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Abstract

This thesis aims at exploring the scopes and limits of techniques for extract-
ing programs from proofs. We focus on constructive theories of inductive
definitions and classical systems allowing choice principles. Special emphasis
is put on optimizations that allow for the extraction of realistic programs.

Our main field of application is infinitary combinatorics. Higman’s Lemma,
having an elegant non-constructive proof due to Nash-Williams, constitutes
an interesting case for the problem of discovering the constructive content
behind a classical proof. We give two distinct solutions to this problem. First,
we present a proof of Higman’s Lemma for an arbitrary alphabet in a theory
of inductive definitions. This proof may be considered as a constructive
counterpart to Nash-Williams’ minimal-bad-sequence proof. Secondly, using
a refined A-translation method, we directly transform the classical proof into
a constructive one and extract a program. The crucial point in the latter
is that we do not need to avoid the axiom of classical dependent choice but
directly assign a realizer to its translation.

A generalization of Higman’s Lemma is Kruskal’s Theorem. We present a
constructive proof of Kruskal’s Theorem that is completely formalized in a
theory of inductive definitions.

As a practical part, we show that these methods can be carried out in an
interactive theorem prover. Both approaches to Higman’s Lemma have been
implemented in Minlog.
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Zusammenfassung

Ziel der vorliegenden Arbeit ist es, die Reichweiten und Grenzen von Tech-
niken zur Extraktion von Programmen aus Beweisen zu erforschen. Wir
konzentrieren uns dabei auf konstruktive Theorien Induktiver Definitionen
und klassische Systeme mit Auswahlprinzipien. Besonderes Gewicht liegt
auf Optimierungen, die zur Extraktion von realisischen Programmen führen.

Unser Hauptanwendungsgebiet ist die unendliche Kombinatorik. Higmans
Lemma, ein Satz mit einem eleganten klassischen, auf Nash-Williams zurück-
gehenden Beweis, ist ein interessantes Fallbeispiel für die Suche nach dem
konstruktiven Gehalt in einem klassischen Beweis. Wir zeigen zwei unter-
schiedliche Lösungen zu dieser Problemstellung auf. Zunächst präsentieren
wir einen induktiven Beweis von Higmans Lemma für ein beliebiges Alpha-
bet, der als konstruktives Pendant zum klassischen Beweis angesehen wer-
den kann. Als zweiten Ansatz verwandeln wir mit Hilfe der verfeinerten
A-Übersetzungsmethode den klassischen Beweis in einen konstruktiven und
extrahieren ein Programm. Der entscheidende Punkt ist hierbei, dass wir
einen direkten Realisierer für das übersetzte Auswahlaxiom verwenden.

Die Verallgemeinerung von Higmans Lemma führt zu Kruskals Satz. Wir
geben einen konstruktiven Beweis von Kruskals Theorem, der vollständig
auf den Induktiven Definitionen basiert.

Der praktische Teil der Arbeit befasst sich mit der Ausführbarkeit dieser
Methoden und Beweise in dem Beweissystem Minlog.
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1 Introduction

The idea that a constructive proof yields a program has been attractive to mathe-
maticians and computer scientists for many years. It is succinctly referred to as the
proofs-as-programs paradigm and originates in proof theoretical methods for analyzing
constructive theories. More recently, the programming aspect of these methods has be-
come more important, most notably, in view of a new methodology for the development
of secure software. This thesis aims at exploring and comparing the scope and limits of
these techniques as well as utilizing them for the synthesis of realistic programs.

1.1 Constructive content of proofs

In order to convey an intuition of the connection between a constructive proof and a
program extracted from it, we recall the so called Brouwer-Heyting-Kolmogorov inter-
pretation (e.g. [TvD88]) which assigns a constructive meaning to each logical connective
and quantifier. According to the Brouwer-Heyting-Kolmogorov interpretation, for in-
stance, a proof of an existence statement of the form ∃xA is given by a witness a and
a proof of A(a), and a proof of a universal statement ∀xA is given by a construction or
method transforming an arbitrary individual a into a proof of A(a). Hence, in the case
of a statement of the form ∀x∃yA(x, y), a proof would yield, in principle, a ‘program’
which for a given input a produces an output b such that A(a, b) holds. A difficulty
in this interpretation, though, is that it is quite vague, since it does not specify what
amounts to such a construction or method.

There are several methods to make the constructive content behind a proof more explicit.
In classical proof theory, for instance, we may use cut elimination. Essentially, given a,
say, arithmetical proof of an existence statement, we can first remove all applications of
induction by embedding the proof into an infinitary system, further eliminate all cuts,
and then may easily read off an instance of the existence statement. This method has
led to many celebrated results in proof theory; however as a programming tool, it seems
to be quite inefficient.

In 1945, Kleene [Kle45] introduced another technique, recursive realizability, which con-
nects Brouwer’s Intuitionism and the theory of general recursive functions [Kle60]. This
method has been successful in proof theory as well, but also turned out to be fruitful with
respect to obtaining programs. Kleene’s realizability assigns to each statement A a new
statement n realizes A where n is a number coding all information related to the re-
alization of existential (and disjunctive) statements occurring in a proof of A. Therefore
it may be seen as an instance of the Brouwer-Heyting-Kolmogorov-interpretation1.

A third method we briefly want to address is Gödel’s Dialectica interpretation [Göd58]

1 According to Kleene, though, both Heyting’s proof interpretation and Kolmogorov’s problem in-
terpretation, ‘failed to help’ him to his goal [Kle60].
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1 INTRODUCTION

which is applicable to both constructive and classical logic, but is not as direct as the
realizability interpretation. Recent applications of the Dialectica interpretation, e.g., in
approximation theory, have been given by Kohlenbach, see for instance, [KO03].

In this thesis we will focus on the realizability interpretation. We work with a variant due
to Kreisel which is based on Heyting arithmetic in finite types and is known as modified
realizability [Kre62, Tro73, Tro98]. Beside the lack of a coding (which is not needed
when working in a typed system), the essential difference is that Kleene realizability
produces partial functions as realizers whereas in modified realizability all realizers are
total.

Realizability as a programming method becomes more realistic when supported by a
machine. In a theorem prover proofs can be checked automatically and the extracted
programs, by construction, are provably correct. Probably the first and still one of the
most important realizations of the proofs-as-programs paradigm [BC85] is the Nuprl
system [CAB+86]. Other successful theorem provers supporting program extraction are
Coq [BBC+97] and the PX-system [Hay90]. Very recently the extraction mechanism has
been included in the Isabelle system [NPW02] (see [Ber03]). The proof system we are
working with, the Minlog system, differs from most of these systems in that it is not
built on constructive type theory. Minlog is based on first order natural deduction and
is intended to reason about computable functionals in finite types using minimal rather
than classical or intuitionistic logic. For a detailed description of the Minlog system we
refer to [BBS+98]. It is one of the aims of this thesis to explore the feasibility of larger
case studies in Minlog.

Since its introduction, realizability has been analyzed in manifold respects, e.g., the
logics, the strength of the systems and the fields of application. Originally proposed for
Heyting arithmetic, it has been investigated in Martin-Löf type theory, in second order
systems, and intuitionistic and constructive set theory (for the latter see [Bee85, McC84,
Cro00]).

Proof theoretically very weak systems have been examined, for instance, in [Hof99, AH02,
ABHS03], the idea being to restrict the logic in such a way that the extracted programs
are of a certain sub-recursive complexity. Our investigations are located at the other
end: we try to explore the limits of realizability by applying it to logically ‘strong’
systems. Our first extension comprises generalized inductive definitions, our second
classical arithmetic using choice principles.

Inductive definitions form a thoroughly investigated powerful proof tool (e.g., [Acz77,
BFPS81, Mat98]) and are used in the development of large parts of mathematics. Elegant
applications may be found, for instance, in proving termination in the context of term
rewriting theory (e.g., [Buc95] or [Per99]) but also in combinatorics, as we will see later.

Inductive definitions together with program extraction have also been investigated for
the calculus of constructions [PM89, PMW93] and for second order systems, e.g. in
[Par92, MP02]. We present a version that fits the Minlog system, i.e., it comprises

2



1.2 Higman’s Lemma and Kruskal’s Theorem

program extraction for Heyting arithmetic extended by inductive types and inductive
definitions.

With regard to classical logic, there exist roughly two types of methods for getting hold
of the constructive content of (a restricted class of) proofs, either by giving classical
proofs a direct computational interpretation (compare e.g. [FFKD87, KP90, BS95a]),
or by translating the classical proof into a constructive one. Although apparently dif-
ferent, these methods are closely related in many cases (see e.g. [Mur91, Mur93]). It is
unknown which of the two methods is better suited for applications. In this thesis we
will concentrate on the translation method, which is mostly referred to as Friedman’s
A-translation, but was independently introduced by Dragalin [Dra79]. The method was
further investigated in [Lei85, TvD88] and made applicable to larger problems by re-
finements in [BS95b, BBS02]. The refined A-translation is implemented in the Minlog
system, for applications, see for instance [BS96, BSS01].

Choice principles play a crucial role in classical mathematics. From a constructive point
of view, the combination of the excluded middle and choice principles turns out to be
problematic, the main reason being that their negative translations fail to be intuitionis-
tic consequences of the original axioms [BBC98]. With respect to extracting programs,
this problem may be overcome by directly assigning realizers to the translated choice
axioms. Such realizers were proposed by Beradi, Bezem and Coquand in [BBC98] and
Berger and Oliva in [BO03]. We will use this approach to extract computational content
of proofs using classical choice principles.

Our main field of application is infinitary combinatorics. We will explore the computa-
tional content of classical proofs and also give some new constructive proofs. The main
examples are Higman’s Lemma and Kruskal’s Theorem.

1.2 Higman’s Lemma and Kruskal’s Theorem

Higman’s Lemma [Hig52] and and Kruskal’s Theorem [Kru60] are two well-known theo-
rems in infinitary combinatorics that comprise statements of the form ‘for every infinite
sequences of words, trees respectively, we can find two elements in the sequence such that
the first one is ‘embeddable’ in the second one. In order to characterize embeddability
and formulate the two theorems we need some more technical definitions.

Definition. Let A∗ be the set of finite sequences, also called words, with elements
in a set A, often called alphabet, equipped with a binary relation ≤A on A. A se-
quence [a1, . . . , an] is embeddable in [b1, . . . , bm] if there is a strictly increasing map
f : {1, . . . , n} → {1, . . . ,m} such that ai ≤A bf(i) for all i ∈ {1, . . . n} . Moreover, let
T (A) be the set of finite trees with labels in A. A tree is embeddable into another one
if there exists a one to one map on them such that (1) the infima of nodes are respected
and (2) the label of each node is less or equal to that of its image. We denote the
embeddability relation on words over A by ≤A∗ , that on trees by ≤T (A).

3



1 INTRODUCTION

Higman’s Lemma and Kruskal’s Theorem are usually formulated in terms of well qua-
siorders.

Definition. Let (Q,≤) be a quasiorder (i.e., ≤ is reflexive and transitive). Then, (Q,≤)
is a well quasiorder (wqo) if every infinite sequence in Q is ‘good’, i.e.,

∀(qi)i<ω∃i, j.i < j ∧ qi ≤ qj.

Proposition 1.1 (Higman’s Lemma).

If (A,≤A) is a well quasiorder,
then so is the set (A∗,≤A∗) of finite sequences in A.

Proposition 1.2 (Kruskal’s Theorem).

If (A,≤A) is a well quasiorder,
then so is the set (T (A),≤T (A)) of finite trees.

Higman’s Lemma and Kruskal’s theorem are of interest in proof theory, computer science
and mathematics alike.

Both theorems have an elegant, classical proof due to Nash-Williams [NW63] using
the so-called minimal-bad-sequence argument. This proof (see chapter 4) will play a
special role in our thesis. More direct proofs of Higman’s Lemma have been given in
[dJP77, Sch79, SS85, MR90, RS93, CF94, CTB94] either using ordinal notation systems
or inductive definitions. In [Vel00] an intuitionistic proof for relations not required to
be decidable is provided; this proof has been transformed in [Fri97] into a type theoretic
proof which only uses inductive definitions. Direct proofs for Kruskal’s theorem can be
found in [Sch79, RW93, Has94, Vel00]. In chapter 4 we shall discuss these proofs in more
detail and classify them.

The proof-theoretic strength of Higman’s Lemma is that of Peano Arithmetic, i.e., ε0,
as was shown in [Gir87] using the constructive proof in [SS85]. The proof in [SS85] is
based on the determination of the maximal ordertype, that is, the height of the tree of
all bad sequences, which for Higman’s Lemma is ωω [dJP77, Sch79]. Kruskal’s theorem
yields an example of a very natural statement not provable in Peano Arithmetic - not
even in ATR0 [Sim85]. Its proof theoretic strength is ϑ(Ωω) [RW93], an ordinal between
Γ0 and the Bachmann-Howard ordinal ϑ(εΩ+1).

In term rewriting theory, Higman’s Lemma and Kruskal’s Theorem are used to prove
termination of string rewriting systems and term rewriting systems respectively. The
orders whose termination is covered by these two theorems are called simplification
orders. They form an important class since the criterion of being a simplification order
can be checked syntactically. A constructive proof, e.g., as given in [CTB94], moreover
yields a bound for the longest possible bad sequence. In the case of Higman’s Lemma
the reduction length, expressed in terms of the Hardy hierarchy, H, assuming a finite
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1.3 Aims and results of the thesis

alphabet A, is as follows. If we have a bad sequence (ti)i<n, fulfilling the condition
|ti| ≤ |t0| + k × i, where k is a constant and |t| denotes the size of t, then the length
n of the sequence is bound by Φ(|t0|) where Φ is an elementary function in H

ωω|A|

[CTB94, Tou97]. For Kruskal’s theorem, using the size restriction |ti| ≤ |t0| + k × i2,
similar results hold: the bound is HϑΩω [Wei94]. Both bounds are essentially optimal
since there are term rewriting systems which ‘reach’ these bounds [Tou02, Lep01].

Finally, both theorems are valuable in graph theory since they are special cases of the
graph minor theorem, the analogous theorem for graphs where instead of an embedding
we have the so-called graph minor relation. (A graph is a minor of another if the first can
be obtained from the second by deleting and contracting edges.) The main ingredient
for the proof of the graph minor theorem is a generalization of Kruskal’s theorem, the
so-called extended Kruskal theorem or Kruskal’s theorem with gap condition for which
up to now only a classical proof is known.

1.3 Aims and results of the thesis

The general problem addressed by this thesis may be summarized by the question: ‘How
to find effective solutions to problems known to be solvable’, or, in more technical terms,
‘how to find computational content in proofs of ∀∃-statements.’ This task is particularly
interesting when the proof given for the ∀∃-statement is non-constructive.

Higman’s Lemma, having a very elegant classical proof, constitutes an important ex-
ample of such a theorem, the relevant question now being: What is the computational
content behind its classical proof? We already know several constructive proofs of Hig-
man’s Lemma. By a closer inspection we see that the combinatorial idea behind these
proofs is different from the one behind the classical proof (cf. chapter 4). Therefore the
second question arises of how we can obtain a constructive proof whose computational
content corresponds to that of the classical proof. In this thesis we present two distinct
solutions to this question:

- We present a proof of Higman’s Lemma for an arbitrary alphabet in a theory of
inductive definitions that may be considered as a constructivization of the minimal-
bad-sequence proof due to Nash-Williams.

- Using A-translation, we directly transform the classical proof of Higman’s Lemma
into a constructive one and extract the program.

The first approach has its origins in a proof for Higman’s Lemma restricted to a two
letter alphabet given by Coquand and Fridlender [CF94].

The second approach has been pursued by Murthy [Mur90] and resulted in a rather large
program; the program we obtain will be shorter, mainly for the following reasons. First,
we apply a refined version of the A-translation and secondly, we assign computational

5



1 INTRODUCTION

content directly to the axiom of classical dependent choice, hence we do not need to
reformulate the classical proof in order to avoid the choice principle.

On the theoretical side, two extensions of the program extraction method have been
necessary to achieve these goals.

- We extend the realizability interpretation from Heyting arithmetic in finite types to
strictly positive inductive definitions in such a way that it exactly fits the Minlog
system.

- We extend the A-translation mechanism to allow assumptions with an external
realizer, as will be exemplified by the translation of classical dependent choice and
provide concrete examples.

Both extensions are supported by the Minlog system. We explore the feasibility of
these methods by means of our examples and

- give an implementation of both approaches to Higman’s Lemma and at each case
extract a program.

As to our second main example, Kruskal’s theorem, the situation is slightly different.
Rathjen and Weiermann [RW93] have presented a constructive proof of Higman’s Lemma
using ordinal notations. Hasegawa [Has94] has given a proof, using a system of algebras,
similar to ordinal notations. Furthermore, Veldman has provided an intuitionistic proof
in [Vel00]. However, there is no direct constructive proof of Kruskal’s theorem (as was
expressed in [Per99]) which allows for a straightforward formalization. As a solution to
this problem

- we present a constructive proof of Kruskal’s theorem that only uses inductive
definitions.

This proof might be seen as the counterpart to the proofs of Higman’s Lemma in [RS93,
Fri93] (cf. the classification of proofs given in section 4.3). In analogy to Higman’s
Lemma, the questions that remain for the future are, how an inductive proof of Kruskal’s
theorem which directly corresponds to the classical proof can be obtained, and whether
it is possible to apply the A-translation method to Kruskal’s theorem. We believe that
the second question can be answered positively, even in the case of the Extended Kruskal
Theorem.

1.4 Outline of the contents

We conclude this introduction with an overview of the subsequent chapters.

6



1.4 Outline of the contents

The thesis has three main parts, two theoretical and one practical. The first part com-
prises program extraction and its extensions, the second contains new proofs of Higman’s
Lemma and Kruskal’s Theorem and the third part, mainly the appendix, is about the
formalization in the Minlog system.

In Chapter 2 we describe program extraction from constructive proofs and extend the
realizability interpretation to strictly positive inductive definitions in such a way that it
can be formalized in the theorem prover Minlog. Particular emphasis thereby lies in
an optimization which avoids redundant variables in the extracted program.

Chapter 3 is devoted to program extraction from classical proofs allowing assumptions
with external realizers. We give a short presentation of the refined A-translation method
[BBS02] and combine it with results of [BO03]. Finally, we add a first example in which
we use a realizer for the negative translation of dependent choice to underpin this method.

Chapter 4 gives an overview on the classical and constructive proofs of Higman’s Lemma
and Kruskal’s Theorem. To this end we compare several methods of proving a set well
quasiordered and show how the constructive proofs are related. The chapter concludes
with a classification of all known proofs.

Chapter 5 aims at a proof of Higman’s Lemma for an arbitrary well quasiordered alphabet
in a theory of inductive definitions that uses the same combinatorial idea as the non-
constructive proof of Nash-Williams.

In Chapter 6, we study a variant of the axiom of dependent choice and use it for the
implementation and A-translation of the classical proof of Higman’s lemma. We briefly
discuss the extracted program and give an alternative animation of the realizer for the
axiom of dependent choice by directly adding an optimized scheme program.

A new constructive proof of Kruskal’s Theorem in a theory of inductive definitions is
presented in chapter 7.

In the appendix we show the implementations and the extracted programs for the ex-
amples given in the chapters 3, 4 and 5.

7
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2 Computational Content of Proofs using Inductive

Definitions

Our first chapter is devoted to the computational content of constructive proofs. First
of all, we shall fix the formal system we are working in. We start with a description of
Heyting Arithmetic, extended by inductive types and inductive definitions, and, explain
the mechanism of extracting programs. The main emphasis thereby lies on the treatment
of inductive definitions, where we distinguish between inductive definitions with and
without computational content. A further optimization consists in allowing two sorts
of quantifiers, the usual ones and those carrying no computational content, to avoid
redundant variables in the programs. This thesis is essentially self-contained; however,
we assume some familiarity with proofs presented in a Curry-Howard style and with
realizability interpretations and directly develop the system as it is needed for this thesis.
The treatment of inductive types is inspired by [Ber95] and [Ben98]. The optimization
of allowing quantifiers with no computational content was first suggested in [Ber93].

2.1 Extended Heyting Arithmetic

Our term calculus is HAµ which is an extension of Heyting Arithmetic in finite types,
HAω (see [Tro73] or [TvD88]), by inductively defined types, also called free algebras.

Types and Terms

Definition. Types are generated from inductive types, denoted µ, via × and →, that
is, if ρ and σ are types, then so are ρ× σ and ρ → σ; in short: types are

µ | ρ× σ | ρ → σ.

A new inductive type µ is introduced by the following equation:

µ = c1

(
~ρ1, ~σ11 → µ, . . . , ~σ1m1 → µ

)
+ · · · +

cn

(
~ρn, ~σn1 → µ, . . . , ~σnmn → µ

)
where for all i, j such that 1 ≤ i ≤ n, 1 ≤ j ≤ mi, 0 ≤ mi, n, ~ρi and ~σij are lists of
types built from previously defined types only. Then, µ is the type whose elements are
generated from the constructors

ci : ~ρi →
−−−−→
~σi → µ → µ.

Conventions. ~ρ denotes a list of types: ρ1, . . . , ρ|~ρ|. Moreover, we use the abbreviation
~ρ → σ for the type ρ1 → · · · → ρ|~ρ| → σ.

9



2 COMPUTATIONAL CONTENT OF PROOFS

Remark. 1. The notion of an inductive type can be extended by assigning names to
the destructors of the inductive types, as well. Thus, in

µ = c1

(
~p1 : ~ρ1, q11 : ~σ11 → µ, . . . , q1m1 : ~σ1m1 → µ

)
+ · · · +

cn

(
~pn : ~ρn, qn1 : ~σn1 → µ, . . . , qnmn : ~σnmn → µ

)
we, in addition, fix the destructors

pij : µ → ρij

qij : µ → ( ~σij → µ).

2. Note also that these definitions can be extended to simultaneously defined types in
the obvious way.

Examples. 1. boole = true + false

2. nat = 0 + Succ(Pred : nat)

3. tsil α is the type for reverse lists over the type α, i.e.,

tsil α = Lin + Snoc(Lead : tsil α, Last : α)

with constructors Lin : tsil α and Snoc : tsil α → α → tsil α and destructors Lead :
tsil α → tsil α and Last : tsil α → α.

Definition. Terms are built from typed variables and constants (including constructors
and destructors) via λ-abstraction, application, pairing and projection, that is, terms
are

x | c |λxt | st | 〈s, t〉 |πi(t).

For each ground type µ and type τ we have a recursion operator Rµ,τ which allows us
to define functions from µ to τ via recursion on the structure of µ. That is, if

~ρi →
−−−−→
~σi → µ → µ

is the type of the i-th constructor ci of µ, then the i-th step type δi is

~ρi →
−−−−→
~σi → µ →

−−−−→
~σi → τ → τ

and the recursion operator has the type

Rµ,τ : δ1 → · · · → δn → µ → τ.

Analogously, we also have a case distinction operator

Cµ,τ : δ1 → · · · → δn → µ → τ

where the i-th step type δi simplifies to ~ρi →
−−−−→
~σi → µ → τ.
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2.1 Extended Heyting Arithmetic

Conventions.

1. We use x, y, z, u, v, w for variables and r, s, t for terms. The type information can
be written as follows: tρ or t : ρ. For sake of readability, it is often omitted.

2. FV(t) comprises the free variables of t. t[x/s] denotes substitution of the variable
x by the term s in the term t, renaming variables if necessary.

Conversions. The conversion rules are

(λxt)s 7→ t[x/s]

(λxt)x 7→ t, x 6∈ FV(t)

πi(〈t0, t1〉) 7→ ti, i = 0, 1

〈π0(t), π1(t)〉 7→ t

With regard to the recursion operator, assuming that ~t consists of parameter arguments
t1

P , . . . , tm
P and recursive arguments t1

R, . . . , tn
R, we have the conversion rule

Rµ,τ~s(ci
~t) 7→ si

~t(Rµ,τ~s ◦ t1
R) . . . (Rµ,τ~s ◦ tn

R)

where rσ→τ ◦ t~ρ→σ := λ~y~ρ.(r(t~y)).

The analogous rule for the case distinction operator is

Cµ,τ~s(ci
~t) 7→ si

~t.

Remark. 1. We identify terms with the same normal form. 2. We also could have an
iterative variant of the conversion rule for the recursion operator, i.e.,

Rµ,τ~s(ci
~t) 7→ si(Rµ,τ~s ◦ t1

R) . . . (Rµ,τ~s ◦ tn
R)

where we do not use the parameters ~t as arguments of the step terms si. However, for
our purposes the recursive version is appropriate, as we will see later, since it exactly
matches with the strengthened induction principle for inductive definitions.

Formulas

We define formulas as well as the type of a formula relative to a given set of predicate
symbols and a type assignment on this set. The type of a formula will be the type of
the program extracted from a proof of that formula.

In the definition of formulas we introduce two sorts of quantifiers, the usual quantifiers
∀,∃ and quantifiers ∀nc, ∃nc carrying no computational content. In proofs, the use of ∀nc

is only allowed if an additional condition is fulfilled. The formulation of this condition
also refers to the type of a formula.

11



2 COMPUTATIONAL CONTENT OF PROOFS

Definition. Let P be a set of predicate symbols, each of a fixed arity ~ρ = ρ1, . . . , ρn. We
always assume P to contain a nullary predicate symbol ⊥ and a predicate symbol atom
of arity boole. Formulas are built from atomic formulas P (~t) (P ∈ P) via implication,
conjunction and quantification. Hence formulas are

P (~t) |A → B |A ∧B | ∀xρA | ∀ncxρA | ∃xρA | ∃ncxρA.

where in P (~t) we assume that P is of arity ~ρ and the terms ~t = t1, . . . , tn are of types
ρ1, . . . , ρn respectively.

Conventions and remarks.

1. We use A, B, C,D for formulas, P, Q for predicates and I for inductively defined
predicates (cf. next section). A[x/t] denotes the substitution of the variable x by
the term t. We write P : ~ρ if the predicate P has arity ~ρ.

2. If A is a formula, then {~x |A} is a predicate, also called comprehension term. We
identify {~x |A}~t with A[~x/~t].

3. The predicate symbol atom transforms a boolean term t into an atomic formula.
We will carefully distinguish between F := atom false and the predicate symbol ⊥
when explaining the mechanism of transforming classical proofs into constructive
ones (cf. next chapter).

4. We use the notation ∀(nc),∃(nc) if both quantifiers can be used.

Definition (The type of a formula). To every formula A we inductively assign an
object τ(A) that is either a type or the symbol ∗. The assignment is relative to a given
(partial) type assignment τ0 for predicates.

τ(P (~t)) :=

{
τ0(P ) if P ∈ P with assigned τ0(P )
∗ otherwise.

τ(A → B) :=


τ(B) if τ(A) = ∗,
∗ if τ(B) = ∗,
τ(A) → τ(B) otherwise.

τ(A0 ∧ A1) :=

{
τ(Ai) if τ(A1−i) = ∗,
τ(A0)× τ(A1) otherwise.

τ(∀xρA) :=

{
∗ if τ(A) = ∗,
ρ → τ(A) otherwise.

τ(∃xρA) :=

{
ρ if τ(A) = ∗,
ρ× τ(A) otherwise.

12



2.1 Extended Heyting Arithmetic

For formulas with a quantifier containing no computational content the obvious definition
is

τ(∀ncxρ A) := τ(A)
τ(∃ncxρ A) := τ(A)

A formula is called computationally meaningful or said to have computational content
if τ(A) 6= ∗.

Definition (Invariant formulas). Formulas without the (computationally meaning-
ful) existential quantifier ∃, which only contain predicates without computational con-
tent, are called invariant formulas.

Proofs

Proofs are presented as lambda terms via the Curry-Howard correspondence and are
defined simultaneously with the set FA of free assumptions. We first give a rough idea
of what is so special about the quantifier ∀nc. Logically, ∀nc behaves similar to the usual
quantifier ∀, albeit the behavior will change when it comes to program extraction. The
main idea is the following: Suppose we conclude

A
∀xA

and, beside the usual variable condition, the variable x is not free in any term t used
in the derivation d of A, (that is, in (∀−) or (∃+)). Then it is easy to see that the
subprogram corresponding to the proof d : A will not depend on x. So, while extracting
the program, we may omit the variable x completely and in order to bookmark that we
are allowed to do this, we ‘assign’ the label ‘nc’ to the quantifier.

Formally, this is done by determining a set CV of ‘computationally relevant variables’,
i.e., variables occurring free in a (sub)derivation, and formulating a strengthened variable
condition for the ∀nc-rule.

Similar conditions would be necessary in the elimination rule for the ∃nc-quantifier.
However, since we treat the existential quantifier via axioms, the only difference is that
the ∃nc-axioms refer to the ∀nc-quantifier.

Definition. Proofs are

uA | cA (c an axiom) | (λuAdB)A→B | (dA→BeA)B |
(〈dA, eB〉)A∧B | (π0(d

A∧B))A | π1((d
A∧B))B |

(d∀xAt)A(t) | (d∀
ncxAt)A(t) |

(λxd)∀xA, x 6∈ FV(C) for uC ∈ FA(d) |
(λxd)∀

ncxA, x 6∈ CV(d) ∪ FV(C) for uC ∈ FA(d)

13



2 COMPUTATIONAL CONTENT OF PROOFS

where for a given derivation d : A, CV(d) and FA(d) are defined as follows.

If τ(A) 6= ∗, then

(ass) FA(u) := {u} CV(u) := ∅
(ax) FA(c) := ∅ CV(c) := ∅
(→+) FA(λu.d) := FA(d)\{u} CV(λu.d) := CV(d)
(→−) FA(de) := FA(d) ∪ FA(e) CV(de) := CV(d) ∪ CV(e)
(∧+) FA(〈d, e〉) := FA(d) ∪ FA(e) CV(〈d, e〉) := CV(d) ∪ CV(e)
(∧−) FA(πi(d)) := FA(d) CV(πi(d)) := CV(d)
(∀+) FA((λx.d)∀xA) := FA(d) CV((λx.d)∀xA) := CV(d)\{x}
(∀nc+) FA((λx.d)∀

ncxA) := FA(d) CV((λx.d)∀
ncxA) := CV(d)

(∀−) FA(d∀xAt) := FA(d) CV(d∀xAt) := CV(d) ∪ FV(t)
(∀nc−) FA(d∀

ncxAt) := FA(d) CV(d∀
ncxAt) := CV(d)

Otherwise, i.e., if τ(A) = ∗, we set CV(dA) := ∅ and FA(dA) is defined as above.

It remains to provide the axioms. First, the existential quantifier is treated by the
axioms:

(∃+
x,A) ∀x.A → ∃xA

(∃−x,A,B) ∃xA → (∀x.A → B) → B, (x 6∈ FV(B))
(∃nc+

x,A) ∀ncx.A → ∃ncxA
(∃nc−

x,A,B) ∃ncxA → (∀ncx.A → B) → B, (x 6∈ FV(B))

Second, we have the logical axioms Truth: T and, depending on our logic, the efq-axioms
F → A and ⊥ → A for any formula A.

Third, we need axioms for equality, such as reflexivity, transitivity, symmetry and com-
patibility, all written with the quantifier ∀nc, e.g.,

(Compat) ∀nc~x, x, y.x = y → P (x) → P (y).

Fourth, for each algebra, µ, we have axioms for case distinction and induction, denoted
by Casesµ,A and Indµ,A. For simplicity, here we only communicate the axiom for case
distinction for the type boole which will be needed, at some places, later

(Casesboole,A) A(true) → A(false) → ∀pboole. A(p).

Finally, in the next section we will introduce inductive definitions; giving rise to intro-
duction and elimination axioms.

The set of axioms may be further extended by the user.

Remark. The quantifier ∀nc has been introduced in [Ber93] in order to extract the
normalization-by-evaluation algorithm from Tait’s normalization proof for the simply
typed lambda calculus. We have adopted the idea of avoiding redundant variables since,
in particular, it seems to be adequate for the introduction and elimination axioms for
inductive definitions (see next section).
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2.2 Inductive Definitions

2.2 Inductive Definitions

Introduction and Elimination Axioms

Usually, a (strictly positive) inductive definition I is given by n rules where the i-th rule
is of the form

Ai ∧
∧∧
j

∀ ~yij.
−→
Bij → I( ~sij)

I(~ti)

where Ai and
−→
Bij are arbitrary formulas, ~ti and ~sij are terms with possibly free variables

~xi respectively ~xi and ~yij. The notation
−→
A → B is used for A1 → . . . → Am → B. In

this presentation, we prefer to work with axioms instead of rules.

Definition (Inductively defined predicate). An inductively defined predicate I :
ρ1, . . . , ρl is introduced by n closure axioms, K1[I], . . . , Kn[I],1 ≤ n, (also called intro-
duction axioms), where

Ki[I] := ∀~xi,∀nc~xi
′.Ai →

−−−−−−−−−−−−−−−−−→
∀ ~yij,∀nc ~yij

′.
−→
Bij → I( ~sij) → I(~ti).

Given a predicate P , let Ki[P ] be the formula which is obtained by replacing the predicate
I in Ki[I] by P . Then, the induction principle (also called elimination axiom) is

K1[P ] → . . . → Kn[P ] → ∀nc~z.I(~z) → P (~z).

The strengthened induction principle

It can easily be proven that this induction principle can be strengthened: instead of the
closure Ki[P ] we only have to show this closure for {~x|I(~x) ∧ P (~x)} which is logically
equivalent to

Ki[I, P ] := ∀~xi.
−→
Ai →

−−−−−−−−−−→
∀~yi.

−→
Bi → I(~si) →

−−−−−−−−−−−→
∀~yi.

−→
Bi → P (~si) → P (~ti).

The induction principle then reads

IndI,P := K1[I, P ] → . . . → Kn[I, P ] → ∀nc~z.I(~z) → P (~z).

We will mainly work with this strengthened principle; it trivially implies the simple
one, and on the program side it exactly matches the recursion operator given in the
preceeding section whereas the simple induction principle corresponds to iteration.
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2 COMPUTATIONAL CONTENT OF PROOFS

The type of an inductive definition

In the last section we have defined the type of each formula assuming an already given
type assignment τ0 for the predicates. Here, we show how the type assignment for a new
(inductive) predicate symbol should be chosen. In case, we have an inductive definition
in which the formulas Ai and Bij in the closure axioms are invariant (i.e., do not contain ∃
or a predicate with computational content), we may decide whether or not this inductive
definition should have computational content. In all other cases we assign an inductive
datatype whose constructors have the same type as the closure axioms.

Definition (The type of an inductively defined predicate). In the case of an
inductive predicate I with computational content, given by the axioms K1[I], . . . , Kn[I]
where

Ki[I] := ∀~xi
~ρi ,∀nc~xi

′~ρi
′
.
−→
Ai →

−−−−−−−−−−−−−−−−−−→
∀~yi

~σi ,∀nc~yi
′ ~σi

′
.
−→
Bi → I(~si) → I(~ti),

we set

τ0(I) := µ,

where µ is either inductively defined by

µ = c1

(
~ρ1, τ(

−→
A1),

−−−−−−−−−−−→
~σ1 → τ(

−→
B1) → µ

)
+ · · · +

cn

(
~ρn, τ(

−→
An),

−−−−−−−−−−−−→
~σn → τ(

−→
Bn) → µ

)
with new constructors c1, . . . , cn or it is an existing inductive type with constructors of
the same type. Here, we have written τ( ~A) for τ( ~A1), . . . , τ( ~A| ~A|) and τ( ~B) → µ for

τ( ~B1) → · · · → τ( ~B| ~B|) → µ.

For an inductive predicate without computational content the obvious definition is

τ0(I) := ∗.

2.3 Program extraction

We start with defining the extracted term along the definition of a proof. In the next
subsection we give the definition of realizability as well as a correctness proof.

The interesting case is of course that of an inductive definition, occurring in proofs via
the introduction and elimination axioms. Since on the program side an inductive defini-
tion corresponds to an inductive datatype, namely the generation tree of the inductive
definition, the natural realizers of the introduction axioms are the constructors of this
datatype. The elimination axiom, i.e., the induction principle, is realized by recursion.
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2.3 Program extraction

The Extracted Program

Definition. a) Given a derivation d of a computationally meaningful formula A, we
inductively define the extracted program [[d]] of type τ(A). We assume that for every

assumption variable uA there is a unique object variable x
τ(A)
u assigned to it.

[[uA]] := x
τ(A)
A

[[λuAd]] :=

{
[[d]] if τ(A) = ∗,
λx

τ(A)
u [[d]] otherwise.

[[dA→Be]] :=

{
[[d]] if τ(A) = ∗,
[[d]][[e]] otherwise.

[[〈dA0
0 , dA1

1 〉]] :=

{
[[di]] if τ(A1−i) = ∗
〈[[d0]], [[d1]]〉 otherwise.

[[πi(d
A0∧A1)]] :=

{
[[d]] if τ(A1−i) = ∗
πi[[d]] otherwise.

[[(λxd)∀xA]] := λx[[d]],

[[d∀xAt]] := [[d]]t.

[[(λxd)∀
ncxA]] := [[d]], 2

[[d∀
ncxAt]] := [[d]].

It remains to provide realizers for the axioms. The extracted terms for the ∃-axioms are

[[∃+
xρ,A]] :=

{
λxρx if τ(A) = ∗,
λxρλyτ(A)〈x, y〉 otherwise.

[[∃−xρ,A,B]] :=

{
λxρλfρ→τ(B)fx if τ(A) = ∗,
λzρ×τ(A)λfρ→τ(A)→τ(B)fπ0(z)π1(z) otherwise.

In the case of an existential quantifier without computational content these definitions
simplify to

[[∃nc+
x,A]] := λyτ(A).y,

[[∃nc−
xρ,A(x),B]] :=

{
λyτ(B).y if τ(A) = ∗,
λzτ(A)λyτ(A)→τ(B).yz otherwise.

2 This is a sound definition since, by the CV-lemma, see below, and the strengthened variable
condition, we know that x 6∈ FV([[d]]). Strictly speaking the CV-lemma has to be proven simultaneously
with this definition.
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2 COMPUTATIONAL CONTENT OF PROOFS

Next, given an inductively defined predicate I, we need realizers for the closure axioms
K1[I], . . . , Kn[I] and the induction principle IndI,P . Assume that we have assigned an
algebra µ with constructors c1, . . . , cn to this predicate, i.e., that we are dealing with a
predicate with computational content. Then we set

[[Ki[I]]] := ci

and the induction principle corresponds to recursion on µ, more precisely,

[[IndI,P ]] := Rµ,τ(P ).

Finally, for a formula A with τ(A) 6= ∗, the efq axioms F → A and ⊥ → A are realized
by a canonical inhabitant of the type τ(A). The compatibility axiom, ∀nc~x, x, y.x = y →
A(x) → A(y), is realized by λxτ(A)x.

Moreover, induction and case distinction on an inductive datatype µ, Indµ,A and Casesµ,A,
correspond to recursion on this datatype, Rµ,τ(A), case distinction, Cµ,τ(A), respectively.

b) In the case d : A where A has no computational content, i.e., if τ(A) = ∗, we set
[[d]] = ε where ε is a new symbol.

Lemma 2.1 (CV-lemma). FV([[d]]) ⊆ CV(d) ∪ {xu|u ∈ FA(d).}

Proof. If τ(A) = ∗, then we have [[d]] = ε and FV([[d]]) = ∅. Therefore we assume
τ(A) 6= ∗ and proceed by induction on the structure of d. Case: u:

FV([[u]]) = FV(xu) = {xu} = {xu|u ∈ FA(u)}.

Case: λuAdB: FV([[λuAdB]]) =

= FV(λxuA [[d]]) [by def [[]]]

= FV([[d]])\{xuA} [by def FV]

⊆ CV(d) ∪ {xu|u ∈ FA(d)}\{xuA} [by ih]

= CV(λud) ∪ {xu|u ∈ FA(λud)} [CV(λud) = CV(d),

FA(λud) = FA(d)\{u}]

Case: dA→BeB: FV([[de]]) =

= FV([[d]]) ∪ FV([[e]]) [by def [[]], FV]

⊆ CV(d) ∪ CV(e) ∪ {xu|u ∈ (FA(d) ∪ FA(e))} [by ih]

= CV(de) ∪ {xu|u ∈ FA(de)} [by def CV, FA].
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2.3 Program extraction

Case: (λxd)∀xA: FV([[(λxd)∀xA]]) =

= FV(λx[[d]]) [by def [[]]]

= FV([[d]])\{x} [by def FV]

⊆ CV(d) ∪ {xu|u ∈ FA(d)}\{x} [by ih]

= CV((λxd)∀xA) ∪ {xu|u ∈ FA(λxd)} [CV((λxd)∀xA) = CV(d)\{x}
FA((λxd)∀xA) = FA(d)]

Case: (λxd)∀
ncxA: FV([[(λxd)∀

ncxA]])

= FV([[d]]) [by def [[]]]

⊆ CV(d) ∪ {xu|u ∈ FA(d)} [by ih]

= CV((λxd)∀
ncxA) ∪ {xu|u ∈ FA(λxd)} [CV((λxd)∀

ncxA) = CV(d)

FA((λxd)∀
ncxA) = FA(d)]

Case: d∀xAt: FV([[d∀xAt]]) =

= FV([[d]]) ∪ FV(t) [by def [[]], FV]

⊆ CV(d) ∪ {xu|u ∈ FA(d)} ∪ FV(t) [by ih]

= CV(d∀xAt) ∪ {xu|u ∈ FA(d∀xAt)} [CV(d∀xAt) = CV(d) ∪ FV(t),

FA(d∀xAt) = FA(d)]

Case: d∀
ncxAt: FV([[d∀

ncxAt]]) =

= FV([[d]]) [by def [[]]]

⊆ CV(d) ∪ {xu|u ∈ FA(d)} [by ih]

= CV(d∀
ncxAt) ∪ {xu|u ∈ FA(d∀

ncxAt)} [CV(d∀
ncxAt) = CV(d),

FA(d∀
ncxAt) = FA(d)]

All remaining cases can be proven easily by means of the induction hypothesis.

The Correctness of the Program

Definition (Modified Realizability). For every formula A we define a formula r mr A
where r is either a term of type τ(A) or the symbol ε depending on whether or not A is
computationally meaningful.

We assume that for each predicate P : ρ1, . . . , ρn with computational content we have
enriched our language by a predicate P̃ of arity τ0(P ), ρ1, . . . , ρn.
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2 COMPUTATIONAL CONTENT OF PROOFS

r mr P (~t) :=

{
P̃ (r,~t) if P (~t) has computational content

P (~t) otherwise

r mr (A → B) :=


ε mr A → r mr B if τ(A) = ∗,
∀x.x mr A → ε mr B if τ(A) 6= ∗ = τ(B),
∀x.x mr A → rx mr B otherwise.

r mr (A0 ∧ A1) :=

{
r mr A1−i ∧ ε mr Ai if τ(Ai) = ∗,
π0(r) mr A0 ∧ π1(r) mr A1 otherwise.

r mr ∀xA :=

{
∀x.ε mr A if τ(A) = ∗,
∀x.rx mr A, otherwise.

r mr ∃x A :=

{
ε mr A[x/r] if τ(A) = ∗,
π1(r) mr A[x/π0(r)] otherwise.

In the case of quantifiers without computational content we set

r mr ∀ncx A := ∀x. r mr A
r mr ∃ncx A := ∃x. r mr A.

Finally, we communicate how the predicate Ĩ for an inductive predicate I with compu-
tational content is to be introduced. If I is given by n closure axioms of the form

K[I] = ∀~x,∀nc~x′.
−→
A →

−−−−−−−−−−−−−−→
∀~y,∀nc~y′.

−→
B → I(~s) → I(~t),

then Ĩ has to be inductively defined by n analogous axioms K̃[Ĩ] of the form

∀~x,∀nc~x′,∀~u. ~u mr
−→
A →

(∀f1,∀~y1,∀nc ~y1
′,∀~v1. ~v1 mr

−→
B1 → Ĩ(f1 ~y1 ~v1, ~s1)) →

...

(∀fm,∀ ~ym,∀nc ~ym
′,∀ ~vm. ~vm mr

−→
Bm → Ĩ(fm ~ym ~vm, ~sm)) →

Ĩ(c~x~u~f,~t)

Remark 2.2. 1. Looking at the closure axioms of Ĩ we see that only invariant formulas
are involved, so we may declare Ĩ to be a predicate without computational content.

2. In the cases r mr ∀ncxA and r mr ∃ncxA, x is supposed not to be free in r. Note also
that in r mr ∀ncxA the realizer r might be ε, depending on whether or not τ(A) = ∗.

Lemma 2.3.

a) (r mr A)[x/t] = r[x/t] mr A[x/t].

b) ε mr A = A if A is invariant.
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2.3 Program extraction

Proof. Straightforward.

Proposition 2.4 (Soundness Theorem). If d is a proof of a formula A, then we can
derive [[d]] mr A from the assumptions {ū : xu mr C | uC ∈ FA(d) }, where xu := ε if uC

is an assumption variable for a formula C without computational content.

Proof. By induction on the structure of d. We concentrate on the axioms concerning
inductive definitions and the logical axioms for the quantifiers carrying no computational
content.

Case: Closure axiom of an inductive predicate I. Sub-case: I has computational content.
Let

K[I] = ∀~x,∀ncx′.
−→
A →

−−−−−−−−−−−−−−→
∀~y,∀nc~y′.

−→
Bj → I(~sj) → I(~t)

be the i-th closure axiom of an inductively defined predicate, and let c be the i-th
constructor of the associated algebra µ. Then we have to show

c mr K[I].

For simplicity, we assume that all formulas,
−→
A ,

−→
B j, have computational content; the

other cases are analogous, but simpler. By the definition of mr, c mr K[I] expands to

∀~x,∀nc~x′, ∀~u. ~u mr
−→
A →

∀f1. f1 mr (∀~y1,∀nc ~y1
′.
−→
B1 → I(~s1)) →

...

∀fm. fm mr (∀ ~ym,∀ncym
′.
−→
Bm → I( ~sm)) →

c~x~u~f mr I(~t)

which is equivalent to

∀~x,∀nc~x′, ∀~u. ~u mr
−→
A →

∀f1. (∀~y1,∀nc ~y1
′,∀~v1.~v1 mr

−→
B1 → f1 ~y1 ~v1 mr I(~s1)) →

...

∀fm. (∀ ~ym,∀nc ~ym
′,∀ ~vm. ~vm mr

−→
Bm → fm ~ym ~vm mr I( ~sm)) →

c~x~u~f mr I(~t)

But this is the i-th closure axiom for Ĩ.

Sub-case: I is a predicate without computational content. We have to show [[K[I]]] mr K[I],
that is, by definition of [[]], ε mr K[I]. Since by assumption K[I] is supposed to be in-
variant, we know by Lemma 2.3 that ε mr K[I] = K[I], so we can reduce our goal to
K[I] which is an axiom.
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2 COMPUTATIONAL CONTENT OF PROOFS

Case: IndI,P . Sub-case: I is an inductive predicate with computational content. The
aim is to show

Rµ,τ(P ) mr K1[I, P ] → . . . → Kn[I, P ] → ∀nc~z. I(~z) → P (~z).

Here, we prove the case in which in the closure axioms the type τ of all formulas is
different from ∗; the other cases are analogous. To ease readability, we subdivide the
proof in numbered steps.

1. Assume that we have ~w, ~z, and w such that

wi mr Ki[I, P ] for 1 ≤ i ≤ n

w mr I(~z) i.e., Ĩ(w, ~z)

and show
Rµ,τ(P )w1 . . . wn w mr P (~z) =: P̃ (w, ~z).

2. Using the (strengthened) induction principle for Ĩ

IndĨ,P̃ := K̃1[Ĩ , P̃ ] → . . . → K̃n[Ĩ , P̃ ] → ∀ncw, ~z. Ĩ(w, ~z) → P̃ (w, ~z)

it suffices to show K̃i[Ĩ , P̃ ] for each i, (i.e., again suppressing the index i):

∀~x,∀nc~x′,∀~u, ~f. ~u mr
−→
A →

(∀~y1,∀nc ~y1
′,∀~v1. ~v1 mr

−→
B1 → Ĩ(f1 ~y1 ~v1, ~s1)) →

...

(∀ ~ym,∀nc ~ym
′,∀ ~vm. ~vm mr

−→
Bm → Ĩ(fm ~ym ~vm, ~sm)) →

(∀~y1,∀nc ~y1,∀~v1. ~v1 mr
−→
B1 → P̃ (f1 ~y1 ~v1, ~s1)) →

...

(∀ ~ym,∀nc ~ym
′,∀ ~vm. ~vm mr

−→
Bm → P̃ (fm ~ym ~vm, ~sm)) →

P̃ (c~x~u~f,~t)

3. Fix ~x, ~x′, ~u and ~f such that

(a) ~u mr
−→
A

(b) ∀~yj,∀nc~yj
′,∀~vj. ~vj mr

−→
Bj → Ĩ(fj ~yj ~vj, ~sj) for all j, 1≤j≤m.

(c) ∀~yj,∀nc~yj
′,∀~vj. ~vj mr

−→
Bj → P̃ (fj ~yj ~vj, ~sj) for all j, 1≤j≤m.

and show P̃ (c~x~v ~f,~t), i.e.,

Rµ,τ(P ) ~w(c~x~v ~f) mr P (~t).
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2.3 Program extraction

4. Applying the conversion rule for the recursion operator we obtain

wi~x~v ~f (λ~y1, ~v1
τ(
−→
B1). Rµ,τ(P ) ~w(f1 ~y1 ~v1))

...

(λ ~ym, ~vm
τ(
−−→
Bm). Rµ,τ(P ) ~w(fm ~ym ~vm)) mr P (~t).

5. This can be proven by using the assumption wi mr Ki[I, P ] (i.e., suppressing the
index i almost everywhere but not in wi),

∀~x,∀~x′, ∀~v. ~v mr
−→
A →

∀~f. ~f mr
−−−−−−−−−−−−−−−−→
∀~yj,∀nc~yj

′.
−→
Bj → I(~sj) →

∀~g. ~g mr
−−−−−−−−−−−−−−−−→
∀~yj,∀nc~yj

′.
−→
Bj → P (~sj) → wi~x~u~f~g mr P (~t)

with ~x, ~x′, ~v, ~f and

λ~v1
τ(
−→
B1) Rµ,τ(P ) ~w(f1 ~y1 ~v1), . . . , λ ~vm

τ(
−−→
Bm) Rµ,τ(P ) ~w(fm ~ym ~vm).

6. It remains to show

(a’) ~v mr
−→
A ,

(b’) λ~yj, ~vj
τ(
−→
Bj) fj ~yj ~vj mr ∀~yj,∀nc~y′j.

−→
Bj → I(~sj),

(c’) λ~yj, ~vj
τ(
−→
Bj) Rµ,τ(P )w1 . . . wn(fj ~yj ~vj) mr ∀~yj,∀nc~y′j.

−→
Bj → P (~sj),

for all j, 1≤j≤m, which hold by (a), (b) and (c).

Sub-case: I is an inductive predicate without computational content.

We have to show
[[IndI,P ]] mr IndI,P ,

i.e., by definition of [[]],

ε mr K1[I, P ] → . . . → Kn[I, P ] → ∀nc~z.I(~z) → P (~z)

and by definition of mr

ε mr K1[I, P ] → . . . → ε mr Kn[I, P ] → ∀~z.ε mr I(~z) → ε mr P (~z).

Now, we distinguish two cases: if P is a predicate without computational content, we
know that Ki[I, P ] is invariant. As

Ki[I, P ] = ∀~x.
−→
A →

−−−−−−−−−→
∀~y.

−→
B → I(~s) →

−−−−−−−−−−→
∀~y.

−→
B → P (~s) → P (~t)
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2 COMPUTATIONAL CONTENT OF PROOFS

we have ε mr Ki[I, P ] = Ki[I, P ], ε mr I(~z) = I(~z), and ε mr P (~z) = P (~z) and the goal
can be reduced to

K1[I, P ] → . . . → Kn[I, P ] → ∀nc~z.I(~z) → P (~z),

i.e., to the axiom itself.

Otherwise, if P has computational content, we set Q(~x) := ε mr P (~x) and our goal can
be proven using

K1[I, Q] → . . . → Kn[I, Q] → ∀nc~z.I(~z) → Q(~z).

Case: (∀nc+). We have to show

[[(λxd)∀
ncxA]] mr ∀ncxA,

i.e., by the definition of [[]] and mr,

∀x. [[dA]] mr A.

Note that by means of the CV-lemma and the strengthened variable condition, we know
that x 6∈ FV([[dA]]). Now, we are almost done, since by induction hypothesis we have a
proof of [[d]] mr A.

Case: (∀nc−). We show [[d∀
ncxAt]] mr A[x/t], that is, by the definition of [[]], [[d∀

ncxA]] mr A[x/t].
By ih, let µ(d) be a proof of

[[d∀
ncxA]] mr ∀xA,

i.e., ∀x′.[[d∀ncxA]] mr A[x/x′]. An instantiation with t yields [[d∀xA]] mr A[x/t].

Case: (∃nc+
~x,x,A). Sub-case τ(A) 6= ∗. We need to show

λyτ(A).y mr ∀nc~x, x.A → ∃ncxA,

where ~x denotes the free parameters. By the definition of mr it suffices to show

∀~x, x, y.y mr A → y mr ∃ncxA,

i.e.,
∀~x, y, x.y mr A → ∃x.y mr A

which is the axiom ∃+
~x′,x, y mr A where the free parameters ~x′ comprise ~x and y.

Sub-case: τ(A) 6= ∗. Show
ε mr ∀nc~x, x.A → ∃ncxA.

By definition of mr it suffices to show

∀~x, x.ε mr A → ε mr ∃ncxA,
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2.3 Program extraction

that is,
∀~x, x.ε mr A → ∃x.ε mr A

which again is an axiom.

Case: (∃nc−
~x,x,A,B). We start with the case τ(A) 6= ∗ 6= τ(B) and show that it can be

reduced to the axiom ∃−~x,z,y,x, z mr A, yz mr B.

λz, y.yz mr ∀nc~x.∃ncxA → ∀ncx(A → B) → B,

⇔ ∀~x, z, y.z mr ∃ncxA → y mr ∀ncx(A → B) → yz mr B

⇔ ∀~x, z, y.(∃x.z mr A) → (∀x, z′.z′ mr A → yz′ mr B) → yz mr B

⇒ ∀~x, z, y.(∃x.z mr A) → (∀x.z mr A → yz mr B) → yz mr B.

In the case τ(A) = ∗ we reduce the goal to the axiom ∃−~x,z,x, ε mr A,y mr B.

λy.y mr ∀nc~x.∃ncxA → ∀ncx(A → B) → B,

⇔ ∀~x, y.ε mr ∃ncxA → y mr ∀ncx(A → B) → y mr B,

⇔ ∀~x, y.(∃x.ε mr A) → (∀x.ε mr A → y mr B) → y mr B.

For a proof of the remaining cases we refer to the standard literature, see for example,
[TvD88]. As a presentation also treating the axiom cases, we recommend [Sch03].

Remark 2.5. We presented a version of realizability for inductive definitions allowing
the use of both quantifiers, ∀ and ∀nc. It might be the case that one would like to swap
from one quantifier to the other. To this extend, we suggest an axiom (or lemma), here
formulated for the example of the natural numbers,

∀nA ↔ (∀ncn.N(n) → A)

where N(n) is the inductive predicate saying that n is a natural number, defined by the
closure axioms N(0) and ∀n.N(n) → N(n + 1). The axiom has a natural realizer, the
identity, thus we may use it and extract programs in the usual way.

One might object that, to avoid redundancies, we could have restricted ourselves to the
∀nc quantifier, and viewed the other quantifiers just as abbreviations in the sense of
the axiom. We prefer to allow both quantifiers, first, for reasons of convenience, and,
secondly, to be as general as possible.
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3 COMPUTATIONAL CONTENT OF CLASSICAL PROOFS

3 Computational Content of Classical Proofs

This chapter is about program extraction from classical proofs. Later, we want to
make use of the classical proof of Higman’s Lemma due to Nash-Williams and extract
a program from this proof. To this end, we shall first explain the method, often called
A-translation, of transforming a classical proof into a constructive one. Subsequently, we
will show how to deal with the axiom of dependent choice (DC) used in Nash-Williams’
proof. In doing so, we shall follow [BO03]. We recall the result of [BO03] and place it
in the context of [BBS02], which is an extension of the A-translation mechanism, now
built-in in the Minlog system. Our exposition is slightly more general than [BBS02]
since we are working in HAµ which has a more general type system.

3.1 Refined A-translation

The formal system

We briefly fix the formal framework and then sketch the idea behind the A-translation
method, where we in particular stress the role of the so-called definite and goal formulas.
The main statement of this section is concisely formulated in Proposition 3.6.

In this chapter we work in Heyting Arithmetic HAµ. Let X be a distinguished nullary
predicate symbol with assigned type τ0(X) := ν where ν is some unspecified but fixed
type. Then by the definition of realizability we have

r mr X = X̃(r)

where X̃ is a new predicate symbol of arity ν. In addition, we denote by DX the formula

D where ⊥ is substituted by X. If
−→
D = D1, . . . , Dn, then

−→
DX stands for DX

1 , . . . , DX
n .

HAµ may be enriched by additional axioms, ∆; whereby each new axiom C ∈ ∆ should
fulfil the requirement C[⊥/A] ∈ ∆ for an arbitrary formula A.

Finally, by HAµ `m we mean derivability in HAµ without the use of efqA : ⊥ → A for
any A. (Note that the axiom F → A is still allowed.) Conversely, we use the notion `i

to stress that all efq axioms are allowed.

The idea of the refined translation

Assume that we have a proof

HAµ `m

−→
D → (∀~y.

−→
G → ⊥) → ⊥ (∗)

where D and G are arbitrary formulas. Then it also holds

HAµ `m

−→
DX → (∀~y.

−→
GX → X) → X
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3.1 Refined A-translation

since we are in minimal logic. If we now know that

(1) HAµ ` Di → DX
i .

(2) HAµ ` ∀~y.
−→
GX → X,

then by putting X := ∃~y.G1 ∧ . . . ∧Gm we obtain a proof of

HAµ `
−→
D → ∃y.G1 ∧ . . . ∧Gm.

Up to now we have explained the so-called Friedman-trick (the replacement of ⊥ by the
existence formula). It remains the question of which formulas we may use in (∗) such
that (1) and (2) hold. This is the part where usually double negation comes into play.

Let us start with a proof of

∀~x1C1 → . . . → ∀~xnCn → ∃cly.B (∗∗)

where Ci and B are decidable (see below for a definition) and ∃cl is used as abbreviation
for ¬∀¬. Then, by Gödel’s negative translation,

∀~x1C
¬¬
1 → . . . → ∀~xnC

¬¬
n → ∃cly.B¬¬

is provable in minimal logic and it can be easily shown that (1) and (2) hold for Di ≡ C¬¬
i

and G ≡ B¬¬.

The problem here is that double negating all (atomic and existential) subformulas is,
as we will see later, very expensive with regard to the extracted programs. A refined
way, therefore, was proposed in [BS95b] where only subformulas with so-called ‘critical’
relation symbols are double negated.

In [BBS02], a different way is chosen in order to leave the situation as general as possible.
We define classes of formulas, i.e. definite formulas D and goal formulas G and show
that (1) and (2) hold for these classes. The user is free to apply the method of [BS95b]
or, if the problem is more complex, to find his own way to obtain the required situation
of definite and goal formulas.

Definite and Goal formulas

We start with the definition of definite and goal formulas (introduced in [BBS02] and
slightly extended here) which is based on the definition of (ir)relevant formulas and
decidable formulas.

Definition (Decidable formulas). A formula is called decidable if it is built from
atoms atom (t) using propositional connectives and boolean quantifiers only.

Lemma 3.1. (Case distinction on decidable formulas). For decidable formulas D we
have

`i (D → A) → (¬D → A) → A.
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3 COMPUTATIONAL CONTENT OF CLASSICAL PROOFS

Proof. By induction on D.

Definition (Relevant and irrelevant formulas). (Ir)relevant formulas are defined
inductively by the clauses

• ⊥ is relevant,

• if C is (ir)relevant and B is arbitrary, then B → C is (ir)relevant,

• if, C0 and C1 are (ir)relevant, then C0 ∧ C1 is (ir)relevant.

• if C is (ir)relevant, then ∀xC is (ir)relevant.

Remark 3.2. We have extended the definition of (ir)relevant formulas with respect to
the connective ∧. For a formula without any conjunction it still holds that it is irrelevant
if and only if it is not relevant. The definition of definite and goal formulas could be
generalized in the same way. However, since, later, we require a formula to be either
relevant or irrelevant, this would involve either an extra treatment (in the proofs) for
formulas which are none of both or some further double negations for these formulas in
order to make them relevant. There is a more important generalization in the definition
of goal formulas where the requirement ‘quantifier free’ has been replaced by ‘decidable’
in order to allow inductive predicates.

Definition (Definite and goal formulas). We inductively define definite formulas D
and goal formulas G. Here, P is a predicate without computational content.

D := P (~t) | G → D provided D irrelevant ⇒ G irrelevant

| ∀xD.

G := P (~t) | D → G provided D irrelevant ⇒ D decidable

| ∀xG provided G irrelevant,

Lemma 3.3. For definite formulas D and goal formulas G we have

(1) HAµ ` (¬D → X) → DX for D relevant,

(2) HAµ ` D → DX ,

(3) HAµ ` GX → G for G irrelevant,

(4) HAµ ` GX → (G → X) → X.

Proof. Analogous to [BBS02], Lemma 3.1. The condition ‘D irrelevant ⇒ D decidable’
is used to prove the statement (4) and it is necessary in order to apply case distinction
(Lemma 3.1) which is formulated for decidable formulas.
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3.1 Refined A-translation

Lemma 3.4. For goal formulas
−→
G = G1, . . . , Gn we have

HAµ ` (
−→
G → X) →

−→
GX → X.

Proof. By Lemma 3.3(4) we have proofs si for Gi
X → (Gi → X) → X, 1 ≤ i ≤ m. Then

the assertion follows by

GX
1 → (G1 → X) → X GX

1

GX
m → (Gm → X) → X GX

m

−→
G → X G1 . . . Gm

X
Gm → X

X
...
X

G1 → X

X

(
−→
G → X) →

−→
GX → X

Remark 3.5. 1. By looking at the preceeding display of the proof we easily see
that, if s1, . . . , sm are the realizers of (Gj → X) → GX

j → X, 1 ≤ j ≤ m, given by
Lemma 3.3(4), then

λuν , λ~wτ(
−→
GX). s1w1(. . . (smwmu))

is a realizer for (
−→
G → X) →

−→
GX → X, in case τ(X) = ν and GX

j is computational
meaningful for all j. (Otherwise the terms wj having an index j such that GX

j = ∗ are
simply missed out.)

2. For definite
−→
D , Lemma 3.3 and Lemma 3.4 immediately allow for a transformation

of a proof HAµ `m
−→
DX → (∀~y.

−→
GX → X) → X into an intuitionistic proof

HAµ `
−→
D → ∃y.G1 ∧ . . . ∧Gm.

Program extraction from classical proofs

We now recall, in a slightly streamlined form, the main result of [BBS02].

Proposition 3.6. Let ∆ be an axiom system,

D1, . . . , Dk arbitrary formulas,

Dk+1, . . . , Dn definite formulas,

G1, . . . , Gm goal formulas and

~y = yν1
1 , . . . , yνl

l .
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3 COMPUTATIONAL CONTENT OF CLASSICAL PROOFS

Moreover, assume that we have terms t1, . . . , tk such that

HAµ + ∆ ` ti mr DX
i , 1 ≤ i ≤ k,

and
HAµ `m d :

−→
D → (∀~y.

−→
G → ⊥) → ⊥.

Then, there are terms ~r such that

HAµ + ∆ ` Dk+1, . . . , Dn → (G1 ∧ . . . ∧Gm)[~y/~r]

Proof. 1. By Lemma 3.3 (2) we have HAµ-proofs of Di → DX
i for all i such that

k + 1 ≤ i ≤ n, hence, by the soundness theorem, there are terms tk+1, . . . , tn such that
ti mr (Di → DX

i ), that is, since definite formulas are invariant,

HAµ ` Di → ti mr DX
i for all k + 1 ≤ i ≤ n.

2. Following Lemma 3.4 we have a realizer s′ such that

HAµ ` s′ mr ((
−→
G → X) →

−→
GX → X)

and therefore

HAµ ` (x mr ∀~y.
−→
G → X) → s(x) mr ∀~y.

−→
GX → X

where x is a new variable and s(x) := λ~y. s′(x~y).

3. If we substitute X for ⊥ in our given derivation d we obtain

HAµ `m dX :
−→
DX → (∀~y.

−→
GX → X) → X

which implies, by soundness,

HAµ `m [[dX ]] mr (
−→
DX → (∀~y.

−→
GX → X) → X),

i.e.,

HAµ `m ∀~u. ~u mr
−→
DX → ∀v. v mr (∀~y.

−→
GX → X) → [[dX ]]~uv mr X.

Instantiating ~u and v with ~t and s(x), we obtain

HAµ + ∆ ` Dk+1, . . . , Dn → (x mr ∀~y.
−→
G → X) → [[dX ]]~ts(x) mr X.

4. Now, set ν := ν1 × · · · × νl and

X := ∃zνG(z)

where G(z) := (G1∧ . . .∧Gm)[~y/(z)1, . . . , (z)l] and (z)i is the i-th projection of z. Then,

z mr X = G(z). Setting x := λ~y. 〈y1, . . . , yl〉 we have x mr ∀~y.
−→
G → X and therefore,

by 3.,
HAµ + ∆ ` Dk+1, . . . , Dn → [[dX ]]~ts(x) mr X

Finally by putting ri := ([[dX ]]~ts(x))i we end up with

HAµ + ∆ ` Dk+1, . . . , Dn → (G1 ∧ . . . ∧Gm)[~y/~r].
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3.2 Computational content of classical dependent choice

3.2 Computational content of classical dependent choice

In this section we give a realizer for (the negative translation of) the axiom of classical
dependent choice

(DC) : ∀nnat∀xρ∃clyρAn(x, y) → ∃fnat→ρ. f(0) = x0 ∧ ∀nAn(f(n), f(n + 1))

where x0 is some fixed term of type ρ.

The problem with the A-translation method and the axiom of classical dependent choice
is that the latter is neither a definite formula, nor can be transformed into one by the
usual double negation applications. Furthermore, A-translation, applied to a proof using
DC would yield a proof depending on DCX . This would not be problematic if DCX were
an instance of the axiom of dependent choice. (Note this is usually the case with respect
to the other axioms, e.g., induction.) But unfortunately, this is not the case, and DCX

can also not be derived from DC. The proposed solution to this problem is to directly
give computational content to DCX which, finally, allows us to extract programs from
classical proofs using DC.

Notation

Unlike the rest of the thesis, in this chapter the variables s and t are allowed to denote
finite sequences. Furthermore, we use

[x0, . . . , xn−1] for the finite list with elements x0, . . . , xn−1

|t| for the length of t

(t)k for the k-th element of t

s#t for the concatenation of s and t

s#α for the concatenation of s and the infinite sequence α

ᾱn for [α(0), . . . , α(n− 1)]

If S is a predicate of arity ρ∗, then for α : nat → ρ we write

α ∈ S ⇐⇒ ∀nS(ᾱn).

We work in HAµ + ∆ where ∆ comprises the following three axioms.

Modified bar recursion at type ρ

The defining equation for modified bar recursion is

Ψ(Y,H, s)
τ
= Y (s#λk.H(k, s, λx.Ψ(Y,H, s ∗ x)))

where the type τ is not allowed to contain arrow types and, if τ is an inductive type, µ,

then ~σ must be empty in each constructor type ~ρ →
−−−−→
~σ → µ → µ. The restriction on τ
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guarantees that the following principle of continuity holds in the model of the continuous
functionals (see Remark 3.7 below).

Principle of continuity

∀F (nat→ρ)→τ , αnat→ρ∃n∀β(ᾱn = β̄n → F (α) = F (β).

Principle of relativized quantifier free bar induction

∀α ∈ S∃nP (ᾱn)
∀s ∈ S.∀x(S(s ∗ x) → P (s ∗ x)) → P (s)

S([])
P ([])

Remark 3.7. Modified bar recursion was investigated in [BO03] and compared with
Spector’s bar recursion [Spe62] and a variant due to Kohlenbach [Koh90]. In particular,
it was shown that all three versions of bar recursion have the continuous functionals and
the partial continuous functionals as models. As bar recursion is total in these models, it
follows from Plotkin’s adequacy result [Plo77] that extending the term rewriting system
of HAµ by bar recursion (viewed as a rewrite rule from left to right) does not destroy
termination.

Remark 3.8. 1. To get some familiarity with the principle of relativized bar induction
we first of all compare it with the usual principle of bar induction.

∀α∃nQ(ᾱn)
∀s.Q(s) → P (s)

∀s.∀xP (s ∗ x) → P (s)
P ([])

From this principle we obtain the principle of relativized bar induction by putting Q ≡ P
and relativizing all finite sequences to S.

2. Second, we give a classical proof of the principle of relativized bar induction to
underpin that this is a ’reasonable’ axiom.

Proof. Assume ¬P ([]). Then, because of the second and third premise, there must be
an x0 such that S([x0], but ¬P ([x0])). Following this pattern we generate an infinite
sequence α := [x0, x1, . . .] such that ∀nS(ᾱn), but ¬P (ᾱn) contradicting the first clause
∀α∃nP (ᾱn) of the axiom.

Remark 3.9. Finally, we give a hint of the roles of these axioms in the main proof.
Bar recursion is used to define the realizer Ψ for dependent choice. In order to compute
ΨG,Y ([ ]) we need to compute ΨG,Y for a singleton list, then for a list with two elements,
and so on. Now, the principle of continuity tells us that we only have to compute Ψ for
all sequences up to a certain length and the principle of relativized bar induction shows
us how this length could stepwise be reduced to length 0.
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The following lemma is based on the simple fact that for a relevant formula A, ⊥ → A
is provable in minimal logic.

Lemma 3.10. Let A be a relevant formula (with possibly free variables). Then there
is a (closed) term H such that `m H mr (X → AX).

Proof. Let ν := τ(X). Ind(A). Case: Atomic formula. Then AX ≡ X and we set
H := λxν .x. Case: A → B. By ih we have an H ′ such that H ′ mr (X → B). Then we
let

H :=

{
λxν .H ′x if τ(AX) = ∗,
λxν , yτ(A).H ′x otherwise.

Case: A0 ∧ A1. Then, A0 and A1 are relevant. By ih we have terms Hi such that
Hi mr (X → Ai) for i ∈ {0, 1}. We put H := λxν .〈H0x, H1x〉. Case: ∀yρA. By ih we
have a term H ′ such that H ′ mr (X → A). We set H := λxν , yρ. H ′x.

Proposition 3.11. Let A be a relevant formula and assume x0 to be of type ρ.
Moreover let DC be the formula

∀nnat∀xρ∃clyρAn(x, y) → ∃clfnat→ρ. f(0) = xρ
0 ∧ ∀nAn(f(n), f(n + 1)).

Then DCX is realizable in HAµ + ∆.

Proof. By unfolding the classical existential quantifier and substituting X for ⊥ we
obtain DCX :

(∀n, xρ. (∀yρ. An(x, y)X → X) → X) →
(∀f. f(0) = xρ

0 ∧ ∀nAn(f(n), f(n + 1))X → X) → X.

Now, let ν := τ(X) and σ := τ(An(x, y)X). and assume that we have realizers G, Y such
that

Gnat→ρ→(ρ→σ→ν)→ν mr ∀n∀xρ. (∀yρ. An(x, y)X → X) → X

Y (nat→ρ)→(nat→σ)→ν mr ∀f. f(0) = xρ
0 ∧ ∀n An(f(n), f(n + 1))X → X.

It suffices to find a realizer for X. Let, from now on, β be a variable of type nat → ρ×σ
and t be a variable of type (ρ× σ)∗. We define

ΨG,Y (t) := Ỹ (t#λn.〈0ρ, H(G(|t|, ([x0]#(π0 ◦ t))|t|, λyρ, zσ.ΨG,Y (t ∗ 〈y, z〉)))〉)

where π0 and π1 are left and right projection of pairing 〈·, ·〉, while

Ỹ (β) := Y ([x0]#(π0 ◦ β), π1 ◦ β),

and H is the closed term, given by Lemma 3.10, such that

∀n, x, y(H mr (X → An(x, y)X)).
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Next, let

S(t) := ∀i < |t|(π1((t)i) mr Ai(([x0]#(π0 ◦ t))i, (π0 ◦ t)i)
X)

P (t) := ΨG,Y (t) mr X.

Using quantifier free bar induction relativized to S we show P ([ ]), thus λG, Y.ΨG,Y ([ ])
is the realizer we are looking for.

1. Assume that we have a β ∈ S, i.e., ∀nS(β̄n). We have to show ∃nP (β̄n). Let

f := [x0]#(π0 ◦ β)

γ := π1 ◦ β,

then we have

S(β̄n) ≡ ∀i < n. π1(β(i)) mr Ai(([x0]#(π0 ◦ β̄n))i, (π0 ◦ β̄n)i)
X

≡ ∀i < n. γ(i) mr Ai(f(i), f(i + 1))X ,

∀nS(β̄n) ≡ ∀n. γ(n) mr An(f(n), f(n + 1))X

≡ γ mr ∀nAn(f(n), f(n + 1))X .

By the definition of Y we obtain Y fg mr X, hence Ỹ (β) mr X. Furthermore, by
the principle of continuity we know that in order to compute Ỹ we only need to look
at finitely many values in the sequence β, i.e., there exists an n such that Ỹ (β) =
Ỹ (β̄n#λn.any(n)), where any(n) are any terms of type ρ × σ. In particular, we have
Ỹ (β) = ΨG,Y (β̄n). Hence we have Ψ(β̄n) mr X, i.e., P (β̄n).

2. We show ∀t ∈ S.∀q(S(t ∗ q) → P (t ∗ q)) → P (t). Let t ∈ S where t is of the form
t = [〈x1, z0〉, . . . , 〈xn, zn−1〉] and assume ∀q(S(t ∗ q) → P (t ∗ q)), i.e.,

∀xn+1, zn.t ∈ S ∧ zn mr An(xn, xn+1)
X → ΨG,Y (t ∗ 〈xn+1, zn〉) mr X,

that is,

t ∈ S → λxn+1, zn.ΨG,Y (t ∗ 〈xn+1, zn〉) mr ∀xn+1.An(xn, xn+1)
X → X.

Setting v := λxn+1, zn.ΨG,Y (t ∗ 〈xn+1, zn〉) and using the realizer G we end up with

G(n, xn, v) mr X.

On the other hand, by Lemma 3.10, we have a closed term H such that

∀m, x, y.H mr (X → Am(x, y)X),
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hence we may conclude ∀m, x, y.H(G(n, xn, v)) mr Am(x, y)X . Now, let

w := H(G(n, xn, v)

f := [x0, . . . , xn]#λn.0

γ := [z0, . . . , zn−1]#λn.w

and recall that

∀i < n.γ(i) mr Ai(f(i), f(i + 1))X [since t ∈ S]

γ(n) mr An(f(n), f(n + 1))X [since w mr An(xn, 0)X ]

∀m > n.γ(m) mr Am(f(m), f(m + 1))X [since w mr An(0, 0)X ]

i.e., γ mr ∀nAn(f(n), f(n + 1))X . Again we have

Y fγ mr X [by the definition of Y and mr ]

ΨG,Y (t) mr X [since Y fγ = Ỹ (t#λn.〈0, w〉) = ΨG,Y (t)],

hence P (t).

3. S([]). Trivial.

Remark 3.12. 1. The only restriction in proposition 3.11 is that An(x, y) must be
a relevant formula. But similar to the question of ‘how to obtain definite and goal
formulas’, this can be achieved by double negating the atomic formulas occurring in the
formula A.

2. From a computational point of view the functional Ψ that realizes DCX is highly
inefficient although we know that the functional Y only looks at finitely many entries of
its argument. Albeit, since these arguments are constant from a certain point on, they
should not be computed anew each time but be stored after being computed the first
time (cf. section 6.3).

3.3 An example for using external realizers

We now give an example which demonstrates the A-translation method when an axiom,
here the axiom of classical dependent choice, with an external realizer is allowed. The
example is motivated by our application of the A-translation method to Higman’s lemma
and will occur as a lemma in section 6.2. The use of dependent choice could be avoided in
this example. However, the example serves as a test example for Higman’s Lemma where
dependent choice will be essential. A discussion of the same example, without using
dependent choice, has been given by Constable and Murthy [CM91]. Our example has
been formalized in Minlog and its implementation can be found in the appendix A.1.
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The example. Using the axiom of classical dependent choice we show the lemma saying
that every infinite boolean valued sequence has an infinite constant subsequence

∀hnat→boole∃clenat→nat, aboole∀k. e(k) < e(k + 1) ∧ h(e(k + 1)) = a

Given such a constant subsequence we clearly obtain the simple corollary

∀h∃cli, j. i < j ∧ h(i) = h(j)

where i and j are obtained by taking e(1) and e(2).

We will extract a program from this latter statement.

Informal proof of the lemma. Assume we are given an infinite sequence h : nat → boole.
Then we argue by classical case distinction. In case the infinite sequence eventually
becomes constant with value T , i.e., there is an n such that ∀m.n < m → h(m) = T , we
simply put

e := λk. n + k, a := T

Otherwise, for all n there is an m such that n < m ∧ h(m) = F . Applying the axiom
of dependent choice with A(n, m) :≡ n < m ∧ h(m) = F , we obtain an e such that

∀k. e(k) < e(k + 1) ∧ h(e(k + 1)) = F,

hence we are done by using this e and a := F .

Formalization. In order to formalize these proofs in a setting suitable for A-translation
some changes are necessary. We recall the requirements: (1) The proof is to be carried
out in minimal logic. (2) Only definite assumptions are used (and of course the goal
formula should be a goal formula in the formal sense). (3) DC is applied to a relevant
formula.

In our informal proof, we used classical case distinction. However, since the goal is a
negated one, the case distinction on a formula A can be simulated in minimal logic by a
cut of the formula ¬A. Next, we implicitly used the assumption

((a = T ) → ⊥) → a = F

which is neither provable without the logical Efq-axiom nor is a definite formula. It can
be transformed into a definite formula (and also be proven without Efq) when we double
negate the statement a = F . Finally, we have to use (DC) with A(n, m) :≡ ¬¬(n <
m ∧ h(m) = F ). Therefore the statement we are actually proving is

∀hnat→boole∃clenat→nat, aboole∀k. ¬¬(e(k) < e(k + 1) ∧ h(e(k + 1)) = a)

using the (definite) assumption

((a = T ) → ⊥) → (a = F → ⊥) → ⊥.
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Realizing dependent choice. Although a general treatment would be possible, for simplic-
ity, we define the realizer for the specific instance of (DC) as it is used in the example.
Thus, the types are ρ ≡ nat, ν ≡ nat × nat, and σ ≡ ν → ν. We use the algebra of
reverse lists: tsil α with the constructors Lin, displayed as [], and Snoc, displayed as
infix operator ::. Moreover we have constants for the length, Lh: tsil α → nat and for
projection, displayed infix as underscores.

Here, we restrict ourselves to presenting the realizer; the information about missing types
and constants can be read off from the definitions in the preceeding chapter or from the
demo file in the appendix. The realizer for the axiom of dependent choice is

(lambda (G) (lambda (Y) (Psi G Y [])))

where for Psi we have the rewrite rule

(add-computation-rule
(pt "Psi G Y t")
(pt "Tilde Y

([n][if (n < (Lh t))
(t__n)
(0@

H (G [if (Lh t = 0)
0
(left (t__(Pred (Lh t))))]

([y,z] (Psi G Y (t::(y@z))))))])"))

which relies on the realizer H : ν → ν → ν for ex-falso-quodlibet. In this case H is just
the term λp1, p2. p1.

The extracted program. The program obtained by the Minlog system is

(lambda (h0)
(((Psi

(lambda (n1)
(if ((h0 (Succ n1))= True)

(if ((h0 (Succ (Succ n1))) = True)
(lambda (f2) ((Succ n1) @ (Succ (Succ n1))))
(if ((h0 (Succ (Succ n1))) = False)

(lambda (f2)
((f2 (Succ (Succ n1))) (lambda (p3) p3)))

(lambda (f2) (0 @ 0))))
(if ((h0 (Succ n1)) = False)

(lambda (f2) ((f2 (Succ n1)) (lambda (p3) p3)))
(lambda (f2) (0 @ 0))))))

(lambda (e1)
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(lambda (g2)
((g2 0) ((g2 1) ((e1 1) @ (e1 2)))))))

(Lin nat@@(nat@@nat=>nat@@nat))))

where f : nat → (ν → ν) → ν, g : nat → ν → ν are new variables and @ is used for the
display of pairs. Applying the term rewriting rule for Psi we end up with a program
that consists of groundterms only and uses 12 case distinctions. We discuss the behavior
of the program by means of some sample sequences given by their initial segments.

FFFFF ⇒ 1, 2 FTFTF ⇒ 2, 4

TFTFT ⇒ 1, 3 FTFTT ⇒ 3, 4.

In general, the first element is never considered since the axiom of dependent choice
only yields a sequence that is constant after the first index. Further, the behavior is not
symmetric and two indices i and j with h(i) = h(j) = T are only found if there are no
other letters in between.

An alternative version of the example. As an optimal algorithm to this problem we
would expect an algorithm that only considers the first three elements. Indeed such an
algorithm can be obtained by a reformulation of the statement as follows:

∀hnat→boole∃clenat→nat∀k. ¬¬(e(k) < e(k + 1) ∧ h(e(k)) = h(e(k + 1)).

This formulation allows for a symmetric proof but requires an assumption (or lemma)
of the form

∀a, b, c. (a = b → ⊥) → (a = c → ⊥) → (b = c → ⊥) → ⊥

whose treatment through the A-translation gives rise to exactly three case distinctions
stirring the according extracted program.

Generalizations. 1. A natural generalization appears when instead of asking for a pair
of indices, we look for a finite, increasing list of given length, on which h is constant:

∀hnat→boole, nnat∃clnstsil nat.|ns| = n ∧ Inc ns ∧ Const hns,

the predicates Inc and Const being defined in the obvious way. It turns out that this
example could be treated in better way when using a version of the axiom of dependent
choice as discussed in chapter 6.1.

2. Ramsey’s Theorem. For an arbitrary (A,≤A) we may show

∀hnat→A∃clenat→nat∀k. e(k) < e(k + 1) ∧ h(e(k)) ≤A h(e(k + 1)

which is a version of Ramsey’s Theorem (see section 4.1). The proof is similar to our
example albeit it requires two applications of the axiom of dependent choice.
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4 Higman’s Lemma and Kruskal’s Theorem

Having examined in detail the theory we will now focus on its applications. This chap-
ter is introductory in character, but also presents essential terms used in subsequent
chapters. It refers to Nash-Williams’ classical proof of Higman’s Lemma and Kruskal’s
Theorem, gives different formulations of a well quasiorder and a sketch of their equiva-
lences, and concludes with an overview on constructive proofs of Higman’s Lemma and
Kruskal’s theorem.

4.1 Nash-Williams’ minimal-bad-sequence proof

Well quasiorders

Traditionally, Higman’s Lemma and Kruskal’s Theorem are formulated in terms of well
quasiorders. We recall the definition of a well quasiorder given in the introduction. Let,
in this section, Q be a set with a relation ≤Q (or ≤ in short if the dependency is clear).

Definition. We call an infinite sequence (qi)i<ω good if ∃i, j. i < j ∧ qi ≤ qj, otherwise
it is called bad. Let (Q,≤) be a quasiorder (i.e., ≤ is reflexive and transitive). Then,
(Q,≤) is a well quasiorder, in short Wqo Q, if every infinite sequence in Q is good.

Remark 4.1. 1. It is easy to see that (Q,≤) is a well quasiorder if and only if there
is neither a strictly decreasing infinite sequence in Q nor an infinite subset of pairwise
incomparable elements.

2. For historical reasons we require well quasiorders to be transitive. However, transi-
tivity, will not play any role in our constructive proofs (This is important since there
might be cases in which proving transitivity is expensive.) We have used transitivity
in the classical proof; however, it could easily be avoided. Moreover, also reflexiv-
ity need not to be presupposed since one can prove q ≤ q once one has the property
∀(qi)i<ω∃i, j. i < j ∧ qi ≤ qj by simply applying it to the constant sequence (q)i.

3. In our thesis quasiorders are required to be decidable.

We start with a lemma, which is usually attributed to Ramsey [Ram30]. Interestingly,
there are two versions of Ramsey’s theorem. The second involves the cartesian product
of two orders together with the product order.

Ramsey’s Theorem

Lemma 4.2. Let (Q,≤) be a well quasiordering. Then, every infinite sequence
(qi)i<ω has a weakly increasing infinite subsequence, i.e., there exists (κi)i<ω such that
∀i, j. i < j → qκi

≤ qκj
.
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Proof. Let (qi)i<ω be an infinite sequence. We call an element qm terminal if there is
no n > m such that qm ≤ qn. The number of terminal elements must be finite, since
otherwise we would have an infinite bad subsequence. Therefore there is an M such that
qM is terminal, and qn is not terminal for all n > M . Now, starting with qM+1 and using
the axiom of dependent choice, we can build our weakly increasing infinite sequence.

Lemma 4.3. Wqo P ∧Wqo Q → Wqo P ×Q.

Proof. Assume that we are given an infinite sequence (〈pi, qi〉)i<ω. By Lemma 4.2 we
obtain an infinite weakly increasing subsequence (pκi

)i<ω (with respect to ≤P ) and by
the well quasiorderedness of Q we know that for (qκi

)i<ω there are indices i < j such
that qκi

≤Q qκj
.

Higman’s Lemma

Definition. On the set A∗ of finite sequences in a given alphabet A with a qua-
siorder ≤A we define an embeddability relation, denoted by ≤A∗ , as follows: A se-
quence [a1, . . . , an] is embeddable in [b1, . . . , bm] if there is a strictly increasing map
f : {1, . . . , n} → {1, . . . ,m} such that ai ≤A bf(i), for all i ∈ {1, . . . n} .

Proposition 4.4 (Higman’s Lemma).

If (A,≤A) is a well quasiorder,
then so is the set (A∗,≤A∗) of finite sequences in A.

Proof. Let A be a well quasiorder and assume for contradiction that there is a bad se-
quence in A∗. Among all infinite bad sequences we choose a ‘minimal’ bad sequence
as follows: Choose a word w0 such that w0 starts an infinite bad sequence, but any
(proper) initial segment of w0 does not. Now assuming that we have already deter-
mined w0, . . . , wn, we choose wn+1 such that there is an infinite bad sequence that starts
with w0, . . . , wn+1 but no sequence starting with w0, . . . , wn, v, in case v is an initial
segment of wn+1. Assuming the axiom of dependent choice this process yields an infinite
sequence (wi)i<ω which we call minimal. Since (wi)i<ω is bad, we know wi 6= [ ] for
all i. Therefore we may define words vi and letters ai such that wi = vi∗ai for all i.
Using Ramsey’s theorem, i.e., Lemma 4.2, and the fact that our alphabet A is a well
quasiorder, there is an infinite subsequence aκ0 ≤A aκ1≤A · · · of the sequence (ai)i<ω.
This also determines a corresponding sequence w0, . . . , wκ0−1, vκ0 , vκ1 , . . .. The sequence
w0, . . . , wκ0−1, vκ0 , vκ1 , . . .. must be bad (otherwise (wi)i<ω would have been good), hence
contradicts the choice of the minimal bad sequence.
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Kruskal’s Theorem

Definition. Let T (A) be the set of finite trees with labels in A. A tree is embeddable
into another if there exists a one to one map on them such that, (1), infima of nodes
are respected and, (2), the label of each node is less or equal to that of its image. We
denote the embeddability relation by ≤T (A).

Proposition 4.5 (Kruskal’s Theorem).

If (A,≤A) is a well quasiorder,
then so is the set (T (A),≤T (A)) of finite trees.

Proof. Assume for contradiction that there is an infinite bad sequence of trees. In
analogy to Higman’s Lemma we select an infinite minimal bad sequence (ti)i<ω such
that for all i t0, . . . , ti starts an infinite bad sequence, but t0, . . . , ti−1, u, in case u is a
subtree of ti, does not. Now, we assume that in this sequence each tree ti consists of a
root ai and immediate subtrees ui0, . . . , uiki−1. Let S be the collection of all immediate
subtrees occurring in (ti)i<ω. If there were a bad sequence in S, there would be a bad
sequence (unimi

)i<ω where 0 ≤ mi ≤ kni−1 and ni < nj for all i < j < ω. Then, also
t0, . . . , tn0−1, un0m0 , un1m1 , . . . would be bad, contradicting the choice of the minimal bad
sequence. Therefore S is a well quasiorder, and so, thanks to Higman’s Lemma, is S∗.
Now, by Ramsey’s theorem, we know that A × S∗ is a well quasiorder. In particular
for the sequence ((ai, [ui0, . . . , uiki−1]))i<ω we can find i and j such that the i-th element
is ‘embeddable’ in the j-th element. Therefore, looking at the corresponding trees, we
have ti ≤T (A) tj, contradicting the badness of chosen sequence.

4.2 Equivalent characterizations of well quasiorderings

From a constructive point of view, the problem with the preceeding definition of a well
quasiorder is, that, constructively, we can not inspect infinitely many arguments in a
sequence. However, we may use the fact that ‘good’ is a so-called open property, meaning
that an infinite sequence has this property if and only if there is a finite initial segment
which has this property. Therefore, instead of talking about infinite sequences, we may
argue about finite sequences, e.g., in a theory of inductive definitions as described below.

Definition (good/bad for finite sequences). We call a finite sequence [q0, . . . , qn−1]
with elements in Q good if there exist i < j < n such that qi ≤Q qj; otherwise we called
it bad. We also use the predicate Good Q (or Good without the parameter) in order to
express that the sequence is good. Bad(Q) denotes the set of all finite bad sequences.

Notation. Let Q∗ be the set of finite sequences [q0, . . . , qn−1], n ≥ 0 with elements qi in
Q. We make the variables ps, qs to denote elements in Q∗ and use the following notations:
qs#qs′ for the concatenation of qs and qs′ and qs ∗ q for qs#[q],
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An inductive characterization of a well quasiorder

We inductively define a predicate called BarQ (short Bar , if the dependency is clear)
which contains all finite sequences that are either good or which, being extended by one
element finitely often, eventually become good. Explained in terms of infinite sequences,
Bar qs holds if all infinite sequences starting with qs are good. Bar [ ], therefore, is an
inductive characterization of a well quasiorder as will explicitly be shown in Lemma 4.6.
For convenience, we present the introduction axioms for the inductive definition not as
axioms as it was proposed in chapter 2 but, in a mathematically more legible style, as
rules.

Definition. We inductively define a set Bar⊆ Q∗ via the following rules:

Good qs

Bar qs

∀q Bar qs∗q
Bar qs

Lemma 4.6. Let (Q,≤) be a (decidable) quasiorder. Then

Bar [ ] ⇐⇒ Wqo(Q).

Proof. “=⇒”. We show, more generally,

∀qs. Bar qs → ∀(qi)i<ω, ∀n. [q0, . . . , qn−1] = qs → ∃i < j. qi ≤ qj

by induction on Bar . The statement then follows by letting qs = [].

1. Good qs. Assume that there are an infinite sequence (qi)i<ω and a number n such that
[q0, . . . , qn−1] = qs. Since qs is good, there are i < j such that (qs)i ≤ (qs)j and therefore
also such that qi ≤ qj.

2. We have the induction hypothesis:

∀q, ∀(qi)i<ω, ∀n. [q0, . . . , qn−1] = qs∗q → ∃i < j. qi ≤ qj.

Assume that an infinite sequence (qi)i<ω and an n such that [q0, . . . , qn−1] = qs are given.
Then, our goal follows by using the induction hypothesis with qn+1.

“⇐=”. This direction is an instance of Brouwer’s axiom of bar induction which is usually
considered to be intuitionistically acceptable. We also give a classical proof: assume that
Bar [ ] does not hold. Then, by the definition of Bar there is an element q0 ∈ Q such
that ¬Bar [q0]. By iteration (using the Axiom of Dependent Choice) we get a sequence
(qi)i<ω, such that for all n the following holds: ¬Bar [q0, . . . , qn−1] and ∀i < j ≤ n qi 6≤ qj.
This contradicts Q being a well quasiorder.

Remark 4.7. The definition of Bar and the “=⇒” direction of this proof have been
formalized in Minlog (See appendix A.2). While Bar is an inductive predicate with
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computational content, for simplicity, Good is formalized as an inductive definition with-
out computational content. Hence, we prove that every infinite sequence has a good
initial segment.

In order to motivate our second inductive characterization of a well quasiorder by means
of an accessibility definition, we first look at the tree of bad sequences.

The tree of bad sequences

Definition. On the set Bad(Q) of bad sequences in Q we define a relation �Q by

qs′ �Q qs :↔ qs′ = qs ∗ q for some q ∈ Q.

Remark 4.8. (Bad(Q),�Q) forms a tree with the empty sequence as root; therefore
this set is often called the tree of bad sequences. �Q is a partial order on Bad(Q) since
it is irreflexive, antisymmetric and transitive. For a set Q it can easily be shown that to
be well quasiordered is equivalent to the fact that there is no infinite decreasing sequence
(wrt <<Q) in Bad(Q), i.e.,

(Q,≤Q) is wqo ⇐⇒ (Bad(Q),�Q) is well-founded.

The well-foundedness of Bad(Q) implies an induction principle usually phrased ‘induc-
tion along the well-founded tree of bad sequences.’

A second inductive characterization

Definition. The accessible part (also called the well-founded part) of the relation �Q⊆
Bad(Q)× Bad(Q) is inductively given by the rule

∀qs′. qs′ �Q qs → acc�Q
qs′

acc�Q
qs

Lemma 4.9. acc�Q
[ ] ⇐⇒ (Q,≤) is a wqo.

Proof. This is similar to the proof of Lemma 4.6.

We present two lemmas (see also [Sei01b]) which illustrate some basic properties of this
second characterization of a well quasiorder. We will refer to them in chapter 7.

Definition. For qs ∈ Bad(Q) let

Qqs := {q ∈ Q : qs ∗ q ∈ Bad(Q)}.

≤Qqs is the relation ≤Q restricted to Qqs.
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Lemma 4.10. (∀q ∈ Q. acc<<Q[q]
[]) → acc<<Q

[].

Proof. Assume ∀q ∈ Q acc<<Q[q]
[]. By definition of acc<<Q

we need to show ∀q ∈
Q acc<<Q

[q]. Let q ∈ Q. By assumption we have acc<<Q[q]
[]. Then acc<<Q

[q] may be

obtained from the following more general assertion (by setting ps = [q] and qs = []):

∀ps, qs. acc<<Qps
qs → acc<<Q

ps#qs.

We prove this assertion by induction on the predicate acc .

Ind(acc<<Qps
). Fix ps, qs and assume ih : ∀qs′<<Qpsqs acc<<Q

ps#qs′. Again by definition of
acc<<Q

it suffices to show acc<<Q
ps#qs∗q for an arbitrary q ∈ Qps#qs. This follows by

the induction hypothesis since qs∗q <<Qpsqs and (ps#qs) ∗ q = ps#(qs ∗ q).

Definition. Let (P,≤P ), (Q,≤Q) be quasiorders. A quasi embedding from (P,≤P ) to
(Q,≤Q) is an injective map f : P → Q, that does not create any new ≤–relations; i.e.
for all p1, p2 ∈ P :

f(p1) ≤Q f(p2) → p1 ≤P p2.

Lemma 4.11. Let f : P → Q be a quasi embedding. Then we have

acc<<Q
[] → acc<<P

[].

Proof. We show ∀qs. acc<<Q
qs → ∀ps. f(ps) = qs → acc<<P

ps, where f(ps) means that the
quasi embedding f is applied component wise to ps, i.e., f([p1, . . . , pn]) = [f(p1), . . . , f(pn)].
Clearly, acc<<Q

[] → acc<<P
[] follows by ps = qs = [].

Ind(acc<<Q
). Fix qs and assume ih : ∀qs′<<Qqs,∀ps. f(ps) = qs′ → acc<<P

ps. Let ps
s.t. f(ps) = qs. We have to show acc<<P

ps, i.e. ∀p ∈ Pps acc<<P
ps∗p. p ∈ Pps satisfies

(ps)i 6≤P p for all i ≤ |ps| and, since f is a quasi embedding, it follows f((ps)i) 6≤Q f(p),
i.e. (qs)i 6≤Q f(p). Hence qs ∗ f(p)<<Qqs, and by ih, applied to qs ∗ f(p) and ps ∗ p, we
obtain acc<<P

ps ∗ p.

The characterizations of a well quasiorder, presented up to now, will be essential for the
later chapters. In order to be able to compare various proofs at the end of this chapter,
we give some further characterizations.

Reifications

Definition. A reification of a quasi order (Q,≤) into a well ordering (σ, <) is a map

r : Bad(Q) → σ,

such that for all qs ∗ q ∈ Bad(Q): r(qs ∗ q) < r(qs).

Remark 4.12. (Q,≤) wqo ⇐⇒ there is a reification of (Q,≤) into a well ordering σ.
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4.3 On constructive proofs of Higman’s Lemma and Kruskal’s Theorem

The maximal order type of a well quasiordering

Definition. We call the height of the tree of bad sequences Bad(Q) the maximal order
type of the well quasiorder Q. It is denoted by |Bad(Q)|.

Remark 4.13. 1. There is a an alternative characterization of the ordertype of a well
quasiorder as supremum of the ordertypes of all extensions of (Q,≤) to a linear order.
This was the characterization originally used by de Jongh/Parikh [dJP77] and Schmidt
[Sch79]. If the ordertype of such an extension of (Q,≤) is α, then we have

α ≤ |Bad(Q)|.

2. If there is a reification of Q into a well order with order type β, then

|Bad(Q)| ≤ β.

4.3 On constructive proofs of Higman’s Lemma and Kruskal’s
Theorem

There are several constructive proofs of Higman’s Lemma. However, as will be shown
by analyzing the underlying proof principles and constructions, most of them have the
same computational content. To this end we give a sample proof of Wqo A → Wqo A∗

without referring to any particular characterization of a well quasiorder. We conclude
this chapter by presenting a classification containing all proofs also including those of
Kruskal’s theorem.

The underlying construction

We start by explaining the underlying construction. We write A ⊆ B in order to express
that A can be considered as a subset of B. More precisely A ⊆ B means that there exists
a quasi embedding from A to B. Now, the combinatorial idea is that for a given word
v = [a1, . . . , an] the ‘space’ available to extend the singleton sequence [v] in a bad way –
we denote this space by (A)∗[v] – can be considered as a subset of another set consisting
of disjoint unions and cartesian products of some known sets. By induction hypothesis,
this set can be proven to be well quasiordered. Formally, this idea is covered by the
following lemma.

Lemma 4.14. (A)∗[[a1,...,an]] ⊆
⋃
{(A[a1])

∗×A× · · ·×A×(A[al])
∗ : l < n}.

Proof. Assume w ∈ A∗
[[a1,...,an]], i.e., v = [a1, . . . , an] 6≤ w. Then there is an l, 0 ≤ l < n

such that [a1, . . . , al] ≤A∗ w, but [a1, . . . , al+1] 6≤A∗ w. In addition, there are b1, . . . , bl

and w1, . . . , wl−1 such that ai ≤ bi for all i, 1 ≤ i ≤ l and wi ∈ A[ai] for all i, 1 ≤ i ≤ l+1.
Then w can be identified with (w1, b1, . . . , bl, wl+1)
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4 HIGMAN’S LEMMA AND KRUSKAL’S THEOREM

The essentials of the proof

Suppose that using any of our particular characterizations of a well quasiorder we have
proven the statements:

(1) (∀q Wqo Q[q]) → Wqo Q

(2) P ⊆ Q → Wqo Q → Wqo P

(3) Wqo P ∧Wqo Q → Wqo P ∪Q

(4) Wqo P ∧Wqo Q → Wqo P×Q.

Then the proof of Higman’s Lemma

Wqo A → Wqo A∗

is as follows. Assume Wqo A; then by induction hypothesis, since, e.g., [a] is ‘lower’ than
[ ] in the well-founded tree of bad sequences, we have for all a ∈ A:

(5) Wqo A[a] → Wqo A[a]
∗.

By (1) it suffices to prove ∀v Wqo A[v]. Hence let v = [a1, . . . , an] and by Lemma 4.14
and (2) we are done once we have shown

Wqo (
⋃
{(A[a1])

∗×A× · · ·×A×(A[al])
∗ : l < n}).

But this assertion holds by (3), (4) and (5).

The assertions (1) and (2) are already proven, using an inductive characterization (com-
pare Lemma 4.10 and Lemma 4.11.) The inductive proofs for (3) and (4) are straight-
forward. Note that a classical proof of (4) has been given in Lemma 4.3.

There is one part in this general argument where we have been a bit sloppy, that is
when the induction principle is applied: in the case of the inductive characterization of a
wellquasiorder (using the acc -notation) (5) is not directly given. In this case, Higman’s
Lemma should first be generalized to ∀as. acc�A

as → acc�(Aas)∗ [].

We conclude this section with a classification of all proofs of Higman’s Lemma and
Kruskal’s theorem, mentioned in the introduction, thereby showing how the content of
the next three chapters fits in the landscape of proofs.
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4.3 On constructive proofs of Higman’s Lemma and Kruskal’s Theorem

Table 1: Classification of proofs of Higman’s Lemma and Kruskal’s Theorem

Higman’s Lemma [Hig52] Kruskal’s Thm [Kru60]

Classical Nash-Williams [NW63] Nash-Williams [NW63]

A-translation Murthy [Mur90], a

S., chapter. 6, b

ID (Bar ) Coquand, Fridlender [CF94], c

S., chapter 5, b

Max. ordertype deJongh, Parikh [dJP77] Schmidt [Sch79]

Reifications Schütte, Simpson [SS85] Rathjen, Weiermann [RW93]
(Hasegawa [Has94])

ID (acc) Fridlender [Fri93], d S., chapter. 7
Richman, Stolzenberg [RS93]
(Murthy, Russell [MR90])
(Cichon, Tahhan Bittar [CTB94])

Intuitionistic Veldman [Vel00] Veldman [Vel00]

ID (Bar ) Fridlender [Fri97], d

a Formalized in Nuprl; the A-translated version of this proof has been implemented
by Herbelin in Coq [Her94].

b Formalized in Minlog.
c Higman’s Lemma for a two letter alphabet has been implemented in Minlog and

by Berghofer in Isabelle [Ber03].
d Formalized in Alf.

In table 1 in each case, the left column gives a hint on the method or the characterization
of a well quasiorder used in the according proofs. With respect to the combinatorial idea,
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4 HIGMAN’S LEMMA AND KRUSKAL’S THEOREM

we mainly distinguish three types of proofs. In the table these three types are separated
by a double line in the tabular.

The first group comprises the classical proof and their constructive counterparts which
form the topic of the next two chapters. Note that, among the classical proofs, we are
only mentioning the minimal-bad-sequence proof; an overview of other classical proofs
may be found in [Fri97]. The second group is the one which make use of the construction
explained in this section. Although not completely constructively formalized, we include
the proofs given in [dJP77, Sch79] since they use the same construction. Finally, proofs
that do not require decidability for the relation on the alphabet have been given by
Veldman, using intuitionistic methods. Fridlender [Fri97] has transformed the proof for
Higman’s Lemma into a proof using inductive definitions. This proof as well as the
analysis of the constructive proofs of Higman’s Lemma in the second group have been
investigated in our diploma thesis [Sei98], and therefore will not be considered in detail
in this thesis.

Some of the proofs have also been formalized in the theorem prover - this information
has been included in form of footnotes.

48



5 An inductive version of Nash-Williams’ proof of

Higman’s Lemma

We have seen the short and elegant proof of Higman’s Lemma due to Nash-Williams
using the so-called Minimal-Bad-Sequence-Argument. The objective of this section is
to present a proof of Higman’s Lemma that uses the same combinatorial idea as Nash-
Williams’ classical proof, but which is constructive. For the case of a two letter alphabet
such a proof was given by Coquand and Fridlender [CF94]. Using more flexible struc-
tures, we present a proof that works for an arbitrary well quasiordered alphabet.

An earlier version of our proof has been published in [Sei01a]. Here, it is improved with
respect to the computational content which only can be read off when using a ‘positive’
formulation of a well quasiorder (cf. remark 5.6).

The proof is based on the inductive characterization of a well quasiorder via the predicate
Bar which was introduced in section 4.2. Thus the statement we are going to prove in
this section is

BarA [] → BarA∗ [].

5.1 Basic definitions

We assume (A,≤A) to be a set with a reflexive and transitive, decidable relation3.

Notation. We use

a, b, . . . for letters, i.e., elements of a A,
as, bs, . . . for finite sequences of letters, i.e., elements of A∗,
v, w, . . . for words, i.e., elements of A∗, 4

vs, ws, . . . for finite sequences of words, i.e., elements of A∗∗ ,
vss . . . for elements in A∗∗∗ .

Definition (Higman embedding). The embedding relation on A∗ can be inductively
described by the following rules:

[ ] ≤A∗ [ ]

v ≤A∗ w

v ≤A∗ w∗a
v ≤A∗ w, a ≤A b

v∗a ≤A∗ w∗b
.

3 Whereas transitivity is only required for historical reasons, but is not used in our proof, decidability
plays an essential role.

4
Although of the same kind, we distin-
guish between finite sequences (of let-
ters), as, and words, w, because they
will play different roles, as is illustrated
in the picture on the right. as

w1 w2 w3 w4 w5
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5 AN INDUCTIVE VERSION OF NASH-WILLIAMS’ PROOF

Definition. For a finite sequence ws of non-empty words let lasts ws denote the finite
sequence consisting of the end-letters of the words of ws, that is,5

lasts [w0∗a0, . . . , wn−1∗an−1] = [a0, . . . , an−1], n ≥ 0.

If ws contains an empty word, for simplicity, we set lasts ws := [ ].

Definition. Good and Bad are used to express that a finite sequence is good, bad
respectively. Furthermore, we use the notion good(as, a) if there is an element in as, say
the i-th one, such that (as)i ≤A a. bad(as, a) stands for ¬good(as, a).

Further, bseq(as) determines the ‘first’ bad subsequence occurring in as:

bseq([ ]) = [ ]

bseq(as∗a) =

{
bseq(as)∗a if bad(bseq(as), a),
bseq(as) otherwise.

Finally, we recall the definition of the predicate BarA (see section 4.2).

Definition. We inductively define a set BarA⊆ A∗ via the following rules:

Good as

BarA as

∀a BarA as∗a
BarA as

.

The preceeding two definitions should be understood for arbitrary relations, not only for
our fixed (A,≤A). They are also used for (A∗,≤A∗).

5.2 The analogy between the classical and the constructive
proof

In order to motivate further definitions we first want to highlight the idea behind the
constructive proof. This is best done by showing the connection between the classical and
the constructive proof. To this extend we shortly recall the structure of Nash-Williams’
minimal-bad-sequence proof (see section 4.1) and show how the main steps are captured
by the inductive proof.

The steps of Nash-Williams’ proof:

1. In order to show ‘Wqo (A) implies Wqo (A∗)’, assume for contradiction that there
is a bad sequence of words.

5 In our picture we have last[w1, . . . , w5] = as.
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5.2 The analogy between the classical and the constructive proof

2. Among all infinite bad sequences we choose (using classical dependent choice) a
minimal bad sequence, i.e., a sequence (wi)i<ω, such that, for all n, w0, . . . , wn

starts an infinite bad sequence, but w0, . . . , wn−1, v, where v is an initial segment
of wn, does not.

3. Since for all i wi 6= [ ], let wi = vi∗ai. By Ramsey’s theorem and the fact that
our alphabet A is a well quasiorder, there exists an infinite subsequence aκ0 ≤A

aκ1 ≤A · · · of the sequence (ai)i<ω. This also determines a corresponding sequence
w0, . . . , wκ0−1, vκ0 , vκ1 , . . ..

4. The sequence w0, . . . , wκ0−1, vκ0 , vκ1 , . . . must be bad (otherwise also (wi)i<ω would
be good), but this contradicts the minimality in 2.

In the constructive proof these steps correspond to

1. Prove inductively ‘BarA [ ] → BarA∗ [ ]’.

2. The minimality argument will be replaced by structural induction on words.

3. Given a sequence ws = [w0, . . . , wn] s.t. wi = vi∗ai, we are interested in all subse-
quences aκ0 ≤A · · · ≤A aκl

of maximal length6 and their corresponding sequences
w0, . . . , wκ0−1, vκ0 , . . . , vκl

. The sequences [aκ0 , . . . , aκl
] form a forest. In the proof

these sequences will be computed by the procedure forest which takes ws as input
and yields a forest labeled by pairs in A∗∗ × A. In the produced forest the right-
hand components of each path form such an ascending subsequence [aκ0 , . . . , aκl

]
and the left-hand component of each label with a right-hand component aκi

con-
sists of the sequence w0, . . . , wκ0−1, vκ0 , . . . , vκi

. If we extend the sequence ws by a
word v∗a, then in the existing forest either new nodes, possibly at several places,
are inserted, or a new singleton tree with node 〈ws∗v, a〉 is added. Now the infor-
mal idea of the inductive proof is: if in forest ws new nodes can not be inserted
infinitely often (without ending up with a good left-hand component in a node)
and if also new trees can not be added infinitely often, then ws can not be ex-
tended badly infinitely often. Formally, this will be captured by the statement:
∀ws. BarA bseq(lasts ws) → Barforest forest ws → BarA∗ ws.

4. The first part of item 4 corresponds to Lemma 5.1.

The formal definition of the procedure forest and the inductive definition of the predicate
Barforest expressing that the forest ‘behaves in a wellfounded way’ will be given in the
next section.

6By maximal length we mean that we only look at those subsequences which are ascending, but not
contained in other ones, for instance our chosen subsequences of [1, 4, 3, 0, 3] are [1, 4], [1, 3, 3] and [0, 3].
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5 AN INDUCTIVE VERSION OF NASH-WILLIAMS’ PROOF

5.3 Forests

Definition. We use

t for elements in T (A∗∗ × A), i.e., trees labeled by pairs in A∗∗ × A,
f, ts for elements in (T (A∗∗ × A))∗, i.e., forests.

The tree with root 〈ws, a〉 and list of subtrees ts is written 〈ws, a〉ts. We use the de-
structors left and right for pairs and the destructors root and subtrees for trees, hence
root 〈ws, a〉ts = 〈ws, a〉 and subtrees 〈ws, a〉ts = ts. For better readability we set:

newtree 〈ws, a〉 := 〈ws, a〉[ ],
roots [t1, . . . , tn] := [root t1, . . . , root tn],

lefts [〈vs1, a1〉, . . . , 〈vsn, an〉] := [vs1, . . . , vsn],

rights [〈vs1, a1〉, . . . , 〈vsn, an〉] := [a1, . . . , an].

We now come to the formal definition of the forest of a finite sequence of words. Note
that forest is intended to be a partial function, i.e., is intended to be only defined for
a sequence of non-empty words. However, it turns out that it is convenient to put
forest (ws ∗ [ ]) := [ ] and it simplifies the formalization.

Definition. Let ws ∈ A∗∗ be a sequence of words. Then forest ws ∈ (T (A∗∗ × A))∗ is
recursively defined by:

forest [ ] = [ ],
forest ws ∗ [ ] = [ ],

forest ws∗(w∗a) =

{
insertforest(forest ws,w, a) if good(bseq(lasts ws), a)
(forest ws)∗newtree 〈ws∗w, a〉 otherwise,

where

insertforest(f, w, a) = map

λt

 if right (root t) ≤A a
inserttree(t, w, a)
t

 f

and

inserttree(〈vs, a′〉ts, w, a) ={
〈vs, a′〉insertforest(ts, w, a) if good(rights (roots ts), a),
〈vs, a′〉(ts ∗ newtree 〈vs∗w, a〉) otherwise.
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5.4 The proof of Higman’s Lemma

Definition. Let f ∈ (T (A∗∗ ×A))∗. Then Goodforest f (read ‘f is a good forest’) holds
if there is a label in f such that the left-hand side of this label is good. On (T (A∗∗×A))∗

we define a relation ≺ by

f ′ ≺ f : ↔ f ′ 6= f ∧ ∃w, a. f ′ = insertforest(f, w, a)

Finally, we inductively define the predicate Barforest ⊆ (T (A∗∗ ×A))∗ via the following
rules

Goodforest f

Barforest f

∀f ′. f ′ ≺ f → Barforest f ′

Barforest f
.

5.4 The proof of Higman’s Lemma

Lemma 5.1. Let ws be a sequence of words. Then

i) Goodforest forest ws → Good ws.

ii) bseq(lasts ws) = rights (roots (forest ws)).

Proof. This follows from the construction of forest .

Lemma 5.2.

i) Barforest [ ].

ii) ∀f, t. Barforest f ∧ Barforest [t] → Barforest f ∗ t.

Proof. i) Barforest [ ] follows from the second rule of the definition of Barforest , using
Efq.

ii) This assertion holds since insertforest is defined by a map operation. Formally, we
prove

∀f1. Barforest f1 → ∀f2. Barforest f2 → Barforest f1#f2.

by induction on Barforest f1 and Barforest f2. In order to show Barforest f1#f2 let f ′ such
that f ′ ≺ f1#f2 and show Barforest f ′.

Case 1: f ′ = f1#f ′2 such that f ′2 ≺ f2. Then Barforest f1#f ′2 follows by the second
induction hypothesis.

Case2: f ′ = f ′1#f ′2 such that f ′1 ≺ f1 and f ′2 ≺ f2 (or f ′2 = f2). In this case Barforest f ′1#f ′2
can be obtained by

ih1 : ∀f ′1.f ′1 ≺ f1 → ∀f2. Barforest f2 → Barforest f ′1#f2,

using the strengthening of the second induction hypothesis ∀f ′2. f ′2 ≺ f2 → Barforest f ′2
(in the case f ′2 ≺ f2).
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5 AN INDUCTIVE VERSION OF NASH-WILLIAMS’ PROOF

The next lemma tells us that a forest consisting of only one tree, in which we continue
to insert new nodes by insertforest operations, eventually becomes good.

Lemma 5.3. Assume BarA [ ]. Then

∀ws. BarA∗ ws → ∀a. Barforest [newtree 〈ws, a〉].

Proof. Ind1(BarA∗ ): 1.1. Good ws. Then we have Goodforest [newtree 〈ws, a〉] since the
left-hand-side of the root label is good, i.e., Barforest [newtree 〈ws, a〉]. 1.2. Assume

ih1 : ∀w, a. Barforest [newtree 〈ws∗w, a〉].

Let a ∈ A. Instead of proving Barforest [newtree 〈ws, a〉] we show more generally that
this assertion holds for all t such that root t = 〈ws, a〉 and (a) subtrees t is in Barforest ,
and (b) rights (roots (subtrees t)) is in BarA . We do this by main induction on (b) and
side induction on (a), i.e., formally we prove

∀as. BarA as →
∀ts. Barforest ts →
∀t. root t = (ws, a) → subtrees t = ts →

rights (roots (subtrees t)) = as → Barforest [t].

Ind2(BarA ). 2.1. Good as. Assume that there is a t such that

rights (roots (subtrees t)) = as.

Since by construction rights (roots (subtrees t)) for any t is bad, this leads to a contradic-
tion and the result follows by ex-falso-quodlibet. 2.2. BarA as is obtained by the second
rule. We fix an as, assume ih2 and have to show ∀ts. Barforest ts → ∀t. root t = (ws, a) →
subtrees t = ts → rights (roots (subtrees t)) = as → Barforest [t].

Ind3(Barforest ). 3.1. Fix an ts such that Goodforest ts. Then for any t such that
subtrees t = ts, Goodforest ts implies Goodforest [t], i.e., Barforest [t]. 3.2. Fix ts and
assume ih3a : ∀ts′. ts′ ≺ ts → Barforest ts′ and

ih3b : ∀ts′. ts′ ≺ ts →
∀t. root t = (ws, a) → subtrees t = ts′ →

rights (roots (subtrees t)) = as → Barforest [t].

Fix t such that root t = 〈ws, a〉, subtrees t = ts, and rights (roots (subtrees t)) = as. Then,
we have to prove Barforest [t]. Unfolding the definition of Barforest it suffices to show
Barforest [t′] where t′ = inserttree(t, w, a′) 6= t for some w ∈ A∗ and a′ such that a < a′.
We prove the assertion by case distinction on the definition of inserttree.
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5.4 The proof of Higman’s Lemma

Case 1. t′ = 〈ws, a〉 (ts∗newtree 〈ws∗w, a′〉) for some w and a′ such that bad(as, a′). Then
we have

root t′ = 〈ws, a〉,
subtrees t′ = ts ∗ newtree 〈ws∗w, a′〉,
rights (roots (subtrees t′)) = as∗a′.

We may apply ih2 to as∗a′, ts ∗ newtree 〈ws∗w, a′〉 and t′ and conclude Barforest [t′] once
we have proven

Barforest ts ∗ newtree 〈ws∗w, a′〉.

By Lemma 5.2, using Barforest ts which holds by ih3a, it suffices to show

Barforest [newtree 〈ws∗w, a′〉].

But this follows by ih1.

Case 2. t′ = 〈ws, a〉 insertforest(ts, w, a′) where a′ such that good(as, a′). In this case we
have

root t′ = 〈ws, a〉,
subtrees t′ = insertforest(ts, w, a′),

rights (roots (subtrees t′)) = as.

Then [t′] ≺ [t] implies subtrees t′ ≺ subtrees t and by ih3b, applied to subtrees t′ and t′, we
end up with Barforest [t′].

Now, the proof of the general assertion is completed, and we may put as = [], f = [] and
t = newtree 〈ws, a〉. Since we have BarA [ ] by assumption and Barforest [ ] by Lemma 5.2,
we obtain BarA∗ ws → Barforest [newtree 〈ws, a〉].

Proposition 5.4 (Higman’s Lemma). BarA [ ] → BarA∗ [ ].

Proof. Assume BarA [ ]. We show more generally

∀as. BarA as →
∀f. Barforest f →
∀ws. bseq(lasts ws) = as → forest ws = f → BarA∗ ws.

Ind1(BarA ). 1.1. Good as. Then, the result follows by ex-falso-quodlibet since for any
ws, bseq(lasts ws) is bad. 1.2. Let as ∈ A∗ and assume ih1 : ∀a∀f. Barforest f →
∀ws. bseq(lasts ws)=as∗a → forest ws=f → BarA∗ ws.

Ind2(Barforest ). 2.1. Goodforest f . Then, by Lemma 5.1, i), for any ws such that
forest ws = f , we obtain Good ws and hence BarA∗ ws. 2.2. Fix an f and assume
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5 AN INDUCTIVE VERSION OF NASH-WILLIAMS’ PROOF

ih2a : ∀f ′. f ′ ≺ f → Barforest f ′ and ih2b : ∀f ′. f ′ ≺ f → ∀ws. bseq(lasts ws) = as →
forest ws = f ′ → BarA∗ ws. Assume that we have ws such that bseq(lasts ws) = as
and forest ws = f . In order to prove BarA∗ ws, we fix a word w and show BarA∗ ws∗w by
induction on the structure of w:

Ind3(w). 3.1. BarA∗ ws∗[ ] holds since the empty word is embeddable in any word. 3.2.
Assume that we have a word of form w∗a. We show BarA∗ ws∗(w∗a) by case analysis on
whether or not good(as, a).

Case 1. bad(as, a). Then we have

bseq(lasts (ws∗(w∗a))) = as∗a,

forest (ws∗(w∗a)) = f ∗ newtree 〈ws∗w, a〉.

By ih2a and ih3, we have Barforest f and BarA∗ ws∗w. Hence, by Lemma 5.3, applied to
ws∗w and a, we obtain Barforest [newtree 〈ws∗w, a〉] and by Lemma 5.2 we may conclude

Barforest f ∗ newtree 〈ws∗w, a〉.

Now, we are able to apply ih1 (to a, f ∗ newtree 〈ws∗w, a〉 and ws∗(w∗a)) and end up
with BarA∗ ws∗(w∗a).

Case 2. good(as, a). In this case, it follows

bseq(lasts (ws∗(w∗a))) = as,

forest (ws∗(w∗a)) = insertforest(f, w, a).

Moreover, by 5.1, ii) and the definition of forest (ws∗(w∗a)), we know that at least one
node has been inserted into forest ws, hence

insertforest(f, w, a) ≺ f.

In this situation, we may apply ih2b (to insertforest(f, w, a) and ws∗(w∗a)) and conclude
BarA∗ ws∗(w∗a).

This completes the proof of the general assertion. Now, by putting as = [ ], f = [ ]
and ws = [ ] and the fact that Barforest [ ] always holds (cf. Lemma 5.2) we obtain
BarA [ ] → BarA∗ [ ].

Remark 5.5. Note that there is a certain freedom in modelling the construction behind
the Nash-Williams proof. We discuss some alternatives in order to contribute to a wider
understanding. All choices, bar one, have no essential influence on the resulting program.

First of all, we may define forests by distinguishing cases only in the definition of
insertforest. Then, the definition of forests in the step case amounts to

forest (ws ∗ (w ∗ a)) = insertforest(forest ws,ws, w, a)
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where, however, we now need the additional argument ws, and, accordingly, the definition
of ≺ has to be modified to

f ′ ≺ f : ↔ roots (f ′) = roots (f) ∧ ∃ws,w, a.f ′ = insertforest(f, ws, w, a).

Concerning the generation of forests, a second decision is to store sequences of words
instead of words in the left-hand-sides of the labels. Conversely, we may add new nodes
in form of newtree 〈w, a〉, but, in order to show that a forest is good, it is desirable to
have stored somewhere all earlier occurred words that are of interest.

A choice which changes the behavior of the resulting program is how often a new given
node should be inserted. Our decision to insert wherever reasonable is influenced by
the idea that the extracted program should yield some of the first indices fulfilling the
desired property.

Finally, one may dislike the ∃-quantifier in the definition of Barforest . An alternative
definition is

∀w, a. insertforest(f, w, a) 6= f → Barforest insertforest(f, w, a)

Barforest f
.

Remark 5.6. In order to make the computational content behind the inductive proof
visible, it is essential to use a ‘positive’ formulation of a well quasiorder, that is, a
definition using two rules, as was pointed out, e.g., in [Fri93]. Having a proof of BarA∗ ws
implies that the proof yields the information whether BarA∗ ws was obtained by the first
rule or by the second. In the first case the result can be read off, in the second we
continue with looking at a proof of BarA∗ ws ∗ w for some w. It might happen that ws is
good, but our proof of BarA∗ ws was obtained by the second rule, so we continue with the
search. If we used a definition consisting of only one rule, i.e., an acc -notion as we did
in [Sei01a], BarA∗ ws would correspond to the statement ‘for all w such that bad(ws,w)
implies BarA∗ ws ∗ w’ where the test whether or not bad(ws,w) results in a brute-force
search; it is not given by the proof itself.

5.5 Formalization in Minlog

In Minlog we have formalized two proofs, first, the proof of Higman’s Lemma for a two
letter alphabet due Coquand and Fridlender in [CF94], and, secondly, the proof given
in a preceeding section, instantiated to a finite alphabet. Both implementations can be
found in the appendix.

In the case of a finite alphabet instead of an arbitrary alphabet, the proof given in
the preceeding section simplifies with respect to the structure of the forests. They now
only consist of non-branching trees and, therefore, reduce to folders. Furthermore, we
let a ≤A b := a = b. Then bseq(as) yields the sequence of all letters, occurring in as,
without repetitions. For a better understanding of the implementation, we briefly recall
this special case of our proof.
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Definition. Let ws ∈ A∗∗ be a sequence of words. Then folder ws ∈ A∗∗∗ is defined
recursively by:

folder [ ] = [ ],

folder ws ∗ [ ] = [ ],

folder ws∗(w∗a) =

{
insertfolder(folder ws,w, i) if a=(bseq(lasts ws))i

(folder ws) ∗ (ws∗w) otherwise,

where
insertfolder([vs0, . . . , vsn], w, i) = [vs0, . . . , vsi∗w, . . . , vsn].

Definition. We inductively define a predicate Bars ⊆ A∗∗∗ via the following rules

i < |vss| ∧ Good (vss)i

Bars vss

∀w, i.i < |vss| → Bars (insertfolder(vss, w, i))

Bars vss
.

Next, we reformulate Lemma 5.1 and Lemma 5.2. Lemma 5.3 becomes trivial.

Lemma 5.7. Let ws be a sequence of words. Then

i) Good (folder ws)i → Good ws.

ii) |bseq(lasts ws)| = |folder ws|.

Proof. Both follows from the construction of folder .

Lemma 5.8. i) Bars [ ]. ii) BarA∗ vs ∧ Bars vss → Bars vss∗vs.

Proof. ii) Ind1(Bar ). Ind2(Bars ).

Proposition 5.9 (Higman’s Lemma for a finite alphabet). BarA∗ [ ].

Proof. We show more generally

∀as. BarA as →
∀vss. Bars vss →
∀ws. bseq(lasts ws) = as → folder ws = vss → BarA∗ ws.

Ind1(BarA ). 1.1. Good as. Then, the goal follows by ex-falso-quodlibet since, for any ws,
bseq(lasts ws) is bad. 1.2. Let as ∈ A∗ and assume

ih1 : ∀a∀vss. Bars vss → ∀ws. bseq(lasts ws)=as∗a → folder ws=vss → BarA∗ ws.

Ind2(Bars ). 2.1. ∃i < |vss|. Good (vss)i. Then, by Lemma 5.7, i), for any ws such
that folder ws = vss, we obtain Good ws, hence BarA∗ ws. 2.2. Fix vss and assume
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ih2a : ∀v, i.Bars insertfolder(vss, v, i) and ih2b : ∀v, i, ws. bseq(lasts ws) = as → folder ws =
insertfolder(vss, v, i) → BarA∗ ws. Now, assume that we have ws such that bseq(lasts ws) =
as and folder ws = insertfolder(vss, v, i). In order to prove BarA∗ ws, we fix a word w and
show BarA∗ ws∗w by induction on the structure of w.

Ind3(w). 3.1. BarA∗ ws∗[ ] holds since the empty word is embeddable in any word. 3.2.
Assume that we have a word of form w∗a. We show BarA∗ ws∗(w∗a) by case analysis on
whether or not bad(as, a).

Case 1. bad(as, a). Then, we obtain

bseq(lasts (ws∗(w∗a))) = as∗a,

folder (ws∗(w∗a)) = vss∗(ws∗w).

By ih2a and ih3, we have Bars vss and BarA∗ ws∗w and thanks to Lemma 5.8 we may
conclude

Bars vss∗(ws∗w).

Now, we are able to apply ih1 (to a, vss∗(ws∗w) and ws∗(w∗a)) and end up with
BarA∗ ws∗(w∗a).

Case 2. good(as, a). Let i such that (as)i = a. In this case, we have

bseq(lasts (ws∗(w∗a))) = as,

folder (ws∗(w∗a)) = insertfolder(vss, w, i).

Here we may apply ih2 (to w, i and ws∗(w∗a)) and conclude BarA∗ ws∗(w∗a).

This completes the proof of the general assertion. Now, let as = [], vss = [] and ws = [],
then from Bars [ ] and BarA [ ] which holds for finite alphabet we obtain BarA∗ [ ].

Remark 5.10. In the appendices A.3 and A.4, in each case, we have extracted a
program that for a given infinite sequence of words yields a good initial segment (uniquely
determined by its length). Instead of an extensive discussion of the extracted programs
we simply refer to the implementation. Note that the formalization in A.4, although
more general concepts involving, is not much longer than that in A.3. The reason
for this is mainly that the program extraction mechanism in Minlog allows for using
unproven assumptions (as long as these assumptions are computationally meaningless).
An example for such an assumption is lemma 5.7 whose correctness is obvious from the
construction but which is indeed elaborate to prove.

Also note that the general proof in this section does not directly yield the Coquand/Frid-
lender proof when restricted to a 0/1 alphabet, but a proof organized in a different
way. Nevertheless, both proofs, the Coquand/Fridlender proof [CF94] and the restricted
general proof, result in programs which behave in the same way since the underlying
combinatorial idea is still the same. Furthermore, when applied to the sequence

[0 0], [1], [1 0], [ ], ...
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5 AN INDUCTIVE VERSION OF NASH-WILLIAMS’ PROOF

they yield a good initial segment whose length is greater than 3, showing that the
shortest good initial sequence is not always found and therefore the algorithms differ
from a simple search algorithm.
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6 A-translation of Nash-Williams’ proof of Higman’s

Lemma

Whilst in the preceeding section we have given a proof of Higman’s Lemma that can be
considered as an inductive analogue to the classical proof, in this section we are interested
in a direct transformation of the classical Nash-Williams proof into a constructive one
and extract a program.

The main ingredient of the classical proof is the minimal bad sequence argument which
can be proven conveniently using an alternative version of the axiom of dependent choice.
This second version, called DC-seq, can be derived from the ordinary DC, discussed
in section 3.2, as we will show in Lemma 6.1. In the implementation on Higman’s
Lemma, however, we prefer to directly provide a realizer for this new version (in the
same style as it has been done for DC) thereby omitting an additional recursion in the
program. The main difference between the two versions of the axiom of dependent choice
is that DC yields an infinite sequence in which only the n-th and n + 1-th element are
connected, whereas in the sequence obtained by DC-seq the n + 1-th element is related
to all previously computed elements up to index n.

6.1 An equivalent formulation of classical dependent choice

Let DC-seq be the scheme

B([ ]) → (∀xsρ∗
. B(xs) → ∃clxρ. B(xs ∗ x)) → ∃clgnat→ρ∀n. B(ḡn).

Lemma 6.1. HAω `i DC → DC-seq.

Proof. Assume, (1), B([ ]) and, (2), ∀xs. B(xs) → ∃clx. B(xs ∗ x). We have to show
∃clg. ∀B(ḡn). From (2), using efqB : ⊥ → B, we can derive

∀xs∃clx.B(xs) → B(xs ∗ x).

In the following, for a ys of form xs∗x we use the notations lead(ys) := xs and last(ys) :=
x. Thereby, we easily obtain

∀xs∃clys. lead(ys) = xs ∧ (B(xs) → B(ys))

By DC for type ρ∗, x0 := [ ] and A(xs, ys) :≡ lead(ys) = xs ∧ (B(xs) → B(ys)), we have

∃clf.f(0) = [ ] ∧ ∀n.lead(f(n + 1)) = f(n) ∧ (B(f(n)) → B(f(n + 1))). (∗)

Now, we set
g := λn.last(f(n + 1))
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6 A-TRANSLATION OF NASH-WILLIAMS’ PROOF

and we show that ∀n.B(ḡn). Indeed, we prove more generally

∀n.B(ḡn) ∧ ḡn = f(n)

by induction on n. n = 0 : B([ ]) holds by (1) and ḡ0 = [ ] = f(0) by (∗).
n → n + 1 : By ih, we have B(f(n)), hence by (∗), B(ḡ(n + 1)). We conclude ḡ(n + 1) =

(ḡn) ∗ g(n)
ih
= f(n) ∗ last(f(n + 1))

(∗)
= lead(f(n + 1)) ∗ last(f(n + 1)) = f(n + 1).

Remark 6.2. 1. We used efqB in the proof. This could be avoided when B is a formula
which ’ends’ with ⊥ , i.e., is relevant (this includes that in a conjunction both sub-
formulas are relevant). 2. Note that the direction DC-seq → DC also holds. Therefore,
indeed, both formulations of dependent choice are equivalent.

Proposition 6.3. Let B be relevant. Let ∆ is the axiom system defined in section 3.2
and DC-seq be the formula

B([ ]) → (∀xsρ∗
.B(xs) → ∃clxρ.B(xs ∗ x)) → ∃clgnat→ρ.∀nB(ḡn).

Then DC-seqX is realizable in HAω + ∆.

Proof. Similar to Berger and Oliva’s proof, presented in 3.2. By unfolding the classical
existential quantifier and substituting X for ⊥ we build DC-seqX :

B([ ])X →
(∀xsρ∗

.B(xs)X → (∀xρ.B(xs ∗ x)X → X) → X) →
(∀gnat→ρ.∀nB(ḡn)X → X) → X.

Let ν := τ(X), σ := τ(BX) and assume that we have realizers G0, G, Y such that

Gρ
0 mr B([ ])X (1)

Gρ∗→σ→(ρ→σ→ν)→ν mr ∀xsρ∗
.B(xs)X → (∀xρ.B(xs ∗ x)X → X) → X (2)

Y (nat→ρ)→(nat→σ)→ν mr ∀g.∀nB(ḡn)X → X (3)

It suffices to find a realizer for X. Let β be a variable of type nat → ρ × σ and t be
a variable of type (ρ × σ)∗. Moreover, we extend the notation β̄n to finite sequences,
i.e., given an n such that 0 ≤ n ≤ |t|, we let t̄n := [t0, . . . , tn−1]. We define, using bar
recursion,

Ψ(t) := Ỹ (t#λn.〈[ ], H(G(π0 ◦ t, ([G0]#(π1 ◦ t))|t|, λxρ, zσ.Ψ(t ∗ 〈x, z〉)))〉)

where Ψ may depend on G0, G and Y ,

Ỹ (β) := Y (π0 ◦ β, [G0]#(π1 ◦ β)),

62



6.1 An equivalent formulation of classical dependent choice

and H is the closed term given by Lemma 3.10 such that

∀xs. H mr (X → B(xs)X).

Next, let

S(t) := ∀i ≤ |t|. ([G0]#(π1 ◦ t))i mr B((π0 ◦ t)i)X

P (t) := Ψ(t) mr X.

Using quantifier free bar induction relativized to S (see section 3.2) we show P ([ ]).

1. Assume that we have a β ∈ S, i.e., ∀nS(β̄n). Then we have to show ∃nP (β̄n). Let

g := π0 ◦ β

γ := [G0]#(π1 ◦ β).

Then

S(β̄n) ≡ ∀i ≤ n. ([G0]#(π1 ◦ β))i mr B((π0 ◦ β)i)X

≡ ∀i ≤ n.γ(i) mr B(ḡi)X .

Hence

∀nS(β̄n) ≡ ∀n.γ(n) mr B(ḡn)X

≡ γ mr ∀nB(ḡn)X .

By (3) we obtain Y gγ mr X, hence Ỹ (β) mr X. Furthermore, by the principle of
continuity we know that in order to compute Ỹ we only need to look at finitely many
values in the sequence β, i.e., there exists an n such that Ỹ (β) = Ỹ (β̄n#λn.any(n))
where any(n) are any terms. In particular, we have

Ỹ (β) = ΨG,Y (β̄n)

and hence end up with Ψ(β̄n) mr X, i.e., P (β̄n).

2. Show ∀t ∈ S.∀q(S(t ∗ q) → P (t ∗ q)) → P (t). Let t ∈ S where t is of form t =
[〈x0, z0〉, . . . , 〈xn−1, zn−1〉] and set xs := [x0, . . . , xn−1]. Now assume ∀q(S(t∗q) → P (t∗q)),
i.e., for all xn, zn

(∀i ≤ n + 1.([G0, z0, . . . , zn])i mr B([x0, . . . , xn]i)X) → Ψ(t ∗ 〈xn, zn〉) mr X.

Set u := ([G0, z0, . . . , zn−1])n, xs := [x0, . . . , xn−1] then, in particular, we have

u mr B(xs)X → λxn, zn.Ψ(t ∗ 〈xn, zn〉) mr ∀xn.B(xs ∗ xn)X → X.

Now, by (2), applied to xs,u and v := λxn, zn.Ψ(t ∗ 〈xn, zn〉) we obtain

G(xs, u, v) mr X.
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By Lemma 3.10, we have a closed term H such that

∀ys. H mr (X → B(ys)X),

hence
∀ys. H(G(xs, u, v)) mr B(ys)X .

Now, let

w := H(G(xs, u, v))

g := [x0, . . . , xn−1]#λn.[ ]

γ := [G0, z0, . . . , zn−1]#λn.w.

We recall:

∀i ≤ n. γ(i) mr B(ḡi)X [since t ∈ S]

∀m > n. γ(m) mr B(ḡm)X [since w mr B((xs#λn.[ ])m)X ]

i.e.,
γ mr ∀nB(ḡn)X .

Again we have

Y gγ mr X [by def Y and mr ]

ΨG,Y (t) mr X [Y gγ] = Ỹ (t#λn.〈[ ], w〉) = ΨG,Y (t)],

hence P (t).

3. S([ ]) follows from (1).

6.2 Formalization of Nash-Williams’ proof

We give a formalization of the classical proof of Higman’s Lemma presented in section 4.1
where, for simplicity, we restrict ourselves to a two letter alphabet, i.e., the booleans with
the equality as quasiorder. We shall use both versions of dependent choice: (DC-seq) for
proving the minimal bad sequence argument and (DC) for the lemma stating that every
infinite boolean valued sequence has a constant subsequence (cf. section 3.3). Higman’s
Lemma for an arbritrary alphabet could be proven by using Ramsey’s theorem instead
of the constant subsequence lemma. The proof of Ramsey’s theorem is similar to that
of the lemma.

The example has been implemented in the Minlog system. Here, we sketch the for-
malized classical proof. The full implementation of the example may be found in the
Minlog repository.
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Types. Beside nat and boole we have word := tsil boole and seq := tsil (tsil boole) where,
we recall, tsil α is the type for reverse lists over the type α, i.e.,

tsil α = Lin + Snoc(Lead : tsil α, Last : α)

with constructors Lin : tsil α and Snoc : tsil α → α → tsil α and destructors Lead : tsil α →
tsil α and Last : tsil α → α. We usually display Lin as [ ] and Snoc(xs, x) as xs ∗ x (or as
xs :: x in Minlog).

Variables.
i, j, k, l, n,m : nat e : nat → nat

a, b, c : boole h : nat → boole
u, v, w, : word f, fmin, g : nat → word
vs, ws : seq

Constants. Init : (nat → α) → nat → tsil α, where we abbreviate Initfn by f̄n, as usual,
computes an initial segment of length n of a given infinite sequence.

Isinit : (nat → α) → tsil α → boole decides whether a given finite sequence is an initial
segment of an infinite sequence, i.e. Isinit(f, xs) := (f̄ |xs| = xs).

There are two relations on words we are interested in: the proper (transitive) initial
segment relation ≺: word → word → boole

v ≺ [ ] := false
v ≺ w∗a := [if (v = w) true (v ≺ w)],

where = is the equality on words, and the Higman embedding, ≤∗: word → word → boole

[ ] ≤∗ w := true
v∗a ≤∗ [ ] := false
v∗a ≤∗ w∗b := [if (a = b) (v ≤∗ w) (v∗a ≤∗ w)]

The axiom of dependent choice. We use both variants of dependent choice:

DC : ∀xρ∃clyρA(x, y) → ∃clfnat→ρ. f(0) = xρ
0 ∧ ∀nA(f(n), f(n + 1))

DC-seq : B([ ]) → (∀xsρ∗
.B(xs) → ∃clxρ.B(xs ∗ x)) → ∃clgnat→ρ∀n.B(ḡn).

Proposition 6.4 (Higman’s Lemma).

∀fnat→word∃cli, j.i < j ∧ f(i) ≤∗ f(j).

Proof. Assume that there is an infinite bad sequence, i.e., let f be such that ∀i, j.i < j →
f(i) ≤∗ f(j) → ⊥ and show ⊥. In a first step, from the existence of a bad sequence we
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derive that there is a ‘minimal’ bad sequence. We use the abbreviation P (ws) to express
that ws starts an infinite bad sequence. B(ws) will be useful to express the minimality
condition.

P (ws) := ∃clf.Isinit(f, ws) ∧ ∀i, j.i < j → ¬f(i) ≤∗ f(j)

B(ws) := P (ws) ∧ ∀vs, v.ws = vs ∗ v → ∀u.u ≺ v → ¬P (vs ∗ u).

Claim 1. ∃clfmin∀nB(fminn).

This will be proven using DC-seq for B. Note that B is a relevant formula. We have to
show

(a) B([]), which is true since by assumption there is a bad sequence, and

(b) ∀vs. B(vs) → ∃clv. B(vs ∗ v).

Assume vs such that B(vs). Then ∃clvB(vs ∗ v) can be proven by the minimum principle

∃clvP (vs ∗ v) → ∃clv. P (vs ∗ v) ∧ ∀u. u ≺ v → ¬P (vs ∗ u).

The premise ∃clvP (vs∗v) follows from B(vs) and the conclusion is exactly what we want.
The minimum principle itself is proven inductively. Now, we may assume that we have
an fmin with ∀nB(fn).

Claim 2. fmin is a bad sequence.

Assume i, j such that i < j and fmin(i) ≤∗ fmin(j). By claim 1, in particular we have
∀nP (fminn), which applied to j + 1 yields that there is a bad sequence f starting with
fmin(j + 1), thereby contradicting fmin(i) ≤∗ fmin(j).

Claim 3. ∀i¬fmin(i) = [ ].

Assume i such that fmin(i) = [ ]. Then ⊥ follows from P (fmin(i+1)).

Claim 4. Every boolean valued sequence has a constant subsequence.

∀hnat→boole∃clenat→nat∀n, k. ¬¬(e(n) < e(n+k+1) ∧ h(e(n)) = h(e(n+k))).

Similar to the example in section 3.3 we first prove

∀h∃cle∀n. ¬¬(e(n) < e(n+1) ∧ h(e(n)) = h(e(n+1))),

using (DC), and then proceed by induction on k.

From Claim 4, instantiated to λi. Lastfmin(i) we obtain an index function e such that
λi.Lastfmin(e(i)) is constant. Now, we show that there is an infinite sequence which is still
bad but lexicographically smaller than fmin, contradicting the choice of the minimal bad
sequence fmin. This sequence is computed using the constant G which takes a function
fmin and an index function e as input and produces the desired sequence:

G(fmin, e) := λn. [if (n < e(0)) fmin(n) Lead(fmin(e(n− e(0))))].
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Claim 5. G(fmin, e) is bad.

Assume i, j such that i < j and G(fmin, e)(i) ≤∗ G(fmin, e)(j). Then the goal ⊥ follows
from the claims 3 and 4 by case distinction on whether or not i < e(0) and j < e(0)
from the badness of fmin.

Claim 6. G(fmin, e) is contradicting the choice of the minimal bad sequence.

Formally, by applying claim 1 to e(0)+1, we have B(fmin(e(0)+1)). From its right hand
side we conclude

¬P ((fmine(0))∗Lead(fmin(e(0)))).

On the other hand, we know Isinit(Gfmine, (fmine(0))∗Lead(fmin(e(0)))) and hence, by
claim 5,

P ((fmine(0))∗Lead(fmin(e(0)))).

6.3 Discussion of the extracted program

We briefly want to analyze the program that has been obtained by the Minlog system
via the A-translation method.

Size. The size of the normalized extracted program is about two screen pages. Thus,
the program is substantially smaller than the program extracted by Murthy which was
about 12MB. Nevertheless, we are not entirely satisfied with the result when it comes to
running the program, and some work still needs to be done to understand the program.

Behavior. The normalized program is of the form λfnat→word.Ψ term1 term2 [ ]. So, its
behavior essentially depends on Ψ, the realizer of DC-seq, and its animation. Unfor-
tunately, the definition of Ψ, as given in section 6.1, involves multiple computations,
since it is of the form Ỹ (t#λn.const) where the term const is computed over and over
again. If, in Minlog, we add the definition of Ψ as a term rewriting rule, indeed, the
program only runs for some trivial inputs. In our first attempts the extracted program
was much larger and normalization did not even terminate when Ψ was selfevaluating;
this, however, was overcome by assigning a realizer directly to DC-seq.

Animation of Minlog constants using Scheme programs. Another attempt to solve these
difficulties was to replace the term defining Ψ by an algorithm avoiding the multiple
computations via a set! construction (higher order memoization). This is only possible
on a Scheme level and not in Minlog itself, but fortunately Minlog’s built-in normal-
ization mechanism is based on Scheme evaluation (normalization by evaluation). We
provide an implementation of this idea in an appendix to the example. It might be used
for other applications as well. The speed up is enormous, when, for instance applied to
the example of computing a list of indices such that a given boolean function on this list
is constant (see last paragraph in section 3.3).
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Further improvements. For further experiments, it would be better to transform the
extracted program into a Scheme program, however such a translation mechansim has
not been written up to now. We also have to admit that we have not entirely investigated
the defintion of Ψ with respect to the difference between a call-by-value and a call-by-
name evalution and its effect on termination.
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7 An inductive proof of Kruskal’s Theorem

Kruskal’s Theorem is a famous theorem in infinitary combinatorics with important ap-
plications in term rewriting theory. In this section we give a constructive proof using
inductive definitions only. In particular, we use an inductive characterization of a well
quasiorder which is formulated via an accessibility definition and has been introduced
in section 4.2 and two Lemmas which we have already been proven there. So, Kruskal’s
Theorem reads as

acc<<A
[] → acc<<T (A)

[].

There are already several constructive proofs of Kruskal’s Theorem. The proof of Rath-
jen and Weiermann [RW93] uses a reification into the ordinal θΩω, while the proof of
Hasegawa [Has94] is built on a more general concept of algebras, similar to ordinal no-
tations. The combinatorial idea behind both proofs was already proposed by Schmidt
[Sch79] and also our proof uses this construction. Thus the connection between the three
proofs in [Sch79], [RW93] and our proof is the same as the one outlined for Higman’s
Lemma in section 4.3. However, whereas the proofs of Schmidt and Rathjen/Weiermann
require a thorough knowledge of ordinal notation systems, our proof only uses inductive
definitions which are commonly well understood and available in most theorem provers.
Of course, also the proof due to Rathjen/Weiermann can be carried out in a theory of
inductive definitions: first, use the inductive definitions to prove that θΩω is well-founded
and then Peano arithmetic plus the wellfoundedness of this ordinal to derive Kruskal’s
Theorem. Particularly the second part is quite involved and depends on the right assign-
ment of the ordinals. Giving a direct proof of Kruskal’s Theorem avoids these problems,
and could be preferred when the quantitative aspect is not needed: for instance when
dealing with problems where the main focus lies on the algorithmic aspect. The proof
we give in this chapter has been published in [Sei01b].

The combinatorial idea

It is essential for this constructive proof to introduce an additional structure on trees:
we look at trees with one or more label sets where the number of immediate successors
of a node is bound by an ordinal assigned to the set where the label of the node comes
from.

The combinatorial idea is similar to that of Higman’s Lemma described in chapter 4.
Again, we determine the space for badly continuing a singleton sequence [t] by means
of sums and products of sets which by induction hypothesis can be proven to be well
quasiordered. Roughly the idea is as follows: if t 6≤ u and u is a tree with i subtrees,
then u can identified with a tree u′ with less than i subtrees and a root containing the
rest of the subtrees. u′ then lies in a set, of which, as said above, we already know that
it is well quasiordered. Formally, the identification can be found in Lemma 7.2 (5).
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7 AN INDUCTIVE PROOF OF KRUSKAL’S THEOREM

Definition. The set T (A) of finite trees with labels in A is inductively defined by

a ∈ A t1, . . . , tn ∈ T (A)

a t1 . . . tn ∈ T (A),

where a t1 . . . tn, 0 ≤ n, is the tree consisting of a root with label a and the subtrees
t1, . . . , tn. Moreover, we define the embeddability relation ≤T (A) inductively by the
following rules:

t ≤T (A) uj, for some j ≤ m

t ≤T (A) a u1 . . . um

a ≤A b [t1, . . . , tn] ≤T (A)∗ [u1, . . . , um]

a t1 . . . tn ≤T (A) b u1 . . . um

.

Here ≤T (A)∗ refers to the Higman embedding. ≤A∗ on A∗ is inductively defined by

[] ≤A∗ []

as ≤A∗ bs

as ≤A∗ bs∗b
as ≤A∗ bs a ≤A b

as∗a ≤A∗ bs∗b
.

Definition. Given quasi orders (A1,≤A1), . . . , (An,≤An) we define disjoint union
.
∪{Ai :

i ≤ n} and cartesian product ×{Ai : i ≤ n} via

a ≤ .
∪Ai

a′ ↔ a, a′ ∈ Ai ∧ a ≤Ai
a′ for some i ≤ n,

(a1, . . . , an) ≤×Ai
(a′1, . . . , a

′
n) ↔ ai ≤Ai

a′i for all i ≤ n

Definition. Let (A0,≤A0), . . . , (An,≤An) and 0 < α0 < · · · < αn ≤ ω be given. By

T
(An . . . A0

αn . . . α0

)
we denote the set of all trees with labels in

.
∪{Ai : i ≤ n} such that

every node with a label in Ai has less than αi immediate successors. The embeddability

relation on T
(An . . . A0

αn . . . α0

)
is the restriction of ≤T (

.
∪{Ai:i≤n}) on T

(An . . . A0

αn . . . α0

)
.

The structure of the proof

Next, we give a rough idea of the structure of the proof, in order to motivate further
definitions. We want to show acc<<

T ( A
ω )

[]. Because of Lemma 4.10, it suffices to show

acc<<
T ( A

ω )[t]

[] for an arbitrary tree t. If there is a quasi embedding of T (A
ω

)[t] into an ap-

propriate tree set T (B A[a]

n ω
) and if acc<<

T (
B A[a]
n ω

)
[] holds, we are done by Lemma 4.11. Now,

(B A[a]

n ω
) is in a certain sense lexicographically smaller than (A

ω
). So we will be finished

by induction on this order once we have defined it. However, such a definition would
require quantification over sets. Since in this definition we only need sets B of a certain
structure, we can restrict ourselves to elements of the set of cartesian compositions of
A, a set of names denoted Cart(A), thus avoiding second order quantification. We define
a relation < on Cart(A) such that for all cartesian compositions X acc<Cart(A)

X implies
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acc<<X
[]. In a second step we define the relation <Lex and show that all cartesian com-

positions X are in the accessible part of <Cart(A), i.e. acc<Cart(A)
X holds. The definition

of Cart(A) as well as the notion X x and Lemma 7.2 are due to [RW93]. In [Has94] the
set Cart(A) corresponds, with a small restriction, to the class of algebras.

Cartesian compositions

Definition. We inductively define the set Cart(A) by the following rules:

1. If as is a bad sequence in A∗, then Aas ∈ Cart(A) is a name for Aas.

2. If X1,X2 ∈ Cart(A) are names for X1, X2,
then X1

.
∪X2 ∈ Cart(A) is a name for X1

.
∪X2.

3. If X1,X2 ∈ Cart(A) are names for X1, X2,
then X1×X2 ∈ Cart(A) is a name for X1×X2.

4. If X ∈ Cart(A) is a name for X,
then X ∗ ∈ Cart(A) is a name for X∗.

5. Let X0, . . . ,Xm ∈ Cart(A) be names for quasi orders X0, . . . , Xm and let 0 < γ0 <

· · · < γm ≤ ω. Then T
(Xm . . .X0

γm . . . γ0

)
is a name for T

(Xm . . . X0

γm . . . γ0

)
.

Remark 7.1. Every name X ∈ Cart(A) obviously denotes a set X. Observe that A[]

is a name for A. Occasionally we will use the binary operations
.
∪ and × for finitely

many arguments, including the one and zero case. For these cases the definition is to be
extended in the obvious way.

Definition (Recursive Definition of X x for given X ∈ Cart(A) and x ∈ X).

1. (Aas)
a := Aas∗a.

2. (X1

.
∪X2)

x :=

{
X1

x
.
∪X2, if x ∈ X1,

X1

.
∪X2

x, if x ∈ X2.

3. (X1×X2)
(x1,x2) := (X1

x1×X2)
.
∪ (X1×X2

x2).

4. (X ∗)[x1,...,xn] :=
.
∪{(X x1)∗×X×(X x2)∗× · · ·×X×(X xj )∗ : j ≤ n}.

5. Let t ∈ T
(Xm . . . X0

γm . . . γ0

)
be given. Let t consist of the root x ∈ Xi and the subtrees

t1, . . . , tn. We may assume that T
(Xm . . .X0

γm . . . γ0

)tj

is already defined for all 0 ≤ j ≤
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7 AN INDUCTIVE PROOF OF KRUSKAL’S THEOREM

n. Set
 L := Xi×

.
∪{(T (. . .)t1)∗× · · ·×(T (. . .)tj )∗ : j ≤ n}.

If n = 0, i.e. if t only consists of a root, then

T
(Xm . . .X0

γm . . . γ0

)t

:= T
(Xm . . .Xi

x . . .X0

γm . . . γi . . . γ0

)
.

If n = γk for k < i, we define

T
(Xm . . .X0

γm . . . γ0

)t

:= T
(Xm . . .Xi

x . . .Xk

.
∪Xi

.
∪ L . . .X0

γm . . . γi . . . γk . . . γ0

)
,

If n 6= γk for all k < i, then we define

T
(Xm . . .X0

γm . . . γ0

)t

:= T
(Xm . . .Xi

x . . .Xi

.
∪ L . . .X0

γm . . . γi . . . n . . . γ0

)
,

where the column with Xi

.
∪ L and n has to be filled in at the appropriate place.

Definition. On Cart(A) we define a relation <Cart(A) via

Y <Cart(A) X ↔ ∃x ∈ X Y = X x.

Lemma 7.2. Let X ∈ Cart(A), x ∈ X. Then there is a quasi embedding e : X[x] → Xx.

Proof. Ind(Cart(A)).

1. Let a ∈ Aas. Then, because of (Aas)[a] ⊆ (Aas)
a, the identity is a quasi embedding

from (Aas)[a] to (Aas)
a.

2. Let x ∈ X1

.
∪X2. W.l.o.g. x ∈ X1. By ih there is a quasi embedding eX1,x : X1[x] →

X1
x. We define

e : (X1

.
∪X2)[x] → X1

x
.
∪X2

y 7→
{

eX1,x(y), if y ∈ X1[x],
y, if y ∈ X2.

3. Let (x1, x2) ∈ X1×X2. By ih, we already have quasi embeddings eXi,xi
: Xi[xi] →

Xi
xi for xi ∈ Xi, i ∈ {1, 2}. Set

e : (X1×X2)[(x1,x2)] → (X1
x1×X2)

.
∪ (X1×X2

x2)

(y1, y2) 7→
{

(eX1,x1(y1), y2), if y1 ∈ X1[x1],
(y1, eX2,x2(y2)), otherwise.
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4. Let [x1, . . . , xn] ∈ X∗. By ih we already have quasi embeddings eX,xi
: X[xi] → Xxi ,

for all 1 ≤ i ≤ n. We look for a quasi embedding

e : X∗
[[x1,...,xn]] →

.
∪{(Xx1)∗×X×(Xx2)∗×X× · · ·×(Xxj )∗ : j ≤ n}.

If n = 0 then the quasi embedding is the empty quasi embedding. Otherwise, let
[y1, . . . , ym] ∈ X∗

[[x1,...,xn]]. Since [x1, . . . , xn] 6≤X∗ [y1, . . . , ym] there exists 0 ≤ l < n
such that [x1, . . . , xl] ≤X∗ [y1, . . . , ym] holds, but [x1, . . . , xl+1] ≤X∗ [y1, . . . , ym]
does not. We choose j1 < · · · < jl minimal such that xi ≤ yji

, for all i ≤ l. Then
we have [y1, . . . , yj1−1] ∈ (X[x1])

∗, . . . , [yjl+1, . . . , ym] ∈ (X[xl+1])
∗, and by induction

hypothesis we may define

ws1 := [eX,x1(y1), . . . , eX,x1(yj1−1)] ∈ (Xx1)∗

. . .

wsl+1 := [eX,xl+1
(yjl+1), . . . , eX,xl+1

(ym)] ∈ (Xxl+1)∗

and set e([y1, . . . , ym]) := (ws1, yj1 , ws2, yj2 , . . . , yjl
, wsl+1).

5. Let t ∈ T (Xm ... X0

γm ... γ0
) be given. Ind(structure of t). Let us first of all consider the

case of t consisting only of a root with a label x ∈ Xi. Let u ∈ T (Xm ... X0

γm ... γ0
)
[t]

.

Then for every node in u with a label y ∈ Xi it holds x 6≤Xi
y, i.e. u lies in

T
(Xm . . . Xi[x] . . . X0

γm . . . γi . . . γ0

)
. A quasi embedding into T

(Xm . . . Xi
x . . . X0

γm . . . γi . . . γ0

)
can easily

be constructed by ih, applied to to Xi and x.
Now, assume t consists of a root x ∈ Xi and the immediate subtrees t1, . . . , tn with
n = γk < γi (The case n 6= γk, for all k < i is analogous). By induction hypothesis,
for all j ≤ n there exist quasi embeddings

etj : T
(Xm . . . X0

γm . . . γ0

)
[tj ]

→ T
(Xm . . . X0

γm . . . γ0

)tj

.

We look for a quasi embedding

e : T
(Xm . . . X0

γm . . . γ0

)
[t]

→ T
(

Xm . . . Xi
x . . . Xk

.
∪Xi

.
∪L . . . X0

γm . . . γi . . . γk . . . γ0

)
.

Let u ∈ T
(Xm . . . X0

γm . . . γ0

)
[t]

be a tree with root y and immediate subtrees u1, . . . , ur.

We may assume that the quasi embeddings on the subtrees are already defined, and
have to map the root label y suitably to a label in X0, . . . , Xk

.
∪Xi

.
∪L, . . . , Xi

x, . . . ,
or Xm such that the condition concerning the number of immediate subtrees is
fulfilled.

t 6≤T (...) u only can hold for one of the following reasons:
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7 AN INDUCTIVE PROOF OF KRUSKAL’S THEOREM

i. y 6∈ Xi. Then map y either to itself or, in the case y ∈ Xk, to y in the first
component of Xk

.
∪Xi

.
∪L. We set e(y u1 . . . ur) := y e(u1) . . . e(ur).

ii. y ∈ Xi, but x 6≤ y. Hence, we have y ∈ Xi[x] and by induction hypothesis
eXi,x(y) ∈ Xi

x. We set

e(y u1 . . . ur) := eXi,x(y) e(u1) . . . e(ur).

iii. y ∈ Xi and x ≤ y, but y has less than γk immediate successors. Then anyhow
we may map y to itself, if we regard y as a label in the second component of
Xk

.
∪Xi

.
∪L. We set e(y u1 . . . ur) := y e(u1) . . . e(ur).

iv. y ∈ Xi, x ≤ y and y has more than γk successors, but [t1, . . . , tγk
] 6≤T (...)∗

[u1, . . . , ur]. Then there exists an l, 0≤ l<γk such that [t1, . . . , tl] ≤T (...)∗

[u1, . . . , ur] and [t1, . . . , tl+1] 6≤T (...)∗ [u1, . . . , ur]. We map u to a tree with
l < γk subtrees and a root label in L, where this label contains the images of
the remaining subtrees. More formally: Choose j1 < · · · < jl minimal such
that t1 ≤T (...) uj1 , . . . , tl ≤T (...) ujl

. Then it holds

[u1, . . . , uj1−1] ∈ T
(Xm . . . X0

γm . . . γ0

)
[t1]

∗

. . .

[ujl+1, . . . , ur] ∈ T
(Xm . . . X0

γm . . . γ0

)
[tl+1]

∗

and by ih it follows

ts1 := [et1(u1), . . . , et1(uj1−1)] ∈ T
(Xm . . . X0

γm . . . γ0

)t1∗

. . .

tsl+1 := [etl+1
(ujl+1), . . . , etl+1

(ur)] ∈ T
(Xm . . . X0

γm . . . γ0

)tl+1
∗

Finally we put

e(y u1 . . . ur) := ( y, (ts1, . . . , tsl+1)) e(uj1) . . . e(ujl
).

It is left to the reader to check that e is actually a quasi embedding.

Lemma 7.3. ∀X ∈ Cart(A). acc<Cart(A)
X → acc<<X

[].

Proof. Ind(acc<Cart(A)
). Let X ∈ Cart(A). Assume ih : ∀Y <Cart(A) X acc<<Y

[]. Because
of Lemma 4.10 it suffices to show ∀x ∈ X acc<<X[x]

[]. Let x ∈ X. By Lemma 7.2 there

exists a quasi embedding e : X[x] → Xx. Therefore, using Lemma 4.11 we only have to
show acc<<Xx []. But this follows by ih.
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Definition. Given the set Lex:={(Xn . . .X1

γn . . . γ1

)
, acc<Cart(A)

Xi, i ≤ n, 0 ≤ n < ω, 0 < γ1 < · · · < γn ≤ ω

}
,

we define a relation <Lex:
(Ym . . .Y1

δm . . . δ1

)
<Lex

(Xn . . .X1

γn . . . γ1

)
⇐⇒

m,n > 0 and

δm = γn ∧ Ym <Cart(A) Xn or

δm = γn ∧ Ym = Xn ∧
(Ym−1 . . .Y1

δm−1 . . . δ1

)
<Lex

(Xn−1 . . .X1

γn−1 . . . γ1

)
.

Lemma 7.4. Assume acc<Cart(A)
X0, . . . , acc<Cart(A)

Xn and let 0 < γ0 < · · · < γn ≤ ω.

Then it follows that acc<Lex

(Xn . . .X0

γn . . . γ0

)
.

Proof. We show

∀γ ≤ ω. ∀X . acc<Cart(A)
X → ∀X. acc<Lex

X →

∀n,X1, . . . ,Xn, γ1, . . . , γn. γ1 < · · · < γn < γ ∧ X =
(Xn . . .X1

γn . . . γ1

)
→

acc<Lex

(X Xn . . .X1

γ γn . . . γ1

)
by Ind1(γ), Ind2(acc<Cart(A)

) and Ind3(acc<Lex
). We are done once we have shown acc<Lex

Y

for all Y<Lex

(X Xn . . .X1

γ γn . . . γ1

)
.

1. Let Y =
(X x Ym . . .Y1

γ δm . . . δ1

)
such that x ∈ X, δ1 < · · · < δm < γ and ∀i ≤

m acc<Cart(A)
Yi. By an m-fold application of ih1 we obtain acc<Lex

(Ym . . .Y1

δk . . . δ1

)
and

by ih2 acc<Lex

(X x Ym . . .Y1

γ δm . . . δ1

)
.

2. Let Y =
(X Ym . . .Y1

γ δm . . . δ1

)
such that

(Ym . . .Y1

δm . . . δ1

)
<Lex

(Xn . . .X1

γn . . . γ1

)
. Then, by ih3, we

obtain acc<Lex

(X Ym . . .Y1

γ δm . . . δ1

)
.

The Lemma follows from acc<Lex
() by n + 1 applications of this assertion.

Lemma 7.5. Assume acc<<A
[]. Then ∀X .X ∈ Cart(A) → acc<Cart(A)

X .
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7 AN INDUCTIVE PROOF OF KRUSKAL’S THEOREM

Proof. Ind(Cart(A)).

1. We show ∀as ∈ Bad(A). acc<<A
as → acc<Cart(A)

Aas. Ind(acc<<A
). Let as ∈ Bad(A)

and assume ih: ∀bs<<Aas acc<Cart(A)
Abs. We need to prove ∀a ∈ Aas acc<Cart(A)

(Aas)
a.

But this follows by ih because of (Aas)
a = Aas∗a and as∗a<<Aas.

2. Let X1 and X2 s.t. acc<Cart(A)
X1 and acc<Cart(A)

X2. In order to show acc<Cart(A)
X1

.
∪X2

use induction on acc<Cart(A)
X1 and acc<Cart(A)

X2. Let x ∈ X1

.
∪X2, w.l.o.g. x ∈ X1,

then the induction hypothesis implies acc<Cart(A)
X1

x1
.
∪X2.

3. Let X1 and X2 s.t. acc<Cart(A)
X1 and acc<Cart(A)

X2. Now we show acc<Cart(A)
X1×X2

by induction on acc<Cart(A)
X1 and acc<Cart(A)

X2. We have

ih1 : ∀x1 ∈ X1,∀X2. acc<Cart(A)
X2 → acc<Cart(A)

X x1
1 ×X2

ih2 : ∀x2 ∈ X2 acc<Cart(A)
X1×X x2

2

Now, let (x1, x2) ∈ X1×X2. acc<Cart(A)
(X x1

1 ×X2)
.
∪ (X1×X x2

2 ) follows by ih1, applied
to x1 and X2, ih2 and 2.

4. Let X such that acc<Cart(A)
X be given. We prove acc<Cart(A)

X ∗ by induction on
acc<Cart(A)

X . Assume ih : ∀x ∈ X acc<Cart(A)
(X x)∗. We have to show acc<Cart(A)

X ∗,
i.e. ∀w ∈ X∗ acc<Cart(A)

(X ∗)w. Let w = [x1, . . . , xn]. Now by ih, 2., and 3., we end

up with acc<Cart(A)

.
∪{(X x1)∗×X× · · ·×X×(X xj )∗ : j ≤ n}.

5. Let X0, . . . ,Xm such that acc<Cart(A)
Xi for all i ≤ m and 0 < γ0 < · · · < γm ≤ ω.

Since, by Lemma 7.4, acc<Cart(A)
X0, . . . , acc<Cart(A)

Xm implies acc<Lex

(Xm . . .X0

γm . . . γ0

)
,

we get acc<Cart(A)
T

(Xm . . .X0

γm . . . γ0

)
once we have shown more generally

∀X 6= (). acc<Lex
X → acc<Cart(A)

T (X).

Ind1(acc<Lex
). Fix X and assume ih1 : ∀Y<LexX. acc<Cart(A)

T (Y). Suppose X to be

of the form (Xr ... X0

γr ... γ0
) show acc<Cart(A)

T (X)t for an arbitrary t ∈ T (X) by

Ind2 (structure of t). Assume first that t is a branch with a label x ∈ Xi. Since(Xr . . .Xi
x . . .X0

γr . . . γi . . . γ0

)
<LexX, by ih1, we may conclude

acc<Cart(A)
T

(Xr . . .Xi
x . . .X0

γr . . . γi . . . γ0

)
.
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Now, assume that t consists of the root x ∈ Xi and the subtrees t1, . . . , tn, n =
γk < γi. (The case n 6= γk for all k < i is analogous.) By ih2 it follows

acc<Cart(A)
T

(Xr . . .X0

γr . . . γ0

)tj

, for all j ≤ n. By 2., 3., and 4, we are able to conclude

acc<Cart(A)
(Xi×

.
∪{(T (X)t1)∗× · · ·×(T (X)tj )∗ : j ≤ n})

Using the abbreviation

 L = Xi×
.
∪{(T (X)t1)∗× · · ·×(T (X)tj )∗ : j ≤ n}

we get acc<Cart(A)
 L and acc<Cart(A)

(Xk

.
∪Xi

.
∪ L) by a further application of 2. There-

fore we have

T
(Xr . . .Xi

x . . .Xk

.
∪Xi

.
∪ L . . .X0

γr . . . γi . . . γk . . . γ0

)
<LexT

(Xr . . .Xi . . .Xk . . .X0

γr . . . γi . . . γk . . . γ0

)
and by ih1 we obtain

acc<Cart(A)
T

(Xr . . .Xi
x . . .Xk

.
∪Xi

.
∪ L . . .X0

γr . . . γi . . . γk . . . γ0

)
.

Proposition 7.6 (Kruskal’s tree Theorem).

acc<<A
[] → acc<<

T ( A
ω )

[].

Proof. We want to show acc<<A
[] → acc<<

T ( A
ω )

[]. Assume acc<<A
[]. For all X ∈ Cart(A)

we have acc<Cart(A)
X by Lemma 7.5 and therefore acc<<X

[] by Lemma 7.3. This holds

especially for X = T (A[]

ω
) and since A[] = A we may conclude acc<<

T ( A
ω )

[].

Remark 7.7. 1. A constructive proof of Kruskal’s Theorem in the style of chapter 5
would be highly desirable, firstly, with respect to the extracted program (compare Re-
mark 5.6), and secondly, with respect to further generalizations: Because of its analogy
to the classical proof, which easily can be extended to Kruskal’s Theorem with gap
condition, this approach could also lead to a constructive proof of the latter.

2. Another extension would be a proof of Kruskal’s Theorem not requiring decidability
of the given relation on the set of labels. Veldman [Vel00] has given such a proof for
Higman’s Lemma and Kruskal’s Theorem using intuitionistic methods. Fridlender [Fri97]
has shown how to transform Veldman’s proof of Higman’s Lemma into proof in a theory
using inductive definitions. Similarly could be proceeded with Kruskal’s Theorem.
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8 CONCLUSION AND FURTHER WORK

8 Conclusion and further work

The aims achieved in this thesis are threefold:

- We have extended program extraction from constructive and classical proofs - with
respect to inductive definitions and choice principles.

- We have presented new constructive proofs of Higman’s Lemma and Kruskal’s the-
orem. Moreover, in the case of Higman’s Lemma, we have given two approaches to
answer the question of what is the constructive content behind the Nash-Williams
proof.

- As a practical part, we have shown that these methods as well as the proofs can
be carried out in a theorem prover.

While developing our techniques, we saw that there are still problems left for future work
and we recognized several related topics to which our techniques are applicable as well.
The following addresses some of them.

A-translation using inductive definitions

Inductive definitions and A-translation have played an important role in this thesis. A
first question that arises when we think of combining these two methods is: (1) Are
inductive definitions allowed in proofs to be A-translated? With respect to inductive
definitions without computational content the answer is ’yes’, as we have shown in sec-
tion 3.1. Regarding inductive definitions with computational content, problems occur,
e.g., when we have to double negate the predicate in order to obtain definite and goal
formulas; since the predicate also has to be double negated in its closure axiom, this
would lead to a non-strictly-positive inductive definition.

Computational content of the minimal bad sequence argument

By means of Higman’s Lemma, we have shown two ways of making proofs using a
minimal-bad-sequence argument constructive. The general question is: (2) Is there a
constructive counterpart to the minimal-bad-sequence argument? An approach in this
direction is the so-called open induction principle with its classical formulation due to
Raoult [Rao88] on the one hand, and its inductive formulation [Coq92] on the other.
The classical formulation can be justified by a minimal-bad-sequence argument, the
constructive one amounts to a simple inductive proof. Examples of reformulations using
the open induction principle have been given in [CP98, CP99, Per99].) The resulting
proofs of the reformulations are inductive proofs similar to those presented in this thesis.
However, the ideal would be a mechanical transformation of proofs using the minimal
bad sequence argument into constructive proofs.
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The second approach, given in chapter 6, via the A- translation method is based on
adding a realizer for the axiom of dependent choice. An even more direct approach
might exist if we, here presented as a third problem, (3), could assign a realizer directly
to the minimal-bad-sequence argument.

Better quasiorderings

Higman’s Lemma and Kruskal’s Theorem may be generalized to infinite structures, that
is, infinite words, infinite trees respectively [NW68, NW65]. The formulation of the
theorems for infinite structures needs the more general concept of a better quasiordering
instead of a well quasiordering. In the proofs the minimal-bad-sequence argument is
replaced by the so-called minimal-bad-array argument which has the same proof theoretic
strength as the minimal-bad-sequence argument; namely |Π1

1 − CA0| [Mar96]. Related
questions and problems are: (4) Is it possible to give an inductive characterization of
a better quasiordering? (5) Is it possible to give a realizer for the minimal-bad-array
argument? (6) The strength of the generalization of Higman’s Lemma to infinite words,
also called Generalized Higman’s theorem, is still unknown [Mar94]. A lower bound is
|ATR0|, an upper bound |Π1

1 − CA0| (since its classical proof involves the minimal-bad-
array argument). As in the case of Higman’s Lemma, a constructive proof might give
more insight into this problem.

Applications

The ‘classical’ field for applications of the theorems studied in this thesis is term rewrit-
ing theory; here we refer to [Wei94, Tou97, Lep01]. Among the manyfold algorithmic
applications we want to mention one where in particular our inductive proof of Higman’s
Lemma might be useful. In [Oga01], Ogawa investigated the problem of deciding whether
a disjunctive monadic query is satisfiable in a monadic database. Whereas a naive so-
lution leads to an exponential algorithm, a linear algorithm can be found with the help
of a constructive proof of Higman’s Lemma as was shown by means of Murthy/Russell’s
proof [MR90]. (7) It would be interesting to see whether our proof gives rise to a different
or even better algorithm.

Kruskal’s Theorem

We have put the chapter on Kruskal’s Theorem at the end since we believe that the
main challenges are there. The first question is: (8) what would a proof of Kruskal’s
Theorem in the spirit of chapter 5 look like? Unfortunately there is no straightforward
generalization of the proof for Higman’s Lemma to Kruskal’s Theorem. However, in
analogy to chapter 6, it is possible, (9), to apply the A-translation method to Kruskal’s
Theorem. A first step towards this will be a generalization of chapter 6 to an arbitrary
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alphabet.

Kruskal’s Theorem has a famous extension due to Friedman: Kruskal’s Theorem with
gap condition, also called the Extended Kruskal Theorem, which classically is proven
using a minimal bad sequence argument [Sim85, Kri89]. (10) No constructive proof is
known up to now. We claim that our methods of translating and directly extracting a
program are applicable here as well. The result would be a constructive proof of the
Extended Kruskal Theorem which, according to the theory given in chapter 3, depends
on relativized quantifier free bar induction.

Towards the Graph Minor Theorem

The extended Kruskal Theorem may be seen as the main step towards the Graph Minor
Theorem [RS99]. Friedman, Robertson and Seymour [FRS87] have shown that the
Extended Kruskal Theorem implies the Bounded Graph Minor Theorem and vice versa.
A constructive proof of the Graph Minor Theorem would be highly desirable and also
bring more insight into its algorithmic aspects (see, for instance, Fellows and Langston,
[FL88], Robertson and Seymour, Graph Minor II, XIII [RS86, RS99]).

Last but not least, also the Graph Minor Theorem has an infinite counterpart. The
proof of a (restricted) infinite version of the Graph Minor Theorem [Tho89] involves the
finite Graph Minor Theorem on the one hand, and the Extended Kruskal Theorem for
infinite trees on the other. So the circle Higman’s Lemma, Extended Kruskal Theorem,
Graph Minor Theorem and Higman’s Lemma, Higman’s Lemma on infinite sequences,
Extended Kruskal Theorem on infinite trees, as well as this thesis closes here.
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[PMW93] Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs
in the system Coq. Journal of Symbolic Computation, 15(5–6):607–640, 1993.

[Ram30] Frank Plumpton Ramsey. On a problem of formal logic. Proceedings of the
London Mathematical Society, 30:264–286, 1930.

86



REFERENCES

[Rao88] Jean-Claude Raoult. Proving open properties by induction. Information
Processing Letters, 29:19–23, 1988.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors II. Journal of Algo-
rithms, 7(3):309–322, 1986.

[RS93] Fred Richman and Gabriel Stolzenberg. Well Quasi–Ordered sets. Advances
in Mathematics, 97:145–153, 1993.

[RS99] Neil Robertson and Paul D. Seymour. Graph minors I, III-XVII. Journal of
Combinatorial Theory, Series B, 1983-1999.

[RW93] Michael Rathjen and Andreas Weiermann. Proof–theoretic investigations on
Kruskal’s theorem. Annals of Pure and Applied Logic, 60:49–88, 1993.

[Sch79] Diana Schmidt. Well–orderings and their maximal order types, 1979. Habil-
itationsschrift, Mathematisches Institut der Universität Heidelberg.

[Sch03] Helmut Schwichtenberg. Minimal logic for computatable functionals. Unpub-
lished manuscript. http://www.mathematik.uni-muenchen.de/∼schwicht,
2003.

[Sei98] Monika Seisenberger. Konstruktive Aspekte von Higman’s Lemma. Mas-
ter’s thesis, Mathematisches Institut der Ludwig–Maximilians–Universität
München, 1998.

[Sei01a] Monika Seisenberger. An Inductive Version of Nash-Williams’ Minimal-Bad-
Sequence Argument for Higman’s Lemma. In Types for Proofs and Programs,
volume 2277 of Lecture Notes in Computer Science. Springer Verlag, Berlin,
Heidelberg, New York, 2001.

[Sei01b] Monika Seisenberger. Kruskal’s tree theorem in a constructive theory of induc-
tive definitions. In Reuniting the Antipodes – Constructive and Nonstandard
Views of the Continuum, volume 306 of Synthese Library. Kluwer Academic
Publishers, Dordrecht, 2001.

[Sim85] Stephen G. Simpson. Nonprovability of certain combinatorial properties of
finite trees. In L.A. Harrington, M.D. Morley, A. Scedrov, and S.G. Simp-
son, editors, Harvey Friedman’s Research on the Foundations of Mathematics,
pages 87–117. North–Holland, Amsterdam, 1985.

[Spe62] Clifford Spector. Provably recursive functionals of analysis: a consistency
proof of analysis by an extension of principles in current intuitionistic math-
matics. In F. D. E. Dekker, editor, Recursive function theory, pages 1–27.
North–Holland, Amsterdam, 1962.

87



REFERENCES
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A Implementations in the Minlog system

In the appendix we present the implementations of some of the examples discussed in the
thesis. The Minlog system [BBS+98] is available via the page www.minlog-system.de.
There also some documentation and articles on the system can be found. For an expla-
nation of the commands used in the demo files we refer to the Minlog tutorial [Cro02].

In all examples we use the datatypes of natural numbers nat and reverse lists tsil which
can be loaded to the system via

(mload "../lib/nat2.scm")
(mload "../lib/tsil.scm")

The latter contains the type of reverse lists with the constructors: Lin and Snoc. (Snoc
as a) is displayed as as::a. In the first example we, in addition, need to load the A-
translation module

(mload "../modules/atr.scm")

Comment lines starting with ‘;’ as well as emphasised expressions are added to provide
a better understanding and more structure.

A.1 A-translation using an external realizer for dependent choice

; dc-first.scm, demofile for section 3.3
; This is an example for program extraction from classical proofs
; using the axiom of dependent choice.

1. Declarations

(av "a" "b" "c" (py "boole"))
(av "i" "j" (py "nat"))
(av "e" (py "nat=>nat"))
(av "h" (py "nat=>boole"))
(add-global-assumption "<-lemma" (pf "all n,m. n < m + n + 1"))
(add-global-assumption "=-lemma" (pf "all a,b,c. a=b -> c=b -> a=c"))

(define only-two
(pf "all a. (a = F -> bot) -> (a = T -> bot) -> bot"))

(define dc-inst
(pf " all h. (all n excl m. (n<m & (h m) = F -> bot) -> bot) ->

excl e. e 0 = 0 &
all k. (e k< e(k+1) &

h(e(k+1)) = F -> bot) -> bot"))
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2. Interactive proofs

; Using DC we prove the lemma saying that every function h:nat->boole
; has an infinite constant subsequence.

(set-goal (mk-imp dc-inst only-two
(pf " all h. excl a,e. all k. (e k < e (k+1) &

h (e (k+1)) = a->bot)->bot")))
(assume "dc-inst" "only-two" "h" 3)
(use-with "dc-inst" (pt "h") "?" "?")

; all n excl m.(n<m & h m=False -> bot) -> bot from
(assume "n" 4)
(use-with 3 (pt "True") (pt "lambda m . m+n") "?")
(assume "k")
(ng)
(strip)
(drop "dc-inst" 3)
(use-with "only-two" (pt "h(Succ(k+n))") "?" "?")
(assume 6)
(use-with 4 (pt "Succ(k+n)") "?")
(strip)
(use 7)
(split)
(use "<-lemma")
(use 6)
(strip)
(use 5)
(split)
(use "Truth-Axiom")
(use 6)

; all e.e 0=0 &
(all k.(e k<e(k+1) & h(e(k+1))=False -> bot) -> bot) -> bot

(assume "e" 4)
(use-with 3 (pt "F") (pt "e") "?")
(use 4)
(save "Constantsubsequence")

; We now prove the corollary: all h excl i,j. i<j ! h i = h j

(set-goal (mk-all (pv "h")
(mk-imp dc-inst only-two

(pf "excl i,j. i < j ! h(i) = h(j)"))))
(assume "h" "dc-inst" "only-two" 3)
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A.1 A-translation using an external realizer for dependent choice

(use-with "Constantsubsequence" "dc-inst" "only-two" (pt "h") "?")
(assume "a" "e" 4)
(use-with 4 (pt "0") "?")
(strip)
(use-with 4 (pt "1") "?")
(strip)
(use 3 (pt "e 1")(pt "e 2"))
; e 1<e 2
(use 6)
; h (e 1)=h (e 2)
(use "=-lemma" (pt "a"))
(use 5)
(use 6)
(define min-excl-proof (np (expand-theorems (current-proof))))

3. Realizing classical dependent choice

; The following definitions and notations refer to section 3.2
(define rho (py "nat"))
(define nu (py "nat@@nat"))
(define sigma (mk-arrow nu nu))
(define type-of-G (mk-arrow rho (mk-arrow rho sigma nu) nu))
(define type-of-Y (mk-arrow (mk-arrow (py "nat") rho)

(mk-arrow (py "nat") sigma)
nu))

(av "x" rho)
(av "z" sigma)
(av "G" type-of-G)
(av "Y" type-of-Y)
(define type-of-tsil (py "tsil (nat@@(nat@@nat=>nat@@nat))"))
(av "t" type-of-tsil)

; [G,Y]Psi G Y Lin is a realizer for DC^X
(add-program-constant "Psi"

(mk-arrow type-of-G type-of-Y type-of-tsil nu))

4. A-translation

(define program (atr-min-excl-proof-to-structured-extracted-term
min-excl-proof
(pt "[h,G,Y]Psi G Y (Lin (nat@@(nat@@nat=>nat@@nat)))")))

; For a better display we add some additional variable names:
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(av "f" (py "nat=>(nat@@nat=>nat@@nat)=>nat@@nat"))
(av "g" (py "nat=>nat@@nat=>nat@@nat"))
(av "p"(py "nat@@nat"))

(define nprogram (nt program))
(term-to-expr nprogram)

(lambda (h0)
(((|Psi|

(lambda (n1)
("if" ((h0 (|Succ| n1)) "=" |True|)

("if" ((h0 (|Succ| (|Succ| n1))) "=" |True|)
(lambda (f2) ((|Succ| n1) "@" (|Succ| (|Succ| n1))))
("if" ((h0 (|Succ| (|Succ| n1))) "=" |False|)

(lambda (f2)
((f2 (|Succ| (|Succ| n1))) (lambda (p3) p3)))

(lambda (f2) ("0" "@" "0"))))
("if" ((h0 (|Succ| n1)) "=" |False|)

(lambda (f2) ((f2 (|Succ| n1)) (lambda (p3) p3)))
(lambda (f2) ("0" "@" "0"))))))

(lambda (e1)
(lambda (g2)

((g2 "0") ((g2 "1") ((e1 "1") "@" (e1 "2")))))))
|(Lin nat@@(nat@@nat=>nat@@nat))|))

5. Animation of Psi

; in tsil.scm: Lh: tsil alpha -> nat and
; Proj: tsil alpha -> nat ->alpha, displayed, infix, as __.
; projection: if t=[t_0,...,t_n-1] (t__i) yields t_i

(define type-of-beta (mk-arrow (py " nat") (make-star rho sigma)))
(av "beta" type-of-beta)

(define type-of-Tilde (mk-arrow type-of-Y type-of-beta nu))
(add-program-constant "Tilde" type-of-Tilde)

(add-computation-rule (pt "Tilde Y beta")
(pt "Y

([n][if (n=0) 0 (left (beta (Pred n)))])
([n] right (beta n))"))

; H is a realizer for an instance of the efq-axiom,
; here the instance is bot -> (bot -> bot)
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(add-program-constant "H" (mk-arrow nu nu nu))
(add-computation-rule (pt "H p1 p2")(pt "p1"))

; Finally, we add the computation-rule for Psi

(add-computation-rule (pt "Psi G Y t")
(pt "Tilde

Y
([n][if (n < (Lh t))

(t__n)
(0@

H (G
[if (Lh t = 0)

0
(left (t__(Pred (Lh t))))]

([x,z] (Psi G Y (t::(x@z))))))])"))

6. Running the extracted program

(add-program-constant "Constsequence" (py "nat=>boole"))
(add-rewrite-rule (pt "Constsequence n")(pt "F"))
(term-to-string

(nt (mk-term-in-app-form nprogram (pt "Constsequence"))))
; ==> "1@2"

; Note that the 0th element is not found
; the reason being h circ e is only constant for inputs n>0.

(add-program-constant "Interesting" (py "nat=>boole"))
(add-computation-rule (pt "Interesting 0")(pt "F"))
(add-computation-rule (pt "Interesting 1")(pt "T"))
(add-computation-rule (pt "Interesting 2")(pt "F"))
(add-computation-rule (pt "Interesting 3")(pt "T"))
(add-computation-rule (pt "Interesting 4")(pt "T"))
(term-to-string

(nt (mk-term-in-app-form nprogram (pt "Interesting"))))
; ==> "3@4"

A.2 Inductive Definitions, an example

We implement the inductive predicate Bar and demonstrate the use of the introduction
and elimination axioms by means of two lemmas which will be both needed for the proof
of Higman’s Lemma.
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a) Bar [] implies that every infinite sequence has a good initial segment.

b) Bar ws ∗ [].

1. Definitions

(define nat (py "nat"))
(define word (py "tsil nat"))
(define seq (py "tsil (tsil nat)"))

(av "a" "b" "c" "i" "j" (py "nat"))
(av "w" "u" "v" "x" "y" "z" "as" "bs" word)
(av "ws" "vs" "xs" "ys" "zs" seq)
(av "f" (make-arrow nat word))

(add-program-constant "Init" (mk-arrow (mk-arrow nat word) nat seq) 1)
(add-computation-rule (pt "Init f 0") (pt "(Lin (tsil nat))"))
(add-computation-rule (pt "Init f (Succ n)") (pt "(Init f n)::(f(n))"))

; Emb, L, Good are inductive definitions without computational content
; L vs v corresponds to Good(vs,v) in the main text (section 5.1).

(add-ids (list (list "Emb" (make-arity word word)))
’("Emb (Lin nat) (Lin nat)" )
’("allnc v,w,a. Emb v w -> Emb v (w::a)")
’("allnc v,w,a. Emb v w -> Emb (v::a) (w::a)"))

(add-ids (list (list "L" (make-arity seq word)))
’("allnc vs,v,w. Emb v w -> L (vs::v) w")
’("allnc vs,v,w. L vs w -> L (vs::v) w"))

(add-ids (list (list "Good" (make-arity seq)))
’("allnc ws,w. L ws w -> Good (ws::w)")
’("allnc ws,w. Good ws -> Good (ws::w)"))

; Bar is an inductive predicate with computatinal content.
; The ‘type’ of Bar is the tree with the constructors Leaf and Branch.
(add-ids (list (list "Bar" (make-arity seq) "tree"))

’("allnc ws. Good ws -> Bar ws" "Leaf")
’("allnc ws. (all w Bar (ws::w)) -> Bar ws" "Branch"))

2. The interactive proof (a)

(set-goal (pf "allnc ws. Bar ws ->
all f,n. Init f n = ws ->

ex m. Good (Init f m)"))
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(assume "vs")

;Ind(Bar).
(elim)

; 1. Good ws
(assume "ws" "Good ws" "f" "n" "Init f n=ws")
(ex-intro (pt "n"))
(simp "Init f n=ws")
(use "Good ws")

; 2. all w Bar(ws::w)
(assume "ws" "all w Bar(ws::w)" "ih" "f" "n" "Init f n=ws")
(use-with "ih" (pt "f n ")(pt "f") (pt "n+1") "?")

;Init f(n+1)=(ws::f n)
(ng)
(use "Init f n=ws")
(save "Bar-thm")

3. The extracted program

(av "ga" (py "tsil nat=>tree"))
(av "gb" (py "tsil nat=>(nat=>tsil nat)=>nat=>nat"))
(term-to-expr (nt (proof-to-extracted-term (current-proof))))

((|(Rec tree=>(nat=>tsil nat)=>nat=>nat)|
(lambda (f3) (lambda (n4) n4)))

(lambda (ga3)
(lambda (gb4)

(lambda (f5)
(lambda (n6) (((gb4 (f5 n6)) f5) (|Succ| n6)))))))

4. We give a second example to demonstrate the use of the introduction

axioms

; (b) Bar (ws*[])
(set-goal (pf "all w. Emb (Lin nat) w"))
(ind)
(intro 0)
(assume "w" "a" 1)
(intro 1)
(use 1)
(save "Emb-lemma")
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(set-goal (pf "allnc ws Bar (ws::(Lin nat))"))
(assume "ws")
(intro 1)
(assume "w")
(intro 0)
(intro 0)
(intro 0)
(use "Emb-lemma")
(save "Prop1")

(term-to-expr (proof-to-extracted-term (current-proof)))
; ==> (|Branch| (lambda (w) |Leaf|))

A final comment

; We could have reformulated our first statement:
; allnc ws. Bar ws -> all f. Isinit f ws -> ex m. Good (Init f m)"))

; where Isinit f [] = True
; Isinit f (ws*w) = [if (f (Lh ws)=w)(Isinit f ws) False]

; However, this would lead to problems concerning the CV-variables
; since, in case ‘Good ws’, we have to set m = Lh ws, but
; ws is a CV variable which must not be used in the interactive proof.

; In general, having a proof of Bar ws does not imply that we have given
; the object ws.

A.3 Higman’s Lemma for a 0/1 alphabet

In this section, we present a Minlog-formalization of Coquand and Fridlender’s proof
of Higman’s Lemma [CF94]. We prove that every infinite sequence in a 0/1 alphabet
has a good initial segment.

1. Definitions

; loading the definitions of the preceeding example
(mload "../examples/bar/bar.scm")

(aga "only-two-letters" (pf "all a,b,c.(a=b -> F) -> (c=a -> F) -> c=b"))

(add-ids (list (list "R" (make-arity nat seq seq)))
’("R a (Lin (tsil nat)) (Lin (tsil nat))")
’("allnc vs,ws,w,a. R a vs ws -> R a (vs::w) (ws::(w::a))"))

96



A.3 Higman’s Lemma for a 0/1 alphabet

(add-ids (list (list "TT" (make-arity nat seq seq)))
’("allnc ws,zs,w,a,b. (a=b -> F) -> R b ws zs ->

TT a (zs::w) (zs::(w::a))")
’("allnc ws,zs,w,a. TT a ws zs ->

TT a (ws::w) (zs::(w::a))")
’("allnc ws,zs,w,a. (a=b -> F) -> TT a ws zs ->

TT a ws (zs::(w::b))"))

(aga "lemma2nc" (pf "allnc ws,zs,a. R a ws zs -> Good ws -> Good zs"))
(aga "lemma3nc" (pf "allnc ws,zs,a. TT a ws zs -> Good ws -> Good zs"))
(aga "lemma4nc" (pf "allnc ws,zs,a.(ws=(Lin (tsil nat)) -> F) ->

R a ws zs -> TT a ws zs "))

2. Interactive proofs

; Prop1 has been proven in bar.scm

; Prop2

(set-goal (pf "allnc xs. Bar xs ->
allnc ys. Bar ys ->
all zs,a,b. (a=b -> F) -> TT a xs zs -> TT b ys zs ->
Bar zs"))

(assume "xs1")
(elim)

; 1. Good xs
(assume "xs" "Good xs" "ys" "Bar ys" "zs" "a" "b" "a=b -> F"

"TT a xs zs" "TT b ys zs")
(intro 0)
(use-with "lemma3nc" (pt "xs") (pt "zs") (pt "a") "TT a xs zs" "Good xs")

; 2. all w Bar(xs::w)
(assume "xs" "all w Bar(xs::w)" "ih1" "ys1")
(elim)

; 2.1
(assume "ys" "Good ys" "zs" "a" "b" "a=b -> F" "TT a xs zs" "TT b ws zs")
(intro 0)
(use-with "lemma3nc" (pt "ys") (pt "zs") (pt "b") "TT b ws zs" "Good ys")

; 2.2
(assume "ys" "all w Bar(ys::w)" "ih2" "zs" "a" "b"

"a=b -> F" "TT a xs zs" "TT b ws zs")
(intro 1)
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; structural induction on w
(ind)

; 2.2.1
(use "Prop1")

; 2.2.2
(assume "z" "c" "Bar(zs::z)")

(cases (pt "c=a"))
(assume "c=a")
(simp "c=a")
(use "ih1" (pt "z") (pt "ys") (pt "a") (pt"b"))
; Bar ys
(intro 1)
(use "all w Bar(ys::w)")
; a=b -> F
(use "a=b -> F")
; TT a(xs::z) (zs::z::a) from
(intro 1)
(use "TT a xs zs")
(intro 2)
(assume "b=a")
(use "a=b -> F")
(simp "b=a")
(prop)
(use "TT b ws zs")

; false
(assume "c=a -> F")
(cut (pf "c=b"))
(assume "c=b")
(use-with "ih2" (pt "z") (pt "zs::z::c") (pt "a") (pt "c") "?" "?" "?")
(assume "a=c")
(use "c=a -> F")
(simp "a=c")
(ng)
(use "Truth-Axiom")
(simp "c=b")
(intro 2)
(use "a=b -> F")
(use "TT a xs zs")
(simp "c=b")
(intro 1)
(use "TT b ws zs")
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(use "only-two-letters" (pt "a"))
(use "a=b -> F")
(use "c=a -> F")
(save "Prop2")

; The extracted program from Prop2

(av "gc" (py "tsil nat=>tsil(tsil nat)=>tree"))
(av "gd" (py "tsil nat=>tree=>tsil(tsil nat)=>nat=>nat=>tree"))
(av "ge" (py "tsil nat=>tsil(tsil nat)=>nat=>nat=>tree"))

(term-to-expr (nt (proof-to-extracted-term (current-proof))))

((|(Rec tree=>tree=>tsil(tsil nat)=>nat=>nat=>tree)|
(lambda (tree5)

(lambda (ws6) (lambda (a7) (lambda (a8) |Leaf|)))))
(lambda (ga5)

(lambda (gd6)
((|(Rec tree=>tsil(tsil nat)=>nat=>nat=>tree)|

(lambda (ws11) (lambda (a12) (lambda (a13) |Leaf|))))
(lambda (ga11)

(lambda (ge12)
(lambda (ws13)

(lambda (a14)
(lambda (a15)

(|Branch|
((|(Rec tsil nat=>tree)| |cPropOne|)
(lambda (w17)
(lambda (a18)

(lambda (tree19)
("if" (a18 "=" a14)

(((((gd6 w17) (|Branch| ga11))
(ws13 "::" (w17 "::" a14)))
a14)
a15)

((((ge12 w17) (ws13 "::" (w17 "::" a18)))
a14)
a18))))))))))))))))

; Prop3

(set-goal (pf "all a. allnc xs. Bar xs -> (xs = (Lin (tsil nat)) -> F) ->
all zs. R a xs zs -> Bar zs"))

(assume "a" "xs1")
(elim)
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; base: all ws.good ws -> formula[a,ws]
(assume "xs" "Good xs" "xs ne Lin" "zs" "R a xs zs")
(intro 0)
(use-with "lemma2nc" (pt "xs") (pt "zs") (pt "a") "R a xs zs" "Good xs")

; step
(assume "xs" "all w Bar xs::w" "ih" "xs ne Lin" "zs" "R a xs zs")
(intro 1)
(ind)
(use "Prop1")
(assume "z" "c" "Bar zs::z")
(cases (pt "c=a"))
(assume "c=a")
(use-with "ih" (pt "z") "?" (pt "zs::z::c") "?")
(ng)
(prop)

; R a(xs::z)(zs::z::c) from
(simp "c=a")
(intro 1)
(use "R a xs zs")

; (c=a -> F) -> Bar(zs::z::c) from
(assume "c=a -> F")
(cut (pf "a=c -> F"))
(assume "a=c -> F")
(use-with "Prop2" (pt "xs") "?"

(pt "zs::z") "Bar zs::z"
(pt "zs::z::c")(pt "a") (pt "c") "?" "?" "?")

; Bar xs
(intro 1)
(use "all w Bar xs::w")

; a=c -> F
(use "a=c -> F")

; TT a xs(zs::z::c)
(intro 2)
(use "a=c -> F")

; TT a xs zs from
(use "lemma4nc" )
(use "xs ne Lin")
(use "R a xs zs")
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; TT c(zs::z)(zs::z::c) from
(intro 0 (pt "xs")(pt "a"))
(use "c=a -> F")
(use "R a xs zs")

; a=c -> F from
(assume "a=c")
(use "c=a -> F")
(simp "a=c")
(ng)
(use "Truth-Axiom")
(save "Prop3")

; The extracted program from Prop3

(term-to-expr (nt (proof-to-extracted-term (current-proof))))

(lambda (a0)
((|(Rec tree=>tsil(tsil nat)=>tree)| (lambda (ws3) |Leaf|))
(lambda (ga3)

(lambda (gc4)
(lambda (ws5)

(|Branch|
((|(Rec tsil nat=>tree)| |cPropOne|)
(lambda (w7)

(lambda (a8)
(lambda (tree9)

("if" (a8 "=" a0)
((gc4 w7) (ws5 "::" (w7 "::" a8)))
(((((|cPropTwo| (|Branch| ga3)) tree9)

(ws5 "::" (w7 "::" a8)))
a0)
a8))))))))))))

; The proof of the Theorem

(set-goal (pf "Bar (Lin (tsil nat))"))
(intro 1)

(ind)
;1.
(use "Prop1")
;2.
(assume "w" "a" 1)
(use-with "Prop3" (pt "a") (pt ":w") 1 "?" (pt ":(w::a)") "?")

101



A IMPLEMENTATIONS IN THE MINLOG SYSTEM

(ng)
(prop)

; R a(:w)(:(w::a))
(intro 1)
(intro 0)
(save "Thm")
(term-to-expr (nt (proof-to-extracted-term (current-proof))))

(|Branch|
((|(Rec tsil nat=>tree)| |cPropOne|)
(lambda (w1)

(lambda (a2)
(lambda (tree3)

(((|cPropThree| a2) tree3) (":" (w1 "::" a2))))))))

(set-goal (pf " all f ex m. Good (Init f m)"))
(assume "f")
(use-with "Bar-thm" (pt "(Lin (tsil nat))") "Thm" (pt "f")(pt "0") "?")
; Init f 0=(Lin tsil nat)
(ng)
(use "Truth-Axiom")

(define program (proof-to-extracted-term (current-proof)))
(animate "Bar-thm")
(animate "Thm")
(animate "Prop1")
(animate "Prop2")
(animate "Prop3")
(term-to-expr program)

(define nprogram (nt program))
(term-to-string nprogram)

3. Test of the extracted program

(define (run-higman infinite-sequence)
(dt (nt (mk-term-in-app-form nprogram infinite-sequence))))

; a. [0 0], [1 1 0], [0 1 0 1], [0], ...

(apc "Seq" (mk-arrow (py "nat")(py "(tsil nat)")) 1)
(add-rewrite-rule (pt "Seq 0")(pt ":0::0"))
(add-rewrite-rule (pt "Seq 1")(pt "(:1::1)::0"))
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(add-rewrite-rule (pt "Seq 2")(pt "((:0::1)::0)::1"))
(add-rewrite-rule (pt "Seq (++(++(++ n)))")(pt ":0"))
(run-higman (pt "Seq"))
; ==> 3
; i.e., the subsequence consisting of the first three words is good

; b. [0 0], [1], [1 0], [], ...

(apc "Interesting" (mk-arrow (py "nat")(py "(tsil nat)")) 1)
(add-rewrite-rule (pt "Interesting 0")(pt ":0::0"))
(add-rewrite-rule (pt "Interesting 1")(pt ":1"))
(add-rewrite-rule (pt "Interesting 2")(pt ":1::0"))
(add-rewrite-rule (pt "Interesting (++(++(++ n)))")(pt "(Lin nat)"))
(run-higman (pt "Interesting"))
; ==> 5
; This is an example in which not the shortest good initial segment
; is found.

A.4 Higman’s Lemma for a finite alphabet

We prove Lemma 5.8 i), ii) and Propostition 5.9.

(mload "../examples/bar/bar.scm")
(animate "Prop1")
(animate "Bar-thm")

1. Inductive definition bar on letters (use lower case letters)

(apc "ll" (py "(tsil nat)=>nat=>boole") 1)
; note that we have introduced ll (corresponds to Good(.,.) in the main
; text, see section 5.1) as program constant (and not as inductive
; predicate) since it should be decidable.

(add-computation-rule (pt "ll(Lin nat) b")(pt "F"))
(add-computation-rule (pt "ll (as::a) b")

(pt "[if (a=b) T (ll as b)]"))

(add-ids (list (list "good" (make-arity word)))
’("allnc as,a. ll as a -> good (as::a)")
’("allnc as,a. good as -> good (as::a)"))

(add-ids (list (list "bar" (make-arity word) "lltree"))
’("allnc as. good as -> bar as" "leaf")
’("allnc as. (all a bar (as::a)) -> bar as" "branch"))
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2. Inductive definition of Bars

(define seqtsil (py "(tsil(tsil(tsil nat)))"))
(av "vss" "wss" seqtsil)

(apc "Insertfolder"(mk-arrow seqtsil word nat seqtsil) 1)
(add-computation-rule (pt "Insertfolder (vss::ws) w i")

(pt "[if (i=Lh vss)
(vss::(ws::w))
((Insertfolder vss w i)::ws)]"))

(add-ids (list (list "Bars" (make-arity seqtsil) "trees"))
’("allnc vss,i. i< Lh vss -> Good ((vss)__i) -> Bars vss" "Leafs")
’("allnc vss. (all w,i,n. n=Lh vss -> i< n ->

Bars(Insertfolder vss w i))
-> Bars vss" "Branchs"))

3. Definitions of lasts, bseq and folder

(apc "lasts" (mk-arrow seq word)1)
(add-computation-rule (pt "lasts (Lin (tsil nat))")(pt "(Lin nat)"))
(add-computation-rule (pt "lasts (ws::(w::a))")(pt "(lasts ws)::a"))

(apc "bseq" (mk-arrow word word) 1)
(add-computation-rule (pt "bseq (Lin nat)")(pt "(Lin nat)"))
(add-computation-rule (pt "bseq (as::a)")

(pt "[if (ll (bseq as) a)
(bseq as)
((bseq as)::a)] "))

(apc "memb" (mk-arrow nat word nat) 1)
(add-computation-rule (pt "memb a (w::b)")

(pt "[if (a=b) (Lh w) (memb a w)]"))

(apc "folder" (mk-arrow seq seqtsil) 1)
(add-computation-rule (pt "folder (Lin (tsil nat))")

(pt "(Lin (tsil(tsil nat)))"))
(add-computation-rule (pt "folder (ws::(w::a))")

(pt "[if (ll (bseq (lasts ws)) a)
(Insertfolder (folder ws) w

(memb a (bseq (lasts ws))))
((folder ws)::(ws::w))]"))
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4. Interactive proofs and Program extraction

; Lemma 1 (Lemma 5.7, i)

(aga "Lemma1" (pf "allnc vss,ws,i. i< Lh vss -> Good (vss__i) ->
folder ws= vss -> Good ws"))

; Lemma 2i (Lemma 5.8 i)

(set-goal (pf "Bars (Lin (tsil(tsil nat)))"))
(intro 1)
(ng)
(assume "w" "i" "n" 1)
(simp 1)
(ng)
(strip)
(use "Efq")
(use 2)
(save "Lemma2i")

; Lemma 2ii (Lemma 5.8ii)

(set-goal (pf " allnc ws. Bar ws -> allnc wss.Bars wss -> Bars (wss::ws)"))
(assume "ws0")

; 1. Ind(Bar).
(elim)
; 1.1
(strip)
(intro 0 (pt "Lh wss"))
(ng)
(use "Truth-Axiom")
(ng)
(use 1)

; 1.2
(assume "ws" "ih1a" "ih1b" "wss0")
(drop "ih1a")

; 2. Ind(Bars).
(elim)
; 2.1.
(strip)
(intro 0 (pt "i"))
(aga "Aux1" (pf "allnc i,j.i<j -> i<j+1"))
(use-with "Aux1" (pt "i")(pt "Lh vss") 3)
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(ng)
(aga "Aux2" (pf "allnc i,j.i<j -> i=j->F"))
(inst-with "Aux2" (pt "i")(pt "Lh vss") 3)
(simp 5)
(ng)
(use 4)

; 2.2
(assume "wss" "ih2a" "ih2b")
(intro 1)
(assume "w" "i" "n" 5)
(simp 5)
(strip)
(ng)

; 6:i<Succ Lh wss, hence either i=Lh vss or i<Lh vss
; instead of cases on i=Lh wss, which is not allowed since wss is a cv-var,
; we do cases on i+1=n (Note: 5:n=Succ Lh wss).
(cases (pt "i+1=n"))
; case1: i=Lh vss
(simp 5)
(ng)
(strip)
(simp 7)
(ng)
(use "ih1b")
(intro 1)
(use "ih2a")

;case 2: i<Lh vss (= n-1)
(simp 5)
(ng)
(strip)
(simp 7)
(ng)
(use "ih2b" (pt "n-1"))
(simp 5)
(ng)
(use "Truth-Axiom")
(simp 5)
(ng)
(aga "Aux3" (pf "allnc i,k.i<k+1 -> (i=k -> F) -> i<k"))
(use "Aux3")
(use 6)
(use 7)
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(save "Lemma2ii")

(av "gc" (py "tsil nat=>trees=>trees"))
(av "gd" (py "tsil nat=>nat=>nat=>trees"))
(term-to-expr (nt (proof-to-extracted-term (current-proof))))
((|(Rec tree=>trees=>trees)| (lambda (trees2) |Leafs|))
(lambda (ga2)

(lambda (gc3)
((|(Rec trees=>trees)| |Leafs|)
(lambda (gd5)

(lambda (gd6)
(|Branchs|

(lambda (w7)
(lambda (a8)

(lambda (a9)
("if" ((|Succ| a8) "=" a9)

((gc3 w7) (|Branchs| gd5))
(((gd6 w7) a8) (|Pred| a9)))))))))))))

; Higman’s Lemma (Proposition 5.9)

(set-goal (pf "allnc as. bar as ->
allnc vss. Bars vss ->
all ws. bseq (lasts ws) = as ->

folder ws = vss ->
Bar ws"))

(assume "as0")

; Ind(bar)
(elim)

; 1.1
(strip)
(use "Efq")
(aga "Aux4" (pf "allnc as,ws . good as -> bseq (lasts ws)=as -> F"))
(use-with "Aux4" (pt "as")(pt "ws") 1 3)

; 1.2
(assume "as" "ih1a" "ih1b" "vss0")
(drop "ih1a")

;Ind(Bars)
(elim)
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; 2.1.
(strip)
(intro 0)
(use-with "Lemma1" (pt "vss")(pt "ws")(pt "i") 3 4 6)

; 2.2.
(assume "vss" "ih2a" "ih2b" "ws" 5 6)
(intro 1)

; Ind(w)
(ind)

; 3.1
(use "Prop1")

; 3.2
(assume "w" "a" "ih3")

; To show: Bar(ws::w::a)
(cases (pt "ll (bseq(lasts ws)) a"))

; case1: ll (bseq(lasts ws)) a
(strip)
(use "ih2b" (pt "w") (pt "memb a (bseq (lasts (ws::w::a)))")

(pt "Lh (folder ws)"))
(simp 6)
(ng)
(use "Truth-Axiom")

(aga "Aux5" (pf " allnc ws,a. ll(bseq(lasts ws))a ->
memb a(bseq(lasts ws::a))<Lh(folder ws)"))

(use "Aux5")
(use 8)

; bseq(lasts(ws::w::a))=as
(ng)
(simp 8)
(ng)
(use 5)

; folder(ws::w::a)=Insertfolder vss w(memb a(bseq(lasts(ws::w::a))))
(ng)
(simp 8)
(ng)
(simp 6)

108



A.4 Higman’s Lemma for a finite alphabet

(ng)
(use "Truth-Axiom")

; case2: (ll(bseq(lasts ws))a -> F)
(strip)
(use "ih1b" (pt "a")(pt "(folder ws)::(ws::w)"))

; Bars (folder ws::ws::w)
(use "Lemma2ii")

; Bar(ws::w)
(use "ih3")

; Bars vss
(simp 6)
(intro 1)
(use "ih2a")

; bseq(lasts(ws::w::a))=(as::a)
(ng)
(simp 8)
(ng)
(use 5)

; folder(ws::w::a)=((folder ws)::(ws::w))
(ng)
(simp 8)
(ng)
(use "Truth-Axiom")
(save "Theorem")

(av "ge" (py "nat=>lltree"))
(av "gf" (py "nat=>trees=>tsil(tsil nat)=>tree"))
(av "gg" (py "tsil nat=>nat=>nat=>tsil(tsil nat)=>tree"))
(define program (proof-to-extracted-term (current-proof)))
(term-to-expr (nt program))

((|(Rec lltree=>trees=>tsil(tsil nat)=>tree)|
(lambda (trees3) (lambda (ws4) |Leaf|)))

(lambda (ge3)
(lambda (gf4)

((|(Rec trees=>tsil(tsil nat)=>tree)| (lambda (ws7) |Leaf|))
(lambda (gd7)

(lambda (gg8)
(lambda (ws9)
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(|Branch|
((|(Rec tsil nat=>tree)| (|Branch| (lambda (w11) |Leaf|)))
(lambda (w11)

(lambda (a12)
(lambda (tree13)

("if" ((ll (bseq (lasts ws9))) a12)
((((gg8 w11)

((memb a12)
("if" ((ll (bseq (lasts ws9))) a12)

(bseq (lasts ws9))
((bseq (lasts ws9)) "::" a12))))

("Lh" (|folder| ws9)))
(ws9 "::" (w11 "::" a12)))
(((gf4 a12)

((|cLemmaTwoii| tree13) (|Branchs| gd7)))
(ws9 "::" (w11 "::" a12))))))))))))))))

(animate "Theorem")
(animate "Lemma2i")
(animate "Lemma2ii")

; For simplicity, we assume that our finite alphabet consists of
; a given number of letters, e.g. 5.
(aga "finitealphabet" (pf " all as. 5<Lh as -> good as"))

(set-goal (pf "bar (Lin nat)"))
(intro 1)(assume "a0")
(intro 1)(assume "a1")
(intro 1)(assume "a2")
(intro 1)(assume "a3")
(intro 1)(assume "a4")
(intro 1)(assume "a5")
(intro 0)(use "finitealphabet")
(ng)
(use "Truth-Axiom")
(save "barNil")
(animate "barNil")

; Higman’s Lemma, Bar[]

(set-goal (pf "Bar (Lin (tsil nat))"))
(use "Theorem" (pt "(Lin nat)")(pt "(Lin (tsil (tsil nat)))"))
(use "barNil")
(use "Lemma2i")
(ng)
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(use "Truth-Axiom")
(ng)
(use "Truth-Axiom")
(save "Higman-finite")
(animate "Higman-finite")

; Every infinite sequence has a good initial segment

(set-goal (pf "all f. ex m. Good (Init f m)"))
(assume "f")
(use "Bar-thm" (pt "(Lin (tsil nat))")(pt "0"))
(use "Higman-finite")
(ng)
(use "Truth-Axiom")

(define program (proof-to-extracted-term (current-proof)))
(define nprogram (nt program))

5. Test of the program

; We define sequences: nat->word via adding term rewriting rules.
; The extracted program yields a number n
; such the initial segment of length n is good.

(define (run-higman infinite-sequence)
(dt (nt (mk-term-in-app-form nprogram infinite-sequence))))

; a. [4 1], [3 3 0], [0 4 0 1], [2], ...

(apc "Seq" (mk-arrow (py "nat")(py "(tsil nat)")) 1)
(add-rewrite-rule (pt "Seq 0")(pt ":4::1"))
(add-rewrite-rule (pt "Seq 1")(pt "(:3::3)::0"))
(add-rewrite-rule (pt "Seq 2")(pt "((:0::4)::0)::1"))
(add-rewrite-rule (pt "Seq (++(++(++ n)))")(pt ":2"))
(run-higman (pt "Seq"))
; ==> 3

; b. [0 0], [1], [1 0], [], [], ...

(apc "Interesting" (mk-arrow nat word))
(add-rewrite-rule (pt "Interesting 0")(pt ":0::0"))
(add-rewrite-rule (pt "Interesting 1")(pt ":1"))
(add-rewrite-rule (pt "Interesting 2")(pt ":1::0"))
(add-rewrite-rule (pt "Interesting (++(++(++ n)))")(pt "(Lin nat)"))
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(run-higman (pt "Interesting"))
; ==> 5
; Example that not the shortest good initial segment is found!

; c. [1], [3], [5], [7], [9], [0], ...

(apc "Sixelts" (mk-arrow nat word))
(add-rewrite-rule (pt "Sixelts 0")(pt ":1"))
(add-rewrite-rule (pt "Sixelts 1")(pt ":3"))
(add-rewrite-rule (pt "Sixelts 2")(pt ":5"))
(add-rewrite-rule (pt "Sixelts 3")(pt ":7"))
(add-rewrite-rule (pt "Sixelts 4")(pt ":9"))
(add-rewrite-rule (pt "Sixelts 5")(pt ":0"))
(run-higman (pt "Sixelts"))
;==> 6
; So the proof yields that the sequence [[1], [3], [5], [7], [9], [0]]
; is good; i.e., two of the used numbers must be equal.
; This is because we have assumed that our finite alphabet consists of
; only five letters. More generally, we could have also proven:
; for any n, there holds Higman’s Lemma for n letters.

; Note that in order to keep the formalization of this theorem as
; short as possible we allowed unproven lemmas. For proofs see
; the Minlog repository.
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