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Summary

In the environmental system, soil surface roughness is a critical parameter in a wide
range of eco-hydrological processes. In the context of a high resolution process-based
eco-hydrological modeling approach, the knowledge about soil surface roughness condi-
tions at field scale is essential due to the importance for runoff generation. With regard
to a rougher surface, the time to the point where surface runoff starts is more delayed
compared to a smoother surface. Also the surface runoff pattern is dependent on soil
surface roughness conditions. For a smooth surface the generated surface runoff is more
uniformly distributed, indeed the generated surface runoff over a rough surface follows
more preferential pathways, thus more concentrated along the highest relief gradient.
This information is essential for a physically-based modeling of soil erosion. In addi-
tion, due to soil crusting, the infiltration rate of soil can be significantly reduced, thus
increasing the potential of river floods. Crusts can also reduce the plant development
over agricultural fields due to a lack of available oxygen for the plants. However, the
measurement of soil surface roughness is limited to small plots, thereby increasing the
uncertainties of such models to predict the above mentioned processes. As shown in
the first part of this thesis, microwave remote sensing offers the possibility to map soil
surface roughness conditions over bare and sparsely vegetated agricultural fields. Using
polarimetric SAR datasets, the polarimetric RRLL coherence shows a dependency on
the roughness conditions of agricultural fields. However, the uncertainty of the in-field
roughness measurements hamper the retrieval approach due to the scale dependency of
soil surface roughness. In addition to the above mentioned impacts, soil surface rough-
ness has also a strong influence on microwave remote sensing. As shown in Paper II
of this thesis, the directional scattering phenomena, which is characterized by a strong
backscatter over several agricultural fields, can be related to the roughness conditions
- especially the horizontal periodical component - of the imaged fields. Thus a robust
roughness measurement technique is needed to measure in-field soil surface roughness
over large sample plots and to characterize the full spectrum of soil surface roughness on
an agricultural field. In Part II of this thesis, a measurement device based on photogram-
metric image acquisitions is developed, which allows to measure soil surface roughness
highly accurate over large sample plots efficiently. In an extensive analysis, the perfor-
mance of the device in terms of representativeness was carried out, indicating that the
developed system is statistically more robust in the determination of soil surface rough-
ness compared to classical profile measurements. This was also indicated by a developed
algorithm, the representative elementary area, which tests the measurement’s sample
size to its representativeness, as the determined roughness values are depended from
the sample size over which they are estimated. In addition it was found that soil sur-
face roughness has a strong non-isotropic, multi-scale appearance, revising the previous
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Summary

assumptions of an isotropic and stationary surface. Finally in Part III, the developed
system was used to measure soil surface roughness for the modeling of SAR backscatter
values in the presence of directional scattering over agricultural fields using a backscat-
ter model, which was developed in the framework of this thesis. The modified Shin and
Kong model which accounts for different roughness scales as well as anisotropy, was able
to predict the backscatter values in the case of directional scattering quite accurately. In
this context it could be shown that a certain roughness condition alters the directional
scattering significantly for different sample points with the same row orientation to the
sensors look vector.
In summary, the major scientific achievements of this thesis can be summarized as in
the following:

- A better understanding of soil surface roughness and its quantification in terms of
roughness scales and non-isotropic appearance for an improved parametrization of
backscatter models was achieved.

- An improved and enhanced understanding of the directional scattering phenomena,
occurring in SAR imagery acquired over agricultural landscapes, which could be
related to soil surface roughness conditions.

- An approach was proposed to derive soil surface roughness from polarimetric SAR
data which could be further assimilated in process-based eco-hydrological models
in the future.
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Zusammenfassung

Im Umweltsystem spielt die landwirtschaftliche Bodenrauigkeit eine zentrale Rolle in
einer Spannweite von ökologischen und hydrologischen Prozessen. In räumlich und
zeitlich hochaufgelösten, prozessbasierten öko-hydrologischen Modellansätzen ist das
Wissen von dem Zustand der Bodenoberfläche hinsichtlich der Rauigkeit von essentieller
Bedeutung. Infiltration, oberflächen Abflussbildung und schliesslich Bodenerosion sind
Prozesse die direkt von der Bodenrauigkeit abhängig sind. So ist der Zeitpunkt an dem
Oberflächenabfluss ensteht massgeblich von der Rauigkeit abhängig. Für eine raue land-
wirtschaftliche Bodenoberfläche, im Vergleich zu einer glatteren/ebeneren Fläche, kann
eine Verzögerung dieses Punktes festgestellt werden. Ebenso ist die Ausprägung des
Oberflächenabflusses für beide Oberflächen unterschiedlich. Während Abfluss auf einer
glatten Fläche eher schichtförmig über die gesamte Fläche fließt, folgt der Abfluss auf
rauen Flächen eher dem höchsten Reliefgradient und damit eher konzentriert entlang von
preferenziellen Pfaden. Das Wissen dieser Ausprägung ist wichtig für eine akkurate prog-
nose des Bodenabtrags durch physikalisch basierte Erosionsmodelle. Durch den Einfluss
von Niederschlag können sich Regenschlag- oder Verschlämmungskrusten ausbilden, die
die Infiltrationsleistung einer Bodensäule signifikant reduzieren. Dies kann die Gefahr
von Hochwasser erhöhen und das Wachstum landwirtschaftlicher Pflanzen reduzieren.
Allerdings ist die Möglichkeit der Messung von Bodenrauigkeit in der Regel nur auf
kurze Profile oder kleine Messfelder begrenzt. Eine erhöhte Unsicherheit in der Vorher-
sage der oben genannten Prozesse ist die Folge. Wie im ersten Teil dieser Dissertation
gezeigt werden konnte, eignet sich der Einsatz von Fernerkundungssensoren, operierend
im Wellenlängenbereich der Mikrowellen, für die Ableitung der mikroskaligen Boden-
rauigkeit von unbewachsen und gering bewachsen landwirtschaftlichen Feldern. So lässt
sich unter Einsatz voll-polarimetrischer Radardaten (SAR) eine Abhängigkeit der RRLL
Kohärenz von der Bodenrauigkeit feststellen. Allerdings wird diese Korrelation durch
Unsicherheiten, aufgrund der skalenabhängigen Messung der Bodenrauigkeit sowie der
anisotropen Erscheinung im Feld, verzerrt. Neben den oben genannten Effekten hat
die Bodenrauigkeit einen bedeutenden Einfluss auf das Rückstreuverhalten von Mikro-
wellen in der Radarfernerkundung. Wie in Paper II dieser Dissertation gezeigt, leistet
die Bodenrauigkeit, speziell die periodische horizontale Komponente, einen signifikant-
en Beitrag zur Entstehung von direktionaler Rückstreuung von landwirtschaftlichen
Nutzflächen. Diese Form der Rückstreuung ist charakterisiert durch eine untypisch hohe
Rückstreuung über unbewachsenen und gering bewachsenen Flächen. Demnach ist eine
adäquate Beschreibung der Bodenrauigkeit notwending für ein verbessertes Verständnis
und beeinhaltet die Erfassung der Rauigkeit über grosse Messplots, um die verscheidenen
Skalen und Komponenten der Rauigkeit zu charakterisieren. Im zweiten Teil der vor-
liegenden Dissertation wird dazu ein Messsystem entwickelt, das auf Basis photogram-
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Zusammenfassung

metrischer Messungen Bodenrauigkeit über große Messplots sehr genau (RMSEZ= < 2
mm) und effizient messen kann. In statistischen Tests wurde die Effizienz des Messsys-
tems analysisiert und ein deutlicher Vorteil der Apparatur gegenüber den üblichen
Messtechniken (Laser, Nadelbrett) hinsichtlich der Robustheit und Geschwindigkeit aus-
gemacht. Ein Testverfahren um die Abhängigkeit der berechneten Rauigkeitswerte von
der Größe des Messplots zu untersuchen wurde im Rahmen dieser Dissertation entwickelt
und vorgestellt. In Anlehnung an das representive elementary volume Verfahren, wurde
eine Schätzstatistik zur representive elementary area vorgestellt und auf den Datensatz
angewendet. Ergebnisse dieser Schätzstatistik unterstreichen die statistische Robust-
heit des entwickelten Verfahrens zur Bestimmung der Rauigkeit. Weiterhin konnte auf-
grund der Datenlage belegt werden, dass die Bodenrauigkeit landwirtschaftlich genutzter
Flächen eine starke anisotrope und multiskalige Ausprägung besitzt. Somit kann die
bisherige vorherrschende Annahme der isotropie und stationarität landwirtschaftlicher
Bodenrauigkeit widerlegt werden. Abschliessend wurden in Teil III der vorliegenden
Dissertation die erfassten Daten zur Modellierung von Rückstreuwerten verschiederner
Radarsensoren herangezogen. In einer Studie zur Analyse gerichteter Rückstreuung von
landwirtschaftlichen Flächen, konnte unter Einsatz des modified Shin and Kong Mo-
dells, welches Anisotropie sowie die verschiedenen Skalen der Rauigkeit berücksichtigt,
die Rückstreuung modelliert werden. In diesem Zusammenhang konnte erstmals gezeigt
werden, dass die unterschiedlichen Skalen der Rauigkeit neben der Saatreihenorientie-
rung einen erheblichen Einfluss auf die gemessen Rückstreuwerte solcher Flächen hat.

Abschließend kann der wissenschaftliche Beitrag dieser Dissertation folgendermaßen
Zusammengefasst werden:

- Es konnte ein besseres Verständnis der Bodenrauigkeit landwirtschaftlich genutzer
Flächen in Hinblick auf die Parametrisierung von Radarrückstreumodellen im Kon-
text der Skalenabhängigkeit sowie einer anisotropen Erscheinung erreicht werden.

- Es konnte das Verständnis von gerichteter Rückstreuung innerhalb der aktiven
Mikrowellen Fernerkundung deutlich verbessert und auf die Ausprägung der Bo-
denrauigkeit zurückgeführt werden.

- Es konnte das Potential polarimetrischer SAR-Daten zur Ableitung der flächenhaft-
en Bodenrauigkeit als mögliche Eingangsgröße für öko-hydrologische Simulations-
modelle demonstriert werden.
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1 Introduction

Micro-topography - or soil surface roughness - is a key parameter in a wide range of
environmental applications. As investigated in this thesis, soil surface roughness in an
agricultural environment originates from the superimposition of tillage activities of the
farmers and the local field characteristics such as general and in-field slope. Changes
in soil surface roughness conditions are related to, besides agricultural practice, precip-
itation, soil water and wind erosion as well as sedimentation. While precipitation and
erosion processes cause a smoothing of the soil surface, agricultural practice produces
different roughness states depending on the applied tillage tool and strategy. Römkens
and Wang (1986) defined different scale-dependent roughness classes in the context of
an agricultural landscape (see Table 1.1). While the defined roughness classes cover
a wide roughness spectra, the submitted thesis focuses on the roughness classes ran-
dom roughness and orientated roughness. Since Römkens and Wang (1986) address in
their approach only the scale dependency, Allmaras et al. (1966) classified soil surface
roughness into two terms in dependency of their geometrical appearance: Orientated
and random roughness. While orientated roughness is dependent on the tillage tool or
general slope effects, random roughness is result of the fortuitous occurrence of peaks
and depressions resulting from soil clods and organization of aggregates which cannot
be addressed to orientated roughness. Thus, in an agricultural environment, tilled sur-
faces can be described as a superimposition of several roughness scales, the periodical
appearance of the orientated roughness (seedbed rows, wheel tracks) imposed by the
random roughness, component which is characterized by a random distribution of soil
clods and aggregates in several sizes (see Fig. 1.1). Marzahn et al. (2012b) and Blaes
and Defourny (2008) showed a directional dependency of soil surface roughness due to
the tillage operations, especially to the seedbed rows.

Roughness Class Scale [mm] Topographic Elements
micro roughness ≤ 2 texture dependent roughness
random roughness 2 − 200 soil aggregates and clods
orientated roughness 200 − 400 rows, tillage patterns
higher order roughness ≥ 400 slope, field borders

Table 1.1: Roughness classification after Römkens and Wang (1986).

In classical approaches, soil surface roughness is described as a single-scale random
stationary process, which can be characterized by a vertical and a horizontal component.
To describe soil surface roughness numerically, it is common to use statistical indices,
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Figure 1.1: Composition of an agricultural quasi-periodic roughness profile with deter-
ministic orientated roughness (red line), random roughness component (blue
line) and a wheel track of a tillage machine. Units in [cm]

which differ in their complexity significantly. A simple approach to numerically charac-
terize soil surface roughness is the Random Roughness Index (RR) - or more common
the RMS-height s - (Allmaras et al., 1966), which is defined as the standard deviation
of the heights Z to a reference height (e.g. the mean height Z̄):

s =

√∑n
i=1

(
Zi − Z

)2

n− 1
(1.1)

Helming (1992) introduced the Tortuosity Index TB for three-dimensional surfaces. It
is defined as the ratio between the true (3D) surface and the projected (2D) surface:

TB =
A3D

A2D

(1.2)

Using TB as a roughness index is especially suggested in soil erosion-related research
topics, due to the possibility of calculating the true kinetic impact of the rain drops on
the soil surface. With an increase in roughness, s and TB increase as well. Several authors
(Allmaras et al., 1966; Currence and Lovely, 1970; Sommer, 1997), have criticized these
indices for not maintaining the spatial distribution for a physical interpretation. Thus,
introducing higher order roughness indices, ranging from geostatistics over fractals to
spectral analysis. It is common to use the autocorrelation length l for characterization
of the horizontal roughness component which can be derived from a autocorrelation
function ACF where l is usually defined as the distance where the ACF drops under
1/e (Blaes and Defourny, 2008; Davidson et al., 2003; Taconet and Ciarletti, 2007).
Davidson et al. (2000) as well as Manninen (2003) showed a strong dependency on the
derived autocorrelation length and RMS-height from the profile length over which they
are estimated. With an increase in profile length the RMS-height and the autocorrelation
length increase as well. With respect to this scale dependency of the proposed roughness
values, several studies utilized complex roughness values comprising a fractal description
of the soil surface (Zribi et al., 2000; Verhoest et al., 2008). Fractals are based on
the formulations of Mandelbrot (1995) and describe a self-affinity at different scales of
irregular and fragmented structures. In addition to the before mentioned approaches,
Blaes and Defourny (2008) and Marzahn et al. (2012c) decomposed the several roughness
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Figure 1.2: Flowchart of the EUROSEM soil erosion model, altered after Morgan et al.
(1998)

scales obtained on single roughness measurements into its sub-scales and characterized
them by means of the RMS-height and autocorrelation length.

1.1 The role of soil surface roughness in the
environmental system

It is well known and understood that soil surface roughness is a key parameter in large-
scale environmental modeling efforts, which control most of the soil physical processes
such as runoff generation, infiltration and soil erosion at field scale. Several studies
showed the impact of soil surface roughness on runoff generation, which is usually de-
layed at rougher surfaces compared to smooth surfaces (Cremers et al., 1996; Jester and
Klik, 2005; Le Bissonnais et al., 1998). In field studies, Johnson et al. (1979) showed that
a rough surface reduces runoff (77%) and soil loss (89%) in comparison to a smoother
surface. Same was observed in several laboratory studies by Römkens et al. (2001),
Darboux and Huang (2005) and Zeiger (2007), showing a decrease in sediment yield
by an increase in soil surface roughness conditions. However, this assumption is only
valid for an uniform overland flow - sheet-flow -, which in an agricultural environment
is mostly not the case. With an increase in roughness the anisotropic pattern of rough-
ness is directing and altering the sheet-flow to a more linear flow, thereby increasing the
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Figure 1.3: Results of a sensitivity analysis of several LISEM input parameters for the
total amount of discharge [%]. With k = saturated conductivity, h = matrix
potential, theta = soil water content, n = Manning’s coefficient, slope =
terrain slope, RR = random roughness, LAI = leaf area index. Altered after
De Roo et al. (1996)

sediment yield (Darboux and Huang, 2005). In context of an event and physically-based
soil erosion model such as EUROSEM (Morgan et al., 1998), soil surface roughness is an
essential input variable as shown in Figure 1.2. Using the Limburger Soil Erosion Model
(LISEM ) for example, De Roo et al. (1996) showed a strong sensitivity of the amount
of discharge and sediment yield to a change in soil surface roughness conditions (see
Fig. 1.3). Duttman (1999) as well as von Werner (1995) showed similar results for the
soil erosion model Erosion3D (Schmidt, 1991). Thus, with an increase in roughness, an
exponential decrease of sediment yield can be observed. The effect of a reduced soil loss
from rough surfaces is related to the fact that a rougher surface has a larger surface to
absorb the kinetic energy of the rain drops (Helming, 1992), which preserves the surface
from splash. In addition, rougher surfaces show a higher depressional storage capacity
(Cremers et al., 1996; Kamphorst et al., 2000), thus showing a higher water retention
delaying the point to runoff (Moore and Larson, 1979). Fohrer et al. (1999) mentioned
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roughness as one of the future key parameters for an effective spatially distributed flood
protection system. Besides soil erosion and surface runoff, soil roughness controls major
soil physical processes. As above mentioned, due to crusting and sealing effects result-
ing from precipitation, the bulk density in the upper few centimetres of the soil column
increases, reducing the effective infiltration rate (Farres, 1987; Fohrer et al., 1999; Le Bis-
sonnais et al., 1998) as well as reducing the amount of available oxygen for plants and
their development (Hartge and Horn, 1999). In a experimental laboratory study, Sun
et al. (2006) established an empirical relationship between soil surface roughness values,
namely the RMS-height s and soil bulk density parameters of the upper few centime-
tres of the soil column. Marzahn and Ludwig (2009a) obtained similar results in their
study using field data and showed the potentials of such an approach for hydrological
modeling.

1.2 The role of soil surface roughness in microwave
remote sensing applications

The backscattering of an illuminated scene is mainly dominated by the geometric and
dielectric properties of the imaged media. While the dielectric properties of a natural
agricultural bare soil surface are mainly influenced by the soil water content and the
soil bulk density as well as soil texture, the geometric properties are formed by soil sur-
face roughness conditions. For a vegetated agricultural surface, the contributors of the
backscattering are dependent from the sensor’s wavelength. For short wavelengths the
backscattering is mainly dominated by the vegetation water content and the geometric
appearance of the vegetation layer. For longer wavelengths the backscattering also has
contributions from the soil surface (e.g. soil surface roughness and soil water content).
Figure 1.4 summarizes the main backscatter contributions for an agricultural scene. In
the case of passive microwave remote sensing the radiation measured by a sensor is
also composed by the water content (respectively soil- and vegetation water content) as
well as by the geometric properties of the focused surface (soil surface roughness and
vegetation geometrics) and the optical thickness of the vegetation layer (Woodhouse,
2006). However as this thesis is mainly focused on roughness parametrization for ac-
tive microwave remote sensing applications, the impact of soil surface roughness on the
backscattering of a SAR system is highlighted in more detail.

Soil surface roughness in context of the sensor’s wavelength is scale-dependent, thus
different authors proposed a wavelength-dependent normalisation of roughness values
introducing the wave number k :

k =
2π

λ
(1.3)

which normalizes the RMS-height s and autocorrelation length l to the wavelength λ
by:

ks = k ∗ s (1.4)
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Figure 1.4: Influencing factors of backscattering of a natural agricultural scene of an
active microwave remote sensing system

True value [cm] X-Band C-Band L-Band
s = 2 4.02 2.22 0.56
l = 10 20.12 11.11 2.77

Table 1.2: Dependency of soil surface roughness from the sensors wavelength. X-Band
λ= 3.12 cm; C-Band λ= 5.66 cm; L-Band λ= 22.62 cm

kl = k ∗ l (1.5)

Thus, imaging a surface with a given RMS-height at different frequencies, the surface
appears rougher in a X-Band scene and becomes a smoother appearance in a L-Band
image. Table 1.2 summarizes the dependency of the roughness values from the sen-
sor’s wavelength for three different frequencies. In this context the question arises how
to define if a surface is rough or smooth? Therefore two different criteria have been
proposed, which account for phase differences in two incident and backscattered waves
separated by one standard height deviation h in dependency of the wavelength (λ) and
the incidence angle (θ) (Woodhouse, 2006); the Rayleigh and the Fraunhofer criterion.
The first one is defined as:

hsmooth <
λ

8cosθi
(1.6)

while the latter one is more stringent:

hsmooth <
λ

32cosθi
(1.7)

This requires a phase difference of δφ < π/2 before a surface is considered to be smooth
for the Rayleigh criterion and δφ < π/8 for the Fraunhoffer criterion (Woodhouse, 2006).
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Figure 1.5: Dependency of the scattered field from soil surface roughness. For smooth
surface only specular reflection occurs, with an increase in roughness diffuse
scattering is also present

Generally there is a dependency of backscattering from soil surface, which shows an
increase in backscattering by an increase in roughness. For a defined frequency, incidence
angle and dielectric conditions, an increase in soil surface roughness causes an increase
in backscattering, due to the more diffuse scattering with a higher fraction scattered to
the sensors antenna (see Fig. 1.5). However, the different roughness components (e.g.
orientated roughness and random roughness, see Figure 1.1) have a different impact
on the backscattering dependent on the orientation of the surface to the sensor’s look
vector and incidence angle. If orientated quasi-perpendicular to the incident wave, the
deterministic orientated roughness component acts like a classical Bragg scatter surface,
which is characterized by a large proportion of coherent scattering (Ulaby et al., 1982)
and could increase the backscattering up to 10 dB (Beaudoin et al., 1990; Wegmuller
et al., 2011). Bragg scattering occurs on surfaces with a clear regular pattern, which
is in an agricultural environment defined by the quasi-periodic seedbed rows. However,
with an increase of the random roughness fraction superimposed over the deterministic
orientated roughness, the coherent backscattering changes to an incoherent scattering.
Beaudoin et al. (1990) quantified an influence of the random roughness component over
non-periodic surfaces of 2 dB on the backscattered signal. In context of present satellite
SAR missions, which operate with an incidence angle of around 20°to 25°, this effect
increases up to 3-4 dB. As, for the quasi-parallel orientation of the seedbed rows to the
sensor’s line of sight, the backscattering is mainly influenced by the random roughness
component, while the deterministic periodic roughness component induces polarization
orientation angle shifts (Lee et al., 2002, 2000).

Using polarimetric SAR systems (either dual or quad-polarized), soil surface rough-
ness has a significant impact on the backscattering at different polarizations. In earlier
studies, Oh et al. (1992) showed a dependency of the different backscatter values (σHH ;
σV V ; σHV ) from the roughness conditions on top of soil moisture content, local inci-
dence angle and frequency. Thus for a given frequency (X-Band) and incidence angle
(30°) the backscattering increases with an increase in roughness, where the σHH and
σV V backscatter values are at similar levels (smooth = -10 dB; rough = -7 dB) with
a slightly higher backscattering in the σHH polarization. However, with an increase in
s, the σHH/σV V ratio becomes one. Indeed, the σHV backscatter coefficients over the
same surface and sensor properties are significantly lower (smooth surface = -20 dB;
rough = -15 dB) (Oh et al., 1992). Beaudoin et al. (1990) retrieved similar results for an
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airborne C-Band SAR system. In their extensive study on roughness effects on multi-
dimensional SAR data, Mattia et al. (1997) observed an increase in the magnitude of
the HHVV coherence over rougher fields compared to smooth fields, indicating a high
similarity of the HH and VV polarization over rough surfaces. Schuler et al. (2002)
and Marzahn and Ludwig (2009a) verified the previous findings of Mattia et al. (1997)
and extended this approach for the RRLL coherence, which decreases by an increase in
soil surface roughness. Due to its inherent dependency of the backscattered wave from
soil surface roughness contributions and the dielectric properties of an imaged surface,
the retrieval of geo and bio-physical parameters such as soil moisture and vegetation
characteristics (over sparse vegetated fields) is highly influenced by roughness effects.
To account for this inherent dependency, several empirical or semi-empirical backscatter
models have been developed for the retrieval of various bio and geo-physical parameters
such as soil moisture (Ulaby et al., 1982; Shin and Kong, 1984; Ulaby et al., 1986; Fung
et al., 1992; Oh et al., 1992; Zribi et al., 2000). In an early study, Beaudoin et al. (1990)
concluded that with an airborne system, the derivation of soil moisture is not possible
due to roughness effects at various scales using such a model. However, in recent years
good progress was made in the separation of dielectric and roughness contributions on
the backscattered wave using polarimetric SAR (PolSAR), polarimetric interferometric
SAR (PolInSAR) and differential interferometric SAR (DInSAR) techniques (Hajnsek
et al., 2003; Allain et al., 2004; Hajnsek and Prats, 2008; Hajnsek et al., 2009; Jagdhuber,
2012). Indeed, the retrieval of soil moisture with a current RMSE of 5-20 Vol.-% is still
not sufficiently solved. Verhoest et al. (2008) concluded that the lack of understand-
ing in roughness parametrization is the main error source in an accurate soil moisture
retrieval. Figure 1.6 shows as an example the impact of soil surface roughness on the
retrieval of soil moisture using three different approaches over a bare field under seedbed
preparation during the AgriSAR2006 campaign. Using the classical empirical model of
Oh et al. (1992), only a few pixels could be inverted to soil moisture. This is related
to a violation of the boundary conditions of the model by the roughness conditions in
the field. However, there is a general bias in the estimation of soil moisture between the
already tilled southern part of the field and the still crusted northern part of the field
up to 15 Vol.-% which is clearly related to the different roughness conditions. Using
the x-Bragg model, introduced by Hajnsek et al. (2003), the amount of invertible pixels
increases. However, the bias of 15-20 Vol.-% due to the different roughness conditions is
clearly visible (Fig. 1.6b). Choosing a simple hybrid approach (Marzahn and Ludwig,
2009b) by incorporating spatially distributed roughness information derived from the
RRLL coherence (Marzahn and Ludwig, 2009a) into Oh’s model, the roughness effect
vanishes and the retrieved soil moisture is homogeneous over the entire field as sam-
pled during the campaign (Field average = 21 Vol.-%; STD= 3.5 Vol.-%). However
the RMSE is about 8.4 Vol.-%, which is an improvement compared to other classical
soil moisture retrieval algorithms, but not sufficient for hydrological applications, which
usually demand a maximum RMSE of approx. 4 Vol.-%.

The effects of soil surface roughness on the backscattered signal are also visible in the
presence of directional scattering on bare soil or sparsely vegetated fields, as observed by
Ferro-Famil et al. (2003) as well as Wegmuller et al. (2006, 2011). With an orientation
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Figure 1.6: Derivation of soil moisture over bare field (AgriSAR2006 @Goermin) with
different tillage and roughness conditions using different retrieval algorithms.
Southern part of the field already seedbed prepared; northern part of the field
still crusted. Measured mean soil moisture = 21 Vol.-%. SAR data acquired
with DLR’s E-SAR system at L-Band

of the seedbed rows quasi-perpendicular to the sensor’s look vector, the backscattering
can be significantly increased by a coherent backscattering of the incident wave. Figure
1.7 shows as an example a colour composite of strong directional scattering in close (<
30 min) ERS-2 ASAR Tandem acquisitions over the Flevoland, NL test site. While
fully saturated green colours correspond to a 6 dB higher backscattering in the ERS-2
image compared to the ASAR image, fully saturated red colours display a 6 dB higher
scattering in the ASAR image. Thus, due to different image geometries with a difference
of 1°in the aspect angle (Wegmuller et al., 2011), different fields with slightly different
row orientations show this directional effects. Examples of directional scattering could
also be found over various test-sites across Europe (e.g. Görmin, Germany; Alling,
Germany; Wallerfing/Neusling, Germany; Matera, Italy, Sardinia, Italy) (Ferro-Famil
et al., 2003; Wegmuller et al., 2010; Marzahn et al., 2012a). With such a difference
in two subsequent and close SAR acquisitions, the confidence of which SAR data is
assimilated in land application models (e.g. hydrological models, crop growth models)
is not very promising. For example, the change in backscattering related to a change
of soil moisture from dry to saturated conditions is in the range of 6 dB for a C-Band
system (Mattia et al., 2003), thus the retrieval of soil moisture in presence of directional
scattering is highly biased. Marzahn et al. (2012d) showed in an analysis of the roughness
contributions to the directional scattering that on top of the strong dependency of the
directional scattering from the row orientation a secondary dependency is given from
the orientated roughness component.
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Figure 1.7: Directional scattering in nearly simultaneous Envisat ASAR and ERS-2 ac-
quisitions. Fully saturated green colors represent a 6 dB higher scattering in
the ERS-2 imagery, while fully saturated red colors indicate a 6 dB higher
backscattering in the ASAR imagery

1.3 State of the art in soil surface roughness
measurements

The measurement of soil surface roughness has a long tradition in soil erosion research.
And - with a little delay - also in microwave remote sensing research related studies.
Once starting with very simple methods, such as the chain method, where the reduction
of a chain laid over ground compared to the true length of the chain is a measure of the
roughness, the measurement of soil surface roughness has become more sophisticated
and physically meaningful. Nowadays the techniques for measuring soil surface rough-
ness can be divided into two groups, contact and non-contact devices, which can be
further split in two-dimensional (2D) and three-dimensional (3D) measurements (Jester
and Klik, 2005). The common measurement devices of the contact group for the mea-
surement of soil surface roughness are mainly mesh boards or pin/needle profilers, which
measure soil surface roughness along a single profile usually at a length of 1-2 meters
and a horizontal resolution of 1-5 cm (Hajnsek et al., 2002; Thiel, 2003; Bryant et al.,
2007). Both devices could be considered as destructive measurements, especially the
mesh board, which is rammed into the upper few centimetres of the soil column. Thus,
a multi-temporal measurement over the same sampling area is not possible. For the
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non-contact devices, a broad range of methods have been utilized in the past rang-
ing from laser devices (Davidson et al., 2000; Alvarez-Mozos et al., 2009; Darboux and
Huang, 2003) and LIDAR devices (Fernandez Diaz et al., 2010) over acoustic backscat-
ter (Oelze et al., 2003) to photogrammetric acquisitions (Helming, 1992; Warner, 1995;
Rieke-Zapp and Nearing, 2005; Taconet and Ciarletti, 2007), yielding in two methods
commonly applied, laser scanning and photogrammetric measurement of soil surface
roughness. While the first one is mainly deployed using 2D devices measuring roughness
along single profiles, photogrammetry is able to measure soil surface roughness in 3D
giving a more realistic value of the roughness measure (Verhoest et al., 2008). Indeed
both measurement techniques have their advantages and disadvantages. Using a 2D
laser profiler, one is capable to acquire very long roughness transects in range of 10 m
(Davidson et al., 2000) to 75 m permitting the characterization of multi-scale roughness
effects of an agricultural field (Manninen, 2003). However, as recent studies have shown,
soil surface roughness has to be considered as an anisotropic surface (Blaes and De-
fourny, 2008; Marzahn et al., 2012c), a 3D representation of the surface is necessary to
adequately describe a soil’s surface. Indeed, available laser devices capable of measuring
soil surface roughness over large sample plots are rare and time-consuming (Rieke-Zapp
and Nearing, 2005). However, as shown by Davidson et al. (2000), several proposed
roughness indices are scale sensitive and their values increase with an increase in the
sampling area or profile length. Thus, the acquisition of soil surface roughness over large
areas by a laser scanner is not very suited as they are time-consuming. Jester and Klik
(2005) showed in an laboratory experiment the advantage of using a photogrammetric
acquisition system for time efficiency reasons. While using a photogrammetric-based
system the acquisition time was reduced to 1/6 of the laser’s acquisition speed for an
sample area of 55x50 cm2 and a spatial resolution of 2x2 mm2, thereby outperforming
the laser device at same accuracy. However, this is only possible due to the decoupled ac-
quisition and processing steps of the photogrammetric system. Indeed photogrammetric
systems have been mainly utilized in the past by photogrammetric experts using special
equipment, fitting the demand of an accurate image processing (Lascelles et al., 2002).
In recent years, several studies showed the utilization of consumer grade, non-metric
cameras for photogrammetric purposes with the same accuracy at reduced cost (Rieke-
Zapp and Nearing, 2005; Rieke-Zapp et al., 2009). Therefore the stability of the interior
orientation of the camera sufficiently worked out commercial of-the-shelf (Warner, 1995;
Lascelles et al., 2002) or could be improved by fixing the lens or sensor by using screws
or glue (Rieke-Zapp et al., 2009). The potential error sources of such a system are clearly
related to a poorly known or unstable interior and exterior orientation of the deployed
system. Wackrow and Chandler (2008) suggested, to minimise the effects of a poorly
calibrated lens model, to acquire images in a slightly convergent acquisition geometry.

The basic principle of object reconstruction using a photogrammetric acquisition sys-
tem will be briefly described in the following. The derivation of object-coordinates of
an arbitrary point P could be solved by means of the relations displayed in Figure 1.8
and Equations 1.8 - 1.10. Thus, the object height Z of point P can be directly inverted
from the parallax px, the distance between the two camera positions (B) and the focal
length (c) (Luhmann, 2003). To find in both images homogeneous points, which are
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Figure 1.8: Photogrametric object reconstruction with x′ = x-parallax in the left image;
x′′ = x-parallax in the right image; px = x′-x′′; B = Base; h = mean lens
height above ground; O = projection center;

obligatory for the derivation of heights, cross-correlation is used where a threshold for
the matching algorithm has to be defined by the user. For an efficient computing of
the cross-correlation, the two overlapping images have to be perfectly orientated during
the pre-processing triangulation step, so the search matrix becomes a one dimensional
search matrix (Linder, 2009).

X =
h

c
∗ x′ = mb ∗ x′ (1.8)

Y =
h

c
∗ y′ = mb ∗ y′ (1.9)

Z =
b ∗ c
x′ ∗ x′′ =

b ∗ c
px

(1.10)

In an iterative process the resulting point cloud becomes denser and finally can be
interpolated to a regular grid with the desired resolution.

12



1 Introduction

1.4 Aims and goals of this thesis

As shown in the previous sections, soil surface roughness plays a key role in several envi-
ronmental applications as well as in the utilization of microwave remote sensing systems,
at a concurrent fail in the measuring and characterization as well as understanding of soil
surface roughness over large areas. Thus, previous proposed methods can be considered
as point measurements, with a maximum acquisition size up to a few square meters. As
roughness is scale-dependent, large sample sizes need to be measured for an adequate
representation of soil surface roughness. In addition, soil surface roughness is highly
variable in space and time. As shown in the previous sections, soil surface roughness
is continuously altered by weather conditions and strongly correlates to the field condi-
tions (soil moisture, soil texture) and tillage practices, thus showing a large spatial and
temporal variance (Römkens and Wang, 1986). To successfully assimilate soil surface
roughness in available eco-hydrological models or microwave backscatter models, this
spatial and temporal variance has to be considered.
This thesis concentrates on the measurement of soil surface roughness at large scales over
large sample plots for an improved characterization of soil surface roughness consider-
ing the different scales of soil surface roughness as well as its anisotropic appearance.
Therefore, a photogrammetric acquisition system should be developed, which permits
the measurement of soil surface roughness over large sampling areas in an adequate
spatial resolution at low cost. The potential of this system shall be evaluated in con-
text of robustness and physical meaning and compared to classical approaches such as
laser profile measurements. In a further step the derived multi-dimensional soil surface
roughness values, where multi-dimensional is considered to account for the anisotropic
appearance and multi-scale appearance of soil surface roughness, should be assimilated
in available backscatter models to enhance the backscatter modeling and derivation of
geophysical variables from available satellite SAR sensors.
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2 Scientific Paper

This work is a synthesis of the research done over the past years and published in several
papers. It was done to fulfil the aims and goals of this thesis as defined in the previous
section. The thesis consists of five papers published in relevant journals. Figure 2.1
illustrates the connection and contribution of each paper to this thesis as well as to the
scientific areas. The first two papers describe the potentials and limitations of SAR data
utilization in agricultural environments with a special focus on the roughness-induced
problems and potentials. In the third paper, a simple photogrammetric acquisition
system is developed and roughness statistics were analysed. In the fourth paper, a multi-
scale roughness description is introduced. Finally in the fifth paper, the connection to
the parametrization of soil surface roughness in recent backscatter models is made.

SAR-Applications SAR-Modelling
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Figure 2.1: Positioning of the papers and topics they are covering within this PhD-thesis
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2 Scientific Paper

2.1 Paper I: HESS - On the derivation of soil surface
roughness from multi-parametric PolSAR data and
its potential for hydrological modeling

Paper I describes the potential of deriving soil surface roughness on a landscape scale
from multi-polarized SAR data. Using a large data base of photogrammetrically acquired
in-situ roughness measurements in addition to fully polarimetric airborne SAR data, soil
surface roughness was derived spatially distributed by establishing an empirical relation-
ship between three polarimetric roughness estimators and the in-situ measurements. In
a further analysis, the potential of this approach for the derivation of geo-physical and
soil-physical parameters such as soil moisture as well as bulk density parameters for
usage in hydrological or soil erosion models was shown.
Thus, Paper I therefore shows the fields of applications, potentials and limitations which
occur when deriving soil surface roughness at the landscape scale.

Marzahn, P. and Ludwig, R. On the Derivation of Soil Surface Roughness from Multi-
Parametric PolSAR Data and its Potential for Hydrological Modeling. Hydrol. Earth
Syst. Sci., 2009, 13, 381-394
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Abstract. The potential of multi parametric polarimetric
SAR (PolSAR) data for soil surface roughness estimation
is investigated and its potential for hydrological modeling
is evaluated. The study utilizes microwave backscatter col-
lected from the DEMMIN test site in the North East of Ger-
many during the AgriSAR 2006 campaign using fully po-
larimetric L-band E-SAR data. In addition to various mea-
surements of soil physical properties, soil surface rough-
ness was measured extensively using photogrammetric im-
age matching techniques for ground truthing. The resulting
micro-DSMs are analyzed to correlate a soil surface rough-
ness index to three well established polarimetric roughness
estimators. Good results are obtained forRe[ρRRLL] vs. RMS
Height for areas with a polarimetric alpha angelα<40◦,
which is thus used to produce multi temporal roughness data
of the test site. The proposed roughness inversion scheme
showed sufficiently accurate results (RMSE=0.1) to allow for
a first order assessment of soil-hydrological parameters (soil
porosity, void ratio), which are crucial for the initialization
and operation of hydrological surface models. While uncer-
tainties remain, the dependency of soil bulk density parame-
ters from surface roughness can be shown and thus highlights
the potential of the retrieval approach for hydrological model
applications.

1 Introduction

At the boundary between the atmosphere and the pedosphere,
soil surface roughness plays an important role in numerous
physical processes related to water, energy and nutrient flux
and exchange. This has been widely recognized in novel land
surface modeling efforts. On cultivated soils, many stud-

Correspondence to:P. Marzahn
(p.marzahn@iggf.geo.uni-
muenchen.de)

ies have demonstrated that different roughness states influ-
ence runoff generation and formation due to soil sealing and
crusting effects (Fohrer et al., 1999). Furthermore, processes
like infiltration, evaporation, soil erosion by wind and water,
lateral and vertical matter fluxes, as well as the growth and
vitality of particular agricultural plants are all influenced by
soil surface roughness states and the resulting changes in soil
bulk density, respectively the soil void ratio in the upper few
centimetres of the soil column (Farres, 1980; Helming, 1992;
Le Bissionais et al., 1998; Fohrer et al., 1999; Cerdan et al.,
2001; Darboux et al., 2002; Zeiger, 2007).

Changes in soil surface roughness conditions are related
to agricultural practice or to precipitation and wind effects.
While meteorological impacts cause a smoothing of the soil
surface and an increase in bulk density, agricultural prac-
tice produces different roughness states depending on the
applied tillage tool and strategy. Allmaras et al. (1966)
defined two different roughness terms with regard to their
geometrical appearance: orientated and random roughness.
While orientated roughness is dependent on the tillage tool
or general slope effects, the random roughness is caused by
the fortuitous occurrence of peaks and depressions result-
ing from soil clods and organization of aggregates which
cannot be addressed to orientated roughness (Allmaras et
al., 1966). R̈omkens and Wang (1986) defined the random
roughness alongside other scale dependent roughness types
as the height deviations from a reference plain in the scale of
2–200 mm.

For soil surface roughness characterization on small plots
up to 16 m2, different roughness indices have been proposed
and successfully utilized (Allmaras et al., 1966; Bertuzzi,
1990; Taconet and Ciarletti, 2007; Zeiger, 2007). How-
ever, the direct measurement of soil surface roughness on
the field scale is not yet appropriately solved. This is lead-
ing to strong simplification and considerable uncertainty in
the description of spatial soil surface roughness conditions
in recent physically based runoff generation modeling efforts
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Fig. 1. Overview of DEMMIN-Görmin test site in the North East
of Germany.

on the catchment scale. While expensive and labor inten-
sive in-situ measurements are limited to small areas, remote
sensing techniques are able to cover larger areas at relatively
high frequency, which might offer the opportunity to measure
dynamic soil surface characteristics on larger scales (San-
tanello et al., 2007; Loew and Mauser, 2008). In this study,
the derivation of soil surface roughness information on field
scale is conducted and evaluated from multi temporal air-
borne PolSAR data. To investigate the application potential
in hydrological modeling, the deployment of multi temporal
soil surface roughness maps for the retrieval of soil physical
parameters, such as bulk density and void ratio, are presented
as first results of a feasibility study.

2 Methods and field data

The study was performed in the frame of the ESA-founded
campaign AgriSAR 2006, which was carried out from mid-
April to the end of July at the DEMMIN (Durable Environ-
mental Multidisciplinary Monitoring Information Network)
test site (Hajnsek et al., 2007). A major component of this
study was to generate an image and ground data base on
a weekly basis for the examination and validation of bio-
/geo-physical parameter retrievals and to simulate ESA’s fu-
ture Sentinel 1 and Sentinel 2 missions. Therefore, weekly
E-SAR flights, operated by the German Aerospace Centre
(DLR-HR), were accompanied by extensive in-situ measure-
ments.

Fig. 2. Location of sample points within the G̈ormin test site during
AgriSAR 2006.

2.1 Test site

DEMMIN is a consolidated test site in Mecklenburg-Western
Pomerania in North East Germany, approximately 150 km
north of Berlin (Fig. 1). The 3×8 km2 test site is located
in the young moraine area, characterized by smooth topog-
raphy and intensive agricultural cultivation on high produc-
tive soils. The altitudinal range within the test site is about
60 m with its maximum in the north and a minimum in the
southern part of the test site near the Peene river. Soil tex-
ture ranges from sandy loam to loamy sand. The main crop
rotation is winter wheat, winter rape and winter barley. Addi-
tionally, maize and sugar beet is sown in spring for livestock
feed. The mean field size is 225 ha. Due to very large fields
and intensive cultivation, wind, water or tillage induced ero-
sion patterns such as shortened soil columns can be observed
within the fields.

18 sample points were chosen to represent soil conditions
under the main crops in the test site during the campaign.
Figure 2 shows the locations of the sample points. Most
of the sampling points are situated in plain areas except for
sample points (ESU) 102-1 (SB) and 222-2 (M) which are
located in local sinks or in small drainage channels.

2.2 In-field measurements

2.2.1 Roughness characterization

For measuring soil surface roughness a photogrammetric ap-
proach was chosen due to its 3 dimensional output and highly
accurate estimates. A further advantage for choosing a pho-
togrammetric approach is its efficiency with regard to a de-
coupled acquisition and analysis compared to similar accu-
rate acquisition setups such as laser devices (Rieke-Zapp and
Nearing, 2005). To collect samples over a wide range of
roughness states, soil surface roughness measurements were
performed on 18 sample points (Fig. 2). Roughness condi-
tions ranged from smooth and crusted surfaces to ploughed
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Fig. 3. Camera system for photogrammetric image acquisition
(setup and signalized control point).

and harrowed fields. For sampling surface roughness on veg-
etated fields, plants were carefully cut off at the surface and
completely removed from the areas covered by photogram-
metric image acquisitions, without disturbing the soil sur-
face.

For image acquisition, a Rollei d7 metric camera with
known interior orientation was mounted on a tripod approx-
imately 118 cm above the soil surface. The self-developed
aluminum tripod (Fig. 3) accommodates 12 ground con-
trol points (GCP) whose three dimensional (xyz) coordi-
nates were manually determined, as described by Lascelles et
al. (2002), using a caliper rule with an accuracy of 1/10 mm.
The horizontal coverage of the sampling area is limited to
70×70 cm2 (approx. 0.5 m2). The camera and tripod setup
allows an image acquisition from 1180 mm above ground
with a baseline of 480 mm resulting in a height-to-base ratio
of 2.5 and an image overlap of approximately 65%, which
is appropriate for roughness measurements (Rieke-Zapp and
Nearing, 2005; Linder, 2006). Thus, the image block con-
sists of two images at which the acquired images have a spa-
tial resolution of 0.54 mm.

Digital Surface Models (DSM) were generated using Le-
ica Photogrammetry Suite (LPS 9.0). Exterior orientation
of the two images was established using the highly accu-
rate GCPs and bundle block adjustment techniques. There-
fore, additionally to the 12 known GCPs, tie-points were
derived and their three dimensional coordinates were calcu-
lated respectively. Best results in bundle block adjustment
were achieved by using an additional 12-parameter model
(Ebner, 1976). For DSM generation, LPS uses image match-

Fig. 4. Scheme of the roughness retrieval approach.

ing strategies which work in epipolar lines (LPS, 2006). For
different roughness states, adjusted matching strategies have
been developed, which only vary in the x direction and de-
liver a good fit to the known GCPs and the highly accu-
rate tie-points. The minimum correlation coefficient for the
matching process, calculated from a 11x11 kernel between
the two images, was set to 0.65, which is sufficient for epipo-
lar line based matching algorithms (Stojic et al., 1998, Lin-
der, 2006). In a final step, the generated DSMs were inter-
polated to a regular grid with a nominal resolution of 2 mm.
A low-pass filter using a 7×7 kernel was applied to remove
outliers.

In order to quantify soil surface roughness as a function
of soil geometrical properties, roughness indices can be cal-
culated from the derived DSM using different statistical ap-
proaches. Allmaras et. al (1966) and Currence and Lovely
(1970) propose different calculation procedures based on the
standard deviation of height values with additional terms to
remove general slope effects. Due to the tripod geometrics
perpendicular to the surface, a superimposition of general
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slope effects can be excluded. Thus the calculation of the
RMS Height can be simplified to:

s =

√√√√√ n∑
i=1

(Zi − Z̄)2

1 − n
(1)

Wheres is the RMS Height in (cm) andZ is the height
value in (cm).

Some authors (Currence and Lovely, 1970; Römkens and
Wang, 1986; Linden and Van Doren, 1986; Sommer, 1997)
have criticized these roughness indices for not maintaining
the spatial distribution of height measurements for physical
interpretation. Still, the RMS Height is the common and gen-
erally preferred index to describe soil surface roughness con-
ditions in radar remote sensing and is therefore applied in
this study (Oh et al., 1992; Hajnsek et al., 2003; Loew et al.,
2006).

In addition, to quantify the non isotropic behavior of the
sampled surface, the RMS Height parallel and perpendicular
to the tillage direction was calculated separately. The mean
RMS Height parallel to the tillage direction is then defined
as:

sx(y) =

m∑
j=1

√
n∑

i=1
(Zi(y)−Z̄y )2

1−n

m
(2)

While the average RMS Height perpendicular to the tillage
direction is defined as:

sy(x) =

m∑
j=1

√
n∑

i=1
(Zi(x)−Z̄x )2

1−n

m
(3)

As a consequence, the ratios̄x(y)

/
s̄y(x) is a measure for

the directionality of the surface roughness, where for a value
of 1 the surface is an absolute isotropic scatter.

As roughness is a function of wavelength, its appearance
changes with different wavelengths. Using lower frequen-
cies, the illuminated targed appears much smoother than at
higher frequencies. To compensate this effect, the RMS
Height has to be scaled to the actual wavelength using the
wavenumberk within the following equation:

ks = s × k = s ×
2π

λ
(4)

Whereks is the RMS Height normalized to the wavenum-
berk andλ the wavelength (at the used L-band 23,054 cm).

As demonstrated by different authors (Davidson et al.,
2000; Verhoest et al., 2007, 2008) roughness parameters of-
ten change with the length of profile over which they are es-
timated. Davidson et al. (2000) observed an increase in the
RMS Height with an increasing profile length (1 and 10 m)

in range of 0.5 cm for rolled fields, 0.6 cm for harrowed and
1.2 cm for ploughed fields. While those investigations are
mainly focused on roughness data obtained by profile lasers
or mesh boards, the effect of larger sample coverage on the
RMS Height using 3d information is subject to only few stud-
ies. In their extensive work, Taconet and Ciarletti (2007)
investigated the accuracy of different roughness estimators
with changing sampling coverage. From an initial DSM with
0.77 m width and 2.95 m length they calculated different sub
DSMs ranging from 0.4 m to 2.95 m length and a width of
0.77 m and compared those estimated roughness values with
the true estimates. Within this study, the acquired sampling
area results in an accuracy of 90% for representing the true
roughness conditions for ploughed fields and 92.5% accuracy
for seedbed structures (Taconet and Ciarletti 2007).

2.2.2 Soil and vegetation parameters

In addition to those above mentioned roughness measure-
ments, a broad variety of focussed in-situ measurements
was carried out simultaneous to E-SAR flights. The main
sampling routine included soil physical characteristics (soil
moisture, roughness, bulk density) as well as vegetation pa-
rameters (wet/dry biomass, vegetation cover, plant height,
LAI, shoots per m2).

After photogrammetric image acquisition, soil samples
were taken for moisture, bulk density and texture analysis.
Soil moisture content was measured gravimetrically (oven
drying at 105◦C) using 100 cm2 Kopecky rings, at depth of
0–5 cm and 5–10 cm, with three repetitions each. From the
known volume of the Kopecky rings volumetric soil mois-
ture (Vol. %) as well as bulk density (g/cm3) was calculated
subsequently.

2.3 Radar acquisitions and processing

A total of 11 E-SAR flights were carried out on a weekly
basis, recording imagery in X-, C-, and L-band with an inci-
dence angle ranging from 25◦ to 55◦. The raw radar data was
preprocessed radiometrically and geometrically at DLR-HR.
The L-band radar data showed good quality with an absolute
error of −2 dB and a phase accuracy of 2◦ (Scheiber et al.,
2007).

Geocoded Single Look Complex (SLC) L-band data with
a spatial resolution of 2×2 m2 was chosen to retrieve rough-
ness information. As shown by Thiel et al. (2001) it is fea-
sible to use geocoded SLC E-SAR L-band data to perform
polarimetric image analysis. Prior to further image analy-
sis, the radar imagery was speckle filtered by applying a 7×7
window enhanced LEE-Filter (Lee et al., 1992), which cor-
responds to approximately 34 looks.

Cloude and Pottier (1996) developed a very useful de-
composition theorem which is based on the eigenvalue and
eigenvector decomposition of the coherency matrix [T]. On
base of the diagonalization of the [T] matrix, three important
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physical parameters arise. The first two parameters are de-
rived from the eigenvaluesλ1−λ3 and are namely the En-
tropy H and the AnisotropyA and give an overview about
the amount of different scattering mechanisms within a reso-
lution cell (Hellmann et al., 1999). The third parameter, the
polarimetric alpha angleα, is derived from the eigenvectors
of the coherency matrix [T], were each eigenvectorei can be
expressed in terms of five angles as shown in (5) (Cloude and
Pottier 1997).

ei =

 cosαi exp(iφ1i)

sinαi cosβi exp(iφ2i)

sinαi sinβi exp(iφ3i)

 (5)

The βi angles can be interpreted as the orientation angle
containing information of the rotation of the eigenvectorei

in the plane perpendicular to the scattering plane, whileφji

giving information about the phase relations between the ele-
ments ofei . To obtain information about the mean scattering
angleα Eq. (5) has to be transposed and the meanα angle can
by calculated using the probabilitiespi (Cloude and Pottier,
1996):

α = p1α1 + p2α2 + p3α3 → p1 + p2 + p3 = 1 (6)

The polarimetric alpha angle ranges from 0◦ to 90◦. It can
be used to represent and differentiate between a wide vari-
ety of scatter mechanisms (Cloude and Pottier, 1996, 1997).
An alpha angle ofα=0◦ can be interpreted as surface scatter-
ing. With an increase inα the surface becomes anisotropic
due to the presence of small plants or non isotropic tillage
patterns. At an alpha angle ofα=45◦ the illuminated target
acts like a dipole where either theHH or VV backscatter is
zero. With a further increase ofα the surface is characterized
by an anisotropic dihedral scattering where theHH 6=VV and
the phase difference is 180◦. At its maximum ofα= 90◦, one
can obtain an isotropic double bounce scattering mechanism
(Cloude and Pottier, 1997). As a consequence, the polari-
metric alpha angle, jointly used with the Entropy, gives a first
impression of the dominant scattering mechanisms (Cloude
and Pottier, 1997; Hellmann et al., 1999).

Cloude (1999), Cloude and Lewis (2000) as well as Ha-
jnsek et al. (2003) first introduced the Anisotropy as a poten-
tial roughness estimator, which is only dependent from the
geometrical properties of a given surface and independent
from its dielectric properties as well as the local incidence
angle. The Anisotropy (A) is defined as:

A =
λ2 − λ3

λ2 + λ3
(7)

It ranges from zero to one, where the eigenvalues of the co-
herency matrix [T] areλ1≥λ2≥λ3≥0.

As obvious from (7), the Anisotropy defines the relation
between the second and third eigenvalues and is therefore a
measure of the secondary scattering mechanisms. As a con-
sequence the Anisotropy is a very noisy parameter due to

the measurement of the weak third eigenvalueλ3 close to the
system noise floor (Schuler et al., 2002; Hajnsek et al., 2003).

For low Anisotropy values, two equally strong scattering
processes are present, while a high Anisotropy indicates the
presence of only one strong secondary scattering process
with a negligible third scattering mechanism (Cloude and
Pottier, 1997).

However, the deployment of the Anisotropy comprises
some constraints which are related to its physical meaning.
Under the presence of vegetation, the Anisotropy decreases,
due to an increase in importance of the third eigenvalue, and
results therefore in an overestimation of roughness (Hajnsek
et al., 2003). As a consequence the Anisotropy is only ap-
plicable for surface scatter regions, e.g. bare soil areas or ar-
eas with sparse vegetation with one strong scattering mech-
anism (Cloude and Pottier, 1997; Cloude, 1999; Hajnsek et
al., 2003). Another limitation is given by an insensitiveness
of A for roughness values aboveks=1 where A saturates and
is therefore almost decorrelated (Hajnsek et al., 2003).

Dependent on the roughness conditions the Anisotropy A,
can be inverted using two different linear approaches. For
smooth areas Cloude and Lewis (2000) suggest:

ks = 1.25− 2A (8)

while for rougher surfaces Cloude (1999) recommends:

ks = 1 − A (9)

As shown by Mattia et al. (1997), using PolSAR data over
the Matera test site (Italy) and the Chickasha test site (USA),
the magnitude of the complex circular coherence (|ρRRLL|)
is sensitive to roughness and insensitive to dielectric proper-
ties, respectively soil moisture of the illuminated target. The
magnitude of the complex circular right-right left-left coher-
ence is defined as (Mattia et al., 1997):

|ρRRLL| =

〈∣∣SRRS∗

LL

∣∣〉√〈
|SRR|

2〉 〈
|SLL|

2〉 (10)

with SRR=right-right handedness, SLL=left-left handedness
of the rotation of the electric field vector about the line of
sight. By definition|ρRRLL| ranges similar as the Anisotropy
from zero to one. In their investigations, Mattia et al. (1997)
proved a nearly linear increase of|ρRRLL| with a decrease
in roughness. For rough fields, they measured values of
|ρRRLL| in a range of 0.2 to 0.05 while smooth fields showed
values of|ρRRLL| in a range of 0.6 to 0.5.

In further investigations Schuler et al. (2002) approved this
sensitivity of|ρRRLL| but established a stronger relationship
between the soil surface roughness and the real part of the
circular coherence (Re[ρRRLL]) for a wide range of natural
soil surfaces and different frequencies. The real part of the
circular coherence is defined as (Schuler et al., 2002):

Re[ρRRLL] =

[〈
|SHH − SV V |

2〉
− 4

〈
|SHV |

2〉〈
|SHH − SV V |

2〉
+ 4

〈
|SHV |

2〉
]

(11)
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The advantage of using only the real part of the circular co-
herence as compared to the complex coherence is due to the
fact that the imaginary part is very sensitive to unsymmetrical
scattering contributions caused by vegetation (Schuler et al.
2002). Its insensitivity to the dielectric constant has further
been proven in several investigations (Schuler et al. 2002,
Thiel 2003). However for an azimuthal symmetric surface
both estimators are the same, e.g.|ρRRLL| is real and equals
thereforeRe[ρRRLL]. UsingRe[ρRRLL] rather than|ρRRLL|

has both advantages and disadvantages. When azimuth ter-
rain slopes are present, the magnitude ofRe[ρRRLL] is re-
duced and thereforeRe[ρRRLL] is sensitive to large scale az-
imuthal slopes (Schuler et al., 2002). However these effects
are correctable by using an external digital elevation model
(DEM) (Lee et al., 2000). For this investigation an already
terrain corrected SAR product (GTC) is utilized, therefore
a further correction of large scale azimuth slopes is not re-
quired.

In their investigations Schuler et al. (2002) carried out an
extensive comparison of|ρRRLL| and A. They concluded
that both soil surface roughness estimators are in general not
the same, however in present of azimuth symmetric scatter
the estimators lead to the same results. This condition of az-
imuthal symmetry is true for some natural scenes and can be
illustrated as follows. For the special case of azimuth sym-
metric scatter the coherency matrix [T] is diagonal and the
eigenvalues can be expressed as (Hajnsek 2001):

λ1 =
〈
|SHH + SV V |

2〉
λ2 =

〈
|SHH − SV V |

2〉
λ3 = 4

〈
|SHV |

2〉 (12)

The fact thatA and|ρRRLL| are the same for this case can
be easily observed by incorporating (12) in (7) which is than
equivalent to (11).

Indeed, for ks<0.5,Re[ρRRLL] is more sensitive to rough-
ness thanA which is related to the noisy third eigenvalue,
especially for those smooth areas with low backscatter close
to the system noise floor (Schuler et al., 2002). As a conse-
quence, for smooth areas and/or areas covered with vegeta-
tion, Re[ρRRLL] is the preferable roughness estimator.

For the spatial derivation of micro-scale soil surface
roughness, the Anisotropy,|ρRRLL| andRe[ρRRLL] were cal-
culated by applying a 5×5 boxcar filter on the despeckled
L-band single look complex data.

3 Results

3.1 In-field roughness measurements

As described in Sect. 2.2.1, in-field micro-scale soil surface
roughness was obtained from micro-DSMs, determined by
photogrammetric image analysis. As can be seen from Fig. 5
it is possible to easily distinguish between different soil clods

Fig. 5. Correlation coefficients of the matching process for two
different sample points (101-1/222-2) and roughness states.

and even between small aggregates. The bundle block adjust-
ment revealed a sub millimeter precision for the object co-
ordinates. Triangulation resulted in a precisionz=0.8 mm in
the vertical direction andxy=0.37 mm in the horizontal direc-
tion related to the manually measured GCPs. The deployed
matching strategies lead to a successful matching rate (pixels
showing a correlation>0.65) of approximately 72% of all
possible matches in all stereo pairs. Mismatches mostly ap-
pear in areas where three main factors occur: low image con-
trast, soil clod obstruction in both images and strong height
difference between adjacent pixels. In regions where these
factors are valid, the matching algorithm fails or leads to
low correlation coefficients (see Fig. 5). However, the aim
of the presented study was to develop an easy-to-apply stan-
dard procedure which allows for a rapid image acquisition
near time the radar data recordings. Nevertheless, the de-
rived DSMs showed good agreement with the highly accu-
rate reference points with a mean absolute error of 1.2 mm
and a RMSE of 1.6 mm in vertical direction. Compared to
literature, these accuracies are sufficiently high (Rieke-Zapp
and Nearing, 2005; Wegmann et al., 2001; Warner, 1995;
Taconet and Ciarletti, 2007).

From the obtained micro-DSM, the RMS Heights are cal-
culated for each sample point and date using Eqs. (1)–(3).
Table 1 summarizes the main statistics of the calculated in-
field RMS Heights for each field separately, while Figs. 6–9
give an overview of the obtained roughness values for each
field and campaign date separately. As can be seen from
Fig. 6 and Table 1, the highest values fors occur on the maize
field 222, while the fields under winter resistant vegetation
(101, 250 and 440) are much smoother withs ≈1 cm. To as-
sess the directionality of the in-field roughness,s̄x(y)

/
s̄y(x)is

calculated and the results are displayed in Fig. 9. As can
be seen most sample points are dominated by an anisotropic
roughness pattern with a direction perpendicular to the tillage
pattern.

As roughness changes with its length/area over which it is
estimated (see Sect. 2.2.1), we assessed its under- or over-
estimation by calculating for each DSM different sub-DSMs
for both directions. Therefore we reduced subsequently each
DSM by 0.2 mm in the x direction (respectively y direction)
and calculated for each reduced DSM the RMS Heights par-
allel (s̄x(y)) and perpendicular (s̄y(x)) to the tillage direction.
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Table 1. Mean statistical characteristics of RMS Height measurements.

101 (WR) 102 (SB) 222 (M) 250 (WW) 440 (WB) 460 (SB)

s 0.84 1.07 1.74 0.9 0.9 1.29
s STD 0.14 0.25 0.57 0.13 0.1 0.38
sx 0.61 0.56 0.77 0.52 0.53 0.65
sx STD 0.14 0.25 0.36 0.24 0.23 0.28
sy 0.72 0.81 1.45 0.72 0.71 1.04
sy STD 0.19 0.42 0.69 0.33 0.31 0.52
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Results of three representative DSMs (smooth, medium and
rough) are given in Fig. 10. It is obvious, that the size of the
proper DSM is dependent from the direction of the tillage
pattern. As the RMS Height perpendicular to the tillage di-
rection saturates almost after 15–20 cm, the RMS Height par-
allel to the tillage pattern shows no saturation effects and is
nearly random over the acquired area, meaning that the cho-
sen sampling area is to small to represent the roughness in
parallel to the tillage direction. However, this needs to be
further investigated in future.

3.2 Derivation of soil surface roughness on the field scale

Figure 11 shows the comparison of the calculated potential
roughness estimators, based on Eqs. (7), (10) and (11), for
19 April 2006. As theory predicts, the AnisotropyA appears
much noisier than|ρRRLL| and Re[ρRRLL], due to its cal-
culation from the second and third eigenvalues (see Eq. 7)
(Cloude, 1999; Hajnsek, 2001; Schuler et al., 2002). The
Re[ρRRLL] reveals the highest level of detail and does not ap-
pear as noisy as the others.

Schuler et al. (2002) and Mattia et al. (1997) showed in
their investigations that the polarimetric coherence decreases
with an increase in surface roughness. Thus, smooth areas
with large enough backscatter intensities appear in bright
colours in|ρRRLL| images (see Fig. 11, middle). Contrary
to |ρRRLL|, the images ofRe[ρRRLL] appear different: the
values forRe[ρRRLL] increases with an increase of surface
roughness (Thiel, 2003). Note that in contrast toA and
|ρRRLL| values ofRe[ρRRLL] are in the range of -1 to +1.
Following the approches of Cloude (1999) as well as Cloude
and Lewis (2000), high values for the AnisotropyAindicate
smooth areas while lower Anisotropy regions show rougher
areas. As taken from Fig. 11 all three estimators allow to
distinguish between different roughness states within and be-
tween several fields.

For the derivation of soil surface roughness on field scale,
correlation coefficients have been calculated for each field
and each campaign date between the RMS Heights and the
calculated radar parameters (Figs. 12–13). As can be seen
from Fig. 12, the correlation coefficients for all fields over
the whole campaign are quit low with a maximum for the
Anisotropy on field 102 withr=0.44. Note the positive sign
of the correlation for the whole fields (except field 250) and
A, which indicates a proportional relationship and is contrary
to the proposed inversion schemes by Cloude (1999) as well
as Cloude and Lewis (2000). For|ρRRLL| the mean cor-
relation coefficient isr=0,2 which indicates a weak positive
relationship, which is similar toA. Indeed, the theoretical de-
scription by Mattia et al. (1997) as well as the investigation of
Schuler et al. (2002) showed a negative relationship, mean-
ing that high coherence values indicate a smooth surface. For
the real part of the complex circular coherenceRe[ρRRLL] no
consistent correlation for the different fields can be observed.
Even for the two sugar beet fields (102 and 460) opposite
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Fig. 11. Calculated roughness estimators (Anisotropy, Circular Co-
herence and Real Part of the Circular Coherence) for 19 April 2006.

signs are given for the correlation coefficients. This could be
related to the presence of vegetation which cause an overes-
timation ofksand superimposes therefore the good correla-
tion coefficients betweenksand the radar parameters on bare
soil fields (see Fig. 15). As investigations of Thiel (2003)
have shown, there is in general a positive proportional rela-
tionship betweenksandRe[ρRRLL] which is also observable
within Fig. 10.

To study the effect of vegetation on the roughness re-
trieval we calculated for the bare soil fields (102, 222 and
460) for each campaign date the mean correlation coeffi-
cient which are shown in Fig. 13. WhileRe[ρRRLL] and
|ρRRLL| show a very similar trend over the whole campaign,
the AnisotropyA changes its sign nearly random, which led
us to conclude that it is not suitable for roughness retrieval.
Indeed, especially for the first three campaign dates, a strong
correlation betweenRe[ρRRLL], |ρRRLL| andks in range of
r=0.65 tor=0.97 can be observed. As theory reveals, for

 

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

102 222 460 101 250 440

Field

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

 r

Re[pRRLL] |pRRLL| Anistropy

Fig. 12. Correlation coefficientsr betweenks and polarimetric
roughness estimators for each field and whole campaign.

 

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

Week

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 r

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11
A

lp
ha

 a
ng

le
 [°

]

Re[pRRLL] |pRRLL| Anisotropy Alpha angle

Fig. 13. Correlation coefficientsr betweenks and polarimetric
roughness estimators and mean polarimetric alpha angle for the
summer vegetation field at each campaign.

an azimuthal symmetric surface both estimators are the same
and yield in the same values for r. The small discrepancies
can be explained due to the non isotropic behaviour of the
fields (Fig. 9) which reduces the similarity of both estima-
tors (Schuler et al., 2002). However, with development of
vegetation the correlation between both estimators andks is
reduced showing its minimum at the eighth campaign date
and then increases with an opposite sign for both estimators
revealing the effect of vegetation on the derivation.
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Fig. 15. Scatterplot forks andRe[ρRRLL] for areasα<40◦ at the
first three campaign dates.

To define a threshold to which a derivation is suitable, we
tested several vegetation dependent indices. As argued by
Hajnsek (2001) theHV/VV-ratio <0.07 (−11 dB) is a good
measure for the separation of vegetated and bare soil sur-
faces. However, we could not confirm this threshold (data
not shown). As a measure of the different scattering mech-
anisms, the polarimetric alpha angle is a good indicator of
the different phenological stages. Therefore we plotted the
α angle against the correlation coefficients as displayed in
Fig. 13. As can be seen with an increase inα, a decrease
of r for Re[ρRRLL], |ρRRLL| and ks can be observed until
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Fig. 16. Modeled versus measuredks values for all sample plots
with α<40◦. Hollow rhombuses indicate sample points with strong
directional effects.

its sign changes. An appropriate threshold seems to be anα

angle<40◦, which is related to the surface scatter criterion
proposed by Cloude and Pottier (1997), however it is not that
strict and even allows high roughness values with an high
Entropy to be included in the derivation.

3.3 Multi temporal roughness derivation

To develop an inversion scheme, we defined for the first three
campaign dates an empirical relationship masking out all
the values withα>40◦, which allows us to calculate a re-
gression based on bare soil conditions under a wide variety
of roughness values. Scatterplots for both, theRe[ρRRLL]

and |ρRRLL| show a strong correlation toks and are dis-
played in Figs. 14 and 15. However the correlation coef-
ficient betweenks andRe[ρRRLL] is quite high and outper-
forms |ρRRLL|. Based on this correlation, we defined a
linear inversion scheme which allows us to invertks from
Re[ρRRLL]:

ks = 0.5154× Re[ρRRLL] + 0.477 (13)

Using this relationship, we derivedks from Re[ρRRLL] for
each campaign date on the remaining valid areas. A RMSE
of 0.1 indicates a very accurate inversion model. Figure 16
shows a scatterplot for the modeled and measuredks val-
ues. Highksvalues are slightly underestimated while several
other roughness values (in Fig. 16 indicated by hollow rhom-
buses) are also underestimated. However, these measuredks
values show a significant directional behavior leading to an
overestimation of the in-fieldks values, as can be obtained
from Fig. 9.
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Fig. 17. Spatial distribution ofs. Invalid areas withα>40◦ are
masked out black.

Finally, Fig. 17 shows the spatially derived values fors,
were invalid areas withα>40◦ (settlements, forests, vital
vegetated areas) are masked out for April 19, 2006. As can
be seen, the southern part of field 460 (sugar beet) appears
much rougher as the northern part, which is due to ongoing
agricultural practice during the first campaign date. While
in the southern part the seed bed was already prepared, the
northern part is still showing a crusted surface from the bare
winter period.

4 Potentials for hydrological model application – re-
trieval of soil bulk density parameters

This section discusses the potentials and limitations of the
proposed roughness retrieval for direct use in hydrological
models. As soil surface roughness play a crucial role in phys-
ically based soil erosion models, the assimilation of the de-
rived roughness values into such models is considered ben-
eficial to better describe the processes involved. However
due to the lack of precipitation a soil erosion assessment is
not reasonable. Results of a feasibility study on the use of
roughness information in physically based hydro-ecological
modeling will be presented.

In addition to soil texture (grain size), bulk density and
derived variables such as porosity and void ratio are key
parameters in hydrological modeling. Most widely used
pedo-transfer-functions (PTF) for the calculation of hydro-
ecological properties such as (un-)saturated conductivity are
based on these parameters (Cosby et al., 1984; Rawls and
Brakensiek, 1985; Woesten et al., 1999; Sobieraj et al.,
2001). Further, porosity as well as void ratio are important
indicators for the detection of mechanically compacted soils
in agricultural environments. Typically, bulk density can be
determined using Kopecky rings with known volume, while
soil porosity is mostly measured using an air pycnometer
(Schlichting et al., 1998; Sun et al., 2006). Alternatively,
soil porosity (n) as well as void ratio (ε) can be calculated

Fig. 18. Spatial derived void ratio for 19 April on both sugar
beet fields(102+460). Invalid areas with an alpha angleα>40◦ are
masked out black.

Table 2. Statistical characteristics for bulk density parameters.

ρs n [%] ε [–]

Mean 1.43 45 0.89
Min 1.01 36 0.56
Max 1.69 62 1.6
STD 0.11 4.2 0.15

from bulk density measurements using the following equa-
tions (Hartge and Horn, 1999):

n = 1 −
ρs

ρF

(14)

ε =
n

1 − n
(15)

Wheren denotes soil porosity in (%);ρs is the bulk den-
sity of the given soil (g/cm3) andρF is the bulk density of the
solid particles, where for quartzous soilsρF ≈2.65 g/cm3.

However, there are some drawbacks in using these classi-
cal methods. First, destructive measurements using Kopecky
rings or the air pycnometer do not allow for a multi tem-
poral analysis. Secondly, they are limited to a small area
(plot scale) and therefore time-, labor- and cost-consuming
for field scale assessments.

Sun et al. (2006) introduced the potential of using rough-
ness information, derived from a 3d laser device, to obtain
soil porosity. Using a linear fit, they predicted porosity from
RMS Heights for different roughness conditions of a silty
loam soil. The hypothesis is based on the assumption that
changing roughness due to tillage practice or precipitation
alters only volume but not mass of the soil column (Hartge
and Horn 1999) and thus introduces a change in soil porosity.

To verify the approach suggested by Sun et al. (2006), cor-
relation coefficients between the in-field roughness measure-
ments and the bulk parameters calculated from Eqs. (14) and
(15) are determined. To avoid any influence from vegeta-
tion, only bare fields were considered. Table 2 summarizes
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Table 3. Correlation between s and soil bulk density param-
eters (R2=coefficient of determination,r=correlation coefficient,
m=slope,b=axis intercept).

Parameter R2 r m b

ρs 0.55 −0.74 −0.32 1.90
n 0.55 0.74 12.14 28.28
ε 0.60 0.78 0.49 0.16

the statistics of measured bulk density values while Table 3
summarizes the results from this analysis.

A good relationship between the indicated parameters can
be noted, while the void ratio in the uppermost layer is cor-
related stronger tos than the bulk density and porosity (see
Table 3). This is in good agreement with the results of Sun
et al. (2006).

Applying a linear fit, we derived the spatial void ration
for 19 April, for the bare soil field 102 and 460, as shown
in Fig. 18. A first visual qualitative interpretation of the re-
sults indicates a well working algorithm. The still crusted
surface on field 102 as well as the crusted northern part of
field 460 show a very low void ratio while the already seed
bed prepared southern part of field 460 shows significantly
higher values. Result in form of an RMSE=0.17 g/cm3 indi-
cate promising results, however there is still some potential
for an enhanced bulk density parameter retrieval that has to
be investigated with a larger amount of data in future studies.

5 Summary and conclusions

This study presents an approach for the spatial derivation of
soil surface roughness using photogrammetry and radar re-
mote sensing. Therefore several polarimetric roughness es-
timators have been correlated to a wide range ofks values,
showing that the real part of the complex circular coherence
is outperforming all the other estimators. However, as theory
reveals, for azimuth symmetric bare soil surfacesRe[ρRRLL]

and |ρRRLL| are the same, while for asymmetric surfaces,
due to a directional behaviour of the surface, differences in
both occur. In presence of vegetation, the retrieval algo-
rithm leads to an overestimation of roughness and is therefore
not suitable for an operational use. However, using the po-
larimetric alpha angle (Cloude and Pottier, 1996) for mask-
ing out areas withα>40◦ seems to be a suitable threshold
for a robust roughness retrieval of various roughness condi-
tions even under (short or dry/ripe) vegetation leading to a
RMSE=0.1. However for highksvalues (ks≥0.8) an under-
estimation using the developed inversion scheme could be as-
certained. In investigations of Hajnsek (2001) and Schuler et
al. (2002), a random distribution ofRe[ρRRLL] and|ρRRLL|

for ks>1 is reported, which is in good accordance with our
results.

It is shown that the deployed photogrammetric method al-
lows a fast and adequate retrieval of roughness information.
However, the role of the scale dependent calculations of s
needs to be further investigated in future studies. Even if
earlier papers from Taconet and Ciarletti (2007) proved a
good representation of the roughness determination for the
deployed horizontal coverage (0.5 m2), uncertainties remain,
which are especially given in parallel to the tillage direction
were a larger sampling area is necessary. Future investiga-
tions, to assess this effect on roughness retrieval from SAR
data, are mandatory.

However, our results indicate that spatially determined soil
surface roughness from remote sensing can support the pa-
rameterization of spatially explicit hydrological models, in
this case by providing distributed values of driving variables.
It is shown in a first assessment that soil bulk parameters of
the upper few centimetres of the soil column, such as bulk
density, porosity and void ratio, can be discriminated from
surface roughness. However, even though a dependency of
these bulk parameters from roughness can be noted, the ap-
proach needs further research with regard to different uncer-
tainties:

– The correlation between roughness parameters and bulk
parameters is only strong for fresh harrowed fields. For
small values of s≤1 cm the bulk parameters are ran-
domly distributed.

– Using the regionalization approach suggested in this
study, error propagation will lead to large RMSE val-
ues. Therefore, a better roughness retrieval needs to be
achieved.

Besides those constraints, the approach is very promising.
For future investigations, an enhanced roughness retrieval
has to comprise four major improvements:

– To enhance the in-field roughness retrieval, the image
acquisition set up has to be improved by better illumi-
nation and to solve the appearance of obstructed areas
more than two image pairs could remediate (Luhmann,
2003; Wiggenhagen and Raguse, 2003). To solve the
problem of mismatches between adjacent pixels with
strong height differences, a broad variety of appropri-
ate matching strategies have to be developed to enhance
the matching process.

– The effect of directionality on roughness retrieval needs
to be investigated in more depth by comprising a larger
amount of roughness in-situ measurements to achieve a
better understanding of those effects.

– To reduce uncertainties in roughness measurements,
due to too small sampling areas the horizontal cover-
age of future measurement systems has to be increased
especially in the direction parallel to the tillage pattern.
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– For a better separation of vegetation effects different
decomposition theorems as well as the deployment of
PolInSAR techniques will be necessary.
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Directional microwave scattering, as investigated in this study, is characterized by a strong and narrow
scattering pattern that varies strongly for only minor aspect angle changes. As was noted already in the past
directional scattering is relevant for applications and cannot just be ignored. The overall objective of our work
was to better understand directional scattering. Suited space- and airborne SAR data over several agricultural
sites together with related in-situ information were collected for this purpose. Directional scattering was
identified by comparison of backscattering acquired with only slightly different aspect angles as available
from ERS–ENVISAT pairs with significantly different Doppler Centroids or by comparing azimuth spectrum
sub-bands with slightly different Doppler Centroid. Major progress achieved in this work includes the much
improved experimental evidence available and significant improvements in the understanding of the scatter
phenomenon through the developed scatter model. Good progress was also made in the detection of
directional scattering.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

After the launch of ENVISAT in 2002, ENVISAT ASAR–ERS-2
Tandem (EET) pairs acquired within 30 min over the same area
revealed strong directional scattering effects on some agricultural
fields (Wegmüller, Cordey, Werner, & Meadows, 2006). Examples of
backscatter differences (“flashing”) larger than 6 dB were observed in
EET pairs for look directions differing by less than 1° in the aspect
angle over the same area. The discrepancies between the backscatter
values appeared not to be related to changing environmental
conditions but rather to the fine details of the observing geometries
of the two instruments. However, a complete understanding,
including the explanation with scatter models, was not achieved,
because cases, for which the directional effect could be clearly
identified (e.g. using an available EET pair acquired with significantly
different Doppler Centroids) and in-situ information on parameters as
crop type and surface geometry was available, were missing.

The presence of poorly characterized anomalies between two
subsequent and close SAR acquisitions may have severe implications
for the confidence with which satellite SAR data are assimilated in
hydrological and/or crop growth models for land applications

monitoring, particularly in view of near future missions characterized
by short-repeating cycles (e.g., Sentinel-1 (Attema, Davidson, Snoeij,
Rommen, & Floury, 2009)) data. Indeed, directionality increasing the
backscattering by more than 3 dB is threatening for any kind of
quantitative interpretation of SAR backscattering. At C-band the total
backscatter range over a bare soil with changing soil moisture is
around 6 dB (Wegmüller, 1990), therefore, an increase of the
backscattering by 6 dB caused by directionality can change the
interpretation from dry to saturated. Furthermore, a crop classifica-
tion based on the SAR backscattering can be also affected by
directional scattering effects.

For these reasons, the investigation of directional scattering was
resumed in 2008 (Wegmüller et al., 2010). This time, an important
focus was on the modeling of the directional effects. In the following,
directional scattering will be referred to narrow scattering pattern of
few degrees width in azimuth plane, which differs both from an
anisotropic scattering, with a wider pattern, and an isotropic
scattering which is independent of the aspect angle. Based on a
bibliographic review, two principal conditions originating directional
scattering on SAR images were identified:

a) the existence, on the imaged surface, of geometric structures (e.g.
rows or ditches parallel to the impinging SAR wave front) (Raney,
Gray, & Princz, 1988) that can backscatter coherently the incidence
field;
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b) the presence of regular patterns of these geometric structures (e.g.
periodic tilled soils (Shin & Kong, 1984) (Yueh, Shin, & Kong, 1988)
(Zribi, Taconet, Ciarletti, & Vidal-Madjar, 2002,) or regular grids of
plants characterized by a high double-bounce response, e.g.
machine planted rice in the appropriate phenological stage
(Ouchi, Wang, Ishitsuka, Saito, & Mohri, 2006), (Ulander & Le
Toan, 1999)), which determine a Bragg scattering reinforcement.

A general conceptual model that can account for very directional
scattering patterns represents a resolution cell of the observing system
(e.g. SAR) as a superposition of a few coherent scatter rather than as a
collection of many incoherent scatterers (e.g. Attema, 2007). Such a
model not only predicts a significant angular anisotropy in the surface
scattering but it also implies that the backscattering coefficient depends
on the observing system parameters (e.g. resolution cell) and its 1-look
amplitude pdf is not a Rayleigh distribution (e.g. Jakeman & Pusey,
1976). However, in realistic cases (e.g. tilled row soils), there are
coherent (e.g. scattering from parallel periodic rows) and non-coherent
(e.g. scattering from isotropic surface roughness) contributions whose
weights depend on the characteristics of the radar system (e.g.
frequency, polarization, and incidence angle) and of the soil surface
(e.g. row distance, vertical and horizontal roughness parameters) and
the quantitative prediction of the directional scattering requires to
develop new tools or revisit previous models.

In this framework, the objective of this work has been to
consolidate the experimental evidence and to support its under-
standing by a dedicated ground campaign and an improved
theoretical model in order to better quantify and assess the relevance
of the directional scattering with very narrow scattering pattern.

Section 2 presents the SAR and ground data collected during the
dedicated ground campaign in 2009 over agricultural fields in
Flevoland Province (The Netherlands). Then, the experimental
evidence of the flashing field phenomenon and the scatter modeling
development to interpret the directional pattern are presented in
Sections 3 and 4, respectively. Section 5 discusses the development of
methodologies to reliably detect the directional scattering. Finally, in
Section 6 the conclusions are drawn.

2. Materials

Initially, we searched through a quite extensive set of existing
campaign data (Wegmüller et al., 2010) with potentially suited SAR
data with in-situ information. It turned out, however, that either no
clear “flashing” could be identified (which was the case for fields with
available in-situ information) or that no in-situ information was
available. To ensure an adequate data base, we finally decided to
conduct a dedicated campaign over the area at East of Dronten in
Flevoland Province, The Netherlands. Historic data over this area and a
very recent EET pair acquired on 29-Mar-2009 highlighted the
presence of many fields showing directional effects. On 4-May-2009
we conducted our field campaign to observe the conditions of the
fields during the ENVISAT ASAR and ERS-2 acquisitions on 3-May-
2009.

2.1. Test site and in-situ data

The study area is an agricultural site of approximately 7 km×4 km
located East of Dronten, in Flevoland Province. The very flat
topography of the area is an ideal precondition for the occurrence
and detection of the directional effects. In addition, the selected area is
framed by canals or roads that are either quasi perpendicular or
parallel to the ENVISAT ASAR and ERS-2 look direction.

During the survey, information on crop type and status and
cultivation direction as well as a general description of surface
roughness was collected and documented by photographs over 146
fields, having an average size of 6.7 ha. Fig. 1 shows the boundaries

(red polygons) of monitored fields and themain crop types, i.e. potato,
onion, sugar beet and wheat fields. The longitudinal red and green
lines highlight the road and canals bounding the fields.

For approximately half of the fields inspected during the campaign,
measurements of soil moisture, row maximum height A and row
separation L, crop height and auxiliary information, such as vegetation
growth status, cover fraction, field topography, soil texture type
(mainly sandy clay or clay) were conducted. Rough visual estimates of
the random r.m.s. surface height were also collected. In Table 1, the
mean values of soil parameters, i.e. soil moisture, random r.m.s.
surface height, row height and row separation, for themain crop types
and bare soils, are reported.

An accurate GIS-based assessment highlighted that there were two
different sub-areas in terms of row direction. More precisely, the row
directions following the road/canal directions (red and green
longitudinal lines in Fig. 1) were at 9.3°±0.3° and at 11.5°±0.3°
from the North, respectively for the two different sub-areas. This
difference is likely due to the slight change (i.e. 2°) in the road/canal
direction between the two sub-areas, as can be seen in Fig. 1.

It is worth noting that, in early May, vegetation was developed
only over wheat fields (end of tillering-beginning of stem elongation),
whereas onion, potato and sugar beet fields were mostly bare or
sparsely vegetated, as they were probably sown in April or May,
according to local agricultural practices (Fig. 2).

2.2. SAR data

From the end of March to mid-July 2009, 4 descending ENVISAT
ASAR and ERS-2 Tandempairs (Wegmüller et al., 2009) were acquired
over Flevoland within ~30 min from each other. Table 2 describes the
relevant characteristics of the ENVISAT ASAR and ERS-2 pairs.

To determine the accurate radar look direction, the zero Doppler
look vector and the squint angle ξ (the angle that the slant range
vector makes with the zero Doppler plane) need to be considered. The
corresponding corrected angle in the ground surface plane δ depends
also on the incidence angle θ and is calculated (approximated for
small squint angles) by:

δ =
ξ

sin θ
=

λf d
2v sin θ

;

with the sensor velocity, v, the wavelength, λ, and the Doppler
frequency, fd. Over the synthetic aperture an aspect angle range, δbw,
related to the azimuth bandwidth, bw, is covered:

δbw =
λbw

2v sin θ
:

As a consequence, the corrected aspect angle in the ground surface
plane can be evaluated (Table 2).

For the satellite C-band SARs operated at an incidence angle of 23°,
a Doppler difference of 1000 Hz will cause an incidence direction
difference of approximately 0.5°. It is worth noting that the EET pair
acquired on 3-May-2009 contained a significant Doppler Centroid
(DC) difference (2131 Hz), so that it was a good candidate to reliably
identify directional scattering. For ERS-2 the antenna diagram
azimuth 3 dB beam-width is 0.288°, which corresponds to a Doppler
bandwidth of 1263 Hz. This means that within a single acquisition an
aspect angle range of 0.74° is covered.

From April to June, 10 quad-pol RADARSAT-2 images at different
incidence angles were also acquired over the Dronten site (Table 3), in
the framework of European Space Agency (ESA) AGRISAR '09
campaign, in preparation of methodologies and retrieval algorithms
for the near future ESA SAR system Sentinel-1 (Attema et al., 2009).
The RADARSAT-2 data could complement the ENVISAT and ASAR data
as additional observations, in particular to study the dependence of
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directional scattering on polarization. Although the 3 RADARSAT-2
FQ13 ascending data reported in Table 3 did not cover the Dronten
site, they were interesting as acquired on the same dates as the FQ12
descending data with just about 12 hour difference.

For all SAR data, azimuth sub-band images were also generated. The
available bandwidth was divided into 5 sub-bands (with 50% overlap
between neighboring sub-bands). The sub-band Single Look Complex
images were multi-looked and geocoded. A radiometric scaling relative
to the full bandwidth scene was applied (Moreira, 1992).

The ERS-2, ENVISAT and RADARSAT-2 backscattering coefficients
of the monitored area were extracted from full and sub-band
geocoded multi-look intensity images with 20 m pixel size, averaging
at field scale.

3. Consolidation of experimental evidence

Fig. 3 shows the ENVISAT ASAR and ERS-2 Tandem HSI (Hue–
Saturation–Intensity) composite of the backscatter ratio (hue),
backscatter change (saturation) and backscattering in the first
image of the pair (intensity) over the Dronten site on 3-May-2009.
Backscatter ratio (hue) ranges from −6 to +6 dB; mean intensity
(intensity) from−22 dB to +3.5 dB; backscatter change (saturation)
is defined as the absolute value of the ratio expressed in dB and ranges
from 0 to +6 dB. The red arrow indicates the radar look direction. For
fields showing red (green) color the ENVISAT ASAR backscatter is
between 3 dB and 10 dB higher (lower) than the ERS-2 backscatter.

As the corrected aspect angles of ENVISAT and ERS-2 images were
10.5° and 9.3° respectively (Table 2) and the row direction of red and

green “flashing fields”, were at 9.3°±0.3° and at 11.5°±0.3° from the
North, it results that the flashing field rows were quasi perpendicular
to the radar look directions, whereas the not flashing field rows were
quasi parallel to the radar look directions.

The relationship between the high directional scattering and the
cultivation direction can also be seen, in Fig. 4 which shows the
ENVISAT ASAR (left) and ERS-2 (right) backscattering coefficients of
sugar beet flashing (red and green) and not flashing (black) fields as a
function of the row direction. Moreover, the backscatter values of
flashing fields with row direction quasi perpendicular to the radar
look direction are spread with respect to the backscatter values of not
flashing fields. This is due to the fact that little changes around the
perpendicular direction to the radar look direction can cause a high
variability in the field response (narrow directional scattering
pattern), so that flashing effect can disappear, for example as in case
of the sugar beet field P49.

Nevertheless, flashing fields with row direction not approximately
perpendicular to the observation direction were also observed in an
area adjoining the Dronten site. These cases seem to be rather
exceptional and we assume that the explanation for this directionality
may be different.

It is worth noting that the list of the flashing fields includes fields
with very significant row structures, such as potato and carrot fields,
as well as fields with quite weak row structures, such as onion, sugar
beet and wheat (Table 1).

Different look directions over the same area can be also compared
by splitting the azimuth spectrum of one single image into sub-bands.
For the RADARSAT-2 FQ8, sub-band HSI images (first sub-band image
combined with last sub-band image) on 1st May at HH (top left), VV
(top right), HV (bottom left) and VH (bottom right) polarization are
shown in Fig. 5. At HH- and VV-polarization directional scattering
effects of similar level were observed, whereas at cross-polarization
no effects were observed at a comparable level.

3.1. Occurrence of directionality effects and influence of surface
parameters

The significant difference observed for many fields within the 1°.
directional angle range of the synthetic aperture of the spaceborne C-
band SARs (ERS-2, ENVISAT, and RADARSAT-2) indicates that narrow
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Fig. 1. Boundaries (red polygons) of visited fields and the main cultivated crops in the Dronten site (Flevoland Province, The Netherlands). The longitudinal red and green lines
highlight canals or roads bounding the fields. Field names are also reported.

Table 1
Mean values of soil parameters of onion, sugar beet, potato, wheat fields and bare soils:
soil moisture, random r.m.s. height, row height and row separation.

Soil
moisture [%]

Random rms
height [cm]

Row height
[cm]

Row separation
[cm]

Onion 18 b1 2.5 15
Sugar beet 21 b1 1.5 50
Potato 12 b1 13 70
Wheat 16 1–1.5 1.5 13
Bare soil 15 1–1.5 3 30
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directionality patterns (e.g. b3° width) are often observed. For a 3°
directionality pattern width, a 0.5° aspect angle range covered over
the synthetic aperture, and assuming an isotropic distribution of
cultivation directions results in an occurrence estimate of (4°/180°)=
2.2%.

However, the field topography was found to be a very important
factor for the presence of directional scattering. In flat terrain row
structures are more often very straight. Even in the case of small
slopes, the geometry of the rows relative to the sensors often changes
within a field. In more hilly terrain, fields are generally also smaller
than in flat terrain whichmakes the detection of directional scattering
more difficult. So the high occurrence stated relates to flat terrain
only.

Furthermore, vegetation canopy on top of the soil seems to quench
the directionality effect from the soil, adding a random screen. As an
example, Fig. 6 shows the temporal behavior of backscatter coefficient
of an onion flashing field. The directional effect decrease may be due
to the vegetation growth, as the ENVISAT ASAR and ERS-2 DC

difference (Table 2) does not significantly change from March to
July 2009.

Finally, surface roughness is expected to disturb or reduce
directional scattering from sufficiently straight rows. However, quite
different random roughness was observed on the fields showing
directional effects. In some cases the fields were recently prepared
and showed small scale random roughness typical for such fields with
small 1–2 cm aggregates (soil clods) on the surface. Other fields, e.g.
some onion and sugar beet fields were already prepared further back
in the past and so the surface was slain by precipitation (no more
aggregates visible).

4. Scatter model development

4.1. Modification of model by Shin and Kong (1984)

On the basis of the experimental considerations over the Dronten
site and of the previous experimental studies (e.g. Ferro-Famil,

Fig. 2. Examples of potato (a), onion (b), sugar beet (c), wheat (d) fields over the Dronten site.

Table 2
ENVISAT ASAR and ERS-2 Tandem pairs available in descending (desc) tracks over the Dronten site.

Sensor Date Track Mode Polarization Swath Incidence angle [°] Doppler Centroid [Hz] Corrected aspect angle [°]

ERS2 29-Mar-2009 380 desc VV 25.4 1109 10.0
ASAR 29-Mar-2009 380 desc VV IS2 25.4 211 10.5
ERS2 3-May-2009 380 desc VV 25.4 2350 9.3
ASAR 3-May-2009 380 desc VV IS2 25.4 219 10.5
ERS2 7-Jun-2009 380 desc VV 25.4 1791 9.6
ASAR 7-Jun-2009 380 desc VV IS2 25.4 213 10.5
ERS2 12-Jul-2009 380 desc VV 25.4 1630 9.7
ASAR 12-Jul-2009 380 desc VV IS2 25.4 212 10.5
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Reigber, Pottier, & Boerner, 2003; Wegmüller et al., 2006), the
observed directional scattering on SAR images mainly concerned
agricultural surfaces either bare or at an early vegetation stage. For
this reason, the modeling activity focused on the study of scattering
from agricultural soil surfaces showing a periodic or quasi periodic
tillage row pattern disregarding the presence of vegetation.

The scattering from anisotropic quasi-periodic soils has been
studied in a number of theoretical works in the 1980s (Shin & Kong,
1984; Ulaby, Kouyate, Adrian, & Sieber, 1982; Yueh et al., 1988). In
those studies, the strong impact of anisotropic roughness component
in modulating the isotropic surface scattering was clearly identified
and quantified. Indeed, large variations of backscatter (up to 10–
20 dB) for off-azimuth incidence angle (i.e. the angle between sensor
azimuth and row tillage direction) ranging between 0° and 90°,
corresponding to incidence perpendicular and parallel to tillage row
directions, were predicted.

Shin and Kong(1984) provided a rigorous mathematical frame-
work to describe the scattering from quasi periodic surfaces, modeled
as the superposition of three components: a deterministic periodic
function, a zero mean isotropic stationary Gaussian random process,
and a narrow band Gaussian process. Therefore, the soil roughness is
described by six parameters, the standard deviation (s) and the
correlation coefficient (l) of the isotropic random roughness compo-
nent, and the standard deviation (sy) and the correlation coefficient
(ly) of the anisotropic random roughness component, the amplitude
(A) and the spatial periodicity (L) of the rows. In (Shin & Kong, 1984),
it is demonstrated that the total backscatter of quasi periodic surfaces
consists of three terms:

– the first one due to the coherent field related to the scattering of
the deterministic periodic function (σpp

c );
– the second one representing the incoherent scattering of the

combined isotropic and anisotropic random roughness compo-
nents modulated by the deterministic periodic function σpp

nc1;
– the third one due to the incoherent field scattered only by the

anisotropic random component modulated by the deterministic
periodic function σpp

nc2:

σ0pp = σc
pp + σnc1

pp + σnc2
pp ð1Þ

where p stands for vertical or horizontal polarization.
However, all the simulations reported in (Shin & Kong, 1984; Yueh

et al., 1988) only dealt with the incoherent scattering of the isotropic
random roughness components modulated by the deterministic
periodic function, which could not predict highly directional back-
scattering patterns. The other terms were discarded because their
expressions were found depending on the Dirac-δ function and

Table 3
RADARSAT-2 descending (desc) and ascending (asc) images available in fine beam (FQ)
quad polarization mode over the Dronten site.

Sensor Date Mode Polarization Mode Incidence angle [°]

RADARSAT-2 18-Mar-2009 desc Quad-pol FQ4 25.6
RADARSAT-2 07-Apr-2009 desc Quad-pol FQ8 27.5
RADARSAT-2 1-May-2009 desc Quad-pol FQ8 27.5
RADARSAT-2 25-May-2009 desc Quad-pol FQ8 27.5
RADARSAT-2 8-May-2009 desc Quad-pol FQ12 31.9
RADARSAT-2 1-Jun-2009 desc Quad-pol FQ12 31.9
RADARSAT-2 25-Jun-2009 desc Quad-pol FQ12 31.9
RADARSAT-2 8-May-2009 asc Quad-pol FQ13 34.9
RADARSAT-2 1-Jun-2009 asc Quad-pol FQ13 34.9
RADARSAT-2 25-Jun-2009 asc Quad-pol FQ13 34.9

Dronten

Fig. 3. ENVISAT ASAR and ERS-2 Tandem HSI (Hue–Saturation–Intensity) composite of the backscatter ratio (hue), backscatter change (saturation) and backscattering in the first
image of the pair (intensity) over Dronten site on 3-May-2009. Backscatter ratio (hue) ranges from −6 to +6 dB; mean intensity (intensity) from −22 dB to +3.5 dB; absolute
backscatter change (saturation) from 0 to +6 dB. Red indicates higher intensity for ENVISAT ASAR, and green higher intensity for ERS-2.
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therefore were not given in a finite form. In other words, the study by
Shin and Kong (1984) was able to predict large variations (i.e. several
dBs) of backscattering for changes of the off-azimuth angle of several
degrees but could not predict strong changes of the backscatter (i.e. 3–
6 dB) for variations of the off-azimuth angle of few degrees (i.e. 1–3°),
as it is observed in the case of flashing fields imaged by spaceborne
SAR sensors.

The improved scatter model (Mattia, 2011) consisted of deriving
finite expressions for all the three backscatter terms of quasi periodic
surfaces. This was accomplished by introducing two principal changes
in the theoretical approach.

Firstly, the surface scattered field was computed using the
Kirchhoff diffraction integral under the Fresnel approximation rather
than the Fraunhofer approximation as performed in the original Shin
and Kong model. This change is important to obtain a more accurate
expression of the coherent term contributing to the total backscatter

whenever the observed soil surface is located in the near field of the
radar system (as is the case of spaceborne SAR systems).

Secondly, the antenna pattern of the radar system, characterized
by the system spatial resolutions (i.e. ρx and ρy), was included in the
computation of the scattered field, which permits to obtain a finite
form for all the terms contributing to the total backscatter.

In the modified model, the total backscattering is still expressed as
the superposition of the three terms of Eq. (1), having the same
physical meaning as in the original Shin and Kong (1984) model but
different analytical expressions, which depend not only on the surface
parameters but also on the radar spatial resolutions (i.e. ρx and ρy).
The new derived expressions reproduce as a particular case the Shin
and Kongmodel expressions in (Shin & Kong, 1984) and assume finite
values in the entire azimuthal and zenithal planes. The main
difference is that the new model can predict very narrow backscatter
peaks (i.e. a few tenths of a degree angular aperture in the azimuth

Fig. 4. ENVISAT ASAR (left) and ERS-2 (right) backscatter of sugar beet flashing (red and green) and not flashing (black) fields versus the row direction with respect to North.

Fig. 5. Radarsat-2 FQ8 sub-band HSI images (first sub-band image combined with last sub-band image) acquired on 1st May at HH (top left), VV (top right), HV (bottom left) and VH
(bottom right) polarization.
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plane) when the impinging electromagnetic wave is perpendicular to
the row tillage direction. The amplitude and the width of this peak
depend on the radar (system) spatial resolution (the amplitude is
directly proportional to ρx whereas the width is inversely propor-
tional to ρx).

4.2. Widening of directionality pattern

One limitation of the adopted roughness description is that all the
periodic or quasi-periodic roughness components are perfectly
parallel. In other words, the surface roughness model accounts for a
randomness in the amplitude and phase of the periodic components
but it does not permit to consider quasi-parallel directions. In the real
world the tillage rows of agricultural fields can change direction
within the same field. To account for such imperfectly parallel tillage
rows, the developed scattering model was not modified but an
agricultural field was considered as composed of different sub-
patches with slightly different row directions, assuming a normal
distribution with zero mean and a given standard definition. The
backscatter of such a field is obtained by averaging the backscattering
from all its sub-patches. The resulting backscatter pattern is
characterized by broader peaks whose width increases with the
standard deviation of the row direction distribution. As an example,
Fig. 7 shows the effect of the peak broadening due to the averaging of
quasi-periodic tillage rows considering a standard deviation Δε of
parallel direction equal to 0.25° or 0.5°. The broadening effect is
evident.

4.3. Simulation of measured directionality

In a further step, it was investigated to what extent the modified
model could predict the directional scattering effects observed in the
ENVISAT ASAR and ERS-2 data acquired on 3-May-2009 over the
Dronten site. This was done over bare or sparsely vegetated
agricultural surfaces (potato, onion, sugar beet and bare fields). To
increase the number of SAR observations and refine the resolution of
the directional pattern, the 5 azimuth sub-look images were also
considered. The groundmeasurements of surface parameters (i.e. A, L,
and soil moisture content) and the visual estimates of the random
RMS surface height (s) collected during the ground campaign over the
Dronten site (Table 1) were used as input to the simulations. The
remaining surface roughness parameters (l, sy and ly), whichwere not
measured in the field, were used as free parameters to tune the match
with the measured data. A difference between the ENVISAT ASAR and
ERS-2 aspect angles of 1.2° in May was considered (Table 2). A
standard deviation of the row direction (i.e. Δε) of 0.7° was assumed
in order to reproduce the measured azimuth pattern width. As an
example, Fig. 8 shows the simulated backscattering coefficient
(continuous lines) of sugar beet fields for both ERS-2 (continuous line)

and ENVISAT ASAR (dotted line) acquisitions as a function of the off-
azimuth angle ranging between −5° and 5° for ERS-2 acquisition and
−6.2° and 3.8° for ENVISAT ASAR acquisition around 0°, meaning that
the impinging wave is perpendicular to the row direction. The off-
azimuth angles were evaluated considering the ERS-2 and ENVISAT
ASAR corrected aspect angles and the measured mean row direction.
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Fig. 6. Backscattering coefficient of an onion flashing field versus DoY (Day of Year). The
error bars account for the measurement error.

(a)

(b) 

Δε=0.25°

Δε=0.5°

Fig. 7. Azimuth pattern of total backscattering coefficient (blue line) at VV polarization
and its components. The standard deviation Δε characterizing the row direction of the
quasi-periodic surfaces is: 0.25° (a); 0.5° (b). The surface roughness parameters of the
quasi-periodic surface are: A=1 cm, L=25 cm, s=0.5 cm, l=10.0 cm, sy=1.0 cm,
ly=10.0 cm while the spatial resolutions are ρX, ρY=500 cm.
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The measured mean values of the backscattering coefficient of the
fields with row direction almost perpendicular to the look direction of
ENVISAT ASAR and ERS-2 full images and the relative sub-image
backscattering coefficient (triangles and squares refer to ERS-2 and
ENVISAT ASAR, respectively) are compared. The standard deviations
of measured backscatter values in dB and the standard deviations of the
row directions of the two different areas in the Dronten site are
also shown. The backscatter of fields with row direction quasi
perpendicular to the look direction of ENVISAT ASAR and ERS-2 but
notflashing is reported in thedashed rectangles, at a guessedoff-azimuth
angle. Since the row direction of the not flashing fields was not precisely

measured, it may be inferred that their off-azimuth angles are outside
the range [−2°, +2°], within which the directionality effect appears.
This is also supported by the fact that their actual backscatter level
is approximately −12 dB, and thus in good agreement with the
modified model predictions for off-azimuth angles between 2° and 5°
or−2° and−5°.

An overall comparison between simulated and mean measured
backscattering coefficients of all flashing and not flashing fields with
row direction almost perpendicular to the incidence plane for ERS-2
and ENVISAT ASAR full and sub-look images shows that model results
reproduce the experimental data acquired in May 2009 with an
accuracy ranging between 1.2 dB and 1.9 dB.

5. Detection of directional scattering

The “directionality level” is defined as the increase of the scattering
in dB compared to a field of the same type observedwith the same or a
very similar instrument, with the only relevant difference being the
angle between the look direction and the cultivation direction.

The basic approach used to detect directional scattering is to
compare the backscattering measured under different aspect angles.

5.1. Detection in multiple scenes

The detection of “directional effects” in multiple observations
acquired over the same area under different observational geometries
consists typically of the following steps:

– SAR processing with radiometric calibration
– Co-registration of data sets
– Spatial and multi-temporal filtering (Quegan, Le Toan, Yu, Ribbes,

& Floury, 2000)
– Calculation of ratio image
– Thresholding on ratio image

For visualization purposes we often generate a HSI (Hue–
Saturation–Intensity) composite of the backscatter ratio (hue),
backscatter change (saturation) and backscattering in the first
image (intensity). Examples are shown in Figs. 3 and 5.

This procedure was successfully applied to ENVISAT ASAR and
ERS-2 pairs (Fig. 3) and to ascending/descending orbit pairs (Fig. 9). In
ideal cases (both scenes are acquired at almost the same time, with
the same polarization and incidence angle, but under a sufficiently
different aspect angle) directional scattering can reliably be detected.
In many cases the available data do not meet all these requirements,

Fig. 8. Comparison between the simulated (continuous and dotted lines) and mean
observed backscattering coefficients of sugar beet fields (with row direction almost
perpendicular to the radar look direction) for the ERS-2 (triangles) and the ENVISAR
ASAR (squares) full and sub-look images. The standard deviations of measured
backscatter values in dB and the standard deviations of the row directions of the two
different areas in the Dronten site are also shown. The backscattering values of not
flashing fields are shown in the dashed rectangle, at a guessed off-azimuth angle
outside the range [−2°, +2°], within which the directionality effect appears. The
model parameters are: A=1.5 cm, L=50 cm, s=0.22 cm, l=5.0 cm, sy=0.64 cm,
ly=20.0 cm, dielectric constant=10+ j2, while the spatial resolutions are ρx and
ρy=250 cm and Δε=0.7°.

Fig. 9. Flevoland RADARSAT-2 desc. FQ12 and asc. FQ13 data on 1-Jun-2009. Descending/ascending orbit HIS (upper row) and ratio images (lower row) at HH, HV, VH, and VV
polarization.
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so that a change in backscattering between the two scenes may not
result from directional scattering but from:

– temporal change
– polarization difference
– incidence angle difference

Note that high ratios in ascending/descending orbit pairs may also
relate to anisotropic scattering which has a much wider directionality
pattern than the directional scattering.

5.2. Detection in a single scene

Reliable methods to detect directional scattering effects in a single
SAR scene would be very useful. The use of azimuth sub-band images
and the use of the cross- to like-polarization ratio prove to be themost
promisingmethods presently available for the detection of directional
scattering in C-band space-borne SAR data.

Splitting the azimuth spectrum into two sub-bands, as shown in
Fig. 10, results in two co-registered SLC with slightly different
Doppler Centroids. The DC difference which can be achieved is
limited by the azimuth or Doppler bandwidth. In the case of
ENVISAT this is around 1600 Hz, resulting in DC differences up to
around 1200 Hz, which corresponds to an aspect angle difference of
about 0.6°.

Starting from the sub-band images the methodology to detect
directional scattering corresponds to that of themethodology used for
ERS–ENVISAT Tandem pairs. Examples showed that strong, very
narrow directional scattering patterns can be detected using the
azimuth sub-band method (Fig. 11).

It has been shown that high levels of directional scattering are
observed at HH and VV polarization, but not at cross-polarization.
Therefore, very low HV/HH and VH/VV polarization ratios are
expected for fields with strong directional scattering.

To assess the potential of the cross- to like-polarization ratios to
detect directional scattering we considered the descending orbit
swath FQ12 and the ascending orbit swath FQ13. As these two
acquire data on the same day with just about 12 h difference so that
ascending/descending combinations permitted identifying directional
scattering. Fig. 12 shows the HSI calculated for the ascending/
descending pair together with the HV/HH ratios for the descending
swath FQ12 and for the ascending orbit swath FQ13. Very low HV/HH
ratios are characteristic for the fields with strong directional
scattering, indicating some potential of the HV/HH and VH/VV ratios
to detect strong directional scattering. There are limitations though
to detect lower level (b3 dB) directional scattering because of the
influence of roughness and vegetation on the cross- to like-polarization
ratios.

Finally, the analysis of several polarimetric decomposition ap-
proaches (Krogager, Cloude-Pottier, and Freeman-Durden) confirmed
that the primary nature of directional scattering is pure surface
scattering. For the detection of directional effects, the polarimetric
tools investigated did not seem to provide significantly more
information compared to what is provided by the cross- to like-
polarization ratio.

6. Conclusions

The 2009 Flevoland field campaign dramatically improved the
experimental evidence for directional scattering. Well suited SAR
imagery, including several ENVISAT ASAR–ERS-2 pairs and fully
polarimetric RADARSAT-2 data sets, and related in-situ information
became available over many fields showing strong directional
scattering effects. A significant number of flashing fields and the
relevant geometric parameters on the row structure, the random
roughness, soil moisture, and the vegetation cover were assessed.
Strong directional scattering is observed for fields with a cultivation
direction approximately perpendicular to the look direction. It is very
important to realize that such fields include potato and carrot fields
with very strong row structures as well as onion, sugar beet and
wheat fields with rows having amplitudes comparable or even smaller
than the random roughness.

The directionality of the scattering was validated reliably thanks to
well suited ENVISAT ASAR–ERS-2 pairs acquired within 30 min with
significantly different Doppler Centroids.

The fully polarimetric RADARSAT-2 data set demonstrated the
polarization dependence of the directional scattering, showing

Fig. 10. Azimuth sub-band spectral look images scheme.

Fig. 11. ENVISAT ASAR azimuth sub-band images of 22-May-2009 over Dronten area, sub-band image ratio using logarithmic gray scale between−10 dB and+10 dB, and sub-band
HSI composite (using 6 dB scaling).
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similarly high levels at HH and VV polarization and much reduced or
no directionality at cross-polarization.

Significant progress was achieved concerning the understanding
of the directional scattering. The modified Shin and Kong model
(Mattia, 2011) was developed and assessed versus the experimental
data. Unlike the original Shin and Kong(1984) model, the modified
model is able to predict the narrow directional scattering patterns
observed, both in amplitude and angular width, over fields with row
tillage directions quasi perpendicular to the radar look direction.

Model and experimental results indicate that anisotropic tillage
patterns can produce, on one hand, strong (e.g. 3–6 dB) though fairly
rare (e.g. 2.2% of total fields, based on the assumption of uniformly
distributed tillage orientation) backscatter changes between space-
borne SAR acquisitions with the same nominal geometry (e.g.
descending/descending). On the other hand, it can likely produce
important (e.g. 1–10 dB) changes in the backscatter observed
between spaceborne SAR acquisitions with different geometry (e.g.
ascending/descending).

The basic approach used to detect directional scattering is to
compare the backscattering measured under different aspect angles.
In the case of a single SAR acquisition this is possible because targets
are observed under varying aspect angles along the synthetic
aperture. Processing and comparing azimuth sub-band images can
be used and showed with some potential.

When using multiple observations to detect directional scattering the
angular difference between the two observations can be significantly
larger. In the case of using ascending/descending pairs the angular
difference is often around 20°, which is excellent to have one image being
affected by directional scattering and the other one not. On the other
hand directional scattering (with a narrow pattern) and anisotropic
scattering (with a wide pattern) cannot be separated reliably.

An important disadvantage of multiple observations is that they
are typically acquired at different times, so that temporal change may
be confused with directional scattering effects.

For the planned Sentinel-1 the effective azimuth bandwidth available
is only about 320 Hz (20% of the value of ENVISAT). Nevertheless, in the
so-called TOPSmode this bandwidth available over a certain surface area
is split into a few bursts which differ in their Doppler frequency by up to
N1000 Hz, so that there may indeed be some potential for detecting
directional scattering using azimuth sub-band images.

Very interesting in the context of the detection of directional
scattering in Sentinel-1 data is also the observation that the HV/HH
ratio (and the VH/VV ratio) is particularly low. Cross- and like
polarization data should be available for most Sentinel-1 acquisitions.

The detection based on the lowHV/HH ratios and the azimuth sub-
band based method use very different schemes and can be considered
quite independent of each other. A combination of the two is expected
to permit a quite reliable detection at least for strong directional
scattering. To detect lower levels on the other hand will not as easily
be possible.
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2 Scientific Paper

2.3 Paper III: ISPRS - Assessment of soil surface
roughness statistics for microwave remote sensing
applications using a simple photogrammetric
acquisition system

As a consequence of the different roughness scales and occurring problems in Paper I,
related to the small acquisition area of the measurement system, Paper III describes
the development of a new, simple and efficient roughness acquisition system. In a very
detailed analysis, the utilization of the system has been studied and evaluated in the
context of representativeness of the calculated roughness values. For the proposed rough-
ness value autocorrelation length l, an efficient method was proposed, which allows l to
be calculate from 3D datasets quickly using geostatistics and variogram analysis. In
this paper, a method was established to quantify the impact of the sample size on the
derived roughness values. Therefore, the roughness values were calculated over a wide
range of different sample sizes using a moving window-based approach, which also ac-
counts for anisotropic effects. Further more in this paper, the performance of the system
is evaluated compared to synthetic profile measurements, extracted from the generated
digital surface models. It was shown, that the developed system is more robust in the
assessment of roughness values compared to conventional profile measurements.

Marzahn, P., Rieke-Zapp, D. and Ludwig, R. Assessment of Soil Surface Roughness
Statistics for Microwave Remote Sensing Applications using a Simple Photogrametric
Acquisition System ISPRS, 2012, 72, 80-89

42



Assessment of soil surface roughness statistics for microwave remote sensing
applications using a simple photogrammetric acquisition system

Philip Marzahn a,⇑, Dirk Rieke-Zapp b, Ralf Ludwig a

a Department of Geography, Ludwig-Maximilian University Munich, Luisenstrasse 37, 80333 Munich, Germany
b Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland

a r t i c l e i n f o

Article history:
Received 21 July 2011
Received in revised form 22 April 2012
Accepted 1 June 2012

Keywords:
Photogrammetry
Soil surface roughness
Remote sensing
SAR
Soil science

a b s t r a c t

In this paper we present a simple and efficient method to measure soil surface roughness in an agricul-
tural environment. With the deployed system one can generate digital surface models (DSMs) with a
minimum size of 1 � 2.5 m2 extendable to any desired size. Using this approach, we generated a set of
22 DSM with sizes ranging from 2.5 m2 to 4 m2 and an x-, y-resolution of 2 mm. The DSM were acquired
over different roughness conditions representing ploughed, harrowed as well as crusted fields. For rough-
ness characterization we calculated different roughness indices (RMS-height s, autocorrelation length l).
In an extensive statistical investigation we show the behavior of the roughness indices for different
acquisition sizes of the proposed method. Results indicate, compared to results from profiles generated
out of the dataset, that using a three dimensional measuring device, the calculated roughness indices
are more robust in their estimation. Results also indicate a strong directional dependency of the proposed
roughness indices.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) All rights reserved.

1. Introduction

Micro-scale soil surface roughness is a crucial parameter in a
wide range of environmental applications. In the sense of soil ero-
sion modeling applications, the role of soil surface roughness is
quite well understood and investigated (Fohrer et al., 1999; Farres,
1987; Cremers et al., 1996; Helming et al., 2006). However, the
availability of micro scale soil surface roughness information is still
not sufficiently solved, introducing several soil erosion estimation
errors especially at large-scale modeling applications (Cremers
et al., 1996; De Roo et al., 1996). Remote sensing, especially in
the microwave domain, offers the potential for monitoring surface
features on the regional scale, thus theoretically allowing the re-
trieval of soil surface roughness for soil erosion studies (Marzahn
and Ludwig, 2009; Schuler et al., 2002).

In the sense of soil moisture retrieval from space or airborne
microwave sensors, the ambiguity of the received signal is still
an unsolved problem due to the inherent dependency of the signal
on both geometric and dielectric properties. While the dielectric
properties of a natural medium (e.g. soil) are directly given by
the soil water content, soil texture, bulk density and soil tempera-
ture (Dobson and Ulaby, 1981, 1986; Dobson et al., 1985), the
geometrical properties of a surface correspond to the roughness

of the soil surface (Dobson and Ulaby, 1981). For single-polarized
single-frequency SAR systems this ambiguity cannot be solved
leading to large soil moisture retrieval errors (Hajnsek et al.,
2003; Verhoest et al., 2008). By using multi-polarized multi-
frequency SAR systems or multi-temporal SAR acquisitions it is
possible to invert both soil moisture and soil surface roughness
separately (Allain et al., 2003; Hajnsek et al., 2003, 2009). However,
available soil moisture retrieval algorithms lead to sufficient re-
sults with acceptable root mean square errors only in experimental
studies and not in an operational use (Loew et al., 2008; Verhoest
et al., 2008). One of the main reasons for this insufficiency is the
parametrization of soil surface roughness and its description in
the available backscatter models (Lievens et al., 2009; Verhoest
et al., 2008).

Regarding a natural soil surface in the environment, soil surface
roughness is a superimposition of different roughness scales.
According to Roemkens and Wang (1986) soil surface roughness
can be divided into several roughness classes addressing the scale
dependency of the appearing roughness spectra (see Table 1). In
addition Allmaras et al. (1966) classified roughness into two terms
due to their geometrical appearance: orientated and random
roughness. While orientated roughness is dependent on the tillage
tool or general slope effects, the latter is the result of the fortuitous
occurrence of peaks and depressions resulting from soil clods and
organization of aggregates which cannot be addressed to orien-
tated roughness (Allmaras et al., 1966).
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In classical approaches, soil surface roughness is described as a
single scale random stationary process which can be characterized
by two terms: a) a vertical component, characterized by the stan-
dard deviation of the height values (RMS Height s) compared to a
reference plane (e.g. the mean height), and b) a horizontal compo-
nent, numerically described by an autocorrelation function and
length (ACF, l) (Fung et al., 1992). With respect to the complexity
and superimposition of different roughness scales, several studies
considered soil surface roughness as fractals or self affine surfaces
(Zribi et al., 2000; Sommer, 1997). Fractals are based on the formu-
lations of Mandelbrot and Benoait (1995) describing a self affinity
at different scales of irregular and fragmented structures. However,
there is considerable uncertainty in the parametrization of soil sur-
face roughness which led to enormous soil moisture retrieval er-
rors (Verhoest et al., 2008). Bryant et al. (2007) reported that the
main retrieval errors are the result of differences in soil roughness
parametrization due to different roughness measurement tech-
niques and transect analysis. While the common measurement
technique for soil surface roughness uses mesh boards or needle
profilers (Hajnsek et al., 2003; Bryant et al., 2007), recent studies
used laser profilers (Davidson et al., 2000; Alvarez-Mozos et al.,
2009) or three-dimensional high-resolution photogrammetric ap-
proaches (Marzahn and Ludwig, 2009; Blaes and Defourny, 2008).

Several studies have shown the scale dependency of different
roughness indices. Davidson et al. (2000) have shown an increasing
behavior of s and l with increasing profile length. In a theoretical
experiment, Lievens et al. (2009) confirmed this behavior using
Monte Carlo simulation techniques and synthetic profiles. How-
ever, this is only based on 1d profile data. For three-dimensional
data, little information is available on the behavior of the proposed
roughness indices. Taconet et al. (2007) investigated the reliability
of different roughness indices with increasing acquisition size,
using a photogrametric approach. However, they only determined
a certain percental error for reduced acquisition sizes based on the
larger initial acquisition size defining the true roughness index.

In this study, we will investigate and evaluate the behavior of
different roughness indices in regard to their spatial sampling size
and sampling form. We therefore introduce a simple and efficient
photogrammetric acquisition setup Section 2.2, and analyze the
derived roughness values using (geo-) statistical analysis in detail
Section 3.2.

2. Methods

2.1. Description of soil surfaces

In order to characterize a wide range of roughness conditions,
22 samples have been acquired on different agricultural fields, rep-
resenting surface conditions from smooth (crusted) fields to rough
ploughed fields at two different test sites – Steinbeissen and Puch.
Both test sites are part of the SMOS CalVal experimental campaign
(Schlenz et al., 2010a,) located in Bavaria, Germany. While the

Steinbeissen test site represents a typical Bavarian agricultural
landscape, located in Lower Bavaria next to the village Landau an
der Isar, the Puch test site consists of the fields of a research farm,
operated by the Bavarian agency for agriculture (LfL), located near
the village Puch, approximately 30 km west of Munich.

The initial campaign took place over the Steinbeissen test site in
late July 2009. The region is mainly agricultural in character and
the main crops are winter wheat, winter barley, corn and sugar
beet. During the campaign most of the crops had reached their ma-
ture stadium and several cereal fields were already harvested.
Therefore several tillage operations, mainly ploughing and grub-
bing using a row cultivator, were ongoing during the campaign.
Four different fields were selected, representing different rough-
ness conditions within the test site. The main soil texture of the
sample points is loess loam, which contains a high fraction of silt.
Sample points SP 11-45 were acquired over the Steinbeissen test
site.

The second and third campaign took place at the Puch test site.
As the Puch test site is an experimental farm, various crops and till-
age practices are available. However the main crops are winter
rape, winter wheat and potatoes. For this study a winter rape field
was chosen to measure soil surface roughness on a multi-temporal
basis. Therefore roughness was measured in October 2009 and
March 2010 over the same field and the same locations. In October
2009 winter rape was recently sown, however it was already well
developed, thus preserving the seedbed structure against splash
erosion. The already developed vegetation layer was carefully re-
moved from the scene without disturbing the surface conditions
during the measurements. In March 2010 the soil surface was
crusted due to rainfall events and the long winter season in south-
ern Bavaria. The main soil type of the sample points is sandy loam.
Sample points SP 51-64 were acquired over the Puch test site.
Table 2 summarizes the main characteristics of the sample points.

2.2. Acquisition setup

In this section we will describe the acquisition setup, which
consists of customized Canon EOS 5D digital camera and reference
frame marked with targets. The derivation of the DSM is done with
Leica Photogrammetry Suite 9.3 (LPS) Software.

2.2.1. Camera description
Using photogrametric approaches in surface reconstruction re-

quires high-precision cameras with respect to interior orientation.
Metric cameras satisfy such requirements at high costs. In recent
years, working with cameras that are not particularly designed
for the requirements of photogrametry has become common in
close range applications (Rieke-Zapp, 2010). While one can achieve
high precision results with such cameras under several circum-
stances, it is well known that the geometric stability of these cam-
eras is the limiting factor for the accuracy that can be achieved
(Chandler et al., 2005; Rieke-Zapp and Nearing, 2005; Rieke-Zapp,
2010). While mechanical problems are highlighted to be the main
sources for geometrical instability, recent studies have shown
that mechanical fixation of the lens and/or the sensor help increase
the accuracy in object space (Rieke-Zapp and Nearing, 2005;
Rieke-Zapp et al., 2009).

In this study we use a customized Canon EOS 5D with a Canon
EF 2/35 mm lens. Table 3 summarizes the characteristics of the EOS
5D and its calibration results. As shown by Rieke-Zapp et al. (2009),
the off-the-shelf Canon 5D in combination with the Canon EF
35 mm lens produces a maximum absolute Length Measurement
Error (LME) of 330 lm, without fixation of the focusing tube at a
maximum object distance of 2.5 m. Fixing the lens by placing
epoxy resin between the focusing tube and the outer lens tube
reduces the maximum absolute LME to 47 lm. The fixation of

Table 1
Roughness classification after Roemkens and Wang (1986).

Roughness class Scale
(mm)

Topographic elements

Micro roughness 62 Texture dependent roughness, very small
soil aggregates

Random
roughness

2–200 Soil aggregates and clods

Orientated
roughness

200–400 Rows, tillage patterns

Higher order
roughness

P400 Slope, field borders
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the Canon EF 35 mm lens was done by ‘‘Photogrammetrie Perrinja-
quet AG’’ Guemmlingen, Switzerland.

2.2.2. Reference frame
Since LPS needs ground control points (GCPs) with known coor-

dinates for the calculation of the exterior orientation, a reference

frame was designed providing 28 horizontally and vertically dis-
tributed GCPs. To keep the reference frame handy, the horizontal
size of the lightweight aluminum frame is set to 2.5 � 1 m2.
Fig. 1 shows the reference frame as well as a detailed view of a
marked GCP. Co-ordinates of the reference frame were measured
with a caliper ruler with an accuracy of 0.10 mm in x, y, z direction.
To cover an area inside the frame with sufficient resolution, six
images were necessary with a forward overlap of 60% and a sidelap
of 50%. Table 4 summarizes the image acqusition schedule for the
coverage of each frame.

In this case we relied on the normal (nadir) case of photogram-
metry which appeared most natural for our needs. Wackrow and
Chandler (2008, 2011) on the other hand have shown that espe-
cially when working with cameras where the interior orientation
is not well defined, a convergent setup of the camera positions
can be favorable, reducing systematic errors in DSMs.

To ensure that the roughness measurements are not limited to
the acquisition size of the frame, an approach is developed which
allows for an acquisition of several consecutive subplots which
can be merged to a single roughness plot during post processing
using image matching techniques. Therefore the frame is levelled
along an exact horizontal plane with a given length. After the
images for one frame are acquired, the frame is moved to the next
position with an overlap of 30%. Fig. 2 shows this approach in a
schematic manner. During post processing, for each subplot a
DSM is generated in its local coordinate system. To merge the sub-
plots to a single plot, homogenous points were calculated in the
overlapping regions using a cross correlation aproach and
the offsets of the (homogenous) points in the x-, y-direction were

Table 2
Characteristics of the sample points for roughness measurements.

Sample point Preparation status Characteristics

SP 11–13 Ploughed Large soil clods with several plant residua
SP 11p–13p Ploughed Large soil clods with several plant residua, perpendicular to rows
SP 21–23 Crusted Smooth crusted field, recently harvested, rape seed residua
SP 31–35 Harrowed Recently harrowed field, random appearance of soil aggregates
SP 51–54 Seedbed structure Recently prepared seedbed under winter rape, 24 mm precipitation received
SP 61–64 Crusted Smooth soil surface under winter rape after 291 mm precipitation received

Table 3
Canon EOS 5D characteristics and calibration results. Calibration with Aicon 3D studio
(Aicon 3d Systems, 2009) – parameters converted for input in LPS. K1 = 3rd-order
term of radial distortion correction, K2 = 5th-order term of radial distortion correc-
tion, K3 = 7th-order term of radial distortion correction, P1 and P2 = coefficient of
decentering distortion.

Parameter Values Standard
error

Camera Canon EOS 5D –
Lens Canon EF 2/35 mm, fixed focus at

2.5 m
–

Resolution 4368 � 2912 pixels –
Pixel width, xy (mm) 0.0082 –
Focal length, c (mm) 35.8919 0.0000
Principal point offset, xp

(mm)
�0.2026 0.0000

Principal point offset, yp
(mm)

0.2092 0.0000

K1 (mm) 7.30312e�005 8.2836e�008
K2 (mm) �5.30725e�008 5.535e010
K3 (mm) �2.33223e�011 1.1034e�012
P1 (mm) 3.2677e�005 1.296e�007
P2 (mm) �1.3050e�005 1.167e�007

Fig. 1. Reference frame for relative orientation of the images acquired for DSM generation and detailed view of a GCP.
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calculated. Afterwards each subplot is (linearly) shifted to its final
position in the global DSM.

2.2.3. Generation of Digital Surface Models (DSMs)
For the generation of the DSMs Leica Photogrametry Suite 9.3

(LPS) (Leica Geosystems, 2010) is used. LPS uses epipolar con-
straints during image matching based on the established exterior
orientation of the imagery, the exterior orientation of the block
first has to be established. We therefore used the GCPs installed
on the frame and improved the original camera calibration by
using the Ebner model (Ebner, 1976) which is implemented in
LPS. After the exterior orientation has been established, the DSMs
were generated using different matching strategies depending on
the roughness classes occurring. Table 5 summarizes the applied
strategies based on a ground pixel size of 0.57 mm. For rougher
surfaces a larger search window is chosen. Indeed, the size of the
correlation window is smaller for rougher surfaces due to the sig-
nificant topographic changes within the window. This is based on
the fact that the smoother surface images are lower in contrast and
therefore a larger correlation window is necessary to obtain large

correlation coefficients. Using an epipolar based approach, Linder
(2009) suggests a correlation coefficient threshold for matching
for such applications of 0.65. In a laboratory experiment, Heng
et al. (2010) as well as Rieke-Zapp and Nearing (2005) used a cor-
relation coefficient of 0.80. In our investigations, a threshold of
0.75 seems to be appropriate for a successful matching, as Fig. 3
(left) reveals, yielding good results based on visual inspection. As
obvious, most correlation coefficients during DSM generation are
above this threshold. After successful generation of DSMs, a
7 � 7 pixel low pass filter was applied to remove peaks, smoothen
the DSMs and resample to a regular resolution of 2 � 2 mm2.

2.3. Roughness indices

In order to describe soil surface conditions numerically for re-
mote sensing applications, roughness indices are necessary. In the
literature several roughness indices are described. Sommer (1997)
and Taconet et al. (2007) give a good introduction to the available
roughness indices. In this study, the focus is on the application of
the RMS height s and the autocorrelation length l since both are
roughness indices used by default in radar remote sensing applica-
tions for the characterization of soil surface roughness (Davidson
et al., 2003; Verhoest et al., 2008; Zribi et al., 2000). While the
RMS height describes the vertical roughness component as the
standard deviation of the heights (Z) to a reference height ðZÞ,

s ½cm� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Zi � Z
� �2

n� 1

s
ð1Þ

the autocorrelation length l describes the horizontal component of
the roughness spectra. While, l is usually determined along 1d-pro-
files, the derivation of l using three-dimensional roughness mea-
surements is more complex. For an efficient estimation of l, a
variogram analysis was used and inverted the autocorrelation func-
tion (ACF) from a calculated theoretical omnidirectional variogram
ð~cÞ, where l is defined as the distance (h) at which the ACF drops un-
der e�1 (Blaes and Defourny, 2008). This implies an exponential fit
of the theoretical variogram and therefore of the ACF. Several mod-
els were tested, however best fit was always achieved with an expo-
nential model (data not shown). Blaes and Defourny (2008) and
Davidson et al. (2000) reported similar observations.

The theoretical variogram ð~cÞ with an exponential shape is
fitted to the experimental variogram ðĉÞ, which is defined as
(Webster and Oliver, 2007)

ĉðhÞ ¼ 1
2n

Xn

i¼1

½ZðxiÞ � Zðxi þ hÞ�2 ð2Þ

From the theoretical variogram ð~cÞ the ACF ð~qÞ can be derived as
follows:

~qðhÞ ¼ 1�
~cðhÞ
~cð1Þ ð3Þ

where ~cðhÞ is the semi variance at distance h between two points
and ~cð1Þ is the semi variance at distance where the sill of the vari-
ogram is reached. For the assumed exponential model, where the
sill is asymptotically approached, ~cð1Þ corresponds to the distance
where 95% of the sill is reached (Blaes and Defourny, 2008).

Due to the good resolution of DSMs, l was calculated using only
a random sub sample of 15000 points, while s was calculated for
the whole DSM.

Table 4
Acquisition plan for the coverage of the reference frame.

Parameter Values

Camera altitude, h (mm) 2500
Base length, b (mm) 1000
Height to base ratio, h/b 2.5
Image scale 1:69.65
Ground sample distance (mm) 0.57
Forlap, x (%) 50
Sidelap, y (%) 60
Number of images per strip 3
Number of strips 2

Fig. 2. Acqusition scheme for the sampling of roughness measurements with a
given length and its components using a single reference frame.

Table 5
Matching strategies used during DSM generation as required by LPS based on a pixel
size in ground space of 0.57 mm in the x and y direction.

Roughness
class

Search window
(pixel)

Correlation
window (pixel)

Correlation coefficient
threshold

Ploughed 41 � 3 7 � 7 0.75
Harrowed I 33 � 3 7 � 7 0.75
Harrowed

II
25 � 3 7 � 7 0.75

Seedbed 17 � 3 9 � 9 0.75
Smooth

crusted
11 � 3 11 � 11 0.75
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3. Results and discussion

3.1. DSM quality

The generated DSMs showed good accuracy with an overall
RMSE of 1.77 mm compared to GCPs as shown by Table 6. As

reported by Lievens et al. (2009), an acquisition setup accuracy be-
low 2 mm produces a negligible error in soil moisture estimation.

As Fig. 3 reveals, systematic errors such as dome effects
(Wackrow and Chandler, 2011) were not apparent during the
matching process. However, for the rough ploughed and/or har-
rowed surface, several mismatches could be identified, which orig-
inated due to shadow effects of the soil aggregates in the images.
Image acquisitions from several positions could eliminate this
problem in future investigations. Indeed, for the smoother surfaces
several low correlation values can be observed, resulting in possi-
ble mismatches or in gaps. Those low correlation coefficients
resulting from lower contrast in the images not enhanced during
post processing could not be absorbed by the larger correlation
window size (see Table 5). As proposed by Vozikis et al. (2003), lo-
cal optimization using Hough transformation could help improving

Fig. 3. Results of DSM generation (2� exaggerated heights), from top to bottom, of (a) crusted (SP61), (b) seedbed (SP51), (c) harrowed (SP31) and (d) ploughed surface
(SP12). Left: Quality Map draped over DSM, which shows the correlation coefficients of the matching process during DSM generation. Red pixels (r 6 0.75) indicate that no
match was possible, the height value is then interpolated from its surrounding pixels. Right: Derived DSM values [cm] resulting from applying a 7 � 7 pixel low pass filter.

Table 6
Overall accuracy of generated DSMs compared to GCPs
(RMSE = root mean square error (mm); ME = mean
error (mm); MAE = mean absolute error (mm)).

Parameter Value (mm)

Mean RMSE 1.77
Min. RMSE 0.5
Max. RMSE 3.01
ME �0.98
MAE 1.45

Fig. 4. Calculated autocorrelation length values l [cm] for each sample plot. Sample
size for each plot is 2.5 m2, except for SP54 and SP64 where sample size is 4 m2.

Fig. 5. Calculated RMS height values s [cm] for each sample plot. Sample size for
each plot is 2.5 m2, except for SP54 and SP64 where sample size is 4 m2.

84 P. Marzahn et al. / ISPRS Journal of Photogrammetry and Remote Sensing 72 (2012) 80–89



contrast disparities within the imagery due to the lighting condi-
tions. Indeed, a visual inspection of the images allows a good dis-
crimination of the soil aggregates and even small aggregates can
be distinguished easily as shown by Fig. 3.

3.2. Statistics of roughness indices

The roughness indices calculated from the DSMs are displayed
in Figs. 4 and 5. There is a dependency of s on the different rough-
ness conditions allowing to classify RMS height values s into differ-
ent roughness classes. While the ploughed fields return a value for
s in range of 2.3–5.0 cm, the harrowed fields show lower values
(2.0 6 s 6 4.0 cm). Anisotropic effects can be observed for the
ploughed sample points. While the samples perpendicular to
the row direction (SP11p–SP13p) are in range of 3.6 6 s 6 4.9 cm,
the calculated values for s parallel to the row direction are signifi-
cantly lower (2.3 6 s 6 3.5 cm) and have to be excluded for this
classification. However, theses findings are only based on a small

sample size (n = 6); further investigations have to verify this. In-
deed, there is an overlap between the seedbed prepared fields
and the slightly smoother crusted fields. While the seedbed pre-
pared fields show s values in range of 1.0 6 s 6 1.5 cm, the crusted
surfaces have similar s values.

For autocorrelation length l this trend could not be observed, as
the determined values for l are more randomly distributed.
Verhoest et al. (2008) as well as Davidson et al. (2000) related this
to a too short estimation length for l. Oh and Kay (1998) suggested
for a precise measurement of l a minimum length of the acquisition
size of 200l. Using the highest obtained value for l (SP11p l =
62.8 cm), this would result in an acquisition length Ax � 120 m.
Indeed, while SP51 (l = 48.4 cm) and SP52 (l = 28.7 cm) are sub
DSMs of SP54, with an acquisition size of 4 m2, SP54 gives a more
realistic estimate with l = 40.0 cm. The lower value for l of SP52 is
related to a wheel track occurring in the sampled area assuming an
increase in roughness. With a row distance of 25 cm (±5 cm) the
results for l are 1.5 times larger than the row separation.

Fig. 6. Histogram of autocorrelation length for profile data (lprofile) in cm of a, (a) crusted (SP61), (b) seedbed (SP51), (c) harrowed (SP31), (d) ploughed (SP11) surface. (Upper
right corner: lprofile = modalvalue of the 500 profiles; lplot = modalvalue of 500 calculations of l.)
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For SP53 this is not valid, due to its acquisition direction being par-
allel to the row direction.

Regarding a multi-temporal analysis, which is an important
point for soil erosion studies, both roughness indices are sensitive
to changes in roughness conditions due to precipitation. As shown
above, a sensitivity of the roughness indices to huge changes in
roughness is given (e.g. ploughed, harrowed, crusted fields). In
addition, it is also possible to detect small changes in roughness
due to crusting effects by precipitation. As shown in Table 2,
SP51-54 and SP61-64 are the same plots with a difference in re-
ceived precipitation which causes a smoother appearance of the
latter samples. In general, this smoothing could be quantified using
the roughness indices and is visible by a decline of s and an in-
crease in l (see Figs. 4 and 5). Indeed, the alteration is more prom-
inent for the rougher sample point SP52 (SP62) where a wheel
track is present. This could be related to the very smooth seedbed
structure present at the acquisition date after sowing, such that a

relative change in roughness is higher for the rougher sample
point.

It is to notice that the small value of l = 13.11 cm (SP63) can be
directly related to the poor accuracy of the DSM SP63 with an
RMSE of 3.01 (see Table 6). Correspondingly, for s there is no signif-
icant impact.

3.2.1. Influence of acquisition type on roughness indices
As roughness indices are often determined along profiles, we

calculated sprofile and lprofile along each image row (pixel line). As a
result, we generated a set of 500 profiles for each DSM. To compare
the obtained data, we calculated lplot with a repetition of 500
for the whole dataset, since we used only a subset of data points
for the calculation of l. Fig. 6 summarizes the statistics of four
DSMs (ploughed, harrowed, seedbed, crusted) and shows the com-
parison between the profile data lprofile and the results calculated
for the whole plots (lplot). Obviously, the values obtained for lplot

Fig. 7. Histogram of RMS Heights (sprofile) for profile data in cm of a, (a) crusted (SP61), (b) seedbed (SP51), (c) harrowed (SP31), (d) ploughed (SP11) surface. (Upper right
corner: sprofile = mean of 500 profiles, splot = s for the whole plot.)
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are more robust in their estimation than using only the values ob-
tained from the single profiles (lprofile), as the standard deviation of
the calculated lprofile values reveals, which are on average ten times
higher than the standard deviation for lplot.

The same could be observed for splot (see Fig. 7). While the pro-
file data gives a wide range of different sprofile-values ranging from
1.89 6 s [cm] P 6.20 for a ploughed surface (SP11), the estimates
of splot for the whole acquisition area is more robust (splot = 3.32).
However, a clear trend could be observed, as Fig. 8 shows. For
smooth surfaces, the profiles give nearly the same results for sprofile

as for the whole plot standard deviation of rplot STD = 0.17;
RMSE = 0.15. Indeed, with an increase in roughness the results of
sprofile could misrepresent the values for splot and would result in
an underestimation of splot. The standard deviation of sprofile

(STD = 0.53) as well as the larger RMSE of 0.64 support this

assumption. Oh and Kay (1998) as well as Lievens et al. (2009)
describe this as the number of average profiles needed for a robust
estimation of the used roughness indices. However, as shown this
is only reliable for smooth surfaces where an anisotropic impact is
negligible contrary to rougher surfaces.

3.2.2. Influence of acquisition size on roughness indices
As both roughness indices are scale dependent (Davidson et al.,

2000; Verhoest et al., 2008), the goal is to find the best acquisition
size of DSMs for the characterization of roughness conditions.
Taconet et al. (2007) introduced a relative accuracy approach for
the evaluation of optimal DSM size. However, this approach has
several drawbacks, as roughness can be considered as anisotropic
(especially for rougher surfaces, as shown) and without the knowl-
edge of the indices’ true values it is not well suited for the determi-
nation of representative acquisition size. Therefore we propose the
Representative Elementary Area (REA) approach according to the

Representative Elementary Volume approach introduced by Bear
(1972), which allows accounting for anisotropic effects of the soil
surfaces using a moving window approach. Therefore we recalcu-
lated both roughness indices for various given window sizes. In
our definition, the sample size of a given surface could be consid-
ered as representative when the calculated roughness indices are
in range of the final estimation plus the accuracy of the acquisition
setup (RMSE = 1.77 mm). Fig. 9 shows, as an example, the result of
the REA approach for a given surface (SP12). The two horizontal
dashed lines display the range at which the sample size could be
considered representative. For small acquisition sizes, a wide range
of different roughness values are determined, which were concen-
trated to a more precise value when increasing the acquisition size.
Indeed, by having a closer look at the data, one could observe an
increase from small acquisition sizes to larger ones for the mean
�sA values (solid line). For nearly all surfaces, this increase of �sA

could be described with a positive exponential fit.
For most surfaces, the optimum sample size is in good accor-

dance with the sample size of the frame (see Fig. 10). However,
for SP13, SP22 and SP53 the optimum sample size is larger than
2.5 m2. Thus, for these sample points, the size of the sampled area

Fig. 8. Scatter plot of splot versus sprofile values for all DSMs. Solid line corresponds to
the zero error line. Dashed lines linear regression between splot and sprofile for each
surface type.

Fig. 9. Results of the REA approach for SP12. (Horizontal dashed lines (RMSE)
display the acceptable range of variance in s.)

Fig. 10. Results of the REA s approach for the whole data set. For SP13, SP22 and
SP53 the optimum sample size is larger than 2.5 m2.
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is too small and leads to a misinterpretation of the true estimate.
Indeed, there is no direct dependency of the acquisition size and
s. However it is to observe that for smooth surface (small s) smaller
acquisition sizes are necessary and for rougher surfaces larger
ones. It is obvious that values of s 6 2 cm could be reliably re-
trieved from acquisition areas in size of 2 m2. Indeed, larger values
for s up to 5 cm could be reliably retrieved by using an acquisition
area up 3 m2 (see Fig. 11).

4. Conclusions

In this paper we proposed a simple and practical approach for
the measurement of soil surface roughness for microwave remote
sensing applications. The deployed system consists of a consumer
grade Canon EOS 5D digital camera with a customized Canon EF
35 mm lens and a reference frame providing ground control points
for the photogrammetric derivation of digital surface models. The
derived DSMs provide the basis for the quantitative characteriza-
tion of soil surface roughness by means of RMS height values s
and autocorrelation lengths l and showed a good accuracy com-
pared to the known GCPs. With an overall RMSE of 1.77 mm, the
impact for an error-prone soil moisture retrieval could be ne-
glected (Lievens et al., 2009). Therefore the system is well suited
for roughness parametrization in soil moisture modeling for micro-
wave remote sensing applications.

In our investigations, of the acquired data the calculated index
values allowed us to classify four different soil surface roughness
classes: crusted surface, seedbed, harrowed and ploughed. While
the harrowed and ploughed surfaces, by excluding the in-parallel
acquisitions, could be clearly classified, the crusted surface and
the seedbed showed overlapping values of s, which could be re-
lated to a very smooth seedbed. However, the classification is in
good accordance with other studies (Alvarez-Mozos et al., 2009;
Davidson et al., 2003).

The acquisition setup deployed allows an estimation of the
directional effects in soil surface roughness quantification. By ana-
lyzing sample points acquired perpendicular and parallel to the
row direction of the agricultural fields, a clear directional behavior
is observable. While the in-perpendicular roughness indices indi-
cated always a higher roughness, the in-parallel indices showed a

smoother roughness pattern. This is especially valid for rougher
surfaces, while for the smoother surface where no roughness pat-
tern (e.g. seedbed, drill-rows) is present, the effect could be ne-
glected. As we have shown with profile data generated from the
DSMs, the anisotropic effects are more dominant for a roughness
profile compared to the three dimensional approach. This is obvi-
ous when comparing the estimated roughness indices from both
profile and plot data. While the first one gives a wide range of dif-
ferent roughness values, the estimated roughness values for the
plot data are more robust. The variety of the estimated roughness
values for the profile data is proportional to an increase in rough-
ness. Thus, as shown, by using a profile measurement device, the
estimated roughness values are less reliable leading to misinter-
pretations. Due to the anisotropic behavior of roughness, profile
measurements are only valid for smooth surfaces. Contrary to most
authors (Verhoest et al., 2008; Taconet et al., 2007; Lievens et al.,
2009; Alvarez-Mozos et al., 2009) we conclude that roughness
has to be considered as non isotropic, thus a 3d measurement de-
vice is preferable for the characterization of soil surface roughness

As most roughness indices are dependent on the acquisition
size over which they are estimated, we tried to find the optimum
sample size by using the REA approach. Results show that an
acquisition size of 3 m2 provides a good basis for the derivation
of soil surface roughness indices. However for a smooth surface a
smaller acquisition size up to 2 m2 is sufficient. As the REA ap-
proach showed, an increase of s with an increase of the acquisition
area could be observed. This is also in good accordance to values
from the literature. The observed increase for the plot data is not
very strong and could be described with an exponential shape.

Future investigations on soil surface roughness statistics should
include the periodic roughness component in more detail. As the
impact of the periodic component for backscatter modeling is not
well understood, the deployed system gives the possibility to char-
acterize this component over large acquisition sizes. In addition as
we considered roughness as anisotropic, future investigations
should also include narrow directional effects in roughness param-
etrization in only a few degrees width. As results from the Flashing
Fields! study, Wegmuller et al. (2011) have shown that a very nar-
row change in the look vector of a microwave sensor causes a back-
scatter difference of several dB, it is to investigate if this could also
be identified in roughness parametrization. As we have shown, for
a width of 90� a significant impact on roughness retrieval could be
observed.

References

Aicon 3d Systems, 2009. Aicon 3d Studio – User Manual (CD-ROM).
Allain, S., Ferro-Famil, L., Pottier, E., 2003. Surface parameter retrieval from

polarimetric and multi-frequency SAR data. In: Proceedings of IEEE
International Geoscience and Remote Sensing Symposium IGARSS ’03, vol. 2,
21–25 July 2003, pp. 1417–1419.

Allmaras, R.R., Burwell, R.E., Larson, W.E., Holt, R.F., 1966. Total Porosity and
Random Roughness of the Interrow Zone as Influenced by Tillage. USDA
Conservation Research Report 7. USDA.

Alvarez-Mozos, J., Verhoest, N., Larranaga, A., Casalf, J., Gonzlez-Audfcana, M., 2009.
Influence of surface roughness spatial variability and temporal dynamics on the
retrieval of soil moisture from SAR observations. Sensors 9 (1), 463–489.

Bear, J., 1972. Dynamics of Fluids in Porous Media. American Elsevier.
Blaes, X., Defourny, P., 2008. Characterizing bidimensional roughness of agricultural

soil surfaces for SAR modeling. IEEE Transactions on Geoscience and Remote
Sensing 46 (12), 4050–4061.

Bryant, R., Moran, M.S., Thoma, D.P., Holifield Collins, C.D., Skirvin, S., Rahman, M.,
Slocum, K., Starks, P., Bosch, D., Gonzalez Dugo, M.P., 2007. Measuring surface
roughness height to parameterize radar backscatter models for retrieval of
surface soil moisture. IEEE Geoscience and Remote Sensing Letters 4 (1), 137–
141.

Chandler, J.H., Fryer, J.G., Jack, A., 2005. Metric capabilities of low-cost digital
cameras for close range surface measurement. The Photogrammetric Record 20
(109), 12–26.

Cremers, N.H.D.T., Dijk, P.M.V., Roo, A.P.J.D., Verzandvoort, M.A., 1996. Spatial and
temporal variability of soil surface roughness and the application in

0 1 2 3 4 5

0
1

2
3

4
5

s [cm]

R
EA

_s
 [m

^2
]

● ●

●

●

●

●

●

surface
crusted
harrowed
ploughed
seedbed

Fig. 11. Results of the REA approach vs. s values grouped by their surface
appearance. (Black solid line zero error line, black dashed line linear trend of REA
vs. s.)

88 P. Marzahn et al. / ISPRS Journal of Photogrammetry and Remote Sensing 72 (2012) 80–89



hydrological and soil erosion modeling. Hydrological Processes 10 (8), 1035–
1047.

Davidson, M.W.J., Toan, T.L., Mattia, F., Satalino, C., Manninen, T., Borgeaud, M.,
2000. On the characterization of agricultural soil roughness for radar remote
sensing studies. IEEE Transactions on Geoscience and Remote Sensing 38 (2),
630–640.

Davidson, M.W.J., Mattia, F., Satalino, G., Verhoest, N.E.C., Le Toan, T., Borgeaud, M.,
Louis, J.M.B., Attema, E., 2003. Joint statistical properties of rms height and
correlation length derived from multisite 1-m roughness measurements. IEEE
Transactions on Geoscience and Remote Sensing 41 (7), 1651–1658.

De Roo, A.P.J., Offermanns, R.J.E., Cremers, N.H.D.T., 1996. Lisem: a single-event,
physically based hydrological and soil erosion model for drainage basins. II:
Sensitivity analysis, validation and application. Hydrological Processes 10 (8),
1119–1126.

Dobson, M.C., Ulaby, F., 1981. Microwave backscatter dependence on surface
roughness, soil moisture, and soil texture: Part III – Soil tension. IEEE
Transactions on Geoscience and Remote Sensing 19 (1), 51–61.

Dobson, M.C., Ulaby, F.T., 1986. Active microwave soil moisture research. IEEE
Transactions on Geoscience and Remote Sensing 24 (1), 23–36.

Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., El-Rayes, M.A., 1985. Microwave
dielectric behavior of wet soil – Part II: Dielectric mixing models. IEEE
Transactions on Geoscience and Remote Sensing 23 (1), 35–46.

Ebner, H., 1976. Self calibrating block adjustment. International Archives of
Photogrammetry 21 (Part 3), 1–17.

Farres, P.J., 1987. The dynamics of rainsplash erosion and the role of soil aggregat
stability. CATENA 14 (1–3), 119–130.

Fohrer, N., Berkenhagen, J., Hecker, J.M., Rudolph, A., 1999. Changing soil and
surface conditions during rainfall: single rainstorm/subsequent rainstorms.
CATENA 37 (3–4), 355–375.

Fung, A., Li, Z., Chen, K., 1992. Backscattering from a randomly rough dielectric
surface. IEEE Transactions on Geoscience and Remote Sensing 30 (2), 356–369.

Hajnsek, I., Pottier, E., Cloude, S.R., 2003. Inversion of surface parameters from
polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing 41 (4),
727–744.

Hajnsek, I., Jagdhuber, T., Schoen, H., Papathanassiou, K.P., 2009. Potential of
estimating soil moisture under vegetation cover by means of PolSAR. IEEE
Transactions on Geoscience and Remote Sensing 47 (2), 442–454.

Helming, K., Rubio, J.L., Boardman, J., 2006. Soil erosion across Europe: research
approaches and perspectives. CATENA 68 (2–3), 71–72.

Heng, P.B.C., Chandler, J.H., Armstrong, A., 2010. Applying close range digital
photogrammetry in soil erosion studies. The Photogrammetric Record 25 (131),
240–265.

Leica Geosystems, 2010. Leica Photogrammetry Suite v.9.3 Users Manual (CD-ROM).
Lievens, H., Vernieuwe, H., Alvarez-Mozos, J., De Baets, B., Verhoest, N., 2009. Error

in radar-derived soil moisture due to roughness parameterization: an analysis
based on synthetical surface profiles. Sensors 9 (2), 1067–1093.

Linder, W., 2009. Digital Photogrammetry A Practical Course. Springer, Berlin/
Heidelberg.

Loew, A., Hajnsek, I., Schoen, H., Jagdhuber, T., Hoekman, D., 2008. Exploiting Longer
Wavelength SAR Data for the Improvement of Surface Modelling. Tech. Rep. ESA
Contract No. 19569/06/NL/HE. ESA.

Mandelbrot, Benoait, B., 1995. Les Objetcs Fractals. Champs, Flammarion, Paris.

Marzahn, P., Ludwig, R., 2009. On the derivation of soil surface roughness from
multi parametric PolSAR data and its potential for hydrological modeling.
Hydrology and Earth System Sciences 13, 381–394.

Oh, Y., Kay, Y.C., 1998. Condition for precise measurement of soil surface roughness.
IEEE Transactions on Geoscience and Remote Sensing 36 (2), 691–695.

Rieke-Zapp, D.H., 2010. A digital medium-format camera for metric applications -
alpa 12 metric. The Photogrammetric Record 25 (131), 283–298.

Rieke-Zapp, D., Nearing, M., 2005. Digital close range photogrammetry for
measurement of soil erosion. The Photogrammetric Record 20 (109), 69–87.

Rieke-Zapp, D., Tecklenburg, W., Peipe, J., Hastedt, H., Haig, C., 2009. Evaluation of
the geometric stability and the accuracy potential of digital cameras –
comparing mechanical stabilisation versus parameterisation. ISPRS Journal of
Photogrammetry and Remote Sensing 64 (3), 248–258.

Roemkens, M.J., Wang, J.Y., 1986. Effect of tillage on surface roughness. Transactions
on ASAE 29, 429–433.

Schlenz, F., Dall’Amico, J., T., Loew, A., Mauser, W., 2010a. SMOS validation in the
upper danube catchment (UDC): a status report eight month after launch. In:
Proceedings of ESA Living Planet Symposium 2010 Bergen, Norway.

Schlenz, F., Gebhardt, T., Loew, A., Marzahn, P., Mauser, W., 2010b. L-band
radiometer experiment in the SMOS test site upper danube. In: Proceedings
of ESA Living Planet Symposium 2010 Bergen, Norway.

Schuler, D.L., Lee, J.-S., Kasilingam, D., Nesti, G., 2002. Surface roughness and slope
measurements using polarimetric SAR data. IEEE Transactions on Geoscience
and Remote Sensing 40 (3), 687–698.

Sommer, H., 1997. Quantifizierung der Rauigkeit von Bodenoberflaechen und
Simulation hydromechanischer Prozesse anhand von Oberflaechenmodellen.
FAM-Bericht 18, Forschungsverbund Agraroekosysteme Muenchen.

Taconet, O., Ciarletti, V., 2007. Estimating soil roughness indices on a ridge-and-
furrow surface using stereo photogrammetry. Soil and Tillage Research 93 (1),
64–76.

Verhoest, N., Lievens, H., Wagner, W., Alvarez-Mozos, J., Moran, M., Mattia, F., 2008.
On the soil roughness parameterization problem in soil moisture retrieval of
bare surfaces from synthetic aperture radar. Sensors 8 (7), 4213–4248.

Vozikis, G., Jansa, J., Fraser, C., 2003. Alternative sensor orientation models for high-
resolution satellite imagery. Photogrammetrie, Fernerkundung, Geoinformation
(PFG) 2003 (12), 179–186.

Wackrow, R., Chandler, J.H., 2008. A convergent image configuration for DEM
extraction that minimises the systematic effects caused by an inaccurate lens
model. The Photogrammetric Record 23 (121), 6–18.

Wackrow, R., Chandler, J.H., 2011. Minimising systematic error surfaces in digital
elevation models using oblique convergent imagery. The Photogrammetric
Record 26 (133), 16–31.

Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientists, second
ed. John Wiley & Sons, Ltd..

Wegmuller, U., Santoro, M., Mattia, F., Balenzano, A., Satalino, G., Marzahn, P.,
Ludwig, R., Floury, N., 2011. Progress in the understanding of narrow directional
microwave scattering of agricultural fields. Remote Sensing of Environment 115
(10), 2423–2433.

Zribi, M., Ciarletti, V., Taconet, O., PaillT, J., Boissard, P., 2000. Characterisation of the
soil structure and microwave backscattering based on numerical three-
dimensional surface representation: analysis with a fractional Brownian
model. Remote Sensing of Environment 72 (2), 159–169.

P. Marzahn et al. / ISPRS Journal of Photogrammetry and Remote Sensing 72 (2012) 80–89 89



2 Scientific Paper

2.4 Paper IV: Remote Sensing - Decomposing
dual-scale soil surface roughness for microwave
remote sensing applications

Paper IV addresses the multi-scale appearance of soil surface roughness in agricultural
environments. Over large sample plots, roughness was measured using the proposed soil
surface roughness measurement techniques from Paper III. To quantify the multi-scale
appearance, an approach to decompose the several roughness scales into sub-scales based
on geostatistical analysis is proposed. Results indicate that, over agricultural fields, the
present roughness scales can be decomposed and quantified reliably using the proposed
approach. In this paper, it is shown that the quantified roughness scales differ signifi-
cantly for the same crop types and sowing techniques. Thus, in Paper IV major progress
was made in the understanding of the multi-scale properties of soil surface roughness in
agricultural environments and the impact of the different scales on the backscattering of
available SAR datasets showing the directional scattering problem described in Paper II.

Marzahn, P., Seidel, M. and Ludwig, R. Decomposing Dual-Scale Soil Surface Rough-
ness for Microwave Remote Sensing Applications. Remote Sensing, 2012, 4, 2016-2032
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Abstract: Soil surface roughness, as investigated in this study, is decomposed in a dual scale
process. Therefore, we investigated photogrammetrically acquired roughness information
over different agricultural fields in the size of 6–22 m2 and decomposed them into a
dual scale process by using geostatistical techniques. For the characterization of soil
surface roughness, we calculated two different roughness indices (the RMS height s and
the autocorrelation length l) differing significantly for each scale. While we could relate the
small scale roughness pattern clearly to the seedbed rows, the larger second scale pattern
could be related to the appearance of wheel tracks of the tillage machine used. As a
result, major progress was made in the understanding of the different scales in soil surface
roughness characterization and its quantification possibilities.

Keywords: soil surface roughness; photogrammetry; SAR; synthetic aperture radar;
detrending; RMS height; autocorrelation

1. Introduction

Soil surface roughness has a strong impact on the backscattered signal of an imaged surface by a
microwave signal. For the parametrization of available backscatter models (e.g., IEM, Oh’s model), the
illuminated soil surface is strongly generalized and assumed to be a single scale stationary isotropic
process [1]. However, recent studies have shown a strong non-isotropic behaviour of soil surfaces
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under agricultural use [2,3]. Thus, the inadequate representation of soil surface roughness leads to
insufficient results in the derivation of geophysical variables, e.g. soil moisture. In addition, recent
studies have shown a huge impact of soil surface roughness and its orientation on the backscattered
signal under slightly different look directions of the sensor [4]. This causes a backscatter difference of
several dB due to the anisotropic appearance of the soil surface in agricultural landscapes. In several
theoretical studies, Ulaby et al. [5] as well as Shin et al. [6] investigated the scattering from anisotropic
quasi-periodic surfaces and described scattering with three coherent and incoherent terms originating
from an anisotropic roughness component, a combined isotropic and anisotropic component and a
deterministic periodical function. Using this model one can predict the anisotropic dependency of the
scattering for row orientations with a width of 90◦. On the ground truth site, Marzahn et al. [7] showed
a significant difference in roughness values originating from the orientation of roughness measurements
to the seedbed rows. Mattia [8] developed a backscatter model based on the findings of [6] which is
able to reproduce the very narrow directional scatter pattern observed in [4] of only a few tenths of
a degree. From the findings of [6] and especially of [4,8], the periodical roughness component has a
strong impact on the backscattered signal. Besides the anisotropic appearance, different scales of soil
surface roughness have an impact on the backscattered signal. Roemkens et al. [9] defined different
scale dependent roughness classes in the context of a landscape (see Table 1). However, there exist some
disparities in the classification scheme, for example a typical grain crop (wheat, barley) shows a row
distance of 5–15 cm, thus the borders of the class orientated roughness are ambiguous.

Table 1. Roughness classification after [9].

Roughness Class Scale [mm] Topographic Elements
micro roughness ≤2 texture dependent roughness
random roughness 2–200 soil aggregates and clods
orientated roughness 200–400 rows, tillage patterns
higher order roughness ≥400 slope, field borders

In the context of microwave remote sensing, only the random and orientated roughness components as
well as the higher order roughness class have a direct impact on the backscattered signal. However the
latter can be reliably corrected by applying a terrain correction comprising a digital elevation model.
In the available backscatter models, the random and orientated roughness components are usually
treated as a single scale process, simplifying the proposed definition of [9]. Thus, available roughness
measurements and their characterization of roughness patterns are mostly carried out by using a laser
profiler, or mesh board, providing a generalized single scale roughness description [10–12]. Indeed,
state of the art descriptions of soil surface roughness patterns included the measurements of soil surface
roughness by photogrammetric acquisition systems (e.g., [2,13–16]. Especially Aguilar et al. [14]
highlighted the advantage of using a photogrammetric acquisition system instead of a laser device due to
the in-field acquisition speed. In their study, Blaes et al. [2] first described a dual scale approach for the
characterization of soil surface roughness in an agricultural environment. At sizes of 3.4 × 2.4 m2, they
characterized for a single sample plot two different roughness scales which they related to the seedbed
rows and, as a superimposition, the random appearance of soil clods. However, they only defined these
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two scales for the autocorrelation length l differing only in a range of 10–20 cm, while for another
roughness index, common in microwave remote sensing, the RMS-height s is not considered. Zribi et al.
[16] characterized the multi-scale appearance of an agricultural soil surface by a fractal model and for
the large scale roughness component with the RMS height and the autocorrelation length respectively
autocorrelation function. They evaluated the impact of these three roughness scale dependent terms on
the backscattering and concluded a better understanding of the backscattering by incorporating such
terms and scales in future backscatter models. In a theoretical experiment Shin et al. [6] and Mattia [8]
developed a scatter model comprising a two scale roughness description.

The findings of [16] as well as [2] were evaluated on samples of 1× 1 m2, respectively 3.4× 2.4 m2.
However, the size of the sample plot determines the ability to characterize soil surface roughness in an
agricultural environment. As shown by several authors [17,18], the length (size) of a sampling area has
a strong impact on the retrieved roughness indices. Thus, with an increase in the sampling size, one can
observe a significant change in the estimated roughness indices. To characterize the periodicity of an
agricultural soil surface, it is necessary to acquire sample plots larger than the proposed size by [2] in
order to describe a statistically robust roughness index for the different scales of soil surface roughness.

In this paper, we will present a method to characterize soil surface roughness using high resolution,
photogrammetrically acquired digital surface models (DSM). As the periodical (horizontal) roughness
component has a significant impact on the backscattered signal [4], we will analyze the periodical
roughness component and propose a method to decompose its multi-scale appearance in its single
contributions. We first describe the generation of the DSMs, which provides the basis for the calculation
of two different roughness indices. In an extensive analysis, the proposed method for the decomposition
of the different roughness scales is described and the effect of detrending the acquired DSMs on the
retrieval of the roughness indices is highlighted. Section 3 summarizes the results of the proposed
methods in the context of microwave remote sensing applications.

2. Methods

2.1. Roughness Acquisition

The setup for acquisition of soil surface roughness information consists of a customized Canon EOS
5D used with a Canon EF 2/35 mm lens and a reference frame (see Figure 1). Usually, metric cameras
are used for photogrammetric image acquisitions. However, recent studies [19] have shown the usability
of non-metric cameras for photogrammetric applications at reduced costs. Indeed, the geometric stability
of these cameras is mostly the limiting factor in terms of achievable accuracy [20,21] and thus altering
the interior orientation. To increase the stability of the camera, one can mechanically stabilize the lens
by using glue or fix the sensor to the camera’s body using screws [22]. The off-the-shelf Canon EOS
5D in combination with the Canon EF 35 mm lens produces a maximum absolute Length Measurement
Error (LME) of 330 µm, without fixation of the focusing tube at a maximum object distance of 2.5
m. Fixing the lens by placing epoxy resin between the focusing tube and the outer lens tube reduces
the maximum absolute LME to 47 µm [19]. After fixation of the lens, the camera was calibrated and
its interior orientation estimated by Aicon 3D Studio in conjunction with an external three dimensional
calibration test field [19]. Table 2 shows the results of the calibration process.
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Figure 1. Reference frame for relative orientation of the images acquired for DSM
generation and detailed view of a GCP.

Table 2. Canon EOS 5D characteristics and calibration results. Calibration with Aicon 3D
Studio [23]—parameters converted for input in LPS, K1 = 3rd-order term of radial distortion
correction, K2 = 5th-order term of radial distortion correction, K3 = 7th-order term of radial
distortion correction, P1 and P2 = Coefficient of decentering distortion.

Parameter Values Standard Error
Camera Canon EOS 5D -
Lens Canon EF 2/35 mm, fixed focus at

2.5 m
-

Resolution 4,368 × 2,912 pixels -
Pixel width xy [mm] 0.0082 -
Focal length c [mm] 35.8919 0.0000
Principal point offset xp [mm] –0.2026 0.0000
Principal point offset yp [mm] 0.2092 0.0000
K1 [mm] 7.30312e-005 8.2836e-008
K2 [mm] –5.30725e-008 5.535e010
K3 [mm] –2.33223e-011 1.1034e-012
P1 [mm] 3.2677e-005 1.296e-007
P2 [mm] –1.3050e-005 1.167e-007

To numerically characterize soil surface roughness, DSMs generated out of the acquired imagery are
the basis for further analyses. The generation of the DSMs was done using Leica Photogrammetry Suite
(LPS). As LPS needs to establish exterior orientation for DSM generation, known ground control points
(GCPs) with xyz coordinates are mandatory. Therefore a reference frame measuring 1 × 2.5 m2 was
set-up, providing 28 horizontally and vertically distributed GCPs. The co-ordinates of the GCPs were
determined using a calliper ruler with an accuracy of 0.1 mm in the z direction. Six images acquired
from a height of 2.5 m are necessary to cover the whole frame. Table 3 summarizes the characteristics of
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the image acquisition. As the frame is limited in size to 1 × 2.5 m2, it is necessary, for larger roughness
acquisitions, to acquire consecutive image acquisitions of the frame by moving the frame along a leveled
plane which is ensured by an align fixture (see Figure 2).

Table 3. Flight plan for the coverage of the reference frame.

Parameter Values
Sensor altitude h [mm] 2,500
Base length b [mm] 1,000
h/b 2.5
Image scale 1:69.65
Ground sample distance [mm] 0.57
Forlap x [%] 50
Sidelap y [%] 60
Number of images per strip 3
Number of strips 2

Figure 2. Roughness acquisition scheme and image arrangement for stereo coverage of the
frame.

align fixture

imagery

frame

frame 

overlap

From the acquired imagery, DSMs were generated using LPS. As LPS uses epipolar constraints during
image matching based on the established exterior orientation of the imagery, the exterior orientation of
the block first has to be established. We therefore used the GCPs installed on the frame and improved
the original camera calibration by using the Ebner model [24] which is implemented in LPS. After the
exterior orientation has been established, the DSMs were generated using different matching strategies
depending on the differences in elevation. Table 4 summarizes the applied strategies based on a ground
pixel size of 0.57 mm. For rougher surfaces a larger search window is chosen. Indeed, the surfaces
showed similar smooth roughness classes without any significant change in roughness, therefore the
applied strategies vary only little. Using an epipolar based approach, Linder [25] suggests a correlation
coefficient threshold for the matching process for such applications of 0.65. In a laboratory experiment,
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Heng et al. [26] as well as Rieke-Zapp et al. [22] used a correlation coefficient of 0.80. In our study,
under field conditions, the correlation coefficients for matching two pixels showed good results at 0.75.
After successful generation of DSMs, a 7 × 7 pixel low pass filter was applied to remove peaks to
smoothen the DSMs and resampled to a regular resolution of 2 × 2 mm2.

Table 4. Matching strategies used during DSM generation as required by LPS based on a
pixel size in ground space of 0.57 mm in the x, y direction.

Roughness Class Search Window
[pixel]

Correlation
Window [pixel]

Correlation
Coefficient Threshold

seedbed 25 × 3 11 × 11 0.75
crusted seedbed 21 × 3 11 × 11 0.75
smooth crusted 17 × 3 11 × 11 0.75

Roughness Samples

Several field campaigns for the measurement of soil surface roughness were scheduled in May 2011
over the Wallerfing test site, which is part of the SMO Cal/Val activities [27] located in the Upper Danube
watershed approximately 100 km northeast of Munich. The region, which has a low relief energy, is
mainly agricultural in character, soils mainly consist of loess loam and the main crops are winter wheat,
winter barley, corn and sugar beet. During the campaign most of the crops had been already sown several
weeks ago and were already at the beginning of their growth. The seedbed structure was at all sample
points still well developed, however the random occurrence of soil clods was limited due to precipitation
(see Figure 3). Thus, the sample points (Elementary Sample Unit, ESU) all represent an already prepared
seedbed pattern, which is the main conditions of fields at this time in the region. As soil surface
roughness can be considered anisotropic [3], roughness should be measured in the perpendicular and
parallel directions to the seedbed rows. As [4,8] showed a significant impact on the backscattered signal
from the periodical roughness component, we focused in this study only on measurements perpendicular
to the row directions which is mainly influenced by the periodical component. Table 5 summarizes the
main characteristics of each sample point.

2.2. Geostatistical Analysis

For the characterization of surface roughness, geostatistical methods were chosen to describe the
spatial properties of the soil surface. As variography describes the spatial structure of random spatial
objects, it is well suited for the characterization of spatial processes such as soil surface roughness. The
omnidirectional sample variogram γ̂ (h) of a data set can be expressed by:

γ̂ (h) =
1

2n

n∑

i=1

[Z (xi)− Z (xi + h)]2 (1)
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Table 5. Characteristics of sample points acquired within this study, ESU = Elementary
Sample Unit.

ESU Landuse Surface Type Size [m2]

R11 maize seedbed 6
R12 onion smooth crusted 6
R13 sugarbeet crusted seedbed 8
R14 sugarbeet crusted seedbed 8
R21 sugarbeet crusted seedbed 6
R22 sugarbeet crusted seedbed 6
R23 sugarbeet crusted seedbed 6
R30 winter rape seedbed 22

Figure 3. Overview of roughness sample point on a sugar beet field, acquired on 23 May
2011 at the Wallerfing test site.

where h is the distance between the two variables Z (xi) [28]. As the sample design in our study
introduces strong anisotropy, one can calculate the sample variogram for a defined direction as

γ̂
(
h~j

)
=

1

2n

n∑

i=1

[
Z (xi)− Z

(
xi + h~j

)]2
(2)

where~j is the anisotropic direction, in our case 90◦. As an example, Figure 4 shows three sample DSMs
while Figure 5 shows the corresponding sample variograms of the three samples, calculated on a basis
of 15,000 randomly sampled points out of the DSMs. The inherent appearance of the sample variograms
displays two major issues: first the surface in Figure 4(b) shows a clear trend, which has to be corrected;
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second, the DSMs perpendicular to the row direction show a two scale process (Figure 4(a)) which has
to be quantified for microwave remote sensing separately.

Figure 4. Three sample DSMs of different roughness plots showing (a) a significant two
scale roughness pattern (R12), (b) a spatial trend (R14) and (c) no spatial trend with an
insignificant two scale roughness pattern (R21). Units are in cm.

Figure 5. Sample variograms of the roughness plots from Figure 4 showing (a) a significant
two scale roughness pattern (R12), (b) a spatial trend (R14) and (c) no spatial trend with an
insignificant two scale roughness pattern (R21).
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Detrending

As obvious from Figure 4(b), several DSMs showed a trend in elevation due to higher order
topographic patterns, such as local slopes. Those slope effects have to be corrected by detrending the
data sets. Due to the acquisition design we assume that a spatial trend is only present in the x-direction,
while a possible trend in the shorter y-direction (1 m) can be neglected. Therefore the data can be treated
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as non-spatial data and the detrending can be carried out by subtracting a trend surface (Zmod) from the
original surface (Z). The detrended surface (Zres) is defined as:

Zres = Z − Zmod (3)

As summarized in 2nd table in Section 3, two detrending models have been defined, which can be
described by

Zmod ∼ mX + b (4)

for the linear model and for the polynomial model:

Zmod ∼ b+m1X +m2X
2 +m3X

3 + ...mnX
n (5)

with m and b representing the regression coefficients slope and intercept and X the x-coordinate of the
sample DSM. Figure 6 shows as an example the results of the detrending procedure, with Figure 6(a)
the acquired original surface with a present trend in the right part of the DSM. For detrending a surface
is fitted (Figure 6(b)) using a fifth order polynomial approach and subtracted from the original surface
to represent a residual surface with a removed trend (Figure 6(c)). As can be seen, the row and seedbed
structure is preserved using this approach, allowing the random and orientated roughness components to
be quantified. Fitting the trend surface (Zmod) to the original heights (Z) by omitting the wheel tracks, a
least squares approach using the best fit (R2) was chosen.

Figure 6. Results of detrending sample plot R13 with (a) original surface, (b) fitted trend
surface using polynomial approach and (c) residual surface preserving row structure. Units
in cm.

Decomposing the Data into Two Scales

From Figure 4(a) and its corresponding sample variogram (Figure 5(a)) it is obvious that a two scale
roughness pattern can be observed on these agriculturally formed soil surfaces. As different roughness
scales have an impact on the backscattered signal in microwave remote sensing, it is important to
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characterize both scales. Therefore, again variography is used to decompose and characterize the soil
surface at different scales. As the variogram of Figure 5(a) shows a surface inherent behaviour with
strong similarities at distances in range of 180 cm, which correspond to the wheel tracks in Figure 4(a),
a two scale roughness pattern is indicated. Thus, the variogram for the whole sample plot describes the
semi-variance of the roughness pattern, which is strongly imposed by the large scale roughness pattern
(e.g., wheel tracks of drilling machine). To characterize the small scale roughness pattern (e.g., seedbed
rows, soil clod distribution) we defined a distance threshold, based on the findings of the variography,
to mask out the wheel tracks and calculated variograms for each surface again. As a result, for each
roughness scale a roughness index is calculated (see Figure 7).

2.3. Calculation of Roughness Indices

In order to describe soil surface conditions numerically for remote sensing applications, roughness
indices are necessary. In this study, the focus is on the application of the RMS height s and the
autocorrelation length l, since both are roughness indices used by default in radar remote sensing
applications for the characterization of soil surface roughness [1,16,29]. While the RMS height describes
the vertical roughness component as the standard deviation of the heights (Z) to a reference height

(
Z
)
,

s =

√∑n
i=1

(
Zi − Z

)2

n− 1
(6)

the autocorrelation length l describes the horizontal component of the roughness spectra. While
l is usually determined along 1d profiles, the derivation of l using three dimensional roughness
measurements is more complex. For an efficient estimation of l, the autocorrelation function (ACF) can
be inverted from a sample variogram (γ̂) (see Equation (2)), where l is defined as the distance (h) at which
the ACF drops under e−1 [2]. This implies an exponential fit of the theoretical variogram and therefore
of the ACF. Several models were tested, however best fit was always achieved with an exponential model
(data not shown). Blaes et al. [2] and Davidson et al. [17] reported similar observations. A theoretical
variogram (γ̃) with an exponential shape is fitted to the sample variogram (γ̂) of Equation (2) and from
the theoretical variogram (γ̃) the ACF (ρ̃) can be derived as follows:

ρ̃ (h) = 1− γ̃ (h)

γ̃ (∞)
(7)

where γ̃ (h) is the modelled semi-variance at distance h between two points and γ̃ (∞) is the modelled
semi-variance at distance where the sill of the variogram is reached. For the assumed exponential model,
where the sill is asymptomatically approached, γ̃ (∞) corresponds to the distance where 95% of the sill
is reached.

Due to the high resolution of the DSMs, l was calculated using only a random subsample of 15,000
points, while s was calculated for the whole DSM. Therefore, four roughness representations are given
for each sample plot (see 2nd table in Section 3).
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3. Results

Table 6 shows the root mean square error in the Z-direction (RMSEZ) and the planimetric error
of the sample plots. The results show a high accuracy of the generated DSMs compared to the
manually measured checkpoints installed on the reference frame, thus providing a robust basis for the
characterization of soil surface roughness statistics. Except sample plot R30, which has a RMSEZ of
0.22 cm. From Figure 4 one can clearly identify the seedbed pattern as well as the nearly random
distribution of soil clods and aggregates. The wheel tracks of the different tillage machines used are
clearly distinguishable. There are no interpolated artifacts visible which indicate a high rate of matched
points during photogrammetric image processing.

Thus, due to the highly accurate results of the DSMs, the calculated roughness indices represent
the roughness conditions precisely. While for rougher surface the RMS height s increases, the
autocorrelation length l decreases (see Table 7). In general the considered surfaces appear smooth,
except for sample plots R11 and R30 which represent a freshly prepared seedbed and therefore show the
highest values for s and the lowest values for l.

Several studies (e.g., [29]) showed the impact of the sample size on the retrieved roughness values.
For the 22 m2 sample plot R30 we analyzed the dependency of the roughness values in context of the
sample size according to [7] for the original and the detrended surface. While for the detrended surface
the measurements can be assumed to be representative at a sample size of 1.5 m2, the original surface
of R30 shows a strong dependency of the roughness values from the sample size which reflects the
topographic impact.

Table 6. Root mean square error in cm of generated DSM height values compared to the
manually measured GCPs.

ESU R11 R12 R13 R14 R21 R22 R23 R30
RMSEZ 0.17 0.13 0.05 0.07 0.05 0.06 0.02 0.22
RMSEXY 0.03 0.04 0.04 0.04 0.11 0.04 0.04 0.04

Table 7. Results of two scale roughness representation and order of fitted detrending surface.
In brackets are the results for the non-detrended original surfaces. Units in cm, s1, l1
correspond to the small scale roughness pattern, s2, l2 to the large scale roughness pattern.

ESU s1 s2 l1 l2 Detrending
R11 0.88 1.84 11.0 29.5 -
R12 0.85 1.73 71.6 38.27 -
R13 1.15 (1.09) 2.43 (2.84) 38.3 (17.7) 53.04 (69.05) polynomial 5th order
R14 0.24 (0.86) 2.26 (2.5) 41.01 (96.39) 98.04 (169.14) polynomial 2nd order
R21 1,24 1.45 31.1 38.52 -
R22 0.77 (0.93) 1.12 (1.51) 20.5 (26.4) 23.47 (55.4) polynomial 5th order
R23 1.08 (1.31) 2.38 (2.71) 27.3 (25.7) 105.6 (107.5) linear fit
R30 1.18 (2.84) 1.19 (3.26) 17.2 (145.7) 17.2 (359.52) polynomial 9th order
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3.1. Effect of Detrending

Considering only the raw non-detrended dataset, the roughness indices of several surfaces (see
Table 7, bracketed values) are influenced by higher order topographic effects such as general slope
effects. Figure 4(b) and the corresponding variogram (Figure 5(b)) show this higher order trend for
sample plot R14. Using the non-detrended DSM, the calculated roughness indices for s = 2.5 and
l = 169.14 for the whole dataset are two times the calculated roughness values for the detrended dataset.
Thus, the large values, especially for l, represent the higher order general slope effects. Indeed the
detrended sample plot, using a second order polynomial model according to Table 7, represents the
random and orientated roughness component defined by [9]. Figure 6 shows the output of detrending
sample plot R13 using a fifth order polynomial model approach. It is worth highlight that the row
structure of the seedbed is preserved by the detrending approach permitting to characterize the periodicity
of soil surface roughness as well as the random appearance of single soil aggregates. In Table 7
the roughness indices for the original non-detrended surfaces are provided in brackets. While for the
RMS height no significant change is observed due to the detrending procedure, the results for the
autocorrelation length l change significantly in the order of several decimetre. Except for R30, the 22 m2

large sample plot, a significant change in s can be observed, due to the strong topographic influence with
a range in heights of 20 cm. To model this strong trend a polynomial approach of 9th order was chosen.

3.2. Two Scale Roughness Representation

Figure 5(a) indicates a significant two-scale roughness pattern for sample plot R12. Different points
with a certain distance in range of 200 cm to each other show a strong similarity, thus indicating
periodicity in the soil surface roughness pattern with a range of 200 cm. From Figure 4(a) it is
obvious that this pattern is clearly related to the wheel tracks of the tillage machines used during
seedbed preparation. Thus the sharply bounded wheel tracks with a height difference of 4–6 cm to the
surrounding seedbed biases the characterization of the roughness indices. Table 7 shows the results of
the decomposing approach for each roughness index and each scale separately. While s1, l1 correspond
to the small scale roughness pattern (soil clods, soil aggregates and seedbed rows), s2, l2 relate to the
large scale roughness pattern such as wheel tracks. As the soil surface appeared smooth with only a
reduced fraction of the random roughness component (soil clods and aggregates were almost washed
out by rain), we decided to comprise the random appearance of soil clods with the seed bed rows in
one class separate from the wheel tracks. All sample plots show a two scale roughness representation,
due to the availability of a seedbed structure imposed over wheel tracks, at which for the small scale
roughness pattern the values for s1 and l1 are lower than for the large scale roughness pattern. Figure 7
shows the autocorrelation length for three different sample plots. For sample plot R12 (Figure 7(a)),
which represents a smooth crusted onion field, the autocorrelation length for the small scale roughness
pattern is higher than the large scale roughness pattern, indicating a very smooth surface with sharply
bounded wheel tracks (Figure 4(a)). It should be highlighted that even under the same land use type
(e.g., sugar beet) the roughness values indicate different roughness conditions, which are a result of the
different tillage machines used and the state of crusting. Figure 7(a,b) illustrates this effect for sample
plots R14 and R21 which both represent sugar beet fields at the same crusted stage. In contrast, sample
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plot R30 shows no significant two scale roughness process, which is due to the missing presence of
wheel tracks or other higher order roughness patterns and thus roughness is only defined by the present
seedbed structure. As a result, the values of s and l are equal for both scales.

Figure 7. Decomposed two scale roughness pattern for sample plots R12 (a), R14 (b)
and R21 (c). Filled dots show the sample variogram and corresponding fitted theoretical
variogram (black solid line). Derived autocorrelation function (ACF) (l1 fine dashed line; l2
coarse dashed line) and corresponding autocorrelation length are indicated by hollow dots.

a.) b.) c.)

4. Discussion

In this paper we presented an approach to characterize the different scales of soil surface roughness for
microwave remote sensing applications. Therefore, we established a method based on photogrammetric
roughness acquisitions to decompose roughness into two different scales. While the small scale
roughness pattern could be clearly related to the seedbed rows of an agricultural field, the large scale
roughness pattern is related in to the occurrence of wheel tracks. Both scales are only dependent on the
tillage tools used and on the field conditions during tillage operations.

As in microwave remote sensing, soil surface roughness is treated and parametrized in available
backscatter models as a single scale stationary process; this approach enables to describe soil surface
roughness in such models more accurate [10]. Shin et al. [6,8,30] provide several modelling approaches
comprising the roughness scales investigated in this paper. Looking closely to the theoretical study
of [8] and comprising the retrieved roughness information into the Modified Shin and Kong Model
(MSK) proposed by [8], the findings are in good accordance with our investigations as Figure 8 indicates.
Based on our roughness measurements, we used the MSK model to predict the SAR backscattering of
several nearly simultaneous acquired ERS-2 datasets. Therefore, we used the derived s1/l1 as the random
component of the anisotropic roughness and s2/l2 as the deterministic sinusoidal component of the MSK
model (see [4,8]). As first very preliminary results of this approach show (see Figure 8 and [31]), the
results reflect very well the obtained ERS-2 backscatter values and even the directional scattering of
the fields with a row orientation nearly perpendicular to the incident wave (off-perp = 0◦) are modelled
accurately. Thus, future studies have to assimilate the output of the proposed method into the available
backscatter models of [30] and especially of [8] to verify this first results.
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As shown in this study, both roughness scales differ by several decimetres in the calculated roughness
indices, which would thus lead to insufficient results in the inversion of soil moisture by using only a
single scale roughness descriptor. While soil surface roughness in an agricultural environment can be
considered to be multi-scale, the derived roughness indices are biased by several roughness components.
For microwave remote sensing applications it is the two characterized components that have a strong
impact on the backscattered signal. Several other roughness components such as general slope effects
affect the backscatter signal as well as the proposed roughness measurements. Therefore, the generated
DSMs have to be detrended to calculate a roughness index for these two roughness scales. In this study
it was obvious that for a surface with medium slope effects, a detrending has a higher impact on the
autocorrelation length compared to the RMS height. For surfaces with a keen slope effect, even the
results for the RMS height vary strongly.

Figure 8. Backscattering [dB] versus row direction (0◦= rows perpendicular to the incidence
wave) for the roughness samples plots and results of the Modified Shin and Kong model ([8])
averaged for sugar beet parametrization and five ERS-2 scenes (dashed line) acquired nearly
simultaneous to the roughness measurements.
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As the findings of this paper are based on highly accurate DSMs, the results are very promising for the
parametrization of microwave backscatter models to characterize surface soil moisture. The generated
DSMs show a mean RMSE of 0.1 mm in the Z-direction with a maximum RMSEZ of 2.2 mm and a
negligible planimetric error in the sub-pixel region of the imagery. Lievens et al. [32] suggested a
threshold for the vertical derivation of heights of 0.2 cm at which an impact on soil moisture retrieval
from microwave imagery is negligible. Thus the proposed roughness acquisition method is well suited
for soil surface roughness measurements for microwave remote sensing applications. Using such a setup,
no systematic errors in the generated DSMs could be identified, thus the utilization of the customized
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non-metric Canon EOS 5d camera shows a high potential for the measurement of soil surface roughness
at reduced costs compared to a metric camera. In the context of field capability, the acquisition time
to cover the reference frame is about 15 min, thus outperforming laser devices which need for the
same size at same accuracy 2–4 h [14,22]. In addition, as the frame is very portable several roughness
measurements can be carried out within a day over several fields.

5. Conclusions

In this paper we presented a unique method for measuring soil surface roughness using a simple
photogrammetric acquisition system. A consumer grade Canon EOS 5d was customized by fixing the
outer lens tube to increase the accuracy of the interior orientation to fulfill metric needs. In combination
with a portable reference frame the developed system produces highly accurate digital surface models
in any desired size at low cost. Using the system, several roughness measurements were acquired
during different field campaigns to characterize soil surface roughness for microwave remote sensing
applications. With a vertical accuracy of ≤2.0 mm and a planimetric error smaller than 0.57 mm, the
acquired dataset is highly accurate and unique for the characterization of soil surface roughness. Using
geostatistical analysis, several roughness scales could be identified, which were decomposed into a large
scale roughness pattern (wheel tracks) and a small scale roughness pattern comprising tillage rows and
the random appearance of soil clods. Both roughness scales and values were used for the prediction of
backscattering using the Modified Shin and Kong model [8] to justify the decomposition of the roughness
scales and show its impact on the obtained backscatter values acquired by a SAR sensor. Thus, major
progress was achieved in understanding and quantifying the different roughness scales obtained in an
agricultural environment leading to a multi-scale roughness parametrization which is mandatory for
microwave remote sensing applications.
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2.5 Paper V: JSTARS - Modeling of Directional
Scattering from Agricultural Fields in C- and
X-Band SAR Imagery using the Modified Shin and
Kong Model and Multi-Scale Soil Surface
Roughness Representations

Paper V is an extended version of the invited paper to the special session on Remote
Sensing of Terrestrial Environmental Observatories for Ecosystem Research during the
IGARSS2012 conference. It was submitted to a special Issue about IGARSS2012 pub-
lished in the Journal of Selected Topics in Applied Earth Observation and Remote Sens-
ing - JSTARS. It summarizes the findings of Paper IV and offers deep insights into
the impact of the different roughness scales on the directional scattering problem de-
scribed in Paper II. At the Wallerfing test-site located in Bavaria, where several fields
showed strong directional scattering, a field campaign was carried out to identify and
quantify the impacts of soil surface roughness on the occurring directional scattering.
It was shown that besides the row orientation of the agricultural fields, which has a
major impact on directional scattering, soil surface roughness can significantly alter the
directional scattering.

Marzahn, P., Mattia, F., Wegmueller, U. and Ludwig, R. Modeling of Directional
Scattering from Agricultural Fields in C- and X-Band SAR Imagery using the Modified
Shin and Kong Model and Multi-Scale Soil Surface Roughness Representations, submit-
ted to the Journal of Selected Topics in Applied Earth Observation and Remote Sensing,
Special Issue on IGARSS2012, 2013, 6

71
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Modeling of Directional Scattering from
Agricultural Fields in C- and X-Band SAR Imagery

using the Modified Shin and Kong Model and
Multi-Scale Soil Surface Roughness Representations

Philip Marzahn, Member, IEEE-GRSS, Francesco Mattia, Senior Member, IEEE, Urs Wegmüller, Senior
Member, IEEE, and Ralf Ludwig,

Abstract—This paper presents results of an additional cam-
paign in the context of Flashing Fields showing the impact of
soil surface roughness on the directional backscattering. For
the characterization of soil surface roughness a photogramet-
ric measurement device was chosen and roughness was mea-
sured simultaneous to SAR observations made by ERS-2 and
TerraSAR-X over the Wallerfing test site. In a rigorous approach,
different roughness scales obtained from a single roughness
measurement were decomposed in its single contributors. The
derived roughness values were further used as input parameters
for the modified Shin and Kong model to predict directional
backscattering occurring in the acquired SAR images. As this
study mainly confirmed and consolidated the findings of the
previous Flashing Fields studies, major progress was made in
the understanding of the impact of soil surface roughness on
the flashing phenomenon. It is concluded, that besides row
orientation, certain roughness conditions can significantly alter
the flashing effect.

Index Terms—SAR, soil surface roughness, directional scatter-
ing

I. INTRODUCTION

RECENT studies have revealed a strong directional scat-
tering over several fields in ERS-2 and Envisat ASAR

pairs acquired within a short temporal baseline (< 30 min)
but with slightly different azimuth aspect angles below 1°[1].
Differences in backscatter in such pairs up to 6 dB and more
were observed over test-sites across Europe by several authors
[2], [3], [1], [4]. The differences of backscatter values could
not be related to a change in environmental conditions due to
the short acquisition interval, thus the fine differences in the
observing geometries of the two sensors have to be considered.
In the recent “Flashing Fields!” study [4], the importance of
the field and row orientation of an illuminated agricultural
field on the backscattering was investigated and highlighted
as one of the main sources for directional scattering. With a
row orientation quasi perpendicular, with a deviation of few
degrees (± 2°), to the look vector of the microwave sensor, a
strong backscattering is produced. In addition, as recent studies
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show [3], [4] the so called Flashing Fields occur mainly on
bare or even sparsely vegetated fields, and is characterized by
a significantly higher backscattering up to 10 dB compared to
fields with a row direction quasi parallel to the sensor look
vector. In the above mentioned study of [4], it was assumed,
that this directional scattering follows a Gaussian distribution
showing a peak at a row orientation perpendicular to the sensor
look vector and is only widened by infield row deviation
(e.g. the linearity of the seed bed rows). This relation was
established by a great amount of in-situ measurements and
modelled by the modified Shin and Kong model developed
by [5]. However, due to missing measurements, the impact of
soil surface roughness could only be quantified in a qualitative
manner and the accuracy of the developed backscatter model
could not be definitely assessed.
In this paper, we present results of an add-on study to
quantify the impact of soil surface roughness, especially the
periodical horizontal component, on the flashing phenomenon
respectively the directional scattering. With a rigorous rough-
ness measurement technique, deployed over agricultural fields
showing directional scattering in the imagery of ERS-2 and
TerraSAR-X, the impact of soil surface roughness is investi-
gated and modelled using the modified Shin and Kong model.

II. METHODS

A. Field Measurements

According to the previous “Flashing Fields!” study [4],
several in-situ measurements were made in Spring 2011 over
the Wallerfing test site which is part of the Upper Danube
SMOS Cal/VAl as well as TanDEM-X test site operated by
the Ludwig-Maximilians University and German Aerospace
Center (DLR-HR). The test site is located approx. 100 km
North East of Munich, Germany in the Isar watershed and
is mainly characterized by moderate relief under extensive
agricultural use [6]. The main crops are sugar beet, winter
wheat, winter barley, maize, cucumber, onions and potato
following the typical crop cycle in this area, with sowing
of sugar beet, maize and onions in spring and Winter wheat
and barley in autumn. The in-situ measurements comprised
row orientation, row linearity, vegetation height, vegetation
cover and soil moisture over 55 fields with 3 repetitions
each. In addition soil surface roughness was measured at
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ESU Landuse surface type size
[
m2

]

R11 maize seedbed 6
R12 onion smooth crusted 6
R13 sugarbeet crusted seedbed 8
R14 sugarbeet crusted seedbed 8
R21 sugarbeet crusted seedbed 6
R22 sugarbeet crusted seedbed 6
R23 sugarbeet crusted seedbed 6
R30 winter rape seedbed 22

TABLE I
CHARACTERISTICS OF ROUGHNESS SAMPLE POINTS (ESU) ACQUIRED

WITHIN THIS STUDY

seven sample points over fields showing directional scattering
as well as fields showing no directional scattering. To con-
sider the anisotropic appearance of soil surface roughness, a
photogrametric approach was chosen to describe soil surface
roughness as proposed by [7], using a customized Canon
EOS 5D at sample sizes of 6-8 m2. Due to the measurement
design of the deployed system, roughness measurements were
carried out in two directions: perpendicular and parallel to
the tillage direction respectively the seedbed row orientation.
The acquisitions perpendicular to the tillage direction were
further processed and analysed as it is expected that the in-
perpendicular direction has a direct impact on the directional
scattering. However, the in-parallel acquisitions were used to
calculate the random roughness component as they are not
influenced by a periodic pattern such as seedbed rows. To
quantify soil surface roughness, digital surface models (DSMs)
have been generated from the in-field image acquisitions
with a horizontal resolution of 2 mm providing the basis
for the characterization of soil surface roughness using two
roughness values: the autocorrelation length (l) and the RMS-
height (s). In order to characterize the multi-scale appearance
of soil surface roughness, the roughness values have been
calculated for several roughness scales of the perpendicular
acquisitions as proposed by [8]. Table I summarizes the main
characteristics of the sample points.

B. SAR Data

Five ERS-2 and one TerraSAR-X (TSX) scene (Table II)
were acquired in ascending mode simultaneous to the field
measurements over the Wallerfing test site in spring 2011. The
ERS-2 imagery was acquired in image mode with an incidence
angle of approx. 23°. The TerraSAR-X scene was acquired
in Stripmap mode, in VV and VH polarization and with an
incidence angle of 33°. In context of directional scattering
the ERS-2 imagery showed good variations in the Doppler
Centroids ranging from -3598.0 Hz to 752.0 Hz. [4] suggested
several methods for the detection of directional scattering.
As only ascending ERS-2 and TSX imagery were acquired
less methods are available. Thus, to eliminate the effect of
a potential temporal change (e.g. in soil moisture, vegetation
growth), detection of directional scattering was carried out in
accordance to [4], using an azimuth sub-look approach for
both data sets. In addition for the TerraSAR-X dataset the
VH/VV ratio which indicates directional scattering at very

Date Sensor Dop. Centroid [Hz] Mode Pol
20110402 ERS -2427.0 Image VV
20110423 ERS 160.0 Image VV
20110426 ERS 752.0 Image VV
20110507 TSX -9.8 Stripmap VV/HV
20110514 ERS -3598.0 Image VV
20110523 ERS 7.0 Image VV

TABLE II
ACQUIRED SAR IMAGERY AND CORRESPONDING CHARACTERISTICS

low values, due to the vanished directional scattering effects
in the cross polarization. Using the sub-look approach, the
full azimuth bandwidth of the original SLC image is split
into several sub-bands, resulting in several co-registered SLC
with slightly different Doppler Centroids [3], [4]. The achieved
Doppler Centroid difference is dependent from the initial
Doppler Bandwidth of the original SLC image. For the ERS-2
dataset the processed azimuth Doppler Bandwidth is approx.
1500 Hz resulting in a difference in azimuth angle between the
first sub-look and last sub-look of 0.6°(1007 Hz). For the TSX
dataset a Doppler difference of 827 Hz, which corresponds
to an azimuth angle of approx. 0.3°, is calculated. In the
presented study, five sub-looks for the ERS-2 dataset and 4
sub-looks for the TSX data take with an overlap of 50 percent
were generated.

C. Modified Shin and Kong Model (MSK)

To predict backscatter from anisotropic quasi-periodic sur-
faces several models have been proposed in the past [9], [10],
[2]. Those models were able to predict the large variations in
backscatter (10 - 20 dB) for an off-azimuth angle range of 0°to
90°. However they were not able to predict a large change in
backscatter for variations of the off-azimuth angle of a few
degrees (e.g. 1°- 3°). [5] improved the backscatter model of
Shin and Kong by deriving finite expressions of the backscatter
terms of a quasi-periodic surface originally introduced by [10].
Therefore two principal changes were made compared to the
original Shin and Kong model:
Firstly, an important change was done to derive a more
accurate description of the coherent term contributing to the
total backscatter. This was introduced by using the Kirchhoff
diffraction integral under the Fresnel approximation rather than
the Fraunhofer approximation as assumed in the original Shin
and Kong model.
Secondly, the systems spatial resolution to characterize the
antenna pattern was integrated in the modelling of the scattered
field which allows to derive a finite form of all backscatter
terms contributing to the total backscatter. In addition, to
account for the quasi-periodicity (e.g. linearity) of the seedbed
rows, a measure based on the standard deviation of the
linearity of the seedbed rows was introduced which results in a
widening of the directional pattern (see [4]). Thus the modified
Shin an Kong model [5] consists of three terms modelling the
total backscatter:

σ0pp = σc
pp + σnc1

pp + σnc2
pp (1)
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- the first one due to the coherent field related to the
scattering of the deterministic periodic function (σc

pp);
- the second one representing the incoherent scattering of
the combined isotropic and anisotropic random roughness
components modulated by the deterministic periodic function
(σnc1

pp );
- the third one due to the incoherent field scattered only by the
anisotropic random component modulated by the deterministic
periodic function (σnc2

pp ).
The roughness model underlying the MSK can be character-
ized by six terms forming the above mentioned three terms of
equation 1 [5]:
- random isotropic roughness; with a vertical standard devia-
tion of heights s [cm] and the correlation length l [cm]
- anisotropic roughness; with a deterministic sinusoidal com-
ponent described by the amplitude A [cm], the periodicity of
the seedbed rows L [cm] and a random component, described
by a vertical perturbation standard deviation sy [cm] and an
autocorrelation length ly [cm]

III. RESULTS

A. in-situ Measurements

Figure 1 shows as an example three generated DSMs (R13,
R21, R23) acquired at the 15th of May 2011. One can easily
distinguish the different seedbed rows as well as the small
randomly distributed soil clods. With a vertical displacement
of RMSEz ≤ 2 mm and a planimetric error ≤0.57 mm, the
technique fits well the needs for the characterization of soil
surface roughness for microwave remote sensing studies [11].
The roughness measurements allows to distinguish several
roughness scale at some of the acquired roughness samples.
Thus, for samples R13, R14, R22 and R23, which were ac-
quired over slightly moderate relief, a significant topographic
impact on the roughness measurements can be observed, which
can be classified to different roughness scales. For example for
R13 and R23 a roughness pattern related to the micro scale
(soil aggregates and seedbed rows) with a vertical range of
2-5 cm can be observed. In addition a meso-scale roughness
pattern is visible, which is characterized by vertical range of
approx. 10-15 cm and comprises small slopes over a horizontal
range of 1-2 metres. Finally a macro-scale roughness pattern
is visible which can be related to the general slope of the
field. For fields R11, R12 and R21, which were more smooth
fields compared to the before mentioned, this impact is not
visible. Using variogram analysis, the different roughness
scales could be quantified and displayed as in Figure 2. Thus,
for samples with a topographic impact (in Fig. 2 R13 and
R23) the empirical variogram shows a strong increase in semi-
variance and does not reach a sufficient sill. In addition the
variograms of R13 and R23 also show a hole-effect which
indicates a similarity of adjacent height values at a distance
of 150-200 cm indicating a low frequency periodic roughness
pattern. For the fields with no significant topographic impact
(R11, R12 and R21), a sill is sufficiently reached at a distance
of approx. 40 cm. However for theses samples a second
roughness scale composed by the wheel tracks of the tillage
machines can be determined, indicated by the hole effect

Fig. 1. Examples (top = R13, middle = R21, bottom = R23) of generated
Digital Surface Models (DSM) acquired during the campaign in Spring 2011.
Acquisition direction is perpendicular to the seedbed rows

mentioned above. According to [8], two roughness scales can
be quantified which where decomposed in its constituents,
were sy1,ly1 correspond to the seedbed rows and the reduced
random roughness fraction of the agricultural field, while
sy2,ly2 also comprises wheel tracks and higher order roughness
patterns. As an example, Figure 3 shows the results from the
roughness decomposition approach for sample plot R11 and
the horizontal periodical roughness component. To correct the
above mentioned macro-scale topographic impact a detrending
procedure was applied using a polynomial approach. Having
a closer look on Table III reveals a significant difference in
the obtained values for the samples. While under the same
crop (e.g. sugar beet) most of the samples have been prepared
with similar tillage tools, the yielded roughness values show
a wide range of values. Applying the detrending procedure,
the roughness values are more alike. Except for R12, the
values obtained for sy1,ly1 are always lower than the values
of sy2,ly2. It is to notice, that a Onion field, such as R12,
shows, due to tillage and precipitation, mostly a very reduced
fraction of the random roughness as well as seedbed rows
compared to the deterministic small scale periodic roughness
component, such as wheel tracks, which are usually developed
very sharp. In context of the roughness model underlying
the MSK model, the detected roughness pattern is more
complex showing more roughness scales. Thus to match the
two roughness scales represented in the MSK model (random
and anisotropic roughness), an intermediate roughness value
of the estimated roughness scales was used to characterize the
random anisotropic roughness component sy/ly .
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ESU s l sy1 sy2 ly1 ly2

R11 0.12 2.5 0.88 1.84 11.0 29.5
R12 0.1 3.0 0.85 1.73 71.6 38.27
R13 0.04 4.7 1.15 (1.09) 2.43 (2.84) 38.3 (17.7) 53.04 (69.05)
R14 0.14 2.1 0.24 (0.86) 2.26 (2.5) 41.01 (96.39) 98.04 (169.14)
R21 0.01 5.4 1,24 1.45 31.1 38.52
R22 0.23 1.4 0.77 (0.93) 1.12 (1.51) 20.5 (26.4) 23.47 (55.4)
R23 0.2 1.5 1.08 (1.31) 2.38 (2.71) 27.3 (25.7) 105.6 (107.5)

TABLE III
RESULTS OF ROUGHNESS MEASUREMENTS FOR EACH SAMPLE POINT (ESU). IN ROUND BRACKETS THE RESULTS FOR THE NON DETRENDED ORIGINAL
SURFACES. UNITS IN CM, sy1 , ly1 CORRESPOND TO THE SMALL SCALE ROUGHNESS PATTERN (SEEDBED ROWS, SOIL CLODS), sy2 , ly2 TO THE LARGE

SCALE ROUGHNESS PATTERN (WHEEL TRACKS)
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Fig. 2. Semi-variograms of sample plots R13, R21 and R23 indicating the
topographic trend in the data for R13 and R23.

B. Evidence of directional scattering

A visual interpretation of the ERS-2 SAR imagery revealed
a strong directional scattering at several patches of fields in the
North-West of the acquired scenes (see Fig. 4, bright areas).
Due to the difference in the Doppler Centroids of the TSX
imagery, compared to the ERS-2 Doppler, slightly different
fields show in the TSX imagery directional scattering (Fig.:
5). From the field campaign it was clearly observable that
the fields showing directional scattering were all bare soil
or sparsely vegetated (Fig.: 9) confirming the assumptions of
[3], [4]. In addition, all the fields showed a roughness pattern
with a strong periodical component (e.g. seedbed rows) and
with a reduced random roughness fraction due the ongoing
precipitation since sowing. The main crops showing directional
scattering were summer crops like maize sugar beet and onions
confirming the assumption and findings of [4] that vegetation
attenuates the flashing effect.
Results of the sub-look approach (see Fig.: 6) indicate also a
significant difference in backscattering between the used sub-
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and dashed-dotted lines) and autocorrelation (hollow dots) is indicated for each
roughness scale

Fig. 4. Backscattering [dB] of an ERS-2 image acquired at the 23 of May
2011 with overlaying field borders. Fields in the North-West showing strong
directional backscatter
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Fig. 5. Backscattering [dB] of a TerraSAR-X image acquired at the 7th of
May 2011 with overlaying field borders. Fields in the North-West showing
strong directional backscatter

Fig. 6. ERS-2 HSI (HueSaturationIntensity) composite of the backscatter
ratio (hue), backscatter change (saturation) and backscattering in the first
image of the pair (intensity) over Wallerfing site on 23 of May 2011.
Backscatter ratio (hue) ranges from 6 to + 6 dB; mean intensity (intensity)
from 22 dB to + 6 dB; absolute backscatter change (saturation) from 0 to
+ 6 dB. Red indicates higher intensity for the sub look 1, and green higher
intensity for sub look 5.

looks confirming a directional scattering. For the patches of
fields showing a directional scattering in the ERS-2 imagery,
sub-look 5 showed a significant higher scattering (≥ 6 dB)
compared to sub-look 1. It is to notice, that using the sub-
look approach for the TSX imagery failed in the detection of
directional scattering (see Fig. 7) which could be related to
the small Doppler Difference between the used sub-looks in
relation to the wavelength dependent roughness conditions. In
other words, a change in azimuth angle of 0.3°is not large
enough to accomplish a change in backscatter for a X-Band
SAR system such as TSX. Indeed, due to the polarization
dependent flashing, the VH/VV ratio indicated a strong direc-
tional scattering of the fields with very strong backscattering,
showing very low values over the fields of interest (Fig.: 8).

C. Impact of soil surface roughness conditions on directional
scattering

From Figure 10 one can easily observe a difference in
backscattering due to the different roughness conditions of the
flashing fields. With a row orientation perfectly perpendicular
to the sensors look vector a strong backscatter is produced

Fig. 7. TerraSAR-X HSI (HueSaturationIntensity) composite of the backscat-
ter ratio (hue), backscatter change (saturation) and backscattering in the
first image of the pair (intensity) over Wallerfing site on 07 of May 2011.
Backscatter ratio (hue) ranges from 6 to + 6 dB; mean intensity (intensity)
from 22 dB to + 6 dB; absolute backscatter change (saturation) from 0 to
+ 6 dB. Red indicates higher intensity for the sub look 1, and green higher
intensity for sub look 4.

Fig. 8. VH/VV image of the TSX scene acquired at the 7th of May 2011.
Dark fields indicate a possible directional scattering.

for every sample point, which is reduced by an increase in
azimuth angle (off-perp angle in Fig. 10 and 11). However, for
sample points R12 and R21 the backscattering is significantly
higher compared to sample points R13 and R23. This could be
related to the roughness conditions measured at both sample
points, which were acquired over more smooth micro-relief
as indicated by the variogram analysis. As a consequence the
agricultural seedbed pattern of the imaged fields appears more
regular thus producing a stronger flashing. In other words, it
is to assume, that such topographic features, even in range of
only a few decimetres, alter the directional scattering by reduc-
ing its amplitude and attenuate the flashing. Using the mean
derived roughness values for the sugar beet fields as inputs for
the modified Shin and Kong model, the model predicts quite
accurate the directional scattering over the narrow azimuth
angle pattern for the ERS-2 dataset (see dashed line in Fig. 10).
Same could be state for the model results of the TerraSAR-X
scene (Fig. 11). Indeed, with a reduced amount of samples, due
to only one acquisition available, the MSK model predicts the
flashing at X-Band also accurate. However, it appears that the
width of the directional pattern is for the measured backscatter
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Fig. 9. Examples of fields showing directional scattering and field character-
istics. Top: onion field (R12), bottom: sugar beet field (R21). Mean off-perp
[°] = row orientation to the mean incident wave

values wider than the predicted. Assuming a larger deviation of
the row linearity as the measured one could mitigate this effect,
as indicated by the dotted and dotted-dashed lines in Figure
11. Thus, with an increase in the standard deviation of the
row linearity the width of the modelled directional scattering
is widened up [5]. In addition it is to notice, that best model
output in X-Band was achieved by normalizing the vertical
roughness components of the model (s, A) by the wavenumber
k using ks, respectively kA, as inputs.

IV. CONCLUSIONS

In this paper we widely confirmed and consolidated the
findings of the previous Flashing Fields! study [4]. However,
several further findings were be made in this study. As during
the previous second Flashing Fields! study [4] good progress
was made in the understanding and detection of narrow direc-
tional scattering, including a backscatter model development
[5], the study was mainly based on qualitative measurements
assuming an estimation of several roughness parameters based
on a visual inspection for example. In this study we extended
the understanding of the directional scattering by quantifying
the impact of the roughness conditions on the directional scat-
tering. From the acquired roughness samples highly accurate
digital surface models were derived to characterize soil surface
roughness with an accuracy in the Z-direction of RMSEZ =
1.6 mm. From the digital surface models roughness values
were calculated and decomposed into each roughness scale
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constituents. Analysing the directional scattering pattern, it
could be observed (see Fig. 10 and Fig. 11) that several fields
show a stronger directional scattering compared to other fields
with directional scattering under the same field conditions (row
orientation, soil moisture, landuse and vegetation cover). As
there is only a difference in roughness conditions revealing
an impact of soil surface roughness on the flashing. It could
be observed from variogram analysis that the different scales
of soil surface roughness can alter directional scattering sig-
nificantly. Thus, fields with little micro-topography in range
of a 1-2 decimetres (meso-roughness), such as R13 and R23,
showed a reduced amplitude in directional scattering compared
to fields R12 and R21 which do not show this meso-roughness
component. It is to assume, that this detected meso-roughness
component, interferes the regular pattern of the seedbed pattern
attenuating the directional scattering effect. Thus future studies
have to account for this finding and a multi-scale description of
soils surface roughness over large sample areas is mandatory.
Using the modified Shin and Kong model (MSK), proposed
by [5], with the retrieved roughness values from the in-field
roughness measurements, consolidated the good performance
of the MSK model to predict the narrow directional scattering
over agricultural fields at C- and X-Band. Even, when the
detected roughness pattern was more complex as the one intro-
duced in the MSK model which only accounts for a two scale
roughness pattern. However, it is to notice, that predicting
directional scattering at X-Band using the MSK model a higher
standard deviation of the row linearity has to be considered
which can be related to wavelength depending scaling issues.
This is also true for the roughness values, especially the values
describing the vertical roughness component. Thus, using the
MSK at X-Band scaling the mentioned roughness values
by the wavenumber k gives best model results. In context
of the detection of directional scattering in a single SAR
scene, the utilized sub-look approach performed well with the
ERS-2 dataset, permitting a detection of directional scattering
in a single SAR scene, eliminating potential environmental
changes. However, for the TerraSAR-X dataset the sub-look
approach failed due to the resulting low Doppler difference
between the generated sub-looks and the high roughness
values. Thus, at short wavelength sensors such as TerraSAR-X
a reliable detection of directional scattering using the sub-look
approach is not possible due to the up-scaled roughness at X-
Band giving a wider directional scatter pattern. Finally we can
conclude, that directional scattering is strong correlated to the
fields row orientation towards the sensors look direction and
secondary to the in-field roughness conditions as this study
has shown.
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3 Conclusions and Outlook

This thesis focused on the characterization of soil surface roughness for microwave re-
mote sensing applications. The major goal is to provide a measurement system which is
able to measure soil surface roughness over large samples and to account for its multi-
scale and anisotropic appearance. With a customized consumer-grade digital camera,
Canon EOS 5D, and a reference frame, a simple and highly-portable photogrammet-
ric acquisition system was introduced which is unique and outstanding in the fields of
roughness characterization. As today’s conventional roughness measurement devices are
mainly stationary devices based on measurements in the two-dimensional space (e.g.
laser profilers or mesh boards) the proposed system extends the measurements to the
high-resolution three-dimensional space, allowing soil surface roughness to be character-
ize with new possibilities. Also up to now soil surface roughness was considered as an
isotropic single-scale stationary process. In this thesis this assumption was revised by
analysing soil surface roughness over several agricultural fields. It was shown that soil
surface roughness has to be considered anisotropic as potential roughness values such as
the RMS-height s or autocorrelation length l differ significantly depending on the direc-
tion of the roughness measurements related to the tillage orientation. The analysed data
revealed a significant difference in the roughness values of a ploughed and seedbed surface
especially for the autocorrelation length which was in several cases three times higher
for the parallel direction compared to the perpendicular measurements to the tillage
orientation. For the RMS-height this effect was not significant. Also the assumption of
a single-scale process could be disapproved and evidence of the multi-scale appearance
of soil surface roughness was given. In a unique approach, geostatistical analysis was
used to decompose the different roughness scales into its sub-scales which have a severe
impact on the backscattering of microwave remote sensing systems. It was found that
the different roughness scales which could be differentiated and quantified for each scale
separately have a severe impact on the directional scattering problem occurring in SAR
images illuminating agricultural landscapes. As such directional scatter is characterized
by a strong anomalous backscatter over bare or sparsely vegetated fields, the different
roughness scales can decrease the coherent scattering over such surfaces, thus reducing
the received backscattering. Thus, major progress was made in the understanding of the
directional scattering problem in microwave remote sensing. Besides the row orientation
of the seedbed pattern of an agricultural field, the soil surface roughness conditions and
their different scales are what have a severe impact on the directional scattering. A
backscatter model, the Modified Shin and Kong model (MSK) Mattia (2011) was de-
veloped in the framework of this thesis and used to predict SAR backscatter values in
the presence of directional scattering. Using the retrieved multi-scale roughness values
derived in this thesis, it is possible to predict directional scattering more accurately. Up
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Figure 3.1: Backscattering [dB] versus row direction (0°= rows perpendicular to the
incidence wave) for the roughness sample plots and modelled mean ERS-2
backscatter values using the modified Shin and Kong model (MSK) proposed
by Mattia (2011); Wegmuller et al. (2011) (dashed line) parametrized for the
averaged sugar beet fields.

to now, this was not possible and is thus a unique contribution to the scientific com-
munity. Analysing the directional scattering pattern, it could be observed (see Fig. 3.1
that several fields show a stronger directional scattering compared to other fields with
directional scattering under the same field conditions (row orientation, soil moisture,
landuse and vegetation cover). As there is only a difference in roughness conditions
revealing an impact of soil surface roughness on the flashing. It could be observed from
geostatistical analysis that the different scales of soil surface roughness can significantly
alter directional scattering. Thus, fields with little micro-topography in range of a 1-
2 decimetres (meso-roughness), such as R13 and R23, showed a reduced amplitude in
directional scattering compared to fields R12 and R21 which do not show this meso-
roughness component. It is to assume, that this detected meso-roughness component,
interferes the regular pattern of the seedbed pattern attenuating the directional scat-
tering effect. Thus future studies have to account for this finding and a multi-scale
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description of soils surface roughness over large sample areas is mandatory.
The achievements of this thesis provide a framework for the future analysis and deriva-
tion of soil surface roughness information from SAR observations. It is expected that
with the proposed in-field roughness characterization approach, soil surface roughness
information can now be derived in a more stable way than was proposed by Marzahn and
Ludwig (2009a) due to the now more refined scale-dependent descriptions of soil surface
roughness. Indeed the database for the AgriSAR2006 study is unique in its SAR acqui-
sitions, acquiring polarimetric SAR data on a weekly basis for a whole growth cycle of
vegetation. Thus, with the upcoming new (fully) polarimetric spaceborne SAR sensors
operating at an appropriate frequency for the retrieval of soil surface roughness, such as
PALSAR-2 (Shimada et al., 2011) or TanDEM-L (Krieger et al., 2010), new opportu-
nities in the continuous acquisition of polarimetric SAR data will exist. The proposed
method by Marzahn and Ludwig (2009a) for the retrieval of soil surface roughness can
then be verified and further analyzed. In a next step, such derived roughness maps
can be, on the one hand, assimilated in high-resolution eco-hydrological models or soil
erosion models to better understand the occurring surface processes and their interde-
pendencies. As there is a strong demand for such maps (Morgan and Nearing, 2011),
the proposed methods have to be further refined. On the other hand, the availability
of an approach to decompose the different roughness scales from in-situ measurements
allows for a better understanding of the contribution of soil surface roughness to the
total backscatter of a resolution cell within a SAR image. Thus, using the proposed
approach, new and enhanced backscatter models can and must be developed and ap-
plied which account for the different scales of soil surface roughness such as the model
provided by Mattia (2011). In the context of directional scattering, the TanDEM-X
mission, operated by the German Aerospace Center, offers an interesting possibility to
detect and characterize directional scattering in the future. Using the two sensors, ac-
quiring polarimetric SAR images at different azimuth angles, a detection of the seedbed
row orientation may be possible. Such characterization could be a useful value in the
calculation of overland flow pathways or preferential routing in eco-hydrological models.
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