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Summary

The aim of this thesis is to develop new statistical methods for the evaluation of assumptions
that are crucial for reliably assessing group-differences in complex studies in the field of psy-
chological and educational testing.

The framework of item response theory (IRT) includes a variety of psychometric models for
scaling latent traits such as the widely-used Rasch model. The Rasch model ensures objective
measures and fair comparisons between groups of subjects. However, this important property
holds only if the underlying assumptions are met. One essential assumption is the invariance
property that states constant item parameters for all subgroups. Its violation is extensively
discussed in the literature and termed differential item functioning (DIF). This thesis focuses
on the methodology of DIF detection. Existing methods for DIF detection are briefly discussed
and new statistical methods are introduced.

One key aspect are the recently suggested Rasch trees that employ the model-based recur-
sive partitioning algorithm to detect groups that display different item parameters in the Rasch
model. In this thesis, it is shown that Rasch trees are also suited to detect non-uniform DIF,
if the sample size is sufficiently large. For item-wise DIF detection methods, that rely on the
comparison of item parameters, an anchor is necessary to place the estimated item parameters
onto a common scale. A conceptual framework for the anchor process is suggested. Existing
item-wise DIF tests are improved by new anchor methods and first ideas to generalize the meth-
ods for multiple-group comparisons are presented. The methods introduced in this thesis allow
to classify items with and without DIF more accurately and, thus, to improve the evaluation of
the invariance assumption in the Rasch model. This thesis, thereby, provides a contribution to
the construction of objective and fair tests in psychology and educational testing.





Zusammenfassung

Ziel dieser Arbeit ist die Entwicklung neuer statistischer Methoden zur Überprüfung von An-
nahmen, die maßgeblich für die Analyse von Gruppenunterschieden in komplexen Studien aus
dem Bereich der Psychologie und der empirischen Bildungsforschung sind.

Die Item Response Theory (IRT) umfasst eine Vielzahl psychometrischer Modelle zur Skalierung
latenter Personeneigenschaften, wie das weit verbreitete Rasch Modell. Das Rasch Modell
gewährleistet objektive Messungen und erlaubt dadurch auch faire Vergleiche zwischen Per-
sonengruppen. Allerdings gilt diese wichtige Eigenschaft des Rasch Modells nur, solange die
zugrundeliegenden Modellannahmen erfüllt sind. Eine zentrale Annahme des Modells ist die
der Invarianz, die konstante Aufgabenparameter über Personengruppen hinweg fordert. Ihre
Verletzung ist Gegenstand zahlreicher wissenschaftlicher Abhandlungen und wird als Differ-
ential Item Functioning (DIF) bezeichnet. Die Methodologie zur Prüfung von DIF steht im
Vordergrund dieser Arbeit. Bereits vorgeschlagene Verfahren zur DIF Prüfung werden kurz
diskutiert und neue statistische Verfahren zur Analyse von DIF werden entwickelt.

Einen Schwerpunkt bilden die jüngst vorgeschlagenen Rasch-Bäume, die das Modell-basierte
rekursive Partitionieren einsetzen, um Gruppen mit unterschiedlichen Aufgabenparametern im
Rasch Modell aufzudecken. In dieser Arbeit wird gezeigt, dass sich Rasch-Bäume auch eignen,
um non-uniform DIF aufzudecken, wenn der Stichprobenumfang ausreichend groß ist. Item-
weise DIF Methoden, die auf dem Vergleich geschätzter Aufgabenparameter basieren, verlan-
gen eine Verankerung, um eine gemeinsame Skala der Aufgabenparameter zu konstruieren.
Ein konzeptioneller Rahmen für Verankerungsverfahren wird vorgeschlagen. Item-weise DIF
Tests werden durch neue Verankerungsmethoden weiter entwickelt und erste Ideen zur Ver-
allgemeinerung dieser Verfahren für den Mehrgruppenvergleich werden vorgeschlagen. Die
in dieser Arbeit neu vorgeschlagenen Verfahren erleichtern die Klassifikation von Aufgaben
in solche mit und ohne DIF und ermöglichen so eine Verbesserung der Überprüfung der In-
varianzannahme im Rasch Modell. Diese Arbeit leistet damit einen Beitrag zur Konstruktion
objektiver und fairer Tests in der Psychologie und der empirischen Bildungsforschung.
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lustigen Stunden bedanken.

München, den 14. August 2013 Julia Kopf





Contents

1 Scope of this work 1

2 Model-based recursive partitioning in the social sciences 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Classification and regression trees . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Basic principles of classification and regression trees . . . . . . . . . . 11
2.2.2 Some technical details . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 From classification and regression trees to model-based recursive partitioning . 15
2.3.1 Basic principles of model-based recursive partitioning . . . . . . . . . 16
2.3.2 Some technical details . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Potential in the social sciences . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Empirical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The issue of differential item functioning in the Rasch model 27
3.1 The Rasch model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Differential item functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Historical development and test fairness . . . . . . . . . . . . . . . . . 31
3.2.2 Uniform and non-uniform differential item functioning . . . . . . . . . 34

3.3 Methods to detect DIF or DIF groups . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Global model tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Methods to detect item-wise uniform DIF . . . . . . . . . . . . . . . . 39
3.3.3 Methods to detect non-uniform DIF . . . . . . . . . . . . . . . . . . . 41

3.4 Rasch trees for uniform DIF detection . . . . . . . . . . . . . . . . . . . . . . 42

4 Detecting non-uniform DIF with Rasch trees 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Rasch trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Extensions of the logistic regression . . . . . . . . . . . . . . . . . . . 57

4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Manipulated variables . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Data generating processes . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Outcome variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 No DIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Uniform DIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Non-uniform DIF: Jump condition . . . . . . . . . . . . . . . . . . . . 68



ii Contents

4.4.4 Non-uniform DIF: Discrimination condition . . . . . . . . . . . . . . . 70
4.4.5 On the classification accuracy . . . . . . . . . . . . . . . . . . . . . . 70
4.4.6 On the detection of DIF groups . . . . . . . . . . . . . . . . . . . . . 75

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 A framework for anchor methods 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 The anchor process for the Rasch model . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Scale indeterminacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Item-wise Wald test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3 Illustration of artificial DIF . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 A conceptual framework for anchor methods . . . . . . . . . . . . . . . . . . . 84
5.3.1 Anchor classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Anchor selection strategies . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 Anchor methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Appendix: Preliminary simulation study . . . . . . . . . . . . . . . . . . . . . 87

6 Anchor classes for DIF detection in the Rasch model 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 The iterative forward class and comparison methods . . . . . . . . . . . . . . . 92

6.2.1 The iterative forward anchor class and comparison anchor classes . . . 92
6.2.2 Anchor selection strategies . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.3 Anchor methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Background of the simulation study . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Data generating process . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4.2 Manipulated variables . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4.3 Outcome variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.1 Null hypothesis: No DIF . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.2 Balanced DIF: No advantage for one group . . . . . . . . . . . . . . . 102
6.5.3 Unbalanced DIF: Advantage for the focal group . . . . . . . . . . . . . 104

6.6 The impact of anchor contamination . . . . . . . . . . . . . . . . . . . . . . . 106
6.7 Characteristics of the anchor items inducing artificial DIF . . . . . . . . . . . . 109
6.8 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Anchor selection strategies for DIF analysis in the Rasch model 123
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Anchor methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.1 The anchor process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 Anchor classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



Contents iii

7.2.3 Anchor selection strategies . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.1 Data generating processes . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3.2 Manipulated variables . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3.3 Outcome variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4.1 Anchor selection for the constant four anchor class . . . . . . . . . . . 136
7.4.2 Anchor selection for the iterative forward anchor class . . . . . . . . . 138
7.4.3 Comparison of the mean test statistic and p-value threshold selection . 140
7.4.4 Comparison of the best performing methods . . . . . . . . . . . . . . . 141
7.4.5 Further simulated settings . . . . . . . . . . . . . . . . . . . . . . . . 143

7.5 Discussion and practical recommendations . . . . . . . . . . . . . . . . . . . . 145

8 Outlook on anchor selection strategies for multiple group comparisons 149
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2 Alternative I: Selection of an anchor set for each paired comparison . . . . . . 150
8.3 Alternative II: Selection of a common anchor set . . . . . . . . . . . . . . . . 151
8.4 Discussion and future research questions . . . . . . . . . . . . . . . . . . . . . 153

9 Alternative ideas 155
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.2 Quasi-variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.2.1 Basic idea of quasi-variances . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.2 Quasi-variances in DIF detection . . . . . . . . . . . . . . . . . . . . . 156
9.2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2.4 Results: Quasi-Wald tests versus Wald tests . . . . . . . . . . . . . . . 159
9.2.5 Results: Classification of the first anchor item . . . . . . . . . . . . . . 161

9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10 Concluding remarks and outlook 169
10.1 Concluding summary and overview . . . . . . . . . . . . . . . . . . . . . . . 169

10.1.1 Selection of scientific findings . . . . . . . . . . . . . . . . . . . . . . 170
10.1.2 Limits of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172





1

1 Scope of this work

,,The importance of the property of invariance of item and
ability parameters cannot be overstated. This property
is the cornerstone of item response theory” according to
Hambleton et al. 1991, p. 25.

The detection of differential item functioning (DIF) – i.e. the violation of the invariant item
parameter assumption – is of utmost importance for the valid measurement of latent traits such
as abilities in the field of educational testing, personality traits in behavioral research or attitudes
in political and social sciences. If DIF is present, fair comparisons between groups of test-takers
for example between participating countries in the PISA study and meaningful individual test
results for example for test-takers in academic assessments are no longer guaranteed.

Recently, a new statistical method for the detection of uniform DIF in the Rasch model termed
Rasch trees was suggested (Strobl et al., 2013). This approach brings together the model-based
recursive partitioning algorithm (Zeileis et al., 2008) and item response theory (IRT). This work
addresses several challenges in the analysis of DIF, some of which are directly related to the
newly proposed method and some that are concerned with the analysis of DIF in general.

This work is supported by the German Federal Ministry of Education and Research (BMBF)
within the project “Heterogeneity in IRT-Models” (grant ID 01JG1060).

In Chapter 2, the model-based recursive partitioning algorithm (Zeileis et al., 2008) is intro-
duced with regard to its potential for the social sciences. Methods developed from machine
learning, such as classification and regression trees or random forests, are exploratory data min-
ing techniques. They search for patterns over a set of available covariates and are popular in
many fields such as epidemiology, genetics or economics due to their high performance (Strobl,
2008). However, research in the social sciences is based on the development and evaluation
of theories to explain the object of research, such as human behavior, and might often not be-
nefit from the exploratory nature of the algorithmic methods. Yet, the variant of model-based
recursive partitioning can bring together a statistical modeling part and a variable selection part
that indicates whether the parameters of the underlying model are unstable in groups defined
by observable covariates. Thus, model-based recursive partitioning allows to evaluate whether
statistical models, that represent the substantial theories, are appropriate for the entire sample.
It can be used as a broad test of assumptions of pre-defined statistical models, for example to
assess violations of Ockham’s razor.

When model-based recursive partitioning meets item response theory, it allows to investigate
the assumption of parameter invariance that is crucial for psychometric models in the field of
psychological and educational testing. The recently suggested Rasch trees (Strobl et al., 2013)
are based on the model-based recursive partitioning algorithm for the widely-used Rasch model.



2 1 Scope of this work

It has already been shown to be a powerful tool for the detection of uniform DIF since it allows
to detect observable groups that display different item parameters. The performance in word
problems in a math test, for example, may depend on an additional trait dimension such as
language skills and, thus, be harder for non-native speakers even if they have the same math
ability. Rasch trees were developed as a global model test to answer the question if uniform
DIF is present and – if so – which groups display DIF in the test. Chapter 3 briefly introduces
the Rasch model, the problem of DIF, its relation to test fairness and several methods that were
previously suggested for DIF detection with an emphasis on the Rasch trees.

In Chapter 4, it is evaluated whether Rasch trees are also suited for the detection of non-uniform
DIF. Non-uniform DIF – as opposed to uniform DIF – is present when the disadvantages (mea-
sured in terms of item parameter differences) vary over the ability range. In the math test
example, it may happen that non-native speakers with a lower ability are more strongly affected
by DIF compared to non-native speakers with a higher ability level. In this case, non-uniform
DIF is present. For a comparison with the global Rasch tree procedure, two extensions of the
logistic regression (that was suggested for the item-wise detection of uniform and non-uniform
DIF by Swaminathan and Rogers, 1990) that allow to test for DIF in all items are suggested.
It is shown that Rasch trees are also suitable for the detection of non-uniform DIF when large
sample sizes are present and that they outperform the extensions of the logistic regression when
DIF is simulated in the difficulty parameters or when the logistic regression is misspecified. Fur-
thermore, Rasch trees automatically search for the affected groups over all available covariates
and maintain their straightforward interpretation.

Up to Chapter 4 this work focused on global tests for DIF. While the global tests can be con-
sidered as a first general assessment of measurement invariance, conclusions on the item level
cannot yet be drawn. However, for practical research in test or questionnaire development, it
is important to know which items display DIF and between which groups so that items can be
modified or excluded from the test (Westers and Kelderman, 1992) and research on the under-
lying causes of DIF (Jodoin and Gierl, 2001) can be carried out. Since DIF generally reflects
situations where the latent ability is no longer unidimensional (Mellenbergh, 1982), the know-
ledge about which items and groups display DIF may help to generate hypothesis about the
additional dimensions involved.

To answer the question which items display DIF, item-wise DIF tests are regarded. Throughout
this thesis, the classical Wald test based on the item parameters of the Rasch model (which
are estimated using the conditional maximum likelihood) is used to assess DIF. For the DIF
analysis, the origin of the scales of the item parameters has to be determined. Therefore, one
linear restriction is imposed in each group and the items in the restriction are termed anchor
items or the anchor. There are two problems associated with the choice of the anchor that
is determined by an anchor method. First, the results of the DIF-analysis strongly depend
on the choice of the anchor. Second, little information is at hand how the anchor is selected
appropriately (Lopez Rivas et al., 2009). The Wald test is shown to be an appropriate test for
DIF if it is combined with a suitable anchor method.

Chapter 5 provides an introduction of the anchor problem together with a new conceptual frame-
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work for the classification of previously suggested anchor methods. In this framework, it is dis-
tinguished between anchor classes that determine characteristics of the anchor methods, such
as a predefined number of anchor items, and anchor selection strategies that locate the anchor
items. The entire procedure, consisting of an anchor class and – if necessary – an anchor selec-
tion strategy, is then termed anchor method.

In this thesis, several new suggestions for the anchor process are proposed, since an appropriate
anchor method is necessary for the correct classification of DIF- and DIF-free items. In case
the anchor method does not work appropriately, inflated false alarm rates (i.e. DIF-free items
erroneously display DIF) occur, that jeopardize the statistical inference at a predefined signif-
icance level and, thereby, the correct classification of DIF- and DIF-free items. The inflated
false alarm rate is induced by an artificial difference between the item parameters of the groups
that also affects descriptive measures or effect size measures. In Chapter 6, a new anchor class
named the iterative forward anchor class is developed for the DIF analysis of two pre-specified
groups and evaluated in an extensive simulation study. While previously suggested methods
often start with a criterion that is severely biased, this problem is avoided by starting with a
single anchor item and successively including items in the anchor. The iterative forward anchor
class generates a longer anchor and, thereby, allows for a higher hit rate (i.e. more DIF-items
are correctly detected).

In Chapter 7, existing anchor selection strategies are compared with three new suggestions:
the mean p-value, the mean test statistic threshold and the mean p-value threshold selection.
The anchor selections are combined with the newly proposed iterative forward anchor class and
the previously suggested constant anchor class. In an extensive simulation study, it is shown
that the anchor selection strategies developed in this thesis outperform previously suggested
anchor selection strategies in the majority of the simulated settings and allow for a lower false
alarm rate (i.e. less DIF-free items display DIF) and a higher hit rate (i.e. more DIF-items are
detected).

So far, the development of the anchor class and anchor selection strategies was limited to the
comparison of two groups. In Chapter 8, two alternative extensions of the anchor methods for
multiple group comparisons are suggested. Even though several authors proposed to conduct
post-hoc tests that answer the question which items display DIF between which groups (Kim
et al., 1995; Penfield, 2001), the literature on the anchor problem is – to my knowledge – limited
to the two-group case. The extension to multiple group comparisons is also important for the
previously suggested Rasch trees that automatically detect – potentially more than two – groups
of subjects that display DIF. To draw conclusions which items display DIF and between which
groups, multiple comparison procedures need to be constructed (independently of whether they
are used as post-hoc significance tests or as descriptive measures). Here, it is recommended
to generalize the anchor methods for these comparisons by selecting a common set of anchor
items. Therefore, two aggregation rules, the mean and the minimax rule are suggested.

Throughout this thesis, several decisions about assumptions or methods to be investigated have
been taken. Chapter 9 is concerned with alternative ideas. First, it is evaluated whether pre-
viously suggested quasi-variances (Firth, 2003) can be used for DIF detection. Second, an
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alternative to the decision that the first anchor item of a test was defined DIF-free is discussed
and evaluated.

In Chapter 10, the contents of this thesis are briefly summarized. Furthermore, the main sci-
entific findings are discussed followed by the limitations of this work. Finally, future research
questions are addressed.

In summary, the suggestions presented in this thesis by means of new methods for DIF detection
(Chapter 4), a new anchor class (Chapter 6) and new anchor selection strategies (Chapter 7)
allow for lower false alarm rates (i.e. less items erroneously display significant DIF) and higher
hit rates (i.e. true DIF-items are more often detected) compared to previous suggestions. In
Chapter 8 extensions for multiple group comparisons were addressed to form the basis for post-
hoc measures for the Rasch trees to answer the question which items display DIF between which
groups.

By employing the new methods, expenses for test or questionnaire construction can be reduced
since fewer items are falsely eliminated and less new items have to be developed. Furthermore,
items that are affected by DIF are more often correctly detected. The detection of DIF-items is
necessary for fair comparisons between groups. If items of a test are affected by DIF, groups
of equally able test-takers display different probabilities of solving the items that may result in
different test results. Thus, groups of test-takers – such as male test-takers, female test-takers
or native speakers – may have an unfair advantage in the test. On the one hand, groups can no
longer be compared in a fair way and, on the other hand, individual test results are no longer
valid. This is an important argument, since in contemporary society important personal and
political decisions are based on results from IRT models (examples can be found in Chapter 3).
Presumably, standardized test results will become even more widely used in educational testing
and other settings.
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Contributing Manuscripts

Parts of this thesis are already published as a technical report, as a book chapter or a journal
article. The rest are based on yet unpublished manuscripts. These manuscripts were developed
in cooperation with coauthors. The titles of the manuscripts are listed below together with a
short description of the content and the contributions from all authors.

• Kopf J., Augustin T. and Strobl C. (2013): The Potential of Model-based Recursive Par-
titioning in the Social Sciences – Revisiting Ockham’s Razor. In: McArdle J.J. and
Ritschard G. (Ed.): Contemporary Issues in Exploratory Data Mining, Routeledge, New
York, to appear 2013.

In this manuscript, we review the model-based recursive partitioning technique and the
predecessor method classification and regression trees. To highlight the potential of
model-based recursive partitioning for the social sciences, we point out the relation of
the algorithmic method to the principle of parsimony and Ockham’s Razor.
Julia Kopf identified the relation to Ockham’s Razor as one key argument for the use
of model-based recursive partitioning in the social sciences, performed the analyses and
drafted the manuscript. Carolin Strobl and Thomas Augustin contributed to the concep-
tion and presentation of the article.

Chapter 2 is based on contents of this manuscript.

• Strobl C., Kopf J. and Zeileis A. (2013): Rasch Trees: A New Method for Detecting
Differential Item Functioning in the Rasch Model. Psychometrika, accepted.

This manuscript proposes a new method for DIF detection termed Rasch trees based on
model-based recursive partitioning of the Rasch model. With this approach, it is possible
to detect groups of subjects exhibiting DIF, which are not pre-specified, but result from
combinations of observed covariates.
Carolin Strobl developed the idea to use the model-based recursive partitioning algo-
rithm for DIF detection in the Rasch model, conducted the final simulation studies and
drafted the manuscript. Achim Zeileis created the statistical software, contributed to the
methodological aspects and to the manuscript. Julia Kopf reviewed the literature, derived
measures necessary for the statistical test and conducted preliminary simulation studies
during her master thesis.

Chapter 3, that forms the statistical background for the following methodological sugges-
tions, is partly based on contents of this manuscript.

• Kopf J. and Strobl C. (2013): Detecting Non-uniform DIF with Rasch Trees.

In this manuscript, we address the question of whether the newly proposed Rasch trees
are also suited for the detection of non-uniform DIF in the Rasch model. Furthermore,
we suggest two extensions of the logistic regression approach, that has previously been
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proposed for the detection of uniform and non-uniform DIF, to allow for a direct com-
parison.
Julia Kopf suggested the extensions of the logistic regression for the comparison, planned
and performed the simulation studies and drafted the manuscript. Carolin Strobl identified
the problem, developed the idea to detect non-uniform DIF with the Rasch trees and
contributed to the presentation.

Chapter 4 is based on contents of this manuscript.

• Kopf J., Zeileis A. and Strobl C. (2013): Anchor Methods for DIF Detection: A Compar-
ison of the Iterative Forward, Backward, Constant and All-other Anchor Class. Technical
Report 141, Department of Statistics, LMU Munich.

This manuscript proposes a conceptual framework for categorizing anchor methods: The
anchor class to describe characteristics of the anchor methods and the anchor selection
strategy to guide how the anchor items are determined. Furthermore, we propose a new
anchor class termed the iterative forward anchor class and compare it to several previ-
ously suggested anchor classes in an extensive simulation study.
Julia Kopf developed the conceptual framework, suggested the iterative forward anchor
method, provided software for the anchor methods, conducted the simulation study and
drafted the manuscript. Carolin Strobl contributed to the manuscript, especially regarding
the interpretability of the results, and made methodological suggestions for consideration.
Achim Zeileis provided one part of the software for the DIF tests and contributed to the
formal notation in the manuscript.

Chapters 5 and 6 and are based on contents of this manuscript.

• Kopf J., Zeileis A. and Strobl C. (2013): Anchor Selection Strategies for DIF Analysis:
Review, Assessment, and New Approaches. Technical Report 150, Department of Statis-
tics, LMU Munich.

In this manuscript, we review existing anchor selection strategies that do not require any
knowledge prior to DIF analysis – as this is typically not available in practical applica-
tions – offer a formal notation for these strategies and propose three new anchor selection
strategies. We evaluate the appropriateness of the anchor selection strategies by conduct-
ing an extensive simulation study.
Julia Kopf developed the new threshold anchor selection strategies, implemented the an-
chor selection strategies in statistical software, conducted the simulation study and drafted
the manuscript. Carolin Strobl contributed to the presentation in the manuscript. Achim
Zeileis provided parts of the software for the DIF tests, suggested the usage of p-values
for anchor selection and contributed to the presentation of the manuscript.

Chapter 7 is based on contents of this manuscript.

• Kopf J., and Strobl C. (2013): Outlook on Anchor Selection Strategies for Multiple Group
Comparisons in DIF Analysis.
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Ideas how anchor selection strategies can be generalized to paired multiple group compar-
isons are presented in this manuscript draft. We argue to select a common set of anchor
items instead of a different anchor set for each paired comparison. Two aggregation rules
are introduced to generalize the anchor selection strategies for multiple group compar-
isons.
Julia Kopf developed the generalization to multiple groups and drafted the manuscript.
Carolin Strobl contributed to the manuscript.

Chapter 8 is based on contents of this manuscript draft and gives a first impression of
current work in progress.

• Kopf J., and Strobl C. (2013): On Quasi-variances for DIF Detection.

Some alternative approaches to the strategies used in this thesis are presented in this
manuscript draft. First, quasi-variances are evaluated regarding their appropriateness in
DIF analysis. Second, the question whether the test decision for the first anchor item
based on quasi-variances is better suited compared to the decision to declare the first
anchor item as DIF-free is addressed.
Achim Zeileis developed the idea to use quasi-variances for DIF detection. Julia Kopf
reviewed the methodological aspects, carried out the simulation study and drafted the
manuscript. Carolin Strobl contributed to the manuscript.

Chapter 9 is based on contents of this manuscript draft and also reflects ongoing work.
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2 The potential of model-based recursive partitioning in
the social sciences – Revisiting Ockham’s Razor

Summary: A variety of new statistical methods from the field of machine learning have the
potential to offer new impulses for research in the social, educational and behavioral sci-
ences. In this chapter we focus on one of these methods: model-based recursive partitioning.
This algorithmic approach is reviewed and illustrated by means of instructive examples and
an application to the Mincer equation, that is commonly used to describe the association be-
tween education, job experience and income in econometric and sociological research. For
readers unfamiliar with algorithmic methods, the explanation starts with the introduction of
the predecessor method classification and regression trees. As opposed to classification and
regression trees that search for groups of observations that differ in the values of a response
variable, model-based recursive partitioning searches for groups differing in their estimated
parameters of a postulated statistical model. With respect to the application and interpretation
of model-based recursive partitioning, we highlight the principle of parsimony and Ockham’s
Razor. To facilitate the applicability in the social sciences, we close with a section on recursive
partitioning software available in the free R system for statistical computing.

Keywords: model-based recursive partitioning; structural change; parsimony; classification
and regression trees (CART); algorithmic methods; data analysis

2.1 Introduction

The aim of this chapter is to demonstrate the potential of model-based recursive partitioning
(Zeileis et al. 2008; related approaches have previously been suggested by Loh 2002; Li et al.
2000; Chaudhuri et al. 1995, Wang and Witten 1997), a statistical method adopted from the
field of machine learning, for applications in the social sciences. In particular, we will point out
that this algorithmic method provides a powerful tool to evaluate whether relevant covariates
have been omitted in a statistical model and, therefore, whether a theoretically postulated model
is in conflict with Ockham’s Razor.

As a prototypical example the method is employed for evaluating the appropriateness of the so
called Mincer equation (Mincer, 1974), which explains different income levels through rates of
return from schooling and work experience by means of a linear model. The analysis relies on
data of the German Socio-Economic Panel Study (SOEP) from 2008, provided by DIW Berlin
(German Institute for Economic Research).

Model-based recursive partitioning can be considered as a powerful synthesis between nonpara-
metric partitioning methods and parametric regression models. In contrast to standard multiple
regression approaches, model-based recursive partitioning is based on the successive segmen-
tation of the sample used: the data are split further as long as different groups of observations
still display substantially different values of the estimated parameters of the statistical model of
interest.
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Hence, the objective of model-based recursive partitioning is related to the objective of latent
class or mixture models where different regression parameter estimates are permitted between
subgroups of the data set (see e.g. Vermunt, 2010; Leisch, 2004, for general introductions to
mixture or latent class models, and Ünlü, 2011, for a specific application to knowledge struc-
tures). In latent class regression models, these groups are unobserved, whereas in model-based
recursive partitioning the groups are determined from combinations of observed covariates.

For example, in our investigation of the Mincer equation we will see that the intercept and
the estimated coefficient for further education vary across groups of men and women working
full-time in east or west Germany. Thus additional sociological and economic theories, such as
discrimination in labor markets (e.g. Aigner and Cain, 1977; Phelps, 1972), need to be consid-
ered for explaining these differences.

The method of model-based recursive partitioning forms an advancement of classification and
regression trees, which are widely used in life sciences (cf. e.g. Hannöver et al., 2002; Kitsantas
et al., 2007; Romualdi et al., 2003; Zhang et al., 2001) and have recently been applied to social
and behavioral sciences (e.g. Berk, 2006). Classification and regression trees will be summa-
rized briefly in the following section, beginning with an informal description of the resulting
tree-structure.

After some technical details of classification and regression trees are reviewed, the advanced
method of model-based recursive partitioning is addressed in Section 2.3, firstly by pointing out
the main differences and similarities to classification and regression trees. The review of model-
based recursive partitioning will be continued by interpreting an instructive example and reca-
pitulating the statistical background. To facilitate the use of this powerful algorithmic method
in the social sciences, this chapter highlights the interpretation with regard to the principle of
parsimony in the context of model construction (Section 2.4). Moreover, the application to the
Mincer equation in Section 2.5 demonstrates the potential of model-based recursive partition-
ing in empirical research. For further research, software available in the R system for statistical
computing is indicated in Section 2.6.

In summary, in this chapter we show how model-based recursive partitioning allows to decide
whether a postulated model fails to describe the whole sample in a suitable way, because the
method may detect varying parameter estimates in different subgroups of the sample. Model-
based recursive partitioning therefore offers a synthesis of the theory-based and the data-driven
approach. In particular, it can be used for detecting violations of Ockham’s Razor. If sub-
groups with different parameter estimates are found, the postulated model is too simple and not
appropriate for the entire sample.

2.2 Classification and regression trees

Classification and regression trees (cf. e.g. Breiman et al., 1984) are based on a purely data-
driven paradigm. Without referring to a concrete statistical model, they search recursively for
groups of observations with similar values of the response variable by building a tree structure.
If the response is categorical, one refers to classification trees; if the response is continuous, one
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refers to regression trees. The basic principles of this approach will be explained by means of
an exemplary application in the following section.

2.2.1 Basic principles of classification and regression trees

As a first example, we consider the respondents of the SOEP study 2008 (see Wagner et al.,
2007, for details about SOEP). In this data set, groups of subjects vary with respect to whether
they participate in full-time labor or not (the latter including all categories like part-time or
marginally employment, civil or military service, vocational training and unemployment labeled
here as ‘other’).

These groups can be described by means of covariates, such as age and gender. The covariates
(here: age and gender), together with the response variable (full time or other), are handed over
to the algorithm. The resulting tree-structure is displayed in Figure 1.
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Figure 1 – Classification tree: Assessing different frequencies of full-time jobs in
Germany (SOEP 2008). The resulting tree-structure shows varying
participation rates in full-time labor in three splits according to the covariates
gender and age.

From the entire sample of about 19,553 respondents living in private households, the covariate
with the highest association (for technical details see Section 2.2.2) to the response is chosen for
the first split. It is the participant’s gender, and, thus, 9,318 male respondents (represented in the
left branch) are separated from the rest of the sample (10,235 female respondents, represented
in the right branch). In the next step the male group is further diversified: it is split into two
new subgroups, over the age of 62 or not (node 3 and node 4). Figure 1 also shows that the
majority of women in the lower age group respond differently (node 6) compared to those in
node 7. Here we stop the algorithm for simplicity.
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gender

p < 0.001

1

male female

age

p = 0.004

2

≤ 43 > 43

Node 3 (n = 236)

0

500

1000

1500

2000

2500

Node 4 (n = 147)

0

500

1000

1500

2000

2500

marital

p < 0.001

5

single{mar., mar.s, div., wid.}

Node 6 (n = 207)

0

500

1000

1500

2000

2500

Node 7 (n = 360)

0

500

1000

1500

2000

2500

Figure 2 – Regression tree: Assessing different requested incomes of unemployed
respondents (SOEP 2008). Three different levels are obtained in groups related
to gender, age and marital status.

The respective cutpoint for these splits depends on the type of the covariate: while gender has
only two categories – male and female – and thus offers only one cutpoint, referring to age the
algorithm must also find the ‘best’ cutpoint within this variable. This optimal cutpoint turns out
to be located at the threshold of 62 years for the male subsample and 60 years for the female
subsample (technical details are given below).

The resulting tree-structure is interpreted easily and shows groupwise frequencies for full-time
and non-full-time workers in the end nodes: the left node indicates that the majority of men up
to 62 years in Germany work full-time, while the majority of women up to 60 do not. Women
over 60 years are hardly ever employed full-time. The tree-structure in this example represents
an interaction effect between gender and age (see e.g. Strobl et al., 2009, for details on the
interpretation of main effects and interactions in classification trees).

In contrast to this classification problem, regression trees focus on continuous response vari-
ables. Instead of regarding the frequencies of the categories, groups with different average
response values are separated and visualized, e.g. by means of box plots (like in Figure 2).
These groups are again detected automatically.

In this example the regression tree searches for different patterns of the (outlier adjusted) re-
quested income at which 950 unemployed respondents would take a job (outliers are defined as
participants with a requested income higher than the third quartile plus 1.5 times interquartile
range). Additional covariates that are handed over to the algorithm are gender, age, nationality
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(nation) and marital status (marital). Figure 2 again shows the first split in the variable gender
(node 1). The second split in the male subsample is again related to age (node 3 and node
4), while the third split in the female subsample is associated with marital status (node 6 and
node 7). The cutpoint in a categorical variable is chosen automatically in an optimal way from
all possible combinations of categories. Here the requested mean income is associated with
marital status, in particular the request of female singles differs from the other categories (mar-
ried, married but separated, divorced and widowed). The latter categories have smaller values
of the requested income (median xmed = 800, mean x = 870) than female singles (xmed = 1200,
x = 1166), who seem to be in the same magnitude as men over 43 years (xmed = 1200, x = 1159).
The highest average of requested income occurs within the male subsample up to the age of 43
years (node 3, xmed = 1300, x = 1349). After these three splits, all of the determined groups
are homogeneous enough to let the algorithm come to a stop, without further splitting, e.g.
according to the nationality of the respondent. This exemplifies another attractive feature of
partitioning methods: they implicitly perform a flexible variable selection.

A more detailed description of the technical procedure underlying classification and regression
trees is given in the next section.

2.2.2 Some technical details

Classification trees search for different patterns in the response variable according to the avail-
able covariates. Since the sample is divided in rectangular partitions defined by values of the
covariates and since the same covariate can be selected for multiple splits, classification trees
can assess even complex interactions, non-linear and non-monotone patterns. The structure
of the underlying data-generating process is not specified in advance, but is determined in an
entirely data-driven way. These are the key distinctions between classification and regression
trees, and classical regression models. The approaches differ, firstly, with respect to the func-
tional form of the relationship that is limited to e.g. linear influence of the covariates in most
parametric regression models and, secondly, with respect to the pre-specification of the model
equation in parametric models.

Historically, the foundations for classification and regression trees were first developed in the
sixties as Automatic Interaction Detection (Morgan and Sonquist, 1963). Later the most pop-
ular algorithms for classification and regression trees were developed by Quinlan (1993) and
Breiman et al. (1984). Here we concentrate on a more recent framework by Hothorn et al.
(2006b), which is based on the theory of conditional inference developed by Strasser and We-
ber (1999). The major advantage of this approach is that it avoids two fundamental problems of
earlier algorithms for classification and regression trees: variable selection bias and overfitting
(cf. e.g. Strobl et al., 2009).

The algorithm of Hothorn et al. (2006b) for binary recursive partitioning can be described in
three steps: firstly, beginning with the whole sample, the global null hypothesis that there is no
relationship between any of the covariates and the response variable is evaluated. If no violation
of the null hypothesis is detected, the procedure stops. If, however, a significant association is
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discovered, the variable with the largest association is chosen for the split. Secondly, the best
cutpoint in this variable is determined and used to split the sample into two groups according
to values of the selected covariate. Then the algorithm recursively repeats the first two steps in
the subsamples until there is no further violation of the null hypothesis, or a minimum number
of observations per node is reached.

In the following, we briefly summarize which covariates can be analyzed using classification
and regression trees, how variables are selected for splitting and how the cutpoint is chosen.

The response variable in the end nodes

As outlined in the previous section, classification trees search for groups of similar response
values with respect to a categorical dependent variable, whereas regression trees focus on con-
tinuous variables. Hothorn et al. (2006b) stress that their conditional inference framework can
be applied beyond that to situations of ordinal, censored survival times and multivariate re-
sponse variables.

Within the resulting tree-structure, all respondents with the same covariate values – represented
graphically in one end node – obtain the same prediction for the response, i.e. the same class
membership for categorical responses or the same value for continuous response variables.

Selection of splitting variables

The next question is how the variables for the potential splits are chosen and how the related
cutpoints can be obtained. As outlined above, Hothorn et al. (2006b) provide a statistical frame-
work for tests applicable to various data situations. In the binary recursive partitioning algo-
rithm, each iteration is related to a current data set (beginning with the whole sample), where
the variable with the highest association is selected by means of permutation tests as described
in the following. The usage of permutation tests allows for evaluating the global null hypothesis
H0 that none of the covariates has an influence on the dependent variable. If H0 holds (in other
words, if the independence between any of the covariates Zl (l = 1, . . . , L) and the dependent
variable Y cannot be rejected), the algorithm stops. Therefore the statistical test acts both for
variable selection and as a stopping criterion.

Otherwise the strength of the association between the covariates and the response variable is
measured in terms of the p-value that corresponds to the test of the null hypothesis that the spe-
cific covariate is not associated with the response. Thus, the variable with the smallest p-value
is selected for the next split. The advantage of this approach is that the p-value criterion guar-
antees an unbiased variable selection regardless of the scales of measurement of the covariates
(cf. e.g. Hothorn et al., 2006b; Strobl et al., 2007, 2009).

Permutation tests are constructed by evaluating the test statistic for the given data under H0.
Monte-Carlo or asymptotic approximations of the exact null-distribution are employed for the
computation of the p-values (see Hothorn et al., 2006a,b; Strasser and Weber, 1999, for more
details).
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Selection of the cutpoints

After the variable for the split has been selected, we need a cutpoint within the range of the
variable to find the subgroups that show the strongest difference in the response variable. In
the procedure described here, the selection of the cutpoint is also based on the permutation test
statistic: the idea is to compute the two-sample test statistic for all potential splits within the
covariate. In the case of continuous variables all potential cutpoints between any two successive
observations are investigated (except for a certain percentage of the smallest and largest obser-
vations to avoid too small nodes). In the case of ordinal variables the ordering of the categories
is accounted for. The resulting split is located where the binary separation of two data sets leads
to the highest test statistic. This reflects the largest discrepancy in the response variable with
respect to the two groups.

In the case of missing data, the algorithm proceeds as follows: observations that have missing
values in the currently evaluated covariate are ignored in the split decision, whereas the same
observations are included in all other steps of the algorithm. The class membership of these
observations can be approximated by means of so called surrogate variables (Hothorn et al.,
2006b; Hastie et al., 2008).

2.3 From classification and regression trees to model-based
recursive partitioning

Model-based recursive partitioning was developed as an advancement of classification and re-
gression trees. Both methods originate from the field of machine learning, which is influenced
by both statistics and computer sciences.

The algorithmic rationale behind classification and regression trees is described by Berk (2006,
p. 263) in the following way:

”With algorithmic methods, there is no statistical model in the usual sense; no ef-
fort has been made to represent how the data were generated. And no apologies
are offered for the absence of a model. There is a practical data analysis prob-
lem to solve that is attacked directly with procedures designed specifically for that
purpose.”

In that sense, classification and regression trees are purely data-driven and exploratory – and
thus mark the entire opposite of the theory-based approach of model specification that is preva-
lent in the empirical social sciences.

The advanced model-based recursive partitioning method, however, brings together the advan-
tages of both approaches: at first, a parametric model is formulated to represent a theory-driven
research hypothesis. Then this parametric model is handed over to the model-based recursive
partitioning algorithm that checks whether other relevant covariates have been omitted which
would alter the parameters of the model of interest. Note that, as opposed to latent class regres-
sion the groups yielding differing parameter estimates are explained by covariates and not by a
latent class approach.
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Figure 3 – MOB: Assessing different relationships between age and requested income of
unemployed respondents in Germany (SOEP 2008). The line pictures the
estimated relationship in the current subsample and indicates the varying
parameters according to groups related to age and marital status.

Technically, the tree-structure obtained from classification and regression trees remains the
same for model-based recursive partitioning. However, instead of splitting for different pat-
terns of the response variable, now we search for different patterns of the association between
the response variable and other covariates, that has been pre-specified in the parametric model.
Therefore the end nodes in the model-based tree represent statistical models, such as linear
models, and no longer mere values of the response variable. The execution of a split in the
model-based tree then indicates a parameter instability in the original model, i.e. the postulated
model is too simple to explain the data.

2.3.1 Basic principles of model-based recursive partitioning

As an instructive example for a partitioned model, Figure 3 shows the tree-structure for a sample
of unemployed respondents from the SOEP study. The model of interest here is the relationship
between the requested income, at which respondents would take on a new job, and the age. The
functional form of this relationship is fixed to a quadratic polynomial as often found intuitive
for models relating age and income:

requested income = τ0 + τ1 · age + τ2 · age2 + ε.

Additional covariates passed over to the algorithm are marital status, gender and nationality.

Beginning with the whole outlier adjusted sample of 950 unemployed respondents the model
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with the linear and quadratic term is fitted, where the estimated coefficients τ̂0, τ̂1, and τ̂2 in-
dicate parameter instability. The highest instability is related to gender and thus a split in this
variable is performed. While in the sample of the male respondents (node 2) no more instabili-
ties are detected, the female subset is again divided into two subgroups with differing parameter
estimates. The end node in the middle shows the result for married but separated, single or
divorced women (node 4). The rightmost end node contains the linear model for married and
widowed women (node 5). Interestingly, even the direction of the relationship changes from a
parabola on the left, where men of higher age tend to request less income, to a slight u-shape on
the right, where married or widowed women request more income in higher age. The attractive
feature of implicit variable selection is also maintained in model-based recursive partitioning:
the nationality does not occur in any split decision in this example.

estimated coefficients
node number τ̂0 τ̂1 τ̂2

2 1014.5837 22.5446 -0.3618

4 1212.6621 -0.0236 -0.0871

5 1390.9708 -25.3983 0.2737

Table 1 – Estimated coefficients of the regression models in the end nodes estimated from
the data sets that correspond to the end nodes.

In Table 1 the parameter estimates for the different groups – represented in the end nodes of the
tree-structure – are displayed. The varying signs of the coefficients confirm what is illustrated
in Figure 3: the inverse u-shape holds only for part of the sample and is reversed for other parts.
Thus, the example illustrates that model-based recursive partitioning is indeed able to detect
different functional forms which might be masked when a single model is fit to the data.

The example also shows that, as opposed to classification and regression trees, the end nodes in
model-based recursive partitioning do not contain values of a response variable, but represent
a statistical model for each specific subpopulation. Between these groups the estimated param-
eters of the common underlying model vary significantly, but the postulated basic functional
form (here polynomial) stated by the researcher is fixed. Within the subgroups no significant
parameter instability is present.

Hence, the interpretation of a tree without any split is quite simple: there are no significant pa-
rameter instabilities found in any of the covariates handed over to the algorithm. If, however, a
tree-structure is displayed, it reveals that the postulated model is not appropriate for describing
the entire sample. The variation of the parameters highlights structural differences in the ob-
tained subgroups, which can be easily interpreted by examining the estimates or the graphical
output.

In the next section, important steps of the model-based partitioning algorithm are outlined. Then
we take a closer look at the interpretation in social or behavioral sciences in Section 2.4
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2.3.2 Some technical details

The model-based recursive partitioning algorithm maintains the fundamental steps of the parti-
tioning method reviewed in Section 2.2, but coherently extends them in the light of the model-
based paradigm. According to this paradigm, the recursive process now estimates the basic sta-
tistical model beginning with all available observations. The result of this step is the estimated
parameter vector from the optimization of the objective function, typically the (log-)likelihood.
In almost the same manner as classification trees, the recursive process starts: instead of test-
ing the association, now the parameter instability is assessed using so called generalized M-
fluctuation tests (Zeileis, 2005; Zeileis and Hornik, 2007). If the data indicate parameter insta-
bility, the split of the parent node in two daughter nodes is executed. Relying on the data points
in the new subgroups only, the algorithm again searches for parameter instability until no fur-
ther significant instability is found, or another stopping criterion is fulfilled. The resulting tree
structure can be visualized as illustrated in the examples presented below, so that the different
groups can be compared. Note, however that statistical tests conducted after model selection –
such as significance tests for group differences after recursive partitioning – may be affected by
the effects described by Leeb and Pötscher (2005) and Berk et al. (2010), and should thus be
based on new data.

This brief overview about the similarities and differences in the algorithms leaves some ques-
tions that have yet to be explained: Which models can be partitioned recursively? How can
we assess parameter instability and where are the optimal cutpoints in the covariates in model-
based recursive partitioning? These questions are addressed in the next subsections, which are
structured in the same way as Section 2.2.2.

The statistical model in the end nodes

The foundation of a general statistical framework for model-based recursive partitioning by
Zeileis et al. (2008) allows using a variety of underlying statistical models, such as linear and
logistic regression models. The wide range of applications emerges from the inclusion of several
widely used test statistics in a unified approach (Zeileis, 2005) called generalized M-fluctuation
tests.

Technically, the generalized M-fluctuation test used for the split decisions relies on the ob-
jective function Ψ(.) of the parameter estimation, like least-squares and maximum-likelihood-
estimation:

ϑ̂ = arg max
ϑ

n∑
i=1

Ψ(yi, ϑ), (1)

where yi (i = 1, . . . , n) symbolizes the vector of all values of the dependent and independent
variables in the postulated model for subject i, and ϑ represents the (potentially vector-valued)
parameter. For reasons of simplicity, here we use the full sample notation and do not distinguish
whether the underlying observations are the entire sample or a specific subgroup arising from
the recursive application of the procedure.

The estimation process is based on the individual contributions of each subject i to the score
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function
ψ(yi, ϑ) =

∂Ψ(yi, ϑ)
∂ϑ

, (2)

as outlined below.

In addition to the model specification, the algorithm requires categorical or numeric covariates
– denoted as Zl (l = 1, . . . , L) – for potential splits in the model-based tree.

Selection of splitting variables

After the first step of the algorithm – fitting the underlying model for the whole sample and
obtaining a preliminary estimate ϑ̂ – a test of parameter instability is performed. It is based on
the statistical framework developed by Zeileis and Hornik (2007) to detect structural changes
by fluctuation tests. In econometrics, these tests for structural changes are widely used to detect
e.g. a drop in the expected value of a time series for a stock exchange due to an economic crisis.

To detect a systematic change in the parameter over the range of a covariate Zl, the observations
are ordered according to their values of Zl. Under the null hypothesis of parameter stability, no
systematic structural change is present. The null hypothesis is rejected if one or more param-
eters of the postulated model change significantly over the ordering induced by the covariate
Zl.

The construction of general test statistics relies on the partial derivatives of the objective func-
tion, e.g. of the log-likelihood. The contributions of each individual observation i to the deriva-
tive of the objective function (i.e., to the score function) evaluated at the current parameter
estimate, ψ

(
yi, ϑ̂

)
, are ordered with respect to the potential splitting variable Zl. The individual

contributions ψ
(
yi, ϑ̂

)
are depicted as vertical dashed lines for an instructive example in Figure 4

(left).

Under the null hypothesis, the individual contributions ψ
(
yi, ϑ̂

)
should fluctuate randomly around

the mean zero, whereas in Figure 4 (left) a clear structural change can be detected. To grasp
this structural change statistically, we turn from the individual contributions to their cumulative
sums in Figure 4 (right). Zeileis and Hornik (2007) proved the convergence of the cumulative
sum process (also termed decorrelated empirical fluctuation process)

Wl (t) = Ĵ−
1
2 n−

1
2

bn·tc∑
i=1

ψ
(
yi, ϑ̂

)
(3)

against a Brownian bridge. The first part of the formula, Ĵ−
1
2 , denotes an estimator of the

covariance Cov
(
ψ(Y, ϑ̂)

)
. The summation over all bn · tc refers to the first n · t (with t ∈ [0; 1])

observations according to the order with respect to covariate Zl (for example the first 50%,
where the b.c indicates that the integer part of n · t, i.e. the lower whole number, is used).

The instructive example in Figure 4 can be interpreted as the variation of income before and
after the simulated threshold of 40 years. The path of the cumulative sum process increases
until the age of 40 and decreases after that threshold, with a sharp peak at the change-point
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Figure 4 – Structural change in the mean over age (artificial data). The left plot displays
the mean income over all age groups (dotted line) and the individual deviations
(dashed lines), the right the cumulated deviations over the variable age.

40. The strength of this peak is used as a statistical measure for the strength of the parameter
instability.

The asymptotic properties of the cumulative sum process allow for the construction of test
statistics that are used for detecting the structural change (see Chapter 3.4). The test statistic
for numeric variables is directly build from the empirical fluctuation process Wl (t), while the
test statistic for categorical variables takes into account that the categories and the observations
within the category are not ordered. The result of Zeileis et al. (2008) also permits the com-
putation of p-values and thus the statistical decision whether the parameters differ significantly
from parameter stability. If parameter instability is detected, the algorithm selects the variable
with the smallest p-value. Splitting continues until there is no further instability in any current
node.

Selection of the cutpoint

In case of a splitting decision the cutpoint can be sought by a criterion that also includes the
maximization of the objective function in the two potential subsamples. In the case of or-
dered or numeric covariates, these subsamples can easily be defined as L(ξ) = {i | zil ≤ ξ} and
R(ξ) = {i | zil > ξ} for a candidate cutpoint ξ and the component zil of zl.

The optimal cutpoint ξ? is determined by maximizing∑
i∈L(ξ)

Ψ
(
yi, ϑ̂

(L)
)

+
∑

i∈R(ξ)

Ψ
(
yi, ϑ̂

(R)
)

(4)

over all candidate cutpoints ξ. ϑ̂(L) and ϑ̂(R) are the estimated parameters in the subsets. In case
of unordered categorical covariates all potential binary partitions need to be evaluated and the
partition with the highest criterion is chosen for the split (Zeileis et al., 2008).

Both parts of the binary split generate new parent nodes. Unless there is no further parame-
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ter instability found or another stopping criterion is satisfied (such as a minimum sample size
in the current node) the algorithm continues searching for instability and splitting the current
(sub-)data set in daughter nodes.

2.4 Potential in the social sciences

The application of model-based recursive partitioning offers new impulses for research in the
social, educational and behavioral sciences. For the interpretation of model-based recursive
partitioning, we would like to point out the connection to the principle of parsimony: follow-
ing the fundamental research paradigm that theories developed in the social sciences should
yield falsifiable hypotheses, the latter are translated into statistical models. The aim of model
construction is thus to simplify the complex reality.

The decision on the complexity of the formulated model can be guided by “a working rule
known as Occam’s Razor whereby the simplest possible descriptions are to be used until they
are proved to be inadequate” (Richardson, 1958, p. 1247). This rule implies the objective of
parsimonious model formulation: a model should be no more complex than necessary, but it
also needs to be complex enough to describe the empirical data.

In the regression context usually the usage of sparse and simple models with few variables
explaining the response are propagated (e.g. Gujarati, 2003) – as long as no relevant explana-
tory variables are omitted. The strength of model-based recursive partitioning in this context
lies in the power to let the data decide this question. Indeed, it offers the possibility to detect
whether the suggested model is inadequate because relevant covariates are missing and it ex-
plicitly selects these relevant covariates. If the algorithm executes at least one split, we obtain
the statistical decision that the parameters are instable and the data are too heterogeneous to be
explained by the postulated model. In this case, the presumed functional form does not describe
the entire sample in an appropriate way and thus subgroups have to be constructed.

Moreover, the tree-structured results provide information which subgroups differ in their associ-
ation patterns. This information can either be integrated into a revision of the substantial theory
and the formulation of a new parametric model, or it should be pointed out in the interpretation
that the postulated model applies only to a limited scope of subjects.

Consequently, model-based recursive partitioning can identify different shapes of a parametric
model stated by the researcher in different subgroups of the sample. Model-based recursive
partitioning offers a synthesis of the theory-based and the data-driven approach that can be
used for evaluating violations of the ‘working rule’ Ockham’s Razor: if the method detects no
instability of the model parameters, the model is not rejected based on the additional covariates
provided to the algorithm. If, however, the method does detect instability, the postulated model
is too simple.
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2.5 Empirical example

To illustrate the potential of model-based recursive partitioning further, we turn to another ex-
ample, based on an extension of the so called Mincer equation. In the seminal econometric
work of Mincer (1974) the logarithmic income is described as a function of the variables years
of schooling (time edu) and full-time experience (included in linear and squared terms, full ex,
full ex2).

The Mincer equation owes its popularity to the straightforward interpretation of the coefficients
as approximated rates of return from education (cf. Björklund and Kjellström, 2002, for a criti-
cal discussion). We focus on the following extension of the Mincer equation that also includes
a dummy variable for further education on the job (further edu):

ln (income) = τ0 + τ1 time edu + τ2 full ex + τ3 full ex2 + τ4 further edu + ε,

with ε ∼ N(0, σ2I). Here we restrict the observations from the SOEP study to over 6000
respondents in full-time employments who are not in vocational training and earn more than
500 Euros monthly.

The examination of the Mincer equation, which is driven by the principle of parsimony, via
model-based recursive partitioning is illustrated in Figure 5. The model formulation involves
the effects (which are displayed as symbols in the end nodes) of years of schooling, further
education and work experience in full-time jobs (linear and squared term) on the logarithmic
gross income of fully employed respondents in Germany. Again, further potentially influencing
variables are passed over to the algorithm, namely the location of the employer in east or west
Germany, gender and the size of the company. The results show significantly different parameter
estimates related to each of the additional covariates. These estimated coefficients of the Mincer
equation are approximated rates of return e.g. from schooling. A closer look at the estimated
parameters for the detected subgroups (Table 2) shows quite similar effects on the logarithmic
income for some covariates from the original Mincer equation, such as the percentaged change
for the time of education on earnings (τ̂1). However, the estimated coefficients for further
education (τ̂4) and the intercept (τ̂0) differ more strongly between the groups. In particular, the
effect of further education (τ̂4) is higher for employers in east as opposed to west Germany.

Our results are in accordance with current empirical social and economic research on heteroge-
neous effects of further education for men in Germany by Kuckulenz and Zwick (2005). One
reason for the violation of a joint model for all respondents may lie in the strong assumption
of the Mincer equation that there is no relevant change in the economy under research. In the
SOEP study, this assumption is clearly violated by the reunification of the eastern and western
parts of Germany. As a consequence, we find a split according to the location of the employer
in east and west Germany in Figure 5.

Our findings imply that more elaborate theories explaining the different income levels in these
subgroups, such as discrimination theories (e.g. Aigner and Cain, 1977; Phelps, 1972), and a
more specific investigation of the differential effects of further education may be necessary to
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Figure 5 – Model-based recursive partitioning of the extended Mincer equation (SOEP
2008). The symbols in the end nodes illustrate the estimated coefficients in the
subgroups related to the location of the employer, gender and size of the
company.
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estimated coefficients
node number τ̂0 τ̂1 τ̂2 τ̂3 τ̂4

4 6.2743 0.0860 0.0430 -0.0009 0.2110

5 6.5620 0.0796 0.0335 -0.0005 0.1785

6 6.4486 0.0718 0.0369 -0.0007 0.1520

8 6.1543 0.0801 0.0340 -0.0006 0.2332

9 6.0173 0.0817 0.0258 -0.0004 0.2454

Table 2 – Estimated coefficients of the regression models in the end nodes in Figure 5
estimated from the data sets that correspond to the end nodes.

explain the observed group differences.

2.6 Software

The data analysis presented here uses the R system for statistical computing (R Develop-
ment Core Team, 2011), which is freely available under terms of the GNU General Public Li-
cence (GPL) from the Comprehensive RArchive Network at http://CRAN.R-project.org/.
Methods for classification, regression and model-based trees are provided in the package party.

• Conditional inference trees

The conditional inference framework is implemented in the function ctree() (Hothorn
et al., 2006b). It allows to compute both classification and regression trees.

• Model-based recursive partitioning

The model-based recursive partitioning algorithm is available via the function mob()
(Zeileis et al., 2008). At the moment the algorithm can be applied to various types of
generalized linear models, survival models or linear models. Moreover, the authors al-
low the users to build their own model classes and pass them on to the existing mob()
function. A vignette explaining the use of the software for linear regression and logistic
regression trees including the R-code is also available (Zeileis et al., 2010).

Ongoing research expands the unbiased recursive partitioning approach presented here to psy-
chometric models such as the Bradley-Terry model for detecting different preference structures
(Strobl et al., 2011) as well as the Rasch model (Strobl et al. 2010, Strobl et al. 2013), that will
be addressed in the next chapter, and factor analytic and structural equation models (Merkle and
Zeileis, 2012) for the assessment of measurement invariance.

2.7 Concluding remarks

Algorithmic procedures, such as classification and regression trees, have become popular and
widely used tools in many scientific fields. Our aim here was to highlight that the recent devel-
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opment of model-based recursive partitioning allows to combine the power of these algorithmic
methods with that of theory-based parametric models by means of enhancing the purely data-
driven approach towards a segmentation procedure for postulated models. Our presentation
has highlighted the relation between this approach and the principle of parsimonious model
construction. The tree-structured results allow straightforward interpretations of potential pa-
rameter instabilities that have been detected via empirical fluctuation tests. The detection of
parameter instability leads to the interpretation that the statistical model under investigation
cannot describe the whole sample appropriately, because relevant covariates have been omitted.
Thus, model-based recursive partitioning can be used as a diagnostic check for inadequately
simple descriptions of the relationship between response and explanatory variables.

The application in social science research is eased by the freely accessible and well documented
packages provided in the statistical software R.
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3 The issue of differential item functioning in the Rasch
model

Summary: The analysis of differential item functioning (DIF) in item response theory (IRT)
research investigates the violation of the invariant measurement property among subgroups of
examinees, such as male and female test-takers. Invariant item parameters are necessary to
assess ability differences between groups in an objective, fair way. Questions addressed in this
chapter are: What does DIF mean? What are potential consequences if DIF is present? How
can DIF be detected?

The current state of research cannot be covered completely in the following sections. The in-
troductory section raises historical and political aspects of DIF and is intended to motivate
the analysis of DIF. Therefore, instructive examples as well as the main idea of commonly used
statistical methods for DIF detection are included. The reader is referred to the monograph
Differential Item Functioning by Osterlind and Everson (2009), the like-titled collection by
Holland and Wainer (1993) for more detailed information on DIF and to the broad collec-
tion Rasch Models - Foundations, Recent Developments, and Applications by Fischer and
Molenaar (1995).

Keywords: Differential Item Functioning, item bias, test fairness, statistical methods for DIF
detection

3.1 The Rasch model

In the social and behavioral sciences, researchers are often confronted with the fact that the
variable of interest is not directly observable. In sociology or in political science, attitudes
towards certain political or social systems or subjects are not observable similar to personality
traits in psychology or abilities and skills in educational research. Following the idea that
the response behavior of test-takers contains information on the latent variables, models from
item response theory (IRT) are intended to measure variables that are not directly observable.
The Rasch model (Rasch, 1960) is a widely used IRT model that displays unique statistical
properties (Wang, 2004). When the assumptions of the Rasch model for measurement hold,
measures of both, the item difficulty and the person ability, are generated on an interval scale
level with a common measurement unit (Fischer, 1995). Furthermore, the assumptions of the
model can be tested and, thus, the measurement process can be evaluated (Molenaar, 1995b).

In the Rasch model, the variable Ui j contains the dichotomous information whether the item or
the statement is solved or agreed to (Ui j = 1) or not (Ui j = 0) with the respective observed value
(ui j ∈ {0, 1}). Here, θi denotes the latent trait, e.g. the attitude, the ability or the personality trait
of person i (i = 1, ..., n) and β j denotes the difficulty of the item (also termed item location)
or the extremeness of the statement j ( j = 1, ..., k). For convenience, the latent trait will be
called ability and the answer will be termed as solved an item (ui j = 1) or not (ui j = 0) in the
following. However, note that the Rasch model can be used to measure latent traits that are not
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limited to variables measuring abilities or skills and it may provide useful insight to evaluate
the appropriateness of the items or statements for measuring the latent trait in an objective, fair
way.

In the Rasch model, the response of subject i to item j is modeled by

P(Ui j = ui j|θi, β j) =
eui j·(θi−β j)

1 + eθi−β j
(5)

and, thus, depends on two types of parameters, the item difficulty parameters β j and the person
ability parameters θi. The relationship between the latent trait and the probability of solving the
item can be displayed in the so called item characteristic curves (ICCs) or trace lines (Thissen
et al., 1988) or item response functions (IRF) (Kim et al., 1994) as illustrated in Figure 6. Here,
four ICCs are displayed. In the Rasch model, the ICCs do not cross and all items are assumed
to have to same discriminatory power. The item difficulty is defined as the value of the latent
trait where the probability of solving the item equals .5.
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Figure 6 – Different item characteristic curves that follow the Rasch model.

The ICCs in Figure 6 reflect the stringent assumptions of the Rasch model. Other IRT models
for dichotomous responses such as the two-parameter logistic (2pl) model

P(Ui j = 1|θi, α j, β j) =
eα j·(θi−β j)

1 + eα j·(θi−β j)
(6)

or three-parameter logistic (3pl) model allow for more flexible forms of the ICCs by e.g. al-
lowing the items to have different discriminatory powers. In empirical research, thus, the con-
struction of a scale conform with the Rasch model is more difficult. The appropriateness of the
Rasch model is controversially discussed. While opponents claim that the Rasch model was
inappropriate for educational testing in the past as well as will be in the future (McLean and
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Ragsdale, 1983), proponents argue that the benefits of the Rasch model (regarding the estima-
tion process, the model evaluation and the interpretation) in comparison with the more flexible
IRT models outweigh the higher effort in practical data analysis and, thus, the aim in practical
research should be to find items in accordance with the Rasch model (e.g. Molenaar, 1995b).

The foundation of the Rasch model can be carried out from different perspectives. While often
the model formula forms the starting point to derive estimation equations, Fischer (1995) shows
that the assumptions of strictly monotone increasing ICCs of an unidimensional IRT model with
the upper limit of 1 and the lower limit of 0 (that excludes the possibility of guessing), of local
stochastic independence (the items are not allowed to be built on other items and the persons
are not allowed to copy answers) and of the sufficience of the person raw-scores ri =

∑k
j=1 ui j

for the latent trait yield a resulting IRT model that is equivalent to the Rasch model where, then,
the ICCs include the substractive form θi − β j. The author further shows that the substractive
form implies that θ and β are measured on metric scales (with the same measurement unit) and
that θ and β are unique except for linear transformations αθ + b1 and αβ + b2 with α > 0 that
yield the formula of the family of Rasch models

P(Ui j = 1|θi, β j) =
eα·(θi−β j)+b

1 + eα·(θi−β j)+b (7)

with a common discrimination parameter α and b := b1 − b2 representing the fact that shifts
on the θ scale are balanced by the corresponding shifts on the β scale (Fischer, 1995). Fur-
ther derivations for the Rasch model that rely on assumptions related to concept of sufficiency,
such as a derivation from the stochastic consistent ordering or on the specific objectivity and
likelihood principle, are reviewed in Fischer (1995).1

In the following, the estimation will be discussed only for complete cases. Missing values in the
Rasch model may occur due to the test design when, for example, different test booklets contain
different questions for the respondents. These missing values result per design since, of course,
respondents will not answer questions that have not been posed (for the resulting consequences
in the estimation process see Molenaar, 1995a). Missing values may also occur when respon-
dents refuse answering certain questions (for item non-response, see Schnell et al., 2008). In
situations of ability testing, it is likely that values are not missing at random. Since the aim is
to measure ability through the correct responses to items, one possible way of handling miss-
ing values is to define these answers as not solved and, consequently, wrong. In situations of
attitude measurement, the refusal might be caused by social desirability and especially delicate
questions might be affected. Thus, the response mechanism might as well be related to item
extremeness and to the latent attitude, and, consequently, not be missing at random (Molenaar,
1995a). Furthermore, in attitude measurement related problems such as acquiescence where
respondents tend to answer “yes” or “I agree” or socially expected answers might occur, that
can result in untruthfully answered items (Diekmann, 2007). In this thesis, ability measurement
is focused and it is assumed for the simulation studies that no missing values are present. In

1The author further states that the interpretation of resulting measurement as difference scales for θ and β – where
the scales can be shifted only by an additive constant – only holds when the ICCs are assumed to have a
common discrimination parameter α of the value one.
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situations where missing values occur by design, they can be included in the estimation process
(Mair and Hatzinger, 2007).

The estimation of the item parameters can be carried out using several different estimation
techniques. The joint or unconditional maximum likelihood estimation relies on the product
of (5) over all persons and items by applying the assumption of local stochastic independence
(see e.g. Molenaar, 1995a). When the derivation of the log-likelihood is set to zero, it leads
to (under complete data at most 2k − 2) estimation equations that have to be solved iteratively.
Unfortunately, the estimates are inconsistent for n → ∞ and k fixed and lack properties for
hypothesis testing (Molenaar, 1995a). The conditional maximum likelihood (CML) estimation
is preferable since it leads to consistent item parameter estimates for n → ∞ and k fixed (see
Molenaar, 1995a, and the references therein for the assumptions).

In comparison with the alternative marginal maximum likelihood (MML) approach, that relies
on either a parametric distributional assumption or non-parametric estimation of the distribution
of the latent trait, the CML approach is “closer to the concept of person-free item assessment”
(Molenaar, 1995a, p. 47). Here, the item assessment is given priority compared to the assess-
ment of ability distributions of specific groups of subjects, where the MML approach is said to
be more suitable (Molenaar, 1995a) and, thus, the CML estimation is described here in detail
(for the above mentioned estimation techniques or other approaches that yield no asymptotic
standard errors, see e.g. Molenaar, 1995a).

It is assumed here that all items and persons with zero or perfect sums, that would result in
infinite parameter estimates (Molenaar, 1995a), are removed before the estimation is carried out.
The existence and uniqueness of the CML estimates (i.e. of the normalized estimates defined
by a common discrimination of one and

∑k
j=1 β j = 0) requires a so called well-conditioned

response matrix as discussed in Fischer (1981).2 The person raw-scores ri =
∑k

j=1 ui j that form
sufficient statistics for the person parameters under the Rasch model, are then used to estimate
the item parameters by means of iterative procedures from the conditional likelihood

Lc(β|r1, . . . , rn) =

n∏
i=1

Lc(β|ri) =

n∏
i=1

e−
∑k

j=1 ui j·β j

γri(β)
, (8)

where γri denote the elementary symmetric function of order ri (cf., e.g., Fischer, 1974, 1981;
Molenaar, 1995a). One linear restriction has to be imposed to identify the item parameters.
Generally, the sum-zero-restriction

∑k
j=1 β j = 0 or the set-the-first-zero restriction β1 = 0 are

used. More generally, Eggen and Verhelst (2006) state the equation

d0 +

k∑
i=1

diβi = 0 , (9)

allowing arbitrarily chosen constants di with
∑k

i=1 di , 0.

2This well-conditioned response matrix is almost surely present when the sample size converges to infinity (Fis-
cher, 1995). In practical research situations, computer programs such as the function RM() provided by the R
add-on package eRm by Mair et al. (2012) states an error message if the matrix is not well-conditioned.
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The authors specify two commonly used normalization equations under the assumption d0 = 0
(w.l.o.g.): Firstly, one item parameter may be set zero per definition (βi = 0, for one i ∈
1, 2, . . . , k). Equation 9 is fulfilled since all d j,i

!
= 0 despite di = 1,

∑k
i=1 di , 0 and

∑k
i=1 diβi =

0. The second common practice to restrict the item parameters is by defining a index set I
containing indices from 1, 2, . . . , k. Then the linear restriction is defined by

∑
i∈I βi = 0 or on

the mean of the item parameters.

3.2 Differential item functioning

At the beginning of the discourse about different test properties in the 1960s (Angoff, 1993),
the problem was referred to as item bias (cf., e.g., Lord, 1980). Since the term bias has been
applied in an ambiguous way, it was replaced by the expression differential item performance,
unexpected differential item performance or by the – contemporary commonly used – term
differential item functioning or the abbreviation DIF (Angoff, 1993; Thissen et al., 1988).

Related concepts to DIF exist. Measurement invariance (also termed measurement equivalence)
represents the absence of DIF and is an important requirement of IRT models. There might be
a tendency of favoring the term measurement equivalence instead of DIF at the moment (Paul
De Boeck 2011, personal communication).

However, in this thesis, the term DIF is preferred since it better reflects the fact that items
function in a different way for certain groups. The term impact is used for differences in the
performance of both groups for one item when no matching is carried out (Holland and Thayer,
1988). A conceptualization of test bias and differential test functioning can be found in Shealy
and Stout (1993a, p. 159). The distinction of measurement equivalence and relational equiva-
lence is explained in Drasgow (1987, p. 19).

3.2.1 Historical development and test fairness

In order to illustrate the “testing controversy” in the United States, Drasgow (1987) summarizes
two court proceedings. In 1984, the Educational Testing Service (ETS) was sued since black
participants failed more often in insurance licensing tests which were designed by the ETS. As
a consequence of the lawsuit, the ETS agreed outside court to modify the test items in a way
such that the percentages of correct answers differ no more than 15% between black and white
test-takers (known as the “golden rule”, see Gómez-Benito et al. 2010). Similarly, a lawsuit
from the year 1985 against the Alabama State Board of Education resulted in the obligation to
use only test items that differ no more than 5% between black and white test-takers regarding
the percentages of correct answers (Drasgow, 1987).

Drasgow (1987) states that the specifications of the test items cannot be justified scientifically
but politically. The reason for this is that the analysis of certain characteristics of test items
by the current state of scientific knowledge is always conditioned on the variable of interest
(e.g. the ability variable). If two groups of participants have different mean levels on the latent
trait, different percentages of correct answers are expected and even intended. Otherwise, the
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information about the probabilities of solving the item does not allow to draw conclusions about
the latent trait. On the other hand, if two groups of participants have the same latent ability, the
probabilities of solving the item and, hence, the observed proportions of correct answers should
not differ substantially. Thus, the analysis of DIF requires to match the examinees on their
ability variable, as will be discussed in more detail in Section 3.3.

This was not always the case. Early attempts to investigate DIF also used the percentages of
correct answers in the groups. These proportions were depicted against each other. In the case
of equally functioning items, the points should lie on a line that begins at a chance level (c,c)
and ends in (1,1), where items are on a difficulty level such that each respondent may solve it,
or on a curve if one group performs better. Transformations have been used to restructure the
functional form (Lord, 1980). Nevertheless, the percentage of correct answers per item with
respect to a certain group membership is not an appropriate measure of DIF, since it does not
allow to distinguish properties of the item and of the groups themselves and “[t]hus the πi [the
proportions of correct answers to item i in the population], however transformed, are not really
suitable for studying item bias” (Lord, 1980, p. 217). In the following, only DIF methods that
condition on ability are discussed.

Even though first approaches to DIF analysis have already been made half a century ago, the
ongoing research on DIF methods continues. Finch and French (2007, p. 565) explain this fact
“due to the increased reliance on standardized achievement testing for assessing educational
progress”. A well-known example supporting this argument is the OECD Programme for Inter-
national Student Assessment (PISA) initiated in 1997. The aim is to assess the preparation of 15
year old students for future challenges (OECD, 2009). The number of participating countries3

increased from 43 countries in 2000 to 64 countries in 2012. Even if the PISA study is pre-
dominant in the media, many other large-scale assessments are conducted, too. Standardized
large-scale testings in Germany under participation of the German Institute for International
Educational Research4 (DIPF, Deutsches Institut für Internationale Pädagogische Forschung)
for example include the National Educational Panel Study (NEPS), the study “Persönlichkeits-
und Lernentwicklung von Grundschulkindern” (PERLE, a study about personality and learn-
ing development of primary school children), the Programme for the International Assessment
of Adult Competencies (PIAAC) and the study “Deutsch Englisch Schülerleistungen Interna-
tional” (DESI, a study of student achievements in German and English). Thus, important polit-
ical decisions depend on standardized testing results. Predominantly in the United States, also
personal occupational histories are influenced by standardized achievement tests such as aca-
demic assessments. In Germany, academic assessments are less common, but e.g. test results
from the TOEFL test of the ETS are sometimes required for the admission to master programs.
In Spain, examples where test results are used include the participation in intervention programs
and the assessment in human resources as well as in universities (Gómez-Benito et al., 2010).
Thus, test items need to be subject to an extensive analysis before they are used in real testing
situations. The aspect of test fairness will be addressed in the next paragraph.

3http://www.oecd.org/pisa/participatingcountrieseconomies, access on 14.01.2013
4http://www.dipf.de/de/themen/large-scale-assessment, access on 14.01.2013
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The problem of DIF is closely related to the concept of test fairness. When a test is intended
to measure a certain ability such as maths skills, the items should only measure the intended
variable. A common perception of justice follows the equity principle wherein rewards are
distributed according to the input. Following this principle, it is considered fair, if a respondent
obtains a higher test score if he or she has a higher ability compared to another test-taker.
Similarly, if groups of subjects have different mean abilities, it is considered fair, if these groups
display different mean test scores. In contrast to this, it is not considered fair, if equally able
test-takers from different groups obtain different test results or if the differences in the test scores
occur for equally able groups.

Therefore, the analysis of DIF focuses on the question whether equally able test-takers display
different probabilities of solving an item. Tests that are constructed to measure maths skills, for
example, may include word problems. It may happen that word problems are harder to solve for
participants with a different mother tongue. In this case, the item is no longer unidimensional
and native speakers obtain an unfair advantage in the test. If we would compare equally able
groups of native and non-native speakers, a higher probability of solving the item would be
expected for the former group and, correspondingly, a larger proportion of correct answers. If
all other items of the math test function similarly for the groups (i.e. are invariant), a higher test
score would be expected for the native speakers and a higher math ability would be reported
even if the groups are in fact equally able. This situation reflects an unfair advantage in the math
test.

This example illustrates the relationship between DIF and differential test functioning (DTF).
The latter is defined by a lack of invariance on the scale or test level (cf. Stark et al. 2006,
and the references therein, or Shealy and Stout 1993a). If items from a test display DIF, the
test may function differently for the groups. This is the case if the DIF effects across all items
do not cancel out on the test level. Hence, DIF and DTF are present. Otherwise, if the DIF
effects cancel out on the test level, DIF is present but DTF is not (Stark et al., 2006). Even if the
possibility of cancellation effects exists, DIF analysis has to be carried out to not only legitimate
the test items but also to examine the underlying causes of DIF (Jodoin and Gierl, 2001).

The examples from Section 3.2.1 are now addressed with respect to test fairness. Going back to
the lawsuits, the difference in the proportions of test failures between black and white respon-
dents per se cannot be considered as unfair, since no information on the latent variable is taken
into account yet.

Only an analysis that conditions on the latent variable is able to distinguish between true ability
differences and DIF: When a black and a white test-taker have the same latent ability, but still
perform differently on some of the test items, the test is considered unfair. One reason for
the underperformance of black test-takers given the same ability level could be the so called
stereotype threat (for more details see, e.g., Wicherts et al., 2005).

Returning to the PISA study, it is not intended to report individual test results, but focuses on
comparisons between the participating countries – with major political impact – and between
male and female students. Therefore, measurement invariance is important in the PISA study to
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allow for test fairness. Before items are administered in the final test set, characteristics of the
items are studied in pretests and DIF tests are conducted regarding effects of the gender and the
country variable (Joachim Funke, Chairman of the International PISA Problem Solving Expert
Group, 2011, personal communication).

Test fairness is related to test validity, that is often addressed as an argument for the importance
of testing the assumptions of IRT models. Gómez-Benito et al. (2010, p. 76) refer to the state-
ment of a test as valid as the claim that “the score obtained has a specific meaning, assuming
that this meaning is the same in the different groups for which the test has been validated”. The
presence of DIF-items “on a test is a threat to validity” (Cohen et al., 1996, p. 15). Accordingly,
Magis and De Boeck (2011) highlight that identifying and excluding DIF-items is necessary
for validity. Alternatively, modifications of the DIF-items may be considered (Kelderman and
MacReady, 1990).

Ackerman (1992, p. 69) explains this relationship between DIF items, unwanted multidimen-
sionality and validity more precisely: “If a test lacks construct validity, it contains items that
are measuring skills other than those purported to be measured, and, hence, the potential for
item bias also exists. This bias may be realized if groups of interest differ in their underlying
distribution of these extraneous skills. Simply put, items invalid in the construct sense are a
necessary but not sufficient cause of item bias.” This is an important argument since the lack
of validity implies that wrong conclusions might be drawn. The variable of interest is not mea-
sured appropriately and the measurement includes distracting information from other nuisance
dimensions.

In summary, a given educational or psychological test consisting of many items with substantial
DIF may be unfair for certain subgroups and lacks validity, and it is important to identify these
items, so that they can be improved or deleted from the test (Westers and Kelderman, 1992).
With a rising reliance on standardized achievement test results, DIF analysis gets even more
important and sophisticated methods to detect DIF are required.

3.2.2 Uniform and non-uniform differential item functioning

DIF exists if items show different measurement characteristics for at least two groups of respon-
dents, given the latent trait (Woods, 2009) or if matched test-takers from one group are favored
over those from another (Shealy and Stout, 1993a). An item is unbiased if the ICCs (for the
definition of the ICCs, see again Section 3.1) are identical for all groups. Then, respondents
with the same ability value have exactly the same probability of solving each item, regardless
of any group membership (Lord, 1980). In contrast to this, DIF occurs, if the probability to
solve an item varies for at least two groups given the same latent ability.

Large parts of this thesis focus on the comparison of two groups, as is usually done in research
on DIF. These groups are termed the reference and the focal group. In the substantial sciences,
the term focal group refers to the group the researcher is interested in, whereas the reference
group is the standard group (Holland and Thayer, 1988), often a majority group with which the
focal group – often a disadvantaged minority – is to be compared (Gómez-Benito et al., 2010).
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The assignment of reference and focal groups in this thesis is arbitrary and, thus, unprejudiced
and without the expectation of one group performing better.

The variable defining the groups is called external variable or background variable in the lit-
erature (Glas, 1998). It should be noted that (as with all observational data) the background
variable used to define the groups cannot simply be interpreted as the causal source of the ob-
served DIF, because the background variable may only serve as a proxy for the unobserved (and
potentially unobservable) true cause. For example, if DIF is detected between men and women,
gender should not be considered as the actual cause of the DIF, but as an indicator of a variety
of educational and social influences (Strobl et al., 2013).

Example: An item that functions differently

Now, an example of a DIF-item is considered. Dorans (1989) compared male and female test-
takers and presented a highly differentially functioning item from the originally termed Scholas-
tic Aptitude Test (SAT) study. The SAT from the College Board is used for college admissions
in the USA. In the example, the task is to build verbal analogies:

. DECOY:DUCK = � net:butterfly

� web:spider

� lure:fish

� lasso:rope

� detour:shortcut

In this case, female respondents display a lower probability of solving the item. This does not
necessarily imply DIF. It could also result from a lower ability. Therefore, the author distin-
guishes between impact and DIF (termed unexpected differential item performance). Under the
control of ability – by stratifying the sample in ability groups according to the observed SAT
score – male respondent have a 15% to 20% percent higher chance of solving the item in re-
gions of 250− 500 points of the SAT score. The explanation at hand for this effect is additional
knowledge of terminology in hunting and fishing.

So far, the definition of DIF only stated that the ICCs (or IRFs) differ between the groups (Kim
et al., 1994). However, the ICCs can differ in various forms: A DIF-item may favor one group
over the entire latent space or the ICCs of reference and focal group may cross (Lord, 1980).
A common classification of the type of DIF, which will be presented in the next paragraphs,
distinguishes between uniform and non-uniform DIF.

In this thesis, DIF is defined as uniform DIF if two conditions are met: Firstly, one group has a
higher probability of solving an item (given the latent trait) over the entire latent continuum and,
secondly, the group differences in the logits, i.e. the logarithmic odds of correctly answering the
item, remain constant over the ability levels (Mellenbergh, 1982). This definition is consistent
with the definition used by Finch and French (2007).
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The term uniform DIF is not consistently used. Jodoin and Gierl (2001) and French and Maller
(2007) use only the first condition to declare uniform DIF. This situation is referred to as uni-
directional DIF in this thesis and will be addressed in the following paragraphs. To use the
second condition is motivated from a modeling perspective: Mellenbergh (1982, p. 114) de-
scribes uniform DIF as “a constant difference between group-item performance over ability
levels”. Thus, if the group differences on the logit scale remain constant, uniform DIF can be
grasped statistically in differing item difficulty parameters in the Rasch model that are already
conditioning on ability levels.

Furthermore, Mellenbergh (1982) explains unidimensional DIF with regard to the multidimen-
sionality aspect, in case of e.g. two dimensions, uniform DIF occurs when the additional trait
difference is constant over the prime dimension.

Example: An item that displays uniform DIF
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Figure 7 – An item displaying uniform DIF (artificial data).

In this example, uniform DIF is represented by displaying the ICCs, which connect the ability
to the probability of solving the item. In Figure 7, the ICC for the reference group (solid line)
and the ICC for the focal group (dashed line) do not cross each other and the differences in the
logits remain constant. The reference group has an unfair advantage, since the probability of
solving the item is higher, even if both groups have the same ability.

Mellenbergh (1982), who is said to be the first researcher to conceive the classification of uni-
form and non-uniform DIF (Li and Stout, 1996), approached the situation of non-uniform DIF
by considering three-way contingency tables. They consist of the group membership indica-
tor, the ability level (approximated through a test score) and the interaction of both variables.
Mellenbergh (1982) defines items that require the interaction term to fit the data adequately as
non-uniformly biased. Thus, non-uniform DIF is present when the group differences in the logit
are no longer constant but differ over the range of the ability levels. Thus, from a statistical per-
spective, non-uniform DIF corresponds to an interaction effect between the group membership
and the ability variable on the probability of solving the item (Mellenbergh, 1982).
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According to Li and Stout (1996), situations of non-uniform DIF may be further characterized
according to whether the ICCs cross in the range of the observed ability levels (i.e. only those
values that were actually in the sample), what is referred to as crossing DIF, or not, what is
termed non-crossing DIF. Furthermore, situations of uniform or non-uniform DIF where one
group has an advantage over the observed ability levels are referred to as uni-directional DIF
as opposed to non-directional DIF as illustrated in Figure 8 (Shealy and Stout, 1993a; Li and
Stout, 1996; Finch and French, 2007).

Example: Items that display uniform and non-uniform DIF
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Figure 8 – Items displaying different types of DIF (artificial data).

Figure 8 (left) again displays the situation of uniform DIF. The ICCs do not cross each other
at any point of the x-axes and, thus, uniform DIF is non-crossing and uni-directional. Figure 8
(middle) represents a situation of non-uniform DIF. The ICCs cross each other but not within the
range of the observed ability. Hence, in the region where data was observed, the reference group
(solid line) has an unfair advantage by yielding a higher probability of solving the item given the
ability variable compared to the focal group (dashed line). Thus, the situation is uni-directional
and non-crossing. In the right panel of Figure 8, the ICCs do cross within the observed ability
range, and hence, crossing DIF is present. Crossing DIF corresponds to the situation where DIF
no longer favors one group but the advantage depends on the ability level; In lower regions of
the ability variable, the reference group has an advantage (i.e. a higher probability of solving
the item given the ability variable), whereas in higher regions of the ability variable, the focal
group has the advantage. This situation is referred to as non-directional.

Generally, situations with multiple crossing points at various ability levels are possible. How-
ever, as cancellation effects are conceivable, the main research focuses in one-point-crossing at
ability levels with a high density (Li and Stout, 1996). No difference between crossing and non-
uniform DIF is made by Finch and French (2007). The author defines non-uniform DIF when
items discriminate differently for groups across the ability continuum. The approach of model-
ing non-uniform DIF by means of varying discrimination parameters is common in IRT-based
DIF analysis.
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As DIF generally corresponds to situations where the latent trait is no longer unidimensional,
non-uniform DIF occurs in situations where the nuisance dimension depends on the target abil-
ity or, put differently, the differences on the nuisance dimension now vary over values of the
prime dimension (Mellenbergh, 1982).

Mellenbergh (1982) for example found a considerable proportion of non-uniformly biased items
in a word analogies test and highlights the importance of both types, uniform and non-uniform
DIF, to compare groups appropriately.

3.3 Methods to detect DIF or DIF groups

A variety of methods has been proposed for the analysis of DIF in the Rasch model. Here,
the review is limited to some commonly used DIF detection methods and does not cover all
proposed methods (for more detailed overviews see Osterlind and Everson 2009, Holland and
Wainer 1993 and Fischer and Molenaar 1995). Firstly, global goodness-of-fit tests for the Rasch
model, that also allow to test for DIF, are briefly discussed. Secondly, methods to detect uni-
form DIF in individual items in two or more pre-defined groups are regarded. Thirdly, methods
to detect item-wise non-uniform DIF in two or more pre-defined groups are discussed. Lastly,
Rasch trees, that combine model-based recursive partitioning and IRT, are introduced in Sec-
tion 3.4. Rasch trees proceed in a different way: they do not only allow to detect DIF but also
determine the groups that display DIF.

In the following, only methods that condition on ability and, thus, focus on DIF instead of
impact are regarded. Flier et al. (1984) discuss unconditional and conditional methods and
list arguments in favor of the latter: unconditional methods focus on impact and, thus, depend
on the true ability distributions as well as on other items, since bias is defined relatively. The
dependence for conditional methods is reduced to the matching criterion for the estimation.
The problem of defining a common metric for the item parameters of the groups that are to be
compared when conditional item-wise DIF methods are employed is a main aspect of this thesis
(see Chapter 5 through Chapter 8).

3.3.1 Global model tests

Global model tests are employed to answer the question of whether DIF is present anywhere in
the entire set of test items and, thus, do not allow to specify directly which items display DIF.

One global goodness-of-fit tests for the Rasch model is the widely used likelihood ratio (LR)
test (Anderson, 1973; Gustafsson, 1980). The LR test was first suggested by Anderson (1973)
as a test for different slope parameters by means of dividing the subjects into groups according
to their ability raw scores. However, it has long been noted (e.g. by Gustafsson, 1980) that
it can also be used as a test for DIF when the subjects are divided into groups according to
covariates such as gender and social background. The test then compares the item parameter
estimates between two or more pre-specified groups of subjects, such as males and females, as
reference and focal group. The parameters need to be estimated both for the full sample and
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for all subsamples. The full sample likelihood for the full sample item parameter estimates is
then compared to the product of all subsample likelihoods for the subsample item parameter
estimates by calculating minus two times the logarithmic likelihood ratio which follows a χ2-
distribution with the degrees of freedom representing the number of additional parameters for
the unrestricted model.

Similarly, the Wald test could be used for this situation. The item parameters need to be es-
timated for all subsamples only. The subsample item parameter estimates are then directly
compared, so that the Wald test does not require the computation of the full sample item param-
eter estimates. Also the Lagrange multiplier (LM) or score test employs only the item parameter
estimates from the full sample, and evaluates group differences by means of the individual score
contributions. Asymptotically all three tests are equivalent and hence, in practice, the choice
of test is often guided by computational considerations: The LR test is often found to perform
slightly better in finite samples; however, it also poses the highest computational burden (see
also Merkle and Zeileis, 2012, who discuss similarities and differences of the three types of
tests in more detail in a structural change setting). All three tests rely on the estimation of an
IRT model and are referred to as IRT-based tests in the literature.

Another way to approach a global goodness-of-fit test is the latent class (or mixture) approach
of Rost (1990). It tests for item parameter differences between all possible groups of subjects
regardless – and even in the absence – of person covariates (see also Kelderman and MacReady,
1990; Mislevy and Verhelst, 1990). In this sense, the latent class approach can be considered
as a very stringent model test (even though it has a lower statistical power than tests for given
groups when informative covariates are available, cf. Smit et al., 2000). However, the latent
class approach provides no straightforward interpretation of the resulting groups. Therefore,
often latent class approaches are used only as a first step in the analysis, where the second
step is to attempt to describe the latent classes by person covariates for interpretability (see,
e.g., Cohen and Bolt, 2005; Hancock and Samuelsen, 2007; Maij-de Meij et al., 2008, and the
references therein).

3.3.2 Methods to detect item-wise uniform DIF

Item-wise DIF tests are intended to answer the question of whether an individual item displays
DIF. A variety of methods to test for DIF is available. Some of these methods have been
adopted from statistics or biostatistics to analyze DIF in the Rasch model, while other methods
have directly been developed for the purpose of investigating DIF.

One IRT-based method adopted from statistics is the use of the item-wise Wald test to assess DIF
in a single item. Frederick M. Lord (1912-2000), who was called the father of modern testing,
first suggested to use the Wald test for the assessment of different item parameters (Lord, 1980).
The Wald test is, thus, often referred to as Lord’s test statistic (Thissen et al., 1988) and was
generalized for multiple groups by Kim et al. (1995). The idea behind this approach is that DIF
is present if the ICCs are not identical across groups (Mellenbergh, 1982). When the Rasch
model is considered, this is translated to the null hypothesis for uniform DIF, that states the
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equality of the item difficulty parameters in the Rasch models that are estimated separately for
both groups. The same hypothesis can be tested with the item-wise likelihood ratio test proposed
for DIF analysis by Thissen et al. (1988) and available in the software program IRTLRDIF
(Thissen, 2001). A LM DIF statistic for MML-estimation is discussed by Glas (1998).

Another example for the adoption of a statistical test is the Mantel-Haenszel (MH) test, orig-
inally developed in biostatistics (Mantel and Haenszel, 1959). The MH test is a non-IRT test
statistic, since it is not necessary to compute an IRT model for the DIF test. Instead of using
e.g. CML-estimated item parameters, the matching criterion used is the total test score, i.e. the
sum of correctly answered items. Contingency tables are constructed for the potential DIF-item
including only respondents with a certain test score. All tables resulting from the number of
possible raw test scores are regarded and the expected frequencies are compared to the observed
frequencies using the so called common odds ratio. The resulting asymptotic distribution is χ2

(cf. Holland and Thayer, 1988, also for further statistical properties). The MH procedure is
not the only test that has been proposed for the investigation of matched tables (see, e.g. Mel-
lenbergh, 1982; Scheuneman and Bleistein, 1989), but it is widespread in DIF research. An
introduction to related DIF methods as well as the MH estimate for the common odds ratio are
presented by Holland and Thayer (1988).

Swaminathan and Rogers (1990) proposed the usage of the logistic regression to detect uniform
or non-uniform DIF in one item. To accomplish this, the linear predictor is specified including
an intercept, the ability variable xθ, the group membership variable xgroup, and their interaction
xgroup,θ. The sum score is commonly used as the continuous ability measure xθ (Finch and French,
2007) and thus functions as the conditioning variable. The model formula specifies the prob-
ability of solving one specific item j as P(u j = 1|x) =

exp (η j)
1+exp (η j)

through the linear predictor
η j = τ j0 + τ j1xθ + τ j2xgroup + τ j3xgroup,θ. The test is originally intended to assess uniform and
non-uniform DIF simultaneously and to specify the type of DIF post-hoc. If only the group
membership is statistically significant, but the interaction term is not, uniform DIF is present.
An iterative extension was suggested by Flier et al. (1984). Magis et al. (2011) generalize the
logistic regression approach to multiple group comparisons. In Chapter 4, extensions to test for
DIF in multiple items simultaneously will be presented.

The logistic regression approach is similar to the currently discussed broader mixed models
framework for IRT models (Boeck et al., 2011). In this approach, the linear predictor usually
includes a random effect for the ability variable and fixed effects for the item difficulties. Po-
tential DIF effects are grasped by means of person-by-item interactions. Therefore, similar to
logistic regression, groups to be investigated have to be pre-specified and complex DIF-patterns
such as focal groups that consist of person-covariate interactions might be missed.

Yet other methods to test for DIF are the multiple indicators, multiple cause (MIMIC) approach
(Finch, 2005), the Simultaneous Item Bias (SIBTEST) procedure (Shealy and Stout, 1993a),
confirmatory factor analysis (CFA) (see, e.g. Meade and Lautenschlager, 2004), structural equa-
tion modeling (SEM) (for an literature overview, see French and Maller, 2007), random item
mixture (RIM) (Frederickx et al., 2010), a robust outlier approach (Magis and De Boeck, 2011)
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or a penalty approach (Tutz and Schauberger, 2012). However, this thesis focuses on the item-
wise Wald test that is presented in more detail – together with a simulation study addressing its
performance under ideal conditions – in Chapter 5.

3.3.3 Methods to detect non-uniform DIF

In DIF research, non-uniform DIF might often be considered subordinate, since it is less often
analyzed (Finch and French, 2007) and methods are primarily developed to detect uniform DIF
(Li and Stout, 1996). Nevertheless, non-uniform DIF has also been found in empirical testing
situations (e.g. a considerable proportion of non-uniformly biased items in a word analogies test
in Mellenbergh, 1982).

Until the year 1996, Li and Stout (1996) observed less research that focused on non-uniform
DIF as many standard procedures, such as the MH test, are specifically designed for the purpose
to detect uniform DIF, even though empirical applications imply the presence of non-uniform
DIF. The subordinate role of non-uniform DIF analysis persists, as Finch and French (2007)
mention less insight in non-uniform DIF methods in the year 2007.

However, some methods to detect uniform DIF have been extended for the analysis of non-
uniform DIF. Lord (1980) recommends to simultaneously test for uniform and non-uniform DIF
by also including the estimated discrimination parameters in the Wald test. To simultaneously
test for equal discrimination and difficulty parameters, the Rasch model does not suffice and
the comparison is based on the estimated item parameters of the 2pl model. The approach
of modeling non-uniform DIF by means of varying discrimination parameters is common in
IRT-based DIF analysis, but – from a more general point of view – not the only possibility.

The logistic regression by Swaminathan and Rogers (1990) was already proposed to test for
uniform and non-uniform DIF simultaneously. The probability of solving a specific item is
modeled through the sum score, the group membership and their interaction. The post-hoc
interpretation is suggested in the following way; If the interaction term is statistically significant,
regardless of the other effects, non-uniform DIF is present. A generalization for multiple groups
can be found in Magis et al. (2011).

To assess non-uniform DIF, Li and Stout (1996) suggested the crossing SIBTEST procedure that
relies on a different test statistic. Finch and French (2007) systematically compared the Crossing
SIBTEST procedure, the logistic regression, the likelihood ratio test (IRTLRDIF) suggested by
Thissen et al. (1988), and the confirmatory factor analysis (CFA, see, e.g., Meade and Lauten-
schlager 2004) and found that the Crossing SIBTEST method and the logistic regression clearly
outperformed the IRTLRDIF and the CFA method.

However, this thesis focuses on those methods that have previously been shown to perform well
(e.g. by Finch and French, 2007). Furthermore, Rasch trees will also be extended to allow for
non-uniform DIF detection in Chapter 4. Therefore, Rasch trees are introduced in more detail
in the next section.
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3.4 Rasch trees for uniform DIF detection

Rasch trees for uniform DIF detection have been previously proposed by Strobl et al. (2013).
Rasch trees result when the model-based recursive partitioning algorithm is applied to the Rasch
model as will be pointed out in detail below. With this approach it is possible to detect groups
of subjects exhibiting DIF, that are not pre-specified nor latent classes, but result from combi-
nations of observed covariates. Note that, all previously mentioned DIF detection methods do
not share this characteristic, because the majority of DIF detection methods assumes that the
groups which are tested for DIF are pre-defined.

Rasch trees are intended for detecting groups of subjects with DIF and are based on the tech-
nique of model-based recursive partitioning, that employs statistical tests for structural change
adopted from econometrics. Model-based recursive partitioning is a semi-parametric approach.
The aim is to detect differences in the parameters of a statistical model between groups of sub-
jects defined by (combinations of) covariates. Such parameters could be, e.g., intercept and
slope parameters in a linear regression model (as was illustrated in Chapter 2) or, as in our case,
the item difficulty parameters of a Rasch model, that may vary between groups of subjects, and
thus directly correspond to uniform DIF. If the procedure determines varying item parameters,
it means that the null hypothesis of one joint Rasch model for the entire sample (i.e. measure-
ment invariance) must be rejected. In this sense, the proposed method is a global test for DIF as
well as an overall model test for the Rasch model. In addition to this, the graphical visualiza-
tion allows to identify which groups are affected by DIF as will be illustrated in an instructive
example in Chapter 4.

Technically, the following consecutive steps are used to infer the structure of a Rasch tree from
the data:

1. Estimate the item parameters jointly for all subjects in the current sample, starting with
the full sample.

2. Assess the stability of the item parameters with respect to each available covariate.

3. If there is significant instability, split the sample along the covariate with the strongest
instability and in the cutpoint leading to the highest improvement of the model fit.

4. Repeat steps 1–3 recursively in the resulting subsamples until there are no more signifi-
cant instabilities (or the subsample becomes too small).

These four steps are now explained in more detail.

1. Estimating the item parameters

The common CML approach is used for estimating the item parameters. Let θi, i = 1, . . . , n,
denote the person parameters, β j, j = 1, . . . , k, denote the item parameters and ui j denote the
response of subject i to item j. Since under the Rasch model

P(Ui j = ui j|θi, β j) =
eui j·(θi−β j)

1 + eθi−β j



3.4 Rasch trees for uniform DIF detection 43

the person raw-scores ri =
∑k

j=1 ui j form sufficient statistics for the person parameters, the item
parameters can be estimated by means of iterative procedures from the conditional likelihood

Lc(β|r1, . . . , rn) =

n∏
i=1

Lc(β|ri) =

n∏
i=1

e−
∑k

j=1 ui j·β j

γri(β)
, (10)

where γri is the symmetric function of order ri (cf., e.g., Molenaar, 1995a). To fix the origin of
the scale, some constraint has to be applied, e.g., setting the first item parameter or the sum of
all item parameters to zero as discussed earlier, leaving k − 1 free parameters.

2. Testing for parameter instability

In order to test whether the item parameters vary between groups of subjects defined by covari-
ates, we use the approach of structural change tests from econometrics. These tests are usually
employed for detecting, e.g., a drop in stock returns over time, whereas here we employ the
same methodology for detecting parameter changes over person covariates. The rationale of
the employed structural change tests is the following: The item parameters are first estimated
jointly for the entire sample. Then the individual deviations from this joint model are ordered
with respect to a covariate, such as age (as was illustrated in Figure 4 in Chapter 2). If there
is systematic DIF with respect to groups formed by the covariate, the ordering will exhibit a
systematic change in the individual deviations. If, on the other hand, no DIF is present, the
values will merely fluctuate randomly.

For statistically testing structural change in the model parameters, we suggest the usage of gen-
eralized M-fluctuation tests (Zeileis and Hornik, 2007) that form the basis of the model-based
recursive partitioning framework of Zeileis et al. (2008). The idea of this class of tests is to
compute the subject-wise score contributions and derive test statistics with known distributions
from them.

The individual score function ψ(ui, β̂), for i = 1, . . . , n observations, i.e., the derivative of the
individual contributions to the log-likelihood Ψ(ui, β̂) with respect to the parameter vector, is a
general measure of deviation for likelihood-based models. For the Rasch model these individual
contributions can easily be computed from the conditional likelihood as outlined below.

For the construction of the test statistic, the individual contributions to the score function are
cumulated according to the order induced by a variable such as age, or any other covariate. The
systematic change from positive to negative in the individual contributions to the score function
is then captured as a clearly noticeable peak in the cumulative sum process (see again Figure 4
in Chapter 2).

The cumulative sum process is defined as

Wl(t) = V̂ −1/2n−1/2
bn·tc∑
i=1

ψ(u(i|l), β̂) (0 ≤ t ≤ 1), (11)

where the index (i|l) denotes the i-th ordered observation with respect to the l-th covariate, b·c
denotes the integer part, V̂ =

∑n
i=1 ψ(ui, β̂)ψ(ui, β̂)> is the outer-product-of-gradients estimate
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of the covariance matrix, and t is a fraction of the sample size. Under the null hypothesis of
parameter stability, the cumulative sum process Wl(·) can be shown to converge to an (k − 1)-
dimensional Brownian bridge (Zeileis and Hornik, 2007), which can be used as the basis for
statistical inference.

The cumulative aggregation runs over the order induced by the l-th covariate: The i = 1, . . . , n
individual deviations are ordered with respect to the covariate and aggregated up to the bn · tc-th
element in each step. When Wl(t) is considered as a function of the fraction t of the sample
size, under the null hypothesis of parameter stability the cumulative sum process follows the
path of a random process with constant zero mean (whereas under the alternative hypothesis of
parameter instability the path deviates from this random fluctuation).

The advantage of this approach is that the model does not have to be reestimated for all splits in
all covariates, because the individual deviations remain the same and only their ordering (and
the corresponding path of Wl(t)) needs to be adjusted for evaluating the different covariates.

To capture systematic deviations in Wl(·), different test statistics can be used depending on
whether the l-th covariate is a numeric or a categorical variable. If it is numeric, Zeileis et al.
(2008) point out that a natural test statistic is

S l = max
i=i,...,ı

( i
n
·

n − i
n

)−1 ∣∣∣∣∣∣∣∣∣∣Wl

( i
n

)∣∣∣∣∣∣∣∣∣∣2
2
. (12)

This can be interpreted as the maximum LM statistic (also known as score statistic) for a single
shift alternative over all conceivable cutpoints in [i, ı]. The limiting distribution is the supremum
of a tied-down Bessel process, from which p-values can be computed (for details see Zeileis
et al., 2008; Merkle and Zeileis, 2012).

If, on the other hand, the l-th covariate is categorical (with values zil taking categories q =

1, . . . ,Q), it is more natural to use the following test statistic

S l =

Q∑
q=1

n

 n∑
i=1

I(zil = q)

−1 ∣∣∣∣∣∣∣∣∣∣∆qWl

( i
n

)∣∣∣∣∣∣∣∣∣∣2
2
, (13)

where ∆q is the increment within the q-th category. This test statistic is invariant to reordering of
the Q categories and the subjects within each category. The test statistic captures the instability
over the Q subsamples. Its limiting distribution is χ2 with (Q − 1) · (k − 1) degrees of freedom,
from which p-values can be computed. This test is employed for both nominal and ordinal
categorical variables. A potential ordering of the categories is accounted for in the next step,
when the cutpoint is selected.

For the Rasch model, the objective function used for parameter estimation is the conditional
log-likelihood. The individual contributions to the conditional log-likelihood can be easily
computed as log Lc(β|ri) (cf. Equation 10), yielding

Ψ(ui,β) = −

k∑
j=1

ui j · β j − log
(
γri(β)

)
. (14)
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For the computation of the structural change tests, the individual contributions to the score
function are derived from Equation 14. The contribution of the i-th subject for the j-th item
parameter is:

ψ(ui,β) j =
∂Ψ(ui,β)

∂β j
= −ui j −

1
γri(β)

·
∂γri(β)
∂β j

. (15)

The derivatives of the symmetric functions γri(β) are again symmetric functions with certain
terms omitted (cf., e.g., Glas and Verhelst, 1995). In our implementation of the Rasch trees, the
sum algorithm of Liou (1994) is used (by default) for computing these derivatives.

When the individual contributions to the score function of the Rasch model from Equation 15
are ordered with respect to covariate l and inserted in Equation 11, parameter instabilities in the
item parameters can be statistically tested using the model-based recursive partitioning approach
outlined above.

The results of this procedure are also easy to interpret: The parameter instability test statistics
S l with associated (Bonferroni adjusted) p-values are provided for each candidate variable.
The p-values are derived from the respective limiting distributions. Splitting continues until
all p-values exceeded the significance level (commonly 5%), indicating that there is no more
significant parameter instability, or until the number of observations in a subsample falls below
a given threshold.

3. Selecting the cutpoints

After a covariate has been selected for splitting, the optimal cutpoint is determined by maximiz-
ing the partitioned log-likelihood (i.e., the sum of the log-likelihoods for two separate models:
one for the observations to the left and up to the cutpoint, and one for the observations to the
right of the cutpoint) over all candidate cutpoints within the range of this variable.

For a split within a binary variable, the selection of the cutpoint is trivial – e.g. gender only
allows for a single split between the subgroups of females and males. In splits within nu-
meric variables or categorical variables that are no longer binary, all possible cutpoints are
considered and the optimal cutpoint is chosen according to the highest value of the partitioned
log-likelihood.

Formally, for a numeric splitting variable l with values zil we can define the subsamples
L(ξ) = {i | zil ≤ ξ} and R(ξ) = {i | zil > ξ} on the left and right, respectively, of some cutpoint
ξ. For both subsamples, the parameters β̂(L) and β̂(R) can be estimated separately as described
above. To determine the optimal cutpoint ξ, the partitioned log-likelihood∑

i∈L(ξ)

Ψ
(
ui, β̂

(L)
)

+
∑

i∈R(ξ)

Ψ
(
ui, β̂

(R)
)

is maximized over all candidate cutpoints ξ (typically requiring a certain minimal subsample
size).

While this approach can be applied to numeric and ordered covariates, for unordered categorical
covariates the Q categories can be split into any two groups. From all these candidate binary
partitions, again the one that maximizes the partitioned log-likelihood is chosen.



46 3 The issue of differential item functioning in the Rasch model

Note that choosing the optimal cutpoint by maximizing the partitioned (log-)likelihood corre-
sponds directly to using the maximum LR statistic of the joint vs. the partitioned model. Thus,
for selecting the optimal cutpoint the computationally more expensive LR test is implicitly used
in the Rasch tree algorithm. However, it is not employed in the first step for testing whether there
is significant DIF in a covariate, but only for the second step of estimating where the strongest
DIF occurs by obtaining the maximum likelihood estimator for the cutpoint. Unlike the tests in
the previous sections, this computationally costly LR test is not applied to all potential splitting
variables but only to those selected for splitting in the first place.

From a statistical point of view, this two-step approach – where the variable selection is made
independently from the cutpoint selection – has two important advantages: Not only does it
considerably reduce the computational burden (Strobl et al., 2013), but at the same time it also
prevents an artifact termed variable selection bias (cf., e.g., Dobra and Gehrke, 2001; Shih,
2004; Hothorn et al., 2006b; Strobl et al., 2007), that was inherent in earlier recursive partition-
ing algorithms.

Variable selection bias occurs when first the best cutpoint is determined in each variable and
then the best splitting variable is selected by means of evaluating some splitting criterion or
test statistic, that was computed exactly for the cutpoint producing the highest value of this
criterion or statistic. In this case, variables offering more cutpoints (such as numeric variables
or variables with many categories) have a higher chance of being selected only due to multiple
testing, which does not reflect the actual quality of the splitting variable. Therefore, with respect
to selecting the variable with the strongest parameter instability in the Rasch model it would be
statistically incorrect to select the best splitting variable by means of the standard LM or LR test
(based on the standard χ2 distribution) when the test statistic is computed in the best cutpoint
offered by that variable. The reason is that – due to the optimal selection of the cutpoint –
the asymptotic distribution of this optimally selected statistic is no longer χ2 (Andrews, 1993).
Therefore, the correct distribution has to be derived for any optimally selected statistic (cf., e.g.,
Miller and Siegmund, 1982; Koziol, 1991; Hothorn and Lausen, 2003; Boulesteix, 2006) – as
in our case for the optimally selected LM statistic from Equation 12, that is employed in the
variable selection step of the Rasch tree method. This approach guarantees that the selection of
the best splitting variable is not affected by the number of cutpoints offered by each candidate
variable, but can make the test decision a little conservative in small to moderate samples.

4. Stopping criteria

For creating a Rasch model, the four basic steps outlined above – (1) estimating the item param-
eters of a joint model, (2) testing for parameter instability, (3) selecting the splitting variable
and cutpoint and splitting the sample accordingly – are repeated recursively until a stopping
criterion (4) is reached.

Two kinds of stopping criteria are currently implemented: Splitting continues only as long as
significant parameter instability is detected. If there is no (more) significant instability with
respect to any of the covariates, the splitting stops. Thus, the significance level – usually set to
5% – serves as the most important stopping criterion.



3.4 Rasch trees for uniform DIF detection 47

In addition to that, as a second stopping criterion a minimum sample size per node can be
specified. This minimal node-size should be chosen such as to provide a sufficient basis for
parameter estimation in each subsample, and should thus be increased when the number of item
parameters to be estimated is large.

Finally, one should keep in mind that when a large number of covariates is available in a data set,
and all those covariates are to be tested for DIF, multiple testing becomes an issue – as with any
statistical test for DIF. To account for the fact that multiple testing might lead to an increased
false-positive rate when the number of available covariates is large, a Bonferroni adjustment for
the p-value splitting criterion is applied internally (so that all p-values reported for Rasch trees
throughout this thesis have already been Bonferroni-corrected).

Another issue related to stopping criteria in recursive partitioning algorithms is their potential
for overfitting: In classical algorithms (such as CART; Breiman et al., 1984) a pruning step (i.e.
cutting back branches at the bottom of the tree that do not add to the prediction accuracy in
cross-validation) is necessary to make sure that any splits detected for the learning data do not
only reflect random variation but also generalize to other samples from the same data generat-
ing process. As opposed to these classical algorithms, the model-based recursive partitioning
approach employed here is already based on statistical inference tests (rather than merely de-
scriptive statistics) and uses their p-values (together with several precautions against multiple
testing) for stopping before overfitting occurs (cf. also Hothorn et al., 2006b). Therefore, prun-
ing is not necessary in this approach.

Moreover, it is important to note that our model-based recursive partitioning algorithm is not
affected by an inflation of chance due to its recursive nature. Indeed, several statistical tests
are successively conducted in a Rasch tree – but each test is conducted only if the previous
test yielded a significant result. In this sense, the recursive approach forms a closed testing
procedure, which does not lead to an inflation of chance as is well known from the literature
on multiple comparisons (Marcus et al., 1976; Hochberg and Tamhane, 1987). For the Rasch
trees this means that the postulated significance level holds for the entire tree, not only for each
individual split. This ensures that DIF is not erroneously detected as an artifact of the recursive
nature of the algorithm.

Rasch trees have been previously proposed for the detection of uniform DIF (Strobl et al.,
2013). In the next chapter of this thesis, the question of whether Rasch trees are also suited to
detect non-uniform DIF is addressed. Rasch trees will be illustrated by means of two instructive
examples including uniform and non-uniform DIF in the next chapter.
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4 Detecting non-uniform DIF with Rasch trees

Summary: A variety of statistical methods have been suggested for the analysis of differen-
tial item functioning (DIF) in the Rasch model. Nevertheless, the detection of non-uniform
DIF has attracted little attention in the development and evaluation of statistical methods for
DIF detection and in empirical studies on DIF. In this chapter, we address the question of
whether the newly suggested Rasch trees are suited for the detection of non-uniform DIF in
the Rasch model. In an extensive simulation study, we evaluate the appropriateness of Rasch
trees as a global test for the detection of uniform and non-uniform DIF. To allow for a direct
comparison, we suggest two extensions of the logistic regression approach that has previously
been suggested for item-wise detection of uniform and non-uniform DIF. The results show that
Rasch trees yield well-controlled type one error rates and are well suited for all different types
of DIF when the sample size is large. The extensions of the logistic regression were superior
when the DIF groups are known and the DIF-items were simulated with varying discrimination
parameters. Still, Rasch trees are able to automatically detect observable groups that display
DIF and maintain their straightforward interpretation in non-uniform DIF situations. Thus,
they allow for a flexible analysis of DIF even if no reliable prior knowledge of the composition
of the DIF groups is available.

Keywords: Rasch model, Rasch trees, differential item functioning (DIF), non-uniform DIF,
crossing DIF

4.1 Introduction

In item response theory (IRT) research, invariant item parameters are necessary to assess ability
differences between groups in an objective, fair way. If the invariance assumption is violated,
different ICCs occur in subgroups and DIF is present as discussed in Chapter 3. Most statistical
methods developed for the assessment of DIF focus on uniform DIF, where one group has a
higher probability of solving an item (given the latent trait) over the entire latent continuum
and the group differences in the logit, i.e. the logarithmic odds of correctly answering the item,
remain constant (Mellenbergh, 1982; Swaminathan and Rogers, 1990). In contrast to this, non-
uniform DIF is present when the group differences in the logit are no longer constant but differ
over the range of the latent continuum. Thus, from a statistical perspective, non-uniform DIF
corresponds to an interaction effect between the group membership and the ability variable on
the probability of solving the item (Mellenbergh, 1982).

Empirical research in educational and psychological testing confirmed the existence of non-
uniform DIF-items (cf. e.g., Linn et al., 1981; Mellenbergh, 1982; Li and Stout, 1996; Ham-
bleton and Rogers, 1989; Ellis, 1989; Maller, 2001; Pae, 2004) and “[a]lthough nonuniform
DIF is said to occur at a lower rate than uniform DIF in practice, accurate detection is no less
important” (Finch and French, 2007, p. 566). Nevertheless, the development and evaluation
of statistical methods to detect DIF mainly focus on uniform DIF and DIF analysis is more
frequently carried out using methods designed for the detection of uniform DIF (Li and Stout,
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1996; Pae, 2004; Finch and French, 2007).

In this chapter, we address the question of whether the recently suggested Rasch trees (Strobl
et al., 2013) are able to detect non-uniform DIF. Rasch trees were initially designed to automat-
ically detect groups that display uniform DIF in the Rasch model. These groups are defined by
combinations of available covariates. The resulting Rasch trees can be graphically displayed
and thus provide a straightforward interpretation. The method employs a global test for model
violations where all items are simultaneously investigated (see again Section 3.4), like in the
commonly used likelihood ratio test (Anderson, 1973; Gustafsson, 1980).

In the following section, previous studies on the detection of non-uniform DIF are reviewed.
After that, the rationale for detecting non-uniform DIF using Rasch trees is explained from a
theoretical perspective and by means of an illustrative example. Furthermore, existing methods
to detect non-uniform DIF are extended to allow for a meaningful comparison with the Rasch
trees. In Section 4.3 the simulation design is presented and the results are discussed in Sec-
tion 4.4. A concluding summary of the simulation results as well as practical recommendations
are given in Section 4.5.

4.2 Methods

In the following, we briefly review previous simulation studies that compare methods to detect
non-uniform DIF (for a more detailed literature overview including studies on uniform DIF
detection see Finch and French, 2007).

In the simulation study of Narayanan and Swaminathan (1996), three different methods were
compared regarding their appropriateness for non-uniform DIF detection in settings of dif-
ferent sample sizes, ability distributions, proportions of DIF items, effect sizes, and types of
non-uniform DIF. The compared methods were the logistic regression proposed for DIF de-
tection by Swaminathan and Rogers (1990), an extension of the original Simultaneous Item
Bias (SIBTEST) procedure (Shealy and Stout, 1993a) named Crossing SIBTEST, that was de-
veloped by Li and Stout (1996) and allows for non-uniform DIF detection, and the Mantel-
Haenszel (MH) procedure (Holland and Thayer, 1988). The logistic regression and the Cross-
ing SIBTEST procedure reached comparable hit rates for item-wise DIF detection. However,
both methods yielded inflated false alarm rates when differences in the ability distributions of
reference and focal group were present. Unlike the MH test, which displayed low hit rates in the
majority of the simulated settings, the logistic regression and the Crossing SIBTEST procedure
were recommended for non-uniform DIF detection together with an adjustment of the alpha
level when unequal ability distributions are present.

In their comparison of the Crossing SIBTEST procedure with the logistic regression, Li and
Stout (1996) found the logistic regression to reach a higher statistical power of detecting non-
uniform DIF in settings where the data generating process relied on the two-parameter logistic
(2pl) model. The false alarm rate of the logistic regression was acceptable in this setting as
opposed to settings where e.g. the three-parameter logistic (3pl) model was used as the data
generating process.
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Finch and French (2007) systematically compared four methods for detecting non-uniform DIF
in a simulation study: the Crossing SIBTEST procedure, the logistic regression, a likelihood
ratio test (IRTLRDIF) suggested by Thissen et al. (1988), and confirmatory factor analysis
(CFA, see, e.g., Meade and Lautenschlager 2004). In their simulation study, item-wise non-
uniform DIF tests were conducted for dichotomous items in conditions of varying sample sizes,
ability differences, and proportions of DIF-items. All procedures yielded type one error rates
close to the expected level of 0.05. Regarding the power, the Crossing SIBTEST method and
the logistic regression clearly outperformed the IRTLRDIF and the CFA method.

Even though the findings agree that the logistic regression and the Crossing SIBTEST method
outperformed other methods in the detection of non-uniform DIF, the results are not clear with
respect to which of the two methods is superior. While the Crossing SIBTEST procedure
showed the highest power in the study of Finch and French (2007), Narayanan and Swami-
nathan (1996) found the methods to be comparable and Li and Stout (1996) found the logistic
regression to be superior. In this study, we will use the logistic regression for comparing it with
the Rasch trees. There are several arguments for this choice.

Firstly, the Crossing SIBTEST method requires a so called set of valid items to construct a
matching subtest (for details see Shealy and Stout, 1993b). Typically, this set of valid items is a
subset of the items. Technically, this subset is defined as a strict subset of the items and cannot
consist of all items that should simultaneously be tested for DIF (Shealy and Stout, 1993a,
p. 652). Therefore, this test procedure requires more information than one actually has in many
practical applications and more than given in our simulation design. This kind of additional
information is neither required when the logistic regression nor when the Rasch trees are used
for DIF detection.

Secondly, the logistic regression allows to simultaneously test for uniform and non-uniform DIF
(Finch and French, 2007) and can, thus, easily be extended to allow for a direct comparison with
the Rasch trees that also allow to test for uniform and non-uniform DIF simultaneously without
specifying the type of DIF prior to data analysis.

Thirdly, similar to the Rasch trees, logistic regression allows to include more than one group
variable to test for DIF. In our simulation design, this property is highlighted by including a
noise variable to see whether DIF related to that variable is falsely detected. Moreover, logis-
tic regression can also be used for multiple group comparisons (Magis et al., 2011) that are,
however, not considered in this chapter.

As a result of these arguments, Rasch trees will be compared with logistic regression in this
chapter to evaluate their performance in detecting non-uniform DIF. One drawback in this de-
cision is that logistic regression is designed for the assessment of DIF in one item only and is
thus not directly suited to detect non-uniform DIF in more than one item simultaneously (Li and
Stout, 1996). Therefore, the method first has to be extended to allow for a direct comparison
with the Rasch trees. Moreover, these extensions can also be of interest for a variety of applica-
tions as a global model test particular sensitive to non-uniform DIF. We present two extensions
that allow a global assessment of DIF: a multiple comparison procedure based on a correction
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of the p-values of several item-wise logistic regressions and a model comparison procedure for
the global null hypothesis of no DIF in any item.

In the following, the logistic regression and the Rasch tree approach are reviewed and the as-
sessment of non-uniform DIF will be illustrated. Then, the two extensions of logistic regression
are introduced in order to allow a global assessment of (uniform and non-uniform) DIF.

4.2.1 Logistic regression

Swaminathan and Rogers (1990) proposed the usage of the logistic regression to detect uniform
or non-uniform DIF in one item.
The model formula specifies the probability of solving one specific item j

P(u j = 1|x) =
exp (η j)

1 + exp (η j)

through the linear predictor η j. The authors suggest the following form:

η j = τ j0 + τ j1xθ + τ j2xgroup + τ j3xgroup,θ.

The linear predictor thus consists of an intercept, the ability variable xθ, the group membership
variable xgroup, and their interaction xgroup,θ (an abbreviation for xgroup, · xθ). The sum score is
commonly used as the continuous ability measure xθ (Finch and French, 2007).
The simultaneous null hypothesis for uniform and non-uniform DIF can be written as a linear
hypothesis of the form H0 : Cτ = 0, more precisely,

H0 : Cτ =

 0 0 1 0

0 0 0 1





τ j0

τ j1

τ j2

τ j3


=

 τ j2

τ j3

 =

 0

0



or using the notation of Magis et al. (2011) where 0n×m represents a n-by-m matrix containing
zeros and In the n-by-n identity matrix consisting of zeros except for the diagonal one entries

H0 : Cτ =

(
02×2 I2

)
τ =

 τ j2

τ j3

 =

 0

0

 .
The alternative hypothesis H1 corresponds to Cτ , 0 and indicates DIF. Note that the effect τ j1

for the sum score variable is not included in the hypothesis since it is included in the model only
to condition on ability. The authors suggested to use a Wald test for testing the hypothesis for
τ j2 and τ j3. Whether uniform DIF or non-uniform DIF is present cannot be inferred from the
simultaneous significance test itself. Post-hoc tests represent one alternative, which is used in
this chapter, to decide which type of DIF is present. A significant effect of τ j2 alone corresponds
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to uniform DIF since τ j2 measures the effect of the group membership on the probability of
solving the item conditioned on ability. A significant effect τ j3 (independent of the effect τ j2)
captures the interaction of the ability and the group membership and thus corresponds to non-
uniform DIF. Other alternatives, e.g. to explore the type of DIF graphically or by comparing R2

values (Gelin and Zumbo, 2003; Zumbo, 1999), are not discussed here.

4.2.2 Rasch trees

Rasch trees were initially designed for the detection of uniform DIF in the Rasch model. By
following the recursive partitioning algorithm (see again Section 3.4 and for technical details cf.
Strobl et al. 2013), Rasch trees are able to detect groups of subjects – defined by (combinations
of) covariates – that display DIF. Rasch trees determine the groups displaying (non-uniform)
DIF by searching over all available covariates whether instable item difficulty parameters are
found (for a general introduction of recursive partitioning, see Strobl et al., 2009).

As an exemplary illustration for uniform DIF detection, we show a Rasch tree based on simu-
lated data. In the example, a test consisting of 10 items includes one uniform DIF-item (item
3) that differs in its difficulty parameter between the reference group and the equally able focal
group by ∆DIF = β3,foc − β3,ref = 0.6 and has been manually highlighted in the following figures
for clarity. In our example, the focal group consists of female test-takers up to the age of 60.
All remaining items follow the Rasch model with the parameters described in Section 4.3.
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Figure 9 – Rasch tree for uniform DIF based on simulated data.

The fact that the tree splits at all means that DIF is present in the test and one joint Rasch model
for the entire sample is rejected. As can be seen from Figure 9, the Rasch tree can identify the
correct combination of variables to discriminate between groups of subjects with different item
parameters in the case of uniform DIF. Furthermore, a noise variable was handed over to the
method which was correctly not selected for splitting. Note that the cutpoint in the continuous
variable age was not specified but detected by the algorithm in a data driven way.
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For the logistic regression and from the definition of non-uniform DIF, we have seen that non-
uniform DIF can be modeled as an interaction between a grouping variable and an ability vari-
able. Since recursive partitioning is particularly suited for detecting interactions (Strobl et al.,
2009), the Rasch tree approach can be extended in a straightforward way for detecting non-
uniform DIF by handing over an ability variable in addition to the covariates. Hence, Rasch
trees are able to detect both types of DIF, uniform and non-uniform DIF. Here, we use again the
sum score as a continuous measure of ability, as is often done in practice (Finch and French,
2007).

As an exemplary illustration for non-uniform DIF, we again show a Rasch tree based on simu-
lated data similar to the previous example, but now one non-uniform DIF-item (item 3) differs
in its discrimination parameter between the reference group (αref = 1) and the focal group
(αfoc = 0.4). Here, the focal group consists of test-takers over the age of 60.
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Figure 10 – Rasch tree for non-uniform based on simulated data.

The sum score variable, the age variable and several other potential grouping variables are
handed over to the algorithm. The resulting Rasch tree in Figure 10 can, again, be interpreted
straightforwardly. The fact that there is more than one node, means that DIF is present in the
test.

As can be seen from the graphical representation of the end nodes, the third estimated item
difficulty varies between the groups. The fact that both the variable age and the ability measure
were used for determining the subsamples displaying different item parameters means that it is
an interaction of the two that determines the item parameters – which is exactly the definition
of non-uniform DIF. The two splits in the ability measure are a means of the recursive partition-
ing algorithm to approximate the underlying continuous change in ability by means of several
piecewise constant parts (cf. Strobl et al., 2009, for details).
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While in generalized linear models the information from different predictor variables is com-
bined linearly, here the range of possible combinations includes all rectangular partitions that
can be derived by means of recursive splitting – including multiple splits in the same variable
as pointed out by Strobl (2013). In particular, this includes nonlinear and even non-monotone
association rules (such as a u-shaped association, where for example very young and very old
persons are more likely to show certain measurement properties different than those of middle
ages, or even more complex shapes). The advantage of Rasch trees is that the functional form
need not be known or specified in advance, but is automatically detected by the algorithm in a
data driven way.

However, the rectangular splits can only give a rough approximation of any smooth function.
So if, for example, the relationship was truly linear, a tree-based method would not give a very
good approximation of this function (it could only approximate it with many rectangular steps),
whereas e.g. a linear model would be able to describe the linear relationship perfectly well. On
the other hand, if the true relationship was, say, quadratic, one would have to explicitly include
the quadratic term in the model – and if this is not done, the linear model will fail to detect the
association while a recursive partitioning algorithm can at least approximate it, as illustrated in
Figure 11.
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Figure 11 – Illustration of the approximation of a smooth quadratic function by a
tree-based approach and by regression.

What follows from the example and what is important to note here, is that – in case of non-
uniform DIF – the resulting tree can display various patterns that approximate non-uniform
DIF as illustrated in Figure 12.
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Figure 12 – Illustration of various Rasch trees in the case of non-uniform DIF.

Even though the pattern obtained in the resulting tree structure may appear complex, the in-
terpretation is straightforward; if both types of variables – one or more group membership



4.2 Methods 57

variables and the ability variable – are selected for splitting, the test displays non-uniform DIF.

In contrast to existing methods such as the logistic regression approach discussed in Sec-
tion 4.2.1, Rasch trees detect groups that are not pre-defined, but empirically determined by
the method itself. In particular, the interaction effects do not have to be specified in advance
as would be the case for the logistic regression. Even though Rasch trees exhaustively search
for subgroups displaying different item parameters over all available covariates and possible
cutpoints, the type one error rate is well-controlled and the computational effort is reasonable
(for details, see again Strobl et al., 2013).

Since Rasch trees rely on tests for the instability of any item difficulty parameters, they may
on one hand lack statistical power compared to methods that capture non-uniform DIF in one
single parameter (as is done e.g. in the logistic regression). On the other hand, Rasch trees are
far more flexible so that a variety of different non-standard patterns of non-uniform DIF can be
detected.

The two most crucial differences between Rasch trees and classical approaches like logistic
regression are now addressed. First, while other procedures that test for uniform and non-
uniform DIF simultaneously, such as the logistic regression, require post-hoc tests that test
the individual model coefficients separately to identify the type of DIF after the decision of
whether any type of DIF is present (see again Section 4.2.1), Rasch trees provide both decisions
simultaneously: If only group membership variables are selected for splitting, it means that
only uniform DIF is detected. If both types of variables, the sum score and group membership
variables are selected for splitting, it means that non-uniform DIF is detected.

Second, the groups are found automatically from (combinations of) all available variables and
not only those main effects and interactions that are explicitly included e.g. in the logistic re-
gression model formula (cf. Section 4.2.1) are considered.

4.2.3 Extensions of the logistic regression

The aim in this chapter is to test whether any uniform or non-uniform DIF is present simultane-
ously for all k items. Since the logistic regression in the form suggested by Swaminathan and
Rogers (1990) and presented in Section 4.2.1 is not able to test more than one item simultane-
ously (Li and Stout, 1996), the method is extended in this section. Since there is not one unique
way of constructing a global DIF test from the logistic regression approach, here we describe
two possible extensions and include both in our simulation study.

Item-wise logistic regression (i-logit)

The first extension of the logistic regression is based on item-wise logistic regressions and thus
called i-logit method in order to avoid confusion. The linear predictor for each item j is again
specified as

η j = τ j0 + τ j1xθ + τ j2xgroup + τ j3xgroup,θ .
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The item-wise logistic regressions are used to test for DIF in each item separately as described
in Section 4.2.1 and can, then, be combined by using a correction of the p-values for the multiple
testing problem.

For each item, one logistic regression is computed and the p-values p j of the resulting Wald
tests (that are testing two coefficients simultaneously and, thus, follow a χ2 distribution with
2 degrees of freedom) are corrected for the multiple testing problem by using the Benjamini-
Hochberg (BH) correction (Benjamini and Hochberg, 1995) that has previously been applied in
DIF testing situations (Thissen et al., 2002; Woods, 2009; Setodji et al., 2011; Kim and Oshima,
2013; Raykov et al., 2013). By focusing on the control of the false discovery rate, this procedure
allows for higher hit rates than procedures designed to control the familywise error rate such as
the Bonferroni correction (Benjamini and Hochberg, 1995; Williams et al., 1999).

The resulting procedure tests whether DIF is present in at least one item. However, like for the
item-wise version of Swaminathan and Rogers (1990), it is still to be decided which type of
DIF – uniform or non-uniform – is present. Thus, post-hoc tests are needed to check whether
the items display uniform or non-uniform DIF.

Every item that displayed statistically significant DIF is included in the post-hoc tests for the
i-logit method. The significance tests of the regression coefficients are grouped by the corre-
sponding covariate (the group variable xgroup and the interaction xgroup,θ). Then, the p-values are
again corrected separately for the group and the interaction effects. If only the coefficients of the
group variable are significant (and all other post-hoc tests are not significant), uniform DIF is
reported. If the interaction is significant (regardless of the main effect for the group membership
variable), non-uniform DIF is reported.

Vector logistic regression (v-logit)

The i-logit method uses one logistic regression per item and adjusts the p-values for the multiple
testing problem. However, the power of the adjusted tests will decrease due to the stricter sig-
nificance level. Thus, in the case of several items displaying a small DIF effect, this procedure
might fail to detect the existing DIF (Shealy and Stout, 1993a).

Therefore, we present another straightforward generalization to test for uniform or non-uniform
DIF in one or more items simultaneously. Here we illustrate a global test for all items, but our
approach could also be used for investigating a pre-defined subset of items simultaneously.

Analogously to the modeling approach of Swaminathan and Rogers (1990), we adopt the vector
logistic regression (abbreviated v-logit) from the class of vector generalized linear models that
are also termed multivariate generalized linear models (Yee and Wild, 1996; Fahrmeir and Tutz,
2001). For each of the item responses u j ∈ (u1, u2, · · · , uk) the probability of solving item j is
again described through a linear predictor:

P(u j = 1|x) =
exp (η j)

1 + exp (η j)
.
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In the so called unrestricted model the linear predictor

η j = τ j0 + τ j1xθ + τ j2xgroup + τ j3xgroup,θ

again includes the intercept, the ability measure (here again the sum score), the group indicator
and the interaction term. The response variables are assumed to be conditionally independent
given the covariates (Yee, 2010b), similar to the local stochastic independence assumption of the
Rasch model. A joint model for the response vector including all items is fitted. The estimation
can be carried out using Maximum Likelihood (for details on the estimation see Yee and Wild,
1996; Yee and Hastie, 2003).

In order to construct a global DIF test statistic, we additionally estimate the restricted model
where the coefficients that correspond to the potential DIF effects (all τ j2’s and τ j3’s) are set to
zero

η j = τ j0 + τ j1xθ .

This model corresponds to the null hypothesis of no DIF using again the notation of Magis et al.
(2011)

H0 : Cτ =



02×2 I2 02×2 02×2 02×2 02×2

02×2 02×2 02×2 I2 · · · 02×2 02×2

...
...

02×2 02×2 02×2 02×2 · · · 02×2 I2





τ10

τ11

τ12

τ13

...

τk0

τk1

τk2

τk3



=



τ12

τ13

...

τk2

τk3


=



0

0
...

0

0


.

Both models are nested and, therefore, the likelihood ratio (LR) test can be used to compare the
likelihoods of both models. The LR test employs the test statistic

−2
(
log-likelihoodrestricted − log-likelihoodunrestricted

)
that – under the null hypothesis – follows a χ2-distribution with the degrees of freedom equal
to the difference in the number of model parameters (e.g. if all k items are tested for DIF, the
degrees of freedom are equal to 2 · k). If the test is significant, the null hypothesis of no DIF is
rejected. Again, this first result provides no information about whether uniform or non-uniform
DIF is present and, thus, post-hoc tests must be carried out.

Since – in contrast to the i-logit method – no information about which items display DIF is yet
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available, all items need to be included in the classification of the type of DIF. Thus, for each
variable of interest, a BH-corrected simultaneous Wald test is carried out at the 5% significance
level to check whether each variable has an effect. The type of DIF is classified in the same way
as for the i-logit method described above.

4.3 Simulation study

A simulation study is conducted in the free R system for statistical computing (R Development
Core Team, 2011).

• i-logit method: We implemented the i-logit method using the R base system and the add-
on R-package aod by Lesnoff and Lancelot (2012).

• v-logit method: We implemented the v-logit method using the add-on R-package VGAM
by Yee (2010a,b) that provides the estimation of vector generalized linear models.

• Rasch trees: The implementation was based on the add-on R-package psychotree by
Zeileis et al. (2011) that provides a freely available implementation of the Rasch trees.

In the simulation study, two questions are addressed. In the first part, the focus is on evaluating
the ability of the Rasch trees, the i-logit, and the v-logit method to detect uniform and non-
uniform DIF. Therefore, the methods are compared in several conditions including no DIF,
uniform DIF and non-uniform DIF. Parts of the simulation design were inspired by the settings
used by Narayanan and Swaminathan (1996), Li and Stout (1996), and Finch and French (2007).
Each setting is replicated 1000 times to ensure reliable results. The results will show that Rasch
trees have a lower power for small sample sizes when non-uniform DIF is simulated using
different discrimination parameters.

In the second part of the simulation study, the focus is on illustrating that there are still situations
where Rasch trees profit from their ability to automatically detect non-standard groups even for
non-uniform DIF.

Furthermore, a noise variable is handed over to all methods to allow for a comparison of the
logistic regression methods and the Rasch trees in a situation where distracting information is
present. To test whether the logistic regression methods erroneously show a significant effect of
the noise variable, the model formula for each item j in both logit methods also includes the ad-
ditional noise variable xnoise (only the main effect is included to avoid a systematic disadvantage
for the i-logit or the v-logit method in the simulation study). Thus, the linear predictor fitted in
the simulation study is:

η j = τ j0 + τ j1xθ + τ j2xgroup + τ j3xgroup,θ + τ j4xnoise .

The Wald tests for the i-logit method now include also the coefficient τ j4 and, thus, follow
a χ2 distribution with 3 degrees of freedom. The resulting p-values are corrected using the
BH-correction and the post-hoc tests including the items displaying DIF are again corrected
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separately for the group, the interaction and the noise effects. If only the coefficients of the
group variable are significant (and all other post-hoc tests are not significant), uniform DIF is
reported. If the interaction is significant (regardless of the result for the group membership
variable but with no significant result for the noise variable), non-uniform DIF is reported.
Accordingly, the LR test statistic for the v-logit method also includes the effects for the noise
variable and, hence, follows a χ2 distribution with 3 · k degrees of freedom. Post-hoc tests are
carried out and are interpreted in the same way as for the i-logit method.

4.3.1 Manipulated variables

The manipulated variables in the first part of our simulation study are the ability distribution,
the sample size, the DIF type and the DIF proportion. These manipulated variables are fully
crossed in the first part of the simulation under the alternative hypothesis where DIF is present
(see Section 4.3.2).

• Ability distribution

The abilities of the focal group are generated from a standard normal distribution. In
relation to the focal group, the reference group is either equally able, θref ∼ N(0, 1), or
more able, θref ∼ N(0.5, 1).

• Sample size

The sample sizes from the reference and the focal group (nref, nfoc) are varied
(nref, nfoc) ∈ {(500, 500), (1000, 500), (1000, 1000), (1500, 1000), . . ., (2500, 2500)}. Thus,
both equal and different group sizes are considered.

• DIF type

The DIF type is varied in four different main conditions that will be explained in more
detail in the next section.

• DIF proportion

In addition to the null hypothesis, where no DIF is present, we regard different situations
where either one or three out of ten items display DIF. This corresponds to DIF propor-
tions of 10% or 30%, that were also found in empirical studies investigating non-uniform
DIF: Maller (2001) examined the Wechsler Intelligence Scale for Children (third edition)
and found e.g. 2 out of 21 studied items displaying non-uniform DIF in the Information
subtest and 2 out of 20 items in the Vocabulary subtest. Pae (2004) found 3 out of 10
studied items to display non-uniform DIF in a Listening Comprehension subtest and 9
out of 31 studied items in a Reading Comprehension subtest of the English subtest of the
1998 Korean National Entrance Exam for Colleges and Universities.

In the second part of our simulation study, we focus on one exemplary setting with (nref, nfoc) =

(1500, 1500) where no ability differences are present to save space. The manipulated variables
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in the second part of the simulation study are the DIF proportion (defined similar to the first
part) and the composition of the focal group.

• Composition of the focal group

Strobl et al. (2013) have shown that a strength of Rasch trees is their ability to detect non-
standard reference and focal groups. To illustrate this, in the second part of the simulation
study the composition of the focal group is defined by either a binary group membership
variable, an interaction of two binary group membership variables or by values of a nu-
meric covariate. In the latter case, the groups form a u-shaped DIF pattern that reflects a
situation where for example the middle aged subjects differ in their measurement proper-
ties from young and old subjects (cf. Strobl et al., 2013).

4.3.2 Data generating processes

Part I of the simulation study

In order to evaluate the ability of the Rasch trees, the i-logit, and the v-logit method to detect
uniform and non-uniform DIF, four main conditions are considered that will be described in the
following.

The first main condition of no DIF reflects the null hypothesis for every method. All item
difficulty parameters and all item discrimination parameters are equal in reference and focal
group and over the ability range. The difficulty parameters are set to β = (0.55, -0.29, 0.55,
0.30, -1.05, -1.07, -0.85, -0.36, -0.34, -0.37) and were selected from the parameter values used
in the study of Finch and French (2007) in a way such that the mean test difficulty is almost
identical to the mean test difficulty used by Finch and French (2007) and all discrimination
parameters are set to 1. In the condition of no DIF, the ICCs are identical in both groups as
displayed in Figure 13 (top-left). Thus, the Rasch model holds under the null hypothesis.

The remaining conditions reflect alternative hypotheses where DIF is present. In this case, DIF
is simulated in one (namely item 2) or in three (namely item 2, 3, and 4) out of ten items. In the
case of the uniform DIF condition, either one item parameter (10%) or three item parameters
(30%) are more difficult for the focal group over the entire range of the latent variable as shown
in Figure 13 (top-right) that represents the data generating process for one uniform DIF-item.

The difference in the item parameters between the focal group and reference group varies ac-
cording to the proportion of DIF-items. If 10% DIF-items are present, the difference in the
item parameters is set to ∆DIF = βfoc − βref = 0.6, whereas with 30% DIF-items the difference
is reduced to ∆DIF = 0.4 to mimic a situation where a larger number of smaller DIF effects is
present.

Non-uniform DIF is implemented in two different ways: the jump condition and the discrim-
ination condition. The latter condition reflects the typically investigated condition (see, e.g.,
Swaminathan and Rogers, 1990; Finch and French, 2007) where non-uniform DIF is simulated
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by means of varying discrimination parameters (see the next paragraph). However, the defi-
nition of non-uniform DIF also includes more general shapes, such as the one in Figure 13,
bottom-left, where the focal group consists of only of those group members that have a true
ability of −0.5 or higher.5 The DIF-item parameters of this group are, again, assigned the same
values as in the uniform condition and, thus, the focal group has a disadvantage in this condition.
Due to the shape of the ICCs for the DIF-items, this condition is termed jump.6
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Figure 13 – Four main conditions of no DIF, uniform DIF, non-uniform DIF (interaction),
and non-uniform DIF (discrimination).

In the fourth condition, the discrimination condition, non-uniform DIF is implemented by dif-
5The sample sizes always correspond to the members of the focal group. The ability distribution does not cor-

respond to the focal group in the jump condition. In this condition, the abilities are drawn from the ability
distribution θ ∼ N(0, 1) until the sample size nfoc of the group members with θfoc > −0.5 is reached. The
values lower than −0.5 are used for the reference group. The remaining observations that are required for the
reference group to reach nref are then drawn from either θref ∼ N(0, 1) or θref ∼ N(0.5, 1), depending on the
setting.

6Note that, in this setting, the sample sizes correspond to the reference and focal group that are no longer directly
defined by the group membership variable alone but by the combination of group members that have a true
ability of −0.5 or higher.
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ferent discrimination parameters in the reference and focal group. The DIF-items display a
lower discrimination for the focal group, e.g. αfoc = 0.4 than for the reference group αref = 1
when one item has DIF. Then, in case of the 10% DIF-items, the difference in the discrimination
parameters as simulated is δDIF = αfoc − αref = −0.6, whereas in the case of 30% DIF-items, the
difference is reduced to δDIF = −0.35 where again αref = 1 holds. Thus, in lower regions of the
latent continuum, the focal group has an advantage, whereas the reference group has a higher
probability of solving the item given the latent trait in upper regions of the latent continuum (cf.
Figure 13, bottom-right, that displays the condition of one discrimination DIF-item).

The responses in the reference or focal group were simulated by means of a Rasch model
(Rasch, 1960) when the discrimination parameters are set to 1, which is the case in the no
DIF, the uniform DIF and the non-uniform jump condition. The 2pl model (Birnbaum, 1968)
was used as the underlying model in the discrimination condition. The responses are generated
in two steps. The probability of person i solving item j is computed by placing the item dis-
crimination parameters α j, the item difficulty parameters β j, and the person parameters θi in the
2pl model formula 16 that contains the Rasch model as a special case. The binary responses are
then drawn from a binomial distribution with the resulting probabilities.

P (Ui j = 1 | θi, α j, β j) =
exp{α j(θi − β j)}

1 + exp{α j(θi − β j)}
(16)

Part II of the simulation study
The second part addressing whether the Rasch trees can detect groups that display non-uniform
DIF, is evaluated only for the discrimination condition in Section 4.4.6.

4.3.3 Outcome variables

The performance of the methods for DIF detection and also the ability to detect the DIF groups
are evaluated by means of two main outcome variables.

• DIF detection rate

The first outcome variable, the DIF detection rate, describes the proportion of replications
where DIF is detected.

Under the no DIF condition, it reflects the false alarm or type one error rate. Under
the remaining conditions (the uniform, the jump, and the discrimination condition), this
outcome variable corresponds to the hit rate or power.

• Classification rate

Over all replications, the classification rate indicates the proportion of correct classifica-
tions of the type of DIF. When the classification rate is lower than the detection rate, it
means that the correct type of DIF is not found.
In the condition of no DIF, the classification is correct if no DIF is reported. Hence, the
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classification rate can easily be calculated as one minus the false alarm rate and is not
displayed here.

In the condition of uniform DIF, the classification rate represents the proportion of repli-
cations where uniform DIF is detected correctly. For the Rasch trees, the classification
is correct if only the group membership variable – but not the sum score or the noise
variable – is selected for splitting. For the i-logit or the v-logit method, the classification
is correct if DIF is detected and the group membership variable is the only variable that
obtains a significant post-hoc test result.

In the two non-uniform DIF settings, the jump and the discrimination condition, the clas-
sification of the type of DIF is correct if the variables that correspond to non-uniform
DIF but not the noise variable indicate DIF. When the Rasch trees are investigated, both
variables, the group membership and the sum score, have to occur in at least one split but
the noise variable is not allowed to occur. For both extensions of the logistic regression,
the classification is correct if DIF is detected and the interaction term shows a significant
post-hoc test result (independent of the result for the group membership variable); at the
same time the noise variable is not allowed to display a significant post-hoc test for the
correct classification. In addition to the classification and the detection rate, information
of the splitting variables and the post-hoc test results is stored for later analysis.

4.4 Results

In the following section, the results of the simulation study are presented. First, the results in the
four main conditions including the no DIF, the uniform and both non-uniform DIF conditions
(part one of the simulation study) are presented with regard to the DIF detection rate and the
classification rate. Second, the selection of the splitting variables for the Rasch trees and the
results of the post-hoc tests for the i-logit and v-logit method will be discussed in more detail.
Finally, in Section 4.4.6 the ability of the Rasch trees to detect groups displaying non-uniform
DIF is addressed (part two of the simulation study).

4.4.1 No DIF

In the no DIF condition only the false alarm rate was calculated. As can be seen in Figure 14
(left), all methods yielded a well-controlled false alarm rate when the reference and the focal
group had the same mean abilities.

In the presence of ability differences, the Rasch trees again largely held the alpha level while
inflated false alarm rates occurred for the i-logit as well as for the v-logit method (see Figure 14,
right). Thus, these methods cannot fairly be compared (Li and Stout, 1996) with the Rasch trees.
Similar findings occurred for the item-wise logistic regression (Narayanan and Swaminathan
1996, for an overview of related problems see DeMars 2010 and the references therein). The
maximum of the observed false alarm rates was 0.07 for the Rasch trees, whereas for the logistic
regression methods they were notably inflated to 0.11 for the i-logit, and 0.14 for the v-logit
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method. Such inflated false alarm rates no longer allow a correct statistical inference at the
prespecified significance level, jeopardize the correct classification of DIF- and DIF-free items
and “can result in the inefficient use of testing resources, and [...] may interfere with the study
of the underlying causes of DIF” (Jodoin and Gierl, 2001, p. 329).
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Figure 14 – False alarm rates under the null hypothesis of no DIF.

4.4.2 Uniform DIF

In case of the uniform DIF condition, the detection rate in Figure 15 (left column) contains the
proportion of replications where DIF was correctly detected and the classification rate (right
column) indicates whether the correct type of DIF was found.

When the simulated data sets contained 10% uniform DIF-items, all methods showed a rapidly
rising hit rate that converged against one in the simulated range of sample sizes (see Figure 15,
row 1 left). The highest hit rate occurred for the i-logit method followed by the Rasch trees. In
case of 30% uniform DIF-items (see Figure 15, row 2 left), the Rasch trees yielded the highest
hit rate followed by the v-logit method. This reflects the fact discussed in Section 4.2.1 that the
multiple testing i-logit procedure is likely to miss several smaller DIF effects. There was no
visible difference between groups with equal abilities (see Figure 15, top-half left) and different
abilities (see Figure 15, bottom-half left).

The classification rates are depicted in Figure 15 (right column). As opposed to the hit rates,
the classification rates of the type of DIF were clearly lower for the extensions of the logistic
regression. The best results occurred for the Rasch trees independent of the presence of ability
differences or the proportion of DIF-items. Both extensions of the logistic regression led to
notably lower classification rates.
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Figure 15 – Detection and classification rates under the uniform DIF condition.
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In the setting of 10% DIF-items and equal abilities (see Figure 15, row 1 right), the i-logit
method reached a maximum observed rate of 0.74 compared to 0.52 for the v-logit method and
0.93 for the Rasch trees. In all remaining settings of the uniform DIF condition, the difference
between the logit methods was smaller. Generally, in conditions with different abilities (see
Figure 15, bottom-half right), both extensions of the logistic regression performed poor with
classification rates of the DIF type not exceeding 0.50 as opposed to the Rasch trees that reached
true classification rates about 0.90 when the group size was 1000 and still held the alpha level
(see again Figure 14, right).

4.4.3 Non-uniform DIF: Jump condition

The non-uniform jump condition is the first condition where non-uniform DIF was present and
the focal group consisted of group members that had a true ability value of −0.5 or higher.

We first investigate the hit rates when no ability differences were present (see Figure 16, top-half
left), since all methods held the significance level under the null hypothesis (see Section 4.4.1)
and can, thus, be compared in a fair way. The hit rates varied over the manipulated variables.
In the setting of 10% DIF-items and equal abilities (see Figure 16, row 1 left), the hit rate of
the i-logit method outperformed the hit rate of the Rasch trees and the v-logit method in regions
of medium sample sizes. In case of 30% DIF-items and equal abilities (see Figure 16, row 2
left), the multiple testing i-logit procedure again displayed a lower hit rate and the Rasch trees
achieved the highest hit rate.

When ability differences were present (see Figure 16, bottom-half), again the i-logit method
reached the highest hit rate for 10% DIF and the v-logit method displayed the highest hit rate
for 30% DIF. Note that, in the case of different ability distributions, both logit methods yielded
inflated false alarm rates (see again Figure 14, right) and can, thus, not fairly be compared (Li
and Stout, 1996) with the Rasch trees.7 When ability differences were present and the sample
size was large, the Rasch trees, the i-logit and the v-logit method led to similar hit rates, but the
Rasch trees held the alpha level and should, thus, be preferred in this case.

Figure 16 (right column) shows the classification rate for the non-uniform DIF jump condition.
If no ability differences were present, the i-logit method had the highest classification rate when
the sample size was small (see Figure 16, top-half right). When the sample size was medium
or large, the Rasch trees led to the highest classification rate in the majority of the simulated
settings.

In case of unequal abilities (see Figure 16, bottom-half right), the i-logit method reached the
highest classification rate in the majority of the investigated settings, but remember again the
logit extensions displayed an inflated false alarm rate when ability differences were present and
cannot fairly be compared with the Rasch trees.

7Note, however, that the underlying data generating process here is different to the null hypothesis presented in
Figure 14 (see again Section 4.3.2). Under the corresponding null hypothesis, the false alarm rates of the logit
methods were slightly lower but still inflated (results not shown). Thus, our argument that the methods cannot
be compared in a fair way still applies here.
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Figure 16 – Detection and classification rates under non-uniform DIF jump condition.
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4.4.4 Non-uniform DIF: Discrimination condition

The non-uniform DIF discrimination condition reflects the situation where the DIF-items were
assigned different discrimination parameters and the focal group consisted of members of a
binary variable. As can be seen from Figure 17 (left column), the Rasch trees displayed lower
hit rates than the extensions of the logistic regression, but also converged to one when the
sample size was large enough. When 10% DIF-items were present (Figure 17, row 1 left and
row 3 left), the i-logit method outperformed again the other methods. On the other hand, when
30% DIF-items were present (Figure 17, row 2 left and row 4 left), the v-logit method reached
higher hit rates.

If ability differences were present (Figure 17, bottom-half left), the advantage of the extensions
of the logistic regression seems larger, but again remember in that case both logit methods
yielded inflated false alarm rates (see again Figure 14, right) and cannot fairly be compared
with the Rasch trees.

One additional finding here is that the Rasch trees displayed lower hit rates when unequal sam-
ple sizes were present (the hit rates in Figure 17, left column, are zig-zagged rather than mono-
tonically increasing), even though the absolute sample sizes increased. We will focus on the
selection of the splitting variables for the Rasch trees to explain these findings in Section 4.4.5.

In case of the discrimination condition, the classification rates in Figure 17 (right column) be-
haved very similar to the hit rates (left column) but slightly lower. Here, again, the i-logit
method was superior when only 10% DIF-items were present (Figure 17, row 1 and row 3). In
case of 30% DIF-items (Figure 17, row 2 and row 4), the v-logit procedure reached the highest
classification rate. The Rasch trees were clearly far behind the other procedures, but in princi-
ple also able to detect the differing discrimination parameters when the sample size was large
enough. The reason for this is that Rasch trees rely on the item difficulty parameters of the
Rasch model only and are, thus, less flexible in this case compared to the logistic methods that
capture non-uniform DIF in one single parameter. The classification rate for the Rasch trees
increased only slightly when the sample sizes increased only in the reference group. Hence, the
selected splitting variables (and also the post-hoc test results) will be addressed in Section 4.4.5
to allow for a better understanding of the simulation results.

4.4.5 On the classification accuracy

In this section, the variables selected for splitting and the results of the post-hoc tests are dis-
cussed in more detail for two exemplary settings. We restrict the detailed analysis to one setting
where the sample size in each group consists of 1500 examinees and one setting of unequal
sample sizes (nref, nfoc) = (2000, 1500) in order to save space.

Table 3 (upper part) contains the information of the classification rate (column ‘true’ typed in
italic) and of the splitting variables or significant post-hoc test results for the setting of 1500
observations in each group.
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Figure 17 – Detection and classification rates under the non-uniform discrimination
condition.
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For the Rasch trees, the potential splitting variables were the noise xnoise, the group membership
xgroup, the sum score variable xθ, and the interaction xgroup,θ meaning that both types of variables,
the group membership variable together with the sum score variable, were selected in one Rasch
tree. The columns in Table 3 refer to the proportion of replications where the respective vari-
ables were selected for splitting. As opposed to the Rasch trees, the extensions of the logistic
regression have no column regarding the main effect of the sum score since the sum score is
used only as a conditioning variable in the logistic regression. Its effect is not tested post-hoc
because it is not relevant for DIF classification suggested by Swaminathan and Rogers (1990).
The columns indicate the proportion of significant post-hoc test results corresponding to the
effects of the noise variable xnoise, the group membership variable xgroup and the interaction of the
sum score and the group membership variable xgroup,θ.

In the condition of no DIF-items, the true classification rate was defined as one minus the false
alarm rate. What is interesting to note here again, is that all methods yielded similar results when
no ability differences were present, but in the case of ability differences, the methods based on
the logistic regression yielded inflated false alarm rates; especially the group membership and
the interaction variable then displayed (erroneously) significant post-hoc tests (see the first two
rows and the columns true, xgroup and xgroup,θ in Table 3).

When differing difficulty parameters were present in the uniform DIF condition, only the group
variable should be used for splitting or obtain a significant post-hoc test result. As can be
seen from Table 3, the Rasch trees almost always selected the group variable for splitting (see
the bold marked column). Note, that the true classification rate was lower since it includes
only those replications where the group variable was the only variable used for splitting. The
remaining variables were rarely selected for splitting. In case of the i-logit method, the rate for
the significant post-hoc tests for the group variable was far higher than the true classification
rate that, again, includes only those replications where the group variable was the only variable
with a significant post-hoc test result.

This can be explained through the high proportion of significant post-hoc tests for the remaining
variables: the noise and the interaction variable. One possible explanation for this finding is that
only those variables that were found to be significant in the global Wald test are included in the
post-hoc tests for the i-logit method. Here, statistical tests were connected in a series that
might deform the distribution of the test statistic as discussed by Leeb and Pötscher (2005) and
Berk et al. (2010). To overcome this problem, the post-hoc tests might be based on new data or
replaced by a descriptive analysis. For the v-logit method, the proportion of significant post-hoc
test results for the group variable was low. The remaining variables obtained high proportions
of erroneously significant results, but slightly lower proportions compared to the i-logit method.
The Rasch trees were superior, since they rarely selected the noise and the sum score variable
for splitting and, thus, led to a higher classification accuracy.

In the non-uniform DIF jump condition, the true classification rate represents the proportion
where non-uniform DIF was detected correctly. For the Rasch trees, both variables, the group
and the sum score, had to occur in at least one split (see the bold marked column) and the noise
variable was not allowed to be used for splitting.
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Rasch trees i-logit v-logit
true xnoise xgroup xθ xgroup,θ true xnoise xgroup xgroup,θ true xnoise xgroup xgroup,θ

(1500, 1500)
no DIF
equal 0% 0.96 0.02 0.02 0.01 0.00 0.96 0.02 0.02 0.02 0.95 0.02 0.01 0.01
unequal 10% 0.96 0.02 0.02 0.01 0.00 0.92 0.03 0.05 0.05 0.90 0.03 0.05 0.04
uniform DIF
equal 10% 0.91 0.06 1.00 0.03 0.03 0.60 0.11 0.73 0.09 0.30 0.06 0.34 0.03
equal 30% 0.94 0.04 1.00 0.02 0.02 0.33 0.10 0.44 0.10 0.24 0.06 0.29 0.03
unequal 10% 0.91 0.05 1.00 0.05 0.05 0.37 0.11 0.52 0.14 0.34 0.06 0.45 0.11
unequal 30% 0.90 0.06 1.00 0.04 0.04 0.16 0.12 0.26 0.13 0.17 0.05 0.21 0.05
jump
equal 10% 0.33 0.06 0.82 0.41 0.36 0.28 0.09 0.07 0.31 0.09 0.06 0.04 0.10
equal 30% 0.27 0.06 0.84 0.34 0.30 0.11 0.11 0.10 0.13 0.10 0.07 0.04 0.11
unequal 10% 0.35 0.05 0.80 0.42 0.39 0.40 0.10 0.10 0.45 0.18 0.06 0.10 0.19
unequal 30% 0.27 0.05 0.82 0.32 0.30 0.29 0.10 0.14 0.33 0.18 0.06 0.07 0.19
discrimination
equal 10% 0.48 0.05 0.52 0.77 0.52 0.90 0.07 0.95 0.97 0.77 0.06 0.71 0.83
equal 30% 0.29 0.03 0.35 0.45 0.30 0.57 0.09 0.64 0.65 0.66 0.06 0.74 0.71
unequal 10% 0.48 0.06 0.53 0.75 0.52 0.90 0.09 0.98 1.00 0.90 0.05 0.83 0.95
unequal 30% 0.27 0.04 0.32 0.53 0.29 0.80 0.10 0.87 0.90 0.86 0.07 0.93 0.93

(2000, 1500)
no DIF
equal 0% 0.94 0.03 0.02 0.01 0.00 0.96 0.02 0.02 0.02 0.95 0.03 0.02 0.01
unequal 10% 0.96 0.01 0.03 0.01 0.00 0.89 0.04 0.07 0.07 0.88 0.03 0.06 0.05
uniform DIF
equal 10% 0.93 0.05 1.00 0.02 0.02 0.66 0.09 0.78 0.08 0.34 0.06 0.39 0.04
equal 30% 0.93 0.05 1.00 0.02 0.02 0.35 0.11 0.47 0.11 0.28 0.06 0.35 0.06
unequal 10% 0.92 0.04 1.00 0.04 0.04 0.44 0.11 0.60 0.17 0.38 0.06 0.52 0.14
unequal 30% 0.92 0.04 1.00 0.05 0.05 0.20 0.11 0.30 0.15 0.20 0.07 0.26 0.08
jump
equal 10% 0.36 0.06 0.94 0.40 0.39 0.37 0.10 0.08 0.41 0.15 0.07 0.04 0.16
equal 30% 0.27 0.07 0.95 0.32 0.31 0.17 0.13 0.11 0.20 0.14 0.06 0.04 0.15
unequal 10% 0.37 0.07 0.92 0.42 0.42 0.56 0.09 0.14 0.61 0.28 0.06 0.14 0.29
unequal 30% 0.30 0.06 0.95 0.33 0.33 0.43 0.11 0.19 0.48 0.30 0.05 0.10 0.32
discrimination
equal 10% 0.51 0.05 0.55 0.72 0.55 0.91 0.08 0.98 0.99 0.86 0.05 0.82 0.91
equal 30% 0.34 0.04 0.43 0.45 0.36 0.63 0.11 0.73 0.73 0.75 0.06 0.81 0.80
unequal 10% 0.49 0.06 0.54 0.68 0.54 0.92 0.08 0.99 1.00 0.91 0.06 0.90 0.98
unequal 30% 0.30 0.04 0.36 0.46 0.32 0.83 0.11 0.94 0.94 0.89 0.07 0.96 0.96

Table 3 – Classification rate, splitting variables and post-hoc test results in all conditions,
equal and unequal ability distributions as well as 0%, 10% or 30% DIF-items
for 1500 observations in each group (upper part) and for 2000 observations in
the reference and 1500 observations in the focal group (lower part).
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The combination of the group and the sum score variable was frequently found in case of equal
abilities compared to the other methods. Generally, the group membership variable is more
often selected for splitting compared to the sum score. The true classification for the i-logit and
v-logit method is a significant post-hoc test for the interaction (regardless of the group variable)
but with no significant result for the noise variable that was, again, often found to be significant
for the i-logit method. Except those setting with unequal abilities (where the methods cannot
be compared in a fair way due to the inflated false alarm rate of the extensions of the logistic
regression), the Rasch trees outperformed the extensions of the logistic regression.

In the non-uniform DIF discrimination condition, the true classification is defined similarly to
the non-uniform DIF jump condition (described above). Interestingly, the Rasch trees here dis-
played a different pattern. While the sum score variable was frequently used for splitting, the
group variable was selected in fewer iterations. This setting was challenging for the Rasch trees
since the item difficulty parameters for both groups were identical and only the discrimination
parameters differed. In contrast to methods that catch non-uniform DIF in one single parame-
ter, Rasch trees rely on the difference of the item difficulty parameters only. Since these item
parameters appear similar for both groups for the Rasch tree, the method needs to first detect
parameter instability with respect to the sum score. Regarding the sum score variable, different
item difficulties should be detected since the different slopes of the ICCs of the DIF-items are
translated to different item difficulties in groups defined by the observed sum score. The highest
difference in the item difficulty parameters should occur in groups defined at the highest or low-
est ability levels and these are the regions where splitting should occur (see, again, the example
in Section 4.2.2). Then, the group variable needs to be selected in the resulting subsamples that
consist of fewer observations and, thus, the power to detect instable item parameters decreases
due to the reduced sample size. Consequently, the selection of both variables was found in a
lower number of iterations than in the post-hoc tests of the i-logit and the v-logit method. Again,
the i-logit method often displayed erroneously significant post-hoc tests for the noise variable.

Table 3 (second half) displays the results for DIF conditions where the reference group consisted
of 2000 examinees and the focal group included 1500 examinees. Here we discuss only the
discrimination condition since the Rasch trees displayed lower hit rates in this condition even if
the total number of observations in the reference group increased.

In the non-uniform DIF discrimination condition, the Rasch trees displayed lower hit rates and
only slightly increasing classification rates when only the sample size of the reference group
increased (see again Figure 17, row 1 to row 4). As can be seen from Table 3 by comparing
the discrimination condition in the upper part to the discrimination condition in the lower part,
the rate of selecting the noise variable was constant in both conditions of the sample size. On
the other hand, the rate of selecting the group variable was slightly higher in case of 2000
observations in the reference group. This was the reason for the slight increase of the true
classification rate.

However, in all settings where the hit rate was zig-zagged in Figure 17 (left column, equal 10%,
unequal 10%, unequal 30%), the rate of selecting the sum score variable was lower when the
sample sizes of reference and focal group were unequal in Table 3 (lower part). This results



4.4 Results 75

in a lower hit rate, since it means that non-uniform DIF was detected less frequently. We
attribute this fact to the following mechanism. To approximate varying slopes by only using
item difficulty parameters, Rasch trees need to select the ability variable for splitting. In case
of equal sample sizes in reference and focal group, the differences between the item parameters
in regions of high or low ability levels (that occur due to the group membership) are easier to
determine compared to situations where the reference group consists of more observations.

The reason for this is that when only the reference group obtains more observations, the differ-
ences in the item difficulty parameters associated with the sum score do not become more clear,
as one might except, but become more indistinct. Different item discrimination parameters are
simulated only for observations of the focal group. Thus, more observations in the reference
group display the same item difficulties associated with the sum score instead of the differences
that only occur together with observations of the focal group. When only the sample size of
the reference group is increased, the differences in the item parameters associated with the sum
score become more indistinct and the power of the underlying test decreases.

4.4.6 On the detection of DIF groups

In this second part of the simulation study, the composition of the focal group is varied. The
focal group is defined either by a binary group membership variable (termed binary dummy),
an interaction of two binary group membership variables (termed binary interaction) or by a
u-shaped pattern in a numeric covariate (termed numeric u-shaped). The i-logit and the v-logit
methods are now implemented in several ways. The “binary logistic” methods obtain only one
dummy variable. In case of the numeric u-shaped pattern the binary variable is defined by
a median split in the numeric covariate. The “saturated logistic” methods obtain all main and
interaction effects that result when two binary covariates and the sum score variable are included
in the model. The “numeric logistic” regression methods obtain the numeric covariate instead
of the binary dummy variable.

Binary group membership

Table 4 contains the results. In case the focal group corresponded to the binary group member-
ship (binary dummy), the logistic regression methods outperformed the Rasch trees by yielding
a higher detection and classification rate as expected from the results presented in Section 4.4.4.

Interaction of two binary group membership variables

In case the focal group corresponded to the interaction of two binary group membership vari-
ables (binary interaction) the results were quite different. The i-logit binary and the v-logit
binary methods were misspecified in this situation and were assigned a classification rate of
zero. The Rasch trees outperformed the binary logistic regression methods by yielding both a
higher detection and a higher classification rate. If, however, both binary group variables were
handed over to the logit methods,8 the saturated i-logit method reached the best results in case

8The classification was then defined correct if the interaction of both groups and the sum score obtained a signif-
icant post-hoc test, but the noise variable did not.
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10% DIF items were present and the saturated v-logit method in case of 30%. Thus, the good
performance of the logistic regression methods strongly depends on the correct knowledge of
the affected DIF groups. Rasch trees may be useful to detect DIF even the discrimination con-
dition when the group composition is unknown. Note however, that the classification rate of the
Rasch trees is really small since the variable selection task is challenging for the Rasch trees in
this situation as discussed in the previous section.

Rasch i-logit v-logit
trees binary saturated numeric binary saturated numeric

(1500, 1500)
binary dummy
equal 10% detection 0.78 0.97 0.84
equal 10% classification 0.47 0.88 0.76
equal 30% detection 0.48 0.66 0.76
equal 30% classification 0.27 0.55 0.63
binary interaction
equal 10% detection 0.75 0.62 0.87 0.45 0.60
equal 10% classification 0.07 0.00 0.44 0.00 0.15
equal 30% detection 0.41 0.24 0.37 0.36 0.48
equal 30% classification 0.03 0.00 0.11 0.00 0.09
numeric u-shape
equal 10% detection 0.79 0.04 0.04 0.06 0.06
equal 10% classification 0.09 0.01 0.01 0.02 0.02
equal 30% detection 0.38 0.05 0.04 0.04 0.05
equal 30% classification 0.05 0.01 0.01 0.00 0.00

Table 4 – Detection and classification rate for different group compositions in case of
10% or 30% DIF-items for 1500 observations in each group.

Numeric u-shaped

The numeric u-shaped condition is challenging for all logistic regression methods due to can-
cellation effects. All versions of the logistic regression methods had much lower detection rates
compared to the Rasch trees. Again, the classification rates were really low, also for the Rasch
trees, but the detection rates showed that the latter were at least able to detect that DIF is present
in the test at all.

4.5 Discussion

To conclude, the results from the simulation study are briefly reviewed together with an outline
of the implications for practical research. In our simulation study, we investigated the appro-
priateness of the Rasch trees in the detection of non-uniform DIF in the entire set of items. We
presented two extensions of the logistic regression by using a correction for the multiple testing
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problem (i-logit) and by applying a global likelihood ratio test (v-logit) to allow for a direct
comparison with the Rasch trees.

In the condition of the null hypothesis (no DIF), the Rasch trees always showed a well-controlled
false alarm rate, while both extensions of the logistic regression displayed inflated false alarm
rates when ability differences were present. Similar findings occurred for the item-wise logistic
regression in the study of Narayanan and Swaminathan (1996). When using the extensions of
the logistic regression in situations where ability differences are present, inflated false alarm
rates are to be expected that jeopardize the results of the DIF analysis as well as the associated
investigation of the causes of DIF (Jodoin and Gierl, 2001).

In case of the uniform DIF condition, where DIF in the difficulty parameters was simulated
between two groups, the performance of the methods depended on the proportion of DIF-items.
In case of 10% DIF-items, the i-logit method displayed the highest hit rate, whereas 30% DIF-
items were most frequently detected by the Rasch trees. Opposed to the hit rate, the classifica-
tion accuracy of the DIF methods was lower. In all situations of the uniform DIF condition, the
Rasch trees reached far higher classification rates.

Non-uniform DIF was first investigated in the non-uniform DIF jump condition where the focal
group consisted of binary group members with θfoc > −0.5 that obtained different item difficulty
parameters. In case of 10% non-uniform DIF-items, the i-logit method displayed the highest
hit rate in regions of medium sample sizes. Otherwise, the Rasch trees again outperformed
the extensions of the logistic regression by yielding a high hit rate and holding the alpha level.
When the sample sizes were in medium or large regions, the Rasch trees also yielded the highest
classification rates.

In the non-uniform DIF discrimination condition, different discrimination parameters were as-
signed to the group members and the extensions of the logistic regression clearly outperformed
the Rasch trees. In case of 10% DIF-items, the i-logit method reached the highest hit and clas-
sification rate; whereas, with 30% DIF-items the v-logit method was superior. Nevertheless,
in case of large sample sizes, the Rasch trees also yielded a high hit and classification rate and
were, thus, in principle able to also detect this type of non-uniform DIF.

In summary, the study showed that Rasch trees provide a flexible approach for the detection
of uniform DIF and non-uniform DIF. In case of differing item difficulty parameters (in the
uniform DIF and non-uniform jump condition), Rasch trees were often found to be superior
while the alpha level was well-controlled. In the case of DIF in the discrimination parame-
ters between two groups (non-uniform discrimination condition), the i-logit and v-logit method
clearly outperformed the Rasch trees by using a single model coefficient.

Additionally, we investigated scenarios, where the true focal group consisted of an interaction
between two binary variables or of the middle range of a numeric covariate. Rasch trees then
displayed a comparable or higher hit rate compared to the (misspecified) binary versions of
the logistic regression methods even though the discrimination condition was regarded. Thus,
Rasch trees may prove useful to detect DIF in non-standard patterns, such as interactions of
more than one grouping variable or u-shaped patterns, that would usually not be explicitly
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specified – and thus missed – in logistic regression DIF analysis. However, one drawback is that
the classification rate may be rather low if DIF occurs only in the discrimination parameters.

For practical research, we recommend to use both methods, the logistic regression methods as
well as the Rasch trees, and to compare the results. Rasch trees allow to assess non-uniform
DIF in a flexible way when the data set is large enough. High sample sizes might often be
found in psychological or educational testing situations, especially in large-scale assessments.
In the case of prior information that the proportion of DIF-items is very small, e.g. one out of
ten items displays DIF, and that no ability differences are present, the multiple comparison i-
logit procedure is expected to reach satisfying results. But, again, these methods need the prior
knowledge of the groups, whereas the Rasch trees automatically search for the DIF groups in
the set of available covariates and are also applicable when the DIF groups are not defined prior
to data analysis.

The simulation results also showed that the post-hoc inspections are important. In various
situations, the true classification rate was far behind the rate of detecting DIF. This highlights
that careful considerations of the type of DIF after the global test for (non-) uniform DIF are
important to correctly assess the type of DIF. If the type of DIF is misclassified by the methods,
wrong steps could be taken or the psychological source of DIF might be missed. Thus, the
development and evaluation of post-hoc classifications of the type of DIF remain important
tasks.

This study was limited to one type of DIF in the data set. In practical testing situations, both
types of DIF can overlap. Therefore, the descriptive analysis of the type of DIF on the item level
is important. Methods that do not rely on the post-hoc tests described here are the graphical
exploration or the comparison of R2 values (Gelin and Zumbo, 2003; Zumbo, 1999). Future
research might compare those methods to the post-hoc Wald tests. Furthermore, the study was
restricted to situations where the different data generating processes relied on the Rasch or the
2pl model. Future research may address further data generating processes such as the 3pl model
or non-parametric ICCs. Moreover, we will try to address the generalization of the Rasch tree
method to the 2pl or Birnbaum model (Birnbaum, 1968), that may prove helpful for the analysis
of non-uniform DIF and the generalization to a 3pl model including a location and a guessing
parameter.
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5 A framework for anchor methods

Summary: In the analysis of differential item functioning (DIF) using item response theory
(IRT), a common metric for the item parameters is necessary to compare item parameters
between groups of test-takers. In the Rasch model, the same restriction is placed on the item
parameters in each group in order to define a common metric for the item parameters. Several
methods have previously been suggested to determine which items should be included in the
restriction. These items are termed the anchor items. This chapter proposes a conceptual
framework for categorizing the anchor methods: The anchor class to describe characteristics
of the anchor methods and the anchor selection strategy to guide how the anchor items are
determined.

Keywords: Rasch model, anchoring, anchor selection, contamination, item response theory
(IRT), differential item functioning (DIF), DIF analysis, item bias

5.1 Introduction

The analysis of differential item functioning (DIF) in item response theory (IRT) research in-
vestigates the violation of the invariant measurement property among subgroups of examinees,
such as male and female test-takers. Invariant item parameters are necessary to assess ability
differences between groups in an objective, fair way. If the invariance assumption is violated,
different item characteristic curves occur in subgroups. In this chapter, we focus on uniform
DIF where one group has a higher probability of solving an item (given the latent trait) over
the entire latent continuum and the group differences in the logit remain constant (Mellenbergh,
1982; Swaminathan and Rogers, 1990).

A variety of testing procedures for DIF on the item-level is available (as was discussed in Sec-
tion 3.3, see, e.g., Lord 1980; Mellenbergh 1982; Holland and Thayer 1988; Thissen et al. 1988;
Swaminathan and Rogers 1990; Shealy and Stout 1993a, for an overview see Millsap and Ever-
son 1993). In the analysis of DIF using IRT, item parameters are to be compared across groups.
Mostly, research focuses on the comparison of two pre-defined groups, the reference and the
focal group. Thus, a common scale for the item parameters of both groups is required to as-
sess meaningful differences in the item parameters. The minimum (necessary but not sufficient)
requirement for the construction of a common scale in the Rasch model is to place the same
restriction on the item parameters in both groups (Glas and Verhelst, 1995). The items included
in the restriction are termed anchor items.

An anchor method determines how many items are used as anchor items and how they are
located. Consistent with the literature, we use the term locate as a synonym for selecting anchor
items. The choice of the anchor items has a high impact on the results of the DIF analysis: If
the anchor includes one or more items with DIF, the anchor is referred to as contaminated. In
this case, the scales may be biased and items that are truly free of DIF may appear to have DIF.
Therefore, the false alarm rate may be seriously inflated – in the worst case all DIF-free items
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seem to display DIF (Wang, 2004) – and the results of the DIF analysis are doubtful, as various
examples demonstrate (see Section 6.2).

In the next section, technical details of the anchor process for the Rasch model are explained
and illustrated by means of an instructive example and the framework of anchor classes, anchor
selection strategies and anchor methods is introduced in detail.

5.2 The anchor process for the Rasch model

In the following, the anchor process is technically described and analyzed for the Rasch model
(see Section 3.1). The item parameter vector is β = (β1, . . . , βk)> ∈ Rk, where k denotes the
number of items in the test. In the following, it is estimated using the conditional maximum
likelihood (CML) estimation due to its unique statistical properties, its widespread application
(Wang, 2004) and the fact that its estimation process does not rely on the person parameters
(Molenaar, 1995a).

5.2.1 Scale indeterminacy

As the origin of the scale in the Rasch model can be arbitrarily chosen (Fischer, 1995) – what
is often referred to as scale indeterminacy – one linear restriction of the form

k∑
`=1

d`β̃` = 0 , (17)

with constants d` holding
∑k
`=1 d` , 0 is placed on the item parameter estimates β̃` (Eggen

and Verhelst, 2006). Thus, in the Rasch model only k − 1 parameters are free to vary and one
parameter is determined by the restriction. Note that equation 17 includes various commonly
used restrictions such as setting one item parameter β̃` = 0 or restricting all item parameters
to sum zero

∑k
`=1 β̃` = 0 (Eggen and Verhelst, 2006). Without loss of generality, we here

estimate the item parameter vector β̃ with the employed restriction β̃1 = 0. The corresponding
covariance matrix V̂ar(β̃) then contains zero entries in the first row and in the first column. In the
following, we discuss different restrictions for which the sum of the estimated item parameters
of a selection of items is set to zero. These restrictions can be obtained by transformation using
the equations

β̂ = Aβ̃ (18)

and V̂ar(β̂) = AV̂ar(β̃)A>, (19)

where A = Ik −
1∑k

`=1 a`
1k · a>, Ik denotes the identity matrix, 1k denotes a vector of one entries

and a is a vector with one entries for those elements a` that are included in the restriction and
zero entries otherwise (e.g., a = (1, 0, 1, 0, 0, . . .)> including item 1 and item 3). Additionally,
the entries of the rank deficient covariance matrix V̂ar(β̂) in the row and in the column of the
item that is first included in the restriction are set to zero.
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While for the estimation itself, the choice of the restriction is arbitrary, for the anchor process a
careful consideration of the linear restriction that is now employed in each group g is necessary.
A necessary but not sufficient requirement in order to build a common scale for the item param-
eters of two groups is that the same restriction is employed in both groups (Glas and Verhelst,
1995). Items in the restriction are termed anchor items and the restriction can be rewritten as

k∑
`=1

a`β̂
g
` =

∑
`∈A

β̂
g
` = 0, (20)

where the set A is termed the set of anchor items or the anchor. The estimated and anchored
item parameters are denoted β̂g. Equation 20 includes various commonly used anchor methods
such as setting one estimated item parameter β̂g

` to zero (β̂g
` = 0, for one ` ∈ {1, 2, . . . , k}) for

the so called constant single-anchor method or restricting all items except the studied item j
to sum to zero in each group (

∑
`, j β̂

g
` = 0) for the so called all-other anchor method. The

item parameters, estimated separately in each group, are transformed to the respective anchor
method by using equation 18, where all items are then shifted on the scale by − 1

|A|

∑
`∈A β̃

g
` . The

covariance matrices are transformed using equation 19.

5.2.2 Item-wise Wald test

As a statistical test for DIF, we will focus on the item-wise Wald test here (see, e.g., Glas and
Verhelst, 1995). For this, the item parameters are estimated separately in each group using
CML estimation. The anchor methods are then employed to obtain a common scale for the item
parameters by using equation 18 and 19.

Lord (1980) had originally suggested the usage of the Wald test in combination with the joint
estimation of item and person parameters, a proceeding that was found to yield inflated false
alarm rates (McLaughlin and Drasgow, 1987; Lim and Drasgow, 1990). To make sure that the
Wald test in combination with the consistent CML estimation of the Rasch model parameters
(e.g., Molenaar, 1995a) is not affected by an inflated false alarm rate, we conducted a prelimi-
nary simulation study (the results are listed in the Appendix of this chapter). In this study, the
Wald test was conducted using either one or four DIF-free items as anchor items. The Wald test
displayed no inflated false alarm rate for any of the settings that were also included in our main
simulation study (see Section 6.4), even if high proportions of DIF-items favored one group and
ability differences were present. It is, thus, an appropriate test to compare the performance of
different anchor methods for the Rasch model. In case other IRT models are regarded, the recent
work of Woods et al. (2013) shows that an improved version of the Wald test, termed Wald-1
(see Paek and Han, 2013, and the references therein), also displays well-controlled false alarm
rates if the anchor items are DIF-free. Since the Wald-1 test also requires anchor items, it can
in principle be combined with the anchor methods discussed in this thesis as well.

The rationale behind the Wald test is that DIF is present if the item difficulties are not equal
across groups. The test statistic T j for the null hypothesis H0 : βref

j = βfoc
j , where βref

j and
βfoc

j denote the item difficulties for reference and focal group for item j and β̂ref
j and β̂foc

j the
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corresponding estimated item parameters using the anchorA j, has the following form:

T j =
β̂ref

j − β̂
foc
j√

V̂ar(β̂ref
j − β̂

foc
j )

=
β̂ref

j − β̂
foc
j√

V̂ar(β̂ref) j, j + V̂ar(β̂foc) j, j

. (21)

Note that, the estimated and anchored item parameters β̂g = β̂g(A j), which can be calculated
using equation 18, depend on the anchor and, hence, so does the test statistic T j = T j(A j). The
anchor set A j may depend on the studied item (as is the case for the all-other method). If the
anchor is constant regardless which item is tested for DIF, it is denotedA in the following.

5.2.3 Illustration of artificial DIF

Now, we illustrate the requirement that the anchor items should be DIF-free by means of an
instructive example. The data set from a general knowledge quiz was conducted by the weekly
German news magazine SPIEGEL in 2009. A thorough discussion and analysis of the original
data set are provided in Trepte and Verbeet (2010) including a global DIF analysis by means
of model-based recursive partitioning by Strobl et al. (2010). From about 700,000 test-takers
that answered each a total of 45 items from different domains, we select a subsample of 9, 442
test-takers (that obtained their A-levels in Germany) and four items from politics (listed below
together with the correct answers) for the illustration of the anchor problem:

. Item 1 Who determines the rules of action in politics according to
the German Constitution? (The Bundeskanzler.)

Item 2 What is the role of the second vote in the elections for the
German Bundestag? (It governs the seating in the German
Bundestag.)

Item 3 How many people were killed by the RAF? (33)

Item 4 Indicate the location of Hessen on the German map.

As an exemplary illustration, let us suppose we want to test for DIF in the first item between
the focal (foc) group of the test-takers that obtained their A-levels in the German federal state
Hessen and the reference (ref) group of all remaining test-takers. Figure 18 displays three
different restrictions: The second item as constant single-anchor, the fourth item as constant
single-anchor and all other items (item 2 to item 4) as anchor. The points represent the esti-
mated item parameters from the reference (light points) and the focal group (dark points). The
rectangles surround the anchor item(s).

In Figure 18 (left), item 2 is used as constant single-anchor and, thus, both estimated item
parameters are set to zero. The negligible difference in the item parameters of item 1, that we are
currently interested in, suggests no DIF in this item. The item-wise Wald test (see equation 21)
for item 1 does not display statistically significant DIF (t = −.968 with the corresponding p-
value of .333). As a result, item 1 is classified as DIF-free. To understand the DIF test results
for item 1 in the next scenarios, it is also important to note that the large difference in item 4



5.2 The anchor process for the Rasch model 83

implies DIF in this item. Since item 4 was the question to indicate the location of Hessen on the
German map, it is plausible that this item 4 is a true DIF-item since it was easier for test-takers
that obtained their A-levels in Hessen.
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Figure 18 – Different restrictions placed on the item parameters that are estimated using
the Rasch model in each group.

In the next scenario in Figure 18 (middle), item 4 (that we found plausible to have true DIF) is
used as a constant single-anchor. Compared to the first scenario, all item parameters are now
shifted upwards by the estimated difficulties of item 4 and artificial differences occur for item 1,
2 and 3. This shows that the anchor items should be DIF-free to avoid the artificial differences,
which are termed artificial DIF by Andrich and Hagquist (2012). The artificial DIF for item 1,
that we are currently interested in, is statistically significant (t = −7.406 with the corresponding
p-value < .001). Hence, item 1 is classified as a DIF-item.

In the last scenario in Figure 18 (right), all other items – except the currently studied item 1
– are used as anchor items. Compared to the second scenario, the scales are shifted apart less
strongly since the scale shift is reduced from the estimated difficulties of the DIF-item 4 to the
average over the estimated difficulties of item 2, 3 and 4 (including the apparently DIF-free
items 2 and 3) as visible by the shorter arrows. However, the statistical test still classifies item
1 as a DIF-item (t = −5.846 with the corresponding p-value < .001). This example illustrates
the major impact of the anchor method on the results of the DIF analysis, since – depending on
the anchor set – three different test statistics result in the DIF tests for item 1.

From a theoretical perspective and from our instructive example, it is obvious that an appropriate
anchor is crucial for the results of the DIF analysis. Previous simulation studies have compared
different selections of anchor methods (an overview over the existing literature will be given in
Section 6.3). Empirical findings also show that, ideally, the anchor items should be DIF-free.
Unfortunately, since prior to DIF analysis it cannot be known which items are DIF-free, we
face a somewhat circular problem, as pointed out by Shih and Wang (2009). If DIF-items are
included in the anchor, this contamination may lead to seriously inflated false alarm rates in DIF
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detection (see, e.g., Wang and Yeh, 2003; Wang, 2004; Wang and Su, 2004; Finch, 2005; Stark
et al., 2006; Woods, 2009) that “can result in the inefficient use of testing resources, and [...]
may interfere with the study of the underlying causes of DIF” (Jodoin and Gierl, 2001, p. 329).
Naturally, the risk of contamination would suggest to use only few items in the restriction (i.e.
a short anchor), but the simulation results also show that the statistical power increases with the
length of a DIF-free anchor (Thissen et al., 1988; Wang and Yeh, 2003; Wang, 2004; Shih and
Wang, 2009; Woods, 2009).

5.3 A conceptual framework for anchor methods

The new conceptual framework distinguishes between the anchor class and the anchor selection
strategy. Firstly, the anchor class describes the pre-specification of the anchor characteristics
(such as a pre-defined anchor length). We review the all-other (used, e.g., by Cohen et al. 1996;
Kim and Cohen 1998), the constant anchor (used, e.g., by Thissen et al. 1988; Wang 2004;
Shih and Wang 2009) and the iterative anchor class (referred to here as iterative backward and
used, e.g., by Drasgow 1987; Candell and Drasgow 1988; Hidalgo-Montesinos and Lopez-Pina
2002). Secondly, the anchor selection strategy determines which items are chosen as anchor
items.

5.3.1 Anchor classes

In our conceptual framework anchor classes describe characteristics of the anchor that answer
the following questions: Is the anchor length pre-defined? If so, how many items are included
in the anchor? Is the anchor determined by the anchor class itself or is an additional anchor
selection strategy necessary? Are iterative steps intended to define the anchor?

The equal-mean and the all-other anchor class

In the equal-mean-difficulty anchor class (see, e.g., Wang, 2004, and the references therein) all
items are restricted to have the same mean difficulty (typically zero) in both groups, whereas in
the all-other anchor class (used, e.g., by Cohen et al. 1996; Kim and Cohen 1998) the sum of
all items – except the item currently tested for DIF – is restricted to be zero and the anchor set
A j = {1, . . . , k} \ j depends on the studied item j = 1, . . . , k.

Both anchor classes have a pre-defined anchor length but no additional anchor selection is nec-
essary as the items included in the restriction are already determined by the anchor class itself.
The equal-mean-difficulty and the all-other class only differ in one anchor item and, therefore,
essentially lead to similar results (cf. Wang, 2004) and, hence, only the all-other method is
included in the following parts of this thesis.

The constant anchor class

The constant anchor class (used, e.g., by Thissen et al. 1988; Wang 2004; Shih and Wang 2009)
includes a pre-defined number of the items (e.g., 1 or 4 items according to Thissen et al., 1988)
or a certain proportion of the items (e.g., 10% or 20% according to Woods, 2009) as anchor.
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The term constant reflects the pre-defined, constant anchor length. The constant anchor class
needs to be combined with an explicit anchor selection strategy. For the constant single anchor
class, the first item of the ranking order of candidate anchor items is used as anchor, whereas
for the constant four anchor class, the first four items of the ranking order of candidate anchor
items are used as anchor.

The iterative backward anchor class

The iterative backward anchor class (used, e.g., by Drasgow 1987; Candell and Drasgow 1988;
Hidalgo-Montesinos and Lopez-Pina 2002) includes a variety of iterative methods that have
been suggested, discussed and combined with different statistical methods to assess DIF. Here,
we focus on the commonly used re-linking procedure where one parameter estimation step
suffices to conduct DIF analysis. Firstly, the scales of both groups are linked on (approximately)
the same metric, e.g., by using the all-other anchor method. Then, the DIF-items are excluded
from the current anchor, the scales are re-linked using the new current anchor, the DIF analysis
is carried out and the steps are repeated until two steps reach the same results (e.g., Drasgow,
1987; Candell and Drasgow, 1988; Park and Lautenschlager, 1990; Kim and Cohen, 1995;
Hidalgo-Montesinos and Lopez-Pina, 2002). This iterative procedure is referred to here as the
iterative backward anchor class, since the method includes the majority of items in the anchor
at the beginning. Then, it successively excludes items from the anchor.

A new anchor class will be suggested in Chapter 6 and systematically compared to the com-
monly used anchor classes presented above.

5.3.2 Anchor selection strategies

The anchor selection strategies discussed in this thesis are based on preliminary item analyses.
This means that – before the final DIF test is done – DIF tests are conducted to locate (ideally)
DIF-free anchor items. The (non-statistical) alternative relying on expert advice and certain
prior knowledge of DIF-free anchor items (Wang, 2004; Woods, 2009) will not often be possible
in practice (for a literature overview where this approach fails see Frederickx et al., 2010).

The all-other anchor selection

An example of an anchor selection strategy is the rank-based strategy proposed by Woods
(2009) that we term all-other (AO) anchor selection strategy. Initially, every item is tested
for DIF using all other items as anchor. The ranking order of candidate anchor items is defined
according to the lowest rank(s) of the resulting (absolute) DIF test statistics.

Other suggestions

Ideas on how to select anchor items without prior knowledge were also given by Wang (2004).
His original suggestions and also an anchor selection strategy that simplifies his approach will
be presented in Chapter 6. Another suggestion on how to locate anchor items by Shih and Wang
(2009) will be discussed in Chapter 7 together with three new anchor selection strategies.
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5.3.3 Anchor methods

An anchor method results as a combination of an anchor class with an anchor selection strategy
(in cases where the latter is necessary). For example, the explicit anchor selection is necessary
for the constant anchor class: Firstly, the anchor selection is carried out to determine a ranking
order of candidate anchor items and the procedure defined by the anchor class is carried out to
determine the final anchor. Secondly, the final anchor found in the first step is then used for
the assessment of DIF. This procedure was termed DIF-free-then-DIF strategy by Wang et al.
(2012).

Anchor classes that do not require an anchor selection strategy are the equal-mean, the all-other
and the iterative backward anchor class. The next two chapters will illustrate that anchor meth-
ods that do not rely on an explicit anchor selection strategy are inadvisable for DIF analysis.

A variety of anchor methods – including the all-other, the constant, the iterative-backward and
the newly suggested iterative forward anchor classes together with two anchor selection strate-
gies – will be compared in the next chapter.
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5.4 Appendix: Preliminary simulation study

To make sure the Wald test is appropriate for DIF detection, we conducted a preliminary sim-
ulation study with the Wald test based on a per definition DIF-free anchor. We implemented
methods from the constant anchor class consisting of either one (termed single-pure) or four
DIF-free items (termed four-pure). The settings are the same as for the simulation study in the
next chapter where they are described in more detail (see Section 6.4).

• Data generating process

The person parameters are generated from a normal ability distribution with a higher
mean for the reference group (0.5) than for the focal group (0) and a variance of 1. In
the following simulation studies, ability differences are simulated since this case is often
found more challenging for the methods compared to a situation where no ability differ-
ences are present (see, e.g., Penfield, 2001). The item parameters are set to the replicated
values βref

j ∈ {−1,−0.5, 0, 0.5, 1}. In case of DIF the difference in the item parameters is
set to ∆DIF = βref

j − β
foc
j to +.5 or −.5 (consistent with the intended direction of DIF). The

responses in each group follow the Rasch model.

• Sample sizes, directions and proportions of DIF

The sample sizes in reference and focal group are defined by the following pairs
(nref, nfoc) ∈ {(250, 250), (500, 250), (500, 500), (750, 500), (750, 750), . . ., (1500, 1500)}
and represent both equal and different group sizes. In case of balanced DIF, each DIF-
item favors either the reference or the focal group but no systematic advantage for one
group remains because the effects cancel out. In case of unbalanced DIF, a systematic
disadvantage for the reference group is generated such that every DIF-item favors the
focal group. The proportion of DIF-items is set to p ∈ {15%, 30%, 45%}.

• Outcome variables

To evaluate whether the Wald test works appropriately, the false alarm rate of DIF-free
items displaying DIF and the hit rate of correctly detecting DIF-items are calculated (for
more details see Chapter 6).

The results showed – as already stated above – that the Wald test was not affected by an inflated
false alarm rate. Figure 19 contains the false alarm rates and the hit rates for the balanced DIF
condition, i.e. all DIF-effects canceled out and no group had an unfair advantage in the test.
Figure 20 depicts both rates for the unbalanced DIF condition, i.e. all DIF-items favored the
focal group. As can be seen from the top rows, the Wald test held the alpha level. Furthermore,
the patterns of the hit rates in the bottom rows show that the power of the statistical test increased
with the length of the DIF-free anchor since the constant anchor consisting of only one item
resulted in a lower hit rate compared to the anchor including four anchor items.
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Figure 19 – Balanced condition: 15%, 30% and 45% DIF-items with no systematic
advantage for one group; sample size varied from (250, 250) up to
(1500, 1500); top row: false alarm rates; bottom row: hit rates in the
balanced condition.
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Figure 20 – Unbalanced condition: 15%, 30% and 45% DIF-items favoring the reference
group; sample size varied from (250, 250) up to (1500, 1500); top row: false
alarm rates; bottom row: hit rates in the unbalanced condition.
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6 Anchor classes for DIF detection in the Rasch model

Summary: A variety of anchor methods has recently been proposed for the analysis of dif-
ferential item functioning (DIF). The choice of the anchor method is crucial for suitable DIF
analysis because it can severely affect the results of the DIF analysis. If the anchor method
does not work appropriately, items truely free of DIF appear to have DIF and, thus, inflated
false alarm rates may result. The question how anchor items are selected appropriately is still
a major challenge. In this chapter, a new anchor class termed the iterative forward anchor
class is proposed. Several anchor classes are implemented with two different anchor selection
strategies (the all-other and the number-of-significant anchor selection strategy) and are com-
pared in an extensive simulation study. The results show that the newly proposed anchor class
combined with the number-of-significant selection strategy is superior in situations where no
prior knowledge about the direction of DIF is available. Moreover, it is shown that the propor-
tion of DIF-items in the anchor – rather than the fact whether the anchor includes DIF-items
at all (termed contamination in previous studies) – is crucial for suitable DIF analysis.

Keywords: Rasch model, anchoring, anchor selection, contamination, item response theory
(IRT), differential item functioning (DIF), DIF analysis, item bias

6.1 Introduction

The previous chapter showed that the results of the DIF analysis strongly depend on the anchor
items. Still, even though the importance of the anchor method is undeniable, Lopez Rivas et al.
(2009, p. 252) claim that “[a]t this point, little evidence is available to guide applied researchers
through the process of choosing anchor items”. Consequently, the aim of this chapter is to
provide guidelines how to choose an appropriate anchor for DIF analysis in the Rasch model.

In the interest of clarity, we use the new conceptual framework presented in the previous chapter
that distinguishes between the anchor class and the anchor selection strategy. Existing anchor
classes are reviewed and a new anchor class named the iterative forward anchor class is intro-
duced.

To derive guidelines which anchor method is appropriate for DIF detection in the Rasch model,
we conduct an extensive simulation study. In our study, we compare the all-other, the constant,
the iterative backward and the newly suggested iterative forward anchor class for the first time.
Furthermore, our study is to our knowledge the first to systematically contrast different anchor
selection strategies that are combined with the anchor classes. We discuss the all-other anchor
selection strategy introduced by Woods (2009) and the number-of-significant anchor selection
strategy (based on a suggestion by Wang 2004). Altogether, nine different anchor methods are
evaluated regarding their appropriateness for DIF analysis. Finally, practical recommendations
are given to facilitate the process of selecting anchor items for DIF analysis in the Rasch model.

In the next section, the new iterative forward procedure is introduced. The simulation study is
presented in Section 6.4 and the results are discussed in Section 6.5. The problem of contamina-
tion and its impact on DIF analysis are addressed in Section 6.6. Characteristics of the selected
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anchor items are discussed in Section 6.7. A concluding summary of the simulation results and
practical recommendations are given in Section 6.8.

6.2 The iterative forward class and comparison methods

In the interest of clarity, we use the classification of anchor methods introduced in the previous
chapter that also includes the introduction of several previously suggested anchor classes.

6.2.1 The iterative forward anchor class and comparison anchor classes

The example in the previous chapter showed that the results of the DIF analysis strongly depend
on the anchor method (see Section 5.2). Furthermore, the research of Wang and Yeh (2003),
Wang (2004), Shih and Wang (2009) and Wang et al. (2012) made clear that the direction of
DIF influences the results of the DIF analysis using all other items as anchor: If all items favor
one group, what is referred to as unbalanced DIF, tests using all other items as anchor result in
inflated false alarm rates. Hence, in complex DIF situations such as unbalanced DIF, the initial
step of the iterative-backward anchor class, that includes all other items as anchor, may lead to
biased test results.

The iterative forward anchor class

Inspired by the results of Wang and Yeh (2003), Wang (2004), Shih and Wang (2009) and
Wang et al. (2012), we introduce another possible strategy to overcome the problem that the
anchor selection is based on initially biased test results: the iterative forward anchor class. As
opposed to the iterative backward class, we suggest to build the iterative anchor in a step-by-
step forward procedure. Starting with the first candidate anchor item – determined by the anchor
selection strategy – as single anchor item, we link the scales and estimate DIF. Then, iteratively,
one item – located again by means of the respective anchor selection strategy – is added to
the current anchor and DIF analysis is conducted using the new current anchor. These steps
are repeated as long as the current anchor length is shorter than the number of non-significant
test results in the current DIF test (in short the number of currently presumed DIF-free items).
Unlike the iterative backward anchor class where items are successively excluded, now items
are successively included in the anchor. An anchor selection strategy is again needed to guide
which items are included in the anchor.

The rationale behind the iterative forward approach is similar to the common approach in con-
firmatory factor analysis (CFA) described by Stark et al. (2006), where one referent item is
constrained to conduct DIF analysis. Here, we determine an order of candidate anchor items
and guide the decision whether additional anchor items are included by DIF tests for all items
(except the first anchor item, see Section 6.2.3) using the current anchor.

Anchor classes for comparison

To allow for a comparison, we include several previously suggested anchor classes in our sim-
ulation study. Since the equal-mean-difficulty and the all-other class, essentially lead to similar
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results (cf. Wang, 2004) we include only the all-other class in the following simulation study.
We also implemented the constant anchor class with one single anchor item as well as the
constant anchor including four items, which is supposed to assure sufficient power (cf. e.g.,
Shih and Wang, 2009; Wang et al., 2012). The iterative backward anchor class that firstly uses
all-other items as anchor and than systematically excludes items from the anchor (see again
Section 5.3.1) is also included in the simulation study.

6.2.2 Anchor selection strategies

In our simulation study, we implemented different anchor selection strategies that provide a
ranking order of candidate anchor items. One anchor selection strategy investigated in this
chapter is the all-other (AO) strategy proposed by Woods (2009) that is often termed the rank-
based approach (see again Section 5.3.2).

Originally, Wang (2004) suggested an anchor method that we refer to as the next candidate (NC)
method. It includes both an anchor selection and an anchor class and is, thus, discussed in detail
in the next section. Here, we simplify the suggestion of Wang (2004) for the anchor selection,
that is applied in a modified version for the MIMIC procedure by Shih and Wang (2009), and
call it the number-of-significant (NST) selection strategy. It is, to our knowledge, for the first
time systematically compared with the all-other strategy using various anchor classes. With
every item acting as single-anchor, every other item is tested for DIF. Again, the anchor sets
A j vary across the studied items and k − 1 tests result for every item j = 1, . . . , k of the test.
The ranking order of candidate anchor items is defined according to the smallest number of
significant results. If more than one item displays the same number of significant results, one of
the corresponding items is selected randomly. A similar approach was suggested by Cheung and
Rensvold (1999) in the context of factorial invariance to concurrently select a set of non-variant
items that also relies on results testing every item by using every other item in the restriction.

6.2.3 Anchor methods

The anchor methods to be investigated in this chapter are now presented and summarized in
Table 5.

The all-other anchor method

The all-other anchor method (all-other) does not require an additional anchor selection. Every
item is tested for DIF using all remaining items as anchor items. Here, the anchor set A j =

{1, . . . , k} \ j depends on the studied item j = 1, . . . , k and one re-linking step is necessary for
each item.

As already stated in Chapter 5 all remaining anchor methods consist of two steps: Firstly, the
anchor selection is carried out to determine a ranking order of candidate anchor items and
the proceeding of the anchor class is carried out to determine the final anchor. Secondly, the
final anchor found in the first step is then used for the assessment of DIF. This procedure was
termed DIF-free-then-DIF strategy by Wang et al. (2012). For the following anchor methods,
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Class Selection Combination Initial step and anchor selection strategy

all-other none all-other Initial step: Each item is tested for DIF using all remaining
items as anchor.

cf. e.g., Woods
(2009)

Selection strategy: No additional selection strategy is
required.

constant AO single-anchor-
AO

Initial step: Each item is tested for DIF using all remaining
items as anchor.

Woods (2009) Selection strategy: The item with the lowest absolute DIF
statistic (AO) is chosen.

NST single-anchor-
NST

Initial step: Each item is tested for DIF using every other
item as single-anchor.

Wang (2004) Selection strategy: The item with the smallest number of
significant DIF tests (NST) is chosen.

AO four-anchor-
AO

Initial step: Each item is tested for DIF using all remaining
items as anchor.

Woods (2009);
Wang et al.
(2012)

Selection strategy: The four anchor items corresponding to
the lowest ranks of the absolute DIF statistics from the
initial step (AO) are chosen.

NST four-anchor-
NST

Initial step: Each item is tested for DIF using every other
item as single-anchor.

Wang (2004) Selection strategy: The four anchor items corresponding to
the smallest number of significant DIF tests (NST) are
chosen.

NC four-anchor-
NC

Initial step: Each item is tested for DIF using every other
item as single-anchor.

proposed by
Wang (2004)

Selection strategy: The first anchor is found as in
single-anchor-NST; the next candidate anchor item (up to
three) is found from tests using the current anchor if its
result corresponds to the lowest non-significant absolute
test statistic and is then added to the current anchor.

iterative
backward

AO iterative-
backward-AO

Initial step: Each item is tested for DIF using all remaining
items as anchor.

e.g., Drasgow
(1987)

Selection strategy: Iteratively, all items displaying DIF are
excluded from the anchor and the next DIF test with the
current anchor is conducted.

iterative
forward

AO iterative-
forward-AO

Initial step: Each item is tested for DIF using all remaining
items as anchor.
Selection strategy: As long as the current anchor is shorter
than the number of currently presumed DIF-free items, the
next item with the lowest rank in the initial step (AO) is
added to the anchor.

NST iterative-
forward-NST

Initial step: Each item is tested for DIF using every other
item as single-anchor.
Selection strategy: As long as the current anchor is shorter
than the number of currently presumed DIF-free items, the
next item with the smallest number of significant test
results in the initial step (NST) is added to the anchor.

Table 5 – Classification and nomenclature of the investigated anchor methods.
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the final anchor A is independent of which item is studied. Since k − 1 parameters are free in
the estimation, only k − 1 estimated standard errors result (Molenaar, 1995a), the k-th standard
error is determined by the restriction and, hence, only k − 1 tests can be carried out and one
item in the final assessment of DIF obtains no DIF test statistic. Thus, for the following anchor
methods, the first item selected as anchor item is presumed DIF-free in the final DIF test and all
remaining items are tested for DIF using the final anchorA.

Methods form the constant anchor class

The constant anchor class consisting of one anchor item or four anchor items can be combined
with the all-other selection strategy (single-anchor-AO, four-anchor-AO). The anchor is selected
according to the lowest rank(s) of the DIF test statistics resulting from the initial DIF tests for
every item using the all-other method (Woods, 2009). The final DIF test is conducted after
re-linking the parameters using the final anchor.

The constant anchor class can also be combined with the NST-selection strategy (single-anchor-
NST, four-anchor-NST). In this case, initially every item is tested for DIF by using every other
item as single-anchor. The final anchor (consisting of either one item for the single-anchor-NST
or four items for the four-anchor-NST method) is selected from the set of items displaying the
smallest number of significant test results.

Furthermore, we implemented a suggestion of Wang (2004) that we refer to as the four-anchor
next candidate (NC) method. In the four-anchor-NC method, the item that is selected by the
NST-selection strategy functions as the current single-anchor and DIF tests are conducted (see
Wang, 2004, p. 249) similar to the single-anchor-NST method. In this step, one DIF test statis-
tic results for every item except for the anchor. The next candidate anchor item is the item that
displays “the least magnitude of DIF” (Wang, 2004, p. 250) among all remaining items that we
defined as lowest absolute DIF test statistic from the tests using the current single-anchor item.
The candidate item is added to the current anchor only if its DIF test result is not significant
(Wang, 2004).9 The next DIF test is conducted using the new current anchor and the next can-
didate item is selected again if it has the lowest absolute DIF test statistic among all remaining
items and displays no significant DIF. These steps are repeated until either the next candidate
anchor item displays DIF or the maximum anchor length (of four items in our implementation)
is reached.

Technically speaking, this procedure is a combination of the constant and the iterative anchor
class because it allows a varying anchor length but its length is limited to a pre-specified number
of items. However, since in our simulation always four anchor items were selected for the final
anchor, here we classify the anchor class as constant.

The iterative backward method

The iterative backward class is implemented using all-other items as anchor in the initial step
and then excluding DIF-items from the anchor (iterative-backward-AO) as it is widely used

9We employed a significance level of .05, but future research may investigate the additional proposition of Wang
(2004) augmenting it to e.g., .30.
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in practice (e.g., Bolt et al., 2004; Edelen et al., 2006). When items are excluded from the
anchor, the scales are re-linked with the new current anchor and DIF tests are conducted. Items
displaying DIF are again excluded from the anchor and the steps are repeated until the final
anchor is found.10 Note that the iterative backward class is not combined with the NST-selection
since the latter provides only a ranking order of candidate anchor items, but no information
which set of items should be used in the initial step.

Methods form the iterative forward anchor class

The newly suggested iterative forward class can be combined with the all-other anchor selection
strategy (iterative-forward-AO). In this case, DIF analysis for every item is conducted using the
all-other method. The DIF test statistics are again ranked by their absolute value. The item
corresponding to the lowest DIF test statistic is the first anchor item. As long as the anchor
length does not exceed the number of currently presumed DIF-free items, the item with the next
lowest absolute DIF test statistic from the initial step is included in the current anchor and DIF
analysis is carried out using the new current anchor to check whether the anchor length exceeds
the number of presumed DIF-free items. When the final iteration is reached, again, DIF analysis
is conducted with the new final anchor, where, again, the first anchor item is presumed DIF-free.

Furthermore, the proposed iterative forward class can be also combined with the NST-selection
strategy (iterative-forward-NST). In this case, initially every item is tested for DIF using every
other item as single-anchor. The items are ranked according to the number of significant test
results. The item with the smallest number of significant test results is chosen as anchor. As
long as the anchor length does not exceed the number of currently presumed DIF-free items,
the next (new) item displaying the smallest number of significant DIF tests from the initial step
is included in the anchor and DIF analysis is carried out using the new current anchor to check
whether the current anchor length exceeds the number of currently presumed DIF-free items.
When the final iteration is reached, the DIF test results of the DIF analysis using the final anchor
are returned and the first anchor item is presumed DIF-free.

6.3 Background of the simulation study

In the next section, a simulation study is described that investigates the trade-off between the
false alarm rate and the hit rate of DIF tests using the anchor methods introduced in the previous
section. The results are used to develop guidelines which anchor methods should be used for
DIF analysis in the Rasch model.

If no DIF is present in the test, we expect all anchor methods to yield well-controlled false alarm
rates, since no DIF-items and, therefore, no risk of contamination exists (Wang and Yeh, 2003;
Stark et al., 2006; Woods, 2009; González-Betanzos and Abad, 2012).

If DIF is balanced, i.e. the DIF-items favor either the reference or the focal group and no sys-
tematic disadvantage exists, previous simulation studies showed that the all-other class yielded

10In case all items were excluded from the anchor (which happened in only 2 out of 154,000 replications), one
single anchor item was chosen randomly in our simulation study.
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a well-controlled false alarm rate and a high hit rate (Wang and Yeh, 2003; Wang, 2004). How-
ever, if DIF is unbalanced i.e. all DIF-items are simulated to favor one group, an inflated false
alarm rate for the all-other method was reported (Wang and Yeh, 2003; Wang, 2004).

In accordance with Thissen et al. (1988) and Woods (2009), we anticipate the constant anchor
class to show an increase in the false alarm and the hit rate when the anchor length rises from
one to four items and the proportion of DIF-items is high. Wang et al. (2012) also found that
four anchor items combined with the IRTLRDIF procedure (Thissen, 2001) yielded low power
rates as might also be the case in this simulation with the Wald test.

González-Betanzos and Abad (2012) compared an iterative backward two-step procedure based
on the AO-selection strategy to specific constant single-anchors, to a purification procedure
based on a DIF-free constant single anchor and to the all-other method. The constant single-
anchor items were selected from the set of known a priori DIF-free items. The iterative back-
ward two-step procedure showed slightly inflated false alarm rates. Due to the fact that one
additional purification step improved the test results, the authors assumed improvements when
further purification steps are added as we have implemented in this chapter. Accordingly, we
expect the iterative backward anchor class to achieve high hit rates as they allow for a long an-
chor, but at the expense of an inflated false alarm rate especially in settings where the proportion
of DIF-items is high and DIF is unbalanced.

Little information is available on how well the anchor selection strategies perform, as Wang and
Yeh (2003), Wang (2004) and Thissen et al. (1988) included only DIF-free items in the constant
anchor class. This approach is only possible in simulation studies, however, where it is known
by design which items are DIF-free. In practice, on the other hand, a set of DIF-free items
prior to DIF analysis is usually not available (González-Betanzos and Abad, 2012). Including
only DIF-free items avoids the risk of contamination (for the consequences of contamination
see Section 6.2) and, thus, leads to an advantage for the methods from the constant anchor
class. However, in order to compare the anchor classes under realistic conditions where it is not
known a priori which items are DIF-free, the methods from the constant anchor class should be
investigated together with an anchor selection strategy.

Woods (2009) investigated the AO-selection strategy to locate a set of constant anchor items and
found results suitable for DIF analysis and superior to the all-other method. However, Wang
et al. (2012) investigated the constant anchor method based on the selection of four anchor items
using the AO-selection strategy (here referred to as the four-anchor-AO method) and found that
the anchors were often contaminated and showed an inflated false alarm rate when DIF was
unbalanced and no additional purification step was used. Therefore, we expect the four-anchor-
AO method to perform well only in the condition of balanced DIF and poorly in the condition
where DIF is unbalanced (Wang and Yeh, 2003; Wang, 2004; Shih and Wang, 2009; Wang et al.,
2012).

The NST-selection strategy that is a simplification of the proposition by Wang (2004) is (to
our knowledge) implemented and combined with several anchor classes here for the first time.
Since the NST-selection strategy relies on DIF tests using every item as single anchor, we anti-
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cipate the NST-selection strategy to outperform the AO-selection strategy if the sample size is
large and DIF is unbalanced. When DIF is balanced, we expect the AO-selection strategy to be
superior.

The newly suggested iterative forward class builds the anchor in a step-by-step forward proce-
dure. In comparison with the iterative backward method, we expect the forward procedure to
be superior when the NST-selection strategy is used and DIF is unbalanced since the initial step
of the iterative backward procedure is built on biased test results. In comparison with methods
from the constant anchor class, we anticipate higher hit rates because the anchor of the iterative
forward procedure grows as long as the current anchor is shorter than the number of currently
presumed DIF-free items and should, thus, include more than four items. As a drawback, we
also expect higher false alarm rates since the risk of contamination increases with the anchor
length. Furthermore, we anticipate the methods from the iterative forward class to show lower
hit rates than the all-other method in the balanced case, because the latter uses all items – except
the studied item – as anchor.

6.4 Simulation study

To evaluate which of the anchor methods presented in the previous section (for a brief descrip-
tion and nomenclature see again Table 5) are best suited to correctly classify items with and
without DIF, an extensive simulation study is conducted. 2000 data sets are generated from
each of 77 different simulation settings.

For every data set, the item-wise Wald test (Lord 1980, see Section 6.2) – based on the currently
investigated anchor method – is conducted at the significance level of .05 in the free R system
for statistical computing (R Development Core Team, 2011). A short description of the study
design is given in the following paragraphs. Parts of the simulation design were inspired by the
settings used by Woods (2009) and Wang (2004).

6.4.1 Data generating process

Each data set, that represents one of 2000 replications from one simulation setting, corresponds
to the simulated responses of two groups of subjects (the reference (ref) and the focal (foc)
group) in a test with k = 40 items.

• Person and item parameters

The person parameters are generated from a normal ability distribution with a higher
mean for the reference group θref ∼ N(0.5, 1) than for the focal group θfoc ∼ N(0, 1). Val-
ues assigned to the item parameters are replicated from the sequence of
βref

j ∈ {-1, -0.5, 0, 0.5, 1} in equal proportions.
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• DIF-items

In case of DIF, the affected DIF-items are chosen randomly to display uniform DIF by
setting the difference in the item parameters of reference and focal group ∆DIF = βref

j −β
foc
j

to +.5 or −.5 (consistent with the intended direction of DIF).

• IRT model

The responses in each group follow the Rasch model. They are generated in two steps:
The probability of person i solving item j is computed by placing the corresponding item
and person parameters in the Rasch model formula 22. The binary responses are then
drawn from a binomial distribution with the resulting probabilities.

P (Ui j = 1 | θi, β j) =
exp(θi − β j)

1 + exp(θi − β j)
(22)

6.4.2 Manipulated variables

Three main conditions determine the specification of the manipulated variables: One condition
under the null hypothesis where no DIF is present and two conditions under the alternative
where DIF is present.

• Sample sizes

The sample sizes in reference and focal group are defined by the following pairs
(nref, nfoc) ∈ {(250, 250), (500, 250), (500, 500), (750, 500), (750, 750), . . ., (1500, 1500)}.
Thus, both equal and different group sizes are considered.

• Directions and proportions of DIF

Under the condition of the null hypothesis (no DIF), only the sample sizes are varied. The
two remaining conditions represent the alternative hypothesis where DIF is present, but
they differ with respect to the direction of DIF: The second condition represents balanced
DIF. Here, each DIF-item favors either the reference or the focal group but no systematic
advantage for one group remains because the effects cancel out. For the third unbalanced
DIF condition a systematic disadvantage for the reference group is generated such that
every DIF-item favors the focal group. In addition to the sample size, also the proportion
of DIF is manipulated including the following percentages p ∈ {15%, 30%, 45%}.

6.4.3 Outcome variables

To allow for a comparison of the anchor methods, the classification accuracy of the DIF tests is
evaluated by means of false alarm rate and hit rate.
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• False alarm rate

For a single replication the false alarm rate is defined as the proportion of DIF-free items
that are (erroneously) diagnosed with DIF. The estimated false alarm rate for each exper-
imental setting is computed as the mean over all 2000 replications and, thus, corresponds
to the type I error rate. Similarly, the standard error is estimated as the square root of the
unbiased sample variance over all replications.

• Hit rate

Analogously, for a single replication the hit rate is computed as the proportion of DIF-
items that are (correctly) diagnosed with DIF. The hit rate is only defined in conditions
that include DIF-items, namely in the balanced and unbalanced condition. The estimated
hit rate and the standard error are again computed as mean and standard error over all
2000 replications and correspond to the power of the statistical test and its variation.

• Further outcome variables

Moreover, the percentage of replications where at least one item in the anchor is a DIF-
item (risk of contamination) is computed over all replications of one setting. The average
proportion of DIF-items as compared to the overall number of anchor items (degree of
contamination) is computed, too, for replications where the anchor is contaminated. Av-
erage false alarm rates are also computed separately for the tests based on a contaminated
and for the tests based on a pure (not contaminated) anchor to allow for a more detailed
interpretation of the results.

In summary, nine anchor methods are compared for eleven different sample sizes in one con-
dition of the null hypothesis (no DIF) and two conditions of the alternative (balanced and un-
balanced DIF) with three different proportions of DIF-items (15%, 30% or 45%). The aim of
this simulation study is to assess their appropriateness to identify DIF and DIF-free items and
to evaluate the trade-off between the false alarm rate and the hit rate. Altogether, 77 different
simulation settings result. Each setting is replicated 2000 times to ensure reliable results.

6.5 Results

6.5.1 Null hypothesis: No DIF

In the first condition, all items were truly DIF-free. Therefore, only the false alarm rate (pro-
portion of DIF-free items that are diagnosed with DIF) was computed.

False alarm rates

The estimated false alarm rates are depicted in Figure 21 and (only for equal sample sizes
to save space) also reported together with their standard errors in Table 6 in the Appendix.
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As shown in Figure 21, all anchor methods held the 5% level. While methods from the all-
other, the iterative backward (iterative-backward-AO) and the iterative forward class (iterative-
forward-NST, iterative-forward-AO) were near the significance limit, methods from the constant
anchor class (constant single-anchors: single-anchor-AO and single-anchor-NST; constant four-
anchors: four-anchor-AO, four-anchor-NST and four-anchor-NC) remained below that level.
The constant single-anchors – that consisted of an anchor with the constant length of only
one item – displayed false alarm rates not exceeding 0.01, whereas the constant four-anchors
displayed slightly higher false alarm rates (approximately 0.03 for the constant four-anchor-AO
as well as for the four-anchor-NST method and about 0.045 for the constant four-anchor-NC
method). Hence, DIF tests with an anchor method from the constant anchor class – especially
the constant single-anchor methods – were over-conservative.
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Figure 21 – False alarm rates under the null hypothesis of no DIF.

Summary

All anchor methods held the alpha-level. Over-conservative test results were found for the con-
stant anchor methods, whereas the newly suggested iterative-forward-AO and iterative-forward-
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NST methods together with the all-other and the iterative-backward-AO methods were near the
alpha level.

6.5.2 Balanced DIF: No advantage for one group

In the balanced condition, a certain proportion of DIF-items (15%, 30% or 45%) was present.
Each DIF-item favored either the reference or the focal group, but the single advantages can-
celed out.

False alarm rates

Figure 22 (top row) contains the false alarm rates for the balanced condition, reported also for
equal sample sizes together with the standard errors in Table 7 in the Appendix. Most methods
displayed well-controlled false alarm rates – similar to the null condition – with the following
exceptions: The constant four-anchor-NST and the constant four-anchor-NC method showed
a false alarm rate that first increased but then decreased again with growing sample size. The
same inverse u-shaped pattern occurred in case of unbalanced DIF and will be explained in
more detail in Section 6.7.

Both constant single-anchor methods (single-anchor-AO and -NST) as well as the four-anchor-
AO method, again, remained below the significance level. Hence, DIF tests based on the single-
anchor-AO, the single-anchor-NST and the four-anchor-AO method were over-conservative.

Hit rates

For DIF test results, hit rates specify how likely true DIF is detected. Figure 22 (bottom row)
depicts the hit rates in the balanced condition that increased monotonically with the sample
size (for standard errors see also Table 8 in the Appendix). The hit rates with the slowest
increase corresponded to the constant single-anchor methods, but also to the constant four-
anchor methods. The methods from the constant anchor class that were combined with the AO-
selection (single-anchor-AO, four-anchor-AO) achieved higher hit rates than those combined
with the NST-selection (single-anchor-NST, four-anchor-NST) or its modification (four-anchor-
NC). All anchor methods reached a hit rate of almost one, when the sample size was sufficiently
high. In terms of hit rates, all iterative procedures (iterative-forward-AO, iterative-forward-NST
and iterative-backward-AO) as well as the all-other method showed rapidly increasing hit rates
that converged to one for sample sizes above 750 in each group.

Summary

In the balanced condition, the AO-selection strategy outperformed the NST-selection by yield-
ing higher hit rates as expected. The difference was large for methods from the constant anchor
class, but negligible for methods from the iterative forward anchor class.

All anchor methods showed a well-controlled false alarm rate, except the constant four-anchor-
NST and the four-anchor-NC method. All iterative methods (from the forward and backward
class) and the all-other method displayed the most rapidly rising hit rates. The newly suggested
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Figure 22 – Balanced condition: 15%, 30% and 45% DIF-items with no systematic
advantage for one group; sample size varies from (250, 250) up to
(1500, 1500); top row: false alarm rates; bottom row: hit rates in the
balanced condition.



104 6 Anchor classes for DIF detection in the Rasch model

iterative-forward-AO and iterative-forward-NST method enabled a high rate of correctly classi-
fied DIF-items and simultaneously maintained the alpha level in the balanced condition.

6.5.3 Unbalanced DIF: Advantage for the focal group

In the unbalanced condition, all items simulated with different item parameters favored the focal
group. False alarm rates for the unbalanced condition are shown in Figure 23 (top row) and in
Table 9 in the Appendix together with the standard errors (again only for settings with equal
sample sizes in reference and focal group to save space).

False alarm rates

As opposed to the previous results, in this condition the majority of the anchor methods pro-
duced inflated false alarm rates: When the proportion of DIF-items increased, the false alarm
rates rose as well. Moreover, for most anchor methods, the false alarm rates increased with
growing sample size. The settings from the unbalanced condition – especially with 30% and
45% DIF-items – are now discussed in more detail in groups of anchor classes.

The all-other method yielded the highest false alarm rate in the majority of the simulation set-
tings. The reason for this is that the all-other method was always contaminated in situations
where more than one item had DIF. On average, the mean item parameters of the focal group
were lower than the mean item parameters of the reference group. These mean differences in the
item parameters shifted the scales of focal and reference group apart when the all-other method
defined the restriction (similar to the instructive example in Section 5.2). These artificial differ-
ences became significant when the sample size increased and, thus, resulted in an inflated false
alarm rate.

For methods from the constant anchor class, the selection strategy explained the false alarm
rates: The strategy of selecting anchors based on the DIF tests with all-other items as anchor
yielded biased DIF test results that induced a high false alarm rate when the sample size was
large (as illustrated and discussed in more detail regarding the impact of contamination in Sec-
tion 6.6).

Constant anchors selected by the number-of-significant strategy produced lower false alarm
rates in regions of medium or large sample sizes. Here, again, an inversely u-shaped form was
visible. After a certain point, the false alarm rates decreased again (a detailed explanation will
be given in Section 6.7). The constant single-anchor methods showed lower false alarm rates
than the corresponding constant four-anchor methods. For all constant methods, the single-
anchor-NST method had the lowest false alarm rate when the sample size was large. Only in
the condition with 45% DIF-items, it systematically exceeded the alpha level at medium sample
sizes.

The method from the iterative backward anchor class, which started the initial step by using the
all-other method, also led to inflated false alarm rates (with a maximum observed rate of 0.31
for the highest sample size in case of 45% DIF) that rose when sample size increased.
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Figure 23 – Unbalanced condition: 15%, 30% and 45% DIF-items favoring the focal
group; sample size varies from (250, 250) up to (1500, 1500); top row: false
alarm rates; bottom row: hit rates in the unbalanced condition.
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Methods from the iterative forward class displayed heterogeneous false alarm rates. The iterative-
forward-AO method led to increased false alarm rates – similar to the constant methods with
the AO-selection criterion – in the setting with 30% or 45% DIF (up to 0.57 for the highest
sample size). The clearly best iterative method in terms of a low false alarm rate was the new
iterative-forward-NST method (yielding a false alarm rate of 0.06 for the highest sample size in
case of 45% DIF and an observed maximum of 0.24).

Hit rates

The hit rate in the setting with 15% DIF in the unbalanced condition was relatively similar to
the corresponding setting in the balanced condition (cf. Figure 23 (bottom row) and Table 10 in
the Appendix). The hit rate increased with growing sample size. But in regions of small sample
sizes especially the hit rates of the all-other and of methods from the constant anchor class were
lower.

The results in the settings of larger proportions of DIF-items were different: Generally, the over-
all level of the hit rate was lower. Methods from the constant anchor class as well as the all-other
method showed the slowest increase with the sample size. These methods also had lower hit
rates compared to the methods from the iterative forward or backward class that were the only
methods that displayed rapidly increasing and high hit rates. The new iterative forward-NST
method provided the highest hit rate and a rapid rise of the hit rate with increasing sample size.
The NST-selection strategy in combination with methods from the constant anchor class was
more suitable than the AO-selection strategy regarding the hit rates when the sample size was
large. The simplified four-anchor-NST method outperformed the original suggestion of Wang
(2004), the four-anchor-NC method, in terms of higher hit rates (and lower false alarm rates).
The iterative forward procedure with the NST-selection was equal or superior to the iterative-
forward-AO method over the entire range of simulated sample sizes.

Summary

In the unbalanced condition, the NST-selection strategy was superior to the AO-selection strat-
egy when the sample size and the DIF proportion were high as expected, since it not only
allowed a higher hit rate but it also corresponded to a lower false alarm rate.

In the condition of unbalanced DIF, the false alarm rates were no longer well-controlled. When
the DIF proportion was high, only the single-anchor-NST and the iterative-forward-NST method
had low false alarm rates in regions of large sample sizes. Both constant single-anchor methods
yielded low false alarm rates – but also low hit rates – when the sample size was small. All meth-
ods from the constant anchor class, especially in regions of small sample sizes, showed poor hit
rates. The highest hit rate – in all settings from the unbalanced condition – corresponded to the
newly proposed iterative-forward-NST method.

6.6 The impact of anchor contamination

As discussed in Section 5.2 the contamination of the anchor may induce artificial DIF and thus
induce a seriously inflated false alarm rate. Short anchors are preferred in the constant anchor
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class in order to minimize the risk of contamination that includes only the information whether
all anchor items are DIF-free or not (e.g. Shih and Wang, 2009). When new anchor methods
are proposed, they are judged by their ability to correctly locate a completely DIF-free anchor
in order to avoid anchor contamination (e.g. Wang et al., 2012). Since contamination is an
important argument in the construction of new anchor methods and since it affects the results of
DIF detection (see Section 5.2), we will take a deeper look at the simulation results focussing
on the aspect of anchor contamination.

For one exemplary simulation setting, the extreme condition of unbalanced DIF where 45%
of the items favored the focal group will now be discussed in more detail in groups of anchor
classes to illustrate the impact of contamination.

Figure 24 (top row) depicts the proportion of replications where at least one item of the anchor
was a DIF-item (top-left) – this is referred to as risk of contamination – and the proportion of
DIF-items in the anchor when the anchor was contaminated (top-right) – this is referred to as
degree of contamination. The false alarm rates including only the replications that resulted in
a contaminated anchor are displayed in Figure 24 (bottom-left) next to the false alarm rates
including only the replications that resulted in a pure anchor (bottom-right).

The results show the following: For the all-other method all items functioned as anchor items.
Due to the fact that more than one item has DIF in our simulation design, the anchor was
contaminated in 100% of the replications. The proportion of DIF-items in the anchor was 45%
as simulated. With increasing sample size, the power of detecting artificial DIF (DIF-free items
that display DIF due to the anchor method chosen) increased and, thus, the false alarm rate rose.

Methods from the constant anchor class are investigated next. The risk of contaminated an-
chors decreased when the sample size increased. The anchor selection strategy determined how
rapidly: When the NST-selection strategy chose the anchor, the convergence to zero percent
contamination was clearly visible in the simulated range of the sample size. The all-other se-
lection strategy showed a decreasing tendency, but even when 1500 observations for each group
were available, 70% of the anchors were still contaminated for the four-anchor-AO and 17% for
the single-anchor-AO method.

If the constant single-anchors were contaminated, this means that the single anchor item had
DIF and, inevitably, the false alarm rates exploded when the sample size was large enough to
detect significant artificial DIF (in case of 1500 observations in each group: single-anchor-AO:
0.70, single-anchor-NST: 0.54).

Surprisingly, there was a large gap between the degree of contamination for the constant four-
anchor methods: When the AO-strategy or the NST-strategy were directly chosen and the sam-
ple size was large, on average about one out of four anchor items had DIF. In contrast to this,
about three out of four anchor items had DIF when the four-anchor-NC method was chosen. In
contaminated situations, consequently, the four-anchor-NC method corresponded to a larger
false alarm rate (observed maximum: 0.75) than the four-anchor-AO (observed maximum:
0.54) or the four-anchor-NST method (observed maximum: 0.36). Therefore, the four-anchor-
NC method corresponded to larger false alarm rates compared to the four-anchor-NST method
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Figure 24 – Condition of unbalanced DIF with 45% DIF-items favoring the focal group;
sample size ranges from (250, 250) to (1500, 1500); top-left: risk of
contaminated anchors (at least one DIF-item included in the anchor);
top-right: degree of contamination (proportion of DIF-items in contaminated
anchors); bottom-left: false alarm rates when the anchor is contaminated;
bottom-right: false alarm rates when the anchor is pure.
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over all unbalanced conditions with 45% DIF-items (see again Figure 23, top row), even though
it had a lower risk of contamination. Hence, the degree of contamination is important for the
results of the DIF assessment.

If the anchor was pure, the false alarm rates for the constant four-anchor method located by the
NST-selection strategy (or the NC-selection) were lower. Note, however, that even if the anchor
was pure, the false alarm rates of the constant anchor methods exceeded the alpha level. To
clarify this fact, we will present an additional simulation study in the next section.

The methods from the iterative forward and backward anchor class were more often contami-
nated than the constant single-anchors (see Figure 24). This is not surprising, as the anchors in-
cluded more items. Similar to the all-other method, all replications of the iterative-forward-AO
method were contaminated. The iterative-forward-NST and the iterative-backward-AO method
yielded a risk of contamination that decreased with the sample size (minimum 0.26 and 0.40
in the simulated range). In case of contaminated anchors, the methods from the iterative for-
ward and backward class also produced inflated false alarm rates. When the sample size in each
group exceeded 750, the iterative-forward-NST method definitely had the lowest false alarm
rate. When the sample size was 1000 in each group, the mean false alarm rate of the iterative-
forward-NST method including all replications did not even exceed the mean false alarm rate
of all three constant four-anchor methods including only the pure replications while simultane-
ously the hit rate was higher for the iterative-forward-NST method.

Our findings clarify that it is not the risk of contamination alone that explains the inflated false
alarm rates. The best method in the unbalanced condition when the sample size was large was
the iterative-forward-NST method even if it had a high risk of contamination. Nevertheless,
the iterative-forward-NST method displayed a low false alarm rate and also a high hit rate.
Therefore, the consequences of contamination depended on the degree of contamination which
was low for this method due to the NST-selection strategy that was suitable for unbalanced DIF.
Research on DIF analysis and anchor selection procedures should, thus, not only concentrate
on the risk of contamination, but also focus on the consequences, which strongly depend on the
proportion of contaminated items in the anchor.

6.7 Characteristics of the anchor items inducing artificial DIF

In our simulation study, several anchor methods – especially the four-anchor-NST and the four-
anchor-NC method – displayed inversely u-shaped false alarm rates that are yet to be explained.
There are two mechanisms at work here: On one hand, the risk and the degree of contamination
decrease with increasing sample size when the anchor selection strategy works appropriately
and, thus, the extent of artificial DIF decreases. On the other hand, the power of detecting
artificial DIF increases with growing sample size. One possible explanation for the inversely
u-shaped pattern is the interaction between the decreasing extent of artificial DIF induced by
anchor contamination and the increasing power of detecting statistically significant artificial
DIF. In the beginning the false alarm rate increases due to the increasing power for detecting
artificial DIF but at some point the false alarm rate decreases again as the risk of contamina-
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tion decreases. This explanation is consistent with the findings from Section 6.6, where the
anchor was contaminated: The four-anchor-NST method, for example, displayed a degree of
contamination that decreased with sample size (see again Figure 24, top-right) and an inversely
u-shaped false alarm rate when the anchor was contaminated (see again Figure 24, bottom-left).

However, with this argument we cannot yet explain why the false alarm rates showed the same
pattern for pure (uncontaminated) replications (see again Figure 24, bottom-right). Here, the
single-anchor-NST, the four-anchor-NST as well as the four-anchor-NC method displayed in-
versely u-shaped false alarm rates even though the anchor was pure. Therefore, the presence of
artificial DIF that is induced by contamination alone cannot explain this finding. To understand
this finding, it is important to note that artificial DIF can also be caused by special characteristics
of the anchor items that were located by an anchor selection strategy.

To clarify how artificial DIF is related to the observed patterns of the false alarm rates, we con-
ducted an additional simulation study focussing again on the extreme condition of unbalanced
DIF where 45% of the items favored the focal group. Here, we examined the difference in the
sum of the estimated anchor item parameters between focal and reference group that we termed
scale shift (because it measures how far both scales are shifted apart during the construction of
the common scale for the item parameters and this shift can cause artificial DIF as illustrated
in Figure 18, right) for all constant four-anchor methods (the four-anchor-NST and the four-
anchor-NC method that displayed inversely u-shaped patterns as well as the four-anchor-AO
method that displayed an increasing false alarm rate, see again Figure 23, top-right). To assess
reliable estimates of the scale shift, we used all items that are DIF-free by design as anchor items
to build the ideal common scale for the item parameters. The scale shift represents how far the
scales are shifted apart and reflects the extent of artificial DIF. The scale shift may be caused by
contamination, as discussed in the previous sections, or by special characteristics of the anchor
items in particular when the selection strategies locate anchor items that show relatively high
empirical differences in the estimated item parameters due to random sampling fluctuation even
if the located anchor items were simulated to be DIF-free.

To determine whether anchor items found by a selection strategy display this characteristic, we
included a benchmark method of four anchor items that were randomly selected from the set of
all DIF-free items. The benchmark method, thus, represents the ideal four-anchor method that
does not select items with high differences more often than others. The results, separated for
contaminated and pure replications, are depicted in Figure 25.

In case of contaminated anchors (Figure 25, left), the four-anchor methods displayed positive
scale shifts. Even though the scale shifts were almost constant over the sample size in regions
of small to medium sample sizes for the four-anchor-AO and four-anchor-NC or even slightly
decreasing for the four-anchor-NST method, the false alarm rates rose with growing sample size
in the respective range of the sample sizes (Figure 24, bottom-left). We attribute this fact to the
increasing power of detecting artificial DIF. This also explains the increasing false alarm rates
of the four-anchor-AO and the four-anchor-NC methods: The scale shifts were almost constant
over the simulated range of the sample size but the false alarm rates increased (Figure 24,
bottom-left).
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Figure 25 – Condition of unbalanced DIF with 45% DIF-items favoring the focal group;
sample size ranges from (250, 250) to (1500, 1500); left: the scale shift when
the anchor is contaminated; right: the scale shift in case of pure anchors.

For the four-anchor-NST method the scale shift also decreased with increasing sample size in
regions of medium or large sample sizes (Figure 25, left) and so did the false alarm rate in the
respective range of the sample sizes (Figure 24, bottom-left).

Our second argument now becomes important in the case of pure anchors: The scale shift for
the benchmark method of randomly chosen DIF-free anchor items (Figure 25, right) fluctuated
around zero and displayed no systematic shift in one direction. However, the scale shift of all
remaining constant four-anchor methods was positive. This represents the fact that the suppos-
edly pure items chosen by an anchor selection strategy displayed different characteristics than
randomly chosen pure anchor items. From all items that were “pure” by definition (i.e. were
drawn from distributions with no parameter difference) the anchor selection strategies selected
not the ones with the lowest empirical difference (due to random sampling), as one might hope,
but those with a large empirical difference which again induced artificial DIF for the other items.

As can be seen from Figure 25 (right), the scale shift for the four-anchor methods reduced with
increasing sample size. In regions of large sample sizes, the scale shift is directly related to
the false alarm rate: When the scale shift was high (as was the case for the four-anchor-AO
method), the false alarm rate was high as well (Figure 24, bottom-right). When the scale shift
decreased with growing sample size (e.g. for the four-anchor-NST method), the corresponding
false alarm rate decreased as well. In regions of smaller sample sizes, the scale shift of all four-
anchor methods was high, but the false alarm rates were low at the beginning and then increased
with growing sample size. Here, again, the interaction between the extent of artificial DIF – now
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induced by large empirical differences in the anchor items – and the power of detecting artificial
DIF was visible.

These findings explain why the u-shaped patterns occur for the four-anchor-NST and the four-
anchor-NC method: These methods are able to reduce the scale shift with increasing sample size
because the scale shift in pure settings reduces and the risk of contamination reduces as well (i.e.
the number of pure settings increases). Taking the increasing power of detecting artificial DIF
with growing sample size into account, an inversely u-shaped pattern results for the false alarm
rates. In contrast to this, the four-anchor-AO method always displayed a relatively high scale
shift (that only reduces slightly when the anchor was pure). The power of detecting artificial
DIF increased with growing sample size and, therefore, the false alarm rate showed an increase
and no considerable decrease.

In summary, the interaction between a decreasing extent of artificial DIF and an increasing sta-
tistical power to detect artificial DIF with growing sample size results in an inversely u-shaped
false alarm rate. The risk and degree of contamination alone cannot explain the presence of
artificial DIF. The anchor items selected by certain anchor selection strategies differed system-
atically from randomly chosen pure anchor items even if the located anchor items were by
definition DIF-free. Counterintuitively instead of items with small differences, these methods
tended to select exactly those items with large differences. Therefore, the anchor items found
by the NST-, the NC- or the AO-selection strategy displayed a positive scale shift in the addi-
tional simulation study and, thus, shifted the scales apart and induced artificial DIF. This implies
that not only the risk and the degree of contamination but also the scale shift in by definition
pure replications should be regarded when anchor methods are developed and investigated in
simulation studies. Otherwise, inflated false alarm rates might occur even if the anchor is pure.

6.8 Summary and discussion

To conclude, the results from the simulation study are briefly reviewed. Thereafter, practical
guidelines on how to choose the anchor for DIF analysis in the Rasch model are given. Finally,
future research questions are addressed.

Conclusions from the simulation study

The assessment of differential item functioning for the Rasch model was investigated. The re-
sults of the Wald test were compared by means of hit and false alarm rates under three main
conditions: The null hypothesis of no DIF, the balanced condition where no group had a sys-
tematic advantage and the unbalanced condition where all items favored the focal group.

Under the null hypothesis, all methods from the iterative forward and backward class as well as
the all-other method were near the alpha-level, while methods from the constant anchor class
remained below that level.

When DIF was balanced, the all-other method and also methods from the iterative forward
and backward class yielded high hit rates while simultaneously exhausted the alpha-level. As
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expected, the all-other selection strategy outperformed the number-of-significant selection strat-
egy.

In case of unbalanced DIF, the NST-selection procedure was superior to the AO-selection strat-
egy when the sample size was large. In this case, the newly suggested iterative-forward-NST
method yielded the highest hit rate and a low false alarm rate and was, thus, the best performing
anchor method.

The constant four-anchor class was not only combined with the AO-selection and the NST-
selection strategy, but also in the way Wang (2004) originally suggested. Even though the
four-anchor-NC method led to a low risk of contamination (see Section 6.6), it yielded higher
false alarm rates and lower hit rates compared to the four-anchor-NST method. The latter was
directly build with the NST-selection that simplifies the suggestion of Wang (2004). Thus, the
four-anchor-NST method was superior.

Based on these results, when no reliable prior knowledge about the DIF situation exists, as
will be the case in most real data analysis settings (as opposed to simulation analysis where
the true DIF pattern is known), we thus recommend to use the iterative-forward-NST method.
When the sample size was large enough, the false alarm rates were low in any condition even
if the anchor was contaminated. Hit rates rapidly grew with the sample size and converged to
one. The forward item-wise selection of anchor items outperformed the iterative-backward-AO,
iterative-forward-AO, the all-other as well as anchor methods from the constant anchor class.

There are several reasons that explain the superior performance of the iterative-forward-NST
method. Firstly, the method has a head start compared to the methods that rely on DIF tests
using the all-other items as anchor (e.g. the classical iterative procedures, such as the iterative-
backward-AO). While the latter start with a criterion that is severely biased when DIF is unbal-
anced, the iterative-forward-NST method does not require that DIF effects almost cancel out (for
a detailed discussion of this assumption for the all-other method see Wang, 2004). Secondly, the
NST-selection strategy combined with the iterative forward anchor class also performs well in
case of balanced DIF. While the AO-selection strategy performed better than the NST-selection
strategy when it was combined with the methods from the constant anchor class, the advantage
in combination with the iterative forward class appeared negligible. Thirdly, our study showed
that the consequences of contamination depend on the proportion of contaminated items rather
than on the risk of contamination itself. Therefore, the iterative-forward-NST method yielded
better results in DIF analysis even though the anchor was long and, thus, often contaminated.
The risk of contamination decreases with increasing sample size and, beyond that, the propor-
tion of DIF-items in contaminated situations decreased. Fourthly, the iterative forward anchor
class adds items to the anchor as long as the number of anchor items is smaller than the set of
presumed DIF-free items. If the sample size is large enough, this leads to the desirable property,
that it produces a longer anchor when the proportion of DIF-items is low and a shorter anchor
if the proportion of DIF-items is high, similar to the iterative backward method. It may appear
as a drawback that the iterative forward anchor class uses a short anchor in the initial steps,
beginning with only one anchor item. The resulting DIF tests may lack statistical power due to
fact that the anchor is short. However, this does not affect the performance of the new iterative
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forward anchor methods since the test results are only used for the decision whether the anchor
should include one more anchor item and, thus, a small statistical power of the DIF tests in the
first iterations automatically yields to a longer anchor that is expected to increase the power of
the DIF test itself. Another astounding finding of our simulations was that anchor items located
by an anchor selection strategy displayed different characteristics compared to randomly chosen
DIF-free items and may be exactly those items that again induce artificial DIF. Including more
anchor items (than e.g. four anchor items) reduces the artificial scale shift that is induced by
anchor items with empirical group differences and, thus, can also occur when the anchor is (by
definition) pure.

In addition to the item parameter values presented in Chapter 6.4, we have replicated the main
results of our simulation study with the item parameter values β = (-2.522, -1.902, -1.351,
-1.092, -0.234, -0.317, 0.037, 0.268, -0.571, 0.317, 0.295, 0.778, 1.514, 1.744, 1.951, -1.152,
-0.526, 1.104, 0.961, 1.314, -2.198, -1.621, -0.761, -1.179, -0.610, -0.291, 0.067, 0.706, -2.713,
0.213, 0.116, 0.273, 0.840, 0.745, 1.485, -1.208, 0.189, 0.345, 0.962, 1.592) used by Wang
et al. (2012). Furthermore, the direction of DIF was changed so that – in case of unbalanced
DIF – all items favored the reference group. The results were similar to the results presented
in this chapter and, thus, indicate the stability of our simulation study, are depicted at the end
of the Appendix of this chapter (see Figure 26 and Figure 27). Therefore, we are confident that
the different behavior of the anchor methods is not limited to the settings investigated here.

Practical recommendations

Our simulation study highlights the importance of the anchor selection for the correct classifica-
tion of DIF and DIF-free items. A careful consideration of the anchor method used is necessary
to avoid high misclassification rates and doubtful test results.

In case of balanced DIF, the all-other method was slightly better than the iterative-forward-NST
strategy. However, due to the fact that the all-other method resulted in seriously inflated false
alarm rates when the situation was unbalanced – and that it is doubtful whether the situation of
balanced DIF is ever met in practice (Wang and Yeh, 2003; Wang et al., 2012) – the usage of
this anchor method is inadvisable. Thus, the iterative-forward-NST strategy is recommended.
When the sample size was large enough, the false alarm rates were low in any condition even if
the anchor was contaminated and the hit rates grew rapidly.

The adequacy of the selection strategies – by the number-of-significant or by the all-other ap-
proach – depends on the DIF situation. In the balanced condition, the AO-selection strategy
performed suitable, whereas in the unbalanced condition the NST-selection strategy was more
appropriate. But when the iterative-forward class was used, the advance of the AO-selection
strategy was marginal. Therefore, we recommend the iterative-forward-NST method over the
iterative-forward-AO method.

Related research questions

The simulation study presented here was limited to DIF analysis using the Wald test in the
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Rasch model. Thus, future research may investigate the usefulness of the iterative-forward-
NST method for other IRT models and combine it with other methods that test for DIF.

Furthermore, the iterative forward anchor class with the NST-selection may be compared with
modifications of the anchor selection strategy. For example, Shih and Wang (2009) suggest to
use the items corresponding to the lowest rank of the mean absolute DIF statistics similar to the
all-other strategy of Woods (2009). Then items are anchor candidates if they display the lowest
mean DIF test statistic when every item is tested for DIF using every other item as constant
single-anchor. This modification may be less affected by sample size.

Wang et al. (2012) established an improvement of the AO-selection strategy by incorporating
additional iterations. Firstly, every item is tested for DIF using the all-other method. Then,
iteratively, DIF-items are excluded from the anchor candidates and a new DIF analysis using
the current anchor is conducted until two steps reach the same results. Finally, the anchor items
are selected from the remaining candidates using the all-other strategy.

Moreover, the DIF test results may also be improved by the construction of new anchor se-
lection strategies. Ideally, the anchor items are DIF-free and induce no artificial scale shift.
Furthermore, the impact of the degree of contamination is important for the appropriateness of
the results in DIF detection.

Therefore, improving the anchor selection strategies with the aim to locate anchors with a small
degree of contamination is the aim of the next chapter. Therein, the all-other selection, the
number-of-significant selection, the suggestion of Shih and Wang (2009), the improved version
of the all-other selection by Wang et al. (2012) and three new anchor selection strategies are
systematically compared.
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6.9 Appendix

false
alarm

all-other single-
anchor-
AO

four-
anchor-
AO

iterative-
forward-
AO

iterative-
backw.-
AO

single-
anchor-
NST

four-
anchor-
NST

four-
anchor-
NC

iterative-
forward-
NST

no DIF
250 0.05 0.00 0.03 0.05 0.05 0.00 0.03 0.04 0.05

(0.03) (0.01) (0.03) (0.03) (0.03) (0.01) (0.03) (0.04) (0.03)
500 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.05 0.05

(0.04) (0.01) (0.03) (0.04) (0.03) (0.01) (0.03) (0.04) (0.03)
750 0.05 0.00 0.03 0.05 0.05 0.00 0.03 0.05 0.05

(0.04) (0.01) (0.03) (0.04) (0.03) (0.01) (0.03) (0.04) (0.04)
1000 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.05 0.05

(0.03) (0.01) (0.03) (0.03) (0.03) (0.01) (0.03) (0.04) (0.03)
1250 0.05 0.00 0.03 0.05 0.05 0.00 0.03 0.04 0.05

(0.03) (0.01) (0.03) (0.03) (0.03) (0.01) (0.03) (0.04) (0.03)
1500 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.04 0.05

(0.04) (0.01) (0.03) (0.04) (0.03) (0.01) (0.03) (0.04) (0.04)

Table 6 – False alarm rates and standard errors under the null hypothesis (no DIF) with
equal sample sizes in reference and focal group.
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false
alarm

all-other single-
anchor-
AO

four-
anchor-
AO

iterative-
forward-
AO

iterative-
backw.-
AO

single-
anchor-
NST

four-
anchor-
NST

four-
anchor-
NC

iterative-
forward-
NST

15% DIF
250 0.05 0.01 0.03 0.05 0.05 0.00 0.04 0.05 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.03) (0.04) (0.04)
500 0.05 0.00 0.03 0.05 0.05 0.01 0.04 0.07 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.06) (0.04)
750 0.05 0.01 0.03 0.05 0.05 0.01 0.05 0.07 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.06) (0.04)
1000 0.05 0.01 0.03 0.05 0.05 0.00 0.04 0.07 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.06) (0.04)
1250 0.05 0.01 0.03 0.05 0.05 0.00 0.04 0.06 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.05) (0.04)
1500 0.05 0.00 0.03 0.05 0.05 0.00 0.03 0.05 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.03) (0.04) (0.04)
30% DIF
250 0.05 0.00 0.03 0.05 0.05 0.00 0.04 0.05 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.05) (0.04)
500 0.05 0.01 0.03 0.05 0.05 0.01 0.05 0.08 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.02) (0.05) (0.07) (0.04)
750 0.05 0.00 0.03 0.05 0.05 0.02 0.07 0.11 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.03) (0.05) (0.08) (0.04)
1000 0.05 0.00 0.03 0.05 0.05 0.01 0.06 0.09 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.02) (0.05) (0.08) (0.04)
1250 0.05 0.00 0.03 0.05 0.05 0.01 0.04 0.08 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.02) (0.04) (0.07) (0.04)
1500 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.06 0.05

(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.05) (0.04)
45% DIF
250 0.05 0.00 0.03 0.05 0.05 0.00 0.04 0.05 0.05

(0.05) (0.02) (0.03) (0.05) (0.05) (0.01) (0.04) (0.06) (0.05)
500 0.05 0.00 0.03 0.05 0.05 0.02 0.07 0.12 0.05

(0.05) (0.01) (0.03) (0.05) (0.05) (0.04) (0.06) (0.11) (0.05)
750 0.05 0.01 0.03 0.05 0.05 0.05 0.09 0.16 0.05

(0.05) (0.02) (0.03) (0.05) (0.04) (0.06) (0.07) (0.13) (0.05)
1000 0.05 0.00 0.03 0.05 0.05 0.04 0.08 0.14 0.05

(0.05) (0.02) (0.03) (0.05) (0.05) (0.06) (0.07) (0.12) (0.05)
1 250 0.05 0.00 0.03 0.05 0.05 0.02 0.05 0.10 0.05

(0.05) (0.01) (0.03) (0.05) (0.04) (0.05) (0.05) (0.09) (0.05)
1500 0.05 0.01 0.03 0.05 0.05 0.01 0.04 0.07 0.05

(0.05) (0.02) (0.04) (0.05) (0.05) (0.02) (0.04) (0.07) (0.05)

Table 7 – False alarm rates and standard errors in the balanced condition with equal
sample sizes in reference and focal group.
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hit rate all-other single-
anchor-
AO

four-
anchor-
AO

iterative-
forward-
AO

iterative-
backw.-
AO

single-
anchor-
NST

four-
anchor-
NST

four-
anchor-
NC

iterative-
forward-
NST

15% DIF
250 0.68 0.35 0.58 0.67 0.66 0.23 0.58 0.59 0.67

(0.19) (0.20) (0.20) (0.19) (0.19) (0.15) (0.20) (0.20) (0.19)
500 0.93 0.75 0.89 0.92 0.92 0.56 0.86 0.85 0.92

(0.10) (0.18) (0.12) (0.11) (0.11) (0.15) (0.13) (0.14) (0.11)
750 0.99 0.92 0.98 0.99 0.98 0.75 0.95 0.94 0.98

(0.04) (0.11) (0.06) (0.05) (0.05) (0.15) (0.09) (0.10) (0.05)
1000 1.00 0.98 0.99 1.00 1.00 0.88 0.98 0.98 1.00

(0.02) (0.06) (0.03) (0.03) (0.03) (0.13) (0.05) (0.06) (0.03)
1250 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00

(0.01) (0.03) (0.01) (0.01) (0.01) (0.08) (0.02) (0.03) (0.01)
1500 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

(0.00) (0.01) (0.01) (0.00) (0.00) (0.05) (0.01) (0.02) (0.00)
30% DIF
250 0.68 0.36 0.58 0.67 0.66 0.26 0.58 0.58 0.66

(0.13) (0.14) (0.14) (0.13) (0.13) (0.11) (0.14) (0.13) (0.13)
500 0.93 0.74 0.89 0.92 0.92 0.56 0.83 0.81 0.92

(0.08) (0.13) (0.09) (0.08) (0.08) (0.10) (0.11) (0.11) (0.08)
750 0.99 0.92 0.97 0.98 0.98 0.72 0.92 0.90 0.98

(0.03) (0.08) (0.05) (0.04) (0.04) (0.11) (0.08) (0.09) (0.04)
1000 1.00 0.98 1.00 1.00 1.00 0.86 0.98 0.97 1.00

(0.01) (0.04) (0.02) (0.01) (0.01) (0.10) (0.04) (0.05) (0.02)
1250 1.00 0.99 1.00 1.00 1.00 0.94 0.99 0.99 1.00

(0.01) (0.02) (0.01) (0.01) (0.01) (0.08) (0.02) (0.03) (0.01)
1500 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00

(0.00) (0.01) (0.00) (0.00) (0.00) (0.04) (0.01) (0.01) (0.00)
45% DIF
250 0.68 0.36 0.59 0.67 0.66 0.28 0.58 0.58 0.66

(0.11) (0.11) (0.11) (0.11) (0.11) (0.09) (0.11) (0.11) (0.11)
500 0.93 0.74 0.89 0.92 0.91 0.55 0.80 0.77 0.91

(0.06) (0.10) (0.07) (0.07) (0.07) (0.07) (0.10) (0.11) (0.07)
750 0.99 0.92 0.97 0.98 0.98 0.68 0.90 0.86 0.98

(0.03) (0.06) (0.04) (0.03) (0.03) (0.09) (0.09) (0.10) (0.04)
1000 1.00 0.98 1.00 1.00 1.00 0.82 0.97 0.95 1.00

(0.01) (0.03) (0.02) (0.01) (0.01) (0.10) (0.05) (0.07) (0.02)
1250 1.00 1.00 1.00 1.00 1.00 0.92 0.99 0.99 1.00

(0.00) (0.02) (0.01) (0.01) (0.01) (0.09) (0.02) (0.04) (0.01)
1500 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00

(0.00) (0.01) (0.00) (0.00) (0.00) (0.04) (0.01) (0.02) (0.00)

Table 8 – Hit rates and standard errors in the balanced condition with equal sample sizes
in reference and focal group.
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false
alarm

all-other single-
anchor-
AO

four-
anchor-
AO

iterative-
forward-
AO

iterative-
backw.-
AO

single-
anchor-
NST

four-
anchor-
NST

four-
anchor-
NC

iterative-
forward-
NST

15% DIF
250 0.07 0.01 0.04 0.06 0.05 0.01 0.06 0.07 0.06

(0.04) (0.02) (0.03) (0.04) (0.04) (0.02) (0.04) (0.06) (0.04)
500 0.08 0.01 0.05 0.05 0.05 0.02 0.08 0.10 0.05

(0.04) (0.02) (0.04) (0.04) (0.04) (0.03) (0.05) (0.07) (0.04)
750 0.10 0.02 0.06 0.05 0.05 0.02 0.07 0.10 0.05

(0.04) (0.02) (0.04) (0.04) (0.04) (0.03) (0.05) (0.07) (0.04)
1000 0.11 0.02 0.07 0.05 0.05 0.01 0.05 0.08 0.05

(0.05) (0.02) (0.04) (0.04) (0.04) (0.02) (0.04) (0.06) (0.04)
1250 0.13 0.02 0.08 0.05 0.05 0.00 0.04 0.06 0.05

(0.05) (0.03) (0.04) (0.04) (0.04) (0.01) (0.04) (0.05) (0.04)
1500 0.15 0.03 0.09 0.05 0.05 0.00 0.03 0.05 0.05

(0.05) (0.03) (0.05) (0.04) (0.04) (0.01) (0.03) (0.05) (0.04)
30% DIF
250 0.11 0.02 0.07 0.08 0.07 0.02 0.10 0.12 0.08

(0.05) (0.03) (0.04) (0.06) (0.06) (0.03) (0.06) (0.08) (0.06)
500 0.18 0.04 0.11 0.09 0.07 0.05 0.15 0.18 0.07

(0.06) (0.03) (0.05) (0.06) (0.06) (0.05) (0.07) (0.12) (0.05)
750 0.25 0.06 0.15 0.09 0.07 0.06 0.15 0.18 0.06

(0.07) (0.05) (0.07) (0.06) (0.05) (0.06) (0.08) (0.14) (0.05)
1000 0.31 0.09 0.19 0.09 0.08 0.04 0.10 0.14 0.05

(0.07) (0.05) (0.08) (0.06) (0.05) (0.06) (0.07) (0.11) (0.04)
1250 0.38 0.12 0.22 0.08 0.08 0.01 0.05 0.08 0.05

(0.07) (0.06) (0.09) (0.06) (0.06) (0.03) (0.05) (0.08) (0.04)
1500 0.44 0.14 0.24 0.08 0.10 0.00 0.04 0.06 0.05

(0.07) (0.08) (0.10) (0.06) (0.06) (0.02) (0.04) (0.06) (0.04)
45% DIF
250 0.20 0.04 0.13 0.18 0.17 0.03 0.15 0.17 0.18

(0.07) (0.04) (0.07) (0.09) (0.10) (0.04) (0.08) (0.11) (0.10)
500 0.34 0.11 0.24 0.28 0.24 0.10 0.26 0.29 0.24

(0.08) (0.07) (0.09) (0.12) (0.15) (0.09) (0.11) (0.18) (0.14)
750 0.48 0.18 0.33 0.37 0.25 0.17 0.32 0.38 0.22

(0.09) (0.10) (0.12) (0.13) (0.18) (0.13) (0.14) (0.27) (0.16)
1000 0.60 0.24 0.39 0.45 0.27 0.19 0.25 0.36 0.14

(0.09) (0.15) (0.16) (0.15) (0.20) (0.19) (0.16) (0.32) (0.15)
1250 0.69 0.28 0.42 0.51 0.28 0.10 0.11 0.20 0.07

(0.08) (0.20) (0.18) (0.16) (0.20) (0.17) (0.13) (0.26) (0.09)
1500 0.78 0.31 0.45 0.57 0.31 0.02 0.05 0.09 0.06

(0.08) (0.25) (0.21) (0.17) (0.23) (0.09) (0.06) (0.13) (0.06)

Table 9 – False alarm rates and standard errors in the unbalanced condition with equal
sample sizes in reference and focal group.
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hit rate all-other single-
anchor-
AO

four-
anchor-
AO

iterative-
forward-
AO

iterative-
backw.-
AO

single-
anchor-
NST

four-
anchor-
NST

four-
anchor-
NC

iterative-
forward-
NST

15% DIF
250 0.54 0.24 0.44 0.59 0.59 0.11 0.37 0.37 0.60

(0.20) (0.17) (0.20) (0.22) (0.22) (0.13) (0.19) (0.21) (0.22)
500 0.83 0.55 0.76 0.89 0.89 0.32 0.67 0.66 0.89

(0.15) (0.20) (0.17) (0.14) (0.14) (0.22) (0.19) (0.21) (0.14)
750 0.95 0.79 0.91 0.98 0.98 0.61 0.88 0.87 0.98

(0.09) (0.16) (0.11) (0.06) (0.06) (0.25) (0.14) (0.16) (0.06)
1000 0.98 0.90 0.97 0.99 0.99 0.83 0.97 0.96 0.99

(0.05) (0.12) (0.07) (0.03) (0.03) (0.20) (0.07) (0.08) (0.03)
1250 0.99 0.96 0.99 1.00 1.00 0.94 1.00 0.99 1.00

(0.03) (0.07) (0.04) (0.01) (0.02) (0.11) (0.03) (0.04) (0.01)
1500 1.00 0.99 1.00 1.00 1.00 0.98 1.00 1.00 1.00

(0.01) (0.05) (0.02) (0.01) (0.01) (0.06) (0.01) (0.02) (0.01)
30% DIF
250 0.40 0.14 0.31 0.47 0.48 0.06 0.26 0.27 0.48

(0.13) (0.10) (0.13) (0.17) (0.18) (0.08) (0.13) (0.15) (0.18)
500 0.67 0.35 0.59 0.81 0.82 0.22 0.52 0.51 0.84

(0.12) (0.13) (0.14) (0.13) (0.14) (0.15) (0.16) (0.20) (0.13)
750 0.84 0.57 0.79 0.95 0.95 0.47 0.79 0.76 0.97

(0.10) (0.14) (0.12) (0.07) (0.07) (0.21) (0.14) (0.19) (0.06)
1000 0.92 0.73 0.90 0.99 0.98 0.73 0.94 0.92 0.99

(0.08) (0.13) (0.09) (0.04) (0.04) (0.21) (0.09) (0.11) (0.02)
1250 0.96 0.85 0.96 1.00 0.99 0.91 0.99 0.98 1.00

(0.05) (0.11) (0.06) (0.02) (0.02) (0.13) (0.03) (0.05) (0.01)
1500 0.98 0.92 0.98 1.00 1.00 0.97 1.00 1.00 1.00

(0.04) (0.08) (0.04) (0.01) (0.02) (0.06) (0.01) (0.02) (0.00)
45% DIF
250 0.27 0.07 0.20 0.29 0.29 0.04 0.19 0.20 0.30

(0.09) (0.06) (0.09) (0.13) (0.14) (0.05) (0.09) (0.12) (0.14)
500 0.48 0.19 0.40 0.54 0.56 0.14 0.37 0.38 0.58

(0.10) (0.10) (0.13) (0.16) (0.20) (0.11) (0.14) (0.20) (0.18)
750 0.64 0.34 0.60 0.73 0.77 0.29 0.59 0.56 0.83

(0.10) (0.15) (0.15) (0.14) (0.18) (0.20) (0.18) (0.28) (0.15)
1000 0.76 0.51 0.76 0.85 0.87 0.49 0.82 0.72 0.95

(0.09) (0.20) (0.15) (0.11) (0.14) (0.28) (0.17) (0.32) (0.08)
1250 0.85 0.66 0.87 0.92 0.93 0.78 0.96 0.90 0.99

(0.07) (0.23) (0.13) (0.08) (0.11) (0.26) (0.08) (0.23) (0.03)
1500 0.90 0.78 0.93 0.95 0.95 0.94 1.00 0.98 1.00

(0.06) (0.23) (0.10) (0.07) (0.11) (0.13) (0.02) (0.10) (0.01)

Table 10 – Hit rates and standard errors in the unbalanced condition with equal sample
sizes in reference and focal group.
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Figure 26 – Balanced condition: 15%, 30% and 45% DIF-items with no systematic
advantage for one group; sample size varies from (250, 250) up to
(1500, 1500); top row: false alarm rates; bottom row: hit rates in the
balanced condition.
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Figure 27 – Unbalanced condition: 15%, 30% and 45% DIF-items favoring the reference
group; sample size varies from (250, 250) up to (1500, 1500); top row: false
alarm rates; bottom row: hit rates in the unbalanced condition.
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7 Anchor selection strategies for DIF analysis in the
Rasch model

Summary: Chapter 5 illustrated that a common metric for the item parameters of the groups
that are to be compared (e.g. for the reference and the focal group) is necessary for DIF analy-
sis in the Rasch model. Therefore, the same linear restriction is imposed in both groups. Items
in the restriction are termed the anchor items. Ideally, these items are DIF-free or display
a low proportion of DIF-items to avoid artificially augmented false alarm rates as discussed
in Chapter 6. The question how DIF-free anchor items are selected appropriately remains
a major challenge. Furthermore, various authors point out the lack of new anchor selection
strategies and the lack of a comprehensive study especially for dichotomous IRT models. This
chapter reviews existing anchor selection strategies that do not require any knowledge prior
to DIF analysis, offers a straightforward notation and proposes three new anchor selection
strategies. An extensive simulation study is conducted to compare the performance of the an-
chor selection strategies. The results show that an appropriate anchor selection is crucial for
suitable DIF analysis. The newly suggested anchor selection strategies outperform the existing
strategies and can reliably locate a suitable anchor when the sample sizes are large enough.

Keywords: Rasch model, differential item functioning (DIF), anchor selection, anchor class,
anchoring, uniform DIF, measurement invariance

7.1 Introduction

DIF tests based on item response theory (IRT) such as the item-wise Wald test (see, e.g., Glas
and Verhelst, 1995) rely on the comparison of the estimated item parameters of the underly-
ing IRT model. For this purpose, anchor methods are employed to place the estimated item
parameters onto a common scale (see Chapter 5).

Previous studies showed that a careful consideration of the anchor method is crucial for suitable
DIF analysis: If the anchor contains DIF-items, which is referred to as contamination (see,
e.g., Finch, 2005; Woods, 2009; Wang et al., 2012), the construction of a common scale may
fail and seriously increased false alarm rates can result (see, e.g., Wang and Yeh, 2003; Wang,
2004; Wang and Su, 2004; Finch, 2005; Stark et al., 2006; Woods, 2009; Kopf et al., 2013b).
Thus, items truly free of DIF may appear to have DIF and jeopardize the results of the DIF
analysis as well as the associated investigation of the causes of DIF (Jodoin and Gierl, 2001).
One alternative to reduce the risk of a contaminated anchor is to employ a short anchor that
should be easier to find from the set of DIF-free items. However, the statistical power to detect
DIF increases with the length of the (DIF-free) anchor (Thissen et al., 1988; Wang and Yeh,
2003; Wang, 2004; Shih and Wang, 2009; Woods, 2009; Kopf et al., 2013b).

In the literature, one can find both methods that do and methods that don’t require an explicit
anchor selection. While at first sight it may seem that methods that do not require an anchor
selection strategy have an advantage, it has been shown that there are situations where these
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methods are not suitable for DIF detection. The all-other anchor method, for example, uses
all items except for the currently studied item as anchor (see, e.g., Cohen et al., 1996; Kim
and Cohen, 1998) and, thus, requires no anchor selection strategy. However, the method was
shown to be inadvisable for DIF detection when the test contains DIF-items that favor one group
(Wang and Yeh, 2003; Wang, 2004). Excluding DIF-items from the anchor by using iterative
steps does not solve the problem when the test contains many DIF-items (Wang et al., 2012).

In practice, there is usually no prior knowledge about the exact composition of the DIF effects
and, thus, it is advisable to use an anchor method that relies on an objective anchor selection
strategy such as an anchor of the constant length of four items (used, e.g., by Thissen et al.
1988; Wang 2004; Shih and Wang 2009). An anchor selection strategy then guides the decision
which particular items are used as anchor items.

Several anchor selection strategies have already been proposed. Here, only those strategies
that do not require any information prior to data analysis, such as the knowledge of certain
DIF-free items, will be reviewed and presented in a straightforward notation in Section 7.2.3.
The reason for excluding strategies that require prior knowledge about DIF-free items from
this review is that in practical testing situations sets of truly DIF-free items are most likely
unknown and even the judgment of content experts is unreliable (Frederickx et al., 2010). New
suggestions of anchor selection strategies are often only compared to few alternative strategies
or in situations of only a limited range of the sample size and “have not been exhaustively
compared for the dichotomous case” (González-Betanzos and Abad, 2012, p. 2). Therefore,
in this chapter, we systematically evaluate the performance of the existing anchor selection
strategies for DIF analysis in the Rasch model by conducting an extensive simulation study.

Furthermore, we assess the appropriateness of the anchor selection strategies to find a suitable
short anchor (of four anchor items) and also their ability to select a suitable longer anchor,
which “is a challenging question for researchers and practitioners” (Wang et al., 2012, p. 19).
For practical research, recommendations how anchor items can be found appropriately are still
required (Lopez Rivas et al., 2009, p. 252). We also provide guidelines how to choose anchor
items when no prior knowledge of DIF-free items is at hand.

In addition to the existing strategies, new developments of anchor selection strategies have also
been encouraged (Wang et al., 2012, p. 19). Therefore, we also suggest three new anchor
selection strategies. The new anchor selection strategies are implemented and the results show
an improvement of the classification accuracy in the analysis of DIF.

The chapter is organized as follows. A brief summary of the technical aspects of the anchor
process in the Rasch model as well as details of the anchor classes, of the existing and of the
newly suggested anchor selection strategies are given in Section 7.2. The simulation design is
addressed in Section 7.3 and the results are discussed in Section 7.4. A concluding summary
and practical recommendations are presented in Section 7.5.
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7.2 Anchor methods

In this section, the anchor process is briefly summarized (for details see again Chapter 5). After
that, anchor classes and existing anchor selection strategies are reviewed and new anchor selec-
tion strategies are proposed. We, again, focus on the Rasch model where the item parameter
vector is β = (β1, . . . , βk)> ∈ Rk (where k denotes the number of items in the test). It is esti-
mated using the CML approach similar to Chapter 6. To solve the scale indeterminacy of the
item parameters, we impose the restriction β̃1 = 0. The corresponding covariance matrix V̂ar(β̃)
then contains zero entries in the first row and in the first column.

In accordance to Chapter 5, other restrictions, where the sum of a selection of items is set to
zero, are built using an indicator vector a that indicates those elements a` that are included in the
restriction with entries of ones and contains zero entries otherwise (e.g., a = (1, 1, 0, 0, 0, . . .)>

including item 1 and item 2). In order to obtain these other restrictions, the estimated item
parameters and the covariance matrix can be transformed by using the equations

β̂ = Aβ̃ (23)

and V̂ar(β̂) = AV̂ar(β̃)A>, (24)

where A = Ik −
1∑k

`=1 a`
1k · a> is a contrast matrix, Ik denotes the identity matrix and 1k denotes a

vector of one entries of length k.

7.2.1 The anchor process

We focus here on the situation where two groups are compared: the reference and the focal
group. In order to build a common scale for the item parameters, the same linear restriction

k∑
`=1

a`β̂
g
` =

∑
`∈A j

β̂
g
` = 0 (25)

is now imposed in each group g (Glas and Verhelst, 1995). A j ⊆ {1, . . . , k} denotes the set of
anchor items. Note that the set of items may depend on the item j currently investigated for DIF.
When the all-other method is used, all items except for the currently studied item j are used as
anchor items. The anchor set is then denoted as A j = {1, . . . , k} \ j. In contrast to this, when
e.g. four anchor items are selected as the anchor set, the anchor is independent of the currently
studied item, may include it and is denoted asA. If the anchor set contains only a single anchor
item `, the anchor set is denoted as a`.

The estimated item parameters β̂ = β̂(A j) depend on the choice of the anchorA j (what will be
suppressed in the following notation) and can again be obtained by transformation (using equa-
tion 23). The item parameter estimates are then used to calculate DIF indices or test statistics
T j = T j(A j) which also depend on the anchor. In this chapter, we, again, focus on the item-wise
Wald test to assess DIF in item j between the reference (ref) and the focal (foc) group that dis-
play equal item parameters under the null hypothesis of no DIF H0 : βref

j = βfoc
j (for more details,

again, Chapter 5 and the references therein).
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The results of the DIF analysis strongly depend on the choice of the anchor items, as previous
studies illustrated. If the anchor contains at least one DIF-item, it is referred to as contaminated
(see, e.g., Finch, 2005; Woods, 2009; Wang et al., 2012). The scales may be artificially shifted
apart and the false alarm rates of the DIF tests may be seriously inflated (see, e.g., Wang and Yeh
2003, Wang 2004, Wang and Su 2004, Finch 2005, Stark et al. 2006, Woods 2009). Instructive
examples that illustrate the artificial scale shift are provided by Wang (2004) and in Chapter 5
of this thesis.

7.2.2 Anchor classes

For distinguishing between the different approaches, we employ the framework for anchor
methods introduced in Chapter 5 where the anchor class determines characteristics of the an-
chor methods, such as a predefined anchor length, and the anchor selection strategy guides the
decision which items are used as anchor items. The combination of an anchor class together
with an anchor selection strategy is then termed an anchor method. Different anchor classes are
now briefly reviewed.

The constant anchor class consists of an anchor with a predefined, constant length. Usually, it
is claimed that a constant anchor of four items assures sufficient power (cf. e.g., Shih and Wang,
2009; Wang et al., 2012). An anchor selection strategy is needed to guide the decision which
items are used as anchor items. The all-other anchor class uses all items except for the currently
studied item as anchor and the equal-mean difficulty anchor class uses all items as anchor (see,
e.g., Wang, 2004, and the references therein). These latter two anchor classes do not require an
additional anchor selection strategy. Furthermore, iterative anchor classes build the anchor in
an iterative manner. The iterative backward class (used, e.g., by Drasgow 1987; Candell and
Drasgow 1988; Hidalgo-Montesinos and Lopez-Pina 2002) starts with all other items as anchor
and excludes DIF-items from the anchor, whereas the iterative forward anchor class starts with
a single anchor item and then, iteratively, includes items in the anchor (see Chapter 6).

Wang (2004) compared the constant anchor class implemented with 1, 2, 4, 10 and all DIF-free
items as anchor to the all-other and the equal-mean difficulty anchor class for the Rasch model
and other models and found appropriate results for DIF detection with the constant anchor
class in any condition as opposed to the all-other and the equal-mean difficulty anchor class.
When the anchor length of the DIF-free constant anchor was increased, the power increased as
well. However, note that in reality it is unknown which items are DIF-free and the anchor may
become contaminated. Both for the all-other and the equal-mean difficulty anchor classes, the
type one error rate was seriously inflated when the direction of DIF was unbalanced (i.e. the
DIF effects did not cancel out between groups and one group was favored in the test). This is of
utmost importance for practical testing situations since items truly free of DIF display artificial
DIF and may be eliminated by mistake. Since in Wang’s study the anchor items for the constant
anchor class were DIF-free by definition, it is yet to be explained how DIF-free anchor items
can be selected appropriately in practice.

Wang and Yeh (2003) compared the all-other anchor class with different anchor methods from
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the constant anchor class including 1, 4 or 10 DIF-free anchor items. The analysis was carried
out for the two-parameter logistic model, the three-parameter logistic model and the Graded
Response model. The authors again found the direction of DIF (together with the proportion of
unbalanced DIF-items) to strongly affect the results of the DIF analysis using the all-other class.
Since the latter was only suited for balanced DIF, the authors discourage from the application of
the all-other class since it is doubtful whether the situation of balanced DIF is met in practice
(Wang and Yeh, 2003; Wang et al., 2012). The constant anchor class yielded well-controlled
type one error rates. Four anchor items were found to assure sufficient power in the condition
of 1000 observations in each group similar to the findings of Shih and Wang (2009) and Wang
et al. (2012). Longer constant anchors achieved higher power but the location of a DIF-free
anchor is harder for longer anchors, too.

Addressing problems of different anchor methods, González-Betanzos and Abad (2012) inves-
tigated modified two-step versions of the constant single anchor class and the all-other class.
For the former, the anchor set is formed by all items that were found DIF-free with a pure sin-
gle anchor item, while for the latter, items displaying DIF using all other items as anchor were
excluded from the anchor set. These procedures were compared with pure single anchor items
– that differed in their discrimination and difficulty parameters – and the all-other class. Again,
the all-other class was inadvisable but all remaining methods displayed well-controlled type
one error rates and a high power when the effect of DIF was large. The two-step extensions
then found DIF-free anchor sets in the majority of the settings.

All three studies showed that the direction of DIF has a major impact on the results of the DIF
analysis for the all-other and the equal-mean difficulty anchor class as opposed to the constant
anchor class. The latter displays appropriate false alarm rates when the anchor items are DIF-
free. Thus, the constant anchor class is in principle able to yield appropriate results for the
DIF analysis when the anchor is DIF-free. However, since Wang and Yeh (2003), Wang (2004)
and González-Betanzos and Abad (2012) used prior knowledge of the set of DIF-free items
(that is unknown in real DIF analysis – as opposed to simulation analysis, where the true DIF
pattern is known) to select the constant anchor items, no information how well anchor selection
strategies without prior knowledge perform is yet available and “[f]urther research is needed to
investigate how to locate anchor items correctly and efficiently” (Wang and Yeh, 2003, p. 496).

Another anchor class was suggested in Chapter 6 of this thesis. Instead of a predefined anchor
length, the iterative forward anchor class builds the anchor in a step-by-step procedure. First,
one anchor item is used for the initial DIF test. As long as the current anchor length is shorter
than the number of currently presumed DIF-free items, one item is added to the current anchor
and DIF analysis is conducted using the new current anchor. The sequence which items are
added to the anchor is determined by the anchor selection strategy. In the simulation study in
Chapter 6, the iterative forward anchor class and the constant anchor class were combined with
two different anchor selection strategies and compared to the all-other class and the iterative
backward anchor class (that initiates with all other items as anchor and successively excludes
items from the anchor). The iterative forward anchor class was found to be superior since it
yielded high hit rates and, simultaneously, low false alarm rates when the sample size was large
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in any studied condition of balanced or unbalanced DIF if the number of significant threshold
anchor selection strategy (see Section 7.2.3) was employed.

To assess the appropriateness of the anchor selection strategies in this chapter, we combine them
with the constant four anchor class and the iterative forward anchor class. The reason for this is
that both classes require an anchor selection strategy and it is claimed that they assure sufficient
power when the anchor selection works adequately. Furthermore, both classes are structurally
different. The constant four anchor class always includes four anchor items, and, thus, leads
to a short anchor, whereas the iterative forward class allows for a longer anchor that is built
in an iterative way. The all-other, the equal-mean difficulty and the iterative backward class
displayed seriously inflated false alarm rates when the direction of DIF is unbalanced (Wang
and Yeh, 2003; Wang, 2004; González-Betanzos and Abad, 2012; Kopf et al., 2013b) and are,
thus, not considered as anchor classes in this chapter.

7.2.3 Anchor selection strategies

Several authors have proposed anchor selection strategies, some of which rely on prior know-
ledge of a set of DIF-free items or on the advise of content experts (for a literature overview
where this approach fails see Frederickx et al., 2010), while others are based on preliminary
item analysis (for a overview see Wang, 2004). This means that DIF tests are conducted to
locate (ideally DIF-free) anchor items and has been referred to as the DIF-free-then-DIF stra-
tegy by Wang et al. (2012). We focus here on anchor selection strategies based on preliminary
item analysis that do not require any prior information of DIF-free items since this will be most
common in practice.

The ranking order resulting from the anchor selection strategies is used within the anchor classes
to conduct the final DIF analysis. For the constant four anchor class, the items with the lowest
four ranks are selected as the final anchor set Afinal. Then, the DIF tests are carried out using
the anchor set Afinal. Since k − 1 parameters are free in the estimation, only k − 1 estimated
standard errors result (Molenaar, 1995a), the k-th standard error is determined by the restriction
and, hence, only k − 1 tests can be carried out. To overcome the problem that the classification
of an item as a DIF- or a DIF-free item is intended for each of the k items, we classify the first
final anchor item with the lowest rank to be DIF-free – a decision that may be false if even the
item with the lowest rank does indeed have DIF, but in this case this would be noticeable in the
final test results. Note that this decision is by no means as drastic as choosing the anchor items
only from the set of items that are known to be DIF-free in a simulation, as was done by Wang
and Yeh (2003) and Wang (2004) but cannot be done in any real study where the true DIF- and
DIF-free items are unknown.

For the iterative forward anchor class, items are selected into the anchor as long as the anchor
is shorter than the number of currently presumed DIF-free items. In this anchor class, anchor
items are selected in a step-by-step procedure following the ranking order that results from the
anchor selection. When the stopping criterion is reached, the final anchor setAfinal is found. The
final DIF analysis is carried out but, again, the first anchor item is classified DIF-free to account
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for the fact that only k − 1 tests can be carried out.

In the following, first, the strategies that are built on DIF tests using all other items as anchor are
reviewed. Second, selection strategies that rely on DIF tests with every item acting as constant
single anchor item for every other item are discussed. Third, three new strategies are suggested
at the end of the section. Note that the DIF tests mentioned in the next paragraphs are only
used as preliminary steps to assess the ranking order of candidate anchor items for the final DIF
analysis.

All-other selection

The all-other selection strategy (AO-selection) was proposed by Woods (2009) as discussed in
Chapter 5. Every item is tested for DIF using all remaining items as anchor items, yielding the
observed test statistic t j(A j) for every currently studied item j ( j = 1, . . . , k) with the all-other
anchor set A j = {1, . . . , k} \ j. A predefined number of anchor items is then chosen according
to the lowest ranks of the resulting absolute DIF test statistics:

rank
(
|t j(A j)|

)
.

The item displaying the lowest rank is the first candidate anchor item, whereas the item cor-
responding to the highest rank is the last candidate anchor item. (Note that, originally, Woods
(2009) suggested to use the ratios of the test statistics and the degrees of freedom that may vary
across items if the items display a different number of response categories. However, this is not
discussed here since the responses are always dichotomous in the Rasch model.)

The constant anchor method of 20% of the items based on the AO-selection was found to be
superior compared to the all-other anchor method in the majority of the simulated settings
and compared to the constant single anchor method based on the AO-selection (Woods, 2009).
Nevertheless, the author claimed that “[a] study comparing the strategy proposed here to the
various other suggestions for empirically selecting anchors is needed” (Woods, 2009, p. 53).

All-other purified selection

Recently, Wang et al. (2012) suggested a modification (here referred to as AOP-selection for all-
other purified selection) of the all-other anchor selection strategy proposed by Woods (2009)
by adding a scale purification procedure. Following the AO-selection, every item is tested for
DIF using all remaining items as anchor. Similar to the iterative procedures (used, e.g., by
Drasgow 1987; Candell and Drasgow 1988; Hidalgo-Montesinos and Lopez-Pina 2002), those
items displaying DIF are excluded from the set of anchor items and DIF tests are conducted
using the new anchor set. These steps are repeated until two successive steps reach the same
results. In the next step, a DIF test is conducted using the purified anchor Apurified. Here, the
first anchor item obtains no DIF test statistic, since only k − 1 test statistics are available, and
is, thus, omitted in the ranking of candidate anchor items. The ranking order of the remaining
k − 1 anchor candidates is defined by the lowest ranks of the absolute DIF test statistics

rank
(
|t j(Apurified)|

)
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(or if necessary the lowest ranks of the ratios of the test statistics and the degrees of freedom).

In a simulation study, Wang et al. (2012) found the modified AOP-selection to be superior to the
AO-selection since both methods displayed comparable results when DIF was balanced but the
AOP-selection yielded more often a DIF-free anchor set when DIF was unbalanced. Still, there
were conditions where the proportions of replications yielding a DIF-free anchor set were far
away from 100%, e.g. 14% for the AO- and 20% for the AOP-selection when the sample size
in each group was 250 in a test with 40% of 40 items favoring the reference group and when
ability differences were present.

Number of significant threshold selection

An anchor selection strategy that is a simplified version of the proposition of Wang (2004) is
here called number of significant threshold (NST) selection strategy. Every item j = 1, . . . , k
is tested for DIF using every other item ` , j as constant single anchor, yielding k · (k − 1)
test statistics t j(a`) with the corresponding p-values p j(a`). Note that the test statistics and p-
values display the following symmetry properties |t j(a`)| = |t`(a j)| and p j(a`) = p`(a j) since the
constant scale shift of one single anchor item is reflected in the test statistic of the item currently
investigated and vice versa. The number of significant DIF tests defines the ranking order of the
candidate anchor items

rank

 ∑
`∈{1,...,k}\ j

1
{
p j(a`) ≤ α

}
that is written as the number of p-values that do not exceed the threshold 0.05. Thus, the item
displaying the least number of significant DIF tests is chosen as the first anchor item. If more
than one item displays the same number of significant results, one of the corresponding items is
selected randomly.

Furthermore, Wang (2004) originally suggested the next candidate (NC) modification: The item
that was selected by the NST-selection strategy functions as the current single anchor item and
DIF tests are again carried out (see Wang, 2004, p. 249) where one DIF test statistic results for
every item except for the anchor item. The candidate is then included in the anchor if it displays
“the least magnitude” (Wang, 2004, p. 250) of (non-significant) DIF and the steps are repeated
until either the pre-defined anchor length (of e.g. four items) is reached or the candidate item
displays significant DIF. Since in Chapter 6 the NST-selection was found superior to the original
NC-strategy, only the former is investigated in this chapter.

Mean test statistic selection

In the study of Shih and Wang (2009), first, pure constant anchors of 1, 2, 4 and 10 items
were employed for DIF tests that yielded well-controlled type one error rates in any condition
with varying sample sizes, DIF proportions, DIF directions, test lengths and underlying IRT
models. To reach an ideally pure set of anchor items, the authors introduced the following
anchor selection procedure: For every item, a DIF test statistic is calculated using every other
item once as single anchor, yielding again k · (k − 1) test statistics t j(a`). After that, every item
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is assigned the mean absolute DIF test statistic and the predefined number of anchor items is
selected according to the lowest ranks

rank

 1
k − 1

∑
`∈{1,...,k}\ j

∣∣∣t j(a`)
∣∣∣ .

We abbreviate this method MT-selection (for mean test statistic selection). Shih and Wang
(2009) found high rates of correctly locating one or four DIF-free anchor items when the sample
size was high.

Mean p-value selection

We propose three alternative anchor selection strategies. First, we suggest an idea similar to the
MT-strategy of Shih and Wang (2009). Instead of the lowest mean absolute DIF test statistic
t j(a`) resulting from tests for every item using every remaining item as constant single anchor,
items are here chosen that display the highest mean p-value p j(a`) from the resulting signifi-
cance tests and, thus, (for easier comparability with the previous methods) the lowest rank of
the negative mean p-values

rank

− 1
k − 1

∑
`∈{1,...,k}\ j

p j(a`)

 .
This strategy is abbreviated MP-strategy (for mean p-value selection). Even though the p-values
represent a monotone decreasing transformation of the absolute test statistics, the means of both
measures may yield different ranking orders.

The next two suggestions were inspired by the threshold approach of the NST-selection of
Wang (2004). The author proposed to choose those items as anchor items that display the least
number of significant DIF test results. In Chapter 6 is was shown that this strategy was superior
to the AO-selection when the DIF direction was unknown prior to data analysis. The major
drawback using the NST-selection was that it was strongly affected by the sample size. The
reason for this is that the selection is based on the decisions of statistical significance tests
which are strongly influenced by the sample size. Therefore, the next two newly suggested
anchor selection strategies rely on a different criterion and both methods assume – similar to the
MT- and the MP-selection – that the majority of items is DIF-free, an assumption that is often
found in the construction of anchor or DIF methods (see, e.g., Shih and Wang, 2009; Magis and
De Boeck, 2011).

Mean test statistic threshold selection

For every item the absolute mean of the test statistics t j(a`) resulting from tests for every item
using every other item as single anchor is calculated and the resulting values are ordered. The
threshold for the MTT-selection (for mean test statistic threshold) is the (d0.5 · ke)-th ordered
value, which is indicated by the index in parenthesis, for an even number of items or the next
larger whole number in case of an odd number of items (indicated by the ceiling function d e).
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The number of absolute test statistics exceeding this threshold determines the ranking order of
candidate anchor items:

rank

 ∑
`∈{1,...,k}\ j

1

∣∣∣t j(a`)
∣∣∣ > 

∣∣∣∣∣∣∣∣ 1
k − 1

∑
`∈{1,...,k}\ j

t j(a`)

∣∣∣∣∣∣∣∣

(d0.5 · ke)


 .

The items corresponding to the lowest number of test statistics above the threshold are chosen
as anchor items. Here, we follow an argumentation similar to the argumentation of Shih and
Wang (2009, p. 193). When the anchor item is DIF-free, which is assumed to be the case for
the majority of the items, the DIF tests work appropriately. On the other hand, if a DIF-item
functions as the anchor, those items with the same direction of DIF display less DIF (or even no
DIF in the most indistinct situation when the magnitude of DIF is approximately the same for
the respective items), those items with the opposite direction of DIF display on average their
original magnitude of DIF plus the artificial magnitude of DIF of the anchor item and the items
truly free of DIF display on average the artificial DIF magnitude of the anchor item.

Thus, those DIF tests where the anchor is truly DIF-free should display the least absolute mean
test statistics. Since the majority of items – i.e. at least 50% of all k items – is assumed to be
DIF-free, the (d0.5 · ke)-th mean test statistic should correspond to a DIF-free item. In order to
use the information of every single test statistic as opposed to the mere mean values, we use
the indicator function to provide the information whether the single test statistics exceed the
(d0.5 · ke)-th ordered absolute mean test statistic. Furthermore, in case of unbalanced DIF, the
absolute mean test statistics may be very similar, when the DIF proportion is close to 0.5. The
binary decisions are assumed to yield more accurate classifications of the truly DIF-free items.
The selection strategy is designed for all directions of DIF and intended for all sample sizes.
In contrast to the MT-selection proposed by Shih and Wang (2009), we use the absolute mean
test statistics instead of the mean absolute test statistics. The reason for this is that all item
parameters vary slightly between reference and focal group due to sampling fluctuation. These
differences are expected to cancel out when the absolute values are taken after the mean statistic
and, hence, should yield a better threshold.

Mean p-value threshold selection

Similar to the MTT-selection, the threshold of the MPT-selection (for mean p-value threshold)
relies again on DIF tests for every item using every other item as constant single anchor. Now,
the (d0.5 · ke)-th ordered (from large to small) value (or the next larger whole number) of the
mean of the resulting p-values p j(a`) is used as the threshold. The ranking order is defined by
the number of tests per item that yields p-values exceeding the threshold p-value

rank

− ∑
`∈{1,...,k}\ j

1

p j(a`) >

 1
k − 1

∑
`∈{1,...,k}\ j

p j(a`)


(d0.5 · ke)


 .

We, again, assume the classification of DIF-free anchor items to be more accurate compared
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to the MP-selection, since the individual test information is used and not only the mere mean
values. The method is again relying on the assumption that the majority of items is DIF-free
and designed for both situations, balanced and unbalanced DIF, and all sample sizes.

In summary, the newly suggested methods are developed for balanced and unbalanced DIF situ-
ations and should, thus, outperform not only the AO-selection that initiates with the potentially
biased DIF test results using the all-other method, but also the AOP-selection that may not be
able to exclude all DIF-items from the anchor set when the proportion of DIF-items is high
(Wang et al., 2012). In comparison with the NST-selection, which uses the binary decisions of
the significance tests (Woods, 2009), the newly suggested methods should be less affected by
sample size.

While the MT- and the MP-selection use mere mean values, the MPT- and the MTT-selection
use all individual test results and are, therefore, expected to better distinguish between DIF- and
DIF-free anchor items. By employing a threshold, the new methods should select those items as
anchor that display little artificial DIF which can be caused by contamination (see, e.g., Finch,
2005; Woods, 2009) or by random sampling fluctuation (Kopf et al., 2013b).

7.3 Simulation study

In order to evaluate the performance of the newly suggested anchor selection strategies, we
conducted an extensive simulation study in the free R system for statistical computing (R Deve-
lopment Core Team, 2011).

Parts of the simulation design were inspired by the settings used by Wang et al. (2012). Each
setting from the simulation study is replicated 1000 times to ensure reliable results.

7.3.1 Data generating processes

One replication corresponds to a data set that contains the information of the test including the
item responses, the group membership and the ability variable.

• Test characteristics

Here, we consider a test length of k = 40 items.

• IRT model

The responses follow again the Rasch model

P (Ui j = 1 | θi, β j) =
exp(θi − β j)

1 + exp(θi − β j)

with the difficulty parameters β = (-2.522, -1.902, -1.351, -1.092, -0.234, -0.317, 0.037,
0.268, -0.571, 0.317, 0.295, 0.778, 1.514, 1.744, 1.951, -1.152, -0.526, 1.104, 0.961,
1.314, -2.198, -1.621, -0.761, -1.179, -0.610, -0.291, 0.067, 0.706, -2.713, 0.213, 0.116,
0.273, 0.840, 0.745, 1.485, -1.208, 0.189, 0.345, 0.962, 1.592) used by Wang et al. (2012).
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The first 10, 20, 30, 40 or 45 percent of the items (cf. paragraph DIF proportion in the
next section) are simulated as the DIF-items.

• Ability distribution

The ability parameters θi follows a standard normal distribution for the reference group
θref ∼ N(0, 1) and a normal distribution with a lower mean for the focal group θfoc ∼

N(−1, 1). Thus, ability differences are present in this simulation study.

7.3.2 Manipulated variables

In addition to the anchor selections investigated by Wang et al. (2012), namely the AO- and the
AOP-selection, five other anchor selection strategies and also the perfect selection of DIF-free
items that serves as a benchmark method are included (for a summary see Table 11).

• Sample size

The sample size is defined by the following pairs of reference and focal group sizes:
(nref, nfoc) ∈ {(250, 250), (500, 250), (500, 500), (750, 500), (750, 750), . . ., (1500, 1500)}.

• DIF proportion, DIF magnitude and DIF direction

The proportion of simulated DIF-items is set to %DIF ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.45}. In
order to save space, we will not discuss all DIF proportions in detail, but only the most
challenging situation with 45% DIF-items. An outlook on the remaining results with
other DIF proportions is presented in Section 7.4.5.
If an item j is a simulated DIF-item, the magnitude of DIF is set to the constant value of
∆DIF = βref − βfoc = ±0.6 in the main simulation study. An outlook on results when other
magnitudes are present is given in Section 7.4.5.
The sign of ∆DIF is set consistent with the intended direction of DIF. The direction of DIF
is either balanced or unbalanced. In case of balanced DIF, the DIF-items either favor the
focal or the reference group, and on average, no group has an advantage in the test. In
case of unbalanced DIF, all items favor the reference group.

• Anchor methods

Anchor classes: All anchor selection strategies are combined with two anchor classes,
the constant four anchor class (abbreviated constant4) and the iterative forward class
(abbreviated forward).

Anchor selections: Eight different anchor selection strategies (for a brief summary see
Table 11) are compared across the simulated settings: The AO-, AOP11-, NST- and MT-

11In case all items were excluded from the anchor in the initial step (which happened in only 2 out of 121, 000
replications), here, one single anchor item was chosen using the AO-strategy. When the constant four anchor
class was combined with the AO-strategy, four anchor items were selected according to the lowest ranks of the
resulting DIF test statistics using the AO-selected anchor item. Similarly, when the iterative forward anchor
class was investigated, the ranking order was then built from the resulting DIF test statistics using the AO-
selected anchor item and the iterative procedure was conducted normally.
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selection as well as the newly suggested MP-, MTT- and MPT-selection and the perfect-
selection that serves as the benchmark condition: The perfect selection for the four anchor
class includes four randomly chosen DIF-free items. For the iterative forward anchor
class, a random ranking order that includes the DIF-free items first, followed by the DIF-
items is handed to the procedure. The remaining steps of the iterative procedure are
carried out as usual. Thus, for the ‘perfect’ forward method, it may happen that DIF-items
occur in the anchor because the length of the iteratively selected anchor may exceed the
length of the sequence of DIF-free items, which is not the case for the perfect four anchor
method.

Anchor methods: 16 anchor methods result from the combination of the eight anchor
selection strategies with the two anchor classes. Their names (constant4-AO, constant4-
AOP, constant4-NST, constant4-MT, constant4-MP, constant4-MTT, constant4-MPT, con-
stant4-perfect, forward-AO, forward-AOP, forward-NST, forward-MT, forward-MP, for-
ward-MTT, forward-MPT, forward-perfect) include the anchor class (constant4 or for-
ward) together with the abbreviation of the anchor selection.

7.3.3 Outcome variables

In order to evaluate whether the anchor selection strategies locate anchor items that allow to
correctly classify DIF- and DIF-free items, the following outcome variables are recorded in
each of the 1000 replications of one simulated setting:

• False alarm rate

For a single replication the false alarm rate is defined as the proportion of DIF-free items
that are (erroneously) diagnosed with DIF in the final DIF test. The estimated false alarm
rate for each simulated setting is computed as the mean over all 1000 replications and,
hence, represents the type one error rate of the final DIF test.

• Hit rate

The hit rate for a single replication is computed as the proportion of DIF-items that are
(correctly) diagnosed with DIF in the final DIF test. Analogously, the estimated hit rate
is again computed as the mean over all 1000 replications and, thus, corresponds to the
statistical power of the final DIF test.

7.4 Results

In the following, we restrict the presentation of the main simulation study to the extreme con-
dition where 45% of the items display DIF. The reason for this is that large proportions of
DIF-items may indeed occur in practical testing situations (examples can be found in Shih and
Wang 2009, p. 186 and Allalouf et al. 1999, p. 185) and the anchor selection strategies should
be compared in a situation where the classification of DIF- and DIF-free items is rather chal-
lenging.
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Selection strategy Description of the anchor selection strategy

AO-selection The items are ranked according to the lowest absolute test
statistics |t j(A j)|.

AOP-selection Beginning with all other items as anchor, DIF-items are iteratively
excluded from the anchor until the purified anchor setApurified is
reached; the items are ranked according to the lowest absolute test
statistics |t j(Apurified)|.

NST-selection The items are ranked according to the lowest number of
significant test statistics t j(a`).

MT-selection The items are ranked according to the lowest mean absolute test
statistics 1

k−1

∑
`∈{1,...,k}\ j

∣∣∣t j(a`)
∣∣∣.

MP-selection The items are ranked according to the largest mean p-values
1

k−1

∑
`∈{1,...,k}\ j p j(a`).

MTT-selection The items are ranked according to the smallest number of test
statistics t j(a`) exceeding the (d0.5 · ke)-th ordered absolute mean
test statistic

∣∣∣ 1
k−1

∑
`∈{1,...,k}\ j t j(a`)

∣∣∣.
MPT-selection The items are ranked according to the largest number of p-values

p j(a`) exceeding the (d0.5 · ke)-th ordered mean p-value
1

k−1

∑
`∈{1,...,k}\ j p j(a`).

perfect The perfect ranking consists of randomly permuted DIF-free
items followed by randomly permuted DIF-items.

Table 11 – A short summary of the anchor selection strategies that are investigated in this
chapter.

7.4.1 Anchor selection for the constant four anchor class

In this section, the anchor selection strategies combined with the constant anchor class are
regarded. Thus, four anchor items were selected by the respective strategy and the results of
the final DIF tests are discussed. Figure 28 contains the results of the false alarm rate (top row)
and the hit rate (bottom row) in case of 45% DIF-items that did not systematically favor one
group (balanced DIF pattern, left column) or that systematically favored the reference group
(unbalanced DIF pattern, right column).

In the balanced condition, almost all anchor methods displayed false alarm rates holding the
5% level in the observed range of the sample size. The only exception was the method relying
on the NST-selection with the maximum observed false alarm rate of 0.09 that occurred at the
sample size of 750 observations in each group. The corresponding false alarm rate for the NST-
selection displayed an inversely u-shaped pattern that was also found and discussed in detail in
Chapter 6. The perfect selection was near the significance level, while the remaining methods
(except for the constant4-NST method) stayed below 0.05.
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Figure 28 – Balanced condition: 45% DIF-items with no systematic advantage for one
group; unbalanced condition: 45% DIF-items favoring the reference group;
sample size varied from (250, 250) up to (1500, 1500); top row: false alarm
rates; bottom row: hit rates.

The method relying on the NST-strategy also displayed a lower hit rate compared to the other
anchor methods. All remaining anchor methods displayed a hit rate that increased with the
sample size. Surprisingly, the perfect anchor did not display a substantially higher hit rate. In
summary, four anchor items were selected appropriately in the balanced condition by all anchor
selections except for the NST-selection strategy in regions of medium sample sizes.

In the unbalanced condition, the anchor selections strongly differed regarding their ability to
select four anchor items that yielded appropriate final DIF tests. Both selections based on DIF
tests using all other items as anchor were not appropriate for the unbalanced DIF condition: The
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AO-selection yielded a strongly augmented false alarm rate that even increased with the sample
size. The purified AOP-selection did not solve the problem, even though the false alarm rate was
less augmented. Similarly, the MT-selection that was based on DIF tests with every other item
as single anchor displayed an increasing false alarm rate. The NST-selection, again, yielded
an inversely u-shaped pattern with a false alarm rate that exceeded the significance level when
the sample sizes were below 1500 observations in each group. In regions of small to medium
sample sizes, the newly suggested methods (the MP-, the MTT- and the MPT-selection) out-
performed the existing strategies. The MP-selection that chose the anchor items according to
the largest mean p-values (as opposed to the mean absolute test statistics in the MT-selection)
yielded an almost constant mean false alarm rate around 0.12 (as opposed to the higher and
increasing false alarm rate of the MT-selection). The MTT-selection yielded an almost con-
stant false alarm rate around 0.16. The MPT-selection reached the lowest false alarm rate that
was decreasing and well-controlled in regions of medium and large sample sizes. The perfect
selection was, again, near the significance level.

The hit rates in the unbalanced condition also strongly differed across the anchor selections.
The highest hit rate occurred for the perfect selection followed by the newly suggested anchor
selections: The MPT-selection that corresponded to the lowest false alarm rate also showed
the highest hit rate and was, thus, the best performing method to select four anchor items
empirically. The MP-selection displayed the second best result in the majority of the simu-
lated settings, followed by the MTT-selection. The existing anchor selections (the AO-, AOP-,
NST- and MT-selection) displayed far lower hit rates and are, thus, not recommended for the
DIF-free-then-DIF strategy. Only when 1500 observations were available in each group, the
NST-selection also yielded a low false alarm rate in combination with a high hit rate.

In summary, the MPT-selection outperformed the other suggestions in selecting four anchor
items by yielding a low false alarm rate while simultaneously achieving a high hit rate. The
newly suggested MP-selection yielded clearly better results than the MT-selection even though
both methods were structurally very similar and the MPT-selection outperformed the MTT-
selection. Thus, an anchor selection based on p-values instead of mean test statistics is advisable
for selecting an anchor of constant length four. As expected, the methods based on threshold
comparisons (MPT- and MTT-selection) improved the final DIF test results compared to the
corresponding strategies based on mere mean values (MP- and MT-selection).

7.4.2 Anchor selection for the iterative forward anchor class

In the next section, we investigate the combination of the anchor selection strategies with the
iterative forward anchor class that was designed to specify a longer anchor (see Chapter 6).
Similar to Section 7.4.1, Figure 29 includes the results for the false alarm rate (top row) and the
hit rate (bottom row) in case of 45% DIF-items that did not systematically favor one group (bal-
anced DIF pattern, left column) or that systematically favored the reference group (unbalanced
DIF pattern, right column).

In case of balanced DIF, there was neither a visible difference in the false alarm rates nor in the
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Figure 29 – Balanced condition: 45% DIF-items with no systematic advantage for one
group; unbalanced condition: 45% DIF-items favoring the reference group;
sample size varied from (250, 250) up to (1500, 1500); top row: false alarm
rates; bottom row: hit rates.

hit rates for any of the investigated methods. Again, all selections yielded test results similar to
the iterative method based on the perfect anchor. Hence, all selection strategies were advisable
and the iterative forward anchor class was robust against the anchor selection strategy employed
in this case.

In contrast to this, the results of the final DIF tests varied notably with the anchor selection
strategies when DIF was unbalanced. The largest false alarm rates occurred for the AO-, AOP-
and also the MT-method that were again not suited to locate an anchor in the unbalanced con-
dition. Their false alarm rates even increased with the sample size. The NST-selection was
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more appropriate in selecting the longer iterative anchor since it achieved a lower false alarm
rate in regions of medium to large sample sizes. The MP- and the MPT-selection now yielded
test results with very similar false alarm rates (with a slight advantage for the threshold method)
that also clearly exceeded the significance level. The lowest false alarm rate among the em-
pirical selection strategies occurred for the forward-MTT method. But there is still room for
improvement as the perfect anchor selection still displays test results with a lower false alarm
rate, especially in regions of small or medium sample sizes.

The hit rates of the unbalanced condition again increased with the sample size. Except for the
perfect forward method, the newly suggested forward-MTT method reached the highest hit rate
in the vast majority of the simulated settings. In regions of small sample sizes, it was followed
by the two other newly suggested methods (the forward-MP and the forward-MPT method),
whereas in regions of medium to large sample sizes, the forward-NST method reached the
second best hit rate. The remaining AO-, AOP- and MT-strategy displayed DIF test results
reaching unsatisfying hit rates.

In summary, the newly suggested MTT-selection outperformed the other empirical selection
strategies by yielding test results with a low false alarm rate and a high hit rate in any regarded
condition. Compared to the selection of an anchor of constant length four, where the MPT-
selection based on p-values reached the best final DIF test results, for the longer, iteratively
selected anchor the MTT-selection that is built on mean test statistics is advisable. A detailed
explanation for this finding will be given in the next section. Again, the methods based on
threshold comparisons (MPT- and MTT-selection) outperformed the corresponding strategies
based on mere mean values (MP- and MT-selection).

7.4.3 Comparison of the mean test statistic and p-value threshold selection

To explain the fact that the MPT-selection yielded better results when it was combined with
the constant four anchor class, whereas the MTT-selection performed better combined with the
iterative forward anchor class, the ranking order of candidate anchor items is now regarded
in detail for one balanced and one unbalanced setting (again with 45% DIF-items and 1000
observations in each group). Figure 30 contains the proportions of DIF-items in the ranking
order of candidate anchor items. In the regarded setting, 22 items were DIF-free and, ideally,
the 22 lowest ranks (from left to the vertical line) should display low proportions of DIF-items.

In the balanced condition (Figure 30, top panel), the first items of the sequence of anchor can-
didates – i.e. the items up to the vertical line – displayed low proportions of DIF-items over the
simulation runs for both the MPT-selection (black bars) and the MTT-selection (gray bars). In
contrast to this, the items that were assigned the highest ranks – i.e. the items to the right of the
vertical line – displayed large proportions of DIF-items. Thus, both anchor selection strategies
yielded appropriate ranking orders that clearly separated DIF- and DIF-free items: The first
candidates displayed low proportions of DIF-items, whereas the last candidates displayed large
proportions of DIF-items as intended for all ranks above 22.

In the unbalanced condition (Figure 30, bottom panel), the separation of candidates with low



7.4 Results 141

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.

MPT−selection

MTT−selection

Proportions of DIF−items in the ranking order of candidate anchor items: balanced DIF pattern
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.

MPT−selection

MTT− selection

Proportions of DIF−items in the ranking order of candidate anchor items: unbalanced DIF pattern, all items favor reference

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 30 – Top row: proportion of DIF-items in the ranking order of anchor candidates
in the balanced condition: 45% DIF-items with no systematic advantage for
one group; bottom row: proportion of DIF-items in the ranking order of
anchor candidates in the unbalanced condition: 45% DIF-items favoring the
reference group; sample size was set to 1000 observations in each group.

proportions of DIF-items for the first ranks and high proportions for the last ranks was harder
for both methods. Now the first anchor candidates displayed higher proportions of DIF-items.
Generally, the MTT-selection (gray) yielded lower DIF-proportions for items up to the vertical
line compared to the MPT-selection (black) and was, thus, better suited to locate a longer anchor.
However, when an anchor of constant length four was intended, only the first four candidates
were included in the anchor. The first four ranks selected by the MPT-selection displayed lower
proportions of DIF-items items compared to the MTT-selection (see very left of Figure 30,
bottom panel). Thus, the MPT-selection was better suited to locate four anchor items.

In summary, the first anchor candidates were more likely found from the set of DIF-free items
by the MPT-selection, whereas the MTT-selection was better suited for longer anchors. The
next section addresses whether one of the two best performing methods can be considered as
superior.

7.4.4 Comparison of the best performing methods

In order to compare the results of the constant4-MPT method and of the forward-MTT method,
we again restrict the analysis to 45% DIF-items (see Figure 31) that are either balanced (left
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column) or unbalanced (right column). The false alarm rates and the hit rates are now illustrated
together with the empirical confidence intervals that are computed as the 2.5% and the 97.5%
quantile from the 1000 replications.
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In the balanced case, both methods led to low false alarm rates that fluctuated less for the
constant4-MPT method which should be preferred with respect to the false alarm rate. In con-
trast to this, the forward-MTT method achieved a higher and simultaneously less fluctuating hit
rate and was, hence, superior regarding the hit rate. Only when the sample size was large, the
constant4-MPT method might have a slight advantage by yielding a lower and less fluctuating
false alarm rate and a comparably high hit rate.

In the unbalanced condition, on one hand, the constant4-MPT method led to a lower false
alarm rate, especially when the sample size was small. On the other hand, the false alarm rate
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of the forward-MTT method displayed far less fluctuation. It may be preferred in regions of
large sample sizes since the results were more reliable. Regarding the hit rate, the forward-
MTT method was superior since the hit rate was not only slightly higher but also, again, less
fluctuating.

In summary, the comparison of the constant4-MPT and the forward-MTT method did not
clearly show the superiority of one of those methods. Only when the sample size was large,
the constant4-MPT method was superior regarding a lower and less fluctuating false alarm rate
together with a comparably high hit rate in the balanced case and the forward-MTT method
outperformed the constant4-MPT method by yielding a higher hit rate and more reliable results
due to less fluctuation within the hit rate as well as within the false alarm rate in the unbal-
anced case. Section 7.4.3 showed that the first anchor candidates were more likely found from
the set of DIF-free items by the MPT-selection, whereas the MTT-selection was better suited
for longer anchors. Future research might compare both methods when a certain proportion of
anchor candidates is excluded for the MTT-selection and the iterative forward anchor is only
allowed to grow up to a certain proportion of currently presumed DIF-free items.

7.4.5 Further simulated settings

In this section, further simulated settings are summarized briefly. In addition to the settings
where 45% of the items displayed DIF, also smaller proportions of DIF-items were regarded
and the magnitude of DIF was also generated normally and from a sequence (see below) to
avoid artificial results. All further manipulated variables influenced the results of the final DIF
tests.

Null hypothesis

Under the null hypothesis of no DIF, the methods from the constant four anchor class combined
with an empirical anchor selection strategy yielded false alarm rates between 0.02 and 0.04,
whereas all methods from the iterative forward class together with the constant4-perfect method
exhausted the significance level.

Constant DIF magnitude and other DIF proportions

Generally, the smaller the proportions of simulated DIF-items were, the weaker were the ef-
fects of the employed anchor selection strategy. Under the alternative, when the constant DIF
magnitude was regarded together with different proportions of DIF-items in the balanced con-
dition, again all constant four anchor methods held the 5%-level and displayed high hit rates.
The only exception was the NST-selection that yielded the u-shaped patterns for the false alarm
rate whose shape sharpened the larger the DIF proportion was. In the unbalanced condition
with the constant DIF magnitude, the existing constant four methods were outperformed by the
new suggestions when the DIF proportion was 30% or higher and the advantage – measured
by a lower false alarm rate and a higher hit rate – of the new MP-, MPT- and MTT-selection
increased with the proportion of DIF. Only with 40% of DIF-items or more, the MPT-selection
had an visible advantage compared to the other new suggestions.
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In accordance with the previous results from Section 7.4.2, the iterative anchor class was robust
against the anchor selection strategy when DIF was balanced independent of the proportion of
DIF-items. Similarly to the results of the constant four anchor class, the advantage for the
forward-MTT method occurred when the unbalanced DIF proportion was 40% or higher.

Further DIF magnitudes

In addition to the constant DIF magnitude presented in the previous sections, we have replicated
the main results of our simulation study with two other DIF magnitudes that also yielded a mean
absolute difference in the DIF-item parameters of Mean(|∆DIF|) = 0.6. In contrast to the constant
DIF magnitude, the DIF magnitude was generated normally ±∆DIF ∼ N(0.6, 0.01) and from
the sequence {0.2, 0.4, . . . , 1.0} (abbreviated uniform) with the sign of ∆DIF consistent with the
intended direction of DIF.

When 45% balanced DIF-items were considered, there were no visible differences for the an-
chor selection strategies (except for the constant4-NST method) and the results were, thus, not
displayed here. When 45% unbalanced DIF-items were considered, the newly suggested selec-
tion strategies outperformed the existing strategies in the majority of the unbalanced settings.

Figure 32 contains the false alarm rate (top row) and the hit rate (bottom row) in case of 45%
unbalanced DIF-items of the selections combined with the constant four anchor class. The
magnitudes generated constant (also depicted in Figure 28, right column), normally and from
the sequence are ordered according to their variation (increasing from the left column to the
right column).

One interesting point here is that the advantage of the threshold methods (the MPT- compared
to the MP-selection and also the MTT- compared to the MT-selection) decreased when the
variation of the DIF magnitude increased. The reason for this is that the same magnitude of
DIF induces the most indistinct situation for the DIF tests since all items that have the same
magnitude of DIF displayed no DIF in the tests when one of these items functions as the anchor.
Anchor selection strategies must then be designed in a way such that they do not select those
items displaying artificial DIF which can be caused by contamination or by random sampling
fluctuation (for a more detailed discussion, see Chapter 6).

When the iterative forward anchor class is regarded in the setting of 45% unbalanced DIF-
items (see Figure 33), again the MTT-selection – and the NST-selection for large sample sizes
– reached the best results. The remaining existing methods were inadvisable. When the newly
suggested methods were regarded, the superiority of the MTT-selection vanished when the vari-
ation of the DIF magnitude increased.

In settings where the DIF proportion was lower and the effects of the DIF magnitude were
generated normally or from the sequence, again, the effects of the anchor selection strategies
were less strongly developed. Still, large proportions of DIF may occur in practical research
situations (Shih and Wang, 2009). Hence, anchor selection strategies should also perform satis-
fyingly in these challenging situations.
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Figure 32 – Unbalanced condition: 45% DIF-items favoring the reference group; sample
size varied from (250, 250) up to (1500, 1500); magnitude of DIF: constant,
normal and from the sequence {0.2, 0.4, . . . , 1.0}; top row: false alarm rates;
bottom row: hit rates.

In summary, a variety of simulated settings were considered in the present simulation study.
The additional settings illustrate that the correct classification of DIF- and DIF-free items got
even more challenging, when the proportion of DIF was large. The difference between the
new anchor selections decreased when the variation of the differences between the DIF-item
parameters of the reference and focal group increased. The further results substantiate that the
threshold selections (MTT- and MPT-selection) outperformed the corresponding mere mean
value selection strategies (MT- and MP-selection). Finally, none of the additionally considered
simulation settings contradicted the recommendation to use the MPT-selection when the con-
stant four anchor class is used and the MTT-selection when the iterative forward anchor class
is employed.

7.5 Discussion and practical recommendations

In this chapter, we introduced three new anchor selection strategies and compared them to
existing methods that do not rely on any prior knowledge of DIF-free items. Moreover, we
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Figure 33 – Unbalanced condition: 45% DIF-items favoring the reference group; sample
size varied from (250, 250) up to (1500, 1500); magnitude of DIF: constant,
normal and from the sequence {0.2, 0.4, . . . , 1.0}; top row: false alarm rates;
bottom row: hit rates.

introduced a straightforward notation of the anchor selection strategies to facilitate the im-
plementation and the usage of the newly suggested anchor selection strategies. An extensive
simulation study was conducted to evaluate the performance of the anchor selection strategies
in combination with the constant four anchor class and the iterative forward anchor class. The
two anchor classes are structurally different, since the constant four anchor class always uses a
short anchor of constant length four, whereas the iterative forward class determines the anchor
length in an iterative way and usually yields a longer anchor.

Our analysis showed that the results of the DIF tests evaluated by means of the false alarm
and the hit rate strongly depended on the anchor selection strategies employed. This highlights
the importance of a suitable anchor selection strategy that allows the researcher to correctly
classify DIF- and DIF-free items and to study the underlying causes of DIF (Jodoin and Gierl,
2001). Consistent with previous results (see, e.g., Wang and Yeh, 2003; Wang, 2004; González-
Betanzos and Abad, 2012; Kopf et al., 2013b), seriously inflated false alarm rates occurred if the
anchor selection did not work appropriately, especially when DIF was unbalanced. This was the
case for several existing anchor selection strategies. Anchor selections based on the all-other
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anchor method (the AO- and the AOP-selection) are inadvisable, since the tests were biased
in the unbalanced DIF condition and even additional purification steps included in the AOP-
selection were not able to completely reduce the bias. Hence, we advise against constructing
new anchor selection strategies that use all other items as anchor. Unsatisfactory results were
also found for the MT-selection that is based on mean absolute test statistics resulting from DIF
tests for every item using every other item as single anchor. In the vast majority of the simulated
settings, the newly suggested anchor selection strategies based on a threshold criterion clearly
outperformed the existing suggestions.

Our results showed that the appropriateness of the anchor selection not only depended on the
sample size, the proportion of DIF-items and the direction of DIF, but also on the intended
anchor length and on the DIF magnitude.

In case of the selection of a short anchor of constant length four, the MPT-selection outper-
formed all other investigated empirical anchor selection strategies by yielding a low false alarm
rate and simultaneously reaching a high hit rate in all regarded conditions. Thus, we recommend
to use the MPT-selection if a short constant anchor length is intended.

When the selection strategies were combined with the iterative forward anchor class, the newly
suggested MTT-selection reached the best results in the majority of the simulated settings and is,
thus, recommended for DIF analysis when the iterative forward anchor class is used. Moreover,
the results showed that the MTT-selection is better suited if a longer anchor length is intended.

Furthermore, first results indicate that neither the constant4-MPT nor the forward-MTT method
was clearly superior regarding strictly smaller and less fluctuating false alarm rates and higher
and less fluctuating hit rates. Only when DIF was balanced and the sample size was large, the
constant4-MPT method might have a slight advantage by yielding a lower and less fluctuating
false alarm rate and a comparable hit rate. On the other hand when DIF was unbalanced and
the sample size was large, the forward-MTT method might have a slight advantage by yielding
a higher hit rate and more reliable results due to less fluctuation within the hit rate as well as
within the false alarm rate.

Nevertheless, the benchmark method of the perfect anchor selection still reached lower false
alarm rates and higher hit rates in regions of small to medium sample sizes when DIF was sim-
ulated unbalanced. Hence, new developments for anchor selection strategies that ideally follow
the threshold approach are needed to further improve the classification of DIF- and DIF-free
items when the sample sizes are small. When the sample sizes are large, the newly suggested
constant4-MPT and the forward-MTT method reached satisfying results in our simulation study.
Future research may investigate the performance of these methods when other IRT models or
other DIF tests are used and may evaluate modifications of the iterative anchor method such as
the exclusion of the first anchor candidates resulting from the MTT-selection.
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8 Outlook on anchor selection strategies for multiple
group comparisons in DIF analysis

Summary: Explicit anchor selection strategies that locate the anchor items have been devel-
oped and investigated only for the comparison of two groups, namely the reference and the
focal group. However, multiple group comparisons are highly relevant for practical testing
situations even if they are controversially discussed. Thus, in this chapter, we discuss two
alternative ways to address the anchor problem for multiple group comparisons. The first al-
ternative is to select an anchor set for each paired comparison. The second alternative is a
two-step approach to conduct item-wise paired multiple group comparisons using a common
set of anchor items. In the first step, generalizations of anchor selection strategies to multiple
group comparisons are suggested by means of two aggregation rules. In the second step, item-
wise paired multiple group comparisons are conducted using the anchor set found in the first
step.

Keywords: Rasch model, differential item functioning (DIF), anchor selection, anchor class,
multiple group comparisons, uniform DIF, measurement invariance

8.1 Introduction

The analysis of differential item functioning (DIF) has attracted much attention in the field of
psychological and educational testing. The reason for this is that if DIF is present, the test
results no longer represent the ability alone and the groups of test-takers cannot be compared in
an objective, fair way as highlighted in Section 3.2.

DIF occurs if test-takers from different groups display different probabilities of solving an item
even if they have the same latent trait. Variables typically proposed for testing include age,
gender, ethnicity and language, depending on the objective of the assessment (cf., e.g., Gelin
et al., 2004; Perkins et al., 2006; Woods et al., 2009; Pedraza et al., 2009). Thus, DIF anal-
ysis is very likely intended for more than two groups (see Penfield, 2001, for more practical
examples of several focal groups). Ideally, the DIF analysis would consist of item-wise paired
multiple group comparisons that answer the question which items display DIF and between
which groups.

However, there are several problems associated with item-wise paired multiple group compar-
isons: the number of falsely significant tests increases with the total number of conducted tests,
the statistical power of paired comparisons may be lower compared to simultaneous tests over
all groups and the computational effort may be high (Penfield, 2001). The first two arguments
are inherent to the multiple testing situation. To reduce the number of falsely significant tests,
adjustments for multiple testing are necessary and result in a stricter significance level that is
theoretically supposed and empirically confirmed to reduce the statistical power (e.g. Penfield,
2001). Critical aspects of this decision will be addressed in Section 10.1.2. The computational
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burden, however, can be lowered easily by using a computationally non-intensive test statistic,
such as the Wald test (see, e.g., Glas and Verhelst, 1995) for DIF-detection.

To solve the problem of the reduced power, Penfield (2001) suggested to conduct item-wise
tests simultaneously over all groups. This approach has the disadvantage that the tests only
answer the question which items display DIF and not yet between which groups. Since the
group information may be crucial for the study of the underlying causes of DIF, the author
recommends to conduct post-hoc tests consisting of item-wise paired comparisons between
the groups (Penfield, 2001, p. 256). Similarly, Kim et al. (1995) recommended to compare
the groups pairwise after the item-wise simultaneous test indicated DIF. In addition, item-wise
paired multiple group comparisons may also provide useful insights when they are used as post-
hoc tests for groups that were empirically determined e.g. by latent class approaches (Rost,
1990; Rost and von Davier, 1995) or by Rasch trees (Strobl et al., 2013).

This highlights the importance of the item-wise paired multiple group comparisons. These
paired comparisons – e.g. using the item-wise Wald test that relies on the comparison of the
estimated item parameters – require an anchor, regardless of whether they are conducted for all
items or only for those test items that displayed significant DIF in an item-wise simultaneous
test. Note, however that statistical tests conducted post-hoc may also be affected by the effects
described by Leeb and Pötscher (2005) and Berk et al. (2010).

For the anchor process, methods that rely on an explicit anchor selection are advisable (see
Chapter 7 for a detailed discussion). Several authors have suggested anchor selection strategies
to overcome the risk of anchor contamination i.e. the risk that at least one anchor item is a
DIF-item (see, e.g., Finch, 2005; Woods, 2009; Wang et al., 2012). Contamination can cause
seriously increased false alarm rates (see, e.g., Wang and Yeh, 2003; Wang, 2004; Wang and Su,
2004; Finch, 2005; Stark et al., 2006; Woods, 2009; Kopf et al., 2013c) and, hence, items truly
free of DIF may appear to have DIF. This jeopardizes the results of the DIF analysis as well
as the associated investigation of the causes of DIF (Jodoin and Gierl, 2001). Thus, a suitable
anchor selection is crucial for suitable DIF analysis. Nevertheless, the development of anchor
selection strategies focused only on the comparison of two groups.

8.2 Alternative I: Selection of an anchor set for each paired
comparison

If paired tests are intended for multiple groups, one strategy could be to select a (potentially) dif-
ferent anchor for each paired comparison. This alternative can be carried out using the strategies
discussed in Chapter 7, since the paired comparisons are identical to the two-group comparisons
of one reference and one focal group that were discussed in the previous chapters.

This alternative has three major disadvantages. First, the anchor set probably differs with respect
to the groups that are currently tested and hence, the anchored item parameters for one specific
group are likely to vary depending on the group they are compared with which is not very
intuitive, but confusing. Especially when considering post-hoc tests for the Rasch trees, the
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representation of (potentially different) item parameters depending on the paired comparisons
will be rather complex when the number of the end nodes is large, and – if it was applied for
the graphical display of the item parameters in the end nodes of a Rasch tree – would make it
impossible to directly compare the parameter locations.

Second, the anchor process has to be carried out for each intended group comparison. Third,
only the data of two groups are considered in the anchor selection and, thus, not all available
information is used. Those items that have DIF in one group comparison are likely to have DIF
also in other group comparisons, e.g. when different language groups are compared, but the
additional information is not considered.

8.3 Alternative II: Selection of a common anchor set

In our second alternative, we suggest to determine a one common anchor set for all groups by
means of a two-step procedure. Then, the estimated item parameters for one specific group are
the same over all comparisons and all information of the data set is used to accomplish this, but
the anchor selection has to be extended for multiple groups. This is the aim of this chapter. It is,
to our knowledge, the first attempt to address the generalization of anchor selection strategies to
multiple group comparisons. In the following, we extend the anchor process to multiple group
comparisons by suggesting two aggregation rules.

The anchor method guides the researcher through the process of selecting the anchor items. In
our two-step approach, we focus on the constant anchor class where a predefined number of
common anchor items is intended in the first step but the approach can be extended for other
anchor classes as well. The anchor length of four items is typically used and it is claimed that
this length assures sufficient power (cf. e.g., Shih and Wang 2009, Wang et al. 2012 and, for
critical aspects, see Chapter 6). These common anchor items are included in the restriction and,
thus, used to define a common metric for the estimated item parameters β̂ j with j = 1, . . . , k of a
test of the length k (see again Chapter 5 for a detailed description of the anchoring process). DIF
in the anchored item parameters is then tested in the second step by means of paired item-wise
multiple group comparisons.

In case two groups, the reference (ref) and the focal (foc) group, are compared, all anchor selec-
tion strategies that were presented in the previous Chapter 7 yield a ranking order of candidate
anchor items. For example, the mean test statistic (MT) selection (Shih and Wang, 2009) defines
the criterion c ref-foc

j for item j between reference and focal group as

c ref-foc
j =

 1
k − 1

∑
`∈{1,...,k}\ j

∣∣∣t j(a`)
∣∣∣ .

Hence, every item is assigned the mean absolute test statistic resulting from the test results using
every other item once as single anchor. In the next step, the ranks of all c ref-foc

j ’s are calculated
and define the order of candidate anchor items; Those items that are assigned the lowest ranks
are used as anchor items (see Chapter 7).
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Step one: Selection of a common anchor

However, if multiple groups are compared and one single anchor set is intended, this rule to
rank the criteria does no longer suffice. Thus, in step one we suggest two ways to aggregate the
criteria originating from every possible paired group comparison. The reason to use all-pairs
comparisons (also know as Tukey’s all-pairwise comparisons, see, e.g., Bretz et al. 2011) for
the anchor process in step one is that every group comparison is regarded and, thus, every group
occurs equally often in the comparisons. If one would use e.g. the many-to-one comparisons
(Dunnett contrasts) for anchor selection, the reference group would be regarded more frequently
if more than two groups are considered. The choice of the anchor would depend more strongly
on characteristics of the reference group compared to those of the focal groups. Thus, we
use all-pairs comparisons and face G·(G−1)

2 = M group combinations. For each paired group
combination m = 1, . . . ,M, the resulting criteria cm

j are calculated for every item of the test as
defined by the anchor selection for the two-group case.

The generalization of anchor candidates for multiple group comparisons is carried out by ag-
gregating the results from the paired comparisons. Therefore, we suggest two strategies that we
term aggregation rules. The first aggregation rule is to use the average criterion value c•j for
every item j over all regarded comparisons

c•j =
1
M

M∑
m=1

cm
j .

We term this suggestion the mean aggregation rule. The items corresponding to the lowest
ranks of c•j are selected as anchor items. One disadvantage of this strategy might be that every
group comparison obtains the same weight in the decision which item should be used as anchor.
Hence, we propose the minimax aggregation rule that uses the minimax-strategy that minimizes
the loss of the worst-case scenario in decision theory (Savage, 1951). First, every item j is
assigned the largest criterion value occurring in the paired comparisons

c•j = max
m ∈{1,...,M}

cm
j .

Second, the items corresponding to the lowest ranks of c•j are, again, selected as anchor items.
We assume that this strategy is superior since the worst-case resulting from the paired compar-
isons decides the ranking order of the candidate anchor items. From decision theory, on would
assume in case e.g. one item displays DIF only between some groups and not between others,
the minimax rule as superior since it takes the worst-case, i.e. the situation where the strongest
DIF occurs, into account, whereas the mean rule uses all test results and the average reduces the
DIF effect. However, dependencies in the all-pairs comparisons complicate this argumentation
and also the construction of fair comparisons of both aggregation rules, that will be addressed
in future research.

Step two: DIF tests using the final anchor

After the anchor set is determined, the final DIF tests that now consist of item-wise paired multi-
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ple group comparisons can be carried out in the second step. Typically used paired comparisons
are the all-pairs comparisons or many-to-one comparisons. All-pairs comparisons include the
null hypotheses H0 : βg

j = β
g′

j with g , g′ resulting in G·(G−1)
2 comparisons per item, as already

stated above. In total, k ·
(

G·(G−1)
2

)
tests result if all k test items are studied for DIF. In contrast to

this, many-to-one comparisons focus on the comparison of all groups to a control group which
is the reference group in DIF analysis (suggested e.g. by Penfield, 2001). The null hypotheses
H0 : βref

j = β
g′

j with ref , g′ yield k · (G − 1) tests in total.

test length k
k = 10 k = 20 k = 40

number of groups G 2 3 4 5 2 3 4 5 2 3 4 5

all-pairs 10 30 60 100 20 60 120 200 40 120 240 400

many-to-one 10 20 30 40 20 40 60 80 40 80 120 160

Table 12 – Number of tests using the all-pairs or the many-to-one comparisons for
k ∈ {10, 20, 40} and G ∈ {2, 3, 4, 5}.

Table 12 includes the total number of comparisons for some exemplary settings. It can be seen
that the number of tests conducted increases more rapidly with the number of groups and with
the number of test items for the all-pairs compared to the many-to-one comparisons. With
an increasing number of tests, the problems associated with the multiple testing situation (see
Section 8.1) reinforce. Thus, many-to-one comparisons are preferred in DIF testing situations.
Many-to-one comparisons also represent a natural way to compare the reference group that is
often a majority group against the present focal groups (see, e.g., Magis and De Boeck, 2011,
for details). The additional information which of the focal groups differs from which other focal
group might be less interesting in common DIF analysis.

Thus, we focus on many-to-one comparisons for the final DIF test in step two, but the anchor
could in principle be used also for all-pairs comparisons as might be investigated in future
research. Note that the reinforcement of the problems of multiple testing does not affect the
anchor selection in step one since only a ranking order of candidate anchor items is defined that
is intended to include all information in a symmetric way.

8.4 Discussion and future research questions

In this chapter we suggested two alternatives to conduct paired multiple group comparisons. We
recommend to use a common anchor set as opposed to a (potentially) different anchor set for
each paired comparison. Our suggestion can be implemented by means of a two-step procedure,
where all-pairs comparisons are used to locate a common anchor set in a first step and many-
to-one comparisons are employed in the final DIF test as a second step to answer the question
which focal groups differ from the reference group with respect to their measurement properties.
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This chapter was limited to the theoretical presentation of alternative ways to address multiple
group comparisons. Future research has to be carried out to empirically compare the alternative
ways to either select an anchor set for each paired comparison or to select a common set of
anchor items.

Furthermore, the latter alternative to select a common set of anchor items for paired multi-
ple group comparisons requires an aggregation rule. Future research is intended to compare
the mean and the minimax aggregation rules regarding their performance to locate a suitable
anchor set in an extensive simulation study. No research is available yet on how the anchor
selection strategies perform in case of multiple groups. Moreover, an extension for the iterative
forward anchor class for multiple group comparisons is needed as well, since methods from the
iterative forward anchor class often showed the highest hit rates in two-group comparisons in
the previous chapters.
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9 Alternative ideas

Summary: In this chapter some alternatives to the approaches presented in the previous chap-
ters are discussed. Therefore, the previously suggested quasi-variances are briefly reviewed.
Quasi-variances are designed to summarize the information of the variance-covariance ma-
trix and allow us to test for DIF in all k items at the same time by employing quasi-Wald tests.
Firstly, the performance of these quasi-Wald tests for statistical inference on the all k items
except the first anchor candidate is compared to the performance of the standard Wald tests
that were used throughout this thesis. Secondly, the strategy to declare the first anchor item as
DIF-free – as was done in the previous chapters of this thesis – is compared to the alternative
approach to evaluate the quasi-Wald test result for the first anchor item.

Keywords: Rasch model, anchoring, anchor methods, item response theory (IRT), differential
item functioning (DIF), DIF analysis, quasi-variances, item bias

9.1 Introduction

As discussed in various parts of this thesis, one linear restriction is placed on the item parameter
estimates as the origin of the scale in the Rasch model can be arbitrarily chosen (Fischer, 1995).
The scale indeterminacy is solved, firstly, by setting the restriction β̃1 = 0. The corresponding
covariance matrix V̂ar(β̃) then contains zero entries in the first row and in the first column as
discussed in Chapter 5.

As already stated above, other restrictions can be obtained by transformation using the equations
β̂ = Aβ̃ and V̂ar(β̂) = AV̂ar(β̃)A>, where A = Ik −

1∑k
`=1 a`

1k · a>, Ik denotes the identity matrix,
1k denotes a vector of one entries and a is a vector with one entries for those elements a` that
are included in the restriction and zero entries otherwise (e.g., a = (1, 0, 1, 0, 0, . . .)> including
item 1 and item 3). The entries of the rank deficient covariance matrix V̂ar(β̂) in the row and in
the column of the item that is first included in the restriction were set to zero throughout this
thesis. As a consequence, the first candidate anchor item obtained no DIF test and was declared
DIF-free for all anchor classes that rely on an anchor selection.

An alternative way to handle the situation where the constant anchor class (that relies on an
anchor selection) was regarded was implemented by Woods (2009). In her simulation study,
for example, only “all items not selected to be anchors were tested for DIF” (Woods, 2009,
p. 46). This approach excludes the possibility to detect DIF in the anchor items, does not use all
information available (since k−1 standard errors are indeed available) and is, thus, not discussed
further in this thesis.

9.2 Quasi-variances

To overcome the problem that k items of a test are of interest, but only k − 1 standard errors
result from the proceeding described above, the previously suggested quasi-variances (Firth,
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2003; Firth and De Menezes, 2004) are briefly reviewed and employed for DIF analysis for the
first time.

9.2.1 Basic idea of quasi-variances

In his article, Firth (2003) suggested an alternative representation of the results of a statistical
model by reporting quasi-variances. The commonly used representation for e.g. generalized lin-
ear models includes summary tables where the estimated coefficients are printed together with
their standard errors for the Wald tests for the null hypotheses that the respective coefficients
equal zero. As an example, he refers to a situation where a categorical variable is included in the
model by means of several binary dummy variables. Their effects are reported by means of their
estimated coefficients, in his example τ̂2 to τ̂5, and the standard errors. With this information,
certain other statistical hypotheses such as τ̂5 − τ̂3 = 0 cannot be tested, since the information
of the complete variance-covariance matrix (denoted Var) is not reported – due to reasons of
space constraints and readability. The complete variance-covariance matrix would be required

to obtain the standard error as
√

V̂ar(τ̂5 − τ̂3) =

√
V̂ar(τ̂)5,5 + V̂ar(τ̂)3,3 − 2V̂ar(τ̂)5,3.

To overcome this problem, Firth (2003) proposed the usage of quasi-variances s j, where j =

1, . . . , k. These quasi-variances are constructed in a way such that the variances for contrasts
c = (c1, . . . , ck) of the model coefficients τ j are approximated by

Var(cT τ̂) ≈ c2
1s2

1 + . . . + c2
k s2

k .

The quasi-variances are obtained by minimizing the sum of an error measure for simple con-
trasts ∑

ı< j

log

 s2
ı + s2

j

V̂ar(τ̂ j − τ̂ı)

2

=
∑
ı< j

[
log

(
s2
ı + s2

j

)
− log

(
V̂ar(τ̂ j − τ̂ı)

)]2
.

The minimization can be carried out using software for generalized linear models (see Firth,
2003; Firth and De Menezes, 2004, for details on the implementation and error criteria) and is
provided in the R add-on package qvcalc (Firth, 2012). Even if the minimization is carried out
including only simple contrasts, the solution is said to also hold as an error measure for more
complex contrasts (Firth, 2003).

9.2.2 Quasi-variances in DIF detection

As opposed to the motivating example of Firth (2003) where inference should be carried out
for a contrast that would require the complete variance-covariance matrix, here, quasi-variances
are employed to overcome the problem that only k − 1 standard errors for the DIF analysis of a
test are at hand, but all k items with the corresponding parameters β j are of interest.

In this thesis, the Wald test is used for item-wise DIF detection. In the previous sections, the first
anchor item was declared DIF free. The Wald test statistics for all remaining items j of the test
included the differences of the estimated and anchored item parameters β̂ref

j −β̂
foc
j (which strongly



9.2 Quasi-variances 157

depend on the anchor items) in the numerator and the standard errors
√

V̂ar(β̂ref
j − β̂

foc
j ) =√

V̂ar(β̂ref) j, j + V̂ar(β̂foc) j, j in the denominator. Therefore, the item parameters are first estimated
separately in each group with the constraint β̃1 = 0 and then anchored by transforming each
group to the restriction reflecting the intended anchor method (see Section 9.2.1 or Chapter 5).
The covariances for contrasts between the item parameters of the reference and the focal group
are zero.

To allow for testing all k items, the resulting variance-covariance matrix for each group is now
used to calculate quasi-variances for all k items. These quasi-variances are used to construct the
quasi-Wald test for each item j, j = 1, . . . , k based on the quasi-variances s2

j

T j =
β̂ref

j − β̂
foc
j√

V̂ar(β̂ref) j, j + V̂ar(β̂foc) j, j

≈
β̂ref

j − β̂
foc
j√

s2,ref
j + s2,foc

j

. (26)

Note, however, that the anchor problem also occurs in the quasi-Wald test since the differ-
ences in the numerator still depend on the anchor method. To evaluate whether the estimated
quasi-variances themselves are invariant to the anchor method chosen, the quasi-standard errors
were calculated in a short simulation study (results not shown). The data consist of a test of
length 40 with 45% balanced or unbalanced DIF-items. Quasi-standard errors were calculated
for item parameters that were anchored using either the constant-single anchor (either pure or
contaminated) or the constant-four anchor (either pure or contaminated with the degree of con-
tamination equal to 50% or 100%). The quasi-standard errors of the quasi-Wald tests for two
exemplary items (one simulated DIF-item and one simulated DIF-free item) did not differ in any
replication, when machine precision is taken into account. Thus, in the following, it is assumed
that quasi-variances are invariant against the employed anchor method. Future research may
prove this result from a theoretical perspective.

9.2.3 Simulation study

In order to evaluate the performance of the quasi-Wald test compared to the Wald test, a short
simulation study is carried out in the free R system for statistical computing (R Development
Core Team, 2011) using the add-on R-package qvcalc by Firth (2012). The following ques-
tions are addressed: How do the quasi-Wald tests perform in comparison with the Wald tests for
the k− 1 items excluding the first anchor candidate? Is the decision of declaring the first anchor
as DIF-free appropriate or is the quasi-Wald test result superior?

Data generating process

Each data set, that represents one of 2000 replications from one simulation setting, corresponds
to the simulated responses of two groups of subjects (the reference (ref) and the focal (foc)
group) in a test with k = 40 items.
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• Person and item parameters

The person parameters are generated from a normal ability distribution with a higher
mean for the reference group θref ∼ N(0, 1) than for the focal group θfoc ∼ N(−1, 1)
similar to Wang et al. (2012). Values assigned to the item parameters are, again, β =

(-2.522, -1.902, . . ., 1.592) used by Wang et al. (2012), see Section 7.3. The responses in
each group follow the Rasch model and are generated similar to the previous simulation
studies (see e.g. Section 6.4).

• DIF-items

The first 15, 30 or 45 percent of the items (cf. paragraph DIF proportions in the next
section) are chosen to display uniform DIF by setting the difference in the item parameters
of reference and focal group ∆DIF = βref

j − β
foc
j to +.6 or −.6 consistent with the intended

direction of DIF.

Manipulated variables

Similar to previous simulation studies for the comparison of two groups (cf. Chapter 6 and
Chapter 7), the manipulated variables were the sample size, the direction of DIF, the percentage
of DIF and the anchor methods.

• Sample sizes

The sample sizes in reference and focal group are defined by the following pairs
(nref, nfoc) ∈ {(250, 250), (500, 250), (500, 500), (750, 500), (750, 750), . . ., (1500, 1500)}
where, again, equal and different group sizes are considered.

• Directions and proportions of DIF

The direction of DIF is either balanced where each DIF-item favors either the reference
or the focal group but no systematic advantage for one group remains because the effects
cancel out or unbalanced where a systematic disadvantage for the focal group is gen-
erated. The proportion of DIF is set to p ∈ {15%, 30%, 45%}. In order to save space,
only the most difficult situation of 45% DIF-items is discussed in detail, but the other
proportions are included in the Appendix of this chapter.

• Anchor methods

The quasi-Wald test (indicated by the ending -quasi) and the Wald test are combined
with the previously suggested constant4-MPT and forward-MTT anchor methods (see
Chapter 7).

Outcome variables

To assess the performance of the quasi-Wald tests, two situations are regarded. Firstly, the
quasi-Wald tests are compared to the Wald tests for all items except for the first anchor item.
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Secondly, the declaration that the first anchor item is DIF-free (that was used throughout this
thesis) is compared with the result of the quasi-Wald test for the first anchor item.

• Classification rate

For a single replication the classification rate indicates the number of correct test deci-
sions about whether the item is a DIF-item. The estimated classification rate for each
experimental setting is computed as the mean over all 2000 replications. This outcome
variable is evaluated for the first anchor candidate.

• False alarm rate and hit rate

For the remaining k − 1 items, the false alarm rate (as a measure for the type I error) and
the hit rate (that corresponds to the power of the statistical test) were calculated similar
to Section 6.4.

• Further outcome variables

In addition, the proportion where the first anchor item was a DIF-item and also character-
istics of the item-wise tests for the first item (a simulated DIF-item) and the last item (a
simulated DIF-free item) of the test, such as the estimated (quasi-) standard errors, were
computed.

9.2.4 Results: Quasi-Wald tests versus Wald tests

To conclude whether the quasi-Wald tests work appropriately, we now review the test results by
means of the false alarm and the hit rate of the k− 1 items that are not the first anchor candidate
when 45% DIF are present. Figure 34 (top row) shows the false alarm rates.

In case of balanced DIF (Figure 34, top row left), the forward methods reached similar false
alarm rates independent of whether the Wald test (forward-MTT) or the quasi-Wald test (forward-
MTT-quasi) was carried out. These false alarm rates were slightly inflated (average 0.06). When
the Wald tests were computed for the constant4-MPT method, the false alarm rates were be-
low the significance level (average 0.03). The quasi-Wald tests for the constant4-MPT method
(constant4-MPT-quasi) displayed false alarm rates that were first slightly inflated (in case of
250 observations in each group: 0.07) but then decreased with the sample size (to 0.04).

In case of unbalanced DIF (Figure 34, top row right), the forward methods reached again similar
false alarm rates that were first inflated but decreased with the sample size. The lowest (but still
inflated) false alarm rate occurred when the Wald tests were regarded for the constant4-MPT
method. The quasi-Wald tests for the constant4-MPT method displayed inflated false alarm
rates and were clearly outperformed by the Wald tests when regarding the false alarm rate.
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Figure 34 – False alarm and hit rate of the k − 1 DIF tests – not including the first anchor
candidate – in case of 45% DIF.

Figure 34 (bottom row) depicts the hit rate. Generally, the Wald test for the constant4-MPT
method, that displayed the lowest false alarm rate, also showed the lowest hit rate. This re-
sult might be considered as an example where a constant anchor of four items does not assure
sufficient power. It would then contradict the rule of thumb that four anchor items assure suf-
ficient power as was stated previously (cf. e.g., Shih and Wang, 2009; Wang et al., 2012). All
other methods, the constant4-MPT-quasi, the forward-MTT and the forward-MTT-quasi method
reached similar and high hit rates and outperformed the constant4-MPT method regarding the
hit rate.

In case of lower proportions of DIF-items (see Figure 36 and Figure 37 in the Appendix), the
only clear difference occurred for the constant4-MPT method that displayed a false alarm rate
below 5% together with a lower hit rate and the remaining methods displayed a false alarm rate
near the 5% level together with a higher power.

In summary, the Wald tests and the quasi-Wald tests reached similar results when they were
combined with the forward-MTT method in any condition (see Figure 36 and Figure 37). Sur-
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prisingly, a larger difference between the Wald test and the quasi-Wald test results was visible
when they were combined with the constant-MPT method. The quasi-Wald test displays a
higher false alarm rate and a higher hit rate compared to the Wald test. Since the numerator
β̂ref

j − β̂
foc
j of both tests is identical, but the quasi-Wald tests showed higher false alarm rates and

hit rates, it is assumed that the test statistics are generally higher due to a smaller estimate of
the quasi-variance. The estimated standard errors for the first item and the last item of the test
are included in the Appendix in Figure 38 and Figure 39 and empirically confirm this hypoth-
esis (and beyond that, the assumption that the quasi-variances are invariant against the chosen
anchor items).

9.2.5 Results: Classification of the first anchor item

Now, the classification rate for the first anchor item is regarded. The results of the decision that
the first anchor candidate is declared DIF-free are compared to the quasi-Wald test results for
the first anchor candidate.

In case 45% balanced DIF-items were simulated (see Figure 35, left), the quasi-Wald tests
(constant4-MPT-quasi and forward-MTT-quasi) and the declaration of the first anchor item as
DIF-free (constant4-MPT, forward-MTT) method reached similar true classification rates.
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Figure 35 – True classification rate of the first anchor item in case of 45% DIF.

In the balanced case, the first anchor item was almost always classified as DIF-free by all meth-
ods. This was correct in approximately 74% of the replications (more precisely in 73% for the
MPT- and in 74.5% for the MTT-selection) when the sample size was 250 in each group. The
true classification rate increased with the sample size, since the proportion of replications where
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the first anchor candidate was a DIF-item decreased. The reason for this is that the anchor se-
lection strategies perform better when the sample size is large. The forward-MTT-quasi and
the forward-MTT method had a slight advantage, since the proportion of replications where the
first candidate anchor item selected by the MTT-selection was a DIF-item was slightly smaller
compared to the candidate selected by the MPT-selection for the balanced case. Thus, both
strategies – to either declare the first anchor candidate as DIF-free or to use the quasi-Wald test
– reached the same results and yielded the correct classification when the sample size was large.

In case of 45% unbalanced DIF-items (see Figure 35, right), the situation was quite differ-
ent. The largest difference occurred for the methods combined with the constant4-MPT anchor
method and combined with the forward-MTT method. The reason is that, in case of unbalanced
DIF, the first anchor item found by the MTT-selection was more often contaminated as the first
item located by the MPT-selection (see Section 7.4.3 in Chapter 7 for 1000 observations in each
group). It might, thus, be reasonable to exclude a certain proportion of the first anchor candi-
dates as discussed in Chapter 7, since the first anchor candidates displayed larger proportions
of DIF-items. This would lead to a better classification result for the forward-MTT method.

When the iterative forward method was combined with the MTT-selection in the unbalanced
condition, the quasi-Wald decision was superior, since it allowed to classify the first anchor
item as a DIF-item and the power to detect true DIF increased with the sample size. The largest
difference in the true classification rate between the declaration as DIF-free (forward-MTT) and
the quasi-Wald test result (forward-MTT-quasi) was 15%. This means that the wrong decision
to declare the first anchor candidate as DIF-free could be reduced by up to 15% when the quasi-
Wald test is employed.

This also means that the hit rate of the forward-MTT method is underestimated in the simulation
results: If the first anchor item is a simulated DIF-item, it is only possible to declare 17 out of the
18 true DIF-items as DIF-items since the first anchor is declared DIF-free. The corresponding
hit rate is, thus, limited to 17

18 . Using the quasi-Wald test instead allows to declare up to 18 out
of the 18 true DIF-items as DIF-items and the hit rate can reach the value 1. However, since the
quasi-Wald test reached different results for the first anchor item in only up to 15% of the cases,
the underestimation of the hit rate (regarding all items) in the previous simulation studies (with
18 out of 40 items simulated with DIF) by declaring the first anchor as DIF-free is reduced to
0.0083 = 0.15 · 1

18 and is, thus, considered acceptable since it is less than 1% and since it would
vanish if the anchor selection strategy works appropriately. Then, the first anchor candidate is
expected be more often found from the set of DIF-free items. In case of the constant4-MPT
method, the classification rate increased and the difference to the quasi-Wald test was marginal.

In summary, the strategy to declare the first anchor candidate found by the respective anchor
selection as DIF-free yielded the same results as the quasi-Wald test in case of balanced DIF.
This also holds for all conditions of balanced and unbalanced DIF when 15% or 30% of the
items displayed DIF (results are shown in Figure 40 in the Appendix). In case of 45% unbal-
anced DIF and the constant4-MPT method, the differences were also small. However, in case
the iterative forward procedure with the MTT-selection was regarded, the decision to declare
the first anchor item as DIF-free was often wrong. The classification based on quasi-variances
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was better in regions of medium to large sample sizes. In case of 45% unbalanced DIF-items,
one item of the test is often declared DIF-free while it was a simulated DIF-item. This holds
for both strategies, the declaration and the quasi-Wald test for small sample sizes. In case of
medium to large sample sizes, the true classification can be improved (in up to 15% of the repli-
cations) by employing quasi-Wald tests and, thus, the slight underestimation of the hit rates for
the forward-MTT method could be reduced. Future research may investigate the situation when
a certain proportion of the first anchor candidates of the MTT-selection (that displayed a larger
proportion of DIF-items among the first anchor candidates, see again Chapter 7) is excluded.

9.3 Discussion

In this chapter, alternative approaches were presented. First, quasi-Wald tests were compared
to Wald tests for all k − 1 items excluding the first anchor candidate. In case of 45% DIF,
the largest differences occurred for the investigated methods, especially for the constant4-MPT
method depending on whether it was combined with the Wald or the quasi-Wald test. The
false alarm rates and the hit rates for the Wald test were lower compared to the respective
rates of the quasi-Wald test. Therefore, none of the tests can be considered strictly superior.
When the forward-MTT method was combined with both tests, no visible differences occurred.
Thus, quasi-Wald tests are considered as an appropriate alternative to the Wald tests but further
research is needed to explain under which conditions the quasi-Wald test and the Wald test
results differ.

Second, the quasi-Wald tests were calculated again for the constant4-MPT and the forward-
MTT method to assess DIF in the first anchor candidate. The test decision was compared to the
declaration of the first anchor item as DIF-free. In the majority of the simulated settings, both
strategies – to either declare the first anchor candidate as DIF-free or to use the quasi-Wald test
– reached the same results.

The only exception occurred in case 45% unbalanced DIF-items were present. In this case,
generally the constant4-MPT method had an advantage compared to the forward-MTT method,
since the proportion of DIF-items among the first anchor candidates was higher. However, the
declaration of the first item as DIF-free reached a classification rate similar to the quasi-Wald
test when the constant4-MPT method was used. The only notable difference between the decla-
ration as DIF-free and the quasi-Wald test result occurred in case of 45% unbalanced DIF-items
when the forward-MTT method was regarded. The quasi-Wald test allowed an improvement
of the correct classification rate of up to 15% and might, thus, be preferred. Nevertheless, the
consequences if the quasi-Wald tests would have been used instead of the declaration strategy
are considered marginal (since the improvement of the hit rate regarding the entire test is limited
to 1

18 in up to 15% of the replications and in total less than 1%).

Future research might investigate how the MTT-selection performs when a certain proportion
of the first anchor candidates is excluded. It would also be interesting, whether the differences
between the declaration as DIF-free and the quasi-Wald test result vanish as well.
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Figure 36 – False alarm and hit rate of the k − 1 DIF tests excluding the first anchor
candidate in case of 15%, 30% or 45% balanced DIF.
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Figure 37 – False alarm and hit rate of the k − 1 DIF tests excluding the first anchor
candidate in case of 15%, 30% or 45% unbalanced DIF.
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Figure 38 – Estimated standard errors for the item parameter difference of the last item
(DIF-free) for three different sample sizes. The replications where the last
item was the first anchor candidate for either the MTT- or the MPT-selection
were excluded in order to yield comparable results. The benchmark method
(perfect4) consists of four randomly chosen DIF-free items.
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Figure 39 – Estimated standard errors for the item parameter difference of the first item
(DIF-item) for three different sample sizes. The replications where the first
item was the first anchor candidate for either the MTT- or the MPT-selection
were excluded in order to yield comparable results. The benchmark method
(perfect4) consists of four randomly chosen DIF-free items.
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Figure 40 – True classification rate of the first anchor item in case of 15%, 30% or 45%
balanced or unbalanced DIF.



169

10 Concluding remarks and outlook

To conclude, the questions addressed in this thesis are reviewed. Therefore, the contents will
be summarized in the next section. Section 10.1.1 is concerned with a selection of new results
provided in this thesis and highlights their impact on the development of statistical methods for
the detection of DIF. The limits of this work are briefly discussed in Section 10.1.2. Finally,
future research questions are proposed.

10.1 Concluding summary and overview

The aim of this thesis was the development of new statistical methods for the analysis of differ-
ential item functioning. One key aspect was concerned with the combination of model-based
recursive partitioning (Zeileis et al., 2008) and item response theory. First, the potential of
model-based recursive partitioning for the social sciences was addressed in Chapter 2. The
algorithmic approach is not limited to exploratory data analysis as is the case for several pre-
decessor methods like classification and regression trees, but allows the researcher to specify
a statistical model and to test whether its parameters are stable for the entire sample. This ap-
proach can be used as a test for violations of Ockham’s Razor, that occur if relevant covariates
have been omitted and, thus, the model is not complex enough to explain the data.

In the field of educational and psychological testing, in social and in behavioral sciences, the
variables of interest, such as abilities, skills or attitudes, are often not observable. IRT models
including the widely used Rasch model have been developed to measure these latent variables.
The assumption that the item parameters are invariant, i.e. the item parameters are constant for
all subgroups and are not affected by differential item functioning, is a crucial requirement to
allow for fair comparisons between groups as was pointed out in Chapter 3.

Rasch trees that apply the model-based recursive partitioning algorithm to the Rasch model
were previously suggested as a global test for uniform DIF as well as an overall model test
(Strobl et al., 2013). The question whether Rasch trees are also suited for the detection of non-
uniform DIF was first addressed in Chapter 4. The results showed that the Rasch trees allow
to find both types of DIF – uniform and also non-uniform DIF – if the sample size is large
enough. Rasch trees are a flexible method for the detection of DIF, since they automatically
provide the information which groups display DIF. However, Rasch trees are based on a global
test and cannot yet answer the question which particular items are affected by DIF. Still, this
information is crucial for test and questionnaire construction.

To allow for conclusions on the item-level, item-wise DIF tests were addressed. As a statistical
test of DIF on the item-level, the Wald test, that relies on the comparison of the estimated
item parameters of the Rasch model, was regarded in this thesis. To place the item parameters
of different groups onto a common scale, the same restriction is imposed on the estimated item
parameters. Items included in the restriction are termed anchor items. Strategies how the anchor
items are located are termed anchor methods. Chapter 5 provided a conceptual framework for
anchor methods, where they were divided in anchor classes and anchor selection strategies, and
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illustrated that the results of the Wald test strongly depended on the choice of the anchor items.

A new anchor class, termed the iterative forward anchor class, was suggested in Chapter 6. The
idea behind this anchor class was to build a method that does not rely on initially biased test
results and that allows for a longer anchor. The results showed that the iterative forward anchor
class is an attractive alternative to the previously used anchor classes since on the one hand it
allowed for a low false alarm rate and on the other hand achieved a high hit rate.

To further improve the results of the anchor methods, alternative anchor selection strategies
were introduced and presented in Chapter 7. Three newly suggested anchor selection strategies
were combined with the constant anchor class consisting of four anchor items and with the
newly suggested iterative forward anchor class. The results showed that the newly suggested
threshold methods were better suited for the detection of DIF than the previously suggested
anchor methods. As a result, in the simulation study, the mean p-value threshold selection was
best suited to locate a short anchor, consisting of four items, whereas the mean test statistic
threshold selection was appropriate for the iterative forward method that allows for a longer
anchor.

So far, the developments of the anchor methods were carried out only for the comparison of two
groups. Chapter 8 first addressed the anchor problem when multiple groups are to be compared.
This situation is relevant if researchers want to conduct post-hoc tests or descriptive measures
after global test procedures – such as the Rasch trees – indicated any DIF. The solution sug-
gested in this thesis was to select a common set of anchor items instead of a (potentially differ-
ent) anchor set for each paired comparison. The selection strategies discussed in Chapter 7 were
extended to select a common anchor set for multiple group comparisons by the development of
two aggregation rules, the minimax aggregation rule (that relies on the worst case criterion oc-
curring for the comparisons of two groups) and the mean aggregation (that is based on the mean
criterion over all paired comparisons). The chapter pointed out the theoretical advantages of the
common anchor set approach in combination with the minimax aggregation rule, that will be
empirically investigated in future research.

Finally, some alternative ideas to those presented in this thesis were discussed in Chapter 9. The
assumption that the first anchor item is DIF-free and the usage of quasi-variances in quasi-Wald
tests for DIF detection were discussed.

10.1.1 Selection of scientific findings

In this section, the main scientific findings of this thesis are reviewed.

In Chapter 4, it was shown that Rasch trees were also suited for non-uniform DIF detection and
in case of differing item difficulty parameters (that may induce uniform or non-uniform DIF)
often even better suited than the extensions of the logistic regression. Rasch trees were shown
to be a reasonable alternative also in cases where the logistic regression is misspecified or the
group composition is unknown. The extensions of the logistic regression showed inflated false
alarm rates when the groups were simulated from different ability distributions. Furthermore,



10.1 Concluding summary and overview 171

many situations occurred where the post-hoc classifications of the type of DIF for the exten-
sions of the logistic regression were far behind the detection rates. These situations should be
investigated for the item-wise logistic regression as well.

A variety of proposed anchor methods was classified in Chapter 5 by means of a conceptual
framework for clarification. The conceptual idea to divide the anchor class and the anchor
selection was also implemented in the new iterative forward procedure and the results indicate
that this idea – that the ranking order of candidate anchor items is separated from the anchor
class – may also improve the anchor methods. The methods that separated both parts (the
constant four class and the iterative forward class combined with the NST- and the AO-strategy)
performed better compared to the methods where both parts were mixed (the constant four next
candidate anchor method and the iterative backward method) in Chapter 6.

In Chapter 6, several interesting findings were discussed that explained the fact that the iterative
forward method together with the NST-selection outperformed the other methods. First, it is
not only the fact whether the anchor is contaminated (i.e. includes at least one DIF-item) but
also the degree of contamination (i.e. the proportion of DIF-items in the anchor) that influences
the performance of the anchor methods. The iterative forward method was often contaminated
but the degree of contamination was low and the effect of the contaminated anchor items in the
longer iterative forward anchor was marginal. Moreover, several anchor methods displayed an
inflated false alarm rate – even if the anchor was DIF-free – that can be attributed to the fact that
anchor items located by an anchor selection strategy display different characteristics compared
to randomly chosen DIF-free items and may be exactly those items that again induce artificial
DIF.

New anchor selection strategies were suggested in Chapter 7. The new suggestions allowed to
further reduce the false alarm rates and achieved higher hit rates. The results also showed that
the performance of the anchor selection may depend on the anchor length. Another finding was
that the data generating process where all differences in the item parameters were simulated
equal were harder for the anchor methods compared to situations where the mean differences
were identical but the differences had a larger variance.

In Chapter 9, it was shown that quasi-Wald tests are suited for DIF detection. The test decision
based on the quasi-Wald test for the first anchor candidate may be preferred over the decision
that this item is declared DIF-free. However, if the first anchor candidate is DIF-free (which
should be the case if the anchor selection works appropriately), similar results are expected.

10.1.2 Limits of this work

This work was limited to the analysis of differential item functioning in the Rasch model. In
the Rasch model, the items are assumed to have the same discriminatory power. The items are,
thus, characterized by the item difficulty parameters only. Other IRT models include further
parameters for the discriminatory power (2pl model) or for guessing behavior (3pl model) or
allow for more than two response categories.
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Furthermore, the development of the anchor methods was evaluated using the Wald test for DIF
detection. Other DIF tests such as the likelihood ratio test may provide better test results when
the sample sizes are small.

In Chapter 6, it is recommended to analyze the risk of contamination together with the degree
of contamination when new anchor methods are suggested. New anchor selection strategies
were suggested in Chapter 7, but the risk and the degree of contamination were not discussed
since the newly suggested methods yielded generally lower false alarm rates and did not display
inversely u-shaped patterns for the false alarm rates.

The generalization of the anchor methods to paired multiple group comparisons in Chapter 8
was limited to the theoretical presentation of alternative ways. A simulation study is needed
to assess the performance of the new suggestions. The generalizations of the anchor selec-
tions were limited to locate a predefined number of anchor items. Iterative procedures such as
methods from the newly proposed iterative forward anchor class were not yet extended.

The simulation results were mainly based on the false alarm rate and the hit rate of the statis-
tical tests. These measures reflect the fact whether or not the construction of a common scale
for the item parameters was appropriate when the sample sizes are sufficiently large. However,
the strategy to rely the final test decision about the classification of DIF- and DIF-free items
on statistical significance tests is not indisputable. Generally, the power to detect DIF depends
on the sample size. In large-scale assessments, the power to detect DIF should be reasonably
high and even the correction for multiple testing may be advisable. However, if the sample
size is small, DIF might be missed due to a low statistical power. This problem would even be
reinforced if corrections for multiple testing are employed. Thus, the decision whether or not
corrections for multiple testing are employed has to be considered carefully. Still, the results of
this thesis allow to improve the construction of the common scale for the estimated item param-
eters and are, thus, not limited to statistical significance tests but also improve the accuracy of
other measures such as descriptive statistics or effect size measures.

In general, all previously suggested procedures that were introduced in Chapter 3.3 including
the methods investigated in this thesis (the Rasch trees, the methods based on logistic regression
and the Wald test) are based on the null hypothesis that reflects no DIF and the alternative
hypothesis that reflects the presence of DIF. This thesis follows this logic and, thus, allows to
connect to the current state of research.

10.2 Future research

Future research questions arise from the limitations of this work. First, future research is in-
tended that applies the model-based recursive partitioning algorithm to other IRT models in-
cluding a location and a guessing parameter or allowing for more than two response categories
(Strobl et al., 2013).

Similar to the situation presented here for the Rasch model, additional steps to allow to answer
the question which items display DIF and between which groups then also become relevant.
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Item-wise DIF tests for other IRT models that include discrimination or guessing parameters or
that allow for more response categories may be investigated.

It is to be shown, how the anchor methods developed in this thesis perform when other IRT
models are the underlying data generating process. Furthermore, modifications of the anchor
selection strategies might be necessary: González-Betanzos and Abad (2012) found that anchor
items that displayed high discrimination parameters were better suited as anchor items. Future
research may combine the strategies introduced in this thesis with new requirements. The rank-
ing order of candidate anchor items may for example be modified in a way such that items with
a low discriminatory power are excluded from the anchor candidates. The anchor methods may
also be combined with other statistical tests for DIF.

Furthermore, it is yet to be explained how the anchor selection strategies perform in locating a
suitable anchor for paired multiple group comparisons. First, the strategy to select a common
set of anchor items needs to be compared with the results that occur if different anchor sets are
selected for each paired comparison. The paired comparisons are similar to the two-group case
discussed in Chapter 6 and in Chapter 7.

Second, a systematic evaluation of the aggregation rules presented in Chapter 8 is necessary.
Third, it is important to compare different anchor selection strategies including those suggested
in Chapter 7 under different conditions when more focal groups are present. Moreover, the
methods from the iterative forward or backward anchor class and the quasi-Wald tests can be
investigated for paired multiple group comparisons.

Addressing the problems related to the statistical significance testing with the null hypothesis
of no DIF, alternative ways might be considered. First, instead of a final test decision, a DIF
ranking order might be reported that no longer states whether an item displays significant DIF
but reports which of the items display the lowest magnitudes of DIF and which items display
the largest magnitudes of DIF.

Second, an alternative to overcome the problem that the tests presented in this thesis (see, again,
Chapter 3) decide about the absence of DIF and not about the presence of DIF, is the usage of
so called equivalence tests. Ongoing research considers these tests for the DIF analysis using
the Mantel-Haenszel statistic (Casabianca and Lewis, 2012).

This development has the attractive property that the so called burden of proof (e.g. Walker and
Nowacki, 2011) is shifted. While classical DIF tests decide about the absence of DIF, equiv-
alence tests allow to decide about the presence of DIF. The burden of proof in the alternative
hypothesis is then to show that the studied item does not display DIF which matches exactly the
research hypothesis. An advantage is that DIF is then less likely missed due to small samples
sizes compared to the classical DIF tests. In contrast to this, the burden of proof requires large
sample sizes to underpin that the studied item does not display DIF. Thus, equivalence testing
may prove helpful to set objective quality standards in test and questionnaire development.

One strategy to conduct an equivalence test that is referred to as “[t]he simplest and most widely
used approach” (Walker and Nowacki, 2011, p. 193) is the two one-sided test (TOST) approach
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(Westlake, 1981; Schuirmann, 1987). Generally, the null hypothesis states non-equivalence by
means of two predefined equivalence margins (Λ1 and Λ2) H0 : µT − µR ≤ Λ1 or µT − µR ≥ Λ2,

for example between the mean bioavailability of a test and reference product (Schuirmann,
1987) or the efficacy of a new and a current therapy (Walker and Nowacki, 2011). The alterna-
tive represents equivalence within the predefined margins H1 : Λ1 < µT − µR < Λ2.

Schuirmann (1987) points out that the null hypothesis of non-equivalence can be separated in
two parts – H01 : µT−µR ≤ Λ1 and H02 : µT−µR ≥ Λ2 – and that the alternative H1 is empirically
supported if both null hypothesis are rejected at the α level (or, equivalently, if the (1−2α)·100%
confidence interval for the difference is located between the equivalence margins).

Applied to the Wald test used in this thesis, the null hypothesis (of non-equivalence) reflects
DIF in item j (instead of no DIF in item j) and can be written as

H0 : βref
j − β

foc
j ≤ −ΛDIF or βref

j − β
foc
j ≥ ΛDIF,

assuming the symmetry property that DIF in either direction, in favor of the reference or of
the focal group, is treated in the same way and that an equivalence margin ΛDIF is given. The
corresponding alternative hypothesis is

H1 : −ΛDIF < β
ref
j − β

foc
j < ΛDIF.

For DIF analysis, the null hypothesis can also be written in two parts, namely H01 : βref
j − β

foc
j ≤

−ΛDIF and H02 : βref
j − β

foc
j ≥ ΛDIF.

Before the equivalence test can be carried out, research on how to choose the equivalence mar-
gin ΛDIF is necessary. While Casabianca and Lewis (2012) discuss an effect size classification
employed by ETS, one idea to obtain a substantially meaningful equivalence margin for the
Wald test employed here could be to limit the maximum difference in the probability of solving
the item between both groups to a certain value (e.g. such as to the values 5% or 15% that were
discussed in the court proceedings, see Chapter 3).

To test both null hypothesis, now two item-wise one-sided DIF tests such as two one-sided Wald
tests can be used. As discussed throughout this thesis, the DIF test results depend on the anchor
methods what also holds for one-sided test procedures. Thus, the anchor methods developed in
this thesis are not only applicable for the classical DIF tests or for descriptive and effect size
measures but also for DIF analysis using equivalence tests such as the TOST approach.
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González-Betanzos F, Abad FJ (2012). “The Effects of Purification and the Evaluation of Dif-
ferential Item Functioning with the Likelihood Ratio Test.” Methodology: European Journal
of Research Methods for the Behavioral and Social Sciences, 8(4), 134–145.

Gujarati DN (2003). Basic Econometrics. 4. edition. McGraw-Hill, Boston.

Gustafsson J (1980). “Testing and Obtaining Fit of Data in the Rasch Model.” British Journal
of Mathematical and Statistical Psychology, 33(2), 205–233.

Hambleton RK, Rogers HJ (1989). “Detecting Potentially Biased Test Items: Comparison of
IRT Area and Mantel-Haenszel Methods.” Applied Measurement in Education, 2(4), 313–
334.

Hambleton RK, Swaminathan H, Rogers HJ (1991). Fundamentals of Item Response Theory.
Sage Publications, Newbury Park.

Hancock G, Samuelsen K (eds.) (2007). Advances in Latent Variable Mixture Models. Infor-
mation Age Publishing, Charlotte.
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