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1 Summary 
 

Kaposi’s Sarcoma Associated Herpesvirus (KSHV) or Human Herpesvirus-8 (HHV-8) 

is the most recently identified human �-2 herpesvirus and has been implicated in 

Kaposi’s Sarcoma (KS) and primary effusion lymphoma (PEL). At the right end of the 

genome KSHV encodes the complex kaposin locus, which consists of two distinct 

sets of 23 amino acid direct repeats, DR2 and DR1, followed by a short domain 

originally referred to as open reading frame (ORF) K12. Translational initiation at 

multiple alternative CUG and one AUG start codons causes expression of a gradient 

of kaposin molecules with varying length and targeting motifs from one single 

transcript.  

The aim of the present study was to investigate in detail the expression pattern of the 

kaposin locus and the cellular localization and function of kaposin protein isoforms 

expressed in the KSHV+ PEL cell line BCBL-1. The multitude of translational 

products from all three reading frames could be resolved and different isoforms 

assigned to distinct cellular compartments. Depending on the alternative start codon 

used, the DR1 repeats representing a functional effector domain are fused either to 

the DR2 repeats harboring a nuclear localization sequence (NLS), or to K12, which 

encodes a transmembrane domain. Expression of kaposin in the nucleus (kaposin B) 

causes an activation of the AP-1 transcription factor and cellular promoters. The 

observed AP-1 induction is dependent on nuclear localization of both DR2 and DR1 

repeats, since substitution of DR2 with a SV-40 NLS was not sufficient to restore 

activation. Other kaposin isoforms which are found in the cytosol (kaposin E) or 

membrane-associated (kaposin D) failed to activate AP-1. If co-expressed, however, 

kaposin D and E were able to modulate the kaposin B-caused induction, presumably 

mediated by a direct interaction between DR2 and DR1. 

The results presented in this study indicate a novel autoregulatory mechanism based 

on bidirectional targeting of a viral protein to distinct subcellular compartments by 

expression from different start codons and reading frames. Supported by the 

complexity of the translational program and the conservation of the repeat regions, 

these findings imply that kaposin isoforms have important functions in the viral life 

cycle. 
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2 Introduction 
 
2.1 Herpesviruses 
 
The family of Herpesviridae encompasses more than 100 different species in animals 

and human. A typical herpesvirus virion consists of four structural components. In the 

center a core range is located, which contains the linear double stranded DNA. This 

core range is encased by an 100 to 110 nm spanning icosahedral capsid, which 

consists of 12 pentameric and 150 hexameric capsomers. Both, core and capsid 

together form the so-called nucleocapsid. The capsid is surrounded by an 

amorphous substance, the tegument, which consists of electron-dense material and 

can vary in its density; it is most probably responsible for the varying diameter of the 

different herpes virions (from 120 nm to nearly 300 nm). Tegument and nucleocapsid 

are enclosed by a membrane of cellular origin (envelope) containing virally encoded 

glycoproteins (spikes) (Fig. 1).  

The genomes of herpesviruses differ both in size and in GC-content. The GC-content 

varies between 32% in canine herpesvirus and 75% in herpesvirus simiae. Varicella 

Zoster Virus (VZV) possesses among the so far described herpesviruses with 

approximately 125 kbp the smallest, the humane and the murine cytomegalovirus 

(HCMV and MCMV, respectively) with approximately 230 kbp the largest genome(s) 

with a coding capacity for approximately 200 proteins (Chee et al., 1990; Rawlinson 

et al., 1996) .  

Although the length of the DNA is specific for each herpesvirus, the differences in 

genome size can vary up to 10 kbp within independent isolates of a virus species, 

which reflects usually a different number of terminal or internal repetitive sequences. 

A further peculiarity of all herpesviruses is the presence of virus-specific enzymes 

and other factors, which are involved in the nucleic acid synthesis (e.g. DNA 

polymerase, helicase, primase) and in the DNA metabolism (e.g. thymidine kinase, 

dUTPase). In addition, all herpesviruses encode at least one protease and a differing 

number of protein kinases. 

Viral DNA synthesis and the assembly of the capsids take place in the nucleus of the 

host cell. During exit of the nucleus through the nuclear membrane capsids become 

enveloped. With some herpesviruses this first envelope is removed and replaced by 

a new membrane from cytoplasmatic organelles. A further typical characteristic of 
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herpesviruses is the irreversible destruction of the host cell during the production and 

release of infectious virus progeny. However, the probably most important and 

characteristic feature of all herpesvirus species is the ability to switch after an often 

asymptomatic primary infection into a state of latency and to persist life-long in the 

host. In latently infected cells, the virus genome is present extra-chromosomally and 

only few viral genes are expressed. Thus, during latency no infectious virions can be 

isolated from infected tissue. Due to endogenous and exogenous factors (e.g. stress, 

immunosuppression, UV-light, hormones etc.) the herpesvirus can reactivate and 

disease symptoms reoccur. The family of the Herpesviridae can be divided into the 

three Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae subfamilies. 

The �-herpesviruses are characterized by the fact that they exhibit a broad host 

range and a short replication cycle. The infection spreads in cell culture fast and 

leads to an efficient destruction of infected cells. �-herpesviruses establish latent 

infections in sensory ganglia. Important representatives of human pathogenic �-

herpesviruses are the Herpes Simplex Virus type 1 (HSV-1) and type 2 (HSV-2), 

which cause blisters in the lip and genital region, and the Varicella Zoster Virus 

(VZV), the causative agent of varicella (chickenpox) and Zoster (shingles). Contrary 

to the �-herpesviruses, the β-herpesviruses show a pronounced host specificity, a 

long reproduction cycle and a slow propagation in cell culture. The size of infected 

cells is frequently increased (cytomegalic), which was taken in account in the naming 

of some β-herpesviruses (e.g. HCMV, MCMV). β-herpesviruses can establish latency 

in different cells and tissues. The �-herpesviruses are characterised by a restricted 

host specificity. Usually their host range is limited to the family from which their 

natural host originates. In vitro, all �-herpesviruses replicate in lymphoblastoid cells 

and some also cause lytic infections in epitheloid cells and fibroblasts. This 

herpesvirus subfamily has a selectivity for either T or B lymphocytes, in which latent 

virus preferentially can be detected. The most well-known human representative is 

the B-cell-specific Epstein-Barr Virus (EBV), which is the causative agent of 

infectious mononucleosis (“kissing disease”). EBV is an oncogenic virus and 

associated with two endemic tumors, Burkitt’s lymphoma and nasopharyngeal 

carcinoma, as well as with Hodgkin’s disease. KSHV, another representative of the �-

herpesvirus subfamily is also associated with several tumor entities, similar to EBV 

(Chee et al., 1990; Roizman, 1996). 
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Fig. 1: The herpesvirus particle 
Schematic model of a herpesvirus particle (adapted from Reschke, 1994). Major virion components 
are indicated. 
 
 

2.2 Replication cycle of herpesviruses 
 
The infection of a cell begins with the specific binding of virus envelope proteins to 

receptor molecules on the surface of the host cell. After adsorption of the virions the 

viral envelope fuses with the cell membrane and the nucleocapsid is released into 

the cytoplasm. The uncovered virus genome is circulized and transported into the 

nucleus, where transcription and replication take place. The replicated virus DNA is 

packed into capsids, which receive their first envelope by budding at the inner 

nuclear membrane. Depending on the herpesvirus species the first envelope 

membrane is replaced in the Golgi or ER and the virus progeny is released by 

budding.  

Gene expression in herpesviruses is cascade-like regulated and can be divided in 

three distinct phases: immediate early (IE), early (E) and late (L) (Honess and 

Roizman, 1974). The immediate early phase begins immediately after the infection. 

For the transcription of the IE genes no de novo synthesis of viral proteins is 

necessary. IE proteins possess predominantly regulatory functions, and at least one 
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IE protein is necessary for the initiation of the early phase (Honess and Roizman, 

1975). The activation of the early genes takes place primarily on the transcriptional 

level (Godowski and Knipe, 1986). During the early phase proteins are produced 

which are necessary for replication of the viral genome (e.g. viral DNA polymerase). 

The start of DNA replication defines the beginning of the late phase. In the late phase 

mainly structural proteins necessary for the formation of the virions are synthesized. 

 

 

2.3 Kaposi’s Sarcoma (KS)-Associated Herpesvirus (KSHV) 
 
2.3.1 Disease association 
 
The Hungarian dermatologist Moritz Kaposi working in Vienna was the first who 

described Kaposi’s Sarcoma in 1872. He published a case report of five men with 

“idiopathic multiple pigmented sarcoma of the skin” including a patient who 

developed visceral disease in the lung and gastrointestinal tract (Antman, 2000). Two 

decades later this idiopathic multiple pigmented sarcoma of the skin was termed KS 

according to the proposal of another prominent dermatologist, Kobner, and is now 

referred to as classic KS. In central Africa endemic KS is one of the most frequent 

tumors whereas in North America and Northern Europe KS appeared rarely before 

the acquired immunodeficiency syndrome (AIDS) epidemic. However, the AIDS 

epidemic made KS to the most common AIDS-associated cancer and thus it 

contributes considerably to morbidity and mortality in AIDS patients (Ahmed et al., 

2001). In addition, HIV seronegative, homosexual men have a higher risk for 

developing KS in comparison to individuals in countries where the rates of KS are 

higher (Ganem, 1997). KS is one of the most frequent post-transplant neoplasms 

predominantly after kidney transplantation. These post-transplant KS tumors regress 

when immunosuppressive therapy is stopped, suggesting the importance of the host 

immune system (Penn, 1978). KSHV is the most recently discovered human �-

herpesvirus and shows tropism primarily for endothelial cells and B-lymphocytes, but 

can also infect other cell types with limited efficiency. It is the eighth human 

herpesvirus isolated to date and is therefore also named Human Herpesvirus 8 

(HHV-8)  (Antman, 2000; Chang et al., 1994). KSHV was initially isolated from KS 

tissue but was later also found to be associated with pleural effusion lymphomas 

(PEL [body cavity-based lymphomas (BCBL)]) (Chang et al., 1994). 
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Although other pathogenic agents (among others CMV, HIV-1 and mycoplasm) were 

isolated from Kaposi’s Sarcoma, a preponderance of data strongly suggests that 

KSHV is the etiologic agent of KS and may also be a critical player in the 

development of other lymphoproliferative disorders such as PEL and multicentric 

Castleman’s disease (MCD) (Arvanitakis et al., 1996; Beral et al., 1990; Boshoff et 

al., 1995; Renne et al., 1996b; Siegal et al., 1990). Most PEL are positive for KSHV 

and EBV (80-90%), which is reflected by the occurrence of both viruses in cell lines 

derived from this tumor.  

 

 

2.3.1.1 Kaposi’s Sarcoma (KS) 
 
Kaposi’s Sarcoma is clinically most relevant among the KSHV associated tumors. It 

is an unusual neoplasm characterized by multifocal dark brown or purple lesions and 

differs from most other tumors by several characteristic features (Fig. 2). In KS, the 

lesions contain multiple cell types, of which the endothelial derived spindle cells are 

predominant (Boshoff et al., 1997). The clonality of KS is controversely discussed 

(Judde et al., 2000; Gill et al., 1998; Rabkin et al., 1997). Additionally, the KS lesions 

are characterized by the infiltration of inflammatory leukocytes as well as a profusion 

of neovascular elements (Monini et al., 1999). In immunocompetent patients KS is a 

slow growing tumor with low malignant potential (Ganem, 1997). In 

immunocompromised individuals, KS is more aggressive and can be letal. In cases 

where the immune competence was restored, complete remission of the disease 

state was observed, which is quite different from other aggressive tumors (Boshoff et 

al., 1997; Fiorelli et al., 1998). The presence of KSHV in PEL has been documented 

and coinfection with EBV was shown for the majority of cloned cell lines, including 

BC-1 and BC-2 (Cesarman et al., 1996). However, several PEL cell lines including 

BC-3 and BCBL1 were described, which showed no detectable levels of EBV 

(Arvanitakis et al., 1997; Renne et al., 1996b). Although B-cell markers are 

completely down-regulated, the clonal immunoglobulin heavy chain rearrangement 

indicated that these cells are of B-cell origin. KSHV is able to infect human B-cell 

lines and may be involved in the pathogenesis of PEL in HIV-positive AIDS patients. 

KSHV is also able to infect and replicate in other cell lines, but considerably less 

efficiently than seen in the PEL cell lines (Cerimele et al., 2001; Foreman et al., 

1997). Four distinct clinical variants of KS can be distinguished. Classic KS is a 
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severly growing, little aggressive tumor, which typically affects elderly men of 

Mediterranean and eastern European origin and is mostly indolent; endemic KS, 

which is frequent in equatorial, eastern and southern Africa and is a clinically more 

aggressive form than classic KS (Wabinga et al., 1993); post-transplant or iatrogenic 

KS, which develops in patients undergoing immunosuppressive therapy to prevent 

graft rejection after organ transplantation (Regamey et al., 1998) and finally, AIDS-

associated KS, the most aggressive form of the disease, is most frequently seen in 

gay and bisexual men, indicating that transmission is likely through high risk sexual 

practices (Gao et al., 1996). 

 

 
 
Fig. 2: Cutaneous forms of a Kaposis’s Sarcoma 

(A) Kaposi’s Sarcoma of the lower leg and foot. Lesion at the lower leg are plaque-like, brown and 
sharply defined. Confluent Lesions at the foot exhibit firm purple nodes (B) AIDS-related Kaposi’s 
Sarcoma of a 29 year-old man. Lesions are multifocal distributed in form of dark purple nodes 
(pictures online published in the Dermatology Online Atlas [http://www.dermis.net/doia/] according 
to Diepgen and Eysenbach, 1998). 

 
 
2.3.1.2 Primary effusion lymphoma (PEL) 
 
PEL (previously termed BCBL), is a rare, rapidly fatal, non-Hodgkin’s malignancy 

associated with KSHV infection. In general, it is present as a pleural or pericardial 

effusion without a detectable mass or peripheral lymphoadenopathy (Arvanitakis et 

al., 1996). Additionally, PEL can also manifest as a solid mass in the lymph nodes, 

lungs or the gastrointestinal tract. PEL is found mainly in HIV seropositive individuals 

in advanced stages of immunosuppression, but also in HIV seronegative patients. 

Although EBV negative and KSHV positive PEL have been described, PEL cells are 
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frequently co-infected with both viruses. Southern blot analysis revealed that the 

copy number of KSHV genomes in PEL cells is maintained at 50-150 copies per cell, 

which is substantially more than the numbers observed in KSHV-infected spindle 

cells. 

 

 

2.3.1.3 Multicentric Castleman’s disease (MCD) 
 
The multicentric Castleman’s disease belongs to the atypic- or  pseudo-lymphoma 

and is thought to be mediated by interleukin (IL)-6 overexpression (Ablashi et al., 

2002). The correlation between KSHV viral load and the course of the disease 

suggests a functional role of KSHV in MCD (Grandadam et al., 1997). 

The virus is detected in most HIV-seropositive cases of MCD as well as in 

approximately 40% of HIV-seronegative MCD cases. The KSHV positive MCD cases 

are now understood as a distinct subset of MCD, termed plasmablastic MCD, which 

are characterized by the occurrence of large plasmablastic cells harbouring KSHV 

(Dupin et al., 2000). Unlike PEL cells, co-infection by EBV has not been detected in 

MCD plasmablasts. The rate of lytically infected tumor cells is considerably higher in 

MCD in comparison to KS and PEL, suggesting a different role of KSHV in 

pathogenesis (Cathomas, 2000). 

 

 

2.3.2 The KSHV particle 
 
KSHV shows a typical herpesvirus morphology: virus particles have a diameter of 

100- to 150-nm with a lipid envelope and an electron-dense central core (Renne et 

al., 1996a). The icosahedral capsid consists of 162 hexagonal capsomeres and is 

approximately 125 nm (1250 Å) in diameter (Wu et al., 2000). Three types of capsids, 

named A, B and C, are released from PEL cells after TPA and sodium butyrate 

treatment (Fig. 3). Fully mature C-capsids contain, in declining order of abundance, 

the polypeptides ORF25/MCP (major capsid protein), ORF65/SCIP (small capsomer-

interacting protein), ORF26/TRI-2 (triplex-2), ORF62/TRI-1 and the 160- to 170-kb 

viral genome. They have a total mass of approximately 300 megadaltons. A and B 

capsids are constructed similarly but lack viral DNA. In addition, the B capsids 

contain the scaffolding protein encoded by ORF17.5 (Nealon et al., 2001). Mature 
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virions carry a glycoprotein coat and between the capsid and the envelope a protein-

filled region, the tegument is located. The central core is torus-shaped, 75-nm in size 

and composed of DNA and protein. In appearance, KSHV is not distinguishable from 

�-, β-, and other �-herpesvirus particles (International Agency for Research on 

Cancer, 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 3: Electron cryomicroscopy of HHV-8 capsids 

(A) Empty A-capsids, one B-capsid (black arrow) and one DNA containing C-capsid (white arrow).(B) 
Enlarged view of an intermediate B capsid, which contains scaffolding protein. Characteristic 
hexagonal pattern of the capsomeres (e.g. arrow) is indicated. (C) Fully mature C-capsid with 
characteristic striated fingerprint-like pattern (adapted from Wu et al., 2000).  
 

 

2.3.3 The KSHV genome 
 
KSHV is a member of the �2-subgroup of the �-herpesvirus family, rhadinovirus 

genera, which share a collinear genomic organization with each other. The coding 

capacity of the KSHV genome was determined by sequencing viral DNA of a PEL 

cell line as well as of KS biopsy specimens, both revealing the characteristic synteny 

of rhadinoviruses (Russo et al., 1996; Neipel et al., 1997). Supplementing this 

approach, Gardella gel analyses were performed to specify the size and 

conformation of the viral nucleic acid (Renne et al., 1996a). During latency, the KSHV 

genome of PEL cell lines is maintained as a circular, multicopy episome (similar to 

the Herpesvirus saimiri [HVS] and EBV genomes) and includes multiple GC-rich, 

A B

C

1000 Å
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801-bp terminal repeats enclosing approximately 145 kb of “unique” sequence 

(Lagunoff and Ganem, 1997; Moore and Chang, 2001). During the lytic replication 

cycle, viral progeny DNA is ultimately synthesized as linear, single-unit genomes 

destined for packaging into mature virions (Renne et al., 1996a).  

KSHV harbors at least 89 ORFs. A comparison between KSHV and HVS (the 

prototype �2-herpesvirus) reveals a strikingly similar genetic arrangement (Neipel et 

al., 1997; Russo et al., 1996). Both viruses share 68 conserved genes that are 

arranged collinearly, interrupted by interspersed regions of genes unique to each 

virus. All genes were numbered consecutively from the left to the right side of the 

genome. The conserved genes have been marked by the prefix “ORF” and the 

unique genes were designated K1 to K15 (Fig. 4) (Russo et al., 1996). More recently, 

the publication of the complete DNA sequences of the murine gammaherpesvirus 68 

and several primate rhadinoviruses confirmed the conservation of this genetic 

organization and expanded it to non-human members of the �2-herpesviruses family 

(Alexander et al., 2000; Searles et al., 1999; Virgin et al., 1997). Those genes which 

display the highest degree of conservation among these viruses are predicted to 

have metabolic and catalytic functions in replication of the viral DNA or contribute to 

the virion structure and are taken together in a set of “ancient” genes conserved in all 

mammalian herpesviruses (McGeoch and Davison, 1999; Simas and Efstathiou, 

1998). In KSHV, these include the DNA polymerase and the processivity factor 

(ORF9 and ORF59, respectively), the DNA helicase-primase (ORF40, ORF41, and 

ORF44), the thymidylate synthase (ORF70), and the thymidine kinase (ORF21). 

Characteristically, KSHV as well as other �-herpesviruses harbor a large number of 

ORFs which share homology to known cellular genes and are postulated being 

pirated from host chromosomes during viral evolution. Some of these genes 

participate in the down-modulation of the immune response, circumvent cellular 

systems of targeting infected cells or are involved in cell growth, differentiation and 

nucleotide biosynthesis. They include the Bcl-2, IL-8R, and MIP-IK, vIL-6, DHFR and 

the D-type viral cyclin, whose functions are usually distinct to that of their cellular 

homologs (Alexander et al., 2000; Russo et al., 1996). The KSHV genome also 

contains two lytic origins of DNA replication, that are inverted duplications of each 

other: the left is located between K4.2 and K5, and the right between K12 and 

ORF71 (AuCoin et al., 2002; Lin et al., 2003). 
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These genomic analyses identified the viral DNA polymerase gene as the gene with 

the highest intervirus identity, facilitating the construction of rhadinoviral phylogenetic 

trees which include KSHV, HVS, and the primate rhadinoviruses that have been 

identified over the last half decade (Fig. 5). The group of rhadinoviruses has since 

been subdivided into those of New World and Old World primates (Greensill et al., 

2000b). Probably the most closest relative of KSHV is the Pan troglodytes 

(chimpanzee) rhadinovirus 1 (PtRV-1), which encodes a DNA polymerase gene that 

has 93.2% amino acid identity to the KSHV polymerase (Greensill et al., 2000a). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Phylogenetic trees 
(A) Rhadinoviruses divide into a New World- and an Old World-subgroup. DNA maximum likelihood 
tree for herpesviruses (Greensill et al., 2000b). (B) Pan troglodytes rhadinovirus 1 is the closest 
relative to KSHV found so far. Neighbour-joining protein distance tree of different rhadinoviruses 
(Greensill et al., 2000a). 
Abbreviations: HSV, Herpes simplex virus; VZV, Varicella zoster virus; HHV, Human herpes virus; 
HCMV, Human cytomegalovirus; EBV, Epstein-Barr virus; HVA, Herpesvirus ateles; HVS, Herpesvirus 
saimiri; RRV, Rhesus rhadinovirus; CHRV-1,2, Chlorocebus rhadinovirus 1 and 2; RFHVMm, Mn, 
Retroperitoneal fibromatosis herpesvirus of rhesus and pigtailed macaques; MneRV-2, rhesus and 
pigtailed macaque rhadinovirus; PtRV-1, Pan troglodytes rhadinovirus 1. Numbers refer to the 
percentage of repeated analyses that gave the same tree topology (“bootstrap” values). 
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2.3.4 Latent and lytic gene expression in KSHV 
 
As all herpesviruses, KSHV is able to infect cells latently (non-productive) and 

lytically (productive). This biphasic life cycle is characterized by a distinct gene 

expression program in each case and was recognized early in both KS lesions and 

cultured PEL specimens (Miller et al., 1996; Miller et al., 1997; Renne et al., 1996b; 

Staskus et al., 1997; Zhong et al., 1996). Productive infection by herpesviruses leads 

to cell lysis, which obviously contradicts the ability of a virus to transform the infected 

host cell. Thus, assigning the expression of individual KSHV ORFs to the latent or 

lytic cycle is decisive for predicting their potential roles in the pathogenesis of the 

disease. This was markedly facilitated by the ease of culturing PEL cells latently 

infected with KSHV, and inducing lytic reactivation with common laboratory 

chemicals (such as phorbol esters or sodium butyrate). If the cells are normally 

passaged (i.e., most cells are latently infected), the virus is maintained as a latent 

episome, with highly restricted viral gene expression and lack of virus production. 

Chemically induced, viral gene expression switches from the latent program to an 

ordered cascade of lytic gene expression, leading to viral replication, virion 

production, cell lysis, and viral release (Renne et al., 1996a; Renne et al., 1996b; 

Sarid et al., 1998; Zhong et al., 1996). However, the classification of a viral gene as 

latent or lytic solely by analysis of RNA expressed in bulk PEL cultures has been 

complicated by the fact, that a characteristic small percentage of every cultured PEL 

population spontaneously undergoes lytic reactivation (Renne et al., 1996b; Zhong et 

al., 1996). To overcome this problem, in situ hybridization was performed with KS 

specimens, revealing that the kaposin gene (ORF K12, later referred to as kaposin A 

[Sadler et al., 1999]) was expressed in at least 85% of spindle cells, while 

ORF25/MCP, a lytic structural protein in PELs that is highly conserved in 

Herpesviridae, was expressed in no more than 10% of the spindle cells (Nealon et 

al., 2001; Staskus et al., 1997). Due to this approach, kaposin was classified as a 

latent gene, and provided a seminal paradigm for classifying expression of other 

KSHV genes (Staskus et al., 1997). Further genome-wide analyses of KSHV gene 

expression, utilizing PEL models, compared the gene transcription patterns of each 

viral ORF during normal culture of PELs to the response to TPA treatment and lytic 

viral induction (Sarid et al., 1998). On this basis each viral ORF was classified as 

class I (detected under standard growth conditions, no induction upon TPA 

treatment), class II (detected without TPA and further induced by TPA addition), or 
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class III (undetectable without TPA but induced by the chemical), respectively. This 

examination revealed a cluster of three class I genes, LANA-1 (latency-associated 

nuclear antigen-1), ORF72 (viral cyclin D) and K13 (fas-ligand IL-1 β-converting 

enzyme inhibitory protein [v-Flip]), whose wide expression in KS specimens confirms 

their latent classification (Davis et al., 1997; Dittmer et al., 1998). However, the 

detection of kaposin A as a class II gene in these cells demonstrates that not all 

latent genes are class I (Sarid et al., 1998; Sadler et al., 1999; Staskus et al., 1997). 

The group of class II genes typically consisted of herpesvirus regulatory and viral 

DNA replicative genes, as well as most of the viral homologs of cellular genes. The 

class III genes, in contrast, encoded primarily typical late (L) genes, such as viral 

structural and replication genes (Sarid et al., 1998). More recent studies based on 

DNA microarrays have enabled simultaneous comparisons of the transcription 

kinetics of quasi all KSHV genes (Dittmer, 2003; Jenner et al., 2001; Paulose-Murphy 

et al., 2001). Besides confirming the original PEL-based classifications of the viral 

genes based on the addition of TPA, microarrays are for example also a powerful 

means to determine the kinetics of first appearance and peak expression of the lytic 

genes.  

Gene expression studies after reactivation of latent virus have identified immediate 

early (IE) transcripts (typical for regulatory genes of herpesviruses) based on their 

resistance to treatment with cycloheximide (Sun et al., 1999). One of these 

transcripts is the ORF50 (replication and transcriptional activator [Rta]), whose 

expression product is able to reactivate the virus from latency in PEL cells (Gradoville 

et al., 2000; Lukac et al., 1998; Lukac et al., 1999; Sun et al., 1998). The ORF50 is 

tricistronic and also encodes the downstream genes K8/K-bZIP/RAP and K8.1 

(Gruffat et al., 1999; Lin et al., 1999; Lukac et al., 1998; Seaman et al., 1999; Sun et 

al., 1998; Sun et al., 1999; Zhu et al., 1999). Investigations of transcript architecture 

from individual loci revealed that numerous KSHV transcripts are spliced and many 

are polycistronic. 

Interestingly, the low level of spontaneous lytic gene expression detected against the 

backdrop of latent expression in most PEL cultures is highly similar to what is found 

in KS clinical samples (Fakhari and Dittmer, 2002; Jenner et al., 2001; Paulose-

Murphy et al., 2001; Sarid et al., 1998). This is most likely not an artefact of tissue 

culture models, since most infected cells in KS specimens display a latent KSHV 

gene expression with occasional cells expressing lytic transcripts (Chan et al., 1998; 
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Dupin et al., 1999; Katano et al., 2000; Lin et al., 1998; Orenstein et al., 1997; 

Parravicini et al., 2000; Staskus et al., 1997; Sun et al., 1999). More recent 

experiments of de novo infection of cultured endothelial cells have also demonstrated 

a similar mixture of latent and lytic gene expression (Ciufo et al., 2001; Lagunoff et 

al., 2002; Moses et al., 1999). 

 

 

2.3.5 Kaposin  
 
At the right end of the KSHV genome a cluster of latently expressed proteins can be 

found, where besides the latency-associated nuclear antigens, v-cyclin and v-FLIP 

also the K12 locus is located (Dittmer et al., 1998). 

The K12 locus is divergent and consists of the K12 ORF and two upstream sets of 23 

nucleotide direct repeats DR2 and DR1. Surprisingly, Sadler and colleagues 

presented evidence that these direct repeats are expressed on the protein level in 

KSHV-infected cells despite the absence of AUG start codons (Sadler et al., 1999). 

They immunized mice against PEL tumor cells to generate monoclonal antibodies 

and found that approximately half of the mabs were directed against DR repeats. By 

tagging the DR repeats at the 3’ end, they could show that all reading frames are 

expressed and speculate that different kaposin protein isoforms are expressed 

initiating from distinct start codons using different reading frames. These isoforms 

derived either from ORF K12 itself or from the repetitive elements upstream of ORF 

K12 were termed kaposin A, B, and C (Fig. 6A). While kaposin A is initiated from the 

only predicted translational start codon within the locus, the AUG codon at the 5’ end 

of K12, putative CUG or GUG alternative start codons, can be found in or 5’ of the 

DR1 and DR2 repeats. Both direct repeat regions lack stop codons in all three 

reading frames. The open reading frames 2 and 3 run into stop codons between the 

DR repeats and ORF K12. In contrast, reading frame 1 is open to the 3’ end of K12. 

Intriguingly, translation of DR2 and DR1 results in a 23-amino acid peptide of 

common sequence in all three reading frames (Fig. 6B). In Western blot analyses 

Sadler and colleagues detected proteins of 54, 48, 38 and 32 kd, of which kaposin B 

(containing the DR repeats but not K12) with a size of approximately 48 kd is the 

major protein expressed. Based on the structural sequence information and incited 

by these results, they hypothesized that (i) internal ribosomal entry is caused by the 

DR repeat region enabling the expression of K12, (ii) more translational products 
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may be produced, (iii) isoforms containing K12 sort to a different subcellular 

compartment as the other isoforms, (iiii) the different isoforms could produce 

differences in activity or stability, (v) one of the kaposin isoforms is a regulatory 

molecule whose expression at high levels is not compatible with cell survival or 

growth and that (vi) the complex translational control is mandatory to titrate 

expression levels of this toxic product down.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Coding potential of the K12 locus 
(A) CUG and GUG alternative translation initiation codons are indicated with the reading frame and 
size of the resultant translation products for a BCBL-1 mRNA. Additional CUGs are present within 
each DR1 repeat in all three reading frames. T0.7, see text (B) Translation of DR1 and DR2 (not 
shown) results in a repeating 23 aa peptide of common sequence in all three reading frames. The 
single letter code of DR1 is shown below the appropriate reading frame of the mRNA sequence. The 
23 aa repeats are encoded by three 23-nt repeats (23 nuc). CUGs are shown in read. The leucine 
residue was randomly assigned as the start of each repeat and is coloured red in each reading frame 
(according to Sadler et al., 1999). 
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The genomic sequence between the start sites and the K12 ORF is highly 

polymorphic and varies markedly in number of direct repeats between different KS 

specimens and PEL cell lines. Transcription of this locus produces mRNAs that vary 

in length in different isolates (Sadler et al., 1999). Whereas the first identified gene 

product of this locus, kaposin A, was originally reported to be expressed by a 0.7 kb 

mRNA (T0.7), later reports identified several longer transcripts of up to 2.4 kb in KS 

and PEL cells harboring the upstream repeat regions. Therefore, the translation 

initiation of kaposin A at the AUG start codon of the K12 ORF was predicted to 

involve leaky ribosomal scanning or internal translational initiation from transcripts 

containing the upstream repetitive sequences (Sadler et al., 1999; Zhong et al., 

1996). Recent data presented by Li and colleagues have identified a spliced 

transcript that includes a 5’ non-coding exon derived from a region between ORFs 72 

(v-cyclin) and 73 (LANA), approximately 5 kbp upstream of the 5’ end of the 

previously identified kaposin B/C transcripts (Li et al., 2002). This splicing effect 

appears to be common to PEL and KS tissue and several PEL cell lines. It is thus 

possible that kaposin transcripts are produced from either of two promoters (Li et al., 

2002; Sadler et al., 1999). Since the K12 locus expresses abundant kaposin 

transcript(s) during latency in KS tissue and PEL cells, but is also strongly induced 

following lytic reactivation, it was hypothesized that the encoded proteins may 

mediate functions that serve both replication modes (Sadler et al., 1999; Staskus et 

al., 1997; Sturzl et al., 1997; Zhong et al., 1996). The proximal kaposin B/C promoter 

driving the unspliced transcript is highly responsive to the immediate early ORF50 

transactivator, which binds directly or indirectly to this region (Chang et al., 2002). 

The finding that kaposin can be expressed during the latent phase of infection 

suggests that it contributes to KSHV-associated malignancies. This hypothesis was 

supported by the results from functional analyses of the hydrophobic 60 aa protein 

kaposin A, which was found to be transforming in vitro in Rat-3 fibroblasts and in vivo 

in nude mice (Kliche et al., 2001; Muralidhar et al., 1998). In transduced Rat-3 cells 

kaposin A was shown to be localized in the cytoplasm, and it was proposed that 

kaposin A is Golgi-associated (Muralidhar et al., 1998; Muralidhar et al., 2000). More 

recent data from confocal microscopy and subcellular fractionation experiments 

indicate that kaposin A has a predominantly perinuclear localization in PEL cells and 

transfected NIH3T3 cells. As indicated by kaposin A-specific immunostaining of non-

permeabilised cells detected by flow cytometry, kaposin A can also distribute to the 
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plasma membrane (Kliche et al., 2001; Tomkowicz et al., 2002). This result coupled 

with secondary structure predictions and hydrophobicity plots for the 60 aa protein 

suggested that kaposin A is a type II transmembrane protein with an extracellular c-

terminal domain (Kliche et al., 2001). The kaposin A-induced transformation is 

mediated through a direct interaction of kaposin A with cytohesin-1, a guanine 

nucleotide exchange factor (GEF) for ADP-ribosylation factors (ARF), which leads to 

an activation of MAP kinases. The transformed phenotype shown by actin 

remodeling, focus formation and gene activation, was reverted by a cytohesin-1 

E157K mutant, which is deficient in catalyzing the guanine nucleotide exchange. 

Kaposin A was shown to activate cytohesin-1 by recruitment to the cell membrane, 

similar to phosphatidylinositol-mediated GEF recruitment and activation, which 

subsequently stimulates the ARF GTPase (Kliche et al., 2001). 
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2.4 Aim of this study 
 

The K12 locus is a complex genomic region, which consists of the ORF K12 and two 

sets of upstream direct repeats. Whereas previous studies focused on kaposin A 

(ORF K12) and its function, little is known about the expression of other protein 

products originating from this locus (Kliche et al., 2001; Muralidhar et al., 1998). 

Sadler and colleagues showed that the upstream repeat region is expressed on the 

protein level in both, PEL cell lines and KS tumors (Sadler et al., 1999). They 

hypothesized that a variety of translational products is expressed from the K12 locus. 

Furthermore, they suggested that internal ribosomal entry is caused by the DR 

repeat region, that different isoforms may produce differences in activity or stability 

and that one or more of the kaposin isoforms are regulatory molecules whose 

expression is titrated by the complex translational control.  

The aim of this work was to characterize biochemically and functionally the lytical 

kaposin protein isoforms generated in the PEL cell line BCBL-1. The concept of the 

present study was first to create molecular tools, qualifying to address the following 

questions: (i) the analysis and resolution of the expression pattern including the 

determination of the cellular localization, (ii) the biochemical characterization, (iii) the 

investigation of functional properties, (iv) the search for interaction partners and, 

finally, (v) the mutual influence of different isoforms on each other. 
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3 MATERIALS AND METHODS 
 

3.1 Materials 
 

3.1.1 Equipment 
Bacterial Shaker      Kühner, Bürsfelden, Switzerland 

Balances       Sartorius, Göttingen, Germany 

Centrifuge GP      Beckman, Palo Alto, USA 

Centrifuge J2-21      Beckman, Palo Alto, USA 

Centrifuge Varifuge 3.0R     Heraeus, Hanau, Germany 

Centrifuge Minifuge RF     Heraeus, Hanau, Germany 

Centrifuge Labofuge T     Heraeus, Hanau, Germany 

Centrifuge, refrigerated and non-refrigerated  Heraeus, Hanau, Germany 

 Confocal laser scanning microscope  Leica, Bensheim, Germany 

 Confocal laser scanner   Leica, Bensheim, Germany 

Eagle eye  Stratagene, Amsterdam, The 

Netherlands 

Elisa Reader  Tecan Labinstruments, Crailsheim, 

Germany 

Film developing machine   Optimax Typ TR MS Laborgeräte, 

Heidelberg, Germany 

Fluorescence/light microscope Axiovert 35  Zeiss, Oberkochen, Germany 

Fluorescence/light microscope Axiovert 200M  Zeiss, Oberkochen, Germany 

Fridge (4°C)       Liebherr, Ochsenhausen, Germany 

Freezer (-20°C)      Liebherr, Ochsenhausen, Germany 

Freezer (-80°C)  Forma Scientific, Inc., Marietta, Ohio, 

USA 

Cryo 1°C Freezing Container    Nalgene Nunc, Wiesbaden, Germany 

Gel dryer       Bio-Rad, Munich, Germany 

GelAir drying system     Bio-Rad, Munich, Germany 

Incubators for cell culture (37°C)  Forma Scientific, Inc., Marietta, Ohio, 

USA 

Inverted microscope TMS     Nikon, Düsseldorf, Germany 
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Laminar Flow Hood Steril Gard II A/B3  The Baker Company, Sanford, 

Maine,USA  

Magnetic stirrer with heating block   Janke & Kunkel, Staufen, Germany 

Microwave       AEG, Berlin, Germany 

Overhead mixer      Heidolph, Schwabach, Germany 

PCR Thermal Cycler GeneAmp 2400   Perkin Elmer, Weiterstadt, Germany 

pH-Meter       WTW, Weilheim, Germany 

Photometer Gene Quant II    Pharmacia/LKB, Freiburg, Germany 

Pipettes       Gilson, Villies Le Bel, France; 

Eppendorf, Hamburg, Germany 

Pipetting aid       Technomara, Zürich, Switzerland 

Electrophoresis Power supply EPS200  Amersham-Pharmacia, Freiburg, 

Germany 

Sonifier 450  Branson Ultrasonics Corp., Danbury, 

USA 

Thermomixer      Eppendorf, Hamburg, Germany 

UV-transilluminator (366 nm)    Vetter, Wiesloch, Germany 

   (254 nm)    Konrad Benda, Wiesloch, Germany 

Vortex mixer       IKA Works, Inc, Wirmington, USA 

Water bath       Julabo, Seelbach, Germany 

       GFL, Burgwedel, Germany 

 

 

3.1.2 Chemicals 
 
Acetic Acid       Roth, Karlsruhe, Germany 

Acrylamide/Bisacrylamide 37,5/1   Roth, Karlsruhe, Germany 

(Rotiphorese Gel 30)   

Agar for plates  BD Biosciences Clontech, Heidelberg, 

Germany 

Agarose electrophoresis grade   Invitrogen, Karlsruhe, Germany 

Ammonium persulfate (APS)    Sigma, Munich, Germany 

Ampicillin  Roche Diagnostics, Mannheim, 

Germany 
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Bacto peptone  BD Biosciences Clontech, Heidelberg, 

Germany 

Bacto tryptone  BD Biosciences Clontech, Heidelberg, 

Germany 

Bacto yeast extract      BD Biosciences Clontech, Heidelberg, 

       Germany 

Bicine       Sigma, Munich, Germany 

Bromophenol blue      Serva, Heidelberg, Germany 

Bovine serum albumin (BSA)    Sigma, Munich, Germany 

Calcium chloride      Merck, Darmstadt, Germany 

Chloramphenicole     Sigma, Munich, Germany 

Coomassie brilliant blue R-250   Bio-Rad, Munich, Germany 

Dextrose       BD Biosciences Clontech, Heidelberg, 

       Germany 

Dimethylsulfoxide (DMSO)    Merck, Darmstadt, Germany 

Disodiumhydrogenphosphate   Merck, Darmstadt, Germany 

Dithiothreitol (DTT)      Roth, Karlsruhe, Germany 

dNTPs  Roche Diagnostics, Mannheim, 

Germany 

DMF (N,N-dimethylformamide)    Sigma, Munich, Germany 

DO (dropout) supplements    BD Biosciences Clontech, Heidelberg, 

       Germany 

Dulbecco’s modified Eagle’s medium (DMEM) Gibco BRL, Karlsruhe, Germany 

Ethanol (EtOH)      Riedel-de Haën, Seelze, Germany 

Ethidium bromide      Sigma, Munich, Germany 

Ethylenediamintetraacetate disodium salt  Roth, Karlsruhe, Germany 

(EDTA) 

Ethylene glycol      Sigma, Munich, Germany 

Fetal calf serum (FCS)      Gibco BRL, Karlsruhe, Germany 

Glucose      Merck, Darmstadt, Germany 

Glutathione-Sepharose 4B Amersham-Pharmacia, Freiburg, 

Germany 

Glycerol       Roth, Karlsruhe, Germany 

Glycine       Serva, Heidelberg, Germany 
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Histogel      Linaris, Wertheim-Bettingen, Germany 

Hydrochloric acid (HCl)     Merck, Darmstadt, Germany 

Interferon (IFN) � PBL Biomedical Laboratories, 

Piscataway, USA 

Imidazole       Fluka, Seelze, Germany 

Ionomycin      Sigma, Munich, Germany 

Isopropanol       Riedel-de Haën, Seelze, Germany 

Isopropylthio-b-D-galactosid (IPTG)   Roth, Karlsruhe, Germany 

Kanamycin       Serva, Heidelberg, Germany 

L-glutamine       Gibco BRL, Karlsruhe, Germany 

L-Glutathione (reduced)     Sigma, Munich, Germany 

Magnesium chloride     Merck, Darmstadt, Germany 

Magnesium sulfate      Merck, Darmstadt, Germany 

2-mercaptoethanol      Merck, Darmstadt, Germany 

Methanol       Merck, Darmstadt, Germany 

N-butyrate      Sigma, Munich, Germany 

Nonidet P40 (NP-40)     Fluka, Seelze, Germany  

Pefabloc  Roche Diagnostics, Mannheim, 

Germany 

Polyethylene glycol (PEG 1000)    Sigma, Munich, Germany 

Penicillin-Streptomycin     Gibco BRL, Karlsruhe, Germany 

Phenylmethylsulfonfluoride (PMSF)  Roche Diagnostics, Mannheim, 

Germany 

Phosphate buffered saline (PBS)  Dulbecco’s Gibco BRL, Karlsruhe, 

Germany 

Ponceau S       Sigma, Munich, Germany 

Potassium acetate      Riedel-de Haën, Seelze, Germany 

Potassium chloride      Merck, Darmstadt, Germany 

Protein G-Sepharose Fast Flow  Amersham-Pharmacia, Freiburg, 

Germany 

Rosswell Park Memorial Institute (RPMI)1640  Gibco BRL, Karlsruhe, Germany 

SD Base medium BD Biosciences Clontech, Heidelberg, 

Germany 

Skim milk powder      Merck, Darmstadt, Germany 
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Sodium acetate      Riedel-de Haën, Seelze, Germany 

Sodium azide      Serva, Heidelberg, Germany 

Sodium chloride      Riedel-de Haën, Seelze, Germany 

Sodium dodecylsulfate (SDS)    Merck, Darmstadt, Germany 

Sodium hydroxid      J.T.Baker B.V., Deventer, Holland 

Sorbitol Sigma, Munich, Germany 

Tetramethylethylenediamin (TEMED)  Amersham-Pharmacia, Freiburg, 

Germany 

12-O-tetradecanoylphorbol-13-acetate (TPA) Sigma, Munich, Germany 

Tris(hydroxymethyl)aminomethan (Tris)  Roth, Karlsruhe, Germany 

Triton X-100       Serva, Heidelberg, Germany 

Trypsin       Gibco BRL, Karlsruhe, Germany 

Tween 20       Merck, Darmstadt, Germany 

Urea        Roth, Karlsruhe, Germany 

Western Blue� Stabilized Substrate for  Promega, Mannheim, Germany 

Alkaline Phosphatase        

X-�-Gal       BD Biosciences Clontech, Heidelberg, 

       Germany 

 

 
3.1.3 Additional materials 
 
Autoradiography films BIOMAX-MR   Eastman-Kodak, Rochester, USA 

Cell culture plastic ware     Greiner, Nürtingen, Germany 

Nunc, Wiesbaden, Germany 

Falcon/Becton Dickinson, Heidelberg, 

Germany 

Filter paper (3 mm)      Whatman Ltd., Maidstone, England 

Glass slides for IF  Marienfeld, Bad Mergentheim, 

Germany 

Protran nitrocellulose transfer membranes  Schleicher & Schuell, Dassel, 

Germany 

Sterile filter units      Millipore 
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3.1.4 Cell lines 
 
293     human embryonal kidney cell line (ATCC: CRL-1573) 

HeLa      human cervix carcinoma (ATCC :CCL-2) 

BCBL-1 body cavity-based lymphoma cell line, kindly provided by 

Dr. Don Ganem, USCF, San Francisco, USA 

 

 

3.1.5 Recombinant vaccinia viruses 
 
Recombinant vaccinia virus expressing kaposin A, vKapA, was generated as 

reported previously (Kliche et al., 2001). Recombinant vaccinia virus vTF-7 

expressing T7 polymerase was provided by the NIH AIDS reagent program (Fuerst et 

al., 1986).  

 
 
3.1.6 Bacterial strains 
 
DH5�      Gibco BRL, Karlsruhe, Germany 

BL21 RIL kindly provided by Dr. K.-P. Hopfner, Genzentrum, 

München, Germany  

 

 

3.1.7 Yeast strains 
 
AH109  BD Biosciences Clontech, Heidelberg, Germany 

 

 
3.1.8 Plasmids 
 
pBCBL-1-XhoII-NheI kindly provided by Dr. Don Ganem, USCF, San 

Francisco, USA  

p53wt (Hoppe-Seyler and Butz, 1993) 

pCDNA 3.1 zeo Grb2 f. l. kindly provided by Dr. Hermann Schätzl, TU, München, 

Germany 

pCR3 Invitrogen, Karlsruhe, Germany 
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pCRE-Luc Stratagene, Amsterdam, The Netherlands 

pCR3Ig0.2 (Kliche et al., 2001) 

pCR3kapB this study 

pCR3kapD this study 

pCR3kapE this study 

pEGFP-C1  BD Biosciences Clontech, Heidelberg, Germany 

pEGFP-kapB this study 

pEGFP-DR2 this study 

pEGFP-DR1 this study 

pEGFP-DR2-NLS this study 

pET-15b Novagen, Madison, USA 

pET-DR2 this study 

pGADT7 BD Biosciences Clontech, Heidelberg, Germany 

pGADT7-kapB this study 

pGADT7-DR2 this study 

pGADT7-DR1 this study 

pGADT7-Grb2-C-SH3 kindly provided by Dr. Hermann Schätzl, TU, München, 

Germany 

pGBKT7 BD Biosciences Clontech, Heidelberg, Germany 

pGBKT7-kapB this study 

pGBKT7-DR2 this study 

pGBKT7-DR1 this study 

pGBKT7-Grb2 f. l. this study 

pGBKT7-Grb2 C-SH3 this study 

pGEX-4T-1 Amersham-Pharmacia, Freiburg, Germany 

pGEX-DR2 this study 

pGEX-DR1 this study 

pHIVluc (Holloway et al., 2000) 

p-IL6 kindly provided by Gergana Iotzova, Genzentrum, 

München, Germany 

pISRE-Luc Stratagene, Amsterdam, The Netherlands 

pNF�B-Luc Stratagene, Amsterdam, The Netherlands 

pUC21 New England Biolabs, Beverly, USA 

pRK5c-mycRasV12 kindly provided by Dr.Alan Hall, MRC, London, UK 
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pRTU1 and pRTU14 kindly provided by Dr. Arndt Kieser, GSF, München, 

Germany 

pSV2tat72 NIH AIDS reagent program 

pTIT-GFP kindly provided by Dr. Karl-Klaus Conzelmann, Gene 

Center, München 

p53-Luc Stratagene, Amsterdam, The Netherlands 

pSRE-Luc Stratagene, Amsterdam, The Netherlands 

pVEGF1-Luc kindly provided by Dr. Werner Risau, MPI für 

physiologische und klinische Forschung, Bad Nauheim, 

Germany 

 

 

3.1.9 Oligonucleotides 
 
name sequence (5’�3’) 

NsiI/3xStop/XhoI for TGGATAGAGGCTTAACGTGAC  
NsiI/3xStop/XhoI rev TCGAGTCACGTTAAGCCTCTATCCATGCA 
NLS NsiI/XhoI for TCCCCAAGAAGAAGCGCAAGGTGTAGC 
NLS NsiI/XhoI rev TCGAGCTACACCTTGCGCTTCTTCTTGGGGATGCA 
 
The oligonucleotides were obtained from metabion (Martinsried, Germany) and 

Thermo hybaid (Ulm, Germany). 

 

 

3.1.10 Molecular weight markers 
 
Gene Ruler 100 bp DNA ladder     MBI Fermentas, St. Leon-Rot, 

Germany 

Gene Ruler DNA 1 kb ladder   MBI Fermentas, St. Leon-Rot, 

Germany 

See blue plus 2 prestained protein standard  Invitrogen, Karlsruhe, Germany 

low range 
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3.1.11 Kits 
 
BCA Protein Assay      Pierce, Rockford, USA 

Dual-Luciferase® Reporter Assay System Promega, Mannheim, Germany 

ECL western blotting detection system  Amersham-Pharmacia, Freiburg, 

Germany 

Effectene Transfection Reagent  Qiagen, Hilden, Germany 

Luciferase Assay System Promega, Mannheim, Germany 

Pharmacia GFX PCR DNA Gel Purification Amersham-Pharmacia, Freiburg, 

Kit       Germany 

Qiafilter Plasmid Maxi Kit  Qiagen, Hilden, Germany 

 

 

3.1.12 Antibodies 
 
3.1.12.1 Primary antibodies 
 
kap-4F11(IgG2a)  rat mab against the c-terminal domain of K12 

    (Kliche et al., 2001) 

kdr1-3C12(IgG2a)  rat mabs against DR1; this study 

kdr1-8D10(IgG1) 

kdr2-4C6(IgG1)  rat mabs against DR2; this study 

kdr2-6H8(IgG1) 

3F10  rat mab against HA Tag, Roche Diagnostics, Mannheim, 

Germany  

9E10  mouse mab against Myc Tag, Santa Cruz Biotechnology, 

Heidelberg, Germany 

B-14  mouse mab against GST (B14), Santa Cruz 

Biotechnology, Heidelberg, Germany 

C-16  rabbit polyclonal antiserum against 14-3-3�, Santa Cruz 

Biotechnology, Heidelberg, Germany 

M-20 goat polyclonal serum against lamin B , Santa Cruz 

Biotechnology, Heidelberg, Germany 

SPA-860  rabbit polyclonal antiserum against calnexin, Stressgen   

Biotechnlogies Corp., BC, Canada 
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VAP-SV044  rabbit polyclonal antiserum against Grb2, Stressgen 

Biotechnlogies Corp., BC, Canada 

 

 

3.1.12.2 Secondary antibodies 
 
TIB173-FITC conjugated  mouse mab against rat IgG2a 

TIB170-biotinylated   mouse mab against rat IgG1 

alkaline phosphatase-conjugated: 

goat anti-rat     Jackson, Hamburg, Germany 

peroxidase-conjugated: 

donkey anti-goat   Jackson, Hamburg, Germany 

goat anti-rat     Jackson, Hamburg, Germany 

goat anti-rabbit   Jackson, Hamburg, Germany 

goat anti-mouse   Jackson, Hamburg, Germany 

 

 

3.1.13 Enzymes 
 
T4 DNA Polymerase   New England Biolabs, Beverly, USA 

Calf Intestinal Alkaline   New England Biolabs, Beverly, USA 

Phosphatase (CIP)    

T4 DNA Ligase    MBI Fermentas, St. Leon-Rot, Germany 

AmpliTaq Gold® DNA  Applied Biosystems, Foster City, CA, USA 

Polymerase 

T4 Polynukleotid kinase  New England Biolabs, Beverly, USA 

Restriction Endonucleases MBI Fermentas, St. Leon-Rot, Germany 

Roche Diagnostics, Mannheim, Germany 

New England Biolabs, Beverly, USA 
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3.2 Methods 
 
3.2.1 Bacterial culture 
 
3.2.1.1 Cultivation of bacteria 
 
E. coli bacteria were grown in LB medium or on LB agar plates. Incubation was 

performed at 37°C with constant shaking. 

LB medium (1 l):    10 g Bacto tryptone 

  5 g Bacto yeast extract 

  5 g NaCl 

LB agar:     LB medium with 1.5 % agar 

Selection medium:   LB medium with 100 µg/ml ampicillin and/or 50 

µg/ml kanamycin 

 

 

3.2.1.2 Preparation of competent bacteria 
 
For preparation of competent bacteria a single clone of DH5� was picked and grown  

in 20 ml TYM medium at 37°C to an OD600nm of 0.8. The bacterial culture was diluted 

with 100 ml TYM and incubated at 37°C until an OD600nm between 0.5-0.9 was 

reached. Subsequently the culture was again diluted by adding 500 ml of TYM and 

incubated at 37°C. At an OD600nm of 0.6 the culture was rapidly chilled down on ice 

water. The following incubations were all performed at 4°C or on ice. The bacteria 

were distributed to two 50 ml tubes and centrifuged 5 min at 3500 rpm (Heraeus 

Varifuge 3.0R). The supernatants were discarded and the pellets were resuspended 

in 100 ml icecold TfB I. After 40-50 min incubation on ice, the bacteria were 

centrifuged 10 min at 2500 rpm (Heraeus Varifuge 3.0R). The supernatants were 

discarded and the pellets were resuspended in 25 ml ice-cold TfB II. Aliquots of 0.4 

ml were added to precilled 0.5 ml reaction tubes and stored at –80°C. 

 

TYM:      10 mM MgS04 

         100 mM NaCl 

20 g/l Bacto tryptone 

  5 g/l Bacto yeast extract 
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TfB I:     30 mM KAc 

     50 mM MnCl2 

             100 mM KCl 

     10 mM CaCl2 

     15 % (v/v) Glycerol 

TfB II:     10 mM MOPS pH 7.0 

     75 mM CaCl2 

     10 mM CaCl2 

     15 % (v/v) Glycerol 

 

both buffers sterilized by filtration (Ø 0.2 µm) and stored at 4°C. 

 

 

3.2.1.3 Transformation 
 
Different volumes of the ligation reaction mixture (5, 10, 20 µl) were added to 100 µl 

competent bacteria, mixed with 80 µl of 50 mM CaCl2 and incubated 30 min on ice. 

After the heat shock, 1 min 42°C, 800 µl LB medium were added and bacteria were 

cultivated for 1 h at 37°C. Then 100 µl were taken and plated on LB agar plates with 

antibiotic(s). The residual bacteria were centrifuged (4000 g, 5 min), resuspended 

and plated the same way. The plates were incubated o/n at 37°C. 

 

 

3.2.2 DNA techniques 
 
3.2.2.1 Purification of plasmid DNA 
 
Plasmid DNA was purified with the Pharmacia GFX Micro Plasmid Kit in small scale 

and the Qiafilter Plasmid Maxi Kit in large scale according to the manufacturer’s 

instructions. 
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3.2.2.2 Determination of DNA concentration 
 
The concentration and purity of the purified DNA was determined by measuring the 

UV absorbance at 260 and 280 nm. The DNA concentration was calculated with the 

OD260nm  (1 OD260nm = 50 µg/ml dsDNA or 33 µg/ml ssDNA). The purity was 

estimated with the OD260nm/OD280nm ratio, with a ratio of approximately 1.8 indicating 

a low degree of protein contamination. 

 

 

3.2.2.3 Restriction endonuclease digestion 
 
Restriction endonuclease reactions were performed according to the manufacturer’s 

recommendations. In general, 1.5 µg DNA were digested for 2 h at the respective 

temperature with 10-20 U enzyme. Efficacy of the cleavage reaction was controlled 

by agarose gel electrophoresis. 

 

 

3.2.2.4 Oligonucleotide phosphorylation and annealing 
 
Single stranded oligonucleotides were phosphorylated o/n at 37°C o/n with T4 

Polynukleotid kinase. 

Reaction mixture: 

1.5 µl oligonucleotide (150 pMol) 

2 µl 10 mM ATP 

2 µl 10x PNK buffer (700 mM Tris-HCl (pH 7.6), 100 mM MgCl2, 50 mM dithiothreitol) 

1 µl T4 Polynukleotid kinase (10 U) 

13.5 µl H2O 

 

For annealing the phosphorylation mixtures of complementary oligonucleotides were 

combined and diluted to 200 µl in H2O. The reaction tube was boiled in 500 ml of H2O 

for 5 min and allowed to cool down to RT. Subsequently, the oligos were precipitated 

by ethanol precipitation as described below and resolved in an appropriate amount of 

H2O before used in ligation. 
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3.2.2.5 5’-Dephosphorylation reaction 
 
5’-dephosphorylation reaction of plasmid vector DNA after restriction endonuclease 

cleavage was performed with the calf intestinal alkaline phosphatase (CIP). 50 U CIP 

were added to about 1.5 µg restriction enzyme digested plasmid DNA. After 30 min 

incubation at 37°C was stopped and the DNA was isolated by agarose gel 

electrophoresis. 

 

 

3.2.2.6 Polymerase chain reaction (PCR) 
 
Polymerase Chain Reaction (PCR) was performed with the AmpliTaq Gold® DNA 

polymerase from Thermus aquaticus to verify the cloning of the oligonucleotides 

(containing stop codons or a NLS, see 2.1.8) into the plasmids pCR3kapB and 

pEGFP-DR1-NLS, respectively. 

The reaction mixture contained: 

5 µl 10x PCR Buffer (100 mM Tris-HCl pH 8.3, 500 mM KCl, 15 mM MgCl2, 0,01% 

gelatine w/v.) 

1 µl 10 mM dNTPs (200 µM each) 

1 µl forward primer (150 pMol) 

1 µl reverse primer (150 pMol) 

1 µl AmpliTaq Gold® (5U) 

21 µl H2O 

+ 20 µl template DNA in H2O (bacteria pools) 

Bacteria colonies were picked with pipette tips from plates and transfered into a PCR 

tube containing 20 µl of H2O. Subsequently, the tubes were boiled for 10 min at 94°C 

before adding the PCR reaction mixture. 

 

The following cycles were performed: 

1. 94°C 5 min 

2. 94°C 1 min 

3. 55°C 1 min         10x with 1°C decrease per cycle to 45°C (touchdown), then 30x 

4. 72°C 2 min 

5. 72°C min 10 min 
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3.2.2.7 Isolation of DNA fragments 
 
DNA fragments were separated by agarose gel electrophoresis, stained with 

ethidium bromide and detected with UV light (366 nm). The gel slice containing the 

DNA fragments was cut out and the DNA was isolated using the Pharmacia GFX 

PCR DNA Gel Purification Kit according to the manufacturer’s instructions. 

 

 

3.2.2.8 Phenol/chloroform extraction and ethanol precipitation 
 
Proteins were removed from DNA preparations by extracting twice with 1x volume 

phenol/chloroform and once with 1x volume chloroform. After vigorous vortexing for 

10 s the solution was centrifuged at 14000 rpm (microcentrifuge) for 1 min and the 

upper DNA containing phase was recovered. Then 0.1x volume 3 M NaAc pH 5.2 

and 2.5x volume 100% EtOH (cold) were added, and incubation at –80°C was 

performed for 20 min. The precipitated DNA was centrifuged down at 14000 rpm for 

30 min (4°C). Then the pellet was washed once with 70% EtOH (cold). After another 

centrifugation step (14000 rpm, 15 min, 4°C, microcentrifuge) the EtOH was carefully 

removed, the pellet air-dried at RT and finally resuspended in H2O.  

 

 

3.2.2.9 Ligation 
 
For ligation about 50 ng vector DNA was used with a molar ration of vector/insert of 

about 1:3. The reaction was performed in a total volume of 20 µl 1x reaction buffer 

(MBIFermentas) with 5 U T4 DNA Ligase (MBI Fermentas). First vector and insert 

were mixed in reaction buffer, then the ligase was added. After incubation o/n in a 

watherbath at 16°C the ligation either directly transformed into competent bacteria or 

stored at –20°C until further usage. 

 

 

3.2.2.10 Agarose gel electrophoresis 
 
Analysis of DNA fragments and plasmids was performed by agarose gel 

electrophoresis in 1x TAE. In general, agarose concentration was between 1 and 3 % 

in 1x TAE. The agarose was solubilized by heating in a microwave oven. Ethidium 
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bromide was added to a final concentration of 0.25 µg/ml (2,5 µl stock to 100 ml) just 

before pouring the gel. Probes were mixed with 0.17x volume loading buffer. Gels 

(6.5 x 9.5 cm) were run horizontally at 80-120 V. DNA was detected with UV light, 

�=254 nm or �=366 nm to cut out specific fragments. 

 

loading buffer (6x in water)  MBI Fermentas, St. Leon-Rot, Germany 
20x TAE:     800 mM Tris 

400 mM NaAc 

  40 mM EDTA 

adjusted to pH 7.8 with acetic acid 

Ethidium bromide (stock):   10 mg/ml 

 
 
3.2.2.11 Plasmid construction  
 
(1) pCR3kapB. A fragment containing the DR2 and DR1 repeat regions was 

subcloned from pBCBL-1-XhoII-NheI into pUC21 (New England Biolabs) using 

HindIII and NsiI restriction sites. Stop codons in each reading frame were added by 

subcloning the two oligos TGGATAGAGGCTTAACGTGAC and 

TCGAGTCACGTTAAGCCTCTATCCATGCA as adapters into the NsiI and XhoI 

restriction sites of this plasmid. Subsequently, a fragment excised by HindIII and XhoI 

was subcloned into pCR3 (Invitrogen). (2) pCR3kapD. The DR1 repeats were 

excised from pEGFP-DR1 by PstI and XhoI restriction sites and subcloned into a 

pCR3 derivative containing a HA Tag, in which K12 fragment excised with NsiI and 

XhoI from pBCBL-1-XhoII-NheI has been subcloned. (3) pCR3kapE. The DR1 

repeats (containing an AUG start codon and a HA Tag) were subcloned by BglII and 

XhoI restriction sites from pGADT7-DR1 into pCR3. (4) pEGFP-kapB. The fragment 

excised by PstI and XhoI from pCR3kapB was subcloned into pEGFP-C1 (Clontech). 

(5) pEGFP-DR2. pEGFP-kapB was digested with SmaI and religated. (6) pEGFP-

DR1. pEGFP-kapB was digested with HhaI, blunted with T4 DNA Polymerase and 

digested with XbaI. Subsequently, the fragment was ligated into pEGFP-C1 digested 

with SmaI and XbaI. (7) pEGFP-DR1-NLS. The DR1 repeats were excised by 

digestion of pEGFP-DR1 with PstI and XhoI and subcloned into pUC21. 

Subsequently, the oligos TCCCCAAGAAGAAGCGCAAGGTGTAGC and 
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TCGAGCTACACCTTGCGCTTCTTCTTGGGGATGCA encoding a SV-40 NLS and a 

stop codon were subcloned as adapters into the NsiI and XhoI restriction sites. The 

DR2-NLS fragment was eventually subloned by PstI and SacII into pEGFP-C2. (8) 

pGADT7-kapB. The fragment excised by EcoRI and XhoI from pEGFP-kapB was 

subcloned by EcoRI and XhoI restriction sites into pGADT7 (Clontech). (9) pGADT7-

DR2. The EcoRI and XhoI fragment from pEGFP-DR2 was subcloned by EcoRI and 

XhoI restriction sites into pGADT7. (10) pGADT7-DR1. The fragment excised by 

EcoRI and XhoI from pEGFP-DR1 was ligated into EcoRI/XhoI digested pGADT7. 

(11) pGBKT7-kapB. (12) pGBKT7-DR2. (13) pGBKT7-DR1. Fragments isolated from 

pEGFP-kapB, pEGFP-DR2 and pEGFP-DR1 by EcoRI and XhoI digestion were 

subcloned into pGBKT7 (Clontech) digested with EcoRI and SalI. (14) pGBKT7-Grb2 

f. l.. Grb2 f.l. was excised by BamHI and XhoI digestion from pCDNA 3.1 zeo Grb2 f. 

l. and ligated into BamHI/SalI digested pGBKT7. (15) pGBKT7-Grb2-C-SH3. 

Likewise, Grb2-C-SH3 was excised by BamHI and XhoI digestion from pGADT7-

Grb2-C-SH3 and ligated into BamHI/SalI digested pGBKT7. (16) pGEX-DR2. (17) 

pGEX-DR1. Repeat regions isolated from pEGFP-DR2 and pEGFP-DR1 by EcoRI 

and XhoI digestion were subcloned into pGEX-4T-1 (Amersham). (18) pET-DR2. 

DR2 repeats were excised by PstI/XhoI digestion of pEGFP-DR1 and ligated into 

pUC21 via the same restriction sites. From this construct the DR2 repeats were 

subcloned by NdeI and XhoI restriction sites into pET-15b (Novagen). 

 
 
3.2.3 Tissue culture 
 
3.2.3.1 Cultivation and cryoconservation 
 
The KSHV-infected PEL cell line BCBL-1 was cultured in RPMI 1640 supplemented 

with 20% fetal calf serum, 100 IU/ml penicillin, 100 µg/ml streptomycin and 2 mM L-

glutamine. For induction of the lytic viral cycle BCBL-1 cells were treated for 48 h with 

3 mM n-butyrate. 293 and Hela cells were cultured in DMEM/10% FCS plus 

supplements at 37°C and 5% CO2. For cryoconservation cells were detached with 

trypsin and centrifuged at 300 g for 5 min at 4°C. Then the cells were resuspended in 

1 ml FCS/10% DMSO (4°C) with a final concentration of 0.5-1x107 cells/ml and 

transferred to cryovials which were cooled to –80°C in a “Cryo 1°C Freezing 

Container”. From there the vials were transferred to liquid nitrogen for longterm 
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storage. Frozen aliquots were quickly thawed at 37°C in a waterbath, 10ml DMEM 

was added and after centrifugation at 300 g for 5 min the supernatant was removed. 

Subsequently cells were resuspended in complete medium and transferred to cell 

culture dishes. 

 

 

3.2.3.2 Calcium phosphate transfection 
 
For transient transfection cells were grown on 10 cm Ø dishes to 60-70% confluency. 

500 µl of 2x HBS pH 7.05 was added to a 15 ml Falcon tube. In another tube 20 µg 

DNA was combined with 500 µl 250 mM CaCl2. The tube with the 2x HBS was 

vortexed while the DNA/CaCl2 solution was added dropwise. The solution was 

incubated at RT for 15-20 min to allow the formation of the Calcium-DNA precipitate. 

Subsequently, the suspension was mixed with 6 ml fresh medium and was added to 

the cells after removal of the old medium. The next day protein expression was 

assessed by immunofluorescence. 

 

2x HBS pH 7.05:   50 mM HEPES 

1.5 mM Na2HPO4x 2 H2O 

280 mM NaCl 

12 mM Glucose 

 

 

3.2.3.3 Immunofluorescence 
 
BCBL-1 cells that have been induced for 48 h with 3 mM n-butyrate were spotted 

onto poly-L-lysine-coated coverslips. Hela cells were grown on coverslips. Cells were 

fixed with ice-cold methanol for 2 min and subsequently blocked against non-specific 

binding for 1 h with PBS/2,5% FCS. The cells were incubated with the primary 

antibody diluted in PBS/2,5% FCS for 1 h, washed four times with PBS and 

incubated with the secondary antibody (fluorescein conjugated or biotinylated mouse 

anti-rat) for 1 h, followed by another washing step and subsequent incubation with 

Streptavidin Texas Red and/or Hoechst dye (to counterstain nuclear DNA). After a 

final washing step, the coverslips were mounted on glass slides with Histogel. The 

mounted cells were analysed using an inverse fluorescence/light microscope. 
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3.2.3.4 Reporter gene analysis 
 
For luciferase reporter assays, 293 cells were split into 12-well plates the day before 

transfection. All plasmids were transiently transfected using the Effectene 

Transfection Reagent (Qiagen) according to the manufacterer’s instructions. In all 

experiments, total amounts of transfected DNA were equalized between wells using 

empty pCR3. One day post transfection, cells were starved in DMEM, containing 1% 

fetal calf serum (plus TPA+Ionomycin [500 ng/ml+1 µM], IFN� [500 U/ml] or forskolin 

[30 µM] if used as positive control), for another 24 h. After 48 h cells were harvested 

by flushing them off the the plates with 700 µl of cold PBS, transfered to a tube and 

centrifuged at 2000 rpm for 2 min (4°C, cooled microcentrifuge). Supernatants were 

discarded and luciferase activity was determined by using a commercial luciferase 

assay system (Promega) and a tube luminometer (Berthold) according to the 

manufacterer’s instructions. 
 

 

3.2.4 Protein techniques 
 
3.2.4.1 Cellular fractionation 
 
For particular fractionation, stimulated BCBL-1 cells and transfected 293 cells were 

washed twice with PBS and resuspended in hypotonic lysisbuffer (10 mM Hepes, 10 

mM KCl, 10 mM MgCl2, 0.5 mM EDTA with 1 mM PMSF and 2 mM Pefablock) 

(according Nagel et al., 1998). After an incubation of 10 min on ice, cells were 

sheared by passing through a 26 gauge needle. To separate nuclei, lysates were 

centrifuged 10 min at 4°C and 110 g, the pellets were washed three times with F-

actin buffer (10 mM HEPES pH 7.5, 0.5 mM ATP, 0.5 mM dithiothreitol, 20µM MgCl2, 

15% Glycerol) and resuspended in TE buffer (10 mM Tris, 1 mM EDTA pH 8). The 

postnuclear supernatant was ultracentifuged for 1 h at 4°C and 40,000 rpm and 

cytosolic supernatants were collected. The pellets were resuspended and washed 

with hypotonic lysis buffer and centrifuged for 10 min at 4°C and 14000 rpm. The 

resulting pellet was resuspended in hypotonic lysisbuffer containing 1% (vol/vol) 

Nonidet P-40, incubated on ice for 10 min and centrifuged again. Supernatants 

representing the detergent-soluble membrane fraction were collected, pellets 

representing the unsoluble fraction were resuspended in 2xSDS protein sample 



                                                                                                  Material and Methods   
 

 39

buffer (10 % Glycerol, 0.2 % bromophenol blue, 4 % SDS, 4 % 2-mercaptoethanol, 

50 mM Tris pH 6.8). Fractions were directly analysed by SDS-PAGE or stored at -

20°C. 

 

 

3.2.4.2 Co-immunoprecipitation  
 
Co-immunoprecipitation was performed using the plasmids pGBKT7 and pGADT7 

with T7 promoter and recombinant vaccinia virus vT7 expressing the T7 RNA 

polymerase. 293 cells were cultured on 10 cm dishes and infected with vTF-7 at a 

MOI of 10 in serum-free medium. 1,5 h after infection, cells were transfected with 10 

µg of each of the two expression plasmids by calcium phosphate transfection. 

Expression was controlled using a GFP plasmid under the control of a T7 promoter 

(pTIT-GFP). After 24 h, cells were lysed by incubation in 1 ml of NP-40 lysis-buffer 

(1% NP-40, 140 mM NaCl, 5 mM MgCl2, 20 mM Tris pH 7,6, 1 mM PMSF) for 30 min 

on ice. Lysates were centrifuged for 10 min at 20,500 g and 4°C to remove 

unsolubilized material and precleared with 50 µl of preequilibrated protein G-

Sepharose. Subsequently, proteins were precipitated from the supernatant by adding 

200 µl hybridoma supernatant of the specific anti-DR monoclonal antibodies (mab) 

and 50 µl of protein G-Sepharose beads and incubating in an overhead mixer o/n at 

4°C. Beads were washed three times with ice-cold NP-40 buffer. Co-

immunoprecipitations, cellular subfractions and total cell lysates of BCBL-1 and 

transfected 293 cells were resuspended in 2xSDS protein sample buffer. Cellular 

subfractions and total cell lysates were additionally sonicated for 30 s. Samples were 

boiled for 5 min and directly analysed by SDS-PAGE or stored at –20°C. For the 

equilibration of protein G-Sepharose, 1.5 g were washed 3x and resuspended with 

NP-40 lysis-buffer to obtain a 50% slurry. 

 

 

3.2.4.3 Pull-down of recombinant SH3 domain proteins 
 
For pull-down experiments of recombinant GST-SH3 domain proteins (kindly 

provided by Dr. Stephan Feller, Oxford, UK) approximately 600 ml of n-butyrate 

induced BCBL-1 cells were lysed in 10 ml of NP-40 buffer. Subsequently the lysate 

was divided into 20x 500 µl aliquots and each aliquot was incubated in an overhead 
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mixer with 45 µl of protein G-Sepharose, 50 µl of kdr1-8D10 hybridoma supernatant 

and 10 µg recombinant protein each at 4°C o/n. Beads were washed three times with 

ice-cold NP-40 buffer and resuspended in 2xSDS protein sample buffer. After boiling 

for 5 min, samples were analysed by SDS-PAGE on 15% gels. Precipitated proteins 

were detected by Western blotting with an primary anti-GST antibody and a 

peroxidase-conjugated secondary antibody (see below). 

 

 

3.2.4.4 SDS PAGE 
 
Gel electrophoresis was performed with minigels using the Protean II system (Bio-

Rad) with 12 to 20%  gels (80 x 50 x 1 mm). The solution for generating the 

separation gel was mixed and after pouring, the gel was overlaid with isopropanol. 

After polymerization the isopropanol was sucked of the gel. The stacking gel solution 

was poured on top of the separation gel and a comb was fixed. After polymerization 

the glass plates containing the gel were assembled in the gel electrophoresis 

apparatus. Samples or pellets from immunoprecipitation were resuspended in the 

appropriate amount of 2xSDS protein sample buffer and heated for 5 min to 95°C. 

After cooling to RT the samples were centrifuged for 2 min at 14000 rpm 

(microcentrifuge) and loaded on the gel together with a protein standard. Separation 

was performed at 150 V constant current for 1-2 h. 
 

Separation Gel :       12%___    15%___    20%___                         

Acrylamide/ Bisacrylamide (37.5:1)    2 ml          2.5 ml       3.33 ml 

1.5 M Tris pH 8.8       1.25 ml     1.25 ml     1.25 ml  

10 % SDS        50 µl         50 µl         50 µl 

H2O         1.675 ml   1.175 ml   0.343 ml 

10 % APS        20 µl         25 µl         25 µl 

TEMED        2.5 µl        2.5 µl        2.5 µl 
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Stacking gel:       5%____ 

Acrylamide/ Bisacrylamide (37.5:1)    1.35 ml 

0.5 M Tris pH 6.8       0.625 ml 

10 % SDS        25 µl 

H2O         1.53 ml 

10 % APS        12.5 µl 

TEMED        2.5 µl 

 

Electrophoresis buffer (10 x):    50 mM Tris 

384 mM glycine 

0.1% SDS  

 

 

3.2.4.5 Western blotting 
 
Proteins were blotted on nitrocellulose membranes using the Protean II system (Bio-

Rad). A piece of nitrocellulose membrane and two pieces of filter paper and two 

sponges of the same size as the gel were soaked with transfer buffer. A sponge, a 

piece of filter paper, the nitrocellulose membrane, the gel, another piece of filter 

paper and again a sponge were packed. Subsequently, air bubbles were removed by 

rolling a test tube over the sponge and the package was clamped into the transfer 

tank with the nitrocellulose facing the anode. Blotting was performed with 100 V 

constant for 1 h. Proteins were detected after 2 min incubation in Ponceau staining 

solution. The membranes were labeled with a pen and was washed several times 

with H2O to remove the Ponceau staining solution. Unspecific binding sites were 

blocked by incubation in TBST (TBS, 0.05% Tween 20), 5% skim milk powder, 

0.02% NaN3 either 1 h at RT or o/n at 4°C. Then incubation with the first antibody 

was performed in 5-10 ml TBST (used also in the following washing and incubation 

steps) at 4°C o/n. After five washing steps of 15 min with approximately 200 ml buffer 

each, incubation with the secondary antibody coupled to peroxidase was performed 

in 15 ml buffer at RT for 1 h followed by washing 5x 10 min in 200 ml buffer.The 

blotted proteins were detected using the ECL Western blotting detection system 

(Amersham-Pharmacia) according to the manufacturer’s instructions. The membrane 

was exposed to BIOMAX-MR autoradiography films for different time periods and 

films wre developed using an automatic film developing machine. 
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Transfer buffer (1l):      Ponceau solution (100 ml):  

Tris base 5.8 g      Ponceau S 0.5 g 

Glycine 2.9 g      Glacial acetic acid 1 ml 

SDS 0.37 g       H2O 98.5 ml 

Methanol 200 ml 

H2O to 1l 

 

 

3.2.4.6 Purification of recombinant DR2 and DR1 GST-tagged fusion proteins 
 
To generate monoclonal antibodies, DR1 and DR2 repeats were expressed as GST-

fusion proteins. Therefore 100 ml of o/n cultures of BL 21 containing the pGEX-DR2 

and the pGEX-DR1 construct, respectively, were diluted with 500 ml prewarmed 

selection medium (LB with 100 µg/ml ampicillin) to an OD600nm of 0.1 and grown at 

37°C to an OD600nm of 0.5. Subsequently,  500 ml of the cultures were  induced with 

an IPTG concentration of 1 mM, followed by a 3 h incubation at 37°C. After 

incubation the cultured bacteria were pelleted by centrifugation at 4000 g for 20 min 

and resuspended in 30 ml PBS containing 1 mM PMSF and 2 mM Pefablock  at 4°C, 

before being sonicated 3x for 20 s (output control level 7, 100 %) with a Branson 

Sonifier 450. 1 ml of 10 % Triton X-100 was added, solutions were shaken for 30 min 

at 4°C and centrifuged for 10 min at 4000 g following passage of the supernatants 

through a 0.45 µm filter. Cell extracts were combined with 2 ml of 50 % slurry of the 

Glutathione-agarose resin in PBS for each 100 ml of bacterial culture used to make 

the protein extract and the mixture was shaken for 1 h at 4°C. Beads were 

centrifuged down at 500 g for 5 min at 4°C and washed 3x with 10 bed volumes of 

PBS containing 1 % Triton X-100. GST-fusion proteins were eluted from the washed 

beads by adding one bed volume of Glutathione elution buffer (10 mM reduced 

Glutathione, 50 mM Tris-HCl pH 8.0) to the pellet. After incubation with gentle 

agitation for 10 min at RT beads were centrifuged again and the supernatants (which 

contain the eluted fusion proteins) were transfered to a fresh tube (this was repeated 

2 times). Eluted fractions were analysed by SDS-PAGE on 12 % gels.  
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3.2.4.7 Purification of recombinant His-tagged DR2 fusion protein 
 
20 ml of an o/n culture of BL21 RIL containing the pET 15b DR2 construct were 

added to 3 l of prewarmed selection medium (LB with 100 µg/ml ampicillin, 

chloramphenicole 100 µg/ml) and grown at 37°C to an OD600nm of 0.4-0.5. 3ml 1 M 

IPTG was added to the medium followed by a 4 h incubation at 30°h. Bacteria were 

pelleted by centrifugation at 4000 g for 20 min and resuspended in 3 ml/g buffer 1 

(200 mM NaCl, 3 mM imidazole, 20 mM Tris , pH 7. 6 including 1 mM PMSF) at 4°C. 

Subsequently the resuspension was sonicated 3x for 2 min (output control level 6) on 

ice water and centrifuged at 10000 g for 30 min and 4°C. The supernatant was used 

as mentioned below and a sample of the pellet was resuspended in 10 M urea and 

stored for SDS-PAGE analysis. Approximately 2-3 ml Ni-agarose beads were 

washed in 10 ml buffer 5 (200 mM NaCl, 300 mM imidazole, 20 mM Tris , pH 7. 6 

including 1 mM PMSF), the suspension was loaded to a column and the beads were 

equilibrated with 6 bed volumes of buffer 1. The supernatant of the sonicated 

bacterial solution containing the soluble fusion protein was loaded on the column and 

washed with 4 bed volumes of buffer 1. Hereafter the HisTag-fusion protein was 

eluted with each 2x 5 ml buffer 2, 3, 4 (composition similar as buffer 1 but with 50 

mM, 100 mM, 150 mM imidazole, respectively) and 5. Eluted fractions and samples 

of solution steps were analysed by SDS-PAGE on 12% gels. 

 

 

3.2.4.8 Coomassie blue staining 
 
For Coomassie blue staining of proteins, SDS-PAGE gels were incubated in 

Coomassie blue staining solution for 1-12 h and destained with 30% methanol/10% 

acetic acid by changing the destaining solution until the desired protein staining was 

visible.  

 

Coomassie blue staining solution:  0.25% Coomassie brilliant blue R-250 

45% methanol  

10% acetic acid 
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3.2.4.9 Generation of rat monoclonal antibodies 
 
Rat monoclonal antibodies were generated by Elisabeth Kremmer, GSF, Munich, 

Germany (Kremmer et al., 1995). Lou/C rats were immunized 3x with 50 µg DR1-

GST-fusion protein at a time in intervals of three weeks. The first injection was done 

with complete Freund’s adjuvant, the second with incomplete Freund’s adjuvant both 

intraperitoneally and subcutaneously and the third without adjuvant intraperitoneally. 

For DR2 the procedure was similarly as described above, performing the first 

immunization with DR2-GST-fusion protein. However, for the second and third 

injection DR2-HisTag-fusion protein was used. Fusion of rat immune spleen cells 

with the myeloma cell line P3X63Ag8.653 was performed following the protocol of 

Köhler and Milstein 3 days after the final boost (Kohler and Milstein, 1992). 

Supernatants from hybridoma cells were tested by Western blotting for the presence 

of anti-DR2 and anti-DR1 antibodies, respectively. SDS-PAGE gels with lysates of 

induced BCBL-1 cells were blotted onto nitrocellulose, and unspecific binding sites 

were blocked by incubation in TBST (TBS, 0.05% Tween 20), 5% skim milk powder, 

0.02% NaN3 for 1 h at RT. Thereafter the membranes were cut into small strips and 

each strip was put into a separate slot of a multi-slot chamber (selfconstructed). The 

Hybridoma supernatants were added and incubated o/n at 4°C with constant shaking 

followed by 3x 15 min washing steps with TBST and incubation with an alkaline 

phosphatase-conjugated goat anti-rat antibody (1:1000 in TBST diluted). Finally, 

bound antibodies were detected using the Western Blue� Stabilized Substrate for 

Alkaline Phosphatase (a mixture of BCIP and NBT in a proprietary stabilizing buffer, 

Promega) according to the manufacterer’s instructions. Hybridoma cells producing 

antibodies recognizing DR2 or DR1 repeats were subcloned at least twice by limiting 

dilution. The immunoglobulin-isotypes were determined by ELISA. 

 

 

3.2.5 Yeast culture 
 

3.2.5.1 Competent yeast cells 
 
To produce competent yeast cells, a preculture was prepared first. 10 ml YPD-

medium were inoculated with one colony of the yeast strain AH109 overnight at 

30°C. The following day, the preculture was added to 250 ml of fresh YPD-medium 
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and grown at 30°C until it reached an OD600 of 0.6. Cells were harvested in 50 ml 

Falcon tubes by centrifugation at 930 g for 5 min at 4°C. The supernatant was 

discarded and the cells were resuspended in 12.5 ml SBEG-solution each and 

subsequently pelleted another time. The resulting cell pellet was resuspended in 500 

�l SBEG-Solution and parted into 100 �l aliquots. The aliquots were shock-frozen in 

liquid nitrogen and stored at – 80°C. 

 

YPD medium (1 l): 

For liquid medium:        10 g Bacto yeast extract  

  20 g Bacto peptone 

  20 g Dextrose 

add H2O to 1 liter, autoclave 

For solid medium:     add 20 g agar before autoclaving 

 

SBEG-solution:          1 M Sorbitol 

  10 mM Bicine pH 8,35 sterile 

    3 % Ethylene glycol 

 

 

3.2.5.2 Transformation and test of protein interaction 
 
For transformation, a microlitertube with 100 �l competent AH109 yeast cells was 

thawed quickly in a waterbath at 37°C. Subsequently 1 �g of the used bait- 

(pGBKT7) and prey- (pGADT7) constructs was pipetted into the thawed yeast cells 

and mixed carefully with a pipet. 750 �l PEG/Bicine-solution were added, the 

suspension was mixed again and the reaction was incubated at 30°C for 1 h, 

followed by incubation for 5 min at 45°C. The next step was to pellet the cells for 2 

min at 2700 g in a table centrifuge. The supernatant was removed by a pasteurpipet 

and the pellet was resuspended in 1ml NB-buffer. Again cells were pelleted, as 

described above, but only 800 �l of the supernatant were removed. 

 

PEG/Bicine-Lösung:     40 % PEG 1000 

         200 mM Bicine, pH 8,35, sterile 
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NB-Puffer:         0,15 M NaCl 

          10 mM Bicine pH 8,35, sterile 

 

The pellet was resuspended in the remaining 200 �l supernatant and plated on SD/-

Leu/-Trp plates, consisting of SD Base medium (+ 2% Agar) containing different 

formulation of dropout (DO) supplement (amino acid mixture, lacking the indicated 

amino acids). In pGBKT7, which has a Trp1 nutricion marker, the bait gene is 

expressed as a fusion to the GAL4 DNA-binding domain, while the prey gene is 

expressed in pGADT7 (Leu2 nutricion marker) as a fusion to the GAL4 activation 

domain. For detection of protein-protein interactions of the expressed constructs, 

colonies were replated on SD/-Ade/-His/-Leu/-Trp/X-�-gal, and positive clones were 

detected by growth and by �-galactosidase activity according to the Matchmaker 

Gal4 Two-Hybrid System 3 User Manual (Clontech, 1999). 
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4 Results 
 
4.1 Expression of the DR2 and DR1 repeat region as GST-fusion 

proteins in E. coli 
 
For examinations concerning the biochemistry of proteins, monoclonal antibodies are 

indispensable molecular detection tools used in a vast number of techniques. To start 

the investigations on the kaposin protein isoforms, the first step was to rise mabs 

against the repeat regions of the K12 locus, since only mabs against the c-terminus 

of the ORF K12 (kaposin A) were present at the beginning of this study. 

For this purpose the DR2 and the DR1 repeat regions were expressed in E.coli as 

Glutathione-S-Transferase (GST)-fusion proteins. After induction with IPTG, a 

significant part of the bacterial proteins was contributed by the DR-GST-fusion 

protein (shown for DR1, Fig. 7A). Both of the recombinant proteins were found to be 

soluble in sufficient amounts and were purified by affinity chromatography using 

Glutathione-agarose resin (Fig. 7B). Although the purification was not complete, the 

proteins were sufficiently pure for immunization of Lou/C rats. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Expression and purification of DR-GST-fusion proteins 
(A) Expression of GST-DR1 in E. coli. The DNA encoding DR1 repeats was cloned into the bacterial 
expression vector pGEX-4T-1 and the GST-fusion protein was expressed as described in Materials 
and Methods (the same procedure was carried out for DR2 repeats, data not shown). Supernatants of 
E. coli cell lysates (after sonication) from 0-2h IPTG induced cultures were analysed by SDS-PAGE 
(lanes 1-3, pGEX-4T-1 transformed control culture; lanes 4-6, pGEX-DR1 transformed culture). 
Specific bands are indicated by arrows. (B) Elution of recombinant DR1- and DR2-GST-fusion 
proteins. Recombinant GST-fusion proteins were eluted from the Glutathione-agarose resin as 
described in Material and Methods and analysed by SDS-PAGE (lane 1, GST; lane 2, GST-DR1; lane 
3, GST-DR2). Specific bands are indicated by arrows. 
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4.2 Expression of the DR2 repeat region as a HisTag-fusion protein 
in E. coli 

 

An earlier attempt to boost the immunized rats with the recombinant GST-DR2-fusion 

protein was not successful. To eliminate the clones directed against the Tag 

sequence and also to enhance the specific immune response against DR2, the boost 

of the GST-DR2 immunized rats in this approach was performed with a DR2-HisTag-

fusion protein. Thus the DR2 repeat region was expressed as a recombinant 

Histidine-tagged protein in E. coli. The transformed bacteria expressed the 

approximately 20 kd DR2-fusion-protein after IPTG induction. After lysis of the 

bacteria, it was found in the supernatant in reasonable amounts. Subsequently, the 

recombinant DR2-His-Tag-fusion protein was purified from the lysis supernatant via 

affinity chromatography using a Ni-agarose beads column (Fig. 8). An adequate 

purity level was reached, and the recombinant protein of fraction 8 (lane 12) was 

used for the boost.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Expression and purification of DR2-HisTag-fusion protein 
(A) Expression of DR2-HisTag-fusion protein in E. coli. The DNA encoding DR2 repeats was cloned 
into the bacterial expression vector pET-15b and the DR2-HisTag-fusion protein was expressed as 
described in Materials and Methods. Samples of the resuspended pellet (p) as well as the supernatant 
(s) obtained after sonication were analysed by SDS-PAGE. Specific bands are indicated by arrows. 
(B) Elution of DR2-HisTag-fusion protein. Recombinant DR2-HisTag-fusion protein was eluted from 
the Ni-agarose column as described in Material and Methods. Samples of  the resuspended pellet 
(lane 1) and the supernatant (lane 2) obtained after sonication, flow through (lane 3), washing steps 
(lane 4, 3 mM imidazole buffer; lane 5 and 6, 50 mM imidazole buffer) and eluted fractions (lanes 7-
12, each 2x eluted with 50 mM, 100 mM and 150 mM imidazole buffer, respectively) were analysed by 
SDS-PAGE. Specific bands are indicated by arrows. 
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4.3 Generation of monoclonal antibodies against DR2 and DR1 
repeat regions 

 
To generate monoclonal rat antibodies, the purified recombinant DR proteins were 

used for immunization of Lou/C rats as described in Material and Methods (done in 

cooperation with Elisabeth Kremmer, GSF, Munich, Germany). The hybridoma 

supernatants containing the rat monoclonal antibodies were tested by Western Blot 

analysis using total cell lysate of the n-butyrate induced, HHV-8 positive cell line 

BCBL-1. Antibodies in several of the tested hybridoma supernatants detected bands 

that correlated to the predicted sizes of the respective kaposin isoforms (shown for 

DR2 only, Fig. 9A and see also below). After the subcloning of the hybridoma cells, 

only clones 4C6 and 6H8 (recognizing DR2) as well as clones 3C12 and 8D10 

(recognizing DR1) produced still antibodies that were tested positive in different 

immunoassays. These antibodies showed activity in Western Blots, 

immunofluorescence and immunoprecipitation (Fig. 9B and Table 1, data not shown) 

and were used in the following experiments. The isotypes of antibodies of clones 

kdr1-4C6, kdr2-6H8 and kdr1-8D10 were determined to be isotype IgG1, clone 3C12 

was determined as isotype IgG2a.  
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Fig. 9: Test of hybridoma supernatants by Western Blot analysis 
(A) Test of hybridoma supernatants of several clones before subcloning (e.g. anti-DR2 ). SDS-PAGE 
gels of induced BCBL-1 lysates were blotted onto nitrocellulose. Subsequently, the membranes were 
cut into small strips. Each strip was incubated with a different hybridoma supernatant and 
subsequently developed as described in Material and Methods. Specific bands are indicated by 
arrows. (B) Test of positive hybridoma supernatants of anti-DR2 and anti-DR1 clones after subcloning. 
Experiments were performed similarly as described above. Specific bands are indicated by arrows. 
 
 

 

Table 1: Test of monoclonal antibodies against DR2 and DR1 repeat regions by Western blotting 
(WB), immunofluorescence (IF) and immunoprecipitation (IP). 
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4.4 A variety of kaposin isoforms is generated by initiation at 
multiple start codons 

 
Kaposin A, the product of the originally identified KSHV ORF K12, is expressed by 

the majority of unstimulated PEL cells latently infected with KSHV. In contrast, 

antibodies against DR2 and DR1 recognize only a small number of unstimulated PEL 

cells, which considerably increases after stimulation with n-butyrate or phorbol ester, 

indicating that kaposin isoforms containing these repeats are expressed rather during 

the lytic phase (data not shown). To biochemically characterize the expression 

pattern of the kaposin protein isoforms in KSHV-infected cells, lysates of the n-

butyrate-induced PEL cell line BCBL-1 were analysed by SDS-PAGE and Western 

blot analysis using monoclonal antibodies against single protein domains (Fig. 10). 

Using antibodies against DR2, two bands were detected. The faint band of 

approximately 54 kd correlates with the size of the translational product initiating from 

a CUG codon 5’ of the DR2 repeats in frame 1 and represents the kaposin C isoform. 

The strongly predominant second band of about 48 kd representing the kaposin B 

isoform correlates with the size of a translation product that initiates at the first CUG 

codon in reading frame 2. As presumed, these two bands representing kaposin B 

and C were also detected by an antibody against DR1. Additionally, a whole array of 

bands ranging from approximately 38 to 24 kd (after longer exposure down to 18 kd) 

were detected, which represents isoforms that initiate from CUGs within each DR1 

repeat in all three reading frames. Whereas isoforms expressed from reading frames 

2 and 3 cease at the end of the DR1 repeats due to stop codons, isoforms expressed 

from reading frame 1 continue to the stop codon of ORF K12 and are thus 

approximately 6 kd larger in size (Fig. 11). To discriminate these isoforms, the terms 

kaposin D for isoforms consisting of DR1 repeats and ORF K12 (reading frame 1) 

and kaposin E for isoforms consisting only of DR1 repeats (frame 2 and 3) were 

introduced. Since the CUG sequence context is identical in all three reading frames, 

initiation should occur at an equal rate and therefore kaposin E is expected to be two 

times more abundant than kaposin D. The antibody against K12 detected the kaposin 

A, C and D isoforms, but not kaposin B and E. The protein band at 12 kd rather 

represents a dimeric form of kaposin A than a small form of kaposin D, since it was 

not detected by the anti-DR1 antibody. A similar expression pattern was observed in 

293 cells transfected with a plasmid expressing a XhoII/Nhe1 fragment containing the
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whole genomic region under control of a CMV promoter (Fig. 12, Kaposin C). In 

summary, the Western blot analyses indicate that a variety of different kaposin 

isoforms is produced from one single transcript in PEL cells, indicating that the CUGs 

start codons at the 5’ end of DR2 and in DR1, as well as the AUG at the 5’ end of 

K12 are used by a leaky scanning mechanism.  

 
 

 
 
Fig. 11: Kaposin is expressed from multiple translational initiation sites in PEL cells 
Schematic diagram of the kaposin protein isoforms expressed from different CUG and AUG start 
codons on the viral transcript. Kaposin protein isoforms are sorted according to the position of their 
start codon with the upmost isoform expressed from the first start codon on the transcript. Kaposin 
isoforms are termed according to the domains they contain: A … K12; B … DR2 + DR1; C ... DR2 + 
DR1 + K12; D … DR1 + K12; E … DR1. Stop codons are indicated by asterisks. Kaposin transcripts 
have been reported to be spliced 5’ of DR2 in some cell lines (Li et al., 2002). Square boxes with 
triangles mark single DR2 or DR1 repeats.  
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4.5 Kaposin isoforms localize to different cellular compartments 
 
To evaluate the localization of the kaposin isoforms within the cell, constructs 

expressing single or few kaposin isoforms were generated and tested by fractionation 

(Fig. 12) and immunofluorescence after transfection (Fig. 13). Cellular subfractions of 

transiently transfected 293 cells were analysed by Western blot analysis with mabs 

against each of the three domains (Fig. 12). As reported previously, kaposin A was 

detected nearly exclusively in the unsoluble membrane fraction (m2) in the 

fractionation experiment (Kliche et al., 2001; Muralidhar et al., 1998; Muralidhar et al., 

2000). Kaposin B was predominantly located in the nuclear fraction and in the 

unsoluble membrane fraction (presumably because of a contamination with nucleic 

components). In accordance with the K12 transmembrane domain, the kaposin C 

and D isoforms were found exclusively in the unsoluble membrane fraction (m2). In 

contrast, kaposin E was detected solely in the cytosolic fraction and thus represents 

a cytosolic member of the kaposin protein family. The difference in size between 

kaposin D and kaposin E corresponds to the 6 kd size of ORF K12. Due to the 

occurrence of alternative start codons in DR1, kaposin E is co-expressed with 

kaposin B, C and D, and kaposin B, D and E with kaposin C. The localization in 

distinct cellular compartments was confirmed by immunofluorescence in transfected 

Hela cells (Fig. 13). Kaposin A, C and D were located in vesicular structures and at 

the plasma membrane, kaposin B in the nucleus and kaposin E in the cytosol.  

The kaposin D construct used in these experiments still contained the DR2 repeat 

region but without the upstream CUGs, since it was not expressed if DR2 was 

completely deleted. Thus, kaposin B and C expression was reduced but not 

completely abolished and some nuclear (kaposin B) and membrane-associated 

(kaposin C) localization was still detected with the DR2 antibody. 

 
 
Fig. 12: Cellular fractionation reveals a distinct subcellular localization pattern of different 
kaposin isoforms in transfected 293 cells 
Plasmid constructs expressing distinct kaposin isoforms (pCR3kapB, pBCBL-1, pCR3kapD, 
pCR3kapE) were transiently transfected into 293 cells and subcellular fractions were analysed by 
Western blot analysis using antibodies against DR2, DR1 and K12. Kaposin A was expressed by a 
recombinant vaccinia virus. Subcellular fractions (c: cytosolic fraction; m1: detergent-soluble 
membrane fraction; n: nuclear fraction; m2: detergent-unsoluble membrane fraction) were separated 
by SDS-PAGE on 12% gels (kaposin A 20%), blotted and stained with anti-DR2, anti-DR1 or anti-K12 
mabs. The scheme indicates the isoforms expressed by each construct. The asterisks indicate the 
corresponding band(s) for each isoform. The purity of the nuclear, cytosolic and detergent-soluble 
membrane fractions was controlled by the marker proteins lamin B, 14-3-3 and calnexin, respectively. 
The kaposin D construct used in this experiment still contained the DR2 repeat region but without 
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CUGs, since it was not expressed if DR2 was completely deleted. This is the reason why some 
material is still detected in the m1, m2 and n fractions recognized with the anti-DR2 mab.  
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To confirm subcellular distribution in naturally infected PEL cells, n-butyrate induced 

KSHV+ BCBL-1 cells were analysed by double immunfluorescence staining and 

cellular fractionation. 

For the double immunofluorescence staining, the induced BCBL-1 cells were co-

stained with different combinations of antibodies (Fig. 14). Detection with an anti-DR2 

mab showed a predominant nuclear, as well as some vesicular staining. The anti-

DR1 mab showed also nuclear staining but recognized additionally cytoplasmatic 

structures. The anti-kaposin A mab detected extended membrane-associated 

staining (Fig. 14 middle panel) and also vesicular structures, which are located in the 

perinuclear area of the cell (Fig. 14 lower panel). In the merge of anti-DR2 and anti-

DR1, the localization of the kaposin isoforms B (yellow nuclear staining) and C 

(yellow vesicular staining) can be distinguished from the isoforms D and E (green 

cytoplasmatic staining) (Fig. 14 upper panel). 

In parallel to the immunofluorescence analysis, cellular fractionation of induced 

BCBL-1 cells was performed (Fig. 15). In principle, this experiment displays a two-

dimensional resolution of the Western blot analysis of total cell lysate shown before 

(see Fig. 10). The evaluation of the Western blot analysis of the subcellular fractions 

showed similar results as seen with transfected cells (compare Fig. 12): Kaposin B 

was predominantly located in the nuclear subfraction, wheras kaposin C was found 

exclusively in the detergent unsoluble membrane fraction. The likewise membrane-

associated kaposin D isoforms differed around 6kd (the size of the ORF K12) from 

the cytosolic kaposin E isoforms (Fig. 15 middle) and kaposin A was again shown to 

be located in the detergent unsoluble membrane fraction. 

In summary, both experiments confirmed that in lytic reactivated BCBL-1 cells all 

kaposin isoforms are similarly localized as observed by expression in transiently 

transfected cells. 
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Fig. 14: Immunofluorescence analysis in BCBL-1 PEL cells 
Localization of different kaposin isoforms in KSHV-infected cells. N-butyrate induced BCBL-1 cells 
were fixed with methanol and co-stained with either kdr2-4C6 (anti-DR2) and kdr1-3C12 (anti-DR1) 
(top), kdr1-8D10 (anti-DR1) and kap-4F11 (anti-K12) (middle) or kdr2-4C6 and kap-4F11(bottom). 
Subsequently, cells were stained with FITC- and Texas red-conjugated secondary reagents. 
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4.6 Kaposin is a transcriptional activator 
 
It was previously found by luciferase reporter gene assays that kaposin A induces the 

TRE promoter element containing an AP-1 binding site (Kliche et al., 2001). Thus, in 

this study it was tested whether kaposin isoforms B, C, D and E, which are 

expressed during the lytic phase, are also transcriptional activators. A variety of 

different promoters containing binding sites for AP-1, CRE, NF-�B and p53, as well 

as promoters with SRE and ISRE elements, HIV-1 LTR and cellular IL-6 and VEGF 

promoters were screened with a genomic construct expressing all kaposin isoforms 

(Fig. 16) also by performing by luciferase reporter gene assays. Kaposin activated 

AP-1 to a similar level as phorbol ester/ionomycin stimulation. Kaposin also slightly 

activated the interleukin-6 (IL-6) and VEGF-1 promoters, suggesting a putative role in 

the regulation of these cellular promoters. None of the other promoters was activated 

by kaposin considerably, outruling a general inductive effect. 

 

 

 

Fig. 16: Kaposin activates the AP-1 transcription factor and cellular promoters 
An expression plasmid expressing all kaposin isoforms was co-transfected into 293 cells with a variety 
of luciferase reporter plasmids with different binding sites or promoters: AP-1, CRE, NF-�B, p53, SRE, 
ISRE, HIV-1 LTR, IL-6 promoter, VEGF-1 promoter. As a negative control, cells were co-transfected 
with pCR3. As a positive control, cells were either co-transfected with plasmids expressing either 
RasV12, p53 or HIV-1 Tat, or stimulated with either IFN�, forskolin or phorbol ester (TPA)/ionomycin 
(Iono). Data represent mean � standard deviation of two independent experiments performed in 
triplicates.  
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4.7 DR2 repeats contain a nuclear localization signal 
 
Since the kaposin B isoform containing the DR2 repeat region localizes to the 

nucleus (Fig. 12-15), it was hypothesized that DR2 contains a nuclear localization 

signal (NLS). Although the DR2 peptide sequence shows no canonical NLS, there is 

a high abundance of basic and hydrophilic amino acids, which are known to be 

present in a classical NLS (Fig. 17). To test if the NLS was in fact located within the 

DR2 repeats, kaposin B and the DR2 or DR1 repeat regions were expressed as GFP 

fusion proteins in Hela cells. Immunofluorescence analysis of pEGFP-kapB and 

pEGFP-DR2 transfected cells indicated a complete translocation of the GFP from the 

cytosol into the nucleus, whereas transfection with pEGFP-DR1 resulted in a similar 

cellular distribution of GFP as seen in control cells, transfected with the empty 

pEGFP vector (Fig. 18). These results confirmed that the functional NLS, responsible 

for the nuclear shift of the kaposin B isoform, is in fact localized within the DR2 

repeat region. 

 

Fig. 17: High abundance of basic amino acids in the DR2 repeat sequence 
23-amino acid sequence of one DR2 repeat, shown in single letter code. Basic arginine residues are 
red underlayed. 
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Fig. 18: The DR2 repeat region contains a functional nuclear localization signal 
Hela cells were transiently transfected by calcium phosphate coprecipitation with either a pEGFP-C1 
control plasmid or pEGFP-DR2, pEGFP-DR1 and pEGFP-kapB fusion constructs.  
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4.8 DR2 and DR1 repeat regions interact with each other 
 
Surprisingly, when GFP fusion proteins of DR2 and DR1 were co-expressed in Hela 

cells, only a nuclear GFP staining was observed (Fig. 19). The cytosolic GFP-DR1 

was relocalized to the nucleus by the NLS containing GFP-DR2, suggesting a direct 

interaction between the two repeats.  

 

 

 

Fig. 19: Nuclear relocalization of DR1 by DR2 
Hela cells were transiently transfected with pEGFP-DR2 and pEGFP-DR1 by calcium phosphate 
coprecipitation and subsequently analysed by immunofluorescence. 
 

 

To further examine this interaction between both repeats, co-immunoprecipitation 

experiments were carried out. Kaposin B, DR2 and DR1 repeat regions were co-

expressed in 293 cells as Myc- or HA-tagged proteins under the control of a T7 

promoter using recombinant vaccinia virus which expresses the T7 RNA polymerase 

(Fuerst et al., 1986). Cell lysates were precipitated with antibodies directed against 

either DR2 and DR1 or HA and Myc tags. Kaposin B was found to interact with itself. 

DR1 was found to interact with itself as well as with DR2, whereas DR2 did not 

interact with DR2 (Fig. 20). These experiments support the results of the 

immunofluorescence experiment. 
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Fig. 20: DR2 and DR1 repeat regions directly interact with each other  
Co-immunoprecipitation of kaposin B, DR2 and DR1 repeat regions. The antibodies used for the 
immunoprecipitation are indicated below the gels, the antibodies used for detection by Western blot 
above the gels and the constructs transfected on the left side of the gels. Kaposin B and the DR2 and 
DR1 repeat regions were expressed in 293 cells using pGBKT7 and pGADT7 plasmids, in which they 
are expressed as Myc- or HA-tagged proteins under T7 promoter control. Co-immunoprecipitation was 
carried out either with anti Myc- or anti HA-Tag mabs or specific mabs against DR2 and DR1. 
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Subsequently, the DR2 and DR1 repeat regions were tested in luciferase reporter 

gene assays for AP-1. Whereas isolated DR2 and DR1 repeat regions induced AP-1 

only at backround levels, interestingly, co-expression of both molecules induced AP-

1 approximately 7-fold compared to the negative control, further supporting a 

functional interaction between the two repeat regions (Fig. 21).  

 

 

Fig. 21: Induction of AP-1 by interacting DR2 and DR1 repeats  
Luciferase reporter plasmid pRTU14 (80ng), which consists of a luciferase reporter gene under the 
control of a minimal promoter and four TREs, was transfected into 293 cells together with 160 ng DNA 
of either pRK5c-mycRasV12, pEGFP-kapB, pEGFP-DR2, pEGFP-DR1 or pEGFP-DR2 and pEGFP-
DR1. Negative control cells were transfected with pCR3. The control reporter plasmid pRTU1 lacking 
the four TRE sites showed minimal basal activity only (data not shown). Data represent mean � 
standard deviation of three independent experiments performed in triplicates.  
 
 
In this assay also kaposin B was included. The level of th AP-1 induction caused by 

kaposin B reached up to 12-fold, comparable with the positive control, the 

constitutively active mutant RasV12. This result indicates that the kaposin B isoform 

is responsible for the inductive effect observed with the genomic K12 construct (see 

Fig. 16). 
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4.9 Both DR2 and DR1 repeats are mandatory for AP-1 induction 
 
To clarify if there was a correlation between AP-1 induction and nuclear localization 

of kaposin B, a construct was generated which translocates the DR1 repeats into the 

nucleus by a SV-40 NLS. The nuclear targeting of DR1-NLS was confirmed by 

immunofluorescence (Fig. 22). 

 

 

 

 

Fig. 22: DR1 repeats with a SV-40 NLS are localized in the nucleus  
Immunofluorescence analysis of pEGFP-DR2 and pEGFP-DR1-NLS in transiently transfected Hela 
cells. 
 

 

This construct was subsequently used in AP-1 luciferase gene reporter assays. 

Remarkably, co-expression of DR2 and DR1-NLS led to a similar activation as 

observed with kaposin B (Fig. 23). In contrast, DR2 and DR1-NLS were not able to 

induce AP-1 notably if expressed alone. This finding suggests that DR2 has a dual 

function and works not only as a targeting but also as a coactivator domain. 
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Fig. 23: Nuclear localization of both DR2 and DR1 repeat regions is mandatory for AP-1 
induction 
Co-expression of pEGFP-DR2 and pEGFP-DR1-NLS induces AP-1 to a similar extent as kaposin B. 
Experiments were performed similarly as described above. Data represent mean � standard deviation 
of two independent experiments performed in triplicates.  
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4.10 Co-expression of different kaposin protein isoforms influences 
their functional activity 

 
Since several kaposin isoforms are co-expressed and may bind to each other in 

BCBL-1 cells during the lytic phase, it was hypothesized that different isoforms 

functionally influence each other. To address this, individual isoforms were co-

transfected into 293 cells and AP-1 luciferase assays perfomed (Fig. 24). 

Remarkably, kaposin B-induced AP-1 activation was markedly increased by co-

transfection of kaposin E. However, this effect was counteracted by the expression of 

kaposin D. A similar inhibitory result was also achieved if kaposin B was co-

expressed with kaposin D. Kaposin D and E isoforms alone, as well as in 

combination, were not able to induce AP-1. Thus, our data suggest that by 

bidirectional targeting of kaposin E, which contains the coactivator domain, into 

distinct cellular compartments through either kaposin B or D, AP-1 induction can be 

either increased or decreased. 

 

 

Fig. 24: Co-expression of different kaposin isoforms modulates their functional activity 
Kaposin E and D modulate AP-1 activation induced by kaposin B in luciferase reporter assays. Equal 
amounts of the control vector, pRK5c-mycRasV12, pCR3kapB, pCR3kapD and pCR3kapE were 
transfected into 293 cells together with the AP-1 luciferase reporter plasmid pRTU-14. Similar protein 
amounts were used in the luciferase assays for each sample. Data represent mean � standard 
deviation of two independent experiments performed in triplicates. The kaposin D construct used in 
this experiment did not contain any DR2 repeats but a HA Tag with an AUG start codon.  
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4.11 Kaposin B contains proline-rich motifs and interacts with a 
variety of SH3 domain proteins 

 
Closer investigation of the repeat peptide sequences revealed that both DR2 and 

DR1 repeats are proline-rich and, in particular, that each repeat contains two PxxP-

motifs.  

 

 

 

 

 

 

Fig. 25: Amino acid sequence of the DR2 and DR1 repeat 
DR2 peptide sequence (top); DR1 peptide sequence (below). PxxP-motifs and proline-rich stretch are 
green underlayed. 
 
 
Since PxxP motifs are known targets for proteins containing Src homology 3 (SH3) 

domains, several interaction partners could be possible for both repeat regions (Ren 

et al., 1993). SH3 domains regulate protein localization, enzymatic activity and often 

participate in the assembly of multicomponent signaling complexes (Mayer and Eck, 

1995; Schlessinger, 1994). To test whether kaposin isoforms consisting of multiple of 

DR2 and/or DR1 repeats interact with such proteins, pull-down experiments were 

performed. Therefore different recombinant GST-SH3 domain proteins (provided by 

Dr. Stephan M. Feller, University of Oxford, Oxford, UK) were added each to NP-40-

lysates of induced BCBL-1 cells and precipitated with an anti-DR1 mab bound to 

protein G-Sepharose. Subsequent Western blot analysis showed indeed several SH3 

proteins as interaction targets, although the intensity of the interactions varied 

between the single domains (Fig. 26). 

Considering the high abundance of proline-rich motifs in kaposin, the binding to SH3 

domains is not surprising and the interactions seem to be more general than specific 

to a particular SH3 domain protein. Surprisingly, beside the n- and c-terminal SH3 

domains also the SH2 domain of the Grb2 adaptor protein (molecular structure: SH3-

SH2-SH3) was pulled down by kaposin, which can not be explained by interaction 

with known specific binding sites. Nevertheless, the interaction between kaposin B 

HPRNPARRTPGTRRGAPQEPGAA 

TWCPPPREPGALLPGNLVPSSPG 

DR2 

DR1 
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and Grb2 was confirmed by yeast two hybrid- and co-immunoprecipitation- 

experiments (Table 2 and Fig. 27). 

 
 

 
Fig. 26: Kaposin B interacts with different SH3 domain proteins 
In a pull-down experiment NP-40 lysates of n-butyrate induced KSHV infected BCBL-1 cells were 
mixed with approximately 10 µg of recombinant GST-fusion proteins or GST control. 
Immunoprecipitation against kaposin B was performed as indicated in Material and Methods. After 
electrophoresis, proteins were blotted onto nitrocellulose and detected by an anti-GST antibody. 
 
 
 
 

 
 
Table 2: Yeast two hybrid interaction test. Experiments were performed for kaposin B, DR2 and DR1 
repeat regions, Grb2 full length (Grb2) and the c-terminal SH3 domain of Grb2 (Grb2 C-SH3) as 
described in Material and Methods. Since kaposin B and DR1 activated reporter gene expression if 
expressed from the bait vector pGBKT7 (containing the GAL4 DNA-binding domain) interactions with 
these proteins could be assayed by expressing them from the prey vector (containing the GAL4 
activation domain) only (n.d.: not done). The interaction between DR2 and DR1 shown by luciferase 
reporter gene assay, IF and Co-IP could not be detected in this experiment.  

pGBKT7

--++Grb2 C-SH3

-(+)+++Grb2

false
positiven.d.n.d.DR1

--n.d.DR2

---control

DR1DR2kaposin B
pGADT7

pGBKT7

--++Grb2 C-SH3

-(+)+++Grb2

false
positiven.d.n.d.DR1

--n.d.DR2

---control

DR1DR2kaposin B
pGADT7
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Fig. 27: The SH3 adaptor protein Grb2 interacts with kaposin B  
Co-immunoprecipitation of kaposin B and full length Grb2. The antibodies used for the 
immunoprecipitation are indicated below the gels, antibodies used for detection by Western blot up on 
the right side of the gels and the constructs transfected above the gels. Kaposin B and Grb2 were 
expressed in 293 cells using pGBKT7 and pGADT7 plasmids, in which they are expressed under T7 
promoter control. Specific bands are indicated by arrows. 
 

 

In yeast two hybrid-experiments kaposin B (but not the single repeat regions) was 

found to interact with full length Grb2 as well as with the c-terminal SH3 domain. 

Interaction tests with kaposin B and the DR1 repeat region were tested by expressing 

them from the prey vector only, since both constructs showed reporter gene 

activation if fused to the Gal4 DNA-binding domain (Table 2). 

For co-immunoprecipitation, kaposin B and Grb2 were co-expressed in 293 cells 

under the control of a T7 promoter using vaccinia virus expressing T7 RNA 

polymerase as described in Materials and Methods. Proteins could be co-precipitated 

from both sides with either anti-DR1 mabs or an anti-grb2 polyclonal antibody. Bands 

at approximately 27 kd (for Grb2) and 48 kd (for kaposin B) were detected in the cell 

lysates of cells transfected or co-transfected with Grb2 and kaposin B but not in 

controls (Fig. 27 left panel and right panel, respectively). 
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5 Discussion 
 
Kaposi’s Sarcoma Associated Herpesvirus (KSHV), which is the representative of �2- 

herpesviruses in man, encodes the complex genomic kaposin locus consisting of two 

distinct sets of direct DR2 and DR1 repeats, followed by a short domain originally 

identified as open reading frame K12. By initiation at multiple alternative CUG (and 

GUG) and one single AUG start codons, a gradient of kaposin molecules with varying 

length and targeting motifs is expressed from one single transcript. In this study the 

expression pattern and the regulatory function of the kaposin locus was investigated 

in detail. The multitude of translational products from all three reading frames could 

be resolved and assigned to specific cellular compartments. Depending on the start 

codon used, DR1 repeats representing a functional effector domain are either fused 

to DR2 repeats containing a nuclear localization sequence, or to K12, which encodes 

a transmembrane domain. Nuclear expression of kaposin leads to an activation of 

the AP-1 transcription factor and cellular promoters. The data presented in this study 

indicate a novel autoregulatory mechanism based on bidirectional targeting of a viral 

protein to distinct subcellular compartments by expression from different start codons 

and reading frames. Moreover, it could be shown that certain isoforms have a mutual 

influence on each other. 

 

 

5.1 Expression pattern and cellular localization of kaposin isoforms 
 

In this work expression pattern and cellular localization of kaposin protein isoforms 

were examined by fractionation and immunofluorescence experiments. According to 

the results presented here and by others, kaposin A (K12) localized predominantly in 

tubulovesicular structures and in the detergent unsoluble membrane fraction 

(Muralidhar et al., 1998; Muralidhar et al., 2000; Kliche et al., 2001). Other 

investigators have been in doubt whether the K12 ORF is expressed at all, since 

internal initiation from the K12 ATG codon and extended ribosomal scanning (see 

below) of the 2.3 kb sized K12 transcript would be necessary (Sadler et al., 1999). In 

Fig. 10 (right panel), mAb 4F11 directed against the K12 ORF recognizes a band at 6 

kd corresponding to the predicted 60-amino acid product of K12 ORF, demonstrating 

that, in fact, kaposin A is expressed in BCBL-1 cells in vivo. In contrast to the 
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membrane association of kaposin A, kaposin B, which is the predominant BCBL-1 

K12 protein product, was found almost exclusively in the nucleus. The NLS 

responsible for this nuclear localization, was restricted to the DR2 repeats, which are 

very hydrophilic and harbor multiple basic amino acids, as it is known for other NLS. 

Since kaposin C fuses the DR2/DR1 repeat region and the hydrophobic C-terminal 

K12 ORF, this isoform was found to be membrane associated as hypothesized by 

Sadler and colleagues (Sadler et al., 1999). Furthermore, two additional groups of 

gene products could be separated. These isoforms initiate from multiple alternative 

CUG start codons within the DR1 repeats in frame 1 (representing  DR1-K12 ORF 

fusion proteins) or in frame 2 and 3 (consisting of DR1 only). For better 

discrimination, the terms kaposin D (DR1-K12 ORF) and kaposin E (DR1) were 

proposed for these polypeptides. According to their structure, these two isoforms 

localize in different cellular compartments. As shown in Fig. 12 and Fig. 15, kaposin 

D localizes in the unsoluble membrane fraction, wheras kaposin E is exclusively 

found in the cytosol. The difference in size between the two arrays of kaposin D and 

kaposin E corresponds to the 6 kd size of the K12 ORF.  

 

 

5.2 Kaposin expression and leaky scanning 
 

The present work presents strong evidence that KSHV expresses this variety of 

different kaposin isoforms by multiple translational initiation sites rather than 

differential splicing. Multiple translational initiation sites occur in two different 

situations, either reinitiation or leaky scanning. Both are mediated through complex 

mRNA secondary structures which have previously been shown to occur in a variety 

of different cellular and viral transcripts (Bos et al., 1981; Cao and Geballe, 1995; 

Chen et al., 2001; Jang et al., 1988). In KSHV, the latent v-FLIP, v-cyc and LANA-1 

genes are expressed from a polycistronic mRNA containing an IRES (Dittmer et al., 

1998; Low et al., 2001; Sarid et al., 1999). Currently it is thought that the number of 

genes expressed by reinitiation and leaky scanning is limited to two or three due to a 

strongly decreasing efficiency (Kozak, 2002). In case of kaposin, a multiplicity of 

proteins depending on the varying number of DR1 repeats is expressed in tumors 

and PEL cell lines. Kaposin thus represents the first case in which multiple initiation 

sites generate an array of 15 and more different protein isoforms.  
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Reinitiation occurs at polycistronic mRNAs which contain more than one, usually 

non-overlapping ORFs (Kozak, 2002). One or more short upstream ORFs are 

followed by a major, longer downstream ORF. The upstream ORF(s) have regulatory 

function as they reduce translational initiation at the major ORF.  

Leaky scanning is a mechanism that allows initation to occur at an upstream non-

AUG codon in addition to the first AUG of a transcript. It is hypothesized that GC-rich 

mRNA sequences form secondary structures which retard scanning and thus allow 

mismatched Met-tRNAi to bind to the upstream non-AUG start codon (Kozak, 1991). 

The kaposin mRNA reveals a similar structure, since CUG start codons precede a 

downstream AUG. Interestingly, the downstream AUG and the upstream CUG start 

codons are used during different phases of infection. Scanning appears to be 

maximally leaky during the latent phase, when only the latent kaposin A is expressed 

through a downstream AUG start codon, and minimally leaky during the lytic phase, 

when kaposin B, C, D and E isoforms are expressed from upstream CUGs (Fig. 28).  

 

 

Fig. 28: Ribosomal scanning is maximally leaky during the latent phase and minimally leaky 
during the lytic phase  
Schematic diagram of the kaposin protein isoforms expressed from different CUG and AUG start 
codons on the viral transcript (also compare Fig. 11). The model hypothesizes a translational initiation 
gradient from downstream to upstream start codons during the course of infection. Black and red 
triangles below the mRNA show the hypothesized start codon usage during latent and lytic phase. 
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This gives rise to the hypothesis that a gradient of translational initiation from 

downstream to upstream DR1 CUGs occurs during the course of infection. During 

the early lytic phase, downstream DR1 CUGs (near the K12 AUG which is used 

during the latent phase) generate short kaposin D and E isoforms which are less 

active. During the late lytic phase, upstream DR1 CUGs generate long kaposin D and 

E isoforms (as well as kaposin B and C) which are functionally more active in the 

presence of kaposin B.  

Leaky scanning is a well-known phenomenon in cellular and viral transcripts and can 

generate long and short protein isoforms which are targeted to different cellular 

compartments (Kwiatkowski et al., 1988; Oda et al., 1990; Holbrook and Danpure, 

2002). KSHV has adopted this cellular mechanism, however considerably refined. In 

KSHV, a coactivator domain is targeted to three different compartments, nucleus 

(kaposin B), cytosol (kaposin E) and vesicular or plasma membrane (kaposin C and 

D). The identical peptide sequence in all three reading frames allows KSHV to 

express a constant ratio of kaposin D and E independently of whether upstream or 

downstream CUGs are used (Fig. 28). Leaky scanning might be a regulated process 

with other cellular or viral proteins involved. In S. cerevisiae, translational reinitiation 

of cellular transcripts at the GCN4 locus is known to be regulated by eIF-2, which is 

phosphorylated and inactivated under starvation (Hinnebusch, 1993). A cellular 

regulator which (i) changes its expression level during the course of infection or (ii) is 

present at different levels in B lymphocytes and endothelial cells might be involved in 

the regulation of the kaposin isoforms. Alternatively, a viral factor could bind and 

stabilize the secondary structure of the mRNA sequence responsible for leaky 

scanning.  

It was previously shown that leaky scanning is caused by highly structured GC-rich 

mRNA leader sequences (Kozak, 1991). The DR2 and DR1 repeat regions comply 

well with this prerequisite due to their complex repeat character and high GC content. 

In fact, there is experimental evidence that RNA secondary structure might be 

involved in initation at downstream CUGs since it was not possible to express 

kaposin D without an artificial AUG upstream of DR1. However, good expression of 

kaposin D and E was observed if DR2 was present 5’ of DR1. Hence, DR2 appears 

to facilitate translation initiation at CUGs within DR1, probably due to a complex 

mRNA secondary structure. In line with this suggested function, the presence of DR2 

is highly conserved in all KSHV subtypes, even in a recently reported PEL tumor that 
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is not expressing kaposin B due to the lack of a CUG start codon 5’ of DR2 (Li et al., 

2002).  

 

 

5.3 Kaposin B mediated AP-1 induction is dependent on nuclear localization of 
the repeats 

 

Although multiple functions are known for kaposin A, so far no functional data have 

been reported for other kaposin isoforms (Kliche et al., 2001; Muralidhar et al., 1998). 

This study shows that kaposin B induces the transcription factor AP-1. This activation 

depends on a nuclear localization of DR2 and DR1 repeats, as kaposin D and E 

isoforms which are found in the cytoplasma failed to activate AP-1. Since nuclear 

translocation of DR1 by adding a SV-40 NLS was not sufficient to restore activation, 

DR2 not simply targets DR1 to the site of action, but also acts as a coactivator (Fig. 

23). AP-1 activation might play a role in cytokine induction, which is known to play an 

important role in the pathogenesis of KSHV. Recently, it was shown that AP-1 is 

induced by LANA-1 and upregulates IL-6 (An et al., 2002). In the present study, a 

slight upregulation of the IL-6 as well as the VEGF promoter was also observed, 

suggesting that kaposin might be involved in cytokine regulation (Fig. 16). However, 

due to its complex regulation kaposin might have other functions in parallel, similar to 

LANA-1, which is involved in tethering the genome to the host chromosome, viral 

replication, as well as in transcriptionally modulating viral and cellular genes. 

Currently the molecular mechanism how nuclear DR2 and DR1 repeats activate AP-1 

is not known.  

 

 

5.4 Interaction partners of kaposin 
 

Both DR2 and DR1 are proline-rich and contain two PxxP-motifs each (Fig. 29). 

Since PxxP motifs are known targets for proteins containing SH3 domains, there are 

several interaction partners possible for both domains. In this work, pull-down 

experiments and subsequent Western blot analysis showed indeed several SH3 

proteins as interaction targets of kaposin. Taken in account that kaposin isoforms 

consist of several DR2 and DR1 repeats, the high affinity to SH3 domains is not 



                                                                                                                   Discussion      
 

 77

surprising and it remains open if the interactions are more general than specific to a 

particular SH3 domain protein. SH3 domains are known to regulate protein 

localization, enzymatic activity and often participate in the assembly of 

multicomponent signaling complexes (Schlessinger, 1994; Mayer and Eck, 1995). 

Thus, interaction of one or more kaposin isoforms with these proteins support the 

hypothesis that kaposins are powerful regulatory molecules. Additionally to the PxxP-

motifs, DR2 contains a putative WW domain, which is also known to bind proline-rich 

peptides (Fig. 29). It might be possible that the interaction between DR2 and DR1 is 

based on a WW domain structure, although DR2 does not contain the WW 

consensus binding motif PPxY and PPLP. It is also possible that DR2 

intramolecularly interact with DR1, but currently there is no evidence for this. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29: Amino acid sequence of the DR2 and DR1 repeat 
DR2 peptide sequence (top); DR1 peptide sequence (below). PxxP-motifs and proline-rich stretch are 
green underlayed. Tryptophans of the putative WW domain are blue underlayed and connected. 
 

 

5.5 Differential targeting modulates functional activity 
 

Epstein Barr Virus (EBV), the next KSHV homologue in man, belongs to the �1-

subfamily of herpesviruses. It uses a different strategy to generate distinct protein 

isoforms. The latent EBNA-1, 2 and 3 protein isoforms are generated by differential 

splicing. Similar to KSHV, however, EBV generates different isoforms of regulatory 

proteins to modulate it’s function: the N-terminally abridged LMP-2B is known to 

regulate the signalling activity of LMP-2A. In KSHV, five different kaposin isoforms 

TWCPPPREPGALLPGNLVPSSPGTWCTWCPPPREPGALLPGNLVPSSPGTWCTWCPPPREPGALLPGNLVPSSPGTWC

HPRNPARRTPGTRRGAPQEPGAAHPRNPARRTPGTRRGAPQEPGAADR2 

DR1 
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are necessary to control and modulate each other as shown in this study. The DR1 

coactivator domain is either expressed with a NLS in the nucleus, a transmembrane 

domain in vesicular cellular organelles and the plasma membrane, or as a single 

domain in the cytoplasma (Fig. 30). Hence a model is proposed in which there might 

be an equilibrium of kaposin E in different compartments, which is modulated by 

other kaposin isoforms. This modulation is either towards activation (kaposin E is 

targeted into the nucleus by kaposin B) or deactivation (kaposin E is targeted to 

vesicular and plasma membranes by kaposin C and D). 

 

 

 
Fig. 30: Co-expression and differential targeting modulates the functional activity of different 
kaposin isoforms 
Schematic diagram depicting the model by which cytosolic kaposin E is bidirectionally targeted either 
into the nucleus by kaposin B or to vesicular and plasma membranes by kaposin C and D.  
 

 

5.6 Significance and implications 
 

In principle, KSHV gains additional coding potential by using all three reading frames 

of the kaposin locus. However, genomic space limitation is unlikely to be the primary 

evolutionary selective force for expression of a particular gene in herpesviruses 

which have large genome sizes between 110 and 230 kb. The present study 

suggests that the complex expression regulation is necessary to generate a 

meticulous stoichiometric distribution of kaposin isoforms, which appears to be of 

critical importance for the virus. Since CUG start codons are present with an identical 
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sequence context in all three reading frames in DR1, kaposin D and E are expressed 

at a ratio of 1:2 independently of whether upstream or downstream DR1 CUGs are 

used (Fig. 6). More evidence for the importance of the ratio between the different 

kaposin isoforms comes from the observation that the number of the repeats varies 

markedly between KS tumors, but the number of DR2 and DR1 repeats is always 

maintained at a ratio of approximately 1:2 (Russo et al., 1996; Sadler et al., 1999). 

Additionally, the maintenance of this ratio may also be crucial for the proper folding or 

structure of the proteins. Due to the stringent regulation, kaposin probably plays an 

important role in virus pathogenicity. The complex genomic structure of kaposin 

allows the virus to titrate or fine-tune a specific viral function, probably an essential 

factor in the pathogenicity. During the course of infection or in a cell-type specific 

fashion, kaposin might generate a gradient of effector molecules leading to a 

continous switch of a specific function. In conclusion, this work presents evidence 

that �2-herpesviruses developed a completely different strategy, leaky scanning, in 

comparison to �1-herpesviruses, which predominantly use differential splicing, to 

control viral replication and cellular processes. 

 

 
5.7 Perspectives 
 

Future experiments may reveal additional functions of kaposin isoforms. Due to the 

various proline-rich binding motifs in both repeats, many interactors are possible, and 

the suggested switch function therefore may induce several signaling events. The 

prediction of those additional functions may be possible by the determination of new 

interactors. This question can be addressed by performing yeast two hybrid screens 

with kaposin domains. Additionally, experiments examining the kinetics of kaposin 

expression have to be carried out to investigate the proposed switch model in detail. 

Functional analysis is tightly linked to structural definition of kaposins and more 

structural data are necessary to confirm predictions of sequence analyses. A 

prerequisite for this is the purification of kaposin domains and isoforms, which 

enables the performance of spectroscopic and structural analysis. The conservation 

of the repeat regions and the complex translational program through practically all 

KSHV subtypes already strongly suggests that kaposin isoforms have important 

functions in the viral life cycle. 
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7 Abbreviations 
 
Å      Angström 
A, Ade     adenine 
AIDS      aquired immune deficiency syndrome 
AP-1      activator protein 1 
APS       ammonium persulfate 
ATCC      American Type Culture Collection 
ATP       adenosine triphosphate 
BCBL-1     body cavity-based lymphoma cell line 1 
BCIP       5-bromo-4-chloro-3-indolyl-1-phosphate 
bp       base pair 
°C      degree Celsius 
C      cytosine 
dUTPase Deoxyuridine 5'-triphosphate 

nucleotidohydrolase 
DMEM      Dulbecco’s modified Eagle medium 
DMF      N,N-dimethylformamide 
DMSO      dimethyl sulfoxide 
DNA       deoxyribonucleic acid 
DO      dropout 
DR      direct repeats 
dNTP       deoxynucleoside triphosphate 
DTT       dithiothreitol 
E. coli      Escherichia coli 
e.g.      exempli gratia (Lat. = for instance) 
et al.      et alii (Lat. = and others) 
EDTA      ethylenediamine tetraacetic acid 
eGFP      enhanced green fluorescent protein 
ELISA      enzyme-linked immunosorbent assay 
ER       endoplasmatic reticulum 
EtOH       ethanol 
FCS       fetal calf serum 
f.l.      full length 
Fig.       figure 
FITC       fluorescein isothiocyanate 
g       gram 
g       gravitation constant 
G      guanine 
Grb2      growth factor receptor-bound protein 2 
h       hour(s) 
HAc       acetic acid 
HCMV      human cytomegalovirus 
HEPES  2-[4-(2-Hydoxyethyl)-1-piperazinyl]-ethane 

sulfonic acid 
HHV-8 human herpesvirus-8 
His Histidine 
HIV       human immunodeficiency virus 
HSV       herpes simplex virus 
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IF      immunofluorescence 
IFN       interferon 
IgG       immunglobulin G 
IL      interleukin 
IP      immunoprecipitation 
IPTG       isopropylthiogalactoside 
ISRE       IFN-stimulated response element 
kb       kilo bases 
kbp      kilo base pairs 
kd       kilodaltons 
KS      Kaposi’s Sarcoma 
KSHV      Kaposi’s Sarcoma associated herpesvirus 
l       liter 
LANA      Latency-Associated Nuclear Antigen 
LB       Luria-Bertani 
Leu      leucine 
LTR      long terminal repeats 
µ       micro (10-6) 
m       milli (10-3) 
m       meter 
M       mol/liter, molar 
MCMV      murine cytomegalovirus 
mab      monoclonal antibody 
MCD      multicentric Castleman’s disease 
MCP      major capsid protein 
min       minute(s) 
MOPS      3- (N-Morpholino)propanesulfonic acid 
mRNA      messenger RNA 
n       nano (10-9) 
NB      NaCl/bicine 
NBT       nitro blue tetrazolium 
NF�B       nuclear factor kB 
NLS      nuclear localization signal 
o/n       overnight 
OD       optical density 
ORF       open reading frame 
p       pico (10-12) 
PAGE      polyacrylamide gel electrophoresis 
PBS       phoshate buffered saline 
PCR       polymerase chain reaction 
PEG      polyethylene glycol 
PEL      primari effusion lymphoma 
PMSF      phenylmethylsulfonfluoride 
prec.      precipitation 
RNA       ribonucleic acid 
rpm       revolutions per minute 
RPMI      Rosswell Park Memorial Institute 
RT       room temperature 
s       second(s) 
SBEG      sorbitol/bicine/ethylene glicol 
SD      synthetic defined 
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SDS       sodium dodecylsulfate 
SIV       simian immunodeficiency virus 
SV-40      Simian virus 40 
Tab.       Table 
TAE      Tris-Acetate-EDTA 
TBST      Tris buffered saline with Tween 20 
TEMED      N, N, N’, N’-tetramethylenediamine 
T      thymine 
TPA      12-O-tetradecanoylphorbol-13-acetate 
Tris       Tris(hydroxymethyl)aminomethan 
Trp      Tryptophane 
U       unit(s), enzyme activity 
untr      untransfected 
UV       ultraviolet 
V       Volt 
VZV       varicella zoster virus 
v/v       volumen/volumen 
WB      Western blot 
w/v       weight/volumen 
wt       wild type 
WW domain  domain that contains 2 conserved 

tryptophans and binds proline rich proteins 
SH3 domain Src homology 3 domain 
X-�-Gal 5-Bromo-4-chloro-3-indolyl-�-D-

galactopyranoside 
YPD yeast extract/peptone/dextrose 
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