
 

 

 

ESSAYS IN COMPETITION AND COLLUSION 

 

 

Inaugural-Dissertation 

zur Erlangung des Grades  

Doctor oeconomiae publicae (Dr. oec. publ.) 

an der Ludwig-Maximilians-Universität München 

 

2013 

 

vorgelegt von 

Patrick Andreoli Versbach 

 

 

 

 

 

 

Referent: Prof. Dr. Joachim Winter 

Korreferent: Prof. Dietmar Harhoff, Ph.D. 

Promotionsabschlussberatung: Wednesday, 6th November 2013 

 

 

 



1 

 
To Silvia, Gunther and Luigi 

  



2 

 

Acknowledgements 

This dissertation could have never been written without the help and encouragement from numerous persons 

who supported me in both good and turbulent times. First of all I would like to thank Joachim Winter, 

Dietmar Harhoff and Monika Schnitzer for their guidance in what I felt being a beautiful journey towards 

understanding the underlying causes of (quite a few) things. I feel in debt with all of them not only for having 

supported my promising research, but especially for having strongly discouraged fruitless ideas. In this respect 

I feel obliged to acknowledge that the identification strategy of my single-authored paper dramatically 

improved after the “Natural Experiments and Controlled Field Studies” Workshop at Holzhausen in 2012. 

Joachim Winter kindly let me take his place and as Robert Frost wrote in his poem “The Road Not Taken”, 

“that has made all the difference”. Effi Benmelech criticized my paper so harshly that I started thinking about 

it from scratch. Eventually, I found a larger and more detailed data set, I developed a new research design and 

my results turned out to be even more significant and robust. I also thank the IMPRS-CI, the LMU and the 

MCIER and their directors for the excellent research opportunities they provided and the generous funding 

for many conferences and summer schools.  

Looking back at my pre-Ph.D. education I must acknowledge that a large part of what I have done in this 

dissertation stems from the truly inspiring lectures in Industrial Organization by John Sutton and Applied 

Econometrics by Steve Pischke. John Sutton thought me about strategic interaction and Steve Pischke 

thought me about causal relations. Without having attended their lectures I would have probably never 

decided to do a Ph.D. During these years I also immensely benefitted from having two excellent co-authors: 

Jens-Uwe Franck and Frank Müller-Langer. After collaborating with them in several projects I can say that 

we share much more than a few joint papers. I am also in debt to my parents who were always happy to 

support my (expensive) education and, even more importantly, gave me the absolute freedom to decide what 

to study and where to study it. Without their open-mindedness I wouldn’t have had all the great opportunities 

and challenges of studying in five different universities in three different continents. I am also deeply in debt 

to all my amazing friends such as Luca Danesi, Emiliano Malizia, Damiano Marsilli, Sebastion Missio, and 

Raphael Weitschek with whom I shared some of the best moments of my life. It is thanks to them that in the 

long nights spent programming on STATA I have never felt alone. I would also like to thank Fabio Pinna 

with whom I share a profound passion for economics and life. His enthusiasm has always been a driver of my 

creativity. Last but not least a very special acknowledgment goes to Valentina Giuliani who has always been 

behind me in good and bad days. She was always the first addressee of all my identification strategies and 

definitely deserves a (honorary) Ph.D. in economics.         



3 

 

Table of Contents 
 

Preamble _______________________________________________________ 7 

Methodology ___________________________________________________________________ 8 

Summary of the Main Findings ______________________________________________________ 9 

Conclusion _____________________________________________________________________ 12 

 
Chapter 1 : Endogenous Price Commitment, Sticky and Leadership Pricing: 
Evidence from the Italian Petrol Market ____________________________ 14 

1.1 Introduction ________________________________________________________________ 14 

1.2 The Italian Petrol Industry _____________________________________________________ 17 

1.3 Data ______________________________________________________________________ 18 

1.4 Tacit Collusion through Sticky Leadership Pricing ___________________________________ 19 

1.4.1 Policy Change and Competitors’ Alignment _____________________________________ 20 

1.4.2 The Effect of the New Pricing Policy on the Price Level ___________________________ 23 

1.4.3 Robustness Check: Productive Efficiency vs. High (Rigid) Prices _____________________ 27 

1.5 Conclusion _________________________________________________________________ 29 

1.6 Appendix: Tables and Figures ___________________________________________________ 30 

 
Chapter 2 : Actions Speak Louder than Words: Econometric Evidence to 
Target Tacit Collusion in Oligopolistic Markets ______________________ 42 

2.1 Introduction ________________________________________________________________ 42 

2.2 On Collusion as a Legal Concept, its Limits in the Absence of Evidence of Collusive 
Communication, and the Reasons therefor _____________________________________________ 45 

2.3 Empirical Evidence ___________________________________________________________ 49 

2.3.1 The Facts of the Case ______________________________________________________ 50 

2.3.2 Sticky Pricing ____________________________________________________________ 51 

2.3.3 Leadership Pricing ________________________________________________________ 52 

2.3.4 Key empirical findings _____________________________________________________ 52 

2.3.5 Discussion and Robustness of the Empirical Results_______________________________ 53 

2.4 Integrating Economic Insights on Collusive Strategies into the Legal Framework ____________ 55 

2.4.1 “Unilateral Collusion” and Unlawful Coordination ________________________________ 56 

2.4.2 Developing the Legal Framework: Targeting Unilateral Conduct with Collusive Impetus ___ 58 

2.5 Conclusion _________________________________________________________________ 60 

2.6 Appendix: Tables and Figures ___________________________________________________ 62 

 
Chapter 3 : The Informational Content of Price Changes: Evidence from 
Professional Tennis Betting ______________________________________ 66 

3.1 Introduction ________________________________________________________________ 66 

3.2 Data and Setting _____________________________________________________________ 71 

3.2.1 Institutional Background ____________________________________________________ 71 

3.2.2 Data ___________________________________________________________________ 73 

3.3 Preliminary Analysis: Prize Money, Cumulative Returns and CPI ________________________ 74 

3.3.1 Betting-related Corruption in Tennis ___________________________________________ 74 

3.3.2 Preliminary Graphical Evidence: Incentives and Norms ____________________________ 75 

3.4 Empirical Analysis ___________________________________________________________ 76 

3.4.1 Implied Probability Changes and Ex-post Game Outcome __________________________ 77 

3.4.2 Instrumental Variable Approach ______________________________________________ 79 

3.4.3 Disentangling Insider-Trading Variation and News ________________________________ 82 

3.5 Discussion _________________________________________________________________ 83 

3.6 Conclusion _________________________________________________________________ 85 

3.7 Appendix: Tables and Figures ___________________________________________________ 87 

 



4 

 

Chapter 4 : Leading-effect vs. Risk-taking in Dynamic Tournaments: 
Evidence from a Real-life Randomized Experiment ___________________ 94 

4.1 Introduction ________________________________________________________________ 94 

4.2 Data ______________________________________________________________________ 98 

4.3 Natural Experiment __________________________________________________________ 98 

4.4 Risk-taking Unconditional on Past Performance ____________________________________ 100 

4.5 Risk-taking Conditional on Past Performance ______________________________________ 101 

4.6 On the Absence of Leading-effects ______________________________________________ 103 

4.7 Discussion ________________________________________________________________ 104 

4.8 Conclusion ________________________________________________________________ 104 

4.9 Appendix _________________________________________________________________ 107 

4.9.1 Setting__________________________________________________________________107 

4.9.2 Tables and Figures ________________________________________________________108 

 
Bibliography __________________________________________________ 114 

 

  



5 

 

List of Tables 
 

Table 1.1 Summary Statistics Italian Prices ................................................................................................................. 30 

Table 1.2 Summary Statistics EU Prices ...................................................................................................................... 30 

Table 1.3 Frequency and Magnitude of Price Changes ............................................................................................. 31 

Table 1.4 Price Leadership (1) ....................................................................................................................................... 32 

Table 1.5 Price Leadership (2) ....................................................................................................................................... 33 

Table 1.6 Dif-in-Dif Model ........................................................................................................................................... 34 

Table 1.7 Synthetic Control Method ............................................................................................................................ 35 

Table 1.8 Synthetic Control Regressions ..................................................................................................................... 35 

Table 1.9 Robustness check .......................................................................................................................................... 36 

 

Table 2.1: Pre and post policy pricing .......................................................................................................................... 62 

Table 2.2: Effect of the policy on prices ..................................................................................................................... 63 

 

Table 3.1: Summary Statistic.......................................................................................................................................... 87 

Table 3.2: Game outcome, implied probability and probability changes ............................................................... 88 

Table 3.3: First Stage Regression .................................................................................................................................. 89 

Table 3.4: OLS and IV regression of returns on bets on odds changes ................................................................. 90 

Table 3.5: Returns, insider trading and news .............................................................................................................. 91 

 

Table 4.1: Summary of the data .................................................................................................................................. 108 

Table 4.2: UEFA regulation, passing the knock-out round and home advantage .............................................. 108 

Table 4.3: The absence of order effects ..................................................................................................................... 109 

 

 

 

 

 

 

 

 

  



6 

 

List of Figures 
 

Figure 1.1 Cartel Formation .......................................................................................................................................... 37 

Figure 1.2 Italian Price, EU Price and Brent ............................................................................................................... 38 

Figure 1.3 Alignment and Price Dispersion ................................................................................................................ 39 

Figure 1.4 Dynamic Price Alignment to the leader .................................................................................................... 40 

Figure 1.5 Italian Price and Synthetic Control ............................................................................................................ 41 

 

Figure 2.1: Cartel Formation ......................................................................................................................................... 64 

Figure 2.2: Italian Price, EU Price and Brent .............................................................................................................. 65 

 

Figure 3.1: Players' Prize Money and ATP-Ranking Points ..................................................................................... 92 

Figure 3.2: Cumulative Returns and CPI ..................................................................................................................... 93 

 

Figure 4.1: Results in the First Game (FG) and Second Game (SG) .................................................................... 110 

Figure 4.2: Sum of home and away goals by game .................................................................................................. 111 

Figure 4.3 Past performance and risk-taking ............................................................................................................ 112 

Figure 4.4: Description of knock-out structure ........................................................................................................ 113 

   



7 

 
“Felix, qui potest rerum cognoscere causas” 

Publius Vergilius Maro 

Preamble 

 

Economics is all about incentives. Incentives are a key driver of human behaviour, and are used to align the 

behaviour of agents with the interests of the principal that designed the scheme. Providing the “right” 

incentives might be of invaluable help in many situations, but incentives come at a cost too. Sometimes 

agents respond to them in unintended ways. For example, the introduction of programs that use student test 

scores to incentivize schools to improve students’ performance induced unexpected distortions such as 

cheating. Jacob and Levitt (2003) found that teachers and schools cheated on test scores by suggesting the 

right answer to students in at least 4-5% of elementary school classrooms annually.   

The field of economics that emerged, analyzing hidden or even criminal activity and detecting the 

“footprints” that wrongdoers’ actions have left in the data, is generally referred to as “forensic economics”, 

reviewed by Zitzewitz (2012). Prominent examples include violations of U.N. sanctions (DellaVigna and La 

Ferrara, 2010), detection of collusion by market makers in the Nasdaq stock exchange (Christie and Schultz, 

1994), executive stock option backdating (Heron and Lie, 2007) and racial bias in employment decisions 

(Bertrand et al., 2005). Because of the hidden or even illegal nature of some actions, individuals attempt to 

hide their trails. By doing so they tend to systematically distort the outcome, e.g. test scores, they are 

interested in. Economists make use of their own specialized knowledge of the institutional setting and 

incentives to derive a test hypothesis to distinguish between “normal” and “suspicious” behaviour. I use the 

word “suspicious” rather than “illegal” for a precise reason. The question as to what courts regard as proof of 

illegal behaviour is a legal one. While economists can provide statistical evidence of a specific behaviour in 

line with incentives, only the law has the power to determine what can and what cannot be used as proof of 

illegal activity. For example “economic evidence” of collusion is not generally regarded as sufficient to prove 

collusion in courts. In the most famous case of empirical detection of collusion, Christie and Schultz (1994) 

provided strong economics evidence that brokerage firms making markets in Nasdaq stocks implicitly colluded 

to maintain profits at supra-competitive levels. In contrast to stocks in the New York Stock Exchange that 

were quoted both in odd and even eighths of a dollar, Nasdaq stocks were quoted exclusively in even-eighths, 

which increased the bid-ask spread, i.e. the brokers’ trading margins. Just after their findings were released, 

the Nasdaq market making firms changed their pricing practices abruptly, producing lower trading costs for 

investors. Was this “enough” legal evidence to convict firms? No. The findings triggered a series of class-

action antitrust lawsuits and the Antitrust Division of the U.S. Department of Justice and the Security and 

Exchange Commission (SEC) started to investigate the Nasdaq market makers. Even though defendants did 
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not acknowledge wrongdoing, they settled the case and paid over $1 billion in fines. This case nicely 

summarizes the benefits and limits of economic evidence. The results of Christie and Schultz (1994) 

“uncovered” a pricing behavior which was consistent with collusion and led to class-actions settled for over 

$1 billion, but their economic evidence would have not been sufficient to prove collusion in courts. In a 

similar spirit Abrantes-Metz et al. (2012) analyzed manipulation of the Libor rate and found “suspicious” 

patterns, but only the subsequent investigations by the SEC, which found evidence of direct communication 

between banks, could prove collusion in court. While these two studies had a strong impact, many other 

studies might be confined to journal archives. For this reason it is important to highlight the need to fit 

economic evidence within the current legal framework, an issue Jens-Uwe Franck and I discuss in detail in 

chapter 2 with respect to using econometric evidence as proof of collusion. 

 

Methodology 

Before proceeding to a more detailed summary of the four chapters, I would like to highlight the 

methodology I have consistently used across studies. Having been deeply influenced by my econometric 

professor at LSE, Steve Pischke, I have always tried to be very clear on first, what is the causal relationship of 

interest; second, what is the identification strategy I use to approximate an experiment using observational 

data, and third, what is my mode of statistical inference. As Angrist and Pischke (2008, p. 83) write: “Causal 

inference has always been the name of the game in applied econometrics”. In my search for causality I have 

noted that the more interesting a question is the less likely it is that we have experimental data. Due to their 

intrinsic nature most questions on illegal activity cannot be analyzed using an experiment. Still, conditional on 

a set of assumptions, recent econometric techniques such as instrumental variables and differences-in-

differences can be used to study causal effects using observational data.  

In the following chapters I have used the three main estimation techniques discussed in Angrist and Pischke 

(2008). In Chapter 4 I use a natural experiment to evaluate the “fairness” of a coin toss in a two-stage 

tournament. In Chapter 3 I use an instrumental variable approach to decompose the mismeasured variation 

of insider trading related odds changes, and in chapter 1 I use a difference-in-differences framework to test 

whether a specific pricing strategy unilaterally implemented by the market leader caused a price increase 

compared to EU prices. 

Even though I have been profoundly shaped by Angrist and Pischke's (2008, 2010) approach on “How Better 

Research Design is Taking the Con out of Econometrics”, I also recognize some limits of their approach. In 

particular Angrist and Pischke (2008, 2010) seem to leave very little space for theory. In contrast I think 

economic theory provides a powerful tool to think about the behavior of individuals and firms. For example 

Article 101 of the Treaty on the Functioning of the European Union prohibits inter alia “all agreements 

between undertakings, decisions by associations of undertakings and concerted practices […] which: (a) 
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directly or indirectly fix purchase or selling prices or any other trading conditions. […]”. The ratio of this law 

stems from a general microeconomic analysis of the welfare effects of price fixing. It is difficult to imagine 

whether industry-specific quasi-experiments would have been such a powerful policy driver as were the 

general theoretical results on monopoly pricing. In addition, while questions such as the effect of education 

on wage do not require much “structure”, whenever we need to analyze strategic interaction between 

oligopolistic firms, we need an underlying model to test whether the observed behavior is consistent with a 

competitive or collusive model. In addition, without a formal model, as for example the simultaneous 

equations describing supply and demand, it would not be possible to perform a welfare analysis which is the 

basis of many important policy decisions and, for example, is used to calculate damages in antitrust litigations. 

In all the following chapters I have derived a test hypothesis from different theoretical models. For example, 

a series of papers by Athey and Bagwell (2001, 2008) and Athey et al. (2004) provide a direct connection 

between price stickiness and collusion, while the work by Rotemberg and Saloner (1990) and Mouraviev and 

Rey (2011) provides a theoretical justification for the association between price leadership and tacit collusion. 

In the insider-trading paper I rely on the theory of efficient financial markets popularized by Fama (1970) for 

the null hypothesis that allows me to identify whether the last odds before the game incorporate all the past-

price information. In addition I use the insights of Becker's (1968) theory of rational crime to find valid 

instruments that shift the likelihood of cheating. Finally, even in the natural experiment analyzed in chapter 4, 

where internal validity is guaranteed, I test two different theories: leading versus risk-taking effect. The 

finding that the order of an advantage in a two stage game does not significantly increase the winning 

probabilities might be caused by one effect balancing out the other. Thus the identification strategy aimed at 

taking apart these two effects. 

 

Summary of the Main Findings 

The interplay between the high explanatory power of statistical instruments to detect collusion and the need 

to fit these instruments within a regulatory framework is the subject of the first two chapters of this 

dissertation respectively. In these two chapters Jens-Uwe Franck and I analyze the incidents around the 

unilateral commitment by the market leader in the Italian gasoline market to adopt a sticky pricing policy.  

The focus of the first chapter is on dynamic pricing strategies. Using daily firm level prices in Italy and weekly 

average EU prices, we show that ENI’s unilateral commitment to sticky pricing had a twofold effect: first, it 

facilitated price alignment and coordination on price changes, and second, it led to a significant increase in 

prices. In the first part of the empirical analysis we compare the interdependence of the leader’s and 

competitors’ price changes before and after the implementation of the new pricing policy. Our main finding 

is that after the leader implemented its sticky pricing policy, the observed pricing pattern shifted from cost-

based to leadership pricing. In the second part we relate the new pricing behavior to the level of prices, and 



10 

 
show that sticky-leadership pricing had a positive and significant effect on prices. Because unobserved shocks 

continuously hit markets, we compare Italian and European prices before and after the policy, using a 

difference-in-differences approach. Our central identifying assumption is that “market trends” would have 

been the same in the treatment (Italy) and control (EU) group in the absence of a treatment (ENI’s price 

policy change). As one might question the subjective choice of a control group we also use a “synthetic 

control group” approach developed by Abadie and Gardeazabal (2003) and Abadie, Diamond, and 

Hainmueller (2010), which constructs an optimal data-driven control group. Our results are consistent and 

highly significant across specifications. After the introduction of sticky pricing, competitors followed the 

leader’s price and average Italian prices grew by about €8 to 12 per 1000 liters, compared to EU prices. 

 

In the second chapter we discuss how such an econometric detection of tacit collusion might be fitted within 

a legal framework. The main issue we address is the incoherence between the current legal instruments to 

tackle collusion, which are mostly based on explicit evidence of collusion, i.e. communication, and the 

incentive-based economic perspective that “talk is cheap” in the absence of effective enforcement 

mechanisms. While communication might serve to coordinate on a specific equilibrium, it is not a necessary 

condition to collude. At the heart of collusion lies the incentive of firms to cooperate rather than to compete. 

An unintended consequence of a legal framework based on explicit evidence is that firms are incentivized to 

find other, tacit, means of collusion. From a theoretical perspective, tacit and explicit collusion bring about 

the same negative welfare effects, but only explicit collusion entails the risks of detection for firms. This 

problem might be more of an issue precisely in those industries where the cartelization rate is presumably the 

highest, and communication is least needed to sustain collusion, i.e. oligopolies. We propose to use specific 

strategies played by firms to facilitate or bring about collusion as evidence of anticompetitive market conduct. 

For our policy to work effectively, we first need to clearly differentiate between (legal) oligopolistic 

interdependence and tacit collusion. Tacit collusion arises from decisions endogenous to the market by one 

or several firms which aim at reducing or eliminating competition. In contrast, oligopolistic interdependence 

stems from (passive) best response to market conditions (including other firms’ behavior) which might favor 

non-competitive performance. Economic theory provides a very good guide to distinguish between the (legal) 

exercise of unilateral market power and the active promotion of collusion. We conclude by pointing out the 

necessity for stronger legal instruments that target unilateral conduct that aims at bringing about collusion.  

 

The third chapter is my single-authored paper and deals with the identification of insider trading in a 

professional betting market. I look at the “informational content” of price changes, i.e. whether price changes 

convey public and/or private information or simply noise. As stock markets are bombarded by news and 

insider trading is not directly observable, its analysis has proved to be difficult in standard security exchanges. 
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In contrast, betting markets provide a natural environment to test theories about price formation and 

corruption. I exploit the fact that on average the first odds are released 24 hours before a tennis game, and 

not much information arrives to that market except for incoming order flows, which themselves might 

contain information. As bookmakers tend to keep balanced books and earn money through their bid-ask 

spread, if the amount bet on an event increases relative to its likelihood, the odds (implied probability) on that 

event decrease (increase) until they reach a new equilibrium. In the empirical analysis I use three different 

specifications to relate pre-game odds changes to returns on bets.  

First, I run a linear probability regression of a binary variable being one if that player won the game on his 

implied probability of winning, calculated as the multiplicative inverse of his odds and on the pre-game 

changes of that implied probability. The weak form efficient market hypothesis requires that current odds 

reflect all information contained in historical odds. The null hypothesis can be rejected at very low p-values. 

Past probability changes contain viable information. A 10% increase in the ex-ante probability of winning 

increases the ex-post winning probability of a player by .91%, controlling for the last winning probability 

before the game. Rejecting the null of weak form market efficiency does not tell us where the inefficiency 

comes from. It might stem from not fully incorporated public information or private information. Thus in 

the main specification I first use an instrumental variable approach to decompose the insider-trading from 

non-insider-trading variation of pre-game odds changes, and then test whether the insider-trading variation of 

odds changes significantly predicts future returns on bets. I model odds changes as the mismeasured proxy 

for order flows which contain private information. To solve the error in variable problem which leads to 

attenuation bias, I use the interaction of two terms as an instrument: first, the exogenous variation in the 

incentives to cheat provided by tournament draws which randomly match players with different relative 

abilities in the bracket conditional on their seed, and second, a player’s time-invariant cultural norms on 

corruption, calculated using the Corruption Perception Index. Intuitively, the first variable captures 

exogenous shifts in the incentive to cheat because, conditional on a player’s seed, the odds on his opponent, 

and thus the returns on losing on purpose, vary according to the tournament draws. In contrast, the second 

variable reflects cultural norms with respect to corruption, which tend to be highly persistent over time. The 

IV regression results show that a 10% decrease in instrumented pre-game odds increases returns on bets by 

1%. This effect duplicates in low stake tournaments where the incentives to cheat are higher. In the last 

approach I decompose the variation of odds changes in two parts: first, the one related to insider trading 

using the fitted values of the first stage without covariates, and second, the remaining unexplained variation, 

i.e. the residuals, of the first stage. The residuals might contain public information, and thus in the last 

specification I include both the insider-trading variation and the remaining unexplained part of odds changes. 

The results show that both variables are highly significant, but the coefficient on the insider-trading related 

part is 4.8 times larger than the non-insider-trading related part. These results indicate that price changes 



12 

 
convey private information and that tennis players respond to incentives by cheating more in unimportant 

games.  

 

In the last chapter Frank Müller-Langer and I use a natural experiment in professional soccer tournaments to 

test whether the ex-ante fair toss of a coin, which determines the order of an advantage in a dynamic 

tournament, is ex-post unfair due to two “order effects” between rounds. First, the “leading-effect” predicts 

that teams taking the lead at the beginning of the tournament might experience an encouragement-effect 

and/or teams lagging behind might feel discouraged. This effect stems from participants adjusting effort 

across stages, which could advantage the leading participant who faces a larger “effective prize” after an initial 

victory (Konrad and Kovenock, 2009; Malueg and Yates, 2010). Second, teams lagging behind might increase 

risk-taking in the final stages of the tournament as they have “nothing to lose” (Cabral, 2003; Hvide, 2002). 

We take advantage of a natural experiment in professional soccer tournaments where teams are randomly 

drawn to have an advantage (home game) either in the first or second game. As the main concern of our 

setting is that strategies, especially effort and risk choices, are unobserved, we develop an identification 

strategy to test for leading-effect controlling for risk-taking. Intuitively, if risk taking increases in the last 

round of the tournament, we should observe “more extreme” results. Thus, we tested whether the sum of 

goals and the distribution of results (home/away win, draw) significantly changed between the first and 

second stage. We found little evidence that risk taking changes between rounds. Our results show that the 

order of the advantage does not significantly change the winning probabilities of teams and that at least in our 

environment selection, efficiency and fairness for participants is guaranteed. 

 

Conclusion 

Forensic economics seems to be a field in expansion, with a lot of potential and some limits. Understanding 

hidden behavior is an important part of the research agenda in many different fields, such as industrial 

organization and finance. It can help to affect policy for the better, detects potentially illegal conduct, and 

deters future illegal behavior by increasing the likelihood of detection. A limit of such an economic analysis is 

that it relies on recognizing systematic patterns emerging over large samples, but it is of little use in a specific 

case. While this limit surely applies to the insider-trading paper, it is less a concern in the case of the Italian 

petrol market, where significant changes in the price conduct by the leader, and responses by competitors, 

can be econometrically characterized and (causally) related to price increases, using a benchmark. Even in the 

tennis data, my economic analysis might be useful in selecting which players are most likely to have cheated. 

This permits authorities to focus their limited resources on cases with the highest ex-ante likelihood of 

wrongdoing. Another limit of this approach is that it heavily relies on data. If the data is disclosed by those 

who commit the crime, or by those who for some reason prefer to conceal it, then forensic economics might 
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be limited by the unavailability of (reliable) data. Finally, economic evidence of illegal activity is not yet 

incorporated in a legal framework and is seldom used as direct proof of wrongdoing. The aim of this 

dissertation was to show how the predictions of economic theory can be used to derive a test hypothesis to 

uncover illegal behavior, and in the case of collusion, how this evidence might be used in courts.  
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Chapter 1: Endogenous Price Commitment, Sticky and 
Leadership Pricing: Evidence from the Italian Petrol 
Market  

 

1.1 Introduction 

Understanding the interdependence of pricing strategies in oligopolies is a fundamental issue. Firms with 

market power might use a specific pricing behavior to influence competitors’ actions in order to facilitate 

price coordination and sustain (tacit) collusion. 1    

In this paper we provide empirical evidence of the role of unilateral price commitment to sustain (tacit) 

collusion and highlight the role of price-stickiness as an endogenous commitment device to collude. Infrequent 

and large price changes by the market leader may facilitate tacit coordination on the leader’s focal price and 

result in higher prices. On 6th October 2004, ENI, the market leader on the Italian petrol market, publicly 

announced a new pricing policy which consisted of infrequent price variations (sticky pricing) and price 

changes larger in magnitude. ENI increased the time lag between price changes from 6 to 16 days and 

increased the mean price change from 1% to 5.8%. About five months later the Italian Truckers’ Association 

complained to the Italian antitrust authority about collusion by the Italian petrol firms. Allegedly, firms 

maintained high and aligned prices which they changed simultaneously.2 Because the antitrust authority had 

no evidence of firms’ explicit communication, it ended its investigation without issuing a formal decision after 

the firms accepted to restrict pricing transparency.3  

In the empirical analysis we document that the leader’s unilateral sticky price commitment with larger price 

changes had two major effects: first, it facilitated price alignment and coordination on the leader’s focal price 

with the observed pricing pattern shifting from cost-based to sticky-leadership pricing. Second, prices 

increased relatively to a control group. To our knowledge this is the first paper that empirically shows the role 

of endogenous price commitment by the market leader who acted both as the initiator of the new collusive 

pricing and as the coordinator of price changes.     

                                                
 

1 While firms might also (illegally) communicate to collude, the benefits of communication might be smaller for oligopolies. In a meta-study of 
detected cartels Levenstein and Suslow (2006) show that there is no clear relation between the likelihood of collusion and concentration. Using a 
laboratory experiment Fonseca and Norman (2012) find that concentrated industries are able to collude irrespectively of communication. Thus, 
understanding the role of specific pricing strategies used to tacitly collude is of key importance for competition policy and regulators as evidence 
of collusion is mostly based on evidence of communication. 

2 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section I para. 1; 
available at http://www.agcm.it. 

3 The inability of antitrust authorities to deal with tacit collusion poses the question on whether and how antitrust policy should respond to tacit 
collusion in oligopolies, an issue we discuss in Andreoli-Versbach and Franck (2013a). For the final report by the Italian antitrust authority on this 
case see: Autorità Garante della Concorrenza e del Mercato, 20.12.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 17754; available 
at http://www.agcm.it. 
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Our research is related to two strands of literature: cartel detection and dynamic pricing. Economists have 

long used their knowledge of collusive behavior to derive testable hypotheses to distinguish between 

collusion and competition.4 Porter and Zona (1999) use data from the Ohio school milk auction and find that 

bids by colluding firms decreased the further the distance from the schools which is inconsistent with a 

competitive model. Abrantes-Metz et al. (2006) analyze structural breaks in the pricing of firms supplying 

seafood in a bid-rigging conspiracy. They find that the price mean (variance) significantly decreased by 16% 

(increased by 200%) after the collapse of the cartel. While these studies use data on detected cartels, other 

papers build test hypotheses to uncover cases of collusion. Knittel and Stango (2003) use data from the credit 

card market during the 1980s and find that a non-binding price ceiling may serve as a focal point to facilitate 

tacit collusion. Duso et al. (2012) test whether upstream R&D cooperation leads to downstream collusion and 

find that large horizontal networks are most likely to collude. Finally, Christie and Schultz (1994) have 

documented “suspicious” bid-ask quotes by market makers in the Nasdaq who increased their margins by 

avoiding the use of “odd-eights”.5  

The second strand of literature related to our study examines dynamic pricing strategies. A series of empirical 

papers aimed at characterizing the properties of Maskin and Tirole (1988) Edgeworth cycles. These cycles 

have been observed in gasoline markets in the U.S. (Lewis, 2012, Eckert, 2003), Canada (Noel, 2007) and 

Australia (Wang, 2009). Noel (2007) analyzes dynamic pricing in 19 Canadian cities over 574 weeks. Using a 

Markow-switching regression he estimates both the prevalence and structural characteristics of the three 

pricing patterns he finds: cost-based pricing, sticky-pricing and price cycles. He finds that cycles (sticky-

pricing) are more prevalent when there are many (few) small firms. Wang (2009) studies the Australian 

gasoline market in relation to a unique policy change which required firms to change their prices 

simultaneously and only once per day. This policy increased the “commitment costs” by firms to be the first 

to “relent” after prices fell in a cycle. Whereas before the law a single large firm appeared to be the price 

leader and was consistently the first to raise prices, after the policy change firms adopted mixed strategies and 

took turns at being the first to raise prices. Lewis (2012) studies the role of price leadership in coordinating 

price increases in cycling gasoline markets in the U.S. and finds that the first price increases tend to stem 

from retail chains that operate a large number of stations. 

Our paper complements the literature in three important ways. First, we document the role of endogenous 

price commitment in switching from cost-based to sticky-focal pricing equilibrium. Second, while Wang 

(2009) and Lewis (2012) highlight the importance of leadership pricing in the relenting phase of Edgeworth 

cycles we show its importance in coordinating price changes in response to cost shocks during sticky-pricing. 
                                                
 

4 See Harrington (2008) for a review of empirical cartel detection and Zitzewitz (2012) for a general review of forensic economics. 

5 They found relevant evidence of collusion between brokerage firms making markets in Nasdaq stocks by looking at the bid-ask spread, the 
traders’ margin. As soon as their results became public, this pricing behaviour ended and the subsequent investigation by the Securities and 
Exchange Commission led to settlements of over $1 billion.   
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Finally, our setting with a clear shift in the industry’s pricing behaviour allows us to develop an identification 

strategy that quantifies the causal effect of sticky-focal pricing on the price level. This enables us to draw 

some conclusions on the welfare effects of sticky-focal pricing as compared to cost-based pricing.      

The key difficulty in analyzing dynamic pricing strategies is the non-experimental nature of the data. Neither 

the new pricing policy by the market leader, ENI, nor the leader’s (large) price changes which were matched 

by those of its competitors can be regarded as exogenous. In addition demand and firm-level cost shocks are 

unobservable. Using existing theoretical and empirical models on price leadership (Rotemberg and Saloner, 

1990, and Mouraviev and Rey, 2011) and price stickiness (Athey and Bagwell, 2001, 2008, Athey et al., 2004, 

Abrantes-Metz et al., 2006, Blanckenburg et al., 2012, and Connor, 2005) we first characterize and then 

evaluate the effects of the different pricing patterns. First, we use daily firm-level wholesale prices in Italy to 

characterize the effect of the leader’s sticky price commitment on the price interdependence within the Italian 

gasoline market. Second, using the weekly average wholesale prices of eight other European countries we test 

whether the sticky-leadership equilibrium led to a price increase. 

In the first part of our analysis we compare the interdependence of the leader’s and competitors’ price 

changes before and after the market leader introduced its new pricing policy. Before the policy change, 

competitors adjusted prices every five days following short run cost changes, but after the policy change the 

time lag between their price changes increased to nine days and the price-cost correlation decreased from .89 

to .73. Using a logit model with firms’ fixed effect we show that the probability of a competitor aligning its 

price to the leader’s in response to a leader’s price change significantly increased after the policy change. In 

addition, as price alignment is defined narrowly (up to the third decimal) we also look at the percentage price 

difference between the leader and its competitors. Results are consistent across specifications and point out 

that competitors coordinated price changes following the leader’s focal price after, but not before the new 

policy. 

In the second part we show that sticky-leadership pricing had a positive and significant effect on prices. We 

use a difference-in-differences approach to compare Italian prices with European prices before and after the 

implementation of the policy. In addition, as researchers often select comparison groups on the basis of 

subjective measures of similarity between treated and untreated units, we employ a synthetic control group 

estimation as developed by Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010) to 

demonstrate that the choice of selected control groups does not drive our results. The synthetic control 

group is constructed using a data-driven weight of European prices that minimizes the pre-treatment 

differences between the Italian price and the resulting synthetic control group. This lowers the discretion of 

researchers in selecting control groups and forces them to show the relative weight of each individual control 

group.  
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Our results are consistent across specifications and show that Italian prices significantly increased when 

compared to a control group after the new sticky-leadership pricing was in place. 

The paper proceeds as follows: in section 2 we describe the main features of the Italian petrol market and in 

section 3 we present the data. In section 4 we perform the empirical analysis and section 5 is a conclusion.  

1.2 The Italian Petrol Industry 

The Italian wholesale gasoline industry is characterized by many traits which facilitate collusion: a small 

number of vertically integrated firms, high entry costs, inelastic demand, frequent and small purchases by 

different consumers and a transparent cost and price structure.6 There are nine firms operating in the market 

holding 95% of market share, while the rest is held by small independent retailers that purchase gasoline from 

one of the vertically integrated firms. The nine big players are ENI,7 Esso, ERG, Shell, Q8, Total, API/IP8, 

and Tamoil.  

Market shares are asymmetric across firms. In 2004 ENI, the market leader, accounted for about 35% market 

share. The second largest player on the market was Esso with a market share of 16%, followed by Q8 with 

around 11%. The six other firms account for a market share that ranges between 5% and 8%. All firms are 

vertically integrated, i.e. they either have access to crude oil or they hold shares in companies that run 

refineries in Italy or Europe. Each firm operates a retailer network with exclusive contracts binding the 

retailers to the wholesaler on a long-term basis which makes it difficult for other companies to enter the 

market or to increase their market share. The retailers, petrol stations, can either be independent companies 

or are directly owned by the wholesalers. Half of these stations are owned by the oil companies, the other half 

are owned by small private companies, each of them managing on average 30 to 50 stations in one city or 

region.  

Distribution and price setting works as follows: the oil companies communicate to the manager of the petrol 

station the so-called “suggested price”, the price we observe in our data. This price is a non-binding 

indication of the final retail price petrol stations supplied by that company should charge to consumers. The 

final retail price of petrol stations with the same brand might vary slightly from region to region due to 

different fiscal regimes, storage and transportation costs. The owners of the petrol station receive a discount 

on the suggested price depending on the incentive contract they have negotiated with their respective 

wholesaler, and the owners are allowed to charge up to a certain percentage on top of the suggested price. 

Thus, the retail price varies between a minimum, the suggested price minus the discount, and a maximum that 

is fixed by the wholesaler, so even though the station managers fix the final retail price, their available range 

                                                
 

6 See Levenstein and Suslow (2006) for a discussion on the determinants of cartels’ success.  

7 ENI acts on the Italian market under the name of “Agip”, its “Refining and Marketing” division dealing with gasoline.  

8 API and IP merged in 2005, when ENI sold IP to API. 
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falls between their purchase price and the maximum price they are allowed to charge, as stipulated by the oil 

company. Thus, their freedom to set prices is low and the effect of managerial choice of petrol station owners 

does not bias this analysis which focuses on competition between the nine large wholesalers and not between 

the owners of petrol stations. The strong similarity between “suggested” and final prices has been confirmed 

by the Italian antitrust authority which stated that “the suggested price constitutes an extremely narrow 

measure in relation to what the consumer will pay for retail gasoline.”9 

With respect to the cost structure, the most important cost for oil companies is the Premium Unleaded 

Gasoline Mediterranean Price, which is reported by the Platts.10 In Italy the reference cost for buying gasoline 

on the refinery markets based in Genoa (north-west Italy) and Lavera (southern France) is the Platts Cif Med 

(Platts). This price index is widely regarded as the major (opportunity) cost for wholesalers11 and is used by 

market-specific newspapers and industry insiders to calculate industrial margins, commonly defined as the 

difference between the “suggested price” and the Platts. The “suggested price” has two components: a fiscal 

one and an industrial one. It has been estimated by the Italian Union of Petrol Producers that the Platts 

reflects 67 percent of the industrial price, while the other 33 percent is attributable to distribution, storage, 

administrative steps and the petrol stations' margin. Taxes account for approximately 58 percent of the final 

retail price in Italy and are the major component of the final price.  

1.3 Data 

We use two different datasets, the first of which is a dataset which consists of daily firm-specific pre-tax 

wholesale prices and industry level costs as reported by the Platts Cif Med. This data is summarized in Table 

1.1 and will be used to analyze the pricing strategies adopted by the leader and the reaction of the 

competitors. The wholesale prices, plotted in Figure 1.1, refer to the “suggested prices” of gasoline described 

above from the nine major companies ENI, Api, Erg, Esso, IP, Q8, Shell, Tamoil and Total from 1st January 

2003 until 15th May 2005. As discussed above, the main source of costs for firms is the Platts, which 

represents the implicit opportunity cost to firms to sell their gasoline on the European wholesale market 

rather than to their petrol stations.  

The second dataset consists of average aggregate retail gasoline prices for EU countries, which include taxes. 

This dataset is taken from the European Commission Oil Bulletin, which reports the prices of oil products 

                                                
 

9 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section IV, para. 
27, available at http://www.agcm.it.  

10 Platts is a division of the Information & Media Services group of McGraw-Hill and a leading global provider of energy information that collects 
and publishes on a daily basis details on the prices of bids and offers for specific oil products and regions from traders and exchange platforms. 

11 See for example the analysis of the composition of final retail prices into industrial and fiscal components by the Italian Petrol Union, available 
at http://www.unionepetrolifera.it/it/show/34/La%20struttura%20del%20prezzo or the Pöyry (2009) report on EU fuel prices.  
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across Europe on a weekly basis.12 The countries we consider to be the EU benchmark are the Netherlands, 

France, Germany, Austria, Belgium, Greece, Spain and Portugal for the period from January 2003 to May 

2005. These prices include taxes and were collected weekly. A summary of the EU data per country is 

reported in Table 1.2, while a plot of the Brent, Italian and EU prices can be seen in Figure 1.2. 

1.4 Tacit Collusion through Sticky Leadership Pricing 

We analyze the incidents relating to 6th October 2004 (first vertical line in Figure 1.1) when ENI publicly 

announced the adoption of a new pricing policy which consisted of fewer and larger price changes. ENI 

increased its average price change from 1% to 5.8% and increased the time lag between price changes from 6 

days to 16 days. ENI declared that the purpose of this policy was to lower the short-term price-cost relation 

and to stabilize retail prices.13 About five months later in March 2005 (third vertical line in Figure 1.1) the 

Italian Truckers’ Association, FITA, complained to the Italian antitrust authority about high and aligned 

prices.14 About two years later, in January 2007, the Italian antitrust authority started an investigation into 

price fixing. Due to the lack of evidence of direct communication between firms the antitrust authority 

decided to end the investigation in December 2007 without punishing ENI and its competitors for an 

antitrust violation. The authority could only achieve a commitment by the firms to reduce price transparency 

on the market.15  

The aim of the empirical analysis is to describe the different pricing patterns which emerged after the leader’s 

unilateral price commitment and to test whether this change caused a price increase.  In the first part of the 

empirical analysis we focus on characterizing the main traits of the pricing behavior of firms and on the 

relation between the leader’s and competitors’ price changes. We test whether the standard deviation, 

competitors’ alignment and the frequency and magnitude of price variations significantly changed after the 

policy and thus, whether competitors adopted the same pricing behavior as the leader. In addition we test for 

the emergence of leadership pricing by analyzing competitors’ price reactions to price changes by the leader.  

In the second part we test whether the new price pattern was pro-collusive and caused a price increase using a 

difference-in-differences method and a synthetic control group approach. 

Throughout the empirical analysis we will use the date when ENI’s competitors started to align to ENI (12th 

November 2004) as the beginning of the policy (second vertical line in Figure 1.1) and not the date on which 

                                                
 

12 For an in-depth analysis of the European gasoline market we refer to the report commissioned by the EU Commission and edited by Pöyry 
Energy Consulting in 2009. 

13 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section VI, para. 
42, available at http://www.agcm.it. 

14 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section I, para. 
1, available at http://www.agcm.it. 

15 Autorità Garante della Concorrenza e del Mercato, 20.12.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 17754, available at 
http://www.agcm.it. 
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ENI announced its new pricing policy (6th October 2004). This choice reflects the emergence of the new 

sticky-leadership pricing after the transition period characterized by ENI’s price commitment and does not 

significantly affect our results.16   

1.4.1 Policy Change and Competitors’ Alignment 

1.4.1.1 Sticky-pricing 

Sticky pricing constitutes an important element in a strategy to sustain collusion. An advantage of sticky 

pricing is that it is straightforward to implement and that deviations can easily be detected and punished. In a 

series of theoretical papers Athey and Bagwell (2001, 2008), Athey et al. (2004) analyse dynamic collusive 

pricing. The key trade-off that emerges from the theoretical analysis of firms’ incentives to engage in sticky 

pricing as collusive strategy is between productive efficiency that requires firms with lower costs to produce 

more and higher (aligned) prices under collusion. Under some parameter constellations the optimal 

equilibrium for firms is relatively simple: all firms adopt a sticky pricing scheme and charge the consumers’ 

reserve price.17 Thus, firms sacrifice productive efficiency to sustain a higher price level in the market. The 

theoretical prediction that collusion is linked to sticky pricing is confirmed by a series of empirical findings 

based on ex-post evidence of cartel pricing (Abrantes-Metz et al., 2006, Blanckenburg et al., 2011, Connor, 

2005). In this section we provide statistical evidence according to which firms adopted sticky pricing after the 

new policy was introduced.  

Table 1.3 reports the firms’ absolute percentage price changes on days with price changes (columns 1 and 2) 

and the number of days between price changes (columns 4 and 5) before and after ENI’s new policy 

respectively. In column 3 and 6 we report the difference (in italics) of the pre and post policy means of 

frequency and magnitude and the t-statistic (in bold). Before the policy firms’ price changes were frequent 

and price changes were small. On average changes occurred every 5 days and the average price change was 

.8%. After the new pricing policy, price changes occurred less frequently, on average every 9 days, and their 

amount became larger, namely 2.9%. Performing the same analysis for each firm individually, we get the same 

results: all competitors significantly increased the magnitude of price changes and six out of eight competitors 

significantly increased the time lag between price changes which shows that competitors substantially adopted 

the leader’s new pricing policy as can be seen in Figure 1.1. 18 

                                                
 

16 We ran all the regressions both including and excluding the “commitment” period (interval between the first two vertical lines in Figure 1.1). 
The inclusion of this period neither changes the sign nor the significance level of the estimated coefficients.  

17 As usual in supergames, many different equilibria might emerge. In this paper we focus on the simplest strategy to sustain collusion, i.e. sticky-
pricing. With other parameter configurations other (more complex) type of equilibria are possible. 

18 Only one competitor, ERG, publicly declared that it would not directly follow ENI’s new pricing strategy, see Autorità Garante della 
Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section VI, para. 41.4, available at 
http://www.agcm.it.     
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In addition, we test whether the daily dispersion of prices across firms decreased after the policy, a common 

finding in cases of collusion. The right part of Figure 1.3 displays the kernel density distribution of the daily 

price standard deviation19 across firms before and after the policy was implemented. The dotted line indicates 

the price dispersion after the policy change and suggests a decrease in the dispersion after the policy. In 

contrast the mean price dispersion increased significantly during the period of sticky pricing. This result is 

explained by the increase in the magnitude of price changes, which caused huge spikes in price dispersion on 

days where ENI changed its prices. In fact while the mean price dispersion is significantly higher (.0022 

versus .0015), the median is lower (.0012 versus .0015). While this might seem to contrast with our collusive 

hypothesis based on the positive relation between sticky-aligned prices and collusion, in Table 1.5 

specification 1, we build a regression model which controls for current and lagged price changes by the 

leader. We find that the mean absolute percentage price difference between the leader and competitors 

significantly decreased after the policy, which is in line with collusive leadership pricing. This result suggests 

that economic screens20 based on price mean-variance tests might fail to sufficiently take into account 

variations in the magnitude of price changes caused by focal pricing during collusive periods.  

A shortcoming of sticky pricing models is that they do not address how colluding firms react and coordinate 

on exogenous cost and demand changes. In the next section we will demonstrate that ENI’s (focal) price was 

used by its competitors to coordinate price changes. 

1.4.1.2 Leadership pricing 

Price leadership is “one of the most important institutions facilitating tacitly collusive pricing behavior” 

(Scherer and Ross, 1990, p. 346). Rotemberg and Saloner (1990) examine a differentiated oligopoly and 

demonstrate that price leadership facilitates collusion under asymmetric information and that it increases 

price rigidity. They conclude that such a pricing scheme has many positive attributes: first, it is easy to 

implement, second, it doesn’t require communication, and third, it is very easy to detect deviations. 

Mouraviev and Rey (2011) study the role of price or quantity leadership in circumstances where firms can act 

either simultaneously or sequentially in an infinitely repeated setting for both Bertrand and Cournot 

competition. In line with Rotemberg and Saloner (1990) they highlight that leadership facilitates collusion.  

We test whether ENI’s commitment led to leadership pricing. The left part of Figure 1.3 shows the 

histogram of ���_����	
�_���
��, the sum of aligned competitors. While pre-policy alignment, which is a 

count variable, seems to follow a Poisson distribution, the post-policy alignment distribution is more skewed 

to the right and seems to have a larger number of aligned firms. As ���_����	
�_���
� is an over-

dispersed count variable that takes values from 0 (no competitor aligned) to 8 (all competitors aligned), we 

                                                
 

19 Using the coefficient of variation yields the same results. 

20 For a review of screens and their multiple applicability see Abrantes-Metz and Bajari (2009). 
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run a Negative Binomial Regression model to test if the number of aligned firms is higher after the policy. 

Specification 1 in Table 1.4 shows the result. The coefficient on ������ℎ�	�
 is positive and highly 

significant, and computing the marginal effect shows that while the average number of perfectly aligned 

competitors is 1.95, after the policy change it increases to 3.2.  

We now turn to dynamic price alignment and run two regression models to test whether the dynamic price 

response of competitors to price changes by the leader changed after the new policy. The key challenge when 

estimating competitors’ responses is the endogeneity of ENI’s price changes which might cause reverse 

causality. Thus, rather than claiming a causal interpretation of the regression coefficients we focus on testing a 

break in the leader-competitor pricing behavior. In particular, we are interested in testing whether the 

infrequent (but large) price changes by the leader served as a focal price to coordinate competitors’ price 

changes. In the first model we use a firm fixed effect logit regression to relate the binary decision by a firm to 

perfectly align its price to the leader’s price to current and past price changes by the leader: 

 

�(����	�,� = 1|�) = ℎ(�� + �!������ + ∑ #$%
&'� (������ ∗ )*+�ℎ�	�
��,&) +

∑ -$%
&'� )*+�ℎ�	�
��,& + .�)                                                       (1)

       

Where ����	�,� is a binary indicating whether competitor i charges the same price as the leader at day t, 

������ is a dummy being 1 after the policy was introduced and )*+�ℎ�	�
��,& is a dummy being 1 if the 

leader changed its price on day t-k, .� are time-invariant firm fixed effects and ℎ(∙) is the logistic distribution. 

The estimation coefficients of the logit model and their marginal effects are in Table 1.4, specification 2.1 

and 2.2 respectively, while in specification 2.3 we report the odds ratios. The key parameters of interest are #$ 

which capture the competitors’ dynamic price response to a price change by the leader after the policy. The 

average likelihood of a competitor aligning its price to the leader after the policy increased significantly by 

about 10%. Most importantly, after the policy, on days where the leader changed its price, the average 

likelihood of a price alignment decreases by 16.1% and then gradually grows until it reaches 16.4 to 17.9% 

from the fourth to the sixth lag. The same results can be seen by looking at odds ratios in specification 3. 

This regression analysis confirms the “visual” dynamic price alignment presented in Figure 1.1, where all 

major price changes by competitors where preceded by ENI’s price change after the policy. 

Because ����	�,� is binary and narrowly defined (i.e. up to three decimal places) we also consider a continuous 

measure as the dependent variable, i.e. the absolute percentage price difference with respect to the leader 

(0(�1��
�,� − �1��
345,�)/�1��
�,�0). To take into account possible asymmetries between positive and negative 

price changes we also run the regression distinguishing between positive and negative price changes. A 

problem with dividing the samples is that after the policy ENI changed its price only 10 times, including 6 

negative and 4 positive price changes. The coefficients of the three OLS regressions using all, only positive, 
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and only negative price changes is shown in Table 1.5, specifications 1, 3, and 5, respectively. The regression 

coefficients of specification 1 for the two time periods, before and after the policy, are plotted in Figure 1.4 

as a graphical analysis best depicts the average change in the dynamic alignment between periods. After the 

new policy, the average absolute percentage price difference to the leader was 4.59% on days where the leader 

changed its prices and then this difference decreases to 1.94% (1.38%) [.04%] one (two) [three] day(s) after 

the leader changes its prices. Finally, this difference becomes insignificant on the fourth price-change lag. 

This relation is not present before the policy, where the competitors’ absolute percentage price difference to 

the leader is mostly constant. In specification 2 and 3 we use the percentage price difference to the leader and 

consider positive and negative price changes respectively. The coefficients present a similar pattern as in 

specification 1. After the policy, the average difference to the leader after positive (negative) price changes is -

6.52% (2.69%) indicating that the magnitude of the leader’s positive changes is larger than negative changes. 

Similar to specification 1, the absolute value of these differences decreases after a few lags but the coefficients 

after the 4th lag become insignificant only after positive price changes. For negative changes competitors’ 

prices slightly but significantly undercut the leader’s price by -.05%.   

The estimates presented above show that the competitors’ price reactions with respect to the leader’s price 

changes changed significantly after the policy. Confirming the graphical evidence in Figure 1.1, competitors 

changed and aligned their prices within a few days after the leader changed its prices, a common pricing 

scheme referred to as leadership pricing, adopted to coordinate price changes and facilitate alignment.    

1.4.2 The Effect of the New Pricing Policy on the Price Level 

The previous section focused on the coordination mechanism represented by the sticky-leadership pricing 

which emerged after the announced new pricing policy and its relation to theoretical and empirical literature 

on how cartels work. We now turn to the pro-collusive effect of the new pricing behavior. The aim of this 

section is to causally evaluate the effect of ENI’s sticky-leadership pricing policy on Italian prices.  

The fundamental problem is that we can at most observe one treatment group (Italy) and have no 

information as to what would have happened without the introduction of the policy.21 As markets and firms 

are simultaneously hit by a multiplicity of shocks our main concern is that ENI might be responding to 

shocks which are unobservable to the econometrician. Thus, the change in the post-policy price level in Italy 

might have been as well caused by omitted variables. To control for such unobserved shocks we need to 

relate Italian prices to a control group which received no treatment, the standard procedure in the literature 

on cartel detection.22 In the case of the Italian petrol market, given that prices respond to the same cost 

                                                
 

21 For a discussion on problems and methods of evaluating different kind of policies see Imbens and Wooldridge (2009).  

22 The cartel detection literature takes comparable industries to detect “suspicious” pricing patterns or to evaluate the ex-post effects of illegal 
price coordination. For example Christie and Schultz (1994) compare the dealers’ bid-ask spread in the Nasdaq to its equivalent in the Dow Jones, 
while Porter and Zona (1999) compare bidding behavior of colluding firms with non-colluding firms.   
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shocks across national markets, and that the goods are homogeneous and traded in the same currency, we can 

use the gasoline prices of EU Member States as a benchmark. This permits us to causally link ENI’s new 

pricing policy to the industry’s profits. Using panel data from nine EU Member States we estimate the effect 

of ENI’s price policy using a dif-in-dif model. ENI’s policy change in Italy induces a deviation from this 

common trend, and although the treatment country (Italy) and control countries (EU) can differ substantially, 

all the time invariant country level differences23 are captured by the (EU countries) fixed effects. The key 

identifying assumption is that “market trends” would be the same in each of the selected EU Member States 

in the absence of a treatment (price policy change). This means that we assume that ENI’s policy and the 

subsequent new pricing pattern were not correlated to any unobservable market shock in Italy. This 

assumption is justified by the fact that ENI declared that the reason they were introducing sticky pricing was 

the increased volatility of the major cost factor, the Platts.24 The Platts is not an Italy-specific cost index and 

its volatility ultimately depends on the international price of crude oil. Thus, exogenous shocks to the Platts 

are not limited to the Italian petrol market but impact on other countries as well.    

A common shortcoming of the dif-in-dif model has been the sensitivity of its results to estimation 

assumptions. In our case one might question a sufficient “similarity” between the Italian and the control 

group gasoline market. The selection of a control group is usually done on the basis of subjective measures of 

similarity between affected and unaffected groups. We address this issue using an “optimal” weighted average 

of the available control units. This estimation technique called “synthetic control group” was developed by 

Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010). This inferential method 

constructs a data-driven synthetic control group using weights of European prices in order to minimize the 

pre-treatment differences between the Italian price and that of the synthetic control group. Intuitively, the 

synthetic control group represents a “better” or “more similar” comparison group for Italian prices than any 

single EU price.25 In addition this method illustrates the similarities and the relative contribution of each 

control group in forming a benchmark. Thus, it lowers the discretion in selecting a control group and forces 

the researchers to show the data-driven weights of each group. This estimation procedure allows us to 

construct a data-driven, and therefore, more objective control group and to compare the estimates for the 

effect of the new policy on Italian prices across specifications.  

In the main regression model we estimate a dif-in-dif using panel data with weekly price observations from 9 

EU countries over a time period of 29 months. The main regression equation is: 

                                                
 

23 The Italian gasoline market differs in some respect from other EU countries as summarized by the report of Pöyry (2009). Italy has the lowest 
throughput per site and hypermarkets own considerably more stations in the rest of the EU than in Italy.   

24 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section VI para. 
42; available at http://www.agcm.it. 

25 Formally, the weights are constructed to minimize the difference between �1��
57,�89:;�<= and ∑ >?�1��
?,�89:;�<=
@
?'A . 
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																			�1��
�,� = �� + �!(+C ∗ ������) + �A������ + .� + D�� + E�,�                                        (2) 

 

The dependent variable, �1��
�,�, refers to the price of country � at week �. +C ∗ ������ is an interaction term 

between two dummy variables indicating Italy and the new pricing policy respectively. ������ is a time 

dummy that switches to 1 after the policy change. .� are country fixed effects and D� is a vector of control 

variables that vary over time but not across countries. In the full specification D� contains lagged values of the 

Brent (crude oil), a linear time trend, month and year fixed effects. In some specifications we will add only a 

dummy for the Italian price so that .� = +���� in order to estimate the “Italian mark-up,” while in other 

specifications we will add all other country dummies and leave out Italy. As already pointed out this “country 

mark-up” reflects structural, time-invariant differences across countries, e.g. wages and taxes.    

The key parameter of interest is �!, the interaction between the time after the policy change and a dummy 

indicating Italy’s price. �! captures the pre and post policy price difference between the treated country (Italy) 

and the control group (EU), controlling for cost changes (Brent) and seasonal effects. If sticky and leadership 

pricing were used as a facilitating device to sustain a supra-competitive price level, we would expect �! to be 

positive and significant.  

The firms’ cost structure across countries depends on three cost sources that can be considered separately. 

The main source of costs, crude oil, is the same for all countries and using the standard SBIC and AIC 

criteria, in line with previous literature, we added four weeks lags to account for dynamic price adjustment to 

costs. The second source of costs are time independent (unobserved) country-specific costs, such as wages 

and transport costs, that will be captured by the country fixed effect. Finally there are unobserved time 

varying firm-level cost shocks which we assume to be uncorrelated with ENI’s new policy.  

Table 1.6 reports the estimated coefficients for the fixed effect model specified by (2) with standard errors 

clustered at country level in parenthesis. Specifications 1 to 3 use EU countries fixed effects and thus show 

the average price difference of each EU country as compared to Italy, while specifications 4 to 6 use a 

dummy for Italy and leave the other EU countries out. All but one country, the Netherlands, have a 

significantly lower price level than Italy. Greece (France) is the country with the lowest (largest) price 

difference to Italy, namely about -4.6€ (-77.9€) per 1000 liters. From specifications 4 to 6 it emerges that Italy 

has a structural price difference of about 30€ per 1000 liters with respect to the other eight EU countries.  

The parameter of the key variable of interest, +C ∗ ������, is positive and highly significant across 

specifications. The inclusion of current and lagged costs, i.e. the Brent, and month and year fixed effects does 

not affect the estimate of �!. The effect of ENI’s policy was to increase prices by about 9.8€ per 1000 liters, 

which corresponds to a 3% price increase when controlling for costs, seasonality and a time trend. This is in 
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line with the collusive hypothesis based on theoretical and empirical literature discussed above. Sticky and 

leadership pricing were used as a means to coordinate and raise prices. 

We compare these findings with the synthetic control group approach by Abadie and Gardeazabal (2003) and 

Abadie, Diamond, and Hainmueller (2010). In Figure 1.5 we plot the Italian and the synthetic control price 

(left part) and their difference (right part). The vertical line represents the date of ENI’s policy change. The 

synthetic control (by construction) tracks the Italian price well before the policy change. After the policy 

change the lines seem to diverge more and the difference between the Italian price and the synthetic control 

increased. Table 1.7 reports the estimates of the weights, pre and post treatment average prices and their 

difference. The Netherlands’s price most closely resembles the Italian one, and thus has a weight of 81%, 

while all other countries oscillate between weights of 5.8% (Greece) and 1.4% (Germany). Whereas the pre-

treatment synthetic price is by construction very close to the Italian price, the post-treatment price differences 

are large. After the policy change, Italian prices rose by 8.88€ per 1000 Liters with a standard error of 2.84. 

This positive price difference is significant at the 5% level with a p-value of .014 and is in line with the dif-in-

dif estimation discussed above. This confirms that our findings of a significant and positive price increase are 

not the result of a subjective choice of control groups.  

One concern with the dif-in-dif model is that prices follow an AR(1) process and thus the error terms are 

correlated over time. Performing an augmented Dickey-Fuller test on the Italian and European prices and the 

Brent, we cannot reject the null hypothesis of a unit root at conventional confidence levels; in contrast the 

first difference between the aforementioned variables is stationary. To account for the error term correlation 

we estimate a model in which all variables are stationary and the dependent variable is defined as the price 

difference between the Italian price and that of the synthetic control group in week �. We regress this 

stationary difference on the current and lagged first differences of the crude oil, ∆G1
	��,?, a time trend, H� , 

and our key variable of interest, ������ . The time series regression model we estimate is: 

 

																	∆�1��
57,I=J�KL:J�,� =		�� + �!������ + H� + ∑ M?N
?'� ∆G1
	��,? + O�                          (3) 

 

The synthetic control group discussed above represents an “optimal benchmark” and ∆�1��
57,I=J�KL:J�,� 

can be thought of as the daily price deviation of the Italian price relative to its pre-treatment optimal 

benchmark. The effect of the new price policy controlling for current and lagged cost differences will be 

captured by �!. Due to the weekly level of the time series and the relatively short time horizon, 29 months 

with some gaps due to public holidays, we cannot add year and month fixed effects in (3) as we have 

insufficient data, 94 observations, but instead maintain the time trend. Table 1.8 reports the estimated 

coefficients. Moving from specification 1 to 3 we first add current and lagged cost differences and finally a 
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time trend. In line with the dif-in-dif results all the coefficients on ������ are significant at the 1% level and 

positive. Once we control for current and lagged costs, first differences and a trend the coefficient grows 

from 8.8 to 12.5.  

Our regression analysis confirms that after the introduction of the sticky pricing policy Italian prices rose with 

respect to the period before the policy change and controlling for a synthetic control group or EU prices, 

costs and month and year fixed effects. The regression results confirm that the new policy had a positive and 

significant effect on Italy’s gasoline prices. Through sticky and leadership pricing firms have coordinated their 

price changes and significantly increased their price levels relative to the EU. 

1.4.3 Robustness Check: Productive Efficiency vs. High (Rigid) Prices 

At least since the first theoretical models of the kinked demand curve there has been a long-standing feeling 

that collusion is associated with price rigidity. Intuitively, “to collude” means attributing a higher weight to 

keeping high prices rather than setting own prices in accordance with demand and firm-level costs. This result 

has been confirmed in different dynamic settings by a series of papers (Athey and Bagwell, 2001, 2008, Athey 

et al., 2004). While none of these papers perfectly match the setting of the Italian petrol market, the common 

prediction of the theoretical literature is that the best collusive scheme consists of rigid prices at the expense 

of productive efficiency. Thus, firms price independently of their own cost type and charge the consumers’ 

reservation price. The key trade-off is between productive efficiency, whereby the firm with the lowest costs 

serves the market more, and high (rigid) prices that do not reflect firm-level costs.26  

Our collusive hypothesis states that firms adopted sticky leadership pricing to increase their margins at the 

expense of productive efficiency. As a robustness check we test whether our hypothesis can be rejected using 

daily Italian firm level prices. We test two predictions of our sticky leadership collusive hypothesis: first, 

margin differences with respect to the price leader, ENI, must become insignificant after the policy change 

and second, margins must increase. The intuition behind this test is that firms aim at increasing their margins 

by colluding. Firms with higher (lower) costs must have higher (lower) prices in a non-collusive equilibrium, 

but have the same profit-maximizing (rigid) price under a collusive scheme.27 Thus, at least some of the 

competitors’ fixed effects should be significant if they price independently, but insignificant if they follow the 

leader’s price. In regression model (4) �A	captures the effect of the policy on margins, while the competitors’ 

fixed effects capture cost differences with respect to the leader. Because of the asymmetric market shares this 

                                                
 

26 Interestingly, Marshall et al. (2008) analyse the role of price announcements in the vitamins cartel and found that during the cartel phase the 
likelihood of a price announcement is driven by the length of time between announcements, rather than by cost or demand changes. Their 
evidence provides empirical support for the hypothesis that during a cartel firms don’t price following their own costs and thus the price 
difference across firms should decrease. Slade (1992) analysed dynamic models of tacit collusion in Vancouver’s gasoline market and concluded 
that between price wars prices were very stable and uniform across firms.   

27 Note that this is equivalent to having higher margins as the major source of costs, i.e. the Platts, is the same for all firms. In addition note that 
firms are capacity constrained and consumers face search costs, thus the low cost firm cannot serve the whole market even though it charges the 
lowest price. 
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difference should be positive compared to the market leader (the low cost firm) in a non-optimal collusive 

equilibrium and insignificant in an optimal collusive sticky pricing equilibrium.28 As we showed that ENI was 

the price leader we test whether firms increased their margins but decreased the average margin difference 

with respect to ENI.29  

 

                 ��1��	�,� =	�� + ��(.� ∗ ������) + �A������ + .� + H� + E�,�                                   (4)             

 

.� are firm fixed effects, ������ is a dummy that switches to one after the policy was implemented and H� is a 

time trend. The key parameters of interest are �A and �� (see specification 3) that test whether margins were 

higher and whether the competitors’ margin differences changed with respect to the leader after the policy 

respectively. The results are reported in Table 1.9. The dependent variable, ��1��	�,�, is stationary and 

defined as the daily difference between firm’s i price and the Platts.30 In the first (second) specification we 

perform the regression for the pre (post) policy period only. In specification 3 we report the results of model 

(4) and thus include both periods, (time invariant) fixed effects and their interaction with the policy dummy. 

Specification 3 tests for a structural break in the margin differences compared to the leader after the policy.  

In line with the previous regressions firms’ average margins significantly increased after the new policy by 

about 22€ per 1000 liters.31 More importantly, the estimates seem to confirm that firms exchanged productive 

efficiency to maintain higher prices. As ENI acted as the price leader and has the largest market shares we can 

reasonably assume that it is the low-cost firm and accordingly it should have the lowest margins in the 

market. In fact, competitors’ margins were significantly higher than ENI’s margins before the policy 

(specification 1) with the exception of one firm, ERG. This difference changes sign (from positive to 

negative) and becomes insignificant for all firms after the policy implementation (specification 2). This result 

is confirmed in specification 3 where we include both time periods. The difference between the leader’s and 

its competitors’ margins becomes insignificant as firms adopt sticky-leadership pricing which lowers 

productive efficiency but increases the level of margins in the industry, as showed by the positive and 

significant estimate on ������ in specification 3. These results provide further evidence that the nature of 

ENI’s new pricing policy was pro-collusive. 

                                                
 

28 Even though we don’t have information on firm level costs, market shares are very asymmetric. ENI has about 35% market shares while the 
second (third) largest firm has 16% (11%), and all other firms range between 5% and 8%.   

29 We obtain similar results if we test margin differences across all firms (results not shown). 

30 We also ran a similar regression (results not shown) using firms’ prices as the dependent variable and controlling for current and lagged costs. 
The findings are unchanged with respect to model (5).  

31 If we leave out the trend (results not shown) the coefficient on the policy dummy is smaller, 16€ per 1000 liters, but still significant at the 1% 
level. 
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1.5 Conclusion 

How firms set prices and coordinate price changes in order to tacitly collude in oligopolistic markets has been 

a perennial topic both for economics and antitrust policy. This paper examines dynamic pricing in the Italian 

wholesale gasoline market and highlights the importance of endogenous sticky price commitment and leadership 

pricing in tacit collusion.  

We investigate the role of sticky-leadership pricing as a coordination mechanism to bring about and sustain 

(tacit) collusion. After its unilateral sticky-pricing commitment the market leader, ENI, did not change its 

price for 57 days irrespective of cost changes while competitors kept cost-based pricing. Sticky and leadership 

pricing emerged as the new pricing equilibrium and was adopted by all firms. Firms coordinated price 

changes through the leader's (focal) price and this coordination resulted in a price increase relative to EU 

prices. 

In the first part of the empirical analysis we characterize the main traits of firms’ pricing and the leader-

competitor pricing interdependence. We show that after the new policy was implemented, firms increased the 

magnitude and the time lag between price changes, and thus adopted the same pricing policy as the leader had 

announced. In addition, we demonstrate that competitors adjusted their prices following the leader’s price 

changes after but not before the implementation of the new policy. In the second part of the empirical 

analysis we focus on the effects of the newly emerged sticky-leadership pricing on the level of Italian prices 

with respect to a control group. We use a dif-in-dif and a synthetic control group approach to evaluate 

whether this sticky leadership pricing resulted in higher prices. In all specifications we find that prices 

significantly increased, with estimates ranging from 8 to 12€ per 1000 liters. Combined, this price 

coordination mechanism and the subsequent price increase show that the effect of the unilateral price 

commitment was to tacitly collude through facilitating price coordination. 

These findings cast serious doubts on the effectiveness of cartel enforcement that depends on evidence of 

(explicit) communication. Tacit collusion appears to be a “natural” way in which oligopolistic markets work. 

Firms in oligopolistic markets can use their market power to influence competitors’ conduct and collude 

through specific pricing strategies. How to address such unilateral conduct with welfare-decreasing effects 

without unduly limiting the freedom of price setting in oligopolies remains an unanswered question though. 
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1.6 Appendix: Tables and Figures 

 

 

Table 1.1 Summary Statistics Italian Prices  

Variable Mean St. Dev. Min Max Obs. 

ENI 0.375 0.0400 0.310 0.476 866 

API 0.378 0.0397 0.313 0.476 866 

ERG 0.376 0.0401 0.312 0.481 866 

ESSO 0.376 0.0398 0.313 0.476 866 

IP 0.377 0.0396 0.313 0.476 866 

Q8 0.377 0.0399 0.312 0.476 866 

SHELL 0.377 0.0402 0.313 0.476 866 

TAMOIL 0.377 0.0399 0.310 0.476 866 

TOTAL 0.378 0.0398 0.313 0.476 866 

Platts Cif. Med. 0.228 0.0391 0.159 0.340 866 

Nr. Aligned Firms 2.206 2.446 0 8 866 

Aver. Price Dif. 0.00250 0.00346 0 0.0404 866 

St. Dev. Prices 0.00174 0.00165 0 0.0205 866 
Table 1.1 reports the summary statistics of “suggested” daily firm level pre-tax prices in the Italian 
gasoline market from January 2003 to May 2005. The units of observation are Euro per liter. 

        

Table 1.2 Summary Statistics EU Prices  

Variable Mean St. Dev. Min Max Obs. 

Italy 368.9 39.40 308.1 466.3 119 

Belgium 328.3 39.18 255.6 421.1 119 

Germany 312.6 39.14 254.8 387.5 119 

Spain 338.0 37.54 280.3 410.5 119 

France 288.9 39.11 231.8 383.6 119 

Greece 362.0 39.61 296.2 453.8 119 

Netherlands 371.9 40.29 310 464.5 119 

Portugal 334.0 38.01 280.7 414.5 119 

Austria 348.6 38.52 290.3 431.5 119 

Mean EU Price 335.5 37.46 285.3 414.1 119 

Brent 187.6 34.46 132.3 273.0 119 
Table 1.2 reports summary statistics of weekly EU Prices from January 2003 to May 2005. The 
units of observation are Euros per 1000 liters. 
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Table 1.3 Frequency and Magnitude of Price Changes  

 
(1) (2) (3) (4) (5) (6) 

  Abs. % Price Change Days between price changes 

Time period Pre Post 
 

Pre Post 
 

 
Mean Mean Difference Mean Mean Difference 

 
(St. Dev.) (St. Dev.) t-stat (St. Dev.) (St. Dev.) t-stat 

 [Obs.] [Obs.] [Obs.] [Obs.] [Obs.] [Obs.] 

              

All Firms 0.0088 0.0293 0.0205*** 5.3 9.47 4.16*** 

 
(0.0065) (0.0319) 19.27 (5.43) (7.67) 8.81 

 [1143] [172] [1315] [1143] [172] [1315] 

ENI 0.0103 0.0586 0.0483*** 6.63 16.4 9.76*** 

 
(0.0071) (0.0377) 11.45 (7.81) (10.95) 3.64 

 [104] [10] [114] [104] [10] [114] 

API 0.0081 0.0254 0.0173*** 4.94 8 3.05** 

 
(0.006) (0.03) 6.01 (4.69) (6.93) 2.67 

 [135] [23] [158] [135] [23] [158] 

ERG 0.0111 0.028 0.0169*** 6.61 8.8 2.19 

 
(0.007) (0.0311) 4.95 (5.67) (6.17) 1.59 

 [101] [21] [122] [101] [21] [122] 

ESSO 0.0083 0.0268 0.0185*** 5.2 9.25 4.04*** 

 
(0.0061) (0.0299) 6.29 (5.08) (7.3) 3.1 

 [129] [20] [149] [129] [20] [149] 

IP 0.0089 0.0372 0.0283*** 5.6 12.92 7.32*** 

 
(0.0067) (0.034) 8.03 (5.16) (9.88) 4.47 

 [120] [14] [134] [120] [14] [134] 

Q8 0.0118 0.0277 0.0159*** 6.76 9.1 2.34 

 
(0.0067) (0.0332) 4.4 (7.33) (6.4) 1.33 

 [100] [20] [120] [100] [20] [120] 

SHELL 0.0074 0.0333 0.0259*** 4.39 11.25 6.85*** 

 
(0.0058) (0.036) 8.11 (4.14) (9.77) 5.31 

 [153] [16] [169] [153] [16] [169] 

TAMOIL 0.0068 0.0229 0.0161*** 4.12 7.38 3.25*** 

 
(0.0058) (0.0298) 6.27 (4.21) (5.32) 3.45 

 [165] [25] [190] [165] [25] [190] 

TOTAL 0.0088 0.025 0.0162*** 4.9 8 3.09** 

(0.0059) (0.0273) 6.18 (4.7) (7.01) 2.69 

 [136] [23] [159] [136] [23] [159] 
Table 1.3 summarizes two key features of firms’ pricing strategies before and after the leader’s pricing 
policy change. Columns 1 and 2 report the absolute mean price change on days with price changes for all 
firms (first row) and at the firm level. Columns 4 and 5 report the average days between price changes. In 
Columns 3 and 6 we calculate the pre and post policy differences of these two variables and the t-statistic 
testing whether the difference is significantly different. In square brackets we report the number of 
observations. 
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Table 1.4 Price Leadership (1) 

  (1) (2.1) (2.2) (2.3) 
Dependent Variable Number of aligned 

firms 
Firmj,t 
aligned 

Firmj,t 
aligned 

Firmj,t  
aligned 

Regression Model Negative Binomial 
FE Logit / 

Coef. 
Marg. 

Effects 
FE Logit / Odds 

Ratios 

Policy Change 0.539*** 0.547*** .1008*** 1.728*** 
(0.0898) (0.0794) (.016) (.137) 

Policy*Leader changes 
price dummy 

  
 

Lag 0 
 

-1.512*** -.161*** .220*** 

  
(0.393) (.023) (.086) 

Lag 1 
 

-0.0321 -.0054 .968 
(0.262) (.043) (.253) 

Lag 2 
 

0.158 .027 1.171 

  
(0.265) (.048) (.31) 

Lag 3 
 

0.560** .109* 1.751** 

  
(0.272) (.059) (.475) 

Lag 4 0.801*** .164*** 2.23*** 
(0.265) (.062) (.592) 

Lag 5 
 

0.762*** .155** 2.144*** 

  
(0.265) (.061) (.569) 

Lag 6 
 

0.864*** .179*** 2.375*** 
(0.267) (.063) (.634) 

Leader changes price 
dummy 

   
 

Lag 0 
 

-0.432*** -.066*** .648*** 

  
(0.101) (.014) (.065) 

Lag 1 
 

-0.276*** -.044*** .758*** 
(0.0959) (.014) (.072) 

Lag 2 
 

-0.117 -.019 .889 

  
(0.0926) (.014) (.082) 

Lag 3 
 

-0.292*** -.046*** .746*** 

  
(0.0945) (.014) (.07) 

Lag 4 -0.337*** -.053*** .713*** 
(0.0966) (.014) (.069) 

Lag 5 
 

-0.336*** -.053*** .714*** 

  
(0.0969) (.014) (.069) 

Lag 6 
 

-0.463*** -.071*** .628*** 
(0.101) (.014) (.063) 

     
Firms Fixed Effects  Yes Yes Yes 

Constant 0.554*** 
  

.325*** 

 
(0.0447) 

  
(.029) 

Observations 866 6,928 6,872 6,872 
R-squared  

Table 1.4 reports the estimation results of regression model (1). It tests whether ENI’s competitors changed their pricing behaviour in 
response to the sticky pricing policy. Note that policyt turns to 1 after 12th November, the date on which most competitors started to 
follow ENI’s new policy and not on the date the policy was announced, 6th October. The choice of the beginning of the treatment 
period does not change the results significantly. The first specification uses a negative binomial model to test whether the number of 
competitors perfectly aligned to the leader increased after the policy change. Results are in line with the t-test presented in Section V.3. 
In the second and third column we report the regression coefficients and marginal effects of the fixed-effects logit regression model 
(1). In the last column we perform the same regression using a different variable, the absolute percentage price difference with respect 
to the leader. For a graphical representation of the regression coefficients in column (3) see Figure 1.4. (Robust) standard errors are 
reported in parentheses for columns (3) 1, 2.1 and 2.2. The stars are defined as follows: * (**) and [***] refer to p-values below 10% 
(5%) and [1%]. 
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Table 1.5 Price Leadership (2) 

  (1) (2) (3) (4) (5) (6) 
Dependent Variable Absolute % Price 

Difference To Leader 
% Price Difference To Leader 

Coef. S.E. Coef. S.E. Coef. S.E. 

Leader's price changes: Pos & Neg Positive Negative 

              

Policy Change -0.00239*** (0.000290) -0.00464*** (0.000423) 0.00178*** (0.000447) 

       
Policy*Leader changes 

price dummy 
      

Lag 0 0.0459*** (0.000951) -0.0652*** (0.00167) 0.0269*** (0.00119) 

Lag 1 0.0194*** (0.000950) -0.0309*** (0.00167) 0.00832*** (0.00118) 

Lag 2 0.0138*** (0.000994) -0.0250*** (0.00167) 0.00237* (0.00127) 

Lag 3 0.00409*** (0.000993) -0.00377** (0.00191) 0.00326*** (0.00118) 

Lag 4 -0.00109 (0.000993) -0.00108 (0.00191) -0.00331*** (0.00118) 

Lag 5 -0.00260*** (0.000994) -0.00181 (0.00191) -0.00539*** (0.00119) 

Lag 6 -0.00170* (0.000995) -0.00216 (0.00191) -0.00536*** (0.00118) 
Leader changes price 

dummy       

Lag 0 0.00197*** (0.000298) -0.00361*** (0.000425) 0.00775*** (0.000464) 

Lag 1 0.000650** (0.000296) -0.00120*** (0.000424) 0.00342*** (0.000457) 

Lag 2 4.87e-05 (0.000295) -0.000518 (0.000424) 0.00287*** (0.000459) 

Lag 3 0.000121 (0.000294) 0.000435 (0.000421) 0.00204*** (0.000459) 

Lag 4 0.000216 (0.000295) 0.000147 (0.000421) 0.00169*** (0.000465) 

Lag 5 0.000398 (0.000296) 0.000879** (0.000421) 0.00181*** (0.000463) 

Lag 6 0.000534* (0.000298) 0.00123*** (0.000430) 0.00171*** (0.000452) 

       

Firms Fixed Effects Yes  Yes  Yes  
Constant 0.00573*** (0.000157) 0.00504*** (0.000247) 0.00362*** (0.000221) 

Observations 6,872 3,960 2,872 

R-squared 0.338 0.440 0.376 
Table 1.5 reports the estimation results of regression model (1) using a different dependent variable and OLS. It is an additional 
test to the results reported in Table 1.4 of whether ENI’s competitors changed their pricing behaviour in response to the sticky 
pricing policy. The dependent variable in specification 1 is the absolute percentage price difference of competitor j with respect to 
the leader in day t. In specifications 3 and 5 we consider only positive and negative price changes by the leader respectively. The 
dependent variable in these specifications is the percentage price difference with respect to the leader. Standard errors are reported 
in parentheses, the stars on the coefficients are defined as follows: * (**) and [***] refer to p-values below 10% (5%) and [1%]. 
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Table 1.6 Dif-in-Dif Model 

  (1) (2) (3) (4) (5) (6) 

Dependent Variable Price of country i ant time t 

Model: FE FE FE FE FE FE 

              

IT*Pol_Change 9.877*** 9.863*** 9.863*** 9.877*** 9.863*** 9.863*** 

 
(1.970) (2.110) (2.126) (1.964) (2.101) (2.117) 

Italy 30.75** 30.39** 30.39** 

    
(9.292) (9.311) (9.381) 

Policy Change 0.245 -31.35*** -18.53*** 0.245 -31.35*** -18.53*** 

(3.196) (3.634) (2.778) (3.185) (3.619) (2.767) 

Time Trend 0.706*** 0.152*** 0.475 0.706*** 0.152*** 0.475* 

 
(0.0340) (0.0396) (0.284) (0.0339) (0.0394) (0.283) 

Belgium -37.98*** -37.84*** -37.84*** 

 
(0.513) (0.490) (0.494) 

   Germany -53.68*** -52.78*** -52.78*** 
   (0.513) (0.490) (0.494) 

Spain -28.29*** -27.78*** -27.78*** 
   

 
(0.513) (0.490) (0.494) 

   France -77.39*** -77.90*** -77.90*** 
   

 
(0.513) (0.490) (0.494) 

   Greece -4.272*** -4.656*** -4.656*** 
   

 
(0.513) (0.490) (0.494) 

   Netherlande 5.597*** 4.751*** 4.751*** 
   

 
(0.513) (0.490) (0.494) 

   Portugal -32.33*** -29.94*** -29.94*** 
   

 
(0.513) (0.490) (0.494) 

   Austria -17.69*** -17.01*** -17.01*** 
   

 
(0.513) (0.490) (0.494) 

   Brent (Lag 0-4)  Y Y Y Y 

Year Fixed Effects 
  

Y 
  

Y 

Month Fixed Effects 
  

Y 
  

Y 

Constant 322.3*** 139.2*** 130.7*** 291.6*** 108.8*** 100.3*** 

 
(1.568) (5.832) (5.304) (7.925) (11.51) (12.49) 

       Observations 1,071 891 891 1,071 891 891 

R-squared 0.612 0.880 0.925 0.35 0.62 0.66 

Number of Groups 9 9 9 9 9 9 
Table 1.6 reports the estimation results of the dif-in-dif regression model in (2). It tests whether Italian prices increased 
after the introduction of the sticky pricing policy compared to a benchmark, EU countries. Specification 1 to 3 reports 
the coefficients on the benchmark countries while specification 4 to 6 reports Italy’s fixed effect. In the first three 
specifications the coefficients represent the country specific price difference compared to Italy, while the last three 
specifications show Italy’s price level compared to the benchmark. Specification 1 to 3 is symmetric to specification 4 to 
6, respectively. In all specifications Italy’s price significantly increases after the policy was introduced. Standard errors 
clustered at country level are in parentheses while the stars on the coefficients are defined as follows: * (**) and [***] 
refer to p-values below 10% (5%) and [1%]. 
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Table 1.7 Synthetic Control Method 

State weight to compute 
"synthetic control group" 

Mean Italian 

price 

Mean synthetic 
control 

Difference t-statistic p-value Obs.  

Belgium 0.021 Entire Sample 

Germany 0.014 368.85 366.51 2.33* 1.8 0.073 119 

Spain 0.027 Pre Sticky Pricing 
   

 

France 0.004 354.85 354.82 0.02 0.02 0.981 88 

Greece 0.058 Sticky Pricing 
   

 

Netherlands 0.814 408.60 399.72 8.88** 2.6 0.014 31 

Portugal  0.024 

 Austria 0.038 

The left part of the table shows the weights that have been used to construct the synthetic control group. These weights are 
estimated by minimizing the difference between the pre-treatment (price policy change) Italian price and the other EU countries. 
The EU price which most closely resembles the Italian one is the Dutch price with a weight of .814. In the right part of the table 
we compare the Italian and synthetic control price in three different time periods: entire sample, pre and post treatment. By 
construction the weights are chosen to maximize the similarity of the Italian and synthetic price before the treatment, and thus their 
difference is small and insignificant. This guarantees that the synthetic control group more closely resembles Italian price 
movements before the policy and allows us to estimate the causal effect of ENI’s new pricing policy on prices. “Difference” shows 
the difference between Italian and synthetic price, while t-statistic and p-value report the estimates of the test: H0: IT_Price-
Synth=0. The estimated price difference in the sticky pricing period is 8.88€ per 1000 liters which is statistically significant at the 
5% level.  

 

 

 

Table 1.8 Synthetic Control Regressions 

  (1) (2) (3) 
Dependent variable IT-Synthetic Control price at time t 

Model OLS OLS  OLS 

       
Policy Change 8.856*** 9.746*** 12.551*** 

 
(3.59) (3.059) (4.224) 

Time Trend  
 

-.048 

 
 

 
(.0369) 

Brent (Lag Dif 0-4)  Yes Yes 
Constant .028 .561 2.918* 

 (1.197) (1.064) (1.752) 
    

Observations 119 94 94 
R-squared .076 .479 .486 

In Table 1.8 we run an OLS regression of the policy change dummy, policyt, on the price 
difference between Italy and the Synthetic Control, ∆PriceIT-Synth,t. In specifications 2 and 3 
we add the lagged first differences of the Brent. Results are consistent with the dif-in-dif 
model and show a significant positive change in the Italian price difference with respect to 
the synthetic control after the policy. Robust standard errors are in parentheses. * (**) and 
[***] refer to p-values below 10% (5%) and [1%].  
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Table 1.9 Robustness check 

  (1) 
 

(2) 
 

(3) 
 Dependent Variable Margin of firm i at time t 

Coef. St. Err Coef. St. Err Coef. St. Err 

Time period Pre Sticky Pricing Sticky Pricing All 

              

Policy Change     22.95*** (2.036) 

API 2.692*** (0.836) -2.070 (2.844) 2.692*** (0.836) 

ERG 1.372 (0.838) -1.674 (2.847) 1.372 (0.839) 

ESSO 1.460* (0.848) -1.281 (2.887) 1.460* (0.848) 

IP 1.840** (0.854) -0.635 (2.891) 1.840** (0.854) 

Q8 2.273*** (0.831) -0.938 (2.905) 2.273*** (0.832) 

SHELL 1.633* (0.858) -1.682 (2.880) 1.633* (0.858) 

TAMOIL 1.843** (0.849) -2.437 (2.829) 1.843** (0.850) 

TOTAL 2.692*** (0.843) -1.270 (2.848) 2.692*** (0.843) 

Policy*API 
  

  -2.070 (2.827) 

Policy*ERG 
  

  -1.674 (2.831) 

Policy*ESSO   -1.281 (2.870) 

Policy*IP 
  

  -0.635 (2.872) 

Policy*Q8 
  

  -0.938 (2.887) 

Policy*SHELL   -1.682 (2.864) 

Policy*TAMOIL 
  

  -2.437 (2.814) 

Policy*TOTAL 
  

  -1.270 (2.830) 

Time Trend  -0.0144*** (0.00103) -0.0896*** (0.0115) -0.0159*** (0.00104) 

Constant 374.6*** (16.51) 1,637*** (190.2) 398.3*** (16.68) 

       Observations 6,129 
 

1,665 
 

7,794 
 R-squared 0.034   0.033   0.115   

Table 1.9 reports the estimates of regression model (5). The dependent variable, margin, is expressed in Euro per 1000 
liters. In specification 1 (2) we include only firm fixed effect for the pre (post) policy period. In specification (3) we 
include both the pre and post sticky pricing time period, firm fixed effects and their interaction with the policy dummy. 
The results show that while competitors’ margins were significantly higher than ENI’s margins before the policy, after 
the policy this difference becomes insignificant. In addition, the estimate on the policy dummy which captures the post 
policy difference in average industry margins is positive and significant. This shows that controlling for firms’ fixed 
effects the policy had a positive impact on the profitability of the Italian gasoline industry. Robust standard errors are in 
parentheses while the stars on the coefficients are defined as follows: * (**) and [***] refer to p-values below 10% (5%) 
and [1%]. 
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Figure 1.1 shows the daily “suggested” firm-level prices in the Italian gasoline market from January 2003 to 15th May 2005. These prices represent a very good approximation of 
final retail prices paid by consumers, see section 3.2. The dashed line represents the Platts Cif Med, the major source of cost for firms. The first vertical line denotes 6th October 
2004, the date where ENI, the market leader, announced that it would adopt a new pricing policy consisting of sticky prices (i.e. infrequent price changes). The time span 
between the first two vertical lines constitutes the “commitment” time period. As prices respond to costs with about a month time lag costs were increasing just after the 
announcement by ENI contrary to what might seem from Figure 1.1. Competitors kept increasing their prices following short-run cost changes until the beginning of 
November when costs decreased and they started to align and follow the leader’s price. The second vertical line is placed on the 12th of November, the date when most 
competitors aligned to the leader. Note that we will take this date as the starting date of the new equilibrium in the empirical analysis. The third vertical line shows the date 
when the Italian Truckers’ Association (FITA) formally complained about “high and aligned prices” to the Italian antitrust authority.    

Policy 

Change 

Figure 1.1 Cartel Formation 
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Figure 1.2 shows the average weekly Italian and EU price of gasoline and the European price of the Brent, i.e. crude oil. The continuous line represents the 
Italian price, while the dashed (dashed-dotted) line represents the EU price (Brent). The first vertical line denotes the date where the market leader announced 
that it would adopt a new pricing policy consisting of sticky pricing (i.e. infrequent price changes). The second vertical line shows the date when the Italian 
Truckers’ Association (FITA) formally complained about “high and aligned prices” to the Italian Antitrust Authority on 25th March 2005.     

 

Figure 1.2 Italian Price, EU Price and Brent 
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Figure 1.3 shows the distribution of the number of firms aligned to the leader (left graph) and the kernel density of the daily standard deviation of prices (right graph) both 
for the sticky and pre sticky time period. Alignment is a count variable that ranges from 0 (none of ENI’s competitors charge exactly the same price as ENI) to 8 (all 
competitors are aligned). The right part of Figure 1.3 shows the kernel density of the daily price dispersion across firms. As ENI increased the magnitude and time interval 
of price changes the mean (median) price dispersion increased (decreased) during the sticky pricing period.   

 

Figure 1.3 Alignment and Price Dispersion 
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Figure 1.4 shows the coefficients of specification 3 in regression model (1), reported in Table 1.3. The coefficients describe the dynamic alignment of competitors 
after a price change by the leader both before the new policy (left graph) and after the new policy (right graph). Before the policy the average absolute percentage 
price difference to the leader did not significantly change in response to a price change by the leader. In contrast, after the policy change competitors significantly 
changed their pricing behaviour. They dynamically aligned their prices to the leader’s price with two to three days lag after a price change by the leader. The absolute 
price difference is 4.5% on days where the leader changed its price and then quickly drops until it gets insignificant after the fourth day. 

 

Figure 1.4 Dynamic Price Alignment to the leader 
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Figure 1.5 shows the mean Italian gasoline price and the synthetic control group on the left graph and their difference on the right graph. The weights to construct the 
synthetic control group are reported in Table 1.5. The vertical lines in both graphs denote the date where ENI announced that it would adopt a new pricing policy consisting 
of sticky prices (i.e. infrequent price changes).    

 

Figure 1.5 Italian Price and Synthetic Control 
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Chapter 2: Actions Speak Louder than Words: 
Econometric Evidence to Target Tacit Collusion in 
Oligopolistic Markets     
 

2.1 Introduction 

In most markets firms quickly realize that they can earn supracompetitive profits by coordinating their market 

conduct. In response, antitrust policy seeks to foster “effective competition” by targeting collusive activities. 

The current legal framework to accomplish this goal has mainly evolved around communication as a means 

to reach a collusive agreement. In contrast, purely tacit collusion remains largely unaddressed by antitrust law 

though it may bring about the same negative welfare effects. 

We argue that a crucial step forward in targeting tacit collusion could be taken through the forensic use of 

econometric evidence which may reveal collusive strategies. Theoretical and empirical findings on collusive 

behavior provide a basis for deriving clear test hypotheses to distinguish (lawful) oligopolistic 

interdependence from tacit collusion. Thus econometric analyses may provide quantitative evidence that 

firms strategically use specific elements of market conduct to (tacitly) collude. Antitrust remedies should in 

turn take up such instances of market behavior to tackle tacit collusion.   

The paramount significance of evidence of explicit communication entails fundamental problems for the 

fight against cartels.32 Communication is not a necessary condition to collude. At the heart of collusion lies 

the incentive of firms to cooperate rather than to compete.33 In oligopolies firms can exercise their unilateral 

market power to facilitate anticompetitive coordination without engaging in communication. As firms weigh 

up the costs and benefits of explicit collusion, antitrust law’s focus on communication incentivizes them to 

concentrate on tacit means of collusion. Legal instruments to counter collusion, the effectiveness of which 

depends on evidence of explicit communication, are least effective in concentrated industries,34 i.e. precisely 

in those industries where the cartelization rate is presumably the highest and communication is least needed 

                                                
 

32 Throughout this paper we use the term “cartel” to describe any kind of welfare-decreasing form of collusion, be it an explicit or a tacit one, and 
irrespective of whether or not we consider it an infringement of antitrust law. 

33 Much of the theoretical discussion on tacit collusion is based on the supergame approach. The best known result describing firms’ incentives to 
collude is the “Folk Theorem” which states that for sufficiently low discount rates almost any price may be sustained as the equilibrium outcome 
of a repeated game. While the “Folk Theorem” provides fairly general conditions under which tacit collusion may be sustained as an equilibrium, 
it says nothing about how firms behave in reality. The strategies used in the “Folk Theorem” are chosen because of their analytical ease and not 
because they describe firms’ collusive behaviour. See Fudenberg and Tirole (1991) for a discussion of the “Folk Theorem”.    

34 While economic theory shows that concentration facilitates collusion, and thus predicts a positive relation between cartelization rate and market 
concentration, empirical evidence seems to contradict this result (Levenstein and Suslow, 2006). This gap between the number of cartels predicted 
from a theoretical perspective and the number of cartels that appear in the empirical analysis may plausibly be explained by a sample-selection 
bias. Only cartels which, first, have been detected and which, secondly, were regarded as illegal by antitrust authorities or courts are contained in 
the sample. 
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to sustain collusion.35 Any economic approach to support the enforcement of antitrust law36 is challenged by 

a legal significance of evidence of communication. Economists can use observable variables such as prices, 

and their knowledge of the strategies employed by firms to infer collusion37 but have no instruments to prove 

whether firms collude with or without communication. From an incentive-based perspective, (illegal) 

communication appears to be of relative unimportance:  While non-enforceable communication might 

facilitate coordination on a particular collusive equilibrium,38 “talk is cheap” in the absence of effective 

enforcement mechanisms.39   

It is, however, not out of economic naivety that antitrust law concentrates so much on evidence of 

communication in its struggle against collusion. Firstly, this reflects skepticism about whether instances of 

tacit collusion may be distinguished from oligopolistic competition with a degree of precision that suffices for 

forensic purposes. This concern may be associated with the so-called “indistinguishability problem” as put 

forward by Phlips (1996). He suggested that game theoretic arguments combined with the unavailability of 

some key data can make an economic based proof of collusion very difficult as something that looks like 

collusion might stem from a multiplicity of (indistinguishable) equilibria. Hence, the application of any legal 

instrument that addresses tacit collusion faces the challenge to prevent an unacceptable high number of false 

positives. Secondly, for purposes of antitrust enforcement it does not suffice to show that an observable 

market outcome emerged as the result of a collusive strategy. Antitrust remedies may not straightforwardly 

tackle firms because they charge “collusive”, i.e. supracompetitive, prices but must address specific elements 

of firms’ market conduct which may be characterized as collusive. Without taking into account these issues, 

antitrust enforcement that tackles tacit collusion risks either unduly restricting market operators’ leeway to 

compete or to ultimately amounting to an instrument of price control. 

In the following, we outline an approach that addresses both these concerns, and hence provides the basis for 

an expansion of the law’s ambition to tackle tacit collusion. Oligopolistic interdependence as such and 

oligopolistic collusion are conceptually distinct. Tacit collusion arises from decisions endogenous to the 

market by one or several firms which aim at reducing or eliminating competition. In contrast, oligopolistic 

interdependence stems from best response to market conditions (including other firms’ behavior) which 

favor non-competitive performance. Thus, while the market outcome might appear to be “indistinguishable,” 

                                                
 

35 Fonseca and Normann (2012) use a laboratory experiment to investigate the role of communication in sustaining collusion. They show that 
highly concentrated industries collude irrespective of communication. 

36 See for comprehensive analyses of the use of economics to support cartel enforcement Werden (2004) and Kaplow (2011a).  

37 One of the best known examples of economic detection of collusion is provided by the work of Christie and Schultz (1994). They detected 
collusion between Nasdaq market makers by comparing their bid-ask spread to the equivalent spread on the New York Stock Exchange. Christie 
and Schultz’ (1994) work had an impressive impact as it led to regulatory investigations by the Securities and Exchange Commission (SEC) and 
class action lawsuits that were settled for over $1 billion.  

38 Genovese and Mullin (2001) provide narrative evidence of the role of communication for collusion in the Sugar Institute Case. They find that 
one key missing aspect in formal theories of collusion is the role for rich communication within the collusive agreement. 

39 To use the words of Thomas Hobbes (1651/1959, chap. 14, p. 71), author of the Leviathan, “[…] the bonds of words are too weak to bridle 
mens ambition, avarice, anger, and other Passions, without the fear of some coercive Power […].” 
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the specific strategies that lead to the outcome differ significantly. The gist of our approach to identify 

collusive behavior lies in an identification of patterns of behavior used by firms to bring about or facilitate 

(tacit) collusion.40 Yet antitrust law must not simply infer the existence of a punishable (tacit) agreement from 

the insight that a certain market outcome is the result of a collusive strategy. Rather, it is essential to 

distinguish the active promotion of a collusive strategy by one firm from the passive (best response) 

alignment of competing firms. Consequently, antitrust enforcement should not conceptualize such instances 

of collusive leader-follower behavior as an illegal coordination which would – with regard to the “followers” – 

result in punishing oligopolistic interdependence. Rather, antitrust law should capture such instances of 

“unilateral collusion” only through considering as illegal the unilateral conduct that actively promotes the 

implementation of a collusive strategy. To effectively fight tacit collusion it appears therefore to be necessary 

to strengthen legal instruments that target the unilateral conduct that firms strategically employ to promote 

collusion.     

To illustrate our behavioral approach to tackling tacit collusion and to demonstrate the capacity of 

econometric evidence we refer to incidents on the Italian gasoline market. In Andreoli-Versbach and Franck 

(2013b), hereafter AVF, we provide quantitative evidence of the means, i.e. specific pricing strategies, and the 

effects, i.e. higher prices, caused by the unilateral public announcement of ENI, the market leader. On 6th 

October 2004 ENI announced a new pricing policy which consisted of infrequent price variations (sticky 

pricing) and large price changes. Using daily firm level prices of gasoline in Italy and average weekly EU 

prices over the time period from January 2003 to May 2005, AVF show the effect of the new pricing policy. 

ENI increased the time lag between price changes from 6 to 16 days and increased the mean price change 

from 1% to 5.8%. After the policy change ENI did not change its price for 57 days irrespective of cost 

changes. Initially ENI’s competitors kept their short-run cost-based pricing and thus increased their prices 

following (lagged) cost increases.41 Once competitors started to align to ENI in mid-November 2004 a 

different pricing pattern emerged: sticky-leadership pricing. Each large price variation was matched by 

competitors and ENI endogenously emerged as the price leader in the market and coordinated price changes. 

While the first effect of the policy was to change the price interdependence in the Italian gasoline market this 

newly emerged tacit coordination had an additional effect: a significant price increase. Using several 

estimation techniques AVF show that Italian prices rose compared to EU prices after the new sticky 

leadership pricing emerged. Thus, the econometric analysis used to characterize pre and post policy pricing 

                                                
 

40 In this respect, our approach is conceptually in line with Hay (2000, p. 128) who argues that “if there is to be a category of unlawful tacit 
collusion which is to be distinguished from classic oligopoly, the difference must lie […] on the specific elements of behavior that brought about 
that state of mind”. 

41 Firms respond to cost shocks with some lags. While current costs decreased immediately after ENI’s policy, lagged costs increased and thus 
competitors increased their prices. See Figure 2.1 for a plot of daily prices and costs, i.e. Platts Cif. Med., around ENI’s new price policy 
announcement (first vertical line). 
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behavior and evaluate the effect of the new market conduct on the price level might provide solid “statistical” 

evidence that ENI’s unilateral commitment to a policy of sticky pricing has to be characterized as collusive. 

Against the background of these incidents on the Italian gasoline market we suggest that an implementation 

of sticky pricing along with large price changes should be prohibited under market conditions such as highly 

asymmetric market shares and high concentration where it may be expected that price leadership will emerge 

as a price coordination mechanism and, thus, where such a pricing strategy will bring about collusion. Such an 

expansion of the legal tools to counter cartels seems especially relevant for oligopolies where the structural 

market features favor collusion and at the same time communication might be less needed because of price 

and cost transparency.    

The structure of the paper is as follows: Section 2 discusses the status quo of cartel enforcement which 

focuses on firms’ communication and the law’s difficulties with tackling tacit collusion. In section 3 we 

outline incidents on the Italian gasoline market as an illustration for how our approach might be applied for 

purposes of antitrust enforcement. Section 4 describes the way to integrate quantitative evidence of collusion 

with antitrust law. Section 5 concludes. 

2.2 On Collusion as a Legal Concept, its Limits in the Absence of Evidence of Collusive 

Communication, and the Reasons therefor 

Collusion allows competing firms to charge supra-competitive prices and entails negative welfare effects. 

Meta-studies on cartel overcharges show that the median cartel-price increase ranges between 20 and 30 

percent (Bolotova, 2009, and Connor, 2007). This is why antitrust law aims at inhibiting collusion and why 

the horizontal coordination of prices and quantities is considered a per-se violation of Section 1 Sherman Act 

or Article 101 Treaty on the Functioning of the European Union (TFEU), respectively. Successful collusion 

requires inter alia an underlying – tacit or explicit – consensus on the terms of the cooperation. Thus, in order 

to counter collusion, it seems a logical step to regard such underlying understanding as illegal.  

However, the economic conception of a collusive agreement diverges significantly from the corresponding 

legal concepts of “conspiracy” according to Section 1 Sherman Act or “agreement” and “concerted practice” 

according to Article 101(1) TFEU.42 While the former focuses on firms’ incentives to engage in collusion and 

their strategies for sustaining a collusive equilibrium, the latter centers around the means to reach an 

understanding between firms. This divergent perspective on collusion becomes apparent with regard to 

instances of tacit collusion, i.e. under circumstances where no direct evidence of consensus between 

competing firms is available, such as written records or insider testimony. Though, as a matter of principle, 

                                                
 

42 This conceptual divergence may also give rise to terminological misunderstandings between economists and lawyers. Throughout this paper we 
will indicate when we use terms such as “collusion” or “agreement” in their technical economic or legal meaning. 
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both under the Sherman Act and the TFEU circumstantial evidence may suffice to demonstrate the existence 

of a “conspiracy”43 or an “agreement”44 respectively, there are doctrinal limits in this regard if it comes to 

(supposedly) tacit collusion between competitors. 

In the words of the U.S. Supreme Court, “conspiracy” requires “that [the defendants] had a conscious 

commitment to a common scheme designed to achieve an unlawful objective.”45 Reasonably, this may not be 

inferred from conscious parallelism alone.46 Rather a plaintiff has to produce additional evidence to prove 

that an observed parallel market conduct may not be considered the result of oligopolistic interdependence, 

but indeed forms part of a collusive strategy. Such so-called “plus factors” may encompass first, elements of 

industry structure that indicate that an industry is conducive to collaboration, second, conduct that appears 

irrational or inefficient absent collusion, and third, additional factors such as industry performance (e.g. 

stabile market shares over time, supra-competitive pricing) or facilitating practices (e.g. exchange of 

information).47 While the U.S. Supreme Court has stated that plaintiffs can only survive summary judgment 

by presenting circumstantial evidence “that tends to exclude the possibility that the alleged conspirators acted 

independently,”48 the case law so far does not provide a taxonomy of plus factors which would allow us to 

determine which elements of evidence are required to infer an agreement. Thus, Gavil et al. (2008) concluded 

that “[…] decisions analyzing plus factors generally have failed to establish a clear boundary between tacit 

agreements – to which Section 1 applies – and parallel pricing stemming from oligopolistic interdependence 

[…]. This condition makes judgments about future litigation outcomes unpredictable.”49   

While the European Court of Justice (ECJ) considers it generally conceivable that consent to an agreement 

may be inferred from circumstantial evidence,50 the Court is reluctant to infer an “agreement” between 

competitors from their market conduct alone, notwithstanding the presence of certain “plus factors.” Given 

the current state of the jurisprudence, it appears that in the absence of direct evidence of collusion the Court 

                                                
 

43 American Tobacco Co. v. United States, 328 U.S. 781, 809 (1946) (“No formal agreement is necessary to constitute an unlawful conspiracy”); Norfolk 
Monument Co. v. Woodlawn Memorial Gardens, Inc., 394 U.S. 700, 704 (1969) (“business behavior is admissible circumstantial evidence from which the 
fact finder may infer agreement”). 

44 CFI, 26.10.2000, Case T-41/96 Bayer v Commission [2000] ECR II-3383 para. 69; confirmed on appeal by the ECJ, 6.1.2004, Joined Cases C-2/01 
P and C-3/01 P Bundesverband der Arzneimittel-Importeure and Commission v Bayer [2004] ECR I-23, para. 97. 

45 Monsanto Co. v. Spray-Rite Servs. Corp., 465 U.S. 752, 768 (1984). While Monsanto involved a vertical collaboration, the Court soon after adopted 
the same reasoning also in a horizontal case, see Matsushita Electronics Industries Co. v. Zenith Radio Corp., 475 U.S. 574, 588 (1986). 

46 See e.g., Theatre Enters., Inc. v. Paramount Film Distrib. Corp., 346 U.S. 537, 541 (1954). 

47 See for an overview Gavil et al. (2008), pp. 310-311. 

48 Matsushita Electronics Industries Co. v. Zenith Radio Corp., 475 U.S. 574, 588 (1986) (quoting Monsanto Co. v. Spray-Rite Servs. Corp., 465 U.S. 752, 764 
(1984)). 

49 See also Kaplow (2011b), p. 816, who concludes after an extensive analysis of the concept of agreement in antitrust law: “[…] this Article does 
not come close to demonstrating that it would be good policy to proscribe and highly penalize all instances in which interdependent oligopolistic 
behavior appears to occur. The design of optimal policy is not dictated by definitions but rather by direct assessment of the consequences of 
different regulatory approaches.” 

50 Accordingly, the Court infers a tacit approval of a collusive initiative from the attendance of a meeting where an anticompetitive agreement was 
concluded, see ECJ, 28.6.2005, Joined Cases C-189/02 P, C-202/02 P, C-205/02 P to C-208/02 P and C-213/02 P Dansk Rørindustrie A/S and 
others v Commission [2005] ECR I-5425 para. 143: “That complicity constitutes a passive mode of participation in the infringement which is 
therefore capable of rendering the undertaking liable in the context of a single agreement […].”  
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does not presume the existence of an “agreement” even if one has proved that observed parallel market 

conduct was an expression of (tacit) collusion rather than of oligopolistic interdependence as such. This has 

been reaffirmed by a decision on the doctrine of “collective dominance” under Article 102 TFEU where the 

ECJ implicitly approved that tacit collusion per se may not fall under Article 101(1) TFEU: “[u]nless they can 

form a shared tacit understanding of the terms of the coordination, competitors might resort to practices that 

are prohibited by Article [101 TFEU] in order to be able to adopt a common policy on the market.”51 

However, where tacit collusion has been induced by facilitating practices such as, for example, an exchange of 

information, it may come under Article 101(1) TFEU as an illegal “concerted practice”. In this regard, the 

ECJ drew a line: On the one hand, by assigning market operators the legal leeway to “adapt themselves 

intelligently to the […] conduct of their competitors” the Court signaled that mere passive alignment would not 

be treated as an illegal form of coordination. On the other hand, the Court submitted that a strategy that 

actively aims at aligning competitors’ market conduct may fall under Article 101(1) TFEU.52 Thus, to implement 

this standard it is essential to identify elements of behavior that promote (tacit) collusion.      

This insight into legal concepts of coordination reveals ambiguities and restrictions with regard to tacit 

collusion. It raises the question why the law finds it so difficult to cope with this phenomenon, given that it 

seems uncontroversial in terms of competition policy that tacit collusion on prices and quantities should be 

prevented as rigorously as collusion based on explicit consensus. To begin with, the respective judicial 

definitions of “conspiracy” and “agreement” do not restrict these concepts in a way that would exclude 

collusion which has been sustained tacitly. Whatever the rhetoric of the courts might be when they 

characterize the requirements of an agreement – typically they refer to a need to show a “meeting of minds,”53 

a “joint intention”54 or a “concurrence of wills”55 –, the respective antitrust law concepts have to be defined 

strictly instrumentally. Hence it is, first, the underlying policy to contain as far as possible any kind of welfare-

reducing collusion and, second, the role a legal intervention and, in particular, a prohibition of agreements 

between competitors may feasibly play in this regard, that determine which behavior should be regarded as 

illegal.  

Part of the law’s problem in coping with tacit collusion lies with the difficulty to distinguish collusion from 

oligopolistic interdependence as the latter may also result in suspiciously parallel market conduct and supra-

competitive prices. This problem is addressed by the requirement of “plus factors” which – in addition to 

parallel pricing – are meant to indicate collusion, such as market conduct which may reasonably only be 

                                                
 

51 ECJ, 10.7.2008, Case C-413/06 P Bertelsmann and Sony Corporation of America v Impala [2008] I-4951, para. 123.  

52 ECJ, 16.12.1975, Joined Cases 40 to 48, 50, 54 to 56, 111, 113 and 114/73, Suiker Unie and others v Commission [1975] ECR 1663 paras. 173-174; 
ECJ, 14.7.1981, Case 172/80 Züchner v Bayerische Volksbank [1981] ECR 2021, paras. 12-14. 

53 American Tobacco Co. v. United States, 328 U.S. 781, 810 (1946); Copperweld Corp. v. Independence Tube Corp., 467 U.S. 752, 771 (1984). 

54 ECJ, 15.7.1970, Case 41/69 ACF Chemiefarma [1970] ECR 661 para. 112.  

55 CFI, 8.7.2008 AC-Treuhand [2008] ECR II-1501, para. 118. 
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explained as part of a collusive strategy.56 From this perspective, the problem of distinguishing oligopolistic 

collusion from oligopolistic competition comes essentially down to a question of error costs: by defining the 

“critical mass” of plus factors required to infer an illegal coordination, courts strike a balance between the 

ambition to contain (tacit) collusion and the risk of producing false positives.57    

However, in particular the ECJ’s categorical reluctance to infer an agreement in cases of mere tacit collusion 

suggests that there is more to the law’s difficulties to cope with tacit collusion than the problem of multiple 

(indistinguishable) equilibria and the issue of reaching an acceptable degree of error costs in this regard. Legal 

standards and remedies that are supposed to influence market conduct in order to guarantee effective 

competition may not simply prohibit an undesired economic condition such as a collusive equilibrium and 

punish firms because they charge “collusive” prices. Such a policy effectively meant nothing other than price 

control. This unwelcome consequence is prevented as antitrust standards and remedies relate to individual 

behavior and define which acts or omissions are required or prohibited. When authorities or private plaintiffs 

order a firm to bring an infringement to an end or seek to obtain injunctions before a court, it is already the 

remedy’s behavioral nature that requires a specification of elements of conduct that violate antitrust law. The 

intended deterrent effect of concurring remedies such as imposing fines or damages likewise depends on 

whether market operators are in a position to foresee what conduct they may be sanctioned for, and how they 

are expected to behave to avoid sanctions. This appears particularly challenging where an undesired economic 

effect or market condition is the consequence of the interdependent behavior of several market actors.58 But 

once again: if the elements of behavior that bring about a collusive equilibrium remain unclear, any legal 

intervention may ultimately amount to a price control by antitrust authorities or courts. Furthermore, with 

regard to criminal and quasi-criminal sanctions it is required by the principle of culpability59 and the need to 

prove intent60 or negligence,61 respectively, that antitrust enforcement ensures that market operators may 

                                                
 

56 This is presumed if, for example, a certain conduct “is so perilous when not imitated and imitation so uncertain that no reasonable actor would 
so act, then parallel action does imply some exchange of commitments or at least some comforting assurances connoting a traditional conspiracy”, 
Areeda and Hovenkamp (2010), §1415c, p. 107 with reference to Blomkest Fertilizer v. Potash Corp., 203 F.3d 1028, 1037 (8th Cir. 2000).  

57 See Posner (2001), p. 99: “[…] a damages judgment in a tacit collusion case would promote competition at a tolerable cost in legal uncertainty 
and judicial supervision.” 

58 Cf., e.g., E.I. Du Pont De Nemours & Co. v. FTC (Ethyl), 729 F.2d 128, 139 (2d Cir. 1984): “In view of this patent uncertainty the [Federal Trade] 
Commission owes a duty to define the conditions under which conduct claimed to facilitate price uniformity would be unfair so that businesses 
will have an inkling as to what they can lawfully do […]. The Commission’s decision in the present case does not provide any guidelines; it would 
require each producer not only to assess the general conduct of the antiknock business but also that of each of its competitors and the reaction of 
each to the other, which would be virtually impossible.”  

59 Under European law, Article 7(1) ECHR enshrines the principle that offences and punishments are to be strictly defined by law, see on the 
relevance of this norm as to fines in EU Competition Law ECJ, 28.6.2005, Joined Cases C-189/02 P, C-202/02 P, C-205/02 P to C-208/02 P and 
C-213/02 P Dansk Rørindustrie A/S and others v Commission [2005] ECR I-5425 para. 202.  

60 Cf. 438 U.S. 422, 435 (1978): “We agree with the Court of Appeals that an effect on prices, without more, will not support a criminal conviction 
under the Sherman Act […]. [A] defendant's state of mind or intent is an element of a criminal antitrust offense which must be established by 
evidence and inferences drawn therefrom, and cannot be taken from the trier of fact through reliance on a legal presumption of wrongful intent 
from proof of an effect on prices.” As to the required standard of intent the Court concluded id., at 444, “that action undertaken with knowledge 
of its probable consequences and having the requisite anticompetitive effects can be a sufficient predicate for a finding of criminal liability under 
the antitrust laws.”  

61 See Article 23(2)(a) Council Regulation (EC) No 1/2003 of 16 December 2002 on the implementation of the rules on competition laid down in 
Articles 81 and 82 of the Treaty, Official Journal L 1, 04.01.2003, p. 1-25. 
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anticipate their legal leeway and addresses certain modes of behavior rather than an economic effect or 

condition.  

Thus, the key to overcoming the law’s difficulties to counter tacit collusion lies in an approach which 

identifies specific elements of behavior whose object or effect it is to bring about or facilitate collusion. Such 

an approach has a chance for success as market operators that seek to implement a collusive strategy need to 

adjust their market conduct to reach an optimal and stable collusive equilibrium. Even in oligopolistic 

markets that are characterized by features that facilitate tacit collusion, prices and other parameters have to be 

adjusted according to an underlying (tacit) agreement, and the need for such adjustments may lead firms to 

resort to a certain behavior that may be identified as serving a collusive strategy. Empirical and theoretical 

research62 on how cartels behave provides solid test hypotheses to identify such elements of collusive 

behavior. Precisely these elements of behavior are the focus of our approach to provide evidence of 

anticompetitive behavior.   

2.3 Empirical Evidence 

Academic forensic economics and finance63 has long applied its tools in a number of areas to reveal conduct 

that agents strive to conceal. Some of the most prominent examples include teachers cheating in exams 

(Jacob and Levitt, 2003), violations of U.N. sanctions (DellaVigna and La Ferrara, 2010), and racial biases in 

employment decisions (Bertrand et al., 2005). This research is methodologically related to our topic of 

empirical cartel detection as econometrics is employed to provide evidence of hidden wrongdoings. In 

academic forensic economics and finance researchers use their knowledge about incentive schemes on 

observable variables, e.g. prices, in order to derive statistical tests to compare distinct hypotheses, e.g. 

collusion versus competition. 

While a test hypothesis for teachers to raise students’ test scores or employment discrimination on the basis 

of race can be clearly defined, what should constitute an appropriate test for collusion? In line with the 

literature on economic screens (see Abrantes-Metz and Bajari, 2009) we believe that the answer lies in 

economic theory and empirical evidence on cartel behavior.64  

Since the foundational work by Stigler (1964) who highlighted firms’ incentive to cheat as the preeminent 

challenge faced by cartels, much research has been carried out on “pricing structures” which can sustain a 

collusive outcome.65 The two key strategic aspects that are relevant for our analysis are the use of sticky and 

                                                
 

62 For a meta-study on cartels’ features see Harrington (2006) and Levenstein and Suslow (2006). For a survey on price fixing in particular see Hay 
and Kelley (1974). For an analysis of the determinants of cartel duration see Levenstein and Suslow (2011).    

63 For a review of forensic economics and finance see Zitzewitz (2012) and Ritter (2008), respectively. 

64 See for example Bajari and Ye (2003) who develop an approach to identify and test for bid rigging in procurement auctions. For a general 
discussion of methods to detect collusion see Porter (2005), Harrington (2008b) and Rey (2007).   

65 See, for example, Green and Porter (1984), Rotemberg and Saloner (1986) and Maskin and Tirole (1988).  
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leadership pricing as a facilitating device to sustain collusion. With respect to price leadership we base our 

analysis on the models developed by Rotemberg and Saloner (1990) and Mouraviev and Rey (2011). With 

respect to price stickiness we rely on theoretical findings by Athey and Bagwell (2001, 2008), Athey et al. 

(2004), Hanazono and Yang (2007) and Garrod (2012), and empirical insights by Abrantes-Metz et al. (2006), 

Blanckenburg et al. (2012) and Connor (2005) who show that price stickiness is associated with collusive 

behavior.  

2.3.1 The Facts of the Case 

On 6th October 2004, ENI, the market leader in the Italian gasoline market, publicly announced the adoption 

of a new pricing policy. ENI declared that the purpose of this policy was to lower the short-term price-cost 

relation and to stabilize retail prices.66 As the volatility of crude oil was increasing, ENI claimed that the policy 

aimed at lowering the retail price variability and would benefit customers. The new policy consisted in a 

reduction of the number of price changes (i.e. sticky pricing), and increased the magnitude of each variation. 

ENI increased the average time lag between price changes from 6 to 16 days and increased the mean price 

change from 1% to 5.8%. The result of this declaration can be seen in Figure 2.1, which shows the daily 

price per company over time before and after the new pricing policy was introduced. Before the policy firms’ 

price changes were frequent. On average, firms changed their prices every five days. The average price change 

was .8% before the policy change. After the new pricing policy was introduced, price changes occurred 

infrequently, on average every 9 days, but their amount became larger, namely 2.9% on average. 

As a result, all but one competitor, ERG,67 followed ENI’s new pricing strategy. About five months later in 

March 2005, the Italian Truckers’ Association, FITA, complained to the Italian antitrust authority about high 

and aligned prices.68 This eventually led to an investigation by the antitrust authority for price fixing under 

Article 14 of Law 287/90 of 10 October 1990, the Italian legislation which restates Article 101 TFEU. The 

Italian antitrust authority claimed that the petrol firms’ conduct of adapting their prices to the leader’s price 

had to be considered a collusion to stabilize prices and to coordinate price changes.69 The high transparency 

in the market facilitated an exchange of price information. Firms may easily observe their competitors’ prices 

at each gas station and Italian law required weekly price communications to the Ministry of Industry which 

subsequently published the data. In addition and more importantly, companies communicated future price 

                                                
 

66 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section VI, para. 
42, available at http://www.agcm.it. 

67 ERG publicly declared that it would not follow ENI’s new pricing and stick to their own method which it did not further specify, see Autorità 
Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section VI, para. 41.4, 
available at http://www.agcm.it.     

68 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section I, para. 
1, available at http://www.agcm.it. 

69 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section VIII, 
paras. 58 and 59, available at http://www.agcm.it. 
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changes to a specialist Italian magazine, “Staffetta Quotidiana,” which published all price change 

announcements on its website. Cost transparency also facilitated coordination. The major source of cost is 

the Platts Cif Med,70 the wholesale price refineries charge in the Mediterranean area for gasoline. This price 

can be thought of as the opportunity cost of companies to sell their gasoline on the Mediterranean wholesale 

market rather than to gas stations. It thus constitutes industry practice71 to compute firms’ margins as the 

difference between their (suggested) consumer price and the Platts Cif Med.  

It is important to note that the antitrust authority had no proof of direct communication between the firms, 

other than the price changes the firms communicated via the aforementioned online magazines. The 

authority claimed that ENI’s policy created a focal price used to facilitate coordination. ENI’s sticky pricing 

lowered competitors’ uncertainty about the future pricing while the large price variations helped to coordinate 

price changes.72  

2.3.2 Sticky Pricing  

Sticky pricing constitutes an important element in a strategy to sustain collusion. An advantage of rigid 

pricing is that it is straightforward to implement and that deviations can be easily detected and punished. A 

series of studies (Athey and Bagwell, 2001, 2008, Athey et al., 2004, Hanazono and Yang, 2007, and Garrod, 

2012) analyze the profit maximizing scheme of cartels under different settings and find a direct relation 

between optimal collusive schemes and rigid pricing.73 For example, Athey and Bagwell (2008) show that 

when firms are moderately patient the equilibrium that maximizes ex-ante profits is relatively simple: all firms 

adopt a sticky pricing scheme and charge the consumers’ reserve.74 In this equilibrium colluding firms adjust 

their prices infrequently, and thus sacrifice productive efficiency to sustain a higher price level in the market.  

In fact most empirical studies conclude that prices are more rigid when the industry is in a collusive phase 

(Abrantes-Metz et al., 2006, Blanckenburg et al., 2012, and Connor, 2005). A key example is the study by 

Abrantes-Metz et al. (2006) on the frozen perch market. Using ex-post evidence of collusion the authors find 

that the price variance during collusion was indeed distinctly lower than the price variance in the period after 

the end of the cartel. In a meta-study Blanckenburg et al. (2012) compare the distribution of price changes 

between competition and collusion for 11 cartels. They find that the price variance decreased significantly in 8 

out of 11 examined cartels. 

                                                
 

70 The Platts company is a leading global provider of energy information that collects and publishes on a daily basis details on the prices of bids 
and offers for specialized oil products and regions from traders and exchange platforms. 

71 See, for example, the definition of the gross margin by the Italian Petrol Union who defines it as the difference between the retail price net of 
taxes and the Platts Cif Med, available at http://www.unionepetrolifera.it/it/show/34/La%20struttura%20del%20prezzo.  

72 Autorità Garante della Concorrenza e del Mercato, 18.1.2007, Case I681 – Prezzi dei carburanti in rete, Provvedimento no. 16370, Section VIII 
paras. 60-63; available at http://www.agcm.it. 

73 Rigid pricing is defined as firms pricing independently of their current cost position.  

74 With other parameter configuration other (more complex) type of equilibria are possible. 
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A shortcoming of sticky pricing models is that they do not address how colluding firms react and coordinate 

to exogenous cost and demand changes. In section 3.3 we will describe how firms in our case used the 

leader’s price as the focal price.    

2.3.3 Leadership Pricing 

Price leadership is “one of the most important institutions facilitating tacitly collusive pricing behavior” 

(Scherer and Ross, 1990, p. 346). Theoretical evidence has been presented by Rotemberg and Saloner (1990) 

who demonstrate that price leadership facilitates collusion under asymmetric information and that it increases 

price rigidity. The authors conclude that such a pricing scheme has many positive attributes: First, it is easy to 

implement, second, it doesn’t require communication and third, it is very easy to detect (and punish) 

deviations.        

In line with these findings Mouraviev and Rey (2011) study the role of price or quantity leadership under 

circumstances where firms can act either simultaneously or sequentially in an infinitely repeated setting for 

both Bertrand and Cournot competition. They highlight that leadership facilitates collusion. Firms competing 

on prices a la Bertrand can use price leadership to sustain (perfect) collusion for any value of the discount 

factor while leadership is less effective with quantity competition a la Cournot.  

Both papers convey an important implication for antitrust policy: if firms are able to tacitly collude using 

price or quantity leadership, the negative effects on welfare are essentially the same compared with cases of 

explicit collusion. The way firms collude is not decisive for the negative effect collusion has on consumers’ 

welfare. In addition, both papers show how leadership pricing can be used to implement an anticompetitive 

strategy in the market as it facilitates coordination and makes deviation more visible.     

2.3.4 Key empirical findings  

Based on the previous finding of the role of sticky and leadership pricing to sustain collusion and on the 

effects of collusive agreements on prices, we show that ENI’s pricing behavior facilitated price coordination 

and led to a price increase.   

Table 2.1 shows the different pricing conduct firms adopted after ENI’s price commitment. In Panel A we 

summarize the frequency and magnitude of price changes. Columns 3 and 5 show the differences in the pre 

and post mean of these variables and thus test whether the pricing behavior significantly changed after ENI’s 

policy. ENI significantly increased the time lag between price changes from one every 6 days to one every 16 

days. This difference is significant at the 1% level and shows that ENI did hold its price commitment as 

publicly announced on 4th October 2004. In addition, the leader increased the absolute mean price change 

from 1% to 5.8%. This 4.8% increase is statistically significant at the 1% level. Similar results hold true for all 

firms. The average time lag between price changes increased from five to nine days, while absolute price 

changes increased from .8% to 2.9%, both significant at the 1% level. Theoretical literature discussed above 
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suggests that large price changes might have been used to coordinate price changes on the leader’s focal price. 

Panel B tests this hypothesis and shows whether the average number of perfectly aligned competitors (i.e. up 

to three digits) to the leader and the average price difference of competitors to ENI significantly changed 

after ENI’s new pricing policy. In line with the collusive hypothesis the number of aligned competitors 

significantly increased and the average price difference to the leader significantly decreased after the policy. 

In addition to the price coordination adopted by firms we report the key coefficients on the causal effect of 

the policy on prices and margins from AVF in Table 2.2. Specification 1 shows the result of the dif-in-dif 

model with standard errors clustered at the country level. In this regression weekly prices of eight EU 

countries75 were used as a control group.76 The estimate on the dif-in-dif effect of the policy on Italian prices 

is positive and highly significant. As one might question the subjective selection and the sufficient similarity 

of the control group, in specification 2 AVF first construct an “optimal” data-driven benchmark (i.e. a 

synthetic control group) and then take the weekly difference between the Italian price and the “optimal 

benchmark” as the (stationary) dependent variable. The synthetic control group estimation was developed by 

Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010) and is constructed using a 

data-driven weight of European prices that minimizes the pre-treatment differences between the Italian price 

and the resulting synthetic control group. Consistent with specification 1 we find a positive and significant 

effect of the policy on prices. Finally, specification 3 shows the within market regression of firm-level margins 

(i.e. without benchmark) which also points to a positive and significant effect of the new policy on firms’ 

profits.77 

The results of the econometric analysis show that ENI’s policy had two effects: first, it facilitated price 

coordination and second, it increased average prices.     

2.3.5 Discussion and Robustness of the Empirical Results 

In oligopolistic markets the way firms interact with their competitors determines their profits.  Our empirical 

analysis shows that the ex-post effect of the leader’s (credible) commitment to sticky pricing was an 

equilibrium with higher prices.  

ENI’s success in the implementation of a collusive scheme depended on the individual incentives for its 

competitors to adhere. The first issue that arises, therefore, is whether it is reasonable to think that the leader 

could expect ex ante that its competitors would adopt its pricing and that this would cause an increase in 

prices.   
                                                
 

75 EU countries differ with respect to Italy, e.g., in the number of gas stations owned by hypermarkets that compete aggressively to attract 
customers to their stores. Using state-level data of U.S. gasoline prices, Zimmerman (2012) shows the positive competitive impact of hypermarket 
retailers. The dif-in-dif analysis as carried out in AVF assumes that “market trends” would be the same in the treatment and control group while 
structural country specific market differences are captured by the fixed effects.   

76 For a plot of average weekly prices in Italy and the EU and the Brent see Figure 2.2. 

77 Both specification (2) and (3) were performed using robust standard errors.  
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Firms’ behavior is a key element of managerial choice. Spagnolo (2005) shows that typical compensation 

schemes for CEOs are designed to incentivize tacit collusion at the cost of “income smoothing”.78 In 

addition, managers are aware of or are at least well-advised of strategic behavior that favours collusion.79 

Since the seminal work by Schelling (1960) it is common knowledge that commitment lies at the heart of 

strategic behavior.80 If competing firms could write enforceable contracts on prices, most industries would 

collude. However, as explicit collusion is illegal and the decision to communicate is endogenous, firms may 

opt for tacit collusion instead. Yet any collusive strategy must be incentive compatible, irrespective of 

whether it is implemented explicitly or tacitly. After its announcement on 6th October 2004, ENI kept prices 

fixed until 3rd December 2004 (57 days), see Figure 2.1. This means that ENI kept sticky prices for almost 10 

times the usual price-change interval (6 days) irrespective of cost changes. Just after ENI’s announcement 

costs increased and its competitors kept cost-based pricing. As costs fell again competitors started to align to 

ENI at the beginning of November, i.e. about a month after ENI’s change in pricing policy. We can only 

speculate about what would have happened if costs had risen after ENI’s announcement. However, it clearly 

emerges both from Figure 2.1 and from the price-interdependence analysis that ENI strongly committed 

itself to sticky pricing. As can be inferred from Table 2.2, specification (3), ENI’s competitors’ behaved in 

their best interest as industry margins increased. ENI emerged endogenously as the price leader through its use 

of market power and then used its position to coordinate the price changes of its competitors, which 

ultimately caused a price increase. While each market has its traits and results from an individual market 

cannot be easily generalized, leadership pricing has been consistently associated with collusion. The empirical 

results of AVF provide large evidence that ENI’s strategy aimed at coordinating and increasing prices at the 

expense of consumers. 

A second concern which arises is where to set the boundaries between a firm’s freedom to set its profit-

maximizing price on the one hand, and antitrust authorities’ power to prevent certain behaviour that results in 

supra-competitive pricing on the other. To address this issue we need to distinguish the “source” of market 

power which made that market outcome possible. In this respect it is helpful to compare our empirical results 

with Borenstein et al. (2002) who analyse inefficiencies in the restructured Californian electricity market. They 

find that wholesale electricity expenditures increased in the summer of 2000 with respect to the summer of 

                                                
 

78 Spagnolo (2005) focuses on the role of observable CEO compensation schemes with regard to tacit collusion. He concludes that “a strong pro-
collusive effect may well outweigh agency costs and transform apparently puzzling compensation practices into profitable ‘governance’ 
instruments.”  

79 One of the standard textbooks used in MBA courses that deal with competitive strategy is “Economics of Strategy” by Besanko et al. (2010). 
Chapters 9 and 10 extensively deal with the issues of “Strategic Commitment” and “The Dynamics of Pricing Rivalry”, respectively, which are key 
elements to sustain collusion. Under the heading “The golden age of micro”, the journal “The Economist” discussed in its issue of 19th October 
2012 why leading academic microeconomists are top advisers at firms such as Microsoft and Amazon. 

80 Maskin and Tirole (1988) build commitment in a dynamic Bertrand model through exogenous costs such as menu costs. They show that sticky 
prices can serve as a commitment device to sustain higher prices than under static Bertrand. Recently, Wang (2009) studied firms’ pricing 
strategies in a gasoline market before and after the introduction of a law which regulated firms’ timing of price changes. As a result, he highlighted 
the importance of short-run price commitment in tacit collusion.   



55 

 
1999 from $2.04 billion to $8.98 billion and that about 59% of this increase was caused by the exercise of 

unilateral market power.  

Both the Italian gasoline market and the Californian electricity market suffered from higher prices. However, 

there is a key difference: in California market power stemmed from exogenous shocks. Electricity prices were 

relatively low compared to a benchmark in 1998 and 1999 but dramatically increased in the summer of 2000. 

While there are many structural factors that make it easy for electricity firms to exercise market power, such 

as binding constraints at peak times or difficulties to forecast demand and high storage costs, firms did not 

actively implement a new strategy to coordinate and increase their prices but rather individually best-responded 

to shocks which favored the exercise of market power. Among many factors Borenstein (2002) identifies that 

2000 was a very dry year which reduced hydroelectric production, economic growth throughout the western 

United States increased demand for energy, and the price of nitrogen oxide pollution permits increased from 

about $1 per pound to over $30 per pound which increased the price of gas.  

In the Californian electricity market regulation should address the structural problems which have been 

revealed by the incidents in the summer of 2000. However, insofar as the firms only best-responded to 

exogenous shocks, their conduct should not be addressed by cartel enforcement. In contrast, our analysis 

reveals the active implementation of a collusive strategy by one firm which resulted in an anticompetitive 

market outcome and thus, should be targeted by antitrust enforcement. 

2.4 Integrating Economic Insights on Collusive Strategies into the Legal Framework   

As any collusion between competitors may result in welfare losses, it is essential to strive to contain collusive 

behavior irrespective of direct evidence of a “meeting of minds” or explicit communication between firms. It 

remains, however, an outstanding question how economics may be integrated with the legal framework and 

how antitrust law should be developed to counter tacit collusion.  

There are several reasons to believe that this challenge deserves more attention than ever. First of all, 

prevalence of tacit collusion may increase in times of globalization. Information on competitors’ actions as 

capacity choices, prices and transactions are widely reported by international media and thus, transparency 

increases. Firms interact on many markets which increases their scope to collude. Secondly, market players 

must not be regarded as naïve, but as professionally advised and capable of employing economic know-how 

strategically to avoid price wars, and to reach collusive equilibria instead. Thirdly, the introduction of leniency 

or other types of immunity programs increased the capability of antitrust authorities to produce direct 

evidence of collusion such as documents or insider testimony, and thus has significantly strengthened the 
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effectiveness of the law to counter collusive behavior that occurs via explicit communication.81 As the 

decision to communicate is endogenous to market players, leniency programs have increased firms’ cost of 

following such a strategy. This is likely to cause or to have already caused a shift from explicit to tacit 

collusion.   

These are grounds to expect that social welfare damage caused by tacit collusion will increase. Legal 

instruments that are supposed to work preventively against collusion such as merger control or (quasi-

)regulatory mechanisms which address the unwanted effects of collusion will hardly suffice to counter tacit 

collusion effectively. It appears to be crucial, therefore, that antitrust law finds a way to target those elements 

of behavior that are employed by firms to implement a collusive strategy and whose collusive character may 

be demonstrated by the kind of analysis as suggested in this article. Inasmuch as it appears inadequate to 

regard such behavior as an illegal coordination, this calls for a development of the law against unilateral 

anticompetitive conduct.  

2.4.1 “Unilateral Collusion” and Unlawful Coordination  

Price leadership may serve as a mechanism to find a consensus about the collusive price, a challenge any 

cartel faces. However, since leader-follower behavior may equally be the result of oligopolistic competition, 

its mere observation must not suffice to infer a collusive agreement. This raises the question of whether 

under circumstances such as those in the present case, i.e. where it may be demonstrated that leader-follower 

behavior sustained a collusive equilibrium, such conduct should be considered illegal. In other words, should 

the kind of evidence presented herein be regarded a “super plus factor”82 that allows courts to infer an illegal 

(tacit) agreement?   

If certain conduct of two or more firms is conceptualized as an unlawful coordination, i.e. a violation of, for 

example, Section 1 Sherman Act or Article 101(1) TFEU, this implies that the law regards the behavior of 

these firms as a wrongdoing which may be punished. In other words, where a certain collusive equilibrium 

has been brought about by the unilateral collusive conduct of one firm, one should only infer a punishable 

agreement if one also considered the competitors’ reactions as inappropriate behavior. Turning again to the 

general regulatory and legal requirements we formulated above with regard to antitrust enforcement,83 we may 

recall that antitrust standards and remedies should address specific elements of behavior and that market 

operators should be provided with an idea of which conduct may be regarded as acceptable or not acceptable 

under defined market conditions. Such standards of conduct must be in line with the general purpose of 

                                                
 

81 For a theoretical discussion of leniency see Motta and Polo (2003) and Harrington (2008a). Empirical evidence on the effects of leniency is 
provided by Miller (2009).   

82 Kovacic et al. (2011), p. 435, offer a list of “super plus factors” which includes inter alia “[a] reliable predictive econometric model that accounts 
for all material noncollusive effects on price, estimated using benchmark data where conduct was presumed noncollusive, produces predictions of 
prices that do not explain the path of actual prices in the period or region of potential collusion, at a specified high confidence level.”  

83 See supra section 2. 
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antitrust law to foster effective competition. Thus, if tacit price alignment in response to unilateral collusive 

conduct ought to be prohibited, the law has to define how firms should behave once a competitor’s conduct 

may be interpreted as a (tacit) invitation to engage in (tacit) collusion. When ENI held prices constant despite 

of cost increases and thereby signaled its commitment to a policy of sticky pricing, this might be viewed as a 

“suggestion” to its competitors to align their pricing policy and as an “offer” to take on the role as price 

leader. Should ENI’s competitors have been legally obliged to refrain from any market conduct that 

ultimately could have been regarded as having brought about a collusive equilibrium and thus proof of an 

underlying illegal agreement?   

It seems not feasible to define any meaningful and administrable legal standard of conduct in this respect. 

Should it have been forbidden for ENI’s competitors to tacitly align their prices to ENI’s policy of sticky 

pricing? Should they have been obliged to stick to their higher prices and with open eyes to put up with 

losing market share? And even if an alignment of pricing to the strategy of a price leader such as ENI was 

prohibited, the question would remain how closely and how quickly a competitor would be allowed to adjust its 

market parameters. In the absence of any clear standard of behavior, a legal intervention in situations of 

(supposedly) collusive pricing may ultimately amount to judicial price regulation. In addition, under such a 

legal regime a market player could strategically restrict the competitive room for manœuvre of its 

competitors: if it was prohibited for ENI’s competitors to align its pricing to ENI’s strategy because such an 

alignment would be regarded an illegal coordination, ENI could have restricted the price-setting freedom of 

its competitors by implementing its strategy of sticky pricing.  

These considerations point to the heart of the regulatory problem with regard to “unilateral collusion.” The 

reaction of ENI’s competitors to ENI’s pricing policy must be regarded as mere best response. Their 

behavior is an expression of mere oligopolistic interdependence, even though they benefitted from the higher 

price level in the market. Consequently, a passive adaptation to collusive market conduct should not be 

considered illegal but part of functioning oligopolistic competition. Thus, collusive leader-follower behavior 

must not be conceptualized as a form of unlawful coordination, and thus illegal according to Section 1 Sherman 

Act or Article 101(1) TFEU. Antitrust law should instead target unilateral collusive behavior that facilitates 

“best response” which leads ultimately to collusion.    

This appraisal of collusive leader-follower behavior appears to be in line with the treatment of non-conspiring 

firms that adjust their prices in reaction to a price increase by cartelizing competitors. Such a constellation is 

generally referred to as “umbrella pricing” since the nonparticipant benefits from the “price umbrella” spread 

by its cartelizing rivals.84 This metaphor somewhat obscures the interdependence between the optimal cartel 

price and the behavior of the firms outside the circle of cartel participants. Nevertheless, even if the conduct 

                                                
 

84 Areeda and Hovenkamp (2007), §347, p. 198. 
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of a non-cartelist is in fact in accordance with the collusive strategy of the cartel, “umbrella pricing” is 

generally regarded as being innocent per se, and the legal discussion circles only around the question of 

whether customers of nonparticipants may recover damages from the cartelists.85 Thus, notwithstanding that 

“umbrella pricing” contributes to sustain collusive equilibria, antitrust law does not require market operators 

to abstain from a best-response strategy in reaction to their competitors’ pricing. The law refrains from 

imposing on non-cartelists a duty to keep prices constant (or at least at a lower level than the cartel price) 

which would effectively amount to a duty to increase output to offset the cutback of conspiring competitors.  

If we accept therefore that there are valid economic and regulatory reasons why collusive leader-follower 

behavior such as the pricing alignment by ENI’s competitors should not be considered as participation in an 

illegal coordination, it seems consequent that the law should instead target ENI’s decision to implement a 

collusive strategy.     

2.4.2 Developing the Legal Framework: Targeting Unilateral Conduct with Collusive Impetus   

Unilateral conduct that has as its object or effect to promote (tacit) collusion ought to be prevented. Based on 

findings of the collusive potential of sticky pricing we have proved empirically that ENI employed such a 

pricing policy successfully to bring about a collusive equilibrium in the Italian gasoline market. But is there a 

feasible way of legal intervention? Should we ban a firm from implementing a policy of sticky pricing because 

it may facilitate collusion and punish the firm in case of an infringement?  

There would be nothing inherently new in prohibiting a certain pricing behavior. Market dominant firms are 

not allowed to engage in predatory pricing. And just as it has to be defined with regard to a specific industry 

whether a certain pricing policy has to be considered “predatory,” courts would also have to define “sticky 

pricing” industry-specifically as infrequent price changes in response to changes of input costs or demand 

patterns. Thus, we propose to adopt a doctrine according to which inter alia the implementation of sticky 

pricing along with large price changes would be prohibited under market conditions where it may be expected 

that price leadership will emerge as a price coordinating mechanism and thus, such a pricing strategy will 

bring about collusion. This is particularly relevant for oligopolies with price and cost transparency where 

structural market features favor collusion and at the same time communication might be less needed.  

These requirements would have been fulfilled in ENI’s case. The Italian gasoline market86 was characterized 

by features that indicate its conduciveness to tacit collusion, such as its concentrated oligopolistic market 

structure, a high price transparency and entry barriers etc. More specifically, due to its market share of about 

35 percent and the asymmetric distribution of market shares in the Italian petrol industry, ENI clearly held 

                                                
 

85 Several courts have recognized such claims for “umbrella damages,” see, for example, Loeb Indus., Inc. v. Sumitomo Corp., 306 F.3d 469 (7th Cir. 
2002); In re Beef Indus. Antitrust Litig., 600 F.2d 1148 (5th Cir. 1979).  

86 See supra section 3.1 and 3.2. 
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the position as market leader. Thus, its commitment to a strategy of sticky pricing resulted in a credible signal 

to its competitors and entailed a strong potential to encourage them to align their pricing in order to bring 

about a collusive equilibrium.   

In suggesting that a certain market practice should be prohibited depending on its potential to restrict 

competition under particular market conditions we propose nothing revolutionary. An exchange of information 

between competitors, for example, does not necessarily restrict competition and may even be regarded as 

procompetitive. However, under particular market conditions it may seriously endanger the competitive 

process as it allows firms to coordinate their behavior and thus, may be considered an illegal facilitative 

practice.87 A corresponding regulatory response should be conceivable in cases of unilateral practices which 

entail an equal potential to facilitate collusion. Turning to antitrust provisions which address firms’ unilateral 

behavior, we need to recognize, however, that the law appears to be fragmented – to say the least – when it 

comes to conduct whose object or effect it is to promote collusion. Neither Section 1 Sherman Act nor 

Article 101 TFEU embodies an offense of attempted coordination. Section 2 Sherman Act and Article 102 

TFEU, the essential provisions on unilateral conduct, apply generally88 only to firms with monopoly power or 

to firms that dominate a market, respectively, and thus based on criteria which typically exclude single 

oligopolists.  

In line with the approach suggested in this article, the Federal Trade Commission (FTC) strove already to 

tackle unilaterally adopted (supposedly) facilitating practices under Section 5 FTC Act.89 This ambition 

received a decisive blow from the decision of the Court of Appeals for the Second Circuit in the Du Pont 

(Ethyl) case.90 In Ethyl the FTC blamed four producers of gasoline antiknock compounds of having 

unilaterally adopted practices that were aimed at facilitating parallel pricing at a supra-competitive level. These 

practices included 30-day advance announcements of price changes, “most favored nations” clauses in sales 

contracts, and uniform delivered prices.91 The Court, however, held that the evidence presented by the FTC 

did not sufficiently support the view that these practices did indeed have an anticompetitive purpose or 

                                                
 

87 See, for example, ECJ, 23.11.2006, Case C-238/05 Asnef-Equifax, [2006] ECR I-11125, para. 54: “[…] the compatibility of an information 
exchange system […] with the [EU] competition rules cannot be assessed in the abstract. It depends on the economic conditions on the relevant 
markets […] as well as the type of information exchanged […] and its importance for the fixing of prices, volumes or conditions of service.” 

88 Unilateral use of facilitative practices to sustain collusion by a firm that is not individually market dominant could be regarded as an abuse of 
collective dominance under Article 102 TFEU. But there is no established doctrine to that effect. Under Section 2 Sherman Act it is the 
prohibition of any “attempt to monopolize” which broadens the scope and which may allow catching unilateral conduct of firms that individually 
do not hold a monopoly position. Thus, in United States v. American Airlines, Inc., 743 F.2d 1114 (5th Cir. 1984), an explicit invitation to collude was 
considered an infringement of Section 2 Sherman Act as the court considered the aggregate market share of offeror and offeree. Besides, explicit 
attempts to initiate collusion have been charged as violation of the wire fraud or mail fraud statutes, see, e.g., United States v. Ames Sintering Co., 927 
F.2d 232 (6th Cir. 1990).  

89 The U.S. Supreme Court had recognized that this provision may comprise anticompetitive conduct beyond the Sherman Act, see, e.g., FTC v. 
Indiana Federation of Dentists, 476 U.S. 447, 454 (1986); FTC v. Sperry & Hutchinson, 405 U.S. 233, 244 (1972); FTC v. Brown Shoe Co., 384 U.S. 316, 
320-321 (1966). 

90 E.I. Du Pont De Nemours & Co. v. FTC (Ethyl), 729 F.2d 128 (2d Cir. 1984). 

91 Id. at 133. 
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effect.92 Econometric evidence as suggested in this article could fill such gaps by relating a specific practice 

with a certain market outcome. With adequate firm level data and a benchmark an antitrust authority or a 

court may test whether or not (supposedly) facilitative practices contributed to a supra-competitive price 

level.  

This shows on the one hand that advanced economic methods may support an effective use of available legal 

instruments to counter unilateral behavior which has as its object or effect to promote collusion. On the 

other hand, the analysis reveals a significant gap in the arsenal of antitrust enforcement when it comes to 

targeting unilateral conduct that serves a collusive strategy. Thus, under the current legal framework the 

potential of advanced economics to identify the collusive character of specific elements of behavior may not 

be fully realized. It seems therefore essential to strengthen legal instruments that frustrate unilateral conduct 

through which firms strive to promote or sustain collusion. 

2.5 Conclusion 

Collusion in oligopolistic markets has been a perennial topic both for economics and antitrust law. Antitrust 

law rests on economic welfare analysis which shows that collusion inflicts substantial negative welfare effects. 

However, antitrust authorities and private plaintiffs are substantially restricted in their fight against collusion 

as they much depend on evidence of explicit communication between competitors. The mild reaction of the 

Italian antitrust authority to the incidents on the Italian gasoline market illustrates the limits of antitrust 

enforcement in the absence of such evidence.   

The crucial role attributed to explicit communication in the practice of antitrust enforcement hinders the 

detection and punishment of cartels precisely in those industries where the collusion rate is expected to be 

relatively high and communication appears to be less needed. Theoretical and empirical findings on cartel 

behavior provide a basis to derive clear test hypotheses to distinguish (lawful) oligopolistic interdependence 

from (tacit) collusion. On that basis, econometric evidence may step in and reveal collusive strategies behind 

firms’ actions. Thus, it entails the potential to decisively increase the effectiveness of cartel enforcement in 

oligopolistic markets.  

Analyzing the incidents on the Italian gasoline market where the market leader announced it was changing its 

pricing strategy reveals how firms might use their market power to facilitate price alignment and coordinate 

price changes. To be more specific, the econometric analysis by Andreoli-Versbach and Franck (2013b) 

reveals just how the leader’s sticky pricing policy coordinated prices, and its effect on the price levels with 

respect to a benchmark. After the new policy was implemented, all competitors adjusted their prices 

following the leader’s price changes. In addition the new pricing behavior resulted in a significant price 

                                                
 

92 Id. at 139-140. 
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increase. Combined, this price coordination mechanism and its effect show that it was the object and effect 

of the introduced pricing policy to collude through facilitating price coordination and to raise prices. 

Whilst antitrust enforcement may certainly benefit from an enhanced economic methodology to identify tacit 

collusion, antitrust law cannot straightforwardly prohibit the participation in tacit collusion as a form of illegal 

coordination. The active promotion of collusive pricing by ENI and the passive (best response) alignment of 

its competitors must not be normatively equated. Thus, antitrust law should not infer a punishable (tacit) 

agreement between ENI and its competitors from the collusive market outcome, but should instead consider 

conduct such as ENI’s pricing strategy as being a unilateral anti-competitive practice. To effectively fight tacit 

collusion it appears therefore to be necessary to strengthen legal instruments that target unilateral conduct 

which firms strategically employ to promote or sustain collusion.   



62 

 

2.6 Appendix: Tables and Figures 

 

Table 2.1: Pre and post policy pricing   

Panel A: Frequency 
and Magnitude of 
Price Changes 

(1) (2) (3) (4) (5) (5) 

Time period Pre Post 

 

Pre Post 
 

 
Mean Mean Difference Mean Mean Difference 

 
(St. Dev.) (St. Dev.) t-stat (St. Dev.) (St. Dev.) t-stat 

 [Obs.] [Obs.] [Obs.] [Obs.] [Obs.] [Obs.] 

   Abs. % Price Change   Days between price changes  

All Firms 0.0088 0.0293 0.0205*** 5.3 9.47 4.16*** 

 
(0.0065) (0.0319) 19.27 (5.43) (7.67) 8.81 

 [1143] [172] [1315] [1143] [172] [1315] 

ENI 0.0103 0.0586 0.0483*** 6.63 16.4 9.76*** 

 
(0.0071) (0.0377) 11.45 (7.81) (10.95) 3.64 

 [104] [10] [114] [104] [10] [114] 

Panel B: Average 
Alignment to the 
Market Leader 

(1) (2) (3) (4) (5) (5) 

 Sum of aligned firms Price difference to ENI 

ENI’s Competitors 1.74 2.98 -1.24*** .00527 .00115 .00439*** 

 (2.07) (2.06) -7.23 (.00656) (.01986) 12.94 

 [681] [185] [866] [5448] [1480] [6928] 

Table 2.1 summarizes the pre and post policy pricing behaviour of the nine firms acting in the Italian wholesale 
gasoline market. Panel A shows the frequency and magnitude of price changes. ENI increased the mean price 
change from 1% to 5.8%, while the average price change increased from .8% to 2.9%. Similarly, ENI increased the 
average time lag between price changes from one every six days to one every 16 days. The same time lag increase 
holds across firms, where the time lag between changes increased from five to nine days. Panel B shows the sum of 
aligned firms to ENI (specification 1 and 2) and the average price difference to the leader (specification 4 and 5). 
The number of aligned competitors significantly increased after the policy, while the average price difference to the 
leader significantly decreased after the policy. All changes in the pricing behaviour are significant at the 1% level. 
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Table 2.2: Effect of the policy on prices    

 (1) (2) (3) 

Dependent 
Variable 

Price EU Country j at 
week t 

Price Difference Italy-
Synthetic Control week t 

Margin firm i  

day t 

Type of Data Panel Data  Time Series Panel Data 

Regression 
Model 

Dif-in-Dif OLS 
Firm Fixed  

Effect 

Policy*Itlay 9.863***   

 (2.117)   

Policy  12.551*** 22.95*** 

  (4.224) (2.036) 

Controls 
Crude oil (4 Lags), 

Year and Month FE  
Crude oil (4 Lags), Time 

trend 
Time trend 

Observations 891 94 7,794 

R-squared 0.66 .486 0.115 

Table 2.2 reports the coefficients on the full specification regression models which capture the effect of the 
new pricing policy. For the details of the regression analysis we refer to Andreoli-Versbach and Franck 
(2013). Policy*Italy is the intersection between two dummies (Italian price after the policy), while Policy is a 
dummy being one after the 12th of November 2004 when most competitors adopted ENI’s pricing 
behaviour. FE stands for fixed effects. Prices and margins are expressed in € per 1000 liters. In specification 
(1) standard errors are clustered at country level, while in specification (2) and (3) robust standard errors are 
reported. In all specifications prices/margins significantly increased after the competitors adopted the same 
pricing behaviour as the market leader.   
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Figure 2.1 shows the daily “suggested” firm-level prices in the Italian gasoline market from January 2003 to 15th May 2005. These prices represent a very good approximation of 
final retail prices paid by consumers, see section 3.2. The dashed line represents the Platts Cif Med, the major source of cost for firms. The first vertical line denotes 6th October 
2004, the date where ENI, the market leader, announced that it would adopt a new pricing policy consisting of sticky prices (i.e. infrequent price changes). The time span 
between the first two vertical lines constitutes the “commitment” time period. As prices respond to costs with about a month time lag costs were increasing just after the 
announcement by ENI contrary to what might seem from Figure 2.1. Competitors kept increasing their prices following short-run cost changes until the beginning of 
November when costs decreased and they started to align and follow the leader’s price. The second vertical line is placed on the 12th of November, the date when most 
competitors aligned to the leader. Note that we will take this date as the starting date of the new equilibrium in the empirical analysis. The third vertical line shows the date 
when the Italian Truckers’ Association (FITA) formally complained about “high and aligned prices” to the Italian antitrust authority.    

Policy 

Change 

 Figure 2.1: Cartel Formation 
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Figure 2.2 shows the average weekly Italian and EU price of gasoline and the European price of the Brent, i.e. crude oil. The continuous line represents the 
Italian price, while the dashed (dashed-dotted) line represents the EU price (Brent). The first vertical line denotes the date where the market leader announced 
that it would adopt a new pricing policy consisting of sticky pricing (i.e. infrequent price changes). The second vertical line shows the date when the Italian 
Truckers’ Association (FITA) formally complained about “high and aligned prices” to the Italian Antitrust Authority on 25th March 2005.     

 

 Figure 2.2: Italian Price, EU Price and Brent 



66 

 

Chapter 3: The Informational Content of Price 
Changes: Evidence from Professional Tennis Betting 
 

3.1 Introduction 

In cases of insider trading market participants use their non-public information to earn extra-profits. The high 

profile illegal insider trading93 cases in recent years indicate that the gains of trading with privileged 

information can be substantial and that regulatory authorities worldwide continue to expend large resources 

trying to address this problem. A central issue for regulators and market participants is whether price changes 

convey private information. However, this question is difficult to answer because the extent of private 

information is not directly observable. In addition financial markets are continuously hit by the arrival of new 

information and to decode insider-trading related information is problematic because of its hidden nature. 

Most scholars94 agree that insider trading is detrimental for financial markets. Guiso et al. (2008) show that 

the lack of trust negatively affects participation in stock markets.  Du and Wei (2004) show that insider 

trading raises stocks’ volatility. Bhattacharya and Daouk (2002) use data on the existence and the enforcement 

of insider trading laws in 103 countries and show that the enforcement, rather than mere existence, of insider 

trading laws is associated with a reduction in the cost of equity. Finally, Easley et al. (2002) and Kelly and 

Ljunqvist (2012) show that investors require a higher return when trading in stocks that have a higher risk of 

asymmetric information.95 

In this paper we provide a new framework for thinking about whether price changes reflect private 

information and whether they convey viable information about future returns. In the empirical analysis we 

use three different specifications to test whether price changes, especially those most likely conveying private 

information, have a predictive power on future returns. We use a large and unique dataset of odds on every 

tennis game of the main tennis world tour composed by Association of Tennis Players (ATP) and Grand 

Slam events from 2008 to 2012, where professional tennis players repeatedly compete in about 63 

tournaments in 30 countries each year.96 The dataset consists of decimal odds of two large bookmakers, 

Pinnacle Sports and Marathonbet, and incorporates more than 16,000 individual games. The key feature of 

this data is that it contains observations on players’ odds at two different time periods: the first odds released 

before the game and the last odds observed just before the beginning of the game. The odds show how many 

                                                
 

93 Recent cases include the $156 million paid by Galleon Group LLC after conviction or the $615 million paid by SAC Capital Advisors to settle 
their case with the SEC. Note that trading on privileged information is not always illegal. U.S. Senators were allowed to trade on the regulatory 
decisions they take and made substantial gains (Ziobrovski et al. 2004).  

94 This view is not unanimous. For example, Leland (1992) argues that insider trading might be beneficial for markets as stocks incorporate 
information more quickly. 

95 See Easley and O’Hara (2004) for a theoretical justification for this link.  

96 These numbers might slightly vary from year to year. For details on the ATP tennis world tour see http://www.atpworldtour.com/.    
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units the bookmaker pays out per unit staked on an event, in case that event happens. On average the first 

odds are released 24 hours before the game, when the two players that won their previous round are matched 

according to the tournament brackets. In principle, odds change infrequently. Little information is revealed 

since odds are formed after both players have finished their previous games and move on in the tournament. 

However, odds can still move due to incoming orders, which might convey private information. When 

privately-informed investors trade, their order flow will convey non-public information to the rest of the 

market and thus, market participants revise their estimates of the probability that a player wins.97  

The aim of this paper is to disentangle the odds variation caused by insider trading from other sources using 

an exogenous variation in the incentives to cheat. Cheating by a player is defined as losing a game on purpose 

and selling this information to bettors. In the report commissioned by the tennis authorities on the integrity 

in tennis Gunn and Rees (2008, par. 5.2) conclude that “[t]here are strong indications that some players are 

vulnerable to corrupt approaches and others outside of tennis are using them to make corrupt games on 

betting from professional tennis,” an issue which is not confined to tennis.98  

The hidden nature of insider trading and cheating has made its identification difficult. With the exception of 

Meulbroek (1992) who studies the impact on stock prices of ex-post detected illegal insider trading most of 

the data used to analyze the forecasting ability of company insiders is based on self-reported trading filed with 

government regulators.99 A potential problem with this data is that corporate insiders might trade from 

numerous accounts, e.g. accounts of children (Berkman et al. 2013) or sell inside information to their social 

networks, e.g. class mates working at hedge funds (Cohen et al. 2008 and 2010). In addition company insiders 

have an unknown time horizon for their investment which makes it difficult to calculate the cumulative 

abnormal returns.          

Betting markets provide a series of advantages to study insider trading: first, a very large number of 

observations is available. Second, each game has a clear beginning and end which provides an objective time 

interval to calculate odds changes and returns. Third, players compete repeatedly in different competitions 

facing exogenous changes in their incentives to cheat. Fourth, the rules, the odds and the outcomes of games 

are observable and clear. Fifth, betting is a global and highly competitive business where both betting 

platforms and bookmakers compete to attract bets and bettors can place bets worldwide through the internet 

at very low transaction costs. Gunn and Rees (2008, par. 3.117) estimate a total of about 562 on-line betting 

resources in 2008. Finally, the sport betting market is large and constantly increasing. The Remote Gambling 

Association Report (2010, p.9) estimates that the global (legal) amount bet in 2008 in sports events was equal 

                                                
 

97 Adverse selection in securities markets was formalized by Glosten and Milgrom (1985). 

98 An investigation by Europol into match-fixing in soccer revealed widespread occurrences of match-fixing in recent years, with 680 games 
globally deemed suspicious. Europol’s chief, Rob Wainwright, stated that “match-fixing activity [is] on a scale we have not seen before”.    

99 See for example Lakonishok and Lee (2001), Jeng et al. (2003), Marin and Olivier(2008) and Fidrmuc et al. (2006). 
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to $46.5 billion. While there are no official figures on the total tennis betting market, in 2007 a total of $566 

million was placed on men’s Wimbledon tournament only on the largest internet based betting platform, 

Betfair.100   

In this paper we analyze the informational content of odds changes before professional tennis games and test 

whether odds changes, i.e. changes in the implied probability101 of winning the game, have a significant 

forecasting ability on a game’s outcome. To test whether odds changes are a significant predictor of future 

returns on bets we develop three identification strategies derived from the efficient market hypothesis (EMH) 

popularized by Fama (1970) and the rational crime theory formalized by Becker (1968). 

In any financial market future asset returns should be difficult (or even impossible) to forecast using public 

information. As bookmakers start quoting an event 24 hours before that game one can exploit the variation 

in a player’s implied winning probability, i.e. the difference between his implied winning probabilities 

calculated using the last and first odds, to test whether changes in that probability have a predictive power on 

a player’s ex-post result. The null hypothesis testing the weak-form EMH is that controlling for a player’s last 

winning probability before a game, past probability changes should not significantly increase the accuracy of 

the prediction. Just before the start of the game odds should equal the best possible estimate of the winning 

probability incorporating all available information. An increase (decrease) of the probability before the game 

should not translate into a significant increase (decrease) in the likelihood of winning controlling for the last 

probability. Even though this approach is directly derived from for the EMH, rejecting the null of no 

informational content of past probability changes does not provide an indication of the underlying cause of this 

market inefficiency. A player’s winning probability might change for a variety of reasons which are 

unobserved to the econometrician. Markets might fail to fully incorporate public and/or private information. 

The main specification aims at taking apart these two confounding effects using an instrumental variable 

approach which uses an exogenous shift in the incentives of a player to lose on purpose.102 Odds changes 

represent changes in the market’s expectation of the result of a tennis game. These observed changes can be 

thought of as the sum of three components: insider trading, public news and noise. We model odds changes 

as a mismeasured variable of the true insider-trading related changes in odds. Assuming that, first, news and 

noise are uncorrelated and add together to the random “non-insider-trading” component of odds changes, 

that is uncorrelated with the true insider-trading component and second, the “non-insider-trading” 

component is uncorrelated with the stochastic disturbance in the regression specification, then, we are dealing 

                                                
 

100 See the Tennis Integrity Report (2008, p. 64). 

101 Note that the implied probability of winning is defined as the multiplicative inverse of a player’s odds, i.e. �����
�	�1P�P������ = 1/���� . 
For the theoretical foundations of why prediction market prices correspond with mean beliefs and are quite accurate predictors of an event’s 
probabilities see Wolfers and Zitewitz (2006). 

102 This approach goes in the direction of recent attempts to analyse insider trading such as Cohen et al. (2012). They exploit the fact that insiders 
might trade for a variety of reasons, e.g. to yield extra-profits from their advantaged position or simply diversify or hedge risk, and find that 
“opportunistic” trading yields value-weighted abnormal returns of 82 basis points per month. 
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with a “classical” measurement error problem.103 The coefficient of the regression of betting returns on odds 

changes will be smaller than the true coefficient, i.e. it will suffer from attenuation bias.104 The most common 

solution to mismeasurement is the use of instrumental variables.105 Our research design exploits an exogenous 

shift in the incentives to cheat caused by random tournament draws and a player’s time-invariant corruption 

norms to decompose the “insider-trading” related variation of odds changes from the “non-insider-trading” 

component.   

At least since Becker (1968) seminal economic analysis of criminal behavior it is well known that incentives 

are an important determinant of criminal activity.106 In tournament draws, conditional on a player’s seed, 

players are randomly matched with opponents.107 The weaker a player’s opponent is the higher the odds, and 

thus the returns on cheating, on the opponent. While monetary and ATP-ranking incentives are constant 

within a round of a tournament, the incentives to cheat might vary substantially depending on the relative 

strength of the randomly matched opponent. Players might (rationally) decide to cheat, i.e. lose on purpose 

and sell this information. Losing a game is uncomplicated and just requires the will of one player.108 Assuming 

����
1? cheats, insiders with privileged information will start buying bets on the opponent of ����
1?. As 

bookmakers act as market makers and tend to keep balanced books by making money on the transaction 

costs rather than by taking a position in the game, odds adjust. Bookmakers attract money on a player by 

making bets on that player (his opponent) more (less) favorable. As a consequence the odds (implied 

probability) on the cheating player will increase (decrease). Conversely, the odds (implied probability) on the 

cheater’s opponent will decrease (increase). However, players’ incentives to cheat do not just change 

according to the random draws of a tournament, but also across tournaments. In the empirical analysis we 

will run the regression for two different types of tournaments with high and low stakes. Because of the sharp 

increase in both ATP-ranking points and prize money between the two lowest, i.e. ATP 250 and ATP 500, 

and the two highest, i.e. Master Series and Grand Slam, types of tournaments, players face higher incentives 

to compete in the latter tournament type but similar returns from cheating, i.e. odds on the opponent, in both 

types of tournament.109   

                                                
 

103 As estimations with fixed effects typically increase the variance of the noise relative to the variance of the signal, the mismeasurement problem 
might be even larger in panel data as is the case of this paper where the observational units are players who repeatedly compete at different 
tournaments over time. See Griliches and Hausman (1986) for a discussion on this issue. 

104 This result is also known as the “Iron law of econometrics”, see Hausman (2001) for a general discussion on mismeasurement error and its 
consequences.  

105 See Angrist and Pischke (2008) and Angrist and Krueger (2001) for a general discussion of IV. 

106 See for example the work by Olken (2007) and Björkman and Svensson (2009) on the effects of monitoring on corruption. 

107 See section 2 for a more detail account of how the tournament draws work. 

108 This might be a reason why tennis has experienced fewer betting related scandals than soccer or cricket where more players are involved. 

109 A different strategy might be to use rounds within a tournament. As all tournaments in the data are single-elimination tournaments a player 
must win initial rounds to compete for high stakes in final rounds and thus all rounds are necessary to advance. 
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While incentives to cheat vary over time, there might be also some strong, persistent, personal preferences 

towards cheating. As shown by Fisman and Miguel (2007) the behavior of individuals that face the same 

incentives might differ substantially with respect to cultural norms.110 Thus, we use a player’s Corruption 

Perception Index (CPI) as a proxy for his time-invariant111 likelihood to cheat. In the IV approach we 

instrument odds changes with the interaction between a player’s time-invariant CPI and his opponent’s initial 

odds. Thus, we exploit the variation with respect to preferences and chances to cheat to uncover the insider-

trading related variation in odds changes and relate it to future returns on bets.  

In the final specification odds changes will be split in two parts: an insider-trading and a non-insider-trading 

related one. In a similar spirit as in the IV case we begin by running a regression of odds changes on the 

instrument (excluding the other covariates). Instead of keeping only the insider-trading related variation of 

odds changes we also keep the other part, i.e. the fitted values of the residual. If this part is simply noise we 

would expect it not to be informative. In contrast if it represents not fully incorporated news it might have 

some predictive power if betting markets don’t fully incorporate public news.112 In the final step we regress 

returns on bets on the fitted values of the first stage, the error term of the first stage and other covariates. In 

all three specifications we find significant evidence of insider trading. Probability and odds changes are a 

significant predictor of a game’s outcome and returns, respectively. The effects are larger for low stake 

tournaments where the incentives to compete are lower. We also find that non-insider-trading variation has 

significant predictive power over future returns, but the insider-trading effect is about five times larger. 

To better understand how cheating might affect odds changes we report the key facts of the most famous 

case of “highly suspicious” betting patterns which took place in the second-round match at the ATP-250 

Prokom Open 2007 in Sopot, Poland, between the number four-ranked Russian Nikolay Davydenko and 

number 87-ranked Martin Vassallo Arguello of Argentina. The match was scheduled on the 2nd of August 

14:00 CET. The first quotes by Pinnacle (Marathon) came out on the 1st of August at 9:42am (8:00am) and in 

line with the rank difference between these players quotes saw Davydenko as the strong favorite. Pinnacle’s 

odds on Davydenko (Vassallo Arguello) were 1.206 (5.45), while Marathon’s odds on Davydenko (Vassallo 

Arguello ) were 1.10 (6). These odds significantly changed over time and just before the match Pinnacle’s 

odds on Davydenko (Vassallo Arguello ) were 1.350 (3.66), while Marathon’s odds  on Davydenko (Vassallo 

Arguello ) were 1.90 (1.8). This large change implies a large change between the returns113 on bets over time. 

                                                
 

110 Fisman and Miguel (2007) show that diplomats working at the UN from high-corruption countries accumulated significantly more unpaid 
parking violations even though they face the same incentives as low-corruption country diplomats. 

111 Cultural norms seem to be highly persistent over time. Using data on anti-Semitism in Germany Voigtländer and Voth (2012) show that 
cultural traits persisted for over 600 years. 

112 Gandar et al. (1998) test whether odds changes were related to fundamentals or were pure noise before NBA games. The authors show that 
odds changes significantly improve the accuracy of forecasts of actual game outcomes. We bring this analysis one step further by including the 
possibility that odds changes are caused by private rather than public information. 

113 Returns on the winning player are calculated as odds-1. Returns on the losing player are -1. 
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A winning bet using the first odds on the underdog, Vassallo Arguello, would have yielded 500% profit with 

Marathon’s odds and 445% with Pinnacle’s odds. Performing the same calculation using the last odds, the 

profit would have been much lower, i.e. 266% and 80%. Similarly, as the implied probability of winning is the 

multiplicative inverse of a player’s odds, Vassallo Arguello’s winning probability increased from 18% 

(=1/5.45) to 27% (=1/3.66) using Pinnacls’s odds while Davydenko’s winning probability decreased from 

90% (=1/1.206) to 74% (=1/1.35).114 The effect is even larger using Marathon’s odds, whereby Vassallo 

Arguello’s winning probability increased from 16% (=1/6) to 52% (=1/1.9) while Davydenko’s winning 

probability decreased from 90% =(1/1.1) to 55% (=1/1.8). When the match started Davydenko won the first 

set and then retired because of an injury115 in the third set. More than $7millions were placed on this match 

only on the largest internet-based trading exchange, Betfair, 10 times the usual amount for a similar-level 

match.116 In a subsequent confidential report commissioned by the ATP it emerged that three Russia-based 

Betfair accounts risked a total of more than $1.1 million on Vassallo Arguello to win the match despite his 

low winning chances.117 Eventually the ATP cleared Davydenko for match fixing as investigators were unable 

to review phone records and no direct connection between Davydenko and the betting accounts could be 

established. This case received massive media attention and brought the ATP to found an internal agency, the 

Tennis Integrity Unit (TIU), to watch over match fixing and other betting related threats to tennis. While the 

extent of odds changes in this case is abnormal, the intuition behind it can be generalized. A player coming 

from a high-corruption level country facing high odds on his opponent in a low stake tournament might 

decide to lose on purpose and sell this information. Informed bettors then start buying bets on that player’s 

opponent and the odds on the opponent decrease.  

The reminder of the paper is structured as follows: section 2 describes the data and the setting. Section 3 

presents the empirical analysis on the informational content of odds changes. In section 4 we discuss the 

results while section 5 concludes. 

3.2 Data and Setting 

3.2.1 Institutional Background 

The setting used to examine the extent to which odds changes reflect private information is the professional 

tennis betting market. Sport betting markets are also known as “prediction markets,” “information markets,” 

                                                
 

114 Because of bookmakers’ overround, i.e. spread, probabilities sum to a number greater than 1. If bookmakers keep balanced books the 
difference between the sum of implied probabilities and 1 is a bookmaker per bet margin.  

115 Davydenko’s injury turned out to be short-lasting as on the 8th of August 2007, 5 days after he retired, he played at the Rogers Masters in 
Montreal, where he reached the quarter finals. 

116 Betfair, the online betting company, took the unprecedented step of voiding all bets on the match. See http://www.thetennisspace.com/the-
inside-story-of-the-davydenko-controversy/ 

117 See http://sports.espn.go.com/sports/tennis/news/story?id=3235411 
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or “event futures”.118 These markets allow participants to trade contracts whose payoffs are tied to a future 

event, as for example the victory of a player. The odds on a player are equal to the per unit bet return on a 

player in case of victory. Because of the probabilistic nature of a game’s outcome odds also represent the 

market-aggregated forecasts of a game. This market structure offers an ideal environment to test price 

formation theories. There is a large amount of data available, for each game there is an objective start and 

end, results are observable, the distribution of prizes is known in advance and initial tournament draws are 

random. In the main tour, professional tennis players compete in about 63 tournaments in 30 countries for 

prize money and for ATP-ranking points. The data contains all games from the main tennis tour from 2008 

to 2012 which include Grand Slams, ATP World Tour Masters 1000, ATP World Tour 500 series and ATP 

World Tour 250 series (listed in decreasing order of importance). The total prize money of each type of 

tournament varies greatly. In 2012, Grand Slams such as Wimbledon (US Open) had total prize money of 

$10.5 million ($11.7 million). ATP 250 tournaments have much lower prize money, typically ranging from 

$450 to 500 thousand. The same holds true for ranking points, plotted in Figure 3.1. For example, the 

winner of a Grand Slam earns eight times as many ATP-ranking points as the winner of an ATP 250 

tournament.  

The empirical analysis exploits the institutional setting of tennis tournaments and in particular the random 

nature of the initial tournament draw. Tournaments accept players on the basis of their world rankings. The 

higher a player's ranking, the better his chance of being accepted into the draw. For example a two-week 

Grand Slam has a draw of 128 players. The top 32 players are seeded and the rest, 96, are unseeded. Out of 

the 96 unseeded players, 72 made it into the draw based on their world ranking, 16 reached the draw through 

the qualifying rounds and 8 are selected as wild cards.119 The seeding of the top 32 players works as follows: 

the number one (two) seeded player is put into the top (bottom) slot of the bracket, the other seeded players 

are put into groups and randomly placed in a way that ensures that no seeded player can play against another 

seeded player in the first or second round. After the top 32 players are seeded the remaining players are then 

randomly placed in the draw. For example in the first round of Wimbledon in 2012 the 207 ranked qualifier 

Jimmy Wang was drawn to play the 16 world-ranked and 17 seeded Fernando Verdasco. The odds (implied 

probability) on Wang were 12.12 (8.2%). Another player who started from the qualifications as well, Michael 

Russell, ranked 112, had a “luckier” draw and played against Adrian Menendez-Maceiras, a qualifier as well, 

ranked 212. The odds (implied probability) on Russell were 1.5 (66.6%). In contrast the seeded players always 

face weaker opponents in the first two rounds, but also face great variation in the relative ability of their 

opponents. A seeded player might for example play against number 35, 70, 100 or 200 of the world ranking. 

                                                
 

118 For a general discussion on these markets see Wolfers and Zitzewitz (2004). 

119 Wild cards are given at the discretion of the tournament organizers. Usually they are given to “home players”, i.e. players of the same 
nationality where the tournament takes place or promising junior players. 
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The exogenous variation of the relative ability of players shifts the incentives to cheat. Sometimes the odds 

on a player’s opponent will be higher than usual and thus provide a higher incentive to cheat. In the IV 

specification of the empirical analysis we use the interaction between the opponent’s odds and that player’s 

cultural norms measured by the Corruption Perception Index (CPI) to identify insider-trading related 

variation in odds changes before games.         

3.2.2 Data 

The data used in this analysis come from OnCourt,120 a large provider of statistical information on tennis 

players, tournaments and odds. Table 3.1 presents summary statistics of the data, consisting of over 16,000 

games played from 2008 to 2012. The data includes information about players like nationality, age and ATP-

rank. For every tournament of the main tour we observe games for all rounds going from the qualification121 

to the final. Tournaments differ in many dimensions such as the prize money, size, duration, location and 

ATP-ranking points. The largest (smallest) tournaments have 128 (28) players excluding the qualification 

round. All tournaments are single-elimination events where players compete over multiple rounds over 

several days. The main tour starts beginning of January and ends in mid-November.  

The key variables used in this analysis are: a game’s result, returns on bets, initial and last odds, Corruption 

Perception Index, tournament and round dummies, a player’s seeding and the bookmakers’ margins. The 

OnCourt data includes odds from two major bookmakers: Pinnacle Sports and Marathonbet. Bookmakers 

start quoting a game as soon as the winners of the two matches in the previous round are determined. On 

average the first quotes are available 24 hours before the match, while the last odds are collected just before 

the game starts. On average odds tend to increase over time. The mean (median) odds change is .21 (0). In 

the regression analysis returns on bets is always calculated using the last odds and defined as: 

1
�1�	��,7Q!,R,ST = 
����,7,R,ST − 1;  if ����
1�	wins game G 

−1; if ����
1�	loses game G 

1
�1�	��,7Q!,R,ST are the returns on bets on ����
1� after game U using the last available odds of 

bookmaker GV. Throughout the empirical analysis we will refer to � (C) as the time when the first (last) odds 

are observed, and C + 1 to the period when the uncertainty is resolved and the result of the game is known. 

Returns can be thought of as the per-$ bet percentage return on bets. For example odds of 3.4 on ����
1� 

imply a 240% (3.4-1) return if he wins and a 100% loss (-1) if he loses. The implied probability of ����
1�  is 

calculated as 1 ����⁄ . An important feature of betting markets is that bookmakers tend to keep balanced 

books and thus tend to attract money in relation to odds and seldom take positions in a game. If an outcome 

                                                
 

120 See www.oncourt.info for further details on the level of provided data. 

121 The qualification rounds start in the week preceding the start of the main tournament which begins after the draws are done.  
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attracts too many bets bookmakers try to balance their books by offering higher odds and thus attracting 

more money on the under-betted outcome.122 With balanced books the per-bet bookmakers’ margin is 

determined by the “overround”, i.e. the spread, which is calculated as the sum of implied probabilities minus 

one, i.e. ��1��	ST = 1 ����⁄ + 1 ���?⁄ − 1. The average spread in this sample is 3.9%.  

The only variable that was not generated using OnCourt data is the Corruption Perception Index (CPI). The 

CPI has been published every year since 1995 from Transparency International and ranks countries "based on 

how corrupt a country’s public sector is perceived to be. It is a composite index, a combination of surveys 

and assessments of corruption, collected by a variety of reputable institutions."
123 In the empirical analysis we 

use the CPI in 2011124 which ranges from 0 (low corruption) to 10 (high corruption). In order to ease 

interpretation in the regression analysis we generate +	X��+� = −1 ∗ ��+� so that an increase in +	X��+� 

represents an increase in ����
1�’s country corruption level. During the following analysis I will refer to 

+	X��+� as ��+�.    

3.3 Preliminary Analysis: Prize Money, Cumulative Returns and CPI 

3.3.1  Betting-related Corruption in Tennis 

After the suspicious betting patterns observed during the game between Davydenko and Vassallo Arguello, 

also known as the “Sopot Match”, concerns about the integrity and credibility of tennis rose. Asked about 

cheating in tennis during the Kremlin Cup in Moscow in October 2007, 2 month after the “Sopot Match”, 

top British player Andy Murray stated that: "It doesn't really surprise me. Some guys have to come to 

tournaments like this every single week and the first-round loser's cheque is sort of 2,500 euros and they have 

got to pay for their air fares and, you know, it's only a 10 or 12-year career so you have to make all your 

money while you're still playing. It's pretty disappointing for all the players but everyone knows cheating goes 

on." The growing concerns about the status quo of integrity in professional tennis led the tennis authorities to 

establish a permanent unit called The Tennis Integrity Unit (TIU). The aim of the TIU, established in 

September 2008, is to “protect the sport from all forms of betting-related corrupt practices.”125 The 

establishment of the TIU was preceded by an independent review commissioned by tennis authorities into 

betting-related corruption, Gunn and Rees (2008). The report consulted and interviewed with numerous 

stakeholders to understand the status quo of betting related corruption in tennis. Gunn and Rees (2008, par. 

2.28) state that: “A large majority of current and former players we interviewed claimed to ‘know of’ 

                                                
 

122 The goal for most bookmakers is to balance their books. This practice ensures a guaranteed per-bet margin and eliminates the risk of exposure 
to a game’s outcome. See Harris (2003) for an analysis on the market microstructure of bookmakers.  

123 For more details see: http://cpi.transparency.org/cpi2012/in_detail/#myAnchor1 

124 As discussed in the introduction, cultural norms tend to be highly persistent over time. We use the 2011 estimate of CPI as proxy for the time-
invariant preferences of a player with respect to corruption. 

125 See http://www.tennisintegrityunit.com/about-us/ 
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approaches to players being invited to ‘throw matches’ presumably for corrupt betting purposes.” While 

strong attempts have been made to watch over betting-related misconduct, there have been only three life 

bans of minor players126 since 2008. As is always the case in the analysis of criminal activity, detection is 

endogenous and using a sample of ex-post detected players might not be informative about the true 

underlying population. The detection of these three minor players was possible because they had to rely on 

stronger players throwing the match.   

3.3.2 Preliminary Graphical Evidence: Incentives and Norms 

Before proceeding to the empirical analysis we provide graphical evidence that players’ incentives to compete 

are very high for Grand Slams and Masters, where top-players compete for most of the ranking points and 

prize money. In contrast lower ranked players face relatively flat incentives. The right part of Figure 3.1 

shows the ATP-Ranking points a player can earn conditional on the round he achieves for the four different 

types of tournaments. ATP-Ranking points are convex in the rounds of a tournament and greatly differ 

across different tournament types. Players are admitted at tournaments on the basis of their rank. The better a 

player’s rank the best is his seeding and thus his chance to proceed to the final stages of the tournament. In 

the empirical analysis we split the sample in two: high vs. low stake tournaments. We define Grand Slams and 

Masters to be the high stake tournaments, while ATP 500 and 250 will be considered low stakes.127  

An additional incentive to cheat is the low variation among top players. A few top players seem to 

systematically outperform the others and get most of the prize money. The left part of Figure 3.1 depicts the 

cumulative prize money of 422 tennis players with a mean rank under 200 over the time period 2005 and 

2012. Cumulative prize money is calculated by summing up all the prize money a player earned in the 

tournaments he played over the aforementioned time period. The total prize money is highly convex in 

players’ rank. The slope is relatively flat from rank 200 to rank 20 and very steep below rank 20. For example, 

the difference in total prize money between Roger Federer, the top-earner, and Rafael Nada, the second best 

earner, was $12.6million. The difference between the 100th best earner, Pablo Cuevas, who earned 

$1.73millions from 2005 to 2012 and the 101st, Gilles Muller, was $40k. Only ten players consistently ranked 

among the top-20 over that time period. Out of about $753 million in total prize money the top 5 (10) [20] 

earning players received 26% (34%) [44%]. Out of 422 players with a mean rank below 200 the best 27 

players got 50% of the total prize money between 2005 and 2012.128  

                                                
 

126 Austrian player Daniel Koellerer, Serbian player David Savic and Russian player Sergei Krotiouk have been banned for life from professional 
tennis tournaments for betting-related purposes. The investigations concluded that these players had made invitations to another tennis player to 
fix the outcome of tennis matches. These players were low ranked and mostly played in low-stake Challanger tournaments, which are not part of 
the tennis main tour.  

127 A different strategy might be to consider specific rounds. The problem with such an approach is that in single-elimination tournaments only 
winning players advance to successive stages. Thus, players must win initial low-stake rounds to access the final rounds. 

128 These numbers also include prize money earned in Challenger events which are not part of the main tour.   
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The second source of variation is a player’s CPI. Criminal behavior is not entirely driven by incentives. Faced 

with the same incentives people behave in significantly different ways. For example, Fisman and Miguel 

(2007) analyze unpaid tickets by diplomats working at the UN in New York, USA, and show that home 

country corruption norms are an important predictor of propensity to behave corruptly.129 Figure 3.2 shows 

preliminary evidence on the relation between a player’s home-country CPI and the cumulative returns on bets 

on his opponent, calculated as the sum of the returns of each bet on that player’s opponents. The fitted line 

points to an increasing relation between the CPI and cumulative returns on opponents.130 Running a 

regression of the total returns on bets on a player’s opponents on that player’s CPI using the total number of 

games as weights yields a highly significant and positive coefficient of .94 with a t-statistic of 10.2. This result 

is robust to the inclusion of rank131 and bookmakers’ margin (results not shown). On average moving from a 

low corruption country like Finland (CPI=-9.4) to a high corruption country like Ukraine (CPI=-2.3) 

increases the cumulative returns by 620%, from -1700% to -1080%. Thus, an investor who consistently 

betted the same amount on opponents of players from high corruption countries would have gained 620% 

more than if he betted the same amount on opponents of players with low CPI.132 This graph provides 

preliminary evidence on the relation between abnormal returns on opponents and a player’s CPI.  

3.4 Empirical Analysis 

In this section we examine the forecasting ability of odds changes on betting returns and of changes in the 

implied probability on the outcome of a game. We employ three different specifications to identify whether 

odds changes convey information about the results of games. The first specification tests the weak-form 

efficient market hypothesis (EMH) popularized by Fama (1970). In this specification we will not distinguish 

between private and public information but rather test whether pre-game implied probability changes are fully 

reflected into a player’s last winning probability. The second and main specification deals with disentangling 

insider-trading from non-insider-trading related variation in odds. We use an IV approach to split the 

mismeasured insider-trading related content of odds changes to solve the attenuation bias. In the third 

specification we run the first stage IV regression without covariates to obtain the fitted values of the insider-

trading related variation in odds changes and the fitted values of the residuals. In the final step we regress 

returns on bets on both the insider-trading and non-insider-trading related variation in odds changes.  

                                                
 

129 See Guiso et al. (2006) for a general discussion on the role of culture in economic outcomes. 

130 These results were constructed using Pinnacle’s odds. Similar results hold using Marathon’s odds. 

131 If we control for a player’s rank (results not shown) the coefficient [t-statistic] increases [increases] to 1.09 [12.45]. The rank is highly significant 
and positive with a coefficient of .115. 

132 The reason why the level of cumulative returns is so low is that bookmakers charge a transaction cost for each game. If we control for a game’s 
spread (results not shown) both the coefficient on CPI and its t-statistic are unchanged. Thus, the results reported in Figure 3.2 are not driven by 
higher spreads charged on players with a low CPI.      
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3.4.1 Implied Probability Changes and Ex-post Game Outcome 

A common approach in forensic economics and finance133 is to exploit the predictions of the EMH to 

generate test hypothesis to detect illicit actions. The general idea of the EMH is that security prices at any 

time fully reflect all available information [Fama (1970)]. The first and most lenient test is for weak-form 

efficiency. It requires current prices to reflect all information contained in historical prices. This can be 

directly tested in betting markets. If the market correctly forecasts the probability of an event, then, on 

average, the ex-post frequency of an event should not be significantly different from the ex-ante implied 

probability.134 This hypothesis can be tested using a linear probability model in the form of equation (1): 

 

>�	�,R,7Q! = �� + �!�1P�P������,R,7 + ��,R,7Q! (1) 

>�	�,R,7Q! is a binary variable that equals 1 (0) if ����
1� won (lost) game U. �1P�P������,R,7 is last winning 

probability of ����
1� calculated as the inverse of the last odds before the game, i.e. �1P�P������,R,7 =

1/���,R,7. In all specifications C + 1	refers to the time period after the end of the game, C to the period just 

before the game and � to the period where the first odds are released. The first specification of Table 3.2 

tests whether the current probability correctly reflects the ex-post result. The joint test hypothesis is that 

�� = 0 and �! = 1, which can be rejected with a p-value below .01. One reason to reject efficiency might be 

the bookmakers’ spreads, which (artificially) increase the implied probability of winning.135 In addition we are 

interested to test whether past price changes are a predictor of future game outcome. In specification (2) we 

test whether the direction of probability changes has a significant predictive power on the ex-post result.    

    

>�	�,R,7Q! = �� + �!�1P�P������,R,7 + �A∆�1P�P������,R,7,� + �Z��1
��R,7 + .� + ��,R,7Q! (2) 

∆�1P�P������,R,7,� is the change in probability calculated using the last (C) and first (�) odds. ��1
��R,7	is 

the spread, i.e. margin, charged by the bookmaker. .� are time-invariant player fixed effects that will be added 

in Table 3.2 Panel B. In contrast to specification (1) the joint test hypothesis in the pooled-OLS regression is 

that �� = 0, �! = 1and �A = 0. The regression results in Table 3.2 Panel A (B) are estimated using robust 

standard errors (clustered standard errors at player ID). We first discuss the results of the pooled-OLS 

regression in Panel A and then the players’ fixed effects results reported in Panel B.  

Adding the spread to the regression, specification (2.2), takes away the negative effect on the constant which 

turns insignificant while it has a minor effect on the coefficient of the implied probability. Performing the 

                                                
 

133 For a review of forensic economics and finance see Zitzewitz (2012) and Ritter (2008), respectively. 

134 This test was used in a number of empirical paper testing for MEH in betting markets, see for example Woodland and Woodland (1994). 

135 Consider for example that typical odds in a game between two equal players would be 1.9, rather than 2. This implies that a player’s implied 
probability would be 52.6% rather than 50% and the bookmaker’s margin assuming balanced books would be 52.6%+52.6%-100%=5.2%.    
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same joint test as in specification (2.1) we still reject the null of efficient markets. Interestingly, the p-value 

increases substantially to .048. In the third specification we add the change in probability and leave the spread 

out. The coefficient on ∆�1P�P�����	 is highly significant and positive. A 10% increase in the ex-ante 

probability increase the ex-post winning probability of a player by .91% controlling for his last winning 

probability. This is the first evidence that changes in the probability of a player are not fully reflected in the 

last pre-game probability. The coefficient on ∆�1P�P�����	 does not change in specification (2.4) when 

��1
��R,7	is added. Interestingly, in specification (4) the previous test for market efficiency cannot be rejected. 

Conditional on the spread and on probability changes we cannot reject that �� = 0 and �! = 1. As 

∆�1P�P�����	 is positive and has a p-value below 1% we do reject the weak EMH that current prices reflect 

all information contained in historical prices. This result provides an interesting insight in understanding the 

source of inefficiency. The last odds correctly forecast future events, i.e. the coefficient is not significantly 

different from 1, once we condition on the bookmakers’ spread and pre-game probability changes. Thus, the 

market inefficiency seems to stem from order flows before the game starts which seem to contain viable 

information not fully reflected in the final probability.  

In specification (2.5) and (2.6) the sample is split in two: high versus low stake tournaments. The incentives to 

compete vary greatly across tournaments as discussed in the previous section. Both the prize money and 

ATP-ranking points are substantially higher in Grand Slams and Masters than in ATP 500 and 250 events. In 

low stake tournaments we would expect more insider trading, as ceteris paribus players have similar odds on 

their opponents but face lower incentives to compete. In specification (2.5) [(2.6)] we use only games played 

in ATP 250 and 500 [Grand Slams and Masters] to evaluate whether the inefficiency caused by the positive 

coefficient on ∆�1P�P�����	 is the same for high and low stake events. Both coefficients on 

∆�1P�P�����		are positive and not statistically significant from each other.136 The main difference between 

the two coefficients is the dispersion around the estimate. In low stake events probability changes have a 

lower dispersion and are significant at the 5%. 

One concern of regression model 2 is that we used pooled OLS which do not take into account player-

specific unobservable heterogeneity. In Table 3.2 Panel B we perform the same regression using player fixed 

effects to obtain the within-player estimate of probability changes. In all six specifications the null that all 

players’ fixed effects, .� , are jointly insignificant can be rejected. The regression coefficients are similar as in 

Panel A. The within-player EMH137 can always be rejected at p-values below .05 and ∆�1P�P�����		 has the 

same magnitude as in Panel A and is significant at the 5% level in specification (3) and (4). In specification (5) 

                                                
 

136 I ran a separate regression (results not shown) where I included an interaction term between probability changes and the high-stake tournament 
dummy which was highly insignificant. 

137 The fact that the joint hypothesis that players’ fixed effects are insignificant cannot be rejected shows that the null of the weak EMH can be 
rejected (results not shown). The hypothesis we tested was whether we could reject the weak EMH conditional on players’ fixed effects.  
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and (6) the regressions are run for high and low stakes tournaments. As in Panel A the coefficients on 

∆�1P�P�����		 are not statistically different from each other between tournaments. The within-player effect 

of ∆�1P�P�����	 is larger for low stake tournaments and significant at the 10% level, while it turns 

insignificant in high stake events. 

Controlling for fixed effects increases the standard error of ∆�1P�P�����		in all specifications but the effect 

is still significant at the 5% level in the full specification regression (2.4) in Panel B. Thus, even though the 

fixed effects results seem weaker, they confirm that betting markets do not incorporate all information from 

past odds changes. In the next section we consider returns on bets rather than games’ outcomes because this 

is the key variable of interest of traders using private information to earn abnormal returns.     

3.4.2 Instrumental Variable Approach 

In a perfect natural experiment one would randomly assign players to cheat in a match. Knowing in which 

games cheating occurred one could run a regression of returns on bets or odds changes on a dummy being 

one for corrupt games and observe the causal effect of cheating on odds changes and returns. In reality 

cheating is illegal and thus unobserved. What we observe are odds changes, returns on bets, incentives, game 

results and a set of players’ and tournaments’ characteristics. In a standard case of forensic economics a 

researcher uses his knowledge on the institutional setting and observable variables to derive test hypothesis 

on whether observed outcomes are the result of a “normal” situation or whether it is the result of hidden 

behavior. Prominent examples of this approach include stock option backdating [(Narayanan and Seyhun 

(2008); Heron and Lie (2007)], allocation of hot shares in initial public offerings to corporate executives 

(Massa et al. (2010); Liu and Ritter (2010)), violations of U.N. sanctions [DellaVigna and La Ferrara (2010)] or 

the manipulation of test scores by teachers [Jacob and Levitt (2003)]. The common theme of these papers is 

that they uncover the “footprints” that wrongdoers’ actions have left in the data. In this case informed 

bettors aim at earning abnormal returns from games where a player is corrupt and loses on purpose. To do so 

they bet money on an event, this in turn has an impact on the odds of that event.    

In the tennis betting market odds are set on average 24 hours before a match and little information about the 

players is revealed before the match. Odds might still change due to incoming order flows. Specification (3) 

test whether odds changes significantly predict future returns. 

 

1
��1	��,R,7Q!,ST = [� + [!∆����,R,7,�,ST + \R] + ��M + .� + ��,R,7Q!,ST (3) 

 

1
��1	��,R,7Q!,ST is defined as ����,R,7,ST-1 (-1) if ����
1� wins (loses) match U using odds from 

bookmaker GV. \R  is a set of control variables that vary at game level such at round, tournament type and 

year. �� are player specific control variables such as a player’s seeds in a tournament or his implied probability 
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of winning. .� are players fixed effects and ��,R,7Q!,ST is the error term. In the following discussion we 

denote ����
1?	as the cheating player while ����
1� is his opponent. The key variable of interest, 

∆����,R,7,�,ST, is defined as the pre-game odds changes of ����
1� using the odds of bookmaker GV. 

This difference is observed by bettor and reported in many webpages for different bookmakers.138 Traders 

care about returns on bets and if they possess private information on who is going to win the game they will 

buy (sell) odds on the winning (losing) player. These order flows will affect odds changes which in turn will 

have a predictive power over who will win the game if the private information is not fully incorporated in the 

odds. One problem with specification (3) is that it assumes that odds changes reflect just private information 

rather than incoming public information or simply noise. In any financial market it is impossible to 

distinguish whether a particular order conveys private information. What is observed is the average change in 

odds caused by the aggregate amount of orders. Thus, odds changes represent a mismeasured proxy for the 

true informational content of insider-trading driven order flows. In general, if an explanatory variable is 

measured with an additive random error its coefficient suffers from attenuation bias, i.e. its coefficient is 

biased towards zero. The higher the proportion of noise that is due to errors the greater the bias. Assuming 

that the measurement error formed by the sum of public information and noise is uncorrelated with the true 

variable of interest and with the disturbance in the regression, then we are in the case of the “classical” 

measurement error. In these cases an IV approach might be used to solve the attenuation bias. We need an 

instrument that is uncorrelated with the measurement error and the error in the regression of interest but 

correlated with insider trading. Let odds changes be defined as the sum of insider trading, news and noise: 

∆����,R,7,�,ST = +C�,R,7,�,ST + 	
>��,R,7,�,ST + E�,R,7,�,ST (4) 

We assume that public news, 	
>�	, and noise,	E	, are uncorrelated with insider trading,	+C	, and rewrite (4) as: 

∆����,R,7,�,ST = +C�,R,7,�,ST + ^�,R,7,�,ST (5) 

In equation (5) 	̂ is the sum of two independent and normally distributed random variables with mean zero, 

news and noise. Using equation (5) we can rewrite our equation of interest in (3) as: 

 

1
��1	��,R,7Q!,ST = [� + [!_+C�,R,7,�,ST + ^�,R,7,�,ST` + \R] + ��M + .� + ��,R,7Q!,ST (6) 

 

The key variable of interest is +C	 which measures the level of private information driving the odds changes of 

����
1�. Instead we observe a noisy signal of +C	, ∆���	. Running a regression of returns on odds changes 

                                                
 

138 Many betting webpages report both odds and odds changes for tennis games. For example http://www.oddsportal.com/dropping-odds/ has a 
section dedicated to odds changes for many sport events worldwide including tennis. 
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will lead to a downward biased coefficient. Assuming that we are in the case of classical measurement error, a 

way to solve the attenuation bias of [! is to find an instrument which satisfies the exclusion restriction and is 

correlated with the mismeasured variable +C	. Considering the discussion on incentives and cultural norms in 

affecting the likelihood to cheat we use the interaction between ����
1?’s CPI and ����
1�’s initial odds as 

an instrument. Because tournament draws are random conditional on a player’s seeding, we also add seeding 

fixed effects, �?,R . The intuition behind the choice of instruments is as follows: Conditional on a player’s seed 

the relative strength of its opponent, and thus his odds, is randomly drawn. Higher odds on an opponent 

imply a higher return on cheating. In addition conditional on the incentives to cheat some players might have 

stronger cultural norms towards cheating measured by players’ CPI. The first and second stage of our IV 

approach are: 

 

∆����,R,7,�,ST = [� + [!��+? ∗ ���,R,�,ST + �?,R +\R- + ��^ + .� + X�,R,7,�,ST (7) 

1
��1	��,R,7Q!,ST = [� + [!∆���a �,R,ST,7,� + \R] + ��M + .� + ��,R,7Q!,ST (8) 

 

Table 3.3 reports the results of the first stage while Table 3.4 reports the results of the second stage along 

with OLS estimates. In both Tables we run the regressions both with and without players’ fixed effects. In 

addition in specifications (4.3) to (4.6) we split the sample in two using Grand Slams and Masters as high 

stake tournaments and ATP 500 and 250 as low stake tournaments. Ceteris paribus the incentives to cheat in 

lower ranked tournaments are higher than in high stake tournaments and thus we expect the magnitude of 

odds changes driven by insider trading to be larger. 

��+? ∗ ���,R,�,ST is negative and highly significant in all specifications of Table 3.3. The higher ����
1?’s 

CPI and the higher the initial odds on ����
1�, the larger the decrease in ����
1�’s odds over time. 

Conditional on ����
1?’s seeding, the higher ��+? and the higher the incentive to cheat by 

����
1?,	measured by ���,R,�,ST, the larger the demand for ����
1�’s odds and thus the larger the decrease 

in ����
1�’s odds before the game. Adding players’ fixed effects does not significantly change the results. 

The first stage R2 using (not using) players’ fixed effects is 14.4 (14.5). The F-statistic of the first stage using 

(not using) players’ fixed effects is 121 (47), far above the usual rule of thumb of 10. This provides evidence 

that the instruments are not weak and explain a significant part of the variation of odds changes. 

Panel A in Table 3.4 reports the OLS and 2SLS estimates of the informational content of past odds changes 

on future returns on bets. Odd (even) specifications are estimated with OLS (2SLS). Panel A (B) presents the 

results excluding (including) players’ fixed effects. In all specifications we report heteroskedasticity-robust 

standard errors which we cluster at player ID in Panel B.  
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The effect of odds changes on returns is negative and highly significant in all specifications. In line with our 

hypothesis of insider trading being mismeasured, the coefficients in all IV regressions are larger than in the 

OLS regressions. Using the entire tournament sample (columns 1 and 2) the estimated IV effect is about 4 

times larger than the OLS estimate. A 10% decrease in ����
1�’s odds before the game instrumented by the 

ex-ante incentives to cheat increases the ex-post returns on ����
1�’s bets by 1%. In comparison the OLS 

estimate points to a .24% change. We get an even larger effect by splitting the sample in low (columns 3 and 

4) and high (columns 5 and 6) stake tournaments. The IV estimate of the effect of odds changes is twice as 

large in tournaments with lower incentives to compete as in tournaments with high incentives. A 10% 

decrease in ����
1�’s odds before the game results in a 1.9% (.85%) increase in ex-post returns in low (high) 

stake tournaments as estimated by IV. While the OLS result show that a 10% decrease in ����
1� ’s odds 

before the game results in a .3% (.23%) increase in ex-post returns in low (high) stake tournaments. The IV 

estimates are clearly larger and in particular they are larger in those tournaments where we would expect 

insider trading to happen more often. As these results might suffer from unobserved time-invariant 

heterogeneity between players we perform the same analysis using players’ fixed in Table 3.4 Panel B. 

Testing whether all fixed effects are jointly insignificant we cannot reject the null of joint insignificance at a 

very high p-value in all specifications of Panel B. Since the fixed effects were jointly significant in the first 

stage we report both estimates with and without fixed effects. The results are in line with the estimates of the 

pooled regression. The coefficients of odds changes in the players’ fixed effect regression model are very 

similar to the results of the pooled regression. All the coefficients are negative and significant at the 1% level.  

3.4.3 Disentangling Insider-Trading Variation and News 

In the last approach we decompose the variations of odds changes in two parts. The first type is the one 

related to insider trading and the second is the remaining unexplained variation orthogonal to insider trading. 

In the previous IV analysis this variation was modeled to be the error in measurement of the true insider-

trading related variation in pre-game odds. We now take a different perspective and regard this non-insider-

trading related variation as potentially informative. Most importantly it might contain news-related variation 

in odds. We first run the following regression: 

 

∆����,R,7,�,ST = [� + [!��+? ∗ ���,R,�,ST + �?,R + ��,R,7,�,ST (9) 

	

In the next step we estimate the fitted values and residuals of (9). Finally we run a pooled and a player fixed 

effect OLS regression of returns on ∆���a �,ST,7,�, �b�,R,7,�,ST and the other covariates. The final regression 

model we estimate is:  
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1
��1	��,R,7Q!,ST = [� + c!∆���a �,R,7,�,ST + cA�b�,7,�,R,ST + \R] + ��M + .� + X�,R,7Q!,ST (10) 

 

In contrast to the first stage of the IV model we do not include covariates when disentangling the variation of 

odds changes and we use the estimated residuals as explanatory variables in the regression of interest. The 

intuition behind this regression is to use all the variation of odds changes to explain returns rather than just 

the insider-trading related part. In all fixed effects regressions the F-statistic testing for the joint significance 

of the .�  is very low and the estimated coefficients are very similar to the ones in the pooled regression. Thus, 

we report only the estimates of the pooled OLS model. In Table 3.5 we report the estimates of the pooled 

OLS regression model (10) with heteroskedasticity-robust standard errors in parenthesis.  

The coefficient on ∆���a 	 is negative and significant at the 1% level in all specifications. Using the entire 

sample of tournaments a 10% decrease in the fitted values of ����
1�’s odds changes increases the ex-post 

returns on ����
1�’s bets by .89% controlling for non-insider-trading related variation. In contrast a 10% 

decrease in the non-insider-trading related variation of ����
1� ’s odds changes increases the ex-post returns 

on ����
1�’s bets by .18%. This effect is stable and significant across specifications and confirms that the 

non-insider-trading related variation in odds changes has a significant predictive power over future returns 

even though the effect is not as strong as the insider-trading related one. The coefficient on ∆���a 	  is larger 

in low stake tournaments than in high stake ones but not significantly so. A 10% decrease in ∆���a 	 in low 

(high) stake events increases returns by 1.13% (.85%), both significant at the 1% level. 

These results point out that both insider-trading and non-insider-trading related variation have significant 

predictive power over future returns. Because we would expect simple noise not to be predictive the non-

insider-trading related variations seems to rather stem from (mismeasured) news which has not been fully 

incorporated in the final odds. Even though news might be mismeasured which leads cA to be downward 

biased the magnitude of the two effects differs greatly. The coefficient on the insider-trading related part is 

4.8 times larger than the non-insider-trading related part. Using an F-test we can easily reject the null of equal 

effect at a p-value below .01. Thus, both variations of odds changes convey information but the insider-

trading related effect dominates. 

 

3.5 Discussion 

The aim of the empirical analysis was to test whether pre-game odds changes convey private information 

about the ex-post returns on bets. Tennis players with low cultural norms on corruption facing high odds on 

their opponent might rationally decide to cheat and sell this inside information. As a consequence the odds 

(implied probability) on the cheater increase (decrease) and the odds (implied probability) on his opponent 
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decrease (increase). The empirical results provide strong evidence in favor of this hypothesis. Odds changes 

instrumented by the interaction of the incentives to cheat and time-invariant cultural norms on corruption are 

a highly significant predictor of a bet’s returns. In line with the results of the rational crime theory this effect 

is larger in low stakes events, when stronger players face similar odds on their opponent but have less 

incentives to compete.  

The first step involved testing the weak-form EMH, i.e. whether current prices reflect all available past price 

information. As the implied probability of a player winning a game is the multiplicative inverse of his odds we 

first tested whether betting markets efficiently forecast the probability of an event. Once we control for past 

probability changes and the bookmaker’s spread, the coefficient on the implied winning probability is not 

statistically significant from 1 and the constant is not significantly different from 0 as we would expect in the 

case the weak-form EMH holds true. 

The larger market inefficiency seems to stem from past odds changes and players’ fixed effects, both of which 

should be insignificant but in fact are highly significant. This gives some indication that the “true” market 

inefficiency is hidden in pre-game odds changes rather than in the final odds.  

The core part of the empirical analysis used an IV approach to relate past odds changes, instrumented with 

incentives to cheat and time-invariant cultural norms on cheating, on returns of bets. Once we isolated the 

insider-trading variation the results pointed out that a decrease of 10% of a player’s pre-game odds is 

associated with an increase in 1% of his returns. This effect duplicates in low stake tournaments.  

In the last part of the analysis we decomposed odds changes in two parts: insider-trading and non-insider-

trading related variation. The results show that non-insider-trading related variation has also significant 

predictive power on future returns but the coefficient is about one fifth of the insider-trading-related one. 

Thus, betting markets might not be fully efficient in incorporating the arrival of public news, but the largest 

inefficiency seems to be driven by the insider-trading related variation. 

These results show that odds changes convey private information and are a significant predictor of future 

returns. This is especially the case in low stake tournaments where players face lower incentives to compete. 

A question which arises is how liquid betting markets actually are and thus how much money bettors can 

place on a single event. While there are no official statistics on the total money betted on an event, in the 

example of the “Sopot match” discussed in the introduction all $7 million bets were matched on Betfair’s 

trading platform. Odds on Davydenko were relatively high compared to what they should have been. This 

might have incentivized many bettors to place bets on Davydenko. Similarly as in a betting exchange, as long 

as bookmakers can balance their books they are indifferent on the market equilibrium odds as their per-bet 

margin is fixed.    
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3.6 Conclusion 

In this paper we tested whether odds changes before professional tennis games are driven by private 

information and whether they are a significant predictor of future returns on bets. An important question for 

securities markets is the extent to which price changes reflect the arrival of private information and whether 

prices fully reflect all past price information. Securities markets are bombarded by news and disentangling the 

reason of price changes is a tedious task. In addition stocks don’t have a definite end, i.e. they potentially live 

forever. This makes it difficult to establish an objective time interval to calculate the cumulative excessive 

returns. Betting markets provide a natural environment to test theories of price formation. They are large, 

most information is directly observable, incentives for players are clear and events have a defined start and 

end. Using a large and detailed data set consisting of odds changes for more than 16,000 unique games we 

provide evidence that pre-game odds changes are partially driven by private information and significantly 

predict returns on bets. This effect is larger in games where incentives to compete are lower. The test 

hypotheses in the empirical analysis are derived from the efficient market hypothesis (EMH) and the theory 

of rational crime. In professional tennis betting markets the first odds before games are released on average 

24 hours prior to the game start and little information is revealed between initial and last odds before the 

game start. Still, odds might change due to order flows which themselves contain information. A corrupt 

tennis player facing high odds on his opponent might rationally decide to throw the match and sell this 

information to bettors who start buying odds on that player’s opponent. Losing a game is uncomplicated and 

requires the will to lose of only one player. Over time markets react to incoming order flows by adjusting the 

expectations on the event and consequently the odds on the cheating player (his opponent) increase 

(decrease). Alternatively, observed odds changes might be driven by the arrival of public information or 

simply noise. The aim of the empirical analysis was to disentangle insider-trading from non-insider-trading 

related odds changes and test whether insider-trading driven odds changes are a significant predictor of future 

returns.  

In our main specification we model odds changes as the sum of insider trading, news and noise. To solve the 

attenuation bias driven by mismeasured insider trading, we instrumented odds changes with the interaction 

between an exogenous incentive shift to cheat and a player’s time-invariant cultural norms on corruption. 

Both the OLS and IV estimates of returns on bets on odds changes were highly significant and in the 

expected direction. In line with our error in variables approach, once the variation of odds is instrumented 

the coefficient quadruplicates. The average effect of a 10% decrease in pre-game odds using OLS (IV) is 

a .24% (1%) increase in returns. Finally, as incentives to compete for prize money and ATP-ranking points 

differ substantially across tournaments we split the sample in high and low stake events. In line with the 

predictions of the rational crime theory the instrumented effect of odds changes on returns is twice as large in 

law stake events as in high stake ones. In the IV specification a 10% decrease in pre-game odds causes a 1.9% 
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increase in returns in low stake and a .85% increase in returns in high stake tournaments both significant at 

the 1% level.  

These results pose a serious threat to markets regulators. Insider-trading related odds changes seem to be a 

strong predictor of returns. While an econometric analysis can test whether there is significant evidence of 

insider trading, a shortcoming of this approach is that it relies on recognizing systematic patterns emerging 

over large samples but it is of little use in specific case. However, using repeated observations of the same 

players over time, the economic approach might be useful in selecting which players are most likely to have 

cheated which permits authorities to focus their limited resources on cases with the highest ex-ante likelihood 

of wrongdoing. An additional benefit of the economic approach is that it yields a good understanding of the 

incentives driving corrupt behavior. This analysis also confirms the strong link between incentives to cheat 

and cheating. Changing the ex-ante incentives to compete for tennis players might prove to be a successful 

strategy to fight match fixing. If ATP-ranking points and prize money are increased in initial rounds of 

tournaments and are more balanced across tournaments players will face higher incentives to compete and 

less incentives to cheat.  
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3.7 Appendix: Tables and Figures 

 

 

 

 

 

 

  

 

Table 3.1: Summary Statistic 

Variable Mean Median St.Dev. Min Max Obs. 

              

Win 0.500 0.500 0.500 0 1 65,628 

Returns on Bets -0.0588 0 1.279 -1 40 59,030 

Last Odds 2.996 1.920 4.105 1 121 59,030 

First Odds 2.785 1.910 3.162 1 81 59,146 

Implied Prob. Last Odds 0.518 0.521 0.240 0.00826 1 59,030 

Implied Prob. First Odds 0.519 0.524 0.228 0.0123 1 59,146 

Spread Last Odds 0.0362 0.0293 0.0200 0.00248 0.446 59,028 

Spread First Odds 0.0373 0.0293 0.0213 0.00244 0.0916 59,146 

Odds Changes 0.214 0 1.656 -30 91.84 59,030 

Imp. Probability Changes -0.000550 0 0.0558 -0.780 0.797 59,030 

Rank  96.90 68 97.56 1 500 65,628 

Age 26.26 26.16 3.383 15.94 44.06 65,608 

Corruption Perc. Index (Inv.) -5.786 -6.200 2.103 -9.500 -1.600 65,514 

CPI*Fist Odds -16.43 -11.13 22.26 -712.8 -1.600 59,071 

Fitted non-IT variation -0 -0.0201 1.543 -43.28 87.13 58,955 

Fitted IT Variation 0.215 0.0689 0.607 -0.364 18.89 59,071 

Year 2,010 2,010 1.399 2,008 2,012 65,628 

Round Tournament 6.816 6 3.000 1 12 65,628 

Rank Tournament 2.692 2 0.838 2 4 65,628 

Total Games by Player 715.0 708 389.2 4 1,612 27,434 

Total Returns on Opponent (Pinnacle)  -14.14 -5.644 29.20 -151.4 37.24 27,434 

Seeds 2.290 0 5.226 0 32 65,628 

Time lag First last Odds 25.06 19.17 19.39 0 133.5 59,086 

Player ID 414.0 412 218.2 1 784 65,608 

Bookmaker 0.536 1 0.499 0 1 59,146 
The table shows summary statistics of the variables used. The level of observation is a player in a match using either the odds of Pinnacle 
Sports or Marathon Bet. The data consists of 16410 unique matches. The odds observations are not perfectly balanced across 
bookmakers. Out of the 59030 total observations 27340 come from Marathon Bet while 31690 come from Pinnacle.     
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Table 3.2: Game outcome, implied probability and probability changes 

Panel A: Pooled Data 

(1) (2) (3) (4) (5) (6) 

Dependent Variable Binary outcome: 1 if ����
1�	wins the game; 0 loses the game 

Tournaments All All All All Low Stake High Stake 

       ProbabilityLast Odd 1.013*** 1.015*** 1.006*** 1.008*** 1.009*** 1.008*** 

 
(0.00616) (0.00616) (0.00662) (0.00662) (0.00985) (0.00886) 

SpreadLast Odd 
 

-0.508*** 
 

-0.504*** -0.504*** -0.504*** 

(0.0910) (0.0912) (0.124) (0.134) 

∆ProbabilityT-t 
  

0.0915*** 0.0884*** 0.0938** 0.0821* 

   
(0.0339) (0.0339) (0.0477) (0.0479) 

Constant -0.025*** -0.00757 -0.0214*** -0.00417 -0.00466 -0.00372 

 
(0.00366) (0.00482) (0.00388) (0.00497) (0.00705) (0.00702) 

Cons=0; Prob=1 <.01 0.048 <.01 0.44 0.63 0.69 
Cons=0; Prob=1; 
∆Prob=0 

  
<.01 <.01 0.069 0.13 

Observations 59,030 59,028 59,030 59,028 33,132 25,896 

R-squared 0.236 0.237 0.236 0.237 0.209 0.272 

Panel B: Players’ Fixed Effects  

 
(1) (2) (3) (4) (5) (6) 

Dependent Variable Binary outcome: 1 if ����
1�  wins the game; 0 loses the game 

Tournaments All All All All Low Stake High Stake 

       ProbabilityLast Odd 0.990*** 0.992*** 0.982*** 0.984*** 0.983*** 1.000*** 

 
(0.0111) (0.0112) (0.0121) (0.0123) (0.0164) (0.0162) 

SpreadLast Odd -0.191*** -0.183*** -0.194** -0.0534 

  
(0.0648) 

 
(0.0655) (0.0813) (0.108) 

∆ProbabilityT-t 
  

0.0901** 0.0879** 0.101* 0.0652 

   
(0.0387) (0.0389) (0.0574) (0.0553) 

Constant -0.0127** -0.00703 -0.00851 -0.00314 -0.00219 -0.0161* 

(0.00573) (0.00579) (0.00630) (0.00625) (0.00838) (0.00839) 

       Cons=0; Prob=1 <.01 <.01 <.01 <.01 <.01 <.01 

Cons=0; Prob=1; ∆Prob=0 
  

<.01 <.01 <.01 <.01 

F-Test FE=0 <.01 <.01 <.01 <.01 <.01 <.01 

Observations 59,015 59,013 59,015 59,013 33,123 25,890 

R-squared 0.183 0.183 0.183 0.183 0.154 0.220 

Number of Players’ FE 730 730 730 730 650 570 
Table 3.2 reports the OLS estimates of the weak Efficient Market Hypothesis (EMH) test. The dependent variable is binary and takes the 
value of one if the player won the match. Panel A uses pooled OLS while Panel B uses players’ fixed effects. Heteroskedasticity-robust 
standard errors are reported in parentheses for Panel A, while in Panel B the robust standard errors are clustered at player ID. In 
columns (1) to (4) all the data is used while in columns (5) and (6) the data is split in low and high stake tournaments respectively. Low 
stake refers to ATP-250 and ATP-500 tournaments, while high stake refers to Masters and Grand Slam tournaments. The rows following 
the constant report the p-values for the weak EMH test. P-values below 1% are reported as “<.01”. All tests are joint test, “;” denotes 
“and”. In Panel B the “F-Test FE” refers to the joint test of all player fixed effects being jointly insignificant. The regressors 
“Probability” and “Spread” are computed using the last odds.       
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Table 3.3: First Stage Regression 

  (1) (2) (3) (4) (5) (6) 

Dependent Variable  ∆����,R,7,�,ST: Difference in the pre-game odds of ����
1�   
Regression Model Pooled FE Pooled FE Pooled FE 

Tournaments All All Low Stake Low Stake High Stake High Stake 

              

CPIj*Oddi, First Odd -0.023*** -0.0268*** -0.0134*** -0.0156** -0.0252*** -0.0296*** 

 
(0.00279) (0.00357) (0.00331) (0.00709) (0.00383) (0.00446) 

SpreadFirst Odd 2.723*** 3.079*** 2.894*** 3.076*** 1.949** 2.323 

 
(0.539) (1.138) (0.620) (1.175) (0.983) (1.411) 

Probabilityi,Last Odd 0.685*** 0.588*** 0.689*** 0.668*** 0.739*** 0.694*** 

 
(0.0950) (0.110) (0.0931) (0.195) (0.134) (0.156) 

MarathonBet -0.232*** -0.239*** -0.177*** -0.180*** -0.316*** -0.318*** 

 
(0.0213) (0.0769) (0.0253) (0.0576) (0.0373) (0.106) 

       Round FE Yes Yes Yes Yes Yes Yes 

Tournament Rank FE Yes Yes 
    Seedj FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Player FE 
 

Yes 
 

Yes 
 

Yes 

Constant -0.622*** -0.579*** -0.484*** -0.484*** -0.864*** -0.731*** 

(0.0391) (0.0881) (0.0326) (0.0589) (0.123) (0.196) 

       Overall F-statistic 52 139 46 62 31 78 

F-test FE <.01 <.01 1 

       Observations 58,953 58,953 33,112 33,112 25,841 25,841 

R-squared 0.146 0.113 0.096 0.063 0.169 0.135 

Number of Players’ FE   724   647   565 
Table 3.3 reports the OLS estimate of the first stage IV regression. The dependent variable is defined as the pre-game difference in 

the odds of ����
1� . To ease the interpretation of the coefficient we refer to ����
1? as the cheating player and ����
1� as his 

opponent. “FE” refers to fixed effects. Low stake refers to ATP-250 and ATP-500 tournaments, while high stake refers to Masters 
and Grand Slam tournaments. The overall F-statistic test for joint significance of all regressors is always above 10. The “F-Test FE” 
refers to the joint test of all player fixed effects being jointly insignificant. P-values below 1% are reported as “<.01”.  
Heteroskedasticity-robust standard errors are reported in parentheses.  
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Table 3.4: OLS and IV regression of returns on bets on odds changes 

Panel A: Pooled Data 

  (1) (2) (3) (4) (5) (6) 

Dependent Variable 1
��1	��,R,7Q!,ST:	Return on bets on ����
1� 
Regression Model  OLS TSLS OLS TSLS OLS TSLS 
Tournaments All All Low Stake Low Stake High Stake High Stake 

              
∆Oddi,T-t -0.024*** -0.100*** -0.0307*** -0.196*** -0.0236*** -0.0855*** 

 
(0.00703) (0.0240) (0.00945) (0.0671) (0.00890) (0.0247) 

MarathonBet -0.00698 -0.0217 0.00112 -0.0258 -0.0214 -0.0373 

 
(0.0158) (0.0166) (0.0202) (0.0228) (0.0253) (0.0264) 

SpreadFirst Odd -0.705* -0.723* -0.914* -0.618 -0.307 -0.510 

 
(0.398) (0.400) (0.502) (0.524) (0.652) (0.653) 

Probabilityj,Last Odd -0.176*** -0.0451 -0.169*** 0.0294 -0.179*** -0.0388 

 
(0.0274) (0.0387) (0.0355) (0.0718) (0.0414) (0.0519) 

Round FE Yes Yes Yes Yes Yes Yes 
Tournament Rank FE Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Constant 0.0977*** 0.0396 0.0937** 0.00398 0.102 0.0477 

 
(0.0322) (0.0349) (0.0365) (0.0479) (0.0699) (0.0716) 

       

Instrument 
 

CPIj*Oddi,t 

Seedj FE   
CPIj*Oddi,t 

Seedj FE  
CPIj*Oddi,t 

Seedj FE 
Observations 59,028 58,953 33,132 33,112 25,896 25,841 
R-squared 0.003   0.003   0.004   

Panel B: Players’ Fixed Effects 

  (1) (2) (3) (4) (5) (6) 

Dependent Variable 1
��1	��,R,7Q!,ST:	Return on bets on ����
1� 
Regression Model  OLS TSLS OLS TSLS OLS TSLS 
Tournaments All All Low Stake Low Stake High Stake High Stake 

              
∆Oddi,T-t -0.021*** -0.0854*** -0.0273*** -0.219*** -0.0204*** -0.0663*** 

 
(0.00648) (0.0130) (0.0103) (0.0434) (0.00748) (0.0144) 

MarathonBet -0.00189 -0.0159 0.00594 -0.0267 -0.0158 -0.0288 

 
(0.00820) (0.0159) (0.0104) (0.0215) (0.0130) (0.0256) 

SpreadFirst Odd -0.929*** -0.890** -1.130*** -0.721 -0.560 -0.652 

 
(0.269) (0.407) (0.360) (0.520) (0.408) (0.677) 

Probabilityj,Last Odd -0.0196 0.0721** -0.0405 0.172*** -0.00514 0.0717 

 
(0.0413) (0.0338) (0.0500) (0.0613) (0.0616) (0.0508) 

Round FE Yes Yes Yes Yes Yes Yes 
Tournament Rank FE Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Constant 0.0672 0.0164 0.0718 -0.0331 0.182* 0.118 

 
(0.0513) (0.0346) (0.0472) (0.0453) (0.108) (0.0718) 

 
 

 
 

 
 

[Cont.] 
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Instrument 
 

CPIj*Oddi,t 

Seedj FE   
CPIj*Oddi,t 

Seedj FE  
CPIj*Oddi,t 

Seedj FE 
       
Observations 59,013 58,953 33,123 33,112 25,890 25,841 
R-squared 0.003 0.003 0.004 
Number of Players’ FE 730 724 650 647 570 565 
Table 3.4 reports the estimates of the main empirical specification testing whether insider-trading driven odds changes have a predictive 

power on future returns. The dependent variable is defined as the return on bets on ����
1� using odds of bookmaker GV in game U. 
Odd (even) columns report OLS (2SLS) estimates. The set of instruments used in the even columns is the interaction between the 

����
1? ’s CPI and the initial odds on ����
1�. The additional set of instruments consists of ����
1? ’s seed in game U. “FE” refers to 
fixed effects. Heteroskedasticity-robust standard errors are reported in parentheses. In the OLS regressions with players’ FE standard 
errors are clustered at player ID. 

 

 

 

 

Table 3.5: Returns, insider trading and news 

  (1) (2) (3) (4) (5) 

Dependent Variable 1
��1	��,R,7Q!,ST:	Return on bets on ����
1�  
Tournaments All All All Low Stake High Stake 

            
FV ∆Oddi,T-t -0.0870*** 

 
-0.0897*** -0.113*** -0.0853*** 

(0.0185) (0.0187) (0.0329) (0.0221) 
FV News 

 
-0.0173** -0.0187*** -0.0256*** -0.0172* 

  
(0.00713) (0.00717) (0.00899) (0.00934) 

MarathonBet 0.00170 -0.00627 -0.00266 0.00432 -0.0158 

 
(0.0161) (0.0158) (0.0158) (0.0202) (0.0253) 

SpreadFirst Odd -1.002** -0.646 -0.950** -1.116** -0.646 

 
(0.401) (0.396) (0.398) (0.501) (0.653) 

Probabilityj,Last Odd -0.103*** -0.212*** -0.0918*** -0.0766* -0.0880** 

(0.0279) (0.0277) (0.0280) (0.0393) (0.0401) 

      Round FE Yes Yes Yes Yes Yes 
Tournament Rank FE Yes Yes Yes 

  Year FE Yes Yes Yes Yes Yes 

Constant 0.0824** 0.110*** 0.0743** 0.0679* 0.0841 

 
(0.0323) (0.0324) (0.0321) (0.0367) (0.0698) 

Observations 58,953 58,953 58,953 33,112 25,841 

R-squared 0.003 0.003 0.004 0.003 0.005 
Table 3.5 reports the estimates of the regression model that disentangles insider-trading related variation in odds changes 

from non-insider-trading related variation. The dependent variable is defined as the return on bets on ����
1� using odds 

of bookmaker GV in game U. “FV ∆Oddi,T-t” refers to the “fitted values” of regression model (9), whereas “FV News” are 
the “fitted values” of the residuals of regression model (9). Heteroskedasticity-robust standard errors are reported in 
parentheses. 
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The left part of Figure 3.1 shows the scatter plot between the cumulative prize money a player earned over the time period 2005 to 2012 and his mean rank over the same period. 
The right part shows the ATP-ranking points a player earns if he reaches a particular round of the tournament and the ATP-ranking point differences between the four different 
types of tournaments of the main world tour. The cumulative prize money was computed by adding the prize money received by a player over the time period 2005 to 2012. The x-
axis shows the mean ATP-rank of a player over the same time period. Cumulative prize money is highly convex in rank. Out of about $753million in total prize money over the 
aforementioned time period the top-5 (10) [20] earners received 26% (34%) [44%]. The median earner had a mean rank of 27. The right side of Figure 3.1 shows the ranking points 
in different types of tournaments conditional on the round achieved by a player. Ranking points are convex within a tournament type and substantially differ across tournaments.  

Figure 3.1: Players' Prize Money and ATP-Ranking Points 
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Figure 3.2 shows the scatter plot and fitted line between the cumulative returns on a player’s opponent and his Corruption Perception Index 
(CPI). The cumulative returns are computed by summing up all the bets on the opponent of a player using Pinnacle’s odds. Higher values of 
CPI correspond to higher corruption level in the country of origin of that player. The regression coefficient on CPI is .94 and significant at the 
1% level. Moving from a low corruption country like Finland (CPI=-9.4) to a high corruption country like Ukraine (CPI=-2.3) increases the 
cumulative returns on that player’s opponent from -1700% to -1080%. This positive relation is robust to including the spread charged by the 
bookmaker and a player’s rank (results not shown).     

Figure 3.2: Cumulative Returns and CPI 
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Chapter 4: Leading-effect vs. Risk-taking in Dynamic 
Tournaments: Evidence from a Real-life Randomized 
Experiment 
 

4.1 Introduction 

Tournaments are widely used in corporations, politics and sports to provide incentives to work hard or to 

select the best agents. A key aspect of tournaments is that participants are rewarded on the basis of their 

relative rather than absolute performance. In addition participants often compete in a dynamic setting with 

information feedback and under asymmetric conditions. Two fund managers acting on different markets and 

competing to attract new funds might get intermediate feedback of performance and change their strategy 

before the investors' choice of asset allocation. In the US the major party candidates are determined through 

a sequence of state-level primary elections where candidates can constantly monitor their interim rank and 

change their strategies accordingly. Most of the literature on tournaments points out how incentives mitigate 

the conflicting objectives between principal and agents inducing higher levels of effort. However, little is 

known on the effect of revealing information on relative performance during a dynamic tournament. In this 

setting effort is not the only choice variable and risk-taking might cause `order effects'. By `order effects', we 

mean the advantage or disadvantage to a player when performing either in a given sequence or under 

different conditions that are determined by the regulation of the tournament. Two distinct order effects 

might arise in a dynamic setting with intermediate information feedback where both effort and risk-taking are 

relevant. First, there might be a leading-effect. Teams taking the lead at the beginning of the tournament 

might experience an encouragement-effect and/or teams lagging behind might feel discouraged. This effect is 

due to the fact that the leading (lagging) player has an incentive to exert more (less) effort as she faces a larger 

(smaller) `effective prize' from winning the second game (Konrad and Kovenock, 2009; Malueg and Yates, 

2010). Second, teams lagging behind might increase risk-taking at final stages of the tournament as they have 

`nothing to lose' (Cabral, 2003; Hvide, 2002). 

In this paper we take advantage of a unique natural experiment with 1,146 observations where highly paid 

professionals have strong incentives to compete and know the setting very well. In two-game soccer knock-

out competitions, teams are randomly drawn to have an advantage (home game) either in the first or second 

game. The team randomly drawn to play the first game at home wins the first game more often (53% home 

win, 26% draw and 21% away win) and thus might benefit from a leading-effect. The team playing the second 

game at home is more likely to lag behind after the first game and thus might increase risk-taking in the 

second game. Using this real life situation that guarantees internal validity we investigate the selection 

efficiency of tournaments with information feedback and asymmetric initial conditions. 
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The main concern of using a natural experiment as opposed to an experiment in the laboratory is that 

strategies, and in specific effort and risk choices, are unobserved. By exploiting our rich dataset we develop an 

identification strategy capable of distinguishing the relevance of each effect, i.e. leading-effect and risk-taking, 

on the winning probability of teams. 

Most of the literature focuses on how tournament design influences the behavior of participants and in 

particular on the incentive mechanism of tournaments (Ehrenberg and Bognanno, 1990; Knoeber and 

Thurman, 1994; Lazear and Rosen, 1981). Another strand of literature elaborates on the comparison between 

tournaments and other performance schemes (Baker, Gibbs and Holmstrom, 1994; Green and Stokey, 1983; 

Lazear, 2000; Oyer, 1998). 

Less research is done on how the dynamic structure of tournaments affects the ex-ante winning probabilities 

of participants through order effects. This is of great importance for two reasons. First, from the perspective 

of the organizer, tournaments are often used as a selection mechanism to identify the best candidates, e.g. for 

job promotion or research grants. Better agents should win the tournament. This may not be the case when 

the regulation randomly attributes a considerable advantage to one player. Second, from the perspective of 

the participant, it is not fair if one player receives an advantage due to a randomized order of play. Thus, in 

dynamic tournaments, the order of interaction must be carefully designed. 

We benefit from a randomized natural experiment in soccer knock-out competitions with two games in 

which each team is randomly drawn to play either the first or the second game at home. Given the robustly 

identified result that home teams have an advantage (Clarke and Norman, 1995; Ferrall and Smith, 1999; 

Neave and Wolfson, 2003; Pollard, 1986), we investigate whether the random allocation of this advantage in 

either the first or second game has an impact on the probability of winning the knock-out. The setting of a 

knock-out allows us to go beyond what can usually be done in empirical work on selection efficiency in 

corporate tournaments where many variables are not observable and the data is not available. Sport is in 

many ways the perfect environment for testing economic theories about decision-making.139 There is an 

abundance of readily available data, the goals of participants in sporting contests are relatively uncomplicated 

and the outcomes are extremely clear. Szymanski (2003) concludes that sports data is a valuable source for 

economists trying to understand the relationship between tournament structure and effort choices and to test 

theoretical predictions against the data. 

Our setting of a natural experiment allows us to study how the randomly assigned order of advantages might 

affect winning probabilities. Without order effects, teams' winning probabilities should be independent of 

whether they play the first or second game at home. We refer to this condition as `neutral structure' of the 

                                                
 

139 Sports contests have been successfully used to show the use of mixed strategies (Chiappori, Levitt and Groseclose, 2002; Walker and Wooders, 
2001), risk aversion (Pope and Schweitzer, 2011), cheating (Duggan and Levitt, 2002) and labor market participation of women (Stevenson, 2010). 
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tournament. If, however, order effects play a relevant role, professional and experienced teams in high stake 

environments will exploit such favorable conditions by changing their strategy and increase their winning 

probability. 

Our empirical analysis relates to two strands of literature on dynamic tournaments140 that focus on two 

aspects of order effects: leading-effect and risk-taking. Regarding the leading-effect, Malueg and Yates (2010) 

and Ferrall and Smith (1999) study the existence of strategic effects in dynamic tournaments using individual 

and team level sports data, respectively. Malueg and Yates (2010) find that players in best-of-three tennis 

tournaments strategically adjust efforts across sets conditional on the intermediate score. Given equal ex-ante 

abilities, players that take the lead by winning the first set exert higher effort in the second set than the 

opponents as they face a larger `effective prize' from winning the second set.141 Ferrall and Smith (1999) 

analyze data from team sports such as basketball, baseball and hockey and do not find evidence of leading-

effects.142 Klumpp and Polborn (2006) model US presidential primaries that consist of a sequence of elections 

within a political party in different districts between two candidates. They find evidence of strategic effects. 

Consistent with empirical evidence, the winner of early districts is endogenously more likely to win later 

districts than the loser. A possible explanation for this mixed evidence is that incentives within teams may 

attenuate incentive effects across games which might explain why strategic effects are present in settings 

where individuals rather than teams compete (Ferrall and Smith, 1999). 

In addition to effort choices, in many situations agents may also choose risk to influence their performance. 

Fund managers could pick riskier assets and managers opt for riskier investments or production technologies 

if they are lagging behind. In such cases the latter results on leading-effects do not hold true in general. When 

players can choose both effort and risk, players choose riskier actions and lower effort in equilibrium as 

compared to the equilibrium effort without risk-taking (Hvide, 2002). Also, when risk is the only choice 

variable, the selection efficiency of tournaments deteriorates (Hvide and Kristiansen, 2003). Cabral (2003) sets 

up a model in which firms can choose between a safe, low-variance and a risky, high-variance research and 

development strategy. He provides sufficient conditions under which the firm lagging behind chooses a 

riskier strategy than the leader. As compared to a model without risk-taking, weaker players or players lagging 

behind choose riskier strategies because they have `nothing to lose'. 

Due to the difficulty to analyze effort and risk choices separately the empirical literature confirming the 

theoretical result of `gambling for resurrection' is relatively underdeveloped. One notable exception are 

                                                
 

140 See Konrad (2009) for a thorough overview of the literature on dynamic contests. 

141 See also Konrad and Kovenock (2009) who analyze multi-battle, all-pay auctions and find that, with intermediate prizes, even a large lead by 
one player does not fully discourage the laggard. Without intermediate prizes, laggards may only drop out if they are lagging too far behind. 

142 Apesteguia and Palacios-Huerta (2010) study penalty kicks with randomly assigned order of who shoots first and find that teams randomly 
allocated to take the first kick win 60.5% of the shoot-outs. They ascribe this effect of sequential moves to `psychological pressure' on the kicker 
of the second-kicking team. Note, however, that Kocher, Lenz and Sutter (2012) cannot replicate this positive effect on teams kicking first in a 
larger sample of shoot-outs with 540 observations. 
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Genakos and Pagliero (2012) who study the impact of interim rank on risk-taking and performance in 

weightlifting competitions. They find that risk-taking takes an inverted-U relationship with interim rank 

where competitors that are ranked just behind the leader take more risk. In addition Chevalier and Ellison 

(1997) find that mutual funds with relatively low mid-year performance increase fund volatility, relative to the 

funds with relatively high mid-year performance. 

The view that the player lagging behind increases risk-taking is not unanimous. Kräkel and Sliwka (2004) 

analyze a two-player tournament where players have asymmetric abilities. They show that depending on the 

interplay of effort and probability of winning and the degree of asymmetry between agents diverse equilibria 

are possible. For example, both agents may choose a high or low risk strategy. Nieken and Sliwka (2010) 

analyze a static model in which a leading player and a lagging player decide between risky and safe strategies. 

They show that the decisions depend on the correlation between contestants' outcomes of risky strategies. If 

the correlation is low, the player lagging behind increases risk whereas the leader plays safe in order to protect 

her lead. However, if the correlation is high, it might be optimal for the leader to follow the laggard's risky 

strategy.143 In a high-correlation environment it may well be attractive for the leading agent to imitate the 

competitor's risky strategy. Independent of whether the strategy fails or succeeds the relative position remains 

unchanged when the strategy can be exactly replicated. Thus, choosing the risky strategy becomes a means to 

protect the lead. If the outcomes of risky strategies are uncorrelated the imitation of risk-taking is ruled out 

from the outset. 

Building on this theoretical framework on leading-effects and risk-taking we test two alternative predictions. 

First, teams playing the first game at home have an advantage at the beginning of the tournament and thus 

take the lead more often than teams playing the second game at home. This leading-effect might favor teams 

playing the first game at home by encouraging them to exert more effort or discourage the team lagging 

behind to exert effort.144 Second, if the correlation between the contestants' outcomes of risky strategies is 

low, teams lagging behind at the end of the tournament might increase risk-taking as they have nothing to 

lose. This `gambling for resurrection' could advantage the team playing the second game at home. If, 

however, the correlation is high teams might copy the rival's risk-taking strategy and risk-taking may be 

constant across teams and games. As both effects might be simultaneously taking place, we will first analyze 

risk-taking both dependent and independent on past performance. As the correlation between contestants' 

                                                
 

143 Taylor (2003) sets up a model in which two heterogeneous fund managers in terms of midyear performance compete for new cash inflows at 
the end of the year. He shows that the outcome in which the lagging manager gambles and the leading manager indexes only holds if one of the 
managers is an exogenous benchmark. However, if both managers are active and the outcomes of their risky strategies are correlated, the leading 
manager is more likely to gamble. 

144 Note that both encouragement as well as discouragement-effect go in the same direction, i.e. they advantage the leading team. In this paper we 
therefore focus on measuring the impact of the random order of play on the selection efficiency of dynamic tournaments. The distinction between 
encouragement and discouragement-effect is beyond the scope of the paper. 
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outcomes of risky strategies is rather high in soccer145 we show that risk choices are constant and do not 

depend on past performance. This result is in line with the theoretical predictions by Nieken and Sliwka 

(2010). We then test for leading-effects given constant risk choices and find no evidence of a significant 

effect. 

The remainder of the paper is organized as follows: Section 2 describes the data. In Section 3, we analyze 

risk-taking in each game of the knock-out and conditional on the result of the first game. Section 4 provides 

evidence on the absence of leading-effects. Section 5 discusses the results and Section 6 concludes. 

4.2 Data 

We construct a dataset with 1,146 games and thus 573 knock-outs where the home advantage is randomly 

assigned by the regulation of the Union of European Football Associations (UEFA).146 The data come from 

the UEFA. Table 4.1 summarizes the data. The dataset consists of games played in the UEFA Champions 

League and UEFA Europa League147 from 1955 until 2009. Observations from 564 games are from the 

period of 2005-2009 (80 from 2000-2004 and 502 from 1955-1999). 

For each game, we observe the date, result, location, knock-out round, tournament, and whether the team 

passed the knock-out round by goal difference, away goals rule, extra time, or penalty kicks. Table 4.2 

summarizes the relative importance of each UEFA regulation.148 The goal difference rule is by far the most 

important one. In the last column, we summarize the winning probability of a single game from the 

perspective of the home team. The data on home winning probabilities show that the place where the game is 

disputed significantly affects the outcome. This result is therefore in line with previous literature on the 

advantage of playing at home.149 

4.3 Natural Experiment 

We study a randomized natural experiment in which the order of an advantage, and thus treatment and 

control group, are determined via explicit randomization. One team is drawn to play the first game home, and 

the other to play the second game home. In this natural experiment professionals know exactly the 

                                                
 

145 Grund and Gürtler (2005) analyze single soccer games. They show that as the opponent increases risk-taking it is easier for the other team to 
score a goal. Intuitively, in the extreme risk-taking case where a team is lagging behind and the goalkeeper joins the striker in the last few minutes 
of the game to try to equalize the result, it will be very easy for the opposing team to score a goal. 

146 The UEFA is the administrative and controlling body of the European soccer association. UEFA represents most of the national soccer 
associations of Europe, runs national and club competitions and controls the prize money, regulations and media rights for those competitions. 

147 UEFA Champions League replaced the European Champion Clubs' Cup after season 1991/1992. UEFA Europa League replaced the UEFA 
Cup after season 2008/2009. 

148 See the appendix for the structure of the knock-out and the four ways of winning the knock-out. 

149 The average goal difference between home and away team is .72 goals in our sample of 1,146 games. This positive difference is significantly 
different from zero (same number of home and away goals) at a p-value lower than .01. Other studies (Carmichael and Thomas, 2005; 
Greenhough et al., 2002; Clarke and Norman, 1995; Pollard, 1986) estimate this advantage to be between .43 and .66 goals in national soccer 
leagues. However, they also find that the home advantage increases significantly in the geographical distance between the two teams. Hence, our 
findings which are based on international games between more distant teams are in line with the existing literature on the home advantage. 
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tournament's setting, the payoffs and incentives are very high, and the process of allocating teams is random. 

Page and Page (2007) analyze the same knock-out setting. The most important difference between this paper 

and Page and Page (2007) is that we develop an identification strategy capable of distinguishing between the 

leading-effect and risk-taking. In addition Page and Page (2007) do not distinguish between random and non-

random knock-out rounds. The key difference is that in the non-random knock-out rounds the regulation 

states that better teams play their last game home. Page and Page (2007) find a positive and significant effect 

of playing the second game at home (55% vs. 45%), but cannot distinguish between the risk-taking effect and 

the higher ability of teams playing the last game home. These two confounding variables would favor the 

teams playing the second game at home, but it is not clear which one, if any, should be the driver of the 45% 

vs. 55% advantage. 

In contrast, we focus on knock-out rounds where the order of the advantage is randomly assigned. This 

allows us to exploit the properties of a natural experiment and specifically the fact that team characteristics as 

ability and the treatment effect, i.e. the order of home games, are independent.150 In the final phase of the 

major European soccer tournaments, such as the Champions League and the Europa League, teams are 

randomly drawn to play against each other with a time interval of one to three weeks between the two games. 

There is a fundamental difference between knock-outs in the final rounds of the tournament, i.e. the quarter- 

and semi-finals, and the qualification rounds for the main tournament. For instance, Article 8.07 of the 

Regulations of the UEFA Champions League 2008/09 prescribes that "the ties are determined by means of a 

draw. The club drawn first plays the first leg of the tie at home". With respect to the qualification phase, 

Article 8.01 of the Regulations of the UEFA Champions League 2008/09 states that "the UEFA 

administration seeds clubs for the qualifying phase, the play-offs and the group stage (...) in accordance with 

the club coefficient ranking established at the beginning of the season (...)".151 Thus, teams are not randomly 

drawn to play in a given order, but better teams are allocated to play the second game at home. In light of this 

fundamental difference, causal inference about the order can only be drawn from the final phase. Therefore, 

we analyze the 1,146 games where the home advantage is randomly assigned. 

Because of the random draw, the Average Treatment Effect (ATE) is defined as the difference between the 

two groups' mean winning probabilities. Let �I (�f) denote the winning probability of a team playing the 

second (first) game at home, and let w denote the allocation of home and away games. The average treatment 

effect is �C)I = �C)f = )(�|> = 1) − )(�|> = 0), if w is statistically independent of �I and �f . 

                                                
 

150 We also tried an identification strategy similar to Malueg and Yates (2010) and selected equally skilled teams using the smallest possible positive 
goal difference of the first game, i.e. a one goal lead by the home team. The results on leading-effect and risk-taking were unchanged. 

151 Article 6.09 states that "the quarter-final pairings are determined by means of a draw. The quarter-finals are played under the cup (knock-out) 
system, on a home-and-away basis (two legs)." Article 6.10 prescribes that "the semi-final pairings are determined by means of a draw." The same 
rules apply to the Round of last 16 as well as the quarter- and semi-finals of the Europa League. 
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As the theoretical work on dynamic tournaments points out, two effects going in opposite directions may 

emerge from such a setting. First, teams may get discouraged (encouraged) after an initial loss (victory) which 

gives them information feedback on their opponent's ability. Second, teams lagging behind might choose 

riskier strategies.152  

The econometric problem arising from these different strategies can be illustrated as follows. Let EI,� (Ef,�) be 

the risk-taking in the � = g�1��; 	�
�	� game of team S (F) that plays the second (first) game at home. 

Then )(�|> = {1,0}) ≠ )(�|> = {1,0}, Ef,� , EI,�), as both choice variables Ef,� and EI,� are correlated with 

the random allocation of the advantage. If we do not control for them, we would have a biased estimator of 

order effects as the analysis would suffer from an omitted variable bias. Therefore, we must first understand 

what type of model drives teams' risk choices. As shown by Nieken and Sliwka (2010), if the correlation 

between contestants' outcomes of risky strategies is low, then there is an incentive for the team lagging 

behind to increase risk. If this correlation is high, teams tend to copy the rival's strategy more often. 

Specifically to our setting, if the correlation is high F anticipates the risk strategy that S chooses in the second 

game and chooses the same risk level in the first game. Under this hypothesis )(�|> = {1,0}) = )(�|> =

{1,0}, Ef,�, EI,�),  as risk choices are identical across games of the knock-out and thus the ATE is the 

difference of the winning probabilities given the order of the home game. In the next section we provide 

indirect empirical evidence that the correlation between contestants' outcomes of risky strategies is rather 

high and thus risk-taking is indeed constant across games and unconditional on past performance. 

4.4 Risk-taking Unconditional on Past Performance 

    The effects of risk-taking can be tested in two ways: first, by comparing the distribution of results (home 

win, draw, away win) in the first and second game, and second, by comparing the number of goals scored 

across games. These two measures are interrelated and capture whether there is evidence that risk-taking 

influences the results across games. Intuitively, if risk-taking differs across games, it should shift the 

distribution of results towards the extremes (more home/away wins) and increase the number of goals at the 

end of the knock-out, when one team is lagging behind. We start by analyzing the first measure, i.e. the 

distribution of results (home (win), draw and away (win)), in the two games. 

If risk-taking plays an important role at the end of the knock-out, we should observe significantly fewer draws 

in the second game and more home/away wins as the effect of an increase in risk would be to shift 

probability from the median (draw) to the extremes (win/lose). Teams lagging behind towards the end of the 

knock-out have nothing to lose and thus might be indifferent between a draw and a defeat. Note that 

                                                
 

152 A natural way in which coaches of teams that are lagging behind might increase risk-taking is by substituting defensive players by more 
offensive ones. Using data on the German soccer league Grund and Gürtler (2005) provide evidence that coaches adopt this strategy. However, 
risk-taking does not pay off in this setting. 
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monetary incentives to win the knock-out are very high and often exceed € 3 million,153 which points to the 

fact that winning the knock-out really matters. Figure 4.1 shows the relative frequency of each outcome for 

1,146 games where the home advantage is randomly assigned. To test the hypothesis of constant risk-taking 

in both games we perform a non-parametric Kolmogorov-Smirnov test on the distribution of outcomes. The 

test cannot reject equality of distribution across games with a p-value of .89. The distributions do not differ, a 

finding that is in line with our hypothesis that risk choices are constant over games of the knock-out. The 

second measure we use to evaluate the relevance of risk-taking is the distribution of the sum of the home and 

away team goals across games. If at the end of the knock-out one team is lagging behind and has an incentive 

to increase risk-taking, we should observe that the distribution of the sum of the goals is more skewed to the 

right (more goals) in the second game. The average number of goals in the first (second) game is 2.48 (2.7) 

implying a difference of .22 goals across games. Doing a two-sided t-test with 573 observations per sample, 

the .22 difference is statistically significant at a p-value of .031. While this might point to an increase in risk-

taking at the end of the knock-out, the magnitude is very small, one goal more every five games, which points 

to a negligible effect of risk-taking on the outcome of the knock-out. 

To confirm this assertion we plot the histogram of the sum of home and away team goals in the two games in 

Figure 4.2 and perform a two-sample Kolmogorov-Smirnov test to evaluate whether the distributions are 

significantly different. Using our 1,146 games, 573 in the first game and 573 in the second game, we cannot 

reject equality of distribution functions at a p-value of .24. Thus, while there is some evidence that the 

number of goals increases in the second game, the magnitude is very small and the distribution of the sum of 

goals is not statistically different across games. 

4.5 Risk-taking Conditional on Past Performance 

    Even though we cannot reject that the distributions of goals are equal across games, strategies across 

games might not be independent and thus teams might react to past performance. In particular, teams that 

lost the first game might increase their risk-taking. This strategy, if effective, might lower the selection 

efficiency of tournaments as predicted by Hvide and Kristiansen (2003). We test this by relating the sum of 

home and away goals in the second game to the goal difference (home-away) in the first game. If risk-taking 

depends on past performance we would expect that the sum of goals in the second game increases if the 

absolute goal difference in the first game increases, i.e. we should observe a U-shaped relation between past 

performance (goal difference) and the sum of goals.154 A team lagging behind in the second game, i.e. with a 

                                                
 

153 For instance, in addition to the revenues generated from broadcasting, merchandising, sponsoring and tickets, each of the 32 teams that play in 
the Champions League receives a minimum payment of € 9.3 million plus rewards of reaching the round of last 16 (€ 3 million), the quarter-finals 
(€ 3.3 million), the semi-finals (€ 4.2 million) and the final (€ 5.6 million). UEFA (2012). Financial Report 2010/11. UEFA, Nyon: Switzerland. 

154 If S is lagging behind by a large goal difference after the first game it could increase risk-taking which in turn leads to a higher total number of 
goals in the second game. Symmetrically, if F is leading by a large number of goals it will be easier for F to score additional goals in the second 
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negative goal difference in the first game, might increase risk-taking as they have nothing to lose which 

should increase the number of goals in the second game. The team lagging behind might substitute a 

defensive player for a more offensive one as shown in Grund and Gürtler (2005) which increases the 

likelihood that the team lagging behind equalizes while at the same time makes it easier for the leading team 

to score. Both effects point to an increase of the sum of home and away goals in the second game. 

If, however, the correlation between contestants' outcomes of risky strategies is relatively high, it might be 

optimal for both the leading and lagging team to choose the same risk level and thus the sum of goals in the 

second game should be independent from the goal difference of the first game. 

In Figure 4.3 we plot the mean, interquartile range and 95% confidence interval of the sum of home and 

away goals in the second game conditional on the goal difference (home-away) in the first game. We can test 

two alternative hypotheses regarding risk-taking across the two games. First, teams lagging behind increase 

their risk-taking. Thus there should be a positive relation between the number of goals that a team is lagging 

behind after the first game and the total number of goals scored in the second game. Second, risk-taking is 

constant across games and thus there is no relation between past goal difference and the sum of goals in the 

second game. 

As Figure 4.3 shows, the sum of goals in the second game is independent of the goal difference in the first 

game. In order to test the graphic relation we perform an OLS regression with robust standard errors as given 

by: 

 

              �������lQm,A = �₀ + �₁�����gl,m,! + �₂�����gl,m,!² + �₂	                                 (1)	

 

    We define �������lQm,A as the sum of home (H) and away (A) goals in the second game. u₂ is the error 

term. Let �����gl,m,! (�����gl,m,!²) be the difference (squared) between home and away goals in the 

first game. If risk-taking plays a role we should observe a U-shaped relation between past performance (goal 

difference) and the sum of goals. Thus, β₁ should be insignificant and β₂ should be positive and significant. 

Estimating the regression using OLS we find that the constant is positive, 2.69, and significant at the 1% 

level. β₁ and β₂ are highly insignificant with a p-value of .77 and .97, respectively. These results confirm the 

graphic evidence that there is no relation between past performance and current risk-taking. 

 

                                                                                                                                                                     
 

game as S increases its risk-taking. In contrast, if the goal difference between teams is rather low, we would expect risk-taking and thus the total 
number of goals in the second game to be low. 
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4.6 On the Absence of Leading-effects 

We can test for leading-effects using a natural experiment in soccer knock-outs if risk-taking is constant 

across games and teams. As we show in the previous section, there is no evidence that risk-taking plays a 

significant role. Thus, we can exploit the properties of the natural experiment. The two-game structure in 

soccer competitions should be a neutral structure absent of order effects. The overall winning probability for 

S, the team playing second home, is 51.8%. While the point estimate is slightly above 50%, it is far from being 

significantly so. For preliminary evidence we perform a two-sided binomial test with the hypothesis that the 

order of play does not significantly influence the probability of winning. Performing the test with a sample 

size of 1,146 games and H₀: 50%, we get a p-value of .31 so that we cannot reject the hypothesis of the mean 

to be 50%. 

In Table 4.3, we perform an in-depth analysis by adding various control variables. We use a logit model155 

where the dependent variable, >�	� , is binary and equals 1 if the team i wins the knock-out. As our 

observations are not independently drawn from the same population, but one team winning the knock-out 

implies the other losing it, we cluster the standard errors by the knock-out ID. 

In the first specification of Table 4.3, we regress >�	� on rs�, a dummy indicating whether team i plays the 

second game at home. As specification 1 shows, SH is indeed insignificant. In the second specification, we 

add an interaction term between SH and time dummy variables from 1955 to 2009 to test whether time fixed 

effects are present. In specification 3, we add an interaction between Champions League games and SH. As 

better teams play for higher stakes in this competition as opposed to the Europa League, it might be that 

these teams are more capable of exploiting their advantage deriving from order effects. As the regression 

results show, this is not the case. Statistically, there is no significant difference between SH in Champions 

League or Europa League. In specification 4, we include both time fixed effects and the Champions League 

dummy but results are unchanged. In specification 5, we include round dummies. As it might be that order 

effects are stronger in the final knock-out rounds of the tournaments when stakes are highest, we include 

four interactions between round dummies and SH. As specification 5 shows, none of them is individually 

significant at the usual confidence levels. In the last specification we add all control variables but none has a 

significant effect on the probability of winning given that the team played the second game home and SH is 

insignificant. 

In this two-game tournament context, we find no evidence for leading-effects. On average, teams playing 

home second have a slight advantage, but this is not significantly different from no-advantage. The evidence 

provided in Table 4.3 and in the previous section on risk-taking shows that allocating symmetric advantages 

                                                
 

155 Using a probit model instead does not qualitatively change the results. 
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at different stages of tournaments is both fair from the players' perspectives and guarantees selection 

efficiency from the tournament organizer's perspective. 

4.7 Discussion 

Our empirical strategy rests on two testable predictions from the theoretical literature on tournaments 

(leading-effect and risk-taking). Even though our strategy addresses each prediction separately there might be 

some concerns on the strategies and beliefs teams have during the game which we do not observe. For 

example, we do not observe the beliefs of players or coaches. If they believe to be disadvantaged by their 

order of home play, this might cause an (unobservable) decrease in effort. While such beliefs are 

unobservable, we address the two main causes of order effects and provide evidence that neither of them 

plays a significant role. In soccer there might be additional unobserved strategies, as for example players 

might get substituted for the risk of injuries or the coach might change formation. While it is unquestionable 

that such decisions may play a role, the advantage of having a natural experiment is that the teams' 

characteristics are uncorrelated with the treatment effect. Thus, additional strategic behavior should be 

uncorrelated with the treatment effect, i.e. the order of the advantage, as we control for the two main 

potential causes of order effects. Furthermore, in other sports like National Basketball Association (NBA) 

basketball, teams might be more likely to intentionally lose games at the end of the regular season because of 

the incentives they face (Taylor and Trogdon, 2002). This is not a concern in our setting, where the seedings 

for the tournament depend on the end-of year rankings in the national leagues and (financial) incentives to 

compete in every game of the tournaments are very high.156 An additional concern might be that our setting is 

not perfectly symmetric. Even though 93% of the knock-outs finish after the second game, a minority 

continues to supplementary times (4%) and eventually finishes after the penalty kicks (3%), as is shown in 

Table 4.2. In knock-outs where the competition is tight, S might adopt a strategy which increases the 

probability of reaching the extra time. Then S will be playing the extra time at home, where it has an 

advantage.157 While these issues might be a concern, players are highly paid professionals who exactly know 

the setting of the game and have high incentives to pass the knock-out round. If they could get advantaged by 

their order of home play, they would exploit this advantage. At optimum, coaches and players maximize their 

winning probability given the random order of home play. 

4.8 Conclusion 

Tournaments are widely used for two main purposes: as a selection mechanism and to provide incentives to 

work hard. While many tournaments are dynamic, little is known about the effect of revealing information 

                                                
 

156 See footnote 15. 

157 We performed the leading-effect analysis on different sub-samples depending on when the knock-out ended (regular time, extra time and 
penalty kicks), but results were unchanged. 
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during the tournament on participants' effort and risk choices. We focus on the selection efficiency of 

dynamic tournaments. If the structure of multi-game tournaments systematically distorts winning 

probabilities because of leading-effects or risk-taking, tournaments may not be an efficient selection 

mechanism when multiple repetition under different conditions is needed. Some players could benefit from 

an advantaged position and the winner may not be the best participant, but the luckiest one. In this paper, we 

analyze the presence of order effects in dynamic tournaments with asymmetric conditions. We define order 

effects as whether the random order of a temporary advantage for a team in multi-game tournaments has an 

impact on its probability of winning. From a theoretical perspective two alternative and opposing hypotheses 

have been proposed. First, there might be a leading-effect. The winner of the first game faces a higher 

`effective prize' from winning the second game than the first-game loser. This encourages the leading team 

and/or discourages the team lagging behind to exert effort. Second, agents lagging behind might increase 

risk-taking as they have nothing to lose. 

Using a natural experiment with 1,146 observations in professional sports competitions where highly paid 

professionals play in tournaments with strong (financial) incentives, we develop an empirical strategy to 

distinguish between the two order effects highlighted by theoretical work on tournaments: leading-effect and 

risk-taking. In two-game soccer knock-out competitions, teams are randomly drawn to play either the first or 

second game at home, and thus have an advantage either early in the knock-out round or later. Before 

analyzing the conditional winning probability on the randomly assigned order of the advantage we provide 

evidence that risk-taking is constant across games and does not increase in response to negative past 

performance. Our empirical evidence suggests that players anticipate the opponent's risk-taking across games 

and adapt their risk-taking behaviour accordingly. The team playing the first game at home, F, anticipates that 

the opponent might lag behind and increase risk-taking in the second game. Consequently, F increases risk-

taking in the first game as well, and risk choices are constant across games. 

As we do not find any evidence of risk-taking, we perform a series of regressions relating the winning 

probability to the order of the advantage and other covariates. We find that teams have statistically the same 

winning probability irrespective of whether they have an advantage in the first or second game. Using a 

unique and large dataset with 1,146 games where advantages are randomly assigned, we show that teams 

playing first (second) home win 48.2% (51.8%) of the knock-outs, not statistically different from 50% with a 

p-value of .31. In the regression analysis we confirm this finding using a logistic regression model with 

clustered standard errors at knock-out-ID. In addition, we add other control variables as time fixed effects, 

type of tournament and knock-out round dummy variables. The results are unchanged. In all specifications, 

the order of the advantage is never significant. 

Our findings using team sport data are consistent with Ferrall and Smith (1999). In contrast, papers using 

data on individuals as Malueg and Yates (2010) and Genakos and Pagliero (2012) find evidence of strategic 
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effects. A possible explanation for this difference between teams and individuals is provided by Ferrall and 

Smith (1999) who argue that incentives within teams may attenuate incentives between teams. Our results 

suggest that if the setting is known by participants and individuals are competing in teams the timing of 

symmetric advantages seems irrelevant. This guarantees selection efficiency and fairness for participants. 
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4.9 Appendix 

4.9.1 Setting 

There are four ways of winning the knock-out, which apply in the following order. First, the goal difference 

rule states that the team that scores more goals on aggregate in the two games qualifies for the next knock-

out round. Second, the away goals rule prescribes that if the two teams score the same number of goals over 

the two games, the team that scores more away goals qualifies for the next knock-out round. Third, Article 7 

of the Regulations of the UEFA Champions League 2008/09 states that "if both teams score the same 

number of goals at home and away, two 15-minute periods of extra time are played at the end of the second 

leg". Fourth, "if no goals are scored during extra time, kicks from the penalty mark (...) determine which club 

qualifies for the next stage." 

The knock-out competition is structured in six steps. 

1) Teams F and S are randomly allocated to play either the first or the second game at home. 

2) The first game is played. Assume without loss of generality that F is the home team in the first game. 

3) The second game is played (S is the home team now). 

4) If the sum of the goals of S is strictly larger (smaller) than those of F, the game ends and S (F) wins 

the knock-out. If the sums are equal, the team that scored more away goals wins. If also the away 

goals are equal the game continues at S's venue. 

5) Supplementary time is played. The team that scores more goals in the supplementary time wins. 

6) If both teams score the same number of goals, penalty kicks are used to determine the winner. 

 

The continuation of the game at S's venue could be the explanation for the higher point estimate of teams 

playing the second game home, 51.8%. As we show in Table 4.3, there is no significant advantage from 

playing second, but the fact that the game is played on the field of the team playing home second is certainly a 

small advantage. The percentage of games ending after the second game for the entire dataset with 1,146 

observations is 93%, while 4% of the games end after supplementary times and 3% after penalty kicks. The 

probability of winning for S conditional on reaching supplementary time (penalty kicks) is 57% (55%), not 

significantly different from 50%. 
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4.9.2 Tables and Figures 

 

 

Table 4.1: Summary of the data 

Competition Phase Time Period 

  

1955-1999 2000-2004 2005-2009 1955-2009 

Champions League Final KO Round 502 80 28 610 

Europa League Overall 0 0 536 536 

 
Final KO Round 0 0 456 456 

 
KO Round of last 16 0 0 80 80 

Note: One observation is one game. Overall number of observations: 1,146. Final Knock-Out (KO) Round comprehends 
quarter- and semi-finals. We only consider games where the order of the home advantage is randomly assigned by the UEFA. 

 

Table 4.2: UEFA regulation, passing the knock-out round and home advantage 

UEFA Regulation Observations Frequency Home Result Observations Frequency 

Goal difference 929 0.81 Home win 611 0.53 

Away goals rule 139 0.12 Home draw 300 0.26 

Supplementary time 42 0.04 Home defeat 235 0.21 

Penalty kicks 36 0.03       

Note: There are several ways of passing the knock-out round as discussed in the appendix. This table summarizes the relative 
importance of each of them. The ‘goal difference’ regulation is the most important one. For a detailed description of the regulation 
see UEFA.com. ‘Home Result’ is defined as the result from the perspective of the home team, irrespective of whether it is the first 
or second game of the knock-out. One observation is one game. Overall number of observations: 1,146. We only consider games 
where the order of the home advantage is randomly assigned by the UEFA. 
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Table 4.3: The absence of order effects 

  (1) (2) (3) (4) (5) (6) 

 

Binary Dependent Variable: Win the knock-out=1; Lose=0 

              

Second Home (SH) 0.175 0.0873 0.0413 0.177 0.108 -0.0288 

(0.167) (0.296) (0.300) (0.190) (0.203) (0.315) 

Round of last 16*SH 0.385 0.392 

     
(0.353) (0.348) 

Quarter Final*SH 
    

0.123 0.172 

     
(0.195) (0.424) 

Semi Final*SH 
    

-0.0382 -0.00463 

     
(0.237) (0.448) 

Champions League*SH 
  

0.466 -0.00431 
 

0.419 

(0.413) (0.168) (0.556) 

Year Dummy  Yes Yes   Yes 

Constant -0.0873 -0.0873 -0.0873 -0.0873 -0.0873 -0.0873 

 
(0.0837) (0.0837) (0.0837) (0.0837) (0.0837) (0.0837) 

       Observations 1,146 1,134 1,134 1,146 1,146 1,134 

Note: Robust standard errors clustered by knock-out-ID in parentheses. The results do not change qualitatively if the 
probit regression model is used instead of the logit model. Year Dummy is a binary variable which indicates the year in 
which the knock-out is played. One observation is one game. We only consider games where the order of the home 
advantage is randomly assigned by the UEFA. 6 observations from Saison 1968 and 6 observations from Saison 2001 are 
dropped due to collinearity in specifications 2, 3 and 6. 
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Figure 4.1: Results in the First Game (FG) and Second Game (SG) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Figure 4.1 shows the frequency of outcomes (home (win), draw, away (win)) in the first and second 
game of the knock-out. The square dot represents the percentage of each result, while the square around 
the dot represents the 95% confidence interval (CI) around the mean. The square  (diamond) represents 
the results in the first (second) game. FG (SG) refers to the first (second) game of the knock-out. The 
main result shown in Figure 4.1 is that the distribution of outcomes is statistically the same across games, 
a result confirmed by a non-parametric Kolmogorov-Smirnov where we cannot reject the null of equal 
distributions across games at a p-value of .89. 
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Figure 4.2: Sum of home and away goals by game 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Note: Figure 4.2 shows the distribution of the sum of home and away team goals in the first and second 
game. The dotted (normal) bar represents the first (second) game. While the average number of goals in 
the second game is slightly higher than in the first game (2.7 vs. 2.48) a non-parametric Kolmogorov-
Smirnov test cannot reject that the distributions are equal across games with a p-value of .24. This shows 
that risk-taking measured by the distribution of the sum of goals is constant across games.  
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Figure 4.3 Past performance and risk-taking 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Figure 4.3 shows the relation between the sum of home and away goals in the second 
game (left y-axis) and the goal difference (home-away) in the first game (x-axis). In addition, 
the observations (knock-outs; on the right y-axis) to compute the mean, the interquartile range 
and the 95% confidence interval (CI) are reported. One observation is one knock-out round 
consisting of the first and second game. We restrict the sample to goal-differences with more 
than 10 observations. A total of 12 knock-outs with goal-differences greater (lower) than 4 (-3) 
are dropped. The main result of Figure 4.3 is that the sum of home and away goals in the 
second game is independent from the goal difference in the first game. If teams lagging behind 
increase risk-taking we would expect the sum of goals to increase with the absolute goal 
difference in the first game. The independence between these variables provides further 
evidence that teams do not change risk-taking as a response to past performance. 
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Figure 4.4: Description of knock-out structure 

 

 

 

 

 

 

 

 

 

  

Note: F (S) denotes the team playing the first (second) game at home. The arrows indicate the progress of the knock-out. 93% 
of the knock-outs end after the second game, 4% end after supplementary times and 3% end after penalty kicks. 
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