
DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES

DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE

DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Analysis of Aging by Quantitative Proteomics

and

Mitochondrial Organellar Proteomics

Dirk Martin Walther

aus
Heidelberg

2012





Erklärung
Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November
2011 von Herrn Prof. Dr. Matthias Mann betreut.

Eidesstattliche Versicherung
Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe von mir erbracht.

München, 17. September 2012

Dirk Martin Walther

Dissertation eingereicht am 18.09.2013

1. Gutachter: Prof. Dr. Matthias Mann
2. Gutachter: Prof. Dr. Franz-Ulrich Hartl

Mündliche Prüfung am 04.10.2012





Summary

Aging, a hallmark of metazoan organisms, leads to a gradual decline of important bi-
ological functions and, ultimately, death. In humans age is the most important risk
factor for numerous diseases, such as neurodegenerative disorders, most prominently
Alzheimer’s and Parkinson’s disease, as well as metabolic disorders such as type II
diabetes. Recent advances in the biomedical sciences have dramatically changed our
understanding of aging. It is now generally accepted that senescence is not merely a
stochastic process but that its rate is regulated by various molecular signaling path-
ways. Nonetheless, both the mechanisms by which this regulation is achieved and
the nature of aging itself remain mostly obscure. Discovery-based experimental ap-
proaches are best suited to address such questions, in particular the emerging field
of mass spectrometry-based proteomics, which now allows identification and quan-
tification of thousands of proteins in tissue samples. The focus of this thesis was to
establish workflows and assess proteome remodeling during aging in two commonly
used model organisms.
The first project was aimed at studying the effect of aging on mouse tissue. While until
recently, quantitative proteomic analysis of tissue samples posed a major challenge an
internal standard derived from SILAC mice allowed us to accurately quantify protein
abundance in several tissues. Surprisingly, proteome diferences even in postmitotic
tissues were very low between young and aged animals, suggesting that proteostasis
is efficiently maintained during aging.
In the second project, aging in the nematode C. elegans was addressed. Of particular
interest in this model organism is the conserved insulin/insulin-like growth factor 1
(IIS) signalling pathway. Mutations in the DAF-2 receptor result in constitutive activa-
tion of the DAF-16/FOXO transcription factor and more than doubles the organism’s
lifespan. To elucidate the mechanism of this lifespan extension, SILAC labeling of C.
elegans was established and employed to quantify protein expression changes of wild
type and IIS mutant strains throughout their lifespan. Furthermore, insoluble protein
aggregates were biochemically isolated and quantified. In contrast to mice, C. elegans
undergoes extensive proteome remodeling during senescence. Moreover, a large pro-
portion the proteins that accumulate with age in the proteome have a tendency to form
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aggregates. This process was markedly delayed in the long-lived daf-2-mutant strain.
The data indicate that in worms, aging is associated with deleterious proteome remod-
eling, results in protein aggregation and proteostasis collapse.
Collectively, the work presented here generated the most comprehensive proteomics
datasets addressing aging to date. A comparison between the two analyzed organ-
ism suggests that the proteostasis system during aging is more efficiently preserved in
mammals than in nematodes.

In a further part of this thesis, different methods were explored to identify novel mito-
chondrial membrane protein complexes in yeast. SILAC-based immunoprecipitation
experiments with GFP-tagged variants of the mitochondrial outer membrane protein
Mim1 were performed after mild detergent lysis. This lead to the discovery of a Mim1
interactor, named Mim2. Both proteins form the MIM complex, a central component
in the biogenesis of outer membran proteins.
In a different study, protein correlation profiling was applied to identify a complex
responsible for the formation of mitochondrial contact sites, the attachment points be-
tween the inner and the outer mitochondrial membrane. To that end, vesicles from iso-
lated yeast mitochondria were generated by ultrasonication, separted by density gra-
dient centrifugation and highly accurate abundance profiles were determined via an
internal SILAC standard. By this means, the mitochondrial contact sites (MICOS) com-
plex was discovered, consisting of Fcj1 and five novel proteins. Biochemical assays and
electron microscopy confirmed that these subunits were required for contact site for-
mation. Furthermore, their deletion resulted in impaired growth on non-fermentable
carbon sources.
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1 Introduction

1.1 Biology of Aging

A hallmark of multicellular organisms is their restricted lifespan, ultimately leading to
an individual’s death. From an evolutionary perspective, this limitation is necessary
to assure a species’ genetic adaptation and progression. Studies on animal populations
in the wild demonstrated that the majority of individuals die prematurely, for example
because of predation or diseases, before a significant onset of intrinsic cellular deteri-
oration. Long term population studies of wild mouse populations showed a decline
by at least 40% in each of several consecutive two month intervals [17]. ln contrast,
commonly used laboratory mouse strains kept in captivity have median lifespans in
the range of two years [290]. Similarly, the aging process of humans in developed
countries differs considerably from that of our ancestors before the establishment of
modern civilization. Accompanying improvements in nutrition and medicine, life ex-
pectancies of humans worldwide have more than doubled in the past two centuries
and are still increasing [223]. Accompanying these significant demographic changes,
humanity is faced with an altered occurrence of medical conditions, resulting in rising
healthcare costs of up to 7% yearly in the western world [32]. Age-related pathologies
include a decline in cognitive and sensory functions of the brain and a progressive im-
munodeficiency. Furthermore, aging is associated with a higher incidence of particular
diseases, including dementia, Alzheimer’s disease or type II diabetes, explaining the
great interest in the field of aging research [70].

1.1.1 Paradigms of Aging Research

Advances in the biomedical sciences have provided researchers with new tools to in-
vestigate the biological basis underlying aging at the molecular level, and considerable
advances have been made in the past decades. In spite of a general consensus that
aging results from accumulation of cellular damage, several conflicting models have
been proposed to explain the nature and the origin of these deteriorations.
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1 Introduction

Mitotic Clock, Cellular Senescence and Organismal Aging

The previously prevailing assumption that cells can proliferate indefinitely was first
challenged in 1961 when Hayflick and Moorehead demonstrated that cultured human
fibroblast can only undergo a limited number of cell divisions and enter a state of
growth arrest [122]. Later, the molecular mechanisms were identified which restrict
the proliferative capacity of cells and result in a permanent cell cycle arrest. The most
prominent example is the successive shortening of telomeres, protective structures at
the termini of chromosomes [116, 121]. Moreover, an accumulation of point mutations
and chromosomal rearrangements has been observed [15]. This natural restriction of
somatic cells by this mitotic clock to proliferate is referred to as cellular senescence [46].
Preventing telomere shortening by constitutive expression of telomerase alone is often
sufficient to reverse this effect and allows an indefinite number of divisions [20].
In multicellular organisms, however, the situation is considerably more complex and
the relevance of the above mentioned cellular senescence to organismal aging is still
controversial [227]. The notion that cellular senescence represents a safeguard against
against cancer, a condition that results from uncontrolled cell proliferation, is widely
accepted [34]. However, it is currently unclear which role growth arrested senes-
cent cells play in vivo. A range of biomarkers have been reported that are associated
with cellular senescence, for example DNA replication or the expression of senescence-
associated β galactosidase or p16. None of these, however, is characteristic for all or-
ganisms and tissue types [35]. Based on such markers, some studies have found an
accumulation of senescent cells with age in renewable tissues of several mammalian
species [66, 137, 162]. The proportion of senescent cells across studies varies widely
between less than 1% and more than 15 %. Similarly, a greater proportion of senescent
cells was also found in tissues affected with various age-related pathologies, including
osteoarthritis and atherosclerosis [37, 247, 297].
Although many pieces of evidence point towards an accumulation of cell cycle ar-
rested senescent cells in mammalian tissues during aging in vivo, their role in organ-
ismal aging is poorly understood. Some reports suggest that tissue stem and progen-
itor cells are significantly affected and thereby limit the tissue self renewal capacity
[136, 161, 208]. It has further been suggested that senescent cells may cause tissue
damage due to the release of matrix degrading enzymes and cytokines and growth
factors [35].
Further evidence for the hypothesis that organismal aging is closely related to cellu-
lar senescence was provided by the finding that counteracting telomere deterioration
by constitutive expression of the telomerase reverse transcriptase subunit in somatic
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cells delayed aging in mice [284]. However, since systemic activation of telomerase
is known to induce malignancies [36, 103] this had to be compensated by the simul-
taneous overproduction of tumor suppressor proteins, underscoring the notion that
cellular senescence represents a defense mechanism against cancer.

Free Radical Hypothesis

The free-radical theory of aging was originally founded by D. Harman in 1956 [117] and
was later substantiated by experimental evidence for the occurrence of highly reactive
molecules termed reactive oxygen species (ROS) in tissues. These include the super-
oxide anion (O2 ·-) which can further yield other molecules like the relatively stable
hydrogen peroxide (H2O2) or the highly reactive hydroxyl radical (·OH) by dismua-
tion or Fenton chemistry, respectively. The vast majority of ROS are generated as a
consequence of normal aerobic metabolism. Besides minor contributions by NADPH
dependent oxidases in the plasma membrane, cytosolic cyclooxigenases or enzymes
of the lipid metablolism, the mitochondrial respiratory chain is their primary source,
generating up to 90% of the overal oxidating burden (reviewed in [10]). Recent data
indicate that in vivo, ROS are mainly formed at complexes I and III of the respiratory
chain, involving flavin mononucleotide iron sulfur cluster electron transfer intermedi-
ates and ubisemiquinone radicals [96, 182, 289]. ROS are known to spontaneously react
with nucleic acids, lipids and proteins and thus cause cellular damage.
Being highly controversial at first, the discovery of enzymes with the purpose of clear-
ing highly reactive radicals provided experimental support for the free-radical theory
[201]. Particularly isoforms of superoxide dismutase and catalase serve as a natural
scavenging system for ROS. Experimental data showing that the lifespan of flies can be
prolonged by overexpressing these enzymes were seen as a proof for the life shorten-
ing impact of free radicals [235]. However, after a critical re-evaluation of the study the
data turned out to be biased due to the use of short-lived control strains. In a revised
experimental setting, no significant impact on longevity was observed upon overex-
pression of superoxide dismutase or catalase [234].
A variety of oxidative modifications of amino acid side chains have been reported in
proteins. Examples of these modifications are oxidations of the sulfur atom in cysteine
and methionine, hydroxylations and carbonylations on aliphatic residues as well as
substitutions at the aromatic systems of phenylalanine, tyrosine or tryptophane (re-
viewed in [252]). Using biochemical assays, immunodetection or mass spectrometry
(MS), some studies have demonstrated an increase in oxidative protein modifications
with age [4, 286]. However, no conclusive data has been presented as to the extent of
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such oxidative damage, i. e. the ratios between modified and unmodified proteins,
and their impact on biological function in vivo. Therefore it is still a matter of debate
whether oxidative damage to proteins ist the main cause or simply correlated with
aging.

Rate of Living

Related to the free radical theory is the rate of living concept. It is based on the obser-
vation that the metabolic rate of an organism is often inversely related to its longevity.
This not only holds true for a comparison between different species but also to in-
dividuals of the same species under different metabolic conditions. Reducing the
metabolism by means of caloric restriction, lowering of the body temperature or the
oxygen concentration was shown to prolong lifespan in a variety of organisms, includ-
ing worm, fly and rodents. Similar effects were further shown for primary human
cell lines [199, 206, 237]. Notably, increased longevity upon caloric restriction was also
observed in yeast but in contrast to the examples mentioned above, this shift was ac-
companied by an increased rate of oxygen consumption [179].

Vicious Cycle Hypothesis

Oxidative modification of DNA is one of the most extensively studied cellular damages
induced by ROS. The formation of oxidized bases, so-called oxidative lesions, leads to
an increased rate of point mutations or deletions in the nuclear and, even more pro-
nounced, in the mitochondrial DNA (mtDNA) [255]. Since mtDNA mainly encodes
for components of the respiratory chain, the vicious cycle concept has been established,
stating that mutant proteins promote radical formation in mitochondria and in return
further increase mutation rates. In support of this model, multiple studies have pro-
vided evidence that aging is associated with a decline in cytochrome c oxidase activity
and other mitochondrial functions as well as increased ROS production [48, 217, 270].
However, the technical quality of these studies has been challenged because of un-
suitable sample preparation techniques and lacking controls [195]. Hence, it is not
yet clearly decided whether aging indeed affects the integrity of the electron transport
chain.
As further evidence for the vicious cycle theory, a mouse model was presented in which
proofreading capacity of the mitochondrial DNA polymerase was abolished, resulting
in an increased mutational burden in the mtDNA. These animals had a significantly
decreased lifespan, reduced rates of mitochondrial ATP generation and showed vari-
ous signs of premature tissue aging [288]. However, using a more sensitive assay to
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measure mtDNA mutation rates, a recent study concluded that the mutational burden
posed on the mitochondrial mutator mouse model was unnaturally high. Strikingly,
heterozygous animals for the mutator allele had a 500 fold higher mutation rate com-
pared to wt but displayed neither a shortened lifespan nor signs of the pathologies
observed in homozygous mice. Moreover, although a marked increase of mtDNA mu-
tations with age was observed, the new data suggested that previous studies had over-
estimated their extent due to technical limitations. The authors therefore concluded
that mtDNA mutations are associated with but not causative of aging [298].

Antagonistic Pleiotropy Hypothesis

It has been proposed that the influence of genes on an organism’s fitness is dependent
on its age. While some genes provide an advantage during early life and would there-
fore be selected for by evolution, they may have harmful effects during later stages
of life. At this post-reproductive phase, the selective pressure no longer applies. This
idea was formed by G. C. Williams in 1957 and was later named antagonistic pleiotropy
theory [305].
The number of identified genes with the postulated characteristics, however, remains
low [156]. The observation that mutations which cause longevity in worms, flies or
mice are often associated with reduced fecundity is often brought up as evidence for
the existence of antagonistic pleiotropy [175]. Another commonly cited example is
a gain-of-function allele of the tumor suppressor p53 in mice. Heterozygous mutant
animals were better protected against spontaneous tumor formation than wt animals.
However, they displayed signs of premature aging and had reduced lifespans, suggest-
ing that increased fitness at an early age came at the cost of disadvantageous effects
later in life [291]. In contrast, analyses of naturally occurring polymorphisms in pop-
ulations of several animal species and humans do not support antagonistic pleiotropy,
for no negative correlation between longevity and fertility has yet been observed [175].
Some authors further associate the above mentioned cellular senescence with antago-
nistic pleiotropy. A limited proliferative capacity of somatic cells protects the juvenile
organism from developing cancer. At the same time, it inherently limits its tissue re-
newal capacity and accelerates aging [35].

5



1 Introduction

1.1.2 Invertebrate Model Systems

The age of genomics has revolutionized aging research. Novel methods in biochem-
istry and genetics enabled the discovery of specific genes associated with longevity.
This led to the understanding that senescence is a process whose rate is regulated by
specific molecular signaling pathways. The vast majority of aging paradigms have
initially been established in non-vertebrate model organisms. Their advantages lie in
short lifespans and amenability to genetic manipulations.

Saccharomyces cerevisiae

Probably the first laboratory model organism to be used in aging research is the bud-
ding yeast Saccharomyces cerevisiae, dating back to the year 1959 when it was first re-
ported that single cells can only undergo a limited number of cell divisions [214]. Be-
sides this so-called replicative lifespan, a more recent concept, termed chronological aging
has been developed. Chronological lifespan is defined as the time that cells can survive
in a non-dividing state [78]. Most prominently, the conserved protein deacetylase silent
information regulator 2 (SIR2) was initially identified in yeast to promote replicative
lifespan [144, 149]. Although there is a consensus that sirtuins, the family of SIR2 ho-
mologues, have a function as metabolic regulators [191], many details regarding their
biological role remain unresolved. For example, SIR2 deletion yeast strains have unal-
tered chronological lifespans and even live longer under nutrient deprivation [77]. The
role of sirtuins in regulating longevity in higher organisms remains controversial and
SIRT1, the closest homologue of yeast SIR2 in mammals, does not appear to influence
lifespan. Nonetheless, recent work in mouse models has demonstrated that SIRT1 pro-
tects against diseases associated with a chronic high fat diet (reviewed in [125]) and is
therefore seen as a promising target for pharmacological intervention.
The amenability of S. cerevisiae to genetic manipulations opened up the opportunity to
conduct screens with isogenic single gene deletion libraries [306] to study their influ-
ence on aging. This lead to the discovery of the target of rapamycin (TOR) signaling
pathway as a negative regulator of lifespan and thus established a link between nu-
trient availability and longevity [145, 246]. Of note, interference with TOR signaling
has since been shown to extend lifespan in a variety of organisms including nema-
todes, flies and mice [120, 139, 147]. Moreover, a reduction in nutrients extended both
replicative and chronological lifespan and thus recapitulates the established concept
of dietary restriction in yeast [141, 246, 254]. Collectively, these data demonstrate that
even unicellular organisms such as S. cerevisiae can provide valuable insights into con-
served biochemical and signaling pathways involved in lifespan regulation.
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Figure 1.1.1: Developmental cycle of the C. elegans hermaphrodite. The nematode progresses
through four consecutive larval stages (L1 to L4) before maturing into the reproductive adult
after approximately 55 hours. In absence of nutrients, the development can be arrested either
at the L1 larval stage, or the organism progresses into the highly long lived and stress resistant,
albeit non-reproductive, dauer form. (Modified from http://www.wormatlas.org/.)

Caenorhabditis elegans

Having widely been studied by geneticists and developmental biologists since the
1970s, the small nematode Caenorhabditis elegans has matured into an indispensable tool
in aging research since in the past two decades. In 1998 C. elegans became the first mul-
ticellular organism whose genome was published [31], and 20,513 protein coding genes
are currently predicted (Wormbase release WS231). Advantages of employing C. ele-
gans as a model system lie in its small adult body size of only approximately 1 mm, its
fast life cycle of only 3 days under optimal growth conditions and its ability to survive
cryogenic storage [25]. The self-fertilizing mode of reproduction of hermaphrodites
further allows for maintenance of large populations without inbreeding depression

7



1 Introduction

[142]. On the other hand, the high reproduction rate requires the induction of sterility
by means of chemicals or temperature sensitive mutations to obtain age-synchronized
populations. Some methods by which progeny is suppressed influence the organism’s
physiology and thereby lead to artifacts in lifespan experiments [5].

A

B

Young Old

Figure 1.1.2: C. elegans as a model for ag-
ing. (A) Morphological differences between
a young adult and an aged worm visual-
ized by scanning electron microscopy. (B)
Sarcopenia-like phenotype in the body wall
muscle. Fluorescence microscopy images from
worms expressing green fluorescent protein
in muscle cells are displayed. (Adapted from
http://www.chp.edu/CHP/ghazilab and
[124].)

After the embryonic stage, the animal’s
development comprises four successive
larval stages before maturing into the re-
productive adult worm. Under nutri-
ent deprivation, heat stress or other en-
vironmental stimuli, C. elegans can form
so-called dauer larvae, which are ex-
tremely long lived and stress resistant
(1.1.1). In comparison to higher organ-
isms, the anatomy of C. elegans is sim-
ple: Adult animals maintain a constant
cell number, 959 or 1031 somatic cells
in hermaphrodites or males, respectively,
whose fate is predetermined during de-
velopment [6]. Since cell division no
longer takes place in adult worms, C.
elegans is applied to study mechanisms
of aging in post-mitotic tissues. Expect-
edly, telomere length, though strain de-
pendent, is neither correlated with the
animal’s age nor its longevity [250].
Of particular interest for the use of C. el-
egans as a model organism in aging re-
search is its short lifespan. When main-
tained at 20°C, wt hermaphrodites live
for approximately two weeks. After a rel-
atively short period of reproductive ac-
tivity, typically lasting only 3 - 4 days, an-

imals successively start to display signs of senescence, such as reduced motility or
paralysis [158]. This is accompanied by morphological signs of deterioration in sev-
eral, albeit not all, tissues. While neurons are relatively well preserved during aging,
muscle fibers are more strongly affected and gradually display phenotypes resembling
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human sarcopenia (Figure 1.1.2) [124].
A technological milestone towards identifying genetic determinants of longevity in
metazoans was the development of a method which allowed determining the lifespan
of worms in a high throughput format. To that end, a temperature sterile strain was
subjected to chemical mutagenesis and several long-lived mutants were isolated. Phe-
notypes of these included constitutive dauer larvae formers as well as animals deficient
in motility, chemotaxis or pharyngal function. Thus, lifespan extension was mostly
attributed to altered feeding behavior [159]. However, subsequent genetic mapping
analysis revealed that several mutations had occurred in the age-1 gene which is part
of the insulin/insulin-like growth factor I (IIS) signaling pathway [90] and is described
in more detail in a later section. Since then, the modulation of additional signaling
pathways, for example target of rapamycin (TOR), Jun kinase and mitochondrial sig-
naling, or biochemical pathways like protein translation, have been shown to extend
lifespan in C. elegans [23, 166, 307]. The discovery of longevity genes has been greatly
facilitated by the introduction of robust and convenient tools for reverse genetics ex-
periments. Libraries of bacteria expressing RNAi constructs now allow for functional
screens at a genome wide scale [146].
To gain insight into the causes of senescence on the molecular level, several studies
profiled transcriptional changes during aging by microarray experiments. In an early
report, age-synchronized populations of sterile mutant strains were analyzed at dif-
ferent time points during adult lifespan. Among the age-regulated genes was a large
number of molecular chaperones, most of which peaked in transcript abundance in
mid-life followed by a rapid decline in the later stages of life. The overall proportion
of the genome with a significant change at the transcript level, however, was estimated
to be less than 1% [188]. In contrast, more recent datasets, using amplified cDNA from
several individual wt animals or RNA extractions from populations of temperature
sensitive mutant suggested more extensional transcriptional remodulation [30, 102].

Drosophila melanogaster

The fruit fly Drosophila melanogaster with its lifespan of approximately eight weeks in a
laboratory environment is another commonly used invertebrate model for the discov-
ery of aging regulating genes. In contrast to nematodes, the fly anatomy and its diver-
sity of tissues is much more complex. Several longevity genes were identified using
forward or reverse genetic screens, or naturally occuring lifespan variability and map-
ping the corresponding chromosomal loci via quantitative trait locus analysis [236].
An even more extensive repertoire of genetics and genomics methods as compared to
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C. elegans has been developed for Drosophila. These include the Gal4/UAS system [24]
which allows for tissue specific overexpression of transgenes or transcript depletion via
genome-wide RNAi libraries [64]. However, a major limitation of Drosophila in aging
research is the inherently high mutation rate of the organism, making it challenging to
generate transgenic lines with isogenic backgrounds [287].
The Drosophila model has served both to dissect previously identified pathways as well
as to identify new longevity genes. For example, components of IIS, JNK and TOR sig-
naling, which are known to regulate aging in worms, have also been shown to extend
lifespan in Drosophila (reviewed in [236]). Novel longevity candidates include genes
encoding for the G-protein coupled receptor methuselah (mth) and its peptide ligands,
stunted (sun) [55, 180].
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1.1.3 Insulin/Insulin-like Growth Factor 1 Signaling

Components and Signaling Cascade of the IIS Pathway in C. elegans

One of the most extensively studied signaling pathways regulating longevity in C. ele-
gans is the insulin/insulin-like growth factor 1 signaling (IIS) pathway. The first gene
encoding one of its components was identified in 1988. In total, three mutations map-
ping to the same gene, termed age-1, yielded animals with an extended lifespan [89, 90].
More thorough morphological analysis revealed that age-related deterioration in mul-
tiple, although not all, tissues was delayed in these animals [124]. In 1993, a report
showed that a point mutation in the daf-2 gene, resulting in a single amino acid ex-
change from proline to serine, is sufficient to more than double the adult lifespan of
hermaphrodite worms (Figure 1.1.3). This lifespan extension further required daf-16, a
gene encoding a transcription factor [150]. Before the discovery of their role in adult
lifespan determination, both daf-2 and daf-16 had already been identified as regulators
of dauer larvae formation (daf), a highly stress resistant but non-reproductive form
of nematodes [104, 256, 300]. Although mutations in both age-1 and daf-2 promote
longevity, the phenotype of the latter mutant is more pronounced [168].

Figure 1.1.3: IIS-mediated lifespan extension
in C. elegans. A point mutation in the daf-2
gene, encoding a homolog of the mammalian
insulin receptor, results in a strong lifespan ex-
tension. This phenotype further requires the
daf-16 gene encoding the transcription factor
DAF-16, indicating that it acts downstream in
the signaling cascade. (Adapted from [150].)

Further dissection of the pathway and
the interplay of its component has led
to the current model as depicted in
Figure 1.1.4. A yet unidentified lig-
and binds to the tyrosin receptor ki-
nase DAF-2, a homolog of the mam-
malian insulin receptor family. It has
been suggested that activation occurs via
autophosphorylation of tyrosine residues
at the C-terminus of the protein anal-
ogous to the human insulin receptor
[152]. Subsequently, DAF-2 recruits IST-
1, an insulin receptor subsrate ortho-
logue, and the above mentioned phos-
phatidylinositol 3-kinase AGE-1/DAF-
23 [213]. 3-phosphoinositide-dependent
kinase 1 (PDK-1) is activated by elevated phosphatidylinositol(3,4,5)triphosphate lev-
els and phosphorylates three protein kinases: B/Akt homologs AKT-1 and AKT-2 [240]
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as well as the serum- and glucocorticoid-inducible kinase homolog SGK-1 [126]. This
activation is counteracted by the phosphatase DAF-18, an orthologue of mammalian
PTEN [225]. In parallel, AKT-1, AKT-2 and SGK-1 negatively regulate the activity of
the transcription factor DAF-16 by phosphorylation of multiple serine and threonine
residues. While AKT-1 and AKT-2 were reported to function predominantly in dia-
pause regulation, the SGK-1 stimulus was most relevant for the regulation of lifespan
and stress resistance [126]. As long as the IIS pathway is activated, DAF-16 remains
phosphorylated and is retained in the cytosol, probably by sequestration via 14-3-3
protein binding as reported for mammalian cells [28]. Reduced IIS allows DAF-16 to
enter the nucleus and activate transcription of its target genes [123]. Conflicting data
exist in the literature as to the mechanism by which DAF-16 is inactivated. While Lee
et al. reported that mutation of AKT phosphorylated residues resulted in dauer ar-
rest induced by constitutive DAF-16 activation [172], Lin and colleagues observed that
similarly mutated DAF-16 translocated into the nucleus but neither induced dauer for-
mation nor extended lifespan. The authors of the latter study suggested that additional
cues may be required for DAF-16 activation than the nuclear translocation alone [178].

The Transcriptional Response of DAF-16

DAF-16 belongs to the evolutionarily conserved forkhead box O (FOXO) group of tran-
scription factors which are a subset of the HNF-3/forkhead structural family. In verte-
brates, the FOXO group comprises up to five paralogs which have been implicated in
a wide range of biological processes ranging from apoptosis, cell cycle arrest and DNA
repair to oxidative stress resistance and metabolism [1, 13, 56, 106]. The most closely
related members to DAF-16 in humans are the FOXO1/FKHR, FOXO3/FKHRL1 and
FOXO4/AFX proteins with up to 67% sequence identity in their forkhead domains
[177]. The observation that expression of human FKHRL1 can partially rescue the
daf-16 mutant phenotype in C. elegans further demonstrates the functional conserva-
tion of FOXO transcription factors [172]. Although daf-16 is the only FOXO gene in C.
elegans, three alternative splice isoforms with different amino termini termed a1/a2,
b and d/f have been identified, the latter having the strongest effect on longevity
[165, 177, 224]. By oligonucleotide selection, the conserved 8 bp DNA consensus se-
quence 5’-TTGTTTAC-3’ was identifed to which DAF-16 and its human orthologues
AFX, FKHR and FKHRL1 bind. This sequence was hence termed daf-16 family mem-
ber binding element (DBE) [91].
Despite the fact that the FOXO transcription factor DAF-16 is recognized as the key

12



1 Introduction

A B

Figure 1.1.4: Model of the IIS signaling in C. elegans. (A) As long as the signaling pathway is
activated by binding of ligands to the DAF-2 receptor, the PI3 kinase AGE-1 is activated. Via a
downstream signaling cascade, the transcription factor DAF-16 is phosphorylated and retained
in the nucleus. (B) If the function of DAF-2 or AGE-1 are reduced or the phosphatase DAF-18 is
activated, DAF-6 translocates into the nucleus where it functions as a transcription factor. The
transcriptional response of DAF-16 results in stress resistance and lifespan extension. (Adapted
from [216].)

mediator of the IIS pathway, the molecular mechanism by which its activity extends
lifespan remains elusive. Several microarray-based studies have tried to identify DAF-
16 target genes. McElwee and colleagues used daf-2 genetic mutants with daf-2;daf-
16 double mutants as controls and exclusively analyzed young adult worms. Their
dataset showed that genes involved in stress resistance and detoxification, such as the
mitochondrially located superoxide dismutase 3 (sod-3) and cytochrome P450 contain-
ing enzymes as well as molecular chaperones, including hsp16, hsp-70 and hsp-90 pro-
teins, were expressed at higher levels in the daf-2 mutant. The authors further sug-
gested that the transcriptional profile was similar to that of dauer larvae [202]. The
study by Murphy and coworkers used both genetic mutants as well as RNAi against
daf-2 and daf-16 genes in sterile animals aged up to eight days across multiple time
points. Similarly, multiple chaperones as well as genes with a role in oxidative stress
defense, including catalases ctl-1 and ctl-2 and metallothionein mtl-1, were identified
as targets of DAF-16. Additionally, antimicrobial proteins were reported to be upregu-
lated in in the long-lived daf-2 mutants [218].
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In a more recent report, serial analysis of gene expression (SAGE) was employed to
address differential gene expression between daf-2 genetic mutants and wt [113]. The
experimental setup was more similar to that used by Murphy and co-workers, making
use of temperature sensitive sterile strains and analyzing both young and old animals.
However, the overlap of differentially expressed genes between the two studies was
low. In contrast, the dataset provided by McElwee and colleagues was in much better
agreement with the SAGE data. Apart from several heat shock proteins, genes encod-
ing ribosomal and transthyretin-like proteins were overrepresented in daf-2 mutants
whereas other chaperones, metabolic enzymes, fat storage proteins and members of
the protein turnover machinery were found downregulated. The authors suggested
that the most relevant feature of daf-2 mutants is a reduced metabolic rate.
To directly determine DAF-16 targets by identifying bound DNA sequences, another
report applied chromatin immunoprecipitation (ChIP) using a polyclonal antibody
raised against the protein [226]. The study used mixed developmental stages of wt,
daf-2 or daf-16; daf-16 double mutants and extracted 103 genes from the identified se-
quences, that also contained the putative DAF-16 binding motif. These genes were in-
volved in a variety of biological processes including metabolism, development, apop-
tosis, transcription and translation, signaling and stress response.
Finally, mass spectrometry-based quantitative proteomics has been applied in order
to identify DAF-16 targets based on protein rather than transcript abundance [67]. To
that end, nematodes were subjected to stable isotope labeling with 15N and served
as an internal standard to compare the proteomes of daf-16, daf-2 and wt young adult
populations. Only 86 of the identified proteins differed in abundance between the daf-2
mutant strain and wt, of which only 35 had been identified as a DAF-16 target in any of
the four above mentioned studies [173, 202, 218, 226]. The novel candidates were pre-
dominantly enzymes involved in carbohydrate metabolism, amino acid biosynthesis
and ROS defense.

Evolutionary Conservation of IIS-mediated Longevity Regulation

Although IIS-related regulation of longevity is best established in nematodes, a grow-
ing body of evidence suggests that both the components and the basic molecular mech-
anisms of lifespan regulation are conserved in evolution from nematodes to humans
(Figure 1.1.5). Just like C. elegans, the genome of the fruit fly Drosophila melanogaster
contains a single gene, InR, which encodes for an insulin receptor homolog. While
homozygous InR mutations are lethal [38, 81], heteroallelic combinations resulted in
dwarf phenotypes with up to 85% maximum lifespan extension [279]. Similarly, mu-
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tants for chico, the fly insulin receptor substrate/IST-1 homolog, displayed a longevity
phenotype with 48 or 36% lifespan extension for homozygous or heterozygous ani-
mals, respectively [41]. Of note, the effect on lifespan was in both cases lower in males
as compared to females [41, 279].

Figure 1.1.5: IIS signaling is conserved in evo-
lution. Most component of the IIS signaling
cascade have clear homologs in worm, fly and
mouse, including the receptor and the down-
stream Forkhead transcription factor. However,
single genes in C. elegans have often evolved
into several paralogs in mammals, often with
pronounced tissue specificity and specialized
functions. (Adapted from [26].)

In contrast to nematodes and insects,
the mammalian IIS receptor gene has
diverged into three paralogs which to-
gether form the insulin receptor fam-
ily: the insulin receptor (IR) [294], the
insulin-like growth factor receptor (IGF-
1R) [295] and the insulin receptor-related
receptor (IRR) [269]. IRR is expressed
primarily in kidney, stomach and pan-
creas [128, 197] and probably has a spe-
cialized function in sensing alkaline pH
[63]. Both IR and IGF-1R are more widely
expressed. While the role of IR and
the downstream signaling is primarily in
metabolic regulation, IGF-1R promotes
cell growth, proliferation and survival.
The role of IIS in mammalian aging re-
mains controversial, primarily because
insulin resistance and low insulin signal-
ing are associated with diabetes and poor
health in humans while ablation of the
homologous pathway causes longevity
in lower organisms. Thus, this contradiction is sometimes referred to as the insulin
paradox [44]. However, several reports support the notion that both reduced insulin
and IGF-1 signaling can in some cases extend lifespan in mice and humans. For ex-
ample, fat specific insulin receptor knockout mice are long lived by 18% while being
protected against obesity, although maintaining normal food uptake [19]. A similar
lifespan extension was achieved by systemic or brain-specific insulin receptor substrate
2 knockouts, despite the fact that these animals were hyperglycemic and overweight
as compared to wt [277].
In contrast to insulin signaling, the role of IGF-1 signaling in aging is more firmly estab-
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lished. Homozygous gene knockouts of the IGF-1R gene in mice (Igf1r) are lethal. Het-
erozygous animals, however, displayed a longevity phenotype and were more resistant
to oxidative stress. Just like in flies, lifespan extension was only significant in females
but not in males [129]. Interestingly, a study among a cohort of female Ashkenazi Jew-
ish centenarians showed an over-representation of a heterozygous IGF-1R mutation
[274]. Low levels of IGF-1 are further thought to contribute to the strongly delayed
aging of Ames dwarf Prop1df/df and Snell dwarf Pit1dw/dw mice, which live more than
50% longer than wt [27, 82]. However, data as to whether FOXO transcription factors
are required for increased longevity are still lacking.

Crosstalk between IIS and Other Signaling Pathways

Biochemical and genetics approaches revealed that IIS interacts with other cellular sig-
naling pathways. These are either essential to allow DAF-16 action or adjust DAF-16
transcriptional response by activation or inactivation of coregulators. In C. elegans for
example, the Dictyostelium suppressor of MEK null orthologue, smk-1, is required for
longevity, oxidative and UV radiation stress resistance phenotypes. In contrast, SMK-
1 depletion did not affect daf-16-dependent thermotolerance [307]. Similarly, host cell
factor 1 homolog hcf-1 and IIS synergystically regulate lifespan through DAF-16 action
[138]. Both SMK-1 and HCF-1 colocalize with DAF-16 in the nucleus upon activation
[138, 307].
Intriguingly, heat shock factor 1 (hsf-1) was identified as an additional gene essen-
tial for lifespan extension upon IIS inactivation [130, 212]. HSF-1 is a member of a
conserved leucine-zipper containing family of transcription factors. While inverte-
brates, such as worm and fly, only possess a single member, up to four isoforms of
heat shock factors have been reported in vertebrates [42, 92, 244]. In a state of fold-
ing homeostatis, some HSFs are thought to be sequestered by Hsp90 proteins from
which they are released under heat stress. Under these conditions, HSFs homotrimer-
ize, accumulate in the nucleus and strongly induce transcription of genes carriying
heat shock response elements (HSEs), among which are multiple molecular chaper-
ones [7, 39, 80, 154, 241, 260, 308, 309]. Very recently, the molecular mechanism linking
HSF-1 and IIS signaling in C. elegans has been elucidated in more detail. As shown
by yeast two hybrid and immunoaffinity experiments, a pool of HSF-1 is part of a
heterooligomeric complex with daf-16-dependent longevity (DDL) proteins 1 and 2, as
well as heat shock factor binding protein 1 (HSB-1) [39, 176, 261]. This complex, termed
DDL-1 containing HSF-1 inhibitory complex (DHIC), has been suggested to dissociate
and release HSF-1 under conditions of reduced IIS. This heat shock independent HSF-1
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activation is thought to be achieved by DDL-1 phosphorylation via an as yet uniden-
tified kinase [39]. These data hence provide a link between the regulation of lifespan
and members of the proteostasis network (Figure 1.1.6).

Figure 1.1.6: Proposed model for the interac-
tion between IIS signaling and HSF-1. A pool
of HSF-1 is sequestered by the DHIC complex.
Interference with IIS results in HSF-1 release.
(Adapted from [39].)

Initially it was believed that that meta-
zoan sirtuins, homologs of the yeast Sir2
gene, act via the IIS pathway, suggest-
ing that lifespan extension through di-
etary restriction is also facilitated by IIS.
Several studies support this hypothesis,
however, they are controversial. While
an earlier report claimed that overexpres-
sion of sir-2.1, the most homologous sir-
2 gene in C. elegans, extended lifespan
by up to 50% [283], it later became ap-
parent that the observed phenotype was
due to an unlinked mutation rather than
sir-2.1 dosage [299]. Thus, evidence that
sirtuins affect lifespan in worms is lack-
ing. Moreover, it has been proposed that
sirtuins regulate FOXO transcription fac-
tors in mammalian cells, but it is not
clear whether this regulation is positive
or negative. SIRT1, the mammalian Sir2
ortholog was reported to repress Foxo3a and other mammalian forkhead transcription
factors by deacetylation [29, 215] while the same protein appeared to activate Foxo1,
the mouse homolog of FKHR via the same enzymatic activity [310].
Finally, DAF-16/FOXO can be activated or inactivated independently of the DAF-2
receptor. For example, the daf-7/TGF-beta signaling pathway also negatively regu-
lates nuclear localization of DAF-16 in worms, although without affecting lifespan but
rather dauer arrest regulation [172]. Conversely, Jun N-terminal (JNK) and Ste20-like
kinase (MST1) pathways can activate FOXO transcription factors directly and thereby
override the inhibitory IIS stimulus during cellular stress [296]. In mammalian cells,
FOXO4 and FOXO3 were demonstrated to be activated via JNK or MST1, respectively
[76, 174]. Moreover, overexpression of cst-1, the C. elegans homolog of MST1, extended
lifespan in a daf-16-dependent manner while reduced expression shortened lifespan
[174].
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1.1.4 Proteostasis and Protein Aggregation during Aging

Modules of the Proteostasis Network

The term protein homeostasis, or proteostasis, is defined as “the cellular process that
governs the life of proteins” [210]. The components involved in this process are re-
ferred to as the proteostasis system or network and are made up of a large number of
proteins belonging to multiple biochemical pathways. These include RNA synthesis,
degradation and processing, protein biosynthesis, protein folding and quality control,
protein translocation, assembly and disassembly as well as degradation [11]. Indi-
vidual pathways are often referred to as hubs within the proteostasis network (Figure
1.1.7). During proteostasis imbalance, caused by insults such as heat stress or the pres-
ence of aggregation prone proteins, each of these hubs should possess sufficient ca-
pacity to cope with the presence of denatured proteins and a reduced activity of other
proteostasis components [210]. Under these conditions, the compromised function of
any of the above mentioned hubs may result in proteostasis decline. This notion is
supported by a genome-wide RNAi screen in C. elegans in which genes required for
preventing protein aggregation were identified. Depletion of several individual pro-
teins belonging to the proteostasis network resulted in premature polyQ aggregation
[220].
Moreover, the occurrence of proteotoxic agents can weaken the proteostasis system.
Artificial β-sheet forming peptides were shown to sequester a broad range of pro-
teins in a human cancer cell line [232]. These proteins were mostly large in size, often
contained unstructured regions and were involved in a broad range of cellular path-
ways, including protein folding and degradation. Furthermore, this sequestration dis-
played a preference for newly synthesized proteins. The authors therefore concluded
that protein aggregation gradually compromises the biogenesis of proteins with high
chaperone-mediated folding requirements and ultimately lead to a collapse of essential
cellular functions.
If a chronic imbalance cannot be overcome by adjusting the capacities of the cellular
protoestasis machinery it is likely that the system gradually deteriorates in a vicious
cycle [210].

Proteostasis Decline during Aging

An increasing body of evidence suggests that the efficiency of many components of
the proteastasis network becomes compromised during aging [69, 210]. In C. elegans
for example, the response to heat and unfolded protein stress has been shown to be
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Figure 1.1.7: Proteostasis network hubs. Newly synthesized proteins are usually folded with
the help of molecular chaperones to fulfill their function in the cell. Misfolded proteins in con-
trast are either renatured, degraded or form protein aggregates. Imbalance in the proteostasis
system, for example during aging, can result in increased aggregate formation and ultimately
cell death. (Modified from [11].)

dampened in aged compared to young animals [16]. Moreover, a decline in basal ex-
pression levels of small heat shock proteins was observed in microarray studies [188].
Interestingly, brain and muscle tissue of calorically restricted, and thereby long-lived,
mice displayed elevated levels of Hsps over animals fed ad libitum [170, 171] while the
extent of Hsp70 induction upon heat stress was reduced [127]. Similarly, caloric restric-
tion rendered rats more thermotolerant and the extent of cellular damage induced by
heat stress was reduced [114].
Besides protein folding, impaired function of chaperone-assisted autophagy [53] or the
26S proteasome pathway [285] in rat liver or flies, respectively, suggests a reduced
clearance of misfolded protein aggregates with age. Of note, the proteasomal activ-

19



1 Introduction

ity in rat liver was found to be unaltered throughout lifespan [268]. To directly assess
the proteostasis capacity in worms, transgenic animals have been generated in which
aggregation-prone proteins such as destabilized forms of myosin or paramyosin [16]
or mutant forms of firefly luciferase fused to GFP [108] were expressed, and the forma-
tion of protein aggregates was assessed by microscopy. In all cases, the recombinant
proteins were soluble at a young age and gradually formed aggregates later in life.
In line with the observed proteostasis decline in model organisms, age is the strongest
risk determinant for the onset of a number of human neurodegenerative disorders
caused by the accumulation of amyloid protein aggregates, including Alzheimer’s,
Huntington’s and Parkinson’s disease [44, 69, 151]. These amyloid folding diseases
have been recapitulated in model organisms. For example, transgenic flies or worms
expressing polyglutamines [58, 211] or Aβ peptides [43] as well as mouse models for
Huntington’s disease [304] consistently show an age related onset of aggregated forma-
tion and toxicity. Recent studies have shown that the occurrence of protein aggregates
further weakens the proteostasis capacity [210]. In C. elegans, the expression of recom-
binant polyQ proteins increased the aggregation propensity of temperature sensitive
cellular proteins, and vice versa [99].
The formation of insoluble protein deposits during aging has been observed in several
organisms even in the absence of proteotoxic amyloid precursors. For example, in a
proteomic study in C. elegans a strong increase in more than 700 SDS-insoluble proteins
was detected in old as compared to young animals. These proteins were involved in
diverse biological processes, including development, translation, protein folding and
metabolic pathways [57]. An independent report also found age-related protein insol-
ubility and further demonstrated that the depletion of highly aggregation-prone pro-
teins by RNAi extended lifespan [253]. Protein aggregates in aging tissues were further
reported in Drosophila [61].
Given that (a) the integrity of the proteostasis network becomes compromised with age
and (b) its decline is enhanced by the presence of misfolded proteins, the occurrence of
an eventual proteostasis collapse may set a limit to the lifespan of multicellular organ-
isms [280].

Interaction between IIS and Proteostasis

Although the molecular mechanism by which reduced IIS extends lifespan remains ill
defined, numerous reports indicate that a prolonged maintenance of the proteostasis
network may at least be partially responsible for its longevity phenotype. As men-
tioned above, the transcription factor HSF-1, which facilitates the expression of multi-
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ple molecular chaperones, is activated by IIS in the long lived C. elegans daf-2 mutant
[39]. In line with this observation, transcript levels of several chaperones were found
to be elevated in a daf-2 mutant background [113, 202, 218]. Experiments using aggre-
gation prone proteins as folding sensors have substantiated the link between IIS and
proteostasis more firmly. When a fusion protein consisting of 82 glutamine residues
and YFP (Q82-YFP) was expressed in an age-1 mutant background, both the onset of
aggregation and signs of toxicity were reduced when compared to wt animals of the
same age [211]. Conversely, depletion of DAF-16 or HSF-1 by RNAi accelerated the
formation of Q40-YFP aggregates at an earlier time point in life [16]. Similarly, a va-
riety of misfolding-related phenotypes in animals expressing destablilized forms of
paramyosin or myosin heavy chain were increased upon RNAi against hsf-1 or daf-16
but decreased when the same genes were overexpressed or age-1 was depleted [16].
Moreover, overexpression of daf-16 homolog FOXO or the negative regulator of IIS,
Pten, suppressed the formation of aggregates in fly muscle. Intriguingly, FOXO activa-
tion in muscle also provided a systemic protection against aggregate accumulation in
other tissues [61]. Collectively, these results indicate that low levels of IIS and thereby
increased transcriptional responses of DAF-16 and HSF-1 delay proteostasis decline
during aging.
As some data suggest, DAF-16 and HSF-1 not only influence protein folding but also
regulate clearance of misfolded protein aggregates. A study employing both an in vivo
C. elegans Alzheimer’s model as well as in vitro disaggregation assays concluded that
HSF-1 promoted the disaggregation of toxic small molecular weight oligomers of Aβ

peptides and thus made them accessible to proteasomal degradation [43]. DAF-16 in
contrast did not decrease aggregation but lead to the formation of higher molecular
weight assemblies with lower toxicity. The authors speculated that the clearance of
these latter aggregates occurred either by secretion or a chaperone-dependent path-
way at a slower rate. The notion that DAF-16/FOXO-dependent clearance of mis-
folded proteins occurs by other means than refolding is supported by a more recent
report. FOXO activity was required for the clearance of insoluble deposits of polyubiq-
uitinated proteins from fly muscle which occurred at least partially via the macroau-
tophagy/lysosome pathway [61].
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1.2 Mass Spectrometry-based Quantitative Proteomics

Mass spectrometry (MS)-based proteomics is a fast evolving field. Through constant
improvements in instrumentation, quantification strategies and algorithms for data
analysis it has in recent years emerged as an indispensable tool in biomedical research.
The applications of MS-based proteomics now range from mere studies of protein ex-
pression levels to the analysis of posttranslational protein modifications and protein
interactions.

1.2.1 Mass Analyzers for MS-Based Proteomics

A broad range of instrument types have been applied to proteomics since gentle ioniza-
tion techniques, most importantly electrospay ionization (ESI) [79] and matrix-assisted
laser desorption/ionization (MALDI) [148], have made peptides and proteins amenable
to MS analysis. Besides linear ion trap and Orbitrap analyzers, which are discussed
in more detail below, other commonly used instrument designs include time of flight
(TOF) and triple quadrupole mass spectrometers [3, 115]. A milestone for high confi-
dence peptide identification was the introduction of hybrid instruments between linear
ion traps and Fourier transform ion cyclotron resonance (FTICR) analyzers with high
resolving power and mass accuracy [276]. This instrument type, however, has lately
been displaced by Orbitraps due to lower operating costs and successive performance
improvements [265, 267].

Linear Ion Traps

Ion traps are devices capable of storing and isolating ions, and can additionally serve
as mass analyzers. In the late 1980s, the first three-dimensional (3D) traps, also named
Paul traps after their inventor, became commercially available [143]. These devices
were applied in proteomics workflows by coupling them to liquid chromatography
systems with online electrospray ionization [94]. A considerable increase in perfor-
mance was achieved with the in introduction of linear, or two-dimensional, ion traps.
The linear trap designs outperformed commonly used 3D traps in many aspects, in-
cluding injection efficiencies, ion storage capacities, dynamic range and sequencing
speed [68, 198].
Linear traps consist of four parallel hyperbolic rods with a space in their center, to
which oscillating electric fields are applied at radio frequency (RF). These so-called
quadrupole fields are used to trap ions in radial trajectories. The ion motions are de-
scribed by the Mathieu Equations.
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q =
4zeV

m (x2 + y2) Ω2

a =
8zeU

m (x2 + y2) Ω2

q, a, trapping parameters
m, ion mass
e, ion charges
z, number of ion charge
V, amplitude of AC oscillation
U, DC offset
Ω, AC frequency
x, y, distances from the center of the trap to the X or Y rods, respectively

Using these equations, specific regions of a and q combinations can be calculated under
which ions are stable in both x and y direction and thus remain trapped. Given that
most variables, including the quadrupole dimensions and the applied radio frequency,
are kept constant in a given instrument and that no DC offset is applied, the equations
can be simplified to:

q =
kV

m/z

a = 0

k, instrument constant

Stable ion trajectories can be expected for q values between 0 and 0.908. However,
the upper q-limit for stable trajectories is reduced to 0.88 in the the ion trap designs
used here when employed as a mass analyzer. This is due to the resonance ejection
voltage, a supplemental AC voltage applied to the X-rods of the quadrupole [281].
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A B

Axial Motion

Radial Motion

Figure 1.2.1: Linear Ton Trap. (A) Schematic drawing of the linear ion trap rod design. (B) Axial
and longitudinal motions of ions in a linear trap are determined by DC trapping potentials of
the front and back sections as well as an oscillating radio frequency AC potential applied to the
opposing rods of the quadrupole. (Adapted with modifications from [264] and [281]).

While the quadrupole fields described above allow the trapping of ions in the the x-y
plane, additional DC potentials restrict their movement along the z-axis (Figure 1.2.1).
These stopping potentials can be provided by aperture plates located at the ends of
the quadrupole rods [111]. More commonly, the quadrupole rods are split into three
electrically isolated sections, and the stopping potential is applied to the outer sections
of the ion trap. The combination of theses two principles of radial and axial trapping
confines ions with specific characteristics in a potential well.
When equipped with detectors, usually conversion dynodes coupled to photomulti-
plier tubes, linear ion traps can be used as mass analyzers. To that end, a population
of ions is first confined and gradually "scanned out" of the trap by ramping the ampli-
tude of the AC voltage V. By this means, ions assume q-values outside the stable range
in the order of ascending m/z values, leave the trap and hit the detector. The linear
ion trap is broadly used in MS-based proteomics because of its high sensitivity and se-
quencing speed. Moreover, gas phase reactions such as collision-induced dissociation
(CID) can be performed in the same device. However, the applicability in proteomics
is limited by its low mass accuracy and low resolving power. Therefore, ion traps are
often combined with high resolution analyzers in hybrid instruments.

Orbitrap Mass Analyzer

The Orbitrap mass analyzer was introduced by Alexander Makarov in 2000 [192] and is
reminiscent of an ion trap developed by Kingdon in the 1920s [153]. Both designs make
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use of electrostatic fields to confine ions, rather than magnetic or oscillating electric
fields as used in quadrupole or ICR analyzers, respectively. The Orbitrap cell consist
of a central spindle surrounded by an outer electrode which is split into two isolated
halves (Figure1.2.2). Ions are injected tangentially into the cell and forced onto trajec-
tories around the spindle by electric attraction which is counterbalanced by centrifugal
forces. Trapping potentials are applied to the outer electrode to restrict the ions’ axial
movement and result in oscillations along the z-axis. The frequency ω of these oscilla-
tions is related to the mass/charge ratio (m/z) and can be described as

ω =

√
K
z

m

with K being an instrument constant [132]. By recording image current transients of
the potential changes between both halves of the outer electrode, mass spectra can be
deduced after Fourier transform analysis.

Figure 1.2.2: Orbitrap analyzer. The cell con-
sist of a central electrode (a), also referred to as
’spindle’, which is surrounded by two halves of
the outer electrode (b) which are electrically iso-
lated from each other by a ceramic ring (c). Ions
move in stable trajectories around the spindle
by electric attraction while simultaneously os-
cillating in the z-axis. (Adapted from [266].)

A major technical challenge during the
development of Orbitrap instruments
was the tangential transfer of ions into
the cell. To this end, ions are first ac-
cumulated in a curved quadrupole ion
trap, termed C-trap, and injected as a
focused package by the application of a
DC voltage [281]. The resolving power
of the first generation of commercially
available Orbitrap instruments was com-
parable to 7T FT-ICR instruments only in
the high m/z range but was lower below
800 Th [266]. The application of a higher
field strength [194] and a reduction in
size [205] have further improved the per-
formance of the Orbitrap cell which now
outperforms most FT-ICR analyzers. The
mass accuracy of Orbitrap instruments is
typically within 3 ppm [193] but can be
improved to values in the sub-ppm range by using ambient air ions for real time recal-
ibration [229] or software-based recalibration [51].

25



1 Introduction

Figure 1.2.3: Roepstorff–Fohlmann–Biemann nomenclature. Fragment ion series obtained in
fragmentation experiments are named with Latin letters according to the bonds in the peptide
backbone at which the dissociation takes place. Additionally, fragments are numbered accord-
ing to the distance from N- or C-terminus. (Adapted from [273].)

1.2.2 Fragmentation Methods in Tandem Mass Spectrometry

Peptide analysis by mass spectrometry in shotgun proteomics typically involves tan-
dem MS (MS/MS or MS2) experiments. After ionization and isolation, the backbone
of selected peptide ions is dissociated and, ideally, a ladder of fragment ions differing
in mass by single amino acids is generated. By manual or computational analysis of
the detected fragments, the amino acid sequence of the precursor can in principle be
inferred. Depending on the cleaved chemical bond, peptide fragment ions are classi-
fied according Roepstorff-Fohlmann-Biemann nomenclature as depicted in Figure 1.2.3
[273]. Fragmentation of peptides is usually achieved by collision with inert gas atoms,
like in collision induced dissociation (CID) or higher energy collisional dissociation
(HCD), or chemical reactions with radicals in the gas phase as in electron transfer dis-
sociation (ETD).
In the hybrid mass spectrometers described in the following section, CID experiments
are performed entirely in the linear ion trap section. In the first step, a precursor pep-
tide ion selected for fragmentation is isolated. To this end, the precursor is brought
to a high but stable q-value by increasing the quadrupole AC amplitude of the trap.
In the next step, all undesired ions are ejected from the ion trap by applying a multi-
frequency waveform which covers the resonator frequencies of ions with m/z values
outside the isolation window. Before excitation, the q-value of the isolated ion popula-
tion is reduced by altering the RF AC voltage of the ion trap to avoid the loss of small
product ions. The selection of this so-called activation q is essential for the quality of
the obtained fragmentation spectra. While low activation q values prevent sufficient
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energy absorption and inefficient fragmentation, higher settings result in the loss of
small fragment ions [54]. As a compromise, a typical activation q of 0.25 is chosen for
the instrument types described in the following section. In this case, the lowest observ-
able mass is one third of the fragmented precursor [219].
In the actual activation step, the isolated precursor ions are accelerated in the trap by
applying a low amplitude AC waveform at its resonator frequency. Through collisions
with surrounding inert gas atoms, often helium, the molecules accumulate vibrational
energy until the peptide backbone dissociates. All steps of of the CID experiment - pre-
cursor isolation, fragmentation and analysis of fragment ions - are typically performed
in the same device, the linear ion trap.
HCD is an alternative fragmentation method for Orbitrap hybrid instruments [230].
After isolation in the linear ion trap, precursor ions are accelerated towards a special
collision octopole or, in earlier setups, into the C-trap, where activation is achieved by
collision with inert gas atoms at a relatively high pressure. Through the C-trap, prod-
uct ions are then injected into the Orbitrap cell for analysis. Initially, the cycle time in
HCD mode was considerably slower than to CID, but a comparable sequencing speed
is achieved the more recently released generation of instuments [205]. Although much
higher amounts of ions are required to perform HCD experiments, this method offers
a number of advantages over CID fragmentation. First of all, fragmentation spectra
are acquired at high resolution, and by that means identification scores are markedly
improved. Secondly, all fragments are detectable and no low mass cutoff applies. This
property for example helps in the identification of phosphotyrosine-containing pep-
tides in which diagnostic reporter ions in the low region of the mass range are observed
[9, 272]. Last, HCD reduces neutral losses during the fragmentation of phosphorylated
peptides and thereby does not require additional activation steps [219].
Both CID and HCD fragmentation methods typically generate y- and b-type fragment
ions, although the y-ion series is more dominant in HCD [230].

1.2.3 Instruments for High Resolution MS-Based Shotgun Proteomics

In bottom up shotgun proteomics experiments, protein mixtures are digested into pep-
tides by proteolytic cleavage and analyzed by tandem mass spectrometry. The auto-
mated interpretation of mass spectra derived from these highly complex samples is
challenging since the immense space of possible peptide assignments can yield false
identifications. Instruments with high mass resolution and accuracy greatly improve
the peptide identification confidence because the acquired spectra provide additional
information on charge state and composition of precursor and/or fragment ions.
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Figure 1.2.4: Schematic drawing of the Orbitrap-Velos hybrid mass spectrometer. (Modified
from [231].)

For proteomics applications, high resolution mass analyzers are often combined with
low resolution linear traps in hybrid instruments. For tandem MS experiments, the
high resolution analyzer is typically used to acquire survey scans across a broad mass
range. In parallel, selected peptide precursor ions can be sequentially isolated and
subjected to CID fragmentation in the ion trap. These low resolution MS/MS scans
are performed at higher speed, allowing several fragmentation events while the high
resolution survey scan is acquired. Based on the resolution of survey and fragmenta-
tion scans, this mode of operation is referred to as high-low strategy [205]. Early hybrid
instruments in which this strategy was pursued consisted of a linear ion trap coupled
to an FT-ICR analyzer (FT-Ultra) [276] and, after the introduction of the Orbitrap cell,
the LTQ-Orbitrap [193]. The time frame for a cycle consisting of a high resolution full
scan and ten data dependent MS/MS events during analysis of complex mixture in
these instruments was in the range of three seconds. A new ion trap design combined
with increased ion transmission doubled the sequencing speed in the next generation
of Orbitrap hybrid instruments (LTQ Orbitrap Velos, Figure 1.2.4) [231].
The mode of operation in which not only survey scans but also MS/MS scans are per-
formed at high resolution is referred to as high-high strategy, to discriminate it from
the previously described high-low strategy. Since the introduction of the LTQ Orbitrap
Velos instrument, the high-high analysis of complex peptide mixtures using HCD frag-
mentation has become feasible. Higher ion currents into the instrument and improved
transmission of fragment ions from the collision cell into the C-trap increased perfor-
mance and speed. Cycles consisting of one survey and ten HCD fragmentation scans
can be completed within a time frame of 2.6 s, although all spectra are acquired in the
Orbitrap cell. [231]. Higher resolution Orbitrap analyzers have further increased scan
speeds by allowing mass spectra to be acquired with shorter image current transients
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at the same resolution [205]. Of note, a recently introduced instrument type, termed Q
Exactive, uses an Orbitrap cell as its sole mass analyzer and is not designed as a hybrid
mass spectrometer. Instead of a linear ion trap, a transmission quadrupole is used for
isolation, resulting in lower fill times for MS/MS scans and faster cycle times in HCD
mode [204].

1.2.4 Quantification Strategies

A major challenge in MS-based proteomics is the fact that peptides concentrations can-
not be inferred directly from the signal intensities detected by a mass spectrometer.
To circumvent this limitation, several strategies have been developed to allow either
comparison of protein abundance between samples (relative quantification) or deter-
mination of protein copy numbers (absolute quantification) (Figure 1.2.6) .

Label-based Quantification

Label-based quantification makes use of the presence of two or more differentially
modified versions of peptides from different samples in the same MS experiment.
Abundance differences for each individual peptide can thereby be inferred by com-
paring intensity differences side by side in the same scan. Quantification labels can be
introduced metabolically in vivo or chemically in vitro.
In metabolic labeling strategies, non-radioactive isotopes are incorporated into the
proteome of an organism in vivo, causing a defined mass shift. The technically easi-
est way to achieve this is through supplying nutrients in which all atoms of a single
element, often nitrogen, is replaced by a heavy isotope. For example, 15N labeling
has been used to compare proteomes of a wide range or organisms, including yeast
[222] and cultured human cells [47, 134] as well as whole model organisms like C.
elegans, Drosophila [160] and rats [200]. This technique, however, is limited to the com-
parison of two biological samples and incorporation rates are often suboptimal. Fur-
thermore, the number of incorporated heavy atoms varies between proteolytic pep-
tides. As a result, the mass shift between the signals obtained from a labeled pep-
tide and its unmodified counterpart varies, causing difficulties in data analysis [105].
This challenge has been side stepped by introducing mass labels via heavy isotope-
containing derivatives of essential amino acids, a method termed stable isotope labeling
by amino acids in cell culture (SILAC) [233]. Typically, derivatives of lysine or both ly-
sine and arginine are incorporated, followed by digestion with endopeptidase LysC or
trypsin, respectively. By this means, a defined mass shift between labeled and unla-
beled peptides is achieved (Figure 1.2.5). Commonly, up to three biological samples,
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unlabeled and two different SILAC states, are measured simultaneously a single MS
experiment. Although SILAC-based multiplexing with a higher number of different
labels has been reported, the accuracy of quantifications in such experiments remains
controversial because the isotope patterns of individual SILAC states are not clearly
separated. Since the introduction of SILAC into culture, the concept has been extended
to in vivo labeling of a wide range of model organisms, including bacteria [75, 107],
yeast [60], nematodes [88, 167], fly [275] and mouse [163]. Notably, the SILAC based
comparison of haploid and diploid yeast is the first published example of a quan-
titative, comprehensive proteomics dataset obtained in a eukaryotic organism [59].

Figure 1.2.5: SILAC Quantification. Cells
are grown in media containing heavy isotope
derivatives of essential amino acids such as ly-
sine and arginine. After proteolytic digestion,
a defined mass shift can be observed in the
acquired mass spectra. Mixing samples from
unlabeled "light" and labeled "heavy" cells al-
lows a direct comparison of peptide abundance
in the same MS experiment. (Modified from
[257]).

Peptide and protein quantification by
metabolic labeling, in particular SILAC,
is considered to be most accurate because
biological samples can already be pooled
on the protein level [12]. A limitation
of this quantification strategy is the fact
that not all biological samples can be sub-
jected to metabolic labeling, e.g. human
tissues and specific cell lines. However,
a method termed super-SILAC, in which
several cell lines are pooled to serve as
an internal spike-in standard, makes the
SILAC strategy more broadly amenable
[95].

Chemical labels are introduced either
before or after proteolytic digestion. An early example of the former approach is the
isotope-coded affinity tag (ICAT) which covalently modifies cystein residues and fur-
ther contains a biotin group allowing for affinity enrichment [109]. Quantification,
however, is limited to cystein-containing peptides. Other isotope-coded peptide labels
are introduced after digestion at the peptide level. These include the dimethyl strategy
in which N-terminal α amino groups and ε amino groups of lysine residues are deriva-
tized with light or isotope labeled formaldehyde in a Schiff-base reaction [21, 131].
Similar to SILAC, peptides from up to three protein samples can discriminated by their
mass shift in survey scans. Isobaric tags such as the isobaric tag for relative and abso-
lute quantification (iTRAQ) [243, 258] and the tandem mass tag (TMT) [282] in contrast
achieve quantification by a different principle. Theses compounds, which are intro-
duced via an amine specific reactive group, possess an identical total mass but yield
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Figure 1.2.6: Strategies in Quantitative Proteomics. Quantification can either be achieved
computationally between different experiments, so-called label free strategies, or by coding the
peptides derived from different biological samples with heavy isotopes. Samples with metabol-
ically introduced labels can already be pooled at a very early stage during sample preparation.
Chemical labeling, in contrast, is performed later in the process, most commonly after prote-
olytic digestion. (Adapted from [12].)

different reporter ion masses upon fragmentation. These reporter ions can be observed
in the low mass region of MS/MS spectra and the intensity ratios derived from the
different states are subsequently used for peptide quantification. Although isobaric
tagging has very high multiplexing capability and allows the simultaneous analysis of
up to eight samples, the contamination of isolated precursor ions with co-eluting pep-
tides may result in inaccurate quantification. An additional issue is the occurrence of
undesired side reactions, posing difficulties in data analysis [12].
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Label-free Quantification

Label-free quantification is a collective term for methods which allow absolute or rela-
tive protein quantification without introducing stable isotopes into peptides. It is con-
sidered the least accurate of all strategies but makes samples amenable to quantitative
MS-based proteomics that cannot be subjected to labeling [12]. Label-free quantifica-
tion is achieved by either comparing intensities or the numbers of identified MS/MS
spectra or peptides. Virtually all label-free quantification strategies are based on one or
a combination of these two principles.
The basis of the spectral counting approach is the observation that the number of spec-
tra identifying a particular protein correlates well with the relative abundance of pro-
teins in MS-based proteomics experiments [169, 181]. However, the accuracy of this
method is controversial. When so-called dynamic exclusion is employed to avoid re-
sequencing of peptides, spectral counting underestimates the concentration of highly
abundant proteins. More importantly, a relatively high number of identified MS/MS
spectra is required to detect small differences in protein abundance [228]. Peptide
counting is a similar concept, however, the number of identified peptides rather than
that of identified spectra is used as a proxy for abundance [12, 18, 100]. The peptide
counting method was subsequently modified to account for differences between pro-
teins to yield observable peptides. For example, the Protein Abundance Index (PAI)
employs in silico digestion of proteins to determine how many tryptic peptides are ex-
pected to fall into the observable mass range of the employed mass spectrometer and
corrects the number of identified peptides accordingly [251]. A further refinement,
termed Exponentially Modified PAI (emPAI), makes use of the linear relationship be-
tween number of observed peptides and the logarithm of protein concentration for
fitting [133]. Last, the Absolute Protein Expression Profiling (APEX) method is a ma-
chine learning-based method that corrects for probabilities to observe peptides from
proteins. It has been reported to estimate absolute protein abundance in E. coli and
yeast at an accuracy within one order of magnitude [186].
Intensity-based quantification methods are commonly used for relative quantification
between different LC/MS experiments. Basic strategies such as the extracted ion cur-
rent (XIC) compare integrated intensities over the elution windows of peptides across
a set of samples [22]. Lately, an improved label-free quantification algorithm has been
implemented into the MaxQuant software environment. Especially in highly complex
samples, the quantification accuracy was improved via time-dependent retention time
alignments. Ratios between normalized peak intensities are subsequently calculated
for peptides shared between individual LC/MS experiments [187].
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Finally, Intensity-based Absolute Quantification (iBAQ) represents a hybrid approach
between peptide counting and intensity based quantification. Summed peak intensities
of all identified peptides of a given protein are corrected for the number of observable
peptides similar to the PAI method. After calibration with a defined protein standard,
iBAQ yielded more accurate copy number estimates than merely spectral counting or
intensity-based methods [263].

1.2.5 Computational Proteomics and Bioinformatics

The mass spectra acquired in high-resolution MS-based shotgun proteomics studies
can often add up to data volumes in the range of hundreds of gigabytes. This requires
efficient algorithms for the different steps of data processing, including feature extrac-
tion, peptide identification and quantification, protein assembly as well as downstream
bioinformatic data analysis to interpret the results from a biological perspective.
Virtually all bottom-up proteomics experiments make use of protein sequence informa-
tion which is either known or predicted from DNA sequencing data of the organism
analyzed. In silico generated peptide lists are compared with the observed peptide ion
masses in MS and MS/MS spectra in order to assign sequence identifications. Differ-
ent approaches have been used to achieve this goal but usually integrate both data on
peptide precursor masses and the fragmentation patterns observed in the correspond-
ing MS/MS scans. The SEQUEST algorithm uses a list of the most intense m/z values
of a given MS/MS spectrum. This peak list is correlated with theoretical fragmenta-
tion spectra of peptides whose masses lie within a certain threshold around that of
the fragmented precursor ion [45, 311]. Mascot, another commonly used commercial
software, reports probability-based identification scores, but no details on the equa-
tions by which they are calculated have been published to date [242]. The Andromeda
search engine, which is integrated into the MaxQuant software environment, also uses
probability-based matching. Briefly, the most intense ion peaks are extracted within
windows of 100 Th, matched with expected y- and b-type ion series and the chances of
random matches are calculated by means of a binomial distribution function [52].
A great advantage of an MS setup with high resolution and high mass accuracy over
one with low resolution is that precursor peptide ions can be determined at very high
accuracy. Several algorithms of the MaxQuant software use this information to im-
prove protein and peptide identification as well as quantification. For example, the
mass accuracy can further be refined by downstream computational processing steps
such as averaging the measured mass over a number of survey scans and correcting
for drifts in the Orbitrap analyzer in a time dependent manner [50, 51]. As accurate
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precursor mass determination improves identification confidence with increasing pep-
tide sequence length, MS/MS scores reported by the search engine can subsequently
be adjusted accordingly and yield the final posterior error probability [50].

Figure 1.2.7: The ModifiComb algorithm. Suc-
cessfully identified base peptides are used to
identify dependent peptides in which part of the
observed MS/MS signals display a defined
mass shift. This approach allows to identify
both established and novel posttranslational
protein modification in an unbiased fashion.
(Adapted from [262].)

After data processing and MS/MS database
searches, a probability score is obtained
for each fragmentation scan which serves
as a measure how well the observed data
fit that of an expected peptide from the
database. A score cutoff is subsequently
applied to guarantee that the assignment
of peptide sequences to MS signals is
backed by evidence of sufficient quality.
A common method to set this threshold
is the target decoy strategy. Fragmenta-
tion spectra searches are performed with
a database containing both the regular
and the reversed protein sequences of the
organism analyzed. Peptide identifica-
tions are accepted up to a score thresh-
old at which a particular proportion, of-
ten 1%, of the reversed sequences are re-

tained in the results list. Given that a specific proportion of false positive reverse se-
quences has been accepted, the same false discovery rate can be expected among the
identified peptides [73]. The same basic principle can be applied during the reassem-
bly step from identified peptide sequences back to proteins.
A growing field in MS-based proteomics is the identification and quantification of post-
translational protein modifications. To identify such modifications, different strategies
can be employed. Typically, a particular type modification, such as phosphorylation or
acetylation, is assumed a priori, for example because it has been specifically enriched
for by biochemical procedure. During MS/MS database searches, specific mass shifts
are subsequently considered for residues, on which the modification of interest may
be localized [52, 242]. This biased approach, however, has the caveat that search en-
gines may interpret fragmentation spectra incorrectly. For example, acetylation of the
ε-amino group of lysine residues is a commonly occurring posttranslational modifica-
tion in vivo, but can also be introduced at the termini of peptides during sample prepa-
ration in vitro [40]. A search engine with biased residue specificity would therefore
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assign such in vitro modifications to proximal lysine residues and thereby yield false
identifications. A completely different strategy to identify modified peptides is real-
ized in the ModifiComb algorithm (Figure 1.2.7) [262]. Unidentified MS/MS spectra
are searched for fragment patterns which closely resemble those of already identified
spectra, but in which a series of peaks display a specific mass shift. For these so-called
dependent peptides both the mass of the modification and the residue on which it is lo-
cated are determined. A great strength of the ModifiComb approach is the fact that
unknown or unexpected modifications can be identified. However, it is limited with
respect to sensitivity because usually no specific biochemical enrichment strategy is
performed during sample preparation. Moreover, the presence of an unmodified ver-
sion of each modified peptide is required for its detection.
Once identification and quantification of peptides and proteins has been carried out,
the resulting dataset is subjected to bioinformatic analysis. Specialized software en-
vironments, e. g. the Perseus framework [49] or the Bioconductor repository for the
statistical programming language R [97], offer a range of statistical tools and algorithms
to perform this task. Depending on the design of the performed experiment and the
quantification method employed, downstream data analysis may differ substantially.
Examples are the search for differentially regulated biological pathways between bio-
logical states in expression proteomics datasets or the search for novel protein complex
members in protein-protein interaction studies.

1.2.6 Mitochondrial Organellar Proteomics

Mitochondria are essential eukaryotic organelles, harboring enzymes for oxidative res-
piration and many other biochemical pathways. Human diseases associated with mito-
chondrial dysfunction include disorders of oxidative ATP production, which can result
in skeletal and heart muscle myopathy, organ failure or neurodegenerative diseases
[33, 155].
Being enclosed by two membranes, mitochondria are divided into several subcompart-
ments; the mitochondrial outer membrane (MOM), the mitochondrial inner membrane
(MIM), the intermembrane space (IMS) and the matrix. The two mitochondrial mem-
branes differ substantially in protein and lipid content and are further not homoge-
neous in nature but are structured into domains with distinct functions. Originating
from bacterial endosymbionts, the organelle possesses its own genome. However, the
human mitochondrial DNA (mtDNA) encodes for only thirteen proteins, which are
transcribed and translated inside the organelle. All of the remaining mitochondrial
proteins are encoded in the nucleus and are imported after translation in the cytosol
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[303]. Their abundance range spans six orders of magnitude [157], and it is further
estimated that approximately 15% of all mitochondrial proteins possess a dual cellular
localization [87, 164]. Therefore, establishing an inventory of all mitochondrial pro-
teins, the mitochondrial organellar proteome, poses a great challenge.
Currently, it is estimated that mammalian mitochondria harbor approximately 1500
proteins, corresponding to 7% of the open reading frames (ORFs) encoded in the genome
[33]. Mitochondrial protein databases such as MitoP2 [74], MitoCarta [238] and Mito-
Miner [271] result from the integration of different data sources. First of all, in sil-
ico prediction algorithms are employed to identify mitochondrial localization signals.
However, algorithms like TargetP, pTARGET, MitoPred or PSORT often have high false
positive rates (reviewed in [93]). Moreover, not all mitochondrial proteins are recog-
nized via canonical cleavable presequences but either contain internal sequences or
are subject to special modes of insertion, most prominently proteins residing in the
MOM. Secondly, protein localization data have been inferred from high throughput
microscopy studies with tagged yeast ORF libraries or native antibodes [164, 292, 293].
Thirdly, and most importantly, organellar proteomics has facilitated the discovery of
numerous novel mitochondrial proteins and helped validating in silico predictions.
Early proteomics studies were mainly non-quantitative and applied low-resolution MS
to identify proteins in biochemically purified organelles. 2D gels of mammalian mito-
chondria suggested the presence of approximately 1200 protein spots, but only a small
proportion of these was identified [185, 248]. A later, purely MS-based report with a
quadrupole TOF instrument identified 399 proteins in mouse mitochondria of which
163 were not previously annotated to reside in the organelle [209].
With the increasing sensitivity of MS-bases proteomics, it soon became apparent that
qualitative approaches alone were insufficient to establish subcellular proteomes with
high confidence. This is because biochemically isolated organelles are inherently con-
taminated with substantial amounts of proteins from other cellular compartments. Mi-
tochondrial preparations from mouse heart were estimated to contain up to 14% impu-
rities with respect the total protein mass, even after extensive purification via density
gradient centrifugation [84]. To address this problem, different strategies have been
developed. For example, when subjected to a mild protease treatment, a significant
proportion of contaminants from the cytosol or endoplasmatic reticulum was removed.
A disadvantage of this method is that several signal and tail-anchored proteins of the
MOM with cytosolic domains were degraded and thus were not identified [83].
The application of quantitative strategies strongly helps to exclude contaminants from
organellar proteome datasets. An example with a rather simple experimental design is
the study by Kislinger an colleagues, in which lysates of multiple mouse organs were
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A B

Figure 1.2.8: Different strategies to discriminate between genuine mitochondrial proteins
and contaminants from other organelles. (A) Protein correlation profiling (PCP). Whole cell
lysates or purified organelles are separated by density gradient centrifugation and fractions
are analyzed by quantitative proteomics. Proteins residing in a particular organelle possess
distinct abundance profiles. (B) Identification of mitochondrial proteins by Bayesian inference.
Mitochondrial preparations are mixed with postmitochondrial (PMF) or nuclear (Nuc) frac-
tions from SILAC labeled cells. The resulting abundance ratios represent an overlay of two
distributions, based on which true (TLP) and false localization probabilities (FLP) can be deter-
mined for each protein. (Modified from [87] and [85], respectively.)

subjected to fractionated centrifugation to obtain four subcelluar fractions: cytosol,
microsomes, mitochondria and nuclei. The analysis yielded a dataset comprising of
4768 proteins which were subsequently assigned to one of eight compartments by ma-
chine learning algorithms [157]. However, the use of low resolution MS and spectral
counting-based label-free quantification limit the quality of the presented data.

A more sophisticated method, termed protein correlation profiling (PCP), is based
on cellular fractionation by density gradient centrifugation and was first employed to
identify novel centrosomal proteins [8]. Foster and co-workers used this method, com-
bined with high-resolution MS, to establish an organellar map of mouse liver cells.
By matching abundance profiles across the density gradient with known organellar
markers, a total of 1404 proteins were assigned to 10 subcellular compartments (Fig-
ure 1.2.8B) [86]. PCP has since been applied to determine contaminations in isolated
mitochondrial fractions [84]. While these earlier studies used label free quantification,
further improvements were obtained by implementing SILAC [62].
Conceptually related to PCP is Localization of Organelle Proteins by Isotope Tagging
(LOPIT), in which cells are also separated by density gradient centrifugation, but quan-
tification is achieved by chemical labeling. This method was first applied to Arabidopsis
cells using self-generating iodixanol gradients and pairwise quantitative comparison
between fractions via ICAT labeling [71]. Later, the protocol was improved by intro-
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ducing fourplex iTRAQ labeling [259] and has since been extended to other species
including Drosophila [278].
A different strategy to determine the mitochondrial proteome makes use of the distri-
bution of proteins between different fractions of the biochemical fractionation proce-
dure. Forner et al. achieved this by mixing mitochondrial preparations with either post-
mitochondrial or nuclear fractions and determining the abundance ratios of individual
proteins via SILAC quantitation. A probabilistic Bayesian model was subsequently
applied to discriminate between contaminants and genuine mitochondrial proteins,
and a false discovery estimate was calculated based on GO-annotation. The analysis
yielded a mouse tissue mitochondrial proteome containing 689 high confidence entries
[85] (Figure 1.2.8B). An independently presented report pursued a similar approach.
Enrichment levels between crude and purified mitochondria were determined by label
free quantification and subsequently used to identify contaminants [238].
While the above mentioned studies have expanded our knowledge of mitochondrial
protein composition, few proteomics studies as yet have investigated suborganellar
protein localization. For example, Zahedi and colleagues attempted to establish the
mitochondrial sub-proteome of the MOM. To that end, they isolated "highly purified
MOM vesicles" and performed analyses by 2D-gel electrophoresis and LC-MS. In total,
112 proteins were identified, among them a significant proportion of established MIM
markers, which were interpreted as "pre-proteins" targeted towards their cellular des-
tination [312]. Given that the study was non-quantitative and did not include controls,
it is likely that a large part of the dataset represents contaminants. A crude subfrac-
tionation protocol of mitochondria for MS analysis was further presented in which
intermembrane space, matrix and membrane associated proteins were separated by
hyperosmotic swelling [84].
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2 Results

2.1 Accurate Quantification of More Than 4000 Mouse
Tissue Proteins Reveals Minimal Proteome Changes
during Aging.

2.1.1 Aim and Summary

Age is the most important risk factor for numerous human diseases, most prominently
neurodegenerative and metabolic disorders. Senescence leads to functional decline
and morphological changes in mammalian tissues. However, the mechanism underly-
ing the aging process at the molecular level is poorly understood. Several studies have
addressed changes in mRNA or protein levels by microarrays [140, 171, 183, 221] or 2D
gel electrophoresis [196], respectively, during aging in mice. The overlap between indi-
vidual studies, however, was generally low and did not point at a specific mechanism.
High resolution MS-based proteomics workflows using SILAC quantification have been
employed in cell culture for many years. In contrast, quantification in lysates of mam-
malian tissue samples could until recently only be achieved by less accurate methods,
for example by label-free or chemical labeling strategies, or by metabolic 15N labeling
with severe shortcomings in analysis depth. The development of the SILAC mouse
[163] for the first time allowed highly accurate SILAC quantification in tissue samples
of this important mammalian model organism. We employed this technology to com-
pare the proteomes of five months old young adult animals with those of 26 months
old animals, an age at which less than half of the original population remains alive.
A focus of the study was on post-mitotic tissues, namely brain and heart muscle, in
which the impact of senescence was expected to be strongest due to very low rates of
cell replacement.
To our surprise, the observed proteome differences in tissues of young and aged an-
imals were very low. Furthermore, the biological variability within age groups often
surpassed the extent of changes inflicted by aging. In summary, the proteome in ag-
ing mice is efficiently maintained, at least for the more abundant half of the expressed
cellular proteins.
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2.1.2 Contribution

This project was designed conjointly between my supervisor, Matthias Mann, and my-
self. Under his mentoring, I obtained the biological samples, optimized sample prepa-
ration techniques and MS analysis methods. Furthermore, I performed both data ac-
quisition and analysis. Together, we wrote the manuscript which led to the publication
presented below.

2.1.3 Publication

This work has been published in the journal Molecular and Cellular Proteomics.

Mol Cell Proteomics. 2011 Feb;10(2)

“Accurate Quantification of More Than 4000 Mouse Tissue Proteins Reveals Minimal
Proteome Changes during Aging.”

Dirk M. Walther and Matthias Mann

40



Accurate Quantification of More Than 4000
Mouse Tissue Proteins Reveals Minimal
Proteome Changes During Aging*□S

Dirk M. Walther‡ and Matthias Mann‡§

The biological process of aging is believed to be the
result of an accumulation of cellular damage to biomol-
ecules. Although there are numerous studies address-
ing mutation frequencies, morphological or transcrip-
tional changes in aging mammalian tissues, few have
measured global changes at the protein level. Here, we
present an in depth proteomic analysis of three brain
regions as well as heart and kidney in mice aged 5 or 26
months, using stable isotope labeling of whole animals
(SILAC mouse) and high resolution mass spectrometry.
In the frontal cortex and hippocampal regions of the
brain, more than 4200 proteins were quantitatively com-
pared between age groups. Proteome differences be-
tween individual mice were observable within and be-
tween age groups. However, mean protein abundance
changes of more than twofold between young and old
mice were detected in less than 1% of all proteins and
very few of these were statistically significant. Similar
outcomes were obtained when comparing cerebellum,
heart, and kidney between age groups. Thus, unexpect-
edly, our results indicate that aging-related effects on
the tissue proteome composition at the bulk level are
only minor and that protein homeostasis remains func-
tional up to a relatively high age. Molecular & Cellular
Proteomics 10: 10.1074/mcp.M110.004523, 1–7, 2011.

Aging in higher organisms is a multifactorial process. It is
commonly believed that lifespan is restricted because of the
accumulation of cellular damage, ultimately interfering with
crucial biological functions. In mammals, hallmarks of aging
tissues include declining rates of self renewal capability and
accumulating damages to DNA, proteins, and lipids (1, 2).
Senescence in mice has been associated with transcriptional
deregulation and an increased mutational burden. Interest-
ingly, different tissues are not affected to the same extent - for
example, mutation rates appear to be lower in brain (3–5).
Aging-related changes in gene expression in the mouse
brain have already been investigated by microarrays (6–9),

however, it is important to study the impact of senescence
directly at the protein level to include the effects of post-
transcriptional events such as translational regulation or
altered protein degradation.

In recent years, great progress has been made in the field of
high resolution mass spectrometry (MS)-based proteomics,
now allowing for accurate identification of thousands of pro-
teins (10–13). Since MS is not inherently quantitative, the
majority of quantification methods rely on the simultaneous
comparison of signal intensities between two or more sam-
ples during a single analysis following stable isotope coded
labeling of peptides (14–16). For proteomic analysis of tissue
samples, chemical labeling strategies such as the isotope-
coded affinity tag (ICAT) (17) and the isobaric tag for relative
and absolute quantification (iTRAQ) (18) have been widely
applied. As an alternative, metabolic protein labeling ap-
proaches of mammalian model organisms in vivo have been
described (19, 20). For example, full incorporation of 15N into
the proteome of rats has been achieved by an isotope-pure
diet (21). Arguably the most accurate method of protein quan-
titation by MS is stable isotope labeling with amino acids in
cell culture (SILAC)1 in which only heavy isotope containing
derivatives of specific amino acids are used (22). This concept
has recently been extended to mice to allow for quantitative
comparison of tissue samples from in vivo experiments (23).

To date, few proteomics studies have investigated aging in
mammalian tissues. Effects of senescence on the left rat heart
ventricle was addressed using two-dimensional gel electro-
phoresis or iTRAQ labeling and matrix-assisted laser desorp-
tion/ionization (MALDI)-based quantitative mass spectrome-
try in which differential expression of metabolic enzymes,
structural and antioxidant proteins were reported (24–26).
Very recently, Mao et al. published a two-dimensional gel-
based time course analysis of aging mouse brain. The authors
suggest that aging is associated with a reduction in abun-
dance of proteasomal subunits and an accumulation of non-
functional proteins (27). In general, the depth and reliability of
quantification of the above proteome studies was low be-
cause of technical limitations of the methods used.‡From the Department of Proteomics and Signal Transduction,
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Here, we took advantage of the SILAC mouse technology
and high resolution MS to study global effects of aging in
mammalian tissues at the protein level. Using this technology,
we compared the proteomes of each of four female C57BL/
6JN mice aged 5 or 26 months and obtained highly accurate
quantification over a broad range of tissues.

EXPERIMENTAL PROCEDURES

Mouse Tissues—Female C57BL/6JN mice aged 5 or 26 months,
fed ad libitum, were obtained from the Aged Rodent Colonies (Na-
tional Institute of Aging, Bethesda, MD). Animals were starved over-
night and sacrificed by cervical dislocation. Brains were immediately
removed and placed in ice cold PBS. The frontal cortex region was
isolated by removal of olfactory tracts and cutting 1 mm posterior to
the bregma. Subsequently, hippocampus and cerebellum were col-
lected. Remaining corpses were perfused by injection of PBS into the
heart before removal of kidneys and heart. All tissues and organs
were washed in cold PBS and shock frozen in liquid nitrogen. For
SILAC labeled standards, animals were fed for four generations with
a diet containing exclusively 13C6 lysine as previously described (23).
Corresponding tissues were obtained from two 12-month-old females
with 97.9% incorporation rate of heavy lysine. SILAC tissues were
pooled from both animals before processing. All tissue samples were
stored at �80 °C until use.

Lysate Preparation and Protein Digestion—Tissues were blended
with an Ultra-Turrax disperser (IKA, Staufen, Germany) in 150 mM

Tris/HCl pH 8, 4 mM EDTA, 1 mM phenylmethylsulfonyl fluoride at
4 °C. Hearts were ground in the frozen state in a mortar before
homogenization. Immediately following homogenization, SDS was
added to a final concentration of 4% (w/w) and samples were incu-
bated at 95 °C for 3 min. For shearing of DNA, samples were sub-
jected to treatment with a Bioruptor ultra sonication bath (Diagenode,
Liège, Belgium) at high energy setting for 10 min. Samples were
heated again for 3 min at 95 °C and clarified by centrifugation for 10
min at 20,000 � g. Protein content was determined using the BCA
Protein Assay Kit (Thermo, Rockford, IL) according to the manufac-
turer’s instructions. For frontal cortex and hippocampus, 100 �g
protein from each animal were mixed with an identical amount of the
corresponding SILAC labeled standard. For cerebellum and kidney,
lysates were pooled within the young or old animal groups before
mixing with SILAC standard. Reduction of disulfide bridges was
achieved by addition of dithiotreitol to a final concentration of 0.1 M

followed by incubation at 75 °C for 5 min. Further processing for
in-solution digestion was performed using the previously described
filter-aided sample preparation method (28) with Microcon YM-30
devices (Millipore, Billerica, MA), but with the following minor modi-
fications: Alkylation was carried out with 2-chloroacetamide instead
of 2-iodoacetamide and proteins were digested exclusively with en-
doproteinase LysC (Wako Bioproducts, Richmond, VA) in 2 M urea, 25
mM Tris/HCl, pH 8 overnight at room temperature. Obtained peptides
were acidified with trifluoroacetic acid and desalted via C18 solid
phase extraction cartridges (3M, St. Paul, MN). Peptide mixtures were
measured both directly and following fractionation into six fractions
via strong anion exchange chromatography according to published
procedures (29).

Mass Spectrometry—Liquid chromatography (LC)-MS experiments
were essentially performed as described previously (30, 31). Briefly,
reversed phase separation of peptides was performed using an Easy
nLC nanoflow HPLC system (Proxeon Biosystems, Odense, Denmark
now Thermo Fisher Scientific). Peptide mixtures were loaded onto a
column with 15 cm length and 75 �m inner diameter, packed in-house
with RepoSil-Pur C18-AQ 3 �m resin (Dr. Maisch, Ammerbuch-Entrin-
gen, Germany) at 0.7 �m/min. Peptides were then eluted in fraction-

optimized nonlinear gradient from 3% to 60% acetonitrile in 0.5%
acetic acid over a duration of 200 min. Eluting peptides were elec-
trosprayed online via a nanospray ion source (Proxeon Biosystems) at
a voltage of 2.2 kV into an LTQ Orbitrap XL mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany), except for unfraction-
ated frontal cortex samples, which were acquired using an LTQ-FT
mass spectrometer (Thermo Fisher Scientific). Survey scans were
performed in the Orbitrap analyzer at a resolution of 60,000 at target
values of 1,000,000 ions and maximum allowed fill times of 1 s over
a mass range between m/z 350–1750. The 10 most intense peaks
were subjected to fragmentation via collision induced dissociation in
the LTQ. For each scan, 5000 ions were accumulated over a maxi-
mum allowed fill time of 250 ms and fragmented by wideband acti-
vation. Exclusion of precursor ion masses over a time window of
150 s was used to suppress repeated fragmentation of peaks. In all
MS experiments except for the measurements of the hippocamupus
proteomes, internal lock mass recalibration was disabled and an
Active Background Ion Repression Device (ABIRD, ESI Source Solu-
tions, Woburn, MA) was used to increase the signal to noise ratio.

Data Analysis—Raw data consisting of 154 liquid chromatography-
coupled tandem mass spectrometry (LC-MS/MS) files are deposited
at Tranche and are freely available upon publication. Hash keys are
provided in the Supplemental Materials section. Raw data was ana-
lyzed using the MaxQuant software environment, version 1.1.0.25.
Retention time dependent mass recalibration was applied and peak
lists were searched against a database containing all 56,729 entries
from the International Protein Index mouse protein database version
3.68 and 255 frequently observed contaminants as well as reversed
sequences of all entries. Searches were performed with the following
settings: Precursor and fragment ion peaks were searched with an
initial mass tolerance of 7 ppm and 0.5 Th, respectively. Enzyme
specificity was set to LysC, additionally allowing cleavage between
lysine and proline. Up to two missed cleavages were allowed and only
peptides with at least six amino acids in length were considered.
Carbamidomethylcysteine was set as a fixed modification whereas
oxidation on methionine was set as a variable modification. Up to two
missed cleavages were allowed. Precursor masses of already identi-
fied peptides were further searched within a 3 min time window in
chromatograms derived from corresponding and adjacent peptide
fractions (“match between runs” option in MaxQuant). For reliability
estimation of peptide identifications, the posterior error probability for
each top scoring hit was calculated. This metric is based on the
tandem MS (MS/MS) score but additionally takes into account pep-
tide length dependent histograms of forward and reverse hits to
assess the probability of a false identification using the Bayes theo-
rem (described in detail in (32)). Using a decoy database strategy (33),
peptide identifications were accepted based on their posterior error
probability until less than 1% reverse hits were retained in the list.
Accepted peptide sequences were subsequently assembled into pro-
teins in ascending order of their posterior error probability up to false
discovery rate of 1% at the protein level. For successful protein
identifications, at least two peptides and one peptide with a unique
peptide sequence were required. If no unique peptide sequence to a
single database entry was identified, the resulting protein identifica-
tion was reported as an indistinguishable “protein group.” Protein
quantifications were based on the median SILAC ratios of at least two
peptides (two valid “ratio counts”) in each biological sample. Quan-
tification of SILAC pairs was performed by MaxQuant with standard
settings (32). Briefly, centroids of isotope clusters in the intensity-m/z
plain were detected over multiple full scans and the median intensity
ratios were used for the calculation of SILAC ratios.

For histogram representations, only proteins with at least one
quantification per age group were considered. Mean normalized pro-
tein ratios between sample and SILAC standard were then calculated
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within age groups and histograms were plotted using the R statistical
programming language (34). For calculation of correlation coefficients
and principal component analyses, datasets were filtered for entries
with valid quantifications in all experiments (see above). Principal
component analyses were performed using the Gene Expression
Similarity Investigation Suite (Genesis) (35) following mean centering
of expression data. Two-sided t-tests were carried out after filtering
for proteins with at least three out of four quantifications under the
assumption of unequal variance between age groups. Significance
thresholds were then calculated via a permutation-based false dis-
covery rate estimation of 1% (36). For comparison of microarray and
proteome studies, median intensities for probes corresponding to
Uniprot annotations of identified protein groups were calculated be-
fore statistical analyses analogous to the proteome data.

RESULTS

A Proteomic Screen to Detect Proteomic Changes With
Aging in Mice—To quantify age-related proteome changes in
mouse tissue, we used the SILAC technology in vivo and
coupled it to high-resolution LC-MS/MS (Fig. 1). We labeled
mice with a diet containing exclusively 13C6 lysine over sev-
eral generations and obtained virtually complete incorpora-
tion. To exclude potential effects because of the SILAC diet,
we performed all experiments in a “spike-in” format, using the
tissue from the SILAC mice as a common internal standard for
all experiments. This design also allows comparison between
multiple animals within and between each age group. For
each experiment, equal amounts of protein sample from bio-
logical replicates and the corresponding SILAC standard were
mixed, digested in solution with endoproteinase LysC using
the filter-aided sample preparation method and peptides were
fractionated via strong anion exchange chromatography (28,
29). These peptide fractions as well as unfractionated peptide
preparations from each experiment were then analyzed by LC-
MS/MS on a hybrid high resolution linear ion trap Orbitrap
instrument (Fig. 1). Hippocampal and frontal cortex regions from
the brains of four young and four old animals were processed
individually, resulting in eight individual quantitative proteomes.
We extended the study to cerebellum, kidney, and heart muscle
but in contrast to the previous experiments, lysates within age
groups were pooled for each of these three tissues.

The combined dataset over all five tissues comprises 154
LC-MS/MS experiments with 4 h gradients, during which
more than 4.5 million MS/MS scans were acquired. The ob-
served average absolute mass deviation for the correspond-
ing precursor ions was 450 ppb. Following analysis with the
MaxQuant software environment (32), more than 60% of the
MS/MS scans were unambiguously identified. This led to
44,737 identified nonredundant peptide sequences and 5619
proteins (or protein groups) at a protein false discovery rate of
less than 1%.

The Aging Tissue Proteomes of Frontal Cortex and Hip-
pocampus—In frontal cortex and hippocampus, expression
data for more than 4200 proteins of each four young and old
mice were acquired individually. Of this subset of proteins,
approximately two thirds were expressed and detected in at

least three out of four biological replicate experiments per age
group (77 or 61% in frontal cortex or hippocampus, respec-
tively, Supplemental Tables 1 and 2).

For protein quantification, our study employed an internal
standard, which was added to all biological samples of a
given tissue, to serve as a fixed reference point for all ob-
served peptide ratios. To determine the quantitative reliability
of this data set in more detail, we first extracted the typical
number of quantification events per protein. In the above data
set of a young animal it turned out to be 18 events on average
(median of 8). This is because of the high redundancy of
peptide based quantifications and compares favorably to
two-dimensional gel experiments in which typically only one
quantification event per protein is obtained in each individual
sample. As a consequence, when comparing proteomes of

FIG. 1. Schematic of the workflow. Tissue lysates from each of
four mice aged 5 or 26 months were analyzed in separate experi-
ments and mixed each time with an identical standard derived from
SILAC mice aged 12 months. Proteins were digested using the filter-
aided sample preparation method (FASP) and fractionated before
analysis by high resolution mass spectrometry. Proteins were quan-
tified by dividing the individual SILAC peptide ratios of the proteomes
to be compared (“ratio of ratios”).
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two technical replicate experiments virtually all proteins were
detected in equal quantities, demonstrating the usefulness of
the method. This “ratio-of-ratios” distribution was narrow,
with more than 99% of the proteins showing an apparent fold
change of less than a factor of two (Fig 2A). In contrast, a
much broader abundance ratio distribution was observed
when comparing two different biological samples (Fig. 2B).
The figure also shows that the few outlier proteins, on the
most part, have a higher abundance in the aged animals.
However, most these changes are not statistically signifi-
cant (see below). Next, we investigated the mean protein
expression changes between the two age groups. Unex-
pectedly, the vast majority of proteins were found in equal
quantities in old and young animals (Fig. 3A). An average
expression change of more than twofold was detected in
less than 1% of all quantified proteins and less than 3%
changed by more than one third in both brain tissues
(Supplemental Table 3). These data indicate that age-re-
lated changes on the protein level in mice are very minor in
the two analyzed brain regions.

Statistical Analysis of Senescence-Related Proteome
Changes in Frontal Cortex and Hippocampus—We asked
whether aging causes specific changes in tissue proteomes.
For this purpose we calculated the Pearson correlation coef-
ficients between all pairs of biological samples using the
abundance ratios of all quantified proteins. Specific age re-
lated proteome changes should be reflected by higher Pear-
son correlation coefficients between the animals of one age
group as compared with the coefficients when comparing old
and young animals. However, the correlation between pro-

teomes within young or aged animals was not generally higher
than that between old and young mice (Fig. 3B). The differ-
ences between individual proteomes can be attributed to
biological variability between the mice rather than to differ-
ences in sample preparation. This was apparent from the high
degree of reproducibility obtained when analyzing each of
three technical replicates of two selected hippocampal tissue
lysates that were prepared and analyzed using the same
protocol (Supplemental Fig. 1). To investigate the potential
proteome differences between young and old mice by a
different method we performed principal component analy-
sis. The distances between the samples of the same age
group was not generally smaller than the distances to sam-
ples from the other age group, confirming the findings ob-

FIG. 2. Intensity-ratio distribution of protein abundances in hip-
pocampus using an internal SILAC standard for quantitation be-
tween samples. A, Comparison between two technical replicates of
a lysate derived from the same animal. B, Comparison between an old
and a young animal.

FIG. 3. A, Abundance of the vast majority of proteins is unchanged
during aging in mice as indicated by a histogram representation of
protein abundance ratios between old and young animals in hip-
pocampus or frontal cortex. B, Pearson correlation between the pro-
teomes of mice within the young or old age groups is not generally
higher than between old and young individuals. Correlation coeffi-
cients in the matrix are color coded as shown. C, Principal component
analysis of the individual proteomes.
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tained by correlation analysis (Fig. 3C). Finally, statistical
analysis of hippocampus and frontal cortex datasets via a
two-sided t test at a permutation-based false discovery rate
of 1% yielded only five significantly regulated proteins each
(Supplemental Tables 1 and 2). Collectively, these results
indicate that on the protein level of the two tissues, biolog-
ical variability between individuals is more pronounced than
changes induced by the process of aging, even in inbred
mice with a matching genetic background.

The Aging Tissue Proteomes of Cerebellum, Heart, and
Kidney—To investigate whether the absence of major
changes in protein abundance is restricted to specific regions
of the mouse brain, we additionally measured the proteomes
of cerebellum, heart and kidney. In contrast to the previously
described experiments, protein lysates within age groups of
young or old animals were pooled, resulting in only two indi-
vidual proteomes for each tissue. Similar to the situation in
hippocampus and frontal cortex, the abundance of the vast
majority of proteins was unaffected (Fig. 4, Supplemental
Tables 3 and 4), therefore generalizing our findings to addi-
tional tissues.

Comparison with Other Large-Scale Studies—Age-related
changes in transcript abundance in mammalian tissues have
previously been investigated by microarrays. Although earlier
investigations only reported a very small number of genes
whose transcription changed during aging (6, 7), more recent
publications did find a larger number of significantly regulated
genes in mouse cortex (8, 9). However, in these latter studies,
as in the proteome studies, the vast majority of transcripts did
not change significantly. Furthermore, the transcripts that did
appear to change during aging (8) generally did not exhibit
corresponding changes in our quantitative proteomics data-
set of frontal cortex (Supplemental Fig. 2). During the prep-
aration of this manuscript a report appeared that addressed
proteomic changes in the aging mouse brain by two-dimen-
sional gel electrophoresis (27). The authors suggested sig-
nificant changes in the abundance of several proteins such
as proteasomal subunits, chaperones and mitochondrial
proteins. Almost all these proteins were quantified in our
data set in both the frontal cortex and the hippocampal
datasets (111 out of 114 unique SwissProt identifiers). How-
ever, we did not detect any significant age-related changes
of any of these proteins and their mean ratio changes were
less than 5% (Supplemental Table 5).

As an orthogonal method, we substantiated the SILAC
quantifications of selected candidate proteins by performing
Western blots (Supplemental Fig. 3). We chose candidate
proteins that appeared to change in aging mice in the above
study (27), such as the mitochondrial protein VDAC1, the
proteasomal subunit Psma5 and chaperones (calreticulin and
Hsc71). As expected, the results verify our SILAC based find-
ing that levels of these proteins remain virtually unchanged.
We also obtained evidence that the few proteins that we did find
to change are actually differentially expressed during aging.

Specifically, the Western blot against complement C1q sub-
component subunit B shows an about twofold accumulation
with age in hippocampus, as expected from the SILAC ratio of
2.25.

DISCUSSION

Using high resolution mass spectrometry combined with
the SILAC mouse technology, we performed the most com-
prehensive study of mammalian tissue aging at the proteome
level to date. Reaching a depth of more than 4000 quantified
proteins, our study covers the vast majority of tissue protein
mass. Strikingly, our results indicate that abundance changes
are low at least up to 26 months, an age at which less than half
of the initial population survives (37). It should be noted that
many low abundant proteins are not covered by our dataset.
Nevertheless, if regulatory pathways in control of synthesis or
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FIG. 4. Histograms of the protein abundance ratios between old
and young animals in cerebellum, heart and kidney (representa-
tion analogous to Fig. 2A).
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degradation of specific proteins subsets were affected in
aging tissues, global changes at a larger scale would have
been observed. Technological limitations are not likely to be
the reason for not detecting profound proteome changes.
Previous studies from our and other laboratories have dem-
onstrated that SILAC-based quantitative proteomics is a sen-
sitive method to measure effects on protein expression in
knockout mice (23) or in the study of global differences in
protein abundance between primary cells and cell lines from
mice (12, 13, 38). Likewise, knockdowns of single genes can
result in easily detectable abundance changes of hundreds of
proteins (39). Finally, the recently described super-SILAC
strategy, which also uses a complex SILAC-labeled proteome
as an internal standard for tissue proteome quantification,
readily detected the expected differences between tumor
types (40). These studies clearly demonstrate that our exper-
imental approach was well suited for the discovery of global
proteomic changes in mice with aging.

We specifically focused on two brain regions, frontal cortex
and hippocampus, for which acquisition of the proteomes of
individual animals allowed us to perform statistical analysis of
protein abundance between age groups. Multiple studies
have addressed the effects of aging on the transcriptional
level in mouse brain by microarrays (6–9). The overlap of
significantly regulated candidate genes between individual
studies was often low and the vast majority of mRNAs clearly
did not change in abundance with age. Therefore, our obser-
vation of the absence of large scale gene expression changes
at the proteome level generally reflects previous results at the
level of the transcriptome.

In conclusion, this study demonstrates that expression lev-
els of the vast majority of proteins remain virtually unchanged
during aging in multiple mouse tissues. This suggests that the
proteome is efficiently maintained to a relatively high age. As
our data are averages obtained from a large number of cells,
they do not exclude strong age-related variability between
individual (5) or specific sub-populations of cells, such as
tissue stem cells. As proteomic technology advances, it would
be interesting to directly investigate these potential cell spe-
cific effects of aging.
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12. Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and
Rajewsky, N. (2008) Widespread changes in protein synthesis induced
by microRNAs. Nature 455, 58–63

13. Baek, D., Villén, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P.
(2008) The impact of microRNAs on protein output. Nature 455, 64–71

14. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., and Kuster, B. (2007)
Quantitative mass spectrometry in proteomics: a critical review. Anal.
Bioanal. Chem. 389, 1017–1031

15. Choudhary, C., and Mann, M. (2010) Decoding signalling networks by mass
spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11, 427–439

16. Wilm, M. (2009) Quantitative proteomics in biological research. Proteomics
9, 4590–4605

17. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold,
R. (1999) Quantitative analysis of complex protein mixtures using iso-
tope-coded affinity tags. Nat. Biotechnol. 17, 994–999

18. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K.,
Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S.,
Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and
Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces
cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Pro-
teomics 3, 1154–1169

19. Gouw, J. W., Krijgsveld, J., and Heck, A. J. (2010) Quantitative proteomics
by metabolic labeling of model organisms. Mol. Cell Proteomics 9, 11–24

20. Bachi, A., and Bonaldi, T. (2008) Quantitative proteomics as a new piece of
the systems biology puzzle. J. Proteomics 71, 357–367

21. Wu, C. C., MacCoss, M. J., Howell, K. E., Matthews, D. E., and Yates, J. R.,
3rd (2004) Metabolic labeling of mammalian organisms with stable iso-
topes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959

22. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H.,
Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids
in cell culture, SILAC, as a simple and accurate approach to expression
proteomics. Mol. Cell Proteomics 1, 376–386
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2.2 Extensive Proteome Remodeling during Aging in C.
elegans Revealed by Quantitative Proteomics

2.2.1 Aim and Summary

The nematode Caenorhabditis elegans is a commonly used model organism in aging re-
search. Several molecular signaling pathways have been shown to regulate the rate of
aging, most prominently the conserved insulin/insulin-like growth factor 1 (IIS) path-
way. Interference with the function of the insulin receptor homologue DAF-2 or the
effector kinase AGE-1 result in a strongly increased lifespan and stress resistance. The
longevity phenotype further requires two transcription factors, DAF-16/FOXO and
HSF-1. The molecular mechanism by which their transcriptional response increases
longevity, however, remains ill defined. Some studies suggest that IIS plays an impor-
tant role in the maintenance of protein homeostasis [280].
We therefore investigated the effects of aging in C. elegans by high-resolution mass
spectrometry-based proteomics. To achieve accurate quantification, we performed in
vivo SILAC labeling of worm by feeding them with a diet containing exclusively 13C6-
15N2-lysine. Lysates from these animals were spiked into biological samples as an in-
ternal standard. By this means, proteomes of synchronized worm populations of wt
as well as daf-2, daf-16 and hsf-1 mutants at multiple time points throughout lifespan
were obtained. In parallel, insoluble protein aggregates were biochemically isolated
and analyzed.
Similar biochemical processes were affected by aging in the above mentioned strains.
However, expression differences of specific subsets of proteins can be observed. In
contrast to mouse, the proteome of C. elegans is extensively remodeled during aging.
Approximately one third of the quantified proteins are subject to more than twofold
abundance change between young adult and aged hermaphrodites. Moreover, the ob-
served abundance changes were positively correlated with the rate at which the same
proteins accumulate in aggregates. Depletion of highly aggregation prone proteins in
return extended lifespan. In the long-lived daf-2 mutant, both proteome remodeling
and protein insolubility were delayed during senescence.
In conclusion, aging induces extensive proteome remodeling in C. elegans which results
in a gradual upregulation of harmful aggregation-prone proteins and increased protein
aggregation. It is conceivable that this deregulation eventually results in a collapse of
the proteostasis network and thus limits the organism’s lifespan.
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2.2.2 Contribution

This project was initiated by the department of Franz-Ulrich Hartl. Together with Min
Zheng, who performed the cultivation of synchronized worm populations, I estab-
lished a protocol for SILAC labeling of C. elegans. I further developed SILAC-based
pulse labeling and aggregate isolation procedures for which I also obtained the bio-
logical sample material. Moreover, I prepared all samples for MS analysis and carried
out the data acquisition. Data analysis was performed in collaboration with Stefan
Pinkert. During the biological and biochemical follow-up, I contributed some data, al-
though the majority of these experiments were done by Prasad Kasturi. Ulrich Hartl
and I wrote most sections of the manuscript.
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Summary 

A gradual loss of protein homeostasis (proteostasis) is thought to contribute to the process of 

aging. However, how these effects are reflected at the level of the proteome is poorly 

understood. Here, we employed SILAC labeling and quantitative proteomics to profile more 

than 6,000 proteins during the lifespan of C. elegans. Furthermore, we biochemically isolated 

aggregated protein species and analyzed the corresponding sub-proteomes. Among the 

proteins responsible for proteostasis maintenance, most prominently a decrease in the 

abundance of ribosomal and an increase in proteasomal subunits were observed and went 

alongside with changes in activity of protein synthesis and degradation, respectively. We found 

that the proteome underwent extensive remodeling during aging. Increasing protein 

abundance was positively correlated with the rate at which the same proteins accumulated in 

aggregates. Moreover, proteome remodeling was delayed in the long-lived daf-2 mutant and 

proteins with a strong tendency to aggregate in wild type aggregated at slower rates in daf-2. 

Conversely, depletion of highly aggregation-prone proteins extended lifespan in wild type 

animals. We propose that age-dependent deterioration of proteome balance, driving 

aggregation, eventually causes proteostasis collapse, and thereby limits the lifespan of C. 

elegans. 
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Introduction 

Protein homeostasis (or proteostasis), the state at which the proteome is in functional balance, 

must be tightly controlled in all cells (Balch et al, 2008). More than 10,000 different proteins are 

typically expressed simultaneously in the cells of higher eukaryotes (Nagaraj et al., 2011). 

Maintaining proper proteome balance requires a complex network of factors, including the 

machinery of protein biogenesis, molecular chaperones and proteolytic systems, for the 

regulation of the synthesis and folding of proteins, and the clearance of misfolded polypeptides 

(Balch et al., 2008; Hartl et al., 2011; Taylor and Dillin, 2011). An important role of this 

proteostasis network is the prevention of potentially toxic protein aggregation, particularly 

under conditions of cellular stress. However, as organisms age, the function of several 

components of protein quality control may become compromised (Douglas and Dillin, 2010), 

resulting in impaired responses to unfolded protein stress (Ben-Zvi et al., 2009; Morimoto, 

2008), as well as in reduced tolerance of reactive oxygen species (Finkel and Holbrook, 2000). 

For example, a reduction in the expression of small heat shock proteins (HSPs), which are 

critical in aggregation prevention, has been observed in aging nematodes (Lund et al., 2002), 

and an age-dependent decline in protein degradation capacity was reported in rat liver and flies  

(Cuervo and Dice, 2000; Tonoki et al., 2009). Indeed, aging is considered the principal risk factor 

for the onset of a number of neurodegenerative disorders associated with aggregate 

deposition, such as Alzheimer’s, Huntington’s or Parkinson’s disease (Cohen and Dillin, 2008; 

Douglas and Dillin, 2010; Kikis et al., 2010). The occurrence of protein aggregation may further 

impair proteostasis and thus accelerate the aging process by interfering with protein folding 

and clearance (Gidalevitz et al., 2006(Bence et al., 2001), and with numerous other processes, 
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resulting in cellular dysfunction and ultimately cell death (Balch et al., 2008; Gidalevitz et al., 

2006; Olzscha et al., 2011; Vendruscolo, 2012). Understanding these relationships requires 

systematic analyses of the changes that occur in proteome composition and balance during 

aging. 

The nematode C. elegans is one of the most extensively studied model organisms in 

aging research, owing to its relatively short lifespan and the availability of genetic tools to 

identify pathways that regulate longevity. A particularly well studied example is the 

insulin/insulin-like growth factor 1 signaling (IIS) pathway in which binding of ligands to the 

DAF-2 receptor activates a signaling cascade that down-regulates the activity of the 

transcription factor DAF-16/FOXO (Lin et al., 1997; Ogg et al., 1997). Inhibition of the IIS 

pathway, for example in strains carrying mutations in the genes encoding DAF-2 or the 

downstream PI(3) kinase AGE-1, activate DAF-16/FOXO and lead to dramatic lifespan extension 

along with increased stress resistance (Kenyon et al., 1993; Larsen et al., 1995; Lithgow et al., 

1995). Several lines of evidence suggest that the lifespan-prolonging effect of IIS reduction 

involves an improvement of cellular proteostasis capacity through up-regulation of  the 

machineries of protein folding and aggregation prevention. Importantly, in addition to DAF-16 

activation, the longevity phenotype in daf-2 mutants requires the function of HSF-1 (Hsu et al., 

2003; Morley and Morimoto, 2004), the highly conserved transcription factor responsible for 

the expression of multiple heat-shock proteins and chaperones (Chiang et al., 2012; Halaschek-

Wiener, 2005; McElwee et al., 2003; Murphy et al., 2003). Mutants for daf-2 or age-1 display a 

delayed onset of aggregate formation when expressing amyloid-forming peptides, such as 

polyglutamine proteins or the Alzheimer’s β-(Aβ) peptide (Cohen et al., 2006; Cohen et al., 
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2010; Morley et al., 2002). Similarly, overexpression of DAF-16 or HSF-1 rescued the 

phenotypes caused by a variety of temperature sensitive mutant proteins (Ben-Zvi et al., 2009) 

and maintained the solubility of several endogenous aggregation-prone proteins in aging daf-2 

mutant worms (David et al., 2010). Intriguingly, these pathways of proteostasis maintenance 

appear to be conserved in evolution. For example, Aβ peptides exhibited lower toxicity in 

mouse brain when IGF-1 signaling was impaired (Cohen et al., 2009).  

Aging and the effect of the IIS pathway have been studied extensively in C. elegans by 

transcriptome analysis (Budovskaya et al., 2008; Golden et al., 2008; Golden and Melov, 2004; 

Lund et al., 2002). However, changes in transcript levels alone provide only limited information 

on effects at the proteome level, including protein aggregation, posttranslational modifications 

and turnover, in particular under conditions affecting the integrity of the proteostasis network. 

In recent years, significant progress has been made in the field of mass spectrometry-based 

proteomics, now allowing for the identification and quantitation of thousands of proteins in 

complex mixtures (Cox and Mann, 2011). Arguably, the most accurate quantification strategy is 

the use of stable isotope labeling with amino acids in cell culture (SILAC) (Ong et al., 2002), an 

approach that has been extended to multicellular model organisms such as mouse (Kruger et 

al., 2008), fly (Sury et al., 2010) and worm (Fredens et al., 2011; Larance et al., 2011). 

Here, we used SILAC labeling and quantitative proteomics to profile the abundance 

levels of more than 6,000 proteins at various time points throughout the lifespan of C. elegans. 

We extended our study to short-lived and long-lived strains carrying mutations related to the IIS 

pathway and also quantified age-related protein aggregation. Our data show that during aging, 

the proteome of the animal undergoes extensive remodeling, reaching a state of proteome 
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imbalance that affects key components of the proteostasis network and drives protein 

aggregation. These changes are accelerated in short-lived mutant worms and are delayed in 

long-lived animals. Interestingly, a loss in X-chromosomal dosage compensation contributes to 

proteome imbalance in short-lived animals. 

Results 

Extensive Proteome Remodeling during Aging 

To study proteomic changes in aging nematodes in depth and with high accuracy, we 

established a quantitative proteomics approach based on stable isotope labeling with amino 

acid derivatives (SILAC) (Ong et al., 2002). Near complete incorporation of heavy lysine into the 

proteome was achieved by feeding worms suspensions of metabolically labeled E. coli cells. We 

used a pool of lysates prepared from labeled animals of different ages as an internal standard 

for quantifying protein expression by mass spectrometry (MS) (Figure 1A). Synchronized 

populations of wild-type (WT) animals were collected in five to six day intervals, lysed and 

mixed with this standard before digestion, fractionation by isoelectric focusing and MS analysis. 

Replicate analysis across three time points indicated a high degree of reproducibility between 

individual experiments (Figure S1A). We analyzed the proteomes of adult worms in intervals 

from one day up to 22 days of age, when less than 30% of the animals remain alive. In total, 

close to 6,000 different proteins were identified and quantified at a false discovery rate of less 

than 1%.  

We found that the proteome of C. elegans undergoes extensive remodeling during 

aging. One third (33%) of the quantified proteins increased or decreased in abundance at least 
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two-fold, with the most pronounced changes exceeding 200-fold (Figure 1B). To estimate the 

extent of proteome remodeling in terms of molar ratios, we employed label free absolute 

quantification, a measure which is linearly related to absolute abundance (Schwanhausser et 

al., 2011). Those proteins increasing at least two-fold in abundance during lifespan contributed 

to almost half of total protein mass in highly aged animals (Figure S1B). 

The majority of the observed changes in protein abundance were already notable between day 

1 and day 6 but typically progressed throughout lifespan (Figure S1C). The proteins which were 

increased more than 2-fold in abundance in old worms (22 days) relative to young animals (day 

1) showed a significant overrepresentation of signal peptides as predicted by the SignalP3 

algorithm, indicating that a large proportion (493 out of 760; Benjamini-Hochberg false 

discovery rate 5.6*10-37) of these proteins are targeted to the secretory pathway. This notion 

was confirmed by gene ontology (GO) term analysis which revealed a 4.8-fold enrichment of 

proteins localized in the extracellular matrix (Supplementary Table S1). Furthermore, all six of 

the egg storage proteins, known as vitellogenins, were among the predicted secreted proteins 

which accumulated strongly during aging, although egg formation does not continue after day 

6. Other functional categories of up-regulated proteins included a variety of proteins involved 

in DNA replication and repair processes, such as DNA replication initiation and gap filling during 

excision repair (Figure 1D). These findings are surprising in light of the fact that all somatic cells 

of C. elegans enter the postmitotic phase after development is complete (Tissenbaum and 

Guarente, 2002) and that the activity of nucleotide excision repair has been reported to 

decrease in aged animals (Meyer et al., 2007). Among the proteins whose abundance declined 

markedly during aging were several factors involved in ribosome biogenesis and proteins 
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residing in the nucleolus (Figure 1C). Among this group of proteins with decreasing abundance  

was also a modest but significant overrepresentation of proteins with at least one predicted 

transmembrane segment (Krogh et al., 2001) (Benjamini-Hochberg FDR of 0.0014). 

We next investigated whether proteins residing in specific subcellular compartments were 

particularly prone to age-related changes. Most compartments underwent abundance changes 

to a similar extent during aging (Figure 1E). Among the organelles most affected by a decrease 

in protein abundance were the mitochondria. Notably, the affected proteins included the 

constituents of the respiratory chain complex I, which decreased gradually in abundance by 

~50% throughout lifespan (Figure S1D). A decline in complex I function has been associated 

with increased production of ROS and oxidative stress (Hirst, 2013). In contrast, subunits of 

complexes IV and V were expressed at more stable levels (data not shown). A marked 

abundance increase was more frequently observed for proteins predicted to reside in the 

extracellular space. Apart from the above mentioned vitellogenins, a large number of 

transthryretin-like as well as numerous uncharacterized proteins were noted to increase in 

abundance. 

To discover distinct patterns of change in protein abundance,  we employed the fuzzy c-

means method (Kumar and Futschik, 2007) to group proteins into distinct clusters. Based on 

predicted expression scores (Chikina et al., 2009), we identified tissues that were specifically 

enriched in these protein clusters (Figures 1F and S1E). Proteins predicted to be predominantly 

expressed in the germline typically showed a strong increase within the first six days of 

adulthood while largely retaining constant levels later in life (cluster 1). This observation is 

consistent with the cessation of the reproductive phase after day 6. In contrast, proteins 
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enriched in neuronal cells frequently showed a continuous increase in abundance after day 6 

(cluster 2). On the other hand, proteins predominantly expressed in muscle were subject to an 

either continuous abundance decline during lifespan (cluster 3) or a more pronounced 

reduction between day 1 and day 6 (cluster 4). A similar behavior was observed for proteins 

enriched in intestine and hypodermis (cluster 3).  

 

Age-related Changes in Proteostasis Network Components 

The proteostasis network in C. elegans as defined here comprises close to 700 components. 254 

of these were quantified in our analysis, including 85 proteins required for transcription and 

translation, 108 molecular chaperones and chaperone regulators, 42 proteins required for the 

defense against oxidative stress, as well as 99 components involved in protein degradation by 

the ubiquitin proteasome system (UPS) and the autophagy/lysosomal pathways (Figure 2A, 

Table S2). Generally, most ribosomal proteins decreased in abundance during aging, while a 

large proportion of the UPS components tended to increase in abundance (Table S3). Such 

general trends were not observed for the PN constituents responsible for protein folding and 

the defense against oxidative stress. This is exemplified by the class of small heat shock 

proteins, a group of chaperones with a critical role in aggregation prevention (Figure 2B). Three 

of these proteins, SIP-1, HSP-43 and HSP-16.48, increased strongly (~13-90-fold), whereas 

others increased either more moderately or remained largely unchanged during lifespan. 

Among the components mediating defense against oxidative stress, the glutathione peroxidase 

isoform GPX-5 showed a marked increase. The superoxide dismutase isoform 4 (SOD4) 
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increased markedly throughout the lifespan, whereas other SODs were affected to a much 

lesser extent.  

Systematic changes were observed in the abundance of the protein synthesis and 

degradation machineries. The levels of cytosolic and mitochondrial ribosomal proteins generally 

decreased while the subunits of the 20S proteasome increased in abundance (Figure 2C and D, 

Figure S2A). A ~25% reduction in cytosolic ribosomal proteins occurred between day 1 and day 

12 (p-value < 3.2 E-19, 70 proteins quantified) while a stable median level of ribosomal proteins 

was maintained thereafter (Figure 2C). However, in animals aged day 12 and older a 

pronounced imbalance in the stoichiometry among ribosomal proteins was observed. While in 

cytosolic ribosomes the abundance of several subunits decreased more than 60% below the 

median at later stages in life (Figure 2C), certain subunits of mitochondrial ribosomes increased 

in abundance relative to day 1 and day 6 animals by up to 8-fold (Figure S2A).  

The general decrease and the imbalance in the abundance of ribosomal proteins likely 

reflect a decline in ribosomal function and assembly and a potentially serious loss in 

proteostasis control. Indeed, labeling experiments showed that the production of newly-

synthesized proteins decreased strongly with age. Animals at 1, 4, 6 or 12 days of age were 

shifted from unlabeled (“light”) to 13C6- 15N2-lysine (“heavy”) labeled bacteria as a food source 

and the ratio between newly-synthesized and preexisting proteins was quantified after 24 

hours (Figure 2E). In young animals (day 1), the amount of newly synthesized protein generally 

exceeded that of preexisting protein, reflecting active growth of the animals. In contrast, 

virtually no incorporation of heavy label was observed in moderately aged animals at day 12. To 

analyze protein synthesis later in lifespan more accurately, we shifted animals at the age of 5 
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days to heavy lysine and measured the accumulation of labeled protein throughout the 

remaining lifespan. Again, labeling efficiency declined sharply with age (Figure S2B). We note 

that this effect was not caused by reduced food uptake in aged worms as animals of a mutant 

strain deficient in pharyngeal pumping, eat-2, showed normal labeling compared to WT despite 

their strong defect in food uptake (Figure S2C).  

The observed increase in abundance of proteasomal core subunits (~2-fold at day 22) 

was somewhat steeper between day 1 and day 6, followed by a milder continuous increase up 

to day 22 (Figure 2D). Unlike the effect on ribosomal proteins, there was no significant 

imbalance in the stoichiometry of proteasomal subunits, suggesting that their increase reflects 

an activation of proteasome function. This interpretation was confirmed by measuring 

proteasome activity in worm lysates. To this end, the chymotryptic activity of the proteasome 

under native-like conditions was analyzed via the cleavage rate of fluorogenic peptides, 

demonstrating an increase to a similar degree as the abundance change when comparing day 

12 and day 1 animals (Figure 2F). Only negligible activities were observed in the presence of 

proteasomal inhibitors MG132 and lactacystin, demonstrating the specificity of the assay. 

In summary, the levels and activities of two main branches of proteostasis control, 

protein synthesis and degradation, change in opposite directions during aging. While the 

decrease in ribosomal subunit proteins appears to be accompanied by a severe deregulation of 

ribosome assembly and thus is likely to contribute to aging, the increase in proteasome core 

subunits is more likely to reflect an attempt at mitigating the consequences of proteome 

imbalance. Other notable changes in the proteostasis system during lifespan include the 
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increase in abundance of several small Hsps and of components involved in the defense against 

oxidative stress.  

 

Proteome Changes in Long-lived and Short-lived Mutant Animals 

To better understand the relationship between the observed proteome changes during lifespan 

and the aging process, we next performed a proteomic analysis of long-lived daf-2, and short-

lived daf-16 and hsf-1 mutants. The extent of proteome remodeling observed in WT animals 

among the proteins that increased in abundance was delayed in daf-2 animals and accelerated 

in the short-lived daf-16 and hsf-1 strains (Figure 3A). To identify novel proteins that may 

contribute to IIS-mediated lifespan extension, we selected seven proteins whose expression 

levels were markedly lower in the long-lived daf-2 mutant strain as compared to WT (Figure 

S3A). Most of these proteins are largely uncharacterized and have diverse predicted functions, 

including a putative metalloprotease, a peptide synthetase and two membrane transporters 

(Table S4). These candidates were tested for possible a lifespan extension when down-

regulated in WT worms from L1 stage. When we depleted these proteins by RNA interference, 

we achieved a mild but robust lifespan extension, indicating a role in the regulation of longevity 

(Figure 3B, Table S5). This lifespan extension was not observed in a daf-16 mutant background, 

suggesting that the down-regulated proteins act in the IIS pathway and their lifespan extension 

is dependent on daf-16 (Figure S3B, Table S6). 

The changes in components of the proteostasis network observed in long-lived and 

short-lived mutant strains occurred again predominantly in protein synthesis and degradation 

pathways, albeit at different rates as compared to WT animals (Figure 4). In the long-lived daf-2 
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mutant (Figure 4A), the up-regulation of proteasomal subunits occurred earlier and to a 

stronger degree than in WT animals (Figure 4B), while it occurred to a lesser degree in the 

short-lived daf-16 and hsf-1 strains (Figure 4C and D). The depletion of ribosomal proteins was 

delayed in daf-2 (Figure 4A) but was more extensive in daf-16 worms (Figure 4C). In contrast, 

down-regulation of ribosomal proteins was less pronounced in hsf-1 animals (Figure 4D).  

Interestingly, we observed marked differences in abundance levels between WT and daf-2 

mutant animals for PN components involved in the oxidative stress response. For example, 

catalases CTL-1, CTL-2 and CTL-3 as well as superoxide dismutases SOD-1, SOD-2 and SOD-3 

were consistently up-regulated in daf-2 worms compared to WT (Figure 4E and F, and data not 

shown). 

 

Association of Hsf-1 and Daf-16 Deficiency with X-chromosomal Dosage 

Compensation 

Surprisingly, we found that in aged hsf-1 and daf-16 mutant animals the abundance of at least 

430 quantified X-chromosomally encoded proteins was mildly but consistently increased over 

autosomally encoded proteins, reaching a mean increase by 16% in daf-16 animals at day 17. To 

investigate the nature of this abundance difference further, we used a genome profiling 

algorithm, which was developed to detect chromosomal aberrations in cancer cell lines by 

testing for significantly elevated expression levels of proteins encoded on neighboring positions 

on each chromosome (Geiger et al., 2010) (Figure 5A). This method confirmed that X-

chromosomally encoded proteins were systematically expressed at higher levels in aged daf-16 

and hsf-1 animals from day 12 onward. It seemed plausible that this effect resulted from a 
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compromised X dosage compensation regulation.  We therefore tested whether the observed 

phenotype could be reproduced in a strain containing a mutation in dpy-28, a gene encoding a 

component of the X-dosage compensation machinery (Meyer, 2005). Compared to hsf-1 and 

daf-16 mutants, the loss of DPY-28 function resulted in a more pronounced elevation of 

expression levels of X-chromosomally encoded proteins (Figure 5A). This phenotype could 

already be observed in day 1 animals, because X-chromosomal repression in dpy-28 mutants is 

impaired independent of age (data not shown). Notably, loss of dosage compensation was not 

observed in a dpy-5 mutant strain, carrying a mutation unrelated to dosage compensation but 

displaying a morphology phenotype (shorter and stouter) similar to that of dpy-28 (Hartman 

and Ishii, 2007) (Figure 5A). 

We hypothesized that even a moderate increase in protein expression might have a 

negative effect on overall proteostasis of aging cells if it affects a substantial proportion of the 

genome (Siegel and Amon, 2012). We therefore utilized a C.elegans polyglutamine (polyQ) 

protein aggregation model in which a Q40-YFP fusion protein is expressed in muscle cells 

(Morley et al., 2002). It has previously been demonstrated that a reduction in HSF-1 and DAF-16 

levels results in an early onset of visible aggregation of the model protein (Hsu et al., 2003). To 

test whether deregulation of dosage compensation causes a similar phenotype, we expressed 

the same transgene in the dosage compensation deficient dpy-28 mutant. In line with our 

hypothesis, the number of observable Q40-YFP inclusions increased markedly in dpy-28 animals 

compared to WT already after 24 h or 48h post L1 stage (Figure 5B and C, and Figure S4 A, B 

and C), although Q40-YFP was expressed at equal levels (Figure S4D, E and F).  
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Collectively, these results indicate that proteome imbalance with mildly increased 

abundance of a substantial fraction of the proteome is sufficient to cause proteostasis stress as 

exemplified by accelerated aggregation of pathological proteins. Thus, premature proteome 

imbalance may contribute to the decreased lifespan of the short-lived daf-16 mutant worms.  

Quantification of Age-related Protein Aggregation  

Declining proteostasis capacity is thought to facilitate the accumulation of proteins in insoluble 

aggregates. Recent studies reported the age-dependent formation of SDS-insoluble aggregates 

in C. elegans (David et al., 2010; Reis-Rodrigues et al., 2012). However, protein aggregates, 

including amyloid fibrils and insoluble proteins accumulating upon conformational stress, vary 

in biophysical properties and are typically not SDS-insoluble, raising the possibility that 

extraction protocols using SDS may underestimate the extent of aggregation. We therefore 

developed a procedure allowing the sensitive analysis and quantification of protein aggregates. 

For validation we used animals expressing FlucDM-GFP, a mutationally destabilized version of 

firefly luciferase which forms visible inclusions upon heat stress (Gupta et al., 2011). Young 

worms were subjected to heat shock for 90 min at 33oC, whole cell lysates were prepared and 

fractionated by centrifugation. The pellet fraction obtained was washed with mild detergents to 

obtain the insoluble protein fraction. While less than 5% of total FlucDM-GFP was insoluble in 

control animals, approximately 50% of the recombinant protein was recovered in the insoluble 

fraction after heat shock (Figure S5A). However, extraction with SDS containing buffer resulted 

in considerable loss of recovery of both total insoluble protein and insoluble FlucDM-GFP 

(Figure S5C). Isolation of aggregated proteins from aged animals yielded significantly more total 

protein as compared to young animals (Figure S5D). Importantly, using the less stringent 
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isolation procedure we observed that the proportion of FlucDM-GFP in the insoluble fraction 

increased not only upon heat shock (Figure S5B) but also increased more than 5-fold during 

aging (Figure S5E). Age-dependent aggregation was also detected for another model protein, 

Q35-YFP, consistent with previous observations (Morley et al., 2002) (Figure S5F and G).  

We next measured aggregation at the proteome level in synchronized worm 

populations at different times during aging. A pool of total lysates from heavy lysine labeled 

worms of different strains and ages was used as an internal standard for quantitation (see 

Experimental Procedures). Insoluble proteins were separated by SDS-PAGE and subjected to in 

gel digestion prior to MS analysis. In total, we identified and quantified more than 3300 

proteins. The vast majority (82%) of these proteins increased significantly in the insoluble 

fraction of WT worms at 12 days compared to young animals at day 1 (Figure 6A, Figure S6A). 

Aggregate formation occurred mainly between day 6 and day 12, i.e. after the 

hermaphrodite animals cease to lay eggs. The majority of these aggregation-prone proteins 

were not previously identified, presumably owing to the lower stringency of the isolation 

procedure (Figure S6B). The aggregated proteins showed a similar subcellular distribution as 

the proteins in total lysates (Figure S6C). Notably, the proteins which accumulated at the 

highest rate in WT animals were typically found in lower amounts in the insoluble fractions of 

long-lived daf-2 animals (Figure 6B), indicating that lifespan extension correlates with a better 

ability of the animals to maintain proteostasis. In contrast, no such reduction in aggregation 

was observed for the short-lived daf-16 and hsf-1 mutants (Figure S6E and F).  
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Age-dependent Increase in Protein Abundance Correlates with Aggregation Propensity  

To determine the propensity of proteins to form aggregates during aging, we performed 

aggregate isolations from aged WT animals at day 12 and measured the fraction of total protein 

in the aggregate. Comparable protein solubility values were obtained in three biological 

replicates (Pearson correlation coefficients >0.78). The measured aggregation propensities 

covered a range of more than two orders of magnitude, with a median value of 7.7% of 

individual proteins being insoluble (Figure S6I). Thus, while the total aggregate load increases 

dramatically during aging, for the majority of proteins depletion by aggregation would not 

result in a loss of function.  

 Previous studies have reported a negative correlation between aggregation propensities 

predicted computationally from protein sequence properties and protein abundance in E. coli 

or human tissues (de Groot and Ventura, 2010; Tartaglia et al., 2009; Tartaglia and Vendruscolo, 

2009). For a small number of proteins, this trend has been confirmed by measuring aggregation 

properties of recombinant proteins in vitro (Baldwin et al., 2011; Tartaglia et al., 2007). Our 

SILAC-based proteomics dataset enabled us to experimentally validate this dependency at the 

proteome-wide scale. To this end, we grouped proteins into quantiles according to their 

aggregated proportion at day 12 and estimated the total abundance of each protein in the 

whole cell lysate using intensity-based label-free absolute quantification (LFAQ, Figure 6C) 

(Schwanhausser et al., 2011). Indeed, the median abundance of the most aggregation-prone 

proteins (median aggregation 26% of total) was more than 10-fold lower than that of the most 

soluble proteins (median aggregation 2% of total), and this difference was highly significant (p-
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value <1.5 x 10-11) (Figure 6D). For example, glycolytic enzymes or proteins residing in the 

mitochondrial matrix tend to be more soluble, correlating with their relatively high abundance. 

Interestingly, despite the higher aggregation propensity of low-abundant proteins, we 

found that the best predictor of a protein contributing to the aggregate fraction was its 

absolute abundance in the total proteome. A Spearman’s rank correlation of 0.76 was observed 

between the absolute abundance of specific proteins in the aggregated fraction and the 

abundance of the same proteins in the corresponding whole cell lysate (Figure 6E). This 

indicates that highly abundant proteins contribute greatly to the overall aggregate load in spite 

of their lower relative aggregation propensities. Moreover, when comparing abundance 

changes in the aggregated fraction between days 1 and 12 with the corresponding 

abundance changes in the total proteome, we also observed a positive correlation 

(Spearman’s rank correlation coefficient 0.49, Figure 6F). 

Given that the extent of aggregation varied over more than two orders of magnitude 

between individual proteins, we further investigated whether aggregation propensity 

correlated with the functional categories of proteins. GO analysis suggested that proteins 

involved in nucleic acid metabolism (specifically DNA-replication) tend to aggregate more 

strongly (Table S7). Interestingly, all identified members of the small HSP family of chaperones 

displayed a high degree of insolubility (Figure 6G). Notably, several of these chaperones 

increased in total abundance during aging (Figure 2C), presumably reflecting an attempt of the 

organism to reduce protein aggregation. 

Aggregate formation is generally indicative of cellular stress and declining protein 

homeostasis. We therefore asked whether reducing the expression levels of highly aggregation-
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prone proteins ameliorates organismal health and thereby extends lifespan. We selected four 

largely uncharacterized genes that were among the proteins which accumulated most strongly 

in the insoluble protein fractions during aging, and targeted them with RNA interference. The 

selected proteins were highly abundant but nevertheless showed aggregation propensities 

above median (Table S8). Remarkably, even though these aggregation-prone proteins 

individually contribute at most ~1% to total protein abundance, their removal was sufficient to 

cause a mild but significant lifespan extensions (Figure 6H, Table S9). These results suggest 

strongly that aggregation resulting from age-dependent proteome imbalance contributes to 

limiting lifespan in C. elegans.  

Discussion 

We have applied SILAC-based quantitative proteomics to map protein abundance changes 

during aging in the nematode C. elegans. One of the most important results of this study is the 

large extent of proteome remodeling occurring during aging. In WT animals, approximately one 

third of the quantified proteins are more than twofold up- or down-regulated during adult 

lifespan. This finding is in striking contrast to the situation in tissues of aged mice, where 

negligible proteomic changes were detected with a comparable experimental setup (Walther 

and Mann, 2011). Similarly, early microarray studies addressing aging in C. elegans suggested 

that only a small number of genes were significantly altered in transcription level (Lund et al., 

2002). Although more recently published transcriptome datasets (Budovskaya et al., 2008; 

Golden and Melov, 2004) found more pronounced differences between young and old worms, 

the correlation with our SILAC-based protein quantification was relatively low (Figure S1F and 
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G). Much of the observed discrepancies between transcript and protein abundance may be 

attributed to posttranscriptional regulatory mechanisms. In mammalian cell lines typically more 

than one third of the protein abundance variation cannot be explained by transcript abundance 

alone (Schwanhausser et al., 2011; Vogel et al., 2010), but is ascribed to control of translation 

initiation and elongation efficiency, or protein stability (Vogel and Marcotte, 2012). Similar 

correlations were reported for C. elegans (Laurent et al., 2010). However, given the decline in 

proteostasis network function in aging nematodes (Cohen et al., 2006; Morley et al., 2002), a 

more pronounced discrepancy of our data from microarray studies can be expected due to 

altered protein synthesis and turnover rates.  

We found that aging affected multiple nodes of the proteostasis system, most 

prominently protein biosynthesis and protein degradation. Firstly, an increase in abundance 

and activity of the proteasome was observed, which may be compensatory to counteract the 

rising burden of protein aggregation. Secondly, a gradual reduction in levels of ribosomal 

proteins occurred, and was associated with a marked decline in protein biosynthesis rates as 

demonstrated by SILAC and pulse labeling experiments. It is unclear whether these changes 

represent an adaptation to altered physiological requirements of the aged organism, or are at 

least in part causative of senescence.  On the one hand, ribosomal decline went along with a 

down-regulation of the pathway required for their biogenesis, which may be an adaptation to a 

reduced requirement for protein synthesis once the developmental and reproductive phases 

are completed. On the other hand, aging was associated with an imbalance in the stoichiometry 

of the cytosolic and mitochondrial ribosomal proteins. This finding suggests impaired 
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transcriptional regulation or altered stability of specific ribosomal proteins and could be 

indicative of a deleterious effect. 

Proteostasis decline with aging is evolutionarily conserved from nematodes to humans 

(Dillin and Cohen, 2011). In line with this notion, two recent publications reported the 

occurrence of SDS insoluble protein aggregates in old worms (David et al., 2010; Reis-Rodrigues 

et al., 2012). We employed a protocol with less stringent extraction for biochemical aggregate 

isolations, which probably accounts for the fact that the above mentioned studies have missed 

most of the aggregation-prone proteins identified here. We have previously demonstrated that 

proteins sequestered by amyloid type aggregate precursors  in human cells have a preference 

for unstructured regions and have large molecular weights (Olzscha et al., 2011). In contrast, 

the more than 3,000 proteins of our C. elegans “aggregome” dataset, representing a significant 

proportion of the proteome, appeared to be largely devoid of common physico-chemical 

properties. This may point at a different mechanism underlying the aggregation process, which 

remains to be elucidated. Nonetheless, a negative correlation was found between absolute 

abundance and aggregation propensity, suggesting that proteins with high copy numbers are 

optimized in terms of folding requirements and solubility. 

The integration of multiple experiments, addressing the total cellular proteome as well 

as its insoluble subset in WT and several longevity mutants, allowed us to detect dependencies 

between proteome remodeling and protein aggregation in aging worms. Proteome remodeling, 

or proteome imbalance, was accompanied by the increased expression of highly aggregation 

prone proteins. Moreover, the accumulation of these proteins in aggregates was attenuated in 

the long lived daf-2 mutant. In daf-16 animals, an overexpression of X-chromosomally encoded 
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proteins was observed, probably posing additional stress on the proteostasis network. 

Strikingly, the depletion even of individual proteins, that are highly aggregation-prone, resulted 

in a moderate but significant lifespan extension. This indicates that the observed protein 

aggregation indeed causes cytotoxicity. 

Collectively, our data suggest that aging in C. elegans is associated with deleterious 

proteome imbalance, which drives protein aggregation. This may contribute to a successive 

proteostasis decline and thereby restrict the organism’s lifespan. 

Experimental Procedures 

C. elegans Strains 

C.elegans strains were maintained by standard methods (Brenner, 1974). The Bristol strain N2 

was used as wild-type. The following mutants and transgenic strains were employed: CB1370 

[daf-2 (e1370)III], TJ1052 [age-1 (hx546)II], CF1038 [daf-16 (mu86)I], PS3551 [hsf-1 (sy441)I], 

DA1113 [eat-2 (ad1113)II], CB428 [dpy-21 (e428)V], TY148 [dpy-28  (y1)III], AM140 [rmIs132 

[P(unc-54) Q35::YFP]], AM141 [rmIs133 [P(unc-54) Q40::YFP]] and FUH135 [marIs135 [P(unc-54) 

FLuc-DM::GFP]].  

 

E. coli Feeding Strains 

Unless otherwise specified, C. elegans cultures were maintained with E. coli strain OP50 as a 

food source. For large scale SILAC labeling of worms the lysine auxotroph E. coli strain ET505 

(CGSC#: 7088) was used. For pulse labeling experiments, a lysine auxotroph strain of OP50 was 
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generated by disrupting the lysA gene via the λ phage Red recombinase system as previously 

described (Datsenko and Wanner, 2000).  

 

Growth Conditions 

Worms were routinely maintained at 20°C on solid nematode growth medium (NGM). Cultures 

were synchronized by sodium hypochloride treatment followed by starvation-induced L1 arrest 

for 24 h. At L4 stage, larvae were transferred to media containing 10 µM fluorodeoxyuridine to 

suppress progeny. For total proteome measurements, progeny was removed by repeated 

sedimentation. Dead worms were removed manually before harvesting. Bacterial cultures for 

SILAC labeling were grown in 13C6-14N2-lysine (Cambridge Isotope Laboratories, Andover, MA) 

containing M63 minimal media, harvested by centrifugation and washed. Suspensions were 

spotted onto nitrogen-free agarose plates (Krijgsveld et al., 2003). The incorporation of heavy 

lysine into the proteome of C. elegans was more than 99% after four reproductive cycles.  

 

Sample Preparation for Total Proteome Measurements 

Worms were rinsed off plates and washed with M9 minimal salt solution to minimize bacterial 

contamination. Pellets were resuspended in lysis buffer (4% SDS, 0.1 M Tris/HCl pH 8.0, 1 mM 

EDTA), incubated at 95°C for 5 min and sonicated in a Bioruptor (Diagenode, Liège, Belgium) 

ultrasonication bath for 10 min at high energy setting. After heating for 3 minutes, lysates were 

clarified by centrifugation (20,000 rcf, 10 min) and protein content was quantified using the 

BCA assay kit (Pierce, Rockford, IL). In a typical experiment, 40 ug of total protein lysate was 

mixed with an equal amount of a 13C6-14N2-lysine labeled lysate pool with equal contributions of 
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WT animals aged 1, 6, 12 and 17 days. Proteins were reduced, alkylated and digested with 

endoproteinase LysC (Wako Bioproducts, Richmond, VA) using the filter aided sample 

preparation method (FASP) (Wisniewski et al., 2009). Obtained peptide mixtures were either 

analyzed without fractionation or desalted via C18 solid phase extraction (SPE) cartridges (3M, 

St. Paul, MN) and subjected to isoelectric focusing on an Offgel system (Agilent, Santa Clara, CA) 

using 13 cm linear immobilized pH gradient strips with a pH range from 3 to 10 according to 

published procedures (de Godoy et al., 2008; Hubner et al., 2008). Fractionated or 

unfractionated peptides were purified via StageTips (Rappsilber et al., 2007). 

 

Biochemical Isolation of Protein Aggregates 

Approximately 600 worms were resuspended in 550 ul lysis buffer (50 mM Tris/HCl pH 8.0, 0.5 

M NaCl, 4 mM EDTA, 1% (v/v) Igepal CA630, Complete proteinase inhibitor cocktail (Roche 

Diagnostics, Mannheim, Germany)) and sonicated for 8 min at 0°C in a Bioruptor sonication 

bath. Lysates were clarified (1,000 rcf, 1 min, 4°C) and protein content was adjusted to equal 

levels. For proteome measurements, a lysate pool of 13C6-14N2-lysine labeled animals was mixed 

with each of the samples. Insoluble proteins were sedimented by ultracentrifugation (500,000 

rcf, 4°C, 10 min) and subsequently washed twice with modified RIPA buffer (50 mM Tris/HCl pH 

8.0, 0.15 M NaCl, 4 mM EDTA, 1% (v/v) Igepal CA630, 0.5% sodium deoxycholate, Complete 

proteinase inhibitor cocktail) before solubilization in 2% SDS containing sample buffer for 10 

min at 95°C. Proteins were resolved on SDS-PAGE gels and either analyzed by Coomassie 

staining or Western blotting, or processed for MS analysis by in gel digestion and StageTip 

purification. 
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Mass Spectrometry and Data Analysis 

Peptides were separated on C18 reversed phase nHPLC columns (Nagaraj et al., 2011; Walther 

and Mann, 2011) with gradient durations of 140 or 280 min for fractionated or unfractionated 

samples, respectively, and sprayed online into LTQ-Orbitrap Velos or Orbitrap Elite mass 

spectrometer (Thermo Fisher Scientific, Bremen, Germany)(Michalski et al., 2012; Olsen et al., 

2009). In each scan cycle, fragmentation spectra of the 10 most intense peptide precursors in 

the survey scan were acquired in the higher-energy collisional dissociation (HCD) mode. Raw 

data were processed in the MaxQuant software environment (Cox and Mann, 2008) and peak 

lists were searched with Andromeda (Cox et al., 2011) against a database containing the 

translation of all predicted proteins listed in Uniprot (release January 15, 2012) as well as a list 

of contaminants including commonly observed human keratins as well as the NCBI protein 

database of E. coli strain K12 (release date January 25, 2010). The minimal required peptide 

length was set to seven amino acids and both protein and peptide identifications were 

accepted at a false discovery rate of 1%.  

 

Bioinformatic Analysis 

Prediction of subcellular localization, signal sequences and transmembrane segments were 

performed using WoLF PSORT (Horton et al., 2007), SignalP (Petersen et al., 2011) and TMHMM 

v. 2.0 (Krogh et al., 2001) algorithms, respectively. Further annotation included predicted tissue 

specificity of expression (Chikina et al., 2009), Pfam protein families (Finn et al., 2008) and gene 

ontology databases (Ashburner et al., 2000). One- and two-dimensional annotation enrichment 

analysis was performed in the Perseus data analysis suite (Cox and Mann, 2012). Fuzzy c-means 
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clustering of time course profiles was carried out using the Mfuzz package in the statistical 

programming language R (Kumar and Futschik, 2007). 

 

Proteasomal Activity Assays 

Worms were lysed by ultrasonication in the presence of 2mM ATP and proteasomal activity was 

performed as previously described using the fluorogenic substrate Z-Gly-Gly-Leu-AMC (Kisselev 

and Goldberg, 2005; Vilchez et al., 2012).  

 

Lifespan Assays 

RNAi by feeding was performed as described previously (Kamath et al., 2001) using RNAi 

bacteria from the Ahringer library (Kamath et al., 2003). All RNAi clones used in this study were 

verified by sequencing. RNAi bacterial cultures were grown in LB+ampicillin (50 µg/ml) for 8 h at 

37°C and then seeded onto RNAi plates (NGM plates with 2mM IPTG and 25µg/ml carbenicillin). 

E. coli strain HT115 (DE3) carrying the L4440 plasmid (empty vector) was used as control. 

Lifespan assays were performed at 20°C. Synchronized L1 larvae were added to RNAi plates 

seeded with corresponding RNAi bacteria and grown on these plates until reaching the L4 

stage. Approximately 100 L4 larvae were then transferred to fresh RNAi plates containing 10 

µM 5-fluorodeoxyuracile (FUdR) to prevent growth of progeny and this day of the transfer was 

considered as day 0 in the adult lifespan assay. Worms were then moved to new plates every 5-

7 days for the rest of the assay. Lifespan was assessed every other day and worms were scored 

as dead when they did not move or respond to gently prodding with a platinum wire. Worms 

that crawled onto the wall of the plates or died from vulval bursting were excluded. 
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Quantification of Q40 Aggregates and Microscopy 

Worms expressing Q40-YFP were mounted on 2% agar pad on glass slides and immobilized in 1 

mM levamisole. Aggregates were scored at 24 h and 48h post-L1 stage, using a Leica 

fluorescent stereomicroscope. A minimum of 20 worms were scored for each strain and time 

point analyzed. Worms expressing FlucDM-EGFP were fixed in ethanol and mounted on slides 

using Dako fluorescent mounting medium. Fluorescence imaging was performed on a Zeiss 

Axiovert fluorescence microscope. 
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Figure Legends 

Figure 1: Proteomic analysis of aging in C. elegans. (A) Experimental design. Synchronized worm 

populations at different time points were lysed and mixed with a metabolically (SILAC) labeled 

internal protein standard. After digestion, peptides were either analyzed directly or after 

fractionation by isoelectric focusing by nLC coupled mass spectrometry. (B) Histogram 

representations of proteome changes in WT between young adults (day 1) and animals of the 

indicated ages. The proportion of proteins which were affected at least twofold in abundance 

during aging are marked in red. (C, D) Significantly affected functional categories within the 

two-fold up- or down-regulated proteins between young (day 1) and aged (day 22) nematodes 

via Gene Ontology (GO) term enrichment. The enrichment factor is plotted against the p-value 

derived from Fisher Exact test. Each term is represented by a circle, whose size encodes for the 

number of proteins affected. (E) Changes in subcellular compartments are divided into 

unchanged (grey) or 1.5-fold up- (gold) or down-regulated (blue) proteins between young (day 

1) and aged (day 22) nematodes. The area of the circles reflects the number of proteins 

identified. (F) Clustering of time course expression patterns in WT animals using the fuzzy c-

means algorithm. Specifically enriched major tissues are indicated for each cluster, which are 

based on predicted genome-wide expression scores. 

 

Figure 2: Changes in specific subsets of the proteostasis network. (A) We classified the 

proteostasis network into the three basic categories governing synthesis, maintenance and 

degradation, which were further subdivided as indicated. (B) Examples of time course 

abundance profiles of proteins facilitating protein maintenance. Members of the small heat 
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shock protein family as well as proteins involved in oxidative stress response displayed. 

(C) Boxplot representation of abundance changes of ribosomal proteins during lifespan. 

(D) Boxplots of abundance changes of the fourteen 20S proteasomal core particle subunits 

during lifespan. (E) Decline of label incorporation rate during aging determined by pulsed SILAC. 

Animals aged 1 ,4, 6 or 12 days were transferred to a heavy lysine-labeled food source for 24 h, 

lysed, digested and subsequently analyzed by mass spectrometry (F). Quantification of the 

chymotryptic proteolytic activity of the proteasome in lysates derived from old (day 12) and 

young (day 1) worms as measured by the cleavage rate of a fluorogenic synthetic peptide. 

Assays were performed either in the presence of the indicated specific proteoasomal inhibitors 

or without inhibitors (Mock). Error bars represent standard deviations obtained from each six 

biological replicate experiments per time point.  

 

Figure 3: Impact of IIS on the C. elegans proteome. (A) Proteome imbalance scoring late in life. 

Expression differences between animals at the indicated time points and animals at an 

intermediate age past the reproductive phase (day 6) were summed up individually for up- and 

down-regulated proteins for each strain and normalized to the number of quantified proteins. 

(B) Lifespan of WT animals upon depletion of proteins that were found to be underrepresented 

in the long-lived daf-2 strain (Figure S3A). Animals were fed with bacteria expressing RNAi 

knockdown constructs against the indicated genes or subjected to mock treatment.  

 

Figure 4: Remodeling of the proteostasis network during aging in WT worms (B) and longevity 

mutant strains daf-2 (A), daf-16 (C) and hsf-1 (D). Each time point is represented by a concentric 
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circle. Expression changes within the indicated categories with respect to the abundance level 

at strain-specific day 1 are color coded as indicated. (E,F,G) Abundance profiles of selected 

proteostasis in the indicated strains during aging: catalases (E), superoxide dismutases (F) and 

small heat shock proteins (G). 

 

Figure 5: X-chromosomal deregulation in the short-lived IIS mutants daf-16 and hsf-1. 

(A) Genome profiling of expression ratios between daf-16 or hsf-1 and WT. A sliding window 

approach is used to determine chromosomal regions with significant overrepresentation of the 

encoded proteins in the proteome. The same phenotype can be recapitulated when comparing 

the ratio between the dosage compensation-deficient mutant strain dpy-28 and WT. However, 

this is not the case for dpy-5, a mutant strain with a similar morphology phenotype as dpy-28. 

(B, C) X-chromosomal deregulation results in premature aggregation of muscle-specific 

polyglutamines (Q40-YFP). (B) Representative fluorescence images of Q40-YFP-expressing 

animals 48h past L1 stage in WT or dpy-28 mutant background. (C) Quantification of observed 

protein aggregates across populations of the same animals.  

 

Figure 6: Proteomic analysis of protein aggregation during aging. (A) Boxplots of protein 

abundance in the insoluble fraction during the course of aging in WT using SILAC quantification. 

(B) The long lived daf-2 mutant displays an attenuated accumulation of highly aggregation-

prone proteins in the insoluble fraction. The accumulation of each protein in WT in the 

aggregated fraction between day 01 and day 12 is plotted against the abundance difference 

between daf-2 and WT animals at day 12. (C) Histogram of aggregation propensities in WT 
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animals at day 12. Whole cell lysates and isolated insoluble proportions were quantified against 

the same SILAC standard and ratios between the two experiments were calculated for each 

protein. (D) Relationship between aggregation propensity and total protein abundance. 

Proteins were divided into five quantiles based on their measured insoluble proportion. Label-

free absolute quantitation (LFAQ) in the corresponding whole cell lysate was used to estimate 

concentrations. (E) Absolute abundance of proteins in the aggregated fraction is positively 

correlated with absolute abundance in the total proteome. Data for aged WT animals at day 12 

are displayed. The Spearman’s rank correlation ρ is indicated. (F) A positive correlation exists 

between age related abundance changes in the aggregated fraction and abundance changes of 

the same proteins in the total proteome. Differences between old (day 12) and young (day 1) 

WT animals are plotted on both axes. (G) Aggregation propensities and age-dependent 

accumulation in aggregates between young (day 1) and aged (day 12) of small heat shock 

proteins with respect to the distribution of all identified proteins. (H) Depletion of highly 

aggregation-prone proteins extends lifespan. Experiments were performed as described in the 

legend to Figure 4B. 

 

Figure 7: Model for proteome maintenance during aging in C.elegans. In young adult worms, 

proteostasis is maintained. The load of misfolded proteins is reduced by the action of 

chaperones that prevent aggregation and/or by proteasome-mediated degradation. In aged 

animals, functional folding of newly synthesized proteome declines and the load of misfolded 

or aggregation-prone proteins increases. This results in an up-regulation of specific chaperones 
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and proteasomal subunits. Despite these cellular responses, the burden of protein aggregation 

cannot entirely be compensated and eventually results in proteostasis collapse. 
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Supplementary Materials Legends 

Supplementary Figures 

Figure S1: (A) Reproducibility of SILAC-based proteomic analyses. Each four biological replicates 

of WT animals at the indicated ages were collected and quantified against the same SILAC 

spike-in standard. Each one of the four replicates (open circles) was prepared on a different day 

than the remaining three (closed circles). Principal component analysis plots are displayed. 

(B) Absolute proportion in terms of molar concentrations the proteome subsets shown in Figure 

1B that is affected by a more than twofold increase or decrease during aging between day 1 

and day 22 in WT animals as estimated by label free absolute quantification. (C) Comparison of 

GO categories affected in the early (day 6 vs. day 1) and late stage in life (day 22 vs. day 6) of 

WT animals. All terms that were significantly affected in either of the two periods are displayed 

(Wilcoxon rank sum test at 5% FDR) and their relative changes were plotted against each other. 

The dashed grey line indicates the position of categories which are equally affected early and 

late in life. Selected outliers are indicated in the plot. (D) Abundance change of quantified 

subunits of the mitochondrial respiratory chain complex I. (E) Remaining clusters from time 

course expression patterns displayed in Figure 1E. Extent (F) and correlation (G) between the 

microarray study of Golden and Melov (Golden and Melov, 2004) and our proteomics dataset. 

The Pearson correlation R between both datasets is displayed.  

 

Figure S2: (A) Protein abundance of subunits of the mitochondrial ribosome. (B) SILAC pulse 

labeling experiments. Worms were shifted to heavy media at day 5 (time point 0) and allowed 

to grow on the heavy food source for the indicated time. Boxplots of the H/L ratios at the 

37 
 

2 Results

86



indicated time points are displayed. (C) Comparison of SILAC pulse labeling performed with WT 

and eat-2 mutant worms, which are partially deficient in food uptake. Animals were shifted to a 

heavy food source at day 5 and harvested after six days of labeling. 

 

Figure S3: Expression profiles of the candidates tested for lifespan extension due to decreased 

expression in the daf-2 mutant as compared to WT. (B) Lifespan assays as shown in Figure 4B 

performed in daf-16 mutant background. 

 

Figure S4: Q40-YFP aggregation in dosage compensation deficient mutants. A muscle specific 

Q40-YFP transgene was introduced into the indicated genetic backgrounds and visible 

aggregates were quantified by fluorescence microscopy. (A) Representative microscopic images 

of animals 24h or 48h after L1 stage. (B, C) Quantification results 24h or 48h past L1 stage, 

respectively. Observations were grouped according to the numbers indicated in the figure 

legend. (D) Western blot showing the amount of Q40-YFP protein in wild-type and dpy-28 

mutant strains, using an antibody against GFP. Actin was used as loading control. (E and F) Q40-

YFP transcript levels in wild-type and dpy-28 mutant strains were detected by semi quantitative 

RT-PCR and quantified. Actin was used as loading control and values were normalized to actin 

level. 

 

Figure S5: Validation of the biochemical aggregate isolation procedure using synthetic model 

proteins. Worms were lysed by ultrasonication and aggregates were isolated from clarified 

lysates by ultracentrifugation. Pellets were extracted twice with RIPA buffer, solubilized by 
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boiling in SDS and analyzed by SDS-PAGE and Western blotting. (A) Purification steps from 

animals expressing the aggregation-prone mutated firefly luciferase fused to GFP (FlucDM-

GFP). The experiment was performed on worms grown at normal conditions or after a heat 

shock at 33°C for 90 min. (B) FlucDM-GFP recovery from animals before or after heat shock, or 

after 90 min recovery from heat shock. Western blot signals were quantified both in whole cell 

lysates and in insoluble fractions to determine the relative aggregation propensity of the model 

protein. Error bars represent standard deviations in three biological replicate experiments. 

(C) Influence of SDS on the recovery of aggregated FlucDM protein. A Coomassie stained gel 

and Western blot analysis after aggregate isolations from heat-shocked animals are displayed. 

(E) Aggregation propensity of FlucDM-GFP in young (day 1) and aged (day 19) worm 

populations (n=4). Western blot signals using an antibody against firefly luciferase of the same 

samples used in Figure S5D were quantified in total and aggregated fractions and relative 

insoluble proportions were calculated. (E, F) Insoluble and soluble proportions of the model 

protein Q35-YFP in young (day 1) and aged (day 7) worms (n=4) as determined by quantitative 

Western blotting using an antibody raised against GFP. 

 

Figure S6: (A) T-test results of replicate analysis of aggregated fractions in young (day 1) and 

aged (day 12) animals. The proportions of proteins that were found to be significantly increased 

or decreased in aged worms at a 5% false discovery rate are shown. (B) Overlap between the 

significantly accumulated proteins found in the published datasets by Reis-Rodrigues et al., 

David et al., and this study. (C) Proportions of predicted subcellular localizations of all 

quantitified proteins in aggregate fractions and the corresponding whole cell lysates of aged 
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WT animals (day 12). (D) Proportions of proteins that are predicted to contain at least one 

transmembrane segment. (E, F) Aggregate accumulation vs. abundance differences in the 

aggregated fractions of short lived strains daf-16 and hsf-1 as described in the legend to Figure 

6B. (G) Experimental design of the SILAC-based quantitation of protein aggregation 

propensities. Total lysates of aged animals (day 12) were subjected to aggregate isolation. 

Whole cell lysates as well as insoluble and soluble fractions were quantified against an identical 

SILAC standard to determine the aggregated and soluble proportions of each protein. 

(H) Histograms of SILAC ratios measured in total lysate, insoluble and soluble fractions using the 

experimental setup depicted in Figure S6G. (I) Histogram of measured aggregation propensities 

in WT animals at day 12. (J, K, L) Properties of aggregation-prone proteins tested for lifespan 

extension with respect to the entire proteome. Candidates were selected for high rates of 

accumulation in the aggregated fractions between day 1 and day 12 (J). Additionally, 

aggregation propensities at day 12 (K) and absolute abundance as determined by label-free 

absolute quantification (L) are displayed. 

 

Supplementary Tables  

Table S1: GO term analysis of proteins with at least two-fold expression changes during aging in 

WT animals. Statistical data from Fisher Exact tests are provided. Only terms with an 

enrichment factor of greater than two are displayed. Benj. Hoch. FDR, Benjamini-Hochberg 

false discovery rate. 
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Table S2: Constituents of the proteostasis system and log2 fold-changes between young (day 1) 

and highly aged animals (day 22) in the total proteome. 

 

Table S3: Categories of the proteostasis network affected during aging in WT. 

 

Table S4: Gene names and descriptions of candidates selected due to expression differences 

between daf-2 and WT for lifespan assays as well as RNAi constructs used. 

 

Table S5: Results and statistics of three individual lifespan experiments with WT animals 

maintained on bacteria expressing RNAi constructs against the indicated genes. 

 

Table S6: The same experiments as described in the legend to Table S5 performed in daf-16 

mutant animals. 

 

Table S7: 1D annotation distribution analysis of GO terms based on protein aggregation 

propensities in WT animals aged 12 days. Higher difference values indicate that the indicated 

terms are predominantly associated with highly aggregation-prone proteins. 

 

Table S8 – S10: Lifespan assay data for candidates selected because of their aggregation 

properties as provided in tables S4 to S6. 
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Walther et al., Figure 2
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Walther et al., Figure 5
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Walther et al., Figure 6
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Walther et al., Suppl. Figure 4
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Walther et al., Suppl. Figure 5
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Walther et al., Suppl. Figure 6
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Table S1: GO Term Enrichment of Proteins with >Two-fold Expression Change During Aging
>Two-fold Up-regulated
GO Category GO Term Enrichment factor P value Benj. Hoch. FDR
molecular_function nutrient reservoir activity 5.41 3.92E-05 1.37E-02
molecular_function magnesium chelatase activity 5.41 2.13E-04 4.25E-02
molecular_function lipid transporter activity 5.41 3.92E-05 1.56E-02
biological_process DNA-dependent DNA replication initiation 5.41 3.92E-05 4.28E-03
cellular_component extracellular space 4.81 9.69E-06 1.47E-03
cellular_component spindle midzone 4.64 2.24E-04 1.69E-02
molecular_function DNA-directed DNA polymerase activity 4.64 2.24E-04 4.16E-02
biological_process lipid transport 4.64 2.24E-04 1.63E-02
biological_process mitotic sister chromatid segregation 4.16 6.90E-06 8.94E-04
biological_process DNA replication 4.06 1.71E-13 1.50E-10
cellular_component condensed chromosome 3.94 1.19E-04 1.05E-02
cellular_component extracellular region 3.38 2.45E-13 2.60E-10
cellular_component lysosome 3.33 6.17E-04 3.84E-02
biological_process cell division 2.58 5.50E-10 1.60E-07
biological_process cytokinesis 2.51 2.24E-09 6.04E-07
biological_process mitosis 2.24 1.80E-04 1.40E-02
molecular_function DNA binding 2.01 4.33E-07 2.42E-04

>Two-fold Down-regulated 
Category column Category value Enrichment factor P value Benj. Hoch. FDR
biological_process ribosome biogenesis 4.27 1.07E-04 9.59E-03
cellular_component nucleolus 3.88 1.56E-08 4.13E-06
biological_process lipid glycosylation 3.81 2.19E-05 2.55E-03
cellular_component peroxisome 3.73 8.55E-04 4.77E-02
molecular_function transferase activity, transferring hexosyl groups 3.63 3.94E-05 1.10E-02
molecular_function carbohydrate binding 3.63 3.94E-05 1.22E-02
biological_process cellular metabolic process 3.29 5.08E-04 3.17E-02
biological_process rRNA processing 3.08 1.28E-04 1.07E-02
biological_process lipid metabolic process 2.74 9.63E-05 8.86E-03
biological_process biosynthetic process 2.56 3.63E-04 2.54E-02
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table S2

Page 2

Majority 
protein 
IDs Protein ID PN Category Gene Name

log2(Abundance 
Change) Day 22 
vs. Day 01

Q9BL02 Q9BL02 TFs ceh-44 -0.819572
O44499 O44499 TFs R02D3.3 0.393971
Q18034 Q18034 TFs tag-182 0.73797
Q22703 Q22703 TFs dpl-1 0.981504
Q95PZ4 Q95PZ4 TFs Y66D12A.15 1.322669
Q8MYM8 Q8MYM8 TFs Y39B6A.36 2.407454
P48162 P48162 Ribosome rpl-25.1 -2.270054
Q21930 Q21930 Ribosome rpl-28 -1.040522
P49181 P49181 Ribosome rpl-36 -1.025348
O01868 O01868 Ribosome rpl-24.1 -0.885498
P91128 P91128 Ribosome rpl-13 -0.810403
Q09533 Q09533 Ribosome rpl-10 -0.786909
O45946 O45946 Ribosome rpl-18 -0.671873
P91913 P91913 Ribosome rla-1 -0.629733
O45226 O45226 Ribosome rpl-29 -0.598498
P49041 P49041 Ribosome rps-5 -0.591549
O01802 O01802 Ribosome rpl-7 -0.580656
Q9XVE9 Q9XVE9 Ribosome rpl-14 -0.576073
Q19877 Q19877 Ribosome rps-23 -0.570765
P48166 P48166 Ribosome rpl-41 -0.542129
O18650 O18650 Ribosome rps-19 -0.532733
Q9XVF7 Q9XVF7 Ribosome rpl-8 -0.486366
O01504 O01504 Ribosome rpa-2 -0.475205
Q95Y90 Q95Y90 Ribosome rpl-9 -0.464085
O17570 O17570 Ribosome rpl-38 -0.456047
O02056 O02056 Ribosome rpl-4 -0.43422
Q94300 Q94300 Ribosome rpl-11.1 -0.426663
P34334 P34334 Ribosome rpl-21 -0.425077
P34662 P34662 Ribosome rpl-35 -0.388672
Q20206 Q20206 Ribosome rps-11 -0.383896
A3QMC5 A3QMC5 Ribosome rpl-34 -0.381042
O01692 O01692 Ribosome rps-17 -0.365086
Q1XFY9 Q1XFY9 Ribosome rps-24 -0.358892
Q9XVP0 Q9XVP0 Ribosome rps-15 -0.354444
P48156 P48156 Ribosome rps-8 -0.350309
Q9U1X9 Q9U1X9 Ribosome rla-2 -0.348633
P91914 P91914 Ribosome rpl-27 -0.344512

Table S2: Components of the protestasis network
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table S2

Page 3

O45499 O45499 Ribosome rps-26 -0.344217
P49197 P49197 Ribosome rps-21 -0.324447
P49405 P49405 Ribosome rpl-5 -0.311332
P49180 P49180 Ribosome rpl-33 -0.309192
O02639 O02639 Ribosome rpl-19 -0.301762
Q9U2A8 Q9U2A8 Ribosome rpl-43 -0.296358
P52821 P52821 Ribosome rps-25 -0.29269
P48152 P48152 Ribosome rps-3 -0.278364
Q27389 Q27389 Ribosome rpl-16 -0.259682
P47991 P47991 Ribosome rpl-6 -0.258502
P48158 P48158 Ribosome rpl-23 -0.257623
P52819 P52819 Ribosome rpl-22 -0.255299
Q20228 Q20228 Ribosome rps-9 -0.254919
O18240 O18240 Ribosome rps-18 -0.234986
Q93572 Q93572 Ribosome rpa-0 -0.23301
P49196 P49196 Ribosome rps-12 -0.223988
P91374 P91374 Ribosome rpl-15 -0.208308
P51403 P51403 Ribosome rps-2 -0.207857
Q8WQA8 Q8WQA8 Ribosome rps-20 -0.204029
Q9TXP0 Q9TXP0 Ribosome rps-27 -0.199306
O01869 O01869 Ribosome rps-10 -0.195596
Q22054 Q22054 Ribosome rps-16 -0.186814
Q23312 Q23312 Ribosome rps-7 -0.183804
P51404 P51404 Ribosome rps-13 -0.177431
P46769 P46769 Ribosome rps-0 -0.173889
O44480 O44480 Ribosome rpl-20 -0.168853
Q9NEN6 Q9NEN6 Ribosome rps-6 -0.156726
P48154 P48154 Ribosome rps-1 -0.144399
Q9XWS4 Q9XWS4 Ribosome rpl-30 -0.113173
P48150 P48150 Ribosome rps-14 -0.11106
Q9N3X2 Q9N3X2 Ribosome rps-4 0.035463
Q20647 Q20647 Ribosome rpl-25.2 0.085422
P49632 P49632 Ribosome ubq-2 0.213662
Q23338 Q23338 Chaperones fkb-4 -3.300837
Q17770 Q17770 Chaperones pdi-2 -1.870924
P34329 P34329 Chaperones C14B9.2 -1.590235
P27798 P27798 Chaperones crt-1 -1.181437
P91189 P91189 Chaperones dnj-7 -1.030239
Q18421 Q18421 Chaperones C34C12.8 -1.02002
Q17438 Q17438 Chaperones dnj-1 -1.019141
P52014 P52014 Chaperones cyn-6 -0.998941

2 Results

106



table S2

Page 4

Q8MPX3 Q8MPX3 Chaperones dnj-20 -0.845115
Q20752 Q20752 Chaperones stc-1 -0.82132
Q9XWE1 Q9XWE1 Chaperones dnj-27 -0.808008
P27420 P27420 Chaperones hsp-3 -0.797316
Q11067 Q11067 Chaperones tag-320 -0.681787
Q965Q1 Q965Q1 Chaperones Y22D7AL.10 -0.469788
G5EDB6 G5EDB6 Chaperones ppgn-1 -0.411907
Q94216 Q94216 Chaperones dnj-11 -0.400285
Q2L6Y6 Q2L6Y6 Chaperones R151.7 -0.393951
P52013 P52013 Chaperones cyn-5 -0.353362
Q9N4L6 Q9N4L6 Chaperones ZK973.11 -0.303759
P50140 P50140 Chaperones hsp-60 -0.280751
Q21993 Q21993 Chaperones pfd-5 -0.230403
P52554 P52554 Chaperones pfd-6 -0.227796
Q8TA83 Q8TA83 Chaperones dnj-10 -0.214883
O16303 O16303 Chaperones dnj-19 -0.178579
Q9N5M2 Q9N5M2 Chaperones pdf-2 -0.1676
Q9N3T5 Q9N3T5 Chaperones spg-7 -0.128894
O45502 O45502 Chaperones dnj-12 -0.119789
P54812 P54812 Chaperones cdc-48.2 -0.093031
P11141 P11141 Chaperones hsp-6 -0.05989
Q22758 Q22758 Chaperones T24H7.2 -0.052601
Q9N456 Q9N456 Chaperones glrx-10 -0.02015
Q17967 Q17967 Chaperones pdi-1 -0.01018
P47208 P47208 Chaperones cct-4 -0.00122
G5ED07 G5ED07 Chaperones pdi-3 0.036827
P52009 P52009 Chaperones cyn-1 0.052393
Q9N4J8 Q9N4J8 Chaperones cct-3 0.058982
P41988 P41988 Chaperones cct-1 0.075503
Q9U2S6 Q9U2S6 Chaperones cyn-13 0.082081
P47207 P47207 Chaperones cct-2 0.10071
P91243 P91243 Chaperones dnj-9 0.109249
Q9N358 Q9N358 Chaperones cct-8 0.10928
Q9XTU9 Q9XTU9 Chaperones glrx-5 0.115571
Q9NAF9 Q9NAF9 Chaperones pinn-4 0.222311
Q9XXI7 Q9XXI7 Chaperones cyn-16 0.233219
P46550 P46550 Chaperones cct-6 0.235433
P09446 P09446 Chaperones hsp-1 0.253885
P52018 P52018 Chaperones cyn-11 0.329666
Q05036 Q05036 Chaperones C30C11.4 0.330965
Q18688 Q18688 Chaperones daf-21 0.353901
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table S2

Page 5

P20163 P20163 Chaperones hsp-4 0.414079
Q95Y44 Q95Y44 Chaperones dnj-30 0.425666
Q20774 Q20774 Chaperones dnj-13 0.43117
P52012 P52012 Chaperones cyn-4 0.441249
O16259 O16259 Chaperones sti-1 0.463122
O44739 O44739 Chaperones bag-1 0.466069
O17002 O17002 Chaperones dnj-22 0.480879
Q18445 Q18445 Chaperones cyn-12 0.482127
P34652 P34652 Chaperones cnx-1 0.488331
Q9U2Q8 Q9U2Q8 Chaperones fkb-2 0.526578
Q9U1Q3 Q9U1Q3 Chaperones cyn-15 0.635047
P54811 P54811 Chaperones cdc-48.1 0.730264
Q9N492 Q9N492 Chaperones pinn-1 0.745625
O45418 O45418 Chaperones fkb-6 0.791455
G5EE04 G5EE04 Chaperones hip-1 0.893728
G5ECY6 G5ECY6 Chaperones chn-1 0.918543
Q22751 Q22751 Chaperones dnj-23 1.557921
Q9N350 Q9N350 Chaperones Y55F3BR.6 1.623039
P02513 P02513 Chaperones hsp-16.48 3.854937
B0M0L8 B0M0L8 Chaperones hsp-43 5.500406
Q20363 Q20363 Chaperones sip-1 6.517886
O02089 O02089 oxSR msra-1 -3.592271
A8WFK6 A8WFK6 oxSR gpx-7 -2.114834
O17397 O17397 oxSR F52H2.6 -1.8946
Q21032 Q21032 oxSR idh-1 -1.875446
Q17770 Q17770 oxSR pdi-2 -1.870924
G5EE41 G5EE41 oxSR cuc-1 -1.750963
Q21219 Q21219 oxSR pept-1 -1.742017
P34329 P34329 oxSR C14B9.2 -1.590235
G5EC91 G5EC91 oxSR dpy-11 -1.377119
O02621 O02621 oxSR F26E4.12 -1.191312
Q9N2W7 Q9N2W7 oxSR Y94H6A.8 -0.809261
Q9XWE1 Q9XWE1 oxSR dnj-27 -0.808008
Q9N357 Q9N357 oxSR Y55F3AR.2 -0.803335
Q11067 Q11067 oxSR tag-320 -0.681787
P90925 P90925 oxSR pah-1 -0.643779
O18236 O18236 oxSR nuo-3 -0.613147
Q17688 Q17688 oxSR C06A6.5 -0.547203
Q27487 Q27487 oxSR ctl-2 -0.393489
Q9N4L6 Q9N4L6 oxSR ZK973.11 -0.303759
Q9BKU4 Q9BKU4 oxSR phb-1 -0.194577
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table S2

Page 6

Q9TW67 Q9TW67 oxSR png-1 -0.175902
P91442 P91442 oxSR T10H10.2 -0.025716
Q17967 Q17967 oxSR pdi-1 -0.01018
G5ED07 G5ED07 oxSR pdi-3 0.036827
O62327 O62327 oxSR R05H10.5 0.144879
P50093 P50093 oxSR phb-2 0.157412
Q3Y409 Q3Y409 oxSR F52E1.13 0.381529
Q6EZG4 Q6EZG4 oxSR glrx-3 0.414082
G5EFF8 G5EFF8 oxSR C30H7.2 0.421277
Q20117 Q20117 oxSR gcs-1 0.495269
Q10664 Q10664 oxSR mek-2 0.627131
Q9TXY8 Q9TXY8 oxSR trx-4 0.689014
Q19683 Q19683 oxSR F21D5.5 0.790692
G5EES9 G5EES9 oxSR txl 0.872802
P31161 P31161 oxSR sod-2 0.982488
O61213 O61213 oxSR bli-3 1.526075
Q93204 Q93204 oxSR gpx-5 2.677219
Q03598 Q03598 UPS C40H1.6 -0.772614
Q21106 Q21106 UPS dcaf-1 -0.756369
Q9U1Y9 Q9U1Y9 UPS skr-4 -0.435981
Q18447 Q18447 UPS hecd-1 -0.391766
G5EDD8 G5EDD8 UPS skr-2 -0.323651
P52478 P52478 UPS ubc-1 -0.290564
G5EDT9 G5EDT9 UPS F36A2.13 -0.130791
P91430 P91430 UPS T03F1.1 -0.013457
Q10051 Q10051 UPS T10F2.4 0.005989
Q9XVK5 Q9XVK5 UPS ubc-12 0.017965
G5ECU1 G5ECU1 UPS skr-1 0.065153
Q9XTT9 Q9XTT9 UPS rpt-6 0.271356
O76371 O76371 UPS rpt-5 0.357458
P91477 P91477 UPS pbs-4 0.419447
P52012 P52012 UPS cyn-4 0.441249
Q17820 Q17820 UPS aos-1 0.444061
Q9GUP2 Q9GUP2 UPS eel-1 0.447582
O01524 O01524 UPS F19F10.9 0.46922
Q9GZH5 Q9GZH5 UPS rpn-1 0.47625
P35129 P35129 UPS let-70 0.489518
P91133 P91133 UPS ubr-1 0.503064
Q20585 Q20585 UPS rpn-7 0.514255
Q18217 Q18217 UPS ula-1 0.52189
Q95XX0 Q95XX0 UPS ubc-13 0.525489
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Q23449 Q23449 UPS rpn-12 0.525525
Q9BKS1 Q9BKS1 UPS elc-1 0.538547
G5ECR7 G5ECR7 UPS elb-1 0.555126
Q04908 Q04908 UPS rpn-3 0.569564
O61742 O61742 UPS rpn-10 0.585565
O61792 O61792 UPS rpn-8 0.589338
Q09583 Q09583 UPS pas-7 0.60294
P46502 P46502 UPS rpt-3 0.61424
Q966I8 Q966I8 UPS pbs-1 0.62596
Q21554 Q21554 UPS ddb-1 0.655003
Q27481 Q27481 UPS uba-1 0.656036
O62102 O62102 UPS pbs-2 0.679783
Q18787 Q18787 UPS rpt-1 0.684665
O17736 O17736 UPS D2085.4 0.686212
Q22253 Q22253 UPS rpn-9 0.686457
Q95017 Q95017 UPS ubc-9 0.689047
Q95005 Q95005 UPS pas-4 0.693026
G5EBK4 G5EBK4 UPS atg-7 0.711062
P34477 P34477 UPS ubc-7 0.723635
O16368 O16368 UPS rpt-2 0.744974
Q9N599 Q9N599 UPS pas-3 0.764344
Q27488 Q27488 UPS pas-2 0.812707
Q23237 Q23237 UPS pbs-3 0.813749
O76577 O76577 UPS rpn-11 0.81496
Q19324 Q19324 UPS rpn-5 0.839889
Q23457 Q23457 UPS rbx-1 0.839969
Q95008 Q95008 UPS pas-5 0.862351
P90868 P90868 UPS pbs-7 0.872052
O44156 O44156 UPS pas-6 0.877004
Q9TZ69 Q9TZ69 UPS ubc-20 0.88807
G5ECY6 G5ECY6 UPS chn-1 0.918543
Q9XUV0 Q9XUV0 UPS pbs-5 0.925739
Q19360 Q19360 UPS uba-3 0.93582
O17586 O17586 UPS pas-1 0.973252
Q17392 Q17392 UPS cul-4 1.063987
P34286 P34286 UPS pbs-6 1.133585
Q9N369 Q9N369 UPS atg-3 1.14194
Q17389 Q17389 UPS cul-1 1.177409
Q9NAN1 Q9NAN1 UPS uba-2 1.342353
Q21633 Q21633 UPS ubc-18 1.43499
Q95QN6 Q95QN6 UPS EEED8.16 1.436282
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Q17391 Q17391 UPS cul-3 1.47004
G5EG38 G5EG38 UPS emb-27 1.607611
Q22342 Q22342 Autophagy atg-11 -0.086027
Q23669 Q23669 Autophagy ZK930.1 0.146815
O16466 O16466 Autophagy atg-18 0.214917
Q17796 Q17796 Autophagy hgrs-1 0.348715
Q9NA30 Q9NA30 Autophagy atg-4.1 0.409934
Q9XWU8 Q9XWU8 Autophagy epg-3 0.50184
Q22799 Q22799 Autophagy dlc-1 0.6007
G5EBK4 G5EBK4 Autophagy atg-7 0.711062
Q9N369 Q9N369 Autophagy atg-3 1.14194
Q09490 Q09490 Autophagy lgg-1 1.239914
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all TFs Ribosome ChaperonesoxSR UPS Autophagy
>1.5-fold up 65 4 0 11 7 39 4
>1.5-fold down 42 1 10 13 16 2 0
changed 107 5 10 24 23 41 4
sum 254 6 64 70 37 67 10

Table S3: Components of the proteostasis network affected by aging.
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Table S4: Lifespan candidates selected from total proteome

Gene
Description

RNAi Clone
Expression  cluster 

(wormbase)
K12C11.1 Putative metallopeptidase (498 aa) I-1O11

C41A3.1
Non-ribosomal peptide synthetase/polyketide synthase (7829 
aa)

X-3E19
differentially_expressed_wi
th_age_medoid_6

T16G1.4 Predicted small molecule kinase (436 aa) V-8J17
K08D8.6 Uncharacterized (CUB-like domain) (491 aa) IV-6H18
F37B4.7 (folt-2) putative folate transporter (424 aa) V-2J03 age_regulated_genes

K08E7.9 (pgp-1)
pgp-1 encodes a transmembrane protein that is a member of the 
P-glycoprotein subclass of the ATP-binding cassette (ABC) 
transporter superfamily (1321 aa)

IV-6P19

R193.2 Uncharacterized (SEA domain) (1899 aa) X-1E16 age_regulated_genes
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RNAi Mean Lifespan % change
Log Rank              
p-value

Total animals 
died/Total

eV 22.11 +/- 0.37 93/120
eV 21.95 +/- 0.67 81/100
eV 22.55 +/- 0.73 76/100

daf-2 36.88 66.8% 103/120

daf-16 19.59 +/- 0.26 -11.4% 6.10E-09 80/120
daf-16 17.71 +/- 0.39 -19.3% 0.00E+00 89/100
daf-16 19.29 +/- 0.39 -14.5% 0.00E+00 85/100

K12C11.1 24.48 +/- 0.45 10.5% 2.00E-06 96/120
K12C11.1 23.42 +/- 0.68 6.7% 0.053 90/100
K12C11.1 23.91 +/- 0.56 6.0% 0.6022 85/100

C41A3.1 27.05 +/- 0.61 22.1% 0.00E+00 97/120
C41A3.1 24.82 +/- 0.74 11.5% 0.0001 100/115
C41A3.1 25.75 +/- 0.74 14.2% 0.0013 63/75

T16G1.4 23.78 +/- 0.41 7.5% 8.00E-04 101/120
T16G1.4 26.56 +/- 0.63 21.0% 4.50E-07 79/100
T16G1.4 NA NA NA

K08D8.6 26.12 +/- 0.38 18.1% 0.00E+00 103/120
K08D8.6 26.67 +/- 0.74 21.5% 1.70E-08 90/100
K08D8.6 28.83 +/- 0.64 27.8% 0.00E+00 84/100

F37B4.7 28.77 +/- 0.45 30.0% 0.00E+00 99/120
F37B4.7 24.3 +/- 0.59 10.7% 0.0136 92/100
F37B4.7 25.18 +/- 0.49 11.6% 5.29E-02 93/100

K08E7.9 27.29 +/- 0.36 23.4% 0.00E+00 104/120
K08E7.9 22.23 +/- 0.57 1.3% 0.4457 77/100
K08E7.9 24.72 +/- 0.52 9.6% 0.0675 104/120

R193.2 27.18 +/- 0.36 22.9% 0.00E+00 102/120
R193.2 24.29 +/- 0.63 10.6% 0.0042 98/110
R193.2 26.54 +/- 0.52 17.7% 0.0001 83/100

 Table S5: Lifespan Assays, candidates selected from total proteomes (wild-type 
worms)
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RNAi Mean Lifespan % change
Log Rank         p-
value

Total animals 
died/Total

eV 15.54 +/- 0.3 109/120
eV 17.45 +/- 0.35 91/120

daf-2 14.58 +/- 0.3 -6.2% 0.0451 108/120
daf-2 16.89 +/- 0.35 -3.2% 0.3522 99/120

K12C11.1 15.28 +/- 0.31 -1.7% 0.5183 103/120
K12C11.1 16.93 +/- 0.27 -2.9% 0.1358 110/120

C41A3.1 16.33 +/- 0.31 5.1% 0.0909 107/120
C41A3.1 17.91 +/- 0.32 2.6% 0.3574 109/120

T16G1.4 16.23 +/- 0.32 4.4% 0.1158 103/120
T16G1.4 17.12 +/- 0.3 -1.9% 3.77E-01 107/120

K08D8.6 16.6 +/- 0.31 6.8% 0.0142 107/120
K08D8.6 17.1 +/- 0.3 -2.0% 3.56E-01 102/120

F37B4.7 16.58 +/- 0.3 6.7% 0.016 118/120
F37B4.7 17.74 +/- 0.32 1.6% 0.6789 99/120

K08E7.9 16.49 +/- 0.31 6.1% 0.018 113/120
K08E7.9 18.15 +/- 0.41 4.0% 0.073 95/120

R193.2 16.14 +/- 0.31 3.9% 0.1975 103/120
R193.2 17.16 +/- 0.3 -1.6% 0.3782 98/120

Table S6: Lifespan Assays (daf-16 mutant background), candidates selected from total 
proteomes
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GO Category GO Term Difference P value
Benj. Hoch. 
FDR

cellular_component M band 0.62 3.74E-04 1.49E-02
cellular_component intermediate filament 0.58 5.45E-04 1.58E-02
cellular_component striated muscle dense body 0.53 4.36E-04 1.39E-02
cellular_component P granule 0.52 1.15E-05 1.22E-03
molecular_function helicase activity 0.51 1.34E-07 2.13E-05
molecular_function ATP-dependent helicase activity 0.47 6.57E-06 7.48E-04
biological_process DNA replication 0.44 7.56E-05 8.80E-03
molecular_function DNA binding 0.43 7.57E-10 6.03E-07
molecular_function nucleic acid binding 0.32 2.89E-08 7.67E-06
molecular_function RNA binding 0.29 3.86E-06 5.12E-04
biological_process morphogenesis of an epithelium 0.27 1.07E-05 1.60E-03
molecular_function structural constituent of ribosome 0.24 2.44E-04 1.95E-02
cellular_component nucleus 0.23 5.48E-08 1.74E-05
cellular_component ribosome 0.23 2.92E-04 1.33E-02
biological_process translation 0.22 1.19E-04 1.14E-02
cellular_component intracellular 0.21 1.36E-05 1.08E-03
biological_process hermaphrodite genitalia development 0.17 7.53E-06 1.32E-03
molecular_function ATP binding 0.16 3.63E-05 3.61E-03
biological_process embryo development 0.16 9.14E-11 4.79E-08
biological_process reproduction 0.13 4.80E-07 1.26E-04
biological_process nematode larval development 0.10 1.89E-04 1.65E-02

Table S7: 1D Annotation Distribution of Aggregation Propensities in wt Animals at Day 12
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Table S8: Lifespan candidates selected from aggregated subproteome

Gene
Description

RNAi Clone
Expression  cluster 

(wormbase)

W02A2.2 (far-6 )
Fatty Acid/Retinol binding protein (184 
aa) IV-7G05

age_regulated_genes

T22B7.7 Acyl-CoA thioesterase (393 aa) X-3K09 age_regulated_genes
Y62H9A.5 Novel Protein (165 aa) X-5N13
Y62H9A.6 Novel Protein (181 aa) X-5N15 age_regulated_genes
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RNAi Mean Lifespan % change
Log Rank          p-
value

Total animals 
died/Total

eV 20.99 +/- 0.3 119/140
eV 23.52 +/- 0.44 99/120
eV 22.55 +/- 0.73 76/100

W02A2.2 24.48 +/- 0.37 16.6% 0.00E+00 116/140
W02A2.2 27.29 +/- 0.46 16.0% 0.00E+00 96/120
W02A2.2 25.61 +/- 0.65 13.5% 0.0016 79/100

T22B7.7   22.99 +/- 0.36 9.5% 9.30E-06 111/140
T22B7.7   26.64 +/- 0.44 13.2% 6.00E-08 106/120
T22B7.7   24.6 +/- 0.73 9.1% 0.1193 58/75

Y62H9A.5   22.74 +/- 0.31 8.3% 0.0001 127/140
Y62H9A.5   27.56 +/- 0.38 17.1% 0.00E+00 117/120
Y62H9A.5   25.32 +/- 0.55 12.2% 0.0197 91/100

Y62H9A.6   22.6 +/- 0.3 7.7% 0.0007 126/140
Y62H9A.6   25.6 +/- 0.48 8.8% 0.0004 89/100
Y62H9A.6   26.2 +/- 0.54 16.1% 0.0005 91/100

 Table S9: Lifespan Assays, candidates selected from aggregated subproteome (wild-type worms)
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RNAi Mean Lifespan % change
Log Rank         p-
value

Total animals 
died/Total

eV 20 +/- 0.31 113/140
eV 17.32 +/- 0.29 112/120

W02A2.2 20.62 +/- 0.32 3.10% 5.34E-02 119/140
W02A2.2 17.61+/- 0.33 1.67% 3.10E-01 112/120

T22B7.7   20.11 +/- 0.36 0.45% 0.4173 108/130
T22B7.7   17.48 +/- 0.3 0.92% 0.8583 97/120

Y62H9A.5   20.71 +/- 0.36 3.55% 0.027 99/120
Y62H9A.5   17.89+/- 0.35 3.29% 0.0861 108/120

Y62H9A.6   19.95 +/- 0.32 -0.25% 9.89E-01 119/140
Y62H9A.6   17.29 +/- 0.32 -0.18% 7.84E-01 84/120

 Table S10: Lifespan Assays (daf-16 mutant background), candidates selected from 
aggregated subproteome
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2 Results

2.3 The Mitochondrial Contact Site Complex, a Determinant
of Mitochondrial Architecture.

2.3.1 Aim and Summary

Mitochondria are enclosed by two membranes with distinct functions and substantial
differences in lipid and protein content. Mitochondrial contact sites (CS) - interactions
between these two membranes - have been observed in electron micrographs of mito-
chondria [110]. However, the proteins facilitating their formation are largely unknown.
To identify proteins involved in CS formation, membrane vesicles of yeast mitochon-
dria were generated by mild sonication and separated via sucrose gradient centrifu-
gation. SILAC-based protein correlation profiling was subsequently employed to com-
pare abundance distributions of individual proteins across the gradient. By this means,
five largely uncharacterized proteins were identified whose profiles matched that of
Fcj1, which had previously been shown to be enriched in the protrusions of the inner
membrane towards CS, termed cristae junctions (CJ) [249]. Biochemical assays and
electron microscopy confirmed that these proteins form a complex required for CS for-
mation which we named MICOS. Deletion of MICOS subunits resulted in partial or
complete loss of CJ and an impaired growth on carbon sources requiring respiration.

2.3.2 Contribution

This project was designed and initiated by the group of Walter Neupert at the Adolf-
Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University in
Munich, Germany. Max Harner optimized the gradient centrifugation procedure and,
together with Christian Körner, performed the majority of the follow up work. My
contribution was to establish the experimental strategy that allowed us to identify pro-
teins involved in CS formation. I further optimized the sample preparation conditions,
performed the measurements and contributed to the data analysis.
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2.3.3 Publication

This work has been published in The EMBO Journal.

EMBO J. 2011 Oct 18;30(21):4356-70.

“The Mitochondrial Contact Site Complex, a Determinant of Mitochondrial Architec-
ture.”

Max Harner*, Christian Körner*, Dirk M. Walther, Dejana Mokranjac, Johannes Kaes-
macher, Ulrich Welsch, Janice Griffith, Matthias Mann, Fulvio Reggiori, and Walter
Neupert
*equal contribution
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The mitochondrial contact site complex,
a determinant of mitochondrial architecture
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Mitochondria are organelles with a complex architecture.

They are bounded by an envelope consisting of the outer

membrane and the inner boundary membrane (IBM).

Narrow crista junctions (CJs) link the IBM to the cristae.

OMs and IBMs are firmly connected by contact sites (CS).

The molecular nature of the CS remained unknown. Using

quantitative high-resolution mass spectrometry we identi-

fied a novel complex, the mitochondrial contact site

(MICOS) complex, formed by a set of mitochondrial mem-

brane proteins that is essential for the formation of CS.

MICOS is preferentially located at the CJs. Upon loss of one

of the MICOS subunits, CJs disappear completely or are

impaired, showing that CJs require the presence of CS to

form a superstructure that links the IBM to the cristae. Loss

of MICOS subunits results in loss of respiratory competence

and altered inheritance of mitochondrial DNA.

The EMBO Journal (2011) 30, 4356–4370. doi:10.1038/

emboj.2011.379; Published online 18 October 2011

Subject Categories: membranes & transport; cell & tissue

architecture; cellular metabolism

Keywords: contact site proteins; crista junction; MICOS;

mitochondrial membrane proteome; molecular architecture

of mitochondria

Introduction

The ability to determine the relationship between the mole-

cular architecture of proteins and the functions of proteins

has been key to progress in cell biology to a large extent. The

relationship between the molecular architecture of cell orga-

nelles, the next higher level of cellular organization, and their

function is much less understood. Organelles are composed

of membranes and it is much more difficult to link the

structure of membrane proteins and of lipids to a specific

architecture. This is particularly challenging in the case of

mitochondria because these organelles have a unique

and quite complex membrane system, which is the basis

for their numerous intricate functions (Scheffler, 2011).

Mitochondria catalyse a plethora of metabolic reactions, in

particular transducing energy by oxidative phosphorylation.

Mitochondria replicate and inherit the mitochondrial genome

and synthesize proteins and lipids. They are involved

in apoptosis, cellular ageing and in a large number of diseases

(Pellegrini and Scorrano, 2007; Wallace and Fan, 2009;

Larsson, 2010). Mitochondria are dynamic organelles that

have the ability to continuously divide and fuse (Griparic

et al, 2004; Okamoto and Shaw, 2005; Hoppins and Nunnari,

2009). They move in the cell by association with the cyto-

skeleton (Boldogh and Pon, 2006; Chan et al, 2006;

Westermann, 2010). They import proteins from the cytosol

and lipids from the endoplasmic reticulum (ER).

The most prominent architectural elements of the mito-

chondria are their membranes (Frey and Mannella, 2000;

Reichert and Neupert, 2002; Perkins et al, 2004; Mannella,

2006, 2008). Mitochondria are bounded by an envelope,

which is comprised of the outer membrane (OM) and inner

boundary membrane (IBM), two membranes of completely

different composition and properties. The cristae protrude

from the IBM into the inner space of the mitochondria, the

matrix. The cristae and the IBM together make up the inner

membrane (IM). The structure of the cristae, their arrange-

ment in the matrix, their number and surface area are highly

diverse in different types of cells, tissues and organisms

(Fawcett, 1981). The connections between IBM and the

cristae are the crista junctions (CJ). These are small, usually

very short tubule or slot-like structures. The space between

the OM and the IBM, the intermembrane space (IMS),

is rather narrow in comparison to the space between cristae

sheets, also called intracrista space. Furthermore, there are

sites of firm interaction between OM and IBM that become

apparent when isolated mitochondria are in a low-energy

state or exposed to hypertonic medium. Under these condi-

tions, the matrix condenses and the IBM retracts from the OM

(Hackenbrock, 1968). These connections have been termed

mitochondrial contact sites (CS), yet their molecular nature

has remained elusive.

It has been discussed that these various membranes are

shaped essentially by the lipid components (Renken et al,

2002). However, mutations have been described in which

the overall shape of mitochondria as observed by light

microscopy is altered (Shaw and Nunnari, 2002; Okamoto

and Shaw, 2005). More recently, and important in the present

context, mutations affecting mitochondrial ultrastructure as

revealed by electron microscopy (EM) were reported

(Dimmer et al, 2002; Meeusen et al, 2006; Tamai et al,

2008; Rabl et al, 2009). In most cases, the phenotype

observed was loss of mitochondrial DNA and of respiratory

competence. Thus, it seems reasonable to assume that there
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online: 18 October 2011
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are groups of proteins that determine the various structural

elements of mitochondria.

Here, we report on a search for proteins that determine CS

by which the IBM and OM are attached to each other.

We reasoned that it should be possible to isolate a fraction

of the mitochondrial membranes that contains CS. To identify

CS, we generated a novel marker by expressing in yeast

cells a fusion protein that permanently spans both outer

and IBM. We subfractionated mitochondria, separated

vesicles and analysed the fractions by protein correlation

profiling, a mass spectrometry-based organellar proteomics

technique (Andersen et al, 2003; Foster et al, 2006; Dengjel

et al, 2010). In this approach, we used an SILAC standard

(Ong et al, 2002) to identify proteins with the same distribu-

tion as the marker. Resulting protein candidates were charac-

terized in terms of their submitochondrial location, topology,

importance for cell growth and mitochondrial respiratory

competence. Six proteins were found that form a mitochon-

drial contact site (MICOS) complex. They are associated

with the IM and interact with the OM by binding to the

TOB/SAM complex and the Ugo1 protein. The MICOS com-

plex is critically involved in the formation of CJs and cristae,

as well as in several important functions of the mitochondria.

We conclude that the MICOS complex represents the long

searched molecular scaffold of mitochondrial contact sites.

Results

Identification of protein candidates of mitochondrial

contact sites

Examination of mitochondria by EM in their cellular environ-

ment yields images in which the OM and IBM are closely

apposed to each other (‘orthodox state’). CS cannot be

distinguished under these conditions. When mitochondria

are isolated and subjected to hyperosmotic treatment, the

IBM retracts, the matrix shrinks and the mitochondria

assume a ‘condensed state’ (Hackenbrock, 1968). The IBM

remains in close contact with the OM, however, only at

few sites (Figure 1A, upper left panel). The gaps at these

sites are filled with stain, indicating the presence of proteins

(Figure 1A, upper right panel). Importantly, we observed that

these contacts in most cases are present right next to where

cristae merge with the IBM, at the CS. This is illustrated

in a drawing in which an orthodox mitochondrion is recon-

structed from a condensed mitochondrion (Figure 1A, middle

panels). Taken together, these observations led us to hypo-

thesize that CS forming proteins are present in these areas.

On the basis of this reasoning, we devised an approach

in which the proteins that are forming the CS could be

identified. We designed a marker protein for these sites.

Previous attempts to identify components of CS led to suc-

cessful subfractionation of mitochondria but the absence of a

marker prevented the identification of mitochondrial contact

site (Mcs) proteins (Werner and Neupert, 1972; Pon et al,

1989). As a prerequisite, the marker must be permanently

spanning OM and IBM. The design of this protein was based

on our work on the structure and topology of yeast Tim23, an

essential component of the protein conducting TIM23 translo-

case (Donzeau et al, 2000). We generated a fusion protein of

GFP with Tim23, which locks Tim23 in the desired position,

with the GFP domain being present on the mitochondrial

surface (Harner et al, 2011). GFP–Tim23 expressed in cells

lacking wild-type Tim23 has the intriguing property of com-

plementing the function of the TIM23 translocase (Vogel et al,

2006). Figure 1A (middle panel) depicts the distribution of

proteins of OM and IM, as well as of Tim23 in wild-type cells

(left side, green squares) and of GFP–Tim23 in cells expres-

sing this marker (right side, green dumbbells). The predicted

different behaviour of these two proteins upon condensation

of mitochondria will result in accumulation of GFP–Tim23 in

CS, but not of Tim23. Therefore, vesicle fractions containing

CS (Figure 1A, lower panels) will contain GFP–Tim23 as

marker protein for the Mcs proteins.

Subfractionation of mitochondria and analysis of protein

components by immunoblotting. To verify this concept, we

subjected mitochondria to mild sonication and separation of

fragments by density gradient flotation centrifugation. In

a first set of experiments, we analysed the gradient fractions

with antibodies against the designed marker and a number of

OM and IM proteins. We compared mitochondria from wild-

type cells and from cells expressing GFP–Tim23 instead of

Tim23 (Figure 1B, left versus right panel). IM proteins were

recovered at the bottom of the gradient and to a lower degree

in the middle of the gradient of both wild-type and GFP–

Tim23 expressing cells. Wild-type Tim23 was distributed

in a similar manner as other IM proteins. In contrast, in

mitochondria containing GFP–Tim23, this fusion protein was

present exclusively in the middle of the gradient, being

virtually absent in the bottom fractions. The submitochon-

drial location of intermediates of precursor proteins stalled

upon import into isolated mitochondria was analysed pre-

viously by fractionation of the mitochondria and sucrose

gradient centrifugation. The majority of the intermediates

were recovered in fractions of intermediate density, in agree-

ment with the localization of the TIM23 import machinery in

these fractions shown here (Pon et al, 1989). OM proteins

such as VDAC/porin and subunits of the TOM complex were

present in the top fractions of the gradient and to a low degree

in the fractions containing the GFP–Tim23 marker in both

types of cells. Interestingly, Fcj1, a protein with an essential

role in the formation of CJ (Rabl et al, 2009) showed a very

similar distribution as GFP–Tim23. We concluded that we

were able to resolve the CS containing vesicles and have

identified a first component of this fraction.

Proteome of the CS fraction by quantitative mass spectro-

metry. In a further experiment, we used quantitative mass

spectrometry (SILAC) to identify proteins specifically en-

riched in the CS fraction using protein correlation profiling

via an internal SILAC standard. Cells were grown in media

containing 12C and 14N (‘light’) or 13C and 15N (‘heavy’)

lysine. Mitochondria were isolated, fragmented and subjected

to gradient centrifugation as in Figure 1B. Gradient fractions

10–15 from the ‘heavy’ gradient were pooled and served as a

metabolically labelled internal standard for SILAC-based

protein quantitation. Individual fractions (the odd numbered

ones of a total of 21) of the ‘light’ gradient were mixed with

aliquots of this internal standard, digested with endoprotei-

nase LysC to peptides and analysed by high-resolution

mass spectrometry. Proteins were identified and quantified

in each of the fractions based on their isotope ratios using

the MaxQuant framework (Cox and Mann, 2008). Proteins

of the various mitochondrial subcompartments showed
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characteristic profiles (Figure 1C; see also Supplementary

Figure S1 and Supplementary Dataset File F1). IM proteins

peaked in fraction 13 with a high isotope ratio in the

bottom fraction. OM proteins, including subunits of the

TOM complex, were prominent in the top fraction, and

present to a minor extent in the middle of the gradient.

Soluble matrix proteins were only present in the bottom

fractions. Apparently, soluble proteins remained in IM

Figure 1 Identification of Mcs proteins. (A) Rationale for the analysis of distribution of membrane proteins in mitochondria. (Upper panels)
Electron micrographs of sections of mitochondria from Neurospora crassa subjected to osmotic shrinking (‘condensed configuration’). Size
bars, 200 nm. Arrowheads show regions of attachment between IM and OM (contact sites, CS); brackets indicate CS at higher magnification
where two cristae invaginate in close neighbourhood. (Middle panels) ‘Orthodox configuration’ was reconstructed from the electron
micrograph in the upper panel (see arrows). Left, mitochondria from wild type, expressing untagged Tim23; right, mitochondria from cells
expressing GFP–Tim23. (Lower panels) Distribution of proteins indicated above after shrinking of mitochondria and theoretically generated
vesicles. Symbols: red lines, putative proteins of CS; blue balls, IM proteins; green squares, Tim23; green dumbbells, GFP–Tim23; grey
triangles, OM proteins. (B) Separation of vesicles of mitochondria from Tim23 and GFP–Tim23 expressing cells (left and right panels,
respectively) by flotation equilibrium gradient centrifugation. Fractions were analysed by SDS–PAGE and immunodecorated with the indicated
antibodies. L, load fraction. Odd numbered fractions of the gradients were analysed. (C) Analysis of mitochondrial fractions prepared as in (B)
by quantitative mass spectrometry (SILAC). Distribution of marker proteins and of proteins qualifying as components of CS. (Left panel)
Profiles of examples of OM proteins, IM proteins, matrix proteins and Fcj1. (Right panel) Profiles of six proteins that qualify as Mcs proteins.
See also Supplementary Figure S1 for further controls.
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vesicles or were released from the vesicles when experiencing

the high osmotic pressure of the bottom fractions of the

gradient. The procedure was highly reproducible and

precise. The profiles of the same protein in two different

mass spectrometry experiments were virtually identical. The

same was true when comparing two different subunits of

one complex (Supplementary Figure S1). The mitochondrial

preparation in these experiments was intentionally not

optimized for purity in order not to damage the architecture

of mitochondria during isolation. Proteins of the ER originat-

ing either from contamination or from association of ER

with the mitochondria showed a well-defined profile that

can be easily discriminated from the profiles of mitochondrial

proteins (Supplementary Figure S1).

Importantly, in contrast to the profile of IM proteins, Fcj1

showed a peak of isotope ratio in fraction 11 and a rather low

ratio in the bottom fractions. We examined the B350 mito-

chondrial membrane proteins, which were detected in the

SILAC analysis for having a profile like Fcj1 and thereby

GFP–Tim23. This screen yielded a list of five proteins whose

gradient profiles are shown in Figure 1C, right panel. These

proteins are present in the Saccharomyces cerevisiae genome

database (http://www.yeastgenome.org), where they are

listed as mitochondrial proteins of unknown function.

Three of them are present in a collection of proteins, resulting

from a screen for altered inheritance of mitochondrial DNA

(AIM) (Hess et al, 2009), which comprises a total of 46

entries.

We conclude that we have identified a set of six proteins,

which, according to their co-fractionation with the marker

protein, qualify as components of the IBM/CS. From now

on, we address these proteins as Mcs proteins and by their

calculated molecular mass in kDa. These proteins are Mcs29

(Ygr235c), Mcs27 (Ynl100w, AIM37), Mcs19 (Yfr011c,

AIM13), Mcs12 (Ybr262c, AIM5), Mcs10 (Ycl057c-a) and

Fcj1 (Ykr016w, AIM28).

The MICOS complex

Co-isolation of Mcs proteins. To investigate whether the pro-

teins identified interact with each other, we performed both

co-isolation and molecular sizing experiments. A summary

of the interactions observed upon co-isolation is presented in

Figure 2A. All six proteins showed interactions between each

other but not with any of the other mitochondrial proteins

tested. Interestingly, Fcj1 could be co-isolated together with

all five C-terminally His-tagged Mcs proteins. However,

pull down of C-terminally tagged Fcj1 led to co-isolation

of only trace amounts of Mcs proteins (Figure 2A, left

panel). This was surprising, in particular since C-terminally

tagged Fcj1 was able to rescue the deletion of Fcj1. Therefore,

we suspected that the presence of the tag leads to a weakened

interaction of Fcj1 with other Mcs proteins. We then

expressed N- or C-terminally tagged Fcj1 versions from a

plasmid in an Fcj1 deletion strain. Indeed, all the Mcs

proteins were co-isolated only when the tag was present at

the N-terminus (Figure 2A, right panel). This observation

indicates the importance of the conserved C-terminal domain

of Fcj1 for interaction with the other complex components.

Altogether, these results demonstrate the existence of

a complex network of physical interactions between the

various Mcs proteins. Whether the intensities observed in

this assay are a reflection of the strength of binding or are

influenced by the experimental conditions is not clear.

Relative abundance of Mcs proteins in mitochondria. We

checked the relative abundance of the Mcs proteins by

tagging them with a C-terminal HA-tag and expressing them

under their endogenous promoters from the chromosome.

Isolated mitochondria were analysed by SDS–PAGE (poly-

acrylamide gel electrophoresis) and immunoblotting with an

antibody against the HA-tag. The experimental approach used

obviously provides only a rough estimate of the abundance

due to the limitations of the method. Yet, it appears that Fcj1,

Mcs12, Mcs19 and Mcs29 are of roughly equal abundance,

whereas Mcs27 and, in particular, Mcs10 are present at higher

levels (Figure 2B).

Complexes formed by the Mcs proteins. In order to analyse

complexes formed by the Mcs proteins, we subjected mitochon-

dria to lysis with digitonin followed by gel filtration (Figure 2C).

All of the Mcs proteins were present in two large complexes of

B1.5 and 0.7 MDa apparent molecular mass, which we termed

MICOS I and MICOS II, respectively. Some of the Mcs proteins,

however, were not completely or only partly recovered in

MICOS I and II. In particular, very little of Mcs10 was found

with the large complexes, but rather in fractions of about

200 kDa. These species probably contain oligomers of Mcs10

since untagged Mcs10 could be co-isolated with tagged Mcs10

when expressed together (not shown). Mcs29 was recovered

only to a lower extent in MICOS I and II; however, more was

present in the low molecular mass range. Finally, Mcs12 was

present to a higher extent in MICOS II than in MICOS I. The

TOM complex that served as a control eluted with an apparent

mass of 400–500 kDa as to be expected (Kunkele et al, 1998). To

test whether the absence of the majority of Mcs10 from the large

complexes was due to a minor contribution to MICOS I and II or

whether Mcs10 easily dissociates from the other Mcs proteins

upon solubilization of mitochondria, we performed Blue native

(BN)-PAGE. Immunoblotting with antibodies against Fcj1,

Mcs27 or Mcs29 revealed two high molecular mass complexes

of roughly 1.5 and 0.7 MDa. The sizes of these two complexes

matched very well with those obtained upon gel filtration. The

antibody against Mcs10 did not recognize its antigen upon BN-

PAGE; therefore, we analysed mitochondria harbouring his-

tagged Mcs10. Immunoblotting using antibody against the His-

tag (penta-His; Qiagen) revealed again two high molecular

complexes with similar sizes as observed upon immunodecora-

tion with the other Mcs proteins (Supplementary Figure S2A).

This indicates that Mcs10 has the tendency to dissociate from

the complex after detergent solubilization of mitochondria and

gel filtration.

Steady-state levels of Mcs proteins in deletion strains. We

further asked as to whether deletion of one of the Mcs

proteins would affect the steady-state levels of the other

Mcs proteins (Figure 2D). Indeed, severe reduction of the

levels of proteins of the MICOS complex occurred (with

the exception of deletion of Mcs12), but not of other proteins

of the different mitochondrial subcompartments. Deletion

of Fcj1, in particular, resulted in a strong reduction of the

levels of all other subunits of the MICOS complex.

Interestingly, not only downregulation was observed; dele-

tion of Mcs29 caused upregulation of Mcs27. These results
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suggest that the expression of Mcs proteins is subject to a

regulatory network.

The MICOS complex fell apart when one of the Mcs

proteins was missing as observed by filtration analysis

(Supplementary Figure S2B). In most cases, MICOS I and II

were either completely absent or strongly reduced and the

level of lower mass complexes increased (Dfcj1, Dmcs10,

Dmcs19, Dmcs29, Dmcs12). Upon deletion of Mcs27, a shift
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from MICOS I to MICOS II was observed. We conclude that

the six different Mcs proteins cooperate in an intricate

manner to generate the MICOS complex.

Topology of Mcs proteins. In order to determine the topology

of the Mcs proteins, we performed protease accessibility and

alkaline extraction assays followed by immunoblotting

(Figure 2E). This list includes the previously established

topology of Fcj1 (Rabl et al, 2009). Mcs10 is integrated into

the IM with a predicted transmembrane segment located

about 50 residues from the N-terminus. A topology in

which the N-terminal part is located in the matrix and the

C-terminal part in the IMS is supported by the loss of

C-terminal His or HA tags upon protease treatment of mito-

plasts (not shown). However, in view of the absence of a

classical targeting signal other topologies cannot be excluded.

Mcs19 is present in the IMS; it is apparently not an integral

membrane protein, as it could be extracted from membranes

at alkaline pH, a notion supported by the absence of a

predicted membrane anchor. Since it is not lost during

hypo-osmotic swelling, most of Mcs19 is likely bound to

the IM. The relatively high isotope ratio at the top of the

gradient (see Figure 1C) raises the possibility that part of the

protein is associated with the OM. On the other hand, the

comparatively high ratio at the bottom of the gradient may

suggest that part of it is present in cristae membranes. Mcs27

and Mcs29 are also integral proteins of the IM. They have two

predicted transmembrane spanning helices; the hydrophilic

parts are present in the IMS. Mcs12 is anchored to the IM

with its N-terminus exposing a hydrophilic domain of about

70 residues into the IMS. In summary, the six proteins found

to participate in CS formation are inserted into or associated

with the IM.

Submitochondrial location of the Mcs proteins

To determine the location of the various Mcs proteins at the

submitochondrial level, immunolabelling with gold particles

of cryosections was performed. It should be noted that with

this procedure, gold particles can be present at a distance of

up to 20 nm from the epitopes. Cells expressing the HA-tagged

Mcs proteins were grown on lactate or glycerol (Figure 3A;

see also Supplementary Figure S3A). Fcj1 was predominantly

found at the mitochondrial envelope, very often in close

proximity to CJ, in agreement with our previous work.

Most intriguingly, the Mcs10 protein had a very similar

distribution. It was also associated with the mitochondrial

envelope and in most cases present at CJ. The observed

immune reactions are specific as background labelling in

wild-type cells was negligible (not shown). To analyse the

distribution of Mcs10 in more detail, cells were also grown on

glycerol where fewer cristae are present. Under these condi-

tions, a close association of Mcs10 with CJ was conspicuous

(Figure 3B). A third protein with a similar distribution is

Mcs19, which, however, was also found at cristae. The latter

location appears to be consistent with its higher levels in

gradient fractions that correspond to crista membranes

(cf Figure 1C, right panel, and see below Figure 4A).

Mcs27, Mcs29 and Mcs12 also showed a preferential location

at the envelope with very few gold particles found in the

interior of mitochondria. Notably, the immunoreactivity of

the cryosections was in agreement with the estimated levels

of the Mcs proteins (Figure 2B).

The distribution of a number of other mitochondrial

proteins was studied for comparison (Figure 3C). Isocitrate

dehydrogenase (Idh1), an abundant matrix protein was

distributed all over the internal space of the mitochondria.

VDAC/porin (Por1) was only found on or close to the OM.

Likewise, Tob38/Sam35 and Mas37/Tob37/Sam37, compo-

nents of the TOB complex, were present at the OM. Tim50

and Tim16, components of the TIM23 protein import ma-

chinery, in contrast, were found at the envelope membranes

and to a lower degree in the interior of the mitochondria, in

agreement with a previous study (Vogel et al, 2006) (see also

Supplementary Figure S3B). Quantitative analysis of the

immunolabelling of the Mcs proteins showed that some 35–

45% of the gold particles were present at CJ; in contrast, only

5–8% of those marking control proteins were found at CJ

(Figure 3D; Supplementary Table SI). Since CJs are small

structures, they are not always visible in case of grazing

sections; therefore, the number of Mcs proteins at CJs may be

underestimated. On the other hand, a fraction of Mcs proteins

may also be present outside CJ.

In summary, immuno-EM revealed that the MICOS com-

plex is indeed located predominantly or entirely at the

mitochondrial envelope strongly supporting the results of

analysis of mitochondrial subfractions. Most interestingly,

the MICOS complex is predominantly located at CJs.

Interaction of Mcs proteins with OM proteins

In a search for components of the mitochondrial OM that

might be interaction partners of the Mcs proteins, we checked

the gradient fractions of Figure 1 for OM proteins that overlap

Figure 2 The MICOS complex. (A) Co-isolation of Mcs proteins. His-tagged versions of the Mcs proteins were expressed under control of their
own promoters (left panel) or from the pYX242 plasmid (right panel) in the respective deletion strain. Mitochondria were isolated, solubilized
with digitonin and incubated with Ni-NTA beads. Total (T, 5% of total), supernatant (S, 5% of total) and bound material (B, 100%) were
analysed by SDS–PAGE and immunodecoration with the indicated antibodies. Mitochondria from wild-type cells served as control. (B) Relative
abundance of Mcs proteins. HA-tagged versions of the Mcs proteins were expressed under their own promoters. Equal amounts of
mitochondria were analysed by SDS–PAGE and immunoblotting with antibodies against the HA-tag (aHA) and against Tom40 (aTom40),
the loading control. (C) Molecular sizing of Mcs proteins from wild-type mitochondria. Mitochondria were lysed with digitonin and lysates
subjected to gel filtration on a Superose 6 column. The fractions were analysed by SDS–PAGE and immunoblotting using the indicated
antibodies; in case of Msc12, a strain was used which expressed HA-tagged Msc12 and immunoblotting was with aHA antibody. Msc10 blots
were exposed for two different time periods. The TOM complex (Tom40) was decorated as a control. I and II, MICOS complex I and II. Positions
of marker proteins for calibration are indicated with arrows. L, load (10% of material applied to column). See also Supplementary Figure S2A.
(D) Steady-state levels of Mcs proteins in cells in which one of the MCS genes was deleted. Mitochondria were analysed by SDS–PAGE and
immunoblotting. See also Supplementary Figure S2B. (E) Membrane integration and orientation of Mcs proteins. (Left) Mitochondria from
wild-type cells were left untreated or treated with proteinase K (PK) either directly, after subjecting them to osmotic swelling (SW) or after lysis
with Triton X-100 (TX); bars indicate the apparent molecular masses of the full-length proteins. (Right) Mitochondria were exposed to alkaline
extraction at pH 12. Soluble (S) and membrane integrated (P, pellet) material were separated by centrifugation. Aliquots were subjected to
SDS–PAGE and immunodecoration with antibodies against the indicated proteins. Arrowhead, unspecific cross-reaction.
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with the characteristic profile of Mcs proteins. Subunits of

the TOM complex and OM45 were present in the middle

of the gradient to a very low degree. They probably

represent the pieces of OM that adhere to the IBM in the CS

fractions. There were conspicuous exceptions. The levels of

components of the TOB/SAM complex that mediates the

insertion of b-barrel proteins into the mitochondrial OM

(Kozjak et al, 2003; Paschen et al, 2003) were significantly

higher in the fractions containing the Mcs proteins as seen

both with immunoblotting and mass spectrometry (Figure 4A

and B). A more detailed evaluation was performed by

subtracting the profile of proteins such as the TOM complex

subunit Tom40. Thereby, a clear coincidence of the profiles

of TOB/SAM components with that of the Mcs proteins

was observed (Figure 4C). The precision of the SILAC mea-

surements allows this operation; subtraction of two OM

proteins from each other yielded a reproducible zero

line (Figure 4D). We conclude that a fraction of the TOB/

SAM complex and Mcs proteins belong to a common

structure.

Figure 3 Localization of Mcs proteins by immuno-EM. Cells expressing C-terminally HA-tagged versions of Mcs proteins, were processed for
immuno-EM, cryosections were labelled with anti-HA antibodies and protein A bound gold particles, with the exception of Por1, for which
specific antibodies were used. (A) Distribution of Mcs proteins in cells grown on lactate. (B) Mcs10 localization in cells grown on glycerol.
(C) Distribution of proteins of various mitochondrial subcompartments in cells grown on lactate. Matrix (Idh1); OM, (Por1, Tob38 and Mas37/
Tob37); inner boundary and crista membrane (Tim50 and Tim16). CW, cell wall; M, mitochondrion; N, nucleus; PM, plasma membrane;
V, vacuole. Size bars, 200 nm. Additional examples in Supplementary Figure S3. (D) Quantitative analysis of the distribution of Mcs and control
proteins at sites where the CJ meet the IBM. For each labelling, the percentage of gold particles present at the CJ was determined.
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Figure 4 Interaction of Mcs proteins with components of the OM. (A) Wild-type mitochondria were fractionated and subjected to density
flotation centrifugation as in Figure 1B. Fractions were subjected to SDS–PAGE and immunodecoration with antibodies against Por1, Tim17,
Mcs proteins, Tob55 and Ugo1. (B) Analysis of the distribution on flotation gradients of Tob55 and Tob38 compared with Tom40 by mass
spectrometry. (C) Differential profiles of Tob55 and Tob38 after subtraction of the profile of Tom40. (D) Subtraction of the profiles of two OM
proteins, Tom40 and OM14, from each other. (E) Co-isolation of Tob55 with Mcs19 and Mcs27. For details see Figure 2A. (F) Density gradient
profiles of Ugo1 and Fzo1 processed as in (C). (G) Co-isolation of Ugo1 with Fcj1. Analysis as in (E), with the exception that Triton X-100 was
used for solubilization. Arrow head, unspecific cross reaction.

Molecular architecture of mitochondria
M Harner et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 21 | 2011 4363

2 Results

129



To analyse whether TOB/SAM components can be co-

isolated with Mcs proteins, mitochondria were solubilized

with the mild detergent digitonin and interaction with Mcs

proteins was studied (Figure 4E). Indeed, Tob55 was ob-

served to bind to both Mcs27 and Mcs19. In a separate

study, the interaction of Tob55 with Fcj1 was analysed.

Fcj1-His interacted with Tob55, however, in a rather ineffi-

cient way. A mutational study of Fcj1 revealed a role of the

C-terminus of Fcj in the interaction with Tob55 (Körner,

Reichert et al, unpublished data). No interaction was seen

with components of the TOM complex and other OM proteins

such as OM45 (not shown). We conclude that a fraction of the

TOB/SAM complexes in the OM is present in CS and interacts

with Mcs proteins that are associated with the IM.

Two further proteins of the OM were found that shared the

gradient profile of the TOB/SAM proteins, Ugo1 and Fzo1

(Figure 4A and F). When the SILAC profiles of typical OM

proteins such as Tom40 or OM45 were subtracted from the

SILAC profiles of Ugo1 and Fzo1, a peak in the characteristic

Mcs protein fraction 11 remained, indicating that a fraction of

these latter proteins were present in CS. Interaction of Ugo1

with Fcj1 was observed by co-isolation (Figure 4G). The OM

protein Ugo1 is required for mitochondrial fusion and is

associated with the fusion protein Fzo1 (Sesaki and Jensen,

2001, 2004; Wong et al, 2003). Thus, a fraction of Ugo1 seems

to play a role in tethering Fcj1 to the OM and thereby to

localize Fzo1 to CS.

To corroborate these results, we analysed vesicles by

sucrose gradient centrifugation that were generated from

mitochondria of a Dfcj1 strain (Supplementary Figure S4A).

Strikingly, Mcs proteins and Ugo1 showed a different distri-

bution in these cells compared with wild type (Figure 4A).

Mcs10 and Mcs29 were shifted from fractions of intermediate

density to fractions of high density so that their profiles were

very similar to that of Tim17, an IM protein. The subpopula-

tion of Ugo1 that was present in vesicles of intermediate

density from wild-type mitochondria was almost completely

absent in the gradient fractions of vesicles of Dfcj1 mitochon-

dria. These results confirm the role of Fcj1 in bringing

together proteins of the IM with proteins of the OM, and

also substantiate our concept of the enrichment of Mcs

proteins in gradient fractions of intermediate density.

We also studied the ultrastructure of mitochondria in

Dugo1 cells (Supplementary Figure S4B). These cells did

not grow on non-fermentable carbon source and therefore

were grown on glucose and compared with wild-type

and Dmcs10 cells grown on glucose. Their mitochondria

were grossly altered. In particular, the number of CJs was

extremely low; crista-like structures were almost completely

absent. Apparently, Ugo1 has a role in the fusion of mito-

chondria, but is also critically involved in determining the

architecture of mitochondria as shown here.

Functional characterization of Mcs proteins

Role of Mcs proteins for the architecture of mitochondria.

Figure 5 shows representative EM micrographs of cells

in which each of the MCS genes was deleted, together with

a quantitative evaluation of morphological parameters

(see also Supplementary Figure S5 and Supplementary

Table SII). The deletion of Fcj1 led to virtually complete

loss of CJ, to an increase of cristae stacks and to an increased

number of crista rims/endings/apexes as previously reported

(Rabl et al, 2009). Likewise, deletion of Mcs10 caused

virtually complete loss of CJ, accumulation of crista stacks

and an increase of crista rims. The deletion of Mcs19 led to a

massive loss of CJ and cristae showed bizarre shapes with

frequent kinks. Notable are the abundant branches of the

cristae. In Dmcs27 mitochondria, CJ were reduced by about

60%, there were crista stacks but much fewer than in Dfcj1

mitochondria. Deletion of Mcs29 resulted in a slight reduc-

tion of the number of CJ. Yet in contrast to Dfcj1 mitochon-

dria, stacks were sometimes observed to be connected to the

IBM by CJ. Upon deletion of Mcs12, fewer CJ were seen than

in wild type, but similar to Mcs27 some of the crista stacks

were connected to the IBM.

In conclusion, these data show that the proteins found

in the search for components of CS are characterized by

a complete or partial deficiency in CJ and altered crista

morphology, such as increased number of crista rims or crista

branching.

Growth behaviour of cells. Each one of the strains depleted of

the various Mcs proteins grew like wild type on rich glucose-

containing (YPD) medium (Figure 6). On fermentable carbon

sources, some of the deletion mutants showed severe (Dfcj1,

Dmcs10) or mild (Dmcs27 and Dmcs12) growth defects, partly

depending on growth temperature. Thus, deletion of the MCS

genes leads to loss or reduction of the capacity of mitochon-

dria for oxidative phosphorylation, demonstrating that the

architecture of mitochondria is key to basic metabolic pro-

cesses of the mitochondria.

Discussion

In this work, we describe a novel complex with an important

role in determining the architecture and function of mito-

chondria (Figure 7). This large multisubunit complex, which

we term MICOS complex, is anchored to the IBM and extends

across the IMS to reach specific OM proteins, the TOB/SAM

and the Ugo1–Fzo1 complexes. Interaction of the Ugo1–Fzo1

complex with the IM has been reported previously (Fritz et al,

2001); however, the interaction partner in the IM remained

obscure so far. Why the TOB/SAM complex serves as an

anchor for Mcs proteins is an intriguing question. Perhaps

equivalent interactions were present in the gram-negative

ancestors of the mitochondria, the elusive Bayer’s junctions

(Bayer, 1991), and maintained during evolution of mito-

chondria for similar or new purposes.

MICOS is preferentially located at sites where the cristae

originate from the IBM. Two of the six Mcs proteins identi-

fied, Mcs10 and Fcj1, are essential for forming CJ, the others

affect the presence of CJ to different degrees. Among these,

Mcs19 is not only important for the presence of CJ, but also

for the formation of intact cristae, as its depletion leads to

appearance of branches in cristae. It remains to be deter-

mined whether Ugo1 and Fzo1 are present in the MICOS

complex like the other Mcs proteins. Ugo1 was found also in

association with Mgm1, a dynamin-like GTPase (Wong et al,

2003; Sesaki and Jensen, 2004). It is also possible that they

form a separate complex with different composition and

function.

Our findings shed new light on the architectural organiza-

tion of mitochondria and at the same time raise a number of
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intriguing questions. They strongly support our initial

hypothesis on the existence of firm contacts between OM

and IBM at sites where the CJs merge with the IBM.

The MICOS complex appears to be important for mito-

chondrial architecture, dynamics and function in several

respects. First, it is necessary for the formation of CJs.

Second, it is critical for the capacity of mitochondria for

oxidative phosphorylation and inheritance of mitochon-

drial DNA, as highlighted by the presence of four of the

MCS genes in the AIM collection (Hess et al, 2009). Third,

changes in the bouyant density of membrane vesicles from

mitochondria depleted of Fcj1 would suggest that the transfer

of membrane lipids to and between mitochondrial mem-

branes is dependent on the MICOS complex (unpublished

results).

The definition of the CS as important specific architectural

elements leads us to some speculations regarding so far

unexplained processes in mitochondria. We speculate that

Figure 5 Morphological roles of Mcs proteins. (A) Electron micrographs of mitochondria of wild-type cells and of cells lacking the various Mcs
proteins. Cells were fixed with glutaraldehyde and sections contrasted with OsO4. Size bar, 100 nm. (B–D) Quantitative evaluation of images.
Average numbers of (B) CJs, (C) crista rims and (D) crista branches per mitochondrial profile. Additional examples and quantifications in
Supplementary Figures S4B and S5 and Supplementary Table SII. Arrowheads, crista rims; arrow, crista branch.
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the MICOS complex may control the lateral diffusion of newly

imported IM proteins into the cristae after their insertion into

the IBM. As a consequence, the MICOS complex may influ-

ence the composition and structure of both the IBM and the

crista membrane. Furthermore, by shaping cristae junctions,

the MICOS complex might be involved in the release of

components of the intracrista space, an important process

in apoptosis in higher eukaryotes. Such a role of CS and

Figure 6 Growth characteristics of cells lacking Mcs proteins. Cells were spotted in 10-fold dilution steps on agar plates containing one of the
following media: glucose and yeast extract (YPD); glucose-containing synthetic medium (SD); lactate-containing medium (Lac); lactate-
containing synthetic medium (Slac). Plates were incubated at the indicated temperatures. None of the strains grew on Slac at 371C.
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several others have been previously proposed (Frey and

Mannella, 2000; Mannella, 2008).

Our results also bring up the exciting possibility that the

connection of cristae with the IBM is not static but dynamic.

It has been suggested that the width of CJ may limit the

diffusion of proteins like cytochrome c from the intracrista

space into the space between IMS (Scorrano et al, 2002). We

speculate that CJ can undergo a time dependent opening and

closing, governed by fusion and fission at the CS. The MICOS

complex could be a scaffold for maintenance of defined sites

of fusion and participate in controlling the equilibrium of

fusion and fission. Such a dynamic structure of the mitochon-

dria would have far reaching implications for the efficiency of

oxidative phosphorylation. Cristae in a closed state would

be able to maintain the proton gradient generated by the

respiratory chain to a much higher extent than cristae, which

are continuously open to the IMS and therefore to the

cytosolic compartment. The question of whether the proton

gradient usually measured in mitochondria is sufficient for

optimal ATP production is an issue in mitochondrial bioener-

getics. Several possible mechanisms have been proposed that

might prevent proton equilibration with the bulk phase

(Mulkidjanian et al, 2005; Strauss et al, 2008).

Protein translocases of OM and IBM, the TOM and TIM23

complexes, were shown to interact closely, yet transiently.

The MICOS complex may not be essential for this process, but

CS could increase the efficiency of matching TOM with the

TIM and TOB complexes (Figure 7). Likewise, export of ATP

from the mitochondria by a joint action of the ADP/ATP

translocase, VDAC/porin and hexokinase (Brdiczka et al,

2006) may not need the presence of CS. On the other hand,

the MICOS complex might increase the efficiency of their

interactions by providing a scaffold for matching of the

protein complexes residing in IBM and OM.

Is the complex which we describe here a common struc-

ture in all eukaryotes? Mcs10 is a highly conserved protein

(Supplementary Figure S6A). Its sequence is remarkable in

several aspects. It is a small protein with a single predicted

transmembrane segment, containing a GX3G motive, fol-

lowed by a GXGXGXG motif in which the X residues are

hydrophobic. The C-terminal motif is particularly interesting.

Since Mcs10 apparently forms homo-oligomers both elements

might be involved in the self-association. Fcj1 was found

previously to have sequence similarity to mammalian mito-

filin and homologues are present in metazoa. Downregu-

lation of mitofilin led to mitochondria with altered cristae

and absence of CJ. Mitofilin was therefore recognized as a

protein controlling crista morphology (Odgren et al, 1996;

John et al, 2005; Rabl et al, 2009). Mcs29 and Mcs27 proteins

might be evolutionarily related (Supplementary Figure S6B).

Both contain two predicted transmembrane segments at

similar positions. However, we found no obvious homolo-

gues in higher eukaryotes. Mcs19 also does not show related

sequences in higher organisms, even among fungi conserva-

tion is very limited. However, the very C-terminal part shows

somewhat higher similarity. Interestingly, a CX10C motif in

the latter part is conserved among fungal species. It could

possibly serve as a motif for the disulphide relay system for

import into the IMS (Hell, 2008). Mcs12 also belongs to the

group of Mcs proteins with low-sequence similarity even

among fungi.

Interestingly, two recent reports describe proteins that

appear to play a role in the ultrastructure of mitochondria

of higher eukaryotes. ChChd3 in mammalian cells is located

on the IM facing the IMS and is involved in maintaining

cristae integrity and mitochondrial function (Darshi et al,

2011). None of the Mcs proteins can be recognized as a

homologue; however, both Mcs19 and ChChd3 have a myr-

istoylation motif and pairs of cysteine residues close to the

C-terminus. A homologue of this protein in Caenorhabditis

elegans, CHCH-3, was suggested to have a role as a chaper-

one. Furthermore, the protein MOMA-1 in C. elegans was

proposed to display low-sequence similarity to Mcs27 and

Mcs29 (Head et al, 2011). Although we could not detect

significant sequence similarity (Supplementary Figure S6B),

the overall structures of Mcs27, Mcs29 and MOMA-1 are

similar. MOMA-1 was found mainly in the OM (Head et al,

2011), in contrast to Mcs27 and Mcs29, which are integrated

into the IM of yeast mitochondria. It will be important to

clarify as to whether the submitochondrial location of

MOMA-1 is different from that of Mcs27 and Mcs29 or the

sequence similarity is too low to predict homology.

Irrespective of possible homologies, there are similarities

in the observed interactions, knockdown phenotypes and

possible functions between ChChd3 and MOMA-1 and the

Figure 7 Working model of the role of the MICOS complex in
mitochondrial architecture. (Upper panels) Mitochondrion of wild-
type cells (left) and of cells lacking Fcj1 or Mcs10 (right) in two
orientations. (Lower panel) Blow-up of CS with interaction of
MICOS-TOB and of Fcj1–Ugo1–Fzo1. Dynamic interaction of TOM
and TIM protein import complexes, and of AAC (ADP/ATP carrier)
and VDAC/porin bridging the IMS, supported by CS. For further
explanation and abbreviations see Discussion.
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respective yeast proteins. The mammalian ChChd3 interacts

with mitofilin and Sam50/Tob55; morphological aberrations

such as clustering of mitochondria around the nucleus,

fragmented and tubular cristae and reduced opening diameter

of CJ were observed (Xie et al, 2007; Darshi et al, 2011).

Mutations in MOMA-1 and in the mitofilin homologue in

C. elegans, IMMT-1, led to altered crista morphology. Further-

more, the phenotypes of knockdown studies suggested an

interaction of MOMA-1, the ChChd3 homologue, CHCH-3,

and IMMT-1.

Thus, in view of these similarities, our discovery and

biochemical and functional characterization of the MICOS

complex are relevant not only for lower eukaryotes but

apparently for the whole eukaryotic world. We believe that

it opens the door for a profound and detailed analysis of the

molecular basis of mitochondrial architecture, also in higher

eukaryotic cells.

Materials and methods

Yeast strains and cell growth
For analysis of submitochondrial fractions, strains W303 {leu2-
3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15} and W303Dtim23
harbouring pRS315GFP–Tim23 under the endogenous Tim23
promoter were used (Vogel et al, 2006). For the SILAC analysis of
submitochondrial fractions, YPH499 {ura3-52, lys2-801amber, ade2-
101ocre, trp1-D63, his3-D200, leu2-D1} was used because of its
lysine auxotrophy. Chromosomal manipulations (knockouts,
C-terminal 6�His- and 3�HA-tagging) were performed in the
YPH499 background (Longtine et al, 1998; Knop et al, 1999). For
the generation of deletion strains, the coding regions of FCJ1,
YCL057C-A/MCS10, YFR011C/MCS19, YNL100W/MCS27, YGR235C/
MCS29 and YBR262C/MCS12 were replaced by a HIS3 cassette using
the pFA6a-His3MX6 plasmid as the PCR template. The 6�His-tags
were introduced using the pYM9 plasmid as the PCR template. The
3�HA-tags were introduced using the pYM2 vector as the PCR
template. All strains expressing tagged versions were tested for
growth and all were found to grow like wild type. Wild-type
morphology of mitochondria in cells expressing the HA-fusion
proteins was also confirmed by EM (see Figure 3). Strains
were grown on 2% lactate medium (Lac) (containing 3 g yeast
extract, 1 g NH4Cl, 1 g KH2PO4, 0.5 g CaCl2� 2H2O, 0.5 g NaCl,
1 g MgSO4� 7H2O, and 3 mg FeCl3 per litre) at 241C for analysis of
submitochondrial fractions (Sherman, 1991).

For growth analysis and mitochondrial preparations, strains were
cultured as indicated at 24, 30 or 371C in Lac medium, in YPD
medium (1% yeast extract, 2% peptone, 2% glucose) (Sherman,
1991), or synthetic medium (1.7 g Yeast Nitrogen Base and 5 g
(NH4)2SO4 per l) containing either 2% lactate (SLac) or 2% glucose
(SD) (see Supplementary data for details).

Subfractionation of mitochondria
Mitochondria were swollen for 30 min on ice. Sucrose concentration
was adjusted to 0.5 M followed by incubation for 15 min at 01C and
mild sonication. After a clarifying spin (20 000 g, 20 min, 41C),
vesicles were concentrated by centrifugation (120 000 g, 100 min,
41C). Vesicles were resuspended and separated by a centrifugation
of a continuous flotation sucrose gradient (200 000 g, 24 h, 41C). For
detailed protocol see Supplementary data.

Mass spectrometry analysis of proteins from
submitochondrial fractions
For sample preparation and mass spectrometry, equal volumes of
sucrose gradient fractions were mixed with SILAC standards and
supplemented with twice the volume of denaturation buffer (9 M
urea, 3 M thiourea, 100 mM Tris/HCl pH 8, 1.5 mM DTT). After
alkylation with 2-iodoacetamide, proteins were digested overnight
with endoproteinase LysC (Wako Bioproducts, Richmond, VA, USA)
and peptides were desalted and concentrated via C18 StageTips
(Rappsilber et al, 2003). LC–MS experiments with an Easy nLC
nanoflow HPLC system coupled to an LTQ Orbitrap XL mass
spectrometer (Thermo Fisher Scientific) were performed essentially

as described previously (Olsen et al, 2004; Forner et al, 2006) with
modifications. Columns of 40 cm length and an inner diameter of
75mm, packed with 1.8mm beads (Reprosil-AQ Pur, Dr Maisch,
Entringen, Germany) (Thakur et al, 2011), were used and the
gradient length was 5 h.

Raw data were analysed using the MaxQuant software environ-
ment (Cox and Mann, 2008). Peak lists were searched with Mascot
(Perkins et al, 1999) against a database containing the translation of
all 6809 gene models from the Saccharomyces Genome Database
release from 12 December 2007 and 175 frequently observed
contaminants as well as the reverse sequences of all entries. Both
peptide and protein identification were accepted at a 1% false
discovery rate, using a decoy database strategy. Protein quantifica-
tion was exclusively based on peptides with unique sequences.

Electron microscopy
For standard EM, cells were fixed with glutaraldehyde, contrasted
with osmium tetroxide, sectioned and subjected to EM (see
Supplementary data for details).

For immuno-EM, cells were grown in lactate or glycerol medium
to the exponential phase, chemically fixed, embedded in 12%
gelatin and cryosectioned as described (Griffith et al, 2008).
Sections were immunogold labelled using either anti-HA (a kind
gift of Guojun Bu, Washington University) or anti-porin (Molecular
Probes) antibodies and a protein A-gold 10 nm conjugate before
being viewed in a JEOL 1010 electron microscope (JEOL, Tokyo,
Japan). The quantitative evaluation of the gold-labelling experi-
ments was performed as follows. A gold particle was assigned to the
CJ if at a distance not 420 nm from this site. Likewise, and assigned
to the mitochondrial envelope if at a distance not 420 nm from the
OM/IM and not localizing to the CJ. The remaining particles present
in the interior of the mitochondria were considered in the inner
space, which comprises both the cristae and the matrix.

Miscellaneous

Proteolytic susceptibility assay. In all, 50mg mitochondria were
incubated with either SM buffer (0.6 M sorbitol, 20 mM MOPS, pH
7.4), swelling buffer (20 mM MOPS, pH 7.4) or lysis buffer (1%
(v/v) Triton X-100, 20 mM MOPS, pH 7.4) for 30 min on ice.
Proteinase K (final concentration of 0.2 mg/ml) was added and the
suspension was incubated at 41C for 15 min. Proteinase K was
inhibited by the addition of phenylmethanesulfonyl fluoride (PMSF)
to a final concentration of 4 mM and incubation for 10 min on ice.
Samples were centrifuged for 20 min (20 000 g, 41C), resuspended in
SM buffer, and precipitated by addition of trichloroacetic acid (TCA;
final concentration of 14%). The precipitate was resuspended in
Laemmli buffer, subjected to SDS–PAGE and analysed by immuno-
blotting.

Alkaline extraction. In all, 100 mg mitochondria were resuspended
in 75ml 20 mM HEPES and 75 ml 200 mM Na2CO3 were added. The
suspension was mixed by vortexing for 15 s, incubated for 30 min
on ice and centrifuged for 30 min (135 000 g, 41C). The pellet
was resuspended in Laemmli buffer. In all, 30% of the supernatant
was TCA precipitated and resuspended in Laemmli buffer. Samples
were subjected to SDS–PAGE and analysed by immunoblotting.

Co-isolation assays. For co-isolation of proteins with His-tagged
Fcj1, Mcs10, Mcs19, Mcs27, Mcs29 or Mcs12, 1 mg mitochondria
isolated from the respective strains were lysed with 1% (w/v)
digitonin or 1% (v/v) Triton X-100 as indicated. After Ni-NTA
affinity chromatography, fractions were analysed by SDS–PAGE
followed by immunoblotting.

Size exclusion chromatography. Isolated mitochondria were incu-
bated for solubilization in digitonin buffer (30 mM Hepes pH 7.4,
100 mM potassium acetate pH 7.4, 5 mM EDTA and 1 mM PMSF, 1%
digitonin) at a protein/digitonin ratio of 1/1 for 30 min on ice. After
centrifugation for 15 min at 60 000 g and 41C, cleared lysates were
subjected on Superose 6 size exclusion column (GE Healthcare;
Elution buffer: 30 mM Hepes pH 7.4, 150 mM KAc pH 7.4, 5 mM
EDTA, 1 mM PMSF, 0.1% digitonin). Fractions were analysed by
SDS–PAGE and immunoblotting.

Blue native PAGE. Mitochondria (150 mg protein) were incubated
with 20ml solubilization buffer (50 mM NaCl, 50 mM imidazole,
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2 mM 6-aminohexanoic acid, 1 mM EDTA, 1 mM PMSF, 3%
digitonin, pH 7.0) for 15 min at 41C followed by a clarifying spin
for 20 min at 15 000 g and 41C (Wittig et al, 2006). The supernatant
was mixed with 2ml Native PAGETM 5% G-250 Sample Additive
(Invitrogen) and subjected to BN-PAGE (Native PAGE 3–12% Bis-
Tris, Invitrogen). After blotting on PVDF membranes (Roth),
immunodecoration using the indicated antibodies was performed.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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2.4 A Crucial Role of Mim2 in the Biogenesis of
Mitochondrial Outer Membrane Proteins.

2.4.1 Aim and Summary

The mitochondrial outer membrane (MOM) contains proteins involved in numerous
biological processes, such as mitochondrial protein import, cytoskeletal attachment
and mtDNA inheritance. Integral MOM proteins are inserted with different topologies,
ranging from single and multi alpha-transmembrane helices to beta-barrel structures.
Since its identification as a factor involved in mitochondrial protein import [207], the
essential protein Mim1 has been implicated in the insertion of single and multispan
proteins as well as the translocase of the outer mitochondrial membrane (TOM) com-
plex assembly. Mim1 is further known to be part of a higher molecular weight assem-
bly [14, 135, 239, 245, 302].
To elucidate the function of this complex, we screened for novel interactors of Mim1.
To this end, we generated GFP-tagged variants of Mim1, subjected mitochondria to
mild detergent lysis and performed immunoprecipitation experiments. Interactors
were identified by high resolution MS-based proteomics. SILAC quantification was
used to discriminate between specific and unspecific binders.
We identified Mim2 as an interactor of Mim1 and both proteins form the MIM com-
plex. Cells devoid of Mim2 were severely impaired in growth and showed defects in
mitochondrial morphology and protein import.

2.4.2 Contribution

This project resulted from a collaboration between the department of Matthias Mann
at the MPI of Biochemistry and the group of Doron Rapaport from the Interfaculty
Institute of Biochemistry in Tübingen, Germany. To enable the identification of new
Mim1 interactors, I devoloped an immunoprecipitation protocol suited for labile mi-
tochondrial outer membrane protein complexes. I further optimized sample prepara-
tion workflows, as well as acquired and analyzed the data of the MS-based interaction
screen. The generation of the tagged yeast strains as well as the follow up experiments
were performed in Doron Rapaport’s laboratory.
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2.4.3 Publication

This work is currently in press at the Journal of Cell Science.

J Cell Sci. 2012 Mar 30. [Epub ahead of print]

“A Crucial Role of Mim2 in the Biogenesis of Mitochondrial Outer Membrane Pro-
teins.”

Kai S. Dimmer, Drazen Papic, Benjamin Schumann, Desiree Sperl, Katrin Krumpe,
Dirk M. Walther, and Doron Rapaport
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Summary
Most of the mitochondrial outer membrane (MOM) proteins contain helical transmembrane domains. Some of the single-span proteins and

all known multiple-span proteins are inserted into the membrane in a pathway that depends on the MOM protein Mitochondrial Import 1
(Mim1). So far it has been unknown whether additional proteins are required for this process. Here, we describe the identification and
characterization of Mim2, a novel protein of the MOM that has a crucial role in the biogenesis of MOM helical proteins. Mim2 physically

and genetically interacts with Mim1, and both proteins form the MIM complex. Cells lacking Mim2 exhibit a severely reduced growth rate
and lower steady-state levels of helical MOM proteins. In addition, absence of Mim2 leads to compromised assembly of the translocase of
the outer mitochondrial membrane (TOM complex), hampered mitochondrial protein import, and defects in mitochondrial morphology. In

summary, the current study demonstrates that Mim2 is a novel central player in the biogenesis of MOM proteins.

Key words: Mim2, MIM complex, Mitochondria, Outer membrane, Protein import

Introduction
The mitochondrial outer membrane (MOM) harbors a diverse set

of proteins with functions ranging from biosynthetic pathways,

morphogenesis and inheritance of the organelle to protein import

into mitochondria (Burri et al., 2006; Schmitt et al., 2006; Zahedi

et al., 2006). As all MOM proteins are encoded in the nucleus and

translated on ribosomes in the cytosol, they have to be targeted to

the organelle and inserted into the membrane (Neupert and

Herrmann, 2007; Chacinska et al., 2009; Endo and Yamano,

2009; Walther and Rapaport, 2009). Despite recent progress, the

various insertion mechanisms by which MOM proteins are

incorporated into the membrane are still poorly understood.

MOM proteins can be divided according to their topologies into

different families (Dukanovic and Rapaport, 2011). The b-barrel

proteins form one family and are unique to the outer membranes of

chloroplasts, mitochondria and Gram-negative bacteria. Their

mitochondrial import route via the dedicated complex for

topogenesis of outer membrane beta-barrel proteins (TOB), also

known as sorting and assembly machinery (SAM) complex, is the

best studied among the MOM proteins. Three additional protein

families contain a single helical transmembrane domain (TMD). The

so called tail-anchored (TA) and signal-anchored (SA) proteins bear

this domain at their very C- or N-terminus, respectively (Wattenberg

and Lithgow, 2001; Waizenegger et al., 2003; Ahting et al., 2005). An

additional group is comprised of proteins that contain a central TMD,

thus exposing domains to both the cytosol and the intermembrane

space (IMS). Finally, a unique group is composed of MOM proteins

that transverse the membrane via multiple helical TMDs.

The import pathways of helical MOM proteins are ill defined.

Some evidence exists that tail- and signal-anchored proteins

insert into the MOM without participation of a dedicated

insertion machinery (Setoguchi et al., 2006; Kemper et al.,

2008; Meineke et al., 2008). Other reports suggest a partial

overlap in insertion pathways of polytopic and TA proteins (Rojo

et al., 2002; Otera et al., 2007).

Two recent reports shed new light on the insertion mechanism

of multispan proteins. They demonstrate that the outer membrane

protein Mitochondrial Import 1 (Mim1) plays a crucial role in the

insertion of multispan MOM proteins (Becker et al., 2011; Papic

et al., 2011). The results suggest that precursor proteins are first

recognized by Tom70 and then handed over to a Mim1-

containing complex. Mim1 was originally identified in a

systematic screen as a mutant that accumulates mitochondrial

precursor proteins. It is a small integral protein of the MOM with

a molecular mass of roughly 13 kDa (Mnaimneh et al., 2004;

Dimmer and Rapaport, 2010). Later studies reported that Mim1 is

a component of a higher molecular weight complex and that the

protein is necessary for biogenesis of Tom20 and Tom70 and

therefore also for the assembly of the TOM complex (Ishikawa

et al., 2004; Waizenegger et al., 2005; Becker et al., 2008; Hulett

et al., 2008; Popov-Celeketić et al., 2008; Lueder and Lithgow,

2009; Becker et al., 2010; Thornton et al., 2010).

Whereas the involvement of Mim1 in the biogenesis of outer

membrane (OM) helical proteins is well documented, it has been

unclear so far whether additional proteins are required for this

process. Furthermore, the actual composition of the Mim1-

containing complex and its mode of function are still unknown.

Here, we report on the identification and characterization of a novel

outer membrane protein, Mim2 that is crucial for proper growth of

yeast cells. Mim2 and Mim1 are components of the same functional
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complex that is playing a central role in the biogenesis of MOM

proteins.

Results
Identification of Mim2

Mim1 was reported to be a subunit of a higher molecular weight

complex of unknown composition. To search for additional

components of the Mim1-containing complex, we performed

immunoprecipitation in combination with stable isotope labeling

with amino acids in cell culture (SILAC) (Ong et al., 2002). This

method has been widely used to identify protein-protein

interactions (Selbach and Mann, 2006; Hubner et al., 2010;

Vermeulen et al., 2010; Walther and Mann, 2010). Mitochondria

were isolated from a mim1D strain transformed with a vector

encoding either Mim1 or GFP–Mim1, organelles were lysed with

digitonin, and the lysate was incubated with beads specifically

binding GFP. Bound material was digested with the protease

LysC and resulting peptides were analyzed by high-resolution

mass spectrometry followed by data processing with the

MaxQuant software environment (Cox and Mann, 2008).

Among the identified proteins particularly the putative open

reading frame (ORF) YLR099W-A displayed an enrichment very

similar to that of the bait protein Mim1 (supplementary material

Fig. S1). Due to its identification as an interaction partner of

Mim1, we named this ORF MIM2. According to the

Saccharomyces Genome Database (SGD, www.yeastgenome.

org), this small ORF is an essential gene and encodes a protein of

87 amino acids. Mim2 has no homologs in higher eukaryotes but

is conserved in fungi like Schizosaccharomyces pombe and

Neurospora crassa (Fig. 1A). Although several hydrophobic

amino acids are clustered in the middle of the primary

sequence (Fig. 1A), no transmembrane domain was predicted by

commonly used programs.

Mim2 is an integral protein of the MOM

To investigate the subcellular localization of Mim2, yeast cells

deleted for the chromosomal copy of MIM2 were transformed

with a vector encoding either native Mim2 or Mim2 with a C-

terminal HA-tag. Both Mim2 and Mim2–HA expressed in this

way were functional as they rescued the growth defect of mim2D
cells (supplementary material Fig. S2 and text below).

Subcellular fractionation demonstrated that Mim2–HA is

present in the mitochondrial fraction (Fig. 1B). Next, we

subjected mitochondria harboring Mim2–HA to an alkaline

extraction treatment in which soluble and peripheral membrane

proteins can be separated from integral membrane proteins by

centrifugation. As shown in Fig. 1C, Mim2–HA, like the integral

membrane protein Tom40, was enriched in the pellet fraction,

suggesting that Mim2 is a mitochondrial membrane protein.

Since mitochondria have two distinct membranes, we wanted

to investigate in which membrane Mim2 is located and study its

membrane topology. Mitochondria containing Mim2–HA were

either left intact or their OM was ruptured under hypo-osmolar

conditions. Thereafter samples were treated with proteinase K

(PK). In intact mitochondria, Mim2–HA is cleaved and a smaller

fragment of about 11 kDa was detected (Fig. 1D, second lane).

This fragment was not observed when the MOM was ruptured or

when mitochondria were solubilized with detergent (Fig. 1D).

The IMS localized protein Dld1 and the matrix protein Mge1

served to control the integrity of the outer and inner membranes,

respectively. These results demonstrate that Mim2 is anchored in

the MOM with its C-terminus facing the IMS.

An unusual feature of Mim2 is the distribution of charged

amino acid residues along its sequence. Negatively charged

residues cluster at the N-terminal region, whereas the C-terminal

part is positively charged. While low concentrations of the

Fig. 1. Mim2 is an integral protein of the MOM with its C-terminus

facing the intermembrane space. (A) Mim2 is conserved among fungi.

Amino acid sequences of Mim2 from Saccharomyces cerevisiae (S.c.),

Schizosaccharomyces pombe (S.p.) and Neurospora crassa (N.c.) are shown.

Identical residues are depicted in white on black background, similar residues

are highlighted in gray. (B) Mim2 is a mitochondrial protein. Whole-cell

lysate (whole cell) and fractions corresponding to cytosol, light microsomal

fraction (ER) and mitochondria of either wild-type cells or cells expressing

Mim2–HA were analyzed by SDS-PAGE and immunodecoration with

antibodies against the HA-tag, the mitochondrial protein Tom40, the ER

protein Erv2 and a marker protein for the cytosol (hexokinase, Hxk1).

(C) Mim2 is a membrane-embedded protein. Mitochondria isolated from cells

expressing Mim2–HA were subjected to carbonate extraction. The

supernatant (sup) and pellet (pel) fractions were analyzed by SDS-PAGE and

immunodecoration with antibodies against the indicated proteins. Tom40, an

integral OM protein; Hsp60 and Mge1, soluble matrix proteins. (D) The C-

terminus of Mim2 is protected from protease digestion by the MOM.

Mitochondria isolated from cells expressing Mim2–HA were treated with

proteinase K (PK) under different conditions. Mitochondria were kept intact,

the outer membrane was ruptured by hypo-osmolar swelling (SW) or

mitochondria were lysed completely by the addition of the detergent Triton

X-100 (TX). Samples were precipitated with trichloroacetic acid and analyzed

by SDS-PAGE and immunodecoration with antibodies against the HA-tag, or

the indicated mitochondrial proteins. Tom20, an OM protein exposed to the

cytosol; Dld1, an IMS protein; Mge1, a matrix protein.

Mim2, a mitochondrial import factor 3465
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rather unspecific protease PK were sufficient to cleave Mim2–

HA, treating intact mitochondria with high concentrations of

trypsin, a protease cutting C-terminally to positively charged

amino acids, did not result in a cleavage of Mim2–HA

(supplementary material Fig. S3). These results further support

our proposal that the positively charged C-terminal region of

Mim2 is protected by the MOM. Taken together our findings

suggest that Mim2 is an integral membrane protein of the MOM

with its N-terminus located in the cytosol and the C-terminus

residing in the IMS.

Fig. 2. Mim1 and Mim2 physically interact and are components of the same protein complex. (A) Mitochondria isolated from either the double-deletion

strain mim1D/mim2D overexpressing Mim1-His7 and Mim2–HA or a single deletion strain mim2D overexpressing Mim2–HA were employed. Organelles were

lysed in digitonin-containing buffer and cleared supernatants were incubated with Ni–NTA beads. Non-solubilized matter (pellet), cleared supernatant (input, 20%

of total), supernatant after binding to the beads (unbound, 20% of total) and material bound to the beads (bound, 100% of total) were analyzed by SDS-PAGE and

immunodecoration with the indicated antibodies. (B) Mitochondria isolated from a strain overexpressing Mim2–HA (Mim2-HA) and the corresponding wild-type

strain were lysed in digitonin-containing buffer. Cleared supernatants were incubated with ProteinG Sepharose beads preincubated with an antibody against the

HA-tag. Supernatants before (input, 10% of total) and after (unbound, 10% of total) binding to the beads as well as bound material (bound, 100% of total) were

analyzed by SDS-PAGE and immunodecoration with the indicated antibodies. (C) Mitochondria isolated from wild-type, mim1D or mim2D strains harboring an

empty plasmid (Ø) or overexpressing either Mim1 or Mim2–HA were lysed in digitonin and analyzed by BN-PAGE. For analysis of Mim1 and Mim2–HA

containing complexes, the membrane was immunodecorated with antibodies against Mim1 and the HA-tag, respectively. An unassembled species of Mim2–HA is

indicated with an asterisk. (D) Mitochondria isolated from a wild-type or mim2D strains containing either empty plasmid (Ø) or overexpressing Mim2–HA were

solubilized in digitonin, the lysate was cleared by centrifugation and then incubated with or without an antibody against the HA-tag (a-HA). Samples were

analyzed by BN-PAGE and immunodecoration with an antibody against Mim1. (E) Two different amounts (10 mg and 30 mg) of the mitochondria described

above in the legend to panel (C) were analyzed by SDS-PAGE and immunodecoration with the indicated antibodies. The matrix protein aconitase (Aco1) served

as a control. (F) Mitochondria isolated from a wild-type strain containing empty plasmid (Ø) and a mim2D strain overexpressing GFP–Mim2 (2-GFP) were

solubilized in digitonin, and samples were analyzed by BN-PAGE and immunodecoration with an antibody against Mim1. For easier observation of the small size

difference, the same samples were loaded twice in alternating lanes. The MIM complex is indicated.

Journal of Cell Science 125 (14)3466
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Mim1 and Mim2 physically interact and are components of

the same complex

Although we identified Mim2 as a protein that associates with

GFP–Mim1 we wanted to substantiate the interaction between the

two proteins by additional pull-down experiments. Mitochondria

were isolated from a mim1D/mim2D double-deletion strain

overexpressing Mim1-His7 (Popov-Celeketić et al., 2008) and

Mim2–HA. A mim2D strain overexpressing Mim2–HA that

contains non-tagged endogenous Mim1 served as a control

(Fig. 2A). The isolated organelles were lysed and proteins were

incubated with Ni–NTA beads to pull down Mim1-His7.

Subsequent SDS-PAGE and immunodecoration showed that

Mim2–HA specifically bound to the affinity beads together with

Mim1-His7. No unspecific binding of Mim2–HA to the beads was

observed with the control sample. Of note, the enrichment of

Mim2–HA in the bound material was even higher than that of

Mim1-His7, suggesting a tight association of both proteins. A

further potential explanation for this enrichment of Mim2 is that

the binding of Mim2 to Mim1-His7 causes a conformational

change in the latter protein that in turn results in an increased

accessibility of the His-tag for binding to the affinity beads.

To further verify this interaction, we performed the reciprocal

co-immunoprecipitation experiment. Mitochondria isolated from

a strain expressing Mim2–HA were solubilized with the mild

detergent digitonin and then incubated with beads loaded with

antibody specific for the HA-tag. A significant amount of the

endogenous Mim1 was co-precipitated together with Mim2–HA

(Fig. 2B). No unspecific binding of Mim1 to the beads was

observed when the corresponding wild-type mitochondria were

used as a control (Fig. 2B).

Mim1 was reported to be a component of a high molecular

weight complex (Ishikawa et al., 2004; Waizenegger et al., 2005;

Becker et al., 2008; Popov-Celeketić et al., 2008). Our results

show that Mim1 and Mim2 tightly interact and indicate that

Mim2 is a novel component of this Mim1-containing complex

that we refer to as the MIM complex. To confirm this hypothesis,

mitochondria from mim1D or mim2D strains overexpressing

either Mim1 or Mim2–HA were analyzed by blue native gel

electrophoresis (BN-PAGE). Both Mim1 and Mim2-HA

migrated as a complex of approximately 200 kDa (Fig. 2C,

compare lanes 3 and 12 and supplementary material Fig. S4)

confirming that the two proteins are indeed components of the

same oligomeric structure. Expression of Mim2–HA in the strain

lacking endogenous Mim2 only partially restored the levels of the

MIM complex as assessed by BN-PAGE (Fig. 2C, compare lane

6 to lane 1) although the steady-state levels of Mim1 as

monitored by SDS-PAGE were almost normal (Fig. 2E). These

observations suggest that even though Mim2–HA complements

the mim2D growth phenotype, the HA-tag might interfere with

the optimal interaction of Mim2 with Mim1.

Next, we investigated the importance of Mim2 and Mim1 for

the formation of the MIM complex. Of note, no Mim1-containing

oligomeric species could be detected in the absence of Mim2

and the protein could not be detected in SDS-PAGE and

immunodecoration (Fig. 2C, lane 4; 2E). Hence, Mim2 is a

crucial player in the biogenesis of Mim1 and the MIM complex.

The absence of Mim1 has different effects as it leads to a loss of a

detectable Mim2–HA-containing complex but unassembled

species of the protein is present (Fig. 2C, lane 18;

supplementary material Fig. S5) and expression levels of the

protein are unaffected (Fig. 2E).

To further substantiate the participation of both proteins in the

same complex we used mitochondria isolated from wild-type and

mim2D cells transformed with either Mim2–HA encoding vector

or an empty plasmid as control. Next we lysed the organelles with

detergent and performed an antibody-shift assay where antibodies

against the HA-tag were added to the lysed organelles before

their analysis by BN-PAGE. The antibodies caused a shift in the

migration of the Mim1 signal (Fig. 2D), suggesting that both

Mim1 and Mim2 are subunits of the same MIM complex.

Fig. 3. Deletion of MIM2 results in severe growth

phenotypes. (A) Cells that lack Mim1, Mim2 or both

proteins show reduced growth at all conditions. The

indicated strains were tested at three different

temperatures by drop-dilution assay for growth on rich

medium containing the fermentable carbon source

glucose (YPD) or the non-fermentable carbon source

glycerol (YPG). Pictures were taken after the indicated

number of days. (B) Overexpression of Mim1 does not

rescue the growth defect of a mim2D strain. Wild-type

cells transformed with an empty plasmid and mim2D

cells transformed with an empty plasmid, Mim2

encoding plasmid or Mim1 encoding plasmid were

analyzed by drop-dilution assay on YPD or YPG

medium. (C) Overexpression of plasmid-borne Mim2

partially rescues the growth defect of the mim1D strain.

Wild-type cells transformed with an empty plasmid and

mim1D cells transformed with an empty plasmid, Mim1

encoding plasmid, or Mim2 encoding plasmid were

analyzed by drop-dilution assay on YPD or YPG

medium.
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Of note, overexpression of Mim1 in the absence of Mim2

resulted in a complex with apparent similar migration behavior
to the native complex (Fig. 2C, compare lane 1 to 5). Hence, it
seems that Mim2 is not absolutely required for the formation of

Mim1-containing complex. This observation further suggests
that the native MIM complex probably contains only one or two
copies of Mim2. Therefore the absence of Mim2 causes only a
minor difference of 10–20 kDa in the mass of the MIM

complex and such a difference in turn is hard to resolve by BN-
PAGE. In order to obtain further support for our assumption
that the two proteins are components of the same native

complex, we analyzed the MIM complex in organelles
harbouring GFP-tagged Mim2. If Mim1 is a component in the
same complex as Mim2, the additional mass of the GFP moiety

should shift also the band of the Mim1-containing complex as
analyzed by BN-PAGE. Indeed, clear slower migration
behavior of the Mim1-complex was observed in the

organelles harboring the GFP-tagged Mim2 (Fig. 2F). Taken
together, our results suggest that Mim1 and Mim2 are
components of the same protein complex.

Deletion of MIM2 causes severe growth phenotype

The ORF YLR099W-A/MIM2 was reported in a systematic
deletion attempt to be an essential gene (Kastenmayer et al.,
2006). We wanted to confirm the reported lethality by deleting

the complete ORF of MIM2 in the diploid yeast strain W303a/a
and then performing tetrad analysis. After sporulation and tetrad
dissection, haploid mim2D strains were retrieved as confirmed by

PCR (data not shown). In contrast to the reported lethality, this
deletion strain was viable although it showed a severe growth
reduction on fermentable and non-fermentable carbon sources at

all tested temperatures (Fig. 3A). The growth behavior of the
mim2D strain is even worse than that of the strain lacking Mim1
and the double-deletion strain grows like the mim2D strain
(Fig. 3A). To exclude the possibility that the observed

phenotypes were caused by unrelated changes, e.g. changes in
the promoter region of the essential ERG27 gene – which is in
close proximity on the chromosome to the MIM2 gene – we

aimed to complement these phenotypes by plasmid-encoded
Mim2. Overexpression of native or the C-terminally tagged
version of Mim2 could rescue the growth phenotype of the

deletion mutant confirming that the observed phenotypes are
related to the absence of the Mim2 protein (supplementary
material Fig. S2).

MIM2 and MIM1 genetically interact

Our results suggest that Mim1 and Mim2 physically interact and
are components of the same protein complex. Hence we asked
whether the two ORFs also genetically interact. We could not

observe a synthetic growth phenotype by deletion of both genes
(Fig. 3A). Of note, overexpression of Mim1 in yeast cells lacking
Mim2 slightly hampered the growth of the mim2D strain

(Fig. 3B). Accordingly, the steady-state levels of the MIM
substrate Ugo1 are somewhat reduced in these cells
(supplementary material Fig. S6). On the other hand,

overexpression of Mim2 in a mim1D strain led to partial rescue
of the growth phenotype (Fig. 3C). This partial rescue was
observed in six independent transformants and was paralleled by

elevated levels of Ugo1. Furthermore, the overexpression of
Mim2–HA in the mim1D strain caused higher levels of Tom40
and less unassembled Tom40 molecules as compared to mim1D

cells (supplementary material Fig. S7). These results suggest that

higher levels of Mim2 can reduce the dependency on Mim1 for

some processes. Collectively, in addition to their physical

association, MIM1 and MIM2 genetically interact.

Deletion of MIM2 leads to abnormal mitochondrial

morphology

It was previously reported that downregulation of Mim1 leads to

altered mitochondrial morphology (Altmann and Westermann,

2005; Dimmer and Rapaport, 2010). It is assumed that this

phenotype results from the impaired assembly of the TOM

complex and the subsequent insufficient import of morphology

Fig. 4. Cells that lack Mim1, Mim2 or both proteins show altered

mitochondrial morphology. (A) Cells of the indicated strains transformed

with mitochondrially targeted GFP (pSu9-GFP) were analyzed by

fluorescence microscopy. Examples of predominant phenotypes (fragmented/

aggregated and short tubular) for each strain are shown (scale bar: 5 mm).

(B) Analyzed cells of the various strains were grouped into three different

morphology phenotypes (normal, short tubules, and fragmented and

aggregated). Statistical analysis of four different experiments, in which >100

cells per experiment were analyzed, was performed and the various

occurrences of the phenotypes are presented.
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relevant proteins. We verified this phenotype by deletion of

MIM1 in the wild-type background W303 (Fig. 4A). Typically

for this deletion strain, mitochondria were fragmented and

aggregated in approximately 90% of the cells (Fig. 4B). Very

similar morphological phenotype was observed upon deletion of

MIM2 alone or in the mim1D/mim2D double-deletion strain

(Fig. 4A,B). These results provide further evidence that Mim1

and Mim2 function in the same molecular pathway.

Loss of Mim2 leads to reduced biogenesis of

mitochondrial proteins

To gain further insight into the function of Mim2, we analyzed

the steady-state levels of proteins in mitochondria isolated from

mim2D cells. Of note, Mim1 was hardly detectable in these

organelles and a severe reduction was observed in the levels of

the MOM proteins Tom20, Fzo1 and Ugo1 – known substrates of

Mim1 (Fig. 2E; Fig. 5A, left panel) (Waizenegger et al., 2005;

Becker et al., 2011; Papic et al., 2011). In contrast to Tom20, the

levels of all other TOM components tested – Tom40, Tom22 and

Tom70 – did not show a significant reduction in mitochondria

lacking Mim2. Similarly, the steady-state levels of other

mitochondrial proteins like the MOM b-barrel protein Por1, the

tail-anchored protein Fis1, the inner membrane proteins Oxa1

and Dld1, as well as the matrix proteins Hsp60 and aconitase

were unaltered in comparison to those in wild-type organelles

(Fig. 5A, right panel).

We next compared the assembly status of the TOM complex in

mitochondria isolated from strains lacking Mim2, Mim1 or both.

The amount of assembled TOM complex as assessed by

immunodecoration with antibodies against Tom40 and Tom22

was drastically reduced when MIM1, MIM2 or both were deleted

(Fig. 5B). Concomitantly, an unassembled species of Tom40 was

observed in the mutated cells. The observations regarding the

reduced stability of the TOM complex in mim1D cells are in line

with previous reports (Ishikawa et al., 2004; Waizenegger et al.,

2005). The assembly of the TOB complex as monitored by

BN-PAGE was unchanged in these deletion strains (Fig. 5B).

Collectively, the absence of Mim2 resulted in reduced steady-

state levels of Tom20 and multispan MOM proteins as well as

reduced stability of the TOM complex.

Mitochondria lacking Mim2 show compromised import of

multispan MOM proteins

Since the steady-state levels of certain mitochondrial proteins were

reduced in mitochondria lacking Mim2, we investigated its role in

mitochondrial protein import. To this end we first analyzed whole-

cell extracts for accumulation of mitochondrial precursor proteins,

a phenotype that was observed in cells lacking Mim1 (Ishikawa

et al., 2004; Mnaimneh et al., 2004; Waizenegger et al., 2005). We

observed a clear accumulation of unprocessed precursor form of

the matrix protein Hep1 in extracts from cells lacking Mim1 or

Mim2 or both proteins (Fig. 6A). This indicates a global import

defect of mitochondria lacking Mim2.

Next we investigated the in vitro import for model substrates

located in the different mitochondrial compartments. Isolated

mitochondria were incubated with radioactive precursor proteins

for different time points and import was assessed by SDS-PAGE

and autoradiography. The import efficiencies for the matrix

destined preprotein pSu9-DHFR, the inner membrane protein

AAC, as well as the b-barrel precursor porin were reduced

(Fig. 6B). Of note, the most pronounced reduction was in the

case of the MOM multispan proteins Ugo1 and Fzo1 (Fig. 6B). In

Fig. 5. Absence of Mim2 leads to reduced steady-

state levels of helical MOM proteins and a

compromised assembly of the TOM complex.

(A) Various amounts of mitochondria (5, 10 and 50

mg) isolated from wild-type and mim2D cells were

analyzed by SDS-PAGE and immunodecoration with

the indicated antibodies. A representative experiment

of three different independent repeats is presented.

(B) Mitochondria of the indicated strains were first

lysed in 1% digitonin (for TOM analysis) or in 0.5%

Triton X-100 (for TOB analysis) and then subjected to

BN-PAGE and immunoblotting with the indicated

antibodies. Arrowheads indicate the Tom40-

containing low molecular mass species and the

Tom22 assembly intermediate. The assembled TOM

and TOB complexes are indicated. A representative

experiment of three different independent repeats

is presented.
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contrast, the import of the tail-anchored MOM protein Fis1,

which is inserted independently of any known import factors

(Kemper et al., 2008), was unaffected by the absence of Mim2

(data not shown). The global defect in mitochondrial import

results most probably from a reduced number of functional TOM

complexes. In accordance with the reduced steady-state levels of

assembled TOM complex in mitochondria lacking Mim2

(Fig. 5B), the assembly of newly synthesized Tom40 molecules

into the TOM complex is severely hampered in mim2D cells

(Fig. 6C).

We aimed to analyze the direct import defects due to lower

levels of Mim2 avoiding the global outcome resulting from

compromised biogenesis of Tom components and hampered

assembly of the TOM complex. To that end a yeast strain in

which the expression of MIM2–HA was under the control of the

GAL1 promoter was constructed. In the presence of galactose the

cells grew like wild-type cells whereas growth on glucose was

strongly compromised. We first tested the levels of various

mitochondrial proteins in total cell lysates from the GAL1–

MIM2–HA cells grown at various time periods after the shift from

galactose- to glucose-containing medium (data not shown). On

the basis of this analysis we isolated mitochondria from cells

grown for 15 h on glucose and analyzed their proteins by

immunodecoration. Of note, Mim2 and its partner protein Mim1

were hardly detectable in these organelles whereas the Tom

components were still in normal levels (supplementary material

Fig. S8A). Furthermore, the TOM complex as analyzed by BN-

PAGE was also detected in normal levels (supplementary

material Fig. S8B). Next, in vitro import assays were

performed with mitochondria depleted for Mim2. Importantly,

whereas the insertion of the MIM substrate Ugo1 into these

organelles was compromised, no import defects were observed

for the TOM substrates pSu9-DHFR and porin (supplementary

material Fig. S8C). Taken together the results suggest that the

absence of Mim2 causes two effects: a specific reduction in

membrane integration of some outer membrane helical proteins

and subsequently a global import defect due to altered stability of

the TOM complex.

Mim2 is directly involved in the import of Ugo1

Finally, we asked whether Mim2 actually participates in

interactions with substrate proteins. To that end, we analyzed

import reactions of newly synthesized [35S]Ugo1 by BN-PAGE

in combination with an antibody-shift assay. Mitochondria were

isolated from wild-type and mim2D cells transformed with an

empty plasmid and a plasmid encoding Mim2–HA, respectively.

After import of Ugo1, mitochondria were lysed in digitonin,

Fig. 6. Deletion of MIM2 leads to various import defects and impaired

assembly of the TOM complex. (A) Whole-cell lysates of wild type cells and

those lacking Mim1, Mim2 or both proteins were analyzed by SDS-PAGE

and immunodecoration with the indicated antibodies. The precursor of the

mitochondrial matrix protein Hep1 is indicated by an arrowhead.

(B) Mitochondria isolated from a wild-type or mim2D strain were incubated

with the indicated radiolabeled precursor proteins for the indicated time

periods. At the end of the import reactions samples were treated as described

below, analyzed by SDS-PAGE and autoradiography, and bands

corresponding to imported material were quantified. Samples containing

radiolabeled Ugo1 were trypsinated in order to generate a specific 23 kDa

fragment (f) (see Papic et al., 2011). After import of Fzo1, carbonate

extraction was performed and the membranous fraction was analyzed; when

pSu9-DHFR was imported, the mature protein (m) was quantified. After

import of porin and AAC mitochondria were treated with PK and the

protected molecules were quantified. The intensity of bands representing

imported material into wild-type mitochondria for the longest time period was

set as 100%. (p) precursor form of pSu9-DHFR and full-length Ugo1. A

representative experiment of three independent repeats is presented.

(C) Radiolabeled precursor of Tom40 was imported into mitochondria that

had been isolated from mim2D or the corresponding wild-type strain. After

import, the mitochondria were solubilized with digitonin and analyzed by

BN-PAGE and autoradiography. The two assembly intermediates of Tom40

(I, II) and the assembled TOM core complex (TOM) are indicated.
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halved and an antibody specific for the HA-tag was added to one

portion. Strikingly, addition of the antibody resulted in a shift of

the radioactive signal of [35S]Ugo1 to higher molecular weights

only if mitochondria harboring Mim2–HA were used (Fig. 7, left

panel, arrowhead). Thus, Mim2 interacts with substrate proteins.

A similar shift was observed for the Mim1 signal (Fig. 7, right

panel) suggesting that both Mim1 and Mim2 are subunits of the

functional substrate-binding MIM complex.

Taken together, this study reveals that the integral MOM

protein Mim2 is a novel component of the MIM complex that

mediates the import of integral MOM helical proteins.

Discussion
In this work we report on the identification of Mim2 as a novel

protein with a crucial function in the biogenesis of mitochondria.

Mim2 is located in the MOM, exposing its N-terminus to the

cytosol and the C-terminus to the IMS. The protein shares this

topology with its binding partner Mim1 and it also shows

functional similarity to the latter protein. Altered mitochondrial

morphology, reduced growth, lower steady-state levels of several

mitochondrial components as well as compromised assembly of

TOM complex are consequences of both MIM2 and MIM1

deletion. Mim1, Tom20 and the multispan proteins of the MOM

seem to be the main substrates that are affected by the absence

of Mim2. We propose that hampered biogenesis in the absence of

Mim2 results in reduced steady-state amounts and assembly of

different proteins in mim2D cells that in turn cause the other

observed phenotypes in these cells. For example, the altered

morphology of mitochondria in mim1D and mim2D cells can be

explained by the lower levels of their substrate proteins Fzo1 and

Ugo1. The latter two proteins mediate mitochondrial fusion and

thus their reduced levels interfere with the balance between

fusion and fission of the organelles.

Strikingly, the steady-state level of Mim1 is severely reduced in

mitochondria lacking Mim2. This finding might suggest that the

observed effects in mim2D cells are solely due to the loss of Mim1.
Yet several observations are in contrast to this scenario. First, the

growth phenotype of mim1D cells can be partially rescued by the
overexpression of Mim2. Therefore additional copies of Mim2
can, to a certain extent, reduce the requirement for Mim1. Second,

overexpression of Mim1 in a mim2D strain does not improve the
growth retardation but rather has even somewhat negative effect on
growth. These observations suggest a unique function of Mim2 and
might indicate that in the absence of Mim2 some unassembled

Mim1 molecules exert a dominant-negative effect by competing
with the function of the MIM complex. Third, our pull-down
experiments and native electrophoresis assays demonstrate that

both proteins are present in a stable functional complex that
interacts with substrate proteins.

Our results shed new light on the stoichiometry of the MIM

complex as they show that reduced levels of Mim1 or its
overexpression have a minor effect on complex size. Thus it
seems that the actual complex of around 200 kDa contains a

rather fixed number of copies of Mim1 and Mim2. In the absence
of Mim1 we could not observe a Mim2-containing sub-complex
suggesting that Mim1 is a crucial component for the formation of

the MIM complex. In contrast, a Mim1-containing complex was
formed even in the absence of Mim2 suggesting that the latter
protein is not absolutely essential for complex formation.
Naturally, we cannot exclude the possibility that additional, yet

to be identified, proteins are further components of the MIM
complex. Future efforts to functionally reconstitute the complex
from isolated subunits can provide an answer to this open

question. Taken together, the identification and characterization
of Mim2 get us one step ahead in solving the riddle of import of
outer membrane proteins, yet the elucidation of the precise

composition of the MIM complex and its molecular mode of
action has to be the next venture.

Materials and Methods
SILAC-based immunoprecipitation

Mim1D (YPH499 background) cells expressing plasmid encoding either native
Mim1 or GFP-Mim1 were grown in synthetic media containing either 15N2-13C6

lysine (heavy) or (light) lysine (Ong et al., 2002). Cells were harvested in mid-
exponential phase and mitochondria were isolated after enzymatic
spheroblastation, using an abridged protocol. EDTA was omitted from all
buffers. Mitochondria were lysed in 1% digitonin, 10% (v/v) glycerol, 150 mM
NaCl, 50 mM MOPS/KOH, pH 7.4, containing complete protease inhibitor
cocktail (Roche). Samples were clarified by centrifugation and incubated with
GFP-binder beads (gta100, Chromotek). Beads were isolated, washed and pooled
according to forward (Mim1 light and GFP–Mim1 heavy) and reverse (Mim1
heavy and GFP–Mim1 light) experiments. Proteins were eluted with 4% SDS,
100 mM Tris–HCl pH 8.0, 0.1 M DTT and subjected to filter aided sample
preparation method and digestion with endoproteinase (Wiśniewski et al., 2009).

Mass spectrometry and data analysis

Peptides were separated by nLC at 4 h gradient length without prior fractionation,
electrosprayed online and analyzed with LTQ-Orbitrap-XL or Orbitrap-Velos mass
spectrometers using collision-induced dissociation or higher-energy collisional
dissociation fragmentation, respectively (Olsen et al., 2005; Olsen et al., 2009).
Data analysis was performed using the MaxQuant software environment (Cox and
Mann, 2008) version 1.0.13.9. Searches of generated peak lists were carried out
with Mascot (Perkins et al., 1999) against the translation of all 6809 gene models
from the Saccharomyces Genome Database (release date 12 December 2007) and
175 frequently observed contaminants. Identifications were accepted at a false
discovery rate of 1% both at the peptide and protein level using a decoy database
strategy with reversed protein sequences (Elias and Gygi, 2007).

Yeast strains and growth conditions

Standard genetic techniques were used for growth and manipulation of yeast strains.
Unless otherwise stated, the wild-type strain W303 was used. The mim1D/mim2D
double-deletion strain was obtained by mating of the single deletion strains followed
by tetrad dissection. Transformation of yeast was carried out according to the

Fig. 7. Mim2 is directly involved in Ugo1 import. Mitochondria isolated

from a wild-type strain containing the empty plasmid (Ø) and from a mim2D

strain overexpressing Mim2–HA were incubated with radiolabeled precursor

of Ugo1. After the import reactions mitochondria were solubilized in

digitonin; the lysate was cleared by centrifugation and then incubated with or

without an antibody against the HA-tag (a-HA). Samples were analyzed by

BN-PAGE, autoradiography (left panel) and then immunodecoration with an

antibody against Mim1 (right panel). Mim2-containing complexes that were

shifted by the antibody are indicated by an arrowhead.
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lithium-acetate method. For drop-dilution assays, yeast cells were grown in synthetic
medium to an OD600 of 1.0, diluted in fivefold increment, and then 5 ml of each
dilution were spotted onto solid media and growth was monitored for few days.

Recombinant DNA techniques

To express Mim1 or Mim2 in yeast cells with or without a C-terminal HA-tag, the
ORF of MIM1 or MIM2 (systematic name YHR099W-A) was amplified by PCR
with or without its stop codon using yeast genomic DNA as template. Primers used
contained EcoRI and HindIII restriction sites which were used to introduce the
amplified fragment into the expression vector pYX142 which contains the HA-tag
sequence. Constructs were verified by sequencing. For expression of Mim1 with a
C-terminal His7-tag, the plasmid pRS426-TPIpro-Mim1-His7 was used (Popov-
Celeketić et al., 2008).

Yeast genes were deleted by a PCR-based approach using the HIS3 marker
amplified from pFA6a-His3MX6 plasmid (Wach et al., 1997) or the kanamycin
resistance cassette amplified from pFA6a-kanMX4 plamid (Wach et al., 1994). For
the deletion of MIM1 the primers KSD311 (59-AGAAACATCACCCCCCTTCT-
TACGAAACTGCCACAAGACAGAAATCGTACGCTGCAGGTCGAC-39) and
KSD 312 (59-GTGTGTGTATTTATTTATGTAGGTTGCTAATGCTTTGGTGAT-
CGTATCGATGAATTCGAGCTCG-39) were used, for MIM2 KSD099f (59-
CCCAGCACCACAGCACATCACTGCACGAGCAACAATAACTAGAACCGT-
ACGCTGCAGGTCGAC-39) and KSD099r (59-TTATCTGTTATAACTGCTA-
TATGCGGATACATAAACAACAAACACATCGATGAATTCGAGCTCG-39).
Deletion of genes was confirmed by screening-PCR. Haploid deletions strains
were obtained by tetrad dissection.

A yeast strain harboring Mim2 under the control of an inducible promoter was
obtained by transforming the pYX113-GAL1pro-MIM2-HA vector into mim2D
strain. To construct this plasmid the MIM2 ORF without the stop codon was
subcloned from pYX142-MIM2-HA. For expression of GFP–Mim2 the ORF of
MIM2 was cloned into pYX132-Nterm-GFP using BamHI and HindIII sites. The
pYX132-Nterm-GFP plasmid contains the coding sequence for GFP without a stop
codon cloned between EcoRI and BamHI sites.

Biochemical procedures

Mitochondria were isolated from yeast cells by differential centrifugation as
previously described (Daum et al., 1982). Subcellular fractionation was performed
according to published procedures (Walther et al., 2009). Import experiments with
radiolabeled precursor proteins and isolated mitochondria were performed in an
import buffer containing 250 mM sucrose, 0.25 mg/ml BSA, 80 mM KC1, 5 mM
MgCl2, 10 mM MOPS–KOH, 2 mM NADH, 2 mM ATP, pH 7.2. Radiolabeled
precursor proteins were synthesized in rabbit reticulocyte lysate in the presence of
[35S]methionine. Import assays for the mitochondrial precursor proteins pSu9-
DHFR, AAC, Porin, and Ugo1 were performed as described before (Papic et al.,
2011). For swelling experiments, isolated mitochondria were incubated with a
hypotonic buffer (20 mM HEPES, pH 7.2) for 30 min on ice. In the carbonate
extraction reaction mitochondria were dissolved in 0.1 M Na2CO3. After 30 min
on ice, samples were centrifuged (75,000 g, 60 min, 2 C̊) and pellet and
supernatant were analyzed.

For pull-down experiments, mitochondria from the mim1D/mim2D yeast strain
expressing Mim2–HA and Mim1-His7 or the mim2D strain expressing Mim2–HA
were used. After lysis in digitonin buffer (0.5% digitonin, 20 mM Tris-HCl,
50 mM NaCl, 10% glycerol, 1 mM PMSF, pH 7.4) and clarifying spin (20,000 g,
20 min, 2 C̊) supernatants were incubated for 1 h at 2 C̊ with Ni-NTA agarose
beads (NEB) that were pre-equilibrated in digitonin-buffer. After washing twice,
bound material was analyzed by SDS-PAGE and immunodecoration.

Co-immunoprecipitation experiments were performed using isolated wild-type
mitochondria and mitochondria isolated from a strain expressing Mim2–HA. After
binding of the HA-antibody to Protein G Sepharose beads these were incubated
with cleared lysate of the mitochondria in digitonin buffer (1% digitonin, 20 mM
Tris–HCl, 50 mM NaCl, 10% glycerol, 1 mM PMSF, pH 7.4). After several
washes, bound proteins were analyzed by SDS-PAGE and immunodecoration.

Protein samples were analyzed by SDS-PAGE and blotting to nitrocellulose
membranes followed by visualization through autoradiography. Alternatively,
incubation with antibodies was carried out according to standard procedures and
visualization was performed via the ECL method. Intensity of the observed bands
was quantified with the AIDA software (Raytest). Unless stated otherwise, each
presented experiment represents at least three independent repetitions.

Blue native PAGE

Mitochondria were lysed in 40 ml TX-100 or digitonin buffer (0.5% TX-100 or 1-
1.5% digitonin, 20 mM Tris-HCl, 0.1 mM EDTA, 50 mM NaCl, 10% glycerol,
1 mM PMSF, pH 7.4). After incubation for 15 min at 4 C̊ and a clarifying spin
(30000 g, 15 min, 2 C̊), 5 ml sample buffer (5% [w/v] Coomassie Brilliant Blue G-
250, 100 mM Bis-Tris, 500 mM 6-aminocaproic acid, pH 7.0) were added, and the
mixture was analyzed by electrophoresis in a 6 to 13% gradient blue native gel
(Schägger et al., 1994). Gels were blotted to polyvinylidene fluoride membranes
and proteins were further analyzed by autoradiography or immunodecoration. For

antibody shift, the antibody was added to the cleared mitochondrial lysate and the
samples were incubated 30 min on ice prior to the addition of the sample buffer.

Fluorescence microscopy

For visualization of mitochondria, cells were transformed with a yeast expression
vector harboring the mitochondrial presequence of subunit 9 of the Fo-ATPase of
N. crassa fused to GFP, pVT100U-mtGFP (Westermann and Neupert, 2000).
Microscopy images were acquired with an Axioskop20 fluorescence microscope
equipped with an Axiocam MRm camera using the 43 Cy3 filter set and the
AxioVision software (Zeiss).
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Müller (IFIB, Tübingen, Germany) and A. Barna (IFIB, Tübingen,
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Becker, T., Wenz, L. S., Krüger, V., Lehmann, W., Müller, J. M., Goroncy, L.,

Zufall, N., Lithgow, T., Guiard, B., Chacinska, A. et al. (2011). The mitochondrial
import protein Mim1 promotes biogenesis of multispanning outer membrane proteins.
J. Cell Biol. 194, 387-395.

Burri, L., Vascotto, K., Gentle, I. E., Chan, N. C., Beilharz, T., Stapleton, D. I.,

Ramage, L. and Lithgow, T. (2006). Integral membrane proteins in the
mitochondrial outer membrane of Saccharomyces cerevisiae. FEBS J. 273, 1507-
1515.

Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. and Pfanner, N. (2009).
Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628-644.

Cox, J. and Mann, M. (2008). MaxQuant enables high peptide identification rates,
individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
Nat. Biotechnol. 26, 1367-1372.

Daum, G., Gasser, S. M. and Schatz, G. (1982). Import of proteins into mitochondria.
Energy-dependent, two-step processing of the intermembrane space enzyme
cytochrome b2 by isolated yeast mitochondria. J. Biol. Chem. 257, 13075-13080.

Dimmer, K. S. and Rapaport, D. (2010). The enigmatic role of Mim1 in mitochondrial
biogenesis. Eur. J. Cell Biol. 89, 212-215.

Dukanovic, J. and Rapaport, D. (2011). Multiple pathways in the integration of
proteins into the mitochondrial outer membrane. Biochim. Biophys. Acta 1808, 971-
980.

Elias, J. E. and Gygi, S. P. (2007). Target-decoy search strategy for increased
confidence in large-scale protein identifications by mass spectrometry. Nat. Methods

4, 207-214.

Endo, T. and Yamano, K. (2009). Multiple pathways for mitochondrial protein traffic.
Biol. Chem. 390, 723-730.

Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, I.,

Hyman, A. and Mann, M. (2010). Quantitative proteomics combined with BAC
TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739-754.

Hulett, J. M., Lueder, F., Chan, N. C., Perry, A. J., Wolynec, P., Likić, V. A.,

Gooley, P. R. and Lithgow, T. (2008). The transmembrane segment of Tom20 is
recognized by Mim1 for docking to the mitochondrial TOM complex. J. Mol. Biol.

376, 694-704.

Ishikawa, D., Yamamoto, H., Tamura, Y., Moritoh, K. and Endo, T. (2004). Two
novel proteins in the mitochondrial outer membrane mediate beta-barrel protein
assembly. J. Cell Biol. 166, 621-627.

Kastenmayer, J. P., Ni, L., Chu, A., Kitchen, L. E., Au, W. C., Yang, H., Carter,

C. D., Wheeler, D., Davis, R. W., Boeke, J. D. et al. (2006). Functional genomics of

Journal of Cell Science 125 (14)3472

2 Results

147



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res. 16, 365-
373.

Kemper, C., Habib, S. J., Engl, G., Heckmeyer, P., Dimmer, K. S. and Rapaport, D.
(2008). Integration of tail-anchored proteins into the mitochondrial outer membrane
does not require any known import components. J. Cell Sci. 121, 1990-1998.

Lueder, F. and Lithgow, T. (2009). The three domains of the mitochondrial outer
membrane protein Mim1 have discrete functions in assembly of the TOM complex.
FEBS Lett. 583, 1475-1480.

Meineke, B., Engl, G., Kemper, C., Vasiljev-Neumeyer, A., Paulitschke, H. and

Rapaport, D. (2008). The outer membrane form of the mitochondrial protein Mcr1
follows a TOM-independent membrane insertion pathway. FEBS Lett. 582, 855-860.

Mnaimneh, S., Davierwala, A. P., Haynes, J., Moffat, J., Peng, W. T., Zhang, W.,

Yang, X., Pootoolal, J., Chua, G., Lopez, A. et al. (2004). Exploration of essential
gene functions via titratable promoter alleles. Cell 118, 31-44.

Neupert, W. and Herrmann, J. M. (2007). Translocation of proteins into mitochondria.
Annu. Rev. Biochem. 76, 723-749.

Olsen, J. V., de Godoy, L. M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov,

A., Lange, O., Horning, S. and Mann, M. (2005). Parts per million mass accuracy
on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell.

Proteomics 4, 2010-2021.
Olsen, J. V., Nielsen, M. L., Damoc, N. E., Griep-Raming, J., Moehring, T.,

Makarov, A., Schwartz, J., Horning, S. and Mann, M. (2009). Characterization of
the Velos, an enhanced LTQ orbitrap, for proteomics. Mol. Cell. Proteomics 8, S40-
S41.

Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A.
and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC,
as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1,
376-386.

Otera, H., Taira, Y., Horie, C., Suzuki, Y., Suzuki, H., Setoguchi, K., Kato, H., Oka,

T. and Mihara, K. (2007). A novel insertion pathway of mitochondrial outer
membrane proteins with multiple transmembrane segments. J. Cell Biol. 179, 1355-
1363.

Papic, D., Krumpe, K., Dukanovic, J., Dimmer, K. S. and Rapaport, D. (2011).
Multispan mitochondrial outer membrane protein Ugo1 follows a unique Mim1-
dependent import pathway. J. Cell Biol. 194, 397-405.

Perkins, D. N., Pappin, D. J., Creasy, D. M. and Cottrell, J. S. (1999). Probability-
based protein identification by searching sequence databases using mass spectrometry
data. Electrophoresis 20, 3551-3567.
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3.1 The Proteome of Aging

3.1.1 Studying Aging by Quantitative Proteomics

The causes of numerous human diseases are well understood at the molecular level,
owing to revolutionary advances in the biomedical sciences. In this respect, aging is
a notable exception. Hence, its mechanism has been referred to as “one of the great
unsolved mysteries of biology” [2]. A general consensus exists as to the fact that senes-
cence is associated with a broad range of cellular deteriorations. However, it is diffi-
cult to discriminate between effects that are causative of and those merely associated
with aging since reliable experimental evidence is often lacking. During the past two
decades, it has become evident that longevity is regulated by specific cellular signaling
pathways. Nonetheless, it remains largely obscure how the transcription factors acting
downstream of these signaling cascades achieve lifespan extension.
Aging has been studied in different laboratory model systems all of which have distinct
advantages and disadvantages. The nematode C. elegans with its short lifespan and
easy maintenance is ideally suited for forward and reverse genetic screens to identify
modulators of longevity. After their initial discovery, new longevity candidate genes
can immediately be validated within weeks. This lead to the establishment of sev-
eral important paradigms in aging research which were later shown to be conserved
in mammals. Adult nematodes exclusively contain postmitotic somatic cells and thus
cannot serve as a model for a variety of biological processes important in mammalian
aging, such as telomere shortening or stem cell aging.
Studying the impact of specific genes on longevity in mice is considerably more diffi-
cult. Besides the effort to generate transgenic animals, subsequent studies for lifespan
determination are costly and take several years. However, aging-related physiological
and biochemical changes can be analyzed with a broad range of assays and results are
likely to be more relevant to human health.
Since the introduction of microarrays, researchers have attempted to define how aging
and lifespan-modulating signaling pathways affect gene expression. Relatively large
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sets of genes involved in multiple biochemical processes were identified, but the over-
lap between individual studies was often low. This, for example, holds true for reports
of age-related transcriptional changes in mouse brain [140, 171, 183, 221] or C. elegans
[30, 101]. Similarly, little overlap was found between individual reports addressing the
transcriptional response of DAF-16, the transcription factor responsible for lifespan ex-
tension via the IIS pathway[202, 218].
A major limitation of transcriptomics approaches is the fact that posttranscriptional
regulatory mechanisms may influence the steady state concentrations and activities of
proteins. An emerging body of evidence suggests that aging affects the integrity of the
proteostasis network, and it is likely that processes like translation efficiency, folding
and degradation play an even more important role in this field of research. MS based
proteomics has only very recently enabled the analysis of complex protein mixtures to
a depth of several thousands of proteins. Moreover, the concept of SILAC labeling has
been extended to a wide range of multicellular model organisms. We have made use
of these technological advances to address aging in two commonly used model organ-
isms. The studies presented in this thesis address proteome changes in both mice and
C. elegans in a comparable experimental setup and therefore provide insight into how
well aging is conserved in evolution.

3.1.2 The Proteome of Mice, but Not of Worms Is Conserved during
Aging

The most striking difference between mice and worms is the sheer extent of proteome
remodeling during aging. While pronounced protein abundance changes are observed
in C. elegans, tight homeostasis is maintained in mouse tissue (Figure 3.1.1). Although
the two species differ substantially in lifespan, the comparison was done between sim-
ilar time points with respect to biological age. Animals were considered young adults
soon after entering the reproductive phase whereas old animals were defined as an age
at which less than 50% of the initial population remained alive. At first sight, the dis-
crepancy between worm and mouse could be attributed to the fact that all cells in adult
nematodes are post-mitotic. However, if proteome maintenance in mammals was pre-
dominantly achieved by mitotic cell replacement, the degree of proteome conservation
should have differed according to the mitotic index of individual mouse tissues. In-
stead, protein levels were found to be equally well preserved across a variety of tissues
during aging. Both brain and heart muscle are known to have very low rates of cell di-
vision and are thus considered post-mitotic but showed similarly low shifts in protein
expression as kidney, a tissue with a higher rate of cell division [72].
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Figure 3.1.1: Proteome changes during aging aging in C. elegans and mice. Logarithmic abun-
dance differences detected between the proteomes of young and old animals were calculated
and plotted as histograms.

Recent data from us and other groups suggest that an age-dependent proteostasis de-
cline is conserved in metazoan evolution. For example, we and others have demon-
strated a pronounced accumulation of misfolded protein deposits in nematodes [57,
253]. In humans, aging is the highest risk factor for the onset of several neurodegenera-
tive diseases related to an accumulation of misfolded proteins, including Alzheimer’s,
Parkinson’s and Huntington’s disease. This indicates that selective pressure has op-
timized proteome maintenance to ensure minimal proteotoxic stress and thereby the
highest level of fitness before and during the reproductive phase. Both in worms and
in mice, this selective pressure is abolished after approximately one third of the max-
imum lifespan under laboratory conditions [118, 190] when fertility is compromised
due to oocyte quality decline [189]. In line with this notion, we show that aging in C.
elegans results in a successive proteome remodeling which is most pronounced imme-
diately after the cessation of the reproductive phase. Moreover, proteins with an abun-
dance increase were generally more prone to become insoluble at a later time point in
life. Finally, depleting some of the most aggregation-prone proteins significantly ex-
tended lifespan. Therefore, it is conceivable that age related proteostasis decline and
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the resulting deleterious proteome imbalance is at least one limiting factor to the post-
reproductive lifespan in worms.
Surprisingly, although proteostasis decline itself is conserved from worm to mouse,
aging appears to result in much lower proteome imbalance in mice compared to C.
elegans. The complexity of the two organisms, however, differs greatly. In contrast to
mammals, nematodes possess a simple anatomy with rudimentary organs. Although
formal evidence is lacking, it is tempting to speculate that the requirements for a tight
proteome maintenance have drastically increased during evolution. Even a relatively
subtle degree of proteome imbalance in any essential organ could result in death mam-
malian organisms whereas nematodes might tolerate much more extensive deregu-
lation in protein expression. One could therefore state that mammals have become
“addicted” to highly efficient proteostasis during evolution.

3.1.3 Outlook and Future Directions

The work presented here only offers a snapshot of how aging affects the proteome
in metazoans. The fact that this process is not well conserved between two organ-
isms which are far apart in the tree of life raises the question whether more closely
related species share a more similar degree of proteome maintenance. An obvious first
step towards addressing this question would be the analysis of additional organisms
within the same orders of the organisms used in this thesis, Rhabditida or rodents,
respectively. For example, the effect of aging on the nematode C. briggsae and addi-
tional species closely related to C. elegans could be studied using a similar experimen-
tal setup based on SILAC quantification. Similarly, isogenic young and aged rats could
be obtained. However, due to a lack of an available SILAC labeled reference mate-
rial, quantification would have to be achieved either by a super-SILAC or chemical
labeling strategy, because label-free approaches would not be accurate enough for the
expected low abundance changes. These datasets would allow to answer the question
whether either of the two analyzed organisms represents an exceptional case in terms
protein maintenance during senescence. In a next step, proteomics could be employed
to investigate the aging process of additional model organisms such as the fruit fly
Drosophila melanogaster or the zebrafish Danio rerio, both of which can be subjected to
SILAC labeling. These data would provide valuable insights as to when in evolution
the requirement for highly efficient proteostasis arose.
So far, we have primarily investigated protein abundance changes during aging. Es-
tablished enrichment methods for peptides carrying post-translational modifications,
especially phosphorylation, acetylation and ubiquitination could be applied to study
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how these modifications are affected by senescence in mammalian tissues. While al-
tered phosphorylation patterns could reveal deregulation of specific kinases or phos-
phatases, increased abundance of ubiquitinated proteins may point at deficiencies in
protein degradation. Moreover, the implication of the deacetylase family of sirtuins,
most prominently SIRT3, in age-related pathologies such as cancer, heart failure and
neurodegenerative diseases [112, 301] suggest that acetylation plays a major role in
the aging process. Knockout mice of the mitochondrial sirtuins, SIRT3 and SIRT5, have
been generated [184], both of which displayed specific metabolic changes ranging from
fatty acid metabolism to respiration and reactive oxygen species defense [301]. Large
scale acetylome mapping of these strains would strongly contribute to our understand-
ing how protein acetylation regulates metabolism and how it is affected by aging. Fi-
nally, the accumulation of oxidated amino acid side chains has been suggested to be a
major cause of cellular decay. However, convincing data as to the extent of these modi-
fications in aged tissues is lacking. Thus, oxidative modifications could be a promising
target for MS-based proteomics. A major technical challenge is the fact that peptides
are subjected to relatively harsh conditions during sample preparation and analysis
procedure and are therefore prone to oxidative in vitro modifications. Protocols aimed
at quantifying such modifications would either have to employ chemical derivatizaiton
strategies or perform all preparation in an inert gas environment to exclude reactions
with ambient air oxygen. To increase sensitivity, enrichment strategies via modification
specific antibodies would further have to be considered. An encouraging example that
the analysis of oxidative modifications by MS-based proteomics is feasible has been
provided by a recent report in which methionine oxidations were sucessfully quanti-
fied [98].
The fact that misfolded protein aggregates accumulate during aging has recently been
established in flies and worms [57, 61, 253]. Although the overall composition of the
proteome remains virtually unchanged in various mouse tissues, it is conceivable that
aging may also reduce the solubility of a subset of the proteome and thereby interfere
with its function. Hence, a low stringency isolation procedure for insoluble proteins in
mammalian tissues, similar to the protocol developed for C. elegans, should be estab-
lished. Proteomic analysis of these fractions would clarify whether aggregates other
than amyloid precursors drive the progression of senescence, as our data suggests for
nematodes.
Collectively, the advances in MS-based proteomics have the potential to provide re-
searchers with data allowing to test several opposing aging theories critically and ad-
vance our understanding of the aging process at the molecular level.
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3.2 Mitochondrial Organellar Proteomics

Studying the composition and function of protein complexes in mitochondrial mem-
branes is challenging and requires tailor made protocols. For example, several deter-
gents have been established which allow gentle membrane lysis while maintaining the
integrity of large protein complexes. By this means, these complexes become accessible
to analysis by protocols such as blue native electrophoresis (BNGE) or immunoprecip-
itation.
In the first publication, we employed digitonin lysis to screen for novel interactors
of the MOM protein Mim1, using an affinity-tagged variant of the protein [65]. The
experiment was performed as a crossover SILAC experiment to distinguish between
interactors and background binders. In contrast to immunoprecipitation experiments
with soluble proteins, the resulting dataset showed a large number of proteins which
were significantly enriched in the pulldown over the control. Virtually all of these
were known to reside in the MOM but were unlikely to be genuine Mim1 interactors.
This finding suggests that the lysis protocol did not yield complete solubilization but
rather dissociated membranes into patches, which were subsequently purified during
the immunoprecipitation experiment. Since the complex was unlikely to withstand
more stringent lysis or washing procedures, a second data filtering step based on label
free quantification was applied, assuming a higher recovery for direct interactors due
to a closer proximity to the bait protein. This approach proved to be successful and
lead to the identification of Mim2, a novel subunit of the MIM complex.
So far, our approach is limited to subunits with high copy numbers within complexes
and might not be suitable to detect substoichiometric binders. To that end, it would be
advantageous to include an orthogonal second purification step. For example, SILAC
labeled cells expressing human influenza hemagglutinin (HA) epitope-tagged variants
of membrane embedded bait proteins, or unlabeled control cells, could be subjected to
mitochondrial isolation followed by detergent solubilzation. After elution with high
concentrations of HA peptides under native conditions, isolated complexes could be
subjected to blue native gel electrophoresis to separate different complex isoforms and
remove contaminating proteins. SILAC quantification would allow to exclude contam-
inants that are introduced through non-specific binding to either tube walls or resin.
Once the subunits of a particular complex are established, subsequent experiments
with spiked-in SILAC labeled protein epitope signature tag (PrEST) constructs [313]
could be performed to reveal their precise stoichiometry. This approach would also be
suitable to analyze established complexes in more detail.
Of note, the observed specific enrichment of contaminating proteins in our pulldown
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experiment may provide an explanation for incorrectly identified interactors of mito-
chondrial membrane proteins in the literature. For example, the protein Mdm10 was
previously suggested to be a subunit of the TOB/SAM complex. The authors used a
similar solubilization protocol as in our case. However, only qualitative MS analysis
or antibody-based Western detection of the purified complex members was performed
[203]. The presence of this protein in the TOB/SAM complex remains controversial
[303].

In a further study, also part of this thesis, an entirely different experimental strategy
lead to the discovery of the MICOS, the complex responsible for CS formation [119].
Instead of dissolving membranes with the help of detergents, mild sonication was ap-
plied to shear the organelles into vesicles. These vesicles were subjected to density gra-
dient centrifugation and quantified in different fractions via a spike-in SILAC standard.
This powerful concept of PCP has previously been applied to assign proteins to spe-
cific organelles. However, it has not previously been applied to resolve suborganellar
structures. Besides the discovery of MICOS, our dataset contains a rich resource allow-
ing to discriminate between proteins residing in or being associated with either of the
two mitochondrial membranes as well as contaminants from other organelles. More-
over, fine structures in the abundance profiles of particular proteins even allowed to
predict substoichiometrical interactions between MIM and MOM proteins. Our adap-
tation of the PCP method could therefore be applied in the future to address biological
questions in which submitochondrial localization plays a role. Furthermore, physical
contacts between different organelles could be established in this fashion.
Collectively, novel biochemical approaches, combined with high resolution-MS, will
enable researchers to dissect numerous mitochondrial processes at much greater de-
tail.
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Abbreviations

3D three-dimensional
AC alternating current
APEX absolute protein expression profiling
ATP Adenosine-5’-triphosphate
CID collision induced decay
CJ cristae junction
CS mitochondrial contact site
daf dauer formation
DBE daf-16 family member binding element
DC direct current
DDL daf-16 dependent longevity
DHIC DDL-1 containing HSF-1 inhibitory complex
emPAI exponentially modified protein abundance index
ESI electrospray ionization
ETD electron transfer dissociation
FT Fourier transformation
GFP green fluorescent protein
GO gene ontology
HCD higher energy collisional dissociation
HSE heat shock response element
HSF heat shock factor
iBAQ intensity based absolute quantification
ICAT isotope-coded affinity tag
ICR ion cyclotron resonance
IGF insulin-like growth factor
IGF-IR insulin-like growth factor 1 receptor
IMS mitochondrial intermembrane space
IR insulin receptor
IRR insulin receptor-related receptor
iTRAQ isobaric tags for relative and absolute quantitation
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Abbreviations

JNK Jun N-terminal kinase
LOPIT localization of organelle proteins by isotope tagging
LTQ linear trap quadrupole
MALDI matrix-assisted laser desorption/ionization
MICOS mitochondrial contact site
MIM mitochondrial inner membrane
MOM mitochondrial outer membrane
MS mass spectrometry
MS/MS tandem mass spectrometry
mtDNA mitochondrial DNA
NADH nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
ORF open reading frame
PAI protein abundance index
PCP protein correlation profiling
PMF post-mitochondrial fraction
RF radio frequency
RNAi RNA interference
ROS reactive oxygen species
SILAC stable isotope labeling by amino acids in cell culture
SIR silent information regulator
TOF time of flight mass analyzer
TOR target of rapamycin
wt wild type
XIC extracted ion current
YFP yellow fluorescent protein
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