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Abstract

mRNA metabolism is a highly complicated process. It begins with co-

transcriptional events including RNA capping, splicing, cleavage and poly-

adenylation. During transcription, various proteins are loaded onto the

mRNA. This mRNA protein complex is known as mRNP. The structure

and composition of mRNP determine the fate of mRNA. Before transported

to the cytoplasm, mRNAs are inspected by the nuclear surveillance mech-

anisms, the aberrant molecules are eliminated. In the cytosol, the cap of

mRNA is protected by the translation initiation factor eIF4E. The eIF4E

interacts with poly(A)-binding protein and circularize mRNA to ensure

effective translation. Cytosolic mRNA degradation competes with trans-

lation and can reduce the translatability by shortening the poly(A)-tail.

Poly(A)-tail shortening eventually triggers decapping and mRNA degrada-

tion. Various surveillance events also take place in the cytosol to prevent

formation of aberrant proteins.

To monitor eukaryotic mRNA metabolism, we developed in this study com-

parative Dynamic Transcriptome Analysis (cDTA). cDTA provides abso-

lute rates of mRNA synthesis and decay in Saccharomyces cerevisiae (Sc)

cells with the use of Schizosaccharomyces pombe (Sp) as internal standard.

cDTA uses non-perturbing metabolic labeling that supersedes conventional

methods for mRNA turnover analysis. cDTA reveals that S. cerevisiae

and S. pombe transcripts that encode orthologous proteins have similar

synthesis rates, whereas decay rates are five-fold lower in S. pombe, re-

sulting in similar mRNA concentrations despite the larger S. pombe cell

volume. cDTA of S. cerevisiae mutants reveals that a eukaryote can buffer

mRNA levels. Impairing transcription with a point mutation in RNA poly-

merase (Pol) II causes decreased mRNA synthesis rates as expected, but

also decreased decay rates. Impairing mRNA degradation by deleting dead-

enylase subunits of the Ccr4-Not complex causes decreased decay rates as

expected, but also decreased synthesis rates. Extended kinetic modeling re-

veals mutual feedback between mRNA synthesis and degradation that may

be achieved by a factor that inhibits synthesis and enhances degradation.

We further use cDTA to determine the transcription rate and degradation



rate of mRNAs in 46 yeast strains lacking genes involved in mRNA degra-

dation and metabolism. In these strains, changes in mRNA degradation

rates are generally compensated by changes in mRNA synthesis rates, re-

sulting in a buffering of mRNA levels. We show that buffering of mRNA

levels requires the RNA exonuclease Xrn1. The buffering is rapidly es-

tablished when mRNA synthesis is impaired, but is delayed when mRNA

degradation is impaired, apparently due to Xrn1p-dependent transcription

repressor induction. Cluster analysis of the data defines the general mRNA

degradation machinery, reveals different substrate preferences for the two

mRNA deadenylase complexes Ccr4-Not and Pan2p-Pan3p, and unveils an

interwoven cellular mRNA surveillance network.
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Chapter 1

Introduction

1.1 The complexity of mRNA metabolism

In most species studied, the amount of RNA is defined by RNA synthesis (Fuda et al.,

2009) and degradation (Garneau et al., 2007; Parker and Sheth, 2007). These two

major processes determine cellular mRNA levels and thus govern genome expression

(Figure 1.1). Transcription is regulated at different levels: the DNA sequence defines

the location, and to some extend the strength of transcription. It includes the core

promoter sequence, which is bound by the general transcription factors (GTFs); and

the sequence upstream of the core promoter, which can be bound by either activa-

tors or repressors, and can thus interact with GTFs. Thousands of factors regulate

transcription, the majority of these are proteins, and some are regulatory non-coding

RNAs (Liu et al., 2013). After the several nucleotide are synthesized, the mRNA is

capped, intron sequence is spliced, the nascent mRNA is cleaved before termination

and polyadenylated. During transcription, various proteins are loaded onto the mRNA.

The structure of the mRNA and the composition of the proteins loaded onto the mRNA

determine its fate. Before transport to the cytoplasm, mRNAs are inspected by the

nuclear surveillance mechanisms and the aberrant molecules are eliminated. In the cy-

tosol, mRNA cap is protected by the translation initiation factor eIF4E. eIF4E interacts

with poly(A)-binding protein and circularizes mRNAs to ensure effective translation.

Cytosolic mRNA degradation competes with translation and can reduce the translata-

bility by shortening the poly(A)-tail. poly(A) shortening eventually triggers decapping

and mRNA degradation. Various surveillance events also take place in the cytosol to

prevent the formation of aberrant protein. The cellular degradation is governed by

1



1. Introduction

multiple mechanisms. There are four general pathways (Figure 1.1): deadenylation de-

pendent decapping followed by 5’ → 3’ degradation, 3’ → 5’ degradation by exosome,

the endonucleolytic digestion and quality control pathways.

1.2 mRNA degradation is an important platform

for gene regulation

1.2.1 The mRNA degradation pathways

In eukaryotes, mRNAs are synthesized in the nucleus by RNA polymerase II (Pol II).

The 5’-end of the nascent mRNA is protected by a 7-methyl guanosine cap (m7G-cap)

structure, which is added immediately after a few nucleotides are synthesized (Shatkin,

1976; Topisirovic et al., 2011). When Pol II reaches the 3’-poly(A) site, cleavage hap-

pens, the nascent mRNA is released into the nucleoplasm and subsequently polyadeny-

lated (Colgan and Manley, 1997; Millevoi and Vagner, 2010). This poly(A) tail prevents

mRNA from degradation at the 3’-end. The mRNAs are coated with various functional

proteins to form messenger ribonucleoproteins (mRNPs) (Lee and Tarn, 2013); some of

them facilitate mRNA export to the cytoplasm, where they are translated (Rodŕıguez-

Navarro and Hurt, 2011). The poly(A) tail of mRNA is bound by poly(A)-binding

protein (PABP), and the 5’-m7G-cap is bound by cap binding proteins (CBPs). These

two complexes interact with each other, determine the translation efficiency and protect

mRNAs from degradation (Topisirovic et al., 2011). However, mRNAs are constantly

deadenylated in cytoplasm. Shortening the poly(A) tail reduces the ability of mRNAs

to be translated and eventually leads to translational inhibition and degradation.

In yeast poly(A) shortening leads to decapping and thereby exposing the RNAs to 5’

→ 3’ digestion by exonuclease (Decker and Parker, 1993; Muhlrad et al., 1994). In vivo

the mRNAs are protected from decapping in a poly(A) dependent manner (Caponigro

and Parker, 1995; Decker and Parker, 1993). The poly(A) binding protein Pab1p plays

a major role in the decapping inhibition (Caponigro and Parker, 1995). The ability of

Pab1p to inhibit decapping is intrinsic and is independent of the binding to poly(A)

(Coller et al., 1998). Decapping is conserved throughout eukaryotic organisms. Evi-

dence shows that in yeast the 5’ → 3’ degradation following decapping is faster then

the 3’ → 5’degradation. However, in some yeast mRNA 3’ → 5’ degradation will be

the dominant decay mechanism.

2



1. Introduction

Degradation also plays an important role in surveillance. Although Pol II has proof-

reading activity and has a very low error rate (Cheung and Cramer, 2011; Wang et al.,

2009), splicing is an error prone process and often leads to frame shift in mRNA (Jaillon

et al., 2008; Zhang et al., 2009). Frame shifts eventually cause premature stop codon

formation and produces truncated peptides. In the nucleus, aberrant transcripts can be

recognized and polyadenylated by the TRAMP complex, and subjected to degradation

by exosomes (Schmidt and Butler, 2013). In the cytosol, non-sense mediated decay

(NMD) is a translation dependent surveillance pathway, which recruits the degrada-

tion machinery and is involved in the subsequent clearance of the aberrant mRNAs

(González et al., 2001). Some RNAs also contain secondary structure, which can ob-

struct translating ribosomes. No-go mediated decay (NGD) cope with these situations

and triggers mRNA degradation as well (Inada, 2013).

Figure 1.1: The mRNA degradation pathway

3



1. Introduction

1.2.2 Deadenylation

Although mRNA can be degraded from both ends by exoribonucleases or in the middle

by endoribonucleases, studies show that poly(A)-shortening is the initial step in mRNA

degradation. In eukaryotic cells, deadenylation is carried out by the large Ccr4-Not

complex (Chen et al., 2002; Tucker et al., 2001). Eukaryotes possess another protein

complex, Pan2p-Pan3p, with deadenylase activity, which was discovered even before

the discovery of deadenylase activity of Ccr4-Not complex (Sachs and Deardorff, 1992).

In yeast as well as in drosophila, evidence shows that Pan2p-Pan3p trims the poly(A)

tail in the nucleus during mRNA processing. In the cytoplasm, Pan2p-Pan3p initi-

ates deadenylation before the Ccr4-Not complex takes action (Brown and Sachs, 1998;

Tucker et al., 2001). In deletion strains of Ccr4p, Pan2p-Pan3p seems to have resid-

ual deadenylation activity, but deletion of Pan2p-Pan3p does not affect the cellular

deadenylation. In mammalian cells, several cis-regulating elements can enhance dead-

enylation, such as AU-rich elements (AREs), miRNA recognition sites, and non-sense

codon (Chen and Shyu, 2011). Here I briefly review the character of these deadenylase

complexes.

Ccr4-Not complex Ccr4-Not complex is one of the global regulator of gene expres-

sion (Collart, 2003). It contains 9 subunits and regulates RNA turnover at several

steps (Bai et al., 1999). Ccr4-Not complex was identified solely as transcription factor

in 1980 (Reed, 1980), and it is important in the regulation of TFIID distribution on

promoters (Lenssen et al., 2005, 2007). Since the two subunits of this complex, Ccr4p

and Caf1p, are deadenylases (Tucker et al., 2001), Ccr4-Not complex also contributes

to mRNA degradation. Ccr4-Not complex even functions in protein degradation, since

Not4p was identified as an E3 ligase (Albert et al., 2002). Latest in vitro studies

confirm Ccr4-Not complex functions in transcription elongation (Kruk et al., 2011) by

performing ChIP assays. Ccr4p is also found in the Cdc73p-Paf1p-Pol II-containing

complex (Paf1p complex), which also includes Ctr9p, Rtf1p, Leo1p, Gal11p, Ccr4p,

Hpr1p, and the general initiation factors TFIIB and TFIIF, but lacks Tbp1p, TFIIH,

and transcription elongation factor TFIIS, as well as the SRBps.

Ccr4-Not complex is structurally and functionaly divided into two modules, the Ccr4-

Pop2 module and the Not2-Not5 module. The former one conducts the exnuclease

activity in vivo, whereas the latter one take part in transcription repression, protein

degradation (Cui et al., 2008).

4



1. Introduction

The catalytic subunits of the Ccr4-Not complex Ccr4p is a 3’-exoribonuclease

with a preference for poly(A)-substrates. The yeast Ccr4p contains 3 functional do-

mains: the N-terminal extension, which is unique to Saccharomyces cerevisiae and not

found in higher eukaryotes; the central leucine-rich repeat(LRR), which is important

for the contact between Ccr4p and Pop2p; and the C-terminal nuclease domain. Pop2p

is one of the two catalytic subunits in Ccr4-Not complex (Tucker et al., 2001).

Pop2p belongs to the DEDD nuclease family, and possesses 3’→ 5’-exnuclease activity

with preference for poly(A) sequence in vitro. However, mutations of Pop2p to disrupt

the catalytic activity do not cause deadenylation defects in in vivo. Partial disruption

of Pop2p inhibits the association of Ccr4p with the Not1p and Not2p proteins (Bai

et al., 1999; Liu et al., 1998). Besides the structural function of Pop2p in Ccr4-Not

complex, it also has other separate functions in deadenylation in vivo (Ohn et al.,

2007). Deadenylation end point defect is observed in several Pop2p mutants, in which

a conserved region is mutated or deleted(Ohn et al., 2007). Furthermore, pop2∆ was

shown to be synthetic lethal with dhh1∆, whereas ccr4∆ is not synthetic lethal with

dhh1∆ (Maillet and Collart, 2002).

The non-catalytic subunits of the Ccr4-Not complex The largest subunit of

the Ccr4-Not complex is Not1p, which is an L-shaped protein. Not1p is thus believed

to be the structure scaffold which holds this complex together. The N-terminal of

Not1p around 1000 amino acids is structured. Part of this region interacts with Pop2p

and Ccr4p (Bai et al., 1999). Structural analysis pinpointed the stretch Not1754−1000

recruits Ccr4p-Pop2p and is essential for yeast viability. Interruption of the Not1p-

Pop2p interface resembles the phenotype of pop2∆ (Basquin et al., 2012).

Not4p has a variety of functions at protein level regulation. It is know as ubiquitin E3

ligase and can ubiquitinate subunits without association of Ccr4-Not complex. Not4p

regulates the stability of stress-induced transcription factors (Cooper et al., 2012).

Not2p, Not3p and Not5p have more direct functions in transcription. Not5p and

Not2p interact with transcription factor TFIID (Badarinarayana et al., 2000; Deluen

et al., 2002) and SAGA (Cui et al., 2008). Not2p and Not3p are detected at multiple

promoters by cross-linking. The Not module also plays diverse essential roles in higher

eukaryotes e.g. during embryogenesis (Neely et al., 2010).

The Ccr4-Not complex contains Caf40p and Caf130p, but they have distinct function

5



1. Introduction

than the deadenylase module and Not module.

Pan2p-Pan3p complex Pan2p is a divalent ion dependent ribonuclease, and can

digest single stranded ribonucleic acid from the 3’-end. Pan2p has a substrate prefer-

ence towards poly(A)-stretches.

In contrast Pan3p has no enzymatic activity, but rather interacts with poly(A) bind-

ing protein (PABP) and Pan2p. In vitro, Pan3p stimulates the activity of Pan2p upon

binding to PABP (Uchida et al., 2004).

1.2.3 Decapping

Following deadenylation, mRNAs can be further degraded by the exosome from the

3’-end and subsequently decapped by the so called scavenger decapping factors DcpS.

The majority of mRNA is decapped by decapping complex Dcp1p-Dcp2p and trans-

lational deactivated. Eukaryotes form RNA processing bodies in the cytoplasm called

P-body. Where proteins essential for mRNA metabolism are stored. Among them,

the decapping machinery builds up a conserved core in P-body, which consists of the

decapping enzyme complex Dcp1p-Dcp2p, the decapping activator and the transla-

tion repressor Dhh1p and Pat1p, the Sm-like decapping activator complex Lsm1-7p

(Sheth and Parker, 2003) and the Sm-domain protein Scd6p (Muhlrad and Parker,

2005), enhancer of decapping Edc3p (Kshirsagar and Parker, 2004), and the 5’ → 3’-

exoribonuclease Xrn1p (Sheth and Parker, 2003). Translationally inactivated mRNAs

accumulate in P-bodies. There they will be degraded or stored for reuse (Parker and

Sheth, 2007).

Deadenylation triggered decapping by Dcp1p/Dcp2p Many experiments show

that Dcp2p is the catalytic subunit of the decapping machinery, whereas Dcp1p func-

tions to enhance the activity of Dcp2p. Dcp1p and Dcp2p form a complex where Dcp1p

acts as co-activator and Dcp2p catalyses the m7G-cap-hydrolysis reaction (Coller and

Parker, 2004). Dcp2p contains a NUDIX/MutT domain; deletion of this domain leads

to inactivation of Dcp2p in vivo and in vitro (Dunckley and Parker, 1999). The NUDIX

domain of Dcp2p can bind the 5’-cap and the RNA body and the catalytic activity of

Dcp2p is enhanced upon binding (Deshmukh et al., 2008). Actively translated mRNAs

are prevented from decapping. Structure features of a translatable mRNA, such as cap
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binding protein eIF4E (Ramirez et al., 2002), the poly(A)-tail and poly(A)-binding

proteins, inhibit decapping activity (Tucker and Parker, 2000).

The regulation of decapping The decapping process is regulated by both inhibi-

tion and enhancement. An example is the poly(A) binding protein Pab1p; deletion

of Pab1p causes decapping prior to deadenylation (Caponigro and Parker, 1995; Mor-

rissey et al., 1999). Other proteins that bind to the the cap, e.g. eIF4E also inhibit

decapping. There are several groups of proteins, which enhance decapping. The de-

capping activator Dhh1p and Pat1p function by moving mRNAs from polysomes into

the translationally inert state that accumulates in P-bodies. Dhh1p and Pat1p inter-

act with subunits in the translation initiation complex and repress translation, thus

promoting P-body formation. Under glucose starvation, translational repression is ob-

served in WT cell in response to the environment cue. But in dhh1∆ and pat1∆ strain,

translational repression is only slightly impaired. Dhh1p represses translation possibly

by directly binding to translation initiation factors. Experiments show that Dhh1p

inhibits the formation of 48S complex in vitro (Coller and Parker, 2005). Dhh1p en-

hances the decapping event in the deadenylated mRNA, since in the dhh1∆ strain

capped mRNA lacking poly(A)-tail is accumulated, impaired Dhh1p does not affect

the mRNA deadenylation rate. Experiments also showed that, Dhh1p is not required

for the NMD pathway (Coller et al., 2001; Fischer and Weis, 2002). Pat1p ,a topoiso-

merase II associated deadenylation dependent mRNA decapping factor, is also required

for faithful chromosome transmission, maintenance of rDNA locus stability, and pro-

tection of mRNA 3’-UTRs. It is functionally linked to Pab1p. It contains a Pumilio

domain and thus binds to mRNA. The confirmed binary interaction partners of Pat1p

are Dhh1p, Lsm1p, Lsm2p, and Lsm4p. The Edc1p and Edc2p proteins are identi-

fied as decapping enhancers since their overexpression can compensate the synthetic

lethality of the temperature sensitive allele of DCP1 and DCP2 and ski7∆. Edc1p and

Edc2p bind to Dcp1p, the general decapping activator, via its EVH1 domain, and thus

enhance the decapping activity of Dcp2p by 1000-fold (Borja et al., 2011; Schwartz

et al., 2003).

1.2.4 Bulk degradation by exonuclease Xrn1p

The cap structure prevents mRNA from degradation, accumulation of mRNA without

5’-cap is observed in xrn1∆ yeast (Hsu and Stevens, 1993). Xrn1p is a conserved

7
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processive exonuclease (Johnson and Kolodner, 1991). Xrn1p preferentially degrades

mRNA carrying a 5’-monophosphate end, which is the product of decapping (Stevens,

2001). Xrn1p is also a component of P-bodies thus interacting with Dcp1p-Dcp2p,

Lsm proteins, Pat1p, and Dhh1p (Parker and Sheth, 2007). Recently, Xrn1p was also

found to have functions in the nucleus. Deletion of Xrn1p leads to accumulation of

non-coding RNAs, the majority of these are anti-sense trancripts. This finding implies

a potential nuclear function for Xrn1p (van Dijk et al., 2011).

1.2.5 Bulk degradation by the exosome complex

Exosome The eukaryotic exosome comprises a nine-subunit core and catalytic sub-

units (Chlebowski et al., 2013). The core is ring shaped and is conserved throughout

eukaryotes. In contrast to its prokaryotic counterpart, the core does not although six

of the eukaryotic exosome core subunits are structural homologue to RNase PH, they

don’t have catalytic activity (Liu et al., 2006).

The enzymatic activity of the eukaryotic exosome is driven by the RNR superfamily

ribonuclease Dis3p. The catalytic activity of Dis3p is built up by four aspartate sub-

units and is situated at the bottom of the ring-like exosome core, where the mRNA

exits. Dis3p binds to the exosome core in the cytoplasm, and degrades deadenylated

mRNAs in 3’ → 5’ direction. The Rrp6p subunit is believed to catalyze the nuclear

degradation of mRNAs in quality control. Recent structural analysis elucidated that

Rrp6p plays an important role in stabilizing the exosome structure (Makino et al.,

2013). Exosome eliminate the aberrant RNAs and also takes part in the maturation

of RNAs in nucleus by trimming them in a 3’ → 5’ direction (Houseley et al., 2006).

The scavenger decapping enzyme DcpS There is another type of decapping

enzyme, that degrades the short capped RNAs produced by exosome dependent 5’ →
3’ degradation (Wang and Kiledjian, 2001). Long RNA substrates cannot be degraded

by DcpS. It also hydrolyzes the m7G-cap to produce m7G-cap and phosphate. DcpS

contains a HIT domain, and it reacts specifically with methylated cap analogs in vitro.

It cannot hydrolyze unmethylated cap and intact capped RNA (Liu et al., 2002). In

the cytoplasm exosome leaves short mRNAs with m7G-cap structure, the canonical

decapping enzyme has low activity towards this group of mRNAs and the cap is thus

removed by DcpS.

8
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1.2.6 mRNA degradation as surveillance

Nuclear surveillance As mentioned above, the RNAs which failed to be processed

properly and thus contain mutations are subjected to degradation by the nuclear ex-

osome. This process eliminates the mRNAs which failed to form normal mRNPs. In

eukaryotes, this is catalysed by the exosome with nuclear exonuclease Rrp6p. The

activity of the exosome is enhanced by a highly conserved TRAMP complex, which

polyadenylates and recruits nuclear RNA to the exosome (Anderson and Wang, 2009).

In yeast S. cerevisiae, two kinds of TRAMP complexes exist. These complexes contain

similar components but with distinct substrate specificity (Paolo et al., 2009). At least

two forms of TRAMP complexes exist in the cell, TRAMP4 and TRAMP5, which

contain different poly(A)-polymerases, Trf4p and Trf5p. Recent studies show that the

RNA binding proteins Air1p and Air2p are responsible for the substrate selection of

different TRAMP complex (Schmidt et al., 2012).

Cytoplasmic surveillance The mRNAs that contain premature stop codon trigger

the NMD pathway. Key players of this pathway are the Upf proteins in S. cerevisiae

(He et al., 1997) and smgs in Caenorhabditis elegans (Page et al., 1999). The NMD

pathway is a serial protein binding event that already begins in the nucleus. Upf3p

is loaded onto the exon-junction complex (EJC), and Upf1p, an essential RNA heli-

case which is associated with translation release factors and Upf2p Upf3p, providing a

link between translation termination and degradation (Kervestin and Jacobson, 2012;

Lejeune and Maquat, 2005). If the mRNA molecules lack a stop codon, they will be

subjected to non-stop decay (NSD). In this case, the mRNAs are targeted to the cyto-

plasmic exosome by a special factor, Ski7p. Another kind of cytoplasmic surveillance

is the so-called no-go decay (NGD), which targets a broad range of ribosomal stalling

events. This can be caused by mRNAs containing secondary structure, premature stop

codon or rare codon (Doma and Parker, 2006). NGD triggers endonucleolytic cleav-

age of the mRNA. The mRNAs is targeted by the proteins Dom34p (or Pelota) and

Hbs1p. Structure analysis suggests that the Dom34p-Hbs1p resembles the structure

of translation releasing factor eRF1:eRF3 (Becker et al., 2011). Dom34p-Hbs1p loose

the translation machinery and this leads to peptidyl-tRNA releasing from ribosome.

Subsequently, the mRNA is degraded by the cytosolic mRNA degradation pathway

(Shoemaker et al., 2010).
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1.3 Methods of investigating mRNA degradation

1.3.1 Dissecting the degradation events

mRNA degradation events have long intrigued scientists, but no suitable methodology

existed to dissect the degradation events from the existing pool of mRNAs. The cel-

lular mRNA pool is highly dynamic. Transcription constantly produces mRNAs and

degradation diminishes mRNAs, which make it difficult to trace the degradation. The

direct way to tackle this problem is to shut down the transcription. This is initially

facilitated by c-fos induced promoters (Loflin et al., 1999). Using c-fos promoter, one

can turn off the transcription of certain mRNAs for a defined time and monitor the

degradation event of this transcript. Inducible promoter is also used in yeast using

galactose controlled system (Decker and Parker, 1993). In yeast, one can take advan-

tage of the heat inducible allele rpb1-1 (Holstege et al., 1998), or more invasively to

arrest RNA pol II by adding small molecule drugs (Grigull et al., 2004; Shalem et al.,

2008). But all these methods introduce changes in the medium or temperature and are

thus perturbing methods.

1.3.2 Monitoring mRNA metabolism using genome wide gene

expression methods

Transcriptome analysis is a powerful tool to understand the function of the genome of a

living organism. The microarray method is based on hybridization of nucleic acid. The

first prototype of gene expression screening was published by Leonard H. Augenlicht

and colleague in 1982 (Augenlicht and Kobrin, 1982), where they screened mouse colon

tissue poly(A) mRNA using a nitrocellulose membrane with 378 genes spotted on it.

The techniques developed by Schena and Shalon (Schena et al., 1995; Shalon et al.,

1996) at Stanford University greatly changed the genetics community. They spotted

the cDNAs on a coated glass slide and applied the hybridization to this slide. Because

the spots are highly compact, one can get information from thousands of genes from

one single glass slide. Nowadays, the experiments using gene chips are very well repro-

ducible and reliable. Researchers have been using microarrays combined with methods

mentioned in previous paragraph to measure the mRNA degradation rate globally

(Grigull et al., 2004; Holstege et al., 1998). Non-invasive metabolic labeling methods

enable the observation of mRNA synthesis and degradation without perturbing the
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organisms. Combined with kinetic labeling, accurate synthesis and degradation rates

can be calculated genome wide. This was first shown with 4-thiouridine (4sU) labeling

in mammalian cells (Cleary et al., 2005; Dolken et al., 2008; Kenzelmann et al., 2007),

and later translated to the yeast system (Miller et al., 2011; Munchel et al., 2011).

The cells take up 4sU and phosphorylate it into 4sUTP. The transcription machinery

can use this base analogue and build it into mRNA. The newly synthesized mRNAs

bearing 4-thiouracile (4tU) can be biotinylated using biotin coupled with reactive sul-

fur. Purified newly synthesized mRNA represents the dynamic changes in synthesis

and degradation.

1.3.3 Dynamic transcriptome analysis (DTA)

The uptake of 4sU in yeast was enabled by the expression of a human nucleoside

transporter. In vitro transcription assays indicate that the incorporation rate of 4-thio-

UTP by RNA pol II a has very similar kinetic as incorporation of UTP. In vivo cell

growth is not affected by addition of 4sU. This resultes in a methods as an non-invasive

method, and is able to monitor transcription and degradation. Dynamic transcriptome

analysis developed previously by Miller et. al. in 2011 uses 4sU to label the cells for

6 min. This is short enough to meet the assumption of constant synthesis and decay

rate during labeling, but sufficiently long to yield enough labeled RNA for robust

measurements (Miller et al., 2011).

The normalization problem in transcriptome analysis Initially and still, cDNA

samples in gene expression profiling are labeled by two fluorescence dyes. The samples

are mixed in 1:1 ratio, and the signals are combined and normalized against the overall

signal. In one color microarray system, the cDNA samples are only coupled to one

dye. The signal normalization is applied to the median level of the total signal. In

both cases, there is an assumption that is the overall level of gene expression hardly

changes among experiments. Our observations and recently published work has shown

that global changes can take place in certain perturbations or genetic changes (Lin

et al., 2012; Sun et al., 2012). These changes in the transcriptome profile can only be

monitored, if the data is properly normalized.

Normalization with external standard The idea of using external standard to

monitor the global change of mRNA levels was first reported by Holstege and co-workers
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in a genome wide study of artificial inactivation of RNA polymerase II (Holstege et al.,

1998). The method was described in detail in another paper (van de Peppel et al.,

2003). In this method, equal amounts of externally transcribed mRNAs are spiked

with equal amounts of total RNA. The cell number is counted and the yield of total

RNA is calculated in respect to the cell number. Similar normalization methods are

also used in the study of RNA decay (Wang et al., 2002). Recently, Lin and co-workers

in Richard Young’s lab counted the cell number and used a very small amount of

cells. They used NanoString technology to determine the exact number of mRNAs (Lin

et al., 2012). The method developed in this study (comparative dynamic transcriptome

analysis, cDTA) deals with the normalization problem. cDTA takes cell numbers as a

normalization baseline, and takes the cell lysis efficiency into account by using another

distantly related yeast species as internal standard. cDTA ensures that the SRs and

DRs are on the same scale, so that rates in different mutant strains can be compared.

1.4 Aims and scope of this work

The overall aims of this work were to (i) establish a protocol that allows for monitoring

global synthesis rate of degradation rate; (ii) apply this protocol to study the degra-

dation pathway in S. cerevisiae. As mentioned, cellular gene expression is controlled

by mRNA levels, which are governed by the rates of nuclear mRNA synthesis and

cytoplasmic mRNA degradation. The rates of mRNA synthesis are regulated during

RNA polymerase (Pol) II transcription in the nucleus (Fuda et al., 2009), whereas

bulk mRNA degradation occurs in the cytoplasm (Eulalio et al., 2007; Parker and

Sheth, 2007; Wiederhold and Passmore, 2010). During transcription, the mRNA re-

ceives a 5’-cap and a 3’-poly(A) tail. The mature mRNA is then exported to the

cytoplasm, translated, and eventually degraded co-translationally (Hu et al., 2009).

Degradation of eukaryotic mRNAs has been extensively studied (Garneau et al., 2007;

Parker and Sheth, 2007). mRNA degradation generally commences with a shortening

of the 3’-poly(A) (pA) tail (deadenylation) (Collart, 2003; Yamashita et al., 2005),

followed by removal of the 5’-cap (decapping) (Coller and Parker, 2004; Franks and

Lykke-Andersen, 2008). mRNAs are then degraded in 5’ → 3’ direction by the Xrn1

exonuclease (Houseley and Tollervey, 2009) and in 3’→ 5’ direction by the exosome (Le-

breton et al., 2008). When the pA tail reaches a critical length, mRNAs are subjected

to decapping by Dcp2p (Muhlrad et al., 1994), which is promoted by Dcp1p and Edc3p
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(Kshirsagar and Parker, 2004), the yeast-specific factors Edc1p and Edc2p (Dunckley

et al., 2001), and the translation-repressing factors Dhh1p (Coller and Parker, 2005),

Pat1p, and the Lsm complex (Chowdhury et al., 2007; Pilkington and Parker, 2008).

Dedicated transcription- and translation-coupled quality surveillance pathways also

contribute to mRNA degradation (Schmid and Jensen, 2010; Shoemaker and Green,

2012; Shyu et al., 2008).Cytoplasmic mRNA degradation generally begins with shorten-

ing of the poly(A)-tail by the Ccr4-Not complex that contains the deadenylases Ccr4p

and Pop2p (Liu et al., 1998; Tucker et al., 2001). The mRNA is then decapped and

degraded by exonucleases from both ends. Despite the spatial separation of mRNA

synthesis and translation/degradation, there is evidence that these processes are coor-

dinated (Harel-Sharvit et al., 2010; Lotan et al., 2005, 2007).

To investigate coordinated RNA synthesis and degradation, absolute changes in syn-

thesis and decay rates must be measured after introducing a genetic perturbation that

impairs either synthesis or degradation. Rates of mRNA synthesis and degradation

can be measured by Dynamic Transcriptome Analysis (DTA) in yeast (Miller et al.,

2011). Newly synthesized RNA is labeled with 4-thiouridine (4sU), which is taken up

by cells that express a nucleoside transporter. After 6 minutes of labeling, total RNA is

extracted and separated into newly synthesized (labeled) and pre-existing (unlabeled)

fractions. Total, labeled, and unlabeled fractions are analyzed with microarrays and

the data are fitted with a dynamic kinetic model to extract synthesis and decay rates.

Whereas DTA accurately measures the relative rates for different RNAs within a single

sample, it cannot compare rates from different samples, since the samples differ by an

unknown global factor (Miller et al., 2011). In standard transcriptomics, comparison

between samples with different mRNA levels may be achieved by counting cells and

spiking RNA standards into the samples (Holstege et al., 1998; van de Peppel et al.,

2003; Wang et al., 2002). However, such normalization does not take into account

differences in cell lysis and RNA extraction efficiency, which can vary so strongly that

no conclusions are possible.

To enable normalization between DTA measurements of different samples, we extended

DTA to comparative DTA (cDTA). In cDTA, a defined number of labeled fission yeast

S. pombe (Sp) cells is added to the budding yeast S. cerevisiae (Sc) sample before

cell lysis and RNA preparation, and is used as an internal standard. Thereby, cDTA

allows the absolute quantification and accurate comparison of mRNA synthesis and de-

cay rates between samples. cDTA is a novel method that monitors absolute changes in
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eukaryotic mRNA metabolism upon genetic perturbation. We applied cDTA to S. cere-

visiae cells that are impaired in either mRNA synthesis or degradation. This revealed

compensatory changes in degradation and synthesis, respectively, which indicates that

a eukaryote can buffer mRNA levels to render gene expression robust. After our work

was completed, an independent study appeared that postulates a similar compensation

on an evolutionary scale (Dori-Bachash et al., 2011).

Along with our findings, evidences show that mRNA levels in eukaryotic cells are

maintained close to normal values, i.e. buffered, when SRs or DRs are perturbed by

mutations that impair nuclear mRNA synthesis or cytoplasmic mRNA degradation,

respectively (Bregman et al., 2011; Pérez-Ort́ın et al., 2012; Sun et al., 2012; Trcek

et al., 2011). In the yeast S. cerevisiae, a mutation in the transcribing enzyme RNA

polymerase II (Pol II) leads to a global decrease of SRs that is compensated by a de-

crease in DRs, resulting in a buffering of mRNA levels. In another mutant strain, a

decrease in DRs caused by the deletion of the gene encoding the mRNA degradation

enzyme Ccr4 is compensated by a decrease in SRs (Sun et al., 2012). The mechanisms

underlying the buffering of mRNA levels remain unknown. Kinetic modeling indicated

that the buffering may depend on a putative factor that acts positively on mRNA

degradation and negatively on mRNA synthesis (Sun et al., 2012). To search for such

a factor, we further analyzed 46 mutant yeast strains that lacked mRNA degradation

factor genes with the use of cDTA (Sun et al., 2012). Our factor search was based

on the rationale that deletion of a degradation factor would result in changes in both

DRs and SRs, and mRNA level buffering, unless the factor is required for buffering of

mRNA levels.

In our analysis we included factors involved in deadenylation (Ccr4p, Pop2p, Caf40p,

Not3p, Pan2p, and Pan3p) and exonucleases required for bulk mRNA degradation

(Xrn1p and the exosome subunits Rrp6p, and Rrp47p). We also included factors

that target decapping substrates (Lsm1p, Lsm6p, and Lsm7p), decapping enhancers

(Edc1p, Edc2p, Edc3p, Dhh1p, Pat1p, and Scd6p), scavenger decapping factors (Dcs1p

and Dcs2p), and exosome-associated factors (Ski2p, Ski3p, Ski8p, and Ski7p). We fur-

ther included factors involved in transcription termination, nuclear RNA surveillance,

and splicing (Rtt103p, Rai1p, Air1p, Air2p, Esc1p, and Bud13p), factors that bind

RNA elements and regulate mRNA degradation (Puf1p, Puf2p, Puf3p, Puf4p, Puf5p,

Puf6p, Pub1p, Tpa1p, and Cth1p), factors involved in mRNA export (Thp2p and
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Tex1p), factors implicated in translation surveillance (Dom34p, Hbs1p, Upf2p, and

Upf3p), and an endonuclease (Swt1p).

The resulting cDTA datasets for 46 yeast deletion strains each contain SRs and DRs for

about 4300 mRNAs. All mutant strains showed a buffering of mRNA levels, with one

marked exception, the strain lacking the exonuclease Xrn1p. We therefore analyzed

mutants of Xrn1p to elucidate its role in the buffering of mRNA levels in more detail.

Correlation analysis of DR changes in mutant strains recapitulated known interactions

between degradation factors and unraveled new ones. Our results provide a rich re-

source for studying mRNA metabolism, and identify Xrn1p as a key factor required

for the buffering of mRNA levels in a eukaryotic cell.
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Chapter 2

Materials

2.1 List of Strains

Table 2.1: Strains used in the studies

ID Name Genotype Source

1 BY4743 MATa/α his3∆1/his3∆1; leu2∆0/leu2∆0;

LYS2/lys2∆0; MET15/met15∆0;

ura3∆0/ura3∆0;

OpenBiosystems

2 BY4741 MATa his3∆1; leu2∆0; met15∆0; ura3∆0 OpenBiosystems

3 air1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yil079c::kanMX4

OpenBiosystems

4 air2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ydl175c::kanMX4

OpenBiosystems

5 bud13∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl174w ::kanMX4

OpenBiosystems

6 caf40∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ynl288w ::kanMX4

OpenBiosystems

7 ccr4∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yal021c::kanMX4

Generated

in the lab

8 cth1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ydr151c::kanMX4

OpenBiosystems

9 dcs1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ylr270w ::kanMX4

OpenBiosystems

Continued on next page
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Table 2.1 Strains used in the studies

ID Name Genotype Source

10 dcs2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yor173w ::kanMX4

OpenBiosystems

11 dhh1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ydl160c::kanMX4

Generated

in the lab

12 dom34∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ynl001w ::kanMX4

OpenBiosystems

13 edc1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl222c::kanMX4

OpenBiosystems

14 edc2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yer035w ::kanMX4

Generated

in the lab

15 edc3∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yel015w ::kanMX4

OpenBiosystems

16 esc1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ymr219w ::kanMX4

OpenBiosystems

17 hbs1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ykr084c::kanMX4

OpenBiosystems

18 lsm1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yjl124c::kanMX4

OpenBiosystems

19 lsm6∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ydr378c::kanMX4

OpenBiosystems

20 lsm7∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ynl147w ::kanMX4

OpenBiosystems

21 not3∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yil038c::kanMX4

Generated

in the lab

22 not4∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yer068w ::kanMX4

Generated

in the lab

23 pan2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl094c::kanMX4

OpenBiosystems

24 pan3∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ykl025c::kanMX4

OpenBiosystems

25 pat1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ycr077c::kanMX4

Generated

in the lab

26 pop2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ynr052c::kanMX4

Generated

in the lab

Continued on next page
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Table 2.1 Strains used in the studies

ID Name Genotype Source

27 pub1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ynl016w ::kanMX4

OpenBiosystems

28 puf1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yjr091c::kanMX4

OpenBiosystems

29 puf2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ypr042c::kanMX4

OpenBiosystems

30 puf3∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yll013c::kanMX4

OpenBiosystems

31 puf4∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl014w ::kanMX4

OpenBiosystems

32 puf5∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl178w ::kanMX4

OpenBiosystems

33 puf6∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ydr496c::kanMX4

OpenBiosystems

34 rai1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl246c::kanMX4

OpenBiosystems

35 rrp47∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yhr081w ::kanMX4

Generated

in the lab

36 rrp6∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yor001w ::kanMX4

Generated

in the lab

37 rtt103∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ydr289c::kanMX4

OpenBiosystems

38 ski2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ylr398c::kanMX4

Generated

in the lab

39 ski3∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ypr189w ::kanMX4

OpenBiosystems

40 ski7∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yor076c::kanMX4

OpenBiosystems

41 ski8∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl213c::kanMX4

OpenBiosystems

42 swt1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yor166c::kanMX4

OpenBiosystems

43 tex1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ynl253w ::kanMX4

OpenBiosystems

Continued on next page
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Table 2.1 Strains used in the studies

ID Name Genotype Source

44 thp2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yhr167w ::kanMX4

OpenBiosystems

45 tpa1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yer049w ::kanMX4

OpenBiosystems

46 trf4∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yol115w ::kanMX4

OpenBiosystems

47 upf2∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; yhr077c::kanMX4

OpenBiosystems

48 upf3∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygr072w ::kanMX4

OpenBiosystems

49 xrn1∆ BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl173c::kanMX4

Generated

in the lab

50 Y40343 W303 MATα tor1-1 fpr1::NAT RPL13A-

2×FKBP12 :: TRP1

Euroscarf

51 XRN1AA W303 MATα tor1-1 fpr1::NAT RPL13A-

2×FKBP12 :: TRP1 YGL173C::YGL173C-

FRB-GFP -KanMX4

Generated

in the lab

52 xrn1pm BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; ygl173c:: pFA6a-ygl173c-

D206A,D208A-3HA-His3MX

Generated

in the lab

53 XRN1WT BY4741 MATa his3∆1; leu2∆0; met15∆0;

ura3∆0; YGL173C :: pFA6a-YGL173C-3HA-

His3MX

Generated

in the lab
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2.2 List of Plasmids

Table 2.2: Plasmids

ID Name Insert Selection Marker Backbone Source

23 pYMS14 XRN1orf His3MX pFA6A This study

24 pYMS15 POP2orf His3MX pFA6A This study

25 pYMS16 FRB-GFP His3MX pFA6a Euroscarf

26 pYMS17 FRB-GFP KanMX pFA6a Euroscarf

27 pYMS18 FRB His3MX pFA6a Euroscarf

28 pYMS19 FRB KanMX pFA6a Euroscarf

32 pYMS23 CCR4orf His3MX pFA6A This study

33 YSC3869 Xrn1orf Ura3 BG1805 ThermoScientific

34 YSC3867 Nrg1orf Ura3 BG1805 ThermoScientific

2.3 List of important primers

Table 2.3: qPCR primers

Names ID Sequence Length

spGpd1 fwr1 193 AGAGCTCTTAGGTGGTCAACTT-

CT

24

spGpd1 rev1 194 GGAATTCATGAACATCCTTGG 21

spGdi1 fwr 197 TCAGTTATATGCTCTGTTTCGT-

CCT

25

spGdi1 rev 198 CACCAGTCCCTATCTCGACCT 21
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Table 2.4: Some primers for Knock-out and mutagenesis

Name ID Sequence Length

Ccr4KOUp1 250 CAGCAAGGGAACTCCGACTGACGTT-

ATCCCTGCAAACTACCGCTACGTAC-

GCTGCAGGTCGAC

63

Ccr4KODn1 251 GTAGTGTACAGAGAGGAGGGAGGG-

AGTGGGATGAAAGTGTGCGGTATCG-

ATGAATTCGAGCTCG

64

Ccr4KOUp2 252 GAAGGTTCTCAAGCACAAGGGCACA-

GCATAAGGGACACCAGCAAGGGAAC-

TCCGACTGAC

60

Ccr4KODn2 253 AAGTGCGGTGAGATTGGGATCGTTT-

CAATTTTATAATGAGGTAGTGTACA-

GAGAGGAGGG

60

Ccr4C1 430 GAAGAAGAAGTCGACATGAACGACC-

CTTCTTTACTAGGC

39

Ccr4C2 345 GAAGAAGAATTAATTAATACTTTCT-

TACTGCCTGTGTTTGTC

42

Ccr4M1 321 GCTCATTTGTGGTGCGTTCAATTCA-

TAC

28

Ccr4M2 322 GTATGAATTGAACGCACCACAAATG-

AGC

28

Ccr4R1 323 AACTCCGACTGACGTTATCCCTGCA-

AACTACCGCTAATGAACGACCCTTC-

TTTACTAGGC

60

Ccr4R3 324 CTCAAGCACAAGGGCACAGCATAAG-

GGACACCAGCAAGGGAACTCCGACT-

GACGTTATCC

60

Pop2KOUp1 325 CAACTCAATTTTATACATTTATAAA-

GGGTCAAAAAGGATTCGTACGCTGC-

AGGTCGAC

58

Continued on next page
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Table 2.4 Some primers for Knock-out and mutagenesis

Name ID Sequence Length

Pop2KODn1 326 AAACTTTTTTTTTTAAAATTGTGTA-

TACATATAGTACATAAATGAATCGA-

TGAATTCGAGCTCG

64

Pop2KOUp2 327 GTTTTTCATACTGGAAATACTTCGA-

ACGATTAGAAACAGGCAACTCAATT-

TTATACATTT

60

Pop2KODn2 328 TGTATTACTACATGTCCAATCATAA-

GCTGATGTTGCTTTTAAACTTTTTT-

TTTTAAAATTG

61

Pop2C1 329 GAAGAAGAAAAGCTTATGCAATCTA-

TGAATGTACAACCG

39

Pop2C2 440 GAAGAAGAAGTCGACGTTGGTCCCC-

ATCAATACCGTA

37

Pop2M1 331 CAATCGCTACTGCGTTTGTGGG 22

Pop2M2 332 CCCACAAACGCAGTAGCGATTG 22

Pop2R1 333 CAACTCAATTTTATACATTTATAAA-

GGGTCAAAAAGGATTATGCAATCTA-

TGAATGTACAACCG

64

Pop2R3 334 TCATACTGGAAATACTTCGAACGAT-

TAGAAACAGGCAACTCAATTTTATA-

CATTTATAAAG

61

Kem1KOUp1 335 CACTTGTAACAACAGCAGCAACAAA-

TATATATCAGTACGGTCGCTGCAGG-

TCGAC

55

Kem1KODn1 336 TAAAGTAACCTCGAATATACTTCGT-

TTTTAGTCGTATGTTATCGATGAAT-

TCGAGCTCG

59

Kem1KOUp2 337 CCTAGGACGATTCGTGTACTATAAG-

GAGAAAAAAAATCAACACTTGTAAC-

AACAGCAGCAAC

62

Continued on next page
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Table 2.4 Some primers for Knock-out and mutagenesis

Name ID Sequence Length

Kem1KODn2 338 ATACAAATACCCCTCTTTATATAGG-

TCTCAGATATACTATTAAAGTAACC-

TCGAATATAC

60

Kem1C1 339 GAAGAAGAAGTCGACATGGGTATTC-

CAAAATTTTTCAGG

39

Kem1C2 346 GAAGAAGAATTAATTAAAGTAGATT-

CGTCTTTTTTATTATCACGG

45

Kem1M1 341 CGGTCTTGCCGCAGCTTTGATTATGC 26

Kem1M2 342 GCATAATCAAAGCTGCGGCAAGACC-

G

26

Kem1R1 343 ACTTGTAACAACAGCAGCAACAAAT-

ATATATCAGTACGGTATGGGTATTC-

CAAAATTTTTCAGG

64

Kem1R3 344 TCCTAGGACGATTCGTGTACTATAA-

GGAGAAAAAAAATCAACACTTGTAA-

CAACAGCAGC

60

Kem1M1new 460 CATTGTATTTACGGTCTTGCCGCAG-

CTTTGATTATGCTGGGTTTG

45

Kem1M2new 461 CAAACCCAGCATAATCAAAGCTGCG-

GCAAGACCGTAAATACAATG

45

2.4 Growth media

Table 2.5: Growth media

Medium Description Species

YPD 1% (w/v) yeast extract; 2% (w/v) peptone; 2%

(w/v) glucose (+2% (w/v) agar for plate)

Sc

Continued on next page
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Table 2.5 Growth media

Medium Description Species

YES 0.5% (w/v) yeast extract; 3% (w/v) glucose; (+2%

(w/v) agar for plate)

Sp

Synthetic

complete

(SC)

0.67% (w/v) yeast nitrogen base; 0.06% (w/v) com-

plete synthetic mix of amino acids OR drop out as

required; 2% (w/v) glucose; (+3% (w/v) agar for

plate)

Sc

Over expres-

sion medium

0.67% (w/v) yeast nitrogen base; 0.06% (w/v) -URA

drop out medium; 2% (w/v) galactose; +3% (w/v)

agar for plate

Sc

LB 10g Bacto™ Tryptone; 5g Bacto™ Yeast Extract; 10g

NaCl; add ddH2O to 1L

E. coli

SOB 20g Bacto™ Tryptone; 5g Bacto™ Yeast Extract;

8.55mM (0.5g or 1.71ml 5M ) NaCl; 2.5mM (2.5ml

1M) KCl; add ddH2O to 1L (adjust pH to 7 with

NaOH, add 10mM (5mL 2M) MgCl2 before use)

E. coli

SOC add 20mM (20ml 1.1M 20%) glucose to SOB before

use

E. coli

2.5 Buffers and Solutions

Table 2.6: Solutions

Name Composition Application

1×PBS 2 mM KH2PO4; 4 mM Na2HPO4; 140 mM

NaCl; 3 mM KCl; pH 7.4 (25℃);

6× Loading dye (Fer-

mentas)

1.5 g/L Bromphenol blue; 1.5 g/L Xylene

cyanol; 50% (v/v) Glycerol;

Continued on next page
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Table 2.6 Solutions

Name Composition Application

SDS gel staining solu-

tion

50% (v/v) Ethanol; 7% (v/v) Acetic acid;

0.125% (w/v); Coomassie Brilliant Blue R-

250;

SDS gel destaining

solution

5% (v/v) Ethanol; 7.5% (v/v) Acetic acid;

TELit 10 mM Tris-HCl, pH 8.0 at 25℃; 155 mM

LiOAc; 1mM EDTA, pH 8.0;

LitSorb 10 mM Tris-HCl, pH 8.0 at 25℃; 155 mM

LiOAc; 1mM EDTA, pH 8.0; 18.2% (w/v)

D-Sorbitol

LitPEG 10 mM Tris-HCl, pH 8.0 at 25℃; 155 mM

LiOAc; 1mM EDTA, pH 8.0; 40% (w/v)

PEG 3350;

Lyticase Buffer 1 M Sorbitol; 100 mM EDTA, pH 8.0; 14.3

mM -Mercaptoethanol;

TE 50/100 Buffer 50 mM Tris-HCl, pH 7.5 at

℃; 100 mM EDTA, pH8.0;

WB transfer Buffer 25 mM Tris; 192 mM Glycine; 20% (v/v)

Ethanol;

Western

Blotting

WB blocking Buffer 2% (w/v) milk powder in 1× PBS; Western

Blotting

1× TBS 20 mM TrisHCl, pH 7.5 at 4℃; 150 mM

NaCl;

FA lysis Buffer 50 mM HEPESKOH, pH 7.5 at 4℃; 150

mM NaCl; 1 mM EDTA; 1% (v/v)Triton

X100; 0.1% (v/v) Na deoxycholate; 0.1%

(v/v) SDS; PI; PhI

Protease inhibitor

(PI)

1 mM Leupetin, 2 mM Pepstatin A,

100 mM Phenylmethylsulfonyl fluoride, 280

mM Benzamidine;

Continued on next page
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Table 2.6 Solutions

Name Composition Application

Phosphotase in-

hibitor (PhI)

1 mM NaN3, 1 mM NaF, 0.4 mM Na3VO4

FA lysis high salt

buffer

FA lysis buffer with 500 mM NaCl instead

of 150 mM NaCl

ChIP wash Buffer 10 mM TrisHCl, pH 8.0 at 4℃; 0.25 M

LiCl; 1 mM EDTA; 0.5% (v/v); NP40; 0.5%

(v/v) Na deoxycholate

TE Buffer 10 mM TrisHCl, pH 7.4 at 4℃; 1 mM

EDTA;

ChIP elution Buffer 50 mM TrisHCl, pH 7.5 at 25℃; 10 mM

EDTA; 1% (v/v) SDS;

RNase storage Buffer 10 mM HEPES, pH 7.5 at 25℃; 20 mM

NaCl; 0.1% (v/v) Triton X-100; 1mM

EDTA; 50% (v/v) Glycerol;

Rnase free 10× bi-

otinylation buffer

100 mM Tris pH 7.4; 10 mM EDTA

Washing Buffer 100mM Tris pH7.5; 10mM EDTA; 1M

NaCl; 0.1% Tween20

Elution Buffer (DTT) 100 mM Dithiothreitol in H2O

Biotin-HPDP

(Thermo Scientific)

1mg/ml in dimethylformamide(DMF)
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Chapter 3

Methods

3.1 Common Methods

3.1.1 Molecular cloning using Escherichia coli

Preparation of E.coli competent cell for electroporation This protocol is mod-

ified from Current protocol of molecular biology Unit 1.8 (Seidman et al., 2001). A

single colony of E. coli cell was inoculated into 5mL SOB medium and let grown

overnight at 37℃. On the next morning, 2.5mL or 5mL overnight culture was inocu-

lated into 500mL or 1 L SOB medium. When the culture reached 0.6OD600, the flasks

were chilled on ice. The chilled the culture was transferred into 1 L centrifuge bottle.

The cells were harvested by applying centrifugation at 4℃, 4000rpm in SLC-6000 rotor

for 10min. The supernatant was discarded and the pellet was resuspended in 5 mL

ice-cold water. Additional 500 mL ice-cold water was added and mixed well. The cells

could be incubated at this stage for better efficiency. This step was repeated once. The

cell was then resuspended in 40 mL ice-cold 10% glycerol and transferred to a 50mL

falcon tube. The cell was again centrifuged resuspended in equal volume ice-cold 10%

glycerol. The cells were placed in 50µL aliquots on dry ice and stored at -80℃.

Transformation An aliquot competent cell was thawed on ice. Proper amount DNA

in maximum 5µL solution was pipetted onto competent cell. The samples were mixed

gently, chilled 5 min on ice and transferred into 0.2cm electroporation cuvettes. Elec-

troporation was applied in BioRad E. coli Pulser at 2.5kV. Immediately after pulse,

1mL ice cold SOC medium was added in the cuvette to resuspend the cell. The suspen-
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sion was then transferred to a 1.5mL tube and incubated for 45-60min at 37℃ 600rpm.

Subsequently, the cell were spun down for 1min at 5000rpm in a table centrifuge, 850µL

supernatant was taken using pipette. And the pellet was resuspended with the rest of

medium. The suspension was then plated onto LB plate containing proper antibiotics

and incubated overnight at 37℃.

Cloning with ligase PCR products or plasmids containing the inserts as well as the

receiving plasmids are digested using restriction enzymes. Sequential or double digest

was applied. After purification of the digest product use agarose gel, ligation using T4

ligase was applied at 16℃ for 1 hour. 5µL ligation reaction was transformed to E. coli

competent cell using the protocol above.

Plasmid preparation For plasmid miniprep, an E. coli overnight culture is grown

in LB liquid medium and added proper antibiotica at 37℃ 160rpm. On the second day,

the bacteria is harvested by centrifugation at 4000rpm (Rotanta 46R) 4℃ for 10min.

The supernatant is then discarded and the plasmid is extracted using QIAprep Spin

Miniprep Kit. The plasmid stored at -20℃ for long term.

3.1.2 Cryo-stocks of yeast strains

Typicaly a single colony of desired strain was streaked from a solid culture on to a

YPD plate(Media) and incubated for 2 days at 30℃. The cells were harvested from

the plate and transferred to 1 mL sterile 50% v/v glycerol, vortexed and flash-frozen

in liquid nitrogen. Cryo-stocks were stored at -80℃.

3.1.3 Generation of knock-out strains

The knock-out (KO) strains were generated by homologous recombination. A KanMX

cassette was amplified by primer-extension PCR, resulting in a product contains KanMX

cassette flanking with homologue sequence from 3’-UTR and 5’-UTR of the gene. This

PCR product was transformed into S. cerevisiae competent cells. The complete open

reading frame (ORF) was substituted by KanMX. The resulted KO strains were veri-

fied by colony PCR using KanMX specific and ORF specific primers. Yeast knock out

strains were purchased from the YKO library (Thermo Scientific) or generated by sub-

stituting the target gene for a KanMX cassette using homologous recombination in the
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same genetic background (Longtine et al., 1998). All knock out strains were validated

by selective growth on G418 plates and PCR. Three primers were used to confirm the

integration: forward primer A, which specifically binds to the region upstream of the

ORF; reverse primer B, which binds to the ORF sequence; and reverse primer KanB,

which binds to the sequence of the KanMX cassette. Correct knock-out strains gave

rise to a PCR product with primers A and KanB, and a negative result with primers A

and B. The length of the PCR products was subsequently compared to the theoretical

length. The validated strains were stored in 50% glycerol at -80℃.

3.1.4 Colony PCR

Yeast solid culture from single colony was picked and solved in 100µL 20µM NaOH

with approximately 50µL glass beads (0.5mm). The resulted mixture was incubated

at 95℃ exactly for 5min with vigorously shaking. After centrifugation for 15s at top

speed, 5µL of the supernatant was used for PCR.

3.1.5 Generation of point mutants

The S. cerevisiae strains with point mutants were generated by homologous recombi-

nation. The target gene is first amplified by PCR on a genomic DNA template. This

PCR product was then cloned into a yeast plamid using restriction enzyme and T4

ligase (Methods). Mutation was brought in via Quick change. Mutated region along

with KanMX cassette was amplified by primer-extension PCR, resulting in a product

contains the gene and KanMX cassette flanking with homologue sequence from 3’-UTR

and 5’-UTR of the gene. This PCR product was transformed into S. cerevisiae compe-

tent cells contains the knockout of the target gene. The complete open reading frame

(ORF) was substituted by mutated gene with KanMX. The resulted mutant strains

were verified by colony PCR and sequencing.

3.1.6 Molecular cloning of tagged protein

The S. cerevisiae strains containing epitope tap were also generated by homologous

recombination. A epitope sequence with KanMX cassette was amplified by primer-

extension PCR from plasmid, resulting in a product contains the epitope and KanMX

cassette flanking with homologue sequence from 5’-end and 5’-UTR of the gene. The

PCR primer is so designed, in order to delete the stop codon. This PCR product was
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transformed into S. cerevisiae competent cells. The PCR product was inserted in frame

directly after the last codon. The resulted mutant strains were verified by colony PCR

and sequencing.

3.2 comparative Dynamic Transcriptomic Analysis

(cDTA)

3.2.1 Metabolic labeling of the cells

Because of instability of some of the genetical engineered strains, the cells were main-

tained as cryo-stocks (Common Methods), and streaked out on YPD plates before

experiments. Generally, the yeast cells S. cerevisiae or S. pombe were inoculated into

20mL YPD liquid medium from a single colony on solid medium. The preculture was

then grown overnight. On the early next day, the OD600 of the overnight culture was

measured and proper volume of the preculture was then inoculated to 50 mL YPD

liquid medium and grown to desired OD600. The cells were harvested by centrifu-

gation at 2465×g at 30℃ for 1 min. The supernatant was discarded and the cells

were resuspended in RNAlater solution (Life technologies™). The suspension was then

transformed to a 1.5mL eppendorf tube and flash-frozen in liquid nitrogen. The cell

concentration was determined by Cellometer N10 (Nexus) before flash-freezing in liquid

nitrogen. S. pombe cells were grown in YES liquid medium (Media) overnight, diluted

to OD600 = 0.1, and grown to OD600 = 0.8. 4sU was solved in ddH2O (50 mM) and

added to a final concentration of 500 mM, and cells were labeled for 6 min. Cells were

harvested by centrifugation at 2465×g for 3 min. Other steps were applied as above.

A 4-liter-culture of S. pombe cells was labeled to generate a stock and eliminate errors

by variations in the standard. Cells were counted as above.

3.2.2 Microarray procedure

0.75× 108 S. pombe cells were mixed with 2.25× 108 S. cerevisiae cells resulting in

a 1:3 ratio.A total RNA was extracted by RiboPure™-Yeast Kit (Life technologies™).

The cell lysis procedure was replaced by adding acid washed glass beads and using

FastPrep-24. The cell lysis protocol is eight times 6.5m/s for 45 seconds. The cells

were put on ice for 1 minutes between runs. Total RNA was stored in RNase free water

at -20℃ or -80℃ for longer time. (Miller et al., 2011).
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3.2.3 Brief about data analysis

Data was preprocessed arraywise using expresso (R/Bioconductor) with the RMA back-

ground correction method. We created our own probe annotation environment (cdf),

which excludes probes in probesets that show cross-hybridization between S. cerevisiae

and S. pombe. A total of 8708 annotated S. cerevisiae probes and 13,317 annotated

S. pombe probes out of a total of 120,855 probes showed cross-hybridization when a

conservative intensity cut-off of 4.5 (log intensity values after preprocessing) was used.

Cross-hybridizing probes were excluded from further analysis. This included 16 whole

probe sets (Figure 4.3). Note that the standard GC-RMA method is not suitable for

our purposes since its bias model cannot handle bimodal intensity distributions, as

caused by the simultaneous hybridization of S. cerevisiae and S. pombe transcripts

with global differences in RNA abundance (Figure 4.4). Labeling bias estimation and

correction was done as described in (Miller et al., 2011). Between-array normaliza-

tion of arrays containing mixed S. cerevisiae and S. pombe total RNA was done by

proportional rescaling, such that the median S. pombe gene expression level was 1

(Figugre 4.5A). Accordingly, between-array normalization of arrays containing mixed

S. cerevisiae and S. pombe labeled RNA was done by proportionally scaling the array

to a median-labeled S. pombe gene expression level of c (Figugre 4.5B). The constant c

scales the median half-life of all experiments.We calibrated c in a way that the resulting

median S. cerevisiae wild-type mRNA half-life equaled that observed previously (Miller

et al., 2011). Now, all S. cerevisiae RNA levels, no matter whether total or labeled,

no matter from which experiment, can be compared on an absolute level. Decay rates

and synthesis rates were obtained as described (Miller et al., 2011).We assume that the

labeled RNA fraction is subject to degradation from the very time it is synthesized.

In contrast, (Rabani et al., 2011) (see Supplemental Methods therein) assume that

the labeled RNA fraction is mostly nuclear and not degraded at all.We compared the

synthesis rate estimates resulting from both alternatives. Given our labeling time, the

differences of both approaches are negligible. The whole analysis workflow has been

carried out using the open source R/Bioconductor package DTA (Schwalb et al., 2012).
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3.3 Other biochemical methods

3.3.1 Flow cytometry analysis

FACS analysis 20mL YPD were inoculated with a saturated overnight culture and

incubated at 30℃ until OD600 reached 0.8. Then a 1mL sample was taken and 2.5mL

ethanol was added. Cells were then washed with 50 mM sodium citrate pH 7.0 and

RNA was digested at 37℃ overnight with 0.1mgmL RNase A (Fermentas). Cells were

washed with citrate buffer and subjected to protease K digestion at 50℃ for two hours.

After washing, cells were resuspended in 50 mM sodium citrate buffer containing 1µM

Sytox Green (Invitrogen). To avoid cell clustering, we sonified cells four times for 30

sec in a Biorupter (DIAGENODE). The measurement was carried out on a BD FACS

Calibur machine. The data were analyzed use the FCS Express software (De Novo™
Software).

3.3.2 in vitro transcription assay

Nuclear extracts of BY4741 and xrn1∆ were prepared from 3 Lof yeast culture as de-

scribed (Ranish et al., 1999; Seizl et al., 2011b). Endogenous Xrn1p and xrn1pm

were purified from 4 L C-terminally TAP-tagged strains using protein A coupled IgG-

Dynabeads. Activator-dependent in vitro transcription assays were carried out using

200 ng of recombinant full-length Gcn4p (Seizl et al., 2011a). The transcript was

detected by primer extension using the 5’-Cy5-labelled oligonucleotide 5’-TTCACC-

AGTGAGACGGGCAAC-3’ (Seizl et al., 2011b). The resulting gel was scanned on

a typhoon scanner FLA9400 and the data were analyzed with ImageQuant Software

(GE Healthcare).

3.3.3 RT-qPCR

The yeast cells were grown to OD600 = 0.8, harvested and flash-frozen in liquid nitro-

gen. Total RNA was extracted using RT-qPCR was carried out as described (Miller

et al., 2011). 500 ng RNA was used to reverse transcribe cDNA using the iScript

cDNA Synthesis Kit (BioRad). Primers were designed with the ProbeFinder online

tool (http://qpcr.probefinder.com/organism.jsp, Roche Applied Science). The

primer-pair efficiency was tested individually and ranged between 97 and 100%. PCR

reactions contained 1 µL DNA template, 2 µL of 10 µM primer pairs, and 12.5 µL
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SsoFast™ EvaGreen Supermix (BioRad). qPCR was performed on a Bio-Rad CFX96™
Real-Time System (Bio-Rad) using a 30 sec denaturing step at 95℃, followed by 40 cy-

cles of 1 s at 95℃, 4 s at 63℃. Data analysis was performed with the software Bio-Rad

CFX Manager™ 1.6.
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Chapter 4

Results

4.1 cDTA analysis reveals a mutual feedback loop

between mRNA transcription and degradation

4.1.1 Establishment of cDTA based on DTA

In order to measure global changes in mRNA synthesis and decay rates between differ-

ent strains of budding yeast (S. cerevisiae), it is crucial to include an internal standard

(Introduction). Here we included the distantly related fission yeast (S. pombe) in our

DTA protocol as an internal standard (Figure 4.1). We counted S. cerevisiae sample

cells and S. pombe control cells and mixed them in a defined ratio (Methods). The

resulting cell mixture was lysed, total mRNA extracted, labeled RNA purified, and

microarrays were hybridized as described (Miller et al., 2011). The RNA mixture was

quantified on a microarray that contains probes for both S. cerevisiae and S. pombe

transcripts (Affymetrixr GeneChipr Yeast Genome 2.0 Array) (Miller et al., 2011).

We used 4-thiouracil (4tU) instead of 4sU for S. cerevisiae RNA labeling, because it

is taken up by S. cerevisiae (Munchel et al., 2011) without expression of a nucleoside

transporter as previously done (Miller et al., 2011). 4tU labeling did not affect normal

cell physiology (Figure 4.2) and allowed growth of yeast in YPD instead of selective

medium. We quantified only labeled and total RNA, because the unlabeled fraction was

not required for rate extraction. We refer to this protocol as comparative DTA (cDTA).

We first tested whether the S. cerevisiae sample showed cross-hybridization to S.

pombe array probes and vice versa. When either a S. cerevisiae or S. pombe sample
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Figure 4.1: Schematic diagram of the procedure of cDTA experiment The S. cere-
visiae cells are labeled by adding 4tU into the media whereas S. pombe cells are labeled by
adding 4sU. The cells are then counted. S. cerevisiae cells from different experiments are
mixed with always the same amount of labeled S. pombe cells from a single batch. Cells are
then lysed, RNA is extracted, biotinylated, and labeled RNA separated. Microarrays con-
taining probes against both S. cerevisiae and S. pombe transcripts are then used to quantify
both total and labeled RNA.
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Figure 4.2: Comparison of control and total log intensities for the effect of labelling
We compared RNA intensities of wild type cells against the total RNA intensities of cells after
3, 6 and 12 min of 4tU labeling (all cells were grown in YPD media). Almost no significant
folds above a factor of 2 (below a factor of 0.5) were detected, and the distributions were
almost identical to that of replicate wild type measurementsPairwise scatterplots of log-
intensities. The lower panel shows the respective Spearman correlations. The diagonal gives
the length of the labeling period in minutes. Compared fractions are obtained by taking the
gene-wise median over all intensities of replicate measurements.
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was hybridized to the array, cross-hybridization occurred for a minor fraction of the

probes (Methods) when a conservative intensity cut-off of 4.5 (log intensity values

after preprocessing) was used (Figure 4.3). Cross-hybridizing probes were excluded

Figure 4.3: Assessment of cross-hybridization Scatterplot of log intensities of 10,928
Affymetrix probe sets. The values on the x- resp. y-axis are obtained as the mean of two pure
S. cerevisiae resp. S. pombe replicate samples that were hybridized to the arrays. S. cerevisiae
and S. pombe probe sets (heat-colored and grey-scaled, respectively) can be separated almost
perfectly. 23 out of 5,771 S. cerevisiae probe sets show intensities above a (log) background
intensity threshold of 4.5 in the S. pombe sample, whereas 8 out of 5,028 S. pombe probe
sets were above background in the S. cerevisiae sample. These 31 probe sets are regarded
as affected by cross-hybridization (green circles). Of these, 16 probe sets were excluded from
analysis because all probes were affected by cross-hybridization (Methods)

from further analysis, leading to loss of only 16 out of 10,799 probe sets (Methods).

The mixing ratio between S. cerevisiae and S. pombe cells was tuned to 3:1, to max-

imize the overlap of the S. cerevisiae and S. pombe expression intensity distributions

(Figure 4.4). This ensured that after calibration most S. cerevisiae and S. pombe

probe intensities were in the linear measurement range of the microarray, an impor-

tant prerequisite for our calculations. The analysis was restricted to RNAs with log

intensity signals above 4.5 and below 8 (Figure 4.4).

4.1.2 Rate extraction from cDTA data

To obtain absolute synthesis and decay rates for S. cerevisiae and S. pombe, we derived

the ratios of labeled to total RNA intensities cSc and cSp for S. cerevisiae and S. pombe,

respectively. These ratios set the global median level of synthesis and decay rates and

rely on a robust previous estimate of the median S. cerevisiae half-life (Miller et al.,
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Figure 4.4: Linear measurement range Exemplary illustration showing that the relation
of mRNA concentration (real amount) and mRNA intensity (flourescent scanner readout)
follows the Langmuir adsorption model (Hekstra et al., 2003; Held et al., 2003, 2006; Skvortsov
et al., 2007). The green line indicates linearity. The black line shows sigmoidal behavior,
resulting from noise at low hybridization levels and saturation effects at high hybridization
levels. The grey stripe indicates the linear measurement range that we defined as an intensity
range of 4.5-8 (natural log basis) based on noise signals below 4.5, for example for probes that
detect transcripts of genes that were knocked out, and based on observed saturation effects
above 8.

2011) for which labeled, total, and unlabeled RNA fractions were available. Once CSp

is known, the measured levels of the S. pombe standard can be used to calibrate the S.

cerevisiae data (Figure 4.5A). This new normalization method allows rate estimation

from labeled and total quantities alone (Methods). Our published median half-life

for S. cerevisiae mRNAs (Miller et al., 2011) enabled determination of the median S.

pombe half-life relative to S. cerevisiae (Figure 4.6A,B). We measured growth curves,

and obtained a doubling time of 90 minutes for S. cerevisiae in YPD medium at 30℃
and 116 minutes for S. pombe in YES medium at 32℃. These doubling times were

used in kinetic modeling (Miller et al., 2011). We confirmed that the rates obtained

by cDTA are essentially the same as the ones previously obtained by DTA (Table 4.1,

Figure 4.6).
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Figure 4.5: Schematic diagram of cDTA normalization procedure A. Determination
of cSp, the ratio of labeled over total S. pombe mRNA. To obtain absolute synthesis and
decay rates for S. cerevisiae and S. pombe, we derived ratios of labeled to total RNA cSc and
cSp for S. cerevisiae and S. pombe, respectively. The cSc ratio was obtained in our previous
study (Miller et al., 2011). To determine cSp, LSc and TSc are set to cSc and 1, respectively.
LSp and TSp are then linearly rescaled. The resulting LSp/TSp is defined as cSp and then used
in the further experiments as global cDTA normalization factor. B. cDTA normalization
uses S. pombe signals as internal standard. The bars indicate the median intensities of the
array probe sets. Due to our experimental design, the ratio of labeled to total S. pombe RNA
(cSp = LSp/TSp) must be the same in all experiments. To correct for differences in cell lysis,
RNA extraction efficiency, and RNA purification efficiencies, the levels of S. pombe total and
labeled mRNA are rescaled to the same values in all experiments. The S. cerevisiae RNA
levels are then corrected by median centering of S. pombe RNA levels. This normalization
allows for a direct comparison of Sc data between experiments. Shown are both replicates
for each of the four cDTA experiments.
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Figure 4.6: Scatter plots comparing data from these and other studies The scatter
plots compare the S. cerevisiae synthesis (A) and half-lives (B) as obtained by cDTA (y-axis)
and those obtained from our data using the method from (Miller et al., 2011). Spearman
correlations are 0.8 and 0.76 respectively.(C)Comparison of the S. pombe transcript half-lives
as obtained by us (y-axis; median half-life 59 min) and by (Amorim et al., 2010) (x-axis).
Spearman and pearson correlation coefficients are given in the legends. From left to right:
comparison of our data to original estimiates (Amorim et al., 2010), to recomputed estimates,
to recomputed estimates with labeling bias correction and to recomputed estimates with
labeling bias and growth rate correction.
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Table 4.1: Median mRNA half-lives and synthesis rates of S. cerevisiae and S. pombe

transcripts.

Species cDTA1 DTA

Median mRNA half-life

[min]

Sc 12 11.5

Sp 59 N. A.

Median mRNA synthesis

rate [mRNAs per cell and

cell cycle time]2

Sc 532 18 (72)2

Sp 44 N. A.

RNA half-lives that were recently determined by 4tU pulse-chase labeling in S.

cerevisiae are 1.5-fold longer (Munchel et al., 2011), likely because a very long labeling

time was used that allowed for thio-nucleotide re-incorporation after mRNA decay.

We calculated mRNA synthesis rates as the number of complete transcripts made per

cell and per 90 minutes (the cell cycle time for wild type S. cerevisiae), using a new

estimate of 60,000 transcripts per yeast cell (Zenklusen et al., 2008), instead of the

previously used, four-fold lower estimate (Hereford and Rosbash, 1977). For S. pombe,

we estimated the number of transcripts from the observed 2.51-fold cumulative total

RNA level to be 150,801. Our rate estimates were unaffected by the efficiency of 4tU

labeling, which varied between strains and experiments (Figure 4.7). For normaliza-

tion between different S. cerevisiae samples, we linearly rescaled all array intensities

such that the total and labeled S. pombe fractions have a median intensity of 1 or

CSp (Figure 4.5B). We assessed the accuracy of the cDTA procedure by estimating

the intensity ratios of Sc:Sp cells that were mixed at 1:1, 3:1, and 10:1. The correct

values were recovered with an accuracy of 95% (Figure 4.8). Selected mRNA levels of

1The cDTA contains the estimates obtained from using the labeled:total ratio of the complemen-
tary strain and the known total and labeled Sc:Sp ratios to calculate the missing labeled:total ratio,
i.e.,. The DTA column shows the S. cerevisiae half-life estimate obtained from (Miller et al., 2011).
Note that the S. cerevisiae estimates are virtually identical to ours, although we used a different
labeling technique (4tU instead of 4sU) and had spiked-in S. pombe controls in the sample.

2Please note we previously used in our calculations a total number of transcripts per cell of 15,000,
according to an old estimate (Hereford and Rosbash, 1977), whereas we now used a recent estimate
of 60,000 (Zenklusen et al., 2008). If the same number of transcripts is used, the median synthesis
rate obtained by DTA would be 72, comparable to our new estimate obtained by cDTA, despite the
difference in media and cell cycle time (Miller et al., 2011)
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Figure 4.7: Scatter plot showing labeling bias The number of uridines is plotted versus
the log-ratio of L and T. The black line shows that the labeling bias curve estimated as
in (Jimeno-Gonzáez et al., 2010). Left: labeling bias plot for the slow Pol II mutant. plab
= 0:0064 means that approximately every 156th uridine residue is replaced by 4tU and
afterwards attached to a biotin molecule. Right:labeling bias plot for the wild-type. plab =
0:011 means that approximately every 90th uridine residue is replaced by 4tU and afterwards
attached to a biotin molecule. The shifted asymptotes indicate the observed fold of the decay
rate comparing these two conditions. Note that differences in labeling efficiency plab do not
affect decay and synthesis rate measures, as these efficiency biases only occur for transcripts
with less than 500 uridine residues. Though these transcripts make up two thirds of all
mRNAs, biases can be accurately removed. Therefore, different labeling biases estimated
as in (Jimeno-Gonzáez et al., 2010) can only adopt different curvatures, whereas altered
synthesis and decay rates can only lead to shifted asymptotes of the respective curves.
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Figure 4.8: Determination of the mixing ratio (A) Calibration of Sc:Sp cell mixture
ratio. The optimal cell mixture ratio has been chosen to maximize the number of probes for
both S. cerevisiae and S. pombe that fall into the linear measurement range (Figure 4.4). S.
cerevisiae and S. pombe cells were mixed in Sc:Sp ratios of 1:1, 3:1, and 10:1. The respective
median mRNA level ratios are 0.3, 0.95, and 3.02. Log (RNA intensity) distributions of Sc
(red) and Sp (grey) are shown. The median intensity level of S. pombe is approximately
three times higher than that of S. cerevisiae. As a consequence, a Sc:Sp cell mixture ratio
of 3:1 was used. (B) Comparison of the three different cell mixtures of (A) in pairwise log-
log scatter plots. All arrays are normalized to a common median of 4,052 S. pombe probe
sets (grey-scaled). 4,475 S. cerevisiae probe sets (those in the linear measurement range)
are shown in heat colors. The parallel offset of the S. cerevisiae probe sets from the main
diagonal measures the mRNA level differences of S. cerevisiae in the three cell mixtures. The
differences should be 3.3, 10, and 3 when we plot Sc:Sp ratios of 10:1 vs. 3:1, 10:1 vs. 1:1,
and 3:1 vs. 1:1, respectively. The corresponding measured offsets are 3.14, 9.46, and 3.01,
and thus in very good agreement.
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the 1:1 and 10:1 ratio mixtures were additionally quantified by RT-qPCR (Methods).

The expected ratio of the four tested S. cerevisiae transcripts was recovered within a

relative error of 9% when normalized to two housekeeping S. pombe genes (not shown).

In summary, cDTA normalization removes the major sources of experimental differ-

ences between samples in RNA labeling efficiency, cell lysis, RNA extraction, RNA

biotinylation and labeled RNA purification, and array hybridization. cDTA detects

global changes between S. cerevisiae samples, in contrast to standard normalization

procedures that eliminate global changes because they assume constant median RNA

levels.

4.1.3 cDTA supersedes conventional methods

Conventional methods measure mRNA half-lives by inducing transcription arrest and

following changes in mRNA levels over time. Transcription arrest has been achieved

by adding the transcription inhibitor 1,10-phenanthroline (Dori-Bachash et al., 2011),

or by shifting the temperature-sensitive mutant strain rpb1-1, which carries a point

mutations in the largest subunit of Pol II (Nonet et al., 1987), to the restrictive tem-

perature (Grigull et al., 2004; Holstege et al., 1998; Shalem et al., 2008; Wang et al.,

2002). To investigate whether the latter method yields reliable data or whether it

perturbs mRNA metabolism, we re-generated the rpb1-1 strain and analyzed it with

cDTA using published growth parameters (Holstege et al., 1998) (Methods). This

revealed that mRNA synthesis rates were decreased globally by a factor of 2.7 al-

ready at the permissive temperature of 30℃ (Figure 4.9A). After 24 minutes at the

restrictive temperature, mRNA synthesis rates had decreased further by a factor of

3.4, but recovered essentially to the rates measured at permissive temperature after 66

minutes (Figure 4.9A). These observations indicated that the mRNA metabolism in

the rpb1-1 strain was already perturbed at the permissive temperature, and that the

temporary changes in mRNA metabolism observed at the restrictive temperature were

mainly due to a heat shock response. To test this, we conducted a corresponding heat

shock experiment on wild type cells. We analyzed the total mRNA from this experi-

ment together with the data from the rpb1-1 mutant by conventional decay time series

analysis (Grigull et al., 2004; Holstege et al., 1998; Shalem et al., 2008; Wang et al.,

2002). The obtained mRNA half-lives during heat shock correlated very well with

data derived from the rpb1-1 mutant strain, and with published half-lives obtained

with this strain (Figure 4.9B). The obtained half-lives were longer than the half-lives
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Figure 4.9: Study of rpb1-1 strain transcription and degradation (A) Box plots of
the expression distributions of the total and the labeled (newly synthesized) mRNA after
cDTA normalization, obtained from the wild type and the rpb1-1 mutant before and 24
and 66 minutes after the shift to restrictive temperature. Transcriptional activity is roughly
restored in both strains after 66 minutes. The global shifts in labeled expression are only
slightly more pronounced in the rpb1-1 mutant, indicating a dominant role of heat shock
in the profiles of rpb1-1. (B) Correlation analysis of mRNA half-life measurements. The
heatmap shows pair wise Spearman correlation coefficients of half-life measurements (white:
negative or zero correlation; purple: perfect correlation). The published half-life estimates
except for (Munchel et al., 2011) were obtained by experiments using transcriptional arrest.
The estimates of (Holstege et al., 1998), Wang et al. (Wang et al. 2002), Grigull et al.
(Grigull et al. 2004) and Shalem et al. (Shalem et al. 2008) were obtained using a yeast
strain containing the Pol II temperature sensitive mutant rpb1-1. Dori-Bachash et al. (Dori-
Bachash et al. 2011) used the transcription inhibitor 1,10-phenanthroline.
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measured in unperturbed cells, likely because mRNA degradation was down-regulated

during the stress response. There was also a good correlation with half-lives obtained

after adding 1,10-phenanthroline, and even with our previous data obtained during the

osmotic stress response (Miller et al., 2011), if processed in the conventional way. This

indicates that all these data are dominated by perturbations in mRNA metabolism

that result from a general stress response. In contrast, published half-lives derived

from metabolic RNA labeling (Munchel et al., 2011) and our cDTA-derived half-lives

do not correlate with data obtained by perturbing conventional methods. We conclude

that conventional methods for estimating mRNA half-lives using the rpb1-1 mutant

strain or transcription inhibition cannot be used to obtain reliable half-life estimations.

4.1.4 Comparison of mRNA metabolism in distant yeast species

As an immediate result, cDTA reveals similarities and differences in the mRNA metabolism

of S. cerevisiae and S. pombe. First, the median mRNA synthesis rates are very similar

in S. cerevisiae and S. pombe. The median synthesis rate was 53 mRNAs per cell

and 90 minutes for wild type S. cerevisiae and 44 mRNAs per cell and 90 minutes for

S. pombe. Second, S. pombe mRNAs have about five-fold longer half-lives on average

than S. cerevisiae mRNAs, with a median of 59 minutes (Figure 4.10A, Figure 4.11),

compared to 12 minutes for S. cerevisiae. As expected, the cDTA-derived S. pombe

half-lives show a fair correlation with half-lives obtained by another non-perturbing

metabolic labeling (Amorim et al., 2010). Furthermore, reprocessing the data of

Amorim et al. with our cDTA algorithm, which takes into account the labeling bias

and an additional parameter to correct for cell growth, increases the correlation to

our results and leads to a median half-live of 50 minutes, in good agreement with an

estimate of 59 minutes in our study (Figure 4.6C). Third, the overall mRNA levels

in S. pombe were about 3.1-fold higher than in S. cerevisiae. Since the haploid S.

cerevisiae cells with a median volume of 42µm3 are approximately two- to three-fold

smaller than S. pombe cells with a median cell volume of approximately 115µm3 (Jor-

gensen et al., 2002; Neumann and Nurse, 2007), the higher mRNA levels apparently

lead to similar cellular mRNA concentrations. The change in mRNA levels is mainly

a global multiplicative change (R2=0.82, Figure 4.11C). Taken together, these data

suggest that S. pombe cells generally contain more stable mRNAs than S. cerevisiae

cells to reach similar mRNA concentrations at similar mRNA synthesis rates despite

their larger volume.

46



4. Results

Figure 4.10: (Comparison of the decay rate and expression rate of S. cerevisiae
and S. pombe A) Scatter plot comparing mRNA decay rate folds versus synthesis rate folds
of Sp and Sc transcripts encoding protein orthologs (>25% amino acid sequence identity).
The offset of grey lines to parallel black lines indicate Sp:Sc ratios of median decay rates,
synthesis rates, or total mRNA (0.20/0.83/2.72). Dashed grey lines indicate 1.5-fold changes
from the median (grey lines). Color scheme corresponds to folds in total mRNA (magenta,
positive log fold; green, negative log fold). A set of genes that show higher decay and synthesis
rates (1.5-fold & adjusted P-value 0.5%) but almost unchanged (<1.5-fold) total mRNA (93
transcripts, striped area) was selected and tested with a Bayesian network-based gene set
analysis (MGSA)(Bauer et al., 2010). In this gene set, the ribosomal protein genes were
enriched (blue dots; ellipse shows the 75% region of highest density).(B) Plots show log2 fold
distributions of total mRNA (grey), synthesis rate (red) and decay rate (blue) of Sp versus
Sc transcripts encoding orthologous proteins as a function of amino acid sequence identity
(%). Transcripts encoding highly conserved proteins such as ribosomal proteins are located
on the right. They show more rapid turnover (synthesis and decay) in S. pombe, resulting in
similar mRNA levels. The solid black lines represent the median log2 fold, the shaded bands
are the central 80% regions. The solid/dashed grey lines indicate the median log2 fold of all
orthologs/all genes.
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Figure 4.11: Scatter plot comparing mRNA half-life (A), synthesis rate (B) and total
expression (C) of S. pombe against S. cerevisiae orthologs (>25% protein sequence identity).
The offset of dashed lines to (parallel) black lines indicate ratios of median half-life resp.
synthesis rate resp. total mRNA of S. pombe to S. cerevisiae (4.92/0.83/2.72).

We investigated whether mRNA sequence conservation correlates with a conservation

of total RNA levels, synthesis rates, or decay rates (Figure 4.10B, Figure 4.11). This

analysis revealed a conservation of the relative total levels of mRNAs that encode or-

thologous proteins in S. cerevisiae and S. pombe. The levels of mRNAs that encode

proteins with an amino acid sequence identity of at least 25% (2568 mRNAs) show a

high Spearman correlation of 0.69. Synthesis rates correlate well between both species

(Spearman correlation 0.61), but the half-lives show only a fair correlation (Spearman

correlation 0.4). Although the data suggest that S. pombe cells have globally shifted

decay rates, to reach similar cellular mRNA concentrations, there is a minor fraction

of transcripts that behave exceptionally. In particular, 93 S. pombe transcripts show

almost unchanged mRNA levels (< 1.5 fold), but significantly higher synthesis and

decay rates (> 1.5 fold), and are enriched for ribosomal protein genes (Figure 4.10A).

More generally, transcripts that encode highly conserved proteins show similar levels,

but a faster turnover in S. pombe (Figure 4.10B). We also assessed the correlation

of synthesis rates with transcript lengths, and revealed a substantially higher Pol II

drop-off rate in S. pombe (Figure 4.12).
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Figure 4.12: Correlation of log synthesis rates with transcripts length (A) for S.
cerevisiae and (B) for S. pombe .The linear regression and the Pearson correlation were
calculated for the transcripts with a length between 700 and 2000 nucleotides.

4.1.5 Impaired mRNA synthesis is compensated by decreased

degradation

We applied cDTA to the question of whether the speed of Pol II is relevant for setting

the cellular rates of mRNA synthesis. We used a yeast strain that carries the non-

disruptive point mutation N488D in the largest Pol II subunit Rpo21 (also known

as Rpb1) (rpb1-N488D). This mutation slows down Pol II speed in RNA elongation

assays in vitro (Malagon et al., 2006) and is located near the active site (Cramer

et al., 2001). We subjected this strain and an isogenic wild type strain to cDTA, and

collected two biological replicates, which showed a Spearman correlation of 0.99 for

total and labeled RNA (Figure 4.13). We measured cell-doubling times, and used

these in the kinetic modeling, to correct synthesis rates for a change in doubling time

(Table 4.2). In the rpb1-N488D mutant strain, mRNA synthesis rates were globally

decreased 3.9-fold (Figure 4.14A,B). This is consistent with the observed 2- to 4.5-fold

decrease in Pol II speed measured in vitro (Malagon et al., 2006). We observed a Pol

II drop-off rate similar to that described previously (Jimeno-Gonzáez et al., 2010), but
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Figure 4.13: Barplot of measured global shifts Total expression, labeled expression,
labeled to total ratio (decay proxy), decay rate, half-life and synthesis rate are showing here.
(A) slows Pol II mutant against its isogenic wild-type; (B) ccr4∆ against wild type; (C)
pop2∆ against wild-type in log scale. Error bars indicate the standard deviation of pairwise
comparison of respective replicates.

Table 4.2: Growth rate of the mutants studied

Mutants Doubling time/min

wild-type 90
ccr4∆ 219
pop2∆ 126
rpb1-N488D 150
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Figure 4.14: cDTA reveals changes in mRNA metabolism upon genetic pertur-
bation (A) Linear scatter plots (heat-colored) of mRNA synthesis rates, decay rates, and
total mRNA levels in wild type and mutant rpb1-N488D yeast strains as measured by cDTA.
Slopes indicate global shift ratios of median synthesis rates, decay rates, and total mRNA
of the rpb1-N488D mutant strain compared to wild type (0.26/0.31/0.75).(B) Alternative
representation of the data from panel A in a single scatter plot comparing the changes in
mRNA synthesis rates (log folds, x-axis) and decay rates (log folds, y-axis) in the rpb1-N488D
mutant strain compared to the wild type strain. Each point corresponds to one mRNA. The
density of points is encoded by their brightness (grey scale). Contour lines define regions of
equal density. The center of the distribution is located at (-1.8, -1.6), indicating that there
is a global shift in the median synthesis rate by a factor of 0.26 (shift of the horizontal red
line relative to the dashed x-axis line), and a global shift in the median decay rate by a
factor of 0.31 (shift of the vertical red line relative to the dashed y-axis line). The global
change in total mRNA levels is predicted by the offset of the diagonal red line from the
dashed main diagonal, which corresponds to a change by a factor of 0.75. The number in
brackets following this number (0.75) is the global change as it has been observed in the total
mRNA measurements, which agrees well with the predicted number. The changes in total
RNA levels do not exactly equal the quotient of synthesis and decay rate changes, due to an
additional parameter for cell growth.(C) Scatter plots as in (B) comparing synthesis rates,
decay rates, and total mRNA levels of ccr4∆ and pop2∆ mutant strains to wild type yeast.
Ratios of median synthesis rates, decay rates, and total mRNA of the ccr4∆/pop2∆ mutant
strain compared to wild type are 0.49/0.39, 0.43/0.16, and 1.15/1.74, respectively.
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quantitative modeling excludes drop-off of Pol II during elongation as the cause for

the decreased synthesis rates (Figure 4.15, Table 4.3). Despite the lower synthesis

Table 4.3: Pol II drop off rate

S. cerevisiae S. pombe Slow PolII ccr4∆ pop2∆

Drop of rate per

nucleotide

2.3× 10−4 6.4× 10−4 2.9× 10−4 3.7× 10−4 2.3× 10−4

Pol II drop off per

1000 nucleotides

21% 47% 26% 31% 21%

Figure 4.15: Comparison of the synthesis rate and transcript length in the mutants
The discovery of a global regulation of mRNA transcription activity raises the question about
the responsible mechanism. A straightforward hypothesis is that transcription inhibition is
achieved by increasing the abort rate of Polymerase during transcription elongation. However,
the abort rate of Pol II (Figure 4.12) in all three mutants (slow Pol II mutant, deadenylation
mutants ccr4∆ and pop2∆) is comparable to that of S. cerevisiae wild type. It is thus
likely that the feedback mechanism does not intervene at the elongation stage, but rather at
the stage of transcription initiation or during the transition from transcription initiation to
elongation. Figure shows the dependence of synthesis rates on transcript length for the slow
(A) Pol II mutant , the deadenylation mutants (B)ccr4∆ and (C) pop2∆.

rates, global mRNA levels were not changed very much in the slow Pol II mutant strain

(Figure 4.14A). This resulted from a strong decrease in mRNA decay rates of 3.2-fold

on average. Synthesis and decay rates of all mRNAs were shifted by approximately

the same factor, independent of their wild type expression level, synthesis rate, or
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decay rate. The globally increased mRNA half-lives apparently compensated for the

decreased mRNA synthesis rates, to buffer cellular mRNA levels, which were decreased

1.3-fold only. The measured total RNA levels agreed well with total mRNA levels

calculated from the changed synthesis and decay rates (not shown). These results

show that cells with a strong defect in mRNA synthesis can maintain nearly normal

mRNA levels by compensatory changes in mRNA decay rates.

4.1.6 Impaired degradation is compensated by decreased syn-

thesis

The observed synthesis-decay compensation implies that cells buffer total mRNA levels.

If true, cells should also be able to compensate for a mutation that impairs mRNA

degradation with a change in mRNA synthesis rates. To investigate this, we applied

cDTA to mutant yeast strains with global defects in mRNA degradation. The choice of

mutant was difficult, since RNA degradation involves multiple enzymes in the nucleus

and cytoplasm (Houseley and Tollervey, 2009). We decided to use mutant strains

that lack either one of the two catalytic subunits of the Ccr4-Not complex, Ccr4p or

Pop2p, which show a defect in mRNA deadenylation, a rate-limiting step in mRNA

degradation (Tucker et al., 2002). As predicted, mRNA decay rates were globally

decreased in the ccr4∆ and pop2∆ strains, and changed on average by a factor of 0.43

and 0.16, respectively (Figure 4.14C). This suggests that Ccr4p and Pop2p mRNA

degradation factors are used globally.

In both degradation-deficient knock-out strains, an unexpected decrease in mRNA

synthesis rates was observed (Figure 4.14C). Synthesis rates were changed by a factor

of 0.49 and 0.38 in the ccr4∆ and pop2∆ strains, respectively, limiting the increase

in total mRNA levels due to highly defective degradation to a factor of only 1.18 and

1.75, respectively (Figure 4.14C). This effect could be observed directly in the labeled

fractions of the ccr4∆ and pop2∆ strains. Only 62% or 46% of the RNA was labeled

within the same labeling time, indicating lower synthesis rates. Thus the defects in

RNA degradation in these strains are at least partially compensated by decreased

mRNA synthesis rates, to buffer mRNA levels. This mutual compensation cannot be

explained by measurement variance. A variation analysis for the estimation of the

median synthesis and decay rates (Figure 4.16) shows that the 95% confidence regions

of the median synthesis and decay rate estimates are clearly disjoint.
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Figure 4.16: Coupling of synthesis and decay rates on the absolute level. For
each condition, the median synthesis rate (y-axis) and degradation rate (x-axis) is shown
(dark dots). Dashed lines indicate fold induction/repression relative to wild-type. The dots
lie approximately on a line with positive slope, indicating synthesis-decay compensation. A
variation analysis for the estimation of the median synthesis and decay rates with cDTA has
been performed. The ellipses show the 95% bootstrap confidence regions in each condition.
The main axes of the ellipses reveal that the errors in the estimation of synthesis and decay
rates are not independent, yet small enough to prove that the coupling is not due to estimation
variance.
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4.1.7 A transcription inhibitor and degradation enhancer may

buffer mRNA levels

The above data show that yeast cells can compensate for impaired mRNA synthesis

with decreased mRNA decay rates, and for impaired degradation by decreased mRNA

synthesis rates. Yeast cells thus have mechanisms to at buffer mRNA levels by mutual

negative feedback between nuclear mRNA synthesis and cytoplasmic mRNA decay. To

explore this further, we extended our model for mRNA turnover under steady state

conditions. The mRNA of a gene G is synthesized at a gene-specific constant rate µg,

and is degraded at a gene-specific rate g·λg, with g being the mRNA amount resulting

from gene G. We assume that there is a transcription modulator S and a degradation

modulator D that globally affect the synthesis rate (SR) and decay rate (DR) by factors

f(s) and h(d), respectively4.1:

dg

dt
= SR(g, s)−DR(g, d) = µg · f(s)− gλg · h(d) (4.1)

The important and plausible assumption of this model is that f and h are monotonic

functions. We do however not assume that mRNA levels translate linearly into protein

levels, or that the degree of modulation is a linear function of the underlying mRNA

concentrations of S and D. One might think of S and D as proteins, whose activity is

a function of their mRNA concentrations s and d.

From the model 4.1, we inferred the regulatory logic of the observed feedback, as out-

lined below. A rigid derivation and an extensive discussion of the models assumptions

are given in Methods. We compare here synthesis and decay rates of a gene between

two conditions C and C.
SR′(g′, s′)

SR(g, s)
=
µ′gf(s′)

µ′gf(s)
(4.2)

DR′(g′, s′)

DR(g, s)
=
λ′gh(d′)

λ′gh(d)
(4.3)

The left hand sides of equations 4.2 and 4.3 can be evaluated by cDTA. The left hand

side of equation 4.2 is substantially smaller than 1 for virtually all measurements g, g

and for both deadenylation mutants (Figure 4.14B). For these mutants, we also know

that µg = µg, and consequently f(s) < f(s). We also observe generally that g > g

and s > s, from which we conclude that f is monotonically decreasing. This implies

that S acts as a transcription inhibitor. In the slow Pol II mutant, we observe λg = λg
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. Using a similar argument as above and equation 4.3 and cDTA data of the slow

Pol II mutant, we conclude that h is monotonically increasing, implying that D is a

degradation enhancer. These conclusions could only be derived because cDTA enables

the comparison of global synthesis and decay rates. The results would be identical if S

and D were the same molecule. Thus, the most simple explanation of our observations

is the existence of a factor that serves as an inhibitor of transcription and an enhancer

of degradation, and shuttles between the nucleus and cytoplasm.

4.2 Global analysis of eukaryotic mRNA degrada-

tion reveals Xrn1-dependent buffering of tran-

script levels

4.2.1 Global analysis of mRNA degradation

We gathered cDTA data from S. cerevisiae BY4741 strains during logarithmic growth

in YPD media (Table 2.1). Strains were verified by PCR and growth on selective

media (Methods). cDTA was carried out as described (Sun et al., 2012). Briefly,

RNA was metabolically labeled with 4sU for 6 minutes and 2.25× 108 cells were mixed

with 0.75× 108 cells from labeled Schizosaccharomyces pombe culture that provided

an internal standard. Strain ploidy was analyzed by plotting the levels of total RNA

per chromosome (Figure 4.17). This uncovered nine aneuploid mutant strains, six of

which we could regenerate with normal ploidy, whereas the others had to be excluded.

For strains that showed more than a two-fold difference in total RNA, chromosome

copy number was analyzed by FACS and polyploid strains were excluded. From each

strain, at least two biological replicates were measured. The Spearman correlation of

replicate measurements was always close to 1. With the use of our previously described

algorithm (Sun et al., 2012), we obtained a high quality dataset including for each strain

the median SR and DR, the total mRNA levels, the SRs based on labeled mRNA, and

the DRs, which will be deposited in ArrayExpress after publication.
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Figure 4.17: Scatter plots show the aneuploidy of mutant The expression level of
genes in pat1∆ is plotted to their position in chromosomes. (A) shows that the aneuploid
strain has two folds overexpression of genes on Chr II compared to the median level of all
other genes. (B) is the strain used in this study. The the strain pop2∆ in previous section
was checked by this procedure and found to have a chromosome IIX aneuploidy. A new
knock-out strain was generated by homologous recombination and measured by cDTA. The
new data does not change any of the conclusions in the previous section
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4.2.2 Generality of mRNA level buffering

When we plotted the changes in median SRs against changes in median DRs for each

mutant strain, the data points scattered along the main diagonal (Figure 4.18). Thus

changes in DRs that were induced upon mutation were generally compensated by

changes in SRs. To assign a significance level to these changes, we fitted a bivariate

Gaussian distribution to the pooled median SR and DR estimates of a total of 228

S. cerevisiae samples after normalization to their S. pombe references, including 18

biological wild-type replicates. Data points outside the resulting 95% confidence re-

gion (grey ellipse in Figure 4.18) indicate significant changes in global SR and/or DR,

since they do not result from random fluctuations. The high precision of our measure-

ments revealed even mild effects of most mutations under optimum growth conditions

(standard deviation for changes in SR is 0.22, and for changes in DR is 0.24). Of the

46 strains analyzed, 7 showed strong effects with median SR or DR changes above

two-fold, whereas 16 strains did not show significant rate changes. Most strains main-

tained similar mRNA levels (Figure 4.19A) demonstrating the generality of mRNA

level buffering.

4.2.3 mRNA level buffering requires Xrn1p activity

The analysis revealed a single strong outlier, the strain lacking the exonuclease Xrn1p

(Figure 4.18). In this strain, the median DR was decreased by 2-fold relative to wild

type, but the median SR was increased by 1.6-fold. As a result, mRNA levels increased

3.2-fold (Figure 4.19A), showing that the buffering mechanism was defective. Thus

Xrn1p stimulates global mRNA degradation as expected, but its absence showed an

unexpected positive effect on mRNA synthesis, rather than a negative effect that would

be required for buffering. The apparent repression of mRNA synthesis cannot be

explained by stabilization of labeled RNAs, since our SR estimator accounts for the

degradation of labeled RNA. To quantify the mRNA buffering capacity of mutant

strains, we introduced the buffering index (BI), which is calculated as follows:

BI = 1− Tmutant − Twt

Ttheoretical − Twt

(4.4)

In this equation, Tmutant and Twt are the measured median total mRNA levels of the

mutant and the wild type, respectively. Ttheoretical is the theoretically obtained total
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Figure 4.18: Global view of changes in mRNA DRs and SRs Scatter plot showing
global changes in mRNA DRs (log fold of median mRNA decay rates in mutant versus wild
type, x-axis) and SRs (log fold of median mRNA synthesis rates in mutant versus wild type,
y-axis) in 46 yeast deletion strains. The centre of each circle is determined by the median
DR and SR of the strain. The grey ellipse indicates the 95% confidence region.
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Figure 4.19: The ability of mutants to keep its total mRNA level (A) Bar plot
depicting changes in global mRNA level in 46 yeast deletion strains. A mRNA level change
of 1 indicates that global mRNA levels of the mutant and wild-type strains are the same. (B)
Bar plot depicting the buffering index (BI). BI is 1 when mRNA level buffering is perfect. BI
is between 0 and 1 when mRNA level buffering is partial. BI of 0 or below 0 indicates that
there is no mRNA level buffering.
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RNA level that would result from impaired degradation but unaffected synthesis, i.e. in

the absence of buffering. The ratio (Tmutant-Twt)/(Ttheoretical-Twt) measures the change

in total mRNA relative to the expected change assuming no buffering. Thus the BI

measures the fraction of the expected total mRNA change that has been buffered.

A BI of 1 indicates perfect buffering, i.e. changes in DR are entirely compensated

by changes in SR. Out of the 46 mutant strains, 42 showed a BI above 0.8, three

showed a BI between 0.6 and 0.8, and only the xrn1∆ mutant had a BI close to zero

(Figure 4.19B). Xrn1 thus exhibits the features predicted for a factor involved in mRNA

buffering; it is an mRNA degradation factor with a negative effect on mRNA synthesis

(Sun et al., 2012). To investigate the role of Xrn1p in the buffering mechanism, we

prepared a yeast strain (xrn1pm) with two point mutations in the Xrn1p active site

(D206A, D208A) that abolish exonuclease activity (Solinger et al., 1999). We collected

a cDTA profile for the xrn1pm strain and compared it to an isogenic wild-type strain

(Methods). The median DR was decreased to 36%, similar as in the xrn1∆ strain,

but the median SR remained unchanged, leading to a 2.6-fold increase in total mRNA

levels (Figure 4.20). These results demonstrate that the catalytic activity of Xrn1p is

responsible for the decrease in DRs and is required for mRNA level buffering.

4.2.4 Xrn1p represses mRNA synthesis indirectly

The median SR differed between the xrn1∆ strain and the xrn1pm strain (Figure 4.20),

suggesting that Xrn1p represses mRNA synthesis and that this function is independent

of its catalytic activity. To investigate this, we depleted Xrn1p from the nucleus using

the anchor-away technique (Haruki et al., 2008) and monitored changes in SR and DR.

We generated an Xrn1p anchor away (XRN1-AA) strain in which Xrn1p was fused with

a FKBP-rapamycin binding (FRB) domain in a strain containing the ribosomal pro-

tein RPL13A fused to the FKBP12 receptor of rapamycin (Haruki et al., 2008). Upon

rapamycin addition, the Xrn1-FRB fusion protein was pulled out of the nucleus. When

the XRN1-AA strain was grown in media supplemented with rapamycin the median

SR was increased 1.5-fold during mid-log growth phase (Figure 4.21), in agreement

with a 1.6-fold increase in the xrn1∆ strain. The median DR was increased 1.9-fold,

possibly due to increased cytoplasmic Xrn1 levels.

These results were consistent with a nuclear function of Xrn1p in repressing mRNA

synthesis, and with reports that Xrn1p interacts with nuclear proteins such as his-

tones (Gilmore et al., 2012; Lambert et al., 2009) and the Nrd1-complex (Gavin et al.,
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Figure 4.20: xrn1∆strain show anti-compensation effect (A) Scatter plot with changes
in mRNA SRs (log fold, y-axis) and DRs (log fold, x-axis) in the xrn1∆ deletion strain. Each
point corresponds to one mRNA. The density of points is encoded by their brightness (grey
scale). Contour lines define regions of equal density. A global shift in the median DR is
indicated by the shift of the horizontal red line relative to the dashed x-axis line. Arrows
indicate change in global SR (vertical), DR (horizontal), and mRNA level (diagonal).(B)
Scatter plot as in (A) but for the xrn1pm strain relative to its isogenic wild-type strain
XRN1.
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Figure 4.21: Scatter plot as in (Figure 4.20) but showing the changes in the XRN1AA strain
after treatment with rapamycin compared to the untreated strain.

2006). However, we did not detect association of Xrn1p with the constitutively tran-

scribed genes ADH1, ILV5, and RPS11A by means of chromatin immunoprecipitation

in vivo. Also, Xrn1 was not required for activator- and promoter-dependent transcrip-

tion in vitro, since nuclear extracts from xrn1∆ cells were active in transcription assays

(Methods, Figure 4.22). In these assays, addition of TAP-purified Xrn1p protein or

the catalytically inactive Xrn1pm variant did not change the activity of transcription.

These results indicated that Xrn1p has a nuclear function, but argue against a direct

function in mRNA synthesis.

Figure 4.22: Purified Xrn1p cannot inhibit transcription in vitro The in vitro tran-
scription assay carried out using nuclear extract from BY4741 (left column) and xrn1∆ (right
column). TAP purified Xrn1p and xrn1pm has added to the assay separately. RNase inhibitor
was added to inhibit the interior RNase and the RNase activity of Xrn1p. No difference was
observed in the Gcn4p activator dependent transcription activity in vitro from HIS4 pro-
moter.
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4.2.5 Induction of transcription repressor Nrg1p

Since Xrn1p does not directly affect transcription, we searched for nuclear factors that

may inhibit mRNA synthesis in an Xrn1p-dependent manner. We investigated DR-

dependent changes in SRs of transcription repressors. We observed that the SRs for

the gene encoding the transcription repressor Nrg1p (Vyas et al., 2005) were increased

in the xrn1∆ strain and in several other strains with decreased global DR (xrn1pm,

ccr4∆, pop2∆, pat1∆, dhh1∆, Figure 4.23). Vice versa, the SR of NRG1 mRNA was

Figure 4.23: The SR of the transcription repressor NRG1 is anti-correlated with
the median DR of the yeast deletion strains The x-axis represents the median DR fold
changes of the strains compared to BY4741. The y-axis represents the SR fold changes of
the transcription repressor NRG1 in the strains compared to BY4741

repressed in mutants with increased median DR such as dcs1∆ and rtt103∆. The gen-

eral significance of these changes is revealed by an anti-correlation between changes in

SR of NRG1 mRNA with the median DR of the mutant strain (Spearmans correlation

-0.61, R2 = 0.41) (Figure 4.23). These results suggested that Nrg1p could be part of

the buffering machinery. To investigate the relationship between Xrn1p and Nrg1p,

we induced overexpression of Nrg1p in wild-type and xrn1∆ mutant yeast cells (Figure

4.24). Overexpression of Nrg1p in wild-type cells led to a slow-growth phenotype, as

expected for a transcription repressor. However, there was no additive effect observed

when Nrg1p was overexpressed in xrn1∆ cells, indicating that repression of transcrip-
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Figure 4.24: Nrg1p overexpression leads to a slow-growth phenotype Cultures of
wild-type and xrn1∆ transformed with pRS316 or GAL-NRG1 were grown in SD-URA
medium at 30℃ overnight and diluted to an OD600 of 1 with fresh medium. The same
amount of cells was spotted on plates in 10-fold serial dilutions. Plates were incubated for 4
days at 30℃ and inspected daily.

tion by Nrg1p requirs Xrn1p, and consistent with the model that Xrn1p is part of the

buffering machinery.

4.2.6 Delayed mRNA buffering upon degradation inhibition

These results suggested that down-regulation of mRNA degradation triggers the ex-

pression of transcription repressor Nrg1p that subsequently down-regulates mRNA

synthesis and establishes mRNA level buffering. If true, mRNA level buffering would

occur in a time-delayed manner after conditionally impairing mRNA degradation. To

test this, we down-regulated mRNA degradation with the use of cycloheximide, a

translation elongation inhibitor that impairs mRNA degradation (Hu et al., 2009). We

added cycloheximide to cells during the mid-log growth phase at a low concentration

of 0.1 µg/mL, which has almost no effect on cell growth, and used cDTA to quantify

changes in SRs and DRs after 10 and 60 minutes of treatment.

The median DR was decreased to 65% after ten minutes of cycloheximide treat-

ment, and to 12% after 60 minutes (Figure 4.25). This confirmed the generality

of translation-coupled mRNA degradation (Hu et al., 2009). The median SR remained

essentially unchanged after 10 minutes of cycloheximide treatment, but was strongly

decreased to about 37% after 60 minutes (Figure 4.25). This demonstrated for the

first time that mRNA level buffering occurs in wild-type cells. Remarkably, the SR

for NRG1 mRNA showed a dramatic 7.1-fold increase after 60 minutes of cyclohex-
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Figure 4.25: Cycloheximide perturbation lead to synthesis compensation (A) Time-
dependent changes in median DRs and SRs upon cycloheximide perturbation. (B) Scatter
plot comparing changes in SRs (log fold, y-axis) and DRs (log fold ,x-axis) upon degradation
inhibition by cycloheximide perturbation in wild-type yeast after 10 minutes (red lines) and
60 minutes (blue lines) (depicted as in Figure 4.20). The center of the distribution of 10
minutes treatment is located at (-0.62, -0.054), indicating that there is a global shift in the
median DR by 0.28-fold, and a global shift in the median SR by 0.61-fold. The total mRNA
levels change 2.22-fold globally. The center of the distribution of 60 minutes treatment is
located at (-3.06, -1.43), indicating that there is a global shift in the median DR by 0.06-fold,
and a global shift in the median SR by 0.35-fold. The total mRNA levels change globally by
2.68-fold.
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imide treatment, in contrast to the general decrease in SRs observed for most mRNAs.

These results demonstrate time-delayed mRNA level buffering and synthesis induction

of transcription repressor Nrg1p upon inhibition of mRNA degradation, and are con-

sistent with the indirect role of Xrn1p in the buffering mechanism.

4.2.7 Rapid buffering upon mRNA synthesis inhibition

The above results indicated that mRNA level buffering following impaired mRNA

degradation is delayed, due to transcription repressor induction. To test whether

mRNA buffering following impaired mRNA synthesis is also delayed, we treated wild-

type cells with 1,10-phenanthroline, an inhibitor of mRNA synthesis, and monitored

changes in SRs and DRs. We added 1,10-phenanthroline to cells at mid-log growth

at a concentration of 25 µg/mL, which is typically used to arrest transcription (Dori-

Bachash et al., 2011), and carried out cDTA after 18 minutes of treatment. The median

SR was decreased to 38% of the untreated level, as expected after transcription inhibitor

treatment (Figure 4.26). The median DR was also strongly decreased to 29% after 18

Figure 4.26: Phenanthroline perturbation leads to decay compensation Scatter plot
as in (Figure 4.25B) but upon mRNA synthesis inhibition by phenanthroline perturbation
after 18 minutes. There is a global shift in the median DR by 0.29-fold, and in the median
SR by 0.378-fold. The total mRNA levels are essentially unchanged.

minutes. This demonstrated that conditional inhibition of mRNA synthesis leads to a
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rapid decrease in mRNA degradation rates and mRNA level buffering.

4.2.8 Cluster analysis reveals mRNA degradation complexes

Our data not only led to the key discovery of Xrn1p as a factor for mRNA level

buffering, but also provide a wealth of information on interactions between mRNA

degradation factors and on their general and gene-specific functions (Figures 4.27).

Cluster analysis of the mutant strains based on their DR changes (Figures 4.27), was

Figure 4.27: Cluster analysis of DR profiles of the 46 deletion strains The pairwise
Spearman correlation was used for average-linkage, Euclidean distance-based hierarchical
clustering of the mutants (rows) and 2761 genes (columns) with highest variance (> 0.01).
The color code indicates DR changes from red (increased DR) to blue (decreased DR).

translated into a two dimensional network plot (Figures 4.28), in which the distances

between nodes are given by the Spearman correlation coefficient (R¿0.5). This re-

vealed known functional relationships between factors. Mutants cluster together when
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Figure 4.28: Two-dimensional network representation of correlation analysis of
deletion strains reveals functional interactionsTwo-dimensional network representa-
tion of the correlations in (Figures 4.27) (1-Spearman correlation coefficients) used as a
distance metric. Proximity of nodes indicates strong positive correlation (Spearman correla-
tion coefficients >0.5). The black solid lines represent known physical interactions (STRING
database) and the red dashed lines represent positive correlations.
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they lack subunits of a known physical multisubunit complex, such as the Ccr4-Not

complex (Ccr4p and Pop2p Spearman correlation coefficient, R=0.67), the Lsm com-

plex (Lsm1p, Lsm6p and Lsm7p, R>0.5), the Ski complex (Ski2p, Ski3p and Ski8p,

R>0.62), the exosome (Rrp6p and Rrp47p, R=0.75), components in the TRAMP com-

plex, the zinc-knuckle orthologs Air1p and Air2p (R=0.66), the No-Go mRNA decay

complex (Hbs1p and Dom34p, R=0.67) (Becker et al., 2011), and the UPF-EJC com-

plex involved in nonsense-mediated decay (Upf2p and Upf3p, R=0.80). Factors with

similar cellular functions build up sub-clusters, such as the deadenylase subunits Pan2p

and Pan3p (R=0.78) and the decapping enchancers Dhh1p and Pat1p (R=0.70). Clus-

ter analysis also recovers known genetic interactions between factors, for example be-

tween Swt1p, Ecs1p, and Tex1p (R >0.60) (Skružný et al., 2009) (Figures 4.27). Thus

the cluster analysis reliably reveals known interactions between degradation factors in

functional complexes, and can be used to detect novel interactions.

4.2.9 General mRNA degradation machinery

We observe correlations of DR changes in strains with deletions of the Ccr4-Not com-

plex subunits, Xrn1p, Pat1p, Dhh1p, the Lsm complex (Figures 4.27, 4.28, and 4.29).

This indicates that the general mRNA degradation machinery that has been identified

biochemically is responsible for global mRNA turnover and comprises the Ccr4-Not

deadenylase complex, the Xrn1p 5’-exonuclease, and the decapping activator Pat1p,

and thus apparently the decapping complex Dcp1-Dcp2, which we could not include in

our analysis due to its essential nature. Our cluster analysis additionally indicates that

the THO transcription elongation complex and the scavenger decapping factor Dcs2p

are components of a general degradation machinery. The Ski complex subunits Ski2p,

Ski3p and Ski8p cluster, consistent with formation of a stable complex (Synowsky and

Heck, 2008; Wang et al., 2005) that cooperates with the exosome (Araki et al., 2001).

In contrast, the Ski7p subunit deletion results in a different profile (Spearmans correla-

tion < 0.15 to Ski2p, Ski3p, and Ski8p), suggesting a peripheral location and functional

differences for this subunit (Araki et al., 2001). The three Edc proteins apparently have

gene-specific functions.
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Figure 4.29: Cluster analysis provides evidence for a general mRNA degradation
machinery. The plot shows the color-coded median t-statistics of DRs of mRNAs that
show significantly decreased or increased DRs in the gene deletion strains shown on the x-
axis. The t-statistics gives the ratio of the difference in mean DR and its standard errors as
a measure for differential stabilization (decreased/increased DR). Destabilization (increased
DR) is shown in red, stabilization (decreased DR) in blue. The overall directionality of
perturbed degradation indicates a general mRNA degradation machinery.
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4.2.10 Deadenylase complexes differ in substrate preference

The cluster analysis also reveals differences between the two mRNA deadenylase com-

plexes Ccr4-Not and Pan2-Pan3. Deletion of Ccr4-Not complex subunits leads to strong

degradation defects, whereas deletion of Pan2p or Pan3p has mild effects (Figures 4.18).

In addition, the DR changes are not correlated (R<0.05 between Ccr4p and Pan2/3p),

indicating different mRNA substrate preferences of the two complexes. The mRNAs

that show a decreased DR in pan2∆ and pan3∆ strains are not strongly influenced by

deletion of Ccr4-Not complex subunits, or their DR is even higher (Figure 4.27 and

4.29). The deadenylation mechanism may be different in human, where Pan2-Pan3

initiates deadenylation (Boeck et al., 1996; Yamashita et al., 2005), whereas the bulk

of the tail is digested by the Ccr4-Not complex (Bai et al., 1999; Collart, 2003). The

analysis further showed that DR changes observed upon deletion of the Caf40p sub-

unit of the Ccr4-Not complex do not correlate with other complex subunits (R<0.07

between Caf40p and Ccr4p/Not3p), in agreement with a previous description of func-

tional modules in the Ccr4-Not complex (Cui et al., 2008). The analysis also reveals a

functional interaction of the Pan2-Pan3 complex with the Tex1p subunit of the TREX

complex (R>0.55), which is involved in mRNA export (Sträßer et al., 2002).

4.2.11 Scavenger decapping factors Dcs1p and Dcs2p are global

antagonists

For mRNA molecules that were not decapped but degraded from the 3’-end by the

exosome complex, the scavenger decapping enzyme clears up the residual 5’-portion of

the RNA (Liu et al., 2002; Muhlrad et al., 1995). Our data show that the S. cerevisiae

scavenger decapping enzyme Dcs1p and its inhibitor Dcs2p function globally, since all

DRs are changed, and that their function is globally antagonistic (Figure 4.30). In the

dcs1∆ strain, the median DR is decreased 1.7-fold, whereas it is increased 1.8-fold in

the dcs2∆ strain (Figure 4.30). This is consistent with a general role of Dcs1 in mRNA

degradation (Liu and Kiledjian, 2005), and reveals a general role of Dcs2p in inhibiting

Dcs1p that is not restricted to stress conditions (Malys and McCarthy, 2006). The

DR profiles of dcs1∆ and dcs2∆ mutant strains were slightly correlated (Figure 4.27),

consistent with the fact that Dcs2p does not contribute to the substrate specificity,

and only globally represses the enzymatic activity of Dcs1p.
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Figure 4.30: Antagonistic effect in dcs1∆ and dcs2∆. Scatter plots show global changes
in mRNA DRs (log fold, x-axis) against the global changes in SRs (log fold, y-axis). The
global changes of dcs1∆ and dcs2∆ are plotted. The coordinate of the center of each circle is
determined by the median DR and SR of the mutant. The diameters of the circles represent
the relative comparison of the fold of RNA amount over wild-type level.
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4.2.12 An interwoven mRNA surveillance network

In the nucleus, aberrant RNAs are recognized by TRAMP complexes, which add a

poly(A) tail to enable exosome-dependent degradation (Vaňáčová et al., 2005). The

subunits Air1p and Air2p are part of two distinct TRAMP complexes, and determine

the substrate specificity of the nuclear exosome (Paolo et al., 2009; Schmidt et al.,

2012). In the cytoplasm, an mRNA that causes the ribosome to stall is subjected to

No-Go decay (Shoemaker and Green, 2012), which involves the factors Dom34p and

Hbs1p, and mRNAs that contain a nonsense codon are subjected to nonsense-mediated

decay (NMD), which involves the factors Upf2p and Upf3p.

Aberrant nascent RNAs with an incomplete cap structure are degraded by the 5’-

exonuclease Rat1 and its cofactor Rai1 (Schmid and Jensen, 2010). Rai1p and its asso-

ciated factor Rtt103p cluster with Air1p, Air2p, Esc1p, Tex1p, and Bud13p (R>0.5).

This cluster involves the TRAMP-dependent perinuclear mRNP surveillance system

(Skružný et al., 2009), the mRNA export complex (Sträßer et al., 2002), and factors

involved in pre-mRNA splicing and retention.

Our cluster analysis suggests a functional interaction between Air1-Air2 and Dom34-

Hbs1 (R>0.65) and Upf2-Upf3 (R>0.46), but factors involved in No-Go decay and

NMD do not correlate. Air1-Air2 and Hbs1-Dom34 cluster with Tpa1p, a putative

translation termination factor (Keeling et al., 2006), indicating Tpa1p as a transla-

tion termination factor for No-Go decay. The Tpa1p DR profile resembles those of

the poly(A)-binding protein Pub1p (R=0.49) and the inhibitor of translation initiation

Scd6p (R=0.51) (Rajyaguru et al., 2012; Ruiz-Echevarŕıa and Peltz, 2000). Surpris-

ingly, the mRNA-binding factor Cth1p, which plays an important role in iron response

(Sanvisens et al., 2011), also show high correlation to Dom34p, Hbs1p and Swt1p

(R>0.65), suggesting a role in mRNA surveillance. Upf2p and Upf3p cluster with

Pub1p, which is involved in NMD (Ruiz-Echevarŕıa and Peltz, 2000), and with Puf6p,

one of six Puf proteins in yeast, Puf1-Puf6, which have distinct functions (Gerber et al.,

2004; Goldstrohm et al., 2007; Miller and Olivas, 2011) and show differences in mRNA

substrate preference. These findings suggest a redundant mRNA surveillance system

with interconnected activities.
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Chapter 5

Discussion

5.1 cDTA reveals mutual feedback loop of tran-

scription and degradation of mRNA

A systemic investigation of gene expression requires quantitative monitoring of cel-

lular mRNA metabolism. In particular, a technique is required to quantify absolute

mRNA synthesis and decay rates on a genome scale upon genetic perturbation. Here

we provide such a technique that we refer to as comparative Dynamic Transcriptome

Analysis (cDTA). cDTA is based on non-perturbing metabolic RNA labeling in mu-

tant and wild type budding yeast cells, and the use of fission yeast cells as an internal

standard. cDTA is a non-perturbing method for monitoring mRNA turnover and su-

persedes conventional methods, which require transcription inhibition, resulting in a

stress response and perturbation of mRNA metabolism.

cDTA improves our previous DTA protocol (Miller et al., 2011) in several respects.

First, cDTA provides reliable estimates of the absolute synthesis and decay rates,

thereby allowing for a direct comparison of rates between different yeast strains. Sec-

ond, cDTA uses 4tU instead of 4sU for RNA labeling, allowing for standard media

and abolishing the need for a nucleoside transporter. Third, cDTA requires only two

instead of three microarray measurements per rate estimation. As an immediate re-

sult, cDTA revealed that S. pombe and S. cerevisiae cells have similar synthesis rates,

but Sp RNAs have about five-fold longer mRNA half-lives, leading to similar cellular

mRNA concentrations despite a different cell volume.

Application of cDTA to Sc cells expressing a Pol II point mutant that elongates mRNA
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slowly in vitro showed that mRNA elongation is a critical determinant for mRNA syn-

thesis in growing cells in vivo. It also revealed that cells compensate for low synthesis

rates by lowering decay rates, thus stabilizing mRNAs and buffering their levels. Appli-

cation of cDTA to two mutant strains that lack either one of the two catalytic subunits

of the mRNA deadenylase complex Ccr4-Not showed not only the expected defect in

mRNA degradation but also a compensatory decrease in mRNA synthesis, also leading

to a buffering of mRNA levels. This indicated the existence of a feedback loop that

connects mRNA synthesis and degradation, and serves to buffer mRNA levels. These

results support published evidence for a global control of mRNA levels in dependence

of cell size (Zhurinsky et al., 2010). This global control of mRNA levels occurs despite

the separation of mRNA synthesis and degradation into nuclear and cytoplasmic com-

partments.

The mechanisms underlying the synthesis-decay feedback loop and the buffering of

mRNA levels are unclear. The feedback loop may be a result of a physical and func-

tional coupling between the various parts of mRNA metabolism. Transcription is

coupled to mRNA processing and export (Maniatis and Reed, 2002), and translation is

coupled to mRNA degradation (Brengues et al., 2005; Coller and Parker, 2004, 2005; Hu

et al., 2009). There is also evidence that nuclear and cytoplasmic mRNA metabolism

are linked. The Pol II subcomplex Rpb4/7p shuttles between the nucleus and cyto-

plasm (Selitrennik et al., 2006), and is involved in transcription (Edwards et al., 1991)

and mRNA translation and degradation (Harel-Sharvit et al., 2010; Lotan et al., 2005,

2007). The Ccr4-Not complex is involved in mRNA degradation (Tucker et al., 2002),

but also in transcription (Collart, 2003; Collart and Timmers, 2004; Kruk et al., 2011;

Liu et al., 1998). From an extension of our kinetic model of mRNA turnover, we

propose that the feedback loop is established by a factor that acts as degradation en-

hancer and a transcription inhibitor. It is thus unlikely that factors that act positively

on transcription, such as Rpb4/7p and the Ccr4-Not complex, are the feedback factors,

although the validity of our model’s assumptions remains to be shown. This question

was addressed in my subsequent work.
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5.2 Global analysis of mRNA degradation indicates

Xrn1p as a buffering factor

We present a global analysis of changes in cellular mRNA synthesis and degradation

rates upon deletion of 46 factors involved in eukaryotic mRNA turnover. The signif-

icance of the obtained data set is twofold. First, it demonstrates the generality of

mRNA level buffering in a eukaryotic cell and implicates the exonuclease Xrn1p and

the transcription repressor Nrg1p in the buffering mechanism. Second, it is a resource

providing a wealth of information on the global and gene-specific function of factors

involved in mRNA degradation and related processes, and the functional interactions

between these factors.

This study shows that Xrn1-dependent mRNA level buffering is contributing to the

robustness of genome expression, and elucidates the mechanisms underlying this phe-

nomenon. Our results suggest a simple model that may explain mRNA level buffering

(Figure 5.1). A simple feedback loop may link the level of XRN1 mRNA with its

Figure 5.1: Model for the cellular mechanism of mRNA level buffering. The mRNA
levels are controlled by feedback regulation of XRN1 mRNA levels. Xrn1p protein level is
maintained by translation and degradation of XRN1 mRNA. The global SR is controlled by
Xrn1p-dependent transcription repressor induction.
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product, the Xrn1p exonuclease protein. When XRN1 mRNA levels rise, Xrn1p level

rises, leading to a subsequent decrease of its mRNA levels. When XRN1 mRNA levels

fall, Xrn1p protein levels fall, leading to mRNA stabilization and thus an increase of

the mRNA level. Since Xrn1p acts globally on all mRNA, this simple feedback loop

can control all mRNA levels.

The model explains mRNA level buffering upon perturbation. When mRNA synthesis

is impaired, XRN1 mRNA and protein levels decrease, leading to slower global mRNA

degradation. When mRNA degradation is impaired, transcription repressors such as

Nrg1p are induced, leading to a time-delayed down-regulation of mRNA synthesis.

Transcription repression involves a nuclear function of Xrn1p, since XRN1 deletion

or nuclear depletion lead to induction of Nrg1p, but not to complete mRNA level

buffering. It is likely that the C-terminal region of Xrn1p outside the catalytic domain

(Chang et al., 2011) is responsible for this function because its overexpression inhibits

cell growth (Page et al., 1998).

The model apparently requires that Xrn1p levels control decapping, because otherwise

non-functional decapped messages would accumulate during mRNA level buffering.

Such Xrn1p-dependent decapping is consistent with genetic and physical interactions

of Xrn1p with the Dcp1/2p complex and the decapping activators Lsm1-7p and Pat1p

(Bouveret et al., 2000; Braun et al., 2012; Hatfield et al., 1996; Nissan et al., 2010),

with co-localization of these proteins (Parker and Sheth, 2007), and with the recent

demonstration that Xrn1p interacts with decapping activators (Braun et al., 2012).

Xrn1p may thus act as a universal sensor of cellular mRNA levels and controls home-

ostatic mRNA level maintenance.

In addition to these insights, interactions between factors involved in mRNA metabolism

were detected by cluster analysis of our data. This defined a general mRNA degrada-

tion machinery that acts globally and apparently includes the Ccr4-Not complex, the

Dcp2p decapping machinery, Xrn1p, and the exosome, consistent with a large body of

published results (Harigaya and Parker, 2012). Cluster analysis also confirmed many

known interactions between degradation factors in functional complexes, and revealed

new functional interactions between factors. Selected new findings include mRNA sub-

strate preferences for the deadenylase complexes Ccr4-Not and Pan2-Pan3, and their

putative interaction with the two decapping scavenger proteins that act antagonisti-

cally. Further, the data indicate an involvement of Esc1p, Puf1p, Cth1p and Swt1p

in nuclear mRNA surveillance, of Cth1p and Swt1p in mRNA No-Go decay, and of
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Tpa1p, Pub1p and Puf6p in NMD.

5.3 Outlook

This study provided a method to investigate the global changes of mRNA synthesis

and degradation rate. cDTA takes advantage of the Affymetrix Yeast array, which

contains probes from two distinct yeast species, S. cerevisiae and S. pombe. Using this

method, we provided a profound resource of genome wide analysis of mRNA degrada-

tion pathway in yeast S. cerevisiae. We not only confirmed the known interaction of

the factors, e.g. the polyadenylation factors and decapping factors, but also provided

new insights into this complex pathway. A novel discovery of the global analysis of

mRNA degradation pathway is that it revealed factors that are responsible for mRNA

level buffering.

However, the majority of this dataset was obtained from the yeast knock out library and

thus only the non-essential genes were studied. Exosome, decapping enzymes, which

are essential and important were not studied during my work. The essential genes can

only be investigated by proper conditional depletion method. We used anchor away

strains to observe the nuclear function of Xrn1p. But this method can only be applied

to the essential proteins which function in the nucleus. We used the temperature sensi-

tive strain rpb1-1 in the first part of the study to investigate the buffering effect when

mRNA synthesis is impaired. However, as we have shown, the profile of temperature

sensitive strain is dominated by heat shock. Non invasive conditional system exist, e.g.

the auxin inducible degron system. A peptide of the auxin response protein is cloned

to the target protein and plant ubiquitin E3 ligase Tir1p is overexpressed in the cell.

Upon addition of auxin hormone, target protein is degraded by protease. This system

does not affect the host metabolism. But preliminary trials show that this method

cannot deplete protein effectively and mutations of Tir1p can easily accumulated and

thus disrupt the system.

Second, we have shown the Xrn1p along with Nrg1p buffers the mRNA level, but

detailed mechanism is unknown. Overexpression of Nrg1p show repression of growth

rate. cDTA analysis of deletion and overexpression of Nrg1p could give further insight

into the global function of Nrg1p.

Third, the global analysis of mRNA degradation pathway uncovers multiple interac-
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tions that were unknown. Cth1p profile shows its possible function in mRNA surveil-

lance pathway but little is known about this protein. Interaction experiments can be

carried out to find the binding partners of Cth1p, RIP-ChIP or PAR-CLIP can iden-

tify its binding motif. Deep sequencing of the mRNAs in the Cth1∆ strain could show

whether loss of Cth1p will cause defect of mRNAs.

We can now only apply cDTA to S. cerevisiae or S. pombe strains, because this method

is limited to Affymetrix Yeast 2.0 arrays, which contains the probes from these two

species. An expansion of this method to other species and using deep sequencing is

possible, when the major issue is solved. In this study, we use S. pombe as a pool of

spike-ins. It could be substituted by using a set of mRNAs. As Lin and co-workers

did in the recent published work (Lin et al., 2012), they counted the cells and added

spike-ins to certain amount of cells. Later they could define the global shift of the

transcriptome with the help of the amount of spike-ins. Here, if we want to monitor

the dynamic changes in transcriptome, we label the cell, and pull down the newly

synthesized transcripts. So the spike-ins we will use must contain unlabeled RNAs

and labeled RNAs with certain ratio. These could be generated in vitro using in vitro

transcription with modified UTP, but the production of spike-ins need to be optimized.
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Abbreviations

Table 5.1: Abbreviations

Abbreviation

cDTA comparative dynamic transcriptom analysis
DTA dynamic transcriptom analysis
NMD non sense mediated decay
ORF open reading frame
PCR polymerase chain reaction
rpm rotation per minute

UTR untranslated region
v/v volume per volume
w/v weight per volume

100



Curriculum Vitae

Mai Sun Born on 7th, April, 1983

In Beijing, Peoples Republic of China

Research Experiences

2009 PhD thesis in Prof. Dr. Patrick Cramer lab, Gene Center, Ludwig-Maximiliams-

Universität München

2008 Research internship in Prof. Dr. Paul Knochel lab, Organic Chemistry, Ludwig-

Maximiliams-Universität München

2008 Research internship in Prof. DI Dr. Ernst Wagner lab, Pharmaceutical Biotech-

nology, Center for System-based Drug Research, Ludwig-Maximiliams-Universität

München

2007 Research internship and master thesis in Prof. Dr. Patrick Cramer lab

2004 Research internship and bachelor thesis in Prof. Wanru Sun lab, state key labo-

ratory of microbial resources, the institute of microbiology, Chinese academy of

science

101



Education

2009 PhD in Biochemistry, Ludwig-Maximiliams-Universität München, Germany

2007 MSc in Chemistry and Biochemistry with 1.5 (German system2), Ludwig-Maximiliams-

Universität München, Germany

2001 BSc in Biotechnique, Beijing Normal University, P. R. China

Awards and scholarship
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(CTD) Mai Sun, Laurent Lariviére, Stefan Dengl, Andreas Mayer, Patrick Cramer,

J Biol Chem, 2010. 285:41597-41603.

2009 Structure and in Vivo Requirement of the Yeast Spt6 SH2 Domain Ste-

fan Dengl, Andreas Mayer, Mai Sun, Patrick Cramer, J Mol Biol, 2009. 389:211-

225.

2009 LiCl-mediated preparation of functionalized benzylic indium(III) halides

and highly chemoselective palladium-catalyzed cross-coupling in a pro-

tic cosolvent Yi-Hung Chen, Mai Sun, Paul Knochel, Angew Chem Int Ed Engl,

2009. 48:2236-2239.

104


	Declaration
	Acknowledgements
	Abstract
	Publications
	Contents
	Introduction

	1 Introduction
	1.1 The complexity of mRNA metabolism
	1.2 mRNA degradation is an important platform for gene regulation
	1.2.1 The mRNA degradation pathways
	1.2.2 Deadenylation
	1.2.3 Decapping
	1.2.4 Bulk degradation by exonuclease Xrn1p
	1.2.5 Bulk degradation by the exosome complex
	1.2.6 mRNA degradation as surveillance

	1.3 Methods of investigating mRNA degradation
	1.3.1 Dissecting the degradation events
	1.3.2 Monitoring mRNA metabolism using genome wide gene expression methods
	1.3.3 Dynamic transcriptome analysis (DTA)

	1.4 Aims and scope of this work
	Materials


	2 Materials
	2.1 List of Strains
	2.2 List of Plasmids
	2.3 List of important primers
	2.4 Growth media
	2.5 Buffers and Solutions
	Methods


	3 Methods
	3.1 Common Methods
	3.1.1 Molecular cloning using Escherichia coli
	3.1.2 Cryo-stocks of yeast strains
	3.1.3 Generation of knock-out strains
	3.1.4 Colony PCR
	3.1.5 Generation of point mutants
	3.1.6 Molecular cloning of tagged protein

	3.2 comparative Dynamic Transcriptomic Analysis (cDTA)
	3.2.1 Metabolic labeling of the cells
	3.2.2 Microarray procedure
	3.2.3 Brief about data analysis

	3.3 Other biochemical methods
	3.3.1 Flow cytometry analysis
	3.3.2 in vitro transcription assay
	3.3.3 RT-qPCR


	4 Results
	4.1 cDTA analysis reveals a mutual feedback loop between mRNA transcription and degradation
	4.1.1 Establishment of cDTA based on DTA
	4.1.2 Rate extraction from cDTA data
	4.1.3 cDTA supersedes conventional methods
	4.1.4 Comparison of mRNA metabolism in distant yeast species
	4.1.5 Impaired mRNA synthesis is compensated by decreased degradation
	4.1.6 Impaired degradation is compensated by decreased synthesis
	4.1.7 A transcription inhibitor and degradation enhancer may buffer mRNA levels

	4.2 Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels
	4.2.1 Global analysis of mRNA degradation
	4.2.2 Generality of mRNA level buffering
	4.2.3 mRNA level buffering requires Xrn1p activity
	4.2.4 Xrn1p represses mRNA synthesis indirectly
	4.2.5 Induction of transcription repressor Nrg1p
	4.2.6 Delayed mRNA buffering upon degradation inhibition
	4.2.7 Rapid buffering upon mRNA synthesis inhibition
	4.2.8 Cluster analysis reveals mRNA degradation complexes
	4.2.9 General mRNA degradation machinery
	4.2.10 Deadenylase complexes differ in substrate preference
	4.2.11 Scavenger decapping factors Dcs1p and Dcs2p are global antagonists
	4.2.12 An interwoven mRNA surveillance network


	5 Discussion
	5.1 cDTA reveals mutual feedback loop of transcription and degradation of mRNA
	5.2 Global analysis of mRNA degradation indicates Xrn1p as a buffering factor
	5.3 Outlook

	References
	Abbreviations
	Curriculum Vitae

