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Zusammenfassung

Zur Modellierung longitudinaler Daten sind gemischte Modelle weit verbreitet. Diese Mo-
delle sind einerseits durch die Verteilungsannahmen über die Zielgröße und die zufälligen
Effekte sowie andererseits durch die Annahme über die Strukturkomponente bestimmt, die
den Prädiktor mit dem Erwartungswert der Zielgröße verknüpft. In der vorliegenden Arbeit
werden lineare gemischte Modelle und additive gemischte Modelle betrachtet, um entweder
den linearen oder den nichtlinearen zeitlichen Effekt auf eine bestimmte Zielgröße zu unter-
suchen. Somit ist die Strukturkomponente durch den identischen Link bestimmt, während
für die bedingte Verteilung der Zielgröße gegeben die Kovariablen eine Normalverteilung
angenommen wird.

Es werden für die Spezifikation und Schätzung der zufälligen Effekte zwei Ansätze
vorgestellt, die die klassische Annahme von normalverteilten zufälligen Effekten durch fle-
xiblere Verteilungsannahmen ersetzen und dadurch im Besonderen Gruppen von Individuen
bilden können. Im ersten Ansatz wird eine penalisierte Mischung aus Normalverteilungen
für die Verteilung der zufälligen Effekte angenommen. Der hierbei vorgestellte Strafterm
schrumpft die paarweisen Distanzen der Gruppenzentren basierend auf dem “group lasso”-
und dem “fused lasso”-Ansatz. Dies hat den Effekt, dass Individuen mit ähnlichen
zeitlichen Verläufen der Zielgröße derselben Gruppe zugeordnet werden. In einem al-
ternativen Ansatz wird eine approximierte Dirichlet-Prozess-Mischung als Verteilung der
zufälligen Effekte herangezogen, die die Clustereigenschaft des Dirichlet-Prozesses zum
Aufdecken einer Gruppenstruktur ausnützt. Hierbei basiert die Approximation auf der
trunkierten Variante der Stabbruch-Darstellung des Dirichlet-Prozesses.

Zum Schätzen beider Ansätze im Rahmen linearer gemischter Modelle werden
EM-Algorithmen detailiert entwickelt. Da Dirichlet-Prozesse geeignet sind, um
Priori-Annahmen für Verteilungen anzugeben, werden Modelle mit Dirichlet-Prozessen
hauptsächlich in der Bayes-Inferenz verwendet und typischerweise mit Markov-Ketten-
Monte-Carlo-Methoden geschätzt. In der vorliegenden Arbeit wird das Konzept der
Dirichlet-Prozesse in die Likelihood-Inferenz übertragen, indem ein EM-Algorithmus zum
Schätzen von linearen gemischten Modellen mit approximierter Dirichlet-Prozess-Mischung
vorgestellt wird. Des Weiteren wird dieser Ansatz auf den Fall additiv gemischter Modelle
erweitert, wobei hier ein penalisierter Spline zur Modellierung des Zeiteffekts verwendet
wird. Für diese Modellklasse wird außerdem eine rein bayesianische Schätzung basierend
auf Markov-Ketten-Monte-Carlo-Methoden vorgestellt.

In zahlreichen Anwendungsbeispielen wird gezeigt, wie die verschiedenen Methoden zum
Aufdecken von Gruppen verwendet werden können. Simulationsstudien liefern den Nach-
weis, dass die Prädiktionsgüte von zufälligen Effekten durch die vorgestellten Ansätze
verbessert werden kann.
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Summary

Mixed models are a classical tool for the modeling of longitudinal data. They are specified
by the assumption on the distributions of the response variable and the random effects as
well as by the assumed structural component, that is, the link between the mean responses
and the predictors. In this thesis, linear mixed models and additive mixed models are
considered to examine either a linear or a nonlinear effect of time on a specific response
variable. Thus, the structural component is determined by the identity link whereas the
conditional distribution of the predictor is assumed to be normal given the covariates.

For the specification and estimation of the random component two approaches are pro-
posed that replace the classical assumption of normally distributed random effects by more
flexible distributions and that, in particular, are able to identify clusters of individuals. In
the first approach a penalized normal mixture as random effects distribution is assumed.
Here, the proposed penalty term shrinks the pairwise distances of cluster centers in terms
of the group lasso and the fused lasso method. The intended effect is that individuals
with similar time trends are merged into the same cluster. Alternatively an approximate
Dirichlet process mixture as random effects distribution is considered. It is able to exploit
the cluster property of the Dirichlet process for finding clusters in the data. Here, the
truncated version of the stick breaking presentation of the Dirichlet process provides a
basis for the approximation.

For fitting these approaches Expectation-Maximization algorithms within the framework
of linear mixed models are developed. Since a Dirichlet process allows to specify a prior on
probability measures, models concerning Dirichlet processes have been mainly used within
the Bayesian inference framework and have been typically estimated by Markov chain
Monte Carlo methods. In this thesis, the concept of Dirichlet processes is transferred to
the likelihood inference approach by providing an Expectation-Maximization algorithm
for fitting linear mixed models with approximate Dirichlet process mixtures. In addition,
the concept is extended to additive mixed models, where a penalized spline is used for
the fitting of the time trend. For this kind of model a fully Bayesian approach based on
Markov chain Monte Carlo simulation techniques is also given.

In several real data examples it is shown how these different approaches can be used for
finding clusters in longitudinal data. Simulation studies provide the evidence that predic-
tion accuracy of random effects can be improved by considering the proposed approaches.
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Stochastik”, die darüber hinaus Teile dieser Arbeit Korrektur gelesen haben und bei de-
nen ich immer eine offene Tür vorgefunden habe, möchte ich mich bedanken. Danken will
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Notation

In this thesis, the following abbreviations are used:

Short form Long form

AIC Akaike information criterion

BMI Body mass index

DPM Dirichlet process mixture

EM Expectation-Maximization

MCMC Markov chain Monte Carlo

P-splines Penalized splines

Furthermore, we utilize the following mathematical abbreviations and symbols:

i.i.d. Independent and identically distributed,

ind. Independent,

N Set of natural numbers,

R Set of real numbers,

S Simplex of probabilities,

E(X) Mean of random variable X,

Var(X) Variance of random variable X,

Cov(X, Y ) Covariance of random variables X and Y ,

Γ(a) Gamma function: Γ(a) =
∫∞

0
xa−1 exp(−x) dx,

B(a, b) Beta function: B(a, b) =
∫ 1

0
xa−1(1− x)b−1 dx,

1(x) Indicator function: 1(x) is 1 if x is true and 0 otherwise,

δx Dirac measure for x.
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The following common notation is used:

Mathematical object Font Examples

Scalar Italic n, N

Vector Italic, small and bold x, y, z

Matrix Italic, large and bold X, Y , Z

σ-field Calligraphy A, C, F
Set of distributions Fraktur G

Only the Borel σ-field makes an exception from this scheme and is denoted by B as usual.
Note that generally all vectors are defined as column vectors.

Here, an overview of all distributions used in this thesis is given:

Distribution Short form Parameter

Normal distribution N(µ, σ2) Mean µ, variance σ2

Multivariate normal distribution N(µ,Σ) Mean µ, covariance matrix Σ

Uniform distribution U(a, b) Lower bound a, upper bound b

Multinomial distribution M(n,π) Sample size n, probability vector π

Poisson distribution Po(ν) Rate ν

Gamma distribution Ga(a, b) Shape a, rate b

Inverse-gamma distribution IG(a, b) Shape a, rate b

Beta distribution Be(a, b) Shape parameters a and b

Dirichlet distribution Dir(α) Concentration parameter α

Dirichlet process DP (α,G0) Concentration parameter α,

base distribution G0
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1. Introduction

Mixed Models

The analysis of longitudinal data is a popular task in statistics (Diggle et al., 2002; Fitz-
maurice et al., 2004). This kind of data is given when statistical units like individuals are
examined at several observation times with regard to some variables of interest. When
regression models are applied for investigating the influence of different covariates on a
response variable, one has to incorporate the dependence structure in repeated measure-
ments that arises from the fact that measurements belonging to the same individual are
typically correlated. This can either be achieved by considering mixed models also known
as random effects models (Laird and Ware, 1982) or by using the generalized estimation
equation approach proposed by Liang and Zeger (1986). While in the framework of gen-
eralized estimation equations the response values are modeled marginally by using only
population-specific effects, mixed models contain population-specific fixed effects as well
as individual-specific random effects and focus on the conditional distribution of each re-
sponse value conditional on the corresponding random effect. Mixed models, which were
introduced by Fisher (1918), assign each subject i its own random effect bi. For longitudi-
nal data random effects facilitate the modeling of individual deviations from the population
trend of the response variable over time. In contrast to the fixed effects, for the random
effects a distribution assumption is specified that is typically given by a normal distribu-
tion. A more flexible approach has been proposed by Verbeke and Lesaffre (1996). They
consider a mixture of normal distributions as random effects distribution:

bi ∼
N∑
h=1

πhN(µh,D), i = 1, . . . , n.

This offers a possibility for clustering individuals due to their time-dependent trend curves
of the response variable: If the number of clusters N is smaller than the number of subjects
n, several subjects share the same cluster center µh and form a cluster. The covariance
matrix D indicates the dispersion of the random effects around their cluster centers. How-
ever, this raises the question how to choose the number of clusters. In this dissertation,
two penalization approaches are proposed to determine the number of clusters in a data
driven way. One is based on the fusion of cluster centers: If the differences of cluster
centers are penalized by an appropriate penalty term, some differences are shrunk to zero.
Consequently some clusters are fused and the effective number of clusters is reduced. An
alternative possibility consists in the penalization of the amounts of the weights πh. If
some weights are shrunk to zero, the corresponding clusters drop out.
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Discussion of Penalization Ideas

In regression models regularization approaches are widely used that aim at penalization
of the fixed effects of predictors on a response variable. The fundamental papers of Hoerl
and Kennard (1970) and Tibshirani (1996) introduced the penalized regression techniques
ridge respectively lasso based on a L2-norm respectively L1-norm penalty. The latter one
is particulary characterized by the possibility to shrink parameters and to set some of
them to zero if the corresponding covariates have no impact on the response variable. In
the following, it will be shortly discussed in which extent the lasso method could be used
for the two penalization goals mentioned in the previous section: On the one hand, we
want to shrink differences of cluster centers to zero. However, for fusion of parameters
the fused lasso idea of Tibshirani et al. (2005) is much more helpful than the direct lasso
approach. Furthermore, for incorporating multivariate random effects the fusion concept
has to be combined with the group lasso approach by Yuan and Lin (2006), which also is
an extension of the lasso idea. On the other hand, at first sight the lasso approach seems to
be appropriate to shrink weights to zero. But note that probabilities with the range [0, 1]
and the restriction that the sum of all probabilities is one cannot be handled in the same
way as usual regression coefficients. Thus, we prefer a completely different approach that
is based on a Dirichlet process. In this approach, all restrictions are fulfilled automatically
and we get rather a shift than a penalization of the weights: High weights become higher
and small weights become nearly zero.

Guideline through the Thesis

The main part of this dissertation consists of four chapters, which show different pos-
sibilities of clustering in linear and additive mixed models. In Chapters 3 and 4 the
two different methods for penalizing the number of clusters introduced in the previous
sections are elaborated and applied within the framework of linear mixed models.
An Expectation-Maximization (EM) algorithm is used for inference in each case. A
comparison of both methods with regard to simulation results and applications can be
found in Sections 4.3.3 and 4.4. Chapters 5 and 6 deal with additive mixed models using
an approximate Dirichlet process mixture (DPM) as random effects distribution. While
in Chapter 5 the model is fitted by using Markov chain Monte Carlo (MCMC) methods,
in Chapter 6 the EM algorithm of Chapter 4 is extended to additive mixed models and
compared to the MCMC approach of Chapter 5. Chapter 2 takes a special role in the
thesis. Here, the theoretical concepts of Dirichlet processes are explained for a better
understanding of the methods in chapters using Dirichlet processes. Nevertheless, the
single chapters can be read independently of each other. Just for background knowledge
or comparisons to other approaches cross references are helpful. Short summaries of the
chapters are given in the following:
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Chapter 2: Dirichlet Processes

In this chapter we want to depict the idea as well as the highly praised cluster
property of the Dirichlet process. The stick breaking representation of the Dirichlet
process and the concept of DPMs play a central role in thesis and are also outlined
in this chapter.

Chapter 3: Linear Mixed Models with a Group Fused Lasso Penalty

A method is proposed that aims at identifying clusters of individuals that show
similar patterns when observed repeatedly. We consider linear mixed models, which
are widely used for the modeling of longitudinal data. In contrast to the classical
assumption of a normal distribution for the random effects a finite mixture of normal
distributions is assumed. Typically, the number of mixture components is unknown
and has to be chosen, ideally by data driven tools. For this purpose an EM algorithm-
based approach is considered, that uses a penalized normal mixture as random effects
distribution. The penalty term shrinks the pairwise distances of cluster centers based
on the group lasso and the fused lasso method with the effect that individuals with
similar time trends are merged into the same cluster. The strength of regularization
is determined by one penalization parameter. For finding the optimal penalization
parameter, a new model choice criterion is proposed. The usefulness of this method
is illustrated in three applications and in a simulation study.

Chapter 4: Linear Mixed Models with DPMs using EM Algorithm

For the same goal as in the previous chapter an alternative clustering approach is
considered. Note that in linear mixed models the assumption of normally distributed
random effects is often inappropriate and unnecessary restrictive. The proposed
approximate DPM assumes a hierarchical Gaussian mixture that is based on the
truncated version of the stick breaking presentation of the Dirichlet process. In
addition to the weakening of distributional assumptions, the specification allows to
identify clusters of observations with a similar random effects structure. An EM
algorithm is given, that solves the estimation problem and that, in certain respects,
may exhibit advantages over Markov chain Monte Carlo approaches when modeling
with Dirichlet processes. The method is evaluated in a simulation study and applied
to the dynamics of unemployment in Germany as well as lung function growth data.

Chapter 5: Additive Mixed Models with DPMs using MCMC methods

When the population time trend is nonlinear, the methods of Chapters 3 and 4 cannot
be used, and more flexible approaches like additive mixed models are necessary.
For the handling of nonlinearity and heterogeneity in the data, a combination of
flexible time trends and individual-specific random effects is required. We propose
a fully Bayesian approach based on MCMC simulation techniques that allows for
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the semiparametric specification of both the trend function and the random effects
distribution. Bayesian penalized splines (P-splines) are considered for the former
while a DPM specification allows for an adaptive amount of deviations from normality
for the latter. The advantages of such DPM prior structures for random effects are
investigated in terms of a simulation study to improve understanding of the model
specification before analyzing childhood obesity data.

Chapter 6: Additive Mixed Models with DPMs using EM Algorithm

As in the previous chapter, additive mixed models with a DPM as random effects
distribution are considered, that are based on the truncated version of the stick
breaking presentation of the Dirichlet process. In contrast to Chapter 5 an EM
algorithm is given, that solves the estimation problem and that exhibits advantages
over MCMC approaches, which are typically used when modeling with Dirichlet
processes. For handling the trend curve the mixed model representation of P-splines
is used. The method is evaluated in a simulation study and applied to theophylline
data and childhood obesity data.

An important technical fact concerning regression models in general should be mentioned
at this stage. Regression models are among other things specified by an assumption for
the conditional distribution of the response variable given all covariates. Formally, we
abstain from conditioning on the covariates in the model equations of this thesis for a
clearer notation. Nevertheless, this condition is implied.

Publications

As research is a dynamic process, parts of this dissertation have already been published
in peer reviewed journals or as technical reports and have been done in cooperation with
supervising coauthors. Parts of this thesis can be found in

• Heinzl, F. and G. Tutz (2012). Clustering in linear mixed models with a group
fused lasso penalty. Technical Report 123, Ludwig-Maximilians-University Munich.
(resubmitted). (Chapter 3)

• Heinzl, F. and G. Tutz (2013). Clustering in linear mixed models with approxi-
mate Dirichlet process mixtures using EM algorithm. Statistical Modelling 13, 41-67.
(Chapter 4)

• Heinzl, F., L. Fahrmeir, and T. Kneib (2012). Additive mixed models with Dirichlet
process mixture and P-spline priors. Advances in Statistical Analysis 96, 47–68.
(Chapter 5)

See the corresponding chapters for more details.
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Software

For most of the computations in this thesis the programming language C++ (Stroustrup,
1997) and the statistical software R (R Development Core Team, 2012) were used. All new
proposed methods are implemented in C++ for a computing time as low as possible. These
C++ functions make use of the libraries ASA047 (Burkhardt, 2008) and Newmat (Davies,
2008) and are embedded in R wrapper functions, that are made available by the self-
implemented R add-on package clustmixed (Heinzl, 2012), which will presumably be made
publicly accessible via CRAN (see http://www.r-project.org). A test version of the
package can be downloaded from http://www.statistik.lmu.de/~heinzl/research.

html. This package imports the packages Matrix (Bates and Maechler, 2012), lme4 (Bates
et al., 2012), splines (Bates and Venables, 2011), ellipse (Murdoch and Chow, 2012),
and coda (Plummer et al., 2012). For comparison to other approaches in the simulation
studies the R package lme4 of Bates et al. (2012) and the software BayesX (Belitz et al.,
2012) were used. More information can be found in the corresponding sections.

http://www.r-project.org
http://www.statistik.lmu.de/~heinzl/research.html
http://www.statistik.lmu.de/~heinzl/research.html
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2. Dirichlet Processes

Dirichlet processes as proposed by Ferguson (1973) represent an essential part of this
dissertation. The approaches for fitting mixed models in the subsequent Chapters 4, 5
and 6 make use of the so-called cluster property of the Dirichlet process to detect clusters
in longitudinal data. This cluster property is the main advantage of Dirichlet processes
and the reason for the increase of their popularity over the last years (Hjort et al., 2010).
However, the theory of Dirichlet processes is difficult to access at first sight. Hence, in
this chapter the concept of Dirichlet processes is outlined in detail to provide a general
description of the basic idea of the Dirichlet process. In addition, several representations of
the Dirichlet process are given. The structure of this chapter is inspired by Heinzl (2009)
and Fahrmeir and Kneib (2011).

2.1. Definition of the Dirichlet Process

In general, a Dirichlet process is used when a prior distribution on a probability measure is
needed. First, as an introduction to the definition of the Dirichlet process it is illustrated
how priors on spaces of probability measures can be generated. Let G ∈ G denote a
probability measure on a measurable space (Θ,A), where G is the set of all probability
measures on this measurable space. Thus, a probability space (Θ,A, G) is considered with

G : A → [0, 1].

First, let Θ be a finite set {θ1, . . . , θm} and let the probability mass function of G be given
by π = (π1, . . . , πm)T with πj = G(θj), j = 1, . . . ,m. In order to postulate a prior on the
unknown vector π, this vector is assumed to be a random variable. More concretely, let
(Ω,F , P ) be a probability space and ([0, 1]m,Bm

[0,1]) be a measurable space. Here, Bm
[0,1]

denotes the m-dimensional Borel σ-field on the m-fold product of the real set [0, 1]. Then,
the random variable π is assumed to be a (F ,Bm

[0,1])-measurable function given by

π : Ω→ [0, 1]m.

A distribution assumption for π, and thereby for the probability measure G, can be ex-
pressed by a Dirichlet distribution:
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Definition: Dirichlet Distribution

A random vector π is said to be Dirichlet distributed of order m ≥ 2 with parame-
ter vector (α1, . . . , αm)T and αj > 0, ∀j = 1, . . . ,m, written π ∼ Dir(α1, . . . , αm),
if it has a probability mass function with respect to the Lebesgue measure on the
(m − 1)-dimensional simplex S = {π : 0 ≤ πj ≤ 1, j = 1, . . . ,m,

∑m
j=1 πj = 1}

given by

f(π) =
Γ(
∑m

j=1 αj)∏m
j=1 Γ(αj)

m∏
j=1

π
αj−1
j 1(π ∈ S).

Here Γ(·) denotes the gamma function Γ(a) =
∫∞

0
xa−1 exp(−x) dx and 1(x) is the indicator

function that is one if the condition x is true and zero otherwise. Next, Θ is assumed to
be a real set. By dividing this set into a finite partition, again, the Dirichlet distribution
can be used for formulating a distribution assumption on G. This is also possible for
multivariate spaces Θ. Generally, Ferguson (1973) defined the Dirichlet process as follows:

Definition: Dirichlet Process

Let (Θ,A) be a measurable space and G0 a probability measure on (Θ,A), and
let α > 0.

A stochastic process G indexed by elements Aj of A, is said to be a Dirichlet
process on (Θ,A) with parameters α and G0, written G ∼ DP (α, G0), if for any
measurable partition {A1, . . . , Am} of Θ the random vector (G(A1), . . . , G(Am))T

has a Dirichlet distribution with parameter vector (αG0(A1), . . . , αG0(Am))T .

Thus, the Dirichlet process can be seen as generalization of the Dirichlet distribution. In
Figure 2.1 two simulated realizations of G ∼ DP (α, G0) with α = 10 and G0 = U(0, 1) for
the same fixed partition on [0,1] are visualized by their corresponding probability functions
g(θ). Here, U(a, b) denotes the uniform distribution with the lower bound a and the upper
bound b. In this figure the randomness of G(Aj), j = 1, . . . , 6, is illustrated.
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Figure 2.1.: Realizations of G ∼ DP (α, G0) with α = 10 and G0 = U(0, 1) for the same fixed partition.

The following paragraph deals with some measure theoretical background of the Dirichlet
process. First, in the definition of the Dirichlet process it is seen that a Dirichlet process is
formally a stochastic process. In general, a stochastic process is represented by a family of
random variables on a specific probability space. Here, the family of random variables is de-
termined by G(Aj), j = 1, . . . ,m, for every m and every measurable partition {A1, . . . , Am}
of Θ. Since these random variables are probabilities, the Dirichlet process has the state
space [0, 1] with the associated Borel σ-field B[0,1]. For a fixed partition {A1, . . . , Am}
the index set of this stochastic process is given by exactly this partition. However, every
partition of sets Aj ∈ A can be considered. So the index set of the Dirichlet process is
formed by A (Frigyik et al., 2010). Second, note that in the definition of the Dirichlet
process a joint distribution of random variables G(A1), . . . , G(Am) for every m and every
measurable partition is defined. Ferguson (1973) showed that thus a consistent system of
finite dimensional distributions is given verifying the Kolmogorov consistency conditions.
Thereby according to the Kolmogorov existence theorem it exists a probability measure
on the resulting measurable space ([0, 1]A,BA[0,1]) yielding these distributions. Here, [0, 1]A

symbolizes the space of all functions from A into [0, 1], and BA[0,1] denotes the product σ-
field generated by the field of cylinder sets. However, by defining the joint distribution of
random variables G(A1), . . . , G(Am) for every measurable partition, a random probability
measure G is defined, too. Thus, the probability measure G itself is called Dirichlet process
just as the family of random variables G(Aj). Now a prior distribution on G is expressed
by a specific Dirichlet measure DP (α, G0), that is a probability measure on (G, C). Here,
C is the smallest σ-field generated by sets of the form {G : G(A) < r} with A ∈ A and
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r ∈ [0, 1] (Sethuraman, 1994). Thus, one gets a probability space (G, C, DP (α, G0)) with
the probability measure

DP (α, G0) : C → [0, 1].

Such a Dirichlet measure can be used for prior assumptions on probability measures. A
concrete prior assumption is specified by the choice of the parameters α and G0. The
meaning of the base distribution G0 is mainly given by E(G) = G0 that can be proved by
using the calculation rule for the mean of Dirichlet distributed random vectors:

E(G(Aj)) =
αG0(Aj)∑m
l=1 αG0(Al)

= G0(Aj), j = 1, . . . ,m.

Similarly, the variances can be calculated by

Var(G(Aj)) =
αG0(Aj) · (α− αG0(Aj))

α2 · (α + 1)
=
G0(Aj) · (1−G0(Aj))

α + 1
, j = 1, . . . ,m.

Obviously, the concentration parameter α acts as inverse variance parameter and controls
the confidence in the base distribution G0. For visualizing this feature, in Figure 2.2
realizations of G ∼ DP (α, G0) with G0 = N(0, 1) and with different values for α are
drawn, where N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. In
each case the grey boxes correspond to the joint distribution of G(A1), . . . , G(Am) for a
given partition and so to the probability measure G while the black line symbolizes the
density function of G0 = N(0, 1). As it can be seen, the larger α is, the more similar G
is to G0. Note that instead of representing the parameters of the Dirichlet process by the
scalar α and the probability measure G0, it is also possible to use the finite measure αG0,
which is nothing else than the product of α and G0.

As shown by Blackwell (1973), assuming G ∼ DP (α, G0) selects a discrete distribution
G with probability one even if the base distribution G0 is a continuous distribution. A
consequence of this feature is the cluster property of the Dirichlet process: Suppose that
an i.i.d. sample θ1, . . . , θn is drawn according to

G ∼ DP (α,G0),

θi|G
i.i.d.∼ G, i = 1, . . . , n.

(2.1)

While in the first step a realization of G is obtained by simulation from the Dirichlet
measure DP (α,G0), in the second step realizations from G are drawn. The condition on
G is necessary here to emphasize that the random measure G is given in this step. Due to
the discreteness of G some realizations θi can be identical and form a cluster: θi = θj with
i 6= j. Thus, the parameters θi, i = 1, . . . , n, can also be represented by cluster locations
µh, h = 1, . . . , k, with k ≤ n and cluster allocation variables ci ∈ {1, . . . , k}, i = 1, . . . , n.
This relationship is given by θi = µci . Here ci = h holds if object i belongs to cluster h. The
cluster property will be illustrated in the following sections. There, it will be shown that
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Figure 2.2.: Influence of α on realizations of G ∼ DP (α, G0) with G0 = N(0, 1). In each case the grey
boxes correspond to G while the black line symbolizes the density function of G0 (Fahrmeir and Kneib,
2011).

the number of clusters is controlled by the concentration parameter α: For large values of
α the number of clusters is large while for a low α one gets only few clusters.

Another important property is the conjugacy of the Dirichlet process. That means that
if an i.i.d. sample θ1, . . . , θn is drawn from G and if the prior distribution for G is assumed
to be a Dirichlet measure according to the equations (2.1), the posterior distribution of
G|θ1, . . . , θn is a Dirichlet measure again. More concretely, it follows that

G|θ1, . . . , θn ∼ DP

(
n+ α,

1

n+ α

n∑
i=1

δθi +
α

n+ α
G0

)
,

which is proved in Appendix A.1. Here, δθi denotes the Dirac measure on θi. This conjugacy
property is used in Section 2.3 for deriving the predictive distribution θn+1|θ1, . . . , θn.
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2.2. Stick Breaking Representation

For understanding the nature of the Dirichlet process the constructive definition of the
Dirichlet process by Sethuraman (1994) is even more helpful than the definition in Sec-
tion 2.1 itself. This stick breaking representation implies that G ∼ DP (α,G0) is equivalent
to

G =
∞∑
h=1

πh δµh , (2.2)

with locations µh ∈ Θ and weights πh ∈ [0, 1]. The locations are simulated by µh
i.i.d.∼ G0

and serve as possible cluster locations. The weights are constructed through the stick
breaking procedure

πh = vh
∏

l<h(1− vl), h ∈ N,
vh

i.i.d.∼ Be(1, α), h ∈ N,

where Be(·, ·) denotes the beta distribution and vh, h ∈ N, are reparameterized weights.
Thus, the random measure G is represented as a weighted sum of point masses with random
weights πh linked to the locations µh. According to

N∏
h=1

(1− vh) = (1− vN)
N−1∏
h=1

(1− vh) =
N−1∏
h=1

(1− vh)− vN
N−1∏
h=1

(1− vh)︸ ︷︷ ︸
πN

= . . . =

= (1− v1)−
N∑
h=2

πh = 1−
N∑
h=1

πh, (2.3)

one gets a recursive definition of weights πh = vh
(
1−

∑
l<h πl

)
, h ∈ N, that is visualized

in Figure 2.3 and that gives the procedure its name. It works as follows: First, for getting
π1 a piece is broken away from a stick of length one. Next, from the remainder of the
stick, 1 − π1, breaks a further piece away, called π2 and so on. So the random weights
decrease stochastically as the index h grows (Ishwaran and James, 2001). More concretely,
E(
∑∞

h=N+1 πh) converges to zero exponentially with N →∞:

E

(
∞∑

h=N+1

πh

)
= E

(
1−

N∑
h=1

πh

)
(2.3)
= E

(
N∏
h=1

(1− vh)

)
=

N∏
h=1

E(1− vh) =

=
N∏
h=1

(1− E(vh)) =
N∏
h=1

(
1− 1

α + 1

)
=

(
α

α + 1

)N
N→∞−→ 0. (2.4)



2.2 Stick Breaking Representation 13

π
0

0.
2

0.
4

0.
6

0.
8

1

1st break 2nd break 3rd break

π1

1 − π1

π2

1 − π1 − π2

π3

…

Figure 2.3.: Construction of π1, π2, . . . by stick breaking (Heinzl, 2009).

So an established concept to make the stick breaking procedure applicable in practice is
to approximate the Dirichlet process by considering

G =
N∑
h=1

πh δµh ,

with large enough N . Here, all locations µh and all weights vh and πh are constructed
as before with the exception of vN = 1. Because of the recursive definition of weights
the restriction vN = 1 ensures that

∑N
h=1 πh = 1 and implicates that in the truncated

version of the stick breaking presentation the last weight πN absorbs all the remaining
probabilities πN , . . . , π∞ of the untruncated Dirichlet process. So the truncation would be
only admissible if these weights are very low. Therefore, Ohlssen et al. (2007) proposed to
set N so that the condition

E

(
1−

N−1∑
h=1

πh

)
< ε, (2.5)

is fulfilled for ε > 0. According to equation (2.4) the condition (2.5) can be transformed
into
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(
α

α + 1

)N−1

< ε

(N − 1) log

(
α

α + 1

)
< log(ε)

N > 1 +
log(ε)

log
(

α
α+1

) . (2.6)

Thus, for a given α and ε a lower bound for N can be determined. This strategy is applied
in the Chapters 4 and 6.

In summary, the stick breaking representation has several benefits. First, it yields a
possibility to simulate a realization of G as well as realizations from G. Second, it is useful
for inference with Dirichlet processes like in the Chapters 4, 5 and 6. Third, theoretical
features of the Dirichlet process can be seen easily. According to equation (2.2) G has a
countably infinite support. Thus, a realization of G ∼ DP (α, G0) is a discrete probabil-
ity measure with probability one. The proof of the discreteness without using the stick
breaking representation is considerably more complicate (Blackwell, 1973).
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Figure 2.4.: Realization of G ∼ DP (α,G0) with α = 1 and G0 = N(0, 1). The black bars symbolize the
probability function of G. The grey boxes show the realization of G for the given partition.

See Figure 2.4 for an example of a simulated realization of G ∼ DP (α, G0) with
α = 1 and G0 = N(0, 1). In this figure the black bars symbolize the weights πh,
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h = 1, . . . , N , and thus the probability function of G. Choosing the partition {A1, . . . , A8}
= {(−∞,−3], (−3,−2], (−2,−1], (−1, 0], (0, 1], (1, 2], (2, 3], (3,∞)} the corresponding real-
ization of (G(A1), . . . , G(A8))T as noted in the definition of the Dirichlet process is visual-
ized in the same figure by grey boxes. For example, G((1, 2]) is mainly the sum of π1 and
π3 whereas G((0, 1]) is almost equivalent to π6. While in Figure 2.1 the discreteness of G is
hidden, Figure 2.4 reveals this feature as well as the connection between these two different
representations of the Dirichlet process. Another interesting aspect of Figure 2.4 is that
clearly just about the first ten weights are visually higher than zero. Regarding again the
stick breaking idea, obviously after ten breaks the remaining stick has a length of almost
zero. So no more pieces can be broken away from this stick. Here, the cluster property of

the Dirichlet process is seen: Suppose that θi|G
i.i.d.∼ G, i = 1, . . . , n with G simulated by

G ∼ DP (α,G0). Imagine that G looks like the realization in Figure 2.4. Since the support
of G with weights that are clearly different from zero consists of just a few elements, some
realizations θi are identical and form a cluster: θi = θj = µh with i 6= j. By this a natural
clustering of similar objects can be realized.

The number of clusters is determined by α, which also controls the confidence in the base
distribution G0. See Figure 2.5 for two realizations of G ∼ DP (α, G0) with G0 = N(0, 1)
and two different confidence parameters α = 0.5 and α = 1. It can be stated: The larger
the confidence parameter α, the more clusters are available.
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Figure 2.5.: Realizations of G ∼ DP (α, G0) with G0 = N(0, 1).
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2.3. Pólya Urn Scheme

Apart from the stick breaking procedure there exists another strategy for making inference
possible when Dirichlet processes are considered. Instead of truncating the random proba-
bility G in the stick breaking representation of the Dirichlet process (equation (2.2)) as it
is done in the Chapters 4, 5 and 6, another possibility to handle the unknown probability
measure G consists in the marginalization of G. However, the marginalization of G has
the unwished side effect that only realizations from G but not of G can be simulated in
contrast to the stick breaking procedure where realizations of G can be simulated, too.
Because of this and other disadvantages of the Pólya urn scheme compared to the stick
breaking representation, that are discussed by Ishwaran and James (2001), only the latter
one is considered in this thesis. Nevertheless, the theoretical background of the Pólya urn
scheme, namely the connection between the Dirichlet process and the extended Pólya urn
scheme (Blackwell and MacQueen, 1973), will be explained in the following for a better
understanding of the character of the Dirichlet process. In general, the classical Pólya urn
model works as follows: An urn contains a finite number of colored balls. Step by step one
ball is drawn randomly from the urn. After each drawing the drawn ball is put back along
with a new ball of the same color. Now, this Pólya urn scheme is extended by allowing
an uncountable infinite set of colors. Formally this procedure is described by a so-called
Pólya sequence, which is defined as follows:

Definition: Pólya Sequence

Let (Θ,A) be a Polish space, i.e. a complete separable metric space. A sequence
of random variables (θn)n∈N with θn ∈ Θ is said to be a Pólya sequence with
parameter αG0 if for every A ∈ A the following two properties are fulfilled:

(a) P (θ1 ∈ A) = αG0(A)
αG0(Θ)

= G0(A),

(b) P (θn+1 ∈ A|θ1, . . . , θn) =
∑n
i=1 δθi (A)+αG0(A)∑n
i=1 δθi (Θ)+αG0(Θ)

=
∑n
i=1 δθi (A)+αG0(A)

n+α
.

Here, Θ denotes the set of colored balls. The distribution of the balls at the beginning is
given by G0. By considering the counting measure for αG0 one gets again the classical
Pólya urn scheme with a finite number of balls. Note that in the definition of the Pólya
sequence a Polish space is considered whereas in the definition of the Dirichlet process
any measurable space is allowed. However, this theoretical restriction for the relationship
between Dirichlet process and Pólya sequence is negligible in practice. On the one hand,
this relationship is that a Pólya sequence with parameter αG0 converges with probability
one as n→∞ to a limiting discrete distribution G with

(i) G ∼ DP (α,G0),

(ii) θn|G
i.i.d.∼ G, n ∈ N.
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This is proved by Blackwell and MacQueen (1973). On the other hand, assuming (i) and (ii)
one gets a Pólya sequence with parameter αG0. See Appendix A.2 for the corresponding
proof. The importance of this proof is that marginalization of G yields the predictive
distribution

θn+1|θ1, . . . , θn ∼
1

n+ α

n∑
i=1

δθi +
α

n+ α
G0, (2.7)

and thus a possibility to simulate realizations from G. The Pólya urn simulation idea
works as follows: Given θ1, . . . , θn one gets θn+1 by drawing (with replacement) from the
urn containing the “balls” θ1, . . . , θn with probability n

n+α
or by drawing from G0 with

probability α
n+α

. The new ball θn+1 is put into the urn. This procedure is visualized for
n = 6 in Figure 2.6. Again, the cluster property of the Dirichlet process becomes apparent:
If θ7 is drawn from the urn, obviously θ7 has to be identical to at least one other ball. For
a low value of α the probability for drawing from the urn is relatively high. Note that G0

is typically assumed to be continuous. So in Figure 2.6 G0 is marked by a continuum of
colors.

θ1 θ3 θ5 θ2

θ4 θ6 G0

6
6 + α

α
6 + α

θ7

Figure 2.6.: Illustration of the Pólya sequence.

However, because of the cluster property the parameters θ1, . . . , θn can also be identified
by the cluster locations µ1, . . . , µk with k ≤ n. Thereby the predictive distribution (2.7)
can be rewritten by



18 2. Dirichlet Processes

θn+1|µ1, . . . , µk ∼
1

n+ α

k∑
h=1

nh δµh +
α

n+ α
G0. (2.8)

Here, nh denotes the absolute frequency of elements in cluster h. This simulation idea is
known as Chinese restaurant process. Imagine that guests arrive one after the other at a
Chinese restaurant. The first guest θ1 chooses a free table labeled with µ1. When later
on the guest θn+1 arrives, k tables are occupied, each with nh persons. He can choose
to join other guests at an occupied table µh, h = 1, . . . , k, with probability nh

n+α
or to sit

down at a new table µk+1 ∼ G0 with probability α
n+α

(see Figure 2.7). The lower α, the
lower is the probability for choosing an empty table. Again, the cluster property of the
Dirichlet process is evident. People sitting at the same table form a cluster. Theoretically
infinitely many tables are necessary for infinite many guests. But especially for low values
of α a finite number of tables N is sufficient. This number of tables corresponds with the
truncation in the stick breaking representation. Note that at each table any number of
guests can sit. The typical round tables in Chinese restaurants should illustrate this.
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Figure 2.7.: Illustration of the Chinese restaurant process (Heinzl, 2009)
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2.4. Dirichlet Process Mixtures

The almost sure discreteness of the Dirichlet process seems to be cumbersome if one wants
a prior on a class of continuous distributions (Antoniak, 1974) like, for example, in the
mixed models of the Chapters 4, 5 and 6 where a more flexible distribution assumption for
the random effects distribution than the normal distribution is aspired. In general, random
effects bi, i = 1, . . . , n, are individual-specific vectors containing, for example, a random
intercept bi0 and a random slope bi1. Assuming a Dirichlet process for the random effects
distribution creates ties among the random effects due to the discreteness and especially due
to the cluster property of the Dirichlet process. On the one hand, this has the advantage
that clusters of subjects can be formed. But on the other hand, the prediction accuracy
of the random effects suffers from the restriction that some individuals must have the
same random effect in comparison to the normal distribution, that allows different random
effects. Thus, usually for the random effects distribution a DPM is considered

bi|θi
ind.∼ F (θi), i = 1, . . . , n,

θi|G
i.i.d.∼ G, i = 1, . . . , n,

G ∼ DP (α,G0),

where F (·) is an arbitrary continuous distribution with parameter vector θi. Then each
subject has its own random effect and clusters can still be identified by the parameters
θi. Remember that for θ1, . . . ,θn only k ≤ n different values are given due to the cluster
property of the Dirichlet process while all values of b1, . . . , bn are different because of the
continuity of F (·). Finally, given the probability measure G, for the random effects density
function one gets

p(bi|G) =

∫
f(bi|θi)dG(θi), (2.9)

where G acts as mixing distribution and f(·) denotes the density function of the continuous
distribution F (·). Because of the discreteness of G the integral in equation (2.9) can be
rewritten as sum. More concretely, by using the stick breaking procedure (2.2), one obtains

p(bi|π,µ) =
∑∞

h=1 πh f(bi|µh), i = 1, . . . , n,
πh = vh

∏
l<h(1− vl), h ∈ N,

vh
i.i.d.∼ Be(1, α), h ∈ N,

µh
i.i.d.∼ G0, h ∈ N.

(2.10)

Here, the vectors π = (π1, π2, . . .)
T and µ = (µT1 ,µ

T
2 , . . .)

T determine the probability mea-
sure G. Note that θi = µh if individual i belongs to cluster h. In summary, equation (2.10)
yields an infinite mixture distribution as random effects distribution. Using the truncated
version of the stick breaking presentation from Section 2.2, one gets formally a finite mix-
ture distribution for the random effects but with the special characteristic that the weights
are constructed by the stick breaking procedure. In practice, for F (·) typically (multi-
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variate) normal distributions are assumed, in which the means are in accordance with the
parameters θi, i = 1, . . . , n, respectively µh, h = 1, . . . , N , that follow the unknown dis-
tribution G ∼ DP (α,G0). Thus, one obtains formally a finite normal mixture as random
effects distribution

bi|π,µ
i.i.d.∼

∑N
h=1 πhN(µh,D), i = 1, . . . , n,

πh = vh
∏

l<h(1− vl), h = 1, . . . , N,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1,

µh
i.i.d.∼ G0, h = 1, . . . , N,

with the stick breaking weights π = (π1, . . . , πN)T , the means µ = (µT1 , . . . ,µ
T
N)T and the

covariance matrix D. This random effects distribution will be picked up in the Chapters
4, 5 and 6. There, some strategies will be explained how to estimate all the unknown
parameters.



3. Linear Mixed Models with a Group
Fused Lasso Penalty

3.1. Introduction

Linear mixed models, which were proposed by Laird and Ware (1982), are a common tool
for the modeling of longitudinal data. The model can be written as

yi|bi
ind.∼ N(X iβ +Zibi, σ

2Ini), i = 1, . . . , n, (3.1)

where yi contains the response values yij observed for subject i at observation times tij,
j = 1, . . . , ni. Here, Ini is the identity matrix with dimension ni. Population effects are
included in the parameter β whereas bi represents the individual-specific effects. X i and
Zi denote the corresponding individual design matrices. All observations yij are normally
distributed conditioned on the random effects and are regarded as independent with the
same variance σ2. The classical assumption in (3.1) is a Gaussian distribution for the
random effects, i.e. bi i.i.d. N(0,D), see, for example, Verbeke and Molenberghs (2000)
and Ruppert et al. (2003). While this choice is mathematically convenient, it is often
questionable in applications for several reasons. The normal distribution is symmetric,
unimodal and has light tails. Since the distributional assumption is made on unobserved
quantities, it is typically hard to validate these properties based on estimates. Possible
skewness and multimodality (arising, for example, from an unconsidered grouping structure
in the data) may be masked when checking the normal distribution based on estimated
random effects. In contrast to this homogeneity model the heterogeneity model introduced
by Verbeke and Lesaffre (1996) is much more flexible. It assumes

bi ∼
N∑
h=1

πhN(µh,D), i = 1, . . . , n, (3.2)

where π1, . . . , πN are mixture weights. Several extensions and alternatives to this hetero-
geneity model have been proposed. For example, Gaffney and Smyth (2003) used random
effects regression mixtures in the context of curve clustering. Approaches for clustering
functional data were proposed by James and Sugar (2003) and Liu and Yang (2009). Celeux
et al. (2005), Ng et al. (2006) and Scharl et al. (2010) dealt with mixtures of linear mixed
effects models. In these approaches the mixture weights, the variance parameters and all
fixed effects are cluster-specific whereas in equation (3.2) just the mixture weights and
the locations corresponding to the time trend depend on the cluster. While Booth et al.
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(2008) extended this concept by proposing a stochastic search algorithm for finding the
partition, that maximizes an objective function based on the classification likelihood, De
la Cruz-Meśıa et al. (2008) generalized the approach to a mixture of non-linear hierarchical
models. Villarroel et al. (2009) extended the heterogeneity model to allow for a multivari-
ate response variable. In addition, heteroscedastic normal mixtures in the random effect
distribution for multiple longitudinal markers were considered by Komárek et al. (2010)
for linear mixed models and by Komárek and Komárková (2013) for generalized linear
mixed models. However, in all these approaches it is necessary to fix the number of mix-
ture components for estimation even though in most applications the number of mixture
components is unknown. Additional procedures are typically provided for selecting this
number, which are usually based on information criteria. A data driven choice of this
number can be achieved by penalization of pairwise distances of cluster centers by a group
fused lasso penalty term. In contrast to the approaches in Chapter 4 and Chapter 6, that
aim at penalizing the reparameterized mixture weights, the “penalized heterogeneity ap-
proach” introduced here reduces the number of clusters by penalizing the cluster centers
in the form

√
N · q

∑
h<l

‖µh − µl‖. (3.3)

The idea of the penalty term is as follows: If two cluster locations are very similar in terms
of the Euclidean distance ‖ · ‖, these clusters should be fused. Therefore only the relevant
clusters are expected to remain in the model. Fusion methods in regression modeling, but
with quite differing penalty terms, have been proposed by Tibshirani et al. (2005). Penalty
terms that include vectors, as is needed here, have been considered by Yuan and Lin (2006)
but not in a fusion context. It should be noted that the factor

√
N · q, where q denotes

the dimension of random effects, is used for incorporating the number of parameters to be
estimated. For inference, we extend the traditional EM algorithm (Dempster et al., 1977)
used in the heterogeneity model of Verbeke and Lesaffre (1996) by adding the penalty
term (3.3) multiplied by a penalty parameter to the logarithm of the complete but not
fully observed likelihood (see Section 3.2.1). To find the optimal penalty parameter we
introduce a new model choice criterion, which is based on the concept of Braun et al. (2012)
(see Section 3.2.2). The usefulness of our approach is demonstrated by three applications
(see Section 3.3) and a simulation study (see Section 3.4). Large parts of this chapter are
based on Heinzl and Tutz (2012).

It will be shown that our penalized heterogeneity approach is much more flexible than
the conventional homogeneity model and allows to determine the number of clusters auto-
matically. Regularization allows to identify the underlying clusters and cluster individuals
in longitudinal studies.
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3.2. Linear Mixed Models with a Group Fused Lasso
Penalty

3.2.1. Estimation

For the model introduced in Section 3.1 we give an EM algorithm, which is based on
derivations by McLachlan and Krishnan (1997) and McLachlan and Peel (2000) and is
similar to the algorithm used by Verbeke and Molenberghs (2000) but includes the penalty
term (3.3). Let the parameters be collected in ξ = (π,ψ)T , where π = (π1, . . . , πN)T

comprises the mixture weights and ψ is the vector containing all the remaining param-
eters β,µ1, . . . ,µN ,D, σ

2. In the following the order of µ1, . . . ,µN is determined by
the corresponding weights in decreasing order under the restrictions

∑N
h=1 πh = 1 and∑N

h=1 πhµh = 0. The latter ensures E(yi) = X iβ. The cluster membership of each indi-
vidual can be described by latent variables wi := (wi1, . . . , wiN)T , where wih = 1 if subject
i belongs to cluster h and 0 otherwise. Marginalization over the random effects yields the
complete model with observed data yi as well as unobserved data wi:

yi|wi
ind.∼ N(X iβ +Ziµh, V i), i = 1, . . . , n,

wi
i.i.d.∼ M(1,π), i = 1, . . . , n,

(3.4)

with V i = ZiDZ
T
i + σ2Ini and M(·, ·) representing the multinomial distribution. The

likelihood function corresponding to (3.4) is given by

L(ξ) =
n∏
i=1

N∏
h=1

[πh fih(yi;ψ)]wih ,

where fih(·) denotes the density function of N(X iβ + Ziµh, V i). The penalized log-
likelihood we propose is

lP (ξ) =
n∑
i=1

N∑
h=1

wih[log πh + log fih(yi;ψ)]− λ
√
N · q

∑
h<l

‖µh − µl‖, (3.5)

where λ indicates the penalty parameter. Obviously for λ = 0 the penalization term
drops out. We will use an EM algorithm procedure, which alternates between taking
the expectation of lP (ξ) over all unobserved wih in the E-step and maximization of the
expected value in the M-step instead of directly maximizing the penalized incomplete
likelihood function based only on the observed data. The steps have the following form.
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E-step

Collecting all observed data in y = (yT1 , . . . ,y
T
n )T , we obtain at iteration t+ 1 the E-step

Q(ξ) = E
(
lP (ξ)|y, ξ(t)

)
=

n∑
i=1

N∑
h=1

πih(ξ
(t))[log πh+log fih(yi;ψ)]−λ

√
N · q

∑
h<l

‖µh−µl‖,

where πih(ξ
(t)) is the probability at iteration t that subject i belongs to cluster h and is

given by

πih(ξ
(t)) =

fih(yi;ψ
(t))π

(t)
h∑N

l=1 fil(yi;ψ
(t))π

(t)
l

.

M-step

For simplicity, we write πih := πih(ξ
(t)), but it should be noted that for the M-step it is

essential that πih is fixed from the last iteration t because then one can use that Q(ξ) is
the sum of two components, Q(π) and Q(ψ), and the optimization problem in the M-step
can be separated into two parts: The maximization of

Q(π) =
n∑
i=1

N∑
h=1

πih log πh,

with respect to π and the maximization of

Q(ψ) =
n∑
i=1

N∑
h=1

πih log fih(yi;ψ)− λ
√
N · q

∑
h<l

‖µh − µl‖,

with respect to ψ. The first optimization problem yields

πh =
1

n

n∑
i=1

πih, h = 1, . . . , N.

In the second part of the M-step one obtains the current state for ψ by alternating between
the maximization of Q(ψ) with respect to β, to µ1, . . . ,µN and to the variance parameters
D and σ2. Conditional on the current state of the other parameters the maximization of
β results in

β =

(
n∑
i=1

XT
i V

−1
i X i

)−1( n∑
i=1

(
XT

i V
−1
i yi −

N∑
h=1

πihX
T
i V

−1
i Ziµh

))
.

The corresponding proof is given in Appendix A.3.2. For the maximization of µ1, . . . ,µN
given β and the variance parameters as well as for the maximization of the variance pa-
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rameters given β and µ1, . . . ,µN a numerical procedure like the Nelder-Mead method is
necessary. More information about this procedure is given in the paragraph “Implementa-
tion” below. In each M-step deviations from the constraint

∑N
h=1 πhµh = 0 are subtracted

from µh, h = 1, . . . , N , and included in β so that this constraint holds. The second re-
striction

∑N
h=1 πh = 1 is fulfilled by ensuring that the row sums of the matrix (πih) are

one.

Start and stop of the algorithm

For EM algorithms it is essential how to choose the starting values because the (penalized)
incomplete log-likelihood is ascending at each step and the algorithm can converge to a
local maximum. Because in each M-step the fusion of clusters is investigated, it is sensible
to choose starting values for an agglomerative clustering method. Therefore each subject
starts in its own cluster. Thus, in the beginning there are N = n clusters with weights
πh = 1/N , h = 1, . . . , N . As starting values for the cluster locations µ1, . . . ,µN we consider
the predicted random effects b1, . . . , bn of the previously fitted linear mixed model with
Gaussian random effects distribution. This fit yields starting values for β, σ2 and D, too.
To reduce computation time it is sometimes advisable to choose N < n if the number of
individuals is high. Then one obtains starting values for the cluster centers by a k-means
clustering of predicted random effects of the former fitted linear mixed model. However, the
algorithm starts with N clusters and successively merges clusters until there is no further
ascent of the penalized incomplete log-likelihood. If two cluster centers µh and µl are fused,
only one of these parameters is kept and the other one is deleted with the effect that the
number of clusters N is reduced by one. In general, our penalized heterogeneity approach
can be seen as an agglomerative cluster analysis but based on a regression model. After
convergence we get the cluster membership by the matrix of estimated πih. Individual i is
assigned to that cluster h for which π̂ih is maximal. Based on the weights of all clusters
the prediction of the random effects has the form

b̂i = D̂ZT
i V̂

−1

i (yi −X iβ̂) + (Iq − D̂ZT
i V̂

−1

i Zi)
N∑
h=1

π̂ihµ̂h, i = 1, . . . , n,

which is shown in Appendix A.4.

Implementation

All computations are implemented in C++ (Stroustrup, 1997), allowing for an efficient
treatment of loop-intensive calculations, which is needed because of the slow convergence
of the EM algorithm. They are made easily accessible by the function lmmLASSO() in the
R package clustmixed (Heinzl, 2012) using the statistical software R (R Development
Core Team, 2012). For computation, all variables are internally standardized, which is
explained in more detail in Appendix A.5. For updating variance parameters we use the
C++ library ASA047 (Burkhardt, 2008), an implementation of the Nelder-Mead algorithm
in C++, which was used by Papageorgiou and Hinde (2012) for similar tasks. For reflection,
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extension and contraction coefficients we choose the common settings 1.0, 2.0 and 0.5
respectively. See Nelder and Mead (1965) and O’Neill (1971) for more technical details of
the algorithm. Note that for ensuring that the covariance matrixD is nonnegative-definite,
we parameterize the corresponding variance parameters by the entries of a lower triangular
matrix L according to the Cholesky decomposition D = LLT . Then D is nonnegative-
definite for each L and positive-definite (and so invertible, too) if L is a matrix with
exclusively nonzero diagonal entries (Lindstrom and Bates, 1988).

Standard errors and confidence intervals

Users typically are interested in standard errors for the unknown parameters, in particular
for the fixed effects and the variance parameters. Several strategies have been suggested in
the EM literature for providing standard errors, especially information-based approaches
and bootstrap methods (McLachlan et al., 2004). Basford et al. (1997) found in a compar-
ative study that information-based approaches tend to be too unstable to be recommended
in the case of normal mixture models. Therefore we will use bootstrap methods. In the
applications in Section 3.3 we will use the nonparametric bootstrap method proposed by
Efron (1979): Let F denote the true probability function of yi, i = 1, . . . , n, and F̂ the cor-
responding empirical probability distribution. Then we draw U random samples of size n
from F̂ with replacement. For each bootstrap replication u = 1, . . . , U the rth fixed effect,
for example, is estimated by β̂

(u)
r . Thus, the associated standard error can be estimated by

ŝe(β̂r) =

√√√√ 1

U − 1

U∑
u=1

(
β̂

(u)
r − β̂(u)

r

)2

. (3.6)

Efron and Tibshirani (1993) showed that 50 to 100 bootstrap replications are generally
sufficient for standard error estimation.

The bootstrap estimates can also be used for deriving confidence intervals. For example,
the 95% confidence interval for βr is given by the 0.025- and the 0.975-quantile of the em-
pirical distribution of β̂

(1)
r , . . . , β̂

(U)
r . According to Efron and Tibshirani (1993) the number

of bootstrap replications should be 500 to 1000 for estimating confidence intervals based
on bootstrap percentiles. The large number of bootstrap samples is necessary because the
percentiles depend on the tails of the distribution where fewer samples occur. Investigating
if covariates show a significant effect on the response variable, that is, testing H0 : βr = 0
against H1 : βr 6= 0, can be done by checking if the corresponding confidence intervals in-
clude zero. An example is given in Section 3.3.2. Alternatively the statistic β̂r/ŝe(β̂r) can
be considered, which follows approximatively a standard normal distribution for a large
sample size. Based on this test statistic also approximative confidence intervals can be
developed. We pursue this strategy in the simulation studies.
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3.2.2. Model Choice: Predictive Cross-Validation

In general, optimal penalization parameters can be chosen by cross-validation or informa-
tion criteria such as Akaike information criterion (AIC) or Bayesian information criterion.
In normal linear mixed models the AIC is not as straightforward as in normal linear models
(compare Vaida and Blanchard (2005) and Greven and Kneib (2010)). For the penalized
heterogeneity approach, the evaluation of the marginal or conditional AIC is even more
complicated. Hence we prefer a cross-validation approach. Braun et al. (2012) introduced
a new predictive cross-validation approach for model choice in linear mixed models with
Gaussian random effects. The approach is based on the “mixed” cross-validation method
proposed by Marshall and Spiegelhalter (2003). An advantage of this approach is that in
contrast to full cross-validation the model must be fitted only once, which saves comput-
ing time. In general, each observed response value yobs is compared to the corresponding
predictive distribution, for example, by the continuous ranked probability score

CRPS(yobs) = −
∫ ∞
−∞

(P (Yobs ≤ r)− 1(yobs ≤ r))2 dr,

where P symbolizes the predictive distribution of the random variable Yobs and 1(x) denotes
the indicator function that is one if the condition x is true and zero otherwise. If the
predictive distribution is a normal distribution with estimated mean µpre and estimated
standard deviation σpre, the continuous ranked probability score will take the form

CRPS(yobs) = σ̂pre

[
1√
π
− 2ϕ

(
yobs − µ̂pre

σ̂pre

)
− yobs − µ̂pre

σ̂pre

(
2Φ

(
yobs − µ̂pre

σ̂pre

)
− 1

)]
.

(3.7)
Here ϕ(·) denotes the density function and Φ(·) the distribution function of the standard
normal distribution. For linear mixed models Braun et al. (2012) consider the predictive
distribution of the random variable yij conditional on the other given response values of
the same subject yi,−j := (yi1, . . . , yi,j−1, yi,j+1, . . . , yini)

T for i = 1, . . . , n and j = 1, . . . , ni.
They argue that there is only small danger of conservatism due to ignoring the individual
random effect as well as the real response value even though the model choice criterion is
based on full data. When assuming normally distributed random effects one also obtains
normal yij|yi,−j. Unfortunately in our case this distribution is not normal. Thus, we extend
the approach of Braun et al. (2012) to our scenario. We exploit that in the case of known
cluster membership the conditional distribution is normal. Because the cluster membership
is not known the continuous ranked probability score is weighted by the estimated weights

WCRPS(yij) =
N∑
h=1

π̂hCRPSh(yij),

where CRPSh(yij) is given by formula (3.7) with yobs = yij and
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µ̂pre = xTijβ̂ + zTijµ̂h + zTijD̂Z
T
i,−j

(
σ̂2Ini−1 +Zi,−jD̂Z

T
i,−j

)−1

(yi,−j −X i,−jβ̂ −Zi,−jµ̂h),

σ̂pre =

(
zTijD̂zij − zTijD̂ZT

i,−j

(
σ̂2Ini−1 +Zi,−jD̂Z

T
i,−j

)−1

Zi,−jD̂zij + σ̂2

)1/2

.

The parameters µ̂pre and σ̂pre are the moments of the distribution of yij|yi,−j, wih = 1,
which is proved in Appendix A.6. Here, xTij is the jth row of X i while X i,−j symbolizes
the matrix X i without row j (analog for zTij and Zi,−j). Finally, the mean of the weighted
continuous ranked probability score is taken over all measurement points. The best value
for the penalization parameter λ is the one maximizing the mean of the weighted continuous
ranked probability score.

3.3. Applications

3.3.1. Unemployment
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Figure 3.1.: Unemployment rates of the federal states of Germany across time.

We will illustrate the practical use of our model by considering the unemployment rates
of the federal states of Germany from 2005 until 2010 (Weise et al., 2011). We aim at
pointing out which states feature a similar development. Figure 3.1 shows different levels
of the unemployment rates and a negative time trend, which can be regarded as approxi-
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mately linear. Therefore we consider a random slope model for the annual average of the
unemployment rate yij of state i in year j

yij|bi
ind.∼ N(β0 + bi0 + (β1 + bi1)yearij, σ

2), i = 1, . . . , 16, j = 0, . . . , 5.

For the centered i.i.d. random effects bi = (bi0, bi1)T we assume a mixture distribution
of Gaussian components with penalized cluster centers (see Section 3.1). The covariance
matrix in the random effects distribution (3.2) is denoted by

D =

(
σ2

0 σ01

σ01 σ2
1

)
.

Note that only for a better interpretability the zero point of the time variable is changed to
2005. Thus, when computing estimates, the time variable is labeled by 0, 1, . . . , 5 for the
years 2005, 2006, . . . , 2010. According to the considerations in Section 3.2.1 the algorithm
starts with 16 clusters. Figure 3.2 suggests to choose the penalization parameter λ = 0.01.
The resulting fit can be seen in Figure 3.3 and Table 3.1.
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Figure 3.2.: Weighted continuous ranked probability score for the unemployment data depending on λ.

Table 3.1 shows the estimates as well as the estimated standard errors and the bootstrap
confidence intervals based on 1000 bootstrap replications for the fixed effects and the
variance parameters. The estimated global intercept β̂0 = 13.315 can be seen as the
mean unemployment rate in the year 2005 and the global slope β̂1 = −0.980 is the mean
decrease of unemployment in the years from 2005 until 2010. The standard errors are
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standard 95%-CI
estimate error lower upper

β0 13.315 0.917 11.386 15.066
β1 -0.980 0.076 -1.131 -0.819

σ2 0.480 0.050 0.390 0.571
σ2

0 2.299 0.770 0.000 2.601
σ2

1 0.005 0.003 0.000 0.010
σ01 -0.107 0.045 -0.149 0.009

Table 3.1.: Estimation results for the fixed effects and the variance parameters by the penalized hetero-
geneity approach with λ = 0.01 for the unemployment data.

relatively small, which promises precise estimations. They are even smaller than those in
Section 4.4.1, where a competing approach is considered.

The clustering of the penalized heterogeneity approach is shown in Figure 3.3. Here,
the dashed line symbolizes the population effect whereas the solid lines display the cluster
centers. Observations belonging to the same cluster are marked with the same symbol.
To each solid line the corresponding symbol is also added to visualize which cluster center
belongs to which cluster. Three clusters are detected by our model: cluster 1 (#) has
weight π̂1 = 0.563 and is characterized by a comparably low unemployment. In 2005 the
level is µ̂10 = −3.702 lower that the base level whereas the decrease µ̂11 = 0.296 is not
so powerful than in the two other clusters. All western states are in cluster 1 with the
exception of the city states Berlin and Bremen. These states form cluster 3 (+) with
π̂3 = 0.129, µ̂30 = 3.838 and µ̂31 = −0.111. In Figure 3.1 it seems that Berlin and Bremen
show a similar behavior like the eastern states in clusters 2 (4, π̂2 = 0.309, µ̂20 = 5.145,
µ̂21 = −0.492) but on closer inspection it can be seen that these states show a worse
development of unemployment than the states in cluster 2 and slipped some notches in the
ranking. The fit of our model highlights this feature.
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Figure 3.3.: Clustering of the unemployment data by the penalized heterogeneity approach with λ = 0.01.
Observations belonging to the same cluster are marked with the same symbol. The dashed line represents
the population effect, the solid lines symbolize the cluster effects.

3.3.2. Hormonotherapy

As another example the craniofacial growth of male rats is analyzed by the penalized
heterogeneity model. The data were collected in an experiment at the Catholic University
of Leuven with the aim to analyze the effect of testosterone on the growth of rats (Verdonck
et al., 1998). Therefore 50 male rats have been randomized to either a control group or
to one of the two treatment groups that differ in the dose of the drug Decapeptyl, which
inhibits the testosterone production. The response of interest is the distance (in pixels)
between well-defined points of the skull that characterize the height of skull. These heights
were measured for each rat every 10 days starting at the age of 50 days and the treatment
began at the age of 45 days. See Verbeke and Molenberghs (2000) for more information
about the data. Figure 3.4 shows different levels of heights of the skulls and a positive time
trend, which varies from rat to rat. According to Figure 3.5, where the heights of rat skulls
across age are shown for each treatment group separately, there seems to be a negative
effect of the drug Decapeptyl on the growth of rats, but the three groups are relatively
mixed and cannot be clearly separated.

To examine how many and which clusters can be found in these data the penalized
heterogeneity approach with a group fused lasso penalty is used. As suggested by Verbeke
and Lesaffre (1999), and also done by Verbeke and Molenberghs (2000) and Fahrmeir et al.
(2007), the age of rat i at measurement j is transformed by tij = log(1 + age)ij to get
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Figure 3.4.: Heights of rat skulls across age.

a linear time trend. In analogy to Verbeke and Molenberghs (2000) and Fahrmeir et al.
(2007) the time trends in each group are modeled as fixed effects and random intercepts
and slopes are included to incorporate individual deviations of the time trend. In summary,
we consider the following model for the height y of the skull of rat i at measurement j

yij|bi
ind.∼ N(β0 + bi0 + (β1 + β2Li + β3Hi + bi1)tij, σ

2), i = 1, . . . , 50, j = 1, . . . , ni,

with effect-coded variables L and H for a low and high dose of drug, respectively. For the
centered i.i.d. random effects bi = (bi0, bi1)T we assume a mixture distribution of Gaussian
components with penalized cluster centers (see Section 3.1). The four rats for which only
one measurement was available were excluded because for these no reasonable random slope
can be predicted. For faster computations the algorithm starts with 20 clusters. Figure
3.6 suggests to choose the penalization parameter λ = 0.011. This yields three clusters
as it can be seen in the resulting fit in Figure 3.7. For larger values than λ = 0.0115 the
estimated number of clusters would be two, for much larger values of λ only one cluster
would be detected. The large jumps in Figure 3.6 are seen when the number of clusters
changes. Otherwise there are only small, but not negligible differences in the weighted
continuous ranked probability score. Due to the large scale these small differences are hard
to see.



3.3 Applications 33

50 60 70 80 90 100 110

70
75

80
85

age [days]

he
ig

ht
 o

f s
ku

ll 
[p

ix
el

s]

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

(a) Control group
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(b) Low dose
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Figure 3.5.: Heights of rat skulls across age separately for each treatment group.

standard 95%-CI
estimate error lower upper

β0 68.658 0.312 68.044 69.263
β1 7.248 0.149 6.964 7.543
β2 0.082 0.311 -0.442 0.738
β3 -0.459 0.296 -0.879 0.249

σ2 1.425 0.145 1.087 1.654
σ2

0 0.282 0.867 0.000 3.122
σ2

1 0.019 0.037 0.000 0.138
σ01 0.073 0.118 -0.349 0.125

Table 3.2.: Estimation results for fixed effects and variance parameters by the penalized heterogeneity
approach with λ = 0.011 for the hormonotherapy data.

In Table 3.2 the estimates, the standard errors, and the confidence intervals for the fixed
effects and the variance parameters are given for λ = 0.011. The standard errors and
confidence intervals have been estimated by 1000 bootstrap replications, see Section 3.2.1
for more details. The estimated global intercept β̂0 = 68.658 can be interpreted as the
mean height at the beginning of the treatment. Since the covariates L and H are effect-
coded, the global slope β̂1 = 7.248 represents the overall mean growth of all rat skulls in the
considered time period. The expected negative effect of the drug Decapeptyl can be seen
from the estimates β̂2 = 0.082 and β̂3 = −0.459, which can be interpreted as deviations
from the overall time trend. For rats which had been exposed to a high dose of the drug
the growth (β̂3 = −0.459) is considerably slower than in low dose group (β̂2 = 0.082),
differences to the control group are even bigger (−β̂2− β̂3 = 0.376). These results are more
intuitive than the results obtained by Verbeke and Molenberghs (2000). In their analysis
the rats which had been exposed to a low dose show a higher growth than those in the
control group, though the drug has a negative effect on the growth for a high dose. It



34 3. Linear Mixed Models with a Group Fused Lasso Penalty

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.000 0.005 0.010 0.015 0.020

−
0.

64
−

0.
62

−
0.

60
−

0.
58

−
0.

56

λ

w
cr

ps

Figure 3.6.: Weighted continuous ranked probability score for the hormonotherapy data depending on λ.
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Figure 3.7.: Clustering of the hormonotherapy data by the penalized heterogeneity approach with λ =
0.011. Observations belonging to the same cluster are marked with the same symbol. The dashed line
represents the population effect, the solid lines symbolize the cluster effects.
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seems that the penalized mixture of normal distributions as random effects distribution is
much more adequate than a simple normal distribution for these data with an underlying
grouping structure. However, from the confidence intervals for the fixed effects we can
see that the interactions between time and L respectively H have no significant effect
on the height on the five percent significance level while the variable time itself shows a
significant effect. The estimated standard errors are quite similar to those of Verbeke and
Molenberghs (2000) and Fahrmeir et al. (2007). For example, the standard error for the
intercept (0.312) is only a bit smaller in the penalized heterogeneity approach than in the
models by Verbeke and Molenberghs (2000) (0.325) and Fahrmeir et al. (2007) (0.338).
For the variance parameters, differences are much larger. The variance of the random
intercept is considerably smaller (0.282) than in the reference approaches: 3.369 (Verbeke
and Molenberghs, 2000) and 3.739 (Fahrmeir et al., 2007) since the variation of the data
is for the most part incorporated by the penalized normal mixture for the random effects.
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Figure 3.8.: Distribution of the two treatment groups respectively the control group in the three clusters
corresponding to the penalized heterogeneity approach with λ = 0.011.

According to Figure 3.7 three clusters are detected. The dashed line symbolizes the
population effect whereas the solid lines display the cluster centers. Observations belonging
to the same cluster are marked with the same symbol. To each solid line the corresponding
symbol is added to visualize which cluster center belongs to which cluster. While there
are only low discrepancies in the random slopes (µ̂11 = −0.100, µ̂21 = 0.061, µ̂31 = 0.382),
the base levels are quite different. Cluster 2 (4) with weight π̂2 = 0.435 has the largest
intercept, which is about µ̂20 = 1.706 larger than the overall intercept. By comparison, in
Cluster 1 (#) with π̂1 = 0.503 the base level is considerably lower (µ̂10 = −0.912). Cluster
3 (+) has the estimated weight π̂3 = 0.062 and contains the three rats with the lowest
base level (µ̂30 = −4.578). As can be seen from Figure 3.8 the response types collected
in the clusters come from all groups. In cluster 1 rats of the high dose group are in the
majority followed by rats of the control group. In cluster 2 in particular rats which had
been exposed to a low dose of the drug are found.
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3.3.3. Lung Function Growth
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Figure 3.9.: Logarithmic forced expiratory volume in one second of girls across age: raw data (left) and
clustering by the penalized heterogeneity approach with λ = 0.0175 (right). On the right observations
belonging to the same cluster are marked with the same symbol. The dashed line represents the population
effect, the solid lines symbolize the cluster effects.

The third data example deals with lung function growth of girls in Topeka (USA). These
data are a subsample from the six cities study of air pollution and health in Dockery et al.
(1983). In this study a cohort of 13,379 children born in or after 1967 was enrolled in six
communities in the United States: Watertown (Massachusetts), Kingston and Harriman
(Tennessee), a section of St. Louis (Missouri), Steubenville (Ohio), Portage (Wisconsin),
and Topeka (Kansas). The study aims at characterizing the lung function growth of the
children. One important indicator for the pulmonary function is the logarithmic forced
expiratory volume in one second (fev1), i.e. the quantity of air a person breathes out
in one second as fast and powerful as possible. Our sample consists of 100 girls, with a
minimum of two and a maximum of twelve observations over time. Although a cluster
structure is not evident from looking at the raw data (Figure 3.9, left) our approach is able
to identify clusters in the data. Again we consider a random slope model

log(fev1)ij|bi
ind.∼ N(β0 + bi0 + (β1 + bi1)ageij, σ

2), i = 1, . . . , 100, j = 1, . . . , ni,

for modeling the logarithm of fev1 subject to age and use a finite mixture as random
effects distribution with a group fused lasso penalty. Because of the comparably large
number of individuals we start with N = 30 clusters instead of 100.
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Figure 3.10.: Cluster centers and random effects of the penalized heterogeneity approach with λ = 0.0175
for the lung function growth data: The thick big icons symbolize the cluster centers µ̂h, the thin small

ones the random effects b̂i. The square at coordinates (0,0) marks the population effect. Ellipses with
level 0.95 visualize the estimated conditional distribution of random effects in the clusters.

In Figure 3.9 (right) the clustering structure is visualized but it is hard to see which
girls are merged to the same cluster. Figure 3.10 makes clear how the clustering works.
On the axes the intercepts and the slopes are drawn. The filled square at coordinates (0,0)
symbolizes the population effect. All other icons represent deviations from the popula-
tion effect. The big bold ones represent the cluster locations µ̂h and the thin small ones
the random effects b̂i. Girls that are assigned to the same cluster are marked with the
same symbol and are arranged around the cluster locations in the form of ellipses. It is
easily seen that subjects with random effects that are similar in terms of a low Euclidean
distance belong to the same cluster. For visualizing the variation of the random effects
around the cluster centers ellipses are added in Figure 3.10. The ellipses are constructed
as follows: If it was known that an arbitrary subject i belongs to cluster h, the conditional
distribution of random effect bi would be given by bi|wih = 1 ∼ N(µh,D). However, the
cluster membership is not known in practice. Thus, this conditional distribution has to
be estimated from the data. While the estimate for the mean is directly given from the
estimation results of the model, the covariance matrix in cluster h is estimated on the basis
of the individuals with

arg max
l=1,...,N

π̂il = h.
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3.4. Simulation Study

In the following simulation study the performance of our penalized heterogeneity approach
is evaluated. The study aims at clarifying in which data situations our approach improves
estimation compared to the commonly used linear mixed model with Gaussian random
effects distribution and the heterogeneity model by Verbeke and Lesaffre (1996). Note
that the estimated number of clusters and the estimated clustering in general have an
essential impact on the prediction accuracy of the random effects. Of course, for the
prediction of bi it is reasonable to borrow information from other subjects which show a
similar behavior and so belong to the same cluster while incorporating dissimilar individuals
impairs the prediction accuracy. For examining this trade-off we compare the usual linear
mixed model with normal random effects distribution (one cluster model) using the R
function lmer() from the lme4 package by Bates et al. (2012) to our penalized heterogeneity
approach with the penalization parameter λ being determined by predictive cross-validation
(see Section 3.2.2). In addition, the heterogeneity model by Verbeke and Lesaffre (1996)
with a finite unpenalized mixture of normal distributions as random effects distribution is
considered. In the latter approach, the number of mixture components is identified by the
predictive cross-validation criterion, too. In addition to an elaborate examination of the
prediction accuracy of the random effects and the goodness of the estimates for the fixed
effects and variance parameters in Section 3.4.2 two further aspects are investigated: In
Section 3.4.3 the impact of the considered methods on characteristics of tests concerning
the significance of covariates is evaluated while Section 3.4.4 deals with the cause and the
meaning of heterogeneity in the random effects distribution.

3.4.1. Settings

In the following simulation study we investigate the impact of the number of observations
per unit and the separation between clusters. We generated data sets assuming a simple
linear trend model

yij = β0 + bi0 + (β1 + bi1)tij + β2xi + εij, i = 1, . . . , n, j = 1, . . . , ni, (3.8)

with i.i.d. errors εij ∼ N(0, σ2). The values xi are generated from a standard normal
distribution. The centered i.i.d. random effects bi = (bi0, bi1)T follow a mixture distribution
with three Gaussian components:

bi ∼ 0.4 ·N(µ1,D) + 0.3 ·N(µ2,D) + 0.3 ·N(µ3,D), i = 1, . . . , n,

imitating a population consisting of three clusters of overlapping subpopulations. Through-
out the simulations, we set n = 20 and

σ2 = 0.25,

 β0

β1

β2

 =

 0.2
0.1
0.05

 , D =

(
σ2

0 σ01

σ01 σ2
1

)
=

(
0.02 0.01
0.01 0.02

)
.
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We vary, however, the number of individual observations ni, the centers µ1, µ2 and µ3

of the clusters and the locations of observation times tij. To produce longitudinal data
with varying numbers of repeated observations per unit i, we set ni = 2 + Xi, where
Xi follows a Poisson distribution with rate ν. Setting ν = 1 corresponds to longitudinal
data with only few individual observations (3 on average), ν = 3 to a medium number of
individual observations and ν = 5 to comparably many individual observations. For given
ni, observation times are generated from

ti1 ∼ U(0, 1), i = 1, . . . , n,

tij ∼ U(ti,j−1 + 0.5, ti,j−1 + 1.5), i = 1, . . . , n, j = 2, . . . , ni,

where U(·, ·) denotes the uniform distribution. In this way, different numbers ni(s) and
measuring times tij(s) are generated in each simulation run s = 1, . . . , 100. Similarly,
different “true” random effects bi(s) are drawn from the Gaussian mixture distribution in
each simulation run. For the cluster locations, we chose

µ1 =

(
−2.25

1

)
, µ2 =

(
0.75
−1.2

)
, µ3 =

(
2.25
−2/15

)
,

corresponding to clearly separated clusters,

µ1 =

(
−1.5
0.75

)
, µ2 =

(
0.5
−0.9

)
, µ3 =

(
1.5
−0.1

)
,

corresponding to moderately separated clusters, and

µ1 = µ2 = µ3 =

(
0
0

)
,

corresponding to only one cluster.

Combining these different settings for observation times and clusters results in nine
different scenarios. For each of them, the prediction accuracy of the random effects as well
as the estimation results of the fixed effects and the variance parameters are compared for
all considered models. More concretely, in each simulation run s, we calculate the average
prediction error

PEr(s) =
1

n

n∑
i=1

(
b̂∗ir(s)− b∗ir(s)

)2

, r = 0, 1,

for uncentered random intercepts b∗i0 = β0 + bi0 and random slopes b∗i1 = β1 + bi1. In
addition, the estimation accuracy of the fixed effects is investigated by the estimated mean

squared errors M̂SEr = V̂ ar(β̂r) + (β̂r − βr)
2 and the medians of the relative biases

RBr = (β̂r − βr)/βr, r = 0, 1, 2. The standard errors for the fixed effects are estimated by
the standard deviations of the estimates β̂r from 100 simulation runs using formula (3.6).
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Furthermore, we examine the estimated variance parameters, especially the variances of
the random effects σ̂2

0 and σ̂2
1.

3.4.2. Results

The results for the nine combinations are summarized below. For all scenarios we illustrate
the empirical distribution of PE0(s) values obtained from simulation run s = 1, . . . , 100
by box plots. The corresponding figures of the random slopes are not shown because these
are very similar to those of the random intercepts. Tables show the estimation results of
the fixed effects, random effects and variance parameters. In addition, we demonstrate the
clustering related characteristics.
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Figure 3.11.: Trace plots (top) and clustering by the penalized heterogeneity approach (below) with clearly
separated clusters for a medium number of individual observations (ν = 3) (left) and many individual
observations (ν = 5) (right).

Figure 3.11 (top) displays trace plots of typical longitudinal data generated in the setting
of clearly separated clusters. Cluster effects can easily be seen. On the left, there is
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a medium number of observations for each subject while on the right the mean of the
number of repeated measurements is seven resulting in more observation times. Figure 3.11
(bottom) demonstrates that in both cases the penalized heterogeneity approach detects
three clusters. Again, in this type of plot the dashed line shows the overall effect, and
the solid lines visualize the means of the resulting clusters. The assignment to clusters is
visualized by differing symbols.
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Figure 3.12.: Box plots of PE0 with clearly separated clusters for few individual observations (left), a
medium number of individual observations (middle) and many individual observations (right).

Table 3.3 and Figure 3.12 show the simulation results in the setting of clearly separated
clusters. The denotation “normal” labels the homogeneity model with normally distributed
random effects. In the heterogeneity model the random effects follow a “finite mixture” as
specified in equation (3.2), where the number of mixture components has been determined
by predictive cross-validation. In contrast to this discrete optimization the approach pro-
posed in this paper uses the penalty term (3.3) multiplied by a tuning parameter, which
is also determined by predictive cross-validation. In Figure 3.12 it can be seen that the
penalization approach outperforms the homogeneity model and the heterogeneity model
for few observations as well as for a medium number of individual observations and many
observations. It is especially remarkable that the “penalized mixture” yields a better pre-
diction accuracy than the “finite mixture” although in both cases the same criterion for
finding the best number of clusters is used. The reason for that is that for optimization in
our penalized heterogeneity approach a denser grid is used. This is the main justification
for our model. Apart from that it can be seen that the more repeated measurements per
unit are given the better is the prediction accuracy of the penalized heterogeneity approach.

Table 3.3 shows several features. First, it is seen that for β̂0 and β̂1 the mean squared
errors, the relative biases, and the standard errors tend to be a bit smaller for the penalized
heterogeneity model. Second, huge differences can be seen for the estimation results for β̂2.
In particular, the mean squared errors and the standard errors are considerably smaller for
the penalized heterogeneity model, especially in the case of a medium number of individual
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observations (ν = 3) and many individual observations (ν = 5) due to a general variance
reduction. This is seen mainly in the estimates for σ2

0 and σ2
1, which are clearly smaller

for the penalized heterogeneity model. The reason for these small variances is that the
heterogeneity in the data is partially accounted for by the penalized mixture. On the other
hand, we can see that in the linear mixed model with normally distributed random effects
the true variances σ2

0 = 0.02 and σ2
1 = 0.02 are overestimated.

M̂SEr RBr ŝe(β̂r) PEr σ̂2
r

normal 0.219 -0.147 0.467 0.484 3.779
r = 0 penalized mix 0.209 -0.045 0.456 0.433 3.432

finite mix 0.219 -0.156 0.467 0.485 3.437
normal 0.054 -0.073 0.232 0.186 0.842

ν = 1 r = 1 penalized mix 0.054 -0.027 0.231 0.169 0.769
finite mix 0.055 -0.075 0.233 0.187 0.793
normal 0.106 1.032 0.322

r = 2 penalized mix 0.097 0.801 0.308
finite mix 0.106 1.006 0.322

normal 0.255 -0.072 0.504 0.258 3.787
r = 0 penalized mix 0.253 -0.094 0.502 0.130 1.246

finite mix 0.259 -0.069 0.508 0.243 3.373
normal 0.049 0.154 0.222 0.044 0.867

ν = 3 r = 1 penalized mix 0.048 0.143 0.219 0.027 0.611
finite mix 0.050 0.146 0.224 0.044 0.812
normal 0.104 -0.422 0.322

r = 2 penalized mix 0.034 0.308 0.185
finite mix 0.097 -0.014 0.312

normal 0.210 0.076 0.459 0.211 3.661
r = 0 penalized mix 0.212 0.150 0.460 0.070 0.011

finite mix 0.212 0.180 0.460 0.150 2.948
normal 0.041 0.478 0.202 0.015 0.841

ν = 5 r = 1 penalized mix 0.040 0.415 0.201 0.007 0.020
finite mix 0.040 0.540 0.199 0.012 0.211
normal 0.112 -0.794 0.333

r = 2 penalized mix 0.012 -0.057 0.111
finite mix 0.048 -0.162 0.218

Table 3.3.: For clearly separated clusters the estimated mean squared errors MSEr, the medians of the

relative biases RBr and the estimated standard errors se(β̂r) for the fixed effects are shown. In addition,
the medians of PEr and σ̂2

r are given. Bold values indicate the best value in each case.

In Figure 3.13 the estimated number of clusters of the mixture models are seen. Obvi-
ously the penalized mixture model tends to detect more clusters than the finite mixture
model. The larger the number of repeated measurements per unit the higher is the es-
timated number of clusters. In Figure 3.13 the bar corresponding to three clusters is
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highlighted by black color because in the simulation setting three clusters are used. As it
could expected, the number of clusters is hard to identify, in particular in the case of few
repeated observations since not enough information is available. Here, it can be seen that
three individual observations on average are not enough to discriminate between possible
clusters. In this case it is hard to determine whether the membership to different clusters
or random deviations are responsible for different time trends. For many observations the
performance of the penalized heterogeneity approach is much better and outperforms the
finite mixture approach.
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Figure 3.13.: Bar plots of the number of clusters with clearly separated clusters for few individual ob-
servations (left), a medium number of individual observations (middle) and many individual observations
(right).

Moderately separated clusters

When the differences between clusters become smaller, the penalized heterogeneity ap-
proach still outperforms the homogeneity model and the heterogeneity model in the case
of a medium number of individual observations and many individual observations. As
it can be seen in Figure 3.14 and Table 3.4 the prediction errors for the random effects
are considerably smaller. With regard to the accuracy of the estimated fixed effects we
obtain the same results as in the case of clearly separated clusters: In particular, for β2

the mean squared errors, the relative biases and the standard errors are clearly smaller for
the penalized heterogeneity model. Again, for few individual observations the results of
the three models are quite similar since mostly only one cluster is detected by the mixture
approaches (Figure 3.15). As in the case of clearly separated clusters the penalized mixture
model tends to detect more clusters than the finite mixture model.
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M̂SEr RBr ŝe(β̂r) PEr σ̂2
r

normal 0.111 -0.264 0.333 0.391 1.689
r = 0 penalized mix 0.107 -0.225 0.327 0.394 1.493

finite mix 0.111 -0.275 0.332 0.394 1.550
normal 0.035 -0.017 0.187 0.155 0.493

ν = 1 r = 1 penalized mix 0.034 0.098 0.184 0.160 0.448
finite mix 0.035 -0.005 0.186 0.160 0.453
normal 0.051 0.657 0.224

r = 2 penalized mix 0.052 0.758 0.225
finite mix 0.052 0.713 0.225

normal 0.125 0.103 0.353 0.213 1.726
r = 0 penalized mix 0.125 0.031 0.353 0.136 0.554

finite mix 0.126 0.104 0.355 0.213 1.516
normal 0.029 0.047 0.171 0.041 0.498

ν = 3 r = 1 penalized mix 0.028 0.075 0.168 0.030 0.374
finite mix 0.029 0.071 0.172 0.040 0.463
normal 0.052 -0.103 0.227

r = 2 penalized mix 0.024 0.060 0.153
finite mix 0.051 0.088 0.225

normal 0.101 0.065 0.318 0.166 1.606
r = 0 penalized mix 0.102 0.024 0.319 0.076 0.009

finite mix 0.104 0.087 0.322 0.125 1.208
normal 0.024 0.328 0.156 0.015 0.481

ν = 5 r = 1 penalized mix 0.024 0.386 0.154 0.008 0.022
finite mix 0.024 0.480 0.155 0.012 0.125
normal 0.054 -0.481 0.230

r = 2 penalized mix 0.011 -0.228 0.105
finite mix 0.032 -0.394 0.178

Table 3.4.: For moderately separated clusters the estimated mean squared errors MSEr, the medians

of the relative biases RBr and the estimated standard errors se(β̂r) for the fixed effects are shown. In
addition, the medians of PEr and σ̂2

r are given. Bold values indicate the best value in each case.
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Figure 3.14.: Box plots of PE0 with moderately separated clusters for few individual observations (left),
a medium number of individual observations (middle) and many individual observations (right).
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Figure 3.15.: Bar plots of the number of clusters with moderately separated clusters for few individual
observations (left), a medium number of individual observations (middle) and many individual observations
(right).
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One cluster

If the random effects are sampled from a normal distribution, then the classical linear
mixed model assumes exactly the correct model. However, as seen in Figure 3.17 also
for the mixture approaches mostly all subjects are assigned to the same cluster. So the
prediction accuracy of the random effects as well as the accuracy of the estimated fixed
effects are almost identical for the three models (Figure 3.16 and Table 3.5).

M̂SEr RBr ŝe(β̂r) PEr σ̂2
r

normal 0.044 0.055 0.209 0.151 0.407
r = 0 penalized mix 0.043 0.052 0.208 0.156 0.243

finite mix 0.044 0.062 0.209 0.154 0.357
normal 0.014 -0.023 0.12 0.033 0.227

ν = 1 r = 1 penalized mix 0.014 0.004 0.12 0.032 0.204
finite mix 0.014 -0.016 0.12 0.032 0.209
normal 0.020 0.028 0.142

r = 2 penalized mix 0.020 0.204 0.142
finite mix 0.020 0.110 0.143

normal 0.009 0.094 0.091 0.025 0.030
r = 0 penalized mix 0.009 0.077 0.092 0.026 0.019

finite mix 0.009 0.085 0.091 0.026 0.022
normal 0.002 -0.156 0.042 0.008 0.021

ν = 3 r = 1 penalized mix 0.002 -0.144 0.043 0.008 0.019
finite mix 0.002 -0.144 0.042 0.007 0.019
normal 0.008 -0.010 0.089

r = 2 penalized mix 0.008 -0.009 0.088
finite mix 0.008 -0.009 0.090

normal 0.008 -0.050 0.088 0.024 0.023
r = 0 penalized mix 0.008 -0.038 0.089 0.025 0.014

finite mix 0.008 -0.046 0.088 0.025 0.016
normal 0.001 0.019 0.038 0.004 0.020

ν = 5 r = 1 penalized mix 0.001 0.017 0.038 0.004 0.019
finite mix 0.001 0.017 0.038 0.004 0.019
normal 0.008 -0.181 0.089

r = 2 penalized mix 0.009 -0.177 0.094
finite mix 0.008 -0.151 0.090

Table 3.5.: For only one cluster the estimated mean squared errors MSEr, the medians of the relative

biases RBr and the estimated standard errors se(β̂r) for the fixed effects are shown. In addition, the
medians of PEr and σ̂2

r are given. Bold values indicate the best value in each case.
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Figure 3.16.: Box plots of PE0 with only one cluster for few individual observations (left), a medium
number of individual observations (middle) and many individual observations (right).

In summary, we can draw the following conclusion: The penalized heterogeneity ap-
proach performs well in terms of prediction errors if the clusters are well separated and
enough observations are available. We found that for few repeated measurements per sub-
ject the discrimination between clusters is harder than for a medium number of individual
observations or many individual observations. Nevertheless, there is no loss in efficiency
in using the penalized heterogeneity model in the case of few repeated measurements per
subject, even in the extreme situation that the true random effects are a sample from a
homogeneous Gaussian population.
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Figure 3.17.: Bar plots of the number of clusters with only one cluster for few individual observations
(left), a medium number of individual observations (middle) and many individual observations (right).
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3.4.3. Impact on Test Characteristics

In applications one is often interested in testing the significance of some variables. In what
follows, the widely-used statistic β̂r/ŝe(β̂r), which frequently can be approximated by a
standard normal distribution, is used as test statistic for the hypothesis H0 : βr = 0 against
H1 : βr 6= 0. Typically the performance of tests is checked by characteristics like the type I
error, the power or the coverage rate of the corresponding confidence intervals. Although
we do not primarily aim at evaluating the test procedure itself, it is quite interesting if the
three methods considered in Section 3.4.2 have an impact on these test characteristics. For
examining these effects we pick up the simulation setting of clearly separated clusters with
many individual observations. In addition, we consider three further settings by varying
the choice for the fixed effects. In each setting 100 data sets are generated following the
linear trend model described in Section 3.4.1. Altogether we choose β = (β0, β1, β2)T =
(0.2, 0.1, 0.05)T , β = (0.5, 0.5, 0.5)T , and β = (3, 2, 1)T for different kinds of effects to
check the power of the test and β = (0, 0, 0)T for no effects to examine the type I error.
In addition, it is examined in how many times the approximative 95% confidence intervals
for βr based on the statistic β̂r/ŝe(β̂r) covers the true parameters. The standard errors are
estimated for each data set by the bootstrap method (3.6) with 50 replications.

βT (0, 0, 0) (0.2, 0.1, 0.05) (0.5, 0.5, 0.5) (3, 2, 1)

Type I 95%-CI 95%-CI 95%-CI
error coverage Power coverage Power coverage Power

normal 0.07 0.93 0.11 0.93 0.24 0.93 1.00
r = 0 penalized mix 0.09 0.92 0.15 0.91 0.23 0.92 1.00

finite mix 0.07 0.93 0.14 0.93 0.22 0.92 1.00

normal 0.07 0.93 0.07 0.93 0.74 0.93 1.00
r = 1 penalized mix 0.06 0.93 0.08 0.94 0.73 0.93 1.00

finite mix 0.07 0.93 0.08 0.93 0.73 0.94 1.00

normal 0.06 0.94 0.05 0.94 0.30 0.94 0.75
r = 2 penalized mix 0.01 0.99 0.03 0.99 0.81 0.99 0.98

finite mix 0.05 0.94 0.07 0.97 0.78 0.99 0.98

Table 3.6.: Type I error rates and power rates of approximative tests for H0 : βr = 0 versus H1 : βr 6= 0
for the significance level 5% as well as coverage rates of 95% confidence intervals for different settings of
β. The data are generated according to the setting of clearly separated clusters with many individual
observations.

According to Table 3.6 the type I error rates, the power rates and the coverage rates
for the intercept β0 as well as the slope parameter β1 are quite similar for the three differ-
ent random effects distributions “normal”, “penalized mixture”, and “finite mixture”. In
contrast, we get very different test characteristics for β2. For the finite mixture approach
and especially for the penalized mixture approach high coverage rates and low error rates
are observed. In particular, the power rates in the settings β2 = 0.5 and β2 = 1 are con-
siderably higher for the mixture approaches than in the case of a normal random effects
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distribution. This comes along with the results in Section 3.4.2, where the standard errors
and the mean squared errors for β2 are clearly smaller for the finite mixture and especially
for the penalized mixture. In summary, we detect positive impacts of the penalized het-
erogeneity approach on significance tests concerning the fixed effects. The performance of
tests is considerably improved for variables which are modeled exclusively by fixed effects.

3.4.4. Heterogeneity of Random Effects

This section deals with the background of the mixture approach used in our penalized
heterogeneity model. The reason for the heterogeneity in the distribution of the random
effects is a grouping structure with respect to the time trends of the response variable.
However, it could be that some unobserved covariates or some interactions of latent covari-
ates with the time variable are actually responsible for the multimodality in the random
effects distribution and the question arises if a mixture distribution for the random effects is
not needed any more when these covariates are incorporated in the model. For illustrating
this topic, we consider data generated by

yij = β0 + b̃i0 + β2xi︸ ︷︷ ︸
bi0

+(β1 + b̃i1 + β3xi︸ ︷︷ ︸
bi1

)tij + εij, i = 1, . . . , n, j = 1, . . . , ni, (3.9)

with i.i.d. errors εij ∼ N(0, σ2) and i.i.d. normally distributed random effects b̃i =
(b̃i0, b̃i1)T ∼ N(0,D). Let xi ∈ {−1, 1} be an effect-coded binary variable like, for ex-
ample, gender. On the one hand, these data can be modeled by including the effect-coded
variable xi and the interaction of xi with time in the model with normally distributed
random effects. On the other hand, if these variables are not included in the model, a
normal mixture for the random effects would be able to account for this hidden grouping
structure. Then the random effects are given by

bi = (bi0, bi1)T =

{
µ1 + b̃i = (−β2,−β3)T + b̃i, i ∈ cluster 1,

µ2 + b̃i = (β2, β3)T + b̃i, i ∈ cluster 2.

This means that if the grouping structure comes from variables with a prior known cluster
membership, it could be accounted for by fixed effects directly and a mixture as random
effects distribution is not necessary. However, our approach aims at detecting clusters in
cases where a prior known cluster membership is not given.

It should be noted that no identifiability problem arises for data generated by equation
(3.9) if the variable xi and the interaction term are included in the model and the penal-
ized normal mixture as random effects distribution is assumed because of the restriction∑N

h=1 πhµh = 0 and the penalty term (3.3). Therefore the cluster centers are always devi-
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ations from the trend curve with lengths as small as possible. This feature is illustrated in
more detail now. We assume data generated as in equation (3.9) with n = 20 and

σ2 = 0.25,


β0

β1

β2

β3

 =


1

0.5
1

0.2

 , D =

(
σ2

0 σ01

σ01 σ2
1

)
=

(
0.02 0.01
0.01 0.02

)
.

Observation times are simulated as in Section 3.4.1 with ν = 3 and xi are sampled from
{−1, 1} with equal weights. We consider two different models: Model I denotes the random
slope model with a penalized normal mixture as random effects distribution including the
variable xi and the interaction term as in equation (3.9). Model II is the same model but
without the variable xi and the interaction term. As expected, in model II two clusters
are detected with cluster centers µ̂1, µ̂2 6= 0 while in model I all individuals are assigned
to the same cluster. So model I equates to the homogeneity model with only one cluster
center µ̂ = 0 and coefficients β̂2, β̂3 6= 0. As it is seen in Table 3.7 the uncentered estimates
for intercepts and slopes are almost equal for model I and model II. Since both models
obviously yield the same fit and model II is a special case of model I with β2 = β3 = 0,
one may wonder if a identifiability problem arises in model I and if it is possible that
model I yields estimates β̂2 = β̂3 = 0 and two clusters µ̂1, µ̂2 6= 0 as in model II. In this
case, however, the penalty term (3.3) would increase from zero to

√
2 · 2‖µ̂1 − µ̂2‖ while

the likelihood function is still the same. Hence such a solution would not be optimal. In
general, our penalized heterogeneity model prefers always the unique solution where the
differences between the clusters are as small as possible.

In summary, it has been seen that if the grouping structure comes from variables with
a prior known cluster membership it could be accounted for by fixed effects directly or
otherwise by a penalized normal mixture as random effects distribution. But note that
typically such covariates are not available. In addition, there are many instances in which
the heterogeneity in the random effects distribution cannot be accounted for by normally
distributed random effects even if these covariates which explain the heterogeneity are
available and included in the model: Imagine that the fixed effect β2h of a covariate xi
differs for several groups h = 1, . . . , N and let the data generating process be given by

yij = β0 + b̃i0 + (β1 + b̃i1)tij + β2cixi + εij, i = 1, . . . , n, j = 1, . . . , ni, (3.10)

with i.i.d. errors εij ∼ N(0, σ2) and i.i.d. normally distributed random effects b̃i =
(b̃i0, b̃i1)T ∼ N(0,D). The cluster allocation variable ci is h if subject i belongs to cluster h.
With β2ci = β2 + β̃2ci equation (3.10) can be rewritten as

yij = β0 + b̃i0 + β̃2cixi︸ ︷︷ ︸
bi0

+(β1 + b̃i1︸︷︷︸
bi1

)tij + β2xi + εij, i = 1, . . . , n, j = 1, . . . , ni.
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Intercept Slope

Subject Model I Model II Model I Model II

i β̂0 +
ˆ̃
bi0 + β̂2xi β̂0 + b̂i0 β̂1 +

ˆ̃
bi1 + β̂3xi β̂1 + b̂i1

1 2.2784 2.2790 0.8548 0.8547
2 -0.2558 -0.2550 0.2528 0.2526
3 0.1297 0.1303 0.3865 0.3864
4 1.8761 1.8757 0.5744 0.5744
5 2.0698 2.0690 0.6139 0.6141
6 1.8142 1.8141 0.5900 0.5899
7 1.6784 1.6792 0.6278 0.6274
8 1.9397 1.9391 0.5929 0.5930
9 0.4439 0.4444 0.3960 0.3962
10 -0.3305 -0.3298 0.2158 0.2156
11 -0.3957 -0.3954 0.1741 0.1736
12 -0.2097 -0.2097 0.1842 0.1841
13 2.0671 2.0667 0.6645 0.6646
14 -0.3740 -0.3735 0.1711 0.1708
15 -0.0634 -0.0633 0.2524 0.2523
16 0.0002 -0.0008 0.1608 0.1610
17 0.2381 0.2385 0.4028 0.4027
18 -0.0720 -0.0724 0.1987 0.1988
19 0.3572 0.3563 0.2921 0.2926
20 0.1490 0.1486 0.2939 0.2940

Table 3.7.: Estimation results of the intercepts and slopes for model I and model II.

Thus, the covariate xi causes heterogeneity in the distribution of bi = (bi0, bi1)T which
cannot be accounted for by normally distributed random effects even if the covariate xi is
included in the model. The heterogeneity can only be accounted for by fixed effects if it is
known a priori which subject belongs to which cluster. But typically a prior known cluster
membership is not given. In cases like this our penalized heterogeneity model can be used
for clustering.

3.5. Summary and Discussion

We introduced a penalized heterogeneity approach for linear mixed models, which assumes
a finite mixture of normal distributions for the random effects distribution and penalizes
the number of mixture components by fusing the cluster centers via a group fused lasso
penalty term. The approach aims at clustering individuals for longitudinal data. We
presented an EM algorithm for estimating all parameters. A simulation study showed that
our approach basically outperforms the classical linear mixed model with normal random
effects distribution and the heterogeneity model. Furthermore, the usefulness of our model
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was demonstrated in three data examples: We identified similarities in the development of
unemployment rates in Germany as well as of the growth of rats depending on the treatment
group and showed that our model is able to detect a underlying cluster structure in the lung
function growth data, which is hardly seen in the raw data. Extensions of our approach
to additive mixed models or to linear mixed models with multiple levels of grouping are
possible and seem to be feasible without major difficulties.



4. Linear Mixed Models with DPMs
using EM Algorithm

4.1. Introduction

In the following chapter linear mixed models are considered as in Chapter 3. These models
are a common tool for the modeling of longitudinal data. The classical model has the form

yij|bi
ind.∼ N(xTijβ + zTijbi, σ

2), i = 1, . . . , n, j = 1, . . . , ni, (4.1)

where yij denotes the response observed for subject i at observation time tij with ti1 < . . . <
tij < . . . < tini . Population effects of covariates xij are collected in the parameter vector
β whereas individual-specific effects of covariates zij are represented in the parameter
vector bi. Typically, in linear mixed models (4.1) normally distributed random effects
are assumed, i.e. bi is i.i.d. N(0,D), see for example Verbeke and Molenberghs (2000)
and Ruppert et al. (2003). While this choice features some mathematical benefits, in
applications it is often questionable because of special properties of the normal distribution
like symmetry or unimodality. Since the distributional assumption is made on unobserved
quantities, it is typically hard to validate these properties. Especially in the case of a
grouping structure in the data the unimodal normal distribution is very restrictive. A
finite mixture of normal distributions as a random effects distribution as suggested by
Verbeke and Lesaffre (1996) is much more flexible. One assumes

bi ∼
N∑
h=1

πhN(µh,D), i = 1, . . . , n, (4.2)

where π1, . . . , πN are mixture weights, which add up to one. See Section 3.1 for an detailed
overview on extensions and alternatives to this heterogeneity model. A data driven choice of
the number of mixture components is desirable. In contrast to the approach in Chapter 3,
where the cluster centers are fused by a group fused lasso penalty, this could also be
achieved by a penalization of the mixture weights πh. For example, Komárek and Lesaffre
(2008) penalized differences between reparameterized weights. In contrast, Magder and
Zeger (1996) used component specific covariance matrices subject to the constraint that
their determinants are greater than or equal to some minimum value.

In this chapter we present an alternative penalization approach. The basic concept is to
shrink the weights πh towards zero in order to reduce the number of clusters. We consider
an approximate DPM for the random effects distribution by using the truncated version
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of the stick breaking presentation of the Dirichlet process; see Ferguson (1973) for the
theory of the Dirichlet process and Sethuraman (1994) for the stick breaking presentation
of the Dirichlet process. Chapter 2 gives an elaborate outline of the features of the Dirichlet
process. The main advantage of Dirichlet processes is the cluster property: by using a DPM
for the random effects distribution we automatically obtain a clustering of individuals.
Under the assumption that the population can be described by few clusters we want to
identify and interpret them. Since a Dirichlet process allows to specify a prior on probability
measures, it has been widely used in Bayesian inference. For linear mixed models, Dirichlet
process priors for random effects were first proposed by Bush and MacEachern (1996). The
first application of a DPM of Gaussian distributions to random effects was given by Müller
and Rosner (1997).

We aim at establishing the Dirichlet process as a tool for frequentist modeling. Therefore,
instead of using MCMC methods, which are usually applied for estimation in random effects
models with Dirichlet processes like in Chapter 5, we extend the traditional EM algorithm
of Dempster et al. (1977) used in the heterogeneity model of Verbeke and Lesaffre (1996)
and refer to it as DPM-EM model. We will illustrate that the EM algorithm has an
essential advantage over MCMC methods, as far as Dirichlet processes are concerned. In
summary, on the one hand, our DPM-EM model provides a regularization approach for
the number of mixture components in equation (4.2). On the other hand, our model is a
method to obtain clustering of individuals in longitudinal data.

The chapter is organized as follows: In Section 4.2.1 the model hierarchy as well as the
cluster property of Dirichlet processes are illustrated. In Section 4.2.2 we present our DPM-
EM algorithm in detail. Simulation results can be seen in Section 4.3 while applications
are shown in Section 4.4. Finally Section 4.5 subsumes the main aspects of our approach.
Large parts of this chapter can also be found in Heinzl and Tutz (2013).

4.2. Linear Mixed Models with Dirichlet Process Mixtures

4.2.1. Model Hierarchy

Collecting observations yij, j = 1, . . . , ni, for individual i in the vector yi, model (4.1) can
be written in matrix notation as

yi|bi
ind.∼ N(X iβ +Zibi, σ

2Ini), i = 1, . . . , n,

where Ini is the identity matrix with dimension ni and X i and Zi denote the individual
design matrices constructed from covariates xij and zij, respectively. For the random
effects distribution, we assume a hierarchical Gaussian mixture

bi|θi
ind.∼ N(θi,D), i = 1, . . . , n,

θi|G
i.i.d.∼ G, i = 1, . . . , n,

G ∼ DP (α,G0).

(4.3)
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Here, DP (α,G0) is a distributional assumption for the unknown mixing distribution G. See
Section 2.4 for a general description of DPMs. A special feature of the Dirichlet process
is that each realization of G is a discrete probability measure (Blackwell, 1973). So in
the DPM specification, choosing a Dirichlet process for the θi, i = 1, . . . , n, creates ties
among these and therefore forms clusters of subjects whereas each subject still has its own
unique random effects value. In general, there are k ≤ n clusters and θ1, . . . ,θn can be
represented by cluster locations µ1, . . . ,µk and cluster allocation variables. The strength
of clustering and therefore the number of clusters is determined by the parameter α, which
controls the confidence in the base distribution G0. This cluster property is illustrated
in Chapter 2. According to the relationship between Bayesian and likelihood inference
we choose a diffuse uniform distribution on (−∞,∞) for G0. So, in principle, no cluster
location is preferred over others. Although in theory an automatic clustering structure
is induced by the Dirichlet process, a severe practical problem arises within the Bayesian
framework when using MCMC methods, namely how to obtain a single clustering estimate
ĉ based on an MCMC sample of clusterings c(1), . . . , c(M), where c(m), m = 1, . . . ,M ,
describes the cluster allocation at iteration m and ĉ the final cluster allocation. By using
MCMC methods in each iteration ties among the θi, i = 1, . . . , n, are created and clusters
are formed. But when approximating the posterior means by the means over MCMC
samples θ̂i = 1

M

∑M
m=1 θ

(m)
i , i = 1, . . . , n, the clustering of subjects gets lost. Fritsch

and Ickstadt (2009) gave an overview on operations how the MCMC sample of clusterings
c(1), . . . , c(M) can aggregate to a single clustering ĉ, but due to the high number of possible
clusterings, these methods are typically not feasible in larger problems. By using EM type
algorithms all these strategies for rescuing the cluster property of the Dirichlet process are
unnecessary. The reason is that the EM algorithm converges to fixed values whereas MCMC
methods converge to distributions. So with EM type algorithms the cluster property of
the Dirichlet process can be used more directly. While other alternatives to the MCMC
methods as the recursive algorithm of Newton and Zhang (1999) or the variational method
of Blei and Jordan (2006) are based on approximative posterior distributions, our EM
algorithm aims at maximizing the posterior given in Section 4.2.2 directly.

In practice, inference with Dirichlet processes can be built on the stick breaking repre-
sentation of the Dirichlet process by Sethuraman (1994), which is explained in Section 2.2.
In its truncated version G is given by

G =
N∑
h=1

πh δµh ,

with sufficient large N . Here, δµh denotes the Dirac measure on µh and πh is the corre-
sponding random weight. In summary, by using the stick breaking procedure the distribu-
tion assumption for the random effects (4.3) can be rewritten as

bi|v
i.i.d.∼

∑N
h=1 πhN(µh,D), i = 1, . . . , n,

πh = vh
∏

l<h(1− vl), h = 1, . . . , N,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1,

(4.4)
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with v = (v1, . . . , vN−1)T and beta distribution Be(·, ·). Therefore, for the random effects
distribution we get a finite mixture of normal distributions as in equation (4.2), in which
the number of mixture components with πh 6= 0 is penalized. The concentration parameter
α controls the number of cluster locations µh with weights πh 6= 0 and thus the effective
number of clusters. Figure 2.5 illustrates two discrete probability measures simulated by
Dirichlet processes with different values of α. It should be noted that a generalization to a
heteroscedastic normal mixture with different covariance matrices over components is also
possible − following, for example, the approach of Yao and Holmes (2011). Nevertheless,
the assumption (4.4) seems to be sufficiently flexible and avoids numerical problems, which
arise in the case of a heteroscedastic normal mixture (Verbeke and Molenberghs, 2000). In
the following the order of µ1, . . . ,µN is given by the corresponding weights in decreasing
order under the restrictions

∑N
h=1 πhµh = 0 and

∑N
h=1 πh = 1. The first restriction ensures

E(yi) = X iβ. The second constraint is standard and is automatically fulfilled by vN = 1.
For example, the truncated Dirichlet process was used by Muliere and Tardella (1998),

Ishwaran and James (2002), Kottas and Gelfand (2001), Gelfand and Kottas (2002) and
Ohlssen et al. (2007); see Section 4.2.2 for a strategy of choosing N . Even though other
methods exist that are based on the stick breaking representation and that avoid the trun-
cation (see, for example, Walker (2007) and Papaspiliopoulos and Roberts (2008)) the
truncated version distinguishes itself by simplicity and theoretical justifications as shown
in Muliere and Tardella (1998), Ishwaran and James (2001) as well as Ishwaran and James
(2002). In our case, this truncation is still more attractive because our approach is formally
similar to the heterogeneity model of Verbeke and Lesaffre (1996) but with “penalized”
weights referred to the stick breaking procedure, which induces that only the relevant clus-
ters get comparably high weights. Inference is possible by extending the EM algorithm of
the heterogeneity model. Another inference approach within the framework of Dirichlet
processes is based on the Pólya urn scheme (Blackwell and MacQueen, 1973) and thus on
integrating out the unknown distribution G (compare Escobar (1994), MacEachern (1994),
Escobar and West (1995) as well as MacEachern and Müller (1998)). A description of the
Pólya urn scheme can be found in Section 2.3. Nevertheless, when using this marginal
method instead of the stick breaking procedure the connection between the Dirichlet pro-
cess and the heterogeneity model of Verbeke and Lesaffre (1996) is hidden. This is the
main reason why the stick breaking presentation is much more appealing to us and seems
to be more user-friendly than the Pólya urn inference scheme, which also has other draw-
backs (see, for example, Ishwaran and James (2001)). In the next section, we will explain
how Dirichlet processes can be embedded in the EM framework. It can be seen that an
elaborate handling of the Dirichlet process’s parameters is necessary.

4.2.2. Inference

In the following, we give an EM algorithm for the linear mixed model described in Section
4.2.1. The algorithm is based on derivations by McLachlan and Krishnan (1997) and
McLachlan and Peel (2000) and is similar to the algorithm used by Verbeke and Lesaffre
(1996) but includes a penalty term. The following approach can either be parameterized
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by π = (π1, . . . , πN)T or by v. Since the latter parametrization simplifies calculations,
it is used in the following. Nevertheless, only for a compact presentation, we write πh
instead of vh

∏
l<h(1 − vl). Let ξ = (α,v,ψ)T , where ψ is the vector containing all the

remaining parameters β,µ1, . . . ,µN ,D, σ
2. The cluster membership of each individual

can be described by the latent variable wi := (wi1, . . . , wiN)T where wih = 1 if subject i
belongs to cluster h and 0 otherwise. Marginalization over the random effects yields the
complete model with observed data yi as well as unobserved data wi and v:

yi|wi
ind.∼ N(X iβ +Ziµh, V i), i = 1, . . . , n,

wi|v
i.i.d.∼ M(1,π), i = 1, . . . , n,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1,

(4.5)

with V i = ZiDZ
T
i + σ2Ini and M(·, ·) denoting the multinomial distribution. Equation

(4.5) describes the data generating process for the data (yi,wi,v) given the parameters
(α,ψ), i.e.,

p(yi,wi,v;α,ψ) = p(yi|wi;ψ) · p(wi|v) · p(v;α), i = 1, . . . , n.

This can also be viewed as product of p(yi,wi|v;ψ) with the prior p(v;α). Following this
formulation, the posterior for ξ is proportional to the product of the likelihood and the
prior, which is given by

LP (ξ) =
n∏
i=1

N∏
h=1

[πh fih(yi;ψ)]wih · αN−1

N−1∏
h=1

(1− vh)α−1,

when assuming a flat prior for α and ψ. Here fih(·) denotes the density function of
N(X iβ + Ziµh, V i). Note that from a Bayesian point of view ψ and v are parameters
whereas α is the hyperparameter for the prior on v. In an empirical Bayes context such
a hyperparameter would be estimated by maximizing the marginal incomplete likelihood
(Maritz and Lwin, 1989). However, in the present case the marginalization is analytically
not feasible. Following the strategy of McAuliffe et al. (2006), in the case of a DPM
model such an integration could be avoided by many alternations between an inference
phase where the parameters v and ψ are estimated and an estimation phase where the
hyperparameter α is estimated. This procedure would be very time-consuming in our case.
Thus, we prefer to handle α like any other parameter and to estimate α conditionally on
the actual state of the other parameters during the algorithm. In general, vague priors
like our diffuse prior for α are an alternative to empirical Bayes inference for achieving
robustness (McAuliffe et al., 2006).

Finally, as log-posterior one obtains

lP (ξ) =
n∑
i=1

N∑
h=1

wih[log πh + log fih(yi;ψ)] + (N − 1) logα + (α− 1)
N−1∑
h=1

log(1− vh).
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This function can be seen either as log-posterior in the Bayesian context or as penalized
log-likelihood, whose penalization term results from the stick breaking procedure of the
Dirichlet process. Obviously for α = 1 the penalization term drops out. According to
the general EM algorithm procedure we alternate between taking the expectation of lP (ξ)
over all unobserved wih in the E-step and maximization of this expected value in the M-
step instead of maximizing the penalized incomplete likelihood function based only on the
observed data directly.

E-step

Collecting all observed data in y = (yT1 , . . . ,y
T
n )T , for the E-step of iteration t+ 1 we get

Q(ξ) = E
(
lP (ξ)|y, ξ(t)

)
=

=
n∑
i=1

N∑
h=1

πih(ξ
(t))[log πh + log fih(yi;ψ)] + (N − 1) logα + (α− 1)

N−1∑
h=1

log(1− vh),

where πih(ξ
(t)) is the probability at iteration t that subject i belongs to cluster h and is

given by

πih(ξ
(t)) =

fih(yi;ψ
(t))π

(t)
h∑N

l=1 fil(yi;ψ
(t))π

(t)
l

.

M-step

For clarity, in the following we write πih := πih(ξ
(t)), but note that for the M-step it is

essential that πih is fixed from the last iteration t. As Q(ξ) = Q(α,v) + Q(ψ) holds, the
optimization problem in the M-step can be separated into two parts: The maximization of

Q(α,v) =
n∑
i=1

N∑
h=1

πih log πh + (N − 1) logα + (α− 1)
N−1∑
h=1

log(1− vh),

with respect to α and v and the maximization of

Q(ψ) =
n∑
i=1

N∑
h=1

πih log fih(yi;ψ),

with respect to ψ. The first optimization problem is solved by alternating updates of the
first order conditions

vh =

∑n
i=1 πih∑n

i=1

∑N
l=h πil + α− 1

, h = 1, . . . , N − 1, (4.6)

and
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α =
1−N∑N−1

h=1 log(1− vh)
,

that are proved in Appendix A.3.1. Without further restrictions it could happen that
vh /∈ [0, 1] if α ∈ (0, 1). To avoid this we use the following correction approach: Update vh
by (4.6) for increasing h. If vh∗ > 1, set vh to 1 for h = h∗, . . . , N − 1. This constraint for
v is equivalent to the following restriction on π by using the stick breaking procedure:

πh =


1

n+α−1

∑n
i=1 πih, for h < h∗,

1−
∑h−1

l=1 πl for h = h∗,
0 for h > h∗,

where h∗ is the lowest index h for which the cumulative sum of the original weights π◦l
exceeds one:

∑h
l=1 π

◦
l > 1. See Appendix A.3.1 for more technical details about this

correction step. Finally, the idea of the penalization approach becomes evident. First note
that for α = 1 we get the usual estimators for πh and no restrictions are needed. Compared
to these estimators, for α ∈ (0, 1), all weights πh for h < h∗ are stretched by the factor

n
n+α−1

while all weights πh for h > h∗ are set to zero. The amount of stretching is controlled
by the parameter α. If α ≈ 0 a very strong clustering is achieved while for larger values of
α only few clusters drop out. In order to avoid log(0) we choose vh = 1− 10−300 instead of
vh = 1 in the algorithm. Then πh ≈ 0 for h > h∗.

In the second part of the M-step,we get the current state for ψ by alternating separate
maximization of Q(ψ) to β, to µ1, . . . ,µN and to the variance parameters D and σ2.
Conditional on the actual state of the other parameters the maximization of β results in

β =

(
n∑
i=1

XT
i V

−1
i X i

)−1( n∑
i=1

(
XT

i V
−1
i yi −

N∑
h=1

πihX
T
i V

−1
i Ziµh

))
.

Setting the derivative of Q(ψ) with respect to µh, h = 1, . . . , N , given β, D and σ2 to
zero yields

µh =

(
n∑
i=1

πihZ
T
i V

−1
i Zi

)−1( n∑
i=1

πihZ
T
i V

−1
i (yi −X iβ)

)
.

The corresponding proofs are shown in Appendix A.3.2. For the simultaneous maximiza-
tion of the variance parameters given β and µ1, . . . ,µN a numerical procedure like the
Nelder-Mead method is necessary. More information about this procedure is given in the
paragraph “Implementation” in this section.

Choice of N

By truncation of the Dirichlet process the originally infinite constraints
∑∞

h=1 πhµh = 0

and
∑∞

h=1 πh = 1 are converted into finite ones
∑N

h=1 πhµh = 0 and
∑N

h=1 πh = 1, which
can be handled easily. Concretely, the first constraint is obtained by a correction at each M-



60 4. Linear Mixed Models with DPMs using EM Algorithm

step. Deviations from this constraint are subtracted from µh, h = 1, . . . , N , and included
into β. The second constraint is fulfilled by vN = 1. On the one hand, this idea avoids
reparameterizations as in Jara et al. (2009) or post-processing strategies as in Li et al.
(2011). On the other hand, vN = 1 actually means that the last weight πN absorbs all the
remaining probabilities πN , . . . , π∞ of the untruncated Dirichlet process. So it is important
that N is chosen adequately. This is still more challenging because the choice of N depends
on α, which itself is estimated. Ohlssen et al. (2007) proposed to set N so that

N > 1 +
log(ε)

log
(

α
α+1

) ,
with ε > 0. This condition is derived in the equations (2.6). Thus, for a given range of α a
lower bound for N can be determined. For inducing a very strong clustering and according
to the previous considerations within this section we restrict α to the range α ∈ (0, 1)
which is automatically fulfilled by a very low starting value for α. This means that even
for N ≥ 15 a good approximation can be achieved (ε = 0.0001). So in the majority of
cases N = min{n, 100} is a satisfying choice.

Start and stop of the algorithm

For EM algorithms it is essential how to choose the starting values because the (penalized)
incomplete log-likelihood is ascending at each step and the algorithm can converge to a
local but not a global maximum. Because there is an agglomerative attempt in each M-step
it is reasonable to choose starting values for an agglomerative clustering method generally.
Therefore, each subject starts in its own cluster. So there are n = N clusters with weights
πh = 1/N , h = 1, . . . , N in the beginning. As cluster locations µ1, . . . ,µN we consider the
predicted random effects b1, . . . , bn of the former fitted linear mixed model with Gaussian
random effects distribution. This fit yields starting values for β, σ2 and D, too. For α we
use zero as starting value to induce a very strong clustering.

The algorithm starts with N = n clusters and successively merges clusters during the
iterations. Rearranging the weights after each step has the effect that only the relevant
clusters keep positive probabilities. So the linear mixed model with DPM as a random
effects distribution can be seen as an agglomerative cluster analysis.

The EM algorithm stops if the penalized incomplete log-likelihood is not ascending any
more. After convergence we get the cluster membership by the matrix of estimated πih.
An individual i is assigned to that cluster h for which π̂ih is maximal. If there are a lot of
small weights π̂h we get only few relevant clusters k. Based on the weights of all clusters
the random effects are predicted by using the mean of the posterior bi|yi, which is given
by

b̂i = D̂ZT
i V̂

−1

i (yi −X iβ̂) + (Iq − D̂ZT
i V̂

−1

i Zi)
N∑
h=1

π̂ihµ̂h, i = 1, . . . , n,
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where q denotes the dimension of the random effects. A proof of this formula is given in
Appendix A.4.

Implementation

All computations are implemented in C++ (Stroustrup, 1997), allowing for an efficient
treatment of loop-intensive calculations and with regard to slow convergence of the EM
algorithm. They are made accessible by the function lmmDPMEM() within the R package
clustmixed (Heinzl, 2012) using the statistical software R (R Development Core Team,
2012). All variables are standardized internally for calculations. See Appendix A.5 for
more details about the used standardization. For updating variance parameters we use the
C++ library ASA047 (Burkhardt, 2008), an implementation of the Nelder-Mead algorithm
in C++, which was used by Papageorgiou and Hinde (2012) for similar tasks. For the
reflection, extension and contraction coefficients we choose the common settings 1.0, 2.0
and 0.5 respectively. See Nelder and Mead (1965) and O’Neill (1971) for more technical
details about the algorithm. Note that for ensuring that the covariance matrix D is
nonnegative-definite we parameterize the concerning variance parameters by the entries of
a lower triangular matrix L according to the Cholesky decomposition D = LLT . Then
D is nonnegative-definite for each L and positive-definite (and so invertible, too) if L is a
matrix with exclusively nonzero diagonal entries (Lindstrom and Bates, 1988).

4.3. Simulation Study

In the following simulation study the estimation results of our DPM-EM model are ex-
amined and compared to competing approaches. In general, for prediction accuracy of
random effects there is a trade-off with regard to the assumed number of clusters: On
the one hand, for prediction of bi it makes sense to borrow information from other similar
subjects. On the other hand, it is not reasonable to incorporate individuals which show a
basically different behavior. First, in Section 4.3.2 this trade-off is analyzed by comparing
the commonly used linear mixed model with Gaussian random effects distribution (one
cluster model) as well as the three, five, and ten cluster model to our DPM-EM model
with a data driven choice for the number of clusters. For fitting linear mixed models with
Gaussian random effects the R function lmer() from the lme4 package of Bates et al.
(2012) is used. Unpenalized finite normal mixture as random effects distribution are es-
timated by the function lmmLASSO() in the R package clustmixed of Heinzl (2012) with
λ = 0 (Section 3.2). Second, in Section 4.3.3 the simulation results of Section 4.3.2 are
compared to these of the penalized heterogeneity model based on the group fused lasso
penalty from Chapter 3 to see if the penalized heterogeneity model or the DPM-EM model
works better.
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4.3.1. Settings

In the simulation study we investigate the impact of the number of observations within
clusters and the separation between clusters. We generated data sets assuming a simple
linear trend model

yij|bi
ind.∼ N(β0 + bi0 + (β1 + bi1)tij, σ

2), i = 1, . . . , n, j = 1, . . . , ni.

The centered i.i.d. random effects bi = (bi0, bi1)T follow a mixture distribution with three
Gaussian components:

bi ∼ 0.4N(µ1,D) + 0.3N(µ2,D) + 0.3N(µ3,D), i = 1, . . . , n,

imitating a population consisting of three clusters of overlapping subpopulations. Through-
out the simulations, we set n = 20 and

σ2 = 0.25,

(
β0

β1

)
=

(
2
1

)
, D =

(
σ2

0 σ01

σ01 σ2
1

)
=

(
0.02 0.01
0.01 0.02

)
.

We vary, however, the number of individual observations ni, the centers µ1, µ2 and µ3

of the clusters and the locations of observation times tij. To produce longitudinal data
with varying numbers of repeated observations per unit i, we set ni = 2 + Xi, where
Xi follows a Poisson distribution with rate ν. Setting ν = 1 corresponds to longitudinal
data with only few individual observations (3 on average), ν = 3 to a medium number of
individual observations and ν = 5 to comparably many individual observations. For given
ni, observation times are generated from

ti1 ∼ U(0, 1), i = 1, . . . , n,

tij ∼ U(ti,j−1 + 0.5, ti,j−1 + 1.5), i = 1, . . . , n, j = 2, . . . , ni,

where U(·, ·) denotes the uniform distribution. Thus, different numbers ni(s) and tij(s) are
generated in each simulation run s = 1, . . . , 100. Similarly, different “true” random effects
bi(s) are drawn from the Gaussian mixture distribution in each simulation run. For the
cluster locations, we chose

µ1 =

(
−2.25

1

)
, µ2 =

(
0.75
−1.2

)
, µ3 =

(
2.25
−2/15

)
,

corresponding to clearly separated clusters,

µ1 =

(
−1.5
0.75

)
, µ2 =

(
0.5
−0.9

)
, µ3 =

(
1.5
−0.1

)
,

corresponding to moderately separated clusters,
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µ1 =

(
−0.75

0.5

)
, µ2 =

(
0.25
−0.6

)
, µ3 =

(
0.75
−1/15

)
,

corresponding to substantially overlapping clusters.
Combining these different settings for observations times and clusters results in nine

different scenarios. For each of them, we compare the estimation results from the DPM-
EM algorithm to results based on Gaussian random effects using the R function lmer()

from the lme4 package by Bates et al. (2012) (“normal”) and to results of models using an
unpenalized finite normal mixture as random effects distribution with different numbers of
mixture components (N = 3, N = 5, N = 10). In each simulation run s, we calculate the
average prediction error

PEr(s) =
1

n

n∑
i=1

(
b̂∗ir(s)− b∗ir(s)

)2

, r = 0, 1, (4.7)

for uncentered random intercepts b∗i0 = β0 + bi0 and random slopes b∗i1 = β1 + bi1. In
addition, the estimation accuracy of the fixed effects is investigated by the relative bias
RBr = (β̂r − βr)/βr, r = 0, 1.

4.3.2. Results

In the following, we summarize results of the nine combinations. For some scenarios the
empirical distribution of PE0(s) values obtained from simulation run s = 1, . . . , 100 is
represented through box plots. Since the figures for PE1(s) look very similar to those of
the random intercepts, they are not shown.

Clearly separated clusters

Figure 4.1 (top) displays trace plots of typical longitudinal data generated in the setting
of clearly separated clusters, that show that cluster effects can easily be detected visually.
On the left, there are only a few observations for each subject while on the right the mean
of the number of repeated measurements is five corresponding to a medium number of
observations. Not surprisingly the DPM-EM model detects three clusters in both cases
(Figure 4.1 (bottom)). The dashed line shows the overall effect and the solid lines visualize
the means of the resulting clusters. Observations from the same cluster are represented by
the same symbol.

Linear mixed models with DPM penalty substantially improve upon results based on
a misspecified Gaussian random effects assumption, especially in the case of a medium
number of individual observations and many observations (see Table 4.1 and, for example,
Figure 4.2). In general, models with a finite mixture as random effects distribution yield
better predictions for random effects than the classical linear mixed model with normally
distributed random effects. Of course, the best prediction can be observed for the model
with fixed N = 3 clusters because this model is exactly the same as in the data generating
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Figure 4.1.: Trace plots (top) and clustering by the DPM-EM model (bottom) with clearly separated
clusters for few individual observations (ν = 1) (left) and a medium number of individual observations
(ν = 3) (right).

process. However, the DPM-EM model shows quite similar results although in this case
the number of clusters was determined by the model itself. The DPM-EM model as well
as the other models show a small bias concerning the estimation of fixed effects. The bias
tends to be a bit higher in the DPM-EM model.
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PE0 PE1 RB0 RB1

normal 0.373 0.185 -0.041 0.021
DPM-EM 0.135 0.063 -0.068 0.047

ν = 1 N = 3 0.111 0.058 -0.037 0.043
N = 5 0.145 0.062 -0.029 0.048
N = 10 0.222 0.112 -0.033 0.021

normal 0.222 0.054 -0.010 0.047
DPM-EM 0.060 0.012 -0.052 0.069

ν = 3 N = 3 0.054 0.011 -0.029 0.052
N = 5 0.072 0.015 -0.028 0.044
N = 10 0.101 0.020 -0.022 0.063

normal 0.148 0.015 -0.021 0.010
DPM-EM 0.048 0.006 -0.014 0.009

ν = 5 N = 3 0.045 0.005 -0.005 0.017
N = 5 0.050 0.006 -0.002 0.020
N = 10 0.080 0.008 -0.002 0.015

Table 4.1.: Medians of PEr and RBr with r = 0, 1 for clearly separated clusters. Bold values indicate
the best value in each case.
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Figure 4.2.: Box plots of PE0 with clearly separated clusters for few individual observations (ν = 1) (left)
and a medium number of individual observations (ν = 3) (right).



66 4. Linear Mixed Models with DPMs using EM Algorithm

Moderately separated clusters
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Figure 4.3.: Trace plots with moderately separated clusters for few individual observations (ν = 1) (left)
respectively many individual observations (ν = 5) (right).

In the following the differences between the clusters get smaller. See Figure 4.3 for
two typical trace plots in the case of few respectively many individual observations. Still
the DPM-EM model outperforms both the homogeneity model (linear mixed model with
normal random effects distribution) and the unpenalized heterogeneity model with N = 5
and N = 10 clusters (Figure 4.4 and Table 4.2). Only the true model with N = 3 clusters
is able to feature a lower error in predicting the random effects. Note that the superiority
of the DPM-EM model over the classical linear mixed model with normal random effects
distribution is even higher in the case of many individual observations.
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PE0 PE1 RB0 RB1

normal 0.335 0.164 -0.021 0.019
DPM-EM 0.204 0.114 -0.061 0.047

ν = 1 N = 3 0.175 0.097 -0.038 0.021
N = 5 0.224 0.122 -0.031 0.020
N = 10 0.274 0.140 -0.030 0.014

normal 0.207 0.046 -0.008 0.022
DPM-EM 0.082 0.018 -0.031 0.023

ν = 3 N = 3 0.063 0.014 -0.001 0.032
N = 5 0.082 0.018 -0.001 0.031
N = 10 0.126 0.025 -0.003 0.031

normal 0.138 0.015 -0.011 0.008
DPM-EM 0.048 0.005 -0.009 0.011

ν = 5 N = 3 0.043 0.005 -0.013 0.009
N = 5 0.050 0.006 -0.012 0.007
N = 10 0.082 0.008 -0.013 0.015

Table 4.2.: Medians of PEr and RBr with r = 0, 1 for moderately separated clusters. Bold values indicate
the best value in each case.
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Figure 4.4.: Box plots of PE0 with moderately separated clusters for few individual observations (ν = 1)
(left) respectively many individual observations (ν = 5) (right).
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Substantially overlapping clusters

When regarding Figure 4.5 for substantially overlapping clusters, we draw similar conclu-
sion as in the case of moderately separated clusters. Again the true model with N = 3
clusters features a lower error in predicting the random effects for a medium number of in-
dividual observations. However, for many observations the DPM-EM model exhibits lower
prediction errors than all other models. It can be seen that the supremacy of the DPM-
EM model gets smaller the less observations are given. For few individual observations the
linear mixed model with a normal random effects distribution is actually a bit better than
the DPM-EM model (Table 4.3). The background for this feature is that the DPM-EM
model detects sometimes more than one cluster in the data. Different patterns in the data
are taken seriously.

PE0 PE1 RB0 RB1

normal 0.245 0.111 -0.012 0.016
DPM-EM 0.273 0.123 -0.029 0.017

ν = 1 N = 3 0.236 0.112 -0.019 0.010
N = 5 0.271 0.125 -0.019 0.001
N = 10 0.303 0.142 -0.002 0.004

normal 0.160 0.037 0.000 0.023
DPM-EM 0.153 0.036 -0.011 0.019

ν = 3 N = 3 0.129 0.030 0.001 0.014
N = 5 0.147 0.035 -0.001 0.017
N = 10 0.153 0.037 -0.002 0.016

normal 0.114 0.013 -0.002 0.010
DPM-EM 0.073 0.009 0.001 0.028

ν = 5 N = 3 0.076 0.008 -0.004 0.011
N = 5 0.078 0.008 0.000 0.012
N = 10 0.102 0.010 -0.003 0.008

Table 4.3.: Medians of PEr and RBr with r = 0, 1 for substantially overlapping clusters. Bold values
indicate the best value in each case.

In summary, we draw the following conclusion: The DPM-EM models yield the better
estimates for random effects − in terms of prediction errors − the clearer the clusters
differ and the more observations are in the data. Especially in the case of many individual
observations per subject it can only be outperformed by the model with N = 3 clusters
that is the same as in the data generating process. Thus, the DPM-EM model turns
out to be very flexible without risk of misspecifying the model like it can happen for the
homogeneity model and the unpenalized heterogeneity model.



4.3 Simulation Study 69

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

normal DPMEM N=3 N=5 N=10

0.
1

0.
2

0.
3

0.
4

0.
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

normal DPMEM N=3 N=5 N=10

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 4.5.: Box plots of PE0 with substantially overlapping clusters for a medium number of individual
observations (ν = 3) (left) respectively many individual observations (ν = 5) (right).

4.3.3. Comparison of Simulation Results

In the following section, the DPM-EM model explained in Section 4.2 and the penalized
heterogeneity model (penalized mix) based on the group fused lasso penalty from Chap-
ter 3 are compared with regard to the prediction accuracy for the random effects and
the clustering related characteristics. The simulation study is based on the settings in
Section 4.3.1.

For comparison of the prediction accuracy of the random effects we use again the average
prediction error (4.7) as criterion (Figure 4.6). For the sake of completeness the prediction
errors of the homogeneity model with normally distributed random effects (normal) and
of the heterogeneity model with a finite mixture distribution for the random effects (finite
mix) are visualized, too. It should be noted that for the penalized mixture respectively
the finite mixture approach the predictive cross-validation from Section 3.2.2 is used to
determine the penalization parameter λ respectively the number of mixture components.
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Figure 4.6.: Box plots of PE0 with clearly separated clusters ((a)-(c)), moderately separated clusters
((d)-(f)), and substantially overlapping clusters ((g)-(i)) for few individual observations (left), a medium
number of individual observations (middle) and many individual observations (right).
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Figure 4.7.: Bar plots of the number of clusters with clearly separated clusters ((a)-(c)), moderately
separated clusters ((d)-(f)), and substantially overlapping clusters ((g)-(i)) for few individual observations
(left), a medium number of individual observations (middle) and many individual observations (right).
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Regarding Figure 4.6 it can be seen that the DPM-EM model mostly yields considerably
better predictions for the random effects than the penalized mixture approach based on
the group fused lasso penalty term. Only in the case (g) a worse prediction accuracy of the
DPM-EM model can be stated whereas apart from that especially for few individual obser-
vations the predominance of the DPM-EM model is evident ((a) and (d)). For a medium
number of individual observations the performance of the DPM-EM model is quite simi-
lar to that of the penalized heterogeneity model ((b), (e) and (h)). In this setting, both
approaches clearly outperform the classical linear mixed model with normally distributed
random effects and the finite mixture approach, especially in the case of clearly and mod-
erately separated clusters. Note that for many individual observations the assumption of a
normal distribution for the random effects yields a considerably worse prediction accuracy
than the DPM-EM model and the penalized heterogeneity model even for substantially
overlapping clusters ((c), (f) and (i)).

In Figure 4.7 the estimated numbers of clusters for the 100 simulation runs are visualized
by bar plots. Remember that the true random effects distribution is a normal mixture
with three mixture components. For this reason the bar corresponding to three clusters
is highlighted by black color. Except from the settings (h) and (i) most frequently three
clusters are detected by the DPM-EM approach. In particular, the estimated number
of clusters is hardly never one or two. The penalized heterogeneity approach is much
more affected by the number of repeated measurements or the separation between the
clusters than the DPM-EM approach. For few individual observation mostly all subjects
are assigned to the same cluster while for many individual observations often more than
three clusters are found. Generally, the variance of the number of clusters seems to be
higher for the penalized heterogeneity approach in comparison to the DPM-EM model.
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4.4. Applications

4.4.1. Unemployment

The proposed method is applied to two data examples. First, the variation of the unem-
ployment over the federal states of Germany across time is considered (Weise et al., 2011).
We examine the unemployment rate of each federal state from 2005 to 2010 in order to
identify differences between states (Figure 3.1). Like in Section 3.3.1, where the unemploy-
ment data are analyzed by the penalized heterogeneity model based on a group fused lasso
penalty, we consider a random slope model for the annual average of the unemployment
rate yij of state i and measurement j

yij|bi
ind.∼ N(β0 + bi0 + (β1 + bi1)yearij, σ

2), i = 1, . . . , 16, j = 0, . . . , 5.

Since there is no symmetric unimodal variation of the individual intercepts around the
overall mean it would not be appropriate to assume a Gaussian random effects distribu-
tion. Instead, the centered i.i.d. random effects bi = (bi0, bi1)T follow a mixture distribu-
tion of Gaussian components with penalized mixture weights (4.4). The aim is to cluster
the federal states in order to expose which states show similar behavior. Like in Sec-
tion 3.3.1 only for a better interpretability we change the zero point of the time variable
to 2005. Thus, during calculations the time variable is labeled by 0, 1, . . . , 5 for the years
2005, 2006, . . . , 2010.

standard 95%-CI
estimate error lower upper

β0 13.718 1.370 10.558 15.898
β1 -1.007 0.111 -1.201 -0.765

σ2 0.521 0.063 0.388 0.632
σ2

0 1.084 0.883 0.036 2.813
σ2

1 0.004 0.005 0.000 0.017
σ01 -0.062 0.063 -0.203 0.013

Table 4.4.: Estimation results for the fixed effects and variance parameters by the DPM-EM model for the
unemployment data.

First, Table 4.4 shows the estimated fixed effects and variance parameters. The associ-
ated standard errors and confidence intervals have been estimated by the nonparametric
bootstrap method proposed by Efron (1979) using the Monte Carlo approximation with
1000 replications. In comparison to the results of the penalized heterogeneity approach in
Section 3.3.1 it can be seen that the estimated standard errors of the DPM-EM model are
somewhat larger in each case.

Our DPM-EM model detects three clusters with estimated weights π̂1 = 0.467, π̂2 =
0.425 and π̂3 = 0.108. Figure 4.8 shows the population effect (dashed line) as well as the
cluster effects (solid lines). Observations belonging to the same cluster are marked with
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Figure 4.8.: Clustering of the unemployment data by the DPM-EM model. Observations belonging to the
same cluster are marked with the same symbol. The dashed line represents the population effect, the solid
lines symbolize the cluster effects.

the same symbol. For identification these symbols are also added to the corresponding
solid lines. The southern federal states Bayern, Baden-Württemberg and Rheinland-Pfalz
are assigned to cluster 3 (+) which features the lowest unemployment rate and the weakest
decrease over time. As Table 4.5 shows, the base level in 2005 is -6.469 lower compared to
the overall unemployment rate 13.718. In the south also the decrease of the unemployment
rate is less distinct than in the other states. A similar effect can be observed in cluster 2
(4). Here, the gap to the global intercept is considerably smaller. Furthermore, there is
one cluster (#) with a much higher base level and a stronger decrease of the unemployment
rates. It is remarkable that these states are all in Eastern Germany or city states. Only
the city state Hamburg makes an exception to that feature and belongs to cluster 2.

µ̂1 µ̂2 µ̂3

Intercept 4.361 -3.140 -6.469
Slope -0.353 0.277 0.436

Table 4.5.: Estimates of the cluster centers by the DPM-EM model for the unemployment data.
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In summary, the clustering of the DPM-EM model differs from the result of penalized
heterogeneity model based on a group fused lasso penalty in Section 3.3.1. Even though the
penalized heterogeneity model detects three clusters, too, the partition of federals states
is not the same. Obviously the DPM-EM model takes the different developments of the
federal states Bayern, Baden-Württemberg and Rheinland-Pfalz compared to the other
western states Schleswig-Holstein, Hamburg, Niedersachsen, Nordrhein-Westfalen, Hessen,
and Saarland more seriously. In contrast, the penalized heterogeneity model emphasizes
the special role of the city states Berlin and Bremen.

cluster j
1 2 3

1 Schleswig-Holstein 0 0.998 0.002
2 Hamburg 0 1 0
3 Niedersachsen 0 0.999 0.001
4 Bremen 1 0 0
5 Nordrhein-Westfalen 0 1 0
6 Hessen 0 0.942 0.058
7 Rheinland-Pfalz 0 0.424 0.576

state i 8 Baden-Württemberg 0 0.008 0.992
9 Bayern 0 0.012 0.988

10 Saarland 0 0.997 0.003
11 Berlin 1 0 0
12 Brandenburg 1 0 0
13 Mecklenburg-Vorpommern 1 0 0
14 Sachsen 1 0 0
15 Sachsen-Anhalt 1 0 0
16 Thüringen 1 0 0

Table 4.6.: Estimates for πij by the DPM-EM model for the unemployment data.

Table 4.6 shows the estimated probabilities π̂ij. Here, it can be seen that for most of
the states the assignment to a specific cluster is very distinct. Only for Rheinland-Pfalz
the probability for cluster 3 and cluster 2 is similar. The parameter α, which controls the
number of clusters, is estimated by α̂ = 0.00155. It is a typical feature that estimated
αs are very small. This means that the strongest clustering as allowed by the data is the
best one. Figure 4.9 visualizes the cluster history of the EM algorithm. Here, each cluster
has its own symbol and its own shade. On the ordinate, the federal states of Germany
are listed. See Table 4.6 for an overview which number represents which state. On the
abscissa, the iterations of the EM algorithm are numbered. As mentioned in 4.2.2, at the
beginning of the algorithm each state forms its own cluster. During the algorithm the
clusters are successively fused according to an agglomerative clustering method. The final
clustering after convergence can also be seen in Figure 4.8.
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Figure 4.9.: Clustering history for the unemployment data during the DPM-EM algorithm. Each cluster
has its own symbol and its own shade.

4.4.2. Lung Function Growth

In the second application, the lung function growth of girls in Topeka (USA) is examined
by our DPM-EM model. These data are a subsample from the six cities study of air
pollution and health in Dockery et al. (1983). The response variable is the logarithmic
forced expiratory volume in one second (fev1). Our sample consists of 100 girls, with a
minimum of two and a maximum of twelve observations over time. See Section 3.3.3 for
more details on the data that are illustrated in Figure 3.9 (left). Like in Section 3.3.3 we
use a linear mixed model with random intercepts and random slopes

log(fev1)ij|bi
ind.∼ N(β0 + bi0 + (β1 + bi1)ageij, σ

2), i = 1, . . . , 100, j = 1, . . . , ni,

for modeling the logarithmic fev1 subject to age and a DPM as random effects distribution
as in equation (4.4). While the plot of all measurements over time (Figure 4.10) is not
very informative because of the large number of measurements, the clustering effect of the
DPM-EM model can be seen more easily from Figure 4.11. Here the axes represent the
intercepts and slopes respectively. The square at coordinates (0,0) marks the population
effect. All other icons are interpreted as deviations from the population effect. The thick
big ones symbolize the cluster locations µ̂h, the thin small ones the random effects b̂i.
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Figure 4.10.: Clustering of the lung function growth data by the DPM-EM model: Observations belonging
to the same cluster are marked with the same symbol. The dashed line represents the population effect,
the solid lines symbolize the cluster effects.

Girls which are assigned to the same cluster are marked with the same symbol and are
arranged around the three cluster locations in the form of ellipses. See Section 3.3.3 for
more information about the construction of the ellipses. While the penalized heterogeneity
model in Figure 3.10 yields six clusters, by the DPM-EM model the number of clusters is
reduced to three. It can also be seen that, while the penalized heterogeneity model tends to
assign outliers to individual clusters due to the general lasso approach, the DPM-EM model
rather forms clusters of comparable spatial extent. Furthermore the ellipses in Figure 4.11
are more “circular” than in Figure 3.10.



78 4. Linear Mixed Models with DPMs using EM Algorithm

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

02
−

0.
01

0.
00

0.
01

Intercept

S
lo

pe

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Figure 4.11.: Cluster centers and random effects of the DPM-EM model for the lung function growth

data: The thick big icons symbolize the cluster centers µ̂h, the thin small ones the random effects b̂i. The
square at coordinates (0,0) marks the population effect. Ellipses with level 0.95 visualize the estimated
conditional distribution of random effects in the clusters.

4.5. Summary and Discussion

We introduced linear mixed models with a DPM for the random effects distribution in
order to penalize the number of clusters in the finite mixture of normal distributions. While
models with Dirichlet processes are typically fitted by Bayesian methods like MCMC we
used the EM algorithm because then the cluster property of the Dirichlet process can
be used directly. So our method can be called an agglomerative clustering approach of
individuals for longitudinal data. The DPM-EM algorithm itself was presented in detail.
Furthermore, we showed in a simulation study that our approach outperforms the classical
linear mixed model in the case of a underlying grouping structure. The DPM-EM model
yielded even better prediction results than the penalized heterogeneity model in Chapter 3.
Applications of this DPM-EM algorithm were demonstrated by considering unemployment
data and lung function growth data. Extensions of this DPM-EM algorithm to additive
mixed models follow in Chapter 6.



5. Additive Mixed Models with DPMs
using MCMC methods

5.1. Introduction

In the previous two chapters linear mixed models were used for clustering longitudinal
data. In this chapter and in Chapter 6 we consider the extension to additive mixed models
to incorporate also nonlinear time trends. The methods proposed in the following chap-
ters are mainly motivated by a study about childhood obesity, which has become a major
public health issue in industrialized countries. We will analyze data from the LISA study
(Influences of Life-style factors on the development of the Immune System and Allergies
in East and West Germany), a prospective birth cohort study conducted in four cities in
Germany (Bad Honnef, Leipzig, Munich, Wesel) including 3097 healthy neonates born be-
tween 11/1997 and 01/1999. In this study longitudinal data on the body mass index (BMI)
of children are collected along with covariates supposed to influence the nutritional status
to gain a better understanding of factors determining the nutritional status of children.
The data are collected in connection with nine mandatory medical examinations starting
at birth and ending at 60 months. As a consequence, we are faced with a huge data set
with complex structure comprising highly nonlinear growth patterns, long individual time
series, clustered individual-specific deviations from the population trend and irregular time
points.

While simple longitudinal data can often be fitted sufficiently well with growth curve
models comprising individual-specific random effects, complex longitudinal data as in our
application on childhood obesity often require a combination of semiparametric modeling
of nonlinear trends and a flexible non-Gaussian random effects distribution, allowing to
detect deviations from normality and clusters of individuals. This yields the longitudinal
semiparametric regression model

yij = xTijβ + f(tij) + zTijbi + εij, i = 1, . . . , n, j = 1, . . . , ni, (5.1)

where yij denotes the BMI observed for a subject i, i = 1, . . . , n, at observation times tij,
j = 1, . . . , ni with ti1 < . . . < tij < . . . < tini , and εij ∼ N(0, σ2) are independent Gaussian
measurement errors. Population effects of covariates xij such as gender or maternal smok-
ing behavior are collected in the parameter vector β whereas individual-specific effects of
covariates zij are represented in the parameter vector bi. In this chapter, we combine an
efficient low-rank smoothing approach based on P-splines (Brezger and Lang, 2006; Jullion
and Lambert, 2007) for the nonlinear trend function with a flexible DPM prior specifica-
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tions for the random effects (Kleinman and Ibrahim, 1998; Jara, 2007). The specification of
a P-spline for f(t) considerably reduces the numerical complexity as compared to Bayesian
smoothing splines since a much smaller number of parameters is involved and therefore
systems of equations with a much smaller dimension have to solved iteratively during the
MCMC run. P-splines also allow for a flexible exploration of possible trend patterns as op-
posed to restrictive parametric growth models. The DPM prior yields continuous random
effects distributions (as compared to pure Dirichlet process approaches) and clustering of
individuals can be achieved based on the truncated stick breaking prior representation of
the Dirichlet process (Sethuraman, 1994). More information about Dirichlet processes can
be found in Chapter 2. Our simulation results indicate that a DPM prior specification can
safely be used even when the true data generating mechanism involves a parametric ran-
dom effects distribution, but may yield a considerable improvement in estimation accuracy
when deviations from a parametric distribution are present in the data.

In our application, the random effects part of the predictor will capture individual-
specific deviations from the trend function f(t), leading for example to zTijbi = bi0 + tijbi1
for individual-specific linear deviations or

zTijbi = bi0 + tijbi1 + h(tij)bi2, (5.2)

with a known nonlinear transformation h(t) to gain additional flexibility. The specific form
of the transformation h(t) can for example be derived from exploratory analyzes of the data
in a population model. We will primarily make use of model (5.2) to adapt individual-
specific deviations to the structure of the trend observed in the obesity data. Models of
the form (5.1) are mostly used in combination with a Gaussian (prior) distribution for the
random effects, i.e. bi i.i.d. N(0,D), see for example Lin and Zhang (1999), Fahrmeir
and Lang (2001), Ruppert et al. (2003), Fahrmeir et al. (2004), Durban et al. (2005).
While this choice is mathematically convenient, it may be questionable for several reasons
in applied work. The normal distribution is symmetric and unimodal and has light tails.
Since the distributional assumption is made on unobserved quantities, it is typically hard to
validate these properties based on estimates. Possible skewness and multimodality (arising
for example from an unconsidered grouping structure in the data) may be masked when
checking the normal distribution in terms of estimated random effects.

Replacing the Gaussian random effects prior with a DPM allows to specify a hyperprior
on the random effects (see Ferguson (1973) for the theory of Dirichlet processes). For
linear mixed models, Dirichlet process priors for random effects were first proposed by Bush
and MacEachern (1996), and the DPpackage in R (Jara, 2007) has options for Dirichlet
process and DPM priors. As a consequence, the model becomes generally more robust since
the Gaussian random effects model is encompassed in a hypermodel that allows to take
deviations from normality into account. Moreover, the DPM prior specification naturally
leads to clustering of the individuals in the data set with respect to their individual-specific
effects. This is of particular interest in our application, where specific patterns of deviations
from the population model shall be identified.
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With a DPM prior specification, the random effects distribution is a parameter itself and,
thus, a random measure in terms of the Bayesian paradigm. Simple Dirichlet processes
will lead to a discrete distribution almost surely (Ferguson, 1974), but adding a mixing
distribution stage allows to overcome this limitation. More specifically, consider θ1, . . . , θn
to be generated from a probability measure G with a Dirichlet process prior G ∼ DP as
latent parameters of continuous random effects priors p(bi|θi), and, given θi, draw bi from
p(bi|θi). In hierarchical form we then have

G ∼ DP (α,G0),

θi|G
i.i.d.∼ G, i = 1, . . . , n,

bi|θi
ind.∼ p(bi|θi), i = 1, . . . , n.

As a consequence, the random effects distribution is a mixture of distributions with a
Dirichlet process for the mixing distribution: p(bi|G) =

∫
p(bi|θi)dG(θi).

In this DPM specification, each subject still has its own unique random effects value
whereas choosing a Dirichlet process for the θi, i = 1, . . . , n, creates ties among these and
will therefore form clusters of subjects. In general, there are k ≤ n clusters and θ1, . . . , θn
can be represented by cluster locations µ1, . . . , µk and cluster allocation variables c1, . . . , cn.
More specifically, ci ∈ {1, . . . , k} denotes the cluster subject i belongs to, so that θi = µci .
The strength of clustering is determined by the concentration parameter α which controls
the confidence in the base distribution G0. To match the standard assumption of mixed
models, we will utilize Gaussian base distributions.

Li et al. (2010) consider a model that is comparable to (5.1), but differs from our speci-
fication with respect to some important points. First, they assume a Bayesian smoothing
spline for the time trend f(t) while we use a low-rank Bayesian P-spline yielding a more
efficient representation of the nonlinear trend in terms of a manageable number of parame-
ters. Second, they employ a Dirichlet process prior for the random effects distribution while
our DPM prior allows to overcome the restriction to discrete random effects distributions
imposed by the Dirichlet process prior. Third, our MCMC simulation algorithm is based on
a truncated stick breaking representation of the Dirichlet process according to Sethuraman
(1994) as compared to the Pólya urn scheme used by Li et al. (2010). All computations
are implemented in C++, allowing for an efficient treatment of loop-intensive calculations,
and are made easily accessible by providing the R wrapper function ammDPMMCMC() in the
R package clustmixed (Heinzl, 2012).

The rest of this chapter is organized as follows: Section 5.2 considers the additive mixed
model with DPM priors for the random effects in more detail. Section 5.2.1 deals with
the model hierarchy of the additive mixed model and describes prior specifications for all
model parameters as well as associated hyperparameter choices. The Gibbs sampler we
use for inference is discussed in Section 5.2.2 and described in Section 5.2.3. The impact
of deviations from a Gaussian random effects distribution is investigated in a simulation
study in Section 5.3, focusing on the impact of the number of individual observations and
the presence of more or less overlapping clusters. The main aim of this simulation study is
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to detect situations in which DPM modeling is required to avoid considerable impact on the
random effects estimation by misspecifying the prior as being Gaussian. Section 5.4 applies
additive mixed models to the childhood obesity data with the specific aim to investigate
specific patterns in the data utilizing the cluster property of the Dirichlet process prior.
Section 5.5 concludes with a short summary of our main findings. Large parts of this
chapter can be found in Heinzl et al. (2012).

5.2. Additive Mixed Models with DPM Priors

5.2.1. Model Hierarchy

Additive mixed models for longitudinal data extend linear mixed models by including
smooth functions of time or of other continuous covariates as additional nonparametric
effects in the predictor. We focus on modeling only a nonlinear time effect as in (5.1),
but extensions to additive mixed models with additional nonlinear effects are conceptually
straightforward. The prior choices discussed in the following and in particular choices
for hyperparameters are to be understood as default values, but may have to be adapted
to specific data situations. In most cases, the prior settings are designed to be either
noninformative or to enforce specific properties of the posterior estimates such as the
number of clusters for the random effects.

For fixed effects, we make the common assumption of a (weakly informative) Gaussian
distribution β|µβ,Σβ ∼ N(µβ,Σβ). Further hyperpriors are assigned to the parameters
of the Gaussian distribution, yielding µβ ∼ N(mβ,Sβ) and Σβ = diag(σ2

β1
, . . . , σ2

βp
) with

inverse gamma priors σ2
βr

i.i.d.∼ IG(aβ, bβ) for r = 1, . . . , p. In our experience, the restriction
to a diagonal matrix for Σβ is more robust than assuming an inverse Wishart prior for a
non-diagonal covariance matrix, in particular if the dimension p of fixed effects is large.
Therefore, we will also use this restriction in the specification of the random effects prior
later on. Gelman (2006) provides a critical discussion of the inverse gamma distribution as
a conjugate prior in Gaussian prior structures and also considers a number of alternatives.
To complete the prior specification for fixed effects, we suggest the following parameter
defaults: mβ = 0p, Sβ = 1000Ip and aβ = bβ = 0.005.

For the random effects distribution p(bi|θi), we assume a hierarchical Gaussian mixture
prior

bi|θi,D
ind.∼ N(θi,D), i = 1, . . . , n,

θi|G
i.i.d.∼ G, i = 1, . . . , n,

G ∼ DP (α,G0).

Inference for the latent parameters θ1, . . . ,θn is based on the stick breaking representation
of the Dirichlet process (Sethuraman, 1994) in its truncated version (Ishwaran and James,
2001), where

G =
N∑
h=1

πh δµh ,
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and δµh denotes the Dirac measure in µh. Hence, the unknown distribution G is represented
as a weighted sum of point masses with random weights πh, which are independent of
locations µh. The locations are i.i.d. random variables from the base distribution G0,

i.e. µh
i.i.d.∼ G0, h = 1, . . . , N, while weights are constructed through a stick breaking

procedure with beta distributed weights:

πh = vh
∏

l<h(1− vl), h = 1, . . . , N,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1, vN = 1.

Sethuraman (1994) showed that (in the limit N → ∞) the probability measure of G is
given by DP (α,G0). See Section 2.2 for more details about the stick breaking procedure.
The truncated version still is a good approximation for G because the random weights
decrease stochastically as the index h grows, compare for example Ishwaran and James
(2001, Theorem 1). In particular, E(

∑∞
h=N+1 πh) converges to zero exponentially with

N →∞ (see equation (2.4)), i.e. the tail probability converges to zero with increasing N .
Following the arguments in Ohlssen et al. (2007) and in Section 2.2 based on this formula,
we truncate the stick breaking procedure at N = 100 in our simulations and applications.

The main advantage of the truncated representation is that the number of resulting
parameters is high-dimensional but finite, enabling the construction of a blocked Gibbs
sampler for µ = (µT1 , . . . ,µ

T
N)T , v = (v1, . . . , vN−1)T and c = (c1, . . . , cn)T . In addition,

one obtains estimates for θ1, . . . ,θn via θi = µci . Contrary to a Pólya urn Gibbs sampling
scheme, the stick breaking representation also offers the possibility to estimate G itself (see
Ishwaran and James (2001) for other advantages of blocked Gibbs sampling over Pólya urn
Gibbs sampling).

For the base distribution, we assume a multivariate normal distribution G0 = N(µ0,Σ0)

with hyperpriors µ0 ∼ N(m0,S0) and Σ0 = diag(σ2
00
, . . . , σ2

0q−1
) with σ2

0r

i.i.d.∼ IG(a0, b0) for
r = 0, . . . , q−1. In analogy to the specifications for the fixed effects hyperpriors, we suggest
the following default values for hyperparameters: m0 = 0q, S0 = 100Iq, a0 = b0 = 0.5. For
the prior covariance of the random effects, we also assume a diagonal structure, leading to

D = diag(σ2
b0
, . . . , σ2

bq−1
) with σ2

br

i.i.d.∼ IG(ab, bb) for r = 0, . . . , q − 1 and ab = bb = 0.0001.
The different prior choices for a0 and b0 on the one hand and ab and bb on the other hand
reflect our prior preference for a small variance within clusters in contrast to a high variance
between clusters. In Section 5.4, it can be seen that this prior structure yields a higher
power for detecting clusters in the data than other prior settings.

For the concentration parameter α, we consider a discrete prior α ∼
∑

ω∈Ω P (α =
ω) δω with support Ω = {0.5, 0.6, . . . , 99.9, 100} and probabilities which resemble a gamma
distribution. This specification avoids difficulties with too small values for α that would
naturally appear in a blocked Gibbs sampler with a gamma prior. For illustration, assume
that α ∼ Ga(aα, bα). In this case, the full conditionals for vh, h = 1, . . . , N − 1 are given
by

vh|c, α ∼ Be(1 + nh, α +
∑N

l=h+1 nl),

α|v ∼ Ga(N − 1 + aα, bα −
∑N−1

h=1 log(1− vh)),
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where nh denotes the number of subjects in cluster h. Updating vh in stick breaking
representation for a small value of α near zero could lead to v∗h = 1, where h∗ represents
an empty cluster followed by further empty clusters. This results in α = 0 in the next step
and so there is at least one improper Be(·, 0) full conditional for v∗h in the next update if
the last cluster N is empty. Excluding small values for α allows us to avoid such problems.

The prior for the concentration parameter of course influences the resulting number of
clusters. Liu (1996) derived a direct relation between the expected value E(k) and the
variance Var(k) of the number of clusters k and the concentration parameter α. If there
is prior information about E(k) and Var(k), this relation may be used in specifying a
prior for α. Without such knowledge, however, it is in general not possible to define some
optimal prior. We follow the recommendation of Ishwaran and James (2002) and choose
a discrete prior that resembles a Ga(2, 2) prior as a standard option. In our application
in Section 5.4, we investigate sensitivity with regard to the hyperparameters. Additional
information about the prior for α can also be found in Section 4.3 of Ohlssen et al. (2007).

The nonlinear time trend f(t) is modeled through a Bayesian P-spline. That is we assume
that f(t) can be represented through f(t) =

∑d
s=1 γsB

l
s(t), where Bl

s(t) are B-spline basis
functions of degree l defined for a grid of knots on the time scale. Collecting observations
yij, j = 1, . . . , ni, for individual i in the vector yi, model (5.1) can be written in matrix
notation as

yi = X iβ +Biγ +Zibi + εi, i = 1, . . . , n, (5.3)

with εi
i.i.d.∼ N(0, σ2I). Here, X i and Zi denote the individual design matrices constructed

from covariates xij and zij, Bi denotes the matrix of B-spline basis functions of sub-
ject i and γ denotes the vector of basis function coefficients. In our setting, there are m
equidistant inner knots and d = m+ l − 1 B-spline basis functions of degree l.

For Bayesian P-splines (Lang and Brezger, 2004), a Gaussian smoothness prior p(γ|τ 2) ∝
exp

(
− 1

2τ2
γTKγ

)
is assumed for the vector of basis coefficients. The precision matrix acts

as a penalty matrix to enforce smoothness and is defined through K = ∆T∆, where ∆
is a first or second order difference matrix for adjacent B-spline coefficients. The variance
(or inverse smoothing) parameter τ 2 controls the amount of smoothness. The negative
log-penalty γTKγ corresponds exactly to the penalty term introduced by Eilers and Marx
(1996) in a frequentist penalized likelihood setting. For the variance parameter, we assume
an inverse gamma prior τ 2 ∼ IG(aγ, bγ). As a standard option, we use aγ = bγ = 0.0001,
m = 12, l = 3 and a second order difference penalty for the spline function.

Finally, the error variance σ2 is also assigned an inverse gamma distribution, i.e. σ2 ∼
IG(aε, bε) with default values aε = bε = 0.005.

5.2.2. Inference

From the prior choices we have employed in the previous section, a convenient MCMC sam-
pler results since all full conditionals are available in closed form such that a blocked Gibbs
sampler can be utilized. Before full details of this sampler are provided in Section 5.2.3,
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some comments on special properties and peculiarities of the algorithm will be given in the
following.

In general, inference in additive mixed models has to deal with an identifiability problem.
Consider, as a typical example, the additive mixed model (5.1) with population trend f(t)
modeled through a Bayesian P-spline with second order random walk prior or a Bayesian
cubic smoothing spline. Suppose, we want to include individual-specific linear trends
bi0 +bi1t in addition to the population trend, then we are faced with the following problem:
Without further restrictions, P-splines and smoothing splines comprise linear trends as
special cases. There are (at least) two possible strategies: Either the population trend f(t)
models only deviations from a linear population trend or random intercepts and slopes have
to be centered around zero, modeling only individual linear deviations from f(t). Li et al.
(2010) deal with this problem in a post-processing step while Dunson et al. (2007) introduce
a centered Dirichlet process prior. We suggest centering random effects about zero in the
MCMC algorithm as a simple but effective device. Specifying f(t) as a non-linear deviation
from a linear population trend would require additional linear constraints for B-splines with
a second order random walk prior or for cubic smoothing splines, see Panagiotelis and Smith
(2008). For linear regression splines represented through a truncated power series basis, a
simple approach is to delete the “fixed” linear effect corresponding to the basis functions 1
and t. Obviously the same strategies for assuring identification are relevant for nonlinear
functions of other continuous covariates.

Note that for Gibbs sampling it is necessary to define working responses as partial
residuals in order to take the remaining parameters into account when updating parameters
corresponding to the P-spline, the fixed effects and the random effects. In this context
centering random effects implies that these parts of the model can no longer be updated in
arbitrary order. It is essential that updating P-spline parameters follows updating random
effects so that the basis function coefficients can absorb the general time trend. Moreover,
centering random effects has another important implication: For updating the observation
variance σ2 the uncentered random effects have to be used. Otherwise drawn values for
σ2 would be too high in the beginning of the Markov chain and the convergence of the
samples would slow down.

In all computations in this paper, we used 55,000 iteration with 5,000 burn in and thinned
the Markov chains by a factor of 50, resulting in samples of size 1,000 for inference. The
convergence and mixing was assessed via empirical autocorrelations and the inspection of
sampling paths.

5.2.3. Block Gibbs Algorithm

For the description of the MCMC-sampler, the additive mixed model (5.3) is written in
matrix notation as

y = Xβ +Bγ +Zb+ ε,
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where all individual vectors and matrices are stacked, e.g. y = (yT1 , . . . ,y
T
n )T , except for

Z = diag(Z1, . . . ,Zn). The derivations of all full conditionals are given in Appendix A.7.
Let the current state of the Markov chain consist of γ, τ 2, β, µβ, Σβ, b, D, µ, c, v, α,
µ0, Σ0 and σ2 and iterate through the following steps:

1. Update parameters referring to the P-spline:

• Create working response ỹ = y −Xβ −Zb.
• Draw new values for γ and τ 2 using:

– γ|τ 2,β, b,y, σ2 ∼ N(µ∗γ,Σ
∗
γ),

µ∗γ = ( 1
τ2
K + 1

σ2B
TB)−1 1

σ2B
T ỹ,

Σ∗γ = ( 1
τ2
K + 1

σ2B
TB)−1,

– τ 2|γ ∼ IG
(
aγ + 0.5 (d− k), bγ + 0.5γTKγ

)
.

2. Update parameters referring to fixed effects:

• Create working response ỹ = y −Bγ −Zb.
• Draw new values for β, µβ and Σβ using:

– β|µβ,Σβ,γ, b,y, σ
2 ∼ N(µ∗β,Σ

∗
β),

µ∗β = (Σ−1
β + 1

σ2X
TX)−1(Σ−1

β µβ + 1
σ2X

T ỹ),

Σ∗β = (Σ−1
β + 1

σ2X
TX)−1,

– For r = 1, . . . , p:

· µβr|σ2
βr
, βr ∼ N

(
( 1
σ2
βr

+ 1
s2βr

)−1( βr
σ2
βr

+
mβr
s2βr

), ( 1
σ2
βr

+ 1
s2βr

)−1
)

,

· σ2
βr
|µβr, βr ∼ IG (aβ + 0.5, bβ + 0.5(βr − µβr)2).

3. Update parameters referring to random effects:

• Create working response ỹ = y −Xβ −Bγ.

• For i = 1, . . . , n: Draw a new value for bi using:

bi|θi,D,β,γ,yi, σ2 ∼ N(θ∗i ,D
∗
i ),

θ∗i = (D−1 + 1
σ2Z

T
i Zi)

−1(D−1θi + 1
σ2Z

T
i ỹi),

D∗i = (D−1 + 1
σ2Z

T
i Zi)

−1.

• Centering:

– Create mean b̄.

– For i = 1, . . . , n: Replace bi by bi − b̄.
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• For h = 1, . . . , N : Draw a new value for µh using:

– If @ i : ci = h:

µh|µ0,Σ0 ∼ N(µ0,Σ0).

– If ∃ i : ci = h: For r = 0, . . . , q − 1:

µhr|σ2
br
, µ0r, σ

2
0r , b, c ∼ N(µ∗0r, σ

2 ∗
0r ),

µ∗0r = ( nh
σ2
br

+ 1
σ2
0r

)−1( nh
σ2
br

b̄r,h + µ0r
σ2
0r

),

σ2 ∗
0r = ( nh

σ2
br

+ 1
σ2
0r

)−1.

• For i = 1, . . . , n:

– Draw a new value for ci using:

ci|v,µ, bi,D ∼
∑N

h=1 c
?f(bi|µh,D)πhδh,

f =̂ multivariate normal density,

c? =̂ constant so that the sum of probabilities is 1,

– Set θi = µci .

• For h = 1, . . . , N :

– Draw a new value for vh (except for h = N) using:

vh|c ∼ Be(1 + nh, α +
∑N

l=h+1 nl),

– Create πh using:

πh = vh
∏

l<h(1− vl).

• Draw a new value ω ∈ Ω = {0.5, 0.6, . . . , 99.9, 100} for α using:

α|v ∼
∑

ω∈Ω exp
(

(N − 1) logω + (ω − 1)
∑N−1

h=1 log(1− vh)
)
·P (α = ω)δω.

• For r = 0, . . . , q − 1: Draw new values for µ0r, σ
2
0r and σ2

br
using:

– µ0r|σ2
0r ,θ ∼ N

(
( n
σ2
0r

+ 1
s20r

)−1( n
σ2
0r

θ̄r + m0r

s20r
), ( n

σ2
0r

+ 1
s20r

)−1
)

,

– σ2
0r |µ0r,θ ∼ IG (a0 + 0.5n, b0 + 0.5

∑n
i=1(θir − µ0r)

2),

– σ2
br
|θ, b ∼ IG (ab + 0.5n, bb + 0.5

∑n
i=1(bir − θir)2).

4. Update the error variance:

• Create working response ỹ = y −Xβ −Bγ −Zb̄−Zb.
• Draw a new value for σ2 using:

σ2|β,γ, b,y ∼ IG
(
aε + 0.5nd, bε + 0.5 ỹT ỹ

)
.
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5.3. Simulation Study

5.3.1. Settings

The following simulation study aims at clarifying in which data situations a DPM random
effects prior substantially improves estimation compared to the commonly used Gaussian
random effects prior. More specifically, we are interested in the ability of the DPM spec-
ification to detect deviations from normality and to identify clusters of random effects in
the data. In fact, it has been observed that in some situations the empirical distribution
of estimated random effects based on a Gaussian prior is quite close to the empirical dis-
tribution obtained with Dirichlet process or DPM priors. As an illustration, Figure 5.1
shows a kernel density estimate for the estimated random intercepts in an additive mixed
model with random slopes for simulated data, where the true random effects distribution
is a Gaussian mixture (the generation of these data will be explained later on in this sec-
tion). Even in the case of a Gaussian random effects prior, the kernel density estimate
shows a bimodal form that reflects the true mixing distribution quite well. The reason for
this surprising flexibility is that each random effect has its own posterior density – linked
only by variance parameters – even if all random effects have the same unimodal Gaussian
prior. In this context, traditional random effects assumptions are less restrictive than one
would generally expect. Hence, the question arises in which situations DPM priors actu-
ally improve upon Gaussian priors and whether we fit overly flexible models when the true
data generating model is close to Gaussian. We will therefore investigate the impact of the
number of observations within clusters and the separation between clusters.

We generated data sets assuming an additive mixed model

yij = f(tij) + bi0 + tijbi1 + εij, i = 1, . . . , n, j = 1, . . . , ni,

with i.i.d. errors εij ∼ N(0, σ2) and excluding any fixed effects. As nonlinear trend function

we consider f(t) = 50·log(0.2 t+1)
(0.2 t+1)2

which looks similar to the trend curve in equation (5.4) from
Section 5.4. For estimation, the function is approximated by a cubic P-spline with twelve
inner knots and second order random walk penalty. The i.i.d. random effects bi = (bi0, bi1)T

follow a mixture distribution with three Gaussian components:

bi ∼ 0.4N(µ1,D) + 0.3N(µ2,D) + 0.3N(µ3,D), i = 1, . . . , n,

imitating a population consisting of three clusters of overlapping subpopulations.

Throughout the simulations, we set n = 20, σ2 = 0.25 and D = diag(0.1, 0.1). We
vary, however, the number of individual observations ni, the centers µ1, µ2 and µ3 of
the clusters and the locations of observation times tij. To produce longitudinal data with
varying numbers of repeated observations per unit i, we set ni = 2 + Xi, where Xi is
Poisson distributed with rate ν. Setting ν = 0.5 corresponds to longitudinal data with only
few individual observations (2.5 on average), ν = 2.5 to a medium number of individual
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Figure 5.1.: Trace plot of simulated data for many individual observations (ν = 5) with clearly separated

clusters (left) and the corresponding kernel density estimate of b̂i0 with Gaussian kernel and bandwidth = 1
(right) for a DPM (solid line) and a normal distribution (dashed line) as random effects distribution.

observations and ν = 5 to (comparably) many individual observations. For given ni,
observation times are generated from

ti1 ∼ U(0, 1), i = 1, . . . , n,

tij ∼ U(ti,j−1 + 0.5, ti,j−1 + 1.5), i = 1, . . . , n, j = 2, . . . , ni.

In this way, different numbers n
(s)
i and t

(s)
ij are generated in each simulation run s =

1, . . . , 100. Similarly, different “true” random effects b
(s)
i are drawn from the Gaussian

mixture distribution in each simulation run. For the cluster locations, we choose

µ1 =

(
−4.5
1.5

)
, µ2 =

(
1.5
−1.8

)
, µ3 =

(
4.5
−0.2

)
,

corresponding to clearly separated clusters (case 1),

µ1 =

(
−1.5
0.75

)
, µ2 =

(
0.5
−0.9

)
, µ3 =

(
1.5
−0.1

)
,

corresponding to moderately separated clusters (case 2), and

µ1 =

(
−0.3
0.375

)
, µ2 =

(
0.1
−0.45

)
, µ3 =

(
0.3
−0.05

)
,
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corresponding to substantially overlapping clusters (case 3).
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Figure 5.2.: Trace plots for simulated data with a medium number of individual observations (ν = 2.5)
(left) and many individual observations (ν = 5) (right) with moderately separated (top) and substantially
overlapping clusters (bottom).

Combining these different settings for observation times and clusters results in nine
different scenarios. For each of them, we compare squared errors of estimated random
effects obtained from full Bayesian inference based on DPM priors (denoted as DPM in the
figures) with estimation results based on Gaussian random effects priors, using full Bayesian
(ND MCMC) or empirical Bayesian (ND REML) inference as implemented in BayesX
(Brezger et al., 2005). In each simulation run s, we compare true random effects with
corresponding estimates through squared differences. Specifically, we sum up over the n =

20 individual parameters and obtain a sum of squares, SSQr(s) =
∑n

i=1

(
b̂

(s)
ir − b

(s)
ir

)2

, r =

0, 1, for random intercepts and slopes. The empirical distributions of SSQr(s) values
obtained from simulation runs s = 1, . . . , 100 are then represented through box plots. In
addition, we also compare estimates σ̂2 for the error variance as well as estimated variances
σ̂2
b0

, σ̂2
b1

obtained from a Gaussian prior assumption with estimated variances σ̂2
00

, σ̂2
01

of
the Gaussian base distribution and of the Gaussian prior bi|θi,D ∼ N(θi,D) for DPM
priors. The results for the nonlinear trend function f(t) were mostly insensitive to the



5.3 Simulation Study 91

random effects specification and will therefore be omitted. The summary of results will be
grouped along a number of scenarios selected from the total of nine possible combinations.

5.3.2. Results

Medium number of individual observations for cases 2 and 3

Figure 5.2 (top left) displays a trace plot of typical longitudinal data generated in the
setting of case 2 for a medium number of individual observations, showing that cluster
effects can easily be detected visually. As we would expect, additive mixed models with
DPM priors substantially improve upon results based on a misspecified Gaussian random
effects assumption (Figure 5.3, top) in this case.
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Figure 5.3.: Box plots for random intercepts (left) and random slopes (right) with moderately separated
(top) and substantially overlapping clusters (bottom) for a medium number of individual observations.
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When regarding the figure of estimated variances (Figure 5.4), we can conclude the
following: First, there are no substantial differences for the estimates of the error variance.
Second, estimates for the base variances σ2

00
, σ2

01
in the DPM model are similar to the

variation of the random effects in the models with Gaussian prior. On the other hand,
variation of the random effects bi in the DPM around their mean θi is always quite small.
This result holds generally also in the other settings considered in this simulation study.
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Figure 5.4.: Box plots for the estimated error variance (left), the estimated variance of the random intercept
(middle) respectively of the random slope (right) with moderately separated clusters for a medium number
of individual observations.

As can be seen from the trace plot (Figure 5.2, bottom left) of typical longitudinal data in
case 3, it is not easy to recognize that the random curves come from three different clusters.
Hence, it may be much more tempting to apply a mixed model with Gaussian random
effects to analyze these data. Still, the SSQ box plots in Figure 5.3 (bottom) demonstrate
that DPM priors perform at least comparable or even a bit superior to Gaussian priors.

Many individual observations for cases 2 and 3

For data with comparably many individual observations, improvement of DPM priors
relative to Gaussian priors tends to become smaller. As might be expected from visual
inspection of the trace plot (Figure 5.2, top right), DPM priors still clearly improve upon
Gaussian priors for case 2 (Figure 5.5, top). For case 3 (see Figure 5.2, bottom right, for
a typical trace plot) it becomes quite difficult to detect heterogeneity caused by clusters
through visual inspection.

The SSQ box plots in Figure 5.5 (bottom) confirm what might be expected: For longi-
tudinal data with many observations and moderate population heterogeneity, DPM priors
do not yield substantial improvement upon traditional Gaussian random effects assump-
tions. Still, the good message is that there is no loss in efficiency in using DPM priors
in this situation or even in the theoretically ideal situation that the true random effects
are a sample from a homogeneous, approximately Gaussian population. In summary, we
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Figure 5.5.: Box plots for random intercepts (left) and random slopes (right) with moderately separated
(top) and substantially overlapping clusters (bottom) for many individual observations.

draw the following conclusion: The improvement in using DPM priors for the estimation
of random effects (measured in terms of SSQs) increases either for clusters that are well
separated from each other or a small number of observations in the data.

Case 1

In case 1, the DPM model improves considerably upon models with Gaussian priors if
the number of individual observations is small. If the number of individual observations
is moderate or larger, results become closer to those obtained with moderately separated
clusters. The corresponding plots are shown in Figure 5.6.
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Figure 5.6.: Box plots for random intercepts (left) and random slopes (right) with clearly separated
clusters for few individual observations (top), a medium number of individual observations (middle) and
many individual observations (bottom).
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5.4. Application: Childhood Obesity

In the following, we analyze the longitudinal BMI profiles of children collected in the LISA
study based on the additive mixed model (5.1). The LISA study is a prospective birth
cohort study in four cities in Germany (Bad Honnef, Leipzig, Munich, Wesel), including
3,097 healthy neonates born between 11/1997 and 01/1999. Follow-up time was until the
age of six by questionnaires in connection with the nine mandatory examinations at birth
and around the age of 2 weeks, 1, 3, 6, 12, 24, 48 and 60 months. Thus, the maximum
number of observations per child was nine. Following Fenske et al. (2008), we handle the
missing data problems by a complete case analysis. Finally, there are 2,043 children and
17,316 observations. Taking age of children as the basic time scale t, our statistical aim is to
assess the influence of a child’s age and risk factors on its BMI. Table 5.1 gives an overview
of the covariates that are included in the analysis. Note that later on we use centered
versions of the continuous covariates mBMI and mDiffBMI to avoid autocorrelations in the
samples that are avoided by making covariates orthogonal to the constant.

Covariate Description Categories Relative
frequency

Absolute
frequency

sex gender 0 = female 47.2% 964
1 = male 52.8% 1079

breast Nutrition until the
age of 4 months

0 = bottle-feeding only or
mixture of bottle-feeding and
breastfeeding

40.5% 828

1 = breastfeeding only 59.5% 1215

mSmoke maternal smoking 0 = no 86.0% 1756
during pregnancy 1 = yes 14.0% 287

area region 0 = rural (Bad Honnef, Wesel) 21.5% 439
1 = urban (Leipzig, Munich) 78.5% 1604

Covariate Description Median Mean Sd

ageY age (in years) 0.52 1.39 1.76

mBMI maternal BMI at pregnancy begin (in kg/m2) 21.72 22.58 3.74

mDiffBMI maternal BMI gain during pregnancy (in kg/m2) 4.96 5.12 1.63

Table 5.1.: Description of the used categorial and continuous covariates of the LISA data (related to 2043
children).

The effect of age on the BMI is of particular interest in our analyzes. Figure 5.7 (left)
shows individual BMI patterns by age for twelve randomly selected children. Here as well
as in Figure 5.7 (right) showing the complete data, a nonlinear trend of age is obvious. To
fit a smooth age trend, we utilize a cubic Bayesian P-spline with second order random walk
penalty and twelve equidistant inner knots. Apart from the general effect of the covariate
ageY, we are interested in individual deviations from this trend. For this purpose we start
with an additive mixed model (5.1) with linear individual deviations zTijbi = bi0 + tijbi1.
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Figure 5.7.: BMI against age: trace plots (left) for twelve randomly selected children and a scatter plot
for all children (right) of the LISA data.

Figure 5.8 (left) visualizes the fit of this model. Here one can see the general time
trend (solid line) as well as individual fits for four selected subjects. The measurements of
these subjects show different peculiar patterns that allow to investigate the ability of the
semiparametric additive mixed model to fit individual BMI profiles. One individual (id =
92189214, 4) features very low values of BMI while for another individual (id = 95089461,
×) there is a nontypical gain of BMI after the age of one year. We find that the additive
mixed model responds to these features sufficiently even with only linear individual-specific
deviations from the overall trend. In contrast, the individual with id = 94182011 (+) shows
an extremely high value in the age of two years that is not captured well by the model.
Similarly, the distinct apex at an age of six months observed for the individual with id =
92185191 (#) is not adequately reflected by the model. Obviously, the deviations for these
individuals are too nonlinear to be detectable with linear individual-specific deviations
only. Therefore, we extend the model by an additional random effect as in (5.2) with

h(t) =
log(t+ 1)

(t+ 1)2
, (5.4)

that was chosen to reflect the special pattern of the temporal trends in the LISA data.
Indeed, the individual fits improve considerably as shown in Figure 5.8 (right).
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Figure 5.8.: Fit of the DPM model (5.1) for the LISA data with linear individual-specific deviations

zTijbi = bi0 + tijbi1 (left) and with nonlinear individual-specific deviations zTijbi = bi0 + tijbi1 + h(tij)bi2
(right). The solid line shows the general effect of age while the dashed lines show individual effects.
Observations belonging to the same subject are marked with the same symbol. These symbols are also
added to the corresponding individual curves: 4 (id = 92189214), × (id = 95089461), + (id = 94182011)
and # (id = 92185191).

Table 5.2 contains estimation results for fixed effects in the extended model. According
to the symmetric 95% credibility intervals, there are three significant effects. The BMI of
boys is about 0.2 points larger than that of girls if all other covariates are kept fixed. The
maternal BMI and the maternal BMI gain during pregnancy also have a positive impact
on the child’s BMI while the covariates breast, mSmoke and area show no significant
effect on the BMI. This fact is surprising since the impact of breastfeeding is discussed
somewhat controversially in the literature, see Beyerlein et al. (2008) and the references
therein. Our finding is in agreement with the results in Beyerlein et al. (2008), who used
conventional linear regression and quantile regression with the BMI as continuous response
and concluded that breastfeeding has no significant effect on the expectation or the median
of the BMI distribution. However, breastfeeding can reduce the BMI of children having
BMI values in the upper quantile range. On the other hand, previous studies (e.g. Harder
et al., 2005; Arenz et al., 2004) observed a protective effect of breastfeeding, using logistic
regression with obesity as binary response, where children are defined as obese if their
BMI exceeds some predefined threshold. While at first sight our results seem to contradict
the protective effect of breastfeeding, more detailed analyzes reveal that the relationship
between BMI and breastfeeding depends upon the cluster to which an individual belongs.
We now discuss how we assign individuals to clusters.



98 5. Additive Mixed Models with DPMs using MCMC methods

Mean Median Se 2.5%-quantile 97.5%-quantile

σ2 0.70258 0.70252 0.00925 0.68464 0.72167
sex 0.20103 0.20077 0.03800 0.12439 0.27666
breast 0.05282 0.05124 0.03748 -0.02315 0.12654
mSmoke -0.00729 -0.00631 0.05288 -0.10690 0.09506
area -0.05123 -0.05162 0.04809 -0.14603 0.04109
mBMI (cent.) 0.04642 0.04650 0.00517 0.03625 0.05662
mDiffBMI (cent.) 0.08035 0.08003 0.01197 0.05743 0.10367

Table 5.2.: Estimates for the error variance and the fixed effects of the DPM model for the LISA data.
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Figure 5.9.: Clustering of θ̂i and b̂i of the DPM model for the LISA data with nonlinear individual-specific

deviations zTijbi = bi0 + tijbi1 +h(tij)bi2. On the left for the prior hyper parameters of the random effects’
variances the default settings a0 = b0 = 0.5 and ab = bb = 0.0001 are used while on the right these
parameters are given by a0 = b0 = ab = bb = 0.005.

Although there is an automatic clustering structure induced by the Dirichlet process in
theory, some practical problems arise from the necessity of using MCMC methods: We get
a clustering of subjects at each iteration, but how can these be combined to a universal
clustering? Diverse operations exist to handle this (see for example Fritsch and Ickstadt,
2009), but concerning the high number of subjects and hence the high number of possible
clusterings, these methods are typically not feasible for our model. Therefore we pursue an
alternative strategy: First, we get an estimated number of clusters using the median for all
numbers of clusters in the MCMC iterations. Second, we allocate the θ̂i for i = 1, . . . , n to
clusters by k-means clustering with the number of clusters fixed to this median number of
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clusters. In addition, we perform a similar clustering for b̂i with i = 1, . . . , n. Still, we are
primarily interested in the clustering of θ̂i, since these are the parameters on which the
clustering property of the Dirichlet process works in the prior specification.

The cluster results shown in Figure 5.9 (left) reveal that there are mainly level shifts
between clusters both for θ̂i and for b̂i. However, for θ̂i one cluster that differs from all
other clusters attracts special attention: While the BMI steeply increased until an age of
about six months followed by a steady decrease for most of the children, individuals in this
cluster show an almost permanent ascent of the BMI. Note that this extreme cluster can
only be detected for θ̂i and not for b̂i. The extreme cluster consists of thirty individuals,
including one of the individuals that we have picked for the individual profiles shown in
Figure 5.8 (id = 95089461, ×).
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Figure 5.10.: Bar plots of the covariates breast (left) and area (right), each for the subjects of the extreme
cluster (on the right hand) and for the others (on the left hand) corresponding to the clustering by the
DPM model.

It is now of particular interest to detect whether there are differences in the covariate
values between individuals assigned to the extreme clusters and the remaining individu-
als. Indeed, especially the covariates relating to breastfeeding and area of residence show
noticeable differences between these two groups (see Figure 5.10). Obviously, most of the
children in the extreme cluster were bottlefed or bottle- and breastfed until the age of four
months. In contrast, the majority of the remaining children were breastfed only. As a
consequence, breastfeeding essentially serves as an indicator for a normal and a lower de-
velopment of the BMI, although there is no general protective effect of breastfeeding. This
points into the same direction as the quantile regression result of Beyerlein et al. (2008).
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Similarly, the ratio of children living in an urban area as compared to children living in a
rural area is almost balanced in the extreme cluster while most of the remaining children
live in urban areas.

Ga(2, 0.5) Ga(2, 1) Ga(2, 2) Ga(2, 4)

number of clusters 24 20 16 12
σ2 0.70207 0.70228 0.70252 0.70294
sex 0.20111 0.20180 0.20077 0.20120
breast 0.05783 0.05194 0.05124 0.05650
mSmoke -0.00254 0.00006 -0.00631 0.00058
area -0.04942 -0.04912 -0.05162 -0.05202
mBMI (cent.) 0.04654 0.04685 0.04650 0.04653
mDiffBMI (cent.) 0.07955 0.07900 0.08003 0.08066

Table 5.3.: The effect of the prior for the concentration parameter α on the number of clusters and the
estimates for σ2 and β. Note that we assume a discrete prior with probabilities which resemble a gamma
distribution.

To investigate prior sensitivity of our results, we re-ran the analyzes with different choices
for the hyperparameters of the inverse gamma priors for the variance parameters. Essen-
tially, the basic conclusions remain unchanged and the identification of the extreme cluster
is very robust with respect to prior assumptions but there is some variation in the number
of clusters. For example, when choosing ab = bb = 0.005 and a0 = b0 = 0.005 it is still
possible to identify the cluster of extreme observations, but the total number of clusters
increases from 16 to 21 compared to our original analysis, as it can be seen in Figure 5.9
(right). Table 5.3 provides some additional information on the impact of the prior for the
concentration parameter α on the number of clusters, the parametric effects and the error
variance.

5.5. Summary and Discussion

The semiparametric mixed model considered in this chapter combines the advantages of
Bayesian smoothing of nonlinear time trends and other nonlinear covariate effects with
the flexibility of DPM priors in order to deal with heterogeneity of random effects. Our
simulation study provides evidence, under which circumstances DPM random effects priors
really lead to substantial improvement compared to conventional Gaussian random effects
priors. DPM priors can also be used as an exploratory tool to check sensitivity of para-
metric assumptions on random effects. In particular, as illustrated in our BMI application,
Dirichlet processes and DPM priors allow to detect hidden clusters in the data.

In summary, using a DPM prior as random effects distribution implies a (Gaussian)
mixture prior for random effects with a data driven choice of the number of mixture
components. Hence, using DPM priors is not only a more flexible modeling opportunity
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without restrictive assumptions for the random effects distribution, but also provides ad-
ditional insights into the hidden pattern of clusters in given data, which are not possible
in the case of a Gaussian random effects model. In general, this knowledge can be used
to detect indicators for this pattern as we demonstrated for the clusters with deviating
BMI profiles in the obesity applications. Note that detecting clusters is not possible in the
classical Gaussian random effects model, where always a single cluster for all individuals
is assumed.

The development of Gibbs samplers for Gaussian additive mixed models with more com-
plicated structured additive predictors, comprising for example spatial effects or varying
coefficient terms as in Fahrmeir et al. (2004), is conceptually straightforward due to the
modular hierarchical structure of the MCMC sampler. Extensions to models with non-
Gaussian responses require additional computational effort, involving hybrid Metropolis
Hastings algorithms unless a latent Gaussian formulation can be obtained (as for binary
or multinomial probit models).
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6. Additive Mixed Models with DPMs
using EM Algorithm

6.1. Introduction

For the modeling of longitudinal data with a nonlinear time trend, additive mixed models
are useful. The model considered in this chapter assumes an additive structure for the
nonparametric term of the time variable and parametric terms for the random effects as
well as the fixed effects for other covariates. Due to this combination of nonparametric and
parametric terms the model is called semiparametric mixed model. Here, the conditional
distribution of the response yij observed for subject i at observation time tij can be written
as

yij|bi
ind.∼ N(xTijβ + f(tij) + zTijbi, σ

2), i = 1, . . . , n, j = 1, . . . , ni. (6.1)

Fixed effects β describe the influence of covariates xij whereas individual-specific deviations
from the population time trend f(·) are modeled in the product of random effects bi
and time-dependent variables zij. For example, in a so-called random slope model one
specifies zTijbi = bi0 + tij · bi1, which means that the variation over time is given by f(·)
but with individual shift and slope. The approach proposed in this chapter combines an
approximate DPM for the random effects with a P-spline for approximating the trend
function f(·) and uses an EM algorithm for estimation. In model (6.1) typically normally
distributed random effects are assumed (see, for example, Zeger and Diggle (1994), Zhang
et al. (1998), Verbyla et al. (1999), Ruppert et al. (2003), Fan and Li (2004), and Wang
et al. (2005)). In contrast to these approaches we consider in analogue to Chapter 5 a
DPM as random effects distribution because the cluster property of the Dirichlet process
allows to find clusters in longitudinal data (Ferguson, 1973). More concretely, we make
use of the stick breaking representation of the Dirichlet process (Sethuraman, 1994). See
Chapter 2 for more information about the theory behind Dirichlet processes. The most
innovative aspect of our method is that we introduce an EM algorithm for inference instead
of the popular MCMC methods, which are used, for example, in Chapter 5 and Li et al.
(2010). The advantage of the EM algorithm over MCMC methods is, as far as Dirichlet
processes are concerned, that it provides a pointwise convergence instead of a distributional
convergence. One consequence is that the cluster property of the Dirichlet process can be
used directly. More details about this property are given in Chapter 4, where linear mixed
models with approximate DPMs for incorporating a linear time trend are estimated by the
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EM algorithm. This algorithm will be extended to additive mixed models in the present
chapter for clustering nonlinear longitudinal data.

The chapter is organized as follows: In Section 6.2, the model hierarchy and the according
EM algorithm for fitting the proposed model is presented in detail. In addition, a short
discussion of reparameterizations of P-spline coefficients and the choice of knots is given.
The simulation study in Section 6.3 compares our approach to the MCMC-method in
Chapter 5 and to additive mixed models with normally distributed random effects. In
Section 6.4, the theophylline data and BMI profiles of children are analyzed.

6.2. Additive Mixed Models with Dirichlet Process
Mixtures

6.2.1. Model Hierarchy

Let the time trend in model (6.1) be specified by B-splines (De Boor, 1978) yielding f(tij) =∑d
s=1 γsB

l
s(tij), where γs denotes the basis coefficient corresponding to the B-spline basis

function Bl
s of degree l. For m inner knots κ1, . . . , κm one obtains all in all m+ 2 · l knots

and d = m+ l− 1 basis coefficients which are collected in the vector γ. Generally, in order
to get a smooth trend curve, the curvature is penalized by considering the penalty term
λ ·
∫

(f
′′
(t))2dt as is customary also for smoothing splines (Reinsch, 1967), where λ denotes

a tuning parameter. Using B-splines this penalty term may be written as γTKγ, where
K denotes a singular penalty matrix with rank d − k and whose element in the rth row
and the sth column is given by

∫
B
′′
r (t)B

′′
s (t)dt (O’Sullivan, 1986). The integer k describes

the rank deficiency of the penalty matrix. Eilers and Marx (1996) introduced the so-called
P-splines that penalize the differences between the basis coefficients by considering the
penalty matrix K = ∆T∆ based on the difference matrix ∆ of order k. In the following,
these P-splines are considered for estimating the trend curve. In addition, we make use of
the mixed model representation of the P-spline term to avoid time-consuming methods like
cross-validation when determining the tuning parameter: Let the basis coefficient vector be
decomposed in the form of γ = Tγ0 +Wγp into an unpenalized vector γ0 and a penalized
vector γp for suitable matrices T and W (Green, 1987). See Section 6.2.3 for more details
about this decomposition and other facts concerning the P-spline term. In Fahrmeir et al.
(2007) it is clarified that γp can be interpreted as a normally distributed random effect in a
classical mixed model. Thus, the conditional distribution (6.1) can be rewritten in matrix
notation as

yi|bi,γp
ind.∼ N(X iβ +BiTγ0 +BiWγp +Zibi, σ

2Ini), i = 1, . . . , n,

γp ∼ N(0, τ 2Id−k),

where Id−k symbolizes the identity matrix with dimension d − k. X i and Zi denote the
individual design matrices constructed from covariates xij and zij whereas the matrix Bi
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contains the B-spline basis functions of subject i. In yi = (yi1, . . . , yini)
T the response

values of subject i are collected. The variance parameter τ 2 acts as an inverse smoothing
parameter and will be estimated in the inference procedure. While large values of τ 2 yield
a rough spline, for τ 2 → 0 the coefficients in γp are shrunk to zero and thus, the spline
converges to a polynomial of degree k − 1.

In our approach, instead of a normal distribution as random effects distribution a DPM
is considered:

bi|θi
ind.∼ N(θi,D), i = 1, . . . , n,

θi|G
i.i.d.∼ G, i = 1, . . . , n,

G ∼ DP (α,G0).

(6.2)

Here, DP (α,G0) is a distributional assumption for the unknown mixing distribution G.
Given G, the means of the normal distribution are drawn from the distribution G, which is
a discrete distribution and that has − in the case of a low α − a set of just a few elements
with probabilities that are considerably larger than zero. Thus, the marginal random effects
distribution is a normal mixture with a data driven and typically low number of mixture
components. Thereby, a natural clustering of individuals can be achieved: Subjects with
the same mean θi = θj, i 6= j, belong to the same cluster. By using the stick breaking
procedure of the Dirichlet process in its truncated version, inference for the unknown
distribution G becomes possible and the distributional assumption for the random effects
(6.2) can be rewritten as

bi|v
i.i.d.∼

∑N
h=1 πhN(µh,D), i = 1, . . . , n,

πh = vh
∏

l<h(1− vl), h = 1, . . . , N,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1,

(6.3)

where Be(·, ·) denotes the beta distribution and π = (π1, . . . , πN)T respectively v =
(v1, . . . , vN−1)T are vectors of weights respectively reparameterized weights. See Section 2.2
for an extended discussion of the stick breaking representation of the Dirichlet process
and Section 6.2.2 for a recommendation how to choose N . As customary, in this con-
text two constraints have to hold:

∑N
h=1 πhµh = 0 and

∑N
h=1 πh = 1. The first ensures

E(yi) = X iβ + Biγ and therefore the identifiability of the P-spline. Note that the or-
der of µ1, . . . ,µN is given by the corresponding weights in decreasing order. The second
constraint

∑N
h=1 πh = 1 is automatically fulfilled by vN = 1.

6.2.2. Inference

In what follows, an EM algorithm for the additive mixed model described in Section 6.2.1
is given. The algorithm is based on the estimation procedure of the heterogeneity model by
Verbeke and Lesaffre (1996). In general, the EM algorithm is an useful inference tool in the
case of unobserved data (McLachlan and Krishnan, 1997). In finite mixture models, the
unknown cluster membership of each individual can be expressed by the latent variable
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wi := (wi1, . . . , wiN)T , where wih = 1 if subject i belongs to cluster h and 0 otherwise
(McLachlan and Peel, 2000). For our approach, the marginalization over the random
effects yields the following complete model with observed data yi and unobserved data wi

yi|wi,γp
ind.∼ N(X iβ +BiTγ0 +BiWγp +Ziµh, V i), i = 1, . . . , n,

wi|v
i.i.d.∼ M(1,π), i = 1, . . . , n,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1,

γp ∼ N(0, τ 2Id−k),

(6.4)

with V i = ZiDZ
T
i + σ2Ini and M(·, ·) symbolizing the multinomial distribution. The

first two lines in model (6.4) determine the likelihood function of the independent obser-
vations (yi,wi), i = 1, . . . , n. The third and the fourth line correspond to prior distribu-
tions that can also be seen as penalty terms. As customary in the likelihood inference,
for the other parameters diffuse priors are assumed. All parameters are collected in the
vector ξ = (α,v,ψ)T , where ψ is the vector containing all the remaining parameters
β,γ0,γp,µ1, . . . ,µN ,D, σ

2 and τ 2. Note that model (6.4) can either be parameterized by
π or by v. Since the latter parametrization simplifies calculations, it is used in the follow-
ing. Nevertheless, only for a simpler presentation, we write πh instead of vh

∏
l<h(1− vl).

Omitting multiplicative constants, the posterior function respectively the penalized likeli-
hood function corresponding to the complete model (6.4) is given by

LP (ξ) =
n∏
i=1

N∏
h=1

[πh fih(yi;ψ)]wih · (τ 2)−
d−k
2 exp

(
− 1

2τ 2
γTp γp

)
· αN−1

N−1∏
h=1

(1− vh)α−1.

Here, fih(·) denotes the density function of N(X iβ + BiTγ0 + BiWγp + Ziµh, V i).
Finally, one obtains the penalized log-likelihood

lP (ξ) =
n∑
i=1

N∑
h=1

wih[log πh + log fih(yi;ψ)]− 1

2

(
(d− k) log(τ 2) +

1

τ 2
γTp γp

)
+

+ (N − 1) logα + (α− 1)
N−1∑
h=1

log(1− vh).

Also the parameter α can be seen as penalization parameter as τ 2. For α ∈ (0, 1) a
penalization of the number of clusters is achieved whereas for α = 1 the penalty term in
lP (ξ) drops pout. For α → 0 the number of clusters converges to one. See Section 4.2.2
for more information about the meaning of α in this context. Instead of maximizing the
penalized incomplete likelihood function
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lPI(ξ) =
n∑
i=1

log

(
N∑
h=1

πhfih(yi;ψ)

)
− 1

2

(
(d− k) log(τ 2) +

1

τ 2
γTp γp

)
+

+ (N − 1) logα + (α− 1)
N−1∑
h=1

log(1− vh).

based only on the observed data directly, an EM algorithm is used for estimation of pa-
rameters. Here, we alternate between E-step and M-step until lPI(ξ) does not change any
more.

E-step

In the E-step, we take the expectation of the penalized likelihood lP (ξ) based on the
complete model over all unobserved wih. Collecting all observed data in y = (yT1 , . . . ,y

T
n )T ,

we get for the E-step of iteration t+ 1

Q(ξ) = E
(
lP (ξ)|y, ξ(t)

)
=

n∑
i=1

N∑
h=1

πih(ξ
(t))[log πh + log fih(yi;ψ)]−

− 1

2

(
(d− k) log(τ 2) +

1

τ 2
γTp γp

)
+ (N − 1) logα + (α− 1)

N−1∑
h=1

log(1− vh),

where πih(ξ
(t)) is the probability at iteration t that subject i belongs to cluster h and is

given by

πih(ξ
(t)) =

fih(yi;ψ
(t))π

(t)
h∑N

l=1 fil(yi;ψ
(t))π

(t)
l

.

For clarity, in the following we write πih := πih(ξ
(t)).

M-step

In the M-step, Q(ξ) is maximized with respect to all unknown parameters. Due to Q(ξ) =
Q(α,v) +Q(ψ) the M-step can be separated into two parts: The maximization of

Q(α,v) =
n∑
i=1

N∑
h=1

πih log πh + (N − 1) logα + (α− 1)
N−1∑
h=1

log(1− vh),

with respect to α and v and the maximization of
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Q(ψ) =
n∑
i=1

N∑
h=1

πih log fih(yi;ψ)− 1

2

(
(d− k) log(τ 2) +

1

τ 2
γTp γp

)
,

with respect to ψ. The first optimization problem is solved by alternating updates of the
first order conditions

vh =

∑n
i=1 πih∑n

i=1

∑N
l=h πil + α− 1

, h = 1, . . . , N − 1, (6.5)

and

α =
1−N∑N−1

h=1 log(1− vh)
,

that are proved in Appendix A.3.1. Without further restrictions it could happen that
vh /∈ [0, 1] if α ∈ (0, 1). For preventing this we use the same correction approach as
in Section 4.2.2: Update vh by (6.5) for increasing h. If vh∗ > 1 set vh to 1 for h =
h∗, . . . , N −1. This constraint for v is equivalent to the following restriction on π by using
the stick breaking procedure:

πh =


1

n+α−1

∑n
i=1 πih, for h < h∗,

1−
∑h−1

l=1 πl for h = h∗,
0 for h > h∗,

where h∗ is the lowest index h for which the cumulative sum of the original weights π◦l
exceeds one:

∑h
l=1 π

◦
l > 1. See Appendix A.3.1 for more technical details about this

correction step. Finally, it can be seen that for α ∈ (0, 1), all weights πh for h < h∗ are
stretched by the factor n

n+α−1
compared to the unpenalized estimators for πh as in Verbeke

and Molenberghs (2000), which we get for α = 1. The amount of stretching is controlled by
the parameter α. If α ≈ 0, a very strong clustering is achieved while for larger values of α
only few clusters drop out. It should be noted that during the computations vh = 1−10−300

instead of vh = 1 is used to avoid log(0). Then one gets πh ≈ 0 for h > h∗. For α > 1 no
correction is needed, but especially in this case it is important that N is large enough due
to the considerations in Section 2.2. As proposed by Ohlssen et al. (2007) and as shown
in the equations (2.6) N should be chosen such that

N > 1 +
log(ε)

log
(

α
α+1

) ,
with ε > 0. Thus, for a given range on α a lower bound for N can be determined. Since
in practice a very strong clustering with a low number of clusters is generally desirable,
we propose to allow only the range α ∈ (0, 1). In our experience, this can be achieved
by a very low starting value like α = 0. This means that for ε = 0.001 even N = 11 is
sufficiently large for an adequate approximation of the distribution G.
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In the second part of the M-step, we get the current state for ψ by alternating separate
maximization of Q(ψ) to β, γ0, γp, µ1, . . . ,µN and to the variance parameters τ 2, σ2 and
D. Conditional on the actual state of the other parameters, the maximization of β results
in

β =

(
n∑
i=1

XT
i V

−1
i X i

)−1( n∑
i=1

XT
i V

−1
i

(
yi −BiTγ0 −BiWγp −

N∑
h=1

πihZiµh

))
.

The first order condition for γ0, given all the other parameters, yields

γ0 =

(
n∑
i=1

T TBT
i V

−1
i BiT

)−1

(
n∑
i=1

T TBT
i V

−1
i

(
yi −X iβ −BiWγp −

N∑
h=1

πihZiµh

))
,

whereas the penalized basis coefficients are updated by

γp =

(
n∑
i=1

W TBT
i V

−1
i BiW +

1

τ 2
Id−k

)−1

(
n∑
i=1

W TBT
i V

−1
i

(
yi −X iβ −BiTγ0 −

N∑
h=1

πihZiµh

))
.

Given the other parameters, setting the derivative of Q(ψ) with respect to µh, h =
1, . . . , N , to zero yields

µh =

(
n∑
i=1

πihZ
T
i V

−1
i Zi

)−1( n∑
i=1

πihZ
T
i V

−1
i (yi −X iβ −BiTγ0 −BiWγp)

)
.

For the inverse smoothing parameter τ 2 one gets the update

τ 2 =
1

d− k
γTp γp.

The corresponding proofs are shown in Appendix A.3.2. For holding the constraint∑N
h=1 πhµh = 0, in each M-step deviations from this restriction are subtracted from µh,

h = 1, . . . , N . But it should be noted that these deviations could only be added to the
unpenalized spline coefficients γ0 in the case of the decomposition (6.6) with equidistant
knots and if q ≤ k, i.e. if the dimension of the random effects is equal to or smaller than
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the order k of the penalty matrix. For other cases we propose the following simple but ef-
fective strategy: Similar to the procedure in Section 5.2.2, we just center the cluster centers
followed by an immediate update of the basis coefficients so that the P-spline parameters
can absorb the general time trend. For a correct update of the variance parameters the
uncentered cluster centers should be used in the working response.

For the simultaneous maximization of the variance parameters σ2 andD, given β, γ0, γp,
µ1, . . . ,µN and τ 2 the algorithm AS 47 of O’Neill (1971) in the C++ version (Burkhardt,
2008) is used, which is an implementation of the Nelder-Mead algorithm (Nelder and
Mead, 1965). In this optimization procedure we choose for the reflection, extension and
contraction coefficients the common settings 1.0, 2.0 and 0.5 respectively. Note that the
covariance matrix D is parameterized by D = LLT because then the matrix is auto-
matically nonnegative-definite and even positive-definite (and so invertible, too) if L is a
matrix with exclusively nonzero diagonal entries (Lindstrom and Bates, 1988). The whole
EM algorithm for fitting additive mixed models with a DPM as random effects distribution
is implemented in C++ and is accessible by the R wrapper function ammDPMEM() in the R
package clustmixed (Heinzl, 2012). Here, the starting values can be chosen individually.
Otherwise, the following starting values are used by default: In the beginning, there are
N = n clusters − one for each subject with the same weight πh = 1/N , h = 1, . . . , N .
Thus, during the iterations clusters are fused step by step until there is no increase of the
penalized incomplete log-likelihood lPI(ξ) any more. This is the reason why our method
can be called an agglomerative cluster approach. Rearranging the weights after each step
has the effect that only the relevant clusters keep positive probabilities. As starting values
for the basis coefficients least squares estimates of the model yi = Biγ̂, i = 1, . . . , n, are
used. With the resulting residuals as response values a linear mixed model with normally
distributed random effects is fitted to get starting values for β, σ2 and D. In addition,
cluster centers µ1, . . . ,µN are initialized by the predicted random effects b1, . . . , bn of this
model. If N < n is chosen, a k-means clustering of the predicted random effects is used
for determining starting values for the cluster centers. Concerning the “penalization” pa-
rameters α = 0 and τ 2 = 0.1 are used as starting values to induce a very strong clustering
and a smooth trend curve. However, it is advisable to try several different starting values
to avoid that the EM algorithm converges to a local but not a global maximum. After
convergence we get the cluster membership by the matrix of estimated πih. Individual i is
assigned to that cluster h for which π̂ih is maximal. If there are a lot of small weights π̂h,
we get only few relevant clusters. Based on the weights of all clusters the random effects
are predicted by using the mean of the posterior bi|yi, which is given by

b̂i = D̂ZT
i V̂

−1

i (yi−X iβ̂−BiT γ̂0−BiWγ̂p)(Iq−D̂ZT
i V̂

−1

i Zi)
N∑
h=1

π̂ihµ̂h, i = 1, . . . , n.

This is a direct extension of the prediction in the case of linear mixed models, which is
proved in Appendix A.4. Note that after convergence all parameters have to be restandard-
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ized internally because the algorithm works with standardized variables. See Appendix A.5
for more details about the used standardization.

6.2.3. Discussion of the P-spline Term

In this section, some properties of P-splines will be discussed that are crucial for the
EM algorithm presented in Section 6.2.2. First, note that the decomposition of the basis
coefficient vector mentioned in Section 6.2.1 is not unique. Two variants for the choice of
these matrices are conventional: One yields the matrices T = Γ0 and W = ΓpΩ

−1/2
p and

is based on the spectral decomposition of the singular penalty matrix

K = ΓΩΓT =
(

Γp Γ0

)( Ωp 0
0 0

)(
ΓT
p

ΓT
0

)
= ΓpΩpΓ

T
p ,

where Ω is a diagonal matrix with the corresponding eigenvalues arranged in descending
order on the leading diagonal and where Ωp contains only the d − k strictly positive
eigenvalues of K (Wood, 2006). The corresponding eigenvectors form the column vectors
in the orthogonal matrix Γ, respectively in the matrix Γp. In the special case of the penalty
matrix K = ∆T∆ the choice

T =

 1 ς1 . . . ςk−1
1

...
...

1 ςd . . . ςk−1
d

 and W = ∆T (∆∆T )−1, (6.6)

is also suitable, where ς1, . . . , ςd are equidistant grid points on the relevant range. The
proof that both choices for T and W ensures a decomposition into a penalized and an
unpenalized part is found in Appendix A.8. There, it can be seen that the grid points
ς1, . . . , ςd have to be equidistant. When equidistant knots are considered, these can be used
as grid points. In addition, equidistant knots offers a further benefit, which is examined
in the following. First, note that P-splines based on the difference penalty of order k
feature generally the property that they produce polynomials of degree k − 1 for a strong
penalization − independently of the choice of the knots. For equidistant knots and the
decomposition (6.6) the unpenalized part describes exactly this polynomial of degree k−1.
For example, when second-order differences are used, γ0 contains the global intercept and
the global slope which are unpenalized. The penalized coefficients γp correspond to terms
of higher degrees. This gives rise to the general discussion whether equidistant knots
or knots chosen as quantiles of the time variable should be preferred. While Ruppert and
Carroll (2000) recommend knots based on quantiles, Eilers and Marx (2010) emphasize the
benefits of equidistant knots. Apart from that, it is generally questionable if the penalty
matrix K = ∆T∆ could be used directly when knots based on quantiles are considered.
In our opinion this is not only possible but also meaningful. In this case basis coefficients
are penalized equally although the corresponding basis functions are unequally spaced and
show different shapes. In ranges with lots of data differences between basis coefficients are
penalized relatively weakly whereas in ranges with only few data a stronger penalization
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can be observed. Thus, we obtain a reasonable “adaptive smoothing” in contrast to the
constant smoothing for equidistant knots.
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(a) Equidistant knots
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(b) Knots based on quantiles

Figure 6.1.: Estimation of the P-spline by the DPM-EM approach for simulated data with substantially
overlapping clusters for few individual observations (ν = 1). On the left equidistant knots are considered
for the P-spline while on the right the knots are based on quantiles. The thick line symbolizes the P-spline
while the thin lines represent the weighted B-spline basis functions γ̂sB

l
s(t).

This feature is demonstrated by an example. It should be noted that the underlying
data are based on a setting of the simulation study in the following section. Concretely,
the setting of substantially overlapping clusters with only few individual observations is
used, which will be explained in Section 6.3.1. The corresponding trace plot is shown later
in Figure 6.7 (top left). In Figure 6.1, the estimated P-spline (thick line) by the DPM-
EM model for the simulated data can be seen for equidistant knots (left) and for knots
based on quantiles (right). Here, we used m = 12 inner knots, B-spline basis functions
of degree l = 3 and a difference penalty of second order. The thin lines represent the
weighted B-spline basis functions γ̂sB

l
s(t). For equidistant knots only few B-spline basis

functions are available for fitting the strong increase of the spline in t ∈ [−0.5, 0]. For
this purpose, a comparatively high inverse smoothing parameter τ̂ 2 = 0.33 is necessary to
permit relatively high differences between the basis coefficients. But this value seems to
be too high in t ∈ [4, 12]. In contrast to equidistant knots for knots based on quantiles
the amount of smoothing has not to be the same for the whole range of the time variable.
Indeed, the inverse smoothing parameter is the same for all values of t, but it is lower
(τ̂ 2 = 0.09) than in the case of equidistant knots. The reason for this is that for knots
based on quantiles more B-spline basis functions are available in ranges with many data
as in t ∈ [−0.5, 0]. Thus, the differences between the basis coefficients can be smaller in
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these ranges corresponding to a lower inverse smoothing parameter. This yields a smoother
trend curve.

6.3. Simulation Study

In the following section, the settings and the results of a simulation study are presented
in which the prediction accuracy of random effects and of the whole individual curves is
examined. Here, we are interested in whether additive mixed models considering a DPM
as random effects distribution yield better prediction results than additive mixed models
with normally distributed random effects when the true random effects distribution is a
mixture of three normal distributions. Furthermore, the performances of the proposed EM
approach and the MCMC approach of Chapter 5 for fitting additive mixed models with
DPMs are compared.

6.3.1. Settings

More concretely, in the simulation study 100 data sets are generated. Each data set consists
of n = 20 individuals with response values simulated by

yij|bi
ind.∼ N(f(tij) + bi0 + tijbi1, σ

2), i = 1, . . . , 20, j = 1, . . . , ni,

where f(t) = 50·log(0.2 t+1)
(0.2 t+1)2

represents a nonlinear global time trend. The error variance is

fixed on σ2 = 0.25. In each simulation run different “true” random effects bi = (bi0, bi1)T

are drawn from a mixture distribution of three normal distributions

bi ∼ 0.4N(µ1,D) + 0.3N(µ2,D) + 0.3N(µ3,D), i = 1, . . . , 20,

imitating a population consisting of three clusters of overlapping subpopulations. The
covariance matrix in each cluster is given by D = diag(0.1, 0.1). However, we vary the
differences between the clusters and distinguish between three scenarios:

µ1 =

(
−4.5
1.5

)
, µ2 =

(
1.5
−1.8

)
, µ3 =

(
4.5
−0.2

)
,

corresponding to clearly separated clusters,

µ1 =

(
−1.5
0.75

)
, µ2 =

(
0.5
−0.9

)
, µ3 =

(
1.5
−0.1

)
,

corresponding to moderately separated clusters, and

µ1 =

(
−0.3
0.375

)
, µ2 =

(
0.1
−0.45

)
, µ3 =

(
0.3
−0.05

)
,

corresponding to substantially overlapping clusters.
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In addition, in each of these scenarios three different settings for the individual numbers
of observations are considered. To produce longitudinal data with varying numbers of
repeated observations per unit i, we set ni = 3 + Xi, where Xi is Poisson distributed
with rate ν. Setting ν = 1 corresponds to longitudinal data with only few individual
observations (4 on average), ν = 3 to a medium number of individual observations and
ν = 5 to comparably many individual observations. For given ni, the observation times are
generated from diverse uniform distributions U(a, b) with lower bound a and upper bound b.
For each subject i = 1, . . . , n, the first measuring point ti1 is drawn from U(−0.5, 0) while
the last measuring point is simulated by tini ∼ U(10, 12). To generate the remaining time
points, first, the medial interval [0, 10] is partitioned into ni − 2 subintervals with equal
lengths and corresponding means ζ2, . . . , ζni−1. Then, the observation times are generated
from intervals with the same mean but with bisected length: tij ∼ U(ζj − 2.5

ni−2
, ζj +

2.5
ni−2

), j = 2, . . . , ni − 1. The bisection is used to avoid huge jumps of response values at
measuring points which are very close to each other. The simulation concept is visualized in
Appendix A.9. In summary, in each simulation run s = 1, . . . , 100 we get different numbers
of observations, time points, random effects and response variables for each subject.

Combining these different settings for observations times and clusters, results in nine
different scenarios. For each of them we use additive mixed models with random slopes
and a cubic P-spline with 12 equidistant inner knots based on a difference penalty of sec-
ond order for fitting the unknown trend function f(·). However, we vary the assumption
for the random effects distribution and the estimation procedure. On the one hand, ad-
ditive mixed models with normally distributed random effects are considered, estimated
via MCMC methods (ND-MCMC) respectively the REML approach (ND-REML) as im-
plemented in BayesX (Brezger et al., 2005). On the other hand, we apply the approach
proposed in Section 6.2 with a DPM as random effects distribution estimated via EM algo-
rithm (DPM-EM) and compare it to the corresponding MCMC-approach from Chapter 5
(DPM-MCMC). In addition, based on the considerations in Section 6.2.3 for the DPM-EM
approach knots chosen as quantiles of the time variable are also considered for an adaptive
smoothing. For these five approaches the fit of individual curves as well as clustering re-
lated characteristics are compared. More concretely, in each simulation run s, we calculate
the average prediction error of all individual curves

PE(s) =
1

n

n∑
i=1

∫ 12

−0.5

(
f̂is(t)− fis(t)

)2

dt, (6.7)

with fis(t) = f(t) + b
(s)
i0 + t · b(s)

i1 and with f̂is(t) as the corresponding estimate. In the crite-
rion (6.7) the integral is approximated by the trapezoidal rule. The empirical distribution
of the average prediction errors PE(s) obtained from simulation run s = 1, . . . , 100 is then
represented through box plots. In addition, the estimated numbers of clusters are examined
for the approaches with a DPM as random effects distribution. Of course, for the mixed
models with normally distributed random effects we obtain one cluster by construction for
all simulation settings.
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6.3.2. Results

Clearly separated clusters

In Figure 6.2 (top), two examples of the trace plots in the setting of clearly separated
clusters can be seen. On the left only few individual observations are available while on
the right in the average six observations per subject are given. In both cases our DPM-EM
approach with knots chosen as quantiles of the time variable finds three clusters as it can
be seen in Figure 6.2 (below). Here, the solid lines illustrate the three cluster centers while
the dashed line represents the general time trend. Observations belonging to the same
cluster are marked with the same symbol. To each solid line the corresponding symbol is
added to visualize which cluster center belongs to which cluster.
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Figure 6.2.: Trace plots (top) and clustering by the DPM-EM approach with knots based on quantiles
(below) with clearly separated clusters for few individual observations (ν = 1) (left) and a medium number
of individual observations (ν = 3) (right).

Figure 6.3 shows that the individual curves are fitted much better by the DPM models
than by the models using normally distributed random effects. Especially the classical
additive mixed model with a normal distribution as random effects distribution using
MCMC methods (ND-MCMC) features a higher prediction error than the model using
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Figure 6.3.: Box plots of PE with clearly separated clusters for few individual observations (left), a medium
number of individual observations (middle) and many individual observations (right).

restricted maximum likelihood as inference tool (ND-REML). The performance of the DPM
models with equidistant knots (DPM-EMeq, DPM-MCMC) is quite similar, regardless of
the estimation procedure. Using knots based on quantiles (DPM-EMqu), the prediction
accuracy can even be improved.
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Figure 6.4.: Bar plots of the estimated numbers of clusters by the DPM approaches with clearly separated
clusters for few individual observations (left), a medium number of individual observations (middle) and
many individual observations (right).

The clustering related characteristics are shown in Figure 6.4. In this figure, the bar
corresponding to three clusters is highlighted by black color because in the simulation
setting three clusters are used. We get quite similar results for the three scenarios with
varying individual observations. Obviously, in the most cases three clusters are detected by
the DPM approaches. The DPM approach using MCMC methods (DPM-MCMC) tends
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to detect a bit more clusters than the DPM approaches based on the EM algorithm (DPM-
EMeq, DPM-EMqu), which show quite similar results with regard to the estimated number
of clusters.

Moderately separated clusters
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Figure 6.5.: Box plots of PE with moderately separated clusters for few individual observations (left), a
medium number of individual observations (middle) and many individual observations (right).
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Figure 6.6.: Bar plots of the estimated numbers of clusters by the DPM approaches with moderately
separated clusters for few individual observations (left), a medium number of individual observations
(middle) and many individual observations (right).

For a smaller separation of the cluster centers the DPM approaches still outperform
the classical mixed models with normally distributed random effects (Figure 6.5): Now,
the prediction accuracy is nearly the same for the classical methods ND-MCMC and ND-
REML. However, lower prediction errors can be achieved by using DPM approaches. Again,
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we obtain similar results for the both DPM approaches with equidistant knots (DPM-
MCMC, DPM-EMeq). Their prediction error can only be outperformed by the DPM-EM
approach with knots chosen as quantiles (DPM-EMqu).

In Figure 6.6, it can be seen that apparently more clusters are detected than in the
setting of clearly separated clusters: For the DPM approach using MCMC methods the
modus of the distribution for the estimated numbers of clusters is five while for the DPM-
EM approaches mostly three or four clusters are found. For few individual observations
the estimated number of clusters tends to be a bit higher.

Substantially overlapping clusters
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Figure 6.7.: Trace plots (top) and clustering by the DPM-EM approach with knots based on quantiles
(below) with substantially overlapping clusters for few individual observations (ν = 1) (left) and a medium
number of individual observations (ν = 3) (right).

In the scenario of substantially overlapping clusters we pick up the example of Sec-
tion 6.2.3 for few individual observations. See Figure 6.7 for the according trace plot (top
left) and the clustering by the DPM-EM approach with knots based on quantiles (below
left). Obviously, three clusters are detected. For the data with a medium number of
individual observations (Figure 6.7, top right) three clusters are found by our DPM-EM
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approach (below right), too. Let regard these plots in more detail. In Figure 6.7 (top
right), subject 8 (dashed line) seems to have a quite special individual curve and one could
expect that this subject forms its own cluster. However, this is just a visual effect because
no measurements are available for this subject in the time interval (−0.427, 6.636). Ac-
tually subject 8 is assigned to cluster 3 (+) together with four other individuals by the
DPM-EM approach. If one is interested in predicting response values for this subject in
the concerning interval, for this purpose cluster 3 can be used.
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Figure 6.8.: Box plots of PE with substantially overlapping clusters for few individual observations (left),
a medium number of individual observations (middle) and many individual observations (right).

With regard to the prediction accuracy we conclude the following: For substantially
overlapping clusters the prediction errors are nearly the same for the approaches using
equidistant knots regardless the assumption for the random effects distribution (Figure 6.8).
Only the prediction accuracy for the DPM-EM approach with equidistant knots is a bit
worse. The reason for that is that the estimated splines are considerably rough as it can
be seen, for example, on the left side of Figure 6.1. For the DPM-EM approach with knots
based on quantiles, however, the best performance can be observed. See Section 6.2.3 for
a discussion about the choice of knots.

According to Figure 6.9 for the DPM-EM models mostly two or three clusters are de-
tected. As expected, it is more difficult to distinguish between the clusters in the setting of
substantially overlapping clusters. However, for the DPM approach using MCMC methods
in the most cases still five clusters are found.

In summary, we conclude that the proposed DPM-EM approach improves the prediction
accuracy with regard to the fitted individual curves compared to methods that assume
normally distributed random effects. The prediction errors for the DPM approach using
MCMC methods tend to be a bit lower than these of the DPM-EM approach, when using
equidistant knots. However, the best performance in the meaning of prediction errors can
be stated for the DPM-EM approach with knots based on quantiles.
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Figure 6.9.: Bar plots of the estimated numbers of clusters by the DPM approaches with substantially
overlapping clusters for few individual observations (left), a medium number of individual observations
(middle) and many individual observations (right).

6.4. Applications

6.4.1. Theophylline

In the following, the approach introduced in Section 6.2 will be applied to the theophylline
data that were reported by Boeckmann et al. (1994). In this study, the anti-asthmatic drug
theophylline was administered orally to twelve test persons, and serum concentrations were
measured at several time points. Figure 6.10 (left) shows the concentration-time profiles
of the considered subsample. It is seen that after the drug administration the theophylline
concentration in the sample increases steeply at first, followed by a weak decrease. In
addition, the data set contains two further covariates: weight and dose. These covariates
are invariants, i.e. the dose was given on a per-weight basis: lower doses were administered
to heavy-weighted people. While Davidian and Giltinan (1995) and Pinheiro and Bates
(2000) considered a two-compartment open pharmacokinetic model, we aim to identify
clusters by using the DPM-EM model for additive mixed models. Concretely, we consider
a random slope model for the theophylline concentration in the sample concij of subject i
at measurement j

concij|bi
ind.∼ N(f(timeij)+bi0+timeijbi1+weightiβ1, σ

2), i = 1, . . . , 12, j = 1, . . . , 10.

For the nonlinear term f(time) a cubic P-spline with m = 12 inner knots based on quantiles
of the time variable is used. The basis coefficients are penalized by a difference penalty
of second order based on the decomposition (6.6). See Section 6.2 for more details about
this choice. The DPM for the random effects allows to identify clusters due to individual
deviations from the population trend. Indeed, our approach detects three clusters (Figure
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6.10, right) for the estimated concentration parameter α̂ = 0.00164. The shapes of the
trend curves of cluster 2 (4) and cluster 3 (+) seem to be alike but on different levels. In
Cluster 2 the intercept is about µ̂20 = 0.335 higher than the base level while in cluster 3 it
is about µ̂30 = −1.748 lower. The corresponding slopes tend to be a bit higher compared
to the global trend curve (µ̂21 = 0.133, µ̂31 = 0.067). Cluster 1 (#) is characterized by the
strongest decrease (µ̂11 = −0.100) after the maximum at two hours. The level of cluster 1
(µ̂10 = 0.059) resembles that of the global trend curve.
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Figure 6.10.: Theophylline concentration in the sample across time: raw data (left) and clustering by the
DPM-EM approach (right). On the right observations belonging to the same cluster are marked with the
same symbol. The dashed line represents the population effect, the solid lines symbolize the cluster effects.

standard 95%-CI
estimate error lower upper

weight 0.012 0.047 -0.098 0.047

σ2 1.226 1.557 0.605 1.557
σ2

0 0.039 0.618 0.000 0.618
σ2

1 0.003 0.014 0.000 0.014
σ01 -0.010 0.011 -0.071 0.011

Table 6.1.: Estimation results for the fixed effects and variance parameters by the DPM-EM approach for
the theophylline data.

Table 6.1 shows the estimated fixed effect and the variance parameters. The correspond-
ing standard errors and confidence intervals have been estimated by the nonparametric
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bootstrap method proposed by Efron (1979) with 1000 replications. The confidence in-
tervals are based on the bootstrap quantiles. Since the confidence interval for β1 includes
zero, the covariate weight has no general significant effect on the theophylline concen-
tration on the five percent level. However, in Figure 6.11 it is seen that the distribution
of the variable weight differs between the clusters. In cluster 2 (4) mostly lightweight
people with considerably high doses of the drug can be found. As expected, people with
lower weights and higher doses show a higher trend of the theophylline concentration in
the sample (Figure 6.10, right).

●

●
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Figure 6.11.: Distribution of the variable weight in the three clusters corresponding to the clustering by
the DPM-EM approach.

6.4.2. Childhood Obesity

As second application we reanalyze data from the LISA study. In this study the influences
of Life-style factors on the development of the Immune System and Allergies in East and
West Germany are examined for 3,097 healthy neonates born between November 1997
and January 1999 in 14 obstetrical clinics in Munich, Leipzig, Wesel, and Bad Honnef.
A detailed description of the study can be found, for example, in Chen et al. (2007)
and Zutavern et al. (2007). We are mainly interested in the longitudinal BMI profiles of
the children and aim to expose clusters in the BMI profiles over time by our DPM-EM
approach. In particular, it is of interest whether a cluster of obese children can be detected
and if so how the trajectory of this cluster can be described and which indicators can be
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found for this childhood obesity. Figure 5.7 (left) shows the development of the BMI for
twelve randomly selected children, while in Figure 5.7 (right) all measurements are drawn.
In the given data the children have been examined until the age of six by questionnaires
at birth and around the age of 2 weeks, 1, 3, 6, 12, 24, 48 and 60 months. Thus, up to 9
measurements are available. We handle missing data problems by a complete case analysis:
Following Fenske et al. (2008), children were excluded from the analysis if an observation
of a time constant covariate was missing. If only a single observation of age or BMI was
missing, only this particular observation was excluded from the analysis. Finally, 2,043
children and 17,316 observations are available.

All in all, one has to deal with a huge data set with highly nonlinear growth patterns,
long individual time series, clustered individual-specific deviations from the population
trend and irregular time points. We consider the DPM-EM model proposed in Section 6.2.
Here, a cubic P-Spline of second order with 12 inner knots based on quantiles is used to
achieve a smooth trend curve even in these ranges where almost no data are available.
To cluster the BMI trajectories, an approximate DPM as random effects distribution is
assumed. Following the argumentations in Section 6.2.2, we truncate the Dirichlet process
at N = 11. In addition, we use the same predictors as in Section 5.4. See Table 5.1 for an
overview of the categorial and continuous covariates included in the analysis. Altogether,
for the measurement j = 1, . . . , ni of subject i = 1, . . . , n we consider

BMIij|bi
ind.∼ N(sexiβ1 + breastiβ2 + mSmokeiβ3 + areaiβ4 + mBMIiβ5 + mDiffBMIiβ6 +

+ f(ageYij) + bi0 + ageYijbi1, σ
2).

Some authors like Beyerlein et al. (2008) and Mayr et al. (2012) argue that the distribution
of BMI values is typically skewed depending on the age of children. However, we assume
a symmetric distribution since Fenske et al. (2008) found out that for the given data with
measurements up to the age of six years the distributional shape of children’s BMI is rather
symmetric. Solely for the extended LISA study, where one additional measurement per
child at about the age of ten years is given, the BMI distribution becomes right-skewed at
the age of ten years (Mayr et al., 2012).

With regard to the fixed effects (Table 6.2) we obtain the same significant predictors as
in Section 5.4 and quite similar results for the estimated coefficients. The expected BMI of
the boys is somewhat larger than that of the girls if all other covariates are kept fixed. The
gender has a significant impact on the child’s BMI, since the corresponding 95% confidence
interval does not include zero. Note that the given confidence intervals are based on the
widely-used test statistic β̂r/ŝe(β̂r), whose distribution can be approximated by a standard
normal distribution. The standard errors have been estimated by the nonparametric boot-
strap method of Efron (1979) with 140 replications. They seem to be a bit higher than in
Section 5.4. Positive significant effects can also be stated for the maternal BMI and the
maternal BMI gain during pregnancy while the general effects of the covariates breast,
mSmoke and area are not significantly different from zero. However, we will see later in
this section that the impact of these covariates may depend upon the clusters.
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standard 95%-CI
estimate error lower upper

sex 0.300 0.043 0.217 0.383
breast 0.054 0.040 -0.059 0.097
mSmoke -0.019 0.059 -0.061 0.169
area 0.019 0.055 -0.128 0.090
mBMI 0.044 0.006 0.032 0.056
mDiffBMI 0.064 0.011 0.042 0.086

σ2 0.915 0.016 0.883 0.947
σ2

0 0.259 0.087 0.088 0.430
σ2

1 0.019 0.007 0.006 0.032
σ01 -0.006 0.023 -0.051 0.039

Table 6.2.: Estimation results for the fixed effects and variance parameters by the DPM-EM approach for
the LISA data.

Figure 6.12 shows that five clusters are detected by the DPM-EM model, which was
not obvious when looking at the raw data in Figure 5.7. Note that the concentration
parameter is estimated by α̂ = 0.00224. The clusters are highlighted by solid colored
lines. Observations belonging to the same cluster are marked with the same color. The
dashed black line represents the population effect. As in Section 5.4 a cluster of obese
children can be found, which is marked by the light blue color and which we call cluster 5.
The probability of this cluster and thus the probability of a child to get obese is given by
π̂5 = 0.023. Interestingly, this cluster shows a normal trajectory in the first six months.
Not till then a strong increase of the BMI is observed. In contrast, for the most children
in cluster 1 (green, π̂1 = 0.476) and 2 (orange, π̂2 = 0.401) the BMI is descending after six
months while in cluster 3 (dark blue, π̂3 = 0.056) a somewhat constant BMI profile is seen.
Due to the trajectory of cluster 4 (violet, π̂4 = 0.043) parents do not have to be worried
if their child shows plenty of baby fat and a high BMI in the first months because in the
age of six years children of the violet cluster show a normal BMI. We conclude that a high
value of BMI in the first year of one’s life is no sign for obesity.

In Figure 6.13, the random intercepts and the random slopes are drawn for all children.
In addition, the two-dimensional cluster centers µ̂1, . . . , µ̂5 are shown. In this plot it is
seen, how subjects with similar random effects are assigned to the same cluster. These
subjects are marked with the same color. Again, the light blue cluster is eye-catching since
it exhibits a considerably high slope (µ̂51 = 0.729). The intercept is a bit smaller than
that of the population: µ̂50 = −0.540. The green (µ̂1 = (−0.679, 0.049)T ), the orange
(µ̂2 = (0.472,−0.090)T ) and the dark blue cluster (µ̂3 = (1.029, 0.216)T ) are next to the
overall mean, which is highlighted by a black square at coordinates (0,0). A high intercept
(µ̂40 = 2.042) and a low slope (µ̂41 = −0.372) characterize the violet cluster. The estimated
conditional distribution of random effects in the clusters is visualized by ellipses with level
0.95. See Section 3.3.3 for more information about the construction of these ellipses.
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Figure 6.12.: Clustering of the LISA data by the DPM-EM model. Observations belonging to the same
cluster are marked with the same color. The dashed black line represents the population effect, the solid
colored lines symbolize the cluster effects.
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Figure 6.13.: Cluster locations and random effects of DPM-EM model for the LISA data: The big triangles

symbolize the cluster locations µ̂h, the small points the random effects b̂i. Subjects belonging to the same
cluster are marked with the same color. The black square at coordinates (0,0) marks the population effect.
Ellipses with level 0.95 visualize the estimated conditional distribution of random effects in the clusters.
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Figure 6.14.: Bar plots of the covariates breast (left) and area (right), each for the subjects of the extreme
cluster (on the right hand) and for the others (on the left hand) corresponding to the clustering by the
DPM-EM approach.

In the following, the impacts of the covariates breast and area are examined in more
detail. The effect of breastfeeding is discussed extensively in the literature. For example,
Arenz et al. (2004), Harder et al. (2005) and Rzehak et al. (2009) observed a slightly lower
risk of being overweight for breastfed children and so a protective effect of breastfeeding.
However, a significant effect of breastfeeding on the mean of the BMI distribution could
neither be verified in the analyzes of Beyerlein et al. (2008), who used general linear
models (McCullagh and Nelder, 1989) and generalized additive models for location, scale
and shape (Rigby and Stasinopoulos, 2005), nor in this chapter as well as in Section 5.4. In
addition, Fenske et al. (2008) and Mayr et al. (2012) considered additive quantile regression
models (Koenker, 2005) and were also unable to provide evidence of a significant effect of
breastfeeding on the upper quantiles (0.9, 0.97, 0.975) of the BMI distribution. However,
in Figure 6.14 (left) we compare the frequency of children with breast = 1, i.e. of children
that were only breastfed, in the extreme cluster 5 (light blue cluster in Figure 6.12 and
Figure 6.13) and in the subpopulation of the remaining individuals. Obviously, the majority
of the remaining children were breastfed only, while most of the children in the extreme
cluster were bottlefed or bottle- and breastfed. Thus, breastfeeding can be seen an indicator
for a normal and a lower development of the BMI. This conclusion is in agreement with the
results in Section 5.4. Similarly, the ratio of children living in an urban area (area = 1)
as compared to children living in a rural area is quite different in the two subpopulations:
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In the extreme cluster the ratio is about 2:1 while for the remaining children it is given by
circa 4:1 (Figure 6.14, right).

6.5. Summary and Discussion

In this chapter, an additive mixed model with a P-spline for the nonlinear time trend
and an approximate DPM as random effects distribution is proposed, which is estimated
by the EM algorithm. The feature of the EM algorithm of converging to fixed values
is an advantage in the context of Dirichlet processes over MCMC methods, which are
characterized by convergence to distributions. That is why the cluster property of the
Dirichlet process can be used directly. Thus, our DPM-EM algorithm is able to cluster
individuals in longitudinal data with a data driven identification of the number of clusters.
We illustrated the algorithm in detail and discussed diverse model settings. In a simulation
study it is shown that the goodness of fitted individual curves can be improved by the DPM-
EM approach compared to the Bayesian approach in Chapter 5 and to methods that use
normally distributed random effects. In addition, we showed that the DPM-EM can be
used to find clusters in the theophylline data and to the LISA data.

ACKNOWLEDGEMENTS: We thank Elisabeth Thiering and Dr. Joachim Heinrich
from the Helmholtz Zentrum Munich for providing the data of the LISA study.
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7. Conclusion and Outlook

In this thesis, different concepts of clustering individuals in longitudinal data are proposed
for linear and additive mixed models. These concepts are mainly based on a specific distri-
bution assumption for the random effects that replaces the traditional normal distribution.
More concretely, the used random effects distributions are basically mixture distributions
that aim at accounting for a possible heterogeneity in the random effects. A general discus-
sion about the reasons and consequences of this heterogeneity was given in Section 3.4.4.

One new approach, which is introduced in Chapter 3 within the framework of linear
mixed models, assumes a finite normal mixture as random effects distribution, in which
the pairwise distances of the means of these normal distributions are penalized by a group
fused lasso penalty term. We used an EM algorithm for estimating the model parameters.
An alternative approach in Chapter 4 is based on an approximate DPM as random effects
distribution and makes use of the cluster property of the Dirichlet process for finding clus-
ters of subjects. This feature is explained in Chapter 2. Again, an EM algorithm is outlined
that solves the estimation problem in linear mixed models. In particular, the embedding of
Dirichlet processes in the likelihood inference by using the EM algorithm instead of MCMC
methods to maximize a penalized log-likelihood is an innovation. The prediction accuracy
for the random effects of these approaches and two alternative methods are compared in a
simulation study (Section 4.3.3). It is shown that the proposed approaches outperform the
classical linear mixed model with normally distributed random effects and the unpenalized
heterogeneity model of Verbeke and Lesaffre (1996) in the used settings. The DPM-EM
algorithm mostly yields better results than the penalized mixture approach based on the
group fused lasso penalty term. Additionally, a lower computation time for the DPM-EM
algorithm is observed. In the application examples in Section 3.3 and Section 4.4 among
other applications the unemployment data and the lung function growth data are analyzed
by the two methods. Here, we saw that the DPM-EM approach apparently tends to detect
fewer and more homogeneous clusters. The DPM-EM approach was extended to additive
mixed models in Chapter 6. An extension of the penalized heterogeneity model with the
group fused lasso penalty to additive mixed models has not been done yet, but seems to
be realizable without further difficulties.

In Chapters 5 − 6 additive mixed models are treated. On the one hand, in Chapter 5 a
new combination of a P-spline for the nonlinear time trend and an approximate DPM for
the random effects using MCMC methods is proposed. On the other hand, in Chapter 6 the
same model is considered but with an EM algorithm as inference tool. In the simulation
study in Section 6.3 it can be seen that both DPM approaches yield lower prediction errors
for fitting individual curves than models with normally distributed random effects. Using
equidistant knots the prediction accuracy of the DPM-MCMC approach is slightly better
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than that of the DPM-EM method. We found out that knots based on quantiles can be
recommended for the DPM-EM approach (Section 6.2.3). Thereby one obtains smoother
splines and lower prediction errors. In the applications in Section 5.4 and in Section 6.4.2
the LISA study is picked up in order to examine the BMI profiles of children. While for
the DPM-MCMC method further calculations are necessary to get a clustering for the
children, the DPM-EM approach has the huge benefit that the cluster property of the
Dirichlet process is used directly. However, we observed a faster computation time for
the MCMC approach. A more interpretable clustering with fewer clusters is obtained by
the DPM-EM algorithm. Interestingly both approaches detect one extreme cluster with a
strong increase of the BMI as of the age of six months. This cluster is suitable to describe
the development of childhood obesity.

In the following, some possible generalizations of the methods proposed in this thesis
are discussed. Extensions to generalized linear or generalized additive mixed models with
a non-normal response distribution are obvious and desirable. These generalizations seem
to be realizable, in principle. However, there is need for further research.

Another interesting aspect concerning the models with Dirichlet processes would be to
compare the results of Chapters 4 − 6, which are based on the two inference procedures EM
algorithm and MCMC methods, to results based on another upcoming inference tool called
variational approximations (Blei and Jordan, 2006). These methods should also yield a
possibility to make use of the cluster property of Dirichlet processes directly. However, the
implementation of the variational approximations for DPMs in the framework of linear or
additive mixed models seems to be challenging.

A further idea for future research could be the combination of the random effects terms in
this thesis with penalty terms for the fixed effects. So, for example, Groll and Tutz (2013)
proposed a regularization approach for fixed effects in generalized linear mixed models,
which is based on the L1-penalty of Tibshirani (1996). This approach could be extended
by replacing the assumption of normally distributed random effects by an approximate
DPM or the penalized normal mixture based on the group fused lasso penalty, which were
proposed in this thesis. Certainly, alternative regularization concepts like boosting can
also be used for variable selection. See, for example, Freund and Schapire (1997) and
Bühlmann and Hothorn (2007) for background knowledge about boosting. A likelihood-
based boosting approach for generalized additive mixed models was implemented by Groll
and Tutz (2012) but with normally distributed random effects. More general random effects
distributions as proposed in this thesis could be used.

In summary, several possibilities for model-based clustering in longitudinal data are
presented in this dissertation. However, the mentioned ideas for extensions show there is
still need for further research in the future.
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A.1. Proof of the Conjugacy of the Dirichlet Process

Let the likelihood model be given by θi|G
i.i.d.∼ G, i = 1, . . . , n. As prior G ∼ DP (α, G0)

is considered. Due to the definition of the Dirichlet process in Section 2.1 the distri-
bution of G(A1), . . . , G(Am) is given by a Dirichlet distribution with parameter vector
(αG0(A1), . . . , αG0(Am))T for any measurable partition {A1, . . . , Am} of Θ. Equally, the
posterior G|θ1 . . . , θn can be identified by the distribution of G(A1), . . . , G(Am)|θ1 . . . , θn,
whose density function is deduced in the following:

p(G(A1), . . . , G(Am)|θ1, . . . , θn) ∝ p(θ1, . . . , θn|G(A1), . . . , G(Am)) p(G(A1), . . . , G(Am))

∝
n∏
i=1

p(θi|G(A1), . . . , G(Am))
m∏
j=1

G(Aj)
αG0(Aj)−1

∝
m∏
j=1

G(Aj)
nj

m∏
j=1

G(Aj)
αG0(Aj)−1

=
m∏
j=1

G(Aj)
nj+αG0(Aj)−1.

In the third line of the proof it is used that θi|G(A1), . . . , G(Am) has a multinomial dis-
tribution with probability vector (G(A1), . . . , G(Am))T . Here, nj denotes the number of
elements in the set Aj. Finally, for any measurable partition {A1, . . . , Am} of Θ one obtains

G(A1), . . . , G(Am)|θ1, . . . , θn ∼ Dir(n1 + αG0(A1), . . . , nm + αG0(Am)).

According to the definition of the Dirichlet process in Section 2.1 it follows that
G|θ1, . . . , θn ∼ DP (α∗, G∗0), which proofs the conjugacy of the Dirichlet process. One
gets the new updated parameters by standardization:

α∗ =
∑m

j=1(nj + αG0(Aj)) = n+ α,

G∗0(Aj) = 1
n+α

(nj + αG0(Aj)) = 1
n+α

(
∑n

i=1 δθi(Aj) + αG0(Aj)),

⇒ G∗0 = 1
n+α

∑n
i=1 δθi + α

n+α
G0.
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A.2. Pólya Sequence via Dirichlet Process

In the following, the properties (a) and (b) in the definition of the Pólya sequence in
Section 2.3 are verified based on the assumptions:

(i) G ∼ DP (α,G0),

(ii) θn|G
i.i.d.∼ G, n ∈ N.

Proof of property (a):

P (θ1 ∈ A) =

∫
P (θ1 ∈ A,G) dG

=

∫
P (θ1 ∈ A|G) f(G) dG

(ii)
=

∫
G(A) f(G) dG

= E(G(A))

(i)
= G0(A).

Proof of property (b):

P (θn+1 ∈ A|θ1, . . . , θn) =

∫
P (θn+1 ∈ A,G|θ1, . . . , θn) dG

=

∫
P (θn+1 ∈ A|G, θ1, . . . , θn) f(G|θ1, . . . , θn) dG

(ii)
=

∫
P (θn+1 ∈ A|G) f(G|θ1, . . . , θn) dG

(ii)
=

∫
G(A) f(G|θ1, . . . , θn) dG

= E(G(A)|θ1, . . . , θn)

(i)
=

1

n+ α

n∑
i=1

δθi(A) +
α

n+ α
G0(A).

In the last step the posterior G|θ1 . . . , θn is used, that is proved in Appendix A.1.
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A.3. Derivations in the M-step

A.3.1. Derivation of Q(α,v)

Note that Q(α,v) can be written as

Q(α,v) =
n∑
i=1

N∑
h=1

πih log

(
vh
∏
l<h

(1− vl)

)
+ (N − 1) logα + (α− 1)

N−1∑
h=1

log(1− vh)

=
n∑
i=1

N∑
h=1

πih log vh +
n∑
i=1

N∑
h=1

πih
∑
l<h

log(1− vl)︸ ︷︷ ︸
πi1+

πi2 log(1− v1)+

πi3(log(1−v1)+log(1−v2))+

. . .+

πiN (log(1− v1)+

. . .+ log(1− vN−1))

+(N − 1) logα + (α− 1)
N−1∑
h=1

log(1− vh).

Thus, one gets the following derivation for vh = 1, . . . , N − 1:

∂Q(α,v)

∂vh
=

1

vh

n∑
i=1

πih −
1

1− vh

n∑
i=1

N∑
l=h+1

πil −
α− 1

1− vh
!

= 0

⇔
∑n

i=1 πih
vh

=
α− 1 +

∑n
i=1

∑N
l=h+1 πil

1− vh

⇔
n∑
i=1

πih − vh
n∑
i=1

πih = vh

(
α− 1 +

n∑
i=1

N∑
l=h+1

πil

)

⇒ vh =

∑n
i=1 πih

α− 1 +
∑n

i=1

(
πih +

∑N
l=h+1 πil

) =

∑n
i=1 πih

α− 1 +
∑n

i=1

∑N
l=h πil

.

(A.1)

The first order condition for α is given by:

∂Q(α,v)

∂α
=
N − 1

α
+

N−1∑
h=1

log(1− vh)
!

= 0

⇒ α =
1−N∑N−1

h=1 log(1− vh)
.
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Thus, the updates for πh = 1, . . . , N are given by:

π1 = v1 =

∑n
i=1 πi1

α− 1 +
∑n

i=1

∑N
l=1 πil

=
1

α− 1 + n

n∑
i=1

πi1,

π2 = v2(1− π1) =

∑n
i=1 πi2

α− 1 +
∑n

i=1(1− πi1)

(
1−

∑n
i=1 πi1

α− 1 + n

)
=

=

∑n
i=1 πi2

α− 1 + n−
∑n

i=1 πi1

α− 1 + n−
∑n

i=1 πi1
α− 1 + n

=
1

α− 1 + n

n∑
i=1

πi2,

π3 = v3(1− π1 − π2) =

∑n
i=1 πi3

α− 1 +
∑n

i=1(1− πi1 − πi2)

α− 1 + n−
∑n

i=1 πi1 −
∑n

i=1 πi2
α− 1 + n

=

=
1

α− 1 + n

n∑
i=1

πi3,

...

πN = 1−
N−1∑
h=1

πh.

In the following it is examined in which cases updates due to (A.1) yield values vh 6= [0, 1].
Since the numerator of (A.1) is always positive, vh becomes negative if the denominator is
negative, i.e. if

α− 1 +
n∑
i=1

N∑
l=h

πil < 0

n∑
i=1

N∑
l=h

πil < 1− α. (A.2)

Note that vh > 1 if the numerator of (A.1) is higher than the denominator, i.e. if

α− 1 +
n∑
i=1

N∑
l=h

πil <

n∑
i=1

πih

n∑
i=1

(
N∑
l=h

πil − πih

)
< 1− α

n∑
i=1

N∑
l=h+1

πil < 1− α. (A.3)
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First, note that these conditions can never be fulfilled for α ≥ 1. Second, for increasing h,
condition (A.2) holds if the condition (A.3) has been fulfilled in the previous step. Thus,
in our correction approach we start with h = 1 and increase h stepwise. In each step
we update vh by (A.1) and check condition (A.3) corresponding to vh > 1. Suppose that
this condition is fulfilled for h = h∗ for the first time, i.e. the index h∗ is determined by∑n

i=1

∑N
l=h∗ πil > 1 − α and

∑n
i=1

∑N
l=h∗+1 πil < 1 − α as highlighted by grey colors in

Table A.1. Then we set vh to 1 for h = h∗, . . . , N − 1.

Cluster h
1 . . . h∗ h∗ + 1 . . . N

∑
1 π11 . . . π1h∗ π1,h∗+1 . . . π1N 1
...

...
...

...
...

...
Subject i πi1 . . . πih∗ πi,h∗+1 . . . πiN 1

...
...

...
...

...
...

n πn1 . . . πnh∗ πn,h∗+1 . . . πnN 1

Table A.1.: Matrix of probabilities πih. The index h∗ is determined by
∑n

i=1

∑N
l=h∗ πil > 1 − α and∑n

i=1

∑N
l=h∗+1 πil < 1− α.

Thus, one obtains the following weights:

πh =


1

n+α−1

∑n
i=1 πih, for h < h∗,

1−
∑h−1

l=1 πl for h = h∗,
0 for h > h∗.

A.3.2. Derivation of Q(ψ)

In the following formulas different font colors correspond to the different approaches in
the Chapters 3, 4 and 6. So black colored formulas describe the function Q(ψ) and the
particular deviations for the linear mixed models with DPMs from Chapter 4. For the
additive mixed models with DPMs from Chapter 6 the red-colored term has to be added
while the blue-colored term appears in the case of the linear mixed models based on the
group fused lasso penalty from Chapter 3.
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Q(ψ) =
n∑
i=1

N∑
h=1

πih log

(
(2π)−

ni
2 |V i|−

1
2 exp

(
−1

2
(yi −X iβ −BiTγ0 −BiWγp−

− Ziµh)
TV −1

i (yi −X iβ −BiTγ0 −BiWγp −Ziµh)
))
−

− 1

2

(
(d− k) log(2πτ 2) +

1

τ 2
γTp γp

)
− λ
√
N · q

∑
h<l

‖µh − µl‖

= −1

2

(
n∑
i=1

N∑
h=1

πih
(
ni log(2π) + log |V i|+ (yi −X iβ −BiTγ0 −BiWγp−

− Ziµh)
TV −1

i (yi −X iβ −BiTγ0 −BiWγp −Ziµh)
)

+

+ (d− k) log(2π) + (d− k) log τ 2 +
1

τ 2
γTp γp

)
− λ
√
N · q

∑
h<l

‖µh − µl‖.

The first order condition for β is given by

∂Q(ψ)

∂β
= −1

2

n∑
i=1

N∑
h=1

−2πihX
T
i V

−1
i (yi −X iβ −BiTγ0 −BiWγp −Ziµh)

!
= 0

⇔
n∑
i=1

N∑
h=1

πihX
T
i V

−1
i (yi −BiTγ0 −BiWγp −Ziµh) =

n∑
i=1

N∑
h=1

πihX
T
i V

−1
i X iβ

⇒ β =

(
n∑
i=1

XT
i V

−1
i X i

)−1( n∑
i=1

XT
i V

−1
i

(
yi −BiTγ0 −BiWγp −

N∑
h=1

πihZiµh

))
.

For the linear and additive mixed models with DPMs from Chapter 4 and Chapter 6 the
derivations of Q(ψ) with respect to µh, h = 1, . . . , N , are given by

∂Q(ψ)

∂µh
= −1

2

n∑
i=1

−2πihZ
T
i V

−1
i (yi −X iβ −BiTγ0 −BiWγp −Ziµh)

!
= 0

⇔
n∑
i=1

πihZ
T
i V

−1
i (yi −X iβ −BiTγ0 −BiWγp) =

n∑
i=1

πihZ
T
i V

−1
i Ziµh

⇒ µh =

(
n∑
i=1

πihZ
T
i V

−1
i Zi

)−1( n∑
i=1

πihZ
T
i V

−1
i

(
yi −X iβ −BiTγ0 −BiWγp

))
.

In the case of additive mixed models with DPMs further derivations for the additional
parameters γ0, γp and τ 2 are necessary. As from now we abstain from coloration.
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First, for the derivation referred to γ0 one gets

∂Q(ψ)

∂γ0

= −1

2

n∑
i=1

N∑
h=1

−2πihT
TBT

i V
−1
i (yi −X iβ −BiTγ0 −BiWγp −Ziµh)

!
= 0

⇔
n∑
i=1

N∑
h=1

πihT
TBT

i V
−1
i (yi −X iβ −BiWγp −Ziµh) =

n∑
i=1

N∑
h=1

πihT
TBT

i V
−1
i BiTγ0

⇒ γ0 =

(
n∑
i=1

T TBT
i V

−1
i BiT

)−1

(
n∑
i=1

T TBT
i V

−1
i

(
yi −X iβ −BiWγp −

N∑
h=1

πihZiµh

))
.

For the penalized spline coefficients the first order condition is given by

∂Q(ψ)

∂γp
= −1

2

(
n∑
i=1

N∑
h=1

−2πihW
TBT

i V
−1
i (yi −X iβ −BiTγ0 −BiWγp −Ziµh)+

+
2γp
τ 2

)
!

= 0 ⇔
n∑
i=1

N∑
h=1

πihW
TBT

i V
−1
i (yi −X iβ −BiTγ0 −Ziµh) =

=
n∑
i=1

N∑
h=1

πihW
TBT

i V
−1
i BiWγp +

γp
τ 2

⇒ γp =

(
n∑
i=1

W TBT
i V

−1
i BiW +

1

τ 2
Id−k

)−1

(
n∑
i=1

W TBT
i V

−1
i

(
yi −X iβ −BiTγ0 −

N∑
h=1

πihZiµh

))
.

Finally, one obtains the following derivation for τ 2:

∂Q(ψ)

∂τ 2
= −1

2

(
d− k
τ 2
− 1

τ 4
γTp γp

)
!

= 0

⇔ d− k
τ 2

=
1

τ 4
γTp γp

⇒ τ 2 =
1

d− k
γTp γp.
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A.4. Prediction of Random Effects

Proposition:

E(bi|yi) = D̂ZT
i V̂

−1

i (yi −X iβ̂) + (Iq − D̂ZT
i V̂

−1

i Zi)
N∑
h=1

π̂ihµ̂h.

Proof :
According to (4)− (8) in Lindley and Smith (1972) it follows from

y|θ1 ∼ N(A1θ1,C1),
θ1 ∼ N(A2θ2,C2),

that
E(θ1|y) = (C−1

2 +AT
1C

−1
1 A1)−1(AT

1C
−1
1 y +C−1

2 A2θ2),

holds. By defining

θ1 := bi, A1 := Zi, C1 := Σ̂i = σ̂2Ini , y := yi −X iβ̂,

θ2 := µ̂h, A2 := Iq, C2 := D̂,

and by assuming that individual i belongs to cluster h one obtains

E(bi|yi) = (D̂
−1

+ZT
i Σ̂−1

i Zi)
−1(ZT

i Σ̂−1
i (yi −X iβ̂) + D̂

−1
µ̂h)

(∗)
= (D̂ − D̂ZT

i (ZiD̂Z
T
i + Σ̂i︸ ︷︷ ︸
V̂ i

)−1ZiD̂)(ZT
i Σ̂−1

i (yi −X iβ̂) + D̂
−1
µ̂h)

= D̂ZT
i Σ̂−1

i (yi −X iβ̂)− D̂ZT
i V̂

−1

i ZiD̂Z
T
i Σ̂−1

i (yi −X iβ̂) +

+D̂D̂
−1
µ̂h − D̂ZT

i V̂
−1

i ZiD̂D̂
−1
µ̂h

= D̂ZT
i (Ini − V̂

−1

i ZiD̂Z
T
i )̂Σ−1

i (yi −X iβ̂) + (Iq − D̂ZT
i V̂

−1

i Zi)µ̂h

= D̂ZT
i (V̂

−1

i V̂ i − V̂
−1

i ZiD̂Z
T
i )̂Σ−1

i (yi −X iβ̂) + (Iq − D̂ZT
i V̂

−1

i Zi)µ̂h

= D̂ZT
i V̂

−1

i (ZiD̂Z
T
i + Σ̂i −ZiD̂Z

T
i )̂Σ−1

i (yi −X iβ̂) + (Iq − D̂ZT
i V̂

−1

i Zi)µ̂h

= D̂ZT
i V̂

−1

i (yi −X iβ̂) + (Iq − D̂ZT
i V̂

−1

i Zi)µ̂h.

Note that in (∗) the matrix lemma (10) in Lindley and Smith (1972) with A1 := ZT
i ,

C1 := D̂
−1

and C2 := Σ̂−1
i is used.

Thus, without knowing the cluster membership one obtains

E(bi|yi) = D̂ZT
i V̂

−1

i (yi −X iβ̂) + (Iq − D̂ZT
i V̂

−1

i Zi)
N∑
h=1

π̂ihµ̂h.
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A.5. Standardization

In general, it is reasonable to standardize the variables before the calculations so that the
results are independent from the particular scales. This raises the question how to trans-
form the estimated parameters ξ̃ for the standardized data to parameters ξ̂ corresponding
to the original data. These transformations are given in the following. Note that in con-
trast to the notation in the Chapters 3 and 4 in this section the parameter vector β does
not include the intercept β0.

For the linear mixed models in the Chapters 3 and 4 the following transformations are
used:

β̂ = Rβ̃,

b̂i = Sb̃i, i = 1, . . . , n,
µ̂h = Sµ̃h, h = 1, . . . , N,

D̂ = SD̃ST ,
σ̂2 = s2

yσ̃
2,

(A.4)

with

R =


sy
sx1

0 . . . 0

0 sy
sx2

. . . 0
...

. . .
...

0 0 . . . sy
sxp

 , S =


sy −t̄ syst . . . −t̄q sy

stq

0 sy
st

. . . 0
...

...
. . .

...
0 0 . . . sy

stq

 .

The intercept is transformed by

β̂0 = β̃0sy + ȳ − x̄1
sy
sx1

β̃1 − . . .− x̄p
sy
sxp

β̃p.

Here, x̄1 and sx1 , for example, denote the mean respectively the standard deviation of the
covariate x1. As illustration of the transformations for the fixed and the random effects we
consider the observation yij for the special case p = 2 and q = 2. For a clearer notation
the indices i and j are omitted:

(
y − ȳ
sy

)
= β̃0 +

(
x1 − x̄1

sx1

)
β̃1 +

(
x2 − x̄2

sx2

)
β̃2 + b̃i0 +

(
t− t̄
st

)
b̃i1 +

(
t2 − t̄2
st2

)
b̃i2

y = β̃0sy + ȳ − x̄1
sy
sx1

β̃1 − x̄2
sy
sx2

β̃2︸ ︷︷ ︸
β̂0

+x1
sy
sx1

β̃1︸ ︷︷ ︸
β̂1

+x2
sy
sx2

β̃2︸ ︷︷ ︸
β̂2

+

+ b̃i0sy − t̄
sy
st
b̃i1 − t̄2

sy
st2
b̃i2︸ ︷︷ ︸

b̂i0

+t
sy
st
b̃i1︸ ︷︷ ︸
b̂i1

+t2
sy
st2
b̃i2︸ ︷︷ ︸

b̂i2

.
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For the means µ̂1, . . . , µ̂N of the random effects the same transformations are used as for
the random effects itself. The transformations of the variance parameters follow from usual
calculation rules.

For the additive mixed model in Chapter 6 we get the same transformations as in (A.4),
but instead of the intercept β0 the spline coefficients have to be updated:

γ̂j = γ̃jsy + ȳ − x̄1
sy
sx1

β̃1 − . . .− x̄p
sy
sxp

β̃p, j = 1, . . . , d.

Again, this is visualized for the special case p = 2 and q = 2:

(
y − ȳ
sy

)
=

d∑
j=1

Bj

(
t− t̄
st

)
γ̃j +

(
x1 − x̄1

sx1

)
β̃1 +

(
x2 − x̄2

sx2

)
β̃2+

+ b̃i0 +

(
t− t̄
st

)
b̃i1 +

(
t2 − t̄2
st2

)
b̃i2

y =
d∑
j=1

Bj(t)

(
γ̃jsy + ȳ − x̄1

sy
sx1

β̃1 − x̄2
sy
sx2

β̃2

)
︸ ︷︷ ︸

γ̂j

+x1
sy
sx1

β̃1︸ ︷︷ ︸
β̂1

+x2
sy
sx2

β̃2︸ ︷︷ ︸
β̂2

+

+ b̃i0sy − t̄
sy
st
b̃i1 − t̄2

sy
st2
b̃i2︸ ︷︷ ︸

b̂i0

+t
sy
st
b̃i1︸ ︷︷ ︸
b̂i1

+t2
sy
st2
b̃i2︸ ︷︷ ︸

b̂i2

.

Here, it is used that Bj

(
t−t̄
st

)
= Bj(t) is fulfilled if the number and the positioning of knots

are the same for the original variable t and the standardized one.

A.6. Predictive Cross-Validation

In what follows, the notation of Section 3.2.2 is used. In analogue to Braun et al. (2012), we
consider the joint distribution of zTijbi and yi,−j = X i,−jβ +Zi,−jbi + εi,−j. If it is known
that subject i belongs to cluster h, i.e. wih = 1, one obtains bi|wih = 1 ∼ N(µh,D).
In addition, a multivariate normal distribution for the error variable is assumed: εi ∼
N(0, σ2Ini). Thus, the joint distribution of zTijbi and yi,−j under the condition wih = 1 is
also a multivariate normal distribution, in which the mean is composed by

E(zTijbi|wih = 1) = zTijE(bi|wih = 1) = zTijµh,

E(yi,−j|wih = 1) = E(X i,−jβ +Zi,−jbi + εi,−j|wih = 1) = X i,−jβ +Zi,−jµh.
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Due to the mutual independence of bi and εi,−j the covariances are given by

Cov(zTijbi, z
T
ijbi|wih = 1) = Cov(zTijbi|wih = 1) = zTij Cov(bi|wih = 1)zij = zTijDzij,

Cov(yi,−j,yi,−j|wih = 1)

= Cov(X i,−jβ +Zi,−jbi + εi,−j,X i,−jβ +Zi,−jbi + εi,−j|wih = 1)

= Cov(εi,−j) + Cov(Zi,−jbi|wih = 1) = σ2Ini−1 +Zi,−jDZ
T
i,−j,

Cov(zTijbi,yi,−j|wih = 1) = Cov(zTijbi,X i,−jβ +Zi,−jbi + εi,−j|wih = 1)

= Cov(zTijbi,Zi,−jbi|wih = 1) = zTijDZ
T
i,−j,

Cov(yi,−j, z
T
ijbi|wih = 1) = Cov(X i,−jβ +Zi,−jbi + εi,−j, z

T
ijbi|wih = 1)

= Cov(Zi,−jbi, z
T
ijbi|wih = 1) = Zi,−jDzij.

In summary, the joint distribution of zTijbi and yi,−j conditional on wih = 1 is given by

(
zTijbi
yi,−j

) ∣∣∣∣wih = 1 ∼

∼ N

((
zTijµh

X i,−jβ +Zi,−jµh

)
,

(
zTijDzij zTijDZ

T
i,−j

Zi,−jDzij σ2Ini−1 +Zi,−jDZ
T
i,−j

))
.

Using standard properties of the multivariate normal distribution, the conditional distri-
bution of zTijbi|yi,−j, wih = 1 is a normal distribution with the moments

E(zTijbi|yi,−j, wih = 1) = zTijµh + zTijDZ
T
i,−j
(
σ2Ini−1 +Zi,−jDZ

T
i,−j
)−1

· (yi,−j −X i,−jβ −Zi,−jµh),

Var(zTijbi|yi,−j, wih = 1) = zTijDzij − zTijDZT
i,−j
(
σ2Ini−1 +Zi,−jDZ

T
i,−j
)−1

Zi,−jDzij.

Thus, the moments of the predictive distribution yij|yi,−j, wih = 1 with yij = xTijβ+zTijbi+
εij are given by

E(yij|yi,−j, wih = 1) = xTijβ + zTijµh + zTijDZ
T
i,−j
(
σ2Ini−1 +Zi,−jDZ

T
i,−j
)−1

· (yi,−j −X i,−jβ −Zi,−jµh),

Var(yij|yi,−j, wih = 1) = zTijDzij − zTijDZT
i,−j
(
σ2Ini−1 +Zi,−jDZ

T
i,−j
)−1

Zi,−jDzij + σ2.
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A.7. Proof of Full Conditionals

In the following all full conditionals for the block Gibbs sampler in Section 5.2.3 are derived.
Large parts of these derivations can also be found in Heinzl (2009). In general, in the
framework of a block Gibbs sampler an unknown parameter vector ξ is partitioned into
ξ = (ξ1, . . . , ξS)T . For updating ξs, s = 1, . . . , S, in the MCMC algorithm as proposal
density the full conditional density is used − conditional on all the other parameters
ξ−s = (ξ1, . . . , ξs−1, ξs+1, . . . , ξS)T . Each full conditional is proportional to the posterior
distribution:

p(ξs|ξ−s,y) =
p(ξ|y)

p(ξ−s|y)
∝ p(ξ|y) ∝ p(y|ξ) p(ξ).

However, for updating ξs only the ξs including terms in the product of likelihood and prior
are necessary. For the additive mixed model with DPM prior in Chapter 5 the likelihood
is given by

p(y|β,γ, b, σ2) =
n∏
i=1

f(yi|β,γ, bi, σ2)

=
n∏
i=1

1

(2πσ2)0.5ni
exp

(
− 1

2σ2
ỹTi ỹi

)

∝ 1

(σ2)0.5nd
exp

(
− 1

2σ2

n∑
i=1

ỹTi ỹi

)
,

with ỹi := yi −Xiβ +Biγ +Zibi. Here, the number of all measurements is given by nd.
For a clearer notation in the following ỹi denotes the relative working response as given in
Section 5.2.3.

Error Variance

Prior:

p(σ2) ∝ 1

(σ2)aε+1
exp

(
− bε
σ2

)
.

Full conditional:

p(σ2|β,γ, b,y) ∝ p(y|β,γ, b, σ2) p(σ2)

∝ 1

(σ2)0.5nd
exp

(
− 1

2σ2

n∑
i=1

ỹTi ỹi

)
1

(σ2)aε+1
exp

(
− bε
σ2

)

=
1

(σ2)aε+0.5nd+1
exp

(
− 1

σ2

(
bε +

1

2

n∑
i=1

ỹTi ỹi

))
.
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Parameters of the P-spline

Priors:

p(γ|τ 2) ∝ 1

(τ 2)0.5 (d−k)
exp

(
− 1

2τ 2
γTKγ

)
,

p(τ 2) ∝ 1

(τ 2)aγ+1
exp

(
− bγ
τ 2

)
.

Full conditionals:

p(γ|τ 2,β, b,y, σ2) ∝ p(y|β,γ, b, σ2) p(γ|τ 2)

∝ exp

(
− 1

2σ2

n∑
i=1

(ỹi −Biγ)T (ỹi −Biγ)

)
exp

(
− 1

2τ 2
γTKγ

)

∝ exp

(
− 1

2σ2

n∑
i=1

(γ
T

B
T

i Biγ − 2γ
T

B
T

i ỹi)

)
exp

(
− 1

2τ 2
γ
T

Kγ

)

= exp

(
−1

2

(
γ
T

(
1

τ 2
K +

1

σ2

n∑
i=1

B
T

i Bi

)
γ − 2γ

T

(
1

σ2

n∑
i=1

B
T

i ỹi

)))

= exp

−1

2

γT
(

1

τ 2
K +

1

σ2
BTB

)
︸ ︷︷ ︸

=:Σ∗γ
−1

γ − 2γ
T

(
1

σ2
B

T

ỹ

)


= exp

−1

2

γTΣ∗γ
−1γ − 2γ

T

Σ∗γ
−1 Σ∗γ

(
1

σ2
B

T

ỹ

)
︸ ︷︷ ︸

=:µ∗γ


 .

p(τ 2|γ) ∝ p(γ|τ 2) p(τ 2)

∝ 1

(τ 2)0.5 (d−k)
exp

(
− 1

2τ 2
γTKγ

)
1

(τ 2)aγ+1
exp

(
− bγ
τ 2

)
=

1

(τ 2)aγ+0.5 (d−k)+1
exp

(
− 1

τ 2
(bγ + 0.5γTKγ)

)
.
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Parameters of the Fixed Effects Part

Priors:

p(β|µβ,Σβ) ∝ |Σβ|−
1
2 exp

(
−1

2
(β − µβ)TΣ−1

β (β − µβ)

)
,

p(σ2
βr) ∝

1

(σ2
βr

)aβ+1
exp

(
− bβ
σ2
βr

)
,

p(µβr) ∝ exp

(
− 1

2s2
βr

(µβr −mβr)
2

)
.

Full conditionals:

p(β|µβ,Σβ,γ, b,y, σ
2) ∝ p(y|β,γ, b, σ2) p(β|µβ,Σβ)

∝ exp

(
− 1

2σ2

n∑
i=1

(ỹi −Xiβ)T (ỹi −Xiβ)

)
exp

(
−1

2
(β − µβ)TΣ−1

β (β − µβ)

)

∝ exp

(
− 1

2σ2

n∑
i=1

(β
T

X
T

i Xiβ − 2β
T

X
T

i ỹi)

)
exp

(
−1

2
(β

T

Σ−1
β β − 2β

T

Σ−1
β µβ)

)

= exp

(
−1

2

(
β
T

(
Σ−1
β +

1

σ2

n∑
i=1

X
T

i Xi

)
β − 2β

T

(
Σ−1
β µβ +

1

σ2

n∑
i=1

X
T

i ỹi

)))

= exp

−1

2

βT
(

Σ−1
β +

1

σ2
XTX

)
︸ ︷︷ ︸

=:Σ∗β
−1

β − 2β
T

(
Σ−1
β µβ +

1

σ2
X

T

ỹ

)


= exp

−1

2

βTΣ∗β
−1β − 2β

T

Σ∗β
−1 Σ∗β

(
Σ−1
β µβ +

1

σ2
X

T

ỹ

)
︸ ︷︷ ︸

=:µ∗β


 .

p(σ2
βr |µβr, βr) ∝ p(βr|µβr, σ2

βr) p(σ
2
βr)

∝ 1

(σ2
βr

)0.5
exp

(
− 1

2σ2
βr

(βr − µβr)2

)
1

(σ2
βr

)aβ+1
exp

(
− bβ
σ2
βr

)

=
1

(σ2
βr

)aβ+0.5+1
exp

(
− 1

σ2
βr

(
bβ +

1

2
(βr − µβr)2

))
.
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p(µβr|σ2
βr
, βr) ∝ p(βr|µβr, σ2

βr
) p(µβr)

∝ exp

(
− 1

2σ2
βr

(βr − µβr)2

)
exp

(
− 1

2s2
βr

(µβr −mβr)
2

)

= exp

(
−1

2

(
1

σ2
βr

β2
r − 2

1

σ2
βr

βrµβr +
1

σ2
βr

µ2
βr +

1

s2
βr

µ2
βr − 2

1

s2
βr

µβrmβr +
1

s2
βr

m2
βr

))

∝ exp

(
−1

2

(
µ2
βr

(
1

σ2
βr

+
1

s2
βr

)
− 2µβr

(
βr
σ2
βr

+
mβr

s2
βr

)))

= exp

− 1

2
(

1
σ2
βr

+ 1
s2βr

)−1

µ2
βr − 2µβr

(
1

σ2
βr

+
1

s2
βr

)−1(
βr
σ2
βr

+
mβr

s2
βr

)
 .

Parameters of the Random Effects Part

Priors:

p(bi|θi,D) ∝ |D|−
1
2 exp

(
−1

2
(bi − θi)TD−1(bi − θi)

)
,

p(σ2
br) ∝

1

(σ2
br

)ab+1
exp

(
− bb
σ2
br

)
,

p(θi|µ0,Σ0) ∝ |Σ0|−
1
2 exp

(
−1

2
(θi − µ0)TΣ−1

0 (θi − µ0)

)
,

p(µh|µ0,Σ0) ∝ |Σ0|−
1
2 exp

(
−1

2
(µh − µ0)TΣ−1

0 (µh − µ0)

)
,

p(µ0r) ∝ exp

(
− 1

2s2
0r

(µ0r −m0r)
2

)
,

p(σ2
0r) ∝

1

(σ2
0r)

a0+1
exp

(
− b0

σ2
0r

)
,

p(α) ∝ αaα−1 exp(−bαα) (gamma prior version),

α ∼
∑
ω∈Ω

P (α = ω)δω (discrete prior version).
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Further distributions:

p(c|v) = p(n1, . . . , nN |v) ∝
N∏
h=1

πnhh =
N∏
h=1

(
vh

h−1∏
l=1

(1− vl)

)nh

=
N∏
h=1

vnhh ·
N∏
h=1

h−1∏
l=1

(1− vl)nh =
N−1∏
h=1

vnhh ·
N−1∏
h=1

N∏
l=h+1

(1− vh)nl

=
N−1∏
h=1

vnhh ·
N−1∏
h=1

(1− vh)
∑N
l=h+1 nl ,

p(v|α) =
N−1∏
h=1

p(vh|α) =
N−1∏
h=1

1

B(1, α)
(1− vh)α−1 =

N−1∏
h=1

Γ(1 + α)

Γ(1)Γ(α)
(1− vh)α−1

=
N−1∏
h=1

α(1− vh)α−1 = αN−1

N−1∏
h=1

(1− vh)α−1

= exp

(
log

(
αN−1

N−1∏
h=1

(1− vh)α−1

))

= exp

(
logαN−1 +

N−1∑
h=1

log(1− vh)α−1

)

= exp

(
(N − 1) · logα + (α− 1) ·

N−1∑
h=1

log(1− vh)

)
.

Full conditionals:

p(bi|θi,D,γ,β,y, σ2) ∝ p(yi|β,γ, bi, σ2) p(bi|θi,D)

∝ exp

(
− 1

2σ2
(ỹi −Zibi)

T (ỹi −Zibi)

)
exp

(
−1

2
(bi − θi)TD−1(bi − θi)

)
∝ exp

(
− 1

2σ2
(b

T

i Z
T

i Zibi − 2b
T

i Z
T

i ỹi)

)
exp

(
−1

2
(b

T

i D
−1bi − 2b

T

i D
−1θi)

)

= exp

−1

2

bTi
(
D−1 +

1

σ2
Z

T

i Zi

)
︸ ︷︷ ︸

=:D∗i
−1

bi − 2b
T

i

(
D−1θi +

1

σ2
Z

T

i ỹi

)


= exp

−1

2

bTi D∗i−1bi − 2b
T

i D
∗
i
−1D∗i

(
D−1θi +

1

σ2
Z

T

i ỹi

)
︸ ︷︷ ︸

=:θ∗i


 .
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p(σ2
br |θ, b) ∝

(
n∏
i=1

p(bir|θir, σ2
br)

)
p(σ2

br)

∝ 1

(σ2
br

)0.5n
exp

(
− 1

2σ2
br

n∑
i=1

(bir − θir)2

)
1

(σ2
br

)ab+1
exp

(
− bb
σ2
br

)

=
1

(σ2
br

)ab+0.5n+1
exp

(
− 1

σ2
br

(
bb +

1

2

n∑
i=1

(bir − θir)2

))
.

p(µhr|σ2
br
, µ0r, σ

2
0r , b, c) ∝

(∏
i:ci=h

p(bir|µhr, σ2
br

)
)
p(µhr)

∝ exp

(
− 1

2σ2
br

∑
i:ci=h

(bir − µhr)2

)
exp

(
− 1

2σ2
0r

(µhr − µ0r)
2

)
∝ exp

(
− 1

2σ2
br

nh(b̄r,h − µhr)2

)
exp

(
− 1

2σ2
0r

(µhr − µ0r)
2

)
= exp

(
−1

2

(
nh
σ2
br

b̄2
r,h − 2

nh
σ2
br

b̄r,hµhr +
nh
σ2
br

µ2
hr +

1

σ2
0r

µ2
hr − 2

1

σ2
0r

µhrµ0r +
1

σ2
0r

µ2
0r

))
∝ exp

(
−1

2

(
µ2
hr

(
nh
σ2
br

+
1

σ2
0r

)
− 2µhr

(
nh
σ2
br

b̄r,h +
µ0r

σ2
0r

)))

= exp

− 1

2
(
nh
σ2
br

+ 1
σ2
0r

)−1

(
µ2
hr − 2µhr

(
nh
σ2
br

+
1

σ2
0r

)−1(
nh
σ2
br

b̄r,h +
µ0r

σ2
0r

)) .

p(µ0r|σ2
0r ,θ) ∝

(∏n
i=1 p(θir|µ0r, σ

2
0r)
)
p(µ0r)

∝ exp

(
− 1

2σ2
0r

n∑
i=1

(θir − µ0r)
2

)
exp

(
− 1

2s2
0r

(µ0r −m0r)
2

)
∝ exp

(
− 1

2σ2
0r

n(θ̄r − µ0r)
2

)
exp

(
− 1

2s2
0r

(µ0r −m0r)
2

)
= exp

(
−1

2

(
n

σ2
0r

θ̄2
r − 2

n

σ2
0r

θ̄rµ0r +
n

σ2
0r

µ2
0r +

1

s2
0r

µ2
0r − 2

1

s2
0r

µ0rm0r +
1

s2
0r

m2
0r

))
∝ exp

(
−1

2

(
µ2

0r

(
n

σ2
0r

+
1

s2
0r

)
− 2µ0r

(
n

σ2
0r

θ̄r +
m0r

s2
0r

)))

= exp

− 1

2
(

n
σ2
0r

+ 1
s20r

)−1

(
µ2

0r − 2µ0r

(
n

σ2
0r

+
1

s2
0r

)−1(
n

σ2
0r

θ̄r +
m0r

s2
0r

)) .
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p(σ2
0r |µ0r,θ) ∝

(
n∏
i=1

p(θir|µ0r, σ
2
0r)

)
p(σ2

0r)

∝ 1

(σ2
0r)

0.5n
exp

(
− 1

2σ2
0r

n∑
i=1

(θir − µ0r)
2

)
1

(σ2
0r)

a0+1
exp

(
− b0

σ2
0r

)

=
1

(σ2
0r)

a0+0.5n+1
exp

(
− 1

σ2
0r

(
b0 +

1

2

n∑
i=1

(θir − µ0r)
2

))
.

p(α|v) ∝ p(v|α) p(α) (gamma prior version)

∝
N−1∏
h=1

α(1− vh)α−1αaα−1 exp(−bαα)

∝ αN−1+aα−1 exp

(
log

(
N−1∏
h=1

(1− vh)α
))

exp (−bαα)

= αN−1+aα−1 exp

(
N−1∑
h=1

α log(1− vh)− bαα

)

= αN−1+aα−1 exp

(
−α

(
bα −

N−1∑
h=1

log(1− vh)

))
.

P (α = ω|v) ∝ p(v|α) · P (α = ω) (discrete prior version)

= exp

(
(N − 1) · logω + (ω − 1) ·

N−1∑
h=1

log(1− vh)

)
· P (α = ω).

P (ci = h|v,µ, bi,D) ∝ p(bi|µh,D)πh ∝ |D|−
1
2 exp

(
−1

2
(bi − µh)TD−1(bi − µh)

)
πh.

p(v|c, α) ∝ p(c|v) p(v|α)

∝
N−1∏
h=1

vnhh (1− vh)
∑N
l=h+1 nl

N−1∏
h=1

(1− vh)α−1

∝
N−1∏
h=1

vnhh (1− vh)α+
∑N
l=h+1 nl−1.
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A.8. Reparametrization of the P-spline

The following section is based on Tutz (2012). Using the notation of Section 6.2.1 the basis
coefficients vector γ could be separated into an unpenalized vector γ0 and a penalized
vector γp by considering γ = Tγ0 +Wγp if the conditions

(i) T TK = 0,

(ii) W TKW = Id−k,

are fulfilled. Then the penalty term can be transformed into one that is known from mixed
models with normally distributed random effects:

γTKγ = (Tγ0 +Wγp)
TK(Tγ0 +Wγp)

= γT0 T
TK︸ ︷︷ ︸
0

Tγ0 + 2γT0 T
TK︸ ︷︷ ︸
0

Wγp + γTp W
TKW︸ ︷︷ ︸
Id−k

γp = γTp γp.

The conditions (i) and (ii) are fulfilled for T = Γ0 and W = ΓpΩ
− 1

2
p :

T TK = ΓT
0K = ΓT

0 Γp︸ ︷︷ ︸
0

ΩpΓ
T
p = 0,

W TKW = Ω
−T

2
p ΓT

p Γp︸ ︷︷ ︸
Id−k

Ωp ΓT
p Γp︸ ︷︷ ︸
Id−k

Ω
− 1

2
p = Ω

−T
2

p Ω
T
2
p︸ ︷︷ ︸

Id−k

Ω
1
2
pΩ
− 1

2
p︸ ︷︷ ︸

Id−k

= Id−k.

If the penalty matrix is given by K = ∆T∆ the conditions (i) and (ii) are also fulfilled for
the choice given in 6.6. Then one becomes:

T TK = T T∆T︸ ︷︷ ︸
0

∆ = 0,

W TKW = ((∆∆T )−1)T∆∆T︸ ︷︷ ︸
Id−k

∆∆T (∆∆T )−1︸ ︷︷ ︸
Id−k

= Id−k.
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A.9. Simulation of Observation Times

In the following the concept for the simulation of observation times in Section 6.3 is visual-
ized. As an example we assume ni = 6. See Figure A.1 for an illustration of the underlying
intervals.

interval 1

interval 2 interval 3 interval 4 interval 5

interval 6

0 2.5 5 7.5 10 12ζ2 ζ3 ζ4 ζ5

step length

Figure A.1.: The observation times ti1, . . . , ti6 are drawn from uniform distributions on the grey intervals.

In this case the step length is given by

10
ni−2

4
=

2.5

ni − 2
= 0.625.
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