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SUMMARY 

Animal size is very variable even among individuals of the same species and is determined 

not only by genetic but also environmental factors. Nutrient availability is a crucial 

environmental factor, which determines the growth and development of tissues, organs and 

ultimately, the whole organism’s growth and metabolic homeostasis. Organisms have evolved 

mechanisms that sense changes in energy availability in order to keep the homeostasis. Two 

of the most important energy sensors are 5’ adenosine monophosphate-activated protein 

kinase (AMPK) and the protein deacetylase Sirt1. Both are active at high 5’ adenosine 

monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD+) conditions, which 

reflect low energy levels, and regulate important aspects of cell and organism metabolism. To 

achieve this intracellular energy sensors have to coordinate with hormonal stimuli that control 

these processes in multicellular organisms. In mammals, one of the most important hormones 

driving organism growth and metabolism is the growth hormone (GH). 

This work shows that both AMPK and Sirtuin 1 (Sirt1) suppress GH synthesis from pituitary 

cells. Sirt1 effect was the most prominent, therefore this study went on to investigate how the 

deacetylase crosstalks with the hormonal signalling cascade regulating GH transcription. Sirt1 

was detected in the anterior pituitary in somatotroph cells and pharmacological activation of 

Sirt1 decreased GH levels in vivo and in vitro. Sirt1 suppressed GH promoter activity from a 

plasmid, revealing that its effect was not merely mediated by histone deacetylation. GH 

transcription is stimulated by the cAMP cascade through the cAMP response element binding 

protein (CREB) dependent transcription of the pituitary transcription factor 1 (Pit1). Herein it 

is shown that Sirt1 suppresses Pit1 transcription by inhibiting CREB activity. CREB has to be 

phosphorylated and acetylated to reach the maximal activity, and Sirt1 is decreasing both 

using its deacetylase activity. A novel cascade unveils in which the Sirt1 deacetylase triggers 

CREB dephosphorylation in a pathway involving glycogen synthase kinase-3 subunit β 

(GSK3β) and subsequent protein phosphatase PP1 activation. The drop in phosphorylated 

CREB levels results in suppressed Pit1 and GH transcription.  

Altogether, this work reveals a new mechanism by which the energy sensor Sirt1 regulates 

GH transcription in somatotroph cells. Coordinated systemic response adjusts the organism 

needs to the environmental nutrient offer. The herein proposed pathway shows a model in 

which energy changes may modify hormonal levels that regulate whole body metabolism and 

adapt the organism to the current environmental demands. 



ZUSAMMENFASSUNG 

 vi 

ZUSAMMENFASSUNG 

Die Größe von Tieren ist sehr variabel, selbst unter Individuen der gleichen Spezies, und wird 

sowohl durch genetische als auch durch Umweltfaktoren bestimmt. Die Verfügbarkeit von 

Nährstoffen ist ein wichtiger Umweltfaktor, der das Wachstum und die Entwicklung von 

Geweben, Organen und letztlich des gesamten Organismus und dessen Stoffwechsel-

homöostase bestimmt. Organismen haben Mechanismen entwickelt, die Veränderungen in der 

Verfügbarkeit von Energieträgern erkennen, um die metabolische Homöostase aufrecht zu 

erhalten. Zwei der wichtigsten Energiesensoren sind die 5'Adenosinmonophosphat-aktivierte 

Proteinkinase (AMPK) und Protein-Deacetylase Sirtuin 1 (Sirt1). Diese beiden Enzyme sind 

bei hohen Konzentration von 5'Adenosinmonophosphat (AMP) und 

Nicotinamidadenindinucleotid (NAD+) besonders aktiv. Hohe NAD+- und AMP-Werte sind 

charakteristisch für einen niedrigen intrazellulären Energiestatus und sind wichtige Moleküle 

für die Regulation des Stoffwechsels von Einzelzellen und vielzelligen Organismen. In 

letzteren müssen intrazelluläre Energiesensoren mit hormonalen Stimuli koordiniert agieren, 

um diese metabolischen Prozesse zu kontrollieren. In Säugetieren ist das Wachstumshormon 

eines der wichtigsten Hormone, das Wachstum und Stoffwechsel reguliert. 

In der vorliegenden Arbeit wurde gezeigt, dass sowohl die AMPK als auch Sirt1 die GH-

Synthese in Hypophysenzellen unterdrücken. Die Wirkung von Sirt1 war dabei deutlich 

stärker, weshalb in dieser Studie erforscht wurde, wie die Deacetylase mit 

der hormonellen Signalkaskade interagiert, die die GH-Transkription  reguliert. Sirt1 wurde in 

somatotropen Zellen des Hypophysenvorderlappens nachgewiesen, und die pharmakologische 

Aktivierung von Sirt1 reduzierte die GH-Konzentration in vivo and in vitro. Sirt1 

unterdrückte die GH-Promotoraktivität in einem Reporterplasmid, woraus man schließen 

kann, dass dieser Effekt nicht alleine durch Histon-Deacetylierung vermittelt wird. Die GH-

Transkription wird durch die cAMP-Kaskade stimuliert und zwar durch die cAMP response 

element binding protein (CREB) abhängige Transkription des Pituitary Transcription Factor 

1 (Pit1). Es konnte gezeigt werden, dass Sirt1 durch Inhibition der CREB-Aktivität die 

Transkription von Pit1 unterdrückt. CREB muss phosphoryliert und acetyliert vorliegen, um 

seine maximale Aktivität zu erreichen, und Sirt1 unterdrückt diese beiden posttranslationalen 

Proteinmodifikationen durch ihre Deacetylaseaktivität. Eine neue Signalkaskade wurde 

entdeckt, über die Sirt1 die Dephosphorylierung von CREB auslöst. An diesem neuen 

Signalweg ist die Glycogen Synthase Kinase-3 Subunit β (GSK3β) und nachfolgend die 

Aktivierung der Protein Phosphatase PP1 beteiligt. Die Senkung der Konzentration an 
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phosphorylierten CREB führt zur Unterdrückung der Pit1-Transkription und damit vermutlich 

auch der GH-Transkription.  

Zusammengefasst wird in dieser Arbeit ein neuer Mechanismus gezeigt, durch den der 

Energiesensor Sirt1 die GH-Transkription in somatotropen Zellen reguliert. Koordinierte 

systemische Reaktionen passen die Bedürfnisse eines Organismus an das Nährstoffangebot 

der Umwelt an. Der hier vorgeschlagene Signalweg zeigt ein Modell, in dem Änderungen des 

Energiestatus, zur Modifikation von Konzentrationen von Hormonen führen, die den 

Stoffwechsel eines Organismus regulieren und diesen dadurch an die aktuellen 

Umweltanforderungen anpassen. 





INTRODUCTION 

 1

1 INTRODUCTION        

1.1 Growth Hormone (GH) 
GH is pivotal for the growth of the organism by promoting organ and soft tissue growth. It 

promotes bone growth in young by triggering chondrocyte division. In addition, GH increases 

the gastrointestinal absorption of calcium further contributing to bone growth, mineralization 

and strength. The importance of GH is evident in children with inborn GH deficiency that 

present with abnormally short stature (dwarfism) and delayed puberty (Reynaud et al., 2004). 

In contrast GH excess leads to gigantism in young subjects, and in adults, in whom bone 

lineal growth does not any longer take place due to the merge of epiphysis with the diaphysis, 

it leads to severe bone and soft tissue deformities (Ayuk & Sheppard, 2006). 

GH is the primary positive regulator of hepatic IGF-I secretion, which mediates most of its 

physiological effects (Bichell et al., 1992; Wurzburger et al., 1993; Clemmons & Underwood, 

1991). IGF-I induces growth on almost every organ in the body, especially in skeletal muscle, 

cartilage, bone, liver, kidney, nerves, skin, hematopoietic cells, and lung (Guler et al., 1988). 

In addition to its growth promoting action, GH is a major anabolic peptide hormone inducing 

protein synthesis. To meet the energetic needs for this process, GH triggers free fatty acids 

(FFA) synthesis by upregulating lipoprotein lipase that is an enzyme involved in lipolysis 

(Møller et al., 1990; Fryburg et al., 1992). GH induced protein synthesis and drop in protein 

catabolism, reduces the nitrogen that is present in blood and urine in the form of urea (Møller 

et al., 2009; Ganong, 1994). The net result of these actions is positive nitrogen balance, 

increased lean body mass and energy expenditure. Administration of GH in GH deficient 

adults increases their lean body mass and metabolic rate and decreases body fat (Jørgensen et 

al., 1989) and plasma cholesterol (Beshyah et al., 1995; Salomon et al., 1989). The loss of 

muscle and bone density and increase in fat tissue in the elderly is attributed to the decline of 

GH levels during aging (Gil-Ad et al., 1984; Arvat et al., 2000).  
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A downside of GH induced FFA levels is the reduction in glucose uptake (Møller et al., 

1991). In addition, GH opposes to insulin action in the liver by directly suppressing glucose 

uptake and activating hepatic gluconeogenesis and glucose release. These diabetogenic 

properties of GH were initially observed in hypophysectomized dogs which are insulin 

sensitive and hypoglycemic (Houssay, 1936). Ames and Snell dwarf mice which lack GH 

(Sornson et al., 1996), are insulin sensitive despite increased body fat mass (Hsieh et al., 

2002) and the same is true for the GH receptor knockout (GHRKO) or Laron mice (Liu et al., 

2004). In addition, patients with Laron syndrome who present with dwarfism because of a 

mutation in the GH receptor constituting them resistant to GH action, are insulin sensitive and 

do not suffer from diabetes (Guevara-Aguirre et al., 2011). In contrast, transgenic mice 

overexpressing GH are insulin resistant (Bartke, 2005). Similarly patients with acromegaly 

due to GH secreting pituitary adenoma have insulin resistance and type 2 diabetes despite the 

increased lean mass and reduced body fat mass (Giustina et al., 2003).  

The metabolic effects of GH have suggested a putative role for GH in aging. In fact Ames, 

Snell and GHRKO mice live much longer than their wild type counterparts (Coschigano et al., 

2003; Bartke, 1998; Schaible & Gower, 1961; Brown-Borg et al., 1996; Bartke, 2000; 

Coschigano et al., 2000; Zhou et al., 1997), while mice overexpressing GH or treated with GH 

have a shorter lifespan (Bartke, 1998; Groesbeck et al., 1987). Similarly acromegalic patients 

present with higher mortality (Dekkers et al., 2008; Melmed, 2009).The decreased energy 

expenditure in animals without GH and subsequent lack of reactive oxygen species can 

explain in part this observation (Brown-Borg et al., 2009). Nevertheless, the pro-aging effects 

of GH are mediated by IGF-I, which is an evolutionary conserved regulator of life span 

(Bartke & Brown-Borg 2004; Holzenberger, 2004). Mutations in the insulin/IGF-I receptor 

orthologue DAF-2 in worms and flies double their life span (Tatar et al., 2001; Kimura et al., 

1997; Kenyon et al., 1993). Similarly IGF-I receptor heterozygous knockout mice live 30 % 

longer than their wild type littermates (Holzenberger et al., 2003).  
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Summarizing, GH is important regulator of diverse physiological processes. During 

development it is pivotal for the organism growth, while in adult it ensures bone maintenance 

and muscle strength. However high GH levels are also accompanied by increased insulin 

resistance. In addition there is increasing evidence for its positive association with cancer 

either directly or indirectly through IGF-I which is a major growth factor contributing in 

tumorigenesis (Khandwala et al., 2000). These characteristics of GH are probably responsible 

for the observed negative correlation with organism lifespan.  

 

1.2 The pituitary gland 
GH is primarily produced in the pituitary gland. The pituitary gland or hypophysis is a small 

endocrine gland situated at the base of the brain in a small bony cavity (sella turcica). It 

weights approximately 0.6 g in humans. Anatomically it can be divided in the posterior 

pituitary (neurohypophysis) and the anterior pituitary (adenohypophysis). An intermediate 

lobe is found in many animals, but it is rudimentary in humans (fig. 1). 

The posterior pituitary is composed of nerve fibers extending from the hypothalamus with 

their nerve endings, and pituicytes that are modified glial cells. The posterior pituitary stores 

and releases oxytocin, which plays an important role during childbirth and breastfeeding and 

antidiuretic hormone (ADH), which facilitates the kidneys to reabsorb water regulating in that 

way blood pressure. 

The anterior pituitary is composed of endocrine cells that synthesize important hormones 

regulating a variety of physiological processes in vertebrates. These hormones can be 

classified into three groups based on structural and functional similarity: the 

proopiomelanocortin family, the glycoprotein hormone family and the GH family. 

With techniques such immunohistochemistry and electronic microscopy, it is possible to 

distinguish five different types of endocrine pituitary cells: 

- Somatotroph cells that produce GH. 
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- Lactotroph cells secreting prolactin (PRL), which controls milk production during lactation 

in mammals. 

- Thyrotroph cells secreting thyroid-stimulating hormone (TSH), which is important for the 

physiological growth and function of the thyroid gland.            

- Gonadotroph cells synthesizing follicle-stimulating hormone (FSH) and luteinizing hormone 

(LH). FSH stimulates spermatogenesis in the testes and follicular growth in the ovaries. 

- Corticotroph cells in which proopiomelanocortin (POMC) is transcribed. POMC cleavage 

products are the adrenocorticotrophic hormone (ACTH), which stimulates glucocorticoid 

production from the adrenal cortex, lipotropic hormone (β-LPH), corticotrophin-like 

immunoreactive peptide (CLIP), endorphins, encephalin, and melanocyte-stimulating 

hormone (α-MSH). α-MSH synthesized from the corticotrophs of the intermediate lobe plays 

an important role in animals that have the ability of changing color to camouflage. 

In addition to the endocrine cells, three to five percent of all the cells in the anterior pituitary 

are folliculostellate cells (Allaerts et al., 1990). These cells have thin cytoplasmatic 

projections that grow between the surrounding endocrine cells.  
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Figure 1. Pituitary gland. Showing the hypophysis location within the invagination of the sphenoid bone, the 
sella turcica .The two lobes, anterior (adenohypophysis; in blue color) and posterior (neurohypophysis in green) 
are indicated. The pars intermedia (in yellow color) is rudimentary in humans.   
   

 
1.3 Somatotroph development 
Pituitary gland development starts when oral ectoderm cells from the roof of the pharynx 

express specific transcription factors like the Rathke’s pouch homeobox (Rpx), the paired box 

gene 6 (Pax6), the pituitary homeobox (Ptx) 1 and 2, and the LIM homeobox genes (Lhx) 3 

and 4. The oral ectoderm forms a pocket (Rathke's pouch) that invaginates into the ventral 

diencephalon. This happens at embryonic day 8.5 in the mouse. The cells of the anterior wall 

of Rathke’s pouch differentiate under the influence of other transcription factors (Fig. 2) and 

proliferate to form the adenohypophysis, while the posterior wall forms the pars intermedia. 

The diencephalon turns into the pituitary stalk and the neurohypophysis. In adult pituitary, 

rudiments of the Rathke’s pouch can be found in the pars intermedia. 
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The development of the somatotroph lineage starts with the expression of transcription factor 

prophet of Pit1 (Prop-1). Subsequent expression of pituitary transcription factor 1 (Pit1) and 

estrogen receptor (ER) α completes the differentiation of the somatotroph lineage (Asa & 

Ezzat, 1999; Cohen, 2000; Fig.2). Transgenic animal models lacking Prop-1 and Pit1 

expression and humans carrying mutations in these genes suffer from hypopituitarism (Mullis, 

2007). 

 

 

Figure 2. Transcription factors involved in adenohypophysis development. At early stages, the cells are 
multipotent, but sets of transcription factors contained within the nucleus determine the final cell type.  
Lhx3 positive cells acquiring the T-box transcription factor Tpit become the ventral corticotrophs. The Tpit 
interacts with other proteins like the corticotropin upstream transcription-binding element (CUTE), NeuroD1/β2 
and pituitary homeobox factor 1 (Ptx1). Most of the pituitary cell types are derived from the cells that express 
the Prop-1 transcription factor. Those in the ventral part express the steroidogenic factor 1 (SF1) and GATA 
binding protein 2, which induces the differentiation to gonadotrophs. The dorsal cells of the Prop-1 lineage 
synthesize the Pit1 transcription factor and generate the somatotrophs, lactotrophs and thyrotrophs. Pit1 and 
thyrotroph embryonic factor (TEF) positive cells differentiate to thyrotroph while ERα positive cells 
differentiate to mammosomatotroph. Mammosomatotroph cells produce GH and PRL and can differentiate to 
somatotroph or lactotroph cells in a reversible process (adapted from Scully & Rosenfeld, 2002; Cohen, 2000; 
Asa et al., 1999). 
 

1.4 Regulation of GH synthesis  
In humans, genetic information for the synthesis of GH is localized on the long arm of 

chromosome 17, region q22-q24 (George et al., 1981). There are five genes encoding five 

different forms of GH. The most abundant form (more than 75% of the GH in circulation) is 
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the hGH-N synthesized by specialized pituitary cells; the rest are expressed principally in the 

placenta, they are hGH-V (variable) and hCS (chorionic somatomammotropin) types A, B and 

L (Seeburg, 1982). hGH-N, thereafter termed hGH, is a single chain peptide hormone of 191-

amino acids. 

GH expression is controlled by a pituitary-specific promoter that contains 2 binding sites for 

Pit1 (Nelson et al., 1988; Bodner et al., 1988; Ingraham et al., 1988; McCormick et al., 1990; 

Gaiddon et al., 1996; Cohen et al., 1999). Both sites are essential for GH promoter activity 

(Cohen et al., 1999). The dependence of GH transcription on Pit1 is evident by the fact that 

mice and humans carrying Pit1 mutations present with GH deficiency and dwarfism (Li et al., 

1990; Radovick et al., 1992; Quentien et al., 2006). 

The hGH promoter contains two additional core cAMP-response elements (CREs), one distal 

(located at –187/–183) and one proximal (located at –99/–95; Cohen et al., 1999), which 

consist of CGTCA motifs of the palindromic consensus sequence TGAC-GTCA. In contrast 

the rat GH promoter lacks CRE, responds to the cAMP/PKA signal through cAMP response 

element binding protein (CREB)-induced Pit1 (Tansey et al., 1993; Cohen et al., 1999). In 

addition rGH promoter has thyroid hormone responsive elements (TRE) and responds 

positively to thyroid hormone (T3, 3,5,3’-L-triiodothyronine; Brent et al., 1988). 

GH is positively and negatively regulated by factors originating from the hypothalamus and 

the periphery. The most important peptides involved in GH synthesis regulation (Giustina & 

Veldhuis, 1998) are listed in the following subitems. 

1.4.1 GHRH 

The main peptide regulating pituitary GH synthesis is the growth hormone-releasing hormone 

(GHRH). GHRH is found in the arcuate nucleus of the hypothalamus, in the anterior 

hypothalamic region and in the dorsomedial and ventromedial nuclei and is released from the 

nerve terminals and through the hypothalamo-hypophyseal portal system to the pituitary 
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(Bloch et al., 1983). GHRH is secreted in a pulsatile rhythm that reflects GH pulsatility 

(Cataldi et al., 1994).  

GHRH mediates its effects by binding to the GHRH receptor (GHRHR) which belongs to the 

seven transmembrane domain G-protein coupled receptor superfamily. The intracellular part 

of the receptor associates with the stimulatory G-protein (Gs), which is composed of alpha 

(α), beta (β), and gamma (γ) subunits. Ligand binding induces a conformational change in the 

receptor, allowing the phosphorylation of guanine di-phosphate (GDP) to guanine tri-

phosphate (GTP) on the Gα subunit. That induces the dissociation of the Gα subunit from the 

Gβγ dimer and the receptor. Both Gsα-GTP and Gβγ can then activate different signaling 

cascades, while the receptor is free to activate the next Gs protein. Gsα subunit stimulates the 

membrane-bound adenylyl cyclase which converts adenosine-5'-triphosphate (ATP) to 3’, 

5’cyclic adenosine monophosphate (cAMP). cAMP binds to the regulatory subunits of protein 

kinase A (PKA), which becomes active allowing the free catalytic subunits to translocate into 

the nucleus. There they phosphorylate and activate the transcription factor CREB. In addition 

they phosphorylate and activate the transcriptional coactivator CREB binding protein (CBP). 

Activated CBP is recruited to the GH promoter through Pit1 homodimers (Cohen et al., 1999). 

CREB binds to the two CRE elements in the human GH promoter, which are located in close 

proximity to the distal Pit1 binding site at –123/–112. All these three sites are required for 

cAMP response (Cohen et al., 1999; Fig. 3). In the case of the rGH promoter which lacks 

CRE sites, GHRH-induced cAMP/PKA stimulates GH synthesis through CREB-induced Pit1 

(Bodner et al., 1988; Ingraham et al., 1988; McCormick et al., 1990; Gaiddon et al., 1996). 
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Figure 3. Basic scheme of regulation of hGH synthesis by GHRH in somatotroph cells. In brief, GHRH bound 
to its G protein coupled receptors triggers Gs and activates adenylate cyclase leading to rise in cAMP, which 
binds to the regulatory PKA subunit. The released catalytic subunit translocates to the nucleus were it 
phosphorylates CREB and CBP. Activated CBP is recruited to the hGH promoter by CREB and Pit1 bound to 
their respective DNA binding elements. 

1.4.2 Somatostatin (SST) 

SST or growth hormone-inhibiting hormone is a peptide hormone, which is synthesized in the 

hypothalamus by the neuroendocrine cells of the paraventricular nucleus (Reichlin, 1983). 

Additionally SST is synthesized in the delta cells of the pancreatic islets and in the gastric 

mucosa and small intestine (Goldsmith et al., 1975). There are two biologically active forms 

of SST, products of different cleavage of the same precursor protein; one is composed of 14 

amino acids (SS-14) and the other of 28 amino acids (SS-28; Patel, 1999). SST acts through 
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five receptors that belong to the G-protein coupled receptor superfamily (SSTR1-5), four of 

which are present in the anterior pituitary (Viollet et al., 1995). SST inhibits GHRH-induced 

pituitary GH secretion (Tannenbaum et al., 1989). 

1.4.3 Insulin-like growth factor I (IGF-I) 

GH is under the negative feedback regulation from IGF-I directly at pituitary level and 

indirectly by the reduced GHRH release from the hypothalamus (Berelowitz et al., 1981). In 

addition IGF-I increases hypothalamic SST synthesis, which in turn suppresses pituitary GH 

secretion (Berelowitz et al., 1981; Bermann et al., 1994). IGF-I is a 70 amino acids protein 

similar in structure to insulin, which is produced primarily by the liver as an endocrine 

response to GH secretion (Daughaday & Rotwein, 1989). IGF-I mediates its effect by binding 

to the IGF-I receptor (IGF-IR; Jones & Clemmons, 1995). 

1.4.4 Other regulators: 

In addition to these main regulators, GH synthesis is also fine-tuned by other peptides, such 

as: 

Ghrelin 

Ghrelin is a 28 amino-acids peptide that was identified as the elusive ligand for the GH 

secretagogue receptor (GHS-R). GHS-R is a G-protein coupled receptor present in the 

pituitary gland and hypothalamus that was shown to mediate the potent GH rising action of 

synthetic GH secretagogues (Howard et al., 1996). Ghrelin is synthesized principally in 

specialized cells present in the fundus of the stomach, the epsilon cells of the pancreas and in 

the arcuate nucleus of the hypothalamus (Kojima et al., 1999). It is present in two forms, the 

unmodified des-octanoylated peptide and the octanoyl-ghrelin. Octanoyl-ghrelin is 

responsible for the GH secreting and the orexigenic effects of this hormone and induces 

adiposity (Kojima et al., 1999; Tschöp et al., 2000; Nakazato et al., 2001). The des-

octanoylated peptide is also able to bind to several tissues and may have important role in the 
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cardiovascular system (Baldanzi et al., 2002) and adipogenesis (Thompson et al., 2004). 

Exogenous ghrelin administration strongly stimulates pituitary GH release through GHS-R 

present in the GHRH secreting neurons of the arcuate nucleus and pituitary gland (Takaya et 

al., 2000; Lucidi et al., 2005). However, the role of endogenous ghrelin on GH secretion is not 

well established and conflicting data exist about the role of physiological ghrelin on GH 

synthesis (Kamegai et al., 2004; Hataya et al., 2001). 

Galanin  

This 30 amino acids neuropeptide is strongly expressed in the median eminence in the 

hypothalamus, but is distributed widely in the mammalian brain, spinal cord and gut 

(Tatemoto et al., 1983; Skofitsch & Jacobowitz, 1985). Galanin was shown to enhance GH 

response to GHRH (Davis et al., 1987) possibly through an interaction with GHRH (Niimi et 

al., 1990). 

Pituitary adenylase cyclase-activating peptide (PACAP) 

This 38 amino acids peptide is present in the entire central nervous system but the highest 

concentrations are found in hypothalamus. Plasma extracted from the hypophyseal portal 

vessels of the pituitary stalk in rats, have revealed PACAP concentrations at much higher 

levels than in the plasma of the periphery (Arimura et al., 1991; Tamada et al., 1994), 

indicating a role of PACAP in the pituitary gland. PACAP treatment increases cAMP in rat 

pituitary cells and stimulates GH release (Miyata et al., 1989) independently of GHRH 

(Pisegna & Wank, 1993). However, PACAP’s role in human pituitary physiology is still not 

clear. 

Opioid peptides 

GH secretion in humans was shown to be triggered by opioid peptides under stress conditions 

(e.g. extenuate exercise; Moretti et al., 1983). 
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Substance P 

This 11 amino acid peptide is abundant in the central nervous system and has been related to 

the transmission of pain, anxiety, stress and mood disorders (De Felipe et al., 1998; Harrison 

& Geppetti, 2001). Substance P was found to increase both basal and GHRH stimulated GH 

levels (Coiro et al., 1992). 

Melatonin 

This hormone is secreted by the pineal gland and it has functions related to the circadian 

rhythm (Cassone et al., 1993). Oral melatonin administration increased GH levels (Valcavi et 

al., 1987), indicating that it may be regulated by endogenous melatonin. However, this was 

not confirmed in other studies (Wright et al., 1986) and no correlation was found between 

nocturnal melatonin and GH levels in men (Vaughan et al., 1978).  

Thyrotropin-releasing hormone (TRH) 

TRH is mainly synthesized in the paraventricular nucleus of the hypothalamus (Taylor et al., 

1990) and stimulates the anterior pituitary gland to produce TSH and PRL. In rats TRH is 

potent GH secretagogue, but in humans it induces GH only in subjects suffering from 

acromegaly, diabetes, renal or hepatic failure, but not in healthy individuals (Czernichow et 

al., 1976; Scanlon et al., 1983; Valentini et al., 1989; Giustina et al., 1995).  

Calcitonin 

This 32 amino acids peptide, which is secreted by the C-cells of the thyroid gland, strongly 

regulates Ca2+ metabolism by decreasing renal clearance of calcium and phosphate and 

inhibiting osteoclastic (bone reabsorption) activity. Calcitonin decreases pituitary GH 

secretion (Cantalamessa et al., 1978), by modificating intra/extra cellular Ca2+ levels in 

pituitary cells (Borle, 1975; Thorner et al., 1988). 
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NPY 

NPY is a peptide neurotransmitter produced mainly in the paraventricular nucleus of the 

hypothalamus that induces food intake and energy storage by the adipose tissue. It inhibits 

GH secretion directly acting at pituitary somatotroph level in humans (Adams et al., 1987) or 

indirectly by inducing hypothalamic SST release in rats (Rettori et al., 1990). 

1.4.5 Energy availability & GH synthesis 

In addition to its hormonal regulation, GH as major metabolic hormone is also expected to be 

regulated by energy availability. Caloric restriction was found to suppress GH transcription 

and secretion in rats (Armario et al., 1987; Oster et al., 1995; Sonntag et al., 1995; Han et al., 

1998; Lopez-Varela et al., 2004; Chen, 2004), while in old rats it changes GH pulsatility 

similar to that seen in young animals (Sonntag et al., 1995). Furthermore plasma IGF-I is 

reduced in caloric restricted rodents (Breese et al., 1991).  

In humans, there is not clear consensus on the effects of dietary restriction on the GH/IGF-I 

axis. Fasting in obese subjects was shown to facilitate GH response to GHRH (Kelijman & 

Frohman, 1988). Patients with anorexia nervosa, which are characterized by severe chronic 

caloric restriction, presented with increased GH but decreased IGF-I levels (Argente et al., 

1997; Scacchi et al., 2003). Long term dietary restriction in nonobese subjects did not change 

their GH levels (Redman et al., 2010), while IGF-I levels were suppressed only when protein 

intake was reduced (Fontana et al., 2008).   

 

1.5 Intra-cellular energy sensors 
All living organisms need energy to carry out vital metabolic process, therefore the ability of 

the cells to sense their internal energy state is of fundamental importance. Specialized 

intracellular proteins detect changes in the concentration of molecules that are used as 

chemical energy transporters. ATP is the main molecule involved in energy transfer, and 

therefore its intracellular concentration is an accurate measure of the energy state of the cell. 
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In eukaryotic cells, ATP is mostly synthesized in the mitochondrion by oxidative 

phosphorylation via the electron transport chain where the oxidation of one NADH molecule 

results in the synthesis of three ATP molecules (Fig. 4).  

The two most important proteins that sense changes in intracellular ATP levels are the 5’ 

adenosine monophosphate-activated protein kinase (AMPK) and the sirtuin 1 (Sirt1). 

 

 

 

Figure 4. NAD+/NADH in energy metabolism taking place in mitochondria. Catabolism of glucose and fatty 
acids reduces NAD+ to NADH. Once NADH is incorporated to the respiratory chain, each molecule produces 
three H+, which at the end and through the ATPase (in green), result in the synthesis of three ATP molecules. 
 

1.5.1 AMPK 

AMPK is activated by low ATP and high AMP, i.e. low energy levels, to switch off systems 

which require energy (e.g. protein synthesis) and switch on systems that generate it (e.g. fatty 

acid oxidation; Carling, 2004; Hardie, 2007). AMPK is a complex serine/threonine kinase, 

composed by three different protein subunits: the catalytic subunit α and the regulatory 

subunits β and γ. The catalytic α subunit is activated when phosphorylated at threonine 172 by 

several kinases, including serine/threonine kinase 11 (STK11) or LKB1, transforming growth 

factor-β-activated kinase (TAK1), Ca++/calmodulin-dependent protein kinase kinase β 

(CaMKKβ) and, to a lesser extent, CaMKKα (Carling, 2004; Hawley et al., 2005). The β 

subunit unites and stabilizes the AMPK complex. When the β subunit is eliminated (e.g. by 

ubiquitination and subsequently degradation) AMPK levels decrease (Qi et al., 2008). The γ 
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subunit gives the enzyme the ability to sense the AMP:ATP ratio (Scott et al., 2004). High 

AMP concentration, indicative of low energy availability, cause allosteric modifications that 

protect the catalytic α subunit from serine/threonine protein phosphatases (e.g. PP2Cα), 

which would otherwise suppress Thr172 phosphorylation and inactivate AMPK (Sanders et al., 

2007). Similarly, AMP analogs, such as 5-aminoimidazole-4-carboxamide-1 beta-riboside 

(AICAR) are potent AMPK activators. 

AMPK controls whole-body energy homeostasis, modulating multiple metabolic pathways in 

the brain and the periphery. AMPK expressed in hypothalamic neurons plays a fundamental 

role controlling food intake and regulating body weight. Low body energy state activates 

hypothalamic AMPK and triggers feeding, whereas food excess inhibits AMPK leading to 

suppressed appetite (Minokoshi et al., 2004). In liver, AMPK downregulates fatty acid and 

cholesterol synthesis, by inhibiting acetyl-CoA carboxylase (ACC) activity and fatty acid 

synthase (FAS) expression and inactivating hydroxymethyl-3-glutaryl-CoA (HMG-CoA) 

reductase. In addition liver and muscle AMPK increases fatty acid oxidation by activating 

mitochondrial fatty acid β oxidation (Kahn et al., 2005).   

AMPK also has strong effects on glucose regulation. In fast-twitch muscles, AMPK activation 

increases cellular glucose uptake, by triggering glucose transporter 4 (GLUT4) expression and 

its translocation to the cell membrane, and glycolysis by stimulating hexokinase II expression 

(Holmes et al., 1999). In addition, AMPK suppresses muscle glycogen synthesis (Carling & 

Hardie, 1989) and hepatic gluconeogenesis (Lochhead et al., 2000). In fact, AMPK induces 

muscle mitochondrial biogenesis in response to diet induced chronic energy deprivation, 

helping the cell to maximize energy utilization under restrictive conditions (Zong et al., 

2002). Interestingly, the widely used antidiabetic drug metformin was found to act, at least in 

part, by activating AMPK (Shaw et al., 2005). 
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1.5.2 SIRT1 

Sirtuin 1 (Sirt1) activity is regulated by the relative concentration of oxidized and reduced 

forms of nicotinamide adenine dinucleotide (NAD+/NADH), which is involved in the redox 

reactions leading to ATP production (Fig. 4; Lin et al., 2004). In high energy intake, NAD+ is 

reduced to NADH in pathways including glycolysis, Krebs cycle, and FFA oxidative 

phosphorylation. This leads to high NADH and low NAD+ levels and consequently Sir2/Sirt1 

inactivation. In contrast, when energy levels are low the organism consumes less NAD+, 

increasing its availability to Sir2/Sirt1.  

Sirt1 is a protein highly conserved from bacteria to humans (Brachmann et al., 1995). Its 

homolog is the silent information regulator 2 (Sir2) which was discovered in Saccharomyces 

cerevisiae (Shore et al., 1984; Ivy et al., 1985; Rine & Herskowitz, 1987). Sir2 was identified 

because of a spontaneous mutation, which by relieving silencing at the mating-type loci HMR 

and HML resulted in a sterile S. cerevisiae. Sir2 was also found to silence genes near the 

telomeres and to be involved in cell cycle progress, genomic integrity and aging (Guarente, 

1999). The Sir2 enzymatic activity was initially characterized as NAD+ dependent mono-

ADP-ribosyl transferase (Fig. 5A; Tsang et al., 1998). However, it was soon understood that 

its main action is as NAD+ dependent protein deacetylase  (Fig. 5B; Imai et al., 2000; Landry 

et al., 2000; Smith et al., 2000; Blander & Guarente, 2004; Imai & Guarente, 2010). 
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Figure 5. Generic chemical reactions of sirtuins, A. working as ADP-ribosyl-transferase and B. as protein 
deacetylase. It is evident that NAD+ is essential for the catalytic activity of the enzyme since it is substrate of the 
reaction. Nicotinamide is a product of the reaction, being at the same time a powerful inhibitor of the sirtuins 
sending a negative feedback to the enzyme.  
 

1.5.2.1 Protein acetylation & deacetylation 

The role of protein acetylation and deacetylation in regulating protein function is most widely 

studied in the case of histones. Histones are proteins found in eukaryotic cell nuclei, which 

package and order the DNA into structural units called nucleosomes and play a role in gene 

regulation. They are grouped into five major classes: H1/H5, H2A, H2B, H3, and H4 

(Eickbush & Moudrianakis, 1978). Histones are acetylated by histone acetyltranferases 

(HAT), such as CBP/p300 (Chan & La Thangue, 2001) and deacetylated by histone 

deacetylases (HDAC). There are three different classes of HDAC, class I and II use Zn2+ as 
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cofactor and are inhibited by trichostatin A (TSA) and class III are NAD+-dependent and TSA 

insensitive (Thiagalingam et al., 2003). Sirt1 belongs to HDAC class III. 

Histone acetylation is an important epigenetic modification. When acetylated by HATs, DNA 

is released from the histone and is accessible to specific enzymes and transcription factors that 

drive gene transcription. In contrast, HDAC mediated histone deacetylation compacts 

chromatin resulting in gene silencing (Fig. 6).  

 

 

Figure 6 . Histone acetylation/deacetylation. DNA (red) tightly packed with histone proteins (yellow) as 
compact or closed chromatin, cannot be transcribed. HATs add acetyl groups (Ac) to the histones freeing the 
DNA and making it accessible to transcription factors (TF) and RNA polymerase (RNA pol II), which leads to 
gene transcription. In contrast, HDAC remove the acetyl groups from the histones packing the DNA up in a 
compact, transcriptionally silent form. 
 

1.5.2.2 Mammalian sirtuins  

Sirt1 belongs to the sirtuins, an ancient family of proteins conserved from bacteria to humans 

(Brachmann et al., 1995). In mammals, seven sirtuins are characterized, Sirt1 to Sirt7, which 

share a highly conserved catalytic core domain. Sirt1 is the founding member of the family. It 

is a nuclear deacetylase that is expressed widely in mammalian tissues, and is particularly 

active in brain, fat, pancreas, muscle and liver. Apart from histones, Sirt1 also deacetylates an 

increasing number of proteins with ε-acetyl-lysine residues (Blander et al., 2005).  

Sirt1 suppresses fat storage in white adipose tissue (WAT), by repressing peroxisome 

proliferator-activated receptor-γ (PPAR-γ) transcriptional activity and subsequently 

downregulating the transcription of the adipose tissue-specific fatty acid binding protein (aP2; 

Yang et al., 2006). This switches off the expression of genes involved in adipocyte 
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differentiation, insulin-induced fat storage and fatty acids mobilization. Similarly, Sirt1 

suppresses muscle differentiation by deacetylating and inhibiting p300/CBP-associated factor 

(PCAF) acetyltransferase and the important for myocyte function MyoD, as well as the 

muscle specific transcription factor myocyte enhancer factor-2 (MEF2; Fulco et al., 2003). In 

liver Sirt1 activates gluconeogenesis and represses glycolysis by deacetylating and activating 

forkhead box protein O1 (FOXO1) and the peroxisome proliferator-activated receptor-γ 

coactivator 1-α (PGC1-α), both of which are important for the transcription of gluconeogenic 

genes (e.g. phosphoenolpyruvate carboxykinase; Rodgers et al., 2005). In pancreatic β cells, 

Sirt1 increases insulin secretion by repressing uncoupled protein 2 (UCP2) gene expression. 

UCP2 diverts mitochondrial metabolism from ATP synthesis, therefore its downregulation 

results in more efficient use of glucose by the mitochondria and increase in intracellular ATP, 

closing ATP-dependent K+ channels and opening voltage-gated Ca2+ which leads to insulin 

secretion. (Bordone et al., 2006). In the brain, where Sirt1 is abundantly expressed, it controls 

neurogenesis and protects from axonal degeneration (Araki et al., 2004; Prozorovski et al., 

2008; Ramadori et al., 2008). Altogether Sirt1 affects cellular processes in organs important 

for the organism adaptation to energetic changes (Fig.7). 

Mice overexpressing Sirt1 are lean and metabolically active, with reduced blood cholesterol, 

adipokines, insulin and fasting glucose and high glucose tolerance (Bordone et al., 2007). 

Sirt1 knockout mice show important developmental defects and only half of the embryos 

reach full term and are born. From these approximately 20% survive to adulthood, are smaller 

than their littermates and slow development characterized by perturbations in eyes and heart 

morphogenesis and sterility (Michan & Sinclair, 2007).  
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Figure 7. Sirtuins in mammals: Sirt1 is present in many tissues and organs like pancreas, liver, brain, adipose 
tissue and has an important function in them. Sirt1 is activated by caloric restriction translated by increased 
NAD+/NADH ratio and inhibited by glucose, which decreases the ratio. Sirt1 is also inhibited by nicotinamide, 
which allosterically modifies the enzyme blocking the substrate access to the catalytic site.  
 

Sirt2 is a deacetylase that shuttles between cytoplasm and nucleus where it associates with 

tubulin and histone H4 and affects cell cycle (Dryden et al., 2003; North et al., 2003; 

Michishita et al., 2005). In contrast Sirt3, 4 and 5 are mitochondrial proteins (Onyango et al., 

2002; Schwer et al., 2002; Michishita et al., 2005); Sirt3 and 5 have deacetylase activity while 

Sirt4 is an ADP-ribosyl-transferase. Sirt3 is involved in thermogenesis and the Krebs cycle 

through the regulation of acetyl-CoA synthetase (Hallows et al., 2006; Schwer et al., 2006). 

Sirt4 in pancreas regulates amino acid induced insulin secretion (Haigis et al., 2006), whereas 

in liver it is speculated to facilitate gluconeogenesis during CR (Hagopian et al., 2003). Sirt5 

deacetylates and activates carbamoyl phosphate synthetase 1, which initiates the urea cycle, 

eliminating the ammonia produced during the starvation-induced amino acid utilization 

(Nakagawa et al., 2009). Sirt6 is localized in the nucleus and is an ADP-ribosyltransferase 

playing an important role in DNA repair (North et al., 2003; Liszt et al., 2005; Michishita et 

al., 2005; Mostoslavsky et al., 2006). Sirt7 is found in the nucleolus of mammals cells 

(Michishita et al., 2005; Ford et al., 2006), and although it lacks deacetylase and ADP-
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ribosyltransferase activities, its interaction with RNA polymerase I is expected to play a role 

in rRNA transcription and protein synthesis and therefore in cellular growth and metabolism 

(North et al., 2003; Ford et al., 2006). 

1.5.2.3 Sirtuin & caloric restriction 

Low caloric diet or caloric restriction (CR) improves insulin sensitivity, decreases blood 

cholesterol, and is the most reproducible experimental condition increasing life span from 

yeast, worms, flies, crustaceans to mammals (Tuchweber & Salas, 1975). Indeed there is 

accumulating evidence that CR prevents the appearance of age related diseases, such as, 

cancer, cardiovascular and neurodegenerative diseases. CR is defined as suppression of total 

caloric intake by 25-50% compared to the ad libitum calorie consumption. Such diet is well 

equilibrated in nutrients and is not to be confused with malnutrition (Weindruch et al., 1986). 

In S. cerevisiae grown in medium with 0.5% glucose instead the standard 2% (w/v) glucose, 

which is defined as CR for yeast cells, the replicative lifespan is approx. 30% longer. 

Interestingly this effect was not observed in the absence of SIR2, suggesting that it may 

mediate some of the CR effects in the organism (Lin et al., 2000). Indeed Sir2 homologs were 

found to be essential for the metabolic improvement seen in several animal models under mild 

CR (Howitz et al., 2003; Cohen et al., 2004; Wood et al., 2004; Rogina & Helfand, 2004; 

Rodgers et al., 2005; Guarente & Picard, 2005; Haigis & Guarente, 2006; Michan & Sinclair, 

2007; Cantó & Auwerx, 2009). 

1.5.2.4 Sirtuin activating compounds 

Sirt1 is under intense investigation for the development of pharmaceutical for the treatment of 

metabolic syndrome and age-related diseases. Screening for compounds that could activate 

the deacetylase action of Sirt1 led to the identification of several naturally occurring plant 

polyphenols, the most potent of which was found to be the 3,4',5 trihydroxystilbene 

(C14H12O3) resveratrol (Resveratrol; Fig.8; Howitz et al., 2003). Resveratrol binding to Sirt1 
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promotes a conformational change that increases the affinity of the enzyme for the acetylated 

substrate (Borra et al., 2005). 

 

OH
OH

OH  
 
Figure 8 . Structure of resveratrol showing the stilbene core in green. 
 

Resveratrol is synthesized in some plants as a defense mechanism against fungi attack or 

excessive UV light exposure (Langcake & Pryce, 1977; Schoeppner & Kindl, 1979). It is 

found in red grapes, peanuts, eucalyptus leaves and several berries (blueberry, bilberry and 

cranberry; Kimura et al., 1995; Burns et al., 2002). In dark grapes, resveratrol is concentrated 

mainly in the skin and seeds, from where it is extracted during the vinification process; as a 

result, red wines have high resveratrol concentration (up to 15 µg/ml) depending of the kind 

of grape and its origin. In fact, the presence of resveratrol in the red wine is believed to 

account in part for the so called ‘French paradox’, according to which French people suffer 

less by cardiovascular diseases despite their high fat diet compared to the US population (Sun 

et al., 2002; Das & Maulik, 2006; Lippi et al., 2010). Indeed in an experimental setting, 

resveratrol administration in mice fed with high fat diet improved insulin sensitivity, 

decreased plasma lipid levels and incidence of fatty liver and improved general health and 

survival (Baur et al., 2006). Resveratrol was also shown to have anti-platelet and anti-

inflammatory (Renaud & de Lorgeril, 1992; Das & Das, 2007), chemopreventive (Jang et al., 

1997), and neuroprotective action (Sun et al., 2010). 

More potent synthetic Sirt1 activators, structurally related (SRT501; ResVidaTM) 

and unrelated (SRT1460, SRT2183, SRT1720, SRT2104, SRT2379) to resveratrol were 

identified. These substances are 1000-fold more potent than resveratrol and show an increased 

bioavailability (Milne et al., 2007), which is a big advantage since resveratrol is metabolically 
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unstable in the organism. SRT501, SRT2104 and SRT2379 are currently in clinical trials to 

test safety and efficacy in metabolic syndrome, cognitive function and cancer 

(clinicaltrials.gov).
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2 AIM OF THE STUDY 

GH as a major anabolic hormone is tightly regulated by energy availability. Caloric 

Restriction (CR) suppresses GH and IGF-I levels in several animal models. GH excess, as 

seen in patients with acromegaly-associated pituitary adenomas, leads to insulin resistance 

and is associated with increased mortality (Dekkers et al., 2008; Melmed, 2009). In contrast, 

genetically manipulating the GH/IGF-I axis improves insulin sensitivity and extends healthy 

life span (reviewed in Bartke & Brown-Borg, 2004; Holzenberger, 2004). Therefore, GH 

regulation by energy sensors may be one of the converge points where energy availability 

coordinates with hormonal stimuli to regulate organism homeostasis.  

The aim of the study is to identify how intracellular energy sensors in the pituitary endocrine 

cells control the production of hormones pivotal in the regulation of organism growth and 

metabolism, such as GH. The putative role of AMPK and Sirt1 on the regulation of GH 

synthesis is investigated. Studies in the GHRKO mouse revealed that although moderate 

caloric restriction increases healthy life span in the wild type littermates, it does not further 

extend lifespan in this mouse (Bonkowski et al., 2006). Taking into consideration that 

GHRKO mice are GH resistant this finding indicates that caloric restriction needs an intact 

GH response in order to induce its beneficial effects. Subsequently, the study focuses on the 

role of Sirt1, as an intrapituitary energy sensor, in the regulation of GH synthesis.  
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3 MATERIALS & METHODS 

3.1 Reagents  

PRODUCT COMPANY 
ABC (Avidin-Biotin Complex) blocking kit Vector laboratories (Burlingane, CA, USA) 

Acetic acid MERCK (Darmstadt, Germany) 

Acridine orange Sigma (St.Luis. MO, USA) 

Acrylamide Sigma (St.Luis. MO, USA) 

5-Aminoimidazole-4-carboxamide ribotide (AICAR) Calbiochem (Darmstadt, Germany) 

Ammonium persulfate Sigma (St.Luis. MO, USA) 

Amphotericin B Biochrom (Berlin, Germany) 

Agar Life Technologies (Paisley, Scotland, UK) 

Agarose Carl Roth (Karlsruhe, Germany) 

β-mercaptoethanol MERCK (Darmstadt, Germany) 

Bovine serum albumin (BSA) Invitrogen Corp.(Paisley, Scotland, UK) 

Bradford protein assay Biorad (Munich, Germany) 

cAMP [125I] determination RIA kit Perkin Elmer (MA,USA) 

Chloroform Sigma (St.Luis. MO,) 

Collagenase Worthington Biochemical Corp. (Lakewood, NJ, 

USA) 

Diaminobenzidine (DAB) Sigma (St.Luis. MO, USA) 

Developer solution Kodak (Stuttgart, Germany) 

Diethyl-pyrocarbonate (DEPC) Sigma (St.Luis. MO, USA) 

Dimethyl sulfoxide (DMSO) Sigma (St.Luis. MO, USA) 

DNase I Invitrogen Corp.(Paisley, Scotland, UK) 

dNTP Mix MBI Fermentas (Vilnius, Lithouania) 

Dulbecco’s modified Eagle medium (DMEM) Invitrogen Corp.(Paisley, Scotland, UK) 

Dulbecco’s modified Eagle medium (DMEM) with D-

valine 

Invitrogen Corp.(Paisley, Scotland, UK) 

Entellan MERCK (Darmstadt, Germany) 

Ethanol 70% Carl Roth (Karlsruhe, Germany) 

Ethidium bromide Sigma (St.Luis. MO, USA) 

EZ ChIP Chromatin Immunoprecipitation Kit  Upstate (MA, USA) 

Fetal calf serum Gibco (Karlsruhe, Germany) 

Fixer solution Kodak (Stuttgart, Germany) 

Formaldehyde 37% Sigma (St.Luis. MO, USA) 

Formamide Sigma (St.Luis. MO, USA) 

Forskolin Sigma (St.Luis. MO, USA) 

Glucose MERCK (Darmstadt, Germany) 
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PRODUCT COMPANY 

Hepes Sigma (St.Luis. MO, USA) 

Hexanucleotide Mix Roche (Mannheim, Germany) 

HiSpeed Plasmid Purification System Qiagen (Hilden, Germany) 

Hyaluronidase   Sigma (St.Luis. MO, USA) 

Hydrogen peroxide Carl Roth (Karlsruhe, Germany) 

Inhibitor 2 (I-2) specific for PP1 Millipore (MA, USA) 

Insulin Sigma (St.Luis. MO, USA) 

Isoamylalcohol MERCK (Darmstadt, Germany) 

Isopropanol Sigma (St.Luis. MO, USA) 

L-Glutamine Biochrom AG (Berlin,Germany) 

Lumi-Light Western Blotting Substrate Roche (Mannheim, Germany) 

Luciferase kit dual-Luciferase Reporter Assay Promega (Mannheim, Germany) 

Magnesium chloride MERCK (Darmstadt, Germany) 

Marker 1kb Plus Life Technologies (Paisley, Scotland, UK) 

MEM-Vitamins Biochrom AG (Berlin, Germany) 

Metformin Sigma (St.Luis. MO, USA) 

Milk powder Roth (Karlsruhe, Germany) 

Nicotinamide Calbiochem (Darmstadt, Germany) 

Nitrocellulose membrane Hybond-ECL Amersham Biosciences (Uppsala, Sweden) 

Non-Essencial amino acids Biochrom AG (Berlin, Germany) 

Okadaic acid Calbiochem (Darmstadt, Germany) 

ONPG Sigma (St.Luis. MO, USA) 

Paraformaldehyde Sigma (St.Luis. MO, USA) 

Partricin Biochrom AG (Berlin,Germany) 

Penicillin+Streptomycin mix Biochrom AG (Berlin, Germany) 

Phenol Roth (Karlsruhe, Germany) 

Phosphatase inhibitor cocktail Roche (Mannheim, Germany) 

Phosphate based buffer (PBS) Life Technologies (Paisley, Scotland, UK) 

Polyacrylamide Invitrogen Corp.(Paisley, Scotland, UK) 

Potassium chloride MERCK (Darmstadt, Germany) 

Protease inhibitor cocktail Sigma (St.Luis. MO, USA) 

Protein A/G Agarose Santa Cruz Biotech (CA, USA) 

QuickChange II-Direct Mutagenesis Kit Agilent Technologies, Inc. (CA, USA) 

Reporter lysis buffer Promega Corp. (Madison, WI, USA) 

Resveratrol Calbiochem (Darmstadt, Germany) 

Reverse transcriptase (Super Script II) Invitrogen Corp.(Paisley, Scotland, UK) 

rGH [125I] BIOTREND (Cologne, Germany) 

rGH standard National Institute of  Diabetes & Digestive & 

Kidney Disease (CA, USA) 
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PRODUCT COMPANY 

rGHRH Bachem (CA, USA) 

RNAsin (RNase inhibitor) Promega Corp. (Madison, WI, USA) 

Rotiload Roth (Karlsruhe, Germany) 

Ser/Thr phosphatase Kit 1  Upstate (MA, USA) 

Sirtinol Calbiochem (Darmstadt, Germany) 

Sodium chloride (NaCl) Carl Roth (Karlsruhe, Germany) 

Sodium hydrogen phosphate dehydrate MERCK (Darmstadt, Germany) 

SB-415286 Sigma (St.Luis. MO, USA) 

Sodium Dodecyl Sulphate (SDS) Carl Roth (Karlsruhe, Germany) 

Sodium hydroxide (NaOH) Carl Roth (Karlsruhe, Germany) 

Sodium Selenate Sigma (St.Luis. MO, USA) 

Superfect Qiagen (Hilden, Germany) 

Taq DNA polymerase MBI Fermentas (Vilnius, Lithouania) 

TEMED Sigma (St.Luis. MO, USA) 

triiodothyronine T3 Sigma (St.Luis. MO, USA) 

Toluidin Blue Sigma (St. Louis, Mo, USA) 

Transferrin Sigma (St.Luis. MO, USA) 

Trichloracetic acid Carl Roth (Karlsruhe, Germany) 

Trypsin inhibitor  Sigma (St.Luis. MO, USA) 

Tris pure ICN Pharmaceuticals (Aurora, OH, USA) 

Triton X-100 Roth (Karlsruhe, Germany) 

Trizol Invitrogen Corp.(Paisley, Scotland, UK) 

Trypsin Sigma (St.Luis. MO, USA) 

Tween 20 Sigma (St.Luis. MO, USA) 

WST-1 assay Roche (Mannheim, Germany) 

Xylol Carl Roth (Karlsruhe, Germany) 

3.2 Solutions 

Solution Composition 
Collagenase Mix 
1000 U/ml 
 

HDB+ buffer : 100 ml 
Collagenase : 400 mg/ 100 ml solution 
Trypsin inhibitor : 10 mg/ 100 ml solution 
Hyaluronidase : 100 mg/ 100 ml solution 
BSA : 400 mg/ 100 ml solution 
DNase : 500 µl/ 100 ml solution   

DNase Buffer 10X Tris-HCL : 200 mM pH 7.2 
MgCl2 : 50 mM 
DTT  : 10 mM 
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Solution Composition 

HDB+ buffer Glucose : 10 mM 
NaCl : 137 mM 
KCl : 5 mM 
Na2HPO4 : 0.7 mM 
HEPES : 25 mM 
Adjust pH 7.3 with NaOH 
Partricin : 500 µg/L  
Penicillin/Streptomycin : 105 U/L 

LB medium Peptone         : 10 g/L 
Yeast extract : 5 g/L 
NaCl : 5 g/L 
NaOH 1M : 2 ml/L 
Adjust to pH 7.0    

Lower Tris-Base  Tris pH 8.8  : 182 g/L 
SDS : 4 g/L 
 

Medium for tumor primary cell 
culture 

DMEM 
Foetal Calf  Serum (FCS)  : 10% v/v  
Glutamine : 2.4 g/L 
Partricin : 500 µg/L  
Penicillin/Streptomycin : 105 U/L 
MEM 1x 
Non-essential aminoacids (NEAA) 1x 
Insulin : 5 mg/L 
T3 : 60 pmol/L 
Transferrin : 5 mg/L 
Sodium Selenate : 20 µg/L 

NP-40 lysis buffer for 
immunoprecipitation 

Hepes pH 7.4 : 20 mM 
NaCl : 100 mM 
EDTA : 1 mM 
Nonidet P-40 : 1% v/v 

ONPG buffer 2x Na2HPO4  1M : 55.3 ml 
NaH2PO4  1M : 29.3 ml 
Water  1M : 339.2 ml 
MgCl2-6H2O : 154.5 mg 
ONPG : 500.0 mg 
40 minutes stirring 
β-Mercaptoethanol  14M : 2.5 ml 
Freeze aliquots at -20 °C 

Paraformaldehyde 4% 
(PFA)  
 
 
 

paraformaldehyde : 4 g/100 ml 
Sodium phosphate buffer : 20 ml/100 ml solution 
Ampuwa water : 80 ml 
Add 1M NaOH to pH 7.4 
Heat at 56°C to dissolve 
Filter and cool before usage 
Store at +4°C for maximum 2 days 

Phosphate based buffer 1x 
(PBS)  
 

NaCl : 8 g/L 
KCl : 0.2 g/L 
Na2HPO4.2H2O : 1.44 g/L 
KH2PO4 : 0.2 g/L 
Adjust to pH 7.4  

RIPA (RadioImmunoPrecipitation 
Assay) buffer 

Tris HCl pH 8 : 50 mM 
NaCl : 150 mM 
NP-40 : 1% 
Sodium Deoxycholate : 0.5% 
SDS : 0.1% 
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Solution Composition 

Running Buffer for gel 
electrophoresis 

Tris-base : 3.03 g/L 
Glycine : 14.42 g/L 
SDS : 1.00 g/L 
Adjust to pH 8.3 

SDS-PAGE (SDS-Polyacrylamide 
gel electrophoresis) running Gel 
12%  
 
 

Water (d)  : 6.6 ml 
Acrylamide : 8 ml 
Lower Tris-Base pH 8.8 : 5 ml 
Ammonium persulfat 10%: 0.2 ml 
Temed : 0.008 ml 

SDS-PAGE (SDS-Polyacrylamide 
gel electrophoresis) stocking gel  
5%  
 

Water(d)  : 4.1 ml 
Acrylamide : 1 ml 
Upper Tris Buffer  pH 6.8 : 0.75 ml 
Ammonium Persulfat 10%: 0.06 ml 
Temed : 0.006 ml 

Sodium acetate 2M Sodium acetate trihydrate : 272 g/L 
DEPC : 200 µl /L 
Add acetic acid to pH 4.0  
Leave at room temperature overnight 

Sodium phosphate buffer 50 mM 
 

Na2HPO4.2H2O : 7.06 g/L 
NaH2PO4. H2O : 1.32 g/L 
Adjust to pH 7.4  

Stop mix 
 

EDTA 0.5M : 16.5µl 
Tris-HCl 1M pH 8.5 : 150µl   
Water(d)  sterile                : 1.5 ml 

Transfer Buffer for gel 
electrophoresis 
 
 

Tris-base : 3.03g/L 
Gycine : 14.42 g/L 
SDS : 0.50 g/L 
Methanol : 200 ml/L 
Adjust to pH 8.3 

Tris-acetic EDTA buffer (TAE)  
50x 
 

Glacial acetic acid : 57.1 ml/L 
EDTA 0,5M pH 8 : 100 ml/L 
Tris pure : 242 g/L 
Adjust to pH 8.0     

Tris buffer 0.1M Tris pure : 12.114 g/L 
Adjust to pH 7.6  

Tris-Buffer Saline (TBS) 1x 
 
 

Tris pure  : 2.42 g/L 
NaCl : 8 g/L 
Adjust to pH 7.6    

Tris- Buffer + Tween Saline (TBST) 
 
 

Tris pure : 2.42 g/L 
NaCl : 8 g/L 
Tween 20 : 1 ml/L 

Tris-HCl 1M Tris pure : 121.14 g/L  
Add 25% HCl to a pH 8.2   

Upper Tris Buffer 100ml 
 

Tris-Base pH 6.8 : 60.5 g/L 
SDS : 4.0 g /L 
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3.3 Methods 

3.3.1 Immunohistochemistry  

Five frozen normal pituitary glands from autopsy cases of sudden death without any evidence 

for endocrine diseases taken 8-12 h after demise were cut in a cryostat (Leica CM3050 S), in 

8 µm thick sections. The slides were fixed in 4% freshly prepared ice-cold paraformaldehyde, 

dehydrated and stored in 96% ethanol, at +4°C. At the time of the experiments, sections were 

incubated in TBS for 5 minutes, followed by 30 minutes blocking. Blocking was performed 

using serum from the animal species that gave rise to the secondary antibody; in our case the 

blocking solution consisted of goat serum diluted 1:20 in TBS. After blocking the endogenous 

peroxidase activity with 1% H2O2 diluted in TBS for 15 minutes, the sections were incubated 

overnight with the mouse monoclonal anti-Sirt1 primary antibody (Upstate, MA) at 4°C. 

Then, after washing three times with TBS (5 minutes each), the sections were incubated for 

30 minutes with the secondary antibody at room temperature, and after 3 more washings, with 

the ABC complex for another 30 min. The ABC was prepared in saline-free tris-based buffer 

(Tris buffer) at least 30 minutes prior to usage in order to give time to form the complex. 

After washing three times in TBS the slides were immersed in freshly prepared DAB (1 

mg/ml) supplemented with 0.01% hydrogen peroxide. Considering that DAB is light sensitive 

the reaction was carried on in semi-darkness, and the reagent was covered with aluminium 

foil during the experiment. The time of incubation in DAB varied and was determined for 

each primary antibody separately. The optimal time was the one giving the strongest expected 

signal with the lowest possible background.  

After achieving a satisfactory signal level, the slides were washed three times in TBS and 

counterstained with toluidine-blue (which stains the cell nuclei pale blue) to allow an easy 

view of the tissue organization. Excess staining was removed by immersing the slides in 70% 

ethanol supplemented with acetic acid, and the sections were dehydrated, fixed in xylol and 
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coverslipped using Entellan. Evaluation of immunohistochemistry was done using the 

Axioscop II microscope (Zeiss).  

3.3.2 Animals 

The in vivo experiments were performed in agreement with the rules of laboratory animal care 

and international law on animal experimentation and the study was approved by the ethics 

committee of the University of Santiago de Compostela, where this part of the study was 

performed. In this experiment, adult male Sprague-Dawley rats (200-250 g) were used. The 

animals were housed in a temperature- and humidity-controlled room in a 12 hours light:12 

hour darkness cycle. Five days before the experiment, they were anesthetized using ketamine-

xylazine and intracardiac and chronic i.c.v. cannulae were implanted. After surgery, the 

animals were placed in isolation test camera and were fed with regular Purina rat chow and 

tap water (Seoane et al., 2004). 

Animals (n=8-9) were injected i.v. with 10 µg/kg GHRH and intraperitoneally with 5 mg/kg 

vehicle or resveratrol for 1 hour and serial blood samples were withdrawn every 15 minutes 

for 6 hours (Seoane et al., 2004).  

3.3.3 Cell culture  

3.3.3.1 Cell lines 

The immortalized cell line used in this study was the rat mammosomatotroph cell line GH3 

(American Type Culture Collection). Cells were grown in DMEM supplemented with 10% 

FCS (Foetal Calf Serum), 2.4 g/L Glutamine, 500 µg/L Partricin, and 105 U/L 

Penicillin/Streptomycin, and incubated at 37°C in humid atmosphere with 5% CO2. When 

confluent, the cells were washed with PBS, trypsinized, centrifuged at 1200 x g for 4 minutes, 

and plated as needed for each experiment.  
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3.3.3.2 Rat pituitary primary cell culture 

Pituitary primary cell culture was obtained from adult male Sprague-Dawley rats (180-250 g). 

The rats were maintained in the animal house for 5 days at a temperature of 21°C with 

light/darkness cycles of 12 hours, and fed Ad Libitum with standard food and water. 

The animals were decapitated after narcosis with CO2. The pituitary gland was extracted, 

washed with HDB+ buffer and sliced, and the fragments were digested and dispersed in a 

collagenase mix solution. The dispersed cells were centrifuged, washed and resuspended in 

growth media for cell culture.  

The viability of the cells was determined by fluorescence microscopy, counting the cells in a 

Neubauer Chamber under UV light after staining them with ethidium bromide/acridine orange 

solution. Ethidium bromide dye is not able to pass through the intact membrane of the living 

cells, but it is able to do it through the damaged membrane of the dead cells, staining them 

with a red/orange fluorescence under UV light. Acridine orange passes through the membrane 

of healthy cells producing a green fluorescence under UV light. 

The viability of the cells was higher than 95%. The cells were seeded into 96 well plates 

(1x104 cells per well) and incubated at 37°C in a 5% CO2 atmosphere for 48 hours before 

treating them as indicated in each experiment. 

3.3.3.3 Human GH secreting pituitary adenomas 

Thirty-eight human GH secreting pituitary adenomas or somatotrophinomas were 

investigated. This study was approved by the ethics committee of the Max Planck Institute 

and informed consent was obtained from each patient or their relatives. Tumors were 

diagnosed by clinical, radiological, surgical and biochemical findings. The patients were 

operated by the transsphenoidal microsurgical approach.  

According to Hardy’s classification (Hardy, 1979), pituitary adenomas are classified in four 

grades: Grade I for microadenomas (<10 mm in diameter), Grade II for macroadenomas (>10 



MATERIALS & METHODS 

 35

mm in diameter) that may reach the suprasellar area but the surrounding bony structures are 

not affected. Grade III for adenomas that are locally invasive; and Grade IV refers to large 

invasive tumors that can affect the hypothalamus and the cavernous sinuses.  

Tumors were put in DMEM immediately after surgical excision arriving to the laboratory 

within the same day or one day after the operation date. Samples were processed as following:  

After washing with HDB+ buffer, fibers and debris were removed and the tumor was divided 

in two pieces. One of them was snap-frozen with dry ice, for morphological analysis and the 

other was either frozen for RNA extraction or processed for cell culture as follows: after 

mechanical dispersion into small fragments and digestion with collagenase mix, the cells were 

processed and plated as described above for rat pituitary primary cell culture. 

To exclude the contamination of normal anterior pituitary cells, RT-PCR (see 3.3.4) was 

performed using specific primers for the steroidogenic factor 1 (SF-1) transcription factor. SF-

1 is expressed only in the gonadotroph lineage cells (Zafar et al., 1995; Fig. 2) therefore if 

detected in somatotrophinomas then this tissue has also normal pituitary cells. The SF-1 

positive tumors were not taken into consideration for this study. Accordingly from the 31 

somatotrophinoma RNAs, 25 were SF-1 negative and were therefore used for SIRT1 

screening (Table 1).  
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Table 1. Diagnosis, age, gender and grade of severity of the pituitary adenomas involved in 
the study. 
 
 # Diagnosis Age Sex Grade Assay 

1 Acromegaly 32 M III RNA 
2 Acromegaly 55 F II RNA 
3 Acromegaly 42 F III RNA 
4 Acromegaly 71 F II RNA 
5 Acromegaly 28 M III RNA 
6 Acromegaly 36 M III RNA 
7 Acromegaly 23 M II RNA 
8 Acromegaly 48 F II RNA 
9 Acromegaly 58 F II RNA 

10 Acromegaly 60 M II RNA 
11 Acromegaly 54 M II RNA 
12 Acromegaly 52 F III RNA 
13 Acromegaly 49 M II RNA 
14 Acromegaly 55 F II RNA 
15 Acromegaly 36 F III RNA 
16 Acromegaly 48 M II RNA 
17 Acromegaly 52 F III RNA 
18 Acromegaly 24 M III RNA 
19 Acromegaly 51 F II RNA 
20 Acromegaly 42 M II RNA 
21 Acromegaly 50 F II RNA 
22 Acromegaly 47 F III RNA 
23 Acromegaly 24 F II RNA 
24 Acromegaly 60 F III RNA 
25 Acromegaly 27 M III RNA 
26 Acromegaly 39 F III Cell culture 
27 Acromegaly 54 F II Cell culture 
28 Acromegaly 40 F III Cell culture 
29 Acromegaly 42 M III Cell culture 
30 Acromegaly 40 F II Cell culture 
31 Acromegaly 54 F II Cell culture 
32 Acromegaly 44 M II Cell culture 
33 Acromegaly 38 F III Cell culture 
34 Acromegaly 54 F III Cell culture 
35 Acromegaly 37 F III Cell culture 
36 Acromegaly 30 F III Cell culture 
37 Acromegaly 51 M III Cell culture 
38 Acromegaly 23 M III Cell culture 
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3.3.4 RNA extraction & reverse transcriptase-polymerase chain reaction (RT-

PCR)  

The experiment is based on the RNA isolation of treated and untreated cells, converting this 

RNA in its cDNA through reverse transcriptase (RT) reaction. Specific primers allow that 

only the cDNA obtained by the mRNA transcribed from the gene of interest is amplified by 

PCR. The product of the PCR is separated by electrophoresis in an agarose gel, and the bands 

of cDNA are visualized under UV light. The relative intensity of the bands reflects the 

relative quantity of cDNA, and therefore of source mRNA. This shows whether the treatment 

had some effect on the expression of the studied gene. 

3.3.4.1 RNA extraction 

Cells were plated in 6-well plates (3.5x105 cells/well) and treated according to the experiment. 

Once finished the treatment, the medium was removed, the cells were washed with cold PBS 

and 1 ml of Trizol was added to each well. The cells were homogenized and the homogenate 

was transferred to a 2 ml tube and incubated for 5 minutes at room temperature to allow the 

dissociation of nucleoprotein complexes; then 0.2 ml of chloroform was added to the 

homogenate, mixed for 15 seconds and incubated for 3 minutes at room temperature. The 

samples were centrifuged at 12000 x g for 10 minutes at 4°C.  At this stage, the mixture got 

separated into a lower red phenol-chloroform where the phenol-soluble proteins and cell 

remains can be found, an interphase containing the precipitated genomic DNA, and a 

colorless aqueous phase containing the RNA. The last phase was collected carefully, without 

disturbing the interphase, and was transferred to a new 2 ml Eppendorf tube. The RNA was 

precipitated from the aqueous phase by adding 500 µl of isopropanol. The samples were 

mixed and incubated 10 minutes at room temperature, followed by centrifugation at 4°C and 

12000 x g. After 10 minutes of centrifugation, the supernatant was discarded, the pellet was 

washed with 1 ml of 70% ethanol, the sample was vortexed and the RNA was precipitated by 
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centrifugation at 7500 x g for 5 minutes at 4°C. Then the ethanol was carefully discarded, the 

RNA pellet was let to dry (air-dry) 5-10 minutes, and dissolved in 20-50 µl water 

supplemented with 0.1% (v/v) DEPC. DEPC inactivates RNases, protecting RNA against 

degradation. 

When enough material was obtained each RNA sample was aliquoted, keeping one aliquot in 

-20°C for current use and the remaining at -80°C for long term storage.  

To avoid using samples of RNA contaminated with genomic DNA for reverse transcriptase 

reaction, a polymerase chain reaction (PCR) was performed for a housekeeping gene (β-actin 

or GAPDH) using as template RNA sample that had not been reverse-transcribed (see PCR 

protocol). 

 

DNase treatment protocol 

In case of persistent DNA contamination the RNA sample was cleaned through DNase 

treatment. 

For each RNA sample to be treated the following DNase mix was prepared 

3.00 µl 10x DNase buffer 

0.25 µl RNase free DNase I 

0.25 µl RNasin 

2.50 µl sterile water 

Mix in the reaction tube  

24 µl of DNA contaminated RNA (2-10 µg total)  

6 µl DNase Mix  

The DNA was digested incubating the tube for 30 minutes at 37°C.  

After incubation, the reaction was finished by adding 33 µl of stop mix. Then 70 µl of Phenol-

chloroform mix (1:1) was added and the tube was vortexed. To separate organic and aqueous 

phases, the tube was centrifuged for 5 minutes at 4°C and 12000 x g. The upper phase 
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(aqueous) was transferred to a new tube and sodium acetate 3 M pH 5.2 was added in a 

proportion 1/10. To precipitate the RNA again, 2.5 volumes of 100% ethanol were added and 

the mix was incubated at -20°C for 2 hours. After that, the sample was centrifuged at 4°C and 

12000 x g. for 10 minutes. Supernatant was discarded, the pellet was washed with 1 ml of 

70% ice-cold ethanol, and RNA was precipitated by centrifugation at 12000 x g for 10 

minutes at 4°C. Then the ethanol was carefully discarded, the RNA pellet was let to dry (air-

dry) 5-10 minutes, and finally it was dissolved in 10 µl water supplemented with 0.1% (v/v) 

DEPC.  

Once RNA without genomic DNA was obtained, the concentration and quality of each RNA 

sample was determined using a spectrophotometer (Ultrospec II, Pharmacia). Absorbance (A) 

at wave lengths 260 and 280 nm was measured on a dilution of the RNA sample 1:60 (1 µl 

RNA solution + 59 µl DEPC water). Nucleic acids have a maximal absorption at 260 nm, 

while proteins have it at 280 nm. The ratio A260/A280 gives information about the quality of 

the RNA preparation. The optimal value of this ratio for a clean RNA solution should be 

between 1.9 and 2.0. The RNA concentration is calculated using the following formula: 

A260*40*60 = x µg/ml, where 40 is the concentration in µg/ml of RNA when the A260 is equal 

to 1, and 60 is the dilution in which the RNA sample was measured. 

3.3.4.2 RT-PCR 

Reverse transcriptase reaction was performed on the RNA samples. One µg of RNA diluted in 

DEPC water quantum sufficiat to 10 µl was added to a reaction mixture containing: 

1 µl dNTP mix 2 mM 

2 µl of random primers (Hexanucleotide Mix) 

2 µl dithiothreitol (DTT) 10 mM 

4 µl of 5x First Strand buffer 

200 U reverse transcriptase (SuperScript II) 
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The mix was incubated at 45°C for 1 hour. The reaction was stopped by boiling at 95°C for 5 

min. The obtained cDNA was stored at -20°C. 

 

Polymerase Chain Reaction (PCR) Protocol  

For the PCR reaction, 1 µl cDNA was mixed with a reaction mixture containing:  

1.5 µl  10 x PCR buffer 

0.9 µl 25 mM MgCl2  

1.5 µl 2 mM dNTP Mix 

0.5 µl amplification primer 1 (10 pmol/µl) 

0.5 µl amplification primer 2 (10 pmol/µl) 

0.15 µl Thermus aquaticus (Taq) DNA polymerase 10x 

8.95 µl autoclaved, distilled water 

 

For the PCR reaction, the following program was used: denaturation at 95°C for 1 minute, 

annealing at 55-65°C for 1 minute, polymerization at 72°C for 1 minute, repeating these steps 

for 30-35 cycles.  

After the PCR, the products were separated in agarose gel in a concentration depending on the 

size of the amplified product (1.2% for 400-1000 bp, 1.5% for 200-400 bp). The gel was 

prepared using TAE buffer and ethidium bromide (0.04%). Ethidium bromide is able to 

intercalate into the DNA producing fluorescence when visualized under UV light. 

Electrophoresis was run for 20-30 minutes at 90 V. The fragment size was determined using 1 

Kb Plus DNA Ladder marker. 

The primers used are listed in Table 2, with their sequences, melting temperature (Tm) and 

predicted product size. The sequence of each of them was checked using the NCBI BLAST 

program in order to exclude the possibility of a sequence similarity with genes other than the 

one under investigation. All primers were synthesized by Eurofins MWG Operon, were 
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reconstituted with autoclaved distilled water to reach a concentration of 100 µM, and were 

stored at -20°C. The annealing temperature for each pair of primers was determined by PCR 

in a range of 55°C, 60°C, and 65°C using cDNA from normal human pituitary as template. 

The optimal temperature was the one yielding an intense signal with no secondary 

amplification fragments.  

β-actin was quantified by digital analysis (Tina 4.0, Raytest, Munich, Germany). After 

subtraction of background signals, the relative gene expression levels were determined as the 

ratio of optical densities (OD) OD gene/OD β-actin. PCR reactions were performed in 

triplicates for each sample. 

 

Table 2: Primers for PCR used in this study  

Primers Sequence (5’-3’) Tm Fragment 
(bp) 

β-actin-s human 
β-actin-a human 

ACG GGG TCA CCC ACA CTG TGC 
CTA GAA GCA TTT GCG GTG GAC GAT G 60 660 

GAPDH-s rat 
GAPDH-a rat 

ATG GTG AAG GTC GGT GTG AAC G 
GTT GTC ATG GAT GAC CTT GGC 60 495 

GH promoter-s rat 
GH promoter-s rat 

GTG ACC ATT GCC CAT AAA CC 
TGC ATG CCC TTT TTA TAC CC 60 400 

Pit1 promoter-s rat 
Pit1 promoter-a rat 

 

TGA CGT CAA ATA AAG TTT CTG TTT T 
TGT TAA CCC GAA CTG TCT TTC TTA C 60 120 

SF1-s human 
SF1-a human 

GCA TCT TGG GCT GCC TGC AG 
CCT TGC CGT GCT GGA CCT GG 71 230 

Sirt1-s human & rat 
Sirt1-a human & rat 

TAA TGG TTT TCA TTC CTG TGA AAG T CAC 
AGT GTC ATA TCA TCC AAC TCA G 60 200 

 

3.3.5 Western blot analysis 

Through western blot analysis, one particular protein can be detected out of a mixture of 

many. A highly specific primary antibody for the protein of interest is used, and after that a 
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secondary one against the host of the first one. In this work the second antibody is conjugated 

with the enzyme horseradish peroxidase (HRP conjugated) which makes it possible to 

visualize the complex protein-antibodies through a chemiluminescent reaction. Information 

about the size and the relative quantity of the studied protein is obtained as well via this 

analysis. 

3.3.5.1 Preparation of cell lysates for WB analysis from cells in culture 

Cells were plated in 10 cm diameter petri (1.2x106 cells/petri), left 24 hours to recover and 

treated as indicated for 30 minutes, 1 hour, 3 hours, and 6 hours. 

Once finished the treatment, the cells were washed twice with 10 ml of cold PBS, and then 

1.5 ml of cold PBS was added. The cells were scraped using a cold plastic cell scraper, and 

the cell suspension was gently transferred to a pre-cooled 1.5 ml microcentrifuge tube and 

centrifuged at 1500 x g at 4°C for 10 min. After the centrifugation, the supernatant was 

discarded and the pellet resuspended in 150 µL of RIPA Lysis Buffer containing protease 

inhibitor cocktail and phosphatase inhibitor.  The cell suspension was passed several times 

through a 21 gauge syringe to lyse the cells. 

3.3.5.2 Determination of the protein concentration 

The protein concentration was measured using Bradford Protein Assay (Biorad, Munich, 

Germany). Bovine Serum Albumin (BSA) was used as protein standard. 

The standard curve was determined for 25, 20, 10, 5 and 0 µg/ml of BSA in double distilled 

water with RIPA in the same proportion as in the diluted samples. The Bradford reactive was 

diluted 1:1 in distilled water and the samples were diluted as much as needed so that the 

values of the protein concentration were into the range of the standard curve. 100 µl of each 

standard and each sample were put in transparent 96 well plate together with 50 µl of 

Bradford reactive. Absorbance was measured in Elisa reader M 5000 at λ 595 nm. 
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3.3.5.3 Sample preparation 

Roti-Load Sample Buffer was added to 20 µgr of protein. The mix was denaturized by boiling 

5 minutes. 

3.3.5.4 Preparation of 12% SDS-polyacrylamide resolving gel 

SDS-polyacrylamide resolving mini-gels were prepared using running gel and of stocking gel 

using the Mini-Protean 3 casting stand (Biorad). 

3.3.5.5 Protein transfer 

The equipment used was the Mini-Protean 3 Electrophoresis Cell and Mini Trans-Blot Cell of 

Biorad. The gels were put into the electrophoresis cell submerged in Running Buffer. Twenty 

µg of proteins were loaded into the wells of the gels. One well was always reserved for the 

marker in order to determine the size in kDa of the protein of interest. In this technique an 

electric field is applied to the electrophoresis cell so that the proteins (negatively charged) will 

migrate to the anode.  The proteins are separated according to their sizes by the SDS-PAGE. 

Protein running was performed using constant 100 V. After the running the proteins were 

transferred into nitrocellulose membrane in the Trans-Blot Cell.  In this case the negatively 

charged proteins are transferred into the special membrane that has a high affinity for proteins 

and it is positively charged. Blotting was performed overnight in cold room using 80 mA or 

two and a half hours using 500 mA, always keeping the transfer buffer at low temperature 

with ice into the chamber to preserve the gel from overheating. Finished the blotting the 

proteins and bands of the marker that were present in the gel were separated by size and 

transferred to the nitrocellulose membrane.  

3.3.5.6 Membrane blocking and blotting 

The nitrocellulose membrane was washed with TBST and blocked with 5% low fat milk 

powder dissolved in TBST (5% milk/TBST) during 1 hour. 
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Primary antibodies dissolved in 2.5% milk/TBST were incubated overnight (list of primary 

antibodies on Table 3). After incubation, the membranes were washed 3 times 5 minutes with 

TBST and then they were incubated 90 minutes with the secondary antibody HRP (also 

diluted in 2.5% milk/TBST) conjugated against the host of the primary one (list of secondary 

antibodies on Table 4). After incubation, the membranes were washed 3 times for 5 minutes 

with TBST and incubated with chemiluminescent substrate Lumi-Light for 5 minutes. The 

membranes were put in a cassette together with the films, trying different exposition times 

until the adequate for each particular experiment was found. 

 

Table 3. List of primary antibodies used in western blot  

Against Company Host Dilution 

Acetyl-lysine New England Biolabs, Frankfurt, Germany mouse 1:1000 

Actin Chemicon, Billerica, MA, USA mouse 1:10000 

AKT New England Biolabs, Frankfurt, Germany rabbit 1:1000 

CREB New England Biolabs, Frankfurt, Germany mouse 1:1000 

CREB New England Biolabs, Frankfurt, Germany rabbit 1:1000 

GSK3β New England Biolabs, Frankfurt, Germany rabbit 1:1000 

I-2 R&D System, Minneapolis, MN, USA mouse 1:500 

Phospho-CREB (Ser133) New England Biolabs, Frankfurt, Germany  rabbit 1:500 

Phospho-GSK3β (Ser9) New England Biolabs, Frankfurt, Germany  rabbit 1:500 

Phospho-I-2 (Thr72) Biozol, Eching, Germany rabbit 1:500 

Phospho-Threonine New England Biolabs, Frankfurt, Germany  rabbit 1:500 

Pit1 (X-7) sc442 Santa Cruz Biotech, Santa Cruz, CA, USA rabbit 1:1000 

PP1α Upstate, Billerica, MA, USA rabbit 1:1000 

Sirt1 Upstate, Billerica, MA, USA mouse 1:2000 
 

 

 

 

 



MATERIALS & METHODS 

 45

 

Table 4. List of secondary antibodies used in western blot Assay.  

Against Company Conjugated Host Dilution 

Rabbit New England Biolabs, 
Frankfurt, Germany 

Horseradish 
peroxidase Goat 1:1000 - 1:2000 

Mouse New England Biolabs, 
Frankfurt, Germany 

Horseradish 
peroxidase Horse 1:1000 - 1:5000 

3.3.6 Coimmunoprecipitation (Co-IP) 

Through Co-IP it is possible to detect protein-protein interactions. The principle of this assay 

is the following: 

One specific antibody against protein “X” which is part of the hypothetical complex is added 

to the cell lysate. The complex antibody-protein “X” is pulled down with help of protein A or 

G (which have a high affinity for antibodies) conjugated to a solid phase like agarose or 

sepharose. If one protein “Y” forms a complex with the protein “X”, then both will be pulled 

down together with the antibody. Other proteins that are not part of the complex are removed 

by washing the solid phase and, after releasing the complex from the matrix, the proteins “X” 

and “Y” can be detected for example trough western blot analysis. 

3.3.6.1 Preparation of cell lysates for Co-IP 

Cells were plated in 10 cm diameter petri (1.2x106 cells/petri). Two petris were seeded per 

condition and 4 for Co-IP controls. They were left 24 hours to recover and treated with 

resveratrol 50 µM for 60 minutes in 0% FCS medium. Finished the treatment, the petris were 

put on ice and the cells were washed twice with 10 ml cold PBS. Then 500 µl of cold lysis 

buffer for immunoprecipitation NP-40 containing the protease inhibitor cocktail were added 

to the petris and the cells were scraped. The lysates of both petris with the same condition 

were collected in the same 1.5 ml Eppendorf tube and passed through a 21 gauge needle to 

improve the lysis of the cells. 
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The choice of the lysis buffer NP-40 to perform immunoprecipitation was made considering 

that its strength will preserve most of the protein-protein complex. 

RIPA lysis buffer was not used because it has a higher stringency and could break the protein 

complex before being immunoprecipitated. 

In order to preserve the integrity of the protein complex it is very important to keep always 

the lysate on ice. The lysates are centrifuged 10 minutes 12000 x g at 4°C the supernatants are 

transferred to new tubes. 

3.3.6.2 Preparing Protein A/G Plus-Agarose  

The commercial product Protein A/G Plus-Agarose of Santa Cruz was centrifuged at 4°C and 

1000 x g for 10 min and washed (2x) with the same lysis buffer used above, resuspending the 

agarose without vortexing to avoid deformations of the solid matrix. After the washing the 

pellet agarose was resuspended in the same volume of lysis buffer to have 50% slurry. One 

hundred µl of the 50% slurry are needed for each tube. The mix has to be resuspended by 

flicking before use.  

3.3.6.3 Pre-Clearing the cell lysates 

To minimize unspecific binding of proteins to the agarose, the lysates have to be pre-cleared. 

Fifty µl of the resuspended volume of the Protein A/G Agarose were added to each tube with 

the lysates and they were incubated on a rocker platform for 1 hour at 4°C. 

The beads were pelleted by centrifugation at 1000 x g for 10 minutes and the supernatants 

were transferred to 1.5 ml Eppendorf tubes. 

3.3.6.4 Adding the antibody 

Because western blots of immunoprecipitated proteins have several unspecific bands, controls 

have to be incorporated and treated together with the samples from the beginning in order to 

run at the end in the same gel for western blot analysis.  
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Control tubes include: 

1- Lysis buffer without cell lysate but with immunoprecipitating antibody. 

2- Cell lysate without antibody but with unspecific IgG made in the same species than the 

immunoprecipitating antibody. 

3- Positive control (complete cell lysate without IPP). 

Antibodies were added to the respective tubes and incubated on a rocker platform at 4°C 

overnight. After the incubation, 50 µl of resuspended 50% slurry of Protein A/G Plus-Agarose 

were added to each tube, and they were incubated 3 hours on a rocker platform at 4°C. At this 

point the complex is bound to the agarose beads. The agarose was collected by centrifugation 

at 1000 x g for 10 minutes at 4°C and the supernatant was carefully aspirated and discarded. 

Pellets were washed 5 times with 1 ml NP-40 lysis buffer, each time repeating the 

centrifugation to eliminate the non-immunoprecipitated proteins. After the last wash the 

supernatant was discarded and the pellet was resuspended in 50 µl of Lysis Buffer with 1x 

Roti-Load Sample Buffer. Samples were boiled for 5 minutes to denaturize the proteins and 

release them from the agarose. After boiling tubes were centrifuged to pellet the solid matrix 

and the supernatants were analyzed using western blot assay following the protocol already 

described.  

In the present work the following IPPs were performed (details of antibodies used on Table 

5):  

- CREB immunoprecipitation followed by western blot for acetyl-lysine, Sirt1 and CREB. 

- Sirt1 immunoprecipitation followed by western blot for CREB and Sirt1 

- I-2 immunoprecipitation followed by western blot for phospho-threonine and I-2. 

- Acetyl-lysine immunoprecipitation followed by western blot for GSK3β. 
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Table 5. Antibodies used for protein Co-IP. 

Antibodies Company Host Dilution 

Acetyl-Lysine (polyclonal) New England Biolabs, Frankfurt, 
Germany Rabbit 1:100 

CREB (polyclonal) New England Biolabs, Frankfurt, 
Germany Rabbit 1:100 

I-2 (monoclonal) R&D Systems, MN, USA Mouse 1:100 

Sirt1 (monoclonal) Upstate, MA, USA Mouse 1:100 

 

3.3.7 Chromatin immunoprecipitation (ChIP) 

Through chromatin immunoprecipitation analysis (ChIP), it is possible to identify specific 

proteins that are associated with a region of the DNA (i.e. transcription factors) as well as 

regions of the DNA that are associated with specific proteins.  The relative amount of linked 

protein-DNA in the cells can be determined for example by performing semiquantitative PCR.   

3.3.7.1 Preparation of cells for ChIP analysis of GH promoter  

GH3 cells were plated in two 10 cm diameter petri dishes (5x106 cells/petri) in 10 ml of 

growth media each, left 24 hours to recover. One of them was treated 1 hour with 50 µM 

resveratrol and the other with vehicle. From that moment both petris were processed using the 

EZ ChIP Chromatin Immunoprecipitation Kit (Upstate) following the manufacturer’s 

instructions.  

Finished the previous treatment, the protein-DNA complexes were cross-linked with 270 µl of 

formaldehyde 37%, and after 10 minutes at room temperature the excess formaldehyde was 

quenched with 1 ml 10x Glycine (kit provided). The plates were left at room temperature for 5 

minutes to complete the reaction and then put on ice. 

The medium was carefully aspirated to avoid losing cells. The cells were washed two times 

with cold PBS and after the last wash 1 ml of cold PBS containing 1x Protease Inhibitor 

Cocktail (kit provided) was added to each petri. The cells of each petri were scraped into 2 
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different microfuge tubes. Each tube (one control and one treated with resveratrol) was 

processed in identical way. 

The cells were pelleted by centrifugation at 4°C and 700 x g for 5 minutes , the supernatant 

was removed and the pellet resuspended in 400 µl of SDS Lysis Buffer (kit provided) 

containing 1x Protease Inhibitor Cocktail. 

The lysates were sonicated on ice to shear the cross-linked chromatin with a Sonifier cell 

disruptor B15 (6 output control, 80% duty cycle) applying pulses during 10 seconds. That was 

repeated 6 times, waiting 1 minute in between to allow heat dissipation. Different sonication 

conditions were tested to get the required DNA length from 200 to 1000 bp. 

After sonication the lysates were centrifuged at 15000 x g at 4°C for 10 minutes and the 

supernatant of each tube was divided in three fractions of 100 µl.  

Nine hundred µl of dilution buffer with Protease Inhibitor II (kit provided) were added to each 

of the three tubes containing 100 µl of sheared chromatin. Sixty microliter of Protein G 

Agarose 50% slurry (kit provided) were added to the tubes in order to remove proteins or 

DNA that might bind unspecifically to the Protein G Agarose (that is, to preclear the mix). 

The tubes were incubated 1 hour on a rotating platform and after incubation the agarose was 

pelleted by centrifugation at 5000 x g for 1 minute. 

The supernatants were collected into 3 fresh 1.5 ml Eppendorf tubes and they were treated as 

follows: 

a) Five µg of antibody anti-acetyl-histone 3 (kit provided) were added to the first tube as a 

positive control and indirect indicator of Sirt1 histone deacetylase activity. 

b) In the second tube 5 µg of antibody against Pit1 (in the case of analysis of GH promoter) 

or CREB (in the case of analysis of Pit1 promoter) were added to immunoprecipitate the 

protein of interest. 

c) Five µg of Normal Rabbit IgG (included in the kit) were added to the third tube as a 

negative control. 
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The tubes were incubated overnight at 4°C on a rotating platform. The next day 60 µl of 

Protein G Agarose were added to each tube, and the incubation continued for 3 hours in the 

same conditions. The solid matrix captures the complex antibody-antigen/DNA. They were 

pulled by centrifugation at 5000 x g for 1 minute and the supernatant fraction was removed. 

The pellet was washed with four different buffers, all of them provided by the kit. For each 

wash, the pellet was resuspended in 1 ml of the buffer, and then the tubes were rocked on the 

platform for 5 minutes and centrifuged at 4°C and 5000 x g for 1 minute. After that, the 

supernatant was carefully removed to avoid the lost of beads. 

The washes were performed with the following buffers: 

1- Low Salt Immune Complex Wash Buffer, one wash 

2- High Salt Immune Complex Wash Buffer, one wash 

3- LiCl Immune Complex Wash Buffer, one wash 

4- TE Buffer, two washes 

After washing, the complexes bound to the solid matrix were eluted with an elution buffer. 

This buffer was prepared using 10 µl 20% SDS, 20 µl 1M NaHCO3, and 170 µl of sterile 

distillate water (total volume = 200 µl) for each tube. One hundred µl of elution buffer were 

added to each tube containing agarose, and they were mixed by flicking. After 15 minutes the 

agarose was pelleted by brief centrifugation and the supernatant was transferred into a new 

tube. The remaining 100 µl of elution buffer were added to the pellet and the elution steps 

were repeated. The respective elutes were pooled together. 

Once eluted, all the samples were treated with 8 µl of NaCl 5M and incubated at 65°C 

overnight to reverse the cross-linking of DNA/Protein complexes. On the next day the 

samples were incubated with 1 µl of RNase A at 37°C during 30 minutes and after that 4 µl 

0.5M EDTA and 8 µl Tris-HCL 1M and 1 µL of Proteinase K were added to each tube. They 

were digested for 2 hours at 45°C. At this point the free DNA that was before bound to the 

immunoprecipitated proteins was ready to be purified. Bind Reagent (kit provided) was added 
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to the 200 µl of sample in a proportion 5:1 v/v to precipitate the DNA. Spin Columns (kit 

provided) are small columns with a special filter that retain the free DNA during 

centrifugation while the supernatant passes through and is discarded. The sample was put in 

the column, and was centrifuged for 30 seconds at 14000 x g. The DNA in the column was 

washed and eluted following the kit’s instructions. 

The purified DNA of the immunoprecipitates and their respective controls was analyzed using 

semi-quantitative PCR (protocol already described) using primers against the rat GH promoter 

(sense 5´-GTG ACC ATT GCC CAT AAA CC-3´ and anti-sense 5´-TGC ATG CCC TTT 

TTA TAC CC -3´) (Ezzat et al., 2005). 

3.3.7.2 Preparation of cells for ChIP analysis of Pit1 promoter  

To perform the ChIP on the Pit1 Promoter,  two petri dishes with 5x106 GH3 cells each were 

pre-treated 30 minutes with 5 µM forskolin in DMEM 0% FCS and then 1 hour with 50 µM 

resveratrol or vehicle (DMSO). The cells were processed following the protocol already 

described, although this time antibody anti-CREB was used to immunoprecipitate the Pit1 

promoter. 

PCR assay was performed using primers for the rat Pit1 promoter (sense 5´-TGA CGT CAA 

ATA AAG TTT CTG TTT T-3´ and antisense 5´-TGT TAA CCC GAA CTG TCT TTC TTA 

C-3´; see Table 1). Each ChIP was repeated twice. 

3.3.8 Transfection  

Cell transfection was performed with SuperFect (Qiagen, Hilden, Germany). Cells (3x105) 

were transfected for 3 hours with 1 µg Flag-SIRT1 or Flag-SIRT1 H363Y plasmid, and 0.5 

µg GH-luc or CRE-luc reporter plasmids, and left in 2% FCS DMEM for 48 hours. The dual-

Luciferase Reporter Assay (Promega) was used according to the manufacturer’s instructions 

and luciferase activity was measured by the Berthold TriStar luminometer. Addition of 0.3 µg 
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plasmid containing the Rous sarcoma virus promoter driving the β-Galactosidase gene 

ensured the proper control of the transfection efficiency. 

β-galactosidase activity was measured as follows: 30 μl distilled water were added to 20 μl of 

the supernatant into a transparent 96-well plate, 50 μl ONPG buffer (2x) were pipetted to the 

mix and the plate was incubated at 37°C in a light-protected box until the wells presented a 

light yellow color. β-galactosidase activity was measured in an ELISA plate reader at 420 nm. 

Data are expressed as the ratio of relative luciferase activity of plasmid to β-galactosidase 

activity. 

3.3.8.1 RNA interference 

Double-stranded small interfering RNA (siRNA) against rat Sirt1 (5´-GUA GAC CAA GCA 

ACA AAC ATT -3') was synthesized by Eurofins MWG Operon (Ebersberg, Germany). A 

scrambled siRNA (Scramble II; Eurofins MWG Operon) was used as a control. GH3 cells 

were transfected. Each experiment was performed in triplicates. 

3.3.8.2 Plasmids  

Competent bacteria Top 10 (Invitrogen, Paisley, UK) were transformed according to fabricant 

instructions with the desired plasmid (Table 6) and seeded on LB agar petri containing 50 

μg/μl ampicilin. The petri was incubated overnight at 37°C. One single colony was picked 

from the plate and put in 250ml LB medium containing 50 μg/μl ampicilin and left to grow 

overnight at 37°C. The plasmid was purified using Qiagen HiSpeed plasmid purification 

system (Qiagen, Hilden, Germany). 

The rGH-luc construct (kind gift of A. Gutierrez-Hartmann, University of Colorado, Denver, 

USA) has the proximal rat GH promoter upstream to the reporter gene luciferase. The CRE-

luc construct (Mercury pathway profiling system, Clontech Laboratories, Inc., Palo Alto, CA) 

has the cAMP responsive element upstream to the TATA box of the herpes simplex virus 

thymidine kinase promoter and the reporter gene luciferase. Flag-SIRT1 (plasmid 1791) and 
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Flag-SIRT1 H363Y (plasmid 1792), this last one encoding an enzymatically inactive Sirt1, 

were both obtained in Addgene (Cambridge, MA, USA; deposited by M. Greenberg; Brunet 

et al., 2004). The -194pit1-luc, -92pit1-luc and the -231mutDCREpit1-luc and -

231mutPCREpit1-luc bearing a mutation on the CRE binding element in the distal and 

proximal Pit1 promoter respectively were kind gift of C. Alvarez (Univ. of Santiago de 

Compostela; García et al., 2001). 

Table 6. List of plasmids used in this study. 

Plasmid Source/kind gift of 

-92pit1-luc C. Alvarez, Univ. of Santiago de Compostela, Spain 

-194pit1-luc C. Alvarez, Univ. of Santiago de Compostela, Spain 

-231mutDCREpit1-luc C. Alvarez, Univ. of Santiago de Compostela, Spain 

-231mutPCREpit1-luc C. Alvarez, Univ. of Santiago de Compostela, Spain 

β-Galactosidase D. Spengler, MPI of Psychiatry, Germany 

CRE-luc Clontech Laboratories Inc., Palo Alto, CA, USA 

Flag-SIRT1 Addgene. M. Greenberg; Brunet,Cambridge, MA,USA 

Flag-SIRT1 H363Y Addgene. M. Greenberg; Brunet,Cambridge, MA,USA 

HA GSK3β wt 
pcDNA3 Addgene. X. He et al.;  Bethesda, Maryland, USA 

rGH-luc Gutierrez-Hartmann, University of Colorado, USA 

 

3.3.9 cAMP intracellular radioimmunoassay 

GH3 cells were seeded (320000 cells per well) in one 6 well plate. After 24 hour 3 wells were 

transfected with siRNA for Sirt1 and 3 wells were transfected with scramble non-specific 

RNA as control, as previously described. Next day the cells were removed from the plate 

using trypsin, the 3 wells with siSirt were pulled together, and the same was done with the 3 

ones control. Then the cells were seeded in a 48 well plate. The next day they were treated for 

1 hour with DMSO or resveratrol 50 µM in DMEM medium without antibiotics, with 
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glutamine, and with 0.1% BSA and 0.5 mM IBMX. Forskolin 5 µM was also used as control. 

After stimulation, the medium was carefully discarded taking care not to disturb the cells. 

Cold 5% trichloroacetic (TCA) acid (500 µl) was added in the wells and incubated on ice 

overnight. 

After incubation TCA was transferred from the wells into 10 ml glass tubes. TCA was 

extracted from the samples with 3 ml of diethyl ether saturated with water. The diethyl ether 

was aspirated and discarded. The extraction with the ether was done twice. Samples were 

frozen at -80°C overnight and next day they were lyophilized overnight in a P3K-S50 

Lyophilizer. 

cAMP determination was performed with a commercial RIA (Radio Immuno Assay) kit from 

Perkin Elmer. This assay is based on the specific binding between antibody and antigen. A 

competition takes place between radioactive cAMP [125I] and non-radioactive cAMP 

(antigens) for the antibody. The system is incubated with a secondary antibody against the 

first one and the complex formed is precipitated through centrifugation to separate the bound 

from the free antigen. The radioactivity of the antigen-antibodies complex is measured to 

quantify the bound tracer. In this type of competitive analysis, the radioactivity measured is 

maximal when the amount of non-labeled cAMP is minimal and vice versa. A standard curve 

is constructed by performing the reaction with a constant concentration of labeled antigen and 

a variable concentration of standard cold cAMP. The unknown values of the samples were 

obtained by interpolation on this curve. 

3.3.10 Measurement of cell proliferation 

Cell proliferation was determined using the colorimetric WST-1 assay (Roche Molecular 

Biochemicals, Mannheim, Germany)) according to kit instructions. The cells were seeded in 

96-well tissue culture plates (10.000 cells per well) and incubated at 37°C. After being left 

overnight to attach, cells were treated as each experiment demanded. 
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The WST-1 assay is based on a tetrazolium salt which is cleaved by the mitochondrial 

respiratory chain to a soluble formazan dye. The amount of dye obtained directly correlates to 

the number of viable cells in the culture. The reaction product was measured in an enzyme-

linked immunosorbent assay (ELISA) plate reader at 450 nm. 

3.3.11 GH determination  

In vitro: GH3 cells were seeded into 96 well plates (1x104 cells/well) in 10% FCS DMEM 

medium. After 24 hours the cells were treated with resveratrol or DMSO for 24 hours in 0% 

FCS DMEM medium. Once concluded the treatment, the supernatants were transferred and 

frozen for posterior analysis and WST-1 assay was performed on the cells to determine cell 

proliferation. 

Human somatotrophinoma cells were seeded into 48 well plates (1x105 cells/well) in tumor 

medium. After 48 hours incubation, the cells were treated as needed for each experiment for 

24 hours. The supernatants were transferred and frozen for posterior hGH analysis and WST-

1 assay was performed on the cells to determine cell proliferation. 

Human GH concentration in supernatant was determined with IMMULITE 2000 Growth 

Hormone which is a solid-phase, two-site chemiluminescent immunometric assay. In this 

assay a solid-phase (bead) which is coated with a monoclonal anti-hGH antibody binds to the 

hGH of the sample, a second antibody also against hGH but containing the enzyme alkaline 

phosphatase is added to the reaction mix and forms an antibody-sandwich complex with the 

beads and the hGH. After wash the excess of antibody through centrifugation, a 

chemiluminescent substrate is added to the reaction. The intensity of the signal is proportional 

to the hGH concentration. 

In vivo: Rat GH (rGH) concentrations in supernatant and plasma were determined by RIA 

analysis. During this assay radioactive rGH [125I] (BIOTREND, Cologne, Germany) and non-

radioactive rGH (antigens) compete for the primary specific anti-rGH antibody (made in 

rabbit; NIDDK, CA, USA). The day after the samples were incubated with a secondary 
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antibody against rabbit made in goat (Chemicon, MA, USA) for 1.5 hours, the 

immunocomplex was precipitated with PEG 6%, the pellet was washed, and the radioactivity 

was measured. rGH concentrations were calculated by comparing them against a standard 

curve made using different concentrations of standard rGH (NIDKK, USA). 

Characteristics of the GH secretory pattern (mean GH levels, area under the curve (AUC) and 

amplitude) were assessed by the ULTRA program (kindly supplied by E Van Cauter; Van 

Cauter, 1988). 

3.3.12 Immunofluorescence assay 

GH3 cells were split onto Falcon culture slides (BD bioscience), and stimulated for 3 hours 

with vehicle + 5 µM forskolin or 5 µM forskolin + 50 µM resveratrol. After treatment, cells 

were fixed for 5 minutes in cold 4% paraformaldehyde, and then the slides were blocked in 

5% goat serum with 0.1% (v/v) triton X-100 for 30 minutes at room temperature. Slides were 

incubated over night at 4°C with rabbit polyclonal pCREB-Ser133 antibody (1:100, Enogene, 

USA). At the next day, the slides were washed 3 times with TBS and incubated 45 minutes at 

room temperature with Alexa Fluor 594 goat anti-rabbit antibody (Invitrogen, Paisley, UK). 

Prolong Gold antifade reagent with DAPI (Invitrogen, Paisley, UK) was used to visualize cell 

nucleus. 

3.3.13 Protein Phosphatase 1 (PP1) activity  

To determine PP1 activity, this phosphatase was immunoprecipitated from resveratrol or 

DMSO treated GH3 cells (8 million cells / condition). After three hours treatment cells were 

scraped in 1 ml NP-40 lysis buffer, sonicated. Lysates were centrifuged at 12000 x g for 10 

minutes and the supernatants were transferred to a fresh tube and incubated overnight with 10 

µl of anti-PP1α antibody (Santa Cruz Biotech, CA, USA) at 4°C. The immunocomplex was 

precipitated with 50 µl of Agarose A/G Plus and washed 6 times with the lysis buffer. 
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Phosphatase activity was determined using the Ser/Thr phosphatase Kit 1 (Upstate, MA, 

USA), which is based in the malachite green phosphatase assay. Agarose pellets containing 

the immunoprecipitated PP1 were resuspended and incubated with 50 µl of kit reaction buffer 

containing 500 µM of phosphopeptide during 30 minutes at room temperature. The 

immunoprecipitated enzyme releases phosphate group from the peptide. After a short 

centrifugation, 25 µl of the supernatant were transferred to a 96 well plate and 100 µl of 

Malachite Green Solution was added to each well. After 15 minutes, color development 

absorbance was measured at 630 nm in a microtiter plate reader. Absorbance of blank (buffer 

containing enzyme immunoprecipitated in absence of phosphopeptide) was subtracted to 

absorbance of the wells with the enzyme and phosphopeptide. A standard curve was 

determined following kit instruction’s, with quantities of standard phosphate in the range of 

2000 pmol to 0 pmoles in 25 µl. The amount of released phosphate by the enzyme was 

determined by comparing absorbance of the probes to the standard curve. 

3.3.14 Site-Directed Mutagenesis 

The site-directed mutagenesis technique enables to change a given gene sequence by 

introducing a point mutation and mutate a complete codon, but also by causing multiple 

amino acids insertions or deletions in the original DNA sequence. This technique can be used 

for characterizing relationships between protein structure and function, studying gene 

expression elements, and modifying vectors.  

In the present study the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies Inc.) was used. This method is based on the synthesis of both mutated plasmid 

strands using as template the original plasmid and specially design primers carrying the 

desired mutation (mutagenic primers). The primers, each complementary to opposite strands 

of the vector, bind the template during the annealing phase and are extended during 

temperature cycling by the enzyme PfuUltra high-fidelity (HF) DNA polymerase (kit 

provided). Extension of the oligonucleotide generates a mutated plasmid containing the 
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desired mutation. Following temperature cycling, the product is treated with the enzyme Dpn 

I (kit provided), which is specific for methylated and hemimethylated DNA and is used to 

digest the DNA template, preserving the synthesized DNA containing the mutation. That is 

possible because the DNA isolated from almost all E. coli strains, in this case competent E. 

coli Top 10 (Invitrogen, Paisley, UK), is methylated since these strands have the enzyme 

DNA adenine methyltransferase (Dam+) while the new synthesized mutated plasmid is not 

methylated. After digestion, the mutant vector can be transformed into XL10-Gold 

ultracompetent cells (kit provided). The new plasmid was purified using Qiagen HiSpeed 

plasmid purification system (Qiagen, Hilden, Germany). 

3.3.14.1 Synthesis of GSK3β K205R plasmid 

In this work, site-directed mutagenesis technique was used to change the adenine to guanidine 

in the codon encoding for lysine at position 205 in human GSK3β, resulting in a lysine to 

arginine substitution ( K205R). The HA GSK3β wt pcDNA3 (Addgene plasmid 14753, 

deposited by X. He) plasmid was used.  

The mutagenic primers were designed following the kit’s primer design guidelines and were: 

sense 5'-CTGTGACTTTGGAAGTGCAAGGCAGCTGGTCC-3', antisense 5'-

GGACCAGCTGCCTTGCACTTCCAAAGTCACAG-3' with the mutated base shown in red 

(Eurofins MWG Operon, Ebersberg, Germany). The special PCR program was as follows: 

5 μl of 10× reaction buffer (kit provided) 

20 ng of plasmid HA GSK3β wt pcDNA3. 

125 ng of sense primer 

125 ng of antisense primer 

1 μl of dNTP mix (kit provided) 

double distilled H2O to a final volume of 50 μl 

1 μl of PfuUltra HF DNA polymerase (2.5 U/μl) (kit provided) 
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The cycling parameters were:  one single step at 95°C for 1 minute, and then denaturation at 

95°C for 30 seconds, annealing at 55°C for 1 minute, polymerization at 68°C for 7 minutes, 

repeating these 3 last steps for 12 cycles. After the thermal cycling, 1µl of the Dpn I 

restriction enzyme was added and incubated for 1 hour at 37°C. Competent cells were 

transformed by heat shock and plated in LB Agar with ampicillin. The mutated plasmid was 

prepared as described in the section 3.3.14.1. Successful mutagenesis was confirmed by 

sequencing the area of interest (Sequiserve, Vaterstetten 

Germany). 

3.3.15 Statistical Analysis 

Differences were assessed by one-way ANOVA in combination with Scheffé’s test. P values 

less than 0.05 were considered as significant. 
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4 RESULTS 

4.1 AMPK on GH synthesis 

4.1.1 Effect of AMPK activation on GH promoter activity 

The effect of AMPK activation on GH was studied using a plasmid containing the luciferase 

gene downstreams to the rat GH promoter (GH-luc). The GH3 immortalized 

somatotrophinoma cells were transfected with the GH-luc plasmid and AMPK was activated 

using the two commonly used AMPK agonists AICAR and metformin. Both AICAR and 

metformin suppressed GH promoter activity (suppression as % of vehicle control: 21±8 and 

30±3 respectively for AICAR 2 mM and metformin 1 mM; Fig. 9A-B). 
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Figure 9. Effect of the AMPK activators A. AICAR and B. metformin on GH promoter activity. RLA: relative 
luciferase activity. Representative of three experiments is shown. *P<0.05 to vehicle treated control. 
 

4.1.2 Effect of AMPK activation on GH secretion in vitro 

Treatment of rat anterior pituitary cells in primary cell culture with AICAR for 24 hours had a 

weak suppressive effect on GH secretion (suppression of GH secretion as % of control 17±5 

for 2 mM AICAR, P=0.013; Fig. 10A). The effect of metformin was more potent than that of 

AICAR (% suppression: 31±2 at the 1 mM and 18±2 at the 0.5 mM dose, P<0.001 and 

P=0.001 respectively; Fig. 10B). Lower metformin doses at 0.15 mM had no significant effect 

on GH secretion.  

To confirm metformin’s suppressive effect on GH, ten human somatotrophinomas in primary 

cell culture were treated with 2 mM of the compound for 24 hours. Metformin suppressed GH 
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secretion from four out of ten cases (% suppression: 35±16; Fig. 10C). However, the majority 

of cases did not respond to metformin by lowering GH secretion.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Effect of 24 hour treatment with A. 2 mM AICAR and B. 0.15, 0.5 and 1 mM metformin (Met) on 
GHRH (10 nM) induced GH secretion from rat GH-secreting GH3 cells. C. Metformin at 1 mM concentration 
suppressed GH secretion from four human somatotrophinomas in primary cell culture. All treatments were 
performed in serum free DMEM. For each condition, GH RIA values were divided to the cell viability counts as 
determined by WST-1 at OD 450nm. Final values are presented as percentage of vehicle control. * P<0.05 to 
vehicle treated control. 
 
 

Altogether the low, albeit significant, potency of the AMPK activators on GH synthesis 

indicates that AMPK may not be the primary energy sensor regulating GH synthesis in the 

pituitary. 
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4.2 Sirt1 on GH synthesis 
 

4.2.1 The Sirt1 activator resveratrol reduces GH levels in vivo 

To activate Sirt1 the natural polyphenol resveratrol was used (Howitz et al., 2003). To 

establish that resveratrol suppresses GH secretion, the compound was administered in adult 

male rats and serum GH levels were determined. I.p. administration of 5 mg/kg resveratrol, a 

treatment that improves insulin sensitivity (Baur & Sinclair, 2006), had a slight, but not 

significant, effect on basal GH levels (resveratrol treated 10±2 ng/ml vs. vehicle treated 

14±10 ng/ml). I.v. GHRH injection raised GH levels after 5 minutes in both vehicle and 

resveratrol treated animals, but GH pulse amplitude was significantly lower in resveratrol 

treated rats (RSV: 492±37 ng/ml vs. vehicle: 1125±130 ng/ml; P=0.005, Fig. 11A). 

Furthermore, resveratrol suppressed total GHRH-induced GH secretion as determined by area 

under the curve (AUC; 1455±107 vs. vehicle treated 5861±2967; P=0.007, Fig. 11B), 

demonstrating that Sirt1 activation decreases circulating GH levels.  

 

 

 

 

 

 

 

 

Figure 11. A. Mean plasma GH levels after administration of GHRH (10 µg/kg i.v.) plus vehicle or resveratrol 
(RSV; 5 mg/kg i.p.) in male adult rats (n=8 per group). *P<0.05; **P<0.001. Blood was taken every 5 minutes 
for the first 20 minutes and every 15 minutes for the remaining time and GH levels were determined by RIA. B. 
Mean AUC in male rats injected with vehicle or resveratrol in the presence of GHRH. 
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S
irt

1

Anterior pituitary

4.2.2 Resveratrol reduces GH secretion from pituitary somatotrophs in vitro 

To identify if resveratrol suppresses GH secretion at pituitary level, rat anterior pituitary cells 

in primary cell culture were treated with 10 nM of GHRH (to induce GH) and 50 µM 

resveratrol for 24 hours. Resveratrol suppressed GHRH-induced GH secretion in these 

isolated rat anterior pituitary cells demonstrating a direct pituitary action (Fig. 12A). It also 

suppressed GH secretion from the immortalized pituitary GH-secreting GH3 cells (Fig. 12B). 

These data demonstrate that resveratrol suppresses GH synthesis directly at pituitary level. 
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Figure 12. A. Inhibitory effect of 24 hour treatment with 50 µM resveratrol on GHRH (10 nM) induced GH 
secretion on rat anterior pituitaries in primary cell culture. B. Resveratrol dose response (1 µM, 10 µM and 50 
µM) on GH secretion in rat GH-secreting GH3 cells. All treatments were performed in serum free DMEM. For 
each condition GH RIA values were divided to the cell viability counts as determined by WST-1 at OD 450nm. 
Final values are presented as percentage of vehicle control. * P<0.05 to vehicle treated control 
 

4.2.3 Sirt1 is expressed in the anterior pituitary  

Intense Sirt1 immunoreactivity was found in the nuclei of all endocrine cells in human 

(Fig.13) and rat anterior pituitary.   

 

Figure 13. Sirt1 immunoarectivity on a human anterior pituitary.   Sirt1 is 
present in the nuclei of all endocrine cells as shown by DAB 
immunostaining (brown). Inserts: negative control omitting the primary 
antibody. Nuclei were counterstained with toluidine blue. Magnification 
200X. 
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4.2.4 Sirt1 activation reduces GH secretion from pituitary somatotrophs in vitro 

To prove that resveratrol effect is mediated through Sirt1, GH3 cells were transfected with 

siRNA against Sirt1 or treated with the specific Sirt1 inhibitor sirtinol. Inhibiting Sirt1 with 

siRNA or sirtinol abolished the suppressive action of resveratrol on GH (Fig. 14A and B) 

demonstrating a Sirt1 specific effect. In addition, basal GH secretion was increased in cells in 

which Sirt1 was knocked down with siRNA (Fig. 14C) or inhibited with sirtinol (Fig. 14D) 

further demonstrating a suppressive action of Sirt1 on GH synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. A. Effect of Sirt1 RNA interference on GH secretion. GH secretion was measured in GH3 cells 
transfected with 100 nM scramble (control) or Sirt1 (Sirt1) siRNA. Representatives of two independent 
transfection experiments are shown. B. Effect of the specific Sirt1 inhibitor sirtinol (10 µM) on GH secretion. C. 
Effect of Sirt1 RNA interference on resveratrol’s suppressive action on GH release. GH secretion was measured 
in GH3 cells transfected with 100 nM scramble or Sirt1 siRNA, and treated with resveratrol for 24 hours. D. 
Effect of sirtinol on resveratrol-suppressed GH secretion. All treatments were performed in serum free DMEM. 
For each condition GH RIA values were divided to the cell viability counts as determined by WST-1 at OD 
450nm. Final values are presented as percentage of vehicle control. * P<0.05 to vehicle treated control; # 
P<0.001 to resveratrol treated. 
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4.2.5 Sirt1 activation reduces GH secretion from human somatotrophinomas in 

vitro 

Resveratrol had effectively suppressed GH synthesis in the rat GH3 cells that are in fact GH-

secreting pituitary tumor cells or somatotrophinomas (Fig. 12). These data indicated that it 

could also affect GH secretion from human somatotrophinomas from patients with 

acromegaly. Sirt1 transcript was readily detected in all 25 somatotrophinomas screened by 

RT-PCR (Fig. 15) albeit at varying levels. 

 

 

 

 

Figure 15. RT-PCR for SIRT1 and β-actin in one normal anterior pituitary (NP) and 25 
somatotrophinomas (numbers indicate the tumors as shown in Table 1) from one representative 
experiment. ∅ represents PCR reaction without template. 
  

Treatment of 13 human somatotrophinomas in primary cell culture with 50 µM resveratrol 

suppressed GH secretion more 20% in 8 out of 13 cases (% mean suppression 30±7; Fig. 

16A). Treatment with the Sirt1 inhibitor sirtinol in one case (#27) that provided enough cells 

for this experiment abolished the inhibitory effect of resveratrol on GH secretion (% mean 

suppression 28±1.5 after resveratrol, P=0.023 vs. % mean increase 17±1.1 after 

resveratrol+sirtinol, P=0.025 to resveratrol; Fig. 16B). This result confirms that the effect of 

resveratrol on GH secretion is through Sirt1 also in human somatotrophinoma cells.  
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Figure 16. A. GH secretion from 13 human somatotrophinoma in primary cell culture (case # in Table) treated 
with 50 µM resveratrol. B. Effect of the Sirt1 inhibitor sirtinol (1 µM) on resveratrol (50 µM) induced 
suppression in GH secretion in case #27. Treatments were performed in 10% FCS-DMEM for 24 hours. Each 
GH value was divided with the WST-1 colorimetric assay (determining cell viability) value obtained from the 
same sample. Data are presented as percentage of vehicle treated control. Each condition was done in 
quadruplicates. *P<0.05 to vehicle control; #P<0.05 to resveratrol.  
 

Treatment in one case that provided enough cells for this experiment (#28) with 12, 25 and 

50µM resveratrol for 24 hours suppressed GH secretion in one somatotrophinoma in primary 

cell culture (mean suppression of GH secretion as % of vehicle control: 48±1.3, 51±2, 62±2.8 

respectively; all P<0.001; Fig. 17A). In contrast treating the same tumor with the Sirt1 

inhibitor sirtinol significantly increased basal GH secretion by 20% (% mean increase of GH 

secretion 29±2.5 at 1 µM, P=0.053; 20±2.2 at 100 nM, P=0.060; Fig. 17B). 
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Figure 17. GH secretion from a human somatotrophinoma in primary cell culture (case #28 in Table) treated 
with A. resveratrol (* P<0.001) and B. the Sirt1 inhibitor sirtinol (* P=0.043). Treatments were performed in 
10% FCS-DMEM for 24 hours. Each GH value was divided with the WST-1 colorimetric assay (determining 
cell viability) value obtained from the same sample. Data are presented as percentage of vehicle treated control. 
Each condition was done in quadruplicates.  
 
These data indicate that Sirt1 activation decreases GH synthesis also in human 

somatotrophinomas. 

 

4.2.6 Sirt1 reduces GH promoter activity  

To elucidate the mechanism behind the inhibitory action of Sirt1 on GH synthesis, its action 

on the GH promoter was studied in GH3 cells. The cells were transfected using a plasmid 

containing the luciferase gene downstreams to the GH promoter (GH-luc). 

Sirt1 overexpression suppressed GH promoter activity (Fig. 18A). In contrast inhibiting Sirt1 

by siRNA (Fig. 18B), nicotinamide (NAM) or sirtinol increased GH promoter activity (Fig. 

18C). These data demonstrate that Sirt1 affects GH levels by downregulating its transcription. 
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Figure 18. Effect of Sirt1 A. overexpression and B. knockdown on GH promoter activity in GH3 cells. C. Effect 
of the Sirt1 inhibitors NAM and sirtinol on GH promoter activity. Empty vector (Ø), scrambled sequence siRNA 
(Scramble) or Vehicle (Veh) were used as control. RLA: relative luciferase activity. Representative of three 
experiments is shown. P<0.05. 
 
 

4.2.7 Sirt1 activation reduces Pit1 binding to GH promoter by suppressing Pit1 

transcription  

To understand how Sirt1 inhibits GH promoter activity, chromatin immunoprecipitation 

(ChIP) experiments were performed in GH3 cells. Sirt1 did not directly bind to the rat GH 

promoter. No CREB binding was detected, which is in accordance with previous studies 

reporting absence of CRE on the rat GH promoter (Tansey et al., 1993; Cohen et al., 1999). In 

contrast, GHRH induced Pit1 binding was detected on the GH promoter, which was 

substantially decreased after 3 hours of 50 µM resveratrol treatment (Fig. 19A). Resveratrol 

decreased Pit1 levels (Fig. 19B), and this is Sirt1 specific action since it was not observed in 

GH3 cells in which Sirt1 was knocked down by RNA interference (Fig. 19C). These data 

show that Sirt1 activation downregulates Pit1 transcription and limit its availability to the GH 

promoter. 
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Figure 19. A. Effect of 3 hours treatment with 50 µM resveratrol on Pit1 binding to the GH promoter in GH3 
cells as determined by chromatin immunoprecipitation. Treatments were performed in serum free DMEM. 
Representative of two experiments is shown. B. Effect of resveratrol on Pit1 levels in GH3 nuclear extracts. C. 
Effect of Sirt1 RNA interference on resveratrol’s suppressive action on Pit1. Representative of two experiments 
is shown.  
 

4.2.8 Sirt1 suppresses CREB transcriptional activity  

Pit1 transcription is primary governed by CREB and the Pit1 promoter has canonical CRE 

sites (McCormick et al., 1990). Eliminating Sirt1 by siRNA increased Pit1 promoter activity 

(Fig. 20A). However it did not affect Pit1 promoter constructs in which CRE sites were 

mutated (-231mutDpit1-luc and -231mutPpit1-luc) or progressively deleted (-194pit1-luc and 

-92pit1-luc; García et al., 2001; Fig. A) indicating that Sirt1 acts at CREB level.  

ChIP for Pit1 promoter was performed on GH3 cells challenged with 5 µM forskolin to 

increase CREB activity and treated with resveratrol. Resveratrol treatment decreased 

forskolin-induced CREB binding to the Pit1 promoter (Fig. 20B). Sirt1 activation with 

resveratrol did not affect CREB transcription and CREB protein levels (Fig. 20C). Instead, its 

overexpression suppressed CRE transcriptional activity (Fig. 20D) while the opposite was 

observed after inhibiting Sirt1 with siRNA, nicotinamide or sirtinol (Fig. 20E & 20F). These 

data indicate that Sirt1 suppresses CREB transcriptional activation. 
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Figure 20. A. Effect of Sirt1 knockdown (Sirt1) on intact Pit1 promoter (-231Pit1) activity and on constructs 
lacking both or one of the two CRE (-92pit1-luc and -194pit1-luc), or having mutation in the CRE (-
231mutDPit1 and -231mutPPit1). Results are shown as RLA: β-galactosidase ratio.  Data are expressed as 
percentage of individual scrambled controls. *P<0.05. B. Effect of 2 hours 50 µM resveratrol treatment on 
CREB binding to the Pit1 promoter in GH3 cells as determined by chromatin immunoprecipitation. Cells were 
pretreated with 5 mM forskolin for 30 minutes. Representative of two experiments is shown. C. Total CREB 
levels in GH3 cells treated with 50 µM resveratrol as determined by western blot. Effect of D. Sirt1 
overexpression, E. Sirt1 siRNA and F. Sirt1 inhibition by 10 mM NAM or 10 µM sirtinol on CRE transcriptional 
activity in GH3 cells. Empty vector (Ø), scrambled sequence siRNA (Scramble) or Vehicle (Veh) were used as 
control. Treatments were performed in serum free DMEM. Results are shown as RLA: β-galactosidase ratio and 
data are expressed as percentage of control. Each experiment was repeated twice. 
 

4.2.9 Sirt1 suppresses CREB phosphorylation 

GHRH and cAMP-raising agents, such as forskolin, activate CREB transcriptional activity by 

inducing its phosphorylation at Ser133, resulting in increased CREB-driven transcription. Sirt1 

activation with resveratrol or inhibition by RNA interference did not affect basal or forskolin 
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induced intracellular cAMP levels (Fig. 21A), indicating that its suppressive effect on CREB 

phosphorylation is not due to decreased intracellular cAMP levels. Resveratrol treatment 

suppressed forskolin induced CREB-Ser133 phosphorylation (Fig. 21B), but not in GH3 cells 

in which Sirt1 was knocked down demonstrating a Sirt1 specific effect (Fig. 21C). In 

addition, GH3 cells overexpressing Sirt1 displayed lower levels of forskolin-induced pCREB-

Ser133 compared to the empty vector control (Fig. 21D).  

 
 
Figure 21. A. Intracellular cAMP release was 
determined after 1 hour treatment with 50 
µM resveratrol in GH3 cells transfected with 
100 nM scramble or Sirt1 siRNA. For 
control, cells were treated with 5 µM 
forskolin. Data are presented as percentage of 
each control. *: P<0.001. Representatives of 
two independent transfection experiments are 
shown. B. GH3 cell lysates treated with 50 
µM vehicle or resveratrol for 1, 3 and 6 hours 
in the absence or presence of 5 µM forskolin 
analyzed by western blot using anti-pCREB-
Ser133 and -CREB. C. Effect of Sirt1 RNA 
interference (Sirt1) on pCREB-Ser133 levels 
in GH3 cells treated with 50 µM vehicle or 
resveratrol for 1 hour. D. pCREB-Ser133 
levels after forskolin treatment for 1, 3 and 6 
hours in GH3 cells transfected with a control 
(Ø) or Sirt1 overexpressing plasmid as 
determined by western blot. Representatives 
of three experiments are shown. 

 

 

 

 

 

 

 

The suppressive effect of Sirt1 on forskolin-induced CREB phosphorylation at Ser133 was 

confirmed by immunofluorescence in GH3 cells treated with resveratrol (Fig. 22). These data 

further demonstrate an inhibitory action of Sirt1 on CREB phosphorylation. 
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Figure 22. Effect of resveratrol on forskolin induced pCREB-Ser133 immunofluorescence. 
 

4.2.10 Sirt1 acts through the protein phosphatase 1 (PP1)  

CREB is primarily dephosphorylated by the protein phosphatase PP1 (Alberts et al., 1994). 

PP1 exists as an oligomeric complex composed of the catalytic subunit PP1c and other 

regulatory subunits, including the inhibitor I-2. Inhibiting PP1 by introducing I-2 in GH3 cells 

abolished the suppressive effect of resveratrol on CREB phosphorylation (Fig. 23B). The 

Sirt1-induced decrease in pCREB-Ser133 phosphorylation levels indicates the involvement of 

a protein phosphatase. Indeed pretreatment with the serine/threonine phosphatase inhibitor 

okadaic acid abolished resveratrol’s suppressive action on pCREB-Ser133 levels (Fig. 23A).  

Sirt1 overexpression increased PP1 activity (Fig. 23C). In contrast, inhibiting Sirt1 with RNA 

interference suppressed PP1 activity (Fig. 23D), indicating a role for Sirt1 on PP1 activation. 
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Figure 23. Effect of 50 µM resveratrol (RSV) on forskolin-induced pCREB-Ser133 in cells A. pretreated with 10 
nM okadaic acid (OkA) for 2 hours or B. co-treated with I-2, as determined by western blot. C-E. Relative PP1 
activity as determined in OD 630 in GH3 cells transfected with empty vector or Sirt1; scramble control or Sirt1 
siRNA. Representative of two experiments are shown. 
 

4.2.11 Sirt1 acts through GSK3β 

PP1 is activated when I-2 is phosphorylated at threonine residues and released from the 

complex. Sirt1 activation with resveratrol increased the immunoprecipitated I-2 levels 

detected with a phospho-threonine antibody (Fig. 24A). I-2 is primarily phosphorylated by 

GSK3β at Thr72 (Hemmings et al., 1982).  Resveratrol treatment increased I-2-Thr72 

phosphorylation levels indicating an effect through GSK3β (Fig. 24B). Inhibiting GSK3β 

with SB-415286 abolished resveratrol’s suppressive action on phosphorylated pI-2-Thr72 

levels (Fig. 24B). Furthermore, it abolished its suppressive action on forskolin-induced CREB 

phosphorylation levels (Fig. 24C), demonstrating an important role for GSK3β in Sirt1 

dependent CREB dephosphorylation.  
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Figure 24. A. GH3 cells were treated with 50 µM resveratrol for 2 hours and cell lysates were 
immunoprecipitated with agarose A/G and anti-I-2 or a control rabbit IgG. The immunoprecipitated fractions 
were analyzed by western blot using anti-phosphothreonine (pThr) or anti-I-2. B. western blot for I-2 
phosphorylated at Thr72 in GH3 cells treated with vehicle control, resveratrol. In the last two lanes cells were 
pretreated with 14 µM of the GSK3β inhibitor SB-415286 (SB). C. Forskolin induced pCREB-Ser133 levels in 
GH3 cells treated with 50 µM resveratrol (RSV) alone or plus 14 µM SB-415286 (SB).  
 
 

Interestingly, SB-415286 treatment potentiated basal CREB transcriptional activity and 

CREB-Ser133 phosphorylation, indicating a general suppressive role for GSK3β on CREB 

activity (Fig. 25). 

 
 
 
Figure 25. Effect of the GSK3β inhibitor SB-415286 on basal pCREB-Ser133 immunofluorescence. 
 
 

4.2.12 Sirt1 affects GSK3β phosphorylation and activates GSK3β 

GSK3β is inhibited upon serine phosphorylation. Sirt1 activation with resveratrol suppressed 

the inhibitory GSK3β-Ser9 phosphorylation (Fig. 26A). Cells in which Sirt1 was inhibited by 

RNA interference displayed high pGSK3β-Ser9 levels (Fig. 26B). Neither intervention 

affected basal GSK3β levels. Active GSK3β phosphorylates glycogen synthase (GS) at Ser641. 

pCREB-Ser133

Total CREB

Forsk
RSV

-
-

+ +
- +

- - - + +SB
+
+ +

-

β-actin

WB: pThr

- RSV IgGw/o
IgG

IPP: I-2
A.

WB: I-2

32kDa

32kDa

B.

pI-2 Thr72

RSV - -+
- - +SB

+
+

β-actin

C.



RESULTS 

 76 

Sirt1 activation increased GS -Ser641 levels and this was abolished by inhibiting GSK3β with 

the specific inhibitor SB-415286, confirming its stimulating effect on the kinase (Fig. 26C). 

 

 

 

 

 
Figure 26. A. GH3 cell lysates treated with 50 µM resveratrol for 1, 3 and 6 hours analyzed by western blot 
using anti-pGSK3β-Ser9 and -GSK3β. B. GH3 cells transfected with 100 nM scramble or Sirt1 siRNA and 
analyzed by western blot using anti-pGSK3β-Ser9 and -GSK3β. C. GH3 cells treated with 50 µM resveratrol for 
one hour alone or with the 14 µM GSK3β inhibitor SB-415286 and analyzed by western blot for pGS–Ser641. 
Representatives of three experiments are shown. 
 

4.2.13 The deacetylase activity is essential for Sirt1’s action 

Sirt1 is a deacetylase so a mutant Sirt1 bearing a point mutation in the deacetylase domain 

(histidine at codon 363 substituted by tyrosine) was employed in order to test whether this 

enzymatic activity is needed for its effects on GH promoter activity, CRE activation and 

phosphorylation. Transfection with the deacetylase-defective Sirt1 H363Y did not suppress 

pCREB-Ser133 levels (Fig. 27A). In contrast, although forskolin-induced CREB 

phosphorylation declined after three hours in mock transfected cells, pCREB-Ser133 levels 

remained high even after 6 hours in cells transfected with the non-deacetylating SIRT1 

H363Y, demonstrating that the deacetylase activity of Sirt1 is important for CREB 

dephosphorylation. This was also corroborated by the observation that contrary to the wild 

type SIRT1, SIRT1 H363Y could not suppress CREB transcriptional activity (Fig. 27B). In 

addition, no suppression of rat GH promoter activity was observed in cells transfected with 

the catalytically inactive Sirt1 (Fig. 27C). These data show that Sirt1 suppresses CREB 

phosphorylation and its deacetylase activity is needed for a physiological CREB 

dephosphorylation. 
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Figure 27. A. pCREB-Ser133 levels after 
forskolin treatment for 1, 3 and 6 hours in 
GH3 cells transfected with a control or a 
plasmid overexpressing the deacetylase dead 
SIRT1 H363Y as determined by western blot. 
Empty vector (Ø) was used as control. Each 
experiment was repeated twice. Effect of the 
enzymatically inactive SIRT1 H363Y on B. 
CRE transcriptional activity and C. GH 
promoter activity. RLA: relative luciferase 
activity. Luciferase was measured 48 hours 
after transfection. Results are shown as 
luciferase:β-galactosidase ratio. Each 
experiment was repeated twice. *P<0.001. 
 
 
 
 
 
 
 

 

 

4.2.14 Sirt1 deacetylates CREB 

CREB was previously reported to be acetylated, an event that leads to enhanced CREB-

dependent transcription (Lu et al., 2003). In GH3 cells, Sirt1 activation with resveratrol 

decreased the levels of acetylated CREB detected with an acetyl-lysine specific antibody (Fig. 

28B), while co-immunoprecipitation experiments revealed a physical association between 

Sirt1 and CREB (Fig. 28A). Therefore, Sirt1 activation could suppress CREB transcriptional 

activity by physically associating with and deacetylating CREB. 

 

 

 

 

 
 
Figure 28. A. Cell lysates from GH3 cells treated with 50 µM resveratrol for 2 hours were immunoprecipitated 
with agarose A/G and anti-CREB or a control rabbit IgG or anti-Sirt1 or a control mouse IgG. The 
immunoprecipitated fractions and the whole lysates were analyzed by western blot using anti-Sirt1 or anti-
CREB. B. Similarly cell lysates were immunoprecipitated with agarose A/G and anti-CREB or a control rabbit 
IgG and the immunoprecipitated fractions and the whole lysates were analyzed by western blot using anti-acetyl-
lysine (Ac-Lys). Representatives of two experiments are shown. 
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4.2.15 Sirt1 affects GSK3β acetylation and activity 

The data until now revealed that a deacetylase intact Sirt1 is needed for its action on CREB 

dephosphorylation. In fact, transfection with the deacetylase dead SIRT1 H363Y suppressed 

PP1 activity and increased basal GSK3β-Ser9 phosphorylation indicating the importance of a 

deacetylation event (Fig. 29A-B). In addition, the suppressive action of GSK3β on CREB 

transcriptional activity depends on Sirt1 since transfection with the deacetylase dead Sirt1 

mutant H363Y abolished this effect (Fig. 29C). 

Endogenous GSK3β was readily detectable in acetyl-lysine immunoprecipitates (Fig. 29D), 

which were decreased after Sirt1 activation by resveratrol (Fig. 29E). Co-

immunoprecipitation studies revealed a physical association between endogenous Sirt1 and 

GSK3β (Fig. 29D).  

 

 Figure 29. A. Relative PP1 activity as 
determined in OD 630 in GH3 cells 
transfected with empty vector (Ø) or 
deacetylase dead SIRT1 H363Y. B. 
GH3 cells transfected with empty 
vector (Ø) or SIRT1 H363Y analyzed 
by western blot using anti-pGSK3β-
Ser9, -GSK3β, and –pGS-Ser641 C. 
CRE transcriptional activity in GH3 
cells transfected with GSK3β and 
Sirt1 or mutated Sirt1 H363Y. RLA: 
relative luciferase activity. Luciferase 
was measured 24 hours after 
transfection. Results are shown as 
luciferase:β-galactosidase ratio. Each 
experiment was repeated twice. 
*P<0.001 to empty plasmid control D. 
Cell lysate from GH3 cells 
immunoprecipitated with GSK3β 
antibody with no antibody or rabbit 
IgG used as negative controls. 
Immunoprecipitated fractions were 
analyzed by western blot using anti-
Sirt1, acetyl-lysine, and GSKβ. Ε. 
GH3 cells treated with vehicle or 50 
µM resveratrol for 2 hours, its lysates 
were immunoprecipitated with anti-
acetyl-lysine. Immunoprecipitated 
fractions were analyzed by western 
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blot using anti-GSKβ. Representatives 
of three experiments are shown. 

 
These data show that GSK3β is acetylated and imply a regulatory association between 

acetylation and its phosphorylation at Ser9 and subsequently the kinase activity. A web-based 

tool (PHOSIDA database; Choudhary et al., 2009) predicted two putative acetylation sites, 

one of which (K205) resides in the priming pocket that regulates the kinase activity. To test 

the putative role of this residue in GSK3β activity, a mutant GSK3β was created by changing 

lysine to arginine (K205R). Arginine is a basic amino acid similar to lysine, but cannot be 

acetylated; therefore changing lysine to arginine maintains the positive charge while 

producing a nonacetyl mutant.  Transfection with GSK3β K205R abolished Sirt1 suppression 

on CRE transcriptional activity (Fig. 30A), indicating that Lys205 deacetylation is an important 

step in Sirt1’s action on CREB transcriptional regulation.  

Mutation of lysine to arginine imitates a hypoacetylated state, and transfection with GSK3β 

K205R suppressed basal CRE transcriptional activity and CREB-Ser133 phosphorylation 

levels (Fig. 30B-C) and increased GS-Ser641 phosphorylation levels (Fig. 30C), showing that 

GSK3β is activated when hypoacetylated.  

GSK3β is autoregulated through PP1, which dephosphorylates GSK3β at Ser9 (Zhang et al., 

2003). Indeed, pretreatment with okadaic acid abolished resveratrol’s suppressive effect on 

GSK3β-Ser9 phosphorylation (Fig. 30D). 
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Figure 30. A. CRE transcriptional activity in GH3 cells transfected with Sirt1 in the presence of GSK3β and 
mutated GSK3β K205R. B. CRE transcriptional activity in GH3 cells transfected with mutant GSK3β K205R. 
RLA: relative luciferase activity. Luciferase was measured 24 hours after transfection. Results are shown as 
luciferase:β-galactosidase ratio. Each experiment was repeated twice. *P<0.001 to empty plasmid control (Ø); # 
P<0.05 to empty plasmid control. C. pCREB-Ser133 and pGS-Ser641 levels in GH3 cells transfected with GSK3β 
K205R. The same membrane was used and reblotted after sequential strippings. D. Effect of 2 hour pretreatment 
with 10nM okadaic acid (OkA) on resveratrol’s suppressive effect on GSK3β-Ser9. Immunoblots were repeated 
twice. 
 

 

Altogether, these data reveal a novel role for Sirt1 in the regulation of CREB phosphorylation 

and transcriptional activation. Sirt1 by activating GSK3β and PP1 promotes CREB 

dephosphorylation inhibiting its transcriptional activity and the final consequence of these 

events in pituitary somatotrophs is decreased Pit1 and GH gene transcription (Fig. 31A). It is 

possible that Sirt1 acts as a scaffold binding to and bringing in close proximity CREB, PP1 

and GSK3β when it is activated (Fig. 31B). 
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Figure 31. A. Schematic presentation of the signaling events taking place after Sirt1 activation, according to the 
findings of the present work. Sirt1 intercepts the cAMP pathway downstreams to GHRH (dotted line) at CREB 
level. Sirt1 physically associates with GSK3β, PP1 and CREB (red line). Sirt1 activation deacetylates and 
activates GSK3β. The activated GSK3β phosphorylates the PP1 inhibitor I-2, releasing it from the PP1 complex. 
This leads to the suppression of the inhibitory Ser9 phosphorylation and further activation of GSK3β via an 
autoregulatory loop. The free active PP1 associates with CREB and dephosphorylates it, while Sirt1 de-
acetylates it. The de-phosphorylated and de-acetylated CREB looses its transcriptional activity so there is less 
Pit1 transcription, which compromises the sufficient GH synthesis.  
B. GHRH-activated PKA pathway phosphorylates (shown in blue circle) the transcription factor CREB and the 
transcriptional coactivator, acetyltransferase CBP. Phosphorylated CREB is acetylated (shown in red circle) by 
the activated CBP, an event that enhances its binding to CRE sites on the Pit1 promoter, resulting in Pit1 
transcription. Pit1 binds to the rat GH promoter where it recruits the activated CBP, driving GH transcription. 
When Sirt1 is activated, it binds to the acetylated CREB and deacetylates it. At the same time it brings CREB in 
close proximity to the GSK3β- activated PP1, which dephosphorylates CREB. These events result in decreased 
DNA binding and suppression of Pit1 transcription.  
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5 DISCUSSION 

Changes in energy intake have been repeatedly reported to affect endocrine and metabolic 

processes. Since the identification of intracellular energy sensors activated by low energy 

levels like Sirt1, there has been a growing interest in their impact on the regulation of 

metabolism. However, their role on hormone synthesis in endocrine cells remains an open 

question. The findings presented here show that Sirt1 inhibits the GH/IGF-I axis, the most 

important neuroendocrine mechanism in the regulation of growth, metabolism and lifespan, at 

pituitary level by suppressing GH synthesis.  

GH is a major anabolic hormone and regulator of diverse metabolic functions, whose 

synthesis is tightly regulated by metabolic signals (Davidson, 1987; Dieguez & Casanueva, 

1995). Two important intracellular energy sensors were studied, AMPK and Sirt1. Activation 

of AMPK with AICAR and metformin suppressed GH promoter activity and secretion. 

However this effect, that was also reported in an independent study (Tulipano et al., 2011), 

was not potent enough to warrant further investigation. Subsequently, the present study 

focused on the NAD+-dependent Sirt1, which was detected in all endocrine cells of the 

anterior pituitary, suggesting that it may act as a local energy sensor to regulate not only GH 

but also the other pituitary hormones. Indeed, Sirt1 was recently described to regulate TSH 

secretion from pituitary thyrotrophs (Akieda-Asai et al., 2010).  

The plant polyphenol resveratrol was used to pharmacologically activate Sirt1 (Howitz et al., 

2003; Wood et al., 2004). Although previous reports have questioned resveratrol’s specificity 

on Sirt1 (Jang et al., 1997; Gehm et al., 1997), recent studies in vivo established that it acts 

through Sirt1 (Price et al., 2012). Indeed, knocking down Sirt1 abolished the inhibitory effect 

of resveratrol at 50 µM concentration on GH secretion, Pit1 transcription and CREB 

phosphorylation, ensuring a Sirt1 specific effect in GH3 cells. An interesting finding was that 

Sirt1 inhibition in somatotrophs increased basal GH levels and GH promoter activity, similar 
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to what was observed in the Sirt1-null mouse, which displays normal circulating GH levels 

despite the small pituitary size indicative of increased GH synthesis rate (Lemieux et al., 

2005). Sirt1 was also highly expressed in human anterior pituitaries and in most 

somatotrophinomas derived from acromegalic patients, where resveratrol treatment was also 

able to suppress GH secretion. The fact that pituitary cells in primary cell culture are difficult 

to get transfected prevented experiments with Sirt1 RNA interference. Nevertheless, 

pharmacological Sirt1 inhibition abolished resveratrol’s effect and increased GH secretion 

from human somatotrophinomas, similar to what was observed in rat GH3 cells. Altogether, 

these data demonstrate a suppressive role for Sirt1 on GH synthesis.  

Sirt1 affected not only endogenous GH and Pit1 synthesis but also their extrachromosomal 

promoters upstreams to luciferase gene indicating that its action is not exclusively due to its 

histone deacetylating activity. Human GH transcription is governed by the pituitary specific 

transcription factor Pit1 and CREB (Shepard et al., 1994). In contrast, rat GH promoter lacks 

the CRE consensus sequence and relies on Pit1 to convey the cAMP/PKA stimulatory signal 

(Tansey et al., 1993). In the rat somatotroph GH3 cells, Sirt1 modulated rat GH and Pit1 

transcription, but no direct binding was detected to either promoters. In contrast, Sirt1’s effect 

on Pit1 was dependent on CREB. The cAMP cascade activates CREB and resveratrol was 

recently shown to increase cAMP levels in muscle and adipose tissue by blocking cAMP 

phosphodiesterases (Park et al., 2012). However, Sirt1 did not affect cAMP levels in pituitary 

cells, but it suppressed CREB activity. 

CREB is activated when phosphorylated at the Ser133 residue as a response to cAMP increase 

(Johannessen et al., 2004). This initial burst is then followed by a gradual CREB-Ser133 

dephosphorylation, the so called attenuation phase, which is mediated by the serine/threonine 

phosphatases PP1 and PP2A (Hagiwara et al., 1992; Alberts et al., 1994; Wadzinski et al., 

1993). This process is dependent on HDAC1, which recruits PP1 to CREB (Canettieri et al., 

2003; Lu et al., 2003). In fact, CREB acetylation by CBP is tightly linked to its 



DISCUSSION 

 85

phosphorylation and transcriptional activation (Lu et al., 2003). Resveratrol treatment 

suppressed CREB acetylation and although Sirt1 was described to deacetylate and inhibit the 

closely related to CBP p300 (Bouras et al., 2005), the physical association of CREB with 

Sirt1 suggested a direct effect. Indeed, Sirt1 was recently shown to deacetylate CREB directly 

and not through CBP (Qiang et al., 2011).  

Interestingly, Sirt1 activates PP1 in contrast to HDAC1 that does not affect its phosphatase 

activity (Michael et al., 2000; Chen et al., 2005). PP1 is a holoenzyme highly conserved 

among eukaryotes that exists as a combination of several regulatory subunits (Cohen, 2002). 

It is inactive when bound to I-2 and activated when the phosphorylated I-2 dissociates from its 

catalytic subunit (Aggen et al., 2000). Several kinases were shown to phosphorylate I-2 at 

several sites, however the most important kinase is GSK3β that phosphorylates I-2 at Thr72 

(Hemmings et al., 1982; Aitken et al., 1984). GSK3β was pivotal for Sirt1’s inhibitory action 

on CREB. Sirt1 did not affect basal GSK3β levels, contrary to HDAC1 (Jin et al., 2009), but 

it activated it instead. All Sirt1’s effects on GH synthesis required its intact deacetylase 

function, as transfection with a deacetylase dead Sirt1 inhibited GSK3β and phosphatase 

activity, prolonged forskolin induced CREB phosphorylation (suggestive of loss of the 

attenuation phase) and induced basal CREB transcriptional activity. The present study shows 

for the first time that GSK3β is acetylated and that Sirt1 activation with resveratrol decreases 

its acetylation levels. GSK3β acetylation status affected Sirt1’s action on CREB. In addition, 

hypoacetylated GSK3β had higher activity and suppressed CREB phosphorylation and 

transcriptional activity. In contrast, GSK3β inhibition activated CREB, similar to what was 

previously reported (Grimes & Jope, 2001; Götschel et al., 2008), indicating an important role 

for GSK3β on basal CREB regulation.  

GSK3β regulation is quite complex with phosphorylation events taking place before the final 

inhibitory phosphorylation at Ser9 (Jope & Johnson, 2004). However, the suppressive Sirt1’s 
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effect on GSK3β-Ser9 was abolished using protein phosphatase inhibitors, indicating that it is 

downstream to PP1. GSK3β induces PP1 activity, but is also activated when the phosphatase 

dephosphorylates Ser9 in an autoregulatory loop that intensifies phosphatase activity and 

CREB dephosphorylation, reinforcing the inhibitory role for GSK3β on CREB (Alao et al., 

2006; Zhang et al; 2003; Grimes & Jope, 2001; Szatmari et al., 2005). Sirt1 was found to 

physically associate with both GSK3β and PP1, suggesting that it may act as a scaffold 

bringing the complex together. Therefore, the data presented herein suggest that Sirt1 

deacetylates GSK3β, which accesses, activates and becomes targeted by PP1. 

Altogether, the present study shows that Sirt1 is expressed in pituitary somatotroph cells, 

where it suppresses GH synthesis. GH has lipolytic and anabolic actions, which are 

counterbalanced by disrupted glucose metabolism (Møller et al., 2009). Therefore, the 

suppressive action of resveratrol on GH secretion may mediate some of its beneficial effects 

on metabolic homeostasis observed in humans (Timmers et al., 2011). Indeed, resveratrol was 

found to decrease circulating IGF-I levels in healthy volunteers contributing to its 

chemopreventive action (Brown et al., 2010). Finally, the study presents with a novel 

mechanism through which CREB acetylation controls its phosphorylation. CREB integrates 

diverse stimuli to drive the expression of hormones pivotal in organism growth and 

metabolism (Sassone-Corsi, 1998; Mayr & Montminy, 2001), therefore this new pathway is 

expected to be involved in cell types and processes outside the anterior pituitary.  

 

 



REFERENCES 

 87

6 REFERENCES 

Adams EF, Venetikou MS, Woods CA, Lacoumenta S, Burrin JM. Neuropeptide Y directly inhibits 
growth hormone secretion by human pituitary somatotropic tumours. Acta Endocrinol (Copenh). 
1987; 115(1):149-54. 

Aggen JB, Nairn AC, Chamberlin R. Regulation of protein phosphatase-1. Chem Biol. 2000; 
7(1):R13-23. 

Aitken, A., Holmes, C.F., Campbell, D.G., Resink, T.J., Cohen, P., Leung, C.T., and Williams, D.H. 
Amino acid sequence at the site on protein phosphatase inhibitor-2, phosphorylated by glycogen 
synthase kinase-3. Biochim Biophys Acta. 1984; 790:288–291. 

Akieda-Asai S, Zaima N, Ikegami K, Kahyo T, Yao I, Hatanaka T, Iemura S, Sugiyama R, Yokozeki 
T, Eishi Y, Koike M, Ikeda K, Chiba T, Yamaza H, Shimokawa I, Song SY, Matsuno A, 
Mizutani A, Sawabe M, Chao MV, Tanaka M, Kanaho Y, Natsume T, Sugimura H, Date Y, 
McBurney MW, Guarente L, Setou M. SIRT1 Regulates Thyroid-Stimulating Hormone Release 
by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in 
Mammals. PLoS One. 2010; 5(7):e11755. 

Alao JP, Stavropoulou AV, Lam EW, Coombes RC. Role of glycogen synthase kinase 3 beta 
(GSK3beta) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A 
(TSA) in MCF-7 breast cancer cells. Mol Cancer. 2006; 5:40. 

Alberts AS, Montminy M, Shenolikar S, Feramisco JR. Expression of a peptide inhibitor of protein 
phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Mol 
Cell Biol. 1994; 14(7):4398-407. 

Allaerts W, Engelborghs Y, Van Oostveldt P, Denef C.  Evidence that folliculo-stellate cells do not 
impede the permeability of intercellular spaces to molecular diffusion in three-dimensional 
aggregate cell cultures of rat anterior pituitary. Endocrinology. 1990; 127(3):1517-25. 

Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent 
axonal degeneration. Science. 2004; 305(5686):1010-3. 

Argente J, Caballo N, Barrios V, Muñoz MT, Pozo J, Chowen JA, Morandé G, Hernández M. 
Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in 
patients with anorexia nervosa: effect of short- and long-term weight recuperation. J Clin 
Endocrinol Metab. 1997; 82(7):2084-92. 

Arimura A, Somogyvári-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of 
PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology. 
1991; 129(5):2787-9. 

Armario A, Montero JL, Jolin T. Chronic food restriction and the circadian rhythms of pituitary-
adrenal hormones, growth hormone and thyroid-stimulating hormone. Ann Nutr Metab. 1987; 
31(2):81-7. 

Arvat E, Broglio F, Ghigo E. Insulin-like growth factor I: implications in aging. Drugs Aging. 2000; 
16(1):29-40. 

Asa SL, Ezzat S. Molecular determinants of pituitary cytodifferentiation. Pituitary. 1999; 1(3-4):159-
68. 



REFERENCES 

 88 

Ayuk J, Sheppard. MC.Growth hormone and its disorders. Postgrad Med J. 2006; 82(963):24-30. 

Baldanzi G, Filigheddu N, Cutrupi S, Catapano F, Bonissoni S, Fubini A, Malan D, Baj G, Granata R, 
Broglio F, Papotti M, Surico N, Bussolino F, Isgaard J, Deghenghi R, Sinigaglia F, Prat M, 
Muccioli G, Ghigo E, Graziani A. Ghrelin and des-acyl ghrelin inhibit cell death in 
cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol. 2002; 
159(6):1029-37. 

Bartke A. Growth hormone and aging. Endocrine. 1998; 8(2):103-8. 

Bartke A. Delayed aging in Ames dwarf mice. Relationships to endocrine function and body size. 
Results Probl Cell Differ. 2000; 29:181-202. 

Bartke A, Brown-Borg H. Life extension in the dwarf mouse. Curr Top Dev Biol. 2004; 63:189-225. 

Bartke A. Insulin resistance and cognitive aging in long-lived and short-lived mice. The journals of 
gerontology. Series A, Biological sciences and medical sciences. 2005; 60(1):133-4. 

Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch 
G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, 
Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram 
DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-
calorie diet. Nature. 2006; 444(7117):337-42. 

Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 
2006; 5(6):493-506.  

Berelowitz M, Szabo M, Frohman LA, Firestone S, Chu L, Hintz RL. Somatomedin-C mediates 
growth hormone negative feedback by effects on both the hypothalamus and the pituitary. 
Science. 1981; 212(4500):1279-81. 

Bermann M, Jaffe CA, Tsai W, DeMott-Friberg R, Barkan AL. Negative feedback regulation of 
pulsatile growth hormone secretion by insulin-like growth factor I. Involvement of 
hypothalamic somatostatin. J Clin Invest. 1994; 94(1):138-45. 

Beshyah SA, Henderson A, Niththyananthan R, Skinner E, Anyaoku V, Richmond W, Sharp P, 
Johnston DG. The effects of short and long-term growth hormone replacement therapy in 
hypopituitary adults on lipid metabolism and carbohydrate tolerance. J Clin Endocrinol Metab. 
1995; 80(2):356-63. 

Bichell DP, Kikuchi K, Rotwein P. Growth hormone rapidly activates insulin-like growth factor I gene 
transcription in vivo. Mol Endocrinol. 1992; 6(11):1899-908. 

Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004; 73:417-
35. 

Blander G, Olejnik J, Krzymanska-Olejnik E, McDonagh T, Haigis M, Yaffe MB, Guarente L. SIRT1 
shows no substrate specificity in vitro. J Biol Chem. 2005; 280(11):9780-5. 

Bloch B, Brazeau P, Ling N, Bohlen P, Esch F, Wehrenberg WB, Benoit R, Bloom F, Guillemin R. 
Immunohistochemical detection of growth hormone-releasing factor in brain. Nature. 1983 Feb 
17-23; 301(5901):607-8. 



REFERENCES 

 89

Bodner M, Castrillo JL, Theill LE, Deerinck T, Ellisman M, Karin M. The pituitary-specific 
transcription factor GHF-1 is a homeobox-containing protein. Cell. 1988; 55(3):505-18. 

Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A. Targeted disruption of growth 
hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci 
U S A. 2006; 103(20):7901-5. 

Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, 
McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L. Sirt1 regulates insulin secretion by 
repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006; 4(2):e31. 

Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor 
S, Luo J, Gu W, Guarente L. SIRT1 transgenic mice show phenotypes resembling calorie 
restriction. Aging Cell. 2007; 6(6):759-67. 

Borle AB. Regulation of cellular calcium metabolism and calcium transport by calcitonin. J Membr 
Biol. 1975; 21(1-2):125-46. 

Borra MT, Smith BC, Denu JM.Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 
2005; 280(17):17187-95. 

Bouras T, Fu M, Sauve AA, Wang F, Quong AA, Perkins ND, Hay RT, Gu W, Pestell RG. SIRT1 
deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle 
regulatory domain 1. J Biol Chem. 2005; 280(11):10264-76. 

Brachmann C B, Sherman J M, Devine S E, Cameron E E, Pillus L, Boeke J D. The SIR2 gene family, 
conserved from bacteria to humans, functions in silencing, cell cycle progression, and 
chromosome stability. Genes Dev. 1995; 9(23):2888-902. 

Breese CR, Ingram RL, Sonntag WE. Influence of age and long-term dietary restriction on plasma 
insulin-like growth factor-1 (IGF-1), IGF-1 gene expression, and IGF-1 binding proteins. J 
Gerontol. 1991; 46(5):B180-7. 

 
Brent GA, Harney JW, Moore DD, Larsen PR.Multihormonal regulation of the human, rat, and bovine 

growth hormone promoters: differential effects of 3',5'-cyclic adenosine monophosphate, 
thyroid hormone, and glucocorticoids. Mol Endocrinol. 1988; 2(9):792-8. 

Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff M, Booth TD, Vasilinin G, Sen A, Schinas 
AM, Piccirilli G, Brown K, Steward WP, Gescher AJ, Brenner DE. Repeat dose study of the 
cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and 
effect on the insulin-like growth factor axis. Cancer Res. 2010; 70(22):9003-11. 

Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996; 
384(6604):33. 

Brown-Borg HM, Rakoczy SG, Sharma S, Bartke A. Long-living growth hormone receptor knockout 
mice: potential mechanisms of altered stress resistance. Exp Gerontol. 2009; 44(1-2):10-9. 

Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, 
Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg 
ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. 
Science. 2004; 303(5666):2011-5. 

Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. J 
Agric Food Chem. 2002; 50(11):3337-3340. 



REFERENCES 

 90 

Canettieri G, Morantte I, Guzmán E, Asahara H, Herzig S, Anderson SD, Yates JR 3rd, Montminy M. 
Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex. Nat Struct 
Biol. 2003; 10(3):175-81. 

Cantalamessa L, Catania A, Reschini E, Peracchi M. Inhibitory effect of calcitonin on growth 
hormone and insulin secretion in man. Metabolism. 1978; 27(8):987-92. 

Cantó C, Auwerx J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab. 2009; 
20(7):325-31. 

Carling D, Hardie DG. The substrate and sequence specificity of the AMP-activated protein kinase. 
Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta. 1989; 
1012(1):81-6. 

Carling D. The AMP-activated protein kinase cascade - a unifying system for energy control. Trends 
Biochem Sci. 2004; 29(1):18-24. 

Cassone VM, Warren WS, Brooks DS, Lu J. Melatonin, the pineal gland, and the circadian rhythms. J 
Biol Rhythms. 1993; 8 SupptS73-81.  

Cataldi M, Magnan E, Guillaume V, Dutour A, Conte-Devolx B, Lombardi G, Oliver C. Relationship 
between hypophyseal portal GHRH and somatostatin and peripheral GH levels in the conscious 
sheep. J Endocrinol Invest. 1994; 17(9):717-22. 

Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell 
Sci. 2001;114(Pt 13):2363-73. 

Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS. Histone acetylation-independent effect of histone 
deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol 
Chem. 2005; 280(46):38879-87. 

Chen H. Gene expression by the anterior pituitary gland: effects of age and caloric restriction. Mol 
Cell Endocrinol. 2004; 222(1-2):21-31. 

Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine 
acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009; 
325(5942):834-40. 

Clemmons DR, Underwood LE. Nutritional regulation of IGF-I and IGF binding proteins. Annu Rev 
Nutr. 1991; 11:393–412. 

Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de 
Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the 
SIRT1 deacetylase. Science. 2004; 305(5682):390-2.  

Cohen LE, Hashimoto Y, Zanger K, Wondisford F, Radovick S. CREB-independent regulation by 
CBP is a novel mechanism of human growth hormone gene expression. J Clin Invest. 1999; 
104(8):1123-30. 

Cohen LE. Genetic regulation of the embryology of the pituitary gland and somatotrophs. Endocrine. 
2000 Apr; 12(2):99-106. 

Cohen PT. Protein phosphatase 1--targeted in many directions. J Cell Sci. 2002; 115(Pt 2):241-56. 



REFERENCES 

 91

Coiro V, Volpi R, Capretti L, Speroni G, Bocchi R, Caffarri G, Colla R, Rossi G, Chiodera P. 
Intravenously infused substance P enhances basal and growth hormone (GH) releasing 
hormone-stimulated GH secretion in normal men. Peptides. 1992; 13(4):843-6. 

Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ  Assessment of growth parameters and life 
span of GHR/BP gene-disrupted mice. Endocrinology. 2000; 141(7):2608–2613. 

Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ. Deletion, but not 
antagonism, of the mouse growth hormone receptor results in severely decreased body weights, 
insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 2003; 
144:3799–3810. 

Czernichow P, Dauzet MC, Broyer M, Rappaport R. Abnormal TSH, PRL and GH response to TSH 
releasing factor in chronic renal failure. J Clin Endocrinol Metab. 1976; 43(3):630-7. 

Das DK, Maulik N.  Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. 
Mol Interv. 2006; 6:36–47. 

Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets. 2007; 
6(3):168-73.  

Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid 
and gene structures, serum, and tissue concentrations. Endocr Rev. 1989; 10(1):68-91. 

Davidson MB. Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev. 1987; 
8(2):115-31. 

Davis TM, Burrin JM, Bloom SR. Growth hormone (GH) release in response to GH-releasing 
hormone in man is 3-fold enhanced by galanin. J Clin Endocrinol Metab. 1987; 65(6):1248-52. 

De Felipe C, Herrero JF, O'Brien JA, Palmer JA, Doyle CA, Smith AJ, Laird JM, Belmonte C, 
Cervero F, Hunt SP. Altered nociception, analgesia and aggression in mice lacking the receptor 
for substance P. Nature. 1998; 392(6674):394-7. 

Dekkers OM, Pereira AM, Romijn JA. Treatment and follow-up of clinically nonfunctioning pituitary 
macroadenomas. J Clin Endocrinol Metab. 2008; 93(10):3717-26. 

Dieguez C, Casanueva FF. Influence of metabolic substrates and obesity on growth hormone  
secretion. Trends Endocrinol Metab. 1995; 6(2):55-9. 

Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NADdependent 
deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003; 23:3173–
3185. 

Eickbush TH, Moudrianakis EN. The histone core complex: an octamer assembled by two sets of 
protein-protein interactions. Biochemistry. 1978; 17(23):4955-64. 

Ezzat S, Yu S, Asa SL. The zinc finger Ikaros transcription factor regulates pituitary growth hormone 
and prolactin gene expression through distinct effects on chromatin accessibility. Mol 
Endocrinol. 2005; 19(14):1004-11. 

Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein 
restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008; 7(5):681-
7. 



REFERENCES 

 92 

Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., and Guarente, L. Mammalian Sir2 homolog 
SIRT7 is an activator of RNA polymerase I transcription. Genes & Dev. 2006; 20: 1075–1080. 

Fryburg DA, Louard RJ, Gerow KE, Gelfand RA, Barrett EJ. Growth hormone stimulates skeletal 
muscle protein synthesis and antagonizes insulin's antiproteolytic action in humans. Diabetes. 
1992; 41(4):424-9. 

Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V. 
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 
2003; 12(1):51-62. 

Gaiddon C, Tian J, Loeffler JP, Bancroft C. Constitutively active G(S) alpha-subunits stimulate Pit-1 
promoter activity via a protein kinase A-mediated pathway acting through deoxyribonucleic 
acid binding sites both for Pit-1 and for adenosine 3',5'-monophosphate response element-
binding protein. Endocrinology. 1996 Apr; 137(4):1286-91. 

Ganong WF. Fisiología Médica. México, DF: El Manual Moderno, S.A. de C.V.; 1994. p. 434. 

García A, Alvarez CV, Smith RG, Diéguez C. Regulation of Pit-1 expression by ghrelin and GHRP-6 
through the GH secretagogue receptor. Mol Endocrinol. 2001; 15(9):1484-95. 

Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in 
grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A. 1997; 
94(25):14138-43. 

George DL, Phillips JA 3rd, Francke U, Seeburg PH. The genes for growth hormone and chorionic 
somatomammotropin are on the long arm of human chromosome 17 in region q21 to qter. Hum 
Genet. 1981; 57(2):138-41. 

Gil-Ad I, Gurewitz R, Marcovici O, Rosenfeld J, Laron Z. Effect of aging on human plasma growth 
hormone response to clonidine. Mech Ageing Dev. 1984; 27(1):97-100.  

Giustina A, Casanueva FF, Cavagnini F, Chanson P, Clemmons D, Frohman LA, Gaillard R, Ho K, 
Jaquet P, Kleinberg DL, Lamberts SW, Lombardi G, Sheppard M, Strasburger CJ, Vance ML, 
Wass JA, Melmed S; Pituitary Society and the European Neuroendocrine Association. 
Diagnosis and treatment of acromegaly complications. J Endocrinol Invest. 2003; 26(12):1242-7. 

Giustina A, Doga M, Bresciani E, Bussi AR, Chiesa L, Misitano V, Giustina G. Effect of 
glucocorticoids on the paradoxical growth hormone response to thyrotropin-releasing hormone 
in patients with acromegaly. Metabolism. 1995; 44(3):379-83. 

Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in 
experimental animals and the human. Endocr Rev. 1998; 19(6):717-97.  

Goldsmith PC, Rose JC, Arimura A, Ganong WF. Ultrastructural localization of somatostatin in 
pancreatic islets of the rat. Endocrinology. 1975; 97(4):1061-4. 

Götschel F, Kern C, Lang S, Sparna T, Markmann C, Schwager J, McNelly S, von Weizsäcker F, 
Laufer S, Hecht A, Merfort I. Inhibition of GSK3 differentially modulates NF-kappaB, CREB, 
AP-1 and beta-catenin signaling in hepatocytes, but fails to promote TNF-alpha-induced 
apoptosis. Exp Cell Res. 2008; 314(6):1351-66. 

Grimes CA, Jope RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta 
and facilitated by lithium. J Neurochem. 2001 Sep; 78(6):1219-32. 



REFERENCES 

 93

Groesbeck MD, Parlow AF, Daughaday WH. Stimulation of supranormal growth in prepubertal, adult 
plateaued, and hypophysectomized female rats by large doses of rat growth hormone: 
physiological effects and adverse consequences. Endocrinology. 1987; 120(5):1963-75. 

Guarente L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet. 1999; 23(3):281-
5. 

Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell. 2005; 120(4):473-82.  

Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, Hwang D, 
Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, Cohen P, Longo VD. Growth hormone 
receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and 
diabetes in humans. Sci Transl Med. 2011; 3(70):70ra13. 

Guler HP, Zapf J, Scheiwiller E, Froesch ER. Recombinant human insulin-like growth factor I 
stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl 
Acad Sci U S A.  1988; 85(13):4889-93. 

Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T, Karin M, Shenolikar S, 
Montminy M. Transcriptional attenuation following cAMP induction requires PP-1-mediated 
dephosphorylation of CREB. Cell. 1992; 70(1):105-13. 

Hagopian, K., Ramsey, J.J., and Weindruch, R.. Caloric restriction increases gluconeogenic and 
transaminase enzyme activities in mouse liver. Exp. Gerontol. 2003; 38: 267–278. 

Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging, and calorie 
restriction. Genes Dev. 2006; 20(21):2913-21. 

Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., 
Valenzuela, D.M., Yancopoulos, G.D., Karow, M., Blander, G., et al.. SIRT4 inhibits glutamate 
dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006; 
126: 941–954. 

Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. 
Proc Natl Acad Sci U S A. 2006; 103(27):10230-5.  

Han ES, Lu DH, Nelson JF. Food restriction differentially affects mRNAs encoding the major anterior 
pituitary tropic hormones. J Gerontol A Biol Sci Med Sci. 1998; 53(5):B322-9. 

Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev 
Mol Cell Biol. 2007; 8(10):774-85. 

Hardy J. Transphenoidal microsurgical treatment of pituitary tumours. In Recent advances in the 
diagnosis and treatment of pituitary tumours, Linfoot J, ed. Raven Press, New York; 1979. pp. 
375-388. 

Harrison S, Geppetti P. Substance p. Int J Biochem Cell Biol. 2001; 33(6):555-76. 

Hataya Y, Akamizu T, Takaya K, Kanamoto N, Ariyasu H, Saijo M, Moriyama K, Shimatsu A, 
Kojima M, Kangawa K, Nakao K. A low dose of ghrelin stimulates growth hormone (GH) 
release synergistically with GH-releasing hormone in humans. J Clin Endocrinol Metab. 2001; 
86(9):4552. 



REFERENCES 

 94 

Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG. 
Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-
activated protein kinase. Cell Metab. 2005; 2(1):9-19. 

Hemmings BA, Resink TJ, Cohen P. Reconstitution of a Mg-ATP-dependent protein phosphatase and 
its activation through a phosphorylation mechanism. FEBS Lett. 1982; 150(2):319-24. 

Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5'-AMP-activated protein kinase 
increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol. 1999; 87(5):1990-5. 

Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y. IGF-1 
receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003; 
421(6919):182-7. 

Holzenberger M. The GH/IGF-I axis and longevity. Eur J Endocrinol. 2004; 151 Suppl 1:S23-7. 

Houssay BA. The hypophysis and metabolism. N Eng J Med. 1936; 214: 961-985. 

Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk 
DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, 
Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, 
Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, 
Smith RG, Van der Ploeg LH. A receptor in pituitary and hypothalamus that functions in growth 
hormone release. Science. 1996; 16;273(5277):974-7. 

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, 
Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend 
Saccharomyces cerevisiae lifespan. Nature. 2003; 425(6954):191-6.  

Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. Implications for the insulin 
signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity 
paradigm. Mechanisms of ageing and development 2002; 123(9):1229-44. 

Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for 
metabolic diseases. Trends Pharmacol Sci. 2010; 31(5):212-20. 

Imai S, Johnson FB, Marciniak RA, McVey M, Park PU, Guarente L. Sir2: an NAD-dependent 
histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb 
Symp Quant Biol. 2000; 65:297-302. 

Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L, 
Rosenfeld MG. A tissue-specific transcription factor containing a homeodomain specifies a 
pituitary phenotype. Cell. 1988; 55(3):519-29. 

Ivy JM, Hicks JB, Klar AJ.Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics. 1985; 
111(4):735-44. 

Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, 
Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of 
resveratrol, a natural product derived from grapes. Science. 1997; 275(5297):218-20. 

Jin J, Wang GL, Shi X, Darlington GJ, Timchenko NA.The age-associated decline of glycogen 
synthase kinase 3beta plays a critical role in the inhibition of liver regeneration. Mol Cell Biol. 
2009; 29(14):3867-80. 



REFERENCES 

 95

Johannessen M, Delghandi MP, Moens U. What turns CREB on? Cell Signal. 2004; 16(11):1211-27. 

Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. 
Endocr Rev. 1995; 16(1):3-34. 

Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 
2004; 29(2):95-102. 

Jørgensen JO, Pedersen SA, Thuesen L, Jørgensen J, Ingemann-Hansen T, Skakkebaek NE, 
Christiansen JS. Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet. 
1989; 1(8649):1221-5. 

Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge 
provides clues to modern understanding of metabolism. Cell Metab. 2005; 1(1):15-25. 

Kamegai J, Tamura H, Shimizu T, Ishii S, Tatsuguchi A, Sugihara H, Oikawa S, Kineman RD. The 
role of pituitary ghrelin in growth hormone (GH) secretion: GH-releasing hormone-dependent 
regulation of pituitary ghrelin gene expression and peptide content. Endocrinology. 2004; 
145(8):3731-8. 

Kelijman M, Frohman LA. Enhanced growth hormone (GH) responsiveness to GH-releasing hormone 
after dietary manipulation in obese and nonobese subjects. J Clin Endocrinol Metab. 1988; 
66(3):489-94. 

Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as 
wild type. Nature. 1993; 366(6454):461-4. 

Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE. The effects of insulin-like growth factors 
on tumorigenesis and neoplastic growth. Endocr Rev 2000; 21:215–44. 

Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates 
longevity and diapause in Caenorhabditis elegans. Science. 1997; 277(5328):942-6. 

Kimura Y, Okuda H, Kubo M Effects of stilbenes isolated from medicinal plants on arachidonate 
metabolism and degranulation in human polymorphonuclear leukocytes. J Ethnopharmacol 
1995. 45:131–139. 

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-
releasing acylated peptide from stomach. Nature. 1999; 402(6762):656-60. 

Landry J, Slama JT, Sternglanz R. Role of NAD(+) in the deacetylase activity of the SIR2-like 
proteins. Biochem Biophys Res Commun. 2000; 278(3):685-90. 

Langcake P, Pryce RJ. A new class of phytoalexins from grapevines. Experientia. 1977; 33:151. 

Lemieux ME, Yang X, Jardine K, He X, Jacobsen KX, Staines WA, Harper ME, McBurney MW. The 
Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech 
Ageing Dev. 2005 Oct; 126(10):1097-105. 

Li S, Crenshaw EB 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus 
mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. 
Nature. 1990; 347(6293):528-33. 



REFERENCES 

 96 

Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie 
restriction in Saccharomyces cerevisiae. Science. 2000; 289(5487):2126-8. 

Lin SJ, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering 
the level of NADH. Genes Dev. 2004; 18(1):12-6. 

Lippi G, Franchini M, Favaloro EJ, Targher G.Moderate red wine consumption and cardiovascular 
disease risk: beyond the "French paradox".Semin Thromb Hemost. 2010;36(1):59-70. 

Liszt G, Ford E, Kurtev M, Guarente L.Mouse Sir2 homolog SIRT6 is a nuclear ADP-
ribosyltransferase. J Biol Chem. 2005; 280(22):21313-20.  

Liu JL, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, KumarU, Liu YL. Disruption 
of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin 
sensitivity in mice. Am J Physiol. 2004; 287:E405–E413. 

Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide 
riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes 
PEPCK and glucose-6-phosphatase. Diabetes. 2000 Jun; 49(6):896-903. 

Lopez-Varela S, Chacón F, Cano P, Arce A, Esquifino AI. Differential responses of circulating 
prolactin, GH, and ACTH levels and distribution and activity of submaxillary lymph node 
lymphocytes to calorie restriction in male Lewis and Wistar rats. Neuroimmunomodulation.  
2004; 11(4):247-54. 

Lu Q, Hutchins AE, Doyle CM, Lundblad JR, Kwok RP. Acetylation of cAMP-responsive element-
binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. 
Biol Chem. 2003; 278(18):15727-34. 

Lucidi P, Murdolo G, Di Loreto C, Parlanti N, De Cicco A, Fatone C, Taglioni C, Fanelli C, Broglio 
F, Ghigo E, Bolli GB, Santeusanio F, De Feo P. Metabolic and endocrine effects of 
physiological increments in plasma ghrelin concentrations. Nutr Metab Cardiovasc Dis. 2005; 
15(6):410-7. 

Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat 
Rev Mol Cell Biol. 2001; 2(8):599-609. 

McCormick A, Brady H, Theill LE, Karin M. Regulation of the pituitary-specific homeobox gene 
GHF1 by cell-autonomous and environmental cues. Nature. 1990; 345(6278):829-32. 

Melmed S. Acromegaly pathogenesis and treatment. J Clin Invest. 2009; 119(11):3189-202. doi: 
10.1172/JCI39375. 

Michael LF, Asahara H, Shulman AI, Kraus WL, Montminy M. The phosphorylation status of a cyclic 
AMP-responsive activator is modulated via a chromatin-dependent mechanism. Mol Cell Biol. 
2000; 20(5):1596-603. 

Michan S, Sinclair D.  Sirtuins in Mammals: Insight into Their Biological Function. Biochem. 2007; 
404:1–13. 

Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and 
nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 
2005; 16:4623–4635. 



REFERENCES 

 97

Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, 
Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, 
Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, 
Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 
diabetes. Nature. 2007; 450(7170):712-6. 

Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum 
MJ, Stuck BJ, Kahn BB. AMP-kinase regulates food intake by responding to hormonal and 
nutrient signals in the hypothalamus. Nature. 2004; 428(6982):569-74. 

Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. Isolation of a 
novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. 
Biochem Biophys Res Commun. 1989; 164(1):567-74. 

Møller N, Jørgensen JO, Alberti KG, Flyvbjerg A, Schmitz O. Short-term effects of growth hormone 
on fuel oxidation and regional substrate metabolism in normal man. J Clin Endocrinol Metab. 
1990; 70(4):1179-86. 

Møller N, Jørgensen JO, Abildgård N, Orskov L, Schmitz O, Christiansen JS. Effects of growth 
hormone on glucose metabolism. Horm Res. 1991; 36 Suppl 1:32-5. 

Møller N, Vendelbo MH, Kampmann U, Christensen B, Madsen M, Norrelund H, Jorgensen JO. 
Growth hormone and protein metabolism. Clin Nutr. 2009 Dec; 28(6):597-603. 

Moretti C, Fabbri A, Gnessi L, Cappa M, Calzolari A, Fraioli F, Grossman A, Besser GM. Naloxone 
inhibits exercise-induced release of PRL and GH in athletes. Clin Endocrinol (Oxf). 1983 Feb; 
18(2):135-8. 

Mostoslavsky, R., Chua, K.F., Lombard, D.B., Pang, W.W., Fischer, M.R., Gellon, L., Liu, P., 
Mostoslavsky, G., Franco, S., Murphy, M.M., et al. Genomic instability and aging-like 
phenotype in the absence of mammalian SIRT6. Cell. 2006; 124: 315–329. 

Mullis PE.Genetics of growth hormone deficiency. Endocrinol Metab Clin North Am. 2007; 36(1):17-
36. 

Nakagawa T, Lomb DJ, Haigis MC, Guarente L.SIRT5 Deacetylates carbamoyl phosphate synthetase 
1 and regulates the urea cycle. Cell. 2009; 137(3):560-70. 

Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for 
ghrelin in the central regulation of feeding. Nature. 2001; 409(6817):194-8. 

Nelson, C., Albert, V.R., Elsholtz, H.P., Lu, L.I., and Rosenfeld, M.G.. Activation of cell-specific 
expression of rat growth hormone and prolactin genes by a common transcription factor. 
Science 1988; 239:1400–1405. 

Niimi M, Takahara J, Sato M, Kawanishi K. Immunohistochemical identification of galanin and 
growth hormone-releasing factor-containing neurons projecting to the median eminence of the 
rat. Neuroendocrinology. 1990; 51(5):572-5. 

North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an 
NAD+-dependent tubulin deacetylase. Mol Cell. 2003; 11:437–444. 



REFERENCES 

 98 

Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an 
NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A. 2002; 
99(21):13653-8. 

Oster MH, Fielder PJ, Levin N, Cronin MJ. Adaptation of the growth hormone and insulin-like growth 
factor-I axis to chronic and severe calorie or protein malnutrition. J Clin Invest. 1995; 
95(5):2258-65. 

Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, 
Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH. Resveratrol ameliorates aging-
related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012; 148(3):421-
33. 

Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999; 20(3):157-98. 

Pisegna JR, Wank SA. Molecular cloning and functional expression of the pituitary adenylate cyclase-
activating polypeptide type I receptor. Proc Natl Acad Sci U S A. 1993; 90(13):6345-9. 

Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, 
Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel 
R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA. SIRT1 is required for 
AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell 
Metab. 2012; 15(5):675-90. 

Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, Siegert E, 
Bendix I, Brüstle O, Nitsch R, Zipp F, Aktas O. Sirt1 contributes critically to the redox-
dependent fate of neural progenitors. Nat Cell Biol. 2008; 10(4):385-94. 

Qi J, Gong J, Zhao T, Zhao J, Lam P, Ye J, Li JZ, Wu J, Zhou HM, Li P. Downregulation of AMP-
activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose 
tissue. EMBO J. 2008; 27(11):1537-48. 

Qiang L, Lin HV, Kim-Muller JY, Welch CL, Gu W, Accili D. Proatherogenic abnormalities of lipid 
metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab. 
2011; 14(6):758-67. 

Quentien MH, Barlier A, Franc JL, Pellegrini I, Brue T, Enjalbert A. Pituitary transcription factors: 
from congenital deficiencies to gene therapy. J Neuroendocrinol. 2006 Sep; 18(9):633-42. 

Radovick S, Nations M, Du Y, Berg LA, Weintraub BD, Wondisford FE. A mutation in the POU-
homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science. 1992; 
257(5073):1115-8. 

Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, Elmquist JK, Coppari R. Brain 
SIRT1: anatomical distribution and regulation by energy availability. J Neurosci. 2008; 
28(40):9989-96. 

Redman LM, Veldhuis JD, Rood J, Smith SR, Williamson D, Ravussin E; Pennington CALERIE 
Team. The effect of caloric restriction interventions on growth hormone secretion in nonobese 
men and women. Aging Cell. 2010; 9(1):32-9.  

Reichlin S. Somatostatin. N Engl J Med. 1983; 309(24):1495-501. 



REFERENCES 

 99

Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. 
Lancet. 1992; 339:1523–1526. 

Rettori V, Milenkovic L, Riedel M, McCann SM. Physiological role of neuropeptide Y (NPY) in 
control of anterior pituitary hormone release in the rat. Endocrinol Exp. 1990; 24(1-2):37-45. 

Reynaud R, Saveanu A, Barlier A, Enjalbert A, Brue T. Pituitary hormone deficiencies due to 
transcription factor gene alterations. Growth Horm IGF Res. 2004; 14(6):442-8. 

Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR 
in Saccharomyces cerevisiae. Genetics. 1987; 116(1):9-22. 

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose 
homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005; 434(7029):113-8. 

Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie 
restriction. Proc Natl Acad Sci U S A. 2004; 101(45):15998-6003.  

Salomon F, Cuneo RC, Hesp R, Sönksen PH. The effects of treatment with recombinant human 
growth hormone on body composition and metabolism in adults with growth hormone 
deficiency. N Engl J Med. 1989; 321(26):1797-803. 

Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D. Investigating the mechanism for 
AMP activation of the AMP-activated protein kinase cascade. Biochem J. 2007; 403(1):139-48. 

Sassone-Corsi P. Coupling gene expression to cAMP signalling: role of CREB and CREM. Int J 
Biochem Cell Biol. 1998; 30(1):27-38. 

Scacchi M, Ida Pincelli A, Cavagnini F. Nutritional status in the neuroendocrine control of growth 
hormone secretion: the model of anorexia nervosa. Front Neuroendocrinol. 2003; 24(3):200-24. 

Scanlon MF, Peters JR, Foord SM, Dieguez C, Hall R.; Clinical Application of TRH. In: Griffiths EC, 
Bennet W (eds) Thyrotropyn Releasing Hormone. Raven Press, New York, 1983. p.303-314. 

Schaible R, Gower JW. A new dwarf mouse. Genetics. 1961; 46:896. 

Schoeppner A, Kindl H. Stilbene synthase (pinosylvine synthase) and its induction by ultraviolet light. 
FEBS Lett. 1979; 108:349–352. 

Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls 
the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A. 
2006; 103(27):10224-9. 

Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 
homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent 
deacetylase. J Cell Biol. 2002; 158(4):647-57. 

Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. CBS 
domains form energy-sensing modules whose binding of adenosine ligands is disrupted by 
disease mutations. J Clin Invest. 2004; 113(2):274-84. 

Scully KM, Rosenfeld MG. Pituitary development: regulatory codes in mammalian organogenesis. 
Science. 2002; 295(5563):2231-5. 



REFERENCES 

 100 

Seeburg PH. The human growth hormone gene family: nucleotide sequences show recent divergence 
and predict a new polypeptide hormone. DNA. 1982; 1(3):239-49. 

Seoane LM, Tovar S A, Perez D, Mallo  F, Lopez M, Señaris R, Casanueva F F and Dieguez C. 
Orexin A suppresses in vivo GH secretion. Eur J Endocrinol. 2004; 150(5):731-6. 

Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The 
kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. 
Science. 2005; 310(5754):1642-6. 

Shepard AR, Zhang W, Eberhardt NL. Two CGTCA motifs and a GHF1/Pit1 binding site mediate 
cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat 
anterior pituitary GC cells. J Biol Chem. 1994; 269(3):1804-14. 

Shore D, Squire M, Nasmyth KA. Characterization of two genes required for the position-effect 
control of yeast mating-type genes. EMBO. 1984; 3(12):2817-23. 

Skofitsch G, Jacobowitz DM. Quantitative distribution of calcitonin gene-related peptide in the rat 
central nervous system. Peptides. 1985; 6(6):1069-73. 

Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-
Semerena JC, Grubmeyer C, Wolberger C, Boeke JD. A phylogenetically conserved NAD+-
dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A. 
2000; 97(12):6658-63. 

Sonntag WE, Xu X, Ingram RL, D'Costa A. Moderate caloric restriction alters the subcellular 
distribution of somatostatin mRNA and increases growth hormone pulse amplitude in aged 
animals. Neuroendocrinology. 1995; 61(5):601-8. 

Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, Gukovsky I, Carrière C, Ryan 
AK, Miller AP, Zuo L,Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary 
lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. 
Nature. 1996; 384(6607):327-33. 

Sun AY, Simonyi A, Sun GY (2002) The ‘‘French Paradox’’ and beyond: neuroprotective effects of 
polyphenols. Free Radic Biol Med. 2002; 314–318. 

 
Sun AY, Wang Q, Simonyi A, Sun GY. Resveratrol as a therapeutic agent for neurodegenerative 

diseases. Mol Neurobiol. 2010.41(2-3):375-83. 

Szatmari E, Habas A, Yang P, Zheng JJ, Hagg T, Hetman M. A positive feedback loop between 
glycogen synthase kinase 3beta and protein phosphatase 1 after stimulation of NR2B NMDA 
receptors in forebrain neurons. J Biol Chem. 2005; 280(45):37526-35. 

Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, 
Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. Ghrelin 
strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab. 2000; 
85(12):4908-11. 

Tamada Y, Tanaka M, Ichitani Y, Okamura H, Yanaihara N, Ibata Y. Pituitary adenylate cyclase-
activating polypeptide (PACAP)-like immunoreactive neuronal elements in rat hypothalamus 
and median eminence with special reference to morphological background of its effect on 
anterior pituitary--light and electron microscopic immunocytochemistry. Neurosci Lett. 1994; 
180(2):105-8. 



REFERENCES 

 101

Tannenbaum GS, Painson JC, Lengyel AM, Brazeau P. Paradoxical enhancement of pituitary growth 
hormone (GH) responsiveness to GH-releasing factor in the face of high somatostatin tone. 
Endocrinology. 1989; 124(3):1380-8. 

Tansey WP, Schaufele F, Heslewood M, Handford C, Reudelhuber TL, Catanzaro DF. Distance-
dependent interactions between basal, cyclic AMP, and thyroid hormone response elements in 
the rat growth hormone promoter. J Biol Chem. 1993 Jul; 268(20):14906-11. 

Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin 
receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001; 
292(5514):107-10. 

Tatemoto K, Rökaeus A, Jörnvall H, McDonald TJ, Mutt V. Galanin - a novel biologically active 
peptide from porcine intestine. FEBS Lett. 1983;164(1):124-8. 

Taylor T, Wondisford FE, Blaine T, Weintraub BD. The paraventricular nucleus of the hypothalamus 
has a major role in thyroid hormone feedback regulation of thyrotropin synthesis and secretion. 
Endocrinology. 1990; 126(1):317-24. 

Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: 
unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003; 983:84-100. 

Thompson NM, Gill DA, Davies R, Loveridge N, Houston PA, Robinson IC, Wells T. Ghrelin and 
des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the 
type 1a growth hormone secretagogue receptor. Endocrinology. 2004; 145(1):234-42. 

Thorner MO, Holl RW, Leong DA. The somatotrope: an endocrine cell with functional calcium 
transients. J Exp Biol. 1988; 139:169-79. 

Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der 
Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-
Hinderling VB, Blaak EE, Auwerx J, Schrauwen P. Calorie restriction-like effects of 30 days of 
resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell 
Metab. 2011; 14(5):612-22. 

Tsang AW, Escalante-Semerena JC. CobB, a new member of the SIR2 family of eukaryotic 
regulatoryproteins, is required to compensate for the lack of nicotinate mononucleotide: 5,6-
dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin 
biosynthesis in Salmonella typhimurium LT2. J Biol Chem. 1998; 273:31788–31794. 

Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000; 
407(6806):908-13. 

Tuchweber B, Salas M. Experimental pathology of aging. Methods Achiev Exp Pathol. 1975; 7:167-
226. 

Tulipano G, Giovannini M, Spinello M, Sibilia V, Giustina A, Cocchi D. AMP-activated protein 
kinase regulates normal rat somatotroph cell function and growth of rat pituitary adenomatous 
cells. Pituitary. 2011; 14(3):242-52. 

Valcavi R, Dieguez C, Azzarito C, Edwards CA, Dotti C, Page MD, Portioli I, Scanlon MF. Effect of 
oral administration of melatonin on GH responses to GRF 1-44 in normal subjects. Clin 
Endocrinol (Oxf). 1987; 26(4):453-8. 



REFERENCES 

 102 

Valentini U, Cimino A, Rotondi A, Rocca L, Pelizzari R, Giustina A, Marchetti C, Romanelli G. 
Growth hormone response to thyrotropin releasing hormone and placebo in a group of insulin 
dependent diabetic patients. J Endocrinol Invest. 1989; 12(9):643-6. 

Van Cauter E. Estimating false-positive and false-negative errors in analyses of hormonal pulsatility. 
Am J Physiol. 1988; 254(6 Pt 1):E786-94. 

Vaughan GM, Allen JP, Tullis W, Siler-Khodr TM, de la Peña A, Sackman JW. Overnight plasma 
profiles of melatonin and certain adenohypophyseal hormones in men J Clin Endocrinol Metab. 
1978; 47(3):566-71. 

Viollet C, Prévost G, Maubert E, Faivre-Bauman A, Gardette R, Kordon C, Loudes C, Slama A, 
Epelbaum J. Molecular pharmacology of somatostatin receptors. Fundam Clin Pharmacol. 1995; 
9(2):107-13. 

Wadzinski BE, Wheat WH, Jaspers S, Peruski LF Jr, Lickteig RL, Johnson GL, Klemm DJ. Nuclear 
protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates 
CREB transcriptional stimulation. Mol Cell Biol. 1993; 13(5):2822-34 

Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary 
restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr. 1986; 116(4):641-54. 

Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic 
caloric restriction and delay ageing in metazoans. Nature. 2004; 430(7000):686-9.  

Wright J, Aldhous M, Franey C, English J, Arendt J. The effects of exogenous melatonin on endocrine 
function in man. Clin Endocrinol (Oxf). 1986; 24(4):375-82). 

Wurzburger MI, Prelevic GM, Sonksen PH, Balint-Peric LA, Wheeler M. The effect of recombinant 
on regulation of growth hormone secretion and blood glucose in human growth hormone 
insulin-dependent diabetes. J Clin Endocrinol Metab. 1993; 77:267–272. 

Yang T, Fu M, Pestell R, Sauve AA. Sirt1 and endocrine signaling. Trends Endocrinol Metab Rev. 
2006; 17(5):186-91. 

Zafar M, Ezzat S, Ramyar L, Pan N, Smyth HS, Asa SL. Cell-specific expression of estrogen receptor 
in the human pituitary and its adenomas. J Clin Endocrinol Metab. 1995; 80(12):3621-7. 

Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS. Inhibitory phosphorylation of glycogen synthase 
kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem. 
2003; 278(35):33067-77. 

Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo 
K, Wagner TE, Baumann G, Kopchick JJ. A mammalian model for Laron syndrome produced 
by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron 
mouse). Proc Natl Acad Sci U S A. 1997; 94(24):13215-20. 

Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI. AMP kinase is required 
for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc 
Natl Acad Sci U S A. 2002; 99(25):15983-7. 

 



ACKNOWLEDGEMENTS 

 103

ACKNOWLEDGEMENTS 

This work was performed at the Max Planck Institute of Psychiatry, in the laboratory of Prof. 

Dr. G.K. Stalla, under the supervision of Dr. Marily Theodoropoulou. 

I would like to thank to: 

The institute’s director Prof. Dr. Dr. Dr h.c. F. Holsboer for giving me the opportunity to 

work in this institute.  

Our group leader, Prof. Dr. G.K. Stalla for offering me the chance to join his group and work 

on the fascinating field of the pituitary gland. Moreover, I would like to thank him for his 

continuous support, for encourage me and for his interest in my work.  

I would like to express a special gratitude to my supervisor Dr. Marily Theodoropoulou for 

her professional guidance, tireless encouragement, help and optimism in the difficult moments 

as well as her faith in me and selfless support. 

I am very thankful to Prof. Dr. Rainer Landgraf and Prof. Dr. Anja Horn-Bochtler for 

reviewing this thesis. 

Thanks a lot to Dr. Marcelo Paez-Pereda and Dr. Marta Labeur for their scientific support and 

the enthusiasm they shared for my project. Thanks to Vesna, which whom I shared many 

hours in the lab, working and learning together.  

Many thanks to Dr. Ulrich Renner for his kind help all my colleagues: Bärbel, Bing, Hanni, 

Monika always willing to help. 

In addition, I want to thank to Prof. Felipe Casanueva for allowing the in vivo experiments to 

take place in his lab and for his support; also to Dr. Omar Al-Massadi and Dr. Luisa M. 

Seoane for their expertise and invaluable help with the rat canulation experiments. 

Finally, I would like to thank to all individuals for the contributions they made during the 

preparation of this work. I deeply appreciate their support. Muchas gracias Dami, por estar 

siempre a mi lado. 

 



ACKNOWLEDGEMENTS 

 104 



CURRICULUM VITAE 

 105

CURRICULUM VITAE 

José Luis Monteserín García 

 

PERSONAL DATA 

Name: José Luis Monteserín García 

Birth: May 9th, 1972, Buenos Aires, Argentina 

Academic degree: M.Sc. from the University of Morón, Morón, Argentina 

Address: Hanauer str. 35, 80992, Munich, Germany 

 

WORK ADDRESS 

Max Planck Institute of Psychiatry 

Kraepelinstr. 10 

D-80804, Munich 

Germany 

Tel: +49 89 30622272 

Email: monteserin@mpipsykl.mpg.de 

 

LANGUAGES 

English (fluent in oral and written communication) 

German (Oberstufe I) 

Spanish (native speaker) 

 

APPOINTMENTS 

2009-Today Laboratory assistant. Max Planck Institute of Psychiatry, Department of 

Endocrinology, Munich, Germany. 

2006-2009 Ph.D. Research Fellow at the Max Planck Institute of Psychiatry, Department

 of Endocrinology, Munich, Germany.  

2005-2006 Guest Scientist at the Max Planck Institute of Psychiatry, Department  of 

Endocrinology, Munich, Germany. 

2004-2005 Time dedicated for the study of German language. Volkshochschule München, 

Munich, Germany. Graduated with Oberstufe I. 

2000-2003 Laboratory Assistant. Alcorta Clinic, Haedo Provincia de Buenos Aires, 

Argentina 



CURRICULUM VITAE 

 106 

1999-2000 Undergraduate Research Fellow. Posadas Hospital, Haedo Provincia de Buenos 

Aires, Argentina 

1998  Undergraduate Research Fellow. Morón Hospital, Morón Provincia de Buenos 

Aires, Argentina 

 

EDUCATION 

2002  Graduation as Biochemist from University of Morón, Morón Provincia de 

Buenos Aires, Argentina 

Thesis: The AD7c-NTP protein is a new marker for Alzheimer disease. Qualified as very 

good (9 out of 10).    

 

1991  Graduation as Chemical Technical Assistant from the High School ENET N°27 

“Hipólito Yrigoyen”, Buenos Aires, Argentina. 

 

Courses 

Theoretical and practical course in high performance liquid chromatography (HPLC); Morón, 

Nov. 1997. 

Theoretical and practical course in gas chromatography (GC); Morón, Nov. 1997. 

 

PUBLICATIONS 

1. Correa-de-Santana E, Fröhlich B, Labeur M, Páez-Pereda M, Theodoropoulou M, 

Monteserin JL, Renner U, Stalla GK. NOD2 receptors in adenopituitary folliculostellate cells: 

expression and function. J Endocrinol. 2009 Oct; 203(1):111-22.  

2. Cerovac V, Monteserin-Garcia J, Rubinfeld H, Buchfelder M, Losa M, Florio T, Paez-

Pereda M, Stalla GK, Theodoropoulou M. The somatostatin analogue octreotide confers 

sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res. 2010 Jan 15; 

70(2):666-74. 

3. Occhi G, Losa M, Albiger N, Trivellin G, Regazzo D, Scanarini M, Monteserin-Garcia JL, 

Fröhlich B, Ferasin S, Terreni MR, Fassina A, Vitiello L, Stalla G, Mantero F, Scaroni C. The 

glucose-dependent insulinotropic polypeptide receptor is overexpressed amongst GNAS1 

mutation-negative somatotropinomas and drives growth hormone (GH)-promoter activity in 

GH3 cells. J Neuroendocrinol. 2011 Jul; 23(7):641-9. doi: 10.1111/j.1365-

2826.2011.02155.x. 

 



CURRICULUM VITAE 

 107

4. Monteserin-Garcia J, Al-Massadi O, Seoane LM, Alvarez CV, Shan B, Stalla J, Paez-

Pereda M, Casanueva FF, Stalla GK, Theodoropoulou M. Sirt1 inhibits the transcription 

factor CREB to regulate pituitary growth hormone synthesis. FASEB J. 2013 Apr; 

27(4):1561-71. doi: 10.1096/fj.12-220129.  





 

 109

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertation selbständig und ohne 

unerlaubte Hilfe angefertigt habe. Ich habe weder anderweitig versucht, eine Dissertation oder 

Teile einer Dissertation einzureichen bzw. einer Prüfungskommission vorzulegen, noch eine 

Doktorprüfung durchzuführen.  

 
 
 
 
 
 
 
 
München, den                                                José Luis Monteserín García 

 

 

 

 

 

 

 


