
Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

 

 

Preclinical characterization of the myxobacterial compound 

pretubulysin as novel vascular disrupting agent 

 

 

 

Verena Karoline Kretzschmann 

aus Stuttgart 

2013



Erklärung 

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 

2011 von Frau Prof. Dr. Angelika M. Vollmar betreut. 

 

 

 

 

Eidesstattliche Versicherung  

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. 

 

 

 

München, den 07. November 2013 

 

 

       

Verena Karoline Kretzschmann 

 

 

 

Dissertation eingereicht am:  07.11.2013 

1. Gutachter:        Prof. Dr. Angelika M. Vollmar 

2. Gutachter:        Prof. Dr. Robert Fürst  

Mündliche Prüfung am: 12.12.2013 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to my family 

 



 

CONTENTS 

  



CONTENTS II 

1 INTRODUCTION ........................................................................................... 1 

1.1 Background and aim of the study ................... .................................................... 2 

1.2 Natural compounds ................................. ............................................................. 4 

1.2.1 Importance of natural compounds ....................................................................... 4 

1.2.2 Myxobacteria as producers of natural compounds .............................................. 4 

1.2.3 The myxobacterial compound pretubulysin ......................................................... 5 

1.3 The microtubule system ............................ .......................................................... 5 

1.3.1 Structure of microtubules .................................................................................... 6 

1.3.2 Dynamic microtubules – mode of action ............................................................. 7 

1.3.3 Regulation of microtubule dynamics ................................................................... 8 

1.3.4 Natural products that target microtubules ........................................................... 8 

1.3.5 The big problem – resistance to MTAs ................................................................ 9 

1.4 Anti-vascular strategies for tumor treatment ...... ..............................................10 

1.4.1 ‘Normal’ vasculature vs. tumor vasculature ........................................................10 

1.4.2 Angiogenesis inhibitors and vascular disrupting agents .....................................12 

1.4.3 Classes of VDAs ................................................................................................12 

1.4.4 Mode of action of microtubule targeting VDAs ...................................................13 

1.4.4.1 Effects on tumor vasculature .........................................................................13 

1.4.4.2 Effects on tumor EC .......................................................................................14 

1.4.5 Limitations of VDAs ...........................................................................................16 

2 MATERIALS AND METHODS ............................. ....................................... 17 

2.1 Materials ......................................... .....................................................................18 

2.1.1 Compounds .......................................................................................................18 

2.1.2 Biochemicals, dyes, inhibitors and cell culture reagents.....................................18 

2.2 Cell culture ...................................... ....................................................................20 

2.2.1 Buffers, solutions and reagents..........................................................................20 

2.2.2 Cell lines ............................................................................................................22 

2.2.2.1 HUVECs – human umbilical vein endothelial cells .........................................22 

2.2.2.2 HMEC-1 – human dermal microvascular endothelial cells .............................22 

2.2.2.3 Hamster A-Mel-3 amelanotic melanoma cell line ...........................................23 

2.2.2.4 B16-F1 – mouse skin melanoma cell line .......................................................23 



CONTENTS III 

2.2.3 Passaging ..........................................................................................................23 

2.2.4 Freezing and thawing ........................................................................................24 

2.3 Western blot analysis ............................. ............................................................24 

2.3.1 Sample preparation ...........................................................................................24 

2.3.2 Protein quantification .........................................................................................25 

2.3.2.1 Bradford assay ..............................................................................................25 

2.3.2.2 Bicinchoninic (BCA) protein assay .................................................................25 

2.3.3 SDS-PAGE ........................................................................................................26 

2.3.4 Tank electroblotting ...........................................................................................27 

2.3.5 Protein detection ................................................................................................27 

2.3.5.1 Control-staining of polyacrylamide gels..........................................................27 

2.3.5.2 Protein detection on nitrocellulose membranes ..............................................28 

2.3.5.2.1 Enhanced chemiluminescence ......................................................................28 

2.3.5.2.2 Infrared imaging .............................................................................................28 

2.4 Active RhoA Pull-Down assay ....................... .....................................................30 

2.5 Immunocytochemistry and confocal laser scanning mic roscopy ...................30  

2.5.1 F-actin, pp-MLC2, and EC junction staining .......................................................30 

2.5.2 Microtubule staining ...........................................................................................31 

2.6 Permeability assays ............................... .............................................................32 

2.6.1 Impedance measurement ..................................................................................32 

2.6.2 Macromolecular permeability assay ...................................................................33 

2.7 Cell viability assays ............................. ...............................................................33 

2.7.1 CellTiter-Blue® cell viability assay ......................................................................33 

2.7.2 Flow cytometry ..................................................................................................34 

2.7.2.1 Quantification of apoptotic cell death .............................................................34 

2.7.2.2 Cell cycle analysis .........................................................................................35 

2.7.2.3 Quantification of necrotic cell death ...............................................................35 

2.7.3 Monitoring of morphological changes.................................................................36 

2.8 VE-cadherin quantification via FACS analysis .................................... ..............36 

2.9 Endothelial tube disruption assays ................ ...................................................36 

2.9.1 Tube disruption (in vitro) ....................................................................................36 

2.9.2 Mouse aortic ring assay (ex vivo) .......................................................................37 



CONTENTS IV 

2.10 Cytosolic calcium imaging ......................... ........................................................37 

2.11 In vivo experiments ...................................... .......................................................38 

2.11.1 Animals ..............................................................................................................38 

2.11.2 Determining the maximum tolerated dose (MTD) of PT .....................................38 

2.11.3 Hamster dorsal skinfold chamber measurement ................................................39 

2.11.4 B16-F1 mouse melanoma tumor model (single dose) ........................................40 

2.11.4.1 Quantification of Hoechst 33342 perfusion and vessel density ......................40 

2.11.4.2 Haematoxylin and eosin staining (H&E) .........................................................41 

2.11.5 B16-F1 mouse melanoma tumor model (multiple doses) ...................................41 

2.12 Statistical analysis .............................. ................................................................41 

3 RESULTS .................................................................................................... 42 

3.1 PT induces typical hallmarks of vascular disruption  in ECs in vitro ...............43 

3.1.1 PT induces the depolymerization of microtubules ..............................................43 

3.1.2 PT triggers actin stress fiber formation, disrupts EC junctions, and induces 

reorganization of focal adhesions ......................................................................44 

3.1.3 PT rapidly induces endothelial barrier breakdown ..............................................45 

3.1.3.1 Impedance sensing........................................................................................45 

3.1.3.2 Macromolecular permeability .........................................................................46 

3.1.3.3 PT reduces extracellular VE-cadherin expression ..........................................46 

3.1.4 PT disrupts established endothelial tubes ..........................................................47 

3.1.4.1 PT disrupts endothelial tubes in vitro .............................................................47 

3.1.4.2 PT disrupts endothelial sprouts ex vivo ..........................................................49 

3.1.5 PT treatment is not cytotoxic for ECs .................................................................50 

3.1.5.1 Metabolic activity ...........................................................................................50 

3.1.5.2 Quantification of apoptotic and necrotic cells .................................................50 

3.1.5.3 Recovery after withdrawal of PT ....................................................................52 

3.2 PT-induced signaling cascades leading to actin stre ss fiber formation  

and hyperpermeability ............................. ...........................................................53 

3.2.1 Involvement of the RhoA/ROCK/MLC pathway ..................................................54 

3.2.1.1 RhoA .............................................................................................................54 

3.2.1.2 MLC2 .............................................................................................................55 

3.2.1.3 MLCP and MLCK ...........................................................................................55 



CONTENTS V 

3.2.1.4 ROCK ............................................................................................................56 

3.2.2 Involvement of MAPK pathways ........................................................................58 

3.2.3 p38 MAPK and JNK ...........................................................................................58 

3.2.4 Involvement of intracellular calcium [Ca2+]i .........................................................60 

3.3 Single dose treatment with PT selectively affects t umor vasculature 

in vivo...................................................................................................................62 

3.3.1 Determining the maximum tolerated dose (MTD) of PT .....................................62 

3.3.2 PT selectively diminished tumor blood flow in a hamster dorsal skinfold  

chamber model ..................................................................................................63 

3.3.3 PT reduces tumor vessel perfusion without affecting the density of tumor  

vessels in an ectopic B16-F1 mouse melanoma tumor model ...........................64 

3.3.4 PT induces enormous central necrosis in B16-F1 mouse melanoma tumors .....66 

3.4 Multiple dose treatment of PT decelerates tumor gro wth in vivo ....................67 

4 DISCUSSION .............................................................................................. 68 

4.1 PT treatment elicits typical hallmarks of vascular disruption in ECs  

in vitro ..................................................................................................................69 

4.1.1 The impact of PT on microtubules .....................................................................69 

4.1.2 The link between PT-mediated microtubule depolymerization and actin  

stress fiber formation .........................................................................................70 

4.1.3 PT and the microtubule mediated process of membrane blebbing .....................71 

4.1.4 The influence of PT on endothelial junctions ......................................................72 

4.1.5 Cytotoxic profile of PT treatment in confluent ECs .............................................73 

4.2 PT selectively targets tumor vasculature in vivo ..............................................74 

4.2.1 Mechanisms leading to selective blood flow shutdown ......................................74 

4.2.2 Therapeutic potential of PT ................................................................................75 

4.2.3 Possible adverse effects of PT treatment ...........................................................75 

5 SUMMARY AND CONCLUSION ............................ .................................... 77 

6 REFERENCES ............................................................................................ 79 

7 APPENDIX .................................................................................................. 91 



CONTENTS VI 

7.1 Publications ...................................... ...................................................................92 

7.1.1 Original publications ..........................................................................................92 

7.1.2 Oral presentations .............................................................................................92 

7.1.3 Poster presentations ..........................................................................................93 

7.2 Curriculum vitae .................................. ................................................................94 

7.3 Acknowledgements .................................. ...........................................................95 



 

1 INTRODUCTION 

  



1  INTRODUCTION 2 

1.1 Background and aim of the study 

 

Since the 1960s, microtubule targeting agents (MTA) have become the most successful 

and effective chemotherapeutic agents used in the clinic today. They are effective well 

below their maximum tolerated dose (MTD) and are used as single agents or in 

combination for the treatment of a variety of hematological malignancies and solid 

tumors.1 Their success is based on the fact that they target microtubules, which are 

essential components of the cytoskeleton and play important roles in regulating mitosis, 

cell shape, trafficking, signaling and motility.2 Depending on their way of action, MTAs can 

be divided into two classes: microtubule stabilizers and destabilizers.3 In the last years it 

became increasingly evident that the antitumor effects of MTAs not only rely on their 

ability to interfere with the mitotic spindle apparatus and to provoke tumor cell death, but 

also show promising anti-metastatic, anti-angiogenic and vascular disrupting effects.4 

The latter is mediated by a relatively new group, called vascular disrupting agents (VDAs). 

These agents target, in contrast to the classic angiogenic inhibitors (AI), the already 

established tumor vasculature of larger solid tumors and selectively induce tumor vessel 

collapse, stop of blood flow and central necrosis.5 In recent years, natural compounds of 

the destabilizing MTA class were the most successful VDAs. Among them, combretastatin 

A-4-phosphate (CA-4-P), the most famous and intensively investigated VDA, which was 

originally isolated from the African tree Combretum caffrum,6 is currently in clinical trial 

phase III.7 Despite their promising anti-tumor properties, the efficiency of VDAs is limited 

due to certain side-effects and drug resistance.8, 9 To circumvent these obstacles it is 

important to expand the pool of VDAs by identifying new compounds. Hereby natural 

sources like plants, bacteria or fungi, which produce a high diversity of compounds 

suitable as lead structures, represent a very promising option, however, poor accessibility 

is still a major challenge.  

In 2009, pretubulysin (PT), a natural compound of myxobacterial origin (Angiococcus 

disciformis), was first synthesized in gram scale by Ullrich et al.10, 11 It represents a 

biosynthetic precursor of the microtubule depolymerizing tubulysins,12 which recently 

showed high activity against different tumor cell lines.13, 14 PT is like tubulysin, a linear 

tetrapeptide, but its structure is less complex, making them synthetically more easily 

accessible. Since PT is able to depolymerize microtubules nearly in the same potency as 

tubulysin and shows profound anti-tumor as well as anti-angiogenic properties,15, 16 we 

hypothesized that PT could act as a new VDA. 
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The aims of the study  were: 

I. to clarify if PT is able to induce typical features of vascular disruption in vitro and 

in vivo and 

II. to elucidate the underlying signaling pathway induced by PT in endothelial cells. 
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1.2 Natural compounds 

1.2.1 Importance of natural compounds 

Natural products produced by plants and microbes have played an essential role in drug 

discovery.17 Due to their high chemical diversity and their biological history, they offer an 

enormous source of potential new therapeutic agents, either as lead structure or directly. 

Today many natural products are tested in clinical trials against several malignancies.18 In 

recent years, myxobacteria have gained importance since they are great producers of a 

variety of secondary metabolites with different biological activities and modes of action.19 

The most promising anti-cancer agents isolated from myxobacteria are the microtubule-

binders epothilones and tubulysins.13, 18 

1.2.2 Myxobacteria as producers of natural compound s 

Myxobacteria belong to the group of gram-negative δ-proteobacteria, which occupy a wide 

range of habitats including soil, decomposing plant materials and the bark of trees.20 They 

are characterized by special behaviors that differentiate them from other bacteria: i) They 

move by gliding or creeping over the surface and produce several extracellular enzymes 

for food digestion. ii) They typically build swarms of many cells, kept together by 

intercellular signal molecules and in case of scarce resources (e.g. starvation conditions) 

they aggregate into fruiting bodies21 (Figure 1 A-C). iii) Their genomes are very large, thus 

producing an enormous variety of secondary metabolites (e.g. Sorangium cellulosum with 

20 and Myxococcus xanthus with 18 gene clusters).22, 23 Reichenbach and Höfle24 were 

the first describing this variety and opened up the field for new natural compounds with 

new chemical structures and modes of action.19 

Figure 1 Typical fruiting bodies of myxobacteria. A : Myxococcus xanthus (www.wikipedia.de)  
B:  Chondromyces apiculatus (www.sciencedirect.com) C: Stigmatella aurantiaca (www.sciencedirect.com). 



1  INTRODUCTION 5 

1.2.3 The myxobacterial compound pretubulysin 

In the present work, the myxobacterial compound pretubulysin (PT) was intensively 

investigated concerning its vascular disrupting activity. PT was first isolated from 

Angiococcus disciformis An d48 in very small amounts.12 It is a biosynthetic precursor of 

the microtubule depolymerizing tubulysins,12 which have recently been described to be 

highly active against different tumor cell lines.13, 14 Structurally, PT is a linear tetrapeptide 

consisting of N-methylpipecolic acid (Mep), isoleucine (Ile), tubuvaline (Tuv) and either 

tubuphenylalanine (Tup) or tubutyrosine (Tut) (Figure 2). In contrast to tubulysins, PT 

lacks the acetoxy group and the N,O-acetal functionality,12 which makes PT synthetically 

more easily accessible compared to tubulysin.25-28 In 2009, PT was first synthesized in the 

gram scale by Ullrich et al.10, 11 and although the structure of PT is less complex, it shows 

nearly the same microtubule depolymerizing potency as tubulysin and is also able to 

inhibit tumor cell growth.15 

Figure 2 Pretubulysin and the proposed biosynthetic pathway to the nine known tubulysins. 
Adapted according to Ullrich et al.11 

1.3 The microtubule system 

The eukaryotic cytoskeleton is composed of three distinct elements: actin microfilaments, 

intermediate filaments and microtubules. The latter represent a dynamic system, which is 

critically important for the spatial and temporal organization of eukaryotic cells. 

Microtubules are involved in many cellular functions such as intracellular transport, 

organelle positioning, cell migration and polarization, signaling and cell division.  
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1.3.1 Structure of microtubules 

Microtubules are hollow tube-like structures of about 24 nm in diameter comprised of 

heterodimers of α- and β-tubulin (each 55 kDa). Both tubulin subunits alternately (head to 

tail) build longitudinal and lateral contacts to form the main element of microtubules, the 

protofilament (Figure 3). In vivo 13 parallel offset protofilaments build the helical 

microtubule, whereby the remarkable organization of tubulin heterodimers results in a 

polarized microtubule, consisting of a (+)-end (β-tubulin) and a (-)-end (α-tubulin). The 

polymerization of α- and β-monomers depends on guanosine triphosphate (GTP), which 

binds to its GTP-binding site at the N-terminal domain of α- and β-subunits. The α-tubulin 

subunit only binds GTP at the dimer interface and it is never hydrolyzed or exchanged, 

whereas β-tubulin binds both, GDP and GTP.29 Microtubules are anchored via their 

(-)-ends at the MTOC, which is located at the perinuclear region and is also known as 

centrosome. It consists of two centrioles and proteins which are important for microtubule 

anchoring and organization. One of them, the γ-tubulin, associates with other proteins to 

form the γ-TuRC (Tubulin Ring Complex), thus promoting αβ-heterodimer binding and 

microtubule nucleation (Figure 3).30 

Figure 3 Structure of microtubules. Modified according to Jordan and Wilson.3 
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1.3.2 Dynamic microtubules – mode of action 

Polymerization of microtubules occurs in two steps: a slow nucleation and a rapid 

elongation, thereby adding reversible and non-covalent GTP-bound tubulin dimers to the 

microtubule lattice.3 GTP-bound β-tubulin is hydrolyzed to GDP and Pi upon assembly, 

thus forming a GTP or GDP-Pi cap. In the presence of the cap, microtubules are stabilized 

and can grow. GTP hydrolysis and Pi dissociation result in conformational changes of 

tubulin leading to a reduced binding affinity of neighboring subunits in the polymer. As a 

consequence, the unstable microtubule core is exposed and depolymerizes rapidly 

(Figure 4).31 

Figure 4 Polymerization and depolymerization of micr otubules. Adapted according to Jordan and 
Wilson.3 

Microtubules always switch between polymerization and depolymerization, a process 

called dynamic instability.32, 33 Thereby, the individual microtubules ends undergo phases 

of growth and shortening. The (+)-ends shortens and grows more rapidly than the (-)-

ends, which are capped by the γ-TuRC and embedded in the MTOC. A further dynamic 

behavior called ‘treamilling’ represents the net growth at one microtubule end and 

simultaneously shortening at the other end.34 Thereby, tubulin subunits from the (+)-end 

flow to the (-)-end. This process has been shown to occur mainly during metaphase and 

anaphase.35 Dynamic instability and treatmilling are not strictly separated; they even occur 

in some microtubules at the same time and depend on post-translational modifications 

and regulatory proteins.36, 37  
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1.3.3 Regulation of microtubule dynamics 

Microtubules dynamics, properties and spatial distribution are strictly regulated and 

depend on different tubulin isoforms, post-translational modifications and microtubule 

associated proteins (MAPs). Today six α-tubulin and seven β-tubulin isoforms, varying in 

different tissues and cells, are known.31 They undergo tyrosination, detyrosination, 

acetylation, polyglutamylation, polyglycylation, phosphorylation, and palmitoylation to 

achieve complete activity, however, they are not directly involved in determining the 

dynamic properties of microtubules.38 In contrast, MAPs directly interact with microtubule 

dynamics and mediate either stabilization (e.g. MAP4, tau) by favoring their 

polymerization, or destabilization (e.g. stathmin, kinesin-13 family) by sequestering tubulin 

heterodimers and promoting depolymerization.2 

1.3.4 Natural products that target microtubules 

Since microtubules are involved in many important cellular processes, especially in cell 

division and motility, they represent the major target in cancer chemotherapy identified so 

far.3 Many chemically diverse substances, originating from several natural sources 

(Table 1) are known to bind to tubulin, thereby acting as anti-mitotic, anti-proliferative or 

apoptosis inducing agents.39 Besides their effects in cancer cells, some of them also show 

anti-angiogenic (taxanes, Vinca alkaloids, epothilones and tubulysins) and anti-vascular 

properties (combretastatins, NPI-2358) in tumor endothelial cells.39  

Table 1  Several important MTAs of different natural sources 

Origin Drug Microtubule binding site 

Plant Combretastatins (CA-4P, CA-1P, 
AVE8062) 

Colchicine-binding site 

 Paclitaxel (Taxol) Taxane-binding site 

 Docetaxel (Taxotere) Taxane-binding site 

 Colchicine and ZD6126 Colchicine-binding site 

 Vinca alkaloids (Vincristine, 
Vinblastine, Vinflunine) Vinca-binding site 

 Taccalonolides Taxane-binding site 

Bacterial Epothilones Taxane-binding site 
 Tubulysins Vinca-binding site 

Fungi NPI-2358 Colchicine-binding site 

 Phomopsin Vinca-binding site 
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Table 1  Continued 

Origin Drug Microtubule binding site 

Marine Hemiasterlins Vinca-binding site 

 Laulimalide Taxane-binding site 

 Pelorusides Taxane-binding site 

 Halichondrins Vinca-binding site 

 Dolastatins Vinca-binding site 

 Spongistatins Vinca-binding site 
 

Microtubule targeting agents (MTAs) bind to different binding sites on tubulin, thereby 

varying in affinity, reversibility and microtubule impact. MTAs are classified into two major 

groups, the microtubule stabilizers, which bind to the ‘taxol’-binding site and inhibit 

depolymerization, and the microtubule destabilizers, which bind to the ‘Vinca’- or 

‘colchicine’-binding domain, thereby inducing depolymerization (Figure 5, Table 1). 

Figure 5 MTA binding sites on microtubules. A, B: Binding of MTAs to the Vinca-binding site at the 
(+)-end or colchicine-binding site within the microtubule lattice leads to depolymerization. C: MTA binding to 
the taxol-binding side at the inner surface of the microtubule stabilizes and inhibits depolymerization. Modified 
according to Jordan and Wilson.3 

1.3.5 The big problem – resistance to MTAs 

Resistance to chemotherapy with MTAs is a huge disadvantage in the combat against 

cancer. It is often caused by an overexpression of a class of membrane transporter 

proteins known as ABC-transporters (ATP-dependent drug efflux pumps or ATP-binding 

cassettes). These membrane pumps decrease the intracellular drug concentration, 

thereby reducing activity, and lead to cross-resistance (multidrug resistance, MTR) to 

drugs of different chemical structure. The first and most prominent known ABC-transporter 
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was P-glycoprotein.40 Additionally, overexpression of one of the isotypes of βIII-tubulin41 

and changes in expression levels of MAPs (e.g. stathmin, MAP2,4 and tau) or mutations 

in α-tubulin42, 43 were observed for vincristine and paclitaxel resistant cancer cells. 

Furthermore, changes of post-translational modifications at the carboxy-terminal domain 

of β-tubulin44 and also alterations in the actin cytoskeleton, especially down-regulation of 

γ-actin, was found in vincristine resistant cancer cell lines.45, 46 Since there are so many 

parameters involved in MTA resistance, the challenge will be to find new drugs, which are 

able to circumvent these obstacles.  

1.4 Anti-vascular strategies for tumor treatment 

It is well known that a functional network of blood vessels is essential for the growth, 

development and metastasis of solid tumors. While smaller tumors (< 2 mm) receive their 

oxygen and nutrients through diffusion from the surrounding tissue, bigger tumors must 

develop an angiogenic phenotype to ensure the oxygen and nutrient supply they need.47 

The proliferation rate of endothelial cells forming tumor vessels is much higher than 

compared to normal adult tissue,48, 49 which results in abnormal vessel structure and 

function in almost all aspects.50, 51 Therefore, it is not surprising that targeting the tumor 

vasculature offers an interesting anti-tumor strategy, which has been intensively explored 

in recent years. 

1.4.1 ‘Normal’ vasculature vs. tumor vasculature 

The ‘normal’ (healthy) vasculature is arranged in a hierarchy of evenly spaced, well 

differentiated arteries, arterioles, capillaries, venules and veins, which are lined by the 

vascular endothelium. The blood flow is directed (arteries to veins) and all vessels are 

perfused. The vasculature consists of a luminal front directed to the plasma and 

connected to a basement membrane and an abluminal front, which is embedded into the 

glycocalyx (polysaccharide rich layer) surrounded by stabilizing fibroblasts, smooth 

muscle cells and the interstitial fluid (Figure 6 A). The primary function of the endothelial 

barrier is to separate the inner space of the blood vessel from the surrounding tissue, 

however, its functions as size-selective- and semipermeable barrier are important to 

control the exchange of cells, fluids and solutes into the surrounding tissue.52 This so 

called vascular permeability is strictly regulated. Under physiological conditions, 

macromolecules (> 3 nm) pass the endothelial barrier transcellularly via caveolae 

mediated endocytosis or via vacuole-vesicular organelles. Molecules < 3 nm in diameter 
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use the paracellular pathway, which is mediated by the coordinated opening and closing 

of interendothelial cell junctions (IEJ; adherens (AJ) and tight (TJ) junctions).53 Among 

AJs, vascular endothelial (VE)-cadherin is exclusively expressed in vessels and the most 

important transmembrane protein in barrier regulation.54 Its extracellular domain depends 

on Ca2+ and allows homophilic interaction between two endothelial cells (ECs), whereas 

its intracellular domain is connected via α-, β-, γ- and p120-catenins to the actin 

cytoskeleton, providing an important link between actinomyosin contraction, VE-cadherin 

mediated gap formation and increased permeability. Hence, endothelial barrier function 

depends on both, structural and functional properties of the vasculature.  

In contrast to ‘normal’ vasculature, tumor vasculature is immature and shows no classic 

hierarchy known from normal tissue. The tumor vasculature is tortuous and unevenly 

distributed throughout the tumor with irregular vessel diameter, excessive branching, 

arteriovenous shunts and blind ending vessels (Figure 6 B).55 The blood flow is sluggish 

and not all open vessels are continuously perfused, which results in hypoxic and acidic 

regions.55, 56 Even the structure of tumor vessels is abnormal. They are dilated, have 

sparsely developed vessel walls with poor expression of vascular smooth muscle cells 

and poor connections between pericytes and EC.5, 57, 58 Furthermore, they have an 

irregular and structurally abnormal basement membrane.59 Tumor EC are often irregularly 

shaped and express faint VE-cadherin accompanied by loose cell-cell connections and 

intercellular openings, which contribute to hyperpermeability and high interstitial fluid 

pressure (IFP).60-62 In summary, compared to ‘normal’ vasculature, tumor vasculature is 

extremely leaky and not restrictive; meaning the function of a selective barrier is lost.  

Figure 6 Structure of ‘normal’ vasculature vs. tumor vasculature. A: Normal vasculature. B: Tumor 
vasculature. BM: Basal membrane, EC: Endothelial cell, IEJ: Interendothelial junctions, IFP: Interstitial fluid 
pressure.  



1  INTRODUCTION 12 

1.4.2 Angiogenesis inhibitors and vascular disrupti ng agents 

Today there are two opposing anti-vascular approaches in clinical trials that show 

promising anti-tumor properties. Both differ in their treatment schedule and their way of 

action on their physiological target, the endothelium. The first group comprises the classic 

angiogenesis inhibitors (AI; e.g. bevacizumab or sorafenib), which are administered 

chronically and act on the periphery of small tumors preventing neovascularization (Figure 

7 A).63 The second group, called vascular disrupting agents (VDAs), acts in a complete 

different way to AIs. VDAs are administered acutely and they selectively target the already 

established tumor blood vessels of larger solid tumors.63-65 As a consequence, either 

direct apoptotic cell death or cytoskeletal rearrangements occur, which alter the 

endothelial cell shape.66, 67 These events emerge particularly in the central part of the 

tumor, leading to a rapid stop of blood-flow and central necrosis, which can extend to as 

much as 95% of the tumor mass (Figure 7 B).68-72 Since they are effective well below their 

maximum tolerated dose, and lack the classic cytotoxic side effects of chemotherapeutics, 

they gain importance in anti-tumor treatment.70, 73 

 
Figure 7 Anti-vascular strategies for tumor treatme nt. A:  Angiogenesis inhibitors (AI) act on the 
periphery of tumors and prevent neovascularization. B:  Vascular disrupting agents (VDAs) act on established 
tumor blood vessels in the central part of the tumor leading to necrosis.  

1.4.3 Classes of VDAs 

VDAs are divided into two classes, ligand-directed VDAs and small molecule agents 

(Figure 8). Ligand-directed VDAs are composed of targeting and effector moieties that are 

linked together usually via peptide bonds or chemical cross-linkers. They use antibodies, 

peptides or growth factors, which are coupled to pro-coagulants or toxins and selectively 

bind to targets on the tumor endothelium, leading to vessel occlusion.73, 74 Small molecule 

agents are further subdivided into synthetic flavonoids and tubulin binding agents. The 
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latter bind to β-tubulin near the colchicine or vinca-binding side, resulting in the 

depolymerization of endothelial microtubules.75 Flavonoid VDAs act in a tubulin-

independent manner and trigger vascular shutdown either directly by inducing apoptosis, 

or indirectly by inducing local cytokine production, e.g. of tumor necrosis factor α (TNFα) 

via activation of nuclear factor κB (NFκB) signaling.76-78 Since PT is a known microtubule 

depolymerizer (see 1.2.3), we aimed to elucidate its potential as a new small molecule 

VDA in this study. 

Figure 8 Classes of VDAs. 

1.4.4 Mode of action of microtubule targeting VDAs 

Despite the fact that certain microtubule targeting VDAs (e.g. CA-4-P, CA-1-P and 

AVE8062) have entered clinical trials, the precise mechanisms leading to the fast 

shutdown of tumor blood flow (within 30 min)72 are not fully understood today. 

Mechanisms in terms of vessel impairment in vitro and in vivo have as yet only been 

described for combretastatin A4-phosphate (CA-4-P; isolated from the African bush willow 

tree Combretum caffrum), which represents the lead VDA and has already entered clinical 

trial phase III in anaplastic thyroid cancer.7  

1.4.4.1 Effects on tumor vasculature 

The proposed way of action is shown in Figure 9. Upon injection, the VDA (e.g. CA-4-P) 

enters ECs from the luminal side of the vasculature and binds to microtubules (step 1). 

This causes microtubule depolymerization, which triggers actin stress fiber formation and 

EC contraction. As a consequence, IEJ are disassembled and interendothelial gabs are 

formed (step 2), which contribute to increased permeability (step 3). The loss of the 
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endothelial barrier function and the concomitant protein leakage reduces the oncotic 

pressure differential between the inside and outside of blood vessels, thus disturbing the 

water balance and cause a transient increase in interstitial fluid pressure (IFP; step 4), 

which provoke vessel occlusion (step 5). In addition, a rapid and direct vasoconstrictive 

effect on tumor supplying arterioles and a decrease in longitudinal pressure differential 

along the vessel further facilitate the reduction in blood flow. The loss of fluid increases 

blood viscosity and red cells get stacked (step 6). As a consequence, vessel perfusion is 

disturbed, leading to a deficient supply of oxygen and nutrients followed by tumor necrosis 

(step 7).5 

Figure 9 Proposed mechanism leading to rapid vascula r shutdown upon treatment with CA-4-P. 
EC: Endothelial cell, IFP: Interstitial fluid pressure, VDA: Vascular disrupting agent. Modified according to 
Tozer et al.5 

 

1.4.4.2 Effects on tumor EC 

The signal process that controls vascular permeability in ECs is highly complex and the 

modulation varies under different stimulatory conditions. In case of microtubule binding 

VDAs, the depolymerization of microtubules is assumed to be the starting point of the 

signal cascade and triggers a very rapid (within minutes) change in the morphology of 

ECs (Figure 10). This goes along with the remodeling of the actin cytoskeleton and the 

appearance of focal adhesions.67 Upon microtubule depolymerization, the small GTPase 

RhoA and its downstream effector Rho kinase (ROCK) are activated. The underlying 

molecular mechanism is not exactly known, but it is suggested that guanine nucleotide 

exchange factors (GEFs) are released from disrupted microtubules, thus activating 

inactive RhoA.79 ROCK phosphorylates the myosin light chain (MLC), which in turn leads 
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to actinomyosin contraction and to the formation of actin stress fibers. The contractility 

causes an increased centripedal tension and, consequently, IEJs (especially VE-

cadherin), which is connected to the actin cytoskeleton (see 1.4.1) are disassembled.80 As 

a result vascular permeability increases and promotes the subsequent steps described 

above (1.4.4.1, Figure 9).  

In addition to the activation of RhoA, ROCK and MLC, microtubule binding VDAs activate 

the mitogen activated protein kinase (MAPK) p38 (Figure 10).80 Together with the 

actinomyosin contraction, p38 MAPK triggers an process called membrane blebbing. 

Hereby cells round up, F-actin accumulates in surface blebs building a spherical network 

that surrounds the cytoplasm, and focal adhesions appear malformed.80 Membrane 

blebbing contribute to the breakdown of the endothelial barrier and represents an early 

phenotype of a rapid necrotic cell death, separate from the apoptotic pathway triggered by 

caspases.80 

Figure 10 Signal pathway in ECs leading to barrier br eakdown and vascular disruption.  
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1.4.5 Limitations of VDAs 

After VDA treatment a viable peripheral rim of tumor cells remains (see 1.4.2; Figure 7 B), 

which is responsible for the rapid regrowth after a single-dose treatment.67, 81 A common 

explanation for this typical VDA phenomenon is that tumor endothelial cells in the center 

are more accessible to VDAs, possibly due to their different morphology and the occurring 

high interstitial fluid pressure, which contribute to vessel occlusion when permeability 

increases, whereas it is tolerated at the periphery (see 1.4.1; Figure 6 B).5, 73 Moreover, 

tumor blood vessels at the periphery receive their oxygen and nutrients from the 

surrounding healthy tissue and are therefore morphologically ‘normal’ and resistant to the 

effects of VDAs.5 To overcome this resistance and the typical failure of tumor growth delay 

after a single dose, VDAs are usually combined with classic chemotherapy,49, 82-84 

radiation,69, 85, 86 radioimmunotherapy87, 88 or AI in preclinical and clinical trials.89 The 

combination therapy enhances antitumor efficiency of VDAs; e.g. co-treatment with 

radiation allows two different approaches to act in a complementary and synergistic 

manner. The VDA acts on the central hypoxic and radio-resistant part of the tumor, 

whereas the radiation acts on the tumor endothelial cells forming the outer viable rim and 

promotes suppression of regrowth. Thereby, scheduled treatment and the succession of 

VDA application are very important to obtain tumor control.83-85 Currently, there are 

several VDAs in clinical studies under intensive investigation, working as single agents or 

in combination.9 Documented side effects include acute coronary and other 

thrombophlebitic syndromes, variance in blood pressure, heart rate, and conduction, 

transient flush and hot flashes, neuropathy, ataxia, and tumor pain.90 Hence, close 

monitoring of cardiovascular toxicity is essential.  
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2.1 Materials 

2.1.1 Compounds 

Pretubulysin (PT) was synthesized as described previously11 and was kindly provided by 

Prof. Dr. U. Kazmaier (Saarland University, Saarbrücken, Germany). Combretastatin A-4 

phosphate (CA-4-P) was a kind gift from OXiGENE (Waltham, MA, USA). Both 

compounds were stored as 10 mM stock solutions in 100% DMSO. Since in all in vitro 

experiments the final DMSO concentration did not exceed 0.1%, side effects in 

experimental settings could be excluded. 

Figure 11 Chemical structure of pretubulysin (A) an d combretastatin A-4-phosphate (B) 

 

2.1.2 Biochemicals, dyes, inhibitors and cell cultu re reagents 

Table 2  Biochemicals and dyes 

Reagent Producer 

Accustain® paraformaldehyde Sigma-Aldrich, Taufkirchen, Germany 

BC Assay reagent Interdim, Montulocon, France 

Bovine serum albumin (BSA) Sigma-Aldrich, Taufkirchen, Germany 

Bradford Reagent™ Bio-Rad, Munich, Germany 

Cell-Titer Blue™ Reagent  Promega, Madison, WI, USA 

Coomassie brilliant blue G250 Carl Roth, Karlsruhe, Germany 

DMSO AppliChem, Darmstadt, Germany 

EGTA-K AppliChem, Darmstadt, Germany 

FluorSave™ Reagent mounting medium Merck, Darmstadt, Germany 

Formaldehyde, 16% ultrapure Polysciences Europe GmbH, Eppelheim, 
Germany 
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Table 2  Biochemicals and dyes continued 

Reagent Producer 

Glutaraldehyde Merck, Darmstadt, Germany 

Histamine Sigma-Aldrich, Taufkirchen, Germany 

Matrigel™ BD Biosciences, Heidelberg, Germany 

Non-fat dry milk powder (Blotto) Carl Roth, Karlsruhe, Germany 

Page Ruler™Prestained Protein Ladder Fermentas, St. Leon-Rot, Germany 

Propidium iodide Sigma-Aldrich, Taufkirchen, Germany 

Roti-Quant® Carl-Roth, Karlsruhe, Germany 

Triton X-100 Merck, Darmstadt, Germany 

Tween® 20 BDH/Prolabo®, Ismaning, Germany 
 

All other used biochemicals and dyes were obtained from Sigma-Aldrich, AppliChem, Carl 

Roth or Merck. 

Table 3  Inhibitors 

Inhibitor Producer 

Aprotinin Sigma-Aldrich, Taufkirchen, Germany 

Complete® mini EDTA free Roche diagnostics, Penzberg, Germany 

Leupeptin hemisulfate salt Sigma-Aldrich, Taufkirchen, Germany 

ML-7 Enzo Life Sciences, Lörrach, Germany 

Na3VO4  ICN Biomedicals, Aurora, OH, USA 

NaF  Merck, Darmstadt, Germany 

Phenylmethylsulfonyl fluoride (PMSF)  Sigma-Aldrich, Taufkirchen, Germany 

SB203580  Calbiochem, Nottingham, UK 

SP600125  Sigma-Aldrich, Taufkirchen Germany 

Y-27632 Cayman Chemical, Ann Arbor, MI, USA 
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Table 4  Cell culture reagents 

Reagent Producer 

Amphotericin B 250 µg/ml AppliChem, Darmstadt, Germany 

Collagen G Biochrom AG, Berlin, Germany 

Collagenase A Roche, Mannheim, Germany 

Dulbecco’s modified Eagle’s medium 
(DMEM) Sigma-Aldrich, Taufkirchen, Germany 

Endothelial Cell Growth Medium (ECGM) 
with Supplement Mix  #C-39215 PromoCell, Heidelberg, Germany 

FCS gold  PAA Laboratories, Pasching, Austria 

FCS PAN Biotech, Aidenbach, Germany 

M199 medium PAA Laboratories, Pasching, Austria 

Penicillin/Streptomycin 100x PAA Laboratories, Pasching, Austria 

RPMI 1640 PAN Biotech, Aidenbach, Germany 

Trypsin PAN Biotech, Aidenbach, Germany 

EDTA disodium salt dihydrate Carl Roth, Karlsruhe, Germany 

2.2 Cell culture 

2.2.1 Buffers, solutions and reagents 

The following buffers, solutions and reagents were used for the isolation as well as for the 

cultivation of endothelial cells: 

Table 5  Cell culture buffers 

PBS (pH 7.4) 
 

PBS+ Ca2+/Mg2+ (pH 7.4) 

NaCl  123.3 mM NaCl 136.9 mM 

Na2HPO4 10.4 mM  KCl 2.7 mM 

KH2PO4 3.2 mM  Na2HPO4 8.1 mM 

H2O   KH2PO4 1.5 mM 

   MgCl2 0.5 mM 

   CaCl2 0.7 mM 

   H2O  
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Table 6  Cell culture solutions 

Endothelial Cell Growth Medium 
 

Stopping medium 

ECGM  500 ml M199 500 ml 

Supplement Mix #C-39215 23.5 ml  FCS 50 ml 

FCS gold 50 ml    

Amphothericin B  
(250 µg/ml) 5 ml     

Penicillin (10,000 U/ml)/ 
Streptomycin (10 mg/ml) 5 ml    

 

DMEM 
 

B16-F1 Cell Growth Medium 

DMEM  10 g DMEM 500 ml 

NaHCO3 0.85 g  FCS (not heat-inactivated) 50 ml 

HEPES 6 g    

Amphothericin B 
(250 µg/ml) 5 ml    

Penicillin (10,000 U/ml)/ 
Streptomycin (10 mg/ml) 10 ml    

H2O ad 1000 ml    
 

A-Mel-3 Cell Growth Medium 
 

Freezing medium 

RPMI  500 ml FCS gold 50% 

FCS 50 ml  DMSO 8% 

Penicillin (10,000 U/ml)/ 
Streptomycin (10 mg/ml) 10 ml  Growth medium  

NaHCO3 1 g    

 

Trypsin/EDTA 
 

Collagen G 

Trypsin 0.05% Collagen G 0.001% 

EDTA 0.02%  PBS  

PBS     

 

Collagenase A (HUVEC isolation) 
 

Collagenase A 0.01% 

PBS+ Ca2+/Mg2+   
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Before use, FCS gold (fetal calf serum) was partially thawed for 30 min at room 

temperature (RT), followed by total thawing at 37 °C. Afterwards FCS gold was inactivated 

at 56 °C for 30 min and aliquots were stored at -20 °C. FCS in DMEM medium was not 

heat-inactivated. All used cells were routinely tested for mycoplasma contamination using 

the PCR detection kit Venor®GeM (Minerva Biolabs, Berlin, Germany). 

2.2.2 Cell lines 

All cell lines were cultured in an incubator (Heraeus, Hanau, Germany) with constant 

humidity at 37 °C and 5% CO2. Unless otherwise stated, 30 min before use, cell culture 

flasks, Petri dishes multiwell-plates, and µ-slides were coated with collagen G. 

2.2.2.1 HUVECs – human umbilical vein endothelial c ells 

Human umbilical cords were kindly provided by Klinikum München Pasing, Wolfart Klinik 

Gräfelfing, Frauenklinik Dr. Krüsmann München, and Rotkreuzklinikum München in 

accordance with the declaration of Helsinki. Until use, umbilical cords were placed in 

PBS+Ca2+/Mg2+ containing penicillin (100 U/ml) and streptomycin (100 µg/ml), and stored 

at 4 °C. Every week HUVECs were freshly prepared by digestion of umbilical veins with 

0.1 g/liter collagenase A. After 45 min incubation at 37 °C, the digestion reaction was 

stopped using stopping medium. The cell suspension of each umbilical cord was 

centrifuged (180 g, 5 min), resuspended in endothelial growth medium, and subsequently 

plated in a 25 cm2 flask. After reaching confluence, cells were trypsinized and plated in a 

75 cm2 flask. For experiments HUVECs were grown until confluence and used only at 

passage #3. HUVECs were used for all assays except for the permeability assays. 

2.2.2.2 HMEC-1 – human dermal microvascular endothe lial cells 

Human Microvascular Endothelial Cells (HMEC-1) were kindly provided from the Centers 

for Disease Control and Prevention (CDC, Atlanta, GA, USA) and were used until they 

reached passage #11. The immortalized HMEC-1 cell line was created by transfection of 

human dermal microvascular endothelial cells with a plasmid coding for the transforming 

SV40 large T-antigen. This cell line shows endothelial phenotypic, morphologic, and 

functional characteristics.91, 92 HMECs were solely used in permeability assays. 
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2.2.2.3 Hamster A-Mel-3 amelanotic melanoma cell li ne 

The spontaneous accrued hamster amelanotic melanoma A-Mel-3 cell line, that was 

cultured at the institute for surgical research of the LMU, was solely used for the 

syngeneic hamster dorsal skinfold experiment (2.11.3). This tumor cell line has intensively 

been characterized93, 94 and is able to build a stable tumor vascularization within 4 days. 

Hamster A-Mel-3 amelanotic melanoma cells were cultured in Roswell Memorial Institute 

Medium (RPMI 1640) containing heat inactivated FCS (PAN Biotech) and were solely 

used at passage #20. 

2.2.2.4 B16-F1 – mouse skin melanoma cell line 

The B16 melanoma arose spontaneously in the skin at the base of the ear of a C57BL/6 

mouse, yielding in two different variants: B16-F1 and B16-F10.95 In this study the less 

metastatic variant B16-F1, which is known to build highly vascularized tumors96, 97 was 

used. B16-F1 cells (No. CRL-6323™) were purchased from ATCC® (American Type 

Culture Collection, Manassas, VA, USA) and cultivated in DMEM containing non heat-

inactivated 10% FCS. B16 F-1 cells were used between passage #21 and #25 in 

syngeneic tumor models (2.11.4 and 2.11.5). 

2.2.3 Passaging 

Confluent HUVECs and HMECs were either sub-cultured 1:3 in 75 cm2 culture flasks or 

were plated for experiments in dishes, multiwell-plates, E-Plates or µ-Slides. For 

passaging, medium was removed and cells were washed twice with PBS. Incubation with 

trypsin/ethylene diamine tetraacetic acid (EDTA) (T/E) followed for 1-2 min at 37 °C. 

Afterwards, cells were gradually detached and the digestion was stopped using stopping 

medium. After centrifugation (180 g, 5 min, 20 °C), the pellet was resuspended in growth 

medium and cells were finally plated. Confluent B16-F1 cells were treated identically but 

were sub-cultured 1:5 or 1:10 in 150 cm2 culture flasks. Cell concentration and viability 

were determined using the ViCELL™ cell viability analyzer (Beckman Coulter, Krefeld, 

Germany).  
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2.2.4 Freezing and thawing 

Usually HUVECs were used until passage #3 without intermediate freezing or thawing. 

Before freezing, confluent cells (HMEC-1 and B16-F1) from a 75 cm2 flask were 

trypsinized, centrifuged in stopping medium (180 g, 5 min, 20 °C), and resuspended to  

1 x 106 cells/ml in ice-cold freezing medium. 1.0 ml aliquots were frozen in cryovials at  

-80 °C for 24 h. Afterwards aliquots were moved to liquid nitrogen for long term storage. 

For thawing one cryo-aliquot was rapidly warmed to 37 °C and the content was 

immediately dissolved in pre-warmed growth medium. In order to remove DMSO, cells 

were centrifuged again, resuspended in their suitable growth medium and transferred to a 

75 cm2 (HMEC-1) or a 25 cm2 (B16-F1) culture flask. 

2.3 Western blot analysis 

2.3.1 Sample preparation 

HUVECs were treated as indicated in the respective figure, followed by two washing steps 

on ice with ice-cold PBS. Immediately after washing, cells were lysed in modified RIPA 

lysis buffer for phosphoproteins or in 3x Laemmli sample buffer (MLC2, phospho-MLC2 

and di-phospho MLC2) and were frozen at -80 °C. Afterwards cell samples were gently 

thawed on ice, were scraped off using cell scrapers (TPP, Trasadingen, Switzerland), and 

were transferred to pre-cooled Eppendorf tubes (Peske, Aindling-Arnhofen, Germany). 

After centrifugation (20,160 g, 10 min, 4 °C) one sample (5 µl) of the supernatant was 

diluted 1:10 in H2O to determine the protein concentration by Bradford assay or by 

Bicinchoninic Protein Assay (BCA). The remaining supernatant was mixed with Laemmli 

sample buffer (3x), heated at 95 °C for 5 min and was kept frozen at -20 °C until Western 

blot analysis. To guarantee equal protein loading, each protein sample was adjusted by 

adding 1x Laemmli sample buffer before SDS PAGE.   
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Table 7  Buffers for protein sample preparation 

Lysis buffer for phosphoproteins 
 

3x Laemmli buffer 

Tris/HCl (pH 7.4) 50 mM Tris/HCl (pH 6.8) 187.5 mM 

NaCl 150 mM  SDS (sodium 6% 

Nonidet NP 40 1%  dodecyl sulfate)  

Deoxycholic acid 0.25%  Glycerol 30% 

SDS 0.1%  Bromphenol blue 0.025% 

Na3VO4 0.3 mM  H2O  

NaF 1.0 mM  β-Mercaptoethanol 12.5% 

β-Glycerophosphate 3.0 mM    

Pyrophosphate 10 mM    

H2O     

Freshly added:     

Complete®mini EDTAfree 4.0 mM    

PMSF 1.0 mM    

H2O2 600 µM    
 

2.3.2 Protein quantification 

2.3.2.1 Bradford assay 

The total amount of protein in cell lysates for Western blot analysis was determined as 

described previously.98 Thereby Coomassie Brilliant Blue G250 was used to stain 

proteins. 10 µl samples were incubated with 190 µl Bradford solution (Roti®-Quant 

Bradford Reagent, Carl Roth, Karlsruhe, Germany, 1:5 dilution in H2O) for 5 min at RT 

upon shaking. Afterwards, absorbance was measured photometrically at 592 nm (Tecan 

Sunrise Absorbance reader, TECAN, Crailsheim, Germany). Protein standards were 

obtained by stepwise diluting a 2 mg/ml stock solution of bovine serum albumin (BSA). 

Linear regression was used to determine the protein concentration of each sample.  

2.3.2.2 Bicinchoninic (BCA) protein assay 

The total amount of protein in cell lysates for pull down assays was determined using the 

BCA Protein Assay (BC Assay reagents, Interdim, Montulocon, France) as described 

earlier.99 10 µl samples were incubated with 200 µl BC Assay reagent at 37 °C for 30 min. 
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Afterwards absorbance of the blue complex was measured photometrically at 550 nm. 

Protein standards were achieved as described above (2.3.2.1). 

2.3.3 SDS-PAGE 

After boiling the samples for 5 min at 95 °C, equal amounts of protein were loaded onto a 

SDS-polyacrylamide gel consisting of a separating and a stacking gel. Proteins were 

separated according to Laemmli et al.,100 by discontinuous SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) using the Mini-PROTEAN 3 electrophoresis module (Bio-

Rad, Munich, Germany). To achieve optimal separation of proteins, the concentration of 

acrylamide (Rotiphorese™ Gel 30, Carl Roth GmbH & Co. KG, Karlsruhe, Germany) in 

the separating gel was adjusted to the respective molecular weight. Electrophoresis was 

performed at 100 V for 21 min (protein stacking) and at 200 V for 45 min (protein 

separation). To identify the molecular weight of proteins, samples were compared with a 

pre-stained protein ladder (PageRuler™, Fermentas, St. Leon-Rot, Germany) which was 

additionally load on the SDS gel. 

Table 8  Acrylamide concentration in the separation gel 

Protein Acrylamide conc.  

p38, phospho-p38, MYPT-1, phospho-MYPT-1 10% 

ERK1/2, phospho-ERK1/2, JNK, phospho-JNK 12% 

MLC2, phospho-MLC2, di-phospho-MLC2, HSP27, phopho-
HSP27, RhoA 15% 

Table 9  Acrylamide gels 

Separating gel 10%/12%/15% 

 

Stacking gel 

RotiphoreseTM Gel 30  
33.3%/40%/ 

49.7% 
RotiphoreseTM Gel 30 17% 

Tris (pH 8.8) 375 mM  Tris (pH 6.8) 125 mM 

SDS 0.1%  SDS 0.1% 

TEMED 0.1%  TEMED 0.2% 

APS 0.05%  APS 0.1% 

H2O   H2O  
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Table 10  Electrophoresis buffer 

Electrophoresis buffer 

Tris  4.9 mM 

Glycine 38 mM 

SDS 0.1% 

H2O  

2.3.4 Tank electroblotting 

After protein separation, proteins were transferred to a nitrocellulose membrane (Hybond-

ECL™, Amersham Bioscience, Freiburg, Germany) via tank electroblotting.101 A blotting 

sandwich, which was prepared in a box filled with cold 1x tank buffer, was used for bubble 

free electroblotting. The assembly of the sandwich was as follows: cathode–pad–blotting 

paper–separating gel (SDS-PAGE)–nitrocellulose membrane–blotting paper–pad–anode. 

The membrane was equilibrated for 30 min in 1x tank buffer before starting the tank blot. 

Sandwiches were mounted in the Mini Trans-Blot® system (Bio-Rad, Munich, Germany) 

and the chamber was filled with cold 1x tank buffer. To avoid excessive heat, a cooling 

pack was additionally inserted. Transfers were carried out at 4 °C, 100 V for 90 min. 

Table 11  Tank blotting buffer 

5x Tank buffer 
 

1x Tank buffer 

Tris base 240 mM 5x Tank buffer  20% 

Glycine 195 mM  Methanol 20% 

H2O   H2O  

2.3.5 Protein detection 

2.3.5.1 Control-staining of polyacrylamide gels 

To verify protein loading and homogeneity, polyacrylamide gels were stained after tank 

elektroblotting with Coomassie blue for 15 min. To visualize proteins the excess of 

Coomassie blue was removed using the Coomassie-destaining solution.  
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Table 12  Coomassie staining and de-staining solutions 

Coomassie staining solution 
 

Coomassie de-staining solution 

Coomassie blue 3.0 g Glacial acetic acid 100 ml 

Glacial acetic acid 100 ml  Ethanol 333 ml 

Ethanol 450 ml    

H2O ad 1 l  H2O ad 1 l 
 

2.3.5.2 Protein detection on nitrocellulose membran es 

Prior to the immunological detection of the relevant proteins, unspecific protein binding 

was blocked at RT using either non-fat dry milk powder 5% (Blotto) or BSA 5% for 2 h. 

Afterwards the membranes were incubated overnight at 4 °C with the respective primary 

antibody dissolved either in Blotto or BSA (Table 13). After four washing steps with PBS 

containing 0.1% Tween® 20 (PBS-T), the membrane was incubated with the secondary 

antibody (Table 14) at RT, followed by four washing steps with PBS-T and one washing 

step with PBS. All incubation steps were performed under gentle agitation. To visualize 

the proteins, two different methods were used, depending on the labels of the secondary 

antibodies: enhanced chemiluminescence or infrared imaging. 

2.3.5.2.1 Enhanced chemiluminescence 

Membranes were incubated for 2 h with secondary antibodies conjugated to horseradish 

peroxidase (HRP) (Table 14). For protein detection, luminol (5-amino-2,3-dihydro-1,4-

phtalazinedione) served as substrate. The membrane was either incubated with a 

homemade ECL (enhanced chemiluminescence) solution (2.5 mM luminol, 1 mM p-

coumaric acid, 1 M Tris-Base pH 8.5, 30% H2O2 and dH2O) or with a purchased ECL 

solution (ECL Plus Western Blotting Detection Reagent RPN 2132, GE Healthcare, 

Munich, Germany) for 1 min in the dark. Luminescence was detected by exposure of the 

membrane to an X-ray film (Super RX, Fuji, Düsseldorf, Germany), which was developed 

using the Curix 60 Developing system (Agfa-Gevaert AG, Cologne, Germany) protected 

from light. 

2.3.5.2.2 Infrared imaging 

Secondary antibodies coupled to IR(infrared)Dye™ 800 and Alexa Fluor® 680 with 

emission at 800 and 700 nm, respectively, were used. Membranes were incubated for 1 h 

followed by four washing steps with PBS-T and one washing step with PBS. Afterwards 
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protein bands of interest were detected using the Odyssey imaging system (Li-COR 

Biosciences, Lincoln, NE). Used secondary antibodies are listed in Table 14. 

Table 13  Primary antibodies 

Antigen Source Dilution In Provider 

β-actin (C4)  mouse monocl. 1:1,000 Blotto 5% Millipore 

β-tubulin rabbit polycl. 1:1,000 Blotto 5% Cell Signaling 

HSP27  mouse monocl. 1:500 BSA 5% Cell Signaling 

phos.-HSP27Ser82  rabbit polycl. 1:500 BSA 5% Cell Signaling 

ERK1/2 rabbit polycl. 1:1,000 BSA 5% Cell Signaling 

phos.-ERK1/2T202/Y204 mouse monocl. 1:1,000 BSA 5% Cell Signaling 

JNK rabbit polycl. 1:500 BSA 5% Cell Signaling 

phos.-JNKT183/Y185 rabbit polycl. 1:500 BSA 5% Cell Signaling 

MLC2 (FL-172)  rabbit polycl. 1:500 Blotto 5% Santa Cruz 

phos.-MLC2Ser19  mouse monocl. 1:1,000 Blotto 5% Cell Signaling 

phos.-MLC2T18/S19 rabbit polycl. 1:1,000 BSA 5% Cell Signaling 

MYPT1 (H-130) rabbit polycl. 1:500 Blotto 5% Santa Cruz 

phos.-MYPT1Thr696  rabbit polyc.l 1:500 Blotto 5% Millipore 

p38  rabbit polycl. 1:1,000 BSA 5% Cell Signaling 

phos.-p38T180/Y182  rabbit polycl. 1:1,000 BSA 5% Cell Signaling 

RhoA mouse monocl. 1:666 BSA 3% Thermo Scientific 

Table 14 Secondary antibodies 

Antibody Dilution In Provider 

Goat anti-mouse IgG1 HRP 1:1,000 Blotto 1% Biozol 

Goat anti-rabbit HRP 1:10,000 Blotto 1% Dianova 

Alexa Fluor® 680 goat anti-mouse IgG 1:10,000 Blotto 1% Molecular Probes 

IRDye™ 800W goat anti-rabbit IgG 1:10,000 Blotto 1% LI-COR Biosciences 
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2.4 Active RhoA Pull-Down assay 

HUVECs were grown to confluence in 100 mm dishes and treated with vehicle control or 

PT as indicated. Active RhoA isolation was performed according to the manufacturer´s 

protocol (Active Rho Pull-Down and Detection Kit No. 16116, Thermo Scientific, Rockford, 

IL, USA). An immobilized glutathione, which has been covalently attached to agarose-

resin beats, binds to glutathione-S-transferase (GST)-fusion proteins of the Rhotekin-

bining domain (RBD), which specifically pull down active RhoA out of the whole cell 

lysate. After purification, protein concentrations were determined by the BCA Protein 

Assay (2.3.2.2.), mixed with 2x Laemmli sample buffer (Kit), and stored at -20 °C until 

SDS-PAGE and Western Blot analysis (2.4). After Western blot analysis, quantification 

was carried out using the ImageJ 1.45s software (National Institutes of Health, USA). 

Figure 12 Schematic overview about the functional pr inciple of the RhoA pull-down assay. Adapted 
according to Thermo Scientific (www.piercenet.com).  

2.5 Immunocytochemistry and confocal laser scanning  
microscopy 

Immunofluorescence images of fixed cells were obtained by using a Zeiss LSM 510 

META confocal microscope (Zeiss, Oberkochen, Germany) and 40x or 63x oil immersions 

objectives, respectively. 

2.5.1 F-actin, pp-MLC2, and EC junction staining 

HUVECs were cultured to confluence on 8-well µ-Slides (ibiTreat; IBIDI GmbH, 

Martinsried, Germany) and incubated with PT as indicated. For stainings using inhibitors, 

HUVECs were either pre-treated for 30 min (Y-27632, 10 µM) or for 1 h (SB203580, 20 
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µM or SP600125, 25 µM), followed by 1 h PT treatment. After stimulation cells were 

washed with warm PBS+ (Ca2+/Mg2+), fixed for 10 min with 10% Accustain® 

paraformaldehyde at RT (ppMLC, vinculin and F-actin), or with ice-cold acetone at -20 °C 

for 10 min (VE-cadherin, claudin-5 and F-actin). After three washing steps with PBS, cells 

were permeabilized (only ppMLC, vinculin and F-actin) for 30 min with 0.2% Triton X-100/ 

0.1% Tween® 20 in PBS. Washed cells were incubated for 20 min with 2% BSA in PBS to 

block unspecific binding. Afterwards cells were incubated over night at 4 °C with the 

primary antibody (Table 15). Following three washing steps with PBS, cells were 

incubated for 1 h at RT with the respective AlexaFluor®-labeled secondary antibody, with 

rhodamine-phalloidine for F-actin staining, or with Hoechst 33342 (Bisbenzimide) for 

nuclei staining (Table 16). After three washing steps, cells were embedded in FluorSave™ 

Reagent mounting medium and covered with 8 mm x 8 mm glass coverslips (custom 

made by Helmut Saur Laborbedarf, Reutlingen, Germany). Slides were stored at 4 °C 

protected from light until use. 

2.5.2 Microtubule staining 

HUVECs were cultured as described above, and were treated with PT or CA-4P as 

indicated. To visualize solely polymerized microtubules and to diminish background 

staining, monomeric and dimeric tubulin subunits were removed using the cell extraction 

buffer (CEB; 80 mM PIPES pH 6.9, 1 mM MgCl2, 5 mM EGTA-K and 0.5% TritonX-100). 

After incubation for 30 s, cells were fixed for 10 min by adding glutaraldehyde to final 

0.5%. Redundant glutaraldehyde was removed and quenched for 7 min with 0.1% NaBH4 

in PBS. After washing with PBS, cells were blocked and stained as described in (2.5.1.). 

Table 15 Primary antibodies 

Antigen Source Dilution In Provider 

Claudin-5 rabbit polycl. 1:50 BSA 0.2% Invitrogen 

phos.-MLC2T18/S19 rabbit polycl. 1:400 BSA 2% Cell Signaling 

VE-cadherin (F-8) mouse monocl. 1:400 BSA 0.2% Santa Cruz 

Vinculin (clone 
hVIN-1) 

mouse monocl. 1:100 BSA 2% Sigma-Aldrich 

α-tubulin rabbit polycl. 1:400 BSA 0.2% Abcam 
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Table 16 Secondary antibodies and dyes 

Antibody/dye Dilution In Provider 

Alexa Fluor® 633 goat anti-mouse IgG 1:400 BSA 0.2% Molecular Probes 

Alexa Fluor® 488 goat anti-rabbit IgG 1:400 BSA 0.2% Molecular Probes 

Alexa Fluor® 488 goat anti-mouse IgG 1:400 BSA 0.2% Molecular Probes 

Hoechst 33342 (Bisbenzimide) 1:1000 BSA 0.2% Sigma-Aldrich 

Rhodamine phalloidine 1:400 BSA 0.2% Molecular Probes 

2.6 Permeability assays 

2.6.1 Impedance measurement 

Changes in endothelial permeability were measured by impedance sensing using the 

xCELLigence Real-time-cell-analyzer (RTCA) DP Instrument (Roche, Penzberg, 

Germany), consisting of the RTCA control unit, the RTCA DP station, which was placed in 

a humidified incubator maintained at 37 °C with 5% CO2, and the E-Plate16 (Figure 13). 

The electronic sensors at the bottom of the E-Plate 16 provided a continuous and 

quantitative measurement of cell index (CI) in each well, which represents a 

dimensionless value derived from measured electrical impedance changes. 4 x 104 

HMECs per well were seeded on gold electrodes and grown up to 2.5 days to obtain 

confluency. At CI maximum, normalization was performed and HMECs were treated with 

PT as indicated. Impedance was measured at 25 kHz every 10 s up to 12 h. Quantitative 

analysis was performed at time-point 1 h after PT treatment.  

Figure 13  Principle of impedance sensing using the E-Plate 16. Attachment of cells to the electrode 
(yellow) affect the local ionic environment, thus leading to an increase in impedance. Partially adapted 
according to ACEA Biosciences (www.aceabio.com). 
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2.6.2 Macromolecular permeability assay 

HMECs were grown to confluency on collagen G-coated 12-well Transwell® inserts (0.4 

µm; Corning, New York, NY, USA). Shortly before PT treatment, fluorescein 

isothiocyanate (FITC)-dextran (40 kDa; 1 mg/ml; Sigma-Alrich, Taufkirchen, Germany) 

was used as a tracer and added to the upper compartment of the Transwell® chamber. 

HMECs were treated with PT as indicated. After 30, 60, 120, and 240 min, the amount of 

FITC-dextran in the lower compartment was determined by a SpectraFluorPlus plate 

reader (ex: 485 nm, em: 535 nm; Tecan, Crailsheim, Germany). Mean fluorescence of 

samples from untreated cells at t = 4 h was defined as 1. 

Figure 14  Scheme of a Transwell ® insert in combination with a HMEC monolayer.  Partially adapted 
according to Genetimes Technology (www.genetimes.hk). 

2.7 Cell viability assays 

2.7.1 CellTiter-Blue ® cell viability assay 

Metabolic activity was measured by the CellTiter-Blue® Reagent, which uses resazurin as 

an indicator dye of cell viability. Resazurin (non-fluorescent) is reduced by viable cells into 

resorufin (highly fluorescent). The assay was performed according to the manufacturer´s 

protocol (Promega Corp., Madison, WI, USA). HUVECs were grown to confluency in 96-

well plates and were either simultaneously treated with PT and resazurin (4 h) or were 

pre-treated with PT for 22 h, and then resazurin was added for 4 h. Fluorescence (ex: 560 

nm; em: 590 nm) was detected by a SpectraFluorPlus plate reader, which correlates to 

the number of viable cells.  
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2.7.2 Flow cytometry 

This method was used to determine apoptotic and necrotic cells as well as for cell cycle 

measurement upon treatment with PT. Therefore two different FACS machines, the 

FACSCalibur (apoptosis, cell cycle) and the FACSCanto II (necrosis; both Becton 

Dickinson, Heidelberg, Germany) were used. The necessary FACS buffers were either 

self-made (FACSCalibur, Table 17) or were purchased from BD Biosciences (FACSCanto 

II, BD FACSFlow™ No. 342003). 

Table 17 FACS buffer for FACSCalibur 

Sheat fluid pH 7.4 
 

NaCl 8.1 g 

KH2PO4 0.3 g  

Na2HPO4 2.4 g  

KCl 0.3 g  

Na2EDTA 0.4 g  

LiCl 0.4 g  

NaN3 10 mM  

H2O ad 1 l  
 

2.7.2.1 Quantification of apoptotic cell death 

Quantification of apoptosis was carried out as described by Nicoletti et al.102 by counting 

the nuclei with subdiploid DNA content after staining with propidium iodide (PI). Confluent 

HUVECs, grown in 24-well plates, were either left untreated (control) or were pretreated 

with PT as indicated. After treatment, the supernatant of each well was collected and cells 

were washed two times with PBS. Afterwards, cells were trypsinized with T/E, 

resuspended in the supernatant and centrifuged (10 min, 4 °C, 600 g). Following two 

washing steps with PBS and subsequent centrifugation (10 min, 4 °C, 600 g), cells were 

incubated in a hypotonic fluorochrome solution (HFS) overnight. Cells were analyzed by 

flow cytometry (FACSCalibur), whereby events left of the G0/G1 peak in the histogram 

were considered as apoptotic cells.   
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Table 18 HFS solution 

HFS solution 
 

Sodium citrate 0.1% 

Triton X-100 0.1%  

Propidium iodide 50 µg/ml  

PBS ad 1 ml  

2.7.2.2 Cell cycle analysis 

After incubation in HFS solution (see above) HUVECs were measured by using the 

fluorescence channel 2 (FL2, em: 585) in the logarithmic mode. Since PI intercalates in 

the DNA and PI-fluorescence depends on the status of cellular chromatin, the different cell 

cycle phases can be distinguished. Most cells are in the G0/G1 cell cycle phase with 2n 

chromosome set (= diploid), lacking the sister chromatids. Cells in the G2/M phase are in 

the process of cell division, meaning that these cells have a 2n chromosome set, but 

furthermore the sister chromatides as duplicates (= tetraploid). The additional sister 

chromatide allows the differentiation of the G2/M-phase to G0/G1-phase, which results in 

a higher fluorescence peak due to the increased amount of propidium-iodide intercalation. 

The S-phase is the synthesis phase. In this phase the chromatids duplicated and the 

fluorescence peak is located between the fluorescence peaks of G0/G1 and G2/M-phase. 

Using the Flow cytometry analysis software FlowJo 7.6, regions for each fluorescence 

peak according to their chromatin states (percentages of cells in the single cell cycle 

states) were measured and set into relation of the total cell number. 

2.7.2.3 Quantification of necrotic cell death 

To assess the number of cells undergoing necrosis or late apoptosis, PI-staining was 

performed. Confluent HUVECs grown in 24-well plates were pretreated with PT as 

indicated. After treatment, cells were incubated with 10 µg/ml PI at 37 °C for 30 min. One 

control well was incubated with 0.01% Triton and served as positive control. The 

supernatant of each well was collected and centrifuged for 10 min at 600 g. In parallel, the 

remaining cells were washed two times with PBS and trypsinized with T/E. After 

centrifugation the supernatant was removed and trypsinized cells (in stopping medium) 

were added. Following centrifugation for 10 min at 600 g, cells were analyzed by flow 

cytometry (FACSCanto II). 
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2.7.3 Monitoring of morphological changes 

HUVECs were cultured to confluence in 24-well plates and were treated with PT as 

indicated. After 1 h and 24 h images were taken using a Canon EOS 450 D digital camera 

and a Zeiss-Axiovert-25 microscope (10x objective; Zeiss, Oberkochen, Germany). 

Afterwards HUVECs were washed twice with PBS and fresh ECGM was added. 24 h later 

images of the same wells were taken again.  

2.8 VE-cadherin quantification via FACS analysis 

The amount of extracellular VE-cadherin upon PT treatment was determined by FACS 

analysis as described in (2.7.2.). Confluent HUVECs were treated as indicated, fixed for 

10 minutes in 4% methanol-free formaldehyde (Polyscience, Warrington, PA, USA), 

centrifuged (10 min, 219 g, RT), washed with PBS and centrifuged again. After incubation 

with anti-VE-cadherin-FITC antibody (1 h, RT) extracellular VE-cadherin was detected by 

flow cytometry (FACSCanto II). 

Table 19 Primary antibody 

Antigen Source Dilution Provider 

VE-cadherin (CD144)-FITC rabbit polycl. 1:14 in PBS Acris Antibodies 

2.9 Endothelial tube disruption assays 

2.9.1 Tube disruption ( in vitro) 

µ-slide angiogenesis (Ibidi GmbH) were coated with cold Matrigel® by adding 10 µl to the 

lower compartment of the slide. After setting (37 °C, 30 min), 1.2 x 104 HUVECs in ECGM 

were seeded onto the Matrigel®, and grew until thin endothelial tubes become visible 

(approx. 16 h). Established tubes were treated with PT as indicated and images of each 

well were taken using the TILLvisION 4.0.1.2 (TILL Photonics, Gräfelfing, Germany) 

system with an Axiovert 200 microscope (10x objective; Zeiss, Jena, Germany). The 

images were analyzed with the tube formation module of WIMASIS Image Analysis 

(Munich, Germany), which identifies cellular tubes on a variety of parameters (e.g. 

depending on brightness and contrast differences, length and width of structure) by an 
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automated mathematic algorithm. Drug effects were assessed at time point 6 h after 

treatment, analyzing total tube length, total tubes, and total branching points.  

2.9.2 Mouse aortic ring assay ( ex vivo) 

Aortae from adult female C57BL/6 mice were prepared in PBS, cleaned from fat tissue, 

cut and embedded into Matrigel®. After 30 min incubation at 37 °C, aortic rings were 

covered with ECGM. Once endothelial cell sprouting occurred (after 10 d), aortic rings 

were treated with PT as indicated and images were taken using a Zeiss Axiovert 200 

inverted light microscope (10x objective; Zeiss) connected to an IMAGO-QE camera and 

the appending software TILLvisION 4.0.1.2. (TILL Photonics). One representative image 

of 14 aortic rings prepared from six different mice aortae (animal #1 and #6: 3 rings, each; 

animal #2: 4 rings; animal #3 and #5: 1 ring, each; animal #4: 2 rings) is shown. 

Quantification was carried out using the ImageJ 1.45s software. 

2.10 Cytosolic calcium imaging 

Intracellular calcium measurement was carried out using a static tempered system. The 

fluorescent dye Fura-2103 was used to detect ratiometrically changes of cytosolic calcium 

concentrations. Upon calcium binding, the excitation maximum of Fura-2 is shifted from 

380 nm to 340 nm, whereas the emission wavelength of 510 nm remains unchanged. This 

results in a direct correlation between the emission ratio of 340/380 and the amount of 

cytosolic calcium. For measurements, a membrane permeable derivative named Fura-2-

acetoxymethyl ester (Fura-2-AM, Biotrend, Cologne, Germany), which is cleaved to Fura-

2 by cellular esterases after passing the membrane, was used. HUVECs were grown to 

confluency on 8-well µ-slides (Ibidi GmbH) and incubated for 30 min at 37 °C with 2 µM 

Fura-2-AM in HEPES buffer (Table 20). Afterwards cells were washed twice (HEPES) and 

treated with PT as indicated. Fluorescence measurements were performed at 37 °C, 80% 

humidity and 5,2% CO2 under light protection. For each sample, a total period of 55 min 

with images being acquired every 5 s was analyzed with the TILLvisION Software 4.0.1.2 

(TILL Photonics). Each data point of the different graphs was calculated from a randomly 

chosen rectangle containing at least 25 adjacent cells, of which mean values are 

expressed. To obtain a positive calcium signal and to confirm that cells are still alive after 

PT treatment, 10 µM histamine was added at time point 45 min and data were recorded 

for further 10 min. For data acquisition, a Zeiss Axiovert 200 M (40x objective; Zeiss) 

microscope, a polychromator illumination system (VisiChrome High Speed, Xenon lamp, 
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Visitron Systems, Puchheim, Germany) and a thermoelectric-cooled CCD camera 

(Photometrics Coolsnap HQ, Visitron Systems) were utilized.  

Table 20  HEPES buffer for Ca2+ measurement 

HEPES buffer (pH 7.4) 

CaCl2 2.5 mM 

NaCl 125 mM 

NaH2PO4 1.3 mM 

MgCl2 1.5 mM 

KCl 3 mM 

HEPES 10 mM 

Glucose 10 mM 

H2O  

2.11 In vivo experiments 

2.11.1 Animals 

All animal care and experimental procedures were in accordance with the local animal 

protection legislation (Government of Upper Bavaria). Experiments were carried out using 

male Syrian golden hamsters (6-8 weeks old, 60 ± 5 g body weight) and female C57BL/6 

mice (6-12 weeks old, 20 ± 5 g body weight) both purchased from Charles River 

(Sulzbach, Germany). The animals were maintained in a specific pathogen-free 

environment, with food and water provided ad libitum. 

2.11.2 Determining the maximum tolerated dose (MTD)  of PT 

Different concentrations of PT (1, 10, 30 and 50 mg/kg in PBS) were injected 

intravenously (IV) into the tail vein of female C57BL/6 mice. Weight was measured every 

day up to 8 days.  



2  MATERIALS AND METHODS 39 

2.11.3 Hamster dorsal skinfold chamber measurement 

This experiment was carried out in cooperation with Donata Gellrich from the Walter-

Brendel-Center for Experimental Medicine (LMU Munich).  

To perform quantitative fluorescence analysis of tumor microcirculation in vivo, a dorsal 

skinfold chamber consisting of two titanium plates was surgically implanted into the dorsal 

skin as described earlier.93, 94, 104 24 h after microsurgery, the chambers were proven to 

fulfill the criteria of an intact microcirculation and if they passed, a dense tumor cell 

suspension (2 µl, ∼2 x 105 cells) of the hamster A-Mel-3 amelanotic melanoma was 

inoculated onto the striated skin muscle layer. For intravenous (IV) injection of fluorescent 

tracers and PT, permanently indwelling fine polyethylene catheters (PE10, inner diameter 

0.28 mm, Portex, Hythe, UK) were additionally implanted into the right jugular vein, seven 

days upon tumor cell inoculation. All surgical procedures were performed under 

intraperitoneal anesthesia with ketamine (100 mg/kg b.w., Ketavet®; Parke-Davis, Berlin, 

Germany) and xylazine (10mg/kg b.w., Rompun®; Bayer, Leverkusen, Germany), and 

animals were kept warm using common heating plates. Ten days after tumor cell 

implantation, intravital microscopy was performed. The awake animals were immobilized 

in a Perspex tube on a purpose build stage (Effenberger, Munich, Germany) under a 

modified Zeiss microscope (Axiotech vario; Zeiss, Oberkochen, Germany). To visualize 

tumor microcirculation, fluorescein isothiocyanate (FITC-)labeled dextran (MW 500 kDa; 

0.05-0.1 ml of a 5% solution in 0.9% NaCl; Sigma, Deisenhofen, Germany) was injected 

IV prior to PT injection, and determination of the baseline followed. A total of 5 regions of 

interest (ROIs) per animal were randomly selected and FITC-labeled plasma was 

selectively observed by epi-illumination with a 100 W mercury vapour lamp and specific 

fluorescence filter sets (excitation 450-490 nm, emission ≥ 515 nm). Directly upon FITC 

injection, 10 mg/kg PT or vehicle control (5% DMSO) was administered IV and data were 

recorded for 30, 60 and 120 min. Three microcirculation parameters in each of the five 

ROIs per animal were quantified: capillary red blood cell velocity (vRBC in mm/s), capillary 

diameter (D in µm) and functional vessel density (FVD in 1/mm) defined as the total length 

of perfused capillaries per area. The images acquired by a CCD camera (Sony XC-77CE; 

Sony, Cologne, Germany) were recorded on digital video tape (Sony DVCAM DSV 45P; 

Sony, Cologne, Germany) and quantitative assessment of microcirculatory parameters 

and tumor growth was performed off-line using the Cap Image software (Zeintl, 

Heidelberg, Germany) as described in detail by Zeintl105 and Klyscz.106 Vessel diameters 

and red blood cell velocity were measured in at least 3 vessels per ROI in order to 

improve the steadiness of data analysis.  
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Figure 15  Images of dorsal skinfold chamber prepar ation. Window chamber image (right) kindly 
provided by Donata Gellrich. 

2.11.4 B16-F1 mouse melanoma tumor model (single do se) 

C57BL/6 mice were injected subcutaneously (s.c.) into the left hind limb with 100 µl of a 

1x106 B16-F1 mouse melanoma cell suspension in PBS, using a 0.40 x 20 mm needle 

and a 0.01 – 1 ml Inject-F Tuberculin Luer solo syringe (B. Braun, Melsungen, Germany). 

The mice were entered into experiments once tumors reached a size of approximately 

650 mm3 (assessed by π/6 x width x height x length). PT was prepared in PBS and 

injected IV into the tail vein at a dose of 10 mg/kg, using a 0.30 x 12 mm needle (B. 

Braun). Control mice received IV 5% DMSO in PBS. 24 h after treatment, 10 mg/kg of the 

perfusion marker Hoechst 33342 (Sigma-Aldrich) was injected IV 1 min before tumor 

removal. After tumor preparation, one half of the tumor was flash frozen in frozen section 

medium (Thermo Fisher Scientific, Bonn, Germany) (2.11.4.1), and the second tumor-half 

was fixed in 4% (4 days) and 1% (1 week) paraformaldehyde (2.11.4.2).  

2.11.4.1 Quantification of Hoechst 33342 perfusion and vessel density 

10 µm cryo-sections were prepared using a microtome cryostate HM 500 (Microm, 

Walldorf, Germany) to visualize Hoechst 33342 perfusion and vessel density (CD31). 

Upon air-drying (15 min, RT) tumor-sections were washed twice in PBS, were fixed for 10 

min in 4% paraformaldehyde and were blocked with 2% BSA containing 0.5% Triton X-

100 for 30 min. Afterwards tumor sections were incubated with an rat anti-mouse CD31 

monoclonal antibody (BD PharmingenTM, Heidelberg, Germany) 1:100, over night at 4 °C. 

Secondary antibody Alexa Fluor® 546 goat anti-rat 1:400 for 2 h (Invitrogen, Karlsruhe, 

Germany) was used for detection. Hoechst 33342 and CD31 staining were visualized 

using a Zeiss LSM 510 Meta confocal microscope and a 40x magnification. Overall 

thirteen random fields at the tumor periphery as well as in the tumor center of two sections 

per tumor were analyzed. For quantification, Hoechst 33342 fluorescence intensity was 
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determined using ImageJ 1.44p software according to Grosios et al107 and vessel density 

was quantified by counting CD31 pos. vessel-like structures. 

2.11.4.2 Haematoxylin and eosin staining (H&E) 

After paraformaldehyde fixation, dehydration and paraffin embedding, 5 µm tumor 

sections of PT (10 mg/kg, IV) and DMSO (5%, IV) pre-treated mice were cut by a Leica 

RM2265 rotary microtome (Leica Biosystems, Wetzlar, Germany) and stained using 

haematoxylin and eosin according to the manufacturer´s protokoll (H&E; Sigma Aldrich, 

Steinheim, Germany). Afterwards tumor histology of two different sections of DMSO- and 

PT-treated mice was analyzed under 4x magnification using the Olympus CellSens Entry 

software in combination with an Olympus DP25 camera, connected to an Olympus Bx41 

stereomicroscope (Olympus, Munich, Germany). The area of necrotic regions was 

determined by ImageJ 1.44p software. 

2.11.5 B16-F1 mouse melanoma tumor model (multiple doses) 

The preparation of the repeated treatment approach was performed as described under 

2.11.4, but started once tumors reached a size of about 90 mm3. PT (10 mg/kg) or DMSO 

(5% in PBS) was injected IV every third day up to 3 times. Tumor size was determined 

every day (assessed by π/6 x width x height x length), and daily measurement of mouse 

weight served as health control. 

2.12 Statistical analysis 

The number of independently performed experiments (n) is stated in the respective figure 

legend. If HUVECs were used, a different cell preparation from different donors was 

performed each time. Bar graph data are expressed as means ± S.E.M. Statistical 

analysis was performed with Prism software (version 5.04; GraphPad Software, San 

Diego, CA, USA). For comparison of two groups an unpaired t-test was performed. Three 

or more groups were compared by one-way analysis of variance (ANOVA) followed by a 

Newman-Keuls multiple comparison post-test. Statistical significance is assumed if  

p ≥ 0.05. 



 

3 RESULTS 
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3.1 PT induces typical hallmarks of vascular disrup tion in 
ECs in vitro  

Previous work already demonstrated that PT shows an anti-angiogenic potential in 

proliferating EC in vitro as well as in vivo16 and is even able to inhibit cancer cell migration 

and survival.15 In the present study we aimed to investigate the potential of PT to induce 

typical hallmarks of vascular disruption. Since VDAs are described in literature to induce 

first significant effects within a few hours after treatment,70-72 we designed our experiments 

by using short incubation times with PT (1-6 h). We first focused on PT induced EC effects 

in vitro and simulated an intact vasculature by using confluent endothelial monolayers. 

3.1.1 PT induces the depolymerization of microtubul es  

Eirich et al.108 and Rath et al.16 already demonstrated that PT is able to directly target 

microtubules and to induce their depolymerization in proliferating EC. To investigate if PT 

is able to destroy microtubules in our system (confluent ECs), we performed 

immunofluorescence stainings of polymerized microtubules. Untreated HUVECs showed 

intact, polymerized, filamentous microtubules, whereas PT treatment for 1 h with 10, 30, 

100 and 300 nM induced a concentration-dependent microtubule depolymerization (Figure 

16 upper panel). Combretastatin A-4-phosphate (CA-4P), the lead VDA, showed 

depolymerization in a similar extent under the same conditions (Figure 16 lower panel), 

suggesting that PT is of comparable potency regarding its tubulin-destroying action. 

Figure 16  PT leads within 1 h to a concetration-dep endent depolymerization of microtubules. 
Confluent HUVECs were either left untreated (control) or were pre-treated for 1 h with 10, 30, 100, and 300 
nM PT or CA-4P. After washing out of tubulin-monomers and -dimers, remaining polymerized microtubules 
were stained with an anti-α-tubulin antibody (green) and nuclei were visualized by Hoechst 33342 (blue). One 
representative experiment out of four is shown. Scale bar represents 50 µm. 
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3.1.2 PT triggers actin stress fiber formation, dis rupts EC 

junctions, and induces reorganization of focal adhe sions 

Besides alterations of the microtubule cytoskeleton, PT caused morphological changes of 

HUVECs and induced intracellular gap formation, which is indicative for actin cytoskeleton 

changes and the disassembly of cell-cell contacts. We treated confluent HUVECs with 30 

and 300 nM PT (10 and 100 nM data not shown) and analyzed (via immunofluorescence 

stainings) F-actin, adherens junctions (VE-cadherin), tight junctions (claudin-5) and focal 

adhesions (vinculin). 1 h incubation with 300 nM PT led to the formation of prominent actin 

stress fibers across the cell body and induced disruption of adherens and tight junctions, 

thereby forming huge intracellular openings (Figure 17, arrow heads, lowest panel). In 

contrast, control cells showed the typical appearance of junctions at the cell margin 

(Figure 17 upper panel). Focal adhesions were not disassembled but showed a strong 

redistribution into pronounced clustered structures. 

Figure 17  PT treatment induces F-actin formation, d isrupts cell-cell connections and reorganizes 
focal adhesions within 1 h. HUVECs were treated with vehicle control, 30 or 300 nM PT for 1 h and were 
stained for actin with rhodamine phalloidine (red), for adherens and tight junctions with antibodies against VE-
cadherin (left green) and claudin-5 (white), and for focal adhesions using an anti-vinculin antibody (right 
green). Arrowheads indicate intracellular openings. Images were taken by the confocal laser scanning 
microscope with a 40x magnification. One representative experiment out of three is shown. Scale bars 
represent 50 µm (for F-actin, VE-cadherin and claudin-5) and 20 µm (for vinculin).  
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3.1.3 PT rapidly induces endothelial barrier breakd own 

Cellular changes, as described in 3.1.1 and 3.1.2 are in general accompanied by an 

increase in endothelial permeability.109 To prove if PT has any influence on this parameter, 

we performed two different permeability assays. In addition, we quantified the amount of 

extracellular VE-cadherin since it is known to play an important role in regulating 

endothelial barrier function.110  

3.1.3.1 Impedance sensing 

First, we measured impedance of confluent HMECs grown on gold-electrodes (Figure 18). 

We observed a time- and concentration-dependent decrease in electrical impedance (i.e. 

increase in permeability) that reaches the minimum (50%) within 1.5 h upon treatment 

with 100 nM or (40%) within 1 h upon 300 nM PT (Figure 18 A). Quantification of all tested 

concentrations at time point 1 h resulted in an IC50 value of 71 nM (Figure 18 B).  

Figure 18  PT decreases electrical impedance. A: HMECs were seeded on gold electrodes, grown to 
confluence and treated with 10, 30, 100 and 300 nM PT. The vertical black line represents the time point of 
normalization. Impedance was measured every 10 s up to 12 h. One representative graph out of four is 
shown. B:  Quantitative analysis of impedance sensing was performed at time point 1 h after treatment. Data is 
expressed as normalized cell index, a dimensionless parameter derived from the measured impedance 
changes (PT mean ± SEM, n = 4). 
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3.1.3.2 Macromolecular permeability   

In a second approach performed with HMECs, we measured PT-induced permeability to 

macromolecules, by using FITC-labeled dextran (40 kDa) as a tracer. After collecting the 

supernatant of the lower compartment, we obtained a time- and concentration-dependent 

increase in transendothelial permeation of dextran (i.e. increase in permeability), whereby 

100 and 300 nM PT led to a significant increase in permeability within 4 h compared 

control cells (Figure 19 A,B). 

Figure 19  PT treatment increases permeability to ma cromolecules. A: HMECs were grown to 
confluence on Transwell™ inserts and were treated with vehicle control (●), 30 nM PT (▲), 100 nM PT (▼) 
and 300 nM PT (♦). FITC-labeled dextran (40 kDa) was used as a tracer and added to the upper compartment 
of the chamber. After 30, 60, 120 and 240 min the amount of FITC-dextran in the lower compartment of the 
chamber was determined. B:  Quantitative analysis was performed at time point 4 h. Control values were set 
as 1. *P ≤ 0.05 versus control, n = 4. 

 

3.1.3.3 PT reduces extracellular VE-cadherin expres sion 

From literature it is known that especially adherens junctions (composed of vascular 

endothelial cadherin, VE-cadherin) are one of the major components in regulating the 

endothelial barrier function53. Several signal molecules (e.g. Rho, Ca2+, and Src) affect 

VE-cadherin either by phosphorylation and internalization or by its organization and 

expression at the cell surface.110 To assess whether PT treatment influences the 

expression pattern of VE-cadherin, we determined the extracellular amount of VE-

cadherin by FACS analysis. Upon 2 h treatment with 30, 100 and 300 nM PT we observed 

a concentration-dependent decrease of VE-cadherin of about 80% and 300 nM PT (Figure 

20).   
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Figure 20  PT mediates hyperpermeability via reduced extracellular VE-cadherin expression. 
Confluent HUVECs were treated for 2 h with 30, 100 and 300 nM PT. After staining with an anti-VE-cadherin-
FITC antibody, cells were analyzed by flow cytometry. Quantitative analysis was performed at time point 2 h. 
Data are expressed as mean ± S.E.M. (n=4). *P ≤ 0.05 versus control.  

 

Based on this data, we suggest that the PT-mediated hyperpermeability might be a result 

of a reduced VE-cadherin expression at the cell surface, as well as an increased 

actinomyosin contraction (indicated by actin stress fibers) that causes cell retraction and 

disruption of the VE-cadherin complex (see 3.1.2).  

 

3.1.4 PT disrupts established endothelial tubes 

Since the main hallmark of microtubule-targeting VDAs is the selective disruption of 

established tumor blood vessels, we aimed to investigate if PT is able to destroy pre-

existing endothelial tubes in vitro and ex vivo.  

3.1.4.1 PT disrupts endothelial tubes in vitro 

HUVECs were seeded on Matrigel™ and were allowed to form endothelial tubes for 16 h. 

Tubes were then treated with vehicle control, 10, 30, 100, or 300 nM PT (10 and 300 nM 

are not shown). Images were taken before (0 h) as well as after 3 h and 6 h PT treatment 

(Figure 21 A). We observed a concentration-dependent disruption of PT-treated tubes 

starting at 1.5 h after PT addition (not shown), leading to almost complete disruption within 

6 h and 100 nM PT (indicated by arrowheads). We furthermore evaluated and quantified 

the total tube length, the total amount of tubes as well as the total branching points. After 

6 h, all parameters of PT-treated tubes were significantly reduced compared to control 

tubes (Figure 21 B-D).  

Co 30 100 300
Concentration [nM]

N
or

m
al

iz
ed

M
ed

ia
n 

[%
] 120

100

80

60

40

20

0

A

* *
*

2 h PT



3  RESULTS 48 

 

Figure 21  PT disrupts established endothelial tubes in vitro. A:  HUVECs were seeded on Matrigel™. 
After 16 h thin endothelial tubes were formed and treated with PT (vehicle control, 30 and 300 nM). Phase 
contrast images before (0 h) and after 6 h treatment were taken. Original magnification: 10x for all panels.  
B-D:  Tube disruption was quantified by the WIMASIS module for tube formation at time point 6 h after PT 
treatment. Total tube length (B), total number of tubes (C) and total number of branching points (D) were 
chosen for analysis. Control values were set as 100%. *P ≤ 0.05 versus control, n = 6.  
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3.1.4.2 PT disrupts endothelial sprouts ex vivo 

To confirm our observations and to provide a better relation to the in vivo situation, we 

additionally performed an ex vivo aortic ring assay. Aortic rings prepared from mouse 

aortae were embedded into Matrigel™. Once endothelial sprouts occurred (after 10 d) we 

treated them with 300 nM PT and took images after 3 h and 6 h (Figure 22 A). In 

accordance to the in vitro approach, ex vivo grown aortic sprouts were disrupted within 6 h 

after PT treatment (Figure 22 A indicated by the arrowheads). Quantification of the total 

sprout area confirmed our observations and resulted in a significant disruption already 

after 3 h (Figure 22 B). 

Figure 22  PT disrupts established endothelial sprou ts ex vivo. A: Aortic rings were prepared and 
placed into Matrigel™. Once endothelial sprouts were established, they were treated with 300 nM PT. Phase 
contrast images before (0 h) as well as after 3 h and after 6 h treatment were taken. Arrowheads indicate 
disrupted sprouts. One representative experiment out of fourteen is shown. Original magnification: 10x (for all 
panels). B:  Quantification was performed using ImageJ 1.45s software. Normalized data (0 h) are expressed 
as mean ± S.E.M. *P ≤ 0.05 versus control (n = 14).  

 

This result demonstrates that PT is able to disrupt established endothelial tubes in vitro 

and ex vivo. 

 



3  RESULTS 50 

3.1.5 PT treatment is not cytotoxic for ECs 

3.1.5.1 Metabolic activity 

To prove that the observed cellular changes, induced by PT, are not of cytotoxic nature, 

we measured metabolic activity using the CellTiter-Blue® reagens resazurin. HUVECs 

were either simultaneously treated with 10, 30, 100 and 300 nM PT plus resazurin (Figure 

23 A) or were pre-treated for 22 h with PT, followed by addition of resazurin for 4 h (Figure 

23 B). Metabolic activity was determined by fluorescence measurement of the resazurin 

metabolite resorufin. PT treatment for 4 h resulted in only a marginal decrease in 

metabolic activity. Even after 26 h of treatment, only a minimal decrease of about 20% 

was observed.  

Figure 23 Short-term treatment with PT did not change  metabolic activity and only marginally 
decresaes it upon 26 h PT treatment. A, B : Metabolic activity was measured by the CellTiter-Blue® assay. 
Confluent HUVECs were either simultaneously treated with 10, 30, 100 and 300 nM PT plus resazurin for 4 h 
(A) or were pre-treated for 22 h with PT, followed by addition of resazurin for 4 h (B). Metabolic activity was 
determined by fluorescence measurement of the resazurin metabolite resorufin. Control values were set as 
100%. *P ≤ 0.05 versus control, n=4 (A), n=6 (B). 

 

3.1.5.2 Quantification of apoptotic and necrotic ce lls 

By FACS analysis we determined the number of apoptotic cells via counting the amount of 

subdiploid DNA content (Figure 24 A) and necrotic cells via propidium iodide staining 

(Figure 24 B). In addition, we also measured the cell cycle (Figure 24 C). After treatment 

with 10, 30, 100 and 300 nM PT for 24 h we observed, compared to control cells, a 

concentration-dependent increase of about 10% in apoptotic cells (Figure 24 A) and an 

increase of about 15% in dead cells (Figure 24 B). We could not detect any G2/M arrest 
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(Figure 24 C), which plays an important role in the onset of apoptosis-mediated cell death. 

To assess the amount of induced cell death, we used 0.01% Triton (T) as positive control. 

An increase of about 60% compared to control cells (Figure 24 B) was detected. This 

result indicates that PT only marginally induces apoptosis and necrosis, which is far away 

from typical substances that trigger cell death. 

Figure 24  PT only marginally induced cytotoxicity a fter 24 h. A-C: The number of apoptotic (A), and 
necrotic (B) cells as well as cell-cycle phases (C) were determined using confluent HUVECs, which were 
either pre-treated with vehicle control or with 10, 30, 100 and 300 nM PT for 24 h. After permeabilization (A 
and C), cells were stained with propidium iodide (PI) and analyzed by flow cytometry. 0.01% Triton (T) served 
as positive control (only B). Quantification was performed at time point 24 h. *P ≤ 0.05 versus control, n=3 (A-
C). 
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3.1.5.3 Recovery after withdrawal of PT 

To confirm our data (3.1.5.1 and 3.1.5.2) and to demonstrate that the applied PT 

concentration is not toxic to endothelial cells, we treated an intact confluent HUVEC 

monolayer with 10, 30, 100 and 300 nM PT (10 and 100 nM data not shown) and took 

pictures after 1 h and 24 h (Figure 25 A,B upper panel). Incubation with 30 nM for 1 h 

resulted in no obvious cellular changes, however, after 24 h treatment cell retraction was 

visible (Figure 25 A). In contrast, already after 1 h incubation with 300 nM PT (Figure 25 

B) we observed that cells retract and intracellular openings occur, which were still evident 

after 24 h. Removal of PT and addition of fresh medium for 24 h resulted in a complete 

restoration of the HUVEC monolayer, and no difference between 1 h or 24 h PT-treated 

cells was visible. A few dead cells could be observed, indicating that a small number of 

cells underwent apoptosis or necrosis. 

Figure 25  PT-induced cellular effects are reversibl e. A,B: Confluent HUVECs were treated with 30 nM 
PT (A) or 300 nM PT (B) for 1 h or 24 h (upper row). After removal of PT, cells were washed twice and fresh 
growth medium (ECGM) was added. After 24 h incubation without PT (lower panel) the same well was 
photographed using brightfield microscopy. One representative experiment out of three is shown. Original 
magnification: 10x (for all panels). 
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In summary, we could show that PT exhibits typical features of a vascular disrupting agent 

in ECs in vitro. 

1. PT binds to microtubules and induces their depolymerization  

2. PT leads to an enormous actin stress fiber formation and EC junction disruption  

3. PT strongly increases endothelial permeability 

4. PT destroys established endothelial tubes  

PT did neither considerably influence the metabolic activity of HUVECs, nor induce short 

time apoptosis and cell death. After withdrawal of PT, HUVECs were able to fully rebuild 

their normal morphology, indicating that PT treatment is not cytotoxic. 

 

 

3.2 PT-induced signaling cascades leading to actin 
stress fiber formation and hyperpermeability 

Since PT treatment provokes prominent alterations of the actin cytoskeleton, leading to 

weak cell-cell connections and to endothelial hyperpermeability, we next focused on the 

possible underlying signaling cascades. In literature there are several pathways described 

that impair endothelial barrier function, however, in the context of vascular disruption, only 

two, the RhoA/ROCK/MLC and the p38 MAPK pathways have been described so far to 

play important roles.80, 111 We therefore proved whether these pathways are also involved 

in our system. Additionally, we investigated the influence of intracellular calcium [Ca2+]i 

since it is well known that [Ca2+]i is an important upstream regulator of PKC, Src, Rho and 

MLCK, which in turn promote actinomyosin contraction, junction disruption and endothelial 

hyperpermeability.112  
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3.2.1 Involvement of the RhoA/ROCK/MLC pathway 

3.2.1.1 RhoA 

We performed an active RhoA pull down assay and collected GTP-bound RhoA after 15, 

30, and 60 minutes of 300 nM PT pre-treatment. The amount of active RhoA was 

analyzed by Western blotting (Figure 26 A). We observed an induction of active RhoA 

within 30 min, which significantly increased by about 100% after 1 h PT treatment (Figure 

26 B). The supernatant, which contains inactive GDP-bound RhoA, served as control. 

Figure 26  PT treatment activates RhoA GTPase within 30 min. A: Confluent HUVECs were either pre-
treated with vehicle control (Co) or with 300 nM PT for 15, 30 and 60 min. Active RhoA isolation was 
performed as described in the materials and methods section. One representative experiment out of four is 
shown. B:  Quantitative evaluation was performed by ImageJ 1.45s. Data are expressed as mean ± S.E.M. *P 
≤ 0.05 vs. control (n = 4). 
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3.2.1.2 MLC2 

To investigate whether known downstream targets of RhoA were activated, we first 

focused on myosin light chain (MLC). Due to the fact that active RhoA was detectable 

within 1 h treatment, we used this time point for immunocytochemistry experiments. 

HUVECs were pre-treated with 300 nM PT and stained for F-actin with rhodamine 

phalloidine and for MLC with an anti-diphospho MLC(Thr18/Ser19) antibody (Figure 27 A). 

Control cells showed F-actin in peripheral bands along the cell margin and a weak, basal 

activation of MLC(Thr18/Ser19). In contrast, PT-treated HUVECs exhibited stress fiber 

formation and MLC(Thr18/Ser19) activation, which could additionally be confirmed by 

Western blot analysis, by which we observed a clear induction of MLC(Ser19) and 

MLC(Thr18/Ser19) within 30 minutes of PT treatment (Figure 27 B). 

Figure 27  PT treatment activates MLC(Ser19) and MLC( Thr18/Ser19) within 30 min. A: 
Immunocytochemistry and confocal microscopy of di-(Thr18/Ser19) phosphorylated MLC2 upon treatment 
with 300 nM PT for 1 h. One representative experiment out of three is shown. Scale bar represents 50 µm. B: 
Activation of mono(Ser19)- and di(Thr18/ser19)-phosphorylated MLC2 was analyzed by Western blotting. 
Confluent HUVECs were either pre-treated with vehicle control (Co) for 120 min or 5, 15, 30, 60 and 120 min 
with 300 nM. One representative blot out of four is shown. 

 

3.2.1.3 MLCP and MLCK 

The observed increase in MLC phosphorylation could be mediated through inactivation of 

myosin light chain phosphatase (MLCP) by phosphorylation of the catalytic domain, called 

MYPT1, or by activation of the myosin light chain kinase (MLCK). By Western blot 

analysis we could show that PT treatment did neither change the phosphorylation status 

of MYPT1 (Figure 28 A) nor alter MLC phosphorylation when combined with the MLCK 

inhibitor ML-7 (Figure 28 B). This indicates that neither MLCP nor MLCK are involved in 

PT-induced signaling.  
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Figure 28  MLCP and MLCK are not involved in PT-induc ed MLC2 activation. A,B : Involvement of 
MLCP (A) and MLCK (B) in terms of MLC2 activation was analyzed by Western blotting. A:  Confluent 
HUVECs were either pre-treated with vehicle control (Co) for 120 min or for 5, 15, 30, 60 and 120 min with 
300 nM PT. Afterwards MLCP activation was analyzed using an specific anti-MYPT1 antibody. B:  Confluent 
HUVECs were pre-treated with the MLCK inhibitor ML-7 (10 µM, 30 min) followed by PT treatment (300 nM, 1 
h). MLCK involvement was determined using an di(Thr18/ser19)-phosphorylated MLC2 antibody (downstream 
target of MLCK). One representative blot out of three is shown, each. 

 

3.2.1.4 ROCK 

A second possibility to induce MLC activation is via the Rho kinase (ROCK), which 

phosphorylates MLC at Ser19 and, therefore, leads to a direct MLC activation. To 

determine whether the actin response or the MLC activation were mediated by ROCK, we 

pre-treated HUVECs with the ROCK inhibitor Y-27632 (Figure 29). PT-induced stress fiber 

formation was clearly reduced by this inhibitor and also MLC(Thr18/Ser19) activation was 

completely prevented. 

 

Figure 29  PT-induced actin stress fiber formation a nd MLC activation depends on ROCK.  
Immunocytochemistry and confocal microscopy of F-actin (rhodamine phalloidine) and di-(Thr18/Ser19) 
phosphorylated MLC2 after treatment with vehicle control (1 h), with the ROCK inhibitor Y27632 (10 µM, 1 h), 
with 300 nM PT (1 h) or in combination with Y27632 (10 µM, 30 min pre-treatment) plus PT (300 nM, 1 h). 
One representative experiment out of three is shown. Scale bar represents 50 µM. 
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To prove if the PT-mediated hyperpermeability was also reduced, we measured 

impedance via the xCELLigence System (i.e. permeability, see 2.6.1). We treated 

HUVECs either with the ROCK inhibitor for 30 min, or with 300 nM PT, or in combination 

(30 min Y27632 followed by PT treatment). Indeed, quantification at time point 1.5 h upon 

PT treatment revealed that pre-treatment with the ROCK inhibitor partially reversed the 

PT-induced decrease in impedance.  

Figure 30  PT triggers hyperpermeability via ROCK. HUVECs were seeded on gold electrodes, grown 
to confluence and treated either with Y27632 (10 µM), with 300 nM PT or in combination (30 min Y27632 
followed by PT). Quantitative analysis of impedance sensing was performed at time point 1.5 h after PT 
treatment. Data is expressed as normalized cell index, a dimensionless parameter derived from the measured 
impedance changes. PT mean ± S.E.M. *P ≤ 0.05 vs. control (n = 1). 

 

Thus, we could show that ROCK plays a central role in the PT-induced signaling pathway. 

Furthermore, we observed RhoA activation and subsequent MLC phosphorylation within 1 

h PT treatment, which perfectly correlates with microtubule depolymerization described in 

chapter (3.1.1.). Therefore, we assume that a link between microtubule depolymerization 

and RhoA-ROCK-MLC pathway activation exist.   
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3.2.2 Involvement of MAPK pathways  

Besides the Rho pathway, mitogen-activated protein kinases (MAPKs) (p38, c-Jun N-

terminal kinases (JNK) and extracellular regulated kinase (ERK1/2)), are known to be 

involved in stress fiber formation and hyperpermeability113. By Western blot, we could 

show that JNK (Figure 31 B) and p38 MAPK, as well as its downstream target heat shock 

protein 27 (HSP27; Figure 31 A) were phosphorylated (i.e. activated) within 30 min upon 

PT treatment, whereas ERK1/2 was not affected (Figure 31 C).  

 

Figure 31  PT activates JNK and p38 MAPK but not ERK1/ 2. A-C: Confluent HUVECs were either pre-
treated with vehicle control (Co) or with 300 nM PT for 5, 15, 30, 60 and 120 min. Activation of p38 MAPK, 
HSP27, JNK and ERK1/2 were analyzed by Western blotting using specific antibodies. One representative 
experiment out of three is shown each.  

 

3.2.3 p38 MAPK and JNK 

In the next step we focused on p38 MAPK and JNK. Both are described to be activated 

upon microtubule depolymerization,114-117 however, only p38 MAPK is known so far to be 

involved in microtubule-associated actin remodelling and hyperpermeability in endothelial 

cells.114, 115 To investigate the role and importance of both MAPKs in terms of actin 

alterations upon PT treatment, we used specific inhibitors for p38 MAPK (SB203580, 

Figure 32 A) and JNK (SP600125, Figure 32 B). Interestingly, although we prove 



3  RESULTS 59 

functionality of the inhibitors (data not shown), they could not prevent the PT-induced actin 

stress fiber formation, cell retraction and gap formation.  

 

Figure 32  MAPK inhibitors SB203580 and SP600125 could  not prevent stress fiber formation upon 
PT treatment. A,B: Immunocytochemistry and confocal microscopy of F-actin (rhodamine phalloidine) after 
treatment with vehicle control (1 h), with the p38 MAPK inhibitor SB203580 (20 µM, 1 h, A), with the JNK 
inhibitor SP600125 (25 µM, 1 h, B), with 300 nM PT (1 h) or in combination. One representative experiment 
out of three is shown. Scale bar represents 50 µM.  

 

To elucidate the effects on endothelial permeability, we measured impedance as 

described above (3.1.3.1). We pre-treated confluent HUVECs for 30 min with the p38 

MAPK inhibitor SB203580. Followed by a treatment with 100 and 300 nM PT. As 

expected, similar to the control (red line), single treatment with the inhibitor (pink line) did 

not influence the permeability and combination treatment with the inhibitor plus PT did not 

prevent the observed decrease in impedance (i.e. increase in permeability; cyan vs. green 

line and purple vs. blue line). However, compared to single PT treatment, the onset of 

hyperpermeability was shifted to later time points.  
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Figure 33 p38 MAPK is not involved in PT-mediated hyp erpermeability. HUVECs were seeded on 
gold electrodes, grown to confluence and treated either with SB203580 (20 µM), with 100 and 300 nM PT or in 
combination (30 min SB203580 followed by PT). Data is expressed as normalized cell index, a dimensionless 
parameter derived from the measured impedance changes (PT mean ± SEM, n = 3). 

 

3.2.4 Involvement of intracellular calcium [Ca 2+] i 

Since a rise in cytosolic Ca2+ has been established as the initial and pivotal signal that 

precedes endothelial contraction, junction disruption and hyperpermeability, we tested 

whether cytosolic calcium levels were affected by PT treatment. Therefore, HUVECs were 

pre-treated with Fura-2-AM (30 minutes 2 µM). Afterwards, 300 nM PT was added and 

[Ca2+]i levels were recorded for 45 minutes (Figure 34). To obtain a positive calcium signal 

and to confirm that cells are still alive, 10 µM histamine was added at time point 45 

minutes and data were recorded for further 10 minutes. We could not detect any changes 

in cytosolic calcium levels upon PT treatment, suggesting that calcium does not play a 

role in PT-triggered signaling. 
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Figure 34  PT does not affect intracellular calcium levels. The change of intracellular Ca2+ [Ca2+]i was 
monitored using confluent HUVECs which were pre-incubated with FURA-2-AM for 30 min. After replacing 
FURA-2-AM by HEPES cells were treated for 45 min with 300 nM PT (grey line) or were left untreated (black 
line). At the end, histamine (100 µM) was added as positiv control and were recorded for further 10 min. One 
representative figure out of three is shown. 

 

 

In summary, we suggest that the cellular effects (i.e. actinomyosin contraction, junction 

disassembly and hyperpermeability) of PT are mainly mediated by the RhoA/ROCK/MLC2 

pathway, whereby ROCK plays a pivotal role. In contrast, MLCK, MLCP, p38 MAPK, JNK 

or calcium seem to be not involved. The proposed signal pathway induced by PT is shown 

below (Figure 35). 

 
Figure 35  Proposed signal pathway leading to cellul ar effects upon PT treatment. Microtubule 
dissasembly activates RhoA, which in turn activates ROCK. Direct phosphorylation of MLC via ROCK triggers 
actomyosin-mediated contraction, junction disruption and hyperpermeability. JNK and p38 MAPK are also 
activated, however they are not essential for the PT induced cellular effects. Green: affected by PT, grey: not 
affected by PT. Dotted arrow line indicates no direct interaction.  
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3.3 Single dose treatment with PT selectively affec ts 
tumor vasculature in vivo  

The selective and fast shut down of blood flow in established tumor vessels is the main 

and most important hallmark of VDAs.70, 72 Therefore, we aimed to elucidate if PT is able 

to reduce tumor blood flow in vivo. We analyzed vessel quantity and perfusion as well as 

tumor histology upon single dose treatment with PT by using two different animal models. 

3.3.1 Determining the maximum tolerated dose (MTD) of PT 

Before we started with the in vivo tumor models we determined the MTD of PT. We 

systematically tested four different dosages of PT (1, 10, 30 and 50 mg/kg; Figure 36) that 

were IV injected into the tail vein of female C57BL/6 mice. We measured the mouse 

weight (indicator of health) every day up to 8 days. 1 and 10 mg/kg PT were well tolerated 

and there was no difference compared to control mice. In contrast, mice treated with 30 

and 50 mg/kg PT showed loss of weight and were apathetic. Therefore, a concentration 

between 10 and 30 mg/kg is suggested as the MTD of PT. 

Figure 36 In vivo evaluation of the MTD of PT. Female C57BL/6 mice were treated with different 
concentrations of PT (1, 10, 30, and 50 mg/kg; IV into the tail vein). To monitor the state of health, mouse 
weight was measured every day up to 8 days after PT injection. 1 and 10 mg/kg PT was well tolerated, 
whereas 30 and 50 mg/kg was not tolerated and the experiment had to be stopped early. Data are expressed 
as mean ± S.E.M (n = 4, 1 mg/kg) and (n = 5, control, 10, 30 and 50 mg/kg). For clarity, the mouse weight of 
control mice was normalized to 1. 
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3.3.2 PT selectively diminished tumor blood flow in  a hamster 

dorsal skinfold chamber model 

We elucidated the capability of single dose treatment with PT to reduce tumor blood flow 

in a hamster dorsal skinfold chamber model, bearing hamster A-Mel-3 amelanotic 

melanomas (for details see 2.11.3). We simultaneously analyzed tumor blood vessels 

within the melanoma, and ‘normal’ blood vessels of the surrounding healthy tissue. FITC-

labeled dextran was injected IV to visualize blood perfusion and to determine the baseline. 

Upon IV injection of 10 mg/kg PT, we observed first perfusion irregularities in tumor blood 

vessels after 30 minutes (data not shown), which were clearly detectable after 2 h (Figure 

37 A, arrowheads, lower panel). In contrast, blood perfusion of ‘normal’ vessels was not 

affected (Figure 37 A, upper panel). Additionally, we quantified the velocity of red blood 

cells, the diameter of the vessels, and the functional vessel density. All three parameters 

were significantly reduced in tumor blood vessels compared to non-tumor blood vessels 

(Figure 37 B). Treatment with vehicle control (5% DMSO) did not reduce these 

parameters, neither in tumor nor in ‘normal’ blood vessels (Figure 37 C). 
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Figure 37  Single dose of PT selectively reduces tumo r blood flow, tumor vessel diameter and 
functional tumor vessel density. A: Hamster A-Mel-3 amelanotic melanoma tumors were grown 2-D in 
hamster dorsal skinfold chambers. FITC-dextran (MW 500 kDa) was pre-injected IV 5 min before PT injection 
(10 mg/kg) to visualize tumor and healthy microcirculation and to determine the baseline. Every 30 min up to 2 
h, 30 s were recorded on digital video tape. Upon 2 h PT injection, normal tissue appears to be not affected, 
whereas tumor tissue showed regions of lesser perfusion, indicated by the arrowheads. One representative 
image of intravital microcopy is shown. B, C:  Five regions of interest per tumor and normal tissue were 
selected upon PT (B) and DMSO (C) treatment to perform quantitative analysis of microcirculation parameters 
over a time period of 2 h. Red blood cell velocity (vRBC) [mm/s], vessel diameter (D) [µm] and functional 
vessel density (fvd) [cm/cm2] were evaluated offline by an image analysis system. *P, ≤ 0.05 versus muscle 
tissue (PT n = 6, DMSO n = 3).  

 

3.3.3 PT reduces tumor vessel perfusion without aff ecting the 

density of tumor vessels in an ectopic B16-F1 mouse  

melanoma tumor model 

To determine whether single dose treatment with PT causes tumor cell death due to tumor 

blood-flow shutdown we used highly vascularized B16-F1 mouse melanoma tumors (for 

details see 2.11.4), which grew subcutaneously in the hind limb of C57BL/6 mice. When 

tumors reached a size of approx. 650 mm3, we injected IV 10 mg/kg PT or 5% DMSO 

(vehicle control). 24 h later Hoechst 33342 was IV injected as perfusion marker, and mice 

were sacrificed after 1 min. Both, the tumor rim as well as the tumor center of PT- or 

vehicle-treated mice were analyzed (Figure 38). In control tumors, Hoechst 33342 

fluorescence (i.e. perfusion) was detectable nearly in equal intensity at the rim as well as 

in the center, whereas PT-treated tumors showed a lesser Hoechst 33342 intensity at the 

rim and almost no staining in the center (Figure 38 A,B). In contrast, CD31 positive 

endothelial cells were similarly distributed throughout the tumors, indicating that tumor 

vessel density was not altered by PT (Figure 38 A,C).  
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Figure 38  Single dose of PT significantly reduces Ho echst 33342 perfusion in B16-F1 tumor 
centers, whereby vessel density was not affected. A : B16-F1 mouse melanoma cells were subcutaneously 
injected into the left hind limb of female C57BL/6 mice. If tumors reached a size of approx. 650 mm3, either 
DMSO control (5%, 24 h) or PT (10 mg/kg, 24 h) was injected IV. Hoechst 33342 (10 mg/kg) was used as 
perfusion marker and was injected IV 1 min befor tumor removal. After embedding in frozen tissue medium, 
cryosections of 10 µm were prepared and stained with an anti-CD31 antibody to visualize endothelial cells. To 
obtain an overview of the tumor tissue, phase-contrast images were additionally taken. Representative images 
of control and PT-treated tumor centers and rims are shown. Scale bar represents 200 µm. B, C:  For 
quantification, thirteen pictures of the tumor center and rim of two different sections were taken to analyze the 
intensity of Hoechst 33342 fluorescence (B) and to count CD31-positive endothelial cells (C). *P, ≤ 0.05 
versus control (PT n = 8, DMSO n = 6).  
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3.3.4 PT induces enormous central necrosis in B16-F 1 mouse 

melanoma tumors 

Haematoxylin and eosin staining (H&E) of the same tumors as described above (3.3.3) 

revealed that single dose treatment with PT resulted in enormous central necrosis (Figure 

39 A), which spanned almost 30% of the whole tumor area (Figure 39 B). Control tumors 

showed central necrosis as well, but only 5% of the whole tumor area were affected and 

could be ascribed to the big tumor size. 

Figure 39  Single dose of PT induces necrosis in B16- F1 tumor centers. A: B16-F1 mouse melanoma 
cells were subcutaneously injected into the left hind limb of female C57BL/6 mice. If tumors reached a size of 
approx. 650 mm3, either DMSO control (5%, 24 h) or PT (10 mg/kg, 24 h) was injected IV. After tumor 
resection, formalin-fixation and paraffin embedding sections of 5 µm were prepared and stained with H&E. 
Scale Bar: 400 µm. B:  Two sections per tumor were photographed using 4x magnification as described in the 
materials and methods section (2.10.3.2). Quantification of necrotic tumor areas was performed using ImageJ 
software. *P, ≤ 0.05 versus control (PT n = 9, DMSO n = 6). 

 

Taken together, we clearly could show in two different tumor models that single dose 

treatment with PT induces a rapid and selective shut-down of tumor blood flow and 

reduces Hoechst 33342 perfusion in vivo, whereas the overall vessel density was not 

affected. As a result, massive tumor cell necrosis in tumor centers occurred.  
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3.4 Multiple dose treatment of PT decelerates tumor  
growth in vivo  

To evaluate the therapeutical efficiency of PT, we used the same tumor model as 

described above (3.3.3), but PT treatment started as soon as tumors reached a size of 

about 90 mm3. 10 mg/kg PT was applied IV into the tail vein on day 0, 3 and 6, and we 

determined the overall capacity of PT to affect tumor growth and its tolerability. We 

observed that the increase in tumor growth was strongly diminished by PT compared to 

control tumors (Figure 40 A) and that the repeated application of PT was well tolerated 

since no significant change of mouse weight was measurable (Figure 40 B). 

Figure 40  Multiple dose treatment with PT decelerat es tumor growth. A: B16-F1 mouse melanoma 
cells were subcutaneously injected into the left hind limb of female C57BL/6 mice. When tumors reached a 
size of approx. 90 mm3, either DMSO control (5%) or PT (10 mg/kg) was injected IV on day 0, 3 and 6 
(indicated by red arrows). Increased tumor size was assessed as described in the Materials and Methods 
section (2.10.4) and is displayed as x-fold increase in tumor volume compared to the starting point (0 d). *P, ≤ 
0.05 versus control (PT n = 6, DMSO n = 5). B:  Mouse weight was measured every day to monitor tolerability 
of PT. 

 

This result demonstrates that multiple dose treatment with PT was well tolerated and led 

to a significant impairment of tumor growth in vivo. Although we assume that the observed 

effect was not exclusively mediated through the vascular disrupting potential of PT (also 

anti-angiogenesis and tumor growth-inhibiting effects are involved), we suggest that the 

potential of PT as a VDA may play an important part in this context.  

 

In summary, we clearly demonstrated by using in vitro, ex vivo and in vivo 

experiments that PT exhibits strong vascular disrup ting actions.  
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Vascular disrupting agents (VDAs) have gained importance in clinical trials since they 

represent an effective and additional way to conventional chemotherapy. However, the 

fact that only a few VDAs have overcome the pre-clinical status and have been introduced 

into clinical trials, indicate that there are many difficulties that need to be solved. Indeed, 

VDAs are effective below their maximum tolerated dose (MTD) and complement the anti-

vascular effects of angiogenesis inhibitors (AI), but they also show some disadvantages in 

terms of resistance, scheduling and side-effects. Therefore, it is pivotal for the 

development of the next generation VDAs to address these issues and to improve their 

potential benefits. In this regard, natural compounds with their huge variety of new 

structures offer a considerable source of potential new agents. 

In the present study we introduce pretubulysin (PT), a new synthetic accessible natural 

compound of myxobacterial origin that shows typical VDA hallmarks in endothelial cells in 

vitro as well as in different tumor models in vivo. Furthermore, it was well tolerated thus, 

representing a serious new candidate for further clinical evaluation. 

4.1 PT treatment elicits typical hallmarks of vascu lar 
disruption in ECs in vitro 

4.1.1 The impact of PT on microtubules 

It is well known that microtubule disassembly induced by VDAs (e.g. CA-4-P) or other 

microtubule destabilizers (e.g. nocodazole) leads to various tissue- and cell specific 

signaling responses. For instance, microtubule depolymerization in fibroblasts attenuates 

polarity and migration,118 whereas in neutrophils polarity and migration are induced.119 In 

endothelial cells, microtubule disassembly impairs proliferation16 and time-dependently 

correlates with RhoA-ROCK-MLC as well as with p38 MAPK activation. Both pathways 

are known to contribute to actin remodeling, cell contraction and increased vascular 

permeability. 80, 114, 115, 120 In the present study, we show that the novel tubulin degrading 

agent PT is able to directly target microtubules and induces concentration-dependent 

microtubule disassembly in a confluent HUVEC monolayer. This result confirms previous 

studies of Eirich et al.108 and Rath et al.,16 which demonstrated that PT directly binds to 

the β-tubulin subunit of microtubules and induces depolymerization in proliferating human 

microvascular endothelial cells (HMECs). In addition, we observed that PT-mediated 

microtubule depolymerization time-dependently correlates with an activation of RhoA, 

phosphorylation of MLC, actin stress fiber formation, junction disruption and with an 
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increase in permeability. These observed effects are typical for tubulin binding VDAs 

described in literature, which showed that microtubule depolymerization seems to be the 

trigger.80 

4.1.2 The link between PT-mediated microtubule 

depolymerization and actin stress fiber formation 

The exact mechanism how microtubule depolymerization is linked to actin remodeling is 

not completely investigated so far. However, the fact that PT-mediated microtubule 

disruption correlates with RhoA activation let us speculate that it could be mediated 

through guanosine nucleotide exchange factors (GEFs) that are linked to microtubules.121, 

122 GEFs together with GDP-dissociation inhibitors (GDIs) and GTPase-activating proteins 

(GAPs) regulate the activity-status of small GTPases like Rho, Rac, and Cdc42. Recent 

studies showed that GEF-H1, a Rho specific GEF, is inactive when it is bound to 

microtubules, whereas depolymerization results in its release and activation, accompanied 

by induction of stress fiber formation and MLC phosphorylation.79 Since these effects are 

also obvious upon PT treatment, we hypothesize that GEF-H1 might be involved.  

Among several RhoA targets it is known from previous work that microtubule targeting 

agents induce MLC phosphorylation and actin remodeling leading to endothelial 

hyperpermeability by a RhoA dependent activation of Rho kinase (ROCK).80, 120, 123 

Thereby, the binding of Rho-GTP to ROCK facilitates interactions of ROCK with target 

proteins (e.g. MLC) and regulates the translocation of the protein complex to the target 

side.124 By using a specific ATP-competitive ROCK inhibitor (Y27632) we could show that 

PT-mediated stress fiber formation as well as MLC phosphorylation were reduced. This 

result indicates an important role of ROCK.  

Besides the direct phosphorylation of MLC at Ser19, it is also possible that ROCK 

indirectly acts on MLC via phosphorylation of the regulatory subunit (MYPT-1) of myosin 

light chain phosphatase (MLCP). In case of phosphorylation, MYPT-1 dissociates from 

myosin and MLCP activity is inhibited.123 We used a side-specific antibody to phospho-

MYPT-1 (Thr696) and could show that PT-induced ROCK activity does not increase 

MYPT-1 phosphorylation. This result suggests that PT-mediated activation of MLC only 

occurs through direct interaction of ROCK.  

The counterpart of MLCP, in terms of MLC phosphorylation and activation, is MLCK. Its 

activity is mainly regulated by the calcium binding protein calmodulin, which binds in the 

presence of Ca2+ to the calmodulin binding domain and release autoinhibition. This in turn 
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leads to MLC phosphorylation at Ser19 and Thr18, which causes a shift in the tertiary 

protein structure of MLC and increases actinomyosin contraction. Although the 

contribution of intracellular Ca2+ is controversy discussed and some microtubule binding 

VDAs and destabilizing MTA act without affecting MLCK,80, 120, 123 we proved an eventual 

involvement by using the specific MLCK inhibitor ML-7, and additionally performed 

intracellular Ca2+ measurements. As supposed, PT treatment neither affects MLCK nor 

alters intracellular Ca2+ levels. Thus, strengthens our hypothesis that the observed cellular 

effects are directly mediated via the RhoA-ROCK-MLC pathway. 

4.1.3 PT and the microtubule mediated process of me mbrane 

blebbing  

Besides the RhoA-ROCK-MLC pathway, it is also known that actin remodeling and 

hyperpermeability, triggered by microtubule disassembly, could be mediated through 

mitogen-activated protein kinases (MAPKs).125 Thereby, especially p38 MAPK, a known 

important regulator of actin remodeling,126, 127 was reported to be involved in the action of 

microtubule disrupting compounds114, 115 and mediates, via HSP27, stress fiber 

formation.126 In fact, we could show that JNK and particularly p38 MAPK as well as its 

downstream target HSP27 were strongly phosphorylated by PT. However, treatment with 

specific inhibitors revealed that activation of p38 MAPK and JNK are not needed to 

mediate the effects of PT in our system. This observation differs completely from other 

known microtubules targeting agents, which use the p38 MAPK pathway in addition to the 

RhoA-ROCK-MLC pathway.114, 115 We speculate that the PT-induced activation of p38 

MAPK might be associated with the process of early membrane blebbing, which was 

observed at higher concentrations of PT after long-term treatment (data not shown). Early 

membrane blebbing was intensively described by a study of Kanthou and Tozer80, in 

which they could show that membrane blebbing occurred upon the disruption of 

microtubules. This phenomenon depended on the activation of p38 MAPK, but was 

independent of MLCK-mediated MLC phosphorylation and, remarkably, of apoptotic 

blebbing.80 The underlying mechanisms of how p38 MAPK control membrane blebbing 

are not clear, but involvement of HSP27, RhoA, and ERK are discussed.128 Furthermore, 

membrane blebbing was not observed in either smooth muscle cells or fibroblasts, in 

which CA-4-P, the lead VDA, induced stress fibers. This selectivity possibly reflects 

differences in regulation and composition of cytoskeletal systems in ECs.129 
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In addition to the classic p38 MAPK pathways inducing stress fiber formation, 

hyperpermeability and membrane blebbing, it is conceivable that p38 MAPK directly 

influences microtubules. For instance, tau, a microtubule associated protein, stabilizes in 

its unphosphorylated form microtubules and promote their assembly. Due to 

phosphorylation at multiple Ser/Thr sites by a number of kinases including p38 MAPK, 

tau-mediated stabilization is diminished, and microtubule depolymerization occurs.130 It is 

imaginable that PT-mediated activation of p38 MAPK on the one hand induces membrane 

blebbing, and on the other hand promotes additional microtubule depolymerization via 

positive feedback mechanisms. However, this assumption needs to be further evaluated. 

4.1.4 The influence of PT on endothelial junctions 

Besides morphological changes, a further major consequence of VDA treatment involves 

the maintenance of endothelial barrier integrity. It is known from previous studies, 

describing VDA action (e.g. CA-4-P) that increased paracellular permeability is one of the 

earliest effects that occur in endothelial cells in vitro80 and in tumor vasculature in vivo.72 

This phenomenon was also observed for PT, which concentration-dependently increased 

permeability within 30 minutes in cultured EC and led to an enormous FITC-dextran 

extravasation in tumor vessels. Interestingly, in vitro, the rise in permeability could partially 

be inhibited by using the ROCK inhibitor Y27632, suggesting a link between the signal 

pathways associated with PT action, morphological EC changes and functional properties 

of the endothelial barrier. The latter is regulated by adherens junctions, especially 

vascular endothelial (VE) cadherin, and tight junctions consisting of claudin-5, which 

represent the most important junction proteins to control permeability. In the present study 

we demonstrated that within 1 h PT treatment, VE-cadherin as well as claudin-5 was 

disrupted and huge intracellular gaps occurred. At the same time we observed an 

increase in permeability and cell contraction, indicating a link between junction disruption, 

hyperpermeability and actinomyosin contraction. In literature, internalization and cleavage 

of VE-cadherin, as well as tyrosine phosphorylation via SRC or Rho-GTPases, are 

intensively discussed to impair junction integrity, however, the specific consequences 

regarding vascular permeability are still unknown.110 Since PT-mediated cellular effects 

occur within minutes, we suggest that VE-cadherin modifications as described above 

might be too slow to explain the rapid effect of PT. Therefore, we assume that the 

observed increase in permeability is mediated by actinomyosin that is coupled to the 

catenin complex of VE-cadherin. In this case, PT treatment would trigger cell contraction 

via stress fiber formation, which in turn alters VE-cadherin organization and promotes 
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intracellular gap formation. According to this hypothesis, removal of PT causes 

reestablishment of a normal EC monolayer with intact junctions and relaxed actin fibers 

(data not shown), indicating that VE-cadherin reorganization occurs temporarily and 

seems to be actinomyosin dependent.  

In addition, it is known that VE-cadherin regulates by using the phosphatidylinositol-3-OH 

kinase PI(3)K-AKT-FoxO-pathway the expression of claudin-5 and influences 

angiogenesis.131 Thus, it is conceivable that PT-triggered VE-cadherin disruption also 

affects this pathway. Possibly, VE-cadherin destruction is associated with reduced 

phosphorylation of the pro-survival signaling of the kinase AKT, which in turn activates 

members of the FoxO transcription factors. As a result FoxO translocates to the nucleus 

and inhibits claudin-5 expression. This hypothesis would be in agreement with our results 

showing that VE-cadherin and claudin-5 junction disruption occurred in a similar way. 

Furthermore, a previous study by Vincent et al.132 demonstrated that the lead VDA CA-4-P 

also disrupts VE-cadherin, which was associated with reduced AKT phosphorylation. 

Actually we have not focused on AKT signaling in this study, hence, this point is still an 

assumption and requires further investigations. 

4.1.5 Cytotoxic profile of PT treatment in confluen t ECs  

The cytoskeletal rearrangements, which occurred upon PT treatment affected not only the 

endothelial barrier function but also led to enormous cell shape changes and disruption of 

established tubes, suggesting that PT might be toxic to HUVECs. Cytotoxicity assays, 

however, revealed that PT neither considerably reduces metabolic activity nor induces 

apoptosis or necrosis after 24 h treatment. Furthermore, we could not detect any G2/M 

arrest, which plays an important role in the onset of apoptotic cell death. Our findings are 

in contrast to data from previous studies, in which PT as well as the lead VDA CA-4-P was 

shown to induce G2/M arrest and apoptosis within 24-48 h.16, 66, 133 The reason for this 

different result may be due to the fact that we worked with confluent, quiescent HUVECs, 

whereas the mentioned studies used proliferating ones, which are susceptible to the 

blockade of the spindle apparatus. This assumption is supported by own experiments 

showing that proliferating HUVECs pre-treated with PT show a four times higher induction 

of apoptosis and G2/M arrest than confluent ones (data not shown). Confluent HUVECs 

treated with CA-4-P also did not undergo metabolic changes, G2/M arrest, apoptosis or 

necrosis (data not shown). Toxicity studies by Dark et al.70 confirmed our hypothesis, but 

the reason why proliferating cells are more sensitive to treatment is not fully understood. 
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Moreover, HUVECs are even able to reassume their normal morphology after withdrawal 

of PT indicating that treatment is not cytotoxic. 

4.2 PT selectively targets tumor vasculature in vivo 

4.2.1 Mechanisms leading to selective blood flow sh utdown  

By using different in vivo tumor models, we showed that PT treatment induces within 2 h a 

significant reduction in tumor blood perfusion, whereby perfusion of ‘normal’ (healthy) 

tissue seems to be not affected. These events are highly characteristic for tubulin-binding 

VDAs as previously described for CA-4-P.73, 134 We can not exclude that ‘normal’ blood 

vessels are not at all affected by PT, but we suggest that a mature endothelium covered 

by pericytes is more stable and, thus, resistant to PT treatment. This hypothesis is also 

based on previous data, which showed that in vitro co-culture of HUVECs with smooth 

muscle cells are lesser affected than ECs alone.132 Additionally, differences between 

tumor and ‘normal’ vasculature in regard to structure, organization, blood flow, 

permeability, interstitial fluid pressure, proliferation rate or modifications of tubulin and 

actin between tumor- and normal vasculature could contribute to the selectivity observed 

for PT, but are still a matter of debate.5, 135 Upon PT treatment, tumor vessel perfusion 

was significantly reduced in tumor centers and was accompanied by necrosis. 

Interestingly, the distribution of endothelial vessels seems to be not affected and 

independent of treatment. This suggests that vessels in the tumor center are much lesser 

perfused, possibly due to constriction or local occlusion by red blood cells, which might 

occur through endothelial cell shape changes or blebbing.67 It is also conceivable that the 

reduced blood velocity caused by PT might contribute to radial movements of erythrocytes 

far away from the main direction of flow. This enhances collisions and leads to the 

stacking of red blood cells, thereby evoking an increase in blood viscosity that further 

facilitates vessel occlusion (Figure 41).134 An increase in hypoxia, as it is described for 

CA-4-P, may additionally promote tumor cell death via increased production of vasoactive 

mediators (e.g. endothelin), however, this point has not been investigated so far (Figure 

41).  
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4.2.2 Therapeutic potential of PT 

Besides the single dose schedule, we also wanted to mimic a more therapeutical setting. 

We injected PT metronomically (three times, every third day) and measured tumor size as 

well as mouse weight. Although this model does not allow to discriminate between effects 

of PT on cancer cells and on the tumor vasculature, the strong tumor growth-decelerating 

action of PT clearly demonstrates the overall anti-cancer potential of the compound. 

Importantly, PT seems to be well tolerated since no obvious side effects were detected 

and the animals did not exhibit significant weight changes. In summary, compared to other 

xenograft studies,66, 70 PT shows comparable effects in terms of blood flow shut-down, 

induction of necrosis and overall anti-tumor activity, although a ten times lower 

concentration was used. These aspects, plus the good tolerance, let us suggest that PT 

might be a novel interesting candidate for further preclinical and clinical testing. 

4.2.3 Possible adverse effects of PT treatment 

Despite the fact that PT, like other VDAs, causes extensive tumor necrosis, it is important 

to keep in mind that the deficiency in oxygen on the one hand induces tumor cell death, 

but on the other hand also may stimulate signal pathways that promote angiogenesis.128 

The latter consequence might be the main reason why single treatments with VDAs still 

fail to prevent tumor regrowth.81 For instance, hypoxia, which mainly occurs upon vessel 

occlusion, is a strong inducer of hypoxia-inducible factor (HIF)-1α and related to 

angiogenic gene expression. In literature, it was shown that CA-4-P induces a strong 

expression of HIF-1α in cultured ECs, which undoubtably activates angiogenic 

pathways.135 Additionally, endothelial progenitor cells, which are mobilized from the bone 

marrow upon VDA treatment, specifically home into the supplying mother vessels and can 

also contribute to angiogenic activity.136 Therefore, CA-4-P treatment is still used in 

combination with other chemotherapeutic agents or AI that inhibit neovascularization. In 

this regard, scheduling and the succession of VDA application are very important to obtain 

tumor control.83-85 Indeed, we cannot say whether PT treatment induces such signaling 

cascades leading to angiogenic activity, however, the possibility exists and should be kept 

in mind when tumors are treated with PT.  
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The proposed mechanism for the shut-down in tumor blood flow after treatment with PT is 

shown below (Figure 41). 

 

Figure 41 Mode of action of PT on ECs and on tumor va sculature. Microtubule dissasembly activates 
the RhoA/ROCK/MLC pathway as well as the p38 MAPK pathway. Both evoke actin stress fiber formation and 
EC contraction. As a result, endothelial junctions are disrupted and permeability increases. At the end, 
reduced blood flow and tumor cell death induced by necrosis occur. The dashed and grey arrows indicate 
potential additional pathways activated by PT, however, these were not investigated. EC: endothelial cell.  
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Vascular disrupting agents (VDAs), in contrast to angiogenesis inhibitors (AI), selectively 

target the established tumor vasculature of larger solid tumors. They rapidly (within 

minutes) induce vessel occlusion and blockage of blood flow followed by tumor necrosis. 

Within the class of VDAs, natural compounds, that induce microtubule depolymerization in 

ECs are the most successful VDAs tested in clinical trials today. Unfortunately, the 

number of drug candidates is still limited and some compounds suffer from severe side 

effects. Thus, there is still a great need to advance this promising field by discovering and 

characterizing new substances.  

In the present study we evaluated pretubulysin (PT), a novel myxobacterial compound, 

which represents a biosynthetic precursor of the microtubule depolymerizing peptide 

tubulysin. Structurally, PT is a linear tetrapeptide and synthetically fully accessible. It 

shows nearly the same tubulin degrading activity than tubulysin and also its anti-

angiogenic activity as well as its potential to inhibit tumor cell growth was intensively 

investigated in previous studies. Since PT showed already profound anti-vascular and 

microtubule targeting properties in proliferating ECs, we hypothesized that PT also might 

have vascular disrupting potential in a quiescent endothelium. Therefore, we performed 

an in-depth characterization of this agent, both in vitro and in different in vivo tumor 

models. 

Indeed, we could show for the first time that PT elicits typical hallmarks of vascular 

disruption in ECs. It rapidly (within 30 minutes) induces endothelial hyperpermeability, 

disrupts endothelial junctions, redistributes focal adhesions and destroys established 

endothelial tubes. In addition, PT-mediated tubulin depolymerization increases stress fiber 

formation and EC contraction by activation of the RhoA/ROCK/MLC pathway independent 

of MLCK, MLCP or calcium. In contrast to the available VDAs, p38 MAPK activation was 

not found to be involved. Even long-term treatment with PT did not induce biological 

relevant apoptosis, necrosis or metabolic activity changes, indicating that PT treatment 

was not cytotoxic. In vivo, a single dose of PT (10 mg/kg) significantly and selectively 

decreased blood flow and vessel diameter in tumors, but not in the neighboring healthy 

tissue. Additionally, single doses of PT caused enormous tumor cell necrosis within 24 h. 

Repeated PT doses strongly decelerated tumor growth and were well tolerated.   

In conclusion, we demonstrated that PT exerts strong vascular disrupting activities in vitro 

and selectively impairs tumor blood perfusion in vivo, thereby being efficient at non-toxic 

doses. Its availability in larges scales provides the opportunity for chemical modification 

and optimization, which opens up the field for further investigations. Since PT exhibits 

prominent hallmarks of established VDAs that are tested in clinical trials, we assume that 

this natural compound represents a novel, promising pharmacological option for anti-

vascular tumor treatment. 



 

6 REFERENCES 

  



6  REFERENCES 80 

1. Schwartz EL. Antivascular actions of microtubule-binding drugs. Clin Cancer Res. 

2009:15:2594-2601. 

2. Pasquier E, Kavallaris M. Microtubules: A dynamic target in cancer therapy. 

IUBMB Life. 2008:60:165-170. 

3. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev 

Cancer. 2004:4:253-265. 

4. Furst R, Vollmar AM. A new perspective on old drugs: Non-mitotic actions of 

tubulin-binding drugs play a major role in cancer treatment. Pharmazie. 

2013:68:478-483. 

5. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev 

Cancer. 2005:5:423-435. 

6. Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D. Isolation and 

structure of the strong cell growth and tubulin inhibitor combretastatin a-4. 

Experientia. 1989:45:209-211. 

7. Sosa JA, Elisei R, Jarzab B, et al. A randomized phase ii/iii trial of a tumor 

vascular disrupting agent fosbretabulin tromethamine (ca4p) with carboplatin (c) 

and paclitaxel (p) in anaplastic thyroid cancer (atc): Final survival analysis for the 

fact trial. J Clin Oncol. 2011:29:supplement, abstract 5502. 

8. Cooney MM, Radivoyevitch T, Dowlati A, Overmoyer B, Levitan N, Robertson K, 

Levine SL, DeCaro K, Buchter C, Taylor A, Stambler BS, Remick SC. 

Cardiovascular safety profile of combretastatin a4 phosphate in a single-dose 

phase i study in patients with advanced cancer. Clin Cancer Res. 2004:10:96-100. 

9. Hollebecque A, Massard C, Soria JC. Vascular disrupting agents: A delicate 

balance between efficacy and side effects. Curr Opin Oncol. 2012:24:305-315. 

10. Ullrich A, Herrmann J, Müller R, Kazmaier U. Synthesis and biological evaluation 

of pretubulysin and derivatives. European J Org Chem. 2009:2009:6367-6378. 

11. Ullrich A, Chai Y, Pistorius D, Elnakady YA, Herrmann JE, Weissman KJ, 

Kazmaier U, Muller R. Pretubulysin, a potent and chemically accessible tubulysin 

precursor from angiococcus disciformis. Angew Chem Int Ed Engl. 2009:48:4422-

4425. 

12. Sandmann A, Sasse F, Muller R. Identification and analysis of the core 

biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer 

activity. Chem Biol. 2004:11:1071-1079. 

13. Kaur G, Hollingshead M, Holbeck S, Schauer-Vukasinovic V, Camalier RF, 

Domling A, Agarwal S. Biological evaluation of tubulysin a: A potential anticancer 

and antiangiogenic natural product. Biochem J. 2006:396:235-242. 



6  REFERENCES 81 

14. Sasse F, Steinmetz H, Heil J, Hofle G, Reichenbach H. Tubulysins, new cytostatic 

peptides from myxobacteria acting on microtubuli. Production, isolation, physico-

chemical and biological properties. J Antibiot (Tokyo). 2000:53:879-885. 

15. Herrmann J, Elnakady YA, Wiedmann RM, Ullrich A, Rohde M, Kazmaier U, 

Vollmar AM, Muller R. Pretubulysin: From hypothetical biosynthetic intermediate to 

potential lead in tumor therapy. PLoS One. 2012:7:e37416. 

16. Rath S, Liebl J, Furst R, Ullrich A, Burkhart JL, Kazmaier U, Herrmann J, Muller R, 

Gunther M, Schreiner L, Wagner E, Vollmar AM, Zahler S. Anti-angiogenic effects 

of the tubulysin precursor pretubulysin and of simplified pretubulysin derivatives. 

Br J Pharmacol. 2012:167:1048-1061. 

17. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 

years from 1981 to 2010. J Nat Prod. 2012:75:311-335. 

18. Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. 

Eur J Med Chem. 2011:46:4769-4807. 

19. Weissman KJ, Muller R. Myxobacterial secondary metabolites: Bioactivities and 

modes-of-action. Nat Prod Rep. 2010:27:1276-1295. 

20. Reichenbach H. Myxobacteria, producers of novel bioactive substances. J Ind 

Microbiol Biotechnol. 2001:27:149-156. 

21. Kiskowski MA, Jiang Y, Alber MS. Role of streams in myxobacteria aggregate 

formation. Phys Biol. 2004:1:173-183. 

22. Schneiker S, Perlova O, Kaiser O, et al. Complete genome sequence of the 

myxobacterium sorangium cellulosum. Nat Biotechnol. 2007:25:1281-1289. 

23. Bode HB, Muller R. The impact of bacterial genomics on natural product research. 

Angew Chem Int Ed Engl. 2005:44:6828-6846. 

24. Reichenbach H, Hofle G. Biologically active secondary metabolites from 

myxobacteria. Biotechnol Adv. 1993:11:219-277. 

25. Höfle G, Glaser N, Leibold T, Karama U, Sasse F, Steinmetz H. Semisynthesis 

and degradation of the tubulin inhibitors epothilone and tubulysin. Pure Appl. 

Chem. . 2003:75:167-178. 

26. Peltier HM, McMahon JP, Patterson AW, Ellman JA. The total synthesis of 

tubulysin d. J Am Chem Soc. 2006:128:16018-16019. 

27. Pando O, Dorner S, Preusentanz R, Denkert A, Porzel A, Richter W, Wessjohann 

L. First total synthesis of tubulysin b. Org Lett. 2009:11:5567-5569. 

28. Shibue T, Hirai T, Okamoto I, Morita N, Masu H, Azumaya I, Tamura O. Total 

syntheses of tubulysins. Chemistry. 2010:16:11678-11688. 



6  REFERENCES 82 

29. Erickson HP, O'Brien ET. Microtubule dynamic instability and gtp hydrolysis. Annu 

Rev Biophys Biomol Struct. 1992:21:145-166. 

30. Moritz M, Braunfeld MB, Guenebaut V, Heuser J, Agard DA. Structure of the 

gamma-tubulin ring complex: A template for microtubule nucleation. Nat Cell Biol. 

2000:2:365-370. 

31. Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic 

microtubules: A new molecular perspective. Med Res Rev. 2011:31:443-481. 

32. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev 

Biol. 1997:13:83-117. 

33. Mitchison TJ, Kirschner M. Dynamic instability of microtubule growth. Nature. 

1984:312:237-242. 

34. Margolis RL, Wilson L. Opposite end assembly and disassembly of microtubules at 

steady state in vitro. Cell. 1978:13:1-8. 

35. McIntosh JR, Grishchuk EL, West RR. Chromosome-microtubule interactions 

during mitosis. Annu Rev Cell Dev Biol. 2002:18:193-219. 

36. Wilson L, Panda D, Jordan MA. Modulation of microtubule dynamics by drugs: A 

paradigm for the actions of cellular regulators. Cell Struct Funct. 1999:24:329-335. 

37. Farrell KW, Jordan MA, Miller HP, Wilson L. Phase dynamics at microtubule ends: 

The coexistence of microtubule length changes and treadmilling. J Cell Biol. 

1987:104:1035-1046. 

38. Conde C, Caceres A. Microtubule assembly, organization and dynamics in axons 

and dendrites. Nat Rev Neurosci. 2009:10:319-332. 

39. Pasquier E, André N, Braguer D. Targeting microtubules to inhibit angiogenesis 

and disrupt tumour vasculature: Implications for cancer treatment. Current Cancer 

Drug Targets. 2007:7:566-581. 

40. Safa AR. Identification and characterization of the binding sites of p-glycoprotein 

for multidrug resistance-related drugs and modulators. Curr Med Chem Anticancer 

Agents. 2004:4:1-17. 

41. Kavallaris M, Burkhart CA, Horwitz SB. Antisense oligonucleotides to class iii beta-

tubulin sensitize drug-resistant cells to taxol. Br J Cancer. 1999:80:1020-1025. 

42. Martello LA, Verdier-Pinard P, Shen HJ, He L, Torres K, Orr GA, Horwitz SB. 

Elevated levels of microtubule destabilizing factors in a taxol-resistant/dependent 

a549 cell line with an alpha-tubulin mutation. Cancer Res. 2003:63:1207-1213. 

43. Rouzier R, Rajan R, Wagner P, et al. Microtubule-associated protein tau: A marker 

of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci U S A. 2005:102:8315-

8320. 



6  REFERENCES 83 

44. Kavallaris M, Tait AS, Walsh BJ, He L, Horwitz SB, Norris MD, Haber M. Multiple 

microtubule alterations are associated with vinca alkaloid resistance in human 

leukemia cells. Cancer Res. 2001:61:5803-5809. 

45. Verrills NM, Liem NL, Liaw TY, Hood BD, Lock RB, Kavallaris M. Proteomic 

analysis reveals a novel role for the actin cytoskeleton in vincristine resistant 

childhood leukemia--an in vivo study. Proteomics. 2006:6:1681-1694. 

46. Verrills NM, Po'uha ST, Liu ML, Liaw TY, Larsen MR, Ivery MT, Marshall GM, 

Gunning PW, Kavallaris M. Alterations in gamma-actin and tubulin-targeted drug 

resistance in childhood leukemia. J Natl Cancer Inst. 2006:98:1363-1374. 

47. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic 

switch during tumorigenesis. Cell. 1996:86:353-364. 

48. Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumour 

therapy. Br J Cancer. 1982:45:136-139. 

49. Chaplin DJ, Hill SA. The development of combretastatin a4 phosphate as a 

vascular targeting agent. Int J Radiat Oncol Biol Phys. 2002:54:1491-1496. 

50. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as 

targets in cancer. Curr Opin Genet Dev. 2005:15:102-111. 

51. Naik E, O'Reilly LA, Asselin-Labat ML, Merino D, Lin A, Cook M, Coultas L, 

Bouillet P, Adams JM, Strasser A. Destruction of tumor vasculature and abated 

tumor growth upon vegf blockade is driven by proapoptotic protein bim in 

endothelial cells. J Exp Med. 2011:208:1351-1358. 

52. Vandenbroucke E, Mehta D, Minshall R, Malik AB. Regulation of endothelial 

junctional permeability. Ann N Y Acad Sci. 2008:1123:134-145. 

53. Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. 

Front Oncol. 2013:3:211. 

54. Dejana E. Endothelial cell-cell junctions: Happy together. Nat Rev Mol Cell Biol. 

2004:5:261-270. 

55. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 

2000:407:249-257. 

56. Tozer GM, Lewis S, Michalowski A, Aber V. The relationship between regional 

variations in blood flow and histology in a transplanted rat fibrosarcoma. Br J 

Cancer. 1990:61:250-257. 

57. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM. Identification and characterization of 

the blood vessels of solid tumors that are leaky to circulating macromolecules. Am 

J Pathol. 1988:133:95-109. 



6  REFERENCES 84 

58. Kobayashi H, Tsuruchi N, Sugihara K, Kaku T, Saito T, Kamura T, Tsukamoto N, 

Nakano H, Taniguchi S. Expression of alpha-smooth muscle actin in benign or 

malignant ovarian tumors. Gynecol Oncol. 1993:48:308-313. 

59. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of 

basement membrane on blood vessels and endothelial sprouts in tumors. Am J 

Pathol. 2003:163:1801-1815. 

60. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. 

Regulation of transport pathways in tumor vessels: Role of tumor type and 

microenvironment. Proc Natl Acad Sci U S A. 1998:95:4607-4612. 

61. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain 

RK, McDonald DM. Openings between defective endothelial cells explain tumor 

vessel leakiness. Am J Pathol. 2000:156:1363-1380. 

62. Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated 

and subcutaneous tumors: Implications for therapy. Cancer Res. 1990:50:4478-

4484. 

63. Siemann DW, Bibby MC, Dark GG, Dicker AP, Eskens FA, Horsman MR, Marme 

D, Lorusso PM. Differentiation and definition of vascular-targeted therapies. Clin 

Cancer Res. 2005:11:416-420. 

64. Landuyt W, Verdoes O, Darius DO, Drijkoningen M, Nuyts S, Theys J, Stockx L, 

Wynendaele W, Fowler JF, Maleux G, Van den Bogaert W, Anne J, van Oosterom 

A, Lambin P. Vascular targeting of solid tumours: A major 'inverse' volume-

response relationship following combretastatin a-4 phosphate treatment of rat 

rhabdomyosarcomas. Eur J Cancer. 2000:36:1833-1843. 

65. Denekamp J. The tumour microcirculation as a target in cancer therapy: A clearer 

perspective. Eur J Clin Invest. 1999:29:733-736. 

66. Iyer S, Chaplin DJ, Rosenthal DS, Boulares AH, Li LY, Smulson ME. Induction of 

apoptosis in proliferating human endothelial cells by the tumor-specific 

antiangiogenesis agent combretastatin a-4. Cancer Res. 1998:58:4510-4514. 

67. Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as 

tumour vascular targeting agents. Int J Exp Pathol. 2002:83:21-38. 

68. Siemann DW. The unique characteristics of tumor vasculature and preclinical 

evidence for its selective disruption by tumor-vascular disrupting agents. Cancer 

Treat Rev. 2011:37:63-74. 

69. Chaplin DJ, Pettit GR, Hill SA. Anti-vascular approaches to solid tumour therapy: 

Evaluation of combretastatin a4 phosphate. Anticancer Res. 1999:19:189-195. 



6  REFERENCES 85 

70. Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ. Combretastatin a-4, 

an agent that displays potent and selective toxicity toward tumor vasculature. 

Cancer Res. 1997:57:1829-1834. 

71. Davis PD, Dougherty GJ, Blakey DC, Galbraith SM, Tozer GM, Holder AL, Naylor 

MA, Nolan J, Stratford MR, Chaplin DJ, Hill SA. Zd6126: A novel vascular-

targeting agent that causes selective destruction of tumor vasculature. Cancer 

Res. 2002:62:7247-7253. 

72. Tozer GM, Prise VE, Wilson J, Cemazar M, Shan S, Dewhirst MW, Barber PR, 

Vojnovic B, Chaplin DJ. Mechanisms associated with tumor vascular shut-down 

induced by combretastatin a-4 phosphate: Intravital microscopy and measurement 

of vascular permeability. Cancer Res. 2001:61:6413-6422. 

73. Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 

2004:10:415-427. 

74. Pilat MJ, Lorusso PM. Vascular disrupting agents. J Cell Biochem. 2006:99:1021-

1039. 

75. Dumontet C, Jordan MA. Microtubule-binding agents: A dynamic field of cancer 

therapeutics. Nat Rev Drug Discov. 2010:9:790-803. 

76. Ching LM, Zwain S, Baguley BC. Relationship between tumour endothelial cell 

apoptosis and tumour blood flow shutdown following treatment with the 

antivascular agent dmxaa in mice. Br J Cancer. 2004:90:906-910. 

77. Baguley BC. Antivascular therapy of cancer: Dmxaa. Lancet Oncol. 2003:4:141-

148. 

78. Ching LM, Cao Z, Kieda C, Zwain S, Jameson MB, Baguley BC. Induction of 

endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-

acetic acid. Br J Cancer. 2002:86:1937-1942. 

79. Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor gef-h1 mediates 

cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol. 

2002:4:294-301. 

80. Kanthou C, Tozer GM. The tumor vascular targeting agent combretastatin a-4-

phosphate induces reorganization of the actin cytoskeleton and early membrane 

blebbing in human endothelial cells. Blood. 2002:99:2060-2069. 

81. Hill SA, Chaplin DJ, Lewis G, Tozer GM. Schedule dependence of combretastatin 

a4 phosphate in transplanted and spontaneous tumour models. Int J Cancer. 

2002:102:70-74. 

82. Siim BG, Lee AE, Shalal-Zwain S, Pruijn FB, McKeage MJ, Wilson WR. Marked 

potentiation of the antitumour activity of chemotherapeutic drugs by the 



6  REFERENCES 86 

antivascular agent 5,6-dimethylxanthenone-4-acetic acid (dmxaa). Cancer 

Chemother Pharmacol. 2003:51:43-52. 

83. Grosios K, Loadman PM, Swaine DJ, Pettit GR, Bibby MC. Combination 

chemotherapy with combretastatin a-4 phosphate and 5-fluorouracil in an 

experimental murine colon adenocarcinoma. Anticancer Res. 2000:20:229-233. 

84. Siemann DW, Mercer E, Lepler S, Rojiani AM. Vascular targeting agents enhance 

chemotherapeutic agent activities in solid tumor therapy. Int J Cancer. 2002:99:1-

6. 

85. Murata R, Siemann DW, Overgaard J, Horsman MR. Interaction between 

combretastatin a-4 disodium phosphate and radiation in murine tumors. Radiother 

Oncol. 2001:60:155-161. 

86. Horsman MR, Murata R, Breidahl T, Nielsen FU, Maxwell RJ, Stodkiled-Jorgensen 

H, Overgaard J. Combretastatins novel vascular targeting drugs for improving anti-

cancer therapy. Combretastatins and conventional therapy. Adv Exp Med Biol. 

2000:476:311-323. 

87. Pedley RB, Hill SA, Boxer GM, Flynn AA, Boden R, Watson R, Dearling J, Chaplin 

DJ, Begent RH. Eradication of colorectal xenografts by combined 

radioimmunotherapy and combretastatin a-4 3-o-phosphate. Cancer Res. 

2001:61:4716-4722. 

88. Ng QS, Mandeville H, Goh V, Alonzi R, Milner J, Carnell D, Meer K, Padhani AR, 

Saunders MI, Hoskin PJ. Phase ib trial of radiotherapy in combination with 

combretastatin-a4-phosphate in patients with non-small-cell lung cancer, prostate 

adenocarcinoma, and squamous cell carcinoma of the head and neck. Ann Oncol. 

2012:23:231-237. 

89. Siemann DW, Shi W. Efficacy of combined antiangiogenic and vascular disrupting 

agents in treatment of solid tumors. Int J Radiat Oncol Biol Phys. 2004:60:1233-

1240. 

90. Cooney MM, van Heeckeren W, Bhakta S, Ortiz J, Remick SC. Drug insight: 

Vascular disrupting agents and angiogenesis--novel approaches for drug delivery. 

Nat Clin Pract Oncol. 2006:3:682-692. 

91. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley 

TJ. Hmec-1: Establishment of an immortalized human microvascular endothelial 

cell line. J Invest Dermatol. 1992:99:683-690. 

92. Bouis D, Hospers GA, Meijer C, Molema G, Mulder NH. Endothelium in vitro: A 

review of human vascular endothelial cell lines for blood vessel-related research. 

Angiogenesis. 2001:4:91-102. 



6  REFERENCES 87 

93. Asaishi K, Endrich B, Gotz A, Messmer K. Quantitative analysis of microvascular 

structure and function in the amelanotic melanoma a-mel-3. Cancer Res. 

1981:41:1898-1904. 

94. Endrich B, Asaishi K, Gotz A, Messmer K. Technical report--a new chamber 

technique for microvascular studies in unanesthetized hamsters. Res Exp Med 

(Berl). 1980:177:125-134. 

95. Wosko TJ, Ferrara DT, Sartori LS. Histological comparison of the b16 melanoma 

and its f1 variant. Cancer Lett. 1984:24:57-63. 

96. Yu J, May L, Milsom C, Anderson GM, Weitz JI, Luyendyk JP, Broze G, Mackman 

N, Rak J. Contribution of host-derived tissue factor to tumor neovascularization. 

Arterioscler Thromb Vasc Biol. 2008:28:1975-1981. 

97. Zeng H, Qin L, Zhao D, Tan X, Manseau EJ, Van Hoang M, Senger DR, Brown 

LF, Nagy JA, Dvorak HF. Orphan nuclear receptor tr3/nur77 regulates vegf-a-

induced angiogenesis through its transcriptional activity. J Exp Med. 

2006:203:719-729. 

98. Bradford MM. A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 

1976:72:248-254. 

99. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, 

Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using 

bicinchoninic acid. Anal Biochem. 1985:150:76-85. 

100. Laemmli UK. Cleavage of structural proteins during the assembly of the head of 

bacteriophage t4. Nature. 1970:227:680-685. 

101. Kurien BT, Scofield RH. Protein blotting: A review. J Immunol Methods. 

2003:274:1-15. 

102. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple 

method for measuring thymocyte apoptosis by propidium iodide staining and flow 

cytometry. J Immunol Methods. 1991:139:271-279. 

103. Grynkiewicz G, Poenie M, Tsien RY. A new generation of ca2+ indicators with 

greatly improved fluorescence properties. J Biol Chem. 1985:260:3440-3450. 

104. Endrich B, Hammersen F, Gotz A, Messmer K. Microcirculatory blood flow, 

capillary morphology and local oxygen pressure of the hamster amelanotic 

melanoma a-mel-3. J Natl Cancer Inst. 1982:68:475-485. 

105. Zeintl H, Tompkins W, Messmer K, Intaglietta M. Static and dynamic 

microcirculatory video image analysis applied to clinical investigations. Prog Appl 

Microcirc. 1986:11:1-10. 



6  REFERENCES 88 

106. Klyscz T, Junger M, Jung F, Zeintl H. [cap image--a new kind of computer-assisted 

video image analysis system for dynamic capillary microscopy]. Biomed Tech 

(Berl). 1997:42:168-175. 

107. Grosios K, Holwell SE, McGown AT, Pettit GR, Bibby MC. In vivo and in vitro 

evaluation of combretastatin a-4 and its sodium phosphate prodrug. Br J Cancer. 

1999:81:1318-1327. 

108. Eirich J, Burkhart JL, Ullrich A, Rudolf GC, Vollmar A, Zahler S, Kazmaier U, 

Sieber SA. Pretubulysin derived probes as novel tools for monitoring the 

microtubule network via activity-based protein profiling and fluorescence 

microscopy. Mol Biosyst. 2012:8:2067-2075. 

109. Bogatcheva NV, Verin AD. The role of cytoskeleton in the regulation of vascular 

endothelial barrier function. Microvasc Res. 2008:76:202-207. 

110. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and ve-

cadherin in the control of vascular permeability. J Cell Sci. 2008:121:2115-2122. 

111. Wu Q, Quan H, Xu Y, Li Y, Hu Y, Lou L. P38 mitogen-activated protein kinase is 

required for the antitumor activity of the vascular disrupting agent 5,6-

dimethylxanthenone-4-acetic acid. J Pharmacol Exp Ther. 2012:341:709-717. 

112. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. 

Physiol Rev. 2006:86:279-367. 

113. Yuan SY, Rigor RR. Regulation of endothelial barrier function. Colloquium Series 

on Integrated Systems Physiology: From Molecule to Function. 2011:3:1-146. 

114. Birukova AA, Birukov KG, Gorshkov B, Liu F, Garcia JG, Verin AD. Map kinases in 

lung endothelial permeability induced by microtubule disassembly. Am J Physiol 

Lung Cell Mol Physiol. 2005:289:L75-84. 

115. Bogatcheva NV, Adyshev D, Mambetsariev B, Moldobaeva N, Verin AD. 

Involvement of microtubules, p38, and rho kinases pathway in 2-methoxyestradiol-

induced lung vascular barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 

2007:292:L487-499. 

116. Shtil AA, Mandlekar S, Yu R, Walter RJ, Hagen K, Tan TH, Roninson IB, Kong AN. 

Differential regulation of mitogen-activated protein kinases by microtubule-binding 

agents in human breast cancer cells. Oncogene. 1999:18:377-384. 

117. Wang TH, Wang HS, Ichijo H, Giannakakou P, Foster JS, Fojo T, Wimalasena J. 

Microtubule-interfering agents activate c-jun n-terminal kinase/stress-activated 

protein kinase through both ras and apoptosis signal-regulating kinase pathways. J 

Biol Chem. 1998:273:4928-4936. 



6  REFERENCES 89 

118. Waterman-Storer CM, Salmon E. Positive feedback interactions between 

microtubule and actin dynamics during cell motility. Curr Opin Cell Biol. 

1999:11:61-67. 

119. Niggli V. Microtubule-disruption-induced and chemotactic-peptide-induced 

migration of human neutrophils: Implications for differential sets of signalling 

pathways. J Cell Sci. 2003:116:813-822. 

120. Verin AD, Birukova A, Wang P, Liu F, Becker P, Birukov K, Garcia JG. Microtubule 

disassembly increases endothelial cell barrier dysfunction: Role of mlc 

phosphorylation. Am J Physiol Lung Cell Mol Physiol. 2001:281:L565-574. 

121. van Horck FP, Ahmadian MR, Haeusler LC, Moolenaar WH, Kranenburg O. 

Characterization of p190rhogef, a rhoa-specific guanine nucleotide exchange 

factor that interacts with microtubules. J Biol Chem. 2001:276:4948-4956. 

122. Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of gef-h1, a 

microtubule-associated guanine nucleotide exchange factor for rac and rho 

gtpases. J Biol Chem. 1998:273:34954-34960. 

123. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi 

K. Phosphorylation and activation of myosin by rho-associated kinase (rho-kinase). 

J Biol Chem. 1996:271:20246-20249. 

124. Leung T, Chen XQ, Manser E, Lim L. The p160 rhoa-binding kinase rok alpha is a 

member of a kinase family and is involved in the reorganization of the 

cytoskeleton. Mol Cell Biol. 1996:16:5313-5327. 

125. Stone AA, Chambers TC. Microtubule inhibitors elicit differential effects on map 

kinase (jnk, erk, and p38) signaling pathways in human kb-3 carcinoma cells. Exp 

Cell Res. 2000:254:110-119. 

126. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of 

actin filament dynamics by p38 map kinase-mediated phosphorylation of heat 

shock protein 27. J Cell Sci. 1997:110 357-368. 

127. Huot J, Houle F, Marceau F, Landry J. Oxidative stress-induced actin 

reorganization mediated by the p38 mitogen-activated protein kinase/heat shock 

protein 27 pathway in vascular endothelial cells. Circ Res. 1997:80:383-392. 

128. Kanthou C, Tozer GM. Tumour targeting by microtubule-depolymerizing vascular 

disrupting agents. Expert Opin Ther Targets. 2007:11:1443-1457. 

129. van Nieuw Amerongen GP, van Hinsbergh VW. Cytoskeletal effects of rho-like 

small guanine nucleotide-binding proteins in the vascular system. Arterioscler 

Thromb Vasc Biol. 2001:21:300-311. 



6  REFERENCES 90 

130. Reynolds CH, Nebreda AR, Gibb GM, Utton MA, Anderton BH. Reactivating 

kinase/p38 phosphorylates tau protein in vitro. J Neurochem. 1997:69:191-198. 

131. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, 

Daly C, Dimmeler S, Dejana E. Endothelial adherens junctions control tight 

junctions by ve-cadherin-mediated upregulation of claudin-5. Nat Cell Biol. 

2008:10:923-934. 

132. Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-

Vincent H, Zhu Z, Hicklin DJ, Bohlen P, Chaplin DJ, May C, Rafii S. 

Combretastatin a4 phosphate induces rapid regression of tumor neovessels and 

growth through interference with vascular endothelial-cadherin signaling. J Clin 

Invest. 2005:115:2992-3006. 

133. Kanthou C, Greco O, Stratford A, Cook I, Knight R, Benzakour O, Tozer G. The 

tubulin-binding agent combretastatin a-4-phosphate arrests endothelial cells in 

mitosis and induces mitotic cell death. Am J Pathol. 2004:165:1401-1411. 

134. Lominadze D, McHedlishvili G. Red blood cell behavior at low flow rate in 

microvessels. Microvasc Res. 1999:58:187-189. 

135. Dachs GU, Steele AJ, Coralli C, Kanthou C, Brooks AC, Gunningham SP, Currie 

MJ, Watson AI, Robinson BA, Tozer GM. Anti-vascular agent combretastatin a-4-p 

modulates hypoxia inducible factor-1 and gene expression. BMC Cancer. 

2006:6:280. 

136. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, 

Chaplin D, Foster FS, Benezra R, Kerbel RS. Therapy-induced acute recruitment 

of circulating endothelial progenitor cells to tumors. Science. 2006:313:1785-1787. 

 



 

7 APPENDIX 

  



7  APPENDIX 92 

7.1 Publications 

7.1.1 Original publications 

Kretzschmann VK, Gellrich D, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. The 

novel tubulin antagonist pretubulysin exhibits profound tumor vessel disrupting properties 

in vitro and in vivo.          

Submitted 

 

Kretzschmann VK and Fürst R. Plant-derived vascular disrupting agents: Compounds, 

actions, and clinical trials. Phytochemistry Reviews. 2013:1-16, DOI:10.1007/s11101-013-

9304-6 

 

Mamasuew K, Hofmann N, Kretzschmann V, Biel M, Yang RB, Breer H, Fleischer J. 

Chemo- and thermosensory responsiveness of Grueneberg ganglion neurons relies on 

cyclic guanosine monophosphate signaling elements. Neurosignals. 2011:19(4):198-209 

7.1.2 Oral presentations 

Kretzschmann VK, Gellrich D, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. 

Project 1: Pretubulysin a new microtubule depolymerizing vascular disrupting agent, 

Project 2: Evaluation of pretubulysin as anti-inflammatory and anti-metastatic agent. 4th 

FOR 1406 Meeting, July 16-18, 2013, Saarbrücken, Germany 

 

Kretzschmann VK, Gellrich D, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. The 

novel tubulin antagonist pretubulysin exhibits vascular disrupting properties in vitro and in 

vivo. Natural Anticancer Drugs, June 30 – July 4, 2012, Olomouc, Czech Republic 

 

Kretzschmann VK, Gellrich D, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. The 

novel tubulin antagonist pretubulysin exhibits vascular disrupting properties in vitro and in 

vivo. 3rd FOR 1406 Meeting, September 16-18, 2012, Starnberg, Germany 

 

Kretzschmann VK, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. Pretubulysin – a 

new vascular disrupting agent. 2nd FOR 1406 Meeting, October 26, 2011, Munich, 

Germany 



7  APPENDIX 93 

7.1.3 Poster presentations 

Kretzschmann VK, Gellrich D, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. 

Targeting the tumor vasculature with pretubulysin – a new vascular disrupting agent. 1st 

European Conference on Natural Products: Research and Applications, September 22-25, 

2013, Frankfurt, Germany 

 

Kretzschmann VK, Gellrich D, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. The 

novel tubulin antagonist pretubulysin disrupts tumor vasculature in vitro and in vivo. 79th 

Spring Meeting of the Deutsche Gesellschaft für experimentelle und klinische 

Pharmakologie und Toxikologie, March 5-7, 2013, Halle/Saale, Germany 

Naunyn-Schmiedebergs Archives of Pharmacology. 2013 : 386: 1 Suppl: 44-44. 

 

Kretzschmann VK, Gellrich D, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. The 

novel microtubule-binding agent pretubulysin shows profound tumor vascular-disrupting 

properties in vitro and in vivo. Annual Meeting of the Deutsche Pharmazeutische 

Gesellschaft e.V. Doktorandentagung, November 14-17, 2012, Weimar, Germany 

 

Kretzschmann VK, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. The tubulin 

antagonist pretubulysin shows strong vascular-disrupting properties in vitro. Interact 2012 

PhD symposium, March, 29-30, 2012, Munich, Germany  

 

Kretzschmann VK, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. The tubulin 

antagonist pretubulysin shows strong vascular-disrupting properties in vitro. 78th Spring 

Meeting of the Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und 

Toxikologie, March 20-22, 2012, Dresden, Germany  

Naunyn-Schmiedebergs Archives of Pharmacology. 2012 : 385: 1 Suppl: 49-49. 

 

Kretzschmann VK, Ullrich A, Zahler S, Vollmar AM, Kazmaier U, Fürst R. The microtubule-

binding agent pretubulysin exhibits profound vascular-disrupting properties in vitro. Joint 

Meeting Society of Microcirculation (ESM) and German Society of Microcirculation and 

Vascular Biology (GfMVB), October 13-16, 2011, Munich, Germany,   

Journal of Vascular Research. 2011:48: 1 Suppl: 113 -113  



7  APPENDIX 94 

7.2 Curriculum vitae 

 

Personal data 

Name      Verena Karoline Kretzschmann 

Date of birth     January 8th, 1986 

Place of birth     Stuttgart 

 

Academic Education 

January 2011-December 2013  PhD thesis at the Department of Pharmacy, 

Pharmaceutical Biology, LMU Munich, 

 Prof. Dr. A.M. Vollmar and Prof. Dr. R. Fürst 

January 2010-October 2010 Diploma thesis at the Institute of Physiology, 

University of Hohenheim, Prof. Dr. H. Breer 

and PD Dr. J. Fleischer 

October 2005-December 2010 Study of Biology, University of Hohenheim 

  



7  APPENDIX 95 

7.3 Acknowledgements 

 

First of all, I would like to deeply thank Prof. Dr. Angelika M. Vollmar for giving me the 

opportunity to perform my PhD thesis in her laboratories. I always appreciated her great 

mentoring and scientific support and that she trusted in me and my work. I am very 

grateful that she gave me the opportunity to be part of the researcher group FOR 1406. I 

really enjoyed our annual meetings and the scientific exchange with the other members. 

Equally, I would like to show my deepest gratitude to Prof. Dr. Robert Fürst for his 

excellent and competent supervision, for trusting in me and my ideas and for motivating 

me throughout the work. Thanks for your great support and guidance during the paper 

writing and especially for having time whenever I needed. I really appreciated our lively 

discussions about the project and beyond. I also want to thank for acting as second 

examiner on my thesis. 

Furthermore I am very grateful to Prof. Dr. Stefan Zahler for his technical advice with the 

confocal microscope and for his suggestions and critical thoughts in our meetings. 

Thanks to Prof. Dr. Ernst Wagner, Prof. Dr. Christian Wahl-Schott, PD Dr. Stylianos 

Michalakis and Prof. Dr. Wolfgang Frieß for the time and interest in this work and for being 

part of the examiner committee. 

Special thanks go to the cooperation partners Prof. Dr. Uli Kazmaier and Dr. Angelika 

Ullrich for the synthesis and supply with Pretubulysin and to Dr. Donata Gellrich for 

helping me with the hamster dorsal skinfold chamber experiment. 

I am very indebted to Bianca for her great help with my very time intensive in vivo 

experiments, for having nice conversations, not only at lunch, and for being there 

whenever I needed an open ear. 

I also want to deeply thank Jana for culturing all the HUVECs, for her technical support, 

for her good advices, and for her helping hand whenever I needed. You are such a great 

person. 

Many thanks also go to Ms. Schnegg for preparing the best Western blots I have ever 

seen and to Kerstin, Rita and Bernadette for their great job and help during the student’s 

internship.  

I thank all my former and recent lab members for creating such a great working 

atmosphere, for the fun we had during and especially after work. Special thanks go to my 



7  APPENDIX 96 

former group members Bettina and Elisabeth, for their good advices all the time, and for 

our great but also quite hard running times.  

Lena, Tini, Flo, Sandra, Siwei, Simone and Michi, thanks for the wonderful time inside and 

outside the lab. I really enjoyed our trips within the FOR 1406 group and especially our 

free-time activities at the roof garden. I am glad to be part of such a great group. Thanks 

for unforgettable three PhD years and for supporting and motivating me during the last 

weeks. 

I also want to give special thanks to my former lab mate Simone for the great time. You 

listened and discussed with me science and private life and gave me good advices 

whenever needed. I wish you all the best for the future and especially for the PhD thesis. 

Michi, you are the best lab partner ever, and I really enjoyed our time together. Thanks for 

your great advices, for listening, for answering all my questions, and for bringing so much 

fun in the lab. In the last months you became a really good friend and I wish you all the 

best for your shared future with Anja. 

Mille grazie Marco, for being there, whenever I need you. Thanks for your endless 

encouragement, for your motivation, help and patience during the final run. I am so glad to 

have you in my life. 

Last but not least I want to deeply thank my family for offering me the opportunity to make 

my way. Thanks, Mum, Dad, Roman and Ruben for your never ending support and belief 

and for being there whenever needed. 

 

 


