Logo
DeutschClear Cookie - decide language by browser settings
Fraenk, Wolfgang (2001): Oligomere und hochenergetische Borazide sowie elektrophile N+−F-Fluorierungsmittel. Dissertation, LMU München: Faculty of Chemistry and Pharmacy
[img]
Preview
PDF
Fraenk_Wolfgang.pdf

2818Kb

Abstract

Im Hauptteil dieser Arbeit werden Synthese und Charakterisierung neuer Azidverbindungen des Elementes Bor beschrieben. Anhand der Azidierung von Catecholborchlorid konnte gezeigt werden, daß sich das kommerziell erhältliche Me3SiN3 am besten für den Aufbau von Boraziden eignet. Durch die Reaktion von 9-BBN-Cl mit Me3SiN3 sollte 9-BBN-N3 (7) dargestellt werden. Dabei zeigte sich jedoch, daß es unter Eliminierung von N2 überraschenderweise zur Bildung des Umlagerungsproduktes 8 kommt. Um die Bildung von 8 zu verstehen, wurde die Reaktion 11B NMR spektroskopisch bei tiefen Temperaturen untersucht. Dabei konnte gezeigt werden, daß sich bei Temperaturen unter −30 °C zuerst das erwartete 9-BBN-N3 (7) bildet, welches bei höheren Temperaturen unter N2-Abspaltung zu 8 weiterreagiert. Für die Bildung von 8 wurde ein „Synchronmechanismus“ vorgeschlagen, bei dem das α-N Atom der Azidgruppe des intermediär gebildeten 9-BBN-N3 (7) zunächst an das Boratom eines weiteren 9-BBN-N3 (7) Moleküls koordiniert. Gleichzeitig kommt es, unter Eliminierung von N2 zur Bildung einer B−N Bindung. Ein zweiter denkbarer Mechanismus („Iminoboranmechanismus“) fordert das Entstehen eines zyklischen Iminoborans, welches sich durch Addition eines 9-BBN-N3 (7) Moleküls stabilisiert. In einem großen Teil dieser Arbeit wurde eine Reihe von Boraziden mit elektronenziehenden Substituenten untersucht. Dabei wurde zunächst das bereits in der Literatur beschriebene (BF2N3)3 (10) durch Reaktion von BF3 mit Me3SiN3 dargestellt und schwingungs- und NMR-112 spektroskopisch charakterisiert. Es konnte gezeigt werden, daß 10 bereits in Lösung als Trimer vorliegt. Dies ist mit den quantenmechanischen Studien im Einklang, welche zeigen, daß die Trimerisierung von BF2N3 (→ (BF2N3)3) gegenüber der Dimerisierung [→ (BF2N3)2] sowie der Dismutierung (→ BF3, B(N3)3) bevorzugt ist. Einen weiteren elektronenziehenden Substituenten stellt die Pentafluorphenylgruppe (C6F5) dar. Es konnten alle möglichen Kombinationen Pentafluorphenyl-substituierter Borazide sowie deren Pyridin-Addukte synthetisiert und vollständig charakterisiert werden, wobei neue oligomere Festkörperstrukturen erhalten wurden. (C6F5)2BCl [(C6F5)2BN3]2 Me3SiN3 Py [Ph4P][N3] [PPh4][(C6F5)2B(N3)2] 11a 12 13 - Me3SiCl (C6F5)2BN3 Py . Es konnte gezeigt werden, daß sich (C6F5)2BN3 (11) im Festkörper unter Ausbildung von Dimeren [(C6F5)2BN3)]2 (11a) stabilisiert. Somit kann 11a als erstes Beispiel eines substituierten N,N´-Diazo-diazadiboratacyclobutans angesehen werden. Durch Reaktion mit Pyridin oder [Ph4P][N3] konnten 12 und 13 erhalten werden. Im Gegensatz zu 11a, liegt C6F5B(N3)2 (14) im Feststoff als Trimer [C6F5B(N3)2]3 (14a) vor. C6F5BCl2 [C6F5B(N3)2]3 - Me3SiCl Me3SiN3 C6F5B(N3)2 [Ph4P][N3] Py [Ph4P][C6F5B(N3)3] C6F5B(N3)2 Py . 14a 14 15 > 35-37 °C < 35-37 °C An dem Beispiel von 14a konnte der Unterschied von verbrückenden und terminalen Azidgruppen in einem Molekül untersucht werden. Wie durch Ramanspektroskopie gezeigt werden konnte, dissoziiert 14a bei seinem Schmelzpunkt 35−37 °C reversibel in seine Monomere 14. Durch Umsetzungen mit Pyridin und [Ph4P][N3] wurden das Pyridin-Addukt 15 und das Pentafluorphenyltriazidoborat 16 erhalten. Da die Pentafluorphenyl-substituierten Borazide 11a und 14a im Festkörper oligomer vorliegen, wurde der Einfluß der schwächer elektronenziehenden o-Difluorphenyl- und o- Fluorphenyl Substituenten (RF = 2,6-F2C6H3, 2-FC6H4) auf die Struktur der Borazide (RF)2BN3 (23, 24) und RFB(N3)2 (26, 27) untersucht. Die für die den Aufbau der Borazide benötigten nicht beschriebenen Ausgangsverbindungen (RF)2BCl (19, 20) und RFBCl2 (21, 22) wurden durch Reaktion von (RF)2SnMe2 (17, 18) mit BCl3 erhalten. Dabei konnte gezeigt werden, daß (2,6-F2C6H3)2BN3 (23) wie 11a im Festkörper als Dimer vorliegt. Aufgrund von ramanspektroskopischen Untersuchungen, wurde auch für 2,6-F2C6H3B(N3)2 (26) eine oligomere Struktur vorausgesagt. Im Gegensatz dazu ist die 2-FC6H4-Gruppe zu wenig elektronegativ, sodaß (2-FC6H4)2BN3 (24) und 2-FC6H4B(N3)2 (27) keine Oligomerisierungstendenzen zeigen. Ein weiteres im Festkörper monomer vorliegendes Azid ist 2,4,6- [(CF3)3C6H2]2BN3 (25). In diesem Fall verhindern sperrige Nonafluormesityl-Substituenten eine Oligomerisierung. Die hochenergetischen Bortriazid-Addukte B(N3)3·Chin (42), [B(N3)3]2·Pyr (43) sowie das Tetraazidoborat [B(N3)4]− als Li[B(N3)4] (44) und [tmpH2][B(N3)4] (46) konnten synthetisiert und vollständig charakterisiert werden. Im Fall von 46 wurde das [B(N3)4]− Anion in einem neuen Weg aus tmpB(N3)2 und HN3 dargestellt. Begleitend zu den experimentellen Untersuchungen wurden auch quantenmechanische Rechnungen durchgeführt, die gute Übereinstimmung mit den experimentell erhaltenen Daten zeigen. Die starke Lewis-Säure (C6F5)3B (32) wurde in einer Eintopfreaktion aus C6F5Li und BCl3 in Hexan bei −78 °C in guten Ausbeuten erhalten. Die alternative Literatursynthese aus C6F5MgBr und BF3·OEt2 in Diethylether liefert eine ganze Reihe an Nebenprodukten, von denen [(C6F5)2BOH]3 (33a) und (C6F5)2BOEt (34) isoliert und charakterisiert werden konnten. 32 bildet mit einer Reihe von ausgewählten Stickstoffdonoren stabile 1:1 Additionsverbindungen, wobei die Addukte 37−41 vollständig charakterisiert werden konnten. Durch Reaktion von 32 mit [Me4N][N3] wurde 35 als letztes noch fehlendes Glied in der Serie der Pentafluorphenyl substituierten Azidoborate dargestellt. Es konnte gezeigt werden, daß in 38 entgegen der Basizität Cyanamid über den Nitril- Stickstoff koordiniert. Weiterhin konnte gezeigt werden, daß 11B sowie 19F NMR Spektroskopie einen guten Hinweis auf die B−N Bindungsstärke liefern. Dabei zeigt sich der Trend, daß eine schwache B−N Koordination (lange B−N Bindung) einen Tieffeldshift sowohl im 11B als auch im 19F NMR Spektrum, im Vergleich einem Hochfeldshift bei einer starken B−N Bindung (kurze B−N Bindung), bewirkt. Im letzten Teil dieser Arbeit wurden Synthese, Charakterisierung und Untersuchungen zur elektrophilen Fluorierungskapazität von [(ClCN)3F][BF4] (50) beschrieben. Aus quantenmechanischen Berechnungen wurde ein FPDEB3LYP Wert (Fluorine Plus Detachment Energy) von 226.8 kcal mol−1 erhalten, welcher zeigt, daß 50 ein starkes oxidatives Fluorierungsmittel darstellt. Dies wurde qualitativ anhand der Fluorierung ausgewählter Aromaten experimentell bestätigt.