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Zusammenfassung

Die Grundkräfte der Physik wirken immer nur zwischen zwei Teilchen und werden bei der
Wechselwirkung von drei oder mehr Teilchen lediglich überlagert. Dennoch gilt auch für die
Physik, dass das Ganze mehr ist als die Summe seiner Teile. Oft führt nämlich das Zusammen-
spiel von Abermillionen Teilchen in sogenannten

”
Vielteilchensystemen“ sogar zu grundlegend

neuen Phänomenen. Ein allgemein bekanntes Beispiel hierfür sind die drei Phasen der Ma-
terie, fest, flüssig und gasförmig, denn sie werden durch die komplexe Wechselwirkung von
quasi unendlich vielen Atomen oder Molekülen erklärt. Darüber hinaus wurden in den letzten
hundert Jahren weitere, überraschende Vielteilchen-Phänomene entdeckt, zum Beispiel Bose-
Einstein Kondensation, Supraleitung oder eine metallische Phase von Wasserstoff. Bereits
eine Materieprobe, die so klein ist, dass sie in unsere Hand passen würde, stellt aufgrund
ihrer etwa 1023 miteinander wechselwirkenden Teilchen ein Studienobjekt dar, das die Kom-
plexität des ganzen Universums widerspiegelt. So haben neueste Untersuchungen gezeigt,
dass die quantenmechanisch verschränkten Elektronen in bestimmen Festkörpern im Rah-
men der Stringtheorie beschrieben werden können und aufgrund ihrer Korrelationen eine Art
Schwarzes Loch ausbilden – hier tauchen also Begriffe auf, die sonst eher im Zusammenhang
mit den riesigen Größen- und Energieskalen der Kosmologie und Hochenergiephysik stehen [1].

Diese Arbeit befasst sich mit dem breiten Themenbereich der stochastischen Vielteilchensys-
teme, in deren Rahmen die Interaktion einer großen Anzahl an Teilchen untersucht werden
kann. Im Gegensatz zur Gleichgewichtsphysik wird dabei auch die zeitliche Entwicklung des
Systems berücksichtigt, welche stochastischen Gesetzmäßigkeiten folgt. Zur Veranschaulich-
ung betrachten wir die Bewegung eines Brownschen Teilchens in Wasser. Nach Albert Einstein
liegt die Ursache der Bewegung in den zufälligen Stößen mit H2O Molekülen [2]. Es wäre
wohl unmöglich die Bewegung jedes einzelnen der Wassermoleküle genau zu beschreiben. Das
ist glücklicherweise auch gar nicht nötig. Zwar weiß man, aufgrund der komplizierten Wech-
selwirkung der Wassermoleküle untereinander, sehr wenig über diese Stöße, außer dass sie
zufällig verteilt sind. Dies ist aber nicht gleichbedeutend damit, dass man gar nichts über die
Teilchenbewegung aussagen kann, denn es greifen hier die Gesetze der Wahrscheinlichkeits-
theorie. Danach gehorcht die Bewegung des Brownschen Teilchens in guter Näherung der
Diffusionsgleichung, mit einer Diffusionskonstanten, die nur von seiner Masse und der Tem-
peratur bestimmt ist. Indem man sich also bei stochastischen Vielteilchensystemen auf die
wesentlichen Eigenschaften der Dynamik beschränkt und unwichtige Details zugunsten einer
effektiven Beschreibung ausspart, kann man seine Aufmerksamkeit dem genauen Studium der
vielfältigen Phänomene widmen, die aus den komplizierten Korrelationen und der Wechsel-
wirkung der Unmengen an Teilchen folgen können.

Im ersten Modell, das wir in dieser Arbeit studieren, stehen drei Spezies in zyklischer, nicht-
hierarchischer Wechselwirkung. Derartige Interaktionen dienen beispielsweise der vereinfach-
ten Beschreibung von Nahrungsketten, werden im Paarungsverhalten einer bestimmten kali-
fornischen Echsenart beobachtet, oder bestimmen das Wachstum in Kolonien von speziell



gezüchteten Stämmen des Bakteriums Escherichia Coli. Zumeist beobachtet man in diesen
Modellen, dass sich zwar im Kleinen Domänen ausbilden, wo sich eine der drei Spezies
durchgesetzt hat, aber im Großen die zyklische Dynamik für den Erhalt der Koexsistenz
sorgt. Aus diesem Grund werden zyklische, nicht-hierarchische Wechselwirkungen oft (neben
anderen Mechanismen) genannt, wenn es um die Erklärung der erstaunlichen Vielfalt der
Natur geht, deren Reichtum an Arten scheinbar Darwin’s These des

”
Survival of the Fittest“

widerspricht. In dieser Arbeit untersuchen wir eine eindimensionale Version des Modells.
Im Gegensatz zu höheren Dimensionen ist hier das Wachstum der Domänen, in denen nur
eine Spezies übrig ist, unbegrenzt und wird in unserem Fall erst durch spontane Mutationen
aufgehalten, die wir als weiteren natürlicher Mechanismus, der die Artenvielfalt begünstigt,
einführen. Wir studieren den Einfluss dieser Mutationen auf die Größe dieser Domänen (als
Maß für die Artenvielfalt) mit analytischen und numerischen Methoden. Erstaunlicherweise
befindet sich das System für den besonders interessanten Fall von sehr niedrigen Mutations-
raten im Gleichgewicht, obwohl ähnliche Systeme mit zyklischen Wechselwirkungen gerade
wichtige Repräsentanten für Systeme fernab vom Gleichgewicht darstellen. Die üblichen
Methoden der Statistischen Mechanik erlauben so für unser Modell exakte Lösungen.

In dem größeren Teil dieser Arbeit setzen wir uns damit auseinander, welche Rolle Viel-
teilcheneffekte bei der Geschwindigkeit von chemischen Reaktionen spielen. Standardmäßig
wird angenommen, dass hier das allgemein bekannte Massenwirkungsgesetz gilt. Es be-
sagt, dass die Geschwindigkeit einer elementaren Reaktion proportional dem Produkt der
Konzentrationen der Reaktanten ist. Wir haben diese klassische Problematik der Reaktions-
geschwindigkeit und die Gültigkeit des Massenwirkungsgesetzes anhand von bimolekularen,
irreversiblen Reaktionen studiert, in denen sich zwei Teilchen zu einem Komplex verbinden,
der dann weiter reagieren kann. Ursprünglich wurde dieses Reaktionsschema vor über 100
Jahren eingeführt, um den Mechanismen, die zur Koagulation von Goldsolen führen, auf den
Grund zu gehen. Es spielt heute in verschiedensten Bereichen der Naturwissenschaft eine
Rolle, um etwa die Dynamik von Aerosolen, die Bindung von Proteinen, oder den Zerfall
von Defekten in Festkörpern zu beschreiben. Unsere Analysen zeigen, dass das Massen-
wirkungsgesetz in diesem System verletzt wird. Die Abweichungen sind umso gewichtiger, je
höher die Teilchenkonzentration ist. Sie sind auf Vielteilchenwechselwirkung und damit ver-
bundene starke Fluktuationen in der Konzentration zurückzuführen. Interessanterweise ist
die berechnete Korrektur zum Massenwirkungsgesetz eine einfache und universelle Funktion
der

”
klassischen“ Reaktionsrate (dem Proportionalitätsfaktor im Massenwirkungsgesetz). Im

Gegensatz dazu ist diese klassische Reaktionsrate selbst nicht-universell. Sie wird also von
der spezifischen mikroskopischen Realisierung des Systems bestimmt, etwa der Form und
Größe der Teilchen. Wir haben diese Abhängigkeit genau studiert, indem wir mit modernen
Methoden der Statistischen Physik eine mathematische Beziehung zwischen der Physik auf
den mikroskopischen Skalen der Teilchen und der beobachtbaren Physik auf makroskopischen
Skalen herstellen. Unseres Wissens handelt es sich hier um eines der ausgesprochen seltenen
Beispiele, bei denen die Idee der Renormierungsgruppen, die Physik von den mikroskopis-
chen Skalen auf die makroskopischen Skalen zu übertragen, exakt durchgeführt werden kann.
Aus einem eher theoretischen Blickwinkel betrachtet, zeigen wir, wie sich die nichtpertur-
bative Renormierungsgruppe zur Analyse von Vielteilchensystemen oberhalb der kritischen
Dimension eignet, während ähnliche Methoden grundsätzlich auf niedrig dimensionale Sys-
teme beschränkt sind.



Abstract

The fundamental forces of nature act between only two particles, while they are simply
superposed for the interaction of three and more particles. However, also in physics the
whole is more than the sum of its parts, and completely novel phenomena can emerge in
systems of large numbers of particles. Among the well known there are the three phases
of matter, solid, liquid and gas, which are attributed to the complex interaction of quasi
infinitely many atoms. In the last 100 years or so, science has also revealed more exotic
phases, such as superconductivity, superfluidity or a metallic phase of hydrogen. Due to the
interaction of the ∼ 1023 particles, a sample of condensed matter that could fit in our hands,
provides the physicist an object of study which reflects the complexity of the universe itself.
Recent studies even reveal that the correlations of entangled electrons in certain solids imply
physics that is effectively described by string theory, and display phenomena related to black
holes; terms which are normally associated to the huge energy and length scales of cosmology
and high energy physics [1].

This work revolves around the broad context of stochastic many-particle systems, which
provide a framework to study the implications of the interaction of a large number of agents
distributed in space. As compared to equilibrium statistical physics there is an emphasis on
the time evolution of the system, governed on intermediate timescales by stochastic laws.
To illustrate this, consider the erratic motion of a Brownian particle in water. As was first
explained by Albert Einstein, it is caused by random collisions with the surrounding H2O
molecules [2]. Gaining a complete knowledge of the motion of every single molecule is futile,
and in fact not necessary, because approximating the collisions as random is not tantamount
to the absence of a law for the motion. On the contrary, probability theory provides an
adequate description of the Brownian particle as diffusing with a diffusion constant D that
depends on the mass of the particle and the temperature. Thus, simplifying the dynamics by
subsuming its details to an effective description on intermediate timescales, stochastic many-
particle systems allow to focus on the rich and complex phenomena which can arise from the
interplay and correlations between the particles.

In the first model studied in this work, three species are subject to cyclic, non-hierarchical
interaction. This scheme serves as a simplified model for food chains, is observed in mating
strategies of a certain species of lizards, and obeyed by cultured strains of Escherichia coli
bacteria, whose colonies can be examined in the lab. Typically the interaction leads to
domains of one species, where the other two species have gone extinct, but the coexistence
of the three species is conserved on the large scale. Therefore the cyclic interaction has been
put forward as a candidate for maintaining the rich biodiversity observed in nature, which
still puzzle scientists, as it seemingly defies Darwin’s law of the “survival of the fittest”.
A part of the thesis is devoted to the treatment of the model in one-dimensional space,
where, as opposed to two and higher dimensional systems, the growth of the domains of one



species is not halted by the cyclic interaction and coexistence is jeopardized. We study the
impact of spontaneous mutations, a further mechanism which supports biodiversity, on the
dynamics of the system. We derive accurate formulas explaining the size of the domains
found in the stochastic simulations on the computer. Curiously, although the three species
cyclic interaction models are often taken as important representatives of processes far from
equilibrium, in certain regimes our model behaves as an equilibrium system, fulfilling detailed
balance, and it thus allows for a complete and exact solution of the stationary state.

In the largest part of this work, we revisit the classical problem of bimolecular chemical
reactions, employing a non-perturbative renormalization group scheme. This model has been
introduced more than one hundred years ago to help understand the physics behind the
coagulation of gold particles suspended in an electrolyte. It is of interest for a large variety of
fields of natural science with applications to the dynamics of aerosols, the binding of proteins,
the decay of defects in solids or the kinetics of chemical reactions. The “gold standard”
in these reaction diffusion systems is the fundamental law of mass action, which state that
the rate of an elementary reaction is proportional to the product of concentration of its
participants. We show that for three-dimensional systems the law of mass action is violated.
The effects become more pronounced as the particle density increases and can be attributed to
long range fluctuations and many-particle correlations. Although the system is not critical,
the corresponding additional term is a universal function of the macroscopic decay rate.
To calculate the latter, we construct a relation from the physics at the microscopic scale,
influenced by the shape and size of the particles or the structure of the lattice, to an effective
macroscopic description. To the best of our knowledge this is one of the very few instances
where the renormalization group idea of mapping physics from the micro- to the macro-scale
can be accomplished exactly. From a more theoretical perspective, we demonstrate how the
non-perturbative renormalization group can be employed to analyze the effects of long range
and many-particle interactions above the critical dimension, whereas previous approaches are
conceptually limited to low-dimensional systems.
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1 Introduction

The complexity of the world seems infinite. Richard Feynman compares it to a large game
of chess which we are allowed to watch but not to play [3]. Curiosity and careful inspection
might allow us to derive the elementary rules of the game, although now and then we are still
confronted with castlings we fail to understand. Yet even with a complete knowledge of these
rules, most situations would be far too complicated for our predicting the next move. As an
example in physics, consider the motion of a pendulum which can be solved analytically, after
some simplifying assumptions (neglecting friction, allowing only for small angles). Already
the seemingly not much more complicated double pendulum, where a pendulum is attached to
the end of another pendulum, is hardly amenable to analytic treatment, and even the validity
of numerical solutions is restrained by its chaotic motion: slight deviations in the initial
conditions, or tiny errors in the calculations, say due to rounding, will increase exponentially
and soon lead to completely different outcome.

The subjects of study in Statistical Physics usually bear much more degrees of freedom than
the double pendulum. A key to treating these systems is to reduce the depth of the description.
For instance, calculating the motion of every single particle in a gas would be futile, yet
one can access macroscopic quantities such as its volume and temperature by averaging over
ensembles of configurations. It may seem paradoxical that Statistical Physics provides unified
descriptions for system which at first sight have little in common. A striking example is the
critical behavior of gases and magnets. Not only do they share the qualitative phenomenon
of a phase transition, characterized by the singular behavior of macroscopic quantities. The
critical exponents describing these singularities often also agree quantitatively. This is known
as “universality”, and underscores the significance of specific models as benchmarks for more
general systems. Therefore, rather than trying to recover every detail, the models studied in
Statistical Physics are usually based on a simplified microscopic description boiled down to
the main ingredients, whereby they capture the macroscopic behavior and, notwithstanding,
are amenable to analytic treatment.

A prominent and widely studied example is the Ising model for ferromagnets. It reduces the
complex interaction between the atoms to coupling of discrete spins. Successful as this model
is in unveiling the nature of phase transitions, it is restricted to the equilibrium distribution
of the system. To study the time evolution and the relaxation to the equilibrium state, it
is necessary to introduce dynamics to the model. Again it should be noted that the goal of
these approaches is not to describe the microscopic dynamics correctly in every detail, but
they should rather be understood as mesoscopic descriptions. Thus, even if the dynamics of
the spin flips were deterministic, a quite satisfactory description is already provided in the
framework of stochastic many-particle systems with Markovian rules for the time evolution
(viz. the Glauber and the Kawasaki dynamics [4]), such that the future probability distribution
of the system depends only on the current state.



2 1. Introduction

The study of these time dependent magnetic systems gave the field of stochastic many-particle
system strong impetus. Today they provide a fruitful testing ground for more complicated
systems in fields as diverse as ecology, spread of infection, behavioral systems, tumor growth
and chemistry [5–7]. In this thesis we discuss two representatives of stochastic many-particle
systems in detail. Firstly, a paradigmatic model for biodiversity is considered, where three
agents are subject to cyclic competition. The model itself exists in many variations and an
immense body of work has been developed in recent years. In this introduction we give the
reader a resumé of some of the most intriguing findings, and relate our specific model to
previous work. Secondly, we present a fundamental model for the coagulation of colloids,
where two particles clot upon contact. Seminal works date back almost one hundred years,
and there has been ongoing interest as the rise of more sophisticated mathematical tools
allowed to gain new insights. To put our work into perspective, we give the reader a short
overview of the most relevant results in this introduction.

1.1 Three-Species Cyclic Dominance

The world’s ecosystems display a fascinating richness and abundance in coexisting species.
As a striking example of this biodiversity, it has been estimated that a 30 gram sample of
soil from a Norwegian forest contains half a million different species of bacteria [8, 9]. Such
phenomena pose a great challenge to science: On the one hand biodiversity is beneficial to
the ecological systems itself, enhances its viability and supports its productivity [10]. On
the other hand, each species will hardly look for the well-being of the whole community, so
that their coevolving seemingly defies Darwin’s postulate of the “survival of the fittest” [11–
13] (and also alternative theories of neutral evolution [14]). In a naive interpretation one
might expect the stronger of the species to outcompete the weaker, and if they fight for the
same, limited resources this will eventually lead to the extinction of the weaker species. The
counterintuitive biodiversity in ecological systems is epitomized in the so called paradox of the
plankton [13]. A large number of different species of plankton coexist, despite the fact that
most of them rely on and share the same limited resources, constituted mainly by solar energy
and minerals which are dissolved in the surrounding water. Here, the concept of ecological
niches, one of the mechanisms which can maintain biodiversity, evidently fails; the species of
plankton all seem to follow the same strategy. Rather, a possible solution of this apparent
paradox is the spatial segregation of the different species of plankton [15].

Theoretical advances to explain the behavior of multispecies systems have been achieved in
the framework of evolutionary game theory and population dynamics [7, 16–18]. A model
which has attracted a lot of attention in recent years, and whose remarkably rich and complex
behavior promises to shed light on at least some of the mechanism that maintain biodiversity,
is the three-species cyclic population model [19–42]. Often it is metaphorically described
by the children’s game of Rock-Paper-Scissors (RPS), where rock crushes scissors, paper
covers rock, and scissors cuts paper. This model is characterized by a cyclic, non-hierarchical
structure. Three is the minimum number of agents to achieve this type of interactions.
Typically the model develops a dynamics, where the system or a part of it is subsequently
dominated by rock before paper before scissors. . . in an endlessly spinning wheel of species
chasing species. Incidentally, this transition from one species to the next is connected to
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Figure 1.1: Solution of the RPS model, illustrated in the three-species simplex (left, the picture is
reproduced from [25]). The deterministic rate equations imply neutrally stable cycles
around the reactive fixed point. Yet after introducing stochasticity, by considering an
urn model with a finite number of particles, one observes a spiraling out to the edges of
the simplex. The system finally reaches one of the three absorbing states, where only
one species has survived. On the right we depict a snapshot of a two-dimensional cyclic
dominance model (reproduced from [26]). It is characterized by a dynamic pattern of
entangled spirals. The arms of the spirals are domains where one species prevails; on one
edge the domains intrude the neighboring domain of their “prey” only to give way to their
“predator” on the opposite edge.

the non-equilibrium nature of the RPS dynamics, and the processes consumes entropy [34],
similar as, for instance, plants harness solar energy.

The RPS lends itself as a paradigm for more complex species interaction. It is hoped to
reveal generic features for realistic ecological systems, and serves as a lead for the analysis
of more complicated models [43, 44]. Nevertheless, there is a host of examples in nature,
where the cyclic dominance interaction of three species is observed directly. For instance,
the interaction pattern was found to characterize the interaction between the agents of many
marine communities which consist of three species [45]. Another, well documented, example
is provided by lizard populations in the inner Coast Range of California [46]. Curiously, the
mating strategy of the males are visually coded on their throats, allowing for a simple and
reliable identification. Males with orange throats are very aggressive and reign over large
territories. They thus outperform the less aggressive blue throated males, which restrict
to smaller territories. However, the latter do this rather thoroughly, so as to defend their
territory successfully against yet another type of males, the “sneakers”, with yellow stripes
on the throats, which resemble females and do not guard territories. The cycle closes since in
the competition with the “sneakers” the aggressive orange throated males overstrain the size
of their territory, which is thus invaded. A further example of RPS interactions is provided
by certain strains of Escherichia coli bacteria, which can be studied on the Petri dish [23].
One strain produces toxin that is fatal to a another sensitive strain. Furthermore, there is a
resistant strain that is not affected by the toxin and grows faster than the toxic strain, since
it does not incur the cost of producing the poison. Finally, the sensitive strain outgrows the
resistant one because also resistance bears some cost in fitness.



4 1. Introduction

In a first approach one often ignores the spatial structure and considers a set of rate equations
which describe the time evolution of the number of each species. These equations can then be
analyzed by the usual means of non-linear dynamics. Famously, such an approach has been
rather successful, for the related Lotka-Volterra predator-prey model, whose non-linear rate
equations give rise to a limit cycle in the plane of the densities of predator and prey. Theses
limit cycles were posited to describe the fluctuations in fish catches in the Adriatic [16, 47, 48].
Corresponding deterministic Lotka-Volterra equations can be set up for the RPS model, based
on the reactions AB → AA, BC → BB, and CA → CC, where A,B and C stand for
rock, paper, and scissors, respectively. However, they have been argued to provide only an
unrealistic description for ecological systems [25]. It was found that, in addition to the three
trivial solutions of the rate equations, where only one of the three species remains and the
other two are extinct, there is a stable fixed point, where all three species coexist. Around
this reactive fixed point the system evolves along neutrally stable cycles in the three-species
simplex, c.f. Figure 1.1. Thus, the deterministic solution predicts infinitely many solutions
where the species coexist. Yet, if one introduces stochasticity into the model, by considering
an urn model with a finite particle number of agents, fluctuations cause an erratic motion
on the phase plane, characterized by random hopping between the deterministic cycles. The
radial motion away from the reactive fixed point is aptly described by a random walk with an
absorbing boundary, which, up to a constant factor, is attained on average after the rescaled
time t/N , where N is the number of agents in the urn. Thus, stochasticity, which should be
an integral part of any realistic model destabilizes the system and leads to extinction of two
of the three species. (It is remarked in passing that even in a deterministic description of
the three-species cyclic interaction, coexistence is not a robust feature. Seemingly irrelevant
changes can destabilize the cyclic orbits and give rise to directed motion towards the edges and
absorbing corners of the simplex. This is the case for the May-Leonard model, where instead
of an immediate invasion, an empty spot is created, AB → A∅, BC → B∅, and CA→ C∅,
on which an offspring can then be produced, A∅→ AA, B∅→ BB, and C∅→ CC [49].)

The crucial ingredient which lacks the above urn model is spatial expansion in combination
with short range interaction. This stabilizes the coexistence of the three species and makes it
more robust to small changes in the model, as was most cogently demonstrated in the work of
Kerr et al. on the Escherichia coli strains described above [23]. Their numerical simulations
and experimental observations suggest that, as long as the bacteria are locally dispersed on
the Petri dish, they form a mosaic of patches dominated by one strain. The gains of first
species are at the cost of the second, and are soon enjoyed by the third strain, and so on. In
an alternative scenario, the bacteria were put in a flask that was stirred to obtain a well-mixed
environment, where the bacteria are delocalized and the spatial extension is immaterial. In
stark contrast to the outcome on the Petri dish, for the stirred flask Kerr et al. observed
the extinction of two of the three strains, in an almost deterministic development: First the
sensitive strain is killed, since it cannot form defensive patches against the toxin. This settles
the fate of the toxin producing strain, since the resistant strain, having lost its only enemy,
outgrows the toxin producing strain and finally prevails.

The importance of explicit space for maintaining the coexistence of the species has also been
underscored in a number of further, theoretical works [7, 26, 50–52]. We highlight the results
of Reichenbach et.al. [26], who studied the implications of mobility on the cyclic dominance
interactions on a square lattice. As long as the hopping rate between the sites is below a
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certain threshold, one observes stable coexistence with an intriguing pattern of entangled
spirals, c.f. Figure 1.1. As the mobility is raised and the interacting agents are more and
more delocalized, the size of the spiral structures increases continuously, until the mobility
exceeds a critical value where they outgrow the system size and two of the three species go
extinct.

The cyclic dynamics can not only maintain coexistence in two-dimensional lattices, but also
for higher dimensions and for complex networks [7]. However, the scenario differs markedly
when one goes to one-dimensional systems, where the cyclic dynamics imply a transition
to one of the three absorbing states. (A similar phenomenon is observed for the “voter
model”, where two voters which may have either of two political positions, are distributed
on a lattice and adapt the opinion of one of their neighbors after some time. This may be
perceived as the two-species cyclic dominance process. In one and two dimensions, the system
is characterized by an infinite coarsening of domains of voters with the same position. In three
and higher dimensions, the coarsening eventually stops and there is coexistence of the two
political positions.) To understand the behavior in one dimension, it is important to notice
that, while the number of domains of one species can decrease, the creation of new domains
is impossible. To illustrate this, let us assume that part of the lattice is in the configuration
ABA and another part in ABC, with the species B squeezed between domains of A and C.
For both configurations, in the next instant, the domain of B (here consisting of only one
site) can be conquered by its predator A and thus vanishes. Thus the number of domains
decreases, their average size grows and the system undergoes coarsening. (Strictly speaking,
our arguments are only true for a “fermionic” system, where each lattice site is occupied by
exactly one agent. But the general conclusion of the coarsening of domains is preserved also
for “bosonic” systems, where each site can be occupied by several particles, even if there
appear additional mechanisms for the coarsening [35]).

There has been some dispute over the law that governs this growth of the domains in one
dimension. A generalized mean-field approach suggests that their average size diverges as
l ∼ tα, with an exponent α = 1. This has been challenged by simulation results, which indicate
that α ≈ 0.8 [53], while theoretical work on a similar model, with deterministic dynamics,
points to α = 1/2. The dispute could be settled by the work of Frachebourg et al. [19, 20]. The
authors remarked that the dynamics leads to a building up of superdomains, with sequences of
domain walls (the border between two domains) that either all move to the right or to the left.
For example, suppose a part of the lattice is in the configuration AABBCCCABCC, which
is a superdomain of the right-moving domain walls, AB, BC, and CA. Since the domain walls
avoid each other by moving in the same direction, the coarsening of the domains is decelerated
as compared to the mean-field result. On the other hand, in contrast to the deterministic
model, the domain walls display diffusive motion. Therefore it can occur that two right-
moving domain walls meet, say CAB → CCB. This stochastic effect implies accelerated
growth of the domain size as compared to the deterministic model. Indeed, the true exponent
α = 3/4 lies between the mean-field result and the result for the deterministic model.

The model treated in the next chapter is motivated by the work on these one-dimensional
systems. By introducing spontaneous mutations, a natural mechanism is provided which puts
a stop to the eternal growth of domains. Thus, the system tends to a stationary state with
coexistence, characterized by the competition between coarsening and mutation.



6 1. Introduction

1.2 Reaction-Diffusion Processes and Rate Equations

The second stochastic many-particle system studied in this work is a simple decay process,
where two particles clot to form one particle, A+A→ A, and explore space by diffusion due to
Brownian motion. In the spirit of studying idealized and simplified models for gaining insight
into microscopically much more complex processes, this reaction scheme was introduced by
Smoluchowski to help reveal the mechanisms behind the coagulation in a colloid suspension
of gold, supported by experimental work of Zsigmondy [54, 55]. Smoluchowski’s work marks
a cornerstone in the development of a theory for reaction-diffusion processes. His approach
of solving the problem, which we will briefly describe below, and his results are until today
an important reference point in the theoretical and experimental study not only of colloid
suspensions but also in fields as diverse as meteorology, micro-biology, chemistry, solid state
physics, and astronomy, with various applications such as the growth of aerosol particles [56],
protein binding [57], chemical kinetics [58, 59], exciton fusion [60], the evolution of excitations
in spin ice [61], or the evolution of superheavy monopoles produced in the early universe [62].

Generally, in such reaction-diffusion processes one distinguishes two regimes, the diffusion-
controlled regime and the reaction-controlled regime. To elucidate these terms, suppose that
the two particles coagulate with rate λ once they meet within a distance R. If this microscopic
reaction rate λ is very low, or alternatively fast diffusion ensures a well-mixed system, it will
be the bottleneck of the reaction. Let ρ denote the particle density at time t. The probability
for a particle to be in reach of another particle will simply be 4

3πR
3ρ and thus in the reaction-

controlled regime

∂tρ = −λ2

3
πR3ρ2 . (1.1)

This reasoning breaks down when the reaction rate becomes large, λ → ∞, i.e. when two
particles meet they coagulate with certainty and immediately. In contradiction to Eq. (1.1)
the speed of the reaction will not become infinite: If initially the particles are randomly
distributed, then in the next instant all “pairs” are taken out of the system and one relies on
a mechanism to redistribute the particles, in our case by diffusive mixing, in order to have
new pairs which can react. Thus, the mean-field dynamics of Eq. (1.1) is slowed down due to
anti-correlations, which build up in the system, because a configuration of nearby particles is
unstable.

Smoluchowski found a way to tackle this interesting case of diffusion-controlled reaction ki-
netics, where, because of a separation in time scales, the bottleneck of the kinetics is the
ineffective diffusional mixing. His approach to solving the reaction kinetics lends intuitive
insight into the nature of the anti-correlations [54] (also see [63, 64]): We put ourselves in
the inertial system of a test particle which is fixed at the origin. The surrounding particles,
with density ρ, are effectively treated as a non-interacting diffusive field. Whenever one of the
surrounding particles is within a distance R of the test particle at the origin, it is annihilated
with rate λ, whereas our test particle is supposed to survive. In the limiting case of infinite
reaction rate, λ → ∞, which was considered by Smoluchowski, the problem reduces to a
diffusion equation with absorbing boundaries at a distance |x| = R from the test particle, and
can be solved easily with the full time dependence, by constructing the Green’s function. For
three dimensions, the solution converges to a stationary state which is depleted at the origin,
see Figure 1.2. The particle flux into the reach of the test particle is found to be J = 8πDρ.
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Figure 1.2: Illustration of the annihilation process, where two particles form an inert complex A+A→
A2, which is taken out of the system (left). Mathematically this process is equivalent to
the coagulation A + A → A, as will be demonstrated in Chapter 4. On right side we
present the Smoluchowski’s argument, for which a test particle is placed at the origin,
surrounded by a density field of noninteracting particles subject to diffusion. When one of
the particles approaches the test particle it is taken out of the system. The density of the
particle field is therefore determined by a diffusion equation with absorbing boundaries.
Shown here is the stationary solution in three dimensions. For large distances it approaches
the absolute density ρ and displays a minimum in the vicinity of the test particle. These
anti-correlations decelerate the kinetics, as compared to a well mixed system and ensure
a finite particle flux into the test particle, even for infinitely large microscopic reaction
rates λ. In the Smoluchowski approach, one assumes that the particle flux into the test
particle determines the kinetics such that ∂tρ = 1

2Jρ. Due to the linearity of the diffusion
equation, the particle flux J is proportional to the density ρ. Therefore, the kinetic
equation ∂tρ = 1

2Jρ = −4πDρ (where D is the diffusion constant) is quadratic on the
density ρ, in accordance with the law of mass action.

Smoluchowski’s crucial assumption is that the number of reactions taking place per unit time
and unit volume is the density of test particles ρ times the particle flux 8πDρ, divided by two
(in the coagulation reaction A + A → A only one of the two reactants disappears, whence a
factor 1/2). Thus,

∂tρ = −µρ2 , (1.2)

with the effective decay rate µ = 4πDR. As for Eq. (1.1), because of the linearity of the
diffusion equation, the kinetics is described by an equation that is quadratic in the density
ρ. This is in accordance with the famous law of mass action, stating that the rate of an
elementary reaction is proportional to the product of the concentrations of its participants. In
the diffusion-controlled limit, however, the rate of the decay µ is an effective, macroscopic rate.
As compared to the mean-field result λ2

3πR (see Eq. (1.1)) it is restricted by heterogeneities in
the particle density, which are a consequence of the interaction of the particles, their discrete
nature and the ineffective diffusive mixing.

In the appendix we also give the stationary solution to the ensuing diffusion equation for
finite microscopic reaction rates λ. Because of a sink of the particle density around the test
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particle, the kinetics is always decelerated, as compared to the reaction-controlled regime,
c.f. Eq. (1.1). The effective decay rate µ now depends on the microscopic rate λ and is not
only limited by the diffusion constant D. The result reads

µ(λ) = 4πD

[
R−

√
2D

λ
tanh

(
R

√
λ

2D

)]
. (1.3)

As one should expect, the macroscopic rate µ(λ) is monotonously increasing with the micro-
scopic rate λ, but nevertheless tends to a finite value, when the latter diverges. It bridges
the gap between the reaction-controlled regime (where one indeed recovers the mean-field
equation, Eq. (1.1)) and the diffusion-controlled regime for large λ, where µ = 4πDR.

Smoluchowski’s heuristic approach captures the contributions of the fluctuations very well.
Indeed, it is established that above the critical dimension two, the law of mass action describes
the kinetics of the system accurately, such that the density becomes ρ ∼ µ−1t−1 at long times
t. It has even been confirmed rigorously, by field theoretic means, that the Smoluchowski
approach delivers the correct decay rate µ [64]. It is well known, however, that in low
dimensions the law of mass action is no longer valid and there are marked deviations from
the classical scaling t−1 of the density. This can be understood most vividly by first noting
that in the diffusion-controlled limit, dimensional analysis and the law of mass action imply
a decay

ρ ∼ cR2−d(Dt)−1 , (1.4)

with a dimensionless constant c [62]. Below two dimensions this formula cannot possibly
hold, since an increase in the interaction radius R would certainly speed up the reaction and
not slow it down. The reason for this failure is that the random walk is recurrent below two
dimensions, i.e. every point in the system is passed with certainty if one waits sufficiently
long. Thus, in one dimension, within time t, a particles sweeps out a stretch of the lattice of
length

√
Dt. If we take this as the effective size of the particles, this suggests a decay of the

density,

ρ ∼ A(Dt)−
1
2 , (1.5)

(where A is some dimensionless amplitude) much slower than predicted by the classical theory.

This anomalous kinetics of the coagulation process in low-dimensional (two and below) sys-
tems, with its violation of the law of mass action, has fascinated scientists and sparked a great
body of work. Specialized to one dimensional systems, a whole host of different methods has
been devised, which allow to extract exact solutions. In particular, the decay amplitude A has
been calculated exactly for the coagulation model [65–68] and a number of variations of it (for
instance with synchronous dynamics [69], where all the particles are updated at once, or with
asymmetric diffusion [70]). These theoretical predictions are probed by experimental studies
on effectively one-dimensional exciton dynamics [71–75]. In the two dimensional realization
of the model, there are logarithmic corrections to the classical scaling,

ρ ∼ A ln(Dt)

Dt
. (1.6)

Here rigorous theoretical results have been obtained by means of the perturbative renormal-
ization group [76, 77] which are of experimental interest for instance in the study of reactions
in biological membranes [78]. Finally, studying fractal systems, also the regime between one
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and two dimensions has been explored [60, 79]. It is found that ρ = c(Dt)−ds/2, when ds is
the so called spectral dimension, defined by the recurrence property of the random walk (the
probability for a random walker to return to the origin at time t behaves as t−ds/2).

In contrast to these new insights and methods for low dimensional system, fundamental
progress in higher dimensions has remained largely elusive. One reason for this might be that
Smoluchowski’s approximation of only considering two particle correlations already delivers
exact results. Indeed, whereas in low dimensional systems, long range and many-particle
interactions strongly impact the long time kinetics, it is established that in three and higher
dimensions the effect of these fluctuations can be neglected and that Smoluchowski’s approach
becomes exact in the long time and low density limit [58, 64, 80]. The underlying reason is that
the random walk is not recurrent above two dimensions, which implies that it is unlikely that
a particle returns to a small volume around, say, the origin, after it has traveled a distance
away from it to another small volume. Thus, the correlations building up between these
two, separated volumes will be relatively small, and therefore also the correlations between
different particles (placed in such volumes) should be small.

However, Smoluchowski’s classical theory and the law of mass action do not hold for all decay
processes in three dimensions. A counterexample is the annihilation reaction of two species
of particles, A + B → ∅. Here, it is well known that Smoluchwski’s arguments fail, due to
long range density fluctuations in the initial conditions [62, 81]. Toussaint and Wilczek begin
their analysis of the process with an intuitive argument: If initially the particles are randomly
distributed, with equal densities ρ0 for both species, the excess in the number of one species
in a volume V is of the order

√
ρ0V . On diffusional length scales lD =

√
Dt there will be

domains where only one species prevails. This mechanism is the bottleneck of the reaction
kinetics (for one dimension it even implies a slower decay than Eq. (1.5)), namely

ρ(t) ∼ cρ1/2
0 (Dt)−

d
4 , (1.7)

on condition that d < 4. Incidentally, when the initial long range correlations are suppressed
due to the pairwise productions of particle A and particle B, the above arguments are invali-
dated and in the three dimensional model the law of mass action is recovered [58, 62]. This is
the case, for example, for certain solids where point defects are created in pairs [58], since, due
to radiation damage, atoms loose their ground state position in the lattice structure and leave
nearby vacancies, with which they can recombine. This is particularly interesting for us since
a field theoretic analysis displays an intimate relation to the coagulation model A + A → A
on which we put the focus in this work [82]. Thus, our results have direct and quantitative
implications also for the two particle annihilation process.

Despite this counterexample, in three dimensions the validity of the law of mass action is
usually taken for granted [57, 73, 83, 84]. The focus is rather on the correct value for the
macroscopic decay rate µ than on possible deviations from it. Of course, determining µ is a
very important point too, especially since, as criticized in [57], the classical result µ = 4πDR
for interacting spheres often serves as an upper bound for the reaction rate in protein-protein
and protein-ligand binding, although it grossly overestimates it by several order of magnitude,
due to orientational constraints for the binding. Nevertheless, we think it essential to also
explore possible violations of the law of mass action for finite densities. Indeed, as we show in
this work employing field theoretic methods and the non-perturbative renormalization group,
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instead of the rate Eq. (1.2), the kinetic equation should be written in the more general form

∂tρ = −F (ρ) , (1.8)

with the non-equilibrium force F (ρ). For very low densities we recover the law of mass action
F (ρ) ≈ µρ2. However, long range fluctuations and many-particle interactions give rise to a
relatively strong, non-analytic term c(µ)ρ5/2, which is only the first term in the infinite series
F (ρ) = µρ2 + c(µ)ρ5/2 + c3,lnρ

3 ln(ρ) + c3ρ
3 + c4ρ

7/2 + . . .. Intriguingly, the first correction
c(µ)ρ5/2 is a universal function of the macroscopic decay rate µ, but otherwise does not depend
on the microscopic realization of the model, such as the shape and size of the reactants.



2 Three-Species Cyclic Dominance with
Mutations

Stochastic many-particle systems are a fruitful testing ground for understanding generic prin-
ciples in non-equilibrium dynamics. Unfortunately, the treatment of such processes is marred
by the absence of detailed balance, so that the insight one has gained by analytical means is
not yet satisfactory and only few systems have been solved exactly [5, 6, 85]. Some of them
serve as a paradigm for very complex biological and sociological systems. An example is the
contact process, which describes the outbreak of an epidemic, displaying a phase transition
from an absorbing to an active state as the rate of infection is increased [86]. Another famous
example is the voter model, caricaturing opinion making. It is proven rigorously that on a
regular lattice there is a stationary state where the two “opinions” coexist, so long as the
dimension is larger than two, such that the random walk is not recurrent [6, 87]. Extensive
studies have also been conducted on the coarsening dynamics of coalescing or annihilating
particles, both for diffusional motion and ballistic motion of the particles [19, 20, 88, 89]. In
this context, much work was devoted to the long time behavior of the average domain size,
which as a function of time typically displays scaling.

Frachebourg et al. [19, 20] have investigated the coarsening dynamics of a model known
as the Rock-Paper-Scissors game (RPS), a widely studied prototype model for biodiversity
[23, 25–27, 30], displaying cyclic dominance between its three agents. Here, we study the
influence of mutations on this model, a work which originates in the author’s diploma the-
sis [90]. An integral part of evolution, mutations have been posited to promote biodiversity
in microbial communities [52]. We will argue that the RPS is a natural framework for a
non-equilibrium version of the Ising-Glauber model, which at zero temperature amounts to
an annihilating random walk. While previous studies have addressed coarsening and the
transition to an absorbing state, we focus on the description of the stationary reactive state
at finite “temperature”, i.e. interfaces between domains are created at finite mutation rate.
In the Ising-Glauber model the interfaces perform a random walk, whereas for the RPS they
drift left or right. Since the coarsening dynamics is counteracted by the creation of interfaces,
the system evolves into a non-trivial stationary state. For very large and very low mutation
rates, equilibrium turns out to be only slightly broken. Discriminating between two types
of mutations, we can thus obtain asymptotically exact descriptions for the average size of
the domains in the stationary state. As the final arbiter of the validity of our arguments we
employ stochastic lattice simulations. In an shorter version than is presented here, this first
part of the chapter has been published in our article “Coexistence in a one-dimensional cyclic
dominance process” which appeared in Physical Review E [39].

The RPS is often named as an important representative of non-equilibrium processes [7,
27, 34]. The non-equilibrium nature manifests itself in the cyclic dominance of the species,
implying a net probability flow from a state where rock is predominant, to a state where
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paper is predominant, to a state where scissors is predominant, and so on. In contrast, for
equilibrium systems one expects the probability flow to obey the detailed balance principle,
such that the net probability flow from rock to paper and back should cancel [91]. The reactive
stationary state that RPS displays in two (and higher) dimensional systems, is truly far from
equilibrium, because there are three absorbing stationary states (with only one species left),
and the flow into these absorbing states cannot (by definition of absorbing) be equilibrated.
Also for a zero-dimensional RPS model equipped with spontaneous mutations (as they are
also introduced in this work) the process is far from equilibrium, as shown in [34], where the
non-equilibrium aspects of this process have been studied and quantified by measuring the
entropy production. It reaches its peak at a critical mutation rate which becomes small as
the system size increases. Thus, it came as a surprise to us to find that for our realization
of the model, in the regime of very low mutation rates, the system reaches a stationary
state which displays detailed balance. This is the starting point of the second part of this
chapter. The fact that detailed balance is fulfilled allows us to apply the tools of equilibrium
statistical mechanics and to obtain rigorous analytic solutions for the equilibrium state of the
model. The existence of such an equilibrium stationary state, however, turns out not to be
robust to the breaking of the symmetry between the species, because here there are additional
transitions which are not balanced by a reverse transition.

Asymmetries between the species are of course the norm; in particular they are observed
in the laboratory experiments on Escherichia coli [23]. As described in Section 1.1, one
strain produces toxin that is fatal to another sensitive strain, which outgrows a strain that
is resistant to the toxin. Here the asymmetry is rather strong, since the toxic environment
relatively quickly causes the death of the sensitive strain, so that the toxic strain invades
the domain of the sensitive strain much faster than the sensitive strain invades the resistant
strain. Curiously, in the limit of infinitely fast reproduction of one species, motivated by these
experiments on Escherichia coli, we find that the process again attains an equilibrium state
which is exactly solvable.

2.1 Definition of the Model and the Dual Picture

On a one-dimensional integer lattice {1, . . . , S} of size S, the RPS game can be defined by
the following cyclic dominance reaction equations for nearest neighbors.

AB
rA−−→AA , BC

rB−−→BB , CA
rC−−→CC , (2.1)

i.e. paper (A) covers rock (B), rock crushes scissors (C) and scissors cuts paper. Here we
presuppose left-right symmetry such that, for instance, A can invade a neighboring B to its
left or right, and we consider a Markov process in continuous time with sequential updating.
Unless otherwise stated, we consider the symmetric case, with equal cyclic dominance rates

rA = rB = rC = 1 , (2.2)

which are set to one to define the timescale. These equations have been studied in detail
in [19, 20]. In particular it was shown that, starting from some random distribution, the
species organize in domains that undergo coarsening until finally—providing the system size
is finite—one species takes over the whole lattice.
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Figure 2.1: Illustration of the one-dimensional Rock-Paper-Scissors game with mutations and the
passing to its dual description. The configuration of the lattice is given at subsequent
points in time, resulting in a two-dimensional space-time plot. A mutation C → B occurs
somewhere between t = 2 and t = 3. In the particle picture, for each lattice site the
species are explicitly given (left part of the figure). In the dual picture, or interface
picture, one keeps track of the domain walls, also called interfaces, instead (right part of
the figure). The dual picture is characterized by interfaces moving left (L) or right (R).
Notice that the annihilation of two interfaces, reaction (1), is simply the time reversal of
reaction (2). Reaction (3) breaks the time reversal symmetry. However, as the mutation
rates becomes smaller, and the average domain size grows, from a coarse grained point of
view the motion of the interfaces becomes effectively ballistic (moving at constant speed).
Therefore, one can neglect reaction (3), which is dominated by the diffusional motion of
the two Rs relative to each other. We will show that, because of the ensuing time reversal
symmetry, in the limit of low mutation rates the process attains an equilibrium stationary
state (i.e. obeys detailed balance), which allows for an exact solution.

In addition to the above reaction scheme for cyclic dominance we allow for spontaneous
mutations to the respective “prey” with rate µr,

A
µr−−→B

µr−−→C
µr−−→A , (2.3)

and to the respective “predator” with rate µl,

A
µl−−→C

µl−−→B
µl−−→A . (2.4)

Notice that both types of mutations conserve the cyclic symmetry. The mutations counteract
the coarsening of the system and ensure a reactive stationary state. However, for low mutation
rates, which we shall focus upon, one still expects the system to organize in large domains
of one species separated by interfaces. Thus, it is adequate to utilize the so-called dual
picture (or interface picture), obtained by representing the interfaces, i.e. the walls between
the domains of one species, by particles and two consecutive spots occupied by the same
species by empty sites ∅. This mapping is illustrated in Figure 2.1. There are left and right
moving interfaces, denoted R and L, respectively. The interfaces reflect the one-dimensional
structure of the lattice, which critically affects the dynamics since in higher dimensions the
coexistence is maintained even without mutations.

The density of the interfaces is simply the reciprocal of the average size of the domains and
is thus a measure for the coarse graining. For zero mutation rates the number of interfaces
is bound to decrease when they interact: Either an R and an L collide and there is pair
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annihilation RL
2−→∅∅ (see reaction (1) in Figure 2.1), or two interfaces moving in the same

direction interact and turn into one interface that moves in the converse direction, LL
1−→R∅,

and analogous for left and right interchanged, RR
1−→∅L (see reaction (3) in Figure 2.1). The

situation is more complicated when mutations are involved, because a number of cases need
to be distinguished, and we will discuss the relevant reactions as we go along. Here we only
highlight one mechanism that mutations provide for creation of interfaces, namely ∅∅ µl−−→ LR,
labeled by (2) in Figure 2.1. This pair creation is just the time reversed pair annihilation
and, as we will explain further below, this fact permits an equilibrium stationary state for
very low mutation rates and interface densities.

2.2 The Mean-Field Equation and Large Mutation Rates

As a starting point for our analysis we derive the mean-field rate equation for the interface
density. Let P (R), P (L), and P (∅) be the probabilities of finding a right moving interface
R, a left moving interface L or a vacancy ∅, respectively, at some lattice site. To obtain
the rate equation, one assumes the system to be well mixed, i.e. the occupancy of different
sites is approximately uncorrelated. In particular, the probability for a configuration XY
on two neighboring sites simply factors, P (XY ) = P (X)P (Y ). Let us calculate the time
evolution Ṗ (R) of the probability that a site is occupied with an R. The reactions for zero
mutation rates, discussed above, RL

2−→∅∅, LL
1−→R∅, and RR

1−→∅L, contribute a term
−2P (R)2−2P (R)P (L)+P (L)2. As for reactions involving mutations, they always affect two
adjacent sites on the dual lattice. When there is a µl (µr) mutation, the left (right) one of the
two sites turns from ∅ to L, L turns to R, and R turns again to ∅, and the right (left) site
turns from ∅ to R to L and again to ∅. Since in the mean-field approximation the sites are
taken as uncorrelated, there is no distinction between the left and the right site and the two
types of mutations, µr and µl, are treated on equal footing. This is in contrast to our results
below. Let us define the overall mutation rate µ := µl + µr. An R is destroyed when there
is a mutation on its left or on its right, providing a term −2µP (R) to the rate equation. An
R can be created if a site is empty or occupied with a left moving interface L, which gives
the contributions µP (∅) and µP (L), respectively. In summary, we obtain the mean-field rate
equation

Ṗ (R) = −2P (R)2 − 2P (R)P (L) + P (L)2 + µ (P (∅) + P (L)− 2P (R)) . (2.5)

Solving for the stationary state, where P (R) = P (L), the interface density becomes

n := P (R) + P (L) =

√
4µ

3
+ µ2 − µ . (2.6)

It increases sharply, ∼ √µ, for small mutation rates. When the mutation rate is large, all
three outcomes, ∅, L, and R, should be equally likely, and indeed, Eq. (2.6), indicates that
the interface density saturates to 2/3 in this regime.

For sufficiently large mutation rates, the mean-field result, Eq. (2.6), is in excellent agreement
with the stochastic simulations, see Figure 2.2. To better understand the reason why this
is the case, we point out an analogy to the Ising model. It can be easily verified that the
two-particle version of our process (i.e. AB

1−→AA, BA
1−→BB, and A

µ
−→B

µ
−→A; the two
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Figure 2.2: Comparison of the stationary density of the interfaces obtained by stochastic simulations
with the mean-field result, Eq. (2.6) (solid black line), for relatively large mutation rates
µ = µr + µl. When there are only mutations to the respective prey (µ = µr, blue circles),
there are distinct deviations from the theoretical curve, and they become more and more
pronounced as the mutation rate is lowered. This disagreement is due to the fact that long
range correlations build up in the form of large domains of one species. In the dual picture,
this corresponds to long stretches of empty sites ∅. For such a systems which is almost
void of interfaces, the most likely µr mutation is ∅∅ → RL. This is very ineffective in
increasing the interface density, since in most cases the pair will be subject to annihilation
RL → ∅∅ shortly afterwards. However, the mean-field calculation does not capture the
impact of the short survival time of the pairs RL on the interface density, since it does
not distinguish between the left and right site and is only valid when the system is well
mixed. Therefore, in the case of µr mutations, the interface density is overestimated by
mean-field. When there are only mutations to the predator (µ = µl, red squares), the
agreement with Eq. (2.6) is so close that only in the inset one can see that the data points
indicate slightly larger values. However the deviations do become more pronounced, when
one goes to very small mutation rates, as discussed in Section 2.3.

types of mutations, µl and µr, obviously cannot be distinguished here) is equivalent to a
process that has been proposed by Glauber as a way to study the dynamic effects of the
one-dimensional Ising model, with, say, A corresponding to “spin up” and B corresponding
to “spin down” [92, 93]. After expressing the energy in terms of the nearest neighbor sum
E({s}) = −J∑<k,l> sksl, where sk is 1 for “spin up” and −1 for “spin down” and J is a
coupling constant, the temperature T is related to the mutation rate µ by

µ

1 + µ
= 1− tanh

(
2J

kBT

)
, (2.7)

with the Boltzmann constant kB. µ is small in the low temperature regime and large in the
high temperature regime. Thus, we may think of the mutation rates µl and µr for the RPS
as temperature-like parameters. For fast mutation rates, or high temperature, the system
becomes rather uncorrelated, and therefore mean-field (2.6) makes for a good approximation.
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2.3 The Limit of Low Mutation Rates

When the mutation rate becomes smaller, the correlation length becomes larger. There arise
large domains where one of the three species has completely taken over. When the correlation
length is finite, the dynamics can still be treated well by a generalized mean-field approach,
known as cluster approximation [7, 94, 95], as long as one chooses clusters that are larger
than the typical domains. Here however we shall discuss the limit of infinitely low mutation
rates µ = µl + µr, where the typical size of the domains becomes infinitely large. The above
comparison with the one-dimensional Ising model suggests that at µ = 0, corresponding to
zero temperature, the system displays critical behavior with the correlation length going to
infinity. In the following we show that this is indeed corroborated by scaling arguments as
well as stochastic simulations.

2.3.1 Mutations to the Predator

First, let us restrict ourselves to the regime of a vanishing mutation rate to the prey, µr = 0,
and small mutation rates to the predator, µl � 1. The analysis of the limit of small mutation
rates for the opposite case (only mutation to the prey) and for the general case (both types
of mutations allowed) is quite similar, yet slightly more complicated, and for this reason it
is postponed to the end of this section. Since the interface density is low, the single most
probable mutation event occurs on two adjacent vacant sites

∅∅ µl−−→ LR . (2.8)

In the particle picture this is achieved by, e.g., AAA
µl−−→ACA. Notice that the mutation

induces a predator in a—typically large—domain of prey, where it can spread subsequently.
Hence the incidence has strong impact on the system. In the dual picture this is expressed
in the fact that the pair LR, unlike RL, can separate, e.g.

∅∅∅∅ µl−−→∅LR∅ 1−→ L∅R∅ 1−→ L∅∅R −→ . . . (2.9)

Consider what happens next to the, say, R interface. It moves to the right from site to site
with rate 1, until it meets and reacts with some other interface. For example, from the right
a left moving interface L could approach and they collide,

R∅∅L 1−→∅R∅L 1−→∅RL∅ 2−→∅∅∅∅ . (2.10)

It is crucial to note that diffusion becomes negligible when the particles are far apart, since
their directional motion is described by a Poisson process, whose mean square displacement
σ(t) =

√
t becomes small relative to the average distance 〈x(t)〉 = t it has traveled. Therefore,

in our regime one should think of the particles as moving ballistically.

For our scaling argument, we partition the lattice in cells of size b and consider the dynamics
from this coarse grained point of view. The size of the cells defines the new unit of space,
which corresponds to rescaling space as

x′ = b−1x . (2.11)
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Empty cells become the new vacancies ∅, cells that contain exactly one interface the new
Rs or Ls, respectively. Since the lattice is supposed to be sparsely populated, we disregard
the unlikely case of cells containing more than one interface. A µl mutation now occurs with
b-fold rate, since the whole cell is at disposal. We rescale time t by a factor of b,

t′ = b−1t , (2.12)

so that the velocity of the (ballistic) interfaces is unchanged. This implies a rescaled rate

µ′l = b2µl , (2.13)

one factor b for rescaling space and another one for rescaling time. The density evidently
becomes b-fold,

n(µ′l) = bn(µl) , (2.14)

and thus, the interface density will behave as

n = A
√
µl , (2.15)

for some factor A , in the limit of an infinitely large lattice. This result is indeed validated
by our numerical simulations (Figure 2.3).

At this point, we remark that for the symmetric case with equal cyclic dominance rates
rA = rB = rC = 1 (defined in Eq. (2.1)), the stationary state can be solved exactly, leading
to A =

√
2. The calculation is deferred to the next section. Here we only illustrate the

underlying physics by the following heuristic argument. For symmetric rates, reactions of the
type RR→ ∅L are negligible, because it takes much longer for an interface to catch up with
an interface of the same kind than to collide with a different kind of interface, which it can
meet halfway, as it were. Hence P (RR) = 0, where P (RR) stands for the probability of finding
two interfaces next to each other. We suppose that otherwise the system is uncorrelated, in
particular P (RL) = P (R)P (L). Then, up to terms of the order µl and due to the symmetry
between R and L one has the master equation,

Ṗ (R) ≈ µlP (∅∅)− 2P (RL) ≈ µl − 2 [P (R)]2 . (2.16)

Solving for the stationary value indeed yields

A =
√

2 . (2.17)

2.3.2 First Correction for Mutations to the Predator

To motivate the first correction to the result n =
√

2µl, notice that two interfaces of the same
kind move diffusively relative to each other, with diffusion constant 1. The diffusional length
scale associated to the average survival time 1/n is 1/

√
n � 1/n (for small mutation rates).

Suppose an R is created x sites to the left of another R, with no other interface (R or L)
between them. The probability Ppair(x, t) that the pair of R interfaces is intact after a time

t will just be the probability
∫ x

2
√
t

0 ds e−s
2

(see, e.g., [96]) that they have not yet interacted
“diffusively” (by the reaction RR → ∅L), times the probability that the right R has not
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Figure 2.3: Theoretical and empirical (by stochastic simulations) result for the interface density when
there are mutations to the respective predator only (µr = 0). For low mutation rates
we found it convenient to plot the rescaled interface density n/

√
µl, whereas for larger

mutation rates (µl > 1) we preferred to plot the actual interface density. These two parts
of the plot are separated by a line. The results presented here are for the symmetric
case with equal cyclic dominance rates rA = rB = rC = 1, where the rescaled interface

density n(µl, µr = 0)/
√
µl approaches the law

√
2 − (3/4)23/4µ

1/4
l (solid red line) as µl

becomes small. For low mutation rates this formula is indeed in excellent agreement with
the numerical data (black circles, the estimated standard deviation is smaller than the
size of the circles). As the mutation rate increases, this approximation becomes worse and
the curve is described best by the mean-field result, Eq. (2.6) (dotted blue line).

yet collided with an L (RL→ ∅∅), which is given by an exponential distribution exp (−nt).
For the latter factor we assume that the system is uncorrelated, so that in every time step
the right R collides with an L with probability n. The probability that an R is created at a
distance x to the left of another R is n/2 when x� 1/n. Upon integrating over space x and
time t one finds that the probability of an R interacting diffusively with an R on its right is√
n/2. If we simply subtract these “failed attempts” of creating it from the mutation rate

µl → µl(1−
√
n/2), and multiply it with the average time of survival 1/n of an interface, we

obtain the density n/2 of the R interfaces,

µl

(
1−
√
n

2

)
· 1

n
=
n

2
, (2.18)

or, solving this for the interface density n up to order µl,

n ≈
√

2µl

(
1−
√
n

4

)
≈
√

2µl −
23/4

4
µ

3/4
l . (2.19)

More careful analysis, as presented in Appendix B, yields an even larger correction

n =
√

2µl −
3

4
23/4µ

3/4
l , (2.20)
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Figure 2.4: Theoretical and empirical (by stochastic simulations) result for the interface density when
there are mutations to the respective prey only (µl = 0). For low mutation rates µr, the
rescaled interface density n/µr is plotted, whereas for larger rates we show the absolute
density n. We consider symmetric cyclic dominance rates rA = rB = rC = 1, where
our analysis shows that the rescaled density converges to n(µl = 0, µr)/µr = 2 + 3

√
µr/2

(solid red line). This is confirmed by the numerical data (black circles, the estimated
standard deviation is smaller than the size of the circles). The mean-field result (dotted
dark blue line) and the generalized mean-field result for pairs of two adjacent sites (dotted
turquoise line) is also shown. Notice that this pair approximation already predicts the
correct scaling n ∼ µr for small µr, in contrast to the original mean-field result, which
wrongly gives n ∼ √µr. The reason for this is that for an almost vacant lattice the
mutations usually create a pair RL which is unstable. To capture this effect one needs to
consider pairs of sites or larger clusters, while in the mean-field calculation one considers
single, uncorrelated sites. There is only a small regime where none of the approximations
describes the results of the simulations well.

up to terms of order 1 and higher in µl. The increased amplitude may appear counterintuitive.
One should think that the analytic result for the interface density would become larger when
one adds the contribution of the interfaces that are undergoing the diffusional interaction.
After all, they do not collide immediately and react RR → ∅L (or LL → R∅), but they do
so only after some time, which should give a positive contribution to the interface density.
However, for truly ballistic interfaces, where diffusional interaction is ruled out, the Rs which
are created within a short distance x to the left of another R have a life span of about 2/n,
twice as long as the life span of an arbitrary interface, because they are shielded by the R
to their right. Therefore, they are particularly “valuable”. If diffusion is turned on, many of
them (with an initial distance x smaller or comparable to the diffusional length scale 1/

√
n)

are taken out of the system by diffusive interaction, RR → ∅L. Their destruction implies
a relatively strong negative contribution to the interface density n, which is not taken into
account in Eq. (2.19). Our improved result, Eq. (2.20), derived in Appendix B, is in agreement
with the numerics (Figure 2.3).
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2.3.3 Mutations to the Prey

Let us proceed to discuss the case µl = 0 and µr � 1. Since the system is coarse grained,
the major part of the mutations will result in one prey in the middle of large domains of
predators, for instance AAA

µr−−→ABA. Evidently, this configuration is rather unstable and
one expects that in most cases the cyclic dominance reactions reestablish the original state,
that is B turns again to A. In the dual picture, this translates into the creation of a pair RL,
which in most cases annihilates quickly,

∅∅ µr−−→RL
2−→∅∅ . (2.21)

Owing to the longevity of its products, one also needs to take into account that a second
mutation may occur,

∅∅ µr−−→RL
µr−−→LR , (2.22)

effectively leading to

∅∅
µ2r/2−−−−→LR . (2.23)

Just as for mutations to the predator, a pair LR is produced, but this time the reaction is
mediated by two µr mutations instead of one µl mutation. In the particle picture this means
that the prey B in a domain of A may be turned into the predator C by a second mutation.
The former, reaction (2.21), implies a contribution of µr to the interface density. The latter,
reaction (2.22), leads to the same dynamics as in the µl case and to another term of magnitude√

2 (µ2
r/2) = µr to the interface density n. Therefore, to lowest order n = 2µr.

For the leading correction, in addition to reactions of the type RR→ ∅L, one needs to treat
instances of mutations when there is exactly one interface around,

R∅ µr−−→ LL , ∅L µr−−→RR . (2.24)

In the particle picture, this corresponds to, e.g., ABB
µr−−→ACB, and AAC

µr−−→ABC, re-
spectively. Similar reactions can occur, when there is a mutation nearby an interface, for
instance,

R∅∅∅ µr−−→R∅RL 1−→∅RRL 1−→∅∅LL . (2.25)

An analysis analogous to the pure µl case yields an overall positive contribution (see Ap-
pendix B)

n = 2µr +
3

2
µ3/2
r , (2.26)

up to order 2 and higher in µr. Figure 2.4 confirms this behavior. Again mean-field is an
excellent approximation for large mutation rates. But as mutations become less frequent,
Eq. (2.6) provides a gross over-estimate of the interface density, because the approach cannot
keep track of the large amount of pairs of RL that annihilate quickly. This can be amended
by a generalized mean-field approach [7, 94, 95], where the master equation for clusters of N
adjacent sites is considered. A truncation in the hierarchy of probability distributions yields
a closed set of differential equations, which can be solved numerically. For clusters of size 2
we already retrieve the right scaling law n ∼ µr (µr � 1).

Again, we explain how a scaling analysis helps us understand the behavior of the density
n(µr, µl = 0). This will also extend our results to the more general processes of the next
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subsection. We partition the lattice in cells of size b. Then the probability for a cell to contain
a pair RL, which are created and destroyed according to reaction (2.21), becomes µ′r = bµr,
while the rate of creating a pair LR out of RL (2.22) evidently remains µr. Again, we rescale
time, t′ = b−1t, in order that the velocity of R and L, measured in the average number of
cells they traverse in unit time, stays one. Now the right-hand side of reaction (2.22) occurs
at a rate bµr, while the probability of finding a pair LR remains bµr. This implies

µ′r = bµr , n(µ′r) = bn(µr) , (2.27)

whereby we conclude

n = Bµr , (2.28)

for some factor B. Of course, from Eq. (2.26) we already know that for mutations to the
prey B = 2.

2.3.4 The General Case

We have seen in the previous subsection that the mutations to the prey effectively create a
pair LR with rate µ2

r/2, whereas for mutations to the predator this rate is simply µl. It poses
no additional difficulties to introduces both mutations at the same time. The effective rate
of the creation of LR then becomes

µeff = µl +
µ2
r

2
, (2.29)

and to lowest order

n =
√

2µeff + µr . (2.30)

The additional term µr stems from the unstable pairs RL, see reactions (2.21).

Up to now we have restricted to symmetric cyclic dominance rates rA = rB = rC = 1 (defined
in Eq. (2.1)), where reactions governed by diffusion, RR → ∅L and LL → R∅, give rise to
the correction terms in Eqs. (2.20,2.26) which do not agree with our scaling arguments. Now
consider what happens if rA, rB, rC are not identical, for instance suppose that rA > rB = rC .
The dual picture then only gives a complete description if one distinguishes different types
of right moving and of left moving interfaces. For the right moving interfaces we have the
three cases RAB, RBC and RCA, where the index stands for the corresponding sequence in
the particle picture. Compared to RBC and RCA the interface RAB moves faster. When the
interface density is low, the stochastic effects in the motion are negligible and their relative
motion does not have a diffusive character but is best described as ballistic. Thus, an RAB
escapes an RCA to its left with velocity rA− rB and is on collision course with an RBC to its
right with velocity rA − rC . Of course the relative motion of the right moving and the left
moving interfaces is also approximately ballistic.

After rescaling space by a factor b−1, by subsuming b adjacent sites to one cell, and likewise
rescaling time by b−1, the relative velocities remain the same. By the same arguments as
for the symmetric case, the rates which cause the creation of a pair LR rescale as µ′l =
b2µl and µ′r = bµr. For the asymmetric case, however, we need to take into account two
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additional mechanisms which increase the number of interfaces. Firstly, reactions where a
pair of interfaces moving in the same direction are created from one interface, for instance,

∅LCB
µ̂r−−→RCARAB , (2.31)

with rate µ̂r = µr. When rA > rB = rC , there is a finite probability that the RAB escapes
the left RCA. For a cell of size b, with probability b−1 the mutation takes place at the right
spot in order to create the two right moving interfaces. On the other hand there is a factor b
for the increase in the density of the LCB interfaces and another factor b for the rescaling of
time. Thus, we have the rescaling

µ̂′r = bµ̂r , (2.32)

in agreement with a b-fold mutation rate µ′r = bµr to the prey. (In contrast, for mutations to
the predator, reactions of the form LCB∅ → RCARAB with rate µl are negligible since they
only scale as bµl, whereas the rate for the creation of LR pairs scales as b2µl.)

The second mechanism which gives a relevant contribution to the production of interfaces is
related to the unstable pairs RL, which are created by the µr mutation and in most cases
are subject to pair annihilation RL→ ∅∅ shortly after their creation. In every step an LCB
moves to the left, with the small probability µr/(2rC) =: µ̃r it collides with a pair RCALAC ,
triggering the reaction RCALACLCB → ∅RCARAB. Since RAB moves faster to the right than
RBA, with a finite probability it escapes. Thus, effectively this mechanism gives rise to the
production of a pair RCARAB from an LCB interface (and correspondingly for left and right
interchanged). Under our coarse graining, because of the rescaling of time, t′ = b−1t, the rate
with which a pair RCARAB is effectively produced from an LAB becomes b-fold,

µ̃′r = bµ̃r . (2.33)

Since µ̃r = µr
2rC

and r′C = rC (the velocities of the interfaces remain the same) this is again in
agreement to a b-fold rate µ′r = bµr to the prey.

In summary, under the coarse graining, mutations leading to the pairs LR, LL and RR all
effectively obey the scaling µ′l = b2µl, and µ′r = bµr, and the interface density behaves as
n′ = bn. We thus conclude that for the general model, the interface density in the low density
regime must behave as

n(µl, µr) =
√
µl φ

(
µr√
µl

)
, (2.34)

for some scaling function φ, which depends on the rates rA, rB and rC . This is corroborated by
the results of the stochastic simulations, c.f. Figure 2.5. For symmetric rates rA = rB = rC = 1
the scaling function is simply given by φ(x) =

√
2 + x2 +x. As we will discuss in the following

section, the reason why we can obtain this exact analytic expression is that the system relaxes
to an equilibrium state. Moreover, we will argue that, in contrast, for asymmetric rates,
the stationary state is far from equilibrium, and we therefore cannot apply the tools from
equilibrium physics to solve it and to obtain an analytic expression for the scaling function φ.
There is one exception to this, however: In the limit of rA →∞, with fixed rB = rC = 1, one
obtains again an equilibrium stationary state. The exact calculations for this limiting case,
presented in Subsection 2.4.3, yield the scaling function φ(0) → 1. Figure 2.5 indicates that
even for rA = 5 this is a good approximation.
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Figure 2.5: Collapse of the data for the rescaled interface density n/
√
µl onto a scaling function

φ(µr/
√
µl). In certain limiting cases, in particular for symmetric rates, rA = rB = rC , one

can find an analytic expression for the scaling function. However, our scaling arguments
should also hold for asymmetric rates rA, rB , rC . This is indeed corroborated by our
simulation results. The data plotted here is for the cyclic dominance rates rA = 5, rB =
rC = 1. The data points are µl = 2−10(�), 2−11(◦), 2−12(4), 2−13(�).

2.4 The Low Density Limit and Detailed Balance

As shown in the previous section, when both mutation rates are comparably small, µl ≈ µr �
1, then the effect of the mutations to the prey with rate µr is negligible. Let us therefore
restrict to mutations to the predator µl � 1, µr = 0 in the following. By a heuristic approach
we have argued that when the mutation rate µl becomes very small, the interface density
behaves as n =

√
2µl. In this section we provide a rigorous derivation of the probability

distribution of the number of interfaces in a system of finite size, and we indeed recover
n =

√
2µl for large systems. For the time being, we assume perfect symmetry between the

species, i.e. the cyclic dominance rates, defined in (2.1), are equal, rA = rB = rC = v. We
will relax this condition later in this section.

Since the mutation rate is assumed to be very low, most lattice sites are vacant and the inter-
faces, on average, travel long distances before they collide with another interface. Therefore
we may neglect the diffusional motion (whose standard deviation compared to the distance
traveled becomes small) and regard the interfaces as ballistic, i.e. traveling at constant ve-
locity in continuous (one-dimensional) space. Thus the interfaces L,R move along a line of
length M (which denotes the system size) at speed −v, +v respectively. As usual we consider
toroid boundary conditions.

The only reactions which are relevant for very low mutation rates are R and L annihilating
on impact (reaction (1) in Figure 2.1) and pairs LR of interfaces being created with rate µl on
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Figure 2.6: Illustration of the dynamics for very low mutation rates µl and low interface densities n,
when the rates rA = rB = rC are equal, so that there is symmetry between the three
species, rock, paper, and scissors. Initially, distributed on the line ]0,M ], there are three
right moving interfaces at x1, x3 and x4, with velocity v, and one left moving interface at
x2, with velocity −v. Compared to the long distances ∼ 1/n which the interfaces travel
on average until they collide with another interfaces, their deviation from the linear path
by diffusional motion can be neglected, since this deviation is only of the order

√
1/n. We

can therefore describe the interfaces as ballistic particles which annihilate when they meet
and are created in pairs on a random position x ∈]0,M ] with mutation rate µl. Notice the
time reversal symmetry: If we let time run backwards the creation of pairs of interfaces
simply turns to pair annihilation and vice versa. Reactions which would breach the time
reversal symmetry, such as RR→ ∅L (LL→ R∅), can be ruled out, because for ballistic
motion a right (left) moving interface cannot catch up with another right (left) moving
interface.

a random point in the interval ]0,M ] (reaction (2) in Figure 2.1). Of course, under suitable
rescaling (e.g. time t→ c1t and space x→ c2x, with c1 = v

M and c2 = 1
M ) one can eliminate

all but one of the three parameters v,M, µl. However, they can help us keep track of the
dimensions. [v] = m

s , [M ] = m, [µl] = 1
ms , where “meter” m and second “s” stand for units

of space and time, respectively. Notice the dimensionless product

µlM
2

v
. (2.35)

For a unique stationary state, dimensionless quantities, such as the probability distribution of
the number of interfaces in the system, can only depend on this product. As an application, we
employ dimensional analysis to recover the scaling law of the interface density n for large M :
The dimension of the density is [n] = 1

m . In the limit of infinitely large system size, M →∞,
we only dispose of v and µl to fix the dimension. Therefore, the only possible solution is

that n ∼
√

µl
v . (Alternatively we can argue that the dimensionless quantity n/

√
µl
v depends
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only on the ratio (2.35), n/
√

µl
v = f

(
µlM

2

v

)
, some function f which attains a finite value as

M →∞.)

Now, the crucial observation is that the two reactions, illustrated in Figure 2.1, of pair
annihilation (1) and pair creation (2) are just the time reversals of each. Thus, we expect
that, as is the case for most physical systems, the process is invariant under time reversal,
once it has reached its stationary state and it fulfills the detailed balance principle. This
principle roughly states that every transition is balanced by its reversed transition [91, 97],
in which case one also speaks of equilibrium. Indeed, as we will rigorously prove below, there
is stationary state that obeys these equilibrium conditions, despite the fact that RPS is often
given as a paradigmatic example of a non-equilibrium process. Moreover, we will see that
the system obeys a Boltzmann statistics with an energy that is a function of the number of
interfaces (for large systems sizes M this energy becomes approximately proportional to the
number of interfaces).

2.4.1 Exact Solution to the Stationary State

Since the interfaces are created and destroyed in pairs, the difference d in the number m+d of
left moving interfaces L and the number m of right moving interfaces R is conserved. Without
restriction of generality, let us assume that there are more Ls than Rs, i.e. d ≥ 0. We can
write the configuration as the 2m+ d-tuple

(z1, . . . , z2m+d) = z , (2.36)

with elements that can be expressed in terms of complex numbers

zk = xk + iyk = (xk, yk) , xk ∈]0,M ], yk ∈ {v,−v} . (2.37)

Here the coordinate xk ∈]0,M ] specifies the position on the line, and yk ∈ {v,−v} specifies
the velocity of the interface (+v for R and −v for L). (Complex numbers are convenient,
because under time reversal zk turns to its complex conjugate z?k = xk − iyk = (xk,−yk)).
We demand that the positions xk be ordered,

x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ xn . (2.38)

An equal sign, xk = xk+1, either means that there is a pair LR, which has just been created
by a mutation and which then will move apart, in which case yk = −v and yk+1 = v; or it
means that we have a pair RL which will be annihilated in the next instant, in which case
yk = v and yk+1 = −v. Let us provisionally rule out configurations with LR pairs. Then the
probability density evolves as,

∂tρm,m+d(z)=−
2m+d∑
k=1

∂xkρm,m+d(z)yk − µlMρm,m+d(z) +

+ 2v

∫
dx ρm+1,m+d+1(z ∪ {x+ iv, x− iv}) . (2.39)

Here ρm,m+d(z) denotes the probability density of a configuration z that has m right moving
and m+ d left moving interfaces, and the union z∪{x+ iv, x− iv} stands for the 2m+ d+ 2-
tupel which contains the elements of z together with the two elements x + iv, and x − iv,
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for the pair RL. These elements must be reordered in accord with the relation (2.38). The
first term on the right hand side of Eq. (2.39) causes the ballistic motion of the interfaces.
The second term describes a flow away from the configuration z due to mutations. The third,
positive term accounts for the annihilation of a pair RL for configurations z∪ x+ iv ∪ x− iv
which are, up to this pair, identical to z.

Because of the relation (2.38), there arises a subtlety concerning the spatial derivative ∂xk , in
the case that we have a pair LR. It is essential to keep in mind that the derivative is defined
as the limiting process

∂xkρm,m+d(z)|zk=xk+iyk
= lim

ε→0

ρm,m+d(z)|zk=xk+iyk
− ρm,m+d(z)|zk=xk−ykε+iyk
|ỹ|ε , (2.40)

i.e. the derivative is in the opposite direction of the motion of the particles. Thus it is
well-defined if we have a RL pair, xk = xk+1, with yk = v, yk+1 = −v, since the ordering
xk ≤ xk+1 is conserved. Below, we will also have to deal with LR pairs, xk = xk+1, with
yk = −v, yk+1 = v. In this case, due to the ordering (2.38), the probability density for a
configuration with xk > xk+1 vanishes by definition. Thus, the derivative in space typically
gives rise to a delta function.

For the solution of Eq. (2.39), our ansatz is that the probability density only depends on the
numbers m and m+ d of R and L interfaces, respectively, i.e.

ρm,m+d(z) ≡ ρm,m+d . (2.41)

The ballistic term (involving the spatial derivatives ∂xk) then trivially cancels, while the third
term gives 2vMρ2m+d+2. If this is to cancel with the second term we must have

ρm+1,m+d+1 =
µl
2v
ρm,m+d =⇒ ρm,m+d =

(µl
2v

)m
ρ0,d . (2.42)

Therefore, if we attribute to the creation of a pair LR an energy difference of ∆E = ln(2v/µl),
we obtain the Boltzmann distribution ρm,m+d = e−m∆Eρ0,d.

To obtain the probability, pm,m+d that there are m right moving interfaces and m + d left
moving interfaces, we integrate over all configurations,

pm,m+d =
1

m!(m+ d)!

(
µlM

2

2v

)m
p0,d , (2.43)

with the “partition function”

p−1
0,d =

∞∑
m=0

1

m!(m+ d)!

(
µlM

2

2v

)m
. (2.44)

As one should expect, the dimensionless probabilities pm,m+d are functions of the aforemen-

tioned dimensionless quantity µlM
2

v . In these equations the factorials m! and (m+d)! account
for the fact that the m right moving interfaces R are indistinguishable and so are m+ d left
moving interfaces L. Eq. (2.44) guarantees the normalization of the probability distribution
pm,m+d for a fixed difference d. Incidentally, the right hand side of Eq. (2.44) may be expressed

as a Bessel function of the first kind, with an imaginary argument, p−1
0,d = Jα

(
iµlM

2

v

)
.
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From the probability distribution pm,m+d, c.f. Eqs. (2.43,2.44), we can now calculate the
expectation value of the interface density n. Without loss of generality, let us set the velocity
of the interfaces equal to one, v = 1, in the following calculations. We then find that the
interface density is given by

n =
1

M

∞∑
k=1

2m+ d

m!(m+ d)!

(
µlM

2

2

)m
p−1

0,d =
2

M
µl∂µl

[ ∞∑
k=1

1

m!(m+ d)!

(
µlM

2

2

)m]
p−1

0,d +
d

M
=

=
2µl
M

∂µl ln
(
p−1

0,d

)
+

d

M
. (2.45)

In the limit of large system size M , only large numbers m of R interfaces need to be considered
and we can employ the Stirling formula m! ≈

(
m
e

)m ≈ (m+ d)! Thus,

p−1
0,d =

∞∑
m=0

1

m!(m+ d)!

(
µlM

2

2

)m
≈
∞∑
m=0

1

(m/e)m · (m/e)m
(
µlM

2

2

)m
≈

≈
∞∑
m=0

1

(2m)!

(√
2µlM2

)m
≈

∞∑
m′=0

1

m′!

(√
2µlM2

)m′
= exp

(
2µlM

2
)
. (2.46)

For large system sizes M , this yields

n =
2µl
M

∂µl
√

2µlM2 =
√

2µl . (2.47)

We thus rigorously recover a central result of the previous section, which before was only
derived by heuristic means.

To complete the proof that in Section 2.3 we have actually guessed the correct stationary
probability distribution, we need to consider also the case when there is a pair LR. Suppose
that zk = xk − iv and zk+1 = xk+1 + iv, then we now allow the two interfaces to share the
same position xk = xk+1. These configurations were ruled out in the derivation of Eq. (2.39).
The general differential equation determining the time evolution of the probability density
reads

∂tρm,m+d(z)=−
2m+d∑
k=1

∂xkρm,m+d(z)yk − µlMρm,m+d(z) + (2.48)

+ 2v

∫
dx ρm+1,m+d+1(z ∪ {x+ iv, x− iv})−

+
2m+d−1∑
k=1

µlδ(xk − xk+1)δyk,−vδyk+1,v ρm−1,m−1+d(z\{zk, zk+1}) , (2.49)

which is identical to Eq. (2.39) up to the additional last term that describes the pair creation.
Some readers may find it more intuitive to express this term as

2m+d−1∑
k=1

µl
∑

ỹ∈{−v,v}2m+d

∫
d2m+dx̃ δ(zk − z?k)δ(z− z̃ ∪ {zk, zk+1}) ρm−1,m−1+d(z̃) . (2.50)
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Now, xk+1 cannot be smaller than xk because these coordinates are ordered (see relation (2.38)),
i.e. the probability density ρm,m+d(z) vanishes when xk > xk+1. Therefore, according to our
definition of the derivatives ∂xk , Eq. (2.40), the first term in Eq. (2.49) gives rise to a delta
function. Explicitly, if zk = x− iv and zk+1 = x+ iv, then

− ∂xkρm,m+d(z)yk − ∂xk+1
ρm,m+d(z)yk+1 = −2v δ(xk − xk+1)δyk,−v δyk,+v ρm,m+d(z) . (2.51)

For our guess for the stationary distribution, with constant ρm,m+d(z) ≡ ρm,m+d and ρm,m+d =
µl
2vρm−1,m−1+d (see Eq. (2.42)), this evidently cancels with the last term in Eq. (2.49). Fur-
thermore, the second and third term of Eq. (2.49) cancel each other for the same reason as
before, which completes the proof that Eq. (2.42) is a stationary solution of our process.

2.4.2 Proof of Detailed Balance

We have not yet exploited the principle of detailed balance, apart from arguing that it should
hold because of the time reversal symmetry between pair annihilation and pair creation (re-
actions (1) and (2) in Figure 2.1), and claiming that it indicates a relatively simple stationary
state. Let us look more carefully at this principle, show that it is actually fulfilled and thus
again prove that Eq. (2.42) gives a stationary solution.

Detailed balance concerns transitions between two configurations. Consider, for instance,
a gas whose configuration at time t is specified by the coordinates x = (x1, . . . , xn) of its
particles and their velocities (y1, . . . , yn). If at a later instance in time t + ∆t the system is
in the configuration x′ and y′ (for the position and velocity coordinates, respectively) one
speaks of a transition

(x,y, t)→ (x′,y′, t+ ∆t) , (2.52)

between these two configurations. Its reversed transition is defined as

(x′,−y′, t)→ (x,−y, t+ ∆t) , (2.53)

where in addition to interchanging the primed and unprimed coordinates, one changes the
signs of the velocities. One speaks of detailed balance when, in the stationary state, the joint
probabilities of these transitions are equal,

ρ(x′,y′, t+ ∆t; x,y, t) = ρ(x,−y, t+ ∆t; x′,−y′, t) . (2.54)

For a Markov process, which has no memory and whose time evolution therefore only depends
on the current state of the system but not on the past (as is the case for our model), this can
be expressed as

p(x′,y′, t+ ∆t|x,y, t)ρ(x,y, t) = p(x,−y, t+ ∆t|x′,−y′, t)ρ(x′,−y′, t) , (2.55)

where p(. . . | . . .) denotes the conditional probability for the transition. (Of course, in the
stationary state, these quantities are independent of the time t.) It readily follows that for
two subsequent transitions

p(x′′,y′′, t+ 2∆t|x′,y′, t+ ∆t)p(x′,y′,∆t|x,y, t)ρ(x,y, t) =



2.4 The Low Density Limit and Detailed Balance 29

= p(x,−y, t+ 2∆t|x′,−y′, t+ ∆t)p(x′,−y′, t+ ∆t|x′′,−y′′, t)ρ(x′′,−y′′, t) , (2.56)

and so on for longer chains of transitions. Therefore, it is enough to verify detailed balance
for infinitesimally small time intervals ∆t.

Let us return to the treatment of our RPS model. The ballistic part of the time evolution
is almost trivial. Consider the configurations z = (x,y) and z∗ = (x,−y). The probabil-
ity flow due to the ballistic motion in the direction y/v and −y/v for z and z?, respec-
tively, is evidently equal to 2vρm,m+d and 2vρm+d,m, for constant ρm,m+d(z) ≡ ρm,m+d and
ρm+d,m(z?) = ρm,m+d. Thus, in order that the probability flow in both directions is balanced
we have to demand that

ρm,m+d = ρm+d,m , (2.57)

i.e. there is a symmetry between the configurations with m Rs and m+d Ls and the configu-
rations with m+ d Rs and m Ls. In particular, this is automatically fulfilled if the difference
d between the number of right and left moving interfaces vanishes, d = 0. Furthermore, since
the annihilation of two interfaces is governed by ballistic motion as well, we need to attribute
a probability flow of 2vρm,m+d(z) to the transition from the configuration z ∪ x+ iv ∪ x− iv
(with a pair RL that is about to annihilate) to the configuration z. This must be balanced
with the reversed transition, where due to a mutation a pair LR is added at position x to the
configuration z?. This gives a probability flow of µlρm−1,m−1+d from z? to z?∪x− iv∪x+ iv.
Thus, detailed balance is fulfilled if 2vρm,m+d(z) = µlρm−1,m−1+d and we recover Eq. (2.42).

In Figure 2.7 the detailed balance principle is illustrated for a discretized version of our
process, so that we can work with probabilities p of configuration z, rather than probability
densities ρ. We consider a model where the interfaces are again on a lattice, defined as follows:
With a rate v/a the R interfaces collectively move the right, and with the same rate v/a the L
interfaces collectively move to the left, by one lattice site. Here a denotes the lattice spacing.
This dynamics rules out reactions of the form RR→ ∅L or LL→ R∅, where two interfaces
of the same type react, and which would breach detailed balance for lack of a corresponding
time reversed transition. When two interfaces, R and L, meet on same site, the motion of
all interfaces is halted until this pair RL has annihilated, which occurs with rate 2v/a. We
remark that we are particularly interested in the limit of small lattice spacings, a→ 0, where
this stop of the motion is very rare and therefore has little effect on the average velocity of
the interfaces. In the—for small lattice spacing a unlikely—case of several pairs RL, each is
subject to pair annihilation independently with rate 2v/a. By a mutation a pair LR is created
at a certain site with rate aµl. (Of course, as opposed to pairs RL, they do not annihilate
each other.)

Let us denote by pm,m+d(z) = psm,m+d the stationary probability of a particular configuration
in this lattice model. The collective motion of, say, the right moving interfaces R implies
a probability flow of v

a p
s
m,m+d from the configuration z = (x,y) to the configuration z′ =

(x + ∆x,y), where ∆x = ay/v if yk = v (i.e. if the kth interface is right moving) and ∆x = 0
if yk = −v (i.e. if the kth interface is left moving). For pair annihilation, we have a probability
flow of 2v

a p
s
m+1,m+1+d from the configuration z∪x+ iv∪x− iv to the configuration z without

the annihilated pair. Furthermore, there is a flow of aµlp
s
m,m+d from some configuration z̃

to a configuration z̃ ∪ x − iv ∪ x + iv with an additional pair LR at a particular position
x. These two transitions for pair annihilation and pair creation balance on condition that
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2vpsm+1,m+1+d = a2µlp
s
m,m+d. When we let the lattice spacing go to zero, a → 0, we recover

Eq. (2.42) for the stationary probability density of the continuum model.

2.4.3 Violation of Detailed Balance for Asymmetric Cyclic Dominance Rates

Up to now we have restricted to perfect symmetry between the three species, with identical
reaction rates rA = rB = rC , c.f (2.1), such that the velocities of the different interfaces
were all equal. In the limit of very low interface densities, we found that the system displays
a stationary state that is in equilibrium, by explicitly verifying that the detailed balance
principle is fulfilled. Let us also consider this limit of low interface densities and low mutation
rates, where the motion of the interfaces can be approximated as ballistic, for general reaction
rates rA, rB, and rC . We find for this asymmetric case that, in contrast to the identical rates
rA = rB = rC , detailed balance cannot hold. To see this, suppose that rA > rB, so that
the right moving interface between an A and a B domain, denoted RAB, moves with higher
velocity than the interface RBC between the B and C domain. Then the reaction of the
two interfaces, RAB + RBC = LAC (where L is the left moving interface RBC between an
A and a C domain), is not governed by diffusion as for the symmetric case but by ballistic
motion. Therefore, it must not be neglected in our limit of low densities. Since there is
no corresponding reverse reaction, where the LAB interface would turn into an RAB and an
RBC , this violates detailed balance, and we cannot expect a simple stationary state as in the
previous section. There is a notable exception to this, however, when the difference in the
speed of the reactions becomes large, as is discussed now.

2.4.4 Time Scale Separation and Recovery of Detailed Balance

In the laboratory experiments by Kerr et al., described in Section 1.1, there is a strain of
bacteria which produces a toxin and thus kills a sensitive strain on a relatively short time
scale compared to the time scale of the interaction of the resistant strain with the toxic and
the sensitive strain. Here, we study the implication of a separation between the time scales
of the “toxic” reaction rate and the other two cyclic dominance reaction rates.

Let rA = rB = 1 and rC = ∞. In Figure 2.8 the ensuing dynamics is illustrated in a two
dimensional space-time plot. Strikingly, when a mutation in a domain of A occurs, say

BAABBAAAAABBCCB
5µl−−−→BAABBACAAABBCCB , (2.58)

with rate µl, then the other sites are taken over instantaneously,

BAABBACAAABBCCB
∞−−→BAABBCCCCCBBCCB , (2.59)

with infinite rate. Thus, the combined, effective reaction is

BAABBAAAAABBCCB
5µl−−−→BAABBCCCCCBBCCB . (2.60)

Since we want to study the detailed balance principle for this process, it is necessary to
define reversed transitions. In order to uniquely describe a configuration, we must distinguish
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x , y

x , − y

Figure 2.7: Illustration of the detailed balance principle for a discretized version of the RPS model
with mutations. Exemplarily, the picture is centered around a configuration z = (x,y)
with no pairs, LR or RL, which occupy one site. x = (x1, xn, . . .), where xk are multiples
of the lattice spacing a, denotes the positions of the interfaces and y = (y1, y2, . . .), with
yk ∈ {−v, v} and velocity v, determines whether they are left (L) of right (R) moving.
Of course, not all possible transitions are shown, for instance, by a further mutation with
rate aµl, the configuration z′ = (x′,y′) with one pair LR would go to a z′′ = (x′′,y′′)
with two pairs LR. As described in the text, the R interfaces can move collectively to
the right, with rate v/a, while the L interfaces remain at rest. Thus, there is a transition
from z = (x,y) to z∆ = (x + ∆x,y), with ∆x = ay/v if yk = v, and ∆x = 0 if yk = −v.
If instead the L interfaces move collectively, then there is a transition from z = (x,y) to
z∆̃ = (x + ∆̃x,y), where ∆̃x = 0 if yk = v, and ∆̃x = ay/v if yk = −v. For the sake of a

neat illustration, we only show transitions by ±∆x, and neglect those by ±∆̃x. When one
or several pairs RL meet, the collective motion to the right and to the left is halted until
the pairs are annihilated. The pair annihilation occurs with rate 2v/a. On the other hand
a pair RL is created on some site with rate aµl, effecting for instance the transition between
z = (x,y) and z′ = (x′,y′). It is therefore easily seen that every transition is balanced
by a reversed transition when psm+d,m = psm,m+d and 2vpsm+1,m+1+d = a2µlp

s
m,m+d, where

psm,m+d denotes the probability for a configuration withmRs andm+d Ls in the stationary
state. In the limit a→ 0, we recover the condition ρm+1,m+d+1 = µl

2vρm,m+d, c.f. Eq. (2.42)
for the probability density ρ. Moreover, it is readily verified that the net flow for each
state evidently vanishes, as it should be for a stationary distribution. Thus, we expect
that after an initial transition time the system relaxes to this equilibrium state.
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Figure 2.8: Illustration of the dynamics for time scale separation, 1 = rA = rB � rC = ∞, where
species C kills and takes over an adjacent site of A at once. It is characterized by “islands”
of A and C in one large, simply connected “sea” of species B. Due to the instantaneous
invasion of an A domain by C, there cannot be a common boundary in space between the
two species. An A domain grows and merges with other A domains until there occurs a
spontaneous mutation such that C claims the whole domain from one moment to the next.
From then on the domain shrinks, accelerated by mutations C → B. The symmetry under
reversal of time and interchanging A and C is evident. This is the underlying reason why,
after a transient time, the system reaches an equilibrium state, which obeys a Boltzmann
statistics and can be solved analytically. It is striking that the beneficiary of the large rates
rC is not species C but its predator B. Our analysis shows that on average it occupies
exactly half of the system.

four kinds of interfaces RAB, LBA, RBC and LCB. (Interfaces between domains of A and C
can be ruled out because of the infinitely fast cyclic dominance rate rC .) Letting time run
backwards corresponds to multiplying the velocities of the interfaces by −1. This is achieved
by interchanging A and C, which in the interface picture amounts to RAB � LCB and
LBA � RBC . Then the reverse to transition (2.60) is

BCCBBAAAAABBAAB
5µl−−−→BCCBBCCCCCBBAAB , (2.61)

which is balanced with transition (2.60) on condition that the initial configurations have equal
probability. The simplest way to achieve this is a probability distribution which depends only
on the overall number of interfaces, but not on their type. We will demonstrate below that
this is really the case for the stationary distribution.

We express a configuration by a vector z = (x,y), where again the vectors

x = (x1, . . . , x2m) , xk ∈]0,M ] , (2.62)
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give the positions of the interfaces in ascending order x1 ≤ . . . ≤ x2m, and the type of the
interfaces is specified by

y = (y1, . . . , y2m) , yk ∈ {RAB, LBA, RBC , LCB} . (2.63)

Because of the infinitely fast reaction AC → CC, CA → CC there are some restrictions on
the vector y: If yk = LBA then yk+1 = RAB, and if yk = RBC then yk+1 = LCB (here we take
k + 1 to be modulo 2m). As for the symmetric case of Subsection 2.4.1, our ansatz is that
the probability density only depends on the number 2m of interfaces in the system. Then
detailed balance trivially holds for transition (2.60) and its reversed transition (2.61). As for
the ballistic motion and for the creation or annihilation of pairs of interfaces, we evidently
obtain the same condition as in the previous section under which detailed balance is fulfilled.
Just as above, c.f. Eq. (2.42), the probability distribution must obey

2vρ2m+2 = µlρ2m =⇒ ρ2m =
(µl

2v

)m
ρ0 . (2.64)

We have thus reduced the calculation of the probability distribution to a combinatorial prob-
lem. There are 2m domains in the system, which we label 1, . . . , 2m (where domain 1 contains
the origin). If the domain 1 is a B domain, then all the odd-numbered domains are B domains,
and the even-numbered domains are occupied by either A or C. Otherwise all even-numbered
domains are occupied by B and the odd-numbered domains are occupied either by A and C.
Therefore, for every position vector x there are 2m+1 possibilities for y. Since the sizes of
the domains do not enter the probability distribution, a direct and remarkable consequence is
that not only are the concentrations of A and C equal (due to the time reversal symmetry),
but A and C each occupy one fourth of the lattice, while the species B has a share of one
half of the lattice. This is indeed observed in the simulations, c.f. Figure (2.9).

To obtain the density of the interfaces we integrate over the ordered position vector x =
(x1, . . . , x2m), giving a factor M2m/(2m)!. Thus, the probability to have 2m interfaces in the
system is

p2m = 2m+1 M
2m

(2m)!

(µl
2v

)m
p0 =

2

(2m)!

(
µlM

2

v

)m
p0 , (2.65)

with

p−1
0 = 2

∞∑
m=0

1

(2m)!

(
µlM

2

v

)m
. (2.66)

For large system sizes the normalization factor becomes approximately

p−1
0 ≈ exp

(√
µlM2

v

)
. (2.67)

When the velocity v = 1 the interface density becomes

n =
2µl
M

∂µl ln
(
p−1

0

)
=
√
µl . (2.68)

This result is verified by the stochastic lattice simulations, c.f. Figure 2.9.
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Figure 2.9: Data from of the stochastic lattice simulations for the RPS with mutations to the predator
with rate µl and instantaneous reactions AC → CC, CA → CC, i.e. with the cyclic
dominance rates rA = rB = 1, and rC = ∞. (The lines between the data points are
merely guides to the eye.) In the text it is argued that this particular model obeys
detailed balance (under interchanging A and C) in the limit of small mutation rates. In
(a) it is not only confirmed that in this limit the densities for A and C are equal, as
they should be because of the symmetry between them, but also that they each occupy a
quarter of the lattice. In (b) it is shown that the interface density approaches the value√
µl, c.f. Eq. (2.68), as µl becomes small. In both plots the error bars are smaller than

the size of the data points. We remark that the deviations from the theoretical values are
due to the lattice structure, which was not considered in the calculations. For instance,
as the interface density increases, diffusion becomes more important and reactions such as
RABRBC → LAC (followed by instantaneous invasion of the A domain by C) become more
likely. Thus the symmetry between A and C is broken and our analysis is invalidated.
Curiously, it is not the gluttonous species C which has the largest share of the lattice, but
its predator B. Similar, seemingly paradoxical phenomena have been observed in systems
without mutation [31, 95, 98].

Our model was originally motivated by the Drossel-Schwabl Forest Fire Model [99–103], where
on a d-dimensional regular lattice each site can either be empty, occupied by a tree, or by
a tree on fire. A tree can spontaneously be set on fire by a lightning strike, which occurs
with probability f . The fire spreads with rate 1 to a neighboring tree and also with rate
1 a burning tree turns into an empty site, where with probability p a tree regrows. In [99]
it was conjectured by scaling arguments that in the limit of double time scale separation,
(f/p)−1/d � p−1 � f−1 (the average time it takes for a forest cluster to burn down, once
the first tree is on fire, is much shorter than the time it takes for a tree to grow, which, again
is much shorter than the time between two strikes of lightning), the system is self-organized
critical. The time scale separation is motivated as being more frequent in nature than the
accidental tuning of a parameter to a specific value where the system is critical. Despite
good agreement with the Monte Carlo simulation it later emerged that in d ≥ 2 dimensions
the system is not critical, yet in one dimension self-organized criticality has been proven
rigorously [102]. In particular, it was shown that there is a non-trivial distribution of the
cluster size s ∼ 1/((s+ 1)(s+ 2)).

The analogy to our process is as follows: We identify trees that are not on fire with A,
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empty sites with B, and burning trees with C. The mutation A → C with rate µl may
then be regarded as a strike of lightning. Our time scale separation in the cyclic dominance
rates, rA/

√
µl = rB/

√
µl � rC → ∞, guarantees that clusters of As will “burn down”

instantaneously, because the average size of the domain should scale as
√
µl according to

our analytical results. In the simulations this was achieved by truly instantaneous updates,
where a domain of A is turned to a domain of C immediately if there occurs a A → C on
some site of this domain. Instead of constant input of trees with rate p, the B clusters can
recover by invading C clusters at rate rB, supported by mutations C → B with rate µl.
Thus p may be identified with rB. However, our system becomes rather simple, in particular
the distribution of the domain size s of, say, A becomes exponential n exp (−ns) for large
system sizes (where the interfaces approximately obey a Poisson distribution, which implies
an exponential distribution for their size).

2.5 Conclusion

The competition between coarsening dynamics and mutations in our model leads to a reactive
stationary state which is characterized, on the one hand, by a competition between coarsening
and diversifying dynamics, and, on the other hand, by an interplay between equilibrium and
non-equilibrium processes. Indeed one can pinpoint exactly which type of reactions (labeled
(3) in Figure 2.1) take the system away from equilibrium. It was crucial to discriminate
between two types of mutations, namely mutations to predator with rate µl and mutations to
the prey with rate µr. We have demonstrated that the effect of the latter becomes negligible,
when the two rates are comparable and small, as one would perhaps intuitively expect. Both
for the high and for the low mutation rate regime, we have retrieved asymptotically exact
results which we expect to be quite robust to a wide rage of variations, e.g. relaxing the
constraints of symmetry between A, B and C. For very low mutation rates, diffusional
motion can be neglected and the interfaces are best described as ballistic, i.e. moving at
constant velocity to the right or left. To our surprise we found that certain realizations of
the model, in particular when there is a perfect symmetry between the three species, display
a stationary state which obeys detailed balance. Therefore they can be studied with the
tools of equilibrium statistical mechanics. The probability distribution of the stationary state
was calculated exactly and shown to obey a Boltzmann statistics, with an energy which is
proportional to the number of interfaces.
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3 The Non-Perturbative Renormalization
Group and Reaction-Diffusion Processes

We now move on from the rock-paper-scissors model to the treatment of the coagulation
process, where diffusing particles clot, A + A → A, upon contact. The goal of this chapter
is to set the theoretical foundations for the calculations in the next chapters, employing a
non-perturbative renormalization group (NPRG) approach. In this formalism one calculates
the Gibbs free energy functional Γ, which in principle fully describes the dynamics, by succes-
sively integrating out degrees of freedom, going from high energy scales to low ones. As for
all renormalization group approaches, one expects that there is an approximate decoupling
between the different energy scales, so that, in spite of the necessary truncations, one obtains
good results. In this formalism, developed in a series of pioneering works [104–110] (for an
authoritative review the reader is referred to [111] and for a concise introduction to [112]),
the renormalization group flow is described by the so called Wetterich equation. It connects
the microscopic energy functional with the Gibbs free energy functional Γ. Preceding this
“average action” approach, there was a similar NPRG approach, the Wilson-Polchinski ap-
proach, where instead of Γ the generating functional W = lnZ was studied, with the partition
function Z [113–117]. The Gibbs free energy functional Γ is just the Legendre transformation
of W .

The NPRG approach based on the Wetterich equation proved very successful in the treatment
of the O(N) models for magnets. It allows to develop a unified framework for an arbitrary
number N of spin components and arbitrary dimension [118, 119], and it has helped overcome
difficulties of the original Wilson-Polchinski formulation with these O(N) models: At a rather
low order of the approximation one could calculate the anomalous dimension (which had been
problematic before) [120, 121], one managed to reproduce perturbative one-loop results [111],
and the approach naturally captured the Kosterlitz-Thouless phase transition of the XY model
in two dimensions [111, 122–124].

In contrast to perturbative renormalization group methods, the NPRG approach allows to
study non-universal features, for instance phase diagrams, and since it does not rely on a small
parameter, such as the difference ε to the critical dimension, the approach lends itself to the
study of critical exponents in every dimension. Recently, the formalism has been adapted by
Canet to study non-equilibrium systems and, in particular, reaction-diffusion processes [125–
127]. A range of paradigmatic processes have been studied by now, for example the contact
process [125], branching and annihilating random walks [125, 128, 129] (where it was shown
that the phase diagrams behaves differently than predicted by perturbative methods) or the
Kardar-Parisi-Zhang equation [130, 131].

The outline of this chapter is as follows. We start by introducing Doi’s path integral formalism,
where from a second-quantized representation one obtains a field theoretic action, by similar
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techniques as are employed for quantum many-particle systems [132]. We then derive the
Wetterich equation which connects this action with the Gibbs free energy functional. This
functional fully describes the process, and we will show how, in particular, it determines the
time evolution of the density. We further discuss approximation methods, which become
necessary for most concrete calculation, and derive “dimensionless” formulas which allow to
study fixed points of critical systems within these approximations.

3.1 The Fourier Transform and Integration Conventions

Our process will most of the time be embedded on a hypercubic lattice with lattice spacing a.
We will often encounter functions f(x, t), depending on time t and position x = a

∑d
ν=1 nνeν ,

where the eν are orthogonal unit vectors spanning the d-dimensional vector space and nν are
integral numbers. To obtain a system of finite size we introduce periodic boundary conditions
f(x, t) = f(x + Neν , t), where N is a natural number. We are interested in the limit of an
infinitely large system, N →∞.

The Fourier transform is defined, as usual, by

f(q, ω) =
∑
x

∫
dt exp(iωt− iqx)f(x, t) , (3.1)

where the sum is over the lattice sites with ni ∈ {0, . . . , N − 1} and the momenta q =
2π
aN

∑
ν ñνeν obey −N/2 < ñν ≤ N/2. The reverse transform given is

f(x, t) =
1

Nd

∑
q

∫
dω

2π
exp(−iωt+ iqx)f(q, ω) . (3.2)

In the limit of infinite system size, N → ∞, the sum over the momenta is replaced by an
integral

1

Nd

∑
q

→
∫
q∈]−π

a
,π
a

]

ddq

(2π/a)d
. (3.3)

For concise notation we introduce∫
q

:=

∫
q∈]−π

a
,π
a

]

ddq

(2π/a)d
,

∫
ω

:=

∫
dω

(2π)
. (3.4)

We remark that this notation also covers general Bravais lattices with x =
∑d

ν=1 nνaν , where
aν are the primitive cell vectors. In this case, we simply need to redefine∫

q
:=

∫
q∈1st B.Z.

ddq

V1st B.Z.
, (3.5)

i.e. the momentum q is integrated over the first Brillouin zone and the integral is divided by
the volume V1st B.Z. of the first Brillouin zone.
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It is important to keep in mind that the volume of the system is not infinite, although of
course we want to consider the limit of an infinitely large system. In particular therefore, the
Dirac delta δ(q) has a well-defined value at q = 0, namely

δ(q = 0) =

(
Na

2π

)d
=

(
V

2π

)d
. (3.6)

Sometimes it is adequate to let the lattice spacing a become small and to go to continuous
variables also in position space,∑

x

→
∫

ddx a−d , f(x)→ f(x)ad . (3.7)

The Fourier transform then reads f(q, ω) =
∫

dx dt exp(iωt − iqx)f(x, t) and the reverse

transform f(x, t) =
∫
ω

ddq
(2π)d

exp(−iωt + iqx)f(q, ω). (q is integrated over the whole space

R
d.) In this case, we redefine ∫

q
:=

∫
ddq

2πd
. (3.8)

3.2 Second Quantized Representation of Reaction-Diffusion
Systems

In order to give flesh to our discussion, we consider the process A + A → A (coagulation)
with rate λ and A + A → ∅ (annihilation) with rate λ′ on a regular d-dimensional lattice.
In addition the particles diffuse with diffusion constant D. To render this process amenable
to the non-perturbative renormalization group approach, we map it on a field theory by the
well-established Doi formalism, an approach developed by several authors [64, 133–136], for a
review see [137]. Here we provide a description of this mapping, which was originally applied
in a similar fashion to quantum systems as described in standard textbooks (see e.g. [132]).

Since the particles are indistinguishable, one does not need to keep track of every single one
of them. Instead, it is sufficient to specify the configuration of the system by the occupation
numbers of the sites of the lattice

~n = (n(x), n(y), . . .) , (3.9)

where x,y, . . . denote the positions of the lattice sites. The stochastic dynamics describing
the time evolution of the probability distribution P (~n, t) is then given by the master equation
(with < x,y > indicating that the sum is over nearest neighbors),

∂tP (~n, t) = −D
∑
<x,y>

{[n(x)P (~n, t)− (n(x) + 1)P (n(x) + 1, n(y)− 1, . . . , t)] +

+ [n(y)P (~n, t)− (n(y) + 1)P (n(x)− 1, n(y) + 1, . . . , t)]} −
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− λ
∑
x

[n(x)(n(x)− 1)P (~n, t)− (n(x) + 1)n(x)P (n(x) + 1, . . . , t)] −

− λ′
∑
x

[n(x)(n(x)− 1)P (~n, t)− (n(x) + 2)(n(x) + 1)P (n(x) + 2, . . . , t)] . (3.10)

We may regard the configurations ~n of the system as vectors |~n〉 = |n(x)〉 ⊗ |n(y)〉 ⊗ · · · of a
Hilbert space H which is the tensor product h⊗ h⊗ · · · of a Hilbertspace h for each site. h
is equipped with the scalar product

〈m|n〉 = n! δm,n . (3.11)

We introduce creation and destruction operators â†, â acting on h and defined by

â†|n〉 = |n+ 1〉 , â|n〉 = n|n− 1〉 . (3.12)

Notice that these definitions differ from the standard conventions in quantum mechanics.
By â†(x), â(x) we denote the corresponding creation and destruction operators which only
affect the site x and are the identity on all other sites. They are subject to the “bosonic”
commutation relations,

[â(x), â†(y)] = δx,y , [â(x), â(y)] = [â†(x), â†(y)] = 0 . (3.13)

It is easily verified that a†(x) is the adjoint operator of a(x), with respect to the scalar product
defined by Eq. (3.11), i.e.

〈~m|a(x)|~n〉 = 〈~n|â†(x)|~m〉 . (3.14)

Let us denote with |0〉 the “vacuum state”, which stands for a completely empty lattice. We
can express the state vector of the entire system at time t by

|φ〉 =
∑
~n

P (~n, t)|~n〉 =
∑
~n

P (~n, t)
∏
x

(
â†(x)

)n(x)
|0〉 , (3.15)

thus

P (~n, t) =
∏
x

1

n(x)!
〈~n|φ〉 . (3.16)

This allows us to cast the master equation into an “imaginary-time Schrödinger equation”

∂t|φ(t)〉 = −Ĥ|φ(t)〉 . (3.17)

The stochastic (and, in general, non-hermitian) Hamiltonian Ĥ is given by

Ĥ = Ĥε + Ĥλ,λ′ , (3.18)

with the diffusion part

Ĥε = D
∑
<x,y>

(
â†(x)− â†(y)

)(
â(x)− â(y)

)
, (3.19)

(ε stands for the dispersion relation, see below) and the reaction part of the Hamiltonian

Ĥλ,λ′ = λ
∑
x

[
(â†(x))2 − â†(x)

]
â(x)2 + λ′

∑
x

[
(â†(x))2 − 1

]
â(x)2 . (3.20)
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The Hamiltonian looks rather neat, since the annihilation and creation operators naturally
take care of the factors n(x), n(y), . . . which somewhat complicate the original representation
of the master equation, Eq. (3.10). The different terms of the Hamiltonian have a simple
interpretation. Consider for example the first term of Ĥλ,λ′ which goes with λ: By applying
(â†(x))2â(x)2 one obtains the number of (ordered) pairs at site x without changing the state
of the system. By applying â†(x)â(x)2, which first destroys a pair of particles at site x and
then creates one particle at the same site x, the coagulation reaction A+A→ A is effected.

The stochasticity of the Hamiltonian is fulfilled, because the diagonal part is positive with
respect to the basis of state vectors |~n〉 and the sum over the rows vanishes [93, 138],∑

~m

1∏
xm(x)!

〈~m|Ĥ|~n〉 = 0 . (3.21)

This relation can most conveniently be seen by noting that the sum

〈S| :=
∑
~m

1∏
xm(x)!

〈~m| = 〈0| exp

(∑
x

â(x)

)
, (3.22)

and therefore by applying 〈S| from the left to Ĥ the creation operators of the (normal ordered)
Hamiltonian Ĥ can be set to one. Thus, according to Eqs. (3.19,3.20), 〈S|Ĥ = 0. This
relation guarantees probability conservation: The formal solution to the evolution equation,
Eq. (3.17), is

|φ(t)〉 = exp(−Ĥt)|φ(t = 0)〉 . (3.23)

The sum over the probabilities at time t is

〈S|φ(t)〉 = 〈S| exp(−Ĥt)|φ(t = 0)〉 = 〈S|φ(t = 0)〉 , (3.24)

which is equal to one if the initial state |φ(t = 0)〉 corresponds to a real probability distribu-
tion.

Expectation values of an observable Ô, defined by the quantities O(~n) which are assigned
when the system is found to be in the configuration |~n〉, are calculated by,

〈O(t)〉 = 〈S|O(â†, â)|φ(t)〉 , (3.25)

where we express Ô = O(â†, â) in terms of the creation and destruction operators. For
instance, the operator for the average number of particle is

∑
x n̂(x) ≡ ∑x â

†(x)â(x) and
for the average square of the number of particles it is

∑
x,y a

†(x)â(x)â†(y)â(y). It is often
favorable to represent these observables in “normal” form, such that the creation operators
â(x)† are arranged to the left of the destruction operators â(x), which is easily realized by
use of the commutation relation, Eq. (3.13). In this case that the creation operators can be
replaced by 1, â(x)† → 1 in Eq. (3.25), and O(â†, â) → O(â). Thus, the above operators
for the average number of particles and the average square of the number of particles are
rewritten as

∑
x â(x) and

∑
x,y â(x)â(y)−∑x â(x), respectively.

Let us choose the initial state to obey a Poisson distribution with density ρ,

|φ(t = 0)〉 = eρ
∑

x(â†(x)−1)|0〉 . (3.26)
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(A general state can be represented as a sum or an integral of these states, if we allow ρ to be
a complex number, see below.) Clearly, the average of an observable may then be rewritten
as an infinite sum over expectation values of products of destruction and creation operators,
by expanding the observable Ô = O(â), the Hamiltonian Ĥ = H(â†, â) and the exponential
functions in

〈O(t)〉 = 〈0|e
∑

x â(x)O(â)e−H(â†,â)teρ
∑

x(â†(x)−1)|0〉 . (3.27)

This can be exploited to set up a diagrammatic formalism. For this purpose, let us provision-
ally give the operators a trivial time dependence, â†(x, t) ≡ â†(x) and â(x, t) ≡ â(x), such
that we can write

〈O(t)〉 = 〈0|Te
∑

x â(x,t)O(â(t))e−
∫ t
0 dt′H(â(t′)†,â(t′))eρ

∑
x(â(x,0)†−1)|0〉 , (3.28)

with the chronological operator T , which arranges the destruction and creation operators
from right to left with increasing time. Wick’s theorem [132, 139] tells us that destruction
and creation operators need to be paired up, i.e.

〈0|T â(xm, tm) . . . â(x1, t1)â†(x′n, t
′
n) . . . â†(x′1, t

′
1)|0〉 =

= δm,n
∑

pairs p

n∏
i=1

〈0|T â(xp(i,1), tp(i,1))â
†(x′p(i,2), t

′
p(i,2))|0〉 . (3.29)

Thus the terms in Eq. (3.28) are readily translated to Feynman graphs by representing the
factor for the paired up propagators 〈0|T â(x, t2)â†(x, t1)|0〉 (which is 1 if t2 > t1 and zero
otherwise) by lines, and the couplings by nodes with a certain number of incoming lines (for
the creation operator) and outgoing lines (for the destruction operator). For instance, the
term λ

∑
x â
†(x)â(x)2 in Eq. (3.20) corresponds to a node with two incoming lines and one

outgoing line.

As we have written it, there are nodes with one incoming and one outgoing line. Therefore,
on a line between creation at time t and destruction at time t′ we can place 1, 2, 3, . . . of these
“harmonic nodes”. One can sum over this set of diagrams analytically. Due to translational
symmetry, the diffusion part, c.f. Eq. (3.19), becomes diagonal in Fourier space, i.e. it can be
expressed as Ĥε = −

∫ dq
(2π)d

â†(q)â(−q)ε(q), where d denotes the dimension (see Section 5.1

and Eq. (5.7) for an explicit calculation of the dispersion relation ε(q)). We thus obtain the
propagator

G0(t2 − t1) := 〈0|â(q1, t2)â†(q2, t1)|0〉0 :=

= 1−
∫
t1<t′<t2

dt′ ε(q) +

∫
t1<t′1<t

′
2<t2

dt′1 dt′2ε(q)2 ∓ . . . =

= exp(−ε(q)(t2 − t1)) . (3.30)

Often it is convenient to shift the creation operator by one,

â†(x)→ â†(x)− 1 =: ˆ̄a†(x) . (3.31)

It is readily verified that ˆ̄a†x is the adjoint operator to the creation operator â(x) with respect
to the scalar product [135, 136]

8〈φ|ψ〉′ := 〈φ|e
∑

x â
†(x)e

∑
x â(x)|ψ〉 .
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Indeed,

8〈φ|â(y)|ψ〉′=〈φ|e
∑

x â
†(x)e

∑
x â(x)â(y)|ψ〉 = 〈ψ|â†(y)e

∑
x â
†(x)e

∑
x â(x)|φ〉 =

=〈ψ|e
∑

x â
†(x)e

∑
x â(x)(â†(y)− 1)|φ〉 = 8〈ψ|ˆ̄a†(y)|φ〉′ . (3.32)

The commutation relation, Eq. (3.13), and Wick’s theorem still hold after replacing â†(x)
with ˆ̄a†(x). Therefore, our above analysis is also valid for the new operators. The average of
an operator is now expressed as

〈O(t)〉 = 8〈0|Ô(â)e−H(ˆ̄a†,â)teρ
∑

x
ˆ̄a†(x)|0〉′ , (3.33)

where we exploit that 〈S| = 〈0|e
∑

x â(x) = 〈0|e
∑

x â
†(x)e

∑
x â(x) = 8〈0|. Again this can be

translated to a sum over Feynman graphs. The propagator G0(t) even remains the same as
above, c.f. Eq. (3.30)) since the form of the diffusion part of the Hamiltonian, as given in
Eq. (3.19), is not altered.

An important advantage of the shifted operator is that for the expectation value of the
observables Ô(â) = â(x), Ô(â) = (â(x))2, . . ., it is sufficient to sum over Feynman diagrams
with 1, 2, . . . outgoing legs (finally connected with the destruction operators of Ô(â)). This
is because of the fact that the projection state 〈S| = 〈0|e

∑
x â(x) equals the adjoint 8〈0| of

the vacuum state with respect to our new scalar product, and 8〈0|ˆ̄a†(x) = 0. It can also
be seen directly within the original scalar product upon replacing the projection state 〈S|
by 〈α| = 〈0|eα

∑
x â(x). Feynman diagrams with n outgoing legs then pick up the factor

(α − 1)n, since 〈α|ˆ̄a†(x) = (α − 1)〈α|. Upon writing 〈S|O(â) = 〈S|â(x)n = ∂nα〈α| at α = 1,
we see that indeed all diagrams cancel expect for those with n outgoing lines. Notice that
these diagrams need not be connected. However, all the terms of stochastic Hamiltonians for
reaction diffusion processes go with ˆ̄a†(x) (as shown, for instance, in [140]), i.e. every node has
at least one outgoing line. Therefore, all Feynman diagrams must be connected to the “final”
destruction operators stemming from O(â). In particular, for the mean density, obtained by
applying Ô(â) = â(x), one only needs to sum up connected Feynman diagrams.

3.3 Mapping to a Field Theory

For the NPRG approach it is necessary to derive a field theory. To do this, we introduce
coherent states

|φ〉 := eφâ
† |0〉 , (3.34)

for a system that contains only a single site (we generalize to larger systems below). Here,
φ is a complex number. Coherent states are the eigenstates of the destruction operator,
â|φ〉 = φ|φ〉, with the adjoint formula 〈φ|â† = 〈φ|φ?. In the following, we will often have to
calculate the scalar product of two coherent states, which becomes

〈φ̃|φ〉 =
∞∑
n=0

〈0|

(
φ̃?â
)n (

φâ†
)n

(n!)2
|0〉 = eφ̃

?φ . (3.35)
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The coherent states are overcomplete and allow for a number of representations of the iden-
tity [132]. Here we employ [136]

1 =

∫
φ∈R,φ̃∈iR

dφ dφ̃

2π
eφφ̃|φ〉〈φ̃| , (3.36)

where φ is to be integrated over the real line and φ̃ over the imaginary line. This relation is
proven using partial integration and

n!δmn =

∫
φ∈R

dφφn
(
− d

dφ

)m
δ(φ) . (3.37)

A cautionary remark is in order at this point. The representation of the identity (3.36) is
given by an integral over coherent states. In the calculations below, the unitary operator
exp(−Ĥt) implies sums from the expansion of the exponential. Often these integrals and
sums do not commute [137]. As an example, consider 〈0| exp(âk)|0〉 = 1, with a natural
number k. Inserting our expression for the identity, Eq. (3.36),

〈0|eâk
∫
φ∈R,φ̃∈iR

dφ dφ̃

2π
eφφ̃|φ〉〈φ̃|0〉 =

∑
n

1

n!

∫
φ∈R,φ̃∈iR

dφ dφ̃

2π
eφφ̃φnk , (3.38)

which, because of
∫
φ̃∈iR

dφ̃
2π e

φφ̃ = δ(φ) and Eq. (3.37), indeed equals one. If, however, we
interchange sum and integral, we obtain instead∫

φ∈R,φ̃∈iR

dφ dφ̃

2π
eφφ̃+φk . (3.39)

For k ≥ 3 this only gives the correct result when the integration of φ̃ is carried out before the
integration of φ. Similarly, by looking at 〈0| exp[(â†)k]|0〉 = 1, we can construct a case, where
the integration of φ needs to be performed first. Therefore, to be on the safe side such terms
must always be understood perturbatively. For our non-perturbative approach, we will see
in the next section that we have to rule out such terms, where the order of summation and
integration matters.

It is instructive to consider a further example where the order of integration and summa-
tion matters. Applying Eq. (3.36) to the coherent state |ψ〉 without interchanging sum and
integral, a coherent state can be written as

|ψ〉=
∫
φ∈R,φ̃∈iR

dφ dφ̃

2π
eφφ̃|φ〉〈φ̃|ψ〉 =

∞∑
n=0

1

n!

∫
φ∈R,φ̃∈iR

dφ dφ̃

2π
eφ̃φ

(
−φ̃ψ

)n
|φ〉

=

∞∑
n=0

ψn

n!

∫
φ∈R

dφ

(
− d

dφ

)n
δ(φ)|φ〉 . (3.40)

If we now apply 〈m| = 〈0|âm from the left, and employ Eq. (3.37) we obtain the correct result
ψn

n! = 〈m|ψ〉. This prescription works even if we do not integrate φ over the complete real
line. Indeed, as also remarked in [136], in the definition of the identity (3.36) it would suffice
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to integrate φ along any path which P traverses the origin, e.g. we could restrict the integral
to P = φ ∈]− 1, 1[. However, if we then do interchange integration and summation, we have

|ψ〉 =

∫
φ∈P,φ̃∈iR

dφ dφ̃

2π
eφφ̃|φ〉〈φ̃|ψ〉 =

∫
φ∈P,φ̃∈iR

dφ dφ̃

2π
eφ̃φ−φ̃ψ|ψ〉 =

∫
φ∈P

dφ δ(φ− ψ)|ψ〉 .
(3.41)

As a matter of fact, below we will encounter such expressions and we will interchange inte-
gration and summation. We are allowed to do so as long as we integrate φ over the complete
real line R.

Generalizing from a system with only one site to a lattice with coherent states

|φ〉 = e
∑

x φ(x)â†(x)|0〉 = |φ(x)〉 ⊗ |φ(y)〉 ⊗ . . . , (3.42)

instead of Eq. (3.36) we have the identity

1 =

∫
φ(x)∈R,φ̃(x)∈iR

∏
x

dφ(x) dφ̃(x)

2π
eφ(x)φ̂(x)|φ〉〈φ̃| . (3.43)

To obtain a field theoretic description, we slice up the evolution of time, c.f. Eq. (3.23), in
small pieces by applying Trotter’s formula

exp(−Ĥt) = lim
N→∞

(
1− Ĥ t

N

)N
. (3.44)

Between each time slice we insert the identity of Eq. (3.43). Thus, the creation and destruction
operators in Eq. (3.28) are replaced by complex numbers, â†(x) → φ̃(x) and â(x) → φ(x).
Explicitly,

〈O(t)〉 = lim
∆t→0

∫
φ(x,t′)∈R,φ̃(x,t′)∈iR

 ∏
x,t′∈{0,∆t,...,t}

dφ(x, t′) dφ̃(x, t′)

2π
eφ(x,t′)φ̃(x,t′)

 ·

· 〈S|O(φ(t))|φ(t)〉

 ∏
t′∈{∆t,2∆t,...,t}

〈φ̃(t′)|
(
1−H(φ(t′), φ(t′ −∆t)

)
|φ(t′ −∆t)〉

 〈φ̃(t = 0)|ρ〉 ,

(3.45)

with an initial state |φ(t = 0)〉 = |ρ〉 = eρ
∑

x(â†(x)−1)|0〉 which obeys a Poisson distribution
with a mean density ρ. After noting, that

〈φ̃(t′)|φ(t′ −∆t)〉 =
∏
x

〈φ̃(x, t′)|φ(x, t′ −∆t)〉 =
∏
x

e−φ(x,t′)φ̃(x,t′−∆t) , (3.46)

and exploiting that φ(x, t′)− φ(x, t′ −∆t) = ∂tφ(x, t′)∆t to second order in ∆t, we obtain

〈O(t)〉 =

∫
φ(x,t′)∈R,φ̃(x,t′)∈iR

(∏
x

Dφ(x, t)Dφ̃(x, t)

)
O(φ(t)) exp

(
−S[φ̃, φ]t0

)
. (3.47)



46 3. NPRG and Reaction-Diffusion Processes

Here, the functional integral Dφ(x)Dφ̃(x) stands for
∏
t′∈{0,∆t,...,t}dφx,t′ in the limit ∆t → 0

and the action is given by

S[φ̃, φ]t0=
∑
x

[
−φ(x, t)− φ̃(x, 0)(φ(x, 0)− ρ) +

∫ t

0
dt′φ̃(x, t′)∂tφ(x, t′)

]
+

+

∫ t

0
dt′H(φ̃(t′), φ(t′)) . (3.48)

Notice that integration over φ̃(x, 0) results in a delta function, δ(φ(x, 0) − ρ) and thus sets
the initial condition φ(x, 0) = ρ.

Similar to the above shift of the destruction operator, it is favorable to perform a shift of the
integration variable

φ̃(x, t′)→ φ̄(x, t′) = φ̃(x, t′)− 1 . (3.49)

According to Cauchy’s integral theorem this does not change the integral since there are no
singularities in between the line iR and iR−1 and contributions to the integral at infinity are
negligible. We find the action

S[φ̄, φ]t0 =
∑
x

[
−φ̄(x, 0)(φ(x, 0)− ρ) +

∫ t

0
dt′φ̄(x, t)∂tφ(x, t)

]
+

∫ t

0
dt′H(φ̄(t′), φ(t′)) , (3.50)

where H(φ̄(t′), φ(t′)) is the Hamiltonian of Eq. (3.18) where the operators ˆ̄a†(x) are replaced
by φ̄(x, t′) and â(x) by φ(x, t′). One advantage of this representation is that the final term∑

x−φ(x, t) in Eq. (3.48) cancels, which greatly simplifies perturbative analysis.

We remark in passing that starting from Eq. (3.33) we can also arrive at Eq. (3.50) without
having to invoke a shift of the integration variable, by employing the identity [136]∫

φ∈R,φ̄∈iR

dφ dφ̄

2π
e−φφ̄|φ〉′ 8〈φ̄| , (3.51)

and then proceed in an analogous fashion as we did above.

Instead of demanding that initially the system be Poisson distributed with density ρ, we can
introduce particle input ∅→ A with a rate J(x, t). This gives rise to a term−

∫
dt J(x, t)φ̄(x, t)

in the action (3.50). Let us demand that the system is initially empty and prepone the initial
time to −∞. If we then set J(x, t) = ρδ(0), we recover Eq. (3.50). The final time in the
integration of the action is determined by the observable and not by the action itself. Let us
therefore drop the integration boundaries and write the general result as

S[φ̄, φ] =
∑
x

∫
dt
(
φ̄(x, t)∂tφ(x, t) +H(φ̄(t), φ(t))− J(x, t)φ̄(x, t)

)
. (3.52)

For our process of diffusing particles which coagulate and annihilate, we can therefore split
up the action as

S = SZ + Sε + Sλ,λ′ + SJ , (3.53)

with a term of the time evolution

SZ [φ̄, φ] =
∑
x

∫
dt φ̄(x, t)∂tφ(x, t) , (3.54)
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a diffusion term (a particle can hop from site x to site y with rate D, when x and y are
adjacent sites),

Sε[φ̄, φ] = D
∑
<x,y>

∫
dt
(
φ̄(x, t)− φ̄(y, t)

)
(φ(x, t)− φ(y, t)) , (3.55)

a reaction term for coagulation 2A→ A with rate λ and annihilation 2A→ ∅ with rate λ′,

Sλ,λ′ [φ̄, φ] =
∑
x

∫
dt
[
(λ+ λ′)φ̄(x, t)2φ(x, t)2 + (λ+ 2λ′)φ̄(x, t)φ(x, t)2

]
, (3.56)

and a part for the particle input ∅→ A

SJ [φ̄, φ] = −
∑
x

∫
dt J(x, t)φ̄(x, t) . (3.57)

Often it is adequate to assume that the lattice spacing a is small so that one can perform the
continuum limit. In Section 5.1 the diffusion term in Fourier space is explicitly calculated,
Sε =

∫
q ε(q)φ̄(−q)φ(q), with the dispersion relation ε(q) = 4D

a2
∑d

ν=1 sin(qνa/2)2. Depen-

dence on the lattice spacing a guarantees that the diffusion constant D is kept fixed. (D is
defined via the relation 〈x2〉 ∼ 2Dt, which at large times holds for the variance of a particle’s
distance from the initial position, if this particle is only subject to this diffusion but not to
further reactions, λ = λ′ = J = 0.) When a becomes small we can approximate

ε(q) = Dq2 . (3.58)

This is allowed if large momenta q can be neglected, as will be the case in the next chapter,
where we treat universal behavior below the critical dimension, and similarly in Section 5.5
where a finite radius R of the particles suppresses momenta q � 1/R. Thus, the diffusion
term reads Sε[φ̄, φ] =

∫
qDq

2φ̄(−q)φ(q) and transforming back to position space, we have

Sε[φ̄, φ] = D
∑
<x,y>

(
φ̄(x, t)− φ̄(y, t)

)
(φ(x, t)− φ(y, t))→ −D

∫
dx dt φ̄(x, t)∇2φ(x, t) .

(3.59)
For reference let us note down the full action of our process in the continuum limit (for zero
particle input)

S[φ̄, φ] =

∫
dx dt φ̄(x, t)(∂t −D∇2)φ(x, t) +

+

∫
dx dt

[
(λ+ λ′)φ̄(x, t)2φ(x, t)2 + (λ+ 2λ′)φ̄(x, t)φ(x, t)2

]
. (3.60)

We will utilize this approximation in the next chapter, where the exact form of the diffusion
term has no impact on the long time behavior.

3.4 The Wetterich Equation

The Wetterich equation is the central formula of our NPRG approach and describes the flow
of the “effective average action”, defined below, under successive integration of the degrees of
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freedom of the system. The starting point of its derivation is the partition function, defined
for our reaction-diffusion system by

Z[J, J̄ ] =

∫
Dφ̄Dφ exp

[
−S[φ̄, φ] +

∑
x

∫
dt
(
J̄φ+ Jφ̄

)]
. (3.61)

Here and in the following, to abbreviate the notation in the sums and integrals over x and t
we often do not explicitly write out the position- and time-dependence of the fields (in this
case the fields are J̄(x, t), φ(x, t), J(x, t) and φ̄(x, t)). As shown in the previous section, J
induces particle input ∅ → A, as long as J is positive. This is why φ̄ is sometimes referred
to as “response field”. For mathematical reasons, we also allow for negative J . There is no
simple physical interpretation for J̄ . These fields are introduced in order that the associated
functional

W [J, J̄ ] = lnZ[J, J̄ ] , (3.62)

which is related to the Helmholtz free energy, creates the “connected Green’s functions” by
functional derivation in the fields J , J̄ at J = J̄ = 0. In particular the average density at

position x and time t becomes 〈S|â(x)|P (t)〉 = 〈φ(x, t)〉 = δ
δJ̄(x,t)

W [J, J̄ ]
∣∣∣
J=J̄=0

, where |P (t)〉
is the state of the system at time t.

Part and parcel of renormalization groups is that one integrates the degrees of freedom sys-
tematically, going from high energy at the microscopic scale Λ (related to the lattice spacing
a) to low energy (or short wavelengths and fast frequencies to long wavelengths and slow
frequencies). One hopes the truncations made for higher energy modes of fluctuations do not
influence too much the low energy modes. To implement this procedure, we add a momentum-
and frequency-dependent “mass term” ∆Sκ to the action suppressing fluctuations of these
modes,

Zκ[J̄ , J ] =

∫
Dφ̄Dφ exp

[
−S[φ̄, φ]−∆Sκ[φ̄, φ] +

∑
x

∫
dt (J̄φ+ Jφ̄)

]
. (3.63)

There is some freedom in choosing the mass term. We demand that in Fourier space it can
be expressed as

∆Sκ[φ̄, φ] =
1

2

∫
q,ω

(
φ̄(−q,−ω), φ(−q,−ω)

)
· R̂κ(q2, ω) ·

(
φ̄(q, ω)
φ(q, ω)

)
. (3.64)

with the cutoff function

R̂κ(q2, ω) =

(
0 Rκ(p2, ω)

Rκ(p2,−ω) 0

)
. (3.65)

It is related to spontaneous decay of particles: The reaction A→ ∅ with rate one, implies a
term ∑

x

∫
dt φ̄(x, t)φ(x, t) =

∫
q,ω

φ̄(−q,−ω)φ(q, ω) , (3.66)

which would correspond to a cutoff function which is independent of momentum and fre-
quency.
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Before further specifying the cutoff, let us derive a flow equation for the non-equilibrium
Helmholtz free energy Wκ. For notational convenience let us write φ1 := φ̄, φ2 := φ and
J1 := J , J2 := J̄ . In particular then we can express the mass term as

∆Sκ[φ̄, φ] =
1

2

∑
i,j

∫
q,ω

φi(−q,−ω)R̂κ,i,j(q
2, ω)φj(q, ω) =

=
1

2

∑
i,j,x,y

∫
dtdt′ φi(x, t)R̂κ,i,j(x− y, t− t′)φj(y, t′) , (3.67)

where the indices i, j run over the set {1, 2}. We obtain

∂κe
Wκ[J,J̄ ] = −1

2

∫
Dφ̄Dφ

 ∑
i,j,x,y

∫
dt dt′ φi(x, t)∂κR̂κ,i,j(x− y, t− t′)φj(y, t′)

 ·
· exp

−S[φ̄, φ]−∆Sκ[φ̄, φ] +
∑
i,x

∫
dt Ji(x, t)φi(x, t)

 =

=

−1

2

∑
i,j,x,y

∫
dt dt′ ∂κR̂κ,i,j(x− y, t− t′) δ

δJi(x, t)

δ

δJj(y, t′)

eWκ[J,J̄ ].(3.68)

Similar as before, for the sake of a more concise notation let us suppress the position- and
time-dependence of the cutoff function R̂κ,i,j(x − y, t − t′) and of the functional derivatives

δ
δJi(x,t)

in the following. Thus, we have that

∂κWκ[J, J̄ ] = −1

2

∑
i,j,x,y

∫
dt dt′ ∂κR̂κ,i,j

(
δ2Wκ[J, J̄ ]

δJiδJj
+
δWκ[J, J̄ ]

δJi

δWκ[J, J̄ ]

δJj

)
. (3.69)

This flow equation for the Helmholtz free energy functional is related to the Polchinski equa-
tion, an earlier formulation of our NPRG approach [113, 115]. In recent years, a formally
similar approach has proven more successful, where instead of Wκ[J, J̄ ] one considers its Leg-
endre transform, the so called effective average action Γκ[ψ̄, ψ]. It is related to the Gibbs free
energy and a functional of the expectation values

ψ̄(x, t) := 〈φ̄(x, t)〉 =
δWκ[J, J̄ ]

δJ(x, t)

∣∣∣∣
J=J̄=0

, ψ(x, t) := 〈φ(x, t)〉 =
δWκ[J, J̄ ]

δJ̄(x, t)

∣∣∣∣
J=J̄=0

. (3.70)

Notice that both ψ̄ and ψ are real numbers. We thus have direct access to the observable ψ,
the average density of the particles, which is one advantage of the approach. The effective
average action is defined as the Legendre transform of Wκ with an extra term that is added
for later convenience,

Γκ[ψ̄, ψ] +Wκ[J, J̄ ] =
∑
x

∫
dt
(
J̄ψ + Jψ̄

)
−∆Sκ[ψ̄, ψ] . (3.71)

The cutoff function Rκ is defined in a way that long range interactions (in space and time)
with momentum q2 < κ2, |ω| < κ2 are suppressed, while not affecting those with q2 � κ2,
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|ω| � κ2 (see Figure 3.1 for a typical representative of the cutoff function). Thus, the modes
are successively integrated out until at κ = 0 the effective average potential Γκ[φ̄, φ] should
be equal to the Gibbs free energy

Γκ=0[φ, φ] ≡ Γ[φ̄, φ] , (3.72)

the Legendre transformation of W [J, J̄ ]. Thus, we request that the cutoff function Rκ fulfill
the properties 

Rκ(q2, ω) ∼ κ2 when q2 � κ2 or ω2 � κ2 ,

Rκ(q2, ω)→ 0 when q2 � κ2 or ω2 � κ2 ,

Rκ(q2, ω)→ 0 when κ→ 0 for fixed q and ω ,

Rκ(q2, ω)→∞ when κ→ Λ for fixed q and ω .

(3.73)

The first and second constraint guarantee that a “mass” ∼ κ2 freezes the slow modes, whereas
the fast modes are fully integrated. We thus have an infrared cutoff around the scale κ which
ensures that the system stays analytic for any finite κ. This analyticity is essential for our
truncation schemes, as we will see below. The functional Wκ may be compared with the free
energy of a box of finite edge length ∼ κ−1. Divergencies in the functionals, characterizing
a system at criticality, build up as the scale κ approaches zero. Once κ = 0 all degrees
of freedom should be integrated out, i.e. Rκ=0 = 0 (constraint three), and we indeed have
Wκ=0 = W and Γκ=0 = Γ. Finally, the fourth constraint in (3.73) freezes all fluctuations
at the microscopic scale Λ and renders the system almost trivial so that, as is demonstrated
below, the initial condition becomes

Γκ=Λ[ψ̄, ψ] = S[ψ̄, ψ] . (3.74)

Only modes with q . Λ are integrated out. Therefore, if we employ the continuum limit
in the action S, a finite Λ sets the ultraviolet cutoff, approximately corresponding to the
reciprocal lattice spacing, Λ ≈ a−1. Otherwise, if we keep the discrete lattice structure, the
components qν only run over the set ] − π/a, π/a] and which intrinsically gives a ultraviolet
cutoff. Similarly, we have an intrinsic ultraviolet cutoff for finite size objects, such as balls
with radius R, where modes with q � R−1 are suppressed. In these cases there is no need
for an explicit cutoff and we can set Λ =∞ (see Chapter 5).

The initial condition, Eq. (3.74), reflects the idea that the mass term ∆Sκ strongly sup-
presses deviations from the mean ψ̄ = 〈φ̄〉, ψ = 〈φ〉 such that in the κ-dependent partition
function (3.63) we may restrict the functional integration to the regime φ̄ ≈ ψ̄ and ψ ≈ φ,
which would immediately lead to the desired result. Whereas such an approach is valid for
equilibrium models [111], it turns out that for non-equilibrium processes as considered in this
work, this procedure is not allowed in general. A proof of Eq. (3.74) was provided in [140] for
an action of the special form

S[ψ̄, ψ] =
∑
x

∫
dt
(
ψ̄f(ψ)− ψ̄2g(ψ)

)
, (3.75)

where f, g are analytic functions of φ(x, t) and differences and derivatives thereof (such that, in
particular, the kinetic term SZ [ψ̄, ψ]+Sε[ψ̄, ψ] = ψ̄∂tψ+D(ψ̄(x, t)− ψ̄(y, t))(ψ(x, t)−ψ(y, t))
is covered by Eq. (3.75)), and g is positive definite, g > 0. Notice, that the action (3.53) for
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Figure 3.1: A typical form of the cutoff function Rκ(q2, ω) ≡ Rκ(q2), which gives rise to a momentum
dependent mass term suppressing fluctuation. By providing an infrared cutoff it renders
the functional Wκ and the average action Γκ analytic. This quality is crucial for our
approximation scheme. In fact, at finite κ these functionals may be argued to roughly
describe a finite size system, with edge length κ−1. Critical behavior is defined by diver-
gencies in the functionals and implies an infinitely long correlation length. This can be
described by carefully studying the limit κ→ 0, as explained in Section 3.7.

the coagulation and annihilation process can be expressed in the form (3.75). Eq. (3.70)
together with Eq. (3.71) implies that

J(x, t) =
δΓκ[ψ̄, ψ]

δψ̄(x, t)

∣∣∣∣
ψ̄=ψ=0

+
∑
y

∫
dt′Rκ(x− y, t′ − t)ψ(y, t′) , (3.76)

J̄(x, t) =
δΓκ[ψ̄, ψ]

δψ(x, t)

∣∣∣∣
ψ̄=ψ=0

+
∑
y

∫
dt′Rκ(x− y, t′ − t)ψ̄(y, t′) . (3.77)

Hence, e−Γκ[ψ̄,ψ] can be expressed as∫
Dφ̄Dφ exp

[
−S[ψ̄ + φ̄, ψ + φ]−∆Sκ[φ̄, φ] +

∑
x

∫
dt

(
δΓκ[ψ̄, ψ]

δψ̄
φ̄+

δΓκ[ψ̄, ψ]

δψ
φ

)]
.

(3.78)
Here φ̄ and φ are the deviations from the mean values ψ̄ and ψ, respectively. To see that these
deviations are strongly suppressed, we insert the quadratic action, Eq. (3.75), and integrate
it with respect to the response field φ̄ (which is imaginary). Then e−Γκ[ψ̄,ψ] becomes

∫
Dφ exp

−∑
x

∫
dt

(
f(ψ + φ)− 2ψ̄g(ψ + φ) +

∑
yRκφ−

δΓκ[ψ̄,ψ]

δψ̄

)2

4g(ψ + φ)

 ·
· exp

{
−
∑
x

∫
dt

[(
ψ̄f(ψ + φ) + ψ̄2

)
+
δΓκ[ψ̄, ψ]

δψ
φ− ln g(ψ + φ)

]}
, (3.79)
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up to an irrelevant constant factor. At the ultraviolet cutoff κ = Λ the cutoff function Rκ
diverges. Therefore, we can set

f(ψ + φ)− 2ψ̄g(ψ + φ) +
∑
y

Rκφ−
δΓκ[ψ̄, ψ]

δψ̄
≈
∑
y

Rκφ , (3.80)

and we see that all deviations φ from the mean-value are strongly suppressed, so that we may
set φ = 0 in the second line of Eq. (3.79). The functional integral over φ is then trivial and,
neglecting an irrelevant constant term, we indeed recover Eq. (3.74).

Finally, we derive the flow equation for the average effective action. Taking the derivative
with respect to κ in Eq. (3.71) at constant ψ̄(x, t) ≡ ψ̄ , ψ(x, t) ≡ ψ while keeping in mind
that the fields

J(x, t) ≡ Jκ(x, t)[ψ̄, ψ] , J̄(x, t) ≡ J̄κ(x, t)[ψ̄, ψ] , (3.81)

are κ-dependent functionals of ψ̄ and ψ, yields

∂κΓ[ψ̄, ψ] =
∑
i,x

∫
dt ψi∂κJi −

1

2

∑
i,j,x,y

∫
dtdt′ ψi∂κRκ,i,jψj −

− ∂κWκ[J, J̄ ]−
∑
i,x

∫
dt
δWκ[J, J̄ ]

δJi
∂κJi . (3.82)

Since δWκ[J,J̄ ]
δJi(x,t)

= ψi(x, t), the first and the last term of the right hand side cancel. Inserting

Eq. (3.69) for the evolution of Wκ also the second term on the right hand side cancels and we
obtain

∂κΓ[ψ̄, ψ] =
1

2

∑
i,j,x,y

∫
dt dt′ ∂κRκ

δ2Wκ[J, J̄ ]

δJiδJj
. (3.83)

Now, δ2Wκ[J,J̄ ]
δJiδJj

is just the inverse of the corresponding second derivative δ2Γ̃[ψ̄,ψ]
δψiδψj

of Γ̃[ψ̄, ψ] ≡
Γκ[ψ̄, ψ] + ∆Sκ[ψ̄, ψ], because∑

j,y

∫
dt′

δ2Wκ[J, J̄ ]

δJi(x, t)δJj(y, t′)

δ2Γ̃κ[ψ̄, ψ]

δψj(y, t′)δψl(z, t′′)
=
∑
j,y

∫
dt′

δψi(x, t)

δJj(y, t′)

δJj(y, t
′)

δψl(z, t′′)
=

=
δψi(x, t)

δψl(z, t′′)
= δi,lδ(x− z) . (3.84)

We thus arrive at the Wetterich equation

∂kΓ[ψ̄, ψ] =
1

2
Tr
∑
x,y

∫
dtdt′ ∂κR̂κ(x− y, t− t′)

(
Γ̂(2)
κ [ψ̄, ψ](x, t,y, t′) + R̂κ

)−1
, (3.85)

with the notation

Γ
(2)
k,i,j [ψ̄, ψ](x, t,y, t′) ≡ δ2Γk[ψ̄, ψ]

δψi(x, t)ψj(y, t′)
, (3.86)

and the 2×2-matrices R̂κ and Γ̂
(2)
κ [ψ̄, ψ]. The trace Tr is over the ensuing 2×2-matrix. If we

understand R̂k and Γ̂
(2)
κ [ψ̄, ψ] as operators we may write the Wetterich equation more neatly

as

∂kΓ[ψ̄, ψ] =
1

2
Tr

[
∂κR̂κ

(
Γ̂(2)
κ [ψ̄, ψ] + R̂κ

)−1
]
, (3.87)
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where the trace, in addition to the degrees of freedom of the 2 × 2-matrix, now is also over
the space of position and time.

Of highest relevance for our concrete calculations will be the formulation of the Wetterich
equation in momentum and frequency space, where the operators are diagonal, as long as the
fields ψ̄ and ψ are chosen to be translationally invariant. Then from

Γ̂(2)
κ [ψ̄, ψ](x, t,y, t′) ≡ Γ̂(2)

κ [ψ̄, ψ](x− y, t− t′) , (3.88)

it follows that

Γ̂(2)
κ [ψ̄, ψ](q, ω,q′, ω′) ≡ (2π)d+1δ(q + q′)δ(ω + ω′)Γ̂(2)

κ [ψ̄, ψ](q, ω) , (3.89)

and the Wetterich equation in Fourier space reads

∂κΓ[ψ̄, ψ] =
1

2
Tr

∫
q,ω

∂κR̂κ(q, ω)
(

Γ̂(2)
κ [ψ̄, ψ](q, ω) + R̂κ(q, ω)

)−1
. (3.90)

Here the trace is over the degrees of freedom of the matrix and we only need to calculate the

matrix inverse of Γ̂
(2)
κ [ψ̄, ψ](q, ω) + R̂κ(q, ω), since the inverse over momentum and frequency

space is trivial.

3.5 Mean-Field and the Equation of Motion

Let us consider the coagulation process, A+A→ A with rate λ, for particles which perform
a random walk with diffusion constant D. We are interested in the time development of the
particle density ρ ≡ ρ(x, t) starting from some initial distribution ρ0(x) ≡ ρ(x, t = 0). A first
approximation is the rate equation

∂tρ(x, t) = D∇2ρ(x, t)− λρ(x, t)2 , (3.91)

which neglects fluctuations in the particle density. Generally, the mean-field rate equation
also follows from the “classical field equations” given by the stationarity conditions

δS[ψ̄, ψ]

δψ(x, t)
= 0 =

δS[ψ̄, ψ]

δψ̄(x, t)
. (3.92)

The first equation is solved by setting the auxiliary field ψ̄ = 0. Inserting the action (3.60)
for the coagulation process in the continuum limit (with λ′ = 0), and identifying ψ with the
density of particles (ψ → ρ) we recover Eq. (3.91).

Mean-field is only a good approximation when the system is well-mixed, i.e. when one is in
the reaction-controlled regime with large diffusion constant D → ∞. If instead we consider
the limit λ → ∞, Eq. (3.91) would suggest and infinitely fast decay. This is of course not
the case: Let us consider the process on a cubic lattice with homogeneous initial conditions.
For finite times t each site can by occupied by at most one particle. We obtain an upper
bound for the effective decay rate by taking into account these finite particle numbers while
neglecting the anti-correlations between the sites, which are expected to build up as time
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goes on and decelerate the dynamics, see Section 1.2. Thus, the system is approximated by
a product state where each site is occupied with probability ρ. A particle can hop with rate
D to each of its six neighboring sites, where it is destroyed with probability ρ. Therefore, we
obtain the upper bound 6D for the decay rate, i.e. the particle decay will not be faster than
∂tρ = −6Dρ2. Thus, the kinetics is not infinitely fast but diffusion-limited, by its dependence
on the diffusion constant D.

With the formalism developed in the previous section it is possible to account not only for
fluctuations in the finite particle numbers but also for spatial and temporal correlations, by
considering the non-equilibrium Gibbs free energy functional Γ[φ̄, ψ] = Γk=0[ψ̄, ψ] which by
definition (as the Legendre transform of the Helmholtz free energy functional) fulfills the
“extremal principle”

δΓ[ψ̄, ψ]

δψ(x, t)
= 0 ,

δΓ[ψ̄, ψ]

δψ̄(x, t)
= J(x, t) , (3.93)

the macroscopic analog of the classical field equations, Eqs. (3.92). Here we have included
the particle input J(x, t) which quite often is chosen to be J(x, t) = ρ(t = 0)δ(t) for Poisson
distributed initial conditions. Since normalization implies 〈S|ˆ̄a†(x)|P (t)〉 = 0 (for some state
|P (t)〉 of the system) we must have

ψ̄(x, t) = 〈φ̄(x, t)〉 = 0 . (3.94)

Indeed, one can show that Γ[ψ̄ = 0, ψ] ≡ 0 [140], and therefore the first condition of Eq. (3.93)
is trivially fulfilled for vanishing auxiliary field ψ̄. Again, identifying ψ with the density ρ, the
extremal principle yields the macroscopic kinetic equations. We will see in the next chapters
that to good approximation it is of the simple form

∂tρ = −F (ρ) , (3.95)

where the “non-equilibrium force” F (ρ) is obtained by a functional derivative of the effective
action. The leading term in F (ρ) is the law of mass action term µρ2 where µ is the macroscopic
decay rate. But, as we will show explicitly later, there are higher order terms in the density
which violate the law of mass action. In particular we will show that the correct value for the
decay rate for coagulation on a cubic lattice is not µ = 6D, as estimated above, but µ ≈ 4.0D.

3.6 The Derivative Expansion

In general, the Wetterich equation cannot be solved exactly. The derivative expansion is
an approximation scheme based on the fact that the initial condition, which is equal to the
microscopic action ΓΛ = S, is analytic, since there are only nearest neighbor interactions.
Since infrared singularities are suppressed by the cutoff Rκ, analyticity also holds for the
effective average action Γκ[ψ̄, ψ] as long as κ > 0 [111]. It is therefore possible to perform the
derivative expansion by expanding the functional Γκ[ψ̄, ψ] in orders of the temporal derivative
∂t and the spatial derivative ∇ (for the remainder of this chapter the fields ψ̄(x, t), ψ(x, t) are
taken as continuous functions of x; correspondingly sums over x are replaced by integrals). In
Fourier space this corresponds to factors of the frequency ω and the momentum p, respectively.
One then can simplify matters by truncating the functional Γκ[ψ̄, ψ] at a certain order. The
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general idea is that this approach allows for an accurate description in the long time (low
frequency ω) and large distance (small momentum p) regime [111, 125], which is at the center
of our interest.

For practical purposes it is very difficult to go beyond first order in the derivative ∂t in time
and beyond second order in the derivative ∇ in space. Canet shows that to this order the
effective average action can be written as [125]

Γκ[ψ̄, ψ]=

∫
ddx dt

[
Uκ(ψ̄, ψ) + Zκ(ψ̄, ψ)ψ̄∂tψ +Dκ(ψ̄, ψ)∇ψ̄∇ψ +

+
1

2
Y 1
κ (ψ̄, ψ)

(
∇ψ̄
)2

+
1

2
Y 2
κ (ψ̄, ψ) (∇ψ)2

]
. (3.96)

Here, Uκ, Dκ, Y
1
κ and Y 2

κ are analytic functions in the fields ψ̄, ψ. First order terms in the
derivative in space ∇ can be ruled out for symmetry reasons. For instance, the symmetry
under reflection along the plane x = 0 of a cubic lattice (created by the canonical lattice
vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1), which start from the origin) immediately implies that
terms involving only one derivatives ∂x in space are forbidden. Also, if all three principal
directions of the cubic lattice are equivalent, the derivatives ∂x, ∂y and ∂z can be treated
on equal footing and subsumed in the nabla operator ∇. Notice that since we only go to
second order in ∇, the above action fulfills rotational symmetry and not just, say, the cubic,
or hexagonal symmetry of the underlying lattice. This should be alright as long as we are
to study the universal behavior below the critical dimension, which is independent of the
lattice structure, see next chapter. There are other possible terms which involve second order
derivatives in space, such as Y 3

κ (ψ̄, ψ)ψ̄∇2ψ with analytic Y 3
κ , but that are not included in

the above action. However they are redundant since they are readily re-expressed with the
available terms employing partial integration.

The full action (3.96), although only lowest order derivatives are retained, still renders the
flow equations very complicated and therefore one usually employs an even more crude ap-
proximation. This is achieved by a field expansion of the potentials Uκ, Zκ, Dκ, Y

1
κ , and Y 2

κ ,
and keeping only terms up to a certain order. For the purposes of the next chapter we needed
to calculate the “effective average potential” Uκ very precisely, i.e. to high order in the fields
ψ̄, ψ. This was only feasible by keeping the other potentials only to zeroth order,

Zκ(ψ̄, ψ) ≡ Zκ , Dκ(ψ̄, ψ) ≡ Dκ , Y
1
κ (ψ̄, ψ) ≡ Y 1

κ , Y
2
κ (ψ̄, ψ) ≡ Y 2

κ , (3.97)

which is known as the “leading order” approximation. It can be shown that in this case
Y 1
κ = Y 2

κ = 0 for all scales κ (if they vanish for κ = Λ), since in this approximation their flow
is proportional to themselves [125].

In the following we shall employ the leading order approximation as our ansatz. The initial
condition reduces to

Γκ[ψ̄, ψ] =

∫
ddx dt

[
Uκ(ψ̄, ψ) + ψ̄(Zκ∂t −Dκ∇2)ψ

]
. (3.98)

This approximation is popular because it already allows to determine the anomalous dimen-
sion η = −κ ∂κ lnZκ and the dynamic exponent z = 2 + κ∂κ lnDκ − κ∂κ lnZκ. However, we
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will show below that for the coagulation process this ansatz is equivalent to a lower order in
the approximation, the so called “local potential” approximation,

Γκ[ψ̄, ψ] =

∫
ddx dt

[
Uκ(ψ̄, ψ) + ψ̄

(
∂t −∇2

)
ψ
]
, (3.99)

where only the renormalization of the local potential Uκ is taken into account. The reason
is that, as proven in Chapter 4, for our particular process Zκ and Dκ are not affected by
the renormalization group flow, i.e. Zκ = Dκ = 1 for all κ. Thus, for the coagulation
process, η and z agree with the mean-field exponents 0 and 2, respectively. Incidentally, this
is one reason why Smoluchowski’s approach succeeds: Such a mean-field like approach cannot
account for irrational exponents, which are usually found in critical systems [141].

In the following let us consider homogeneous fields ψ̄(x, t) ≡ ψ̄, ψ(x, t) ≡ ψ. The relation
between the average effective action and the local potential then reads

Γκ[ψ̄, ψ] = V T · Uκ(ψ̄, ψ) , (3.100)

with the asymptotically large volumes of space and time V =
∫

dx = (2π)dδ(p = 0) and
T =

∫
dt = 2πδ(ω = 0), respectively. To obtain a flow equation for the local potential Uκ

within the leading order truncation, Eq. (3.98), let us calculate the propagator Ĝκ[ψ̄, ψ] ≡(
Γ̂

(2)
κ [ψ̄, ψ] + R̂κ

)−1
in Fourier space, where it is diagonal because of translational invariance

(assuming the cutoff Rκ is chosen such that it respects the translational invariance, see below).
For concise notation, we express the combined vector of momentum p and frequency ω as
p = (p, ω). Notice that this allows to write the product of the volume of space and time

in the short form V T = (2π)d+1δ(p = 0). The bilinear form Γ̂
(2)
κ [ψ̄, ψ], becomes (as above,

m,n ∈ {1, 2}, “1” stands for the response field ψ̄ and “2” for ψ):

〈p1,m|Γ̂(2)
κ [ψ̄, ψ]|p2, n〉 ≡ Γ̂(2)[ψ̄, ψ](p1,m;−p2, n) =

δ2Γ[ψ̄, ψ]

δψm(−p1)δψn(p2)
=

= δ(p1 − p2)

(U (2,0)
κ (ψ̄, ψ) U

(1,1)
κ (ψ̄, ψ)

U
(1,1)
κ (ψ̄, ψ) U

(0,2)
κ (ψ̄, ψ)

)
m,n

+

(
0 Zκiω2

−Zκiω1 0

)
m,n

+

(
0 Dκp2

2

Dκp2
1 0

)
m,n

 .
(3.101)

For simplicity one usually chooses a cutoff function Rκ(p, ω) = Rκ(p2) which is independent
of the frequency ω [125]. This does not cause divergencies because stochastic processes need
not have a “microscopic” scale in time [93]. Furthermore, we choose it to depend on the
square p2 of the momentum only, in order that the renormalization group flow conserves the
rotational invariance of the initial, microscopic action S. (This condition will be relaxed in
later chapters.) Then, in particular, Rκ is translationally invariant in position and time, as
we requested above. We have

〈p1,m|R̂κ|p2, n〉 = δ(p1 − p2)

(
0 Rκ(p2

1)
Rκ(p2

2) 0

)
m,n

. (3.102)

Thus,

〈p1,m|(Γ̂(2)
κ [ψ̄, ψ] + R̂κ)|p2, n〉 = δ(p1 − p2)

(
U

(2,0)
κ (ψ̄, ψ) hκ(ψ̄, ψ, p1)

hκ(ψ̄, ψ,−p1) U
(0,2)
κ (ψ̄, ψ)

)
m,n

, (3.103)
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with hκ(ψ̄, ψ, p) = U
(1,1)
κ (ψ̄, ψ) +Zκiω+Dκp

2 +Rκ(p2). Since the propagator Ĝκ is diagonal
in Fourier space it is not hard calculating its reciprocal

Ĝ[ψ̄, ψ](p1, p2) = 〈p1,m|Ĝκ[ψ̄, ψ]|p2, n〉 = 〈p1,m|(Γ̂(2)
κ [ψ̄, ψ] + R̂κ)−1|p2, n〉 =

= −δ(p1 − p2) det[Ḡκ(ψ̄, ψ, p1)]

(
−U (0,2)

κ (ψ̄, ψ) hκ(ψ̄, ψ, p1)

hκ(ψ̄, ψ,−p1) −U (2,0)
κ (ψ̄, ψ)

)
m,n

, (3.104)

where 0
(!)
< −1/ det[Ḡκ(ψ̄, ψ, p)] ≡ hκ(ψ̄, ψ, p)hκ(ψ̄, ψ,−p) − U

(2,0)
κ (ψ̄, ψ)U

(0,2)
κ (ψ̄, ψ) is ex-

pected to be strictly larger than zero [125]. This property is the non-equilibrium analog to

convexity (e.g. U
(2)
κ (ψ) > 0 when there is only one field ψ) in equilibrium physics.

Inserting the expression for the propagator, Eq. (3.104), into the Wetterich flow equation, we
arrive at

∂κΓκ[ψ̄, ψ]
Wetterich Eq.

=
1

2

∑
m,n

∫
q,q′
〈q,m|∂κR̂κ|q′, n〉〈q′, n|Ĝκ[ψ̄, ψ]|q,m〉 =

= (2π)d+1δ(p = 0)

∫
q
−det[Ḡκ(ψ̄, ψ, p)]

[
hκ(ψ̄, ψ, q)∂κRκ(q2) + h(ψ̄, ψ,−q)∂κRκ(q2)

]
=

= (2π)d+1δ(p = 0)

∫
q

∂κRκ(q2)
(
U (1,1)(ψ̄, ψ) +Rκ(q2) +Dκq

2
)[

U
(1,1)
κ (ψ̄, ψ) +Rκ(q2) +Dκq2

]2
+ Z2

κω
2 − U (2,0)(ψ̄, ψ)U (0,2)(ψ̄, ψ)

.

(3.105)
After inserting V T = (2π)d+1δ(p = 0) and Eq. (3.100), we finally obtain the Wetterich Equa-
tion for the potential Uκ within the leading order truncation

∂κUκ(ψ̄, ψ) =

∫
q

∂κRκ(q2)
(
U

(1,1)
κ (ψ̄, ψ) +Rκ(q2) +Dκq

2
)

(
U

(1,1)
κ (ψ̄, ψ) +Rκ(q2) +Dκq2

)2
+ Z2

κω
2 − U (2,0)

κ (ψ̄, ψ)U
(0,2)
κ (ψ̄, ψ)

.

(3.106)
Since Rκ is chosen to be independent of ω, the integration over ω can be carried out explicitly,
and the flow equation becomes

∂κUκ(ψ̄, ψ) =
1

2Zκ

∫
q

∂κRκ(q2)
(
U

(1,1)
κ (ψ̄, ψ) +Rκ(q2) +Dκq

2
)

√(
U

(1,1)
κ (ψ̄, ψ) +Rκ(q2) +Dκq2

)2
− U (2,0)

κ (ψ̄, ψ)U
(0,2)
κ (ψ̄, ψ)

.

(3.107)

In the following we will mostly employ the standard cutoff function [142]

Rκ(q, ω) = Rκ(q2) = Dκ(κ2 − q2)Θ(κ2 − q2) . (3.108)

It has the convenient property of rendering the integration over the momentum q trivial.
Thus, neglecting also ∂κDκ (which indeed vanishes for the coagulation process), the flow
equation for the effective average potential further simplifies to

∂κUκ(ψ̄, ψ) =
Ṽdκ

dDκ

Zk

κ
(
U

(1,1)
κ (ψ̄, ψ) +Dκκ

2
)

√(
U

(1,1)
κ (ψ̄, ψ) +Dκκ2

)2
− U (2,0)

κ (ψ̄, ψ)U
(0,2)
κ (ψ̄, ψ)

, (3.109)

where Ṽd = Vd/(2π)d and Vd is the volume of the d-dimensional unit sphere.
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3.7 Dimensionless Flow Equation

In order to be able to study critical behavior, we need to resolve the fixed points of the flow.
These are only found after appropriate rescaling of the fields and potentials. In this section,
we rewrite the Wetterich equation with these new, rescaled quantities. To motivate the choice
of our rescaling, let us consider the renormalized kinetic term

Γκ,kin[ψ̄, ψ] =

∫
ddx dt ψ̄(x, t)

(
Zκ∂t −Dκ∇2

)
ψ(x, t) , (3.110)

of the effective average potential. If we are looking for a fixed point then at least this expression
should be constant under renormalization. This is realized if we introduce the dimensionless
coordinates

x = κ−1x̃ , t = κ−2 Zκ
Dκ

t̃ , (3.111)

and the renormalized dimensionless fields

ψ̄(x, t) = χ̄(x̃, t̃) , ψ(x, t) = κdZ−1
κ χ(x̃, t̃) . (3.112)

The kinetic term is then rewritten as

Γkin[χ̄, χ] =

∫
ddx̃ dt̃ χ̄(x̃, t̃) (∂t̃ −∇x̃)χ(x̃, t̃) . (3.113)

The derivatives ∇x̃ and ∂t̃ in space and time, respectively, are now with respect to the new,
dimensionless coordinates. Indeed, with these rescalings the kinetic term keeps its form along
the renormalization group flow.

There is a subtlety regarding the rescaling of the fields ψ̄ and ψ. Our choice is the right one,
because it turns out that it leads to a fixed point. In general however it is not clear which
rescaling to opt for, since the only constraint is on the product [ψ̄ψ] = κdZ−1

κ [137]. To study
the possible implications of fixed point for a different choice of the rescaling, for simplicity
let us provisionally set Zκ = 1, as for the local potential approximation. In general then,
ψ̄ = κεdχ̄, ψ = κ(1−ε)dχ where ε is an additional exponent. Its impact can be seen when one
introduces a particle input field J̃ (∅ J−→A). Since it is associated with the auxiliary field ψ̄
it is rescaled J → κ−εd+d+2J . Thus, at the critical point the stationary density behaves as

ψ ∼ J
d(1−ε)
d(1−ε)+2 , when ε > 0 . (3.114)

A special case is ε = 1/2. This holds for the famous contact process, where the two fields ψ̄
and ψ are linked by the so called rapidity symmetry [86]. At the critical dimension dc = 4,
we recover the mean-field scaling ψ ∼

√
J of the contact process. For the coagulation and

annihilation process we will see in the next chapter that ε = 0 and that the critical dimension
is dc = 2. Indeed for d = 2 Eq. (3.114) gives the mean-field scaling, which here is also ψ ∼

√
J .

For reference, let us also note down the corresponding relations to Eqs. (3.111,3.112) in Fourier
space. They turn to

q = κq̃ , ω = κ−2 Zκ
Dκ

ω̃ , (3.115)
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for the coordinates and

ψ̄(q, ω) = κd+2DκZ
−1
κ χ̄(q̃, ω̃) , ψ(q, ω) = κ2d+2DκZ

−2
κ χ(q̃, ω̃) , (3.116)

for the fields.

The terms Dκ and Zκ absorb divergencies that arise at the critical point, where the flow drives
the system to the fixed point. In this case, as proven below, Dκ ∼ κ−xD and Zκ ∼ κ−xZ , for
some constants xD and xZ . Thus, expressing the dimension of time in terms of the reciprocal
lengthscale κ, one obtains

[t] = [κ−2ZκD
−1
κ ] = κ−(2+xZ−xD) ≡ κ−z = [x]z , (3.117)

where z is the dynamic critical exponent [125]. To put this into perspective, we note that for
pure diffusional motion, without chemical reactions, the law of diffusion 〈x2〉 = 2Dt implies
[t] ∼ [x]2 (and D ∼ κ0), giving the “classical” dynamic critical exponent z = 2. Moreover,
xZ can be identified with the anomalous dimension η = xZ , defined by the dimension of the
product [ψ̄ψ] = κd+η of the fields [125, 143].

In addition to the kinetic term, we need to rescale the potentials which appear in the derivative
expansion. Let us focus here on the leading order truncation, Eq. (3.98). Evidently, for the
effective average potential Uκ the proper dimensionless and renormalized form of the local
potential obeys

Uκ(ψ̄, ψ) = κd+2Dκ

Zκ
uκ(χ̄, χ) , (3.118)

so that the reaction part of the effective average action Γκ = Γκ,kin + Γκ,react is rewritten as
Γκ,react[χ̄, χ] =

∫
ddx̃ dt̃ uκ(χ̄, χ).

We also need to look at the cutoff term, which is most conveniently described in Fourier space,
Scutoff[ψ̄, ψ] =

∫
q,ω Rκ(q2)ψ̄(−q,−ω)ψ(q, ω). We demand that

Rκ(q2) = Dκq
2r(q̃2) . (3.119)

Notice that this is an additional constraint on the cutoff function. It is necessary, because at
a fixed point, also the cutoff function, i.e. r must be fixed: In contrast to the potential uκ,
which at the critical point is expect to flow to some constant value u?, the function r must
be enforced to be constant “by hand”. (This requirement will be relaxed in later chapters,
where, however, we will not be interested in fixed points.) The cutoff action then reads
Scutoff[χ̄, χ] =

∫
q̃,ω̃ q̃

2r(q̃)χ̄(−q̃,−ω̃)χ(q̃, ω̃).

Let us now turn to the flow of the effective average action in the framework of the redefined
quantities. The Wetterich equation is recast in the form

∂κΓκ[ψ̄, ψ] =
1

2
Tr

[(
∂κ
δ2Sκ,cutoff[ψ̄, ψ]

δ(ψ̄, ψ)δ(ψ̄, ψ)

)(
δ2(Γκ + Sκ,cutoff)[ψ̄, ψ]

δ(ψ̄, ψ)δ(ψ̄, ψ)

)−1
]
, (3.120)

where δ2

δ(ψ̄,ψ)δ(ψ̄,ψ)
creates the 2× 2 matrix of second order functional derivatives. Evidently,

when the fields are rescaled on the right hand side, the factors cancel due to the reciprocal.
Therefore, also

∂κΓκ[ψ̄, ψ] =
1

2
Tr

(∂κ δ2S̃κ,cutoff[χ̄, χ]

δ(χ̄, χ)δ(χ̄, χ)

)(
δ2(Γ̃κ + S̃κ,cutoff)[χ̄, χ]

δ(χ̄, χ)δ(χ̄, χ)

)−1
 =
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=
1

2
Tr

[
∂κ

ˆ̃
R

(
ˆ̃
Γ

(2)

[χ̄, χ] +
ˆ̃
R

)−1
]
, (3.121)

where the trace is over the 2 × 2 matrix and the rescaled coordinates x̃ (or in Fourier space
q̃). Here, it is understood that the fields ψ̄, ψ are fixed, i.e. independent of the scale κ, and
we have introduced the notation

Γ̃κ[χ̄, χ] ≡ Γκ[ψ̄(χ̄), ψ(χ)] , S̃κ,cutoff[χ̄, χ] ≡ Sκ,cutoff[ψ̄(χ̄), ψ(χ)] , (3.122)

and
ˆ̃
R(q̃2) :=

ˆ̃S
(2)

cutoff(q̃,−q̃) =

(
0 q̃2r(q̃)

q̃2r(q̃) 0

)
. (3.123)

The derivative of this rescaled cutoff function becomes

∂κ
ˆ̃
R(q̃2) =

1

κ

(
0 q̃2r′

(
q̃2
)

q̃2r′
(
q̃2
)

0

)
. (3.124)

In the derivative of ∂κΓ̃κ[χ̄, χ] = ∂κ
(
Γκ[ψ̄(χ̄), ψ(χ)]

)
, in addition to the above term describing

the integration of degrees of freedom, there is also the term which is a consequence of the
κ-dependence of the field ψ ≡ ψ(χ), c.f. (3.112),∫

ddx dt
δΓ[ψ̄, ψ]

δψ(x, t)

∂ψ(x, t)

∂κ
=

∫
ddx̃ dt̃

δΓ̃[χ̄, χ]

δχ(x̃, t̃)

(
d

κ
− ∂κZκ

Zκ

)
. (3.125)

At the critical dimension we expect that Zκ ∼ κ−xZ , for some exponent xZ . Therefore, we
define xκ,Z = −κ∂κZκZκ

. At a fixed point, the contribution of the flow equation ∂κΓ̃[χ̄, χ]

behaves as κ−1. This divergency can be dealt with by introducing the renormalization time

τ = ln(κ/Λ) , (3.126)

which, by definition, runs from 0 to −∞.

We thus obtain the flow equation for the dimensionless action,

∂τ Γ̃τ [χ̄, χ] = (d+ xκ,D)

∫
ddx̃ dt̃

δΓ̃τ [χ̄, χ]

δχ(x̃, t̃)
χ(x̃, t̃)+

1

2
Tr

[
∂τ

ˆ̃
R ·
(

ˆ̃
Γ

(2)

τ [χ, χ] +
ˆ̃
R

)−1
]
. (3.127)

This flow equation is incomplete since, in addition, we need to determine the flow of

Dκ =
(2π)d+2

δ(q = 0)

∂

∂q2

δ2

δψ̄(−q)δψ(q)
Γκ[ψ̄, ψ]

∣∣∣∣
q=ψ̄=ψ=0

, (3.128)

and of

Zκ = −i (2π)d+2

δ(q = 0)

∂

∂ω

δ2

δψ̄(−q)δψ(q)
Γκ[ψ̄, ψ]

∣∣∣∣
q=ψ̄=ψ=0

. (3.129)

Transforming to dimensionless, renormalized quantities, and inserting Eq. (3.121) we thus
obtain

xD,τ := −∂τ lnDτ = −1

2

(2π)d+2

δ(q̃ = 0)

∂

∂q̃2

δ2

δψ̄(−q̃)δψ(q̃)
Tr

[
ˆ̃
R ·
(
∂τ

ˆ̃
Γ

(2)

τ [χ̄, χ] +
ˆ̃
R

)−1
]∣∣∣∣∣

q̃=χ̄=χ=0

,

(3.130)
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and

xZ,τ = −∂τ lnZτ =
i

2

(2π)d+2

δ(q̃ = 0)

∂

∂ω̃

δ2

δχ̄(−q̃)δψ(q̃)
Tr

[
ˆ̃
R ·
(

ˆ̃
Γ

(2)

τ [χ̄, χ] +
ˆ̃
R

)−1
]∣∣∣∣∣

q̃=χ̄=χ=0

.

(3.131)
When the flow has reached a fixed point, the right hand sides attain constant values, say −xD
and −xZ . Therefore, in this case one observes the divergencies Dκ ∼ κ−xD , Zκ ∼ κ−xZ , as
already claimed above.

Eqs. (3.127,3.130,3.131) represent a complete description of the flow in the new, dimensionless
framework. We remark that, although we considered the leading order approximation, these
equations also hold to arbitrary order in the derivative expansion. Furthermore, we note
that it is not strictly necessary to choose χ̄ = χ = 0 in Eqs. (3.130,3.131). For instance, for
the contact process it was found more convenient to take the derivatives at the minimum of
∂χ̄uτ (χ̄ = 0, χ) [125].

We can now easily deduce the flow equation for the dimensionless local potential uτ . Inserting
homogeneous fields χ̄(x̃, t̃) ≡ χ̄, χ(x̃, t̃) ≡ χ, the left hand side of Eq. (3.127) becomes

∂τ

[
Ṽ T̃ uτ (χ̄, χ)

]
, where Ṽ = κdV and T̃ = κ2DκZ

−1
κ T denote the dimensionless volumes of

space and time, respectively. Just as the rescaled fields ψ̄ and ψ these rescaled volumes are
kept fixed along the renormalization group flow. Thus,

∂τuτ (χ̄, χ) = − (d+ zτ )uτ (χ̄, χ)︸ ︷︷ ︸
decrease of volume Ṽ T̃

+ (d+ ητ )χu(0,1)
τ (χ̄, χ)︸ ︷︷ ︸

increase of field χ

+
1

2Ṽ T̃
Tr

[
ˆ̃
R ·
(

ˆ̃
Γ

(2)

τ [χ, χ] +
ˆ̃
R

)−1
]

︸ ︷︷ ︸
integration of degrees of freedom

,

(3.132)
where we have defined the τ -dependent dynamic exponent

zτ = 2 + ∂τ lnDτ − ∂τ lnZτ = 2 + xZ,τ − xD,τ , (3.133)

and the τ -dependent anomalous dimension

ητ = −∂τ lnZτ = xZ,τ . (3.134)

By the underbraces in Eq. (3.132) we indicate the origin of the three contributions. The
first two are trivial, in the sense that they stem from the rescaling to our new variables.
The Wetterich equation, which describes the gradual integration of degrees of freedom as the
cutoff is decreased along the flow, only enters the third term.

Let us finally exploit that in the leading order approximation the new effective average action
is of the form

Γ̃τ [χ̄, χ] =

∫
ddx̃ dt̃

[
uτ (χ̄, χ) + χ̄(x̃, t̃) (i∂t̃ −∇x̃)χ(x̃, t̃)

]
. (3.135)

By the same procedure as in the previous chapter one can work out the third term in
Eq. (3.132) to arrive at an equation for the flow of the dimensionless effective average poten-
tial uτ analogous to Eq. (3.107). Within the leading order approximation the flow equation
reads

∂uτ (χ̄, χ) = −(d+ zτ )uτ (χ̄, χ) + (d+ ητ )χu(0,1)
τ (χ̄, χ)−
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− 1

2

∫
q̃

s(q̃2)
(
u

(1,1)
τ (χ̄, χ) + q̃2r(q̃2) + q2

)
√(

u
(1,1)
τ (χ̄, χ) + q̃2r(q̃2) + q̃2

)2
− u(2,0)

τ (χ̄, χ)u
(0,2)
τ (χ̄, χ)

, (3.136)

where
s(q̃2) = −2q̃4r′

(
q̃2
)
− xD,τ q̃2r

(
q̃2
)
. (3.137)

With the standard cutoff function (3.108), which now takes the form

r(q̃2) =

(
1

q̃2
− 1

)
Θ
(
1− q̃2

)
, (3.138)

this reduces to

∂τuτ (χ̄, χ) = −(d+ zτ )uτ (χ̄, χ) + (d+ ητ )χu(0,1)
τ (χ̄, χ) +

+
d+ 2− xD,τ

d+ 2

Ṽd

(
u

(1,1)
τ (χ̄, χ) + 1

)
√(

u
(1,1)
τ (χ̄, χ) + 1

)2
− u(2,0)

τ (χ̄, χ)u
(0,2)
τ (χ̄, χ)

, (3.139)

where, as before, Ṽd denotes the volume of the d-dimensional sphere with radius (2π)−1 (and
not the rescaled volume Ṽ = κdV ).

Let us assume that we are at a critical point, such that, after an initial transient, the renor-
malization group flow reaches a fixed point. By standard renormalization group arguments
one can then make a number of statements on the mathematical properties of the effective
action Γ[ψ̄, ψ] and in particular on the effective average potential Uκ(ψ̄, ψ) [144, 145]. Alter-
natively, let us here deduce the scaling of the quantity F (ψ) := ∂ψ̄Uκ(ψ̄ = 0, ψ) (which will
be of interest in the next chapter, since it determines the equation of motion of the particle
density) directly from the flow equation (3.139). For large fields χ the term of the integration
of the degrees of freedom becomes small and can be neglected. At the fixed point we therefore
obtain 0 = −(d + z)u?(χ̄, χ) + (d + η)χu? (0,1)(χ̄, χ). Thus, u?(χ̄, χ) = Cχ̄χ(d+z)/(d+η), for
some constant C and up to higher orders in χ̄ and F (ψ) scales as ψz/(d+η).



4 Renormalization of the Coagulation Process
Below the Critical Dimension

Although the coagulation process does not display a phase transition, its long time approach
to a vacant system with zero particle density can be described within the framework of critical
phenomena. Indeed, the process is suitable for treatment with the perturbative renormaliza-
tion group approach, as was demonstrated in the pioneering works of Peliti [76] and Lee [77].
Peliti established that the process displays an upper critical dimension and that its value is
dc = 2. This confirms predictions based on heuristic arguments and computer simulations
[62, 64, 65, 79, 146–148]. Above the critical dimension, the mean-field decay ρ ∼ A(Dt)−1

(for some dimension dependent amplitude A and diffusion constant D) is not destroyed by
fluctuations. In contrast it is significantly retarded by fluctuations below the critical dimen-
sion, such that ρ ∼ A(Dt)−d/2 when d < 2, and it is slowed down by a logarithmic term at
the critical dimension dc = 2, where ρ ∼ ln(t)(4πDt)−1.

Peliti’s analysis was only concerned with the long time scaling. Employing the perturbative
renormalization group, Lee showed that also the amplitude A can be calculated for d = 2
dimensions, and for d < 2 as an expansion in ε = 2 − d (the difference between the upper
critical dimension dc = 2 and the dimension d). It was found that,

A =

{
ln(t)
4π if d = dc = 2 ,
1

2πε + 2 ln(8π)−5
16π +O(ε) if d < dc .

(4.1)

The Landau O(ε) can in principle be obtained by going to higher and higher loops in the
calculation, but the complexity of the problem does not seem to allow to go beyond one-loop
order in the calculation of the density [77].

It is of course doubtful if the above result is of relevance for one dimension, where ε = 1, since
the expansion for the amplitude is only expected to be accurate when ε is small. Thus, in
order to be able to verify Eq. (4.1) by simulation results, one needs to find a way to tune ε.
This idea can be pursued by replacing the diffusional motion of the particles by Lévy flights.
This allows one to shift the critical dimension dc to a value close to d = 1 and to render
ε = dc − d small. An expansion of the amplitude A for this realization of the process can be
obtained in complete analogy to Lee’s calculations and is in good agreement with stochastic
simulations [149].

In this chapter we will first study the mathematical properties of the effective average action Γ,
exploiting special properties of the coagulation process. Similar to restrictions due to certain
symmetries in, say, magnetic models, we will show that in the Taylor expansion of the effective
average potential Uκ many terms are not created along the renormalization group flow. These
properties can most conveniently be seen upon representing the flow by one-loop Feynman
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diagrams. Having established these simplifications, we will prove that the coagulation process
A+A→ A is equivalent to the annihilation process A+A→ ∅, in the sense that their time
dependent density and its moments are connected by a simple mapping. Therefore, all of the
results that are derived for the coagulation process in this and the following chapters are also
relevant for the annihilation process. We will further exploit the relative simplicity of the flow
equations to study the coagulation process in one dimension. As opposed to the perturbative
approach, the fact that dc − d = ε = 1 is not small does not pose a problem for NPRG, since
the amplitude can be calculated directly for one dimension without the need of an expansion
in a small parameter ε. As one might expect, the calculation cannot be carried out exactly.
We will need to recur to an approximation scheme, as developed in the previous chapter, in
order to reduce the complexity of the flow equation. We find that the coagulation process,
due to its specific properties, permits us to go to a relatively high order of the approximation,
therefore promising accurate results. Indeed, they compare well to the exact solution for one
dimension. We also extend our analysis to general dimension d ≤ 2 and thus reproduce results
from perturbative calculations for small ε.

4.1 Mathematical Properties of the Effective Average Action

Symmetries which are obeyed by the effective average action Γκ usually play a central role in
the discussion of the critical behavior of a system. Examples include the O(N) symmetries in
equilibrium statistical mechanics [111], and, in non-equilibrium reaction-diffusion systems, the
KPZ-symmetries [130, 131], the time-reversal symmetries of “model A” [127, 140], or the so
called “rapidity symmetry” of the contact process [125, 126] (the term “rapidity symmetry”
was coined in the context of the related Reggeon field theory [150]), where the action is
invariant under the transformation

ψ(x, t)→ −ψ̄(x,−t) , ψ̄(x, t)→ −ψ(x,−t) . (4.2)

Strikingly, at phase transitions there is a macroscopic breaking of these symmetries, as, for
instance, the Z2 symmetry of an Ising magnet is broken by spontaneous magnetization above
the critical temperature. Nevertheless, it is important that symmetries be preserved along the
renormalization group flow by adequate choice of the cutoff function Rκ and the truncation.
For the rapidity symmetry this can be ensured by expressing the potentials in the derivative
expansion (in particular the effective average potential Uκ(ψ̄, ψ)) as functions of ρ = ψ̄ψ and
χ = ψ− ψ̄, which (for stationary fields) are invariants under the above transformation. Thus,
the flow cannot leave the manifold defined by the rapidity symmetry.

Similarly, one can make statements on the mathematical properties of the effective average
action Γκ for the coagulation process. They do not come as an invariance with respect to
a symmetry transformation of the fields ψ̄ and ψ, as it is the case for the contact process.
Rather, they become apparent upon expanding the effective average action Γκ, which is
rendered analytic by the infrared cutoff as long as the scale κ > 0 [111]. In particular, for a
general reaction-diffusion process, the effective average potential Uκ(ψ̄, ψ) = (TV )−1 Γκ[ψ̄, ψ]
(for homogeneous fields ψ̄(x, t) ≡ ψ̄, ψ(x, t) = ψ, with the volume V and T of space and time,
respectively) and its rescaled counterpart uτ (χ̄, χ) = κ−d−2D−1

κ ZκUκ(ψ̄, ψ) (with χ̄ = ψ̄,
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χ = κ−dψ, and τ = ln(κ/Λ)), can be expressed as the power series

Uκ(ψ̄, ψ) =
∑

m≥1,n≥1

1

m!n!
g(m,n)
κ ψ̄mψn , uτ (χ̄, χ) =

∑
m≥1,n≥1

1

m!n!
g̃(m,n)
τ χ̄mχn . (4.3)

As proven by Canet et al. [140], and as shown below for the coagulation process, the terms
are at least of order one in each field. According to Eqs. (3.112,3.118), there is the simple
relation

g(m,n)
κ = κ2+d(1−n)Zn−1

κ Dκg̃
(m,n)
τ , (4.4)

between the coefficients g
(m,n)
κ for the dimensionful potential Uκ and the coefficients g̃

(m,n)
τ for

the dimensionless potential uτ . Let us in the following consider the rescaled average effective
potential uτ (χ̄, χ), because it will also be employed for the concrete calculations later in this
chapter.

To exploit the specific properties of the coagulation process, recall that, as discussed in Sec-
tion 3.3, the fields ψ̄ and ψ, and consequently their rescaled counterparts χ̄ and χ, are related
to the creation and destruction operators â† and â, respectively. For the coagulation process,
the number of particles can only decrease. Hence, we expect that the expansion of uτ (χ̄, χ)
only includes monomials χ̄mχn with m ≤ n. Furthermore, there are no single particle reac-
tions, such as the spontaneous decay A → ∅ for the contact process, which would give rise
to monomials with n = 1. In contrast, reactions of three or more particles may arise along
the renormalization group flow by a combination of reactions (the sequence 3A → 2A → A
effectively gives 3A→ A). Hence, it seems reasonable to demand, in addition to m ≤ n, that
n > 1.

To put the above assertions on firm ground, one has to look at the flow equation for uτ ,
c.f. Eq. (3.139). Here, we shall employ the local potential approximation, as introduced in
Section 3.6, where the diffusion constant Dκ and the field amplitude Zκ are not renormalized
and the exponents zτ , ητ and xD,τ in Eq. (3.139) are zero. (Below, it is shown that for our
process this is in fact exact, because the renormalization group flow for Dκ and Zκ vanishes.)
Thus, the flow equation studied in this chapter is

∂τuτ (χ̄, χ)=−(d+2)uτ (χ̄, χ)+dχu(0,1)
τ (χ̄, χ)+

Ṽd

(
u

(1,1)
τ (χ̄, χ) + 1

)
√(

u
(1,1)
τ (χ̄, χ) + 1

)2
− u(2,0)

τ (χ̄, χ)u
(0,2)
τ (χ̄, χ)

,

(4.5)
with the microscopic action (3.60) (zero rate λ′ = 0 for annihilation) as the initial condition,
i.e.

uτ=0(χ̄, χ) = λ̃τ=0χ̄
2χ2 + λ̃τ=0χ̄χ

2 , (4.6)

where λ̃τ=0 = Λd−2λ is the rescaled coagulation rate. For the purposes of this section, we

rewrite Eq. (4.5) for small χ̄ and χ (so that, in particular, u
(1,1)
τ (χ̄, χ) + 1 > 0) as

∂τuτ (χ̄, χ) = −(d+ 2)uτ (χ̄, χ) + dχu(0,1)
τ (χ̄, χ) +

Ṽd√
1− u

(2,0)
τ (χ̄,χ)u

(0,2)
τ (χ̄,χ)

1+u
(1,1)
τ (χ̄,χ)

. (4.7)
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Let us ignore for a moment the trivial, “dimensional” first two terms of this equation and for
the “dynamic” part, the third term, perform the expansion

∂τuτ (χ̄, χ)|dyn

Ṽd
=1 +

1

2

u
(2,0)
τ (χ̄, χ)u

(0,2)
τ (χ̄, χ)

1 + u
(1,1)
τ (χ̄, χ)

+
3

8

(
u

(2,0)
τ (χ̄, χ)u

(0,2)
τ (χ̄, χ)

1 + u
(1,1)
τ

)2

+ . . . =

=
∞∑
j=0

(−1
2

j

)
(−1)j

(
u

(2,0)
τ (χ̄, χ)u

(0,2)
τ (χ̄, χ)

1 + u
(1,1)
τ (χ̄, χ)

)j
. (4.8)

The base itself of this binomial expansion can also be written as a power series,

u
(2,0)
τ (χ̄, χ)u

(0,2)
τ (χ̄, χ)

1 + u
(1,1)
τ (χ̄, χ)

= u(2,0)
τ (χ̄, χ)u(0,2)

τ (χ̄, χ)
∞∑
j=0

(−1)j
(
u(1,1)
τ (χ̄, χ)

)j
. (4.9)

Since the assertions on the power series of uτ (χ̄, χ) also hold true for the initial condition, it
is now easily verified that they must also hold along the renormalization group flow: Ignoring
the physically irrelevant constant (i.e. independent of the fields χ̄, χ) contribution to the flow,

all the terms in the dynamic part of the flow equation are multiplied by u
(2,0)
τ (χ̄, χ)u

(0,2)
τ (χ̄, χ).

Therefore, in the flow equation neither the power in χ̄ nor the power in χ can be lower than
the lowest powers present in uτ (χ̄, χ), which, initially, are 1 for χ̄ and 2 for χ. Furthermore,

the terms in the dynamic part are made up only of the factors u
(2,0)
τ (χ̄, χ)u

(0,2)
τ (χ̄, χ) and

u
(1,1)
τ (χ̄, χ), which evidently cannot lead to monomials χ̄mχn with m > n if they were not

already present in uτ (χ̄, χ). These properties of the flow are obviously not destroyed by the
dimensional part of Eq. (4.7). So indeed we have

uτ (χ̄, χ) =
∑
m,n

1

m!n!
g̃(m,n)
τ χ̄mχn , where n ≥ m ≥ 1 and n ≥ 2 . (4.10)

4.2 The One-Loop Expansion and Restrictions on the Flow
Equation

In addition to this restriction on the form of the potential, we can make statements on which

terms enter the flow equation of each coefficient g̃
(m,n)
τ . For instance, the flow for g̃

(1,3)
τ , related

to the reaction 3A → A, should involve itself and g̃
(1,2)
τ to the square, because the reaction

may be effectively created by two consecutive reactions 3A → 2A → A, but clearly there

should be no terms corresponding to four or more initial particles, i.e. g̃
(1,n)
τ with m ≥ 4. In

principle, this can be proven by careful study of the flow equation (4.5) for uτ . But although
this equation will be most adequate for our concrete calculations in the following sections,
here it is more elegant to go back to the full Wetterich equation for the effective average action
Γκ and recast it in a form that is amenable to a diagrammatic analysis and thus reveals the
mathematical structure more immediately,

∂κΓκ[ψ̄, ψ] = ∂̃κ
1

2
Tr
[
ln
(

Γ̂(2)
κ [ψ̄, ψ] + R̂κ

)]
︸ ︷︷ ︸

Dκ

, (4.11)
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where ∂̃κ := ∂κRκ · ∂Rκ acts only on the κ-dependence of the cutoff function Rκ.

The function Dκ on the right hand side in Eq. (4.11) is known from perturbative analysis
as the creator of one-loop Feynman diagrams [111, 151–153]. Therefore, the renormalization
group flow of the (m,n)-point vertex functions Γ(m,n), in Fourier space obtained by taking
the functional derivative with respect to ψ̄(pi, ωi), i ∈ {1, . . . ,m} and ψ(pj , ωj), j ∈ {m +
1, . . . ,m+ n} at zero fields ψ̄ = ψ = 0,

Γ
(m,n)
κ (p1,ω1;...;pm+n,ωm+n) =

δm+nΓκ[ψ̄ = 0, ψ = 0]

δψ̄(p1, ω1) · · · δψ̄(qm, ωm)δψ(pm+1, ωm+1) · · · δψ(qm+n, ωm+n)
,

(4.12)
can be represented by the one-loop Feynman diagrams for the (m,n)-vertex.

In this way, we also obtain the flow of the coefficients g̃
(m,n)
τ , since, evidently, they are propor-

tional to the momentum- and frequency-independent part of Γ
(m,n)
κ (p1,ω1;...;pm+n,ωm+n). Indeed,

functional differentiation at zero momenta and frequencies yields

g(m,n)
κ =

(2π)(d+1)(m+n)

TV
Γ

(m,n)
κ (0,0;...;0,0) , (4.13)

and g
(m,n)
κ is related to the rescaled coefficients g̃

(m,n)
τ by Eq. (4.4).

Now, the fact that the propagator, due to causality, can only connect earlier to later vertices,
together with the fact that the number of legs can only decrease as time passes, drastically
restricts the number of possible Feynman diagrams. We can at once deduce that the flow of

Γ
(1,1)
κ (p, ω; p′, ω′) vanishes, since there is no diagram of the form

(The arrows indicate the direction of increasing time.) As a consequence, similar to the
absence of propagator renormalization in perturbative renormalization [76], the diffusion con-
stant Dκ and field amplitude Zκ are constant

Dκ = Zκ = 1 . (4.14)

Therefore, the local potential approximation and the leading order approximation are equi-
valent for the coagulation process.

Explicitly, at all scales κ, the propagator reads

〈p′, ω′,m|Ĝκ[ψ̄ = 0, ψ = 0]|p, ω, n〉 = 〈p′, ω′,m|(Γ̂(2)
κ [0, 0] + R̂κ)−1|p, ω, n〉 =

=
1

2
δ(p− p′)δ(ω − ω′)

(
0 1

p2+Rκ+iω
1

p2+Rκ−iω 0

)
m,n

. (4.15)
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Transforming to momentum- and time-space,

〈p′, t′,m|Ĝκ[0, 0]|p, t, n〉 =
δ(p− p′)

4π

(
0 e−(p2+Rκ)(t−t′)Θ(t− t′)

e−(p2+Rκ)(t′−t)Θ(t′ − t) 0

)
m,n

.

(4.16)
with Heaviside’s step function Θ(t),

Θ(t) =

{
1 if t > 0,

0 if t < 0,
(4.17)

which ensures the propagator only connects earlier ψ̄ to later ψ, such that causality is obeyed.

There arises a subtlety, since the propagator is ill-defined at t′ − t = 0. One might wonder if
tadpole diagrams, i.e. loops that close on themselves, such as

need to be taken into account and there is propagator renormalization after all. However,
in the derivation of the field theory in Section 3.3, it is understood that in the products
ψ̄(x, t)mψ(x, t)n, the response field ψ̄ follows ψ by an infinitesimally small time interval. In
the perturbative approach, therefore, it is important that these diagrams be excluded in order
to guarantee causality [154]. In contrast, in the non-perturbative approach it is not possible
to remove these diagrams “by hand”. Sometimes, it is necessary to introduce a regularization
scheme which deals with this problem [140]. In our case however, the contributions of these
tadpole diagrams are harmless. Indeed, the loop in the above diagram gives

δ(p− p′)δ(ω − ω′) p2 +Rκ

(p2 +Rκ)2 + ω2
, (4.18)

in (p, ω)-space. Transforming to (p, t)-space this becomes{
1
2δ(p− p′) if t = t′ ,

0 otherwise .
(4.19)

Since this is non-zero only on a null set of the time axis, it is irrelevant. We remark that, as
argued in [140], in general the contributions of such tadpole diagrams are not negligible since
they can involve delta functions of time, or derivatives thereof (this is clearly not the case
here).

Let us now consider the flow of general (m,n)-point vertex functions. Since in the initial action
the number n of incoming legs is larger than the number m of outgoing legs for all non-zero
vertex functions, it follows that no one-loop diagrams with m > n can be constructed from
these vertices and therefore the flow of the vertex functions with m > n is zero. Similarly,
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the minimum number of incoming legs in the Feynman diagrams, which is n = 2, and the
minimum number of outgoing legs, which is m = 1, is inherited to all scales because no one-
loop diagram can be created breaching these minimum numbers. Thus, we recover the result
stated in Eq. (4.10). But by looking at the one-loop diagrams, we can learn even more about
the flow of (m,n)-vertex functions, which goes beyond the findings of the previous section.
The flow equation must not contain (m′, n′)-vertices with m′ − n′ > m − n, since too many
“particles” would be annihilated. As an illustration, consider the vertex

The three incoming lines are reduced to one line by a (1, 3)-point vertex function. With the
available vertices, one cannot complete this diagram to a one-loop diagram in a way that
it would connect to two or three outgoing vertices. Therefore, it cannot contribute to the

flow equations of Γ
(2,3)
κ and Γ

(3,3)
κ . As a corollary, it again follows that Γ

(m,n)
κ = 0 if m > n.

Moreover, when m ≤ n (except for m = n = 2), the flow ∂κΓ
(m,n)
κ is linear in Γ

(m,n)
κ : When

m < n the corresponding vertex has only m outgoing lines, which evidently cannot connect
again to a vertex with n incoming lines. When m = n > 2 one loop would not suffice to
include a second (m,n)-vertex in the diagram.

In general, one-loop diagrams for the flow of the vertex function Γ
(m,n)
κ which contain one

(m,n)-vertex can only involve exactly one additional vertex, which must be a (2, 2)-vertex,
so that the result is the number of ways the (2, 2)-vertex can be attached times the value of
the single diagrams. For the (1, 3)-vertex this would be

Therefore, the term linear in Γ
(m,n)
κ cannot vanish, so that the stationary flow equation can

always be resolved for a finite Γ
(m,n)
κ . Exceptionally, when m = n = 2 the differential equation

is quadratic, because the flow is determined by the one-loop diagram
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Note that the renormalization group flow of Γ
(2,2)
κ is “self-contained”, i.e. it only depends on

itself.

Let us apply our findings to the dimensionless potential uτ (χ̄, χ). Expanding this analytic
function

uτ (χ̄, χ) =
∑

m≥1,n≥2,m≤n

1

m!n!
g̃(m,n)
τ χ̄mχn , (4.20)

we can calculate the coefficients g̃?(m,n) of the fixed point potential u? (giving zero flow when
it is inserted in Eq. (4.5)) within the local potential approximation step by step as follows

(also see Fig. 4.1): We start with g̃?(2,2), which is easily obtained because ∂τ g̃
(2,2)
τ depends

only on g̃
(2,2)
τ . We then turn to g̃?(1,2), whose flow ∂τ g̃

(1,2)
τ is a function of g̃

(2,2)
τ and g̃

(1,2)
τ .

Assuming that we know the fixed point values of g̃?(m,n) for all m < n we can go on to treat
g̃?(m,n) successively for m = n, n− 1, . . . , 1. In each step one simply needs to solve the linear
equation

0
!

= c1(m,n) + c2(m,n) · g̃?(m,n) , (4.21)

given some c1(m,n) and c2(m,n) 6= 0.

To conclude this section, let us look more closely at the flow of the lowest order vertex functions

Γ
(1,2)
κ (p1,ω1;p2,ω2;p3,ω3) and Γ

(2,2)
κ (p1,ω1;p2,ω2;p3,ω3;p4,ω4). We will be most interested in homogeneous

states, where the external momenta vanish, pi = 0, ωi = 0. For the (2,2)-vertex it turns out

to be convenient to look at the slightly more general case Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω), whose

flow is determined by the diagram

− p , −ω −p, −ω

p ,ω p,ω
q, ωq

−q,−ωq

Interestingly, the renormalization group flow of Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω) is a function of itself.

Now, the initial value Γ
(2,2)
Λ (p′,ω′;−p′,−ω′;p,ω;−p,−ω) is independent of the external momenta and

frequencies p, ω, and p′, ω′. Thus, this property is inherited to all scales κ and we have that

Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω) ≡ Γ

(2,2)
κ (0,0;0,0;0,0;0,0) ∝ U

(2,2)
κ (0, 0) . (4.22)

This fact puts us in a rather comfortable position: The renormalization group flow for

Γ
(2,2)
κ (0,0;0,0;0,0;0,0) is a function of itself and is not affected by our truncation (the local po-

tential approximation). Therefore, it is possible to calculate its flow exactly, which will be
carried out later in this chapter.

Of particular importance will be the vertex functions Γ
(1,n)
κ because they determine the kinetic

equation via the extremal principle, c.f. Eq. (3.93) (the first condition simply implies ψ̄ = 0,
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χ 1 χ 2 χ 3 χ 4 χ 5 χ 6

χ̄ 1

χ̄ 2

χ̄ 3

χ̄ 4

χ̄ 5

χ̄ 6

Figure 4.1: Illustration of the order for calculating the non-zero fixed point coefficients
g̃?(m,n) in the power series of the dimensionless fixed point potential u?(χ̄, χ) =∑
m≥1,n≥2,m≤n

1
m!n! g̃

?(m,n)χ̄mχn. In each step the flow equation for the coefficient that
is calculated, is independent of the coefficients to follow. This can be shown by looking

at all possible one-loop diagrams, which determine the flow of the vertex function Γ
(m,n)
κ .

Alternative orders in which one calculates the coefficients are conceivable. For instance,
one could first calculate the line m = n up to a some maximal n, since the diagonal ele-
ments g̃?(n, n) only depend on g̃?(n

′,n′) with n′ < n. One could then go on to resolve the
line m + 1 = n and so on. Remarkably, in terms of computational effort the physically
relevant line ∼ χ̄1 is the most expensive—all the other coefficients g̃?(m′, n′) with n′ ≤ n
must be known.

such that vertex functions Γ
(m,n)
κ with m > 1 are irrelevant for the kinetics). It turns out that,

despite of the truncation, the first of these “physically relevant” vertex functions, Γ
(1,2)
κ , which

describe the decay for small densities, is calculated exactly at zero momenta and frequencies,
for the same reasons as for the (2,2)-vertex. The corresponding one-loop diagram is

q, ωq
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(which is non-zero only if p1 = p2 + p3, ω1 = ω2 + ω3). Since this is identical to the (2,2)-
diagram with the left (2,2)-vertex replaced by a (1,2)-vertex, it follows for coagulation, that
the relation

Γ
(1,2)
κ (p1,ω1;p2,ω2;p3,ω3) ≡

1

2
(2π)d+1Γ

(2,2)
κ (p1−p′,ω1−ω′;p′,ω′;p2,ω2;p3,ω3) , (4.23)

which holds initially, at κ = Λ, is conserved along the renormalization group flow. In partic-
ular, for zero momenta and frequencies both vertex functions are obtained exactly.

4.3 Relation Between the Coagulation Process and the
Annihilation Process

We are now able to verify that the coagulation process and the annihilation process are in
the same universality class [76, 155, 156]. Consider the coagulation process, A+A→ A, with
rate λ̂ and annihilation A + A → ∅ with equal rate λ̂. The microscopic action is given by
Eq. (3.53) with λ = λ̂, λ′ = 0 for coagulation, and λ = 0, λ′ = λ̂ for annihilation. Thus it

follows that for the microscopic scale Λ we have the identity Γ
(1,2)
Λ,coag = 1

2Γ
(1,2)
Λ,annih. As remarked

in the previous section, c.f. Eq. (4.23), there is a simple relation between the (1,2)- and (2,2)-
vertex functions for the coagulation process. In complete analogy, for the annihilation process
one has instead that

Γ
(1,2)
κ,annih (p1,ω1;p2,ω2;p3,ω3;p4,ω4) = (2π)d+1Γ

(2,2)
κ,annih (p1,ω1;p2,ω2;p3,ω3;p4,ω4) . (4.24)

Therefore, when the microscopic rates for coagulation and annihilation are equal, we have

that the identity Γ
(1,2)
κ,coag = 1

2Γ
(1,2)
κ,annih is conserved along the flow.

More generally we assert that

Γ(m,n)
κ,coag = 2m−nΓ

(m,n)
κ,annih , (4.25)

exactly at all scales κ. This can be proven by induction: At the microscopic scale Λ the
equation is certainly true. The flow of the (m,n)-point vertex functions, determined by the
corresponding one-loop diagrams, is a sum of products of vertex-functions with n1, . . . , nj
(n1 + . . . + nj = n) incoming and m1, . . . ,mj (m1 + . . . + mj = m) outgoing legs, such that
(n1 −m1) + . . .+ (nj −mj) = n−m. Therefore, assuming that Eq. (4.25) holds, the flow of
the vertex functions for annihilation is accelerated by the factor 2(n−m) as compared to the
flow for coagulation. Thus, Eq. (4.25) holds for all vertex functions and at all scales κ.

It follows that, due to the extremal princple, c.f. Eq. (3.93), the kinetics for annihilation and
coagulation are simply related. If Γ[ψ̄ = 0, ψ = ρ] is a solution of the extremal principle
for the coagulation process with particle input J , then Γ[ψ̄ = 0, ψ = ρ/2] is a solution for
the annihilation process with particle input J/2. Of course one can proceed in an analogous
fashion for a mixed annihilation and coagulation process, the “α-process”, A + A → ∅ with
rate (α − 1)λ̂ and A + A → A with rate (2 − α)λ̂ (α ∈ [1, 2]), to find that the decay is
accelerated by a factor α instead,

ρcoag(t) = αρα(t) , (4.26)
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Figure 4.2: Comparison of the decay for a pure coagulation process, A + A → A with rate λ̂, and
a pure annihilation process, A + A → ∅ with the same rate λ̂. For Poissonian initial
conditions the result agrees with Eq. (4.26) (black line, α = 1 for coagulation, α = 2 for
annihilation). When the particles are distributed in pairs on the lattice (on each site the

probability to find 2n particles is cosh(ρ) ρ2n

(2n)! , with no correlations between the sites), this

symmetry between coagulation (blue line) and annihilation (red line) is broken. It has
been shown that strongly correlated initial condition affect the long time behavior for the
annihilation process in one dimension. The long time decay for the coagulation process,
however, is universal [156].

if the equation holds initially. Thus, not only are the processes in the same universality class,
but there is a simple, exact relation between their dynamics which is always true and not just
in the long time and low density limit (also see [66, 156–158]).

However, we must add an important caveat to this neat result. There are initial conditions
which cannot be created by particle input. This is the case for instance, when particles are

initially distributed in pairs (two particles on the lattice site), with the probability cosh(ρ) ρ2n

(2n)!
to have n pairs, giving an initial density ρ. This state can be created by linear combination
of the coherent states |ρ〉 and |−ρ〉. The former state, |ρ〉, would just imply a Poissonian dis-
tribution, which can be created by particle input J(x, t) = ρ δ(t). Our above analysis applies
to both of these coherent states |ρ〉, |−ρ〉 separately. For the sum, however, the computer
simulations clearly show that there are strong deviations from Eq. (4.26), c.f. Figure 4.2. In
fact, one can show that Eq. (4.26) only holds if initially the n-point correlation functions
fulfill [156]

〈ψ(x1) · . . . · ψ(xn)〉coag = αn〈ψ(x1) · . . . · ψ(xn)〉α . (4.27)

(Notice that this is true, in particular, for Poissonian initial conditions, so long as ρcoag =
2ρannih). These can be generated in our model by particle input of the form J(t) = ρcoagδ(t)
for the coagulation process and J(t) = ραδ(t) for the α-process, with ρcoag = αρα.

In general Eq. (4.26) need not even be true in the long time limit. The fact that the long



74 4. Renormalization of the Coagulation Process Below the Critical Dimension

time behavior depends on the initial conditions, can perhaps be best understood for the
one-dimensional annihilation model, after a mapping to a zero temperature, dynamic Ising
model [159]. It was found that on condition that the initial magnetization m0 vanishes, the
long time behavior coincides with the long time behavior for Poissonian initial conditions.
However, when m0 is non-zero, corresponding to short range correlations in the annihilation
model, one observes different behavior, which can be expressed as a lowering of the ampli-
tude A for the long time decay At−1/2 of the annihilation model. The annihilation model
corresponds to the α-model with α = 2. In contrast, as soon as there is a non-zero rate for
coagulation, 1 ≤ α < 2, the decay amplitude A is independent of the initial state [156].

4.4 The Fixed Point and the Upper Critical Dimension

Having established the equivalence of the annihilation and the coagulation process (apart
from rather special initial conditions), from now on we will again focus on the latter. Let us
have a closer look at the couplings for two-particle interaction, 1

4 g̃τ (2, 2) ≡ 1
2 g̃τ (1, 2) =: λ̃τ .

From the flow equation for the rescaled potential, Eq. (4.5), we obtain

∂τ λ̃τ = (d− 2)λ̃τ + 2Ṽdλ̃
2
τ . (4.28)

At the upper critical dimension dc = 2 there is a transcritical bifurcation, such that, when
the dimension d < 2, there is an unstable fixed point at λ̃? = 0 (recall that τ flows in the
negative direction) and a stable one at

λ̃? =
2− d
2Ṽd

. (4.29)

For d > 2 the stability of the fixed points is interchanged and at d = 2 they merge to one,
marginally stable fixed point.

A similar behavior is obeyed by the other rescaled coefficients gτ (m,n). As shown in Sec-
tion 4.2, their flow is described by an equation of the form

∂τ g̃
(m,n)
τ = c1(n,m) + c2(m,n) · g̃(m,n)

τ , (4.30)

with non-zero c1(n,m) and c2(n,m), such that they tend to the finite value g̃?(m,n) =
−c1(n,m)/c2(n,m). As also discussed Section 4.2, we can calculate the fixed point coeffi-
cients subsequently in a way that c1(n,m), c2(n,m) are functions of coefficients g̃?(m

′,n′) that
are already known.

Thus, below the critical dimension, the flow drives the system automatically to a fixed point,
in particular the rescaled potential flows to a fixed point potential uτ → u?, which can be
represented in the form

u?(χ̄, χ) =
∑

m≥1,n≥2,m≤n

1

m!n!
g̃?(m,n)χ̄mχn . (4.31)

It will be our task in of the following sections to calculate the fixed point potential in order
to extract the critical behavior of the system which arises in the long time and large distance
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limit. In contrast, above the critical dimension uτ goes to zero. In this case, we will have
to consider the dimensionful potential Uκ instead (see next chapter). The critical dimension
dc = 2, where both potentials, uτ and Uκ tend to zero along the flow, needs to be treated
separately.

Finally, we remark that by generalizing the cutoff function (3.138) to

r(q2)→ c2r(c2q2) = (q−2 − c2)Θ(q−2 − c2) , (4.32)

the flow equation, Eq. (4.28), is replaced by

∂τ λ̃τ = (d− 2)λ̃τ + 2cd−2Ṽdλ̃
2
τ , (4.33)

indicating that the flow is independent of the cutoff if and only if the dimension is two. This
is also confirmed by the analytic result for perturbative RG calculation [77],

∂τ λ̃τ = (d− 2)λ̃τ + 4(2π)−d/2Γ(2− d/2)λ̃2
τ , (4.34)

with the Gamma function Γ (not to be confused with the effective action). This coincides
with our result at the critical dimension dc = 2. Indeed, we will see below that in two
dimensions the flow of λ̃τ completely determines the long time kinetics. Due to its direct
physical significance it must not depend on the particular cutoff. This is in contrast to
dimensions d < 2, where the long time kinetics will turn out to be determined by an infinite
sum of terms: Whereas this sum must converge to a function which does not depend on the
cutoff, the flow of each coefficient need not be independent, since it is not of direct physical
significance.

4.5 Study in One Dimension

From the previous sections we can already draw the conclusion that, by standard renormal-
ization arguments [4, 86, 144], the density will behave as

ρ ∼ At− 1
2 , (4.35)

in the long time limit, when the dimension d is one, for some amplitude A: The density ρ
corresponds to the field ψ, such that under renormalization it scales as ρ = κρ̃, with the
“dimensionless” density ρ̃, see Eq. (3.112), whereas time scales as t = κ−2t̃, see Eq. (3.111).

To obtain a broader picture, let us also consider particle input J , which gives rise to an
additional term

∫
dx dt J(x, t)ψ̄(x, t) in the action and is not renormalized (since there exist

no relevant one-loop diagrams, cf. Section 4.2). In one dimension it therefore scales as J = κ3j,
with the dimensionless particle input j. We expect that in the long time limit the density
becomes independent of the initial condition (as discussed in Section 4.3). Moreover, we
have just seen that the effective average action tends to a fixed point, in our approximation
described by the fixed point potential u?. Thus, the density will not depend on the initial
action, in particular it will be independent of the coupling λ. Therefore, it is a function only
of the particle input (chosen to be homogeneous in space and time), the initial action and
time,

ρ(λ, t, J) = κρ̃(uτ , t̃(t), j(J))
κ small−−−−→ κρ̃(u?, κ2t, κ−3J) . (4.36)
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Since the result must be independent of the scale κ, the density is expected to behave as
ρ ∼ J 1

3 for finite J and as ρ ∼ t− 1
2 when there is no particle input.

We also remark that the long time behavior of the density may be obtained after noting
that, since time scales as t ∼ κ−2, the scaling of the coupling λκ = κλ̃τ → κλ̃? may be
interpreted as a time dependent coupling λκ ∼ t−

1
2 . Thus, inserting this into the mean-field

result ρ ∼ λ−1t−1, we again obtain ρ ∼ λ−1
κ t ∼ t−

1
2 . In fact, this corresponds to the first

approximation in the perturbative approach, where the density is calculated by only summing
over tree diagrams (diagrams which contain no loops) [77, 137].

In the following, we turn to the question of how to estimate the amplitude A. The expectation
value ρ of the particle density is determined by the extremal principle, Eq. (3.93). Within our
approximation, cf. Eq. (3.99), and seeking for a solution that is homogeneous in space, instead
of the mean-field equation ∂tρ = −λρ2, the extremal principle yields the kinetic equation

∂tρ = −F (ρ) , (4.37)

with the non-equilbrium force F = Fκ→0, where the renormalized non-equilibrium force Fκ is
defined by

Fκ(ρ) :=
∂Uκ(ψ̄, ρ)

∂ψ̄

∣∣∣∣
ψ̄=0

. (4.38)

We also define its dimensionless counterpart

fτ (χ) :=
∂uτ (χ̄, χ)

∂χ̄

∣∣∣∣
χ̄=0

. (4.39)

Just as the rescaled potential uτ flows to u?, the renormalization group flow drives fτ to its
fixed point value f?, which according to Eq. (4.31) may be written as

f?(χ) =
∑
n≥2

1

n!
g̃?(1,n)χn . (4.40)

The kinetic equation becomes

∂tρ = − lim
κ→0

κ3fτ (κ−1ψ) = − lim
κ→0

κ3f?(κ−1ψ) . (4.41)

The limit must not depend on κ, since, once the reciprocal scale 1/κ is much larger than the
correlation length, the right hand side of the equation should have converged well. Hence,
the fixed point will be of the form

f?(χ) ∼ cχ3 , (4.42)

when χ is large, for some universal factor c. This implies that the non-equilibrium force
F (ρ) = cρ3 and we have for the kinetic equation

∂tρ = −cρ3 , (4.43)

such that we indeed recover the decay law, Eq. (4.35), with A = (2c)−1/2. We remark that,
whereas f? is analytic, the non-equilibrium force F (ρ) has a singular point ρ = 0. Phase
transitions can be defined by non-analyticities in the free energy. Thus, our system displays
a phase transition at vanishing particle density.
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In order to derive the factor c, which determines the amplitude in Eq. (4.35) and therefore
the long time kinetics, one needs to determine f?(χ) for large values of χ. This in turn affords
a good knowledge of the rescaled effective average potential uτ (χ̄, χ), whose flow is given by
Eq. (4.5) with the microscopic action for coagulation as the initial condition, c.f. Eq. (4.6).
Typically, the goal of the numerical calculations is to extract critical exponents, by considering
the flow in the region around the fixed point. In this case, to obtain a satisfactory result,
it is often sufficient to perform a series expansion of the Wetterich equation to the first few

orders in χ̄ and χ and then to consider the flow of the coefficients g̃
(m,n)
τ . For our problem

this clearly will not suffice, since the lower order coefficients only describe the behavior of the
force f? around the origin but not for large χ. Therefore, the question arises, if an expansion
of the fields around the origin is a reasonable approach to our problem, or if one should resort
to an approach where the functional dependence in χ is retained and go to large values of
this field. For instance, similar to the approach in [125], one could consider

uτ (χ̄, χ) = χ̄u1
τ (χ) +

χ̄2

2
u2
τ (χ) +

χ̄3

6
u3
τ (χ) + . . . (4.44)

derive the flow equations for u1
τ , u

2
τ , u

3
τ , . . . to some order, and then solve it “directly” by finite

difference methods, as demonstrated in [127, 160]. In principle, the amplitude A = (2c)−1

can then be determined by computing the non-equilibrium force f?(χ) = u1,?(χ) at the fixed
point up to large values of χ and exploiting Eq. (4.50).

However, the special simplifications of our process, as discussed in Section 4.2, are only
obvious in the expansion in the fields. For this reason, instead of calculating f?(χ) = u1,?(χ)
by solving the flow equation for u1

τ numerically, we have exploited these properties to calculate
a large number of fixed point coefficients g?(m,n) exactly (yet of course within our truncation,
Eq. (3.99), and we could thus determine the expansion f?(χ) =

∑
n≥2 g

?(1,n)χn for the first
125 coefficients with the aid of a symbolic computation program. The power series has a
finite radius of convergence. To be able to determine the amplitude A = (2c)−1, we enhanced
the result by employing Padé extrapolation [152, 161], cf. Fig. 4.3. This method consists in
calculating a rational function, with polynomials in the nominator and denominator, whose
coefficients are determined by the derivatives around the origin.

For the first 125 coefficients g̃?(1,n) one must obtain very many, i.e. ∼ 1252/2, coefficients
g̃?(m,n). Hence, for the concrete calculation we had to put some thought into decreasing the
complexity of our algorithm to speed up the program. As illustrated in Figure 4.1, one can

derive the flow equation for g̃
(m,n)
τ step by step. In each step the stationary value g̃?(m,n) =

limτ→−∞ g̃
(m,n)
τ is obtained by resolving the ensuing linear equation (4.21). We obtained

these equations not from the one-loop diagrams, as we did for the theoretical considerations
in Section 4.2 but “directly” from the flow equation (4.5), for the dimensionless potential

uτ (χ̄, χ) =
∑ 1

m!n! g̃
(m,n)
τ χ̄mχn. In principle, differentiating Eq. (4.5) m times with respect

to χ̄ and n times with respect to χ and setting χ̄ = χ = 0, yields the flow equation for g̃
(m,n)
τ .

Yet, in practice, this approach turned out infeasible since the expressions become too lengthy
with increasing m and n. However, by exploiting the analyticity of the Wetterich equation,
the problem of extracting the flow equations can be reduced to polynomial multiplication.

Let us rewrite the flow equation (4.5) for the rescaled potential employing the Taylor expansion
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Figure 4.3: Dimensionless non-equilibrium force f?(χ) = ∂χ̄uτ→−∞(χ̄ = 0, χ) =
∑∞
n=2

1
n! g̃

?(1,n)χn at
the fixed point. Considering the series expansion of the flow, Eq. (4.5), for the rescaled
effective average potential uτ , we have calculated the expansion of f? exactly up to order
125 and plotted the sum

∑125
n=2

1
n! g̃

?(1,n)χn (thick blue line). Evidently, f?(χ) only has a
finite radius of convergence of approximately 1.1 around the origin. To extrapolate beyond
the region of convergence, we employed a Padé approximant (thin red line), which relies
on so called rational functions, i.e. fractions of polynomials [152, 161].

1/
√

1 + x =
∑

j

(−1/2
j

)
xj . A the fixed point

0 = −(d+ 2)u?(χ̄, χ) + dχu? (0,1)(χ̄, χ) +
Ṽd
(
u? (1,1)(χ̄, χ) + 1

)√(
u? (1,1)(χ̄, χ) + 1

)2 − u? (2,0)(χ̄, χ)u? (0,2)(χ̄, χ)

= −(d+ 2)u?(χ̄, χ) + dχu? (0,1)(χ̄, χ) + P (χ̄, χ) ·
∞∑
j=0

(−1/2

j

)
Q(χ̄, χ)j , (4.45)

with

P (χ̄, χ) = 1 + u? (1,1)(χ̄, χ) , (4.46)

and

Q(χ̄, χ) = 2u? (1,1)(χ̄, χ) +
(
u? (1,1)(χ̄, χ)

)2
− u? (2,0)(χ̄, χ)u? (0,2)(χ̄, χ) . (4.47)

Eq. (4.45) holds for a general reaction-diffusion process with one type of particles. It tells us
that the expansion in the fields can be carried out, in practice, by polynomial multiplication.
In general, the Fast Fourier Transform would provide an efficient algorithm to carry out these
multiplications [161].

For our specific case, we have devised the following algorithm: The coefficients of u?(χ̄, χ) =∑
m,n

1
m!n! g̃

? (m,n)χ̄mχn are calculated successively, as illustrated in Fig. 4.1. In every step

of the calculation we not only compute one new coefficient g̃? (m,n), but we also obtain the
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coefficient qj,(m,n) in the expansion of the powers of Q, Q(χ̄, χ)j =
∑

m,n q
j (m,n)χ̄mχn, and the

coefficient s(m,n) in the expansion S(χ̄, χ) :=
∑∞

j=0

(−1/2
j

)
Q(χ̄, χ)j =

∑
m,n s

(m,n)χ̄mχn. All
other coefficients which are not yet known, need not be summed over and can provisionally
be set to zero. Since the lowest order terms of Q(χ̄, χ) are χ and χ̄χ, we only need to look
at powers Q(χ̄, χ)j up to order j = n for calculation of g̃? (m,n). Notice, that in contrast to
the potential u?(χ̄, χ), the functions Q(χ̄, χ)j and S(χ̄, χ) include monomials χn, which lack

the response field χ̄. Although in the flow equation for g̃
(0,n)
τ they cancel, such that g̃

(0,n)
τ ≡

g̃?(0,n) = 0, the coefficients qj (0,n), s(0,n) enter the equations for higher order coefficients
g̃? (m,n′) (n′ > n). Therefore, after completing a vertical row in Fig. 4.1 for the coefficients
g̃? (n,n), g̃? (n−1,n), . . . , g̃? (1,n) one must compute pj (0,n) for 1 ≤ j ≤ n and s(0,n) before one
turns to the next vertical row of coefficients g̃? (n+1,n+1), g̃? (n,n+1), . . . , g̃? (1,n+1).

It was our experience that if we solve the ensuing linear equations (4.30) for g̃? (m,n) numer-
ically, the results become unstable quickly. This was the case although we used a stable
method for each linear equation [162]. For this reason, the equations were solved exactly with
a symbolic computation program. The behavior of f(χ) for large χ was evaluated in a double
logarithmic plot, cf. Fig. 4.4. For large values of χ, the terms in the expansion indeed add up
a to power law ∼ χ3. We find that approximately

f(χ) ∼ 4.2χ3 ⇒ ρ(t) ∼ 0.35 t−1/2 . (4.48)

As compared to the perturbative two-loop result A = 1
2πε + 2 ln(8π)−5

8π ≈ 0.217 [77] (with
difference ε = dc − d = 2− 1), this is much closer to the exact decay amplitude 1√

2π
≈ 0.399

[163].

Finally, we demonstrate that with our approach one can also derive the behavior of the coag-
ulation process with particle input ∅ J−→A directly from Eq. (4.50). The extremal principle,
Eq. (3.93), yields 0 = ∂tρ = −cρ2 + J . Thus, the density of the stationary state scales as

ρ ∼ (cJ)
1
3 , (4.49)

in agreement with the corresponding result in [164].

4.6 Study for d < dc

Formally one can extend the above approach to all “dimensions” d below the critical dimension
dc = 2 and calculate the corresponding amplitude A in the long time scaling of the density
ρ ∼ A · t−d/2 (see Figure 4.5). In complete analogy to the previous section, we find that for
large values of the field χ, the fixed point result of the non-equilibrium force must scale as

f?(χ) ∼ cdχ(d+2)/d , (4.50)

with the dimension-dependent but otherwise universal factor cd. Hence for the kinetic equa-
tion we have

∂tρ = −F (ρ) = −cdρ(d+2)/d , (4.51)
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Figure 4.4: Double logarithmic plot of the rescaled non-equilibrium force f? (solid red line) at the fixed
point, within the local potential approximation, obtained by calculating its expansion up
to order 125 in χ. For small χ, f?(χ) = ∂χ̄u

?(χ̄ = 0, χ) = π/2 · χ2 + π2/6 · χ3 + . . .
obviously must follow the power law π/2 · χ2 (flat dashed line). When χ is increased,
one reaches a regime where f is described well by 4.2χ3 (steep dashed line), before the
Padé Approximation breaks down. As predicted by our theory, in addition to the third
order term π2/6 · χ3 ≈ 1.64χ3, the rest of the expansion of f generates another term
proportional to 2.56χ3.

or ρ(t) ∼
(

2cdt
d

)−d/2
and for the stationary state with homogeneous particle input ∅ J−→A,

we have
ρ ∼ (cdJ)

d
d+2 , (4.52)

below the critical dimension, establishing a relation that was also derived in [164] by different
means. The form of our results suggest that for the critical dimension one has logarithmic
corrections and above the critical dimension, for d > 2, the density ρ ∼ J

1
2 , which will be

confirmed in the next chapter.

We remark, that although d is a natural parameter of the renormalization flow (see Eq. (4.5)),
our calculations need not have implications on lattices with an associated rational dimension
d. For instance, in [79] d-independent behavior, ρ ∼ t−2/3, was found for certain kinds
of fractals, in seeming contradiction to our theory. The problem is that there are various
definitions of the dimension for fractals [165]. In [60] it is argued that the right choice for the
process at hand is the so-called spectral dimension ds, defined by the recurrence of a random
walker; the probability of a (free) random walker to return to its initial position scales as
t−ds/2. (This suggest that the fractals studied in [79] had a spectral dimension ds = 4/3, so
that ρ ∼ c̃t−2/3 if ds = 4/3, with a proportionality factor c̃ that is not fully determined by ds
but depends on the specific fractal.)

As for the one-dimensional case, the factor cd can be determined by calculating a suffi-
cient number of coefficients in the expansion of the rescaled non-equilibrium force f(χ̄, χ),
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Figure 4.5: Results for the amplitudeA of the long time decay ρ ∼ Aρ−d/2, obtained by various means.
The circles are our estimates from the non-perturbative renormalization group calculations
within local potential approximation. They are compared to the exact result A = 1/

√
2π

in one dimension [163] and to the perturbative two-loop result 1
2πε + 2 ln(8π)−5

8π [77] (solid
line). The latter is an expansion in the deviation ε from the upper critical dimension,
ε = dc − d. It is doubtful whether ε = 1 (corresponding to one dimension) can be
considered small. Indeed, despite the relatively crude truncation, our non-perturbative
approach provides a substantially better result.

cf. Fig. 4.5. One observes that the Padé approximation works the better, i.e. converges for
larger values of χ, the closer one approaches the critical dimension. Indeed, from perturbation
theory one expects that near the critical dimension only g̃?(2,2) and g̃?(1,2) are important, so
that the approximation should converge quickly. Performing the limit dc − d = ε → 0, we
can make contact with a result from perturbation theory [77]. To this end, we assume that
to lowest order

f?(χ) ∼ cχ(4−ε)/(2−ε) ∼
(
g̃? (1,2) +O(ε2)

)
χ(4−ε)/(2−ε) , (4.53)

i.e. the constant c is, to good approximation, equal to the coupling g̃? (1,2). This is plausible
since the exponent (4 − ε)/(2 − ε) ≈ 2, although of course not necessary. The assumption
is justified, however, by that fact that it allows us to derive from Eq. (4.29) the relation
Ã = 2πε + O(ε2) and thus, to lowest order, we recover the result from perturbation theory
A = 1

2πε .

4.7 Study for the Critical Dimension

At the critical dimension dc = 2 the couplings g̃
(1,2)
τ , g̃

(2,2)
τ behave as 1/τ when τ → −∞. Since

the Feynman diagrams which determine the flow of g̃
(m,n)
τ involve n of these “elementary”

couplings, the other coefficients go to zero as 1/τn. Therefore, the dimensionless potential
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vanishes along the renormalization group flow, uτ → 0, we cannot take the limit of Eq. (4.41)
and a straightforward application of the analysis of the previous sections to determine the
long time behavior of the density is not possible. Instead, we start, at finite renormalization
time τ , with the dimensionless equation

∂t̃χ = − (χ+ fτ (χ)) (t̃ = κ2t) , (4.54)

where the constant term ∼ χ stems from the dimensionless cutoff function (3.138) at vanishing
rescaled momentum q̃ = 0 (limq̃→0 q̃

2r(q̃2)→ 1). In this equation the long range fluctuations
have not yet been integrated out completely. At finite τ the results roughly correspond to
those of a system of finite size, with edge length κ−1 (recall that κ = Λ exp(τ)). Thus, the
equation becomes valid for large enough χ and short enough t̃.

We saw in the previous section that, as the critical dimension is approached, d → 2, the

decay amplitude A is determined by the lowest order coefficient g̃
(1,2)
τ (up to corrections in

the difference ε = 2− d). Therefore, let us assume that we may set

fτ (χ) = g(1,2)
τ χ2 = −2π

τ
χ2 , (4.55)

ignoring higher order coefficients (for a more rigorous analysis by means of the perturbative
renormalization group, we refer to [77]). A constant initial density ρ0 implies a diverging
dimensionless initial density ρ0/κ

2. Solving Eq. (4.54) for this initial condition, we obtain

χ(t̃) =
ρ0τ

−2πt̃ρ0 + τκ2
, (4.56)

as long as χ is large enough so that the term −χ in Eq. (4.54) can be disregarded. (It
destroys the algebraic behavior for large times, where χ(t̃) ∼ exp(−t̃) decays exponentially,
as one would also expect for finite size system.) Thus, after an initial transient time ∼ τκ2,
which goes to zero exponentially fast as τ → −∞ and can therefore be neglected, we have
χ(t̃) = − τ

2πt̃
. Inserting χ(t̃) = ρ(t)/κ2 and t̃ = κ2t (see Eqs. (3.111,3.112) with ψ = ρ) and

τ = ln(κ/Λ) ∼ − ln(t)
2 , we recover the result [77]

ρ(t) =
ln t

4πt
, (4.57)

for large times t.

By the same token we can derive the dependence of the stationary density ρ(t) ≡ ρ = κ2χ
for constant particle input J(x, t) ≡ J = κ4j, where j is the dimensionless particle input. In
this case Eq. (4.54) becomes

0 = ∂t̃χ = − (χ+ fτ (χ)) + j ≈ −2π

τ
χ2 + j . (4.58)

Thus, ρ2 = −τ
2π J and from J = κ4j it follows that τ = ln(κ/Λ) ∼ 1

4 ln(J). We find that, to
lowest order in J , the stationary density behaves as

ρ(J) = − ln(J)J
1
2

8π
, (4.59)

confirming the implicitly stated result in [166].
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4.8 Conclusion

In general, due to the large number of degrees of freedom, solving the Wetterich equation
is a formidable task, even within the local potential approximation. It is therefore crucial
to exploit the symmetries and properties of the process at hand. For the decay process we
could show that only terms ∼ χ̄mχn with m ≤ n in the power series of the dimensionless
potential uτ are nonzero. This is a consequence of the fact that for the coagulation process
the particle number can only decrease, and that the fields χ̄ and χ are related to the creation
operator and destruction operator, respectively. Invoking the diagrammatic one-loop repre-
sentation of the Wetterich equation, it was demonstrated that, since the number of legs of
the diagrams can only decrease, there is a drastic restriction of possible one-loop Feynman
diagrams. In particular, this relative simplicity of the flow equations allowed us to prove that
the coagulation process A + A → A and the annihilation process A + A → ∅ are in essence
equivalent and satisfy the simple relation ρcoag(t) = 2ρannih(t) (except for rather pathological
initial conditions).

Studying the flow of the renormalized decay rate λ̃τ = 1
2 g̃

(1,2)
τ , we could show that below the

critical dimension dc = 2, the flow drives the dimensionless effective average potential uτ (χ̄, χ)
to a fixed point function u?(χ̄, χ) without tuning of parameters. This is the underlying reason
why there is a universal scaling ρ = D√

2π
t−1/2 in one dimension (for large times t, with diffusion

constant D), such that the type of the underlying lattice and the microscopic decay rate λ
are immaterial for the long time behavior. (For instance, one could introduce next to nearest
neighbor interactions, or a second lane with particles that are allowed to hop between the
two lanes. The microscopic decay rate does not even need to be finite: The same results are
expected when the coagulation reactions are instantaneous, i.e. λ→∞.) In order to calculate
the dimension-dependent, universal decay amplitude Ad, we had to work out the non-analytic
behavior of the force F (ψ) = cdψ

(d+2)/d, or, equivalently, the behavior of the dimensionless
fixed point force f?(χ) ∼ cdχ

(d+2)/d for large fields χ. To achieve this, an algorithm for the
successive calculation of the coefficients in the power series of the fixed point potential u? was
devised and implemented with a symbolic computation program. This allowed to determine
f?(χ) up to high orders (≈ 100) in χ. Thus, by extrapolating f?(χ) to large χ by a Padé
approximant, the coefficient cd and hence the decay amplitude Ad could be extracted. As
opposed to perturbative renormalization group calculations, our approach does not rely on
a small difference ε = 2 − d to the critical dimension, and indeed the results for d = 1 and
ε = 1 compare very well to the known exact values for the decay amplitude. Finally, we
showed that the NPRG approach is capable of recovering analytic results for small ε and at
the critical dimension.
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5 Non-Universality Above the Critical
Dimension

In the previous chapter we saw that below the critical dimension two, the renormalization

group flow drives the renormalized decay rate λκ := 1
2g

(1,2)
κ to zero. In order to treat this

singularity, we introduced the dimensionless couplings g̃
(m,n)
κ = κ−2+d(n−1)g

(m,n)
κ , which tend

to a finite, universal value g̃?(n,m) as the infrared cutoff scale κ becomes small. Without
tuning of parameters the couplings flow to a fixed point, which implies an anomalous long
time behavior ρ ∼ Adt−d/2 with a universal amplitude Ad. We shall see in the following

that in contrast to this, above the critical dimension the renormalized decay rate λκ := g
(1,2)
κ

attains a finite, non-universal value as the scale κ goes to zero. This turns out to depend on
the microscopic decay rate λ, on the structure of the lattice, and on the shape and size of the
particles. Thus, above the critical dimension the long time behavior is fully determined by
the “classical”, i.e. mean-field relation

∂tρ ∼ −µρ2 , (5.1)

with a macroscopic decay rate µ := λκ=0 . Hence at long times the particle density fulfills
the classical scaling

ρ ∼ µ−1t−1 . (5.2)

The amplitude µ−1 of this long time decay, however, is non-universal and disagrees with
the mean-field value (the inverse microscopic decay rate λ−1). It is lowered by fluctuations,
which—as we shall see below—monotonically drive the coupling to smaller values as they are
integrated out. The renormalization group flow of the decay rate λκ for various dimensions d
is illustrated in Figure 5.1.

To obtain an intuitive understanding of the kinetics in high dimensions, it is important to
note that the random walk above the critical dimension two is not recurrent, i.e. two point
particles starting at the same place at a certain time will never meet again [138]. Thus an
ultraviolet cutoff, induced by a lattice or a finite extension of the particles, is absolutely
necessary in order to render the probability for two particles to meet finite and to obtain a
non-zero decay rate. Nevertheless, also if this requirement of an ultraviolet cutoff is fulfilled,
above the critical dimension the average time it takes for two particles (on an otherwise empty
lattice) to meet still goes to infinity very quickly as their initial distance is increased. This is
the underlying reason why strong long range correlations which imply anomalous long time
scaling in one and two dimension, cannot build up above the critical dimension.

In the following we restrict our discussion to the leading term ∼ ρ2 in the kinetic equation for
the time evolution of the density. This term agrees with the law of mass action, stating that
the rate of an elementary reaction is proportional to the product of the concentrations of the
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participating molecules. We will indeed be able to prove that above the critical dimension
fluctuations are not strong enough to breach this law for asymptotically low densities. The
treatment of violations of this classical term for finite densities is deferred to the next chapter.
We shall focus on the case of a three-dimensional system. As a first approximation we
artificially introduce an ultraviolet cutoff Λ (approximately corresponding to a lattice spacing
a = Λ−1) into the flow equations, to obtain crude results for the macroscopic decay rate µ. We
then proceed with a more careful analysis, where we introduce the ultraviolet cutoff in terms of
the lattice structure and the shape and size of the particles into the flow equation. The exact
flow equation is solved for a number of examples and the results are compared to stochastic
lattice simulations. The precision of our numeric results will be an important requirement for
the verification of deviations from the law of mass action by stochastic lattice simulations in
the next chapter. Finally, we discuss the possibility of adapting our findings to similar decay
processes for three and more reactants. Parts of this chapter have been published in our
article “On the validity of the law of mass action in three dimensional coagulation processes”,
which appeared in Physical Review Letters [167].

5.1 One-Site Objects on a Cubic Lattice

The dimensionful flow equation for the renormalized decay rate λκ := 1
2g

(1,2)
κ is straightfor-

wardly derived from Eq. (3.109), with Dκ = Zκ = 1, by Taylor expansion. It reads

∂κλκ = 2Ṽdκ
dλ

2
κ

κ3
=

2λ2
κκ

d−3

Γ
(
1 + d

2

)
(4π)

d
2

, (5.3)

where Γ denotes the Γ-function and not the effective action. With the initial (microscopic)
value λκ=Λ = λ, where Λ > 0 is the “explicit” ultraviolet cutoff, this gives

λκ =
2πλ

2π + λ (ln(Λ)− ln(k))
, (5.4)

for a two-dimensional system and

λκ =
2d(d− 2)π

d
2 Γ
(
1 + d

2

)
λ

2 (Λd−2 − κd−2)λ+ 2d(d− 2)π
d
2 Γ
(
1 + d

2

) , (5.5)

otherwise, cf. Figure 5.1. Thus, below the critical dimension dc = 2 the renormalized decay
rate tends to zero as λκ ∼ κ2−d. (Notice that the universality below the critical dimension
d < 2 is expressed in the fact that in the denominator κd−2 diverges for small κ and the non-
universal microscopic decay rate λ in the nominator and denominator cancels, so that there
only remains a d-dependent proportionality factor 2d−1(2 − d)πd/2Γ

(
1 + d

2

)
.) In contrast,

for large d, long range fluctuations (κ small) are suppressed by a the factor κd−3 in the flow
equation (5.3), such that there exists a finite macroscopic decay rate µ = λκ→0. However,
above the critical dimension d > dc = 2, it is the short range fluctuations (κ large) which
force the renormalized decay rate λκ to tend to zero, if we let the ultraviolet cutoff Λ go to
infinity. This correctly implies a trivial, vanishing decay rate for point particles in continuous
space.
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Figure 5.1: Illustration of the flow of the renormalized macroscopic decay rate λκ (with λκ=Λ = λ,
µ = λκ=0) for a range of dimensions. The flow for the critical dimension dc = 2 (dashed
curve), where λκ ∼ ln(1/κ) for small κ, separates the curves into two qualitatively different
regimes: When d < 0 the function λκ tends to zero as c(d)κ2−d, when the long range
fluctuations are integrated, κ � 1, with a universal function c(d). Above the critical
dimension the renormalized decay rate λκ meets the axis at a finite value µ = λ0, which
critically depends on the cutoff Λ. Here we have chosen Λ = π as an “explicit” ultraviolet
cutoff. In the course of this chapter we show how the ultraviolet cutoff is defined implicitly
by the lattice structure and the shape and size of the particles. Also notice that the larger
the dimension the less impact the fluctuations have on the decay rate: as d→∞mean-field
becomes exact, µ→ λ.

These systems with an ultraviolet cutoff Λ do not have a one-to-one correspondence with a
concrete realization of the model, where the ultraviolet cutoff is provided “implicitly” by the
structure of the lattice or the extension of the particles. For instance, when particles which
each occupy one site on a regular lattice, diffuse by hopping to one of their nearest neighbors
with rate one, the ultraviolet cutoff is related to the inverse lattice spacing. This system
is a convenient choice for stochastic simulations, since regular, i.e. hypercubic lattices, are
naturally implemented by the standard arrays provided by the programming languages and
we do not need to introduce discretization artificially as for reactions in continuous space [168].
Our simulations in three dimensions confirm the classical scaling ρ ∼ µ−1t−1 for microscopic
decay rates λ = 1 and λ =∞ (an infinite rate implies that two particles coagulate immediately
upon contact) and yield for the decay amplitudes µ−1 ≈ 0.25 and µ−1 ≈ 1.25, respectively
(see Figure 5.3).

In a first attempt to explain these amplitudes, let us naively set the ultraviolet cutoff Λ to
π, approximately corresponding to a lattice spacing of one. (For a cubic lattice with lattice
spacing a, the reciprocal lattice is again cubic with lattice spacing 2πa−1. We need to integrate
over momenta in the first Brillouin zone, which is a cube with edge length 2πa−1 centered at
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the origin [169], i.e. the components of the momentum fulfill −π/a < qν ≤ π/a. By setting
Λ = π we constrict the momenta to a ball of radius π which is contained in this cube, but
even if we were to set Λ =

√
3π and thus extended the domain of integration to a ball that

contains the cube, the result for the macroscopic amplitude would still be significantly too
small.) In three dimensions this yields µ−1 = λ−1

0 = λ−1 + 1
3π , that is µ−1 ≈ 0.11 when

λ→∞ and µ−1 ≈ 1.11 when λ = 1. This is certainly not a satisfactory result. Nevertheless,
as a consistency check, we can indeed verify that the mean-field result µ = λ0 = λΛ = λ is
recovered in the reaction limited regime λ→ 0. The same holds true, as expected, when one
lets the dimension d go to infinity for fixed λ.

To improve our results, we must not perform the continuum limit in the Doi formalism, but
incorporate the structure of the cubic lattice in our equations. To this end we need to work
out the Fourier transform of the diffusion term in the microscopic action,

Sε[ψ̄, ψ] = D

∫
dt
∑
x,y

(
ψ̄(x, t)− ψ̄(y, t)

)
(ψ(x, t)− ψ(y, t)) =

= D

∫
dt
∑
x,ν

(
ψ̄(x, t)− ψ̄(x + aν , t)

)
(ψ(x, t)− ψ(x + aν , t)) =

= D

∫
dt
∑
ν

∫
q
eiqν(xν+a/2)2 sin

(qνa
2

)
ψ̄(qν) ·

∫
q′
eiq
′
ν(xν+a/2)2 sin

(
q′νa

2

)
ψ(q′ν) =

=

∫
q,ω

ε(q)ψ̄(−q,−ω)ψ(q, ω) , (5.6)

with the dispersion relation

ε(q) = 4D

d∑
ν=1

[
sin
(qνa

2

)]2
. (5.7)

Here D is the diffusion rate, a is the lattice spacing, aν is a times the unit vector along the

νth coordinate,
∫
ω :=

∫
dω
2π , and

∫
q :=

∫ d3q

(2π)3
runs over the first Brillouin zone, cf. Figure 5.2.

Notice that the expression can easily be generalized to arbitrary Bravais lattices.

Therefore, to take account of the lattice structure, in flow equation (3.107) we need to sub-
stitute Dq2 → ε(q) (for the local potential approximation, where Dκ = D, and Zκ = 1),

∂κUκ[ψ̄, ψ] =
1

2

∫
q

∂κR(q)
(
U

(1,1)
κ [ψ̄, ψ] + ε(q) +Rκ(q)

)
√(

U
(1,1)
κ [ψ̄, ψ] + ε(q) +Rκ(q)

)2
− U (2,0)

κ [ψ̄, ψ]U
(0,2)
κ [ψ̄, ψ]

. (5.8)

With the cutoff [170, 171]

Rκ(q) = (κ2 − ε(q))Θ(κ2 − ε(q)) , (5.9)

we obtain

∂κUκ[ψ̄, ψ] = Ṽ3(κ) ·
κ
(
U

(1,1)
κ [ψ̄, ψ] + κ2

)
√(

U
(1,1)
κ [ψ̄, ψ] + κ2

)2
− U (2,0)

κ [ψ̄, ψ]U
(0,2)
κ [ψ̄, ψ]

, (5.10)
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Figure 5.2: Dispersion relation ε(q) = 4D
∑d
ν=1 sin2(qνa/2), q ∈] − π/a, π/a]3 for the cubic lattice,

with lattice spacing a = 1 and diffusion constant D = 1, along one of the principal axes
(solid red line) in comparison with the dispersion relation ε(q) = Dq2 (with diffusion
constant D = 1) in the continuum limit (dashed line). The larger the dispersion relation
ε, the stronger the fluctuations with momentum q are suppressed. The dispersion relation
ε of the continuum limit is strictly larger than the exact relation for the cubic lattice.
Therefore, in the continuum limit, fluctuations are suppressed too strongly and this is the
reason why the macroscopic decay rate µ is overestimated (see text).

where

Ṽ3(κ) =

∫
q

Θ(κ2 − ε(q)) , (5.11)

is a volume in reciprocal space. Note that Ṽ3(κ)
κ→0∼ κ3Ṽ3 (where Ṽ3 is the volume of a

three-dimensional ball with radius (2π)−1) so that Eq. (3.107) is recovered for small κ.

For coagulation with rate λ, the reaction part of the microscopic action reads Sλ[ψ̄, ψ] =∑
x

∫
dt
[
λψ̄(x, t)2ψ(x, t)2 + λψ̄(x, t)ψ(x, t)2

]
, see Eq. (3.56). Therefore, the initial condition

for the effective average potential becomes

Uκ=∞(ψ̄, ψ) = λψ̄2ψ2 + λψ̄ψ2 . (5.12)

We consider the expansion Uκ(ψ̄, ψ) = λκψ̄
2ψ2 + λκψ̄ψ

2, truncating terms which are not
present in the initial action, such as terms of third order in ψ. It turns out that they do not
enter the flow equation, as is discussed in the next section. Thus, expanding Eq. (5.10), we
arrive at the flow equation for the renormalized decay rate

∂κλκ = 2
Ṽ3(κ)

κ3
λ2
κ . (5.13)

For the (three dimensional) cubic lattice with lattice spacing a = 1 and diffusion constant
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Figure 5.3: Relaxation of the particle density ρ for one-site objects. On double logarithmic plots,
data of stochastic simulations (solid red) are compared to the theoretical prediction for
the density decay ρ(t) ∼ µ−1t−1 (dashed line), with the reciprocal macroscopic decay rate
µ−1 = λ−1 +0.252731009858, cf. Eq. (5.26). Here λ is the microscopic reaction rate, which
determines the rate of the coagulation reaction A+A→ A once two particles meet on the
same site. An infinite rate λ =∞ implies instantaneous reaction. The initial states in both
plots were randomly distributed (each site independent and Poissonian) with ρ(0) = 0.2.

D = 1, let us calculate an explicit formula for the amplitude,

1

µ
=

1

λ0
=

1

λ
+ 2

∫ ∞
0

dκ

∫
q

Θ
((

κ
2

)2 −∑3
ν=1

[
sin
( qν

2

)]2)
κ3

=

=
1

λ
+ 2

∫
q

∫ ∞√
4
∑3
ν=1[sin( qν2 )]

2

dκ

κ3
=

1

λ
+

∫
q

1∑3
ν=1 4

[
sin
( qν

2

)]2 . (5.14)

The integral in the second term can be evaluated numerically to high precision,

1

µ
≈ 1

λ
+ 0.252731009858(3) . (5.15)

Within the boundaries of the statistical error this is in accordance with the stochastic simu-
lations, cf. Figure 5.3.

5.2 Proof of the Exactness of the Local Potential Approximation
for One-Site Objects

The fact that our result for the macroscopic decay rate µ perfectly describes our empirical
simulation results, raises the question whether the approach is exact, despite restricting our-
selves to the lowest order approximation, i.e. the local potential approximation. First we note
that the above calculation of the macroscopic density gives the same result for every choice of
the cutoff function. Indeed, from Eq. (5.8) it follows the flow equation ∂κλκ = λ2

κ

∫
q

∂κRκ(q)
Rκ(q)+ε(q)

and thus
1

λκ
=

1

λ
+

∫
q

1

Rκ(q) + ε(q)
. (5.16)
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When the scale κ = 0 (µ = λκ=0), such that all fluctuations are integrated out, a general cut-
off function vanishes by definition (Rκ = 0, see the constraint (3.73)), so the result becomes
independent of the specific choice of Rκ. The independence from the cutoff function is neces-
sary for the exactness of our result. Moreover, the deviations for different cutoff functions are
sometimes used to optimize the result and to estimate the error [142, 172, 173]. The fact that
there are no deviations should therefore be regarded as a strong indication that Eq. (5.16) is
exact.

To prove this assertion, let us go back to the original Wetterich flow equation, see Eq. (3.90).
Its initial condition is the microscopic action, which here reads

S[ψ̄, ψ] =
∑
x

∫
dt
(
λ
(
ψ̄(x, t) + 1

)
ψ̄(x, t)ψ(x, t)2 + ψ̄(x, t)∂tψ(x, t)

)
+

+

∫
q,ω

ε(q)ψ̄(−q,−ω)ψ(q, ω) . (5.17)

As in the previous chapter, we define the (m,n)-vertex functions Γ
(m,n)
κ (p1,ω1;...;pm+n,ωm+n) (re-

lated to one-loop Feynman diagrams with n incoming and m outgoing legs) by taking the func-
tional derivative with respect to ψ̄(pi, ωi), i ∈ {1, . . . ,m} and ψ(pj , ωj), j ∈ {m+1, . . . ,m+n}
at vanishing fields ψ̄ = ψ = 0. The renormalized reaction rate λκ is given by

λκ =
1

2

(2π)12 Γ
(1,2)
κ (0,0;0,0;0,0)

V T
. (5.18)

Here, V =
∑

x = (2π)3δ(q = 0) and T =
∫

dt = 2πδ(ω = 0) denote the asymptotically large
volumes in space and time which are summed and integrated over, respectively (in the final

result they drop out). The flow of Γ
(1,2)
κ (0,0;0,0;0,0) is associated with the diagram

q , ωq

0, 0

0, 0

0, 0

− q, −ωq

which includes, in addition to the (1,2)-vertex, a (2,2)-vertex with non-zero momenta and
frequencies (right vertex of the graph). Let us therefore also consider the flow of the vertex

function Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω), determined by the diagram

q , ωq

p , ωωp ,

p− , ω−
p ,− −ω

− q, −ωq
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Evidently, it is a closed function of itself. The vertices and the internal momenta and fre-
quencies are independent of the external ones. Since this also holds for the initial condi-

tions, we have Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω) = Γ

(2,2)
κ (0,0;0,0;0,0;0,0), for all κ. Similarly, the identity

Γ
(2,2)
κ (0,0;0,0;0,0;0,0) = 2

(2π)4
Γ

(1,2)
κ (0,0;0,0;0,0), which holds initially, is inherited to all scales κ. Thus,

Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω) =

4V T

(2π)16
λκ . (5.19)

The evaluation of the flow of λκ through the corresponding one-loop diagram for the (1,2)-
vertex function Γ(1,2) at zero momenta and frequencies therefore involves no approximation.
With our standard cutoff mass Rκ(q) = (κ2 − ε(q)) Θ(κ2 − ε(q)) it yields (recall that ∂̃κ =
∂κRκ · ∂Rκ)

∂κλκ = −2∂̃κ

∫
q,ω

λκ
1

Rκ(q) + ε(q)− iωλκ
1

Rκ(q) + ε(q) + iω
= 2λ2

κ

∫
q Θ(κ2 − ε(q))

κ3
. (5.20)

Thus the exact solution for the macroscopic decay rate is

1

µ
=

1

λ0
=

1

λ
+

∫
q

1

ε(q)
. (5.21)

We remark that one arrives at the same result by summing over a sequence of bubble diagrams,
analogous to calculations in [64, 166] for spheres. One needs to consider

++ + . . .

For one-site objects these bubble diagrams factorize, such that one obtains the geometric
series

µ = 2λ+ (−λ)

∫
q,ω

1

ε(q)2 + ω2
2λ+

[
(−λ)

∫
q,ω

1

ε(q)2 + ω2

]2

2λ+ . . . (5.22)

When λ
∫
q,ω

1
ε(q)2+ω2 < 1 the geometric series converges, while for the range λ

∫
q,ω

1
ε(q)2+ω2 ≥ 1

one exploits analytic continuation, thus confirming Eq. (5.21)

Finally we remark that, in general, the one-loop diagram of the (1,2)-vertex, which in position-
and time-space is of the form
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gives rise to a term
∑

x,x′
∫

dt dt′ λκ(x′−x, t′−t)ψ̄(x′, t′)ψ2(x, t) in the effective average action
Γκ. The local potential approximation is tantamount to taking a rate

λκ(x′ − x, t′ − t) ≈ δ(x′ − x)δ(t′ − t)λκ , (5.23)

which is local in space and time. While this equation is only approximately true, we find for
our case that summing over space an integrating over time again gives an exact result,∑

x

∫
dt λκ(x, t) = λκ . (5.24)

Moreover, for the flow λκ we do not need the full information in λκ(x, t), but it already suffices
to know λκ, i.e. the error made by approximating λκ(x, t) as local (see Eq. (5.23)) cancels
in the flow for λκ. This quality is rather exceptional and the underlying reason why for the
coagulation process the macroscopic decay rate µ = λκ=0 can be calculated exactly to high
numerical precision.

5.3 Direct Measurement of the Non-Equilibrium Force

The theoretical finding that our result for the macroscopic decay rate µ is exact, calls for a
more reliable “empirical” check than is provided by examining the slope of the particle decay,
c.f. Figure 5.3. To determine the decay rate in the simulations more accurately, we introduced
homogeneous particle input with rate J . This gives rise to a term J

∑
x

∫
dt ψ̄(x, t) in the

action S[ψ̄, ψ]. For a homogenous initial distribution, it follows from the extremum principle,
Eq. (3.93), that the density ρ(x, t) ≡ ρ(t) obeys the kinetic equation ∂tρ = −F (ρ) + J , with
the non-equilibrium force F (ρ) = ∂ψ̄Uκ=0(ψ̄ = 0, ψ = ρ). Therefore, for stationary states the
non-equilibrium force equals the input rate, F (ρ) = J , exactly. For fixed input rate J , we
waited in the stochastic simulations for the particle density to relax and then averaged over
time. The time interval between the measurements was based on the relaxation time and
supposed to be large enough for the densities to be uncorrelated.

In order to measure the macroscopic decay rate accurately, one is obliged to go to very
low densities in the simulations. At the same time, the average number of particles needs
to be kept at a sufficiently large value by accordingly increasing the system size, in order to
eliminate finite sizes effects. (We considered systems containing around ten thousand particles
on average.) For larger densities one can describe the state of the system by an array whose
elements are the number of particles on each site, and let it evolve in time by random sequential
updates [7]. However, this would have surpassed the memory resources. Moreover, such an
algorithm would be very inefficient since most updates would be idle, because there can only
be a particle hopping if the randomly chosen site is not empty. Therefore, it is convenient
to memorize the configuration of the system by a one-dimensional array where each element
corresponds to a particle and saves its position on the lattice. In a naive implementation,
every time a particle has hopped to a neighboring site, one would have to check if the new
site is empty or occupied by one of the other particles. If there are N particles in the system,
this implies the need to perform ∼ N2 of these checks until on average every particle has
moved once. To be able to simulate a system with large particle numbers, it was necessary
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Figure 5.4: Numerical confirmation of the theoretical prediction µth = 3.956776 for the macroscopic
decay rate. For stationary states the density should behave as ∂tρ = 0 = −F (ρ) +J , with
F (ρ) = µρ2 to lowest order in ρ. It is observed that the difference J −µ2ρ2 scales as ρ5/2,
which is proven in the next chapter by analytical means. For this reason it is convenient
to plot the scaled difference (J − µ2ρ2)/ρ5/2. In theory this should become constant for
small densities, which is in good agreement with the data when µ = µth and can be ruled
out already if the deviations is larger than 0.05%. In this plot the standard deviation is
comparable to (for low densities) or much smaller than (for high densities) the size of the
data points.

to introduce some sort of topology. For this purpose, the lattice was divided up into boxes,
and an array was introduced which for every box memorizes the locations of the particles
contained in this box. When a particle hops, one only needs to check if it shares a site with
the other particles in the same box. The size of the boxes should be chosen in a way that on
average no more than a few particles are contained in one box. Thus the problem of increasing
computational complexity is circumvented while not exhausting the memory resources.

To determine the macroscopic decay rate from the numerical data, we found it convenient to
consider the difference J−µ2ρ2. It is observed that it obeys a power law ∼ ρ5/2, which will be
discussed in detail and confirmed by analytical means in the next chapter. In Figure 5.4 the
validity of µ = 3.956776 is confirmed up to deviations smaller than 0.001, by verifying that
the data only conforms with this power law when µ is very close the theoretical prediction.

5.4 Generalization to Extended Objects on Bravais Lattices

For a coagulation process with particles that are embedded on a lattice, the initial action is
of the form S[ψ̄, ψ] = Sλ[ψ̄, ψ] + Sε[ψ̄, ψ] +

∑
x

∫
dtψ̄(x, t)∂tψ(x, t), with a reaction term Sλ,

a diffusion term Sε, and a term for the time evolution. Up to now, we have restricted the
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analysis to particles that occupy only one lattice site. The lattice structure and the ultraviolet
cutoff is implicitly defined by the diffusion term

Sε[ψ̄, ψ] =

∫
q,ω

ε(q)ψ̄(−q,−ω)ψ(q, ω) . (5.25)

Although, we considered cubic lattices in the previous sections, our results straightforwardly
generalize to arbitrary Bravais lattices and dimension. In particular, the formula

1

µ
=

1

λ0
=

1

λ
+

∫
q

1

ε(q)
, (5.26)

is valid for general Bravais lattices. Thus the microscopic decay rate λ is connected with its
macroscopic analog µ by a term that depends on the lattice structure via the dispersion rela-
tion ε. The only restriction is that the dimension d must be larger than the critical dimension
dc = 2, since otherwise the expression diverges. Indeed, at d = 2 the density is known to
behave as t ln t, which may be interpreted by a macroscopic rate µ which becomes infinitely
small [137]. Notice, that the result also covers anisotropic diffusion. For a cubic lattice, for ex-

ample, one only needs to insert the adapted dispersion relation ε(q) = 4
∑d

ν=1Dν

[
sin
( qνa

2

)]2
into Eq. (5.26).

To render our approach more versatile and realistic, we would also like to be able to consider
extended particles in space. This is achieved with a generalized coagulation term

Sλ(ψ̄, ψ) =
∑
x,y

∫
dt λ(y − x)

(
ψ̄(y, t) + 1

)
ψ̄(x, t)ψ(y, t)ψ(x, t) . (5.27)

The “reaction kernel” λ(z) allows for a finite range of the interactions instead of only local
interactions. In addition to the lattice structure it implicitly imposes an ultraviolet cutoff,
since its Fourier transform λ(q) is negligible when the inverse momentum q−1 is much smaller
than the typical length scale of the reaction kernel. The corresponding vertices are represented
as

where the wiggly lines stand for λ(z).

As the ansatz for the effective average action, let us take the “minimal” truncation

Γκ[ψ̄, ψ] = Sλκ [ψ̄, ψ] + Sεκ [ψ̄, ψ] + SZκ [ψ̄, ψ] , (5.28)

where SZκ =
∑

x

∫
dtZκψ̄(x, t)∂tψ(x, t) denotes the term for the time evolution. This trunca-

tion contains only terms which are already present in the initial action. Just as for one-site
objects, the field amplitude Zκ and the dispersion relation εκ are not renormalized, Zκ ≡ 1,
εκ ≡ ε. In Fourier space the reaction part Sλκ [ψ̄, ψ] reads∫

p,ω,p′,ω′,q,ω′′
λκ(q)

(
ψ̄(−p− q,−ω − ω′ − ω′′) + (2π)4δ(−p− q)δ(−ω − ω′ − ω′′)

)
·

· ψ̄(−p′ + q, ω′′)ψ(p′, ω′)ψ(p, ω) . (5.29)
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The renormalized reaction kernel is given by

λκ(p) =
1

2

(2π)12 Γ
(1,2)
κ (0,0;p,0;−p,0)

V T
. (5.30)

In analogy to one-site objects,

Γ
(2,2)
κ (p′,ω′;p′,ω′;−p′,−ω′;p,ω;−p,−ω) =

4V T

(2π)16
λ(p + p′) . (5.31)

Thus evaluating the flow of λκ(p) given by the one-loop diagram

p − q

− q

q

q − p

− p − p

p p

for p′ = 0 yields

∂κλκ(p) = 2

∫
q
λκ(p− q)λκ(q)

Θ(κ2 − ε(q))

κ3
. (5.32)

Equivalently, in position space

∂κλκ(x) =
2λκ(x) (P ◦ λκ)(x)

κ3
, (5.33)

with the projection (P ◦ λκ)(x) =
∫
q exp(iq · x)λκ(x)Θ(κ2 − ε(q)).

Eq. (5.33) conserves the support of the reaction kernel λκ(z), which is particularly convenient
when the microscopic kernel λ(z) has a “simple” support (see next section). For large scales
κ (i.e. when there is a lattice, κ should be larger than the maximum value in the first Bril-
louin zone, and for continuous objects it should be much larger than the typical reciprocal
length scale of the reaction kernel in continuous space), the equation decouples in x. This is
advantageous for concrete numerical solutions, since this disposes of the problem of treating
strongly diverging functions exp(iq·x) for large q. On the other hand, when κ is much smaller
than the reciprocal typical length scale of the reaction kernel, the projection is just the sum∑

x λκ(x) = λκ(p = 0).

5.5 Examples of Extended Objects

Let us first apply the flow equation (5.33) for the reaction kernel to study the reaction kinetics
of objects in continuous space. This is achieved by simply considering the limit where the
lattice spacing goes to zero. In contrast to lattice models, where momenta are restricted to
the finite, first Brillouin zone, the integration of the momenta q now runs over the whole
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R
d. The ultraviolet cutoff is solely imposed by the reaction kernel λκ(q), which suppresses

momenta q much larger than the typical reciprocal length scale.

As an application we would like to verify Smoluchowski’s result, who studied spheres that
coagulate instantaneously. The reaction kernel reads

λκ(x) = λ̃κ Θ(R− x) , (5.34)

in the limit λ̃ = λ̃κ→∞ → ∞, where x denotes the modulus of x. Despite the fact that the
reaction kernel λκ(x) is effectively one-dimensional, since it only depends on the distance x,
and the complexity of the Eq. (5.33) is thus reduced, it is not obvious how to obtain an
analytical solution for this problem. However, we can exploit the conservation of the support
of the reaction kernel λκ(x) along the flow. Evidently, for instantaneous reactions, i.e. in the
limit of an infinitely large microscopic decay rate, we may just as well consider the reaction
kernel to be the surface of a sphere,

λκ(x) = λ̃κ δ(R− x) . (5.35)

In the limit λ̃ = λ̃κ→∞ → ∞ this must give the same results as for spheres that coagulate
instantaneously on contact.

Without loss of generality, we set the radius R = 1 in the following calculation. Utilizing
spherical coordinates,

(P ◦ λκ) (x) =
1

(2π)3

∫
dq dϑ dφ q2 sin(ϑ)eiqx cos(ϑ)Θ

(
κ2 − q2

)
·

·
∫

dr dϑ̃ dφ̃ r2 sin(ϑ̃)e−iqr cos(ϑ̃)λ̃κ δ(1− r) =

= λ̃κ
2

π

∫ k

0
dq

1

x
sin(qx) sin(q)︸ ︷︷ ︸

=:fκ(x)

.

=⇒ ∂κλ̃κ = 2λ̃2
κ

fκ(1)

κ3

=⇒ 1

λ̃0

=
1

λ̃∞
+ 2

∫ ∞
0

dk
fκ(1)

κ3
=

1

λ̃∞
+ 1 . (5.36)

The macroscopic decay rate becomes

1

µ
=

1

λ
+

1

4π
, (5.37)

where λ = 4πλ̃∞. Therefore,

µ = 4πDR , (5.38)

with diffusion constant D and radius R. This confirms Smoluchowski’s result [54], proved to
be exact by Doi [64].
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Figure 5.5: Numerical solution to the flow equation, Eq. (5.33), for spheroids of volume 4
3π as a

function of their eccentricity. Let a
2 be the equatorial diameter and b

2 the polar axis,
so that the volume is 4

3πa
2b = 1. One speaks of oblates when a > b, in which case

the eccentricity is defined as
√

1− b2/a2, and one speaks of prolates when a < b, with

the eccentricity defined as
√

1− a2/b2. We observe that the macroscopic decay rate µ
increases with the eccentricity and, at a given eccentricity, is larger for prolates. In the
images, as yellow turns to orange and red, the x-dependent macroscopic rate λ0(x) grows.
As a rule of thumb, the more jagged the reaction kernel, the higher the macroscopic decay
rate µ becomes.

To further illustrate the potential and versatility of our approach, we have solved Eq. (5.33)
numerically for spheroids of equal volume 4

3π, c.f. Figure 5.5. We find that the largest values
of the macroscopic rates λ0(x) are attained at the sharp ends and edges of the prolates and
oblates, respectively. This can be traced back to the fact that large momenta q2 > κ2 do not
contribute to the projection P.

As long as the support of the reaction kernel is finite, flow equation (5.33) reduces to a finite
set of coupled ordinary differential equations, with dimension equal to the number of sites that
make up the reaction kernel. We will now treat reaction kernels that allow for a particularly
precise numerical solution, because they can be described by only one degree of freedom.
Incidentally, this is the underlying reason why the flow equation for the law of mass action
term is exact, as is proven in Section 5.7.

Let us consider the two reaction kernels whose two-dimensional versions are depicted in
Fig. 5.6. Extended object 1 can be considered as a discrete version of a sphere. The lattice
sites that these two objects consist of (i.e. the part where reaction kernel λ(x) is non-zero) are
all equivalent. This symmetry must hold along the renormalization group flow. Furthermore,
the flow equation conserves the support of the reaction kernel in position space. Thus the
objects also keep their shape. Explicitly, in three dimensions the renormalized reaction kernel
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Figure 5.6: Two-dimensional versions of the reaction kernels of extended objects (solid red). The
three-dimensional version of extended object 1 is obvious. It is a discretization of the
sphere. The three-dimensional version of extended object 2 is created by the sites
(1, 1, 2), (1, 2, 1), (2, 1, 1) and their mirror image in each octant. The two objects encom-
pass 6 and 24 sites, respectively. For instantaneous reactions, the striped square can be
regarded as part of extended object 1. Since the flow conserves the support of the reac-
tion kernel, their shape remains the same. The reaction kernel of the two objects can be
described by one degree of freedom λκ because all the nonzero parts are equivalent. For
infinite reaction rates, the striped squares can be regarded as part of the objects.

of extended object 1 can be expressed as

λκ(p) =
λ(q = 0)

6

3∑
ν=1

(
e+ipν + e−ipν

)
=
λ(p = 0)

3

3∑
ν=1

cos(pν) . (5.39)

The microscopic decay rate is λ := λ∞(p = 0) = 6λ̃ (each site of the kernel is associated the
same microscopic reaction rate λ̃). Solving Eq. (5.32) at p = 0, one obtains the macroscopic
decay rate

1

µ
=

1

λ0(0)
=

1

λ∞(0)
+ 2

∫ ∞
0

dk

∫
q

(
1

3

3∑
ν=1

cos(qν)

)2
Θ
(
κ2 − ε(q)

)
κ3

=

=
1

λ
+

∫
q

(∑3
ν=1 cos(pν)

)2

36
∑3

ν=1 sin2(qν/2)︸ ︷︷ ︸
0.086064343192(3)

. (5.40)

In the last step we inserted the dispersion relation ε(p) = 4
∑3

ν=1 sin2(pν/2) for the cubic
lattice with lattice spacing a = 1 and diffusion constant D = 1.

The calculation for extended object 2 is similar. If each of the 24 sites effects a reaction with
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10-6

10-3

10-5 10-4 10-3 10-2 10-1

Figure 5.7: The non-equilibrium force for the two extended objects (see Figure 5.6), measured in the
stationary state at constant particle input J , such that 0 = ∂tρ(t) = −F (ρ) + J . The
data of the stochastic simulations collapse well on the function F (ρ) = µρ2 (solid red for
extended object 1, solid blue for extended object 2), with µ−1 = λ−1 +0.0861. . . (extended
object 1) and µ−1 = λ−1 + 0.0363. . . (extended object 2). For this plot we have chosen an
infinitely large microscopic decay rate λ = ∞, where the particles react instantaneously
on contact.

the same microscopic rate λ̃, then the flow dependent reaction kernel can be expressed as

λκ(p) =
λ(q = 0)

12
[(cos(p1 + p2 + 2p3) + cos(p1 + 2p2 + p3) + cos(2p1 + p2 + p3)) +

+ (cos(p1 + p2 − 2p3) + cos(p1 + 2p2 − p3) + cos(2p1 + p2 − p3)) +

+ (cos(p1 − p2 + 2p3) + cos(p1 − 2p2 + p3) + cos(2p1 − p2 + p3)) +

+ (cos(−p1 + p2 + 2p3) + cos(−p1 + 2p2 + p3) + cos(−2p1 + p2 + p3))]

≡ λκ(q = 0)f(p) , (5.41)

with only one degree of freedom. Solving Eq. (5.32) then yields

1

µ
=

1

λ
+

∫
q

f(q)2

4
∑3

ν=1 sin2(qν/2)︸ ︷︷ ︸
0.036287603611(2)

. (5.42)

These results are in excellent agreement with the stochastic simulations, c.f. Figure 5.7.

5.6 General Exact Flow Equation

The derivation of the flow equations for extended objects, Eq. (5.32,5.33), was not rigorous,
but valid only within the minimal truncation, cf. Eq. (5.28), for the average action Γκ[ψ̄, ψ].
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We are primarily interested in the effective, macroscopic decay rate for homogeneous and

stationary states. Thus, it is our goal to calculate the vertex Γ
(1,2)
κ (0,0;0,0;0,0) represented by the

graph

0, 0

0, 0
0, 0

In this notation we have disposed of the wiggly line employed above, with the understanding
that the vertex depends on the momenta and frequencies of the incoming and outflowing lines
(which, in this diagram, are all equal to 0). Its flow is associated with the one-loop diagram

0, 0
q, ωq

−q,−ωq
0, 0

0, 0

We therefore also need to calculate the (2,2)-vertex function Γ
(2,2)
κ (p′,ω′;−p′,−ω′;0,0;0,0), whose flow

is determined by the one-loop diagram

− p , −ω − p , −ω

p , ω p , ω
q, ωq

−q,−ωq

for p = 0, ω = 0. This in turn requires the knowledge of Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω) for general

p′, ω′,p, ω.

The identity

Γ
(2,2)
κ (0,0;0,0;p,ω;−p,−ω) =

2

(2π)4
Γ

(1,2)
κ (0,0;p,ω;−p,−ω) , (5.43)

which holds at the microscopic scale κ =∞, is evidently conserved along the renormalization
group flow. Thus, by the same string of arguments as for one-site objects, it suffices to

calculate the (2,2)-vertex function Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω), with the important difference

however that in general this vertex function will depends explicitly on both of the momenta
p′ and p

Γ
(2,2)
κ (p′,ω′;−p′,−ω′;p,ω;−p,−ω) ≡

4V T

(2π)16
λ(p′,p) . (5.44)
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Notice that there is no dependence on ω′ and ω. We obtain

∂κλκ(p′,p) = 2∂̃κ

∫
q,ω

λκ(p′,q)
1

Rκ(q) + q2 + iω

1

Rκ(q) + q2 − iωλκ(q,p) , (5.45)

where ∂̃κ acts only on the κ-dependence of Rκ. With our usual cutoff function Rκ(q) =
(κ2 − ε(q))Θ(κ2 − ε(q)) this evaluates to

∂κλκ(p′,p) = 2

∫
q
λκ(p′,q)λκ(q,p)

Θ(κ2 − ε(q))

κ3
. (5.46)

In position space

∂κλκ(x,y) = 2

∫
q
λκ(x,q)λκ(q,y)

Θ(κ2 − ε(q))

κ3
, (5.47)

which may be rewritten as

∂κλκ(x,y) = 2
∑
z

λκ(x, z) (P1 ◦ λκ)(z,y) (5.48)

= 2
∑
z

(P2 ◦ λκ)(x, z)λκ(z,y) , (5.49)

where the projections P1 and P2 are defined by

(P1 ◦ λκ) (z,y) =

∫
q

exp(iq · z)λκ(q,y)Θ(κ2 − ε(q)) , (5.50)

and

(P2 ◦ λκ) (x, z) =

∫
q

exp(iq · z)λκ(x,q)Θ(κ2 − ε(q)) . (5.51)

The initial condition is λ∞(x,y) = λ(x)δx,y.

For numerical calculations it is an important simplification that the support of λκ(x,y) is
contained in S×S, where S is the support of λ(x). This statement immediately follows from
Eq. (5.47).

5.7 Three Types of Exact Flow Equations

By now we have arrived at three types of flow equations for the macroscopic decay rate.
We began with the case of local, one-point objects, whose flow equation (5.20) has already
been shown to be exact. The treatment in the last section of extended objects, which led
to Eqs. (5.46,5.47,5.48,5.49), was rigorous as well. We have employed Eq. (5.32,5.33) as an
approximation for extended objects. We shall now provide the proof that in certain cases
these equations are indeed exact.

Suppose that the kernel λκ(x) =
∑

y λκ(x,y) =
∑

y λκ(y,x) can be described by only one
degree of freedom, i.e. on its support S, the reaction kernel λκ(x) is a constant (for fixed scale
κ) and all the elements of the support are equivalent, in the sense that under rotations and
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reflections that conserve the symmetry of the lattice, the kernel is also conserved. This is the
case, for example, for the surface of a sphere or the two kernels depicted in Figure 5.6.

According to Eq. (5.48)

∂κλκ(x) = 2
∑
z

λκ(x, z)
∑
y

(P1 ◦ λκ)(z,y) = 2
∑
z∈S

λκ(x, z)(P ◦ λκ)(z) . (5.52)

Exploiting the symmetry our kernel, (P ◦ λκ)(z) is a constant on S. Thus the sum is trivial
and we recover Eq. (5.33) which also implies Eq. (5.32).

5.8 Three-Particle Coagulation

Finally we turn to the question if we can exploit our findings to particle decay with three (or
more) reactants. Consider, for instance, diffusing particles that undergo the reaction 3A→ A
with rate λ (or equivalently 3A→ 2A, or 3A→ ∅). The reaction part of the action is given
by

Sλ[ψ̄, ψ] =

∫
dx dt λ

[
ψ̄(x, t)3ψ(x, t)3 + 3ψ̄(x, t)2ψ(x, t)3 + 2ψ̄(x, t)ψ(x, t)3

]
, (5.53)

in the continuum limit. Along the same lines as for the binary reaction A + A → A, the
renormalization group flow creates terms ∼ ψ̄(x, t)mψ(x, t)n with n ≥ 3, n ≥ m ≥ 1. Above
the critical dimension dc = 1 these terms can be neglected to leading order [76, 77]. Curiously
however, the initial terms, corresponding to vertices with three incoming legs, are not renor-
malized, because one cannot construct one-loop diagrams with three incoming legs from the
available vertices. This seemingly implies that the macroscopic rate µ equals the microscopic
rate λ,

µ = λκ = λ . (5.54)

But this cannot possibly be true: Similar as for binary coagulation, c.f. Section 3.5, we can
obtain an upper bound for the effective, macroscopic decay rate. Suppose, for instance,
we have a cubic lattice, where the particles hop with diffusion constant D to one of their
nearest neighbors and coagulate instantaneously, λ = ∞. On one site there can be at most
two particles. For an upper limit of the reaction rate, we can neglect anti-correlation and
instead assume that the occupation of different lattice sites is uncorrelated. Then for low
densities, the squared density ρ2 is the probability to find two particles on a particular lattice
site. If from one of the six neighboring sites a particle hops onto this site, there occurs the
coagulation reaction, implying the kinetic equation ∂tρ = −12Dρ3 and an effective reaction
rate of 6D. This is to be compared with the mean-field solution ∂tρ = −2λρ3. Thus the
reaction rate is diffusion limited and cannot be larger than 6D so that evidently there is
a flaw in the renormalization group calculation. (Obviously, the same problem occurs for
coagulation reactions involving more than three particles.)

In fact, the reason why NPRG fails for the action of Eq. (5.53) has already been discussed
in Section 3.4. To prove that at the ultraviolet cutoff Λ the effective average action Γκ=Λ

equals the action S, it was demanded that S is only quadratic in ψ̄. The fact that the
approach fails here shows that this is indeed a necessary requirement. A way to work around
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this problem is to exploit that every multi-particle reaction can be broken down to a set of
binary reaction (from a microscopic point of view it is, in fact, rather realistic that there is
a transient, unstable formation of two particles, before a third particle attaches [57]). In our
case we could replace the three particle coagulation 3A → A by the two reaction 2A → B,
A+B → A, thus introducing further particles B, which stand for a complex of two particles
A. The corresponding action then fulfills the requirements for the initial condition, Eq. (3.74),
to hold. However, we did not pursue this approach in our work.

5.9 Conclusion

Above the critical dimension dc = 2, to lowest order the kinetics of the coagulation process
A+A→ A is determined by the macroscopic decay rate µ. As opposed to the case below the
critical dimension, the long time behavior is not only determined by long range fluctuations.
Rather, fluctuations at all scales κ decrease the microscopic decay rate λ > µ. Therefore,
details in the shape and size of the particles, and the dispersion relation (which determines
the structure of the lattice) have a strong impact on the kinetics. The Wetterich equation
allows us to systematically integrate the contribution of the fluctuations, thus establishing an
exact relation between the microscopic physics and the effective physics at the macroscopic
scale. We solved this relation for a number of concrete realizations of the model. Objects on
discrete lattices lend themselves very well to stochastic simulations (as opposed to objects in
continuous space), which allowed us to empirically confirm the equation for the macroscopic
decay rate to high accuracy. Finally, we showed that a naive adaption to three (and more)
particle interaction is impossible, because the initial condition for the Wetterich equation is
invalidated.



6 Violation of the Law of Mass Action in
Three and Higher Dimensions

The law of mass action is the fundamental law in chemical reaction kinetics. It states that
the rate of an elementary reaction is proportional to the product of the concentrations of the
participating molecules. In a seminal article that helped lay the foundations of a stochastic
theory of chemical reaction kinetics, Smoluchowski provided a framework for calculating the
proportionality factor of the law of mass action, the macroscopic decay rate, and supported
the validity of this law for three-dimensional systems [54, 63]. In the 1980s much effort
was put in studying low dimensional systems, where it was found that strong correlations
can lead to deviations from the law of mass action [59, 60, 62, 146, 147]. This anomalous
behavior was observed, in particular, for the classical problem of coalescence, A + A → A,
where diffusing particles clot upon contact with a rate λ. By an approach designed for one
dimension, one could even obtain exact solutions [67, 68]. This was complemented by results
of the perturbative renormalization group at and below the critical dimension dc = 2 [76, 77].
In contrast to this progress in low dimensions, advances for three-dimensional coagulation
systems have remained largely elusive. In the experimental analysis, the law of mass action is
still the “gold standard” [55, 57, 83]. Indeed, it has obtained further support by field theoretic
analysis proving the validity of Smoluchowski’s heuristic arguments for asymptotically long
times and low densities [64, 166, 174–176]. In this regime the density ρ obeys the law of mass
action rate equation ∂tρ = −µρ2, with a macroscopic decay rate µ which is a function of the
microscopic rate λ and of the size and shape of the particles.

Having devoted the last chapter to the calculation of the macroscopic decay rate µ, by es-
tablishing a relation between the microscopic physics and the macroscopic physics, we now
study the implications of fluctuations on the validity of the law of mass action. We first
show that the density fulfills a generalized equation of motion, ∂tρ = −F (ρ), where the non-
equilibrium “force” F is derived from the effective potential Γ, the non-equilibrium analog
of a thermodynamic potential. For low densities we recover the result from the law of mass
action, F (ρ) ≈ µρ2. However, for finite densities we find that there are marked deviations
from the law of mass action, which become more pronounced as the density is increased. The
most relevant additional term c(µ)ρ5/2 can be attributed to long range and many-particle
fluctuations. Strikingly, c(µ) is a simple, universal function of the macroscopic rate µ. It
depends on the microscopic features of the lattice and the particles only indirectly through
its argument µ. This universality is remarkable since the system is not critical, as, for in-
stance, in the analysis of the low dimensional systems (d < 2) of Chapter 4. The extra
term is corroborated by stochastic lattice simulations. We will further discuss higher order
contributions to the kinetic equation. Just as the first two terms, they can be separated in
two groups: Non-universal contributions, depending on the concrete realization of the model,
and universal contributions which are created by long range fluctuations and many-particle
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couplings. Finally, we will show how our findings can be generalized to arbitrary dimensions
d > dc = 2. Parts of this chapter are found in our article “On the validity of the law of mass
action in three-dimensional coagulation process”, which was published in Physical Review
Letters [167].

6.1 The Kinetic Equation

In the previous chapters we treated the “classical” regime, where the particle decay is deter-
mined by the law of mass action, such that the time evolution of the density obeys the rate

equation ∂tρ(t) = −µρ(t)2, whereas the central formula in Chapter 4 was ∂tρ(t) = −cdρ(t)
d
2

(with some d-dependent, but otherwise universal factor cd), which determines the anomalous
kinetics below the critical dimension. In this chapter we intend to go beyond the lowest
order in the kinetic equation. To this end we first derive from our field theoretic formalism
the general kinetic equation governing the decay in a system with a particle density that is
homogenous in space.

The effective average action Γκ can be written in an expansion in the fields ψ̄, ψ, and multiple
derivatives in space and time thereof [111]. For our purposes, we only need to consider the
time evolution of homogeneous fields, i.e. ψ(x, t) ≡ ψ(t). This discards derivatives in space.
Neglecting also derivatives in time except for the term ψ̄∂tψ, which is already present in the
initial action, the general form of the effective average action then reads

Γκ[ψ̄, ψ] =
∑
x

∫
dt Uκ(ψ̄(x, t), ψ(t)) +

∑
x

∫
dt ψ̄x(t)∂tψ(t) ,

with the local potential Uκ, which can be defined for constant fields ψ̄, ψ by Γκ[ψ̄, ψ] =
V T Uκ(ψ̄, ψ), and with the volume in space and time V =

∑
x, T =

∫
dt. (Strictly speaking∑

x is only the volume if the volume of an elementary cell is one. This, in particular, is the
case for a cubic lattice with lattice spacing a = 1, which we usually consider.) The extremal
principle (see Eq. (3.93)) yields

0 =
δΓ[ψ̄, ρ]

δψ̄(x, t)

∣∣∣∣
ψ̄=0

= ∂ψ̄Uκ=0(ψ̄, ρ)|ψ̄=0 + ∂tρ . (6.1)

With the non-equilibrium force

F (ρ) = ∂ψ̄Uκ=0(ψ̄, ρ)|ψ̄=0 , (6.2)

this gives the kinetic equation
∂tρ(t) = −F (ρ(t)) . (6.3)

The non-equilibrium force F can be determined directly in the simulations, by introducing
homogeneous particle input with rate J . This gives rise to a term J

∑
x

∫
dtψ̄(x, t) in the

effective action Γ[ψ̄, ψ]. From the extremal principle it follows that ∂tρ = −F (ρ)+J , such that
for stationary states the non-equilibrium force equals the input rate, F (ρ) = J , exactly. We
remark that these stationary states created by constant particle input are not only interesting
because of their implications on time-dependent systems, but also of direct relevance for
experiments [177].
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6.2 Universal Correction in Three Dimensions

To study the corrections to the law of mass action, let us represent the non-equilibrium force
as the limit of a power series

F (ρ) = lim
κ→0

∑
n≥2

1

n!
g(1,n)
κ ρn , (6.4)

exploiting the fact that Γκ is analytic if κ > 0 [111]. The lowest order coefficient g
(1,2)
κ = 2λκ

was treated in the previous chapter and converges to a constant value, the macroscopic decay

rate µ = 1
2g

(1,2)
κ=0 . Thus, assuming that the higher order terms 1

n!g
(1,n)
κ ρn (n > 2) can be

neglected, we would recover F (ρ) = µρ2. It is interesting that the most relevant term beyond
1
2g

(1,2)
κ=0 ρ

2 = µρ2 is not 1
3!g

(1,3)
κ=0 ρ

3 as one might naively expect. Rather, in three dimensions all

coefficients g
(1,n)
κ (n > 2) turn out to diverge as κ goes to zero. In the following analysis, we

show that the infinite sum of these diverging terms converges and gives the finite contribution∑
n≥3

1
n!g

(1,n)
κ ρn ∼ ρ 5

2 .

According to Eq. (6.2), the non-equilibrium force F contains only the terms of first order in
the response field ψ̄ of the Taylor expansion of the effective potential

Uκ(ψ̄, ψ) =
∑
m,n

1

m!n!
g(m,n)
κ ψ̄mψn , (6.5)

whose flow is determined by the Wetterich equation. As discussed in Chapter 4, the flow for

each coupling g
(m,n)
κ is associated with a one-loop diagram, where n is the number of incoming

and m the number of outgoing legs. Thus, the flow of the physically relevant couplings g
(1,n)
κ

of the non-equilibrium force F is calculated from diagrams with n incoming and one outgoing
leg. To lowest order, their divergency stems from the contribution to the flow of diagrams
which only contain (1,2)- and (2,2)-vertices and follows from power counting. Let us exemplify

this for the (1,3)-coupling g
(1,3)
κ , with the associated one-loop diagram

q , ω

q , ω

0, 0

0, 0

0, 0

0, 0

− q,−ω

For any finite scale κ, also the couplings must be finite. Therefore, the divergency in κ of g
(1,3)
κ

is created in the limit of small κ, where only long wavelength and short frequency fluctuations,
q . κ, and ω . κ2, contribute to the flow. From the previous chapter, we know that in three
dimension the (1,2)- and (2,2)-vertex functions are not divergent for κ = q = ω = 0, but
attain a finite value, which is equal to the macroscopic decay rate µ, up to an irrelevant
constant factor. (The vertex functions corresponding to the left vertex in the above diagram,
and the one for the top right vertex were treated in Section 5.2. Up to some constant factor
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they equal the renormalized decay rate λκ(q). The vertex function for the bottom right vertex

reads Γ
(1,2)
κ (q,ω;q,ω;0,0).) Since the vertex functions are continuous, we can take their value at

κ = q = ω = 0, if we are only interested in the strongest divergence. The evaluation of the
diagram then yields

∂κg
(1,3)
κ =

1

2
∂̃κ16

∫
q,ω

Gκ(q, ω)2Gκ(−q,−ω)µ3 , (6.6)

where, as usual, the macroscopic reaction decay rate µ := µ(q = 0). The propagator reads

Gκ(q, ω) =
1

(κ2 − ε(q)) Θ (κ2 − ε(q)) + ε(q) + iω
, (6.7)

where we have inserted the standard cutoff function Rκ(q) = (κ2 − ε(q))Θ
(
κ2 − ε(q)

)
. (Our

results are of course independent of the choice of the cutoff function.) Due to the derivative
∂̃κ = ∂κRκ · ∂Rκ , the integration is restricted to the domain ε(q) < κ2, where the propagator
is independent of q, i.e.

∂̃κ

∫
q

= ∂̃κ

∫
ε(q)<κ2

, (6.8)

such that within the domain of integration the propagator simplifies to

Gκ(q, ω) =
1

κ2 + iω
. (6.9)

The fact that the integral, Eq. (6.6), does not depend on the full reaction kernel µ(q), al-
ready indicates that these divergencies cannot depend on the shape and size of the objects:
Originating in long wavelength fluctuations around q = 0, they do not resolve the details of
the reaction kernel.

For small κ, the dispersion relation ε(q) can be approximated by the “continuum limit”
ε(q) ≈ Dq2 = q2 (with diffusion constant D = 1). Therefore, the divergencies are not only
unaffected by the shape and size of the particles, but also independent of the structure of
the lattice; it is as if the divergent terms only “see” structureless point particles (for which
µ(q) = µ, independent of the momentum) that are embedded in continuous space (where
according to Eq. (3.58), ε(q) = q2). The integration over the momentum q then approximately
yields the volume of the three-dimensional ball, 4

3πκ
3 with radius κ, multiplied by the factor

1/(2π)3 from the definition of the integration in Fourier space. Thus, up to some constant
factor, Eq. (6.6) becomes

∂κg
(1,3)
κ = µ3κ3

∫
ω
∂κ

1

(κ2 + iω)2 (κ2 − iω)
= µ3κ3

∫
dν

κ2

(1 + iν)2 (1− iν)
∂κ

(
1

κ2

)3

. (6.10)

In the integral we substituted ω
κ2

= ν. Thus,

∂κg
(1,3)
κ ∼ cµ3κ5∂κ

(
1

κ2

)3

= c′µ3κ−2 , and g(1,3)
κ ∼ c′′µ3κ−1 , (6.11)

for some constants c, c′, c′′
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In summary, and generalizing to arbitrary couplings, the strongest divergency of a diagram
is obtained by the following prescription. Each propagator gives a factor

Gκ(q, ω) ∼ 1

κ2
. (6.12)

The resulting divergency is attenuated by the integration over the momenta q and frequencies∫
q
∼ κ3 ,

∫
ω
∼ κ2 , (6.13)

where in the left hand formula the exponent 3 is simply the dimension. Finally, the lowest
order contribution in κ of the vertices must be multiplied with the result, in particular (1,2)-
and (2,2)-vertices give rise to the constant factor µ ∼ κ0.

To further illustrate this mehod, let us consider a second diagram that contributes to the
coupling g(1,3),

According to our prescription, this gives a term of order κ0, which should be compared to the
κ−1 divergency for the diagram which contains only (1,2)-vertices. (Actually, this diagrams
contributes a term ∼ ln(κ) which diverges, if only logarithmically. The reason is that, strictly
speaking, one needs to perform the derivative by ∂̃κ, which produces another factor κ−1,
before the flow is integrated over κ. For divergencies of order κ−α with α > 0, the two
operations cancel, but here they imply a logarithmic factor.)

It is now straightforward to determine the strongest divergencies of the couplings g
(m,n)
κ . We

need to consider the one-loop diagrams with n incoming and m outgoing legs that contain
only (1,2)- (2,2)-vertices. Clearly, they contain n of these vertices, connected by n propa-
gators, which gives a factor µnκ−2n. After integrating over the momenta and frequencies,

c.f. Eq. (6.13), this gives a divergency for g
(m,n)
κ of the order κ5−2n (n > 2, m ≤ n). Diagrams

with higher order vertices can be neglected. Suppose, for instance, that such a one-loop
diagram contains a (1, n′)-vertex (n′ > 2), which contributes a factor κ5−2n′ . However, if
we replace this vertex by a string of n′ − 1 (1,2)-vertices, connected one by one with n′ − 2
propagators, for instance if
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this gives the more relevant factor κ−2(n′−2).

Let us look at the prefactors of the divergencies more carefully. The one-loop diagrams are

created upon functional derivatives of ln
(

Γ̂
(2)
κ [ψ̄, ψ] + R̂κ

)
at ψ̄ = ψ = 0, c.f. Eq. (4.11). Thus,

every additional vertex affords a further differentiation of the propagator
(

Γ̂
(2)
κ [ψ̄, ψ] + R̂κ

)−1
.

This can be effected with the formula [111]

∂M−1 = −M−1∂MM−1 , (6.14)

for some functional M (in our case M = Γ̂
(2)
κ [ψ̄, ψ]+ R̂κ). Thus, every propagator comes with

a factor −1 so that

g(m,n) ∼
{
−cm,nµn/κ2n−(d+2) if n even,

+cm,nµ
n/κ2n−(d+2) if n odd,

for positive constants cm,n.

The fact that we have an alternating sequence is not surprising, given that, quite generally,
one also obtains such sequences when one takes the Taylor expansion, of the non-analytic
function xα for a non-integer α > 0 around, say, x = 1. Indeed, we are on the lookout for
such non-analytic terms. The infinite sum of diverging terms can be written as∑

n≥3

1

n!
g(1,n)
κ ρ2 ∼ κ5f

(µρ
κ2

)
, (6.15)

for some scaling function f . Since for large systems the non-equilibrium force must become
independent of the system size, corresponding to the reciprocal scale κ−1, one obtains

f(x) ∼ cx 5
2 , (6.16)

for some constant c. This adds a non-analytic term ∼ c(µρ)
5
2 to the force F .

Let us finally exploit our findings to calculate this term exactly from the Wetterich equation.
We choose the ansatz

Γκ[ψ̄, ψ] =
∑
x

∫
dt Uκ(ψ̄, ψ) + Sεκ=ε + SZκ=1 , (6.17)

with the diffusion term Sεκ
∫
q,ω εκ(q)ψ̄(−q,−ω)ψ(q, ω), where εκ is the renormalized disper-

sion relation, and the term SZκ =
∑

x

∫
dtZκψ̄(x, t)∂tψ(x, t) for the time evolution, where Zκ

is the field amplitude. From the reaction part of the microscopic action, see Eq. (5.27), it fol-
lows that the initial condition for the effective average potential Uκ=∞(ψ̄, ψ) = λψ̄2ψ2+λψ̄ψ2,
with λ = λ(q = 0) =

∑
x λ(x). According to our above discussion the renormalization group

flow for εκ and Zκ vanishes, and that Eq. (6.17) includes all the terms needed to determine
the correction exactly. The local potential Uκ is related to the non-equilibrium force via
F (ρ) = ∂ψ̄U0(ψ̄, ρ)|ψ̄=0. Its flow is governed by Eq. (5.10), which for convenience is restated
here

∂κUκ[ψ̄, ψ] =
Ṽ3(κ)κ

(
U

(1,1)
κ [ψ̄, ψ] + κ2

)
√(

U
(1,1)
κ [ψ̄, ψ] + κ2

)2
− U (2,0)

κ [ψ̄, ψ]U
(0,2)
κ [ψ̄, ψ]

, (6.18)
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where Ṽ3(κ) =
∫
q Θ(κ2− ε(q)) ∼ 4

3π
(
κ
2π

)3
. Since we are interested in long range fluctuations,

i.e. small κ, we may replace the reciprocal volume Ṽ3(κ) in in this equation by 4π
3(2π)3

κ3.

Further substituting

Uκ(ψ̄, ψ)→ µψ̄2ψ̄2 + µψ̄ψ2 , (6.19)

on the right side of Eq. (6.18) then yields for the renormalized non-equilibrium force Fκ =
∂Uκ(ψ̄=0,ψ)

∂ψ̄
,

∂κFκ(ρ) ≈ µ2κ4ρ2

3π2 (κ2 + 2µρ)2 . (6.20)

Although this equation is not exact, it still delivers the correct non-analytic contribution ∼ ρ 5
2 ,

because it treats all the terms which give rise to it exactly. Indeed, integrating Eq. (6.20)

from any κ = Λ > 0 to κ = 0 yields a contribution µ
5
2

2
√

2π
ρ

5
2 to the non-equilibrium force F .

It should be remarked that the correction term can also be obtained by a perturbative calcu-
lation (we thank K. Wiese for pointing out this solution to us). Assuming that the relevant
diagrams which need to be resummed are of the form

with the response function

= + + + . . .

one finds a contribution

−
∫
q

∫
t>0

dt e−t(q
2+2µψ)ψ̄ψ2µ2 .

In writing this we have replaced the vertices by their macroscopic value µ. Thus again there

arises the correction µ
5
2

2
√

2π
ρ5/2 to F .

Overall we find for the non-equilibrium force (exact up to higher orders in ρ):

F (ρ) = µρ2 +
µ

5
2

2
√

2π
ρ

5
2 . (6.21)
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Figure 6.1: Rescaled data for the universal correction to the non-equilibrium force F . In the stochastic
simulations, F was determined directly by introducing homogeneous particle input and
considering stationary states. On this double logarithmic plot, we show the rescaled data
for
(
F (ψ)− µρ2

)
/µ

5
2 for a range of models. We predict this term to be of the universal

form ρ
5
2 /
(
2
√

2π
)

(solid black line), independent of the model, cf. Eq. (6.21). The data
evidently corroborate our theoretical results. For instantaneous reactions (λ = ∞) there
are slight deviations from the curve for densities close to the maximum value of one.
Extended object 1 is a discretization of the sphere made up of seven sites. Together with
a further extended object (Extended Object 2), it was discussed in the Section 5.5. The
data for extended object 2 is in excellent agreement with the theory as well, but not shown
here for clarity.

We have run simulations for a range of different models (one-site objects with both finite and
infinitely large reaction rates, and two examples of extended objects that react immediately
on contact), cf. Fig. 4, which clearly corroborate our theoretical findings.

Eq. (6.21) holds for diffusion with diffusion constant D = 1. More generally, we can allow for
anisotropic diffusion, where to lowest order in the momentum, the expansion of the dispersion
relation along its principal axes reads ε(q) =

∑3
ν=1Dνq

2
ν . Then the reciprocal volume behaves

as

Ṽ3(κ) =

∫
q

Θ(κ2 − ε(q)) ∼ 4

3
π

3∏
ν=1

κ

2π
√
Dν

, (6.22)

and our analysis yields

F (ρ) = µρ2 +
µ

5
2

2
√

2D1D2D3π
ρ

5
2 . (6.23)

As a consistency check, consider the case D1 = D2 = D3 = D. Since D sets the time scale,
the force F should depend linearly on D. This is indeed recovered for the correction term in
Eq. (6.23), if we exploit that µ must also depends linearly on D.



6.3 Universal and Non-Universal Effects in Arbitrary Dimensions 113

10-9

10-8

10-7

10-6

10-5

10-4

103 104 105

Figure 6.2: Deviation of the long time decay of the particle density from classical behavior ρ(t) = 1
µt

that would follow from the law of mass action. Our findings show that long range and
many-particle interaction imply a universal correction term which is independent of the
microscopic physics, such that ρ(t) = 1

µt − 1
√

2πt
3
2

, up to order t−2. The numerical data

was obtained for a cubic lattice with instantaneous coagulation (λ =∞), starting from a
randomly distributed state with density ρ(t = 0) = 0.01.

For the time-dependent solution, starting from some finite density at time t = 0, we obtain
for isotropic diffusion with diffusion constant D = 1

ρ(t) =
1

µt
− 1
√

2πt
3
2

, (6.24)

up to terms of order t−2. This is corroborated by the data of our numerical simulations,
c.f. Figure 6.2. Strikingly the additional term of order t−

3
2 is universal, and, in contrast to

the correction term to non-equilibrium force F , it is independent of the macroscopic decay
rate µ.

6.3 Universal and Non-Universal Effects in Arbitrary Dimensions

In the following, we analyze the impact of the interplay between the microscopic features (i.e.
the lattice structure, the shape of the particles and their size) and long range fluctuations on
the effective, macroscopic description of the kinetics. We argue that the microscopic structure
is encoded in the effective action Γ by an infinite set of non-universal Taylor coefficients,

each associated with the convergent part of an (m,n)-vertex function Γ
(m,n)
κ , which can be

Taylor expanded not only if κ > 0 but also at κ = 0. These coefficients can, in principle,
be calculated by the NPRG approach, in analogy to the calculation of the reaction kernel
µ(q) = µ(q = 0) + 1

2∂
2
q1µ(q = 0)q2

1 + . . . in Chapter 5 (notice that the kernel should be
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symmetric under reflection at the origin, so that µ(q) = µ(−q) and the Taylor expansion

contains only even terms). The reaction kernel is related to Γ
(1,2)
κ , which converges as long as

the dimension d > dc = 2. We will show that, in addition to these non-analytic terms, there
are contributions which stem from infinite sums of divergent terms in the Taylor expansion of
Γκ, analogous to Eq. (6.15). It will be demonstrated that each of these sums only depends on
a finite number of non-universal Taylor coefficients. Thus, the effective action Γ[ψ̄, ψ] can be
expressed as a universal function of the non-universal coefficients, as a blueprint, as it were,
of all possible realizations of the system.

6.3.1 Analysis up to the First Correction Caused by Long Range Fluctuations

Here we focus on the study of the effective potential U(ψ̄, ψ) = 1
TV Γ[ψ̄, ψ] (for homogenous

fields ψ̄(x, t) ≡ ψ̄, ψ(x, t) = ψ̄, and the volumes of space and time, V and T , respectively).
From the previous section we know that in three dimensions, in additions to the non-universal

terms µψ̄2ψ2 + µψ̄ψ2, there is a term µ
5
2

2
√

2π
ψ̄ψ

5
2 , which originates in long wavelength, high

frequency fluctuations. Let us now generalize this result to arbitrary dimension d > 2.

Adapting the prescription of the last section, c.f. Eqs. (6.12,6.13), the lowest order divergency

of a coefficient g
(m,n)
κ in the expansion (6.5) of the effective average potential Uκ is obtained

from the corresponding one-loop diagrams with only (1,2)- and (2,2)-vertices. As discussed in
the previous section, to each propagator we need to attribute a factor −κ−2, and a factor κd

for the integration over q and another κ2 for the integration over ω. Furthermore, to obtain

the flow ∂κg
(m,n)
κ , we need to perform the derivative ∂̃κ, which gives another factor κ−1. (The

integration usually cancels with the ∂̃κ derivative, but implies a logarithmic contribution if

∂κg
(m,n)
κ diverges as κ−1.) The one-loop diagram for the coefficient g

(m,n)
κ has n incoming and

m outgoing legs, and is comprised of n propagators, n−m (1,2)-vertices and m (2,2)-vertices.
Thus, the coefficient behaves as

∂κg
(m,n)
κ ∼ c̃m,n

(−1

κ2

)n
κdκ2κ−1λnκ , (6.25)

for a positive constant c̃m,n. From Chapter 4 we know that below the critical dimension λκ

behaves as κd−2. Thus, as long as d < 2 the coefficients g
(m,n)
κ diverge in agreement with

their scaling dimension κ2+(1−n)d. In contrast, above the critical dimension, λκ converges to
a constant value µ and we conclude that

g(m,n)
κ ∼ (−1)n+1cm,n


κ0 if 2n− (d+ 2) < 0 ,

µn ln(κ) if 2n− (d+ 2) = 0 ,

µnκ(d+2)−2n if 2n− (d+ 2) > 0 .

(6.26)

In analogy to the previous section, to determine the corrections to the potential U(ψ̄, ψ) that
are induced by these most divergent terms, one needs to sum up

∑
n>d/2+1

g(m,n)
κ ψ̄mψn ∼

∑
n≥d/2+1

(−1)n+1cm,nµ
n

κ2n−(d+2)
ψ̄mψn = κd+2ψ̄mfκ

(
m,

µψ

κ2

)
, (6.27)
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for some function fκ. When the system is large, the potential must be independent of the
system size ∼ 1/κ. This suggests

fκ (m,x) ∼ cm · x
d
2

+1 ,

for some constants cm, implying that the infinite sum of diverging terms int Eq. (6.27) attains

the value cmµ
d
2

+1ψ̄mψ
d
2

+1. In fact, we cannot strictly rule out that the sum does depend on
κ. If so, however, the κ-dependent term must cancel with some other correction term (or
terms) to the potential. Actually, this can rectify the problem of the logarithmic correction
in even dimension. Assuming that

fκ (m,x) ∼ cm · x
d
2

+1 ln(x) , (6.28)

for even dimensions d, then the sum in Eq. (6.27), in addition to a κ-independent term

cmψ̄
m(µψ)

d
2

+1 ln(µψ), gives rise to a term −2cmψ̄
m(µψ)

d
2

+1 ln(κ). This term can cancel with
the term that is logarithmic in κ, c.f. Eq. (6.26).

The concrete solution of the Wetterich equation shows that this is indeed the case. It is
obtained upon replacing

Uκ(ψ̄, ψ)→ λκ=0ψ̄
2ψ2 + λκ=0ψ̄ψ

2 = µψ̄2ψ2 + µψ̄ψ2 , Ṽ(κ)→ 4

3
π
( κ

2π

)3
, (6.29)

in Eq. (6.18). For simplicity, we restrict ourselves to the physically meaningful terms ∼ ψ̄,
i.e. we only calculate the non-equilibrium force F . Thus, integrating Eq. (6.18), we find that
the long range fluctuation around κ = 0 give rise to a term

− π1− d
2

Γ
(
d
2

)
sin
(
πd
2

) (µψ
2

) d
2

+1

, (6.30)

(where Γ denotes the Γ-function and not the average action) which is valid for a real-valued
dimension d, as long as it is not an even natural number. We notice that the correction
alternates its sign, from a positive contribution in 3 dimensions, to a negative in 5 dimensions,
and so on. As d approaches an even number, the result diverges, indicating logarithmic
correction term. In four and six dimensions, for instance, we find that a term

− µ3ψ3 ln(µψ)

8π2
,

µ4ψ4 ln(µψ)

32π3
, (6.31)

respectively, is added to the force F .

Let us summarize the implications of our findings to the non-equilibrium force F (ρ). The
higher the dimensions, the less impact long range fluctuations have on the kinetics. Up to

order n = d
2 + 1 the coefficients g

(1,n)
κ converge to a finite, non-universal value and give a

contribution 1
n!g

(1,n)
κ=0 ρ

n. The leading order term, which stems from modes of long wavelengths

and slow frequencies, behaves as (µρ)
d
2

+1 and (µρ)
d
2

+1 ln(ρ), for odd and even dimension d,
respectively.
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6.3.2 The General Picture

By our analysis we can also study higher order corrections to the effective potential. Again, we
confine ourselves to the physically relevant terms ∼ ψ̄ which determine the non-equilibrium
force F . Let us start with the non-universal terms, which give analytic contributions. In
the previous subsection, we already mentioned the non-universal terms which come from

convergent coefficients g
(1,n)
κ=0 , n < d/2+1. For divergent terms, the non-universal contributions

can, at least in principle, be obtained by simply subtracting the divergent part of the flow.

For instance, in three dimensions the coupling g
(1,3)
κ has a divergency ∼ 8µ3

π2κ
, but the difference

g
(1,3)
κ − 8µ3

π2κ
goes to a constant, non-universal term. This adds to F a contribution of the order

ρ3, and by the same token, for a general n, the convergent part of g
(1,n)
κ gives rise to a term

of the order ρn. The prefactor to these terms are non-universal and can only be obtained by

integrating g
(1,n)
κ over the complete flow.

In addition, there are terms which originate in divergencies that sum up to give finite contri-
butions to the flow. These divergencies are caused by long range fluctuations (κ→ 0) and are
functions of the non-universal coefficients. We have already treated the most relevant of these

terms ∼ c(µ)ρ
d+2
2 . It comes from one-loop diagrams with n incoming legs and one outgoing

leg which only contain (1,2)- and (2,2)-vertices, and diverge as κd+2−2n. This infinite sum of
diverging terms can be expressed as κd+2f

(µρ
κ2

)
(see Eq. (6.27)) and implies a contribution of

order ρ
d+2
2 (with logarithmic correction in even dimensions) to F . If in these most divergent

diagrams, two vertices connected by a propagator are replaced with a (1,3)- or a (2,3)-vertex,
the one-loop diagram only gives rise to divergencies of the order κ2d−2n. In analogy to the
previous subsection, the infinite sum of all diagrams can be written as

κ2dψ̄mg
(µρ
κ2

)
, (6.32)

suggesting a contribution of order ρd. Indeed, by integrating Eq. (6.18) for three dimensions,
we find that these divergent terms add up to a contribution

4µ4 ln(ρ)ρ3

3π4
, (6.33)

to the non-equilibrium force F . Furthermore, by the same token, also the sums over the
diagrams which contain exactly one (1,4)-vertex, or one (1,5), etc. but otherwise only (1,2)-
and (2,2)-vertices, imply contributions of order ρd.

Let us define the difference ε = d−dc = d−2 > 0. The lowest order contribution of divergent
terms, which comes from diagrams that contain exclusively (1,2)- and (2,2)-vertices behaves
as ρ2+ ε

2 , the next contribution, from diagrams with exactly one vertex that has three and
more incoming legs, as ρ2+2 ε

2 , and for diagrams with exactly l vertices that have more then
two incoming legs, we expect a term that behaves as

ρ2+l ε
2 . (6.34)

As we approach the critical dimension ε→ 0, all these terms approach the order of the mass
action term ∼ µρ2. Together with Ingo Homrighausen and Erwin Frey, we currently analyze



6.3 Universal and Non-Universal Effects in Arbitrary Dimensions 117

the strong deviations which such terms give rise to. This is done studying the coagulation
model with Lévy Flights [149, 178–180], which alter the critical dimension so that a small
difference ε = d− dc can be realized by one- or two-dimensional lattices and our findings can
be compared with stochastic simulations.

For concreteness, let us again consider the three-dimensional case for the remainder of this
section. The divergent terms treated so far arise from the lowest order terms in κ of the

coefficients g
(m,n)
κ . However, we expect that in addition to a term of order κ5−2n there are

terms of higher order, κ5−2n+1, κ5−2n+2, and so on. (We remark they do not necessarily have
to be divergent, but can also go to zero with κ or to a finite value.) Along the same lines as

above this implies contributions of the form ρ
5+l
2 (up to possible logarithmic corrections) for

a natural number l. As an example, consider the renormalized decay rate λκ = µ+ κµ′(κ =
0) + . . . It is easily verified that the derivative µ′(κ = 0) is a universal function of µ, namely

µ′ = µ2

12π2 . Integrating Eq. (6.18) we find that diagrams with only (1,2)- and (2,2)-vertices,
where we insert κµ′(κ) for exactly one of the vertices, sum up to a term

− µ4ρ3 ln ρ

6π4
, (6.35)

to the non-equilibrium force F .

Similarly, the expansion in the momenta q and frequencies ω of non-universal terms implies
higher order corrections. For instance, let us assume that the dispersion relation can be
expanded as ε(q) = q2 + ε(4)

∑3
ν=1 q

4
ν + . . . For the reciprocal volume Ṽ3(κ) in Eq. (6.18) this

gives,

Ṽ3(κ) =

∫
q

Θ(κ2 − ε(q)) ∼ 4

3
π
( κ

2π

)3
+ c(ε(4))

d∑
ν=1

κ5 + . . . , (6.36)

for some function c. In the non-equilibrium force F this implies, in particular, a term
f(µ, ε(4))ρ7/2. As a second example, suppose the expansion of the macroscopic decay rate
reads µ(q) = µ(q = 0)+µ(2)

∑3
ν=1 q

2
ν + . . ., then there arises a term of the form g(µ, µ(2))ρ7/2.

In summary our analysis suggests an expansion of the form

F (ρ) =
∑
i≥2

1

i!
ciρ

i +
∑
j≥4

c̃ j
2
ρ
j
2 . (6.37)

The ci are non-universal coefficients which can only be obtained by integrating over the full
renormalization group flow, from κ = ∞ to κ = 0. The c̃j/2 are universal functions of
a finite number of such non-universal coefficients, and are induced by divergencies around
κ = 0. (Strictly speaking, we must also allow for analytic logarithmic corrections multiples
of ln(ρ) to c̃j/2. Also notice that in addition to the coefficients ci, there exist further non-

universal coefficients which determine the universal factors c̃j/2, as for instance µ(2) from
the above expansions of µ(q) and ε(q), respectively.) The larger j the more non-universal
coefficients enter in the function c̃j/2. While the lowest order term c̃5/2 only depends on
µ(q = 0) and on the diffusion constant D = ∂2

qν ε(q = 0) (which for isotropic diffusion is
independent of the coordinate ν and which we normally set to one), for higher order terms
we require further non-universal coefficients, in particular we must know the momentum
dependence macroscopic reaction kernel µ(q) and of the dispersion relation ε(q) up to a
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certain order. Thus, the microscopic details (large q) of the macroscopic reaction kernel µ(q)
and the dispersion relation ε(q) (which determines the lattice structure) have more and more
impact as the order in ρ of the terms becomes higher. The first terms in the expansion read

F (ρ) =µρ2 + c̃ 5
2
(D,µ)ρ

5
2 + c̃3(D,µ, ln(ρ)) ρ3 + c3ρ

3+

+ c̃ 7
2

(
D, ε(4), µ, µ(2), ln(ρ)

)
ρ

7
2 + . . . (6.38)

6.4 Conclusion

The central result of the chapter is that the non-equilibrium force is given by (exact up to
higher orders in ρ):

F (ρ) = µρ2 +
µ

5
2

2
√

2π
ρ

5
2 . (6.39)

This equation bears a new fundamental insight: Beyond the law of mass action term, quadratic
in the density, the non-equilibrium force driving the reaction kinetics contains a non-analytic
term violating the law of mass action. Similar as for critical phenomena, long wavelength
fluctuations and many-particle interactions are the physical origin of this term. Unlike in
critical dynamics, the anomalous power law is not governed by a renormalization group flow
close to a fixed point but is a genuine strong coupling result. In contrast to low-dimensional
systems the three-dimensional coagulation process is not critical. Nevertheless, we find that
the term violating the law of mass action is a universal function of the macroscopic decay rate
µ. From our theoretical analysis we anticipate this to be a generic feature of reaction-diffusion
processes in three dimensions with upper critical dimension dc = 2.

A possible candidate to test our theoretical predictions experimentally is exciton luminescence.
These systems have been previously used to investigate low-dimensional reaction kinetics.
By accurate measurements of the fusion of excitons, anomalous behavior was observed in
an effectively one-dimensional system [71, 72]. We expect that our prediction of a strong
violation of the law of mass action could be revealed with similar kinds of experiments for
three-dimensional systems. In addition, we believe that our theoretical results will stimulate
further experimental activities to explore the fundamental implications of fluctuations and
correlations on reaction kinetics, and to map out the range of validity of the law of mass
action.



A Smoluchowski Theory for Finite
Coagulation Rates in Three Dimensions

In this appendix we calculate the macroscopic decay rate µ of the coagulation process for fi-
nite microscopic reaction rates λ, following Smoluchowski’s approach, discussed in Section 1.2.
Relative to the test particle, the surrounding particles effectively diffuse with diffusion con-
stant 2D, where D is the actual diffusion constant. Once a particle is within a distance R of
the test particle, it is destroyed with rate λ. Thus, the density of the particle field obeys

0 ≡ ∂tρ(x, t) =

{
2D∇2ρ(x, t)− λρ(x, t) if x < R ,

2D∇2ρ(x, t) if x > R .
(A.1)

The initial condition is
ρ(x, t = 0) = ρ0 . (A.2)

It is adequate to switch to spherical coordinates. Equation (A.1) then reads,

0 ≡
{

2D
r2
∂r
(
r2∂rρ(r)

)
− λρ if r < R ,

2D
r2
∂r
(
r2∂rρ(r)

)
if r > R .

(A.3)

Far away from the origin, the density will be the initial density, ρ(|x|, t) = ρ0. Thus,

ρ(r) =

c<,1
exp

[
−(r−R)

√
λ
2D

]
r + c<,2

exp

[
(r−R)

√
λ
2D

]
r if r < R ,

ρ0 + c>
r if r > R .

(A.4)

Two of the three unknowns c<,1, c<,2, c> are determined by the continuity of the density and
its flux at the boundary of the test particle r = R,

lim
r↗R

ρ(r) = lim
r↘R

ρ(r) , lim
r↗R

ρ′(r) = lim
r↘R

ρ′(r) . (A.5)

The third condition is that in the stationary state the incoming flux into the sphere of radius
R around test particle must be equal to the mean number of reactions taking place in unit
time

− 8πDc> =

∫
|x|<R

d3xλρ(x) . (A.6)

The result is

c<,1 = ρ0

tanh

(
R
√

λ
2D

)
− 1

2
√

λ
2D

, (A.7)
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c<,2 = ρ0

tanh

(
R
√

λ
2D

)
+ 1

2
√

λ
2D

, (A.8)

c> = ρ0

tanh

(
R
√

λ
2D

)
√

λ
2D

−R

 . (A.9)

Therefore, the effective reaction rate is given by

µ = −1

2

8πDc>
ρ0

= 4πD

[
R−

√
2D

λ
tanh

(
R

√
λ

2D

)]
, (A.10)

where the factor 1/2 accounts for fact that for coagulation only one of the two reactants is
annihilated.



B Leading Correction to the Interface Density
of the RPS model with mutations

This appendix is devoted to the calculation of the leading correction to the interface density,
which to lowest order is n =

√
2µl for pure mutations to the predator, and n = 2µr for pure

mutations to prey. The analysis in not absolutely rigorous, but treats the effects which causes

deviations of order µ
3/4
l and µ

3/2
r more carefully than in Section 2.3.2. The agreement with

the stochastic simulation is excellent.

B.1 Mutations to the Predator

Consider the case µl � 1 and µr = 0. We have seen that to lowest order the stationary
state is perfectly uncorrelated, such that, say, an interface R annihilates ballistically, that is
it collides with an L, with rate ñ. In this case, the decay rate simply is equal to the interface
density, ñ = n =

√
2µl. Let us assume that also for the leading correction the system is

sufficiently uncorrelated such that we can define a decay rate ñ (i.e. the probability that an
R collides with an L in the next time step is ñ, independent of when it has been created).
We expect that

ñ =
√

2µl +O(µl) , (B.1)

with a finte limit limµl→0
O(µl)
µl

.

In a first step, we calculate the ratio of Rs that annihilate not ballistically but diffusively,
i.e. via the reaction RR → ∅L. Suppose an R is created x sites to the left of the nearest
further R to the right (there may only be empty sites and Ls in between them). For instance,
if there are no Ls in between, which is the most important case, this looks like

R∅ . . .∅︸ ︷︷ ︸
x sites

R . (B.2)

Relative to each other, the two interfaces move diffusively, with diffusion constant 1, and thus
the two Rs might collide with each other through this diffusional motion. Their expected
lifetime (due to ballistic annihilation) is of the order 1

n , so that the relevant diffusional dis-
tances are of the order 1√

n
. Therefore, we may assume x � 1

n in the following and neglect

the possibility of an L in between the two interfaces.

The probability

Ppair(x, t) = Pd(x, t)Pb(t) , (B.3)
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that the pair of R interfaces is intact after a time t equals the probability that they have not
yet interacted diffusively (a well-known formula in the theory of first passage problems, see
e.g. [96]),

Pd(x, t) =
2√
π

∫ x/2
√
t

0
ds e−s

2
, (B.4)

times the probability that the right R has not yet crashed into an L by ballistic motion, which
is equal to

Pb(t) = exp (−ñt) . (B.5)

When x � 1
n the probability PR(x) that an R interface is created x sites to the left of the

next R is n
2 = ñ

2 + O(µl), since the density of R is n
2 . Thus the probability that a particle

annihilates diffusively becomes

−
∫ ∞

0
dx

∫ ∞
0

dt PR(x)

(
∂

∂t
Pd(x, t)

)
Pb(t) = −

∫ ∞
0

dx

∫ ∞
0

dt
ñ

2

(
∂

∂t
Pd(x, t)

)
Pb(t) =

√
ñ

2
.

(B.6)
This holds up to higher order terms in µl. In the first equation PR(x) can be replaced by
ñ
2 because Pd(x, t) and its derivative in time goes to zero on length scales of the order 1√

n
,

whereas PR(x) = n = ñ+O(µl) is valid up to larger length scales.

We now need to determine the decay rate ñ. To lowest order it can be calculated from
n = 2µl

1
n , and is equal to the interface density, ñ = n. Here 2µl is the input rate for the

interfaces and 1
n the average time of survival. Since only the fraction

(
1−

√
ñ

2

)
annihilates

diffusively, the input rate for interfaces that annihilate ballistically is 2µl

(
1−

√
ñ

2

)
and we

expect that the decay rate can be obtained from

ñ =

[
2µl

(
1−
√
ñ

2

)]
1

ñ
, (B.7)

or, resolving for the density ñ up to the first correction in µl,

ñ =

√√√√2µl

(
1−
√
ñ

2

)
=
√

2µl

(
1−
√
ñ

4

)
+O(µl) =

√
2µl −

23/4

4
µ

3/4
l +O(µl) . (B.8)

ñ is not yet the interface density n that we are looking for. To calculate n we look at the
average time of survival τ(x) of an R interface that is created x sites to the left of the next
R. We also introduce the quantity τb(x), which denotes the average time of survival if the
interfaces were truly ballistic, in a system with interface density ñ. We know the average time
of survival of these interface, which will eventually be subject to the reaction RL → ∅∅, is
1
ñ , i.e.

〈τb〉 ≡
∫ ∞

0
dxPR(x)τb(x) =

1

ñ
. (B.9)

When it is created at a short distance, x� 1
n , to the left of the next R, the average time of

survival of such an R is 2 · 1
ñ , since the right R must be annihilated before the left one can be
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Figure B.1: Double logarithmic plot of the first correction to the interface density versus the mutation
rate. In (a) the case of pure mutations to the predator µl � 1, µr = 0 is shown. According

to our analytic result (
√

2µl−n)/
√
µl = 3

423/4µ
1/4
l (dotted green line) up to higher orders

in µl. This is in excellent agreement with our data (red circles with error bars that are
twice the size of the estimated standard deviation). The plot in (b) is for pure mutations
to the prey µl = 0, µr � 1, where our analysis yields (n− 2µr)/µr =

√
µr (dotted green

line). The data (again the red circles with error bars twice the size of the estimated
standard deviation) indeed appears to approach the theoretical curve for small µr.

destroyed. For a general R, which may also be subject to diffusional annihilation, the average
time of survival becomes instead

τ(x) = −
∫ ∞

0
dt

[
t

(
∂

∂t
Pd(x, t)

)
Pb(t) +

(
t+

1

ñ

)
Pd(x, t)

(
∂

∂t
Pb(t)

)]
. (B.10)

(Notice that upon ballistic annihilation of the right R at time t, the left one lives on for 1
ñ units

of time on average, whence the factor t+ 1
ñ .) For x� 1√

n
, diffusion is negligible, τ(x) ≡ τb(x),

justifying the boundary c in the following integral. Again we remark that when x� 1
n , then

PR(x) = n
2 = ñ

2 +O(µl). Thus, to lowest order in µl, the difference between the average time
of survival of an arbitrary interface and one that is going to annihilate ballistically is

〈τ〉 − 〈τb〉 =

∫ c

0
dx

ñ

2
(τ(x)− τb(x)) =

∫ ∞
0

dx
ñ

2

(
τ(x)− 2

ñ

)
= − 1√

ñ
, (B.11)

where 1√
n
� c� 1

n . Therefore, the average time of survival of the particles is

〈τ〉 =
1

ñ
− 1√

ñ
. (B.12)

Expressing ñ in terms of µl we finally find for the interface density

n = 2µl〈τ〉 =
√

2µl −
3

4
23/4µ

3/4
l +O(µl) . (B.13)

This is corroborated by the data of our stochastic simulations.
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B.2 Mutations to the Prey

Most of the above analysis can also be applied to the case µl = 0, µr � 1. As discussed in
Subsection 2.3.3, a µr mutation on an empty stretch of the lattice first gives rise to the pair
RL, whose life span is 1

2 . If there is a second mutation at the same site before this pair has

decayed, a pair LR is produced. Thus, the effective production rate of this pair is µ2r
2 instead

of just µl for mutations to the predator.

However, for non-zero µr, there are two further mechanisms which cannot be neglected, where
a pair of R interfaces is created. The first mechanism again concerns the unstable pairs RL,
which cover a fraction µr of the lattice. In every step that a “free” L moves to the left it
can collide with such a pair, RLL → RR∅. Since the density of these Ls is µr

2 , to lowest

order, we effectively have a contribution of µ2r
4 to the production of the pair RR. Secondly,

we have ∅L→ RR with rate µr, which gives a contribution of µ2r
2 to the effective rate for the

production of the pair RR.

For both mechanisms of the production of the pair RR, the two interfaces are initially a
distance 1 apart. In most cases they will annihilate with each other after a while, due to their
diffusional motion relative to each other. The probability that the right R collides with an L
before this happens is

−
∫ ∞

0
dt

(
∂

∂t
Pd(1, t)

)
Pb(t) =

√
ñ

2
= 1− exp

(
−
√
ñ
)

=
√
ñ , (B.14)

up to higher order terms. Thus, the creation of pairs RR effectively gives rise to the creation

of an R with rate µr
√

2µ
2

√
ñ. Therefore, the analogue of Eq. (B.7) for mutations to the prey

reads

ñ =

[
µ2
r

(
1−
√
ñ

2

)
+

3

2
µ2
r

√
ñ

]
1

ñ
, (B.15)

so that

ñ = µr

√
1 +
√
ñ = µr +

1

2
µ3/2
r +O

(
µ2
r

)
. (B.16)

The time of survival 〈τ〉 of an interface created in the “traditional” way, i.e. by a mutation
which turns and LR into a pair RL, can be obtained in the same way as for the case of
mutations to the predator. Therefore, Eq. (B.12), is valid and yields

〈τ〉 =
1

µr
− 3

2

1√
µr

+O(1) . (B.17)

This gives a contribution of

µ2
r〈τ〉 = µr −

3

2
µ3/2
r +O(µ2

r) , (B.18)

to the interface density n. For interfaces originating in the creation of a pair, say ∅L→ RR,
the life span of the left R, until it either interacts diffusively with the right R or it collides
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with an L after the right R (which shields the left R) has annihilated with another L, is given
by

−
∫ ∞

0
dt

[
t

(
∂

∂t
Pd(1, t)

)
Pb(t) +

(
t+

1

ñ

)
Pd(1, t)

(
∂

∂t
Pb(t)

)]
=

2√
ñ

+O(1) =
2√
µr

+O(1) .

(B.19)

Since these pairs are produced with a rate 3
2µ

2
r this gives another contribution of 3µ

3/2
r to the

interface density n.

Finally, the pairs RL contribute a term µr+O(µ2
r): They are created at rate µr and destroyed

with a rate 2 + O(µr), since RL → ∅∅ with rate 2. (With a rate of the order µr such an
RL it is turned to LR, or gives rise to a pair RR or LL, as described at the beginning of
this subsection. For the frequency of the pair RL these transitions only provide corrections
of order µ2

r .) Adding up all the terms for interface density, we obtain

n = 2µr +
3

2
µ3/2
r . (B.20)

This is in accordance with the result of the stochastic simulations, see Figure B.1.
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[55] R. Zsigmondy, Über Koagulation und Teilchenattraktion, Z. phys. Chem. 92, 600
(1917).

[56] F. Lai, S. Friedlander, J. Pich, and G. Hidy, The self-preserving particle size distribution
for brownian coagulation in the free-molecule regime, J. Colloid interf. Sci. 39, 395
(1972).

[57] H. Zhou, Rate theories for biologists, Q. Rev. Biophys. 43, 219 (2010).

[58] T. Waite, Theoretical treatment of the kinetics of diffusion-limited reactions, Phys.
Rev. 107, 463 (1957).

[59] V. Kuzovkov and E. Kotomin, Kinetics of bimolecular reactions in condensed media:
critical phenomena and microscopic self-organisation, Rep. Prog. Phys. 51, 1479 (1988).

[60] R. Kopelman, Fractal reaction kinetics, Science 241, 1620 (1988).

[61] C. Castelnovo, R. Moessner, and S. L. Sondhi, Thermal quenches in spin ice, Phys.
Rev. Lett. 104, 107201 (2010).

[62] D. Toussaint and F. Wilczek, Particle–antiparticle annihilation in diffusive motion, J.
Chem. Phys. 78, 2642 (1983).

[63] S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15,
1 (1943).

[64] M. Doi, Stochastic theory of diffusion-controlled reaction, J. Phys. A: Math. Gen 9,
1479 (1976).

[65] D. C. Torney and H. M. Mcconnell, Diffusion-limited reactions in one dimension, J.
Phys. Chem. 87, 1941 (1983).

[66] J. Spouge, Exact solutions for a diffusion-reaction process in one dimension, Phys. Rev.
Lett. 60, 871 (1988).

[67] C. Doering and D. Ben-Avraham, Interparticle distribution functions and rate equations
for diffusion-limited reactions, Phys. Rev. A 38, 3035 (1988).

[68] D. Ben-Avraham, Complete exact solution of diffusion-limited coalescence, A+A to A,
Phys. Rev. Lett. 81, 4756 (1998).

[69] V. Privman, Exact results for diffusion-limited reactions with synchronous dynamics,
Phys. Rev. E 50, 50 (1994).



Bibliography 131
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flights and subdiffusion, Arxiv preprint arXiv:0706.3553 (2007).

[179] H. Hinrichsen and M. Howard, A model for anomalous directed percolation, Eur. Phys.
J. B 7, 635 (1999).

[180] I. Goncharenko and A. Gopinathan, Vicious lévy flights, Phys. Rev. Lett. 105, 190601
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Zuerst möchte ich mich bei meinem Betreuer Prof. Erwin Frey bedanken. Er hat mir die
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umzusetzen. Großzügig war auch die finanzielle Förderung, insbesondere konnte ich mich auf
mehreren Konferenzen im In- und Ausland und einer Summer School in den U.S.A. fortbilden
und die wissenschaftliche Gemeinde meines Fachbereiches kennenlernen.
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den möchte ich für ihre Gesellschaft und die Unterstützung auch in den schwierigen Phasen
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