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Abstract

Newly developing convective clouds can be detected and monitored by satellite,
but which of these clouds will grow to mature thunderstorms is di�cult to pre-
dict from one data source alone. Within this thesis it is shown how the quality
of satellite-based convection initiation (CI) detections can be raised substantially
by the use of additional data sources which quantify available moisture, airmass
instability, and lift for the analyzed clouds, the necessary ingredients for thun-
derstorms to develop.
Regions of interest for possible CI are detected by the Cb-TRAM1 algorithm

using 5 minute rapid scan satellite data. Cb-TRAM combines satellite channel
data making it possible to distinguish newly developing (initiating), fast growing,
and mature convective storms. Furthermore, these detections are extrapolated
into the future, producing nowcasts for up to 60 minutes.
For evaluating the quality of the satellite-based CI detection and to quantify

the achievable improvement by the use of additional data, a suitable veri�cation
method for these CI detections is very important. An object-based veri�cation
approach for these Cb-TRAM CI objects is introduced, which has been newly
developed within this study. In order to derive sound statistics, the veri�cation
is performed over a whole summer period (May 15 - August 31, 2009) and for the
whole Central European area. The CI detections can be categorized as developing
(hits) and non-developing (false alarms). The veri�cation results show a large
amount of false alarms which has to be reduced in order to get more meaningful
CI detections.
The possibility of individual Cb-TRAM CI detections to grow further is an-

alyzed using additional data from surface observations and numerical weather
prediction (NWP) model output, in order to gain the information on available
moisture, instability, and lift for each CI detection object. This information is
combined using fuzzy logic to obtain a so-called "CI forcing" value per object.
Finally the CI forcing value is translated into a probability of further development
to a thunderstorm for each cell.
Within this thesis the bene�t of using multiple data sources to improve CI

nowcasting is demonstrated. The additional information provided by the newly
incorporated data raises the CI detection and nowcast quality by allowing, de-
pending on the user-selectable amount of omitted hits (in the range of 0 - 25 %), a
substantial reduction of the amount of false alarms (5 - 65 %). The methodology
can also easily be adapted or extended for further additional data sources. An
early identi�cation of regions where mature storms will evolve allows for more
adequate, user-oriented warnings.

1Cumulonimbus Tracking And Monitoring





Kurzfassung

Die Entstehung neuer, konvektiver Wolken kann mit Hilfe von Satellitendaten
beobachtet werden, aber eine Vorhersage, welche dieser Wolken sich zu aus-
gewachsenen Gewittern entwickeln, ist mit einer Datenquelle allein nur schwer
möglich. In dieser Arbeit wird gezeigt, wie die satellitenbasierte Erkennung
der Initiierung von Konvektion (convection initiation oder kurz CI) substantiell
verbessert werden kann durch die Nutzung zusätzlicher Datenquellen, die die
zur Verfügung stehende Feuchte, Instabilität und Hebung - also die notwendi-
gen Zutaten für die Entstehung eines Gewitters - für die detektierten Wolken
quanti�zieren.
In fünf minütigen Satellitendaten werden durch den Cb-TRAM Algorithmus

(Cumulonimbus Tracking And Monitoring) Gebiete mit wahrscheinlicher CI be-
stimmt. Cb-TRAM kombiniert Daten unterschiedlicher Satellitenkanäle um neu
entstehende (CI), schnell wachsende und ausgewachsene konvektive Ereignisse zu
identi�zieren. Diese Erkennungen werden in die Zukunft extrapoliert um Now-
casts für bis zu 60 Minuten zu erzeugen.
Zur Beurteilung der Qualität der satellitenbasierten CI Erkennung und um

die erreichbare Verbesserung durch die Verwendung zusätzlicher Datenquellen zu
quanti�zieren, ist eine sinnvolle Veri�kationsmethode für diese CI Erkennungen
von Nöten. Ein speziell für diese Cb-TRAM CI Erkennungen innerhalb dieser
Arbeit entwickelter, neuer, objekt-basierter Ansatz wird hierzu eingeführt. Um
verlässliche Statistiken zu erhalten wurde die Veri�kation für eine ganze Sommer-
periode (15. Mai 2009 - 31. August 2009) über ganz Mitteleuropa durchgeführt.
Die CI Erkennungen können als sich weiterentwickelnde (Tre�er bzw. hits) oder
sich nicht weiterentwickelnde (Fehlalarme bzw. false alarms) klassi�ziert wer-
den. Die Veri�kationsergebnisse zeigen eine hohe Anzahl an false alarms, welche
reduziert werden muss um aussagekräftigere CI Erkennungen zu erhalten.
Mit Hilfe von Beobachtungsdaten und Daten eines numerischen Wettervorher-

sagemodells werden Informationen über verfügbare Feuchte, Instabilität und He-
bung für jedes detektierte Objekt gewonnen um damit die Möglichkeit einer Wei-
terentwicklung einzelner Cb-TRAM CI Erkennungen zu analysieren. Diese Infor-
mationen werden mit Fuzzy Logik kombiniert um eine sogenannte "CI Forcierung"
für jedes der Objekte zu erhalten. Abschlieÿend wird die "CI Forcierung" in eine
Weiterentwicklungswahrscheinlichkeit (in ein Gewitter) für das jeweilige Objekt
übersetzt.
Im Rahmen dieser Doktorarbeit wird der Nutzen der Verwendung zusätzlicher

Datenquellen zur Verbesserung des CI Nowcasting demonstriert. Die zusätzlichen
Informationen durch die neu verwendeten Daten erhöhen die CI Erkennungs-
und Nowcastqualität indem die Anzahl der Fehlalarme, abhängig vom Anteil



der "aussortierten" Tre�er (vom Nutzer wählbar im Bereich zwischen 0 - 25 %),
substantiell reduziert werden kann (5 - 65 %). Die Methode kann leicht angepasst
oder auch erweitert werden um weitere zusätzliche Daten zu testen beziehungsweise
zu verwenden. Eine frühzeitige Erkennung von Gebieten in denen sich Gewitter
bilden werden, ermöglicht verbesserte, nutzerorientierte Warnungen.
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1. Introduction

1.1. Motivation

If you sit outside and watch the sky on a warm and sunny summer day you can
often watch the typical cauli�ower-like cumulus clouds starting to develop. At
some point these cumulus humilis ("harmless") might start towering and develop
to a more tremendous cumulus congestus ("massive"). Most of these cumulus
clouds just collapse again and no storms develop. However, sometimes these
clouds grow even further and develop to a thunderstorm cloud with an anvil
clearly visible from afar, a so-called cumulonimbus cloud ("raining cumulus").
Here the curiosity of many atmospheric physicists is raised. What is the di�erence
in the atmospheric conditions and why did the cloud further develop at one point
or why not? Therefore the atmospheric conditions in and around the storm
are quite interesting research topics. In general, thunderstorms are among the
most impressive and exciting phenomena to observe in atmospheric physics. The
beauty of the tremendous cloud formations or the nocturnal view of lightning
fascinates many people. They also have for example important impact on the
hydrological cycle (Wulfmeyer et al., 2011), their vertical transport of trace-gases
(Fischer et al., 2003) and their production of lightning-induced NOx (Schumann
& Huntrieser, 2007) in�uences the atmospheric chemistry in the UTLS (Upper
Troposphere Lower Stratosphere) region, and the forecast of a thunderstorm with
all its related attributes is still quite di�cult (Wulfmeyer et al., 2011). Besides
these characteristics thunderstorms use to frighten many people and they are the
cause for high weather-related risks. Common attributes of a thunderstorm like
hail, heavy precipitation, wind gusts, tornadoes, turbulence, and lightning cause
a lot of damage. This leads to a total damage estimate for Europe of 5 to 8 billion
Euro per year (Dotzek & Forster, 2011).

Thus the reduction of these risks and the damage caused by thunderstorms is
one of the main reasons for further research on thunderstorms. Weather forecasts
for thunderstorms are sometimes based on very short range forecasting (forecast
for up to 12 hours), but mostly thunderstorm forecasts are based on so called
nowcasting, with a time horizon of zero to two hours. The time horizons for
these forecast ranges �uctuate for di�erent studies. The values above are selected
as de�ned by the World Meteorological Organization (WMO-No. 485, 2012).
Nowcasting often focusses on observational data (e.g. from radar or satellites)
and its extrapolation for the upcoming nowcasting time steps. A second possi-
bility to forecast thunderstorms is to use numerical weather prediction (NWP)
models. For a thunderstorm forecast they have to be capable of resolving convec-
tive events which means, they need high horizontal and vertical resolutions, and
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4 1.1. MOTIVATION

a very good understanding and numerical realization of the ongoing physics. The
main problem with convective forecasting in NWP models is to get the position,
timing, and amount of points where convection really starts, thus the convective
initiation, represented right. "Convective initiation" (CI) names the phase at the
beginning of a thunderstorm life-cycle where a convective cloud starts to grow.
The aim of nowcasting is to warn as precisely in space and time as possible.

Thunderstorm warnings can be produced for regions, events, or companies, in-
forming if a risk has to be expected. Industrial sectors highly interested on reliable
storm warnings are for example energy suppliers or the whole air transportation
sector as well as organizers of any kind of open-air concerts, sporting events or
festivities. An important fact about nowcasting is the lead time with reasonable
nowcast quality that can be achieved. Lead time describes the time between the
prediction of a storm hitting a special area at a point in time in the future, and
the real occurrence of the storm there at, or at least close to, the predicted point
in time.
There are many nowcasting tools that generate thunderstorm nowcasts as will

be explained in Chapter 2 but most of them focus on fully developed storms, so
called mature storms and some, later on in a storms life-cycle, on their decay.
One idea to raise the achievable lead time is to try to detect a storm earlier within
its life-cycle in the observation data used for the nowcasts. Detecting a storm in
the CI stage of its life-cycle might on the one hand help to gain more lead time for
some warnings and it might on the other hand help to warn on phenomena which
already exist within this early stage and may be "overlooked" by later detections.
As an example, showing the need for improved CI detection and nowcasting, I
want to focus on nowcasting applications for aviation here.
Thunderstorms heavily disturb all kinds of in-�ight and ground aviation op-

erations. A Eurocontrol Performance Review Commission (2011) study shows
that thunderstorms are responsible for 30.9 % of the weather related delays in
European air tra�c �ow management, which makes thunderstorms the weather
phenomena with the largest impact on the air tra�c over Europe. Leighton
(2006) states that thunderstorm activity is the reason for up to 90 % of all delays
in the airspace over the USA during the summer months. An early detection of a
developing storm with high lead time for the �rst warning might for example help
an airport and the air-tra�c control to react on a storm arriving at an airport.
If the lead time before an estimated time of arrival is su�cient some �ights from
the airport later a�ected by the storm might be rescheduled to get the airplanes
out of the airport before it is a�ected. Or �ights to the a�ected airport might be
rescheduled to keep planes on the ground which would not be able to land at their
destination until the airport is not a�ected anymore. The nowcasts also help to
decide if it makes sense that a plane waits, circling an aerodrome, or if it has to
be redirected. Besides the advantages for the planning, a detection of initiating
storm cells can also be useful to warn in areas where turbulence due to newly
growing convective clouds may appear. Convectively Induced Turbulence (CIT)
is responsible for over 60% of turbulence-related aircraft accidents and nearly
23% of these CIT-related accidents resulted in fatal injuries to the occupants of
the aircraft (Bedka et al., 2010).
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The use of nowcasting in the aviation sector is quite multifaceted. There is
a multitude of tools tested for a use in aviation, especially in the US. Usually
�ight safety agencies, airports, airliners, and pilots get information and forecasts
from national weather services. However the main problem is that more or less
everybody has his own tool or method or data provider he looks at and sometimes
trusts more. The key problem is the multitude of di�erent information used. It
would be quite useful to get the same easy understandable information about
the current situation and its nowcast, without any room for eventually wrong
interpretations, to all persons who are involved in a decision making processes
in aviation. This could lead to a use of nowcasting which might help to realize
better strategic planning on how to operate as well as possible despite adverse
weather conditions, and not just reacting rapidly on them.
The advantages of earlier, reliable detections and warnings are one big motiva-

tion for CI research. A particular challenge of the CI detection and nowcasting
is, that the detection of a new developing cloud, for example with the help of
satellite data, might be correct due to some serious cloud development, but if the
cloud collapses again within the next time steps the CI nowcast will be wrong. If
the detection is based only on satellite data, for example, the cloud is observed
only from above. The horizontal growth of the cloud and the cooling of the cloud
top can for example be evaluated but it is di�cult to evaluate the atmosphere
below the cloud. The alternative use of NWP model data might show realistic
storm structures also in lower atmospheric levels than observed by the satellite
data, but often with errors in positioning or timing of the CI in comparison to
reality. Surface observations or instability information by atmospheric sound-
ings, usually have problems with the resolution of the measurements in space and
time and contain none or only little upper air information. Thus they have de-
�ciencies in resembling the atmospheric reality as well. Thus many data sources
have advantages and drawbacks for their use in conduction with CI detection and
nowcasting. Within this thesis some di�erent data sources which are expected
to be useful for operational (near-)realtime CI detection are tested and the most
promising are combined to overcome the possible weaknesses of using only one
data source with the aim of a better CI nowcasting.

1.2. Basic concept, aims & outline

The key scienti�c question that should be answered as an aim of this thesis is:

� How much can CI nowcasting be improved by the use of multiple data
sources?

Within the approach shown here three crucial questions arise on the journey to
this key point:

� How can CI nowcast quality be evaluated?

� What kind of additional data is most promising?
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and

� How should the data be combined?

The conceptional idea of this thesis can be described in three steps. The �rst
step is to �nd an existing tool expected to have some skill for CI detection and
nowcasting and to develop a veri�cation method suitable for its evaluation. The
second step is to combine the output of the existing tool with information of
additional data sources. The third and �nal step is to repeat the veri�cation for
the combined information to �nd the most useful of the tested data combinations
(Fig. 1.1).
The search for an existing tool with skill for CI detection and nowcasting leads

to the question which data is most useful for a �rst detection of CI cells. Radar is
certainly useful to monitor areas of existing convective development, "but most
operational radar networks are currently not set up to adequately monitor verti-
cal cloud growth prior to the development of signi�cantly sizable hydrometeors"
(Walker et al., 2012). Thus CI detection with the help of satellite data is achiev-
able earlier in the development of the storm then the detection of a signal in the
radar data that can be identi�ed as a proof for CI. The higher lead time is the
reason for preferring satellite and not radar information when choosing the "basic
tool".
The basic tool used here is the Cb-TRAM algorithm (Zinner et al., 2008; Zinner

& Betz, 2009), a state-of-the-art satellite data based thunderstorm detection and
nowcasting tool which was developed at the Institute of Atmospheric Physics of
the German Aerospace Center (DLR). The acronym Cb-TRAM stands for Cumu-
lonimbus TRacking And Monitoring. The tool will be explained in Chapter 3.1.

Basic Tool
(Cb− TRAM)

V erification

Cb− TRAM +
additional data

V erification

Aim : improved CI Detection and Nowcasting

Data fusion

Figure 1.1.: Outline of the basic concept of this thesis (Stich et al., 2011). For further
description see text.

One innovative key aspect of this thesis is the veri�cation of the CI nowcasts which
is performed not only for few test cases but for a whole summer period from May
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15 2009 until August 31 2009 including many di�erent synoptic situations over
Central Europe. The crucial part here is that, more or less no well-established
and reasonable way for the veri�cation of CI events was developed until now. The
key problem is to �nd something that can be used as proxy for CI. The data used
as proof for CI occurrence usually describes convective parameters like the �rst
re�ectivity signal greater than 35 dBZ in radar data (Roberts & Rutledge, 2003;
Mecikalski & Bedka, 2006) or something like that. The approaches usually can
be described by a statement like, "if I observe this result, CI must have happened
before". The proof is later in time than the CI process itself, thus you have to
expect that you can not seriously use the classical veri�cation ideas where you
compare your forecast and the observed data pixel by pixel. In the same way
all the non-pixelbased, highly sophisticated, veri�cation ideas for precipitation
where objects or amplitudes are compared are developed for comparison of two
situations (forecast and observation) at one point in time. All of these veri�cation
approaches do not try to relate some forecast of an event (CI) with a later on
existing observation being a consequence of the event (e.g. lightning, 35 dBZ
radar signal, etc.). Usually veri�cation approaches try to compare one situation,
the event or the consequence, in both, forecast and observation data. This is the
crucial di�erence between many veri�cation tasks and the CI veri�cation problem.
Thus the choice of an appropriate veri�cation method is worth to spent some time
and thoughts on.

The aims of the combination with additional data sources are to get better
veri�cation results and more reliable nowcasts than without the additional data.
In the satellite image the �rst development of cumulus clouds can be detected and
the additional data should add the information if the environment is favorable
for a further development of a thunderstorm or if the forcing is not su�cient.
Thus the additional information should help to reduce false alarms for "non-
CI-favorable" environments. Furthermore it should help to retrieve a kind of CI
probability for cells in, at least to some degree, "CI-favorable" environments. The
combination is performed by a fuzzy logic data fusion approach (for explanation
see Chapter 3.4) to incorporate meteorological expert knowledge in the combi-
nation and to avoid to rely on crisp thresholds for the combination of di�erent
data sources. The use of fuzzy logic for meteorological applications in combining
datasets and applying conceptual models is summarized for example in Mueller
et al. (2003). A fuzzy logic combination is capable to distinguish between "non-
CI-favorable" and "CI-favorable" environments as will be shown later. Fuzzy
logic deals with "fuzzy" or imprecise reasoning. Instead of incorporating �xed
thresholds for binary decisions if something is "true" or "false", fuzzy logic can
handle the concept of partial truth. Thus it is capable to translate human rea-
soning into mathematic decisions in a more appropriate way than binary logic.
A fuzzy logic system is a way to use expert knowledge about a process to build
a kind of decision support tool.

Concerning the additional data the focus of this study is on two issues: First
of all the data should be regularly available and not any kind of special mea-
surements only available for test cases, a measurement campaign, or whatever.
This is due to the fact that the CI detection and nowcasting method should get
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operational. The second point is that the testing of the additional material does
not focus on test cases where in few examples the combination works out well,
but on a statistical approach where the whole aforementioned summer period in
2009 is used to evaluate the abilities of a combination. In Chapter 5 not only the
results of the best performing combination are shown but also some information
on tested data which did not help to signi�cantly increase the abilities of the CI
detection.

It is a particular concern within this study not to come up with a new kind of
"magic number", like many thunderstorm studies before, which performs under
certain conditions eventually better for forecasting new storm development than
the showalter index, lifted index, total totals or whatever of the almost unlimited
amount of di�erent convective indices you want to compare. Summaries on many
di�erent of these indices and their functionality as predictors over parts of Europe
can be found for example in Huntrieser et al. (1996), Haklander & Van Delden
(2003), Kunz (2007), or Kaltenböck et al. (2009). In addition, the combination
of di�erent input �elds into an index and using only the index number out of
a black box is something many forecasters understandably regard with a lot of
distrust. In Doswell & Schultz (2006) the authors "assert that no single number
can replace the value of a forecaster simply looking at the soundings, as well as
looking at diverse diagnostic variable computations based on those soundings".
The purpose of the data combination for the CI detection is, in line with the
argumentation in Doswell & Schultz (2006), to "add value beyond what a hypo-
thetical forecaster can see simply by viewing the data" and to raise situational
awareness of a forecaster. Moreover the basic idea of the CI detection and now-
casting within Cb-TRAM is not to use it especially as tool for forecasters but
to inform decision makers with an easy understandable visualization about the
situation. In relation to air tra�c the aim would be that all involved parties,
the air tra�c control, the airports, airlines, pilots, etc. should get the same in-
formation of the current weather conditions as an understandable base for their
Collaborative Decision Making (CDM). Thus the output of the CI detection with
additional data sources is aimed to be a useful stand-alone product for CDM as
well.

Another important point of the approach within this thesis is that the ad-
ditional data is not evaluated or interpreted for the whole analyzed, Central
European, area at once. The CI detection of Cb-TRAM marks polygons around
clouds that are expected to develop to a storm and all the additional �elds tested
are evaluated for each of the polygons. Furthermore it is quite easy to extend the
testing with the methodology developed here and add an additional �eld which
is not yet incorporated. This object-based framework has signi�cant advantages.
The full information of satellite-derived properties of the observed cloud, along
with NWP �elds, surface observations, lightning data, radar data, etc. can be
carried along with the object for its full lifetime. This also establishes the future
possibility to evaluate trends within the additional �elds. I expect that the pos-
sibilities of such an object-based framework are worth to stick to these objects
detected by the satellite CI detection. An alternative would have been to combine
all these �elds for the whole investigated area and to use the satellite detection
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just as one �eld of many. This would have been a possible way if the focus is
more on a probabilistic forecast of CI occurrence. However this would quite sure
lead to a loss of small scale objects and lead to larger areas of more or less high
potential for CI.

In summary, the unique features of the thesis are:

� a newly developed veri�cation method for CI nowcasts.

� the analysis of the veri�cation method for Cb-TRAM CI nowcasts for a full
convective season over Central Europe (not just a few test cases).

� an object-based framework for the analysis of additional data within poly-
gons/objects detected by Cb-TRAM.

� the fuzzy logic based data combination as Cb-TRAM post-processing.

� an improved CI detection and thus nowcasting with Cb-TRAM.

The outline of the thesis is as follows: In Chapter 2 some basic information about
CI, thunderstorms and the nowcasting of both are given. Chapter 3 includes a
short overview on the di�erent methods and data sources used within this study.
Where Section 3.1 describes Cb-TRAM, Section 3.2 is on some aspects on state-
of-the-art veri�cation methods and their "di�culties" with CI, Section 3.3 gives
information on the used additional data sources (lightning measurements, surface
observations, and NWP model data) and Section 3.4 is a short introduction into
the basics of fuzzy logic as it will be used later to combine the di�erent data
sources. In Chapter 4 the veri�cation method used for the Cb-TRAMCI detection
veri�cation will be described in more detail and the results of the analysis of
the existing CI detection and nowcasting in Cb-TRAM will be presented. The
following Chapter 5 introduces the potential improvement of the CI detection
and nowcasting by adding the di�erent additional data sources and points out
the results of the �nal combination. Followed by the discussion of the results in
Chapter 6 and �nally conclusions and an outlook are presented out in Chapter 7.





2. Atmospheric Convection and

Convection Initiation

2.1. Convection and Convection Initiation

In general, the term convection applies to the transport of some property (e.g.
heat or mass) by �uid movement. Thus it is, for example, besides radiation and
conduction the third main process by which heat is transported. In meteorol-
ogy convection is usually associated with the vertical and buoyant component of
the �ow. Nonbuoyant atmospheric �ows which transport a property are called
advection. Advection can describe either horizontal or vertical transport. Atmo-
spheric convection is a vast �eld which is treated for example in the monograph
of Emanuel (1994).

In the following the focus will be on di�erent forms of Deep Moist Convec-
tion (DMC). DMC can be used synonymous with the word thunderstorm. A
thunderstorm is de�ned as such if lightning and therewith thunder occurs within
a storm produced by a cumulonimbus cloud (Cb). Thunderstorms develop when-
ever and wherever the ingredients for their formation come together: instability,
moisture, and lift (Zinner & Groenemeijer, 2012). The instability of an air parcel
is determined by the temperature and moisture of both, the environmental air
and the parcel itself. The lift serves as a trigger mechanism. A simpli�ed de-
scription of the behavior is given by the lifted parcel theory following Bjerknes
(1938), which is discussed in more detail in Manzato & Morgan (2003). If a parcel
in an unstable environment experiences some lift by a �ow over a topographic
barrier or because it is warmer than the surrounding air it starts to rise until it
reaches its Equilibrium Level (EL). The level from which a parcel of air can rise
due to its temperature di�erence to the environment without any further lift or
triggering needed is called Level of Free Convection (LFC). During the rise the
parcel might get saturated and at this point the (deep moist) convection initiates:
condensation and thus the growth of a cumulus cloud starts. This lower boundary
of the cloud is, due to this mechanism, called Lifted Condensation Level (LCL).
The condensation releases latent heat to the parcel which helps to keep up the
temperature di�erence between the rising air and its environment. The latent
heat release decreases the cooling of the parcel, the so-called lapse rate, from the
dry adiabatic lapse rate of -9.8 K/km to a moist adiabatic lapse rate. The moist
adiabatic lapse rate varies with the temperature of the parcel and ranges between
-4 K/km and the dry adiabatic value. Due to this lowering of the lapse rate it
is not uncommon for the atmosphere to be stable when dry, and unstable when
saturated (Durran & Klemp, 1982). This behavior is described as conditional

11
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instability.
Theoretical concepts on instability name conditional, latent, and potential in-

stability. A layer is conditionally unstable when the environmental lapse rate
curve is between the dry and the moist adiabatic lapse rate curves on a thermo-
dynamic diagram. Thus the moisture within the layer conditions the instability.
Latent instability describes the state when the actual lapse rate above the LFC
is lower than the moist-adiabatic lapse rate. There, conditional instability can
be caused by a moist air parcel rising from below the LFC in the relatively dry
environment (Kunz, 2007). Last but not least, potential instability describes
an unsaturated column of air where the equivalent potential temperature θe de-
creases with height (Emanuel, 1994). If such a column is lifted until it is fully
saturated, it will become unstable insensitive to its initial strati�cation. After
Kunz (2007) this kind of instability is described by the KO-Index which will be
used in Chapter 5.
In many studies on thunderstorms moisture and instability are evaluated by

looking at the Convective Available Potential Energy (CAPE). The value of
CAPE shall give the information if the moisture content of the air is high enough
that conditional instability actually contains the potential for parcels to become
buoyant (Doswell, 2001). Predicting convection initiation (CI) gets more di�cult
due to the fact that the presence of CAPE is not a su�cient condition for CI. Air
typically requires triggering, thus some forced ascent is needed to reach the LFC.
It is important to quantify this lift, the third of the earlier mentioned ingredients,
and introduce a measure of the energy a parcel starting from the surface needs to
reach the LFC. This quantity is called "convective inhibition" (CIN). Following
Markowski & Richardson (2010) CIN and CAPE are calculated as in Eq. 2.1 and
Eq. 2.2.

CIN = −
∫ LFC

0

B dz ≈ −g
∫ LFC

SFC

T ′v
T v

dz (2.1)

CAPE =

∫ EL

LFC

B dz ≈ g

∫ EL

LFC

T ′v
T v

dz (2.2)

where
z = 0 at the surface (SFC),
g = acceleration of gravity,
and the buoyancy B is expressed in terms of the virtual temperature perturbation
of the lifted parcel (T ′v) relative to the virtual temperature of the environment
(T v), with a virtual temperature of the lifted parcel written as Tv = T v + T ′v.
Tv is the temperature that dry air would need to attain in order to have the same
density as the moist air at the same pressure (Wallace & Hobbs, 2006). The size
of the correction climbs for warm and/or moist conditions to the order of 10 %
(for example for 30 degrees Celsius and 50 % relative humidity in 900 hPa the
correction is almost exactly 3 degrees.)

As an example for typical severe storm environments in the U.S. Markowski &
Richardson (2010) state that CAPE values ≤ 1000 J kg−1 are considered small
and large values are ≥ 2500 J kg−1, whereas large CIN values are ≥ 50 J kg−1

and values ≤ 10 J kg−1 are considered small. In Europe "high values of CAPE
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are much more unlikely than in North America" (Brooks et al., 2003). European
storm environments often show similarities to conditions observed in the south-
eastern U.S. during the cool season (Brooks, 2009) with low LCL heights and
moderate CAPE. Frequently synoptic forcing and local (e.g. orographic) in�u-
ences are crucial for thunderstorm initiation (Kaltenböck et al., 2009). CAPE
values above 2000 J kg−1 are rare and occur primarily at the Mediterranean and
Black Seas (Romero et al., 2007). CAPE and CIN frequently are computed using
temperature instead of virtual temperature which leads to signi�cant di�erences
in the resulting values. Especially for the in comparison to CAPE relatively small
values of CIN this di�erence due to the calculation might be the di�erence be-
tween a more or less insurmountable high amount of CIN (which, as the name
says, inhibits the initiation of convection) or practically no CIN at all (making
convection initiation very likely). By including the e�ects of moisture for the pro-
�les CAPE values are usually increased and CIN values are typically decreased
Markowski & Richardson (2010).

For a better understanding of CAPE, CIN, LCL, LFC, and EL, a visualization
with the help of a skew-T log p diagram of a radio sounding is shown in Fig. 2.1.
Within the Figure the dew-point temperature and the temperature of a sounding
are used.

Figure 2.1.: Example of a skew-T log p diagram. The temperature and dew point
temperature data from a radiosonde ascent are plotted. The diagram
shows isobars, isotherms, isentropes (lines of equal potential tempera-
ture or dry adiabats), pseudo-isentropes (lines of equal pseudo-equivalent
potential temperature or moist adiabats), and isohumes (lines of equal
mixing ratio). Further descriptions see text. Diagram taken from
http://www.estofex.org/guide/

http://www.estofex.org/guide/
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Use of the virtual temperature would cause a slight right shift of the temperature
curve. Following the line of constant mixing ratio from the dew-point temperature
at the surface and the dry adiabat from the temperature at the surface we �nd
the LCL (Lifted Condensation Level) at their intersection. A parcel from the
surface would follow the dry adiabat until it reaches the LCL. Afterwards a
rising parcel would follow the moist adiabat. If the parcel is colder than the
environmental temperature (at the left of the temperature curve) for some height
interval it needs energy to rise further. Thus this area between moist adiabat and
environmental temperature curve, above the LCL and below the LFC (Level of
Free Convection), de�nes the CIN. The LFC is de�ned as the height where the
lifted parcel becomes warmer than the environmental temperature. Afterwards
the parcel is warmer than its environment and can rise without further triggering
until it reaches the EL (Equilibrium Level). This level is also often called Level of
Neutral Buoyancy (LNB) and is usually close to or at the tropopause (Zinner &
Groenemeijer, 2012). The lines of the adiabat and the environmental temperature
between the heights of the LFC and EL limit the area which is de�ned as CAPE.
As mentioned already earlier, the presence of CAPE is not a su�cient condition

for CI. Neither is the absence of CIN a su�cient condition for CI. It seems to
be more promising to look at quantities which describe the three ingredients
(instability, moisture, and lift) more directly. CAPE and CIN values which are
used as kind of "forecast thresholds" for CI also heavily depend on the region you
look at. As already mentioned, the values of CAPE in the central U.S. tend to
be a lot higher than for most parts of Europe.
Zimmer et al. (2011) state that "the initiation and lifecycle of a convective cloud

is directly a result of processes local to the cloud itself: the conditional instability
of the column, the absence of a capping inversion or other inhibiting factors, and
the boundary layer variability that can trigger an updraft". Thus background
�ow which causes a lift heavily increases the CI probability. Following Zinner &
Groenemeijer (2012), causes for growing CAPE, or decreasing CIN, and thus for
CI can be, for example, increasing surface moisture, or surface warming during
the course of the day. Besides these surface driven processes, mid-tropospheric
cold air advection or infrared radiation has similar destabilizing e�ects. In mid-
latitudes destabilization and thus a growing thunderstorm potential is commonly
observed ahead of an approaching front where colder air arrives at elevated levels
ahead of the surface front due to surface friction. CI usually takes place along air
mass boundaries (like synoptic fronts, drylines, or sea breezes) or in conjunction
with orographic circulations driven by di�erential heating of sloped or elevated
terrain, and by forced lifting of atmosphere layers. CI might as well be caused by
synoptic scale forcing, which results in upper tropospheric divergence and related
large-scale lifting, as can be observed in the area of the jet stream maxima in
mid-latitudes (Zinner & Groenemeijer, 2012; Georgiev & Santurette, 2010). The
lift to overcome potentially existing CIN and to get an airmass to or above its
LFC is crucial for CI, independent of the process which causes the lift.
If CI takes place for example somewhere along an air mass boundary the prob-

ability for further CI close to this event decreases heavily. The one successful
CI case uses the potential instability of the airmass and causes a downward �ow
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around the developing column of air which both suppresses other developments
nearby.
In summary CI needs su�cient initial lift of an su�ciently unstable and su�-

ciently moist airmass. Further details on the thermodynamics of a thunderstorm
can be found for example in the afore mentioned monographs of Emanuel (1994),
Markowski & Richardson (2010), Doswell (2001), or in Houze (1993).

2.2. Types of organization

As background knowledge on the development, lifetime, and especially lifecycle
of thunderstorms this Section gives a short basic overview on di�erent types of
thunderstorms. Thunderstorms can be classi�ed into three simpli�ed, basic types
(Hagen et al., 1999). These types are:

� Single cell

� Multicell

� Supercell

If these thunderstorm types start to build up larger groups these are called
Mesoscale Convective Systems (MCSs). A MCS might be a squall line, a
Mesoscale Convective Complexe (MCC) or even a tropical cyclone. In the follow-
ing the three simpli�ed types are described brie�y.
All thunderstorm types go through the same stages within their life cycle.

After CI takes place three main stages are distinguished: the developing stage,
the mature stage, and the dissipation stage.
These stages can be shown quite nicely with the example of an isolated single

cell storm (see Fig. 2.2). The developing stage describes a rapid vertical growth
of the initialized cumulus cloud and the updraft strength increases. The vertical
growth of the cloud is stopped at its EL which is usually close to the tropopause.
Then the lifted air is forced to spread laterally which leads to the development of
the characteristic anvil shape of a cumulonimbus cloud (Cb). If a storms has a
quite vigorous updraft it may even penetrate to higher levels, then we see a short
lived so-called overshooting top above the anvil (Bedka et al., 2010). During
the growth of the cloud the water droplets within get larger and many freeze
and become ice particles. The strength of the updraft inside the storm cloud
determines how big the particles might get before they start to fall out of the
cloud and the storm begins to precipitate. If the updraft is strong enough the
frozen particles can get large and might not melt until they reach the surface,
then they fall as hail. For details on cloud microphysics and the formation of
di�erent precipitation types like rain, graupel, or hail, see, for example, Tessendorf
et al. (2005) or the monograph of Houze (1993). In the part of the cloud where
the precipitation is situated the evaporational cooling due to the falling rain is
responsible for the creation of a downdraft. This coexistence of an updraft and a
downdraft area in and below the stormcloud de�nes the mature stage. If there is
no or only little wind shear, as it is typical for single cell storms, the thunderstorm
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reaches its dissipating stage quite fast. The dissipating stage will be reached after
approximately 25 − 30 minutes under low shear conditions. Then the downdraft
due to the precipitation spreads over the whole cloud. The storm kind of "rains
out" and thus the storm dissipates. The cold downdraft below the dissipating
storm cloud spreads radially when it reaches the ground and cuts of the potential
for moist and warm in�ow in the storm. If this phenomenon occurs in a quite
vigorous way, it is called downburst (Byers & Braham, 1949; Fujita & Wakimoto,
1981) and is for example a potential threat for aircraft due to rapid changes of
wind direction and wind speed. The aircraft has to face a strong headwind, then
it is within the downdraft and �nally it is exposed to a strong tailwind. The
overall lifetime of such an isolated single cell is ∼ 1 h.

Figure 2.2.: Di�erent stages within the life cycle of a thunderstorm. Taken from
Markowski & Richardson (2010). Adapted from Byers & Braham (1949)
and Doswell (1985).

If the out�ow of the storm is able to trigger a new development, we talk of a
multicell storm. The air in the out�ow from convective downdrafts is cold and
builds a density current along the earth's surface. The density current forces the
warmer surrounding air to ascend. Thus, these so-called cold pools are responsible
for the generation of a storm cell in multicell storms as a new source of lift. While
the cold pool spreads out over a large area and becomes shallow, the lift may no
longer be su�cient to cause air parcels to reach their LFC, then the growth of new
cells will stop (Doswell, 2001, Chapter 3). Those multicell storms can last for a
few hours. The di�erent stages of development observed in the life cycle of a single
cell coexist with each one forming a part of the same storm system. A multicell
storm can be handled as an aggregate of cells. The pattern of cells within the
multicell thunderstorm is continually changing (Houze, 1993). One important
additional ingredient for the development of multicells is an environment with
moderate vertical wind shear. The cold pool and the environmental vertical wind
shear induce horizontal vorticity which helps at one �ank of the cold pool to
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generate a more vigorous lift which then leads to a better chance of an updraft
reaching the LFC. The structure of a multicell is displayed in Fig. 2.3a).
Storms having strong updraft rotation are known as supercells. Large vertical

wind shear is conducive to supercell development. The wind shear separates up-
and downdraft locations within the storm. The tilting of horizontal vorticity
leads to storm rotation. In addition the dynamic vertical pressure gradients
that accompany large-shear environments can also enhance updrafts at altitudes
high above the gust front (Markowski & Richardson, 2010). The presence of a
mesocyclone within the updraft is the major di�erence between supercells and
nonsupercells. Supercells generally have larger updrafts than ordinary storms
and are responsible for an immoderate proportion of severe weather reports due
to large hail or tornadoes. Their lifetime exceeds the lifetime of multicells and
can be up to 10 h. An schematic is shown in Fig. 2.3b).

Figure 2.3.: The development of a multicell storm with time is displayed in a). b)
shows the typical structure of a supercell with its rotating updraft and
an overshooting top which reaches the lower stratosphere. Taken from
Markowski & Richardson (2010).

Storms that produce a lot of weather related hazards are usually called "se-
vere" convective storms. The likelihood of severe weather tends to increase with
the degree of organization of the convection (Doswell, 2001). In the U.S. "se-
vere" usually means a minimum hail size, damaging convective winds, and the
development of tornadoes. The minimum hail sizes and wind speeds di�er in the
literature. In the U.S. the de�nitions of the Storm Prediction Center (SPC) of
NOAA's National Weather Service1 are commonly used:

� Hail at least 1 inch (= 2.54 cm) in diameter or larger, and/or

� wind gusts to 58 mph (= 93.34 km h−1)or greater, and/or

� tornado occurrence

Nowadays heavy precipitation with the risk of �ash �oods is quite often added
to this list of de�nitions. In Europe slightly di�erent values (due to the use of

1http://www.spc.noaa.gov/
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SI units) are introduced for example by the European Severe Storms Labora-
tory (ESSL)2 who operates the European Severe Weather Database (ESWD)3.
After Dotzek et al. (2009) the diameter of large hail in the ESWD database
is > 2 cm and the term severe convective wind is used for wind speeds above
25 m s−1 (= 90 km h−1). Albeit lightning is a big hazard accompanying thun-
derstorms, lightning can't be added as proof of a severe storm because than
every thunderstorm would be severe by de�nition. In some cases �ash rates or
lightning density are used as a measure for severity (Williams et al., 1999; Lang
et al., 2004; Betz et al., 2008). Besides large hail, wind gusts, and tornadoes,
the ESWD database collects information about damaging lightning, heavy rain,
funnel clouds, gustnados, dust devils and some hazards connected with wintery
weather.

In a nutshell, the main di�erence between these three types of storms is the
available vertical wind shear within the environmental air (as in Fig. 2.4). The
originally satellite based CI detection examined within my study does not focus
on CI of multi- or supercells but on CI of all types of DMC. While instability,
moisture, and lift are important ingredients for every deep moist convective storm
type the wind shear is only important for multicell or supercell development.
There is no focus on storms which are expected to be extremely severe or anything
like this. That is the reason, why wind shear is not further examined later within
this study.

For a more detailed description of the di�erent types or the above mentioned
organization of storms as MCS I strongly recommend again to have a look at
Markowski & Richardson (2010), Doswell (2001), or Houze (1993).

Figure 2.4.: Di�erent amounts of wind shear are conducive for di�erent storm types.
For more information see text. Taken from Markowski & Richardson
(2010).

2http://www.essl.org/
3http://www.eswd.eu/
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2.3. Nowcasting of Convection

The term "nowcasting" describes weather forecasting in the very short range of
the next 0 - 2 hours. Many nowcasting tools even focus only on the �rst hour.
Historically, nowcasting evolved already almost 50 years ago. The �rst short-term
predictions of the movement of convection by temporal extrapolation of meteoro-
logical radar imagery is introduced in Wilson (1966) and around ten years later
satellite imagery is used for this purpose (Purdom, 1976) too. The majority of
the �rst generation satellite-based nowcasting methods focused on nowcasting
attempts for CI and storm development (Mass, 2012). The radar-based Thun-
derstorm Identi�cation, Tracking, Analysis and Nowcasting (TITAN) is not only
capable of tracking individual cells, but also allows temporal changes of the cell
structure, in terms of size or intensity (Dixon & Wiener, 1993). In the late 1990s
the UK Met O�ce introduced powerful tools for nowcasts of heavy precipitation.
These tools are based on radar tracking and temporal extrapolation of convection:
NIMROD (Nowcasting and Initialization for Modeling using Regional Observa-
tion Data) combines radar data, satellite data and NWP output for precipitation
nowcasts of up to 6 hours (Golding, 1998) furthermore GANDOLF (Generating
Advanced Nowcasts for Deployment in Operational Land-based �ood Forecasts)
is a nowcasting and warning system using the same data sources with the aim of
reducing hazards due to convection-induced �ash �ooding (Pierce et al., 2000).
At the same time the German weather service DWD (Deutscher Wetterdienst)
introduces the warning and cell tracking tool CONRAD (Lang, 2001). CONRAD
(CONvection in RADar) identi�es, evaluates, and tracks convective cells, and
produces local warnings for severe rainfall, wind, and hail (Hafner et al., 2004)
based on the data from the DWD radar network. Within the DWD project
RADVOR-OP di�erent radar and model based methods for extrapolation where
added to further improve the nowcast quality and to extend the nowcasts lead
time from 1 hour (CONRAD) to 2 hours (Bartels et al., 2005). RADVOR-OP is a
German acronym about radar-based (near) real-time very short-range forecasting
for operational purposes. Within the project the radar data was used for data
assimilation in the non-hydrostatic limited area model COSMO-DE to improve
the model quality (Klink et al., 2004) and thus to make the model winds more
realistic and more useful for extrapolation purposes (Winterrath et al., 2007).

Little more than 30 years after his radar nowcasting paper Wilson et al. (1998)
gave "a status report" on the nowcasting of thunderstorms. Since then a mul-
titude of other nowcasting tools was developed as can be seen for example from
the short summaries in Dance et al. (2010), Mass (2012), or Ruzanski et al.
(2011). During the 2008 Summer Olympic Games, the World Meteorological
Organization (WMO) World Weather Research Program (WWRP), organized
an intercomparison campaign for nowcasting tools conducted in Beijing, China.
This demonstration is called the Beijing 2008 Forecast Demonstration Project
(Wilson et al., 2010). A similar Forecast Demonstration Project was already con-
ducted in Sydney, Australia, during the 2000 Sydney Summer Olympics Games
(Keenan et al., 2003; Wilson et al., 2004) combined with the intercomparison
of multiple veri�cation methods (Ebert et al., 2004; Casati et al., 2008). In re-
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cent developments a multitude of data sources is used. NCAR uses a fuzzy logic
combination of radar, satellite, upper air, surface, and NWP data within its
Auto-Nowcaster (ANC) as described by Mueller et al. (2003) and Saxen et al.
(2008). ANC also has a forecaster-interactive capability which allows a forecaster
to enter locations of surface convergence boundaries manually (Roberts et al.,
2012). Sometimes orography is included in the nowcasting system to improve
spatial interpolation as in the INCA (Integrated Nowcasting through Compre-
hensive Analysis) system of the Austrian ZAMG (Steinheimer & Haiden, 2007;
Haiden et al., 2011). Model Output Statistics (MOS) after Glahn & Lowry (1972)
are also included for nowcasting like in the DWD routine CellMOS (Ho�mann,
2008; Wapler et al., 2012), the Czech Statistical Advection Model SAM (Sokol &
Pesice, 2012) or the Localized Aviation MOS Product short LAMP (Ghirardelli
& Glahn, 2010; Rudack & Ghirardelli, 2010).
Besides the increased amount of incorporated data sources also new nowcasting

methodologies were and are developed. In Rivolta et al. (2006) three techniques
are introduced as "conventional" methods for the example of "satellite nowcasting
of infrared radiance �elds": persistence method, steady-state method and linear
method. Persistence assumes that each pixel in a forecasted satellite or radar
image shows the same value than the pixel in the previous image. Steady-state
describes a shift of the image by a suitable motion vector without changes in the
size or intensity of structures within the image. The motion vector for producing
a forecast is usually calculated by cross-correlation between the two latest images.
The linear method gains the future values of each pixel by linear extrapolation
of the trend within the two latest images. In a more sophisticated approach the
steady-state or the linear extrapolation can also be used for whole objects and not
just pixel-wise. Other methods also rely on conceptual life-cycle models, image
processing to gain the motion vector �elds, or on neural-networks.
Typically nowcasts are superior to NWP models up to a lead time of 3�6 hours

(Bowler et al., 2006; Pinto et al., 2010; Kober et al., 2012). For the time interval
from 2 or 3 to 6 or even 8 hour forecasts more and more groups work on blending
approaches, gradually combining radar based nowcast for the �rst hours with later
on superior probabilistic NWP output for gaining better results in the transition
hours (Wolfson et al., 2008; Dupree et al., 2009; Kober et al., 2012). In Kober
et al. (2012) probabilistic nowcasts are developed by extending the deterministic
radar tracker Rad-TRAM (RADar TRacking And Monitoring) which is described
in Kober & Ta�erner (2009) and combining these nowcasts with probabilistic
forecasts based on the output of the COSMO-DE Ensemble Prediction System
(EPS). COSMO-DE EPS is the operational ensemble prediction system of the
DWD using the COSMO-DE model (see Chapter 3.3.3).
For detecting CI before a signal in most of the radar based tools is available, geo-

stationary satellite based CI detection algorithms are developed. Algorithms like
the SATellite Convection AnalysiS and Tracking algorithm SATCAST (Mecikalski
& Bedka, 2006; Mecikalski et al., 2008; Siewert et al., 2010) with its version 2
(SATCASTv2) as described in Walker et al. (2012), or the UW-CIMSS CI now-
cast algorithm UWCI (Siegla� et al., 2011). In SATCAST cloud-top cooling rates,
and instantaneous and time trends of channel di�erences are evaluated pixel by
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pixel in di�erent numbers for the American GOES (Geostationary Operational
Environmental Satellite) and the European MSG data. In the recently developed
SATCASTv2 an object-tracking method inspired by Zinner et al. (2008) is incor-
porated. Mesoscale atmospheric motion vectors are used for the extrapolation of
the detected object to retrieve a �rst guess (Walker et al., 2012) then the overlap
is evaluated. The tracking is used to improve the calculation of time trends which
is heavily dependent on realistic matching of the right pixels. UWCI uses GOES
infrared window channel box-averaged Cloud-Top Cooling (CTC) rates. CI now-
casts in UWCI are "based on a combination of CTC rates and satellite-derived
cloud-top type�phase trends" (Siegla� et al., 2011). One advantage of UWCI is
its day�night independence. Both, SATCASTv2 and UWCI, produce only CI
detections and they do not show an expected future position of the cloudpixels
marked as CI. The output is more or less comparable to the CI detections of
DLR's aforementioned Cb-TRAM, but they do not produce nowcasts, like within
Cb-TRAM.
Algorithms focusing not solely on CI detection which are using geostationary

satellite data as well are for example the Rapid Developing Thunderstorms (RDT)
tool (Morel et al., 2000) or Cb-TRAM (Zinner et al., 2008; Zinner & Betz, 2009).
Cb-TRAM is capable of tracking and monitoring of severe convection from onset
(CI) over rapid development to mature phase using multi-channel Meteosat-8
or 9 SEVIRI data. It will be applied in this study and will be explained in
the following chapter in more detail. The aim within this thesis now is to add
information about lift, instability and moisture from other data sources to the
satellite based CI detection to improve the quality of the CI nowcasting as will
be described in Chapter 5.





3. Methods and data sources

3.1. Cb-TRAM CI detection

The acronym Cb-TRAM stands for Cumulonimbus TRacking And Monitoring.
Cb-TRAM is a state-of-the-art nowcasting tool for satellite based CI detection
which had at the point where this study was started the unique feature of an
object based methodology. Nowadays other tools like SATCASTv2 (Walker et al.,
2012) have adapted the object tracking approach of Cb-TRAM. Due to the fact
that the object tracking and the satellite channels used for the detection are very
close to each other in Cb-TRAM and SATCASTv2, it seems reasonable that the
results of this study on the use of additional data sources could be generalized
for these type of CI detection algorithms.

The following section is divided into two parts. The �rst one introduces
Cb-TRAM and the MSG data used by that tool. The other describes the di�erent
detection stages of Cb-TRAM with main focus on its CI detection.

3.1.1. Cb-TRAM overview

Cb-TRAM is a tool based on data of the SEVIRI (Spinning Enhanced Visible and
Infra-Red Imager) instrument on the geostationary Meteosat Second Generation
(MSG) satellites Meteosat-8 or Meteosat-9. The aim of Cb-TRAM is to detect
convection before the onset of precipitation, and to distinguish between di�erent
development stages in the life cycle of thunderstorms (Zinner et al., 2008). This is
especially useful in areas without radar coverage. Cb-TRAM is well documented
in Zinner et al. (2008) and Zinner & Betz (2009). In the following a short overview
on the MSG data and on the basic steps in Cb-TRAM is given.

MSG data is provided by EUMETSAT, the EUropean organisation for the
exploitation of METeorological SATellites. The Meteosat-9 satellite has its geo-
stationary position at 0 degrees longitude in about 36000 km above the equator
and has an imaging repeat cycle of 15 minutes (normal scan). The MSG SEVIRI
instrument on board of the satellite observes the atmosphere in 12 spectral chan-
nels ranging from wavelengths in the visible (VIS) part of the spectra to wave-
lengths in the infrared (IR) incorporating water vapor (WV) absorption bands
as shown in Table 3.1. Eleven of the channels have a spatial sampling distance of
3 km at nadir, what means at the sub-satellite point, and cover the full disk (Fig.
3.1a). The twelfth channel, the so called high-resolution visible (HRV) channel
has a 1 km spatial sampling at nadir and covers half of the full disc (Schmetz
et al., 2002). The HRV is split in two windows for optimized coverage of the
landmasses during their daytime hours, despite the smaller area which is covered

23
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by this channel.

Channel Characteristics of Main gaseous
no. spectral band (µm) absorber or window

λcen λmin λmax

1 VIS 0.6 0.635 0.56 0.71 Window
2 VIS 0.8 0.81 0.74 0.88 Window
3 NIR 1.6 1.64 1.50 1.78 Window
4 IR 3.9 3.90 3.48 4.36 Window
5 WV 6.2 6.25 5.35 7.15 Water vapor
6 WV 7.3 7.35 6.85 7.85 Water vapor
7 IR 8.7 8.70 8.30 9.10 Window
8 IR 9.7 9.66 9.38 9.94 Ozone
9 IR 10.8 10.80 9.80 11.80 Window
10 IR 12.0 12.00 11.00 13.00 Window
11 IR 13.4 13.40 12.40 14.40 Carbon dioxide
12 HRV Broadband (about 0.4-1.1) Window/water vapor

Table 3.1.: SEVIRI channels with bandwidth after Schmetz et al. (2002). Channels
used by Cb-TRAM are marked blue.

Figure 3.1.: Example images showing a) the area covered by a full disk scan, b) the
area covered by rapid scan, and c) the shift of the southern window of
the HRV scan pattern
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As described on the EUMETSAT website1, the upper window is �xed over Eu-
rope and northern Africa for optimized coverage of the European region. The
lower window shifts to follow the daily illumination over the remaining African
continent (Fig. 3.1c).
Meteosat-8 is located at 9.5 degrees east with a repeat cycle of 5 minutes (rapid

scan). The SEVIRI instrument on Meteosat-8 scans a reduced area that corre-
sponds approximately to the top third of a full disk scan (Fig. 3.1b) to realize the
shorter repeat cycle. The rapid scan data has a limitation if desired for opera-
tional use because of its service interruptions. After 26 days of operational rapid
scan service the service is interrupted for two days of full disc scanning used for
maintenance activities and intercomparison of Meteosat-8 and -9. Nevertheless
the rapid scan update circle of 5 minutes is very useful for observations of an
often quite short living process like CI. A convective cell might easily develop
and grow beyond its CI stage within 10 to 20 minutes and then the normal scan
data would capture this cell at most once but often not even once.
Cb-TRAM uses the four SEVIRI channels marked blue in Table 3.1: WV 6.2,

IR 10.8, IR 12.0, and HRV. The brightness temperature of the WV 6.2 channel
gives information about the water vapor tropospheric background temperature.
IR 10.8 temperature resembles the cloud top temperature. IR 12.0 is used to �lter
thin cirrus shields. The HRV is a visible channel and therefore only available
during daylight hours. Usage of the HRV is de�ned in dependency of the local
solar zenith angle (SZA < 75◦) as in Zinner & Betz (2009). Its higher spatial
resolution increases the detection abilities of Cb-TRAM during the daylight hours.
For di�erent purposes not only the re�ectivity but also the roughness of the HRV
signal is evaluated (see Subsection 3.1.2).
The key algorithms of Cb-TRAM extract a general transformation vector �eld

from consecutive images, describing the change within the two scenes. The pyra-
midal image matching analyzes the images stepwise, in di�erent resolutions, to
start with large scale features and re�ne the vector �eld with the help of the
smaller scales. The resulting vector �eld can be used to generate an extrapolated
synthetic image. These synthetic images are utilized several times throughout
Cb-TRAM: for the detection, tracking, and nowcasting.

� Detection:
The criteria for the detection (see Subsection 3.1.2) make use of time-
trends/changes in di�erent �elds. If the di�erence between the values of
the �elds for the di�erent time steps would be calculated, the result would
account not only for newly developing or decaying signals in the �eld but
also for advection of signals. The deformation vector �eld gained by the
analysis of a �eld should lead from one image to the other and therefore
always includes the trend beside the advection. This has the biggest im-
pact in the analysis of the visible channel. By choosing not the deformation
vector �eld gained with the help of the channel and time step we want to
analyze but with the deformation of one of the other channels or a slightly
earlier time step we get a �rst guess that is more appropriate to �lter the

1www.eumetsat.int/Home/Main/Satellites/MeteosatSecondGeneration/Services/index.htm
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advection. That means by producing the extrapolated �rst guess �eld with
the most adequate deformation vector �eld the extrapolation �eld shows
only advection and almost no trend. Therefore, the di�erence between the
synthetic extrapolation and the observation for the corresponding time step
shows mainly the trend of the �eld and the advection is excluded almost
completely.

� Tracking:
A combination of masks, showing pixels with ful�lled criteria for detection,
leads to the creation of cloud objects. This is described in the Subsection
on detection stages (3.1.2) and in more detail in (Zinner et al., 2008). After
determining these cloud objects or cells at a time step the extrapolated
synthetic images, with the expected position of the cloud objects, strongly
evolve the quality of the cloud object matching within di�erent time steps
in the tracking scheme. A successfully tracked cell gets the same cell ID as
in the earlier time step. Cell merging and splitting can be handled as well.
For details on this topic see again Zinner et al. (2008) or Zinner & Betz
(2009).

� Nowcasting:
In addition, these extrapolations are used to generate nowcasts of the ob-
jects for up to one hour. The available time interval of the nowcasts depends
on the used input data. For normal scan data a 15, 30, 45, and 60 minute
nowcast are produced. For the rapid scan data the time interval is reduced
to 5 minutes. A more detailed description can be found in Zinner et al.
(2008).

For all cells detected by Cb-TRAM we get information about its history � in
terms of merging and splitting of cells along their life cycles and in terms of a
track showing the trajectory of the center of gravity since its �rst detection � and
its future in terms of nowcasts for up to one hour.
The pyramidal image matching method to extract the vector �eld is used

for multiple applications with and besides Cb-TRAM, e.g. for contrail detec-
tion (Mannstein et al., 1999), veri�cation of Quantitative Precipitation Fore-
casts (QPFs) with the �Displacement and Amplitude Score� (Keil & Craig, 2007,
2009), radar tracking with Rad-TRAM (Kober & Ta�erner, 2009), and within
other studies on convective storms (Mannstein et al., 2002; Ta�erner et al., 2008;
Dotzek & Forster, 2011).

3.1.2. Detection stages

Thunderstorm detection in Cb-TRAM is split up in three di�erent detection
stages describing di�erent stages in the life cycle of a storm. Stage 1 is the
convection initiation (CI) stage, stage 2 marks rapid development, and stage 3
detects mature thunderstorm cells. A perfectly detected and tracked storm would
therefore start in stage 1, then develop to a stage 2 detection and �nally change



CHAPTER 3. METHODS AND DATA SOURCES 27

to a stage 3 detection. This extension to development stages later in the life
cycle than the CI stage is one of the main di�erences between Cb-TRAM and
other satellite based CI detection algorithms like SATCAST (Mecikalski & Bedka,
2006; Mecikalski et al., 2008; Siewert et al., 2010) or UWCI (Siegla� et al., 2011)
which both focus only on CI. This di�erence will be particularly bene�cial for
the evaluation. The main focus of the following description of the Cb-TRAM
detection lies on the CI stage, but a short introduction to the detection of the
second and third stage is given as well as they are used in the evaluation. The
explanations can again be found in more detail in Zinner et al. (2008) and Zinner
& Betz (2009).
Boundary layer convergence is expected to be one key trigger mechanism for

CI (Wilson & Mueller, 1993; Wilson et al., 1998). Low-level convergence is often
marked by the development of shallow cumulus humilis �elds. However, not each
of these clouds can be expected to grow to a mature thunderstorm, thus only
the newly and rapid developing cumulus clouds shall be detected. Therefore the
detection of CI stage objects uses the development of signals in channels that can
represent vertical and horizontal growth of a cell. IR 10.8 cooling is a sign for
vertical growth and the HRV is used to detect changes in the horizontal extent of a
cell. Due to the usage of the HRV channel the CI stage detection is a daytime-only
product. To estimate the growth of the cloud, time trends of these channels are
evaluated utilizing extrapolated, synthetic �rst guess �elds as mentioned before
to determine the development without the in�uence of advection (see Subsection
3.1.1). Additional preconditions like the minimal size of a cell, or the appropriate
choice of the deformation vector �eld used for the extrapolation are discussed
in Zinner et al. (2008). Areas with HRV re�ectivity less than 0.5 are excluded
to �lter miss-detections due to moving �elds of thin (dark) cirrus clouds and to
limit the detections to real low-level development. The resulting ∆ IR 10.8 and
∆ HRV are not combined by two independent thresholds for each �eld but in a
fuzzy logic approach to allow a weighted consideration of the signals in the two
�elds. That means that for example also cumulus clouds which show only little
horizontal growth within the last time step can be detected as CI object, if their
vertical growth is strong enough and vice versa. The objects detected by the
stage 1 criteria are marked as yellow polygons on Cb-TRAM plots as can be seen
in the example (Fig. 3.2).
The rapid development stage or stage 2 identi�es cells with rapid cooling of

more than 1 K/15 min in the WV 6.2 channel. The calculation of the trend is
realized analogous to stage 1 trend determination. These clouds grow rapidly to
middle or higher tropospheric levels but their cloud top temperature in IR 10.8
is not yet cold enough to be detected as mature. The cells detected by the stage
2 criteria are marked as orange polygons on Cb-TRAM plots (Fig. 3.2).
Stage 3 denotes mature thunderstorms. Two criteria are combined for the

detection. First the WV 6.2 − IR 10.8 di�erence is evaluated. If the di�erence
approaches zero or gets positive, the cloud top of the cumulus is expected to
reach the tropopause (Schmetz et al., 1997) or even overshoot that level and form
a so-called "overshooting top" (Bedka et al., 2010; Aumann et al., 2011). The
second criterion is the HRV texture during daytime and WV 6.2 texture during



28 3.1. CB-TRAM CI DETECTION

nighttime to focus on the turbulent areas of the cloud top. The combination of
the criteria is again made by a fuzzy logic approach. The texture criteria helps to
select only the most active parts of the cell patterns detected by the temperature
criteria and therefore �lters large parts of the anvil cloud of a storm. The aim is
to focus on those parts of a storm cloud where the main lightning activity and
the most vigorous updrafts are expected. In addition to the two criteria a �lter
for thin cirrus clouds is utilized that evaluates the IR 10.8 − IR 12.0 di�erence
which shows positive values for thin cirrus clouds (Krebs et al., 2007). The storm
objects detected by stage 3 are marked as red polygons in Fig. 3.2.

Figure 3.2.: Example of an Cb-TRAM plot with yellow polygons representing stage
1 detections (CI), orange polygons are stage 2 detections (rapid develop-
ment), and red polygons are stage 3 detections (mature thunderstorms).
The dotted lines for each object show the 30 minute nowcast. The star
inside the objects marks the center of gravity.

These polygons or objects, as �nal product of the detection, are constructed by
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di�erent pixel based masks, build up by the ful�lled detection criteria in the
detection stages. Areas of pixels with values above the earlier mentioned fuzzy
logic criteria are selected and stored as cloud mask for each detection stage. After
all three stages are checked a combined cloud mask is build. In areas where pixels
ful�ll the criteria for more than one detection stage, the most developed stage is
chosen as characteristic for the whole pattern. Areas which are at least built up
by three neighboring pixels are combined to an object. If two of these objects are
separated by not more than two pixels (less than 10 km) they are merged due to
the fact that larger patterns simplify the tracking. All parts of the cloud mask
which are too small to build up an object will be ignored as noise. The process is
again described in more detail in Zinner et al. (2008) and Zinner & Betz (2009).

3.2. Veri�cation

The aim of this thesis is to evaluate the quality of the short-time forecast for
CI events in Cb-TRAM and, furthermore to improve the quality by combining
di�erent data sources to result in a "better" forecast with the combination than
with each individual source. Therefore it is important to understand what is
meant by a good forecast and how its types of goodness (Murphy, 1993) � quality,
value and consistency � can be evaluated. Murphy (1993) de�nes quality as a
term for the correspondence between a forecast and the matching observation and
the value of a forecast is its bene�t for a decision-making process. The consistency
describes the correspondence of a forecasters' judgment and their given forecast.
This is heavily related to the question if, or how the uncertainty of a forecast is
communicated. To be able to �ll the analysis of the CI forecasts with an objective
information how good the forecast is � with main focus on its quality � a deeper
understanding of the vast �eld of forecast veri�cation is needed. In the following a
brief, general overview on di�erent veri�cation methods and veri�cation measures
is given, and the second part of this Section focuses on methods that can be used
speci�cally for CI forecast veri�cation.

3.2.1. Veri�cation methods

A lot of di�erent veri�cation methods exist. This Subsection cannot be meant
as a full overview on veri�cation methods. The whole research area of forecast
veri�cation can be split up in two main categories: probabilistic and deterministic
forecasts. The �eld of veri�cation methods for probabilistic and ensemble fore-
casts lies beyond the scope of this text. For further reading on forecast veri�cation
in general a lot of references will be given in this Subsection. Possible starting
points to get further information on the �eld of forecast veri�cation research are
the CAWCR (Centre for Australian Weather and Climate Research) website of
the Joint Working Group on Forecast Veri�cation Research2 or the textbooks of
Jolli�e & Stephenson (2003) and Wilks (2006). The focus of the following text lies
on the second of the main categories mentioned before: deterministic forecasts.

2http://www.cawcr.gov.au/projects/veri�cation/



30 3.2. VERIFICATION

There is a multitude of di�erent veri�cation methods for deterministic forecasts
that can be categorized as visual, dichotomous, multi-category, continuous, and
spatial methods.
The visual method is the so-called and often used "eyeball" veri�cation. The

problem here is that it is a highly subjective and not quantitative way of data
comparison.
The dichotomous forecasts are also called yes/no forecasts or binary (1/0) fore-

casts. The most prominent example for a binary forecast are Finley's tornado
forecasts which will be introduced later in this Subsection. To verify binary fore-
casts 2× 2 contingency tables are used (Table 3.2). They show the four di�erent
members of the so-called joint distribution:

� hit � if an event is forecast and observed

� false alarm � if an event is forecast but not observed

� miss � if an event is not forecast but observed

� correct negative � if an event is neither forecast nor observed

It is a very intuitive way to categorize the results and is thus often used. It
helps to understand the errors made with the forecast. A perfect forecast would
produce only hits and correct negatives.

Observation

Yes No

F
o
re
ca
st Yes hits false alarms

No misses correct negatives

Table 3.2.: A 2× 2 contingency table: The four possible outcomes for a deterministic
forecast of a binary event (Wilks, 2006).

Many veri�cation statistics can be calculated based on the entries of a contingency
table. Depending on the chosen score it is possible to describe particular aspects
of the forecast quality. Which score or which combination of scores to choose
depends heavily on the questions that should be answered by the veri�cation,
and on the type of forecast. For instance, for rare events like Cbs it does not
make sense to use scores that utilize correct negatives, because for rare events
the non-events are usually not forecast and if they would be, the number of correct
negatives would be orders of magnitude larger than the other three entries of the
contingency table (Jolli�e & Stephenson, 2003). Some of the most common scores
without correct negatives are:

� POD = Probability of detection (also called hit rate)

POD =
hits

hits+misses
(3.1)
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POD is the fraction of the observed events correctly forecast. The perfect
score is 1.

� FAR = False alarm ratio

FAR =
false alarms

hits+ false alarms
(3.2)

FAR is the fraction of the forecast events not observed. The perfect score
is 0.

� SR = Success ratio

SR =
hits

hits+ false alarms
(3.3)

SR is the fraction of the forecast events that are observed and therefore
equal to 1 − FAR. The perfect score is 1.

� CSI = Critical Success Index (also called Threat score)

CSI =
hits

hits+misses+ false alarms
(3.4)

CSI is the ratio of correctly predicted events to all events (observed and
predicted). The perfect score is 1. If the event is statistically rare the
number of hits by chance decreases as well. Thus the CSI depends on the
climatological frequency of the event and shows poorer scores for rare events
(Mason, 1989).

� Bias

Bias =
hits+ false alarms

hits+misses
(3.5)

Bias is the fraction of all forecast events to all observed events. Perfect
score is Bias = 1. It is a measure for overforecasting (Bias > 1) and under-
forecasting (Bias < 1).

The most prominent example for a discussion about forecast veri�cation and
scores is also an evidence for the long history of forecast veri�cation and fur-
thermore it underlines the importance to use scores which are independent of
"correct negatives" for rare events: Finley's 1884 published tornado forecasts
raised a heavy discussion about the calculation and interpretation of scores. This
discussion is often referred to as "The Finley A�air" and documented in detail
by Murphy (1996). Sergeant Finley of the U.S. Army Signal Corps produced an
experimental tornado forecast and published the results (Finley, 1884) shown in
Table 3.3.
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Observation

Tornado No Tornado Total
F
o
re
ca
st Tornado 28 72 100

No Tornado 23 2680 2703

Total 51 2752 2803

Table 3.3.: Contingency table showing the results for Finley's Tornado forecasts (Jol-
li�e & Stephenson, 2003).

He calculated a score nowadays called fraction correct or accuracy of his forecasts
(= (hits+ correct negatives/total) ∗ 100) of more than 96%. As a response Gilbert
(1884) pointed out that this score does not make sense for Finley's tornado pre-
dictions. He mentioned that the assumption that the forecast of "tornado" and
"no tornado" are equally di�cult is a "serious fallacy" and gave the example of
only "no tornado" forecasts. If all forecasts say "no tornado", the contingency
table would show no hits, but 2752 correct negatives, what results in a fraction
correct of more than 98%. Thus relying on this score Gilbert's forecast that does
not require "any study of the meteorological record" seems to be "better" than
Finley's forecasts. Gilbert pointed out the important di�erence between statis-
tically rare and normally frequent events. This was the historical starting signal
for the discussion about forecast veri�cation.
Coming back to the di�erent methods of veri�cation for deterministic forecasts,

the next type mentioned before are multi-category forecasts. An example might
be a precipitation forecast with not just a yes or no decision, but di�erent cate-
gories like rain, freezing rain, graupel, and snow. An i× j contingency table also
called multi-category contingency table can be used to show the frequency of the
di�erent forecast and observation pairs per category. Here, histograms and the
accuracy describing what fraction of the forecast was in the right category are
common methods for veri�cation.
Continuous forecasts of variables like temperature are usually evaluated with

the help of scatter plots, mean squared error, root mean squared error or corre-
lation between forecast and observation.
The drawback of classical veri�cation methods is that they are usually evalu-

ated pixel by pixel. Thus traditional veri�cation scores are not capable to give
reasonable credit to high resolution forecasts (Mass et al., 2002). If a high res-
olution forecast is capable to resolve some features more realistic than a coarse
resolution forecast but with a slight positioning error, the pixel based veri�cation
might even show a worse result for the high resolution version than for the coarse
resolution forecast as illustrated in Fig. 3.3.
Fig. 3.3 shows the observation of a trough in pressure measurements and three

model forecasts with di�erent model resolution (36 km, 12 km, and 4 km). The
forecast troughs have a positioning error of 40 to 50 km. The model with the
highest resolution represents the observed structure very well, and is obviously
the best of the three forecasts. However, if, as an example, the absolute error
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at the observation location marked by the red rectangle is evaluated the devi-
ation between forecast and observation is worst for the 4 km resolution. Pixel
based methods are very harsh and require an exact match between forecasts and
observations at every grid point to score a hit. A slight displacement between
forecast and observation results in the so-called double penalty problem. The
pixels where forecast and observation overlap are counted as hits but the pixels
outside of the overlapping area are penalized in two ways: The non-overlapping
forecast pixels are counted as false alarms and the non-overlapping observation
pixels are counted as misses (see Fig. 3.4 b).

Figure 3.3.: Example for problems of point by point evaluation or pixel based veri�-
cation methods to evaluate structures with a slight positioning error. A
description of the data shown here can be found in the text. Taken from
Mass et al. (2002).

Figure 3.4.: Image a) shows a grid with an observation (solid contour) and a forecast
structure (dotted contour) which is slightly displaced. Image b) shows
which pixels are counted as hits (green), misses (blue), and false alarms
(red) to illustrate the double penalty problem and c) shows O(bservation)
and F(orecast) pairs with di�erent types of forecast errors classical scores
cannot evaluate. Fig. 3.4 c) is taken from Davis et al. (2006a).
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The structure of the forecast and observation �ts perfectly here, it is just shifted
by a few pixels (Fig. 3.4 a).

The pixels that are counted as hits are only few compared to the amount of
pixels that are counted as misses or false alarms. In addition these methods are
not able to give credit for being close and they might reward a forecast for wrong
reasons as can be seen from Fig. 3.4 c). The upper four examples of observation
and forecast pairs in Fig. 3.4 c) show examples for di�erent forecasts which all
have the same scores for pixel based measures (e.g. CSI = 0, FAR = 1, POD
= 0). Thus the measures give no information if the structure of the forecast is
right and just slightly wrong in position (but non-overlapping) or if the structure
is oriented wrong and far away and therefore the forecast was quite poor. The
example on the bottom of Fig. 3.4 c) shows that forecasts are generally rewarded
for being smooth by these measures. The smoother the structure the smaller the
absolute errors between forecast and observation (as in Fig. 3.3) and the more
often an overlap between forecast structures and observation can be realized.

Due to these restrictions of classical methods, a lot of new veri�cation measures
with focus on spatial structures and presence of desired features in the forecast
were developed (Casati et al., 2008). The main di�erence between these measures
and the classical veri�cation statistics is that they are not evaluated on a point-
to-point basis with no regard to spatial information (Baldwin & Kain, 2006).
A review on many of the di�erent approaches is given by Casati et al. (2008)
and Gilleland et al. (2009). These spatial veri�cation methods split up in four
di�erent types (see Fig. 3.5): Scale-separation (or scale decomposition) methods,
neighborhood (or fuzzy) methods, feature-based (or object based) methods, and
�eld deformation methods.

They can be described as two �ltering approaches (neighborhood and scale
decomposition) and two displacement approaches (object based and �eld defor-
mation) as in Gilleland et al. (2009).

Many of these methods focus on the veri�cation of Quantitative Precipitation
Forecasts (QPFs) and are compared in the so-called Spatial Forecast Veri�cation
Methods Intercomparison Project (ICP3) described in detail by Ahijevych et al.
(2009) and Gilleland et al. (2010a).

Examples for scale separation methods are the Intensity-Scale Technique (Casati
et al., 2004; Casati, 2010) or the Fractions Skill Score (Roberts & Lean, 2008; Mit-
termaier & Roberts, 2010) which give information on the skill of a forecast system
on di�erent spatial scales. Field deformation methods use optical �ow or image
warping techniques to quantify the di�erence between forecast and observation
�elds. Examples here are the Image Warp Statistic (Gilleland et al., 2010b) and
the Displacement and Amplitude Score or short DAS (Keil & Craig, 2007, 2009),
which describes the displacement error and the amplitude error of QPF objects.
Fuzzy or neighboring methods have the aim to reward close forecasts. Examples
for these methods are given in Ebert (2008) and Ebert (2009) and are often closely
related to methods from other categories of spatial veri�cation. Object or fea-
ture based methods identify features in forecast and observation �elds and then

3http://www.ral.ucar.edu/projects/icp/
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compare attributes of these features (Casati et al., 2008). These attributes might
be the size and position of an object and in case of QPFs also their amplitude in
the radar echo, for example. Examples for object based scores are the SAL tech-
nique (Wernli et al., 2008, 2009), which assesses the Structure�Area�Location
error for objects, CRA utilizing Contiguous Rain Areas to de�ne the objects
(Ebert & McBride, 2000; McBride & Ebert, 2000; Ebert & Gallus, 2009) and the
Method for Object-based Diagnostic Evaluation (MODE) which is also a method
to compare QPFs with observations (Davis et al., 2006a,b, 2009). Many methods
belong to more than one category like a multiscale object based method by Lack
et al. (2010) or the "cluster analysis for object-oriented veri�cation of �elds" by
Marzban & Sandgathe (2008), and other approaches studied by Marzban et al.
(2009).

Figure 3.5.: The four di�erent types of spatial veri�cation methods split up in �ltering
(top) and displacement (bottom) approaches. Taken from Gilleland et al.
(2009).
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3.2.2. How to verify CI?

The veri�cation of CI has many aspects that make it di�erent from the veri�cation
of QPFs. One crucial point is the de�nition of CI and the choice of the data
source used as "truth" for CI veri�cation. Usually a CI event is veri�ed as true if
later in the lifecycle of the cell, detected as CI, a thunderstorm developed. Thus
CI is de�ned by a kind of thunderstorm de�nition for the data source used for
the veri�cation. The statement used for that kind of de�nition is: If we see a
thunderstorm right now there must have been CI earlier.
Di�erent kinds of de�nitions for veri�cation of a thunderstorm, based on radar

or � preferably � on lightning data, exist in the literature. Roberts & Rutledge
(2003) and Mecikalski & Bedka (2006) utilize the �rst radar echo ≥ 35 dBZ as
a proof that CI has happened. The radar echo intensity can be used to surro-
gate lightning information. The de�nition of a thunderstorm with the help of
radar echo intensities ≥ 35 dBZ is related to studies by Dye et al. (1989) and
Gremillion & Orville (1999). They "have shown that the onset of storm electri�-
cation generally occurs > 5 minutes after storm echoes of 30 dBZ or greater have
reached subfreezing levels" (Roberts et al., 2012). This 35 dBZ threshold discrim-
inates quite good between weakly precipitating storms and vigorous convective
storms with heavy rain and is therefore also used in radar tracking algorithms.
Rad-TRAM (Kober & Ta�erner, 2009) uses 37 dBZ to de�ne precipitation cells.
TITAN4 the Thunderstorm Identi�cation, Tracking, Analysis and Nowcasting
tool (Dixon & Wiener, 1993) utilizes two thresholds at 35 dBZ and 45 dBZ.
The already mentioned second data source commonly used for the proof of a

thunderstorm is lightning data. Donovan et al. (2008) and Zinner & Betz (2009)
use "�ash rates" or "lightning density" as criteria to verify mature storms. Thus
they use a cluster of �ashes with certain criteria for the density in time and
space as evidence for a thunderstorm. Zinner & Betz (2009) veri�ed the mature
storm detection stage of Cb-TRAM against lightning, showing that Cb-TRAM is
capable to detect up to 90% of the storms that are marked by the lightning data
with a false alarm ratio below 25%. Thus the Cb-TRAM detection of mature
storm cells seems to be su�cient, too, to be used as truth for CI veri�cation.
The main problem for CI veri�cation is an objective and automated matching

of CI cells to the later detected thunderstorms. For storm cells some studies go
back to a kind of "eyeball" veri�cation of objects to match storm detections with
veri�cation data (Donovan et al., 2008) and �ll their contingency table. QPF
objects can be compared more or less "directly" to the precipitation observations
with many of the spatial methods mentioned before. A CI object, in contrast, is
not supposed to match the later existing thunderstorm perfectly. It should just
identify the cloud that later on develops to a storm, but almost all attributes of
the cell like its position, size, shape etc. are even expected to change during the
development from CI to a mature storm. Thus most of the spatial methods for
QPFs that evaluate di�erences in the shape, size, and/or amplitude of an object
cannot be used here. Mecikalski et al. (2008) tries to verify the SATCAST results
for some case studies. SATCAST produces pixel based detections and no objects,

4http://www.ral.ucar.edu/projects/titan/home/
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or cells. They use a kind of fuzzy pixel based measure to evaluate if the pixels,
they expect to represent CI, develop to a storm in the radar signal of neighboring
positions within the next 30 to 60 minutes and calculate classical statistics with
these "fuzzy" hits, misses, and false alarms. For SATCASTv2 the analysis is
performed with a pixel based comparison for few test cases around some radar
sites using classical scores, where some are incorporating also correct negative in
the calculation.

The extrapolation or nowcast of a CI detection like in Cb-TRAM cannot include
the correct development of the object size or shape, but it should be in the
right position where the changed cell is expected. Therefore a strict classical
veri�cation with a pixel-per-pixel comparison does not make sense here. The
aim of the Cb-TRAM CI detection veri�cation is to get objective information on
the amount of CI detections that develop to the next detection stages within the
nowcast timespan and the amount of developing cells that are detected as CI cells.
Thus a criterion evaluating the object overlap between a CI stage nowcast position
and the according analysis of the cell seems to be desirable for the purpose of
Cb-TRAM CI detection veri�cation. Additionally the veri�cation method has
to be extendable to a longer period and not just a few case study days to get
reliable statistics on Cb-TRAM performance. For evaluation of the uncertainty
in the nowcast position a fuzzy�ed veri�cation method is tested which allows a
small positioning error due to nowcasting errors. Further answers to the question
on the realization of such a spatial veri�cation method and the results for the
Cb-TRAM CI detection are given in Chapter 4.

3.3. Additional data sources

This section includes descriptions of the additional data sources that are analyzed
for this study and are tested in combination with Cb-TRAM. The area over which
the analysis is performed is shown by the Cb-TRAM output in Fig. 3.6. It covers
large parts of Central Europe.

The intention is to keep the following data descriptions rather short. References
and websites are added for further reading about the di�erent data sources. A
table summing up the collected data can be found as Appendix A. As already
mentioned the di�erent data sources should add information about lift, instability
and moisture to the satellite based CI detection. Thus one aim is to �lter CI false
alarms for "non-CI-favorable" circumstances. A second aim is to retrieve a kind
of CI probability for cells with "CI-favorable" circumstances.

Lightning data is used as a proof that a thunderstorm already exists in the area
detected as CI. This means, if a cell is detected as CI and it incorporates already
lightning, it cannot be a false alarm, in the sense of a storm non-occurrence, and
thus will not be �ltered, independent from the information of the other additional
data sources. The classi�cation error that a cell which shows already lightning
should be assigned to one of the later detection stages is not treated within this
study. One common reason for this kind of misclassi�cation might be that the
vertical extent of the detected storm is simply not large enough and the top of
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the storm does not reach the upper troposphere. Thus it is not classi�ed as a
mature storm. In situations with small, short-living, and showery storms these
misclassi�cations are most common.

Figure 3.6.: Cb-TRAM plot as in Fig. 3.2 but without nowcast contours and cen-
ter of gravity. Additionally magenta plus signs mark LINET lightning
detections. For more information on LINET see Section 3.3.1.

All the other additional data is associated with one of the above mentioned ingre-
dients. Moisture is important in low levels for the development of a storm. The
moisture within this study is investigated with the help of surface observations.
The concrete data tested here are moisture �ux convergence and equivalent po-
tential temperature. For evaluation of the instability, upper air data (mid- or
upper-tropospheric) is needed as well. All available regular upper air observation
data is not su�cient in spacial and/or temporal resolution, thus NWP model
data is incorporated here, too. A combination of surface observations and mid-
tropospheric NWP model data is used to calculate an instability index. The
used KO-Index is based on the equivalent potential temperature in four di�er-
ent atmospheric levels. To get information on the available lift both are tested
- surface observations and upper air model data. One idea is to evaluate the
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surface observations on mass convergence. If we observe a convergent �ow at
the surface the air has to rise somehow and generates lift there. In addition the
upper air updrafts in the omega (ω) data (vertical motion) of a NWP model are
investigated. Therefore di�erent model levels between 850 hPa and 400 hPa are
incorporated in the evaluation. In comparison to the surface convergence, which
describes one of the processes causing lift (see Ch. 2.1), the updraft in the model
data is expected to be more useful to describe the lift. The NWP model should
be able to generate a signal in the ω data, for any of the processes which might
be responsible for triggering the lift.

3.3.1. Lightning data

The lightning data used within this study are ground-based LINET measure-
ments provided by nowcast5. LINET has a very precise detection of the lightning
locations with errors less than 150 m provided that the sensor baseline does not
exceed ∼ 250 km (Betz et al., 2009), which is given at least for the whole main-
land covered by this study as shown in Fig. 3.7. More information about the
abilities of this network can be found e.g. in Betz et al. (2008) and Betz et al.
(2009). The data is available in near-realtime and is updated every �ve minutes.

Figure 3.7.: LINET stations around central Europe. Coverage of 2009. Figure taken
from the nowcast webpage

5http://www.nowcast.de/
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3.3.2. Surface observation analysis

The Vienna Enhanced Resolution Analysis6 (VERA) scheme is an objective high
resolution analysis of meteorological �elds based on surface observations. It is
developed by the University of Vienna. The surface synop station observations
are brought on a 2 D grid with the help of a thin plate smoothing spline interpo-
lation (Steinacker et al., 2000b). No model �rst guess �elds are needed. The in-
terpolation utilizes additional information via so-called ��ngerprints� (Steinacker
et al., 2006; Bica et al., 2007) � a priori knowledge for areas with complex ter-
rain or sparse data � and the data is quality controlled (Häberli et al., 2004).
Additional studies on the interpolation of precipitation �elds in complex topog-
raphy (Dorninger et al., 2008; Schneider & Steinacker, 2009) and on the tracking
(Steinacker et al., 2000a) and nowcasting (Schneider et al., 2008) of convective
storms with VERA give further insight to the methods. VERA can be run with
di�erent grid resolutions and on di�erent domains depending on the available
input synop station data.
Output �elds are e.g. u- & v-component of wind, potential temperature, θe,

pressure reduced to MSL, 6hourly accumulated precipitation, or horizontal mois-
ture �ux convergence/divergence (MFC/MFD).
Moisture �ux convergence, convergence itself and θe from VERA will be further

examined within this thesis. The used grid resolution for the interpolation of the
data is 8 km as can be seen from the German header in Figs. 3.8 and 3.9. In visual
tests this 8 km resolution performed quite good, while the 4 km resolution output
showed arti�cial structures, especially around the coastlines. These structures
seem to be mainly due to the available density of synop stations used within this
study with its loss of information over the seas.
MFC is calculated based on Banacos & Schultz (2005) as:

MFC = −∇ · (q~vh) (3.6)

or for the moisture �ux divergence as VERA output as:

MFD = ∇ · (q~vh) (3.7)

where
q = speci�c humidity in g kg−1, and
~vh = the horizontal wind vector containing the components u and v in m s−1.

For further information on the calculation of MFD see Appendix B or Kaufmann
(2006). Fig. 3.8 shows an example plot of the VERA standard output for MFD
together with the 10 m wind �eld. Positive values resemble moisture �ux diver-
gence, negative values moisture �ux convergence of the order of 10−4 g kg−1s−1.
The equivalent potential temperature θe is the potential temperature that a

parcel of air would have, if all its moisture content were condensed and the re-
sultant latent heat of condensation were used to warm the parcel. Therefore, the
temperature of a parcel can be brought to its θe value by raising (expanding) the

6http://www.univie.ac.at/amk/vera/
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parcel from its original level until all the water vapor in the parcel has condensed
and fallen out, and then compressing the parcel dry adiabatically to a pressure
of 1000 hPa.

Figure 3.8.: Example of an original VERA MFD plot. Color shows MFD, arrows show
10 m wind.

θe is a measure for the static energy of a parcel of air and can after Holton (2004)
be written as:

θe ≈ θexp

[
Lm

cpT

]
(3.8)

where
θ = potential temperature in Kelvin,
T = current temperature in Kelvin,
m = mixing ratio in 10−3 g kg−1,
cp = speci�c heat at constant pressure (1004 J kg−1K−1, Holton, 2004), and
L = latent heat of condensation (2.5× 106 J kg−1, Holton, 2004).

The θe in VERA which is used later within this thesis is given in degree Centigrade
and not in Kelvin thus θe (VERA) = θe (Holton) − 273.15 K. Fig. 3.9 shows an
example plot of the VERA standard output for θe together with mean sea-level
pressure isobars and the 10 m wind �eld.
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Figure 3.9.: Example of an original VERA θe plot. Color shows θe, arrows show 10 m
wind, isolines show pressure reduced to MSL.

The synop information as input for the VERA algorithm is available hourly.
In most measurement routines of the European national weather services the
information needed as input is measured more often within one hour, but the
availability of this data is quite restricted. The hourly data used here is available
via a database of the DWD less than �ve minutes after the full hour. Only few
minutes later, usually around six to seven minutes after the full hour the VERA
analysis can be �nished.

3.3.3. NWP model data

The DWD runs two di�erent operational versions of the non-hydrostatic limited-
area atmospheric prediction model COSMO7. They are named COSMO-EU and
COSMO-DE. The COSMO-EU model focusses on the meso-β scale with a grid
spacing of 7 km. The main aim here is the accurate prediction of near-surface
weather conditions concentrating on clouds, frontal precipitation, fog, and oro-
graphically and thermally forced local wind systems (Schättler et al., 2011). In
contrast the COSMO-DE model is a meso-γ scale version with 2.8 km grid spac-
ing. The aim here is a direct simulation of severe weather events triggered by

7http://www.COSMO-model.org
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deep moist convection. Examples for this kind of events are supercell thunder-
storms, intense mesoscale convective complexes, and prefrontal squall-line storms
(Schättler et al., 2011). The COSMO-EU domain covers more or less Europe
while COSMO-DE concentrates on Germany with little parts from the neighbor-
ing countries as can be seen in Fig. 3.10. A summary of the di�erent values for
resolution, grid points, etc. characterizing the two di�erent COSMO versions is
given in Table 3.4 at the end of this chapter.

Figure 3.10.: The two maps show the domains of the DWD COSMO versions with
COSMO-EU on the left side and COSMO-DE on the right side. Images
taken from Schulz & Schättler (2011) and Baldauf et al. (2011a).

The di�erent phenomena that should be predicted by the di�erent models also
in�uence their forecast time: The smaller the scale of the atmospheric phenomena
simulated by the model, the shorter their life time and therefore the lower their
predictability. Thus the COSMO-EU model produces forecasts for up to 72 hours
while the COSMO-DE produces only forecast of up to 21 hours.
In contrast to the COSMO-EU where convection is fully parameterized the

COSMO-DE is able to resolve large convective elements. Analyzing the forecasts
of COSMO-DE in comparison to observations these elements sometimes show er-
rors in the timing and/or location of the convective cells (Dahl et al., 2011) which
might to a big part be related to de�ciencies in the quality of the boundary layer
parameterization (Baldauf et al., 2011b). Despite COSMO-DE is able to fore-
cast deep convection explicitly, individual convective cells are hardly predictable.
To overcome this issue the COSMO-DE model is extended to a convective-scale
ensemble prediction system (Baldauf et al., 2011b) at DWD right now.
Due to the fact that the direct thunderstorm measures in the COSMO-DE

model like the output �eld "thunderstorm probability" are in�uenced by the
location and timing errors mentioned before I preferred measures to check for the
availability of two of the ingredients for convection with the help of the model
data: instability and lift. The model �elds tested for my study are θe in 850, 700,
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and 500 hPa, used for the calculation of an instability index (the KO-Index), as
well as the model updraft ω in �ve levels between the 850 and 400 hPa levels.
These �elds are available hourly by the use of COSMO-DE as well as COSMO-EU,
but by using the COSMO-EU �elds the data covers the whole domain I wanted to
use for this study. The COSMO-EU model is as mentioned before quite good in
resembling the local wind systems. The orography is represented quite well with
the 7 km grid spacing with not to big di�erences in comparison to the 2.8 km
spacing of the COSMO-DE as can be seen in Fig. 3.11. The ω �elds are quite
noisy and are interfered with wave structures which are smoothed by a Gaussian
kernel in the later described analysis.

Figure 3.11.: Orography in an area around Mont Blanc. a) raw data with 1 km res-
olution (maximum height: more than 4000 m a.s.l.); b) COSMO-DE
orography derived from the raw data as mean values each over a 8 km2

grid element (maximum height: nearly 3700 m a.s.l.); c) COSMO-EU
orography derived from the raw data as mean values each over a 49 km2

grid element (maximum height: more than 3000 m a.s.l.); d) GME orog-
raphy derived as mean values each over a 346 km2 grid element (max-
imum height: 2920 m a.s.l.). Images and text after the description on
the DWD webpage8

The KO-Index (German: "Konvektiv-Index") is developed and still used by the
DWD. It is calculated as di�erence of the equivalent potential temperature be-
tween mid levels (700 to 500 hPa) and low levels (1000 to 850 hPa) to evaluate
the potential instability between these levels (Haklander & Van Delden, 2003).

KO = 0.5(θe_500hPa + θe_700hPa)− 0.5(θe_850hPa + θe_1000hPa). (3.9)

In this study it is calculated as combination of COSMO-EU model data (M) and
surface observations (VERA) as:

KO = 0.5(θe_500hPa_M + θe_700hPa_M)− 0.5(θe_850hPa_M + θe_sfc_V ERA). (3.10)

8http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_pageLabel=
_dwdwww_spezielle_nutzer_forschung_analyse&T12203837091139841917821gsbDocument
Path=Navigation%2FForschung%2FAnalyse__Modellierung%2FFU__NM__LMK__node
.html%3F__nnn%3Dtrue&_pageLabel=_dwdwww_spezielle_nutzer_forschung_analyse&
switchLang=en [30.11.2012]
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COSMO-EU COSMO-DE

Resolution 7 km 2.8 km
Grid-points 665 x 657 421 x 461
Layers 40 50
Forecast up to 78 h 21 h
Update cycle 6 h 3 h
Coordinates of the domain corners (λg, ϕg):
lower left corner 9.19°W, 27.70°N 2.98°E, 44.77°N
upper left corner 34.24°W, 65.58°N 1.04°E, 56.20°N
upper right corner 63.47°E, 62.40°N 19.84°E, 56.14°N
lower right corner 34.67°E, 26.12°N 17.72°E, 44.72°N

Table 3.4.: Comparison of the two operational COSMO versions at DWD. Information
taken from Schulz & Schättler (2011) and Baldauf et al. (2011a).

3.4. Fuzzy logic to combine di�erent data

sources

Fuzzy logic, in contrast to conventional (Boolean) logic, is capable of handling the
idea of partial truth. Conventional logic uses the principle of bivalence, meaning
that propositions are either fully true (1 in the sense of a binary decision) or
fully false (0). Whereas fuzzy logic introduces some vagueness, stating that a
proposition might be partially true and false to some degree. A fundamental
concept of fuzzy logic is that of fuzzy sets which was �rst published by Zadeh
(1965). Fuzzy sets are an extension of the classical notion of (crisp) sets: in
a classical set there are two distinct categories of objects/values, those in the
set and those outside of the set (complement), a fuzzy set permits intermediate
degrees of membership. A depiction of classical and fuzzy sets with illustration
of the operations complement, intersection, and union is shown in Fig. 3.12. The
reasoning in fuzzy logic is closer to human reasoning. This can for example be
shown with the help of an example from the monograph of Klir & Yuan (1995)
shown in Fig. 3.13. In human reasoning there are no distinct boundaries between
"cold", "cool", "moderate", "warm" or "hot" which might resemble the (very)
low to (very) high values in the Figure. And often a temperature is somewhere
"between" two of these categories in reality as can be visualized like in Fig.
3.13a). With the fuzzy logic resembling of these sets a temperature might be to
40 % within one category and to 60 % within the neighboring category instead
of being by 100 % in one category due to some strict threshold like it would be
in the case of Fig. 3.13b). Here all values within an interval will be changed to
one crisp value representing the whole interval. For the fuzzy variable like in Fig.
3.13a), depending on the symmetry or non-symmetry of the transitions between
two categories, the membership grades might add up to 100% if the consequent
fuzzy sets are symmetric but they don't have to be symmetric anyway. It is
possible to use membership functions where for example the membership grade
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of a temperature is 1 for category "very low" and at the same time already non-
zero for "low" etc. The de�nition of the fuzzy sets allows incorporating expert
knowledge to get reasonable fuzzy sets for the task they are constructed for. Due
to the fact that only symmetric cases will be shown within this study I will not
go further into details here and suggest that readers, whose interest is aroused
now, refer for example to the books of Haupt et al. (2009), Klir & Yuan (1995),
or Ross (2010).

Figure 3.12.: Left: Classical set operations with black shading representing elements
in the resultant set. Right: Fuzzy set operations where the degree of
membership in the resultant set is represented by shades of gray, with
white points having membership 0 and black points having member-
ship 1. Dotted red circles represent the 0.1 membership contours of the
original fuzzy sets. Taken from Haupt et al. (2009).

Figure 3.13.: Temperature ranging from T1 to T2 shown as a) fuzzy variable and b)
"crisp" variable. Taken from Klir & Yuan (1995).

It is important to mention the di�erence between fuzzy logic and probabilistic
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logic. 40 % in probabilistic sense would explain that the likelihood (or probability)
that a proposition is true is 40 %. In fuzzy logic it means that a proposition is
to 40 % true (and to 60 % not true).

The combination of data with fuzzy logic can be described by three main steps:

� De�nition of the fuzzy sets for each data

� Declaration of a rulebase for the combination

� Defuzzi�cation

In the following these three steps and thus the data fusion used to build a fuzzy
logic based expert system for CI will be explained in more detail.

De�nition of the fuzzy sets for each data:

As a �rst point you need to de�ne fuzzy sets for each data type you want to use
for the combination. The aim here was to use data which gives information about
the basic ingredients mentioned in Chapter 2: moisture, instability, and lift. By
the analysis that will be shown in Chapter 4 one data type out of the di�erent
available data sources is chosen for each of the ingredients which describes best
if there is a CI forcing expected or not. Thus there are fuzzy sets containing the
information if we expect stable, neutral, or unstable conditions; dry, medium, or
wet conditions and downward motion, neutral conditions, or lift. This means for
each of the ingredients we analyze a �eld to �nd out if the conditions are pro CI,
neutral, or contra CI (see Fig. 3.14).

Figure 3.14.: Example shows fuzzy sets for an arbitrary data source used for the CI
detection. The set marked blue is an area where no CI development is
expected, green is neutral and red is a set where CI forcing is expected.
For further description see text.

Besides these fuzzy sets as input, some output fuzzy sets have to be de�ned as
well. For CI these sets describe �ve stages of CI forcing (instead of three stages
for the input sets): very low, low, medium, high, and very high CI forcing are the
output sets.
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Declaration of a rulebase for the combination:

For the combination of the data a so called rulebase is needed. This is a multitude
of rules that de�nes memberships within the di�erent output fuzzy sets for the
possible combinations of "states" of ingredients. Here these rules are build based
on expert knowledge and statistical information gained from the veri�cation re-
sults. These rules are IF-THEN relationships like:

IF data1(proCI) > 0 AND data2(proCI) > 0 AND data3(proCI) > 0;

THEN CI forcing "very high" > 0

or:

IF data1(contraCI) > 0 AND data2(contraCI) > 0 AND data3(contraCI) > 0;

THEN CI forcing "very low" > 0

The standard use of AND in fuzzy logic means, if two values x and y are true
(membership grade > 0) then the combination with both being true has the lower
membership grade:

truth (x and y) = minimum (truth(x), truth(y))

In our case we combine three di�erent data sources with three di�erent categories
in the input fuzzy sets. Thus we have 3×3×3 = 27 rules for di�erent combinations
and they are clustered, as mentioned above, in �ve resulting "CI forcing" sets.
Each rule assigns a membership degree for the combination to one of the output
fuzzy sets. The assignment of input to output sets by the rules is visualized in
Tab. 3.5. The arrays shown in the table indicate if the input set components of
the three di�erent data sources are pro CI (+), neutral (0), or contra CI (-).

CI forcing
very low low medium high very high

−
−
−

−
−
+
(× 3)

0
0
0

+
+
−
(× 3)

+
+
+

−
−
0
(× 3)

−
0
+
(× 6)

+
+
0
(× 3)

−
0
0
(× 3)

+
0
0
(× 3)

no. of rules per output fuzzy set
very low low medium high very high

1 9 7 9 1

Table 3.5.: The scheme shows how the input fuzzy sets build up the output fuzzy sets.
Each input might have components pro CI (+), neutral (0), or contra CI
(-). The value in parentheses shows the amount of permutations available
of the shown array. For more explanation see text.
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The CI forcing is classi�ed as "very low" if all additional data sources are "contra
CI", "low" for more contra than pro, "medium" for an equal amount of contra
and pro, "high" for more pro than contra, and "very high" for pro CI conditions in
all the additional information. If you look at possible realizations of, for example,
two pro CI and one neutral input, there are three possible permutations of this
array within the rulebase. The neutral forcing might be in each one of the three
additional �elds. This amount of permutations is given in parentheses in the
table.
Usually you have more than one rule per set, getting an array of membership

grades. The combined membership grade for the set is the maximum value of
the array of membership grades. The output fuzzy sets are illustrated for one
example in Fig. 3.15 and the whole rulebase is added in Appendix C. A detailed
example with the input fuzzy sets and the resulting output fuzzy sets will be
presented in Chapter (5.3)

Defuzzi�cation:

Defuzzi�cation takes the fuzzi�ed results and converts them to a crisp value as
�nal result of the combination. The defuzzi�cation technique used is the center
of gravity method. There, the triangles or trapezoids of the output fuzzy sets
are chopped o� by a horizontal line marking the membership grade for each set
as shown by the hachures in Fig. 3.15. Then the resulting trapezoids which
are marked with hachures are taken as one single geometric shape and the x
coordinate of the calculated centroid is the defuzzi�ed value (6.7 in Fig. 3.15).
The interpretation of the resulting value of the combination will be described
later in Chapter 5.

Figure 3.15.: Image shows the output fuzzy sets for an arbitrary example. For further
description see text.





4. Analysis of the existing CI

detection and nowcasting in

Cb-TRAM

For being in a position to declare the use of additional data for CI nowcasting
as bene�cial, and to underline this statement with some hard facts, a reason-
able methodology for the analysis of the existing Cb-TRAM CI detection and
nowcasting and the development of both by the use of additional data sources is
essential. Within this Chapter the evolution of the CI veri�cation methodology
newly developed for Cb-TRAM within this thesis will be described. Some slightly
di�erent veri�cation concepts which are suggested to be appropriate for CI veri-
�cation will be presented and discussed in parallel in Section 4.1. This leads to
the results of the methods presented in Section 4.2. Based on these results one
of the shown veri�cation methods will be used for the comparison between the
performance of Cb-TRAM alone against the combined information of Cb-TRAM
and the additional data in Chapter 5.

4.1. CI veri�cation methods for Cb-TRAM

This Section aims at the description of the veri�cation approach used to gain
veri�cation results shown and discussed later within this thesis. For background
information on forecast veri�cation in general, CI veri�cation in detail, and de-
scriptions of the veri�cation speci�c nomenclature the reader is referred to Sec-
tion 3.2.

A key point of the developed veri�cation method is that it is not aimed at the
detection with respect to the full lifecycle of each individual stormcell, giving one
veri�cation result for the whole lifetime of the cell. The focus is on the usefulness
of the CI nowcasts. Thus the veri�cation is performed for all CI detections per
time step where the nowcasts are launched. At each Cb-TRAM analysis time
where CI detections exist, a nowcast for the next 15, 30, 45 and 60 minutes for
the expected position of the detected developing cloud is available. For each
of this nowcast time steps the nowcast will be compared to the corresponding
analysis as illustrated in Fig. 4.1. This results in four contingency tables with
hits, misses, and false alarms for each of the above mentioned nowcast lead times
for every time step. Now the question is: What is a hit, miss, or false alarm? How
are they de�ned? Correct negatives will not be evaluated for reasons described
in Section 3.2.

51
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Figure 4.1.: Image a) shows a Cb-TRAM CI detection at time step t (yellow contour)
with its nowcasts for the next two time steps t+1 and t+2 (gray contours).
Image b) shows time step t+1 with the corresponding nowcast of the CI
cell (gray) and a new CI detection and c) shows time step t+2 again with
the corresponding nowcast of the �rst CI cell (gray) overlapping a mature
cell (red).

Independent of pixel or object evaluation two possible ways of evaluation exist
here. One possibility is to allow only developments to stage 2 or stage 3 detections
as hits, the second possibility is to allow also long lasting CI cells as hits. Thus,
explained for pixels at time t+x, if a pixel in the nowcast is part of a CI object and
in the analysis it is part of a detection too, meeting the criteria (with or without
long lasting CI stage), a hit is counted. If there is a CI pixel in the nowcast but
not in the analysis it is counted as false alarm and if there is a pixel from a stage
2 or 3 detection in the analysis but no (CI) detection in the nowcast, the pixel
will be counted as miss. For a visualization see also Fig. 3.4a) & b) or Fig. 4.1.
The objects of stage 2 and 3 in the time step t where the nowcast is launched,
which can be tracked into the analysis time step t+x and can be assigned to the
same cell ID like in t, will not be evaluated for the CI analysis here.

Based on the background on veri�cation given earlier in Section 3.2 di�erent
approaches are tested to �nd the appropriate method. First of all a classical
pixel based approach for �lling a contingency table was performed to use it as a
reference for comparison to the other approaches. This means every nowcast and
the according analyzes are compared pixel by pixel. As already explained earlier,
pixel based methods are very harsh and require an exact match between forecasts
and observations, what can de�nitely not be expected for the CI nowcasts. Thus
the pixel based approach is de�nitely inappropriate for the task of CI veri�cation.
It is performed and mentioned for the sake of completeness but the results will
not be shown in detail.

A much more suitable approach is to use an object based veri�cation method
for the CI detection polygons and their CI nowcasts. A �rst object based approach
would be to use the internal matching in Cb-TRAM itself. Every detection has a
cell ID which stays unchanged for the next time steps if a cell is recognized as a
follow-up detection, by object overlap, in the later time steps. Thus if a cell ID of
a yellow CI detection cell exists in a later time step for a stage 2 or stage 3 cell, it
could be counted as hit. This approach would be quite easy to realize, but it has
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a key problem: the merging and splitting of cells. First of all, the CI detections
can quite often be observed as a small cluster of more than one developing cloud
where several independent cells are detected. During the growth of the clouds
to the next development stages these "clusters" often merge and only one of the
IDs will be kept for the newly developed cell. This could lead to several false
alarms for the cell IDs which will not exist anymore. Also the splitting of cells
in detection stage 2 or 3 would cause trouble for this ID based veri�cation. The
smaller part of the cell would get a new cell ID after the split. If only the IDs
are evaluated these ones would be counted as miss. Additionally, for the case
where one yellow cell overlaps with two later on developing cells, the ID would
�t to only one (or even none) of the developing cells and the other one would be
counted as miss.
To overcome these issues an object overlap based approach is introduced,

where for any CI detection the nowcasts are compared to later on existing detec-
tions. And a simple object overlap is the criteria for de�ning a hit. CI nowcast
objects which do not overlap with any detection of the following time steps are
counted as false alarms and stage 2 or 3 detections which are not preceded by a CI
detection are counted as miss. As already mentioned above, this is not done with
focus on the overall lifetime of a cell but with focus on usability of the nowcasts.
This means for the nowcast time steps +15, +30, +45, and +60 minutes from the
CI detection the overlap criteria is evaluated and for each lead time veri�cation
scores will be calculated (see below). As additional information also a so-called
accumulated evaluation (acc) will be calculated. The accumulated version is
less focused on the veri�cation results for a precise leadtime (of 15, 30, 45, or 60
minutes), instead it shall help to gain information if the nowcasts produced for
the next hour prove to be true at least at one point of time within this hour,
independent of the exact leadtime. This means, if a CI cell overlaps with a later
on existing detection at any time step between 15 and 60 minutes lead time it will
be counted as hit, evaluating all hits within the one hour nowcast lead time of a
current detection. CI cells which do not overlap with other detections anytime
within this lead time time-frame will be counted as false alarms and cells which
are developing to orange or red cells within this time frame without a premonition
by a CI detection are counted as misses.
The overlap criterion allows for small imprecision in location and shape of the

extrapolated nowcasts. If a CI cell nowcast position does not overlap with a later
detected object between stage 1 and 3 this might have di�erent reasons. First
of all the detection might have been wrong. The second possibility is that the
nowcast was wrong and the cell moved faster, too slow, or too far to the left or
right from the expected track to overlap with the previous expected position. In
addition a third possibility has to be considered too. Especially for longer lead
times like 45 or 60 minutes it might happen that the detection was right, but the
cell might have diminished or might have decayed already.
To overcome errors in the extrapolated nowcast position for correctly detected

cells two variations of the veri�cation algorithm are presented. The aim is to
reduce the double penalty problem where nowcasts objects close to but not over-
lapping with an analysis object are counted as false alarms and the analysis object
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is counted as miss. The �rst idea is to allow a kind of search radius around
the objects (see Fig. 4.2) which grows with time. For the 15 minute nowcast
20 km around the nowcast object are added as area where an overlap is still be
evaluated as hit. For the 60 minute nowcast this radius is up to 50 km. This is
an approach of a fuzzy veri�cation method.

Figure 4.2.: Left: Cb-TRAM CI detection at time step t (yellow contour) with its
nowcasts for the next three time steps t+1, t+2 and t+3 (gray contours).
Middle: Time step t+2 with the corresponding nowcast of the CI cell
(gray) and a new stage 2 detection nearby (orange). Right: Time step
t+2 with a search radius around the contour of the CI cell (shaded area
between contour and dotted line) now overlapping with the nearby detec-
tion.

The second variation should help to overcome the problem of "too fast mov-
ing" nowcasts which can sometimes be observed quite clearly for quasi stationary
development. Quite often, especially for storm development triggered in moun-
tainous areas, the yellow cells start bubbling and the overall movement of the
surrounding air creates a normal nowcast with di�erent positions for the time
steps away from the original cloud object. These positions are due to extrapo-
lation with the cloud motion vectors gained by digital image processing within
Cb-TRAM. Thus, these "too fast moving" nowcasts are due to inaccuracies in
the Cb-TRAM image matching process and they are dependent on the overall
cloud coverage and movement within the observed scene. However, in these quasi
stationary cases the clouds keep bubbling at a more or less unchanged position
and after a development they move very slowly. This leads to storms moving
much slower as originally expected. Therefore the old nowcast positions are used
as well as so-called nowcast track (see Fig. 4.3). This means, for example,
for the 45 minute lead time nowcast of time t the polygons of the 45, 30, and
15 minute nowcast as well as the position of the original detection are compared
with the new stage 2 or 3 detections at t + 45.
Both of these variations, the search radius and the nowcast track, will only be

evaluated for developing cells and will not be applied for overlap with (long living)
yellow cells. A detection of a yellow cell in t + 45, overlapping with one of the
nowcast polygons inside this track of polygons which form more or less a whole
sector from the original detection at t, is a very weak criteria for a hit and would
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make not much sense here. The same argument votes against the evaluation of
long living cells with the search radius around the nowcasts.

Figure 4.3.: Left: Cb-TRAM CI detection at time step t (yellow contour) with its
nowcasts for the next three time steps t+1, t+2 and t+3 (gray contours).
Middle: Time step t+3 with the corresponding nowcast of the CI cell
(gray) and a new stage 2 detection nearby (orange). Right: Time step
t+3 with its "nowcast track" (all older positions of this detection in gray)
now overlapping with the nearby detection.

The overlap criterion does not use any minimum overlap of a speci�ed amount
of pixels within the object or a percentage of its area, due to the fact that the
CI objects usually have a small size compared to the areas covered by mature
storms. One drawback of the overlap criteria used is that it is not a "strictly
proper" forecast evaluation procedure (Wilks, 2006). It might encourage to so-
called hedging. Hedging means forecasting some future weather events in order
to achieve a better score but not necessarily to get a better or more realistic
forecast. For this score it means you might raise your possibility to overlap with
later on existing cells by simply enlarging the CI objects, which can be done up
to unrealistic sizes, just to get a better veri�cation result. The bigger the CI
objects the likelier they will overlap with future "rapid development" or "mature
storm" objects. In contrast, for small objects the probability of a random overlap
between nowcast and later existing stage 2 or stage 3 objects is quite small.

Which scores are now used for the ongoing analysis? With these di�erent
types of overlap criteria contingency tables can be �lled for each nowcast lead
time, and the accumulated evaluation, for each time step. To keep it quite easy
understandable common measures like the probability of detection and the false
alarm ratio are used for the evaluation of these objects. Adapting these measures,
used very often, helps to keep the results comparable to other studies. The
key di�erence is the de�nition of hits, misses, and false alarms for �lling the
contingency table and not a fancy new calculation with the table entries. To
clarify the di�erence to the usually pixel based versions of these scores they
will be abbreviated as oPOD (object-based probability of detection) and oFAR
(object-based false alarm ratio). Besides that, they are calculated, as described
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already earlier (see Chapter 3.2), as

oPOD =
hits

hits+misses
(4.1)

and

oFAR =
false alarms

hits+ false alarms
. (4.2)

More information on the concrete calculation of the scores will be given along
with the results for the Cb-TRAM CI stage veri�cation within the next Section.

4.2. Performance of Cb-TRAM CI stage

The performance of the Cb-TRAM CI stage is evaluated for 86 days in summer
2009. These are all days within the summer period from May 15 2009 until
August 31 2009 where no bigger data gaps during daytime in the rapid scan
satellite data or one of the additional data sources obscures the evaluation. The
restriction that only time steps during daytime are evaluated is due to the need of
availability of the HRV channel for the Cb-TRAM CI detection. The evaluation
starts at least half an hour after the daytime detection with the HRV channel
is available over the whole analyzed area, from that time Cb-TRAM is able to
determine the needed timetrends in the HRV properly. Furthermore it ends for
a time step where one more hour of daytime detection data is available, to be
able to check for long living yellow cells, which will not be detected anymore after
sunset. Also days without or with only few noteworthy convective developments
above Europe are within the analyzed days which is an important di�erence to
many other veri�cation approaches for CI tools. Days where over large areas
�rst cumulus development can be observed from the satellite view but the overall
forcing is to weak to �nally initiate usually show a larger amount of false alarms.
The values presented within this Section are mean values over all time steps

and days. The veri�cation routine computes oPOD and oFAR for each of the used
daytime time steps and calculates a mean value for the whole day. Afterwards
the 86 daily mean values are used to build a mean value for the performance.
Table 4.1 shows the results for the 15, 30, 45, and 60 minute nowcasts as well as
for the accumulated evaluation (acc). "Accumulated" means overlap of nowcast
and analysis in at least one of the analyzed time steps (15 to 60 minute nowcasts)
as criterion for a hit with no focus on any special nowcast time step, as described
earlier. The results for the cell ID based evaluation are shown as well. The �rst
two rows show the results allowing (long living) yellow cells along with stage 2 or
3 detections as hits too, the latter rows show the results if further development
to stages 2 or 3 (dev) is required for a hit (oPOD dev and oFAR dev).
As shown in Table 4.1 the object based probability of detection oPOD for the

15 minute nowcasts is close to 60 % (0.592) which means that in a statistical mean
60 % of the cells detected in the analysis, which were not already in stage 2 or 3
15 minutes earlier, are detected as CI cells at least 15 minutes earlier. The object
based false alarm ratio oFAR is slightly above 60 % (0.611). The values for oPOD
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decrease for the following nowcast lead times from 0.421 (30 minute nowcasts)
to 0.238 for the 60 minute nowcast. Thus the 60 minute nowcasts overlap with
slightly less than 25 % of the cells detected one hour later. The oFAR rises up to
85 % (0.852) for the 60 minute nowcasts. This means that 85 % of the 60 minute
CI nowcasts will not overlap with a cell existing in the analysis one hour later.
The accumulated evaluation shows that 40.9 % of the cells detected within 15 to
60 minutes from the time where the CI nowcast is launched are successfully hit
by a nowcast. Again this includes only cells which are not already within stage
2 or 3 when the nowcast is launched. The score based on the cell ID, which is
calculated for the same period as the accumulated evaluation, is a little lower
(around 2 %). This is for example due to cells where one bigger stage 2 or 3
cell develops from more than one small CI cell where the cell ID of only one of
the merged cells is kept but they all overlap with the later existing cell. For the
oFAR the accumulated value, which describes CI nowcasts which never overlap
with another cell in the evaluated time span of 15 to 60 minute lead time, is
54.5 %, where the cell ID based value is worse by 5 % (0.593). The available �ve
and ten minute nowcast are not included in the calculation of the accumulated
score. Due to the fact that here also overlap with cells in the CI stage is counted
as hit and no development to stage 2 or 3 is needed as a hit criteria the high
probability that these nowcasts overlap with 5 or 10 minute later detected ones
would result in a not quite meaningful calculation of the scores.

15 min 30 min 45 min 60 min acc ID
oPOD 0.592 0.421 0.310 0.238 0.409 0.387
oFAR 0.611 0.755 0.821 0.852 0.545 0.593

oPOD dev 0.228 0.199 0.174 0.154 0.170 0.091
oFAR dev 0.885 0.884 0.886 0.887 0.818 0.873

15 min 30 min 45 min 60 min acc ID
oPOD 0.592 0.421 0.310 0.238 0.409 0.387
oFAR 0.611 0.755 0.821 0.852 0.545 0.593

oPOD dev 0.228 0.199 0.174 0.154 0.170 0.091
oFAR dev 0.885 0.884 0.886 0.887 0.818 0.873

Table 4.1.: Statistics on the Cb-TRAM CI stage veri�cation. For description of the
nowcast lead time, accumulated, and cell ID based scores, and for the
di�erent types of oPOD and oFAR (without or with further development
required) see text.

The lower half of Table 4.1 shows the same calculations for the case that a de-
velopment from a stage 1 nowcast to a stage 2 or 3 detection is required for a
hit. The oPOD dev is thus lower than the corresponding oPOD and sinks from
22.8 % for the 15 minute nowcasts to 15.4 % for the 60 minute nowcasts. The
accumulated oPOD dev is 17.0 % and the di�erence to the cell ID based score is
quite striking when development is required, its oPOD dev value is only 9.1 %.
The oFAR dev lies above 88 % for all single nowcast lead times evaluated. The
accumulated oFAR dev is 81.8 % which is again better than the cell ID based
score of 87.3 %.
The accumulated version (acc) of the scores with further development to stages

2 or 3 (dev), marked blue in Table 4.1, will be further investigated in the following.
As descried in Section 4.1 two methods to incorporate a correction for eventually
existing errors in the nowcasting, and not in the detection, where developed.
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Table 4.2 shows the results for the accumulated evaluation (acc) if on of these
methods, a search radius around the objects (accradius) or the use of the nowcast
track (acctrack), is applied.
While the search radius, growing with lead time, is capable of rising the accu-

mulated oPOD dev to 20.3 % the oFAR dev sinks to 79.2 %. The incorporation
of the nowcast track performs slightly worse for the oFAR dev with a result of
81.0 % which is quite close to the original value without the track. Regarding
the oPOD dev the track is rising the value to almost 25 % (0.249). This means
the nowcasts produced for the next hour successfully hit one out of four cells
developing to stage 2 or 3 anytime within the next 15 to 60 minutes. Additional
discussion about this value will be presented in Chapter 6, but an oFAR dev of
around 80 % is far too much despite of any possible discussions to relativize this
value.

acc accradius acctrack
oPOD dev 0.170 0.203 0.249
oFAR dev 0.818 0.792 0.810

acc accradius acctrack
oPOD dev 0.170 0.203 0.249
oFAR dev 0.818 0.792 0.810

Table 4.2.: Intercomparison of the Cb-TRAM CI stage veri�cation for the accumulated
evaluation (with development of the nowcasts to stage 2 or 3 detections)
with both corrections for nowcasting errors � search radius and nowcast
track.

This large value for the oFAR dev is the key motivation why the additional data
should be used to �lter as much as possible of the false alarms while losing as few
as possible hits to not reduce the oPOD dev. Furthermore, in cases where a strict
�ltering is not possible, the incorporation of the additional data should at least
give a kind of con�dence level for the produced CI nowcasts. This con�dence level
should evaluate how likely, with regard to the used data, a further development
of the detected CI cell to the next detection stages is. Thus this con�dence level,
gained by postprocessing of the Cb-TRAM detections with the additional data,
shall give additional information on the reliability of the original Cb-TRAM CI
detection.
For comparison of the performance with and without the additional data the

accumulated measures incorporating the nowcast track will be used in the follow-
ing Chapter (acctrack � marked blue in Table 4.2). It is preferred due to the best
oPOD dev value of the accumulated scores. The small di�erences in the oFAR
dev, which shall be reduced by the postprocessing anyway, are less important for
the decision. Further description why this measure is used will be given at the
beginning of the next Chapter.



5. Combination with additional

data sources

Within the following Sections the combination and the data analysis for each of
the ingredients - moisture, instability, and lift - will be described. As explained
earlier, the object-based, accumulated veri�cation approach for developing cells
with use of the nowcast track (acctrack after Ch. 4) is applied to classify each CI
cell as hit or false alarm. Due to the fact, that the analysis for the ingredients is
performed exclusively for CI cells, misses are not evaluated. They would concern
stage 2 or stage 3 objects. In the following, the CI cells, classi�ed as hit or false
alarm, will be checked for lightning occurrence within the cell in the last �ve min-
utes before the detection time step (Section 5.1), and for each cell mean values per
object of each one of the possible additional data is calculated (Section 5.2). The
gained statistics will be presented for the data used later on as part of the fuzzy
logic data combination. Furthermore, they will be used to describe why some of
the additional �elds are more useful than others. The development of the fuzzy
sets for each of the additional data used for the combination will be described as
well. Finally, the results of the combination will be given (Section 5.3).
The analysis of the additional data is not performed for each Cb-TRAM day-

time detection time step within the analyzed 86 days but only hourly, due to
the one hour lead time of the nowcasts. The use of all the 5 minute rapid scan
CI detections and not the hourly data would cause some problems in the analy-
sis of the additional data. The additional data shall be examined for each cell,
building up statistics for the additional data clustered in hit cells and in false
alarm cells. In case of the 5 minute rapid scan time steps as analysis times, long-
living (and eventually non-developing) CI cells would be weighted much more
than fast developing or fast decaying CI cells. If every available rapid scan time
step would be analyzed the cells which live longer than one time step would get
a mean value for each of the additional data at each time step. A cell which is
detected as a CI cell in consecutive time steps and does not develop to stage two
or three, shall not be incorporated in the statistics more often than for example a
cell which needs only one time step to develop from the CI stage to stage two or
three. These multiple counts for one cell are acceptable in a veri�cation approach
which should judge the usefulness of the produced nowcasts for each time step,
but not for an statistical approach to get information about the possibility to use
additional data to raise the detection quality. Analyzing only hourly data will
not fully delete these multiple counts but it is su�cient to reduce the amount of
multiple counts to a minimum for only few long-living cells. The exact leadtime
of the nowcast is not crucial for this analysis, thus the accumulated evaluation
(acctrack) is chosen. Cells living more than one hour in the CI stage shall not be
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treated as one continuous CI event as will be discussed in Chapter 6.
Some Figures which do not describe the later on used additional data, but

are only examples to clarify statements on possible data that showed to be less
useful to evaluate the ingredients for the CI forcing, are not included within this
Chapter. These images are added in Appendix F and will only be mentioned
brie�y within this chapter.
In summary, more than 34000 CI cells are evaluated for the following statistics.

The sample includes 6169 hits and 28137 false alarms. Due to the change in data
set size and no time averaging this would lead to an oFAR dev1 of 0.820 if we use
the above given values for the sample to calculate an oFAR dev (slight di�erence
between this value and the one in Tab. 4.1 is due to the di�erent amount of time
steps - 5 minute data to hourly data - in the sample used for the calculation of
the mean value). Each of these cells is checked for lightning occurrence within
the cell. Furthermore, the mean values per CI object of each of the additional
data are calculated to evaluate the three above mentioned ingredients.
As short clari�cation of the wording used within the text, data source always

describes the "origin" of the data, thus data sources are satellite, lightning, sur-
face, and model data. Ingredients, are the mentioned ingredients for the devel-
opment of a thunderstorm, moisture, instability, and lift. Data, additional data,
data type, etc. are used to describe the di�erent physical values from the data
sources, for example θe, MFC, or ω. Indicator is used for the data types which
indicate the availability of one of the ingredients.

5.1. Lightning data

As already discussed in Section 3.3 CI cells which include lightning signals are
classi�ed wrong. The cell development is underestimated for these cases and the
�ltering shall only be done for the case of CI overestimation. Only cells which
will not further develop and will not start to produce lightning shall be rejected.
An example for the case of a CI cell including lightning is given in Fig. 5.1, which
shows southern Germany.
The displacement between the yellow polygon and the visible cloud contour in

Fig. 5.1 is an example for the so-called parallax shift due to the satellite angle
of view and the cloud height as illustrated in Fig. 5.2. In line with the example
in Fig. 5.1, I will brie�y explain what is done by the parallax correction which is
included in Cb-TRAM and which has to be incorporated for the whole analysis
of the additional data. Without the correction the CI contour would �t quite
nicely to the cumulus cloud which is shifted to the north and very slightly to
the east of the polygon. The cloud top has a certain height above ground. Due
to the angle of view from the satellite position (see Chapter 3.1) at 9.5 degrees
east in about 36000 km above the equator, clouds over the analyzed area of this
study appear to be further north than they are in reality. The shift depends on
the cloud top height and the latitude of the cloud pixels. The lateral shift within

1oFAR dev = accumulated object-based FAR using the nowcast track, with cell development
as a hit criterion (as introduced in Ch. 4)
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Figure 5.1.: This plot shows an example plot of Cb-TRAM where Cb-TRAM CI de-
tections (yellow cells) include LINET lightning measurements (magenta
plus signs).

this study is a lot smaller, especially for the example in Fig. 5.1, due to the very
small di�erence in longitude between the cloud pixels and the satellite position.
The parallax correction compensates this latitudinal and longitudinal shift. The
parallax corrected coordinates of the polygon have to be used as the real position
at the surface for the CI detection within the analysis of the additional data.
Following the calculation for a thunderstorm over Austria in Radová & Seidl
(2008), the parallax shift for a cloud top height between 10 to 15 km in Central
Europe is 15 to 25 km. The parallax positioning error is quite small in comparison
to the scales of change of some of the additional data tested and thus would often
cause only small errors, but especially for the very precisely located lightning
information it has to be taken into account.

Figure 5.2.: Schematic showing the parallax shift due to the satellite angle of view
and the cloud height.
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In the whole analyzed 86 day sample almost 1500 CI cells include lightning signals.
Half of them (735) do not develop to stage 2 or 3 detections in Cb-TRAM. Thus
these would be evaluated as false alarm without the lightning information. In
the following, after incorporation of the lightning data, a cell is classi�ed as hit
if either

� it develops to a Cb-TRAM stage two or three detection,

� it includes lightning already in the CI stage, or

� both.

Thus after incorporation of the lightning data the amount of hits is raised to
6904 and the amount of false alarms in the sample sinks to 27402 (after acctrack
method � Ch. 4). These values result in a reduced oFAR dev of 0.799 instead of
0.820 without the lightning information. Furthermore, oPOD dev increases from
0.249 to 0.271.

5.2. Surface observations & model data

In the following Subsections surface observations processed by VERA and model
data from COSMO-EU are used to �nd data which can be used as indicator for
the di�erent ingredients (moisture, instability, and lift). Background information
on VERA and COSMO-EU is given in Ch. 3.3
With the aim to enable reasonable �ltering of satellite based CI false alarms,

additional data which helps to discriminate between hits and false alarms is pre-
sented for each of the ingredients. This is done in line with an explanation of
the developed fuzzy set for the data which will be used for the combination. In
cases where more than one data type is tested as proxy for this ingredient, further
descriptions, why the one chosen is the better one for the combination, are given.
Main discussion points on the fuzzy sets per each data, like the choice of the

transition zones and the sensitivity of this choice, or the �nal combination and
its use for possible customers, will be considered in more detail in the discussion
in Chapter 6.

5.2.1. Indicating low-level moisture

As already described earlier (see Chapter 3.3) two di�erent VERA output prod-
ucts indicating moisture at the surface are analyzed here. These two are the
Moisture Flux Convergence (MFC) and the equivalent potential temperature (θe).
First of all, for each of the CI cells within this analysis a respective mean value of
MFC and θe is calculated. In case of a small CI cell which does not incorporate a
grid point of the additional data, the size of the object is gradually raised, sym-
metric around its center, until it incorporates a grid point of the additional data.
This method is applied for the two additional data sources with lower resolution
than the used satellite data, VERA data (8 km resolution) and the COSMO-EU
model data (7 km resolution).



CHAPTER 5. COMBINATION WITH ADDITIONAL DATA SOURCES 63

Furthermore, to get an optical impression of the data, plots displaying the
VERA information along with lightning data, Cb-TRAM output, and the ver-
i�cation information are produced. Two examples for θe are shown in Fig. 5.3
(next page). The gray shading in the background represent the θe values while
the LINET information is marked by magenta plus signs. The Cb-TRAM out-
put is shown slightly changed to its earlier plots. The stage 2 (rapid devel-
opment/orange) and stage 3 (mature/red) detections are represented as earlier.
The CI or stage 1 detections are plotted in yellow (as usual) for the cells which
are veri�ed as hits and they are plotted in green for cells that represent false
alarms.
Fig. 5.3 shows a common scene from May 25 2009, 15 UTC (left side) where it

is at �rst glance quite di�cult to detect any special features but the second scene
from June 12 2009, 15 UTC (right side) indicates that low θe values (here mostly
below 38 °C in areas where CI cells occur) seem to correlate with false alarms.
In Fig. 5.4 all analyzed cells for the hits and false alarms which do not include

lightning are categorized in two degree bins from lower than 24 °C to lower than
98 °C. The size of the bins is chosen freely to get a reasonable detailed distribution
of the data. The hits per bin are normalized by the total amount of hits, and the
false alarms per bin are normalized by their overall amount, too.

Figure 5.4.: The amount of hits(blue)/false alarms(red) per two degree bins for θe
values between lower than 24 °C and lower than 98 °C normalized by the
total amount of hits/false alarms. The statistics shown here and in the
following plots of this type are calculated for the whole 86 day sample
period.

From the analysis shown in Fig. 5.4 we can see that for cold θe values below
36 °C the amount of hits per bin is always far below 1 % of the overall hits. In
contrast the percentage of false alarms per bin is already above 2 or even 3 %
for some of these temperature ranges. If we look at the sampled data, θe values
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below 36 °C can be found for 1.7 % of all hits (118 cells) but for 12.0 % of all false
alarms (3311 cells). If we look at θe values below 41 °C, for example, we see that
4.8 % of all hits (340 cells) and 22.7 % of all false alarms (6284 cells) are colder
than 41 °C. This cumulative percentage is shown in Fig. 5.5 calculated for all θe
value frequencies below the given temperatures. The cumulative values for the
false alarms indicate how many false alarm cells we could �lter by introducing a
simple lower boundary for θe. The corresponding value for the hits shows how
many hits would be lost if such a strict threshold would be introduced. The
hits do not add up to 100 percent because the cells including lightning are not
integrated here. The cells with lightning account for 21,3 % of all hits and they
would not be �ltered anyway. The di�erence of the cumulative values peaks at
30.7 % for cells colder than 56 °C. This is the kind of border where in Fig. 5.4 the
red bars are higher then the blue ones on the left side and the blue bars are higher
then the red ones on the right side. Two thirds of all false alarms are colder than
a θe of 56 °C, but also 35.6 % of all hits are below that 56 °C. Filtering here with a
strict threshold would lead to an oFAR dev of 0.675 but would cost way to much
hits and thus reduce the oPOD dev considerably.
The construction of a fuzzy set that resembles the expert knowledge gained by

the analysis of the θe data now aims at building three classes, where, for one of
them, further development of the cells detected as CI seems to be not very likely

Figure 5.5.: Cumulative percentage of VERA θe value frequencies below the given
temperatures for hits (blue), false alarms (red), and the di�erence of the
two values (green). For further description see text.

(low θe), for one it seems to be a bad idea to �lter the CI cells (high θe) and one
lies in between these two (middle θe). The values where the di�erence in Fig. 5.5
is peaking seems good to �nd a transition from the range de�ned as middle to the
range for high θe values. This transition is thus de�ned between 50 and 56 °C. The
transition from low θe to the range in the middle is chosen by �ltering almost no
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hits at this boundary. Thus the transition is from 36 to 41 °C where only few hits
but already quite a lot of false alarm cells can be found as mentioned above. This
results in the fuzzy sets for θe shown in Fig. 5.6. A discussion on the in�uence of
these choices on the �nal results will be added in Chapter 6.
θe is chosen as proxy for the moisture simply because the MFC is, after the

same analysis, less useful for the �ltering. An example of a moisture �ux plot is
given in the Appendix in Fig. F.1. The equivalent statistical plots to Fig. 5.4 and
Fig. 5.5 can be seen there as well (Fig. F.2 and Fig. F.3). The statistics show less

Figure 5.6.: VERA θe fuzzy set with an arbitrary example value. A θe value of 50.3 °C
is some 95% in the range of middle θe values and some 5% in the range
of high θe values.

di�erence between the cumulative values for false alarms and hits in both interest-
ing ranges. The di�erence for the areas with negative MFC, equivalent to MFD,
where no CI triggering is expected, thus where the normalized amount of false
alarms is higher than the normalized amount of hits, is quite low. In addition
the peak value is only slightly higher than the �nal di�erence value due to the
incorporated lightning data, and is reached for an MFC value where already two
thirds of the hits would be �ltered.

5.2.2. Indicating instability

As indicator for instability one of the numerous instability indices is used. As
already explained the chosen KO-Index describes the potential instability between
mid levels (700 to 500 hPa) and low levels (1000 to 850 hPa) by calculating a
di�erence of θe values for the four levels (see Equation 3.10). The low level value
is again the θe gained by the VERA output, for the three more elevated levels
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COSMO-EU data is used. Following the literature, KO values above six describe
quite stable circumstances with low thunderstorm potential, values below two
correspond to a high potential for thunderstorms. Results between two and six
can be interpreted with a moderate potential for thunderstorms. This is summed
up in in Tab. 5.1.

KO Index potential for thunderstorm occurrence
(airmass strati�cation)

KO > 6 weak (stable)
2 ≤ KO ≤ 6 moderate (indi�erent)
KO < 2 high (unstable)

Table 5.1.: Common classi�cation of KO-Index values (Kaltho� et al., 2010).

Within the following analysis the usual classi�cation given in Tab. 5.1 is shifted
to lower values as can be seen from Fig. 5.7. With the common thresholds almost
all evaluated cells would be considered to be in the space of unstable atmospheric
conditions, only a low percentage would be classi�ed having a moderate potential
for storm development and even less would be assigned a weak potential. In case
the surface information of the COSMO-EU model is used instead of the surface
VERA information, for the calculation of the KO-Index, almost all cells would
be considered to be in the space of stable atmospheric conditions (not shown).

Figure 5.7.: The amount of hits(blue)/false alarms(red) for each KO Index value be-
tween lower than -18 and lower than 10, normalized by the total amount
of hits/false alarms.

Di�erences between literature values and observed values for meteorological in-
stability indices are often due to the region they were originally designed for.
Most of these indices were originally developed for the continental U.S. There,
more extreme values for these indices are common, due to the higher degrees of
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instability often observed over the great plains in comparison to typical European
conditions. This is not the case for the KO-Index which was developed at the
DWD. The "KO" in KO-Index abbreviates the German translation of the word
"convective". The literature values for the KO-Index are calculated for radiosonde
measurements and are applicable over Europe. Thus, the key di�erence lies in a
too stable thermal strati�cation within the model data. It is a known problem,
that - at least for the summer months - the COSMO-EU model on average is
too stable (Baldauf et al., 2007; P�üger, 2004). This is the reason for KO values
indicating stable conditions if only COSMO-EU data is used. The inconsistency
between the COSMO-EU data and the VERA surface analysis leads to the results
shown here with KO values indicating mainly too unstable airmass compared to
the KO values in the literature. This leads to a shift of the classi�cation to lower
KO values here, based on the statistics.
There are two main reasons why the version with the VERA surface θe (as in

Eq. 3.10) and not the COSMO-EU surface θe (as in Eq. 3.9) is used for further
analysis. First of all, the VERA information is expected to be a lot more realistic
than surface data from the model forecast. Furthermore, the statistical informa-
tion of the KO-Index values for hits and false alarms is more useful for the version
using VERA than for the version using only COSMO-EU. Using VERA improves
the ability to distinguish between the distributions for hits and false alarms.
In Fig. 5.7 the two distributions are separated quite nicely for higher KO values

which again leads to the possibility to �lter false alarms with the KO data. Only
2.2 % of all hits (158 cells) show KO values above 3, in contrast to 14.0 % of
all false alarms (3881 cells). KO values greater than 1 are found for 5.8 % of all
hits (410 cells) and 28.5 % of all false alarms (7887 cells). An overview on these
cumulative percentages for the KO Index is shown in Fig. 5.8.

Figure 5.8.: Cumulative percentage of KO value frequencies above the given KO-Index
for hits (blue), false alarms (red), and the di�erence of the two values
(green). For further description see text.

In contrast to θe the cumulative percentages now are calculated for all KO value
frequencies above the given KO value. The di�erence peaks at a KO of -2 with
a value of 33.1 % (25.4 % of all hits and 58.5 % of all false alarms have higher
values). The argumentation for constructing the fuzzy set is the same as described
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earlier for the fuzzy set of the θe data. Thus the values around this peak in the
di�erence will again be used to pinpoint a transition in the fuzzy set, here between
neutral and unstable, while the low, positive values mentioned earlier, where only
few hits lie above, will be used for the transition area between stable and neutral
conditions. This leads to the fuzzy set shown in Fig. 5.9 with a transition from
unstable to neutral between KO values of -4 to -1 and a transition from neutral
to stable between 1 and 3.

Figure 5.9.: KO-Index fuzzy set with an arbitrary example value. A KO value of -3.5
is some 18% in the range of neutral KO values and some 82% in the
range of unstable KO values.

Due to the convincing results in the analysis of the KO-Index data no other type
of instability measure has been tested within this study.

5.2.3. Indicating lift

For information on the available lift in the middle of the troposphere an analysis
of the COSMO-EU vertical movement ω in 500 hPA is presented. The original ω
data of the COSMO-EU is a quite noisy �eld with wavelike structures that might
change the algebraic sign of ω quite often. This leads to the corrugated structures
in ω �elds that can be observed quite nicely in Fig. 5.10. Its quite easily seen
on the shown example map, especially in the southwestern part over Spain and
Southern France and in the eastern part over the Czech Republic, Austria, and
south to the former Yugoslavian countries. These small scale wave features will
be smoothed with a Gaussian kernel for the upcoming analysis to get an image
of the large scale features, in which su�cient lift for CI might occur.
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Figure 5.10.: Example plot of original ω data in 500 hPA. The thin black line is the
0 hPA/h contour. Darker gray resembles negative values (upward mo-
tion) and light gray is used for positive values (downward). The range
of resolved values is from -300 hPA/h to 300 hPA/h.

Variations of the edge length for the kernel of 5 pixels (35 km), 9 pixels (63 km),
and 17 pixels (119 km) were tested to �nd the minimum smoothing needed. The
version with the 17 pixel edge length is the �rst which does not show the corru-
gated structures and is shown in Fig. 5.11.
Plots of the same example time step for the two tested versions that were not

used for the analysis can be found in the Appendix. In line with the original
and the �nal smoothed versions from Fig. 5.10 and Fig. 5.11, they are shown in
Fig. F.4 and Fig. F.5. In Fig. F.4 the overall structure does not change very much
for the small kernel in comparison to the original image only the amplitude of
maxima and minima is smoothed obviously. The wave structures in the medium
kernel part of Fig. F.5 are still slightly visible. The smoothing by this kernel is
still too weak to eliminate all of these waves. To be sure to eliminate all of these
unwanted structures and thus to be able to focus on large scale movement the
largest of the presented kernels is used for the analysis.
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Figure 5.11.: Example from Fig. 5.10 after appliance of a Gaussian kernel for smooth-
ing the data.

The range of data analyzed for the smoothed ω data begins with values lower than
-100 hPa/h and ends at values higher than 80 hPa/h. However from Fig. F.6 in
the Appendix, we can see that most of the cells are within a range much closer
around 0 hPa/h. To be able to visualize the interesting area in more detail the
range for the statistical distributions shown within the next plots is zoomed in and
is shown from -15 hPa/h to 15 hPa/h. The normalized distributions in Fig. 5.12
show that their peaks are not separated as nicely as in the earlier cases.
For both earlier cases the normalized hits had a part at the edge of their

distribution where they had low values during a still quite high distribution for
the false alarms. Here the hits do not drop that nicely at the edge of their
distribution. This leads to the fact, that for low percentages of possibly �ltered
hits, the spread to the possibly �ltered false alarms is less than for the data shown
earlier. If we would �lter for example all cells where ω is greater than 10 hPa/h
this would have an impact on 3.4 % of all hits (238 cells) and with 5.8 % on a
slightly higher percentage of all false alarms (2542 cells). Using a threshold of ω
greater than 5 hPa/h would eliminate 9.2 % of all hits (650 cells) and, at least,
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already 22.4 % of all false alarms (6224 cells).

Figure 5.12.: The amount of hits(blue)/false alarms(red) for each ω value between
lower than -14 hPa/h and lower than 15 hPa/h, normalized by the total
amount of hits/false alarms. Zoom in smaller range of the data from
Fig. F.6 (top).

At the other end of the distribution, where the normalized percentage of the hits
per 1 hPa/h is higher than the normalized percentage of the false alarms, the
spread is quite small as well. This leads to an e�ect visible in Fig. 5.13.

Figure 5.13.: Cumulative percentage of ω value frequencies above the given ω in
hPA/h for hits (blue), false alarms (red), and the di�erence of the two
values (green). For further description see text. Zoom in smaller range
of the data from Fig. F.6 (bottom).

Within the shown range, the peak for the calculated di�erence between the cu-
mulative percentages of hits and false alarms is not as distinct as in the earlier
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shown data analysis cases. The di�erence peaks at 29.3 % for -7 hPa/h, where
already 48.1 % of all hits and 77.4 % of all false alarms include higher values.
Cells with ω values shown by a reasonable number of false alarms might be

�ltered when almost no hits are lost, and cells with ω values between that range
and the peak of the di�erence are di�cult to judge clearly. Thus, relying on the
same concept as earlier within this chapter to translate the statistical information
into a fuzzy set of the COSMO-EU ω data in 500 hPa results in the set shown in
Fig. 5.14. The shift from upward motion (CI forcing) to neutral conditions lies
between -7 hPa/h and 0 hPa/h and in the range from 5hPa/h to 10 hPa/h the
transition from neutral to downward motion (non-CI-favorable) takes place.
After the analysis of the ω data the question might arouse, why this ω data

is used anyway due to the results which showed to be less convincing than the
data taken for the other two ingredients. To answer this a short overview on
some other data tested as proxy for lift is presented here. The other ideas which
data might be used for indications of su�cient lift focussed on a horizontal �ux
analysis from VERA and more ω data by COSMO-EU using di�erent levels or ω
pro�les incorporating the information of multiple levels.

Figure 5.14.: Fuzzy set for ω in 500 hPa with an arbitrary example value. An ω value
of -12.5 hPA/h is 100% in the range of upward ω values.

The horizontal �ux analysis at surface level is a postproduction from VERA
output. This information on divergence and convergence, possibly triggering lift,
showed up to be not distinctive enough to get better information than from the
ω data. The statistics (not shown) indicate that the VERA convergence is even
a slightly less distinctive feature, for hits and false alarms, than the MFC shown
in the Appendix in Figs. F.1 to F.3.
For evaluating the impact of model updraft strength �ve ω levels (850, 700,

600, 500, and 400 hPa) were examined in more detail. Furthermore pro�les in-
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corporating some or all of these levels were tested, too. The information using
more than one level would be classi�ed as CI-favorable if the value is CI-favorable
in each single level and vice versa for non-CI-favorable conditions. A situation
where not all levels had the same algebraic sign would be neutral. This showed to
be not distinctive enough again. As extension a second approach to de�ne fuzzy
sets, like the one shown in Fig. 5.14 for the 500 hPa level, for each of these levels
was performed. Aiming at the construction of a second fuzzy logic combination
to get one ω-forcing value for each cell, this was examined brie�y and rejected
after not very encouraging results (not shown). The combination approaches did
not result in better abilities for �ltering than the easier, straight forward way of
simply using only one level.

In addition to put the use of the 500 hPa data into question an analysis for
other single levels was performed and is summed up brie�y. The normalized
percentages per bin are broader distributed for the other levels which means the
values in the central part of the distributions sink for the other levels and the bins
to the sides get higher values which is true for both, hits and false alarms. The
spread between hits and false alarms per bin is almost unchanged. An example
for these points is shown for the three levels of 500, 600, and 700 hPa/h in Fig. F.7
in the corresponding Appendix. Adding more levels would not change this result
but obscure the plot even more, that is why only three of the levels are plotted
here. The di�erence of the cumulative percentages, as key value used for the
translation from the analysis of possible �ltering to the fuzzy set, is changed only
very slightly for the di�erent levels. The peak value is the highest for the 500 hPa
level and the chosen level does not change the ω value at which the peak is to
�nd (as can be seen from Fig. F.8). These results lead to the conclusion the the
ω data in 500 hPa is still the most useful, of the tested data, for the evaluation
of the available mid-tropospheric lift.

5.3. Combination of indicators

The conceptual approach for the combination is to build a routine which runs
as kind of Cb-TRAM postprocessing and then checks each CI cell detected at a
Cb-TRAM daytime detection time step in two steps. The �rst step is to check
the CI cell for occurrence of lightning �ashes within the cell. If there is a lightning
detection inside the cell, it is kept as a cell which cannot be a false alarm. In
the second step all cells which do not incorporate lightning are tested for the "CI
forcing" that can be found at the location of the cell. The location is de�ned by
the polygon of the parallax corrected CI detection. This CI forcing is based on
the availability of the three thunderstorm ingredients discussed earlier - moisture,
instability, and lift. They are represented by the surface θe analysis from VERA
for indicating low-level moisture, the KO-Index calculated from VERA data and
COSMO-EU model data for an instability analysis, and mid-tropospheric vertical
motion in the COSMO-EU ω data (in 500 hPA) for the indication of lift. The
data chosen here as useful for the combination and the other data tested and
described in Sections 5.1 and 5.2, which are not used for the combination, are
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summed up in Tab. 5.2.

data type bene�t �nally used

lightning data (LINET) high yes
θe (VERA) high yes
MFC (VERA) medium no
KO Index (COSMO-EU & VERA) high yes
KO Index (only COSMO-EU) medium no
Convergence (VERA) low no
negative ω (updraft) in 500 hPa (COSMO-EU) high - medium yes
negative ω (updraft) in other levels (COSMO-EU) medium - low no
negative ω (updraft) with combination of levels medium - low no
(COSMO-EU)

data type bene�t �nally used

lightning data (LINET) high yes
θe (VERA) high yes
MFC (VERA) medium no
KO Index (COSMO-EU & VERA) high yes
KO Index (only COSMO-EU) medium no
Convergence (VERA) low no
negative ω (updraft) in 500 hPa (COSMO-EU) high - medium yes
negative ω (updraft) in other levels (COSMO-EU) medium - low no
negative ω (updraft) with combination of levels medium - low no
(COSMO-EU)

Table 5.2.: Classi�cation of the bene�t gained by each of the additional data tested
for the task of CI detection and nowcasting. Rows with data used for the
combination are additionally marked blue.

As an additional motivation for the fuzzy logic combination concrete results for a
type of combination with �xed thresholds shall be discussed. Therefore I would
like to illustrate with an example, the additional information about the CI cells
that can be gained, if the data analysis showed earlier is used to �nd �xed thresh-
olds for �ltering false alarms.
The example is visualized with the help of Fig. 5.15. It shows an illustration

of a fuzzy set (upper part), like the ones shown earlier, and its reduction to a
number line (lower part). The color represents the type of forcing for the sets
on the left and right side of the range with blue as non-CI-favorable and red as
CI-favorable part.

Figure 5.15.: The upper part shows an arbitrary input fuzzy sets with blue as non-CI-
favorable and red as CI-favorable part of the fuzzy set. In the lower part
the fuzzy set is reduced to a number line. The blue bracket marks the
�xed threshold between non-CI-favorable and neutral circumstances, the
red bracket marks the crisp threshold between neutral and CI-favorable
values



76 5.3. COMBINATION OF INDICATORS

If the values representing the beginning transition from the neutral to the blue
or red area would be taken as �xed thresholds (brackets on the number line) for
each of the sets boundaries we can calculate an amount of false alarms that could
be �ltered with this approach. The �xed thresholds at the transition to the blue
area (the blue bracket) bounds, for each data source, all cells which are at least
partially within the non-CI-favorable fuzzy set. Combining the data with �xed
thresholds in the way, that a CI cell is judged as non-CI-favorable if all ingredients
are non-CI-favorable, results in the following numbers for the available sample.
As shown in Tab. 5.3 the amount of false alarms where all ingredients are judged

as at least partially non-CI-favorable is 1195 cells (4.4 % of all false alarms).
Within this criteria hits are only represented by 12 cells (< 0.2 % of all hits).
Thus if this combination of �xed thresholds would be used these false alarms could
be �ltered without losing a meaningful amount of hits. The other thresholds at
the transition to the red area (red bracket) bounds all cells which are at least
partially within the CI-favorable fuzzy set. Following the same combination this
CI-favorable range above the thresholds (see Tab. 5.3) incorporates 6619 false
alarms (24.2 % of all false alarms) and 4041 hits (58.5 % of all hits). Filtering all
cells which are not within this set would thus lead to �ltering 20783 false alarms
(75,8 %), but also to losing the tremendous amount of 2863 hits (41.5 %).

�xed threshold with all hits false alarms
input at least partially...

...non forcing 12 1195
(blue in Fig. 5.15) (< 0.2 %) (4.4 %)
...forcing 4041 6619
(red in Fig. 5.15) (58.5 %) (24.2 %)

Table 5.3.: The table shows results for the example of a combination with �xed thresh-
olds. For each amount of hits/false alarms the percentage of all hits/false
alarms is added in parentheses. For further descriptions see text.

With the aim of losing as few hits as possible only a small amount of false alarms
(4.4 %) could be �ltered directly. In addition, this would happen without gaining
a lot information on the other cells. The second threshold would �lter too much
of the hits which would result in a low oPOD dev of 0.185 in contrast to an at
least fairly reduced oFAR dev of 0.621. For comparison see the blue column for
acctrack in Tab. 4.2 (oPOD dev and oFAR dev values for the larger veri�cation
dataset in Ch. 4).
The idea now in using a fuzzy logic combination is �rst of all to allow a degree

of uncertainty in the choice of the threshold values, by using a smooth transition
and, in addition, it helps to gain further statistical information on the cells after
incorporating the additional data. The cells are not just classi�ed as below or
above a combined threshold but they gain a new attribute with additional infor-
mation by using the fuzzy logic. For each cell (without lightning occurrence) we
get an index value for the CI forcing, indicated by the fuzzy logic combination of
the fuzzy sets for each additional data, as described earlier.
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Figure 5.16.: Visualization of the output fuzzy sets for the arbitrary examples of input
fuzzy sets shown earlier within this Chapter. For further description see
text.

In Fig. 5.16 (same as Fig. 3.15) we see the output fuzzy sets with the resulting
CI forcing for the arbitrary example values in the input fuzzy sets shown in
Figs. 5.6, 5.9, and 5.14. The output fuzzy sets are constructed as described in
Section 3.4, following the description in Tab. 3.5, which explains the assignment
of the di�erent rules in the rulebase (see Appendix C) to the di�erent output
fuzzy sets. Thus, this resulting CI forcing value of 6.7 is an arbitrary index
interpretation of the input fuzzy sets in an arbitrary range from 1.5 to 8.5. As
covered in the passage below, the CI forcing value can not be interpreted directly
as a kind of CI probability ranging from 0% to 100%. Neither can it be translated,
corresponding to the minimum and maximum value reached in the CI forcing
value range, as 15% to 85%, as might be an intuitive procedure, too. However,
by the construction of a meaningful rulebase to get this CI forcing index value
from the output sets, it can be expected, that the probability of a CI cell verifying
as hit is higher for higher CI forcing values.

This leads to the same type of statistical analysis as already performed for the
input data, to get further information on a kind of CI probability for the di�erent
CI forcing index values. Clustering the CI forcing index in 0.5 index value bins
and afterwards counting the amount of hits and false alarms per CI forcing index
bin leads to the possibility to calculate the percentage of hits per bin. This results
in a CI probability for each bin. The normalized amount of CI hit and false alarm
cells per bin is shown in Fig. 5.17. The size of the bins is chosen freely again to
get a reasonable detailed distribution of the data.

The design of the rulebase (see Tab. 3.5) is somehow re�ected in the distribution
in Fig. 5.17. In contrast, to a combination with �xed thresholds, the fuzzy logic
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Figure 5.17.: The amount of hits(blue)/false alarms(red) for each 0.5 CI forcing index
value bin between lower than 2.0 and lower than 8.5 and the ones equal
to 8.5, normalized by the total amount of hits/false alarms.

combination results in a whole spectrum of CI forcing values instead of only few
possible discrete values. The amount of hits per output set is at least to some
degree related to the amount of rules leading to this set. The centers of the
�ve output fuzzy sets for the CI forcing shown in Fig. 5.16 ("very low", "low",
"medium", "high", and "very high") are at 1.5, 3.0, 5.0, 7.0, and 8.5. There are
no values below 1.5 and above 8.5 due to the lack of a neighboring set leading
to a shift to these lower or higher values. The set with very low CI forcing has
only one decision rule leading to this output and contains only few hits and false
alarms. For the medium forcing six rules point to this result and the distribution
shows a slight peak for the lower than 5.5 bin, where the CI forcing value of 5.0
belongs to. The sets for low and high forcing are met most often by the rules
(nine times each) and are quite populated (≤ 3.5 and ≤ 7.5). The set with very
high forcing is very populated despite only one rule resulting in this set.

For all normalized percentages per bin with values lower than 6.5 the false alarm
value is higher than the value for the hits, for the one with lower than 7.0 it is
about equal and for the following ones the normalized amount of hits is higher
than the one of false alarms. The low amount of hits in the very low forcing
category, is an important feature for possible �ltering approaches. In case all cells
with CI forcing values lower than 3.0 would be �ltered only 0.6 % (42 cells) of all
hits would be lost, but 5.1 % (1401 cells) of the false alarms might be dismissed.
This can be seen from the cumulative distributions shown in Fig. 5.18.

As already mentioned the likelihood of a detected CI cell to show further de-
velopment can be related to the CI forcing value. CI forcing values greater or
equal 7.0 are found for 9604 false alarms (35 % of all false alarms) and for 3452
hits (50 % of all hits). Furthermore for the hits the cells including lightning have
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Figure 5.18.: Cumulative percentage of CI forcing index value frequencies below (or
at 8.5) the given CI forcing index for hits (blue), false alarms (red), and
the di�erence of the two values (green). For further description see text.

to be incorporated in the analysis of CI-favorable conditions too. Thus 4922 cells
show forcing values ≥ 7.0 or lightning, which represents 71.3 % of all hits. These
numbers would result in an oFAR dev of 0.661 for a CI forcing value greater or
equal 7.0. If the amount of hits ≥ 7.0 (+ cells with lightning) is divided by the
total amount of cells with values ≥ 7.0 the result can be interpreted as a CI prob-
ability for cells with a CI forcing value ≥ 7.0. The probability values are based
on the performed statistical analysis. The resulting probability for CI forcing ≥
7.0 is 0.339 or 33.9 %. The calculation of the CI probability is de�ned as hits
divided by overall CI cells and corresponds to 1−oFAR dev. This is the same
equation as the Success Ratio SR in Eq. 3.3.

CIprobability =
hits

all CI cells
=

hits

hits+ false alarms
( = SR) (5.1)

These calculations of oFAR dev and the CI probability can be performed for each
CI forcing value and are shown also as cumulated values greater or equal the CI
forcing values in Fig. 5.19. The bins are interpreted di�erently here as in Fig. 5.17
or Fig. 5.18. The separation here is not analyzed for values lower than the given
value but for values greater or equal the CI forcing values. This shows that CI
detections with CI forcing value of greater or equal 8.0 or lightning detection
within the cell in comparison to the available false alarms within this category
result in an oFAR dev of 44.8 % or a CI probability of 55.2 %. For the lower CI
forcing values Fig. 5.19 shows always the values of oFAR dev and CI probability
for the cells in each bin and cumulative for all cells within this bin or the ones
with higher forcing values.
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Figure 5.19.: Cumulative calculated oFAR dev (blue) and CI probability (green) above
the given CI forcing index. Furthermore oFAR dev (red) and CI proba-
bility (purple) calculated for each individual bin.

A discussion of the information gained by the combination and how it could
�nally be used will follow in Chapter 6. However the cumulated oFAR dev or CI
probability shows nicely that the level of con�dence in the CI detection rises with
higher CI forcing values. In case the CI forcing value is not taken into account
one out of �ve cells develops to a stage two or three detection. For cells with a CI
forcing value ≥ 4.0 one out of four cells develops, for cells with a CI forcing value
≥ 6.5 already one out of three cells develops, and �nally for cells with a CI forcing
of around ≥ 7.8 even every second detection develops to a higher detection stage.
The values, calculated per bin, illustrate how small the amount of hits compared

to the amount of false alarms is for low CI forcing values. In the three bins with
the lowest CI forcing values the CI probability for a detection is between 2.4 % (11
hits and 455 false alarms) and 3.3 % (18 hits and 526 false alarms). In summary
these three bins incorporate the above mentioned 42 hits and 1401 false alarms
which signi�es that approximately 1 out of 33 cells develops to one of the next
development stages (2.9 % CI probability).
The choice which value to use as CI forcing threshold for �ltering of false alarms

depends on the needs and expectations of potential users. If situational awareness
in areas with �rst developments shall be raised, only these aforementioned low
CI forcing values might be �ltered. In cases where a high probability of further
development is desired, minimizing false alarms despite losing hits, the threshold
for �ltering could be raised to higher CI forcing values. More discussion and ideas
on usability and further development of the method will follow in the next two
chapters.



6. Discussion

Within the previous Chapters results for the veri�cation of the original Cb-TRAM
CI detection performance (Ch. 4) and the improvement of the CI detection and
nowcasting by the use of additional data sources (Ch. 5) are presented. Within
this chapter some questions related to these results shall be discussed.
The discussion is divided in two parts, one related to the results of the Cb-TRAM

CI detection veri�cation and the second one with focus on the results of the com-
bination with additional data. First of all the choice of the veri�cation method is
advocated and the veri�cation results are put into perspective compared to other
studies, both relating to the results in Ch. 4. Besides the use of Cb-TRAM output
of other detection stages as veri�cation data set, the question, how Cb-TRAM
itself might be further developed for the CI nowcasting, is discussed as well. In a
second part of the discussion the focus is more on the results presented in Ch. 5.
Here the key points are the usefulness of the additional data, the choice of the
data sources, the fuzzy logic based data combination, and the applicability of
the resulting Cb-TRAM CI detection and nowcast. In addition a view on the
question if the methodology for the postprocessing might be applicable for other
CI nowcasting methods, or even more general for other nowcasting methods, is
given as well.

Veri�cation of Cb-TRAM CI detection

To begin with, an oPOD dev (acctrack in Tab. 4.2) of approximately 0.25 is not
as bad as one might think at �rst. This result means that the detections and
their nowcast for up to one hour cover 25 % of the storms that develop within
the next 60 minutes. The nowcast is based on a detection of a CI suspect and
there are no nowcasts of future developments in areas where nothing is detected
right now, thus CI cells which do not exist already in a "detectable" shape but
start to develop in 30 or 40 minutes are impossible to hit by this type of nowcast
which does not predict future CI events. This leads to a high count of misses for
cells whose development from CI to a new cell has a short lead time. If the lead
time of a CI detection until cell development to stage 2 or 3 is only 15 minutes it
will be counted as miss in the 20 to 60 minutes earlier performed analysis.
The mean lead time was not evaluated within this analysis. To evaluate the

leadtime the analysis would need to be focussed on the lifecycle of the individual
cells and not on the analysis of the detected contours and their nowcasts per
time step. A "perfect" storm, which develops independent from any other storm
systems, is expected to grow in approximately 10 to 15 minutes from �rst cloud
development until it starts to precipitate. Which means 10 to 15 minutes from
the �rst CI detection (stage 1) until cell development to stage 3. In cases the cells
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grow very fast, the Cb-TRAM criteria for CI and for rapid development (stage 2)
might both be ful�lled within the same pixels. In these cases the cell is de�ned
to be in the further developed stage in the sense of the lifecycle. Furthermore
this means if CI and the rapid development of stage 2 are detected close to each
other for the �rst time in the same time step, this cell will start with a stage
2 detection instead of a CI detection. This problem occurs as well for storms
developing in the direct environment of an existing storm. If the di�erence in
location is very small (lower or equal two MSG SEVIRI pixels as described in
Ch. 3.1) the objects of lower detection stages will be incorporated into the mature
object within Cb-TRAM.
Another problematic case is the existence of cirrus clouds. Cb-TRAM cannot

detect CI below preexisting cirrus clouds despite they are very thin. This is
typical to satellite based CI detections as can be seen from comparable other CI
detection tools like SATCASTv2 (Walker et al., 2012).
The type of evaluation here should give an information on the usefulness of

the nowcasts produced with the Cb-TRAM CI stage detections, as they are right
now. That is the reason why the cell nowcasts are evaluated in this manner.
Another approach would be to check for each orange stage 2 cell, and each red
stage 3 cell, if a yellow CI detection can be found at the beginning of their cell
histories. This is more appropriate if the lifecycle of the cells shall be in the focus
of the study. In cases where one cell develops from more than one CI detection
this method would lead to a wrong count for false alarms. Only the one CI cell
which is tracked within the history would be counted correctly as hit. For further
description of the tracking see Ch. 3.1 or Zinner et al. (2008).
Despite the high amount of false alarms, the bias (see Eq. 3.5), with a value of

approximately 1.3, is still close to 1 and thus the Cb-TRAM CI stage does not
too heavily overforecast the amount of new developments.
For the high numbers of false alarms and misses one way of interpretation is

obvious. This would be that the CI detection does not work well and the high
number of false alarm cells and the high number of miss cells simply are not
related at all. However, as already mentioned, this is the veri�cation result for
the usability of up to 1 hour thunderstorm nowcasting for new developing cells
based on CI detections and not a CI prediction for future CI events. In addition
a kind of eyeball veri�cation on many test cases brought up the two following
example scenarios which can be observed quite regularly.
On the occasion that CI cells are detected for the �rst time in an area where

no other clouds exist, no meaningful transition vector �eld for the area can be
calculated. In these cases the nowcasts cannot be extrapolated and the future
cell positions are expected to be at the same place where the cell is right now.
If then a cell development to a higher detection stage takes place already in the
next time step with the cell being slightly shifted from the earlier CI detection
and not overlapping, it might happen that these two cells are misleadingly not
tracked as one cell. In these cases the �rst cell without the nowcast is counted
as false alarm and the further developed cell nearby is counted as miss. This
resembles a classical double penalty problem for close forecasts described earlier.
In the veri�cation types tested, this one would only be resolved as a hit if the
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version with the search radius would be used, and then only if the chosen radius
is large enough. This can be classi�ed as a tracking error which can be observed
at developments within large cloud free areas.
The second scenario can often be observed with cells in mountainous area in

weak wind situations. Cells often start to bubble in valleys and are detected
as CI suspect but do not develop to the next stage within the next time steps.
Sometimes these cells eventually develop to one of the next stages with a lead time
of more than 1 hour. Due to the construction of the veri�cation, cells with lead
times above 60 minutes are all counted as false alarms, for their �rst detection
timesteps until they are within one hour to their further development. Despite
the fact, that these clouds, being in the initiation stage for such a long time, seem
to be quite unrealistic results, the detections still can be useful to raise situational
awareness of forecasters to observe this area more closely. Even though showing
not a CI event in the strict understanding of convection initiation, which means a
�rst development of a then ongoing convective growth, these repeating CI events
can prove bene�cial. An area with initiation lasting for more than one hour
de�nitely does not describe the initiation of the later on developing cell solely,
but it marks �rst, weaker developments which collapsed again and can be seen
as precursors of the later on successful CI event.
As an additional point to mention, the performance of the Cb-TRAM CI de-

tection surely can get better by further studies on the detection itself. This was
to some degree done within a master thesis by Merk (2012) who successfully
incorporated a cloud mask after Berendes et al. (2008) and some of the MSG
adapted SATCAST interest �elds after Siewert et al. (2010) into the CI detection
of Cb-TRAM. With a veri�cation approach focussing on the lifecycle of the cells
and only few test cases presented, this work already shows encouraging results.
The key problem here as on any detailed work on Cb-TRAM before is that the
focus was on the normal scan data. This thesis presented here is the �rst one
which solely focused on rapid scan data. Comparison of the detection for both
update rates leads to the impression that the rapid scan CI detection is more
noisy than the normal scan detection. This might possibly be solved simply by
small changes in the detection criteria or the use of di�erent time steps to calcu-
late the trends for the detection. However, further work needs to be done here
clearly.
The use of stage two or three Cb-TRAM detections to verify stage one nowcasts

might be surprising in the �rst moment. The next few sentences shall clarify the
choice of a veri�cation data produced by the same tool. Radar data is usually
the �rst choice as data source to verify any kind of thunderstorm nowcasting.
As described already in Chapter 3 a radar re�ectivity threshold around 35 dBz
(Roberts et al., 2012) to 37 dBz (Kober & Ta�erner, 2009) is commonly used to
de�ne thunderstorm signals in radar data. However radar data is not the appro-
priate data source within this study. The quality of all the available European
radar composite data is simply too unreliable for veri�cation purposes over some
parts of the area examined here. The main reason for the partially low quality are
technical problems with the construction of a European radar composite due to
the fact that there is no common scan strategy used by the di�erent national radar
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networks across Europe (Kober & Ta�erner, 2009). In Zinner & Betz (2009) and
Zinner et al. (2012) good veri�cation results for a comparison between LINET
lightning data and Cb-TRAM mature cells are presented for normal scan data.
They suggest that Cb-TRAM mature detections resemble the "truth" shown by
the lightning data quite good. Furthermore the di�erences between rapid scan
and normal scan detection objects are a lot less pronounced for stage two and
three detections. Due to that argument the results of Zinner & Betz (2009) for the
Cb-TRAM normal scan mature cells, seem to be realistic for rapid scan mature
storm detections as well. The Cb-TRAM detection of stage two or three is inde-
pendent of the detection for stage one, which is important, too. This led to the
approach using directly the Cb-TRAM polygons for further developed stages as
proxy for the "truth", as well facilitating the implementation of the cell ID com-
parison, the object matching, and thus the object-based comparison explained
earlier.

In comparison to other studies the completely di�erent type of evaluation,
as described below, and the strict usage of stage 1 only has to be taken into
account. Comparability of studies would eventually be higher if stage 1 (CI)
and 2 (rapid development) of Cb-TRAM would be evaluated together. Often
fast developing cells are detected as orange right from the beginning even with
5 minute rapid scan data. Other veri�cation approaches for CI nowcasts can be
found, for example in Mecikalski & Bedka (2006), Mecikalski et al. (2008), Siewert
et al. (2010), or Walker et al. (2012), here with the aim to verify SATCAST or
SATCASTv2 CI nowcasts. A big di�erence between the study presented here
and these others is the very large size of the test dataset used here, and the
evaluation of weak, or almost non-convective days within this study. The choice
of the veri�cation method and the interpretation of the chosen methods is di�cult
to compare too. The other studies show higher POD values and slightly lower
FAR values, but for a non-comparable, pixel-based fuzzy veri�cation method
for matching the SATCAST CI detections with radar data. Furthermore an
important reason for the lower scores within this study presented here, besides
the mentioned di�erences in evaluation, seems to be the choice of the test dataset.
In contrast to other studies, using only days with strong convective activity, the
test dataset that is used within this study here also includes days where only
few or even no mature convection occurs. This raises the possibility of producing
false alarms in the detections. The focus within the other studies was more on
the achieved lead time per detection. Thus for each cell detected the lead time,
until it can be matched with radar signals anyhow, was measured. Within this
thesis the focus is more on the overall useability of the nowcast for up to 1 hour.

Given the limited predictability of convection, one might wonder how good a CI
nowcast could ever be. CI occurs on a small scale an is only a short period at the
very beginning of the convective lifecycle. After the detection of CI the further
development is heavily dependent on the current convective environment. If one
cell successfully develops to a mature storm it might in�uence the convective
environment for other cells which are nearby. It might hamper the development
of other CI suspects as well as it might trigger new thunderstorms, as described
in Ch. 2. A meaningful estimate of an achievable minimal oFAR dev value is
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quite di�cult. The oFAR dev value could easily be reduced below the current
values, but not without losing a substantial amount of hits. oFAR dev might
even be arti�cially reduced to 0.0 if only CI suspects including lightning are kept
as CI detections. For oPOD dev it seems de�nitely unrealistic to expect a value
of 0.5 or even more for the nowcasts with up to 60 minutes leadtime. The short
timescale of CI and its development speaks in favor of probabilistic information
for such extended leadtimes. As already explained, the veri�cation result gives
the information that approximately one quarter of the storms of the next hour
are correctly detected within the CI detections and their nowcasts. Moreover this
work suggests how these nowcasts can be used and interpreted with the help of
additional data to gain a probabilistic information on the future development for
each CI detection object which leads to the next part of the discussion.

Combination with additional data

The �rst point to be discussed here is the choice of the additional data sources.
The aim was to get additional information about the three basic ingredients for
the development of thunderstorms � low-level moisture, instability, and lift. The
data should have su�cient resolution in space and time to generate a relevant
analysis, re�ecting the current atmospheric circumstances as detailed as possible.
Due to the desire to get the most realistic information possible, observational
data is preferred if available with su�cient resolution. Therefore the VERA tool
with its highly-sophisticated interpolation (Steinacker et al., 2000b) was used to
produce continuous surface analysis data. For upper air information no su�-
cient observational data is available, thus a numerical weather prediction model
is needed to get additional information for the analysis. The used COSMO-EU
model focusses on the meso-β scale with a grid spacing of 7 km. The focus of
the model is the accurate prediction of near-surface weather conditions concen-
trating on clouds, frontal precipitation, fog, and orographically and thermally
forced local wind systems (Schättler et al., 2011), whereas convection is fully pa-
rameterized. The wind systems, near-surface conditions, and a good forecast of
the frontal position are important for the desired information on the above men-
tioned moisture, instability and lift. The second DWD version of the COSMO
model,the COSMO-DE model, is a meso-γ scale version with 2.8 km grid spac-
ing. The aim here is a direct simulation of severe weather events triggered by
deep moist convection. At the �rst moment this raises the expectation that the
COSMO-DE would be the better alternative for CI nowcasting. Thus, why the
COSMO-EU is used within this study? There are two key factors militating
for the use of COSMO-EU. First of all, a quite mundane reason for the use of
COSMO-EU instead of -DE is the area covered by the models. The COSMO-DE
domain is smaller than the area analyzed within this study. As second reason,
the COSMO-DE sometimes shows errors in the timing and/or location of the
convective cells (Dahl et al., 2011; Köhler, 2011) which might to a big part be
related to de�ciencies in the quality of the boundary layer parameterization (Bal-
dauf et al., 2011b). COSMO-DE is able to forecast deep convection explicitly, but
individual convective cells are hardly predictable. Potentially, the COSMO-DE
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convective-scale ensemble prediction system (EPS) (Baldauf et al., 2011b) is ca-
pable to overcome this issue to some degree. However, the COSMO-DE EPS is
operational since summer 2012 and thus its quality in producing realistic convec-
tion might only be tested in future studies as will be brie�y discussed later in the
outlook of this thesis. Anyway, if the aim is to represent the (large scale) con-
vective environment around CI suspects, high resolution is not needed. Neither
is the trend of the environmental information with one hour temporal resolution
important for CI nowcasting. The convective timescale is quite short in compari-
son to changes of the large scale environment and CI itself is only a short process
at the beginning of storm lifecycles.
The data tested and �nally used from these data sources was discussed already

in Chapter 5 and is summed up in Table 5.2. With θe, KO-Index, and ω (updraft)
in 500 hPa, one additional information per thunderstorm ingredient was chosen
which shall help to distinct between developing and non-developing CI cells. In
addition lightning data was used aside of the data combination to avoid to �lter
CI cells erroneously, as described in Section 3.3.
In the following some aspects on the fuzzy logic combination shall be discussed.

The �rst question to address, after the additional information described above,
is why only three additional data types (one per ingredient) and not more poten-
tially useful data is combined within the fuzzy logic. More data per ingredient
might lead to even more additional information. It seems reasonable to keep the
weighting between the ingredients equal, despite it is proofed that the data for
one ingredient is less reliable. For one information per ingredient we have three
input fuzzy sets with three classes (non-forcing, neutral, forcing). This leads to
input classes(no.ofindicators) di�erent rules in the fuzzy logic rulebase (33 = 27
for the three ingredients right now). Raising the additional information per in-
gredient just to two �elds describing moisture, two for instability, and two for
lift would already result in a rulebase with, for example, 36 = 729 rules. In
this case it might as well make sense to include a weighting within the additional
information describing the same ingredient. This would lead to a fuzzy logic sys-
tem which is quite challenging to understand and to tune. Thus in case of an
extension of the fuzzy logic system the results have to be interpreted carefully
and the performance needs to be tested properly. Beside the additional work
needed the question is if there is enough additional information which would be
useful if the fuzzy logic combination shall not be too heavily dependent on the
quality of the used model data. Some ideas to this point will be presented in the
outlook as well.
However, instead of discussing potential extensions in more detail, the current

fuzzy logic system shall be central here. A crucial part of the combination is the
de�nition of the fuzzy input fuzzy sets and the sensitivity of the results to the
chosen values for the transition ranges. The input fuzzy sets where, as mentioned
above, chosen to di�erentiate between values of the additional data which proofed
to be non-forcing, neutral, or forcing for CI development with the help of the
performed statistical analysis. After the statistical analysis the aim was to lose
as few hits as possible while �ltering as much false alarms as possible. The
transition from the non-forcing to the neutral range is chosen by �ltering almost
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no hits at this boundary. The transition between neutral and forcing is located at
values of the additional data where the di�erence between the percentages of false
alarms and hits, that might be �ltered successfully, peaks. Thus the de�nition
of the values where the transition ranges are located can be advocated with the
statistical analysis shown earlier, but how important are the exact values of the
boundaries of the transition ranges? To answer this question, two aspects have to
be scrutinized: the in�uence of the exact values and of the size of the transition
range. The exact boundaries seem to be less important. Small shifts here shall
cause only small shifts in the distribution of the results. More important is the
choice of the transition range. In case of too small transition ranges the fuzzy logic
combination almost loses its fuzzyness. Too steep transitions, thus small ranges,
result in distinct peaks around the center values of the di�erent output fuzzy
sets. In contrast, too shallow transition ranges might smooth the distribution of
the resulting values too much and might lead to less di�erentiation by weakening
the in�uence and validity of the di�erent input fuzzy sets. In addition, if the
transition gets too smooth the considerations where to place the transition ranges
might become e�ectively meaningless.

A potential point of criticism of the data combination presented within this
thesis might be,that the VERA surface θe is used twice. As indicator for mois-
ture and, together with model θe on other levels, to quantify instability with the
KO-Index. This leads to the assumption that both ingredients would indicate a
possible �ltering for the same cells due to the low θe value which makes the ad-
ditional information of the other levels used within the KO-Index less important.
The intersection of the cells that might be �ltered due to low θe (low moisture)
and the ones with high KO-Index value (stable) was tested during the analysis of
the additional data (not shown). The cells with low θe have KO values covering
more or less the whole spectrum of the KO values from fairly unstable to stable
conditions. If only cells with KO values indicating stable conditions are tested,
the corresponding θe values cover again a wide range covering not only dry con-
ditions. Thus low moisture might coexist with unstable conditions and vice versa
despite using the same surface θe information for the calculation.

In the following the gain for the Cb-TRAM CI nowcast by using the additional
data in line with the applicability of the resulting nowcast will be considered in
more detail. As shown in Fig. 5.18, the achievable amount of �ltered false alarms
without losing hits is around 5 % of all false alarms. If the loss of hits is accepted
the same Figure shows, that the maximum di�erence in the percentage of �ltered
false alarms and hits is achieved by a sacri�ce of around 25 % of all hits. This
would lead to the possibility of �ltering almost 65 % of the false alarms. The most
useful �ltering depends on the aims of the user of the nowcast. If false alarms
are problematic for the user the amount of false alarms should be �ltered despite
losing many hits as well. In case the situational awareness for new developments
is important for the user and false alarms are less problematic in comparison to
the awareness, the �ltering shall be performed carefully and only few or no hits
shall be �ltered. Of course, there are not just these two possibilities to chose for
a user, any value within the transition zone between �ltering 5 % and 65 % of the
false alarms (losing 0 - 25 % hits) can be chosen and translated to a CI forcing
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value. An aspect of the CI warnings which is not analyzed within this thesis are
warnings concerning CIT (Convectively Induced Turbulence). Also detections of
cells which did not develop to a mature storms might be useful to send o� a CIT
warning. This aspect is di�cult to evaluate due to a lack of su�cient veri�cation
data.

An important point about the applicability of the data fusion is the su�ciently
frequent and near-realtime availability of the additional data sources. In the case
of the data used within this study the �ve minute rapid scan data is used for
the Cb-TRAM analysis. The time di�erence between the satellite scanning time
and the �nal Cb-TRAM detection results is around six minutes for the current
domain. The lightning data of the last �ve minutes before the analyzed time step
is easily available then. The additional data used for the data combination is
updated only hourly with the data used right now. Thus all Cb-TRAM analysis
time steps between full hours need to use the VERA and COSMO-EU data for
the last full hour within the postprocessing. However, the data to use is available
in time for every Cb-TRAM analyzed time step. The time the postprocessing
needs is dependent on the amount of objects and the size of the domain, but
does not take more than one additional minute. If the methodology is going to
be used operationally the input data might be updated more often depending on
the domain. The synop data which is needed as input for VERA is measured
in 10 or 15 minute intervals by most of the European national weather services.
Important for the quality of the VERA output is the availability of enough data
points within and also around the domain that should be analyzed. Thus if the
analysis is performed for example for the Terminal Maneuvering Area (TMA) of
the airports Frankfurt or Munich the DWD synop data has to be complemented
with synop data of the respective neighboring countries. For the model data
there are two possible ways of raising the update ratio of the data. The model
output which is available hourly might be interpolated for timesteps in between
or the model used might be changed to one with a higher frequency of output
time steps. The change of the model would lead to a repetition of the statistical
analysis to de�ne the input fuzzy sets for the combination properly. However,
the change of the domain might lead to a shift in the statistical distributions
anyway. Thus a change of the analyzed domain will require adequate testing
and, in most cases, some appropriate �ne tuning to optimize the results for the
area. In addition it would make sense to build up a permanently growing (for
an extended period) statistical dataset for each domain where the postprocessing
is used. The newly gained information by enlargement of the statistics can not
only be used for tuning of the existing combination, it might as well enable to
include information on diurnal or seasonal changes of some indicators. The same
θe value, for example, might imply a di�erent future behavior for a CI detection
on a March morning than for a CI cell on an early afternoon in August.

In summary, the gain of the presented object-based concept to build a combi-
nation of multiple data sources for postprocessing of satellite-based CI detections
and their nowcasts was shown successfully. Adapting the methodology for dif-
ferent CI nowcasting methods can be realized quite easily. The most important
points for generalization of the results can be summed up in a few requirements.
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Beside a nowcasting tool detecting CI suspect objects the keys to maximize the
achievable gain for the detection quality are

� a reasonable veri�cation method to distinct honestly between hits and false
alarms.

� a su�cient sample size for the statistical analysis to design reasonable input
fuzzy sets.

� the quality of the additional data sources in re�ecting the available ingre-
dients and thus in di�erentiating between hits and false alarms.

In line with the results of the study presented here similar studies where launched
by other groups as well. Walker et al. (2012) announce for example statistical
approaches that include nonsatellite datasets for the reduction of false alarms
which are currently developed for SATCASTv2. The UW-CIMSS (University of
Wisconsin � Cooperative Institute for Meteorological Satellite Studies) is cur-
rently working on the analysis of additional data and its time trends within
satellite detected (CI) objects as well (Wayne Feltz, personal communication,
March 2012). Parts of their study, that will be presented in Hartung et al. (2012)
and Siegla� et al. (2012), introduce a "satellite-based object tracking framework"
which "functions as an independent vehicle from which a fused array of mete-
orological data including satellite-derived [...] Cloud-Top Cooling (CTC) rates,
radar, and lightning information for each cloud-object can be examined simul-
taneously". For analyzing the additional data, they are remapping the multiple
data �elds into the objects and do not apply any further data fusion. The re-
search on SATCASTv2 and the work around UWCI at UW-CIMSS are the only
other groups which are referenced here within the discussion despite of the huge
amount of other convective nowcasting studies because of the common and quite
unique focus on (originally satellite-based) CI detection within these tools and
this thesis.
All in all, the results shown within this thesis and these other studies mentioned

here show opportunities how to successfully improve CI nowcasting. An impor-
tant point to mention is that the approach presented here can be a value-adding
postprocessing on top of the existing CI detection abilities for either of the men-
tioned satellite-based CI detection approaches, Cb-TRAM stage 1, UWCI, or
SATCASTv2, or comparable tools. Furthermore, this object based analysis of
multiple data sources seems to be an excellent methodology for nowcasting pur-
poses anyway, not just for CI, as will be further explained in the outlook at the
end of the next Chapter.





7. Conclusions and outlook

The key scienti�c question of this thesis is, how much can CI nowcasting be im-
proved by the use of multiple data sources? The results produced with the newly
developed concept demonstrate the gain of using multiple data sources. The
concept of the newly developed methodology and the results produced therewith
will be concluded here brie�y, leading to an outlook of possible future extensions,
developments, and adaptations of the ideas presented within this thesis.

Summing up the approach, Cb-TRAM rapid scan CI detections are evalu-
ated with a new object-based CI veri�cation methodology. For reduction of false
alarms a postprocessing with multiple additional data sources is introduced. CI
detections, which do not already include lightning signals, are further analyzed
with regard to their convective environment with the help of surface observation
analysis data and NWP model data. Information on available moisture, instabil-
ity, and lift is combined with a fuzzy logic data fusion approach, resulting in a
CI forcing value per each Cb-TRAM CI detection. These CI forcing values are
translated into a probability of further development for each CI object, which is
a valuable additional information.

The satellite-based Cb-TRAM algorithm is used as a state-of-the-art tool for
the early detection of initiating convection. An object-based veri�cation method,
developed especially for these CI nowcasts is used to evaluate the detection abil-
ities of the algorithm. With the aim to get proper statistics, the veri�cation was
performed for all CI suspects within a full convective season over Central Europe.
Then a postprocessing methodology is applied to get additional information on
these Cb-TRAM CI detections. Within the detected objects multiple data sources
are analyzed to get additional information on moisture, instability, and lift for
each cloud object. Low-level moisture is represented by surface θe from VERA,
instability by a KO-Index calculation using VERA and COSMO-EU θe data, and
lift by COSMO-EU ω data in 500 hPA. The data is combined with fuzzy logic,
incorporating expert knowledge re�ned by the statistical information from the
veri�cation results. This fuzzy logic combination leads to a CI forcing value re-
sembling the available ingredients. The CI forcing value can be translated into
a CI probability for each single object, which describes, based on the forcing in
the additional data, the probability that the CI detection develops to a mature
storm. The statistical data gained within this study helps to decrease the amount
of false alarms in the satellite based detections tremendously without losing too
many hits.

Between 5 and up to tremendous 65 % of the false alarms can be �ltered this
way, depending on the amount of omitted hits (∼ 0 - 25 %). This results in an
oFAR dev ranging between 0.790 and 0.649 and an oPOD dev betwen 0.270 and
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0.204. These values in comparison to the values without the postprocessing are
summed up in Tab. 7.1.

Cb-TRAM + lightning CI forcing ≥ 3.0 CI forcing ≥ 7.0
- 25 % hits

- 5 % false alarms - 65 % false alarms

oPOD dev 0.249 0.271 0.270 0.204
oFAR dev 0.810 0.799 0.790 0.649

Table 7.1.: Summary of the veri�cation results for Cb-TRAM alone, with the lightning
data, and for the lower and upper boundary of CI forcing value �ltering
thresholds discussed in the text.

One might wonder why removing 65 % of all false alarms reduces oFAR dev only
to 0.649. The original oFAR dev close to 0.8 means that approximately four out
of �ve cells are false alarms, or in other words, false alarms are four times as
much as hits. After the maximum �ltering only two out of three cells remain
false alarms, thus false alarms are reduced to only twice as much as the hits.
The highest CI forcing values of the data combination show a CI probability

slightly above 50 % while the cells with the lowest CI forcing values have a CI
probability as little as 3 % or even less. This new additional CI probability
information is available for each CI suspect cloud object after the postprocessing
and is a valuable additional information gained by the additional data. Depending
on the needs of potential users of the detections and nowcasts the cloud objects
with low CI forcing values might be marked as less probable or they might even
be �ltered completely, which raises the quality of the detections and nowcasts.
This work is a proof of concept that the object-based analysis of additional

data sources within these objects marked as CI suspects in advance, is of value
and helps, as expected, to increase the usefulness of the detections and the now-
casts produced from them. Beside the improvement with the postprocessing the
Cb-TRAM rapid scan CI detection itself seems to be noisier than the normal scan
CI detection and might be improved by some tuning.
This leads directly to an outlook on possible future work. It is quite easy to

test and extend the analysis within the polygons for additional �elds which are
not yet incorporated with the methodology developed here. If an input fuzzy
set for any other data is de�ned it might be simply used to exchange one of the
currently used additional data. In that case the fuzzy logic rulebase needs only
minor adjustment. In cases where additional data should join the existing ones,
additional work on a meaningful combination within the rulebase is needed.
Possible additional data sources for the future of the CI detection are for ex-

ample:

� satellite-based upper tropospheric divergence �elds:
EUMETSAT Meteosat Product Extraction Facilities (MPEF) generate an
Upper-troposphere Divergence (MPEF DIV) product (EUMETSAT, 2005)
with Atmospheric Motion Vectors (AMVs) from SEVIRI WV 6.2 channel
data (for SEVIRI channels see Tab. 3.1). The MPEF DIV product is useful



CHAPTER 7. CONCLUSIONS AND OUTLOOK 93

for analyzing the preconvective environment and nowcasting of areas with
higher CI potential as shown in Georgiev & Santurette (2010). Within this
study, 76 % of all convective cells initiated at areas of divergence seen by
MPEF DIV product.

� di�erent NWP model data, e.g. the COSMO-DE EPS:
There are several possible gains for CI nowcasting with the COSMO-DE
EPS. First of all the rapid update cycle of the COSMO-DE EPS in compar-
ison to the COSMO-EU might be helpful. Moreover the direct CI forecast
by the model mean might be better in the EPS than within the single run
and besides this the background �elds describing the moisture, instability,
and lift might be more realistic in the model mean of the EPS and thus
more useful for CI nowcasting. A keyword in using the COSMO-DE EPS
for the type of CI nowcasting presented in this study, which might be very
useful, is the "best member selection". If Cb-TRAM is not only applied on
the observational data but also on the synthetic satellite images from the
model, the EPS member which resembles the observational analysis best
might be used preferably for the nowcasting of the detections.

� moisture from GPS (Global Positioning System) tomography:
GPS tomography, to investigate water vapor variability, might get interest-
ing for CI nowcasting purposes in the future as well if su�cient resolution
is achieved.

Another important development in the future will be the change from the current
MSG satellites to the next generation of geostationary EUMETSAT satellites,
Meteosat Third Generation (MTG)1, in a few years which might increase the
abilities of the CI detection already before the postprocessing with additional
data. The so-called Flexible Combined Imager (FCI) on MTG will continue the
operation of the MSG SEVIRI instrument with higher spatial resolution and
faster repeat cycles. The spatial sampling distance will be 1 km for all visible
channels (5) and all near infrared channels (3) and 2 km for all infrared channels
(8). The normal scan will be repeated every 10 minutes and the European rapid
scan, which covers approximately one quarter of the full disk, will have a repeat
cycle of 2.5 minutes. In the rapid scan mode there will be two additional channels
in the solar domain (visible and near infrared), with a spatial resolution of 0.5
km, and two in the thermal domain (infrared), with a spatial resolution of 1
km. Besides these improvements two additional important improvements will
be available with MTG. A lightning imager which delivers information on total
lightning in near real-time and an infrared sounder which will provide pro�les of
water vapor (2 km vertical resolution) and temperature (1 km vertical resolution)
hourly. More information can be found within the instrument description on the
EUMETSAT MTG website1.
In addition to analyzing the current conditions for an evaluation of the CI

forcing, the concept of the object-based analysis of multiple data sources also

1http://www.eumetsat.int/Home/Main/Satellites/MeteosatThirdGeneration/index.htm



94

establishes the possibility to evaluate trends within the additional �elds, like in
Hartung et al. (2012).
Besides all the discussed aspects of using this object-based analysis of multiple

additional data sources for the nowcasting of CI, this concept shall be adapted for
studies on the whole lifecycle of a storm cell in the near future. The ingredients
used for evaluating CI forcing have to be exchanged if other development stages
shall be examined. For example, data like trends of a �ash density, trends in the
cloud top temperature or trends in the strength of a radar echo, etc., have to
be evaluated if the current state (intensifying, steady, or decaying) of a mature
storm shall be analyzed. However the methodology itself can be used more or less
unaltered. The key is and will be a su�cient size of a data set to get reasonable
statistics for the construction of the fuzzy sets. The same approach might be
possible for other phenomena too, as long as they can be described with objects,
thus areas of interest for a phenomenon, and additional data in�uencing the future
development of the phenomenon in the object. Examples for other phenomena
which might be analyzed with object-based fusion of multiple data sources are
aircraft icing, freezing rain, or winter weather objects.



A. Data basis

data source data type timestep ∆t resolution ∆x

MSG1 HRV 5 min 1 km (nadir)
(rapid scan) WV 6.2 5 min 3 km (nadir)

IR 10.8 5 min 3 km (nadir)
IR 12.0 5 min 3 km (nadir)

LINET lightning data 5 min �les2 ≤ 150 m error3

COSMO-EU4 ω 1 h 7 km
T 1 h 7 km

geopotential 1 h 7 km
relative humidity 1 h 7 km

Surface synop data 1 h irregular spacing
observations of stations

already further processed (input data):

Cb-TRAM detection polygons 5 min 3 km (nadir)
(MSG rapid scan)

VERA u, v, θ, θe
5 1 h 8 km

(synop data) MFD6 1 h 8 km
T, p, vorticity, etc.7 1 h 8 km

1) overview over all MSG channels in Tab. 3.1

2) �les listing all current lightning detections with update ratio of 5 minutes

3) positioning of the lightning detection might have an error ≤ 150 m

4) on 10 standard pressure levels between 1000 - 200 hPa

5) utilized VERA output �elds

6) calculated analogous to VERA (see Appendix B) with di�erent smoothing

7) non used VERA output, for further description see VERA webpage8

Table A.1.: Overview of the di�erent data collected for the analysis presented within
this thesis. The data covers the period from May 15 2009 until August 31
2009. The Central European domain over which the analysis is performed
is shown for example by the Cb-TRAM output in Fig. 3.6 or the maps
in Appendix F. The di�erent data sources are described in more detail in
Ch. 3.

8http://www.univie.ac.at/amk/vera/
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B. VERA moisture �ux

The equation for the calculation of moisture �ux convergence (MFC) can be
derived from the conservation of water vapor in pressure coordinates as shown in
Banacos & Schultz (2005):

dq

dt
= S (B.1)

where

dq

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
(B.2)

u, v, and ω represent the wind components in pressure coordinates, q is the
speci�c humidity, S is a storage term for water vapor which is replaced by evapo-
ration and precipitation in the following (S = E−P ). Using the mass continuity
equation (∂u/∂x + ∂v/∂y + ∂ω/∂p = 0) the Equation (B.1) can be rewritten in
�ux form:

∂q
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+ ω
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∂x
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)
= E − P (B.3)

∂q

∂t
+

∂

∂x
(qu) +

∂

∂y
(qv) +

∂

∂p
(qω) = E − P (B.4)

∂q

∂t︸︷︷︸
local rate of change of q

+ ∇ · (q~vh)︸ ︷︷ ︸
−horizontal MFC

+
∂

∂q
(qω)︸ ︷︷ ︸

−vertical MFC

= E − P︸ ︷︷ ︸
sources and sinks

(B.5)

Therefore the horizontal moisture �ux convergence can be written as:

MFC = −∇ · (q~vh) = −~vh · ∇q − q∇ · ~vh (B.6)

MFC = −u∂q
∂x
− v ∂q

∂y︸ ︷︷ ︸
advection term

−q
(
∂u

∂x
+
∂v

∂y

)
︸ ︷︷ ︸
convergence term

(B.7)

The speci�c humidity q is de�ned as ratio of the density of water vapor to the
density of wet air, whereas the mixing ratio m is the ratio of the density of water
vapor to the density of dry air:

q =
ρW
ρ

=
ρW

ρL + ρW
(B.8)

m =
ρW
ρL

(B.9)
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The values for q and m are nearly equivalent (Wallace & Hobbs, 2006). For the
calculation of MFC in VERA the speci�c humidity q is replaced by the mixing
ratio m. m can than be calculated from Equation (3.8) by usage of the θ and θe
�elds. Looking at the parameters in the exponent, L ∼ 106, m ∼ 10−3, cp ∼ 103,
and T ∼ 102, the exponent is very small and can be approximated by ex ∼= 1 + x.
For pressure values close to p0 = 1000 hPa the ratio of θ/T can be approximated
as 1.

θe ∼= θ

[
1 +

Lm

cpT

]
= θ +

Lm

cp

θ

T︸︷︷︸
∼1

(B.10)

Resulting in the following equation for the mixing ratio m:

m ∼= (θe − θ)
cp
L

(B.11)

Using the mixing ratio m instead of q in Equation (B.7) and replacing the spatial
derivations by �nite di�erences leads to:

MFC = −u∆m

∆x
−m∆u

∆x
− v∆m

∆y
−m∆v

∆y
(B.12)

where ∆x = ∆y = ∆xy.
In contrast to the MFC calculation in Banacos & Schultz (2005) VERA produces
moisture �ux divergence (MFD) �elds (Kaufmann, 2006): MFD = −1 ×MFC.
For the calculation of ∆m, ∆u, and ∆v for one gridpoint the values of the four
neighboring gridpoints are used as ilustrated in Fig. B.1. Therefore, the resulting
MFD �eld is one pixel per edge smaller than the original �elds for m, u, and v.
Using index i for east-west direction and index j for north-south direction we get:

MFDi,j = (mi+1,jui+1,j −mi−1,jui−1,j +mi,j+1vi,j+1 −mi,j−1vi,j−1)
1

2∆xy

(B.13)
Positive values resemble moisture �ux divergence, negative values moisture �ux
convergence of the order of 10−4 g kg−1s−1.

Figure B.1.: MFD calculation in VERA. For the MFD value at the central gridpoint
(blue) the wind speed and mixing ratio values at the four neighboring
gridpoints (red) are utilized.



C. Fuzzy logic rulebase

IF data1(proCI) > 0 AND data2(proCI) > 0 AND data3(proCI) > 0;
THEN CI forcing "very high" > 0

IF data1(proCI) > 0 AND data2(proCI) > 0 AND data3(neutral) > 0;
THEN CI forcing "high" > 0

IF data1(proCI) > 0 AND data2(proCI) > 0 AND data3(contraCI) > 0;
THEN CI forcing "high" > 0

IF data1(proCI) > 0 AND data2(neutral) > 0 AND data3(proCI) > 0;
THEN CI forcing "high" > 0

IF data1(proCI) > 0 AND data2(neutral) > 0 AND data3(neutral) > 0;
THEN CI forcing "high" > 0

IF data1(proCI) > 0 AND data2(neutral) > 0 AND data3(contraCI) > 0;
THEN CI forcing "medium" > 0

IF data1(proCI) > 0 AND data2(contraCI) > 0 AND data3(proCI) > 0;
THEN CI forcing "high" > 0

IF data1(proCI) > 0 AND data2(contraCI) > 0 AND data3(neutral) > 0;
THEN CI forcing "medium" > 0

IF data1(proCI) > 0 AND data2(contraCI) > 0 AND data3(contraCI) > 0;
THEN CI forcing "low" > 0

IF data1(neutral) > 0 AND data2(proCI) > 0 AND data3(proCI) > 0;
THEN CI forcing "high" > 0

IF data1(neutral) > 0 AND data2(proCI) > 0 AND data3(neutral) > 0;
THEN CI forcing "high" > 0

IF data1(neutral) > 0 AND data2(proCI) > 0 AND data3(contraCI) > 0;
THEN CI forcing "medium" > 0

IF data1(neutral) > 0 AND data2(neutral) > 0 AND data3(proCI) > 0;
THEN CI forcing "high" > 0

IF data1(neutral) > 0 AND data2(neutral) > 0 AND data3(neutral) > 0;
THEN CI forcing "medium" > 0

IF data1(neutral) > 0 AND data2(neutral) > 0 AND data3(contraCI) > 0;
THEN CI forcing "low" > 0

IF data1(neutral) > 0 AND data2(contraCI) > 0 AND data3(proCI) > 0;
THEN CI forcing "medium" > 0

IF data1(neutral) > 0 AND data2(contraCI) > 0 AND data3(neutral) > 0;
THEN CI forcing "low" > 0

IF data1(neutral) > 0 AND data2(contraCI) > 0 AND data3(contraCI) > 0;
THEN CI forcing "low" > 0

IF data1(contraCI) > 0 AND data2(proCI) > 0 AND data3(proCI) > 0;
THEN CI forcing "high" > 0

IF data1(contraCI) > 0 AND data2(proCI) > 0 AND data3(neutral) > 0;
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THEN CI forcing "medium" > 0
IF data1(contraCI) > 0 AND data2(proCI) > 0 AND data3(contraCI) > 0;
THEN CI forcing "low" > 0

IF data1(contraCI) > 0 AND data2(neutral) > 0 AND data3(proCI) > 0;
THEN CI forcing "medium" > 0

IF data1(contraCI) > 0 AND data2(neutral) > 0 AND data3(neutral) > 0;
THEN CI forcing "low" > 0

IF data1(contraCI) > 0 AND data2(neutral) > 0 AND data3(contraCI) > 0;
THEN CI forcing "low" > 0

IF data1(contraCI) > 0 AND data2(contraCI) > 0 AND data3(proCI) > 0;
THEN CI forcing "low" > 0

IF data1(contraCI) > 0 AND data2(contraCI) > 0 AND data3(neutral) > 0;
THEN CI forcing "low" > 0

IF data1(contraCI) > 0 AND data2(contraCI) > 0 AND data3(contraCI) > 0;
THEN CI forcing "very low" > 0



D. Abbreviations and acronyms

acc accumulated evaluation

AMV Atmospheric Motion Vector

ANC Auto-Nowcaster

CAPE Convective Available Potential Energy

CAWCR Centre for Australian Weather and Climate Research

Cb Cumulonimbus

Cb-TRAM Cumulonimbus Tracking And Monitoring

CDM Collaborative Decision Making

CI convection initiation

CIN Convective Inhibition

CIT Convectively Induced Turbulence

CONRAD CONvection in RADar

COSMO COnsortium for Small-scale MOdeling

COSMO-DE DWD COSMO model version with a grid spacing of 2.8 km
covering Germany

COSMO-EU DWD COSMO model version with a grid spacing of 7 km
covering Europe

CRA Contiguous Rain Areas

CSI Critical Success Index

CTC Cloud-Top Cooling

DAS Displacement and Amplitude Score

dev further development to stages 2 or 3

DLR Deutsches Zentrum für Luft- und Raumfahrt (German
Aerospace Center)

DMC Deep Moist Convection

DWD Deutscher Wetterdienst

EL Equilibrium Level

EPS Ensemble Prediction System

ESSL European Severe Storms Laboratory
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ESWD European Severe Weather Database

EUMETSAT EUropean organisation for the exploitation of METeorological
SATellites

FAR False Alarm Ratio

GANDOLF Generating Advanced Nowcasts for Deployment in Operational
Land-based �ood Forecasts

GOES Geostationary Operational Environmental Satellite

GPS Global Positioning System

HRV high-resolution visible

ICP spatial forecast veri�cation methods InterComparison Project

INCA Integrated Nowcasting through Comprehensive Analysis

IR infrared

KO-Index German: KOnvektiv-Index

LAMP Localized Aviation MOS Product

LCL Lifted Condensation Level

LFC Level of Free Convection

LINET LIghtning NETwork

LNB Level of Neutral Buoyancy

MCC Mesoscale Convective Complexe

MCS Mesoscale Convective System

MFC Moisture Flux Convergence

MFD Moisture Flux Divergence

MODE Method for Object-based Diagnostic Evaluation

MOS Model Output Statistics

MPEF Meteosat Product Extraction Facilities

MPEF DIV MPEF Upper-troposphere Divergence

MSG Meteosat Second Generation

MSL Mean Sea Level

MTG Meteosat Third Generation

NCAR National Center for Atmospheric Research

NIMROD Nowcasting and Initialization for Modeling using Regional
Observation Data

NIR near infrared

NOAA National Oceanic and Atmospheric Administration
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NOx nitrogen oxide (NOx = NO+NO2)

NWP numerical weather prediction

oFAR object-based False Alarm Ratio

ω vertical motion in the COSMO model data

oPOD object-based Probability Of Detection

POD Probability Of Detection

QPF Quantitative Precipitation Forecast

Rad-TRAM RADar TRacking And Monitoring

RADVOR-OP German acronym of a DWD nowcasting tool

RDT Rapid Developing Thunderstorms

SAL Structure�Area�Location error

SAM Statistical Advection Model

SATCAST SATellite Convection AnalysiS and Tracking algorithm

SEVIRI Spinning Enhanced Visible and Infra-Red Imager

SI French: Système International d'unités

SPC Storm Prediction Center

SR Success Ratio

SZA Solar Zenith Angle

θe Equivalent potential temperature

TITAN Thunderstorm Identi�cation, Tracking, Analysis and
Nowcasting

TMA Terminal Maneuvering Area

UTC Universal Time Coordinated

UTLS Upper Troposphere Lower Stratosphere

UW-CIMSS University of Wisconsin - Cooperative Institute for
Meteorological Satellite Studies

UWCI UW-CIMSS CI nowcast algorithm

VERA Vienna Enhanced Resolution Analysis

VIS visible

WMO World Meteorological Organization

WV water vapor

WWRP World Weather Research Program

ZAMG Zentralanstalt für Meteorologie und Geodynamik (Central
Institute for Meteorology and Geodynamics, Vienna, Austria)





E. Links

Links in order of appearance in the text:

Guide "Forecasting Severe Convective Storms" on the ESTOFEX website:
http://www.estofex.org/guide/

Storm Prediction Center (SPC) of NOAA's National Weather Service:
http://www.spc.noaa.gov/

Website of the European Severe Storms Laboratory (ESSL):
http://www.essl.org/

The European Severe Weather Database (ESWD) website:
http://www.eswd.eu

EUMETSAT MSG website:
http://www.eumetsat.int/Home/Main/Satellites/MeteosatSecondGenerati

on/Services/index.htm

CAWCR website of the Joint Working Group on Forecast Veri�cation Research:
http://www.cawcr.gov.au/projects/verification/

NOWCAST website for information on LINET:
http://www.nowcast.de/

Spatial Forecast Veri�cation Methods Intercomparison Project website:
http://www.ral.ucar.edu/projects/icp/

TITAN website:
http://www.ral.ucar.edu/projects/titan/home/

VERA website:
http://www.univie.ac.at/amk/vera/

COSMO website:
http://www.COSMO-model.org

COSMO-EU website at DWD:
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_sta

te=maximized&_windowLabel=T12203837091139841917821&T122038370911398

41917821gsbDocumentPath=Navigation%2FForschung%2FAnalyse__Modellieru

ng%2FFU__NM__LME__node.html%3F__nnn%3Dtrue&_pageLabel=_dwdwww_spezi

elle_nutzer_forschung_analyse&switchLang=en

COSMO-DE website at DWD:
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_sta

te=maximized&_windowLabel=T12203837091139841917821&T122038370911398
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http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_state=maximized&_windowLabel=T12203837091139841917821&T12203837091139841917821gsbDocumentPath=Navigation%2FForschung%2FAnalyse__Modellierung%2FFU__NM__LMK__node.html%3F__nnn%3Dtrue&_pageLabel=_dwdwww_spezielle_nutzer_forschung_analyse&switchLang=en
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106

41917821gsbDocumentPath=Navigation%2FForschung%2FAnalyse__Modellieru

ng%2FFU__NM__LMK__node.html%3F__nnn%3Dtrue&_pageLabel=_dwdwww_spezi

elle_nutzer_forschung_analyse&switchLang=en

EUMETSAT MTG website:
http://www.eumetsat.int/Home/Main/Satellites/MeteosatThirdGeneration/

index.htm

http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_state=maximized&_windowLabel=T12203837091139841917821&T12203837091139841917821gsbDocumentPath=Navigation%2FForschung%2FAnalyse__Modellierung%2FFU__NM__LMK__node.html%3F__nnn%3Dtrue&_pageLabel=_dwdwww_spezielle_nutzer_forschung_analyse&switchLang=en
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_state=maximized&_windowLabel=T12203837091139841917821&T12203837091139841917821gsbDocumentPath=Navigation%2FForschung%2FAnalyse__Modellierung%2FFU__NM__LMK__node.html%3F__nnn%3Dtrue&_pageLabel=_dwdwww_spezielle_nutzer_forschung_analyse&switchLang=en
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F. Additional �gures

Figure F.1.: Example plot of Cb-TRAM output and LINET data over VERA mois-
ture �ux divergence plots from May 25 2009, 15 UTC. The gray shading
represents the moisture �ux in g/(kg s) ranging from -30 to 30 g/(kg s).
Light gray represents divergence (positive values) and dark gray repre-
sents convergence (negative). The yellow, orange, and red contours have
the common colors as in Cb-TRAM, the green polygons show CI cells
which do not develop to a stage 2 or 3 detection. Thus it shows cells
which would be counted as false alarms.
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Figure F.2.: The amount of hits(blue)/false alarms(red) per 1 g/(kg s) bins for mois-
ture �ux values between lower than -20 g/(kg s) (negative means MFC)
and below 10 g/(kg s) (positive means MFD), with larger bins outside of
that range, normalized by the total amount of hits/false alarms.
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Figure F.3.: Cumulative percentage of MFD value frequencies of the given moisture
�ux values for hits (blue), false alarms (red), and the di�erence of the
two values (green).
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Figure F.4.: Example plot for COSMO-EU ω data in 500 hPa showing the data with-
out any smoothing by a Gaussian kernel (top) and smoothed by a small
kernel with an edge length of 5 pixels (bottom). For further descriptions
see Chapter 5.
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Figure F.5.: As Fig. F.4 but for a kernel edge length of 9 pixels (top) and the �nally
used edge length of 17 pixels (bottom).
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Figure F.6.: The amount of hits(blue)/false alarms(red) for each ω value between lower
than -100 hPa/h and higher than 80 hPa/h in 10 hPa/h bins, normalized
by the total amount of hits/false alarms (top). Cumulative percentage
(bottom) of ω value frequencies above the given ω in hPA/h for hits
(blue), false alarms (red), and the di�erence of the two values (green).
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Figure F.7.: As Fig. F.6 (top) but for 500, 600, and 700 hPa/h.

Figure F.8.: As Fig. F.6 (bottom), but showing the di�erence values of cumulative
percentages, for 500, 600, and 700 hPa/h.
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