Aus dem Institut für Medizinische Balneologie und Klimatologie der Ludwig - Maximilians - Universität München

Vorstand: Univ.Prof. Dr.med. Gerold Stucki

Über die Wirkung von Wärmepackungen auf das Kontraktionsverhalten der Skelettmuskulatur im Oberflächen - EMG unter Ausdauerbedingungen

> Dissertation zum Erwerb des Doktorgrades der Medizin an der Medizinischen Fakultät der Ludwig - Maximilians - Universität zu München

> > vorgelegt von Tanja Greulich aus Geislingen /Steige 2004

Mit Genehmigung der Medizinischen Fakultät der Ludwig - Maximilians - Universität München

Berichterstatter:	Prof. Dr.rer.nat. Dr.med.habil. H.G. Pratzel
Mitberichterstatter:	Prof. Dr.med. W. Müller-Felber
Mitbetreuung durch die promovierten Mitarbeiter:	Dr.med. I. Magyarosy Prof. Dr.med. KH. Krause
Dekan:	Prof. Dr.med. Dr.h.c. K. Peter
Tag der mündlichen Prüfung:	11.03.2004

Die Medizin beschäftigt den ganzen Menschen, weil sie sich mit dem ganzen Menschen beschäftigt. (J.W. von Goethe, Dichtung und Wahrheit)

> Para Juan Gabriel Sordo Jara con todo mi amor und gewidmet meinen Eltern in großer Liebe und Dankbarkeit

Inhaltsverzeichnis

1	Ein	lleitung	8
			11
2 _	Ma	terial und Methoden	11
<u>2.1</u>		Probandenkollektiv	11
<u>2.2</u>		Methode des Oberflächen - EMG	12
<u>2.3</u>		<u>Versuchsablauf</u>	14
<u>2.4</u>		Geräte und Materialien	16
2	2.4.1	1 Versuchsstuhl	16
2	2.4.2	2 Kraftmeßgerät	16
2	2.4.3	<u>3</u> <u>Elektroden</u>	18
2	2.4.4	4 Wärmepackung	19
2	2.4.5	<u>5</u> <u>OEMG</u>	20
2	2.4.6	<u>6</u> <u>Dokumentation</u>	22
<u>2.5</u>	5	Auswertung der Daten	23
2	2.5.1	1 Vergleichbarkeit der Meßergebnisse	23
2	2.5.2	2 <u>statistische Auswertung</u>	24
2	2.5.3	<u>3</u> Prüfung auf statistische Signifikanz	24
<u>3</u> <u>I</u>	Erge	ebnisse	27
<u>3.1</u>	• •	OEMG - Parameter	
<u>3</u>	<u>3.1.1</u>	1 <u>Mittelwerte MW</u>	
3	3.1.2	2 Diagramme der Mittelwerte	29
3	3.1.3	3 <u>Standardabweichung SD</u>	32
3	3.1.4	4 <u>Standardfehler SE</u>	32
3	3.1.5	<u>5 p - Werte</u>	

<u>3.</u> 2	<u>2 A</u>	<mark>asdauerzeiten</mark>	33
	3.2.1	Mittelwerte MW	33
	3.2.2	Diagramm der Mittelwerte	34
	3.2.3	Standardabweichung SD	34
	3.2.4	Standardfehler SD	35
	3.2.5	<u>p - Werte</u>	35
<u>3.3</u>	<u>3 Eı</u>	rgebnisse der Signifikanzprüfung	36
	3.3.1	OEMG - Parameter	36
	3.3.2	Ausdauerzeiten.	37
<u>4</u>]	<u>Diskus</u>	sion	39
<u>4.</u>]	<u>I M</u>	aterial und Methoden	39
4	<u>4.1.1</u>	Probandenkollektiv	39
4	4.1.2	<u>OEMG</u>	40
4	<u>4.1.3</u>	M. extensor carpi radialis	41
4	<u>4.1.4</u>	Wärmepackung	42
4	4.1.5	Elektroden	44
4	<u>4.1.6</u>	Versuchsstuhl	46
4	<u>4.1.7</u>	Kraftmessung	47
4	<u>4.1.8</u>	Versuchsgestaltung	47
<u>4.2</u>	2 <u>E</u> 1	rgebnisse	49
4	4.2.1	Veränderungen der Parameter im OEMG	49
4	4.2.2	Veränderungen der Ausdauerzeiten	53
4	4.2.3	Schlußfolgerung	55
<u>5</u>	Zusam	menfassung	58
<u>6</u>]	Literat	t <mark>urverzeichnis</mark>	61

<u>7</u> <u>Anhan</u>	<u>g</u>	77
<u>7.1</u> <u>Er</u>	gebnisse der einzelnen Probanden	77
<u>7.1.1.</u> <u>7.1.2</u>	<u>OEMG - Parameter</u> <u>Ausdauerzeiten</u>	77 84
<u>7.2</u> <u>Ab</u>	kürzungen	85
<u>7.3 Si</u>	gnifikanzniveaus	86
<u>7.4 Ül</u>	bersicht über die Tabellen und Abbildungen	87
<u>7.4.1</u> 7.4.2	<u>Tabellen</u> <u>Abbildungen</u>	87 88
<u>8 Danks</u>	agungen	89
9 Lebens	slauf	91

1 Einleitung

Wärmeanwendungen in ihren zahlreichen Variationen sind in die Behandlungsgrundlagen der Physiotherapie und physikalischen Medizin historisch schon sehr lange integriert. Hauptindikation hierbei ist meist die Rehabilitation chronisch entzündlicher, degenerativer und auch traumatischer Erkrankungen der Bewegungsorgane.

Die Wirkung der Wärmetherapie auf den Skelettmuskel und seinen Tonus entbehrt dabei jedoch bisher zumeist einer experimentiell nachgewiesenen Grundlage in Form von wissenschaftlich angelegten und durchgeführten Studien. Vielmehr wird diese klinisch empirisch durch die vom Patienten subjektiv wahrgenommene Empfindungsänderung einer Muskelrelaxation und Analgesie definiert.

Der grundsätzliche Gedanke der vorliegenden Arbeit liegt nun darin, dieser schon lange erfolgreich angewendeten Form rehabilitativer Erfahrungsmedizin in einer konkreten Fragestellung hinsichtlich der Wirkung und des Wirkmechanismus von Wärmeanwendungen zumindest in gewissem Umfang wissenschaftliche Plausibilität zu verschaffen.

Das Institut für Medizinische Balneologie der Ludwig - Maximilians - Universität München entwickelte für diese Fragestellungen in Zusammenarbeit mit dem Friedrich -Baur - Institut München die Methode der Ableitung des Oberflächen - EMG am aktiv innervierten Skelettmuskel. Hypothetisch soll also ein nach Thermoanwendungen verändertes Kontraktionsverhalten des untersuchten Muskels in einer veränderten gesamtelektrischen Aktivität, die durch das Oberflächen - EMG über Hautelektroden abgeleitet wird, ermittelt werden.

In der vorliegenden Studie soll nun konkret der Zusammenhang untersucht werden, welche Wirkung transkutane Wärmeapplikation auf die Parameter des Oberflächen -EMG im Verlauf einer bei 30% der Maximalkraft aktiv innervierten Muskelkontraktion des M. extensor carpi radialis sinister hat, die bis zur Ausdauergrenze des Probanden andauert.

Aus der Ableitung der gesamtelektrischen Aktivität werden dabei die Parameter turns als Maß für die Frequenz und RMS (root mean square) als Maß für die mittlere Amplitude - jeweils ermittelt als Durchschnittswerte über Zeitintervalle von 4 Sekunden - erfaßt, zusätzlich die jeweilige Gesamtausdauer.

In Vorversuchen wurde dazu ein möglichst optimaler Versuchsablauf konzipiert, der insbesondere die Reproduzierbarkeit der gemessen Muskelaktivität implizieren und andere modulierende Faktoren wie in den Erholungsphasen nicht vollständig reversible Ermüdungseffekte ausschließen sollte.

Nach einer Überprüfung auf statistische Signifikanz liegen die Ergebnisse (3) im Anschluß an die detaillierte Beschreibung des Materials und der Methoden (2) vor und werden in ihrer wissenschaftlichen Aussagefähigkeit bezüglich der objektivierbaren Wirkung von Wärmeapplikationen zur Diskussion (4) gestellt.

2 Material und Methoden

2.1 Probandenkollektiv

Allen Probanden wurden mit ausreichend Bedenkzeit vor Teilnahme der Versuchsablauf und das Ziel der Studie sowie Ein- und Ausschlußkriterien ausführlich erläutert. Die freiwillige Teilnahme wurde in einem informierten Konsens schriftlich bestätigt.

Voraussetzung für die Teilnahme am Versuchstag war ein subjektives Wohlbefinden, für den Vortag wurde sportliche Karenz gefordert. Außerdem sollte sich der Proband derzeit weder in ambulanter noch in stationärer ärztlicher Betreuung befinden. Als weitere Ausschlußkriterien galten neuromuskuläre Erkrankungen des Stütz- und Bewegungsapparates, die den Versuchsablauf methodisch durch Schmerz oder Schwäche sowie das Versuchsergebnis durch ein pathologisch verändertes EMG -Muster beeinflussen könnten.

Unter den 30 Probanden, jeder davon Rechtshänder, befanden sich 19 Frauen und 11 Männer.

Von allen wurden die Größe, das Gewicht und das Alter statistisch erfaßt. Der Body Mass Index BMI, aus diesen Daten berechnet als Quotient aus Gewicht in Kilogramm zum Quadrat der Größe in Metern, galt bei einem Wert > 25 als weiteres Ausschlußkriterium. Hierdurch sollte eine unzureichende Ableitung des Oberflächen -EMG bei einer infolge des Ernährungszustandes zu ausgeprägten Dicke des subkutanen Fettgewebes vermieden werden.

Als statistische Maßzahlen zur Beschreibung des Probandenkollektives ergaben sich die in der folgenden Auflistung dargestellten Werte für den Mittelwert MW sowie die Standardabweichung SD:

	MW	SD [+ / -]
Alter	27,53 a	7,68 a
Größe	174,2 cm	7,52 cm
Gewicht	68,40 kg	11,18 kg
BMI	22,54	2,32

Tab.1 Charakteristika des Probandenkollektives

Die Probanden des Versuchs- und Kontrollkollektives waren absolut identisch, jeder Studienteilnehmer wurde in Versuch und Kontrolle gemessen.

2.2 Methode des Oberflächen - EMG

Das Oberflächen - EMG stellt im Gegensatz zum Nadel - EMG eine noninvasive, extrazelluläre Ableitung dar; erfaßt werden also nicht Aktionspotentiale der einzelnen Muskelfaser, sondern die gesamtelektrische Aktivität des abgeleiteten Muskels.

Diese Tatsache diente als grundlegende Arbeitshypothese für eine Reihe von Versuchen, in denen über durch thermotherapeutische Anwendungen veränderte Parameter des OEMG eine veränderte Aktivität des Skelettmuskels objektiviert werden sollte.

Initiale Messungen hatten hierbei jedoch das OEMG am ruhenden Skelettmuskel aufgrund nur minimaler Veränderungen als nicht sensitiv genug erwiesen. Aus diesem Grund wurden zunehmend mehr Versuchskonzepte am aktiv innervierten Muskel umgesetzt.

In der nun vorliegenden Studie wurde die Wärmewirkung auf das Kontraktionsverhalten der Skelettmuskulatur unter Ausdauerbedingungen analysiert; die OEMG - Parameter sollten ein bei Ausdaueranspannung verändertes Verhalten der Muskulatur nach transkutaner Wärmeapplikation im Sinne einer veränderten gesamtelektrischen Aktivität an der Hautoberfläche sichtbar machen. Erfaßt wurden dabei folgende Parameter, die jeweils im Verlauf der OEMG - Ableitung die myoelektrische Aktivität über einen Ableitungszeitraum von 4 Sekunden charakterisierten:

- turns als Anzahl der ermittelten sowohl positiven als auch negativen Auslenkungen größer als 100 μ V; vom Computer auf jeweils eine Sekunde bezogen und somit in der Einheit Hertz [Hz = 1 /s] angegeben
- RMS (root mean square) als Quadratwurzel der mittleren Fläche über den gemessenen Amplituden
- MRV (mean rectified voltage) als durchschnittliche Amplitude nach Gleichrichtung der registrierten Kurve
- PPA (peak peak amplitude) als maximale Amplitude, gemessen vom jeweils höchsten zum tiefsten angezeigten Punkt

Zur Auswertung kamen der Parameter turns als Merkmal für die mittlere Entladungsfrequenz und der Parameter RMS, der im Vergleich zu MRV hinsichtlich der Bestimmung der mittleren Spannungsdifferenz der Ausschläge als exakter gilt.

Die Peak - Peak - Amplitude PPA kann infolge starker Artefaktanfälligkeit nur als wenig aussagekräftig angesehen werden und wurde aus diesem Grund in die Auswertung nicht miteinbezogen.

Zusätzlich wurden die Gesamtdauer der Anspannung der Standardmessung im Vergleich zur Ausdauer nach transkutaner Wärmeapplikation sowie deren Kontrolle als Absolutzeiten in Sekunden [s] analysiert.

2.3 Versuchsablauf

In dem vorliegenden Versuchsaufbau wurden oberflächenmyographische Analysen vom M. extensor carpi radialis sinister mit seinen zwei anatomischen Anteilen abgeleitet; dieser wurde dabei in isometrischen Streckkontraktionen bei 30% der Maximalkraft auf Ausdauer angespannt.

Für eine möglichst identische Haltung der Probanden und somit maximale Vergleichbarkeit der erfaßten Daten wurde hierfür ein spezieller Versuchsstuhl konzipiert, in den gleichzeitig ein eigens für diese Versuchsanordnung entwickeltes Handdynamometer zur Objektivierung der Kraftaufwendung integriert war.

Zur Erstellung eines sinnvollen Versuchsablaufes wurden neben Literaturrecherchen zahlreiche Vorversuche durchgeführt, die insbesondere auch darauf hinzielten, ausreichend lange Erholungsphasen zu etablieren, in denen eine elektromyographische sowie biochemische Erholung möglich ist, um so sich überlagernde Ermüdungserscheinungen im nächsten Versuchsabschnitt zu vermeiden.

Eine initiale Aufwärmphase zur Aktivierung des Muskels war als aufsteigende Kraftreihe von 10 - 30 - 50 - 80% bezogen auf 10 Kilogramm, den maximalen Meßbereich des Handdynamometers, somit also 1 - 3 - 5 - 8 Kilogramm, konzipiert. Die Probanden wurden dazu aufgefordert, die jeweilige Kraftstufe für jeweils 16 Sekunden zu halten. Die Länge der Pausen zwischen den Kontraktionen verlängerte sich dabei jeweils in Minutenschritten von 1 auf 3 Minuten.

In einem nächsten Schritt erfolgte dann mit Hilfe des Dynamometers die Ermittlung der individuellen Maximalkraft MVA. Die im Anschluß durchgeführten Ausdauerversuche erfolgten auf der Kraftstufe von 30% der individuellen Maximalkraft.

Der Hauptversuch wurde jedoch erst begonnen, wenn in einer initialen Ruheableitung Störungsfreiheit dokumentiert war; diese Störungsfreiheit war per definitionem erreicht, wenn die Werte für turns kleiner 20 Hz und für RMS kleiner 30 μ V waren.

Die maximale Ausdauerzeit wurde als individueller Ermüdungspunkt durch den Probanden selbst bestimmt; eine objektive Kontrolle war jedoch durch den an den Verstärker angeschlossenen Schreiber und die Beendigung des Versuches bei Unterschreiten der geforderten Kraftstufe von 30% der Maximalkraft um mehr als 5% möglich. Zusätzlich konnte der Versuchsleiter über Ausschaltung versuchsabhängiger Schmerzfaktoren ein verfrühtes Abbrechen verhindern.

Als Bezug wurden zunächst an jedem Probanden Ausdauermessungen unter Standardbedingungen durchgeführt. Nach einer Pause von 5 Minuten wurde dann als eigentliche Intervention mit einer kliniküblichen Moorauflage über eine Dauer von 15 Minuten Wärme appliziert; die Temperaturkonstanz wurde dabei mit einem Thermometer zwischen Packung und Hautoberfläche kontrolliert. Danach erfolgte eine erneute Ausdauermessung zur Erfassung einer durch die Intervention möglicherweise veränderten Muskelaktivität.

Die Kontrollmessungen entsprachen in Reihenfolge und zeitlichem Ablauf exakt den Versuchen einschließlich der Aufwärmphase. Um ausschließlich den Temperatureffekt der Intervention zu erfassen, wurde sowohl bei der Standardmessung wie auch im Kontrollversuch eine in Gewicht und Größe der Moorauflage entsprechende, jedoch temperaturneutrale Packung aufgelegt. Eine Temperaturerhöhung durch den fakultativ isolierenden Effekt der Packung wurde dabei unter erneuter Verwendung des Thermometers ausgeschlossen.

Für eine in beiden Abschnitten identische Elektrodenlokalisation am Probanden wurden beide Versuchsteile an einem Tag durchgeführt, wobei eine Mindesterholungszeit von 3 Stunden eingehalten wurde. Etwaige Interferenzen vor allem einer Ermüdungserscheinung diesbezüglich waren in Vorversuchen ausgeschlossen worden, außerdem wurden Versuche und Kontrollen von Proband zu Proband in jeweils alternierender Reihenfolge durchgeführt.

2.4 Geräte und Materialien

2.4.1 Versuchsstuhl

Um für alle Probanden eine möglichst identische Sitzposition zu erreichen, wurde ein Versuchsstuhl konzipiert, der neben einer höhenjustierbaren Sitzfläche eine waagrechte Ablagefläche für den Unterarm beinhaltete und so eine bequeme und aufrechte Sitzhaltung bei maximaler Kraftentlastung und Entspannung für den Unterarm gewährleisten konnte.

Die Haltung des Unterarmes zum Oberarm entsprach dabei einer Flexion im Ellbogengelenk von 90° zuzüglich 60° Pronation. Das Handgelenk befand sich für alle Ebenen in Nullstellung. Diese Positionierung erfolgte in zwei spezifischen Intentionen: Zum einen sollte die Grundstellung für den abgeleiteten M. extensor carpi radialis eine Vorspannung vermeiden, zum anderen derselbe Muskel in der Kontraktion möglichst selektiv angespannt werden. Zusätzlich war der Unterarm durch Klettbänder locker auf der Unterlage fixiert, um eine Unterstützungsbewegung im Ellbogen zu vermeiden.

2.4.2 Kraftmeßgerät

Die Kraftmessung erfolgte durch ein in den Versuchsstuhl integriertes Handdynamometer, das eigens für diesen Versuchsaufbau konzipiert worden war.

Das Dynamometer beinhaltet neben einem Drucksensor mit Druckabnehmer eine Gehäusekonstruktion, die eine in allen drei Ebenen zuzüglich Supination und Pronation bewegliche Einstellung des Druckabnehmers ermöglicht; dessen exakte Positionierung über der Hand des Probanden ist deshalb eine Grundvoraussetzung, da nur Kräfte entlang des Kraftvektors bei Vernachlässigung der auftretenden Scherkräfte gemessen werden und deshalb die Extensionsbewegung im Handgelenk für einen maximal großen Betrag des Kraftvektors genau mit dieser Druckmeßrichtung übereinstimmen sollte. Der genaue Aufsatzpunkt des Druckabnehmers an der Hand wurde dabei vom Versuchsleiter gepolstert und angezeichnet, um im weiteren Versuchsverlauf exakte Reproduzierbarkeit und Schmerzfreiheit zur Vermeidung eines verfrühten Versuchsabbruches gewährleisten zu können.

Der Drucksensor selbst besteht aus einem Piezoelement (Modell ELH - TC11 - 500, Entran Sensoren GmbH), das im Bereich von 0 - 500 N eine lineare Kraftmessung gewährleistet. Die vom Drucksensor gemessene Kraft wird dabei durch den Piezokristall in elektrische Signale transformiert und auf einen Verstärker (Recomed Vorverstärker TF) übertragen, der zur Messung der Kraft auf Newton (N) geeicht ist. An diesen Verstärker war zudem ein Schreiber zur Kraftdokumentation im Zeitverlauf angeschlossen.

Neben der Verstärkeranzeige konnte die auf den Sensor übertragene Kraft an einem optischen Anzeigeinstrument der Firma Neuberger abgelesen werden, das gegenüber dem Probanden im Abstand von 1 Meter und auf dessen Augenhöhe sowohl für ihn als auch für den Versuchsleiter jederzeit visuell kontrollierbar war. Dieses wurde im Versuchsverlauf bei Eichung auf Kilogramm (kg) zur Bestimmung der Maximalkraft sowie der unterschiedlichen Kraftstufen der Aufwärmphase und des Hauptversuches verwendet.

Abb. 1 Armhaltung im Versuchsstuhl Ablage des Unterarmes in 90° Flexion und 60° Pronation im Ellbogen in den Versuchstuhl integriertes Handdynamometer mit Kraftmesser über der distalen Hand temperaturisoliert fixierte Elektroden mit freundlicher Genehmigung der Probandin

2.4.3 Elektroden

Bei den Elektroden handelte es sich um unipolare Ag/AgCl - Oberflächenelektroden der Firma 3M Medical - Surgical Division mit der Bezeichnung "3M Red DotTM Überwachungselektroden mit MicroporeTM Pflaster". Deren elektrische Kontaktfläche beträgt 3,6 cm², zuzüglich der umgebenden Klebefläche ergibt sich eine Gesamtfläche von 4,9 cm². Eine Verringerung des elektrischen Widerstandes wurde durch Auftragen von AgCl - Elektrodengel auf die Kontaktfläche der Elektroden erreicht.

Vor Anbringen der Elektroden wurde die Haut rasiert und mit Ethanol gereinigt.

Die als Anode und Kathode fungierenden Ableitelektroden wurden dabei in paralleler Anordnung zum Muskelfaserverlauf auf dem proximalen Drittel der Strecke zwischen Ursprung und Ansatz des M. extensor carpi radialis aufgeklebt; der Abstand zwischen den Elektroden betrug 3,5 cm. Die für elektromyographische Untersuchungen übliche Erdungselektrode befand sich am distalen Oberarm.

Über demselben Muskel mit den aufgeklebten Elektroden kamen im Versuchsverlauf auch die Wärmepackungen zu liegen. Um ausgeprägte Temperaturschwankungen der Elektroden zu vermeiden, einerseits wegen resultierender Schmerzreize, andererseits für eine ungestörte Ableitung, wurden diese mit temperaturisolierenden Materialien in Elektrodengröße bedeckt.

2.4.4 Wärmepackung

Bei der verwendeten Wärmepackung handelte es sich um eine flexibel formbare Moorauflage aus Bad Kohlgrub von 3 cm Dicke, 38 cm Länge und 35 cm Breite, die somit in der Lage ist, den gesamten Muskel zu bedecken. Um einen übermäßigen Wärmeverlust an die Umgebung zu vermeiden, wurde sie in klinikübliche Tücher eingewickelt.

Die Temperatur zwischen Tuch und Hautoberfläche wurde über ein Thermometer kontrolliert und konnte über die Applikationsdauer von 15 Minuten bei 45° Celsius konstant gehalten werden.

2.4.5 OEMG

Die Ermittlung der quantitativen OEMG - Parameter erfolgte mit Hilfe eines computergestützen Elektromyographiegerätes vom Typ "Viking" der Firma Nicolet. Das dabei verwendete Programm "Maximum Voluntary Activity (MVA)" ermöglicht die Registrierung der elektrischen Aktivität des Muskels bei maximaler, willkürlicher Muskelkontraktion.

Die abgeleiteten Spannungsänderungen werden dabei auf dem angeschlossenen Bildschirm optisch zur Darstellung gebracht sowie die Werte der einzelnen Parameter numerisch angegeben. Eine zusätzliche Zuordnung von relativen Häufigkeiten zu den einzelnen Amplitudenwerten ermöglicht das Amplitudenhistogramm.

In der Voreinstellung Amplitudenvergrößerung (SNS) ist die Sensitivität der y - Achse in Anpassung an die zu erwartenden Werte variabel. Mit der gewählten Verstärkung von 100 μ V pro Skalierungseinheit konnten maximal +/-500 μ V zur Darstellung gebracht werden.

Auf der x - Achse der Zeit sind 20 Skalierungseinheiten abgetragen. Die in der Voreinstellung time (tme) gewählten 200 ms pro Skalierungseinheit ergaben somit eine Gesamtlaufzeit über eine Bildschirmbreite von 4 Sekunden. Über diesen Zeitraum erfolgte jeweils die Berechnung der erfaßten Parameter, die unterhalb des Graphen angezeigt wurden.

<u>Abb. 2</u> Bildschirmanzeige des EMG-Gerätes

bei den gewählten Voreinstellungen Ableitung über Intervalle von 4 Sekunden computergestützte Berechnung und Darstellung der OEMG - Parameter sowie des Amplitudenhistogrammes für diesen Zeitraum

[Viking Benutzerhandbuch, 1989]

2.4.6 Dokumentation

Die Speicherung der auf dem OEMG - Bildschirm angezeigten Daten erfolgte über ein an den Versuchsaufbau angeschlossenes Videogerät. Zusätzlich wurden die Parameter turns und RMS für die spätere Auswertung vom Versuchsleiter auf Versuchsbögen mitnotiert, die hinsichtlich der Versuchsabschnitte und ihrer zeitlichen Verläufe gegliedert waren.

Die exakte Einhaltung der jeweiligen Kraftstärke wurde vom Probanden selbst visuell an der Anzeige der Federwaage kontrolliert und konnte vom Versuchsleiter jederzeit eingesehen werden. Für eine zusätzliche Kontrolle und auch Dokumentation der Kraftkonstanz erfolgte eine Aufzeichnung mittels des an den Verstärker des Handdynamometers angeschlossenen Schreibers.

 Abb. 3
 Dokumentation der Kraftkonstanz

 zusätzlich zur visuellen Kontrolle über einen an den Kraftmesser angeschlossenen Schreiber

2.5 Auswertung der Daten

2.5.1 Vergleichbarkeit der Meßergebnisse

Für jeden Probanden wurden innerhalb seiner individuellen Ausdauerzeit die OEMG -Parameter in 4 Sekunden - Intervallen erfaßt. Die primäre Intention der Auswertung lag aus diesem Grund darin, Vergleichspunkte für die Ergebnisse aller Probanden zu schaffen. Diese wurden als jeweils zehnte Anteile der individuellen Ausdauerzeit definiert, zusätzlich zum ersten Meßwert. Die Parameter turns und RMS konnten nun für jeden Ergebnisteil (Standard und Wärmeintervention in Versuch und Kontrolle) für alle Probanden in jeweils 11 Punkten in Abständen von 10% - Schritten verglichen und somit verrechnet werden.

Die Auswertung erfolgte nach folgendem Vorgehen: Zunächst wurden für die jeweils individuelle Gesamtzeit in Sekunden die zehnten Anteile berechnet, Dezimalstellen algebraisch auf ganze Zahlen gerundet. Fiel die so ermittelte Sekunde nicht mit einem der Meßwerte zusammen, wurde ihr spezifischer Wert als Ausgleichsgerade durch die beiden umliegenden Meßpunkte x und y berechnet:

<u>Meßpunkte in [s]</u>							
X	x+1	x+2	x+3	у			
1	2	3	4	1			

Es ergaben sich somit folgende Berechnungen:

- x+1 = (2x + y) : 3
- x+2 = (x + y) : 2
- x+3 = (x + 2y): 3

<u>Abb. 4</u> Berechnung der Punkte auf der Ausgleichsgeraden

2.5.2 statistische Auswertung

Die so im Versuch erhobenen einheitlichen Daten wurden einem Personal Computer mit Pentium 4 Prozessor zugeführt und mittels entsprechender Software (SPSS Version 11.0 deutsch) statistisch ausgewertet.

Zunächst wurden die Mittelwerte MW als Lokalisationsmaß, definiert im Sinne eines Durchschnittswertes als Quotient aus der Gesamtsumme der Einzelwerte durch deren Anzahl, berechnet. Anhand dieser Mittelwerte konnten die Tendenzen für turns und RMS für das gesamte Probandenkollektiv im Verlauf beurteilt werden. Sie wurden im Vergleich von Standard und Wärme zudem in Diagrammen zur Darstellung gebracht. Da beide Parameter für Versuch und Kontrolle ausgewertet wurden, entstanden insgesamt vier Diagramme.

Um zusätzlich den Verlauf der Mittelwerte weiter präzisieren zu können, wurden außerdem die Standardabweichung SD zur Angabe der Dispersion der Einzelwerte, berechnet als Quadratwurzel der Varianz oder auch des durchschnittlichen Abweichungsquadrates, sowie der Standardfehler SE der Mittelwerte zur Angabe der Streuung der Mittelwerte, berechnet als Quotient aus der Standardabweichung zur Quadratwurzel der Anzahl der Einzelwerte, ermittelt.

In einem weiteren Ansatz wurden noch die mittleren Ausdauerzeiten mit ihrer Standardabweichung SD sowie dem Standardfehler SE der Mittelwerte für Standard, Wärme sowie den Kontrollversuch der Wärme berechnet und verglichen.

2.5.3 Prüfung auf statistische Signifikanz

Desweiteren wurden die Ergebnisse in einem statistischen Testverfahren auf Signifikanz der Unterschiede dahingehend überprüft, daß der nachgewiesene Unterschied der Meßwerte mehr als eine stochastische Streuung bedeutete.

Die Auswahl des Testverfahrens erfolgte nach den üblichen statistischen Kriterien: Die Verteilung der Meßwerte entsprach einer Normalverteilung. Da an jeweils einem Probanden zwei Messungen im Vergleich durchgeführt wurden, handelte es sich um zwei verbundene Stichproben.

Als geeignetes Testverfahren wurde deshalb der gepaarte Student`sche t - Test gewählt; er wurde zweiseitig durchgeführt, da die Meßwerte in jeweils zwei Richtungen bezüglich des Referendums abweichen konnten.

Da die Berechnungen des p - Wertes im Rahmen des Testverfahrens vollständig computergestützt durchgeführt wurden, sollen im folgenden dessen prinzipielle Grundzüge dargestellt werden: In einem ersten Schritt wird die Teststatisik berechnet, die sich ergibt als Quotient aus dem Betrag der durschnittlichen Wertepaardifferenz zum mittleren Fehler der durchschnittlichen Wertepaardifferenz. Im Vergleich mit einer t - Verteilung für (n - 1) - in unserem Fall also 29 - Freiheitsgrade kann dann ein spezifischer p - Wert ermittelt werden.

Dieser p - Wert entspricht der Wahrscheinlichkeit p, mit der dieselben Meßwerte auftreten würden unter der Voraussetzung, daß kein Unterschied in der Grundgesamtheit bestehe (Nullhypothese).

Für diesen Wert p wird schon im Rahmen der Versuchsplanung ein Signifikanzniveau determiniert, zumeist 0,05, also 5%. Bleibt der ermittelte p - Wert dann unterhalb des Signifikanzniveaus, kann die Nullhypothese verworfen werden, die Ergebnisse gelten als statistisch signifikant.

Der Begriff der statistischen Signifikanz macht jedoch nur eine relative Aussage bezüglich der Relevanz der gefundenen Ergebnisse; er bedeutet im statistischen Sinne, daß das Ergebnis nicht durch den Zufall zu erklären ist, allerdings unter dem Vorbehalt folgender Irrtumsmöglichkeiten:

- Fehler der 1. Art: Die Nullhypothese wird verworfen, obwohl sie in Wirklichkeit zutrifft und somit kein Unterschied besteht.
- Fehler der 2. Art: Die Nullhypothese wird fälschlicherweise nicht verworfen.

Diese Fehlerquellen resultieren aus folgenden Aspekten: Einerseits wird das Signifikanzniveau des p - Wertes willkürlich festgelegt, andererseits wäre bei einem rein stochastischen Vorgang mit einem in der Versuchsplanung festgelegten Signifikanzniveau von 5% ohnehin jeder 20. Wert signifikant. Eine sinnvolle Interpretation der gefundenen p - Werte ist somit unabdingbar.

3 Ergebnisse

Die Ergebnisse der einzelnen Probanden wurden zur weiteren Verarbeitung zunächst in Tabellen zusammengefaßt, die aus Gründen der besseren Übersicht aber erst im Anhang unter 7.1 angefügt sind.

Um die Tabellen generell klein halten zu können, wurden einheitlich angewendete Abkürzungen definiert, die in folgender Legende und in ihrer Gesamtheit auch im Anhang unter 7.2 erläutert werden:

Ко	Kontrolle
MW	Mittelwert
p - Wert	Signifikanzniveau
SD	Standardabweichung (standard deviation)
SE	Standardfehler des Mittelwertes (standard error)
S	Standard
RMS	mittlere Amplitude als root mean square
t	Zeitabschnitt (engl. time)
turns	Frequenz der EMG - Ausschläge
V	Versuch
VP	Versuchsperson
W	Wärme
WKo	Wärme der Kontrolle

Abb. 5 Auszug aus dem Abkürzungsverzeichnis

Die Abkürzung WKo bezeichnet den Abschnitt der Kontrollmessung, in dem in Analogie zur Wärmeapplikation des Hauptversuches wie auch im Versuch unter Standardbedingungen eine temperaturneutrale Packung derselben Größe und desselben Gewichtes aufgelegt wurde.

Auch die Signifikanzniveaus werden im Anhang unter 7.3 angeführt, werden aber zur Vervollständigung hier dem Ergebnisteil nochmals vorangestellt:

*	$= p \le 0.05$
**	= p ≤ 0.01
***	$= p \le 0.001$
n.s.	= nicht signifikant, p > 0.05

<u>Abb. 6</u> Signifikanzniveaus des zweiseitig angelegten, gepaarten Student´schen t - Tests

3.1 OEMG - Parameter

3.1.1 Mittelwerte MW

Die für das Gesamtkollektiv errechneten Mittelwerte der OEMG - Parameter RMS und turns zu den festgesetzten Meßzeitpunkten im Verlauf des Versuches sowie der Kontrollmessung sind in der folgenden Tabelle dargestellt:

	S		W		WKo	
t	RMS	turns	RMS	turns	RMS	turns
1	200	210	181	225	217	210
2	197	204	174	214	217	203
3	186	193	165	203	204	195
4	183	189	165	197	199	187
5	195	184	163	194	209	183
6	195	183	180	188	213	181
7	210	179	184	185	228	179
8	220	173	196	180	245	176
9	232	172	189	175	232	172
10	248	171	200	171	226	174
11	257	168	201	167	256	165

Tab. 2Mittelwerte MW zu den Zeitpunkten 1 - 11
OEMG - Parameter RMS und turns

3.1.2 Diagramme der Mittelwerte

Aus diesen Mittelwerten wurden im Anschluß Diagramme erarbeitet, die für beide Parameter - RMS und turns - in Versuch und Kontrolle die Verläufe unter den Bedingungen Standard und Wärme vergleichen lassen:

<u>Abb. 7</u> Diagramm RMS Standard und Wärme im Versuch

Abb. 8 Diagramm RMS Standard und Wärme in der Kontrolle

<u>Abb. 10</u> Diagramm turns Standard und Wärme in der Kontrolle

3.1.3 Standardabweichung SD

Für eine weitere Charakterisierung der Mittelwerte wurden zudem die Standardabweichungen SD (engl. standard deviation) ermittelt. Diese sind in der folgenden Tabelle dargestellt:

	S		W		WKo	
t	RMS	turns	RMS	turns	RMS	turns
1	84,00	30,27	73,15	33,54	85,18	31,08
2	85,72	24,97	68,92	26,98	80,46	21,10
3	66,72	20,71	63,76	25,03	81,46	21,06
4	68,31	19,84	59,57	25,21	84,80	20,58
5	66,62	18,97	56,92	23,95	92,08	22,55
6	72,32	22,08	74,34	28,51	97,17	21,35
7	91,76	22,89	74,26	24,72	105,33	23,70
8	98,52	26,24	88,15	24,35	115,04	24,44
9	92,87	24,22	88,26	24,74	121,07	24,88
10	102,28	24,24	90,78	23,99	119,81	26,57
11	118,43	33,86	86,75	27,75	145,65	27,13

Tab. 3Standardabweichung SD zu den Zeitpunkten 1 - 11OEMG - Parameter RMS und turns

3.1.4 Standardfehler SE

Zur Vervollständigung wurden darüber hinaus die Standardfehler SE zur Angabe der Streuung der Mittelwerte berechnet:

	S		W		WKo	
t	RMS	turns	RMS	turns	RMS	turns
1	15,34	5,53	13,36	6,12	15,55	5,67
2	15,65	4,56	12,58	4,93	14,69	3,85
3	12,18	3,78	11,64	4,57	14,87	3,85
4	12,47	3,62	10,88	4,60	15,48	3,76
5	12,16	3,46	10,39	4,37	16,81	4,12
6	13,20	4,03	13,57	5,21	17,74	3,90
7	16,75	4,18	13,56	4,51	19,23	4,33
8	17,99	4,79	16,09	4,45	21,00	4,46
9	16,96	4,42	16,11	4,52	22,10	4,54
10	19,26	4,50	16,42	4,29	20,61	5,20
11	21,62	6,18	15,84	5,07	26,59	4,95

Tab. 4Standardfehler SE zu den Zeitpunkten 1 - 11
OEMG - Parameter RMS und turns

3.1.5 p - Werte

Bei der Testung auf statistische Signifikanz in dem entsprechend des Versuchaufbaues gewählten zweiseitig angelegten, gepaarten Student´schen t - Test ergaben sich die p - Werte wie folgt:

	RMS		turns	
	V	Ко	V	Ko
t	S - W	S - WKo	S - W	S - WKo
1	0,146	0,323	0,011	0,381
2	0,121	0,242	0,064	0,897
3	0,13	0,275	0,034	0,622
4	0,222	0,221	0,105	0,606
5	0,021	0,309	0,013	0,782
6	0,349	0,239	0,251	0,608
7	0,191	0,283	0,104	0,916
8	0,21	0,24	0,089	0,324
9	0,032	0,99	0,393	0,928
10	0,039	0,3	0,87	0,404
11	0,023	0,98	0,918	0,539

Tab. 5p - Werte des zweiseitig angelegten, gepaarten Student'schen t -Tests
OEMG - Parameter RMS und turns

3.2 Ausdauerzeiten

Zusätzlich zu den Parametern im Oberflächen - EMG wurde das Gesamtkollektiv hinsichtlich der Ausdauerzeiten ausgewertet.

3.2.1 Mittelwerte MW

Die Mittelwerte MW der Ausdauerzeiten ergaben sich als Lokalisationsmaß wie folgt:

	S	W	WKo
MW	177,3	180,9	174,5

Tab. 6Mittelwerte MWAusdauerzeiten

3.2.2 Diagramm der Mittelwerte

Zur Veranschaulichung sind diese Mittelwerte in der folgenden Abbildung als Säulendiagramm dargestellt:

Abb. 11Säulendiagramm zu den mittleren Ausdauerzeiten
Standard, Wärme und Kontrolle der Wärme

3.2.3 Standardabweichung SD

Dabei betrug die Standardabweichung SD oberhalb und unterhalb um diese Mittelwerte:

	S	W	WKo
SD	34,4	26,41	24,71

 Tab. 7
 Standardabweichung SD

 Ausdauerzeiten

3.2.4 Standardfehler SD

Als weiteres Dispersionsmaß sei hier noch der Standardfehler der Mittelwerte SE angegeben:

	S	W	WKo
SE	6,28	4,82	4,52

Tab. 8Standardfehler der Mittelwerte SE
Ausdauerzeiten

3.2.5 p - Werte

In der Signifikanzprüfung der Unterschiede in den Ausdauerzeiten ergaben sich folgende p - Werte:

	S - W	S - WKo
p-Wert	0,615	0,597

Tab. 9p - Werte des zweiseitig angelegten, gepaarten Student´schen t - Tests
Ausdauerzeiten

3.3 Ergebnisse der Signifikanzprüfung

Neben den Diagrammen lassen sich aus diesen p - Werten als Maßstab für die statistische Signifikanz der gefundenen Unterschiede folgende Aussagen über die interventionsbedingten Veränderungen der OEMG - Parameter sowie der Ausdauerzeiten treffen:

3.3.1 OEMG - Parameter

<u>RMS</u>

Die Kurvenverläufe der RMS zeigen sich sowohl für den Standard als auch für die Wärme sowie die Kontrollkurve der Wärme dahingehend einheitlich, daß die mittlere Spannungsdifferenz im Rahmen der Ausdauerkontraktion zunächst bis zum 4. bzw. 5. Messwert um ungefähr 10% absinkt, um dann im weiteren Verlauf bis zu einem Endwert anzusteigen, der über dem Ausgangswert liegt. Dieser Endwert liegt dabei für die Standardkurve ungefähr 30% über dem Ausgangswert, bei der Wärmekurve und deren Kontrolle beträgt der Anstieg nur 10 - 15%.

Bei einem optischem Vergleich beider Diagramme läßt sich interpretieren, daß die Wärmeintervention eine Absenkung der RMS - Werte bedingt; jedoch zeigten sich bei der Auswertung mit Hilfe des zweiseitig angelegten Student´schen t - Tests nur für die letzten drei Meßpunkte 9 - 11 statistisch signifikante p - Werte. Im Kontrollversuch hingegen konnten über den gesamten Versuchsverlauf keine signifikanten Unterschiede in den Meßergebnissen gefunden werden.

<u>turns</u>

Auch die turns zeigen in ihren Kurvenverläufen ein homogenes Bild, indem sie vom Meßpunkt 1 - 11 stetig abfallen; die Steigung der Kurve und somit die Geschwindigkeit der Frequenzabnahme wird dabei im Verlauf zunehmend geringer.
Bei einer visuellen Analyse sind bei der Kontrolle bis auf wenige Meßpunkte am Ende die Wärmekurve und die des Standards beinahe deckungsgleich; im Versuch liegt die Wärmekurve über der des Standards, sie nähert sich im Verlauf jedoch stetig an den Standard an, bis in den beiden letzten Meßpunkten die Kurven wieder identisch verlaufen.

Dies spiegelt sich auch in p - Werten der Signifikanzprüfung wieder: Im Versuch kann hierbei bis zu Meßpunkt 5 ein statistisch signifikanter Unterschied gezeigt werden, danach steigen die p - Werte durch die allmähliche Annäherung über das Signifikanzniveau. Für die Kontrollwerte ergeben sich keine statistisch signifikanten Unterschiede der Wertepaare.

3.3.2 Ausdauerzeiten

Die Auswertung des Gesamtkollektives bezüglich eines Unterschiedes in der Gesamtausdauer ergab sowohl für den Standard als auch für die Wärme und deren Kontrollmessung im Durchschnitt ähnliche Ausdauerzeiten.

Auch in der Prüfung auf statistische Signifikanz zeigte sich in den p - Werten kein Unterschied der Durchschnittswerte.

4 Diskussion

4.1 Material und Methoden

4.1.1 Probandenkollektiv

Bei der Auswahl der Versuchspersonen wurde der Schwerpunkt in der Beurteilung des Gesundheitszustandes gesetzt; vor allem muskuloskeletale Vorerkrankungen, die die oberflächenmyographischen Ableitungen in ganz besonderem Umfang beeinflussen könnten, sollten ausgeschlossen werden [Hopf et al. 1974].

Aufgrund dieser Ein- und Ausschlußkriterien zeigte das Probandenkollektiv ein im Vergleich zum Bevölkerungsdurchschnitt junges Durchschnittsalter; insofern erscheint es als wenig wahrscheinlich, ein hinsichtlich des Trainiertheitsgrades der Grundgesamtheit repräsentatives Kollektiv geschaffen zu haben.

Als zusätzliches Ausschlußkriterium wurde im Rahmen der Versuchsplanung ein Body Mass - Index über 25 festgelegt; dieser gilt als sinnvolle Methode zur Beurteilung des Ernährungszustandes [Olefsky 1987]. In Abhängigkeit vom Ernährungszustand schwankt die Dicke des subkutanen Fettgewebes; bei einem zu großen Abstand der Elektrode vom abzuleitenden Muskel kann die oberflächenmyographische Ableitung gestört sein [Bouisset 1973, Sadoyama et al. 1981].

Elektromyographische Ableitungen zeigen in Abhängigkeit von der jeweiligen Körperseite Unterschiede [Hagberg et. al. 1989]. Aus diesem Grund wurde der Versuch immer an der gleichen Seite des Probanden und nur an Rechtshändern konsequent an der linken und somit nicht - dominanten Seite durchgeführt.

Jeder Proband stand sowohl für den Versuch als auch für die Kontrollmessung zur Verfügung, somit war die Versuchsgruppe mit der Kontrollgruppe absolut identisch. Für jeden einzelnen Probanden wurden beide Messungen an einem einzigen Tag durchgeführt, wobei zur Vermeidung von Ermüdungserscheinungen in Vorversuchen ausreichend lange Erholungspausen ermittelt worden waren. Insofern konnte für beide Versuchsteile von einem identischen Gesundheits- und Ernährungszustand ausgegangen werden. Auch die Elektrodenlokalisation am Unterarm war unverändert, diese konstanten anatomischen Verhältnisse gelten als Voraussetzung für eine maximale Vergleichbarkeit der gewonnenen Daten [Kramer et al. 1972 a, Kramer et al. 1972 b].

4.1.2 OEMG

Das Oberflächen - EMG wurde nach einer Entwicklungsphase als Methode erstmals von Wacholder im Jahre 1928 eingeführt [Wacholder 1928]; additiv zum konventionellen EMG wird es seither sowohl zu Forschungszwecken als auch im klinischen Alltag verwendet.

Der wesentliche Unterschied des OEMG im Gegensatz zum konventionellen EMG besteht darin, daß die Ableitung der myoelektrischen Aktivität nicht über in den Muskel eingestochene Nadeln erfolgt, sondern indirekt über auf die Hautoberfläche aufgeklebte Elektroden.

Für die der Versuchsreihe zugrundeliegende Fragestellung der Wirkung von Wärmeapplikationen auf das Kontraktionsverhalten der Skelettmuskulatur unter Ausdauerbedingungen erschien das Oberflächen - EMG aus folgenden Gründen als geeignet: Erstens kann der Skelettmuskel in seiner Gesamtheit oder zumindest große Muskelareale davon beurteilt werden [Boukes 1982, Ebert et al. 1986]. Zweitens aufgrund der indirekten Ableitung quantitative Veränderungen können des Kontraktionsverhaltens des Gesamtmuskels ohne modifizierende Schmerzreize analysiert werden [Göpfert 1963, Ebert et al. 1986], wenn auch Veränderungen der einzelnen Muskelfaser nicht erfaßt werden und somit das Oberflächen - EMG bei der exakten Evaluierung klinischer Effekte als weniger aussagekräftig gilt [Edwards et al. 1979, Broman et al. 1985]. Drittens ist das OEMG im Gegensatz zum konventionellen EMG auch bei hohen Muskelkontraktionsstärken wie in der Aufwärmphase anwendbar [Boukes 1982]. Und nicht zuletzt erweist diese Methode den pragmatischen Vorteil, daß ihre noninvasive Form der Ableitung sowohl in Ruhe als auch bei Muskelkontraktion schmerzfrei erfolgt und insofern auch für die als Freiwillige teilnehmende Versuchpersonen zu tolerieren ist [Göpfert 1963].

Bislang konnte ein eindeutiger Nachweis einer Tonusänderung des Skelettmuskels bei Wärmeeinwirkung nicht erbracht werden, obwohl diese empirisch als sehr wahrscheinlich imponiert. Diese Tatsache kann methodisch unter anderem dadurch erklärt werden, daß ein sich in Ruhe befindender Muskel in der Ableitung des Oberflächen - EMG eine nur spärlich ausfallende Restaktivität zeigt [Noth et al. 1999]. Aus diesem Grund erscheint es als sehr plausibel, daß der zu erwartende Wärmeeffekt, also minimale Veränderungen bei einer niedrigen Ausgangsaktivität, nicht verifiziert werden kann. Deshalb wurden die vorliegenden Analysen am aktiv innervierten Skelettmuskel durchgeführt, um so in dem hier deutlicheren EMG - Muster die Wärmewirkung in einem veränderten Kontraktionsverhalten zu evaluieren.

Zur Auswertung kamen bei dieser Versuchsanordnung die Parameter turns als Hinweis für die Entladungsfrequenz sowie RMS zur Beurteilung der Amplitude. Auf eine zusätzliche Auswertung der MRV wurde insbesondere verzichtet, da diese im Verlauf ein zu den RMS identisches Verhalten zeigen [Guggemoos 1995], letztere aber zur Bestimmung der Amplitude aus wissenschaftlicher Sicht als exakter gelten.

4.1.3 M. extensor carpi radialis

Grundvoraussetzungen für den im Versuch verwendeten Muskel waren neben einer oberflächlichen Lokalisation für eine gute Zugänglichkeit der Wärmewirkung sowie der OEMG - Ableitung die Möglichkeit zu einer möglichst selektiven Kontraktion. Aus anatomischen Studien sowie aus Literaturrecherchen zeigte sich dabei der M. extensor carpi radialis als geeignet [Romaiguere et al. 1989, Kakuda et al. 1998]. Dieser Muskel besteht dabei vielmehr als Muskelgruppe aus den beiden Anteilen des M. extensor carpi radialis longus et brevis.

Als Muskelarbeitsform wurde eine isometrische Kontraktion gewählt, da dynamische Arbeitsformen einerseits durch die Änderung der Kontraktionsgeschwindigkeit, andererseits aber durch die im Verlauf sich ändernde Muskellänge die elektromyographischen Parameter alterieren [Vredenbregt et al. 1973, Yoneda et al. 1985, Doud et al 1995].

4.1.4 Wärmepackung

Als grundsätzliche Anforderung mußte die für die Applikation gewählte Wärmepackung einen ausreichenden Temperaturgradienten sowie einen ausreichenden Wärmevorrat für einen über den Applikationszeitraum konstanten Wärmeübergang zur Hautoberfläche und die Weiterverteilung der Wärme durch den Blutstrom im Gewebe gewährleisten können [Drexel 1976, Schnizer et al. 1981]. Außerdem sollte sie sich bei guter Verformbarkeit möglichst ideal der Hautoberfläche anpassen und groß genug sein, den gesamten Muskelbereich abzudecken.

In der zusätzlichen Intention, möglichst praxisnahe Versuchsbedingungen zu schaffen, wurde deshalb eine Moorpackung aus Bad Kohlgrub als klinikübliches Medium verwendet und die dort angegebenen Werte für Schichtdicke, Temperatur und Applikationsdauer übernommen.

Untersuchungen zu dieser Moorpackung ergaben eine Temperaturkonstanz über 11 Minuten, erst nach 25 Minuten tritt ein Temperaturdefizit von 1° C ein [Höll 1995]. Ein zusätzlicher Wärmeverlust an die Umgebung wurde im Versuch durch die Abdeckung mit kliniküblichen Tüchern minimiert.

In dieser Arbeit wurde zur Vermeidung von Schmerzreizen auf eine intramuskuläre Temperaturmessung zur Objektivierung der Tiefenwirkung der Wärmeapplikation verzichtet. Die somit hypothetische Wirkung erscheint in Ableitung aus folgenden theoretischen Modellen und Ergebnissen von Tierversuchen jedoch als ausreichend gesichert.

42

Wärme wird vom Ort höherer Temperatur zum Ort niedrigerer Temperatur transportiert, wobei die Größe des Temperaturtransports abhängig ist von der Temperaturdifferenz zwischen dem applizierten Packungsmedium und der Körpertemperatur, ferner von der Summe der Wärmewiderstände, die den Transport beeinflussen [Drexel 1976].

Mögliche Mechanismen des Wärmetransports vom Wärmeträger auf den Organismus und die daraus resultierende Tiefenwirkung sind dabei Konduktion, Konvektion und Strahlung.

Über den Mechanismus der Konduktion gibt der Wärmeträger solange seine kinetische Energie über den Leitungsweg an die Hautoberfläche ab, bis ein Temperaturausgleich zwischen dem Packungsmedium und der Hautoberfläche stattgefunden hat. Je größer die Temperaturdifferenz zwischen dem Medium und der Hautoberfläche ist, desto größer ist der Wärmeübergang. Dieser Mechanismus der Wärmeübertragung gilt für die meisten lokalen Wärmetherapeutika wie Peloide, heiße Packungen und auch für die Wärmflasche [Whitney 1989].

Die Konvektion ist dadurch charakterisiert, daß sich wärmetragende Teilchen in einem Medium bewegen und dadurch die Wärme weitertransportieren. Diese Wärmeströmung ist prinzipiell möglich in Flüssigkeiten und Gasen und spielt vor allem bei der Verteilung der lokal erhöhten Hauttemperatur im Gewebe über den Blutstrom eine Rolle [Drexler 1976, Schnizer et al. 1981].

Die durch Strahlung abgegebene Wärme ist von der Temperatur des Strahlers abhängig. Der Körper nimmt von einem Gegenstand, dessen Temperatur höher als die der Haut ist, Strahlungswärme von dort auf und umgekehrt [Drexler 1976]. Die Wärmeübertragung durch Strahlung dürfte jedoch bei diesem Versuch eine nur untergeordnete Rolle gespielt haben.

Hinsichtlich des intramuskulären Temperaturanstieges haben Tierversuche folgende Ergebnisse ergeben: Nach einer 15 - minütigen Applikation einer Moorpackung bei einer Temperatur von 45° C resultiert ein Anstieg der Gewebetemperatur in 3cm Tiefe um 2,5°C; dieser Wärmeeffekt hält auch nach Beendigung der Applikation weiterhin an [Kleinschmidt et al. 1963, Laiacker 1983, Schnizer et al. 1981]. Somit erscheinen

sowohl die eingehaltene Applikationsdauer als auch die Applikationstemperatur als adäquat.

Es kann außerdem davon ausgegangen werden, daß durch die Wärmeapplikation eine Erhöhung der Muskeltemperatur auf 39°C erreicht wird. Tierexperimentiell konnte nachgewiesen werden, daß die Muskeltemperatur auch bei Belastung und standarisierter Umgebungstemperatur dieses Maximum durch den bei Perfusionssteigerung erhöhten Wärmeabtransport nicht überschreitet [Drexel 1978].

Die physiologische Hautschmerzgrenze liegt bei 42° C, dennoch wird eine Moorpackung bis 50° C toleriert [Schmidt 1989]. Um negative Auswirkungen für die Probanden und auch schmerzbedingte Veränderungen in der Ableitung des OEMG zu vermeiden, wurden die Probanden zur Temperaturverträglichkeit der aufgelegten Moorpackung befragt.

4.1.5 Elektroden

Hinsichtlich der Elektroden wird das im Oberflächen - EMG abgeleitete myoelektrische Signal beeinflußt durch die Elektrodeneigenschaften wie Größe und physikalische Leitfähigkeit, zudem von deren anatomischer Lage und Anordnung zueinander [De Luca 1979, De Luca 1984].

So resultiert aus einer Verwendung größerer Elektroden wie auch aus der Vergrößerung des Elektrodenabstandes bis zu einem bestimmten Potentialmaximum ein Anstieg der mittleren Amplitude, wobei die mittlere Frequenz konstant bleibt [Parker et al. 1973, Petrofsky et al 1980a, Petrofsky et al. 1980b, Bazzy et al. 1986].

Aus nutritiven Gründen ist die Dicke von subkutanem Fett- und Bindegewebe unterschiedlich stark ausgeprägt; der dadurch variierte Abstand zwischen Elektrode und aktiver Muskelfaser bedingt aber unterschiedliche Meßwerte für mittlere Amplitude und Frequenz [Bouisset 1973, Sadoyama et al. 1981]: Mit zunehmendem Abstand der Elektrode von der aktiven Muskelfaser werden die Amplituden sowie die mittleren Frequenzen kleiner [Lawrence et al. 1983].

Die höchsten Werte für die Amplitude sowie für die Frequenz werden über dem sogenannten Innervationspunkt gemessen; mit zunehmendem Abstand zu diesem Punkt werden diese jedoch stetig niedriger. Außerdem zeigt sich in diesem Bereich eine lineare Beziehung zwischen Frequenzparametern und Leitungsgeschwindigkeit [Roy et al. 1986].

Die Positionierung der Elektroden muß möglichst in unmittelbarer Nähe des abzuleitenden Muskels erfolgen, um eine Signalverfälschung durch benachbarte Muskelgruppen zu vermeiden [Koh et al. 1993]; zusätzlich kann eine Verringerung des Interelektrodenabstandes störende Signale umliegender Muskeln reduzieren [Zipp 1982].

Die Anordnung der Elektroden in Längsrichtung ergibt höhere Amplitudenwerte; dieser Effekt wird dabei jedoch zum Teil durch eine Mehrfachmessung der Aktionspotentiale in Serie begründet [Mortimer et al. 1970, Zedka et al.1997]. Auf der anderen Seite ermöglicht eine Anordnung parallel zum Muskelfaserverlauf eine konstante Ableitung auch während der Muskelkontraktion [Zedka et al. 1997].

Aufgrund dieser zahlreichen Möglichkeiten Veränderung des zur oberflächenmyographischen Signales muß bei der Ableitung beachtet werden, daß konstante technische und anatomische Ableitungsbedingungen unabdingbar sind, um vergleichbare Ergebnisse zu erhalten [Kramer et al. 1972 a, Kramer et al. 1972 b]. Diese grundlegende Anforderung für eine optimale Datenerfassung und maximale Vergleichbarkeit der Ergebnisse wurde in der vorliegenden Arbeit umgesetzt, indem primär die Messung der Probanden mit nur einem Elektrodentyp erfolgte. Die Elektrodenlokalisation war nach den oben genannten Kriterien auf dem proximalen Drittel des Muskelbauches parallel zueinander mit einem Interelektrodenabstand von 3,5 cm anatomisch streng festgelegt; Vorversuche hatten bei dieser Anordnung eine maximale Reproduzierbarkeit der erfaßten Daten gezeigt. Zudem wurden alle Probanden an einem einzigen Tag in Versuch und Kontrolle gemessen, wodurch im Vergleich beider Versuchsabschnitte jedes Einzelprobanden eine absolut identische Elektrodenlokalisation garantiert war.

Zusätzlich wurde über den Body Mass - Index als Ausschlußkriterium bei Werten über 25 ein durch das subkutane Binde- und Fettgewebe bedingter zu großer Abstand zwischen Elektrode und Arbeitsmuskel vermieden.

4.1.6 Versuchsstuhl

Voraussetzung für eine Vergleichbarkeit der OEMG - Parameter bei isometrisch isotonen Kontraktionen vor und nach Wärmeapplikation sind möglichst identische Versuchsbedingungen für alle Versuchsabschnitte.

Diese wurden neben einer Konstanz der Raumtemperatur bei 21° C in dem für diese Versuchsreihe konzipierten Versuchsstuhl garantiert: Durch eine höhenjustierbare Sitzfläche wurde eine entspannte Ablage des Unterarmes auf der hierfür vorgesehenen Ablage ermöglicht. Durch die Fixierung der Ebene dieser Unterlage am Versuchsstuhl war die korrekte Armhaltung mit 90° Flexion und 60° Pronation im Ellbogen für jeden Versuchsabschnitt reproduzierbar; mit dieser Armhaltung wurde eine möglichst selektive Anspannung des M. extensor carpi radialis bei minimaler Vorspannung erreicht.

Durch die variable Lokalisation des Handdynamometers konnte dabei die Kraft in Anpassung an die unterschiedlichen Armlängen immer an der anatomisch korrekten Stelle angebracht werden; diese Stelle wurde dabei an jedem Probanden für eine identische Lokalisation in Versuch und Kontrolle nach Polsterung farbig markiert.

4.1.7 Kraftmessung

Die Kraftkonstanz während des Versuches konnte über das Handdynamometer objektiviert sowie durch Proband und Versuchsleiter visuell kontrolliert werden. Die Anzeige des Dynamometers war dabei gegenüber dem Probanden auf Augenhöhe angebracht; bereits geringste Abweichungen vom Sollwert der zu leistenden Kraft konnten mit dessen Hilfe zur Darstellung gebracht werden.

Da eine permanente Kontrolle durch die Versuchsleitung im Verlauf nicht möglich war, war die Kooperation des Probanden eine notwendige Voraussetzung. Durch einen angeschlossenen Schreiber konnte jedoch die Konstanz der Kontraktion nach dem Versuch kontrolliert und im Falle ungenügender Versuchsdurchführung diese Ergebnisse von der Auswertung ausgeschlossen werden.

4.1.8 Versuchsgestaltung

Der Versuchsablauf sollte unter Einbeziehung von Literaturrecherchen sowie Vorversuchen eine maximal mögliche Vergleichbarkeit und Reproduzierbarkeit der gewonnen Daten gewährleisten.

Aufwärmphase

Grundvoraussetzung einer möglichst hohen Maximalkraft stellt die Betriebsbereitschaft der untersuchten Muskelgruppe dar [Hollmann et al. 1990]. Deshalb wurde sie in einer initialen Aufwärmphase vor der maximalen isometrischen Belastung aktiviert.

Der Ablauf der Aufwärmphase wurde dabei aus sportphysiologischen Grundlagen abgeleitet und hatte sich bereits in anderen Versuchen als adäquat erwiesen [Fischer 2002]. Gleichzeitig diente die Aufwärmphase dazu, für alle Probanden gleiche Ausgangbedingungen zu schaffen und den Proband mit dem eigentlichen Versuch vertraut zu machen.

Hauptversuch

Im zeitlichen Verlauf einer bei konstanter Kraft anhaltenden isometrischen Kontraktion bis zum Ausdauerpunkt kommt es schon von Beginn an zu Veränderungen des elektrophysiologischen Musters [Scherrer et al. 1959, Lippold et al. 1960, De Vries 1968, Kadefors et al. 1968, Petrofsky 1979, Hagberg 1981, Sadoyama et al. 1981, Petrofsky et al. 1982, Häkkinen et al. 1986, Arendt - Nielsen et al. 1988]. Der Ausdauerpunkt wird dabei definiert als individueller Zeitpunkt, an dem die geforderte Kraft nicht mehr gehalten werden kann [Lindström et al. 1977].

Neben der Bestimmung durch den Proband selbst konnten mit dem an den Verstärker angeschlossenen Schreiber Kraftschwankungen mitverfolgt werden; bei Unterschreitung des Kraftbereiches um maximal 5% wurde der Versuch beendet. Insofern konnte der individuelle Ausdauerpunkt des Probanden im Versuchsablauf in engen Grenzen exakt ermittelt werden.

Eine weitere wichtige Komponente zur Generierung eines sinnvollen Versuchsablaufes war die Wahl ausreichend langer Pausen zur Vermeidung von in den Erholungsphasen nicht vollständig reversiblen Ermüdungserscheinungen.

Im Verlauf isometrisch - isotoner Kontraktionen kommt es als Ausdruck der Ermüdung zu einer Erhöhung der Amplitude sowie zu einer Abnahme der Frequenz des myoelektrischen Signals (ausführliche Diskussion unter 4.2.1). Bei der anschließenden Erholung stellt sich jedoch innerhalb von 4 - 5 Minuten der Ausgangswert der mittleren Frequenz und Amplitude wieder ein [Petrofsky et al. 1980 a]. Im gleichen Zeitraum kehrt auch die im Rahmen der Ermüdung erhöhte Laktatkonzentration auf den Ausgangswert zurück [Harris 1981].

Somit scheinen die im Versuch gewählten Erholungspausen als ausreichend lange gewählt zu sein; dies bestätigte sich auch in entsprechend durchgeführten Vorversuchen.

4.2 Ergebnisse

4.2.1 Veränderungen der Parameter im OEMG

Der Frequenzparameter turns wie auch die RMS als Maß der mittleren Amplitude zeigten für den Standard, nach Wärmeapplikation sowie für die Kontrollmessung der Intervention in ihren Kurvenverläufen ein ähnliches Bild; der Unterschied nach Wärmeintervention bestand darin, daß die Kurve der turns nun über der des Standards lag, die Kurve der RMS unterhalb davon. Deshalb scheint es sinnvoll, die Veränderungen der elektromyographischen Parameter im Verlauf getrennt als Folge von Ermüdungserscheinungen sowie wärmebedingt zu diskutieren.

Veränderungen der OEMG - Parameter durch Ermüdungserscheinungen

Zahlreiche Arbeiten haben ein Ansteigen der Amplitude des myoelektrischen Signals im Verlauf isometrisch - isotoner Kontraktionen bei konstanter Muskelspannung als Zeichen der Ermüdung gezeigt [Scherrer et al. 1959, Lippold et al. 1960, De Vries 1968, Lloyd 1971, Stephens et al. 1972, Vredenbregt 1973, Maton 1981, De Luca 1984, Gerdle et al. 1988, Guggemoos 1995]; gleichzeitig scheint die Frequenz mit zunehmender Kontraktionsdauer abuzufallen [Kadefors et. al. 1968, Lindström et al. 1970, Lindström et al. 1977, Komi et al. 1979, Petrofsky et al. 1982, Bigland - Ritchie et al. 1981, Gerdle et al. 1988, Guggemoos 1995].

Dieser Sachverhalt kann über unterschiedliche Modelle wie die zusätzliche Rekrutierung motorischer Einheiten, die zunehmende Synchronisation der motorischen Einheiten und die Veränderung der Muskelfaserleitgeschwindigkeit und -erregbarkeit erklärt werden. Eine zusätzliche Rekrutierung motorischer Einheiten dient im Rahmen einer ermüdenden Muskelkontraktion vielmehr der Aufrechterhaltung einer konstanten Kraftleistung [Lloyd 1971, Asmussen 1979] als einer Steigerung der Kraft. Diese zusätzliche Rekrutierung begründet ihrerseits einen kontinuierlichen Anstieg der Amplitude [Edwards et al. 1956, Vredenbregt et al. 1973, Maton 1981].

Im Verlauf einer isometrisch - isotonen Kontraktion vermindert sich zudem mit zunehmender Kontraktionsdauer die Frequenz im elektromyographischen Muster kontinuierlich [Moritani et al. 1986, Linssen et al. 1993]. Dieses Absinken der turns läßt sich zum Teil durch eine zunehmende Synchronisation der elektrischen Entladungen erklären; die Entladung der aktiven Motoneurone erfolgt mit zunehmender Kontraktionsdauer zunehmend mehr zur selben Zeit [Lippold et al. 1957, Lippold et al. 1960, Krogh - Lund et al. 1991, Masuda et al.1999]. Hier ergibt sich gleichzeitig ein weiteres Argument für die Erhöhung der Amplituden: Bei zunehmender Synchronisation der Entladungen steigt die registrierte Amplitude [Scherrer et al. 1959, Lloyd 1971, Bigland -Ritchie et al. 1981].

Außerdem kann der Frequenzabfall durch eine verminderte Erregungsleitungsgeschwindigkeit im Rahmen einer ermüdenden Kontraktion erklärt werden; Erregungsleitungsgeschwindigkeit und Entladungsfrequenz stehen dabei in einem linearen Zusammenhang [Sadoyama et al. 1981, De Luca et al. 1983].

Dieser Sachverhalt kann physiologisch dadurch erklärt werden, daß es im Verlaufe einer isometrischen Ausdauerkontraktion durch die Akkumulation der sauren Stoffwechselmetabolite Pyruvat und Laktat zu einer Abnahme des intra- sowie des extrazellulären pH kommt [Ahlborg et al. 1972, Hermansen et al. 1972, Sahlin et al. 1975, Sahlin et al. 1978, Tesch et al. 1978, Harris 1981 et al.]. Dieser Effekt ist aufgrund einer höheren Aktivität an glykolytischen Enzymen in Typ II - Fasern ("fast twitch") besonders ausgeprägt, außerdem kommt es in Kontraktionsbereichen von 30 – 50% der Maximalkraft zur schnellsten Laktatzunahme [Tesch et al. 1977]. Aufgrund der durch die Protonierung veränderten Struktur von Membranproteinen sinkt die

Leitgeschwindigkeit der Muskelfaser, die dann wie soeben dargestellt zur Verminderung der Entladungsfrequenz führt [Orchardson 1978, De Luca et al. 1983]. In Abhängigkeit von der Dauer der ermüdenden Kontraktion sowie von der Muskelfaserzusammensetzung und der Vaskularisierung des Muskels wird dabei von den verschiedenen Autoren das Ausmaß dieses Effekts von einem nur sehr geringen bis hin zu einem sehr deutlichen Rückgang der Frequenz beschrieben [Mortimer et al. 1971, Tesch et al. 1977, Clamann et al. 1979, De Luca et al. 1983].

Diese charakteristischen Veränderungen einer ermüdenden Muskelkontraktion mit dem allmählichen Anstieg der Amplituden bei Frequenzabfall stellten sich im Verlauf dieser auf Ausdauer innervierten Versuchsabschnitte ebenfalls ein; sie waren im Zeitrahmen der Erholungsphasen komplett reversibel. Die nach der Wärmeapplikation zusätzlich auftretenden Veränderungen können dadurch aber nicht erklärt werden.

Veränderungen der OEMG - Parameter nach Wärmeintervention

Bevor die Veränderungen des OEMG - Musters eindeutig auf die Wärmewirkung zurückgeführt werden können, müssen andere Einflußfaktoren wie Erholung oder Muskelermüdung ausgeschlossen werden.

Während der 20 - minütigen Dauer der Wärmeapplikation befindet sich der untersuchte Muskel in einer Erholungsphase; dieser hypomobile Zustand über die 20 Minuten der Applikation erscheint gleichzeitig als ausreichend langer Zeitraum für eine metabolische Regeneration [Edwards et al. 1972, Karlsson et al. 1975, Petrofsky et al. 1980a, Harris et al. 1981]. Trotzdem könnte sich diese Erholung in einer Alteration des EMG - Musters bemerkbar machen; dies erscheint mit dem gewählten Versuchsaufbau jedoch als wenig wahrscheinlich, da sich die Veränderungen, wenn sie tatsächlich ein Effekt des Erholungsstoffwechsels sein sollten, auch im Kontrollversuch gezeigt haben müßten. Lokale Muskelermüdung bewirkt im EMG - Muster eine Zunahme im Gegensatz zu einer Abnahme der RMS - Werte [Scherrer et al. 1959, Lippold et al. 1960, De Vries 1968, Lloyd 1971, Stephens et al. 1972, Vredenbregt 1973, Clamann et al. 1979, Maton 1981, De Luca 1984, Gerdle et al. 1988], außerdem umgekehrt eine Abnahme im Gegensatz zu einer Zunahme der turns [Kadefors et. al. 1968, Lindström et al. 1970, Lindström et al. 1977, Komi et al. 1979, Petrofsky et al. 1981a, Bigland- Ritchie et al. 1981, Gerdle et al. 1988]. Somit erscheint eine Begründung der in unserem Versuch gezeigten Veränderungen der OEMG - Parameter durch Muskelermüdung als wenig plausibel, zudem sich auch hier ein ähnlicher Effekt in den Kontrollversuchen gezeigt haben müßte.

Die RMS als OEMG - Parameter der mittleren Spannungsdifferenz veränderten sich nach Wärmeapplikation dahingehend, daß die Werte nach Intervention niedriger waren. Der Kontrollversuch zeigte dieses Verhalten nicht, allerdings konnte eine statistische Signifikanz der Unterschiede im Versuch nur für die letzten drei Meßpunkte erreicht werden.

Die gleiche Erniedrigung der RMS nach Wärmeintervention konnte dabei in einer Vorarbeit zu dieser Studie statistisch hochsignifikant (p < 0,001) nachgewiesen werden [Guggemoos 1995]. Andere Studien zu diesem Thema haben jedoch einen fehlenden Wärmeeffekt auf die Amplitude gezeigt [Holewijn 1992, Krause 2000, Fischer 2002]. Eine auftretende Erniedrigung der Amplitudenwerte kann in diesem Zusammenhang als herabgesetzter Muskeltonus gewertet werden [Magyarosy et al. 1992].

Die Werte des Parameters turns lagen nach Wärmeintervention bei insgesamt ähnlichem Kurvenverlauf über denen des Standards. Dieser höhere Ausgangswert mit zeitlich verzögertem Abfall läßt sich zumindest zum Teil durch eine unter Wärme verbesserte Muskelperfusion und somit schnellere Elimination der entstehenden sauren Metabolite erklären [Edwards et al. 1972]; die erhöhte Erregungsleitungsgeschwindigkeit, die dabei aus dem pH - Anstieg resultiert, bedingt dann in einem linearen Zusammenhang den Anstieg der Entladungsfrequenz [Orchardson 1978, Sadoyama et al. 1981, De Luca et al. 1983].

Auch andere Arbeiten, die ebenfalls Effekte von Wärmeapplikation auf die Parameter im Oberflächen - EMG untersucht haben, zeigten eine Erhöhung der turns durch die Intervention [Krause et al. 2000, Fischer 2002].

4.2.2 Veränderungen der Ausdauerzeiten

Ermüdung bedeutet, daß im Verlauf einer anhaltenden Kontraktion für die Aufrechterhaltung einer konstanten Kraftstufe ein individueller Endpunkt existiert. In diesem Zusammenhang unterscheidet man einen zentralen von einem peripheren Ermüdungsprozeß, die einzeln oder in Kombination auftreten können [Asmussen 1979, Giroux et al. 1990]. Die maximale Ausdauerzeit ist dabei neben individuellen Eigenschaften von unterschiedlichen Größen abhängig.

Den wichtigsten limitierenden Faktor stellt die Höhe der Kontraktionskraft dar. Eine isometrische Muskelanspannung kann bei 8% der Maximalkraft ungefähr eine Stunde lang gehalten werden [Hagberg 1981]. Im Gegensatz dazu dauert eine Kontraktion bei 50% der Maximalkraft im Durchschnitt 90 Sekunden an [Häkkinen et al. 1986]. Eine Kontraktion bei Maximalkraft führt zu einem mittleren Abfall der Kontraktionsstärke von annähernd 65% der Maximalkraft über den Zeitabschnitt einer Minute [Arendt - Nielsen et al. 1988].

Ursächlich hierfür scheint zunächst die Minderperfusion des Muskels zu sein, die sich bei Übersteigen des Kapillardruckes durch den intramuskulären Druck einstellt [Bonde - Petersen et al. 1975]. Die daraus resultierende relative Ischämie bedingt eine beschleunigte Akkumulation saurer Stoffwechselmetabolite; dieser pH - Abfall geht jedoch mit einer Kontraktionsschwäche einher [Petrides et al. 1997].

Eine zusätzliche Begründung der schnelleren Ermüdung bei hohen Kontraktionsstufen findet sich in der Rekrutierung unterschiedlicher Muskelfasertypen: Niedrige Kraftstufen (0 - 30% MVC) werden vorwiegend durch niederfrequente motorische Einheiten ausgeführt, die vor allem Typ I - Fasern ("slow twitch") enthalten; bei hoher Kontraktionskraft (30 - 100%) werden zunehmend hochfrequente motorische

Einheiten mit Typ II - Fasern ("fast twitch") eingesetzt [Monster 1979, Freund 1983, Young 1984, Linssen 1991]. Letztere ermüden aber aufgrund der aus dem Enzymmuster resultierenden vorwiegend anaeroben ATP - Synthese signifikant schneller [Gollnick et al. 1973, Maton 1981, Petrides et al. 1997].

Zusätzlich spielt die Temperatur hinsichtlich der Ausdauer eine wichtige Rolle. Das Optimum der Muskeltemperatur, bei dem die Kontraktion bei konstanter Kraft am längsten aufrechterhalten werden kann, liegt bei 27° C [Clarke et al. 1958]. Ein Anstieg der Temperatur über dieses Optimum führt zu einer Verkürzung der Kontraktionszeit [Clarke et al. 1958, Edwards et al. 1972, Asmussen et al. 1989], da es hier durch die Beschleunigung des Metabolismus zu einer schnelleren Akkumulation saurer Stoffwechselmetabolite kommt.

Vorversuche hatten die Durchführung dieser Versuchsreihe hinsichtlich der Ausdauerzeiten sowie der Analysierbarkeit bei 30% Maximalkraft als sinnvoll erwiesen. Nach der Erfassung der Ausdauerzeit unter Standardbedingungen sollte diese nach Wärmeapplikation erneut gemessen werden, um einen hypothetischen wärmebedingten Unterschied erfassen zu können.

Im Unterschied zu den oben genannten Studienergebnissen konnte jedoch keine wärmebedingte Veränderung der Gesamtausdauer evaluiert werden; die Ausdauerzeiten zeigten absolut sowie in der statistischen Signifikanzprüfung keinen Unterschied. Eine Erklärung hierfür kann trotz ausführlicher Literaturrecherche zum gegenwärtigen Zeitpunkt nicht gegeben werden, eine insuffiziente Erwärmung des Muskels erscheint durch die Temperaturmessung während des Versuches sowie die Auswirkung der Wärmeintervention auf die Parameter des Oberflächen - EMG als nahezu ausgeschlossen. Jedoch kann die Konstanz der Ausdauerzeiten auch in den Wiederholungsversuchen als Beweis ausreichend lang gewählter Erholungspausen gewertet werden.

4.2.3 Schlußfolgerung

Eine Auswirkung der Wärmeintervention auf die Ausdauerzeiten einer auf der Kraftstufe von 30% der Maximalkraft konstanten, isometrischen Kontraktion konnte mit diesem Versuchsaufbau nicht nachgewiesen werden. Vielmehr ergaben sowohl die Auswertung der Absolutzeiten als auch die Überprüfung auf statistische Signifikanz keine Unterschiede der Ausdauer unter Standardbedingungen, nach Wärmeintervention sowie in deren Kontrollmessung.

Die Parameter der elektromyographischen Ableitung jedoch zeigten eine Veränderung dahingehend, daß die RMS als Amplitudenparameter nach Wärmeintervention tiefere Werte aufwiesen, die turns als Maßzahl der Frequenz nach Intervention über der Standardkurve verliefen. Mit dem nun folgenden Erklärungsmodell soll versucht werden, eine plausible Interpretation dieser veränderten Oberflächenparameter zu erreichen.

Die Anpassung der Muskelarbeit an eine bestimmte Stufe der Muskelkraft erfolgt erstens über eine veränderte Aktivierung motorischer Einheiten sowie eine veränderte Größe der rekrutierten Einheiten, zweitens durch eine alterierte Feuerungsrate der Motoneurone.

Die Kontraktionskraft einer motorischen Einheit entspricht dabei der Summe der Kontraktionen ihrer zugehörigen Muskelfasern, die Kontraktionskraft des Gesamtmuskels in mathematischer Analogie der Summe der Kontraktionen der einzelnen motorischen Einheiten [Pieper 1997].

Bei niedrigen Kontraktionsstufen spielt die Rekrutierung eine entscheidende Rolle; mit zunehmender Kraftanforderung werden sukzessiv mehr motorische Einheiten bis zur Gesamtauslastung aktiviert [Freund et al. 1975, Freund 1983]. Die Abstufung der Kraft wird dabei umso besser, je kleiner die motorischen Einheiten sind [Freund et al. 1975].

Zunächst werden kleine motorische Einheiten mit niedriger Amplitude rekrutiert, erst bei steigender Kontraktionskraft zunehmend auch größere motorische Einheiten. Die elektrische Aktivität, gemessen in der Amplitude der EMG Auswertung, steigt dabei linear mit der steigenden Kraft [Moritani et al. 1987].

Parallel zu diesen veränderten Rekrutierungsmustern geschieht die Adaptation an die geforderte Muskelkraft mittels einer veränderten Feuerungsfrequenz der Motoneurone, und zwar vor allem dann, wenn eine Kraftsteigerung durch Zuschaltung weiterer motorischer Einheiten, die in ihrer Anzahl innerhalb eines Muskels anatomisch limitiert sind, nicht mehr möglich ist [Kernell et al. 1975, Grimby et al. 1981]. Die Entladungsfrequenz der einzelnen motorischen Einheit steigert sich dabei von 5 - 10 Entladungen/ sec in Ruhe über 25 - 35 Entladungen/ sec bei mittlerer Kontraktionskraft auf bis zu 50 Entladungen/ sec bei maximaler Kontraktionskraft.

Beide Mechanismen zusammen also, eine veränderte Rekrutierung der motorischen Einheiten sowie gleichzeitig eine veränderte Feuerungsrate der Motoneurone, bedingen im aktiv innervierten Muskel eine Anpassung an die jeweilige Muskelkraft.

Gerade diese geforderte Muskelkraft war im dargestellten Versuchsaufbau bei 30% der Maximalkraft als Konstante gegeben. Insofern war dadurch zu erklären, mit welchen veränderten Mechanismen der Muskel nach Wärmeapplikation diese gleiche Kraftstufe erreicht; die veränderte gesamtelektrische Aktivität wurde dabei durch die Ableitung des Oberflächen - EMG reproduzierbar erfaßt [Wacholder 1928, Göpfert 1963, Hopf 1973, Ludin 1974, Noth et al. 1999].

Die Amplitude in der Erfassung als RMS charakterisiert dabei vor allem die Anzahl der aktiven motorischen Einheiten und deren Summe an Muskelfasern [Bigland - Ritchie et al. 1954, Milner - Brown et al. 1975]. Die turns als Parameter der Frequenz repräsentieren die Anzahl, Feuerungsrate und Aktionspotentialdauer der motorischen Einheiten [Lindström et al. 1970, Person et al. 1970].

Es kann also in Ableitung aus den Ergebnissen dieser Arbeit postuliert werden, daß nach Wärmeapplikation dieselbe Kraftstufe bei verminderten RMS als Ausdruck weniger und kleinerer rekrutierter motorischer Einheiten bei erhöhten turns im Sinne einer erhöhten Entladungsfrequenz der Motoneurone erreicht wird.

Abschließend muß jedoch darauf hingewiesen werden, daß die Beobachtungen sich dabei primär auf die Veränderungen der Versuchsparameter stützen und ein in vivo verändertes Kontraktionsverhalten sowie ein klinischer Effekt sich nur bedingt daraus ableiten lassen. Jedoch konnte nachgewiesen werden, daß Wärmeapplikation eine veränderte gesamtelektrische Aktivität des Muskels induziert und somit zumindest an einem muskuloskeletal gesunden Probandenkollektiv eine objektiv nachweisbare Wirkung gefunden werden kann.

5 Zusammenfassung

Hintergrund

Die Indikation zur Anwendung thermotherapeutischer Verfahren in der physikalmedizinischen Behandlung muskuloskeletaler Erkrankungen beruht bislang vor allem auf klinisch empirischen Grundlagen einer vom Patienten empfundenen Muskelrelaxation und Analgesie.

In der vorliegenden Arbeit wurde in einer oberflächenmyographischen Erfassung der Frequenzen (turns) sowie der Amplitude (RMS) der Gesamtmuskelaktivität versucht, den klinischen Effekt von Wärmepackungen auf das Kontraktionsverhalten des Skelettmuskels zu objektivieren. Die Untersuchung erfolgte dabei nicht im Ruhezustand, sondern in einer bei 30% der Maximalkraft auf maximale Ausdauer innervierten isometrischen Kontraktion des M. extensor carpi radialis.

Unter standarisierter Positionierung in einem Versuchsstuhl wurde dabei unter Zuhilfenahme eines neu entwickelten Handdynamometers die Kraftkonstanz kontrolliert.

Versuchsaufbau

An 30 Probanden (19 Frauen, 11 Männer; Durchschnittsalter 27,5 Jahre) wurden in einer initialen Messung unter Standardbedingungen RMS und turns in 4 - Sekunden -Intervallen erfaßt und diese nach Wärmeapplikation über 15 Minuten wiederholt. Beim Kontrollversuch wurde ein identischer Versuchsablauf eingehalten, wobei hier wie auch bei der Standardmessung an Stelle der Intervention temperaturneutrale Packungen aufgelegt wurden. Das Versuchskollektiv war mit dem der Kontrolle absolut identisch. Neben den Veränderungen der OEMG - Parameter turns und RMS wurden durch die Wärmeapplikation hypothetische Veränderungen der Gesamtausdauer einer statistischen Auswertung zugeführt.

Ergebnisse

Die Wärmeintervention führte hinsichtlich der mittleren Amplitude, gemessen im OEMG - Parameter RMS, zu einem Absinken der Meßwerte unter die Standardkurve, wobei bei einem im Verlauf größer werdenden Abstand beider Kurven eine statistische Signifikanz der Meßwerte erst gegen Ende des Versuches zu verifizieren war.

Der Frequenzparameter turns zeigte bei der Kontrollmessung für beide Kurven nahezu identische Meßwerte; nach der Wärmeintervention lagen die turns initial signifikant über der Standardkurve, näherten sich im Verlauf aber wieder an diese an.

Hinsichtlich der erreichten Ausdauerzeiten in Standardmessung, nach Wämeintervention und in deren Kontrollversuch ergaben sich auch nach Prüfung auf statistische Signifikanz keine Unterschiede.

Folgerung

Wärmeapplikation bewirkt also einen Unterschied nicht in der Ausdauer, sondern in der gesamtelektrischen Aktivität eines Skelettmuskels während der Kontraktion; dieser Unterschied begründet sich in unterschiedlichen Aspekten. Zunächst beeinflußt Wärme die Nervenleitgeschwindigkeit sowie die Feuerrate der Motoneurone, die ihrerseits wieder mit der Frequenz in Zusammenhang stehen; die turns als Frequenzparameter zeigten in diesem Versuchsaufbau nach Wärmeapplikation gegenüber dem Standard erhöhte Werte. Zum anderen moduliert Wärmeintervention aber auch die Rekrutierung der unterschiedlichen motorischen Einheiten; die Werte für RMS - als Oberflächenparameter repräsentativ für die mittlere Spannungsdifferenz - zeigten sich nach Wärmeapplikation erniedrigt.

Hinsichtlich der grundlegenden Fragestellung zu dieser Arbeit läßt sich also aus den Ergebnissen ableiten, daß im Vergleich zu Normalbedingungen nach Wärmeapplikation unter Ausdauerbedingungen die gleiche Kraft durch eine erhöhte Entladungsfrequenz bei Rekrutierung weniger und kleinerer motorischer Einheiten erreicht wird; somit konnte in einem gewissen Umfang die Wirkung thermotherapeutischer Anwendung durch Oberflächenmyographie objektiviert werden.

6 Literaturverzeichnis

- Ahlborg, B.; Bergstrom, J.; Ekelund, L.G.; Guarnieri, G.; Harris, R.C. Muscle metabolism during isometric exercise performed at constant force Journal of Applied Physiology, 1972. 33: S. 224-228.
- Arena, J.G.; Shermann, R.A.; Young, T.R. Temporal stability of paraspinal electromyographic recordings in low back pain and non - pain subjects Journal of Psychophysiology, 1990. 9: S. 31-37.
- Arendt Nielsen, L.; Forster, A.; Mills, K.R. The relationship between muscle fiber conduction velocity and force in human vastus lateralis Journal of Physiology, 1984. 6: S. 353-355.
- Arendt Nielsen, L.; Gantchev, L.; Sinkjaer, T. The influence of muscle length on muscle fibre conduction velocity and development of muscle fatigue Electroencephalography and Clinical Neurophysiology, 1992. 85: S.166-172.
- 5. Arendt Nielsen, L.; Mills, K.R.

Muscle fiber conduction velocity, mean power frequency, mean EMG voltage and force during submaximal fatiguing contractions of human quadriceps Electroencephalography and Clinical Neurophysiology, 1988. 60: S. 130-134.

6. Asmussen, E.

Muscle fatigue Journal of Medical Science and Sport Exercise, 1979. 11: S. 313-321.

7. Asmussen, G.; Gaunitz, U.

Temperature effects on isometric contractions of slow and fast twitch muscles of various rodents - dependence on fibre type composition: A comparative study Acta Biomedica et Biochimica, 1989. 48: S. 536-541.

8. Bayer, H.; Flechtenmacher, C.

Ermüdung und Aktionsstromspannung bei der isometrischen Muskelkontraktion des Menschen

Arbeitsphysiologie, 1950. 14: S. 261-270.

9. Bazzy, A.R.; Korten, J.B.; Haddad, G.G.

Increase in electromyogram low frequency power in nonfatigued contracting sceletal muscle Journal of Applied Physiology, 1986. 61(3): S. 1012-1017.

- 10. Berghold, F. Thermotherapie im Sport Der Praktische Arzt, 1988. 573: S. 75-95.
- 11. Bigland, B.; Lippold, O.C.

Relationship between force, velocity and integrated electrical activity in human muscle

Journal of Physiology, 1954. 123: S. 214-224.

12. Bigland - Ritchie, B.R.

Changes in muscle activation during prolonged maximum voluntary contractions Journal of Physiology, 1954. 292: S. 14-15.

- 13. Bigland Ritchie, B.R.; Donovan, E.F.; Roussos, C.S. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts Journal of Applied Physiology, 1981. 51: S. 1286-1305.
- 14. Bonde Peterson, F.; Mork, A.L.; Nielsen, E. Local muscle blood flow and sustained contractions of human arm and back muscle European Journal of Applied Physiology, 1975. 34: S. 43-50.
- 15. Bouisset. S.

EMG and muscular force in normal motor activities in: New developments in EMG and Clinical Neurophysiology. Desmedt, J.E. (Hrsg.) 1973, Karger Verlag, Basel. S. 547-583.

16. Boukes, R.J.

Force and surface EMG measurements in patients with neuromuscular disorders Habilitationsschrift der Freien Universität Amsterdam 1982. Amsterdam. 75 Seiten.

- 17. Broman, H.; Bilotto, G.; De Luca, C.J. Myoelectric signal conduction velocity and spectral parameters: influence of force and time Journal of Applied Physiology, 1985. 58: S. 1428-1437.
- 18. Buchthal, F.; Guld, C.; Rosenfalck, P. Multielectrode study of the territory of a motor unit Acta Physiologica Scandinavica, 1957. 39: S. 83-105.
- 19. Chaffin, D.B.; Lee, M; Freivalds, A. Muscle strength assessment from EMG analysis Journal of Medical Science and Sport Exercise, 1980. 12: S. 205-211.

- Clamann, H.P.; Broecker, M.S. Relationship between force and fatigability of red and pale skeletal muscles in man American Journal of Physical Medicine, 1979. 58: S. 70-85.
- 21. *Clarke, S.; Hellon, R.; Lind, A.* The duration of sustained contractions of the human forearm at different muscle temperatures

Journal of Physiology, 1958. 143: S. 454-473.

- De Luca, C.J.
 Physiology and mathematics of myoelectric signals
 Journal of Biomedicine of England, 1979. 26: S. 313-325.
- De Luca, C.J. Myoelectric manifestations of localized muscle fatigue CRC Critical Review of Biomedicine of England, 1984. 11: S. 251-279.
- 24. *De Luca*, *C.J.*

Some properties of the median frequency of the myoelectric signal during localized muscle fatigue in: Biochemistry of Exercise. Knuttgen, H.K.;Vogel, J.A.; Poortmans, J. (Hrsg.) 1983. S. 175-186.

- De Vries, H.A. Method of evaluation of muscle fatigue and endurance from electromyographic fatigue curve American Journal of Physical Medicine, 1968. 47: S. 125-135.
- Doud, J.R.; Walsh, J.M. Muscle fatigue and muscle length interaction: effect on the EMG frequency component Electroencephalography and Clinical Neurophysiology, 1995. 35: S. 331-339.
- Drexel, H. Materialien f
 ür Hei
 ßpackungen - spezifische Wirkungen der Inhaltsstoffe Zeitschrift f
 ür Physiotherapie, 1976. 11: S. 629-632.
- Drexel, H. Kryo- und Thermotherapie in der orthopädischen Behandlung Der Orthopäde, 1978. 7: S. 266-273.
- 29. Ebenbichler, G.; Zauner Dungl, A.; Resch, K.L.; Uher, E.M. Standardisation of a modified surface EMG method Muscle and Nerve, 1994. 17: S. 691.

- Ebert, D.; Asmussen, G.
 Die Rolle der motorischen Einheiten bei der Steuerung von muskulären Aktionen Zentralblatt für Physiotherapie, 1986. 38: S. 287-304.
- Edwards, R.G.; Lippold, O.C. The relation between force and integrated electrical activity in fatigued muscle Journal of Physiology, 1956. 132: S. 677-681.
- Edwards, R.H.T.; Harris, R.C.; Hultman, E.; Kaizser, L.; Koh, D. Effect of temperature on muscle energy metabolism and endurance during successive isometric contractions sustained to fatigue of the quadriceps muscle in man Journal of Physiology, 1972. 220: S. 335-352.
- Edwards, R.H.T.; Hill, D.K.; Jones, D.A.; Merton, P.A. Fatigue of long duration in human skeletal muscle after exercise Journal of Physiology of London, 1979. 272: S. 769-778.

34. Fischer, T.

Oberflächen - EMG - Untersuchungen zum Kontraktionsverhalten der Skelettmuskulatur unter lokaler Wärmeanwendung Promotionsschrift aus dem Institut für Medizinische Balneologie und Klimatologie der Ludwig - Maximilians - Universität München 2002, München. 115 Seiten.

35. Frauendorf, H.

Einfluß von lokaler Erwärmung auf die elektrische und thermische Leitfähigkeit der Haut und das Oberflächen - EMG European Journal of Applied Physiology, 1974. 33: S. 339-346.

36. Freund, H.J.

Motor unit activity and muscle activity in voluntary motor control Physiological reviews, 1983. 63d: S. 387-436.

- Freund, H.J.; Budingen, H.J.; Dietz, V. Activity of single motor units from human forearm muscles during voluntary isometric contractions Journal of Physiology of London, 1975. 38: S. 933-946.
- Gerdle, B.; Eriksson, N.E.; Brundin, L. The behaviour of mean power frequency of the surface electromyogram in biceps brachii with increasing force and during fatigue: with special regard to electrode distance Electromyography and Clinical Neurophysiology, 1990. 30: S. 483-489.

- Gerdle, B.; Eriksson, N.E.; Brundin, L.; Edström, M. Surface EMG recordings during maximum static shoulder forward flexion in different positions European Journal of Applied Physiology, 1988. 57: S. 173-177.
- 40. Giroux, C.; Maton, B.

Surface EMG and motor unit activity of partially denervated human muscle during fatiguing submaximal isometric contraction Electromyography and Clinical Neurophysiology, 1990. 30: S. 282-291.

- Gollnick, P.D.; Hermansen, L. Biochemical adaptions to exercise: Anaerobic metabolism in: Exercise and sport reviews. Wilmore, J.H. (Hrsg.) 1973, Academic Press, New York. S. 383-408.
- 42. Göpfert, H.

Physiologische Grundlagen der Elektromyographie Verhandlungsbericht des 68. Kongresses der Deutschen Gesellschaft für Balneologie, Bioklimatologie und physikalische Medizin Archiv für Physikalische Therapie, 1963. 6: S. 365-409.

43. Greger, R.

Membranpotential in: Lehrbuch der Physiologie. Klinke, R.; Silbernagel, T. (Hrsg.) 1997, Thieme Verlag, Stuttgart, New York. S. 48-57.

44. Grimby, L.; Hannerz, J.

Flexibility of recruitment order of continously and intermittently discharging motor units in voluntary contraction in: Progressions in Clinical Neurophysiology. Desmedt, J.E. (Hrsg.) 1981, Karger Verlag, Basel. S. 201-211.

45. Guggemos, W.

Elektromyographische Untersuchungen zur Wirkung von Moorpackungen auf das Kontraktionsverhalten der Skelettmuskulatur Promotionsschrift aus dem Institut für Medizinische Balneologie und Klimatologie der Ludwig - Maximilians - Universität München 1995, München. 102 Seiten.

```
46. Hagberg, C.; Hagberg, M.
```

Surface EMG amplitude and frequency dependence on exerted force for the upper trapezius muscle: a comparison between right and left sides European Journal of Applied Physiology, 1989. 58: S. 641-645.

47. Hagberg, M.

Muscle endurance and surface electromyogram in isometric and dynamic exercise Journal of Applied Physiology, 1981. 51: S. 1-7.

48. Häkkinen, K.; Komi, P.V.

Effects of fatigue and recovery on electromyographic and isometric force and relaxation time characteristics of human skelet muscle European Journal of Applied Physiology, 1986. 55: S. 588-596.

- 49. *Hara, T.* Evaluation of recovery from local muscle fatigue by voluntary test contractions Journal of Human Ergology, 1980. 9: S. 35-46.
- 50. *Harris, R.C.; Hultman, E.; Sahlin, K.* Glycolytic intermediates in human muscle after isometric contraction Pflüglers Archiv, 1981. 389: S. 277-282.
- 51. *Hermansen, L.; Osnes, J.B.* Blood and muscle pH after maximal exercise in man Journal of Applied Physiology, 1972. 32: S. 304-308.
- 52. *Holewijn, M.; Heus, R.* Effects of temperature on electromyogram and muscle function European Journal of Applied Physiology, 1992. 65: S. 541-545.
- Höll, K. Peloidanalyse der Wärmepackung 1995, Salzburg. Laborunion Prof. Höll.
- 54. Hollmann, W.; Hettinger, T. Arbeits - und Trainingsgrundlagen in: Sportmedizin. Hollmann, W. (Hrsg.) 1990, Schattauer Verlag, Stuttgart. S.48-76.
- 55. Hopf, H.C.; Struppler, A.Elektromyographie.1974, Thieme Verlag, Stuttgart. 347 Seiten.
- Kadefors, R.; Kaiser, E.; Petersen, I. Dynamic spectrum analysis of myopotentials with special reference to muscle fatigue Electromyography, 1968. 8: S. 39-79.

57. Kakuda, N.; Miwa, T.; Nagaoka, M.

Coupling between single muscle spindle afferent and EMG in human wrist extensor muscles: physiological evidence of skeletofusimotor (β) innervation Electroencephalography and Clinical Neurophysiology, 1998. 109: S. 360-363.

- 58. *Karlsson, J.; Funderburk, C.; Essen, B.; Lind, A.R.* Constituents of human muscle in isometric fatigue Journal of Applied Physiology, 1975. 38: S. 208-211.
- 59. *Kernell, D.; Shoholm, H.* Recruitment and firing rate modulation of motor unit tension in a small muscle of the cat's foot Brain Research, 1975. 98: S. 57-72.
- Kleinschmidt, J.; Schnizer, W. Experimentielle Untersuchungen zu thermischen Vorgängen bei der Anwendung von Heißpackungen Zentralblatt für Physikalische Medizin, Balneologie und Medizinische Klimatologie, 1963. 14: S. 365-373.
- Kleinschmidt, J.G.; Kleinschmidt, J.T. Wärmetherapie mit Peloiden Zentralblatt für Physikalische Medizin, Balneologie und Medizinische Klimatologie, 1985. 14: S. 365-373.
- 62. Klinke, R.
 Erregungsübertragung in Zellverbänden
 in: Lehrbuch der Physiologie. Klinke, R.; Silbernagel, T. (Hrsg.)
 1997, Thieme Verlag, Stuttgart, New York. S. 60-77.

63. Koh, T.J.; Grabiner, M.D.

Evaluation of methods to minimize cross talk in surface EMG Biomechanics, 1993. 26: S. 151-157.

- Komi, P.V.; Buskirk, E.R. Reproducibility of electromyographic measurements with inserted needle electrodes and surface electrodes Journal of Electromyography and Clinical Neurophysiology, 1970. 10: S. 357-367.
- Komi, P.V.; Tesch, P. EMG frequency spectrum, muscle structure and fatigue during dynamic contractions in man European Journal of Applied Physiology, 1979. 42: S. 357-367.

- 66. *Kovac, C.; Krapf, M.; Ettlin, T.; Menner, P.; Stratz, T.; Müller, W.* Nachweismethoden von Tonusveränderungen der Muskulatur Zentralblatt für Rheumatologie, 1994. 53: S. 26-36.
- 67. Kramer, H.; Bräuner, D.; Küchler, G.
 Über die Zuverlässigkeit verschiedener elektromyographischer Messungen mittels Oberflächenelektroden Acta Biologica et Medica Germanica, 1972c. 29: S. 381-388.
- 68. Kramer, H.; Küchler, G.; Frauendorf, H. Die Beeinflussung des mittels Oberflächenelektroden abgeleiteten Elektromyogramms durch ableittechnische Variablen I: Zum Einfluß der Elektrodenlokalisation auf die von Extremitätenmuskeln ableitbare Muskelaktivität Acta Biologica Medica Germanica, 1972a. 28: S. 481-488.
- Kramer, H.; Küchler, G.; Frauendorf, H. Die Beeinflussung des mittels Oberflächenelektroden abgeleiteten Elektromyogramms durch ableittechnische Variablen II: Zum Einfluß von Abstand, Flächengröße und Andruck der Elektroden auf die ableitbare elektrische Muskelaktivität Acta Biologica et Medica Germanica, 1972b. 28: S. 489-496.
- 70. *Krause, K.H.; Magyarosy, I.; Gall, H.; Ernst, E.; Pongratz, D.; Schoeps, P.* Effects of heat and cold application on turns and amplitude in surface EMG Journal of Electromyography and Clinical Neurophysiology, 2000. 41: S. 1-4.
- Krogh Lund, C.; Jorgensen, K. Changes in conduction velocity, median frequency and root mean square amplitude of the electromyogram during 25% maximal voluntary contraction of trizeps brachii muscle to limit of endurance European Journal of Applied Physiology, 1991. 63: S. 60-69.
- 72. Küchler, G.

Muskulatur in: Lehrbuch der Physiologie. Rüdiger, W. (Hrsg.) 1988, Hüthnig Verlag, Heidelberg. S. 78-199.

73. Laiacker, H.

Temperaturmessungen im Gewebe nach wärmetherapeutischer Anwendung bei Schweinen Promotionsschrift aus dem Physiologischen Institut der Ludwig - Maximilians -Universität München 1983, München. 127 Seiten.

- Lawrence, L.H; De Luca, C.J. Myoelectric signal versus force relationship in different human muscles Journal of Applied Physiology, 1983. 54: S. 1653-1659.
- 75. Li, W.; Sakamoto, K.

The influence of location of electrode on muscle fiber conduction velocity and EMG power spectrum during voluntary isometric contraction measured with surface array electrodes Journal of Applied Human Science, 1996. 15(1): S. 25-32.

- Lind, A.R.; Petrofsky, J.S. Amplitude of the surface electromyograms during fatiguing isometric contractions Muscle and Nerve, 1979. 2: S. 257-264.
- 177. Lindström, L.; De Luca, C.J.; Petersen, I. Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals Electromyography, 1970. 10: S. 341-356.
- Lindström, L.; Kadefors, R.; Petersen, I. An elctromyographic index for localized muscle fatigue Journal of Applied Physiology, 1977. 43: S. 750-754.
- 79. Link, H.

Einflüsse körperlicher Belastung und Ermüdung auf Elektroencephalogramm, Elektromyogramm und Nervenleitgeschwindigkeit Promotionsschrift aus der Neurologischen Klinik und Poliklinik der Eberhard -Karl - Universität Tübingen 1977, Tübingen. 94 Seiten.

80. Linssen, H.J.P.

Fatigue in type I fiber predominance: A muscle force and surface EMG study on the relative role of type I and type II muscle fibers Muscle and Nerve, 1991. 14: S. 829-837.

- Linssen, W. ; Stegemann, D. ; Joosten, E.; Blinkhorst, M. Variability and interrelationships of surface EMG parameters during local muscle fatigue Muscle and Nerve, 1993. 16: S. 849-856.
- Lippold, O.C.; Redfearn, J.W.T.; Vuco, J. The rhythmical activity of groups of motor units in the voluntary contraction of muscle Journal of Physiology, 1957. 137: S. 473-487.

- 83. *Lippold, O.C.; Redfearn, J.W.T.; Vuco, J.* The electromyography of fatigue Ergonomics, 1960. 3: S. 492-499.
- 84. Lischke, C.

Untersuchungen zum Elektrodenabstand bei topographischen OEMG -Messungen im Bereich der Rückenmuskulatur Promotionsschrift aus dem Institut für Neurophysiologie der Universität Jena 1999, Jena. 89 Seiten.

- Lloyd, A.J. Surface electromyography during sustained isometric contractions Journal of Applied Physiology, 1971. 30: S. 713-719.
- Loscher, W.N.; Cresswell, A.G.; Thorstensson, A. Electromyographic responses of the human triceps surae and force tremor during sustained submaximal isometric plantar flexion Acta Physiologica Scandinavica, 1994. 152(1): S. 73-82.
- 87. Ludin, H.P.
 Das normale Elektromyogramm
 in: Elektromyographie. Hopf, H.C.; Struppler, A. (Hrsg.)
 1974, Thieme Verlag, Stuttgart, New York. S. 26-57.
- Magyarosy, I. Zur Wirkungsweise von Moorpackungen auf das Kontraktionsverhalten der Skelettmuskulatur Zeitschrift für Physikalische Medizin, Balneologie und Medizinische Klimatologie, 1990. 19: S. 242.
- Magyarosy, I.; Krause, K.H.; Resch, K.L.; Guggemos, W.; Utzschneider, I.; Gall, H.; Ernst, E.
 Surface EMG response to heat and cold application on back muscles: Implications for the therapy of low back pain European Journal of Physical Medicine and Rehabilitation, 1996. 6: S. 38-41.
- Magyarosy, I.; Resch, K.L.; Guggemos, W.; Krause, K.H. Effects of thermotherapy on the back muscle European Journal of Physical Medicine and Rehabilitation, 1992. 2: S. 16.
- Masuda, B.; Masuda, T.; Sadoyama, T.; Inaki, M.; Katsuta, S. Changes in surface EMG parameters during static and dynamic fatiguing contractions Journal of Electromyography and Kinesiology, 1999. 9(1): S. 39-46.

92. Maton, B.

Human motor unit activity during the onset of muscle fatigue in submaximal isometric contraction European Journal of Applied Physiology, 1981. 46: S. 271-281.

93. Mills, K.S.

Power spectral analysis of electromyogram and compounded muscle action potential during muscle fatigue and recovery Journal of Physiology, 1982. 362: S. 401-409.

- 94. *Milner Brown, H.S.; Stein, H.B.* The relation between the surface electromyogram and muscular force Journal of Physiology, 1975. 246: S. 549-569.
- 95. Monster, W. Firing rate behaviour of human motor units during isometric voluntary contraction: relation to unit size Brain Research, 1979. 171: S. 349-354.
- 96. Moritani, T.; Muro, M.

Motor unit activity and surface electromyogram power spectrum during increasing force of contraction European Journal of Applied Physiology, 1987. 56: S. 260-265.

- 97. *Moritani, T.; Muro, M.; Nagata, A.* Intramuscular and surface electroymyogram changes during muscle fatigue Journal of Applied Physiology, 1986. 60(4): S. 1179-1185.
- Mortimer, J.T.; Kerstein, M.D.; Magnusson, R.; Petersen, I. Muscle blood flow in human biceps as a function of developed muscle force Archives of Surgery, 1971. 103: S. 376-377.
- 99. Mortimer, J.T.; Magnusson, R.; Petersen, I. Conduction velocity in ischemic muscle: effect on EMG frequency spectrum American Journal of Physiology, 1970. 219(5): S. 1324-1329.
- 100. Noth, J.; Schwarz, M. Muskeltonus: Neurophysiologische Grundlagen und pathologische Abweichungen in: Klinische Neurophysiologie. Noth, J. (Hrsg.) 1999, Thieme Verlag; Stuttgart, New York. S. 69-80.

101. Olefsky, J.M.

Obesity in: Harrison's Principles of Internal Medicine. 1987, Mc Graw Hill. S. 424-480. 102. Orchardson, R.

The generation of nerve impulses in mammalian axons by changing the concentration of the normal constituents of extracellular fluid Journal of Physiology, 1978. 275: S. 177-183.

103. Parker, P.; Scott, R.

Statistics of the myoelectric signals from monopolar and bipolar electrodes Journal of Medical Biology of England, 1973. 9: S. 591-596.

- 104. Person, R.S.; Libkind, M.S. Simulation of electromyograms showing interference patterns Electroencephalography and Clinical Neurophysiology, 1970. 28: S. 625-632.
- 105. Petrides, G.E.; Löffler, G.

Muskelgewebe in: Physiologische Chemie. Löffler, G.; Petrides, G.E. (Hrsg.) 1997, Springer Verlag, Berlin, Heidelberg, New York, Tokyo. S. 486-525.

106. Petrofsky, J.S.

Frequency and Amplitude Analysis of the EMG during Exercise on the Bicycle Ergometer

European Journal of Applied Physiology, 1979. 41: S. 1-15.

- 107. Petrofsky, J.S.; Glaser, R.M.; Chandler, A.P. Evaluation of the amplitude and frequency components of the surface EMG as an index of muscle fatigue Ergonomics, 1982. 25: S. 213-223.
- 108. Petrofsky, J.S.; Lind, A.R.

The influence of temperature on the amplitude and frequency components of the EMG during brief and sustained isometric contractions European Journal of Applied Physiology, 1980a. 44: S. 189-200.

109. Petrofsky, J.S.; Lind, A.R.

Frequency analysis of the surface electromyogram during sustained isometric contractions European Journal of Applied Physiology, 1980b. 43: S. 173-182.

 Petrofsky, J.S.; Phillips, C.A.; Sawka, M.N.; Hanpeter, D.; Strafford, D. Blood flow and metabolism during isometric contractions in cat skeletal muscle Journal of Applied Physiology, 1981. 50: S. 493-496.

111. Pieper, U.

Muskulatur in: Lehrbuch der Physiologie. Klinke, R.; Silbernagel, T. (Hrsg.) 1997, Thieme Verlag, Stuttgart, New York. S. 80-103.
112. Rainoldi, A.

Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle Journal of Electromyography and Kinesiology, 1999. 9(2): S. 105-119.

- 113. Romaiguere, P.; Vedel, J.P.; Pagni, S.; Zenatti, A. Physiological properties of the motor units of the wrist extensor muscles in man Experimental Brain Research, 1989. 78(1): S. 51-61.
- 114. Roy, S.H.; De Luca, C.J.; Schneider, J. Effects of electrode location on myoelectric conduction velocity and median frequency estimates Journal of Applied Physiology, 1986. 61: S. 1510-1517.
- 115. Sadoyama, T.; Inaki, M; Katsuta, S. Changes in surface EMG parameters during static and dynamic fatiguing contractions Journal of Electromyography and Kinesiology, 1999. 9(1): S. 39-46.
- Sadoyama, T.; Masuda, T.; Miyano, H.
 Relationship between muscle fiber conduction velocity and frequency parameters of surface EMG during sustained contractions
 European Journal of Applied Physiology, 1981. 47: S. 239-246.
- Sadoyama, T.; Miyano, H.
 Frequency analysis of surface EMG to evaluation of muscle fatigue European Journal of Applied Physiology, 1981. 47: S. 239-246.
- 118. Sahlin, K.; Alvestrand, A.; Brandt, R.; Holtman, E. Intracellular pH and bicarbonate concentration in human muscles during recovery from exercise Journal of Applied Physiology, 1978. 45: S. 474-479.
- 119. Sahlin, K.; Harris, R.C.; Hultman, E. Creatine kinase equilibrium and lactate content compared with muscle pH in tissue samples obtained after isometric exercise Journal of Biochemistry, 1975. 152: S. 173-178.
- 120. Scherrer, J.; Bourguignon, A. Changes in the electromyogram produced by fatigue in man American Journal of Physical Medicine, 1959. 148: S. 170-180.
- 121. *Schmidt, K.L.* Experimentielle Ergebnisse zur Thermotherapie Therapiewoche, 1986. 36: S. 2120-2131.

122. Schmidt, K.L.

Grundlagen und Wirkung länger applizierter Kälte - und Wärmeanwendungen in der Therapie in: Kompendium der Balneologie und Kurortmedizin. Schmidt, K.L. (Hrsg.) 1989, Steinkopf Verlag, Darmstadt. S.112-131.

- 123. Schnizer, W.; Kleinschmidt, J.; Dirnagl, K.; Bloching, H. Physikalische Grundlagen zur Anwendung von Heißpackungen Physikalische Therapie, 1981. 2: S. 12-16.
- 124. *Stephens, J.A.; Taylor, A.* Fatigue of maintained voluntary muscle contraction in man Journal of Physiology of London, 1972. 250: S. 37-38.
- 125. Tesch, P.; Karlsson, J. Lactate in fast and slow twitch skeletal muscle fibres of man during isometric contractions Acta Physiologica Scandinavica, 1977. 99: S. 230-236.
- 126. Tesch, P.; Sjodin, B.; Thorstensson, A.; Karlsson, J. Muscle fatigue and its relation to Lactate accumulation and LDH activity in man Acta Physiologica Scandinavica, 1978. 103: S. 413-418.
- 127. Theeuwen, M.; Gielen, C.C.; Miller, L.E., Doorenbosch, C. The relation between the direction dependence of electromyographic amplitude and motor unit recruitment thresholds during isometric contractions Experimental Brain Research, 1994. 98(2): S. 488-500.
- 128. Turker, K.S. Electromyography: some methodological problems and issues Physical Therapy, 1993. 73(10): S. 698-710.
- 129. Vigreux, B.; Cnockaert, J.C.; Pertuzon, E. Factors influencing quantified surface EMGs Journal of Applied Physiology, 1979. 41: S. 119-129.
- 130. Viking Benutzerhandbuch, revidierte Ausgabe 03/89, S. 147
- 131. Vredenbregt, J.

Surface electromyography in relation to force, muscle length and endurance in: New Developments in EMG and Clinical Neurophysiology. Desmedt, J.E. (Hrsg.)

1973, Karger Verlag, Basel. S. 607-622.

132. Wacholder, K.

Bewegung insbesondere im Lichte elektrophysiologischer Untersuchungen Ergonomica Physiologica, 1928. 26: S. 568 -575.

133. Whitney, S.L.

Physical Agents: Heat and Cold Modalitities in: Physical Therapy. Scully, R.M.; Barnes, M.R. (Hrsg.) 1989, Lippincott, Philadelphia. S. 844-875.

134. Wiedemann, E.

Physikalische Therapie 1987, Walter de Gruyter Verlag, Berlin, New York. 322 Seiten.

135. Yoneda, M.

Recruitment threshold force and its changing type of motor units during voluntary contraction at various speeds in man Brain Research, 1986. 372: S. 89-94.

136. Young, A.

The relative isometric strength of type I and II muscle fibres in the human quadrizeps

Clinical Physiology, 1984. 4: S. 23-32.

137. Young, A.J.; Sawka, T.

Skeletal muscle metabolism during exercise is influenced by heat acclimation Journal of Applied Physiology, 1985. 59: S. 1929-1935.

138. Zedka, M.; Kumar, S; Narayan, Y.

Comparison of surface EMG signals between electrode types, interelectrode distances and electrode orientations in isometric exercise of the erector spinae muscle

Electroencephalography and Clinical Neurophysiology, 1997. 37(7): S. 439-447.

139. Zipp, P.

Temperaturabhängige Veränderungen des Oberflächen-EMG und EKG: Eine Untersuchung zum elektrischen Übertragungsverhalten der menschlichen Haut European Journal of Applied Physiology, 1977. 37: S. 275-288.

7 Anhang

7.1 Ergebnisse der einzelnen Probanden

7.1.1. OEMG - Parameter

Die Einzelergebnisse der Probanden werden aus Platzgründen erst hier im Anhang angefügt. Sie bildeten in ihrer Gesamtheit die Grundlage zu den unter 3 angegebenen Ergebnissen.

		S		W		WKo			
VP	t	RMS	turns	RMS	turns	RMS	turns		VP
1	1	363	211	302	222	215	204	Name:	B.F.
1	2	368	193	301	178	251	183		
1	3	264	192	244	167	208	171	Alter:	25
1	4	298	166	199	175	229	166		
1	5	293	154	171	174	240	162	Größe:	1,65m
1	6	267	167	214	162	227	156		
1	7	322	156	201	164	207	154	Gewicht:	55kg
1	8	326	144	157	154	209	148		
1	9	244	133	168	148	272	139	BMI:	20,2
1	10	330	129	193	134	251	136		
1	11	399	135	226	146	240	131	Geschlecht:	weiblich
2	1	182	194	173	204	228	197	Name:	B.W.
2	2	174	187	151	195	214	179		
2	3	168	178	119	186	181	172	Alter:	27
2	4	163	177	186	190	192	172		
2	5	180	175	172	173	190	170	Größe:	1,75m
2	6	166	173	215	163	194	173		
2	7	204	168	223	160	188	171	Gewicht:	63kg
2	8	177	174	226	139	226	157		
2	9	230	159	212	146	208	156	BMI:	20,59
2	10	203	161	222	140	234	154		
2	11	151	160	285	129	234	149	Geschlecht:	weiblich
3	1	363	211	302	222	215	204	Name:	T.G.
3	2	368	193	297	197	251	183		
3	3	264	192	242	168	208	171	Alter:	23
3	4	298	166	199	175	229	166		
3	5	295	159	171	174	240	162	Größe:	1,68m
3	6	269	166	212	164	227	156		
3	7	324	154	204	161	207	154	Gewicht:	58kg
3	8	324	145	154	157	209	148		
3	9	243	134	108	144	272	139	BMI:	20,54
3	10	334	129	194	133	251	136		
3	11	395	142	226	146	240	131	Geschlecht:	weiblich

		C		***		33/17			
TID		5 DMC		W		WK0			170
VP	t	RMS	turns	RMS	turns	RMS	turns		<u>VP</u>
4	1	242	206	158	218	198	236	Name:	C.L.
4	2	232	210	146	216	200	211	-	22
4	3	212	214	126	204	189	198	Alter:	23
4	4	196	211	116	209	1/6	194		1.00
4	5	195	205	146	212	180	195	Große:	1,80m
4	6	235	197	171	199	212	180		601
4	7	219	206	263	185	237	168	Gewicht:	69kg
4	8	204	207	180	190	210	182		21.2
4	9	198	204	175	176	193	161	BMI:	21,3
4	10	198	195	154	176	230	163		
4	11	221	206	141	180	214	159	Geschlecht:	weiblich
5	1	182	201	128	204	174	206	Name:	S.H.
5	2	176	177	142	192	204	179		
5	3	156	171	120	192	161	163	Alter:	25
5	4	155	167	115	189	120	152		
5	5	141	166	121	181	123	147	Größe:	1,93m
5	6	131	165	127	186	118	160		
5	7	140	140	116	180	121	149	Gewicht:	80kg
5	8	150	159	129	170	130	150		
5	9	150	169	110	174	114	158	BMI:	21,47
5	10	228	175	104	182	158	163		
5	11	228	167	129	186	147	170	Geschlecht:	männlich
6	1	254	271	224	254	271	231	Name:	U.L.
6	2	186	242	285	252	256	220		
6	3	155	236	296	215	240	205	Alter:	26
6	4	155	218	292	224	230	203		
6	5	213	227	305	216	254	197	Größe:	1,74m
6	6	244	200	251	211	260	178		
6	7	219	194	392	190	254	183	Gewicht:	55kg
6	8	250	184	360	191	307	190		e
6	9	238	190	355	187	340	199	BMI:	18.17
6	10	321	191	407	168	267	183		- , -
6	11	358	180	379	165	294	174	Geschlecht:	weiblich
7	1	121	197	111	179	291	233	Name:	A.G.
7	2	103	170	126	159	279	215		
7	3	93	166	120	158	230	208	Alter	23
7	4	97	169	141	158	274	187		
7	5	125	167	172	149	279	177	Größe [.]	1 68m
7	6	123	164	193	157	178	187		-,00111
7	7	138	165	196	147	180	200	Gewicht	69kg
7	, 8	146	150	231	140	241	18/	Se wient.	0716
7	9	185	160	231	132	210	163	BMI	24.45
7	10	238	1/10	217	132	155	172		2 r, TJ
7	11	230	1/19	200	1/5	102	172	Geschlacht	weiblich
/	11	200	1+0	514	140	104	1/0	Joesenneulle.	weithen

(Fortsetzung Proband 4 - 7)

(Fortsetzung Proband 8 - 11)

VPtRMSturnsRMSturnsRMSturnsVP81126159250220379246Name: <td< th=""><th></th><th></th><th>S</th><th></th><th>W</th><th></th><th>WKo</th><th></th><th></th></td<>			S		W		WKo		
8 1 126 159 250 220 379 246 Name: S.H. 8 2 213 208 202 187 355 216 8 3 210 178 205 175 437 188 Alter: 22 8 4 187 176 239 179 420 162 8 5 188 170 221 162 513 136 Größe: 1.66m 8 6 216 164 286 102 521 135 626 128 Gewicht: 63kg 8 9 289 165 341 144 625 129 68 11 232 162 377 135 625 127 Geschicht: weiblich 9 1 331 155 187 166 197 190 11 344 347 140 154 143 258 176	VP	t	RMS	turns	RMS	turns	RMS	turns	VP
8 2 213 208 202 187 355 216 8 3 210 178 205 175 437 188 Alter: 22 8 4 187 176 239 179 420 162	8	1	126	159	250	220	379	246	Name: S.H.
8 3 210 178 205 175 437 188 Alter: 2 8 4 187 176 239 179 420 162 8 5 188 170 221 162 513 136 Größe: 1,66m 8 6 216 164 286 102 521 135 8 7 288 178 229 149 569 128 Gewicht: 63kg 8 9 289 165 341 146 604 128 BMI: 22,87 8 10 268 159 419 144 625 127 Geschlech: welbich 9 1 331 185 202 180 237 208 Name: AH. 9 3 321 150 179 151 183 188 Alter: 23 9 4 347	8	2	213	208	202	187	355	216	
8 4 187 176 239 179 420 162 8 5 188 170 221 162 513 136 8 6 216 164 228 102 521 135 8 7 288 178 229 149 569 128 Gewicht: 63kg 8 9 289 165 341 146 604 128 MI: 22,87 8 10 268 159 419 144 625 129 8 11 232 162 377 135 625 127 Geschlecht: weiblich 9 1 331 156 187 166 197 190 151 183 188 Alter: 23 9 4 347 140 154 143 258 176 Größe: 1.80m 9 5 282 132 120	8	3	210	178	205	175	437	188	Alter: 22
8 5 188 170 221 162 513 136 Größe: 1,66m 8 6 216 164 286 102 521 135 8 7 288 178 229 149 569 128 8 9 289 165 341 146 604 128 8 10 268 159 419 144 625 129 8 11 232 162 377 135 625 127 Geschlecht: weiblich 9 2 394 156 187 166 197 190 9 3 321 150 179 151 183 188 Alter: 23 9 4 347 140 154 143 258 176 9 7 416 130 180 140 250 141 9 9 434 120	8	4	187	176	239	179	420	162	
8621616428610252113587288178229149569128Gewicht: 63kg8828816830916658312189289165341146604128BMI: 2,87810268159419144625127Geschlecht: weiblich91331185202180237208Name: A.H.9239415618716619719093321150179151183188Are::2394347140154143258176Größe: 1,80m95282132209141242162Größe: 1,80m96330136208133219151Gewicht: 75kg9842412326013524514299434120128143237138910433113112146231127911352116102147219126103252186116226215225103252186116226215225105233162103192255211106244	8	5	188	170	221	162	513	136	Größe: 1,66m
8 7 288 178 229 149 569 128 Gewicht: 63kg 8 9 289 165 309 166 583 121 8 9 289 165 341 146 604 128 BMI: 22,87 8 10 268 159 419 144 625 127 Geschlecht: weiblich 9 1 331 185 202 180 237 208 Name: A.H. 9 2 394 150 179 151 183 188 Alter: 23 9 4 347 140 154 143 258 176 33 166 133 129 151 183 188 Alter: 23 9 4 347 130 180 140 250 141 Geschelch: manitch 9 7 416 130 180	8	6	216	164	286	102	521	135	
8 8 288 168 309 166 583 121 8 9 289 165 341 146 604 128 BMI: 2,87 8 10 268 159 419 144 625 129 9 1 331 185 202 180 237 208 Name: A.H. 9 2 394 156 187 166 197 190 9 3 321 150 179 151 183 188 Atter: 23 9 4 347 140 154 143 258 176 9 5 282 132 209 141 242 162 Gewicht: 75kg 9 13 180 140 250 141 Gewicht: 75kg 9 10 433 113 112 146 231 227 138 B	8	7	288	178	229	149	569	128	Gewicht: 63kg
8 9 289 165 341 146 604 128 BMI: 22,87 8 10 268 159 419 144 625 129 8 11 232 162 377 135 625 127 Geschlecht: weiblich 9 1 331 185 202 180 237 208 Name: A.H. 9 2 3944 156 187 166 197 190 9 3 321 150 179 151 183 188 Alter: 23 9 4 347 140 154 143 226 162 Größe: 1.80m 9 5 282 132 209 141 242 162 Größe: 1.80m 9 8 424 123 260 135 245 142 Gewicht: 75kg 9 10 43	8	8	288	168	309	166	583	121	
8 10 268 159 419 144 625 129 8 11 232 162 377 135 625 127 Geschlecht: weiblich 9 1 331 185 202 180 237 208 Name: $A.H.$ 9 2 394 156 187 166 197 190 9 3 321 150 179 151 183 188 Alter: 23 9 4 347 140 154 143 258 176 Größe: 1,80m 9 6 330 136 208 133 219 151 Größe: 1,80m 9 7 416 130 180 140 250 141 Gewicht: 75kg 9 10 433 113 112 146 231 127 9 11 352 116 102 147 <	8	9	289	165	341	146	604	128	BMI: 22,87
8 11 232 162 377 135 625 127 Geschlecht: weiblich 9 1 331 185 202 180 237 208 Name: A.H. 9 2 394 156 187 166 197 190 9 3 321 150 179 151 183 188 Alter: 23 9 4 347 140 154 143 258 176 9 5 282 132 209 141 242 162 Größe: 1,80m 9 6 330 136 208 133 219 141 Gewicht: 75kg 9 8 424 123 260 135 245 142 142 9 10 433 113 112 146 231 127 Geschlecht: männlich 10 1 247 252 110	8	10	268	159	419	144	625	129	
9 1 331 185 202 180 237 208 Name: A.H. 9 2 394 156 187 166 197 190 9 3 321 150 179 151 183 188 Alter: 23 9 4 347 140 154 143 258 176 Größe: 1,80m 9 5 282 132 209 141 242 162 Größe: 1,80m 9 6 330 136 208 133 219 151 Gewicht: 75kg 9 7 416 130 180 140 250 141 Gewicht: 75kg 9 9 434 120 128 143 237 138 BMI: 23,15 9 10 433 113 112 146 231 127 9 11 352	8	11	232	162	377	135	625	127	Geschlecht: weiblich
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	1	331	185	202	180	237	208	Name: A.H.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	2	394	156	187	166	197	190	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	3	321	150	179	151	183	188	Alter: 23
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	4	347	140	154	143	258	176	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	5	282	132	209	141	242	162	Größe: 1,80m
97416130180140250141Gewicht:75kg9842412326013524514299434120128143237138BMI:23,15910433113112146231127911352116102147219126Geschlecht:männlich101247252100287237223Name:A.A.102279215105263230220141:4103252186116226215225Alter:49104255171105201227208668668105223162103192255211Größe:1,65m106224157105175230195105107249166101178200188Gewicht:65kg108248164122151330177BMI:23,881010368161163145316129Geschlecht:wiblich111210249133149264212Name:S.P.112246242178241159212114113281 <td< td=""><td>9</td><td>6</td><td>330</td><td>136</td><td>208</td><td>133</td><td>219</td><td>151</td><td></td></td<>	9	6	330	136	208	133	219	151	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	7	416	130	180	140	250	141	Gewicht: 75kg
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	8	424	123	260	135	245	142	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	9	434	120	128	143	237	138	BMI: 23,15
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	10	433	113	112	146	231	127	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	11	352	116	102	147	219	126	Geschlecht: männlich
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1	247	252	100	287	237	223	Name: A.A.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2	279	215	105	263	230	220	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	3	252	186	116	226	215	225	Alter: 49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	4	255	171	105	201	227	208	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	5	223	162	103	192	255	211	Größe: 1,65m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	6	224	157	105	175	230	195	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	7	249	166	101	178	200	188	Gewicht: 65kg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	8	248	168	117	160	319	181	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	9	356	164	122	151	330	177	BMI: 23,88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	10	368	170	123	152	358	173	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11	368	161	163	145	316	129	Geschlecht: weiblich
11 2 246 242 178 241 159 212 11 3 281 248 164 235 186 209 11 4 230 229 220 147 149 198 11 5 228 231 239 238 138 196 Größe: 1,73m 11 6 262 230 183 224 123 194 Größe: 1,73m 11 7 109 202 238 239 184 208 Gewicht: 65kg 11 8 124 207 165 190 187 207 115 190 187 207 11 9 154 221 133 177 157 202 BMI: 21,72 11 10 113 216 109 174 150 195	11	1	210	249	133	149	264	212	Name: S.P.
11 3 281 248 164 235 186 209 Alter: 23 11 4 230 229 220 147 149 198 183 196 Größe: 1,73m 11 5 228 231 239 238 138 196 Größe: 1,73m 11 6 262 230 183 224 123 194 Größe: 1,73m 11 7 109 202 238 239 184 208 Gewicht: 65kg 11 8 124 207 165 190 187 207 11 9 154 221 133 177 157 202 BMI: 21,72 11 10 113 216 109 174 150 195	11	2	246	242	178	241	159	212	
11 4 230 229 220 147 149 198 11 5 228 231 239 238 138 196 11 6 262 230 183 224 123 194 11 7 109 202 238 239 184 208 11 8 124 207 165 190 187 207 11 9 154 221 133 177 157 202 BMI: 21,72 11 10 113 216 109 174 150 195	11	3	281	248	164	235	186	209	Alter: 23
11 5 228 231 239 238 138 196 Größe: 1,73m 11 6 262 230 183 224 123 194 11 7 109 202 238 239 184 208 Gewicht: 65kg 11 8 124 207 165 190 187 207 11 9 154 221 133 177 157 202 BMI: 21,72 11 10 113 216 109 174 150 195	11	4	230	229	220	147	149	198	
11 6 262 230 183 224 123 194 11 7 109 202 238 239 184 208 11 8 124 207 165 190 187 207 11 9 154 221 133 177 157 202 11 10 113 216 109 174 150 195	11	5	228	231	239	238	138	196	Größe: 1,73m
11 7 109 202 238 239 184 208 Gewicht: 65kg 11 8 124 207 165 190 187 207 11 9 154 221 133 177 157 202 BMI: 21,72 11 10 113 216 109 174 150 195	11	6	262	230	183	224	123	194	
11 8 124 207 165 190 187 207 11 9 154 221 133 177 157 202 11 10 113 216 109 174 150 195	11	7	109	202	238	239	184	208	Gewicht: 65kg
11 9 154 221 133 177 157 202 BMI: 21,72 11 10 113 216 109 174 150 195 195	11	8	124	207	165	190	187	207]
11 10 113 216 109 174 150 195	11	9	154	221	133	177	157	202	BMI: 21,72
	11	10	113	216	109	174	150	195	
11 11 158 216 96 138 207 226 Geschlecht: weiblich	11	11	158	216	96	138	207	226	Geschlecht: weiblich

(Fortsetzung Proband 12 - 15)

		S		W		WKo		
VP	t	RMS	turns	RMS	turns	RMS	turns	VP
12	1	181	207	255	249	181	219	Name: T.W.
12	2	127	199	276	229	174	205	
12	3	142	197	277	209	158	181	Alter: 29
12	4	143	198	286	199	148	176	
12	5	156	200	216	210	138	166	Größe: 1,80m
12	6	142	199	221	217	129	171	
12	7	141	195	274	208	140	175	Gewicht: 67kg
12	8	230	192	327	188	135	173	
12	9	182	190	286	180	163	164	BMI: 20,68
12	10	194	181	278	179	187	180	
12	11	197	148	287	167	154	167	Geschlecht: männlich
13	1	100	194	85	234	122	185	Name: H.D.
13	2	81	175	86	221	142	187	
13	3	86	176	88	227	121	177	Alter: 38
13	4	89	170	95	199	121	173	
13	5	89	171	124	209	134	163	Größe: 1,82m
13	6	88	173	112	215	151	160	
13	7	97	179	142	207	228	170	Gewicht: 81kg
13	8	99	173	158	208	195	162	
13	9	111	170	169	200	156	164	BMI: 24.45
13	10	122	184	196	172	146	184	
13	11	145	192	176	172	197	177	Geschlecht: männlich
14	1	105	179	106	167	223	138	Name: L.G.
14	2	148	198	86	182	183	160	
14	3	145	186	95	177	200	159	Alter: 24
14	4	125	176	97	170	165	148	
14	5	130	191	90	162	163	147	Größe: 1.72m
14	6	124	184	94	161	175	148	
14	7	134	179	93	155	234	144	Gewicht: 68kg
14	8	154	174	109	167	215	144	
14	9	133	171	99	157	199	149	BMI: 22.99
14	10	119	160	90	150	219	249	
14	11	160	161	97	153	270	140	Geschlecht: männlich
15	1	127	221	212	250	157	213	Name: J.S.
15	2	130	213	171	222	171	194	
15	3	188	214	150	200	180	187	Alter: 24
15	4	156	204	142	190	149	172	
15	5	189	203	162	189	172	181	Größe: 1.78m
15	6	188	210	195	176	193	176	
15	7	171	183	276	165	183	170	Gewicht: 73kg
15	8	178	187	180	145	235	164	
15	9	230	188	183	138	212	157	BMI: 23.04
15	10	215	175	213	147	212	155	20,04
15	11	213	179	203	140	183	155	Geschlecht: männlich
15	11	224	179	203	140	183	155	Geschlecht: männlich

(Fortsetzung Proband 16 - 19)

		S		W		WKo		
VP	t	RMS	turns	RMS	turns	RMS	turns	VP
16	1	292	272	258	202	401	255	Name: S.A.
16	2	273	246	201	230	394	240	
16	3	192	224	156	217	295	225	Alter: 24
16	4	218	235	179	211	275	211	
16	5	227	218	110	185	280	209	Größe: 1,82m
16	6	193	218	126	187	303	193	
16	7	211	203	118	183	240	188	Gewicht: 82kg
16	8	185	202	136	186	244	199	-
16	9	254	202	149	172	216	185	BMI: 24,76
16	10	226	202	176	167	234	179	
16	11	205	199	179	173	227	181	Geschlecht: männlich
17	1	101	188	110	214	176	209	Name: B.S.
17	2	85	193	98	208	131	204	
17	3	81	186	90	195	103	190	Alter: 24
17	4	76	185	86	194	108	194	
17	5	78	187	90	195	121	199	Größe: 1.70m
17	6	75	179	89	195	109	194	
17	7	75	190	106	192	116	205	Gewicht [.] 55kg
17	8	82	193	83	187	114	193	
17	9	82	188	91	187	131	199	
17	10	81	198	93	190	126	188	
17	11	82	194	114	204	125	190	 Geschlecht: weiblich
18	1	228	242	216	245	260	239	Name: B W
18	2	211	235	203	213	285	215	
18	3	235	198	165	203	255	207	Alter 19
18	4	207	189	148	203	198	195	
18	5	207	179	157	194	202	192	Größe [.] 1.69m
18	6	183	181	213	179	255	192	
18	7	226	177	218	172	281	174	Gewicht: 56kg
18	8	321	149	243	168	289	162	
18	9	323	156	261	164	348	148	BMI 19.61
18	10	370	167	279	171	344	144	
18	11	415	168	275	142	378	145	Geschlecht: weiblich
19	1	156	191	105	192	108	135	Name: E S
19	2	133	189	114	194	143	133	
10	3	127	188	114	207	133	165	Alter: 24
10	1	127	177	05	187	08	105	
10	5	120	182	95	18/	126	150	Größe: 178m
17	6	1/5	176	70	104	100	150	
19	7	143	182	103	100	00	161	Gewicht: 78kg
19	/ 8	167	102	105	109	109	162	OCWICHT. / OKg
19	0	200	100	01	170	100	102	
19	9	208	193	122	1/1	119	102	DIVII: 24,02
19	10	2/1	195	132	159	108	100	
- 19	11	163	193	120	1/8	141	157	Geschlecht: weiblich

(Fortsetzung Proband 20 - 23)

		S		W		WKo			
VP	t	RMS	turns	RMS	turns	RMS	turns		VP
20	1	229	253	256	262	207	277	Name:	B.v.J.
20	2	229	253	293	244	252	249		
20	3	240	221	327	228	268	226	Alter:	21
20	4	221	213	302	221	286	226		
20	5	243	211	293	220	288	217	Größe:	1,65m
20	6	233	196	458	205	340	203		
20	7	392	187	323	201	416	180	Gewicht:	52kg
20	8	388	163	479	187	395	183		
20	9	411	168	443	187	385	185	BMI:	19,1
20	10	398	168	341	187	364	179		
20	11	583	180	215	169	418	169	Geschlecht:	weiblich
21	1	97	182	123	241	118	191	Name:	F.L.
21	2	100	183	131	243	113	203		
21	3	120	196	150	229	123	195	Alter:	37
21	4	117	189	154	221	120	195		
21	5	130	188	175	214	123	199	Größe:	1,61m
21	6	125	183	248	209	123	190		
21	7	126	181	200	203	128	187	Gewicht:	59kg
21	8	133	173	285	186	133	182		
21	9	136	170	299	178	133	180	BMI:	22,76
21	10	131	173	318	173	130	190		
21	11	128	178	324	169	132	183	Geschlecht:	weiblich
22	1	112	222	154	215	84	158	Name:	G.B.
22	2	108	205	167	200	84	222		
22	3	116	206	175	204	81	216	Alter:	34
22	4	124	201	179	194	96	200		
22	5	128	199	155	199	106	218	Größe:	1,73m
22	6	133	197	181	193	102	220		
22	7	152	198	195	200	98	219	Gewicht:	62kg
22	8	171	192	209	200	135	219		-
22	9	187	181	240	195	104	226	BMI:	20,72
22	10	176	190	254	187	97	229		
22	11	184	192	232	163	116	214	Geschlecht:	weiblich
23	1	145	236	125	275	164	209	Name:	D.B.
23	2	143	235	109	233	197	219		
23	3	132	236	112	237	207	229	Alter:	22
23	4	118	235	116	237	189	225		
23	5	131	231	101	229	184	215	Größe:	1,70m
23	6	135	242	118	236	224	216	1	
23	7	156	234	119	226	229	223	Gewicht:	60kg
23	8	163	228	132	210	203	225	1	č
23	9	169	229	122	208	210	219	BMI:	20,76
23	10	187	215	107	190	217	211	1	
23	11	151	209	100	188	228	211	Geschlecht:	weiblich
			104 07)						

(Fortsetzung Proband 24 - 27)

|--|

VP	t	RMS	turns	RMS	turns	RMS	turns		VP
24	1	310	220	109	281	418	214	Name:	S.A.
24	2	271	197	142	244	395	200		
24	3	269	194	130	241	400	196	Alter:	23
24	4	299	191	149	224	445	186	_	
24	5	376	189	132	208	437	180	Größe:	1,70m
24	6	382	178	171	201	435	193		
24	7	347	178	141	212	421	163	Gewicht:	54kg
24	8	353	179	158	230	520	165		
24	9	350	176	158	215	541	154	BMI:	18,69
24	10	479	170	161	206	415	158		
24	11	416	164	181	212	500	144	Geschlecht:	weiblich
25	1	263	223	346	249	278	232	Name:	R.GP.
25	2	216	198	296	216	280	230		
25	3	208	201	255	217	301	224	Alter:	47
25	4	227	190	243	204	260	209		
25	5	243	177	218	198	259	212	Größe:	1,64m
25	6	198	164	241	188	272	215		
25	7	186	160	257	190	266	209	Gewicht:	54kg
25	8	194	160	255	184	293	205		
25	9	207	162	263	182	265	199	BMI:	20,07
25	10	236	163	261	174	258	198		
25	11	240	167	152	188	259	177	Geschlecht:	weiblich
26	1	110	175	110	190	89	179	Name:	N.W.
26	2	105	186	100	188	92	181		
26	3	101	178	114	187	91	183	Alter:	23
26	4	92	176	134	192	93	185	_	
26	5	124	188	103	183	99	187	Größe:	1,83m
26	6	108	186	124	190	107	182		
26	7	118	181	83	173	125	191	Gewicht:	75kg
26	8	137	185	97	182	117	188	_	
26	9	160	126	120	180	122	182	BMI:	23,15
26	10	151	184	106	176	143	178	_	
26	11	180	173	78	115	100	167	Geschlecht:	weiblich
27	1	134	234	111	234	298	248	Name:	T.P.
27	2	142	215	96	214	274	232	_	
27	3	147	209	106	200	291	217	Alter:	24
27	4	181	200	101	202	240	205	_	
27	5	204	210	96	210	256	200	Größe:	1,74m
27	6	224	211	120	218	268	200	_	
27	7	204	208	124	221	296	199	Gewicht:	74kg
27	8	187	196	142	234	345	198	_	
27	9	218	198	142	232	328	186	BMI:	24,44
27	10	211	208	182	235	302	179	_	
27	11	236	204	174	233	373	174	Geschlecht:	männlich

(Fortsetzung Proband 28 - 30)

		S		W		WKo		
VP	t	RMS	turns	RMS	turns	RMS	turns	VP

28	1	296	285	218	254	141	189	Name:	T.D.
28	2	309	276	176	249	139	189		
28	3	305	264	157	240	125	196	Alter:	23
28	4	213	226	174	245	144	206		
28	5	251	228	186	228	141	189	Größe:	1,79m
28	6	243	225	158	223	155	199		
28	7	372	214	154	222	211	208	Gewicht:	74kg
28	8	479	212	168	208	219	194		
28	9	435	180	243	214	190	196	BMI:	23,1
28	10	423	186	205	203	210	206		
28	11	458	176	247	208	232	194	Geschlecht:	männlich
29	1	112	208	167	258	122	202	Name:	J.S.
29	2	141	222	136	240	146	213		
29	3	160	221	142	224	148	208	Alter:	23
29	4	161	226	142	242	139	201		
29	5	201	229	148	222	155	193	Größe:	1,72m
29	6	168	224	139	212	136	202		
29	7	135	209	108	185	153	190	Gewicht:	63kg
29	8	119	206	107	192	153	198		
29	9	140	206	83	201	144	197	BMI:	21,3
29	10	112	204	89	197	142	194		
29	11	127	209	103	214	104	193	Geschlecht:	männlich
30	1	293	155	286	210	264	194	Name:	S.T.
30	2	219	164	224	184	305	176		
30	3	219	160	224	173	188	162	Alter:	25
30	4	201	164	158	169	206	165		
30	5	238	161	214	169	243	164	Größe:	1,82m
30	6	301	164	138	167	300	163		
30	7	275	156	156	167	401	161	Gewicht:	80kg
30	8	202	161	212	175	437	153		
30	9	317	158	147	175	63	147	BMI:	24,15
30	10	307	161	206	185	28	132		
30	11	313	168	326	173	708	122	Geschlecht:	männlich

Tab. 10Ergebnisse der einzelnen Probanden
OEMG – Parameter RMS und turns

7.1.2 Ausdauerzeiten

In der folgenden Tabelle sind die Ausdauerzeiten der einzelnen Probanden für Standard, Wärme und den Kontrollversuch Wärme dargestellt:

	Gesamtzeit in [s]		
VP	S	W	WKo
1	188	216	204
2	204	184	172
3	132	148	164
4	244	224	208
5	156	196	188
6	172	212	168
7	192	164	232
8	212	192	176
9	128	188	152
10	156	208	188
11	208	184	208
12	148	148	152
13	168	204	184
14	196	156	136
15	216	192	188
16	160	176	176
17	132	204	148
18	200	212	184
19	148	116	164
20	196	172	188
21	172	188	184
22	236	160	168
23	156	228	176
24	184	176	172
25	208	164	196
26	192	188	164
27	228	172	184
28	128	168	156
29	152	136	160
30	108	152	96

Tab. 11Ergebnisse der einzelnen Probanden
Ausdauerzeiten

7.2 Abkürzungen

a	Jahr (lat. annus)
Ag	Silber
AgCl	Silberchlorid
AP	Aktionspotential
BMI	Body Mass Index, berechnet als Gewicht [kg]:(Größe [m]) ²
EMG	Elektromyogramm
Hz	Maßeinheit Hertz
kg	Maßeinheit Kilogramm
Ко	Kontrolle
М.	Musculus
m	Maßeinheit Meter
μV	Maßeinheit Mikrovolt
MRV	mittlere Amplitude als mean rectified voltage
MVA	maximale Willküraktivität (maximum voluntary activity)
MVC	maximale Willkürkontraktion (maximum voluntary contraction)
n	Fallzahl (lat. numerus)
MW	Mittelwert
OEMG	Oberflächenelektromyogramm
р	Wahrscheinlichkeit p
p-Wert	Signifikanzniveau
RMS	mittlere Amplitude als root mean square
s	Maßeinheit Sekunde
SD	Standardabweichung (standard deviation)
SE	Standardfehler des Mittelwertes (standard error)
S	Standard
t	Zeitabschnitt (engl. time)
turns	Frequenz der EMG-Ausschläge
V	Versuch
VP	Versuchsperson
W	Wärme
WKo	Wärme der Kontrolle

Abb. 12 Abkürzungsverzeichnis

7.3 Signifikanzniveaus

Zur Überprüfung auf statistische Signifikanz wurden folgende Signifikanzniveaus als p - Werte des Student´schen t - Testes zugrunde gelegt:

*	$= p \le 0.05$
**	$= p \le 0.01$
***	$= p \le 0.001$
n.s.	= nicht signifikant, p > 0.05

Abb. 13 Signifikanzniveaus des Student´schen t - Tests

7.4	Übersicht über die Tabellen und Abbildungen	
7.4.1	Tabelle	en
<u>Tab. 1</u>	S . 12	Charakterisierung des Probandenkollektives
<u>Tab. 2</u>	S. 28	Mittelwerte MW der OEMG - Parameter zu den
		Zeitpunkten 1 - 11
<u>Tab. 3</u>	S. 32	Standardabweichung SD der OEMG - Parameter zu den
		Zeitpunkten 1 - 11
<u>Tab. 4</u>	S. 32	Standardfehler SE der OEMG - Parameter zu den
		Zeitpunkten 1 - 11
<u>Tab. 5</u>	S . 33	p - Werte des zweiseitig angelegten, gepaarten
		Student'schen t - Tests der OEMG - Parameter
<u>Tab. 6</u>	S . 33	Mittelwerte MW der Ausdauerzeiten
<u>Tab. 7</u>	S . 34	Standardabweichung SD der Ausdauerzeiten
<u>Tab. 8</u>	S. 35	Standardfehler SE der Ausdauerzeiten
<u>Tab. 9</u>	S. 35	p - Werte des zweiseitig angelegten, gepaarten
		Student 'schen t - Tests der Ausdauerzeiten

<u>Tab.10</u>

S. 77ff. Ergebnisse der einzelnen Probanden

OEMG - Parameter RMS und turns

Tab.11S. 85Ergebnisse der einzelnen ProbandenAusdauerzeiten

7.4.2	Abbildungen	
<u>Abb. 1</u>	S. 18	Armhaltung im Versuchsstuhl
<u>Abb. 2</u>	S . 21	Bildschirmanzeige des EMG - Gerätes
<u>Abb. 3</u>	S. 22	Dokumentation der Kraftkonstanz
<u>Abb. 4</u>	S. 23	Berechnung der Punkte auf der Ausgleichsgeraden
<u>Abb. 5</u>	S. 27	Auszug aus dem Abkürzungsverzeichnis
<u>Abb. 6</u>	S. 28	Signifikanzniveaus des zweiseitig angelegten, gepaarten
Student´schen t-Tests		
<u>Abb. 7</u>	S . 30	Diagramm RMS Standard und Wärme im Versuch
<u>Abb. 8</u>	S . 30	Diagramm RMS Standard und Wärme in der Kontrolle
<u>Abb. 9</u>	S . 31	Diagramm turns Standard und Wärme im Versuch
<u>Abb.10</u>	S . 31	Diagramm turns Standard und Wärme in der Kontrolle
<u>Abb.11</u>	S . 34	Säulendiagramm zu den mittleren Ausdauerzeiten
<u>Abb.12</u>	S. 86	Abkürzungsverzeichnis
<u>Abb.13</u>	S . 87	Signifikanzniveaus des Student´schen t - Tests im Anhang

8 Danksagungen

In erster Linie möchte ich mich ganz herzlich bei Prof. Dr.rer.nat. Dr.med.habil. H.G. Pratzel für die Überlassung des Themas zu dieser Doktorarbeit bedanken.

Ebenso gilt mein aufrichtiger Dank Herrn Prof. Dr. K.-H. Krause vom Friedrich - Baur -Institut sowie Herrn Dr. I. Magyarosy aus dem Institut für Medizinische Balneologie und Klimatologie der Ludwig - Maximilians - Universität München für die unermüdliche und kompetente Unterstützung und Beratung bei der Entstehung dieser Arbeit.

Ohne die zahlreichen Probanden, die sich freiwillig zur Studienteilnahme bereit erklärt haben, sowie die Mithilfe der Mitarbeiter des Instituts für Medizinische Balneologie und Klimatologie im Hintergrund hätte gerade der praktische Teil dieser Arbeit sicher um vieles mehr an Zeit beansprucht. An dieser Stelle zu erwähnen ist auch die freundliche Beratung durch Frau Dipl.-Math. Raymonde Busch vom Institut für medizinische Statistik und Epidemiologie der Technischen Universität München.

Ein herzliches Dankeschön geht aber auch an Marcus Heinrich und Mathias Knecht, die mir mit ihren exzellenten Computerkenntnissen immer wieder unterstützend unter die Arme gegriffen haben, und Claudia Laes, die eifrig Korrektur gelesen hat.

Außerdem sei aufrichtig all denjenigen gedankt, hier ganz besonders zu erwähnen meine Mitstreiterin Birgit Walter sowie meine Familie, die mir durch ihre moralische Unterstützung und konsequentes Nachfragen eine Beendigung dieser Arbeit unumgänglich gemacht haben. Und Juan Gabriel, der mir mit seinem Entschluß, mich nach Chile mitzunehmen, den endgültigen Impetus gegeben hat, diese Arbeit trotz eines zeitlich kaum zu bewältigenden AIP - Alltags einer Universitätsklinik abzuschließen.

9 Lebenslauf

Persönliche Daten:

Name:	Tanja Greulich
Geburtsdatum:	17. Oktober 1975
Geburtsort:	Geislingen/ Steige
Familienstand:	ledig
Eltern:	Sigrid Greulich, geb. Dick
	Wolf-Rüdiger Greulich

Schulbildung:

09/82 - 07/86	Grundschule Süßen, Lkr. Göppingen
08/86 - 07/91	Helfensteingymnasium Geislingen, Lkr. Göppingen
08/91 - 06/95	Freihofgymnasium Göppingen, Lkr. Göppingen
29.06.1995	Abschluß mit der Allgemeinen Hochschulreife

Studium:

10/95 - 02/96	Studium der Chemie, LMU München
05/96 - 03/98	Studium der Vorklinik, LMU München
16.03.1998	Ärztliche Vorprüfung
05/98 - 05/02	Studium der Klinik, TU München
23.03.1999	1. Abschnitt der Ärztlichen Prüfung
27.03.2001	2. Abschnitt der Ärztlichen Prüfung
14.05.2002	3. Abschnitt der Ärztlichen Prüfung

Beruf:

07/02 - 12/03

ÄiP an der I. Universitätsfrauenklinik München Maistraße