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1 Introduction 

"The experiment left no doubt that, as far as accuracy of measurement went, the resistance 

disappeared. At the same time, however, something unexpected occurred. The disappearance 

did not take place gradually but abruptly. [...] Thus the mercury at 4.2 K has entered a new 

state, which [...] can be called the state of superconductivity."[1] With these words Heike 

Kamerlingh Onnes described the discovery of superconductivity in his Nobel lecture. 

Although more than one century has passed since Onnes' ground breaking discovery,[2-3] the 

fascination of this phenomenon has not diminished. This is perfectly reasonable since the 

superconducting state overcomes the barrier of electrical resistance which has been taken for 

granted until then. Thus, in our modern society where electronic components and energy 

issues play an indispensable key role, the prospect of lossless electrical conductivity still 

inspires scientists and visionaries alike. Imaginable applications frequently suggested range 

from strong electro magnets allowing for unprecedented high flux densities to lossless super-

conducting generators, motors, transportation networks, quantum computers and frictionless 

levitation trains. Nevertheless, applications based on superconductivity are no "pie in the 

sky". Already today wires of A-15 phase superconductors are used in scientific and medical 

NMR technology or the LHC at CERN for example, whereas Josephson contacts are applied 

as ultrafast switches, single electron transistors and sensible field detectors. Since super-

conductivity is generally recognized to be a "technology of the 21. century with strategic 

importance"[4] also enormous efforts are in progress worldwide for the development of new 

superconductor technologies to meet future energy generation, transportation, conversion, and 

storage issues. 

Despite their potential the vast application of superconductors is yet to come. The main draw-

backs so far are the material specific critical values temperature (Tc), current density (Jc), and 

magnetic field (Hc), above which the superconducting state is destroyed. Thus, possible appli-

cations are restricted to temperatures below 40 K, and therewith requiring liquid helium 

cooling. However, with liquid helium prices 10 – 20 times higher than for liquid nitrogen any 

potential technological advantage using state-of-the-art superconductors is outweighed by 

economic interests. Nevertheless, the discovery of high temperature superconductivity in 

cuprates up to 140 K in the 1980s proved[5-6] that this remarkable effect can be shifted to 

applicable temperature ranges. Unfortunately, the high anisotropy renders these cuprates 

extremely difficult for processing into coils and wires. These examples show that there is still 
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hope and a tremendous economic demand for high temperature superconductors but the 

appropriate materials are yet to be found. 

Although the phenomenon of superconductivity is fascinating, the theory and history of 

superconductor research is no less so. Since more than 100 years this effect persistently 

survives among the biggest challenges of solid-state chemistry and physics. Five Nobel prizes 

of physics for research in the field of superconductivity were awarded so far, but a thorough 

understanding of the effect is still missing to the present day. Bardeen, Cooper, and Schrieffer 

developed a first generally accepted theory of conventional superconductivity. They 

suggested an effective attractive interaction between conduction electrons meditated by 

phonons. Bosonic Cooper pairs are formed with the same quantum state, so that they cannot 

be scattered by the crystal lattice and the electrical resistance vanishes.[7] Concluding from 

that, the superconducting state is restricted below critical temperatures, current densities, and 

magnetic fields, above which the Cooper pairs would break apart. Experimental evidence for 

the BCS theory was provided by the correct prediction of the isotope effect,[8-9] a super-

conducting band gap,[10-12] the field penetration depth[13], and the Meissner-Ochsenfeld-

effect.[14] Moreover, the BCS theory reliably reproduces Tc of elementary metals and many 

simple alloys.[15] Although the development of this basic theory completely describing all that 

was known about superconductivity in this early period of research was an immense progress, 

it had a bitter aftertaste. The BCS model restricted superconductivity below a fundamental 

limit of Tc ≈ 30 – 40 K destroying all hopes for room temperature superconductors.[7] At that 

time Matthias formulated his six rules for a successful search for new superconductors: (1) A 

high symmetry is good, cubic symmetry is the best. (2) A high density of electronic states is 

good. (3) Stay away from oxygen. (4) Stay away from magnetism. (5) Stay away from 

insulators. (6) Stay away from theorists.[16-17] 

Ironically most of these assumptions were later not only proved incorrect, but their exact 

opposite seems to be true, which became obvious with the discovery of unconventional super-

conductivity at temperatures up to 140 K in cuprates after 1986.[5-6] These strong anisotropic 

compounds containing CuO4/2 and metal ion layers are Mott insulators with an antiferro-

magnetic ground state at low temperatures. Oxygen deficiency or intermediate layer metal 

substitution can destabilize the magnetic ordering and superconductivity arises. At first the 

euphoria was high of breaking the BCS limit and finally gaining control over superconduc-

tivity (Figure 1). However, the cuprates' brittleness and their strong anisotropy were the big 

drawbacks in terms of technical applicability and the initial enthusiasm gradually ceased. In 
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the following years many superconductors were (re)discovered in fields never expected 

before,[17] among them MgB2 (Tc = 40 K), (Ba1-xKx)BiO3 (Tc,max = 35 K), C3Cs60 (Tc = 40 K), 

YPd2B2C (Tc = 23 K), and NaxHfNCl (Tc,max = 25 K). The steadily growing number also 

indicated, that the effect of superconductivity is not so scarce in nature as initially assumed, 

but could appear in any class of materials with mobile electrons.[16, 18] 

However, it was not until 2008, when a new 

gold rush took the scientific world by the dis-

covery of superconductivity in iron pnictides 

heralding the "iron age" of superconductivity.[19-

20] Although many of the new iron pnictide 

superconductors were known for years, they 

were never investigated in the scope of super-

conductivity. For decades iron had been ruled 

out as a potential candidate for superconductors 

since iron was associated with ferromagnetism, 

which was known to be detrimental to super-

conductivity. A wrong generalization, which 

may have effectively obstructed the progress in 

superconductor research. 

Superconductivity in iron arsenides was first found in stoichiometric LaFePO (Tc ≈ 4 K),[21] 

which was soon followed by RE(O1-xFx)FeAs featuring critical temperatures as high as 

55 K.[22-26] It was not long before superconducting properties were also found in many other 

iron arsenides and chalcogenides. Today a variety of related compounds are reported that can 

be derived from the anti-PbO,[27] anti-PbFCl,[28] ThCr2Si2,[29] or ZrCuSiAs structure types.[30] 

A structural classification of these superconductors can be achieved based on the 

stoichiometry of the parent compounds. Besides REOFePn (1111 type; RE = La, Ce, Pr, Nd, 

Sm, Gd; Pn = P, As)[22-26] also FeSe and Fe(Se1-xTex) (11 type),[31-32] AFeAs (111 type; A = Li, 

Na),[33-34] AEFeAsF (another 1111 type; AE = Ca, Sr, Eu),[35-39] AFe2As2 (122 type; A = Na, K, 

Rb, Cs, Ca, Sr, Ba, Eu),[33, 40-45] and AE2MO3FeAs (21311 type, AE = Sr, Ba; M = Sc, V, 

Cr)[46-47] are reported (Figure 2).  

Structurally the new superconductors consist of layers of edge-sharing FeAs4/4 or FeSe4/4 

tetrahedra, respectively. Interlayers, ranging from vacancies (11 type) to complex perovskite 

Figure 1. Number of publications covering 
superconductivity (SC) (black), SC in copper 
compounds (red) or iron compounds (blue), 
and theory of SC (green). 
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like blocks (21311 type), are sandwiched in between, resulting in an alternating stacking and 

giving rise to the different branches in the iron arsenide/chalcogenide family.  

 
 11 111 1111 122 21311 

 FeSe NaFeAs LaOFeAs BaFe2As2 Sr2VO3FeAs 

Figure 2. Crystal structures of the most famous iron-based superconductors. 

Featuring exclusively Fe-3d states at the Fermi energy (EF) the properties of these compounds 

are dominated by the FeAs sheets, taking the role of the CuO2 layers in the cuprate family. In 

contrast to the cuprates, however, the iron arsenides are metals instead of insulators, a prop-

erty very auspicious in the scope of technical workability.[18] 

Most of the stoichiometric iron arsenide compounds (parent compounds) are not super-

conducting, Pauli paramagnetic poor metals with a formal iron valence state of Fe+2. At lower 

temperatures an in-plane lattice distortion from tetragonal to orthorhombic crystal system (t2), 

accompanied with a spin density wave (SDW) ordering to an antiferromagnetic ground state 

occurs.[18, 48] Neutron diffraction, NMR, and μSR investigations found a stripe type antiferro-

magnetism equal in all parent compounds.[49-51] Thereby the iron spins are antiferromagnetic 

aligned along the longer orthorhombic axis b, with ferromagnetic interactions along a (Figure 

3b). In c direction different magnetic orderings are possible as was found comparing 

LaOFeAs and SmOFeAs.[16, 50] 

Upon chemical doping and/or physical pressure the SDW transition can be gradually shifted 

to lower temperatures, finally suppressed and superconductivity arises (Figure 3a). Thereby 

most remarkably also substitutions within the iron arsenide layers itself are applicable, in 

contrast to the cuprate family. To the present day nearly all conceivable possibilities have 

been studied as shown by the example A(Fe1-xMx)2Pn2 (A = Na, K, Rb, Cs, Ca, Sr, Ba, Eu; 

M = Co, Ni, Ru, Rh, Pd, Ir, Pt; Pn = P, As).[42, 52-62] Enormous effort was taken to find correla-
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tions between high Tc and structural or electronic changes empirically. Highest Tc 122 and 

1111 superconductors were found to have almost ideal tetrahedra angles and optimal pnictide 

height in the FeAs layer.[18, 63] However, such supposedly optimal values were also found in 

LiFeP superconductor for example with Tc below 10 K.[64] Another approach argued the im-

portance of increased anisotropy like in the cuprates, which can be realized by larger spacing 

layers.[65] Also a contribution of rare earth magnetic moments in present record holders 

REOFeAs was discussed.[50]  

The enormous experimental progress that has been made so far along with recent results em-

phasize the importance of charge modification, whereas structural details in terms of bond 

length and angles were assigned a subsidiary role.[66] Removing or inserting charge carriers in 

the FeAs sheets, which is referred to as hole or electron doping, was found repeatedly to be 

the most effective route to achieve Tc as high as 38 K in (Ba1-xKx)Fe2As2 or 55 K in 

Sm(O1-xFx)FeAs for example.[26, 67] Also initially puzzling compounds like stoichiometric 

AFeAs (A = Li, Na) and Sr2VO3FeAs being superconducting without additional doping can be 

understood phenomenologically in the context of doping. Investigations on 111 compounds 

identified intrinsic hole doping caused by alkaline metal deficiency as possible reason,[33, 42] 

whereas V3+/V4+ valence mixing is discussed as origin of electron doping in 21311.[68]  

 
Figure 3. Schematic phase diagram illustrating the emergence of superconductivity upon doping in iron 
arsenides (left).[16] Magnetic structure of parent compound BaFe2As2 (right).[69] 

So far critical temperatures remain below 25 K upon direct substituting the iron sites, whereas 

site mixing with transition metals left of iron in the periodic system induces no superconduc-

tivity at all. To this present day there is still no final consensus whether direct doping influ-

ences the SDW ordering by charge doping or dilution of the iron arsenide layers by magnetic 

impurities. So far experiments substantiate highest Tc to emerge only in compounds with 
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clean FeAs layers. A schematic phase diagram is depicted in Figure 3, illustrating the emer-

gence of superconductivity upon doping in iron pnictide compounds. Also shown is the mag-

netic structure of BaFe2As2 in the parent state below 140 K. 

A detailed understanding of the mechanism of superconductivity in iron arsenide compounds 

is still missing. All iron-based superconductors share the same crystallographic motif, with 

the main component being a square lattice of iron atoms sandwiched between two square lat-

tices of pnictogen or chalcogen. Thus, the crucial role of this building block is more than ob-

vious. Theoretical studies and ARPES measurements revealed the iron arsenides being semi 

metals. They are characterized by valence and conduction bands shifted in momentum space, 

but exhibiting an overlap in energy (Figure 4a).[18, 70-71] Electrons are transferred in order to 

equalize EF forming electron and hole pockets. Furthermore the electronic structure of these 

compounds was found to be quasi two-dimensional featuring cylinder like sheets,[72] origi-

nating from the previously described hole-like and electron-like bands. A nesting vector q = 

(π, π, 0) was evidenced in iron arsenide parent compounds connecting coplanar planes of the 

Fermi surface.[18] This nesting indicates the close proximity of the iron arsenides to an elec-

tronic and/or magnetic instability. If the nesting is "good", charge density wave (CDW) or 

spin density wave (SDW) instabilities can occur.[73] It is assumed that this instability causes 

the antiferromagnetic ordering in the parent compounds, while the resulting magnetic 

frustration is ultimately lifted by the orthorhombic distortion of the plane. However, structural 

and magnetic transitions occur nearly simultaneously in the 122 systems and within several 

Kelvin of each other for the 1111 systems.[74] Thus the issue of cause and consequence in the 

scope of these two transitions is not settled yet, but on the contrary was even extended by 

recent experimental indication of nematic ordering in BaFe2As2.[75-77] 

Upon chemical doping the Fermi surface nesting can be gradually destroyed and the SDW 

transition is suppressed.[16, 18] Though the long-range magnetic order is removed then, short-

range spin fluctuations could still be present which might act as mediating glue in the forma-

tion of Cooper pairs as it was suspected for the cuprates as well.[74] The importance of mag-

netism in this family was also demonstrated by recent results on underdoped (Ba1-xKx)Fe2As2 

revealing a microscopic coexistence of superconductivity and magnetism, which indicates that 

both states compete for the same electrons.[78] Experiments on the isotope effect moreover 

found strong evidence for phonons and magnetism being intimately coupled in the iron arse-

nides.[79] Thus at the present stage a combination of magnetic fluctuations and lattice vibra-

tions is assumed to mediate superconductivity in iron arsenides. Excellent reviews about 
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chemistry, physics, and superconductivity in iron arsenides are given by Mazin,[16] 

Johrendt,[18] Hinks,[74] Johnston,[80] and Stewart.[81] 

But what can be concluded from the insights into iron arsenide superconductivity in the 

context of the cuprate and conventional superconductors? On the first glance it is tempting to 

see a close resemblance to the cuprates due to the proposed pairing based on magnetic fluctu-

ations. However, the more they are studied, the less they seem to look like copper oxides. Iron 

arsenides are metals with s± symmetry of the pair wave function featuring multi-band super-

conductivity (Figure 4b). In contrast to that single-band superconductivity with d symmetry of 

the order parameter is found in cuprates, which are Mott insulators in the parent state. On the 

other side iron arsenides can definitely not be classified being conventional superconductors 

like MgB2, although at least they are metals with s symmetry in the superconducting state, but 

without sign change.[16] Therefore the iron arsenides probably have to be put somewhere in 

between these two extremes suggesting that high Tc superconductivity is not limited to any 

particular class. Following the example of Matthias,[17] Mazin formulated a new set of guide-

lines for the search for high Tc superconductors taking into account recent results from iron 

arsenide and copper oxide superconductors. (1) Layered structures are good. (2) The carrier 

density should not be too high. (3) Transition metals of the fourth period are good. (4) Mag-

netism is essential. (5) Proper Fermi surface geometry is essential. (6) Materials of interest are 

likely to be complex chemical compounds.[16] 

 
Figure 4. Sketch of the electronic structure of a semimetal developing from a semiconductor. Shaded areas 
represent filled electronic states (left).[18] (b) Schematic representation of the superconducting order para-
meter with (I) simple s wave (e.g. Al), (II) d wave (e.g. copper oxides), (III) multi-band s wave with the 
same sign (e.g. MgB2), and (IV) multi-band s± wave with sign change superconductors, assumed for iron 
arsenides (right).[16] 

The explorative search for new superconductors as well as the detailed structure investigation 

of known compounds is therefore a task for solid-state chemists and crystallographers alike. 

The immense progress made in the field of analytical methods over the last decades allows for 

very sensitive measurements. Therefore, high quality samples are indispensable, requiring 
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ongoing optimization of established preparation procedures and exploration of new synthesis 

strategies. Since no reliable predictions of new superconductors are available yet, the most 

promising route to uncover new pieces of the puzzle of superconductivity is the close investi-

gation of unusual representatives in known material classes. In the iron arsenides the 122 

compounds are plainly one of the most studied model systems featuring previously described 

typical properties. The little brother CaFe2As2, however, was discovered much later and was 

found to exhibit some peculiarities which render this 122 representative unique among the 

iron arsenide family.[41] A second phase transition competes with the familiar SDW ordering 

at higher pressures giving rise to a "collapsed" tetragonal phase with As–As single bonds 

between neighboring FeAs layers. Established doping scenarios of the 122 system were found 

to be violated in CaFe2As2 which is referred to as "breakdown of chemical scaling".[82] These 

results along with recent controversial reports about one[83] or two superconducting phases[84] 

or no superconductivity at all[85] in electron doped (Ca1-xREx)Fe2As2 as well as the discovery 

of the new iron arsenides CaFe4As3
[86] and potentially superconducting layered 

(Ca1-xREx)FeAs2
[87-88] shifted the attention of many groups worldwide to the auspicious Ca–

Fe–As system (Figure 5). 

 
Figure 5. Crystal structures of calcium iron arsenides (Ca1-xREx)Fe2As2 (left), (Ca1-xREx)FeAs2 (middle), 
and CaFe4As3 (right). 

The complex structures of highest Tc copper oxides and reported structural flexibility of 

CaFe2As2, inspired the general idea of exploring the existence of more complex stacking 

structures in a potential Ca–Fe–M–As system. Therefore M would need to be so similar to Fe 

to form layered structures on the one side, but different enough on the other side to not just 

mix with Fe. In this context Pt turned out to be an ideal candidate. Soon after first indication 

of superconductivity was reported in the system Ca–Fe–Pt–As, but both structure and compo-

sition could not be determined at this stage.[89]  
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The main topic of this dissertation is the identification of new compounds, structure determi-

nation, and substitution dependent investigation of properties in this new branch of the family 

of iron arsenide superconductors (Chapter 2). Chapter 2.1 presents the identification of the 

superconducting compounds and the corresponding structure elucidation identifying two dif-

ferent species (CaFeAs)10Pt3As8 and (CaFeAs)10Pt4As8 in this family (abbreviated as 1038 

and 1048 according to their stoichiometry). However, a closer look revealed a more 

challenging structure chemistry which is covered in Chapter 2.2. The following two Chapters 

2.3 and 2.4 are devoted to (CaFeAs)10Pt3As8 and more detailed investigations on this parent 

compound of the new superconductor family. Furthermore, transition metal substitution series 

(CaFe1-xMxAs)10Pt3As8 were synthesized to investigate the resemblance to model systems 

Ba(Fe1-xMx)2As2 and LaO(Fe1-xMx)As in the scope of structural changes and superconductivity 

as described in Chapter 2.5. Initially amazing differences in superconducting properties com-

paring 1038 and 1048 compounds are analyzed in Chapter 2.6 establishing an universal dop-

ing model in the (CaFe1-xMxAs)10PtzAs8 family. Additionally substituent dependent properties 

upon rare earth substitution in electron doped (Ca1-yREyFeAs)10Pt3As8 are investigated in 

Chapter 2.7, while a detailed study of superconducting properties and magnetism in 

(Ca1-yLayFeAs)10Pt3As8 by the local μSR technique is presented in Chapter 2.8. In Chapter 2.9 

a comparison of direct and electron doping is discussed based on codoping experiments in 

(Ca1-yLayFe1-xPtxAs)10Pt3As8 and (CaFe1-xPtxAs)10Pt4As8. Finally, in Chapter 2.10 electron 

doping in stoichiometric 1048 is studied by charge compensation experiments in 

(Ca1-yNayFeAs)10Pt4As8. 

Chapter 3 is dedicated to a new family of calcium iron arsenides featuring frameworks of 

interconnected iron arsenide layers. The first subchapter presents the structure elucidation as 

well as a systematic structural characterization. Investigations on the complicated properties 

as well as theoretical consideration of selected compounds are given in section 3.2.  

Last but not least, Chapter 6 is dedicated to the description of a variety of different tools 

developed during this thesis with the objective to accelerate data procession, automatize stan-

dard procedures and simplify structure solution as well as complex twinning issues. 

References 

[1] H. K. Onnes, Nobel Lectures in Physics 1901-1921 1913, 333. 

[2] H. K. Onnes, Commun. Phys. Lab. Univ. Leiden 1911, 120b. 



Introduction 

 

10 

[3] H. K. Onnes, Commun. Phys. Lab. Univ. Leiden. Suppl. 1911, 29. 

[4] J. Rüttgers, quoted by Deutsche Kommission Elektrotechnik Elektronik Informations-

technik 2009. 

[5] J. G. Bednorz, K. A. Müller, Z. Physik B - Condensed Matter 1986, 64, 189. 

[6] G. F. Sun, K. W. Wong, B. R. Xu, Y. Xin, D. F. Lu, Phys. Lett. A 1994, 192, 122. 

[7] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 1957, 108, 1175. 

[8] C. A. Reynolds, B. Serin, L. B. Nesbitt, Phys. Rev. 1951, 84, 691. 

[9] B. Serin, C. A. Reynolds, C. Lohman, Phys. Rev. 1952, 86, 162. 

[10] W. S. Corak, B. B. Goodman, C. B. Satterthwaite, A. Wexler, Phys. Rev. 1954, 96, 

1442. 

[11] M. A. Biondi, M. P. Garfunkel, A. O. McCoubrey, Phys. Rev. 1956, 101, 1427. 

[12] R. E. Glover, M. Tinkham, Phys. Rev. 1956, 104, 844. 

[13] F. London, H. London, Proc. R. Soc. Lond. A 1935, 149, 71. 

[14] W. Meissner, R. Ochsenfeld, Naturwissenschaften 1933, 21, 787. 

[15] I. Giaever, K. Megerle, Phys. Rev. 1961, 122, 1101. 

[16] I. I. Mazin, Nature 2010, 464, 183. 

[17] W. E. Pickett, Physica B: Condensed Matter 2001, 296, 112. 

[18] D. Johrendt, J. Mater. Chem. 2011, 21, 13726. 

[19] P. M. Grant, Nature 2008, 453, 1000. 

[20] C. Xu, S. Sachdev, Nat. Phys. 2008, 4, 898. 

[21] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. 

Hosono, J. Am. Chem. Soc. 2006, 128, 10012. 

[22] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 2008, 130, 

3296. 



Introduction 

11 

[23] G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, N. L. Wang, 

Phys. Rev. Lett. 2008, 100, 247002. 

[24] Z. A. Ren, J. Yang, W. Lu, W. Yi, G. C. Che, X. L. Dong, L. L. Sun, Z. X. Zhao, 

Mater. Res. Innovations 2008, 12, 105. 

[25] Z.-A. Ren, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. 

Sun, F. Zhou, Z.-X. Zhao, Europhys. Lett. 2008, 82, 57002. 

[26] Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, C. Zheng, G.-C. Che, X.-L. Dong, L.-

L. Sun, F. Zhou, Z.-X. Zhao, Chin. Phys. Lett. 2008, 25, 2215. 

[27] W. J. Moore, L. Pauling, J. Am. Chem. Soc. 1941, 63, 1392. 

[28] W. Nieuwenkamp, J. M. Bijvoet, Z. Kristallogr. 1985, 171, 23. 

[29] Z. Ban, M. Sikirica, Acta Crystallogr. 1965, 18, 594. 

[30] V. Johnson, W. Jeitschko, J. Solid State Chem. 1974, 11, 161. 

[31] F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-

L. Huang, Y.-Y. Chu, D.-C. Yan, M.-K. Wu, Proc. Natl. Acad. Sci. 2008, 105, 14262. 

[32] Y. Kuo-Wei, H. Tzu-Wen, H. Yi-lin, C. Ta-Kun, H. Fong-Chi, M. W. Phillip, L. 

Yong-Chi, C. Yan-Yi, C. Chi-Lian, L. Jiu-Yong, Y. Der-Chung, W. Maw-Kuen, 

Europhys. Lett. 2008, 84, 37002. 

[33] D. R. Parker, M. J. Pitcher, P. J. Baker, I. Franke, T. Lancaster, S. J. Blundell, S. J. 

Clarke, Chem. Commun. (Cambridge, U. K.) 2009, 2189. 

[34] J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, A. M. Guloy, Phys. 

Rev. B 2008, 78, 060505. 

[35] C. Peng, S. Bing, M. Gang, Z. Xiyu, H. Fei, Z. Bin, W. Hai-Hu, Europhys. Lett. 2009, 

85, 67003. 

[36] M. Tegel, S. Johansson, V. Weiß, I. Schellenberg, W. Hermes, R. Pöttgen, D. 

Johrendt, Europhys. Lett. 2008, 84, 67007. 

[37] S. Matsuishi, Y. Inoue, T. Nomura, M. Hirano, H. Hosono, J. Phys. Soc. Jpn. 2008, 

77, 113709. 



Introduction 

 

12 

[38] S. Matsuishi, Y. Inoue, T. Nomura, H. Yanagi, M. Hirano, H. Hosono, J. Am. Chem. 

Soc. 2008, 130, 14428. 

[39] X. Zhu, F. Han, P. Cheng, G. Mu, B. Shen, B. Zeng, H.-H. Wen, Physica C: 

Superconductivity 2009, 469, 381. 

[40] M. Pfisterer, G. Nagorsen, Z. Naturforsch. B 1980, 35, 703  

[41] N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud’ko, P. C. Canfield, 

Phys. Rev. B 2008, 78, 014523. 

[42] G. M. Friederichs, I. Schellenberg, R. Pöttgen, V. Duppel, L. Kienle, J. Schmedt auf 

der Günne, D. Johrendt, Inorg. Chem. 2012, 51, 8161. 

[43] S. Rózsa, H.-U. Schuster, Z. Naturforsch. 1981, 36b, 1668. 

[44] M. Noack, H.-U. Schuster, Z. Anorg. Allg. Chem. 1994, 620, 1777. 

[45] R. Marchand, W. Jeitschko, J. Solid State Chem. 1978, 24, 351. 

[46] X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, H.-H. Wen, Phys. Rev. B 2009, 

79, 220512. 

[47] M. Tegel, F. Hummel, S. Lackner, I. Schellenberg, R. Pöttgen, D. Johrendt, Z. Anorg. 

Allg. Chem. 2009, 635, 2242. 

[48] M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, R. Pöttgen, Phys. Rev. 

B 2008, 78, 020503. 

[49] C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. R. Ii, J. L. Zarestky, H. A. Mook, G. F. 

Chen, J. L. Luo, N. L. Wang, P. Dai, Nature 2008, 453, 899. 

[50] H. Maeter, H. Luetkens, Y. G. Pashkevich, A. Kwadrin, R. Khasanov, A. Amato, A. 

A. Gusev, K. V. Lamonova, D. A. Chervinskii, R. Klingeler, C. Hess, G. Behr, B. 

Büchner, H.-H. Klauss, Phys. Rev. B 2009, 80, 094524. 

[51] H. Fukazawa, K. Hirayama, K. Kondo, T. Yamazaki, Y. Kohori, N. Takeshita, K. 

Miyazawa, H. Kito, H. Eisaki, A. Iyo, J. Phys. Soc. Jpn. 2008, 77, 093706. 

[52] M. Rotter, M. Pangerl, M. Tegel, D. Johrendt, Angew. Chem. Int. Ed. 2008, 47, 7949. 

[53] S. Peschke, T. Stürzer, D. Johrendt, Z. Anorg. Allg. Chem. 2014, 640, 830. 



Introduction 

13 

[54] A. F. Wang, B. Y. Pan, X. G. Luo, F. Chen, Y. J. Yan, J. J. Ying, G. J. Ye, P. Cheng, 

X. C. Hong, S. Y. Li, X. H. Chen, Phys. Rev. B 2013, 87, 214509. 

[55] M. Tegel, M. Rotter, V. Weiß, F. M. Schappacher, R. Pöttgen, D. Johrendt, J. Phys.: 

Condens. Matter 2008, 20, 452201. 

[56] A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, D. Mandrus, Phys. Rev. 

Lett. 2008, 101, 117004. 

[57] F. Han, X. Zhu, P. Cheng, G. Mu, Y. Jia, L. Fang, Y. Wang, H. Luo, B. Zeng, B. 

Shen, L. Shan, C. Ren, H.-H. Wen, Phys. Rev. B 2009, 80, 024506. 

[58] A. S. Sefat, M. A. McGuire, R. Jin, B. C. Sales, D. Mandrus, F. Ronning, E. D. Bauer, 

Y. Mozharivskyj, Phys. Rev. B 2009, 79, 094508. 

[59] N. Ni, A. Thaler, A. Kracher, J. Q. Yan, S. L. Bud’ko, P. C. Canfield, Phys. Rev. B 

2009, 80, 024511. 

[60] M. Rotter, C. Hieke, D. Johrendt, Phys. Rev. B 2010, 82, 014513. 

[61] S. R. Saha, T. Drye, K. Kirshenbaum, N. P. Butch, P. Y. Zavalij, P. Johnpierre, J. 

Phys.: Condens. Matter 2010, 22, 072204. 

[62] Y. Nishikubo, S. Kakiya, M. Danura, K. Kudo, M. Nohara, J. Phys. Soc. Jpn. 2010, 

79, 095002. 

[63] C.-H. Lee, A. Iyo, H. Eisaki, H. Kito, M. T. Fernandez-Diaz, T. Ito, K. Kihou, H. 

Matsuhata, M. Braden, K. Yamada, J. Phys. Soc. Jpn. 2008, 77, 083704. 

[64] Z. Deng, X. C. Wang, Q. Q. Liu, S. J. Zhang, Y. X. Lv, J. L. Zhu, R. C. Yu, C. Q. Jin, 

Europhys. Lett. 2009, 87, 37004. 

[65] H. Ogino, S. Sato, K. Kishio, J.-I. Shimoyama, Phys. Procedia 2012, 36, 722. 

[66] V. Zinth, T. Dellmann, H.-H. Klauss, D. Johrendt, Angew. Chem. Int. Ed. 2011, 50, 

7919. 

[67] M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 2008, 101, 107006. 

[68] F. Hummel, Y. Su, A. Senyshyn, D. Johrendt, Phys. Rev. B 2013, 88, 144517. 

[69] M. Martin, Dissertation, Ludwig-Maximilians-Universität München, 2010. 



Introduction 

 

14 

[70] F. Ma, Z.-Y. Lu, Phys. Rev. B 2008, 78, 033111. 

[71] A. A. Kordyuk, V. B. Zabolotnyy, D. V. Evtushinsky, A. N. Yaresko, B. Büchner, S. 

V. Borisenko, J. Supercond. Novel Magn. 2013, 26, 2837. 

[72] J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. 

Luo, Z. Fang, N. L. Wang, Europhys. Lett. 2008, 83, 27006. 

[73] G. Grüner, Density Waves in Solids 1994, Perseus Publishing. 

[74] D. G. Hinks, Nat. Phys. 2009, 5, 386. 

[75] R. M. Fernandes, A. V. Chubukov, J. Schmalian, Nat. Phys. 2014, 10, 97. 

[76] A. E. Böhmer, P. Burger, F. Hardy, T. Wolf, P. Schweiss, R. Fromknecht, M. 

Reinecker, W. Schranz, C. Meingast, Phys. Rev. Lett. 2014, 112, 047001. 

[77] E. Wiesenmayer, private communication, Ludwig-Maximilians-Universität München, 

2015. 

[78] E. Wiesenmayer, H. Luetkens, G. Pascua, R. Khasanov, A. Amato, H. Potts, B. 

Banusch, H.-H. Klauss, D. Johrendt, Phys. Rev. Lett. 2011, 107, 237001. 

[79] R. H. Liu, T. Wu, G. Wu, H. Chen, X. F. Wang, Y. L. Xie, J. J. Ying, Y. J. Yan, Q. J. 

Li, B. C. Shi, W. S. Chu, Z. Y. Wu, X. H. Chen, Nature 2009, 459, 64. 

[80] D. C. Johnston, Adv. Phys. 2010, 59, 803. 

[81] G. R. Stewart, Rev. Mod. Phys. 2011, 83, 1589. 

[82] K. Kudo, M. Kobayashi, S. Kakiya, M. Danura, M. Nohara, J. Phys. Soc. Jpn. 2012, 

81, 035002. 

[83] S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, 

J. W. Lynn, J. Paglione, Phys. Rev. B 2012, 85, 024525. 

[84] Y. Sun, W. Zhou, L. J. Cui, J. C. Zhuang, Y. Ding, F. F. Yuan, J. Bai, Z. X. Shi, AIP 

Advances 2013, 3, 102120. 

[85] R. Pobel, private communication, Ludwig-Maximilians-Universität München, 2014. 



Introduction 

15 

[86] I. Todorov, D. Y. Chung, C. D. Malliakas, Q. Li, T. Bakas, A. Douvalis, G. Trimarchi, 

K. Gray, J. F. Mitchell, A. J. Freeman, M. G. Kanatzidis, J. Am. Chem. Soc. 2009, 

131, 5405. 

[87] N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. 

Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara, H. Sawa, J. Phys. Soc. Jpn. 

2013, 82, 123702. 

[88] H. Yakita, H. Ogino, T. Okada, A. Yamamoto, K. Kishio, T. Tohei, Y. Ikuhara, Y. 

Gotoh, H. Fujihisa, K. Kataoka, H. Eisaki, J.-I. Shimoyama, J. Am. Chem. Soc. 2014, 

136, 846. 

[89] M. Nohara, S. Kakiya, K. Kudo, international workshop on novel superconductors 

and super materials 2011, Tokyo. 

 



New Iron Arsenide Superconductors (CaFeAs)10PtzAs8 

16 

2 New Iron Arsenide Superconductors (CaFeAs)10PtzAs8 

2.1 Superconductivity up to 35 K in the Iron Platinum Arsenides 

(CaFe1−xPtxAs)10Pt4−yAs8 with Layered Structures 

C. Löhnert, T. Stürzer, M. Tegel, R. Frankovsky, G. Friederichs, D. Johrendt 

 

published in:  Angew. Chem. Int. Ed. 2011, 50, 9195 – 9199. 

 Copyright 2011, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 

Abstract 

The family of iron arsenide superconductors is expanded by the new iron platinum com-

pounds (CaFe1-xPtxAs)10Pt4−yAs8 with novel crystal structures. Layers of FeAs4/4 tetrahedra 

and of nearly planar PtAs4/2 squares with (As2)4− dumbbells are stacked in different ways, 

resulting in polytypes with triclinic or tetragonal symmetry. Superconductivity up to 35 K is 

induced either by Pt doping of the Fe site or by electron transfer from PtAs to FeAs layers. 

2.1.1 Introduction 

The discovery of high-temperature superconductivity in iron arsenides in 2008[1] has arguably 

been the biggest breakthrough in this field since the appearance of the copper oxide super-

conductors in 1986. In iron arsenides, superconductivity up to 55 K[2] originates in layers of 

edge-sharing 2
∞[FeAs4/4] tetrahedra. Meanwhile, a series of different structure types has been 

identified, but the family of superconducting iron arsenide compounds is still small in com-

parison with the cuprates. Its members are mainly derivatives of the relatively simple and 

long-known anti-PbFCl-[1,3,4] and ThCr2Si2-type structures.[5,6] Thus, extending the crystal 



New Iron Arsenide Superconductors (CaFeAs)10PtzAs8 

17 

chemistry of iron-based superconductors is a foremost task of solid-state chemistry. Com-

pounds like Sr2VO3FeAs with thick perovskite-like oxide blocks between the FeAs layers 

were derived from known copper sulfides and showed superconductivity up to 37 K. 

However, the combination of the metallic iron arsenide layers with transition metal oxides 

caused difficulties.[8, 9]  

Another approach is the combination of iron arsenide layers with other intermetallic building 

blocks. We considered the fact that a second transition metal should be one that can adopt 

coordination geometries other than tetrahedral. Platinum appeared promising, because Pt is 

known to be very flexible and forms arsenides with octahedral, tetrahedral, trigonal, and 

square coordination in compounds like PtAs2,[10] SrPt2As2,[11] SrPtAs,[12] and Cs2PtAs2,[13] 

respectively. Recently, Nohara and co-workers[14] mentioned superconductivity in the system 

Ca–Fe–Pt–As, but the detailed structure and composition of the compound were not reported. 

With these points in mind, we started explorative syntheses in the system Ca–Fe–Pt–As and 

found three new platinum iron arsenides (CaFe1-xPtxAs)10Pt4As8, (CaFe1-xPtxAs)10Pt3As8, and 

(CaFeAs)10Pt4As8. These compounds crystallize in to date unknown structure types, where 

iron arsenide and platinum arsenide layers alternate. We have detected superconductivity up 

to 35 K, which is probably either induced by Pt doping of the FeAs layers in 

(CaFe1-xPtxAs)10Pt3As8 or by indirect electron doping in (CaFeAs)10Pt4As8 owing to additional 

Pt2+ in the platinum arsenide layers. However, the concrete phase relationships are not yet 

completely resolved. Herein, we report the synthesis, crystal structures, preliminary property 

measurements, and density functional (DFT) calculations of these new superconductors.  

2.1.2 Experimental Details 

The compounds were synthesized by heating stoichiometric mixtures of pure elements at 

700 – 1100 °C in alumina crucibles, sealed under argon in silica tubes. Powder diffraction 

data were measured using either a HUBER G670 Guinier imaging plate (Co Kα1 or Cu Kα1 

radiation) or a STOE Stadi P diffractometer (Mo Kα1 or Cu Kα1 radiation, Ge [111] monoch-

romator). Rietveld refinements were performed with the TOPAS package.[15] Crystals were 

selected from the polycrystalline samples. X-ray intensity data were measured with a STOE 

IPDS-I imaging plate or a Nonius-κ-CCD (Mo Kα radiation). The structures were solved 

using the charge flipping method included in the JANA2006 program package.[16] The latter 

was also used for structure refinement. Further details on the crystal structure investigations 

may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-
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Leopoldshafen (Fax: (+49) 7247-808-666; e-mail: crysdata@ fiz-karlsruhe.de), on quoting the 

depository numbers CSD-423398 (Ca5Fe4.75Pt1.75As9; 1038), 423399 (Ca5Fe5Pt1.82As9; 

α-1048), and 423400 (Ca5Fe4.35Pt2.65As9; β-1048). AC susceptibility data were measured at 

1333 Hz and 2 G. DFT calculations were performed with the LMTO47c package.[17] 

2.1.3 Results and Discussion 

The polycrystalline samples were mostly inhomogeneous and contained plate-shaped as well 

as needle-shaped crystals with metallic luster. X-ray powder patterns could initially not be 

indexed, and the plate-like crystals easily exfoliated. Their diffraction patterns showed clean 

square motifs but a disturbed periodicity of the third dimension, which indicated stacking dis-

order. Only some crystals were of fairly sufficient quality for X-ray structure determinations. 

Finally, we found three different but closely related crystal structures, whose compositions 

and lattice parameters are compiled in Table 1. The rather high R values reflect the poor 

crystal quality and still not completely resolved twinning and/or intergrowth issues. 

Table 1. Crystal data of the platinum iron arsenides. 

Formula (CaFe1-xPtxAs)10Pt3As8 (CaFe1-xPtxAs)10Pt4As8 
Label 1038 α-1048 β-1048 
SG P1̄ P4/n  P1̄ 
a (Å) 8.776(1) 8.716(1) 8.7382(4) 
b (Å) 8.781(1) a 8.7387(4) 
c (Å) 10.689(2) 10.462(2) 11.225(1) 
α (°) 75.67(1) 90 81.049(3) 
β (°) 85.32(1) 90 71.915(3) 
γ (°) 89.97(1) 90 89.980(3) 
RF>3σ(F) 0.064 0.099 0.069 

 

(CaFe1-xPtxAs)10Pt3As8, hereafter referred to as the 1038 compound, crystallizes in the triclinic 

crystal system and consists of iron arsenide layers separated by calcium ions and slightly 

puckered Pt3As8 layers. The crystal structure is shown in Figure 1. Platinum atoms either lie 

in the centers of the corner sharing As4-squares or are shifted slightly above it. Arsenic forms 

As2
4- dumbbells with typical As–As bond lengths of approximately 2.48 Å. The combination 

of As2 dumbbells with square coordinated Pt atoms is known from the pyrite like compound 

BaPt4As6, which also contains octahedrally coordinated platinum.[18] Assuming divalent Pt2+ 

(5d8) in the present compound, charge neutrality is achieved according to 

(Ca2+Fe2+As3-)10(Pt2+)3[(As2)4-]4. Thus, the electronic situation of the (FeAs)1- layer is iden-
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tical to that in the known parent compounds BaFe2As2 and LaFeAsO. Subsequent refinements 

of the crystal structure revealed Pt substitution at the Fe site. The final composition has been 

determined to be (CaFe0.95(1)Pt0.05(1)As)10Pt3As8. 

 
Figure 1. Crystal structure of triclinic (CaFe1-xPtxAs)10Pt3As8 (1038 compound) and details of the Pt3As8 
layer (right). 

A second type of plate-like crystals from the polycrystalline samples showed tetragonal sym-

metry, and the structure could be solved in the space group P4/n. The tetragonal structure 

contains building blocks very similar to the triclinic phase as described above. No Pt doping 

was detected at the iron site, even though the refined composition (CaFeAs)10Pt3.58(2)As8 

(α-1048) contains even more platinum than triclinic (CaFe0.95(1)Pt0.05(1)As)10Pt3As8. Finally, 

the structure of the needle-shaped crystals could also be solved and refined in the space group 

P1̄

 

. Their composition is (CaFe0.87(1)Pt0.13(1)As)10Pt4As8 (β-1048), which is the platinum-rich-

est phase so far. In this case, all Pt sites in the Pt4As8 layer are fully occupied, and addition-

ally about 13 % iron in the FeAs layer is substituted by platinum.  

Figure 2. Crystal structures of (CaFeAs)10Pt3.58As8 (left, α-1048) and (CaFe0.87(1)Pt0.13(1))10Pt4As8 (right, β-
1048). The Pt4-yAs8 layer of both structures is shown in the middle. 
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Figure 2 shows the crystal structures of both 1048 compounds. Additional Pt atoms occupy 

the voids in the Pt3As8 layer of the 1038 structure (cf. Figure 1), which gives a layer formula 

of Pt4As8. But also the stacking of Pt4As8 and FeAs layers is different from the 1038 com-

pound. This situation becomes clear when the arrangements of the calcium atoms in the 1038 

and 1048 structures are compared. While the Ca layers are mirror-symmetric above and below 

the Pt3As8 layers in the 1038 compound (see Figure 1), they are shifted by half the diagonal of 

one CaFeAs subcell in the 1048 structures. In contrast, the FeAs layers are congruently 

stacked in the 1048 structures, but not in the 1038 structure. Thus, α- and β-1048 are poly-

morphs with the same stacking of the Ca and FeAs layers. But while consecutive Pt4As8 lay-

ers are congruent in α-1048, they are shifted by one period of the CaFeAs layer (3.89 Å) 

along [120] in β-1048 (Figure 2). This shift by [0.2,0.4,0] is incompatible with the positions 

of the fourfold axis at (0,0,z) and (1/2,1/2,z), therefore the structure becomes triclinic. The 

crystal structures are compatible with the X-ray powder patterns that could be fitted by using 

both the 1038 and the α-1048 phases in roughly 60 : 40 weight ratio. Figure 3 shows the 

measured data and the Rietveld fit. 

 
Figure 3. (a) X-ray powder pattern and Rietveld fit using the structures of the triclinic 1038 and the tetra-
gonal α-1048 compounds. Inset: AC susceptibility and DC resistivity measurements. The latter shows data 
of a cold-pressed pellet (filled circles) and after annealing at 1000°C (open circles). (b) X-ray powder 
pattern and Rietveld fit of the needle-shaped β-1048 crystals. Inset: AC susceptibility measurement. 

AC susceptibility measurements of different samples always revealed two superconducting 

transitions. A lower onset temperature around 15 K was found in both samples, while the 

higher Tc is at 31 K in sample 1 and at 35 K in sample 2 (insets in Figure 3a). The shielding 

fraction of about 60 % at 4 K in sample 1 can be subdivided in two roughly equal amounts of 

the two phases, which is in agreement with the Rietveld data, but allows no assignment of the 

different phases to the superconducting transitions. The resistivity of a cold-pressed pellet of 

sample 1 shows the same two transitions as the susceptibility, but zero resistivity is not 
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achieved owing to grain boundary effects. After annealing the pellet at 1000 °C for five hours, 

we observe one rather sharp drop at approximately 30 K (open circles in Figure 3a), while the 

magnetic susceptibility of the annealed pellet (not shown) still reveals two transition temper-

atures. As expected, the fraction of the 30 K superconductor is sufficient to achieve zero 

resistivity.  

Both compounds show electronic structure features typical for iron arsenide superconductors 

that may allow an at least probable assignment of the 1038 and 1048 compounds to the ob-

served transitions. The 1038 phase formally represents a parent compound with (FeAs)1- lay-

ers like undoped BaFe2As2 or LaOFeAs, neither of which is superconducting. Pt doping at the 

Fe site is known to induce superconductivity in SrFe2-xPtxAs2,[19] and we suggest that (CaFe1-

xPtxAs)10Pt3As8 is superconducting because of Pt doping of the FeAs layers. In contrast, indi-

rect electron doping of clean FeAs layers induces superconductivity in La(O1-xFx)FeAs and 

(Ca1-xREx)Fe2As2 (RE = rare earth metal).[20] The tetragonal α-1048 compound may be consi-

dered as indirectly electron doped owing to the approximately 0.6 additional Pt2+ atoms in the 

Pt3.58As8 layer, which formally reduce the charge at the Fe atom. It has generally been ob-

served that indirect electron or hole doping of clean FeAs layers leads to higher Tc values than 

substitution of Fe by other metals (direct doping), for example in Ba0.6K0.4Fe2As2 (38 K)[6, 21] 

and BaFe1.86Co0.14As2 (22 K).[22] One possible reason may be the additional disorder in the 

latter case.  

From these considerations, we suggest that the indirectly electron doped α-1048 compound 

with clean FeAs layers has a higher Tc value than the Pt doped 1038 compound. We have also 

synthesized samples of the 1038 phase with lower Pt concentrations (no Pt at the Fe site) that 

were not superconducting, which is in line with our arguments. Our assignment is compatible 

with the properties of the β-1048 compound. Owing to the needle-like shape of the crystals, 

we were able to manually select an amount sufficient for AC measurements and powder dif-

fraction, but not for resistivity measurements. The pattern was fitted using the crystal structure 

of β-1048 (Figure 3b). Small amounts of PtAs2 were included in the refinement. The peak at 

2θ = 16° is an unidentified impurity, but nevertheless the pattern is well described by the 

structure of the β-1048 phase obtained from X-ray single crystal data.  

The AC susceptibility of the crystals is shown in the inset of Figure 3. A sharp supercon-

ducting transition at 13 K with almost 100 % shielding at 4 K is observed, in agreement with 

the single-phase refinement of the X-ray powder data. Owing to the tiny amount of these 

crystals, this 13 K transition is not visible in the AC measurement and in the powder pattern 
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of the whole sample (Figure 3a). The lower critical temperature is plausible, because the 

crystals of the β-1048 compound can be considered as overdoped. Indeed, Nishikubo et al.[19] 

observed superconductivity at 17 K in Sr(Fe1-xPtx)2As2 at 12.5 % Pt doping. Our β-1048 single 

crystals contain about the same amount of Pt at the iron site (13 %) and are additionally indi-

rectly electron doped owing to the completely Pt filled Pt4-yAs8 layer.  

DFT calculations were conducted to check for certain features of the electronic structure that 

were considered essential. In FeAs superconductors, the electronic states near the Fermi level 

(EF) are dominated by iron 3d bands. These generate a special topology of the Fermi surface, 

referred to as nesting between so-called electron and hole like sheets.[23] It has been argued 

that this nesting plays a certain role in the pairing mechanism;[24] however, the recently dis-

covered iron selenide superconductors gave rise to doubts about this concept.[25] The question 

that arises here is whether the electronic subsystem of the Pt4-yAs8 layer contributes to the 

Fermi surface. If not, we can probably apply the concept of the other iron arsenide materials; 

otherwise, a different scenario has to be considered. From the chemical point of view, we may 

expect that the Pt 5dx2-y2 orbitals are pushed above the Fermi level by the square ligand field. If 

the Fermi level in the FeAs bands is just inside this gap, we have a pure FeAs Fermi surface. 

The 1038 compound is charge-neutral by using the Zintl concept according to 

(Ca2+Fe2+As3-)10(Pt2+)3[(As2)4-]4, while two additional electrons have to be placed in the 1048 

structure that may be written as (Ca2+Fe2+As3-)10(Pt2+)4[(As2)4-]4 ∙ 2 e–. However, it is not yet 

clear where to ascribe these extra electrons. Figure 4 shows the partial density of states 

(PDOS) of the Pt-5d and Fe-3d orbitals. We also show the crystal orbital Hamilton popula-

tions (COHP) of the Pt–As bonds in the Pt4-yAs8 layers, which provide information about the 

bonding/antibonding character of the corresponding electronic states. The Fe-3d PDOS 

(Figure 4a, c) of both compounds are very similar to those of other FeAs superconductors. 

The Fermi levels at the rising edges of the Fe-3d peaks reveal that mostly iron states 

contribute to the Fermi surfaces in both the α-1048 and 1038 compounds. In contrast, the 

contribution of platinum at EF is very small. The Pt-5d PDOS of α-1048 has nearly a gap, 

which means that the Fermi surface of this compound consists of states from the FeAs layer 

only, as in the known FeAs superconductors. This situation is also consistent with the Pt–As 

bonding. The COHP plot (Figure 4b) reveals that the majority of the Pt–As bonding states are 

well below and the antibonding states are mainly well above the Fermi energy, respectively. 

In other words, Pt–As bonding removes most of the Pt states from the Fermi surface in 

α-1048.  
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Figure 4. Partial density of states (PDOS) and crystal orbital Hamilton population (COHP) of the Pt–As 
bonds in a,b) tetragonal α-1048 and c,d) triclinic 1038. Insets: Details of the Pt-5d PDOS near EF. 

The situation is surprisingly similar in the 1038 compound (Figure 4c, d). The Pt contribution 

at EF again is very small, while these states are slightly Pt–As antibonding (Figure 4d). Details 

of the Pt-5d PDOS are shown in the insets of Figure 4. The Fermi level is just above the gap 

in the α-1048 compound (which contains one more Pt2+ ion) but just below this gap in the 

1038 phase. Thus, band filling across this gap in the Pt states mainly fills Fe states that contri-

bute most of the energy levels in this range, which is equivalent to electron doping. This 

finding strongly suggests that the FeAs layer of the α-1048 compound is indirectly doped by 

two electrons from the Pt4As8 layer. Assuming Pt2+, the amount of transferred charge is 0.2 e–

/ FeAs, which is close to the typical values where other indirectly electron doped iron arsenide 

superconductors like LaO1-xFxFeAs[1] or the recently discovered Ca1-xRExFe2As2
[20] achieve 

the highest critical temperatures.  

2.1.4 Conclusion 

In summary, we have found three new superconducting iron platinum arsenides with the 

general formula (CaFe1-xPtxAs)10Pt4-yAs8. The crystal structures are stacking variants of FeAs 

and slightly puckered Pt4-yAs8 layers with square coordinated platinum, separated by calcium 

layers. Arsenic atoms in the Pt4-yAs8 layers form As2
4- dumbbells according to the Zintl 

concept, providing charge balance in (Ca2+Fe2+As3-)10(Pt2+)3[(As2)4-]4. Superconductivity was 
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observed at 13 – 35 K. We suggest that the highest Tc value (above 30 K) occurs in the 

α-1048 phase with clean FeAs layers that are indirectly electron doped according to 

(Ca2+Fe2+As3-)10(Pt2+)4[(As2)4-]4 ∙ 2 e–. We also suggest that the lower critical temperatures 

occur in the 1038- and β-1048 phases owing to Pt doping at the Fe site. Such direct electron 

doping has not achieved a Tc value above 25 K in any other iron-based material. DFT band 

structure calculations suggest that the contribution of the Pt4-yAs8 layers to the Fermi surface 

is small and the Fermi energy is slightly either below or above a quasi-gap in the Pt states of 

the 1038 and α-1048 compounds, respectively. The latter clearly supports the suggested indi-

rect electron doping of the FeAs layer in the α-1048 compound with the highest critical tem-

perature. The platinum iron compounds represent the first iron-based superconductors with 

new crystal structures and can serve as a new platform for further studies that go beyond the 

known systems. Note: During the submission of this manuscript, we noticed a preprint by Ni 

et al.[26] that reports similar results. The authors confirm two of the crystal structures reported 

herein and observed superconductivity up to 27 K.  
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2.2 Stacking Disorder in the System (CaFeAs)10PtzAs8 

     

2.2.1 Introduction 

Diffuse intensities at odd Bragg intensities in X-ray scattering experiments originate from 

broken three-dimensional translation symmetry in a crystal. This lack of atomic long range 

order can occur as site, one, two, or three-dimensional disorder, whereby the latter corres-

ponds to glasses and amorphous compounds. One dimensional or stacking disorder, can be 

found in a variety of layered compounds such as silicates or halogenides with CdI2- and BiI3-

type structures. Thereby faults in their stacking sequence are caused by different possible 

layer arrangements. The influence of stacking disorder on the X-ray diffraction pattern 

strongly depends on the frequency of these faults. Rare occurrences (~10-5) yield polysyn-

thetic twins, whereas more frequent faults cause reflection broadening. Domain sizes below 

the range of X-ray radiation coherence length result in diffuse scattering contributions along 

the stacking direction often accompanied with additional intensity maxima. Finally vast inten-

sity distributions without reasonable maxima are found for complete arbitrarily stacked struc-

tures. For structure determination relying on focused Bragg reflections, the effects of disorder 

can be disastrous. Since an accurate measurement of separated hkl intensities is not possible 

for those systems, conventional structure determination often results in average structure 

models. Nevertheless a detailed insight into such structures and their local order can still be 

gained by an empirical evaluation of diffraction data as was shown for Sr0.5Ba0.5Si2O2N2
[1] for 

example.  

Discovering superconductivity in the Ca–Fe–Pt–As system, especially the structure determi-

nation of the corresponding 1048 compounds revealed to be unexpectedly problematic. Strong 

reflections accompanied with diffuse contributions were found for all crystals, complicating 

the development of a structure model. Nevertheless the structures of the tetragonal α- and the 
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triclinic β-polymorphs[2-4] were found soon followed by a monoclinic γ-polymorph[5]. 

However, all attempts to isolate the polymorphs in form of bulk material failed. Instead all 

crystals revealed complex twinning, high residual electron density in the Pt4As8 layers, and 

diffuse scattering contributions often accompanied with additional intensity maxima along c*. 

In this chapter the structure of the 1048 phase, being so far unique among the iron arsenides, 

will be discussed in detail. A disorder model will be presented giving an easy understanding 

for the diffuse contributions, twinning, and the existence of the polymorphs found. The model 

will be substantiated by DFT calculations, also giving an insight how superconducting prop-

erties may be affected by this special form of disorder. Although stacking disorder also exists 

in the 1038 structure, this section will focus on the 1048 system, where the identification of 

different structures raised the most confusion. 

2.2.2 Experimental Details 

Polycrystalline samples of (CaFeAs)10Pt4As8 were prepared by heating stoichiometric mix-

tures of the elements (Ca: 99.99 %, Fe: 99.9 %, Pt: 99.95 %, As: 99.999 %) for 20 h at 800 –

 1000 °C in alumina crucibles sealed in silica tubes. The product was grounded, reheated to 

1200 °C for 120 h, slowly cooled to 900 °C and quenched with water. Single crystals were 

synthesized heating stoichiometric mixtures of the elements with an excess of Pb (600 wt%, 

Pb: 99.999 %) 72 h at 1000 °C and slow cooling to 400 °C. Subsequently the batches were 

turned upside down and kept another 60 min at 400 °C to remove the main part of the flux 

material. Plate-like and needle-shaped single crystals of (CaFeAs)10Pt4As8 were isolated by 

dissolving remaining Pb in diluted HCl and washed with water. High resolution powder dif-

fraction data were collected on a STOE Stadi P diffractometer (Cu-Kα1 radiation, Ge(111) 

monochromator, position sensitive detector) in transmission geometry and at the ID31 syn-

chrotron beam line at ESRF, Grenoble. Single crystal intensity data was measured on a STOE 

IPDS-I or a BRUKER D8 Quest diffractometer both using Mo-Ka radiation. Semiempirical 

absorption correction based on equivalent reflections was applied.[6-8]. The structures were 

solved using the charge flipping method included in the JANA2006 program package.[9] 

Powder pattern and selected area diffraction patterns of disordered polytypes including diffuse 

scattering were calculated using DIFFaX.[10-11] Structure relaxation and volume dependent 

total energy calculations were performed using the VASP 4.6 package.[12-14] Heat of formation 

and phonon spectra calculations were performed by the workgroup Dronskovski, RWTH 

Aachen. 
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2.2.3 Single Crystal Data 

Single crystal X-ray diffraction investigations on (CaFe1-xPtxAs)10Pt4As8 revealed the poly-

morphic nature of the 1048 system. Three polytypes with the space groups P4/n, P21/n, and 

P1̄ were identified. Deviations of the basal unit cell parameters a and b are based on Fe/Pt 

mixing and Pt deficiency. 

Table 2. Unit cell parameters of 1048 polytypes. 

Label α-1048 β-1048 γ-1048 
Space group P4/n P1̄ P21/n  
a (Å) 8.7145(1) 8.7382(4) 8.7032(14) 
b (Å) = a 8.7387(3) 8.7032(14) 
c (Å) 10.462(2) 11.225(5) 21.010(6) 
α (°) 90 81.049(3) 90 
β (°) 90 71.915(3) 90 
γ (°) 90 89.980(3) 90 
Volume (Å3) 794.51(1) 803.79(6) 1591.4(6) 

 

In hk cross sections of all crystals exclusively sharp Bragg reflections occur. Primitive tetra-

gonal basis cells of approximately 3.9 Å × 3.9 Å were evident from the strongest reflections 

originating from the CaFe2As2 substructure of the 1048 phases. Additional reflections were 

assigned to the 5 × 5 supercell resulting from the symmetry of the Pt4As8 layers.  

In c* direction strong diffuse contributions were found for 2h + k ≠ 5n (n ∈ ℕ), indicating 

stacking disorder in the 5 × 5 superstructure of the 1048 compounds. The absence of dif-

fuse scattering for 2h + k = 5n, however, accounts for an ordered CaFeAs substructure (Figure 

1). No influence of synthesis conditions on the magnitude of disorder was found experimen-

tally. This indicates the disorder being an intrinsic property of the 1048 system rather than a 

problem of crystal growth conditions. 
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Figure 1. hk0 (left) and h0l (right) cross sections of γ-1048 crystal. 

The average structure of the crystals were determined by integration with the 5 × 

2.2.4 Powder Data 

5 super-

cell and neglecting diffuse contributions. For all three polymorphs identical layers of CaFeAs 

and Pt4As8 were found, however, with different arrangements of the platinum arsenide layers 

to each other. This finding substantiates, that the diffuse intensity is a consequence of stacking 

disorder of the Pt4As8 layers. Nevertheless, in several crystals additional intensity maxima 

were found on diffuse streaks with fractional indices, which could be assigned to twinning 

(triclinic case) or presumably superstructure domains. These features substantiated, that the 

layer stacking in the 1048 compounds is not completely arbitrary but shows ordered domains 

on the length scale of X-ray radiation coherence length. In diffraction experiments those small 

domains are detectable as twin or polytype domains whereas smaller domains contribute as 

diffuse intensity in stacking direction. Although the application of different synthesis strate-

gies in the system Ca–Fe–Pt–As showed hardly any effect on the magnitude of disorder, two 

ordered α-1048 derivatives were found by way of partial substitution in 

(CaFe0.87Ru0.13As)10Pt2.9Ru1.1As8 and (Ca0.88Na0.12FeAs)10Pt3.6As8. The reduction of the elec-

tron count in the Pt4As8 layer either by Ru substitution or Pt deficiency appears to favor the 

higher symmetrical α-polymorph, whereas a detailed understanding is still missing. 

Powder data of (CaFeAs)10Pt4As8 obtained from laboratory powder diffraction instruments 

revealed sharp reflections together with anisotropically broadened reflections which could be 

indexed with the 5 ×  5 supercell of the 1048 phases. However, a precise assignment to the 
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particular polymorphs was not possible. The presence of diffuse superstructure reflections 

accompanied by sharp subcell reflections even in high resolution powder data obtained from 

synchrotron beam line ID31 at ESRF, Grenoble, substantiates the model of stacking disorder 

in the 1048 system, rather than a mixture of different distinct polymorphs. 

2.2.5 Theoretical Considerations 

The 1048 structures consist of an alternating stacking of the two metal pnictide layers CaFeAs 

and Pt4As8. Assuming statistical stacking of these layers, the three-dimensional periodicity of 

the 1048 structures is broken and a structure description using space group systematic fails. 

However, within the layers two-dimensional translation symmetry is retained which allows 

for the application of layer symmetry.[15] Both metal pnictide layers feature tetragonal layer 

symmetry. The CaFeAs subcell shows p4mm (# 11) layer symmetry whereas p4 (# 10) was 

found for the Pt4As8 layer. 

Analyzing the stacking of CaFeAs  and Pt4As8 sheets, the Ca and Pt sites are relevant in such 

way that a deflected Pt must always be arranged in c* direction above a Ca site. Neighboring 

Ca sheets are shifted by (0.3, 0.1, 0) at every FeAs layer with respect to the supercell, and 

(0.3, 0.1, 0) at every Pt4As8 layer. Taking into account all combination of both shifts together 

with previously determined tetragonal layer symmetry five possible arrangements of neigh-

boring Pt4As8 layers can be realized: A(0, 0, 0), B0(0.2, 0.4, 0), B90(0.4, -0.2, 0), B180(-0.2,  

-0.4, 0), and B270(-0.4, 0.2, 0) (Figure 2). It is noteworthy that the Bx shift corresponds to the 

translation symmetry of the CaFeAs subcell. Therefore neighboring FeAs layers reveal no 

shift, resulting in a tetrahedra layer arrangement as found in PbFCl-type structures for all A, 

Bx. Among this set of shifts (A, Bx) only A features a coincidence of fourfold rotation axes of 

the layers, whereas all other stacking possibilities break this symmetry in the superstructure. 

In the context of this systematic the three polymorphs experimentally found can be under-

stood as mere A-stacking (α-1048), mere Bx-stacking (β-1048), and alternated B0/B180- or 

B90/B270-stacking (γ-1048), respectively (Figure 2). Thereby the ubiquitous presence of twin 

domains found in the majority of 1048 crystals can be traced back to broken fourfold and two-

fold rotation axes of the CaFeAs subsystem in the space group symmetry of the super-

structure. 
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Figure 2. Schematic illustration of the three polymorphs identified based on the layer translation vectors 
A and Bx (left). Origin of the five layer translation vectors A, B0, B90, B180, and B270 (right). 

2.2.6 DIFFaX Simulations 

Applying the previously developed disorder model to the 1048 structure allows for a more 

detailed understanding of the diffraction data. Figure 3 compares high-resolution X-ray 

powder data and a DIFFaX simulation based on a partly disordered stacking model. Sharp 

reflections as well as anisotropic broadened reflections affected by disorder are well 

described. Minor differences in intensity can be ascribed to Fe/Pt mixing and Pt deficiency 

which was not refined for this purpose. 

 
Figure 3. High-resolution powder X-ray diffractogram of (CaFeAs)10Pt4As8 (black) and DIFFaX 
simulation of 1048 structure based on a partly disordered stacking model (red). 
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Analyzing single crystal diffraction data, diffuse intensity of reflections complying with 

2h + k ≠ 5n as well as sharp substructure reflections are well described within the stacking 

disorder model (Figure 4). More detailed information about the mean domain size, however, 

is accessible from a closer analysis of additional reflections. Figure 4 depicts the intensity 

distribution along the (10l) streak for stacking scenarios with full α-1048 order, small but 

equally probable domains, strong preference for an A domain, and full disorder. Best repro-

duction of the additional intensity maxima experimentally observed at l = 0.2, 0.4, 0.6, and 

0.8 is gained for the scenario of small but ordered domains. A reoccurrence probability of the 

last layer shift of 80 – 90 % was used for this simulation, meaning that ordered domains are in 

the range of 5 to 10 unit cells. This finding substantiates, that the 1048 system features no 

complete arbitrary random stacking disorder but ordered domains in the range of X-ray cohe-

rence length. However, for the related compound (CaFeAs)10Pd3As8 even stronger diffuse 

contributions were found without features at odd indices, thus suggesting enhanced disorder 

in these compounds.[16] 

It should be mentioned that from powder data often unreasonable high Pt substitution on the 

iron sites could be refined. This effect can also be ascribed to stacking disorder. While Bragg 

intensity of reflections with 2h + k ≠ 5n (n ∈ ℕ) is generally too low, CaFeAs substructure 

reflections appear to have too strong scattering intensity compared to the latter. Refinement 

software interprets this intensity mismatch as higher electron density in the substructure, thus 

higher Pt substitution. 

 
Figure 4. Simulated selected area diffraction pattern based on the partly disordered stacking model (left). 
Simulation of (10l) streaks based on models with full order, full disorder, preference for a domain, and 
equal probability for ordered domains (right). 
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2.2.7 DFT Calculations 

Full structure relaxation, including volume, cell shape, and atomic coordinates revealed 

almost identical ground state energies (α-type: ΔE = 0 eV, β-type: ΔE = -0.004 eV, γ-type: 

ΔE = 0.001 eV) for all three polymorphs. Volume dependent relaxations simulating external 

pressure yielded analogous p-E-correlations, excluding possible pressure induced phase tran-

sitions between the polytypes. Contemplating about thermally induced transitions, tempera-

ture dependent heat of formation calculations showed no significant energy differences in the 

scope of accuracy and applicable temperatures. This finding is in line with the previously 

established model of stacking disorder with the limit structures α-, β-, and γ-1048, rather than 

a picture of polymorphism. 

Accepting the presence of partial stacking disorder in the 1048 structure, this compound is the 

first iron arsenide superconductor featuring limited three-dimensional order. Thus, the ques-

tion was raised about the influence on the superconducting properties. Generally supercon-

ductivity in highly anisotropic iron arsenides is ascribed to phonon and magnon interactions 

in FeAs layers, but also interlayer coupling is discussed frequently. Phonon calculations com-

paring α- and β-polytype revealed identical spectra (Figure 5). This finding along with the 

ordered FeAs sublattice of the 1048 structures reduces the relevance of the Pt4As8 layer to a 

mere structural and electron reservoir function, whereas superconductivity itself is not 

affected by the arrangement of Pt4As8 layers. Although a systematic investigation of the influ-

ence of disorder on superconducting properties is difficult in this system, these conclusions 

are in line with the results on the 1048 compounds so far. 

 
Figure 5. Heat of formation calculation (left) and calculated phonon density of states by DFT-methods, 
comparing α- and β-polytype of (CaFeAs)10Pt4As8 (right). 
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2.2.8 Annotation to Disorder in the 1038 Structure 

As mentioned in the introduction, stacking disorder in Ca–Fe–Pt–As is not restricted to the 

1048 system but is also present in the 1038 compound. As in 1048, only 5 ×  5 super-

structure reflections are affected, featuring varying diffuse contributions along c*. Layer 

symmetry p4mm (# 11) can be assigned to the CaFeAs subcell whereas p4 (# 10) was found 

for the Pt3As8 layer. The presence of an additional mirror plane within the Pt3As8 layer, 

however, forces a different arrangement of neighboring Pt3As8 layers than in Pt4As8. The re-

levant point to determine the stacking order is again the Ca layer. While the Pt3As8 layer shifts 

the Ca sheet by (0, 0, 0), the FeAs layer adds a shift of (0.3, 0.1, 0), with respect to the 5 ×  

 

7.4

5 supercell. Together with fourfold rotational symmetry of the layers five possible 

arrangements of neighboring Pt3As8 layers are generated, being A(0.5, 0.5, 0), B0(0.3, 0.1, 0), 

B90(0.1, -0.3, 0), B180(-0.3, -0.1, 0), and B270(-0.1, 0.3, 0) with respect to the supercell. Again 

the FeAs sublattice remains ordered for all possible shifts, with the CaFeAs substructure in a 

ThCr2Si2-type stacking. Most remarkably a constant A shift would also allow a tetragonal 

1038 limit structure (P42/n) like in the 1048 system. However, none of such could be identi-

fied so far. Although the disorder effects, being observable in diffraction data of 1038 com-

pounds, are well described within this model, it remains disputable how much further disorder 

is added to this system by a potential partial ordering of the deflected Pt split site. A compari-

son of determined unit cell parameters of 1038 and 1048 compounds with calculated ones 

based on disorder models is given in Chapter  of the appendix. 

2.2.9 Conclusion 

It could be shown that the initially occurring problems concerning structure solution and reli-

able refinement were not based on "poor" crystal quality or bad growth properties, but be 

ascribed to stacking disorder in this system. The structure and symmetry of the two layers 

CaFeAs and Pt4As8 allow for five possible arrangements of neighboring Pt4As8 layers, in first 

approximation energetically equivalent. However, for all arrangements the CaFeAs sublattice 

remains unchanged in a PbFCl-like stacking. Assuming small ordered domains with defined 

layer shift diffuse scattering contributions as well as the additional intensity maxima found for 

the superstructure reflections 2h + k ≠ 5n along the stacking direction c* are well described. 

Moreover this model also describes the anisotropically broaden reflections in powder data 

satisfactory. In the context of this investigations the three polytypes α-, β-, and γ-1048 identi-

fied so far by single crystal X-ray methods were characterizes not as only existing structures 
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in the 1048 system, but limit cases of the disorder model. Twinning occurs in this system due 

to the broken tetragonal layer symmetry in the superstructure . A similar stacking model was 

also presented briefly for disorder in 1038 compounds. 

DFT calculation gave no indication for possible pressure or temperature induced phase transi-

tions, substantiating the disorder model. Finally, based on phonon calculations and the pres-

ence of the ubiquitous ordered FeAs sublattice it was concluded, that the influence of stacking 

disorder on the superconducting properties should be very small. Thus, the 1048 compounds 

might present a very interesting system to investigate the influence of broken translation 

symmetry in the stacking direction on the properties experimentally and why order is retained 

in the 1048 derivatives (CaFe0.87Ru0.13As)10Pt2.9Ru1.1As8 and (Ca0.88Na0.12FeAs)10Pt3.6As8 with 

hole doped PtzAs8 layers. 
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Abstract 

We report the structural and magnetic phase transitions of triclinic (CaFeAs)10Pt3As8, which 

is the parent compound of the 1038 type iron arsenide superconductors. High-resolution X-

ray diffraction reveals splitting of the in-plane (a, b) lattice parameters at Ts = 120 K. 

Platinum doping weakens the distortion and shifts the transition temperature to 80 K in 

(CaFe1-xPtxAs)10Pt3As8 with x = 0.03. μSR experiments show the onset of magnetic order near 

Ts and a broad magnetic phase transition. The structural transition involves no reduction of the 

space group symmetry in contrast to the other parent compounds of iron arsenide super-

conductors; nevertheless the local fourfold symmetry of the FeAs layers in (CaFeAs)10Pt3As8 

is broken. 

2.3.1 Introduction 

Superconductivity in iron arsenides emerges from stoichiometric parent compounds in the 

course of the destabilization of antiferromagnetic ground states by chemical doping or pres-

sure[1, 2]. The stripe-type antiferromagnetic ordering of the 1111-, 122-, and 111-type iron 

arsenides is linked to an orthorhombic distortion of the tetragonal lattice, which occurs at a 

temperature Ts slightly above the Néel-point TN [3–7]. This proximity of superconductivity to 

the structural and magnetic phase transition was not clearly evidenced in the more complex 
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iron arsenide superconductors (CaFe1-xPtxAs)10Pt3As8.[8–10] Their crystal structures contain 

alternating layers of iron arsenide and platinum arsenide, each separated by calcium atoms as 

shown in Figure 1. The compound, referred to as the 1038 phase, contains Pt3As8 layers, 

while in the 1048 phase one more platinum atom is located in Pt4As8 layers. Superconduc-

tivity in 1038/1048 compounds is controlled by Pt doping at the iron sites or by doping with 

excess electrons either from the Pt4As8 layer or from La doping at the Ca sites. High critical 

temperatures up to 38 K only occur with clean FeAs layers, while Tc remains below 15 K with 

Pt doped layers.[11] This doping behavior is similar to the other FeAs superconductors, where 

transition metal doping induces significantly lower critical temperatures than electron or hole 

doping outside the FeAs layers. Electronic structure calculations[8] as well as angle-resolved 

photoemission experiments[12] have shown that the Fermi surface of the 1038/1048 super-

conductors exhibits features very similar to the simpler FeAs compounds. Thus far there is 

every indication that the 1038/1048 materials act according to the same principle as known 

FeAs superconductors. Therefore a non-superconducting parent compound with antiferro-

magnetic ordering and a structural phase transition should exist. Recently we have proposed 

the stoichiometric 1038 phase (CaFeAs)10Pt3As8 as the parent compound.[11] By assigning the 

usual ionic charges according to (Ca2+)10[(FeAs)10]10-(Pt3As8)10- we obtain the identical charge 

for the FeAs layer (–1) as in the 1111- or 122-type parent compounds. 

 
Figure 1. (a) Crystal structure of (CaFe1-xPtxAs)10Pt3As8 (x = 0, 0.03), (b) Pt3As8 layer, (c) FeAs layer with 
the in-plane lattice translations a, b. 

Moreover, we found that superconductivity is induced from this stoichiometric 1038 phase by 

La doping at the Ca site.[11] Thus one also expects an antiferromagnetic ground state of non-

superconducting (CaFeAs)10Pt3As8 and consequently a structural distortion of the FeAs layer. 
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The latter was also suggested on the base of polarized light imaging.[13] A recent preprint[14] 

reported the phase diagram of the La doped 1038 phase and assumed the existence of struc-

tural and magnetic transitions from weak features in the magnetic susceptibility, specific heat, 

and kinks in the derivative of the electrical resistivity. Another preprint[15] reported evidence 

for antiferromagnetic ordering in the 1038 phase from 75As NMR data. All reports so far gen-

erally support the existence of a structural transition in the 1038 compound, but none of them 

gives clear experimental evidence of a lattice distortion. In this letter we show that the non-

superconducting 1038 phase undergoes a structural phase transition near 120 K. The splitting 

of the equal in-plane lattice parameters a, b in the triclinic crystal structure is observed by 

high-resolution X-ray diffraction. Concomitant magnetic ordering is proved by means of μSR 

data showing an onset of magnetic ordering near Ts, followed by a broad magnetic transition.  

2.3.2 Experimental Details 

Polycrystalline samples of platinum iron arsenides were synthesized as described in [11], and 

characterized by X-ray powder diffraction using the Rietveld method with TOPAS[16]. Com-

positions were determined within errors of ±10 % by refining occupation parameters and by 

X-ray spectroscopy (EDX). Temperature-dependent X-ray powder diffraction data were 

collected using a HUBER G670 Guinier imaging plate diffractometer (Co Kα1 radiation, Ge-

111 monochromator) equipped with a close-cycle He-cryostat. Dc-resistivity was measured 

on a cold pressed pellet which had been annealed at 1073 K for 20 h. Magnetic susceptibility 

was measured using a QUANTUM DESIGN MPMS-XL5 SQUID magnetometer. μSR mea-

surements were performed using the GPS and Dolly spectrometers located at the πM3 and 

πE1 beam lines of the Swiss Muon Source at the Paul Scherrer Institut, Switzerland. The data 

were analyzed using the MUSRFIT package[17]. 

2.3.3 Results and Discussion 

Figure 2(a) shows the X-ray powder pattern of (CaFeAs)10Pt3As8 measured at 10 K together 

with the Rietveld fit. Only small amounts of FeAs (4 %) were detected as impurities. Temper-

ature-dependent changes in the pattern are tiny, and the splitting of the lattice parameters a, b 

becomes visible only at certain high angle reflections. The inset in Figure 2(a) shows a double 

peak, mainly generated by the (262) and (6̄20) reflections. While the position of the (6̄20) 

peak is almost constant near 80.55 °, the (262) peak begins to shift to higher angles as the 

temperature drops below 100 K, and is clearly discernible to the right of the (6̄20) reflection at 
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10 K. Figure 2(b) shows the temperature dependency of the lattice parameters refined from X-

ray powder data for (CaFe1-xPtxAs)10Pt3As8 with x = 0 and 0.03, and optimally La doped  

(Ca0.85La0.15FeAs)10Pt3As8 for comparison.  

 
Figure 2. X-ray powder pattern (blue) and Rietveld fit (red) of (CaFeAs)10Pt3As8 at 10 K (the high back-
ground between 10 ° and 30 ° is an artifact of the sample holder). The inset shows the shift of the (262)-
reflection relative to the (6̄

 
Figure 3. DC-resistivity of (CaFeAs)10Pt3As8; The derivatives emphasize the anomaly at 120 K (left). Mag-
netic phase fraction of (CaFeAs)10Pt3As8 obtained from transverse field (TF) and zero field (ZF) μSR data. 
Inset: ZF-μSR spectra of (CaFeAs)10Pt3As8 at different temperatures (right). 

20) (left). Lattice parameters of (CaFe1-xPtxAs)10Pt3As8 (x = 0, 0.03) and 
(Ca0.85La0.15FeAs)10Pt3As8. The inset shows the angle between a, b (right). 

Within the accuracy of the method, the lattice parameters a and b are equal at ambient tem-

perature, due to the square base planes of both the FeAs and Pt3As8 layers. The c-axis de-

creases monotonically with cooling, while the angles remain nearly constant. The stoichi-

ometric and underdoped 1038 compounds exhibit lattice distortions at 120 K and 80 K, re-

spectively. Similar properties are known for a variety of iron arsenide compounds like 

BaFe2As2, where the phase transition results in a symmetry reduction from tetragonal I4/mmm 

to orthorhombic Fmmm,[5] or LaOFeAs with a transition from P4/nmm to Cmme.[18] The tri-

clinic structure of the 1038 compounds precludes further reduction of the lattice symmetry, 

thus the transformation is isostructural. Nevertheless, the phase transition is tied to the loss of 
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the local fourfold symmetry in the FeAs layer, which is the crucial effect with respect to the 

physical properties.  

The resistivity measurement is displayed in Figure 3(a). The semiconductor-like development 

to low temperatures is in contradiction to known iron arsenides, but was recently also ob-

served by Xiang et al.[19] Absolute resistivity values are in the typical range for iron pnictides. 

The derivatives of resistivity data with respect to temperature reveal an anomaly near 120 K, 

coinciding for heating and cooling measurements. Muon spin rotation experiments with stoi-

chiometric (CaFeAs)10Pt3As8 detected three different muon precession frequencies with con-

stant ratios, which accounts for three different muon sites in the magnetic unit cell of the 

homogeneous phase. The onset of long-range magnetic order below 130 K was found in 

transverse field (TF) and zero field (ZF) modes. Thereby the magnetic order develops gradu-

ally, reaching 100 % at 5 K, as shown in Figure 3(b). The sample is 100 % static magnetically 

ordered at 5 K, which is evident from the so-called 1/3-tail of the spectra, which is not 

damped (Inset in Figure 3(b)). Interestingly the μSR frequency is almost independent of tem-

perature, which may indicate a first-order phase transition.  

 
Figure 4. Magnetic susceptibility of (CaFeAs)10Pt3As8. 

The magnetic susceptibility of (CaFeAs)10Pt3As8 (Figure 4) shows a weak and broad anomaly 

in the temperature region of the structural transition, in agreement with [14], thus substan-

tiating a gradual development of magnetic order. The origin of the additional feature near 

170 K is still unclear and has also been observed in [14]. The linear magnetization isotherm at 

1.8 K (not shown) is compatible with antiferromagnetic order. The field dependency and the 

upturn of the susceptibility at low temperatures indicates a trace of ferromagnetic impurity in 

the sample, which is not detectable in the X-ray powder pattern. From the results so far, we 
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suggest a magnetic ordered state similar to the parent compounds BaFe2As2 or LaOFeAs. 

However, the low space group symmetry allows deviations from the stripe-type pattern, 

which remains to be seen. 

2.3.4 Conclusion 

In summary, our results give clear evidence for the magnetic and structural phase transition of 

(CaFeAs)10Pt3As8 to an antiferromagnetic low-temperature phase at Ts = 120 K. In contrast to 

the 1111- and 122-type iron arsenides, the phase transition involves no reduction of the space 

group symmetry. Nevertheless the local tetragonal symmetry in the FeAs layers is broken. 

The magnitude of the lattice distortion is roughly half that observed in BaFe2As2 in terms of 

the order parameter δ = (a - b) / (a + b), and decreases with Pt doping on the Fe sites, as ex-

pected. Finally the transition is completely suppressed in optimally doped La-1038. The onset 

of long-range magnetic order in (CaFeAs)10Pt3As8 coincides with the structural distortion at 

Ts = 120 K. In contrast to BaFe2As2, the magnetic fraction develops gradually and does not 

reach 100 % until 5 K. Taking this together with the temperature-independent μSR frequen-

cies, a gradual increase of the structurally distorted compound at the expense of the ambient 

temperature phase should be observable below 130 K. However, our low-temperature struc-

tural data suggest a rather sharp structural change in the whole sample, without coexistence 

with the undistorted phase. While the detailed nature of the phase transition necessitates fur-

ther investigations, our results demonstrate that the 1038 material acts according to the same 

principle as the known FeAs superconductors with (CaFeAs)10Pt3As8 as the parent compound. 
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2.4 57Fe-Mössbauer Study on (CaFeAs)10Pt3As8 

 

2.4.1 Introduction 

In the last chapter stoichiometric (CaFeAs)10Pt3As8 was shown to be a typical iron arsenide 

parent compound, despite its low symmetry and more complex structure. An isomorphic 

structural transition was evidenced by high resolution X-ray powder diffraction which breaks 

tetragonal FeAs layer symmetry.[1] Indication for this was also found in conductivity measure-

ment on powder samples[1] and previously by polarized light investigations on single crys-

tals[2]. An associated magnetic transition to an antiferromagnetic ground state was identified 

by μSR and SQUID[1] investigations. Indication for this was also reported based on 75As 

NMR studies.[3] Angle-resolved photoemission studies supported by band structure and pho-

non spectra calculations have shown that the electronic structure is quite similar to the one 

observed for BaFe2As2,[4-8] while neutron scattering studies on single crystals demonstrated 

that magnetic fluctuations occur at the same stripe-like antiferromagnetic wave vector as ob-

served in other Fe-based high-temperature superconductors.[9-11] Thus so far all results indi-

cate (CaFeAs)10Pt3As8 being a typical iron arsenide system, whereas the low symmetry and 

additional metal pnictide layer do not significantly influence the compounds properties domi-

nated by the iron arsenide layer. Nevertheless, a complete temperature dependent phase dia-

gram of (CaFeAs)10Pt3As8 is not reported yet. So far also the reason for broadening of the 

magnetic transition is unclear. For the systems AEFe2As2 (AE = Sr, Ba, Eu) or LaOFePn 

(Pn = P, As) 57Fe Mössbauer spectroscopy was demonstrated to be an excellent tool for in-

vestigations of the magnetic environment of iron.[12-15] The following chapter presents a tem-

perature dependent 57Fe Mössbauer study on stoichiometric (CaFeAs)10Pt3As8. Results clearly 

show the magnetic ordering in the 1038 compound and give strong indication for the exis-

tence of a nematic magnetic phase above TN. 
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2.4.2 Experimental Details 

A polycrystalline sample of (CaFeAs)10Pt3As8 was prepared from the elements (Ca: 99.99 %, 

Fe: 99.9 %, Pt: 99.95 %, As: 99.999 %) using the ration 10.5 : 10 : 2.9 : 18. The sample was 

sealed in an argon filled silica tube, heated to 600 °C for 10 h followed by 10 h at 1000 °C. 

The crude product was homogenized, encapsulated in a silica tube, reheated to 1000 °C for 

25 h, then pelletized and heated to 1000 °C for 25 h again. For 57Fe-Mössbauer measurements 

the sample was mixed with sugar. Measurements were performed on two spectrometers with 

WissEL setup (KETEX Axas SSD detector/ Kr-proportional counter, Co/Rh source) in the 

temperature range of 2.2 K to 299 K and additionally in the paramagnetic range of 99 K to 

303 K. 

2.4.3 Results and Discussion 

Figure 1 shows Mössbauer spectra of (CaFeAs)10Pt3As8 for T = 299 K, 110 K, 80 K, and 

2.2 K and selected spectra from the paramagnetic range above TN. Room temperature data can 

be satisfactory fitted assuming one iron site in accordance with the five symmetry indepen-

dent but chemically identical Fe sites in (CaFeAs)10Pt3As8. Moreover one additional Fe site 

was included to the fit which can be ascribed to the FeAs impurity phase, with values in good 

agreement with reported ones.[16] For the 1038 compound a single signal is observed at 299 K 

with an isomer shift of 0.41 mm/s. Values found for VZZ, ΘDebye, and Meff are in the typical 

range reported for iron in FeAs tetrahedral layers. Below the reported Néel temperature at 

120 K[1] strong signal broadening can be observed, but without distinct signal splitting. A 

hyperfine field of 3.9(1) T was determined for 2.2 K, being smaller than Bhyp for reported 

compounds LaOFeAs (Bhyp = 4.9 T)[17] and BaFe2As2 (Bhyp = 5.5 T)[12]. A magnetic moment 

at the iron site could not be estimated, due to reasons discussed in reference [18]. The mag-

netic order parameter being associated with Mössbauer line width (Gauss broadening) clearly 

shows a magnetic transition to an ordered state at TN = 111(4) K (Figure 2, left), being in 

good accordance with reported transition temperature.[1, 11] 

Measurements in the paramagnetic regime of the 1038 phase diagram also revealed signifi-

cant signal broadening. Additional anisotropy in the peak shape gives indication for magnetic 

interactions already above TN. These results point to the evolution of a nematic phase previous 

to antiferromagnetic ordering, being consistent with the course of magnetic fraction derived 

from measurements. 
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Figure 1. Mössbauer spectra illustrating spectrum change over full range (left) and paramagnetic range 
(right). 

 
Figure 2. Magnetic fraction and Gauss broadening (left) as well as hyperfine field (right) derived from 
Mössbauer measurements. Black and red lines are guides to the eye. Magnetic fraction data was combined 
from full range (squares) and paramagnetic range (triangles) measurements. 

Evidence for the existence of nematic fluctuations and ordering above TN is already reported 

for several iron pnictide compounds.[19] The transition temperature to the nematic phase in 

(CaFeAs)10Pt3As8 was determined to Tnem = 245(10) K. Figure 2 shows the development of 

the magnetic fraction already before the formation of the antiferromagnetic state. Previously 

discussed μSR measurements on parent (CaFeAs)10Pt3As8 gave no indication of magnetic 

fractions above ~140 K, but also revealed a gradual onset of magnetism just before TN. This 

divergence of results from both measurements could be rationalized by the different time-

scale of μSR (10 μs)[20] and Mössbauer (100 ns)[21], indicating fast nematic fluctuations 

between 140 and 245 K. 

2.4.4 Conclusion 

The magnetic phase transition found in stoichiometric (CaFeAs)10Pt3As8 was confirmed by 

Mössbauer measurements.[1] The transition temperature was determined to TN = 111(4) K 
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with a hyperfine field of Bhyp of 3.9(1) T being smaller than reported for other iron arsenide 

parent compounds. Strong spectral broadening occurred below TN revealing a rather sharp 

magnetic transition. However, minor broadening along with signal anisotropy was also con-

spicuous above TN, giving strong indication for the presence of a nematic phase in 

(CaFeAs)10Pt3As8 similar to the one found in BaFe2As2.[19, 22] This finding renders the 1038 

parent compound an interesting system to study the necessity of magnetic fluctuations for the 

emergence of superconductivity. 
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Abstract 

We report the successful substitution of cobalt, nickel, and copper for iron in the 1038 phase 

parent compound (CaFeAs)10Pt3As8 yielding (CaFe1-xCoxAs)10Pt3As8, (CaFe1-xNixAs)10Pt3As8, 

and (CaFe1-xCuxAs)10Pt3As8, respectively. Superconductivity is induced in Co and Ni  

doped compounds reaching critical temperatures up to 15 K, similar to known Pt  

substituted (CaFe1-xPtxAs)10Pt3As8, whereas no superconductivity was detected in 

(CaFe1-xCuxAs)10Pt3As8. The obtained Tc(x) phase diagrams are very similar to those of other 

iron arsenide superconductors indicating rather universal behavior despite the more complex 

structures of the 1038-type compounds, where the physics is primarily determined by the 

FeAs layer. 

2.5.1 Introduction 

Superconductivity in iron arsenides emerges from antiferromagnetic metallic parent com-

pounds in the course of suppressing the magnetic ordering by chemical doping or pressure,[1–6] 

resulting critical temperatures (Tc) up to 55 K in Sm(O1-xFx)FeAs.[7] Relationships between 

the magneto-structural phase transition and superconductivity in iron arsenides have inten-

sively been studied.[5,8–14] In 2011, the new superconductors (CaFe1-xPtxAs)10Pt3As8 (1038 
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phase, space group P1̄) and polymorphic (CaFeAs)10Pt4As8 (1048 phases, space groups P4/n, 

P21/n, P1̄) with critical temperatures up to 35 K were discovered.[15–17] This new class re-

cently expanded by analogous compounds with iridium (Ir1048)[18] and palladium 

(Pd1038)[19] instead of platinum. Due to the presence of the second metal pnictide layer PtzAs8 

(z = 3, 4) next to FeAs, as well as the low symmetry of these compounds (space group P1̄

 

), 

they were initially considered as rather peculiar representatives of the iron arsenide family. 

However, recent low-temperature X-ray structural data together with μSR spectra[20] as well 

as neutron diffraction[21] revealed a lattice distortion and magnetic phase transition at 120 K, 

proving that (CaFeAs)10Pt3As8 is the parent compound of this branch of the iron arsenide 

family. Thereby, closely related superconductors like (CaFe1-xPtxAs)10Pt3As8 (Tc,max = 14 K), 

(CaFeAs)10Pt4As8 (Tc,max = 35 K) and (Ca1-xRExFeAs)10Pt3As8 (Tc,max = 35 K) can be derived 

from this common parent by direct, indirect, and electronic doping, respectively.[22–24] Figure 

1 depicts the structure of the 1038 parent compound as well as a section of the Pt3As8 layer. In 

this paper, we report the crystal structures and superconductivity of transition metal doped 

(CaFe1-xMxAs)10Pt3As8 with M = Co, Ni, and Cu with critical temperatures up to 15 K. Our 

results clearly establish that the 1038/1048 superconductors are more than an exotic excep-

tion, but another, even structurally more complex, branch of the iron arsenide family. 

Figure 1. Crystal structure of the 1038 parent compound (CaFeAs)10Pt3As8. 

2.5.2 Experimental Details 

Polycrystalline samples of Co, Ni, and Cu doped calcium platinum iron arsenides were syn-

thesized from the elements as described in reference [15], and characterized by X-ray powder 
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diffraction using the Rietveld method with TOPAS[25]. Compositions were determined within 

errors of 10 % by X-ray spectroscopy (EDX). Superconducting properties were determined 

using an ac-susceptometer at 1333 Hz in the temperature range of 3.5 – 300 K at 3 Oe. Mag-

netic measurements were additionally performed on a QUANTUM DESIGN MPMS XL5 

SQUID magnetometer which allowed for measurements with fields up to 50 kOe at tempera-

tures between 1.8 and 300 K. Temperature dependent resistivity measurements between 3.5 

and 300 K were carried out using a standard four-probe method. 

 
Figure 2. X-ray powder patterns (blue lines) with Rietveld fits (red lines) of (CaFe1-xMxAs)10Pt3As8 with 
M = Co (left) and Ni (right). 

 
Figure 3. Lattice parameters of (CaFe1-xMxAs)10Pt3As8 with M = Co (left) and Ni (right) obtained from 
Rietveld fits. 

2.5.3 Results and Discussion 

Figure 2 shows X-ray powder patterns with Rietveld fits of (CaFe1-xMxAs)10Pt3As8 samples 

with M = Co, Ni and x = 0.1. The diffraction patterns are completely described with the 1038 

phase structure model[15] and minor amounts of impurity phases FeAs and PtAs2. The high 

sample quality implies smooth incorporation of cobalt, nickel, and copper into the 1038 

structure. The amount of impurity phases increase at higher doping levels, which indicates 
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solubility limits of x ≈ 0.25 for Co and Ni as well as x ≈ 0.12 for Cu, respectively, in the 1038-

type structure. Thus, the fully substituted compounds (CaCoAs)10Pt3As8, (CaNiAs)10Pt3As8, 

(CaCuAs)10Pt3As8, and (CaFeAs)10Ni3As8 were not accessible by solid-state synthesis, al-

though the Pd analogue (CaFeAs)10Pd3As8 was recently reported.[19] Figure 3 illustrates the 

dependency of the lattice parameters on Co- or Ni-substitution from X-ray powder data re-

finement, revealing similar behavior of both Co- and Ni-1038 to the 122-type compounds 

Ba(Fe1-xCox)2As2
[26] and Ba(Fe1-xNix)2As2.[11] The in-plane axes a and b as well as the unit cell 

angles (not shown) remain nearly constant within experimental accuracy, whereas c decreases 

by about 0.8 % in the range 0 ≤ x ≤ 0.25, accompanied with shrinking of the cell volume by 

approximately 0.8 %. At this point it should be noted, that, even if small, the analogous 

effects of Co and Ni doping to the 1038 structure may be indicative for a similar 3d electron 

count localized at Co and Ni when doped to FeAs layers. An interesting aspect arises from the 

chemical similarity of platinum and nickel. Although the targeted position of Co when doped 

into the 1038 structure is the FeAs layer, the situation is more complicated in the case of Ni. 

In this system, Fe/Ni mixing is expected, but Ni substitution to the Pt sites is as well imagina-

ble as Ni occupancy at the Pt vacancies in the Pt3As8 layer. However, modifications of the 

Pt3As8 layers by additional Ni incorporation were supposed to produce 1048 type impurity 

phases, or at least changes of the a, b lattice parameters. Susceptibility measurements would 

be a sensitive probe to detect even minimal traces of the 1048 phase due to its high Tc well 

above 30 K. However, none of these phenomena have been observed. Moreover, additional 

EDX measurements gave no indication for Pt/Ni mixing. All these results clearly indicate that 

no modifications of the Pt3As8 layers occur, tantamount with Co, Ni, or Cu doping taking 

place only in the FeAs layers. 

 
Figure 4. Ac-susceptibilities of (CaFe1-xCoxAs)10Pt3As8 (left) and (CaFe1-xNixAs)10Pt3As8 (right). 
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Figure 4 shows ac-susceptibility data of (CaFe1-xMxAs)10Pt3As8 (M = Co, Ni). Critical tem-

peratures of Co-1038 reach 15.3 K at the optimal Co concentration x = 0.075, whereas Ni-

1038 maximum Tc settles at 13.4 K for a doping level of x = 0.05. Superconducting volume 

fractions indicate bulk superconductivity. In contrast to this finding, no superconductivity was 

detected in (CaFe1-xCuxAs)10Pt3As8, except of traces at the lowest doping level synthesized of 

x = 0.02. Figure 5 shows dc-electrical resistivity and low field dc-susceptibility data. The left 

panel (Figure 5) displays resistivity measurements performed with the maximum Tc samples 

(CaFe0.925Co0.075As)10Pt3As8 and (CaFe0.95Ni0.05As)10Pt3As8. A steep drop to zero resistance is 

observed for both samples which coincide with critical temperatures from susceptibility mea-

surements, respectively. The absolute values of the specific resistivity are in the range of poor 

metals as typical for iron arsenides in the normal state. Remarkably, in our case, the normal 

state resistivity increases with decreasing temperature resembling a semiconductor like beha-

vior. This temperature dependence of the specific resistivity is different from 1111- and 122-

type iron arsenide superconductors, but was also found for the parent compound 

(CaFeAs)10Pt3As8. Similar results have also been reported for (CaFe1-xPtxAs)10Pt3As8.[27] 

 
Figure 5. Dc-resistivity (left) and low-field dc-susceptibilities (right) of (CaFe1-xCoxAs)10Pt3As8 and 
(CaFe1-xNixAs)10Pt3As8. 
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Figure 6. Tc(x) phase diagrams of (CaFe1-xCoxAs)10Pt3As8 and (CaFe1-xNixAs)10Pt3As8. 

The right panel of Figure 5 shows the low-field dc-susceptibility of Co- and Ni-1038 samples 

with the highest Tc. Almost 100 % shielding at low temperatures proves bulk superconduc-

tivity, while the Meissner-signal is rather small. Doping dependent critical temperatures for 

both Co- and Ni-1038 are compiled in Figure 6. Superconductivity is induced by small transi-

tion metal doping to the iron sites. (CaFe1-xCoxAs)10Pt3As8 reveals a dome like Tc(x) depen-

dency, reaching a maximum of 15.3 K for the optimal doping level x = 0.075. The critical 

temperature distinctly drops if x exceeds 0.075. However, full suppression of superconduc-

tivity upon high Co concentrations could not be achieved within the solubility limit of Co. 

Samples with a nominal composition of x = 0.2 and x = 0.3 show only traces of superconduc-

tivity which may come from inhomogeneously distributed cobalt. Therewith, the super-

conducting dome of Co-1038 is remarkably similar to the Co doped 122 compounds 

Ba(Fe1-xCox)2As2
[26,28]. The Ni-1038 compounds reveal narrower dependency of the critical 

temperatures from the substitution level, featuring a maximum Tc of 13.4 K at x = 0.05. This 

finding is in line with the additional electron of Ni with respect to Co, giving rise of an 

increased electron doping at same transition metal substitution[28]. Tc rapidly decreases at 

higher Ni concentrations until superconductivity is completely suppressed at 17 % Ni.  

Thus, (CaFe1-xNixAs)10Pt3As8 reveals very similar properties than its homologue 

(CaFe1-xPtxAs)10Pt3As8. In this context, Ni-1038 is supposed to be a more suitable system to 

study its properties in the overdoped regime due to the higher solubility of Ni. 
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2.5.4 Conclusion 

In conclusion, we have demonstrated bulk superconductivity in the 1038 compounds 

(CaFe1-xMxAs)10Pt3As8 doped by M = Co or Ni, with critical temperatures up to 15.3 K in Co-

1038 (x = 0.075) and 13.4 K in Ni-1038 (x = 0.05), respectively. Superconducting properties 

in both compounds were evidenced by ac- and dc-susceptibility as well as dc-resistivity data. 

Moreover, no superconductivity was evident in Cu doped samples (CaFe1-xCuxAs)10Pt3As8. 

The dependency of Tc of the substitution level x reveals similar behavior than in known 

directly doped 122-type iron arsenides Ba(Fe1-xMx)2As2 with M = Co, Ni, Cu, whereas the 

comparatively narrow superconducting dome of Ni-1038 is indicative for an increased elec-

tron doping contribution of Ni with respect to Co-1038. Our results clearly show the close 

resemblance of calcium platinum iron arsenides to other iron arsenide compounds, giving evi-

dence that established doping methods to induce superconductivity are abundantly applicable 

also to more complex systems like the 1038 and 1048 materials. 
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2.6 Role of different negatively charged Layers in (CaFeAs)10Pt4As8 and 

Superconductivity at 30 K in Electron doped (Ca0.8La0.2FeAs)10Pt3As8 
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Abstract 

The recently discovered compounds (CaFe1−xPtxAs)10Pt3+yAs8 exhibit superconductivity up to 

38 K, and contain iron arsenide (FeAs) and platinum arsenide (Pt3+yAs8) layers separated by 

layers of calcium atoms. We show that Tc > 15 K only emerges by electron doping of pure 

FeAs layers, and not by platinum substitution in (Fe1−xPtx)As layers, as anticipated so far. In-

deed, two different negatively charged layers [(FeAs)10]n− and (Pt3+yAs8)m− compete for the 

electrons provided by the Ca2+ ions. The charge between the layers is formally balanced to 

(FeAs)1− in the parent compound (CaFeAs)10Pt3As8, and superconductivity emerges by elec-

tron doping, if this balance is shifted. The latter is achieved either by adding electrons as in 

(Ca0.8La0.2FeAs)10Pt3As8 (Tc = 30 K), or intrinsically in (CaFeAs)10Pt4As8 (Tc ≈ 38 K), where 

the Pt4As8 layer itself provides extra electrons. 

2.6.1 Introduction 

The chemical complexity of iron arsenide superconductors has been increased by the recent 

discovery of the compounds (CaFe1−xPtxAs)10Pt3+yAs8.[1–3] Their crystal structures contain 

alternating layers of iron arsenide and platinum arsenide, each separated by calcium atoms 

(Fig. 1). Platinum in the Pt3+yAs8 layers is nearly planar fourfold coordinated by arsenic that 

forms As2
4− Zintl ions. Two branches of the structural motif have been found, depending on 
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the composition of the platinum arsenide layers. The compound referred to as the 1038 phase 

contains Pt3As8 layers [Fig. 1(a)], while in the 1048 phase one more platinum atom is located 

in Pt4As8 layers [Fig. 1(b)]. The 1038 compound is triclinic, while we have identified three 

polymorphs of the 1048 phase with tetragonal (α-1048, P4/n), triclinic (β-1048, P1̄), or mono-

clinic (γ-1048, P21/n) space group symmetries by single crystal X-ray diffraction. High criti-

cal temperatures (Tc) up to 38 K have been assigned to the 1048 variants, while Tc of the 1038 

phase is below 15 K so far. Recent reports suggested that the critical temperatures are solely 

controlled by substitution of platinum for iron in the FeAs layers, as known from 

Sr(Fe1−xPtx)2As2.[4] Nohara et al.[5] even proposed that “heavy Pt doping” is required to 

achieve high Tc in (CaFe1−xPtxAs)10Pt3+yAs8. Also Ni et al.[2] have suggested that platinum 

substitution controls Tc, but the higher values of the 1048 phases were associated with 

stronger interlayer coupling by Pt–As bonds between the Pt4As8 and FeAs layers. However, 

our band structure calculations have indicated that the Pt3+yAs8 layers hardly contribute at the 

Fermi energy,[1] which has been supported by recent angle resolved photoemission experi-

ments showing that the Fermi surface topology is similar to those of known FeAs materials.[6] 

Thereby it is extremely unlikely that critical temperatures as high as 38 K occur in Pt doped 

materials, while hitherto known transition metal doped FeAs superconductors remain well 

below 25 K. In this Rapid Communication we show that high critical temperatures in the iron 

platinum arsenides are not achieved by platinum substitution inside the iron layers, but by 

charge doping of FeAs layers. The Tc(x) phase diagrams of the 1038 and 1048 compounds are 

quite different and reveal that platinum substitution induces superconductivity at low temper-

atures in the 1038 materials, but is detrimental to Tc in the 1048 compounds, where the FeAs 

layers are doped by electrons due to a shift of the charge balance between [(FeAs)10]n− and 

(Pt3+yAs8)m− to n > m. This interpretation is supported by the observation of superconductivity 

at 30 K in the electron doped 1038 compound (Ca0.8La0.2FeAs)10Pt3As8. 
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Figure 1. Crystal structures of (a) (CaFeAs)10Pt3As8 (1038) and (b) (CaFeAs)10Pt4As8 (1048). 

2.6.2 Experimental Details 

Polycrystalline samples of the platinum iron arsenides were synthesized by solid-state 

methods from the elements as described in Ref. [1], and characterized by X-ray powder dif-

fraction (PXRD) using the Rietveld method with TOPAS.[7] Compositions were determined 

within errors of ±5 % by refining the occupation parameters and within ± 10 % by energy 

dispersive X-ray spectroscopy (EDX). Ac susceptibility measurements (3 Oe, 1333 Hz) were 

used to detect superconductivity and the critical temperatures. Full-potential density function 

theory (DFT) calculations using the WIEN2K package[8,9] along with the quantum theory of 

atoms in molecules (QTAIM) method[10] were used to calculate and analyze the electron den-

sity distribution of the tetragonal 1048 compound. 

2.6.3 Results and Discussion 

Figure 2 shows the critical temperatures of all samples plotted against the amount of platinum 

substitution at the iron site (x). Compounds with the 1048 structure are well separated from 

those with 1038 structure. The 1038 compounds are not superconducting below x ≈ 0.03, and 

then Tc increases rapidly up to 15 K. This is very similar to known phase diagrams of other 

FeAs materials, where superconductivity emerges after suppression of a spin density wave 

(SDW) state of a parent compound by transition metal substitution at the iron site.[11]  
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Figure 2. Critical temperatures of samples with 1048 structure (blue) and 1038 structure (red). Lines are 
guides to the eye. 

Interestingly, Ca(Fe1−xPtx)2As2 is reportedly not superconducting up to x = 0.08, which 

appears to be the solubility limit in CaFe2As2.[12] Our 1038 phase diagram agrees with those 

recently reported for 1038-type single crystals,[13] where low temperature structural transitions 

have been suggested at x < 0.025. Thus far, the 1038 compounds are in line with other FeAs 

compounds that become superconducting when doped with transition metals at the iron site, 

albeit at low Tc. We therefore refer to (CaFeAs)10Pt3As8 as the parent compound. In contrast 

to this, the critical temperatures of the 1048 compounds are the highest without platinum at 

the iron site (x = 0), and decrease with the substitution level as shown in Figure 2. This re-

verse behavior of Tc(x) clearly indicates a different electronic situation of the 1048 compound. 

Taking into account that Tc > 25 K has hitherto only been induced by charge doping of the 

FeAs layers as in LnFeAs(O1−xFx)[14] or (Ba1−xKx)Fe2As2,[15] but not by transition metal sub-

stitution at the iron site as in Ba(Fe1−xCox)2As2,[16] we infer that charge doping of the FeAs 

layer would naturally explain the higher Tc of the 1048 compound. Also the decrease of Tc 

due to overdoping by additional platinum substitution at the iron site would be under-

standable. We point out that the platinum iron arsenides are the first compounds in the family 

of iron-based superconductors with two different negatively charged layers, because both the 

iron and platinum arsenide layers are negatively polarized. As suggested in previous 

studies,[1,2] the 1038 compound is perfectly charge balanced according to 

(Ca2+)10[(FeAs)10]10−(Pt3As8)10−, while in the 1048 compound the additional Pt2+ leads to 

(Pt4As8)8−, and the question arises as to where are these electrons. Photoemission experi-

ments[6] and DFT calculations[1] consistently suggest that the platinum arsenide layer hardly 

contributes to the Fermi surface, which is predominantly formed by states of the FeAs layer. 

Therefore the only choice of the excess electrons from the Pt4As8 layer is to occupy iron 3d 
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states according to formally (Ca10)20+[(FeAs)10]12−(Pt4As8)8−. In other words, each FeAs in the 

1048 compound is doped by 0.2 electrons, which is similar to the electron doped 1111 super-

conductors LnFeAs(O1−xFx), where the highest Tc likewise appears around x = 0.2. The 

suggested charge distribution is supported by the QTAIM analysis of the charge density in the 

tetragonal 1048 compound. The QTAIM charge of each atom is calculated by integration of 

the electron density bounded by the zero flux surface.[10] Summing up the charges of the layer 

atoms and normalizing to Ca2+ gives (Ca10)20+[(FeAs)10]11.5−(Pt4As8)8.5−, which is near to the 

above suggested charge distribution. We note that the atomic charge is not an observable 

quantity. Combining these results, the fundamentally different behavior of the critical tem-

peratures in the 1038 and 1048 compounds presented in Fig. 2 becomes plausible. Super-

conductivity in the 1038 phase is induced by platinum substitution of the FeAs layers, but 

thereby confined to lower Tc. On the other hand, there is every indication that intrinsic elec-

tron doping of pure FeAs layers is the reason for the higher Tc of the 1048 compounds. 

Finally, additional platinum substitution of the FeAs layers of the 1048 phase is overdoping, 

which decreases the critical temperature again.  

 
Figure 3. X-ray diffraction pattern and Rietveld fit of (Ca0.8La0.2Fe1-xPtxAs)10Pt3As8 (La1038; P1̄

If our idea of electron doped FeAs layers in the 1048 compound is correct, it should be 

possible to induce high Tc values above 15 K also in the 1038 compound by electron doping 

instead of platinum substitution in the FeAs layers. Indeed, we were able to synthesize the 

electron doped 1038 compound (Ca0.8La0.2Fe1−xPtxAs)10Pt3As8 with x ≈ 0.03 (La1038). The 

small platinum substitution alone is not sufficient to induce superconductivity according to 

, a = 
8.7493(3) Å, b = 8.7533(2) Å, c = 10.7139(3) Å, α = 75.877(3)°, β = 85.295(3)°, γ = 90.031(3)°, Rwp = 0.016). 
Inset: Crystal structure of La1038 showing a preference for the lanthanum atom to the eightfold 
coordinated position. 
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the phase diagram (Fig. 2). The 1038 structure with La substitution at the Ca sites was con-

firmed by Rietveld refinement as shown in Figure 3. A special feature of the La1038 crystal 

structure is emphasized in the inset of Figure 3. The calcium atom just below and above the 

platinum vacancy in the Pt3As8 layer is eightfold coordinated by arsenic atoms, while all 

other calcium atoms are coordinated by seven arsenic atoms only. Lanthanum has a distinct 

preference for this site, where the higher charge of La3+ increases the lattice energy and stabi-

lizes the structure. Figure 4 shows ac-susceptibility data of the 1038 compounds. No super-

conductivity emerges at low platinum substitution (x < 0.035), and Tc remains below 15 K at 

x = 0.051. In stark contrast to this, superconductivity is observed at 30 K in the La1038 com-

pound, where the platinum substitution (x = 0.03) is much too small to induce supercon-

ductivity at all. Note also that the Tc of La1038 perfectly fits to the values expected for the 

1048 compound with the same x in the phase diagram (Figure 2). This illustrates that only 

charge doping of the FeAs layer is crucial, regardless of whether the structure is of the 1038 

or 1048 type. Given that platinum substitution reduces Tc in the 1048 compounds, we expect 

even higher values around 40 K for La1038 without platinum at the iron site, but we were not 

yet able to prepare this. However, the finding of superconductivity at 30 K in La1038 is a 

convincing proof that higher Tc (>15 K) in the 1038 materials emerge if the iron arsenide lay-

ers are free of platinum but charge doped.  

 
Figure 4. Ac-susceptibility measurements of 1038 compounds with different Pt substitutions and of 
La1038 with small Pt substitution that is not sufficient to induce superconductivity. 

We have shown that three different doping scenarios of the 1038 parent compound are 

feasible. Two of them dope electrons to the FeAs layer and induce high critical temperatures 
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of 30 – 38 K. The third is platinum substitution of the FeAs layer, which also generates super-

conductivity, albeit below 15 K. The three doping scenarios are compiled in the following 

scheme (Figure 5). Note the identical charge states of the FeAs layers in the 1048 and La1038 

compounds, which likewise exhibit the highest critical temperatures:  

 
Figure 5. Schematic illustration of three doping scenarios based on 1038 parent compound. 

2.6.4 Conclusion 

In conclusion, our results emphasize the extraordinary role of the separating layers in the iron 

platinum arsenide superconductors with a second negatively charged layer (Pt3As8)m− beyond 

the known [(FeAs)10]n−. These layers compete for the electrons provided by the Ca2+ ions. The 

electronic situation of the FeAs layers in the 1038 compound is almost identical to the simpler 

iron arsenide superconductors, thus the Pt3As8 layer with its own particular structure attracts 

just the proper amount of electrons to establish the situation n = m = 10. This charge balance 

between the layers is delicate, and can be manipulated in various ways, but regardless the 

FeAs layer is much more susceptible to additional electrons, because the states close to the 

Fermi level are predominantly from FeAs. Thus extra electrons donated from La3+ ions in 

La1038 clearly move to the FeAs layer and cause electron doping. On the other hand, also the 

excess charge that intrinsically occurs in (CaFeAs)10Pt4As8 shifts the charge balance to n > m 

and transfers electrons to the FeAs layer, which induces high critical temperatures. Based on 

our results, we can satisfactory explain the at first sight puzzling behavior of the critical tem-

peratures in these superconductors. These materials open perspectives for future studies, espe-

cially with respect to the detailed role and possible manipulations of the charge balance 

between the two negatively charged layers. 
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Abstract 

We report superconductivity in polycrystalline samples of the 1038-type compounds 

(Ca1-yREyFeAs)10Pt3As8 up to Tc = 35 K with RE = Y, La – Nd, Sm, Gd – Lu. The critical 

temperatures are nearly independent of the trivalent rare earth element used, yielding a 

common Tc(yRE) phase diagram for electron doping in all these systems. The absence of super- 

conductivity in Eu2+ doped samples, as well as the close resemblance of 

(Ca1-yREyFeAs)10Pt3As8 to the 1048 compound substantiate that the electron doping scenario 

in the RE-1038 and 1048 phases is analogous to other iron-based superconductors with 

simpler crystal structures. 

2.7.1 Introduction 

Ever since the discovery of superconductivity in iron pnictides,[1] electronic doping is known 

to be an effective method to suppress the antiferromagnetic ground state of these compounds 

and induce high Tc superconductivity.[2–4] This was confirmed for many iron arsenides, 

examples are La(O1-xFx)FeAs,[1,5] Ba(Fe1-xCox)2As2,[6] or Sr1-xLaxFe2As2
[7]. Recently the family 

of iron arsenide superconductors was enriched by the compounds (CaFeAs)10Pt3As8 (1038, 

space group P1̄) and polytypic (CaFeAs)10Pt4As8 (1048, space groups P1̄, P21/n, P4/n) which 
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have raised the chemical complexity.[8–10] This new class recently expanded by analogous 

compounds with iridium (Ir1048)[11] and palladium (Pd1038)[12] instead of platinum. The 

crystal structures of 1038 and 1048 compounds are closely related, and can be rationalized as 

alternating stacking of iron arsenide and platinum arsenide layers separated by calcium ions as 

depicted in Figure 1. Platinum in the Pt3As8 or Pt4As8 layer, respectively, is nearly planar 

fourfold coordinated by arsenic, forming a twisted edge-sharing PtAs4 tile-pattern that 

contains As2
4– Zintl anions.[13] The 1038 structure reveals one systematic Pt vacancy 

according to Pt3As8 (Figure 1) which is filled in the 1048 structure yielding Pt4As8 layers. 

High critical temperatures up to 35 K were assigned to the 1048 compound, while Pt doping 

of the FeAs layers in the 1038 phase induces superconductivity with critical temperatures 

below 15 K. Although superconductivity induced by Pt doping is known from other iron 

arsenides, the very different critical temperatures of the 1038 and 1048 phases were matter of 

discussion. Based on DFT calculations we suggested intrinsic electron doping of the  

1048 phase[8] caused by the electrons coming from the additional Pt2+ according to  

[(Ca2+Fe+1.8As3–)10]8+[(Pt2+)4(As2–)8]8− (+0.2e−/Fe). In contrast, 1038 is a valence compound 

according to [(Ca+2Fe+2As3–)10]10+[(Pt2+)3(As2–)8]10− and not superconducting. We have found 

that electron doping of the 1038 phase is possible by lanthanum doping of the calcium site in 

(Ca0.8La0.2FeAs)10Pt3As8 with critical temperatures above 30 K.[14] The phase diagram of La 

doped 1038 compounds is similar to those of the known iron arsenides.[15] Also the typical 

structural distortion of the 1038 parent compound (CaFeAs)10Pt3As8 accompanied with 

magnetic ordering has recently been found.[16, 17] These results give clear evidence that 

electron doping of the FeAs layers in the 1038/1048 compounds can be realized either from 

the calcium layer or from the Pt4As8 layer. Hence, in spite of their structural complexity and 

low symmetry, these new superconductors turned out to be typical representatives of the iron 

arsenide family, with the 1038 phase as the magnetic non-superconducting parent 

compound.[16] 
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Figure 1. Crystal structure of (Ca1-yREyFeAs)10Pt3As8 (left). X-ray powder pattern (blue), Rietveld fit 
(red), and difference curve (gray) of (Ca0.85La0.15FeAs)10Pt3As8 (right). 

A special structural feature arises in the 1038 structure due to the missing platinum in the 

Pt3As8 layer. The calcium site just above and below the platinum vacancy is eightfold anti-

prismatically coordinated by arsenic, while the other calcium positions are surrounded by 

seven arsenic atoms only (see Figure 1). This particular calcium site reveals a distinct 

preference for RE atoms, but with a remarkable size tolerance. These prerequisites render the 

1038 phase an ideal system to probe the rare earth dependent response of the compound  

to different sized substitutes, electron doping, and strong magnetic impurities in 

(Ca1-yREyFeAs)10Pt3As8 with magnetic RE3+ ions.  

In this letter we show that superconductivity in RE doped 1038 compounds can not only be 

induced by La doping,[14, 15] but also by the complete series of trivalent RE ions in spite of 

their different size. The Tc(yRE) phase diagrams of varying rare earth ions reveal a universal 

correlation of electron doping and critical temperature, but are independent of the type of RE 

element. Furthermore the absence of superconductivity in (Ca1-yEuyFeAs)10Pt3As8 containing 

Eu2+ is in line with the above mentioned electron doping scenario. Finally the close similarity 

between 1048 and La-1038 are demonstrated by optimally doped La-1038 reaching the same 

Tc than 1048. 

2.7.2 Experimental Details 

Polycrystalline samples of rare earth calcium platinum iron arsenides were synthesized as 

described in reference [14], and characterized by X-ray powder diffraction using the Rietveld 

method with TOPAS.[18] Compositions were determined within errors of 10 % by refining 
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occupation parameters and by X-ray spectroscopy (EDX). The X-ray powder pattern of 

(Ca0.85La0.15FeAs)10Pt3As8 together with the Rietveld fit is shown in Figure 1 as an example. 

Superconducting properties were measured using a ac-susceptometer at 1333 Hz in the 

temperature range of 3.5 to 300 K at a 3 Oe field. Gaussian magnetic units are used (molar 

susceptibility χmol in cm3/mol; dimensionless volume susceptibility χV). Critical temperatures 

of bulk material were determined from strongest change of temperature dependent 

susceptibility slope. Magnetic susceptibility measurements of paramagnetic samples were 

performed on a QUANTUM DESIGN MPMS XL5 SQUID magnetometer which allowed for 

measurements with fields up to 50 kOe at temperatures between 1.8 K and 300 K. 

2.7.3 Results and Discussion 

Figure 2 shows the ac-susceptibility data for (Ca1-yREyFeAs)10Pt3As8 with RE = Y, La – Sm, 

and Gd – Lu with nominal compositions y = 0.1, 0.2 for the early and y = 0.2 for the late rare 

earth elements. Bulk superconductivity is detected in all samples. EDX measurements and 

Rietveld refinements confirmed the nominal composition of the early rare earth compounds 

La – Sm, whereas the structural tolerance towards rare earth substitution decreases with de-

creasing radii of the late rare earth elements Gd – Lu. Figure 3 depicts the maximum RE solu-

bility in (Ca1-yREyFeAs)10Pt3As8. The red line marks the concentration level corresponding to 

a fully substituted eightfold coordinated calcium position (20 %). The gradual decrease of the 

superconducting volume fractions (Figure 2) for the late RE elements (Gd – Lu) is caused by 

their limited solubility and increasing fractions of impurity phases. 

 
Figure 2. Ac-susceptibility of the RE-1038 samples with RE = La – Sm (left) and RE = Gd – Lu (right). 
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Recent publications reported superconductivity in the La doped compounds 

(Ca1-yLayFeAs)10Pt3As8 with a maximum Tc of 30 K[14] and 26 K,[15] respectively. This finding 

was reasoned with a substitution of La3+ preferably to the eightfold antiprismatically coordi-

nated Ca position in the structure, concomitant with electron doping to the FeAs layer similar 

to La(O1-xFx)FeAs.[14] A very similar doping scenario can be expected for the higher rare earth 

compounds, insofar the rare earth ions are trivalent. Notably, the critical temperatures of the 

compounds containing La, Ce, Pr, Nd, and Sm turned out to be independent of the rare earth 

used, whereas Tc drops significantly when the solubility limit restricts the RE concentration 

for the late rare earth metals. Taking this into account, neither the kind of rare earth element 

used, nor its magnetic properties or effects on the structure perceptibly influence the super-

conducting properties, but exclusively its electronic contribution, i.e. the electron transfer to 

the FeAs layers.  

The critical temperatures of the (Ca1-yREyFeAs)10Pt3As8 samples and the determined RE con-

centrations are compiled in Figure 3. At y = 0.13 a maximum of the critical temperature up to 

Tc ≈ 35 K is gained for La, Ce, and Pr substituted compounds, whereas corresponding samples 

with heavier rare earth elements were not available so far. This consideration yields a substi-

tuent independent, universal curve rendering the influence of electron doping in the system 

(Ca1-yREyFeAs)10Pt3As8 and featuring a maximum of Tc at y = 0.13. Small deviations in Tc 

may result from minor platinum substitution on the iron sites. The optimal electron doping 

level of 0.13 e−/FeAs is comparable to the 1111 superconductors La(O1-xFx)FeAs (x = 0.11)[1] 

and Sm(O1-xFx)FeAs (x = 0.1).[19] The comparison with directly electron doped materials like 

Ba(Fe1-xCox)2As2 appears not meaningful, since the extend of influence of chemical modifi-

cation inside the FeAs layer is still not fully understood.[20, 21]  

 
Figure 3. Solubility of RE dopants in (Ca1-yREyFeAs)10Pt3As8 against the ionic radius (left). The slashed 
line at 1.26 Å marks the radius of Ca2+. Critical temperatures of (Ca1-yREyFeAs)10Pt3As8 (right). 



New Iron Arsenide Superconductors (CaFeAs)10PtzAs8 

73 

 
Figure 4. Lattice parameters (left) and cell volumes (right) of (Ca1-yREyFeAs)10Pt3As8 with y = 0.2. 

It should be noted, that neglecting effects of size and magnetism of the rare earth elements on 

the superconducting properties appears oversimplified. One may expect at least an influence 

of strong magnetic moments present at the heavier elements like Holmium or Erbium affect-

ing superconductivity. However, no suchlike was substantiated in our experiments. Even 

structural effects are minimal. Figure 4 depicts the evolution of the unit cell axes and volume 

for the compounds (Ca1-yREyFeAs)10Pt3As8with RE = La, Ce, Pr, Nd, Sm, Eu with constant 

rare earth concentration y = 0.2. For comparison the values of the parent compound 

(CaFeAs)10Pt3As8 were added at the position corresponding to the ionic radius of Ca2+. Within 

the measurement accuracy the in-plane parameters a and b remain equal and both decrease 

gradually with decreasing rare earth radii. In the same direction the contraction of the stacking 

axis c increases more distinct, whereas all changes are well below 1 %.  

The europium compounds (Ca1-yEuyFeAs)10Pt3As8 are special cases of the RE series due to the 

absence of superconductivity. The unit cell axis are significantly enlarged compared to the 

other RE (Figure 4) and magnetic measurements show paramagnetic behavior. Figure 5 dis-

plays the inverse magnetic susceptibilities of (Ca1-yEuyFeAs)10Pt3As8 with y = 0.1 and y = 0.2 

measured at 20 kOe. Effective magnetic moments of 8.0 μB per rare earth atom in 

(Ca0.9Eu0.1FeAs)10Pt3As8 and (Ca0.8Eu0.2FeAs)10Pt3As8 were extracted from the Curie-Weiss 

fits, which are in excellent agreement with the effective moment of 7.94 μB expected for Eu2+. 

Thus our data suggest divalent europium in line with the enhanced unit cell volume displayed 

in Figure 4. Given the presence of Eu2+, the absence of superconductivity in 

(Ca1-yEuyFeAs)10Pt3As8 can clearly be referred to missing of electron doping of the FeAs 

layer. 
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Figure 5. Magnetic susceptibilities of (Ca1-yEuyFeAs)10Pt3As8 with y = 0.1 and y = 0.2 (left). Tc(y) phase 
diagram of (Ca1-yLayFeAs)10Pt3As8 (right). 

Figure 5 depicts the Tc(y) phase diagram of (Ca1-yLayFeAs)10Pt3As8 with y = 0.1 – 0.3. 

Analogous diagrams were obtained with Ce and Pr doping (not shown). The preparation of 

homogeneous powder samples for 0 ≤ y ≤ 0.1 were not successful so far due to phase separa-

tion into (CaFeAs)10Pt3As8 and (Ca1-yLayFeAs)10Pt3As8 with y ≥ 0.1. A similar phase diagram 

was reported recently[15] based on single crystal data, identifying the same optimal doping 

level, whereas the maximum Tc did not exceed 26 K due to considerable Pt mixing at the iron 

sites. (Ca1-yLayFeAs)10Pt3As8 without Pt substitution features bulk superconductivity in the 

range investigated with a maximum Tc of 35 K for y ≈ 0.13. Notably the critical temperature 

of 35 K coincides with Tc reported for the 1048 compound (CaFeAs)10Pt4As8, as well as the 

electron doping level which was estimated by DFT calculation to be approximately 

0.15 e−/FeAs for the 1048 phase.[14] This finding is fully consistent with the two different 

electron doping scenarios we suggested earlier, and emphasizes the close electronic relation 

between (Ca1-yLayFeAs)10Pt3As8 and (CaFeAs)10Pt4As8 despite their different crystal 

structures. 

2.7.4 Conclusion 

In summary our results show that superconductivity in the 1038 phase does not only occur by 

substitution of lanthanum for calcium, but by the complete series of trivalent rare earth 

elements Y, La – Sm, and Gd – Lu with appropriate radius. Superconductivity arises in all 

compounds investigated and depends only on the RE concentration, but not on the type of RE. 

This gives proof for the electron donor function of the RE substitution. Other influences like 

lattice parameters and RE magnetism are minimal, and show no measurable effect on the 

superconducting critical temperatures. This finding yields an universal Tc(y) phase diagram 
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for (Ca1-yREyFeAs)10Pt3As8 with a maximum Tc of 35 K at y = 0.13 independent of the kind of 

rare earth. Thereby the optimal doping level of y = 0.13 e−/FeAs nearly coincides with known 

indirectly electron doped iron arsenides La(O1-xFx)FeAs (x = 0.11)[1] and Sm(O1-xFx)FeAs 

(x = 0.1).[19] The absence of superconductivity in (Ca1-yEuyFeAs)10Pt3As8 is rationalized with 

divalent Eu2+ present in the structure and the absence of electron doping. Finally the close 

resemblance of electron doped (Ca1-yREyFeAs)10Pt3As8 and the 1048 phase (CaFeAs)10Pt4As8 

was demonstrated by featuring same Tc,max ≈ 35 K coinciding at the same optimal doping 

level. 
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2.8 Myon Spin Rotation Spectroscopy Study on (Ca1-yLayFeAs)10Pt3As8 

 

2.8.1 Introduction 

Although the underlying mechanism of superconductivity in iron arsenides is not completely 

understood yet, it is generally accepted that magnetic fluctuations play an essential role in the 

formation of Cooper pairs.[1] Therefore detailed investigations on magnetism in the vicinity of 

superconductivity and in the superconducting phase are important. In the previous chapters 

stoichiometric (CaFeAs)10Pt3As8 was demonstrated to be the parent compound of the 

(CaFe1-xMxAs)10PtzAs8 superconductor family.[2] A phase transition to a stripe-type antiferro-

magnetic ground state with broken local tetragonal symmetry was identified being typical for 

iron arsenide parents.[2-4] Analogous to other iron pnictide superconductors, this phase transi-

tion was found to be suppressed in the superconducting materials. Temperature dependent 

evolution of in-plane lattice parameters a and b as well as resistivity are depicted in Figure 1 

comparing parent compound (CaFeAs)10Pt3As8 and optimally electron doped superconductor 

(Ca0.87La0.13FeAs)10Pt3As8. 

This phase transition can be suppressed by direct substitution in (CaFe1-xMxAs)10Pt3As8
[5] as 

well as electron doping in (Ca1-yREyFeAs)10Pt3As8
[6-7] and (CaFeAs)10Pt4As8

[8] giving rise to 

critical temperatures up to 35 – 38 K (Figure 1). Recent measurements on 122 systems gave 

evidence for spin nematicity above TN and the formation of microscopic coexistence of mag-

netism and superconductivity below Tc in (Ba1-xKx)Fe2As2.[9] However, a thorough under-

standing of the magnetism in iron arsenides is still amiss. In contrast to other systems, mea-

surements on stoichiometric (CaFeAs)10Pt3As8 within this thesis evidenced a gradual forma-

tion of antiferromagnetic long range order instead of a spontaneous order like in 122 and 1111 

compounds. Nevertheless also indication of a nematic phase preceding the SDW ordering was 

found by 57Fe-Mössbauer studies (Chapter 2.4).  
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Therefore a closer investigation of the magnetism in the superconducting state of this family 

is of great interest. In this course (Ca1-yLayFeAs)10Pt3As8 turned out to be especially suitable 

for further studies due to its high Tc and easy availability as bulk material. The following 

chapter presents results on (Ca1-yLayFeAs)10Pt3As8 obtained by μSR spectroscopy being a very 

valuable tool to gain a deeper insight into temperature dependent local magnetism. 

 
Figure 1. Comparison of temperature dependent  in-plane lattice parameters a and b (left) and resistivity 
(right) of parent compound (CaFeAs)10Pt3As8 and optimally electron doped superconductor 
(Ca0.87La0.13FeAs)10Pt3As8. 

2.8.2 Experimental Details 

Powder samples of (Ca1-yLayFeAs)10Pt3As8 were synthesized as described in Chapter 2.7 and 

reference [6]. Optimally doped sample (y = 0.13) was obtained phase pure, while under and 

over doped material contained minor impurities of FeAs (y = 0.10, 0.20, 0.24) and CaFe4As3 

(y = 0.24). Sample compositions were refined based on X-ray powder diffraction data 

(HUBER G670 Guinier imaging plate, Cu Kα1 radiation) using the Rietveld method with 

TOPAS.[10] Superconducting properties were determined using an ac-susceptometer at 

1333 Hz in the temperature range of 3.5 – 300 K at 3 Oe. μSR measurements were performed 

using the GPS spectrometers located at the M3 beam line of the Swiss Muon Source at the 

Paul Scherrer Institut, Switzerland. Transverse field measurements were carried out applying 

a magnetic field of 700 Oe. The data was analyzed using the MUSRFIT package.[11] 

2.8.3 Results and Discussion 

Superconducting properties of the compounds (Ca1-yLayFeAs)10Pt3As8 were measured in 

advance by ac-susceptibility yielding critical temperatures of 28 K (y = 0.10), 35 K (y = 0.13), 

27 K (y = 0.20), and 26 K (y = 0.24) with shielding fractions over 90 %. μSR measurements 
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of the superfluid density (TF mode) confirmed superconductivity in the compounds 

(Ca1-yLayFeAs)10Pt3As8 (Figure 4). Critical temperatures derived are in good agreement with 

those determined from ac-susceptibility measurement. The highest Cooper pair concentration 

was found for optimally doped (Ca1-yLayFeAs)10Pt3As8 with x = 0.13. 

Time dependent zero field μSR spectra of (Ca1-yLayFeAs)10Pt3As8 taken above (~ 200 K, red) 

and below (2.2 K, black) Tc for y = 0, 0.10, 0.13, 0.20, and 0.24 are depicted in Figure 2 and 

3. All samples show no magnetism at 200 K which is evident from the absence of oscillations 

and/or damping in polarization spectra. The parent compound (CaFeAs)10Pt3As8 reveals the 

formation of static magnetism below 130 K as discussed in reference [2]. 

 
Figure 2. Zero field μSR spectra of parent compound (CaFeAs)10Pt3As8 at different temperatures.[2] 

 
Figure 3. Zero field μSR spectra for characteristic temperatures above (red, ~ 200 K) and below (black, 
2.2 K) Tc for (Ca1-yLayFeAs)10Pt3As8 powder samples with y = 0.10, 0.13, 0.20, and 0.24. 
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In the superconducting state of La doped samples also strong damping of the μSR signal was 

detected being indicative for the presence of magnetism. Temperature dependent magnetic 

fractions derived from ZF measurements reveal a gradual increase of the magnetic fraction 

below about 90 K reaching approximately 20 % at 2.2 K for all La doped samples. Additional 

kinks were found in the vicinity of Tc, which was also reported recently for underdoped  

(Ba1-xKx)Fe2As2.[12] 

What causes the magnetism in the superconducting state of (Ca1-yLayFeAs)10Pt3As8 is still 

unclear. Impurity phase FeAs orders magnetically at 70 K,[13] while magnetic transitions in 

CaFe4As3 are reported at 25 K and 90 K.[14] Although slightly increased magnetic volume for 

y = 0.24 could be caused by minor CaFe4As3 impurity, it seems unreasonable to completely 

assign the magnetic phase to impurities. That is because side phase amounts were determined 

to be well below 10 % based on X-ray data, while the sample with y = 0.13 was pure phase. 

Furthermore susceptibility measurements revealed superconducting volume fractions of more 

than 90 % in all (Ca1-yLayFeAs)10Pt3As8 samples. This reasoning together with the similar 

evolution of magnetic fraction and response to the onset of superconductivity indicate the 

magnetism being an intrinsic property of (Ca1-yLayFeAs)10Pt3As8. Nevertheless, whether mag-

netism microscopically coexists with superconductivity like in (Ba1-xKx)Fe2As2
[9] or is caused 

by inhomogeneity or phase separation cannot be settled based on this data. 

 
Figure 4. Temperature dependent magnetic fraction (left) and superfluid density (right) of 
(Ca1-yLayFeAs)10Pt3As8 powder samples with y = 0, 0.10, 0.13, 0.20, and 0.24. 

Interestingly similar magnetic contributions were also found for underdoped 

(Ba1-xKx)Fe2As2.[12] The presence of the magnetic fraction so far precludes more detailed 

investigations of (Ca1-yLayFeAs)10Pt3As8 including the penetration depth or superconducting 

order parameter. Therefore further investigations are necessary to elucidate the origin of the 

magnetic phase in the superconducting state. 
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2.8.4 Conclusion 

Temperature dependent superconducting and magnetic properties of electron doped 

(Ca1-yLayFeAs)10Pt3As8 with y = 0.10, 0.13, 0.20, and 0.24 were investigated by μSR spec-

troscopy. Investigations of the superfluid density confirmed superconductivity in all samples 

with the highest Tc being 35 K in optimally doped (Ca0.86La0.13FeAs)10Pt3As8, as was reported 

based on susceptibility data.[6] However, further investigations revealed a gradually 

developing magnetic fraction reaching about 20 % at 2.2 K, being equally present in all 

samples. X-ray scattering powder analysis and susceptibility measurements rendered impurity 

phases as only potential causes unlikely. Additional kinks in the temperature dependent mag-

netic fraction in the vicinity of Tc also indicate this feature being an intrinsic property of 

(Ca1-yLayFeAs)10Pt3As8 samples. In this context inhomogeneous La doping was considered 

the most probable origin for the residual magnetism in (Ca1-yLayFeAs)10Pt3As8 compounds. At 

this stage no detailed information about the superconducting state in La doped 1038 samples 

can be concluded, but further investigations are necessary to identify the origin of the 

magnetic signal. 
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2.9 Phase Diagram of (CaFe1-xPtxAs)10PtzAs8 and the Relation of 

(Ca1-yLayFeAs)10Pt3As8 and (CaFeAs)10Pt4As8 

 

2.9.1 Introduction 

Besides its unique structural complexity among iron arsenide superconductors the 

(CaFe1-xPtxAs)10PtzAs8 system rendered itself exceptionally interesting because of an extreme 

difference in properties for z = 3 and 4. While (CaFeAs)10Pt3As8 (1038 phase) is a typical iron 

arsenide parent compound with properties being reminiscent of a semiconductor, 

(CaFeAs)10Pt4As8 (1048 phase) features high Tc superconductivity up to 35 K.[1] Moreover 

upon additional Pt doping to the Fe sites both compounds revealed opposing behavior. In the 

latter Tc is drastically diminished, while superconductivity was just induced in the 1038 com-

pound upon Pt doping.[2] Structural parameters like Fe–As bond length or As–Fe–As angles, 

often discussed to essentially influence superconductivity, do not follow the trend found for 

other iron arsenide compounds (Chapter 7.6, appendix). Therefore Ni et al. assumed the 

reason for the discrepancy in 1038/1048 properties in enhanced interlayer coupling caused by 

the metallic nature of the 1048 phase as was suggested for cuprates.[3] Nohara et al. found 

high Pt mixing on the iron sites from X-ray data inconsistent with EPM analysis what might 

be an artifact from disorder in the structure (Chapter 2.2).[4] Based on this finding they 

suggested "heavy Pt doping"[5] as necessity for high Tc together with Pt states at EF.[4] 

However, mixed crystal series of (CaFe1-xPtxAs)10PtzAs8, together with DFT studies characte-

rized the 1048 phase an ideally electron doped iron arsenide with an approximate doping level 

of 0.15 e−/FeAs.[2] Furthermore this scenario was substantiated by the discovery of super-

conducting properties similar to the 1048 compounds in the electron doped 1038 derivative 

(Ca1-yLayFeAs)10Pt3As8.[2, 6-7] In this context the change in 1038/1048 properties upon Pt/Fe 

mixing was explained as direct doping (1038 phase) and overdoping effects (1048 phase), 

respectively.[1-2] So far, in (CaFeAs)10Pt4As8 the number of four Pt atoms per unit cell fixes 
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the electron doping. The electron doping in (Ca1-yLayFeAs)10Pt3As8, however, can be changed 

by the La content, thus allowing for more detailed investigations concerning codoping in 

(Ca1-yLayFe1-xPtxAs)10Pt3As8, the relation of the two electronically doped compounds 

(CaFeAs)10Pt4As8 and (Ca1-yLayFeAs)10Pt3As8 and the relevance of structural differences 

comparing the 1038 and 1048 phase. For this purpose the mixed crystal series 

(Ca1-yLayFe1-xPtxAs)10Pt3As8 (x = 0 – 0.07; y = 0 – 0.24) was synthesized and characterized by 

X-ray powder diffraction, energy dispersive X-ray spectroscopy, and susceptibility 

measurements. 

2.9.2 Experimental Details 

Polycrystalline samples of (Ca1-yLayFe1-xPtxAs)10Pt3As8 were prepared by heating 

stoichiometric mixtures of the elements (Ca: 99.99 %, La: 99.9 %, Fe: 99.9 %, Pt: 99.95 %, 

As: 99.999 %) in alumina crucibles which were sealed in argon filled silica tubes. The 

samples were heated for 10 h at 600 °C followed by 10 h at 1000 °C and subsequent cooling 

to ambient temperature. Afterwards they were grounded, reheated to 1000 °C for 25 h, 

pelletized, and again treated for 25 h at 1000 °C. Crystalline powders obtained were 

characterized by X-ray powder diffraction using the Rietveld method with TOPAS[8]. 

Compositions were determined within errors of 10 % by refining occupation parameters and 

by X-ray spectroscopy (EDX). Superconducting properties were determined using an ac-

susceptometer at 1333 Hz in the temperature range of 3.5 to 300 K at a 3 Oe field between 1.8 

K and 300 K. Full-potential density function theory (DFT) calculations were performed using 

the WIEN2K package.[9-10] 
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Figure 1. X-ray powder pattern (blue), Rietveld fit (red) and difference curve (gray) of 
(Ca1-yLayFe1-xPtxAs)10Pt3As8 with x = 0.05 and y = 0.13 (black tick marks) and minor impurity of PtAs2 
(blue tick marks). 

2.9.3 Results and Discussion 

The synthesis yielded almost phase pure polycrystalline samples (> 90 %) with minor side 

phases FeAs, PtAs2, or CaFe2As2. Solubility limits for 1038 derivatives were found to be 7 % 

for Pt on iron sites and 24 % for La on Ca sites. Moreover samples (Ca1-yLayFeAs)10Pt3As8 

with 0 < y < 0.1 revealed to be synthetically inaccessible because of phase separation. The 

course of unit cell axes upon Pt doping in (Ca0.85La0.15Fe1-xPtxAs)10Pt3As8 and La doping in 

(Ca1-yLayFeAs)10Pt3As8 is depicted in Figure 2. Unit cell angles remained constant in the 

range investigated (± 0.03 °). Anisotropic broadening of superstructure reflections can be 

ascribed to stacking disorder in the 1038 structure (Chapter 2.2). Pt substitution in the FeAs 

layer leads to an equal Fe/Pt mixing on all iron sites and a small increase of the ab-plane 

while the c-direction remains constant. This minor flattening of the FeAs layers is in line with 

the expectation for Fe site mixing with a d8 element. In contrast La is not substituted equally 

to the Ca positions but reveals a strong preference for the eightfold, antiprismatically coordi-

nated Ca position.[2, 6] Unit cell c-axis monotonically increases upon La substitution, while 

widening of the FeAs layer is far less pronounced. This increase can be ascribed to the bigger 

ionic radius of La3+ (1.30 Å) with respect to Ca2+ (1.26 Å).[11] 
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Figure 2. Changes of unit cell axes upon Pt doping in (Ca0.87La0.13Fe1-xPtxAs)10Pt4As8 (left) and La doping 
in (Ca1-yLayFeAs)10Pt3As8 (right). 

The highest reported critical temperature of the stoichiometric 1048 compounds is 35 – 38 K, 

whereby electron doping of 0.15 e–/FeAs is assumed.[1-2] Same maximal critical temperatures 

were found for (Ca1-yLayFeAs)10Pt3As8 with x = 0.13, thus at an comparable electron doping 

level.[6] Similar results on optimal doping in La-1038 were also reported by Ni et al.[7] Based 

on these results an electronic equivalence of the 1048 and La-1038 compounds was 

suggested, emphasizing the importance of the electronic structure in terms of superconducting 

properties. In this context the structural differences, however, appear to have minor relevance, 

at least in this system. Considering the differences in layer distance comparing ideally doped 

1048 (c ≈ 10.5 Å) and La-1038 (c ≈ 10.8 Å) (Figure 2), also the discussed interlayer coupling 

seems to have negligible importance. The electronically equivalence of 1048 and La-1038 is 

illustrated in Figure 3. Therefore the La-1038 calculations were based on overdoped 

(Ca0.8La0.2FeAs)10Pt3As8 instead of (Ca0.85La0.15FeAs)10Pt3As8 to circumvent time consuming 

supercells. Both compounds feature a pseudo band gap of the Pt-5d states at EF, implying 

minor influence of the intermediate layer PtzAs8 on the properties, despite its different struc-

tures for z = 3 and 4. The presence of almost exclusively Fe states at the Fermi level 

demonstrates why an introduction of additional electrons to the system by platinum (1048) or 

lanthanum (La-1038) causes electron doping of the iron centers. Therewith the peculiar elec-

tronic situation is formed where iron can be reduced in the presence of formally more 

electronegative platinum. Even if this scenario is against every chemical intuition, the consid-

eration of isolated iron and platinum is not applicable here. Analogue Fermi surfaces were 

found illustrating the electron doped nature of the compounds by large electron pockets 

(Brillouin zone edge) with respect to small hole pockets (Brillouin zone center). It must be 

noted that the absence of the second hole pocket in La-1038 arises from the simplification of 

20 % La doping applied, where this band is completely filled. A comparison of the relative EF 

positions for both compounds is given in Chapter 7.5, appendix. 
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Figure 3. Density of states (DOS) and Fermi surfaces for (CaFeAs)10Pt4As8 (left) and 
(Ca0.8La0.2FeAs)10Pt3As8 (right). 

The model of electronic equivalence of the 1048 and La-1038 system established so far, with 

negligible influence of the intermediate layer PtzAs8 and structural differences, allows for a 

direct comparison of these two system. Although ideal doping level was experimentally de-

termined for La-1038, the intrinsic electron doping in stoichiometric is still an estimated value 

based on DFT calculations. Thus it seems reasonable to adjust the estimated 0.15 e− to 

0.13 e−/FeAs as experimentally found for La-1038. 

Investigations on the effects of Ca/La and Fe/Pt codoping on the superconducting properties 

of (Ca1-yLayFe1-xPtxAs)10Pt3As8 revealed highest Tc only for La doped compounds with x = 0, 

whereas additional Fe/Pt mixing caused a rapid decrease of critical temperatures. An almost 

identical decline of Tc upon Pt substitution was also reported for (CaFe1-xPtxAs)10Pt4As8, as is 

depicted in Figure 4. This result experimentally substantiate again the analogy of the 1048 and 

La-1038 systems despite their structural differences. The formal reduction of the 1038/1048 

compounds to an iron arsenide system with the branches of direct doping (1038), electron 
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doping (1048, La-1038), and both combined (La-Pt-1038) allows for the construction of a 

preliminary phase diagram, revealing the different effects of chemical manipulation on super-

conductivity in this system. Data available so far is compiled in Figure 4. 

 
Figure 4. Tc(x) phase diagrams illustrating the influence of direct doping in (CaFe1-xPtxAs)10Pt3As8, 
(CaFe1-xPtxAs)10Pt4As8 and (Ca0.87La0.13Fe1-xPtxAs)10Pt3As8 (left). Tc(v,x) phase diagram of 
(CaFe1-xPtxAs)10PtzAs8 superconductors with v being the formal charge of (FeAs)(1+v)– (right). Triangles: 
1038 data from [2]. Squares: 1048 data from [2]. Circles: La-1038 data from [6]. Spots: Data of 
(Ca1-yLayFe1-xPtxAs)10Pt3As8. Crosses: Data of antiferromagnetic phase from [7, 12]. Dashed line: 
Tentative border of antiferromagnetic phase. 

The phase diagram clearly shows the effectivity of charge doping to induce high Tc super-

conductivity in (CaFe1-xPtxAs)10PtzAs8 with an optimal electron doping of v = 0.13, thus being 

in good agreement with the one found for the analogue system La(O1-xFx)FeAs.[13] 

Superconductivity can also be induced by direct Pt doping in the 1038 phase, reaching Tc 

below 15 K which is consistent with results reported for Ba(Fe1-xPtx)2As2.[14] However direct 

doping appears to be detrimental for superconductivity in (CaFe1-xPtxAs)10PtzAs8 and 

(Ca1-yLayFe1-xPtxAs)10Pt3As8 in the charge doped regime, so that highest Tc only emerge in the 

presence of clean FeAs layers. 

2.9.4 Conclusion 

The suggested electronic similarity of (Ca0.87La0.13FeAs)10Pt3As8 and (CaFeAs)10Pt4As8
[2, 6] 

was investigated by DFT calculations. A pseudo band gap of the Pt-5d states was found at EF 

for both compounds, allowing for a charge transfer to iron. Although it is against chemical 

intuition on the first sight, a peculiar electronic situation is formed where iron is formally 

more electronegative than platinum. Comparable Fermi surfaces indicate similar electron 

doping levels in (Ca0.87La0.13FeAs)10Pt3As8 and (CaFeAs)10Pt4As8. Concluding from this theo-

retical aspects and the reported similar Tc,max ≈ 35 K[1] a scenario of electronic equivalency in 
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(Ca0.87La0.13FeAs)10Pt3As8 and (CaFeAs)10Pt4As8 was established. Comparing structural dif-

ferences between La-1038 and 1048 neither the different PtzAs8 layers nor layer distances 

were found to have relevant influence on the properties. Accepting the secondary role of the 

structural differences together with the relation of (CaFe1-xPtxAs)10Pt3As8 and 

(CaFe1-xPtxAs)10Pt4As8 discussed in reference [2], this results allowed for a consolidation  

of the different compounds (CaFe1-xPtxAs)10Pt3As8, (CaFe1-xPtxAs)10Pt4As8, and 

(Ca1-yLayFeAs)10Pt3As8 to one class of iron arsenides. From that a phase diagram was con-

structed combining Tc data for electron and direct doping. Moreover the codoped mixed crys-

tal series (Ca1-yLayFe1-xPtxAs)10Pt3As8 was synthesized to investigate and complete the Ca–

Fe–Pt–As phase diagram in the vicinity of Tc,max. Although it is reported that superconduc-

tivity can be induced upon direct Pt doping in 1038,[1, 3] this work substantiated, that substi-

tutions on the Fe sites are detrimental to superconductivity in the regime of charge doping. 

Thus highest Tc can only be achieved by charge doping with clean FeAs layers as was also 

shown for Ba1−xKx(Fe1−yCoy)2As2 recently.[15] 

2.9.5 References 

[1] C. Löhnert, T. Stürzer, M. Tegel, R. Frankovsky, G. Friederichs, D. Johrendt, Angew. 

Chem. Int. Ed. 2011, 50, 9195. 

[2] T. Stürzer, G. Derondeau, D. Johrendt, Phys. Rev. B 2012, 86, 060516. 

[3] N. Ni, J. M. Allred, B. C. Chan, R. J. Cava, Proc. Natl. Acad. Sci. USA 2011, 108, 

E1019. 

[4] S. Kakiya, K. Kudo, Y. Nishikubo, K. Oku, E. Nishibori, H. Sawa, T. Yamamoto, T. 

Nozaka, M. Nohara, J. Phys. Soc. Jpn. 2011, 80, 093704. 

[5] M. Nohara, S. Kakiya, K. Kudo, Y. Oshiro, S. Araki, T. C. Kobayashi, K. Oku, E. 

Nishibori, H. Sawa, Solid State Commun. 2012, 152, 635. 

[6] T. Stürzer, G. Derondeau, E.-M. Bertschler, D. Johrendt, Solid State Commun. 2015, 

201, 36. 

[7] N. Ni, W. E. Straszheim, D. J. Williams, M. A. Tanatar, R. Prozorov, E. D. Bauer, F. 

Ronning, J. D. Thompson, R. J. Cava, Phys. Rev. B 2013, 87, 060507. 



New Iron Arsenide Superconductors (CaFeAs)10PtzAs8 

90 

[8] A. Coelho, TOPAS-Academic, Version 4.1, Coelho Software, Brisbane, Australia, 

2007. 

[9] K. Schwarz, P. Blaha, Comp. Mat. Sci. 2003, 28, 259. 

[10] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K-augmented 

plane wave+local orbitals program for calculating crystal properties 2001. 

[11] N. Wiberg, E. Wiberg, A. F. Holleman, Lehrbuch der Anorganischen Chemie 2007, de 

Gruyter. 

[12] T. Stürzer, G. M. Friederichs, H. Luetkens, A. Amato, H.-H. Klauss, D. Johrendt, J. 

Phys.: Condens. Matter 2013, 25, 122203. 

[13] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 2008, 130, 

3296. 

[14] S. R. Saha, T. Drye, K. Kirshenbaum, N. P. Butch, P. Y. Zavalij, P. Johnpierre, J. 

Phys.: Condens. Matter 2010, 22, 072204. 

[15] T. Goltz, V. Zinth, D. Johrendt, H. Rosner, G. Pascua, H. Luetkens, P. Materne, H.-H. 

Klauss, arXiv:1402.0711 (unpublished), 2014. 

 



New Iron Arsenide Superconductors (CaFeAs)10PtzAs8 

91 

2.10 Suppression of Superconductivity by Compensation of Charge doping in 

(Ca1-yNayFeAs)10Pt4As8 

 

2.10.1 Introduction 

Although the mechanism of superconductivity in iron based materials has not been finally 

clarified, it is generally accepted that the charge of the iron arsenide layer (FeAs)ν– influen-

cing Fermi surface nesting plays the dominant role for superconductivity.[1-5] While stoichi-

ometric compounds like BaFe2As2
[6-7] and LaOFeAs[8] are antiferromagnetic metals, critical 

temperatures up to 38 K[9] arise in hole doped (Ba1-xKx)Fe2As2 and 55 K[10] in electron doped 

Sm(O1-xFx)FeAs, respectively. Besides this (indirect) route to charge doping without manipu-

lating the iron arsenide layer, also direct metal doping on the iron sites was found to induce 

superconductivity but with distinctly lower Tc. The reason for this difference remains unclear, 

although several aspects were discussed in literature.[11-13] Zinth et al. demonstrated the recov-

ery of a parent-like state in charge compensated (Ba1-xKx)(Fe0.93Co0.07)2As2 with x = 0.2 simi-

lar to the stoichiometric parent BaFe2As2.[11] This finding revealed, that Co acts as electron 

donor, whereby the additional charge can be fully compensated by hole doping. In this con-

text structural differences induced by the chemical manipulation appeared to have minor 

relevance. Therewith this study demonstrated how electron doping and structural effects can 

be experimentally evidenced by codoping. 

The origin for the drastic differences in properties comparing (CaFeAs)10Pt3As8 and 

(CaFeAs)10Pt4As8 was found in the different electronic situations present in both compounds. 

As discussed in Chapter 2.3 stoichiometric 1038 is a typical iron arsenide parent com-

pound.[14] Stoichiometric 1048, however, can be characterized an electron doped super-

conductor whereby additional electrons originate from the fourth Pt in the PtzAs8 layer.[15] 

This doping scenario combined the 1038 and 1048 compounds to one family 
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(CaFeAs)10PtzAs8 despite their considerable structural differences. Experimental substan-

tiation was found in electron doped (Ca1-yREyFeAs)10Pt3As8 (Chapter 2.7) and codoped 

(Ca1-yLayFe1-xPtxAs)10Pt3As8 (Chapter 2.9) featuring properties analogue to the 1048 com-

pound (CaFe1-xPtxAs)10Pt4As8. Thus so far investigations comparing 1038 and 1048 focused 

on the realization of a 1048-like state in compounds with 1038 structure. In this chapter the 

reverse reasoning will be discussed based on (Ca1-yNayFeAs)10Pt4As8 representing a system 

where the intrinsic electron doping of the Pt4As8 layer can be compensated by Na hole dop-

ing. The mixed crystal series was synthesized and characterized by means of ambient and low 

temperature powder diffraction, single crystal diffraction, ac-susceptibility, and SQUID mea-

surements as well as DFT calculations to investigate a potential recovery of a parent-like state 

present in stoichiometric 1038. 

2.10.2 Experimental Details 

Powder samples of (Ca1-yNayFeAs)10Pt4As8 were prepared by mixing stoichiometric amounts 

of the elements (Ca: 99.99 %, Na: 99.8 %, La: 99.9 %, Fe: 99.9 %, Pt: 99.95 %, As: 

99.999 %) in alumina crucibles, which were encapsulated in niobium tubes and then sealed in 

argon filled silica tubes. The samples were heated for 20 h at 800 °C, then cooled to ambient 

temperature. Afterwards they were grounded, sealed in niobium and silica tubes, reheated to 

800 °C for 25 h, pelletized, and again treated for 25 h at 800 °C. Crystalline powders were 

characterized by X-ray powder diffraction using the Rietveld method with TOPAS[16] assum-

ing the β-1048 structure as best approximation. Compositions were determined within errors 

of 10 % by X-ray spectroscopy (EDX). Singles crystals were selected from the polycrystalline 

samples and X-ray intensity data were measured on a BRUKER D8 QUEST diffractometer. 

Indexing, integration, data reduction and absorption correction was done using the APEX2 

software package with SAINT and SADAPS.[17] Structure refinements were performed 

against F2 using the JANA2006 package.[18] Superconducting properties were determined 

using a SQUID and an ac-susceptometer at 1333 Hz in the temperature range of 3.5 to 300 K 

at a 3 Oe field between 1.8 K and 300 K. Full-potential density function theory (DFT) calcu-

lations were performed using the WIEN2K package.[19-20] Owing to the complexity of the 

structure, calculations for Na substituted 1048 were based on (Ca0.8Na0.2FeAs)10Pt4As8 to 

avoid even more computational expensive superstructures. 
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2.10.3 Results and Discussion 

1048 bulk samples have been reported to be very difficult to synthesize,[21] which is con-

spicuous by the widely absence of investigations on powder samples in literature. Never-

theless in this study it turned out, that Na substitution immensely improves synthesis of 1048 

compounds. Almost phase pure samples of (Ca1-yNayFeAs)10Pt4As8 (> 90 wt%) were obtained 

with minor side phases FeAs, PtAs2, NaFeAs, Ca3Fe8PtAs6, Ca6Fe11Pt3As8, or CaFe2As2 

(Figure 1). The 1048 structures were confirmed for the Na doped mixed crystal series by 

powder X-ray diffraction. Anisotropically broadened reflections in powder diffraction data as 

well as strong diffuse contribution in single crystal X-ray data for reflections complying with 

2h + k ≠ 5n (n ∈ ℕ) give evidence for stacking disorder in the superstructure as was found for 

the 1048 phase (Chapter 2.2). Moreover enhanced reflection broadening was generally con-

spicuous in powder X-ray data, indicating inhomogeneous Na distribution, which could not be 

improved by varying synthesis conditions. Single crystal investigations revealed Na mixing 

among sevenfold coordinated Ca sites, whereas eightfold coordinated Ca positions remain 

unsubstituted. Although Ca2+ is listed in literature to have little smaller ionic radius than 

Na+,[22] the divalent calcium ion preferentially occupies the higher coordinated cation site 

(Figure 1). This finding is in line with the site preference found for rare earth dopants in 

(Ca1-yREyFeAs)10Pt3As8 (Chapter 2.6 and 2.7).[15] 

The course of unit cell axes upon Na doping in (Ca1-yNayFeAs)10Pt4As8 is depicted in Figure 

2. c-axis and therewith interlayer distances monotonically increase probably due to a decreas-

ing ionic attraction between the layers upon Na substitution. In the same course the ab-plane 

shows a small reduction in size, while cell angles remain constant. Therewith unit cell volume 

is slightly increased over the range 0 ≤ y ≤ 0.5 by approximately 1 %. A solubility limit for Na 

in (Ca1-yNayFeAs)10Pt4As8 was found around y = 0.5, as depicted in Figure 2, comparing 

nominal and measured substitution level. 
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Figure 1. X-ray powder pattern (blue), Rietveld fit (red), and difference curve (gray) of 
(Ca1-yNayFeAs)10Pt4As8 with y = 0.25 (black tick marks) and minor impurity of CaFe2As2 (blue tick marks) 
(left). Structure section of (Ca1-yNayFeAs)10Pt4As8 illustrating sevenfold coordinated Na/Ca mixed sites 
(gray-orange) and unsubstituted eightfold coordinated Ca (gray). The special antiprismatic Ca position 
above/below the deflected Pt sites is emphasized by dashed lines (right).  

 
Figure 2. Course of unit cell axes of (Ca1-yNayFeAs)10Pt4As8 upon Na substitution y (left). Comparison of 
nominal and actual composition as determined by EDX spectroscopy indicating a Na solubility limit 
around y = 0.5 (right). 

Susceptibility measurements of samples (Ca1-yNayFeAs)10Pt4As8 are shown in Figure 3 for 

0 ≤ y ≤ 0.23. Critical temperatures and superconducting volume fractions are drastically 

reduced upon Na doping, whereby only traces of superconductivity were detectable for 

y = 0.23. Thus Na substitution presents an effective tool to compensate intrinsic electron 

doping originating of the Pt4As8 layer. However, a further increase of Na substitution level 

beyond y = 0.23 gives rise to high superconducting volume fractions, along with a second 

transition. Whether this effect indicates a hole doped regime in the 1048 phase diagram, or 

originates from side phases is uncertain at this stage. Nevertheless, substitution depended unit 

cell axes substantiate Na inclusion to the 1048 structure up to y = 0.5 and amounts of minor 

side phases appear inconsistent with superconducting volume fractions measured so far. Thus, 
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further investigations are necessary in the high Na doped regime of the this system. Results 

obtained on (Ca1-yNayFeAs)10Pt4As8 are compiled in Figure 3. 

 
Figure 3. Magnetic susceptibility of (Ca1-yNayFeAs)10Pt4As8 with 0 ≤ y ≤ 0.23 showing the gradual decrease 
of Tc and superconducting volume fraction upon Na substitution. Increasing inhomogeneity is conspicuous 
from transition width (left). Phase diagram of (Ca1-yNayFeAs)10Pt4As8 with 0 ≤ y ≤ 0.5. Green spots: Super-
conducting bulk transition. Blue spots: Second superconducting transition arising at higher substitution 
levels (right). 

Investigations on the 1038 and 1048 system so far established the model of 1048 and RE 

doped 1038 compounds being electron doped derivatives of the non-superconducting parent 

(CaFeAs)10Pt3As8, with an optimal electron doping level of 0.13 e−/FeAs. In this context the 

structural differences of 1038 and 1048 compounds were found to play a subsidiary role.[15, 23] 

Density of states calculations for (Ca0.8Na0.2FeAs)10Pt4As8 in Figure 4 highlight the close 

electronic resemblance to (CaFeAs)10Pt3As8.  

 
Figure 4. Comparison of density of states (DOS) of stoichiometric (CaFeAs)10Pt3As8 (left) and Na substi-
tuted (Ca0.8Na0.2FeAs)10Pt4As8 (right). 

Both compounds feature almost exclusively Fe-3d states at the Fermi energy with EF being 

located just below the Pt-5d pseudo band gap. Thus this calculations impressively 
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demonstrate that Na substitution allows for a tuning of the iron arsenide layer charge (FeAs)ν– 

similar as found for (Ca1-xRExFeAs)10Pt3As8. Concluding from that a recovery of a  

parent state similar to stoichiometric (CaFeAs)10Pt3As8 is expected for hole doped 

(Ca1-yNayFeAs)10Pt4As8 with y ≈ 0.15. 

Experimental data (Figure 3), however, revealed a minimum of Tc around y = 0.23 distinctly 

different from y = 0.13 – 0.15 as expected from the electron doping model and theoretical 

considerations (Chapter 2.6, 2.7, and 2.9). Moreover no complete suppression of supercon-

ductivity was achieved, although Na substitution was proven to be detrimental to super-

conductivity in this case. Susceptibility measurements on samples with y = 0.15 and 0.25 give 

no indication for a reemergence of magnetic ordering. Corresponding powder data reveal 

significant reflection broadening at low temperatures, possibly hinting to a small structural 

distortion. A quantification, however, failed so far. From this results it was concluded, that a 

recovery of a 1038 parent-like state should be accessible by Na doping in 1048, but the for-

mation of fully charge compensated samples is hindered by the inhomogeneity of the Na 

distribution within the samples. Although the existence of a fully charge compensated parent 

state like in (Ba1-xKx)(Fe0.93Co0.07)2As2 could not be evidenced in this work, the model of in-

trinsic charge doping in the 1048 compound was experimentally substantiated.  

2.10.4 Conclusion 

In this work the model of intrinsic charge doping suggested for 1048 compound 

(CaFeAs)10Pt4As8 with respect to (CaFeAs)10Pt3As8 was point of focus. Since this  

model was already experimentally evidenced by electron doped 1038 derivatives 

(Ca1-yREyFeAs)10Pt3As8,[23] the reverse reasoning of charge doping compensation in Na 

substituted 1048 was investigated. DFT calculations were consulted to illustrate the close 

electronic resemblance of stoichiometric 1038 and (Ca1-yNayFeAs)10Pt4As8 also demonstrating 

Na substitution being an effective instrument to tune EF. Despite reported difficulties to pre-

pare 1048 samples, Na substituted compounds revealed to be easily synthetically accessible 

up to y = 0.5. Site preference of Na dopants for the lower coordinated Ca sites was found be-

ing in line with reported analogue site preferences in (Ca1-yREyFeAs)10Pt3As8. Structural 

changes upon Na substitution in (Ca1-yNayFeAs)10Pt4As8 are in agreement with the expecta-

tions for a reduced ionic interaction between the layers. Magnetic measurements identified a 

gradual reduction of critical temperatures upon Na substitution, whereby superconductivity 

was almost completely suppressed at y = 0.23. For higher Na content a renewed increase of 
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superconducting volume fraction along with a second transition was found, with unclear 

origin so far. Powder data of samples with y ≈ 0.2 revealed reflection broadening at low tem-

peratures, but neither a reemergence of magnetic ordering nor a structural distortion could be 

identified. The absence of a complete recovery of a parent-like state as well as the emergence 

of minimum Tc at y = 0.2 instead of 0.15 as predicted from theoretical considerations is prob-

ably caused by inhomogeneous sodium substitution. Nevertheless the reduction of critical 

temperatures up to an almost complete suppression by Na gives direct evidence of the elec-

tron doped nature of stoichiometric 1048 and is fully consistent with the model established for 

the compounds (CaFeAs)10PtzAs8 so far.  
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3 New Iron Arsenide Compounds with interconnected FeAs 

Layers 

3.1 Framework Structures of interconnected Layers in Calcium Iron Arsenides 
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Abstract 

The new calcium iron arsenide compounds Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 

(n = 1 − 3; M = Nb, Pd, Pt; M′ = , Pd, Pt) were synthesized and their crystal structures 

determined by single crystal X-ray diffraction. The series demonstrates the structural 

flexibility of iron arsenide materials, which otherwise prefer layered structures, as is known 

from the family of iron-based superconductors. In the new compounds, iron arsenide tetra-

hedral layers are bridged by iron-centered pyramids, giving rise to so far unknown frame-

works of interconnected FeAs layers. Channels within the structures are occupied with 

calcium and palladium or platinum, respectively. Common basic building blocks are identi-

fied that lead to a better understanding of the building principles of these structures and their 

relation to CaFe4As3. 

3.1.1 Introduction 

Layered iron arsenides have earned sweeping prominence in the solid-state chemistry and 

physics communities during the last years because of the emergence of high-temperature 
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superconductivity up to 55 K.[1−4] Therewith, the family of layered iron arsenides was found 

to be a new class of high Tc superconductors beyond the copper oxides discovered in the 

1980s.[5] Intensive research has meanwhile identified a growing family of layered compounds 

each containing two-dimensional FeAs layers.[6] A magnetic instability in the iron layers 

intertwined with the superconducting properties has been uncovered,[7] which can be mani-

pulated by chemical doping, pressure, or complete replacement of the separating layers by 

other two-dimensional structure fragments.[6, 8] The presence of layered structures in both high 

Tc superconductor families has raised the question about the general necessity of low dimen-

sionality, but no final consent has been found on this topic so far. Besides, other structures, 

featuring fragments of FeAs tetrahedral layers, are also expected to reveal very interesting 

properties, although it is not clear whether superconductivity could arise in such systems. In 

2009, the compound CaFe4As3 with a structure consisting of interconnected FeAs4/4 tetra-

hedral bands forming channels occupied with calcium was identified.[9] At the band joints, 

iron is pyramidally coordinated by five arsenic ions connecting two bands. Magnetic 

measurements identified iron(II) in the FeAs4/4 tetrahedra but also remarkably iron(I) in the 

FeAs5/5 pyramids.[10] Also, hints to a spin density wave were reported similar to the layered 

compounds, but despite diverse substitution attempts, no superconducting properties were 

achieved.[11] In this paper, we report five new structure types in the iron arsenide family with 

the general composition Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 (M = Nb, Pd, Pt; M′ = , 

Pd, Pt) with n = 1 − 3, featuring three-dimensional frameworks of interconnected layers. A 

structural breakdown of these compounds to basic building blocks is given, yielding a syste-

matic understanding of the relationship of these structures to each other and their close rela-

tionship to CaFe4As3 as well as to layered iron pnictides. Finally, the connection to a long-

known class of intermetallic compounds with a metal-to-pnictide ratio of 2 : 1 is illustrated. 

3.1.2 Experimental Details 

Polycrystalline samples of the compounds Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 with 

n = 2 and 3 and (Ca,Na)3(Fe,Nb)8As6 were synthesized by solid-state methods under ambient 

pressure. Stoichiometric mixtures of pure elements (> 99.5 %) were heated at 900 − 1000 °C 

in alumina crucibles or niobium tubes, respectively, and sealed in silica tubes under purified 

argon. The samples were thoroughly homogenized and annealed twice at 900 − 1000 °C. The 

α-polymorphs of the compounds with n = 1 and 2 were synthesized from a mixture of binary 

starting materials and pure elements (> 99.5 %) by high-pressure synthesis in boron nitride 

crucibles at 6 GPa and 1000 °C, using a modified Walker-type multianvil apparatus.[12, 13] 
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Bulk α-Ca3Fe8PtAs6 was obtained by both high-pressure and high-temperature synthesis, 

whereas CaFe5As3 was accessible only by high-pressure synthesis. β-Ca3Fe8PtAs6 was only 

obtainable as a side phase. In the Ca–Fe–Pd–As system, solid-state synthesis always yielded a 

mixture of the β- and γ- modifications. An α-type compound has not been identified so far. 

All samples were characterized by powder X-ray diffraction using a HUBER G670 diffracto-

meter with Cu Kα1 or Co Kα1 radiation. Singles crystals were selected from the poly-

crystalline samples, and X-ray intensity data were measured on a STOE IPDS-I or a 

BRUKER D8 QUEST diffractometer. Energy dispersive X-ray spectroscopy was used to 

check the compositions. The structure refinements were performed against F2 using the 

JANA2006 program package.[14] Rietveld refinements of the powder diffraction data were 

performed with the TOPAS package[15] by using the structural data obtained by the single 

crystal experiments. A typical pattern with a Rietveld fit is exemplarily shown in Figure 1. Up 

to 10 % of impurity phases were detected in the bulk samples, mostly binary arsenides. 

 
Figure 1. Powder X-ray diffraction pattern (blue) and Rietveld fit (red) of Ca6(Fe,Pt)11Pt3As10. 

 

Table 1. Crystal data and refinement parameters. 

compound CaFe5As3 Ca3Fe8As6 Ca3Fe8PtAs6 Ca3Fe8PdAs6 
structure α-CaFe5As3 α-Ca3Fe8As6 α-Ca3Fe8PtAs6 β-Ca3Fe8PdAs6 
composition CaFe5As3 Ca2.56Na0.44Fe7.49 

Nb0.51As6 
Ca3Fe7.705Pt1.295As6 Ca3Fe7.04Pd1.96As6 

space group P21/m P21/m P21/m Pnma 
Z 2 2 2 4 
a (Å) 7.2734(6) 11.3307(9)  11.3169(5) 26.363(4) 
b (Å) 3.8149(3) 3.8078(3) 3.8809(2) 3.8699(5) 
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c (Å) 9.7577(8) 13.6298(11) 13.7008(6) 11.330(1) 
β (deg) 100.704(2) 106.154(3)  105.957(2) 90 
Vol (Å3) 266.04(4) 564.84(8) 578.55(5) 1155.9(2) 
R1(obs/all) 0.033/0.037 0.081/0.134 0.024/0.031 0.038/0.068 
wR2(obs/all) 0.085/0.094 0.178/0.197 0.066/0.072 0.082/0.085 

 

compound Ca3Fe8PtAs6 Ca3Fe8PdAs6 Ca6Fe11Pd3As10 Ca6Fe11Pt3As10 

structure β-Ca3Fe8PtAs6 γ-Ca3Fe8PdAs6 α-Ca6Fe11Pd3As10 α-Ca6Fe11Pt3As10 

composition Ca3Fe6.72Pt2.28As6 Ca3Fe4.74Pd4.26As6 Ca6Fe7.88Pd6.12As10 Ca6Fe7.62Pt6.38As10 
space group Pnma Pnma P21/m P21/m 
Z 4 4 2 2 
a (Å) 26.435(3) 19.856(3) 15.564(3) 15.499(1) 
b (Å) 3.9177(10) 3.9461(5) 3.9679(6) 3.9807(2) 
c (Å) 11.345(2) 15.343(2) 17.880(3) 17.814(1) 
β (deg) 90 90 108.748(5) 109.169(1) 
Vol (Å3) 1174.9(4) 1202.2(3) 1045.7(3) 1038.1(1) 
R1(obs/all) 0.051/0.137 0.023/0.066 0.064/0.125 0.036/0.058 
wR2(obs/all) 0.103/0.113 0.044/0.049 0.142/0.153 0.076/0.081 

 

3.1.3 Results and Discussion 

During the course of exploration in the field of iron arsenides, five so far unknown crystal 

structures were identified by single crystal X-ray structure determination (Table 1). The com-

pounds obey the general composition of Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 (M = Nb, 

Pd, Pt; M′ = , Pd, Pt) with n = 1 − 3. They crystallize in monoclinic or orthorhombic crystal 

systems and feature three-dimensional frameworks of interconnected layers forming parallel 

channels. Figure 2 depicts the triangular shape of the channels for n = 1 − 3. With n > 1, 

additional sites occur within the channels, which can be occupied by M′.  

 
Figure 2. Crystal structures of the monoclinic compounds Can(n+1)/2(Fe1−xMx)(2+3n)M'n(n−1)/2As(n+1)(n+2)/2 (M = 
Pd, Pt; M' = , Pd, Pt) with n = 1 − 3 showing the channel shapes for varying n. 
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The new structures crystallize in the space groups P21/m or Pnma, respectively, where they all 

share a short b-axis of about 3.9 Å with atomic sites exclusively on mirror planes at y = 1/4 

and 3/4. A three-dimensional framework is formed by covalently bonded and interconnected 

iron arsenide layers, assembling equilateral triangular channels. Illustrations of the basic 

building units as well as the designation of labels of distances and angles for a later discussion 

are depicted in Figure 3. Similar to a scaffold, the framework can be divided into  

coplanar two-dimensional frames of ∞
2[Fe2(n+1)(As4/4)2(n−1)(As4/7)4], diagonal braces 

∞
1[Fe2n(As4/4)2(n−1)(As3/7)2(As1/7)2], and joints ∞

1[Fe(As2/7)2As1/7], generally keeping in mind 

their infinite arrangement along the short b-axis. This metaphoric description of the building 

blocks will be conveniently used for further structure discussion. The channels within the 

structures are populated with calcium and, depending on the compound composition, as well 

with arsenic and palladium or platinum in trigonal-planar coordination.  

 
Figure 3. Basic building blocks of the compounds Can(n+1)/2(Fe1−xMx)(2+3n)M'n(n−1)/2As(n+1)(n+2)/2 (left) and 
coordination polyhedra and labels for distances and angles (right). 

The frames are formed by edge-sharing FeAs4/4 tetrahedral layers corresponding to the anti-

PbO type. The atomic distances (d4) and angles (δ and ε) are comparable to the values found 

in the structures of the layered iron arsenides, including in-plane Fe–Fe metal bonding (d1).[6] 

Corresponding features were found for the braces with the mere difference of their restricted 

extent in the second dimension. A distinctly different situation was found for the joints. 

There, iron is surrounded by five arsenic atoms in pyramidal coordination. The base plane is 

formed by a rectangular arrangement of arsenic. Within these pyramids, the Fe− As bond 

lengths (d5 and d6) are significantly enlarged compared to the tetrahedral layers (d4). The same 
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situation was found regarding Fe–Fe distances (d2 and d3). Thus, the interaction of the braces 

to the frames is decreased, leading to a certain degree of two-dimensionality conserved in this 

structures, which can be also seen from the presence of continuous frames, being reminiscent 

of the layered iron arsenide structures. Nevertheless, the rectangular base plane of the joint 

pyramids leads to a local distortion within the frames. Therefore, each structure features one 

very small ε angle caused by a frame iron capping the short edge of the pyramid base. Table 2 

gives a comparison summary of selected distances and angles for the compounds investigated. 

Table 2. Selected interatomic distances (Å) and bond angles (deg). 

structure α-CaFe4As3 α-Ca3Fe8As6 α-Ca3Fe8PtAs6 β-Ca3Fe8PdAs6 
composition CaFe5As3 Ca2.56Na0.44Fe7.49 

Nb0.51As6 
Ca3Fe7.71Pt1.29As6 Ca3Fe7.04Pd1.96As6 

d1(Fe–Fe) 2.5973(9)- 
2.7634(13) 

2.6440(4)- 
2.8029(4) 

2.6023(15)- 
2.8731(11) 

2.6069(5)- 
2.8500(23) 

d2(Fe–Fe) 2.9824(9)- 
3.0241(10) 

2.9397(3)- 
2.9582(4) 

2.9425(12)- 
2.9762(17) 

2.9481(19)- 
2.9902(19) 

d3(Fe–Fe) 2.6982(12)- 
2.7697(14) 

2.7800(4)- 
2.8916(3) 

2.7275(22)- 
2.9591(14) 

2.7159(21)- 
2.9367(21) 

d4(Fe–As) 2.3830(10)- 
2.4712(11) 

2.3983(4)- 
2.4623(3) 

2.3861(9)- 
2.4767(10) 

2.3855(19)- 
2.4998(16) 

d5(Fe–As) 2.6158(9)- 
2.6235(9) 

2.6753(3)- 
2.6803(3) 

2.6565(12)- 
2.6718(14) 

2.6577(6)- 
2.6836(7) 

d6(Fe–As) 2.5062(9) 2.6202(4) 2.5703(16) 2.5772(23) 
 

ε(As–Fe–As) 92.468(30)-
106.950(34) 

96.431(15)- 
108.352(13) 

92.219(62)- 
111.216(55) 

93.918(19)- 
111.154(94) 

δ(As–Fe–As) 109.424(33)- 
116.309(34) 

109.153(4)- 
115.268(4) 

106.464(3)- 
115.670(3) 

107.552(5)- 
114.892(4) 

d7(M–As) - - 2.4785(12)- 
2.4929(10) 

2.4459(22)- 
2.4592(19) 

 

structure β-Ca3Fe8PtAs6 γ-Ca3Fe8PdAs6 α-Ca6Fe11Pd3As10 α-Ca6Fe11Pt3As10 

composition Ca3Fe6.72Pt2.28As6 Ca3Fe4.74Pd4.26As6 Ca6Fe7.88Pd6.12As10 Ca6Fe7.62Pt6.38As10 
d1(Fe–Fe) 2.6232(20)- 

2.8859(13) 
2.6827(14)-
2.8766(14) 

2.7041(3)- 
2.8830(3) 

2.6409(14)- 
2.8881(5) 

d2(Fe–Fe) 2.9651(18)- 
2.9979(20) 

2.9881(12)- 
3.0224(13) 

3.0232(3)- 
3.0299(3) 

2.9714(10)- 
3.0033(14) 

d3(Fe–Fe) 2.6958(29)- 
2.9675(21) 

2.7802(19)- 
2.9594(14) 

2.7879(4)- 
2.7975(4) 

2.7214(17)- 
3.0074(14) 

d4(Fe–As) 2.3732(21)- 
2.5513(12) 

2.3485(18)- 
2.5626(11) 

2.3618(3)- 
2.5828(3) 

2.3952(12)- 
2.5775(9) 

d5(Fe–As) 2.6748(18)- 
2.7123(18) 

2.7610(13)- 
2.7427(12) 

2.7520(3)- 
2.7647(3) 

2.7135(12)- 
2.7443(15) 

d6(Fe–As) 2.5579(27) 2.5700(18) 2.5905(4) 2.5531(17) 
 



New Iron Arsenide Compounds with interconnected FeAs Layers 

105 

ε(As–Fe–As) 93.631(85)- 
111.786(64) 

99.098(6)- 
110.940(53) 

98.506(10)- 
112.772(10) 

94.900(64)- 
112.246(49) 

δ(As–Fe–As) 105.123(3)- 
114.849(8) 

107.791(4)- 
113.733(3) 

107.580(9)- 
113.265(10) 

107.567(2)- 
113.820(2) 

d7(M–As) 2.4496(15)- 
2.4594(15) 

2.4481(13)- 
2.4614(16) 

2.4424(3)- 
2.4683(4) 

2.4305(13)-
2.4478(9) 

 

 
Figure 4. Different polymorphs of Can(n+1)/2(Fe1−xMx)(2+3n)M'n(n−1)/2As(n+1)(n+2)/2 with n = 2; (a) 
α-Ca3Fe8M'As6; (b) β-Ca3Fe8M'As6; (c) γ-Ca3Fe8M'As6. 

The compounds Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 comprise channels of varying size 

defined by the iron arsenide framework. Thus, depending on its size, each channel is popu-

lated with n(n + 1)/2 calcium atoms, each trigonal-prismatically coordinated by arsenic. These 

CaAs6 prisms share faces, giving rise to strands within the channels. Additionally, compounds 

with n ≥ 2 feature the possibility to host further metal atoms M′ in each center of three edge 

connected strands, while this particular site is trigonal-planar coordinated by arsenic. Com-

pounds with a vacancy, palladium, or platinum at this site were found for n = 2, and palladium 

or platinum for a structure with n = 3 could be identified so far. Similar planar coordination of 

palladium and platinum by arsenic was found in CaPtAs and in other compounds.[16, 17] For 

compounds exceeding n = 2, the channel size within the iron arsenide framework cannot 

coordinate all calcium atoms anymore. Therefore, additional arsenic is incorporated for n > 2, 

saturating the coordination of calcium. Generally, the iron arsenide frames and braces allow 

for partial palladium and platinum substitution of the iron sites, whereas hardly any mixing 

was traceable at the joints. However, adding niobium and sodium to the reaction gives rise to 

significant Fe/Nb mixing exclusively at the joints and Na/Ca mixing within the channels. 

Similar results were reported for chromium doped CaFe4As3.[10] 

The availability of fundamental structural building blocks as frames, braces, and joints allows 

for a multitude of different structures, facilitating both different arrangements of the channels 
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and different channel sizes with a general composition of 

Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 and n = 1, 2, 3, .... So far we could identify homo-

logous structures for n = 1 − 3 as well as three different polymorphs for n = 2. Figure 2 

illustrates the structures with constant channel arrangement and n = 1 − 3, while Figure 4 

shows the different polymorphs found with constant n = 2. The γ-polymorph takes a special 

position within the presented structure discussion. The frames are intermitted every second 

channel, therewith losing their infinite extent in one direction. Considering the case n = 0, the 

general formula of this compound yields Fe2As. The resulting structure for this type should 

lack any channels. Indeed, the structure of Fe2As (Cu2Sb type) reveals layers of edge-

connected FeAs4 tetrahedra as well as edge-connected FeAs5 pyramids. Thus, even this long-

known binary can be reduced to the basic building units that we described; however, in this 

special case, braces and channels are absent. Going the other way to the infinite limit n = ∞, a 

hypothetical structure would consist of a mere one “channel” with no iron arsenide frames, 

braces, and joints presented anymore. CaPtAs might be considered in this context,[18] locally 

featuring trigonal-planar coordinated platinum sites as well as edge-connected parallel strands 

of CaAs6. Another more distorted representative would be CaPdAs.[19] 

The view of fundamental building blocks described so far even allows for an easy under-

standing of the close relationship of our new structures to CaFe4As3 reported in 2009.[9] In this 

context, the structure of CaFe4As3 can be interpreted as a defect polymorph of the compound 

with n = 1 with an ordered vacancy of one iron site. A closer view actually reveals CaFe4As3 

as the defect γ-polytype with n = 1. With the frames being discontinuous, the γ-type structures 

can be understood as two connected sawtooth layers, with each formed by one frame frag-

ment, one brace, and two joints. Figure 5 compares both structures with the defect polyhedra 

of CaFe4As3 highlighted and contains a schematic illustration of the sawtooth-like motif of 

the γ-type. 
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Figure 5. Comparing the structures of CaFe4As3 (left) in terms of a defect variant to γ-Ca3Fe8M'As6 
(middle). Defect sites are highlighted in brown. Sawtooth motif in the γ-type structures (right). 

Although the existence of frameworks built by tetrahedra frames, braces, and pyramidal joints 

is quite new in the iron arsenide family, it is not exclusively restricted to this class of com-

pounds. Most recently, Khatun et al. reported the structures of Rb4M7Pn7 and Rb7M12Sb12 

with M = Mn, Zn, and Cd featuring coplanar zigzag layers of edge-connected MPn4 tetrahedra 

including MPn5 pyramids at every kink.[20] In terms of the building block concept that we 

applied on our structures, these structures may be rationalized as frameworks lacking frames 

and thus forming zigzag layers of braces and joints. 

 
Figure 6. Crystal structures of Can(n+1)/2(Fe1−xMx)(2+3n)M'n(n−1)/2As(n+1)(n+2)/2 with n = 1, 2, 3, emphasizing the 
tricapped trigonal-prismatic AsM9 coordination. 
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A different approach of framework transition metal pnictides and related silicides was given 

earlier by Jeitschko and coworkers[21, 22] and other authors,[23, 24] reporting, for instance, rare 

earth cobalt phosphides featuring structure types very similar to those of our iron arsenides 

Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2. They describe these structures in terms of a 

frequently reappearing relation of metal to pnictide in nature of 2 : 1, including also metal-

rich binaries like Co2P. The common building unit is a tricapped trigonal-prismatic coordina-

tion of the pnictide by metal atoms, whereas the different arrangements of these PnM9 units 

yield the large plethora of crystal structures known in this class. The structures of the mono-

clinic compounds Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 with n = 1 − 3 are exemplarily 

illustrated in Figure 6, emphasizing the tricapped prismatic coordination of the arsenic. In the 

structures presented in this paper, each arsenic atom is in the center of an AsM9 unit, with M 

being all metal atoms present. Within the channels, these units are edge-connected but sepa-

rated from neighboring channels by FeAs tetrahedra layers. Very similar structures were 

reported for the compounds HoCo3P2, ScCo5P3, and Sc5Co19P12,[21] but with different 

arrangements of the triangular channels and partial incorporation of different channel sizes as 

well as other building blocks in the same structure. 

The iron arsenide framework structures reported in this paper are supposed to feature inter-

esting magnetic and electronic properties. For CaFe4As3 iron(II) was evidenced for tetrahedral 

coordination and iron(I) in the pyramidal environment.[9] We have conducted preliminary 

density functional theory calculations and found exclusively magnetic ground states for all 

compounds. Calculated magnetic moments range from ∼0.3 to 2.0 μB at the iron atoms of the 

frames and braces and up to ∼2.5 μB at the joints. However, detailed magnetic measurements 

and neutron diffraction experiments are necessary to prove this. For the time being, it seems 

reasonable to assume a similar situation of two different iron species for our compounds. 

Because the compounds Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 allow for different dis-

tances and arrangements of the iron sites, they present an excellent model system to study the 

geometry-dependent interplay of a variety of different magnetic centers. Still, no super-

conductivity was observed yet in any of the compounds described, despite the presence of 

two-dimensional iron arsenide tetrahedral layers. Nevertheless, these new phases clarify that 

layered iron arsenide structures are not just restricted to two-dimensional stacking structures 

but facilitate the formation of complex three-dimensional frameworks. 
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3.1.4 Conclusion 

In conclusion, we reported the eight new calcium iron arsenide compounds 

Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 with n = 1, 2, 3, M = Nb, Pd, Pt, and M′ = , Pd, 

Pt. The structures reveal three-dimensional frameworks of cross-linked iron arsenide layers 

with trigonal channels along a short b-axis of 3.9 Å. Thereby the size and arrangement of the 

channels give rise to the different structures. This relationship was also rationalized by the 

identification of common structural building blocks and their resemblance to CaFe4As3.  

The compounds feature coordination of arsenic typical for compounds with a  

metal-to-pnictide ratio of 2 : 1. The identification of these new structures elucidates the  

structural flexibility of iron arsenide layers toward rearrangements. Unlike CaFe4As3, 

Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 still feature continuous coplanar FeAs4/4 layers and 

therewith a certain degree of two-dimensionality. Although no superconductivity has been 

observed in these compounds so far, interesting magnetic and electronic properties are 

expected. 
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3.2 Properties of α-Ca3(Fe,Pt)8PtAs6 and related compounds 

 

3.2.1 Introduction 

The proximity of layered iron arsenide compounds to a magnetic instability is considered to 

be essential for the emergence of superconductivity in this material class. Thereby magnetic 

fluctuations appear to mediate the interaction of Cooper pairs. Although immense progress 

was made since the discovery of La(O1-xFx)FeAs,[1] no thorough understanding of the super-

conducting mechanism was found so far. While the emergence of superconductivity is 

restricted to compounds comprising coplanar FeAs4/4 tetrahedra sheets at the present stage the 

structure chemistry of iron arsenides is not. Besides tetrahedral coordination, iron is also 

found in trigonal pyramidal (Fe12As5
[2]), square pyramidal (Fe2As,[3] CaFe4As3

[4]) or octa-

hedral (FeAs,[5] FeAs2
[6]) arsenic environment. Exceptional magnetic properties are  

reported for all those compounds. Recently a complete series of new iron arsenides 

Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 with n = 1, 2, 3, M = Nb, Pd, Pt, and M′ = , Pd, 

Pt was discovered featuring frameworks of cross linked iron arsenide layers connected by iron 

in square pyramidal coordination.[7] Further investigations revealed Fe2As (n = 0) being the 

simplest representative of this series, while CaFe4As3 can be characterized as defect type for 

n = 1. The new compounds crystallize in differently dense frameworks and form various 

polymorphs, not just enlarging the family of iron arsenides but also demonstrating an 

unexpected structural flexibility. As suggested for Fe2As and CaFe4As3 the presence of formal 

Fe2+ in tetrahedral coordination and Fe+ in pyramidal coordination can be assumed for all 

representatives of Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2.[4, 8] The presence of a multitude 

of magnetic centers including different iron valences promises interesting magnetic proper-

ties. However, earlier investigations revealed, that the preparation of high quality samples of 

just one representative of Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 is extremely difficult. In 

this work the synthesis strategy was optimized and samples of α-Ca3(Fe,Pt)8PtAs6 were 
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obtained without impurities of other homologs or polymorphs. Temperature dependent prop-

erties were studied by X-ray powder diffraction, magnetic, and conductivity measurements. 

Electronic properties were calculated by DFT methods. The results were compared and 

discussed in the scope of known CaFe4As3 to get a first insight into the complex magnetism of 

the new compounds Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2. 

3.2.2 Experimental Details 

Polycrystalline samples of α-Ca3Fe8PtAs6 were prepared either by conventional ambient 

pressure solid-state synthesis or under high-pressure conditions. For conventional synthesis 

stoichiometric mixtures of pure elements (> 99.5 %) were heated at 900 − 1000 °C in alumina 

crucibles in silica tubes under purified argon. The samples were thoroughly homogenized and 

annealed twice at 900 − 1000 °C. One step synthesis of α-Ca3Fe8PtAs6 was achieved by high-

pressure synthesis starting from stoichiometric mixtures of phase pure binaries (FeAs, CaAs, 

PtAs). Synthesis was carried out in boron nitride crucibles at 6 GPa and 1000 °C, using a 

modified Walker-type multianvil apparatus.[9-10] Both synthesis routes allowed for the 

preparation of just the α-polymorph, including minor impurity phases FeAs2 or CaFe4As3. 

Temperature-dependent X-ray powder diffraction data were collected using a HUBER G670 

Guinier imaging plate diffractometer (Cu-Kα1 radiation, Ge-111 monochromator) equipped 

with a close-cycle He-cryostat. Structure refinement and determination of composition were 

performed based on powder diffraction data using the TOPAS package[11] with structural data 

obtained by the single crystal experiments. A representative powder pattern with Rietveld fit 

is exemplarily shown in Figure 1. Dc-resistivity was measured on a cold pressed pellet which 

has been annealed at 800 °C for 15 h. Magnetic susceptibility was measured using a 

QUANTUM DESIGN MPMS-XL5 SQUID magnetometer. Structure relaxation and 

calculation of magnetic moments in the ground state were performed by DFT methods using 

the WIEN2K package.[12-13] 
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Figure 1. X-ray powder patterns (blue lines) with Rietveld fits (red lines) of α-Ca3(Fe,Pt)8PtAs6. 

3.2.3 Results and Discussion 

The synthesis by ambient pressure as well as high-pressure yielded almost phase pure samples 

(> 90 wt%) of the α-polymorph of Ca3(Fe,Pt)8PtAs6. The β-polymorph could not be obtained 

as bulk sample, but just as side phase in form of single crystals. Variations of synthesis con-

ditions lead to the formation of increased amounts of Ca(Fe1-xPtx)2As2, CaFe4As3, 

(CaFe1-xPtxAs)10Pt3As8, (CaFe1-xPtxAs)10Pt4As8, and Ca6(Fe1-xPtx)11Pt3As10. Analysis of the 

composition of α-Ca3Fe8PtAs6 samples revealed varying Fe/Pt mixing on the range of 

0 ≤ x ≤ 0.1, which is in agreement with single crystal studies. 

Temperature dependent structure investigations on powder samples give no clear evidence for 

a structural phase transition in the temperature range between 9 K and 300 K (Figure 2). 

Structure parameters a and c decrease monotonically upon cooling, whereby a minor 

flattening of the slope is conspicuous below about 110 K. Only minor shrinkage of mono-

clinic b-axis was detected, which starts to slightly increase again below about 150 K. The unit 

cell volume linearly decreases by approximately 1% in the range investigated, but remains 

almost constant below 100 K.  
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Figure 2. Temperature dependent course of lattice parameters (left) and unit cell volume (right) of α-
Ca3(Fe,Pt)8PtAs6. 

Conductivity measurements in the range of 4 K to 300 K confirmed the metallic properties of 

Ca3(Fe,Pt)8PtAs6 expected from short Fe–Fe contacts in the structure and the metallic luster 

(Figure 3). Temperature dependent resistivity decreases upon cooling as characteristic for 

metals but with values around 1 mΩcm being much higher than in conventional conductors 

like copper or silver. However, this resistivity values are in the typical range of layered iron 

arsenides, which are referred to as poor conductors. Around 75 K a broad anomaly is conspi-

cuous in the temperature-dependent progress. Resistivity increases below 110 K, passing a 

maximum at around 75 K and declining again till 4 K.  

Field dependent magnetization measurements revealed the presence of a precedent ferromag-

netic order already above 300 K, which is in line with high magnetic background in suscepti-

bility and minor zfc and fc splitting between 300 K and 90 K. The magnitude of the magnetic 

signal is too strong to originate from magnetic impurities. Below 90 K susceptibility 

measurement reveal an abrupt splitting of field cooled and zero field cooled branches, being 

indicative for ferromagnetic ordering (Figure 3). The absence of a hysteresis in magnetization 

demonstrates the sensitivity of the magnetic order towards an external magnetic field. This 

finding substantiates that the conductivity anomaly might be associated with a magnetic phase 

transition. Also previously mentioned minor changes in the temperature dependent course of 

cell parameters is in good agreement therewith. With increasing field the anomaly can be 

gradually suppressed and completely vanishes above 1000 Oe.  
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Figure 3. Conductivity (left) and SQUID (right) measurements of α-Ca3(Fe,Pt)8PtAs6. 

Calculated density of states confirmed the metallic state as expected from structure investiga-

tions and conductivity measurements. Interestingly hardly any Pt states are present at EF, 

reducing the role of platinum in this compound to a mere structural one. Similar to the 

1038/1048 systems[14] this electronic situation leads to a Fermi surface almost exclusively 

formed by Fe-3d states. Further investigations revealed rather flat bands and high partial iron 

density of states at EF (Figure 4 and Chapter 7.7) being reminiscent of layered iron arsenides. 

However, the cross linked framework structure creates a very different electronic structure. 

The Fermi surface is formed by mainly coplanar sheets perpendicular to b*, as was expected 

from infinite FeAs layers along b. In this highly anisotropic Fermi surface several k-vectors 

connecting coplanar Fermi sheets were found, indicating a complex antiferromagnetic ground 

state rather than a ferromagnetic one. In line with these results ferromagnetic calculations 

suggest a favorable magnetic ground state, which is in agreement with previous measure-

ments. A summary of DFT data obtained from calculations is listed in the appendix (Chapter 

7.7). 

 
Figure 4. Non-magnetic (left) and spin polarized (right) density of states of α-Ca3Fe8PtAs6. 
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In the previous chapter the structural relation of Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 

with n = 1, 2, 3, M = Nb, Pd, Pt, and M′ = , Pd, Pt was discussed. Therefore it appears 

reasonable to compare α-Ca3Fe8PtAs6 with known and less complex relatives Fe2As and 

CaFe4As3 to gain a better understanding of the magnetic properties. For both compounds Fe2+ 

was suggested for tetrahedral coordination, but Fe+ for quadratic pyramidal environment.[4, 8] 

While antiferromagnetism below 50 °C was found for Fe2As,[8] a rather complex magnetism 

was reported for CaFe4As3.[4, 15] Being Pauli paramagnetic at room temperature, a magnetic 

phase transition to an incommensurable state similar to FeAs[16] occurs at 90 K, followed by 

reorientation of magnetic moments to a commensurable antiferromagnetic state below 25 K. 

Magnetic moments estimated for CaFe4As3 by DFT methods are in very good agreement with 

moments calculated for the magnetic ground state of α-Ca3Fe8PtAs6 within this thesis 

(Chapter 7.7). Furthermore magnetic measurements of Todorov et al. feature a steady 

divergence of fc and zfc branch below 300 K at 100 Oe along with abrupt splitting  

at 90 K, similar to our data. Interestingly magnetic measurements on CaFe5As3
[17]  

and α-Ca6(Fe,Pt)11Pt3As10 (not shown) revealed comparable results. Based on this  

comparison and previously discussed calculations a similar magnetism like in CaFe4As3  

is suggested for α-Ca3Fe8PtAs6 and at least for monoclinic compounds 

Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 with n ≥ 1. Moreover, comparing susceptibility 

data of CaFe5As3, α-Ca3Fe8PtAs6 and α-Ca6(Fe,Pt)11Pt3As10 the magnitude of splitting of the 

fc and zfc branch reduces with increasing n, mirroring the dilution of the magnetic lattice by 

increased channel size. A comparison of DFT data including band structure, density of states, 

and Fermi surfaces for CaFe4As3, CaFe5As3, and α-Ca3Fe8PtAs6 is attached to the appendix 

(Chapter 7.7).  

In the field of layered iron arsenides magnetic instabilities and the suppression of spin density 

wave transitions are considered as crucial ingredients for the emergence of superconductivity. 

Although spin density wave transitions are also present in CaFe4As3 substitution experiments 

to suppress the SDW and induce superconductivity failed so far.[18] From the structural point 

of view, CaFe4As3 featuring no infinite FeAs layers, is distinctly different to layered iron 

arsenides. In contrast the α-polymorphs of Can(n+1)/2Fe(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 comprise 

uninterrupted layers of FeAs, moreover allowing for dilution of the magnetic lattice and 

tuning of the interlayer distance. Further investigations in these materials may help to under-

stand the complicated magnetic interactions in layered iron arsenides. 
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3.2.4 Conclusion 

Polycrystalline samples of the α-Ca3Fe8PtAs6 were synthesized and low temperature proper-

ties studied. Temperature dependent powder X-ray investigations revealed no clear structural 

phase transition in the range of 9 K to 300 K but minor features around 110 K. Magnetic mea-

surements suggested a transition to a ferromagnetic state at 90 K, which was substantiated by 

an anomaly in conductivity measurements. DFT calculations revealed exclusively Fe-3d states 

at EF and no significant contribution of platinum, similar to the 1038/1048 systems. High den-

sity of states at EF together with coplanar sheets in the Fermi surface indicate a nesting 

instability. Therefore no simple ferromagnetic ground state is expected but a complicated 

antiferromagnetic one. In accordance with that a preferred magnetic ground state  

was found by spin-polarized calculations. Based on the structural relation of 

Can(n+1)/2Fe(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 compounds, α-Ca3Fe8PtAs6 was discussed in the context 

of reported results on CaFe4As3. A variety of similarities concerning experimental and theo-

retical data was identified suggesting a similar magnetism in both compounds. Although no 

superconductivity was found in α- Ca3Fe8PtAs6 the presence of continuous FeAs layers in the 

structure renders this compound an ideal system for further studies concerning super-

conductivity and magnetism in iron arsenide compounds. 
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4 Summary 

In this thesis the structures and properties of new iron arsenide compounds were investigated, 

featuring a complex structure chemistry being unprecedented in this material class so far. The 

main focus was on the newly discovered layered superconductors (CaFeAs)10PtzAs8. The 

structure chemistry of the different branches was elucidated and disorder in the 1048 system 

analyzed. A new iron arsenide parent compound was identified together with a variety of 

related superconductors. Low temperature structure and magnetic measurements as well as 

theoretical calculations were performed to investigate the resemblance of these peculiar com-

pounds to well studied iron arsenides and established theories. The substitution series 

(CaFe1-xMxAs)10Pt3As8 (M = Co, Ni, Cu, Pt), (CaFe1-xPtxAs)10Pt4As8, (Ca1-yREyFeAs)10Pt3As8 

(RE = Y, La – Nd, Sm – Lu), (Ca1-yLayFe1-xPtxAs)10Pt3As8, and (Ca1-yNayFeAs)10Pt4As8 were 

synthesized to study the influence of structural and electronic modifications upon properties. 

A schematic overview gives Figure 1. Apart from these layered compounds, a new branch of 

iron arsenides was discovered featuring three-dimensional frameworks of layer fragments. 

Structure investigation revealed a general systematization and the relation to known com-

pounds. Magnetic measurements and theoretical calculations were performed to study the 

complex magnetism presented in this material class. The following chapter gives a brief 

summary of the key results presented in this thesis. 

 

Superconductivity up to 35 K in the Iron Platinum Arsenides (CaFe1−xPtxAs)10Pt4−yAs8 

with Layered Structures 

New layered superconductors (CaFe1-xPtxAs)10PtzAs8 were discovered, presenting a so far 

unknown class within the iron arsenide family. While reported compounds form tetragonal 

structures of alternating iron arsenide and insulating layers, these exceptional representatives 

comprise the additional metal pnictide layer PtzAs8. These sheets consist of corner sharing 

As4/2 squares stabilized by As–As single bonds, providing Pt sites within the square centers. 

Two different branches of this structure motive were identified with either z = 3 (1038, P1̄) or 

z = 4 (1048, polytypic: P4/n, P1̄) platinum atoms in the PtzAs8 layer. The alternated stacking 

of CaFeAs and PtzAs8 sheets gives rise to 1038 and 1048 structures with surprisingly low 

space group symmetry, while local tetragonal symmetry is preserved within each layer. Mag-

netic and conductivity measurements revealed superconducting properties for all compounds, 

featuring critical temperatures up to 35 K (α-1048), 13 K (β-1048), and 14 K (1038). DFT 
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studies on (CaFeAs)10PtzAs8 revealed a pseudo band gap of PtzAs8 states close to EF, giving 

rise to a typical electronic situation found in other layered iron arsenides. Based on the 

absence of states of the PtzAs8 subsystem at the EF a scenario was suggested allowing for 

intrinsic electron doping in (Ca2+)10[(FeAs)10](10+2y)−(Pt3+yAs8)(10-2y)− in dependency of the  

Pt content. In the scope of this considerations, the origin of superconductivity in 

(CaFe1-xPtxAs)10PtzAs8 was suggested to be intrinsic electron doping in (CaFeAs)10Pt4As8 

(35 K, 1048), direct doping in (CaFe1-xPtxAs)10Pt3As8 (14 K, 1038), and overdoping in 

(CaFe1-xPtxAs)10Pt4As8 (13 K, 1048), being established concepts known from other iron 

arsenide systems. 

 

Stacking disorder in the system (CaFeAs)10PtzAs8 

The structure of the compounds (CaFeAs)10PtzAs8 was studied in detail, since strong diffuse 

contributions and complex twinning were found in earlier structure investigations. Therefore 

single crystal growth and sample preparation were optimized for further X-ray scattering 

studies. Stacking disorder was evidenced only in the 5 × 5 superstructure of both 1038 and 

1048 compounds. For z = 4 five basic stacking possibilities were indentified comparing 

neighboring Pt4As8 layers, while order in the CaFeAs sublattice is retained. The presence of 

partial stacking disorder rather than the existence of distinct polytypes in the 1048 system was 

substantiated by the study of synthesis conditions, along with empirical X-ray diffraction 

analysis as well as T- and p-dependent DFT calculations. In this context reported α- (P4/n), β- 

(P1̄), and γ-modification (P21/n) are limiting cases within the disorder model. Based on X-ray 

scattering measurements and disorder simulations an average ordered domain size of 5 – 10 

unit cells was estimated. Stacking disorder comparable to the 1048 system was also found in 

1038 compounds, but with different stacking possibilities. A corresponding disorder model 

was established for the 1038 system, predicting a potential tetragonal 1038 phase. Ubiquitous 

twinning in (CaFeAs)10PtzAs8 was identified to originate from broken fourfold and twofold 

rotation symmetry in the superstructure, but still present in the CaFe2As2 subsystem. Although 

systematic investigations of the influence of disorder on the properties proved to be difficult, 

measurements and calculations indicate no significant effect of disorder upon super-

conducting properties so far. These results were considered to be in line with the preserved 

order within the superconducting FeAs substructure.  
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Structural and magnetic phase transitions in triclinic (CaFeAs)10Pt3As8 

Starting with its discovery (CaFeAs)10PtzAs8 featuring unprecedented complex structures, 

disorder, low symmetry, and violation of accepted structure-property relations, were 

considered rather exotic representatives of the iron arsenide family. Samples of stoichiometric 

(CaFeAs)10Pt3As8 were investigated to study the relation to known compounds. Low temper-

ature X-ray investigations revealed splitting of the in-plane lattice parameter a and b below 

120 K with magnitude comparable to BaFe2As2. In contrast to known iron arsenides, no space 

group symmetry reduction is associated with this isomorphic (i1) transition, but local tetra-

gonal symmetry in the FeAs layers is broken. Furthermore a magnetic transition from Pauli 

paramagnetic to static antiferromagnetism was found below 130 K. Detailed μSR 

investigations revealed no abrupt formation, but a gradual development of static antiferro-

magnetism reaching 100 % at 5 K. μSR frequencies suggest a first order transition, whereas 

results from X-ray measurements indicate second order. Both transitions can be suppressed by 

electron doping in (Ca0.85La0.15FeAs)10Pt3As8 or direct doping in (CaFe0.97Pt0.03As)10Pt3As8, 

facilitating superconductivity. Results from this investigations therewith render 

(CaFeAs)10PtzAs8 a typical iron arsenide system with the parent compound (CaFeAs)10Pt3As8.  

 

57Fe-Mössbauer study on (CaFeAs)10Pt3As8 

Polycrystalline samples of stoichiometric (CaFeAs)10Pt3As8 were investigated by 57Fe-

Mössbauer spectroscopy to obtain a detailed insight into the magnetic phase transition of this 

parent compound. Room temperature spectra are well fitted assuming one chemical indistin-

guishable iron site in (CaFeAs)10Pt3As8, with values characteristic for layered iron arsenides. 

Strong signal broadening occurred below 111(4) K, being in good agreement with the 

reported antiferromagnetic transition at 120 K detected earlier in magnetic and μSR measure-

ments. Hyperfine field of Bhyp = 3.9(1) T was determined at 2.2 K with almost 100 % mag-

netic fraction. Detailed investigations in the paramagnetic regime revealed anisotropic signal 

broadening already between 245(10) K and TN indicating magnetic interactions above TN, 

possibly associated with nematic order as was also found in other iron arsenide parent systems 

recently.  
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Superconductivity by transition metal doping in (CaFe1-xMxAs)10Pt3As8 (M = Co, Ni, Cu) 

Despite its structural peculiarities (CaFeAs)10PtzAs8 was shown to be a typical iron arsenide 

system previously, with the parent compound (CaFeAs)10Pt3As8. Substitution of iron by other 

transition metals is reported to be an effective tool to induce superconductivity in iron 

arsenides. Samples of the series (CaFe1-xMxAs)10Pt3As8 with M = Co, Ni, Cu were synthesized 

to probe the portability of known concepts to this system and investigate the influence of 

different dopants. Therefore synthesis strategies were optimized to achieve substitution exclu-

sively on the Fe sites. Stoichiometric (CaMAs)10Pt3As8 were not accessible, but solubility 

limits were found to be xmax(M) = 0.25, 0.25, 0.12 for M = Co, Ni, Cu, respectively. Super-

conducting properties could be induced for Co, Ni with critical temperatures up to 15 K 

(M = Co, x = 0.075) and 13 K (M = Ni, x = 0.05) similar to the related system 

Ba(Fe1-xMx)2As2. In accordance with other iron arsenide systems no superconductivity 

emerged induced in (CaFe1-xCuxAs)10Pt3As8. Typical dome like Tc(x) phase diagrams were 

obtained for (CaFe1-xMxAs)10Pt3As8 superconductors showing a decrease of Tc upon over-

doping. This study demonstrated the resemblance of (CaFe1-xMxAs)10Pt3As8 to simpler iron 

arsenides and the portability of the established direct doping concept as general tool to induce 

superconductivity to more complex systems. 

 

Role of different negatively charged layers in (CaFeAs)10Pt4As8 and superconductivity at 

30 K in electron doped (Ca0.8La0.2FeAs)10Pt3As8 

1038 and 1048 systems demonstrated drastic different properties although the FeAs layers are 

almost identical in both compounds. Based on DFT calculations and formal charge consider-

ations an intrinsic charge doping scenario was suggested earlier as origin of superconductivity 

in (CaFeAs)10Pt4As8. For experimental validation and quantification considerable synthetic 

effort was taken to separately obtain high quality mixed series (CaFe1-xPtxAs)10Pt3As8, and 

(CaFe1-xPtxAs)10Pt4As8 as well as stoichiometric (CaFeAs)10Pt4As8. Highest critical tempera-

tures of 35 K were found only in (CaFeAs)10Pt4As8 while superconductivity decreases in 

(CaFe1-xPtxAs)10Pt4As8, but is induced in the first place in (CaFe1-xPtxAs)10Pt3As8. This results 

experimentally identified the origin of superconductivity being direct doping in 

(CaFe1-xPtxAs)10Pt3As8. In contrast superconductivity in the 1048 system is induced by 

intrinsic charge transfer from (Pt3+yAs8)(10-2y)− to [(FeAs)10](10+2y)− due to the additional 

platinum. The intrinsic electron doping of the FeAs layers in stoichiometric 1048 was 
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estimated by DFT methods to approximately 0.15 e–/FeAs, being comparable to other charge 

doped iron arsenide superconductors. Further evidence for electron doping induced 

superconductivity in (CaFeAs)10PtzAs8 was found experimentally by the emergence of super-

conductivity above 30 K in the La doped 1038 compound (Ca0.8La0.2FeAs)10Pt3As8. This 

demonstrated that high critical temperatures in the 1038/1048 system only emerge upon elec-

tron doping in the FeAs layer, whereby both the PtzAs8 and the Ca layer are suitable as charge 

donors upon chemical modification. 

 

(Ca1-yREyFeAs)10Pt3As8 with RE = Y, La – Nd, Sm – Lu 

Previously discovered electronic equivalency of stoichiometric 1048 and La doped 1038, 

facilitates a tuning of electron doping level in (CaFeAs)10PtzAs8 compounds, according to 

[(Ca2+)1-y(RE3+)y]10[(FeAs)10](10+y)−(Pt3As8)10−. Samples of (Ca1-yREyFeAs)10Pt3As8 with 

RE = Y, La – Nd, Sm – Lu were synthesized to investigate the response of superconductivity 

to different doping levels and different sized dopants. Structure analysis revealed a distinct 

preference of RE3+ ions to eightfold coordinated Ca positions. Superconductivity was induced 

in samples with Y, La – Nd, Sm, Gd – Lu, whereas no superconductivity was evident in Eu 

doped samples. Highest critical temperatures of 35 K were obtained for dopant concentrations 

of x = 0.13, with this values being almost identical as estimated for stoichiometric 1048 by 

DFT. Neither structural changes caused by the different radii of the rare earth elements nor 

strong local magnetic moments showed significant effects on properties. Hence a substituent 

independent phase diagram was established for electron doping in (Ca1-yREyFeAs)10Pt3As8. 

The absence of superconductivity in (Ca1-yEuyFeAs)10Pt3As8 was rationalized by the presence 

of Eu2+ in this compounds and verified by magnetic and structural measurements. 

 

Muon spin rotation spectroscopy studies on (Ca1-yLayFeAs)10Pt3As8 

The superconducting state in electron doped (Ca1-yLayFeAs)10Pt3As8 was investigated by μSR 

spectroscopy. Substitution dependent superconductivity was confirmed reaching a maximal 

critical temperature of 35 K for optimally doped (Ca0.87La0.13FeAs)10Pt3As8. Further investi-

gations revealed the development of a magnetic fraction reaching 20 % at 2.2 K in all samples 

investigated. The origin of this magnetic phase is unclear at the present stage, but precludes a 

detailed analysis of the superconducting state. The amount of magnetic fraction together  
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with X-ray powder and susceptibility data as well as kinks in the temperature dependent 

magnetic fraction close to Tc indicate the magnetism being an intrinsic property of 

(Ca1-yLayFeAs)10Pt3As8 and no impurity effect. Inhomogeneity of the La substitution was 

suggested as probable origin of the residual magnetism in this compounds.  

 

Phase diagram of (CaFe1-xPtxAs)10PtzAs8 and the relation of (Ca1-yLayFeAs)10Pt3As8 and 

(CaFeAs)10Pt4As8 

The experimentally found electronic equivalence of (Ca1-yLayFeAs)10Pt3As8 and 

(CaFeAs)10Pt4As8 despite their structural differences was investigated by DFT methods. For 

both compounds similar density of states and Fermi surfaces with a Pt-5d pseudo band gap at 

EF were found, substantiating the picture of electronic analogy. In this peculiar electronic 

situation iron is formally more electronegative than platinum, allowing for direct charge 

manipulations in (FeAs)(1-y)– upon chemical modifications in the PtzAs8 or Ca layer. Poly-

crystalline samples of codoped (Ca1-yLayFe1-xPtxAs)10PtzAs8 were synthesized to study the 

different responses of direct substitution on properties compared to (CaFe1-xPtxAs)10Pt4As8. 

Results revealed an almost identical influence of direct Pt substitution in both compounds, 

demonstrating that often discussed structural subtleties are of minor importance in terms of 

superconductivity. Finally the close electronic resemblance of the 1038 and 1048 systems 

allowed for a consolidation of all experimental data to a general doping phase diagram for the 

(CaFe1-xPtxAs)10PtzAs8 system. This compilation highlights the induction of superconductivity 

by direct or charge doping in the 1038/1048 family, whereby highest Tc only emerge by mere 

charge doping, a general concept found valid for all iron arsenide superconductors so far. 

 

Suppression of superconductivity by compensation of charge doping in 

(Ca1-yNayFeAs)10Pt4As8 

Samples of (Ca1-yNayFeAs)10Pt4As8 with 0 ≤ y ≤ 0.5 were prepared to study the effect of 

charge manipulations on superconducting properties in the already intrinsically charge doped 

1048 system. Structure analyses revealed a distinct preference of Na+ ions for lower coordi-

nated Ca sites, while magnitude of stacking disorder is enhanced in 1048 by Na substitution. 

The electronic structure of (Ca0.8Na0.2FeAs)10Pt4As8 was found to be almost identical to 

(CaFeAs)10Pt3As8, confirming a direct control of the charge doping in (FeAs)(1-y)– by Na 
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substitution. Critical temperatures and superconducting volume fractions decrease with 

increasing Na content between 0 ≤ y ≤ 0.23. The intrinsic charge transfer discussed as origin 

of superconductivity in the 1048 system is gradually compensated by Na hole doping. A full 

recovery to a non-superconducting 1038 like state was not achieved, due to inhomogeneity 

within the samples. Na concentrations above y = 0.23 result in a renewed increase of super-

conducting volume fractions. Although the origin of this phenomenon has not been clarified 

yet it indicates a hole doped regime in the (CaFeAs)10PtzAs8 system. 

 

 
Figure 1. Schematic overview of 1038/1048 family compounds discovered and investigated within this 
thesis. 

 

Framework structures of interconnected layers in calcium iron arsenides 

The study of calcium iron arsenides lead to the discovery of eight new compounds with the 

general formula Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 with n = 1, 2, 3, M = Nb, Pd, Pt, 

and M′ = , Pd, Pt. The structures crystallize in so far unknown structure types and reveal 

three-dimensional frameworks of cross-linked iron arsenide layer fragments. Iron arsenide 
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frames, braces, and joints were identified as common structural building blocks allowing for 

trigonal channels along the short b-axis. These channels are filled with calcium and in depen-

dency of n additionally with vacancy positions, palladium or platinum. Different possible 

sizes and arrangements of the building units give rise to the various structures and poly-

morphs identified (Pnma, P21/m). Limiting cases of this homologue series are known Fe2As 

(n = 0) and CaPdAs or CaPtAs (n = ∞), respectively, while related CaFe4As3 can be  

described as defect γ-polymorph (n = 1). Another characterization approach highlights  

the relation to a wide material class with a metal-to-pnictide ratio of 2 : 1. In 

Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 iron was found in typical tetrahedral environment 

within the layers, but is located in exceptional quadratic pyramidal coordination at the layer 

junctions. First principle DFT calculations indicated a favorable but complicated antiferro-

magnetic ground state probably similar to reported CaFe4As3. The identification of these new 

structures elucidates the structural flexibility of iron arsenide layers toward rearrangements 

and appears auspicious in terms of magnetic and superconducting properties. 

 

Electronic and magnetic properties of α-Ca3(Fe,Pt)8PtAs6 and related compounds 

To get a first insight into the properties of Can(n+1)/2(Fe1–xPtx)(2+3n)Ptn(n–1)/2As(n+1)(n+2)/2 the syn-

thesis strategy was optimized and polycrystalline samples of α-Ca3(Fe,Pt)8PtAs6 were 

successfully prepared without impurities of other homologs or polymorphs. Temperature 

dependent X-ray, magnetic, and conductivity measurements identified a magnetic phase 

transition in the range of 70 – 80 K, associated with a minor structural change at about 100 K. 

DFT studies revealed a Fermi surface exclusively formed by Fe-3d states with no significant 

Pt-5d contribution. A complicated anisotropic Fermi surface was found, comprising coplanar 

sheets perpendicular to b*. The presence of several nesting vectors indicated a complicated 

antiferromagnetism in α-Ca3Fe8PtAs6. A favorable magnetic ground state was also identified 

by spin-polarized calculation, which is in line with experimental results. Considering the close 

structural relation of the Can(n+1)/2(Fe1–xMx)(2+3n)M'n(n–1)/2As(n+1)(n+2)/2 compounds, a comparison 

of reported CaFe4As3 with α-Ca3(Fe,Pt)8PtAs6 revealed several analogies concerning experi-

mental as well as theoretical results. Further similarities were also reported from preliminary 

magnetic measurements of the other homologs CaFe5As3 and Ca6(Fe,Pt)11Pt3As10.  

Therefore a similar magnetism was suggested for α-Ca3(Fe,Pt)8PtAs6 and other 

Can(n+1)/2(Fe1-xPtx)(2+3n)Ptn(n–1)/2As(n+1)(n+2)/2 compounds.  
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5 Conclusion 

The discovery of (CaFeAs)10PtzAs8 (z = 3, 4) and Can(n+1)/2(Fe1–xMx)(2+3n)M'n(n–1)/2As(n+1)(n+2)/2 

(n = 1, 2, 3, M = Nb, Pd, Pt, and M′ = , Pd, Pt) within this thesis revealed a so far un-

expected diversity and complexity in the class of iron arsenide compounds. Several 

conclusions can be drawn from the results on (CaFeAs)10PtzAs8 (z = 3, 4). (1) The SDW or-

dering and structural phase transition of iron arsenide parent compounds are intrinsic proper-

ties of the (FeAs)– layer. As long as the Fermi surface is formed by exclusively Fe-3d states 

with formal Fe2+ this property is independent from separating layers. At low temperatures a 

spin density wave transition to a stripe type antiferromagnetic state occurs accompanied with 

a structural distortion of the square FeAs lattice. The proximity of these systems to a magnetic 

instability is crucial for the emergence of superconductivity, whereby high space group sym-

metry is no prerequisite, but the local tetragonal symmetry of the FeAs subsystem. (2) 

Manipulation of the magnetic FeAs system by direct substitution or indirect charge 

modifications in (FeAs)(1+ν)– are reliable tools to suppress the spin density wave ordering and 

induce superconductivity. Highest Tc is achieved by mere charge doping, whereby the 

"origin" of the doped electrons is arbitrary as long as the FeAs layer is not chemically 

modified. In contrast superconductivity upon direct substitutions hardly exceeds 20 K. A 

combination of both charge doping and direct substitution results in a decrease of critical 

temperatures, which is referred to as "overdoping". (3) Structural subtleties like FeAs4/4 tetra-

hedra geometry, interlayer distance, or coupling have no significant influence on critical 

temperatures at least in the electron doped regime. (4) Both, the identification of a magnetic 

phase above TN in the 1038 parent compound as well as in the superconducting regime of 

electron doped 1038 compounds, indicate a more complex magnetism in iron arsenides as 

expected so far. (5) Broken three-dimensional translation symmetry does not affect super-

conducting properties as long as order is retained in the FeAs subsystem. Last but not least the 

presence of PtzAs8 sheets in (CaFeAs)10PtzAs8 (z = 3, 4) emphasized, that interlayers in iron 

arsenides are not restricted to insulating blocks, but can also be formed by metallic layered 

systems. In this context the discovery of Can(n+1)/2(Fe1-xMx)(2+3n)M'n(n-1)/2As(n+1)(n+2)/2 (n = 1, 2, 

3; M = Nb, Pd, Pt, and M′ = , Pd, Pt) revealed an unprecedented structural flexibility in this 

material class. The results of this thesis demonstrated not only the still increasing variety in 

the class of iron arsenides, but also the existence of a complex structure chemistry. Following 

the example of highest Tc copper oxides it is not unlikely that the final breakthrough in the 

field of iron arsenides superconductors is to be found in complex stacking structures. 
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6 Software Development 

In the course of this dissertation a variety of time consuming issues frequently reappeared, 

although being routine work. This issues included creation of structure models and supercells 

for structure elucidation and DFT calculations, calculation of reciprocal and vectorized unit 

cell parameters, conversion and correction of structure data, conversion, refinement and 

temperature dependent evaluation of multiple powder data sets, conversion of EDX data as 

well as calculation of educt masses for sample synthesis. Therefore a variety of small tools 

was developed to automatize, accelerate, and facilitate everyday problems like these. Java 

with Java Runtime Environment 1.7.0. was used for development of the programs allowing 

for a usage without installation, since Java should be installed by default. All subprograms are 

compiled to the executable AKJohrendtToolsVxy.jar in the current version 2.5. Necessary 

files are atoms.dat, sg.dat, spacegroups.dat, and elemente.txt, which must be located in the 

same directory as AKJohrendtToolsVxy.jar. In the following chapter the main programs will 

be described briefly. 

This software package was developed for internal, noncommercial application at the LMU 

Munich and must not be distributed without my agreement. Several modules of this software 

package use the Jama Matrix package and Apache libraries under the Apache license.  

 

Figure 1. User interface of AKJohrendtTools. 
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6.1 Structure Tools 

6.1.1 DrawStructure 

 

Figure 2. User interface of DrawStructure. 

DrawStructure was developed to facilitate graphical modifications of structure data in drag 

and drop like fashion. The two-dimensional projections XY, XZ and YZ along with a light 

weight 3D viewer were implemented for graphical structure representation. To run 

DrawStructure Java3D is required for 3D structure representation. Orthogonalization of 

metric and atomic coordinates was performed with alignment of a-axis to x-axis in orthogonal 

space. 

Structures can be started from scratch or imported from .cif. Structure data can be changed 

manually in the metric panel or atom parameter list. Moreover the 2D views allow for a drag 

and drop movement of atoms by mouse or arrow keys. Structure update will be performed 

automatically (If not: A click in one of the 2D views will help). All modifications can be done 

in symmetry restricted (space group) or unrestricted mode (P1), changeable at any time via 

the symmetry button. Moreover DrawStructure allows for simultaneous X-ray powder 

diffraction simulation for the wavelengths Cr, Fe, Cu, Co, and Mo. Reflection positions 

derived from metric are marked in green ticks, neglecting extinction conditions. Reflection 

intensity calculation was implemented without symmetry restriction (no inversion), addition-

ally considering global isotropic atomic displacement (beq), site occupation, Lorentz and 

polarization factors. To accelerate powder calculation anomalous scattering as well as more 
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sophisticated powder analysis tools were not implemented. However, for large structures X-

ray powder simulation may take several seconds. In such cases simulation can be switched 

on/off if not needed. Nevertheless, the powder simulation tools was implemented for educa-

tional purpose and to get an impression of how structural changes affect X-ray diffraction. 

This tool is not meant for "rietveld-by-hand ". 

Besides additional tools for coloring, grouping, and adjusting the structure representation, 

DrawStructure allows for exporting structure data directly to Diamond (if path is specified 

correctly in directory.txt) or .cif file. 

6.1.2 SuperCell 

 

Figure 3. User interface of SuperCell. 

SuperCell facilitates the creation of supercells based on structure data from .cif and a super-

structure matrix. The imported structure will be converted to P1 and expanded to a supercell 

defined by the matrix. Set calculates superstructure metric for control purpose, whereas 

transform performs the actual conversion. The result is saved in .cif format in space group P1 

and can be additionally exported to Diamond or DrawStructure for further modifications. 

Reintroduction of symmetry to the obtained supercell can be achieved for example with 

Platon ADDSYM. 

6.1.3 UnitCell 

UnitCell allows for the conversion of unit cell metric, reciprocal unit cell metric, vectorized 

unit cell, and vectorized reciprocal unit cell to each other. 
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6.1.4 ToCif 

ToCif converts VASP POSCAR and Wien2k .struct files to .cif. 

6.1.5 CifCleaner 

CifCleaner corrects atomic fractional coordinates to the range 0 ≤ x,y,z < 1 and allows for 

formatting atomic parameters in columns for easier manual editing. 

 

6.2 Powder Tools 

6.2.1 HConverter 

HConverter represents a graphical user interface for M. Tegels HConvert, moreover allowing 

for the automatic conversion of multiple HUBER .gdf files to .xy ASCII format. 

6.2.2 AutoRefiner 

AutoRefiner allows for the automatic refinement of multiple powder data sets with Topas4 

without prompting a CPU expensive user interface. Therefore a folder containing .xy powder 

data and a template .inp have to be defined. Refinement can be carried out in two modes: 

Consecutive mode: Each refinement will start from outcome of previous refinement. Suited 

for set of powder data measured at different temperatures. Results will 

be saved to corresponding .inp. Report will be saved to report.txt. 

Independent mode: Each refinement will start from template. Suited for independent 

powder data. Results will be saved to corresponding .inp. 

6.2.3 INP-Extractor 

INPExtractor allows for the extraction of structure data from multiple Topas4 .inp and .out 

files formatted for ORIGIN/ MS Excel import. Unit cell parameters, volume, density, and 

linear absorption coefficient of the first compound are exported by default. Optionally Rwp, 

temperature, user defined parameters, bonding lengths and angles (if present in .inp file) can 

be defined for export as well. Accessible data for INPExtractor is located between STR com-
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mand of first and second compound. Requested data beyond this range will be ignored or has 

to be linked by prm command (e.g. prm zeroshift = zeroshift_of_2nd_phase;) for extraction. 

6.2.4 PowderWavelengthConverter 

PowderWavelengthConverter converts powder diffraction intensity data (.xy) data from one 

wavelength to another, based on the Bragg equation. Equidistant step size in output file is 

obtained by linear interpolation. 

 

6.3 Miscellaneous 

6.3.1 EinwaageRechner 

 

Figure 4. User interface of EinwaageRechner. 

EinwaageRechner was developed to calculated element masses from sum formula and total 

weight for sample preparation. The formula has to be defined with spaces between elements. 

Fractional stoichiometries will be accepted as well. Molar atomic weights are specified in 

elemente.txt. EinwaageRechner calculates molar weight and amount of the target compound 

as well as weight and mass percent of each element.  
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6.3.2 EDXConverter 

 

Figure 5. User interface of EDXConverter. 

EDXConverter converts EDX data from BRUKER and JEOL machines saved in MS Word 

.doc/.docx format in tabular form to MS Excel .xlsx file. The type of machine used for mea-

surement will be detected automatically. 

6.3.3 TwinSim 

 

Figure 6. User interface of TwinSim. 

TwinSim was developed to simulate single crystal diffraction patterns for empirical elucida-

tion of complex twinning problems. Therefore simulations are performed based on geometric 

diffraction theory without structure factor calculation, whereby twin domains can be included 

as well. Additional reflection conditions for integral, zonal, and serial extinction can be 



Software Development 

 

134 

defined optionally. Diffraction patterns can be visualized in any desired orientation defined by 

two vectors and a point of origin. To run TwinSim no additional library is required since 

visualization is based on 2D projections orientated by rotation matrices. 
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7 Appendix 

7.1 Crystallographic Data of (CaFeAs)10Pt3As8 

Table 1. Crystallographic data of (CaFe0.930Pt0.070As)10Pt2.986As8. 

Crystal system, space group Triclinic, P1̄, No. 2 
a, b, c (Å) 8.7616(5), 8.7726(5), 10.681(1) 
α, β, γ (deg.) 75.666(6), 85.412(5), 90.036(5) 
Cell volume (Å3) 792.67(9) 
Calculated density (g/cm3), Z 6.258, 1 
Radiation type, λ (Å) Mo-Kα, 0.71069 
2θ range (deg) 9.12 – 72.64 
Reflections (total, independent, I > 3σ(I)) 11595, 4927, 2975 
Rint, Rσ  0.039, 0.1037 
GooF (all), GooF (I > 3σ(I)) 1.01, 0.96 
Refined parameters, refinement 202, F2 

R1, wR2 (I > 3σ(I)) 0.0383, 0.0631 
R1, wR2 (all) 0.0797, 0.0979 
Largest residual peak, hole e−/Å3 6.11, -2.79 
 

Site Wyckoff SOF x y Z Ueq 

Pt1 1b 1.000(3) 0.0 0.0 0.5 0.0075(2) 
Pt2 1h 1.002(3) 0.5 0.5 0.5 0.0077(2) 
Pt3 2i 0.495(2) 0.5056(1) 0.0168(1) 0.4447(1) 0.0150(3) 
As1 2i  0.1343(1) 0.9070(1) 0.1378(1) 0.0098(3) 
As2 2i  0.3331(1) 0.5091(1) 0.1378(1) 0.0099(3) 
As3 2i  0.7637(1) 0.4002(1) 0.5005(1) 0.0089(3) 
As4 2i  0.9370(1) 0.3106(1) 0.1384(1) 0.0097(3) 
As5 2i  0.5373(1) 0.1110(1) 0.1334(1) 0.0102(3) 
As6 2i  0.2603(1) 0.2929(1) 0.8625(1) 0.0103(3) 
As7 2i  0.0997(1) 0.2640(1) 0.5000(1) 0.0088(3) 
As8 2i  0.3815(1) 0.2445(1) 0.5004(1) 0.0151(3) 
As9 2i  0.7446(1) 0.1184(1) 0.5005(1) 0.0144(3) 
Fe1/Pt11 2i 0.896(3) 0.4495(1) 0.3522(1) 0.9975(1) 0.0088(4) 
Fe2/Pt22 2i 0.902(3) 0.3478(1) 0.0508(1) 0.0002(1) 0.0073(4) 
Fe3/Pt33 2i 0.941(3) 0.2476(1) 0.7489(1) 0.0009(1) 0.0091(4) 
Fe4/Pt44 2i 0.942(3) 0.0495(1) 0.1501(1) 0.0020(1) 0.0091(4) 
Fe5/Pt55 2i 0.976(3) 0.1487(1) 0.4503(1) 0.0002(1) 0.0077(4) 
Ca1 2i  0.0202(2) 0.5614(2) 0.2964(2) 0.0118(6) 
Ca2 2i  0.5753(2) 0.2257(2) 0.7347(2) 0.0101(6) 
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Ca3 2i  0.2271(2) 0.1687(2) 0.2665(2) 0.0111(6) 
Ca4 2i  0.6218(2) 0.3664(2) 0.2663(2) 0.0107(6) 
Ca5 2i  0.1801 (2) 0.0287(2) 0.7331(2) 0.0110(6) 
 

7.2 Crystallographic Data of (CaFeAs)10Pt4As8 Polymorphs 

7.2.1 α-1048 

Table 2. Crystallographic data of (CaFeAs)10Pt3.64As8. 

Crystal system, space group Tetragonal, P4/n, No. 85 
a, c (Å) 8.7145(5), 10.462(1) 
Cell volume (Å3) 794.51 
Calculated density (g/cm3), Z 6.256, 1 
Radiation type, λ (Å) Mo-Kα, 0.71069 
2θ range (deg) 6.08 – 60.66 
Reflections (total, independent, I > 3σ(I)) 9264, 1185, 630 
Rint, Rσ  0.2389, 0.0717 
GooF (all), GooF (I > 3σ(I)) 3.31, 4.58 
Refined parameters, refinement 53, F 
R1, wR2 (I > 3σ(I)) 0.0999, 0.1216 
R1, wR2 (all) 0.1392, 0.1228 
 

Site Wyckoff SOF x y z Ueq 

Pt1 2b 1.03(3) 0 0 0.5 0.0140(10) 
Pt2 2c 0.79(2) 0.5 0 0.5658(5) 0.0108(12) 
As1 8g  0.2002(6) 0.9003(5) 0.1370(4) 0.0102(11) 
As2 8g  0.2633(6) 0.1078(4) 0.4861(6) 0.0128(13) 
As3 2c  0 0.5 0.1391(11) 0.0110(20) 
Fe1 8g  0.0999(5) 0.6991(6) 0.0006(8) 0.0042(13) 
Fe2 2a  0 0 0 0.0030(20) 
Ca1 8g  0.0961(10) 0.2046(11) 0.2615(8) 0.0120(20) 
Ca2 2c  0.5 0 0.2750(20) 0.0160(50) 

7.2.2 β-1048 

Table 3. Crystallographic data of (CaFe0.870Pt0.130As)10Pt4As8. 

Crystal system, space group Triclinic, P1̄, No. 2 
a, b, c (Å) 8.7382(4), 8.7387(3), 11.225(1) 
α, β, γ (deg.) 81.049(3), 71.915(3), 89.980(3) 
Cell volume (Å3) 803.79(6) 
Calculated density (g/cm3), Z 6.7533, 1 
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Radiation type, λ (Å) Mo-Kα, 0.71069 
2θ range (deg) 6.58 – 68.92 
Reflections (total, independent, I > 3σ(I)) 12485, 6702, 4454 
Rint, Rσ  0.0603, 0.0598 
GooF (all), GooF (I > 3σ(I)) 2.97, 3.57 
Refined parameters, refinement 192, F 
R1, wR2 (I > 3σ(I)) 0.0694, 0.1034 
R1, wR2 (all) 0.1093, 0.1060 
Largest residual peak, hole e−/Å3 18.27, -17.00 
 
       

Site Wyckoff SOF x y z Ueq 

Pt1 2i  0.2499(1) 0.2500(1) 0.5004(1) 0.0065(2) 
Pt2 2i  0.7243(1) 0.2371(1) 0.5645(1) 0.0093(2) 
As1 2i  0.9971(2) 0.3631(2) 0.4824(2) 0.0062(6) 
As2 2i  0.5168(2) 0.1439(2) 0.4822(2) 0.0061(6) 
As3 2i  0.3527(3) 0.5028(2) 0.5196(2) 0.0094(7) 
As4 2i  0.1317(3) 0.9895(2) 0.5195(2) 0.0096(7) 
As5 2i  0.2052(3) 0.9763(2) 0.8618(2) 0.0096(7) 
As6 2i  0.4030(3) 0.5776(2) 0.8618(2) 0.0100(7) 
As7 2i  0.9946(3) 0.6208(2) 0.1388(2) 0.0093(7) 
As8 2i  0.8080(3) 0.7782(2) 0.8616(2) 0.0098(7) 
As9 2i  0.3947(3) 0.8226(2) 0.1363(2) 0.0098(7) 
Fe1/Pt11 2i 0.833(5) 0.5510(2) 0.6498(2) 0.9985(2) 0.0086(7) 
Fe2/Pt22 2i 0.879(5) 0.6509(3) 0.9498(2) 0.0002(2) 0.0066(7) 
Fe3/Pt33 2i 0.879(5) 0.9502(3) 0.8497(3) 0.0011(3) 0.0086(7) 
Fe4/Pt44 2i 0.879(5) 0.2490(3) 0.7495(3) 0.9998(3) 0.0105(7) 
Fe5/Pt55 2i 0.879(5) 0.1487(3) 0.4494(3) 0.0001(3) 0.0131(8) 
Ca1 2i  0.3576(5) 0.2971(5) 0.7416(4) 0.0104(13) 
Ca2 2i  0.8426(5) 0.2960(5) 0.2708(4) 0.0124(14) 
Ca3 2i  0.2529(5) 0.5008(5) 0.2574(4) 0.0103(13) 
Ca4 2i  0.4428(5) 0.0957(5) 0.2570(4) 0.0102(13) 
Ca5 2i  0.9485(5) 0.1072(5) 0.7410(4) 0.0105(13) 

7.2.3 γ-1048 

Table 4. Crystallographic data of (CaFe0.975Pt0.025As)10Pt3.120As8. 

Crystal system, space group Monoclinic, P21/n, No. 14 
a, b, c (Å) 8.7032(14), 8.7032(14), 21.010(6) 
β (deg.) 90 
Cell volume (Å3) 1591.4(6) 
Calculated density (g/cm3), Z 6.143, 1 
Radiation type, λ (Å) Mo-Kα, 0.71069 
2Θ range (deg) 5.06 – 60.50 
Reflections (total, independent, I > 3σ(I)) 20477, 4482, 1980 
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Rint, Rσ  0.1049, 0.0958 
GooF (all), GooF (I > 3σ(I)) 3.06, 4.55 
Refined parameters, refinement 90, F2 

R1, wR2 (I > 3σ(I)) 0.0941, 0.2193 
R1, wR2 (all) 0.1662, 0.2246 
Largest residual peak, hole e−/Å3 20.26, -8.84 
 

Site Wyckoff SOF x y z Ueq 

Pt1 2i 0.825(5) 0.9503(5) 0.1515(4)  0.25036(18) 0.0030 
Pt2 2i 0.723(5) 0.4499(4) 0.1502(3)  0.21752(9) 0.0026 
As1 2i  0.2111(9)  0.2602(8)  0.2587(4) 0.0207(18) 
As2 2i  0.8442(8)  0.4195(7)  0.2437(3) 0.0067(14) 
As3 2i  0.7521(12)  0.2478(14)  0.9313(7) 0.0060(30) 
As4 2i  0.6538(13)  0.5517(15)  0.0696(6) 0.0100(20) 
As5 2i  0.0511(16)  0.3494(16)  0.0690(2)  0.0055(7) 
As6 2i  0.1481(12)  0.0502(14)  0.9322(5) 0.0022(19) 
As7 2i  0.0591(10)  0.8898(5)  0.2404(4) 0.0142(16) 
As8 2i  0.4508(17)  0.1500(17)  0.0683(2)  0.0068(7) 
As9 2i  0.6889(7)  0.0423(6)  0.2587(4) 0.0058(13) 
Fe1/Pt11 2i 0.98(4) 0.2482(17)  0.2540(14)  0.0000(6) 0.0050(60) 
Fe2/Pt22 2i 0.96(3) 0.9470(20)  0.1517(18)  0.0001(6) 0.0090(40) 
Fe3/Pt33 2i 0.95(3) 0.6481(17)  0.0494(15)  0.9984(9) 0.0100(40) 
Fe4/Pt44 2i 0.98(3) 0.5490(20)  0.3496(17)  1.0000(5) 0.0030(40) 
Fe5/Pt55 2i 0.97(3) 0.8491(17)  0.4487(15)  0.0015(9) 0.0080(40) 
Ca1 2i  0.0490(30)  0.3560(30)  0.3705(4) 0.0077(17) 
Ca2 2i  0.1630(20)  0.0580(20)  0.1310(11) 0.0150(40) 
Ca3 2i  0.7510(20)  0.2510(20)  0.1279(10) 0.0034(18) 
Ca4 2i  0.8620(20)  0.9520(20)  0.3684(9) 0.0060(30) 
Ca5 2i  0.9550(30)  0.6510(30)  0.1338(4) 0.0105(16) 
 

The crystal featured typical intense maxima of tetragonal CaFe2As2 substructure, along with 

weaker 5 ×  5 superstructure reflections. Strong diffuse intensities along l for 2h + k ≠ 5n 

(n ∈ ℕ) were evident. With respect to α-/ β-1048 additional intensity maxima occurred for l/2 

implying a superstructure. Best results were obtained applying a 5 ×  5 supercell in ab 

together with a doubled c-axis and refinement in the monoclinic space group P21/n including 

merohedral twinning (90° around c*). 
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7.3 Crystallographic Data of ordered α-1048 Derivatives 

7.3.1 α-(Ca0.875Na0.125FeAs)10Pt3.612As8 

Table 5. Crystallographic data of (Ca0.875Na0.125FeAs)10Pt3.612As8. 

Crystal system, space group Tetragonal, P4/n, No. 85 
a, c (Å) 8.6955(2), 10.522(1) 
Cell volume (Å3) 795.59(5) 
Calculated density (g/cm3), Z 6.2409, 1 
Radiation type, λ (Å) Mo-Kα, 0.71069 
2θ range (deg) 6.04 – 74.36 
Reflections (total, independent, I > 3σ(I)) 33208, 1416, 1269 
Rint, Rσ  0.0463, 0.0242 
GooF (all), GooF (I > 3σ(I)) 1.88, 1.56 
Refined parameters, refinement 55, F2 

R1, wR2 (I > 3σ(I)) 0.0208, 0.0481 
R1, wR2 (all) 0.0252, 0.0613 
Largest residual peak, hole e−/Å3 2.00, -1.63 
 

Site Wyckoff SOF x y z Ueq 

Pt1 2a 0.980(2) 0 0 0 0.0035(1)  
Pt2 2c 0.825(3) 0 0.5 0.93678(4) 0.0076(1)  
As1 2c  0.5 0 0.36171(10) 0.0104(2) 
As2 8g  0.09954(5) 0.20159(5) 0.36465(4) 0.0069(1)  
As3 8g  0.89098(5) 0.25942(6) 0.01584(5) 0.0081(1)  
Fe1 8g  0 0 0.5 0.0055(2)  
Fe2 2b  0.30073(7)  0.09978(7) 0.49859(6) 0.0063(2)  
Ca1 2c  0 0.5 0.22749(18) 0.0104(4)  
Ca2/Na22 8g 0.843(15) 0.79716(11) 0.09450(11) 0.23954(10) 0.0095(3)  
 

The crystal featured a diffraction pattern which was indexed with 5 x  5 supercell of the 

α-1048 structure. Hardly any diffuse contribution were evident, indicating ordered stacking. 

Refinement succeeded with excellent R values in the reported space group P4/n, with Ca/Na 

mixing refined on one Ca site. Partial merohedral twinning was included into the model to 

ascribe for additional reflections (180° around (21̄0) in direct space). 
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7.3.2 α-(CaFe0.869Ru0.131As)10Pt2.92Ru1.08As8 

Table 6. Crystallographic data of (CaFe0.869Ru0.131As)10Pt2.92Ru1.08As8. 

Crystal system, space group Tetragonal, P4/n, No. 85 
a, c (Å) 8.7237(8), 10.393(2) 
Cell volume (Å3) 790.97(18) 
Calculated density (g/cm3), Z 6.3938, 1 
Radiation type, λ (Å) Mo-Kα, 0.71069 
2θ range (deg) 6.10 – 63.42 
Reflections (total, independent, I > 3σ(I)) 10862, 920, 671 
Rint, Rσ  0.0989, 0.0643 
GooF (all), GooF (I > 3σ(I)) 1.38, 1.50 
Refined parameters, refinement 55, F2 

R1, wR2 (I > 3σ(I)) 0.0412, 0.0700 
R1, wR2 (all) 0.0689, 0.0761 
Largest residual peak, hole e−/Å3 4.76, -3.98 
 

Site Wyckoff SOF x y z Ueq 

Pt1/Ru1 2b 0.982(12) 0 0 0.5 0.0085(2)  
Pt2/Ru2 2c 0.480(13) 0.5 0 0.5734(1) 0.0141(4)  
As1 2c  0 0.5 0.1469(3) 0.0174(7)  
As2 8g  0.4006(1) 0.2976(1) 0.1362(1) 0.0115(4)  
As3 8g  0.2611(2) 0.1080(1) 0.4884(1) 0.0123(4)  
Fe1/Ru11 2a 0.890(19) 0.5 0.5 0 0.0091(8)  
Fe2/Ru22 8g 0.863(12) 0.1975(2) 0.4008(2) 0.0037(2) 0.0103(5)  
Ca1 2c  0.5 0 0.2738(5) 0.0140(12) 
Ca2 8g  0.0970(2) 0.2004(3) 0.2600(2) 0.0134(7)  
 

The crystal featured a diffraction pattern which was indexed with 5 ×  5 supercell of the α-

1048 structure. Hardly any diffuse contribution were evident, indicating ordered stacking. 

Refinement succeeded in the reported space group P4/n, with Fe/Ru mixing and Pt/Ru mix-

ing. Partial merohedral twinning was included into the model to ascribe for additional reflec-

tions (180° around (21̄

7.4 Unit Cell Parameters from Disorder Model 

0) in direct space). 

Basis of the disorder model established in Chapter 2.2 were invariant layer setups and inter-

layer distanced, whereby the one dimensional disorder originates from different layer 

arrangements. Invariant parameters a, b and (FeAs)–(FeAs) interlayer distance were 

calculated from single crystal data. To check the models for consistency the unit cell for 
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triclinic polymorphs of 1038 and β-1048 were then reconstructed based on the invariant 

parameters and the layer shifts found for disorder. Table 7 shows calculated unit cell para-

meters being in excellent agreement with single crystal data. 

Table 7. Comparison of unit cell metrics of 1038 and β-1048 from single crystal data with calculation 
based on disorder model layer shifts. 

Structure 1038 
Single crystal 

1038 
Disorder model 

β-1048 
Single crystal 

β-1048 
Disorder model 

a (Å) 8.7616 8.7616 8.7382 8.7382 
b (Å) 8.7726 8.7726 8.7387 8.7387 
c (Å) 10.681 10.679 11.225 11.228 
α (°) 75.666 85.284 81.049 81.045 
β (°) 85.412 75.733 71.915 71.863 
γ (°) 90.036 90 89.980 90 
Volume (Å3) 792.67 792.67 803.78 803.78 
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7.5 Fermi Surfaces of (CaFeAs)10PtzAs8 (z =3, 4), (Ca0.8La0.2FeAs)10Pt3As8 and 

(Ca0.8Na0.2FeAs)10Pt4As8 

Due to the lack of partial PtzAs8 states at EF all chemical manipulations changing the elec-

tronic situation in these compounds exclusively affect the FeAs layers. With identical iron 

arsenide layers in all compounds a direct comparison of the electronic properties is possible. 

Fermi surfaces of compounds (CaFeAs)10PtzAs8 (z= 3, 4), (Ca0.8La0.2FeAs)10Pt3As8, and 

(Ca0.8Na0.2FeAs)10Pt4As8 calculated by DFT methods using the Wien2k package are depicted 

in Figure 1. For comparability all surfaces are aligned coplanar to the tetragonal iron arsenide 

layers in real space. An overview of the relative Fermi energy position of the different com-

pounds is illustrated in Figure 2. 

 
Figure 1. Fermi surfaces of (CaFeAs)10Pt3As8 (a), (Ca0.8La0.2FeAs)10Pt3As8 (b), (CaFeAs)10Pt4As8 (c), and 
(Ca0.8Na0.2FeAs)10Pt4As8 (d). 
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Figure 2. Position of the Fermi niveau for the compounds (CaFeAs)10Pt3As8 (1038), 
(Ca0.8La0.2FeAs)10Pt3As8 (La-1038), (CaFeAs)10Pt4As8 (1048), and (Ca0.8Na0.2FeAs)10Pt4As8 (Na-1048). 

7.6 Structure-Tc-Correlation in Iron Arsenides 

Geometric aspects of the FeAs layer are often discussed to play a significant role for the 

emergence of high temperature superconductivity in iron arsenides. Especially the As–Fe–As 

bonding angle  and the height of the pnictide layer above the iron sheets are assumed to be 

critical. A comparison of geometric subtleties and superconducting properties of optimal 

doped 1038 and 1048 compounds with reported iron arsenides is depicted in Figure 3. 

 
Figure 3. Comparison of critical temperatures in dependency of As–Fe–As bonding angle (left) and 
pnictogen height (right) of known iron arsenide superconductors.1

                                                 
1 V. Zinth, Dissertation, LMU München, 2012. 
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7.7 DFT Data of α-CaFe5As3 and α-Ca3Fe8PtAs6 

7.7.1 Non-magnetic Calculations 

α-CaFe5As3 and α-Ca3Fe8PtAs6 are two monoclinic representatives of the newly discovered 

iron arsenide framework family Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 (n = 1 − 3; M = 

Nb, Pd, Pt; M′ = , Pd, Pt). Electronic properties as density of states, bandstructures and 

Fermi surfaces of non-magnetic, relaxed α-CaFe5As3 and α-Ca3Fe8PtAs6 were calculated by 

DFT methods using the WIEN2K package.  

 
Figure 4. Density of states of relaxed structures α-CaFe5As3 (left) and α-Ca3Fe8PtAs6 (right). 

 
Figure 5. Band structures of relaxed structures α-CaFe5As3 (left) and α-Ca3Fe8PtAs6 (right) close to EF. 
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Figure 6. Fermi surfaces of relaxed structures α-CaFe5As3 (left) and α-Ca3Fe8PtAs6 (right).  
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7.7.2 Magnetic Calculations 

Spin polarized calculation revealed a preferable magnetic ground state for both α-CaFe5As3 

and α-Ca3Fe8PtAs6. Calculated magnetic moments of relaxed magnetic structure are listed in 

Table 8, together with reported calculated value for CaFe4As3
[1]. 

 
Figure 7. Labels of Fe sites in the asymmetric unit cell of α-CaFe5As3 and α-Ca3Fe8PtAs6. 

 

Table 8. Calculated iron moments for the magnetic ground states of CaFe4As3, α-CaFe5As3 and 
α-Ca3Fe8PtAs6. 

Site CaFe4As3
[2]

 CaFe5As3 Ca3Fe8PtAs6 
Fe1 1.0 μB 0.3 μB 0.7 μB 
Fe2 1.7 μB 1.8 μB 1.7 μB 
Fe3 1.8 μB 2.0 μB 1.8 μB 
Fe4 - 2.0 μB 2.0 μB 
Fe5 2.1  μB 2.3 μB 2.5 μB 
Fe6 - - 0.4 μB 
Fe7 - - 1.2 μB 
Fe8 - - 1.4 μB 

 

  

                                                 
2 I. Todorov,D. Y. Chung, C. D. Malliakas, Q. Li, T. Bakas, A. Douvalis, G. Trimarchi, K. Gray, J. F. Mitchell, 
A. J. Freeman, M. G. Kanatzidis, J. Am. Chem. Soc. 2009, 131, 5405. 
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7.8 CSD Numbers 

Crystallographic data (.cif file) of investigated compounds can be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax, 

(+49)7247-808-666; e-mail, crysdata@fiz-karlsruhe.de) by quoting the corresponding 

depository number. 

Table 9. CSD numbers of compounds investigated within this thesis. 

Compound Structure CSD entry 
Ca10Fe9.297Pt3.689As18 1038 CSD-423850 
Ca10Fe10Pt3.6As18 α-1048 CSD-423399 
Ca10Fe8.7Pt5.3As18 β-1048 CSD-423400 
Ca10Fe9.764Pt3.355As18 γ-1048 CSD-423851 
CaFe5As3 α-CaFe5As3 CSD-427443 
Ca2.56Na0.44Fe7.49Nb0.51As6 α-Ca3Fe8As6 CSD-427439 
Ca3Fe7.038Pd1.962As6 β-Ca3Fe8PdAs6 CSD-427444 
Ca3Fe4.741Pd4.259As6 γ-Ca3Fe8PdAs6 CSD-427446 
Ca3Fe7.705Pt1.295As6 α-Ca3Fe8PtAs6 CSD-427440 
Ca3Fe6.75Pt2.25As6 β-Ca3Fe8PtAs6 CSD-427445 
Ca6Fe7.879Pd6.121As10 α-Ca6Fe11Pd3As10 CSD-427441 
Ca6Fe7.627Pt6.373As10 α-Ca6Fe11Pt3As10 CSD-427442 
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8 Abbreviations and Quantities 

8.1 Abbreviations 

1038 (CaFeAs)10Pt3As8 

1048 (CaFeAs)10Pt4As8 

A alkaline metal 

ac alternating current 

AE alkaline earth metal 

AFM antiferromagnetic order 

ARPES angle resolved photoelectron spectroscopy 

a.u. arbitrary units 

BCS acronym of Bardeen, Cooper and Shrieffer 

CCD charge coupled device 

CDW charge density wave 

CERN European Organization for Nuclear Research 

CN coordination number 

COHP  crystal orbital Hamilton population 

CPU central processing unit 

dc direct current 

DFT density functional theory 

DOS density of states 

e– electron 

EDX energy dispersive X-ray spectroscopy 

EPM electron probe microanalysis 

fc field cooling 

GPS general purpose surface-muon instrument 

ix isomorphic transition of index x 
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IPDS imaging plate diffraction system 

Ir1048 (CaFeAs)10Ir4As8 

k impulse vector 

LHC Large Hadron Collider 

LMTO linear muffin-tin orbital 

LMU Ludwig-Maximillians-Universität 

La-Pt-1038 (Ca1-yLayFe1-x PtxAs)10Pt3As8 

Ln lanthanoid 

M metal 

M-1038 (CaFe1-xMxAs)10Pt3As8, M = Co, Cu, Ni, Pt 

MPMS magnetic property measurement system 

NMR nuclear magnetic resonance 

Pd1038 (CaFe1-xPdxAs)10Pd3As8 

PDOS partial density of states 

Pn pnictide 

PSI Paul Scherrer Institut 

PXRD powder X-ray diffraction 

QTAIM quantum theory of atoms in molecules 

RE rare earth metal 

RE-1038 (Ca1-yREyFeAs)10Pt3As8 

RT room temperature 

SC superconductivity 

SDW spin density wave 

SG space group 

SOF site occupation factor 

SQUID superconducting quantum interference device 

tx translationengleich transition of index x 
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TF transversal field 

VASP Vienna ab-initio simulation package 

Wyckoff Wyckoff-Position 

ZF zero field 

zfc zero field cooling 

μSR muon spin rotation 

8.2 Magnetic Quantities 

4πχV magnetic (e.g. superconducting) volume fraction 

B magnetic flux density 

Bhyp magnetic hyperfine field splitting (Mössbauer) 

C Curie constant 

H magnetic field 

Hc critical field 

M magnetization 

TN Néel temperature 

Tnem temperature of nematic order 

µ magnetic moment in Bohr magnetons 

µB Bohr magneton 

µeff effective magnetic moment in Bohr magnetons 

χ magnetic susceptibility 

χV volume susceptibility 

8.3 Crystallografic Quantities 

 vacancy position 

A, Bx layer shift in disorder model 

deg degree 

F structure factor 
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GooF goodness of fit 

h k l Miller Indices 

I intensity 

R... residual factor 

wR... weighted residual factor 

Ueq equivalent thermal displacement parameter 

w weighting factor 

Z number for empirical formulas per unit cell 

θ diffraction angle 

λ wave length 

ρ(r) electron density 

8.4 Other Quantities 

a, b, c unit cell axes 

a*, b*, c* reciprocal unit cell axes 

at% atom percent 

E energy 

EF Fermi energy 

eV electron Volt 

J Joule 

Jc critical current density 

K Kelvin 

Meff effective mass 

mol mole 

p pressure 

q nesting vector 

T temperature 
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Tc critical temperature of a superconductor 

TS structural transition temperature 

VZZ main component of the magnetic field gradient tensor (Mössbauer) 

wt% weight percent 

α, β, γ unit cell angles 

ν partial charge of a FeAs unit in the FeAs layer 

δ isomer shift (Mössbauer) 

δ structural order parameter 

δ-angle tetrahedra angle (fourfold) 

ε-angle tetrahedra angle (twofold) 

ρ density 

ρ electrical resistivity 

σ standard deviation 

ΘDebye Debye temperature 
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9 Publications 

The major part of results compiled in this thesis were published in scientific journals 

according to the below-mentioned list. Publications which are not included in this work, as 

well as talks and poster presentations at scientific conferences are summarized separately. 

9.1 Publications within this Thesis 

1 Superconductivity by rare earth doping in the 1038-type compounds 

(Ca1-xRExFeAs)10Pt3As8 with RE = Y, La – Nd, Sm – Lu 

T. Stürzer, G. Derondeau, E. Bertschler, D. Johrendt 

Solid State Commun. 2015, 201, 36 – 39. 

For this publication, the samples (Ca1-xRExFeAs)10Pt3As8 with RE = Y, La – Nd, Sm –

 Lu were synthesized by Tobias Stürzer with assistance of Eva-Maria Bertschler and 

Gerald Derondeau. SQUID data was measured by Gina Friederichs and Simon 

Peschke. Ac-susceptibility and conductivity measurements, DFT calculations, literature 

screening, data analysis, Rietveld refinement, writing the manuscript and picture 

editing were done by Tobias Stürzer. Christine Stürzer (former Hieke) contributed to 

data analysis and discussion. The manuscript was revised by Christine Stürzer and Dirk 

Johrendt. 

 

2 Superconductivity by transition metal doping in (CaFe1−xMxAs)10Pt3As8 (M = Co, 

Ni, Cu) 

T. Stürzer, F. Kessler, D. Johrendt 

Philos. Mag. 2014, 94, 3632 – 3639. 

For this publication, the samples (CaFe1-xMxAs)10Pt3As8 with M = Co, Ni, Cu were 

synthesized by Tobias Stürzer with assistance of Fabian Kessler and Rebekka Erdmann. 

SQUID data was measured by Gina Friederichs and Simon Peschke. Ac-susceptibility 

and conductivity measurements, literature screening, data analysis, Rietveld refinement, 

writing the manuscript and picture editing was done by Tobias Stürzer. Christine 

Stürzer (former Hieke) contributed to data analysis and discussion. The manuscript was 

revised by Christine Stürzer and Dirk Johrendt. 
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3 Framework structures of interconnected layers in calcium iron arsenides 

T. Stürzer, C. Hieke, C. Löhnert, F. Nitsche, J. Stahl, C. Maak, R. Pobel, D. Johrendt 

Inorg. Chem. 2014, 53, 6235 – 6240. 

For this publication, synthesis of CaFe5As3 was done by Roman Pobel with the 

assistance of Christian Maak. Samples of α-Ca3(Fe,Pt)8PtAs6, β-Ca3(Fe,Pt)8PtAs6, and 

α-Ca6(Fe,Pt)11Pt3As10 were prepared by Tobias Stürzer with assistance of Juliane Stahl. 

Christine Stürzer (former Hieke) prepared samples of β-Ca3(Fe,Pd)8PdAs6, γ-

Ca3(Fe,Pd)8PdAs6 and α-Ca6(Fe,Pd)11Pd3As10. (Ca,Na)3(Fe,Nb)8As6 was prepared by 

Catrin Löhnert. Structure elucidation of CaFe5As3, α-Ca3(Fe,Pt)8PtAs6, and α-

Ca6(Fe,Pt)11Pt3As10 was done by Tobias Stürzer, of β-Ca3(Fe,Pt)8PtAs6 by Dirk 

Johrendt, of β-Ca3(Fe,Pd)8PdAs6, γ-Ca3(Fe,Pd)8PdAs6, and α-Ca6(Fe,Pd)11Pd3As10 by 

Christine Stürzer and (Ca,Na)3(Fe,Nb)8As6 by Fabian Nitsche. Writing the manuscript 

main part, literature screening, analysis of structural relations, classification of 

compounds to common family Can(n+1)/2(Fe1−xMx)(2+3n)M′n(n−1)/2As(n+1)(n+2)/2 (n ∈ ℕ ; M = 

Nb, Pd, Pt; M′ = , Pd, Pt), and DFT calculations were done by Tobias Stürzer. 

Christine Stürzer, Catrin Löhnert, and Fabian Nitsche contributed to data analysis and 

discussion. Picture editing was done by Christine and Tobias Stürzer. The manuscript 

was revised by Christine Stürzer, Fabian Nitsche, and Dirk Johrendt. 

 

4 Structural and magnetic phase transitions in triclinic (CaFeAs)10Pt3As8 

T. Stürzer, G. M. Friederichs, H. Luetkens, A. Amato, H.-H. Klauss, D. Johrendt 

J. Phys.: Condens. Matter 2013, 25, 122203. 

For this publication, synthesis of (CaFeAs)10Pt3As8 and sample preparation, writing the 

manuscript main part, literature screening, Rietveld refinement, measurement and 

interpretation of ac-susceptibility data, and image editing was done by Tobias Stürzer. 

EDX analysis was performed by Christian Minke. SQUID and conductivity 

measurements were done by Gina Friederichs and Rainer Frankovsky. Sample 

preparation and measurement of low temperature X-ray powder data measurements 

were performed by Franziska Hummel. Muon spin rotation spectroscopy data 

measurements, sample preparation as well as data analysis and interpretation were 

done by Hubertus Luetkens at the Paul Scherrer Institute in Switzerland. Hans-Henning 

Klauss (TU Dresden) and Alex Amato (PSI Villigen) contributed to data analysis and 
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discussion. The manuscript was revised by Christine Stürzer (former Hieke), Hubertus 

Luetkens, and Dirk Johrendt. 

 

5 Role of different negatively charged layers in (CaFeAs)10Pt4As8 and 

superconductivity at 30 K in electron doped (Ca0.8La0.2FeAs)10Pt3As8 

T. Stürzer, G. Derondeau, D. Johrendt,  

Phys. Rev. B 2012, 86, 060516. 

For this publication, synthesis of (CaFe1-xPtxAs)10Pt3As8, (CaFe1-xPtxAs)10Pt4As8, and 

with assistance of Gerald Derondeau (Ca0.8La0.2FeAs)10Pt3As8, sample preparation, 

writing the manuscript main part, literature screening, Rietveld refinement, single 

crystal growth, measurement and structure elucidation, measurement and interpretation 

of magnetic data, as well as image editing was done by Tobias Stürzer. EDX analysis 

was performed by Christian Minke. DFT calculations were done by Dirk Johrendt. The 

manuscript was revised by Christine Stürzer (former Hieke) and Dirk Johrendt. 

 

6 Superconductivity up to 35 K in the iron platinum arsenides 

(CaFe1-xPtxAs)10Pt4-yAs8 with layered structures 

C. Löhnert, T. Stürzer, M. Tegel, R. Frankovsky, G. Friederichs, D. Johrendt 

Angew. Chem. Int. Ed. 2011, 50, 9195 – 9199. 

For this publication, synthesis and samples preparation of (CaFe1-xPtxAs)10PtzAs8 with z 

= 3, 4 was done by Catrin Löhnert and Tobias Stürzer. Rietveld refinement of powder 

data and theoretical calculations were done by Marcus Tegel. Gina Friederichs and 

Rainer Frankowsky performed conductivity measurements. Magnetic measurements 

were done by Marcus Tegel and Tobias Stürzer. Literature screening and writing the 

main part was done by Dirk Johrendt. Marcus Tegel and Tobias Stürzer contributed to 

data analysis and discussion. The manuscript was revised by Marcus Tegel and Tobias 

Stürzer.  
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9.2 Publications beyond this Thesis 

7 Multigap superconductivity in locally non-centrosymmetric SrPtAs: An 75As 

nuclear quadrupole resonance investigation  

F. Brückner, R. Sarkar, M. Günther, H. Kühne, H. Luetkens, T. Neupert, A. P. Reyes, P. 

L. Kuhns, P. K. Biswas, T. Stürzer, D. Johrendt, H.-H. Klauss  

Phys. Rev. B 2014, 90, 220503(R). 

 

8 Ba1-xRbxFe2As2 and generic phase behavior of hole doped 122-type 

superconductors 

S. Peschke, T. Stürzer, D. Johrendt 

Z. Anorg. Allg. Chem. 2014, 640, 830 – 835. 

 

9 Evidence for Time-Reversal-Symmetry-Broken Superconductivity in Locally 

Noncentrosymmetric SrPtAs 

P. K. Biswas, H. Luetkens, T. Neupert, T. Stürzer, C. Baines, G. Pascua, A. P. 

Schnyder, M. H. Fischer, J. Goryo, M. R. Lees, H. Maeter, F. Brueckner, H.-H. Klauss, 

M. Nicklas, P. J. Baker, A. D. Hillier, M. Sigrist, A. Amato, D. Johrendt  

Phys. Rev. B 2013, 87, 180503. 

 

10 Why Tc of (CaFeAs)10Pt3.58As8 is twice as high as (CaFe0.95Pt0.05As)10Pt3As8 

S. Thirupathaiah, T. Stürzer, V. B. Zabolotnyy, D. Johrendt, B. Büchner, S. V. 

Borisenko  

Phys. Rev. B 2013, 88, 140505. 

 

11 Superconductivity and crystal structure of the palladium iron arsenides 

(CaFe1-xPdxAs)10Pd3As8 

C. Hieke, J. Lippmann, T. Stürzer, G. M. Friederichs, F. Nitsche, F. Winter, R. Pöttgen, 

D. Johrendt  

Philos. Mag. 2013, 93, 3680 – 3689. 
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12 Transition metal Pnictides 

D. Johrendt, C. Hieke, T. Stürzer 

Comprehensive Inorganic Chemistry II (second edition), Elsevier 2013, 111 – 135. 

 

13 The specific heat of the electron doped La-1038 compound 

(Ca0.85La0.15FeAs)10Pt3As8 

J. S. Kim, T. Stürzer, D. Johrendt, G. R. Stewart 

J. Phys.: Condens. Matter 2013, 25, 135701. 

 

14 Suppression of superconductivity by V doping and possible magnetic order in 
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