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Summary 

Magnetic nanoparticles have great potential in biomedical applications such as 

targeted drug delivery, hyperthermia, bioimaging or as biosensors. However, generation of 

synthetic magnetic nanoparticles requires toxic reactants and high energy consumption and it 

is difficult to control shape and size of the generated particles. The magnetotactic bacterium 

Magnetospirillum gryphiswaldense naturally produces bacterial magnetic nanoparticles (so 

called magnetosomes) for magnetic orientation. Magnetosomes offer several advantages over 

synthetic magnetic nanoparticles. For example bioproduction can be achieved by sustainable 

approaches. Moreover, magnetic cores of magnetosomes are naturally enveloped by a 

biocompatible membrane that can be easily targeted for functionalization. In this thesis, 

magnetosomes were functionalized via genomic engineering using an optimized expression 

system or in first attempts by chemical encapsulation with inorganic coatings to generate 

inorganic-organic magnetic hybrid nanoparticles. 

In the first part, chromosomally insertable expression systems for high constitutive or 

inducible expression of heterologous fusion genes were developed. To this end, the 

combination of a truncated version of the strong native PmamDC promoter from the mamGFDC 

operon and an engineered ribosomal binding site and the codon-optimized reporter gene 

magegfp, resulted in increased gene expression. Additionally, the inducible tetracycline Ptet 

promoter was introduced into the optimized expression cassette. Determination of promoter 

strength was achieved using the reporter genes egfp and gusA and the copy number of MamC-

magEGFP targeted to a single magnetosome was estimated between 80 and 250 per 

magnetosome by quantitative Western blot, which correlates with previous estimations of 

native MamC anchor proteins present on the magnetosome surface.  

The new system was used in the second part of this thesis for functionalization of 

magnetosomes with multivalent GFP-binding nanobodies. Display of the nanobodies on 

magnetosomes led to efficient recruitment of GFP-tagged chemotaxis proteins, ectopic 

retargeting within the cell and, consequently aero/chemotaxis knockdown by depletion from 

their native polar environment. Concurrently, entire magnetosome chains and clusters could 

be ectopically tethered to the chemoreceptors at the cell pole. 

Finally, MagEGFP functionalized magnetosomes were used in first attempts for the 

generation of inorganic-organic hybrid materials consisting of the magnetic core and 
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inorganic coating with silica or zinc oxide. Chemical coating of the bacterial magnetic 

nanoparticles resulted in core-shell nanoparticles with defined shell thickness. The generated 

nanoparticles were characterized with respect to surface charge and particle size. Silica 

encapsulated MagEGFP functionalized magnetosomes exhibited increased resistance against 

proteases and detergents, which makes these new magnetic hybrid nanoparticles an interesting 

potential tool for biomedical applications. 
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Zusammenfassung 

Magnetische Nanopartikel besitzen großes Potenzial in biomedizinischen 

Anwendungen, wie zum Beispiel für gezielte Wirkstoffabgabe, bildgebende Verfahren oder in 

Biosensoren. Das magnetotaktische Bakterium Magnetospirillum gryphiswaldense produziert 

natürlicherweise magnetische Nanopartikel, so genannte Magnetosomen, welche es zur 

Orientierung am Magnetfeld der Erde nutzt um so schnellstmöglich seine biologische Nische 

zu finden. Magnetosomen haben viele Vorteile gegenüber synthetischen magnetischen 

Nanopartikeln, zum Beispiel können sie nachhaltig durch Fermentation der 

magnetotaktischen Bakterien gewonnen werden, während synthetische Nanopartikel unter 

Verbrauch toxischer Ausgangsstoffe und hohem Energieverbrauch hergestellt werden 

müssen. Darüber hinaus sind Magnetosomen von einer Magnetosomenmembran umgeben, 

welche Biokompatibilität gewährleistet und leicht durch genetische Manipulation zu 

funktionalisieren ist. In dieser Dissertation sollten Magnetosomen mit Hilfe eines neu 

entwickelten, optimierten Expressionssystems, unter anderem mit Nanobodies funktionalisiert 

und schließlich mit einer inorganischen Hülle versehen werden, um neue funktionale 

Hybridmaterialien zu generieren. 

Im ersten Teil dieser Arbeit wurden zwei Expressionssysteme für eine starke 

konstitutive und induzierbare Expression von heterologen Fusionsproteinen entwickelt. Eine 

trunkierte Version des starken nativen PmamDC Promotors des mamGFDC Operons wurde mit 

einer optimierten Ribosomenbindestelle und dem Codon-optimierten Reportergen 

„MagEGFP“ kombiniert, um die Genexpression des Reporters zu steigern. Zusätzlich wurde 

der induzierbare Ptet Promotor in das Expressionssystem integriert. Beide Systeme wurden in 

transponierbare Vektoren kloniert, um sie in das Chromosom von M. gryphiswaldense zu 

inserieren. Die Promotorstärke wurde mit Hilfe der Reportergene egfp und gusA bestimmt 

und die Anzahl der Fusionsproteine auf einem Magnetosom wurde mit Hilfe der quantitativen 

Western Blot Analyse auf 80 bis 250 Kopien pro Magnetosom geschätzt. 

Im zweiten Teil dieser Arbeit wurden die neuen Expressionssysteme für die 

Funktionalisierung der Magnetosomen mit multivalenten Nanobodies eingesetzt. Die 

Verankerung der Nanobodies auf der Oberfläche der Magnetosomen führte dazu, dass 

Fluoreszenz-markierte Chemotaxisproteine zu den Magnetosomen rekrutiert und somit zu 

ektopischen Kompartimenten innerhalb der Zelle umgeleitet wurden. Die damit verbundene 
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Abnahme der Chemotaxisproteine an ihrem Bestimmungsort führte zu einem Chemotaxis-

defizienten Phänotypen. Gleichzeitig konnten Chemorezeptor-gebundene Proteine ganze 

Magnetosomenketten an den Zellpol rekrutieren. 

Schließlich konnten Fluoreszenz-markierte Magnetosomen für die Produktion von 

magnetischen Hybridmaterialien, bestehend aus einem magnetischen Kern und einer 

inorganischen Hülle aus Zinkoxid oder Siliciumdioxid, genutzt werden. Ursprünglich sollt die 

Präzipitation der inorganischen Hülle mit Hilfe von biologischen Peptiden auf den 

Magnetosomen erreicht werden. Da dies aber in M. gryphiswaldense nicht möglich war, 

wurden chemische Ansätze für die Verkapselung herangezogen. Die daraus resultierenden 

Nanopartikel wurden hinsichtlich ihrer Oberflächenladung und Größe charakterisiert. 

Interessanterweise weisen Siliciumdioxid verkapselte, mit EGFP funktionalisierte 

Magnetosomen eine höhere Resistenz gegenüber Proteasen und Tensiden auf. Dies macht die 

neuen Hybridmaterialen äußerst interessant für biomedizinische Anwendungen. 



1. Introduction 

 
5 

 

1. Introduction 

1.1 Magnetic nanoparticles 

Magnetic nanoparticles (MNPs) have been used in numerous biomedical applications, 

such as drug delivery, hyperthermia, cell separation or as contrast agent for magnetic 

resonance imaging [1, 2]. Most studies have been conducted using magnetite (Fe3O4) because 

of its proven biocompatibility [3]. Magnetite is a mixed-valence oxide and has a cubic inverse 

spinel structure where oxygen is forming fcc closed packing and Fe cations occupy the 

interstitial tetrahedral and octahedral sites [4]. Electrons can hop between Fe
2+

 and Fe
3+

 ions 

in the octahedral sites at room temperature, which is responsible for conductivity and making 

magnetite an important class of half-metallic material [5]. The main factor responsible for 

magnetic properties of magnetic nanoparticles is crystal size. Three different domain states 

can be distinguished for increasing size of magnetite nanoparticles: i) superparamagnetic (for 

ideal particles, <35 nm, SP), ii) single domain (<100 nm, SD) and iii) multi domain (>100 

nm, MD) [2]. Small SP particles cannot retain SD magnetization at room temperature and are 

only magnetic in presence of an external magnetic field [2], while SD and MD particles are 

ferrimagnetic and remain their magnetization even in the absence of a magnetic field. Typical 

size ranges of MNPs are 5-100 nm [1], which means they are superpara- to ferrimagnetic and 

the magnetization of the particles ranges between 10-50 emu/g [1].  

Man-made magnetite nanoparticles are commonly produced by aqueous or organic 

solution synthesis [6]. Three main synthesis routes can be distinguished for the production of 

synthetic magnetite nanoparticles: i) Co-precipitation of Fe
2+

 and Fe
3+

 with NH4OH [7], ii) 

thermal decomposition of iron(III)acetylacetonate (Fe(acac)3) in tri-ethyleneglycol [8] and iii) 

sonochemical decomposition of hydrolyzed Fe(II) salt [9]. Although production of synthetic 

Fe3O4 nanoparticles can be achieved at high yields, there are still obstacles to overcome in 

order to obtain uniform and pure nanoparticles. It remains difficult to synthesize particles with 

a small size distribution and to control the morphology of the particles. Moreover, some of the 

processes require long synthesis times to produce desired yields and high energy consumption 

or toxic compounds. Additionally, chemical synthesis demands surface modification of the 

particles during or subsequent to the process [10]. However, it remains challenging to achieve 

uniform size and morphology of magnetic nanoparticles with aqueous or organic solution 

synthesis. 
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 Coating of inorganic magnetic nanoparticles 

Special forms of magnetic nanoparticles are core-shell nanoparticles (CSNs). They are 

of particular interest because these particles consists of layers of different materials which can 

add further properties, or passivate the core particle and thereby confer biocompatibility [11]. 

For example, coating of magnetite with silica or zinc oxide yields inorganic-inorganic CSNs 

(Figure 1a) [11]. Magnetite-silica CSNs (Figure 1b) have been synthesized following different 

synthesis routes e.g., layer-by-layer assembly [12], co-precipitation [13] or reverse 

microemulsion approach [14] and meant to be used in a variety of applications as biocatalysts 

[15] or drug delivery systems [16]. In contrast there is little information available about 

Fe3O4-ZnO CSNs. One of the few studies describes seed-mediated grown Fe3O4-ZnO CSNs 

consisting of a 8-13 nm Fe3O4 core surrounded by a 4.45-5.15 nm ZnO layer, which could be 

used as recyclable catalyst [17]. In a similar approach Wan and co-workers generated Fe3O4-

ZnO nanoparticles (Figure 1c) of about the same size, as spintronic devices [18].  

 

Figure 1: Core-shell nanoparticles a) Schematic of a spherical core-shell nanoparticle, consisting of 

a magnetite core and a silica or zinc oxide shell; b) TEM micrograph of silica magnetite core-shell 

nanoparticles, adapted from [14] and c) high resolution TEM micrograph of zinc oxide magnetite 

core-shell nanoparticle, adapted from [18]. 

 

Inorganic cores like magnetite can also be coated with organic materials to enhance 

functionality and biocompatibility, these materials belong to the inorganic-organic CSNs. For 

many applications, surface modification of magnetite nanoparticles is of major importance to 

ensure proper dispersion in different media by avoiding agglomeration [19]. Surfactants can 

also be chosen according to the desired application, e. g. polyethylene glycol (PEG), 

polyvinylpyrrolidone (PVP) and dextran enhance the blood circulation time [20-22], whereas 

fatty acids enhance the colloidal stability in organic solvents [23], while coating with peptides 

is suitable for cell biology applications like targeting to cells [24]. Moreover, various 
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functional groups can be attached to coated magnetic nanoparticles, such as fluorescence tags 

[25], transferrin for targeted drug delivery [26] or chitosan to trace pollutants in 

environmental samples [27]. General requirements for application of magnetic nanoparticles 

and CSNs are high magnetization, uniform size distribution, colloidal stability and the 

possibility of functionalization [1], but meeting these criteria is difficult by chemical synthesis 

approaches. However, magnetite nanoparticles meeting these criteria that are naturally 

enveloped by a lipid-bilayer, can also be produced by bacteria. 

 

1.2 Biosynthesis of magnetosomes in Magnetospirillum gryphiswaldense 

 Characteristics of M. gryphiswaldense 

Naturally occurring biogenic core-shell nanoparticles with a size of 35-120 nm [28] 

and superior characteristics, consisting of a magnetic Fe3O4 core and an organic outer layer, 

are so called magnetosomes. These special organelles are synthesized by magnetotactic 

bacteria (MTB). MTB were already discovered by Salvatore Bellini in 1963 [29] but gained 

attention in 1975, when Blakemore rediscovered the magnetic response of environmental 

bacteria [30]. Although MTB are highly abundant and ubiquitous, only few strains can be 

cultivated in the lab. The best characterized MTB are two alphaproteobacteria species of the 

genus Magnetospirillum, M. magneticum AMB-1 [31] and M. gryphiswaldense MSR-1. M. 

gryphiswaldense was isolated by Dirk Schüler from mud of the river Ryck near Greifswald, 

Germany [32, 33]. It is a spiral-shaped, bi-polar monotrich flagellated bacterium that 

produces up to 50 magnetic nanoparticles (Figure 2a). The magnetosomes are arranged in 

chains, which causes the bacteria to align to the earth magnetic field, thereby facilitating 

migration to their preferred habitat in the oxic anoxic transition zone (OATZ) [33, 34]. 

Therefore, magnetotaxis is thought to be a reliable mean to keep M. gryphiswaldense close to 

growth favoring conditions and offer an advantage by reducing 3D biased walk to 1D directed 

swimming [35]. Recently, Popp and co-workers found that aerotaxis is mainly responsible for 

controlling swimming reversals and that both aerotaxis as well as swimming polarity are 

determined by only one of the four operons encoding chemotaxis proteins [36].  
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Figure 2: M. gryphiswaldense wild type cell and isolated magnetosomes. TEM micrograph of a 

bipolar flagellated (filled arrows) M. gryphiswaldense wild type cell with magnetosome chain (arrow); 

b) TEM micrograph of an isolated magnetosome of M. gryphiswaldense, with intact MM (black arrow 

head) and magnetite crystal (white arrow head); c) TEM micrograph of isolated magnetosomes of M. 

gryphiswaldense, dried in a magnetic field (adapted from [37]). Black scale bar represents 2 µm, white 

scale bar 20 nm. 

 

Characteristics of magnetosomes: The mineral core 

The physic-chemical characteristics of the magnetic core of magnetosomes are 

determined by composition, shape and size. In contrast to greigite (Fe3S4) producing MTB 

[38, 39], the core of magnetosomes of M. gryphiswaldense consists of magnetite, even under 

reducing conditions that are favoring the biomineralization of the magnetic iron Fe3S4 [2]. 

High purity of magnetite crystals with an average 10 emu/g magnetization [40] and without 

even minor impurities is preserved even if M. gryphiswaldense is cultured with high amounts 

of other metal ions, such as copper, zinc, nickel or manganese [2]. The only exception with 

enhanced magnetic properties are cobalt-doped magnetosomes reported in 2008, which 

presumably could be produced by cultivation of different strains with varying cobalt 

concentrations, resulting in an increase of the coercive field by 36-45% [41]. However, it is 

important to note that these results could never be reproduced by our lab. Even cultivation 

with exceptional high cobalt concentrations did not yield magnetosomes with any impurities 

(Damien Faivre, unpublished results). Apart from high chemical purity, magnetosomes 

exhibit a high degree of structural perfection. X-ray magnetic circular dichroism (XMCD) 

revealed that magnetosomes have nearly the same structure as calculated for stoichiometric 

magnetite. Only the ratio of Fe
2+

 to Fe
3+

 was slightly increased in comparison to 
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stoichiometric magnetite, also the ratio of tetrahedral to octahedral iron was slightly lower 

[42]. Magnetic properties of magnetosomes are largely determined by their crystal 

morphology [43], which is under genetic control [44-46]. Magnetosomes of M. 

gryphiswaldense are cubooctahedral (Figure 3a), while other magnetotactic strains can 

produce pseudo-hexagonal prismatic or tooth-shaped magnetosomes, which cannot be 

produced by chemical approaches [2]. Mature magnetosomes from M. gryphiswaldense wild 

type cells are typically about 37-42 nm in diameter and therefore ferrimagnetic (Figure 3a) 

[47-49]. However, in mutant cells, lacking specific genes or entire operons, it is possible to 

synthesize superparamagnetic magnetosomes with a size range of 18-25 nm [50]. As 

morphology, size of magnetosomes is species-specific and determined by genetics. For 

different MTB, crystals from 35 nm to 120 nm can be found [44, 51-53]. Therefore 

magnetosomes fall into the SD domain state, which provides maximal magnetization for 

magnetite [2].  

 Characteristics of magnetosomes: The magnetosome membrane 

The magnetite core of magnetosomes is enveloped by the magnetosome membrane 

(MM) (Figure 3b). The MM is a lipid bilayer, which contains a specific set of more than 20 

proteins (Figure 3b) [54]. Magnetosome vesicles originate from the cytoplasmic membrane 

(CM) [55] and develop prior to magnetite biomineralization (Figure 3c) [50, 56]. They serve 

as “nanoreactors” to ensure biological control of physico-chemical conditions, such as redox 

potential and pH as well as super saturating iron concentrations, for the crystallization of 

magnetite [37]. The MM remains intact even after isolation and purification of magnetosomes 

from disrupted cells (Figure 1b&c). For isolation of magnetosomes, cells can be harvested, 

washed and mechanically disrupted by sonication, with a french press or use of a cell 

homogenizer. Afterwards magnetosomes can be extracted with a magnetic column and 

purified by centrifugation through a sucrose cushion to avoid contamination with other 

cellular components [57]. After purification of magnetosomes the MM can be solubilized and 

analyzed with respect to its composition. Biochemical analysis of the isolated MM revealed 

that phosphatidylethanolamine and phosphatidylglycerol are the most abundant lipids 

associated with magnetosome crystals [54]. Lipid and fatty acid patterns of the MM are 

similar to that of other subcellular compartments, which supports the ultrastructural 

observation of invagination of the CM for vesicle formation [54, 58]. In contrast, the set of 

magnetosome membrane proteins (MMP) is very distinct from other subcellular 

compartments in M. gryphiswaldense [37, 59]. A specific set of more than 30 proteins, 
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described as magnetosome membrane (Mam) proteins and magnetic particle membrane-

specific proteins (Mms), is required for the formation of mature magnetosomes [54, 60]. 

Many of these proteins are typically hydrophobic with transmembrane domains that are 

tightly integrated in the MM and exhibit higher resistance against proteases and detergents (e. 

g. MamG, MamF, MamD and MamC). In contrast, proteins like MamJ or MamA are 

hydrophilic and predicted to have magnetosome associated localization with rather accessory 

function for magnetosome synthesis [54, 58].  

 

Figure 3: Structure of a magnetosome particle, the magnetosome vesicle and the MamC protein 

a) Single-domain magnetosome crystal with indicated magnetic field lines; b) magnetosome 

membrane with magnetosome anchor proteins (MamG, MamF, MamD, MamC) and MMPs (MamE, 

MamL, MamM, MamO, MamQ, MamB and MamI) essential for magnetosome biomineralization; c) 

electron cryotomographs of invaginating cytoplasma membrane and consequent biomineralization of 

magnetite particles in M. magneticum AMB-1 (adapted from [55]); d) predicted structure of the 12.4 

kDa MMP MamC, consisting of two transmembrane domains, the aa sequence of C- and N-terminus 

are indicated. 

 Function of MMPs in magnetosome synthesis 

The biosynthesis of magnetosomes is assumed to occur in five sequential steps: i) 

vesicle formation, ii) recruitment of MMPs to the vesicle, iii) iron uptake and crystal 
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nucleation, iv) crystal maturation and v) chain assembly and positioning within the cell. 

Formation of the magnetosome vesicle in M. gryphiswaldense occurs prior to magnetite 

biomineralization [61] and is assumed to be induced by the proteins MamQ, MamL and 

MamB that are essential for vesicle formation [62, 63]. In the next step MamA forms a 

multiprotein complex, enveloping the magnetosome vesicle [64], while MamE is involved in 

recruitment of other MMPs [65]. Uptake of ferrous iron is mediated by a heterodimer of the 

cation diffusion facilitators (CDF) MamB and MamM [63], while MamH and MamZ assure 

transport of ferric iron into the vesicle [66]. Alternatively magnetite could be formed by co-

precipitation of ferrous iron from the phosphate-rich ferritins (nanometric ferric 

(oxyhydr)oxides) by a highly disordered ferric hydroxide phase within the vesicle [67]. 

Precipitation of iron oxide is speculated to be catalyzed by MamO [65], and crystal 

maturation is then controlled by several different proteins. The proteins MamE, MamT, 

MamP and MamX share a conserved CXXCH heme-binding motif, which is assumed to form 

complexes for electron transport and the proteins might therefore participate in redox control 

[66, 68]. MamN is regulating the intramagnetosomal pH, the protein exhibits similarities to 

H
+
-translocation proteins and might control intravesicle conditions and regulate crystal 

maturation [37]. The only protein known so far to interact directly with the magnetite crystal 

is Mms6 [69, 70], which presumably assembles in a monolayer templating crystal growth 

[71]. During crystal maturation Mms36 and Mms48 inhibit crystal growth by an unknown 

mechanism [62], while the small hydrophilic MamG, MamF, MamD and MamC proteins 

cumulatively control growth of the magnetite crystal [48]. Finally, chain assembly and 

positioning is mediated by attachment of the magnetosomes via the acidic MamJ protein to 

the actin-like MamK filament [72] that is responsible for chain positioning [61, 73]. Genes 

encoding all proteins involved in magnetosome biosynthesis are clustered in a 115 kb 

magnetosome island (MAI) [50, 74]. Four major operons within this MAI are responsible for 

the strictly defined synthesis of magnetosomes. The mamAB operon, containing 17 genes, is 

the only one essential for biomineralization of magnetic crystals, deletion of the operon leads 

to non-magnetic cells with normal morphology and growth [75]. Recently it was shown that 

only seven genes from this operon (mamE, mamL, mamM, mamO, mamQ, mamI and mamB) 

are essential for formation of magnetite [62]. Residual genes of the mamAB operon and those 

of other operons have accessory functions for magnetosome synthesis. Cells with deletion of 

the mamXY operon produce fewer fully grown magnetite crystals, which are flanked by 

smaller irregular flake-like structures which are positioned randomly within the cell [50, 66]. 
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Similar, deletion of the mms6 operon causes a less magnetic phenotype with smaller, fewer 

magnetosomes that were poorly aligned [50]. The mamGFDC operon is not essential for 

magnetosome synthesis, but responsible for crystal size, since deletion led to 25% smaller 

crystals [48]. 

The magnetosome anchor protein MamC 

The MamC protein (Mms13 in M. magneticum AMB-1), encoded in the mamGFDC 

operon, is the most abundant protein within the MM with a relative abundance of 16.3% of 

the proteins of the entire MM [54]. Deletion of MamC has no significant effect on 

magnetosome synthesis, and causes only slightly diminished crystal size [48]. Therefore, no 

disturbance of the MM after fusion of heterologous genes to mamC is expected. The small 

12.4 kDa protein, with a calculated isoelectric point of 4.9 [37], consists of two helical 

transmembrane domains (Figure 3d) [54, 57], which theoretically allows for functionalization 

of both the C- and the N-terminal end, but in practice the C-terminus is commonly used for 

construction of fusion proteins [57]. It was shown that MamC is stably inserted into and 

exclusively localized in the MM [57]. Therefore, MamC was used as anchor protein for 

functionalization of magnetosomes in various approaches, for instance with the enhanced-

fluorescent protein (EGFP) [57, 76, 77]. MamC-EGFP fusions proved to be stable for neutral 

to basic pH and temperatures between -20 and 50°C [57]. Moreover sodium chloride 

concentrations up to 4 M and guanidinium chloride of 100 mM could not abolish fluorescence 

of the functionalized particles [57]. Moreover, MamC-EGFP fusions were resistant against 

0.01% of detergents like sodium dodecyl sulfate (SDS) and triton X-100 [57]. The resistance 

of MamC against abiotic factors as well as proteases and detergents and the distinct 

localization of the protein qualify MamC as perfect anchor protein within the MM. 

Functionalization of magnetosomes 

 a) Chemical functionalization 

Functionalization with respect to nanoparticles means attaching functional moieties to 

the particle. In early approaches functionalization of magnetosomes was achieved by 

chemical coupling of functional groups, such as antibodies or nucleic acids to the 

magnetosome surface via cross-linking [78, 79]. Glucose oxidase was immobilized on 

magnetosomes from the related bacterium M. magneticum AMB-1 by incubation with γ-

aminopropyltriethoxysilane prior to enzyme attachment. Functionalized magnetosomes 
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exhibited a 40-times higher enzyme activity than synthetic magnetite or Zn-ferrite 

nanoparticles that were treated the same way [80]. For immobilization of antibodies, 

magnetosomes of M. magneticum AMB-1 were incubated with sulfosuccinimidyl 6-(3´-(2-

pyridyldithio)propionamido)hexanoate (sulfo-LC-SPDP) that reacted with sulfosuccinimidyl 

4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC)-modified anti-mouse IgG 

antibodies. The functionalized particles were then used for immunoassaying of mouse 

immunoglobulin G (IgG) (Figure 4) [81]. Biotin functionalized magnetic nanoparticles were 

prepared using the same principle and could be captured with streptavidin immobilized on a 

glass surface [82]. For M. gryphiswaldense chemical functionalization of magnetosomes was 

achieved by incorporation of the biotinylated lipid biotin-DPPE and covalent modification of 

MMPs by using NHS-biotin to generate biotinylated magnetic nanoparticles [83]. The 

functionalized particles could then bind streptavidin (STV), leading to STV-functionalized 

magnetosomes with biotin-binding capacity, which allows for attachment of biotinylated 

DNA fragments or antibodies for specific detection of proteins and nucleic acids. 

Functionalized magnetosomes were applied to capture oligonucleotide conjugated gold 

nanoparticles (Figure 4) and immobilization on DNA or antibody coated surfaces [83]. In a 

different approach, biotin-STV functionalized magnetosomes [83] were applied for magneto 

immuno-PCR (Figure 4) [84]. Therefore the STV-functionalized magnetosomes were coupled 

with biotinylated anti-Hepatitis B surface Antigen (HBsAg) antibodies for detection of 

recombinant HBsAg. Functionalized magnetosomes were incubated with HBsAg and with 

DNA conjugated anti-HBsAg antibodies for real-time immuno-PCR. Magneto immuno-PCR 

proofed to be 25-fold more sensitive with magnetosomes as carrier material in comparison to 

commercial magnetic microbeads [84]. 
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Figure 4: Summary of realized functionalization approaches of magnetosomes with various 

functional groups. Chemical functionalization of magnetosomes with antibodies via crosslinkers [81] 

or biotinylation [83, 84]. Functionalization via genetic engineering was achieved by fusion of MamC 

with enhanced green fluorescent protein (EGFP) [57] and a Magnetospirillum-optimized version 

(MagEGFP) [this thesis], a multisubunit enzyme complexes [76] or GFP-binding protein (GBP) 

nanobodies capturing the EGFP-tagged chemotaxis protein CheW [this thesis]. 

 

b) Functionalization of magnetosomes by genetic engineering 

A more elegant and powerful approach for functionalization of magnetosomes uses the 

anchor protein MamC for generation of genetic fusions, securing stable and controlled 

expression of fusion proteins targeted to the magnetosome surface. Genetic engineering is a 

more favorable approach than chemical engineering of magnetosomes, because no harsh 

reaction conditions are needed, which might degrade proteins present on the magnetosome 

surface. Most importantly, modification can be achieved in a defined manner with higher 

specificity. Moreover, functionalized magnetosomes with precisely tailored characteristics 

can be produced and thereby synthesized particles can be isolated in a single step from 

disrupted cells without further modifications and loss of material, which cannot be achieved 

by chemical synthesis approaches. For example, the MamC protein was used as anchor in M. 
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magneticum AMB-1, for immobilization of biotin accepting peptides or biotin carboxyl 

carrier proteins on the magnetosome surface to generate biotinylated magnetosomes [85]. 

Functionalization of magnetosomes from M. magneticum AMB-1 was also achieved by 

expression of a phosphohydrolase fused to MamC, which produced a recyclable 

nanobiocatalyst for organophosphate pesticide biodegradation [86] or by genetic fusion of 

luciferase or the immunoglobulin G-binding domain of protein A (ZZ) to MamC (Mms13) 

[87]. In a recent study the Δmms13 strain was used for higher expression of two human 

proteins (thyroid-stimulating hormone receptor, TSHR) and the class II major 

histocompatibility complex (MHC II molecules) as MamC (Mms13) fusions [88]. One of the 

first studies in M. gryphiswaldense was utilizing the MamC protein as anchor for 

immobilization of EGFP (Figure 4) [57]. Following this example many MamC fusions were 

constructed, e.g. producing magnetosomes displaying multisubunit enzyme complexes 

(Figure 4) [76]. The protein subunit (C5) of Escherichia coli RNase P is known to interact 

with RNA subunits from a wide variety of bacteria [89]. Therefore, a fusion of the gene 

encoding the C5 protein with mamC was constructed in M. gryphiswaldense and expressed to 

recruit the active endogenous RNA subunit [76]. This strategy can be employed for 

construction of a variety of similar multisubunit enzyme complexes. In a different study, the 

gene encoding staphylococcal protein A from Staphylococcus aureus was fused to mamC, 

expressed on magnetosomes of M. gryphiswaldense and used in combination with 

mammalian antibodies to capture pathogenic bacteria [90]. Recently, Pollithy and co-workers 

were able to immobilize so called red-fluorescent protein (RFP)-binding nanobodies (RBP) 

on magnetosomes via fusion of rbp to mamC. The RBP conjugated magnetosomes were able 

to capture cytoplasmic RFP in vivo and were used for immunoprecipitation of RFP-tagged 

proteins from complex soluble mammalian cell extracts in vitro [77]. 

 

1.3 Use of camelid nanobodies in biomedical and biotechnological applications 

Among various functional moieties displayed on magnetosomes, so called nanobodies 

are of particularly high interest. They represent nanometer sized fragments of camelid heavy-

chain antibodies (HCAb), which lack the light chains present in conventional IgG antibodies 

(Figure 5a) and recognize their target by interaction with single VHH domains. The VHH in 

an HCAb is the equivalent of the antigen-binding fragment (Fab) of conventional antibodies 

(Figure 5a&b) [91]. Due to their small size of about 15 kDa (~117 aa) (Figure 5c) [92],  the 
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genes of nanobodies against fluorescent proteins, like the GFP-binding nanobody (called 

GFP-binding protein, GBP), can be directly cloned into expression systems and expressed in 

various organisms [93]. Because of their special topology, nanobodies preferentially bind to 

concave surfaces of antigens which are often inaccessible to conventional antibodies [94]. 

Examples for nanobody-based applications comprise inhibition of enzyme activity for 

instance through specific binding to the active site of bovine erythrocyte carbonic anhydrase 

and porcine pancreatic α-amylase [95] or the potato starch branching enzyme A (SBE A) [96].  

 

Figure 5: Characteristics of conventional, heavy-chain antibodies and antibody fragments 

(nanobodies). a) Conventional antibody consisting of heavy and light chains. The constant domain is 

responsible for recruitment of immune cells, while the variable region and the CDR loops recognize 

the antigen. The antigen binding fragment (Fab) and single chain variable fragment (scFv) are used in 

various applications for antigen recognition; b) Camelid heavy-chain antibodies are devoid of light 

chains, therefore recognition of the antigen is mediated by the VHH fragment exclusively. Nanobodies 

are the VHH domain of camelid heavy-chain antibodies and are termed chromobody, if conjugated 

with a fluorescence protein; c) abstracted ribbon-band structure of the GBP nano- and chromobody.  
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Furthermore, different strategies for nanobody-mediated protein knockdowns have been 

developed in eukaryotes, either by targeting nanobody-bound proteins to degradation 

pathways [97], or by artificially retargeting interaction partners to specific intracellular 

localizations, e.g. distinct cellular compartments by use of nanobodies as intracellular 

“nanotraps” [92, 98, 99]. Coupling of nanobodies with fluorescence proteins generated so 

called chromobodies, which allows tracking of nanobody localization and interaction via 

fluorescence microscopy [100]. Nanobodies are also tested for applications in medical 

approaches against neurological disorders, like Parkinson´s or Alzheimer´s [101]. Functional 

production of nanobodies in bacterial cells has been restricted to only very few studies. 

Recently nanobodies have been produced in bacteria to inhibit enzyme function, such as 

dioxygenase activity [102], and in M. gryphiswaldense on magnetosomes coupled to MamC 

for recruitment of cytoplasmic fluorescent proteins [77]. 

 

1.4 Tools for expression of heterologous gene fusions in M. gryphiswaldense 

For stable and high expression of gene fusions in M. gryphiswaldense functional 

expression systems are needed. Expression of heterologous genes in other bacteria has been 

widely used for scientific and biotechnological applications. Development of expression 

systems aims on high and inducible production of the protein of interest. General 

requirements for expression systems are strong and tunable promoters for control on the 

transcriptional level as well as for instance optimization of ribosomal binding sites (RBS) for 

efficient translation of the gene of interest. Additionally, it is favorable to include antibiotic 

resistances for phenotypic selection [103]. Preferentially, expression systems should be 

constructed with tunable promoters, since over-expression of proteins in a foreign host could 

challenge the metabolic load of the organism [104], or compartments could restrict the 

number of proteins that can be produced. Many features have to be optimized such as 

promoter strength, terminator sequences, elements affecting translational initiation, translation 

enhancers [103] or codon usage of the gene of interest [105]. While many powerful 

expression systems are available for E. coli and other model organisms [106], very few 

systems are developed for alphaproteobacteria such as M. gryphiswaldense. Well-

characterized promoter systems are e.g. the lac, tac and trc promoters. The lac promoter from 

the operon controlling lactose utilization in E. coli was already used 1976 in a vector system 

expressing eukaryotic DNA in bacteria, by induction with isopropylthiogalactoside (IPTG) 
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[107]. To increase promoter strength of this rather weak promoter, the tac hybrid promoter 

containing the -35 region of the strong trp promoter and the -10 region of the weak lac 

promoter was constructed, which proofed to be inducible 3-times higher than the trp promoter 

[108]. Further modification resulted in the trc promoter that differs only in one base pair (bp) 

length from the tac, which increased activity by 90% [109]. In alphaproteobacteria best 

characterized expression systems can be found for model organisms like Caulobacter 

crescentus. Xylose and vanillate inducible expression systems are well established and 

commonly used in C. crescentus [110, 111]. Another inducible expression system, which can 

be tightly controlled but delivers strong expression at the same time is the tet 

promoter/operator system [112, 113]. Instead of tetracycline it is common practice to use 

anhydrotetracycline (Atet) as inducer, since it binds to the promoter 35-fold higher and its 

antibiotic activity is 100-fold lower than for tetracycline [114]. In C. crescentus Ptet could be 

applied for the expression of the DNA-partitioning protein ParB after induction with Atet 

[115]. 

Genetic systems in MTB are poorly developed and only recently a limited tool set was 

established. In previous approaches, Yoshino and co-workers identified the msp13 and mms16 

promoters as presumably strong promoters in M. magneticum AMB-1 and used them for 

magnetosome display of fusion proteins [116, 117], but promoters of the homologous genes 

exhibit only weak expression in M. gryphiswaldense [118]. An inducible tetracycline [112, 

113] hybrid expression system was used for expression of tetraspanin CD81 in M. 

magneticum AMB-1 [119]. However, it is not possible to estimate the real strength of the 

hybrid promoter in comparison to other established promoters. Recently Topp and co-workers 

synthesized a riboswitch expression system, which responds to the inducer theophylline and 

allows expression of a MamK-EGFP fusion in M. magneticum ABM-1 [120].  

In M. gryphiswaldense, only recently genetic systems were available and tools for 

expression are poorly developed. Expression of heterologous genes in M. gryphiswaldense 

can be achieved either cytoplasmic or specifically targeted to the magnetosome membrane by 

fusion to MamC. Expression systems for magnetosome display of foreign proteins need to 

meet special requirements, such as specific targeting to the MM, controlled copy number and 

stable attachment of the fusion proteins. M. gryphiswaldense is one of the few cultivated 

magnetotactic bacteria with established genetic systems for transfer and expression of 

heterologous genes [121]. Transfer of plasmids into MTB can be achieved by conjugation 



1. Introduction 

 
19 

 

from E. coli [121, 122]. Recently, Kolinko and co-workers constructed a recA deficient strain, 

which is incapable of homologous recombination and facilitates production of heterologous 

proteins or multiple copies of proteins [123]. This strain could be used to successfully 

introduce additional copies of the same gene without risking homologous recombination and 

excision of the genes [123]. For markerless chromosomal insertion of heterologous genes or 

deletion of genes of interest a galK-based counterselection method was developed [124]. 

However, although many genetic tools for genetic manipulation of MTB have been 

developed, expression of magnetosome targeted fusion proteins is still cumbersome and 

inefficient in M. gryphiswaldense. Only few promoters were functional in M. 

gryphiswaldense. The PmamDC promoter, which is the native promoter of the mamGFDC 

operon yielded high constitutive expression, while other native promoters like the PmamAB 

promoter of the mamAB operon and the widely used E. coli Plac promoter resulted in 

significant weaker transcription [118, 125]. Even native M. gryphiswaldense promoters from 

ribosomal operons, which were expected to ensure high expression, yielded unexpectedly 

only weak expression of the reporter gene egfp [118]. First attempts to optimize PmamDC driven 

expression included optimization the RBS of mamG with regard to spacing between the 

Shine-Dalgarno sequence and the start codon of mamG. A spacing of 8 bp was found to 

increase egfp expression in combination with a 45 bp truncated version of the PmamDC 

promoter [126]. All approaches for expression in M. gryphiswaldense used a replicative 

system based on a medium copy number plasmid of the pBBR family. However, this has the 

disadvantage of segregational instability and growth phase dependent artificial expression 

levels [127] and resulted in non-uniform expression in cell populations [118]. This is 

unfavorable for genetic engineering of magnetosomes for biotechnological applications, as 

gene expression will be reflected by heterogeneously modified magnetosomes [118]. 

Moreover, inducible expression systems for display of toxic fusion proteins, expression of 

proteins that may interfere with magnetosome biomineralization or cellular processes [119], 

or the generation of conditional mutants, are still missing. Promoter analysis showed that the 

urease promoter (Pure) from the Enterobacteriaceae family [128] is not inducible in M. 

gryphiswaldense [129]. In contrast, the Ptet promoter from the E. coli Tn10 Tc
R
 gene can be 

induced with Atet [129] and repression of the promoter could be improved by expression of 

the TetR repressor protein under the control of the neomycin promoter (Pneo) [126]. However, 

appropriate tools for high yield and magnetosome specific expression of heterologous 

proteins are still missing in M. gryphiswaldense. 
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1.5 Scope of this thesis 

The general goal of this thesis was to establish strategies for biosynthesis of innovative 

magnetic nanoparticles by generation of functionalized magnetosomes in M. 

gryphiswaldense. Due to the lack of suitable tools for protein expression that is targeted to the 

MM, the first part of this thesis was devoted to the construction of expression systems 

yielding high and inducible expression in M. gryphiswaldense. This required extensive testing 

of established promoters as well as the generation of new hybrid promoters. In addition to 

optimization of promoter strength, codon optimized genes were tested to investigate if 

adapting the codon usage of heterologous genes to the codon bias of M. gryphiswaldense is 

improving expression of the protein. The copy number of MamC-fusions on a single 

magnetosome was estimated by quantitative Western blot analysis of single and tandem 

fusions of EGFP to the magnetosomes. 

In the second part, the optimized expression system was then used for the generation 

of functionalized magnetosomes. As an example, nanobodies were chosen and their 

intracellular expression was optimized, since nanobodies are able to recruit specific targets in 

vivo and in vitro. Magnetosomes displaying GBP and expression of an EGFP-tagged version 

of the chemotaxis protein CheW1 were tested for artificial recruitment of membrane bound 

proteins or even whole organelles and consequent chemotaxis knock-down. 

Finally, the third part of this work focused on approaches for development of hybrid 

MNPs. As examples, coating of magnetosomes with inorganic layers was achieved by 

chemical approaches. Thereby produced fluorescent silica and ZnO magnetosome hybrid 

MNPs were subsequently characterized. 
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New Vectors for Chromosomal Integration Enable High-Level
Constitutive or Inducible Magnetosome Expression of Fusion Proteins
in Magnetospirillum gryphiswaldense

Sarah Borg, Julia Hofmann, Anna Pollithy,* Claus Lang,* Dirk Schüler

Ludwig Maximillian University Munich, Department of Biology I, Martinsried, Germany

The alphaproteobacterium Magnetospirillum gryphiswaldense biomineralizes magnetosomes, which consist of monocrystalline

magnetite cores enveloped by a phospholipid bilayer containing specific proteins. Magnetosomes represent magnetic nanopar-

ticles with unprecedented magnetic and physicochemical characteristics. These make them potentially useful in a number of

biotechnological and biomedical applications. Further functionalization can be achieved by expression of foreign proteins via

genetic fusion to magnetosome anchor peptides. However, the available genetic tool set for strong and controlled protein expres-

sion in magnetotactic bacteria is very limited. Here, we describe versatile vectors for either inducible or high-level constitutive

expression of proteins in M. gryphiswaldense. The combination of an engineered native PmamDC promoter with a codon-opti-

mized egfp gene (Mag-egfp) resulted in an 8-fold increase in constitutive expression and in brighter fluorescence. We further

demonstrate that the widely used Ptet promoter is functional and tunable in M. gryphiswaldense. Stable and uniform expression

of the EGFP and �-glucuronidase (GusA) reporters was achieved by single-copy chromosomal insertion via Tn5-mediated trans-

position. In addition, gene duplication by Mag-EGFP–EGFP fusions to MamC resulted in further increased magnetosome ex-

pression and fluorescence. Between 80 and 210 (for single MamC–Mag-EGFP) and 200 and 520 (for MamC–Mag-EGFP–EGFP)

GFP copies were estimated to be expressed per individual magnetosome particle.

For magnetic orientation, magnetotactic bacteria (MTB) biomin-
eralize bacterial (ferri)magnetic nanoparticles. In the model

organism Magnetospirillum gryphiswaldense and other MTB, these
organelles consist of magnetite (Fe3O4) cores enveloped by the
magnetosome membrane (MM) (1, 2). Because of their unprece-
dented material properties, such as high crystallinity, strong mag-
netization, uniform shapes and sizes, and biocompatibility, the
use of isolated magnetosome particles has been suggested for a
number of biotechnological and biomedical applications, such as
using them as nanocarriers in magnetic drug targeting, magneto-
some-based immunoassays and as reporters for magnetic reso-
nance imaging (MRI) (3). Many of these applications require fur-
ther functionalization, for instance, by displaying additional
functional moieties on the magnetosome surface such as antibod-
ies, oligonucleotides, fluorophores, or enzymes (3, 4). It was
shown that in M. gryphiswaldense, in addition to chemical func-
tionalization of isolated particles in vitro (5, 6), magnetosomes can
also be engineered in vivo by expression of foreign proteins via
genetic fusion to native magnetosome anchors. For example, the
small (12.5-kDa), highly abundant MamC protein was shown to
provide tight and stable attachment of foreign proteins to the
MM. This was first demonstrated by a MamC-green fluorescent
protein (GFP) fusion, which displayed stable fluorescence in vivo
and also after purification of magnetosomes (7). In different stud-
ies, a red fluorescent protein (RFP)-binding nanobody (RBP) and the
endogenous RNA subunit C5 of the multisubunit chimeric bacterial
RNase P enzyme were functionally expressed on magnetosomes by
translational fusion with MamC (8, 9).

However, previous approaches were hampered by the unavail-
ability of appropriate systems for controlled protein expression in
M. gryphiswaldense. For example, so far only a few promoters have
been identified as being functional for transcription in M. gryphi-
swaldense. The native PmamDC, which drives transcription of the

mamGFDC operon, yielded the highest constitutive expression of

the reporter EGFP, while weaker expression was found with other

promoters like PmamAB (10, 11). Known inducible promoters

yielded only weak (Plac [10]) or no expression (e.g., Pure [our un-

published data]). However, inducible expression systems are pre-

requisite for display of proteins that may interfere with magneto-

some biomineralization or cellular processes. In the related strain

Magnetospirillum magneticum AMB-1, the strong native msp13

and mms16 promoters were employed for magnetosome display

of fusion proteins (12, 13). A tetracycline (Tet)-inducible expres-

sion system was described based on a hybrid promoter consisting

of the combined msp1 promoter and tetO sequences (14). How-

ever, the transcriptional strength of the hybrid promoter com-

pared to the strong constitutive msp13 and mms16 has not been

reported. In addition, all expression studies so far were based on

multicopy replicative plasmids, which have the disadvantage of

segregational instability and nonuniform expression (10).

Here, we describe two versatile vectors for either inducible or
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high-level constitutive chromosomal expression. We demonstrate
their use for cytoplasmic and magnetosome expression of foreign
proteins. Furthermore, we show that codon optimization and
multicopy expression are powerful approaches to enhance heter-
ologous expression of proteins in M. gryphiswaldense. We also
provide an estimation of protein copies expressed per magneto-
some particle.

MATERIALS AND METHODS

Bacterial strains, plasmids, and culture conditions. Plasmids and bacte-
rial strains used in this study are listed in Tables S1 and S2 in the supple-
mental material. M. gryphiswaldense strains were grown microaerobically
in modified flask standard medium (FSM) at 30°C (15) with moderate
agitation (120 rpm). Escherichia coli strains were cultivated as previously
described (16) for growth of E. coli BW29427 (K. Datsenko and B. L.
Wanner, unpublished data) and WM3064 (W. Metcalf, unpublished da-
ta); 1 mM D,L-�,ε-diaminopimelic acid (DAP) was added to lysogeny
broth (LB) medium. Strains were routinely cultured on plates solidified
with 1.5% (wt/vol) agar. For strains carrying recombinant plasmids, me-
dia were supplemented with 25 �g ml�1 kanamycin (Km) and 50 �g ml�1

ampicillin (Amp) for E. coli strains and 5 �g ml�1 Km for M. gryphiswal-
dense strains. For induction experiments, media were supplemented with
various concentrations of anhydrotetracycline (Atet).

Molecular and genetic techniques. Oligonucleotides (see Table S3 in
the supplemental material) were purchased from Sigma-Aldrich (Stein-
heim, Germany). Chromosomal DNA of M. gryphiswaldense was isolated
using a genomic DNA isolation kit (Zymo Research, USA). Plasmids were
constructed by standard recombinant techniques as described in detail
below. All constructs were sequenced on an ABI 3730 capillary sequencer
(Applied Biosystems, Darmstadt, Germany), utilizing BigDye Terminator
v3.1. Sequence data were analyzed with Vector NTI Advance 11.5 software
(Invitrogen, Darmstadt, Germany). Magnetospirillum-optimized EGFP
(Mag-EGFP) was optimized by proprietary algorithms for increased
mRNA stability and avoidance of sequence repetitions and secondary
structures and was purchased from GeneArt (Invitrogen, Darmstadt, Ger-
many).

Construction of insertional expression plasmids. For the construc-
tion of pSB6, first Mag-egfp was amplified from p11AAGJZC using the
primers oEGFP BamHI Rev and oEGFP HindIII Fw. The resulting PCR
fragment was subcloned into pJET1.2/blunt and after restriction with
BamHI and HindIII inserted into pAP150 and pAP160 to replace egfp with
Mag-egfp. Afterwards, the PmamDC45 promoter, the spacing-optimized ri-
bosomal binding site (oRBS) and Mag-egfp were amplified from modified
pAP150 (pSB1) using pBam_pAP150 Fw and pBam_DC w/o Term Rev,
adding EcoRI and SanDI restriction sites for insertion into pBAM1, gen-
erating pSB6. For the generation of pSB7, the whole expression cassette
from modified pAP160, containing the optimized Mag-egfp version plus
Ptet and TetR, was amplified using the primers pBam_pAP160 Fw and
pBam_Tet w/o Term Rev and inserted into pBAM1. For the generation of
the expression plasmids containing gusA as a transcriptional reporter,
gusA was amplified from pLYJ97 using the primers GusA BamHI Fw and
GusA NdeI Rev and cloned into pSB7, replacing Mag-egfp with gusA,
thereby generating pSB8. Transposition of the expression cassettes re-
sulted in single-copy genomic insertion into phenotypical neutral sites as
verified by arbitrary PCR (17) and sequencing.

Construction of MamC fusion proteins. mamC and Mag-egfp were
amplified and fused via overlap PCR (18) using the primers described in
Table S3 in the supplemental material, resulting in C-terminal fusions of
Mag-egfp to mamC; afterwards, the fusion gene was inserted into the NdeI
and BamHI restriction sites of pSB6 and pSB7, resulting in pJH1 and
pJH2. Additionally a tandem fusion of mamC with Mag-egfp and egfp was
generated, following the same strategy, yielding plasmid pJH3. M. gryphi-
swaldense strains were conjugated with pJH1, pJH2, and pJH3 and were
grown in 3 liters of FSM medium to stationary phase at 30°C and 120 rpm.

Cells were harvested by centrifugation at 4°C and 6,500 rpm and used for
magnetosome isolation.

Analytical methods. Magnetic reaction of cells was detected by light
microscopy applying a bar magnet. Optical density (OD) and magnetic
response (Cmag) of exponentially growing cells were measured photomet-
rically at 565 nm as previously reported (19). Iron concentrations of the
isolated magnetosomes were determined by a modified ferrozine assay
(7); 10 �l of magnetosome suspension was used for determination of iron
concentration.

GFP expression in M. gryphiswaldense was assayed by fluorometry, as
described previously (10).

GusA activity assay. Cells were grown to exponential phase, collected
via centrifugation, resuspended in phosphate-buffered saline (PBS), and
disrupted using a sonifier. Cell debris was spun down, and the supernatant
was used to determine protein concentration using the bicinchoninic acid
(BCA) kit from Thermo Scientific. �-Glucuronidase (GusA) activity in
the supernatant was also measured, and the assay was carried out at 37°C
as described by Wilson et al. (20). Units were nanomoles of product
formed per minute per milligram of protein. Duplicate assays were per-
formed, and reported values were averaged from at least three indepen-
dent cultures.

Biochemical methods. Magnetosome isolation from M. gryphiswal-
dense strains was performed as described previously (7). Polyacrylamide
gels were prepared according to the method of Laemmli (21). Magneto-
some membranes were dissolved by incubation in 1% SDS at 65°C for 25
min. Protein concentrations were determined using the BCA protein kit
(Thermo Scientific), and 100 ng to 1 �g of magnetosome membrane
protein was loaded onto 10% (wt/vol) SDS gels and analyzed via quanti-
tative immunoblotting to quantify the expression level of the MamC-GFP
fusion protein.

Proteins were electroblotted onto polyvinylidene difluoride (PVDF)
membranes (Roth, Germany). Membranes were blocked overnight at
4°C. Primary rabbit anti-GFP IgG antibody (1:500 dilution [Santa Cruz,
USA]) was added to the blocking solution and incubated 1 h at room
temperature. Membranes were washed 4 times with blocking solution
(2.5% [wt/vol] milk powder in Tris-buffered saline [TBS] [50 mM Tris-
HCl, pH 7.6; 150 mM NaCl]) for 10 min and incubated with a secondary
horseradish peroxidase-labeled goat anti-rabbit IgG antibody (1:2,000 di-
lution [Promega, USA]) for 1 h. Membranes were washed 4 times with
blocking solution for 10 min and finally 5 min in TBS, and immunoreac-
tive proteins were visualized by using an Ace Glow substrate (Peqlab,
Erlangen) and detected with the LumiImager (Peqlab, Erlangen).

RESULTS

Engineering of a cassette for high constitutive gene expression.
We used a stepwise approach (summarized in Fig. S1 in the sup-
plemental material) to optimize the previously identified strong
PmamDC, which is located within a 325-bp region upstream of the
mamGFDC operon. We first attempted to identify the smallest yet
transcriptionally active fragment (see Fig. S1A in the supplemen-
tal material). Several fragments that were gradually truncated
from the 5= end of the 325-bp upstream region of the mamG gene
were cloned upstream of the egfp reporter, yielding the vectors
pAP150 and pAP161-pAP164. Whereas a 270-bp fragment dis-
played the same fluorescence intensity as the untruncated 325-bp
version, further truncation to 170, 102, and 45 bp increased the
fluorescence 1.5-, 2.2-, and 3-fold, respectively (Fig. 1A). Trunca-
tion of the putative promoter region of the mamGFDC operon
down to 45 bp (still comprising the �35 and �10 regions) in-
creased expression of the reporter gene significantly, possibly be-
cause regulatory elements were excluded from the promoter re-
gion (22). Therefore, the 45-bp truncated version of PmamDC

(designated PmamDC45) was chosen for all subsequent experiments.
As optimal spacing between the Shine-Dalgarno (SD) se-
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quence and the start codon has been shown to be crucial for bac-
terial gene expression (23, 24), we optimized the ribosomal bind-
ing site (RBS) for increased expression. To this end, we combined
PmamDC45 with the original RBS of mamG, spaced by variable
lengths from the SD sequence to the start codon of egfp (see Fig.
S1B in the supplemental material). Whereas random single-base-
pair substitutions within this region did not increase EGFP fluo-
rescence (data not shown), an 8-bp spacing in combination with
PmamDC45 caused 2.8-fold-higher fluorescence than the native RBS
(13 bp), while spacings of 5, 10, or 12 bp did not increase fluores-
cence (Fig. 1B). Thus, a spacing-optimized RBS (AGGAGATCAG
CATATG; RBS in italics and spacing in bold, followed by the start
codon), referred to as oRBS, was used in all subsequent optimiza-
tion steps.

Optimization of Tet-inducible expression. In the next step,
we wanted to generate an inducible expression system, which
should exhibit tight repression in the absence of inducer while
allowing high and tunable expression after induction. A hybrid
promoter similar to that described by Yoshino et al. (14), consist-
ing of the PmamDC45 promoter and two tetO sequences, yielded no
expression in M. gryphiswaldense. Likewise, we failed to construct
various hybrid promoters by combining operators from the Tet
and the lactose systems with native M. gryphiswaldense promoters,
including PmamDC45 and the nitrate-responsive PnirS (25). Also, we
found none of the tested inducible expression systems reported
for other alphaproteobacteria (26–29) to be sufficiently functional
in M. gryphiswaldense. In a different approach, we failed to recon-

struct a riboswitch that reportedly was functional in the closely
related species M. magneticum (30) but exhibited high fluores-
cence in the absence of the inducer theophylline in M. gryphiswal-
dense (data not shown). The widely used Plac promoter yielded
inducible yet very weak expression in M. gryphiswaldense (our
unpublished data).

Therefore, we focused on optimization of the Tn10-derived
Tet-inducible system (31), which in this study was found to be the
only inducible expression system to be functional in M. gryphi-
swaldense. Cloning Ptet upstream of egfp (pAP160) yielded signif-
icant fluorescence in the presence of 70 ng ml�1 Atet while re-
maining tightly repressed (i.e., no fluorescence) in the absence of
the inducer (Fig. 1C). Previous studies utilizing the tet system have
shown that constitutive expression of TetR is more favorable for
the tight repression of strong promoters than the original auto-
regulated expression approach derived from the Tn10 Tet resis-
tance determinant (32); we tested pAP158, pAP159, and pAP160
for expression of the TetR repressor. However, only TetR ex-
pressed from the neomycin promoter Pneo resulted in tight repres-
sion (Fig. 1C). The construct carrying Pneo-TetR (pAP160)
showed significant expression after induction (about 46% of the
fluorescence observed for expression of egfp from Ptet without re-
pressor). For further optimization, we combined Ptet containing
two tetO sequences with the oRBS and cloned it upstream egfp as a
reporter (see Fig. S1D in the supplemental material). Although Ptet

reached only 30% of the fluorescence from constitutive PmamDC45,
this expression level is sufficiently high for practical purposes,

FIG 1 (A to C) Cellular EGFP fluorescence from various expression vectors in M. gryphiswaldense measured by fluorometry. Fluorescence was normalized to cell
density and reported as relative fluorescence units (RFU). Error bars represent standard deviations, calculated from three independent experiments. (A) Effects
of gradual truncation of the PmamDC promoter region from 325 bp down to 45 bp. A strain carrying a promoterless vector displays only weak background
fluorescence, also observed for untransformed cells. (B) Effects of variation of the spacing from the SD sequence to the start codon from 13 to 5 bp in the RBS.
(C) Influence of TetR expression from different promoters on the expression of the reporter EGFP from Ptet. (D) GusA activity of cell extract from M.
gryphiswaldense expressing chromosomal GusA from Ptet promoter. GusA activity units are defined as nanomoles of product per minute per milligram of protein.
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while still maintaining tight repression in the absence of inducer.
Therefore, Pneo-TetR was chosen for further engineering of an
inducible expression cassette.

Chromosomal insertion of an expression cassette with a
codon-optimized egfp reporter gene results in brighter and uni-
form fluorescence. Expression of foreign genes in M. gryphiswal-
dense (average G�C content � 62.2%) might be limited by dif-
ferent codon usage. We therefore explored the effect of codon
optimization, by synthesis of an egfp variant based on the average
codon usage of M. gryphiswaldense (see Fig. S1C in the supple-
mental material), designated Mag-egfp (for Magnetospirillum-op-
timized EGFP) (see Fig. S2 in the supplemental material). If ex-
pressed from constitutive PmamDC45 with oRBS, even minor
adjustments increased fluorescence of the resulting Mag-EGFP by
about 30% compared to EGFP (see Fig. S3A in the supplemental
material). Western blots of M. gryphiswaldense cells expressing
either Mag-EGFP (pSB1) or EGFP (pAP150) showed a more in-
tense EGFP band for cells expressing Mag-EGFP than for cells
expressing EGFP (see Fig. S3B in the supplemental material). Al-
together, the combined optimizations amounted to an 8-fold-in-
creased fluorescence and were cloned together into a single cas-
sette, DC_Mag-EGFP, harbored on pSB1.

Cells expressing Mag-egfp from a medium-copy-number plas-
mid (pSB1) showed a highly heterogenous phenotype: while
50% of cells were not fluorescent at all, about 20% showed only
weak and about 30% strong fluorescence (Fig. 2A). Therefore,
we attempted single-copy chromosomal integration of the ex-
pression cassette Tet_Mag-EGFP_TetR by Tn5-mediated
transposition from the pBAM1 (17)-derived insertion plas-
mids pSB6 (PmamDC45) and pSB7 (Ptet) (for insertion sites, see
Table S4 in the supplemental material). Fluorescence microscopy
of populations with insertions of pSB6 and pSB7 showed a uni-
form phenotype, with about 98% of the cells showing identical
levels of intermediate fluorescence (Fig. 2B), while the untrans-
formed wild-type (wt) negative control showed only background
fluorescence (Fig. 2C). In Western blots with whole cells of iden-
tical cell numbers (Fig. 2D), Mag-EGFP bands of approximately
the same intensity were obtained, indicating that overall expres-

sion yields were comparable for populations expressing Mag-
EGFP either from the plasmid (pSB1) or chromosomally, al-
though single cells displayed the greatest amplitudes and variation
of fluorescence in the population expressing Mag-EGFP from
pSB1. We failed to detect intermediate fluorescence levels by vary-
ing the inducer concentration between 50 ng ml�1 (� saturated
fluorescence) and 2.5 ng ml�1 (� no fluorescence) but instead
observed an all-or-none response. Although different induction
kinetics were observed with different amounts of Atet (e.g., after
induction for 6 h with 70 ng ml�1 Atet, the fluorescence was ap-
proximately half of that of the constitutive promoter PmamDC45),
increasing induction time to 18 h resulted in nearly same expres-
sion levels of Mag-EGFP as constitutive conditions (data not
shown).

Because of the known limitations of using GFP as the reporter
(33), for estimation of induction kinetics we instead used the en-
zyme �-glucuronidase (GusA), which we recently demonstrated
to be an efficient transcriptional reporter in M. gryphiswaldense
(25). After replacement of Mag-egfp by gusA, we measured GusA
activity in cells harboring a chromosomal copy of both the expres-
sion cassette and gusA (pSB8) in medium with and without Atet.
As with Mag-EGFP, essentially no activity was detectable in the
absence of inducer (Fig. 1D). While for Atet concentrations �2.5
ng ml�1 induction was maximal and could be not further en-
hanced by concentrations up to 100 ng ml�1, between 0.5 and 1 ng
ml�1 a nearly linear response was observed (Fig. 1D). In summary,
this demonstrated that transcriptional activity of Ptet is tunable
within a narrow range of inducer concentrations. As observed
with Mag-EGFP, maximum induction of Ptet yielded about one-
third of the constitutively expressed GusA activity (data not
shown).

Next, we attempted inducible expression of fusion proteins
displayed on magnetosomes (7). Therefore, Mag-egfp was re-
placed by mamC–Mag-egfp, which was fused via a 10-glycine
linker and cloned into pSB7. The resulting construct, pJH2, was
chromosomally inserted into M. gryphiswaldense strain 	C (har-
boring a single gene deletion of mamC [34]) cells to eliminate the
background of nonfused MamC. Uninduced cells showed no flu-
orescence at all, while after addition of 70 ng ml�1 Atet, a linear
fluorescence pattern characteristic of chain localization at midcell
was observed after 6 to 18 h by fluorescence microscopy (see Fig.
S4B and C in the supplemental material). Magnetosomes purified
from this strain exhibited strong and even fluorescence under the
microscope (see Fig. S5 in the supplemental material). This also
demonstrates that the expression of magnetosome proteins and
foreign proteins fused to them as well as their subsequent targeting
to MM can be induced.

Optimized magnetosome expression of fusion proteins. Be-
cause maximum expression levels obtained with both inducible
and constitutive promoters proved to be limiting for even higher
magnetosome expression, we attempted to further increase mag-
netosome expression of foreign genes by increasing their dosage.
To this end, we fused the C terminus of our MamC anchor via 10
glycine residues to a sequence variant of egfp, connecting them to
each other by an alpha helix linker. This was a precaution to re-
duce homologous recombination between the two copies, as egfp
and Mag-egfp share only 89% nucleotide identity. The Mag-
EGFP–EGFP construct was then cloned into pJH1, yielding pJH3,
which carried the optimized constitutive expression cassette DC_
MamC–Mag-EGFP–EGFP and was chromosomally inserted into

FIG 2 Fluorescence micrographs of M. gryphiswaldense expressing Mag-egfp
under the control of PmamDC45 from pSB1 (A) or a chromosomal insertion via
pSB6 (B) compared to nonfluorescent M. gryphiswaldense wt (C). Arrows in-
dicate nonfluorescent cells, filled arrows indicate strongly fluorescent cells,
and arrowheads indicate moderately fluorescent cells. Bar, 2 �m. (D) Western
blot of whole M. gryphiswaldense cells expressing Mag-egfp from the chromo-
some (pSB6) or plasmid (pSB1). Wt cells were included as a negative control.
Mag-EGFP was detected using rabbit anti-GFP IgG as the primary antibody
and goat anti-rabbit IgG alkaline phosphatase antibodies as the secondary
antibody.
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M. gryphiswaldense 	C (Fig. 3). Cells harboring Mag-EGFP–
EGFP displayed much stronger fluorescence signals at midcell
than cells with only a single Mag-EGFP fusion (see Fig. S4D in the
supplemental material). Expression of the Mag-EGFP–EGFP fu-
sion affected neither the biomineralization of magnetosomes nor
the thickness and appearance of the MM (Fig. 4A and B). To
estimate the amount of MamC–Mag-EGFP and MamC–Mag-
EGFP–EGFP, we performed quantitative Western blots on ex-
tracted MM. As expected, immunostaining of Mag-EGFP–EGFP
(pJH3) yielded a significantly stronger 74-kDa band than that of
single Mag-EGFP (Mag-EGFP–EGFP was diluted 10
 for quan-
titative Western blot analysis) (Fig. 4C). Using a GFP standard
(Fig. 4D), we estimated that magnetosomes isolated from strain
JH1 (displaying MamC–Mag-EGFP expressed from PmamDC45)

contained approximately 33 ng Mag-EGFP per �g magnetite (as
measured by iron content). If expressed from Ptet (strain JH2), 9
ng Mag-EGFP was detected per �g magnetite. Magnetosomes ex-
pressing a MamC–Mag-EGFP–EGFP fusion from PmamDC45

(strain JH3) displayed a much stronger band than the other sam-
ples, corresponding to 83 ng (Mag-)EGFP per �g magnetite (Fig.
4C; for details, see Fig. S7A and B in the supplemental material).

DISCUSSION

We optimized and constructed versatile cassettes that allow either
inducible or high-level constitutive expression and magnetosome
display of foreign proteins in M. gryphiswaldense.

Increased constitutive expression was accomplished by the
combined effect of various optimization steps, which altogether
yielded an 8-fold-higher expression of the cytoplasmic Mag-EGFP
reporter than previously available systems. The truncation also
yielded a compact, easy-to-clone gene cassette, whose extension of
58 bp is within the typical range of other prokaryotic promoters
(40 to 65 bp) (35).

None of the several tested inducible expression systems from
other alphaproteobacteria were found to be functional in M. gry-
phiswaldense, because of lack of either expression or repression.
We also failed to construct a functional tetracycline-responsive
hybrid promoter by combining the optimized PmamDC45 with op-
erators (tetO) and the repressor (TetR) from the well-character-
ized tet system (31), which is functional in a vast variety of bacteria
(36, 37). Although a similar system was reported for the related M.
magneticum (14), in M. gryphiswaldense different variants of hy-
brid promoters lacked functionality, possibly due to the absence
of further regulatory elements in the genetic neighborhood of
PmamDC45 (38).

However, we found that in M. gryphiswaldense the original
Tn10 Ptet promoter is tightly repressed but can be induced to rea-
sonably high expression levels in the presence of saturating Atet
concentrations as low as 2.5 ng ml�1. This is 40-, 80-, 160-, and
even 200-fold lower than in Helicobacter pylori (36), E. coli (39),
Bacillus subtilis (37), and M. magneticum (14), respectively, while

FIG 3 Schematics of optimized expression vectors (DC_Mag-EGFP and Tet_Mag-EGFP_TetR or Mag-EGFP–EGFP fusion) and chromosomal insertion.
Expression vectors contained either the strong optimized PmamDC45 or the inducible Ptet promoter, the optimized oRBS, and the magnetosome anchor mamC,
which can be fused via a linker domain to any codon-optimized heterologous gene of interest (GOI). Insertion into the chromosome is via pBAM1-derived
insertional plasmids and chromosome expression of fusion proteins.

FIG 4 (A and B) Transmission electron micrographs of purified magneto-
somes from M. gryphiswaldense 	C JH3 (A) and wt (B), showing no effect on
MM or magnetite crystals. Black scale bar, 200 nm; white scale bar, 40 nm. (C)
Quantitative Western blot of (Mag-)EGFP in the MM, isolated from M. gry-
phiswaldense strains expressing different chromosomal mamC–Mag-egfp fu-
sions from PmamDC45 (JH1) and Ptet (JH2) and mamC–Mag-egfp–egfp fusions
(JH3) from PmamDC45. (Mag-)EGFP was detected by rabbit anti-GFP IgG as the
primary antibody and goat anti-rabbit IgG horseradish peroxidase antibodies
as secondary antibodies. The sample containing the Mag-EGFP–EGFP fusion
was diluted 10
 for quantitative Western blot analysis. Band sizes are as fol-
lows: GFP, 27 kDa; 2
 GFP, 74 kDa. (D) Recombinant GFP was used as a
standard.
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the regulatory range (up to 12-fold with the reporter GusA) is
comparable to tet-responsive systems in other bacteria (S. aureus,
50- to 100-fold; S. pneumoniae, 5-fold [40, 41]). We also found
that a chromosomal insertion of Tet_MamC–Mag-EGFP_TetR
from vector pJH2 provides tight TetR-mediated silencing of
MamC–Mag-EGFP, while induction in magnetosome-con-
taining wt cells caused Mag-EGFP to be reasonably expressed
on magnetosomes after only 6 h. This implies that insertion of
newly synthesized MamC–Mag-EGFP fusion proteins into the
MM of pre-existing magnetosome particles is possible. In ad-
dition to magnetosome display, the TetR-controlled expres-
sion system could also be used for the generation of conditional
knockouts and gene depletion studies and thus extends the
genetic toolbox available in M. gryphiswaldense. Despite these
improvements, maximum expression of fully induced Ptet

reaches only 30% of constitutive PmamDC45-driven expression.
However, this level is sufficient and appropriate for many prac-
tical purposes.

Inhomogeneous expression (that is, uneven expression levels
varying between individuals) of the reporter gene from plasmids
in isogenic cultures is frequently observed in bacteria (42, 43). We
achieved a much more homogenous Mag-EGFP expression by
chromosomal insertion of single copies than did previous at-
tempts with multicopy expression (7, 8). Tn5-mediated transpo-
sition allows straightforward, single-site integration into the host
chromosome, despite the possible disadvantage of random inser-
tion. One caveat of using Tn5-mediated transposition is that the
expression cassette integrates randomly into genomic loci of un-
known function, possibly causing unwanted mutations. However,
all insertants lacked obvious phenotypes with respect to growth
and magnetosome formation (compare Fig. S6A and B in the sup-
plemental material), indicating the absence of effects on host me-
tabolism. On the other hand, reporter expression in the absence or
presence of inducer were similar in all insertants, suggesting that
no interference such as read-through from external promoters
occurred.

In addition to increased transcription, using GFP as a model
we explored two strategies to enhance translation of foreign pro-
teins. First, we demonstrated that even minor adjustments of the
codon usage closer to that of M. gryphiswaldense (62.2% G�C)
increased the fluorescence of the resulting synthetic Mag-EGFP
(Magnetospirillum-optimized EGFP) by 30%, which thus repre-
sents a reporter with increased sensitivity for future tagging and
localization studies. Codon optimization seems promising also for
boosting expression of other foreign proteins, as demonstrated in
other bacteria (44).

Second, we showed that magnetosome expression of foreign
proteins can also be enhanced by increasing their copy number. In
similar approaches, Choi and coworkers integrated double copies
of the cym repressor into Methylobacterium extorquens, thereby
achieving tight repression of an inducible promoter (45). In the
same organism, expression of five chromosomal copies of gfp re-
sulted in 20-fold-higher expression than single-copy expression
(46). Multicopy insertion of recombinant pathways can increase
gene expression by 60% in contrast to plasmid expression of the
same pathway in E. coli (47). In our study, duplication of (Mag-)
egfp fused in tandem to mamC resulted in strong fluorescence and
2.5-fold increased expression of the (Mag-)EGFP reporter on
magnetosomes. Mag-EGFP–EGFP fusions displayed proteolytic
stability, as no cleavage products could be detected via Western

blotting. These engineered magnetosomes represent magnetic

nanoparticles with greatly enhanced fluorescence, which could be

of immediate relevance for a number of applications, such as, for

instance, as bimodal contrast agents for both magnetic resonance

imaging (MRI) and near-infrared fluorescence optical (NIRF) im-

aging (48). In addition, magnetosome-expressed single and tan-

dem EGFP fusions with enhanced fluorescence intensity and uni-

formity can be used as fluorescent tags to follow intracellular

protein localization or to study the intricate cell biology of this and

other magnetic bacteria. MamC–Mag-EGFP expression driven by

PmamDC45 resulted in 33 ng Mag-EGFP per �g magnetite, which

was 3.6-fold higher than that from Ptet (9 ng �g�1 magnetite). The

amount of (Mag-)EGFP obtained with Mag-EGFP–EGFP fusion

per �g magnetite was 83 ng and thus 2.5-fold higher than single

copy MamC–Mag-EGFP expressed constitutively. Based on these

data, we attempted to estimate the copy number of GFP proteins

expressed on single magnetosome particles. Assuming a diameter

of 37.5 nm for a single magnetite crystal as determined by trans-

mission electron microscopy, a density of 5.24 g/cm3 for magne-

tite, and for simplicity an approximately spherical shape, this

would result in a volume of 2.76 
 10�17 cm3 and mass of 1.45 


10�16 g for an average single magnetosome crystal (see Fig. S7C in

the supplemental material). For MamC–Mag-EGFP expressed

from PmamDC45, we thus can estimate about 100 Mag-EGFP copies

per magnetosome, while only about 30 copies were present if the

same construct was expressed from Ptet. 250 (Mag-)EGFP copies

per particle were calculated for the Mag-EGFP–EGFP fusion. This

more-than-double amount of (Mag-)EGFP might be due to in-

creased stability of the Mag-EGFP–EGFP fusion or, alternatively,

just to the variability of magnetosome sizes, which to some extent

depend on the growth stage of the cells. Assuming a lower size

of only 35 nm and an upper size of 48 nm (as found within the

typical range of variation [49]), the same calculations would

yield GFP copy numbers of 80 to 210 in strain JH1 and 200 to 520

(Mag-EGFP–EGFP fusion) in strain JH3. Assuming MamC-to-

Mag-EGFP ratios of 1:1 for the single protein and 1:2 for the Mag-

EGFP–EGFP fusion, the number of MamC copies per magneto-

some particle is most likely within the range of 80 to 260.

Assuming a surface area of 4,417 nm2 for a 37.5-nm magnetosome

particle and a diameter of approximately 3.45 nm for the 12.5-kDa

MamC protein (7), the theoretical number of MamC copies that

would cover the entire particle surface would be 1,280. However,

as previous estimations revealed MamC to be only a part (relative

abundance, 16.3% [50]) of the MM, which contains about 20

different proteins (50), the estimated 80 to 250 copies occupying

about 6 to 20% of the surface seem to be a realistic range. Thus, the

number of MamC molecules that can serve as fusion anchors is

unlikely to be further increased without disturbing MM function.

Instead, increasing the number of protein units fused to a single

MamC anchor, as shown by our Mag-EGFP–EGFP fusion, is a

more appropriate route to increase yields of heterologous proteins

expressed per particle.
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Suppl. Fig S2: Sequence alignment of non-optimzed egfp and

Magnetospirillum-optimized magegfp using CLUSTALW 

(version 2.1, http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

Sequence similarity is 89 %, start and stop codon are over-

lined.



Suppl. Fig S3: (A) Fluorescence of Magnetospirillum-

optimized (MagEGFP) versus non-optimized GFP (EGFP) 

expressed from the PmamDC45 promoter. Fluorescence was 

normalized to the cell density and described as relative 

fluorescence units (RFU). Error bars represent standard 

deviations, calculated from three independent experiments. (B) 

Western blot of whole M. gryphiswaldense cells expressing 

EGFP or MagEGFP from the control of the PmamDC45. 

(Mag)EGFP was detected using rabbit αGFP IgG as primary, 

and goat anti-rabbit IgG alkaline phosphatase antibodies as 

secondary antibody. PageRuler™ Prestained Protein Ladder 

from fermentas was used as a standard. 

wt EGFP MagEGFP

27 kDa

A B



Suppl. Fig. S4: Fluorescence micrographs of M. gryphiswaldense

∆C strains carrying chromosomal insertions of (A) PmamDC45-mamC-

magegfp (JH1) (B) Ptet-mamC-magegfp (JH2) induced with 70 ng

ml-1 Atet, (C) uninduced and (D) PmamDC45-mamC-egfp-magegfp

(JH3) expression cassettes. White bar corresponds to 2 µm. 

A B C D

Suppl. Fig. S5: Fluorescence and DIC micrographs of 

isolated magnetosomes from M. gryphiswaldense MSR-

1 ∆C (A) JH2 (induced) (B) JH1 and (C) JH3. White 

bar corresponds to 2 µm.bar corresponds to 2 µm.



d = 37.5 nm

A
C

B

Suppl. Fig. S6: A) Transmission electron micrographs of M. gryphiswaldense SB6, 

expressing MagEGFP chromosomally from PmamDC45. The black scale bar represents 200 nm. 

B) Optical density (OD565) after overnight growth of strains SB6, SB7 and SB8 in 

comparison to wt. Error bars represent standard deviations calculated from triplicate cultures, 

experiment was repeated three times, data is from one representative experiment. 

A
B

Suppl. Fig. S7: (A) Quantitative Western blot of GFP standard curve (marked by “x”) and MM samples

from strains JH1 (black square), JH2 (grey square) and JH3 (light grey square, 10x diluted). (B)

Corresponding GFP protein concentrations of strains JH1, JH2 and JH3. (C) Schematic drawing of

approximation of magnetosome size.

d = 37.5 nm

Volume sphere = 1/6*d*π



Suppl. Tab. S1: Plasmids used in this study 

Plasmid name Description Source or reference 

pJET1.2/blunt Cloning vector; Amp
R
 Fermentas 

pBBR-MCS2 Mobilizable broad-host-range 

vector; Km
R
 

Kovach, M. E., et al,. 1995 

pBAM1 Km
R
 , Amp

R
, oriR6K, tnpA Martinez-Garcia, E., et al., 

2011 

p11AAGJZC Amp
R
,ColE1 ori, oRBS, magegfp  GeneArt® (Invitrogen), life 

technologies, Darmstadt 

pAP150 pBBR-MCS2, with PmamDC45, egfp, 

terminator-fragment; Km
R
 

A. Pollithy (unpublished) 

pAP158 pBBR-MCS2, with Ptet, egfp, 

terminator-fragment,PmamAB-TetR; 

Km
R
 

A. Pollithy (unpublished) 

pAP159 pBBR-MCS2, with Ptet, egfp, 

terminator-fragment,PmamDC-TetR; 

Km
R
 

A. Pollithy (unpublished) 

pAP160 pBBR-MCS2, with Ptet, egfp, 

terminator-fragment,PNeo-TetR; 

Km
R
 

A. Pollithy (unpublished) 

pAP161 pBBR-MCS2, with PmamDC325, 

egfp, terminator-fragment; Km
R
 

A. Pollithy (unpublished) 

pAP162 pBBR-MCS2, with PmamDC102, 

egfp, terminator-fragment; Km
R
 

A. Pollithy (unpublished) 

pAP163 pBBR-MCS2, with PmamDC170, 

egfp, terminator-fragment; Km
R
 

A. Pollithy (unpublished) 

pAP164 pBBR-MCS2, with PmamDC270, 

egfp, terminator-fragment; Km
R
 

A. Pollithy (unpublished) 

pLYJ97 pBBR-MCS2 with gusA Li, Y., et al., 2012 

pSB1 pBBR-MCS2, with PmamDC45, 

magegfp, terminator-fragment; 

Km
R
 

this study 

pSB6 pBAM1 with PmamDC45, magegfp, 

Km
R
, Amp

R
 

this study 

pSB7 pBAM1 with Ptet, magegfp, PNeo-

TetR, Km
R
, Amp

R
 

this study 

pSB8 pBAM1 with Ptet, gusA, PNeo-TetR, 

Km
R
, Amp

R
 

this study 

pJH1 pBAM1 with PmamDC45, mamC-

magegfp, Km
R
, Amp

R
 

this study 

pJH2 pBAM1 with Ptet, mamC-magegfp, 

PNeo-TetR, Km
R
, Amp

R
 

this study 

pJH3 pBAM1 with PmamDC45, mamC-

magegfp-egfp, Km
R
, Amp

R
 

this study 

 

 

 

 



Suppl. Tab. S2: Strains used in this study 

Strain Description Source or reference 

Escherichia coli   

DH5α F
-
 supE44 ∆lacU169 (Φ 

80 

lacZDM15) hsdR17 recA1 

endA1 

gyrA96 thi-1 relA1 

 

WM3064 thrB1004 pro thi rpsL 

hsdS lacZ∆M15 RP4-1360 

∆(araBAD)567 

∆dapA1341::[erm pir] 

W. Metcalf, unpublished 

BW29427 DAP auxotroph derivative 

of E. coli strain B2155 

K. Datsenko and B. L. 

Wanner, unpublished 

Magnetospirillum 

gryphiswaldense 

  

M. gryphiswaldense MSR-1 

R3/S1 

Rif
R
, Sm

R 
spontaneous 

mutant, lab strain 

D. Schultheiss, et al., 

2003 

M. gryphiswaldense ∆C ∆mamC A. Scheffel, et al., 2007 

M. gryphiswaldense (pAP150) Km
R
, conjugated with 

pAP150 

A. Pollithy, unpublished 

M. gryphiswaldense (pAP160) Km
R
, conjugated with 

pAP160 

A. Pollithy, unpublished 

M. gryphiswaldense (pSB1) Km
R
, conjugated with 

pSB1 

this study 

M. gryphiswaldense MSR-1 SB6 Km
R
, transposon mutant 

with inserted magegfp 

from PmamDC45 

this study 

M. gryphiswaldense MSR-1 SB7 Km
R
, transposon mutant 

with inserted magegfp 

from Ptet 

this study 

M. gryphiswaldense MSR-1 SB8 Km
R
, transposon mutant 

with inserted gusA from 

Ptet 

this study 

M. gryphiswaldense MSR-1 JH1 Km
R
, transposon mutant 

with inserted mamC-

magegfp from PmamDC45 

this study 

M. gryphiswaldense MSR-1 JH2 Km
R
, transposon mutant 

with inserted mamC-

magegfp from Ptet 

this study 

M. gryphiswaldense MSR-1 JH3 Km
R
, transposon mutant 

with inserted mamC-

magegfp-egfp from 

PmamDC45 

this study 

 

 

 

 



Suppl. Tab. S3: Primers used in this study. Restriction sites indicated in bold 

Primer name Sequence Restriction site 

oEGFP BamHI Rev cgaacggatcctcacttatacagctcg BamHI 

oEGFP HindIII Fw cggctcaagcttaggagatcagcatatg HindIII 

pBam_pAP160 Fw atcgggaccccttccggctggctggttt SanDI 

pBam_ Tet w/o Term Rev atcgaattcggcggatttgtcctactca EcoRI 

pBam_pAP150 Fw atcgggacccggatcctcacttatacagct SanDI 

pBam_DC w/o Term Rev gcgaattcctcgagctttttcgctttac EcoRI 

GusA BamHI Fw gtggatcccccgggtcattgtttgcc BamHI 

GusA NdeI Rev ttcatatgttacgtcctgtagaaa NdeI 

optGFP San/Bam Fw gagggacccggatcctcacttatacagctcgtcc BamHI/SandDI 

optGFP linker Rev ggaggcggaggcggtggcggaggtggcggaatcgatatg

gtgtcgaagggcga 

ClaI 

mamC ov linker Fw cgccaccgcctccgcctccatgggccaattcttccctca NcoI 

mamC NdeI Rev tacatatgagctttcaacttgcgcc NdeI 

optGFP2x Fw agtggatcctcacttatacagctcgtcca BamHI 

optGFP2x Rev ctgtgcctgcagggcgagatggtgtcgaagggcg PstI 

eGFP overl Fw atctcgccctgcaggcacagcttgtacagctcgtccatgc PstI 

mamC_RBS Rev cgaagcttaggagatcagcatatgagctttcaact HindIII 

 

 

Suppl. Tab. S4: Insertion sites of expression cassettes in M. gryphiswaldense strains 

Strain Gene Putative function 

MSR-1 SB6 K7 MGR_1519 hypothetical protein 

MSR-1 SB6 K8 Inter region 

between 

MGR_1092 and 

MGR_2997 

MGR_1092 - D-alanine-D-alanine ligase 

MGR_2997 - acyl carrier protein 

MSR-1 SB7 K1 MGR_1581 sugar kinase, ribokinase family 

MSR-1 SB7 K2 MGR_1519 hypothetical protein 

MSR-1 SB8 MGR_1702 transposase IS3/IS911 

MSR-1 JH1 MGR_3776 insertion element ISR1 from not characterized 10 kDa 

protein A3  

MSR-1 JH2 MGR_3148 TorC, trimethylaminoxide (TMAO)-reductase I, 

cytochrom C subunit 

MSR-1 JH3 MGR_612 hypothetical protein 
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Bioengineered bioluminescent magnetotactic

bacteria as a powerful tool for chip-based

whole-cell biosensors†

Aldo Roda,*ab Luca Cevenini,b Sarah Borg,c Elisa Michelini,ab

Maria Maddalena Calabrettab and Dirk Schülerc

This paper describes the generation of genetically engineered bioluminescent magnetotactic bacteria (BL-MTB) and

their integration into a microfluidic analytical device to create a portable toxicity detection system.

Magnetospirillum gryphiswaldense strain MSR-1 was bioengineered to constitutively express a red-emitting click

beetle luciferase whose bioluminescent signal is directly proportional to bacterial viability. The magnetic properties

of these bacteria have been exploited as “natural actuators” to transfer the cells in the chip from the reaction to

the detection area, optimizing the chip’s analytical performance. A robust and cost-effective biosensor for the eval-

uation of sample toxicity, named MAGNETOX, based on lens-free contact imaging detection, has been developed.

A microfluidic chip has been fabricated using multilayered black and transparent polydimethyl siloxane (PDMS) in

which BL-MTB are incubated for 30 min with the sample, then moved by microfluidics, trapped, and concentrated

in detection chambers by an array of neodymium–iron–boron magnets. The chip is placed in contact with a cooled

CCD via a fiber optic taper to perform quantitative bioluminescence imaging after addition of luciferin substrate. A

model toxic compound (dimethyl sulfoxide, DMSO) and a bile acid (taurochenodeoxycholic acid, TCDCA) were

used to investigate the analytical performance of the MAGNETOX. Incubation with DMSO and TCDCA drastically

reduces the bioluminescent signal in a dose-related manner. The generation of bacteria that are both magnetic

and bioluminescent combines the advantages of easy 2D cell handling with ultra sensitive detection, offering

undoubted potential to develop cell-based biosensors integrated into microfluidic chips.

Introduction

The increasing demand for robust and cost-effective portable

analytical devices for on-site environmental toxicity screening

has prompted the development of miniaturized whole-cell

biosensors which are able to provide information about

potential in vivo toxicity, thus predicting risks for human and

animal health.1 Advances in molecular biology techniques

offer the opportunity to enable cells to express specific recog-

nition elements such as receptors or regulatory proteins

which trigger intracellular signaling events as a result of a

specific interaction with target analyte(s). Reporter gene tech-

nology is based on a cascade of signaling events which

ultimately result in the expression of a reporter protein, such as

green fluorescent protein (GFP) or luciferase, whose expression

can be measured by fluorescence or bioluminescence (BL).2

Thanks to the high signal/noise ratio and no need for an

external light source or special sample geometry, measure-

ment of BL represents one of the most powerful detection

strategies for miniaturized devices.3 Besides, the availability

of several luciferases with different BL emission properties

allows development of cell-based BL assays in multiplex for-

mats or use of an internal control to correct the analytical

signal according to cell viability.4 Whole-cell biosensors are

suitable for implementation in miniaturized and/or micro-

fluidic devices, with the advantages of low sample and reagent

consumption, portability, and short analysis time. Several

examples of detection of different classes of analytes, ranging

from heavy metals to endocrine disruptors have been

reported.5,6 Nonetheless, the majority of previously reported

devices lack adequate analytical performance for real-life

applications, and have thus failed to reach the market.7,8 To

increase the robustness of such devices, several cell immobi-

lization strategies have been investigated, aiming to keep the

a Laboratory of Analytical and Bioanalytical Chemistry, Department of Chemistry

“G. Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2,

40126 Bologna, Italy. E-mail: aldo.roda@unibo.it; Tel: +39 051343398
b INBB, Istituto Nazionale di Biostrutture e Biosistemi, INBB, Roma, Italy
c Ludwig-Maximilians-Universität München, Department Biologie I, Mikrobiologie,

Planegg-Martinsried, Germany

† Electronic supplementary information (ESI) available. See DOI: 10.1039/

c3lc50868d

Lab Chip, 2013, 13, 4881–4889 | 4881This journal is © The Royal Society of Chemistry 2013

Lab on a Chip

P
u
b
li

sh
ed

 o
n
 0

1
 O

ct
o
b
er

 2
0
1
3
. 
D

o
w

n
lo

ad
ed

 b
y
 L

u
d
w

ig
 M

ax
im

il
ia

n
s 

U
n
iv

er
si

ta
et

 M
u
en

ch
en

 o
n
 1

3
/1

1
/2

0
1
3
 1

6
:2

3
:2

4
. 

View Article Online
View Journal  | View Issue

http://dx.doi.org/10.1039/C3LC50868D
http://pubs.rsc.org/en/journals/journal/LC
http://pubs.rsc.org/en/journals/journal/LC?issueid=LC013024


cells alive and responsive to the target analyte. However,

analyte and/or reagent (e.g., oxygen, BL substrates…) diffusion

through the immobilization matrix may result in prolonged

analysis time and reproducibility issues.

A promising strategy to improve the sensitivity of BL-based

devices is to move the cells between different areas of the chip

which are appointed to carry out specific functions such as:

incubation of the sample, reagent(s) addition, washing and

detection. To this end the exploitation of magnetotactic bacte-

ria (MTB) magnetism as a “natural actuator” could represent

a valuable approach.

MTB have the innate ability to produce magnetosomes (or

bacterial magnetic nanoparticles, BacMPs), i.e. nanoparticles of

magnetite (Fe3O4) or greigite (Fe3S4) enveloped in a 3–4 nm

thick lipid membrane, which are aligned in a well-ordered

chain to achieve the maximum magnetic moment. Owing to

the presence of magnetosomes, MTB orient and migrate along

geomagnetic field lines. In past years, extensive research has

been focused on the elucidation of the mechanisms regulating

magnetosome biosynthesis and on the optimization of culture

techniques for the production and purification of BacMPs.9,10

Two major strategies can be envisaged to exploit MTB for

bioanalytical applications: (i) the use of genetically engineered

MTB as living biosensors, and (ii) the use of BacMPs as an

alternative to chemically synthesized magnetic nanoparticles

(MNPs). So far, the latter has been explored more extensively.

Thanks to their size, ranging from 30 to 120 nm,11 and their

biocompatibility, due to the presence of a surrounding lipid

bilayer membrane, BacMPs are highly advantageous for devel-

oping several kinds of biosensors, and more generally for

binding assays12,13 and drug delivery systems.14

Although significant advances in genomic studies of MTB

have been reported,15 the genetic engineering of MTB neces-

sary to obtain magnetic bioluminescent whole-cell biosensors

(BL-MTB) has not been accomplished. In addition, a minia-

turized device integrating BL-MTB and a light detector has

not been reported in the scientific literature.

As a first proof of concept of this new approach,

M. gryphiswaldense MSR-1 strain was genetically engineered to

constitutively express a red-emitting luciferase. A microfluidic

chip prototype has been fabricated using multilayered polydi-

methylsiloxane (PDMS) constituted of three diamond-shaped

incubation chambers connected with detection areas. After

incubation with the sample, bacteria can be magnetically

trapped and concentrated in the detection areas which are

placed in contact with a charge-coupled device (CCD) sensor

via a fiber optic taper to maintain adequate spatial resolution.

Quantitative BL imaging is performed over a period of a few

minutes, upon substrate addition (D-luciferin). This prototype

was used as a rapid and sensitive biosensor for the evalua-

tion of sample toxicity.

Results and discussion

In this study we genetically engineered magnetotactic bacteria

to obtain BL magnetic biosensors. Some so-called

“magnetically labeled biosensors” have been previously

obtained by chemical functionalization of cells (mammalian

cell lines, yeast and bacteria) with synthetic MNPs.16,17 Indeed

this approach has some technical limitations requiring

functionalization steps that may create standardization prob-

lems; the cells divide during the incubation time and the

number of MNPs on each cell’s surface decreases, thus nega-

tively affecting the reproducibility of an assay relying on the

movement or trapping of biosensing cells within a micro-

fluidic chip via magnetic fields. Our strategy exploits the

intrinsic capability of magnetotactic bacteria, such as

Magnetospirillum gryphiswaldense, to produce a chain of mag-

netic nanoparticles (magnetosomes) within the cell which

confer the ability to orient and migrate along magnetic field

lines. The number and shape of the genetically encoded mag-

netic particles is strictly regulated by the bacterial genome.

When grown in microaerobic conditions the majority of

the cells are magnetic and retain magnetic properties

through cell divisions. For the purpose of microfluidic chip

integration we choose magnetotactic bacteria in order to have

a homogenous population of magnetic cells.

The biosensors were integrated into a newly designed

magnetic microfluidic chip, named MAGNETOX, which facili-

tates rapid, sensitive and direct toxicity screening without the

need for sample pre-treatment steps.

The use of a magnetic array to separate the biosensing cells

from the sample allows simultaneous removal of interferents

and concentration of the BL-MTB in front of the CCD device,

improving BL detection in terms of light output and sensitivity.

Preparation and characterization of bioluminescent

magnetotactic bacteria

M. gryphiswaldense has been selected as the host strain

because it is well characterized and its genetic toolbox is

well developed.18

The M. gryphiswaldense strain MSR-1 was genetically

engineered to express the red-emitting click beetle luciferase

(CBR, λmax = 615 nm) under the control of the constitutive

PmamDC45 minimal promoter which ensures high expression

levels of heterologous proteins (unpublished data). To this

end, CBR luciferase, a mutant of a yellow-green luciferase from

Pyrophorus plagiophthalamus, was selected as the reporter

protein because of its thermostability, pH-insensitivity and

glow type emission.19

When expressed in bacterial cells, CBR has a much longer

half-life than the wild-type P. pyralis luciferase (5 h vs.

0.26 h).20 Since CBR requires endogenous bacterial ATP for

the chemical reaction, any change in light output truly

reflects alterations in the viability and metabolic state of the

cell. A shuttle vector containing the cDNA encoding for CBR

under the regulation of a constitutive promoter was used to

transform an E. coli donor strain and was transferred to

MSR-1 strain by conjugation.

The BL emission of the BL-MTB cells was investigated in

terms of kinetics and spectral emission properties to obtain
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information useful for the subsequent implementation of the

cells in the microfluidic chip. For this reason we measured

the BL signals emitted by intact living cells in 96-well

microplates after addition of the BL substrate D-luciferin at

pH 5.0. The BL-MTB emission kinetics showed that after

injection of the BL substrate the signal reached a peak within

a few seconds followed by rapid decay and stabilization at a

signal corresponding to about 50% of the maximum BL emis-

sion (see Fig. 1(a)). Therefore a suitable temporal window

from 5 to 15 min was identified for the BL measurements.

This glow-type emission is particularly interesting for imag-

ing applications since it allows integration of the BL signal

over several minutes, thus increasing sensitivity. The BL

emission spectrum showed a λmax at 615 nm with a half

bandwidth of 53 nm (see Fig. 1(b)), consistent with CBR

expression in other bacterial systems such as E. coli strains

(data not shown).

As known from other proteins previously expressed in

MSR, cytoplasmic expression of the luciferase enzyme is not

likely to influence magnetosome formation. This was con-

firmed by transmission electron microscope (TEM) character-

ization which revealed that the magnetosome number and

morphology in BL-MTB was indistinguishable from those of

MSR-1 wild-type strain (see Fig. 1(d)).

Investigation of the time dependent luciferase expression

and cell magnetism led to 3 day-old cultures being selected

for inclusion in the MAGNETOX biosensor. Fig. 1(c) shows

both the BL signal and the cell magnetism (Cmag) of BL-MTB

cultured in a medium containing Fe(III) citrate. Luciferase BL

reached a maximum intensity at 72 h after inoculation, when

micro-aerobic conditions prevailed and cell magnetism was

1.40 ± 5% (corresponding to 90% of the maximum Cmag

obtained after 6 days incubation). Magnetic properties were

also macroscopically confirmed by moving the BL-MTB with

a permanent magnet (see movie M1†).

Design and fabrication of the MAGNETOX microfluidic chip

Exploiting multilayer PDMS casting, a microfluidic chip

comprising incubation and detection chambers, in which

BL-MTB can be loaded and trapped into specific positions for

analysis, has been fabricated. The chip comprises three, 60 μl

volume, diamond-shaped incubation chambers, each of them

connected to two detection areas to which the BL-MTB

can be navigated via a microfluidic system, then trapped

and accumulated using permanent magnets (see Fig. 2). Sub-

sequently the BL substrate can be delivered to the 6 detection

chambers allowing simultaneous imaging. Lens-free BL

Fig. 1 Characterization of the bioluminescent magnetotactic bacteria BL-MTB. (a) Normalized BL emission kinetics. (b) Normalized emission spectrum (λmax = 615 nm).

(c) Time dependent expression of the CBR luciferase and cell magnetism (Cmag) of the growing BL-MTB cultures. (d) TEM micrographs of MSR-1 expressing CBR luciferase taken

with a Morgagni 268 at 80 kV. Inset shows a magnified image of the magnetosome chain.

Lab on a Chip Paper

Lab Chip, 2013, 13, 4881–4889 | 4883This journal is © The Royal Society of Chemistry 2013

P
u
b
li

sh
ed

 o
n
 0

1
 O

ct
o
b
er

 2
0
1
3
. 
D

o
w

n
lo

ad
ed

 b
y
 L

u
d
w

ig
 M

ax
im

il
ia

n
s 

U
n
iv

er
si

ta
et

 M
u
en

ch
en

 o
n
 1

3
/1

1
/2

0
1
3
 1

6
:2

3
:2

4
. 

View Article Online

http://dx.doi.org/10.1039/C3LC50868D


imaging was performed using a CCD camera interfaced with

a fiber optic taper to maintain adequate sample resolution.21

This prototype configuration was designed to concentrate the

cells in a reduced volume, thus improving light collection

from the detection chambers. This strategy will be pursued to

further miniaturize the MAGNETOX chip and increase the

number of detection areas.

Another feature of the MAGNETOX is that, after analysis,

the cells are washed out of the chip so that it can be re-used.

Since incubation of cells with the analyte lasts only 30 min

no sterility is required and the chip can simply be washed

with 70% ethanol before reuse. This makes the device suit-

able for applications in low-resource settings.

As we previously reported, CCD contact lens-less imaging

does not require any optical system, thus simplifying the fabri-

cation of compact and miniaturized analytical devices.22 In addi-

tion lens-less imaging achieves a higher level of detection by

taking advantage of the light collection efficiency of the system.

The Sony ICX285 monochrome CCD sensor has been

selected since it has a quantum efficiency higher than 50% in

the range of 420–680 nm which covers the whole emission of

the CBR reporter. A fiber optic mosaic taper which transmits

the emitted light directly to the CCD sensor was used to

increase the sensing surface by 2.3 times compared to the

actual size of the CCD sensor (i.e., from 9.0 × 6.7 mm2 to

20.7 × 15.4 mm2), whilst still maintaining good resolution. A

double Peltier cooling system reduced the thermal noise of

the CCD, thus improving the signal/noise ratio and a lid

provided shielding against ambient light.

The most significant improvements made to the device

are: i) the implementation of a straightforward strategy to

cast black and transparent PDMS; ii) the integration of a

magnet array into the chip; iii) the design and fabrication of

a microfluidics platform optimized for magnetic biosensors.

Although the use of black PDMS (a suspension of charcoal

in PDMS) to fabricate microfluidic devices has been already

reported elsewhere,23 to the best of our knowledge the pres-

ent work represents the first proof of concept for a black

PDMS microfluidic chip that includes detection chambers

with transparent bottoms for BL imaging detection. In addi-

tion this approach may have a more general application for

optical detection.

We first investigated the ability of neodymium–iron–

boron (NdFeB) magnets to rapidly and efficiently trap

BL-MTB within the chip. Fig. 3(a) shows BL images of the

MAGNETOX chip obtained after D-luciferin addition. At first,

the signal is homogeneously distributed in the incubation

chambers. As expected, after magnetic trapping, the BL

signal is mostly concentrated in the detection chambers

(approximately 85% of total light emission) (see Fig. 3(b)).

Weak signals still appear along the microfluidic channels,

indicating that the magnetic trapping could be further opti-

mized to improve reproducibility. The prototype was pur-

posely designed to disregard the signal emitted by BL-MTB

in the microfluidic channels or in the incubation chambers.

In fact the background signal of the non-trapped cells does

not interfere with the CCD detection since the channels are

made from black PDMS.

Fig. 2 The MAGNETOX biosensor. (a) Schematic representation of the microfluidic chip comprising three diamond-shape incubation chambers and clear-bottom detection

areas. (b) Main components of the MAGNETOX biosensor: the microfluidic chip, the magnet array, the portable CCD camera with a fiber optic taper for lens-free BL imaging,

and a lid for shielding against ambient light.
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In addition, thanks to the reflective surface of the mag-

nets, BL emitted towards the opposite side of the sensor can

also be detected, thus increasing the sensitivity of the analy-

sis. The use of a reflecting surface increases the light signal

by approximately 30% compared to that obtained with black

tape covered magnets (data not shown).

Evaluation of sample toxicity with the MAGNETOX platform

The feasibility of the MAGNETOX platform as a general toxic-

ity biosensor was assessed using standard solutions of DMSO,

as model toxic compound and TCDCA, a detergent bile acid

that causes structural and dynamic effects in membranes.

The toxic effect of DMSO is mainly due to its activity in the

cell membrane,24 which affects cell metabolism and viability.

The alteration of cell energy systems dramatically alters intra-

cellular ATP levels, which can be monitored with an

ATP-dependent luciferase. Therefore only metabolically active

cells are able to provide the bioluminescent signal, which

reflects their viability.

Concentration-response curves for DMSO were obtained

and compared to those obtained for BL-MTB in a minia-

turized 6-well cartridge (see Fig. S1(a)†). This microwell cart-

ridge, containing 6 wells of 60 μL volume each, was

purposely designed for integration in the same portable

device. This allowed the actual advantage of concentrating

BL-MTB via microfluidics and adding the BL substrate after

a washing step to be assessed in comparison to a conven-

tional microwell format using the same CCD detector. The

BL recombinant cells were incubated for 30 min at room

temperature with different concentrations of toxic com-

pounds inside the MAGNETOX chip or inside the microwells.

For the MAGNETOX assay, after incubation the cells were

moved towards the detection chamber, and trapped by the

magnetic array. Upon addition of the D-luciferin substrate,

images were acquired with the CCD detector and analyzed to

quantify BL emission (see Fig. 4(a)). Fig. 4(b) shows that the

BL signal is strongly affected by DMSO with an LC50 of

7.5% v/v DMSO obtained in both configurations. The two

curves showed a similar sensitivity with slight differences at

low DMSO concentrations (e.g., in the MAGNETOX a 2.5% v/v

DMSO produces a signal of 75 ± 12% whereas 85 ± 5% is

recorded in the microwell configuration) while at DMSO con-

centrations higher than 40% v/v complete cell death is

observed in both the configurations.

We then used the bile acid TCDCA (0.001–10 mM). An

increasing toxic effect was observed (see Fig. 5) while

approaching the TCDCA critical micelle concentration (CMC

3 mM).25 Micelles can modify the membrane constituents,

thus resulting in a change in physicochemical properties

causing adverse effects on cell viability.26,27Fig. 3 BL images of BL-MTB inside the incubation chambers (a) and after cell move-

ment and magnetic trapping in the detection chambers (b). The MAGNETOX chip

was imaged from the top using a Night Owl LB 981 luminograph (EG&G Berthold,

Bad Wildbad, Germany) with 5 min integration. A 3D surface plot visualization was

obtained using ImageJ software.

Fig. 4 (a) BL images obtained with the MAGNETOX and 3D surface plot

visualization using ImageJ software. Circular ROI were selected and the BL signals

were quantified. (b) Normalized toxicity curves for DMSO (30 min incubation)

obtained with the BL-MTB in the microwell cartridge (dashed line) and with the

MAGNETOX chip (solid line).
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The response measured by the MAGNETOX assay was

quite reproducible with an intra-assay variability of 15% cal-

culated by considering the 6 detection chambers as replicates

and an inter-assay variability of 18% with four replicates. We

also compared the results with the closest widely recognized

assay, the Microtox® system, which measures the light output

of luminescent bacteria (Vibrio fischeri) after they have been

exposed to a sample. Using 1 h incubation with standard

solutions containing different concentrations of DMSO we

observed an LC50 of 8.3% v/v DMSO with the first toxic effects

appearing at 2.5% v/v DMSO (BL signal 81 ± 9%) and com-

plete cell death at DMSO concentrations higher than 40% v/v,

(see Fig. S2†), these results are consistent with the

MAGNETOX assay.

These preliminary results show that it is possible to exploit

magnetic concentration to increase light output and reduce

assay volume. Despite this, the reproducibility of the

MAGNETOX assay could be improved by optimizing the

microfluidic chip design and fabrication. These results sup-

port the use of BL-MTB as a powerful tool suitable for

microfluidic (bio)sensors.

In addition, the generation of BL-MTB with a codon-

optimized version of the luciferase integrated into the bacterial

chromosome would surely result in a more robust biosensor.

The use of a codon optimized luciferase coding sequence could

reduce the time required for its expression. Indeed MAGNETOX

assays performed using overnight and 36 h-old cultures resulted

in lower analytical performance (e.g., no significant biolumines-

cent signal at concentrations higher than 20% DMSO v/v and

an increased coefficient of variation (CV% = 20%)).

To circumvent this limitation, lyophilized BL-MTB will be

obtained providing a ready-to-use suspension of organisms

for use in the chip. The implementation of BL-MTB in field-

deployable devices could be exploited for direct analysis of

environmental or clinical samples containing matrix compo-

nents, which may interfere with the BL detection but could

be easily removed from detection areas. As an alternative, a

microelectromagnetic pad actuator could be used to precisely

control the movement and positioning of BL-MTB within the

microfluidic chip and further miniaturize the system.

Experimental

Chemicals and reagents

All chemicals used for cell culture media preparation and

toxic compounds were purchased from Sigma (St. Louis,

Missouri, USA). The enzymes required for cloning were from

Fermentas (Vilnius, Lithuania). The kits for plasmid extrac-

tion and purification were from Qiagen (Hilden, Germany).

Sylgard 184 (Dow Corning, USA) was used to create the

PDMS chip. D-Luciferin solution, 1 mM at pH 5.0, was pre-

pared by dissolving 28.3 mg D-luciferin sodium salt

(Synchem, Kassel, Germany) in 35 mL of 0.1 M citric

acid and 65 mL of 0.1 M trisodium citrate solution.

Taurochenodeoxycholic acid sodium salt (TCDCA) dilutions

were prepared in FSM medium.

Organism and growth conditions

The M. gryphiswaldense strain (MSR-1 R3/S1; Rifr Smr sponta-

neous mutant)28 was cultured at 28 °C in 10 mL hungate

tubes (GPE Scientific UK) in microaerobic conditions (1% O2

in the headspace). The oxygen concentration in the gas phase

was reduced to less than 1% O2 by repeated flushing with N2.

An MSR-1 medium with 50 μM Fe(III) citrate was used as

described by Heyen and Schüler.29

Obtainment of bioluminescent magnetotactic bacteria

(BL-MTB) and characterization of emission properties

M. gryphiswaldense strain was genetically engineered to consti-

tutively express the red-emitting click beetle luciferase (CBR,

λmax = 615 nm). Briefly, the cDNA encoding for CBR was PCR

amplified from the vector pCBRbasic (Promega, WI, USA) using

the primers CBR Fw AGTGGATCCTTACTAACCGCCGGCCTT

and CBR Rev CAGCATATGGTAAAGCGTGAGAAAAAT, adding

BamHI and NdeI restriction sites, shown in bold. These

restriction enzymes were then used to digest and insert the

luciferases into the pAP150 vector under the control of the

PmamDC45 constitutive promoter. The resulting vector pAP150-

CBR was used to transform the E. coli donor strain (BW29427

[thrB1004 pro thi rpsL hsdS lacZ-M15 RP4-1360-(araBAD)567-

dapA1341::(erm-pir-)] (K. Datsenko and B. L. Wanner,

unpublished) via heat shock30 and transferred to the MSR

strain by conjugation.28 The obtained strain (MSR-CBR) was

routinely grown microaerobically at 28 °C in a selective MSR

medium containing 5 μg mL−1 kanamycin. MSR-CBR

Fig. 5 Toxicity curve for TCDCA (0.001–10 mM) obtained with the MAGNETOX

chip. BL images corresponding to each duplicate are shown in the inset. The

BL-MTB cells are incubated for 30 min at room temperature with increasing concen-

trations of TCDCA inside the MAGNETOX chip. After incubation the cells are moved

towards the detection chamber, and trapped by applying the magnetic array. Upon

addition of the D-luciferin substrate, images are acquired with the CCD sensor and

analyzed to quantify BL emission.
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emission kinetics and bioluminescence emission spectra were

obtained in a 96-well plate using 100 μL overnight liquid cul-

tures; the BL signal was acquired for 10 minutes (300 ms inte-

gration time) with a Varioskan Flash spectral scanning

multimode reader (Thermo Scientific, Whaltham, MA, USA)

after automatic injection of 100 μL D-luciferin 1 mM, pH 5.0.

Bandwidths (nm) of the emission spectra were measured at

50 and 20% of the intensity at the maximum wavelength. Data

were analyzed with GraphPad Prism v5.02 (Software, Inc., San

Diego, CA, USA). All light measurements were performed

in triplicate.

TEM micrographs of MSR-1 expressing CBR luciferase

were taken at 18k × and 71k × with a Morgagni 268 at 80 kV.

Evaluation of luciferase time dependence and magnetic

orientation

The magnetic orientation (Cmag) of the MSR-CBR cells was

evaluated spectrophotometrically using the optical density at

565 nm as previously described.31 Briefly, at given time inter-

vals, cell suspensions of 1.0 mL were withdrawn from the cul-

ture for Cmag measurement. Cell density was set to an OD of

0.1 and an external magnetic field was applied to align the

cells at different angles towards the light beam of the spec-

trometer. This results in maximum and minimum light

extinction and the ratio of these correlates with the average

number of magnetosomes per cell. This method is used to

semi-quantitatively assess the magnetism of a culture (non-

magnetic cells have a Cmag value of 0).

Design and fabrication of the MAGNETOX microfluidic chip

The microfluidic chip fabrication process is based on multi-

ple layer casting of black and transparent PDMS on a home-

made master mold.

Transparent PDMS was prepared using a monomer curing

agent in a weight ratio of 5 : 1, 25 mg mL−1 of activated char-

coal powder was added to obtain black PDMS. The solutions

were then centrifuged at 4000 rpm for 10 min to remove bub-

bles and stored at −20 °C until use.

Black PDMS was first poured in to fill up to the edge of

the relief structures on the mask, which creates the diamond-

shaped chambers (7.0 × 14.0 mm diagonals, height 1.5 mm),

the microfluidics channels (1 mm width) and detection areas

(3 mm diameter, height 1.5 mm). To avoid mixing with trans-

parent PDMS, black PDMS was allowed to harden for 1 h at

60 °C; then a thin layer of transparent PDMS was poured on

top of the black PDMS layer, to create the transparent bottom

of the wells, and allowed to harden for 2 h at 60 °C. During

the curing process the black and transparent PDMS layers

fuse together.

A separate layer of transparent PDMS was cast in a differ-

ent mold, comprising inlets and outlets, to create the top of

the chip and allowed to harden as previously described. The

two partially-cured PDMS layers were then removed from

their masks, superimposed and hardened overnight at 70 °C

to obtain the final chip (see Fig. 2(a)).

An array of neodymium–iron–boron circular disc magnets

(NdFeB; NeoDeltaMagnet NE32, 3 mm diameter, L = 2 mm,

remanence 1170–1250 mT, IBS Magnet, Berlin, Germany) was

placed over the detection chambers of the PDMS chip.

The MAGNETOX device consists of the microfluidic

device connected to a CCD camera modified for lens-free

CL imaging detection. The CCD imaging detector was built

from a MZ-2PRO CCD camera (MagZero, Pordenone, Italy)

equipped with a Sony ICX285 monochrome CCD image sen-

sor (1360 × 1024 pixels, pixel size 6.45 × 6.45 μm2) and a

16 bit analog-to-digital (A/D) converter. To reduce thermal

noise, the CCD sensor was thermoelectrically cooled by a

double Peltier cell. A round fiber optic taper (25/11 mm size,

Edmund Optics, Barrington, NJ) was placed in contact with

the CCD sensor as previously described by our group.22 The

MAGNETOX is computer controlled via a USB 2.0 interface

using software (EZ Cap, v3.13) that facilitates data acquisi-

tion and parameter settings.

Design of a microwell cartridge

A custom made PDMS 6-well cartridge was produced using

black and transparent PDMS as previously described. The

mask for PDMS casting has been designed in order to

obtain an array of 2 × 3 wells of 4 mm diameter and 4.5 mm

deep each.

First, black PDMS was poured in to fill up to the edge

of the mask followed by addition of a thin (<200 μm) layer

of transparent PDMS to create the bottom of the wells

(see Fig. S1(b)†). After overnight incubation at 70 °C the

cartridge was carefully separated from the mask.

Toxicity evaluation using the MAGNETOX platform

Different concentrations of dimethyl sulfoxide (DMSO)

(in the range 2–50% v/v) and TCDCA (in the range 0.001–

10 mM) were used as model toxic compounds to evaluate the

feasibility of using BL magnetotactic bacteria as a toxicity bio-

sensor. All serial dilutions of compounds were performed

using FSM medium as a diluent.

Different experimental conditions were optimized to

improve the biosensor performance (e.g., incubation temper-

ature and time, volumes and ratio of cell suspension to

sample). Under optimized conditions, an analysis with the

MAGNETOX chip includes the following steps: i) 40 μL of

3 day-old liquid culture is driven into the chip by an air-

displacement pipette; ii) cells are incubated for 30 min at

room temperature with 20 μL of sample (medium is used as

blank); iv) cells are moved and concentrated in the detection

chambers by adding the array of permanent magnets; v) BL

imaging measurements after addition of 1 mM D-luciferin

pH 5.0. Images are acquired for 5 min and analyzed with

ImageJ software v.1.46 (National Institutes of Health,

Bethesda, MD). Images are recorded in the FITS (Flexible

Image Transport System) format. Regions of interest (ROIs)

corresponding to detection chambers are selected and light

emissions quantified as raw integrated densities.
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For toxicity experiments, normalized BL signals (the BL

emission of the untreated control was set as 100%) were plot-

ted against toxic compound concentration. The lethal con-

centration (LC50) of each compound was calculated as the

concentration producing a 50% reduction in light.

All experiments were performed in duplicate and repeated

at least three times.

The toxic effects of DMSO and TCDCA solutions (in the

range 2–50% v/v and 0.001–10 mM, respectively) were also

assessed using a Microtox® assay with Vibrio fischeri.32 Differ-

ent exposure times were tested (10, 30 and 60 min at 25 °C)

in 96 microplate format using 90 μL of cell suspension and

10 μL of analyte or control (medium). The results were

analyzed as described for the MAGNETOX assay.

Conclusions

Here, for the first time, the use of bioengineered bioluminescent

magnetotactic bacteria in combination with microfabrication

technologies is reported for biosensing applications. The novel

concept of a black and transparent PDMS microfluidic chip

has been developed which could find broad use in the opto-

fluidic field. The chip has been integrated with a portable

CCD sensor for lens-less imaging detection of light signals

emitted by the BL magnetotactic bacteria used as biosen-

sing “living actuators”. Unlike other whole-cell biosensors,

BL-MTB can be easily moved and concentrated in specific

detection chambers, where the sample matrix is removed and

bacteria are washed, thus increasing the analytical signal and

performance of the system. The interaction of BL-MTB with

the analyte is facilitated in the detection chamber since this

interaction takes place in a dispersed suspension, resulting in

a shorter incubation time. In this regard, the MAGNETOX

assay faciliates rapid (30 min) measurement of sample toxic-

ity with the non negligible advantage of chip re-usability.

This is the first attempt to integrate bioengineered magne-

totactic bacteria into an analytical device and several optimiza-

tions regarding both the cell and the chip design will be

addressed. An array of electromagnets or a microelectro-

magnetic pad actuator will be included to better control the

BL-MTB within the chip by tuning the magnetic trapping or

continuously directing their swimming to the detection area.

Although many improvements are required before apply-

ing BL magnetic biosensors to real-life needs, we are confi-

dent that they represent the forerunner of a new concept in

whole-cell biosensing.
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Abstract 

Owing to their small size and enhanced stability, nanobodies derived from camelids 

have previously been used for the construction of intracellular “nanotraps“, which enable 

redirection and manipulation of GFP-tagged targets within living plant and animal cells. 

Although prokaryotic cells also contain highly organized subcellular structures, there are no 

tools available equivalent to the well-established methods used in eukaryotes. By taking 

advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum 

gryphiswaldense, we demonstrate that proteins and even entire organelles can be re-targeted 

within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-

binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-

GFP from polar chemoreceptor clusters to midcell, resulting in gradual knockdown of 

aerotaxis. Conversely, the entire magnetosome chains could be redirected from midcell and 

tethered to one of the cell poles. Similar approaches could potentially be used for building 

synthetic cellular structures and targeted protein knock-downs in other bacteria. 

Importance 

Intrabodies are commonly used in eukaryotic systems for intracellular analysis and 

manipulation of proteins with distinct subcellular compartments. In particular, so-called 

nanobodies have great potential for synthetic biology approaches because they can be easily 

expressed in heterologous hosts and actively interact with intracellular targets, for instance by 

the construction of intracellular "nanotraps" in living animal and plant cells. Although 

prokaryotic cells also exhibit a considerable degree of intracellular organization, there are 

only few tools available equivalent to well-established methods used in eukaryotes. Here we 

demonstrate ectopic re-targeting and depletion of polar membrane proteins and entire 

organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual 

knockdown of magneto-aerotaxis. This intracellular “nanotrap” approach has the potential to 

be applied in other bacteria for building synthetic cellular structures, manipulating protein 

function and creating gradual targeted knock-downs. Our findings provide proof-of-principle 

for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these 

tasks. 
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Introduction 

Intrabodies are recombinant fragments of full-length antibodies that are commonly 

expressed in heterologous hosts and which specifically recognize their antigen within cells. In 

various eukaryotic systems, they have been demonstrated to be powerful tools that enable the 

intracellular analysis and manipulation of protein functions [1-5]. Among the various types of 

intrabodies, so-called nanobodies have proven to be particularly useful due to their small size, 

enhanced stability and the relative ease of screening, cloning and expression procedures [6-9]. 

Nanobodies are routinely derived from camelid heavy-chain antibodies, which lack the light 

chains present in conventional IgG antibodies and recognize their target by interaction with 

single VHH domains [10]. After extracting the genetic repertoire of B cells from an 

immunized camelid, antigen-binding VHHs can be selected and expressed as highly robust 

single-domain antibodies. Because of their special topology, nanobodies preferentially bind to 

concave surfaces of antigens which are often inaccessible to conventional antibodies [11]. 

Examples for nanobody-based applications in living plant and animal cells comprise the 

inhibition of enzyme activity through specific binding to the active site [7, 12], modulation of 

spectral properties of fluorescent proteins [13] and the construction of nanobody-mediated 

synthetic regulatory circuits [14]. Furthermore, different strategies for nanobody-based 

protein knockdowns have been reported, either by targeting nanobody-bound proteins to 

degradation pathways [15], or by artificially retargeting interaction partners to specific 

intracellular localizations [16-18]. Artificial relocalization of targeted proteins was either 

caused by trapping of nanobody-bound proteins in the cytoplasm due to interference with 

protein translocation to cellular compartments [18], or by specifically anchoring the nanobody 

to distinct structures and compartments of the eukaryotic cell such as distinct DNA regions or 

the centrioles of animal cells, resulting in ectopic recruitment of GFP (“green fluorescent 

protein”)-tagged targets [16, 17]. The application of anchored nanobodies against GFP 

(“green binding protein, GBP”) as nanotrap is a particularly versatile tool because of the 

widespread use of fluorescence tags. 

It has been realized only rather recently that also prokaryotic cells also contain highly 

organized subcellular structures [19]. Bacteria possess, for example, structural homologs to 

eukaryotic cytoskeletal elements that define cell shape, structure and function [20, 21]. In 

addition, they form large supramolecular protein complexes, contain microcompartments and 
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even biosynthesize canonical membrane-enveloped organelles that show distinct subcellular 

localization patterns [21-23]. 

The ability to target proteins intracellularly and possibly even redirect macromolecular 

complexes to defined subcellular locations in bacteria would be an invaluable tool for 

synthetic cytoskeletal scaffolding and targeting [24, 25]. For instance, such techniques could 

be used for protein knockdowns through spatial separation of interaction partners. Other 

possible applications comprise specific targeting of proteins to bacterial subcellular 

compartments [26-28], the setup of synthetic intracellular spatial gradients [29], or even 

artificially compartmentalizing and distributing different cellular processes and organelles to 

distinct subcellular localizations. However, so far there are only few tools equivalent to the 

well-established methods used in eukaryotic cells that would efficiently fulfill these tasks in 

bacteria.  

One of the most intricate examples of natural compartmentalization in prokaryotic 

cells are magnetosomes, which are nano-sized ferromagnetic crystals synthesized within 

intracellular membrane vesicles by magnetotactic bacteria such as 

Magnetospirillum gryphiswaldense. These organelles are attached to a cytoskeletal filament 

formed by the actin-like protein MamK and arranged in a chain that is positioned at mid-cell 

[30, 31]. The resulting magnetic dipole moment rotates the bacterial cell into alignment with 

the geomagnetic field, thereby probably enhancing the movement of the bacteria towards 

growth-favoring oxygen levels [32]. Recently, our lab demonstrated the display of nanobodies 

on magnetosomes that were functional in recognizing their antigen not only in vitro but also 

in vivo. Expression of MamC-Red binding protein (RBP) fusions resulted in the recruitment 

of cytoplasmic red fluorescent protein (RFP) to the magnetosomes [33], showing that 

intracellular localization of soluble heterologous proteins can be manipulated in bacteria. This 

motivated us to further investigate whether magnetosome anchors can also be used to trap 

proteins with distinct functions from other cellular compartments. For this purpose we chose 

the chemotaxis protein CheW which is part of the chemoreceptor clusters that are universally 

found in chemotactic bacteria and typically display a distinct polar localization [34]. We 

demonstrate that CheW1 fused to EGFP can be depleted from the cell poles by expression of 

multivalent GBP nanobodies fused to the magnetosome protein MamC, resulting in ectopic 

recruitment of CheW1 to the magnetosome chain of M. gryphiswaldense. Depletion of CheW1 

from polar clusters resulted in a gradual impairment of aerotaxis. Intriguingly, the interaction 
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between the magnetosome anchor and polar CheW1-EGFP also led to artificial re-positioning 

of the entire magnetosome chain from its midcell position towards one of the cell poles, 

indicating that entire organelles can be redirected by nanobodies and tethered to ectopic 

positions. Our study establishes the application of nanotrap technology for artificial targeting 

of proteins and even entire organelles to bacterial cells. Similar approaches could be used for 

building tailored subcellular structures in synthetic biology and for gradual protein knock-

downs in other bacteria. 

Results 

Recruitment of CheW1-EGFP to magnetosomes with a GBP nanotrap 

We chose the chemotaxis protein CheW as a target for nanobody-directed intracellular 

binding and repositioning. In M. gryphiswaldense CheW1 is encoded within chemotaxis 

operon cheOp1 that was recently demonstrated to control magneto-aerotactic swimming 

polarity [35]. It is well established in various bacteria that CheW acts as linker protein and 

interacts both with the chemoreceptors and the histidine kinase CheA proteins, thereby 

enhancing the polar chemoreceptor clustering and function [36]. First, we replaced the native 

cheW1 gene by cheW1-egfp via chromosomal insertion. Similar as observed in other 

bacteria[37-39], spot-like fluorescent signals originating from EGFP-tagged CheW1 were 

exclusively found at both cell poles in the wild type background in fluorescence micrographs 

(Fig. 1ai & f). This is consistent with previous results of cryo-electron microscopy of 

M. gryphiswaldense cells, where chemoreceptor complexes were identified near the poles 

[30]. Only in elongated cells close to completion of cell division, two new clusters were 

formed at midcell (Supplementary Fig. S1). When expressed in mutant backgrounds either 

forming magnetosome clusters instead of chains (ΔmamJ) [31] or entirely lacking any 

magnetite particles (ΔmamM) [40], the same CheW1-EGFP fluorescence localization pattern 

as in the wild type background was observed (Fig. 1di & Supplementary Fig. S2b), indicating 

that polar chemoreceptor localization was independent of the presence and configuration of 

magnetosome chains as expected. 
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Figure 1: Analysis of subcellular CheW1-EGFP and magnetosome localization. Fluorescence (i) 

and TEM micrographs (ii) of representative M. gryphiswaldense CheW1-EGFP (a), CheW1-EGFP 

MamC-1xGBP (b), CheW1-EGFP MamC-2xGBP (c), ΔmamJ CheW1-EGFP (d) and ΔmamJ CheW1-

EGFP MamC-1xGBP cells. Cells were analyzed by CHAP (iii) and scored for the distribution of 

fluorescence signal, represented by percentage of fluorescent foci detected within 4 equidistant 

compartments (f) and magnetosomes, represented by percentage of magnetosomes detected within 4 

equidistant compartments (g). White scale bar 2 µm, black scale bar 1 µm. 20 cells were aligned by 

CHAP for each strain, heatmaps display number of magnetosomes. Single cells were segmented into 

four compartments and for each strain 20 cells were scored to obtain fluorescence and magnetosome 

distributions. 

 

Next, we asked whether the localization of CheW1-EGFP was affected by co-

expression of a GFP-binding nanobody that had been identified by Rothbauer and colleagues 

before and termed GFP-binding protein (GBP) [41]. To trap CheW1-EGFP, GBP was 

expressed either alone in the cytoplasm (MagGBPcyt) or fused to the abundant magnetosome 

membrane protein MamC [42] which has routinely been used as magnetosome anchor for 

immobilization of various functional moieties such as EGFP, enzymes or a RFP-binding 

protein (RBP) [33, 42-45]. In addition to the native gbp gene, we used a synthetic allele that 

was specifically optimized for the expression in M. gryphiswaldense (“magnetospirillum-

optimized green-binding protein”, maggbp). MamC was fused to either one single copy of 

GBP connected to mCherry (mCherry-GBP, also referred to as "chromobody") [41], the 

resulting MamC-mCherry-GBP fusion was referred to as MamC-1xGBP hereafter, or to a 

tandem copy of maggbp-gbp (resulting MamC-MagGBP-GBP, referred to as MamC-2xGBP 

hereafter). All different gbp constructs were chromosomally inserted into parent strains co-

expressing CheW1-EGFP. Western blot analysis of cell extracts of all wild type strains 

carrying the generated fusions revealed reacting protein bands with expected sizes indicating 

that the mono- and bivalent GBP nanobodies were stably expressed on magnetosomes 

(Supplementary Fig. S3). 

Cytoplasmic expression of unfused MagGBPcyt alone had no effect on the localization 

of CheW1-EGFP fluorescence in the wild type background (Supplementary Fig. S2d). 

However, upon co-expression of MamC-1xGBP and CheW1-EGFP we detected weaker, 

secondary fluorescent foci at approximately midcell position in addition to the two polar 

CheW1-EGFP signals (Fig. 1bi). We scored the number of fluorescent foci in four equidistant 
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sectors along the length of a representative set of cells and calculated the relative abundance 

of fluorescence intensity in each of the sectors (see Methods for details). In contrast to the 

wild type background, which displayed only polar foci, about 30% of fluorescence intensity 

was detected within the cytoplasm upon co-expression of MamC-1xGBP (a representative 

cell is shown in Fig. 1bi; Fig. 1f). Recruitment of CheW1-EGFP was likely due to interaction 

with GBP expressed on magnetosomes, as green (CheW1-EGFP) and red fluorescence 

(mCherry-tagged magnetosomes) signals coincided in all analyzed cells, indicating that direct 

GBP-EGFP interaction caused the observed redirection of CheW1 (Supplementary Fig. 

S2e&f). In cells co-expressing two GBP copies in tandem (MamC-2xGBP) a single, large 

non-polar fluorescence signal was detected in the vast majority of cells. 90% of the CheW1-

EGFP fluorescence intensity was shifted towards midcell (Fig. 1ci & Supplementary Fig. 4), 

while only 10% of the fluorescence signal remained at the cell pole (Fig. 1f). Instead of the 

spot-like, exclusively polar foci of the parent strain, a linear fluorescence signal was present 

near midcell in most MamC-2xGBP expressing cells, demonstrating efficient redirection of 

membrane complex-associated proteins (Fig. 1ci & Supplementary Fig. S4).  

Next, we investigated whether the absence of magnetic nanoparticles would affect the 

recruitment of CheW1-EGFP through MamC-GBP fusions by analyzing non-magnetic cells. 

Due to loss of the magnetosomal iron transporter MamM ∆mamM cells lack any magnetite 

crystals, but still produce empty magnetosome membrane vesicles [40]. CheW1-EGFP 

fluorescence was shifted towards midcell in the ΔmamM strain co-expressing MamC-2xGBP 

to the same extent as in the magnetite-containing strains (Supplementary Fig. S2c). To 

analyze whether the configuration of magnetosome chains had an effect on CheW1-EGFP 

recruitment, we also expressed MamC-1xGBP in the ΔmamJ background, in which the 

physical interaction of magnetosome chains with the actin-like MamK filaments is abolished 

[31], resulting in agglomerated clusters rather than linear well-ordered chains of 

magnetosomes (Fig. 1dii&eii). In the vast majority of analyzed ΔmamJ MamC-1xGBP cells 

the major proportion of CheW1-EGFP fluorescence (>85 % of all foci) was located at only 

one cell pole (Fig. 1f) and appeared to be slightly distorted longitudinally (Fig. 1ei).  

Effect of CheW1-EGFP recruitment on magnetosome localization 

We noticed that all strains which showed strong CheW1-mislocalization were 

increasingly affected in their magnetic alignment as indicated by reduced Cmag values (e.g. 

MamC-2xGBP: 0.60 ± 0.07, wild type: 1.24 ± 0.20). The Cmag provides an optical measure of 
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the relative alignment of cells in a cuvette by applying a strong magnetic field either parallel 

or perpendicular to the light beam of a photometer. TEM analysis revealed that wild type cells 

expressing CheW1-EGFP alone displayed the same magnetosome localization pattern as their 

parent strain (Fig. 1aii). Both automated image analysis by Chain Analysis Program (CHAP) 

[46] and manual scoring of magnetosome position (see Methods for details; Fig. 1g) indicated 

that the linear chains of magnetosomes were consistently positioned at midcell and displayed 

the same configuration as typically observed for the M. gryphiswaldense parent strain [47, 

48], with approximately 35 particles per cell that had an average crystal size of 35-47 nm 

[48]. Additional cytoplasmic expression of MagGBPcyt in the same background did not affect 

magnetosome chain configuration (Supplementary Fig. S5b). Co-expression of MamC-

1xGBP and CheW1-EGFP did not affect the midcell position of magnetosome chains either, 

but chains were less compact, i.e. particles were more widely spaced as indicated by the 

fuzzier, slightly stretched appearance of magnetosome chains in CHAP analysis heat maps 

(Fig. 1biii). TEM analysis of ΔmamJ cells expressing CheW1-EGFP alone revealed the same 

magnetosome localization pattern as their parent strain (Fig. 1dii). Consistent with the 

observed shift of the CheW1-EGFP fluorescence towards one pole in the ∆mamJ MamC-

1xGBP strain, 90% of magnetosome clusters detected in TEM micrographs were localized at 

a single cell pole only, while clusters were no longer observed at midcell or along the cell 

length as commonly found in the ∆mamJ parent strain [31, 49] (Fig. 1g). Moreover, the loose 

magnetosome assemblies observed at the poles were slightly elongated, compared to the 

compact rounded magnetosome clusters of the parent strain (Fig. 1diii&eiii). This indicated 

that targeted recruitment and partial rearrangement of magnetosomes was facilitated in cells 

in which magnetosome particles were no longer bound to the MamK filament by their 

molecular connector MamJ [31]. As observed for mislocalization of CheW1-EGFP 

fluorescence, in wild type cells co-expressing divalent tandem fusions of GBP (MamC-

2xGBP) magnetosome chains were predominantly drawn to one of the cell poles (Fig. 1cii & 

Supplementary Fig. S6). Magnetosome chains were even less compact than in the presence of 

the monovalent nanobody, as reflected by the rather scattered pattern of poorly aligned 

magnetosome chains (Fig. 1ciii). Consistent with the overall shift of the chain, the mean 

fraction of magnetosome particles located at one of the cells’ poles increased from 7 to 36% 

(Fig. 1g). 
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Effect of CheW1-EGFP recruitment on chemotaxis of M. gryphiswaldense 

The observed mislocalization of chains also affected the magnetic alignment of 

swimming cells. While wild type cells expressing only CheW1-EGFP predominantly swam 

aligned to the ambient magnetic field as the parent strain, a large fraction of cells co-

expressing MamC-2xGBP displayed trajectories that were oriented at random angles to the 

ambient magnetic field (Fig. 2a). As indicated by video microscopy, motility and mean 

swimming speed were not affected in any of the analyzed strains. Compared to the control 

strains ∆cheW1 and ΔcheOp1, in which aerotaxis was entirely abolished as indicated by the 

formation of small aerotactic halos in swim plate assays (Supplementary Fig. S7) [35], co-

expression of cytoplasmic MagGBPcyt and CheW1-EGFP in the wild type background did not 

affect the size of swim halos that were virtually identical to those of the parent strain (Fig. 

2b&c).  

While ΔcheW1 did not show any response when shifted from anaerobic conditions to 

2% oxygen in a microscopic gas perfusion chamber (Fig. 2d) and displayed a straight-

swimming phenotype comparable to the ∆cheOp1 deletion strain, wild type cells expressing 

CheW1-EGFP showed a reaction very similar to that observed in the parent strain [35]. The 

reversal frequency instantaneously rose from less than 0.1 s-1 to more than 0.2 s-1 after 

microoxic up-shift. This was followed by a rapid drop in reversal frequency below pre-

stimulus levels within 15 s (Fig. 2d). However, co-expression of MamC-1xGBP and CheW1-

EGFP led to slightly reduced halo sizes in swim plates and a lower number of reversals in 

response to the oxygen shift. The maximum reversal frequency remained below 0.15 s-1 and 

peaked at approximately 60% of the wild type rate. Interestingly, co-expression of MamC-

1xGBP also caused delayed adaptation after the shift as the reversal frequency remained 

above pre-stimulus levels within 20 s post-shift.  

Co-expression of MamC-2xGBP and CheW1-EGFP, which completely depleted 

CheW1-EGFP from the cell poles as suggested by fluorescence microscopy (Fig. 1ci), also 

had a dramatic effect on the cells’ switching behavior under anoxic equilibrium conditions 

and the response elicited by oxygen exposure. The pre-stimulus reversal frequency was 

comparable to that of the ΔcheW1 strain and rose only minimally after oxygen up-shift to 2% 

O2 remaining on a very low level (maximum frequency below 0.05 s-1). In conclusion, an 

increase in copy number of GBP led to gradually stronger impairment of aerotaxis, eventually 



2. Publications and manuscripts 

 
59 

 

reducing the number of reversals in a strain co-expressing CheW1-EGFP and the divalent 

MamC-2xGBP fusion to the level of a ΔcheW1 null mutant. 

 

 

 

Figure: 2 Magneto-aerotactic swimming behavior of M. gryphiswaldense strains expressing 

CheW1-EGFP and MamC-GBP fusions. (a) Magnetic alignment of swimming cells expressing 

CheW1-EGFP alone or in combination with MamC-2xGBP. A plot of all tracks from a representative 

video record is shown for each strain. Cells swimming in the gas perfusion chamber were exposed to a 

homogenous vertical magnetic field of 0.26 mT (B). (b) Average halo diameter of strains expressing 

MamC-GBP fusions in swim plates (mean ± s.d. of at least 3 independent replicates). Chemotaxis 

gene deletion mutants ΔcheW1 and ΔcheOp1 were used as controls. Trans-complementation of the 

∆cheW1 mutant strain by constitutive expression of CheW1-EGFP from a plasmid restored chemotactic 

efficiency to 80% of the wild type cells expressing CheW1-EGFP at physiological levels. (c) Halo 

formation of wild type CheW1-EGFP, CheW1-EGFP MamC-1xGBP, CheW1-EGFP MamC-2xGBP 

and ∆cheW cells in 0.2 % motility agar 3 days after inoculation. (d) Aerotactic reversal response upon 

abrupt shift from 0% to 2% oxygen in a microscopic gas perfusion chamber. Video records were 

analyzed by automated tracking software to obtain swim tracks and reversal events of individual cells 

[35] and reversal rates were calculated for 5-s intervals by averaging single cell data from at least 3 

independent recordings. 
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Discussion 

We investigated the interaction between components of the universal bacterial 

chemotaxis signaling pathway and nanobodies expressed on the magnetosome organelles of 

M. gryphiswaldense, which enabled us to easily follow the structural and behavioral effects of 

artificial recruitment by TEM and FM imaging, and by video microscopy at the single cell 

level. We observed that by anchoring GBP to the magnetosome membrane the localization of 

CheW1-GFP was shifted from the poles to midcell, i.e. to the typical position of the 

magnetosome chain. There are two possible explanations for the observed redirection of 

CheW1 from the polar clusters to the magnetosomes: (i) Unbound CheW1, in equilibrium with 

the receptor bound form, could be recruited from a cytoplasmic pool, whereas (ii) membrane-

bound CheW1 could be directly withdrawn from pre-existing polar clusters. CheW is a soluble 

protein that lacks transmembrane domains but in vitro forms ultrastable ternary complexes 

together with CheA and chemoreceptors [50]. However, in living cells signaling complexes 

are weakly dynamic and display slow turnover (of approximately 12 min) as indicated by 

FRAP experiments on CheA and CheW constructs [51]. Consistent with these observations it 

has been suggested that small amounts of CheA might be permanently present in an unbound 

state in the cytoplasm [52]. However, the relative copy numbers of all cluster components are 

tightly regulated, and since overexpression of CheW leads to impaired chemotactic signaling 

(due to competitive inhibition of CheA binding to the chemoreceptors) [50], the pool of free 

CheW in the cytoplasm must be rather small. Thus, it seems most probable that soluble CheW 

present in low concentration in the cytoplasm is sequestered by magnetosome-anchored GBP, 

and over time also those molecules initially bound to the chemoreceptors clusters might 

gradually be released and trapped at ectopic positions by strong interaction with the 

nanobody. 

The localization of CheW1-GFP was unaffected by co-expression of cytoplasmic 

(unfused) GBP in the wild type background, but shifted towards midcell upon MamC-2xGBP 

expression in the non-magnetic ΔmamM strain, which lacks any electron-dense magnetic 

crystals, but still forms empty vesicles of the magnetosome membrane [40]. This 

demonstrates that GBP fixed on magnetite-free membrane vesicles is sufficiently effective to 

specifically re-direct localized proteins. Furthermore, this suggests that recruitment and 

retargeting could be achieved in other bacteria lacking magnetosomes by using different 

spatial determinants as intracellular traps. 
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Figure 3: Model of MamC-GBP and CheW1-EGFP interaction. CheW1-EGFP localizes distinctly 

at the cell poles if expressed chromosomally in wild type and ΔmamJ background (upper panel right 

and left). If MamC-GBP is co-expressed in the wild type (lower left panel), CheW1-EGFP is depleted 

completely from the poles. Expression of MamC-GBP in the ΔmamJ CheW1-EGFP background leads 

to recruitment of whole magnetosomes to the cell poles (lower right panel). Expression of mono- and 

divalent nanobodies on a magnetosomes and interaction with CheW1-EGFP is illustrated in the inset. 

Expressed proteins are illustrated in same colors as genes. 

 

Although presence of magnetic particles was no absolute prerequisite for efficient 

recruitment, redistribution of CheW was strongly affected by magnetosome chain 

configuration. Magnetosome clusters were drawn to only one pole in the ΔmamJ background 

upon expression of MamC-1xGBP and acted as efficient nanotraps for CheW1-GFP. In 

contrast to the undefined midcell fluorescence caused by partial depletion from polar clusters 

observed upon expression of MamC-1xGBP in the wild type background, virtually no 

CheW1-GFP signal was detected at midcell or the opposite pole in the ΔmamJ mutant strain. 

This might either be due to increased avidity of nanobodies concentrated in the tightly 

clustered magnetosome assemblies, or might reflect a stochastic shift of CheW diffusion 

equilibrium due to the concentration of two sinks (i.e., the native chemoreceptor cluster and 

the artificial magnetosomal nanobody cluster) at a single pole (Fig. 3, right lower panel). 

Interaction of MamC-GBP and CheW1-GFP reciprocally affected configuration and 

positioning of the magnetosome chain. Binding of CheW1-GFP to magnetosome particles 
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disturbed their proper alignment into regular, densely spaced chains. Increasing the 

expression of GBP (MamC-1xGBP and 2xGBP) also gradually increased the inter-particle 

spacing, possibly by additional protein bound to the magnetosome surface which might 

weaken the magnetostatic interactions between particles. Overexpression of MamC-2xGBP in 

the wild type background caused a nearly complete shift of the magnetsome chains towards 

the poles, with the majority of magnetosome chains originating at polar or sub-polar positions 

(Supplementary Fig. S6), which was probably caused by redirecting and tethering the chains 

to a fraction of membrane-bound CheW1-GFP remaining at the cell pole (Fig. 3, left lower 

panel). Although the magnetosome chain of wild type cells generally occupies mid-cell 

position, it becomes mobilized during cell division when the chain is split in half and re-

positioned by MamK dynamics to mid-cell of daughter cells [49]. We found that 

magnetosome chain localization was most severly impaired in cells lacking the acidic MamJ 

protein, which is assumed to connect magnetosome particles to the cytoskeletal magnetosome 

filament formed by the actin-like MamK protein [31]. In the ΔmamJ background 

overexpression of the monovalent nanobody was already sufficient to rearrange (Fig. 1eiii) 

and recruit (Fig. 1eii) the magnetosome cluster to one cell pole (Fig. 3, right lower panel). The 

increased intracellular mobility of ΔmamJ magnetosome clusters might be explained by lack 

of the presumed MamK-mediated interactions with divisome constituents [49]. In wild type 

cells these interactions need to be overcome by interaction with polar CheW, whereas in 

ΔmamJ cells magnetosome redirection is facilitated because MamK-magnetosome 

interactions are abolished.  

The level of CheW1-GFP recruitment clearly depended on gene dosage. While 

redirection of CheW1-GFP was only partial in cells expressing MamC-1xGBP, 

overexpression of MamC-2xGBP caused a complete shift of CheW1-GFP localization towards 

midcell. There is precedence for significantly increased avidity (500x) of a nanobody 

consisting of a fusion of two identical domains compared to the monovalent nanobody [53]. 

Similarly, in our experiments the binding of CheW1-GFP to the monovalent GBP was 

apparently comparable to the in vivo turnover of the chemoreceptor-CheW complexes, since 

polar and midcell localized CheW1-GFP could be detected. In contrast, the avidity of the 

bivalent nanobody was much stronger, more CheW1-GFP was bound and the equilibrium was 

shifted towards the GBP-bound state.  
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In addition to demonstrating the efficient redirection of entire organelles to distinct 

locations, we observed that ectopic redirection of CheW1-GFP also gradually modulated 

chemotactic efficiency of M. gryphiswaldense cells. While chemoreceptors readily form 

complexes in the absence of CheA and CheW, the latter is essential for stabilizing native 

CheA-receptor interactions and lattice formation [36, 52]. Partial depletion of CheW1 

gradually reduced chemotactic efficiency, while expression of the bivalent nanobody 

essentially phenocopied the deletion of cheW1 (Fig. 2c). As GBP expressed in the cytoplasm 

had no effect on aerotaxis, this was not due to inactivation of CheW1-GFP, but caused by 

redirection and depletion from its native polar environment. Although bacteria do not display 

the same level of compartmentalization as eukaryotic cells, the functionality of many bacterial 

proteins similarly depends on their localization. Our results show that testing protein function 

by manipulating its subcellular localization which has been applied to eukaryotic systems [2, 

18], can be extended to the much smaller bacterial cells and be used to efficiently modulate 

protein function by subcellular retargeting.  

Compared to other approaches for silencing or manipulating the expression of selected 

genes at the DNA or RNA [54, 55] level, the biggest advantage of regulating gene expression 

at the protein level is that there is no change of mRNA transcript or native protein expression 

level [56]. Especially for bacterial genes encoded in operons, gradual knockdown of 

individual proteins might be difficult to achieve at the transcriptional level, if polar effects on 

transcription of downstream genes are to be avoided. Additionally, it would be desirable to 

develop inducible systems, e.g. to gradually control in vivo the stoichiometry of proteins in 

larger clusters. This might facilitate the study of complex regulatory pathways, such as cell 

division or cell differentiation processes in other bacteria. 

Intrabodies are well established as powerful tools in eukaryotic cells for trapping 

soluble proteins at defined subcellular locations [16-18] or for inhibition of protein function 

[12]. Although recombinant nanobodies can be produced easily in bacteria such as E. coli 

[10], to date the use of intrabodies in bacterial cells has been restricted to only very few 

studies. Two early publications reported the intracellular expression of single-chain Fv 

antibody fragments (e.g. to block transcriptional activation) [57, 58], and more recently also 

nanobodies have been applied in bacteria to inhibit enzyme activity [59]. However, in these 

approaches intrabodies were not anchored to defined positions and inhibition of enzymes was 

achieved by neutralization, rather than redirection to completely different compartments of 
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the cell. Although for proof-of-principle we took advantage of the specific 

compartmentalization in M. gryphiswaldense, in which the magnetosomes provide a natural 

anchor for setting up an intracellular nanotrap, this approach could also be extended and 

adapted for application in other bacteria. By using universal tags like GFP for recruitment, 

many proteins can be targeted with the same nanobody applying the same strategy, obviating 

the need of camelid immunization and screening of whole libraries. Multiple other 

applications are possible because GFP fusion proteins can be combined with any cellular 

anchor point, such as subcellular compartments (e. g. poles, midcell), specific protein 

complexes, organelles, or other spatial determinants. For instance, potential applications of 

our approach in bacteria could be building synthetic cellular structures (e.g. artificial tethering 

of heterologously expressed bacterial microcompartments) or compartmentalization of 

biosynthetic pathways, which can dramatically increase production by restricting reactions 

spatially to subcellular compartments [60, 61]. 
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Methods 

Bacterial strains, plasmids, and culture conditions 

Bacterial strains and plasmids used in this study are listed in Supplementary Table 

S1&S2. M. gryphiswaldense strains were grown microaerobically with 1% oxygen in 

modified flask standard medium (FSM) at 30°C [62] and moderate shaking (120 rpm). E. coli 

strains were cultivated as previously described [63], for growth of E. coli WM3064 (W. 

Metcalf, unpublished) or BW29427 (K. Datsenko and B. L. Wanner, unpublished data) 1 mM 

DL-α, ε-diaminopimelic acid (DAP) was added to lysogeny broth media (LB). Strains were 

routinely cultured on plates solidified with 1.5% (w/v) agar. For strains carrying recombinant 

plasmids, media were supplemented with 25 µg ml-1 kanamycin and 50 µg ml-1 ampicilin 

(Amp) for E. coli strains, and 5 µg ml-1 kanamycin (Km) for M. gryphiswaldense strains, 

respectively.  

For the preparation of swim plates only 0.2% agar was used, the concentration of 

carbon source (lactate) was lowered to 1.5 mM and peptone was omitted from FSM medium. 

5 µl of overnight culture were pipetted into the swim agar and plates were incubated under 

microxic conditions for 2 days (protocol modified from Schultheiss 2004) [64].  

Molecular and genetic techniques 

Oligonucleotides were purchased from Sigma-Aldrich (Steinheim, Germany) and 

sequences can be supplied on request. Plasmids were constructed by standard recombinant 

techniques as described in detail below. All constructs were sequenced on an ABI 3730 

capillary sequencer (Applied Biosystems, Darmstadt, Germany), utilizing BigDye Terminator 

v3.1. Sequence data were analyzed with Software Vector NTI Advance® 11.5 (Invitrogen, 

Darmstadt, Germany). The GBP nanobody [41] was provided by ChromoTek GmbH 

(Planegg-Martinsried) and a synthetic GBP was specifically optimized for the expression in 

M. gryphiswaldense with respect to its codon usage and purchased from ATG:biosynthetics 

(Merzhausen, Germany). 

Construction of plasmids for chromosomal gene insertion, deletion and fusion 

For chromosomal exchange of cheW1 against cheW1-egfp, the fluorescence marker 

was fused via overlap extension PCR [65] to cheW1 and to a 1000 bp downstream fragment of 

the gene. The fused product was inserted into pORFM and the native cheW1 copy was 
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exchanged chromosomally against cheW1-egfp by homologous recombination facilitated by 

GalK counter selection [66]. Deletion of cheW1 was achieved following a similar strategy by 

fusion of approximately 1000 bp fragments upstream and downstream of cheW1 connected by 

12 nonsense bp replacing the native cheW1. For complementation of cheW1 deletion, cheW1 

was amplified from the genome and inserted into pAP150 [45].  

All mamC-gbp fusions were chromosomally introduced by transposition, therefore all 

gene fusions created by overlap PCR were inserted into transposable pSB6 and pSB7 

plasmids [45].  

Analytical methods 

Magnetic reaction of cells was validated by light microscopy applying a bar magnet. 

Optical density (OD) and magnetic response (Cmag) of exponentially growing cells were 

measured photometrically at 565 nm as previously reported [67]. For Cmag measurement a 

magnetic field of approximately 70 mT was used. 

Biochemical Methods 

Polyacrylamide gels were prepared according to the method of Laemmli [68]. Strains 

were grown overnight and spun down via centrifugation, OD565 was set to 10 and 20 µl was 

loaded onto 12% (wt/vol) SDS gels and analyzed via immunoblotting. Proteins were 

electroblotted onto polyvinylidene difluoride (PVDF) membranes (Roth, Germany). 

Membranes were blocked for 1h at room temperature with blocking solution (2.5% (w/v) milk 

powder in Tris-buffered saline (TBS) (50 mM Tris-HCl; pH 7.6; 150 mM NaCl)) and 

incubated for another hour with primary rabbit anti-MamC IgG antibody (1:500 dilution 

[Santa Cruz, USA]). Membranes were washed 4 times with TBS for 5 min and incubated with 

a secondary alkaline phosphatase-labeled goat anti-rabbit IgG antibody (1:2000 dilution 

[Promega, USA]) for 45 min. Membranes were washed 4 times with TBS for 5 min and 

immunoreactive proteins were visualized with NBT/BCIP (Roche Kit). 

Phase Contrast and Fluorescence Microscopy 

Strains with genomic CheW1-EGFP fusions and additional MamC-GBP fusions were 

grown in 1 ml FSM in 24-well plates for 16 h at 30°C and 1% O2 without agitation. For 

microscopy cells were immobilized on agarose pads (PBS buffer supplemented with 1% 

agarose), and imaged with an Olympus BX81 microscope equipped with a 100 
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UPLSAPO100XO objective (numerical aperture of 1.40) and a Hamamatsu Orca AG camera. 

The Olympus xcellence pro software was used to capture and analyze images. 

To analyze relative position of fluorescent foci we manually segmented each cell 

along its long axis into four equal sectors and scored the fluorescent foci within each sector. 

The strongest fluorescence signal(s) was scored as “++”, weaker signals were scored as “+”. 

Since the orientation of imaged cells was random and in many cases the distribution of 

fluorescent foci was not perfectly symmetric, we rotated the cells where necessary so that the 

sectors with the highest cumulated score were sector 1 and 2. We then calculated relative 

frequencies of fluorescent foci position based on the ratio of cumulated scoring points of all 

analyzed cells per sector divided by the total number of scoring points in all cells.  

Transmission electron microscopy 

Magnetosome chain localization was examined by transmission electron microscopy 

(TEM), for which cells were concentrated via centrifugation and adsorbed onto carbon-coated 

copper grids. Cells were imaged with a FEI Morgagni 268 (FEI, Eindhoven, Netherlands) 

electron microscope at an accelerating voltage of 80 kV. For analysis of magnetosome 

alignment and chain compactness, we used the CHAP script implemented in MATLAB and 

run the program for 20 cells for each strain [46]. For analysis of magnetosome position we 

manually segmented each cell along its long axis into four equal sectors and scored the 

number of magnetosomes within each sector. Since the orientation of imaged cells was 

random and in many cases the distributions of magnetosomes were not perfectly symmetric, 

we rotated the cells where necessary so that the sector with most magnetosomes scored was 

either sector 1 or 2. We then calculated relative frequencies of magnetosome position based 

on the ratio of cumulated magnetosomes of all analyzed cells per sector divided by the total 

number of magnetosomes in all cells.  

Video microscopy and analysis of swimming parameters 

Swimming behavior of cells was analyzed and recorded using dark-field microscopy 

on an upright Zeiss Axioplan microscope (Zeiss, Jena, Germany) at 100x magnification. All 

microscopic motility experiments were performed within a microscopic gas perfusion 

chamber (Ludin Chamber, Life Imaging Services) that was equilibrated with variable 

moisturized and precisely adjusted O2-N2 gas mixtures containing between 0 and 2% oxygen 

[35]. 
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Homogeneous conditions were maintained by using strongly diluted cell suspensions (OD 

0.005) and exposing cell suspensions to a constant gas flow of 50 ml min-1, protected against 

turbulence by placing a gas-permeable agar sheet on top.  

Videos were recorded with a UK1158–M camera (EHD, Damme, Germany) at a frame 

rate of 15 fps and a standard resolution of 1360 x 1024 pixels using VirtualDub software. 

Dark-field video records were analyzed by a custom-made automated tracking software 

(“WimTaxis – Bacteria Tracking”, Wimasis GmbH, München, Germany) specifically adapted 

to determine basic swimming characteristics. The software automatically detected swimming 

reversals and provided the x-y coordinates of every tracked cell for each frame.  

The minimum track length was set to be 50 frames. Within the usual tracking times 

(depending on the time bacteria stayed in the viewing field, usually below 10 s) reversals 

generally were too infrequent to simply average reversal rates of single cells. Therefore, the 

reversal frequency analysis for each experiment was performed at the population level, and all 

detected reversals were divided by the total respective tracking time (sum of the temporal 

length of all tracks) to obtain the population average. 

To analyze the cells’ reaction to oxygen shifts, the gas stream was manually switched 

between oxic and anoxic. For this purpose we equipped our setup with a three-way valve and 

a flow meter to adjust the flow of N2 gas to 50 ml min-1 [35]. 

 Cells were first equilibrated for 3 min under anoxic conditions before the video 

recording was started. After 20 s the gas flow was shifted to 2% O2 and cells were recorded 

for additional 20 s. To determine the average reversal frequency over time, the number of 

detected reversals within 5-s intervals was added up from three independent video recordings 

and normalized to the total corresponding tracking time.  
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Supplementary material manuscript 1 

 

Supplementary Fig. S1: CheW1-EGFP localization in a dividing cell. Representative DIC and 

fluorescence micrograph of a cell chromosomally expressing CheW1-EGFP close to cell division. 

CheW1-EGFP localizes distinctly at the cell poles and forms two new foci at mid-cell at the expected 

position of septum formation. Scale bar 2 µm. 

 

 

Supplementary Fig. S2: Schematics (a) and fluorescence micrograph of M. gryphiswaldense ΔmamM 

mutant cells expressing CheW1-EGFP alone (b) or in combination with MamC-2xGBP (c) and wild 

type cells expressing chromosomal CheW1-EGFP and cytoplasmic GBP (d), or CheW1-EGFP and 

MamC-mCherry-GBP (e,f). Scale bar 2 µm.  
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Supplementary Fig. S3: Western blot of M. gryphiswaldense cells expressing CheW1-EGFP (1), 

CheW1-EGFP MamC-mCherry-GBP (55.43 kDa) (2) and CheW1-EGFP MamC-2xGBP (41.07 kDa), 

protein bands are indicated by black arrow heads (3). The native, unfused MamC (12.35 kDa) is 

present in all strains, indicated by white arrow head. Additional bands are visible for all strains 

expressing MamC fusions proving stable expression. MamC was detected using rabbit αMamC IgG as 

primary, and goat anti-rabbit IgG alkaline phosphatase antibodies as secondary antibody. PageRuler™ 

Prestained Protein Ladder from fermentas was used as a standard. 

 

 

Supplementary Fig. S4: Fluorescence distribution in fluorescence micrographs of M. 

gryphiswaldense cells expressing chromosomal CheW1-EGFP MamC-2xGBP. Scale bar 2 µm. 

 

 

Supplementary Fig. S5: TEM micrographs of M. gryphiswaldense ΔcheW1 (a) and cells expressing 

CheW1-EGFP and cytoplasmic MagGBP (b) or CheW1-EGFP and MamC-mCherry-GBP (c). Scale 

bar 1 µm. 
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Supplementary Fig. S6: TEM micrographs of M. gryphiswaldense cells expressing CheW1-EGFP 

and MamC-2xGBP. Scale bar 2 µm. 

 

 

Supplementary Fig. S7: Swim halos of M. gryphiswaldense ∆cheOp1 cells, wild type cells co-

expressing either CheW1-EGFP and MagGBPcyt or CheW1-EGFP and MamC-mCherry-GBP. 
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Supplementary Table S1: Plasmids used in this study 

Plasmid name Description Source or reference 

pJET1.2/blunt Cloning vector; AmpR Fermentas, Schwerte 
pBBR-MCS2 Mobilizable broad-host-range 

vector; KmR 
M. E. Kovach, et al,. 1995 

pBAM1 KmR , AmpR, oriR6K, tnpA E. Martinez-Garcia, et al., 
2011 

pORFM pK19mobGII, universal in-frame 
deletion/in-frame fusion vector 
with GalK-based counterselection 
and MCS 

O. Raschdorf and F. Müller, 
2014 

pMA-T GBPopt AmpR,ColE1 ori, maggbp  GeneArt® (Invitrogen), life 
technologies, Darmstadt 

pGH-Trpl GBP AmpR, maggbp-gbp-maggbp ATG:biosynthetics, 
Merzhausen 

pSB6 pBAM1 with PmamDC45, magegfp, 
KmR, AmpR 

S. Borg, et al., 2014 

pSB7 pBAM1 with Ptet, magegfp, PNeo-
TetR, KmR, AmpR 

S. Borg, et al., 2014 

pFP66 fusion of cheW1-egfp-cheW1 
downstream fragment inserted into 
pORFM 

this study 

pJH01 pAP150 with PmamDC45, cheW1-

egfp, KmR 
this study 

pJH16 pBAM1 with PmamDC45, mamC-

maggbp, KmR, AmpR 
this study 

pJH17 pBAM1 with Ptet, mamC-maggbp, 
PNeo-TetR, KmR, AmpR 

this study 

pJH39 pBAM1 with PmamDC45, mamC-

maggbp-gbp, KmR, AmpR 
this study 

pJH40 pBAM1 with Ptet, mamC-maggbp-

gbp, PNeo-TetR, KmR, AmpR 
this study 

pJH60 pBAM1 with PmamDC45, mamC-

mCherry-maggbp, KmR, AmpR 
this study 

pJH61 pBAM1 with Ptet, mamC-mCherry-

maggbp, PNeo-TetR, KmR, AmpR 
this study 

pJH97 pBAM1 with PmamDC45, mamC-

maggbp-gbp-maggbp, KmR, AmpR 
this study 

pJH100 pORFM with fused up- and 
downstream region of cheW1 for 
deletion of cheW1 

this study 

pJH104 pBAM1 with PmamDC45, maggbp, 
KmR, AmpR 

this study 
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Supplementary Table S2: Strains used in this study 

Strain Description Source or reference 

Escherichia coli   

DH5α F- supE44 ΔlacU169 (Φ 
80 
lacZDM15) hsdR17 recA1 
endA1 
gyrA96 thi-1 relA1 

Invitrogen, life 
technologies, Darmstadt 

WM3064 thrB1004 pro thi rpsL 

hsdS lacZΔM15 RP4-1360 

Δ(araBAD)567 

ΔdapA1341::[erm pir] 

W. Metcalf, unpublished 

BW29427 DAP auxotroph derivative 
of E. coli strain B2155 

K. Datsenko and B. L. 
Wanner, unpublished 

Magnetospirillum 

gryphiswaldense 

  

M. gryphiswaldense MSR-1 
R3/S1 

RifR, SmR spontaneous 
mutant, lab strain 

D. Schultheiss, et al., 
2003 

M. gryphiswaldense ΔmamJ ΔmamJ A. Scheffel, et al., 2006 
M. gryphiswaldense ΔmamM ΔmamM R. Uebe, et al., 2011 
M. gryphiswaldense ΔcheW1 ΔcheW1 this study 
M. gryphiswaldense MSR-1 FP66 in frame fusion of egfp to 

cheW1 

this study 

M. gryphiswaldense ΔcheW1 
(pJH01) 

ΔcheW1 complemented 
with p JH01 

this study 

M. gryphiswaldense MSR-1 JH5 FP66 transposon mutant 
with inserted maggbp from 
PmamDC45, KmR 

this study 

M. gryphiswaldense MSR-1 JH6 FP66 transposon mutant 
with inserted mamC-

maggbp from PmamDC45, 
KmR 

this study 

M. gryphiswaldense MSR-1 JH7 FP66 transposon mutant 
with inserted mamC-

maggbp-gbp from 
PmamDC45, KmR 

this study 

M. gryphiswaldense MSR-1 JH8 FP66 transposon mutant 
with inserted mamC-

mCherry-maggbp from 
Ptet, KmR 

this study 

M. gryphiswaldense MSR-1 JH9 FP66 transposon mutant 
with inserted mamC-

maggbp-gbp from Ptet, 
KmR 

this study 

  



2. Publications and manuscripts 

 
81 

 

M. gryphiswaldense MSR-1 JH10 FP66 transposon mutant 
with inserted mamC-

maggbp-gbp-maggbp from 
Ptet, KmR 

this study 

M. gryphiswaldense MSR-1 JH11 ΔmamJ with inframe 
fusion of egfp to cheW1 

this study 

M. gryphiswaldense MSR-1 JH12 JH11 transposon mutant 
with inserted mamC-

maggbp from PmamDC45, 
KmR

 

this study 

M. gryphiswaldense MSR-1 JH13 ΔmamM with inframe 
fusion of egfp to cheW1 

this study 

M. gryphiswaldense MSR-1 JH14 JH13 transposon mutant 
with inserted mamC-

maggbp-gbp from 
PmamDC45, KmR

 

this study 
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Abstract 

Magnetic nanoparticles (MNPs) have great potential in biomedical applications, but the 

chemical synthesis of size-controlled and functionalized core-shell MNPs has remained 

challenging. However, magnetosomes produced by the magnetotactic bacterium 

Magnetospirillum gryphiswaldense represent natural uniform and chemically pure magnetite 

MNPs, with superior magnetic characteristics. Here, we demonstrate that in addition to the 

naturally enveloping magnetosome membrane and biomolecules displayed on the surface of 

magnetosomes, further functionalities can be added by encapsulation with inorganic coatings. 

We generated novel multi-shell nanoparticles, consisting of the magnetosome core (magnetite 

crystal + magnetosome membrane + additional functional moieties, such as GFP and 

peptides) and an outer shell, consisting of either a silica or zinc oxide. Coating of 

functionalized magnetosomes with silica improved their colloidal stability and preserved the 

GFP fluorescence in the presence of proteases and detergents. In addition, the surface charge 

of magnetosomes could be adjusted by different coatings. This method will be useful for the 

versatile generation of new, multifunctional multi-shell and magnetic hybrid nanomaterials 

with potential for various biomedical applications, like magnetic resonance imaging, 

fluorescence imaging or drug delivery. 
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Introduction 

Magnetic nanoparticles (MNPs) are typically between 5 and 100 nm in size [1] and 

most studies have been conducted with magnetite MNPs inter alia due to its proven 

biocompatibility [2]. However, it has remained difficult to produce particles with a narrow 

size distribution and to control the morphology of the particles in chemical synthesis routes. 

Additionally, chemical synthesis demands surface modification of the particles during or 

subsequent to the process [3]. Special types of MNPs are core-shell nanoparticles (CSNs). 

They are of particular interest because these particles consists of layers of different materials, 

which can add further functionalities, or passivate the core particle and thereby confer 

biocompatibility [4]. Magnetosomes are natural occurring CSNs, with a magnetic core 

enveloped by a magnetosome membrane, which consists of phospholipids and a set of 

magnetosome specific, membrane associated proteins [5,6]. M. gryphiswaldense 

magnetosomes have a cuboctahedral crystallographic orientation [7]. These special 

nanoparticles display exceptional properties like high uniformity, absolute purity and superior 

magnetic characteristics [7]. Therefore, they have attracted attention in various fields of 

applied science, such as in biotechnology and biomedicine [3,8]. The particles can be 

employed, for instance, as MRI contrast agents [8,9] and magnetic capturing of soluble 

proteins and drug targeting [8, 10]. One further key advantage of magnetosomes is that their 

functionalization with additional functional moieties, such as enzymes, antibodies or 

fluorophores, ca be achieved by genetic engineering and fusion of molecular tags to 

magnetosomal anchor proteins, such as MamC, which is highly constituent of the 

magnetosome membrane [11]. However, proteins and other biomolecules displayed on the 

magnetosome surface are sensitive against non-physiological conditions, detergents and 

proteolytic degradation. On the other hand, bacterial phospholipids and proteins might be 

highly immunogenic in in vivo applications, unless properly masked. Therefore, for many 
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biomedical applications, passivation of magnetosomes is be beneficial. This has been 

achieved by encapsulation with inert shells, as for instance consisting of an additional silica 

layer to impart wettability and biocompatibility [12]. Additionally, silica can be easily 

functionalized further by linking bioconjugates, such as avidin [13], to even expand 

multifunctionality of the CSNs. CSNs are generally classified in four main groups i) 

inorganic/inorganic; ii) inorganic/organic; iii) organic/inorganic and iv) organic/organic [4]. 

Magnetite-silica CSNs have been previously generated by various synthesis routs e. g. layer-

by-layer assembly [14], co-precipitation [15], or reverse microemulsion approaches [16] with 

potential applications as e.g. biocatalyst [17], or drug delivery systems [18]. In contrast to 

synthetic MNP, the encapsulation of bacterial magnetosomes would allow for a single step 

generation of CSNs and the generation of highly versatile multi-shell MNPs with multiple 

functionalities. 

In contrast, there is very little information available about Fe3O4-ZnO CSNs, which 

would have potential application in biomedical approaches, as for example as alternative 

treatment against bacterial infections [19]. One of the few studies described seed-mediated 

grown Fe3O4-ZnO CSNs where the core exists of 8-13 nm Fe3O4 nanoparticles encapsulated 

by a 4.45-5.15 nm ZnO layer [20]. In a similar approach Wan and co-workers generated 

Fe3O4-ZnO nanoparticles of roughly the same size [21]. Most other studies describe Fe3O4-

ZnO hybrid composites of different sizes and morphologies, e. g. Fe3O4-coated ZnO 

nanoflowers [22] or Fe3O4-ZnO hybrid nanorods [23]. The doping of ZnO with Fe3O4 was 

also used to add magnetic properties to the semiconductive ZnO, therefore Fe3O4 was 

embedded in porous ZnO particles [24]. 

All of the studies described above rely first on the chemical synthesis of magnetite 

nanoparticles. In contrast, membrane enclosed core-shell magnetic nanoparticles, so called 
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magnetosomes, can be isolated from magnetotactic bacteria, such as Magnetospirillum 

gryphiswaldense, in a sustainable approach, with high yields of up to ~180 mg 

magnetite/liter/day [6, 25, 26]. The magnetite core exhibits exceptional magnetic properties, 

like an exceptionally high magnetic heat loss, high magnetization and uniformity [27]. In 

addition, the synthesis, and consequently the properties of the magnetic core can be 

genetically engineered [28].  

Here, we report about the generation of hybrid CSNs consisting of (i) functionalized 

magnetosomes (displaying enhanced green fluorescent protein (EGFP), genetically fused to 

the magnetosome protein MamC), which are (ii) encapsulated by an additional coating 

consisting of either silica or ZnO (Figure 1). Fluorescent magnetosomes were isolated from 

bacteria and used as a template, on which the inorganic shell was directly mineralized using 

fast low-temperature synthesis approaches. This approach secured non-denaturing conditions 

to preserve integrity and fluorescence of encapsulated EGFP protein, which in addition 

exhibited highly increased resistance against proteases and detergents. Both types of 

passivated bacterial magnetic nanoparticles have potential in biomedical applications, 

biosensors or biocatalysts. 
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Figure 1: Scheme of multi-shell magnetic hybrid nanoparticles, consisting of the magnetite 

magnetosome core (45 nm) that is enveloped by the magnetosome membrane, with specific 

magnetosome membrane proteins (dark grey) and the anchor protein MamC (purple) that is fused to 

GFP (green). The functionalized magnetosome is encapsulated with a 20 nm layer of an inorganic 

silica or ZnO shell.  
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Results/Discussion 

Magnetosomal expression of MagEGFP and ZnO-binding peptides by genetic fusion 

In order to generate fluorescent magnetosomes, a Magnetospirillum-optimized 

derivative of the enhanced fluorescent protein (EGFP), so called MagEGFP [29], was fused to 

the magnetosome anchor protein MamC, as described before [29]. For the coating of 

magnetosomes with zinc oxide (ZnO), a second version of magnetosomes was produced, 

expressing the ZnO-binding peptide 31 (amino acid sequence HHGHSPTSPQVR), which was 

previously identified by phage display and showed a strong binding to ZnO with a 

dissociation constant in the nanomolar range (KD 10±3 nM) [30]. The peptide was expressed 

as fusion to the MagEGFP modification, resulting in MagEGFP-31 functionalized 

magnetosomes. Expression of MamC-MagEGFP as well as the MamC-MagEGFP-31 fusion 

proteins on magnetosomes and incorporation in the magnetosome membrane was verified by 

fluorescence microscopy. The functionalized magnetosomes were applied in the 

mineralization process with either silica or ZnO. 

 

Figure 2: Silica-encapsulated magnetosomes. Scanning electron (A) and transmission electron 

micrographs of silica-encapsulated magnetosomes, with a silica layer thickness of ~20 nm (B). 

Representative transmission electron micrographs of magnetosomes encapsulated in the absence of an 
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external magnetic field (C), in the presence of a rotating magnetic field (D) and in a static magnetic 

field (E). The white scale bar represents 200 nm. 

Silica encapsulation of magnetosomes 

 A modified Stöber reaction was used to encapsulate the MagEGFP functionalized 

magnetosomes with silica [31]. This experimental setup yielded magnetosomes coated with a 

homogenous and complete silica layer, as shown by TEM and SEM (Figure 2 A&B). The 

adjustment of the coating thickness and thus the entire particle size is of crucial interest for 

many biomedical applications. For instance, it is necessary to obtain particles with a defined 

thin silica layer, since large particles (>200 nm) are sequestered by phagocytotic cells and 

nanoparticles smaller than 5.5 nm are rapidly removed by renal clearance [8, 32]. To adjust 

the layer thickness of the silica coating various ratios of magnetosome and silica precursor 

were tested in the encapsulation reaction. Magnetosome concentrations between 0.4 and 2.0 

µg iron/µl (Figure 3) led to a decrease in silica layer thickness with increasing MNP 

concentration in the reaction. A magnetosome concentration of 0.4 µg/ml in the reaction 

solution yielded encapsulated magnetosomes with an average silica layer thickness of about 

20 nm. By increasing the magnetosome concentration to 0.8 µg/µl the coating thickness 

slightly decreased to 17 nm. A more pronounced effect was found at magnetosome 

concentrations of 1.0 and 2.0 µg/µl, where the coating thickness of the particles was further 

decreased to 11 nm and ~3 nm, respectively (Figure 3). A similar inversely proportional 

relationship of the particle concentration and the coating thickness was also reported for the 

encapsulation of synthetic magnetic core nanoparticles [17]. The effect on layer thickness by 

varying the concentration of seed to reaction solution is presumably caused by free silanol 

groups surrounding the magnetic seed. 
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Figure 3: Layer thickness of silica precipitated on magnetosomes. Magnetosome seed 

concentrations from 0.4-2 µg/ml were applied to a silica precipitation solution and layer thickness was 

estimated using the software imageJ and by comparing pixel size to the scale bar. The scale bar 

represents 40 nm. 

Next, we tested the effect of an external magnetic field on the mineralization 

characteristics of magnetosomes. To this end, magnetosomes were encapsulated with silica in 

the absence of an external magnetic field, in the presence of either a static magnetic field 

(between two bar magnets, magnetic field strength each = 70 mT), or in a rotating magnetic 

field (by placing the experimental set up on top of a conventional magnetic lab stirrer). 

Different types of encapsulated magnetosomes were obtained, depending on the experimental 

set up. The encapsulation in the absence of an external magnetic field predominantly resulted 

in separated encapsulated magnetosome particles (Figure 2C) and occasionally short chains of 

up to five magnetosomes adherent to each other, probably due to magnetostatic interactions 

between the ferrimagnetic magnetite cores. In contrast, in the presence of an static external 

magnetic field magnetosome particles preferentially assembled to sets of chains of 
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magnetosome (i.e. 5-20 particles, separated by ~10 nm) which aligned to the magnetic field 

and remained stable. Although not being entirely uniform, this prominently led to 

simultaneous encapsulation of many particles, resulting in chains of five to 20 particles, 

which remained attached to each other and aligned in a linear fashion extending over up to 

800 nm (Figure 2E). Application of a rotating magnetic field yielded both chains and single 

particles encapsulated in silica (Figure 2D). Thus, by controlling the magnetic alignment of 

the particles during the mineralization process, either individual encapsulated particles or 

magnetic nanochains could be produced. The latter might be used in biosensors or bioassays, 

since the particles can be structured and aligned in a controlled fashion. For example, it was 

previously reported that magnetosome chains are taken up faster by cancer cells than single 

magnetosomes [33]. 

 

Figure 4: Colloidal stability of silica encapsulated magnetosomes. Silica encapsulated 

magnetosomes (left) and non-encapsulated magnetosomes (right) were dispersed in water by vortexing 

and incubated for 3 weeks, illustrating improved colloidal stability of silica encapsulated 

magnetosomes. Non-encapsulated magnetosomes agglomerated and sedimented faster (30 sec) than 

silica-encapsulated magnetosomes, which can be re-dispersed easily and remained suspended for at 

least 1 min. 
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Silica-encapsulated magnetosomes displayed higher colloidal stability than non-

encapsulated magnetosomes after aging, as indicated by re-dispersion in water after two 

weeks of storage (Figure 4). Non-encapsulated magnetosomes tended to agglomerate after 

storage for several weeks and could be no more dispersed in aqueous solution anymore. In 

contrast, silica encapsulated magnetosomes could be re-dispersed after long time (> 3 weeks) 

of storage. This might be caused by repulsion of the silica shell due to its high negative zeta 

potential or due to shielding of the magnetic core by the silica layer, which would reduce the 

magnetic forces that are known to decrease in square of the particle size [34]. Improving the 

colloidal stability of magnetosomes in solution can be important for many applications to 

avoid agglomeration of the particles. 

Silica encapsulation of MagEGFP-tagged magnetosomes increased resistance against 

proteases and detergents 

Isolated GFP-functionalized magnetosomes displayed high fluorescence before 

encapsulation. The fluorescence of the magnetosomes was preserved after silica 

encapsulation, as the particles still exhibited a similarly bright fluorescence signal. Thus, the 

inorganic coating did not interfere with the MagEGFP (e.g. altering the conformation of the 

fluorescence protein or degrade the protein during mineralization), although magnetosomes 

were entirely silica coated.  Next, the stability of the MagEGFP-tagged magnetosomes against 

detergent treatment, and proteolytic degradation was assessed. To this end, non-encapsulated 

and encapsulated particles were incubated at room temperature for one, two, and three weeks 

in buffer. The silica encapsulated MagEGFP-tagged magnetosomes showed fluorescence over 

the complete period of investigation. In contrast, non-encapsulated magnetosomes gradually 

lost the fluorescence, which became weaker in the time course until fluorescence was 

completely lost. Already after one week the fluorescence intensity was decreased, while after 
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three weeks fluorescence was no longer detectable within the sample of non-encapsulated 

magnetosomes. Thus, silica encapsulation drastically improved the thermal/aging stability of 

the fluorescence signal. The magnetosome membrane was completely passivated by a 

homogeneous silica coating, which assumedly protected the magnetosome integrity. 

In addition, the resistance of encapsulated magnetosomes against proteolytic 

degradation or chemical denaturation of proteins and solubilization of phospholipids was 

tested. To this end, the magnetosomes were either exposed to a detergent treatment with 1% 

SDS, which was reported to lead to decreased fluorescence due to the degradation of EGFP 

[11], or the enzymatic digestion with proteinase K. Silica encapsulated magnetosomes 

remained fluorescent after the treatment with both 1% SDS and proteinase K. In contrast, 

non-encapsulated magnetosome particles showed a complete loss of the fluorescence after 

chemical and enzymatic treatment. As a possible explanation, encapsulation of the 

magnetosomes by the modified Stöber reaction led to a precipitation of an amorphous silica 

layer on the magnetosomes [31]. This is highly unstructured order of silica on the 

magnetosomes might shield the magnetosome core sufficiently from external factors such as 

proteases and detergents. 

Encapsulation of magnetosomes with zinc oxide 

Magnetosome displaying either MagEGFP or MagEGFP-31 were encapsulated with 

ZnO via a mineralization process which is compatible with fastidious biological templates 

[35]. The mineralization was performed in cycles, each mineralization cycle resulted in 

approximately 5 nm coating thickness. The mineralization (including 4 cycles) resulted in a 

ZnO coating thickness of ~20 nm estimated on TEM micrographs (Figure 5C). The surface of 

encapsulated magnetosomes appears rougher compared to non-encapsulated magnetosomes 

(Figure 5 A&D to B&E).  
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Zeta potential of mineralized magnetosomes 

 

Figure 6: Zeta potentials of mineralized magnetosomes. A) ZP of silica encapsulated MagEGFP 

magnetosomes and non-mineralized reference magnetosomes. Non-mineralized MagEGFP 

magnetosomes exhibited a ZP of around -18 mV. This value shift more negative after the 

encapsulation with silica. Layer thickness of silica did not significantly influence the ZP of the 

resultant hybrid particles. B) ZP of MagEGFP and MagEGFP-31 expressing magnetosomes. The ZP 

of the two magnetosome derivatives was determined under four different pH values. At higher pH 

values the magnetosomes exhibited a more negative ZP. In general, the ZP of MagEGFP-31 

expressing magnetosomes was less negative compared to MagEGFP expressing magnetosomes. C) ZP 

of ZnO mineralized MagEGFP and MagEGFP-31 magnetosomes in comparison to their non-

mineralized references. After encapsulation of magnetosomes the ZP of both derivatives became more 

positive. The ZP of ZnO encapsulated magnetosomes was similar to the ZP of ZnO nanoparticles (see 

supplementary information). D) Comparison of the ZP of ZnO and silica encapsulated magnetosomes. 

The encapsulation resulted in significant alteration of the ZP. While the ZP of ZnO mineralized 
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magnetosomes was more positive compared to the reference non-encapsulated magnetosomes, silica 

mineralization resulted in a more negative ZP.  

 Most interestingly was the zeta potential (ZP) at neutral pH (i.e., at physiological 

conditions), therefore silica mineralized magnetosome were measured at pH 7.5 (Figure 6A). 

The ZP of the silica encapsulated magnetosomes was measured in relation to the silica coating 

thickness. Regardless of the silica coating thickness the ZP was around -34 mV which 

indicates a complete coating of magnetosome particles also at the lowest silica thickness of 

below 5 nm. Pure silica nanoparticles also show a ZP of about -40 mV [15], which is in the 

same range as the silica coated magnetosomes. Due to the encapsulation, the ZP was more 

negative compared to non-encapsulated magnetosomes (Figure 6A, GFP) with a ZP of -18.1 

mV. 

 The ZPs of non-mineralized MagEGFP and MagEGFP-31 magnetosomes were 

determined in 50 mM Tris buffer with a pH ranging between 7.0 and 9.1 (Figure 6B). The ZP 

of MagEGFP magnetosomes was in general more negative compared to MagEGFP-31 

magnetosomes presenting the ZnO-binding peptide. The presence of expressed peptide 31, 

which has a calculated isoelectric point of 9.77, likely results in a positive net charge over the 

investigated pH range, and most likely accounts for the more positive ZP of MagEGFP-31 

magnetosomes.  

 The ZnO coating of magnetosomes led to a drastic increase of the ZP. The zeta 

potentials of both types of ZnO encapsulated magnetosomes, MagEGFP and MagEGFP-31, 

were more positive compared to the non-mineralized references (Figure 6C). The ZPs of ZnO 

mineralized magnetosomes was slightly more positive compared to ZnO nanopowder which 

had a ZP of -8.8 mV at pH 7.5 (Figure S1). The silica and ZnO encapsulated magnetosomes 

showed, that the ZP of such particles can be adjusted to both more positive and more negative 
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values (Figure 6D). This allows the defined specification of the surface charge in regard to a 

potential application of such magnetic nanoparticles.  

 The surface charge of nanoparticles strongly affects their physical and biological 

properties. Strong negatively charged nanoparticles show low inclination for agglomeration 

due to the repulsion between single particles [40], which lead to homogenously dispersed 

nanoparticle suspensions. Theoretically, the endocytosis of negatively charged particles 

should be decelerated due to repulsive forces between the particles and the negatively charged 

cell membrane. However, in vitro studies showed that endocytosis is minimized for coated 

iron oxide nanoparticles with a zeta potential close to 0 mV [41], but the particles are cleared 

more efficient from the body due to increased liver uptake [8,32]. 

Because of their improved colloidal stability, enhanced stability and shielding of the 

fluorescence marker it is conceivable to apply the silica encapsulated magnetosomes as 

contrast agent in fluorescence imaging. Optical fluorescence imaging comprises a wide 

variety of technologies that are being used in biological and medical applications, such as 

contrast agent and offer clear potential for in vivo applications [42]. The encapsulation with 

silica or ZnO would render them more resistant to extreme pH and proteolysis. In addition, 

the agglomeration behavior of the nanoparticles and thereby the stability of nanoparticles in 

suspension are affected [40].  

With the two different inorganic coatings it is possible to adjust the ZP of 

magnetosomes both to more negative and more positive values which allows the tuning of the 

surface properties for various demands with regard to e.g. magnetosome-cell interaction. For 

instance, ZnO nanoparticles are known to possess biological functionality, such as 

antimicrobial activity against gram positive and gram negative bacteria and could therefore be 

applied as coatings to avoid spread of infectious diseases [36,43]. To date there are only few 
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reports on Fe3O4-ZnO hybrid CSNs. Kataoka and co-workers developed Fe-doped ZnO 

nanoparticles, where a room temperature ferromagnetism originated from unequal amounts of 

Fe3+ ions [24]. In a different study, Fe3O4-ZnO nanorods were developed as a new kind of 

electromagnetic wave absorptive material [23]. Wan and co-workers produced Fe3O4@ZnO 

core shell semiconductive hybrid materials that are similar to the hybrid nanoparticles in our 

study [21]. However, due to the absolute purity and strictly controlled morphology of the 

magnetosomes [7], uniform and well-defined Fe3O4-ZnO hybrid nanoparticles can be 

generated. The magnetosome based MNPs will be investigated in further studies with respect 

to biotechnological or biomedical applications. 

Conclusion 

 In this study we generated two novel examples of magnetic multi-shell hybrid 

nanoparticles, consisting of the magnetite core, the magnetosome membrane with fused 

MagEGFP and the inorganic silica or ZnO layer. Coating of fluorescent magnetosomes with 

silica yielded particles with enhanced stability against proteases and detergents, which might 

have potential in biomedical applications, such as drug delivery agent or as contrast agent. In 

a second approach, we precipitated ZnO on the surface of EGFP-functionalized 

magnetosomes to generate well-defined Fe3O4-ZnO as semiconductive magnetic hybrid 

nanoparticles, which might be applicable in future approaches as sensors or biomedical 

approaches, as for instance in cancer treatment. This method will be useful for the versatile 

generation of new, multifunctional multi-shell and magnetic hybrid nanomaterials that can be 

investigated in future studies, for instance by applying silica encapsulated magnetosomes for 

in vivo assays or exploring the potential of ZnO mineralized magnetosomes in electronic 

devises. 
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Experimental Section 

Bacterial strains, plasmids, and culture conditions 

Bacterial strains and plasmids used for this study are listed in Table S1&2. M. 

gryphiswaldense strains were grown microaerobically with 1% oxygen in modified flask 

standard medium (FSM) at 30°C [25] and moderate shaking (120 rpm). E. coli strains were 

cultivated as previously described [44], for growth of E. coli MW3064 (W. Metcalf, 

unpublished) 1 mM DL-α, ε-diaminopimelic acid (DAP) was added to lysogeny broth media 

(LB). Strains were routinely cultured on plates solidified with 1.5% (w/v) agar. For strains 

carrying recombinant plasmids, media were supplemented with 25 µg ml-1 kanamycin (Km) 

and 50 µg ml-1 ampicilin (Amp) for E. coli strains, and 5 µg ml-1 Km for M. gryphiswaldense 

strains, respectively. 

Isolation of magnetosomes 

The procedure for magnetosome isolation from M. gryphiswaldense cells was 

modified from Lang et al. (2008) [11]. M. gryphiswaldense strains were cultivated for 24 h at 

30°C in 30 L FSM medium in a 50 L fermenter with 100 rpm stirrer speed and without 

airflow. The fermenter was inoculated with 3 L pre-culture. Stationary-phase cultures were 

harvested via centrifugation, washed with washing buffer (20 mM HEPES, 1 mM EDTA, pH 

7.4), and finally resuspended in resuspension buffer (50 mM HEPES, 1 mM EDTA, 0.1 mM 

phenylmethylsulfonyl fluoride, pH 7.4). Cells were disrupted by three passages through a 

microfluidizer and cell debris was removed by centrifugation at 800 x g for 10 min. The 

cleared cell lysate was passed through a MACS magnetic-separation column (Miltenyi, 

Bergisch Gladbach, Germany) and placed between NdFeB magnets, to separate 

magnetosomes from the non-magnetic fraction. The column bound magnetosomes were 

washed with 10 column volumes (50 ml) of extratction buffer and high-salt buffer (10 mM 
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HEPES, 200 mM NaCl, 1 mM EDTA, pH 7.4). Residual salts were washed with extraction 

buffer and magnetosomes were eluted in extraction buffer by removal of the magnetic field. 

Finally, magnetosomes were purified by centrifugation through an 8-ml sucrose cushion (60% 

[wt/wt] in extraction buffer) at 200,000 x g for 90 min. Due to their high specific density 

magnetosomes are collected at the bottom of the tube, whereas residual cellular components 

are retained by the sucrose cushion. Finally, the magnetosomes were resuspended in 8 ml EP. 

 

Analytical methods 

Magnetic reaction of cells was validated by light microscopy applying a bar magnet. 

Optical density (OD) and magnetic response (Cmag) of exponentially growing cells were 

measured photometrically at 565 nm as previously reported [45]. For Cmag measurement a 

magnetic field of approximately 70 millitesla was used. 

 

Biomineralization of magnetosomes 

Silica mineralization 

Encapsulation of magnetosomes with silica was achieved using a modified version of 

the protocol from Barrado et al. (2005) [31]. An aliquot of isolated magnetosomes (100 µl ≈ 

0.8 mg/ml) was centrifuged and solvent was discarded, afterwards magnetosomes were mixed 

with 50, 100, 250 or 500 µl of a silica reaction solution for 3h at room temperature. The silica 

reaction solution (2 ml TEOS (tetraethylorthosilicate), 2.145 ml H2O, 1.67 ml EtOH and 580 

µl NH3 (25%)) was freshly prepared for each experiment and stirred for 2 min before 

encapsulation of magnetosomes. Silica encapsulated particles were harvested via 

centrifugation (13.000 rpm, for 5 min), and washed 5 times with 250 µl H2O to remove 
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residual silica particles. Encapsulation of magnetosomes with silica was tested in an external 

magnetic field, applying two bar magnets or on a magnetic stirrer creating a rotating magnetic 

field or without any external magnetic field present. 

ZnO mineralization 

The final concentrations in the ZnO deposition solution were 8.57 mM 

polyvinylpyrrolidone (PVP, MW 8000 Da), 11.34 mM zinc acetate dihydrate, and 25 mM 

tetraethylammonium hydroxide (TEAOH). For all components stock solutions in methanol 

were prepared. The PVP and zinc acetate dihydrate solutions were mixed and the TEAOH 

was added drop wise under constant stirring [35,46]. The mineralization solution was 

prepared freshly and used no longer than 24 h, to avoid adverse implications due to aging 

processes of the deposition solution. A Si-wafer substrate with the immobilized 

magnetosomes was placed in a glass vessel with deposition solution and incubated at 60°C for 

1.5 hours. Afterwards, the substrate was washed in methanol to eliminate excess deposition 

solution and air dried at room temperature.  

Stability assay 

MagEGFP functionalized, non-encapsulated and silica-encapsulated magnetosomes were 

stored for up to three weeks at room temperature on the bench top and examined for decay of 

the fluorescence signal and colloidal stability. Additionally magnetosomes were treated with 

1% SDS to test denaturation of proteins and solubilization phospholipids. Proteolytic 

degradation of proteins was tested by incubation of the particles with 40 µg proteinase K per 

ml for 5 min. 

Fluorescence microscopy  
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Magnetosomes displaying MamC-GFP fusions encapsulated by silica were analyzed 

via fluorescence microscopy and imaged with an Olympus BX81 microscope equipped with 

an 100 UPLSAPO100XO objective (numerical aperture of 1.40) and a Hamamatsu Orca AG 

camera. The Olympus xcellence pro software was used to capture and analyze images. 

Transmission electron microscopy (TEM) analysis 

Silica and ZnO encapsulated magnetosomes were examined by transmission electron 

microscopy (TEM), for which hybrid particles were concentrated via centrifugation and 

adsorbed onto carbon-coated copper grids. Magnetosomes were imaged with a FEI Morgagni 

268 (FEI, Eindhoven, Netherlands) electron microscope at an accelerating voltage of 80 kV.  

Layer thickness of precipitation on magnetosomes was measured from TEM micrographs 

using the software ImageJ and comparing single pixel ratio to the scale bar. The distance from 

the magnetite core to the surface of the silica shell was defined as layer thickness. 

Scanning electron microscopy (SEM) analysis 

Mineralized magnetosomes and non-mineralized references were immobilized on 

cleaned Si-wafers. Therefore, Si-wafers (100) were cleaned by consecutive sonication in 

ddH2O and a mixture of 1:1 acetone:ethanol each for 10 minutes followed by cleaning step 

with oxygen plasma (10 min, 30 Watt) and a final sonication step in ddH2O water for 10 min 

each. If necessary, samples were sputtered with 0.5 nm platinum/palladium to enhance the 

contrast. SEM was performed with the Zeiss DSM 982 GEMINI scanning electron 

microscope, operated at 3 kV. 

Zeta potential measurement 

The ZP was determined with a Zetasizer Nano (Malvern, UK). Samples for silica and 

ZnO encapsulated magnetosomes were both mineralized in solution, washed, and re-
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suspended in 50 mM Tris buffer, pH 7.5. Non-mineralized magnetosomes were measured at 

pH values of 7.0, 7.5, 8.0, and 9.1 in 50 mM Tris buffer. Measurements were made in 

duplicates, with two independent samples for each condition.  
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Figure S1: Zeta potential (ZP) of ZnO nanoparticles.  
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Table S1: Plasmids used in this study 

Plasmid name Description Source or reference 

pJET1.2/blunt Cloning vector; AmpR Fermentas, Schwerte 

pBBR-MCS2 Mobilizable broad-host-range 

vector; KmR 

M. E. Kovach, et al,. 1995 

pBAM1 KmR , AmpR, oriR6K, tnpA E. Martinez-Garcia, et al., 

2011 

pJH1 pBAM1 with PmamDC45,mamC- 

magegfp, KmR, AmpR 

S. Borg, et al., 2014 

 

 

Table S2: Strains used in this study 

Strain Description Source or reference 

Escherichia coli strains   

DH5α F- supE44 ΔlacU169 (Φ 

80 

lacZDM15) hsdR17 recA1 

endA1 

gyrA96 thi-1 relA1 

Invitrogen, life 

technologies, Darmstadt 

WM3064 thrB1004 pro thi rpsL 

hsdS lacZΔM15 RP4-1360 

Δ(araBAD)567 

ΔdapA1341::[erm pir] 

W. Metcalf, unpublished 
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Magnetospirillum 

gryphiswaldense strains 

  

M. gryphiswaldense MSR-1 

R3/S1 

RifR, SmR spontaneous 

mutant, lab strain 

D. Schultheiss, et al., 

2003 

M. gryphiswaldense MSR-1 JH1 KmR, transposon mutant 

with inserted mamC-

magegfp from PmamDC45 

S. Borg et al., 2014 
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3. Discussion 

3.1 Expression of genetic fusions in M. gryphiswaldense 

In this study systematic approaches combining following improvements (summarized 

in Figure 6) were used to optimize expression of heterologous genetic fusions for 

magnetosome display in M. gryphiswaldense. Production of fusion proteins was previously 

achieved by expression of genetic fusions from medium copy number plasmids under the 

control of the PmamDC promoter [57, 118]. The promoter of the mamGFDC operon proved to 

be more efficient than other operon promoters or even ribosomal promoters in M. 

gryphiswaldense. PmamDC exhibited also stronger expression of reporter genes than the 

homologous of the Pmsp3 and Pmms16 promoters, which were reported to exhibit strong 

expression in M. magneticum [116-118]. The strong PmamDC promoter was optimized and 

introduced into a versatile expression cassette (Figure 6a). For instance truncation of PmamDC 

from 325 to 45 bp led to a 3-fold increase in fluorescence of the reporter EGFP. The increase 

of expression of egfp by truncation might be due to exclusion of regulatory elements from the 

promoter region [130]. Moreover, truncation of the promoter yielded a compact, easy-to-clone 

gene cassette, whose extension of 58 bp is within the typical range of other prokaryotic 

promoters (40–65 bp) [131]. In addition to promoter length, the spacing between Shine-

Dalgarno sequence and the start codon was adjusted and the codon usage of the reporter gene 

egfp was optimized based on the average codon usage of M. gryphiswaldense (62.2% G+C) 

(Figure 6b&c). Already minor optimization of the codon usage (the sequence identity of the 

genes after optimization was 89 %) increased fluorescence of the transcribed synthetic 

“magegfp” (Magnetospirillum-optimized egfp) by 30%, providing a fluorescence reporter 

with increased sensitivity for future tagging and localization studies. Therefore, adjusting the 

codon usage of genes that differ more significantly might boost gene expression enormously. 

Codon optimization proved to be powerful also for boosting expression of a variety of foreign 

genes, similar as demonstrated in various hosts [105, 132]. Combination of all optimization 

steps led to an 8-fold increase of constitutive expression of the cytoplasmic mag-egfp reporter 

in comparison to previously available systems. Thus, the new optimized expression cassette 

allows high constitutive expression of foreign genes in M. gryphiswaldense and expression of 

heterologous genes can be increased even further by adapting the codon usage to the host 

organism.  
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Figure 6: Strategy of approaches for optimized gene expression in M. gryphiswaldense. 

Truncation of the PmamDC promoter of the mamGFDC operon from 325 to 45 bp with egfp as reporter 

gene resulted in 3-fold increased fluorescence; b) Optimization of the RBS, varying the spacing 

between Shine-Dalgarno sequence and start codon, yielded 2.8-fold higher fluorescence with the 

reporter egfp; c) Codon optimization of the reporter gene egfp by adjusting the codon usage to M. 

gryphiswaldense (magegfp) led to 30% stronger fluorescence than with native egfp; d) Integration of 

the optimized expression cassettes into transposable vectors and insertion into the host chromosome; 

e) Multi-copy display of the fluorescence (Mag)EGFP marker on single magnetosomes. 

 

 Construction of an inducible expression system in M. gryphiswaldense 

For the production of toxic fusion proteins an inducible expression system in M. 

gryphiswaldense would be a valuable tool. The construction of several hybrid promoters 
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consisting of the optimized PmamDC45 promoter or the PnirS promoter, regulating the expression 

of a homodimeric cytochrome cd1 nitrite reductase [133], and operator sequences from the tet 

[112] and the lac system [107] failed. The first construct containing the PmamDC45 promoter 

followed by a tetracycline operator (tetO) sequence and the reporter gene egfp, was repressed 

under non-inducing conditions, but did not exhibit high fluorescence after induction even with 

elevated inducer concentrations. Changing the orientation of the operator sequence resulted in 

egfp expression under non-inducing conditions and recreation of a similarly constructed 

hybrid promoter published by Yoshino (2010) [119] was not reproducible in M. 

gryphiswaldense. A hybrid promoter harboring lac operator (lacO) sequences replacing tetO 

was not also repressed under non-inducing conditions. A combination of the PnirS promoter 

and tetO was tested in addition to the hybrid promoters based on PmamDC45, but exhibited only 

basal levels of expression and was not inducible. Generation of functional hybrid promoters 

failed possibly due to the absence of further regulatory elements in the genetic neighborhood 

of PmamDC45, required for inducible expression [134]. Since it was not possible to generate a 

functional inducible hybrid promoter, several different systems known to be functional in 

other alphaproteobacteria were tested for high and inducible expression in M. 

gryphiswaldense. The pIND4 plasmid used in Rhodobacter sphaeroides, which is carrying the 

lac promoter [135] showed no induction of the reporter gene egfp. A second IPTG inducible 

expression plasmid containing the PlacZ promoter and lacO sequences, tested positive in 

diverse bacteria [136], did not exhibit high levels of gfp expression in M. gryphiswaldense 

either. Broadening the search for functional expression plasmids, a taurine inducible promoter 

from Sinorhizobium meliloti was tested, which was functional in several different 

alphaproteobacteria [137], but proved to be not working in M. gryphiswaldense. The vanillate 

and xylose inducible systems from C. crescentus [111] showed very low levels of expression 

and no detectable repression in our host organism. Also, reconstruction of a riboswitch, that 

was functional in the closely related magnetotactic bacterium M. magneticum [120] showed 

high fluorescence levels even in absence of the inducer theophylline in M. gryphiswaldense. 

These approaches might not function in M. gryphiswaldense possibly due to lack of 

specialized uptake systems for the different inducers. Another reason might be that repressor 

genes are not efficiently transcribed and therefore transcription of the reporter genes might not 

be suppressed. Adapting the promoters of the repressor genes might increase efficiency of 

these systems in M. gryphiswaldense. 
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Finally, the original Tn10 Ptet promoter from E. coli was found to be tightly repressed 

in M. gryphiswaldense [129], and could also be induced to reasonably high expression levels 

(about 30% of constitutive PmamDC45 driven expression) in the presence of saturating Atet 

concentrations as low as 2.5 ng ml-1. Saturating inducer concentration in M. gryphiswaldense 

was 40, 80, 160 and even 200-fold lower than in Helicobacter pylori [138], E. coli [113], 

Bacillus subtilis [139] and M. magneticum [119], respectively, while the regulatory range (up 

to 12-fold with the reporter GusA) is comparable to tet-responsive systems in other bacteria 

(Staphylococcus aureus: 50-100-fold, Streptococcus pneumonia: 5-fold [140, 141]).  

The inducible expression system was then used for protein display on magnetosomes. 

Expression of mamC-magegfp under the control of Ptet was tightly repressed under non-

inducing conditions, while induction in magnetosome-containing wild type cells caused 

expression of magegfp on magnetosomes after only six hours. This implies that newly 

synthesized MamC-MagEGFP can be inserted into and targeted specifically to the MM of 

pre-existing magnetosome particles. In addition to magnetosome display, the TetR controlled 

expression system could also be used for the generation of conditional knockouts and gene 

depletion studies. 

Chromosomal insertion of expression systems for display of single and multiple 

genetcic fusions on magnetosomes results in super-fluorescent magnetic nanoparticles 

Inhomogeneous expression of reporter genes from plasmids in isogenic cultures is 

frequently observed in bacteria [127, 142]. Chromosomal insertion of gene fusions into the 

genome of M. gryphiswaldense led to more homogenous expression, compared to multi-copy 

expression from plasmids [57, 76]. This was achieved via Tn5-mediated transposition, which 

allows straightforward, single-site integration into the host chromosome (Figure 6d). One 

caveat of Tn5-mediated transposition is random integration of the expression cassette into 

genomic loci of unknown function, which possibly causes unwanted second site mutations. 

However, no mutants with obvious growth and magnetosome formation defects could be 

identified, indicating the absence of effects on host metabolism. Additionally, expression of 

the reporter genes in absence or presence of the inducer, were similar in all insertants, 

suggesting that no interference such as read-through from external promoters occurred 

(compare publication 1). 

Expression of foreign proteins can be enhanced further by increasing their copy 

number. Choi and co-workers integrated double copies of the cym repressor into 
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Methylobacterium extorquens, thereby increasing repression of an inducible promoter [143]. 

Expression of five chromosomal copies of gfp resulted in 20-fold higher expression in the 

same organism [144]. Multicopy insertion of whole recombinant pathways can increase gene 

expression by 60% in contrast to plasmidal expression in E. coli [145]. Similarly, duplication 

of (mag)egfp fused to mamC resulted in stronger fluorescence and 2.5-fold increased 

expression of the (mag)egfp reporter on magnetosomes in comparison to single mamC-

magegfp fusion. MamC-MagEGFP-EGFP on magnetosomes displayed proteolytic stability, as 

no cleavage products could be detected via Western blot. Engineered magnetosomes, 

displaying tandem EGFP proteins represent magnetic nanoparticles with greatly enhanced 

fluorescence, which could be used in a number of applications, for instance as bimodal 

contrast agents for both magnetic resonance imaging (MRI) and near-infrared fluorescence 

(NIRF) optical imaging [146]. Additionally, functionalized magnetosomes with enhanced 

fluorescence intensity and uniformity can be used as fluorescent tags to follow intracellular 

protein localization or to study the intricate cell biology of M. gryphiswaldense and other 

magnetic bacteria.   

The number of proteins displayed on a single magnetosome is of interest e. g. for 

applications such as drug delivery. But the amount of proteins on a single magnetosome 

might be limited by the strength of the available expression system, as well as the restricted 

surface area of the MM. Over 30 proteins are inserted into or associated with the MM [50,60], 

therefore it might not be possible to express unlimited amounts of mamC fusions on 

magnetosomes. To estimate the amount of MagEGFP displayed on magnetosomes 

quantitative Western blot was performed. Expression of mamC-magegfp driven by PmamDC45 

resulted in 3.6-fold higher MagEGFP concentration than direved by expression of the 

magegfp gene from Ptet. The amount of (Mag)EGFP obtained with tandem constructs of the 

fluorescent protein and MamC was 2.5-fold higher compared to constitutively expressed 

mamC-magegfp. Based on these results, the copy number of egfp expressed on single 

magnetosome particles was estimated. The density of magnetite is 5.24 g/cm³ and for 

simplicity an approximately spherical shape for magnetosomes was assumed, which would 

result in a volume of 2.76 x 10-17 cm3 and mass of 1.45 x 10-16 g for an average single 

magnetosome crystal, with an averaged diameter of 37.5 nm for magnetosomes. On the basis 

of these estimations and the results of the quantitative Western blot, expression of single 

mamC-magegfp fusions under the control of PmamDC45, resulted in about 100 MagEGFP copies 

per single magnetosome, while only ~30 copies were present if the same construct was 
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expressed from Ptet. Calculations for the tandem mamC-magegfp-egfp fusion expressed under 

the control of PmamDC45 resulted in 250 (Mag)EGFP copies per particle. The tandem fusion of 

magegfp-egfp yielded twice as many copies of the proteins on the magnetosome surface, 

which might be due to increased stability of the tandem protein, or alternatively, to variability 

of magnetosome sizes, which to some extent depends on the growth stage of the cells. 

Therefore calculations were repeated for smaller (35 nm) and larger (48 nm) magnetosome, 

which yielded GFP copy numbers of 80 to 210 for single, and 200 to 520 for tandem 

(Mag)EGFP respectively. Assuming a MamC to MagEGFP ratio of 1:1 for the single, and 1:2 

for the tandem MagEGFP-EGFP, the number of MamC copies per magnetosome particle is 

most likely within the range of 80 to 260. An average magnetosome would have a surface 

area of 4417 nm2 and with an approximated diameter of 3.45 nm for the 12.5 kDa MamC 

protein [57], the theoretical number of MamC covering the entire particle surface would 

amount to 1280. Previous estimations revealed a relative abundance of 16.3% of MamC in the 

MM [54], which contains about 30 different proteins [54]. The estimated 80–250 copies 

would occupy about 6-20% of the surface of a magnetosomes, which seems to be within a 

realistic range. Therefore, the number of MamC molecules that can serve as anchors can 

unlikely be further increased without disturbing MM function. Instead, increasing the number 

of gene copies fused to a single mamC anchor seems to be a more favorable approach to 

increase yields of heterologous genes expressed per particle (Figure 6e). These calculations 

are based on the diameter of the magnetosome particles, therefore it is estimated that smaller 

magnetosomes would display less fusion proteins. To test whether it is possible to increase 

the amount of protein displayed on a single magnetosome by increasing its size, it would be 

necessary to repeat the experiment with mutant strains producing smaller and larger 

magnetosomes. It is reasonable to assume that significantly bigger magnetosome particles can 

display more MamC coupled proteins without disturbing membrane function. 

 

Construction of luciferase producing M. gryphiswaldense cells for application in 

biosensors 

 Apart from expression of fusion proteins to magnetosomes, the optimized constitutive 

expression cassette was also used to generate M. gryphiswaldense cells producing red-

emitting click beetle luciferase. Luciferase expressing cells were used to design a portable 

toxicity detector, since the bioluminescent signal is directly proportional to viability of the 
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cells. M. gryphiswaldense cells are perfectly suitable for application in biosensors, because 

they can be manipulated magnetically and trapped in reaction and detection areas of the 

sensor with bar magnets. 

 For generation of the biosensor a charge-coupled device (CCD) was placed in contact 

with the detection chamber of a mircofluidic chip, consisting of multilayered 

plydimethylsiloxane (PDMS), to assess the bioluminescent signal. The chip contains three 

diamond-shaped reaction chambers, which are connected to the detection areas. M. 

gryphiswaldense cells expressing the luciferase were applied to the reaction chambers and 

incubated with samples of dimethyl sulfoxide (DMSO) and a bile acid as model toxic 

compounds. Both DMSO and the bile acid had a cytotoxic effect on M. gryphiswaldense cells 

as indicated by reduced bioluminescence of the cells. Due to magnetic concentration of the 

cells the sample volume can be decreased, which increases the light output and sensitivity of 

the sensor. The sensitivity of the system could be also further increased by adapting the codon 

usage of the luciferase to M. gryphiswaldense, which would improve expression of the 

reporter, as shown for magegfp in manuscript 1. 

 

3.2 Construction of a nanotrap by display of nanobodies on magnetosomes 

The optimized chromosomally insertable expression system was then used for 

functionalization of magnetosomes with nanobodies. Genes encoding nanobodies can be 

expressed in various host organisms [147] and rbp was recently expressed on the 

magnetosome surface in M. gryphiswaldense for capturing of cytoplasmic mCherry [77]. 

With the use of the constitutive expression system mono- and bivalent nanobodies, consisting 

of gbp and a synthetic Magnetospirillum-optimized version (maggbp) fused to mamC, were 

stably expressed in M. gryphiswaldense. The inducible tetracycline promoter facilitated 

modulation of the expression levels of gbp by expression of up to three copies of (mag)gbp as 

mamC-fusion. 
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Figure 7: Rearrangement of cellular components by nanobody recruitment. a) Expression of 

cheW1-egfp fusion in M. gryphiswaldense wild type cells; b) Co-expression of cheW1-egfp and 

bivalent MamC-nanobody fusion in M. gryphiswaldense wild type cells causes depletion of CheW1 

from the pole and concurrent tethering of magnetosome chains to chemotaxis receptors; c) Expression 

of cheW1-egfp fusion in M. gryphiswaldense ΔmamJ cells; d) Co-expression of cheW1-egfp and 
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monovalent MamC-nanobody fusion in M. gryphiswaldense ΔmamJ cells already causes depletion of 

CheW1 from one pole and concurrent recruitment of magnetosome clusters to the opposite pole. Left 

panel TEM micrographs display the associated strain abstracted and described in a-d. 

 

3.3 Nanobodies as nanotrap for rearrangement of cellular structures and resulting 

chemotaxis knockdown 

Nanobodies on magnetosomes were then used to create a nanotrap and capture 

intracellular EGFP-tagged proteins and redirect whole organelles within the cell. As proof of 

principle an egfp-tagged version of the chemotaxis adaptor cheW1 was co-expressed with the 

mamC-gbp fusions on the magnetosomes, to investigate if membrane bound proteins can be 

recruited to the magnetosome organelles of M. gryphiswaldense. Localization of the tagged 

protein and behavioral effects due to artificial recruitment can be followed by TEM and FM 

imaging, and by video microscopy at the single cell level. Co-expression of mamC-gbp and 

cheW1-egfp lead to a fluorescence shift from the poles to midcell, indicating that the 

membrane bound protein is artificially recruited to the nanotrap on the magnetosome chain. 

This could be caused by depletion of CheW1-EGFP from a cytoplasmic pool or, alternatively, 

membrane bound CheW1 could forcefully be subtracted from polar chemotaxis clusters 

(Figure 7a&b). The chemotaxis signaling complexes are weakly dynamic in vivo and 

fluorescence recovery after photobleaching (FRAP) of fluorescence tagged chemotaxis 

proteins revealed slow turnover rates for CheA and CheW constructs [148]. The 

stoichiometry of all cluster components is tightly controlled and over-expression of single 

genes like cheW leads to impairment of chemotaxis [149], therefore the pool of free 

cytoplasmic CheW is supposedly rather small. Thus, recruitment and depletion of free CheW1 

from the cytoplasm to magnetosome-bound GBP seems probable. Additionally, CheW1 

initially bound to chemotaxis receptors and gradually released to the cytoplasm could be 

trapped ectopically by nanobodies over time.  

To investigate if the special magnetosome organelles are required for recruitment of 

EGFP-tagged proteins or if nanobodies can be attached to any distinctly localized structure in 

the cell, the nanotrap was tested in ΔmamM cells. This mutant lacks the cation diffusion 

facilitator MamM that is essential for magnetosome biomineralization but not for vesicle 

formation [63]. Here, the CheW1-GFP fusions are localized at cell poles but shift towards 

midcell upon expression of mamC fused to bivalent gbp. Obviously, recruitment and 
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retargeting of CheW1-GFP is sufficiently effective with GBP fixed to membrane vesicles and 

independent from magnetosome synthesis and can therefore be adapted to any organism with 

any membrane structures.  

In cells producing mature magnetosomes, recruitment of CheW1-EGFP was strongly 

affected by magnetosome chain configuration. In wild type cells the expression of 

monovalent gbp caused only partial depletion of the polar localized CheW1-EGFP, while 

fluorescence patterns in the ΔmamJ strain was surprisingly different. Cells of ΔmamJ are 

lacking the acidic MamJ protein, which is assumed responsible for attachment of 

magnetosomes to the MamK filament, and contain magnetosome clusters instead of 

magnetosome chains [72]. In this strain virtually no fluorescence could be detected at midcell 

or the opposite pole upon expression of mamC-1xgbp in addition to cheW1-egfp, which argues 

for full recruitment of EGFP-tagged chemotaxis proteins to the magnetosome clusters. This 

effect might be due to increased avidity of concentrated nanobodies at clustered 

magnetosomes, or is caused by the concentration of two sinks at a single pole, as the native 

chemoreceptor cluster and the artificial magnetosome-nanobody cluster are in close 

proximity, which might shift the CheW1 diffusion equilibrium from chemoreceptor bound to 

nanobody bound state (Figure 7c&d).  

The configuration and positioning of the magnetosome chain as well as localization of 

the chemotaxis proteins were affected by interaction of MamC-GBP and CheW1-GFP 

reciprocally. Recruitment of CheW1-GFP to the magnetosomes disturbed proper alignment 

into regular, densely spaced chains, with increasing nanobody concentration. Coverage of the 

magnetosome surface with the nanotrap possibly increased inter-particle spacing, which 

weakens magnetostatic interactions between the particles. This effect was prominent in the 

wild type background expressing mamC-2xgbp and cheW1-gfp, where magnetosome chains 

were nearly completely shifted and anchored to polar or sub-polar positions. The localization 

of magnetosome chains at midcell is not fixed and mobility of chains is observed during cell 

division when chains are split and re-positioned by the cytoskeletal magnetosome filament 

dynamics of the actin-like MamK, to midcell of daughter cells [73]. This might support the 

rearrangement and recruitment of magnetosomes chains in strains harboring the nanotrap. The 

impact of the nanotrap on chain localization was most severe in ΔmamJ cells. Expression of 

the monovalent gbp was sufficient to rearrange and recruit magnetosome clusters to one of the 

cell poles, which might be facilitated due to lack of MamK-mediated interaction to divisome 
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constituents [73]. In wild type cells MamK-magnetosome interactions need to be overcome 

by recruitment to membrane bound CheW1-GFP, while detached magnetosome in ΔmamJ can 

be rearranged rather easily. 

Redirection of CheW1-GFP in wild type cells clearly depended on gene dosage of the 

nanotrap, since the observed fluorescence shift was only partial upon expression of mamC-

1xgbp, while over-expression of mamC-2xgbp caused a complete loss of CheW1-GFP 

fluorescence at the cell poles. Avidity of nanobodies can be significantly increased (500x) if 

two identical copies are expressed as fusion in comparison to a monovalent nanobody [150]. 

Similar, in our approach monovalent GBP recruited CheW1-GFP apparently in lower rates 

than the bivalent nanobody, since CheW1-GFP could be detected at midcell as well as at the 

cell poles. Expression of the gene encoding the bivalent nanobody increased avidity to the 

extent that CheW1-GFP was completely captured at magnetosome-bound GBP. Co-expression 

of cheW1-gfp and the nanotrap did not only redirect entire organelles to distinct localizations, 

but also diminished chemotactic efficiency of M. gryphiswaldense cells. Although 

chemoreceptors form complexes in the absence of CheA or CheW, the adaptor protein CheW 

is needed to stabilize CheA-receptor interaction and lattice formation [151, 152]. Partial 

depletion of CheW1-GFP gradually reduced chemotactic efficiency, while expression of the 

bivalent nanobody essentially phenocopied the deletion of cheW1. It was shown that the effect 

on aerotaxis was not due to inactivation of CheW1-GFP, as GBP expressed in the cytoplasm 

showed no measurable phenotype. Therefore redirection and depletion of the chemotaxis 

protein from its native polar environment must disrupt the chemotaxis cascade and cause the 

behavioral effect. Similar to eukaryotes, function of bacterial proteins depends on a distinct 

localization despite the lack of superior compartmentalization. Manipulation of protein 

function by depletion of its subcellular localization has already been applied in eukaryotic 

systems [99, 153] and was now established for bacterial cells, which are only the size of a 

couple of hundred nanometers. Several approaches for silencing or manipulating the 

expression of genes on the transcriptional level already exist [154, 155], but one of the biggest 

advantages of regulating gene expression at the protein level is that mRNA transcripts or 

protein expression levels are not disturbed [156]. Important bacterial genes are often 

organized in operon structures. Therefore it might be favorable to knockdown individual 

proteins with the use of nanotraps to avoid polar effects on transcription of downstream 

genes. Inducible expression genes encoding multivalent nanobodies was shown in M. 

gryphiswaldense, but had no strong behavioral effect due to lack of promoter strength (Ptet 
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shows 30% of PmamDC45 transcriptional activity), chemotaxis effects were only visible after 

prolonged incubation in comparison to constitutive expression of the nanotrap. Nevertheless, 

this approach can be optimized and extended, e. g. to gradually control in vivo stoichiometry 

of proteins in larger clusters. Controlled expression of varying copy numbers of nanobodies 

might be used for studying complex processes as cell division or differentiation in other 

bacteria, for instance by depletion of essential proteins. Nanobodies are commonly used in 

eukaryotes as well established tools to trap soluble proteins [92, 98, 99] or inhibit proteins 

function [96]. Use of nanobodies in bacteria is limited to only a few studies to date, although 

E. coli cells function as an effective production host [91]. Single-chain Fv of conventional 

antibodies, the equivalent to the VHH (nanobody) in HCAbs, was expressed in bacteria to 

block transcriptional activity [157, 158]. However, applications of nanobodies in bacteria are 

limited to a study focused on inhibit enzyme activity [102] and another, reporting the display 

of RBP on magnetosomes to capture cytoplasmic RFP [77]. In contrast to the studies where 

enzyme inhibition was achieved by neutralization, depletion of CheW1-GFP was done by 

anchoring nanobodies to defined positions, thereby creating a nanotrap, and redirecting of 

trapped proteins to entirely different compartments of M. gryphiswaldense. The universal 

GFP-tag used for recruitment of CheW1 allows expanding this approach to other bacteria and 

investigating various pathways. Even though compartmentalization as found in eukaryotes is 

missing in most bacteria, nanobodies could be fixed to other membrane structures (e. g. at the 

cell pole or at midcell), specific protein complexes or organelles. With the GFP-GBP system 

as nanotrap many proteins can be targeted, avoiding the laborious process of camelid 

immunization and isolation of specific nanobodies. Another potential application would be 

the creation of artificial compartmentalization of biosynthetic pathways. This could be 

achieved by restricting reaction partners to subcellular compartments which could 

dramatically increase product yields [159, 160], by arranging biosynthetic enzymes in 

artificial scaffolds for control of metabolic flux by fusing reaction partners to different 

magnetosome anchor proteins (MamG, MamF, MamD, MamC) [161-164], or by construction 

of membrane enclosed reaction compartments in minimal cells [165]. 

3.4 First attempts for the generation of magnetic hybrid nanoparticles 

In the final part of this thesis, magnetosomes were applied for the attempt to create 

inorganic-organic-inorganic, magnetic hybrid materials. Two interesting materials for the 

generation of magnetic CSNs are silica and zinc oxide (ZnO). Silica is an inert material which 

decreases the bulk conductivity of a sample [11], while ZnO is a good semiconductor with a 
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wide band gap (3.37 eV) [166]. MNPs were encapsulated with these inorganic materials to 

provide additional functionalization or passivation of the material for biomedical applications.  

Passivation was achieved by silica precipitation on magnetosomes, since it is an inert 

material which decreases the bulk conductivity of a sample [11]. Additionally, the silica layer 

can easily be functionalized due to the existence of abundant silanol groups [167]. For use of 

iron oxide silica CSNs in biomedical applications, such as biolabelling, imaging, drug 

targeting, bioseparation and bioassays [14], it is desirable to gain tight size control during 

synthesis of the particles, since larger particles (> 200 nm) are sequestered easily by 

phagocytotic cells, while smaller nanoparticles (< 5.5 nm) are rapidly removed by renal 

clearance [168, 169]. Initially, I attempted to functionalize magnetosomes with silica 

precipitating peptides, so called silaffins (Sil) that are derived from diatoms [170]. Silaffins 

displayed on the magnetosome surface should initiate formation of silica spheres surrounding 

the magnetosomes. Expression of silaffins on magnetosomes was not successful from the 

constitutive or the inducible expression cassette, possibly due to the polycationic character of 

the peptides. Expression of mamC-sil-magegfp under the control of PmamDC45 caused cell 

death, while inducible expression resulted in diffuse fluorescence patterns, which did not 

correlate with magnetosome chain position. Assumedly, polycationic silaffins destroy the 

inner membrane and the MM if expressed as mamC-fusion (compare manuscript 2).  

To display silaffins on the magnetosome surface, without expressing genes of the 

polycationic peptides in M. gryphiswaldense, isolated, GBP displaying magnetosomes were 

incubated with recombinant GFP-tagged Sil. Binding of the GFP-conjugated silaffins to GBP 

covered magnetosomes was successful, since magnetosomes were still fluorescent after 

several washing steps as shown by fluorescence microscopy. However, no silica precipitates 

could be observed on the particles by TEM analysis. Taken together it is not possible to 

express silaffins on the magnetosome surface, but peptides can be displayed on 

magnetosomes with the GBP-GFP nanotrap. Peptide mediated silica precipitation, however, 

was not possible on magnetosomes of M. gryphiswaldense, possibly because silaffins could 

not be attached to the magnetosomes in sufficient yields. Therefore MagEGFP functionalized 

magnetosomes were encapsulated in first attempts with silica, applying a chemical approach 

by modified Stöber reaction [171]. In fact, magnetosome silica CSNs could be generated with 

silica layer thicknesses of 3.84 to 20.15 nm, depending on reaction conditions. Increasing the 

ratio of magnetic seed nanoparticles to silica solution was previously reported to diminish the 
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layer thickness of silica [172]. Silica encapsulated, fluorescent magnetosomes with the 

thinnest layer thickness of 3.84 nm, were incubated with proteinase K and SDS to test 

whether passivation of the particles would enhance stability of the immobilized EGFP. 

Indeed, encapsulation of functionalized magnetosomes led to increased stability against 

proteases and detergents in comparison to magnetosomes displaying EGFP without an 

additional outer layer of silica. Therefore fluorescent magnetic silica CSNs could have 

potential in biomedical applications such as fluorescence imaging [173], as contrast agents in 

MRI or for drug delivery [169]. For biomedical applications it is necessary to obtain uniform 

encapsulated magnetic particles, which are exclusively present as single magnetosomes or 

whole chains. With our approach it is not yet possible to generate a complete uniform 

distribution of single encapsulated magnetosomes due to magnetic attraction of the particles, 

but could be achieved by adjusting reaction conditions like synthesis of the particles in a 

magnetic field or separating particles after synthesis by density gradient centrifugation. 

Additionally, it would be interesting to use smaller particles from mutant strains, lacking 

operons responsible for magnetosome size, and test whether encapsulation of exclusively 

single particles could be produced. The zeta potential characterizes the surface charge of 

particles and can be used as indicator for dispersion and agglomeration of particles in 

suspension. Silica encapsulation of magnetosomes decreases the zeta potential of the particles 

significantly (-34.7 mV in contrast to -18.1 mV for non-encapsulated magnetosomes). The 

surface charge of nanoparticles has a direct effect on endocytosis, negatively charged particles 

should be taken up slower due to negative repulsion of the negatively charged cell membrane 

[174]. Additionally, strong negatively charged nanoparticles tend to agglomerate less due to 

repulsion between the particles [175], but are usually cleared more rapidly from the body 

because of increased liver uptake [168, 169]. 

The second pilot approach aimed to generate magnetic CSNs of magnetosomes and 

zinc oxide because it is a good semiconductor with a wide band gap (3.37 eV) [166]. Pure 

ZnO nanoparticles proved to have strong antimicrobial activity and might have potential as 

surface coating to prevent spreading of bacterial infections [176, 177]. The disadvantage of 

pure ZnO nanoparticles is strong agglomeration [181]. Therefore Fe3O4-ZnO hybrid materials 

were generated in previous studies because ferrofluids are expected to exhibit strong colloidal 

stability [18, 178]. Most studies describe Fe3O4-ZnO hybrid composites of different sizes and 

morphologies, e. g. Cao and co-workers synthesized Fe3O4-coated ZnO “nanoflowers” [179]. 

Other example are Fe3O4-ZnO hybrid nanorods [180] or doping of ZnO with Fe3O4 to add 
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magnetic properties to the semiconductive ZnO. In this approach Fe3O4 was embedded in 

porous ZnO particles, the material can be used for removal of toxic metal ions, organic dyes 

or bacterial pathogens [181, 182]. 

In contrast to the silica encapsulation approach, ZnO-binding peptides, identified by 

Rothenstein and co-workers [183], could successfully be expressed as ZnO-MagEGFP 

tandem fusion on magnetosomes and were thought to be used for ZnO precipitation. 

Magnetosomes displaying only MagEGFP but not the ZnO-binding peptide were used as a 

negative control. In preliminary experiments it could be shown that ZnO was precipitated 

equally on magnetosomes displaying the ZnO-binder or just MagEGFP. Precipitation of ZnO 

was performed in methanol solution that strongly facilitates production of ZnO particles on 

any surface, it might be possible that the effect of the immobilized ZnO-binder is masked by 

rapid reaction conditions and precipitation of ZnO by the ZnO-binding peptide might be 

visible only under ambient reaction conditions. Since no difference could be detected under 

the tested conditions, further experiments were performed with MagEGFP functionalized 

magnetosomes, coated with an approximately 20 nm thick layer of ZnO. The zeta potential of 

hybrid particles was -2.5 mV and therefore drastically increased in comparison to non-coated 

EGFP-functionalized magnetosomes (-18.1 mV), and correlates well with the zeta potential of 

pure ZnO (-2.9 mV). Reduced surface charge could increase retention time within the human 

body [174], which would make magnetosome-ZnO hybrid nanoparticles an interesting tool in 

biomedical applications. Hanley and co-workers discovered that ZnO nanoparticles exhibit 

enhanced cytotoxicity against cancer cells in comparison to normal cells [184], the magnetic 

core of magnetosome-ZnO CSNs would allow for targeting the particles specifically to 

tumors within the body without the need of specific tags for recognition of tumor cells. 

Additionally the cytotoxic effect of ZnO could be supported by hyperthermia treatment as 

suggested for magnetosomes before [185]. The ZnO shell surrounding magnetosomes is a 

biocompatible material which might be dissolved into Zn ions after remaining for a few hours 

in the body, without having a toxic effect to the organism [186]. Magnetosomes devoid of the 

ZnO shell could then be recognized and eliminated by immune cells. 

In summary, in this thesis an optimized expression system, containing a constitutive or 

an inducible expression cassette, for chromosomal insertion of any heterologous fusion gene 

was developed, extending the genetic toolbar for M. gryphiswaldense. Applying these new 

integrative expression vectors, magnetosomes were functionalized with multivalent 
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nanobodies as nanotrap that specifically recognize fluorescently tagged proteins, and can be 

used for retargeting and depletion of chemotaxis proteins and re-direction of entire organelles. 

Finally, magnetosomes displaying Magnetospirillum-optimized egfp were encapsulated with 

inorganic materials such as silica and zinc oxide for generation of innovative hybrid materials. 
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3.5 Open questions and future directions  

The expression systems developed in this thesis can now be used for the display of 

various fusion proteins, such as novel fluorescence markers, different nanobodies or enzymes 

on magnetosomes. Moreover, the inducible expression system could also be applied for 

studies on essential genes and regulatory pathways by depletion of targeted genes. Although 

the optimized expression system is efficient for constitutive expression of heterologous genes, 

the relatively weak strength of the inducible promoter requires improvement. For example, 

with only 30% strength of the constitutive expression system it is not possible to express 

genes of toxic fusion proteins in high yields. For identification of strong native inducible 

promoters microarrays could be used to map promoters responding to specific stimuli [187]. 

Additionally, construction of hybrid promoters consisting of different promoter operator 

elements should be re-assessed by broader systematic approaches, using the non-truncated 

PmamDC and other promoters that possibly still contain regulatory elements. 

Genes of nanobodies were expressed to create nanotraps on magnetosomes for re-

direction of fluorescent proteins in M. gryphiswaldense. This led to recruitment and depletion 

of the chemotaxis protein CheW from the poles, resulting in chemotaxis knock down. The 

inducible expression system could now be used to gradually knockdown chemotaxis and 

eventually discover a link between chemotaxis and polarity in M. gryphiswaldense. Moreover, 

the nanotrap system could be used to deplete essential proteins and study behavioral effects 

by retargeting in magnetotactic or other bacteria, since it was previously shown that 

nanobodies can be functionally expressed in other bacteria [102]. The use of both GBP and 

RBP would allow trapping different enzymes to the same compartment constructing artificial 

scaffolds as reaction vessels. Display of different nanobodies in the mono- to trivalent state 

would supply tight control over stoichiometry and metabolic flux of the artificial pathway 

[164]. Nanotrap technology could possibly be extended to naturally existing anchor points in 

non-magnetotactic bacteraia, such as spores in B. subtilis, or other spatial determinants like 

MreB.  

New hybrid MNPs with extended function could be generated using magnetosomes as 

seed and applying further chemical approaches for coating with e. g. titanium dioxide, silver 

or gold. Iron doped TiO2 was reported to exhibit increased photocatalytical activity [188], 

while silver nanoparticles exhibit strong antimicrobial activity [189] and gold nanoparticles 

are commonly used as catalysts or in sensors [190]. Coating of magnetosomes with these 
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materials would add new properties coupled with the ability of magnetic manipulation. 

Concurrently, peptide directed precipitation of silica and zinc oxide should be investigated in 

more detail. ZnO-binding peptides should be considered in more ambient approaches, such as 

Tris-HCl buffered reaction conditions. It is most probable that precipitation of ZnO could be 

facilitated by peptides under these conditions. Immobilization of silaffins on magnetosomes is 

not possible assumedly due to the polycationic character of the peptides, but silaffins are well 

characterized and the silica binding motif was previously identified [170]. Therefore, it might 

be possible to express only the silica binding motif as fusion to mamC, to avoid disturbance of 

the MM and to sequester silica. If expression of modified silaffin genes targeted to 

magnetosomes would be successful, functionalized magnetosomes could also be used to 

precipitate TiO2, as demonstrated previously with silaffins [191]. Newly generated magnetic 

hybrid MNPs, generated by those approaches could have great potential in biomedical 

applications as in drug delivery, bioimaging, cell labeling or in biosensors [192]. 
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