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IV Summary 

Under nutrient limiting conditions legumes can form arbuscular mycorrhiza (AM) with phosphate 

acquiring AM fungi, and root nodule symbiosis (RNS) with nitrogen-fixing rhizobia. Common to 

both root endosymbioses is a conserved set of genes which act together in a signaling pathway 

required for the initiation and perception of perinuclear calcium oscillations provoked upon 

symbiont perception. Downstream of calcium spiking the nuclear calcium- and calmodulin-

dependent kinase CCaMK is essential for the perception and transduction of the signal. The 

presence of a calmodulin binding domain (CaM-BD) and calcium chelating EF-hands indicates that 

CCaMK is subjected to complex regulation. Various amino acid substitutions of threonine 265, a 

presumed autophosphorylation site of Lotus japonicus CCaMK, or the kinase domain alone, confer 

calcium independent activity which gives rise to spontaneous nodulation. However, it remained 

unknown whether the calcium regulatory domains are differentially required for symbiotic 

processes. In this study mutational analysis of CCaMK was carried out to elucidate the requirement 

of the individual domains and autophosphorylation sites for the three symbiotic processes: Nodule 

organogenesis, rhizobial infection and AM. Rhizobial infection processes were strictly dependent 

on the presence of the CaM-BD, which otherwise was dispensable for AM, and nodule 

organogenesis with autoactivated constructs. AM fungi exerted a previously undescribed negative 

effect on spontaneous nodule organogenesis by autoactive CCaMK. Whether this effect is directly 

acting at the level of CCaMK or downstream is unclear, but T265 seems not to be involved. 

Phospho-mimetic and -ablative substitutions of T265 equally triggered spontaneous nodules, an 

observation that calls for further study on the activation mechanism of legume CCaMKs.  

In addition, positional cloning of the ccamk-14 mutant combined with calcium-induced 

autophosphorylation site identification in CCaMK pinpointed S337 in the CaM-BD as important 

regulatory site, as the expression of the phospho-mimetic version CCaMK-S337D in a ccamk 

mutant completely disabled symbiosis due to the proposed impairment of calmodulin binding.  

The mechanism of calcium signal propagation downstream of CCaMK leading to symbiosis gene 

expression was previously unknown. This study identified the functionally uncharacterized CCaMK 

interacting protein and phosphorylation substrate CYCLOPS as CCaMK regulated transcription 

factor. Simultaneous phosphorylation at S50 and S154 in the N-terminal domain releases the C-

terminal DNA-binding and transcriptional activation domains, turning CYCLOPS into an active 

transcription factor, which targets the promoter of the NODULE INCEPTION (NIN) gene. 

Accordingly, the phospho-mimetic version of CYCLOPS was solo-sufficient to trigger nodule 

organogenesis in the absence of rhizobia and CCaMK. Taken together, the identification of 

CYCLOPS as CCaMK activated transcription factor provides the missing link to the previously 
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unsolved question how calcium oscillations are decoded by CCaMK and translated into a symbiosis 

specific gene expression pattern. 
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IV Zusammenfassung 

Leguminosen können unter Nährstoffmangel Bedingungen arbuskuläre Mykorrhiza (AM) mit 

Phosphat liefernden AM Pilzen und Wurzelknöllchen Symbiose mit Stickstoff fixierenden 

Rhizobien Bakterien ausbilden. Beide Symbiosen nutzen ein konserviertes Genset, das in einem 

gemeinsamen Signaltransduktionsweg zusammenwirkt, welcher für die Initiierung und 

Wahrnehmung der perinukleären Calcium Oszillationen erforderlich ist, die nach Perzeption von 

Symbionten hervorgerufen werden. Die unterhalb des Calcium Spiking platzierte nukleäre Calcium- 

und Calmodulin-abhängige Kinase CCaMK ist essentiell für die Perzeption und Weiterleitung des 

Signals. Das Vorhandensein einer Calmodulin Bindedomäne (CaM-BD) und von Calcium 

chelatisierenden EF-Händen deutet darauf hin, dass CCaMK einer umfangreichen Regulation 

unterliegt. Verschiedene Aminosäure Substitutionen an der mutmaßlichen 

Autophosphorylierungsstelle T265 von Lotus japonicus CCaMK oder die Expression der Kinase 

Domäne verleihen Calcium unabhängige Aktivität welche die Bildung spontaner Knöllchen 

hervorruft. Ob die Calcium regulierten Domänen für unterschiedliche symbiotische Prozesse 

benötigt werden, war bislang unbekannt. Um herauszufinden welche der Domänen und 

Autophosphorylierungsstellen an den symbiotischen Prozessen Knöllchen Organogenese, 

Rhizobien Infektion und AM Bildung beteiligt sind, wurde in dieser Studie eine CCaMK 

Mutationsanalyse durchgeführt. Diese Analyse ergab, dass die intakte CaM-BD unter autoaktiven 

Bedingungen für den rhizobiellen Infektionsprozess essentiell ist, jedoch nicht für die AM Bildung 

oder die Knöllchen Organogenese. Zudem führte diese Analyse zu dem Ergebnis, dass AM Pilze 

einen starken negativen Effekt auf die durch autoaktives CCaMK hervorgerufene spontane 

Knöllchenbildung ausüben. Ob dieser Effekt direkt auf der Ebene von CCaMK oder weiter 

unterhalb wirkt ist unklar, die Autophosphorylierungsstelle T265 scheint jedoch nicht involviert zu 

sein. Die Beobachtung, dass sowohl phospho-mimetische als auch phospho-ablative Aminosäure 

Substitutionen an T265 spontane Knöllchen Organogenese bewirken, legt nahe, dass der Calcium-

abhängige Aktivierungmechanismus von Leguminosen CCaMKs weiterer Aufklärung bedarf.  

Die positionelle Klonierung des L. japonicus ccamk-14 Mutanten Allels und die gleichzeitige 

Bestimmung von Calcium-induzierten CCaMK Autophosphorylierungsstellen führten zur 

Identifizierung der wichtigen regulatorische Autophosphorylierungsstelle S337 in der CaM-BD. Die 

Expression der phospho-mimetischen Version CCaMK-S337D in einer ccamk Mutante 

komplementierte nicht die Symbiosebildung, was vermutlich auf die Beeinträchtigung der 

Calmodulin Bindung zurückzuführen ist. 

Wie das Calcium Signal von CCaMK weitergeleitet und schliesslich zur Expression von Symbiose 

spezifischen Genen führt war bislang unbekannt. In der vorliegenden Studie wurde das funktionell 
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uncharakterisierte, mit CCaMK interagierende CYCLOPS Protein als CCaMK regulierter 

Transkriptionsfaktor identifiziert. Die gleichzeitige Phosphorylierung von S50 und S154 in der N-

terminalen Domäne führt zur Freisetzung der C-terminalen DNA-Binde- und 

Transkriptionsaktivierungsdomäne. Dadurch wird CYCLOPS zu einem aktivierten 

Transkriptionsfaktor, der die Expression des NODULE INCEPTION (NIN) Gens induziert. 

Demzufolge induzierte die entsprechende phospho-mimetische CYCLOPS Version Knöllchen 

Organogenese in Abwesenheit von Rhizobien und CCaMK. Mit der Identifizierung von CYCLOPS 

als CCaMK aktivierten Transkriptionsfaktor konnte somit die bisher ungeklärte Frage beantwortet 

werden, wie Calcium Oszillationen von CCaMK dekodiert, und unmittelbar in ein Symbiose 

spezifisches Transkriptionsmuster umgesetzt werden. 
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V Introduction  

1 Root endosymbioses 

The majority of land plants can engage in root endosymbiosis with beneficial microbes. Two major 

types of mutualistic root endosymbioses are distinguished: The ancient arbuscular mycorrhiza (AM) 

formed between fungi of the phylum Glomeromycota (Schüßler et al., 2001) and 70-90% of the 

existing land plants and the nitrogen-fixing root nodule symbiosis (RNS). Fossil records indicate 

that AM evolved at least 400 million years ago concomitant with the emergence of land plants and 

suggests that the beneficial association supported plants in terrestrial colonization (Remy et al., 

1994). AM is probably the most widespread symbiosis and occurred early in the plant lineage 

(Parniske, 2008; Wang et al., 2010a). It connects plant roots to the AM fungal hyphal network in 

the soil thus greatly improving mineral nutrient (mainly phosphorus and nitrogen) uptake and water 

supply. Further, other beneficial effects of the AM have been described including improved 

tolerance to abiotic and biotic stress and involving also increased resistance to pathogens, toxic soil 

components, salinity and drought (Gianinazzi et al., 2010). In return, the fungus receives 

carbohydrates from the plant. RNS evolved approximately 60 million years ago coincident with the 

origin of the Leguminosae and, compared to AM, is a relatively young symbiosis (Doyle, 2011; 

Sprent, 2007). Phylogenetic analysis confined the ability to nodulate to a clade within the Eurosid I 

comprising the Fabales, Fagales, Cucurbitales and Rosales (termed the ‘FaFaCuRo’ clade) 

(Kistner and Parniske, 2002). Due to differences in the interacting bacterial and plant partner, two 

major types of RNS are distinguished: Root legume symbiosis (RLS) and actinorhiza (Markmann 

and Parniske, 2009). RLS is formed between a phylogenetically dispersed group of bacteria called 

rhizobia and leguminous plants, belonging to the Fabales, whereas in actinorhiza actinobacteria of 

the genus Frankia interact with members of the three Eurosid I orders Fagales, Cucurbitales and 

Rosales. The relatively close phylogenetic clustering of the nodulator clades led to the hypothesis 

that the common ancestor acquired a genetic predisposition for nodulation (Soltis et al., 1995). 

However it is still an open question why RNS is not a consistent feature within the nodulator clades 

and why the non-legume Parasponia (Ulmacea) is nodulated by rhizobia (Op den Camp et al., 

2012; Trinick, 1973). These observations may indicate that RNS has evolved independently several 

times, or has been lost in several species.  

Extensive research on mutants of the two model legumes Lotus japonicus and Medicago truncatula 

during the last decade identified a functional overlap between AM and RNS (Catoira et al., 2000; 

Kistner et al., 2005). Both symbioses use a common set of genes for early symbiosis signaling and 

symbiont accommodation (termed the ‘common sym genes’) indicating that plants which form RNS 

have co-opted the genetic framework used for AM formation to evolve RNS.  
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2 Establishment of arbuscular mycorrhiza 

Under phosphate limiting conditions plant roots produce the phytohormone strigolactone (SL) 

(Akiyama et al., 2005; Umehara et al., 2008) which in petunia is released by the ABC transporter 

PDR1 (Kretzschmar et al., 2012). SLs, also known as ‘branching factors’, stimulate fungal spore 

germination and hyphal outgrowth and induce a hyphal branching response which is accompanied 

by an increased fungal energy metabolism (Akiyama et al., 2005; Besserer et al., 2006; Buee et al., 

2000). Analysis of germinated spore exudates revealed that in response to plant derived SLs, AM 

fungi secrete a mixture of signaling molecules, which trigger various symbiosis related host 

responses including transcriptional activation (Kuhn et al., 2010; Ortu et al., 2012), induction of 

nuclear calcium spiking (Chabaud et al., 2011; Sieberer et al., 2012), lateral root formation (Oláh et 

al., 2005) and starch accumulation (Gutjahr et al., 2009). Isolation and characterisation of distinct 

biologically active compounds has been achieved with different bioassays. Using lateral root 

formation, root hair branching and activation of the symbiosis reporter ENOD11:GUS as read-out, 

which are all responses also induced by rhizobial nodulation (Nod) factors, Maillet et al. identified a 

mixture of sulphated and non-sulphated short chain lipochito-oligosaccharides (LCOs) chemically 

highly reminiscent of rhizobial Nod factors (Maillet et al., 2011). In contrast, Genre et al. employed 

a Nod factor independent bioassay by conducting calcium spiking analysis in legume and non-

legume root organ cultures which led to the identification of tetra- and pentameric chitin oligomers 

(COs) as the most potent AM fungal signaling molecules (Genre et al., 2013). Chitin-derived 

signaling molecules (COs and LCOs) are recognized by LysM domain containing receptors 

suggesting that a LysM domain receptor-like kinase (RLK) is involved in Myc factor perception 

(Antolin-Llovera et al., 2012; Gust et al., 2012; Tirichine et al., 2007). In the non-legume 

Parasponia andersonii establishment of AM and RNS was found to be dependent on the single 

common receptor ‘PaNFP’ which is orthologous to M. truncatula NFP (Op den Camp et al., 2011). 

This finding suggests that PaNFP can equally recognize Nod factor and Myc factor, and that in 

legume plants the duplication of the Lys gene family led to the functional diversification of the 

original Myc factor receptor, and the subsequent evolution of Myc factor and Nod factor specific 

receptors (Lohmann et al., 2010; Young et al., 2011). 

Upon contact with a host root, fungal hyphae form a hyphopodium, an attachment structure which 

marks the invasion point of the fungus. Successful root colonization and hyphopodium formation 

requires monomeric cutin signaling molecules, which are produced by the glycerol-3-phosphate 

acyltransferase RAM2 (Wang et al., 2012). RAM2 expression is regulated by the AM-specific 

GRAS type transcription factor RAM1, whose induction is dependent on the common sym genes 

Does not Make Infections 1 (DMI1), DMI2 and DMI3 (described in more detail in 3.2) (Gobbato et 
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al., 2012). Subsequently, the mechanistically stimulated plant cell actively prepares the uptake of 

the fungus by assembly of the so-called prepenetration apparatus (PPA), a dense cytoplasmic bridge 

composed of cytoskeletal filaments and components of the endoplasmic reticulum (ER) (Genre et 

al., 2005). Formation of the PPA is blocked in symrk and ccamk mutants and it has been recently 

shown that a gain-of function version of the calcium- and calmodulin-dependent kinase CCaMK, 

lacking the calcium regulatory domains (CCaMK-1-314) spontaneously induced the formation of 

cytoplasmic structures resembling PPAs (Takeda et al., 2012). Hyphal penetration of the epidermal 

cell and thus access into the PPA and later into the inner cortical cell file, is dependent on vapyrin, a 

novel protein with a role in cellular rearrangements, comprising an N-terminal VAMP-associated 

protein (VAP)/major sperm protein (MSP) domain and a C-terminal ankyrin-repeat domain 

(Feddermann et al., 2010; Murray et al., 2011; Pumplin et al., 2010). Guided through the PPA, the 

fungus traverses the epidermal and outer cortical cells till it reaches the inner cortical cell layer. 

There, the fungal hyphae spread longitudinally in the apoplast and penetrate cells of the inner 

cortical cell layer, where finally the symbiotic exchange organs, the arbuscules, are formed. 

Arbuscules are highly branched tree-like fungal structures, which serve nutrient, mainly phosphate, 

delivery into and carbon uptake from the periarbuscular space and are separated from the plant cell 

cytosol by the plant-derived periarbuscular membrane (PAM) (Parniske, 2008). Although 

continuous with the plasma membrane, the PAM has a distinct protein composition with domain-

specific enrichment of transporter proteins such as the AM specific phosphate transporter PT4 and 

of the two half-size ATP binding cassette transporters STR1 and STR2 with unknown function 

(Gutjahr et al., 2012; Harrison et al., 2002; Pumplin and Harrison, 2009; Zhang et al., 2010). The 

phosphate transporter PT4 of M. truncatula is located in PAM domains which surround the 

arbuscule branches but is neither present in membranes surrounding the arbuscule trunk or in the 

plasma membrane (Harrison, 2012; Pumplin and Harrison, 2009). This polar and site-specific 

localization is achieved by the timely defined expression of MtPT4 during arbuscule development, 

which is accompanied by a phase of transient reorientation of secretion (Pumplin et al., 2012). How 

the photosynthates are transferred in the form of carbon compounds to the fungus is still unclear but 

the AM fungal glucose transporter MST2 seems to be involved (Helber et al., 2011). 

3 Signaling in root symbiosis 

Basically, nodulation is initiated by attachment of rhizobia bacteria to the root hair tip which curls 

and entraps the bacterial microcolony. The bacteria are then taken up into the root hair cell via 

plant-derived inwardly growing infection threads (ITs), which are formed by tubular invaginations 

of the plasma membrane at the site where the cell wall has been locally degraded (Murray, 2011). 

ITs containing the proliferating bacteria extend from the root hair through the outer cortical cells 
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into inner cortical cells, whereby the route is dictated by pre-infection threads, cytoplasmic bridges 

(analogous to PPAs in AM) formed by the plant cell in advance to direct the path of infection (van 

Brussel et al., 1992; Yokota et al., 2009). Concomitantly, at sites below infection foci, cell divisions 

are initiated in inner cortical root cells, which redifferentiate in order to form nodule primordia (NP) 

(Oldroyd and Downie, 2008). Finally, the NP cells are invaded by the ITs and bacteria are released 

intracellularly where they differentiate into nitrogen-fixing symbiosomes (Kereszt et al., 2011). 

3.1 The early phase: Symbiont recognition 

Signaling in RLS is initiated by the plant under nitrogen limiting conditions, which leads to the 

secretion of flavonoids into the soil (Abdel-Lateif et al., 2012). Flavonoids are recognized by 

rhizobia and induce the synthesis and secretion of strain specific Nod factors. Chemically, Nod 

factors are lipochito-oligosaccharidic compounds composed of four to five ß-1-4 linked n-

acetylglucosamine (GlcNAc) units. Depending on the bacterial strain this GlcNAc backbone carries 

specific decorations: N-acyl groups which vary in length and degree of saturation at the non-

reducing end, and further chemical substitutions (e.g. sulphuryl, methyl or fucosyl groups) attached 

to the reducing end (Gough and Cullimore, 2011). These decorations confer specificity between 

symbiont and plant host.  

Nod factors are perceived by the LysM domain containing Nod factor receptors NFR1 and NFR5 

which in L. japonicus are both required for early responses to Nod factors as well as for nodulation 

and infection related processes at later stages (Madsen et al., 2003; Radutoiu et al., 2003). In M. 

truncatula the Lotus NFR1 ortholog LYK3 plays a predominant role in IT initiation and the 

infection process, thus functioning as entry-receptor, while the Lotus NFR5 ortholog NFP has a less 

stringent requirement for the appropriate Nod factors structure and is considered as signaling 

receptor, since it is required for early Nod factor induced signaling responses (Arrighi et al., 2006; 

Limpens et al., 2003; Smit et al., 2007). NFRs localize to the plasma membrane (Haney et al., 2011; 

Lefebvre et al., 2012; Madsen et al., 2011), and NFR1 and 5 have been shown to assemble as 

heteromeric complex (Madsen et al., 2011). Both receptors directly bind Nod factor with high 

affinity in vitro (Broghammer et al., 2012). Domain swap and mutational analyses suggest that 

recognition specificity is mediated via a Nod factor binding groove within the LysM2 domain of 

NFR5/NFP (Bek et al., 2010; Bensmihen et al., 2011; Radutoiu et al., 2007).  

The NFRs and the symbiosis RLK SYMRK interact with the symbiotic remorin protein 

SYMREM1, a scaffolding protein localized in plasma membrane microdomains and involved in 

rhizobial infection (Lefebvre et al., 2010; Tóth et al., 2012). Similar to remorins, flotillins (FLOT) 

are also associated with plasma membrane microdomains and required for the rhizobial infection 

process together with the symbiosis receptor kinases (Haney and Long, 2010; Haney et al., 2011; 
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Lefebvre et al., 2010). Upon rhizobia treatment the initially dynamic LYK3 plasma membrane 

localization becomes stabilized, resulting in the colocalization with FLOT4 in microdomains at the 

root hair tip (Haney et al., 2011). Altogether, these observations indicate that receptors and 

microdomain specific scaffold proteins are enriched within microdomains to form signaling 

platforms, which are proposed to serve the increase of signaling efficiency and specificity 

(Bapaume and Reinhardt, 2012; Jarsch and Ott, 2011). LYK3 interacts at the plasma membrane 

with the E3 ubiquitin ligase PUB1 (plant U-box protein 1), which negatively regulates bacterial 

infection and nodulation presumably via LYK3 stability (Mbengue et al., 2010). 

3.2 Signaling components required for the generation of calcium spiking 

After Nod factor (and by inference also Myc factor) perception, the signal is presumed to be 

transduced via the leucine-rich repeat (LRR) RLK SYMRK (termed DMI2 in M. truncatula), which 

is essential for the establishment of both root endosymbioses (Endre et al., 2002; Stracke et al., 

2002). Consistent with the idea of symbiosis signaling specific plasma membran microdomains, 

SYMRK has been shown to interact with the NFRs and SYMREM1 at the plasma membrane 

(Lefebvre et al., 2010; Tóth et al., 2012). The activating mechanism and putative ligand(s) are 

unknown. At least three different SYMRK versions exist in angiosperms varying in the length of 

their extracellular domain, which has been shown to be essential for the extent of symbiotic 

capability (Markmann et al., 2008). Only the longest version, which contains three LRRs and is 

predominantly present in legumes supports RNS and AM, whereas shorter versions comprising only 

two LRRs, or lacking the entire N-terminal extracellular (NEC) domain (but retain two of the 

LRRs) only confer functional AM (Markmann et al., 2008). This finding indicates that AM fungal 

and rhizobial signals are perceived and discriminated via the extracellular LRR domain(s). 

Presumably, the signal is transduced by substrate phosphorylation via the intracellular kinase 

domain (Yoshida and Parniske, 2005). Several putative SYMRK downstream targets have been 

identified by interaction analysis. One promising candidate with a putative direct role in signaling is 

3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) which catalyses the production of 

mevalonate, a compound which directly triggers calcium oscillations in Medicago root hairs (Kevei 

et al., 2007; Oldroyd, 2013). In addition, SYMRK interacts with the E3 ubiquitin ligase SEVEN IN 

ABSENTIA 4 (SINA4) in distinct microdomains at the plasma membrane (Den Herder et al., 2012) 

and similar to the LYK3/PUB1 complex is involved in the negative regulation of nodulation and 

rhizobial infection via the control of SYMRK abundance (Den Herder et al., 2012). 

The following genes have been conceptually placed into a´the common symbiosis gene network 

(Figure 1): Lectin Nucleotide Phosphohydrolase (LNP), encoding a Nod factor binding apyrase with 

unknown function, placed upstream of SYMRK (Roberts et al., 2013). SYMRK (M. truncatula 
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DMI2) (Endre et al., 2002; Stracke et al., 2002), the ion channel encoding genes CASTOR & 

POLLUX (M. truncatula DMI1) (Ané et al., 2004; Charpentier et al., 2008; Imaizumi-Anraku et al., 

2005), the SERCA-type calcium-ATPase encoding MCA8 gene (Capoen et al., 2011), the three 

nucleoporine genes NUP85, NUP133 and NENA (Groth et al., 2010; Kanamori et al., 2006; Saito et 

al., 2007), CCaMK (M. truncatula DMI3) (Lévy et al., 2004; Mitra et al., 2004; Tirichine et al., 

2006), CYCLOPS (M. truncatula IPD3) encoding a coiled-coil protein (Messinese et al., 2007; 

Yano et al., 2008), the two GRAS protein encoding genes Nodulation Signaling Pathway1 (NSP1) 

and NSP2 (Kalo et al., 2005; Smit et al., 2005) and Vapyrin (Feddermann et al., 2010; Murray et al., 

2011; Pumplin et al., 2010). Calcium spiking analysis in symbiosis mutants is used as a tool to 

categorize the common sym genes into those placed upstream of and thus required for the 

generation of calcium spiking and those placed downstream and involved in calcium signal 

perception, transduction or other common symbiotic responses (Miwa et al., 2006b).  

LNP, SYMRK, CASTOR, POLLUX, MCA8, NUP85, NUP133 and NENA act upstream of calcium 

spiking. Signal perception via the symbiont-specific receptors and activation of SYMRK at the 

plasma membrane lead within minutes to sustained perinuclear calcium oscillations, possibly 

triggered via the second messenger mevalonate, which may directly activate calcium channels 

(Ehrhardt et al., 1996; Oldroyd, 2013; Sieberer et al., 2009). The activated, presumably nuclear 

membrane localized calcium channels still await identification, while the main components 

constituting the minimal calcium spike generation machinery have been identified. CASTOR and 

POLLUX are two highly similar non-selective ion channels (with a preference for potassium over 

anions) located in the nuclear envelope (Charpentier et al., 2008). Both may either act as counter 

ion channels to compensate for the loss of positive charge upon calcium release, or may regulate 

voltage-gated calcium channels by changing the membrane potential upon opening (Charpentier et 

al., 2008). In Medicago DMI1, the ortholog of Lotus POLLUX can compensate for the function of 

both, CASTOR and POLLUX, and is solo-sufficient for symbiosis, which was recently attributed to 

an amino acid exchange in the selectivity filter causing an increase in channel opening time 

(Venkateshwaran et al., 2012). The nuclear envelope targeted SERCA-type calcium ATPase pump 

MCA8 has been identified as candidate pump removing the released calcium back into the ER store 

(Capoen et al., 2011).  
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Figure 1. Symbiotic signal transduction in plant root cells. 

Perception of rhizobial Nod factors (NFs), presumably at the plasma membrane (PM) (Haney et al., 2010), is mediated 

by LysM-receptor-like kinases (LYKs) including L. japonicus Nod factor receptor 1 (NFR1) and NFR5 (corresponding 

to LYK3 and NFP in M. truncatula) (Amor et al., 2003, Arrighi et al., 2006, Limpens et al., 2003, Madsen et al., 2003, 

Radutoiu et al., 2003). An NFR5/NFP-like receptor may mediate perception of an AM fungus-derived ‘Myc factor’ 

(MF) (Maillet et al., 2011, Op den Camp et al., 2011). LNP: Lectin Nucleotide Phosphohydrolase is a NF binding 

peripheral membrane protein required for AM and RNS, and has been positioned between the LYKs and SYMRK 

(Roberts et al., 2013). The plant U-box protein 1 (PUB1) of M. truncatula, is an E3 ubiquitin ligase which interacts with 

the kinase domain of LYK3, and was found to exert a negative regulatory effect on nodulation signaling (Mbengue et 

al., 2010). The SEVEN IN ABSENTIA homolog SINA4 interacts with the kinase domain of SYMRK and mediates its 

relocalization and degradation, thereby negatively impacting on rhizobial nodulation and infection processes (Den 

Herder et al., 2012). The symbiotic receptors NFR1/LYK3, NFR5/NFP and SYMRK/DMI2 interact at the PM with 

SYMREM1, a remorin protein specifically upregulated during nodulation and required for IT formation (Lefebvre et 

al., 2010, Tóth et al., 2012). Within minutes, LCO perception at the PM leads to a sustained perinuclear calcium spiking 

response (Ehrhardt et al., 1996), the generation, decoding and transduction of which is mediated by components 

common to both types of symbioses (Kistner and Parniske, 2002). These are genetically positioned upstream (LNP, 

SYMRK/DMI2, CASTOR & POLLUX/DMI1, NUP85, NUP133, NENA, MCA8) or downstream (CCaMK/DMI3, 

CYCLOPS/IPD3) of the calcium spiking response. CYCLOPS has been identified as transcription factor which upon 

phosphorylation by CCaMK binds to the CYC-Box in the NIN (Nodule Inception) promoter inducing NIN expression 

(Singh et al., 2014). NIN is a nodulation specific transcription factor involved in nodule organogenesis and rhizobial 

infection (Marsh et al., 2007, Schauser et al., 1999). In addition, several other transcriptional regulators including 

NSP1/2 (Kalo et al., 2005, Smit et al., 2005), ERN1/2 (Andriankaja et al., 2007, Middleton et al., 2007), NF-YA1/-YB1 

(Combier et al., 2006, Soyano et al., 2013) and others have been implicated in symbiosis-related gene expression. The 

observation that autoactive CCaMK does not restore epidermal IT formation in nfr mutants suggests the existence of a 

common sym gene independent pathway (Hayashi et al., 2010, Madsen et al., 2010). Figure modified from Singh et al., 

2012. 
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The precise role of the nucleoporins NUP85, NUP133 and NENA in calcium spike generation is 

still elusive. They may either regulate calcium fluxes, or might be involved in the transport of 

calcium spike machinery components or transmission of secondary signals from the cytosol to the 

nucleus, or from the outer to the inner nuclear membrane (Binder and Parniske, 2013), where DMI1 

and a fraction of MCA8 have been immunolocalized (Capoen et al., 2011; Charpentier et al., 2008). 

3.3 Symbiosis induced calcium spiking 

Although both symbioses share the same calcium based signaling pathway, the symbiotic responses 

in AM and RNS are remarkably different, and it is still a major open question how this specificity is 

achieved. One hypothesis is that specificity is encoded in the calcium spiking pattern which 

accordingly should be different during AM and RNS signaling. Initially, calcium spiking analysis 

has been carried out with microinjection of calcium sensitive dyes into root hair cells. This analysis 

established that oscillations are initiated in the perinuclear region within 10 min after application of 

low Nod factor concentration (in the pico- to nanomolar range) (Ehrhardt et al., 1996; Shaw and 

Long, 2003). The use of genetically encoded cameleon calcium sensors enabled non-invasive, 

simultaneous calcium imaging in multiple nuclei and in different cell types such as the epidermal 

and cortical cell layer. Analysis of calcium spiking using cytoplasmic and nucleus-targeted 

cameleon sensors revealed that outside and within the nucleus calcium spiking originates at the 

nuclear periphery, is a cell autonomous event and non-synchronous between spiking cells (Sieberer 

et al., 2009). A minimum number of 36 spikes has been determined to be required for the induction 

of the early symbiosis marker ENOD11:GUS in Medicago roots upon Nod factor application (Miwa 

et al., 2006a). Also AM fungi have been shown to elicit a calcium spiking response in legume and 

AM forming plant roots which is DMI1 and DMI2 dependent (Chabaud et al., 2011; Kosuta et al., 

2008). High frequency oscillations were recorded in atrichoblast cells, which were directly 

contacted by fungal hyphopodia and where the nucleus has moved beneath the contact site. This 

observation indicates that high frequency spiking is a prerequisite for the cellular remodeling 

required for fungal accommodation (Chabaud et al., 2011; Sieberer et al., 2012). Further, similar to 

Nod factor induced calcium spiking in RNS, calcium oscillations are also induced by AM fungal 

exudates and initiate within 10 min after treatment, whereby the spike duration equals that of a Nod 

factor induced spike (Chabaud et al., 2011). Medicago root organ cultures are not responsive to Nod 

factor treatment consistent with the observation that root organs lose the ability for RNS, which is 

strictly dependent on signal transduction processes from the shoot (Akashi et al., 2003). 

By monitoring the spiking profiles of cortical cells subjected to either rhizobial or AM fungal 

infection, Sieberer and associates recorded distinct calcium oscillatory profiles characterizing the 

pre-infection and infection stage (Sieberer et al., 2012). Remarkably, the spiking pattern induced by 
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AM fungi or rhizobia was highly similar for each stage. Cells in immediate proximity to rhizobia 

infected root hairs or AM infected atrichoblasts invariably displayed low frequency calcium spiking 

and intracellular rearrangements which were interpreted as ‘pre-infection priming’. These changes 

included nuclear repositioning to the site of anticipated microbial entry and cytoplasmic remodeling 

as observed for pre-infection thread and PPA assembly (Genre et al., 2005; van Brussel et al., 

1992). A distinct switch in calcium signature from low to high frequency spiking was exclusively 

detected in infected cells and only during the initial phase of IT penetration and elongation. This 

high frequency phase was proposed to mark cellular commitment to infection (Sieberer et al., 

2012). The high frequency spiking is of limited duration (40–55 min, corresponding to 35–45 

spikes), with a progressive reduction in the amplitude and frequency of calcium spikes during IT 

progression and cell transversion which completely disappear once infection is completed (after 

four to five hours). This switch from low to high frequency spiking in infected cells was also 

observed during AM infection with a spiking pattern and periodicity similar to that induced by 

rhizobia. However, as the duration and thus approximate number of high frequency spikes could not 

be determined due to technical limitations, it remains unclear whether rhizobia and AM induced 

calcium oscillations differ in spike number (Sieberer et al., 2012). 

3.4 Decoding and transduction of symbiotic calcium spiking 

The nuclear calcium- and calmodulin-dependent kinase CCaMK is widely considered as the central 

regulator of plant root endosymbioses (Singh and Parniske, 2012). Due to several features this 

molecule is considered as the prime decoder of symbiotic calcium oscillations. The serine/threonine 

protein kinase possesses two calcium sensing domains which is a unique feature among calcium 

regulated kinases (Hrabak et al., 2003; Patil et al., 1995). Further, CCaMK is only present in 

symbiotic plants, thus not occurring in the asymbiotic model plant Arabidopsis (Hrabak et al., 

2003). CCaMK contains a CaM-BD/autoinhibition domain (AID) adjacent to the kinase domain and 

a C-terminal visinin-like domain (VLD) comprising three EF-hand motifs (Gleason et al., 2006; 

Tirichine et al., 2006). CCaMK was initially cloned from lily (Lilium longiflorum) (Patil et al., 

1995) and biochemical characterization has established a model of CCaMK activation, which has 

also been applied to legume CCaMK regulation (Sathyanarayanan et al., 2000). In this model 

binding of free calcium ions to the EF-hand motifs induces autophosphorylation of the conserved 

threonine residue LlT267, which allows binding of CaM to the CaM-BD. CaM binding fully 

releases the kinase from autoinhibition and promotes substrate phosphorylation (Figure 2) 

(Sathyanarayanan et al., 2000; Sathyanarayanan et al., 2001). The N-terminal domain of CCaMK 

(CCaMK-1-340) shares sequence homology with calmodulin-dependent kinase II (CaMKII), a 

calcium spike decoding metazoan kinase involved in neuronal signal transduction (De Koninck and 
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Schulman, 1998; Hudmon and Schulman, 2002b; Rellos et al., 2010). Similar to CCaMK, CaMKII 

is activated by autophosphorylation at a conserved threonine residue T286 (αCaMKII) which 

imparts autoactivity to the kinase (Hudmon and Schulman, 2002b). Strikingly, the AID/CaM-BD of 

CCaMK is 79% homologous to the corresponding CaMKII domain (Patil et al., 1995). CaMKII 

activity is also regulated by autophosphorylation of two conserved sites (T305 and T306 in 

αCaMKII) in the CaM-BD, which leads to CaM repulsion (Hudmon and Schulman, 2002b). Two 

conserved phosphorylation sites are present at an equivalent position in CCaMK (LjS337 and 

LjS338). The identification and characterization of the ccamk-14 mutant (described in chapter 2 of 

this thesis) confirmed the existence of a similar autoregulatory mechanism in CCaMK (Figure 2) 

(Liao et al., 2012). ccamk mutants are absolutely symbiosis defective, although they initiate calcium 

spiking upon Nod factor perception (Lévy et al., 2004; Mitra et al., 2004; Miwa et al., 2006b), 

suggesting a position of CCaMK downstream of the calcium oscillations. Consistent with the 

identification of the activating autophosphorylation site T267 in lily CCaMK (and also in CaMKII), 

a point mutation in the orthologous site T265 in L. japonicus CCaMK (T265D or T265I) confers a 

gain-of-function phenotype in planta leading to spontaneous nodule formation in the absence of 

rhizobia (Hayashi et al., 2010; Tirichine et al., 2006). The same effect is also observed when the 

CCaMK kinase domain alone (CCaMK-1-314 or DMI3-1-311) is expressed in planta (Gleason et 

al., 2006; Shimoda et al., 2012; Takeda et al., 2012). Yet, both versions display differential patterns 

of symbiosis complementation. Whereas the autoactive full-length version CCaMK-T265D restores 

RNS and AM in ccamk mutants, the kinase domain variant can complement AM but is impaired in 

rhizobial infection (Hayashi et al., 2010; Shimoda et al., 2012). This finding indicates that the CaM-

BD and the EF-hands are required for RNS, but the necessity of these domains is less stringent for 

AM establishment. Takeda and associates employed symbiosis gene expression profiling to 

pinpoint marker genes upregulated by the two different autoactive CCaMK versions and to also 

detect potential AM related gain-of function responses mediated by deregulated CCaMK (Takeda et 

al., 2012). This approach discovered that the AM specific subtilase SbtM1 (Takeda et al., 2009) is 

specifically upregulated by CCaMK-1-314, but not by full-length CCaMK-T265D (Takeda et al., 

2012). In addition, CCaMK-1-314 spontaneously induced PPA-like structures in cortical cells in a 

distinct pattern resembling the pattern described for PPA formation during AM establishment 

(Genre et al., 2005; Takeda et al., 2012). This finding revealed differential requirements for the 

CCaMK domains in both symbioses, with higher stringency for both domains for RNS formation.  
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Figure 2. CCaMK regulation. 

 (A) CCaMK negative autoregulation I. Partial representation of CCaMK comprising the autoinhibition domain 

(AID, orange) and the calmodulin binding domain (CaMBD, blue) based on homology modeling onto the CaMKII 

crystal structure (Shimoda et al., 2012). The position of the active center of the kinase is schematized in gray. In the 

absence of calcium, CCaMK is autoinhibited. The AID assumes a helical structure and acts as a molecular brake 

impairing kinase activity. Shimoda et al., (2012) postulate that in the absence of calcium, the conserved 

autophosphorylation site T265 of L. japonicus CCaMK engages in a hydrogen-bond network (involving residues S237, 

K264, E313 and R317), stabilizing the inhibitory helical structure of the AID. 

(B) CCaMK activation by calcium. 

In the presence of calcium ions (Ca
2+

), which are bound by the C-terminal EF-hand motifs (not shown), CCaMK is 

released from autoinhibition (Sathyanarayanan et al., 2001) presumably due to the disruption of a hydrogen bond 

network (Shimoda et al., 2012). This disruption is also predicted to occur in case T265 is replaced by acidic (e.g. 

T265D), or by non-polar, uncharged amino acids (e.g. T265A, T265I) (Shimoda et al., 2012). Likewise the R317H 

substitution was predicted to disrupt the hydrogen bond network. Consistently, the corresponding mutants lost 

autoinhibition, as indicated by the formation of spontaneous nodules in the absence of rhizobia (Tirichine et al., 2006, 

Shimoda et al., 2012).  

(C) CCaMK activation in the presence of Ca
2+

/calmodulin (CaM). 

The calcium induced release of CCaMK autoinhibition increases its Ca
2+

/CaM binding affinity. Analogous to CaMKII, 

Ca
2+

/CaM binding is predicted to confer a structural reorganization of the AID/CaMBD, whereby the inhibitory 

segment adopts an extended conformation and the unstructured CaMBD becomes helical (Rellos et al., 2010). This 

conformational change improves accessibility to the catalytic cleft resulting in high substrate phosphorylation activity 

of CCaMK. S337 is a newly identified regulatory autophosphorylation site in the CaMBD and allows CaM binding only 

in the unphosphorylated state (Liao et al., 2012).  

(D) CCaMK negative autoregulation II.  

Autophosphorylation at S337 impairs Ca
2+

/CaM binding and prevents the structural reorganization of the AID/CaMBD 

domain thus stabilizing the autoinhibited state (Liao et al., 2012). Consequently, the phospho-mimetic version CCaMK-

S337D is impaired in Ca
2+

/CaM stimulated substrate phosphorylation and does not restore symbiosis when expressed in 

a ccamk mutant. In contrast, the ccamk-14 mutant (CCaMK-S337N) forms nodules but cortical infection is aberrant, 

indicating that this negative autoregulatory circuit is essential for intracellular infection. Figure modified from Singh et 

al., 2012. 
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Strikingly, expression of the autoactive CCaMK mutant versions CCaMK-T265I, (carrying the L. 

japonicus snf1-1 mutation) or CCaMK-T265D in various Lotus mutants affected in genes required 

for calcium spiking generation, led to the restoration of rhizobia infected nodules and AM (Hayashi 

et al., 2010; Madsen et al., 2010). This landmark discovery unequivocally revealed that the main 

purpose of these genes is calcium spike generation and thus activation of CCaMK. Homology 

modeling of the CCaMK N-terminal part onto the CaMKII structure and proof-of-concept 

mutational analysis provided insights into the mechanism underlying spontaneous CCaMK activity 

(Figure 2) (Shimoda et al., 2012). In the modeled structure, T265 is located between the kinase and 

the CaM binding domain and engages in a hydrogen bond network, stabilizing the autoinhibitory 

helix, thus rendering CCaMK inactive (Figure 2A). Certain amino acid substitutions of T265 

(T265A/D/I) (and by inference phosphorylation), disrupt this network and release the molecular 

brake resulting in ectopic activity and spontaneous nodule organogenesis (Figure 2B) (Shimoda et 

al., 2012).  

CCaMK is proposed to form a preassembled nuclear complex with CYCLOPS (or the Medicago 

ortholog IPD3), a coiled-coil protein of previously unknown function (Yano et al., 2008). 

CYCLOPS is required for AM and RNS and is placed downstream of calcium spiking (Horvath et 

al., 2011; Ovchinnikova et al., 2011; Yano et al., 2008). Compared to other common sym gene 

mutants its phenotype is extraordinary, as cyclops mutants initiate nodule primordia upon rhizobial 

infection, but nodule formation is blocked at this stage (Yano et al., 2008). Further, they respond 

towards rhizobia with the formation of tight root hair curls, but ITs are not formed and AM is not 

restored (Chen et al., 2008; Larkan et al., 2013; Yano et al., 2008). In Medicago, the severity of the 

ipd3 phenotype depends on the genetic background which could be explained by genetic redundant 

components, partly compensating CYCLOPS´ function (Horvath et al., 2011; Ovchinnikova et al., 

2011). M. truncatula R108 ipd3 mutants display the same severe phenotype as cyclops mutants, 

whereas M. truncatula Jemalong ipd3 mutants occasionally form more developed nodules and 

misshaped ITs, but bacterial release into nodule cells was not observed. This finding points to an 

additional later role of CYCLOPS/IPD3 in symbiosome formation (Ovchinnikova et al., 2011). 

Interestingly, the postulated genetic redundant component could not support spontaneous 

nodulation mediated by DMI3-1-311 when expressed in the Jemalong ipd3 mutant (Ovchinnikova 

et al., 2011).  

CYCLOPS is phosphorylated by CCaMK, suggesting that CCaMK tranduces the calcium signal via 

CYCLOPS (Madsen et al., 2010; Yano et al., 2008). Although it has been shown that 

overexpression of autoactive CCaMK triggers nodules in a cyclops mutant the nodule frequency 

was markedly reduced and infection was blocked, corroborating a role of CYCLOPS in both 



 31 

processes with some level of genetic redundancy in terms of nodule organogenesis (Madsen et al., 

2010; Yano et al., 2008). 

The signal propagation downstream of CCaMK and CYCLOPS ultimately leading to the activation 

of nodulation- and AM-specific genes is unclear. Apart from a Scythe-N domain (ubiquitin-like 

domain) containing protein, CIP73 which was found to interact with CCaMK (Kang et al., 2011), 

no further interactors of CCaMK or CYCLOPS have been identified. Besides, the precise function 

of CYCLOPS in symbiosis signaling remained elusive not least, due to its unknown function and 

uncharacterized protein domain structure. 

4 Transcriptional regulation during symbiosis development 

A number of symbiosis related transcriptional regulators belonging to the GRAS domain, ethylene 

response factor (ERF) or CAAT-box (Nuclear Factor Y) family, or unrelated factors such as 

NODULE INCEPTION (NIN), has been identified (Andriankaja et al., 2007; Combier et al., 2006; 

Gobbato et al., 2012; Kalo et al., 2005; Marsh et al., 2007; Middleton et al., 2007; Schaarschmidt et 

al., 2013; Schauser et al., 1999; Smit et al., 2005; Soyano et al., 2013; Vernié et al., 2008). GRAS 

proteins, ERFs and Nuclear Factors act in both symbioses, while NIN is considered nodulation 

specific.  

The GRAS domain proteins NSP1 and NSP2 were initially placed on the nodulation specific 

pathway, but refined analysis also implicates a role in AM and, under asymbiotic conditions, in the 

SL biosynthesis pathway (Delaux et al., 2013; Kalo et al., 2005; Lauressergues et al., 2012; Liu et 

al., 2011; Maillet et al., 2011; Smit et al., 2005). nsp1 and nsp2 mutants are RNS deficient and 

required for root nodule formation and rhizobial infection downstream of CCaMK. Both form a 

heteromeric complex which has been shown to bind via NSP1 to the ENOD11, ERN1 (Ethylene 

Response Factor Required for Nodulation 1), and NIN promoters (Hirsch et al., 2009). Analysis and 

characterization of Myc LCOs has revised the exclusive function of NSP1 and NSP2 in nodulation 

(Maillet et al., 2011). Myc LCOs stimulate a root branching response, which was found to be 

dependent on DMI1, DMI2, DMI3 and NSP2. The requirement of NSP1 appears to be dependent on 

the Myc-LCO structure. The lateral root response to sulfated LCO is at least at low concentrations 

dependent on NSP1, whereas the response to non-sulfated Myc-LCO is not. Further, nsp1 and nsp2 

mutants show reduced AM fungal colonization compared to wild-type plants (Delaux et al., 2013; 

Maillet et al., 2011). As in addition to their symbiotic role NSP1 and NSP2 are involved in the 

activation of SL biosynthesis genes and SLs are signaling molecules in AM, the deficient or 

reduced SL content in nsp1 and nsp2 mutants in host roots may explain the delayed AM 

colonization phenotype (Liu et al., 2011). Myc-LCOs also stimulate the expression of microRNA 

miR171h, which negatively regulates NSP2 expression in the root elongation zone during AM 



 32 

colonization (Lauressergues et al., 2012). This regulatory mechanism was proposed to prevent root 

over-colonization by AM fungi.  

A mycorrhiza specific GRAS protein involved in the early steps of AM establishment is RAM1, 

which regulates the expression of RAM2, a glycerol-3-phosphate acyltransferase involved in cutin 

biosynthesis, which is a signaling molecule required for hyphopodia formation during the pre-

infection stage (Gobbato et al., 2012; Wang et al., 2012).  

NSP1 and 2 bind to and activate the ERN1 promoter and ERN1 in turn activates the transcription of 

the early nodulin gene ENOD11 (Cerri et al., 2012; Hirsch et al., 2009). ERN1 has a nodulation 

specific function and is predominantly associated with infection initiation and progression. The 

closely related ERN2 also plays a role during rhizobial infection and can replace ERN1 when 

expressed form the ERN1 promoter (Cerri et al., 2012). Interestingly, ERN2 expression is 

upregulated in AM infected cells corroborating the concept of a common accommodation program 

for symbiotic microbes, characterized by the functional diversification of a common ancestor which 

later evolved a RNS specific function in legumes (Cerri et al., 2012; Hogekamp et al., 2011; Kistner 

and Parniske, 2002; Young et al., 2011). 

NIN is a nodulation specific RWP-RK domain containing transcription factor required for nodule 

formation and rhizobial infection (Marsh et al., 2007; Schauser et al., 1999). The NIN gene is 

rapidly (within a few hours) upregulated in response to Nod factor and its expression is severely 

hampered in cyclops mutants (Horvath et al., 2011; Yano et al., 2008). NIN has been shown to bind 

to the promoter of Nodulation Pectate Lyase (NPL) in vitro and the induction of a NPLpro:GUS 

reporter was markedly reduced in a L. japonicus nin mutant compared to wild-type plants (Xie et 

al., 2012). NPL activity is required for the localized degradation of plant cell wall pectin during IT 

formation in root hair cells. Curiously, the npl mutant phenotype resembles that of cyclops, with the 

exception that in rare cases aberrantly infected nodules are formed. In addition, NIN has been also 

shown to directly target the promoters of LjNF-YA1 and LjNF-YB1, which are two subunits of the 

heterotrimeric CAAT-box binding NF-Y complex (Soyano et al., 2013). Ectopic overexpression of 

NIN or the NF-Y subunits induced aberrant root cortical cell divisions, which led to the formation of 

primordia-like structures. Thus, this finding provides a mechanistic explanation how root nodule 

organogenesis is initiated. LjNF-YA1 is the ortholog of MtHAP2-1, involved in the regulation of 

nodule development, which shows a distinct expression pattern in the meristematic zone of 

indeterminate nodules (Combier et al., 2006). NF-Ys are also emerging as positive regulators of 

AM formation whose expression is negatively controlled by a mechanism termed autoregulation of 

mycorrhization (AOM) (Schaarschmidt et al., 2013). This mechanism is analogous to 

autoregulation of nodulation (AON) in RNS and, in a shoot-dependent manner, controls the extent 
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of AM colonization or nodulation, respectively (Mortier et al., 2012; Schaarschmidt et al., 2013).  

5 Aims of the study 

This study was conducted in order to better understand how symbiosis induced calcium spiking is 

decoded and transduced in the nucleus. CCaMK is generally considered as the prime candidate 

involved in the decoding and transduction of symbiotic calcium oscillations. Although both 

symbionts, AM fungi and rhizobia, elicit sustained calcium oscillations which presumably lead to 

the activation of CCaMK, the symbiotic responses are different. During RNS, CCaMK activation 

leads to the formation of root nodules, which are not formed during AM, although CCaMK in its 

autoactivated form is able to trigger the nodule organogenesis program. One hypothesis for the 

differential readout is that AM fungi and rhizobia elicit distinct calcium signatures which lead to the 

differential activation of CCaMK possibly via different requirements of the CCaMK calcium 

regulatory domains. Another possibility is that signaling specificity is mediated by additional 

components, which might be activated in a common sym gene independent manner. Evidence for 

such alternative, common sym gene independent pathways has been obtained recently for both 

symbioses (Gutjahr et al., 2008; Madsen et al., 2010). These pathways might confer signaling 

specificity via the Nod factor and Myc factor receptors.  

In order to dissect whether the regulatory domains of CCaMK are differentially required for AM 

and RNS establishment, or involved in different processes during symbiosis establishment, a 

CCaMK mutant analysis was conducted. To this end, CCaMK mutant constructs were generated 

and introduced into a L. japonicus ccamk null mutant to analyse AM and RNS restoration and 

spontaneous nodule organogenesis in vivo. Furthermore, the in vitro kinase activity of the mutant 

proteins and their subcellular localization was determined and correlated to the in vivo activity. The 

results of this analysis are presented in chapter 1. 

A suppressor screen conducted with the hypernodulating L. japonicus har1-1 mutant line 

(Murray et al., 2006) identified the ccamk-14 mutant, which is specifically impaired in cortical cell 

infection by AM fungi and rhizobia. Characterisation of this mutant concomitant with mass 

spectrometric autophosphorylation site analysis of calcium stimulated CCaMK discovered a novel 

autoregulatory mechanism. This mechanism involves autophosphorylation of the conserved residue 

S337 located in the CaM binding domain, which leads to CaM repulsion. This negative 

autoregulation is proposed to serve the deactivation of CCaMK once calcium oscillations cease and 

intracellular infection is completed. The results of the detailed ccamk-14 mutant analysis are shown 

in chapter 2. 

CCaMK´s strong nuclear interaction with the protein of unknown function CYCLOPS, 

suggested that the calcium signal perceived by CCaMK is propagated via CYCLOPS to mediate the 
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appropriate symbiotic responses. The calcium/calmodulin dependent phosphorylation of CYCLOPS 

suggested that CYCLOPS´ activity might be regulated by phosphorylation and that the 

phosphorylated CYCLOPS is the functionally active signaling molecule. To test this hypothesis, 

phosphorylation site analysis of CCaMK phosphorylated CYCLOPS was performed which 

pinpointed two regulatory sites whose functional characterization led to the identification of 

CYCLOPS as transcriptional regulator. The results of this study are summarized in chapter 3.  
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VI Results 

Chapter 1: Functional characterization of CCaMK and the role of its regulatory 

domains in symbiosis 

1 Summary 

The two plant root endosymbioses, arbuscular mycorrhiza (AM) and root nodule symbiosis (RNS) 

use a common genetic program for symbiosis establishment. A hallmark of symbiosis signaling are 

perinuclear calcium oscillations initiating within minutes after symbiont recognition which are 

required for the transcriptional reprogramming accompanying symbiosis establishment. The nuclear 

calcium and calmodulin-dependent kinase (CCaMK) is the presumed decoder and transducer of the 

calcium spiking response. The molecule combines two calcium regulatory domains, a CaM binding 

domain (CaM-BD) and a visinin-like domain (VLD) comprising three calcium binding EF-hands. 

The presence of both domains in AM forming non-legume plants indicates that CCaMK executes a 

conserved function in both symbioses. However, the finding that a gain-of-function mutation in the 

autophosphorylation site of CCaMK triggers spontaneous nodule development in the absence of 

rhizobia suggested that CCaMK has acquired a novel function in RNS, associated with nodule 

organ development. As legume CCaMKs are proposed to be involved in the decoding of calcium 

spiking during both, AM and RNS signaling, it is still an open question why nodule organogenesis 

is not triggered during AM formation. In this study a CCaMK construct series with mutations in 

various calcium regulatory domains and in the autophosphorylation site was characterised in vitro 

and in vivo. This analysis revealed a less stringent requirement of the CaM-BD for the AM infection 

process with autoactivated constructs, but a strict requirement for rhizobial infection. Furthermore, 

ectopic activity of autoactivated constructs caused the extension of arbuscule development beyond 

inner cortical cell files, indicating a function of CCaMK in arbuscule differentiation. Excitingly, this 

analysis also revealed that AM fungi exert a negative effect on spontaneous nodulation, which 

presumably acts downstream of CCaMK. 

2 Introduction 

Entering root symbiosis with nutrient delivering microbes is an ancient strategy of plants to 

overcome nutrient shortage. Most (>80%) of the extant plant species can establish AM with the 

widespread fungi of the phylum Glomeromycota (Schüßler et al., 2001; Smith and Read, 2008). 

AM connects the plant root to the huge extraradical hyphal network in the soil, expanding the area 

exploited for nutrient uptake. In addition to AM, legume plants acquired the ability to form the 

evolutionary younger RNS with nitrogen-fixing rhizobia bacteria (Doyle, 2011; Sprent, 2007). 

Mutant analysis using the model legumes Lotus japonicus and Medicago truncatula revealed that 
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both symbioses utilize the same genetic components required for initial symbiotic signal 

transduction suggesting that the evolution of RNS was facilitated by the recruitment of AM 

symbiosis genes combined with an advantageous genetic predisposition for nodulation (Kistner and 

Parniske, 2002; Markmann and Parniske, 2009, Soltis et al., 1995). A hallmark of symbiosis 

signaling is the initiation of sustained perinuclear calcium oscillations which are detected within 

minutes after perception of symbiont-specific mycorrhization (Myc) or nodulation (Nod) factors by 

the corresponding LysM-domain receptor-like kinases (Bek et al., 2010; Ehrhardt et al., 1996; 

Genre et al., 2013; Lerouge et al., 1990; Madsen et al., 2003; Maillet et al., 2011; Op den Camp et 

al., 2011; Radutoiu et al., 2003). This calcium spiking response is presumed to activate symbiosis 

specific gene expression required for the synthesis of components mediating cellular 

rearrangements to accommodate the symbionts within root cells (Genre et al., 2005; Miwa et al., 

2006a; van Brussel et al., 1992; Yokota et al., 2009). Subsequently, symbiont accommodation also 

leads to the development of the symbiotic exchange organs, phosphate-delivering arbuscules in AM 

and nitrogen-fixing root nodules in RNS, respectively. The establishment of both symbioses is 

dependent on a common set of genes (termed ‘common sym genes’) which encode the leucine-rich-

repeat receptor-like kinase SYMRK, the ion channels CASTOR and POLLUX, the calcium ATPase 

pump MCA8, the NUCLEOPORINs (subunits of the nuclear pore complex) NUP85, NUP133 and 

NENA, a nuclear calcium- and calmodulin-dependent kinase (CCaMK) and CYCLOPS, a nuclear 

coiled-coil protein of unknown function (Ané et al., 2004; Charpentier et al., 2008; Endre et al., 

2002; Gleason et al., 2006; Capoen et al., 2011; Groth et al., 2010; Horvath et al., 2011; Kanamori 

et al., 2006; Lévy et al., 2004; Mitra et al., 2004; Ovchinnikova et al., 2011; Saito et al., 2007; 

Stracke et al., 2002; Tirichine et al., 2006; Yano et al., 2008). Based on calcium spiking analysis in 

the corresponding mutants, SYMRK, CASTOR & POLLUX, MCA8 and the NUPs are 

conceptually placed upstream of calcium spiking and are implicated in the generation of the 

repetitive calcium signal, whereas CCaMK and CYCLOPS are positioned donwstream as presumed 

decoders and transducers of the signal (Miwa et al., 2006b). Due to several characteristics it is 

common belief that CCaMK is the main target of the spikes. CCaMK is a calcium responsive 

kinase, composed of an N-terminal Ser/Thr kinase domain which is linked to two calcium sensing 

domains: A CaM-BD which overlaps with an autoinhibitory domain and a VLD comprising three 

EF-hand motifs (Patil et al., 1995; Tirichine et al., 2006). Biochemical characterization of lily 

(Lilium longiflorum) CCaMK has established a working model of CCaMK activation 

(Sathyanarayanan et al., 2000). The binding of calcium ions to the VLD induces 

autophosphorylation of the conserved residue LlT267 (LjT265/MtT271), which induces the 

exposure of the CaM-BD. Subsequent CaM binding leads to the full release of the kinase from 
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autoinhibition and promotes substrate phosphorylation. The importance of CCaMK in symbiosis 

signaling is also supported by its mutant phenotype, as ccamk mutants are absolutely symbiosis 

defective and show no phenotypic responses upon symbiotic stimulation (Lévy et al., 2004; Mitra et 

al., 2004; Perry et al., 2009). CCaMK interacts with and phosphorylates CYCLOPS suggesting, that 

the signal is transduced by CCaMK via CYCLOPS phosphorylation (Yano et al., 2008). However it 

is still unresolved how signaling specificity is achieved downstream of the nuclear 

CCaMK/CYCLOPS complex to activate AM and RNS specific readouts. 

CCaMK and CYCLOPS orthologs are present in all major plant lineages including bryophytes, the 

common ancestor of land plants, and a conserved interaction between various bryophyte 

CCaMKs/DMI3s with the Medicago CYCLOPS ortholog IPD3 has been demonstrated (Wang et 

al., 2010a; Yano et al., 2008; Zhu et al., 2006). Further, the CCaMK ortholog of the AM forming 

monocot rice (Oryza sativa), OsCCaMK, was able to fully restore RNS in a L. japonicus ccamk 

mutant demonstrating a high degree of functional conservation (Banba et al., 2008). These 

observations indicate that both calcium regulatory domains of CCaMK play a role in AM and RNS 

establishment, but it is not clear whether there are differential requirements for these domains at 

different stages, or for different processes during symbiosis formation. The L japonicus snf1-1 

mutant carrying a point mutation in the CCaMK autophosphorylation site (T265I) triggers the 

spontaneous formation of nodules in the absence of rhizobia (Tirichine et al., 2006). According to 

the working model of CCaMK activation, elevated calcium concentration, and thus presumably 

calcium spiking in vivo, induce autophosphorylation of CCaMK which per se can trigger nodule 

development. This exciting finding raises the question whether CCaMK activation via calcium 

oscillations elicited by AM fungi is different from the activation elicited by rhizobia, as nodules are 

not formed in AM symbiosis. Alternatively, AM fungi may exert an inhibitory effect, which 

suppresses the nodule organogenesis program in legume roots. 

In order to examine in more detail the mechanism of CCaMK activation and the role of the distinct 

CCaMK regulatory domains in symbiosis formation, a CCaMK mutant series was constructed and 

analysed in vivo and in vitro. This analysis revealed differential requirements of the calcium 

regulatory domains for the two symbiotic processes nodule organogenesis and rhizobial infection 

and found a less stringent requirement for the calcium responsive domains to enable AM infection. 

However, an unusual AM phenotype was observed with two autoactivated constructs lacking both 

(CCaMK-1-314) or only one of the calcium regulatory domains (CCaMK-FNDD), where arbuscule 

formation extended into the outer cortical cell layer, indicating a certain degree of aberrant 

signaling. The phospho-ablative (CCaMK-T265A) and phospho-mimetic (CCaMK-T265D) 

autophosphorylation site mutants displayed differences in the proportion of infected versus 
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uninfected nodules, which might be due to different kinase activity levels. Interestingly, this 

analysis also revealed a significant (~50%) reduction of spontaneous nodules in the presence of AM 

fungi compared to asymbiotic cultivation conditions. This reduction was less severe (~20%), but 

still observed with the snf2 mutant, encoding an autoactive cytokinin receptor (Lhk1-L266F) 

positioned downstream of CCaMK which triggers spontaneous nodulation (Tirichine et al., 2007). 

This important finding indicates that nodule organogenesis is attenuated in the presence of AM 

fungi and several possibilities concerning the cause of this inhibitory effect are discussed. 

3 Results 

3.1 The CCaMK domain structure and CCaMK mutant constructs used in this study 

CCaMK (57.5 kDa) is composed of three distinct domains, an N-terminal Ser/Thr kinase domain, 

an autoinhibition domain overlapping with a CaM-BD and the C-terminal VLD comprising three 

EF-hand motifs (Figure 3A). Located within the kinase domain is a conserved autophosphorylation 

site T265, whose substitution by various amino acids (T265A, T265D, T265I), leads to the 

deregulation of the kinase conferring autoactivity (Gleason et al., 2006; Hayashi et al., 2010; 

Shimoda et al., 2012; Tirichine et al., 2006). In order to dissect domains and amino acid residues 

differentially required for RNS and AM, various CCaMK mutant constructs (Figure 3B) were 

expressed under the control of the L. japonicus ubiquitin promoter in the L. japonicus ccamk-13 

mutant and restoration of RNS and AM and the formation of spontaneous nodules was analysed. 

The ccamk-13 mutant harbours a 7 bp insertion after G462 leading to a premature stop codon (Perry 

et al., 2009). The mutation leads to a predicted truncated protein with a putative molecular weight 

of 17.3 kDa, comprising amino acids 1-154 of the CCaMK protein plus seven additional amino 

acids (PPRGSQG). Protein blot analysis using three different polyclonal anti-LjCCaMK antibodies 

did not detect the truncated CCaMK protein suggesting that ccamk-13 is a null mutant (Figure 4). 
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Figure 3. Overview of L. japonicus CCaMK domain structure and mutant derivatives. 

(A) The wild-type L. japonicus CCaMK protein is composed of an N-terminal Ser/Thr kinase domain (aa 1-300), an 

overlapping autoinhibition and calmodulin binding domain (AI/CaM-BD, aa 315-338/319-338, depicted in red, CaM-

BD underlined) and a visinin-like domain comprising three calcium ion binding EF-hand motifs (EF1: aa 407-418, EF2: 

aa 443-454, EF3: aa 485-496, depicted in orange). T265 and S337 are regulatory autophosphorylation sites located in 

the kinase domain and AI/CaM-BD, respectively (depicted in green and boxed). 

(B) Schematic representation of CCaMK mutant derivatives. CCaMK-G30E is a kinase-dead mutant which corresponds 

to the ccamk-3 mutant allele and is impaired in RNS and AM (Perry et al., 2009). CCaMK-T265A, CCaMK-T265D, 

CCaMK-T265I (corresponding to the deregulated snf1-1 allele) and CCaMK-T265S are autophosphorylation site 

mutants. Replacement of the threonine residue by aspartic acid (D, phospho-mimetic version) or isoleucine (I) lead to a 

deregulated autoactive kinase conferring spontaneous nodulation (Hayashi et al., 2010; Tirichine et al., 2006). CCaMK-

T265A represents the phospho-ablative version. CCaMK-T265S substitutes threonine by a serine phosphorylation site. 

CCaMK-FN321/322DD (CCaMK-FNDD) is a mutant affected in the CaM-BD which was generated analogous to the 

CaMKII FN-ED mutant, (Yang and Schulman, 1999). CCaMK-1-453, is a truncated mutant where EF-hand 1 is 

retained, EF-hand 2 lacks the invariant chelating glutamate residue at position 12 and EF-hand 3 is missing. CCaMK-1-

351, is a truncated version lacking EF-hands 1-3. CCaMK-1-314 consists only of the kinase domain.  
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3.2 Restoration of RNS in the L. japonicus ccamk-13 mutant by CCaMK mutant versions 

The results of RNS complementation by the CCaMK mutant derivatives are illustrated in Figure 5 

and Table 1. The L. japonicus Gifu wild-type was used as positive control and all plants developed 

an average number of 15 M. loti DsRed infected nodules. Compared to Gifu wild-type plants, 

overexpression of wild-type CCaMK in ccamk-13 mutant roots led to a significant (66%) increase 

in nodule number (25 nodules per transformed root system) (Figure 5C, Table 1). Exclusively 

infected nodules were also formed with CCaMK-T265S and the truncated versions CCaMK-1-351 

and CCaMK-1-453, albeit a certain degree of impairment was observed with CCaMK-1-453, where 

only 57% of the transformed root systems formed infected root nodules, while the rest formed none 

(Figure 5A, B and Table 1). This result may indicate insufficient penetrance of the mutant protein. 

Mixed (M. loti-DsRed infected and uninfected) nodules were formed with CCaMK-T265A and 

CCaMK-T265D. Strikingly, >50% of the nodules formed on roots expressing CCaMK-T265D were 

uninfected whereas the majority (89%) of the nodules on roots transformed with CCaMK-T265A 

was infected (Figure 5A, C and Table 1). This finding suggests that the phospho-ablative and 

phospho-mimetic form of T265 behave different and that autophosphorylation may negatively 

impact on the infection process. Plants expressing CCaMK-FNDD and CCaMK-1-314 developed 3-

4 spontaneous, uninfected nodules with lower frequency (25-30%), which compared to either 

infected wild-type nodules or spontaneous nodules formed by CCaMK-T265A or CCaMK-T265D 

appeared to be smaller (Figure 5 A-C, Table 1). Taken together, CCaMK-T265S and CCaMK-1-

351 restored RNS wild-type-like. CCaMK-1-453 also restored RNS wild-type-like, but the 

complementation efficiency was significantly reduced. CCaMK-T265A and CCaMK-T265D partly 

lacked synchronisation between nodule organogenesis and infection, which was more pronounced 

with CCaMK-T265D. CCaMK-FNDD and CCaMK-1-314 with low efficiency formed empty 

uninfected nodules. 

Figure 4. Immunodetection of CCaMK in root 

extract of the ccamk-13 mutant. 

Immunodetection of CCaMK in protein extracts 

prepared from equal amounts of root material (20 

roots from 8 days old seedlings) obtained from 

the L. japonicus Gifu wild-type, ccamk-13 and 

cyclops-3 mutants. SDS-PAGE (10%) resolved 

protein extracts were blotted onto a PVDF 

membrane and probed with three different 

polyclonal CCaMK antibodies (α-CCaMK-1, -2, 

or -3). The full-length CCaMK protein (57.5 kDa, 

indicated by an arrowhead) is detected in the Gifu 

wild-type and the cyclops-3 mutant. The 

predicted peptide encoded by the ccamk-13 

mutant (CCaMK-1-154 + PPRGSQG, 17.3 kDa) 

is not detected. 
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Figure 5. Restoration of RNS in the L. 

japonicus ccamk-13 mutant by various 

CCaMK versions. 

Transgenic roots expressing various 

CCaMK versions (as indicated) under the 

control of the L. japonicus ubiquitin 

promoter were co-cultivated with M. loti-

DsRed for 4 weeks and restoration of 

RNS was evaluated. RNS was restored, if 

M. loti-DsRed infected root nodules were 

observed (visualized with a DsRed 

fluorescence filter). Transformed root 

systems were selected based on the GFP 

transformation marker (visualised with a 

GFP filter). Scale bars: 0.5 mm. 

(A) The empty vector control and 

CCaMK-G30E did not restore RNS. 

Infected root nodules were formed on 

plants expressing CCaMK-WT, CCaMK-

T265A, CCaMK-T265D, CCaMK-1-453 

and CCaMK-1-351, whereby part of the 

nodules formed by CCaMK-T265A and 

CCaMK-T265D were uninfected (see 

quantification in C). Expression of 

CCaMK-FNDD and CCaMK-1-314 

induced the formation of small uninfected 

nodules. Upper pictures show brightfield 

images, lower pictures show overlay of 

micrographs recorded with GFP and 

DsRed filters. 

Numbers below construct names indicate 

number of root systems with root nodules 

per number of total transformed root 

systems analysed. (B) Graph showing the 

percentage of transformed root systems 

which developed infected root nodules 

upon expression of the indicated 

constructs. CCaMK-FNDD and CCaMK-

1-314 did not restore the formation of 

infected root nodules, only uninfected 

nodules were formed (shown in C). 

Formation of infected root nodules was 

impaired in 43% of the root systems 

transformed with CCaMK-1-453, 

indicating a certain degree of impairment 

in the penetrance of this mutant protein. 

(C) Graph showing the average number 

of infected (grey bars) and uninfected 

(white bars) root nodules per 

transformed, nodulated root system. Note 

that >50% of the nodules formed with 

CCaMK-T265D were uninfected, while 

CCaMK-T265A produced only 11% 

uninfected nodules. Error bars represent 

SE. Shown are data obtained from one 

experimental set-up, n=8-46. 
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Table 1. Restoration of RNS in the L. japonicus ccamk-13 mutant by various CCaMK 

versions. 

Plant 

genotype 

Transgene Nod+ (%)
a
 # Nod/ 

Nod+Plant
b
 

#infected 

Nod
c 

#uninfected 

Nod
d 

Gifu WT no 13/13 

(100%) 

15 (±1.1) 15 (±1.1) 0 

ccamk-13 pUB:empty vector 0/12 (0%) 0 0 0 

ccamk-13 pUB:CCaMK 15/17 

(88%) 

25 (±2.7) 25 (±2.7) 0 

ccamk-13 pUB:CCaMK-

G30E 

0/22 (0%) 0 0 0 

ccamk-13 pUB:CCaMK-

T265A 

24/24 

(100%) 

19 17 (±1.7) 2 (±0.8) 

ccamk-13 pUB:CCaMK-

T265D 

11/11 

(100%) 

25 12 (±1.9) 13 (±2.2) 

ccamk-13 pUB:CCaMK-

T265S 

8/8 (100%) 19 (±3.5) 19 (±3.5) 0 

ccamk-13 pUB:CCaMK-

FNDD 

7/25 (28%) 4 (±1.1) 0 4 (±1.1) 

ccamk-13 pUB:CCaMK-1-

453 

12/21 

(57%) 

16 (±3.6) 16 (±3.6) 0 

ccamk-13 pUB:CCaMK-1-

351 

43/46 

(94%) 

24 (±1.6) 24 (±1.6) 0 

ccamk-13 pUB:CCaMK-1-

314 

9/36 (25%) 3 (±0.5) 0 3 (±0.5) 

a
Number of root systems with root nodules per number of total transformed root systems analysed. Transformed 

roots were analysed 4 weeks post M. loti-DsRed inoculation. 
b
Average number of nodules per nodulated root system ± SE. 

c
Average number of infected nodules per nodulated root system ± SE. 

d
Average number of uninfected nodules per nodulated root system ± SE. 

 

3.3 Restoration of AM in the L. japonicus ccamk-13 mutant by CCaMK mutant versions 

The results of the AM complementation analysis are illustrated in Figures 6 and 7 and Tables 

2 and 3. All symbiotic structures characterizing successful AM establishment, including 

arbuscules, vesicles and intraradical hyphae, were observed in L. japonicus ccamk-13 roots 

expressing wild-type CCaMK (Figure 6).  
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Figure 6. Restoration of AM in the L. japonicus ccamk-13 mutant by various CCaMK versions. 

Transgenic roots expressing various CCaMK versions (as indicated) under the control of the L. japonicus 

ubiquitin promoter were cocultivated with the AM fungus R. irregularis for 4 weeks and restoration of AM was 

evaluated by brightfield microscopy of ink stained root systems. Numbers below construct names indicate 

number of transformed root systems showing restoration of AM per total number of transformed root systems 

analysed and are also given as percent values. Scale bars: 100 µm. Red arrowheads in (B) indicate the following 

AM fungal structures: a= arbuscule, h= hypha, v= vesicle. 

(A,C) AM was not restored in roots transformed with the empty vector control and CCaMK-G30E, as only 

superficial hyphal colonization, but no arbuscule formation was observed. 

(B,D-I) Expression of CCaMK-WT, CCaMK-T265A, CCaMK-T265D, CCaMK-FNDD, CCaMK-1-453, 

CCaMK-1-351 and CCaMK-1-314 restored AM formation. In all cases dense intraradical hyphal colonization 

and the formation of arbuscules was observed. Note the striking extension of the arbuscule containing cell layers 

into the outer cortical cell files (marked by blue arrowheads) in roots expressing CCaMK-T265D, CCaMK-

FNDD and CCaMK-1-314. 
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All mutant constructs except CCaMK-G30E, where only extraradical hyphae were observed, 

restored AM formation in ccamk-13 mutant roots, but differences in the extent and efficiency 

of AM colonization were observed (Figure 6 and 7A, B and Table 2). AM was only restored 

in 26% (CCaMK-FNDD), 43% (CCaMK-1-453), 61% (CCaMK-1-314) and 75% (CCaMK-1-

351) of the corresponding transformed roots which was significantly reduced when compared 

to CCaMK-WT (90%), CCaMK-T265A (90%) and CCaMK-T265D (97%). In addition, the 

proportion of the symbiotic structures, per AM fungal colonized root length was markedly 

reduced in roots expressing CCaMK-FNDD, or the three truncated versions (25% - 43% 

arbuscule and/or vesicle formation) compared to those expressing CCaMK-WT, CCaMK-

T265A or -T265D (78% - 87% arbuscule and/or vesicle formation) (Figure 7B, Table 2). 

Microscopic analysis of AM colonized root segments indicated that the expression of some of 

the auto-activated constructs permitted an over-colonization of the root with extension of 

arbusculated cell files into the outer cortical cell layers (Figure 6 E, F, I). In order to test 

whether this finding was significant, the number of arbusculated cell layers (counted from one 

side of the vascular bundle) was quantified for each construct (see materials and methods) 

(Figure 7C and Table 3). Expression of wild-type CCaMK led to the formation of maximal 

three cortical cell layers (15%), but mainly two cell layers (60%) were formed. Strikingly, 

expression of CCaMK-FNDD resulted in a significant extension of the cell layers beyond the 

inner cortical cells, with 58% of the colonized root segments developing 4-5 cell files. 

Further, a weak tendency towards cell layer extension was also observed with the auto-

activated versions CCaMK-1-314, CCaMK-T265D and CCaMK-T265A where 19%, 12% 

and 7% of the colonized root segments developed 4-5 cell files.  
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Table 2. AM fungal root length colonization of L. japonicus ccamk-13 roots expressing 

various CCaMK versions.  

Transgene
a
 % no col.  % hyphae  % vesicles  % arbuscules  % arbuscules & vesicles  

pUB:empty vector 42 (±6.5) 58 (±6.5) 0 0 0 

pUB:CCaMK-G30E 62 (±4.9) 38 (±4.9) 0 0 0 

pUB:CCaMK 2 (±1.0) 9 (±0.9) 3 (±1.2) 50 (±5.5) 36 (±4.9) 

pUB:CCaMK-T265A 3 (±1.8) 15 (±4.3) 4 (±1.7) 48 (±2.0) 30 (±5.9) 

pUB:CCaMK-T265D 6 (±3.7) 6 (±1.2) 1 (±0.6) 49 (±5.7) 38 (±3.8) 

pUB:CCaMK-FNDD 43.5 (±1.9) 31 (±3.6) 1 (±0.7) 18 (±4.4) 6.5 (±0.3) 

pUB:CCaMK-1-453 37 (±3.6) 25 (±3.2) 1 (±0.3) 19 (±3.3) 18 (±0.9) 

pUB:CCaMK-1-351 18 (±7.9) 32 (±3.1) 11 (±1.5) 14 (±2.4) 26 (±6.0) 

pUB:CCaMK-1-314 24 (±1.7) 32 (±10.1) 1 (±0.9) 35 (±6.1) 8 (±2.8) 

a
Three root systems per construct were analysed. Given are average values in percent for each category ± SE. 

col.: colonization. 
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Figure 7. Quantitative analysis of 

AM restoration in L. japonicus 

ccamk-13 mutant roots expressing 

various CCaMK versions. 

Transgenic roots expressing various 

CCaMK versions (as indicated) under 

the control of the L. japonicus 

ubiquitin promoter were co-cultivated 

with the AM fungus R. irregularis for 

4 weeks and restoration of AM was 

quantified by brightfield microscopy of 

ink stained root systems. 

(A) Graph showing the percentage of 

transformed root systems evaluated as 

AM positive due to the formation of 

arbuscule containing cells (dark grey 

bars). For comparison, the percentage 

of transformed root systems showing 

successful RNS restoration due to the 

formation of infected nodules 4 weeks 

post M. loti-DsRed inoculation is 

depicted side-by-side (light grey bars, 

duplicated values of Figure 5B). 

(B) Quantitative AM analysis using the 

line intersect method. The presence of 

the following categories was scored per 

intersect (in a total of 100 intersects): 

No AM fungal colonization, hyphae, 

vesicles, arbuscules, arbuscules + 

vesicles. The proportion (%) of the 

individual categories is given for each 

construct (depicted as percent root 

length colonization). The mean values 

obtained from the analysis of three root 

systems are given for the indicated 

categories. Error bars represent SE. 

(C) Quantitative analysis of the number 

of arbusculated cell files. The number 

of arbusculated cell files (ranging from 

1-5 and calculated from one side of the 

vascular system) was scored per 

arbusculated intersect (in a total of 100 

arbusculated intersects). Mean values 

of arbusculated cell files for each 

construct were obtained from the 

analysis of three root systems. Error 

bars represent SE. 
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Table 3. Quantification of arbusculated cell files in L. japonicus ccamk-13 roots 

expressing various CCaMK versions. 

Transgene
 

%
a
 1 layer  %

a
 2 layers  %

 a
 3 layers  %

 a
 4 layers  %

 a
 5 layers  

pUB:CCaMK 25 (±4.4) 60 (±3.2) 15 (±6.6) 0.0 0.0 

pUB:CCaMK-T265A 2 (±1.4) 42 (±1.4) 49 (±7.5 6 (±5.2) 1 (±0.8) 

pUB:CCaMK-T265D 8.6 (±3.7) 45 (±8.5) 34 (±5.6) 12 (±6.8) 0.4 (±0.4) 

pUB:CCaMK-FNDD 2 (±0.9) 13 (±9.4) 27 (±6.3) 39 (±9.9) 19 (±4.8) 

pUB:CCaMK-1-453 6 (±6.5) 33 (±5.8) 58 (±0.2) 2 (±2.0) 0.0 

pUB:CCaMK-1-351 1 (±0.6) 31 (±1.8) 59 (±1.5) 8 (±1.0) 0.0 

pUB:CCaMK-1-314 3 (±1.3) 40 (±1.9) 39(± 4.1) 17 (±4.6) 2 (±1.1) 

a
100 arbusculated intersects were scored per transformed root system and the number of arbusculated 

cell layers was determined (counted from one side of the vascular bundle) per intersect. Three root 

systems per construct (transgene) were analysed. Given are average values in percent for each category ± SE. 

 

3.4 Formation of spontaneous nodules in the L. japonicus ccamk-13 mutant by CCaMK 

mutant versions 

The results of spontaneous nodule formation under asymbiotic conditions and in the presence 

of the AM fungus R. irregularis are illustrated in Figure 8 and in Tables 4 and 5. As has been 

reported previously, expression of CCaMK autophosphorylation site mutants, or of the kinase 

domain alone (L. japonicus CCaMK-1-314, or M. truncatula DMI3-1-311) leads to 

spontaneous nodule development in the absence of rhizobia (Gleason et al., 2006; Tirichine et 

al., 2006). In order to reproduce these results and find out whether other CCaMK mutant 

versions are also able to spontaneously trigger the nodulation program, all constructs were 

transformed into the ccamk-13 mutant, incubated in the absence of rhizobia and spontaneous 

nodule formation was analysed 7 weeks post transformation (or 5 weeks post transplantation 

into sterile soil, respectively). In addition, in order to evaluate whether the mycorrhizal 

interaction influences spontaneous nodule development, the same construct series was also 

tested for spontaneous nodule formation in the presence of R. irregularis. Expression of wild-

type CCaMK and the empty vector was used as negative control, snf1-1 and snf2 plants were 

used as positive controls.  

Under both cultivation conditions spontaneous nodules were not observed on roots expressing 

wild-type CCaMK, or the empty vector control (Figure 8, Tables 4 and 5). On plants 

transformed with CCaMK-T265A, CCaMK-T265D, CCaMK-T265S, CCaMK-FNDD, 

CCaMK-1-314 and on control plants (snf1-1 and snf2) spontaneous nodules were formed 

under asymbiotic conditions and also during cocultivation with AM fungi (Figure 8, Tables 4 

and 5). Spontaneous nodule numbers induced by CCaMK-T265A and CCaMK-T265D under 

asymbiotic conditions did not significantly differ from the average nodule number formed on 
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snf1-1 mutant roots (p>0.01) (Figure 8B, Table 4). However, the average nodule number 

formed on snf2 roots significantly differed from the number formed on snf1-1 roots (p<0.01). 

Furthermore, the spontaneous nodulation frequencies and nodule numbers induced by 

CCaMK-FNDD and CCaMK-1-314 were markedly lower compared to those induced by the 

autophosphorylation site mutants (CCaMK-T265A and CCaMK-T265D). Curiously, also the 

expression of CCaMK-T265S induced spontaneous nodules with low frequency (Figure 8, 

Tables 4 and 5), indicating that negative regulation of CCaMK is strictly dependent on the 

endogenous autophosphorylation site and that even similar substitutions impact on the 

negative autoregulatory mechanism of CCaMK. 

Spontaneous nodules were also formed upon expression of the same mutant proteins during 

cocultivation with AM fungi, but strikingly, in all cases a decrease in nodule number was 

observed (Figures 8B, C and Tables 4 and 5). A statistically significant reduction during AM 

fungal cocultivation was found with the autophosphorylation site mutants snf1-1 (52% 

reduction, from 31 to 15 nodules), CCaMK-T265A (46% reduction, from 28 to 15 nodules) 

and CCaMK-T265D (57% reduction, from 23 to 10 nodules). Furthermore, a significant 

reduction (22% reduction, from 9 to 7 nodules) was observed with snf2 plants, which was less 

pronounced compared to the reduction observed with the CCaMK autophosphorylation site 

mutants. Taken together this unexpected finding suggests that AM fungal cocultivation exerts 

a negative effect on spontaneous nodulation.  

To find out whether this negative regulatory effect is directly affecting CCaMK protein 

abundance, immunoblot analysis on protein extracts prepared from snf1-1 roots (and also 

from snf2 roots), cultivated in the absence and presence of AM fungi was performed. This 

analysis showed no difference in the CCaMK protein levels of snf1-1 roots cultivated in either 

condition, whereas in snf2 roots even slightly more CCaMK protein was detected in samples 

cultivated with AM fungi (Figure 8C). This result suggested that the reduction of spontaneous 

nodule number in the presence of AM fungi is not caused by a decrease of the CCaMK 

protein level. 
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Figure 8. Induction of spontaneous nodules in the L. japonicus ccamk-13 mutant by CCaMK mutant 

versions. 

Transgenic L. japonicus ccamk-13 roots expressing various CCaMK versions (as indicated) under the control of 

the L. japonicus ubiquitin promoter were cultivated under asymbiotic conditions, or cocultivated with the AM 

fungus R. irregularis for 5 weeks. The formation of spontaneous nodules was analysed 7 weeks post hairy root 

transformation. snf1-1 and snf2 plants were used as controls and analysed 7 weeks post germination, or 5 weeks 

post cultivation under asymbiotic conditions or with AM fungi, respectively. spN: spontaneous nodule. 

(A) Spontaneous nodules were induced on ccamk-13 roots upon expression of CCaMK-T265A, CCaMK-T265D, 

CCaMK-T265S, CCaMK-FNDD and CCaMK-1-314. No spontaneous nodules were formed upon expression of 

the empty vector control, or wild-type CCaMK. Numbers below construct names indicate number of root 

systems with spontaneous nodules per number of transformed root systems analysed and are also given as 

percent values. Scale bars: 0.5 mm. 

(B) Spontaneous nodule number induced by the individual constructs (as indicated) or in snf1-1 and snf2 mutant 

roots is reduced upon cocultivation with the AM fungus R. irregularis. Dark grey bars depict spontaneous 

nodule numbers induced under asymbiotic cultivation, light grey bars depict spontaneous nodule numbers 

formed after cocultivation with the AM fungus R. irregularis. Bars represent average value of spontaneous 

nodule number per transformed root system and SE. Red asterisks and black circle indicate significance levels 

determined by Student’s t-test (p<0.01), whereby red asterisks represent significance levels between asymbiotic 

cultivation condition and cultivation in the presence of the AM fungus and black circle indicates significance 

level of spontaneous nodule numbers related to snf1-1. 

(C) Immunodetection of CCaMK protein levels in L. japonicus Gifu wild-type (WT), snf1-1 and snf2 root 

extracts after cultivation under asymbiotic conditions (-), or cocultivation with R. irregularis (+AM) for five 

weeks. Protein blot analysis was performed on protein extracts prepared from equal amounts of spontaneously 

nodulated root material (three root systems per sample). SDS-PAGE (10%) resolved and blotted protein extracts 

were probed with a polyclonal CCaMK antibody (α-CCaMK 1). 
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Table 4. Spontaneous nodule formation under asymbiotic conditions. 

Plant Genotype Transgene SpN+ (%)
a 

#SpN/SpN+ root
b 

#SpN/total roots
c 

ccamk-13 pUB:empty vector 0/20 (0%) 0 0 

ccamk-13 pUB:CCaMK 0/32 (0%) 0 0 

ccamk-13 pUB:CCaMK-G30E 0/24 (0%) 0 0 

ccamk-13 pUB:CCaMK-T265A 28/31 (90%) 31 (±2.8) 28 (±3.0) 

ccamk-13 pUB:CCaMK-T265D 47/51 (92%) 25 (±2.1) 23 (±2.1) 

ccamk-13 pUB:CCaMK-T265S 5/28 (18%) 1 (±0.2) 0.2 (±0.1) 

ccamk-13 pUB:CCaMK-FNDD 19/38 (50%) 6 (±0.9) 3 (±0.7) 

ccamk-13 pUB:CCaMK-1-453 0/30 (0%) 0 0 

ccamk-13 pUB:CCaMK-1-351 0/19 (0%) 0 0 

ccamk-13 pUB:CCaMK-1-314 8/31 (26%) 5 (±1.1) 1.3 (±0.5) 

snf1-1 no 65/65 (100%) 31 (±1.7) 31 (±1.7) 

snf2 no 81/81 (100%) 9 (±0.5) 9 (±0.5) 

a
SpN+:

 
Number of root systems with spontaneous nodules per number of transformed root systems analysed. 

Spontaneous nodules were scored 7 weeks post transformation. 
b
Average number of spontaneous nodules per spontaneously nodulated root system ± SE. 

c
Average number of spontaneous nodules per total number of root systems analysed ± SE. 

 

Table 5. Spontaneous nodule formation in the presence of the AM fungus R. irregularis. 

Plant Genotype Transgene SpN+ (%)
a 

#SpN/SpN+ root
b 

#SpN/total roots
c 

ccamk-13 pUB:empty vector 0/15 (0%) 0 0 

ccamk-13 pUB:CCaMK 0/17 (0%) 0 0 

ccamk-13 pUB:CCaMK-G30E 0/23 (0%) 0 0 

ccamk-13 pUB:CCaMK-T265A 19/22 (86%) 17 (±2.2) 15 (±2.3) 

ccamk-13 pUB:CCaMK-T265D 42/44 (96%) 11 (±0.9) 10 (±1.0) 

ccamk-13 pUB:CCaMK-T265S 1/23 (4%) 2 (n.d)  0.1 (±0.1) 

ccamk-13 pUB:CCaMK-FNDD 9/24 (38%) 4 (±1.2) 1.5 (±0.6) 

ccamk-13 pUB:CCaMK-1-453 0/37 (0%) 0 0 

ccamk-13 pUB:CCaMK-1-351 0/21 (0%) 0 0 

ccamk-13 pUB:CCaMK-1-314 7/29 (24%) 5 (±1.2) 1.2 (±0.5) 

snf1-1 no 66/66 (100%) 15 (±0.8) 15 (±0.8) 

snf2-2 no 42/42 (100%) 7 (±0.4) 7 (±0.4) 

a
SpN+:

 
Number of root systems with spontaneous nodules per number of transformed root systems analysed. 

Spontaneous nodules were scored 7 weeks post transformation and 5 weeks post cocultivation with the AM 

fungus. 
b
Average number of spontaneous nodules per spontaneously nodulated root system ± SE. 

c
Average number of spontaneous nodules per total number of root systems analysed ± SE. 

(n.d.): not determined due to insufficient spontaneous nodulation events (n=1). 
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3.5 In vitro kinase activity of CCaMK mutant proteins 

The results of the in vitro kinase assays are shown in Figure 9. To correlate the in vivo activity 

of the individual CCaMK derivatives with their kinase activity, in vitro kinase assays with 

recombinant N-terminal maltose-binding-protein tagged CCaMK proteins and myelin basic 

protein (MBP) (Figure 9A), or CYCLOPS-81-366 (Figure 9B) as substrate were carried out. 

Wild-type CCaMK showed low autophosphorylation activity in the presence of calcium and 

Ca
2+

/CaM. Phosphorylation of MBP and CYCLOPS-81-366 was observed in the presence of 

calcium and increased strongly upon addition of Ca
2+

/CaM, as has been observed previously 

(Tirichine et al., 2006; Yano et al., 2008). Considering the autophosphorylation site mutants, 

only CCaMK-T265I showed no autophosphorylation activity, while CCaMK-T265A showed 

faint autophosphorylation with calcium and Ca
2+

/CaM. Further, CCaMK-T265D showed high 

autophosphorylation levels with calcium and a further increase with Ca
2+

/CaM. This finding 

indicated that apart from T265 additional CCaMK autophosphorylation sites with a putative 

autoregulatory function exist. Furthermore, the strong autophosphorylation activity of the 

phospho-mimetic form CCaMK-T265D suggests, that autophosphorylation at T265 may 

trigger autophosphorylation of further regulatory CCaMK sites.  

With regard to substrate phosphorylation activity, the autophosphorylation site mutants 

showed remarkable variation. CCaMK-T265A showed slightly weaker MBP phosphorylation 

compared to the CCaMK wild-type protein, while CCaMK-T265I activity towards MBP was 

only faintly detected. On the other hand, substrate phosphorylation by CCaMK-T265D by far 

exceeded wild-type activity. The truncated mutants CCaMK-1-351 and CCaMK-1-453 

performed equally low in their autophosphorylation and MBP substrate phosphorylation 

activity. Autophosphorylation activity was undetectable with the kinase mutant CCaMK-1-

314 and MBP phosphorylation appeared weaker compared to CCaMK-1-351, or CCaMK-1-

453, respectively. No kinase activity was detected when CCaMK-FNDD was tested with 

MBP as substrate. 

When kinase assays were performed with CYCLOPS-81-366 as substrate, a clearer picture of 

kinase activity was obtained for the truncated CCaMK versions and CCaMK-FNDD. 

CCaMK-1-314 showed the same constitutive activity in all conditions tested, whereas 

CCaMK-1-351 and CCaMK-1-453 showed highest CYCLOPS-81-366 phosphorylation 

activity in the presence of Ca
2+

/CaM, indicating that both proteins are activated by Ca
2+

/CaM. 

Interestingly, also CCaMK-FNDD, for which a loss of the CaM binding site is predicted was 

inactive towards MBP, but showed clear, albeit weak, Ca
2+

/CaM stimulated activity towards 

CYCLOPS-81-366. 
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Figure 9. In vitro kinase activity of recombinant CCaMK mutant proteins. 

In vitro kinase activity of maltose-binding-protein tagged CCaMK and CCaMK mutant proteins was tested in the 

presence of either 4 mM EGTA (–), 0.1 mM CaCl2 (Ca
2+

), or 0.1 mM CaCl2 and 1 µM calmodulin (CaM). Each 

reaction was performed with 1 µg CCaMK wild-type, or mutant protein (indicated by arrowheads) and (A) 10 µg 

of myelin basic protein (MBP) or (B) 1 µg CYCLOPS-81-366 as substrate (indicated by arrows). Samples were 

resolved on 12% SDS-PAGE gels. Incorporation of radioactive phosphate was visualised using a Typhoon 

phosphorimager. Upper panels show autoradiographs (autorad), which illustrate autophosphorylation of 

CCaMK, or CCaMK mutant proteins (marked by arrowheads) and (A) MBP or (B) CYCLOPS-81-366 

phosphorylation (marked by arrows); lower panels show Coomassie stained protein bands (CBB).  
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3.6 Subcellular localization of CCaMK mutant proteins 

GFP tagged CCaMK localizes exclusively to the nucleus in L. japonicus root cells (Yano et 

al., 2008), indicating that CCaMK fullfils its signaling function in the nucleus. Intriguingly, 

no canonical nuclear localization signal (NLS) is predicted in the CCaMK protein sequence, 

therefore it is still unclear, whether a latent NLS is present, or CCaMK is transported via an 

yet unknown mechanism to the nucleus. To investigate whether the CCaMK mutant variants 

are equally located in the nucleus, subcellular localization of GFP tagged CCaMK wild-type 

and mutant versions was carried out in L. japonicus protoplast cells. This analysis revealed 

that only wild-type CCaMK is exclusively localized to the nucleus (Figure 10), while the 

mutant variants were also partly localized to the cytosol. Further, in several protoplast cells, 

the CCaMK-FNDD mutant protein was found to form aggregates which were visible as larger 

and smaller fluorescent dots. 

 

Figure 10. Subcellular localization of CCaMK and CCaMK mutant proteins in L. japonicus protoplasts. 

Plasmid DNA encoding p35S:GFP, p35S-GFP-CCaMK, p35S-GFP-G30E, p35S-GFP-T265A, p35S-GFP-

T265I, p35S-GFP-FNDD, p35S-GFP-1-314, or p35S-GFP-1-453 was transformed into L. japonicus Gifu wild-

type protoplasts by PEG mediated transformation. The expression and localization of GFP-fusion proteins was 

analysed 16 h post transformation. Micrographs were recorded with a GFP filter (upper panels) and with 

brightfield illumination (lower panels). Scale bar: 10 µm. Note that GFP-CCaMK-FNDD tends to form 

aggregates (FNDD2). 
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4 Discussion 

CCaMK is the presumed target of the calcium oscillations which immediately initiate after 

perception of symbiont specific signals. Due to the ancient origin of the AM symbiosis, 

CCaMK presumably evolved as the decoder and transducer of AM fungal calcium signals and 

was later co-opted by legume plants as signaling molecule for the establishment of RNS. The 

finding that autoactive CCaMK is sufficient to trigger the nodule organogenesis program 

revealed that in legumes and other RNS forming plants CCaMK acquired a novel function 

required for the initiation of nodule organ development (Gleason et al., 2006; Svistoonoff et 

al., 2013; Tirichine et al., 2006). Central to this function is the autophosphorylation site T265 

which, if substituted by other amino acids, triggers spontaneous nodule formation. As no 

nodules are formed during AM, it is possible that regulation of this site by phosphorylation is 

different during AM signaling. Likewise, nodule organogenesis could also be prevented by 

other mechanisms, or a combination of both. Our finding obtained with autophosphorylation 

site mutants indicates that a preventive mechanism is involved. Further, the herein presented 

analysis of CCaMK domain specificity in symbiosis signaling confirms the previous finding 

that RNS formation is absolutely dependent on the presence of both, the kinase and the CaM 

binding domains, while AM is more permissive and can be restored with the expression of the 

kinase domain alone. 

4.1 Differential requirements of CCaMK domains for AM fungal and rhizobial infection 

The complementation analysis revealed that AM fungal, but not rhizobial infection, is 

possible with the autoactive mutant proteins CCaMK-1-314 and CCaMK-FNDD, which 

indicated a requirement of the C-terminal CCaMK region (comprising the CaM-BD and 

VLD) for rhizobial infection. The truncated mutant CCaMK-1-351 which is not autoactive 

and lacks the VLD was able to restore rhizobial infection, indicating that the VLD is 

dispensable and pinpoints the CaM-BD as the key domain required for rhizobial infection 

processes. A discrepancy was observed in the efficiency of RNS and AM complementation 

between CCaMK-1-351 and CCaMK-1-453, with the longer version performing in both cases 

>30% less efficient compared to the shorter CCaMK-1-351 (Figure 7A). This difference 

could be due to various reasons: Either, the CCaMK-1-453 protein is more tightly 

autoinhibited and therefore less accessible for CaM then CCaMK-1-351, or the protein 

expression levels or protein stability in vivo are different. In vitro kinase assays revealed no 

difference in kinase activity between both proteins under standard kinase assay conditions 

with excess amounts of calcium and CaM (Figure 9). To test whether compared to CCaMK-1-

351, CCaMK-1-453 is more stringently autoinhibited, titration of kinase activity with 
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increasing concentrations of Ca
2+

/CaM need to be performed. In addition, if the impairment 

observed with CCaMK-1-453 was due to lower expression levels in vivo, less protein level 

would be expected in immunoblot analysis performed with equal root material. The difference 

in root length colonization and formation of AM fungal infection structures was less severe 

between CCaMK-1-351 and CCaMK-1-453 (Figure 6 and 7B) pointing towards an 

impairment in the early steps of fungal infection, e.g at the stage of epidermal opening and/or 

PPA formation, processes which are both dependent on CCaMK (Demchenko et al., 2004; 

Genre et al., 2005). An impaired rhizobial infection process at the initial stage of root hair 

infection could also account for the lower number of infected nodules observed with CCaMK-

1-453 compared to CCaMK-1-351 (Figure 5C and Table 1). 

CCaMK-1-314 and the autoactive CCaMK-FNDD were also able to restore AM, albeit a 

tendency towards extension of arbusculated cell files from the inner to the outer cortical cell 

layers was observed (Figure 6 and 7, Table 3). Simultaneously, compared to wild-type 

CCaMK, root length colonization was severely impaired (Figure 7B and Table 2), implying 

that expression of these mutant proteins impedes horizontal spread of the fungus which is then 

forced to expand vertically. This phenotype resembles the phenotype of Medicago CDPK1 

knockdown roots, characterized by impaired progression of rhizobial and mycorrhizal 

infection through cortical cells (Ivashuta et al., 2005). Likewise, longitudinal AM fungal 

colonization was blocked, which was explained by the concomitant increase of cell wall and 

defense related genes resulting also in reduced root cell elongation. Aberrant or diminished 

CCaMK signaling may induce similar changes in cell wall structure and defense responses as 

observed under CDPK1 suppression. Indeed, transcriptional profiling of PPA forming 

Medicago root cells found an expansin-like gene to be up-regulated and ACRE264, a basal 

defense-related gene to be down-regulated in a CCaMK/DMI3 dependent fashion (Siciliano et 

al., 2007). Expansins are proteins with an essential role in cell wall loosening, while ARE264 

is a protein kinase required for resistance against C. fulvum strains expressing the Avr9 gene 

(Rowland et al., 2005; Siciliano et al., 2007). The CCaMK kinase activity or the extent of 

signaling may not suffice to regulate both genes appropriately.  

Additionally, the autoactive CCaMK mutant proteins may lead to perturbation in hormonal 

signaling. Expression of both proteins, triggers, albeit with low frequency, the formation of 

spontaneous nodules. Nodule organogenesis relies on the production of the hormone 

cytokinin, which in Lotus roots is perceived by the cytokinin receptor LHK1 leading to the 

reinitiation of cell divisions and nodule organogenesis (Murray et al., 2007; Tirichine et al., 

2007). The observation that CCaMK-1-314 and CCaMK-FNDD trigger nodule organogenesis 
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indicates the induction of cytokinin production by these mutant proteins, which could 

influence AM establishment. Yet, whether cytokinin impacts on AM establishment is 

unknown (Foo et al., 2013). There is emerging evidence that gibberellic acid (GA) inhibits 

arbuscule development. The GA biosynthesis mutant na-1 of pea shows significantly 

enhanced arbuscule formation, even in the outer cortical cell layers (Foo et al., 2013). In 

contrast, mutations in either of the two DELLA genes of pea, in the M. truncatula 

della1/della2 double mutant, or application of GA lead to a drastic reduction or impairment of 

arbuscule development (Floss et al., 2013, Foo et al., 2013). DELLA proteins are GRAS 

domain proteins acting as repressors of GA signaling. The presence of GA leads to their 

degradation and activation of GA responsive genes. It has recently been shown that the 

expression of a dominant (GA insensitive) DELLA mutant promotes arbuscule formation in 

M. truncatula roots even upon GA treatment, revealing a pivotal role of DELLA proteins in 

arbuscule development (Floss et al., 2013). DELLA expression is confined to the vasculature 

and endodermis, in this way restricting arbuscule formation to the adjacent inner cortical cell 

layers. Surprisingly, expression of the dominant DELLA mutant restored arbuscule formation 

in a cyclops mutant. This finding indicates that GA signaling is suppressed during symbiosis 

signaling perhaps via CCaMK or CYCLOPS, which may activate the expression of DELLAs 

during symbiosis signaling. Thus, the extension of arbuscule cell files observed with the 

expression of autoactive CCaMK proteins may be a consequence of ectopic signaling, leading 

to ectopic DELLA expression (or inhibition of GA signaling), inducing arbuscule formation. 

This interesting hypothesis remains to be tested in future experiments. 

4.2 The phospho-mimetic and phospho-ablative form of CCaMK reveal differences in 

regulation 

Unexpectedly, both the phospho-ablative CCaMK-T265A and the phospho-mimetic CCaMK-

T265D induced the formation of spontaneous nodules. Normally, opposite phenotypes would 

have been expected, one form (presumably CCaMK-T265D) triggering spontaneous nodules 

and the other form (CCaMK-T265A) being impaired in this process. Similar results were 

obtained by Shimoda and associates, who provided a convincing explanation found by 

homology modeling of CCaMK-1-340 onto the CaMKII crystal structure (Shimoda et al., 

2012). According to this model, the unphosphorylated hydroxyl group of the threonine 

residue is part of a hydrogen bond network autoinhibiting the kinase. Phosphorylation or 

substitution by the residues alanine, aspartate or isoleucine in all cases was predicted to 

disrupt the network leading to the release of autoinhibition. Although CCaMK-T265A and 

CCaMK-T265D were autoactive a striking difference in kinase activity was observed between 
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both forms (Figure 9). CCaMK-T265D displayed constitutive autoactivity in the absence of 

calcium and a further activity increase was observed upon addition of calcium and Ca
2+

/CaM. 

The high autoactivity level might explain the high proportion of uninfected nodules (~50%) 

observed with roots expressing CCaMK-T265D compared to those expressing CCaMK-

T265A (~10%) (Figure 5C, Table 1). As spontaneous nodules are formed ectopically in the 

absence of rhizobia, in rhizobia inoculated roots spontaneous nodule organogenesis and 

rhizobial infection are largely uncoupled events. It is possible that the high kinase activity of 

CCaMK-T265D leads to the aberrant phosphorylation of a CCaMK downstream target, such 

as CYCLOPS. Aberrant phosphorylation may lead to impaired activation or aberrant activity 

of the phosphorylated CCaMK substrate, resulting in uninfected nodules. 

4.3 AM fungi exert a negative effect on spontaneous nodule formation 

Another interesting finding of this study was the discovery that the spontaneous nodule 

number produced by CCaMK autophosphorylation site mutants was reduced by 50% upon 

cocultivation with AM fungi compared to asymbiotic cultivation conditions. The cause of this 

suppressive effect is elusive, but there are different possibilities, which could be tested in 

future experiments. The results of these investigations may provide an answer to the 

longstanding question why nodules are not formed during AM signaling upon activation of 

CCaMK. One possibility was that the negative regulatory effect could be directly acting on 

the CCaMK protein. This would imply that (autoactive) CCaMK protein levels diminish 

during cocultivation with AM fungi compared to protein expression levels in roots cultivated 

under asymbiotic conditions. According to immunoblot analysis performed in this study 

(Figure 8C), no difference in CCaMK-T265I protein level was detected between snf1-1 roots 

cultivated under asymbiotic conditions and those cultivated in the presence of AM fungi, 

largely excluding this possibility. Hormonal changes associated with AM fungal colonization 

could be another reason. It has been recently shown that treatment of transgenic roots 

expressing CCaMK-T265D with GA, reduced spontaneous nodule number by >60% 

(Maekawa et al., 2009). As AM fungal colonization is accompanied with a significant GA 

increase (Shaul-Keinan et al., 2002), elevated GA levels in mycorrhizal roots could be the 

cause of spontaneous nodule reduction. In order to test this hypothesis, comparative 

expression analysis of GA marker genes in transgenic roots could be carried out and an 

increase in roots cocultivated with AM fungi would lend support for this hypothesis. In 

addition, snf1-1 roots could be transformed with a dominant DELLA construct, which would 

lead to the repression of GA signaling and alleviate the suppression of spontaneous nodule 

number by AM fungi. No suppression of spontaneous nodule number would also be expected 
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in roots supplemented with a GA biosynthesis inhibitor during cocultivation with AM fungi.  

Furthermore, endogenous SLs were identified as positive regulators of nodulation in pea, as 

the SL mutant rms produced 40% fewer nodules compared to wild-type plants (Foo and 

Davies, 2011). Mycorrhizal colonization has been shown to downregulate SL levels in tomato 

roots (Lopez-Raez et al., 2011). Thus, the negative effect of mycorrhiza on nodulation could 

also be caused by the decrease in SL level during fungal colonization. 

Finally, establishment of AM or RNS is accompanied with the onset of a systemic 

autoregulatory mechanism termed autoregulation of nodulation (AON) or autoregulation of 

mycorrhization (AOM) controlling the extent of nodule formation or AM fungal colonization, 

which also involves signaling via the shoot (Catford et al., 2003; Reid et al., 2011). 

Interestingly, this effect is also exerted reciprocally, with AM fungal colonization controlling 

nodule number and RNS formation controlling the extent of AM colonization (Catford et al., 

2003). Using the split-root system it has been shown that AM fungal colonization of one root 

half significantly reduced nodule numbers upon rhizobial inoculation of the second half 

compared to plants not pretreated with AM (Catford et al., 2003). Whether the effect observed 

with the CCaMK autophosphorylation site mutants is produced by AOM could be equally 

analysed with snf1-1 plants in a split root system set-up, where one half is co-cultivated with 

AM fungi, while the second half stays untreated. An adequate control set-up would be the 

cultivation in a split root system leaving both halfs untreated.  

In summary, several possibilities how AM fungal colonization could lead to the reduction of 

spontaneous nodule number in CCaMK autophosphorylation site mutants exist. Conceivably, 

several mechanisms act together in a synergistic manner. The observation that the inhibitory 

effect was less pronounced in the snf2 mutant suggests that the regulatory effect acts 

predominantly between CCaMK and LHK1. 

4.4 Correlation between kinase activity and in vivo activity of CCaMK mutant proteins 

Considering the kinase activity of the autophosphorylation site mutants, CCaMK-T265A and 

CCaMK-T265D clearly behaved different, with CCaMK-T265A displaying wild-type-like 

activity while CCaMK-T265D by far exceeded wild-type activity and as a phenotypic 

consequence produced more uninfected nodules then CCaMK-T265A (as discussed above). 

CCaMK-1-314 showed the same constitutive activity in the absence and presence of calcium 

or Ca
2+

/CaM, while intriguingly CCaMK-FNDD, whose mutations predict a loss of the CaM-

BD (Rellos et al., 2010) was only substantially active in the presence of Ca
2+

/CaM. However, 

both proteins displayed the same symbiotic phenotype when expressed in vivo: Spontaneous 

nodule formation, lack of rhizobial infection and decreased, aberrant AM fungal infection. 
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The spontaneous nodulation phenotype of CCaMK-FNDD suggests that the protein is 

autoactive, which is also supported by the in vitro kinase assay showing faint activity in the 

absence of calcium if CYCLOPS is used as phosphorylation substrate (Figure 9B). CaM 

binding assays carried out with CCaMK-FNDD need to be performed to clarify whether this 

mutant can still bind CaM. Otherwise, the absence of the CaM-BD in both, CCaMK-1-314 

and CCaMK-FNDD may be the cause for impaired rhizobial infection. The precise role of the 

CaM binding domain in rhizobial infection remains to be identified. Possibly, rhizobial 

infection requires higher kinase activity levels (achieved by Ca
2+

/CaM stimulation) while 

spontaneous nodule formation is triggered with lower levels (achieved via calcium induced 

kinase activation). Further, Ca
2+

/CaM stimulation may simultaneously confer substrate 

phosphorylation specificity. Besides, it is equally conceivable that the presence of the CaM-

BD confers an essential protein conformation during RNS signaling, required for infection 

related signal propagation. 

5 Material and Methods 

5.1 Plant material, growth conditions, transformation and inoculation procedures 

The following L. japonicus plant lines were used in this study: Gifu B-129 wild-type, ccamk-

13 (Perry et al., 2009), snf1-1 (Tirichine et al., 2006), snf2 (Tirichine et al., 2007). Transgenic 

hairy roots were induced by A. rhizogenes strain AR1193 (Offringa et al., 1986) as described 

(Diaz et al., 2005). Selection of transformed plant roots was carried out with the GFP 

transformation marker encoded on the T-DNA. Two weeks post transformation plants with 

transformed hairy roots were transplanted into autoclaved pots containing a 1:1 mixture of 

sterilized sand/vermiculite (300 ml) supplemented with 100 ml sterile half-strength Hoagland 

solution (Hoagland and Arnon, 1950). Plants were watered regularly and supplied with 100 

ml sterile half-strength Hoagland solution once per week. Plant growth conditions were 24 °C 

constant at 16-h-light/8-h-dark cycles in growth chambers. 

Spontaneous nodule formation in the absence of rhizobia was evaluated seven weeks post 

hairy root transformation, or five weeks post cultivation in sterile soil, respectively. To 

evaluate restoration of RNS, plants were inoculated with M. loti MAFF303099 carrying 

DsRed as fluorescent marker (Maekawa et al., 2008) set to a final OD600 of 0.05 and 

incubated for four weeks. AM establishment was tested with the AM fungus Rhizophagus 

irregularis, which was propagated in a chive (Allium schoenoprasum) nurse pot system 

(Demchenko et al., 2004). Prior to cocultivation, an appropriate number of nurse pots was 

used to produce a homogeneous fungal inoculum in the following way: The chive shoot was 

cut off, the mycorrhized chive root system was removed from the soil (sterilized 



60 

 

sand/vermiculite mixture), cut into small (~1cm) pieces and then homogeneously mixed with 

the soil. The homogeneous mixture was used as cocultivation substrate for each set-up. Plants 

were cocultivated with the fungal inoculum substrate for five weeks. 

5.2 Symbiosis phenotyping 

Formation of M. loti-DsRed infected root nodules was evaluated by microscopic observation 

of red fluorescent root nodules indicating the presence of DsRed-tagged M. loti inside the 

nodules. Microscopy was performed with a stereomicroscope (Leica MZt6 FA). AM fungal 

colonization was visualized after ink vinegar staining of the root system (Vierheilig et al., 

1998) using brightfield microscopy (inverted microscope Leica DMI6000). 

Quantification of the AM fungal structures was carried out essentially as described 

(McGonigle et al., 1990). Samples were prepared and evaluated in the following way: The 

stained root system was cut into 1 cm pieces which were randomly chosen and mounted on a 

glass slide. Using 200x magnification, 100 line intersects per root system were scored for the 

presence of the following categories: 1= no fungal colonization, 2= presence of hyphae only, 

3= presence of arbuscules, 4= presence of vesicles and 5= simultaneous presence of 

arbuscules and vesicles. The percentage (%) of each catergory was calculated; the sum of 

categories 2-5 corresponds to total percent of AM fungal root length colonization.  

To quantify the arbusculated cell layers, samples were prepared as described for the 

determination of AM fungal colonization. 100 intersects with arbuscules were scored (200x 

magnification) and the number of arbusculated cell files (determined from one side of the 

central vasculature) was counted for each intersect. If the number of arbusculated cell files 

was different for both sides, the higher cell file number was scored and used for calculation. 

5.3 Protein blot analysis 

Root systems were weighed, frozen in liquid nitrogen and root material was ground to fine 

powder with a tissue lyser (Qiagen). Proteins were extracted as described (Waadt et al., 2008). 

Extracts were clarified by centrifugation (10.000xg, 15 min, 4 °C), equal volumes of clarified 

extracts were separated on 10% SDS gels and proteins were transferred to a PVDF membrane 

(GE-Healthcare). The immunodetection of CCaMK proteins was performed with polyclonal 

rabbit anti-CCaMK primary antibodies (http://www.pineda-abservice.de) and anti-rabbit-HRP 

(Amersham) secondary antibody. 

5.4 Protein expression, purification and in vitro kinase assay 

Expression of Maltose-Binding-Protein (MalBP) tagged CCaMK, and mutant derivatives 

thereof, was induced from E. coli Rosetta pLaqI (Novagen) by addition of 0.5 mM IPTG for 4 

http://www.pineda-abservice.de/
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h at 28 °C. MalBP tagged proteins were purified via amylose resin (New England Biolabs) 

according to the manufacturer´s protocol. Proteins were desalted via PD10 desalting columns 

(GE Healthcare) and eluted in buffer containing 25 mM Tris, 10 mM ß-mercaptoethanol (pH 

7.6). Expression and purification of 6xHis-CYCLOPS-81-366 was performed as described 

(Yano et al., 2008). In vitro kinase assays were carried out for 30 min at 25 °C in buffer 

containing 25 mM Tris (pH 7.6), 10 mM MgCl2, 0.5 mM DTT, 200 µM ATP and 5 µCi [-

32
P] ATP (Hartmann Analytic). 1 µg MalBP-CCaMK (and CCaMK mutant proteins) was 

tested in each reaction, in the presence of either 10 µg myelin basic protein (Sigma), or 1 ug 

6xHis-CYCLOPS-81-366 as phosphorylation substrate. Kinase activity was assayed in the 

presence of either 4 mM EGTA, or 0.1 mM CaCl2, in the absence or presence of 1 µM bovine 

calmodulin (Sigma). Kinase reactions were stopped by addition of SDS-PAGE sample buffer 

and boiled (95 °C, 5 min). Samples were separated on 12% SDS-PAGE gels and stained with 

Coomassie brilliant blue. Stained radioactive gels were dried, exposed to phosphorimage 

screens and visualized by scanning with Typhoon Trio scanner (GE Healthcare). 

5.5 Protoplast preparation from Lotus japonicus cell culture 

Protoplasts were generated from a 6 days old dedifferentiated Lotus japonicus Gifu wild-type 

cell culture. Protoplast preparation, harvesting and transfection was performed essentially as 

described (Sprenger-Haussels and Weisshaar, 2000). 50 ml Lotus japonicus root cell culture 

were centrifuged (860xg, 3 min, RT) the pellet was resuspended in 25 ml CaCl2 (240 mM) 

and centrifuged (860xg, 3 min, RT). The cell pellet was resuspended in 20 ml CaCl2 (240 

mM). 10 ml of the cell suspension were mixed with 30 ml enzyme solution (3.5 % cellulose 

R10 from Onozuka, 0.6 % macerozyme R10 from Serva in 240 mM CaCl2 and incubated in 

large petri dishes on a horizontal shaker at 60 rpm for 14 h at 25 °C. The protoplast solution 

was filtered through a 40 µm pore nylon mesh into 50 ml Falcon tubes and centrifuged 

(860xg, 3 min, RT). Pelleted protoplasts were resuspended in 25 ml 240 mM CaCl2, 

centrifuged (860xg, 3 min, RT) and resuspended in 25 ml P5 medium (1x Gamborg B5 

medium, 283 mM sucrose, 4.5 µM 2,4 dichlorophenoxyacetic acid, pH 5.7 with NaOH). 2x 

12.5 ml of protoplast solution were centrifuged (300xg, 5 min, RT). The floating protoplasts 

(supernatant) were harvested and the suspension was analysed for the presence of protoplasts 

by light microscopy. The cell suspension (100 µl) was stained with 1 µl FDA (fluor diacetate 

stain) and cell quantification was carried out by determining the number of viable protoplasts 

per ml in a Neubauer counting chamber via fluorescence microscopy. Prior to transfection the 

protoplast suspension was adjusted to 10
6
 protoplast cells/ml.  
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5.6 Transfection of protoplasts 

The constructs transformed into L. japonicus protoplasts are listed in 5.7.4. Prior to 

transfection plasmid DNA was isolated by Midiprep (Macherey & Nagel). 

For protoplast transfection single stranded salmon sperm carrier DNA (10 mg/ml), 10-30 µg 

plasmid DNA, 200 µl protoplast solution (10
6
 cells/ml) and 200 µl polyethylene glycol 

solution (25% PEG 6000, 100 mM Ca(NO3)2, 450 mM mannitol, pH 9.0) were carefully 

mixed and incubated for 15 min at RT. After addition of 3 ml Ca(NO3)2 (275 mM), the 

transfection mixture was centrifuged (860xg 30 sec, RT), and 0.5 ml  P5 medium were added 

to the pellet. Transfection reactions were incubated for 18 h at 25 °C in the dark. Expression 

and subcellular localization of GFP tagged CCaMK proteins in transfected protoplasts was 

visualized with a Leica DMI6000 inverted microscope using a GFP filter. 

5.7 Plasmid construction 

5.7.1 Entry clones 

Name Construction 

pENTR:CCaMK Yano et al., 2008 

pENTR:CCaMK-

G30E 

Site directed mutagenesis Phusion PCR with primers CCaMK-

G30E_fwd/rev on pENTR:CCaMK 

pENTR:CCaMK-

T265A 

Site directed mutagenesis Phusion PCR with primers CCaMK-

T265A_fwd/rev on pENTR:CCaMK 

pENTR:CCaMK-

T265D 

Yano et al., 2008 

pENTR:CCaMK-

T265I 

Tirichine et al., 2006 

pENTR:CCaMK-

T265S 

Site directed mutagenesis Phusion PCR with primers CCaMK-

T265S_fwd/rev on pENTR:CCaMK 

pENTR:CCaMK-

FNDD 

Site directed mutagenesis Phusion PCR with primers CCaMK-

FNDD_fwd/rev on pENTR:CCaMK 

pENTR:CCaMK-1-

453 

Site directed mutagenesis Phusion PCR with primers CCaMK-1-

453_fwd/rev on pENTR:CCaMK 

pENTR:CCaMK-

351stop 

Site directed mutagenesis Phusion PCR with primers CCaMK-1-

351_fwd/rev on pENTR:CCaMK 

pENTR:CCaMK-

314stop 

Site directed mutagenesis Phusion PCR with primers CCaMK-1-

314_fwd/rev on pENTR:CCaMK 

 

 

 

 

 

 



63 

 

5.7.2 Plasmids for L. japonicus hairy root transformation 

Name Construction 

pUB:empty vector Restriction digest of pUB:GW-GFP (Maekawa et al., 2008) with 

PvuI to remove Gateway cassette and self ligation. 

pUB:CCaMK LR reaction (Invitrogen) of pENTR:CCaMK and pUB:GW-GFP 

(Maekawa et al., 2008) 

pUB:CCaMK-G30E LR reaction (Invitrogen) of pENTR:CCaMK-G30E and pUB:GW-

GFP (Maekawa et al., 2008) 

pUB:CCaMK-T265A LR reaction (Invitrogen) of pENTR:CCaMK-T265A and pUB:GW-

GFP (Maekawa et al., 2008) 

pUB:CCaMK-T265D LR reaction (Invitrogen) of pENTR:CCaMK-T265D and pUB:GW-

GFP (Maekawa et al., 2008) 

pUB:CCaMK-T265I LR reaction (Invitrogen) of pENTR:CCaMK-T265I and pUB:GW-

GFP (Maekawa et al., 2008) 

pUB:CCaMK-T265S LR reaction (Invitrogen) of pENTR:CCaMK-T265S and pUB:GW-

GFP (Maekawa et al., 2008) 

pUB:CCaMK-FNDD LR reaction (Invitrogen) of pENTR:CCaMK-FNDD and pUB:GW-

GFP (Maekawa et al., 2008) 

pUB:CCaMK-1-453 LR reaction (Invitrogen) of pENTR:CCaMK-1-453 and pUB:GW-

GFP (Maekawa et al., 2008) 

pUB:CCaMK-1-351 LR reaction (Invitrogen) of pENTR:CCaMK-1-351 and pUB:GW-

GFP (Maekawa et al., 2008) 

pUB:CCaMK-1-314 LR reaction (Invitrogen) of pENTR:CCaMK-1-314 and pUB:GW-

GFP (Maekawa et al., 2008) 

 

5.7.3 Plasmids for protein expression 

Name Construction 

pKM:CCaMK LR reaction (Invitrogen) of pENTR:CCaMK and pKM596 (Fox et 

al.,  2003) 

pKM:CCaMK-G30E LR reaction (Invitrogen) of pENTR:CCaMK-G30E and pKM596 

(Fox et al.,  2003) 

pKM:CCaMK-T265A LR reaction (Invitrogen) of pENTR:CCaMK-T265A and pKM596 

(Fox et al.,  2003) 

pKM:CCaMK-T265D LR reaction (Invitrogen) of pENTR:CCaMK-T265D and pKM596 

(Fox et al.,  2003) 

pKM:CCaMK-T265I LR reaction (Invitrogen) of pENTR:CCaMK-T265I and pKM596 

(Fox et al.,  2003) 

pKM:CCaMK-FNDD LR reaction (Invitrogen) of pENTR:CCaMK-FNDD and pKM596 

(Fox et al.,  2003) 

pKM:CCaMK-1-453 LR reaction (Invitrogen) of pENTR:CCaMK-1-453 and pKM596 

(Fox et al.,  2003) 

pKM:CCaMK-1-351 LR reaction (Invitrogen) of pENTR:CCaMK-1-351 and pKM596 

(Fox et al.,  2003) 

pKM:CCaMK-1-314 LR reaction (Invitrogen) of pENTR:CCaMK-1-314 and pKM596 

(Fox et al.,  2003) 
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5.7.4 Plasmids for subcellular localization in L. japonicus protoplasts 

Name Construction  

pAMPATp35S:GFP pAMPAT-MCS derivative with GFP insert (GenBank accession 

AY436765 

pAMPATp35S:GFP-

CCaMK  

LR reaction (Invitrogen) of pENTR:CCaMK with 

pAMPATp35S:GFP-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

pAMPATp35S:GFP- 

CCaMK-G30E 

LR reaction (Invitrogen) of pENTR:CCaMK-G30E with 

pAMPATp35S:GFP-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

pAMPATp35S:GFP- 

CCaMK-T265A 

LR reaction (Invitrogen) of pENTR:CCaMK-T265A with 

pAMPATp35S:GFP-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

pAMPATp35S:GFP- 

CCaMK-T265I 

LR reaction (Invitrogen) of pENTR:CCaMK-T265I with 

pAMPATp35S:GFP-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

pAMPATp35S:GFP- 

CCaMK-FNDD 

LR reaction (Invitrogen) of pENTR:CCaMK-FNDD with 

pAMPATp35S:GFP-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

pAMPATp35S:GFP- 

CCaMK-1-453 

LR reaction (Invitrogen) of pENTR:CCaMK-1-453 with 

pAMPATp35S:GFP-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

pAMPATp35S:GFP- 

CCaMK-1-314 

LR reaction (Invitrogen) of pENTR:CCaMK-1-314 with 

pAMPATp35S:GFP-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

5.8 Primers 

f = forward 

r = reverse 

 

CCaMK-G30E (SY119, SY120) 

gtcagaaaagaaaccaaaaaatcagg_f 

cctgattttttggtttcttttctgac_r 

 

CCaMK-T265A (SY172, SY173) 

ctatgagaaggcctggaagggcat_f 

atgcccttccaggccttctcatag_r 

 

CCaMK-T265S (SY100, SY101) 

ctatgagaagagttggaagggc_f 

gcccttccaactcttctcatag_r 

 

CCaMK-FNDD (SY176, SY177) 

ggctgcagagcgatgatgcaagacg_f 

cgtcttgcatcatcgctctgcagcc_r 

 

CCaMK-1-453 (SY97, SY116) 

caccatgggatatgatcaaaccag_f 

ttacttggtgatgcaccctg_r 



65 

 

CCaMK-1-351 (SY97) 

caccatgggatatgatcaaaccag_f 

ttataccaaggatctcagctttttgg 

 

CCaMK-1-314 (SY97, SY121) 

caccatgggatatgatcaaaccag_f 

ttactcagggtccatttgctc_r 
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Chapter 2: Negative regulation of CCaMK is essential for symbiotic 

infection 

 

This chapter is based on the following publication: 

 

Negative regulation of CCaMK is essential for symbiotic infection 

 

Liao, J.*, Singh, S.*, Hossain, M.S*., Andersen, S.U., Ross, L., Bonetta, D., Zhou, Y., Sato, 

S., Tabata, S., Stougaard, J., Szczyglowski, K. and Parniske M. (2012). Negative regulation of 

CCaMK is essential for symbiotic infection. Plant J. 72, 572-584. 

* These authors contributed equally to the work. 

 

This work was performed in collaboration with other researchers (mentioned above). The 

manuscript was mainly written by Krzysztof Szczyglowski. Contributions of the author of this 

thesis to this manuscript are listed in detail under ‘III Declaration of Contribution as Co-

Author’ on pages 11-12 of this thesis. Unless otherwise stated, experiments related to the 

figures of this chapter were performed by the author of this thesis. 

 

1 Summary 

One of the earliest responses of legumes to symbiotic signaling is oscillation of calcium 

concentration in the nucleoplasm of root epidermal cells. The integration and decoding of the 

calcium-spiking signal involves a calcium- and calmodulin-dependent protein kinase 

(CCaMK) and its phosphorylation substrates, such as CYCLOPS. Here we describe the Lotus 

japonicus ccamk-14 mutant that originated from a har1-1 suppressor screen. The ccamk-14 

mutation causes a serine to asparagine substitution at position 337 located within the 

calmodulin binding site, which we determined as an in vitro phosphorylation site in CCaMK. 

We show that ccamk-14 exerts cell-specific effects on symbiosis. It is characterized by 

increased frequency of epidermal infections and significantly compromised cortical infections 

by Mesorhizobium loti and also the AM fungus Rhizophagus irregularis. The S
337

 residue is 

conserved across angiosperm CCaMK and testing discrete substitutions at this site showed 

that it participates in a negative regulation of CCaMK activity, which is required for the cell-

type-specific integration of symbiotic signaling. 
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2 Introduction 

In plants, changes in cytosolic Ca
2+

 concentration have been linked to a variety of 

developmental and physiological processes (Berridge et al., 2000; Lecourieux et al., 2006; 

Rudd and Franklin-Tong, 2001), including responses to biotic stimuli associated with the 

presence of pathogens and symbionts. In contrast to pathogenic interactions, in which rapid 

increases in intracellular Ca
2+

 concentration contribute to plant defence signaling (Jeworutzki 

et al., 2010; Lecourieux et al., 2006), the calcium spiking in and around the nucleus represents 

an early symbiotic response that is required for intracellular colonization of plant roots by 

arbuscular mycorrhiza (AM) fungi and rhizobial symbionts (Capoen et al., 2011; Ehrhardt et 

al., 1996; Kosuta et al., 2008; Sieberer et al., 2009). During AM formation, fungal hyphae 

penetrate the Lotus japonicus root between epidermal cells, and subsequently invade the inner 

cortex, where they form intracellular arbuscules, highly branched hyphal structures that are 

thought to be sites of nutrient exchange between the two symbiotic partners (Bonfante and 

Genre, 2010; Parniske, 2008). The evolutionarily younger root nodule symbiosis (RNS) 

exhibited by legumes and nitrogen-fixing rhizobia (Sprent and James, 2007) is characterized 

by intracellular accommodation of bacteria by the host plant. In many legumes, including L. 

japonicus, rhizobia invade root hairs and subsequently the root cortex by plant plasma 

membrane-derived conduits, called infection threads (ITs) (Brewin, 2004; Fournier et al., 

2008; Held et al., 2010). This is accompanied by the formation of subtending regions of 

cortical cell divisions for nodule primordia (NP) initiation. Growing ITs ramify within these 

regions, and bacteria are released inside the NP cells. Final differentiation of both symbiotic 

partners culminates in the development of fully functional nitrogen-fixing root nodules 

(Madsen et al., 2010; Oldroyd and Downie, 2008). In both AM and RNS, oscillation of 

nuclear Ca
2+

 concentrations in the root epidermis and cortex, termed Ca
2+

 spiking, constitutes 

one of the earliest cellular responses of the host plant cells to infection (Sieberer et al., 2012; 

Wais et al., 2000; Walker and Downie, 2000). Although it has been reported that fungal and 

bacterial microsymbionts induce Ca
2+

 oscillation responses with unique signatures at the pre-

infection stage (Kosuta et al., 2008; Oldroyd et al., 2009), conserved Ca
2+

 spiking profiles 

were found to be associated with their intracellular entry into host roots (Sieberer et al., 2012). 

During both symbioses, Ca
2+

 spiking is thought to be decoded by the same Ca
2+

 and 

calmodulin-dependent protein kinase (CCaMK). This protein is characterized by the kinase 

domain, a CaM-binding domain and the EF-hand motif-containing neural visinin-like Ca
2+

-

binding domain, and its activity is subject to dual regulation by Ca
2+

 and Ca
2+

/CaM (Gleason 

et al., 2006; Tirichine et al., 2006). Deleterious mutations in CCaMK prevent root infections 
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by both AM fungi and rhizobial microsymbionts, and also abolish NP formation in the root 

cortex during RNS, indicating that CCaMK performs an essential signaling role in these 

processes (Lévy et al., 2004; Mitra et al., 2004). Genetic analyses in L. japonicus and 

Medicago truncatula positioned the CCaMK function downstream of symbiont specific 

perception, within an ancient signal transduction pathway termed the common symbiosis 

pathway (Duc et al., 1998; Kistner and Parniske, 2002). This pathway is fundamental for 

successful establishment of AM and RNS, and its activity is stimulated by corresponding 

fungal Myc factor (Maillet et al., 2011) and bacterial Nod factor signaling molecules (Bek et 

al., 2010; Lerouge et al., 1990; Lopez-Lara et al., 1995). At least eight genes comprise the 

common symbiosis pathway in L. japonicus (Groth et al., 2010; Kistner et al., 2005). Six of 

these genes, namely Symbiotic Receptor Kinase (SYMRK) (Kosuta et al., 2011; Stracke et al., 

2002), two ion channel-encoding genes CASTOR and POLLUX (Ané et al., 2004) and three 

nucleoporin genes NUP85, NUP133 and NENA (Groth et al., 2010; Kanamori et al., 2006; 

Saito et al., 2007), are required to generate Ca
2+

 spiking responses (Kosuta et al., 2008; Miwa 

et al., 2006b; Oldroyd and Downie, 2006). CCaMK, the seventh element of the pathway, is 

considered to be the main decoder of these responses (Gleason et al., 2006; Lévy et al., 2004; 

Mitra et al., 2004; Tirichine et al., 2006), leading to activation of symbiont-specific effectors 

(Hogslund et al., 2009; Kistner et al., 2005). The eighth signaling element CYCLOPS/IPD3, 

forms a complex with CCaMK that is required for infection but appears non-essential for 

CCaMK-dependent signaling for NP initiation (Messinese et al., 2007; Yano et al., 2008). In 

the presence of the gain-of-function CCaMK-T265I or CCaMK-T265D, six common 

symbiosis genes upstream of calcium spiking are dispensable for AM and RNS (Hayashi et 

al., 2010; Madsen et al., 2010; Tirichine et al., 2006). Substitution of T265 also leads to 

spontaneous nodule formation in the absence of rhizobia (Hayashi et al., 2010; Tirichine et 

al., 2006), probably due to disruption of a network of hydrogen bonds in the vicinity of this 

site that is required for auto-inhibition of CCaMK activity. This disruption and loss of auto-

inhibition also occurs when this site is phosphorylated (Shimoda et al., 2012). The 

spontaneous nodulation phenotype was also observed for a truncated M. truncatula CCaMK 

(DMI3) that lacked both CaM-binding/auto-inhibition and the EF-hand motif-containing 

visinin-like domains (e.g. DMI3 1–311, containing the kinase domain only) (Gleason et al., 

2006). However, DMI3 1–311 fails to support bacterial colonization (Gleason et al., 2006). 

Taken together, these data indicate that negative regulation of CCaMK is essential to inhibit 

the induction of inappropriate gene expression and ectopic organogenesis. The CaM-

binding/auto-inhibition and visinin-like domains mediate a complex regulatory behaviour of 
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CCaMK (Patil et al., 1995; Sathyanarayanan and Poovaiah, 2002; Sathyanarayanan et al., 

2001; Takezawa et al., 1996) that appears to be required for coordination of infection and 

organogenesis during RNS (Takeda et al., 2012). 

Here we have analysed the symbiosis-defective L. japonicus ccamk-14 allele, and show that 

this mutation comprises replacement of serine at position 337 (S337), which we identified as 

an in vitro auto-phosphorylation site within the CaM binding region. Root infection by AM 

fungus and Mesorhizobium loti was impaired in ccamk-14, but no effect on NP formation was 

detected. Importantly, during RNS, ccamk-14 specifically compromised cortical infection but 

enhanced epidermal infection. This result indicates that requirements for CCaMK activity, as 

orchestrated by its Ca
2+

 and Ca
2+

/CaM-dependent behaviour, are different in these two cell 

types. 

3 Results 

3.1 The L. japonicus suppressor 11 (sup11) mutant 

The sup11 mutant emerged from a genetic screen for suppressors of the L. japonicus har1-1 

hypernodulation phenotype (Murray et al., 2006). Compared to the har1-1 parental line, an 

unusual mixture of pink and pale-pink nodules was observed in sup11 mutants 21 days after 

inoculation (dai) with M. loti (Figure 11A). This change was accompanied by a slightly 

improved shoot growth and more elongated roots (Figure 11C). However, the presumed 

secondary mutation in sup11 did not suppress, the har1-1 hypernodulation phenotype (Figure 

11A) and the kinetics of nodulation was not significantly altered in sup11 compared to har1-1 

(Figure 12). Nevertheless, numerous NP that formed on sup11 roots at 7 dai with M. loti were 

not invaded by the bacteria. Later, at 14 and 21 dai, partially colonized nodules comprised the 

majority of events in sup11, which differed significantly from har1-1, where only fully 

colonized nodules and a few NP were formed (Figure 12). A closer inspection of roots 

showed that unlike har1-1 (Figure 13a), progression of many ITs was halted in sup11 within 

the outer cortex, above the subtending NP (Figure 13b and c). Furthermore, the number of 

microcolonies and epidermal ITs was significantly increased in the sup11 mutant (Figure 

13d). The apparent defect in bacterial colonization of the root cortex prompted the analysis of 

the sup11 arbuscular mycorrhiza (AM) phenotype. sup11 roots showed a significantly 

reduced symbiotic interaction with the AM fungus, R. irregularis (Krüger et al., 2012) 

suggesting that the underlying mutation affected a common symbiosis function in L. 

japonicus (Figure 13e and 13f).  

In order to select a corresponding single mutant, sup11 was backcrossed to the L. japonicus 

wild-type (Gifu) and an F2 segregating population was obtained. A mapping population, 



70 

 

derived from the cross between sup11 (ecotype Gifu) and the polymorphic L. japonicus 

MG20 carrying an introgressed har1-1 Gifu allele (Murray et al., 2006), was established in 

parallel to identify the location of the causative lesion (see Materials and Methods).  

 

 

 

Figure 11. Plant phenotypes. 

 (A) har1-1 parental line and the sup11 mutant at 21 days after inoculation. (B) Wild-type Lotus japonicus Gifu 

and the ccamk-14 single mutant at 14 days after inoculation. Note that har1-1 and the wild-type plant form pink 

nodules (see insets), and sup11 and the ccamk-14 develop a mixture of pink and white nodules. Mesorhizobium 

loti strain NZP2235 was used for plant inoculation. (C) Measurements of shoot and root length in har1-1 and 

sup11. Data represent mean values ± SE for n = 10. Asterisks (*) denote statistically significant differences 

between genotypes within corresponding categories as determined using a Student’s t-test (P<0.05). The 

measurements were performed 21 dai on plants grown in soil.  

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 
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Figure 12. Kinetics of nodule development in har1-1 parental line and sup11. 

M. loti strain NZP2235 tagged with constitutive hemA::LacZ reporter gene fusion was used for inoculation and 

roots were stained for β-galactosidase activity (blue) prior to nodule counting. Note that all nodule-associated 

cortical cell division events that have not yet emerged from the epidermis were categorized as nodule primordia. 

Un-colonized and partially colonized nodules were categorized following examples shown in Figure 19. Data 

represent mean values ± SE for n = 10. Asterisks (*) denote statistically significant differences between 

genotypes within corresponding nodulation categories, as determined using a Student’s t-test (P<0.05). 

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 

 

 

 

 

 

 

 

 

Figure 13. sup11 aborts normal root colonization 

by M. loti and AM fungus.  

Plants were inoculated with M. loti strain NZP2235 

tagged with a constitutive hemA::LacZ reporter gene 

fusion (a-d). Roots were stained (see Materials and 

Methods) and the symbiotic phenotypes were 

evaluated 7 dai. (a) The parental har1-1 line; note that 

M. loti (blue) migrated through a root hair infection 

thread (IT), which then ramified within the 

underlying nodule primordium (NP). (b) 

Unsuccessful root colonization by M. loti in sup11; 

note that block of infection has occurred, which led to 

the accumulation of bacteria within swollen IT in the 

subepidermal cortical cell. (c) Enlarged microcolonies 

of M. loti formed at the sup11 root epidermis; notice 

that IT was initiated from one of the microcolonies 

but its normal progression was halted, such that it 

became swollen upon entry into the subtending 

cortical cell. (d) Scores of infection events in har1-1 

and sup11 mutant. Data represent mean values ± SE 

for n = 10. Asterisks (*) denote statistically 

significant differences between the har1-1 and sup11 

genotypes for a given category as determined using a 

Student’s t-test (P<0,05). (e and f) Representative 

fragments of L. japonicus har1-1 and sup11 roots 8 

weeks after inoculation (wai) with Rhizophagus 

irregularis; note that unlike in har1-1 (e), the fungus 

failed to penetrate sup11 roots (f). IH: intraradical 

hypha; A: arbuscule; EH: extraradical hypha; V: 

vesicle. 

Data related to this figure were generated in the lab of 

Krzysztof Szczyglowski. Figure and legend adopted 

from Liao et al., 2012. 
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3.2 Map-based cloning and next-generation sequencing identify two linked mutations 

In the initial mapping population, 33 of 165 F2 individuals showed the sup11 AM phenotype, 

consistent with a recessive monogenic trait (P > 0.05). Using linkage analysis, the mutated 

locus was positioned on chromosome 3 within an approximately 17 cM genetic interval, as 

delimited by the TM0155 and TM1468 molecular markers (Figure 14a, b). The contiguity of 

this interval was interrupted by three markers that showed no recombination events. 

Nevertheless, the CCaMK locus was encompassed by this interval, and sequence analysis of 

this common symbiosis gene revealed the presence of a single nucleotide polymorphism 

(G3922A) in sup11 (Figure 14c). The mutation led to substitution of S337 by N (asparagine) 

in the CaM-binding domain of CCaMK (Figure 14d). The identified mutant CCaMK allele is 

referred to hereafter as ccamk-14, and the predicted mutant protein is referred to as 

CCaMK
S337N

. We presumed that the apparent lack of recombinants at TM0226, TM0246 and 

TM0213 was the result of suppressed recombination in this region. In order to verify this 

assumption, the whole genome sequence of sup11 was obtained by next-generation 

sequencing (see Materials and Methods). Bioinformatic analysis confirmed the presence of 

the ccamk-14 allele, but also revealed an additional polymorphism (C272T) within the 

CM0226 contig in the LjNPH3 locus (Figure 14e). This locus was predicted to encode a L. 

japonicus homolog of Arabidopsis NPH3 (Figure 14e), the NPH1 photoreceptor-interacting 

protein that is essential for phototropism (Motchoulski and Liscum, 1999). The identified L. 

japonicus mutant allele of NPH3 is referred to hereafter as nph3-1. In summary, these results 

showed that sup11 carries at least three mutant loci, namely har1-1, ccamk-14 and nph3-1. 
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Figure 14. Map-based cloning and next generation sequencing identify two linked mutations.  

(a) A schematic representation of the L. japonicus chromosome 3. (b) A portion of the chromosome 3, as 

represented by large insert clones (TM or BM) and the corresponding sequence contigs (CM) or sequenced 

genomic clones (LjT). Frequency of recombination events at the given position is provided in parentheses. (c) A 

mutant ccamk-14 allele (gray box), containing G3922 to A nucleotide substitution, as identified by map-based 

cloning and sequencing. Next generation sequencing has confirmed the presence of the ccamk-14 mutation and 

also revealed an additional mutant allele (black box), called nph3-1 (C272 to T). (d) Schematic representation of 

the L. japonicus CCaMK protein with main domains indicated. Arrows indicate the approximate position of the 

predicted amino acid substitution in ccamk-14 (S337N), and the locations of mutations in ccamk-3 (G30E) and 

snf1-1 (T265I). The white triangle indicates the approximate position of the 7 bp insertion that leads to a frame 

shift in ccamk-13 (Perry et al., 2009). (e) A schematic representation of the predicted L. japonicus NPH3 protein 

with main domains indicated. Arrow indicates an approximate position of the predicted amino-acid substitutions 

in nph3-1 (T91 to I). 

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 

3.3 ccamk-14 is responsible for the symbiosis-defective phenotypes 

Using gene-specific molecular markers and F2/F3 segregants derived from the genetic cross 

between sup11 and wild-type L. japonicus Gifu (see Materials and Methods), individuals 

carrying the corresponding single homozygous mutant loci were selected (Figure 15). 

Subsequent analyses showed that nph3-1 had no discernible negative impact on nodulation 

and AM development, although shoot growth of the mutant plant was somewhat diminished 

in comparison with wild-type Gifu (Figure 16). Consistent with these observations, the wild-

type L. japonicus CCaMK gene was able to restore normal AM formation in transgenic hairy 

roots induced on sup11 shoots (Figure 17). The defective nodule infection and AM root 

colonization phenotypes of the ccamk-14 single mutant (see below) were also restored by the 

CCaMK gene (Figure 18). Thus, ccamk-14 was defined as the causative mutation, which was 

further confirmed through detailed analyses of the ccamk-14 single mutant. 
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Figure 15. The genotypes. 

The HAR1 locus specific MvaI-CAPS marker and BsrBI- and BsrDI-dCAPS markers for the CCaMK and nph3-1 

loci, respectively, were used (see Materials and Methods). The following size (bp) of PCR fragments for wild-

type and mutant alleles were obtained, as predicted by the position of gene-specific primers and digestion 

products: (1) HAR1: 369, har1-1: 463; (2) CCaMK: 125, ccamk-14: 150; (3) NPH3: 244; nph3-1: 216. Note that 

“sup11” reflects the original mutant line carrying har1-1, ccamk-14 and nph3-1 mutant alleles.  

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 
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Figure 17. The L. japonicus CCaMK gene restores AM development in sup11.  

A genomic fragment containing the entire CCaMK locus was introduced by A. rhizogenes (AR12)-mediated 

transformation (see Materials and Methods) to generate transgenic hairy roots on non-transgenic shoots. The 

resulting hairy roots were stained with 5% ink in 5% acetic acid eight weeks after inoculation to reveal the 

location of R. irregularis. (a) har1-1 transformed with the AR12 strain; (b) sup11 transformed with the AR12 

strain; (c) sup11 transformed with the AR12 strain containing the CCaMK gene.  

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 

 

 

 

Figure 16. nph3-1 single 

mutant phenotypes.  

M. loti strain NZP2235 was used 

for plant inoculation. (a) Wild-

type L. japonicus Gifu and the 

nph3-1 single mutant, 14 dai. 

Note that the wild-type Gifu and 

the nph3-1 develop only pink 

nodules (see inserts). (b) 

Measurements of shoot and root 

length in wild-type and nph3-1 

14 dai on plants grown in soil. (c) 

Counts of nodules at 14 dai. Data 

shown in b and c represent mean 

values ± SE for n = 10. Asterisk 

(*) denotes statistically 

significant difference between 

genotypes within the 

corresponding category as 

determined using a Student’s t-

test (P<0.05). (d-e) 

Representative fragments of L. 

japonicus wild-type (d) and 

nph3-1 mutant roots (e) showing 

successful colonization by R. 

irregularis. 

Data related to this figure were 

generated in the lab of Krzysztof 

Szczyglowski. Figure and legend 

adopted from Liao et al., 2012. 
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Figure 18. The L. japonicus CCaMK gene restores wild-type nodulation and AM development in ccamk-14.  

A genomic fragment containing the entire CCaMK locus was introduced by A. rhizogenes (AR12)-mediated 

transformation to generate transgenic hairy roots on non-transgenic shoots. The resulting plants were inoculated 

with the DsRed-containing M. loti or R. irregularis and their nodulation (a, b, d, e, g, h) and mycorrhiza (c, f, i) 

phenotypes were evaluated 11 dai or 8 wai, respectively. (a-c) wild-type L. japonicus transformed with the AR12 

strain; notice the formation of pink nodules (a), presence of DsRed fluorescence inside a small nodule 

primordium (b) and the wild-type AM symbiotic phenotype (c). (d-f) ccamk-14 transformed with the AR12 

strain; notice that white or pale-pink nodules are present (d) and clumps of fluorescence are visible at the surface 

of a small nodule primordium (e). Fungal hyphae failed to penetrate the ccamk-14 roots (f). (g-i) ccamk-14 

transformed with the AR12 strain containing the CCaMK genomic DNA. The wild type nodulation (g and h) and 

AM symbiotic phenotype are restored.  

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 
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3.4 ccamk-14 recapitulates the symbiotic defects of sup11 

When grown in the absence of M. loti, ccamk-14 did not form spontaneous nodules or affect 

shoots or root growth (data not shown). In the presence of M. loti, ccamk-14 developed a 

mixture of un-colonized, partially colonized and wild-type-like nodules (Figures 11b and 19). 

The partially colonized nodules represented the majority of events at 14 and 21 days after 

inoculation (Figure 20). The progression and subsequent ramification of ITs within the NP 

interior were restricted in ccamk-14 (Figure 21a, b). Microcolonies were readily formed, but 

often appeared enlarged (Figure 21c, j). Like the microcolonies, epidermal root hair ITs were 

significantly more frequent than in wild-type Gifu (Figure 21d, j). They were intact, although 

spillage of bacteria from a presumably destabilized epidermal IT into the interior of the 

epidermal cell was detected in at least one case (Figure 21d). The major block in the infection 

process was observed to occur during passage of ITs inside the sub-epidermal cortex. ITs 

became grossly swollen inside the outer cortex (Figure 21d–f). Their further progression into 

deeper regions of NP was associated with frequent looping and secondary swellings, leading 

to the partially colonized nodule phenotype (Figure 21e–g). In at least a few instances, the 

infection process in ccamk-14 more closely resembled wild-type events (Figure 21h, i). These 

events probably contributed to the formation of fully colonized nodules in ccamk-14 (Figure 

19e, f). AM infection of ccamk-14 was generally blocked (Figure 22), such that only very 

sporadic intra-radical colonization events were observed. The fungus formed balloonshaped 

hyphal swellings on or within ccamk-14 root outer cell layers (Figure 22b, c), reminiscent of 

the block observed in ‘common symbiosis’ mutants (Kistner et al., 2005). In ccamk-14, the 

extent of intra-radical root colonization was only 5% of the wild-type (Figure 22d). However, 

once the fungus managed to penetrate the mutant root, wild-type structures, including vesicles 

and arbuscules, were formed. 
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Figure 19. ccamk-14 forms a mixture of un-colonized, partially colonized and wild-type-like nodules. 

M. loti strain NZP2235 tagged with a constitutive hemA::LacZ reporter gene fusion was used, and roots were 

stained for ß-galactosidase activity at 14 days after inoculation to reveal the location of bacteria (dark blue 

colour). (a, b) Example of an empty nodule in ccamk-14 (a) and the corresponding nodule section (b). (c, d) A 

partially colonized nodule in ccamk-14 (c) and the corresponding nodule section (d), showing the presence of an 

extensive sub-epidermal infection region (arrow) and limited colonization of the nodule interior. (e, f) Wild-

type-like nodule in ccamk-14 that is fully colonized by M. loti (e), and the corresponding nodule section (f). (g, 

h) Representative wild-type (Gifu) nodule colonized by M. loti (g), and the corresponding nodule section (h). 

Images shown in (b), (d), (f) and (h) represent approximately 35 µm thick sections. Note that a light blue color, 

for example in (b), reflects background staining. 

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 

 

 

 

Figure 20. Kinetics of nodule formation in wild-type Gifu and ccamk-14. 

Mesorhizobium loti strain NZP2235 tagged with a constitutive hemA::LacZ reporter gene fusion was used for 

inoculation, and roots were stained for ß-galactosidase activity (blue) prior to nodule counting. Note that all 

nodules that have not yet emerged from the epidermis were categorized as nodule primordia. Un-colonized and 

partially colonized nodules were categorized based on the examples shown in Figure 19. Values are means ± SE 

(n = 10). Asterisks indicate statistically significant differences between genotypes within corresponding 

nodulation categories, as determined using Student’s t-test (*P < 0.05). 

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 
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Figure 21. The ccamk-14 mutation impairs cortical infections. 

Mesorhizobium loti strain NZP2235 tagged with a constitutive hemA::LacZ reporter gene fusion was used for 

inoculation and roots were stained for ß-galactosidase activity at 7 and 14 days after inoculation to reveal the 

location of bacteria (dark blue colour). (a, b) Fragment of ccamk-14 root showing partial colonization of 

subtending nodule primordia (a), and the corresponding section (b); arrowheads in (a) indicate the approximate 

position of the sectioned portion shown in (b). (c) Grossly enlarged colonies of M. loti formed within short 

coiled root hairs in ccamk-14. (d) Example of two epidermal infection threads in ccamk-14 root hairs. Note that 

one of the ITs (left) migrated into the sub-epidermal cortex where it has begun looping. A limited discharge of 

bacteria from the IT into the epidermal cell is noticeable (arrows). The second IT (right) remained intact; 

however, its progression was halted within the subtending cortical cell, as reflected by the IT swelling. (e–g) 

Multiple secondary infection events originating from swollen ITs. Note the progressive migration of disfigured 

ITs into deeper regions of the nodule cortex (e-g), which was usually associated with looping and twisting (f). 

(h) Successful ramification of ITs within the nodule interior in ccamk-14. Note the presence of a swollen IT 

(arrow) at or near the epidermis/cortex interface. 

(i) Small nodule that was fully colonized by M. loti in wild-type L. japonicus Gifu. Images shown in (b) and (d–

h) represent approximately 30 µm thick sections. (j) Number of infection events at 7 dai in wild-type Gifu and 

ccamk-14. Values are means ± SE (n = 10). Asterisks indicate statistically significant differences between 

genotypes within the corresponding infection event categories as determined using Student’s t-test (P < 0.05). 

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 
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Figure 22. ccamk-14 is defective in AM symbiosis. 

(a) Representative fragment of L. japonicus wild-type roots that was successfully colonized by R. irregularis. (b) 

Segment of ccamk-14 root showing multiple unsuccessful colonization attempts. (c) Close-up of the ccamk-14 

root surface showing swollen hyphae at places of attempted fungus entry (arrows). 

(d) Quantification of root colonization by R. irregularis in wild-type and ccamk-14. Values are means ± SE (n = 

6). The asterisk indicates a statistically significant difference between the two genotypes as determined using 

Student’s t test (P < 0.05). 

Data related to this figure were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted from 

Liao et al., 2012. 

 

3.5 Substitutions at S337 modify binding of Ca
2+

/CaM 

We have identified the S337 residue as a potential additional auto-phosphorylation site on 

recombinant L. japonicus CCaMK subjected to in vitro auto-phosphorylation (Figure 23). As 

S337 is located within the CaM-binding domain (Figures 14d and 24a), we tested whether 

addition of the phosphate group interferes with CaM binding. In addition to CCaMK
S337N

 

(corresponding to the ccamk-14 mutation), a phospho-mimetic mutant CCaMK
S337D

 was 

constructed (see Materials and Methods) and used in CaM binding and CCaMK kinase 

activity assays. In the presence of Ca
2+

, wild-type CCaMK and CCaMK
S337N

 were both 

retained on CaM beads and were released by EGTA (Figure 24b), indicating a specific and 

calcium-dependent interaction. However, approximately twice as much CCaMK
S337N

 was 

retained in comparison with CCaMK (Figure 24b, c). In contrast, significantly lower amounts 

of CCaMK
S337D

 were bound by CaM (Figure 24b, c), indicating interference by the phospho-

mimetic replacement. The biological relevance of the S337 to D (aspartic acid) substitution 

was subsequently tested by expressing CCaMK
S337D 

from the L. japonicus CCaMK promoter 

or the strong L. japonicus polyubiquitin promoter (Maekawa et al., 2008) in transgenic hairy 

roots induced on non-transgenic ccamk-13 mutant shoots (Madsen et al., 2010). Unlike 

wildtype CCaMK, which restored normal nodulation and arbuscular mycorrhiza to the ccamk-
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13 null mutant background when expressed from the endogenous or the polyubiquitin 

promoter, no complementation was observed with CCaMK
S337D

, indicating impaired 

functionality of this mutant protein (Figure 25). Like CCaMK
S337N

, CCaMK
S337D

 did not 

confer spontaneous nodule formation in transgenic hairy roots grown in the absence of M. loti 

(Figure 25). 

 

 

Figure 23. MS/MS spectrum of CCaMK phosphopeptide 329-AAAIASVWpSSTIFLR-343 containing 

pS337. 

The mass difference of 167 Da between fragment ions y6 (mass: 736.435 Da) and y7 (mass: 903.434 Da) 

indicates specific phosphorylation of serine 337 (S*) resulting in a mass increment of serine (87 Da) of 80 Da by 

the attached phosphate group (pS = 167 Da). 
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Figure 24. Calmodulin binding capability of CCaMK and calmodulin binding site mutants CCaMK
S337N

 

and CCaMK
S337D

. 

Equal amounts (25 µg) of purified protein (MBP-CCaMK, MBP-CCaMK
S337D

, or MBP-CCaMK
S337N

) were 

incubated with CaM-Sepharose beads in the presence or absence of CaCl2. Calmodulin-bound protein was eluted 

using buffer containing 2 mM EGTA and visualized by SDS–PAGE and Coomassie staining.  

(a) Amino acid sequence of the CCaMK calmodulin binding domain. Serine 337 (S) (substituted by asparagine 

(N) in ccamk-14) is boxed. 

(b, c) The wild-type protein binds with moderate strength. Markedly reduced CaM binding affinity was observed 

with the presumed auto-phosphorylation mimic CCaMK
S337D

, while CCaMK
S337N

 retains high-affinity binding. 

Values are means ±SD from two independent experimental set-ups. Different letters indicate significant 

differences between activity values, as determined using Tukey multiple comparisons of means with a 95% 

family-wise confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

 

                                

 

Figure 25. Expression of CCaMK
S337D 

does not rescue the ccamk-13 null symbiotic phenotype.  

The wild-type CCaMK cDNA (cDNACCaMK) and a cDNA encoding the CCaMK
S337D

 variant 

(cDNACCaMK
S337D

) under the control of the cognate CCaMK promoter (b, d, e and f) or polyubiquitin promoter 

(g and h) were introduced by A. rhizogenes AR1193 mediated transformation to either wild-type L. japonicus 

Gifu (b) or ccamk-13 mutant (c-h) to generate transgenic hairy roots on non-transgenic shoots. The resulting 

chimeric plants along with those carrying control transgenic hairy roots (a and c) were inoculated with M. loti or 

R. irregularis and their nodulation (a-e) and mycorrhiza (g and h) phenotypes were evaluated 11 dai and 8 wai, 

respectively. (a) wild-type Gifu transformed with the control AR1193 strain; (b) wild-type Gifu transformed with 

AR1193 containing  cDNACCaMK
S337D

; (c) ccamk-13 transformed with the control AR1193 strain; (d and g) 

ccamk-13 transformed with AR1193 containing cDNACCaMK (note the complementation of nodulation and 

mycorrhization) (e and h) ccamk-13 transformed with AR1193 containing cDNACCaMK
S337D

 (f) ccamk-13 

transformed with AR1193 containing cDNACCaMK
S337D

 and grown in the absence of either M. loti or R. 

irregularis for 6 weeks (note lack of spontaneous nodules). Although the mycorrhiza phenotypes in g and h are 

shown for ccamk-13 plants transformed with constructs driven by the polyubiquitin promoter, the same results 

were obtained with ccamk-13 plants expressing the corresponding constructs from the endogenous promoter. 

Data related to figures 25a-f were generated in the lab of Krzysztof Szczyglowski. Figure and legend adopted 

from Liao et al., 2012. 
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3.6 CCaMK
S337N

 and CCaMK
S337D

 are not impaired in the interaction with CYCLOPS 

Given the influence of S337 modification on CaM binding, we also tested whether CCaMK, 

CCaMK
S337N

 and CCaMK
S337D

 exhibit an alteration in the interaction with CYCLOPS, a 

known interactor and an in vitro phosphorylation substrate of CCaMK (Yano et al., 2008). 

Quantitative yeast two-hybrid analysis revealed that a kinase-dead CCaMK
G30E

 version, 

encoded by the ccamk-3 allele (Shimoda et al., 2012; Tirichine et al., 2006), was strongly 

impaired in its interaction with CYCLOPS, but the interaction of both CCaMK
S337N

 and 

CCaMK
S337D

 with CYCLOPS was at a similar level as wild-type CCaMK (Figure 26).  

           

                              

Figure 26. Quantitative yeast two-hybrid interaction analysis of CCaMK, kinase dead CCaMK
G30E

, 

CCaMK
S337N

 and CCaMK
S337D

 with CYCLOPS. 

The interaction was assayed by the quantitative analysis of ß-galactosidase activity obtained from 

Saccharomyces cerevisiae HF7c cells transformed with the indicated constructs. Compared to the kinase inactive 

mutant CCaMK
G30E

 which is impaired in the interaction with CYCLOPS, CCaMK
S337

 mutant variants (S337D, 

S337N) show wild- type-like interaction. Presented are mean values and standard deviations obtained from three 

biological replicates. One Miller unit of ß-galactosidase is defined as the amount which hydrolyzes 1 μmol of 

ONPG to o-nitrophenol and D-galactose per min per cell. BD: fusion to the Gal4 DNA binding domain, AD: 

fusion to the Gal4 activation domain. 

 

3.7 Substitution of the S337 autophosphorylation site alters the regulation of substrate 

phosphorylation 

We subsequently tested the relevance of the S337 autophosphorylation site for CCaMK 

kinase activity in vitro. In the absence of Ca
2+

, CCaMK and CCaMK
S337N

 showed low auto-

phosphorylation activities, although the basal CCaMK
S337N

 activity was approximately 

twofold lower compared to CCaMK (Figure 27a and Figure 28a). Autophosphorylation 

activity of CCaMK doubled in the presence of calcium alone and returned to non-stimulated 

levels in the presence of calcium and calmodulin (Figure 27a). This reduction is consistent 

with previous reports (Kang et al., 2011; Yano et al., 2008), and was observed in the presence 
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of CYCLOPS (Figure 27a) but not with myelin basic protein (Figure 28a) or in the absence of 

any substrate (Figure 29). This behaviour may reflect protection of auto-phosphorylation sites 

in wild-type CCaMK specifically in the presence of calmodulin and CYCLOPS. This negative 

regulation of the in vitro auto-phosphorylation activity by Ca
2+

/CaM in the presence of 

CYCLOPS was absent in CCaMK
S337N

 (Figure 27a), while CCaMK
S337D

 was almost totally 

unresponsive to addition of Ca
2+

or Ca
2+

/CaM, regardless of the presence or absence of a 

substrate (Figure 27a, 28a and 29). CYCLOPS phosphorylation by wild-type CCaMK was 

very strongly increased only in the presence of Ca
2+

/CaM (Figure 27b), which clearly 

demonstrates the essential role of CaM in phosphorylation of CYCLOPS. Consistent with the 

observed interference of the S337 phospho-mimetic replacement with calmodulin binding, 

CYCLOPS phosphorylation activity by CCaMK
S337D

 was not stimulated or was only 

marginally stimulated by addition of Ca
2+

 or Ca
2+

/CaM, respectively (Figure 27b). In contrast, 

CYCLOPS phosphorylation by CCaMK
S337N

, which carries a phospho-ablative substitution, 

reached a threefold higher level relative to wildtype in the presence of Ca
2+

/CaM (Figure 

27b). The pattern observed with the commonly used artificial phosphorylation substrate 

myelin basic protein was overall similar to that with CYCLOPS, but revealed some 

differences, which may indicate a substrate-dependent behavior of CCaMK. Phosphorylation 

of myelin basic protein by CCaMK
S337N

 was stimulated approximately 15-fold by Ca
2+

/CaM 

in comparison with its basal activity, exceeding the corresponding 10-fold activation shown 

by the wild-type (Figure 28); however, the relative level was less than the phosphorylation 

observed for CYCLOPS (Figure 27b). 
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Figure 27. In vitro kinase activity of 

CCaMK, CCaMK
S337N

 and 

CCaMK
S337D

 in the presence of 

CYCLOPS. 

MBP-tagged CCaMK and the mutant 

variants CCaMK
S337D

 and CCaMK
S337N

 

were tested for in vitro kinase activity 

in the presence of either 4 mM EGTA 

(-), 0.1 mM CaCl2 (Ca
2+

) or 0.1 mM 

CaCl2 and 1 µM calmodulin (CaM). 

Each reaction contained 2 µg CCaMK 

protein and 2 µg CYCLOPS as 

substrate.  

(a) Auto-phosphorylation of CCaMK, 

CCaMK
S337D

 or CCaMK
S337N

. 

(b) Phosphorylation of the CCaMK 

phosphorylation substrate CYCLOPS. 

(a, b) Quantification of auto-

phosphorylation and CYCLOPS 

phosphorylation. Incorporation of 

radioactive phosphate was quantified 

using a Typhoon phosphor imager, and 

band intensities were normalized to 

values determined for CCaMK wild-

type in the presence of EGTA, which 

were set to 1. Values are means ±SD of 

kinase activity from two independent 

experimental set-ups. The same letter 

denotes a lack of significant differences 

between activity values, as determined 

using the Kruskal–Wallis multiple 

comparison with Bonferroni correction; 

α= 0.05. 
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Figure 28. In vitro kinase activity of 

CCaMK, CCaMK
S337N

 and 

CCaMK
S337D

 in the presence of MBP.  

Maltose-binding-protein tagged 

CCaMK and the mutant variants 

CCaMK
S337D

 and CCaMK
S337N

 were 

tested for in vitro kinase activity in the 

presence of either 4 mM EGTA (-), 0.1 

mM CaCl2 (Ca
2+

), or 0.1 mM CaCl2 and 

1 µM calmodulin (CaM). Each reaction 

contained 2 µg of CCaMK protein and 

10 µg of myelin basic protein (MBP) as 

substrate. Incorporation of radioactive 

phosphate was visualised using a 

Typhoon phosphorimager.  

(a) Auto-P: Autophosphorylation of 

CCaMK, CCaMK
S337D

, or CCaMK
S337N

.  

(b) MBP-P: Phosphorylation of the 

artificial phosphorylation substrate, 

MBP.  

(a, b) Quantitation of 

autophosphorylation (Auto-P) and MBP 

phosphorylation (MBP-P). 

Incorporation of radioactive phosphate 

was quantified using a Typhoon 

phosphorimager and band intensities 

(auto-, or MBP phosphorylation) were 

normalized to values determined for 

CCaMK wild type in the presence of 

EGTA (1-fold incorporation). Graph 

represents mean values ± standard 

deviation of kinase activity from two 

independent experimental set-ups. The 

same letter denotes lack of significant 

differences between activity values, as 

determined using the Kruskal-Wallis 

multiple comparison with the 

Bonferroni correction; α=0.05.  
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Figure 29. In vitro autophosphorylation activity of CCaMK, CCaMK
S337N

 and CCaMK
S337D

 in the absence 

of substrate.  

Maltose-binding-protein tagged CCaMK, CCaMK
S337D

 and CCaMK
S337N

 were tested for in vitro 

autophosphorylation in the presence (+) of either 4 mM EGTA, 0.1 mM CaCl2 (Ca
2+

), or 0.1 mM CaCl2 and 1 

µM calmodulin (CaM). Each reaction contained 2 g of CCaMK protein. Auto-P: Autophosphorylation of 

CCaMK, CCaMK
S337D

, or CCaMK
S337N

. Incorporation of radioactive phosphate was quantified using a Typhoon 

phosphorimager and band intensities were normalized to values determined for CCaMK wild-type in the 

presence of EGTA (1-fold incorporation). Graph represents mean values ± standard deviation from two technical 

replicates of one experimental set-up. 

 

4 Discussion 

Here we show that the ccamk-14 mutation, which leads to substitution of S337 by asparagine 

within the Ca
2+

/CaM binding domain of the L. japonicus CCaMK aborts normal infection of 

L. japonicus roots by AM fungi and rhizobia. The S337 residue is conserved in CCaMK 

across the angiosperm lineage (Tirichine et al., 2006), and our data demonstrate that it 

participates in the negative regulation of CCaMK activity.  

4.1 ccamk-14 enhances epidermal infection by bacteria  

Like NP formation, initiation of the infection process within root hairs is carefully regulated 

by the host plant (Jones et al., 2007). The significantly increased number of microcolonies and 

root hair ITs in ccamk-14 compared to wild-type Gifu plants possibly reflects the onset of a 

compensatory mechanism. This mechanism is known to operate in legumes to modulate root 

susceptibility to rhizobial infections, depending on the outcome of prior infection events 
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(Ferguson et al., 2010). Indeed, plant mutants that are hyper-infected by rhizobia have been 

described, such as the Medicago truncatula sickle mutant (Penmetsa and Cook, 1997) and the 

L. japonicus lhk1-1 mutant (Murray et al., 2007), supporting the existence of a feedback 

regulatory mechanism(s) that limits the extent of root colonization by bacteria. Importantly, it 

has been postulated that the Nod factor signal transduction pathway is subjected to negative 

feedback regulation that originates at or downstream of DMI3, the M. truncatula ortholog of 

L. japonicus CCaMK (Oldroyd et al., 2001). We therefore postulate that the enhanced 

frequency of the epidermal infection events in ccamk-14 is a reflection of the de-regulated 

nature of CCaMK
S337N

. Such a notion is consistent with the observed lack of regulation of in 

vitro CCaMK
S337N

 auto-phosphorylation activity by Ca
2+

/CaM and hyper-phosphorylation of 

CYCLOPS. These effects may also account for the presence of larger microcolonies in 

ccamk-14.  

4.2 The ccamk-14 phenotype suggests cell type-specific regulation of bacterial infection 

In contrast to its apparent gain-of-function effect on epidermal infection by bacteria, the 

ccamk-14 mutation impaired normal progression of the cortical infection process during both 

RNS and AM. As NP formation was unaffected, we have interpreted the presence of empty to 

fully infected nodules in ccamk-14 to be the result of slowly advancing aberrant cortical 

infections. Such an interpretation is consistent with the delay of approximately 7 days in 

appearance of the first fully colonized nodules in ccamk-14 compared to wild-type Gifu 

(Figure 20). Previous data have shown that epidermal and cortical infections by M. loti are 

differentially regulated and may be uncoupled in specific L. japonicus mutants, such as 

symrk-14 (Kosuta et al., 2011), nena (Groth et al., 2010) and the nfr1 nfr5 symrk-3 snf1 

quadruple mutant (Madsen et al., 2010). The ccamk-14 phenotype supports these 

observations, and further suggests that CCaMK participates in this cell type dependent 

regulation. 

4.3 Is CCaMK activity substrate-dependent? 

In comparison to wild-type CCaMK, the three apparent differences in in vitro CCaMK
S337N

 

regulation were a reduced basal activity in the absence of calcium, lack of negative regulation 

of auto-phosphorylation in the presence of CYCLOPS, and an altered substrate 

phosphorylation capacity. As argued below, the absence of negative regulation of auto-

phosphorylation in CCaMK
S337N

 is probably sufficient to explain the mutant ccamk-14 

infection phenotype. Although it is possible that the diminished basal activity of CCaMK
S337N

 

was detrimental to symbiosis and may account for the observed cell-specific properties of the 
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ccamk-14 mutation, we consider this unlikely as the symbiosis-specific stimulation of 

CCaMK is believed to be mediated by Ca
2+

spiking and the relevant defects should occur in 

the presence of Ca
2+

 and/or Ca
2+

/CaM. It has been shown that Ca
2+

/CaM-dependent 

suppression of the in vitro auto-phosphorylation activity of lily (Lilium longiflorum) CCaMK 

occurs in the presence of some but not all phosphorylation targets (Takezawa et al., 1996). 

Our in vitro results on auto-phosphorylation of CCaMK in the presence of myelin basic 

protein or CYCLOPS are consistent with these observations. They also show that, in 

comparison to wild-type CCaMK, myelin basic protein and CYCLOPS were hypo- and 

hyper-phosphorylated in vitro by CCaMK
S337N

, respectively, suggesting that the effect of the 

ccamk-14 mutation may be substrate-dependent. However, like other commonly used in vitro 

phosphorylation targets, such as histone IIAS or GS peptide, myelin basic protein is an 

artificial substrate; therefore caution is required when considering this possibility. 

Interpretation of the data is further confounded by the fact that biological activities of 

CCaMK do not always correlate with its apparent kinase activity in vitro (Shimoda et al., 

2012). 

4.4 The ccamk-14 mutation removes negative regulation of CCaMK 

Using three alternative CCaMK variants, which differed in the amino acid (S/N/D) at position 

337 within the CaM binding domain, we show that S337 is essential for the regulation of 

CCaMK and symbiosis. Our in vitro results suggest at least one possible mechanism, whereby 

the S337 residue participates, directly or indirectly, in regulation of Ca
2+

/CaM binding. 

Although it remains to be further confirmed whether the underlying mechanism involves auto-

phosphorylation of the S337 residue, as suggested by the HPLC-MS/MS data, we consider 

this likely as phospho-mimetic CCaMK
S337D

 almost entirely lost its Ca
2+

/CaM binding 

capacity in vitro, and became unresponsive or only marginally responsive to Ca
2+

/CaM 

treatment. This presumed mechanism of phosphorylation-dependent repulsion of Ca
2+

/CaM in 

CCaMK is analogous to the phenomenon of ‘CaM capping’ described for mammalian 

CaMKII (Hudmon and Schulman, 2002b). Importantly, however, in addition to attenuated 

Ca
2+

/CaM binding, CCaMK
S337D

 also lost its responsiveness to Ca
2+

, indicating that this 

phospho-mimetic substitution had a more global regulatory impact, possibly impairing the 

function of the CCaMK visinin domain. The fact that CCaMK
S337D

 was not auto-activated 

probably explains why it remained biologically inert. CCaMK
S337N

, in contrast to 

CCaMK
S337D

, maintained responsiveness to Ca
2+

, and, unlike wild-type CCaMK, its in vitro 

auto-phosphorylation activity in the presence of CYCLOPS was further enhanced by addition 

of Ca
2+

/CaM. This was associated with increased Ca
2+

/CaM binding and enhanced 
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CYCLOPS phosphorylation in vitro, indicating that CCaMK
S337N

 is hyperactive. Taken 

together, these data suggest that CCaMK activity is subjected to a negative regulation that 

requires the S337 residue. As inferred from the results for CCaMK
S337D

, phosphorylation of 

S337 probably limits further activation of CCaMK by preventing its responsiveness to Ca
2+

 

and restricting Ca
2+

/CaM binding, the regulatory capacity that has been lost in CCaMK
S337N

. 

Future experiments are required to establish whether phosphorylation of T265 within the 

CCaMK kinase domain triggers a phosphorylative burst that targets S337 within the CaM 

binding domain.  

4.5 Significance of negative regulation of CCaMK during symbiotic infection  

It has recently been proposed that Ca
2+

 stimulation of CCaMK is sufficient for nodule 

organogenesis and AM infection, while Ca
2+

/CaM is involved only during rhizobial 

colonization (Shimoda et al., 2012). This model is primarily based on the analysis of auto-

activated, gain-of-function CCaMK molecules. We show that neither CCaMK
S337D

 nor 

CCaMK
S337N

 lead to an auto-activated gain-of-function phenotype, and our data indicate that 

the inherent capacity of CCaMK to negatively regulate its own responsiveness to Ca
2+

 and 

competence for Ca
2+

/CaM binding is important. This is apparently dispensable for nodule 

formation but is required to maintain symbiotic homeostasis at the root epidermis and during 

colonization of the root cortex by M. loti and AM fungus. The need for negative regulation of 

Ca
2+

 signaling during cortical infection is suggested by the observation that, although high-

frequency Ca
2+

 spiking is associated with the initial apoplastic cell entry by both 

microsymbionts, this is progressively attenuated and is totally absent during IT growth along 

a cytoplasmic bridge (Sieberer et al., 2012). Whether similar attenuation occurs during 

transcelluar growth of fungal hyphae is currently unknown, but Ca
2+

 spiking was shown to be 

absent in cells that have been fully traversed by AM hyphae (Sieberer et al., 2012). These 

observations indicate that Ca
2+

 signaling is carefully regulated depending on the particular 

stage of infection, and, as suggested by the ccamk-14 phenotype, the capacity to negatively 

control CCaMK activity may be essential in this context. In contrast to the root cortex, rapid 

attenuation of Ca
2+

 spiking soon after initiation of root hair infection by bacteria has not yet 

been observed in M. truncatula, possibly reflecting different requirements for Ca
2+

 signaling 

in the root epidermis (B. Sieberer and D. Barker, Laboratoire des Interactions Plantes Micro-

Organismes, UMR CNRS-INRA, Castanet-Tolosan, France, personal communication). If 

confirmed, and assuming that a similar mechanism operates in L. japonicus, this may explain 

the cell-specific effects of the ccamk-14 mutation and may also imply a remarkably fine 

control of microbe–host signaling during intracellular accommodation. 
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5 Materials and Methods 

5.1 Plant material and growth conditions 

sup11 was back-crossed to wild-type L. japonicus Gifu in order to identify the corresponding 

single mutant individuals. Genotyping of the resulting 504 F2 and a few F3 progenies led to 

the selection of single har1-1, ccamk-14 and nph3-1 mutant lines. Plants were germinated and 

grown, and their root and symbiotic phenotypes evaluated as described previously (Kosuta et 

al., 2011). 

Root and nodule sections were generated and processed as described by (Karas et al., 2005). 

For evaluation of mycorrhiza phenotypes, plants were inoculated with R. irregularis and 

processed 8 weeks later as previously described (Kosuta et al., 2005).  

5.2 Genetic mapping of sup11  

sup11 was crossed to a polymorphic mapping partner, L. japonicus ecotype MG20, carrying 

the har1-1 Gifu allele (Murray et al., 2006). As the sup11 nodulation phenotype was not 

readily recognizable, the sup11 AM mutant phenotype was used in the initial selection 

scheme. The F2 segregants were scored 8 weeks after inoculation with R. irregularis, and 

selected mutant individuals were subjected to linkage analysis using simple sequence repeat 

(SSR) polymorphic markers, as previously described (Murray et al., 2006).  

5.3 Next-generation sequencing and bioinformatic analyses  

Next-generation sequencing of the sup11 nuclear DNA was performed at the Centre for 

Analysis of Genome & Evolutionary Function (CAGEF) of the University of Toronto using 

an Illumina Genome Analyzer IIx sequencer (Illumina, www.illumina.com/). A total of 126 

million 38 bp reads from a 200 bp paired-end Illumina library were aligned to the L. 

japonicus MG20 release 2.5 reference genome (www.kazusa.or.jp/lotus/index.html) using 

Bowtie version 0.12.3 (Langmead et al., 2009). The candidate region on chromosome 3 was 

subsequently annotated for single-nucleotide polymorphisms using SHOREmap 

(Schneeberger et al., 2009).  

5.4 Genotyping  

The presence of the har1-1 allele was confirmed as previously described (Karas et al., 2005). 

For genotyping the CCaMK and NPH3 loci, derived cleaved amplified polymorphic sequence 

(dCAPS) markers were developed. Briefly, for CCaMK, a pair of primers (CCaMK forward: 

5´-AGTCATCCATGGGTCAGAGGTG-3´; CCaMK reverse: 5´-

TTTGGTTCTCAGGAAGATTGTGCCG-3´) was used to amplify a 150 bp fragment 

http://www.illumina.com/
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containing the engineered BsrBI restriction site. This site was maintained in the fragment 

derived from the wild-type allele, thus generating two restriction fragments of 125 and 25 bp 

in length upon digestion. It was absent in the mutant fragment due to the ccamk-14 

substitution. For the NPH3 locus, the primer pair NPH3 forward (5´-

CCAATTCCCCTCTGAATGCT-3´) and NPH3 reverse (5´-

GAAGAACCTCTTCTTCATCCATGCA-3´) was used to amplify a 244 bp fragment. The 

substitution of C272 by T in the nph3-1 mutant allele, together with the engineered sequenced 

of the reverse primer, led to creation of a BsrDI restriction site, with resulting fragments of 

216 and 28 bp in length. This site was absent in the fragment derived from the wild-type 

NPH3 allele. 

5.5 Site-directed mutagenesis 

The Gateway vector pENTR/D-TOPO (Invitrogen, www.invitrogen.com), containing a full 

copy of the CCaMK cDNA, was subjected to site-directed mutagenesis using a QuikChange 

II XL kit (Stratagene, www.stratagene.com/), according to the manufacturer’s instructions. To 

generate CCaMK
S337N

, the following pair of primers was used: forward, 5´-

CAATTGCTAGTGTTTGGAACAGCACAATCTTCCTGAG-3´; reverse, 5´-

CTCAGGAAGATTGTGCTGTTCCAAACACTAGCAATTG-3´. For CCaMK
S337D

, the 

primers were 5´-CTGCAATTGCTAGTGTTTGGGACAGCACAATCTTCCTGAGAA-3´ 

(forward) and 5´-TTCAGGAAGATTGTGCTGTCCCAAACACTAGCAATTGCAG-3´ 

(reverse). The integrity of the final products was confirmed by sequencing. 

5.6 Complementation experiments 

The sup11, ccamk-13 and ccamk-14 complementation experiments were performed as 

described by (Murray et al., 2007). The Agrobacterium rhizogenes AR12 strain carrying the 

entire L. japonicus CCaMK locus, including a 3.1 kb promoter region and a 1.3 kb 3´ UTR, 

integrated into a modified Ri plasmid (Radutoiu et al., 2005; Tirichine et al., 2006), was used 

to generate transgenic hairy roots on non-transgenic shoots. The same AR12 strain, carrying 

the Ri plasmid without the CCaMK locus, was used in these experiments as a negative 

control. For ccamk-13 complementation, the AR1193 strain carrying a cDNA encoding the 

CCaMK
S337D 

protein (see above) or the CCaMK wild-type protein under the control of the 

endogenous L. japonicus CCaMK promoter or the polyubiquitin promoter was used. The 

CCaMK promoter (2063 bp fragment immediately upstream of the CCaMK start codon) was 

amplified from the Gifu wild-type genomic DNA using primers 

5´TTAAAGTCGACAGTTGAAAAGTTGGAGCGCA-3´ (forward) and 5´-



94 

 

TCAAAGTCGACTCAGACTCAGAAAATGTTC-3´ (reverse), and cloned into the binary 

expression vector pK7WG2D,1 (Karimi et al., 2002), from which the 35S promoter was 

removed by SalI digestion, generating the vector pK7CCpWG2D. The coding sequences for 

CCaMK or CCaMK
S337D

 were then recombined into vector pK7CCpWG2D to give 

pK7CCpWG2D-CCaMK and pK7CCpWG2DCCaMK
S337D

, respectively. For 

complementation experiments with expression from the polyubiquitin promoter, the 

corresponding coding sequences were recombined into vector pUB-GW-GFP (Maekawa et 

al., 2008). The nodulation phenotypes were evaluated 11 and 21 days after inoculation using 

DsRED-containing M. loti, and the AM phenotype was scored 6–8 weeks after inoculation 

with R. irregularis. 

5.7 Protein expression, purification and in vitro kinase assay 

To generate N-terminal maltose-binding protein (MBP)-tagged CCaMK protein, the coding 

sequences of CCaMK, CCaMK
S337N

 or CCaMK
S337D

 were recombined from the pENTR/D-

TOPO vector into vector pKM596 (Fox et al., 2003) by Gateway LR reaction (Invitrogen). 

Expression of MBP–CCaMK, MBP–CCaMKS337N and MBP–CCaMKS337D was induced 

from Escherichia coli Rosetta pLaqI (Novagen, www.novagen.com) by addition of 0.5 mM 

isopropyl thio-ß-D-galactoside for 4 h at 28 °C. MBP-tagged proteins were purified via 

amylose resin (New England Biolabs, www.neb.uk.com) according to the manufacturer’s 

protocol. Proteins were desalted by use of PD10 desalting columns (GE Healthcare, 

www.gehealthcare.com), and eluted in buffer containing 25 mM Tris, 10 mM ß-

mercaptoethanol (pH 7.6). Expression and purification of 6xHis-tagged CYCLOPS was 

performed as described by (Yano et al., 2008). In vitro kinase assays were performed for 30 

min at 25 °C in buffer containing 25 mM Tris (pH 7.6), 10 mM MgCl2, 0.5 mM dithiothreitol, 

200 µM ATP and 5 µCi [c-32P]ATP (Hartmann Analytic, www. hartmann-analytic.de). 

MBP–CCaMK, MBP–CCaMK
S337N

 or MBP-CCaMK
S337D

 (2 µg) were tested in each reaction, 

without addition of substrate or in the presence of either 10 µg myelin basic protein (Sigma, 

www.sigmaaldrich.com/), or 2 µg 6xHis-tagged CYCLOPS as phosphorylation substrate. 

Kinase activity was assayed in the presence of either 4 mM EGTA or 0.1 mM CaCl2, in the 

absence or presence of 1 µM bovine calmodulin (Sigma), as indicated. Kinase reactions were 

stopped by addition of SDS–PAGE sample buffer and boiled for 5 min. Samples were 

separated by 12% SDS–PAGE, and subsequently stained with Coomassie brilliant blue. 

Radioactive gels were exposed to phosphorimaging screens, and visualized by scanning with 

a Typhoon Trio scanner (GE Healthcare). Radioactive bands (autophosphorylated MBP-

CCaMK, MBP-CCaMK
S337N

, MBP-CCaMK
S337D

 and phosphorylated myelin basic protein or 
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CYCLOPS) were quantified using Image Quant TL software (GE Healthcare). The 

quantitative kinase assay data shown in Figure 27 and Figure 28 were obtained from two 

independent experimental set-ups. The data were first normalized by defining the wild-type 

CCaMK protein activity in the absence of calcium (EGTA) as 1. As this resulted in a mean of 

one and a variance of zero for the CCaMK (EGTA) activity, non-parametric Kruskal-Wallis 

multiple comparison with the Bonferroni correction was performed to test for pairwise 

differences. The significance threshold was defined as α= 0.05. As the kinase activity data 

shown in Figure 29 were obtained from only two technical replicates, statistical analysis was 

not performed. 

5.8 Calmodulin binding assay 

MBP-CCaMK, MBP-CCaMK
S337D

 and MBP-CCaMK
S337N

 (25 µg) were diluted in either 1 ml 

CaM binding buffer (50 mM Tris, 150 mM NaCl, 1 mM CaCl2, pH 7.6) or in 1 ml EGTA 

buffer (50 mM Tris, 150 mM NaCl, 2 mM EGTA, pH 7.6; control for non-specific binding). 

Diluted proteins were then added to 50 µl CaM-Sepharose beads (GE Healthcare) equilibrated 

in either CaM binding buffer or EGTA buffer. The samples were incubated for 2 h at 4 °C 

under rotation to allow binding of the proteins to the CaM resin. Beads were washed six times 

(2 minutes per wash) with 1 ml of the corresponding buffer (see above). CaM-bound proteins 

were eluted twice using 50 µl EGTA buffer. A 2 µg aliquot of each protein was loaded as 

input, and 15 µl of combined elution fractions of each protein were loaded as a representative 

elution fraction on 10% SDS–PAGE, separated and stained with Coomassie brilliant blue. 

Quantification of the Coomassie-stained protein bands was performed using ImageJ software. 

Quantitative CaM binding assay data were obtained from two independent experiments. Data 

were analysed using oneway ANOVA followed by Tukey’s HSD (honest significant 

difference) post hoc test with 95% family-wise confidence level. 

5.9 Yeast two-hybrid analysis 

Coding sequences for CCaMK, CCaMK
S337D

, CCaMK
S337N

, CCaMK
G30E

 and CYCLOPS 

were recombined from the pENTR/D-TOPO vector into modified (Gateway-compatible) 

pBDGAL4 (Stratagene) and pGAD424 (Clontech, www.clontech.com/) vectors by LR 

reaction. The resulting constructs were co-transformed into yeast strain HF7c (Feilotter et al., 

1994) by the lithium acetate transformation method (Gietz and Woods, 2002). Co-

transformants were selected on synthetic drop-out medium lacking Trp and Leu, and 

expressed proteins were tested for interaction by the quantitative interaction assay (ß-

galactosidase assay) described in Clontech’s yeast protocols handbook, with slight 
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modifications.  

5.10 In-gel digestion of autophosphorylated CCaMK  

Coomassie-stained protein bands were excised from the gel and chopped into small cubes. For 

triple enzyme digests, the gel cubes were divided into three aliquots and were washed three 

times with acetonitrile/water (1:1). The gel pieces were shrunk using acetonitrile, rehydrated 

in 50 mM NH4HCO3, and dried in a speedvac. (Thermo Fisher Scientific, 

www.thermoscientific.com). Then 10 mM dithiothreitol in 50 mM NH4HCO3 was added to 

the dried gel pieces, and proteins were reduced for 45 min at 56 °C. To alkylate reduced 

cysteine residues, the remaining liquid was removed and an equal volume of 50 mM 

iodoacetamide in 50 mM NH4HCO3 was added, and the reaction was allowed to proceed for 

30 min in the dark. Prior to in-gel digestion, the gel pieces were washed and dried as above. 

The gel pieces were rehydrated in an ice-cold solution of either 10 ng/µl trypsin (sequencing 

grade, Promega, www.promega.com/) or 10 ng/µl chymotrypsin in 10 mM NH4HCO3, or 20 

ng/µl Gluc protease (sequencing grade, New England Biolabs,www.neb.com) in 50 mM 

Tris/HCl, 0.5 mM glutamic acid dipeptide (Glu-Glu), pH 8.0. After 45 min on ice, excess 

enzyme solution was replaced by 20 µl of buffer without enzyme, and proteins were digested 

at 37 °C overnight. The digests were stopped by addition of 20 µl of 10% formic acid, and 

peptides were extracted for 30 min at 37 °C. For each sample, extracts from multiple protease 

digests were combined prior to LC-MS analysis. 

5.11 LC-MS/MS of in gel-digested proteins 

CCaMK auto-phosphorylation was performed in the presence of 0.1 mM CaCl2 using the 

same procedure as described for the in vitro kinase assay, but omitting radioactive 

[c32P]ATP. LC-MS data were acquired on a HCT ETD II iontrap mass spectrometer (Bruker 

Daltoniks, www.bdal.com) equipped with a nano ESI source (Bruker Daltoniks). 

5.12 Database search  

Peptides and phospho-peptides were identified by searching expected protein sequences in a 

custom database using a local installation of MASCOT 2.2 (Matrix Science Ltd, 

www.matrixscience.com/). Searches were submitted via Proteinscape 2.0 (Bruker Daltoniks) 

using the following parameter settings: enzyme, ‘none’; fixed modifications, 

‘carbamidomethyl’; optional modifications, ‘Methionine oxidation’ and ‘Phosphorylation 

ST’; missed cleavages, ‘1’. The mass tolerance was set to 0.4 Da for peptide and fragment 

spectra. 
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Chapter 3: CYCLOPS, a DNA-binding transcriptional activator, 

orchestrates symbiotic root nodule development 

 

This chapter is based on the following manuscript: 

 

Singh, S.*, Katzer, K.*, Lambert, J., Cerri, M. and Parniske, M. (2014). CYCLOPS, a DNA-

binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host 

Microbe 15, 139-152. 

 

* These authors contributed equally to the work. 

 

This work was performed in collaboration with other researchers (mentioned above). The 

manuscript draft was written by the author of this thesis. Contributions of the author of this 

thesis to this manuscript are listed in detail under ‘III Declaration of Contribution as Co-

Author’ on pages 12-14 of this thesis. Unless otherwise stated, experiments related to the 

figures of this chapter were performed by the author of this thesis. 

 

1 Summary 

Nuclear calcium oscillations are a hallmark of symbiotically stimulated plant root cells. 

Activation of the central nuclear decoder, calcium- and calmodulin-dependent kinase 

(CCaMK), triggers the entire symbiotic program including root nodule organogenesis, but the 

mechanism of signal transduction by CCaMK was unknown. We show that CYCLOPS, a 

phosphorylation substrate of CCaMK, constitutes a novel class of DNA-binding 

transcriptional activator. Two phosphorylated residues within the N-terminal negative 

regulatory domain are necessary to release CYCLOPS from autoinhibition. A phospho-

mimetic version was solosufficient for triggering root nodule organogenesis in the absence of 

rhizobia and CCaMK. Our data pinpoint the CCaMK/CYCLOPS complex as central 

regulatory node, which directly translates nuclear calcium oscillations into the activation of 

the NODULE INCEPTION (NIN) gene. CYCLOPS thus emerges as the master regulator of a 

cascade of transcriptional regulation, in which NIN and a heterotrimeric NF-Y complex act in 

hierarchical succession to initiate symbiotic root nodule development. 
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2 Introduction 

A striking feature of symbiosis between legume plants and rhizobia is the development of a 

new plant organ, the root nodule. Plant root cells undergo a remarkable de-differentiation 

process upon symbiotic stimulation. A fully differentiated, resting root cell completely 

reprograms and either enters cell division to initiate nodule organogenesis or develops an 

intracellular structure for accommodation of the microsymbionts (Parniske, 2008). The 

establishment of root symbioses between phosphate-aquiring arbuscular mycorrhiza (AM) 

fungi and the majority of land plants or between nitrogen-fixing rhizobia and legumes is 

initiated by an ancient signal transduction system (Oldroyd, 2013). The perception of 

symbiont-specific AM fungal factors or rhizobia-derived nodulation factors (‘nod factors’) via 

cognate transmembrane receptors leads within minutes to the generation of sustained 

oscillations of calcium concentration (‘calcium-spiking’) in the nucleus, a hallmark of 

symbiotic signal transduction (Ehrhardt et al., 1996; Oldroyd, 2013). In mammals, stimulus-

dependent elevations of nuclear calcium concentration have been linked to changes in 

transcription, resulting in cell proliferation and growth (Bootman et al., 2009). Similarly, 

during plant root symbiosis, nuclear calcium spiking is believed to trigger, in an hitherto 

unknown manner, the expression of symbiosis-associated genes (Miwa et al., 2006a). The 

nuclear calcium- and calmodulin-dependent kinase CCaMK is the central regulator of 

symbiotic development of the root (Singh and Parniske, 2012). A calmodulin (CaM) binding 

domain and three calcium binding EF-hands in CCaMK mediate regulation by calcium 

signatures (Swainsbury et al., 2012). ccamk mutants are completely symbiosis-deficient. 

Rhizobia do not induce nodule organogenesis or infection threads and arbuscules, highly 

branched fungal structures within plant cells that are the site of nutrient exchange between the 

symbionts, do not form upon inoculation with AM fungi (Lévy et al., 2004; Mitra et al., 

2004). Importantly, deregulated autoactive CCaMK versions carrying various amino acid 

substitutions in the regulatory autophosphorylation site (T265D, or T265I) can compensate 

for the loss-of upstream genes involved in calcium-spike generation, consistent with the idea 

that the primary function of calcium spiking is the activation of CCaMK (Hayashi et al., 

2010; Madsen et al., 2010). Deregulated CCaMK versions trigger the spontaneous 

development of root nodules in the absence of external symbiotic stimuli demonstrating that 

CCaMK acts as central regulator of this developmental program (Gleason et al., 2006; 

Tirichine et al., 2006). 

Since its identification as essential gene for symbiosis development, the molecular function of 

CYCLOPS, encoding a nuclear coiled-coil protein remained enigmatic (Yano et al., 2008). 
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CYCLOPS interacts with and is phosphorylated by CCaMK in vitro, implicating CYCLOPS 

as direct CCaMK phosphorylation target. Although Lotus japonicus cyclops mutants are 

impaired in AM and root nodule symbiosis, they do not recapitulate the ccamk mutant 

phenotype. They respond to rhizobia with root hair curling, but infection is aborted at the root 

hair stage. Likewise, nodule primordia form, but nodule development is prematurely arrested 

(Yano et al., 2008). Root nodule organogenesis is initiated by cell divisions in the inner root 

cortex (Oldroyd, 2013) and depends on the GRAS proteins Nodulation Signaling Pathway 1 

(NSP1) and NSP2 and the transcriptional regulator NODULE INCEPTION (NIN) (Kalo et 

al., 2005; Schauser et al., 1999; Smit et al., 2005). NIN expression is rapidly induced after nod 

factor perception, but severely reduced in cyclops mutants (Yano et al., 2008). A relatively 

high hierarchical position of NIN in the initiation of lateral root organs is indicated by the 

observation that NIN targets the promoters of two subunits of the heterotrimeric CCAAT-box 

binding Nuclear Factor Y (NF-Y) complex: NF-YA1 (orthologous to M. truncatula HAP2-1) 

and NF-YB1 (Combier et al., 2006; Soyano et al., 2013). Furthermore, ectopic overexpression 

of NIN or NF-YA1 stimulated cell divisions resulting in the formation of aberrant lateral root 

organs that differed morphologically from both, roots and nodules (Soyano et al., 2013). 

Nuclear calcium elevations are implicated in the activation of transcription and root cells 

undergo substantial transcriptional reprogramming during symbiosis establishment. Given the 

fact that CCaMK is a likely receiver of calcium spikes, its phosphorylation targets should 

either directly or indirectly be implicated in the transcriptional reprogramming that leads to 

reinitiation of cell division. Here we show that CYCLOPS is a CCaMK regulated DNA-

binding transcriptional activator which initiates gene expression leading to nodule 

organogenesis. Our data reveal a direct mechanism of nuclear calcium signal decoding by the 

CCaMK/CYCLOPS complex. Perception of calcium signals stimulates phosphorylation of 

CYCLOPS, which in turn activates gene expression sufficient for the initiation of cell division 

and symbiotic organ development. 
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3 Results 

3.1 CYCLOPS is a phosphorylation substrate of CCaMK 

We hypothesized that CCaMK-mediated CYCLOPS phosphorylation would be a 

consequence of nuclear calcium spiking and thus a potential intermediate transduction step in 

symbiosis signaling. CYCLOPS was strongly phosphorylated by CCaMK only in the 

presence of calcium/CaM (Figure 30A). We detected five phosphorylated serines by mass 

spectrometry, which were all preceded by an arginine at position -3, suggesting that the 

consensus sequence ‘RXXS’ was a preferred phosphorylation motif of CCaMK (Figure 30B). 

 

 

Figure 30. CYCLOPS is phosphorylated by CCaMK in vitro and the identified phosphorylation sites S50 

and S154 are conserved in symbiotic plants and the moss Physcomitrella. 

A) In vitro phosphorylation of 6xHis-CYCLOPS by CCaMK. Phosphorylation of CYCLOPS (34.5 pmol) by 

equal amounts of CCaMK was tested in the presence of either 4 mM EGTA, 0.1 mM CaCl2 (Ca
2+

), or 0.1 mM 

CaCl2 and 1 µM calmodulin (Ca
2+

/CaM). Upper panel: Autoradiograph (
32

P) of a 10% SDS-PAGE gel 

separating the reaction products. Lower panel: Coomassie staining of the same gel. 

B) Alignment of CYCLOPS amino acid sequences from the legumes Lotus japonicus, Medicago truncatula and 

Pisum sativum (pea), the non-legume AM forming plants Oryza sativa (rice) and Populus trichocarpa (poplar) 

and the moss Physcomitrella patens.  

The phosphorylation sites (S14, S50, S154, S251 and S412) identified by mass spectrometry are indicated. The 

four phosphorylation sites S14, S50, S154 and S412 are conserved between all plant species analysed, except for 

P. patens in which serine 14 is replaced by a threonine. The corresponding phospho-peptides are depicted in 

green, or magenta in cases where they overlap with potential DNA binding motif residues, depicted in blue as 

predicted by BindN+ (Wang et al., 2010). These are confined to three longer stretches (13-15 amino acids in 

length): S1= aa 377-391, S2 = aa 402-415, S3 = aa 424-436. Red bars indicate coiled-coils as predicted by the 

coils program (Lupas et al., 1991), with the percent probability indicated in red. 

The experimentally delimited extensions of the activation domain (AD) and DNA-binding domain (BD) are 

indicated by a black bar and grey bar, respectively. A stretch of serines located in the deduced AD within an 

intrinsically unstructured region (as predicted by DIPHOS; Iakoucheva et al., 2004) is highlighted in orange. 

Residues highlighted in white on black background are identical between the majority (>66.7%) of the aligned 

plant species, residues shaded in grey are identical between some (<66.7% and >33.3%) of the aligned plant 

species, residues on white background are not conserved. NLS: Nuclear localization signal. 

Figure 30B was prepared by Katja Katzer. 
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3.2 The CYCLOPS phosphorylation sites S50 and S154 are essential for symbiotic 

development 

To examine whether phosphorylation of the identified sites is essential for symbiotic 

development, we generated single- and multi-site phospho-ablative mutant versions of S14, 

S50, S154, S251 and S412, by amino acid (aa) exchange to Ala and analysed restoration of 

root symbiosis in transformed cyclops-3 mutant roots (Table 6, Figure 31). The results of the 

transgenic complementation analysis demonstrated that the simultaneous presence of both 

phosphorylatable serine residues S50 and 154 is essential for symbiosis (Figure 31). If 

phosphorylation at these two residues was important, the corresponding phospho-mimetic Ser 

to Asp replacements may be tolerated. Indeed, individual replacements or the combination of 

S50D-S154D (3xHA-gCYCLOPS-DD) all restored symbiosis (Table 7). To address the 

relevance of the three remaining sites we transformed cyclops-3 roots with CYCpro:3xHA-

gCYCLOPS-A-DD-AA (carrying replacements of Ser 14, 251 and 412 by Ala) and found that 

root symbiosis was restored (Table 7). In summary, phosphorylation of S14, S251 and S412 is 

dispensable, while phosphorylation of CYCLOPS at S50 and S154 appears to be a 

prerequisite for symbiotic development. 

 

 

Figure 31. Serines 50 and 154 are redundantly required for root symbiosis. 

(A-O) L. japonicus cyclops-3 mutant roots were transformed with 3xHA-gCYCLOPS, or mutant derivatives 

encoding the indicated phospho-ablative double mutants, or the empty vector control (all equipped with the 

endogenous promoter). Transformed roots were either inoculated with DsRed tagged M. loti, or the AM fungus 

R. irregularis and the nodulation (A-J) and AM phenotype (K-Q) was analysed.  

Root nodule symbiosis and AM was restored by 3xHA-gCYCLOPS wild-type (B, G), (AM: L, P), 3xHA-

gCYCLOPS-S14A-S50A (D, I), (AM: N) and 3xHA-gCYCLOPS-S14A-S154A (E, J), (AM: O) as abundant 

formation of M. loti-DsRed infected root nodules and arbusculated cell files in the cortex, spanning the entire 

root length, were observed. 

In roots transformed with the empty vector control (A, F) or with 3xHA-gCYCLOPS-S50A-S154A (C, H), root 

nodule symbiosis was not restored since only uninfected nodule primordia with superficial rhizobial growth 

(visible as red dots), resembling the cyclops-3 mutant phenotype, were observed. AM was not restored, since 

intracellular hyphae and arbuscules were not formed in roots transformed with the empty vector control (K). In 

three root systems out of ten transformed with 3xHA-gCYCLOPS-S50A-S154A (M, Q) 1-3 small patches (0.5-1.5 

mm in size) with arbuscules were formed (indicated by black arrowheads in Q) indicating that AM formation 

was largely impaired. 

(A-E) Brightfield images. (F-J) Overlay of images recorded with GFP and DsRed filters. Green fluorescence 

indicates transformed plant roots, red fluorescence originated from M. loti-DsRed, present either in infected root 

nodules, or microcolonies growing on the root surface. (K-Q) Brightfield images of ink-stained roots visualizing 

AM fungal structures. Bars: (A-J) 1 mm, (K-O) 0.1 mm, (P, Q) 0.3 mm. 

(R) Protein blot probed with anti-HA-HRP antibody demonstrating that 3xHA-CYCLOPS wild-type and 

phospho-ablative mutant derivatives thereof (as indicated and AAASS = CYCLOPS-S14A-S50A-S154A, 

AAAAS = CYCLOPS-S14A-S50A-S154A-S251A) are expressed at similar levels in transformed roots of the 

cyclops-3 mutant. Protein extracts were prepared from transgenic roots four weeks post inoculation with M. loti-

DsRed. Molecular weight of 3xHA-CYCLOPS is 65 kDa. No protein band equal in size to 3xHA-CYCLOPS 

was detected in roots transformed with the empty vector control. Coomassie stained blot shows equal sample 

loading of the gel. 
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Table 6. Restoration of root symbiosis in cyclops-3 by CYCLOPS phospho-ablative  

mutant versions. 

Plant 

Genotype 

Transgene
a 

Nod+
b 

#Nod/ 

Nod+
 
Plant

c 
AM+

d 

cyclops-3 empty vector 0/30
e
 0

e 
0/21 

cyclops-3 3xHA-gCYCLOPS 20/20 18 ± 7 8/8 

cyclops-3 3xHA-gCYCLOPS-S14A 19/19 14 ± 5 7/7 

cyclops-3 3xHA-gCYCLOPS-S50A 13/13 15 ± 4 8/9 

cyclops-3 3xHA-gCYCLOPS-S154A 24/24 24 ± 8 6/7 

cyclops-3 3xHA-gCYCLOPS-S251A 38/38 16 ± 8 8/8 

cyclops-3 3xHA-gCYCLOPS-S412A 19/19 15 ± 4 10/10 

cyclops-3 3xHA-gCYCLOPS-S14A-S50A 11/14 8 ± 3 7/7 

cyclops-3 3xHA-gCYCLOPS-S14A-S154A 18/18 13 ± 6 5/8 

cyclops-3 3xHA-gCYCLOPS-S50A-S154A 0/38
e
 0

e
 3

f
/10 

cyclops-3 3xHA-gCYCLOPS-S14A-S50A-S154A 0/27
e
 0

e
 3

f
/13 

cyclops-3 3xHA-gCYCLOPS-S14A-S50A-S154A-S251A 0/25
e
 0

e
 3

f
/16 

cyclops-3 3xHA-gCYCLOPS-S14A-S50A-S154A-S251A-

S412A 

0/72
e
 0

e
 7

f
/32 

a
Constructs were equipped with the endogenous promoter. 

b
Nod+: Number of root systems with infected root nodules per number of total root systems analysed. 

Transformed roots were analysed 5 weeks post M. loti-DsRed inoculation. 
c
Average number of nodules per nodulated root system ± standard deviation. 

d
AM+: Number of root systems showing restoration of AM per number of total root systems analysed. 

Transformed roots were analysed 6 weeks post co-cultivation with the AM fungus R. irregularis. 
e
Root systems showed cyclops mutant phenotype characterized by uninfected nodule primordia.  

f
Number of root systems forming few (1-3) small (0.5-1.5 mm) patches with arbuscules per total number of root 

systems analysed. 
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Table 7. Restoration of root symbiosis in cyclops-3 by CYCLOPS phospho-mimetic  

mutant versions. 

Plant 

Genotype 

Transgene
a 

Nod+
b 

#Nod/ 

Nod+
 
Plant

c
 

AM+
d 

cyclops-3 empty vector 0/18
e 

0
e 

0/8 

cyclops-3 3xHA-gCYCLOPS 12/12 11 ± 3 9/9 

cyclops-3 3xHA-gCYCLOPS-S14D 35/35 16 ± 6 7/7 

cyclops-3 3xHA-gCYCLOPS-S50D 20/20 12 ± 6 14/14 

cyclops-3 3xHA-gCYCLOPS-S154D 33/33 15 ± 6 9/9 

cyclops-3 3xHA-gCYCLOPS-S251D 36/36 11 ± 5 8/8 

cyclops-3 3xHA-gCYCLOPS-S412D 32/32 14 ± 5 5/6 

cyclops-3 3xHA-gCYCLOPS-S50D-S154D 13
f
 /13 16

f
 ± 7 6/7 

cyclops-3 3xHA-gCYCLOPS-S14AS50D-

S154DS251AS412A 

4
f
 /5 11

f 
± 4

 
7/7 

ccamk-3 empty vector 0/12 0 0/7 

ccamk-3 3xHA-gCYCLOPS 0/12 0 0/5 

ccamk-3 3xHA-gCYCLOPS-S14D 0/13 0 0/6 

ccamk-3 3xHA-gCYCLOPS-S50D 0/12 0 0/8 

ccamk-3 3xHA-gCYCLOPS-S154D 0/15 0 0/8 

ccamk-3 3xHA-gCYCLOPS-S251D 0/17 0 0/11 

ccamk-3 3xHA-gCYCLOPS-S412D 0/13 0 0/10 

ccamk-3 3xHA-gCYCLOPS-S50D-S154D 16
g
/40 4

g 
± 3 0/8 

a
Constructs were equipped with the endogenous promoter. 

b
Nod+: Number of root systems with infected root nodules per number of total root systems analysed. 

Transformed roots were analysed 5 weeks post M. loti-DsRed inoculation. 
c
Average number of nodules per nodulated root system ± standard deviation. 

d
AM+: Number of root systems showing restoration of AM per number of total root systems analysed. 

Transformed roots were analysed 6 weeks post co-cultivation with the AM fungus R. irregularis. 
e
Root systems showed cyclops mutant phenotype characterized by uninfected nodule primordia.  

f
Formation of partly infected (60-70%), partly uninfected (30-40%) nodules. 

g
Formation of spontaneous, uninfected nodules. 

 

3.3 The phosphorylation status of CYCLOPS does not affect complex formation with 

CCaMK 

Ablation of phosphorylation at S50 and S154 of CYCLOPS impaired symbiosis. In order to 

unravel the mechanistic cause for the functional defect, we investigated the consequences for 

protein expression levels, subcellular localization and complex formation with CCaMK. All 

tested CYCLOPS versions were abundantly expressed (Figure 32A) and, similar to the WT 

protein, localized exclusively to the nucleus (Figure 32B). Also, complex formation with 

CCaMK was not compromised, as CYCLOPS and the phospho-site mutant variants still 

interacted with CCaMK in bimolecular fluorescence complementation (BiFC) analysis 

(Figure 38D-I). Furthermore, fluorescence lifetime imaging microscopy (FLIM)-FRET 
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measurements revealed no significant lifetime change when TSapphire-CYCLOPS or either 

of the phospho-mutant versions was expressed together with CCaMK-mOrange in N. 

benthamiana leaf cell nuclei (Figure 33D-F). Compared to the control measurements, in 

which CCaMK-mOrange was replaced by free mOrange quencher, all CYCLOPS versions 

showed a decrease in fluorescence lifetime in the presence of CCaMK-mOrange, clearly 

indicating interaction (Figure 33A-F). 

 

 

 

Figure 32. CYCLOPS and CYCLOPS phospho-site mutant proteins are expressed and localize to the 

nucleus in N. benthamiana leaf cells. 

(A) 3xHA-CYCLOPS and phospho-site mutant derivatives were expressed in N. benthamiana leaf cells. Protein 

blot of protein extracts was prepared 60 hours post transformation (hpt) from equal amounts of leaf material and 

probed with anti-HA-HRP antibody.  

(B) CYCLOPS-Cerulean and phospho-site mutant derivatives localize to the nucleus in N. benthamiana leaf 

cells. N. benthamiana leaf cells were transformed with T-DNAs encoding the indicated CYCLOPS-Cerulean 

fusion proteins and confocal laser scanning microscopy of fluorescent protein fusions was performed 60 hpt. 

Images show overlay of brightfield and fluorescence micrographs. Bars: 5 µm.  

 

3.4 The NIN promoter is activated in trans by CYCLOPS in a phosphorylation 

dependent manner 

Deregulated CCaMK is sufficient to induce symbiosis-related transcriptional reprogramming 

(Gleason et al., 2006; Tirichine et al., 2006). Since CYCLOPS is a phosphorylation target of 

CCaMK, the most parsimonious model implicated CYCLOPS directly in transcriptional 

regulation of target genes. To test this hypothesis, a NIN promoter (>2 kb) fusion to the uidA 

gene (pNIN:GUS) was mobilized together with 3xHA-CYCLOPS and with or without 

autoactive 3xHA-CCaMK-T265D into N. benthamiana leaf cells. CYCLOPS alone caused 

only a faint reporter expression while co-expression with CCaMK-T265D induced a 

significant increase (Figure 34A). CCaMK-T265D alone did not elicit GUS expression, 

indicating that the observed transactivation was not mediated by phosphorylation of 

endogenous proteins. This finding suggested that the increase in transactivation resulted from 

phosphorylation of CYCLOPS by CCaMK-T265D. To test whether phosphorylation of S50 
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and S154 is involved, we examined whether this effect can be recapitulated or prevented by 

the phospho-mimetic and phospho-ablative versions, respectively. CYCLOPS-DD alone 

transactivated strongly, while CYCLOPS-AA alone or in combination with CCaMK-T265D 

did not (Figure 34A). In conclusion these observations suggested, that CYCLOPS has 

properties of a transcriptional activator. Since the co-expression of CYCLOPS with autoactive 

CCaMK transactivated the NIN promoter and this effect was not observed with the phospho-

ablative version, but was fully recapitulated with the phospho-mimetic version alone, we 

concluded that phosphorylation at S50 and S154 was the likely mechanism of CYCLOPS 

activation.  

3.5 Identification of a CYCLOPS responsive cis element (CYC-RE) within the NIN 

promoter 

We performed a detailed deletion and substitution analysis of the NIN promoter to identify cis 

elements targeted by CYCLOPS-DD (Figure 34B-F). We delimited a CYCLOPS response 

element ‘CYC-RE’ to a 30 bp fragment containing a palindromic sequence (Figure 34F). 

Figure 33. FLIM-FRET interaction 

analysis between CCaMK and 

CYCLOPS phospho-site variants. 

FLIM-FRET analysis of TSapphire-

CYCLOPS and phospho-site mutants 

in the presence of free mOrange (A-C) 

or CCaMK-mOrange (D-F). The 

lifetime of the TSapphire donor 

fluorophore is depicted in a color code 

ranging from blue (2.6 ns) to red (1.5 

ns) for one representative nucleus per 

construct combination. Histograms 

below lifetime images represent 

lifetimes of all nuclei analysed per 

construct combination. The graphs 

show the number of nuclei observed 

with the indicated lifetime values. 

Insets above the histograms show 

mean values and standard deviations 

obtained per construct combination. 

Lifetime value for each depicted 

nucleus (A-F) is indicated in the 

histogram by arrowheads. Analysis 

was performed in nuclei of N. 

benthamiana leaf cells 60 hours post 

transformation. TS: TSapphire. Bars: 2 

µm. 

Data related to this figure were 

generated by Jayne Lambert. 
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Substitution analysis pinpointed the palindrome as essential cis element, or ‘CYC-box’ for 

CYCLOPS-DD mediated CYC-RE reporter induction (Figure 34F). 

3.6 CYCLOPS-DD binds DNA in a sequence-specific and phosphorylation-dependent 

manner 

In order to test direct binding of CYCLOPS-DD to DNA, electrophoretic mobility shift assays 

(EMSAs) were performed. CYCLOPS-DD caused a shift of IR-labeled CYC-RE probe, which 

was gradually lost when increasing amounts of unlabeled CYC-RE DNA were added (Figure 

35A). Importantly, incubation with mCYC-RE competitor DNA did not outcompete binding to 

the WT sequence (Figure 35A). This analysis demonstrated that CYCLOPS-DD has 

sequence-specific DNA binding properties, pinpointing the ‘CYC-box’ as required for 

CYCLOPS binding.  

 

 

Figure 34. CYCLOPS-DD transactivates the NIN promoter via a minimal responsive palindromic cis 

element. 

(A) GUS reporter assay in N. benthamiana showing that co-expression of CYCLOPS with autoactive CCaMK-

T265D leads to a strong transcriptional activation of the NIN promoter and that the same effect is produced by 

CYCLOPS-DD. N. benthamiana leaf cells were co-transformed with T-DNAs encoding the indicated 3xHA-

CYCLOPS variants and the pNIN:GUS reporter, with or without 3xHA-CCaMK-T265D. GUS activity was 

determined histochemically and quantitatively in leaf discs. Mean value and standard deviation was determined 

from three biological replicates. Photographs of leaf discs represent two biological replicates. 

(B-G) Identification of a CYCLOPS-DD responsive cis element (CYC-RE) within the NIN promoter. Various 

NIN promoter fusions to the GUS reporter gene were co-expressed with 3xHA-CYCLOPS-DD in N. benthamiana 

leaf cells and GUS expression was quantified. Mean value of GUS activity and standard deviation from three 

biological replicates is given for each promoter construct. The NIN promoter length is annotated from the 

transcriptional start site (Start). 

(B) Rough mapping derived two CYCLOPS-DD response elements (RE). A strong RE (-870 to -299 bp) and a 

weaker RE (-298 to -99 bp). The 98 bp fragment resulted in background activity and was defined as NIN-

minimal promoter (pNINmin). GUS expression is shown relative to the value obtained for the pNIN(-7):GUS 

reporter construct (set to 1). 

(C)-(F) Fine mapping of the upstream RE (‘CYC-RE’, shaded in grey) via NIN promoter deletions fused to the 5´ 

end of pNINmin:GUS. GUS activity is shown relative to the value obtained for pNINmin:GUS (set to 1). 

(C) A ~50 bp deletion series (D1-D6) delimited the position of the CYC-RE to the interval from -785 to -685 bp. 

Deletion constructs were tested in the background of a -298 to -99 bp deletion (dotted line). D1 = -834 to -299 

bp, D2 = -785 to -299 bp, D3 = -735 to -299 bp, D4 = -685 to -299 bp, D5 = -635 to -299 bp, D6 = -579 to -299 

bp. 

(D) Analysis of overlapping promoter fragments (B1-B4) delimited the CYC-RE location to a 71 bp fragment 

(B4). B1 = -735 to -615 bp, B2 = -785 to -716 bp, B3 = -785 to -615 bp, B4 = -735 to -666 bp. 

(E) Dissection of B4 into three overlapping 36 bp fragments (F1-F3) identifies F2 as a minimal element 

containing the CYC-RE depicted in (F). F1 = -735 to -701 bp, F2 = -717 to -683 bp and F3 = -700 to -666 bp. 

(F) CYC-RE contains a palindromic sequence (CYC-box) which is essential for CYCLOPS-DD mediated 

transactivation. CYC-RE, five mutant versions (M1-M5) and a mutant variant of the entire palindrome (mCYC-

RE) were analysed as tandem repeat (‘2x’) fusions to pNINmin:GUS. Nucleotide sequences of CYC-RE, mCYC-

RE, M1-M5, , 1PAL1, mPAL, CYC-box (= palindrome ‘PAL’) are depicted; the palindrome sequence is depicted 

in blue letters, mutated nucleotides are depicted in red. 
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The sequence specificity was similar to that observed for the transcriptional activation by 

CYCLOPS-DD (Figure 34F), implicating direct DNA binding of CYCLOPS-DD as the most 

likely mechanism mediating sequence-specific transcriptional activation. 

Co-expression of CYCLOPS with CCaMK in E.coli resulted in a strong phosphorylation of 

CYCLOPS, which was not observed when CYCLOPS was expressed alone (Figure 44A-C). 

To assess whether CYCLOPS binding to the CYC-RE depended on the phosphorylation state, 

CYCLOPS expressed without or with CCaMK was tested in EMSAs with CYC-RE as probe. 

Only CYCLOPS-DD and the CYCLOPS-WT protein obtained upon co-expression with 

CCaMK bound to CYC-RE, while binding was not detected with CYCLOPS-WT and 

CYCLOPS-AA expressed in the absence of CCaMK (Figure 35B, left panel). CCaMK alone 

caused no shift of the CYC-RE probe (data not shown). The shift obtained by CCaMK-

pretreated CYCLOPS-WT protein was lost after phosphatase treatment (Figure 35B, right 

panel). This finding is consistent with the idea that phosphorylation confers CYCLOPS’ DNA 

binding activity. 

 

             

Figure 35. CYCLOPS binds the NIN promoter in a sequence-specific and phosphorylation dependent 

manner. 

A) EMSA showing that CYCLOPS-DD has higher affinity to WT CYC-RE than to mutant mCYC-RE DNA. 

EMSA was performed with GST-CYCLOPS-DD (35 pmol), IR-labeled CYC-RE (0.1 pmol) as probe, and 

unlabeled competitor (comp.) DNA (CYC-RE or mCYC-RE) at 10-, 25- and 50-fold molar excess. Samples were 

resolved on a native 6% polyacrylamid gel. 

B) CYCLOPS binds the CYC-RE in a phosphorylation-dependent manner. 

Left panel: Equal concentrations (35 pmol) of GST-CYCLOPS-DD (DD), GST-CYCLOPS-AA (AA), and GST-

CYCLOPS-WT (WT) protein and 40 pmol of Strep-CYCLOPS-WT protein purified after co-expression with 

CCaMK (WT/CC) were tested for binding to IR-labeled CYC-RE (0.1 pmol). Samples were resolved on a native 

4% polyacrylamid gel. Right panel: Untreated (-P) and phosphatase treated (+P) Strep-CYCLOPS-WT protein 

(20 pmol) purified after co-expression with CCaMK (WT/CC) was tested with IR-labeled CYC-RE (0.1 pmol) as 

probe. Samples were resolved on a native 6% polyacrylamid gel. (A, B) The position of specifically bound and 

free probe is indicated by an arrow and an arrowhead, respectively. 

Figure 35A and left panel of Figure 35B: Experiment was performed by Katja Katzer. Right panel of 

Figure 35B: Experiment was performed by the author of this thesis. 
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3.7 CYCLOPS is a modular DNA-binding transcriptional activator 

As CYCLOPS exhibited DNA-binding and transcriptional activation properties, we aimed to 

assign these activities to distinct CYCLOPS domains. To detect and map the transcriptional 

activation domain of CYCLOPS (ADCYC), DNA-BDGal4 fusions to the N-terminus of 

CYCLOPS derivatives were tested in N. benthamiana for transactivation of the cognate 

reporter p5xUAS:eGFP-GUSintron (providing five repeats of the Gal4 binding site) (Figure 

36A). CYCLOPS or CYCLOPS-DD mediated strong transactivation, confirming the presence 

of an activation domain in CYCLOPS. CYCLOPS-AA did not confer transactivation, 

indicating that the phospho-ablative mutations compromised the functionality of ADCYC 

(Figure 36A and 34A). The position of the ADCYC could be narrowed down to aa 267-380, as 

this truncation triggered ~5-fold higher values compared to full-length CYCLOPS (Figure 

36A), while the N-terminal half of CYCLOPS-DD (aa 1-265) and the C-terminal domain (aa 

364-518) did not confer transactivation. In order to test whether plant specific proteins are 

required for the transactivation mediated by ADCYC, the same constructs were tested in yeast. 

Importantly, a tandem repeat fusion of ADCYC was able to trigger strong autoactivation when 

fused to the DNA-BDGal4 (Figure 36D). 

To identify the DNA-binding domain (DNA-BDCYC), fusions of the ADVP16 to the N-terminus 

of CYCLOPS derivatives were analysed for their ability to activate a NIN promoter:GUS 

reporter in N. benthamiana (Figure 36B). Strong GUS expression was induced by CYCLOPS 

and CYCLOPS-DD, whereas with CYCLOPS-AA, GUS activity remained at the same level 

as the negative control (Figure 36B). An ADVP16 fusion to the C-terminal half of CYCLOPS 

(aa 255-518) and a fusion to the C-terminal coiled-coil (364-518) were both able to 

transactivate (Figure 36B) indicating that the DNA-BDCYC is located at the C-terminal end. 

Consistent with this, the deletion of the C-terminal coiled-coil (aa 1-449) led to a severe 

reduction in transactivation strength (Figure 36B). 

From these findings we concluded that the DNA-BDCYC and ADCYC were located in the C-

terminal half of the protein and predicted a minimal CYCLOPS version (‘CYCLOPS-min’, 

comprising aa 255-518) as sufficient to mediate DNA binding and transcriptional activation 

(Figure 36A, B). This prediction was verified by the observation of transactivation of the 

2xCYC-RE:GUS reporter by CYCLOPS-min (Figure 36C).  
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Figure 36. CYCLOPS is a modular DNA-binding transcriptional activator. 

 (A, B) Mapping of the CYCLOPS transcriptional activation domain (AD) (shown in A) and DNA binding 

domain (BD) (shown in B). BDGal4- or ADVP16-CYCLOPS-WT, phospho-site mutants or truncated versions and 

the reporter p5xUASGal4:eGFP-GUSintron (A) or pNIN870:GUS (B) were cotransformed into N. benthamiana 

leaves. A T-DNA encoding a BDGal4-ADVP16 fusion served as positive control in (A), a T-DNA encoding DsRed 

was used as negative control in (A) and (B). Mean values of reporter activation were calculated from three 

biological replicates and are presented relative to the mean value obtained with BDGal4-CYCLOPS-DD (A) or 

ADVP16-CYCLOPS-DD (B) (each set to 100% GUS activity). The deduced region harbouring the CYCLOPS AD 

is depicted in black. BDGal4 is depicted as grey circle in (A). The deduced region harbouring the CYCLOPS BD 

is depicted in grey. ADVP16 is depicted as black circle in (B).  

(C) A minimal CYCLOPS version (CYCLOPS-min, aa 256-518) comprising the CYCLOPS AD and BD is 

sufficient to mediate transcriptional activation via the CYC-RE in N. benthamiana. 3xHA-CYCLOPS-min and the 

WT reporter 2xCYC-RE:GUS, or the indicated mutant versions were co-transformed into N. benthamiana leaf 

cells. GUS expression is shown relative to the value obtained with the pNINmin:GUS reporter construct (set to 

1). Transactivation values obtained with 3xHA-CYCLOPS-min (black bars) are shown in comparison to 

transactivation values obtained with 3xHA-CYCLOPS-DD (grey bars; values are duplicates from Figure 34F). 

The graph shows mean values and standard deviations calculated from three biological replicates. 

(D) The CYCLOPS transcriptional activation domain is functional in the heterologous system yeast. 
Wild-type CYCLOPS, phospho-site mutants and truncated versions fused to the yeast Gal4 DNA-binding 

domain (BDGal4, grey circle) were analyzed in the yeast reporter strain HF7c for transactivation of the 

3xUASGal4:lacZ reporter. LacZ (ß-galactosidase) reporter activity was determined in Miller units. AD: 

Activation domain. BD: DNA-binding domain. 

Data related to this figure were generated by Katja Katzer. 
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Importantly, the observed sequence-specific transactivation pattern of CYCLOPS-min 

matched that of CYCLOPS-DD (Figure 36C). This important finding is in line with the idea 

that the deleted N-terminus, which also contains the two critical phosphorylation sites, is a 

negative regulatory domain of CYCLOPS. 

3.8 The CYCLOPS DNA binding domain binds the CYC-RE in vitro 

The delimitation of the DNA-BDCYC to aa 364-518 was substantiated by direct DNA binding 

assays. Binding of CYCLOPS-BD (aa 364-518) and CYCLOPS-DD-1-366 (CYCLOPS-DD-

∆BD), lacking the deduced DNA BD, to the CYC-RE was tested in an EMSA (Figure 37A). 

CYCLOPS-BD bound strongly and the binding was competable with the WT palindromic 

sequence (‘1PAL1’; sequence depicted in Figure 34F), but not efficiently with the mutated 

palindrome (1mPAL1; sequence depicted in Figure 34F), thus not only demonstrating 

sequence specificity but narrowing down the DNA fragment sufficient for CYCLOPS binding 

to the CYC-box. A palindromic target sequence is in agreement with the observation that 

CYCLOPS-DD formed dimers in plant cell nuclei (Figure 38). Importantly, CYCLOPS-DD-

∆BD caused no shift (Figure 37A). Sequence-specific DNA binding of CYCLOPS-BD and no 

binding of CYCLOPS-DD-∆BD were also confirmed by microscale thermophoresis (Figure 

37B and C). Taken together, these findings underscored that CYCLOPS-BD binds the CYC-

box in a sequence-specific manner, matching the sequence specificity of CYCLOPS-DD. 
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Figure 37. The delimited CYCLOPS DNA binding domain specifically binds the CYC-box in vitro. 

 (A) 75 pmol of recombinant GST-CYCLOPS-BD and of GST-CYCLOPS-DD-ΔBD (DD-ΔBD) lacking the 

DNA-BD were probed with IR-labeled CYC-RE (0.1 pmol) by EMSA. Unlabeled competitor DNA containing 

either the WT (1PAL1) or mutated palindrome (1mPAL1) (sequences depicted in Figure 34F), was used in 5-, 

10- and 20-fold molar excess ratios. Arrow and arrowhead indicate position of specifically bound and free probe, 

respectively. Samples were resolved on a native 6% polyacrylamid gel. 

(B) Microscale thermophoresis demonstrating that GST-CYCLOPS-BD specifically binds to the CYC-RE in 

vitro. Binding of recombinant GST-CYCLOPS-BD (1.3 µM) to labeled CYC-RE (25 nM) was competed by 

unlabeled WT CYC-RE (black circles) or mutated mCYC-RE (white circles) added in increasing concentrations 

(381 pM to 12.5 μM).  

(C) Microscale thermophoresis showing that GST-CYCLOPS-DD-ΔBD does not bind to the CYC-RE. The 

reaction of GST-CYCLOPS-DD-ΔBD (1.3 µM) with labeled CYC-RE (25 nM) showed no change in 

thermophoresis values when unlabeled CYC-RE was added in increasing concentrations (381 pM to 12.5 μM), 

indicating an impairment in CYC-RE binding. (B, C) Average thermophoresis values and standard deviations of 

three experimental replicates are shown. Comp. = competitor. 

Data related to this figure were generated by Katja Katzer. 
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Figure 38. CYCLOPS and CYCLOPS phospho-site mutants form homodimers and interact with CCaMK. 

Analysis of CYCLOPS, CYCLOPS-AA and CYCLOPS-DD self-interaction, interaction with CCaMK and the 

kinase-dead version CCaMK-G30E by bimolecular fluorescence complementation in N. benthamiana leaf cells. 

Candidate T-DNAs were co-transformed as fusions to the N- or C-terminal half of YFP (YFP
N
 or YFP

C
) via A. 

tumefaciens. YFP fluorescence (shown in yellow) indicates interaction. Pictures represent overlay of brightfield 

images with micrographs recorded with a YFP filter. Bars: 25 µm. 

(A-C) Nuclear localized YFP fluorescence indicates homodimerization of (A) CYCLOPS, (B) CYCLOPS-AA 

and (C) CYCLOPS-DD.  

(D-F) Nuclear localized YFP fluorescence demonstrates interaction of CCaMK-YFP
N
 with either YFP

C
-

CYCLOPS (D), YFP
C
-CYCLOPS-AA (E), or YFP

C
-CYCLOPS-DD (F). 

(G-I) No YFP signal was detected in leaf cell nuclei co-expressing CCaMK-G30E-YFP
N
 and either YFP

C
-

CYCLOPS (G), YFP
C
-CYCLOPS-AA (H), or YFP

C
-CYCLOPS-DD (I), although in all cases the relevant 

proteins were detected by protein blot analysis. Inset CYC: Protein blot anti-HA-CYCLOPS. Inset CC: Protein 

blot probed with anti-CCaMK antibody. Squares in G, H and I indicate the position of the nucleus. 

 

3.9 CYCLOPS-DD transactivates the NIN promoter via the CYC-RE in L. japonicus 

independently of NSP1, NSP2 and NIN 

Our results so far are consistent with a model in which the phosphorylation of S50 and S154 

leads to a structural change in CYCLOPS that alleviates autoinhibition of the transcriptional 

AD and promotes the DNA binding activity of CYCLOPS. The phospho-mimetic aspartate 

replacements of these two serine residues turn CYCLOPS into an autoactive transcription 
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factor. A prediction from this model is that this autoactive version (CYCLOPS-DD) should 

trigger symbiosis-related transcriptional activation and related phenotypic responses in roots 

of L. japonicus. Indeed, UBpro:3xHA-gCYCLOPS-DD triggered strong and specific induction 

of the 2xCYC-RE:GUS reporter only when containing the WT but not a mutant version of the 

palindrome (Figure 39A, B, Table 8) demonstrating that sequence specificity of the activation 

is retained in L. japonicus. Consistent with the observations in N. benthamiana (Figure 34A), 

only weak expression of 2xCYC-RE:GUS was detected in roots co-transformed with 

UBpro:3xHA-gCYCLOPS-WT, whereas no expression was visible in those co-transformed with 

UBpro:3xHA-gCYCLOPS-AA, or the empty vector control (Figure 39C-E and Table 8). To test 

whether the endogenous NIN gene is indeed a target of CYCLOPS-DD in L. japonicus we 

employed quantitative real-time RT-PCR analysis on transgenic ccamk-13 roots, 

constitutively expressing either CYCLOPS-DD or CYCLOPS-AA (Figure 40Q). Although both 

transgenes were expressed at similarly high levels, only in root systems transformed with 

CYCLOPS-DD transcription of NIN and the NIN target gene NF-YA1 (Soyano et al., 2013) 

were activated (Figure 40Q). GUS expression matching this pattern was also observed in 

roots of a transgenic L. japonicus NINpro:GUS reporter line transformed with UBpro:3xHA-

CYCLOPS-WT, -DD, -AA or the empty vector control (data not shown). As transcription 

factors can act in a combinatorial manner as heteromeric complexes, we also asked whether 

transactivation of 2xCYC-RE:GUS by CYCLOPS-DD in L. japonicus depended on putative 

transcriptional regulators required for nodulation, such as the GRAS domain proteins NSP1, 

NSP2 and the transcription factor NIN, all of which have previously been positioned 

downstream of CCaMK (Madsen et al., 2010; Marsh et al., 2007; Tirichine et al., 2006). 

Transformation of nsp1, nsp2 and nin mutant roots with UBpro:3xHA-gCYCLOPS-DD and 

2xCYC-RE:GUS in all cases resulted in strong reporter expression, indicating that these 

transcriptional activators were dispensable for CYCLOPS-DD mediated transactivation 

(Figure 39F-H and Table 8). We conclude that CYCLOPS-DD acts as a transcriptional 

activator which is sufficient to drive 2xCYC-RE:GUS and NINpro:GUS reporter expression in 

L. japonicus. 

 

 

 

 

 

 



118 

 

 

        

 

Figure 39. The 2xCYC-RE:GUS reporter is activated in L. japonicus roots transformed with CYCLOPS-

DD independently of NSP1, NSP2 and NIN, and is also activated after treatment with M. loti. 

(A-L) Analysis of GUS reporter (as indicated) induction in L. japonicus Gifu WT and mutant roots (cyclops-3, 

nsp1-1, nsp2-2, nin8, as indicated) four weeks post co-transformation with UBpro3xHA-gCYCLOPS-WT, -DD, -

AA, or the empty vector control (A-H), or one week after treatment with M. loti-DsRed (I-L). Reporter activation 

is visualised by blue GUS staining of transformed roots. Numbers below images indicate number of GUS 

positive root systems per total number of stained root systems. (A) Strong 2xCYC-RE:GUS activity was detected 

in roots co-transformed with 3xHA-gCYCLOPS-DD. (B) No GUS activity was detected in roots co-transformed 

with 3xHA-gCYCLOPS-DD and 2xmCYC-RE:GUS. (C, E) No GUS activity was detected in roots co-

transformed with 2xCYC-RE:GUS and either 3xHA-gCYCLOPS-AA (C), or the empty vector control (E). (D) 

Faint GUS staining was occasionally observed in roots co-transformed with 2xCYC-RE:GUS and 3xHA-

gCYCLOPS-WT. (F-H) Induction of 2xCYC-RE:GUS in nsp1-1 (F), nsp2-2 (G) and nin-8 (H) mutant roots. co-

transformed with 3xHA-gCYCLOPS-DD. (I) The reporters 2xCYC-RE:GUS and (K) pNIN870:GUS (containing 

the CYC-RE) were induced, while no GUS activity was observed in roots transformed with 2xmCYC-RE:GUS (J) 

and pNIN298:GUS (L, lacking the CYC-RE) 1 week after M. loti-DsRed treatment. *: Weak GUS staining. Bars: 

1 mm. 
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Table 8. CYC-RE:GUS activation by CYCLOPS-DD in Lotus is independent of NSP1,  

NSP2 and NIN. 

Plant 

Genotype 

Transgene1
a 

Transgene2 GUS+/total
b 

%GUS+/total
c 

cyclops-3 empty vector 2xCYC-RE:GUS 0/13 0% 

cyclops-3 empty vector 2xmCYC-RE:GUS 
d 

0/12 0% 

cyclops-3 3xHA-gCYCLOPS-DD 2xCYC-RE:GUS 8/11 73% 

cyclops-3 3xHA-gCYCLOPS-DD 2xmCYC-RE:GUS 
d 

0/11 0% 

cyclops-3 3xHA-gCYCLOPS-AA 2xCYC-RE:GUS 0/12 0% 

cyclops-3 3xHA-gCYCLOPS 2xCYC-RE:GUS 4
e
/15 27% 

nsp1-1 empty vector 2xCYC-RE:GUS 0/7 0% 

nsp1-1 3xHA-gCYCLOPS-DD 2xCYC-RE:GUS 3/9 33% 

nsp1-2 empty vector 2xCYC-RE:GUS 0/33 0% 

nsp1-2 3xHA-gCYCLOPS-DD 2xCYC-RE:GUS 17/28 61% 

nsp2-2 empty vector 2xCYC-RE:GUS 0/17 0% 

nsp2-2 3xHA-gCYCLOPS-DD 2xCYC-RE:GUS 10/20 50% 

nin-2 empty vector 2xCYC-RE:GUS 0/16 0% 

nin-2 3xHA-gCYCLOPS-DD 2xCYC-RE:GUS 5/13 38% 

nin-8 empty vector 2xCYC-RE:GUS 0/27 0% 

nin-8 3xHA-gCYCLOPS-DD 2xCYC-RE:GUS 23/35 66% 

a
Constructs were equipped with the ubiquitin promoter. 

b
Number of GUS positive root systems per total number of root systems analysed. Transformed roots were GUS 

stained 5 weeks post co-transformation. 
c
Percentage of GUS positive root systems of total (100%) root systems analysed. 

d
Reporter construct in which the entire palindromic sequence within the CYC-RE is mutated. 

e
Weak GUS staining. 

 

3.10 The 2xCYC-RE:GUS reporter is activated in L. japonicus roots after inoculation 

with M. loti 

To determine whether the 2xCYC-RE:GUS reporter is also activated during symbiosis 

establishment, we transformed L. japonicus Gifu WT roots with either 2xCYC-RE:GUS or 

2xmCYC-RE:GUS, and analysed GUS expression in roots one week post inoculation with M. 

loti-DsRed. GUS expression was only detected with the WT- but not the mutant palindrome, 

indicating that the CYC-RE is targeted upon M. loti initiated signaling (Figure 39I, J, Table 9). 

This finding was also supported by the results obtained from the analysis of pNIN870:GUS 

(containing the CYC-RE) and pNIN298:GUS (lacking the CYC-RE), as reporter, which 

yielded a positive GUS staining only in roots transformed with pNIN870:GUS, (Figure 39K, 

L, Table 9). 
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Table 9. The CYC-RE:GUS and pNIN870:GUS reporters are activated after  

M. loti-DsRed treatment. 

Plant Genotype Transgene Condition GUS+/total
a 

%GUS+/total
b
 

Gifu wild-type 2xCYC-RE:GUS non-inoculated 0/7 0% 

Gifu wild-type 2xCYC-RE:GUS M. loti-DsRed, 1wpi 5/13 38% 

Gifu wild-type 2xmCYC-RE:GUS
c
 non-inoculated 0/10 0% 

Gifu wild-type 2xmCYC-RE:GUS
c
 M. loti-DsRed, 1wpi 0/12 0% 

Gifu wild-type pNIN870:GUS non-inoculated 0/9 0% 

Gifu wild-type pNIN870:GUS M. loti-DsRed, 1wpi 3/11 27% 

Gifu wild-type pNIN298:GUS non-inoculated 0/7 0% 

Gifu wild-type pNIN298:GUS M. loti-DsRed, 1wpi 0/10 0% 

a
Number of GUS positive root systems per total number of root systems analysed. 

b
Percentage of GUS positive root systems of total (100%) root systems analysed. 

c
Reporter construct in which the entire palindromic sequence within the CYC-RE is mutated. 

wpi: week post infection. 

 

3.11 CYCLOPS-DD induced spontaneous nodules in L. japonicus roots independently of 

CCaMK 

Deregulated versions of CCaMK lead to spontaneous initiation of nodule organogenesis in the 

absence of rhizobia (Gleason et al., 2006; Tirichine et al., 2006). If CYCLOPS 

phosphorylation was indeed a key event in symbiotic signaling downstream of CCaMK, one 

prediction would be that CYCLOPS-DD expression leads to a symbiotic gain-of-function 

phenotype in planta independent of the presence of CCaMK. We transformed CYCpro:3xHA-

gCYCLOPS-DD into two different ccamk mutant backgrounds: ccamk-3 (encoding a kinase-

dead CCaMK mutant) and ccamk-13 (a CCaMK null mutant carrying a premature stop codon) 

(Perry et al., 2009) and cultivated the plants in the absence of rhizobia. Strikingly, 

CYCLOPS-DD triggered the spontaneous formation of root nodules (Figure 40, Table 10) 

with 30-40% of transformed plants forming an average of 2-5 nodules per nodulated plant 

(Table 10). This effect was specifically observed on roots transformed with 3xHA-

gCYCLOPS-DD, as spontaneous nodules were not formed on roots transformed with either 

the empty vector control, 3xHA-gCYCLOPS-WT or other CYCLOPS mutant derivatives 

(Table 10). This observation indicated that CYCLOPS-DD was able to activate the nodule 

organogenesis program bypassing the requirement for CCaMK. 
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Figure 40. CYCLOPS-DD induces the formation of root nodules in the absence of rhizobia independently 

of CCaMK and upregulates NIN and NF-YA1 transcript levels. 

Spontaneous root nodule development induced in roots transformed with CYCpro3xHA-gCYCLOPS-DD was 

observed on transgenic roots of the L. japonicus Gifu WT (A, I) and symrk-3 (B, J), ccamk-13 (C, K), cyclops-3 

(D, L), and cerberus-1 (E, M) mutants, but not on transgenic roots of nsp1-2 (F, N), nsp2-2 (G, O) and nin-8 (H, 

P) mutants. Spontaneous nodule formation was evaluated eight weeks post transformation and cultivation in the 

absence of rhizobia. (A-H) Brightfield images and (I-P) fluorescence images of transformed roots. Bars: 0.5 mm. 

(Q) Quantitative real-time RT-PCR analysis of NIN, NF-YA1 and CYCLOPS expression in ccamk-13 roots 

transformed with UBpro:3xHA-gCYCLOPS-DD, -AA or the empty vector control. Expression analysis was 

performed four weeks post transformation. Relative expression was normalized to the reference genes EF-

1alpha and ubiquitin. Fold induction levels were calculated relative to the expression obtained from hairy roots 

transformed with the empty vector control (expression level = 1). Graph represents mean values and standard 

deviations obtained from the analysis of three biological replicates. 

Data related to figures 40E-H and 40M-P and the corresponding pictures were generated by Jayne Lambert. 
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Table 10. Analysis of spontaneous nodulation induced by CYCLOPS-DD. 

Plant Genotype Transgene
a
 (Condition)

b
 SpN+

c 
#SpN/SpN+ Plant

d 

cyclops-3 empty vector 0/26 0 

Gifu wild-type 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 6/27 5 ± 2 

symrk-3 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 12/24 3 ± 1 

ccamk-3 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 12/40 5 ± 3 

ccamk-3 3xHA-gCYCLOPS-S50D-S154D (AM) 3/23 2 ± 2 

ccamk-13 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 12/27 5 ± 3  

cyclops-3 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 19/58 6 ± 4 

cyclops-3 3xHA-gCYCLOPS-S50D-S154D (AM) 12/38 3 ± 2 

nsp1-2 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 0/24 0 

nsp2-2 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 0/30 0 

nin-2 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 0/32 0 

nin-8 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 0/57 0 

cerberus-1 3xHA-gCYCLOPS-S50D-S154D (non-inoculated) 11/27 2 ± 1 

cyclops-3 3xHA-gCYCLOPS  (non-inoculated) 0/23 0 

ccamk-3 3xHA-gCYCLOPS (non-inoculated) 0/17 0 

ccamk-13 3xHA-gCYCLOPS (non-inoculated) 0/14 0 

cyclops-3 3xHA-gCYCLOPS-S14D (non-inoculated) 0/11 0 

cyclops-3 3xHA-gCYCLOPS-S50D (non-inoculated) 0/18 0 

cyclops-3 3xHA-gCYCLOPS-S154D (non-inoculated) 0/30 0 

cyclops-3 3xHA-gCYCLOPS-S251D (non-inoculated) 0/16 0 

cyclops-3 3xHA-gCYCLOPS-S412D (non-inoculated) 0/12 0 

 

a
Constructs were equipped with the endogenous promoter. 

b
Plants were either cultivated in the absence of rhizobia and AM fungi (non-inoculated) or co-cultivated for 4 

weeks with the AM fungus R. irregularis (AM). 
c
SpN+:

 
Number of root systems with spontaneous nodules per number of total root systems analysed.  

Spontaneous nodules were scored 8 weeks post transformation. 
d
Average number of spontaneous nodules per spontaneously nodulated root system ± standard deviation. 
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Further, sectioning of spontaneous nodules induced by CYCpro:3xHA-gCYCLOPS-DD 

demonstrated that histologically these nodules exhibit a genuine nodule morphology which is 

characterized by the presence of two peripheral vascular bundles as typically formed in M. loti 

infected wild-type nodules (Figure 41). 

 

 

 

Figure 41. CYCLOPS-DD induced nodules show a genuine nodule morphology. 

(A-C) Longitudinal 80 µm thin nodule sections stained with toluidine blue. Red arrows indicate the position of 

the two peripheral vascular bundles, a typical histological criterion for genuine nodule morphology. Scale bars: 

100 µm.  

(A) Section of a L. japonicus Gifu wild-type nodule formed 4 weeks post inoculation with M. loti-DsRed. Note 

the dark blue stained cells in the central nodule tissue (black arrowhead) indicating the presence of bacteroids. 

(B) Section of a spontaneous nodule formed on L. japonicus ccamk-13 roots 8 weeks post transformation with 

CYCpro:3xHA-gCYCLOPS-DD and incubated in the absence of rhizobia. (C) Section of a spontaneous nodule 

formed in L. japonicus ccamk-13 roots 8 weeks post transformation with UBpro:CCaMK-T265D and incubated in 

the absence of rhizobia. 

 

 

To genetically position CYCLOPS-DD relative to other genes required for nodule 

organogenesis, we transformed L. japonicus Gifu WT, symrk-3, cyclops-3, nsp1-2, nsp2-2, 

nin-8 and cerberus-1 mutant roots with CYCpro:3xHA-gCYCLOPS-DD. Spontaneous nodules 

were induced in the Gifu WT, symrk-3, cyclops-3 and cerberus-1 mutants, whereas no 

nodules were formed on nsp1-2, nsp2-2 and nin-8 mutants (Figure 40, Table 10). Spontaneous 

nodulation in the symrk mutant is consistent with the role of SYMRK in the activation of 

calcium spiking, which is upstream of CYCLOPS (Hayashi et al., 2010; Madsen et al., 2010). 

Furthermore, spontaneous nodules were formed in the cerberus mutant which is in agreement 

with the positioning of CERBERUS on the infection related pathway, due to its role in 

infection thread formation (Madsen et al., 2010; Yano et al., 2009). The requirement of NSP1, 

NSP2 and NIN for CYCLOPS-DD mediated nodulation places these genes downstream of 

CYCLOPS.  
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Figure 42. Proposed function of the CCaMK/CYCLOPS complex in the decoding of nuclear calcium 

signatures leading to root nodule development. 

A) CCaMK and CYCLOPS form a preassembled, inactive and autoinhibited complex in root cell nuclei in which 

CYCLOPS dimerisation may occur via the carboxy-terminal coiled-coil domain. B) Upon initiation of symbiotic 

nuclear calcium spiking, CCaMK is activated by Ca
2+

/Calmodulin (CaM) and phosphorylates CYCLOPS at S50 

and S154. CYCLOPS phosphorylation induces a conformational change releasing the C-terminal transcriptional 

activation (AD) and DNA-binding (BD) domains from autoinhibition exerted by the N-terminal inhibitory 

domain (ID). Consequently, CYCLOPS binds the CYC-box in the NIN promoter and recruits the basal 

transcription machinery via its transcriptional AD, inducing NIN expression. Deregulated CYCLOPS is 

sufficient to reinitiate the cell cycle in differentiated cortical cells resulting in nodule organogenesis. This 

involves the cascade of transcriptional activation of NIN and NF-YA1 in hierarchical succession. Inset: 

Experimental removal of the ID has an activating structural consequence.RNA-Pol. = RNA Polymerase II. 

This figure was prepared by Andreas Binder. 

 

4 Discussion 

4.1 CCaMK/CYCLOPS activates NIN transcription upon perception of calcium signals 

The decoding of nuclear calcium signatures in multicellular organisms is involved in 

important cell fate decisions. In both animals and plants, the cell division program of specific 

cell types is triggered by nuclear calcium signatures in response to external stimuli (Clapham, 

2007; Dodd et al., 2010). In plants, nuclear calcium spiking in root hair cells upon symbiotic 

stimulation was detected almost two decades ago (Ehrhardt et al., 1996) and CCaMK has 

emerged as the central regulator of symbiotic development (Singh and Parniske, 2012). 

However, the mechanism by and phosphorylation targets through which CCaMK mediates 

symbiotic development have been completely unclear. The CYCLOPS gene has been cloned 
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in 2003 through map-based cloning, and its product interacts and is phosphorylated by 

CCaMK in vitro (Figure 30A and 33). However, the role of CYCLOPS and its mechanism of 

action have been elusive, not least because CYCLOPS has no sequence homology to proteins 

of known function (Yano et al., 2008). 

Here we show that CYCLOPS is a DNA binding transcriptional activator that connects 

phosphorylation by CCaMK directly to transcriptional gene regulation. Expression of 

autoactive CYCLOPS-DD in ccamk mutant roots induced the spontaneous development of 

root nodules in the absence of rhizobia, thus recapitulating the effect of deregulated CCaMK 

(Figure 40). This observation revealed that CYCLOPS phosphorylation is sufficient and 

additional CCaMK phosphorylation targets are dispensable for the initiation of nodule 

organogenesis by CCaMK. This together with its immediate early position within the calcium 

decoding complex pinpoints CYCLOPS as master regulator of root nodule organogenesis. 

We propose a cascade of transcriptional regulation, which is initiated upon the activation of 

CCaMK by nuclear calcium signatures. Site-specific phosphorylation by CCaMK turns 

CYCLOPS into a transcriptional activator of the NIN gene. NIN induction alone can 

conceptually explain the spontaneous formation of lateral organs, because ectopic expression 

of NIN, which regulates NF-YA1 and NF-YB1 expression, induced the formation of abnormal 

lateral root organs partly resembling nodule primordia (Soyano et al., 2013). Based on 

accumulating evidence in legumes (Combier et al., 2006; Soyano et al., 2013) and in analogy 

to their mammalian homologs, a heterotrimeric NF-Y complex is believed to trigger entry into 

the cell division cycle (Laloum et al., 2013). Although ectopic NIN expression triggered 

lateral organ formation, full-sized round-shaped nodules as mediated by CYCLOPS-DD were 

not observed (Soyano et al., 2013). This may indicate that the precise spatiotemporal 

regulation of NIN is important for proper organogenesis, possibly achieved through a 

combination of local calcium signaling and CYCLOPS gene expression pattern. It is also 

possible that alternative CYCLOPS target genes beside NIN are required for nodule 

formation. Our data demonstrate that CYCLOPS-DD is sufficient to trigger nodule 

development (Figure 40). However, autoactive CCaMK was previously shown to also form 

nodules (albeit with reduced frequency) in the cyclops mutant and ipd3 mutants of the M. 

truncatula CYCLOPS ortholog IPD3 produced uninfected nodule primordia or nodules, 

respectively, upon rhizobia inoculation (Horvath et al., 2011; Ovchinnikova et al., 2011; Yano 

et al., 2008). Genetic redundancy at the hierarchical level of CYCLOPS could be one 

explanation for this discrepancy. 
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4.2 CYCLOPS carries a non-canonical DNA binding domain 

We identified a modular domain structure in CYCLOPS comprising a functionally separable 

DNA binding and activation domain (Figure 36). This structure is typical for eukaryotic DNA 

binding transcriptional activators. We delimited the position of the CYCLOPS DNA binding 

domain to the C-terminal end (aa 364-518), which contains a highly conserved coiled-coil 

domain (aa 450-518). A sequence-based prediction of DNA or RNA-binding residues with 

BindN+ (Wang et al., 2010b) predicted three stretches of 13-15 amino acids, overrepresenting 

basic and polar amino acid residues which may act as DNA binding motifs inside the 

delimited BD. Two of these stretches are located outside of the coiled-coil domain (Figure 

30B). However, by interrogating a range of specific databases (see methods) we were 

unsuccessful in detecting similarity to canonical DNA binding motifs. Therefore, we conclude 

that CYCLOPS represents a hitherto uncharacterized, novel type of DNA binding protein. 

4.3 The CYCLOPS AD contains a peptide stretch with predicted intrinsic disorder 

We narrowed down the CYCLOPS AD to aa 267-380. This region carries a conserved 

serine/threonine-rich stretch (aa 332-350; Figure 30B) which is located in an intrinsically 

disordered region as predicted by the DISPHOS (DISorder-enhanced PHOSphorylation) 

predictor (see methods). By being serine/threonine-rich and intrinsically unstructured (Liu et 

al., 2006), the CYCLOPS AD region shares two features with characterized transcriptional 

activation domains. In analogy, the CYCLOPS AD may become structured by a 

conformational change upon CYCLOPS phosphorylation at S50 and S154 and/or upon 

interaction with the basal transcriptional machinery (Figure 42). The delimited CYCLOPS 

AD was active in yeast and plant cells (Figure 36), indicating its ability of direct interaction 

with conserved parts of the transcriptional machinery such as the mediator (Conaway et al., 

2005). 

4.4 The N-terminal half of CYCLOPS functions as a negative regulatory domain  

Our domain analysis confined the transcriptional AD and the DNA-BD of CYCLOPS to the 

C-terminal half (267-518) (Figure 36). A construct composed of the C-terminal AD and BD 

domains fully transactivated via the CYC-RE, displaying the same sequence specificity as 

CYCLOPS full length (Figure 36C). Since the N-terminus is not required and its removal 

leads to an active transcription factor, we conclude that it acts as a negative regulatory 

domain. 

4.5 The consequences of CYCLOPS phosphorylation 

CYCLOPS phosphorylation by CCaMK leads to transcriptional activation of the NIN 
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promoter (Figure 34A). This effect can be mimicked by phospho-mimetic versions of the two 

CCaMK substrate residues S50 and S154, and phospho-ablative versions are completely 

blocked in this activity (Figure 34A and 40Q). Since both regulatory serines are located in the 

N-terminal region, which is inhibiting CYCLOPS’ activity (Figure 36C), we postulate that the 

‘DD’ replacement (and by inference, phosphorylation) induces a conformational change that 

releases the DNA-binding and transcriptional AD from autoinhibition by the N-terminus 

(Figure 42). 

This model is further supported by the strong effect of CYCLOPS phosphorylation on DNA 

binding activity (Figure 35). Only CYCLOPS-DD or CCaMK-phosphorylated CYCLOPS 

specifically bound to CYC-RE DNA in vitro, while CYCLOPS-AA, non- or de-

phosphorylated CYCLOPS did not. 

The fusions to the N-terminus utilized for the mapping of the CYCLOPS functional domains 

led to a release of CYCLOPS-WT from autoinhibition (Figure 36A and B). One explanation 

for this behavior is an influence of the added domain on the structure of the N-terminal 

domain thus releasing the C-terminus from autoinhibition. However, the CYCLOPS-AA 

version was not rescued by these fusions, suggesting that the hydroxyl groups of serine 50 and 

154 play an important role in allowing the N-terminus to adopt a permissive conformation. 

Our analysis of CYCLOPS and the phospho-site mutant versions did not reveal any effects on 

subcellular localization, or CCaMK interaction (Figure 32, 33 and 38), indicating that 

phosphorylation does not influence these traits and that the proteins were still appropriately 

folded. This behavior is contrasting that of transcription factors that are located in the 

cytoplasm and move to the nucleus upon phosphorylation. Gelfiltration of copurified 

CCaMK/CYCLOPS complexes revealed a soluble complex larger then 720 kDa with a one to 

one stoichiometry (Figure 45). This complex formed in the absence of calcium which is 

consistent with the FLIM-FRET data. The tight and preformed complex of CYCLOPS with 

the cognate kinase is an unusual feature and adds another layer of complexity to its regulation. 

It is likely that conformational changes induced by CYCLOPS phosphorylation may 

precipitate in higher order transitions between complex conformers. This may alter the 

spacing of DNA binding sites between CYCLOPS monomers, thus influencing affinity to 

palindromic targets. 

4.6 Decoding of symbiotic calcium oscillations by the CCaMK/CYCLOPS complex 

provides a new paradigm in nuclear calcium-based signal transduction 

The closest homolog of CCaMK in vertebrates is calcium/calmodulin-dependent kinase II 

(CaMKII) involved in the decoding of calcium spiking in neuronal and cardiac signaling 
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(Stratton et al., 2013). Although sequence related, there are some fundamental differences in 

their mode of action (Hudmon and Schulman, 2002a; Sathyanarayanan et al., 2001). In 

addition, CaMKII isoforms exist, that localize to both compartments the cytosol and the 

nucleus (Buchthal et al., 2012). However, the only known CaMKII pathway involved in direct 

transcriptional regulation is the CAMKII/MeCP2 (Methyl-CpG-binding protein) pathway 

(Buchthal et al., 2012; Wayman et al., 2008) in which nuclear calcium stimulated CaMKII 

activity phosphorylates MeCP2, a genome-wide transcriptional repressor or activator. 

However, the mechanism of action of MeCP2, which binds to methylated cytosines, is very 

different from the one discovered here. The only known exclusively nuclear localized CaMK 

is CaMKIV (Wayman et al., 2008), acting in the CAMKIV/CREB/CBP (cAMP-response 

element-binding/CREB-binding protein) ‘CCC’ pathway. Activated CaMKIV phosphorylates 

the transcription factor CREB and the coactivator CBP, which are both required for calcium 

induced CREB-dependent gene expression (Wayman et al., 2008). Mechanistically, the CCC 

pathway is the closest known system to CCaMK/CYCLOPS for the decoding of nuclear 

calcium signatures. Yet, in contrast to the CCC pathway there are no additional CCaMK-

phosphorylated coactivators required for transactivation by CYCLOPS. Therefore we report a 

novel and hitherto most parsimonious mechanism of nuclear calcium signal transduction 

leading to stimulus specific gene expression. The CCaMK/CYCLOPS pair and the CCC 

system are phylogenetically restricted to plants (Wang et al., 2010a) and metazoans (Tombes 

et al., 2003) respectively. Apparently, plant and animal cells have convergently evolved 

independent nuclear kinase-substrate pairs for mediating calcium stimulated transcriptional 

regulation. 

 

5 Materials and Methods 

5.1 Plant lines and plant transformation  

L. japonicus plant lines used in this study were: Gifu B-129 WT, NINpro:GUS (Radutoiu et 

al., 2003), symrk-3, ccamk-3, ccamk-13, cyclops-3, nsp1-1, nsp1-2, nsp2-2, nin-2, nin-8, 

(Perry et al., 2009), cerberus-1 (Yano et al., 2009).  

Transgenic hairy roots were induced by A. rhizogenes strain AR1193 (Offringa et al., 1986) as 

described (Diaz et al., 2005). Transformation of N. benthamiana leaves was performed with 

A. tumefaciens strains GV3101 pMP90 (Koncz and Schell, 1986) or AGL1 (Lazo et al., 1991) 

as described (Yano et al., 2008). 
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5.2 Plant growth and inoculation conditions 

For analysis of spontaneous nodulation, gene expression and symbiosis complementation in 

hairy roots, L. japonicus plants with transformed hairy roots were transplanted two weeks 

post transformation into autoclaved pots containing a 1:1 mixture of sterilized 

sand/vermiculite (300 ml) supplemented with 100 ml sterile half-strength Hoagland solution 

(Hoagland and Arnon, 1950). Plants were watered regularly and supplied with 100 ml sterile 

half-strength Hoagland solution once per week. Plant growth conditions were 24 °C constant 

at 16-h-light/8-h-dark cycles in growth chambers. 

For transactivation assays in L. japonicus, co-transformed plants were cultivated sterile on 

solid Fahraeus medium (supplemented with 0.1 µM AVG) (Fahraeus, 1957) for two weeks in 

a growth cabinet (24 °C constant at 16-h-light/8-h-dark) prior to histochemical GUS staining. 

Spontaneous nodule formation in the absence of rhizobia was evaluated eight weeks post 

hairy root transformation. To evaluate complementation of root nodule symbiosis, plants were 

inoculated with M. loti MAFF303099 carrying DsRed as marker (Maekawa et al., 2008) set to 

a final OD600 of 0.05 and incubated for five weeks. AM establishment was tested with the AM 

fungus Rhizophagus irregularis, which was propagated in a chive (Allium schoenoprasum) 

nurse pot system (Demchenko et al., 2004). Co-cultivation of transformed plants was carried 

out for six weeks in nurse pots after removal of the chive shoot. 

5.3 Symbiosis phenotyping 

Formation of M. loti-DsRed infected root nodules was evaluated by microscopic observation 

of red fluorescent root nodules indicating the presence of DsRed expressing M. loti. RNS was 

scored as restored wild-type-like, if the abundant formation of red fluorescing nodules was 

observed. Microscopy was performed with a fluorescence stereomicroscope (Leica MZt6 

FA). AM fungal colonization was visualized by ink vinegar staining of transformed 

inoculated roots (Vierheilig et al., 1998) using brightfield microscopy (inverted microscope 

Leica DMI6000). AM was scored as restored wild-type-like if the silmultaneous formation of 

the AM fungal infection structures intracellular hyphae and arbuscules was observed and if a 

substantial proportion (in contrast to occasional small <2 mm patches) of the root length was 

colonized. 

5.4 Nodule sectioning  

Root material containing nodules was embedded in 6% low melt agarose (Roth, Germany) 

and sections (80 µm) were produced using the vibratome VT1000S (Leica). Sections were 

subsequently stained with toluidine blue (0.05%) and micrographs were recorded with a Leica 
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DMI6000 inverted light microscope using brightfield illumination. 

5.5 Histochemical GUS staining 

N. benthamiana leaf discs or L. japonicus hairy roots co-transformed with various 

transactivator and promoter:GUS reporter combinations were harvested 60 hours post 

transformation (hpt) (N. benthamiana) or five weeks post hairy root transformation (L. 

japonicus), vacuum infiltrated with GUS staining solution (0.1 M NaPO4 pH 7.0, 5 mM 

EDTA, 1 mM K3[Fe(CN)6], 1 mM K4[Fe(CN)6], 0.1% Triton-X100; 1 mM X-Gluc) and 

incubated over night at 37 °C in the dark. The enzymatic reaction was stopped by removal of 

GUS staining solution. Leaf discs were cleared in 100% ethanol. 

5.6 Fluorimetric GUS assay 

Two infiltrated N. benthamiana leaf discs per sample were harvested 60 hpt and frozen in 

liquid nitrogen. Samples were homogenized in a tissue lyser, protein was extracted and GUS 

activity measured as described by (Römer et al., 2010). Mean values and standard deviations 

were determined from three biological replicates. 

5.7 FLIM-FRET analysis 

FLIM-FRET analysis was performed on transformed N. benthamiana leaf discs essentially as 

described by (Bayle et al., 2008). Analysis was performed with a Leica TCS SP5 confocal 

laser scanning microscope equipped with Ti:Sapphire multiphoton laser (Spectra Physics) and 

a FLIM PMT detector (Becker & Hickl GmbH, Berlin). For excitation of TSapphire 

fluorescence, the multiphoton laser (running at 80 mHz with 100 fs pulse length) was tuned to 

800 nm. 20 scanning cycles (5s/cycle) were applied per FLIM measurement at a spatial 

resolution of 256x256 pixel. Signals were recorded with the TCSPC system using photon 

counting software TCSPC 2.80 (Becker & Hickl). For lifetime calculation, data were 

imported into SPCImage software. A region of interest was set around the nucleus and the 

double exponential model was applied. Scatter and shift were fixed to zero. 

5.8 Bimolecular fluorescence complementation (BiFC) and subcellular localization 

analysis 

BiFC and in planta localization analysis were performed as described previously (Yano et al., 

2008). 

5.9 CYCLOPS domain analysis in N. benthamiana 

CYCLOPS DNA-binding domain and transcriptional activation domain analysis was carried 

out in N. benthamiana using a reporter system derived from the plant codon usage adapted 
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Gal4:VP16/UAS system (Haseloff, 1999). CYCLOPS DNA-binding domain and 

transcriptional activation domain analysis was carried out in N. benthamiana using a reporter 

system derived from the plant codon usage adapted Gal4:VP16/UAS system (Haseloff, 1999). 

To test CYCLOPS autoactivity, T-DNAs of BDGal4-CYCLOPS fusions were co-delivered with 

the reporter T-DNA 5xUASGal4:eGFP-GUSintron encoded on vector pSDM7006 kind gift of R. 

Offringa, (Weijers et al., 2003) via A. tumefaciens transformation. To test CYCLOPS DNA-

binding activity ADVP16:CYCLOPS wild-type, mutant or tuncated fusions were co-delivered 

together with the pNIN870:GUS reporter T-DNA. Transactivation of the reporter constructs 

was quantified using a fluorimetric GUS assay (Römer et al., 2010). 

5.10 CYCLOPS domain analysis in yeast 

CYCLOPS and mutant coding sequences were cloned into Gateway modified yeast vector 

pBDGAL4-GW (Stratagene). Transformation into the yeast reporter strain HF7c (Feilotter et 

al., 1994) was carried out according to standard procedures (Stratagene Product Manual). 

Three independent clones per construct were selected and transactivation activity was 

calculated in Miller units via determination of ß-Galactosidase (lacZ) activity as described in 

the Clontech Manual PT1030-1. 

5.11 Protein expression and purification 

Expression of all proteins was induced in E. coli Rosetta pLaqI (Novagen) for 4 h at 28 °C by 

addition of 0.5-1 mM IPTG. CCaMK was purified via CaM-Sepharose beads (GE-

Healthcare) according to the manufacturer´s protocol. Desalting was performed with PD10 

desalting column (GE Healthcare) using buffer containing 25 mM Tris and 10 mM ß-

mercaptoethanol (pH 7.6). Expression and purification of 6xHis-CYCLOPS was performed as 

described by Yano et al., 2008. For EMSA analysis, GST-CYCLOPS, GST-CYCLOPS-AA, 

GST-CYCLOPS-DD, GST-CYCLOPS-BD and GST-CYCLOPS-DD∆BD were purified with 

Glutathione HiCap Matrix (Qiagen) according to the manufacturer´s protocol. StrepII-tagged 

CYCLOPS protein was co-expressed with CCaMK and purified via Strep-Tactin-Sepharose 

column (IBA) according to the manufacturer´s instruction. Protein concentration was 

determined by the Bradford method (Bio-Rad), using BSA (Sigma) as a standard and protein 

purity was analysed by SDS-PAGE and Coomassie staining of the gel. 

5.12 In vitro phosphorylation and dephosphorylation  

CYCLOPS was phosphorylated in vitro by CCaMK as described (Liao et al., 2012). Strep-

CYCLOPS-WT protein purified after co-expression with CCaMK was dephosphorylated with 

Lambda Protein Phosphatase (NEB) according to the manufacturer´s instruction. 
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5.13 Mass spectrometric analysis 

For mass spectrometric analysis of CCaMK-phosphorylated 6xHis-CYCLOPS, 3 µg of 6x-

His-CYCLOPS protein were incubated with 2 µg of CCaMK and 1 uM bovine calmodulin 

(Sigma) in the presence of 0.1 mM CaCl2 using the same buffer conditions as described by 

Liao et al., 2012, but replacing radioactive [-
32

P] ATP with ATP (400 µM). In gel digestion 

of phosphorylated CYCLOPS, liquid chromatography (LC)-MS data acquisition and database 

search was performed as described by Liao et al., 2012. 

5.14 Electrophoretic mobility shift assay 

EMSAs were performed as described in the presence of 50 mM KCl (Strauß et al., 2012). To 

increase DNA-binding specificity, the EMSAs shown in Figure 35A were performed in the 

presence of 150 mM KCl and the EMSAs shown in Figure 37A (probing GST-CYCLOPS-

BD and GST-CYCLOPS-DD-ΔBD) were performed in the presence of 250 mM KCl  

The complementary pairs of labeled (5´DY682 ) and unlabeled oligonucleotide probes used 

for EMSAs are listed in 5.20. 

5.15 Microscale thermophoresis 

Specific binding between GST-CYCLOPS-BD or GST-CYCLOPS-ΔBD-DD protein and 

CYC-RE DNA probe was measured by the microscale thermophoresis (MST) method as 

described (Jerabek-Willemsen et al., 2011). Binding experiments were performed with 25 nM 

Cy5 labeled CYC-RE and 1.3 µM GST-CYCLOPS-BD or GST-CYCLOPS-DD-ΔBD protein. 

Increasing amounts (from 381 pM to 12.5 μM) of unlabeled competitor probe (CYC-RE, or 

mutated mCYC-RE) were added. Binding reactions were carried out in buffer containing 20 

mM Tris pH 7.4, 150 mM NaCl, 10 mM MgCl2 and 0.05% Tween. Samples were loaded into 

NT.115 standard capillaries (Nanotemper Technologies) and MST was carried out at 25 °C, 

80% LED and 40% IR-laser power using the Monolith NT.115 (Nanotemper Technologies). 

Data analysis was performed with Nanotemper Analysis software, v.1.2.101. Average 

thermophoresis values and standard deviations were calculated from three independent 

measurements and curve fitting was calculated using SigmaPlot 11.0 software (Systat 

software). 

5.16 Protein blot analysis 

Two transformed hairy root systems were combined per sample and frozen in liquid nitrogen. 

Root material was ground to fine powder with a tissue lyser (Qiagen) and protein was 

extracted with extraction buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 

1.0% Triton X-100, 0.5% sodium deoxycholate, 0.05% SDS, 5 mM DTT, 1mM EGTA, 1% 
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plant protease inhibitor cocktail, Sigma). Extracts were clarified by centrifugation (10000 xg, 

15 min, 4 °C), equal volumes of clarified extracts were separated on 10% SDS gels and 

proteins were transferred to PVDF membrane (GE-Healthcare). Immunodetection of 3xHA-

tagged CYCLOPS proteins was performed using rat monoclonal antibody anti-HA-HRP 

(clone 3F10, Roche). Proteins expressed in N. benthamiana were extracted as described by 

(Waadt et al., 2008) and detected using anti-HA-HRP antibody (clone 3F10, Roche), or rabbit 

polyclonal anti-CCaMK antibody (http://www.pineda-abservice.de). 

5.17 Gene expression analysis 

Total RNA was extracted from L. japonicus hairy roots four weeks post transformation using 

the Spectrum
TM

 Plant Total RNA Kit (Sigma-Aldrich). RNA samples were DNAseI 

(Invitrogen) treated and absence of DNA contamination was confirmed by PCR. First strand 

cDNA synthesis was performed from 300 ng total RNA in 20 µl reaction volume using 

SuperScriptIII Kit (Invitrogen). Real-time RT-PCR analysis was carried out in a CFX96 Real-

Time PCR machine (BioRad) using 1 µl of diluted (1:2) cDNA in a total reaction volume of 

20 ul containing Fast SYBR Green Master Mix (Applied Biosystems) and the respective 

primer pairs (Table S6). Thermal cycling conditions were: 95 °C 1 min, 45 cycles of 95 °C 10 

sec, 60 °C 30 sec, followed by dissociation curve analysis. Expression values were calculated 

as described by (Gutjahr et al., 2008). Relative expression was normalized to the reference 

genes EF-1alpha and ubiquitin (Takeda et al., 2009). Mean and standard deviation values 

were calculated from three biological replicates.  

5.18 CYCLOPS amino acid sequence alignment 

CYCLOPS amino acid sequences were aligned with CLC Main Workbench version 6.6.2. 

The following accession numbers were used: Lotus japonicus CYCLOPS ABU63668; 

Medicago truncatula CYCLOPS, ABU63671; Pisum sativum (pea) CYCLOPS, ABU63669; 

Oryza sativa (rice) CYCLOPS, ABU63670. To obtain the protein sequences of Populus 

trichocarpa CYCLOPS and Physcomitrella patens CYCLOPS, the corresponding genomic 

sequences POPTRDRAFT_757268 (Tuskan et al., 2006) and PHYPADRAFT_171948 

(Rensing et al., 2008) were aligned with the L. japonicus CYCLOPS sequence and 

intron/exon borders were predicted based on a combination of alignment of the predicted 

protein sequences with Lotus CYCLOPS and the consensus sequence of intron-exon borders. 

Adjusted coding sequences were then translated into the corresponding amino acid sequence 

and used for protein sequence alignment. 
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5.19 Computational analysis 

The following online resources were used for DNA binding domain and activation domain 

analysis: InterPro, http://www.ebi.ac.uk/interpr/ (Hunter et al., 2012); 2zip, 

http://2zip.molgen.mpg.de (Bornberg-Bauer et al., 1998); DBD Threader, 

http://cssb.biology.gatech.edu/skolnick/webservice/DBD-Threader/index.html (Gao and 

Skolnick, 2009); BindN+, http://bioinfo.ggc.org/bindn+/ (Wang and Brown, 2006; Wang et 

al., 2010b). DISPHOS (DISorder-enhanced PHOSphorylation predictor), 

http://www.ist.temple.edu/DISPHOS), prediction was computed using default predictor 

setting (Iakoucheva et al., 2004). 

5.20 Oligonucleotides used for primers and EMSA probes 

f = forward 

r = reverse 

(A) Oligonucleotides for CYCLOPS constructs (5´-3´) 

CYCLOPS promoter 

caccccaaactatcaggtcaagtctgc_f                   (CEW7) 

tcaaagtcgacgtttggctcaacagcactttc _r SalI     (CEW8) 

 

CYCLOPS genomic 

caccatggaagggaggggg_f 

cattttttcagtttctgatag_r 

 

CYCLOPS-S14A genomic + coding sequence  

tatagaaactcagctgaagaattgttcctg_f (SY12) 

caggaacaattcttcagctgagtttctata_r  (SY13) 

 

CYCLOPS-S50A genomic + coding sequence 

ggctttcgcgcagatgccgaggagcttttc_f   (SY14) 

gaaaagctcctcggcatctgcgcgaaagcc_r (SY15) 

 

CYCLOPS-S154A genomic  

gacaagaagccgggcctctgaattgcggtac_f  (SY16) 

gtaccgcaattcagaggcccggcttcttgtc_r    (SY17) 

 

CYCLOPS-S154A coding sequence 

caagaagccgggcctctgaattgcggcg_f  (SY51) 

cgccgcaattcagaggcccggcttcttg_r    (SY52) 

 

CYCLOPS-S251A genomic + coding sequence 

caacgccggagactcgccagtcaacttgag_f (SY18) 

ctcaagttgactggcgagtctccggcgttg_r   (SY19) 

 

CYCLOPS-S412A genomic + coding sequence 

ctagaaagatatggagctataacatcagctg_f  (SY20) 

cagctgatgttatagctccatatctttctag_r      (SY21) 

http://www.ebi.ac.uk/interpr/
http://2zip.molgen.mpg.de/
http://cssb.biology.gatech.edu/skolnick/webservice/DBD-Threader/index
http://bioinfo.ggc.org/bindn+/
http://www.ist.temple.edu/DISPHOS
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CYCLOPS-S14D genomic + coding sequence 

tatagaaactcagatgaagaattgttcctg_f  (SY34) 

caggaacaattcttcatctgagtttctata_r    (SY35) 

 

CYCLOPS-S50D genomic + coding sequence 

ctttcgcgcagatgacgaggagcttttc_f    (SY36) 

gaaaagctcctcgtcatctgcgcgaaag_r  (SY37) 

 

CYCLOPS-S154D genomic 

gacaagaagccgggactctgaattgcggtac_f (SY42) 

gtaccgcaattcagagtcccggcttcttgtc_r    (SY43) 

 

CYCLOPS-S154D coding sequence   

acaagaagccgggactctgaattgcgg_f (SY48) 

ccgcaattcagagtcccggcttcttgt_r    (SY49) 

 

CYCLOPS-S251D genomic + coding sequence 

caacgccggagactcgacagtcaacttgag_f (SY38) 

ctcaagttgactgtcgagtctccggcgttg_r    (SY39) 

 

CYCLOPS-S412D genomic + coding sequence 

ctagaaagatatggagatataacatcagctg_f (SY40) 

cagctgatgttatatctccatatctttctag_r      (SY41) 

 

CYCLOPS-364-518 = CYCLOPS-BD 

caccatgcaaactctctgcgaaagctc_f (KK54) 

ttacattttttcagtttctgatag_r            (KK92) 

 

CYCLOPS-267-380 = CYCLOPS-AD  

caccatgttttatcctcaagaacctc_f    (KK53) 

ttagaacttttactcactcctacttgtttc_r (KK51) 

 

CYCLOPS-2x267-380 = CYCLOPS-2xAD 

atgcggccgcattttatcctcaagaacctcttttc_f  NotI  (KK77) 

atgcggccgctgaacttttactcactcctacttgtttc_r NotI  (KK78) 

 

(B) Oligonucleotides used for FLIM-FRET constructs (5´-3´) 

p35S:mOrange cloning: 

mOrange_f    

gcaagcttgatggtgagcaagggcgagga_f  HindIII  (JL41) 

p35S∆GW_r  

gcaagcttatcgataccgtcgacctc_r    HindIII  (JL42) 

 

T-Sapphire ∆stop 

cacctcgaggcatggtgagcaagggcgagg_f XhoI     (SY140) 

cacaagcttcttgtacagctcgtccatgc_r   HindIII (SY141) 
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(C) Oligonucleotides used for NIN promoter rough mapping (5´-3´) 

pNIN870 

cgctctagattgtactggtaattatatag_f   XbaI    (SY134) 

cgcgatccctagctgatccaattaagtac_r   BamHI (SY130) 

 

pNIN298 

cgcaagcttattcttgtctctttctgaat_f    HindIII  (SY132) 

cgcgatccctagctgatccaattaagtac_r   BamHI  (SY130) 

 

pNIN98 (pNINmin) 

cgctctagatgcttacacttgtgggtcc_f   XbaI      (SY153) 

cgcgatccctagctgatccaattaagtac_r   BamHI   (SY130) 

 

pNIN7       

cgcaagctttcattttcccaagcactgc_f   HindIII (SY133) 

cgcgatccctagctgatccaattaagtac_r   BamHI  (SY130) 

 

(D) Oligonucleotides used for NIN promoter fine mapping (5´-3´) 

pNIN -834 to -299 (D1) 

cgctctagagcaataatgtatgtaattgt_f   XbaI  (SY158) 

cgctctagatctaaaacttaactactcatg_r   XbaI  (SY160) 

 

pNIN -785 to -299 (D2) 

cgctctagatttcgccgatatcgtagac_f   XbaI  (SY163) 

cgctctagatctaaaacttaactactcatg_r   XbaI  (SY160) 

 

pNIN -735 to -299 (D3) 

cgctctagaaggtacacaaattttgtacg_f   XbaI  (SY162) 

cgctctagatctaaaacttaactactcatg_r   XbaI  (SY160) 

 

pNIN -685 to -299 (D4) 

cgctctagacaagaggcgagaccctatttc_f  XbaI  (SY164) 

cgctctagatctaaaacttaactactcatg_r   XbaI  (SY160) 

 

pNIN -635 to -299 (D5) 

cgctctagaagtcaagttcatcatgataatc_f  XbaI  (SY165) 

cgctctagatctaaaacttaactactcatg_r   XbaI  (SY160) 

 

pNIN -579 to -299 (D6) 

cgctctagagggtagatatagatatatgtt_f   XbaI  (SY156) 

cgctctagatctaaaacttaactactcatg_r   XbaI  (SY160) 

 

pNIN -735 to -615 (B1) 

cgctctagatttcgccgatatcgtagac_f   XbaI  (SY163) 

cgctctagacgtacaaaatttgtgtacct_r   XbaI  (SY167) 

 

pNIN -785 to -716 (B2) 

cgctctagaaggtacacaaattttgtacg_f   XbaI  (SY162) 

cgctctagagattatcatgatgaacttgact_r  XbaI  (SY169) 

 



137 

 

pNIN -785 to -615 (B3) 

cgctctagaaggtacacaaattttgtacg_f   XbaI  (SY162) 

cgctctagagaaatagggtctcgcctcttg_r  XbaI  (SY168) 

 

pNIN -735 to -666 (B4) 

cgctctagatttcgccgatatcgtagac_f   XbaI   (SY163) 

cgctctagagattatcatgatgaacttgact_r  XbaI   (SY169) 

 

pNIN -735 to -701 (F1) 

ctagaggtacacaaattttgtacgattgccatgtggcacg_f  XbaI  (SY170) 

ctagcgtgccacatggcaatcgtacaaaatttgtgtacct_r  XbaI  (SY171) 

 

pNIN -717 to -683 (F2) 

ctagcgattgccatgtggcacgcagagaggagcccacaag_f  XbaI  (SY174) 

ctagcttgtgggctcctctctgcgtgccacatggcaatcg_r   XbaI  (SY175) 

 

pNIN -700 to -666 (F3) 

ctaggcagagaggagcccacaagaggcgagaccctatttc_f  XbaI  (SY172) 

ctaggaaatagggtctcgcctcttgtgggctcctctctgc_r   XbaI  (SY173) 

 

(E) Oligonucleotides used for CYC-RE analysis (5´-3´) 

2xCYC-RE wild-type (SY184, SY185) 

ctagcgattgccatgtggcacgcagagaggagcccgattgccatgtggcacgcagagaggagcc_f XbaI 

ctagggctcctctctgcgtgccacatggcaatcgggctcctctctgcgtgccacatggcaatcg_r XbaI 

 

2xCYC-RE M1 (SY186, SY187) 

ctagtagccaccatgtggcacgcagagaggagcctagccaccatgtggcacgcagagaggagcc_f XbaI 

ctagggctcctctctgcgtgccacatggtggctaggctcctctctgcgtgccacatggtggcta_r      XbaI 

 

2xCYC-RE M2 (SY188, SY189) 

ctagcgattgttgcacggcacgcagagaggagcccgattgttgcacggcacgcagagaggagcc_f XbaI 

ctagggctcctctctgcgtgccgtgcaacaatcgggctcctctctgcgtgccgtgcaacaatcg_r      XbaI 

 

2xCYC-RE M3 (SY190, SY191) 

ctagcgattgccatgtaatgtacagagaggagcccgattgccatgtaatgtacagagaggagcc_f XbaI 

ctagggctcctctctgtacattacatggcaatcgggctcctctctgtacattacatggcaatcg_r  XbaI 

 

2xCYC-RE M4 (SY192, SY193) 

ctagcgattgccatgtggcacgtgagagggagcccgattgccatgtggcacgtgagagggagcc_f XbaI 

ctagggctccctctcacgtgccacatggcaatcgggctccctctcacgtgccacatggcaatcg_r      XbaI 

 

2xCYC-RE M5 (SY194, SY195) 

ctagcgattgccatgtggcacgcagagaaagattcgattgccatgtggcacgcagagaaagatt_f XbaI 

ctagaatctttctctgcgtgccacatggcaatcgaatctttctctgcgtgccacatggcaatcg_r  XbaI 

 

2x mCYC-RE (SY196, SY197) 

ctagcgatcattgtgcaatgcgcagagaggagcccgatcattgtgcaatgcgcagagaggagcc_f XbaI 

ctagggctcctctctgcgcattgcacaatgatcgggctcctctctgcgcattgcacaatgatcg_r      XbaI 
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(F) Oligonucleotides used for CYCLOPS domain analysis (5´-3´) 

Gal4:VP16 (SY59, SY60) 

caccatgaagctcctgtcctc_f   

ctacccaccgtactcgtcaattc_r   

 

Gal4-BD domain (SY61, SY62) 

cgcaagcttatgaagctcctgtcc_f  HindIII 

cgcaagcttcgtcgagacggtc_r       HindIII 

 

VP16-AD domain (KK55, KK56) 

ctaagctttcgacggcccccccg_f  HindIII 

ccaagcttcccaccgtactcgtcaattc_r HindIII 

 

(G) Oligonucleotides used for protein expression (5´-3´) 

StrepII-TEV-CYCLOPS (SY55) 

accatatgatggctagctggagccacccgcagttcgaaaaagagaatctttattttcaggcaatggaagggagggggttt_f  

NdeI  

CYCLOPS_r (SY56) 

cacctcgagttacattttttcagtttc_r    XhoI 

 

TEV-CCaMK (SY53) 

gtcgacgagaatctttattttcagggcatgggatatgatcaaac_f SalI 

 

CCaMK_r (SY54) 

gcggccgcctatgatggacgaagagaag_r   NotI 
 

(H) EMSA probes (5´-3´) 

CYC-RE wild-type (M4PAL14) (SY182, SY183) 

cgattgccatgtggcacgcagagaggagcc_f 

ggctcctctctgcgtgccacatggcaatcg_r 

 

mCYC-RE (M4mPAL14) (SY200, SY201) 

cgatcattgtgcaatgcgcagagaggagcc_f 

ggctcctctctgcgcattgcacaatgatcg_r 

 

CYC-RE palindrome -/+1 bp (1PAL1) (SY212, SY213) 

ttgccatgtggcac_f 

gtgccacatggcaa_r 

 

Mutated CYC-RE palindrome -/+1 bp (1mPAL1) (SY214, SY215) 

tcattgtgcaatgc_f 

gcattgcacaatga_r 

(I) Oligonucleotides used for expression analysis (5´-3´) 

Ubiquitin 

atgcagatcttcgtcaagaccttg_f 

acctcccctcagacgaag_r 
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EF-1 alpha 

gcaggtctttgtgtcaagtctt_f 

cgatccagaacccagttct_r 

 

NIN 

aactcactggaaacaggtgctttc_f 

ctattgcggaatgtattagctaga_r 

 

NF-YA1 

gaagctgcttcaaccttaaagtc_f 

cgagatgtagaactgaacttgtcac_r 

 

CYCLOPS (endogenous and transgenic) 

gctcaaggaaaatggctgaa_f 

gcgatcgaacttccttctca_r 

5.21 Plasmid construction 

(A) Entry clones 

pENTR:CYCLOPSpro (CYCpro) 
Phusion PCR product of a 2439 bp CYCLOPS promoter fragment 

amplified from pIV10:genomic CYCLOPS with CYCLOPS 

promoter_fwd/rev cloned into pENTR/D-TOPO via TOPO 

reaction (Invitrogen) 

pENTR:gCYCLOPS Phusion PCR product of the 4059 bp genomic CYCLOPS 

nucleotide sequence amplified from pIV10:genomic CYCLOPS 

with CYCLOPS genomic_fwd/rev cloned into pENTR/D-TOPO 

via TOPO reaction (Invitrogen) 

pENTR:3xHAgCYCLOPS NcoI fragment (containing 3xHA) from pAMPAT:p35S:3xHA-

GW (Gateway-compatible pAMPAT-MCS derivative (GenBank 

accession AY436765) cloned into NcoI site of 

pENTR:gCYCLOPS 

pENTR:3xHAgCYCLOPS-

S14A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S14A 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S50A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S50A 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S154A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S154A 

genomic_fwd/rev on pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S251A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S251A 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S412A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S412A 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S14A-S50A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S50A 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS-S14A 

pENTR:3xHAgCYCLOPS-

S14A-S154A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S154A 

genomic_fwd/rev on pENTR:3xHAgCYCLOPS-S14A 

pENTR:3xHAgCYCLOPS-

S50A-S154A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S154A 

genomic_fwd/rev on pENTR:3xHAgCYCLOPS-S50A 

pENTR:3xHAgCYCLOPS- Site directed mutagenesis Phusion PCR with CYCLOPS-S14A 
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S14A-50A-S154A genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS-S50A-S154A 

pENTR:3xHAgCYCLOPS-

S14A-50A-S154A-S251A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S251A 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS-S14A-S50A-S154A 

pENTR:3xHAgCYCLOPS-

S14A-50A-S154A-S251A-

S412A 

Site directed mutagenesis Phusion PCR with CYCLOPS-S412A 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS-S14A-S50A-S154A-S251A 

pENTR:3xHAgCYCLOPS-

S14D 

Site directed mutagenesis Phusion PCR with CYCLOPS-S14D 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S50D 

Site directed mutagenesis Phusion PCR with CYCLOPS-S50D 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S154D 

Site directed mutagenesis Phusion PCR with CYCLOPS-S154D 

genomic_fwd/rev on pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S251D 

Site directed mutagenesis Phusion PCR with CYCLOPS-S251D 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S412D 

Site directed mutagenesis Phusion PCR with CYCLOPS-S412D 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS 

pENTR:3xHAgCYCLOPS-

S50D-S154D 

Site directed mutagenesis Phusion PCR with CYCLOPS-S50D 

genomic + coding sequence_fwd/rev on 

pENTR:3xHAgCYCLOPS-S154D 

pENTR:3xHAgCYCLOPS-

S14A-S50D-S154D-S251A-

S412A 

Sequential site directed mutagenesis Phusion PCRs with  

1) CYCLOPS-S14A genomic + coding sequence_fwd/rev, 

 2) CYCLOPS-S251A genomic + coding sequence_fwd/rev and 3) 

CYCLOPS-S412A genomic + coding sequence_fwd/rev on  

1)pENTR:3xHAgCYCLOPS-S50D-S154D,  

2)pENTR:3xHAgCYCLOPSS14A-S50D-S154D,  

3) pENTR:3xHAgCYCLOPSS14A-S50D-S154D-S251A 

pENTR:cCYCLOPS Entry clone with CYCLOPS coding sequence (c), (Yano et al., 

2008) 

pENTR:cCYCLOPS-S50A-

S154A 

Sequential site directed mutagenesis Phusion PCRs with  

1) CYCLOPS-S50A genomic + coding sequence_fwd/rev,  

2)CYCLOPS-S154A coding sequence_fwd/rev on  

1) pENTR:cCYCLOPS and 2) pENTR:cCYCLOPS-S50A 

pENTR:cCYCLOPS-S50D-

S154D 

Sequential site directed mutagenesis Phusion PCRs with 1) 

CYCLOPS-S50D genomic + coding sequence_fwd/rev, 2) 

CYCLOPS-S154D coding sequence_fwd/rev on 1) 

pENTR:cCYCLOPS and 2) pENTR:cCYCLOPS-S50D 

pENTR:cCYCLOPS-1-265-DD Sequential site directed mutagenesis Phusion PCRs with 1) 

CYCLOPS-S50D genomic + coding sequence_fwd/rev, 2) 

CYCLOPS-S154D coding sequence_fwd/rev on 1) 

pENTR:cCYCLOPS1-265 (Yano et al., 2008) and 2) 

pENTR:cCYCLOPS1-265-S50D 

pENTR:cCYCLOPS-1-366-

DD= (CYCLOPS-DD-∆BD  

Sequential site directed mutagenesis Phusion PCRs with 1) 

CYCLOPS-S50D genomic + coding sequence_fwd/rev, 2) 

CYCLOPS-S154D coding sequence_fwd/rev on 1) 

pENTR:cCYCLOPS1-366 (Yano et al., 2008) and 2) 

pENTR:cCYCLOPS1-366-S50D 

pENTR:cCYCLOPS-255-518 Yano et al., 2008 

pENTR:cCYCLOPS-364-518= 

(CYCLOPS-BD) 

Phusion PCR product from pENTR:cCYCLOPS with CYCLOPS-

364-518_fwd/rev cloned into pENTR/D-TOPO via TOPO reaction 
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(Invitrogen) 

pENTR:cCYCLOPS-267-380= 

(CYCLOPS-AD) 

Phusion PCR product from pENTR:cCYCLOPS with CYCLOPS-

267-380_fwd/rev cloned into pENTR/D-TOPO via TOPO reaction 

(Invitrogen) 

pENTR:cCYCLOPS-2x(267-

380) 

Phusion PCR product from pENTR:cCYCLOPS with CYCLOPS-

2x267-380_fwd/rev cloned into NotI site of pENTR:cCYCLOPS-

267-380 

pENTR:cCCaMK Entry clone with CCaMK coding sequence (Yano et al., 2008) 

pENTR:cCCaMK-T265D Entry clone with CCaMK-T265D coding sequence (Yano et al., 

2008) 

pENTR:cCCaMK-G30E Entry clone with CCaMK-G30E coding sequence (Yano et al., 

2008) 

pENTR:BDGal4-ADVP16 Phusion PCR product from genomic DNA of A. thaliana Gal4-

GFP enhancer trap line (Haseloff, 1999) with Gal4:VP16_fwd/rev 

cloned into pENTR/D-TOPO via TOPO reaction (Invitrogen) 

(B) Plasmids for L. japonicus hairy root transformation 

pK7WG2D:3xHA-

gCYCLOPS 

LR reaction (Invitrogen) of pENTR:3xHAgCYCLOPS and 

pK7WG2D (Karimi et al., 2002) 

pK7:CYCpro:3xHA-

gCYCLOPS 

Removal of 35S promoter from pK7WG2D:3xHA-gCYCLOPS by 

SalI digest and replacement through CYCLOPS promoter fragment 

(2250 bp) obtained from SalI digest of pENTR:CYCLOPSpro 

pK7:CYCpro:GW BP reaction (Invitrogen) of pK7:CYCpro:3xHA-gCYCLOPS and 

pDONR207 (Invitrogen) 

pK7:CYCpro:3xHA-

gCYCLOPS phosphosite 

mutants 

LR reaction (Invitrogen) of pENTR:3xHAgCYCLOPS mutants 

(listed in 5.21A) and pK7:CYCpro:GW 

pUB:3xHAgCYCLOPS or 

phosphosite mutants 

LR reaction (Invitrogen) of pENTR:3xHAgCYCLOPS or 

phosphosite mutants (listed in5.21A) and pUB:GW-GFP (Maekawa 

et al., 2008) 

 

(C) Plasmids for FLIM-FRET, subcellular localization and BiFC analysis 

p35S:TSapphire-GW 

 

Phusion PCR product of TSapphire∆stop amplified from 

p35S:GW-TSapphire-nos (Bayle et al., 2008) with T-

Sapphire ∆stop_fwd/rev and cloned into XhoI/HindIII sites 

of pAMPATp35S:GFP-GW (Yano et al., 2008), Gateway-

compatible pAMPAT-MCS derivative (GenBank accession 

AY436765) 

p35S:TSapphire-cCYCLOPS  or 

phospho-site mutants 

LR reaction (Invitrogen) of pENTR:cCYCLOPS or 

phosphosite mutants and p35S:TSapphire-GW-nos 

p35S:mOrange Phusion PCR product from p35S:GW-mOrange (Bayle et al., 

2008) with mOrange_fwd, p35S∆GW_rev, digested with 

HindIII and self-ligated 

p35S:CCaMK-mOrange LR reaction (Invitrogen) of pENTR:cCCaMK and 

p35S:GW-mOrange (Bayle et al., 2008) 

p35S:CYCLOPS-Cerulean (or 

CYCLOPS phosphosite mutants) 

LR reaction (Invitrogen) of pENTR:cCYCLOPS (or 

phosphosite mutants, listed in 5.21A) and p35S:GW-

Cerulean (gift of R. Bhat) 

pGW735/1:CYCLOPS  

(or phosphosite mutants) 

Yano et al., 2008 and LR reaction (Invitrogen) of 

pENTR:cCYCLOPS-S50A-S154A or pENTR:cCYCLOPS-

S50D-S154D with pGW735/1 (unpublished, gift from T. 

Lahaye) 

pSPYNE35S:CYCLOPS  

(or phosphosite mutants) 

LR reaction (Invitrogen) of pENTR:cCYCLOPS (or 

phosphosite mutants listed in 5.21A) with pSPYNE35S:GW 
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(unpublished, gift from T. Lahaye) 

pSPYNE35S:CCaMK Yano et al., 2008 

pSPYNE35S:CCaMK-G30E Yano et al., 2008 

 

(D) Plasmids for NIN promoter analysis 

pAMPATp35S:3xHA-CYCLOPS 

(or phosphosite mutants) 

LR reaction (Invitrogen) of pENTRcCYCLOPS (or 

phosphosite mutants, listed in 5.21A) with 

pAMPATp35S:3xHA-GW (Gateway-compatible pAMPAT-

MCS derivative (GenBank accession AY436765) 

pAMPATp35S:3xHA-CCaMK 

 

LR reaction (Invitrogen) of pENTRcCCaMK with 

pAMPATp35S:3xHA-GW (Gateway-compatible pAMPAT-

MCS derivative (GenBank accession AY436765) 

pAMPATp35S:3xHA-CCaMK-

T265D 

 

LR reaction (Invitrogen) of pENTRcCCaMK-T265D with 

pAMPATp35S:3xHA-GW (Gateway-compatible pAMPAT-

MCS derivative (GenBank accession AY436765) 

pNIN870:GUS Phusion PCR product from pNIN:GUS (gift of M. Hayashi) 

with pNIN870_fwd/rev cloned into XbaI/BamHI sites of 

pBI101 (Jefferson et al., 1987) 

pNIN298:GUS Phusion PCR product from pNIN:870 with 

pNIN298_fwd/rev cloned into HindIII/BamHI sites of 

pBI101(Jefferson et al., 1987) 

pNIN98:GUS = pNINmin Phusion PCR product from pNIN:870 with pNIN98_fwd/rev 

cloned into XbaI/BamHI sites of pBI101(Jefferson et al., 

1987) 

pNIN7:GUS Phusion PCR product from pNIN:870 with pNIN7_fwd/rev 

cloned into HindIII/BamHI sites of pBI101(Jefferson et al., 

1987) 

D1 = pNIN(-834 to -299):GUS Phusion PCR product from pNIN:870 with pNIN -834 to -

299_fwd/rev cloned into XbaI site of pNINmin 

D2 = pNIN(-785 to -299):GUS Phusion PCR product from pNIN:870 with pNIN -785 to -

299_fwd/rev cloned into XbaI site of pNINmin 

D3 = pNIN(-735 to -299):GUS Phusion PCR product from pNIN:870 with pNIN -735 to -

299_fwd/rev cloned into XbaI site of pNINmin 

D4 = pNIN(-685 to -299):GUS Phusion PCR product from pNIN:870 with pNIN -685 to -

299_fwd/rev cloned into XbaI site of pNINmin 

D5 = pNIN(-635 to -299):GUS Phusion PCR product from pNIN:870 with pNIN -635 to -

299_fwd/rev cloned into XbaI site of pNINmin 

D6 = pNIN(-579 to -299):GUS Phusion PCR product from pNIN:870 with pNIN -579 to -

299_fwd/rev cloned into XbaI site of pNINmin 

B1 = pNIN(-735 to -615):GUS Phusion PCR product from pNIN:870 with pNIN -735 to -

615_fwd/rev cloned into XbaI site of pNINmin 

B2 = pNIN(-785 to -716):GUS Phusion PCR product from pNIN:870 with pNIN -785 to -

716_fwd/rev cloned into XbaI site of pNINmin 

B3 = pNIN(-785 to -615):GUS Phusion PCR product from pNIN:870 with pNIN -785 to -

615_fwd/rev cloned into XbaI site of pNINmin 

B4 = pNIN(-735 to -666):GUS Phusion PCR product from pNIN:870 with pNIN -735 to -

666_fwd/rev cloned into XbaI site of pNINmin 

F1 = pNIN(-735 to -701):GUS Annealed oligonucleotides pNIN -735 to -701_fwd/rev 

cloned into XbaI site of pNINmin 

F2 = pNIN(-717 to -683):GUS Annealed oligonucleotides pNIN -717 to -683_fwd/rev 

cloned into XbaI site of pNINmin 

F3 = pNIN(-700 to -666):GUS Annealed oligonucleotides pNIN -700 to -666_fwd/rev 

cloned into XbaI site of pNINmin 

2xCYC-RE:GUS Annealed oligonucleotides 2xCYC-RE wild-type_fwd/rev 
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cloned into XbaI site of pNINmin 

2xM1:GUS Annealed oligonucleotides 2xCYC-RE M1_fwd/rev cloned 

into XbaI site of pNINmin 

2xM2:GUS Annealed oligonucleotides 2xCYC-RE M2_fwd/rev cloned 

into XbaI site of pNINmin 

2xM3:GUS Annealed oligonucleotides 2xCYC-RE M3_fwd/rev cloned 

into XbaI site of pNINmin 

2xM4:GUS Annealed oligonucleotides 2xCYC-RE M4_fwd/rev cloned 

into XbaI site of pNINmin 

2xM5:GUS Annealed oligonucleotides 2xCYC-RE M5_fwd/rev cloned 

into XbaI site of pNINmin 

2xmCYC-RE:GUS Annealed oligonucleotides 2xmCYC-RE_fwd/rev cloned into 

XbaI site of pNINmin 

 

(E) Plasmids for CYCLOPS domain analysis in N. benthamiana and yeast 

p35S:BDGal4-3xHA-GW Phusion PCR product amplified from pENTR:BDGal4-ADVP16 

with Gal4-BD domain_fwd/rev cloned into HindIII site of 

pAMPAT-35S:3xHA-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

p35S:ADVP16-3xHA-GW Phusion PCR product amplified from pENTR:BDGal4-ADVP16 

with VP16-AD domain_fwd/rev cloned into HindIII site of 

pAMPAT-35S:3xHA-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

p35S:3xHA-BDGal4-ADVP16 LR reaction (Invitrogen) of pENTR:BDGal4-ADVP16 with  

pAMPAT-35S:3xHA-GW (Gateway-compatible pAMPAT-MCS 

derivative (GenBank accession AY436765) 

p35S:BDGal4-3xHA-CYCLOPS, 

phosphosite mutants or truncated 

versions  

LR reaction (Invitrogen) of pENTR:cCYCLOPS (or phosphosite 

mutants or truncated versions, listed in 5.21A) and p35S:BDGal4-

3xHA-GW 

p35S:ADVP16-3xHA-CYCLOPS, 

phosphosite mutants or truncated 

versions 

LR reaction (Invitrogen) of pENTR:cCYCLOPS (or phosphosite 

mutants or truncated versions, listed in 5.21A) and p35S:BDGal4-

3xHA-GW 

pBDGAL4:CYCLOPS, 

phosphosite mutants or truncated 

versions 

LR reaction (Invitrogen) of pENTR:cCYCLOPS (or phosphosite 

mutants or truncated versions, listed in 5.21A) and Gateway 

modified pBDGAL4 Cam (Stratagene) 

 

(F) Plasmids for protein expression 

pDEST15:CYCLOPS, 

phosphosite and truncated versions 

(N-terminal GST tag) 

LR reaction (Invitrogen) of pENTR:cCYCLOPS (phosphosite 

mutants or truncated versions, listed in 5.21A) and pDEST15 

(Invitrogen) 

pDEST17:CYCLOPS 

(N-terminal 6xHis tag) 

LR reaction (Invitrogen) of pENTR:cCYCLOPS and pDEST17 

(Invitrogen) 

pDEST14:CCaMK 

(no tag) 

LR reaction of  (Invitrogen) pENTR:cCCaMK and pDEST14 

(Invitrogen) 
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7 Appendix: Biochemical characterisation of the CCaMK/CYCLOPS complex 

7.1 Results and Discussion 

7.1.1 Size-exclusion chromatography of purified CCaMK 

In order to determine whether CCaMK exists as a monomer, or assumes an oligomeric state in 

solution, gelfiltration analysis was performed with a 6xHis-CCaMK protein preparation 

obtained after purification using immobilized metal ion affinity chromatography (IMAC). 

This analysis revealed, that CCaMK (MW: 57.5 kDa) does not elute as a single peak or single 

monomeric fraction. In total six partly overlapping peak fractions, corresponding to the MW 

of monomeric, dimeric, nonameric, dodecameric, as well as a high MW (HMW) fraction of 

CCaMK were obtained. The MW of the latter fraction exceeded the resolution range (>720 

kDa) of the utilized size-exclusion column. The resulting elution profile (Figure 43) suggests, 

that to some extent CCaMK is present in a monomeric and to a larger extent in a dimeric state 

in solution, which is in line with the finding that the autophosphorylation mechanism of 

CCaMK is intermolecular (Tirichine et al., 2006). A higher order oligomeric state, similar to 

the CaMKII holoenzyme, which forms a dodecamer composed of two stacked hexamers of 

dimers (Rosenberg et al., 2005), is also possible. However, a distinct peak at the expected 

MW was not observed due to the tendency of CCaMK to form aggregates, resulting in several 

overlapping and distorted HMW peaks.  
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Figure 43. Size-exclusion chromatography of CCaMK. 

Elution profile of purified 6xHis-CCaMK (MW: 57.5 kDa) after gelfiltration on a Superdex 200 10/300 GL 

column. A large proportion is eluted in the void volume (>720 kDa) consisting of CCaMK aggregates. Four 

partly overlapping elution peaks were obtained (indicated by arrows). Numbers in brackets indicate deduced 

oligomeric or monomeric state of the CCaMK protein in the elution fraction (MWpeak fraction/MWCCaMK). Insets 

show Coomassie stained CCaMK protein bands of the individual elution fractions resolved by SDS-PAGE 

(10%). 

 

7.1.2 Biochemical characterization of the CCaMK/CYCLOPS complex 

Biochemical characterization of CYCLOPS and the assembled CCaMK/CYCLOPS complex 

was initially impeded, because CYCLOPS was expressed insoluble in inclusion bodies in E. 

coli. The observation that CYCLOPS interacts with CCaMK and is phosphorylated by 

CCaMK in vitro suggested that CYCLOPS´ solubility may improve if it is expressed together 

with its interaction partner and cognate kinase CCaMK. Therefore, coexpression of 6xHis-

CYCLOPS (MW: 61.3 kDa) together with CCaMK (MW: 57.5 kDa) in E. coli was 

performed, and after IMAC, yielded soluble CYCLOPS protein in association with CCaMK, 

the identity of which was confirmed by subsequent kinase assays (Figure 44A and D). The 

kinase assay revealed that the copurified CCaMK was functional (Figure 44D). The 

phosphorylation pattern of the coexpressed CCaMK/CYCLOPS complex was the same as 

observed previously, with weak CYCLOPS phosphorylation -but stronger CCaMK 

autophosphorylation- in the presence of calcium and enhanced CYCLOPS phosphorylation if 

Ca
2+

/CaM was supplemented (Figure 44D) (Yano et al., 2008, Liao et al., 2012). When 

visualized on a Coomassie stained SDS-PAGE gel, the purified 6xHis-CYCLOPS protein 

seemed to be present in the form of several phosphorylated species, because the protein band 

occurred more diffuse in contrast to a sharp, single-species band (Figure 44A). Protein blot 

analysis using an antibody directed against the 6xHis-tag identified a band corresponding to 

the size of 6xHis-CYCLOPS, confirming that the purified protein was 6xHis-CYCLOPS 
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(Figure 44B). Previous mass spectrometric analysis of CCaMK-phosphorylated CYCLOPS 

identified the phosphorylation motif RXXpS as a preferred motif of CCaMK on CYCLOPS 

(Figure 30). In order to prove that CYCLOPS´ solubility was mediated by CCaMK 

phosphorylation during coexpression, protein blot analysis on 6xHis-CYCLOPS protein 

obtained in the absence or presence of CCaMK was carried out using an anti-RXXpS/T 

antibody. This analysis demonstrated that in the absence of CCaMK 6xHis-CYCLOPS was 

not phosphorylated, while coexpression with CCaMK, resulted in clear 6xHis-CYCLOPS 

phosphorylation (Figure 44C). 

 

               

Figure 44. Coexpression of CYCLOPS with CCaMK in E. coli yields soluble, phosphorylated CYCLOPS 

protein. 

6xHis-CYCLOPS (CYC) was coexpressed with CCaMK (CC) in E. coli and purified via immobilized metal ion 

affinity chromatography (IMAC). Black arrowheads indicate 6xHis-CYCLOPS, grey arrowheads indicate 
CCaMK. CBB: Coomassie brilliant blue stained gel; autorad: Autoradiograph of the radioactive (γ-

32
P) gel. 

(A) 6xHis-CYCLOPS elution fraction separated by SDS-PAGE (10%) and CBB stained. Note the diffuse 6xHis-

CYCLOPS protein band which presumably contains several CYCLOPS phospho-species (indicated by a 

bracket). (B) Protein blot analysis of 6xHis-CYCLOPS (0.3 µg) expressed in the absence and presence of 

CCaMK. In both cases a band of the expected size of 6xHis-CYCLOPS (61 kDa) is detected. (C) Protein blot 

analysis of 6xHis-CYCLOPS (0.6 µg) with an anti-RXXpS/T antibody (recognizing phosphorylated serines and 

threonines located within the amino acid motif RXXpS/T) demonstrating that 6xHis-CYCLOPS is only 

phosphorylated when coexpressed with CCaMK. (D) The copurified CCaMK/6xHis-CYCLOPS complex is 

functional in vitro. Kinase assay performed in the absence (-) or presence (+) of 0.1 mM CaCl2 (Ca
2+

) or 0.1 mM 

CaCl2 and 1 µM calmodulin (Ca
2+

/CaM) with 1 µg coexpressed 6xHis-CYCLOPS/CCaMK sample obtained 

after IMAC purification. The lower protein band present in the 6xHis-CYCLOPS elution (shown in A) is 

CCaMK, displaying the typical auto- and CYCLOPS phosphorylation pattern as has been described previously 

(Yano et al., 2008). 
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In order to obtain the assembled CCaMK/CYCLOPS complex, both proteins were 

coexpressed as tagged versions (6xHis-CCaMK/Strep-CYCLOPS) and tandem affinity 

purification was performed. This protocol led to a higher and purer Strep-CYCLOPS protein 

yield after the first purification step (Figure 45A compared to Figure 44A). The associated 

6xHis-CCaMK protein amount was considerably less compared to the purified Strep-

CYCLOPS protein amount, suggesting, that either only part of the purified CYCLOPS protein 

was associated with CCaMK, or the association ratio differed from a 1:1 ratio. Size-exclusion 

chromatography of the Strep-CYCLOPS elution (Figure 45A) yielded two distinct peaks: A 

HMW peak exceeding the resolution range (>720 kDa) of the gelfiltration column and a 

second peak with a MW of ~660 kDa (Figure 45B). SDS-PAGE of the HMW fraction showed 

that CCaMK and CYCLOPS were present in a 1:1 ratio, while CYCLOPS was the 

predominant protein species in the ~660 kDa peak (Figure 45B). This result suggests that the 

1:1 CCaMK/CYCLOPS complex might be a HMW complex with a size >720 kDa. 

Surprisingly, no peak was detected at the MW of the CYCLOPS monomer or dimer, 

indicating, that CYCLOPS is presumably assembled as oligomer. In order to purify the 

assembled CCaMK/CYCLOPS complex, the elution fraction of Strep-CYCLOPS (associated 

with 6xHis-CCaMK) was subjected to a second purification step capturing 6xHis-CCaMK by 

IMAC. The obtained elution fraction contained both proteins in an approximate 1:1 ratio 

(Figure 45C). Furthermore, both proteins were present as a doublet band, presumably as 

different isoforms (e.g. phosphorylated vs. unphosphorylated isoform). Gelfiltration of the 

tandem purified fraction resulted in a single HMW (<720 kDa) peak suggesting that the 1:1 

complex assembles as multimer (Figure 45C). 
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Figure 45. Analysis of the copurified CCaMK/CYCLOPS complex. 

6xHis-CCaMK and Strep-CYCLOPS were coexpressed in E. coli and tandem affinity purification was 

performed. The obtained elution fraction of the 1
st
 affinity purification step (capturing Strep-CYCLOPS 

associated with 6xHis-CCaMK), was subjected to a 2
nd

 purification step (capturing 6xHis-CCaMK), to obtain 

the assembled complex. Black arrowheads: Strep-CYCLOPS; grey arrowheads: 6xHis-CCaMK. IN: Input 

fraction.  

(A) Elution fractions of Strep-CYCLOPS obtained after the first purification step. Note that Strep-CYCLOPS is 

more abundantly present then 6xHis-CCaMK. (B) Gelfiltration chromatogram of the Strep-CYCLOPS elution 

fraction obtained after the 1
st
 purification step. Two peak fractions were obtained: A HMW (>720 kDa) fraction 

eluting in the void volume and containing the CCaMK/CYCLOPS complex in an approximate 1:1 ratio and a 

~660 kDa fraction containing CYCLOPS as the predominant protein species. (C) Gelfiltration chromatogram of 

the 6xHis-CCaMK elution fraction obtained after the 2
nd

 purification step. A single HMW peak fraction (>720 

kDa) was obtained, containing the copurified CCaMK/CYCLOPS protein complex in an approximate 1:1 ratio. 

Note, that both proteins are present as a doublet band, suggesting the presence of unphosphorylated and 

phosphorylated isoforms within the complex. (B and C) Insets show resolved (10% SDS-PAGE) Coomassie 

stained protein bands present in the input and peak elution fractions. 
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7.2 Materials and Methods 

7.2.1 Protein expression and purification 

Expression of 6xHis-CYCLOPS and coexpression of 6xHis-CYCLOPS together with 

CCaMK was induced in E. coli Rosetta pLaqI (Novagen) for 16 h (overnight) at 21 °C by 

addition of 0.25 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cell pellets were lysed 

with a French Press (Aminco). Protein purification was carried out with Ni-NTA agarose 

resin (Qiagen) according to the manufacturer´s instruction. The wash buffer contained 50 mM 

Tris, 150 mM NaCl, 10 mM ß-mercaptoethanol, 0.010 mM imidazole, pH 7.8 and the same 

buffer containing 0.25 mM imidazol was used as elution buffer. Proteins were desalted by 

dialysis in buffer containing 20 mM Tris, 100 mM NaCl, 1 mM ß-mercaptoethanol, 5% 

glycerol, pH 7.8. 

Expression of 6xHis-CCaMK was induced in E. coli Rosetta pLaqI (Novagen) for 4 h at 28 

°C by addition of 0.5 mM IPTG. 6xHis-CCaMK was purified using a Co
2+

 charged HiTrap 

column (GE Healthcare) with washbuffer containing 50 mM Tris, 300 mM NaCl, 0.020 mM 

imidazole, 10 mM ß-mercaptoethanol, pH 7.8 and eluted with the same buffer containing 0.25 

mM imidazole (ACS grade; Merck). The purified protein was then analysed by size-exclusion 

chromatography. 

Coexpression of 6xHis-CCaMK/Strep-CYCLOPS was carried out in E. coli Rosetta pLaqI 

(Novagen) for 4 h at 28 °C by addition of 0.5 mM IPTG. A tandem affinity purification 

protocol was applied to purify the 6xHis-CCaMK/Strep-CYCLOPS complex. First, Strep-

CYCLOPS (associated with 6xHis-CCaMK) was purified via Strep-tactin resin (IBA) with 

wash buffer containing 100 mM Tris, 150 mM NaCl, 1 mM EDTA, 10 mM ß-

mercaptoethanol, pH 7.8. Elution was performed in the same buffer supplemented with 2.5 

mM desthiobiotin. The second purification step capturing 6xHis-CCaMK was carried out with 

TALON resin (Clontech) in washbuffer containing 50 mM Tris, 150 mM NaCl, 0.02 mM 

imidazole (ACS grade; Merck), 10 mM ß-mercaptoethanol, pH 7.8. Elution was carried out 

with the same buffer containing 0.25 mM imidazole (ACS grade; Merck). Elutions of the 1
st
 

and 2
nd

 purification step were analysed by size-exclusion chromatography. 

7.2.2 Size-exclusion chromatography 

Size-exclusion chromatography was performed according to the manufacturer´s protocols 

using a Superdex 200 10/300 GL column (GE Healthcare) connected to an Äkta purifier 10 

system (GE Healthcare). Prior to analysis, the column was calibrated with standard proteins 

(thyroglobulin, ferritin, aldolase, conalbumin and ovalbumin; GE Healthcare) according to the 

manufacturer´s instruction. Prior to gelfiltration analysis purified protein elutions were 
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concentrated with Amicon Ultra-15 Centrifugal Filter Units (30k) (Millipore). Gelfiltration 

analysis of 6xHis-CCaMK was performed in buffer containing 20 mM Tris, 250 mM NaCl, 5 

mM DTT, pH 7.8. Gelfiltration analysis of Strep-CYCLOPS/6xHis-CCaMK (elution of the 1
st
 

purification step) and the tandem affinity purified Strep-CYCLOPS/6xHis-CCaMK complex 

was performed in buffer containing 50 mM Tris, 150 mM NaCl, 5 mM DTT, pH 7.8. Peak 

fractions were collected and 15-20 µl of each fraction were separated by SDS-PAGE (10% 

gels) and Coomassie stained, to determine protein purity and protein sizes.  

7.2.3 In vitro kinase assay 

The in vitro kinase assay of the copurified 6xHis-CYCLOPS/CCaMK complex was 

performed as described (Yano et al., 2008) using 1 µg purified protein sample. 

7.2.4 Protein blot analysis 

Equal amounts of purified 6xHis-CYCLOPS or coexpressed 6xHis-CYCLOPS/CCaMK 

protein samples were separated by SDS-PAGE (10% gels) and blotted onto PVDF membrane 

(GE-Healthcare). Immunodetection of 6xHis-CYCLOPS proteins was performed according to 

the manufacturer´s instruction using mouse anti-His6(2) (Roche) as primary antibody and anti-

mouse-HRP (Biomol) as secondary antibody. Immunodetection of phosphorylated CYCLOPS 

was carried out according to the manufacturer´s instruction using rabbit Phospho-Akt 

Substrate (RXXS*/T*) antibody (Cell Signaling) as primary and anti-rabbit-HRP 

(Amersham) as secondary antibody.  

7.2.5 Plasmids for protein expression 

pETDuet-6xHis-CYCLOPS Phusion PCR product of CYCLOPS coding sequence amplified from 

pENTR:cCYCLOPS (Yano et al., 2008) with primers CYCLOPS-

SalI_f and CYCLOPS-NotI_r inserted into the expression vector 

pETDuet-1 (Novagen) 

pETDuet-6xHis-

CYCLOPS-CCaMK (for 

CCaMK/ CYCLOPS 

coexpression 

Phusion PCR product of CCaMK coding sequence amplified from 

pENTR:cCCaMK (Yano et al., 2008) with primers CCaMK-NdeI_f 

and CCaMK-XhoI_r inserted into the expression vector pETDuet-

6xHis-CYCLOPS 

pETDuet-6xHis-CCaMK Phusion PCR product of CCaMK coding sequence amplified from 

pENTR:cCCaMK (Yano et al., 2008) with primers TEV-CCaMK_f 

and CCaMK_r inserted into the expression vector pETDuet-1 

(Novagen) via SalI/NotI sites 

pETDuet-6xHis-CCaMK-

Strep-CYCLOPS 

(for CCaMK/CYCLOPS 

coexpression) 

Phusion PCR product of CYCLOPS coding sequence amplified from 

pENTR:cCYCLOPS (Yano et al., 2008) StrepII-TEV-CYCLOPS_f 

and CYCLOPS_r and cloned into NdeI/XhoI site of pETDuet-6xHis-

CCaMK. 
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7.2.6 Oligonucleotides 

f = forward 

r = reverse 

 

CYCLOPS_SalI_f/NotI_r (SY31, SY45) 

gcgtcgacatggaagggaggggg_f  SalI 

cacgcggccgcttacattttttcag_r  NotI 

CCaMK-NdeI_f/XhoI_r (SY46, SY47) 

caccatatgatgggatatgatcaaac_f  NdeI 

cacctcgagctatgatggacgaagag_r XhoI 

TEV-CCaMK_f/r (SY53, SY54) 

gtcgacgagaatctttattttcagggcatgggatatgatcaaac_f  

 SalI 

gcggccgcctatgatggacgaagagaag_r NotI 

 

StrepII-TEV-CYCLOPS_f/r (SY55, SY56) 

accatatgatggctagctggagccacccgcagttcgaaaaagagaatctttattttcaggcaatggaagggagggggttt_f 

 NdeI  

cacctcgagttacattttttcagtttc_r  XhoI 
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VII General Discussion 

This study was conducted to gain a clearer picture of the signaling process downstream of the 

calcium spiking response which initiates in root cell nuclei after perception of symbiotic 

signaling molecules. It is commonly assumed that the main target of the calcium spikes is 

CCaMK which is activated by calcium and calmodulin and propagates the signal via 

phosphorylation of its associated substrate CYCLOPS. A combination of domain and 

phosphorylation site analysis of both proteins in vitro and in vivo has been used as powerful 

tool in this study to provide novel insights into the function and regulation of both proteins, 

pinpointing the nuclear CCaMK/CYCLOPS complex as a central node in root endosymbiosis 

signaling.  

1 CCaMK and the role of its calcium regulatory domains in symbiosis formation 

The unusual presence of two distinct calcium regulatory domains in CCaMK suggests a 

different mechanism of action and symbiotic function for each. Biochemical analysis of both 

domains (CaM-BD linked to the VLD) derived from MtCCaMK established, that EF-hand 3 

exhibits high affinity for calcium and binds basal calcium concentrations (Kd ≤ 20 nM) as 

present in root hair cells under un-stimulated conditions (125-150 nM) (Swainsbury et al., 

2012). In contrast, EF-hands 1 and 2 have lower affinity (Kd = 200 ± 50 nM), enabling the 

interpretation of calcium spiking (Swainsbury et al., 2012). Further, the affinity for calcium of 

the VLD is only considerably affected if EF-hand 2 (but not if EF-hand 1 or 3) is disrupted, 

suggesting that this EF-hand is most essential for calcium sensing (Swainsbury et al., 2012). 

However, simultaneous point mutations in EF-hands 1 and 2 still supported symbiosis 

formation while point mutations in EF-hand 1, or 2 in combination with EF-hand 3 in all 

cases impaired symbiosis establishment (Shimoda et al., 2012). Further, single mutations in 

either of the three EF-hands did not affect symbiosis formation, but truncations lacking EF-

hand 3 (CCaMK-1-471) or EF-hands 2 and 3 (CCaMK-1-429) were impaired (Shimoda et al., 

2012). Concerning the CaM-BD, a truncation comprising the kinase and CaM-BD (CCaMK-

1-340) did not complement rhizobial infection even if autoactivated (CCaMK-1-340-T265D), 

although the latter construct triggered spontaneous nodules (Shimoda et al., 2012).  

These findings differ from the findings presented in this study, where the truncations 

CCaMK-1-453 (retaining only EF-hand 1) and CCaMK-1-351 (retaining the kinase and CaM-

BD) both restored symbiosis (Figure 5 and 6). Several reasons for this discrepancy and 

simultaneous effects are possible. For instance, the tested constructs are not identical, which 

could result in differential behaviour. Promoter differences may also play a role. Possibly, the 

strong L. japonicus ubiquitin promoter used in this study leads to higher expression levels 
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compared to the 35S promoter used by Shimoda et al., ultimately resulting in higher nuclear-

localized protein levels of the mutant proteins. This is an aspect to be considered as the 

subcellular localization analysis in L. japonicus protoplasts demonstrated that only the 

CCaMK wild-type protein exclusively localized to the nucleus, while all mutant proteins were 

also partly mislocalized in the cytosol (Figure 10). Another important aspect is the mutant 

background used for complementation analysis. Shimoda et al., used the L. japonicus ccamk-3 

mutant which carries a point mutation in a conserved glycine residue (G30E) in kinase 

subdomain I, leading to a kinase-dead version. It is unknown whether the mutant protein is 

expressed in planta and interferes with the function of the transgenically expressed CCaMK 

mutant versions. Interestingly, snf1-1 is a recessive allele and presumably the wild-type 

CCaMK protein suppresses spontaneous nodulation (conferred by CCaMK-T265I) in 

heterozygous plants (Tirichine et al., 2006). This phenotype could be explained by the 

possibility that CCaMK is not acting as a monomer but as dimer or oligomer. Such a mode of 

action is also suggested by autophosphorylation kinetics (Tirichine et al., 2006) and CCaMK 

size-exclusion chromatographic results presented in this study (Figure 43). Therefore, the 

complementation results might depend on the ccamk mutant background used for symbiosis 

phenotyping. In this study the presumed ccamk-13 null mutant was used where the encoded 

CCaMK-1-154 + PPRGSQG protein was not detected in root extracts by immunoblot analysis 

using three different polyclonal CCaMK antibodies (Figure 4). This result largely excludes an 

impact of the endogenous CCaMK protein on the complementation results.  

According to results obtained in this study, the EF-hand containing VLD per se is dispensable 

for downstream signaling towards rhizobial infection, as obviously its loss can be 

compensated by a certain level of protein concentration in combination with the CaM-BD 

(Figure 5, Table 1). In contrast, the presence of the CaM-BD was essential for rhizobial 

infection and during calcium signaling may confer substrate specificity by inducing a 

conformation required for the correct positioning and/or adequate phosphorylation of a 

downstream target. In addition, Ca
2+

/CaM binding increased the efficiency of substrate 

phosphorylation which might be important for providing enough phosphorylated molecules to 

overcome a cetain threshold required for downstream signaling. Such a view is also supported 

by in vitro kinase assays of CCaMK and its presumed native substrate CYCLOPS, where a 

change in substrate specificity (from auto- to substrate phosphorylation) and enhanced 

substrate phosphorylation in the presence of Ca
2+

/CaM has been observed (Figures 27 and 

30A). Thus Ca
2+

/CaM binding and release may represent a regulatory switch which turns 

CCaMK on and off. CaM binds calcium (and thus CCaMK) only when concentrations are 
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high (in the µM range) as is the case during spiking (Swainsbury et al., 2012). High calcium 

concentrations promote Ca
2+

/CaM-binding resulting in increased substrate phosphorylation 

required for downstream signaling towards rhizobial infection. Low calcium concentrations 

lead to the dissociation of Ca
2+

/CaM, converting CCaMK ínto the autophosphorylation mode, 

which switches off the kinase (as has been discussed in more detail in chapter 2). 

In contrast to RNS, AM formation is possible with autoactivated constructs lacking the VLD 

and the CaM-BD and which did not perform less efficient compared to the truncated versions 

containing the CaM-BD and restoring rhizobial infection (Figure 7). This result provides 

evidence that signaling via CCaMK towards AM and rhizobial infection is different and 

suggests that signaling specificity at the level of CCaMK exists. Equally, the kinase domain 

(CCaMK-1-314) and the autoactivated CCaMK-FNDD mutant (with an abrogated CaM-BD) 

are sufficient for the formation of spontaneous nodules which, like AM formation, is also a 

process with less stringent requirements for the calcium regulatory domains. Nodule 

organogenesis and arbuscule formation during AM infection have in common that both 

processes involve the inner cortical root cells, while rhizobial entry initiates via infection of 

epidermis derived root hair cells. It was recently suggested that two distinct symbiotic 

signaling programs exist in root epidermal and cortical cells (Kosuta et al., 2011; Liao et al., 

2012; Madsen et al., 2010). This implies that CCaMK-1-314 and CCaMK-FNDD are not 

functional in epidermal but their function is sufficient for cortical processes like nodule 

organogenesis and arbuscule formation.  

Due to the observation that CCaMK-FNED (analogous to CCaMK-FNDD) exhibited no 

kinase activity Shimoda et al. concluded that biological activity of CCaMK is not solely 

defined by its kinase activity, which somehow contradicts the result obtained in the same 

study, where the kinase-inactive double mutant CCaMK-G30E-FNED lost the ability to form 

spontaneous nodules (Shimoda et al., 2012). This together with the observation in this study 

of weak phosphorylation activity of CCaMK-FNDD towards CYCLOPS-81-366 suggests that 

the lower efficiency of spontaneous nodulation and AM formation may result from weaker 

autoactivity (compared to the autoactive full-length versions) (Figure 5, 7, 8 and 9B; Table 1, 

2 and 4). Therefore, the proposed kinase activity-independent signaling hypothesis proposed 

by Shimoda et al., seems rather unlikely.  

Substitution of the autophosphorylation site T265 by phospho-mimetic and phospho-ablative 

amino acids and expression of the kinase domain alone is sufficient to activate the nodule 

organogenesis program in the absence of calcium spiking indicating that the CaM-BD and the 

VLD are dispensable for this process (Figure 8; Table 4). 
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Taken together, in the indigenous context and with endogenous expression levels, wild-type 

CCaMK with both calcium regulatory domains is required to support AM, root nodule 

development and rhizobial infection, indicating that CCaMK must be activated by calcium 

and Ca
2+

/CaM to gain a certain level of kinase activity. CCaMK overexpression on the other 

hand demonstrated that the VLD is dispensable for the establishment of both symbioses and 

required for the activation of CCaMK, while the CaM-BD was specifically required for 

rhizobial infection processes, but its precise function apart from CCaMK activation remains to 

be determined. 

2 Positive and negative regulation of CCaMK by autophosphorylation 

CCaMK is capable of regulating its own activity by autophosphorylation. Currently three 

autophosphorylation sites have been identified which are: LjT265/MtT271, LjS337/MtS343 

and LjS338/Mt344 (Gleason et al., 2006; Liao et al., 2012; Routray et al., 2013; Tirichine et 

al., 2006). T265 was initially identified in L. longiflorum CCaMK (LlT267) as calcium-

induced in vitro autophosphorylation site (Sathyanarayanan et al., 2001). The finding that the 

spontaneously nodulating L. japonicus snf1-1 mutant carried a mutation in the orthologous 

site implied that T265 is an important regulatory site in legume CCaMKs and analogous to 

the activating mechanism of LlCCaMK suggested that elevated calcium concentrations lead to 

its phosphorylation with subsequent activation of CCaMK (Sathyanarayanan et al., 2000; 

Tirichine et al., 2006). However, experimental proof in vitro and in vivo that this site is indeed 

autophosphorylated upon calcium stimulation in legume CCaMKs is lacking. The finding that 

phospho-mimetic and phospho-ablative substitutions of this site equally lead to spontaneous 

nodule formation with no significant difference in spontaneous nodule number was 

unexpected and indicated that both replacements lead to the deregulation of the kinase as 

suggested by homology modeling (Shimoda et al., 2012). Nevertheless, as revealed in this 

study, both versions showed differences. Compared to wild-type CCaMK, CCaMK-T265D 

displayed much higher in vitro kinase activity (Figure 9A), and a large proportion of the 

nodules remained uninfected after treatment with rhizobia (Figure 5C and Table 1), 

suggesting that CCaMK-T265D is hyperactive. In contrast, CCaMK-T265A apart from 

forming spontaneous nodules in the absence of rhizobia behaved more wild-type-like in terms 

of in vitro kinase activity and restoration of symbiosis. In summary, from the observation that 

phospho-mimetic and phospho-ablative mutations equally lead to a gain-of-function 

phenotype of CCaMK, no conclusions can be drawn whether autophosphorylation at T265 is 

induced upon calcium stimulation (symbiosis signaling) or is the default state under 

asymbiotic conditions and conversely, dephosphorylation is the activating mechanism. The 
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latter hypothesis is supported by the recent finding that various spontaneous nodulation 

inducing MtCCaMK mutant versions lack autophosphorylation of MtT271 in vitro, while the 

wild-type protein and other CCaMK versions, which do not trigger spontaneous nodules, are 

autophosphorylated at this site (B. Miller and G. Oldroyd, personal communication). This 

model is equally possible, but calls for the existence of an yet unidentified, probably calcium 

inducible phosphatase regulating CCaMK activity. Thus, the current working model of 

CCaMK activation, which was built from the analysis of LlCCaMK and also applied to 

legume CCaMK activation might be incorrect and is likely to be substantially refined in the 

near future. 

Mass spectrometric analysis of calcium-induced CCaMK autophosphorylation and the 

identification of the ccamk-14 mutant pinpointed LjS337 as autophosphorylation site required 

to negatively regulate CCaMK activity. The phospho-mimetic form is impaired in CaM 

binding and the single amino acid substitution was sufficient to completely abolish symbiosis 

establishment. A similar finding was recently obtained with M. truncatula CCaMK, where a 

phospho-mimetic substitution of MtS344 (orthologous site to LjS338) led to the same 

impairment (Routray et al., 2013). In addition, the analysis of the MtCCaMK-T271A-S344D 

double mutant revealed that S344D was epistatic to T271A and suppressed spontaneous 

nodulation (Routray et al., 2013). Autophosphorylation of the CaM-BD was therefore 

proposed as a negative regulatory switch shutting off the kinase when calcium concentrations 

decline and CaM dissociates (Routray et al., 2013). 

Whether LjT265/MtT271 is a negative or positive regulatory autophosphorylation site 

remains unclear, but due to the fact that LjS337 and MtS344 phosphorylation have a negative 

effect, autophosphorylation may in general lead to CCaMK deactivation. This would 

represent the most parsimonious model implicating a single CCaMK activation step by a 

regulating phosphatase. In this view the proposed model of CCaMK activation might be 

refined in the following way: Under basal calcium concentrations CCaMK is 

autophosphorylated at S337 and S338 which prevents Ca
2+

/CaM binding. Simultaneously, 

CCaMK is autophosphorylated at T265 which only in the phosphorylated state partakes in a 

hydrogen-bond network, stabilizing the autoinhibitory helix. Calcium spiking leads to the 

activation of a putative phosphatase, dephosphorylating CCaMK. The association of T265 

with the hydrogen-bond network is then only disrupted after dephosphorylation of S337/S338. 

This causes the release of autoinhibition and exposes the CaM-binding domain which 

subsequently binds Ca
2+

/CaM and ultimately stimulates substrate phosphorylation activity.  

How nodule organogenesis is prevented during AM establishment is still unclear but this 
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study provides evidence that AM formation negatively impacts on (spontaneous) nodulation, 

and possible mechanisms have been proposed (see discussion in chapter 1). With regard to the 

alternative CCaMK activation model and considering the hypothesis that CCaMK is 

differentially activated by AM signals, the possibility exists, that CCaMK is not 

dephosphorylated at T265 during AM signaling. Thus it still remains to be solved whether 

lack of nodule formation in AM involves differential activation of CCaMK, another 

mechanism, or both. 

3 The role of CCaMK and CYCLOPS in nodule organogenesis 

Auto-activated CCaMK is able to trigger the nodule organogenesis program (Gleason et al., 

2006; Tirichine et al., 2006). Nodule organogenesis depends on the induction of cytokinin 

production in the root cortex which in L. japonicus is perceived by the cytokinin receptor 

Lotus Histidine Kinase I (LHKI) (Tirichine et al., 2007). A gain-of-function mutation in the 

extracellular domain of this receptor LHKI
L266F

 leads to auto-activity triggering the formation 

of spontaneous nodules, while the loss-of-function mutant hit1-1 (HYPERINFECTED 1) is 

characterized by the extensive formation of ITs but lack of nodule formation (Gonzalez-Rizzo 

et al., 2006; Murray et al., 2007; Tirichine et al., 2007). CCaMK acts upstream of LHKI, as no 

spontaneous nodules are formed in snf1 hit1-1 double mutants (Madsen et al., 2010). In 

addition, genetic analysis has demonstrated that the GRAS proteins NSP1 and NSP2 and the 

transcriptional activator NIN are required for nodule organogenesis downstream of LHKI 

(Madsen et al., 2010; Tirichine et al., 2007). It is currently unknown how cytokinin 

production is induced during RNS to promote nodule organogenesis. The observation that 

CYCLOPS acts downstream of CCaMK and nodule organogenesis by autoactive CCaMK in 

cyclops mutants is severely (albeit not entirely) impaired (Madsen et al., 2010; Ovchinnikova 

et al., 2011; Yano et al., 2008), while autoactive CYCLOPS-DD induces nodules 

independently of CCaMK, suggests that cytokinin production is triggered downstream of 

CYCLOPS and might be mediated by CYCLOPS itself. cyclops snf2 double mutants are not 

impaired in spontaneous nodule organogenesis, which indicates that CYCLOPS acts upstream 

of LHKI (Madsen et al., 2010).  

In this study CYCLOPS was identified as transcription factor which directly targets the 

promoter of the NIN gene, which is required for nodule organogenesis and rhizobial infection. 

Further, a palindromic CYCLOPS binding site ‘CYC-box’ was identified which is proposed to 

be specifically bound by phosphorylated CYCLOPS. Due to the symbiosis-deficient 

phenotype of cyclops mutants it is likely that NIN is not the only CYCLOPS target and 

several targets with the same or a CYC-box similar binding site might exist. It is also possible 
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that cytokinin induction is mediated by NIN, or further downstream via NIN target genes. 

Three NIN target genes with a role in initiation of cortical cell divisions and rhizobial 

infection have been identified (Soyano et al., 2013; Xie et al., 2012). The promoters of the 

genes encoding the nuclear factors NF-YA1 and NF-YB1 are directly bound and activated by 

NIN and the ectopic expression of NF-YA1 and NF-YB1 as well as NIN overexpression 

induced cortical cell divisions leading to the formation of nodule primordia-like structures 

(Soyano et al., 2013). However, full-sized nodules were not formed, suggesting that either 

NIN expression alone is not sufficient, or that ectopic expression impaired further nodule 

development. Considering the possibility that NIN does not trigger the cytokinin biosynthesis 

machinery, the lack of cytokinin synthesis during NIN overexpression may account for the 

arrest in nodule development. NIN expression is partly regulated by cytokinin depending on 

the cell type (Heckmann et al., 2011). In the cortex, where nodules are formed, NIN induction 

depends on cytokinin (Heckmann et al., 2011) and requires de novo protein synthesis, 

indicating that NIN is not a primary response gene (Plet et al., 2011; Tirichine et al., 2007). In 

the epidermis where infection is initiated, NIN induction is cytokinin independent (Plet et al., 

2011). NIN was also shown to bind to the promoter of the NPL gene, encoding a putative cell 

wall degrading enzyme involved in the initial steps of rhizobial root hair infection (Xie et al., 

2012). This finding suggests that one epidermal function of NIN is the induction of NPL in 

root hairs to permit rhizobial infection. The finding that NPL expression is impaired in 

cyclops mutants, and the almost identical phenotype of cyclops and npl mutants suggests, that 

NIN might also be activated by CYCLOPS in the epidermis (Hogslund et al., 2009; Xie et al., 

2012; Yano et al., 2008). Yet, as CYCLOPS-DD expression in ccamk mutants was not 

sufficient to restore rhizobial (and AM fungal) infection, the mode of action of CYCLOPS 

may be different (e.g. exerted by another CYCLOPS phospho-isoform) or may require the 

presence of CCaMK and/or additional interaction partners of the complex. Such a view is also 

supported by the finding that autoactive CCaMK is not sufficient to restore rhizobial infection 

in Nod factor receptor mutants, which points to the existence of a parallel calcium spiking 

independent signaling pathway required for infection, which also converges at CCaMK and 

may involve the initial calcium influx (Miwa et al., 2006b) which is induced upon rhizobial 

infection (Madsen et al., 2010; Shimoda et al., 2012). 

4 Conclusions and outlook 

CCaMK and CYCLOPS act together in the nucleus and emerge as a central hub in symbiosis 

signaling. With the identification of CYCLOPS as transcriptional regulator of symbiosis gene 

expression it is now possible to mechanistically explain how symbiosis-induced calcium 
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spiking is decoded and converted into a specific transcriptional response leading to the 

symbiosis specific gene expression pattern required for nodule development. 

The results provided in this study describe a novel and direct nuclear calcium signaling 

mechanism (Figure 42) whereby Ca
2+

/CaM stimulated CCaMK specifically phosphorylates 

CYCLOPS. The activating phopshorylation releases CYCLOPS from autoinhibition 

alleviating the DNA binding domain and promoting sequence specific DNA binding affinity 

to the CYC-box in the NIN promoter. NIN expression and the subsequent upregulation of two 

subunits of the heterotrimeric NF-Y complex, NF-YA1 and NF-YB1, are conceptually 

sufficient to explain the induction of nodule organogenesis. Considering the severity of the 

cyclops mutant phenotype, the induction of only one target gene by activated CYCLOPS is 

unlikely. Therefore, the identification of novel CYCLOPS target genes will add to our 

knowledge about the targets of the CCaMK/CYCLOPS complex. Furthermore, it is obvious 

that further associated proteins, e.g. CaM, phosphatases and components of the transcriptional 

machinery are associated with the complex, whose identification will shed light on the 

mechanism of activation, action and regulation of this central signaling complex.  

Initial biochemical characterization in this study suggests that CCaMK and CYCLOPS are 

each assembled as oligomer, which implies that both form a large multimeric complex. 

Therefore, a detailed biochemical characterization and ultimately, the analysis of the crystal 

structure of the single components and of the assembled complex will be key steps towards a 

comprehensive understanding of this central node in symbiosis signaling. 
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