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Zusammenfassung 
 

Die Gattung „Tilapia“, Teil der Familie der Buntbarsche (Teleostei: Perciformes: 

Cichlidae), ist sowohl von wirtschaftlicher als auch wissenschaftlicher Bedeutung: Für die 

afrikanische Binnenfischerei, die weltweite Aquakultur, den Natur- und Artenschutz und im 

besonderem Maße für die Evolutionsbiologie (Evolution im Zeitraffer). Trotz der enormen 

Bedeutung der Gattung „Tilapia“, herrschte sowohl in der Systematik als auch in der 

Taxonomie große Unklarheit. Mit der vorliegenden Gattungsrevision der substratbrütenden 

Tilapien (Tilapia Smith, 1840 und verwandte Arten) wurde auf der Basis molekularer und neu 

etablierter morphologischer und morphometrischer Merkmale ein Beitrag zur Systematik und 

Taxonomie der bis dahin paraphyletischen Gruppe geleistet. Die Gattungsrevision bezieht 

die nahe verwandten Gattungen Chilochromis, Gobiocichla und Steatocranus mit ein und 

behandelt exemplarisch die extrem artenreiche ostafrikanische Radiation mit weit über 1000 

Arten, die phylogenetisch einen Teil der Tilapien darstellt. 

Als Basis zur Untersuchung einzelner Individuen wurden im Vorfeld 25 

morphologische und elf morphometrische Merkmale definiert und etabliert. Im Rahmen der 

Dissertation wurden mit diesen neuen Merkmalen 1173 Individuen vermessen. Diese 

stammten von mehreren Sammelreisen (Demokratische Republik Kongo, Ägypten und 

Südafrika) und Museumsaufenthalten (Musée Royal de l'Afrique Centrale, Tervuren, Belgien 

(MRAC), Natural History Museum, London (BMNH) und Muséum National d’Histoire 

Naturelle, Paris (MNHN)). Durch die große Anzahl vermessener Individuen und dem 

taxonomisch vollständig verfügbar gewordenen Datensatz wurde es möglich, „Tilapia“ 

umfassend neu zu bearbeiten. Während den laufenden Arbeiten hat sich gezeigt, dass 

ganze Artkomplexe und unbeschriebene Arten im Museumsmaterial enthalten waren. 

Deswegen wurde damit begonnen die neuen Arten zu beschreiben bzw. einzuordnen. Diese 

alpha-taxonomischen Arbeiten dienten dazu, die methodische Vielfalt und die Menge des 

erfassten Vergleichsmaterials zu dokumentieren, um in anschließenden Untersuchungen 

darauf Bezug nehmen zu können und resultierte sowohl in der Neubeschreibung von sechs 

Arten und drei Gattungen, als auch der Revision von drei Arten und drei Gattungen.  

Des Weiteren wurde auf molekularer Ebene eine Detailausarbeitung der Phylogenie 

von Schwarzer et al. 2009 durch Einbeziehen möglichst aller tilapiinen Arttaxa durchgeführt. 

Die überarbeitete phylogenetische Hypothese, basierend auf vier mitochondrialen und fünf 

nukleären Loci von 94 Taxa, stellt die erste umfassende Phylogenie der basalen 

Haplotilapiines dar. Anhand dieser wurden 22 diskrete Linien (Tribus) identifiziert, welche mit 

einer weitaus artenreicheren phylogenetischen Hypothese (784 Taxa), basierend auf dem 

mitochondrialen Locus ND2, bestätigt wurden und in allen weiteren phylogenetischen 

Untersuchungen gut unterstützt wurden. Von diesen 22 diskreten Linien waren neun 
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unbeschrieben und wurden auf Basis eindeutiger diagnostischer, molekularer und 

morphologischer Merkmale definiert.  

 Die Kombination der alpha-taxonomischen Arbeiten und der umfassenden 

phylogenetischen Hypothese stellt die Basis für eine neue Klassifikation der 

substratbrütenden Tilapien (Tilapia Smith, 1840 und verwandte Arten) dar. 
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Summary 
 

The genus “Tilapia”, which is part of the Cichlidae family (Teleostei: Perciformes: 

Cichlidae), is an important genus in African freshwater fishing and worldwide aquaculture. 

Knowledge on its correct classification and its taxonomy are vital for the nature and species 

conservation and for the clarification of evolutionary processes. However, the former 

classification of the genus is doubtful. The present genus level revision of the substrate 

brooding “Tilapia” (Tilapia Smith, 1840 and related taxa) based on molecular, morphological 

and morphometric characteristics contributes to the current classification and taxonomy of 

this formerly paraphyletic genus. The genus level revision involves the closely related genera 

Chilochromis, Gobiocichla and Steatocranus. It also includes the extremely species-rich East 

African radiation, which is only exemplified with selected taxa (e.g. Boulengerochromis), due 

to the fact that the radiation is nested within the “Tilapia” phylogeny.  

 In the beginning a set of 25 morphological and eleven meristical characteristics were 

defined and established. In the context of this thesis, 1173 specimen (including all available 

types) were measured with the previously mentioned set of established characteristics. 

Examined specimen were either deposited in museum collections (e.g. Musée Royal de 

l'Afrique Centrale, Tervuren, Belgium (MRAC), the Natural History Museum, London (BMNH) 

or the Muséum National d’Histoire Naturelle, Paris (MNHN)) or collected in the field 

(Democratic Republic of the Congo, South Africa, Egypt). The comprehensive processing of 

“Tilapia” was possible due to the large number of specimen and the taxonomical 

completeness of the dataset. Even during the initial steps it became obvious that many 

undescribed species and species complexes were contained in the museum material. Prior 

species descriptions and species flock descriptions were therefore necessary. This alpha-

taxonomic approach also conduced to document the methodical diversity and the quantity of 

examined specimen, with respect to subsequent studies. It resulted in the description of six 

species and three genera as well as the revision of three species and three genera.  

 Furthermore a detailed revision of the phylogenetic hypothesis of Schwarzer et al. 

(2009) with a further extended multilocus dataset, (four mtDNA and five ncDNA loci) 

comprising almost all previously missing haplotilapiine cichlid tribes, was conducted. This 

comprehensive phylogenetic hypothesis identified 22 discrete lineages and consistently 

recovered haplotilapiine phylogenetic lineages (tribus) which are recovered or at least do not 

contradict the analyses. We restrict the re-classification to non East African radiation 

haplotilapiine clades, although all tribus definitions (Trewavas 1983; Poll 1986; Takahashi 

2003) previously proposed were considered when defining new tribes. All nine novel discrete 

phylogenetic haplotilapiine lineages are supported by molecular and morphological 

autapomorphies. 
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 The combination of the alpha-taxonomic approaches and the comprehensive 

phylogenetic hypothesis represents the basis for the new classification of substrate brooding 

“Tilapia” (Tilapia Smith, 1840 and related species). 
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1. General introduction  
 

1.1. The family Cichlidae 
 

The family Cichlidae (cichlids) represents the most species-rich family of vertebrates 

(Kocher 2004). This family belongs to the order Perciformes in the infraclass Teleostei (bony 

fishes) in the class Actinopterygii (ray-finned fishes) (Nelson 2006). Latest findings of 

Wainwright et al. (2012) strongly support the hypothesis of a sister group relationship of 

Cichlidae and the strict marine Pholidichthyidae (convict blennies). Cichlidae contain 

brackish as well as freshwater perciform fishes. They currently hold 1627 valid species 

(Eschmeyer & Fong 2012), but may count up to 3000 species (Kocher 2004), distributed 

throughout the Neotropics, Africa, the Middle East, Madagascar, as well as Southern India, 

and Sri Lanka (Snoeks 2000; Turner et al. 2001; Sparks 2001) (Fig. 1).  

 
Fig. 1. Worldwide distribution of cichlids, from Sparks (2001). 

 

This distribution pattern led to numerous hypotheses about the historical 

biogeography and the age of Cichlidae. Two most widely discussed hypotheses are shortly 

presented here. The first hypothesis of drift vicariance favours a Gondwanian distribution. 

The second hypothesis deals with dispersal across marine environments. The drift vicariance 

hypothesis is supported by the tolerance of some cichlids (e.g. Oreochromis salinicola (Poll, 

1948)) to salty water (Murray 2001a), by the fact that the sister group of Cichlidae is strictly 

marine (Wainwright et al. 2012) and by the oldest cichlid fossil record (Mahengechromis), 

which dates from the Eocene (54-38 Ma; Murray 2000a; Murray 2000b). This finding 

indicates a minimum age of 45 million years for the Cichlidae (Murray 2001b), which is much 
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younger than the break-up of Gondwana (starting 120 million years ago (Hay et al. 1999)). 

The drift vicariance hypothesis for the Gondwanan distribution is supported by monophyletic 

clades on all former Gondwanan landmasses shown in numerous cichlid phylogenies 

(Streelman et al. 1998; Farias et al. 2000; Schliewen & Stiassny 2003; Sparks & Smith 

2004). The latter hypothesis remains more likely, because so far not a single case of cichlids 

is known, crossing a marine environment. Furthermore other non-cichlid fishes (e.g. 

aplocheiloid killifish) show also monophyletic clades on all former Gondwanan landmasses 

(Chakrabarty 2004). In addition there are doubts about the minimum age of cichlids, since 

derived species such as members of the Mahengechromis species flock indicate that cichlids 

are likely a much older group than what the fossil record implies (Sparks 2003).  

 

1.2 The subfamily Pseudocrenilabrinae 
 

The Pseudocrenilabrinae are the largest subfamily in the family Cichlidae with 

currently 1078 valid species (Eschmeyer & Fong 2012). The subfamily includes all the Middle 

Eastern and African cichlids with the exception of Heterochromis multidens (Pellegrin, 1900) 

and all Malagasy cichlid species (Ptychochromis Steindachner, 1880; Paretroplus Bleeker, 

1868; Paratilapia Bleeker, 1868; Ptychochromoides, Kiener & Mauge 1966; Oxylapia, Kiener 

& Mauge 1966; Katria Stiassny & Sparks 2006) (Sparks & Smith 2004). Heterochromis 

multidens is basal to all members of the Pseudocrenilabrinae (Stiassny 1990; Lippitsch 1995; 

Salzburger et al. 2002; Schwarzer et al. 2009).  

Their morphological, behavioural, and ecological diversity has fascinated biologists 

ever since the enormous diversity of cichlids in the East African cichlid radiation endemic to 

Lakes Tanganyika, Malawi and the Lake Victoria (Fig. 2) region became apparent (Fryer & 

Iles 1972; Kornfield & Smith 2000). The evolutionary success of the East African cichlids is 

amongst others based on a combination of ecological opportunities (colonization of large 

lakes) as well as morphological (egg-spots, colour polymorphisms, pronounced sexual 

dichromatism) and behavioural key-innovations (maternal mouthbrooding) (Salzburger et al. 

2005). Another important innovation of all cichlids is the highly integrated pharyngeal jaw 

apparatus, giving them an advantage during subsequent colonization of new environments 

(Liem 1973). Over the last decades, cichlids have become a prime model system in 

evolutionary biology; especially in speciation research (Kocher 2004; Salzburger & Meyer 

2004; Seehausen 2006). In the past ten million years almost 2000 unique species have 

evolved in the East African lakes (Takahashi et al. 2001; Kocher 2004). 
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Fig. 2. Overview of the East African Lakes. 

 

Lake Tanganyika is the oldest of the Great Lakes with deepwater conditions since 

about 5-6 Ma (Tiercelin & Mondeguer 1991). It harbours 197 endemic species in 49 endemic 

genera (Poll 1986) and was probably seeded by eight riverine ancestral lineages (Salzburger 

et al. 2002). The estimated age of these lineages corresponds to the estimated age of 

deepwater conditions (Nishida 1991). Further, it is assumed that the haplochromine ancestor 

of the species flock of Lake Malawi and Victoria originated from Lake Tanganyika 

(Salzburger et al. 2005). 

The age of Lake Malawi has been estimated to two to four millions years, but the 

invasion occurred approximately 700,000 years ago (Meyer et al. 1990). The Lake Malawi 

flock contains more than 800 species (Konings 2007) and appears to be of non monophyletic 

origin (Joyce et al. 2011; Genner et al. 2012). 

 The youngest one, Lake Victoria with an estimated age of 250,000-750,000 years, 

(Temple 1969) contains more than 500 species (Turner et al. 2001) and originating from two 

separate lineages (Verheyen et al. 2003). Molecular phylogenetic studies of the Lake 

Victoria’s cichlid fauna support the young age of Lake Victoria (Meyer et al. 1990; Nagl et al. 

2001; Salzburger & Meyer 2004). Usually the Lake Victoria species flock is referred to as a 

“superflock”, because it is closely associated with the species occurring in the surrounding 
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lakes (Lakes Albert, Edward, Kyoga, and Kivu (Fig. 2)) (Greenwood 1973; Greenwood 1979; 

Greenwood 1980; Verheyen et al. 2003; Salzburger & Meyer 2004).  

The extreme high biodiversity and the fact that the three Great Lakes rank among the 

top ten of the largest fresh-water lakes on earth, indicate the constraints of these model 

systems. Clearly arranged biotopes as the small Cameroonian crater lakes represent an 

alternative model system to study speciation processes, e.g. sympatric speciation. 

Sympatric speciation explains the emergence of new species from a single local 

species without geographic isolation. Although theoretical models have now demonstrated 

that speciation with gene flow is possible under numerous assumptions, sympatric speciation 

is considered uncommon in nature (Gavrilets 2004; Bolnick & Fitzpatrick 2007). However, the 

debate has shifted on the question how frequent sympatric speciation occurs. There are only 

a few plausible examples for sympatric speciation in nature, e.g. Cameroonian crater lake 

cichlids (Stiassny et al. 1992; Schliewen et al. 1994; Schliewen et al. 2001, Schliewen & Klee 

2004) or palms (Howea) on Lord Howe Island (Savolainen et al. 2006), because such cases 

must demonstrate species sympatry, sister relationships, reproductive isolation, and that an 

earlier allopatric phase is highly unlikely (Coyne & Orr 2004). 

Well known systems are Lake Barombi Mbo with an endemic radiation of eleven 

cichlid species (Trewavas et al. 1972; Schliewen & Klee 2004) and Lake Bermin with an 

endemic radiation of nine substrate brooding tilapiine cichlids (Stiassny et al. 1992). A third 

example is Lake Ejagham, which provides the rare opportunity to study incipient species and 

an endemic radiation of six cichlid species (Schliewen et al. 2001; Dunz & Schliewen 2010b). 

Aquacultural research as well as evolutionary biologists caught attention of “Tilapia”, i.e. 

members of the so called tilapiine cichlid assemblage (sensu Trewavas 1983 – details see 

below) member of the Pseudocrenilabrinae, as not only one of its members, the Nile Tilapia, 

Oreochromis niloticus (Linnaeus, 1758), is of globally important aquacultural significance 

(Ridha 2006) as a food resource, but also were giving rise to small species radiations 

(Schliewen & Klee 2004). Further, molecular phylogenetic analyses suggest that the root of 

the East African cichlid radiation is nested within a paraphyletic tilapiine assemblage 

containing among other tilapiine genera, members of the genus Tilapia Smith, 1840 (Klett & 

Meyer 2002; Schwarzer et al. 2009). 

 

1.3 The genus Tilapia Smith, 1840 and related taxa 
 

Tilapia Smith, 1840 is a large genus comprising exclusively substrate brooding cichlid 

fishes (Perciformes: Cichlidae) that inhabit African rivers and lakes, and the Jordan valley 

(Middle East) (Fig. 3).  
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Fig. 3. Distribution of the genus Tilapia (shaded in grey). Areas shaded in dark grey indicate  
overlapping species distribution. 
 

To facilitate the discussion about tilapiine phylogeny and classification, I provide a 

short overview of the previous attempts to classify Tilapia related taxa based on 

morphological, ethological and molecular data here. The genus Tilapia was introduced by 

Smith, 1840, as a new “division” of the Labyrinthiformes Cuvier 1831, with T. sparrmanii 

Smith, 1840 as type species. 75 years later Boulenger (1915) already listed 94 species in the 

genus Tilapia. His classification was based mainly on dentition and squamation 

characteristics and fin meristics. However, he stated that “the classification of the very 

numerous African members of the family Cichlidae presents the greatest difficulties, and the 

division into genera, as here followed, is unsatisfactory and open to criticism, the dentition in 

certain species being subject to variation, according to age, or even of a purely individual 

nature.” Inspired by this uncertainty, Regan (1920, 1922) subsequently provided a 

suprageneric reclassification of African cichlid genera based on additional characteristics, 

mainly the structure of the pharyngeal apophysis, which supports the upper pharyngeal 

bones at the base of the skull. In his view, the occurrence of a “Tilapia” type apophysis, i.e. 

the pharyngeal apophysis formed by the parasphenoid (a bone located in the cranium) alone, 

restricted the genus Tilapia to those species, which Boulenger (1915) had attributed to his 

Tilapia Section I (about 50 species). Additional closely related genera with the apophysis 
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formed by the parasphenoid alone or by the parasphenoid and the prootics (an endochondral 

bone of the brainpan) were, among others, Chilochromis Boulenger, 1902 and Neotilapia 

(Regan, 1920) (parasphenoid and prootics), but not, for example, Steatocranus Boulenger, 

1899. Supported by additional dentition and squamation characteristics, Regan therefore 

redefined the genus Tilapia and recognized four Tilapia subgenera (Coptodon (Gervais, 

1853), Tilapia, Heterotilapia (Regan, 1920) and Sarotherodon Rüppell, 1852), as well as a 

closely related separate genus, Neotilapia. He suggested that “a complete revision will be 

necessary before a final decision can be reached as to whether it should be split up”. 

Nevertheless, Hoedeman & De Jong (1947) taxonomically formalized Regan´s informal split 

of African cichlids into two major groups by introducing the subfamily Tilapiinae Hoedeman, 

1947 for all African cichlids with a Tilapia type apophysis and the Haplochrominae1 

Hoedeman, 1947 for the rest. 

Almost 50 years (after Boulenger) ago, Thys van den Audenaerde (1969) published a 

first comprehensive species level classification of African species of what he considered to 

belong to the genus Tilapia. In his definition, Neotilapia and Pelmatochromis sensu stricto 

Steindachner, 1895 were included only as subgenera of Tilapia, which now comprised 

approximately 90 described and undescribed species. He further divided the genus into three 

“sections”, each including several diagnosed and taxonomically available subgenera, some 

of them new (Tab. 1). His classification was not accompanied by a critical discussion of 

previous classifications and diagnostic characteristics, but was presented in the form of a 

key, annotated with a revised diagnosis for Tilapia and the subgroups. Although he referred 

to Regan (1920), he did not take into account the osteological characteristics described by 

this author, hereby indirectly accounting for Wickler´s (1963) criticism of Regan´s and 

Hoedeman & De Jong´s classification as being inconsistent with the distribution of 

ethological characteristics. Trewavas (1973) contested the inclusion of Pelmatochromis 

sensu stricto as a subgenus into Tilapia and proposed full generic rank for it, as well as a 

new genus, Pterochromis Trewavas, 1973. Further, she retained Tilapia busumana (Günther, 

1903) in Tilapia and amalgamated all remaining species of Thys van den Audenaerde´s 

(1969) Section I and Section II (comprising exclusively substrate brooding genera) in a newly 

diagnosed genus Tilapia without any further subgeneric division. In addition and, mainly 

based on osteological characteristics and breeding behaviour, Trewavas elevated Thys van 

den Audenaerde´s Section III (comprising exclusively mouthbrooding genera) members to 

full generic rank, i.e. Sarotherodon. Greenwood (1978) conducted a representative review of 
                                                            

1
  Fowler (1934) introduced the taxonomically available subfamily name Pseudocrenilabrinae. Apparently unaware of 

Fowler´s action, Hoedeman (1947) introduced Tilapinae and Haplochrominae as new subfamilies for African and Middle Eastern 
Cichlidae. At the moment, it remains unclear to which subfamily Hoedeman attached the type name bearing genus 
Pseudocrenilabrus Fowler, 1934, although it is very likely that he attached it to the Haplochrominae. If so, the Haplochrominae 
Hoedeman, 1947 is a synonym of Pseudocrenilabrinae Fowler, 1934. Then also the tribus name Haplochromini must be 
changed. However, since the focus of this work is not on the haplochromine cichlids, and since the issue is not finally analysed, 
I retain the familiar tribus name Haplochromini throughout the study.  
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the structure and distribution of Regan’s apophyseal character in cichlids. He confirmed 

Wickler´s critic and concluded that the pharyngeal apophysis must be rejected as a character 

useful for subfamilial classification in cichlids.  

Nevertheless, Trewavas (1983) in her book “Tilapiine Fishes of the genera 

Sarotherodon, Oreochromis and Danakilia”, introduced a new tribe name, Tilapiini, which she 

distinguished from her new tribe Haplochromini on the basis Regan´s pharyngeal apophysis 

character states. Surprisingly, she neither referred to Greenwood´s arguments nor to 

Hoedeman & De Jong´s formal subfamily rank Tilapiinae. Based on cursory exploration of 

morphological, ethological and ecological characteristics her tribe Tilapiini still included the 

substrate brooding genera Pelmatochromis, Pterochromis, Tilapia, (tentatively) Steatocranus 

and, Gobiochromis (Poll, 1939), as well as the mouthbrooding genera Sarotherodon, 

Oreochromis Günther, 1889, Danakilia Thys van den Audenaerde, 1969, Iranocichla Coad, 

1982, Tristramella Trewavas, 1942, and all endemic cichlid genera of crater lake Barombi 

Mbo. In addition, she suggested an extension of Thys van den Audenaerde´s (1969) 

subgeneric classification of Oreochromis by proposing an additional subgenus. 

 
section section name included subgenera 
I Tilapia sensu lato Tilapia Smith, 1840 
  Trewavasia subgen. nov. 
  Pelmatolapia subgen. nov. 
  Pelmatochromis Steindachner, 1895 
   
II Heterotilapia and  

Coptodon sensu lato 
Heterotilapia Regan, 1920 

  Dagetia subgen. nov. 
  Coptodon Gervais, 1853 
   
III Sarotherodon sensu 

lato 
Danakilia subgen. nov. 

  Neotilapia Regan, 1920 
  Alcolapia subgen. nov. 
  Nyasalapia subgen. nov. 
  Loruwiala subgen. nov. 
  Oreochromis Günther, 1894 
  Sarotherodon Rüppell, 1854 

 

 

Table 1. Thys van den Audenaerde´s (1969) subdivision of the genus Tilapia into three sections 
 

Poll (1986) adopted the definition of Trewavas 1983 for Tilapiini, added additional 

diagnostic characteristics, but treated explicitly only the few Tilapiini taxa from Lake 

Tanganyika. He included the Lake Tanganyika endemic Boulengerochromis Pellegrin, 1904 

with Tilapia and Oreochromis in his Tilapiini. Greenwood (1987) compared the osteology of 

taxa previously referred to as Pelmatochromis sensu lato. He concluded that neither 

Pelmatochromis nor Pterochromis can be considered as being phylogenetically close to 

Tilapia or tilapiines, and that the monophyly of the tilapiines (even without these two genera) 

remains to be demonstrated despite the fact that he identified two additional characteristics 

possibly supporting their monophyly. Eventually, Stiassny (1991) provided a first cladistic 
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analysis of cichlids based on predominantly morphological cichlid characteristics. She 

identified two additional character states of the lower pharyngeal jaw, which she regarded as 

preliminary evidence for a monophyletic tilapiine lineage including Danakilia, Iranocichla, 

Konia Trewavas, 1972, Myaka Trewavas, 1972, Oreochromis, Pungu Trewavas, 1972, 

Sarotherodon, Stomatepia Trewavas, 1962, Tristramella and Tilapia, excluding 

Pelmatochromis, Pterochromis, Steatocranus and Gobiocichla Kanazawa, 1951 though. 

Pending further investigations, she preferred the ending –ine(s) for any suprageneric African 

cichlids groups including tilapiines.  

Cichlid systematics are plagued with a paucity of phylogenetically informative 

morphological characteristics (Stiassny 1991). First allozyme studies tried to overcome this 

limitation by testing for biochemical differentiation of tilapiines using multiple markers. These 

studies supported a basal distinction between substrate brooding and mouthbrooding 

tilapiines, but were not able to assess phylogenetic relationships in more detail (McAndrew & 

Majumdar 1984; Sodsuk & McAndrew 1991; Pouyaud & Agnese 1995; B-Rao & Majumdar 

1998). First DNA based studies incorporating a few tilapiines into a greater cichlid 

phylogenetic framework yielded statistically well supported evidence for tilapiines and the 

East African cichlid radiation representing a monophyletic lineage, and for tilapiines being 

paraphyletic (Sültmann et al. 1995; Mayer et al. 1998; Streelman et al. 1998). This 

unexpected and novel result has been supported or at least not contradicted by all 

subsequent molecular analyses which included more tilapiine taxa (Nagl et al. 2001; Klett & 

Meyer 2002). The new clade, comprising the majority of all African cichlids including 

tilapiines and haplochromines, is supported by one putative synapomorphy, i.e. a tricuspid 

inner row dentition (Schliewen & Stiassny 2003). The clade was named haplotilapiines in 

order to point out that a phylogenetically based classification of tilapiines is not possible 

without incorporating representative members of haplochromines and members of the East 

African cichlid radiation. 

Nagl et al. (2001) and Klett & Meyer (2002) were the first to analyse mitochondrial 

DNA of more than 30 tilapiine taxa. While the first study focused on Oreochromis, the latter 

included a pan-African assemblage of 39 tilapiine as well as 19 non tilapiine, mostly species 

of the East African cichlid radiation in their analysis. Albeit with low statistical support for 

basal nodes, mouthbrooders (Oreochromis, Sarotherodon, Stomatepia, Iranocichla and 

Tristramella) and members of the East African cichlid radiation each formed a comparatively 

well supported clade as opposed to substrate brooding tilapiines, which split into seven 

clades consisting of different members of the genera Tilapia and Steatocranus, and of Etia 

nguti Schliewen & Stiassny, 2003. Interestingly, the type species of Tilapia, T. sparrmanii 

appeared more closely related to Boulengerochromis microlepis than to all other included 

“Tilapia” species. However, Schliewen et al. (1994) had previously shown that all endemic 
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mouthbrooding tilapiine genera of crater lake Barombi Mbo (Stomatepia, Pungu, Konia, 

Myaka) are closely related to Sarotherodon.  

Recently, first resolved phylogenetic hypotheses (Schwarzer et al. 2009) based on 

mitochondrial as well as nuclear markers representatively including all major African cichlid 

lineages were established. These studies conclude that all previously recognized tilapiine 

taxa belong to a monophyletic lineage, the haplotilapiines, encompassing not only the 

paraphyletic assemblage of tilapiines, but also members of the East African cichlid radiation, 

as well as the Cameroonian endemic Etia nguti (Schliewen & Stiassny 2003; Schwarzer et 

al. 2009). Both a fully representative sample of almost all haplotilapiine cichlid lineages as 

well as a formal and taxonomically available classification of haplotilapiines including the 

phylogenetically apt assignment of the type genus Tilapia is still missing yet.  

 
1.4 Starting point: scientific research of “Tilapia”  
 

After some unsatisfying attempts of Boulenger (1915) and Regan (1920, 1922) to classify 

“Tilapia”, Thys van den Audenaerde (1969) published a first comprehensive infrageneric 

classification, but without a critical discussion. According to his studies, major morphologic 

“Tilapia” groups were believed to be natural groups and hence given subgeneric rank. He 

divided “Tilapia” in three sections (Tab. 1). Subsequent morphological studies (Greenwood 

1978; Poll 1986; Stiassny 1991) did not consider the infrageneric level or considered only 

tilapiine mouthbrooders (Trewavas 1983).  

In summary, African cichlids formerly referred to as ”Tilapias” represent a paraphyletic 

species assemblage before results of this study were available (Klett & Meyer 2002; 

Schwarzer et al. 2009). Hence a revision of the genus is overdue not only for academic 

purposes, but also for aquaculture and fisheries which need correct names, and in 

conservation, since “Tilapia” are known as neozoan species. Furthermore, one of the 

subgroups of Tilapia apparently represents the sister group to the East African cichlid 

radiations (Schwarzer et al. 2009), which serve as an important model group for evolutionary 

biology and cichlid genomics (Kocher et al. 1998; Kornfield & Smith 2000).  

 
1.5 Starting point: scientific research of Tilapiini 
 

Most of the phylogenetic studies analysing East African cichlids have focused on 

lacustrine cichlids of the three Great Lakes, Tanganyika, Malawi and Victoria (Nishida 1991; 

Meyer 1993; Takahashi et al. 2001; Salzburger et al. 2002; Salzburger & Meyer 2004; 

Koblmüller et al. 2005; Koblmüller et al. 2008; Sturmbauer et al. 2010). However, little was 

known about the relationships within the original tribe Tilapiini Trewavas, 1983, containing 
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mainly riverine cichlids, until Schwarzer et al. 2009 established a first well supported 

phylogeny as basis for further research. Several past classifications included a vaguely 

diagnosed tribus Tilapiini, but the composition had remained unchanged (Takahashi 2003; 

Koblmüller et al. 2008; Takahashi & Koblmüller 2011). Further, only minor changes on the 

tribus level were established within haplotilapiines by Poll (1986) (eleven tribes stated 

(including Trematocarini)) and Takahashi & Koblmüller (2011) (13 tribes stated). From 1986 

until 2011 only the three tribes Boulengerochromini, Cyphotilapiini and Benthochromini have 

been postulated by Takahashi (2003) based on morphological characteristics. In addition 

Takahashi & Koblmüller (2011) stated Orthochromis as differentiated clade on molecular 

level, but without any tribus indications.  

In conclusion, the starting point of my studies assumed Tilapiini as broad vaguely 

diagnosed tribus containing substrate and mouth brooding genera. 

 

1.6 Boreotilapiines and austrotilapiines 
 

Schwarzer et al. (2009) made the first attempt to combine an extended multilocus 

DNA dataset with a representative taxon sampling. Their phylogenetic analysis identified Etia 

with strong node support as the sister group (“etiines”) to the remaining haplotilapiines, which 

were further separated into a mouthbrooding tilapiine lineage (“oreochromines”) and an 

unnamed large clade (Fig. 4). This large clade contained all remaining species, which split 

into five subclades, of which two (Fig. 4: BI and BII) predominantly West African ones formed 

a monophyletic group (“boreotilapiines”), and two (Fig. 4: AII and AIII) predominantly South 

Central African clades and the East African cichlid radiation (Fig. 4: AI) formed another 

moderately supported one (“austrotilapiines”)2. Due to a strongly discordant phylogenetic 

signal in the multilocus dataset, the sixth lineage, T. mariae Boulenger, 1899, could not be 

placed unambiguously in one of the two large clades. This result was discussed as 

preliminary evidence for an ancient hybrid origin of T. mariae. 

                                                            

2
  Group names introduced by Schwarzer et al. (2009) were inappropriately ending with the suffix –ini for Etiini, 

Oreochromini, Austrotilapiini, Boreotilapiini. These tribus-like names are neither taxonomically available according to the ICZN, 
nor were they meant to be available (see disclaimer in Schwarzer et al. (2009)). As already previously suggested (Dunz & 
Schliewen 2010a), I refer to these groups as used in Schwarzer et al. (2009) as etiines, oreochomines, austrotilapiines and 
boreotilapiines in order to avoid confusion with formal tribe names ending with “-ini”.  
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Fig. 4. Detail of the consensus tree of the African cichlid phylogeny based on a multilocus approach  
(modified from Schwarzer et al. 2009) 
 

1.7 Speciation and Theory 
 

1.7.1 Biodiversity 
 

Wilson (1988) introduced the term “biodiversity” in literature. Today this term has 

become of major interest in the scientific community and in public policy (Roberts 1990; 

Lubchenco et al. 1991). The most commonly used definition of biodiversity is “the variety and 

variability among living organisms and the ecological complexes in which they occur” (OTA 

1987). Other definitions are for example “the degree of nature’s variety” (McNeely 1988) or 

“the variety of life and its processes” (Hughes & Noss 1992). A biological hierarchy can 

contain biodiversity at four levels, (1) genetic diversity, (2) species diversity, (3) ecosystem 

diversity, (4) landscape diversity (Noss 1983; Norse et al. 1986; OTA 1987). Because of the 

commercial and ecological importance of biodiversity, large efforts are made on its 

preservation (Cairns & Lackey 1992). Species richness is disappearing worldwide and 

protection is largely administered to biological entities that are referred to as species 

(Mayden 2002). 
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1.7.2 Species and species concepts  
 

Even in the 21st century the question “what is a species actually” remains open. An 

overwhelming amount of literature is available on this topic. The present thesis deals 

exclusively with sexually reproducing species. Thus the following will mainly focus on these. 

“It all comes, I believe, from trying to define the undefinable” Darwin wrote to Joseph 

D. Hooker on 24 December 1856 (Burkhardt & Smith 1990). More than hundred years later 

Coyne (1994) stated that species are real entities, not subjective human divisions, but if 

species represents hypotheses in the scientific process, they can never be proven (Mayden 

2002).  

Traditionally species are defined as "…groups of actually or potentially interbreeding 

natural populations which are reproductively isolated from other such groups" (Biological 

Species Concept, Mayr 1942). The existence of discrete groups constitutes evidence for 

isolating mechanisms (Coyne 1994). These mechanisms could be divided into two major 

groups: (1) prezygotic (acting before fertilization, e.g. gametic incompatibility) and (2) 

postcygotic (acting after fertilization, e.g. hybrid inviability) mechanisms (Coyne & Orr 1998).  

 The operational issues of the recognition of real entities are of primary importance for 

all species concepts, except the Evolutionary Species Concept (Wiley 1978; Wiley & Mayden 

2000a; Wiley & Mayden 2000b; Wiley & Mayden 2000c). Thus a hierarchical division into 

primary (theoretical) and secondary (operational) concepts is useful. The following describes 

the Evolutionary Species Concept as primary and the Phylogenetic Species Concept (Rosen 

1978; Rosen 1979; Cracraft 1983) as secondary concept. 

 The Evolutionary Species Concept characterizes a species as follows: “An 

evolutionary species is an entity composed of organisms that maintains its identity from other 

such entities through time and over space and that has its own independent evolutionary fate 

and historical tendencies” (Wiley & Mayden 2002a). As a nonoperational concept it is difficult 

to find anything to fit the concept without prior knowledge. However, such General Lineage 

Concepts do not sufficiently distinguish species from higher taxa (Ereshefsky 2010). Thus 

the Phylogenetic Species Concept (operational concept) was considered as surrogate 

concept to the Evolutionary Species Concept (Mayden 2002). 

 The Phylogenetic Species Concept characterizes a species as follows: “A 

phylogenetic species is an irreducible (basal) cluster of organisms, diagnosably distinct from 

other such clusters, and within which there is a parental pattern of ancestry and descent” 

(Cracraft 1989). To put it another way species possess autapomorphic traits or can be 

identified on the basis of at least one shared derived character inherited from a unique 

common ancestor. This criterion for recognition of species is widely accepted (Mayden 

2002).  
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2. Aims of the thesis 
 

The main aim of this thesis was a genus level revision of all substrate brooding 

“Tilapia” and related taxa (Chilochromis, Gobiocichla and Steatocranus) using molecular and 

morphological data. It also includes the extremely species-rich East African radiation, which 

is only exemplified with selected taxa (e.g. Boulengerochromis), due to the fact that the 

radiation is nested within the “Tilapia” phylogeny.  

 Secondary aims on morphological level are first of all the definition and 

establishment of a set of 25 morphological and eleven meristical characteristics for alpha-

taxonomy and secondly the reconsideration of several alpha-taxonomy problems involving all 

available type and comparative material (total 1173 specimen) of the genus Tilapia.  

 Revised alpha-taxonomy approaches are the description of Tilapia pra Dunz & 

Schliewen, 2010a. This species is sister group to Tilapia busumana (Günther, 1903) and 

both are located in an unresolved ancient tribe (Gobiocichlini). Further the Lake Ejagham 

species flock (four species) is described. All these species belong to the former subgenus 

Coptodon (Gervais, 1853). With the description of Tilapia konkourensis Dunz & Schliewen, 

2012 the monotypic subgenus Dagetia Thys van den Audenaerde, 1969 was synonymized 

with Coptodon. Finally the revision of the Tilapia bilineata complex resulted in the description 

of a new genus (Congolapia Dunz & Schliewen, 2012), which is sister group to Tilapia sensu 

stricto.  

  Secondary aims on molecular level are a detailed revision of the phylogenetic 

hypothesis of Schwarzer et al. 2009 with a further extended multilocus dataset (four mtDNA 

and five ncDNA loci) comprising almost all previously missing haplotilapiine cichlid tribes (94 

taxa). In addition an enlarged mtDNA (ND2) dataset (784 taxa) comprising about 60% of all 

described Pseudocrenilabrinae genera is presented. Even in a seven times larger taxaset 

(ND2), the resulting topology is largely congruent with the multilocus approach (four mtDNA 

and five ncDNA loci). 

 All these secondary results provide the basis for a novel classification of Tilapia and 

related lineages defined by putative molecular synapomorphies (unambiguously diagnostic 

character states), but critically incorporating a selected set of morphological data. 
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3. Paper I 
 

Dunz AR, Schliewen UK (2010a) Description of a new species of Tilapia Smith, 1840 

(Teleostei: Cichlidae) from Ghana. Zootaxa 2548, 1–21. 
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4. Paper II 

 

Dunz AR, Schliewen UK (2010b) Description of a Tilapia (Coptodon) species flock of Lake 

Ejagham (Cameroon), including a redescription of Tilapia deckerti Thys van den 

Audenaerde, 1967. Spixiana 33, 251–280. 
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5. Paper III 
 

Dunz AR, Schliewen UK (2012) Description of a rheophilic Tilapia species Smith, 

1840 (Teleostei: Cichlidae) from Guinea with comments on Tilapia rheophila Daget, 

1962. Zootaxa 3314, 17–30. 



 

  68

 

 

 



 

  69

 

 

 



 

  70

 

 

 



 

  71

 

 

 



 

  72

 

 

 



 

  73

 

 

 



 

  74

 

 

 



 

  75

 

 

 



 

  76

 

 

 



 

  77

 

 

 



 

  78

 

 

 



 

  79

 

 

 



 

  80

 

 

 



 

  81

 

 

 

 



 

  82

6. Paper IV 
 

Dunz AR, Vreven E, Schliewen UK (2012) Congolapia, a new cichlid genus from the central 

Congo basin (Perciformes: Cichlidae). Ichthyological Explorations of Freshwaters. 

Uncorrected proof. 
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7. Paper V 
 

Dunz AR, Schliewen UK Molecular phylogeny and revised classification of the haplotilapiine 

cichlid fishes formerly referred to as “Tilapia” Molecular Phylogenetics and Evolution. (Interim 

Decision: acceptable for publication provided minor revisions). 
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Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes 1 

formerly referred to as “Tilapia” 2 

 3 

ANDREAS R. DUNZ* & ULRICH K. SCHLIEWEN 4 

Bavarian State Collection of Zoology, Department of Ichthyology, Münchhausenstr. 21, 5 

81247 München, Germany. * Corresponding author. Fax: +49898107300.  6 

E-mail addresses: dunz@zsm.mwn.de (A.R. Dunz), schliewen@zsm.mwn.de (U.K. 7 

Schliewen). 8 

 9 

Abstract 10 

African cichlids formerly referred to as ”Tilapias” represent a paraphyletic species 11 

assemblage belonging to the so called haplotilapiines lineage which gave rise to the 12 

spectacular East African cichlid radiations (EARs) as well as to globally important 13 

aquaculture species. We present a comprehensive molecular phylogeny of representative 14 

haplotilapiine cichlids, combining in one data set four mitochondrial and five nuclear loci for 15 

76 species, and compare it with phylogenetic information of 378 mitochondrial ND2 16 

haplotypes representing almost all important “Tilapia” or Tilapia-related lineages as most 17 

EAR lineages. The monophyly of haplotilapiines is supported, as is the nested sister group 18 

relationship of Etia and mouthbrooding tilapiines (oreochromines) with the remaining 19 

haplotilapiines. The latter are consistently placed in nine monophyletic clades over all 20 

datasets and analyses, but several dichotomous phylogenetic relationships appear 21 

compromised by ancient hybridisation events leading to cytonuclear discordant phylogenetic 22 

signal. Based on these results as well as on morphological evidence we propose a novel 23 

generic and suprageneric classification including a (re-)diagnosis of 20 basal haplotilapiine 24 

cichlid genera and ten tribus. New tribus are provided for the former subgenera Coptodon 25 

Gervais, 1853, Heterotilapia Regan, 1920 and Pelmatolapia Thys van den Audenaerde, 26 

1969, in addition for “Tilapia” joka, Tilapia sensu stricto and Chilochromis, Etia, Steatocranus 27 

sensu stricto, the mouthbrooding tilapiines and for a basal clade of West African tilapiines.  28 

 29 

Keywords 30 

Freshwater fishes, Cichlidae, introgressive hybridisation, cytonuclear discordance, Africa 31 

 32 

1. Introduction 33 
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Cichlids (Teleostei: Perciformes: Cichlidae) rank among the most species rich fish families. 34 

They currently hold 1627 valid species (Eschmeyer & Fong 2012), but may count up to 3000 35 

species, distributed throughout the Neotropics, Africa, the Middle East, Madagascar, as well 36 

as Southern India, and Sri Lanka (Snoeks 2000; Turner et al. 2001). Their morphological, 37 

behavioural and ecological diversity has fascinated biologists ever since the enormous 38 

diversity of cichlids in the East African cichlid radiation (EAR) endemic to Lakes Tanganyika, 39 

Malawi and the Lake Victoria region became apparent (Fryer & Iles 1972; Kornfield & Smith 40 

2000). Over the last decades, cichlids have become a prime model system in evolutionary 41 

biology; especially in speciation research (Kocher 2004; Salzburger & Meyer 2004; 42 

Seehausen 2006). Aquacultural research as well as evolutionary biologists caught attention 43 

of “Tilapia”, i.e. members of the so called tilapiine cichlid assemblage (sensu Trewavas 1983 44 

– details see below) member of the Pseudocrenilabrinae, as not only one of its members, the 45 

Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), is of globally important aquacultural 46 

significance (Ridha 2006) as a food resource, but also were giving rise to small species 47 

radiations (Schliewen & Klee 2004). Further, molecular phylogenetic analyses suggest that 48 

the root of the East African cichlid radiation is nested within a paraphyletic tilapiine 49 

assemblage containing among other tilapiine genera, members of the genus Tilapia Smith, 50 

1840 (Klett & Meyer 2002; Schwarzer et al. 2009). 51 

To facilitate the discussion about tilapiine phylogeny and classification, we provide a short 52 

overview of the previous attempts to classify Tilapia related taxa based on morphological, 53 

ethological and molecular data here. The genus Tilapia was introduced by Smith, 1840, as a 54 

new “division” of the Labyrinthiformes Cuvier 1831, with T. sparrmanii Smith, 1840 as type 55 

species. 75 years later Boulenger (1915, 1916) already listed 94 species in the genus 56 

Tilapia. His classification was based mainly on dentition and squamation characters and fin 57 

meristics. However, he stated that “the classification of the very numerous African members 58 

of the family Cichlidae presents the greatest difficulties, and the division into genera, as here 59 

followed, is unsatisfactory and open to criticism, the dentition in certain species being subject 60 

to variation, according to age, or even of a purely individual nature.” Inspired by this 61 

uncertainty, Regan (1920, 1922) subsequently provided a suprageneric reclassification of 62 

African cichlid genera based on additional characters, mainly the structure of the pharyngeal 63 

apophysis, which supports the upper pharyngeal bones at the base of the skull. In his view, 64 

the occurrence of a “Tilapia” type apophysis, i.e. the pharyngeal apophysis formed by the 65 

parasphenoid alone, restricted the genus Tilapia to those species, which Boulenger (1915, 66 

1916) had attributed to his Tilapia Section I (about 50 species). Additional closely related 67 

genera with the apophysis formed by the parasphenoid alone or by the parasphenoid and the 68 

prootics were, among others, Chilochromis Boulenger, 1902 and Neotilapia (Regan, 1920) 69 

(parasphenoid and prootics), but not, for example, Steatocranus Boulenger, 1899. Supported 70 
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by additional dentition and squamation characters, he therefore redefined the genus Tilapia 71 

and recognized four Tilapia subgenera (Coptodon (Gervais, 1853), Tilapia, Heterotilapia 72 

(Regan, 1920) and Sarotherodon Rüppell, 1852), as well as a closely related separate 73 

genus, Neotilapia. He suggested that “a complete revision will be necessary before a final 74 

decision can be reached as to whether it should be split up.” Nevertheless, Hoedeman 75 

(1947) taxonomically formalized Regan´s informal split of African cichlids into two major 76 

groups by introducing the subfamily Tilapiinae Hoedeman, 1947 for all African cichlids with a 77 

Tilapia type apophysis and the Haplochrominae3 Hoedeman, 1947 for the rest. Almost 50 78 

years (after Boulenger) ago, Thys van den Audenaerde (1969) published a first 79 

comprehensive species level classification of African species of what he considered to 80 

belong to the genus Tilapia. In his definition, Neotilapia and Pelmatochromis sensu stricto 81 

Steindachner, 1895 were included only as subgenera of Tilapia, which now comprised 82 

approximately 90 described and undescribed species. He further divided the genus into three 83 

“sections”, each including several diagnosed and taxonomically available subgenera, some 84 

of them new (Tab. 1). His classification was not accompanied by a critical discussion of 85 

previous classifications and diagnostic characters, but was presented in the form of a key, 86 

annotated with a revised diagnosis for Tilapia and the subgroups. Although he referred to 87 

Regan (1920), he did not take into account the osteological characters described by this 88 

author, hereby indirectly accounting for Wickler´s (1963) criticism of Regan´s and 89 

Hoedeman´s classification as being inconsistent with the distribution of ethological 90 

characters. Trewavas (1973) contested the inclusion of Pelmatochromis sensu stricto as a 91 

subgenus into Tilapia and proposed full generic rank for it, as well as a new genus, 92 

Pterochromis Trewavas, 1973. Further, she retained T. busumana (Günther, 1903) in Tilapia 93 

and amalgamated all remaining species of Thys van den Audenaerde´s (1969) Section I and 94 

Section II (comprising exclusively substrate brooding genera) in a newly diagnosed genus 95 

Tilapia without any further subgeneric division; and, mainly based on osteological characters 96 

and breeding behaviour, she elevated Thys van den Audenaerde´s Section III (comprising 97 

exclusively mouthbrooding genera) members to full generic rank, i.e. Sarotherodon.  98 

Greenwood (1978) conducted a representative review of the structure and distribution of 99 

Regan’s apophyseal character in cichlids. He confirmed Wickler´s critic, and concluded that 100 

the pharyngeal apophysis must be rejected as a character useful for subfamilial classification 101 

in cichlids. Nevertheless, Trewavas (1983) in her book “Tilapiine Fishes of the genera 102 

                                                            

3
  Fowler (1934) introduced the taxonomically available subfamily name Pseudocrenilabrinae for all African and 

Middle East Cichlidae. Apparently unaware of Fowler´s action, Hoedeman (1947) introduced Tilapinae and Haplochominae as 
new subfamilies for African and Middle Eastern Cichlidae. At the moment, it remains unclear to which subfamily Hoedeman 
attached the type name bearing genus Pseudocrenilabrus Fowler, 1934, although it is very likely that he attached it to the 
Haplochrominae. If so, the Haplochrominae Hoedeman, 1947 is a synonym of Pseudocrenilabrinae Fowler, 1934. Then also the 
tribus name Haplochromini must be changed. However, since the focus of this work is not on the haplochromine cichlids, and 
since the issue is not finally analysed, we retain the familiar tribus name Haplochromini throughout the manuscript.  
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Sarotherodon, Oreochromis and Danakilia”, introduced a new tribe name, Tilapiini, which she 103 

distinguished from her new tribe Haplochromini on the basis Regan´s pharyngeal apophysis 104 

character states. Surprisingly, she neither referred to Greenwood´s arguments nor to 105 

Hoedeman´s formal subfamily rank Tilapiinae. Based on cursory exploration of 106 

morphological, ethological and ecological characters her tribe Tilapiini still included the 107 

substrate brooding genera Pelmatochromis, Pterochromis, Tilapia and specialised rheophilic 108 

genera (tentatively) Steatocranus and Gobiochromis Poll, 1939, as well as the 109 

mouthbrooding genera Sarotherodon, Oreochromis Günther, 1889, Danakilia Thys van den 110 

Audenaerde, 1969, Iranocichla Coad, 1982, Tristramella Trewavas, 1942 and all endemic 111 

cichlid genera of crater lake Barombi Mbo. In addition, she suggested an extension of Thys 112 

van den Audenaerde´s (1969) subgeneric classification of Oreochromis by proposing an 113 

additional subgenus. Poll (1986) adopted the definition of Trewavas 1983 for Tilapiini, added 114 

additional diagnostic characters, but treated explicitly only the few Tilapiini taxa from Lake 115 

Tanganyika. He included the Lake Tanganyika endemic Boulengerochromis Pellegrin, 1904 116 

with Tilapia and Oreochromis in his Tilapiini. Greenwood (1987) compared the osteology of 117 

taxa previously referred to as Pelmatochromis sensu lato. He concluded that neither 118 

Pelmatochromis nor Pterochromis can be considered as being phylogenetically close to 119 

Tilapia or tilapiines, and that the monophyly of the tilapiines (even without these two genera) 120 

remains to be demonstrated despite the fact that he identified two additional characters 121 

possibly supporting their monophyly. Eventually, Stiassny (1991) provided a first cladistic 122 

analysis of cichlids based on mainly morphological cichlid characters. She identified two 123 

additional character states of the lower pharyngeal jaw, which she regarded as preliminary 124 

evidence for a monophyletic tilapiine lineage including Danakilia, Iranocichla, Konia 125 

Trewavas, 1972, Myaka Trewavas, 1972, Oreochromis, Pungu Trewavas, 1972, 126 

Sarotherodon, Stomatepia Trewavas, 1962, Tristramella and Tilapia, however excluding 127 

Pelmatochromis, Pterochromis, Steatocranus and Gobiocichla Kanazawa, 1951. Pending 128 

further investigations, she preferred the ending –ine(s) for any suprageneric African cichlids 129 

groups including tilapiines.  130 

Cichlid systematics are plagued with a paucity of phylogenetically informative morphological 131 

characters (Stiassny 1991). First allozyme studies tried to overcome this limitation by testing 132 

for biochemical differentiation of tilapiines using multiple markers. These studies supported a 133 

basal distinction between substrate brooding and mouthbrooding tilapiines, but were not able 134 

to assess phylogenetic relationships in more detail (McAndrew & Majumdar 1984; Sodsuk & 135 

McAndrew 1991; Pouyard & Agnese 1995; B-Rao & Majumdar 1998). First DNA based 136 

studies incorporating a few tilapiines into a greater cichlid phylogenetic framework yielded 137 

statistically well supported evidence for tilapiines and the EAR representing a monophyletic 138 

lineage, and for tilapiines being paraphyletic (Sültmann et al. 1995; Mayer et al. 1998; 139 
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Streelman et al. 1998). This unexpected and novel result has been supported or at least not 140 

contradicted by all subsequent molecular analyses which included more tilapiine taxa (Nagl 141 

et al. 2001; Klett & Meyer 2002). The new clade, comprising the majority of all African 142 

cichlids including tilapiines and haplochromines, is supported by one putative synapomorphy, 143 

i.e. a tricuspid inner row dentition (Schliewen & Stiassny 2003). The clade was named 144 

haplotilapiines in order to point out that a phylogenetically based classification of tilapiines is 145 

not possible without incorporating representative members of haplochromines and members 146 

of the EAR. 147 

Nagl et al. (2001) and Klett & Meyer (2002) were the first to analyse mitochondrial DNA of 148 

more than 30 tilapiine taxa. While the first study focused on Oreochromis, the latter included 149 

a pan African sample of 39 tilapiine as well as 19 non tilapiine, mostly EAR species in their 150 

analysis. Albeit with low statistical support for basal nodes, mouthbrooders (Oreochromis, 151 

Sarotherodon, Stomatepia, Iranocichla and Tristramella) and members of the EAR each 152 

formed a comparatively well supported clade as opposed to substrate brooding tilapiines, 153 

which split into seven clades consisting of different members of the genera Tilapia and 154 

Steatocranus, and of Etia nguti, Interestingly, the type species of Tilapia, T. sparrmanii 155 

appeared more closely related to Boulengerochromis microlepis than to all other included 156 

“Tilapia” species. Schliewen et al. (1994) had previously shown that all endemic 157 

mouthbrooding tilapiine genera of crater lake Barombi Mbo (Stomatepia, Pungu, Konia, 158 

Myaka) are closely related to Sarotherodon.  159 

Schwarzer et al. (2009) made the first attempt to combine an extended multilocus DNA 160 

dataset with a representative taxon sampling. Their phylogenetic analysis identified Etia with 161 

strong node support as the sister group (“etiines”) to the remaining haplotilapiines, which 162 

were further bipartitioned into a mouthbreeding tilapiine lineage (“oreochromines”) and an 163 

unnamed large clade. This large clade contained all remaining species, which fell into five 164 

subclades, of which two predominantly West African ones formed one monophyletic group 165 

(“boreotilapiines”), and two predominantly South Central African ones and the EAR formed 166 

another moderately supported one (“austrotilapiines”)4. Due to a strongly discordant 167 

phylogenetic signal in the multilocus dataset, the sixth lineage, T. mariae Boulenger, 1899, 168 

could not be placed unambiguously in the one of the two large clades. This result was 169 

discussed as preliminary evidence for an ancient hybrid origin of T. mariae. 170 

No study has yet included a fully representative taxon sampling of at least all previously 171 

suggested Tilapia related genera and subgenera, nor is a taxonomically valid classification 172 
                                                            

4
  Group names introduced by Schwarzer et al. (2009) were inappropriately ending with the suffix –ini for Etiini, 

Oreochromini, Austrotilapiini, Boreotilapiini. These tribus-like names are neither taxonomically available according to the ICZN, 
nor were they meant to be (see disclaimer in Schwarzer et al. (2009)). As already previously suggested (Dunz & Schliewen 
2010) we refer to these groups as used in Schwarzer et al. (2009) as etiines, oreochomines, austrotilapiines and boreotilapiines 
in order to avoid confusion with formal tribe names ending with “-ini”.  
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integrating morphological and molecular data for this key group available. Using the data of 173 

Schwarzer et al. (2009) as a starting point, we present a combined phylogenetic analysis of 174 

(1) a further extended multilocus dataset (mtDNA and ncDNA loci) comprising almost all 175 

previously missing haplotilapiine cichlid tribes, and of (2) an enlarged mtDNA (ND2) dataset 176 

comprising about 60% of all described Pseudocrenilabrinae genera. This molecular analysis 177 

provides a basis for a novel classification of Tilapia and related lineages defined by putative 178 

molecular synapomorphies (unambiguously diagnostic character states), but critically 179 

incorporating a selected set of morphological data.  180 

 181 

2. Material and Methods 182 

2.1. Taxon sampling, datasets and lab protocols 183 

This study focuses on the haplotilapiines sensu Schliewen & Stiassny 2003 (ingroup). Two 184 

datasets were established: (1) a combined nuclear and mtDNA “dataset A” representing 185 

almost all major haplotilapiine tribes and additional basal African cichlid taxa of the genera 186 

Tylochromis Regan, 1920, Pelmatochromis Steindachner, 1894 and Pterochromis Trewavas, 187 

1973 consisting of 94 terminals representing 76 species. 58 terminals were adopted from 188 

Schwarzer et al. (2009) and 36 specimens are new (for Genbank IDs see Appendix A, 189 

Supplementary material 1); and (2) a “dataset B” consisting of 784 ND2 mtDNA haplotypes 190 

representing 102 haplotilapiine genera and 378 species. 707 sequences (ND2) were 191 

downloaded from GenBank and 77 are new (for Genbank IDs see Appendix A, 192 

Supplementary material 2). Heterochromis multidens (Pellegrin, 1900) served as outgroup in 193 

“dataset A”, because this species is basal to Pseudocrenilabrinae (Lippitsch 1995; 194 

Salzburger et al. 2002; Schwarzer et al. 2009; Stiassny 1990); Etia nguti served as outgroup 195 

to all remaining haplotilapiines in “dataset B”, because it was identified in the multilocus 196 

analysis as the sister group to the remaining haplotilapiines. Several Tanganyika cichlid 197 

tribes (Cyphotilapiini Takahashi, 2003, Limnochromini Poll, 1986, Ectodini Poll, 1986, 198 

Perissodini Poll, 1986) as well as Orthochromis Greenwood, 1954 from the Malagarazi River 199 

(Tanzania) are represented only in “dataset B”.  200 

Genomic DNA was extracted from fin samples or muscle tissue using the NucleoSpin® 201 

Tissue kit (Macherey-Nagel) following the standard protocol provided by the manufacturer. 202 

Electropherograms and sequences of nine amplified fragments identical to the ones used in 203 

Schwarzer et al. (2009) were edited, aligned and analysed using BioEdit v.7.05.3 (Hall, 204 

1999), after using ClustalW (default settings) for a preliminary alignment. Muscle v.3.6 205 

(Edgar, 2004) (default settings) was used for refining the alignment. In addition, as a final 206 

quality control, sequences with missing nucleotides were checked by eye. Protein coding 207 

genes were checked for stop codons and frameshifts by translating into amino acid 208 
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sequences. Saturation at each codon position was checked separately by using PAUP* 4.0 209 

(Swofford 2003). The final “dataset A” contained five nuclear loci (ENC1: 698 bp, Ptr: 691 bp, 210 

SH3PX3: 681 bp, Tmo4c4: 425 bp, S7 intron: 508 bp) and four partial mitochondrial 211 

fragments (12S: 350 bp, 16S: 522 bp, 12S/16S: 1239 bp (originally 1295 bp, 56 bp were 212 

excluded due to alignment ambiguities), ND2: 672 bp). The third codon positions (341 bp) for 213 

ND2 were saturated in “dataset A” and excluded therein resulting 672 bp. The final “dataset 214 

A” had 6127/5786 bp (with/without third codon positions of ND2). For all loci base 215 

frequencies were not significantly different from equal (Chi-square tests, df=279; p=1.0). The 216 

final alignments are available on DRYAD (http://www.datadryad.org/).  217 

 218 

2.2. Phylogeny reconstruction 219 

Phylogenetic analyses were conducted applying Bayesian Inference (BI) and Maximum 220 

Likelihood (ML) approaches. The alignment of “dataset A” was partitioned following 221 

Schwarzer et al. 2009: Partition 1 from 1-2495 bp (nuclear exons ENC1, Ptr, SH3PX3 and 222 

Tmo4c4), partition 2 from 2496-3003 (nuclear S7 intron), partition 3 from 3004-5114 bp 223 

(mtDNA:12S/16S), and partition 4 from 5115-5786 bp (mtDNA:ND2). RAxML v.7.0.3 224 

(Stamatakis, 2006) was used for ML analysis: model parameters (Γ-model of rate 225 

heterogeneity, ML estimate of α-parameter) were estimated individually for each partition, 226 

and a ML search with the GTR+Γ model was performed as implemented in this program 227 

version. Node support values are based on 1000 non parametric bootstrap replicates (BS) of 228 

the best scoring ML tree. MrBayes v.3.1.2 (Huelsenbeck & Ronquist, 2001) was used for BI 229 

analyses, using the Bayes Factor Test implemented in the program for model choice, which 230 

was for partition 1: GTR+Γ, for partition 2: GTR+Γ, for partition 3: HKY, and for partition 4 231 

GTR+Γ. BI was based on four parallel runs each over 106 generations starting with random 232 

trees and sampling trees every 1000 generations. To ensure convergence the first 10% 233 

generations of each run were treated as burn-in and excluded. The remaining trees from all 234 

Bayesian analyses were used to build a 50% majority rule consensus tree. BI branch 235 

supports are expressed as Bayesian posterior probabilities (BPP, BI). A ML approach was 236 

used analogously to infer a phylogenetic hypothesis of “dataset B”, with the GTR+Γ model, 237 

whereas ND2 were partitioned according to 1st and 2nd vs. 3rd codon position. 238 

As a standard measure for the “quality” of a tree hypothesis the Rescaled Consistency Index 239 

(RC) (Farris 1989) was calculated across all 1000 bootstrap trees of the ML analysis by 240 

using the program PAUP* 4.0 (Swofford 2003). RC values range from 0-1 and are the 241 

product of the Consistency Index (CI) and Retention Index (R). 242 

Alternative tree topologies were compared to the best supported combined nuclear loci 243 

topology (ML) or to best supported mitochondrial locus topology (ML) using the likelihood 244 
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based, non parametric Shimodaira-Hasegawa Test (SH-Test) (Shimodaira & Hasegawa 245 

1999) as implemented in CONSEL (Shimodaira & Hasegawa 2001). Single locus topologies 246 

constrained to the combined nuclear topology were compared to unconstrained ones. A 247 

value of p<0.05 was considered as significantly different. 248 

 249 

2.3. Tests for alternative phylogenetic hypotheses and ancient hybrid signal 250 

Phylogenetic hypotheses derived from “dataset A” were tested for consistency of a taxon 251 

position over 1000 bootstrap ML dichotomus trees using the leaf stability index (Thorley & 252 

Wilkinson 1999) calculated for all taxa with the program Phyutility v.2.2. (Smith & Dunn 253 

2008). Branch attachment frequencies were calculated for taxa with low leaf stability values 254 

using all 1000 bootstrap trees of the ML analysis. 255 

Conflicting phylogenetic signals potentially originating from loci with different ancestry in a 256 

multilocus dataset may be indicative of ancient or recent hybridisation, because the inclusion 257 

of a hybrid taxon in a dichotomous tree phylogeny is expected to produce conflicting 258 

phylogenetic signal resulting in low BS support values of affected nodes. To test for this 259 

effect we used a tree based homoplasy excess test (HET) following Seehausen (2004): 47 260 

selected groups (single terminals 20) were successively removed from the dataset, and ML 261 

BS support values were recalculated and checked for all nodes and each removal. To 262 

assess type I error, a jackknife approach removing 100 times 16 randomly selected terminals 263 

(excluding those that produced outlier effects) was applied in order to obtain a semi random 264 

BS value distribution for all six nodes that yielded HET outliers. A removal group size of 16 265 

was chosen because this count represents the largest removed group size in the previous 47 266 

removal experiments that had yielded BS outliers. In some cases, if the BS for a given node 267 

was low and not directly inferable from the majority rule BS consensus tree, branch 268 

attachment frequencies for clades or single taxa were calculated in Phyutility v.2.2. Value 269 

variation (BS) of all nodes was graphically inspected for the presence of outliers in boxplots, 270 

i.e. values exceeding 1.5 (circles) or 3 (stars) times the box height (25-75 percent quartile) 271 

from the box, using the statistical program PAST 2.10 (Hammer et al. 2001).  272 

 273 

2.4. Criteria for a novel classification 274 

The supraspecific taxonomy of tilapiine cichlids has been instable, sometimes contradictory 275 

and often used in a mixture of taxonomically available with some unavailable names. Our 276 

analyses confirm that tilapiine cichlids as previously understood are paraphyletic and are 277 

composed of several distinct lineages. To incorporate phylogenetic results into a consistent 278 

classification for future reference in evolutionary biology and taxonomy, we discuss, 279 
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introduce, revitalize and (re)define taxonomically available as well as novel genus and tribus 280 

names according to the rules of the International Commission of Nomenclature (ICZN, 1999). 281 

This is done only for Tilapia related lineages in the focus of this study if (1) lineages receive 282 

strong node support in the ML and BI analyses, i.e. BS (>90) and BPP (1.0), if (2) lineage 283 

specific node recovery is consistent over all analyses in “datasets A and B”, and if (3) 284 

diagnostic molecular and/or morphological characters can be used to unambiguously identify 285 

those lineages. We reason that these lineages have been cohesive over long periods and 286 

deserve taxonomic recognition, even if basal nodes remain weakly supported, sometimes 287 

possibly due to phylogenetic conflict reflecting ancient hybridisation. To establish diagnostic 288 

morphological character states for tribus diagnoses, we examined 20 easily observable 289 

character states in 1006 specimens of “Tilapia” and related taxa (see Appendix A, 290 

Supplementary material 3), compared these with literature data of EAR cichlids, 291 

oreochromines and outgroups (references see under 3.3. Classification) and, in addition, use 292 

our own partially unpublished data of the ongoing systematic revision of the genus Tilapia 293 

(Dunz & Schliewen 2010, Dunz et al. 2012 (submitted)). We point out that beyond the 294 

continued usage of established tribus names of the Lake Tanganyika tribes a critical 295 

evaluation, redefinition, and classification of haplotilapiine tribes of the EAR is beyond the 296 

explanatory power of this dataset, due to our limited taxon sampling. Only in cases in which 297 

previously established tribus names are phylogenetically nested within another one of our 298 

new tribus, we propose synonymy of the former. 299 

 300 

3. Results 301 

3.1. Characteristics of “datasets A and B” 302 

The alignment of the concatenated nuclear and mitochondrial “dataset A” includes 94 taxa 303 

each with 6127 bp DNA sequence data derived from five nuclear and four mitochondrial loci. 304 

The final alignment with 5786 bp is a result from the exclusion of 341 bp due to saturation of 305 

the 3rd codon position of the mitochondrial ND2 locus and alignment ambiguities in non 306 

coding genes. The final dataset had 2497 variable sites with empirical base frequencies of 307 

A=0.281, C=0.258, G=0.221, T=0.239. These are composed of empirical base frequencies in 308 

the combined nuclear dataset: A=0.260, C=0.234, G=0.250, T=0.256, and in the 309 

mitochondrial dataset: A=0.304, C=0.285, G=0.189, T=0.221; base frequencies of the 310 

nuclear and the mitochondrial dataset are not significantly different (p>0.05, paired t-test). 311 

The Bayes factor test identified the GTR+Γ model as the best fitting model for all loci except 312 

for mitochondrial loci (12S, 12S/16S, 16S), which fitted best the HKY model.  313 

 314 
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The mitochondrial ND2 alignment of “dataset B” included 784 taxa each with 1008 bp. It 315 

contained 924 variable sites and empirical base frequencies of A=0.260, C=0.356, G=0.118, 316 

T=0.266. The Bayes factor test identified the GTR+Γ model as the best fitting model. 317 

 318 

3.2. Phylogenetic relationships of single nuclear (Fig. 1a-f), combined nuclear and 319 

mitochondrial loci topologies of “dataset A” (Fig. 2a) 320 

Mitochondrial genes provided good phylogenetic resolution in terminal groups whereas 321 

nuclear genes gave a better resolution in the more basal splits. Although single nuclear loci 322 

provided limited resolution, single locus phylogenetic hypotheses were largely concordant. 323 

All ML and BI consensus topologies supported the same 22 discrete phylogenetic lineages, 324 

and thus provide the basis for a new classification (see below). In order to render the reading 325 

user friendly, all new or newly defined tribes (see section 3.3.) are referred to by their novel 326 

tribus name from now on, each labelled in the text with a star and a number; this label 327 

corresponds to tribus definitions in the Glossary (Appendix). Informal clade names used in 328 

Schwarzer et al. (2009) are labelled and explained in the same way.  329 

 330 

3.2.1. Single locus topologies (Fig. 1a-f and 2a) 331 

The five single nuclear loci produced partially discordant phylogenetic hypotheses. The best 332 

supported ML topology (highest BS values) of all single nuclear loci is the one of S7 intron 333 

(Fig. 1a), which identifies haplotilapiines as a monophyletic clade with respect to 334 

Tylochromis, Pelmatochromis and Pterochromis (Pelmatochromines). Within haplotilapiines 335 

Etia (Etiini*1) is the sister group to the remaining taxa. These taxa comprise two monophyletic 336 

clades, one composed of all formerly mouthbrooding “Tilapia” species (Oreochromini*2) as 337 

the sister group to the EAR and one clade consisting of boreotilapiines*3 (sensu Schwarzer 338 

et al. 2009), Tilapia sensu stricto and Chilochromis (Tilapiini*4), Steatocranus sensu stricto 339 

(Steatocranini*5) and a monophyletic clade composed of “T.” cabrae and “T.” mariae 340 

(Pelmatolapiini*6). With respect to the haplotilapiines, the single nuclear locus topologies of 341 

S7 intron, ENC1 and SH3PX3 (Figs. 1a, c, e) (SH-Test, p>0.05 for ENC1 and SH3PX3) 342 

either support this basal topology or do not contradict it significantly. The overall weakly 343 

supported single locus topologies of Tmo4c4 and Ptr (Figs. 1b, d) differ significantly (SH-344 

Test, p<0.05) from the combined nuclear topology, because Tilapia sensu stricto (Tilapiini*4) 345 

(Tmo4c4) form the sister group to all other haplotilapiines or mouthbrooding tilapiines 346 

(Oreochromini*2) (Ptr). 347 

All separately amplified mitochondrial data (12S, 12S/16S, 16S, ND2) were treated as a 348 

single locus in a combined mitochondrial dataset (Fig. 2a), because the vertebrate 349 
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mitochondrial genome is inherited matrilinearly as an entity and without recombination 350 

(Gyllensten et al. 1985). This dataset supports a basal phylogeny that differs substantially 351 

from the combined nuclear loci topology (Fig. 2b) (SH-Test, p<0.01). In the mitochondrial 352 

dataset (Fig. 2a), the mouthbrooding tilapiines (Oreochromini*2) do not form the sister group 353 

to the remaining clades. Instead a clade of West African tilapiine cichlids containing 354 

Gobiocichla Kanazawa, 1951, “Tilapia.” brevimanus (Boulenger, 1911), “T.” pra (Dunz & 355 

Schliewen, 2010), “T.” busumana (Günther, 1903) and “Steatocranus.” irvinei (Trewavas, 356 

1943) (Gobiocichlini*7) is the basal sister group to all remaining taxa (excluding the outgroup 357 

Heterochromis). Neither the monophyly of boreotilapiines*3 nor that of austrotilapiines*12 is 358 

strongly supported.  359 

 360 

3.2.2. Concatenated nuclear loci topologies (Fig. 2b) and phylogenetic analysis of the 361 

“dataset A” (BI and ML approach) 362 

Analysed in combination, the best supported topology of the concatenated nuclear loci set 363 

provides only little additional resolution to the single locus topologies, i.e. a well supported 364 

sister group relationship of the clade consisting of “T.” tholloni (Paracoptodonini*11) and all 365 

other species of the former subgenus Coptodon (Coptodonini*10) with the remaining 366 

substrate brooding Tilapia related taxa.  367 

For the “dataset A” the SH-Test identified twelve out of all 1000 bootstrap ML topologies as 368 

significantly or highly significantly different (p<0.05 or p<0.01) from all other 988 topologies 369 

by comparing their likelihoods. Thus the null hypothesis that all trees equally well explain the 370 

data is rejected. These twelve topologies (not shown) differ mainly in the position of “T.” 371 

cabrae and “T.” mariae (Pelmatolapiini*6). In addition to this the indices of the rescaled 372 

consistency index (RC) ranged from 0.246 to 0.251 for all 1000 bootstrap replicates of the 373 

ML analysis of “dataset A”. Low RC values indicate a high level of “homoplasy” in the 374 

dataset, but in large datasets (here 94 taxa) the values are expected to be lower, because an 375 

increasing number of taxa increases the probability of the occurrence of homoplasy. 376 

The SH-Test for the comparison of the mitochondrial and all single nuclear topologies 377 

indicates a highly significant (p<0.01) conflict between these tree topologies (differences see 378 

above). With this inherent phylogenetic conflict as well as the limited phylogenetic 379 

information content of single nuclear loci in mind, we analysed the combined dataset in toto, 380 

but accompanied this by a quantitative assessment of the distribution and kind of conflict 381 

signal.  382 

Despite the inherent conflict, the topologies (Fig. 3) resulting from ML and BI analyses of the 383 

“dataset A” were highly congruent and nodes of all tribes, except Bathybatini and a new tribe 384 

composed of Coptodon (Coptodonini*11) were supported with high BS (>95) and BPP (1.0) 385 
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values. ML and BI supported the monophyly of the haplotilapiines (100/1.0), and also the 386 

sister group relationship of this group within the remaining African cichlids was highly 387 

supported (96/1.0).  388 

Only two minor differences appear in the best supported tree topologies of the ML and BI 389 

analyses (Fig. 3, bold faced numbers with an asterisk mark). In the ML analysis, within the 390 

Coptodon clade, “T.” dageti (Thys van den Audenaerde, 1971) is the sister group to “T.” 391 

discolor (Günther, 1903) (BS 54) and both are the sister group to “T.” guineensis (BS 100). In 392 

the BI analysis “T.” dageti is the sister group to “T.” guineensis (BPP 0.96) and both are the 393 

sister group to “T.” discolor (BPP 1.0). In the ML analysis, within the Steatocranus sensu 394 

stricto clade, the subclade of S. bleheri Meyer, 1993, S. sp. “redeye” and S. sp. “bulky head” 395 

is the sister group to a subclade of S. ubanguiensis Roberts & Stewart, 1976, S. casuarius 396 

Poll, 1939 and S. sp. “dwarf” (BS 39), both subclades are the sister group to a third subclade 397 

of S. tinanti (Poll, 1939), S. glaber Roberts & Stewart, 1976 and S. gibbiceps Boulenger, 398 

1899 (BS 100). In the BI analysis the third subclade of S. tinanti, S. glaber and S. gibbiceps 399 

is the sister group to the subclade of S. bleheri, S. sp. “redeye” and S. sp. “bulky head” (BPP 400 

0.98), both subclades are the sister group to a subclade consisting of S. ubanguiensis, S. 401 

casuarius and S. sp. “dwarf” (BPP 1.0). In both cases the topology of BI analysis is better 402 

supported.  403 

 404 

3.2.3. Assessment of the inherent conflict 405 

 406 

The assessment of the inherent phylogenetic conflict using the leaf stability index (Fig. 4) 407 

was calculated to identify the consistency of a taxon position within the combined tree of ML 408 

and BI analyses. The most inconsistently placed clade is the one combining “T.” mariae and 409 

“T.” cabrae (Pelmatolapiini*6) with the lowest value of 0.71. The node support of the best 410 

supported tree topology in the combined dataset for this clade as the sister group to the 411 

boreotilapiines*3 is also low (BS 41 / BPP 0.5) Pelmatolapiini*6 is sometimes the sister group 412 

to all haplotilapiines, excluding Etia and mouthbrooding tilapiines (Oreochromini*2) (BS 22), 413 

or the sister group to all austrotilapiines*12 (BS 18). When checked individually “T.” cabrae 414 

and “T.” mariae were positioned differently in ML tree topologies: “T.” mariae alone as the 415 

sister to the boreotilapiines*3 (BS 47) and “T.” cabrae alone as the sister to the 416 

austrotilapiines*12 (42.5%). A further detailed assessment of these two taxa follows below 417 

(see Discussion 4.6.3.). The monophyly of the EAR had a low leaf stability index of 0.81 as 418 

well as a low support at the best supported tree topology in the combined dataset (BS 47 / 419 

BPP 0.93). Percentage data given in the following is always percent of 1000 bootstrap trees 420 

of the ML analysis. The location of the EAR is quite heterogeneous and includes a sister 421 
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group to all haplotilapiines excluding Etia and mouthbrooding tilapiines (Oreochromini*2) 422 

(16.1%), to boreotilapiines*3 (18.6%) or to Steatocranus sensu stricto (12.2%). The leaf 423 

stability index of all other taxa except for the new mouthbrooding tilapiine clade 424 

(Oreochromini*2) ranges from 0.85-0.90 and is moderately stable in all trees. The 425 

Oreochromini*2 clade was placed very consistently (0.95) in all possible topologies as the 426 

sister group to all other haplotilapiines excluding Etia; Etia had a 1.0 leaf stability index.  427 

Based on the leaf stability index results and on the effect of single species removals (“T.” 428 

cabrae and “T.” mariae), 47 groups or single taxa (20) were successively removed from the 429 

dataset and afterwards a ML run (RAxML) with identical settings as for “dataset A” was 430 

conducted for each new resulting dataset. Six nodes (Fig. 5) of the tree topology of the 431 

concatenated data set were affected by these removals. All removal effects described in 432 

detail in Appendix A (Supplementary material 4) and potential hybrid effects within the 433 

haplotilapiines are shown in a dashed line diagram (Fig. 6). The most notable effect has the 434 

removal of a mouthbrooding tilapiine clade (Oreochromini*2) that disintegrates 435 

boreotilapiines*3. 436 

Due to the differing position of the new basal West African tilapiine clade (Gobiocichlini*7) 437 

(BS 73) and the clade of all tilapiine mouthbrooders (Oreochromini*2) (BS 41), branch 438 

attachment frequencies of these clades were calculated. Percentage data given in the 439 

following is always percent of 1000 bootstrap trees of the ML analysis. In 3% of all 1000 440 

bootstrap topologies, the new basal West African tilapiine clade (Gobiocichlini*7) is located 441 

within the haplotilapiines (excluding Etia), whereas in the remaining 97% it is the sister group 442 

to all haplotilapiines (excluding Etia). The clade of all tilapiine mouthbrooders 443 

(Oreochromini*2) is located within the former austrotilapiines*12 in 65%, and in 34% it is the 444 

sister group to a new monophyletic clade composed of “T.” cabrae and “T.” mariae 445 

(Pelmatolapiini*6). In 0.5% it is the sister group to Coptodon and in 0.5% it is the sister group 446 

to Heterochromis. 447 

 448 

3.2.4. Phylogenetic relationships of “dataset B” 449 

A larger phylogenetic framework (784 taxa, “dataset B”) was generated for the haplotilapiines 450 

based on the mitochondrial locus ND2 (Fig. 7). The following Lake Tanganyika and related 451 

tribes or clades are added additionally to the taxon sampling in the multilocus approach of 452 

“dataset A”: Cyphotilapiini, Limnochromini, Ectodini, Perissodini and Tanzanian 453 

representatives of the genus Orthochromis sensu stricto. All clades, which are well supported 454 

in the multilocus approach of “dataset A”, are also well supported in this ML analysis of the 455 

ND2 dataset except for the former austrotilapiines*12. The monophyletic clade of “T.” cabrae 456 

and “T.” mariae (Pelmatolapiini*6) is the sister group of boreotilapiines*3 in the multilocus 457 
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approach of “dataset A”, but is located as the sister group of a clade of Tilapia sensu stricto 458 

and Chilochromis (Tilapiini*4) in the ND2 approach of “dataset B”. Thus, the 459 

austrotilapiines*12, which contain the clade of Tilapia sensu stricto and Chilochromis 460 

(Tilapiini*4), are not supported as monophylum in the “dataset B”, in contrast to the well 461 

supported (BS 67) monophyletic boreotilapiines*3 in this ML analysis.  462 

 463 

3.3. Revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia”, 464 

and related taxa 465 

Analyses presented herein identified eleven discrete and consistently recovered 466 

haplotilapiine phylogenetic lineages which are consistently recovered or at least not 467 

contradicted in all combined and single locus analyses, and if the monophyletic EAR is 468 

viewed as a single major lineage (Fig. 3 & 7). Based on these results we propose a novel 469 

genus- and tribus-level classification of haplotilapiine cichlid fishes formerly referred to as 470 

“Tilapia” and related lineages. We restrict this reclassification to haplotilapiine non EAR 471 

clades, although all tribus definitions (Trewavas 1983; Poll 1986; Takahashi 2003) previously 472 

proposed were considered when defining new tribes. All novel discrete phylogenetic 473 

haplotilapiine lineages are supported by molecular and morphological autapomorphies. 474 

Tilapiini Trewavas, 1983 remains unsupported by unique molecular characters which could 475 

be interpreted as autapomorphies, but the tribus members are consistently grouped in all 476 

analyses, and with strong node support in the ML and BI analyses of “dataset A”. No 477 

molecular data were available for species of the subgenus Dagetia Thys van den 478 

Audenaerde, 1969 (recently synonymized with Tilapia (Dunz & Schliewen 2012) and 479 

Danakilia Thys van den Audenaerde, 1969, the latter therefore is conditionally assigned to a 480 

new tribus. 481 

 482 

(1) Coelotilapiini new tribe 483 

Type genus. Coelotilapia, new genus (described below). 484 

Included genera. One monotypic genus. 485 

Distribution. Coastal plains of Sierra Leone and western Liberia (Teugels & Thys van den 486 

Audenaerde 2003). 487 

Diagnosis. As for generic diagnosis (see below) and additional nine (five mtDNA and four 488 

ncDNA) molecular autapomorphies (see Appendix A, Supplementary material 5). 489 

 490 

Coelotilapia, new genus 491 



 

  123

Type species. Tilapia joka, Thys van den Audenaerde, 1969. (MRAC 183585, holotype, 67.5 492 

mm SL), Sierra Leone, Pujehun-Gobaru, River Waanje (7°21'N 11°42'W). Thys van den 493 

Audenaerde, 16.IV.1969. 494 

Diagnosis. Lower pharyngeal jaw (united 5th ceratobranchials) as long as broad, with an 495 

anterior keel shorter than or just as long as the toothed area; bicuspid or tricuspid posterior 496 

pharyngeal teeth; first gill arch with 8–11 rakers; two lateral lines; cycloid scales; 26-27 497 

scales in the longitudinal row; upper and lower outer teeth rows bicuspid in both jaws, inner 498 

rows with smaller tricuspid teeth in both jaws; isognathous to retrognathous jaws; slender 499 

spatulate teeth; small scales near base and upper and lower border of caudal fin; head 500 

profile rounded with a retrognathous jaw; 14–17 dorsal spines; 7–8 unbranched (not Y-501 

shaped) vertical bars on flanks (not visible in all preserved specimens), bars broader than the 502 

light interspaces; no “tilapia spot” present in dorsal fin; pointed pelvic fins; no hump on 503 

forehead, no expanded tissue on the roof of the pharynx (“visor-like hanging pad” sensu 504 

Greenwood, 1987:142); a single supraneural associated with the first neural spine (based on: 505 

Stiassny 1991; Takahashi 2003; Thys van den Audenaerde 1969; pers. obs.). 506 

Etymology. The genus name Coelotilapia Mayland, 1995 was introduced by Mayland 507 

(1995:142) in popular aquarium book, but is not available, because “it was treated as a 508 

questionable new genus, but was described as a generic name under Tilapia and not used in 509 

the combination Coelotilapia joka” (Eschmeyer & Fong 2012). We recycle this name hereby. 510 

The name was chosen to refer to the cave-breeding habit, but Mayland refers to the Latin 511 

word coelestis, which mean celestial. Very likely he thought of the Greek word koiloma 512 

(κοιλομα), which means cavity. 513 

Contained species. Coelotilapia joka (Thys van den Audenaerde, 1969). 514 

 515 

(2) Paracoptodonini new tribe 516 

Type genus. Paracoptodon, new genus (described below). 517 

Included genera. Paracoptodon, new genus. 518 

Distribution. Swampy central Congo area, Pool Malebo, upper and lower Ogowe, Niari-Kwilu, 519 

Shiloango and lower Congo (Stiassny et al. 2007; Daget et al. 1991). 520 

Diagnosis. As for generic diagnosis (see below) and additional 13 (ten mtDNA and three 521 

ncDNA) molecular autapomorphies (see Appendix A, Supplementary material 5). 522 

 523 

Paracoptodon, new genus 524 
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Type species. Tilapia tholloni (Sauvage, 1884), (MNHN 1884-0298, lectotype (designation 525 

below), 140.0 mm SL), Franceville, upper Ogooué River, Gabon, Schwebisch & Thollon. 526 

Lectotype designation of Chromis tholloni Sauvage, 1884. 527 

The type series of Chromis tholloni comprises three syntypes, but the original description of 528 

Sauvage 1884 is only based on the largest specimen MNHN 1884-0298 (140.0 mm SL). 529 

Later Blanc (1962) and Bauchot et al. (1978) inappropriately used the term “holotype” for 530 

specimen MNHN 1884-0298. The ICZN (1999) Article 74.5 clearly stipulates that for a 531 

lectotype designation made before 2000, either the term “lectotype” or “the type” must be 532 

used. Further: “when the original work reveals that the taxon had been based on more then 533 

one specimen, a subsequent use of the term “holotype” does not constitute a valid lectotype 534 

designation…”.  535 

Following recommendations 74A (Agreement with previous restrictions) and 74B (Preference 536 

for illustrated specimen) in Article 74.7 of the ICZN (1999) the largest and previously “type” 537 

designated syntype (MNHN 1884-0298: 140.0 mm SL), which is in addition illustrated by 538 

Sauvage (1884), is here designated as the lectotype of the species. 539 

Diagnosis. Lower pharyngeal jaw (united 5th ceratobranchials) as long as broad with an 540 

anterior keel shorter than or just as long as the toothed area of the jaw; tricuspid or 541 

quadricuspid posterior pharyngeal teeth; first gill arch with 13–17 rakers; two lateral lines; 542 

cycloid scales; 24–27 scales in the longitudinal row; upper and lower outer teeth rows 543 

bicuspid in both jaws, inner rows with smaller tricuspid teeth in both jaws; stout non spatulate 544 

teeth; isognathous jaws; a densely scaled caudal fin; 13–16 dorsal spines; 6–8 vertical bars 545 

on flanks (not always visible), some, or all of them are branched (Y-shaped) close to dorsal 546 

fin; pointed pelvic fins; “tilapia spot” in dorsal fin; hump on forehead in adults, no expanded 547 

tissue on the roof of the pharynx (“visor-like hanging pad” sensu Greenwood, 1987:142); a 548 

single supraneural associated with the first neural spine. (based on: Lippitsch et al. 1998; 549 

Stiassny 1991; Takahashi 2003; pers. obs.).  550 

Etymology. The name Paracoptodon is a composition of the Greek preposition para (παρα) = 551 

at, by and the genus name Coptodon Gervais, 1853, hereby referring to the sister group 552 

relationship of Coptodon and Paracoptodon. 553 

Contained species. Paracoptodon tholloni (Sauvage, 1884) and Paracoptodon congica (Poll 554 

& Thys van den Audenaerde, 1960). 555 

 556 

(3) Heterotilapiini new tribe 557 

Type genus. Heterotilapia Regan, 1920 (formerly a subgenus, raised here to generic rank). 558 
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Included genera. Heterotilapia Regan, 1920. 559 

Contained species Heterotilapia buttikoferi (Hubrecht, 1883), type species, and Heterotilapia 560 

cessiana (Thys van den Audenaerde, 1968). 561 

Distribution. Lower reaches of coastal rivers from Guinea-Bissau to west Liberia (Saint John 562 

River) and Cess or Nipoue River (Liberia, Côte d’Ivoire) (Teugels & Thys van den 563 

Audenaerde 2003). 564 

Diagnosis. Lower pharyngeal jaw (united 5th ceratobranchials) as long as broad with an 565 

anterior keel shorter than or just as long as the toothed area; bicuspid or tricuspid posterior 566 

pharyngeal teeth; median pharyngeal teeth broadened when compared to the lateral teeth or 567 

molariform; first gill arch with 13–16 rakers; two lateral lines; cycloid scales; 25-27 scales in 568 

the longitudinal row; upper and lower outer teeth rows bicuspid in both jaws, inner rows with 569 

smaller tricuspid teeth in both jaws; stout slightly spatulate teeth; isognathous jaws; small 570 

scales near base, upper and lower border of caudal fin; 14–16 dorsal spines; 6–8 571 

unbranched (not Y-shaped), forward slanted vertical bars on flanks (not visible in all 572 

specimens), bars broader than the light interspaces and reaching from head to caudal 573 

peduncle; “tilapia spot” in dorsal fin; pointed pelvic fins; no hump on forehead, no expanded 574 

tissue on the roof of the pharynx (“visor-like hanging pad” sensu Greenwood, 1987:142); a 575 

single supraneural associated with the first neural spine. (based on: Stiassny 1991; 576 

Takahashi 2003; Thys van den Audenaerde 1969; pers. obs.). 14 (eleven mtDNA and three 577 

ncDNA) molecular autapomorphies (see Appendix A, Supplementary material 5). 578 

 579 

(4) Pelmatolapiini new tribe 580 

Type genus. Pelmatolapia Thys van den Audenaerde, 1969 (formerly a subgenus, raised 581 

here to generic rank). 582 

Included genera. Pelmatolapia Thys van den Audenaerde, 1969. 583 

Contained species. Pelmatolapia mariae (Boulenger, 1899), type species, and Pelmatolapia 584 

cabrae (Boulenger, 1898).  585 

Distribution. Coastal lowlands from southern Rio Muni to mouth of the Congo River, around 586 

Cuanza (also spelled Coanza, Kwanzaa, Quanza, Kwanza, or Kuanza) delta (Angola), 587 

coastal lowlands and lagoons from the Tabou River (Côte d’Ivoire) to south-west Ghana and 588 

from south-east Benin to the Kribi and Lobe River (Cameroon) (Stiassny et al. 2007). 589 

Diagnosis. The lower pharyngeal jaw (united 5th ceratobranchials) as long as broad with an 590 

anterior keel shorter than or just as long as the toothed area; bicuspid or rarely tricuspid 591 

posterior pharyngeal teeth; first gill arch with 12–19 rakers; two lateral lines; cycloid scales; 592 
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25-27 scales in the longitudinal row; upper and lower outer teeth rows bicuspid in both jaws, 593 

inner rows with smaller tricuspid teeth in both jaws; slender spatulate teeth; isognathous 594 

jaws; small scales near base, upper and lower border of caudal fin; 15–16 dorsal spines; 7–9 595 

unbranched (not Y-shaped), broad, vertical bars on flanks (not visible in all specimens) or 5–596 

6 distinct mid-lateral dark blotches, more close to caudal peduncle; “tilapia spot” in dorsal fin; 597 

pointed pelvic fins; no hump on forehead, no expanded tissue on the roof of the pharynx 598 

(“visor-like hanging pad” sensu Greenwood, 1987:142); a single supraneural associated with 599 

the first neural spine. (based on: Stiassny 1991; Takahashi 2003; Thys van den Audenaerde 600 

1969; pers. obs.). Two (both mtDNA) molecular autapomorphies (see Appendix A, 601 

Supplementary material 5). 602 

Note. Pelmatolapiini is the most inconsistently placed tribus across all phylogenetic analyses 603 

(see Results 3.2.3. and Schwarzer et al. 2009). Notably, each of the two species appears to 604 

harbour a different ancient hybrid signal. P. mariae tends to align phylogenetically with the 605 

boreotilapiines*3 (i.e. Coelotilapiini, Heterotilapiini and Gobiocichlini), but P. cabrae with 606 

austrotilapiines*12 (Tilapia and Steatocranini) (see Appendix A, Supplementary material 4). 607 

This is likely to cause the instability of the well supported tribe across all phylogenetic 608 

analyses; therefore we are not able to assign Pelmatolapiini with absolute certainty to either 609 

austrotilapiines*12 or boreotilapiines*3.We note that differential geographical distribution of P. 610 

cabrae and P. mariae agrees with their differential phylogenetic affinities. The distribution of 611 

P. cabrae overlaps with the distribution of austrotilapiine Tilapia (lower Cuanza, Angola), but 612 

the distribution of P. mariae overlaps with the boreotilapiine Coptodonini and Gobiocichlini 613 

(west- and west central African coastal lowlands and lagoons). 614 

 615 

(5) Coptodonini new tribe 616 

Type genus. Coptodon Gervais, 1853. 617 

Included genera. Coptodon Gervais, 1853. 618 

Contained species. Type species. Coptodon zillii (Gervais, 1848), type species; C. 619 

bakossiorum (Stiassny, Schliewen & Dominey, 1992); C. bemini (Thys van den Audenaerde, 620 

1972); C. bythobates (Stiassny, Schliewen & Dominey, 1992); C. cameronensis (Holly, 621 

1927); C. camerunensis (Lönnberg, 1903); C. coffea (Thys van den Audenaerde, 1970); C. 622 

dageti (Thys van den Audenaerde 1971); C. discolor (Günther, 1902); C. deckerti (Thys van 623 

den Audenaerde, 1967); C. ejagham (Dunz & Schliewen 2010); C. flava (Stiassny, Schliewen 624 

& Dominey, 1992); C. fusiforme (Dunz & Schliewen 2010); C. guineensis (Bleeker, 1862); C. 625 

gutturosa (Stiassny, Schliewen & Dominey, 1992); C. imbriferna (Stiassny, Schliewen & 626 

Dominey, 1992); C. ismailiaensis (Mekkawy 1995); C. konkourensis (Dunz & Schliewen 627 
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2012); C. kottae (Lönnberg, 1904); C. louka (Thys van den Audenaerde, 1969); C. 628 

margaritacea (Boulenger, 1916); C. nigrans (Dunz & Schliewen 2010); C. nyongana (Thys 629 

van den Audenaerde, 1960); C. rendalli (Boulenger, 1896); C. rheophila (Daget, 1962); C. 630 

snyderae (Stiassny, Schliewen & Dominey, 1992); C. spongotroktis (Stiassny, Schliewen & 631 

Dominey, 1992); C. thysi (Stiassny, Schliewen & Dominey, 1992); C. walteri (Thys van den 632 

Audenaerde, 1968); yet undescribed species: Coptodon sp. aff. guineensis “Cross”; 633 

Coptodon sp. aff. zillii “Kisangani” and Coptodon sp. aff. louka “Samou”. 634 

Distribution. Lakes: Albert (Uganda / Democratic Republic of the Congo), Barombi-ba-Kotto 635 

(Cameroon), Bermin (Cameroon), Bosumtwi (Ghana), Chad (Central Africa), Ejagham 636 

(Cameroon), Kainji (Nigeria), Malawi (Malawi / Mozambique / Tanzania), Mboandong 637 

(Cameroon), Tanganyika (Tanzania / Burundi / Zambia / Democratic Republic of the Congo), 638 

Turkana (Kenya) and Volta (Ghana). River systems: Bandama, Bia, Cavally, Comoé, 639 

Corubal River to Lofa River, Cunene, Dja, Jordan, Kasai, Konkouré, Lualaba, Meme, Mungo, 640 

Niger (upper and middle), Nile, Nipoue, Nyong, Okavango, Pra, Saint Paul, Sanaga, 641 

Sassandra (upper), Shaba, Senegal, Tano, Ubangi-Uele-Ituri, Volta (upper and lower), 642 

Zambesi, coastal waters from mouth of the Senegal River to mouth of the Cuanza River, 643 

south Morocco, Sahara (Dunz & Schliewen 2010; Stiassny et al. 2007; Teugels & Thys van 644 

den Audenaerde 2003; Daget et al. 1991). 645 

Diagnosis. Lower pharyngeal jaw (united 5th ceratobranchials) as long as broad with an 646 

anterior keel shorter than or just as long as the toothed area; bicuspid (only C. gutturosa) to 647 

pentacuspid (only C. nigrans) posterior pharyngeal teeth; first gill arch with 10–17 rakers; two 648 

lateral lines; cycloid scales; 23–29 scales in the longitudinal row; upper and lower outer teeth 649 

rows bicuspid in both jaws, inner rows with smaller tricuspid teeth in both jaws; stout non 650 

spatulate teeth; isognathous jaws; small scales near base, upper and lower border of caudal 651 

fin (only adults of C. nyongana with a densely scaled caudal fin); 13–17 dorsal spines; 6–8 652 

vertical bars on flanks (when distinct), some, or all of them are branched (Y-shaped) close to 653 

dorsal fin; pointed pelvic fins; “tilapia spot” in dorsal fin; no hump on forehead, no expanded 654 

tissue on the roof of the pharynx (“visor-like hanging pad” sensu Greenwood, 1987:142); a 655 

single supraneural associated with the first neural spine. (based on: Lippitsch et al. 1998; 656 

Stiassny 1991; Takahashi 2003; pers. obs.) and additional two (one mtDNA and one ncDNA) 657 

molecular autapomorphies (see Appendix A, Supplementary material 5).  658 

Note. Tilapia rheophila is type species of the subgenus Dagetia Thys van den Audenaerde, 659 

1969. Dagetia was part of the Section II in the Annotated Bibliography of Tilapia (Thys van 660 

den Audenaerde 1969). Also part of this Section II are Coptodon and Pelmatolapia. An 661 

recent evaluation of the putative autapomorphies diagnosing Dagetia revealed that all are 662 

shared with members of the subgenus Coptodon Gervais, 1853 sensu Thys van den 663 

Audenaerde, 1969; hence, Tilapia (Dagetia) was placed in the synonymy of Tilapia 664 
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(Coptodon) (Dunz & Schliewen, 2012). So far no DNA voucher of this species exists, thus a 665 

molecular support for the assignment of Tilapia rheophila is lacking.  666 

 667 

(6) Gobiocichlini new tribe 668 

Type genus. Gobiocichla Kanazawa, 1951. 669 

Included genera. Steatocranus Boulenger, 1899; Tilapia Smith, 1840; Gobiocichla 670 

Kanazawa, 1951. 671 

Included species. “Steatocranus” irvinei Trewavas, 1943; “Tilapia” busumana (Günther, 672 

1903); “Tilapia” brevimanus Boulenger, 1991; “Tilapia” pra Dunz & Schliewen 2010; 673 

Gobiocichla wonderi Kanazawa, 1951; Gobiocichla ethelwynnae Roberts, 1982. 674 

Distribution. Volta River system, coastal rivers from Guinea-Bissau to East Liberia (Cess 675 

River), Pra, Ankobra, Tano and Bia Rivers in southwestern Ghana and southeastern Cote 676 

d’Ivoire, Lake Bosumtwi, rapids in the middle and upper Niger, rapids in the mainstream of 677 

the Cross river about eight km downstream from Mamfé (Cameroon) (Dunz & Schliewen 678 

2010; Teugels & Thys van den Audenaerde 2003). 679 

Diagnosis. This tribe is yet only supported by three (all mtDNA) molecular autapomorphies 680 

(see Appendix A, Supplementary material 5). No diagnostic morphological characters have 681 

been identified yet. Further, the taxonomic state of “Steatocranus” irvinei, “Tilapia” 682 

busumana, “Tilapia” brevimanus and “Tilapia” pra is not resolved and needs further analysis. 683 

Note. The Gobiocichlini is a morphologically highly heterogeneous tribus and “only” defined 684 

by molecular autapomorphies. However, all included species form a biogeographically 685 

restricted clade located in West Africa (including parts of Cameroon). All species names 686 

except those of the type genus Gobiocichla are maintained in quotation marks, referring to 687 

their yet unclear generic status, which needs to be revised with substantially more material.  688 

We combine these species in a single tribus for two reasons: (1) there is no molecular 689 

support for Gobiocichla or “Tilapia”, which is surprisingly at least for Gobiocichla, because 690 

this genus is supported by a very rare morphological character: “…a single, uninterrupted 691 

and nearly straight lateral line…” (Teugels & Thys van den Audenaerde 2003). (2) There are 692 

no identified morphological autapomorphies for the three “Tilapia” species. In contrast, 693 

characters, which are in other cases informative take very heterogeneous states, i.e. the 694 

shape of outer jaw teeth or the number of rakers on the first gill arch. Surprisingly, the two 695 

Gobiocichla species do not form a monophyletic clade in any of our DNA based analyses. 696 

Instead, G. wonderi is sister group to “T.” brevimanus. Thus we suggest a revision of the 697 
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genus Gobiocichla and all other included species of this tribus with a larger dataset, focused 698 

on this basal West African tribe.  699 

 700 

(7) Oreochromini new tribe 701 

Type genus. Oreochromis Günther, 1889. 702 

Included genera. Oreochromis Günther, 1889; Alcolapia Thys van den Audenaerde, 1969; 703 

Tristramella Trewavas, 1942; Iranocichla Coad, 1982; Sarotherodon Rüppell, 1852; Pungu 704 

Trewavas in Trewavas, Green & Corbet 1972; Konia Trewavas in Trewavas, Green & Corbet 705 

1972; Myaka Trewavas in Trewavas, Green & Corbet 1972; Stomatepia Trewavas, 1962; 706 

?Danakilia Thys van den Audenaerde, 1969. 707 

Distribution. Brackish and fresh waters of West Africa from the Congo River to the Senegal; 708 

relic population in the Draa, south of the Atlas Mountains, Nile and Jordan Rivers systems, 709 

Rivers and Lakes of East and Central Africa from western Rivers in Angola to the Soudanian 710 

region (including Lake Chad). Lakes Adfera and Abaeded in Dancalia, Ethiopia and Eritrea 711 

and southern Iran (Stiassny et al. 2010; Trewavas 1983; Coad 1982). 712 

Diagnosis. Lower pharyngeal jaw (united 5th ceratobranchials) as long as broad with an 713 

anterior keel longer than the toothed area (except Tristramella); unicuspid, bicuspid or rarely 714 

tricuspid posterior pharyngeal teeth (molariform posterior pharyngeal teeth in Tristramella 715 

simonis); first gill arch with 13–32 rakers; two lateral lines; cycloid scales; 24-32 scales in the 716 

longitudinal row; upper and lower outer teeth rows unicuspid, bicuspid or tricuspid in both 717 

jaws, inner rows with smaller unicuspid, bicuspid or tricuspid teeth in both jaws; stout to 718 

slender spatulate or non spatulate teeth, sometimes spoon-shaped; isognathous, 719 

prognathous or rarely retrognathous (e.g. Sarotherodon mvogoi) jaws; small scales near 720 

base, upper and lower border of caudal fin; caudal fin densely scaled only in some 721 

Oreochromis species; 14–19 dorsal spines (except Alcolapia 9-11); 6–11, unbranched (not 722 

Y-shaped), thin, vertical bars on flanks (when distinct); “tilapia spot” in dorsal fin (not in all 723 

species present); pointed pelvic fins; no distinctive hump on forehead, no expanded tissue on 724 

the roof of the pharynx (“visor-like hanging pad” sensu Greenwood, 1987:142); a single 725 

supraneural associated with the first neural spine. (based on: Stiassny 1991; Takahashi 726 

2003; Trewavas 1983; pers. obs.).This new tribe is supported by eight (five mtDNA and three 727 

ncDNA) molecular autapomorphies (see Appendix A, Supplementary material 5). 728 

Note. All effort to extract DNA from Danakilia have failed so far (Stiassny et al. 2010), thus an 729 

exact DNA-based assignment is lacking. However, Trewavas (1983) hypothesized a close 730 

relationship between Danakilia and Iranocichla and suggested a relationship between these 731 

and Tristramella. Schwarzer et al. (2009) as well as this study confirms a sister group 732 
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relationship of Tristramella and Iranocichla. Thus Danakilia is assigned tentatively to the 733 

tribus Oreochromini, until an exact assignment is possible. 734 

 735 

Tilapiini Trewavas, 1983 736 

Type genus. Tilapia Smith, 1840. 737 

Included genera. Tilapia Smith, 1840; Chilochromis Boulenger, 1902. 738 

Distribution (Fig. 8). Chiloango basin, Kouilou basin, lower Loeme and Niari-Bouenza Rivers, 739 

Western Cuvette Centrale (Alima, Lefini) and central Cuvette Centrale (Thsuapa, Luilaka), 740 

the Sangha (Republic of the Congo), from Malebo Pool, the northern Congo tributary Itimbiri 741 

as well as from affluents of the Luilaka (DRC) in the Salonga National Park and Louna River. 742 

Kasai drainage including the Lulua and Kwango (middle Congo River basin), upper Congo 743 

River basin including the upper Lualaba, Luvua, Lake Mweru, Luapula, Lufira and Upemba 744 

region, upper Cuanza, Cunene, Okavango, Lake Ngami, Zambezi, Limpopo, Sabi, Lundi, 745 

northern tributaries of the Orange River, Lake Malawi, Bangweulu, Guinas and Otjikoto 746 

(Dunz et al. 2012 (submitted); Thys van den Audenaerde 1964). 747 

Note. The original diagnostic character for the Tilapiini tribus sensu lato referred to “the 748 

structure of the apophysis on the base of the skull for the articulation of the upper pharyngeal 749 

bones. In Tilapiini its facets are formed from the parasphenoid alone…” (Trewavas 1983). All 750 

former substrate brooding Tilapia species, except Tilapia sensu stricto, are now assigned to 751 

new genera, except for “T.” brevimanus, “T.” busumana and “T.” pra. Those three remain 752 

generically unassigned within Gobiocichlini and hence are referred to as “Tilapia” (in 753 

quotation marks) (see also 3.3. Gobiocichlini). Only the two genera Tilapia and Chilochromis 754 

remain in Tilapiini, because both form a monophyletic clade in the multilocus analysis. The 755 

genus Tilapia Smith 1840 contains, only T. sparrmanii (type species), T. baloni, T. ruweti and 756 

T. guinasana, as already presented in Schwarzer et al. (2009). In addition, we include the 757 

members of T. bilineata complex, which is a separate genus (Dunz et al. 2012, submitted). 758 

The former Tilapia subgenus Dagetia is placed in the synonymy of Coptodon (Dunz & 759 

Schliewen 2012).  760 

 761 

Etiini new tribe 762 

Type genus. Etia Schliewen & Stiassny, 2003. 763 

Included genera. one monotypic genus. 764 

Distribution. Only known from the region of Nguti in the River Mamfue and a small tributary 765 

near Mboka Village, Cameroon (Schliewen & Stiassny 2003). 766 
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Diagnosis. As for generic diagnosis: “Etia is readily distinguished from all remaining African 767 

cichlids by the possession of some, or all, robust tricuspid teeth in the outer row oral 768 

dentition, a characteristic upper lip crease, a spinous dorsal fin deeply excavated dorsally, a 769 

strongly marked oblique black bar anterior on the body in preserved specimens” (Schliewen 770 

& Stiassny, 2003). Additionally 27 (19 mtDNA and eight ncDNA) molecular autapomorphies 771 

(see Appendix A, Supplementary material 5). 772 

 773 

Steatocranini new tribe 774 

Type genus. Steatocranus Boulenger, 1899. 775 

Included genera. Steatocranus Boulenger, 1899. 776 

Distribution. Rapids and rocky outcrops of the middle and lower Congo River, and its affluent 777 

drainages Lefini, Sangha/Ngoko/Dja, Ubanghi/Mbomou, Kasai/Lulua, Kwango and Kwilu 778 

(Schwarzer et al. 2011). 779 

Diagnosis. Lower pharyngeal jaw (united 5th ceratobranchials) as long as broad with an 780 

anterior keel shorter than the toothed area; bicuspid or rarely tricuspid posterior pharyngeal 781 

teeth; median pharyngeal teeth comparatively broad (if compared to the lateral teeth); first gill 782 

arch with 5–10 rakers; two lateral lines; cycloid scales; 26-36 scales in the longitudinal row; 783 

upper and lower outer teeth rows bicuspid, rarely truncate or spatulate unicuspid, in both 784 

jaws, inner rows with smaller tricuspid teeth in both jaws; slender spatulate or truncate teeth; 785 

isognathous to retrognathous jaws; 18–22 dorsal spines; 5–6 unbranched (not Y-shaped), 786 

broad, vertical bars on flanks (not visible in all specimens); “tilapia spot” in dorsal fin in some 787 

species present; rounded pelvic fins; distinctive hump on forehead (more pronounced in 788 

males), no expanded tissue on the roof of the pharynx (“visor-like hanging pad” sensu 789 

Greenwood, 1987:142); a single supraneural associated with the first neural spine. (based 790 

on: Stiassny 1991; Takahashi 2003; Roberts & Stewart 1976; pers. obs.). 21 (all mtDNA) 791 

molecular autapomorphies (see Appendix A, Supplementary material 5). 792 

 793 

4. Discussion 794 

This study provides a comprehensive phylogenetic hypothesis of almost all taxa formerly 795 

referred to as “Tilapia” and related lineages and thus provides a basis for critical 796 

reassessment of the systematics and taxonomy of this paraphyletic assemblage (Klett & 797 

Meyer 2002; Schwarzer et al. 2009).  798 

 799 
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4.1. Phylogenetic placement of haplotilapiines, Etiini, Oreochromini, boreotilapiines*3 and 800 

austrotilapiines*12 in analyses of the “dataset A and B” (Fig. 3 and 7) compared to Schwarzer 801 

et al. (2009) 802 

The term haplotilapiines was introduced on the basis of the phylogenetic analysis of three 803 

nuclear loci by Schliewen & Stiassny 2003 for a monophylum comprising Etia, tilapiines and 804 

a selection of haplochromine-related taxa. The present findings as well as Schwarzer et al. 805 

(2009) confirm the monophyly of this clade. Consistent in all multilocus analyses Etia nguti is 806 

the most basal sister taxon to all remaining haplotilapiines. Oreochromini are confirmed to be 807 

the basal sister group to all haplotilapiines except Etia. Schwarzer et al. (2009) identified a 808 

clade of the “boreotilapiines”*3 containing two predominantly West African subclades, named 809 

“BI” and “BII”. The increased taxon sampling of the present study provided better resolution 810 

within that clade, which allowed the distinction of five tribus. Subclade “BI” corresponds to the 811 

new tribus Gobiocichlini and subclade “BII” to the new tribus Coelotilapiini, Heterotilapiini, 812 

Paracoptodonini and Coptodonini. The question arises whether it is necessary to define four 813 

separate tribus for subclade “BII” and whether, there is molecular and morphological 814 

evidence to diagnose subclade “BII” as a unit? On the molecular level there is a single 815 

molecular character state interpretable as a diagnostic autapomorphy for all four tribus, but 816 

there is no diagnostic morphological trait. In contrast, each of the four tribus is strongly 817 

supported by molecular and morphological autapomorphies in all analyses. The main 818 

argument for separating four tribus is however, that the boreotilapiines strongly compromised 819 

by apparent ancient hybrid signal (Fig. 6), and therefore appear to contain genomic partitions 820 

of non-boreotilapiine lineages i.e. it is a polyphyletic group. In contrast strongly supported by 821 

molecular and morphological autapomorphies (Schwarzer et al. 2009), the clade of the 822 

austrotilapiines*12 identified three lineages named “AI”, “AII” and “AIII”; and already in 823 

Schwarzer et al. (2009) austrotilapiines*12 were only moderately supported (BS 86 in ML 824 

analysis). All three appear still as monophyletic lineages in the present study, with subclade 825 

“AI” corresponding to the EAR, “AII” corresponding to our Tilapiini, and “AIII” corresponding 826 

to the Steatocranini. However, the critical assessment of the ancient hybrid status of 827 

Pelmatolapia, both in Schwarzer et al. (2009) and in the present study with the second taxon 828 

(P. cabrae) compromise the monophyly support of austrotilapiines*12, although relevant but 829 

not overwhelming support for its monophyly as well as homoplasy excess suggests that 830 

austrotilapiines*12 evolved as a monophylum before a secondary introgression event. In 831 

summary, austrotilapiines*12 are polyphyletic but, as for boreotilapiines, an informal clade 832 

designation remains useful to refer to their putative ancient monophyly. 833 

Not surprisingly, single loci provided limited resolution as compared to the concatenated 834 

dataset, but single locus phylogenetic hypotheses nuclear were largely consistent. However, 835 

the monophyly of haplotilapiines is supported in all single nuclear loci analyses, but not in the 836 
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mitochondrial analysis, where Gobiocichlini take a comparatively weakly supported basal 837 

position as sister group to all other African cichlids taxa except Heterochromis. Three 838 

alternative topologies of single loci (Tmo4c4, Ptr and the mitochondrial locus), were 839 

significantly different compared to the concatenated dataset (SH-test: p<0.05 (Tmo4c4 and 840 

Ptr), p<0.01 (mitochondrial locus); Shimodaira & Hasegawa 1999).  841 

The single locus Tmo4c4 differs from the consensus topology of the concatenated dataset 842 

(Fig. 3) in the fact that Tilapia is located as sister group to all remaining haplotilapiines, which 843 

are not resolved due to a limited resolution. The single locus Ptr differs from the consensus 844 

topology of the concatenated dataset (Fig. 3) in the fact that a clade of Coptodonini and 845 

Paracoptodonini is located as sister group to all remaining haplotilapiines (excluding Etia), 846 

which are not resolved due to a limited resolution. The mitochondrial locus strongly supports 847 

a topology, (BS 98) which places Oreochromini in a clade of the former austrotilapiines and 848 

Pelmatolapiini. The discordant location (mitochondrial locus vs. concatenated dataset) of 849 

Oreochromini might imply cytonuclear discordance. We interpret this cytonuclear 850 

discordance as a result of introgressive hybridisation between Oreochromini and members of 851 

the former austrotilapiines (including Pelmatolapia) or of incomplete lineage sorting (see 4.2). 852 

Incomplete lineage sorting would suggest that Oreochromini and members of the former 853 

austrotilapiines (including Pelmatolapia) had a common ancestor. This ancestral species 854 

passed several speciation events in a short period of time and the ancestral polymorphism of 855 

a given gene is not fully resolved into two monophyletic lineages when the second speciation 856 

occurs (Pamilo & Nei 1988).  857 

 858 

Although “dataset B” (Fig. 7) is about seven times larger regarding the number of taxa than 859 

“dataset A” and contains several tribus of the EAR, which are not represented in “dataset A”, 860 

the resulting topologies of both analyses (“dataset B” and “dataset A”) are largely congruent 861 

in terminal splits.  862 

 863 

4.2. Cytonuclear discordance  864 

Significant discordance detected by the two nuclear loci Tmo4c4 and Ptr (see above 4.1.), is 865 

mainly a result of the limited resolution of resulting topologies of these single loci and thus 866 

not useful to detect reasons for discordance. In addition the SH-Test indicated highly 867 

significant conflict (p<0.01) between the mitochondrial and the combined nuclear dataset 868 

(Fig. 2). The most striking disagreements are the discordant placements of Gobiocichlini and 869 

Oreochromini. Members of these two tribus are very likely involved in incomplete lineage 870 

sorting or introgressive hybridisation. The exact differentiation of incomplete lineage sorting 871 
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and introgressive hybridisation is difficult, because both mechanisms generate very similar 872 

phylogenetic patterns (Holder et al. 2001). To evaluate hybridisation as the cause for 873 

cytonuclear discordance, we conducted the HET. Excluding a hybrid taxon from the dataset 874 

is expected to lead to an increase of support values (here BS) for the position of parental 875 

taxa in a bifurcating phylogenetic tree (Seehausen, 2004; Schwarzer et al. 2011a). 876 

 877 

Interspecific conflicts among datasets are usually attributed to introgressive hybridisation or 878 

incomplete lineage sorting (Shaw 2002). A third mechanism, long-branch attraction, is able to 879 

generate artificial cytonuclear discordance by clustering most similar nodes and thus 880 

sometimes a homoplasy is erroneously interpreted as a synapomorphy (Felsenstein 1978). 881 

This is unlikely in our cases, e.g. Oreochromini, because short branches are affected by 882 

discordant placement, further the same discordances appear in ML and BI analyses takes 883 

unequal rates of branch lengths into account (Swofford et al. 2001).  884 

Introgressive hybridisation is common and well accepted in plants (Hardig et al. 2000), but 885 

also documented in animals (Gardner 1996), and also in cichlid fishes (Rüber et al. 2001; 886 

Schliewen and Klee 2004; Koblmüller et al. 2009).  887 

We found tentative evidence of past hybridisation, based on the HET. The inclusion of a 888 

hybrid taxon in a dichotomous tree phylogeny is expected to produce conflicting phylogenetic 889 

signal resulting in low BS support values of affected nodes. Two removal experiments 890 

increased node support strongly, will be discussed more detailed in the following. For a 891 

better understanding of these complex hybridisation events see also Figure 6. 892 

Unless specified, all removals of specific tribus or clades mean all included members of the 893 

tribus or clade. All discussed BS values correspond to BS values of the consensus topology 894 

(Fig. 3). The first removal experiment of the four new tribus Gobiocichlini, Heterotilapiini, 895 

Coelotilapiini and Pelmatolapiini as a group increases the node support of the EAR as sister 896 

group of Tilapiini and Steatocranini from BS 47 strongly to BS 92 (see Fig. 5, E1). This 897 

indicates that Gobiocichlini, Heterotilapiini, Coelotilapiini or Pelmatolapiini affect members of 898 

the EAR or Tilapiini and/or Steatocranini. Which of the four removed tribus were involved and 899 

to what extent? This question can only be answered with the results of several previous 900 

removals.  901 

(1) Removal of Coelotilapiini and/or Heterotilapiini shows that both tribus share a potential 902 

ancient hybrid signal with Gobiocichlini, thus for simplifying we treat the signal of 903 

Gobiocichlini, Heterotilapiini and Coelotilapiini in the following as one single signal 904 

(Gobiocichlini).  905 
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(2) Removals of Tilapiini and/or Steatocranini show only minimal effects on node support of 906 

Gobiocichlini, Heterotilapiini and Coelotilapiini.  907 

(3) But the removal of Pelmatolapiini (especially P. cabrae) affects the Tilapiini and/or 908 

Steatocranini, but not the EAR (Fig. 6).  909 

(4) Conversely, the removal of the Gobiocichlini signal affects the EAR, but not Tilapiini 910 

and/or Steatocranini.  911 

Thus it is obvious that two different effects simultaneously caused the node support increase, 912 

because Gobiocichlini affects the EAR and Pelmatolapiini affects the Tilapiini and/or 913 

Steatocranini. By removing of these both distracting ancient hybrid effects, caused by the 914 

removed taxa, the node support increases strongly. The removal of Gobiocichlini, 915 

Heterotilapiini and Coelotilapiini without Pelmatolapiini increases the node support of the 916 

EAR as sister group of Tilapiini and Steatocranini to BS 90, this finding suggests that the 917 

effect of Pelmatolapiini in the previous removal is only minimal. The main effect comes from 918 

a Gobiocichlini-EAR interaction. 919 

The second removal experiment of all thirteen taxa of the EAR increases the node support 920 

for the boreotilapiines Pelmatolapiini sister group relationship strongly to BS 86 (see Fig. 5, 921 

B1). This fact supports our previous findings of a Gobiocichlini-EAR interaction. By removing 922 

the distracting conflict signal (EAR) from the boreotilapiines (Gobiocichlini) the node support 923 

of boreotilapiines sister group to Pelmatolapiini increases. Notably, each of the two species 924 

of the Pelmatolapiini appears to harbour a different ancient hybrid signal. P. mariae tends to 925 

align phylogenetically with the boreotilapiines*3, but P. cabrae with austrotilapiines*12.  926 

In summary there is evidence for ancient introgressive hybridisation, highlighted by the two 927 

removal experiments above. However, only effects of major lineages could be detected and 928 

interpreted, but detection of effects within these lineages is beyond the scope and also 929 

beyond the resolving power of only six loci (one mtDNA and five ncDNA) analysed of this 930 

study. We conclude that these lineages, that were involved in past hybridisation (e.g. 931 

Gobiocichlini, EAR), have been cohesive over long periods and deserve taxonomic 932 

recognition, even if basal nodes remain weakly supported, sometimes possibly due to 933 

phylogenetic conflict reflecting ancient hybridisation. To refer to such lineages adequately, a 934 

common taxonomical classification is necessary.  935 

 936 

4.3. Classification 937 

Most phylogenetic studies dealing with East African cichlids have focused on lacustrine 938 

cichlids of the three Great Lakes, Tanganyika, Malawi and Victoria (Koblmüller et al. 2005; 939 

Koblmüller et al. 2008; Meyer 1993; Nishida 1991 Salzburger et al. 2002; Salzburger & 940 
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Meyer 2004; Sturmbauer et al. 2010; Takahashi et al. 2001). However, little was known 941 

about the relationships within the original tribe Tilapiini Trewavas, 1983, containing mainly 942 

riverine cichlids, until Schwarzer et al. 2009 established a first well supported phylogeny as 943 

basis for further research. 944 

Several past classifications (for a general overview see Tab. 2) included a vaguely 945 

diagnosed tribus Tilapiini, but the composition had remained unchanged (Takahashi 2003; 946 

Koblmüller et al. 2008; Takahashi & Koblmüller 2011). Further, only minor changes on the 947 

tribus level were established within haplotilapiines by Poll (1986) (11 tribes stated (including 948 

Trematocarini)) and Takahashi & Koblmüller (2011) (13 tribes stated). From 1986 until 2011 949 

only the three tribes Boulengerochromini, Cyphotilapiini and Benthochromini have been 950 

postulated by Takahashi (2003) based on morphological characters. In addition Takahashi & 951 

Koblmüller (2011) stated Orthochromis as differentiated clade on molecular level, but without 952 

any tribus indications. Although we did not perform a total evidence phylogenetic analysis 953 

including morphological characters, due to the paucity of phylogenetically informative 954 

morphological characters in haplotilapiine cichlids, we nevertheless compiled and compared 955 

literature data used for previous tribus definitions (Trewavas 1983; Poll 1986; Takahashi 956 

2003) and complemented these with our own published and unpublished data (Dunz & 957 

Schliewen 2010, Dunz et al. 2012 (submitted)) in order to work out a stable classification of 958 

Tilapia-related cichlids. 959 

Due to the extensive paraphyly of Tilapia related taxa seven new tribes are erected in this 960 

study. Five (Gobiocichlini, Coptodonini, Paracoptodonini, Heterotilapiini and Coelotilapiini) 961 

formed the moderately supported clade of boreotilapiines*3. The two remaining tribes are 962 

Oreochromini and Pelmatolapiini. Oreochromini are the sister group to a clade of 963 

austrotilapiines*12, boreotilapiines*3 and the new tribe Pelmatolapiini. The latter remained 964 

inconsistently placed phylogenetically. 965 

 966 

4.4. General overview of the historic situation of “Tilapia” 967 

After some unsatisfactory attempts of Boulenger (1915, 1916) and Regan 1920, 1922) to 968 

classify “Tilapia”, Thys van den Audenaerde (1969) published a first comprehensive 969 

infrageneric classification, but without a critical discussion. In his view, major morphologic 970 

“Tilapia” groups were believed to be natural groups and hence given subgeneric rank. He 971 

divided “Tilapia” in three sections (Tab. 1). We focus here on Sections I (Tilapia sensu lato) 972 

and II (Heterotilapia and Coptodon sensu lato), because Section III (Sarotherodon sensu 973 

lato) exclusively deals with tilapiine mouthbrooders. The main difference between Thys van 974 

den Audenaerde's Section I and II is the number of cusps of teeth of the lower pharyngeal 975 

jaw, two in Section I and three to four in Section II.  976 
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In Section I, the first subgenus Tilapia, contains T. sparrmanii (type) and T. ruweti, but 977 

excludes T. guinasana (placed in the second subgenus Trewavasia) based on the count of 978 

scales around the caudal peduncle. Previous studies showed that this count is a highly 979 

variable character in “Tilapia” (Dunz & Schliewen 2010) and also in Tilapia sensu stricto 980 

(unpublished data). This suggests that T. guinasana should also be included in Tilapia, 981 

based on morphological characters. Thys van den Audenaerde's third subgenus 982 

Pelmatolapia is primarily grouped based on the dentition character outer teeth bicuspid and 983 

spatulate. It contains “T.” mariae (type), “T.” cabrae, T. bilineata, “T.” brevimanus and “T.” 984 

eisentrauti Trewavas, 1962. Thys van den Audenaerde (1969) himself mentioned an isolated 985 

position of T. bilineata, as the character combination of 10–11 gill rakers and the character a 986 

densely scaled caudal fin is not shared with other Thys van den Audenaerde's subgenus. 987 

Previous studies (Schwarzer et al. 2009) as well as actual findings show that “T.” brevimanus 988 

is not closely related to the type species of Pelmatolapia. Meanwhile, “T.” eisentrauti has 989 

been allocated to a new genus, Konia Trewavas, 1972, a mouthbrooder endemic to crater 990 

lake Barombi Mbo (Cameroon), which is closely related to the oreochromine genus 991 

Sarotherodon (Schliewen et al. 1994). In summary these findings suggest that only the two 992 

Lower Guinea taxa “T.” mariae and “T.” cabrae should remain members of the subgenus 993 

Pelmatolapia. The fourth subgenus Pelmatochromis is interesting, due to the fact that “T.” 994 

busumana was assigned to three Pelmatochromis species based on the dentition character: 995 

median outer teeth bicuspid, the lateral ones conical. The lateral teeth appear sometimes 996 

conical due to wear (Dunz & Schliewen 2010). Trewavas (1973) retained “T.” busumana in 997 

Tilapia in the course of a revision of Pelmatochromis. The actual status of “T.” busumana 998 

remains unclear and needs further investigation. However, “T.” busumana is surely not 999 

closely related to Pelmatochromis as shown here and in previous studies (Schwarzer et al. 1000 

2009).  1001 

In Section II, the first subgenus Heterotilapia contains “T.” buttikoferi and “T.” cessiana. The 1002 

two species are primarily separated based on the molariform pharyngeal teeth, a character 1003 

that is not shared with any other species in Thys van den Audenaerde's Sections I and II. 1004 

Recent and previous molecular analyses confirm this restriction to a separate (sub)genus 1005 

(Schwarzer et al. 2009). The second subgenus Coptodon contains 15 species, all sharing the 1006 

dentition character: outer teeth on jaws bicuspid, not spatulate. Also included here are the 1007 

two species “T.” tholloni and “T.” congica, both closely related to Coptodon, but different by 1008 

molecular as well as morphological characters (see Classification 3.3. Paracoptodon) and 1009 

thus allocated in a separate genus. The third subgenus Dagetia contains only “T.” rheophila, 1010 

which is placed in the synonymy with Coptodon (Dunz & Schliewen, 2012).  1011 

Subsequent morphological studies (Greenwood 1978; Poll 1986; Stiassny 1991) did not 1012 

consider the infrageneric level or considered only tilapiine mouthbrooders (Trewavas 1983).  1013 
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 1014 

5. Conclusion 1015 

After the first attempt of Schwarzer et al. (2009) to establish a well supported phylogeny 1016 

based on multilocus analyses of haplotilapiines, we provide a more comprehensive 1017 

phylogenetic hypothesis of basal haplotilapiines, accompanied by a revised classification of 1018 

the paraphyletic tilapiine assemblage. Additional African cichlid lineages with yet informal 1019 

status (chromidotilapiines, hemichromines, pelmatochromines), or with formal status 1020 

(Tylochromini, Haplochromini and all Lake Tanganyika tribus) should be included into the 1021 

future phylogenetic studies to provide a fully revised African cichlid classification. The 1022 

detection of phylogenetic conflict in the multilocus dataset, most likely explained by ancient 1023 

hybridisation events, suggests that a classification of African cichlids may have to rest on 1024 

many small tribus, rather than on a few large partially polyphyletic units, i.e. whose 1025 

monophyly has been compromised by too many hybridisation and introgression events. 1026 

 1027 

Acknowledgments 1028 

Thanks go to J. Schwarzer (ZFMK) for providing the basis of this study, to R. Bills and E. 1029 

Swartz (both SAIAB), F. Cotteril (Univ. of Stellenbosch), T. Moritz (Deutsches 1030 

Meeresmuseum), O. Seehausen (Eawag), E. Vreven (RMCA), V. Mamonekene (AMNH), A. 1031 

Lamboj (University of Vienna, Austria), A. Spreinat, A. Stalsberg, F. Cotterill (AEON), D. 1032 

Neumann (ZSM), E. Schraml, U. Werner, M. Keijman, O. Krahe, M. Haubner, P. Piepenstock 1033 

and S. Decker for providing tissue. M. Geiger (ZFMK), N. Straube, A. Cerwenka, J. 1034 

Wedekind, I. Stöger, O. Hawlitschek, D. Neumann (all ZSM) helped improve earlier versions 1035 

of the manuscript or provided help at ZSM. 1036 

This research received financial support from provided by the BayEFG (Bavarian Elite Aid 1037 

Act). Additional support came from SYNTHESYS Project (http://www.synthesys.info/) which 1038 

is financed by European Community Research Infrastructure Action under the FP6 1039 

“Structuring the European Research Area” Programme.and by DFG SCHL567/3-1. 1040 

 1041 

Appendix A. Supplementary Material (CD) 1042 

Glossary 1043 

Supplementary material 1. GenBank Accession numbers of “dataset A”. 1044 

Supplementary material 2. GenBank Accession numbers of “dataset B” and the exact 1045 

composition of Sarotherodon I + II, Haplochromini I-IX and Coptodon I + II of Figure 7. 1046 

Supplementary material 3. Detailed list of all 1006 examined specimen. 1047 



 

  139

Supplementary material 4. All removals of the HET in more detail. 1048 

Supplementary material 5. Molecular autapomorphies of each single tribe (total number of 1049 

autapomorphies stated in brackets). Locus ND2 is boldfaced, because the results are based 1050 

on the enlarged “dataset B”. Locations of nucleotide changes of all mitochondrial (12S 1051 

12S/16S 16S ND2) loci and the nuclear S7 intron locus were detected corresponding to a 1052 

reference sequence of GenBank. GenBank ID: NC007231 Oreochromis mossambicus, 1053 

complete mitochondrial genome as reference sequence for 12S, 12S/16S and 16S. 1054 
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Oreochromis niloticus as reference sequence for S7 intron. Amino acid changes and the 1057 

exchanged nucleotide within a codon were indicated in bold face. 1058 

 1059 
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Figure legends 1275 

 1276 

Figure 1a-f. Consensus topologies of all nuclear single loci based on a ML analysis (identical 1277 

setup as for the combined ML / BI analyses). 1278 

 1279 

Figure 2. Consensus topology of a combined nuclear locus dataset and a mitochondrial locus 1280 

dataset based on a ML analysis (identical setup as for the combined ML / BI analyses).  1281 

 1282 

Figure 3. Consensus BI / ML topology of the haplotilapiines phylogeny (94 taxa). The 1283 

consensus topology (50% majority rule) of the haplotilapiines phylogeny is based on the 1284 

combined “dataset A” of nine independent mitochondrial and nuclear loci. Black hexagons 1285 

mark nodes of BS 100 (ML), lower values are shown in non italic numbers. All BPP values 1286 

(BI) lower than 1.00 are shown in the topology as italic numbers; all other nodes have 1.00 1287 

BPP. The two bold faced numbers marked with an asterisk indicate nodes that differ in the BI 1288 

and ML analyses.  1289 

 1290 

Figure 4. Leaf stability indices for all taxa (N=94). OG (outgroup) outlier identified as 1291 

Tylochromis lateralis. 1292 

 1293 

Figure 5. Box plots for the results of the HET (N=147 experiments) are shown. For each 1294 

node (A-F) the 25-75% quartiles are drawn, the median is shown with a horizontal line within 1295 

the box, minimal and maximal values are shown with “whiskers”. Values exceeding 1.5 1296 

(circles) or 3 (stars) times the box height are illustrated. For values exceeding 3 (stars) times 1297 

the box height, the corresponding removal is stated. 1298 

 1299 

Figure 6. Potential hybrid signals, shown with dashed straight lines, within haplotilapiines 1300 

demonstrated in a consensus topology. Coptodonini and Paracoptodonini as well as 1301 

Coelotilapiini and Heterotilapiini are treated each as one group, because these tribes have 1302 

the same effect on other tribes and are affected in the same manner by other tribes. 1303 

Pelmatolapia is subdivided into the two species of this genus, P. mariae and P. cabrae, 1304 

because they are affected by different hybrid signals. Hybridization events of tribus indicated 1305 

in blue are discussed in 4.2. Effects of tribus indicated in red are mentioned in 3.2.3. All 1306 

potential hybrid signals within haplotilapiines were summarized in an arrow diagram.  1307 
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 1308 

Figure 7. Consensus topology (50% majority rule) of the ML analysis of the “dataset B” 1309 

based on the mitochondrial locus ND2 (784 taxa). The number of used sequences of the 1310 

specific taxa is stated in brackets. The exact composition of Sarotherodon I + II, 1311 

Haplochromini I-IX and Coptodon I + II can be found in Appendix A, Supplementary material 1312 

2. 1313 

 1314 

Figure 8. Distribution of Tilapiini. 1=T. guinasana; 2=Chilochromis; 3=T. bilineata, T. crassa 1315 

and T. sp. “louna”; 4=T. baloni (only Luongo-system). The remaining colored area is T. 1316 

sparrmanii and T. ruweti (restricted to Okavango, upper Zambezi, southern tributaries of the 1317 

Congo River system, Lake Mweru and ambient rivers). 1318 

 1319 

Table legends 1320 

 1321 

Table 1. Division by Thys van den Audenaerde (1969) of the genus Tilapia into three 1322 

“sections”, each including several diagnosed and taxonomically available subgenera, some 1323 

of them new. 1324 

 1325 

Table 2. Historical overview of the tribes within haplotilapiines. 1326 

 1327 
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Table 1. Division by Thys van den Audenaerde (1969) of the genus Tilapia into three 1328 
“sections”, each including several diagnosed and taxonomically available subgenera, some 1329 
of them new. 1330 

 1331 

 1332 

 1333 

 1334 

 1335 

 1336 

 1337 

 1338 

 1339 

 1340 

 1341 

 1342 

 1343 

 1344 

 1345 

 1346 

 1347 

 1348 

 1349 

section section name included subgenera

I Tilapia sensu lato Tilapia Smith, 1840 

  Trewavasia subgen. nov. 

  Pelmatolapia subgen. nov. 

  Pelmatochromis Steindachner, 1895 

   

II Heterotilapia and  

Coptodon sensu lato 

Heterotilapia Regan, 1920 

  Dagetia subgen. nov. 

  Coptodon Gervais, 1853 

   

III Sarotherodon sensu 
lato 

Danakilia subgen. nov. 

  Neotilapia Regan, 1920 

  Alcolapia subgen. nov. 

  Nyasalapia subgen. nov. 

  Loruwiala subgen. nov. 

  Oreochromis Günther, 1894 

  Sarotherodon Rüppell, 1854 



 

  150

Table 2. Historical overview of the tribes within haplotilapiines. 1350 

 1351 

Poll 1986 Takahashi 2003 Koblmüller 2008 Takahashi 2011 This study 

    Etiini 

Tilapiini Tilapiini Tilapiini Tilapiini 
(Oreochromis 
tanganicae) 

Tilapiini 

 Boulengerochromini Boulengerochromini Boulengerochromini Boulengerochromini 

    Steatocranini 

    Oreochromini 

    Coelotilapiini 

    Coptodonini 

    Paracoptodonini 

    Heterotilapiini 

    Pelmatolapiini 

Bathybathini Bathybathini Bathybathini Bathybathini Bathybathini 

  Hemibatini   

Trematocarini  Trematocarini   

Eretmodini Eretmodini Eretmodini Eretmodini Eretmodini 

Lamprologini Lamprologini Lamprologini Lamprologini Lamprologini 

Ectodini Ectodini Ectodini Ectodini Ectodini 

Cyprichromini Cyprichromini Cyprichromini Cyprichromini Cyprichromini 

Perissodini Perissodini Perissodini Perissodini Perissodini 

Limnochromini Limnochromini Limnochromini Limnochromini Limnochromini 

 Greenwoodochromini    

 Benthochromini Benthochromini Benthochromini Benthochromini 

Haplochromini Haplochromini Haplochromini Haplochromini Haplochromini 

 New tribe 
(Ctenochromis 
benthicola) 

   

Tropheini Tropheini Tropheini 
(monophyletic sub-
group within the 
Haplochromini) 

Tropheini 
(monophyletic sub-
group within the 
modern 
haplochromines) 

Tropheini 
(monophyletic sub-
group within the 
Haplochromini) 

 Cyphotilapiini Cyphotilapiini Cyphotilapiini Cyphotilapiini 

   Orthochromis Orthochromis sensu 
stricto 

    Gobiocichlini 

 1352 
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Figure 1a-f. Consensus topologies of all nuclear single loci based on a ML analysis (identical 1353 
setup as for the combined ML / BI analyses). 1354 

 1355 

 1356 
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Figure 2. Consensus topology of a combined nuclear locus dataset and a mitochondrial locus 1357 
dataset based on a ML analysis (identical setup as for the combined ML / BI analyses).  1358 

 1359 

 1360 
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Figure 3. Consensus BI / ML topology of the haplotilapiines phylogeny (94 taxa). The 1361 
consensus topology (50% majority rule) of the haplotilapiines phylogeny is based on the 1362 
combined “dataset A” of nine independent mitochondrial and nuclear loci. Black hexagons 1363 
mark nodes of BS 100 (ML), lower values are shown in non italic numbers. All BPP values 1364 
(BI) lower than 1.00 are shown in the topology as italic numbers; all other nodes have 1.00 1365 
BPP. The two bold faced numbers marked with an asterisk indicate nodes that differ in the BI 1366 
and ML analyses.  1367 

 1368 
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Figure 4. Leaf stability indices for all taxa (N=94). OG (outgroup) outlier identified as 1369 
Tylochromis lateralis. 1370 

 1371 

 1372 
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Figure 5. Box plots for the results of the HET (N=147 experiments) are shown. For each 1373 
node (A-F) the 25-75% quartiles are drawn, the median is shown with a horizontal line within 1374 
the box, minimal and maximal values are shown with “whiskers”. Values exceeding 1.5 1375 
(circles) or 3 (stars) times the box height are illustrated. For values exceeding 3 (stars) times 1376 
the box height, the corresponding removal is stated. 1377 

 1378 

 1379 
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Figure 6. Potential hybrid signals, shown with dashed straight lines, within haplotilapiines 1380 
demonstrated in a consensus topology. Coptodonini and Paracoptodonini as well as 1381 
Coelotilapiini and Heterotilapiini are treated each as one group, because these tribes have 1382 
the same effect on other tribes and are affected in the same manner by other tribes. 1383 
Pelmatolapia is subdivided into the two species of this genus, P. mariae and P. cabrae, 1384 
because they are affected by different hybrid signals. Hybridization events of tribus indicated 1385 
in blue are discussed in 4.2. Effects of tribus indicated in red are mentioned in 3.2.3. All 1386 
potential hybrid signals within haplotilapiines were summarized in an arrow diagram.  1387 

 1388 
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Figure 7. Consensus topology (50% majority rule) of the ML analysis of the “dataset B” 1389 
based on the mitochondrial locus ND2 (784 taxa). The number of used sequences of the 1390 
specific taxa is stated in brackets. The exact composition of Sarotherodon I + II, 1391 
Haplochromini I-IX and Coptodon I + II can be found in Appendix A, Supplementary material 1392 
2. 1393 

 1394 
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Figure 8. Distribution of Tilapiini. 1=T. guinasana; 2=Chilochromis; 3=T. bilineata, T. crassa 1395 
and T. sp. “louna”; 4=T. baloni (only Luongo-system). The remaining colored area is T. 1396 
sparrmanii and T. ruweti (restricted to Okavango, upper Zambezi, southern tributaries of the 1397 
Congo River system, Lake Mweru and ambient rivers). 1398 

 1399 

 1400 

 1401 
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8. General discussion and results 

 

8.1 Evaluation of the first comprehensive infrageneric classification published by Thys 
van den Audenaerde (1969) 
 

Thys van den Audenaerde divided “Tilapia” into three sections (Tab. 1). This thesis 

focuses on Sections I (Tilapia sensu lato) and II (Heterotilapia and Coptodon sensu lato), 

because Section III (Sarotherodon sensu lato) deals with tilapiine mouthbrooders. The main 

difference between Thys van den Audenaerde' s Section I and II is the number of cusps of 

teeth of the lower pharyngeal jaw, two in Section I and three to four in Section II.  

In Section I, the first subgenus Tilapia, contains T. sparrmanii (type) and T. ruweti, but 

excludes T. guinasana (placed in the second subgenus Trewavasia) based on the character 

“scales around the caudal peduncle”. Previous studies showed that this count is a highly 

variable character in “Tilapia” (Dunz & Schliewen 2010a) and also in Tilapia sensu stricto 

(unpublished data). This suggests that, based on morphological characteristics, T. guinasana 

should also be included in Tilapia. Thys van den Audenaerde' s third subgenus Pelmatolapia 

is primarily grouped based on the dentition character “outer teeth bicuspid and spatulate”. It 

contains “T.” mariae (type), “T.” cabrae, “T.” bilineata, “T.” brevimanus and T. eisentrauti 

Trewavas, 1962. Thys van den Audenaerde (1969) himself mentioned an isolated position of 

“T.” bilineata, as the character combination of 10–11 gill rakers and the character “a densely 

scaled caudal fin” is not shared with other Thys van den Audenaerde' s subgenus. Previous 

studies (Schwarzer et al. 2009) as well as actual findings show that “T.” brevimanus is not 

closely related to the type species of Pelmatolapia. Meanwhile, “T.” eisentrauti has been 

allocated to a new genus, Konia Trewavas, 1972, a mouthbrooder endemic to crater lake 

Barombi Mbo (Cameroon), which is closely related to the oreochromine genus Sarotherodon 

(Schliewen et al. 1994). In summary, these findings suggest that only the two Lower Guinea 

taxa “T.” mariae and “T.” cabrae should remain members of the subgenus Pelmatolapia. The 

fourth subgenus Pelmatochromis is interesting, due to the fact that “T.” busumana was 

assigned to three Pelmatochromis species based on the dentition character “median outer 

teeth bicuspid, the lateral ones conical”. The lateral teeth appear sometimes conical due to 

wear (Dunz & Schliewen 2010a). Trewavas (1973) retained “T.” busumana in Tilapia in the 

course of a revision of Pelmatochromis. The actual status of “T.” busumana remains unclear 

and needs further investigation. However, “T.” busumana is surely not closely related to 

Pelmatochromis as shown here and in previous studies (Schwarzer et al. 2009).  

In Section II, the first subgenus Heterotilapia contains “T.” buttikoferi and “T.” 

cessiana. The two species are primarily separated based on the molariform pharyngeal 

teeth, a character that is not shared with any other species in Thys van den Audenaerde' s 
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Sections I and II. Recent and previous molecular analyses confirm this restriction to a 

separate (sub)genus (Schwarzer et al. 2009). The second subgenus Coptodon contains 15 

species, all sharing the dentition character “outer teeth on jaws bicuspid, not spatulate”. Also 

included here are the two species “T.” tholloni and “T.” congica, both closely related to 

Coptodon, but different by molecular as well as morphological characteristics and thus later 

allocated in a separate genus (Paracoptodon). The third subgenus Dagetia contains only “T.” 

rheophila, which is currently placed in the synonymy with Coptodon (Dunz & Schliewen 

2012).  

 

8.2 Actual state of the scientific research of “Tilapia” 
 

This thesis provides a comprehensive phylogenetic hypothesis (Fig. 5) of almost all 

taxa formerly referred to as “Tilapia” and related lineages and thus provides a basis for 

critical reassessment of the systematics and taxonomy. The supraspecific taxonomy of 

tilapiine cichlids has been instable, sometimes contradictory and often used in a mixture of 

taxonomically available with some unavailable names. Recent analyses confirm that tilapiine 

cichlids as previously understood are paraphyletic and are composed of several distinct 

lineages. To incorporate phylogenetic results into a consistent classification for future 

reference in evolutionary biology and taxonomy, I discussed, introduced, revitalized and 

(re)defined taxonomically available as well as novel genus and tribus names according to the 

rules of the International Commission of Nomenclature (ICZN, 1999). This is only done for 

Tilapia related lineages in the focus of this study if (1) lineages receive strong node support 

in the Maximum Likelihood and Bayesian Inference analyses, i.e. bootstrap support >90% 

and Bayesian posterior probability =1.0, (2) lineage specific node recovery is consistent over 

all analyses, and if (3) diagnostic molecular and/or morphological characteristics can be used 

to unambiguously identify those lineages. Reasoning that these lineages have been cohesive 

over long periods and deserve taxonomic recognition, even if basal nodes remain weakly 

supported, sometimes possibly due to phylogenetic conflict reflecting ancient hybridisation. 

Because of the paraphyly of Tilapia six new tribes were erected in this study. Five 

(Gobiocichlini, Coptodonini, Paracoptodonini, Heterotilapiini and Coelotilapiini) formed the 

moderately supported clade of boreotilapiines. The tribe Pelmatolapiini remained inconsistent 

in phylogenetic placement. Additional tribes Etiini, Oreochromini and Steatocranini were 

described, but are not discussed in detail here (see 7. Paper V). All novel discrete 

phylogenetic haplotilapiine lineages are supported by molecular and morphological 

autapomorphies. Tilapiini Trewavas, 1983 remains unsupported by unique molecular 

characteristics which could be interpreted as autapomorphies, but the tribus members are 

consistently grouped in all analyses, and with strong node support in the Maximum 

Likelihood and Bayesian Inference analyses of the multilocus approach.  
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Fig. 5. Consensus of Bayesian Inference and Maximum Likelihood topologies of the haplotilapiines phylogeny (94 taxa). The 
consensus topology (50% majority rule) of the haplotilapiines phylogeny is based on the combined dataset of nine independent 
mitochondrial and nuclear loci. Black hexagons mark nodes with full bootstrap support (100%), lower values are shown in non 
italic numbers. All Bayesian posterior probability values < 1.00 are shown in the topology as italic numbers; all other nodes have 
1.00 Bayesian posterior probabilities. The two bold faced numbers marked with an asterisk indicate nodes that differ in the 
Bayesian Inference and Maximum Likelihood analyses.  
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Three new genera (Congolapia, Paracoptodon, and Coelotilapia) were described and 

three genera (Pelmatolapia, Heterotilapia and Coptodon) were raised to generic rank. In 

addition six new species (“Tilapia” pra, Coptodon fusiforme, Coptodon nigrans, Coptodon 

ejagham, Coptodon konkourensis, and Congolapia louna) were described and three species 

(Coptodon deckerti, Congolapia crassa, and Congolapia bilineata) were revised in this thesis. 

With these new descriptions and revisions the number of currently valid “Tilapia” species was 

increased from 39 to 46. 

 
8.3 A short overview of the new tribus and genera 
 

Tribus. Coelotilapiini, new tribe. 

Type genus. Coelotilapia, new genus. 

Included genera. One monotypic genus. 

Contained species. Coelotilapia joka (Thys van den Audenaerde, 1969). 

Distribution (Fig. 6). Coastal plains of Sierra Leone and western Liberia (Teugels & Thys van 

den Audenaerde 2003). 

 

 
Fig. 6. Distribution (see above) of Coelotilapiini.                          Fig. 7. Coelotilapia joka; photo: A. Lamboj. 

 

Tribus. Paracoptodonini, new tribe. 

Type genus. Paracoptodon, new genus. 

Included genera. Paracoptodon, new genus. 

Contained species. Paracoptodon tholloni (Sauvage, 1884) and Paracoptodon congica (Poll 

& Thys van den Audenaerde, 1960). 

Distribution (Fig. 8). Swampy central Congo area, Pool Malebo, upper and lower Ogowe, 

Niari-Kwilu, Shiloango and lower Congo (Daget et al. 1991; Stiassny et al. 2007). 
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Fig. 8. Distribution (see above) of Paracoptodonini.         Fig. 9. Paracoptodon tholloni; photo: J. Geck. 

 

Tribus. Heterotilapiini, new tribe. 

Type genus. Heterotilapia Regan, 1920 (formerly a subgenus, raised to generic rank). 

Included genera. Heterotilapia Regan, 1920. 

Contained species. Heterotilapia buttikoferi (Hubrecht, 1883), type species, and Heterotilapia 

cessiana (Thys van den Audenaerde, 1968). 

Distribution (Fig. 10). Lower reaches of coastal rivers from Guinea-Bissau to West Liberia 

(Saint John River) and Cess or Nipoue River (Liberia, Côte d’Ivoire) (Teugels & Thys van 

den Audenaerde 2003). 

 

 
Fig. 10. Distribution (see above) of Heterotilapiini.                                  Fig. 11. Heterotilapia buttikoferi. 

 

Tribus. Pelmatolapiini, new tribe. 

Type genus. Pelmatolapia Thys van den Audenaerde, 1969 (formerly a subgenus, raised to 

generic rank). 

Included genera. Pelmatolapia Thys van den Audenaerde, 1969. 

Contained species. Pelmatolapia mariae (Boulenger, 1899), type species, and Pelmatolapia 

cabrae (Boulenger, 1898).  

Distribution (Fig. 10). Coastal lowlands from Southern Rio Muni to mouth of the Congo River, 

around Cuanza (also spelled Coanza, Kwanzaa, Quanza, Kwanza, or Kuanza) delta 

(Angola), coastal lowlands and lagoons from the Tabou River (Côte d’Ivoire) to Southwest 
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Ghana and from Southeast Benin to the Kribi and Lobe River (Cameroon) (Stiassny et al. 

2007). 

 

 
Fig. 10. Distribution (see above) of Pelmatolapiini.                                               Fig. 11. Pelmatolapia mariae; photo: A. Lamboj. 

 

Tribus. Coptodonini, new tribe. 

Type genus. Coptodon Gervais, 1853. 

Included genera. Coptodon Gervais, 1853. 

Included species. Coptodon zillii (Gervais, 1848), type species; C. bakossiorum (Stiassny, 

Schliewen & Dominey, 1992); C. bemini (Thys van den Audenaerde, 1972); C. bythobates 

(Stiassny, Schliewen & Dominey, 1992); C. cameronensis (Holly, 1927); C. camerunensis 

(Lönnberg, 1903); C. coffea (Thys van den Audenaerde, 1970); C. dageti (Thys van den 

Audenaerde 1971); C. discolor (Günther, 1902); C. deckerti (Thys van den Audenaerde, 

1967); C. ejagham (Dunz & Schliewen 2010b); C. flava (Stiassny, Schliewen & Dominey, 

1992); C. fusiforme (Dunz & Schliewen 2010b); C. guineensis (Bleeker, 1862); C. gutturosa 

(Stiassny, Schliewen & Dominey, 1992); C. imbriferna (Stiassny, Schliewen & Dominey, 

1992); C. ismailiaensis (Mekkawy 1995); C. konkourensis (Dunz & Schliewen 2012); C. 

kottae (Lönnberg, 1904); C. louka (Thys van den Audenaerde, 1969); C. margaritacea 

(Boulenger, 1916); C. nigrans (Dunz & Schliewen 2010b); C. nyongana (Thys van den 

Audenaerde, 1960); C. rendalli (Boulenger, 1896); C. rheophila (Daget, 1962); C. snyderae 

(Stiassny, Schliewen & Dominey, 1992); C. spongotroktis (Stiassny, Schliewen & Dominey, 

1992); C. thysi (Stiassny, Schliewen & Dominey, 1992); C. walteri (Thys van den 

Audenaerde, 1968); yet undescribed species: Coptodon sp. aff. guineensis “Cross”; 

Coptodon sp. aff. zillii “Kisangani” and Coptodon sp. aff. louka “Samou”. 

Distribution (Fig. 12). Lakes (alphabetic order): Albert (Uganda / Democratic Republic of the 

Congo), Barombi-ba-Kotto (Cameroon), Bermin (Cameroon), Bosumtwi (Ghana), Chad 

(Central Africa), Ejagham (Cameroon), Kainji (Nigeria), Malawi (Malawi / Mozambique / 

Tanzania), Mboandong (Cameroon), Tanganyika (Tanzania / Burundi / Zambia / Democratic 

Republic of the Congo), Turkana (Kenya) and Volta (Ghana). River systems (alphabetic 

order): Bandama, Bia, Cavally, Comoé, Corubal River to Lofa River, Cunene, Dja, Jordan, 
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Kasai, Konkouré, Lualaba, Meme, Mungo, Niger (upper and middle), Nile, Nipoue, Nyong, 

Okavango, Pra, Saint Paul, Sanaga, Sassandra (upper), Shaba, Senegal, Tano, Ubangi-

Uele-Ituri, Volta (upper and lower), Zambesi, coastal waters from mouth of the Senegal River 

to mouth of the Cuanza River, south Morocco, Sahara (Daget et al. 1991; Teugels & Thys 

van den Audenaerde 2003; Stiassny et al. 2007; Dunz & Schliewen 2010b). 

 

 
Fig. 12. Distribution (see above) of Coptodonini.                                       Fig. 13. Coptodon zillii from Lake Maryut (Egypt). 

 

Tribus. Gobiocichlini, new tribe. 

Type genus. Gobiocichla Kanazawa, 1951. 

Included genera. Steatocranus Boulenger, 1899; Tilapia Smith, 1840; Gobiocichla 

Kanazawa, 1951. 

Included species. Steatocranus irvinei Trewavas, 1943; Tilapia busumana (Günther, 1903); 

Tilapia brevimanus Boulenger, 1991; Tilapia pra Dunz & Schliewen 2010a; Gobiocichla 

wonderi Kanazawa, 1951; Gobiocichla ethelwynnae Roberts, 1982. 

Distribution (Fig. 14). Volta River system, coastal rivers from Guinea-Bissau to East Liberia 

(Cess River), Pra, Ankobra, Tano and Bia Rivers in Southwestern Ghana and Southeastern 

Cote d’Ivoire, Lake Bosumtwi, rapids in the middle and upper Niger, rapids in the mainstream 

of the Cross River about eight kilometre downstream from Mamfé (Cameroon) (Teugels & 

Thys van den Audenaerde 2003; Dunz & Schliewen 2010a). 

 

 
Fig. 14. Distribution (see above) of Gobiocichlini.                                                                 Fig. 15. “Tilapia” brevimanus. 
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Tribus. Tilapiini Trewavas, 1983 

Type genus. Tilapia Smith, 1840. 

Included genera. Tilapia Smith, 1840; Chilochromis Boulenger, 1902; Congolapia Dunz et al. 

2012.  

Included species. Tilapia sparrmanii Smith, 1840; Tilapia ruweti Poll & Thys van den 

Audenaerde, 1965; Tilapia guinasana Trewavas, 1963; Tilapia baloni Trewavas & Stewart, 

1975; Chilochromis duponti Boulenger, 1902; Congolapia bilineata (Pellegrin, 1900); 

Congolapia crassa (Pellegrin, 1903); Congolapia louna Dunz & Schliewen, 2012. 

Distribution (Fig. 16). Chiloango basin, Kouilou basin, lower Loeme and Niari-Bouenza 

Rivers, Western Cuvette Centrale (Alima, Lefini) and central Cuvette Centrale (Thsuapa, 

Luilaka), the Sangha (Republic of the Congo), from Malebo Pool, the Northern Congo 

tributary Itimbiri as well as from affluents of the Luilaka (Democratic Republic of the Congo) 

in the Salonga National Park and Louna River. Kasai drainage including the Lulua and 

Kwango (middle Congo River basin), upper Congo River basin including the upper Lualaba, 

Luvua, Lake Mweru, Luapula, Lufira and Upemba region, upper Cuanza, Cunene, 

Okavango, Lake Ngami, Zambezi, Limpopo, Sabi, Lundi, Northern tributaries of the Orange 

River, Lake Malawi, Bangweulu, Guinas and Otjikoto (Thys van den Audenaerde 1964; Dunz 

et al. 2012). 

 

  
Fig. 16. Distribution (see above) of Tilapiini. Fig. 17. Tilapia sparrmanii from Eye of Kuruman (South 

Africa). 

 

8.4 Phylogenetic placement of haplotilapiines, Oreochromini, boreotilapiines and 
austrotilapiines in the multilocus approach compared to the phylogenetic hypothesis 
of Schwarzer et al. (2009) 
 

The term haplotilapiines was introduced on the basis of the phylogenetic analysis of 

three nuclear loci by Schliewen & Stiassny (2003) for a monophylum comprising Etia, 

tilapiines and a selection of haplochromine-related taxa. The present findings as well as 

those from Schwarzer et al. (2009) confirm the monophyly of this clade. Consistent in all 

multilocus analyses Etia nguti is the most basal sister taxon to all remaining haplotilapiines. 
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Oreochromini are confirmed to be the basal sister group to all haplotilapiines except Etia. 

Schwarzer et al. (2009) identified a clade of the “boreotilapiines” containing two 

predominantly West African subclades, named “BI” and “BII” (Fig. 4). The increased taxon 

sampling of the present study provided better resolution within that clade, which allowed the 

distinction of five tribus. Subclade “BI” corresponds to the new tribus Gobiocichlini and 

subclade “BII” to the new tribus Coelotilapiini, Heterotilapiini, Paracoptodonini and 

Coptodonini. The question arises whether it is necessary to define four separate tribus for 

subclade “BII” and whether, there is molecular and morphological evidence to diagnose 

subclade “BII” as a unit? On the molecular level there is a single molecular character state 

interpretable as a diagnostic autapomorphy for all four tribus, but there is no diagnostic 

morphological criterion. In contrast, each of the four tribus is strongly supported by molecular 

and morphological autapomorphies in all analyses. The main argument for separating four 

tribus is however, that the boreotilapiines are strongly compromised by an apparent ancient 

hybrid signal, and therefore appear to contain genomic partitions of non-boreotilapiine 

lineages i.e. it is a polyphyletic group. In contrast strongly supported by molecular and 

morphological autapomorphies (Schwarzer et al. 2009), the clade of the austrotilapiines 

identified three lineages named “AI”, “AII” and “AIII” (Fig. 4); and already in Schwarzer et al. 

(2009) austrotilapiines  were only moderately supported (bootstrap support of 86% in 

Maximum Likelihood analysis). All three still appear as monophyletic lineages in the present 

study, with subclade “AI” corresponding to the East African cichlid radiation, “AII” 

corresponding to the newly defined Tilapiini, and “AIII” corresponding to the Steatocranini. 

However, the critical assessment of the ancient hybrid status of Pelmatolapia, both in 

Schwarzer et al. (2009) (P. mariae) and in the present study with the second taxon (P. 

cabrae) compromise the monophyly support of austrotilapiines, although relevant but not 

overwhelming support for its monophyly as well as homoplasy excess suggests that 

austrotilapiines evolved as a monophylum before a secondary introgression event. In 

summary, austrotilapiines are polyphyletic but, as for boreotilapiines, an informal clade 

designation remains useful to refer to their putative ancient monophyly. 

 

8.5 Phylogenetic placement of Oreochromini, boreotilapiines and austrotilapiines in a 
larger phylogenetic framework (ND2) 
 

A larger phylogenetic framework (784 vs. 94 taxa) was generated for the 

haplotilapiines based on the mitochondrial locus ND2. The following Lake Tanganyika and 

related tribes or clades are added additionally to the taxon sampling in the multilocus 

approach: Cyphotilapiini, Limnochromini, Ectodini, Perissodini and Tanzanian 

representatives of the genus Orthochromis sensu stricto. All clades, which are well supported 
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in the multilocus approach, are also well supported in this Maximum Likelihood analysis of 

the ND2 dataset except for the former austrotilapiines. The monophyletic clade of P. cabrae 

and P. mariae (Pelmatolapiini) is the sister group of boreotilapiines in the multilocus 

approach, but is located as the sister group of Tilapiini in the ND2 approach. Thus, the 

austrotilapiines, which contain the Tilapiini, are not supported as monophylum in the ND2 

approach, in contrast to the moderately supported (bootstrap support 67%) monophyletic 

boreotilapiines in this Maximum Likelihood analysis.  

Although the ND2 taxonset is about seven times larger than the multilocus set (784 

vs. 94 taxa) and contains several tribus of the East African cichlid radiation, which are not 

represented in the multilocus approach, the resulting topologies of both analyses, ND2 and 

multilocus, are largely congruent in terminal splits. 

 

8.6 Introgressive hybridisation and cytonuclear discordance 
 

In the following section we look more closely at selected sources of genetic variation 

and their impact on phylogenetic hypotheses. I compared the mitochondrial and the nuclear 

dataset of the multilocus approach with the Shimodaira-Hasegawa test (a Likelihood-based, 

non-parametric test for alternative tree topologies (Shimodaira & Hasegawa 1999)). The 

Shimodaira-Hasegawa test indicated highly significant conflict (p<0.01) between the 

mitochondrial and the nuclear dataset. The most striking disagreements are the discordant 

placements of Gobiocichlini and Oreochromini. These discordant placements might imply 

cytonuclear discordance. This cytonuclear discordance (Oreochromini) indicates 

introgressive hybridisation between Oreochromini and members of the former austrotilapiines 

(including Pelmatolapia) or incomplete lineage sorting.  

Incomplete lineage sorting would suggest that Oreochromini and members of the 

former austrotilapiines (including Pelmatolapia) had a common ancestor. This ancestral 

taxon has probably passed several speciation events in a short period of time and the 

ancestral polymorphism of a given gene was not fully resolved into two monophyletic 

lineages when the second speciation occurred (Pamilo & Nei 1988).  

Introgressive hybridisation, also known as introgression, can be defined as an 

important source of genetic variation in natural populations, “where rare hybrids tend to 

backcross within populations, leading to limited gene transfer between distinct populations or 

species” (Baskett & Gomulkiewicz 2011). Introgressive hybridisation is common and well 

accepted in plants (Hardig et al. 2000), but also documented in animals (Gardner 1996), and 

also in cichlid fishes (Rüber et al. 2001; Schliewen & Klee 2004; Koblmüller et al. 2009). 

The exact differentiation of incomplete lineage sorting and introgressive hybridisation 

is difficult, because both mechanisms generate very similar phylogenetic patterns (Holder et 
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al. 2001). To evaluate hybridisation as the cause for cytonuclear discordance, I conducted a 

specific tree-based homoplasy excess test following Seehausen (2004). Excluding a hybrid 

taxon from the dataset is expected to lead to an increase of support values (here bootstrap 

support) for the position of parental taxa in a bifurcating phylogenetic tree (Seehausen 2004; 

Schwarzer et al. 2011). I found tentative evidence of past hybridisation, based on the 

homoplasy excess test. However, only effects of major lineages could be detected and 

interpreted, but detection of effects within these lineages is beyond the scope and also 

beyond the resolving power of only nine loci (four mtDNA and five ncDNA) analysed in this 

study. I conclude that these lineages (e.g. Oreochromini), that were involved in past 

hybridisation, have been cohesive over long periods and deserve taxonomic recognition, 

even if basal nodes remain weakly supported, sometimes possibly due to phylogenetic 

conflict reflecting ancient hybridisation. 

Interspecific conflicts among datasets are usually attributed to introgressive 

hybridisation or incomplete lineage sorting (Shaw 2002). A third mechanism, long-branch 

attraction, is able to generate artificial cytonuclear discordance by clustering most similar 

nodes and thus sometimes a homoplasy is erroneously interpreted as a synapomorphy 

(Felsenstein 1978). This is unlikely in our cases, e.g. in Oreochromini, because short 

branches are affected by discordant placement, further the same discordances appear in 

Maximum Likelihood and Bayesian Inference analyses, which takes unequal rates of branch 

lengths into account (Swofford et al. 2001).  

 

8.7 The species problem 
 

In general there are two contrary points of view of the species category. One side 

claims that the species category does not exist (Mishler 2003; Fisher 2006) and the other 

side is in agreement that it does exist (Mayden 2002; De Queiroz 2007; Wilson et al. 2009).  

 Hey (2001) listed 24 different species concepts, but only a few are accepted by the 

majority of biologists and philosophers. The two most prominent species concepts are the 

Biological Species Concept and the Phylogenetic Species Concept. Each captures an 

important aspect, but neither is ubiquitous applicable. The Biological Species Concept based 

on interbreeding will not explain any asexual taxa. Asexual taxa are much more common 

than sexual taxa (Templeton 1992). The Phylogenetic Species Concept is not able to explain 

paraphyletic taxa, but paraphyletic taxa are no less real than monophyletic taxa (De Queiroz 

& Donoghue 1988).  

 Therefore, the question arises whether one should eliminate the term “species”? 

Grant (1981) suggests the term “biospecies” for interbreeding species and Ereshefsky (1992) 

“phylospecies” for phylogenetic species. Certainly there are several reasons to keep the term 
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“species”. The most frequently cited reason is the pragmatic reasons. The term “species” is 

well entrenched in natural science and law. Such a common term is necessary to 

communicate scientific hypotheses and in addition there is no acuteness to eliminate the 

term “species”, because so far it has not impeded the scientific process (Ereshefsky 2010).  

 The solution of this problem is somewhere in between. We keep using the term 

“species” for pragmatic reasons and on condition that scientists are explicit about which 

species concept they are using (Ereshefsky 2010). 
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9. Conclusion 
 

After the first attempt of Schwarzer et al. (2009) to establish a well supported 

phylogeny based on multilocus analyses of haplotilapiines, I provide a more comprehensive 

phylogenetic hypothesis of basal haplotilapiines, accompanied by a revised classification of 

the paraphyletic tilapiine assemblage. Additional African cichlid lineages with yet informal 

status (chromidotilapiines, hemichromines, pelmatochromines), or with formal status 

(Tylochromini, Haplochromini and all Lake Tanganyika tribus) should be included into the 

future phylogenetic studies to provide a fully revised African cichlid classification. The 

detection of phylogenetic conflict in the multilocus dataset, most likely explained by ancient 

hybridisation events, suggests that a classification of African cichlids may have to rest on 

many small tribus, rather than on a few large partially polyphyletic units, i.e. whose 

monophyly has been compromised by too many hybridisation and introgression events.  
Furthermore, it would be necessary to resolve potential species complexes on 

species level. The two widespread Coptodon species C. zillii (Gervais, 1848) and C. rendalli 

(Boulenger, 1897) and the type species Tilapia sparrmanii Smith, 1840 are the most potential 

species complexes. These three species together have 27 synonyms and represent the most 

important substrate brooding “Tilapia” species in aquaculture, making it difficult and 

necasssary to revise. In addition, the distribution has been extended by anthropogenic 

influence. In order to resolve such potential species complexes, it is necessary to take 

extensive samples from the entire distribution area of the potential species complex.  

Currently, the resolution of the Tilapia sparrmanii species complex is being prepared in 

collaboration with the South African Institute of Aquatic Biodiversity. Sampling is almost 

complete and the first preliminary results show that Tilapia sparrmanii can be split into 

several species based on morphologically as well as molecular findings. 
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