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Summary 
Mitochondria are often described as molecular power stations of the cell as they 

generate most of the energy that drives cellular processes. Mitochondria are eukaryotic 

organelles with bacterial origin that contain an extra-nuclear source of genetic 

information. Although most mitochondrial proteins are encoded in the nucleus, the 

mitochondrial genome still encodes key components of the oxidative phosphorylation 

machinery that is the major source for cellular adenosine 5’-triphosphate (ATP). The 

mitochondrial genome is transcribed by a singlesubunit DNA-dependent RNA 

polymerase (RNAP) that is distantly related to the RNAP of bacteriophage T7. Unlike 

its T7 homolog, mitochondrial RNA polymerase (mtRNAP) relies on two transcription 

factors, TFAM and TFB2M, to initiate transcription. The previously solved structure of 

free mtRNAP has revealed a unique pentatricopeptide repeat (PPR) domain, a  

N-terminal domain (NTD) that resembles the promoter-binding domain of T7 RNAP and 

a C-terminal catalytic domain (CTD) that is highly conserved in T7 RNAP. The CTD 

adopts the canonical right-hand fold of polymerases of the pol A family, in which its 

‘thumb’, ‘palm’ and ‘fingers’ subdomains flank the active center. Since the structure 

represents an inactive “clenched” conformation with a partially closed active center, 

only limited functional insights into the mitochondrial transcription cycle have been 

possible so far. 

This work reports the first crystal structure of the functional human mtRNAP 

elongation complex, determined at 2.65 Å resolution. The structure reveals a 9-base 

pair DNA-RNA hybrid formed between the DNA template and the RNA transcript and 

one turn of DNA both upstream and downstream of the hybrid. Comparisons with the 

distantly related T7 RNAP indicate conserved mechanisms for substrate binding and 

nucleotide incorporation, but also strong mechanistic differences. Whereas T7 RNAP 

refolds during the transition from initiation to elongation, mtRNAP adopts an 

intermediary conformation that is capable of elongation without NTD refolding. The 

intercalating hairpin that melts DNA during mtRNAP and T7 RNAP initiation additionally 

promotes separation of RNA from DNA during mtRNAP elongation.  

The structure of the mtRNAP elongation complex (this work) and free mtRNAP 

(previously published) demonstrate that mtRNAP represents an evolutionary 

intermediate between singlesubunit and multisubunit polymerases. Furthermore, it 

illustrates the adaption of a phage-like RNAP to a new role in mitochondrial gene 

expression. 
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1 Introduction 

1.1 Gene transcription 
 

Genetic information is fundamental for all life and is universally stored in form of 

deoxyribonucleic acid (DNA). In 1958 Francis Crick described the directional flow of 

genetic information from DNA via ribonucleic acid (RNA) to proteins as the “central 

dogma” of molecular biology (Crick, 1970). Here, transcription is the process in which 

RNA is synthesized from a DNA template by DNA-dependent RNA polymerases 

(RNAPs) (Weiss and Gladstone, 1959). Based on structural homology, RNAPs can be 

grouped into two classes, multisubunit and singlesubunit polymerases, that are the 

product of convergent evolution (Cramer, 2002a).  

 

1.1.1 Multisubunit RNA polymerases  
 

Gene transcription by multisubunit RNA polymerases is found over all three kingdoms 

of life. Whereas bacteria and archaea rely on a single multisubunit polymerase to 

transcribe their entire genome, eukaryotes have three multisubunit polymerases that 

synthesize different kinds of RNA from their nuclear genome (Roeder and Rutter, 

1969). RNAP I is located in the nucleoli and transcribes the precursor of 18S, 5.8S and 

28S ribosomal RNA (rRNA) (Grummt, 2003). RNAP II is located in the nucleoplasm 

and transcribes messenger RNA (mRNA) from all protein coding genes, small 

nucleolar RNAs (snoRNAs) and some small nuclear RNAs (snRNAs) (Wyers et al., 

2005). Also located in the nucleoplasm, RNAP III transcribes 5S rRNA and all transfer 

RNAs (tRNAs) (Weinmann and Roeder, 1974; Zylber and Penman, 1971). Recently, 

two additional, but non-essential plant-specific RNAPs, RNAP IV and RNAP V, have 

been described to be involved in the formation and maintenance of heterochromatin by 

RNA interference (Lahmy et al., 2010; Pontier et al., 2005).  

 

Even though multisubunit polymerases differ in their subunit composition, they 

all share the general overall structure of a crab claw consisting of up to 17 polypeptide 

subunits (Cramer, 2002b). The highly conserved active center cleft indicates a general 
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catalytic mechanism for all multisubunit polymerases. Variations are commonly found 

in peripheral subunits and accessory factors essential for transcriptional regulation 

(Cramer et al., 2008). Whereas RNAP initiation in bacteria relies on a single regulatory 

factor, the sigma factor, for promoter recognition and enzyme recruitment, archaea 

employ two factors, TFB and the TATA-binding protein (TBP) for transcription initiation 

(Geiduschek and Ouhammouch, 2005; Mooney et al., 2005). The much bigger 

eukaryotic RNAP I, II and III utilize a large set of regulatory factors to fulfill the cellular 

needs for transcription regulation (Roeder, 1996).  

 

1.1.2 Singlesubunit RNA polymerases  
 

Singlesubunit RNAPs are found in bacteriophages (e.g. T7 phage) and eukaryotic cell 

organelles (e.g. mitochondria) (Masters et al., 1987; Tiranti et al., 1997). The respective 

enzymes consist of only one polypeptide chain and adapt the canonical architecture of 

a right-hand including a palm, fingers and thumb subdomain similar to DNA 

polymerases (DNAPs) (Cheetham et al., 1999; Ringel et al., 2011). 

 

The best-characterized singlesubunit RNA polymerase is the bacteriophage T7 

RNAP. Over the last 18 years, several structures illuminated T7 RNAP in its initiation 

state (Cheetham and Steitz, 1999), the transition state from initiation to elongation 

phase (Yin and Steitz, 2002), the four different steps of the nucleotide addition cycle 

during elongation (Cheetham et al., 1999; Durniak et al., 2008; Jeruzalmi and Steitz, 

1998; Tahirov et al., 2002; Temiakov et al., 2004; Yin and Steitz, 2004) and an 

inhibitory state in which with T7 RNAP is complexed with T7 lysozyme (Jeruzalmi and 

Steitz, 1998). In eukaryotes, the singlesubunit mitochondrial DNA-dependent RNA 

polymerase (mtRNAP) transcribes a small mitochondrial genome that encodes rRNAs, 

tRNAs and a few subunits of respiratory chain complexes that are involved in cellular 

ATP production (Sologub et al., 2009). 

 

Despite their high degree of structural conservation, singlesubunit RNAPs serve 

distinct biological roles. In T7-like phages, singlesubunit RNAPs are optimized to 

produce large quantities of mRNA transcripts to compete the host RNAP (Studier, 
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1972). In contrast, mitochondrial and plastid RNAPs synthesize diverse types of RNA 

and must coordinate transcription with processing, editing and translation in context of 

the changing needs of the cell (Asin-Cayuela and Gustafsson, 2007; Yin et al., 2010). 

Although all these singlesubunit RNAPs are evolutionary conserved and contain a 

highly conserved catalytic core (Masters et al., 1987), they achieve their specific roles 

by using different strategies. T7 RNAP is a self-sufficient polymerase that is highly 

specific for its promoters (Cheetham et al., 1999). Promoter initiation is factor-

independent and the transition into elongation phase is achieved by a major domain 

rearrangement of the N-terminal domain (NTD) (Tahirov et al., 2002; Yin and Steitz, 

2002). In human mtRNAP, structural alterations observed in the promoter binding 

domain require the enzyme to recruit two transcription initiation factors for promoter 

specificity, binding and melting (Litonin et al., 2010; Ringel et al., 2011). Release of 

these factors marks the transition to the elongation phase of transcription, a 

mechanism commonly employed by multisubunit RNAPs (Borukhov and Nudler, 2008). 

 

1.1.3 Evolution of DNA-dependent RNA polymerases 
 

Increased genetic complexity in higher organisms does not necessarily correlate with 

an enlarged number of genes but rather with an increased need for gene expression 

and regulation (Levine and Tjian, 2003). This circumstance is reflected by the varying 

sequence and structure compositions of RNAPs (Levine and Tjian, 2003). Since 

multisubunit polymerases and bacteriophage-like singlesubunit polymerases do not 

share structural similarities it is likely that they have evolved from separate ancestors 

(Cermakian et al., 1997; Werner and Grohmann, 2011). 

 

Multisubunit polymerases comprise a common subunit architecture including 

the central cleft with its three catalytic aspartate residues (Cramer et al., 2008). 

According to the ‘RNA world hypothesis’ postulated by Steitz in 1993, this enzyme 

class evolved from an ancient homodimeric ribozyme without any catalytic activity 

(Steitz and Steitz, 1993). It was suggested that during evolution the homodimeric 

architecture converted into a heterodimeric core, RNA components were lost and 

polymerase activity was acquired (Iyer et al., 2003). Through an increasing recruitment 



INTRODUCTION 

4 
 

of regulatory factors, the subunit complexity of multisubunit polymerases rises from 

bacteria to archaea and eukaryotes (Carter and Drouin, 2010). 

 

Although singlesubunit polymerases do not show significant homologies with 

their multisubunit relatives, they provide a strong sequence and structure conservation 

within their class (Cermakian et al., 1997). It was postulated that they evolved from 

ancient DNAPs or reverse transcriptases (Cermakian et al., 1997; Delarue et al., 1990; 

Steitz et al., 1994). Among the six families of singlesubunit DNAPs (A, B, C, D, F, X, Y) 

singlesubunit RNAPs are most similar to the pol A Klenow fragment of Escherichia coli 

(E.coli) DNAP I (Cermakian et al., 1997; Sousa, 1996). From the phylogenetic point of 

view it needs to be further investigated at which stage of evolution the ancestor 

singlesubunit RNAP gene was acquired (Cermakian et al., 1997). 

 

According to the widely accepted endosymbiotc theory, mitochondria evolved 

from an ancient bacteria that was engulfed by a primitive eukaryotic cell (Gray, 2012). 

A striking argument herefore is the ancestry of key components of the mitochondrial 

transcription and replication machinery with T7 bacteriophages (Shutt and Gray, 2006). 

Since phage-like genes were found in bacterial genomes, it seems likely that the 

mtRNAP gene was acquired as part of the endosymbiotic genome instead of a direct 

attendence of a phage-like entity (Shutt and Gray, 2006). Initially functioning as a 

primase during DNA replication, mtRNAP later acquired the ability to transcribe genes 

encoded in the mitochondrial genome (Shutt and Gray, 2006). With this central role in 

mitochondrial gene expression, mtRNAP replaced the bacterial-like multisubunit RNAP 

that was originally acquired from the protobacterial genome into the eukaryotic cell 

(Shutt and Gray, 2006). 

 

1.1.4 The nucleotide addition cycle  
 

Even though there are many structural and functional aspects that distinguish 

singlesubunit polymerases from multisubunit polymerases, they both share the 

conserved mechanism of nucleotide addition (Sousa, 1996; Temiakov et al., 2000). 



INTRODUCTION 

5 
 

 
 

Figure 1 - Scheme of nucleotide addition cycle of RNAPs during elongation. 
Nucleic acids are shown as lines (DNA, blue; RNA, red), Mg2+ ions (green) and the O helix of 
the fingers domain (pink) as spheres, nucleoside triphosphate (NTP) as line with three spheres 
(orange). An incoming NTP binds to the pre-insertion complex of the post-translocated RNAP 
(lower left). Upon a conformational change of the O helix in the RNAP fingers domain, the NTP 
is properly positioned for later insertion (upper left). A Mg2+ catalyzed phosphoryl transfer 
reaction results in the incorporation of the NTP at the 3'-end of the RNA, extending it by +1 and 
coordinating pyrophosphate (PPi) by metal ions (upper right). The release of the PPi and the 
Mg2+ ions is accompanied by a translocation step, enabling RNAP to bind another NTP in the 
insertion site again (lower right). (Scheme adapted from (Yin and Steitz, 2004)). 
 
 

During recent years T7 RNAP became the best characterized singlesubunit 

polymerase with many functional states visualized in crystal structures (Steitz, 2009). 

As exemplarily shown for the T7 system, elongation can be divided into four stages 
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termed nucleotide addition cycle (Fig. 1). An incoming nucleoside triphosphate (NTP) 

approaches the active center of the post-translocated polymerase causing an open 

conformation due to initial interactions between the substrate phosphate backbone and 

two O helix residues (substrate pre-insertion complex) (Temiakov et al., 2004). A 

rotation of the fingers subdomain causes the active center to close and to properly 

position the substrate NTP for the insertion reaction (substrate insertion complex) (Yin 

and Steitz, 2004). A Mg2+ catalyzed phosphoryl transfer reaction results in the 

extension of the nascent RNA chain by one nucleotide. The pyrophosphate (PPi) forms 

an ionic cross-link with both a metal ion and the protein (pre-translocated complex) (Yin 

and Steitz, 2004). Dissociation of PPi and Mg2+ ions is accompanied by the formation of 

an open complex and the translocation of the DNA-RNA hybrid (post-translocated 

complex) (Yin and Steitz, 2004). Another conformational change in the fingers 

subdomain causes the unwinding of the downstream DNA duplex by one base pair. 

DNA backtracking is avoided by a stacking interaction of a tyrosine residue into the 

insertion site of the post-translocated complex until another NTP is bound for the next 

round of the nucleotide addition cycle (Sousa, 1996). 

Due to the high sequence and structure homology between mtRNAP and T7 

RNAP it was suggested that the nucleotide addition cycle in mitochondria is conserved 

(Masters et al., 1987; Ringel et al., 2011). 

 

1.2 Origin and function of mitochondria 
 

Mitochondria are eukaryotic dual-membrane organelles that contain their own genome. 

The outer membrane separates the organelle from the cellular cytosol, whereas the 

inner membrane forms inward foldings called cistrae. Mitochondria are the power 

stations of the cell since they are responsible for adenosine 5’-triphosphate (ATP) 

synthesis through their oxidative phosphorylation system (OXPHOS) (Hatefi, 1985). 

Beside its role in energy production, the mitochondrion is the stage for a variety of 

other important metabolic processes, such as the regulation of apoptosis, nucleotide 

biosynthesis, control of cytosolic calcium concentration, cellular differentiation and fatty 

acid metabolism (Brookes et al., 2002; Carafoli, 1970; Chen et al., 2012; Green and 

Reed, 1998; Ott et al., 2007). Remarkably, only genes involved in OXPHOS are 

encoded in the mitochondrial genome itself (Bonawitz et al., 2006). 
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The origin of mitochondria is still highly debated. The maintenance of its own 

genome is the most striking evidence that mitochondria are derived from ancient 

bacteria (Gray and Doolittle, 1982). The generally accepted endosymbiotic hypothesis 

suggests that the mitochondrion was inherited from an α-proteobacterium that 

developed a symbiotic relationship with a primitive eukaryotic cell over two billion years 

ago (Martin and Muller, 1998). Phylogenic data suggests that this partnership enabled 

them to use increasing amounts of oxygen in the atmosphere in a non-toxic way 

(Andersson et al., 2003). Over time, bacterial genes were either lost or transferred from 

the mitochondrial to the nuclear genome (Martin et al., 2005). Today, except for some 

OXPHOS genes, most proteins needed in the mitochondrion are encoded in the 

nuclear genome (Becker et al., 2012). There are three potential reasons why the cell 

still accepts the high effort of keeping some genes encoded in the mitochondrion 

(Adams and Palmer, 2003). First, some proteins might be too hydrophobic for being 

imported across the mitochondrial membrane into the organelle (Popot and de Vitry, 

1990). This seems plausible since the two OXPHOS genes encoding cytochrome b 

and cytochrome c oxidase subunit I are two of the most hydrophobic proteins in a 

eukaryotic cell (Claros et al., 1995; Popot and de Vitry, 1990; von Heijne, 1986). 

Second, mitochondria and the nucleus might have evolved a different codon usage that 

makes mitochondrial genes unreadable in the nucleus and most likely stopped further 

gene transfer (Andersson and Kurland, 1991). Third, direct gene expression within the 

mitochondrion may be crucial for a metabolic control mechanism that regulates the 

response to energy requirements in eukaryotes (Allen, 1993). In general a small 

genome makes it easier to quickly respond to environmental changes (Wallace, 2007). 

Mitochondrial gene expression may be directly influenced by the oxidative state or the 

activity of the electron transport chain in mitochondria. A similar example of a rapid and 

direct redox control was found in chloroplasts of plants (Pfannschmidt et al., 1999). 

During evolution, the mitochondrial genome may have lost some genes whose 

function is replaced by unrelated genes of the nucleus (Gray and Lang, 1998). One 

prominent example here is the substitution of the originally multisubunit bacteria-like 

RNA polymerase by a singlesubunit bacteriophage-like T7 RNAP responsible for 

mitochondrial transcription (see also chapter 1.1.3). Regardless of the several reasons 

for gene transfer, the crosstalk between both genomes has been maintained 

throughout evolution to efficiently regulate mitochondrial activities (Gray and Lang, 

1998). 



INTRODUCTION 

8 
 

1.3 The mitochondrial transcription machinery  

1.3.1 The mitochondrial genome  

 

The mitochondrial DNA (mtDNA) is a double-stranded, circular genome that represents 

the only extra-nuclear source of DNA in mammals (Nass, 1966). In contrast to its 

nuclear relative, mtDNA is inherited maternally as mitochondria from sperm cells are 

actively eliminated during early stages of the cell development (Sutovsky et al., 1997). 

The mitochondrial genome is organized in histone-free structures, the so-called 

nucleoids (Bogenhagen et al., 2008; Bogenhagen et al., 2003). Depending on their 

tissue specific energy demand, cells contain between 1,000 to 10,000 copies of mtDNA 

(Shadel and Clayton, 1997; Taylor et al., 2005). Cells with a huge energy usage like 

brain, liver and muscle cells contain a higher copy number of mtDNA (Bonawitz et al., 

2006).  

Both strands of the mtDNA provide an uneven nucleotide content and were 

therefore characterized as guanine rich (heavy) and guanine poor (light) DNA strand 

(Anderson et al., 1981). Although the size of mtDNA varies from 16.6 kbp in human to 

75 kbp in yeast Saccharomyces cerevisiae (S.c.) it always encodes for 37 genes: the 

heavy strand encodes for two rRNAs of mitochondrial ribosomes, 12 mRNAs of the 

approximately 80 key subunits of the oxidative phosphorylation machinery and 

14 tRNAs essential for mitochondrial translation, whereas the light strand encodes for 

only one mRNA and 8 tRNAs (Fig. 2) (Anderson et al., 1981). The rest of the 

approximately 1,500 proteins needed for the metabolic activity of mitochondria are 

encoded in the nuclear genome, transcribed by nuclear RNAPs, synthesized in the 

cytosol and imported into mitochondria via a cleavable N-terminal mitochondrial 

localization signal (MLS) sequence (Mokranjac and Neupert, 2005). Similarly, the basic 

components of the mitochondrial transcription machinery are not encoded in the 

organelle itself. Consequently mitochondrial transcription regulation relies on both 

genomes. Another unique feature of the human mitochondrial genome is the lack of 

introns (Gaspari et al., 2004b). Gene sequences are so closely arranged that some 

even overlap. The only major non-coding region was characterized as displacement 

loop (D-loop) since both genomic DNA strands are displaced through a third, 500-

700 bp heavy strand DNA product (7S DNA) (Shadel and Clayton, 1997). 
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Figure 2 - Schematic map of the human mitochondrial genome. 
The heavy and the light strand are depicted as the outer and inner circle respectively, 
comprising coding regions for mRNA (blue), rRNA (green), tRNA (orange) and non-coding 
regions (violet). Transcription is initiated from two promoters on the heavy strand (HSP1 and 
HSP2) and only one promoter on the light strand (LSP). Termination of transcripts from the 
HSP1 is introduced downstream of the 12S rRNA by binding of the mitochondrial transcription 
termination factor mTerf1 to its binding region (TERM1). Replication of mtDNA is initiated from 
one origin of each strand (OH and OL). (Scheme adapted from (Greaves et al., 2012).) 
 

 

The D-loop accommodates well-conserved regulatory elements for transcription and 

replication (Gaspari et al., 2004b). A second non-coding element for mitochondrial 

replication is located in a minor non-coding region roughly 5,000 bp apart from the D-

loop. Transcription in mitochondria is initiated on the strand specific promoters named 

light strand promoter (LSP) and heavy strand promoters 1 and 2 (HSP1 and HSP2) 

(Fig. 2). Transcripts generated from LSP or HSP2 have genomic length, i.e. 

encompass all genetic information of the respective strand, and are subsequently 

processed in individual species of RNA (Montoya et al., 1982). Transcription from the 

HSP1 is terminated after synthesis of the 12S rRNA (Clayton, 1991; Ojala et al., 1981). 
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An earlier study has shown that the transcription rate from HSP1 is more than 50 times 

higher than from HSP2 (Gelfand and Attardi, 1981). Therefore, the existence of two 

HSPs could be due to a flexible regulation of the ratio of rRNA to mRNA in respect of 

physiological changes (Kucej et al., 2008). 
 

1.3.2 Mitochondrial RNA polymerase  
 

The mitochondrial genome is transcribed by the singlesubunit polymerase mtRNAP. 

Unlike most other known eukaryotic polymerases, mtRNAP is not related to 

multisubunit polymerases in bacteria (Masters et al., 1987). Instead, mtRNAP 

comprises extensive sequence homology with singlesubunit RNAPs encoded by T3 

and T7 bacteriophages (Cermakian et al., 1997). 

 

Although the human mtRNAP was initially identified in 1997 (Tiranti et al., 

1997), it took another 14 years to gain further insights into its structural features (Nayak 

et al., 2009; Ringel et al., 2011). MtRNAP comprises three major domains, 

characterized as the highly conserved C-terminal domain (CTD), the minor conserved 

NTD and an N-terminal extension domain (NED) that is missing in the coding sequence 

of T7 RNAP (Fig. 3). 

 

The CTD (residues 648-1230) can also be classified as the catalytic domain, as 

it harbors regions that are involved in essential polymerase activities like DNA template 

and nucleotide binding as well as nucleotide incorporation. As shown in a recent crystal 

structure, the CTD adopts the canonical right-hand fold that is typical for members of 

the pol A family (Joyce and Steitz, 1994; Ringel et al., 2011). A ‘thumb,’ ‘palm’ and 

‘fingers’ subdomain flank the active center (Ringel et al., 2011). Within the palm 

domain, the highly conserved aspartic acids, D922 and D1151, coordinate two divalent 

Mg2+ cations that are essential for catalytic activity of the polymerase (Smidansky et al., 

2011). The O helix, which is part of the fingers domain, also contributes to catalysis as 

well as substrate selection and translocation of the nascent RNA strand (Doublie and 

Ellenberger, 1998; Kiefer et al., 1997; Yin and Steitz, 2002). 
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Figure 3 - Domain structure of free human mtRNAP and T7 RNAP determined by 
X-ray crystallography.  
(a) MtRNAP (PDB code 3SPA, (Ringel et al., 2011)) is depicted as a ribbon (orange, thumb; 
green, palm; pink, fingers; purple, intercalating hairpin; slate, pentratricopeptide repeat (PPR). 
The N-terminal extension domain (NED, residues 1-217), a part of the intercalating hairpin 
(residues 592-602), the specificity loop (residues 1086-1105) and half of the thumb subdomain 
(residues 726-769) are unstructured in the crystal structure and therefore represented as 
dashed lines. A Mg2+ ion (magenta) was placed according to a T7 RNAP structure (Yin and 
Steitz, 2004).  
(b) T7 RNAP (PDB code 1ARO, (Jeruzalmi and Steitz, 1998)) structural domains are colored as 
in (a). The catalytic Mg2+ ion was also placed according to another T7 RNAP structure (Yin and 
Steitz, 2004). The co-crystallized lysozyme moiety was omitted for clarity. 
(c) Schematic domain comparison of mtRNAP and T7 RNAP. Structural elements are 
highlighted in the same color code as in (a) and (b). Beneath a highly conserved CTD and a 
minor conserved NTD mtRNAP comprises a PPR domain and a NED domain. (Scheme 
adapted from (Ringel et al., 2011)). 

 

Since the recent crystal structure of free mtRNAP reveals an inactive ‘clenched’ 

conformation with a partially closed active center, further functional insights are 

restrained (Ringel et al., 2011). Another structural element of the fingers subdomain is 
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the specificity loop that contributes to promoter recognition and the formation of the 

RNA exit channel in the T7 system (Paratkar and Patel, 2010; Temiakov et al., 2000; 

Yin and Steitz, 2002). No structural or functional analogy could be assigned for the 

specificity loop in human mtRNAP. Recent studies in yeast revealed that the S.c. 

RNAP (Rpo41) utilizes similar structural elements to specifically recognize the 

promoter sequence in the absence of transcription factors (Matsunaga and Jaehning, 

2004b; Nayak et al., 2009).  

In contrast to mtRNAP, T7 RNAP possesses a short insertion in the fingers 

domain, termed fingers flap that interacts with the downstream DNA duplex during 

transcription elongation. In the mitochondrial system this function could have been 

overtaken by additional transcription factors (Guo et al., 2005). 

 

The NTD (residues 369-647) comprises two loops that correspond to functional 

elements in T7 RNAP: the AT-rich recognition loop and the intercalating hairpin (Steitz, 

2009; Temiakov et al., 2004). The AT-rich recognition loop binds promoter DNA during 

initiation of T7 RNAP but is sequestered by a pentatricopeptide repeat (PPR) domain in 

mtRNAP and not required for mtRNAP initiation (Ringel et al., 2011). In the RNAP of 

bacteriphage N4, the AT-rich recognition loop is capable of specifically recognizing 

hairpin-shaped promoters (Davydova et al., 2007). Its specific role in the mitochondrial 

transcription system needs to be further investigated. The intercalating hairpin is 

involved in promoter melting, as shown by a deletion mutant that was not able to 

initiate transcription from double-stranded promoter templates (Ringel et al., 2011). In 

the T7 system the intercalating hairpin also melts DNA during transcription initiation but 

is repositioned far away from the nucleic acids during the transition from initiation to 

elongation in which a massive NTD refolding takes place (Yin and Steitz, 2002). It is 

unknown whether a similar refolding of the NTD occurs in mtRNAP and what the 

function of the intercalating hairpin during mitochondrial transcription elongation is. 

 

The NED (residues 1-368) shows the highest degree of sequence variability 

between different species (Cermakian et al., 1997; Masters et al., 1987). Again, not 

much is known about this region in the human system. In yeast, the NED serves as a 

binding platform for transcription and translation factors as well as RNA processing 
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proteins (Paratkar et al., 2011; Rodeheffer and Shadel, 2003). The NED is attached to 

the NTD via a short proline-rich linker and comprises a MLS sequence, an 

uncharacterized, flexible region and a PPR domain (Ringel et al., 2011). The PPR 

domain consists of two tandemly arranged 35 residue repeats. These domains are 

exclusively found in plant and mitochondrial proteins which are involved in RNA editing 

and processing events (Delannoy et al., 2007; Small and Peeters, 2000). The need for 

the PPR domain in mtRNAP of higher eukaryotes is unknown. NED deletion studies in 

human mtRNAP showed that this domain is required for promoter specific transcription, 

but not for polymerase activity itself (Ringel et al., 2011). This result, in combination 

with the tight association of NED with the rest of human mtRNAP, indicates the 

functional importance of this domain (Ringel et al., 2011).  

 

Various studies discovered that mtRNAP provides additional, transcription-

independent functions such as ribosomal biogenesis (Surovtseva and Shadel, 2013). 

Since yeast mtRNAP functions as an ATP-sensor, it seems likely that human mtRNAP 

can also adjust protein expression levels in response to fluctuations in the ATP pool of 

mitochondria (Amiott and Jaehning, 2006). Even though the nuclear encoded mtRNAP 

is usually imported into mitochondria, an alternative splicing form was observed that 

accumulated in the nucleus for unidentified reasons (Kravchenko et al., 2005). Taken 

together, mtRNAP is not only the main component of the mitochondrial transcription 

machinery but also functions as a bridging element to other regulatory pathways. 

 

1.3.3 Transcription factors 
 

In order to efficiently initiate mitochondrial transcription mtRNAP relies on two 

transcription factors: TFAM and TFB1M or TFB2M (Fig. 4). Hence, the basal human 

mitochondrial transcription machinery in vitro consists of mtRNAP, TFAM, TFB1M or 

TFB2M and a DNA template containing HSP or LSP sequence (Falkenberg et al., 

2002). Both mtRNAP and Rpo41 can initiate transcription factor-independently on pre-

melted promoter sequences (Litonin et al., 2010; Matsunaga and Jaehning, 2004a). 

This indicates that initiation factors are exclusively needed for promoter recognition, 

melting. 
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Figure 4 - Scheme of the human mitochondrial transcription machinery.  
After specific TFAM (green) binding to the mitochondrial promoter DNA (e.g. HSP1), mtRNAP 
(dark blue) and TFB2M (purple) are recruited and form the mitochondrial initiation complex (IC). 
Regulatory factors that are discussed in the following chapter have been shown to have 
stimulating (↑) or inhibiting (T) effects on the IC. Whereas LRPPRC (red) and MRLP12 
(magenta) directly interact with mtRNAP, it needs to be further investigated how members of the 
mTerf1 family interact with the transcription machinery (brown, mTerf1; orange, mTerf2; yellow, 
mTerf3). MTerf1 induces HSP1-dependent termination by binding to a 22 bp region (TERM1) on 
the heavy strand of the mitochondrial genome. TEFM (light blue) was identified as the 
mitochondrial elongation factor as it enhances mtRNAP processivity in vitro.  

 

 

The need for transcription factors represents a major functional difference to the 

T7 system. Unlike mtRNAP, T7 RNAP can initiate transcription without the recruitment 

of additional factors (Chamberlin et al., 1983). Whereas mitochondrial transcription 

factors are released during the transition from initiation to elongation phase, the NTD of 

T7 RNAP undergoes an extensive structural rearrangement (Mangus et al., 1994; Yin 

and Steitz, 2002). Thereby, the contacts with the promoter sequence are lost and an 

RNA exit tunnel is formed by sub domain H, part of the NTD and the specificity loop 

(Tahirov et al., 2002; Yin and Steitz, 2002).  

 

1.3.3.1 TFAM 
TFAM was the first identified human mitochondrial factor that is recruited by mtRNAP 

to initiate transcription (Fisher and Clayton, 1985; Larsson et al., 1997). It is encoded in 
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the nuclear genome, synthesized in the cytoplasm and imported into mitochondria with 

the help of an N-terminal MLS sequence that is cleaved after translocation (Parisi and 

Clayton, 1991). The 25 kDa protein comprises the two high mobility group (HMG) 

boxes A and B, a 27 aa linker region and a 25 aa C-terminal domain (Fisher and 

Clayton, 1988). Like other members of the ubiquitous HMG box family of DNA binding 

proteins (Parisi and Clayton, 1991), TFAM can specifically or non-specifically bind, 

unwind and bend DNA. HMG box A is mainly responsible for DNA contacts, whereas 

HMG box B has only weak DNA affinity (Gangelhoff et al., 2009). Several deletion 

studies showed that the TFAM C-terminal domain is required for specific promoter 

binding during initiation (Gangelhoff et al., 2009). Two recent crystal structures showed 

that TFAM induces a U-turn in the promoter sequence (Ngo et al., 2011; Rubio-Cosials 

et al., 2011). Together with the linker region, each HMG domain stabilizes a kink of 90° 

by a series of basic amino acids that contact the negatively charged phosphate 

backbone of the DNA. Whether TFAM binds promoter DNA as a monomer or a dimer is 

still under debate (Gangelhoff et al., 2009). Recent studies indicate that TFAM binds to 

the NTD of mtRNAP, resulting in a promoter DNA bend around the polymerase 

(Morozov et al., 2014; Posse et al., 2014). 

 

TFAM is required for transcription initiation, from LSP and HSP1 but not from HSP2 

(Fisher and Clayton, 1985; Fisher et al., 1987; Litonin et al., 2010). Specific promoter 

selection is controlled in a TFAM concentration-dependent manner: LSP initiated 

transcription is activated under low TFAM concentrations, whereas transcription activity 

switches to HSP1 with increasing TFAM concentrations and transcription inhibition in 

the presence of TFAM over expression (Shutt et al., 2010). A tunable TFAM activity at 

different promoter regions may be needed to adjust protein synthesis to environmental 

changes (Rebelo et al., 2011). 

 

In addition to its function in promoter selection and transcription activation, 

TFAM also contributes to mitochondrial genome compaction and mtDNA copy control 

(Alam et al., 2003; Kaufman et al., 2007). Due to its unspecific DNA binding ability, 

TFAM is, together with other proteins, involved in nucleoid formation in human 

mitochondria (Kang et al., 2007; Ruhanen et al., 2010; Spelbrink et al., 2001; Wang 

and Bogenhagen, 2006). Increasing amounts of bound TFAM correlates with a 
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decrease of DNA accessibility for other DNA binding proteins (Alam et al., 2003; Fisher 

and Brown, 1980; Rebelo et al., 2011). High TFAM concentrations were shown to 

destabilize mtDNA in vivo, suggesting the importance of TFAM in cellular homeostasis 

and regulation of nucleoid activity (Ekstrand et al., 2004). TFAM stability itself may be 

regulated via post-translational phosphorylation of the protein or other interacting 

factors that are not identified as such yet (Lu et al., 2013; Matsushima et al., 2010).  

In general, TFAM induced conformational changes in the DNA both affect 

transcription and nucleoid stability, suggesting that the mitochondrial genome 

organization is coupled to transcription, similar to the bacterial system (Ohniwa et al., 

2007).  

In yeast, the TFAM homologue Abf2 also compacts mtDNA but does not have 

any activating contribution in transcription initiation due to the lack of the C-terminal 

domain (Diffley and Stillman, 1991). Therefore, the yeast mitochondrial transcription 

machinery is not a three-component system as found in human mitochondria, but a 

two-component system. 

 

 

1.3.3.2 TFB2M 
The third component of the human transcription machinery is TFB2M. Similar to the 

other components of the transcription machinery, it is encoded in the nuclear genome 

and translated across the mitochondrial membrane. TFB2M was originally identified 

together with a second protein named TFB1M (Falkenberg et al., 2002). Both proteins 

share a high sequence homology with an ancestral bacterial rRNA methyltransferase 

and are capable to dimethylate 12S rRNA of mitochondrial ribosomes in vitro (Cotney 

et al., 2009; Sologub et al., 2009). During evolution the function of TFB2M and TFB1M 

diverged, due to the variety of regulatory needs of mitochondria (McCulloch and 

Shadel, 2003). Recent studies revealed, that only TFB1M retained its rRNA 

methyltransferase activity and assists in the biogenesis of the small subunit of the 

mitochondrial ribosome (Seidel-Rogol et al., 2003). 

 

TFB2M on the other side lost its methylransferase activity during evolution and 

adapted the ability to activate mitochondrial transcription initiation (Sologub et al., 
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2009). Although both proteins were able to stimulate initiation in vitro, TFB2M was 

discovered to be several magnitudes more efficient than TFB1M (Falkenberg et al., 

2002). In addition, its transcriptional contribution is independent of the rRNA 

methyltransferase domain (Cotney et al., 2009) or non-specific DNA-binding affinities 

(McCulloch and Shadel, 2003). Although TFB2M does not provide any promoter 

recognition activity, it assists in promoter melting and contributes to an open complex 

formation (Gaspari et al., 2004a; Sologub et al., 2009). Moreover, TFB2M facilitates 

binding of the priming nucleotide in the active center of mtRNAP by a transient 

interaction of its N-terminal domain with the +1 and +3 bases of the DNA template 

strand (Litonin et al., 2010; Lodeiro et al., 2010; Sologub et al., 2009). Whether the 

overall structure of the mitochondrial initiation complex is stabilized by a direct 

interaction of TFB2M with the second essential transcription factor TFAM is still under 

debate (McCulloch and Shadel, 2003; Morozov et al., 2014). TFB2M binding affinities 

for the mtRNAP were only discovered in the yeast system (Diffley and Stillman, 1991). 

The yeast homologue of TFB2M, the mitochondrial transcription factor 1 (Mtf1) forms 

an interactive two-component system with Rpo41 for mitochondrial transcription, 

independent of the presence of Abf2 (Paratkar et al., 2011; Paratkar and Patel, 2010).  

 

1.3.3.3 TEFM 
Although current research focuses more and more on the investigation of mtRNAP 

regulatory factors, the transcription elongation factor of mitochondria (TEFM) was only 

recently identified (Minczuk et al., 2011). Based on a sequence homology with the 

bacterial Holliday Junction Resolvase (HJR), TEFM was initially characterized as a 

putative mitochondrial HJR, which was not confirmed during later experiments 

(Connolly et al., 1991; Minczuk et al., 2011). Instead, there are three indications that 

TEFM functions as a mitochondrial elongation factor. First, TEFM provides an RnaseH 

fold and two tandem helix-hairpin-helix (HhH) domains which are also present in the 

nuclear transcription factor Spt6, and the bacterial regulator protein Tex (Ponting, 

2002). Similar to Spt6, which directly interacts with RNAP II, TEFM is capable of 

binding to the catalytic region of mtRNAP (Minczuk et al., 2011). Second, TEFM was 

shown to enhance mtRNAP processivity in vitro (Minczuk et al., 2011). Third, TEFM co-
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localizes with newly synthesized RNA and may therefore contribute to the processing 

of polycistronic transcripts from mitochondrial promoters (Minczuk et al., 2011).  

To provide a complete picture of mtRNAP transcription, the regulatory function 

and interaction network of TEFM need to be further investigated in the future. 

 

1.3.3.4 Other regulatory factors involved in mitochondrial transcription 
Besides initiation and elongation, transcription termination is also a highly regulated 

process. In contrast to polycistronic transcripts from HSP2, transcripts from HSP1 are 

immediately terminated downstream of both rRNA genes (Montoya et al., 1982). HSP1-

dependent termination is induced by the mitochondrial termination factor 1 (mTerf1) 

that specifically binds with its conserved five-arginine-motif to a 22 bp region within the 

tRNALeu(UUR) gene (TERM1, Fig. 4) (Kruse et al., 1989; Roberti et al., 2006). MTerf1 

can simultaneously bind to both TERM1 and HSP1 itself, forming a DNA-loop that 

assists in recycling components of the core transcription machinery back to the 

promoter (Martin et al., 2005). A recent study suggests an additional field of mTerf1 

activity, as it seems to be involved in modulation of replicational pausing (Hyvarinen et 

al., 2007). 

 

Besides mTerf1, the prototype of the mTerf family, mTerf2 and mTerf3 also 

adopt roles in mitochondrial transcription and gene expression. Depletion studies 

showed that mTerf2 represents a positive and mTerf3 a negative regulator of 

transcription of the mitochondrial genome (Park et al., 2007; Wenz et al., 2009). 

The mitochondrial leucine-rich pentatricopeptide repeat containing protein 

(LRPPRC) comprises not only two PPR domains as mtRNAP, but 22 domains (Mili and 

Pinol-Roma, 2003). LRPPRC is involved in multiple stages of the mitochondrial RNA 

metabolism (Chujo et al., 2012; Ruzzenente et al., 2012). LRPPRC stimulates 

transcriptional activity of mtRNAP in vitro, most likely through direct interactions with 

mtRNAP or other regulatory proteins (Liu et al., 2011; Sondheimer et al., 2010). 

The mitochondrial ribosomal protein L12 (MRLP12) is a component of the large 

subunit of mitochondrial ribosomes (Surovtseva et al., 2011). In its ribosome-free form 

it was characterized as a mtRNAP interactor with transcription activating properties 

(Wang et al., 2007). 
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Although the human mitochondrial genome is relatively small, it relies on a 

variety of regulatory proteins with multiple activities each. It needs to be further 

investigated if and how all these different factors interact with the primary transcription 

machinery. This will help to draw a complete picture of the detailed regulatory 

mechanisms controlling transcription of the mitochondrial genome. 

 

1.3.4 Mitochondrial replication 
Replication of the mitochondrial genome is independent of the cell cycle or the nuclear 

replication processes (Bogenhagen and Clayton, 1977; Pica-Mattoccia and Attardi, 

1972). The duplication of the mtDNA is carried out by the replisome that consists of 

exclusively nuclear-encoded proteins: the DNAP γ (Burgers et al., 2001), mitochondrial 

single-stranded DNA binding proteins (mtSSB) (Korhonen et al., 2004), the 

mitochondrial DNA helicase TWINKLE (Spelbrink et al., 2001), topoisomerases (Zhang 

et al., 2001) and RNaseH (Cerritelli et al., 2003).  

 

Two models for mitochondrial replication are under current discussion. In the 

strand-coupled bidirectional replication model multiple replication origins cause 

symmetrical DNA synthesis on both the leading and the lagging strand (Holt and 

Jacobs, 2003; Yang et al., 2002). In the asynchronous strand-displacement model, 

replication of the heavy strand is initiated from the origin of replication (OH) in the D-

loop region. After DNA synthesis of the heavy strand has proceeded to two thirds of the 

genome it runs into the origin of replication on the light strand promoter (OL). The 

disposed OL forms a stem-loop structure that initiates replication of the light strand. 

DNA synthesis continuously proceeds until the full circle of the mitochondrial genome is 

reached (Brown et al., 2005; Tapper and Clayton, 1981; Wong and Clayton, 1985).  

 

A unique feature of the mitochondrial replisome is the lack of primases. Instead, 

mtRNAP synthesizes the short RNA primers needed for replication initiation (Wanrooij 

et al., 2008). Transcription initiated from the LSP generates transcripts that can 

subsequently be processed into short-length primers essential for replication initiation 

at the OH (Xu and Clayton, 1996). Although mtRNAP is highly processive on double-



INTRODUCTION 

20 
 

stranded DNA, it is also capable to synthesize 25-27 bp long transcripts that are used 

as primers for DNA duplication by DNAP γ (Wanrooij et al., 2008). Therefore, activation 

of the second DNA strand is achieved by binding of mtRNAP to the single-stranded OL 

stem-loop structure (Chang and Clayton, 1985; Fuste et al., 2010).  

 

Another link between mitochondrial transcription and replication is indicated by 

the transcription factor TFAM that indirectly stimulates replication initiation (Kang and 

Hamasaki, 2005) and pausing (Hyvarinen et al., 2007). Even though a close interplay 

between transcriptional and replicational proteins is essential, this has not been shown 

through physical interactions. 

 

 

1.4 Mitochondrial dysfunctions 
 

DNA damage has an intrinsic effect on gene stability and gene expression. Since 

mitochondria are the stage for many metabolic processes, it is not surprising that they 

provide a high risk for disorders. Mitochondria are semi-autonomous organelles that 

require proteins encoded in both the nuclear and the mitochondrial genome (Holt et al., 

1988; Wallace et al., 1988; Zeviani et al., 1989). Therefore, mutations in both genomes 

can lead to mitochondrial diseases (Larsson and Clayton, 1995). Even though only a 

minority of the mitochondrial proteins is encoded in the organelle itself, mtDNA 

underlies a higher mutation rate than the nuclear genome (Brown et al., 1979; Calvo 

and Mootha, 2010). This can be due to a reduced set of DNA repair mechanisms in 

mitochondria compared to the nuclear DNA repair pathways (Liu and Demple, 2010). 

Since mtRNAP was found to arrest at damaged genomic sites and TFAM may mark 

DNA damage by interaction with p53, mitochondria might also provide a mechanism of 

transcription-coupled DNA maintenance (Cline et al., 2010; Wong and Clayton, 1985; 

Yoshida et al., 2003).  

 

The second reason for an increased number of mtDNA mutations is the 

oxidative environment of the mitochondrial matrix caused by reactive oxygen species 

(ROS) that are generated as a side product of OXPHOS. Tissues with a high energy 
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demand like brain, heart or muscle tissues are more sensitive to mitochondrial 

dysfunctions than others (Wallace et al., 2010). Among the over 300 observed 

pathogenic mtDNA mutations, defects in the ATP production represent the major cause 

for cellular disorders and show a wide range of phenotypes (McFarland et al., 2010; 

MITOMAP, 2013; Wallace et al., 2010). Dysfunctions in the respiratory chain have 

been linked to neurodegenerative defects, such as Alzheimer’s or Parkinson’s disease, 

(Trifunovic et al., 2004; Weissman et al., 2007) as well as an increased risk for breast 

and prostate cancer (Canter et al., 2005; Pedersen, 1978; Petros et al., 2005). In 

addition, mitochondrial dysfunctions are also involved in cell aging, as the accumulation 

of mtDNA mutations over time can lead to a decline of mitochondrial function (Miquel et 

al., 1980). 

Although mitochondria enable the cell to perform a variety of essential cellular 

processes, defects in a single pathway can cause a severe threat for human health. 

The further investigation and identification of potential molecular triggers leading to 

mitochondrial diseases will be a major task for future research. 

 

 

1.5 Aims and scope of this work 
 

The singlesubunit mtRNAP occupies an exceptional position in the evolution of RNAPs, 

as it comprises properties of both, singlesubunit and multisubunit RNAPs. On the one 

hand, mtRNAP shares a high sequence and structure homology with the RNAP of 

bacteriophage T7 (Masters et al., 1987). Both polymerases are equally capable to 

specifically recognize promoter DNA (Matsunaga and Jaehning, 2004a). On the other 

hand, mtRNAP relies on additional factors to initiate and regulate mitochondrial 

transcription (Litonin et al., 2010). This is a common strategy of the structurally 

unrelated multisubunit polymerases, such as RNAP II (Gnatt et al., 2001a). Identifying 

more details about the molecular mechanisms in mitochondria will allow a deeper 

comprehension of evolutionary relationships between phages, bacteria and eukaryotes. 

Although mtRNAP has been studied more extensively in recent years, detailed 

mechanistic insights into the mitochondrial transcription cycle are still lacking. Until 

today there is only one crystal structure of mtRNAP available (Ringel et al., 2011). The 
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herein identified ‘clenched’ conformation of mtRNAP is unlikely to represent a 

functional state during transcription. Therefore, the major intention of this work was to 

visualize mtRNAP in its elongating conformation and to expand the knowledge of 

mtRNAP activity. To gain insights into the elongation phase of mitochondrial 

transcription, a combination of X-ray crystallography, transcription assays and cross-

linking experiments was used. Structural and mechanistically comparisons of the 

mitochondrial system with the T7 system were used to facilitate the understanding of 

the mitochondrial transcription cycle on a molecular level.  

At the same time, this work represents an important step towards future 

attempts to investigate larger mtRNAP complexes comprising transcription initiation 

factors and regulatory factors. 

Since mitochondrial dysfunction can cause severe disorders and cell aging, the 

reported molecular insights into mtRNAP elongation contribute to disease related 

research and anti-viral drug design. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Bacterial strains 
 

Table 1 - Bacterial strains 
Strain Genotype Company 
XL1-blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac  

[F ṕroAB lacIqZ∆M15 Tn10 (Tetr)] 
 

Stratagene 

BL21-CodonPlus 
(DE3) RIL 

E.coli B F- ompT hsdS(r - m -) dcm+ Tetr gal endA Hte 
[argU ileY leuW Camr] 
  

Stratagene 

 

2.1.2 Plasmids  
 

Table 2 - Plasmids 
Plasmid Insert Type Tag Restriction 

sites 
Δ150mtRNAP residues 151-1230 of human mtRNAP, 

vector with mutation in NcoI cutting site, 
by Dmitry Temiakov 
 

pProExHb N-term 
His6 

NcoI, XhoI 

 

2.1.3 Synthetic oligonucleotides 
 

Oligonucleotides purchased from metabion (Germany) were HPLC-purified, delivered 

lyophilized and dissolved in TE buffer to a final concentration of 1.6 mM. 

Oligonucleotides purchased from IDT DNA (USA) were standard-desalted, delivered 

lyophilized and also dissolved in TE buffer to a final concentration of 1.6 mM. RNA 

Oligonucleotides purchased from Dharmacon Inc (USA) were synthesized 2’-ACE 

protected, standard-desalted, delivered lyophilized, deprotected and dissolved in TE 

buffer to a final concentration of 1.6 mM. 
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Table 3 - DNA oligonucleotides used for crystallization 

Name Sequence 5ʹ′→3ʹ′ Scaffold Source 
DKS01 TAG TGC ATA CCG CCA 

 
CC2 metabion 

DKS02 TCT TTT GGC GGT ATG CAC T 
 

CC2 metabion 

DKS03 TGT TAG TTG GGG GGT GAC TGT TAA AAG TGC 
ATA CCG CCA AAA GAT AAG G 
 

CC1 metabion 

DKS04 AAT TAT CTT TTG GCG GTA TGC ACT TTT AAC 
AGT CAC CCC CCA ACT AAC A 
 

CC1 metabion 

DKS05 AAA AGT GCA TAC CGC CA 
 

CC4 metabion 

DKS08 TGG CGG TAT GCA CTT TT 
 

CC4 metabion 

DKS09 TGT TAA AAG TGC ATA CCT TAT CCC GAT A 
 

OC1 metabion 

DKS10 TAT CTT TTG GCG GTA TGC ACT TTT AAC A 
 

OC1 metabion 

DKS11 AAA AGT GCA TAC CTT ATC CCG ATA AAA TT 
 

OC2 metabion 

DKS12 AAT TTT ATC TTT TGG CGG TAT GCA CTT TT 
 

OC2 metabion 

DKS13 TGT TAA AAG TGC ATA CCT TAT CCC GAT AAA 
ATT 
 

OC3 metabion 

DKS14 AAT TTT ATC TTT TGG CGG TAT GCA CTT TTA 
ACA 
 

OC3 metabion 

DKS15 CGC CAG ACA GG 
 

EC2,3 metabion 

DKS17 CCT GTC TGG CGT GCG CGC CGC 
 

EC3 metabion 

DKS18 GGG GTT GTA GCT TAT GTC GAA GTA TGG GAG 
 

EC4 metabion 

DKS19 CTC CCA TAC TAA TCT CAT CAA TAC AAC CCC 
 

EC4 metabion 

DKS20 GGG AAT GCA TGG CGC GGC 
 

EC5 metabion 

DKS21 CCT GTC TGG CGT GCG CGC CGG 
 

EC2 metabion 

DKS22 
 

GTG CAT ACC GTA TCC CCA TAG GAT TGG 
 

OC4 metabion 

DKS23 
 

CCA ATC CTA TCT TTT GGC GGT ATG CAC 
 

OC4 metabion 

DKS27 GGG GTA GCT TAT GTC GAA GTA TGG GAG 
 

EC6 metabion 

DKS28 CTC CCA TAC TAA TCT CAT CAA TAC CCC 
 

EC6 metabion 

DKS29 GGG GTA GCT TAT GTC GAA GTG TG 
 

EC7 metabion 

DKS30 CAC ACT AAT CTC ATC AAT ACC CC 
 

EC7 metabion 

DKS31 CATGGGGTAATTATTTCGACTGACGCAG 
 

EC8-10 metabion 

DKS32 GGG GTA ATT ATT TCG ACT GAC GCA G 
 

EC11-13 metabion 

DKS33 ATT ATT TCG ACT GAC GCA G 
 

EC14,15,32 metabion 

DKS34 ACT GAC GCA G 
 

EC16,17,33 metabion 

DKS35 GGG GTA ATT ATT TCG ACT GAC GC 
 

EC18-20 metabion 

DKS36 ATT ATT TCG ACT GAC GC 
 

EC21,22 metabion 

DKS37 ACT GAC GC 
 

EC23,24 metabion 

DKS38 GGG GTA ATT ATT TCG ACT GAC 
 

EC25-27 metabion 
 

Table continued on next page 
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Name Sequence 5ʹ′→3ʹ′ Scaffold Source 
DKS39 ATT ATT TCG ACT GAC 

 
EC28,29,34 metabion 

DKS40 ACT GAC 
 

EC31,32,35 metabion 

DKS41 CTG CGT CAG TGC GGG CCG GTA CCC CAT G 
 

EC8-10 metabion 

DKS42 CTG CGT CAG TGC GGG CCG GTA CCC C 
 

EC11-13 metabion 

DKS43 CTG CGT CAG TGC GGG CCG G 
 

EC14-17, 
32,33 

metabion 

DKS44 GCG TCA GTG CGG GCC GGT ACC CC 
 

EC18-20 metabion 

DKS45 GCG TCA GTG CGG GCC GG 
 

EC21-24 metabion 

DKS46 GTC AGT GCG GGC CGG TAC CCC 
 

EC25-27 metabion 

DKS47 GTC AGT GCG GGC CGG 
 

EC28-31, 
34,35 

metabion 

DKS51 CATG GGG TAA TTA TTT CGA CGC CAG ACG 
 

EC36 metabion 

DKS70 CGT CTG GCG TGC GCG CCG GTA CCC CAT G 
 

EC36 metabion 

DT01 ACG CCA GAC AGG 
 

EC1 IDT DNA 

DT02 CCT GTC TGG CGT GCG GCG CCG 
 

EC1 IDT DNA 

NT02 CAT GGG GTA ATT ATT TCG ACG CCA GAC G 
 

DT1-3,6 IDT DNA 

NT03 GTC GAT TTC AGA CAG GAC CC 
 

DT5 IDT DNA 

NT06 CAT GGG GTA ATT ATT TTC ATC GCC AGA CG 
 

DT4 IDT DNA 

TS01 
 

GGG TCC TGT CTG AAA TCG ACA TCG CCG C  DT5 IDT DNA 

TS02 CGT CTG GCG TGC GCG CCG CTA CCC CAT G 
  

DT1,3,6 IDT DNA 

TS0X CGT CTG GCG TGC GCG CCG TTA CCC CAT G 
  

DT2 IDT DNA 

TS06 CGT CTG GCG ATC GCG CCG CTA CCC CAT G 
 

DT4 IDT DNA 

TS35sU CCT GTC TGA ATC GAU* ATC GCC GC 
 

DT7  IDT DNA 

YMNT1 GCG GCG ATC ATT CGC TTG ACA GG 
 

DT7 IDT DNA 

 

 

Table 4 - RNA oligonucleotides used for crystallization 
Name Sequence 5ʹ′→3ʹ′ Scaffold Source 
R14mt AGU CUG CGG CGC GC 

 
DT1,2,EC1 Dharmacon  

RS11sU GAG U*GC GGC GA 
 

DT5 Dharmacon 

R15mtsU AU*G UCU GCG GCG CGC 
 

DT6 Dharmacon  

R20mt GAA GAC AGU CUG CGG CGC GC 
 

DT3 Dharmacon 

mtR12G GUC UGC GGC GCG 
 

DT4 Dharmacon 

RKS01 GUC UGC CCG GCG CGC 
 

EC2 metabion 

RKS02 GCG CGC 
 

EC3 metabion 
RKS03 UUU UUA GUU GAU GAG AU 

 
EC4 metabion 

RKS04 UUU UGC CGC GCC A 
 

EC5 metabion 
 

Table continued on next page 
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Name Sequence 5ʹ′→3ʹ′ Scaffold Source 
RKS05 UUA GUU GAU GAG AU 

 
EC6,7 metabion 

RKS06 CUG CCC GGC CCG C 
 

EC8,11,18,25,32-35 metabion 

RKS07 CCG GCC CGC 
 

EC9,12,14,16,19,21,23,26,28,
30 

metabion 

RKS08 GCC CGC 
 

EC10,13,15,17,20,22,24,27, 
29,31 

metabion 

YMRNA1 UCG CUC GAU UCA DT7 
 

Dharmacon 
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Figure 5 - Schematic overview of all scaffolds used in this study. 
The nucleic acid scaffolds contain template DNA (blue), non-template DNA (cyan) and RNA 
(red). 
 

2.1.4 Media and additives 
 

All chemicals used to prepare buffers or other solutions had p.a. quality and were 

produced by one of the following companies: Bio-Rad, Biozyme, Dianova-Jackson, 

Fisher Scientific, Fluka, Merck, Invitrogen, Roth, Sigma-Aldrich and VWR. 

 

Table 5 - Media for E.coli cultivation 

Name Description  
LB 1% (w/v) tryptone; 0.5% (w/v) yeast extract; 0.5% (w/v) NaCl; (+2% 

(w/v) agar for selective media plates) 
 

 

 

Table 6 - Additives for E.coli cultivation 
Name  Stock solution Applied concentration 
Ampicillin 10% (w/v) ampicillin 

 
0.1% (w/v) ampicillin 

Tetracycline 1.25% (w/v) tetracycline in EtOH 
 

0.00125% (w/v) tetracycline  

Chloramphenicol 30 mg/mL chloramphenicol in EtOH 
 

30 µg/mL chloramphenicol  

IPTG 1 M IPTG 
 

0.1 mM IPTG 

GTC G GGC GG G C A C TG
G G CCCGC C CC U G C

5‘ 3‘
3‘ 5‘

5‘ 3‘

5‘ 3‘
3‘ 5‘

5‘ 3‘

5‘ 3‘
3‘ 5‘

5‘ 3‘

C
C TGTC G GGG

C

G

GGC C A A G
CC CTGC G

GG CCC
G C

GCC
U

C T
AG

CA A
T G T

A CAT T T T G
A

G C

C A GG
T

G T C C C
G

UA

C
C TGTC G GGG

C

G

GGC C A A G
CC CTGC G

GG CCC
G C

GCC
U

C T
AG

CA A
T G T

A CAT T T T G
A

G C

C A GG
T

G T C C C
G

UAG GAA A C

C
C TGTC G GGG

C

G

GGC C A A G
CC CTGC G

GG CCC
G C

GCC
U

C T
AG

CA A
T G T A

CAT T T T G
A

G C

C A GG
T

G T C C

GUA

T

EC36

DT1

DT3

DT2

5‘3‘
5‘ 3‘

DKS47
RKS06

5‘
3‘

NT02
TS03
R14mt

NT02
TS02
R14mt

NT02
TS02
R20mt

5‘ 3‘
3‘ 5‘

5‘ 3‘

C
C TGC GGG

C

G

GGC C A A G
CC CTGC G

GG CC
G C

GCC
U

C T
AG

CA A
T G T

A CAT T T T

G C

C A GG
T

G T C C
G

U

T
A

C
T
ADT4

NT06
TS06
mtR12G

+1



MATERIALS AND METHODS 

30 
 

2.1.5 Buffers, markers, solutions and enzymes 

 
Table 7 - General buffers and solutions 
Name Description or source Application 
100 × Protease 
inhibitor 

60 µM leupeptin, 200 µM pepstatin A, 98 mM 
PMSF, 211 mM benzamidine; in EtOH 
 

Protein purification 

1 × TBE 8.9 mM Tris-HCl; 8.9 mM boric acid; 2 mM  
EDTA; pH 8.0 at 25°C 

Agarose gel 
electrophoresis 
 

6 × DNA loading dye Fermentas Agarose gel 
electrophoresis 
 

Gene Ruler 1 kb DNA 
ladder (0.1 µg/µL) 

Fermentas Agarose gel 
electrophoresis 
 

SYBR Safe (10,000 × 
in DMSO) 
 

Invitrogen Agarose gel 
electrophoresis 

20 × MES SDS 
running buffer 

50 mM MES; 50 mM Tris Base; 0.1% SDS; 
1 mM EDTA; pH 7.3 at 25°C 
 

SDS-PAGE 

20 × MOPS SDS 
running buffer 

50 mM MOPS; 50 mM Tris Base; 0.1% SDS; 
1 mM EDTA; pH 7.7 at 25°C 
 

SDS-PAGE 

5x SDS sample buffer 250 mM Tris-HCl (pH 7.0 at 25°C); 50% (v/v) 
glycerol; 0.5% (w/v) bromophenol blue; 7.5% 
(w/v) SDS; 500 mM DTT 
 

SDS-PAGE 

Broad range MW 
marker 
 

Bio-Rad SDS-PAGE 

Coomassie gel 
staining solution 

50% (v/v) ethanol; 7% (v/v) acetic acid; 0.125% 
(w/v) Coomassie Brilliant Blue R-250 
 

SDS-PAGE 

Instant Blue Expedeon 
 

SDS-PAGE 

Destain solution 5% (v/v) EtOH; 7.5% (v/v) acetic acid 
 

SDS-PAGE 

Instant coomassie 10 mM MOPS (pH 7.0 at 25°C); 10 mM RbCl; 75 
mM CaCl2; 15% (v/v) glycerol 
 

SDS-PAGE 

TFB-I 30 mM K acetate; 50 mM MnCl2; 100 mM RbCl; 
10 mM CaCl2; 15% (v/v) glycerol; pH 5.8 at 25°C 
 

Competent cells 

TFB-II 10 mM MOPS (pH 7.0 at 25°C); 10 mM RbCl; 75 
mM CaCl2; 15% (v/v) glycerol 
 

Competent cells 

1 × TE 10 mM Tris-HCl (pH 8.0 at 25°C); 1 mM EDTA  
 

Various 

1000 × SYPRO 
Orange 

Invitrogen 
 

Thermal shift assay 

Primer extension 
buffer 

20 mM Tris (pH 7.9 at 20°C); 10 mM MgCl2; 
10 mM DTT; 0.05% (v/v) Tween 20 
 

Primer extension 
assay 

Transcription run-off 
buffer 

40 mM Tris (pH 7.9 at 20°C); 10 mM MgCl2; 
10 mM DTT 
 

Transcription run-
off assay 
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Table 8 - Protein purification buffer 

Name Description  
Buffer A 40 mM Tris-HCl (pH 8.0 at 25°C); 300 mM NaCl; 5% glycerol; 5 mM 

DTT 
 

Buffer B 40 mM Tris-HCl (pH 8.0 at 25°C); 1.5 M NaCl; 5% glycerol; 5 mM DTT 
 

Buffer C 40 mM Tris-HCl (pH 8.0 at 25°C); 1.5 M NaCl; 5% glycerol; 200 mM 
imidazole; 5 mM DTT 
 

Buffer D 40 mM Tris-HCl (pH 8.0 at 25°C); 300 mM NaCl; 5% glycerol; 1 mM 
EDTA; 5 mM DTT 
 

Buffer E 40 mM Tris-HCl (pH 8.0 at 25°C); 5% glycerol; 5 mM DTT 
 

Buffer F 40 mM Tris-HCl (pH 8.0 at 25°C); 2 M NaCl; 5% glycerol; 5 mM DTT 
 

Buffer G 
 

100 mM Tris-HCl (pH 8.0 at 25°C); 100 mM NaCl; 5% glycerol; 0.1 mM 
EDTA; 5 mM DTT 
 

Buffer H 100 mM Tris-HCl (pH 8.0 at 25°C); 200 mM NaCl; 5% glycerol; 0.1 mM 
EDTA; 5 mM DTT 
 

Buffer I 100 mM Tris-HCl (pH 8.0 at 25°C); 300 mM NaCl; 5% glycerol; 0.1 mM 
EDTA; 5 mM DTT 
 

 

 

Table 9 - Components used for crystallization 
Name Description or source 
Endoproteinase ArgC Sigma-Aldrich 

 

100 mM ATP Jena Bioscience 
 

100 mM GTP Jena Bioscience 
 

100 mM 3’dATP Jena Bioscience 
 

100 mM 3’dGTP Jena Bioscience 
 

100 mM AMPCPP Jena Bioscience 
 

100 mM GMPCPP Jena Bioscience 
 

Cryo solution 10% PEG 4000; 60 mM Na acetate; 30 mM trisodium citrate;  
25% glycerol; 5% ethylene glycol  
 

 

 

Table 10 - Enzymes, buffers and components used for PCR and plasmid cloning 
Name Source 
dNTP mix, 2 mM each Fermentas 

 

DMSO Fermentas 
 

Phusion High-Fidelity DNA polymerase (2 U/µL) 
 

Finnzymes 
 

5 × Phusion HF buffer Finnzymes 
 

 

Table continued on next page 
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Name Source 
Taq DNA Polymerase (recombinant) 
 

Fermentas 

10 × Taq Buffer with KCl 
 

Fermentas 

25 mM MgCl2 Fermentas 
 

NotI (10,000 U/mL) New England Biolabs 
 

XhoI (20,000 U/mL) New England Biolabs 
 

10 × NEBuffer 4 New England Biolabs 
 

CIP New England Biolabs 
 

100 × BSA New England Biolabs 
 

T4 DNA ligase New England Biolabs 
 

10 × T4 DNA ligase reaction buffer 
 

New England Biolabs 

Quick T4 DNA ligase New England Biolabs 
 

2 × Quick ligation buffer 
 

New England Biolabs 

 

 

2.1.6 Crystallization screens 
 

Table 11 - Crystallization screens 
Name Abbreviation Source 
Classic Lite Suite  
 

NCL QIAGEN 

Complex screen 1  
 

COM Crystallization facility MPI 

Complex screen 1  
 

CO2 Crystallization facility MP 

CP-PEGS-Salt screen 
 

PSA Crystallization facility MP 

Cryos Suite 
 

NCO QIAGEN 

Index HT 
 

IND Hampton Research 

AMSO4 Suite 
 

NAS QIAGEN 

Cation Suite 
 

NCA QIAGEN 

Morpheus 
 

MFU Crystallization facility MPI 

PACT Suite 
 

PAC QIAGEN 

Wizard I II 
 

NWU Crystallization facility MPI 
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2.2 Methods 
 

2.2.1 Molecular cloning 
 

2.2.1.1 DNA amplification by polymerase chain reaction (PCR) 
PCR primers were designed with a 5’-overhang consisting of eight nucleotides followed 

by the desired restriction site and 20-25 nt complementary to the target sequence. The 

PCR primers had a melting temperature of 50-65°C and a GC content of 40-60% with a 

G or a C at their 3’-ends. 50 µL PCR mix typically contained 1-50 ng template DNA, 

0.5 µM of each DNA primer, 200 µM of each dNTP and the standard concentration of 

Phusion High-Fidelity DNA polymerase and its respective reaction buffer. DNA 

amplification was performed in a Biometra T3000 Thermocycler over 30 cycles. 

Annealing temperatures and elongation times were adjusted to the respective primers 

and the length of the desired amplification product. In order to verify the success of the 

reaction, 5 µL of the PCR products were visualized by agarose gel electrophoresis. 

Remaining DNA was purified using the QIAquick PCR Purification Kit (QIAGEN). 

 

2.2.1.2 Restriction digest and vector dephosphorylation  
Enzymatic reactions were performed for 3 h at 37°C. 50 µL reaction contained DNA 

obtained by PCR or 1-5 µg vector DNA and respective amounts of restriction enzymes 

(New England Biolabs) as stated in the manufacturer’s manual. Digested vectors were 

subsequently dephosphorylated by the addition of 1 u CIP enzyme according to the 

manufacturer’s recommendations. Digested DNA was purified using the QIAquick Gel 

Extraction Kit (QIAGEN). 

 

2.2.1.3 Enzymatic ligation 
DNA amounts of insert and linearized plasmid were estimated by analyzing 1 µL each 

by agarose gel electrophoresis. The reaction mixture of 20 µL contained T4 DNA 

ligase, respective buffer, plasmid DNA and 2-10 fold molar excess of the insert. The 

ligation mixture was incubated for 1 h at 20°C.  
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2.2.1.4 Transformation into chemically competent E.coli cells 
50 µL chemically competent cells were thawed on ice. After the addition of 1-10 ng 

plasmid DNA or 10 µL ligation product cells were incubated for 30 min on ice. A heat 

shock was applied for 30 sec at 42°C. Cells were incubated for 2 min on ice and mixed 

with 500 µL of LB medium. After incubation for 1 h at 37°C shaking vigorously the cells 

were plated on prewarmed LB-Ampicilin (Amp) plates for selection and incubated at 

37°C overnight.  

 

2.2.1.5 Transformation into electrocompetent E.coli cells 
50 µL electrocompetent cells were thawed on ice. After the addition of 5 µL ligation 

product cells were transferred into a prechilled Gene Pulser cuvette (0.2 cm gap, Bio-

Rad) and exposed to a 2.5 kV pulse using a MicroPulser electroporation apparatus 

(Bio-Rad). Immediately, 200 µL of LB medium were added and the cells suspension 

transferred to a 1.5 mL reaction tube, incubated at 37°C for 1 h and plated on 

prewarmed LB-Amp plates. The plates were incubated at 37°C for 20-24 h. 

 

2.2.1.6 Plasmid amplification and isolation 
A preculture of 5 mL LB-Amp was inoculated with a single XL1-Blue colony picked from 

a LB-Amp plate and incubated at 37°C overnight, shaking at 160 rpm for cell growth. 

For each protein three colonies were picked. Cells were harvested by centrifugation 

and purified using QIAprep Spin Miniprep Kit (QIAGEN). 

 

2.2.1.7 Test restriction digest, colony PCR and sequencing 
Only plasmids containing the desired DNA insert were relevant for further procedure. 

Therefore, a test restriction digest was performed in a total volume of 20 µL containing 

1 µL plasmid DNA, 0.3  µL of each respective restriction enzymes and buffer (New 

England Biolabs). Test restriction mixture was incubated for 1 h at the respective 

temperature and analyzed by agarose gel electrophoresis. 

Alternatively colony PCR was used to verify the sequence of a larger number of 

clones. A colony from the transformation plate was picked with a pipette tip and dipped 

into 50 µL PCR reaction mixture containing 0.64 µM of each primer, 150 µM dNTPs, 

2.5 mM MgCl2, 5% DMSO and 1.5 u Taq DNA polymerase (Fermentas) and 1 × Taq 

Pol buffer with KCl. The same tip was used to transfer cells on a LB-Amp plate which 
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was then incubated overnight at 37°C. PCR reactions were performed as described 

before and analyzed by agarose gel electrophoresis. A clone that was positively tested 

to contain the desired insert was further analyzed by sequencing at GATC Biotech. 

 

2.2.1.8 Preparation of chemically competent E.coli cells 
The selection of the antibiotic depends on the respective bacteria cells. XL1-Blue cells 

are resistant to tetracycline (Tet) and BL21 (DE3) CodonPlus® RIL to chloramphenicol. 

400 mL LB medium with antibiotic were inoculated with an overnight culture of the 

desired strain and incubated at 37°C under shaking at 160 rpm, until an OD600 of  

~ 0.5 was reached. Cells were cooled on ice and always kept on ice or at 4°C in the 

following. After centrifugation (10 min, 3,700 × g) the pellet was resuspended in 100 mL 

TFB-I. The bacteria were pelleted during a second centrifugation step and 

resuspended in 8 mL TFB-II. 50 µL aliquots of the cell solution were frozen in liquid 

nitrogen and stored at -80°C. The transformation competence was tested by test 

transformation. The transformation competence results from the number of colonies in 

correlation with to the amount of DNA added. 

 

2.2.1.9 Preparation of electrocompetent E.coli cells 
Electrocompetent XL1-blue cells were used to reach a better transformation efficiency 

after ligation. 400 mL LB-Tet were inoculated with an overnight culture and incubated 

at 37°C under shaking at 160 rpm, until an OD600 of ~ 0.5 was reached. Cells were 

cooled on ice and always kept on ice or at 4°C in the following. After centrifugation 

(10 min, 1,000 × g) the pellet was resuspended in 100 mL sterile H2O. The bacteria 

were pelleted during a second centrifugation step and resuspended in 400 mL sterile 

H2O. The centrifugation step was repeated and cells resuspended in 20 mL sterile  

10% (v/v) glycerol. After another round of centrifugation (10 min, 5,000 × g) cells were 

resupended in 3 mL sterile 10% (v/v) glycerol. 50 µL aliquots of the cell solution were 

frozen in liquid nitrogen and stored at -80°C. transformation competence was tested by 

test transformation. The competence results from the number of colonies in correlation 

with to the amount of DNA added  
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2.2.2 General protein methods 
 

2.2.2.1 Protein concentration determination 
Protein concentrations were determined according to the Bradford assay (Bradford, 

1976). A 1:5 dilution of Bio-Rad Protein Assay dye reagent (Bio-Rad) was used to 

measure the absorption at a wavelength of 595 nm in a BioPhotometer (Eppendorf). 

Protein concentration was calculated based on the standard absorption of each batch 

determined with bovine serum albumin. Alternatively protein concentrations were 

determined based on the absorption at a wavelength of 280 nm measured with a 

NanoDrop 1000 spectrophotometer (Peqlab). 

 

2.2.2.2 Trichloroacetic acid (TCA) precipitation 
In order to visualize low concentrated proteins within a sample by SDS-PAGE, TCA 

precipitation was used. For this purpose the sample was mixed with TCA to a final TCA 

concentration of 10 % (v/v). After a 30 min incubation on ice the solution was pelleted 

by centrifugation (20 min, 16,100 rcf, 4°C). The pellet washed with 1 mL of cold 

acetone and centrifuged for (5 min, 16,100 rcf, 4°C). The acetone was removed and 

the pellet dried by air. After the addition of 5-10 µL 1 × SDS loading dye the sample 

was incubated for 5 min at 95°C and analyzed by SDS-PAGE. In case the solution 

turned yellow, indicating an acidic pH, the solution was neutralized by exposing it with 

the gas phase of a 25 % NH3-solution until the sample turned blue. 

 

2.2.2.3 SDS-PAGE for protein separation 
Proteins were analyzed by vertical SDS-PAGE. Polyacrylamide gradient gels (NuPage 

Novex 4-12% Bis Tris Gel 1.0 mm, Invitrogen) were run in a Novex Mini Cell 

(Invitrogen) using MOPS or MES running buffers (Invitrogen). Before loading the 

samples onto the gel they were mixed with the appropriate amount 5 × SDS loading 

dye and incubated for 5 min at 95°C to denature proteins. Gels were stained with 

Instant Blue (Expedeon) for 1 h. 

 

2.2.2.4 Mass spectrometry 
To identify purified proteins mass spectroscopy was used. For this purpose a 

respective band of a coomassie-stained SDS gel was cut out with a clean scalpel and 
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analyzed by the Zentrallabor für Proteinanalytik of the Ludwig-Maximilians-University of 

Munich. 

 

2.2.2.5 Edman sequencing 
To determine a part of the primary sequence of a protein it was transferred to a 

membrane by Western blot and characterized by Edman sequencing. In order to 

assemble the blotting chamber the blotting frame was prepared with several layers that 

contain a sponge, three whatman papers, a polyvinylidene fluoride (PVDF) membrane, 

gel, three whatman papers and a sponge. All components were soaked with transfer 

buffer. Prior to its transfer into the buffer solution the PVDF membrane was incubated 

1 min in ethanol. Air bubbles between the layers of the blotting frame were avoided to 

allow an optimal current flow and complete protein transfer. The blotting chamber was 

filled with transfer buffer. The blot was run at 100 mV for 1 h at 4°C. The membrane 

was stained with Ponceau S. solution and washed with water until only the protein 

bands were stained. The bands of interest were cut out with a scalpel, washed with 10 

% ethanol and dried by air. Edman sequencing was performed at the core facility of the 

Max Planck Institute for Biochemistry in Martinsried (Germany). 

 

2.2.2.6 Dynamic light scattering 
Dynamic light scattering was used to determine size distribution of protein solutions. 

When monochromatic light hits small molecules that undergo Brownian motion in 

solution it is scattered and causes time-dependent fluctuations in the scattering 

intensity. Due to their higher average velocity small molecules cause a greater shift in 

light frequency. Therefore fluctuations are related to the size of the particles. 70 µL 

samples with a concentration of 1.6 µg/µL were transferred in a quartz cuvette and 

measured with a Viscotek 802 DLS (Malvern Instruments). 

 

2.2.2.7 Limited proteolysis 
Limited proteolysis was done using the endoproteinase ArgC (Sigma). The protein in 

the respective gelfiltration buffer G,H or I was optionally incubated with a 1.3-fold molar 

excess of elongation scaffold for 10 min at 20°C. The sample was mixed with ArgC in a 

protein:enzyme ratio of 1000:1 (w/w) and incubated at 23°C for 1 h. The enzymatic 
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reaction was stopped by the addition of SDS sample buffer and boiling for 5 min at 

95°C. Protein fragments were analyzed by SDS-PAGE as described above. 

 

2.2.2.8 Thermal shift assay 
Buffer conditions were optimized via a thermal shift assay. Upon protein denaturation 

hydrophobic regions are exposed and become favored docking sites for the 

fluorophore SYPRO Orange. Therefore, the stabilizing effect of a buffer solution can be 

measured corresponding to the level of protein denaturation over a temperature 

gradient. The turning point between the folded and the unfolded protein state is defined 

as Tm and represents a comparative parameter. 

The buffer screen was performed in 50 µL reactions comprising each 5 µg 

protein, 50 mM buffer and 1x SYPRO Orange. The screen covered a pH range from 

5.6 to 9.0 (sodium citrate pH 5.6, MES pH 6.0, MES pH 6.5, HEPES pH 7.0, HEPES 

pH 7.5, Tris pH 8.0, Tris pH 8.5, CAPSO pH 9.0) and salt concentrations from 0 to 

750 mM NaCl in a 96-well-plate. The samples were mixed, sealed and put into a Real-

Time PCR cycler. Fluorescent detection was measured at 472 nm for each 

temperature from 20°C to 95°C in 1°C steps.  

 

2.2.3 Recombinant protein purification 
 

2.2.3.1 Human mitochondrial RNA polymerase  
Cells were grown in LB medium at 37°C to an OD600 of 0.6. Expression was induced 

with 0.15 mM IPTG for 18 h overnight. Cells were harvested by centrifugation, 

resuspended in buffer A and lysed by sonification (Sonifier Cell Disrupter, Branson). 

Protein was incubated for 1 h with nickel-nitrilotriacetic acid agarose (Ni-NTA) beads 

equilibrated with buffer A. After washing the beads with 8 CV buffer B the protein was 

eluted with 4 CV buffer C. The sample was dialyzed against buffer D overnight at 4°C, 

centrifuged and loaded onto a HiPrep Heparin FF 16/30 cation exchange column (GE 

Healthcare) equilibrated with buffer E. Bound protein was eluted with a salt gradient 

from 7.5-60% buffer F in buffer E. Column fractions were checked via SDS-PAGE, 

pooled and concentrated using Amicon Ultra centrifugal filter devices with a cutoff of 

50K (GE Healthcare). The sample was applied to a Superdex 200 10/300 GL size 
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exclusion column (GE Healthcare) equilibrated with buffer G, H or I. Resulting peak 

fractions were pooled and concentrated to a 5-9 mg/mL, aliquoted, flash frozen in liquid 

N2 and stored at -80°C until usage. 

 

2.2.3.2 Transcription factors 

Expression and purification of TFAM and TFB2M for biochemical assays was carried 

out by the laboratory of Prof. Dmitry Temiakov (Rowan University, SOM, Stratford, NJ, 

USA) as described elsewhere (Sologub et al., 2009). 

 

2.2.4 X-ray crystallographic analysis of mtRNAP elongation complexes 
 

2.2.4.1 Nucleic acid scaffold formation 
In order to form nucleic acid complexes, synthetic oligonucleotides of template DNA, 

non-template DNA and RNA were mixed in equimolar amounts to a final concentration 

of 0.5 mM. Annealing was performed in a Biometra T3000 Thermocycler. After a total 

volume of 20-40 µL mixture was heated to 95°C for 180 sec was reduced every 90 s by 

1°C to 20°C final. 

 

2.2.4.2 Binding study and protein-nucleic acid complex formation by 

gelfiltration 
To observe a possible interaction between Δ150mtRNAP and the nucleic acid scaffold 

via gel filtration 1-1.8 nmol enzyme were mixed with a 1.3-fold molar excess of the 

scaffold of interest, diluted with buffer G, H or I to a total volume of 250 µL and 

incubated for 10 min at 20°C. A Superdex 200 10/300 GL size exclusion column (GE 

Healthcare) was equilibrated with the respective gelfiltration buffer (G, H or I). The 

sample was centrifuged (16,100 rcf, 4°C) for 10 min to remove possible particles and 

loaded on the column. Gelfiltration buffer G, H or I was used as running buffer. 

 

2.2.4.3 Assembly of the mtRNAP elongation complex 
The mtRNAP elongation complex was assembled by incubating Δ150mtRNAP (40 mM) 

with a 1.3-fold molar excess of nucleic acid scaffold for 10 min at 20°C. For 
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crystallization the mtRNAP elongation complex was digested in situ with ArgC protease 

from Sigma (1000:1, w/w) for 1 h at 23°C. 

 

2.2.4.4 Crystallization screening 
Crystallization drops with a total volume of 200 nL were set at room temperature or 8°C 

by a Phoenix nanodisperser robot at the Max Planck Institute of Biochemistry in 

Martinsried. Each screen was performed with 15 µL protein solution per plate and 

10 µL protein solution in total excess. Optionally screens were supplemented with 10% 

glycerol and 120 mM DTT. In order to prevent possible crystallization seeds that cause 

early precipitation the protein solution was centrifuged (16,100 rcf, 4°C) 10 min.  

 

2.2.4.5 Crystallization setup, crystal harvesting and freezing 
Promising conditions obtained by screening were optimized by fine screening with 

varying pH, precipitate and salt concentrations in 24-well sitting drop plates. Therefore 

a drop of 1 µL mtRNAP elongation complex and 1 µl of reservoir solution (8% 

PEG 4000, 200 mM sodium acetate, 100 mM trisodium citrate (pH=5.5), 10% glycerol, 

120 mM DTT) was incubated with 500 µL total reservoir solution at 20°C. Truncated 

rhombic dodecahedron crystals grew to a maximum size of approximately 

0.2×0.2×0.2 mm within 4-6 days. Crystals were slowly transferred in cryo solution, 

mounted onto cryo loops and frozen in liquid N2. 

 

2.2.4.6 Soaking of substrate molecules 
For soaking potential substrate molecules (ATP, AMPCPP or 3’dATP/PPi) into the 

mtRNAP elongation complex, crystals were transferred into regular cryo solution as 

described above. Subsequently crystals were incubated in cryo solution supplemented 

with 20-50 µM substrate for 1 sec, 1 min, 5 min or longer time periods and frozen in 

liquid N2. 

 

2.2.4.7 X-ray diffraction measurement using synchrotron radiation 
Diffraction data were collected in 0.25° increments at the protein crystallography 

beamline X06SA of the SLS in Villigen (Switzerland) using a Pilatus 6M pixel detector 

(Broennimann et al., 2006) and a wavelength of 0.91809 Å.  
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2.2.4.8 Data processing, refinement and model building 
Raw data were integrated and scaled with XDS (Kabsch, 2010) and MOSFLM (Leslie, 

2006). The structure was solved by molecular replacement using PHASER (McCoy et 

al., 2005) with the structure of human mtRNAP (PDB code 3SPA) (Ringel et al., 2011) 

as a search model. The molecular replacement solution was subjected to rigid-body 

refinement with phenix.refine (Afonine et al., 2005). The model was iteratively built with 

COOT (Emsley and Cowtan, 2004) and refined with phenix.refine (Afonine et al., 2005) 

and autoBuster (Global Phasing Limited). The structure and diffraction data of the 

human mtRNAP elongation complex have been deposited in the Protein Data Bank 

under the accession code 4BOC. All structural figures shown in this work were 

prepared using pymol (DeLano, 2002). 

 

2.2.5 In vitro biochemical assays 
 

All in vitro assays described in this chapter were performed by the laboratory of Prof. 

Dmitry Temiakov (Rowan University, SOM, Stratford, NJ, USA). 

 

2.2.5.1 Primer extension assays 
The catalytic activity of mtRNAP mutants was analyzed using a primer extension 

assay. An in vitro transcription system containing radioactively labeled scaffold 

(50 nM), mtRNAP (150 nM), TFAM (50 nM), TFB2M (150 nM), substrate NTPs 

(0.3 mM) were incubated for 2 min in primer extension buffer at 35°C. The reaction was 

stopped by the addition of an equal volume of 95% formamide in 0.05 M EDTA. The 

products were resolved using 20% PAGE containing 6 M urea and visualized by 

PhosphoImager (GE Health) (Temiakov et al., 2002). 

 

2.2.5.2 Transcription run-off assays 
Run-off transcription assays were performed using PCR DNA templates (50 nM) 

containing LSP promoter (nucleotides 338-478 in human mtDNA) and mRNAP 

(150 nM), TFAM (50 nM), TFB2M (150 nM), substrate NTPs (0.3 mM) in a transcription 

buffer containing 40 mM Tris (pH 7.9), 10 mM MgCl2 and 10 mM DTT. Reactions were 

carried out at 35°C and stopped by the addition of an equal volume of 95% formamide 
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in 0.05 M EDTA. The products were resolved using 20% PAGE containing 6 M urea 

and visualized by PhosphoImager (GE Health) (Sologub et al., 2009). 

 

2.2.5.3 Photo-cross-linking 

RNA or DNA oligonucleotides containing photo reactive 4-thio-uridine monophosphate 

(Dharmacon Inc.) were used to assemble DNA-RNA scaffolds. For cross-linking of the 

RNA base at position -8, the elongation complex (1 mM) was assembled using the 

RS11sU-TS1-NT3 scaffold (Fig. 12a) and the RNA was labeled by incorporation of  

[α-32P] uridine triphosphate (UTP) (800 Ci/mmol) for 5 min at room temperature. For 

cross-linking of the RNA base at position -13, the elongation complex (1 mM) was 

assembled using the R15mt_sU-TS02-NT02 scaffold in which the RNA primer was 32P-

labeled (Fig. 12b). For DNA-mtRNAP cross-linking the elongation complex (1 mM) was 

assembled using the YMRNA1-TS35sU-YMNT1 scaffold in which the TS35sU DNA 

was 32P-labeled (Fig. 12c). The cross-linking was activated by ultraviolet (UV) 

irradiation at 312 nm for 10 min at room temperature as previously described 

(Temiakov et al., 2002). 

 

2.2.5.4 Mapping of the cross-linking sites in mtRNAP 

Mapping of the regions in mtRNAP that interact with RNA or DNA with cyanogen 

bromide (CNBr), 2-nitro-5-thiocyano-benzoic acid (NTCB), and hydroxylamine (NH2OH) 

was performed as described previously (Sologub et al., 2009). Products of the 

cleavage reactions were resolved using a 4-12% Bis-Tris NuPAGE gel (Invitrogen) and 

visualized by PhosphorImagerTM (GE Health). Bands were identified by calculating 

their apparent molecular weights using protein standards (Mark 12, Invitrogen) and 

matched to the theoretical single-hit cleavage pattern for NTCB or CNBr (Fig. 13). 
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3 Results and Discussion 

3.1 Structure of human mtRNAP elongation complex 
 

Data presented in this chapter have been obtained during this thesis and have been 

published (see page V). 

 

3.1.1 Structure of mtRNAP elongation complex 
 

We co-crystallized human mtRNAP (residues 151-1230, Δ150 mtRNAP) with a nucleic 

acid scaffold that contained a 28-mer DNA duplex with a mismatched ‘bubble’ region 

and a 14-mer RNA with nine nucleotides that were complementary to the template 

strand in the bubble (Fig. 6a and chapter 2.2). The reconstituted elongation complex 

was active in a primer extension assay (Fig. 7). We solved the structure by molecular 

replacement and refined it to a free R-factor of 21% at 2.65 Å resolution (Table 12).  

 

The structure reveals a new mtRNAP conformation, most of the DNA and RNA, 

and details of the polymerase-nucleic acid contacts (Figs. 6 and 8). The protein 

structure includes the previously mobile part of the thumb (residues 736-769), and only 

lacks two disordered loops, the terminal tip of the intercalating hairpin (residues 595-

597), and a loop called specificity loop in T7 RNAP (residues 1086-1106). Compared to 

the clenched conformation of the free polymerase (Ringel et al., 2011), the active 

center is widened by rotations of the palm and fingers by 10° and 15°, respectively, and 

neatly accommodates a 9-base pair DNA-RNA hybrid (Fig. 6c).  

 

 

 
 
 
 

 



                                                                RESULTS AND DISCUSSION 

44 
 

 

Figure 6 - Nucleic acid structure and mtRNAP interactions observed in the 
mtRNAP elongation complex crystal structure. 
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(a) Schematic overview of interactions between mtRNAP and nucleic acids. The nucleic acid 
scaffold contains template DNA (blue), non-template DNA (cyan) and RNA (red). Unfilled 
elements were not visible in the electron density map. Interactions with mtRNAP residues are 
indicated as lines (hydrogen bonds, ≤3.6 Å), dashed lines (electrostatic contacts, 3.6-4.2 Å), or 
arrows (stacking interactions). 
(b) Refined nucleic acid structure with 2Fo-Fc electron density omit map contoured at 1.5σ.  
(c) Polymerase opening from the clenched conformation of free mtRNAP (PDB code 3SPA 
(Ringel et al., 2011), dark grey) to the elongation complex (light grey). Structures were 
superimposed based on their NTDs. 
(d) Angles between duplex axes of upstream DNA, DNA-RNA hybrid, and downstream DNA. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Activity of mtRNAP elongation complex assembled on nucleic acid 
scaffolds. 
MtRNAP (1 mM) was pre-incubated with the scaffolds indicated (1 mM) for 5 min at room 
temperature and the 32P-labeled RNA primer extended by addition of 10 mM of adenosine 
triphosphate (ATP) for 2 min. The products of the reaction were resolved in 20% PAGE 
containing 6 M urea. 
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Table 12 - Data collection and refinement statistics (molecular replacement) 

 mtRNAP elongation complex 

Data collection1  

Space group I23 

Cell dimensions    

    a=b=c (Å) 225.2 

Resolution (Å) 39.8-2.65 (2.72-2.65)2 

Rsym (%) 12 (229) 

I/σI 18.9 (1.7) 

Completeness (%) 100.0 (100.0) 

Redundancy 20.7 (20.2) 

CC (1/2)
 (%)3 100 (42.5) 

  

Refinement  

Resolution (Å) 39.81-2.65 

No. reflections 54985 

Rwork/ Rfree (%) 17.3/20.8 

No. atoms  

    Protein 7880 

    Ligand/ion 1265 

    Water 244 

B-factors (Å2)  

    Protein 94.4 

    Ligand/ion 138.1 

    Water 83.5 

    RMSDs  

    Bond lengths (Å)  0.010 

    Bond angles (º) 1.24 

 

 

 

                                                
1 Diffraction data were collected at beamline X06SA of the Swiss Light Source, Switzerland and 

processed with MOSFLM (Leslie, 2006). 
2 Numbers in parenthesis refer to the highest resolution shell. 
3 CC1/2 = percentage of correlation between intensities from random half-datasets (Karplus and 

Diederichs, 2012). 



                                                                RESULTS AND DISCUSSION 

47 
 

 
 

Figure 8 - Structure of mtRNAP elongation complex determined by X-ray 
crystallography. 
(a) Overview with mtRNAP depicted as a ribbon (thumb, orange; palm, green; fingers, pink; 
intercalating hairpin, purple), and nucleic acids as sticks (color code as in Fig. 6). A Mg2+ ion 
(magenta) was placed according to a T7 RNAP structure (Yin and Steitz, 2004). The PPR 
domain was omitted for clarity. 
(b) View of the structure rotated by 90° around a horizontal axis. The polymerase is depicted as 
a surface model and includes the PPR domain (slave). Nucleic acids are depicted as ribbons. 
(c) Electrostatic surface representation of the mtRNAP elongation complex with template DNA 
(blue), non-template DNA (cyan) and RNA (red). The Fo-Fc electron density of the mobile  
5’-RNA tail is shown as a green mesh (contoured at 2.5 σ). 
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(d) Superimposition of DNA-RNA hybrids in elongation complexes of mtRNAP (orange) and 
RNAP II (PDB CODE 1I6H (Gnatt et al., 2001a), grey). 
 

 

3.1.2 Substrate selection and catalysis 
 

The active site closely resembles that of T7 RNAP and harbors the RNA 3’-end at its 

catalytic residue D1151 (Arnold et al., 2012b; Steitz, 2009; Temiakov et al., 2004)  

(Fig. 9a). Comparison with phage RNAP structures that contain the NTP substrate 

(Basu and Murakami, 2013; Yin and Steitz, 2004) supports a conserved mechanism of 

substrate binding, selection, and catalysis. The location and relative arrangement of 

amino acid residues in the active center that bind catalytic metal ions and the NTP 

substrate are conserved in both enzymes. The trajectory of several side chains differs, 

but this was likely due to the absence of metal ions and NTP in our structure. In the 

mtRNAP elongation complex, the 3’-terminal RNA nucleotide occupies the NTP site 

and is paired with the DNA template base +1 (Fig. 9a). Thus the complex adopts the 

pre-translocation state (Steitz, 2009; Yin and Steitz, 2004), and this may be why we 

could not obtain a structure with NTP. Modeling suggested that translocation enables 

binding of the NTP between residues K853, R987 and K991 on one side and two metal 

ions coordinated by residues G923, D922 and D1151 on the other side (Fig. 9a). The 

NTP 2’-OH group may contact residue Y999 (Fig. 9a). This contact likely helps to 

discriminate NTP from dNTP substrates, as revealed by extensive biochemical 

(Kostyuk et al., 1995; Sousa and Padilla, 1995) and structural studies (Temiakov et al., 

2004). 
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Figure 9 - Active center and nucleic acid strand separation observed in the 
crystal structure. 
(a) Conservation of active centers in mtRNAP (color code as in Figs. 6 and 8) and T7 RNAP 
(PDB code 3E2E (Durniak et al., 2008), light blue). Structures were superimposed based on 
their palm subdomains and selected residues were depicted as stick models.  
(b) Downstream DNA strand separation.  
(c) RNA separation from DNA at the upstream end of the hybrid and thumb-hybrid interactions.  
(d) Primer extension assays showed that a thumb subdomain plays a key role in elongation 
complex stability. Elongation complexes of wild-type (WT) (lanes 1 and 2) and Δthumb (lanes 3 
and 4) mtRNAP variants were halted 18 nucleotides downstream of the light-strand promoter 
(LSP) by omitting cytidine triphosphate (CTP) (Sologub et al., 2009). 
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3.1.3 Polymerase-nucleic acid interactions 
 

The active center is complementary to the hybrid duplex, which adopts A-form (Fig. 8d 

and Tab. 13), and could not accommodate a B-form duplex that would result from 

erroneous DNA synthesis. The DNA-RNA hybrid forms many contacts with the 

polymerase, including contacts to the thumb (Figs. 6a, 8a and 9c). Movement of the 

thumb was previously detected during different stages of the nucleotide addition cycle, 

implicating this domain in elongation complex stability, processivity, and translocation 

in the pol A family of polymerases (Brieba et al., 2001; Mentesana et al., 2000).  

 

Table 13 - Base pair parameters of mtRNAP elongation complex DNA-RNA hybrid 
region 

Register Bp Shear(Å) Stretch(Å) Stagger(Å) Buckle(°) Propeller(°) Opening(°) 

+1 G-C -0.57 -0.13 -0.28 -13.85 -11.09 4.34 

-1 C-G -0.12 -0.23 0.43 -2.82 -11.09 -2.26 

-2 G-C 0.01 -0.22 0.14 -8.82 -9.62 -2.76 

-3 G-C -0.3 -0.13 -0.19 -9.93 -16.22 2.08 

-4 C-G 0.46 -0.18 0.02 -0.39 -11.15 0.54 

-5 G-C -0.06 -0.16 -0.02 -1.93 -12.26 -1.6 

-6 C-G 0.24 -0.16 0.21 -0.48 -15.32 3 

-7 G-C -0.5 -0.1 -0.28 -21.38 -11.28 2.03 

-8 C-G -0.13 -0.13 0.18 -10.77 0.16 -2.17 

        

Register Step Shift(Å) Slide(Å) Rise(Å) Tilt(°) Roll(°) Twist(°) 

+1/-1 GC/GC -0.47 -0.48 3.16 -7.74 -0.55 32.53 

-1/-2 CG/CG 0.4 -1.53 3.27 4.4 6.94 33.32 

-2/-3 GG/CC 0.16 -1.18 3.31 3.38 11.58 32.11 

-3/-4 GC/GC 0.47 -1.14 3.08 -1.28 7.37 29.52 

-4/-5 CG/CG -0.08 -1.85 3.3 -0.65 9.86 27.91 

-5/-6 GC/GC 0.24 -1.69 3.24 -1.05 4.83 29.64 

-6/-7 CG/CG 0.57 -1.16 3.65 9.92 10.14 35.42 

-7/-8 GC/GC -0.15 -0.64 3.16 -2.61 13.59 28.98 
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To test the functional role of the thumb domain, we carried out in vitro transcription 

assays. Deletion of thumb residues 734-773 in human mtRNAP did not result in any 

significant processivity defects, but we observed a markedly decreased stability of the 

elongation complex in salt-dependent primer extension assays (Fig. 10a,b). When we 

halted an elongation complex formed with the thumb deletion (Δthumb) mutant by 

withholding the substrate NTP, the polymerase was unable to resume elongation and 

dissociated during run-off transcription assays (Fig. 9d), suggesting a key role of 

thumb-hybrid interactions in maintaining complex stability during elongation. 

 

 
 
Figure 10 - Effects of mtRNAP variants on elongation complex stability.  
(a,b) The thumb deletion mtRNAP mutant (Δthumb) is processive but forms unstable halted 
elongation complexes. (a) Processivity of the Δthumb mtRNAP. Run-off transcription assay was 
performed using PCR template containing the LSP promoter (50 nM) and the indicated amount 
of WT (lanes 1-3) and Δthumb (lanes 4-6) mtRNAPs and the products of the reactions resolved 
in 20% PAGE containing 6 M urea. (b) ΔThumb mutant forms an unstable halted elongation 
complex. The elongation complexes were assembled using DT1 scaffold and WT or Δthumb 
mtRNAP. As a control (C) only polymerase was loaded in lanes 1 and 8. 
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(c) Elongation complexes formed with mtRNAP variants that contain a deletion of the 
intercalating hairpin are sensitive to salt challenge. Elongation complexes were formed using 
DT1 scaffold and WT (lanes 1-7) or the intercalating hairpin deletion mutants Δ613-617 (lanes 
8-14) and Δ611-618 (lanes 15-21). As a control (C) only polymerase was loaded in lanes 1,8 
and 15. 
 
 
We resolved both downstream and upstream duplexes in our structure. These DNA 

elements formed B-form duplexes near positively charged surfaces of the polymerase 

NTD and CTD, respectively (Fig. 8c). The downstream DNA runs perpendicular to the 

hybrid (Fig. 6d), as observed in elongation complex structures of T7 RNAP (Durniak et 

al., 2008; Steitz, 2009; Tahirov et al., 2002; Yin and Steitz, 2002, 2004) and the 

unrelated multisubunit RNAP II (Gnatt et al., 2001b; Kettenberger et al., 2004). Thus a 

90° bend between downstream and hybrid duplexes is apparently a general feature of 

transcribing enzymes. The length and conformation of the hybrid are also very similar 

and apparently dictated by intrinsic nucleic acid properties (Fig. 8d and Tab. 13). The 

axes of upstream DNA and the hybrid encloses a 125° angle (Fig. 6d). 

 

3.1.4 DNA strand separation 
 

As the polymerase advances, the strands of downstream DNA must be separated 

before the active site. The structure showed that DNA strand separation involves the 

fingers domain (Fig. 9b). The side chain of tryptophan W1026 stacks onto the +1 base 

of the non-template DNA, directing it away from the template strand (Fig. 9b). The side 

chain of tyrosine Y1004 in the Y helix stacks onto the +2 DNA template base, 

stabilizing a 90° twist of the +1 template base and allowing its insertion into the active 

center (Fig. 9b). This is achieved by a 25° rotation of the Y helix compared to its 

position in free mtRNAP (Ringel et al., 2011). Whereas residue Y1004 has a structural 

counterpart in T7 RNAP, residue F644 (Cheetham and Steitz, 1999; Tahirov et al., 

2002; Yin and Steitz, 2002, 2004), residue W1026 does not (Fig. 11), suggesting that 

the mechanisms of strand separation are likely conserved between the two 

polymerases. 
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Figure 11 - Structure-based sequence alignment and conservation of human 
mtRNAP (residues 423-1230) and T7 RNAP (residues 63-883, PDB 1QLN 
(Cheetham et al., 1999)). 
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Secondary structure elements are consecutively labeled in alphabetical order (cylinders, α-
helices; arrows, β-strands; lines, loops). Since helix X is commonly named helix O based on a 
corresponding helix in the E.coli Klenow (KF) fragment (Beese et al., 1993), we maintain this 
convention during this work. Identical residues are highlighted in dark green, conservative 
substitutions are shown light green. Color coding for mtRNAP secondary elements is as in  
Figs. 6-9. 
 
 

3.1.5 RNA separation and exit 
 

At the upstream end of the hybrid, RNA is separated from the DNA template by the 

intercalating hairpin, which protrudes from the NTD (Figs. 8a and 9c). The hairpin 

stacks with its exposed isoleucine residues I618 and I620 onto RNA and DNA bases, 

respectively, of the last hybrid base pair at the upstream position -8. Consistent with 

the role of the intercalating hairpin during elongation, elongation complexes assembled 

with the intercalating hairpin deletion, RNA extension assays revealed that variants of 

mtRNAP were considerably less stable than complexes with WT (wild-type) mtRNAP 

(Fig. 10c). This is in contrast to T7 RNAP (Brieba et al., 2001), where the intercalating 

hairpin is not important for RNA displacement and transcription bubble stability during 

T7 RNAP elongation. 

 

RNA exits over a positively charged surface patch, but shows poor electron 

density that indicates mobility (Fig. 8c). To investigate whether the weak electron 

density reflects the RNA exit path, protein-RNA cross-linking experiments were applied. 

By replacing the first RNA base beyond the hybrid by a photo cross-linkable analogue, 

it was cross-linked to the specificity loop (Figs. 12a,d and 13). Thus the mobile 

specificity loop lines the RNA exit channel, as in the T7 RNAP elongation complex 

(Tahirov et al., 2002; Yin and Steitz, 2002). Exiting RNA at position -13 cross-linked to 

NTD helices I and G and thus the transcript emerges towards the PPR domain (Figs. 

12b,d) that contains conserved RNA recognition motifs (Schmitz-Linneweber and 

Small, 2008). 
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Figure 12 - Analysis of mtRNAP-nucleic acid contacts by cross-linking 
experiments. 
(a) RNA nucleotide -8 cross-links to the specificity loop of mtRNAP. The cross-linked complexes 
were treated with 2-nitro-5-thiocyano-benzoic acid (NTCB, lanes 2 and 3) or cyanogen bromide 
(CNBr, lanes 5 and 6). Positions of the cysteine (Cys) and methionine (Met) residues that 
produced labeled peptides are indicated in purple and green, correspondingly. Grey numbers 
indicate methionine residues that did not produce labeled peptides and the expected migration 
of these peptides.  
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(b) Mapping of the RNA-mtRNAP cross-link at RNA nucleotide -13 with different mtRNAP 
variants having a single hydroxylamine cleavage site (NG) at a defined position. The cross-links 
were treated with hydroxylamine (NH2OH). The major cross-linked peptides are highlighted in 
black, minor (less than 10%) cross-linking sites in grey.  
(c) Mapping of the template strand DNA-mtRNAP cross-link at nucleotide -8. The cross-links 
were treated with NH2OH as described above. 
(d) Location of the cross-linked regions in mtRNAP elongation complex. The T7 RNAP 
specificity loop was built into the mRNAP structure by homology modeling. The structural 
elements that belong to the identified cross-linked regions and lie within 3-5 Å from the photo 
cross-linking probe include the modeled specificity loop (yellow, residues 1080-1108), part of 
the thumb (orange, residues 752-791) and part of the intercalating hairpin (purple, residues 605-
623). Cross-linked regions that are not part of a defined structural element are shown in dark 
grey (e.g. helix G residues 587-571 and helix I residues 570-586). 
 
 

 

 

Figure 13 - Analysis of cross-linking mapping data. 
Cross-linking mapping with NTCB and CNBr (Fig. 12a) was performed using the so-called 
“single-hit” conditions (Grachev et al., 1989; Korzheva et al., 2000) i.e. when every mtRNAP 
molecule is cleaved only once, on average. Thus, the single-hit conditions generate 
characteristic patterns of the N-terminal and C-terminal cleavage products. As an example, the 
theoretical pattern of mtRNAP cleavage by NTCB consistent with the position of the cross-link 
at the C-terminus is presented above. The size of the labeled fragments is identified by its mass 
(mobility in SDS PAGE) using SeeBlue protein standard markers (Invitrogen). To distinguish 
between the C-terminal and the N-terminal location of the cross-link two variants of mtRNAP 
were used, WT mtRNAP and Δ104 mtRNAP (Fig. 12a). No shift in bands migration was 
observed in SDS-PAGE (Fig. 12a, lanes 2 and 3) confirming the location of the cross-link site at 
the C-terminus of mtRNAP. The smallest labeled band visible on the SDS PAGE upon NTCB 
treatment corresponds to the 925-1230 peptide and thus positions the cross-linking site 
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between residues C925 and C1139. This interval was narrowed down even further by CNBr 
cleavage (Fig. 12a, lanes 5 and 6). The smallest band visible on the gel upon CNBr treatment 
corresponds to the 1064-1230 peptide and positions the cross-linking site between residues 
M1063 and M1132. 

Cross-linking mapping of RNA at base -13 was performed using mtRNAP variants 
having a single NG at a defined position (Fig. 12b). The cleavage generates only two mtRNAP 
fragments simplifying identification of the labeled peptides. Thus the cleavage of the cross-link 
obtained with NG493 mutant results in appearance of a labeled fragment (83.2 kDa) 
representing the C-terminus of mtRNAP, while cleavage of NG634 mutant results in 
appearance of the N-terminal fragment (61.5 kDa). Taken together, these data suggest that the 
cross-linking site is between residues 494 and 634. 
 Mapping of cross-link at DNA template base at -8 (Fig. 12c) was performed using 
NH2OH and WT, NG556 and NG634 mtRNAPs. WT mtRNAP contains four sites for NH2OH 
cleavage at positions 710, 926, 1103 and 1117, however the most N-terminal site (710) is 
cleaved inefficiently and thus the resulting peptides are not visible. NH2OH cleavage of the 
mtRNAP-DNA cross-link results in two major products corresponding to the intervals 44-926 
and 44-1103 or 44-1117 (Fig. 12c, lane 6). Since no band was observed that corresponds to the 
interval 926-1103 or 926-1117 (about 28 kDa for peptide with the cross-linked DNA) we 
conclude that the cross-link is to the 44-926 interval of mtRNAP. Cleavage of the NG556 mutant 
results in appearance of the labeled C-terminal fragment (around 82 kDa), while cleavage of 
NG634 mutant generates two labeled fragments representing both the C- and the N-terminal 
parts of mtRNAP (Fig. 12c, lanes 1-4). Taken together these data suggest that the cross-link 
site of -8 base of DNA includes two adjacent mtRNAP regions: 557-634 and 635-926. 
 

3.1.6 Lack of NTD refolding upon elongation 
 

To initiate transcription, T7 RNAP binds promoter DNA with its NTD (Nayak et al., 

2009; Steitz, 2009). The NTD then refolds during the transition from an initiation 

complex (Cheetham and Steitz, 1999) to an elongation complex (Yin and Steitz, 2002) 

via an intermediary state (Durniak et al., 2008). In contrast, the NTD of mtRNAP does 

not refold during the initiation-elongation transition (Fig. 14). The NTD fold observed in 

our mtRNAP elongation complex structure differs from that in T7 RNAP elongation 

complexes, but resembles that in the T7 initiation-elongation intermediate, and is 

partially related to that in the T7 initiation complex (Figs. 14a-c and Tab. 14). 
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Figure 14 - Lack of NTD refolding upon mtRNAP elongation observed in the 
crystal structure. 
(a-c) Structures of the NTD of T7 RNAP and mtRNAP. The NTD of T7 RNAP (a) is refolded in 

the elongation complex (PDB code 1MSW (Yin and Steitz, 2002), whereas the NTD of mtRNAP 

(b) is not, and resembles the NTD in the T7 intermediate (PDB code 3E2E (Durniak et al., 

2008)) (c). Helices are depicted as cylinders and nucleic acids as ribbons with sticks for 

protruding bases.  
(d) The FG loop of T7 RNAP (PDB code 1QLN (Cheetham and Steitz, 1999), pale cyan) 
protrudes into the hybrid-binding site but is shorter and positioned differently in mtRNAP (silver). 
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Our crystallized mtRNAP complex represents an elongation complex rather than an 

intermediate of the initiation-elongation transition because it shows full RNA-extension 

activity and comprises a mature 9-base pair DNA-RNA hybrid with a free 5’-RNA 

extension exiting the polymerase (Figs. 7 and 8c). Consistent with a lack of NTD 

refolding, the DNA template position -8 in the elongation complex could be cross-linked 

to a region that encompasses the intercalating hairpin (Ringel et al., 2011; Velazquez 

et al., 2012) (Figs. 12c,d). In striking contrast, NTD refolding in T7 RNAP moves the 

intercalating hairpin more than 40 Å away from the hybrid upon elongation  

(Figs. 14a-c). 

 
 
Table 14 - Structural comparison of mtRNAP elongation complex NTD with 
different T7 NTD complexes by Cα  root-mean-square deviation (RMSD) values. 
Structures were aligned based on the sequence alignment (Fig. 12) and the RMSD calculated 
over all matching Cα pairs. 

 

mtRNAP elongation complex NTD 
(residues 426-638) superimposed with: 

RMSD 
(Å) 

T7 initiation structure 
(PDB code 1QLN (Cheetham et al., 1999), residues 72-261) 6.4 

T7 initiation-elongation intermediate 
(PDB code 3E2E (Durniak et al., 2008), residues 73-254) 

4.7 

T7 pre-translocated product structure 
(PDB code 1S77 (Yin and Steitz, 2004), residues 63-261) 8.3 

T7 post-translocated structure 
(PDB code 1MSW (Yin and Steitz, 2002) residues 63-261) 

8.0 

 

 

3.1.7 Discussion 
 

Transcription of the mitochondrial genome is essential for all eukaryotic cells, yet its 

mechanisms remain poorly understood. Thus far only the structure of free mtRNAP 

was reported, whereas structures of functional mtRNAP complexes were lacking. Here 

we present the structure of a functional mtRNAP complex, that of the human mtRNAP 

elongation complex. The structure showed that nucleic acid binding leads to an 

opening of the polymerase active center cleft, and an ordering of the thumb domain 
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and most of the intercalating hairpin. The structure revealed the arrangement of 

downstream and upstream DNA on the polymerase surface, and the DNA-RNA hybrid 

in the active center, as well as detailed nucleic acid-polymerase contacts. 

 

The structure of the mtRNAP elongation complex also enabled a detailed 

comparison with the distantly related RNAP from bacteriophage T7. This indicated 

conserved mechanisms for substrate selection and binding, and for catalytic nucleotide 

incorporation into growing RNA. Downstream DNA strand separation is achieved by 

the fingers domain and at least partially resembles strand separation by T7 RNAP. 

Taken together, the polymerase CTD and mechanisms that rely on this domain were 

largely conserved during evolution of singlesubunit RNAPs (Gray, 2012).  

 

Our results also revealed striking mechanistic differences between T7 RNAP 

and mtRNAP. In particular, the NTD does not refold during the transition from 

transcription initiation to elongation. In T7 RNAP (Cheetham and Steitz, 1999; Durniak 

et al., 2008), NTD refolding is triggered by a clash of the growing DNA-RNA hybrid with 

residues 127-133 in the FG loop. In contrast, this loop is two residues shorter in 

mtRNAP and positioned such that it allows for hybrid growth without NTD refolding 

(Figs. 11 and 14). 

 

We suggest that during evolution of mtRNAP from an early bacteriophage-like 

RNAP the catalytic CTD and elongation mechanism remained highly conserved, 

whereas the NTD lost its capacity to adopt an initiation-specific fold with functions in 

promoter binding and opening, as initiation factors became available to take over these 

functions. A loss of NTD refolding and its intrinsic initiation functions in mtRNAP 

apparently went along with the evolution of initiation factors TFAM and TFB2M (Arnold 

et al., 2012b; Deshpande and Patel, 2012; Gaspari et al., 2004b; Litonin et al., 2010), 

which are responsible for promoter binding (Campbell et al., 2012; Ngo et al., 2011; 

Rubio-Cosials et al., 2011) and opening (Falkenberg et al., 2002; Sologub et al., 2009), 

respectively. 
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As a consequence, mtRNAP escapes the promoter by dissociating initiation 

factors (Mangus et al., 1994), whereas T7 RNAP release from the promoter involves 

NTD refolding, which destroys the promoter-binding site within the NTD and repositions 

the intercalating hairpin far away from the nucleic acids. In contrast, the intercalating 

hairpin in mtRNAP separates the RNA transcript from the DNA template at the 

upstream end of the hybrid during elongation. Thus, the mechanism of transcription 

initiation by mtRNAP is unique. In the future, the initiation mechanism of mtRNAP 

should be studied structurally and functionally.  

 

 

3.2 Scaffold design and crystallization 
 

Data presented in this chapter have been obtained during this thesis, but have not 

been published. The following section represents experimental (pre-)work that 

essentially contributed to solve the structure of human mtRNAP elongation complex but 

was not included in the published article. 

 

As shown before the mtRNAP variant lacking residues 1-150 showed improved 

solubility compared to the full-length protein and was used for all experiments in this 

work (Ringel et al., 2011). In order to imitate the in vivo elongation phase as closely as 

possible, binding studies of Δ150mtRNAP with a variety of nucleic acid scaffolds were 

performed. Elongation complex formation was detected as a shift in the elution volume 

of mtRNAP and the ratio of absorption at 260 nm vs 280 nm during size exclusion 

chromatography (Fig. 15a). Consistent with the published results, mtRNAP was not 

able to bind linear or pre-melted DNA templates in the absence of TFB2M (Tab. 15) 

(Sologub et al., 2009). The presence of RNA, ideally a 9-base pair DNA-RNA hybrid 

and a free 5’-tail favored nucleic acid binding by mtRNAP, whereas the mismatched 

non-template DNA in the bubble region did not affect complex formation. Although 

mtRNAP relies on the presence of catalytic Mg2+ ions, the addition of MgCl2 did not 

influence the interaction surface between mtRNAP and nucleic acids in this 

experimental set-up (data not shown). As shown in Fig. 15b and Tab. 15, decreased 

salt concentrations assisted in the assembly of the elongation complex probably due to 
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decreased ion-nucleic acid interactions. Therefore, the binding studies with different 

scaffolds (Tab. 15) were exclusively performed under low salt conditions (100 mM 

NaCl). For subsequent crystallization trials elongation complexes that also form under 

high salt condition (300 mM) were favored.  

 

 

 

 

Figure 15 - Binding studies for mtRNAP elongation complex formation. 
(a) Size exclusion chromatograms of a Superdex 200 10/300 GL (GE Healthcare) loaded with 
900 pmol Δ150mtRNA (top), 1.1 nmol nucleic acid scaffold EC8 (middle) or with both 
Δ150mtRNAP and EC8 (bottom). Gelfiltration was performed in buffer G. Absorption at 280 nm 

mAU

11 13 15 17 19

11 13 15 17 19

11 13 15 17 19

mtRNAP
13.61 mL

EC8
15.45 mL

mtRNAP-EC8 
complex
13.12 mL

mL

0

50

100

150

200

250

300

350

400

450

0

50

100

150

200

250

300

350

400

450

0

50

100

150

200

250

300

350

400

450

11 13 15 17 19

19

11 13 15 17 19

mAU

30
0 

m
M

20
0 

m
M

10
0 

m
M

mtRNAP
13.55 mL

EC14
16.22 mL

mtRNAP-EC14 
complex
13.17 mL

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

mL

11 13 15 17

a
b



                                                                RESULTS AND DISCUSSION 

63 
 

is shown in blue, absorption at 260 nm is shown in red. Retention volumes of Δ150mtRNAP, 
EC8 and the formed elongation complex are indicated with dashed lines. 
(b) Size exclusion chromatograms of a Superdex 200 10/300 GL (GE Healthcare) loaded with 
each 900 pmol Δ150mtRNAP and 1.1 nmol nucleic acid scaffold EC14. Gelfiltration was 
performed in buffer I (top), buffer H (middle) and buffer G (bottom). Color code as in (a). 
 
 
 
Table 15 - Summary of binding studies for the Δ150mtRNAP elongation complex 
Binding studies of Δ150mtRNAP with different nucleic acid scaffolds were performed via 
gelfiltration on a Superdex 200 10/300 GL size exclusion column in the presence of 100 mM or 
300 mM NaCl. The degree of complex formation was quantitatively measured based on the 
ratio of absorption at 260 nm vs 280 nm. Interactions between Δ150mtRNAP and nucleic acid 
scaffolds are indicated as ++ (strong complex formation, 260 nm / 280 nm ≥  1.25), + (weak 
complex formation, 260 nm / 280 nm < 1.25) or ― (no complex formation). Protein-scaffold 
combinations that have not been tested are indicated with n.d. (not determined). The nucleic 
acid scaffolds contain template DNA (blue), non-template DNA (cyan) and RNA (red). For a 
schematic overview of all scaffolds used in this work see also Fig. 5. 
 

 

 
Scaffold 

mM NaCl 
  300    100 

CC2  n.d. ― 

CC2 
 

n.d. ― 

OC1 

 

― n.d. 

OC2 

 

― n.d. 

OC3 

 

― n.d. 

OC4 

 

― n.d. 

EC1 

 

― n.d. 

EC2 

 

― n.d. 

EC3 

 

― n.d. 
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EC4 

 

++ n.d. 

EC5 
 

― n.d. 

EC6 

 

++ n.d. 

EC7 

 

― n.d. 

EC8 

 

++ n.d. 

EC9 

 

― n.d. 

EC10 

 

― n.d. 

EC11 

 

++ n.d. 

EC12 

 

― ++ 

EC13 

 

― n.d. 

EC14 

 

― ++ 

EC15 

 

― +  

EC16 

 

― +  

EC17 

 

― n.d. 

EC18 

 

― ++ 

EC19 

 

― ++ 



                                                                RESULTS AND DISCUSSION 

65 
 

EC20 

 

― n.d. 

EC21 

 

― ++ 

EC22 

 

― n.d. 

EC23 

 

― +  

EC24 

 

― ― 

EC25 

 

― ++ 

EC26 

 

― + 

EC27 

 

― ― 

EC28 

 

― ― 

EC29 

 

― n.d. 

EC30 

 

― ― 

EC31 

 

― n.d. 

EC32 

 

n.d. ++ 

EC33 

 

n.d. + 

EC34 

 

n.d. + 

EC35 

 

n.d. + 

EC36 
 

n.d. + 
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Figure 16 - Human mtRNAP elongation complex crystallization. 
(a-c) Crystallization trials with in situ proteolysis. (a) Initial Δ150mtRNAP-EC8 crystals grew in a 
96-well plate at the crystallization facility of the MPI at 8°C in a reservoir solution containing 8% 
PEG 4000, 150 mM sodium acetate, 80 mM trisodium citrate (pH 5.5), 10% glycerol and 
120 mM DTT. Left: drop, right: close-up view of crystal. (b) Plate-like Δ150mtRNAP-DT1 
crystals grown in a 24-well plate at 20°C in reservoir solution 8% PEG 4000, 200 mM sodium 
acetate, 100 mM trisodium citrate (pH 5.5), 10% glycerol and 120 mM DTT after 1-3 days. Left: 
drop, right: close-up view of crystal. (c) Truncated rhombic dodecahedron crystals 
(Δ150mtRNAP-DT1) grown from plate-like crystals in a 24-well plate at 20°C in the same 
reservoir solution as in (b) after 4-6 days (0.2 × 0.2 × 0.2 mm). Left: drop, right: close-up view of 
crystal. 
(d) SDS-PAGE of limited proteolysis of Δ150mtRNAP (lane 3) and Δ150mtRNAP-DT1 complex 
(lane 4). Untreated Δ150mtRNAP is shown as a control (lane 2). 

  

The optimization of initial co-crystals of human mtRNAP with the nucleic acid 

scaffold EC8 (Fig. 16a) was continued with the sequence optimized scaffold DT1 

(Fig. 5). This resulted in a plate-like crystal morphology (Fig. 16b) that appeared after 

1-3 days and finally transformed into truncated rhombic dodecahedron crystals (Fig. 

16c) with a maximum size of approximately 0.2 × 0.2 × 0.2 mm within 4-6 days. The 

co-crystallized nucleic acid scaffold DT1 contained a 28-mer DNA duplex with a 

kDa
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mismatched bubble region and a 14-mer RNA with nine nucleotides that were 

complementary to the DNA template strand in the bubble (Figs. 5 and 6).  

 

The final model was iteratively built and refined using autoBUSTER (Global 

Phasing Limited) and revealed R-factors of Rwork=17.3% and Rfree=20.8% (Tab. 12). 

Evaluation of protein and nucleic acid geometry of the crystal using MolProbility (Davis 

et al., 2004) identified 0.71% of the residues as Ramachandran outliers, 96.34% as 

Ramachandran favored residues and 4.67% as poor rotamers. Regions with weak or 

missing electron density caused 1.72% bad bonds and 0.52% bad angles. 

 

3.3 Towards a human mtRNAP elongation substrate complex 
 

Data presented in this chapter have been obtained during this thesis, but have not 

been published.  

 

The highly conserved residues in the active center cleft of mtRNAP and T7 

RNAP indicate a conserved catalytic mechanism of nucleotide addition (chapter 3.1.2). 

Nevertheless, the molecular mechanisms of the mitochondrial transcription cycle need 

to be studied further. The mitochondrial mtRNAP elongation complex obtained in this 

work represents an ideal starting. 

 

Initially, various soaking and co-crystallization strategies of the human mtRNAP 

elongation complex (Δ150mtRNAP-DT1) with ATP, its non-hydrolysable analog α,β-

methyleneadenosine 5′-triphosphate (AMPCPP) or 3'-deoxyadenosine-5'-triphosphate 

(3’dATP) and PPi were tested. Since production of highly diffracting crystals has always 

been difficult (see also 3.1.7), obtaining a highly diffracting crystal of the mtRNAP 

elongation complex with an ATP or AMPCPP molecule bound in the active center was 

initially not successful. 

 

However, through optimization of the DNA-RNA scaffold and the crystallization 

conditions, one highly diffracting crystal could eventually be obtained. Upon shortening 

the 3-’RNA end by one nucleotide (DT4, Fig. 5) truncated rhombic dodecahedron co-
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crystals of Δ150mtRNAP-DT4-3’dATP-PPi grew in a reservoir solution containing 3.7% 

PEG 4000, 180 mM sodium acetate, 40 mM trisodium citrate (pH 5.5), 10% glycerol 

and 120 mM DTT within 5 days. Data processing and structure determination was 

performed as described in chapter 3.1 and methods section. As a search model for 

molecular replacement, the human mtRNAP elongation complex (PDB code 4BOC) 

missing all nucleic acid moiety was used (Tab. 16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 - Incorporated 3’dATP into the human mtRNAP elongation complex 
(Δ150mtRNAP-DT4). 
Refined nucleic acid structure with Fo-Fc electron density omit map (green) contoured at 3 σ with 
a 3’dATP incorporated at the 3’end of the nascent RNA chain. (Color code as in Figs. 6 and 8.) 
Selected residues were depicted as stick models.  
 
 

Through the described adaptions in the experimental set-up the crystal quality 

of the previously obtained mtRNAP elongation complex crystals was achieved (chapter 

3.1). The crystal structure is similar to the human mtRNAP elongation complex except 

for an incorporated 3’dATP at the 3’-end of the nascent RNA chain (Fig. 17). In respect 

of mtRNAP elongation complex stability, the hybrid length seems to be a critical 

parameter that can overcome control mechanisms for NTP and dNTP discrimination in 
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vitro (Kostyuk et al., 1995; Sousa and Padilla, 1995). Although PPi was present in the 

crystallization set-up it could not be detected in the crystal structure. Increasing PPi 

concentration interfered with crystal growth. This indicates that the current 

crystallization condition is probably not able to complex PPi. Thus an atomic structure 

of the mtRNAP elongation complex with both 3’dATP and PPi bound in the active 

center requires further optimization of the crystallization parameters, such as the DNA-

RNA scaffold sequence or the composition of the crystallization solution. Obtaining 

another crystal packing could allow proper substrate coordination in the active center of 

the mtRNAP elongation complex. 

 
 

Table 16 - Data collection and refinement statistics (molecular replacement) 

 3’dATP mtRNAP elongation complex 

Data collection4  

Space group I23 

Cell dimensions    

    a=b=c (Å) 226.9 

Resolution (Å) 48.4-3.15 (3.23-3.15)5 

Rsym (%) 10 (157) 

I/σI 14.85 (1.9) 

Completeness (%) 99.7 (100.0) 

Redundancy 10.3 (10.7) 

CC (1/2)
 (%)6 99.6 (68.4) 

Refinement  

Resolution (Å) 48.4-3.15 

No. reflections 33613 

Rwork/ Rfree (%) 18.3/23.8 

No. atoms  

    Protein 7880 

                                                
4 Diffraction data were collected at beamline X06SA of the Swiss Light Source, Switzerland and 

processed with XDS (Kabsch, 2010). 
5 Numbers in parenthesis refer to the highest resolution shell. 
6 CC1/2 = percentage of correlation between intensities from random half-datasets (Karplus and 

Diederichs, 2012). 
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    Ligand/ion 1177 

    Water --- 

B-factors (Å2)  
    Protein 97.1 

    Ligand/ion 129.9 

    Water --- 

    RMSDs  

    Bond lengths (Å)  0.01 

    Bond angles (º) 1.41 
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4 Conclusion and Outlook 
 

The singlesubunit mtRNAP is the key player of transcription of the mitochondrial 

genome. This study applied a structure-function correlation, combining X-ray 

crystallography, transcription assays and cross-linking experiments to further 

characterize the mitochondrial transcription cycle. Comparisons of the mitochondrial 

system with the T7 system, helped to determine the degree of evolutionary 

conservation between certain protein domains. The results are an important step 

towards the understanding of the mitochondrial transcription cycle on a molecular level.  

 

 

4.1 Functional studies of mtRNAP-specific mechanisms 
 

This work highlights the lack of NTD refolding in mtRNAP as a significant difference to 

T7 RNAP. In order to delineate evolutionary adaptions between both RNAPs, new 

structure-based mtRNAP mutations need to be analyzed via biochemical assays. 

The mobile fingers domain is a characteristic feature of pol A family 

polymerases and oscillations of O and Y helices are directly involved in the nucleotide 

addition cycle and the translocation of the nascent RNA (Doublie and Ellenberger, 

1998; Steitz, 2009). Intriguingly, while the catalytic cores of mtRNAP and T7 RNAP are 

highly conserved the Y helices share a surprisingly low sequence similarity (Fig. 11). In 

mtRNAP, the Y helix is one turn shorter and has the three positively charged residues 

K1012, R1013 and R1015, whereas T7-like phage RNAPs feature negatively charged 

(E662 and D663) and aliphatic (I665) residues in the corresponding positions of the 

Y helix (Fig. 11). Mutation of these residues in combination with transcription assays 

could help to further investigate why a structurally conserved translocation element, 

such as the Y helix, displays significant sequence differences. In respect of its 

stabilizing contribution to the pre-translocated conformation, the Y helix may therefore 

have an intrinsic effect on the elongation rates of mtRNAP and T7 RNAP. 

Although most domain functions of mtRNAP are described, the PPR domain still 

remains mostly uncharacterized. Previous investigations suggested a function in 
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binding promoter DNA or nascent RNA. This study revealed that the PPR domain does 

not interact with the nascent RNA chain, since the growing RNA chain exits the 

polymerase elsewhere (Fig. 8c). However, it needs to be investigated whether the PPR 

represents the positively charged trajectory for binding the promoter DNA during 

initiation. This question can be addressed by cross-linking experiments from different 

positions of the promoter DNA sequence to identify potential interacting regions in the 

PPR domain. Alternatively, mtRNAP surface mutations can be designed based on 

mtRNAP structures to weaken or reverse the positive charge along the PPR domain. 

Changes in the promoter binding ability of the surface mutants can be analyzed by 

transcription assays. Additionaly, obtaining the crystal structure of the mitochondrial IC 

will also help to elucidate this circumstance (see chapter 4.4). 

 Taken together, functional studies, based on the structure of the mtRNAP 

elongation complex can contribute to a better understanding of the complete cycle of 

mitochondrial transcription. Comparisons with the T7 system will help to integrate 

mtRNAP into the evolutionary context. 

 

 

4.2 Towards crystallization of full length mtRNAP  
 

Even though the previously unstructured thumb domain of mtRNAP could be solved by 

co-crystallization with nucleic acids, the structure of a major part of the NED (residues 

1-217), the terminal tip of the intercalating hairpin (residues 595-597) and the specificity 

loop (residues 1086-1106) could not be determinded in the mtRNAP elongation 

complex structure. This could be due to the proteolytic digestion with ArgC as well as to 

a high flexibility of the respective regions. Since the reproduction of highly diffracting 

mtRNAP crystals has always been difficult, it must be a future concern to eliminate all 

experimental uncertainties. In order to obtain the full length mtRNAP crystal structure, 

research should concentrate on replacing the proteolytic treatment by the addition of 

regulatory cofactor proteins such as TFAM, TFB2M or TEFM in order to stabilize 

flexible domains through protein-protein interactions. Alternatively, sequence- and 

digestion-based structure predictions can be used to design new mtRNAP mutants that 

contain shortened flexible linkers between functional domains. The increased proximity 
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of these functional domains could affect crystal packing and reproducibility and could 

therefore help to solve the structure of so far disordered regions in the protein. 

 

 

4.3 Extension of structural studies of the mtRNAP elongation 
complex 

 

The availability of highly diffracting mtRNAP elongation complex crystals opens the 

door for various experimental set-ups towards an elongation complex structure 

containing a substrate molecule. As previously described, obtaining or reproducing 

highly diffracting mtRNAP crystals with different DNA-RNA scaffolds, substrates and 

additional factors is difficult. This is likely due to the proteolytic in situ digestion required 

for the established crystallization protocol. Trials to optimize critical parameters such as 

temperature, crystal age, DNA-RNA oligonucleotide quality, cryo solution composition 

or crystal freezing need to be continued. Additionally, a mtRNAP construct lacking the 

flexible specificity loop (residues 1086-1106) and parts of the unstructured NED can 

overcome this hurdle. Once an optimized mtRNAP construct is established, co-

crystallization or (time-dependent) soaking experiments comprising NTPs or their non-

hydrolysable analogs can be performed (Basu and Murakami, 2013). This could yield 

atomic resolution structures of different stages of the nucleotide addition cycle, 

including a substrate pre-insertion complex (Temiakov et al., 2004), a substrate 

insertion complex (Yin and Steitz, 2002), a pre-translocated complex (Yin and Steitz, 

2004) or a post-translocated complex (Yin and Steitz, 2004) (see also Fig. 1). If the 

pre-translocated conformation of mtRNAP that was obtained in this work is not the 

appropriate starting point to crystallize a mtRNAP substrate elongation complex, 

sequence changes of the DNA-RNA scaffold might trigger a post-translocated 

polymerase conformation which might be more prone for substrate binding in the active 

center (Hein et al., 2011). 

 

The recently identified elongation factor TEFM seems to play a significant role 

for mtRNAP processivity during RNA synthesis. A protocol for recombinant TEFM 

expression and purification, a direct interaction with mtRNAP in vitro as well as an 

enhancing effect on mtRNAP processivitiy in vitro have already been published 
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(Minczuk et al., 2011). Cross-linking and co-crystallization experiments of the 

mitochondrial mtRNAP elongation complex presented in this work together with 

recombinant TEFM will allow mapping of the underlying protein-protein and protein-

nucleic acid interaction network. This would reveal the molecular basis of the 

stimulating effect of TEFM on mtRNAP activity observed in vitro.  

 

Although it is well known that mitochondrial dysfunctions are the cause of a 

variety of human diseases, only little is known of how mtRNAP handles DNA damage 

that is introduced by the oxidative environment in mitochondria. Upon reaching an 

oxidatively damaged DNA site, mtRNAP pauses to activate either DNA repair 

mechanisms or translesion synthesis mechanisms (Nakanishi et al., 2013). In order to 

investigate the molecular changes that are responsible for factor recruitment or 

nucleotide incorporation, crystallographic approaches should comprise elongation 

scaffolds with a synthetic 8-oxoguanine - a typical oxidative DNA damage induced by 

ROS - placed at different positions in either the DNA template or non-template strand 

(Cline et al., 2010). Similar experiments have already been performed for multisubunit 

polymerases, such as RNAP II (Damsma and Cramer, 2009). 

 

Besides damaged mtDNA, mtRNAP also has to deal with the presence of 

altered nucleotides derived from therapeutic nucleosides. Recent studies showed that 

a anti-hepatitis C virus ribonucleoside triphosphate known as ribavirin triphosphate is 

incorporated by both mtRNAP and nuclear RNAP II (Arnold et al., 2012a). Whereas 

RNAP II utilizes factor regulated proofreading activity to excise the incorrect nucleotide 

from the transcript, mtRNAP lacks this proofreading mechanism (Arnold et al., 2012a). 

Patient toxicity in clinical trials may be traced back to defects in mitochondrial 

transcription as an off target effect (Arnold et al., 2012a). The design of new, more 

agreeable anti-viral drugs implies the elucidation of the molecular mechanisms of 

therapeutic nucleotide incorporation. Therefore, the mtRNAP elongation complex could 

be expanded by soaking or co-crystallization experiments including ribavirin 

triphosphate or similar anti-viral ribonucleoside triphosphates. 

The described extension of structural studies of the mtRNAP elongation 

complex will not only deepen our understanding of evolutionary developments in early 

eukaryotes but will also help modern medicine in developing better anti-viral drugs. 
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4.4 Crystallization of mtRNAP during different transcriptional 
phases  

 

This work laid the foundation for future investigations of additional mtRNAP complexes 

comprising transcription initiation factors and regulatory factors. 

Co-crystallization of mtRNAP with DNA-RNA scaffolds containing RNA 

oligonucleotides of different lengths could reveal an intermediate state between 

initiation and elongation phase with both promoter and downstream DNA duplexes 

bound (compare (Durniak et al., 2008)). This could reveal new insights into the 

interaction network and release mechanism of TFAM and/or TFB2M during the 

transition of mitochondrial initiation to elongation phase. 

 

Another aim of future research will be the visualization of mtRNAP in other 

functional conformations to complete the picture of the molecular mechanisms during 

the mitochondrial transcription cycle. According to the current model, mitochondrial 

transcription initiation is induced by the sequential assembly of the pre-initiation 

complex (PIC) comprising mtRNAP, TFAM and double-stranded promoter DNA, that is 

then completed by binding of TFB2M forming the initiation complex (IC) (Morozov et 

al., 2014; Posse et al., 2014). Upon the availability of both complex structures, the 

individual steps towards transcription initiation comprising promoter recognition and 

binding by TFAM, recruitment of mtRNAP and TFB2M, promoter melting and binding of 

the priming nucleotide to the active center of the polymerase can be elucidated in more 

detail. Initial crystallization trials should concentrate on the strategy of co-crystallization 

of the respective components. Additionally, PIC or IC stability can be increased by the 

use of mtRNAP-TFAM or mtRNAP-TFB2M fusion constructs designed according to 

available cross-linking data and a low quality electron microscopy model (Morozov et 

al., 2014; Posse et al., 2014; Yakubovskaya et al., 2014). 

 

Regulation of mitochondrial transcription is commonly due to the influence of 

protein cofactors that affect mtRNAP through protein-protein interactions. Therefore, 

crystallization of mtRNAP in complex with transcriptional activators such as LRPPRC, 

MRLP12 or terminating factors such as mTerf1 will contribute to a deeper 

understanding of regulatory processes during RNA synthesis. 
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Another remarkable but also little understood aspect of mtRNAP is its primase 

activity during mitochondrial replication. It needs to be further investigated how 

transcription and replication are linked on a molecular level and which regulatory 

proteins trigger this process. Especially the capability of mtRNAP to bind to single-

stranded DNA stem-loop structures to initiate factor-independent RNA synthesis could 

be further probed by a combination of functional and structural approaches. For this 

purpose, transcription assays could be used to both gain kinetic data on origin-specific 

primase activity of mtRNAP as well as the design of DNA hairpin oligonucleotides for 

mtRNAP co-crystallization trials. A comparison with the crystal structure of virion RNAP 

of the bacteriophage N4 in complex with a single-stranded DNA hairpin (Gleghorn et 

al., 2008) might help in respect of the strategic approach. 

 

Taken together, the structure of the human mtRNAP elongation complex 

presented in this work is an important step towards a molecular understanding of the 

mitochondrial transcription cycle. Additional insights into different mtRNAP complexes 

during different transcriptional phases will eventually reveal the regulatory network and 

molecular mechanisms dictating mitochondrial gene transcription.  
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°C  degree Celsius 

aa  amino acids 

AMPCPP α,β-methyleneadenosine-5’-triphosphate 

ATP  adenosine 5’-triphosphate 

bp   base pair 

BSA   bovine serum albumine  

CAPSO N-cyclohexyl-2-hydroxyl-3-aminopropanesulfonic acid  

CNBr  cyanogen bromide  

CTD   carboxy-terminal domain  

CV   column volumes  

cys  cysteine 

D-loop  displacement loop 

Da   Dalton  

DMSO  dimethyl sulfoxide  

DNA   deoxyribonucleic acid 

dNTP  deoxynucleoside triphosphate 

DTT   1,4-dithio-D,L-threitol  
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Mtf1  mitochondrial transcription factor 1  
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PDB   Protein Data Bank 

PEG  poly(ethylene glycol) 
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PMSF   phenylmethylsulfonyl fluoride 
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R-factor normalized linear residual between observed and calculated structure 

factor amplitudes 

RNA  riboculeic acid 

RNAP  DNA-dependent RNA polymerase 

ROS  reactive oxygen species  

rRNA  ribosomal RNA  

tRNAP  transfer RNA 

RMSD  root means square deviation 

ROS  reactive oxygen species 

rpm   rounds per minute  

Rpo41  DNA dependent RNA polymerase of S.c.  

S.c.  Saccharomyces cerivisiae 

SDS   sodium dodecylsulfate  

sec  seconds 

SLS  Swiss Light Source 

TBE  tris-borate/-DTA 

TBP  TATA-binding protein 
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TEFM  transcription elongation factor of mitochondria  

TERM1 termination region of HSP1-dependent trascription 
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TFB  transcription factor B  
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tRNA  transfer RNA 
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