and the remaining commutators vanish. The orthogonal complement of &&fter an
even contact structure It is spannedByX, Y and the characteristic foliation is spanned
by T. If T, X, Y span the even contact structure which is induced by a left-invariant Engel
structureD, this Engel structure has to contdin We choosé = span(7T, X +Y). Then

D> =D+ [D,D] =span(T, X +Y,-X +Y).

HenceD is a left—invariant Engel structure whose characteristic foliation is spannéd by
Again we try to determine which connected components of the isometry group Bf Sol
geometry preserv®. According to Wa2], the action of the stabilizer afonsol] is given

by
X —aX Y — bY Z — abZ
T—T

with a,b = £1 or

X+—Y Y — X L — —7
T+— —-T.
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Thus the isometry group of Sbhas eight connected components. The Engel structure is
preserved by the second kind of isometries preserwiagd by the first kind for, = b =
+1. The isometries preservirfg are contained in four of the eight connected components.

REMARK 7.13. Before going on to the missing geometry Nie want to explain the
Engel structures obtained from the solvable geometfkies: Sof*(m, n), Sol} and Sof.
We focus on manifolds{/I" wherel is constructed as explained in the section about the
geometry Sdi(m, n). Now X viewed as a manifold is a produg? x R = Nil® x R. Let
I = I N R3 respectivey = T' N Nil®. This group acts on the manifolRf = Nil® such
that the quotient is a compact manifold. The projectdor— R induces a fibration

7 X/T — S*

with fiber N. ThusX/T is the mapping torus of a diffeomorphism &f = R3 /I which
preserves a given decomposition’BiV into a sum of line fields. We writd" for the
suspension vector field. We call a section normal if it has unit length with respect to an
invariant metric.

Recall that if Xy = 9, X1, X2, X3 is a framing of a parallelizable mapping torus, the
span of

(79) X, and Y, = % (cos(k*t) X1 + sin(k*t) Xo) + X3

is an Engel structure # € N is big enough by Proposition 3.17. Instead of (79) we now
use a simpler version of Geiges’s construction, namely we consider the span of

(80) Xo and Yy = cos(kt)X; + sin(kt) + X3 .

for k € N and a fixed framingXy = 9, X1, X2, X3.

In the case ofX = Sol*(m,n), the construction of Geiges as in (80) applied to the
framing tangent to the&(, = T, X7 + X5, X7 — X5, X3 works already fork = 0 and it
yields the Engel structure we obtained above.

The case Sglis also simple. HereV is a Nif—manifold with its canonical contact
structure and the suspension mapreserves this contact structure. Moreover, the contact
structure can be decomposed in the sum of two line burddie<*®C* which is preserved
by . The restriction of), to the contact planes behaves like the differential of an Anosov
diffeomorphism. If one applies the Geiges construction to a normal framing tangent to
T,X +Y,X —Y, Z one obtains an Engel structure already&ct 0.

The caseX = So% is slightly more complicated. Let ¢ Sol()\) be a lattice con-
structed as described in the section about @l n). If one considers the span of normal
sectionsuy, as, v of the line fieldsU, Us, V, the span of” and

cos(kt)ay + sin(kt)ag + v
is a contact structure fdr = (\).

7.3.7. X = Nil*. The Lie algebrail* is generated by, V, Y, Z with the commutator
relations

VW)=Y V.Y]=2,

the remaining commutators vanish. One can choose a left—invariant metric‘aubtil that
W, V.Y, Z is an orthonormal basis. The left—invariant distributibrspanned by¥, V' is
an Engel structure, the characteristic line field is spannd@byrhe even contact structure
of D is spanned by¥, V, Y, i.e. it is orthogonal to the cent®&Z of nil*. MoreoverD is
orthogonal to

[nil*, nilY] = span(Y, Z) .
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The distribution spanned by, Z is integrable. The isometry group of Nihas four con-
nected components\Wa2]). The isometries which preservec Nil* and which are not
contained in Nit act onnil* by

W — aW V— bV
Y — abY Z —aZ

with a, b = +1. Thus the entire isometry group of Nipreserves the Engel structufe

DEFINITION 7.14. LetT be a subgroup of the isometry group of Nijeometry which
acts freely on Nil such that the quotient NifT' is a compact manifold. Then NjiT is
calledinfranil-manifold If ' ¢ Nil* then Nil*/T"is a Nil‘-manifold

REMARK 7.15. We have shown that every infranil-manifold carries an Engel struc-
ture. In order to relate Engel structures obtained this way with other known constructions,
we focus on Nit-manifolds, i.e. we consider manifolds M\il' with T' c Nil%. Such
manifolds are parallelizable.

With the action ofR onR? given by

p(t) = exp

o O O

t 0
0 ¢
0 0

Nil* is isomorphic toR® x R. In this presentation, the generatorsmf* are the left—
invariant vector fields which, if we view them as elementgdflil* ~ TE(R:” x R), are

W(e) = (9(23 V(e) = %
Y(e) = aa@ Z(e) = 6(21

wherea;, as, as are coordinates o3 andt is the coordinate on the second factor of
R3 x R. In particular we have the fibration

pr:Nil* =R?® xR — R?
(aly a2, as, t) — (a37 t)
which descends to a fibrationgpr Nil*/T' — T2 if the image ofl" C Nil* under pris a

lattice inIR2.
According to Pek], every discrete subgroup of Nihas a presentation

T = (abe.d|lb,a] = *d [e.a] = &, [e;b] = 1, [a,d] = [b,d] = [e,d] = 1) .
with o > 0 and~y > 0. A groupI with this presentation is generated by
a=((0,0,0),1) b= ((0,a7/2 ~ ,07),0)
¢ = ((0,—7,0),0) d=((1,0,0),0)
The image ofl” under pr isayZ @ Z C R2. Thus the map Ni—R? induces a fibration
Nil*/T — T2 .

Since the diffeomorphism type of a Nilmanifold is classified by the fundamental grdup
this shows that every Ni-manifold fibers ovef™. In particular, Nit /T fibers overS! and
it is parallelizable. This relates the Engel structure ori-Nilanifolds to the construction
of Geiges.
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Using the latticel’ given above we obtain Engel structures Bh-bundles ovefl™
which are transversal to the fibers. Two Nimanifolds Nif /Ty, Nil*/T", are diffeo-
morphic via conjugation with an element of the affine transformatidfigNil*) of Nil*,
cf. [Dek]. Since Aff(Nil*) is the semidirect product between Nand the group of au-
tomorphisms of N, this does not imply that NiyT"; and Nil* /T’y are diffeomorphic as
Engel manifolds.

EXAMPLE 7.16. We want to show that among the infranil-manifolds thererame—
orientablemanifolds with an Engel structure. Thus we obtain new Engel manifolds this
way which of course are finitely covered by manifolds which carry an Engel structure by
the construction of Geiges. We rely on the description of Ue fot-Milanifolds, cf. Ue].

All Nil *=manifolds admit Seifert fibrations with fib&? over7?2, the Klein bottlek
the annulus or the Bbius band. Now all”>—~bundles oveS = 72, K can be obtained as
follows.

(i) Using a representation
p:m(S) — Diff (T?)

in order to construct a flaf?>~bundlep : M’—S. The isomorphism type of the
fibration depends only on the conjugacy class of the representation.

(i) Chooseadis® C S andremove—!(D)form M’. TheT?-bundlep=!(D) over
D is trivial, hencedp~! (D) ~ 0D x T?. We viewT? asR?/Z? andS! = R/Z.
For integers:, b we gluep™!(D) to M’ \ int (p~ (D)) using the map

St — Diff (T?)
t— ([x,y] — [z + at,y + bt]) .

The Nil—manifold among th&>—bundles ovefl?> are obtained for the representations
defined by

0
1
wo-(3 1)

with A\ € Z and\,b # 0. TheT?—bundles over the Klein bottl& which admit a Nif—
structure correspond to

p:m(K) ~ Zy x Z — Diff (T?)
(1,0) — < 0 )

1 A
o (5 1)

with ¢ € {0,1}, A € Z and\, b # 0.

Now the monodromy of 'K along a curvey representing the torsion elementin(K)
is orientation preserving. On the other hand, the monodromy of thdundle overy is
orientation reversing sindd, 0) is mapped to an orientation reversing diffeomorphism of
T2. Hence the total space of tH& bundles overX which admit a Nif—structure is not
orientable. So, although these spaces fiber over the circle, one cannot apply the construction
of Geiges to these manifolds.

p:m(T?) ~ 7% — Diff (T?)

ff
oy ( 4
1
0
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REMARK 7.17. The examples of Engel structures obtained in this chapter are volume
preserving. In all these cases, the characteristic foliation is spanned by a left—invariant
vector field and the volume form of an invariant Riemannian metric provides a volume
form which is preserved by the vector field spanning So M is really defined by a
closed form.
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