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Five-fold perception gained, what benefits accrue

To them whose spirits lack perception of the true?

-Thirukkural, circa 1 AD (Verse 354)

(G. U. Pope’s translation from Tamil, 1886)
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Overview

We perceive the world around us through our senses. Everything we see, hear, taste,

feel, or smell is represented as an electrochemical signal and conveyed to higher brain

centres. It is this sensory representation of the world that enables us to interact with

our environment and shapes our actions and decisions. In a constantly changing en-

vironment, for every successful action the sensory representation has to be fast and

precise. For example, when you are strolling down the lane, to make every single step,

you need a myriad of sensory information, like the objects and people in the front,

how far they are, whether they are approaching or moving away, the sound of an ap-

proaching car behind you and so on. For successful navigation, the information about

the ever changing sensory surroundings must be constantly updated. The statistics

and variability of stimuli in our sensory surroundings provide an enormity of stimulus

spectra and pose a significant challenge in understanding sensory coding under natu-

ral conditions. Nevertheless, understanding the information processing under natural

conditions is critical, not only for sensory coding but neuronal coding in general.

In this thesis, we aim to understand the visual information processing in the retina to

a stimulus that mimics a natural condition. Vision begins in the retina, a thin sheet

of neural tissue at the back of the eye, which converts light signals into neural signals.

The signals of retinal ganglion cells present a ‘bottleneck’ in the visual pathway, as

they provide the only source of information about the visual world to the rest of the

brain (Barlow 1981, Meister and Berry 1999, Dhingra et al. 2003). Thus the represen-

tation of our visual world is reconstructed primarily with the signals originating in the

retina. Therefore, the visual system is ideally suited to probe coding strategies during

naturalistic stimulus conditions.

Among the senses, the visual system is a dominant part for many animals, and a third

of our own cortex is dedicated to processing vision. Our visual world is complex with

hundreds of objects, some of them moving altogether randomly. Another challenge is

our own body, head and eye movements, which pose a significant challenge in extracting

the visual information of our surroundings. Despite our constant eye movements, most

1



2 Overview

of the time we are able to find our way easily and see a stable world. For example, when

you read this text, your eyes jump from phrase to phrase, yet you navigate through

the text relatively easily. Nevertheless, these fast eye movements known as saccades

are an essential feature of visual behaviour. We constantly reposition our gaze to fixate

the next interesting part of our visual space. Thus the image acquired by the retina

during the fixations is interrupted by fast and ballistic saccades. What is the response

of the retina during such saccades? How does a saccade interfere or interact with

information about the fixated visual stimulus that follows? In other words, how does

the retina cope with such impending eye movements and update the information about

the sensory surroundings?

Here, we will address these questions by a systematic investigation of the retinal re-

sponse to saccadic scene changes. The retina as a model system offers some unique

advantages, as it is a readily accessible and an easily approachable part of the brain

(Dowling 1987). Also, the vertebrate retina is a self-contained system with minimal

feedback. It is easy to isolate and maintain the intact retina and record its output

activity for hours while simultaneously stimulating it with a range of visual stimulus.

In the present study, we performed all the experiments in the isolated mouse retina and

recorded the activity of the output cells of the retina - the retinal ganglion cells. We

monitored and recorded the electrical activity of the retina by using microelectrodes

(Meister et al. 1994). The isolated retina was placed on a planar multielectrode array

with 60 electrodes and a population of up to 30 ganglion cells were recorded simul-

taneously. We generated the visual stimulus mimicking saccadic scene changes and

projected it onto the retina. This enabled us to study the input-output relationship

and elucidate the information processing and encoding in the retina.

Retinal processing to saccadic stimulus has been reported earlier (Noda and Adey

1974b, Roska and Werblin 2003). While these studies reported the modulation of

ganglion cell activity during saccades, the encoding of ganglion cells for fixations after

the saccades has not been probed. The encoding of the fixation stimulus is critical

to represent our visual environment, and it is not known how saccades themselves

modulate the representations during subsequent fixations. In the present study, we

precisely asked these questions and probed the retina with appropriate stimuli. We

found that the ganglion cells are affected by the history of the stimulus before a saccade.

Furthermore, we could distinguish five different parallel channels of information, some

of which show rather unexpected response properties, encoded by different groups of

cells.

This thesis is organized in six chapters.
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In the first chapter, we describe the architecture and function of the vertebrate retina.

We begin with structure and organization of different cell types in the retina and proceed

to describe the functional role of each cell type for visual information processing. We

then elaborate on the functional classes of ganglion cells and provide a brief history of

attempts to classify ganglion cells. Furthermore, we provide an overview of “feature

detection” in the retina and highlight some important progress made in this direction.

We also introduce the concept of receptive field and how the properties of the receptive

field are affected by stimulation far beyond the receptive field. We further introduce

the challenges of information processing in the presence of eye movements. Finally, we

define the specific goals of this thesis.

In the second chapter, we describe our experimental approaches. We explain the pro-

cedure of mouse retina isolation and the methods of our electrophysiology experiments

using multielectrode arrays. We then outline our methods of data analysis and general

characterization of ganglion cells.

Chapter three is the first set of results of this thesis. Here we describe our stimulus that

mimics saccadic scene changes and our approach in analysis. For half of the recorded

ganglion cells, we found strong spiking activity during saccades. This supports the

idea that retina actively encodes the saccade and may signal abrupt scene changes

to downstream centres. Furthermore, we characterized the responses to the newly

fixated image. Based on this analysis we classified the ganglion cells into five response

types. While there appears to be only little influence of the motion signal itself on the

responses, the responses depended strongly on the history of the stimulus before the

saccade. This suggests that retinal signals under saccadic vision may provide ‘context’

and encode image transitions rather than currently fixated image.

In chapter four, we investigate the effects of “remote stimulation”, i.e., a stimulus be-

yond the classical receptive field. Each ganglion cell is primarily sensitive to visual

signals in a small area of space, the cell’s spatial receptive field (Hartline 1938, Kuffler

1953). However, it has been known that the ganglion cell responses are also modulated

by stimulation far beyond the receptive field (McIlwain 1964). This is particularly rel-

evant in the context of natural stimuli, where spatially extended stimuli may provide

a contextual meaning to a different stimulus within the classical receptive field. A

striking example is the discovery of a specialized object-motion-sensitive cell (Ölveczky

et al. 2003) that responds to differential object motion as opposed to the motion of the

whole scene encountered during eye movements. While it has been agreed that there

is an effect from the far-periphery, the nature of the effects have remained controver-

sial. While in salamanders, the remote stimulus is shown to inhibit a ganglion cell’s
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response; in mammals both excitation and inhibition are reported. In this thesis, we

revisit the effects of remote stimulation and systematically investigate their properties.

During the recording, we present various light stimuli to the receptive fields of the cells

in the presence or absence of remote stimulation. As remote stimuli we apply moving

as well as contrast-reversing gratings with different spatial and temporal scales. The

response characteristics are then compared to the filtering properties of the neurons as

measured with white-noise experiments and reverse-correlation analyses.

In chapter five, we present the results of ganglion cell activity after gene therapy. This is

a collaborative research effort, where missing cone photoreceptor function is restored by

gene therapy. We evaluated the ganglion cell activity to confirm the proper processing

of visual information. We found that the major ganglion cell types are restored and

basic cell type specification such as ON, OFF and ON-OFF classification upheld. The

results presented in this chapter together with the results of our collaborators have

been published (Michalakis et al., 2010).

In chapter six, we summarize the major findings of this thesis and discuss the results in

detail. Finally, we conclude the thesis and put forth the new ideas that could further

the findings of this thesis in the outlook section.



1. The Vertebrate Retina

The retina is a thin sheet of neural tissue that lines the back of the eye (Fig. 1.1).

The basic organization of the eye and the retina in particular is amazingly similar in

almost all vertebrates (Rodieck 1998). The incoming light is focused by the lens onto

the retina which translates the visual scene into a set of neural signals. For decades,

the general notion had been that the retina provides a generic filtered (i.e., pixel-to-

pixel) information to the rest of the brain, where complex visual processing is known

to take place. However, growing evidence shows that much more processing takes place

in the retina itself, which acts as ‘feature detectors’ and provides precise and diverse

information already segregated to different higher centres (Gollisch and Meister 2010).

In this chapter, we look into the structure and function of the retina, highlight the

complexities of retinal processing, and define the goals of the thesis. First, we elaborate

on the organization of different cell types of the retina and their role in information

processing. We then highlight the functional classification of the output cells of the

retina and provide an overview of feature detection in the retina. Finally, we introduce

the challenges of information processing in the presence of eye movements and set forth

the goals of this thesis.

1.1 Retinal Architecture and Function

The retina consists of five major types of neurons (photoreceptors, bipolar cells, hor-

izontal cells, amacrine cells and ganglion cells), and three types of glial cells (Müller

cells, astrocytes and microglia). The neurons are arranged in a laminar architecture

with three nuclear layers: Ganglion Cell Layer (GCL), Inner Nuclear Layer (INL) and

Outer Nuclear Layer (ONL); and two plexiform layers: Inner Plexiform Layer (IPL)

and Outer Plexiform Layer (OPL) (Fig. 1.2). The retinal tissue is arranged in such

a way that the photoreceptors are loosely attached at the back of the eye with the

retinal pigment epithelium and the ganglion cell side towards the inside of the eye. The

light travels through the nearly transparent retina before it reaches the photoreceptors,

5



6 1.1. Retinal Architecture and Function

Lens

Vitreous humour

Aqueous humour
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Optic nerve

Sclera
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Figure 1.1: Schematic diagram of the human eye. The light enters through the lens

which projects the image onto the retina that lines the back of the eye. The information of

the image processed by the retina is carried by the optic nerve to the rest of the brain. Image

adapted from Martinez-Conde et al. (2004).

where the light signals are transduced to electrical signals. These signals are then pro-

cessed by the successive layers in the retina, before finally reaching the ganglion cells,

the output stage of the retina.

Photoreceptors are the primary light sensitive cells of the retina and are of two types:

rods and cones. Our natural environment consists of varied levels of light intensities

ranging over 1010 (10 log units), and rods and cones divide the job by covering different

ranges (Sterling and Demb 2004). Rods are active in dim light conditions such as a

starlight evening (scotopic) and cones are active in bright light conditions such as day-

light (photopic), while both rods and cones are active at middle intensity range such

as dawn and dusk (mesopic). Rods are of single type with rhodopsin photopigments

and provide achromatic, low spatial but high temporal resolution vision in dim light

conditions. There are two or more cone subtypes, depending on species, with each sub-

type having different spectral sensitivity. For example, humans are trichromatic with

three cone subtypes - the short wavelength sensitive (blue cones), medium wavelength

sensitive (green cones) and long wavelength sensitive (red cones). The difference in

wavelength sensitivity is because of the presence of different types of photopigment in

each subtype. Cones typically provide high spatial resolution vision. Several photore-

ceptors, typically 10-100, converge onto a single bipolar cell. Foveas of primates and
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raptors (e.g., eagles) are a special case, where a single cone connects to a single bipolar

cell which in turn connects to a single ganglion cell, thus providing high spatial acuity.

1
2

3

5

6

4

OS/IS

ONL

OPL

INL

IPL

GCL

NFL

Figure 1.2: Laminar architecture of the retina. The neurons in the retina are arranged in

a laminar fashion. Rod (1) and cone (2) photoreceptors are the primary light sensitive cells of

the retina. Rods are active in dim light (e.g. night vision), and cones are active in bright light

(e.g. day-light vision) conditions. Cones are also responsible for colour vision. The interneurons

- horizontal cells (3) and bipolar cells (4) - receive information from photoreceptors and further

process them before passing on to amacrine cells (5) and the output cells of the circuit, the

retinal ganglion cells (6). The different layers of the retina are : IS/OS - the inner and outer

segments of photoreceptors where the photopigments are present; ONL - outer nuclear layer

where the cell bodies of photoreceptors are present; OPL - the outer plexiform layer comprises

the photoreceptor-bipolar-horizontal cell synapses; INL - the inner nuclear layer where the cell

bodies of bipolar, horizontal and amacrine cells are present; IPL - the inner plexiform layer

comprises the bipolar-amacrine-ganglion cell synapses; GCL - the ganglion cell layer; and NFL

- the nerve fibre layer where the axons of the ganglion cells bundle together and run towards the

optic disc. The ganglion cell axons exit the retina at the optic disc and form the optic nerve.

Image adapted from Wässle (2004).

Bipolar cells represent the next stage in visual information processing and are broadly

divided into two types: rod bipolar cells and cone bipolar cells. Functionally, cone

bipolar cells are further divided into ON and OFF bipolar cells based on response

polarity. ON bipolar cells are active at light onset and OFF bipolar cells are active at

light offset (Kolb 1994). It is at this stage that the light information is detected either as
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increments or decrements against the mean background illumination. The difference in

response polarity arises due to the presence two different types of glutamate receptors.

ON cells have metabotropic glutamate receptors in their dendrites, which invert the

photoreceptor signal, whereas OFF bipolar cells have ionotrpoic glutamate receptors

and they preserve the photoreceptor signal. Rod bipolar cells are typically of only ON

type. ON bipolar and OFF bipolar axons terminate at two different strata (also known

as sublaminae) in the IPL. Based on morphology and stratification of bipolar cell axons

in the IPL, they are further classified into ten subtypes: nine cone bipolar type and one

rod bipolar type (Wässle et al. 2009). Each cone contacts all of the nine cone bipolar

type, thus the same information is processed in parallel circuits already at the first

synapse in the visual pathway (Wässle et al. 2009). Information from the bipolar cells

is then sent to ganglion cells, the output neurons of the retina.

Retinal ganglion cells(RGC) represent the final stage of information processing in the

retina, and they are the output cells of the retinal circuit. Ganglion cells are divided

broadly into ON type, OFF type and ON-OFF type based on their synaptic contact

to bipolar cells(Fig. 1.3). They inherit the response polarity from bipolar cells - ON

cells respond to light increments, OFF cells to light decrements, and ON-OFF cells to

both (Sterling and Demb 2004, Kolb and Nelson 1993, Nelson et al. 1993). Based on

morphology they are further classified into 10-15 subtypes in mouse retina (Badea and

Nathans 2004, Wässle 2004, Kong et al. 2005, Coombs et al. 2006, Völgyi et al. 2009).

It has been proposed that each subtype has a specific role in information processing and

projects to a distinct visual area of the brain (Field and Chichilnisky 2007). The axons

of the ganglion cells collect to form the optic nerve, which carries the partially processed

image information to the lateral geniculate nucleus (LGN), the superior colliculus (SC),

suprachiasmatic nucleus (SCN), olivary pretectal nucleus (OPN) and associated optic

system (AOS), and other visual areas depending on animal species.

Apart from the vertical pathways, there are two major lateral pathways which act to

further process the visual information. The horizontal cells act at the OPL and the

amacrine cells act at the IPL. Horizontal cells receive inputs from many photoreceptors

and have much larger receptive fields. They provide negative feedback at the photore-

ceptor to bipolar cell synapse. They are also coupled to each other by gap junction, thus

extending the spatial interaction of light stimulus. Furthermore, the reciprocal synapse

between cones and horizontal cells is implicated in the generation of characteristic an-

tagonistic centre-surround organization of the bipolar cell receptive field (Kolb 1994).

Recently, Jackman et al. (2011) reported that horizontal cells also provide local positive

feedback to cones that amplify the cone signal. Amacrine cells act at the bipolar to
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Gap
junction

Gap
junction

ON ganglion
cell

Sign-conserving
glutamatergic synapse

Sign-inverting
glycinergic synapse

OFF ganglion cell

OFF pathway

ON pathway

Rod bipolar
cell

ConeRod

Sign-conserving
glutamatergic synapse

Sign-
inverting
glutamatergic
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Gap junction
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H1 horizontal cell

Sub-lamina a

Sub-lamina b

All amacrine cell

Rodent

ON cone
bipolar cell

Figure 1.3: ON and OFF pathways in the retina. Cone signals are channelled to the

ganglion cells by distinct OFF and ON bipolar cells. Rod signals are channelled by only one

type of bipolar cell. Nevertheless, the AII amacrine cells channel the rod signals to ON and

OFF pathways. However, there are evidences for direct rod-OFF cone bipolar synapses in the

mouse retina (Soucy et al., 1998). The important synapses are indicated. Image adapted from

Sharpe and Stockman (1999).

ganglion cell synapses. They come in a variety of morphology and neurotransmitter

presence and are further subdivided into nearly 20 subtypes (Masland 2001). They

act to modulate the ganglion cell response either by inhibitory or excitatory synapses.

It is thought that several complex response properties of ganglion cells are brought

about by different amacrine cells. For example direction selectivity is brought about



10 1.2. Functional Classes of Ganglion Cells

by a special type of amacrine cell known as starburst amacrine cell. They contain two

neurotransmitters - acetylcholine which is excitatory; GABA which is inhibitory. Some

amacrine cells also inhibit other amacrine cells, thus bringing more complexity to their

modulation. Although morphology of amacrine cells is well studied, the function of

many cell types is poorly understood.

1.2 Functional Classes of Ganglion Cells

Ganglion cells are the functional units of information transmission in the retina. They

can be classified based on their physiological function and response properties. Such

a classification was made as early as 1938 by Hartline and he was the first to record

from the individual ganglion cells of the vertebrate retina (Hartline 1938). He found

that the ganglion cells responded not only to light increments, some of them also to

light decrements, while some responded to both. Thus according to response, three

functional classes of ganglion cells emerged. Those that responded to increments of

light were called “ON” cells; those that responded to decrements were called “OFF”

cells; and cells that responded to both were known as “ON-OFF” cells. This functional

classification is based on polarity of response of a ganglion cell and holds good in all

vertebrate retinas studied since then (Fig. 1.3 ). Hartline’s study also showed that each

ganglion cell primarily responded to a light stimulus restricted in visual space known as

its “receptive field”. Detailed experiments by Kuffler (1953) revealed that this receptive

field is further divided roughly into a concentric centre and an antagonistic surround.

Centre-surround organization of the receptive field shows that the integration of stimuli

within the receptive field is much more complex than simple summation. Later, Enroth-

Cugell and Robson (1966) found that the cat ganglion cells can be classified based on

their property of spatial summation of stimuli over their receptive field - X cells with

linear summation over their receptive field and Y cells with non-linear summation.

When presented with reversing sinusoidal gratings with four different spatial phases,

X-cells respond with a preferred phase and null phase, since they summed the stimulus

linearly over the receptive field. Y cells, on the other hand, respond to all spatial phases,

indicating that these cells show non-linear stimulus integration over their receptive field.

Furthermore, each class has ON and OFF subtypes. Anatomical studies by Boycott

and Wässle (1974) showed that X and Y cells correspond to two known morphological

classes, beta (smaller dendritc field) and alpha (larger dendritc field) types, respectively,

thus establishing morphology-function relationship in the retinal ganglion cell classes.

Apart from the classification schema described above, there have been attempts to
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classify mouse ganglion cells based on additional response parameters such as response

latency, response duration (transient and sustained), response nonlinearity, and recep-

tive field size (Carcieri et al. 2003, Farrow and Masland 2011). Carcieri et al. (2003)

arrived at five distinct physiological clusters; whereas Farrow and Masland (2011) using

different criteria, described 12 distinct physiological clusters.

Although several advances have been made since the first classification by Hartline

(1938), the physiological classification is not yet conclusive. Thus, it is possible to find

more classes of ganglion cells when probed through different physiological properties

and response profiles.

1.3 Feature Detection in the Retina

For decades, the general notion among vision researchers had been that the retina

merely filters the visual information, and complex processing is left to the higher brain

centres. However, analysis with more complex stimulus patterns revealed the presence

of diverse functional classes of ganglion cells which act as “feature detectors”. Earliest

such finding was the presence of the so-called bug detectors (Lettvin et al. 1959) in the

frog retina, where a particular type of ganglion cell responded only to motion of small

objects, with convex curvature. Motion of larger objects and a straight edge elicited

little or no response. Although the authors referred to this cell type as “convexity”

detectors, it has become anecdotally referred to as “bug” detectors because small con-

vex moving objects relevant for frogs are usually bugs. Another such finding was the

presence of direction selective ganglion cells in the rabbit retina (Barlow and Hill 1963),

which respond to light spots moving in a particular direction. These cells responded

to motion of light spots or rectangular stripes moving in a preferred direction but not

in the opposite direction (“null” direction). It is now known that there are different

subclasses of direction selective cells, with cells responding to a particular cardinal di-

rection (dorsal, ventral, nasal and temporal) and projecting to different targets in the

brain (Kay et al. 2011, Rivlin-Etzion et al. 2011). More findings followed, again in the

rabbit retina. Levick (1967) described the presence of three more feature detectors.

Local edge detectors responded to motion of a contrast edge within the receptive field;

orientation selective cells responded to either horizontally or vertically oriented bars;

and uniformity detectors stopped their high maintained rate when the light intensity

changed within their receptive field. Experiments in other species revealed the pres-

ence of more complex feature detectors. Ölveczky et al. (2003) reported the presence

of object motion sensitive (OMS) cells, which respond to differential motion of objects
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against the background motion. Münch et al. (2009) reported the presence of approach

sensitive ganglion cells. These cells responded to an expanding spot similar to an ap-

proaching object. It is speculated that these cells are useful to detect an approaching

threat such as a predator. These cells are similar to looming detectors reported in the

frog retina (King et al. 1999, Ishikane et al. 2005), but the underlying mechanism is dif-

ferent for frogs and mouse. Another interesting type of response is the omitted stimulus

response (OSR) described by Schwartz et al. (2007). When the retina is presented with

periodic flashes, with one flash in the sequence omitted, some cells respond with strong

spiking activity to the missing stimulus. Thus it is evident that these cells report an

abrupt change in the stimulus pattern. Bölinger and Gollisch (2012) recently reported

that a subset of ganglion cells in the axolotl retina is specialized in detecting spatially

homogeneous stimuli. These cells, known as homogeneity detectors, are particularly

useful in the detection of large objects. More recently, Zhang et al. (2012) showed in

the mouse retina a special cell type W3, which is active only to small moving objects on

a featureless background. These cells remain silent to most of the other natural stimuli

and are specialized in providing alarm signals by responding only to distant predators

in the sky.

Feature detection was initially thought to be present only in the lower vertebrates.

However, the discovery of more such types in different mammalian species has changed

this notion. Thus, the increasing evidence shows that the processing in the retina

extracts several interesting features and probably projects to distinct regions of the

brain also in primates and humans (Field and Chichilnisky 2007, Schiller 2010).

1.4 Beyond the Receptive Field

The receptive field region of a ganglion cell corresponds to a roughly concentric area of a

few hundred micrometers, over which the cell collects its inputs (Kuffler 1953). Kuffler

(1953) showed that the receptive field has a concentric centre and an antagonistic

surround. For several decades, however, it has been known that the cell’s responses to

stimuli in its receptive field can be modulated by the visual signals outside the receptive

field in the far-surround. A rapid shift or motion of the image in the periphery can

modify various response characteristics of a ganglion cell, including contrast sensitivity

and response dynamics (McIlwain 1964, Krüger and Fischer 1973, Fischer et al. 1975,

Barlow et al. 1977, Enroth-Cugell and Jakiela 1980, Geffen et al. 2007). Hence, the

region remote to the cell’s classical receptive field has been denoted as ‘extra-classical

receptive field’ (Passaglia et al. 2009).
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The effects of remote stimulation have been studied in the retina of several species

including, salamander (Werblin 1972, Cook and McReynolds 1998), turtle (Schwartz

1973), cat (McIlwain 1964, 1966, Barlow et al. 1977), rabbit (Watanabe and Tasaki

1980, Taylor 1999), guinea pig (Demb et al. 1999) and monkey (Solomon et al. 2006),

and have been called ‘shift effect’ and ‘periphery effect’. In salamander retina, the

global motion activates glycinergic amacrine cells which in turn inhibit ganglion cells

(Werblin 1972, Werblin and Copenhagen 1974, Thibos and Werblin 1978, Cook and

McReynolds 1998). By contrast, in mammals there are contradictory reports that show

remote stimulation causing both excitation (McIlwain 1964, 1966, Krüger and Fischer

1973, Noda and Adey 1974b, Fischer et al. 1975, Barlow et al. 1977, Ross et al. 2001)

and inhibiton (Enroth-Cugell and Jakiela 1980, Demb et al. 1999, Taylor 1999, Flores-

Herr et al. 2001). Although these effects were known for several decades, the cellular

mechanism has been elusive. Also their role in active vision is poorly understood. The

remote stimulus is relevant in the context of global motion of stimuli, such as saccadic

eye movements. In this study, we revisit some of the issues and study them in relation

to saccadic eye movements.

1.5 Eye Movements and Image Representation

Eye movements or “saccades” are an essential feature of natural vision in almost all

vertebrates, even for lower vertebrates and insects (Land 1999). One hypothesis is

that eye movements are made to stabilize gaze against the body movements of the

animal and to constantly relocate gaze to scan the visual scene. In a series of elegant

experiments, Yarbus (1967) demonstrated the presence of eye movements in humans.

One thing that is clear from the human and animal observations is the pattern of eye

movements - brief fixations interrupted by fast ballistic saccades (Fig. 1.4). Thus, the

image on the retina is acquired as a brief snapshot and abrupt image motion. The

information transmission of the retina should accommodate these abrupt changes and

periods of fixation.

It has been shown that the saccade-like image shifts strongly modulate the activity of

a ganglion cell. Noda and Adey (1974b) showed that saccadic eye movements elicited

strong spiking activity in some ganglion cells of the cat retina, whereas Roska and

Werblin (2003) showed suppression of activity in some ganglion cells of the rabbit

retina. Moreover, the initial period of fixation has been shown to provide the most

information about object size in archer fish retina (Segev et al. 2007). In rabbit retina,

the sudden changes in mean luminance induced by saccade-like shifts elicits a variety of
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responses in different ganglion cells ranging from strong activation to strong suppression

(Amthor et al. 2005). In salamander retina, certain OFF ganglion cells change their

response polarity transiently to ON-like after a saccade-like image shift (Geffen et al.

2007).

The studies mentioned above have found several interesting responses during a saccade.

However, it is not known how the subsequent fixations are represented. It is also not

known how the history of the saccade or the previous fixation modulates the response

of the current fixation. In the current study, we address these questions by analysing

the ganglion cell responses to stimuli mimicking saccadic scene changes.

Figure 1.4: Saccadic eye movements. Eye movements for a duration of one minute are

recorded (right) from an observer viewing a picture (left). Note that the eyes fixate and make a

saccade to a new location of interest on the picture (Yarbus 1967; image adapted from Martinez-

Conde et al. 2004).

1.6 Aims of this Study

Natural vision such as a saccadic scene change provides complex spatio-temporal visual

input to the retina. However, the information processing in the retina is usually studied

with much simpler stimulus conditions, which do not reveal the coding strategies for

natural vision. Here we address this problem by studying the retinal coding under

saccadic vision. The central goal of this thesis is to understand the retinal information

processing in the presence of eye movements. We approach this goal by dividing the

study into two parts: 1) to understand the retinal encoding of saccadic scene changes;

2) to understand how the global motion signals induced by saccades interfere with the

ganglion cell response to local stimuli.
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In the first part of the study (Chapter 3), we ask what the responses of ganglion cells

are during a fast and ballistic saccade and how the saccades are represented in the

retinal output. Furthermore, we aim to understand the encoding of fixations after a

saccade and ask if the saccadic motion and the fixation prior to the saccade influence

the response to the newly fixated image after a saccade. Finally we test if the saccadic

vision reveals any feature detectors in the retina. In the second part of the study

(Chapter 4), we address how the global motion signals induced by saccades influence

the encoding of local stimuli incident on the cell’s receptive field. More precisely, we

aim to understand the changes in ganglion cell’s filtering properties and its sensitivity

to visual stimuli.





2. Experimental Methods

In this chapter, we describe the experimental procedures for measuring the ganglion cell

activity using multi-electrode arrays. We provide the details of tissue preparation, elec-

trophysiology and our approaches in analysing the data. We also discuss the rationale

for using the mouse as a model system in the present study.

2.1 Animals

We investigated the retina of adult mice (Mus musculus, C57BL6/J) for this study.

Our choice of mouse as a model system is made for the following considerations.

1) The mouse retina lacks a fovea, and thus the entire retina is comparable to the

peripheral retina of primates. Another interesting feature is the near homogeneous

distribution of ganglion cell types in the mouse retina (Jeon et al. 1998, Sun et al.

2002, Badea and Nathans 2004). This is particularly advantageous as the recordings of

retinal ganglion cells are independent of eccentricity or retinal location.

2) Mouse retina has ≈ 20 types of RGCs (Völgyi et al. 2009) similar to the primate

retina (Field and Chichilnisky 2007).

3) The visual system of the mouse is extensively studied, from the retina up to the ex-

trastriate cortex (Huberman and Niell 2011, Niell 2011, Andermann et al. 2011, Marshel

et al. 2011). The present schema of the mouse visual system includes the putative dor-

sal stream and ventral stream (“where” and “what” pathway; see Wang and Burkhalter

2007, Wang et al. 2011).

4) In an elegant set of behavioural experiments, Naarendorp et al. (2010) showed that

the mouse vision is comparable to that of human peripheral vision.

Furthermore, the availability of a variety of genetic tools makes the mouse a key species

in vision research. Due to the reasons mentioned above, the mouse as a model system

for vision research is gaining importance in the past decade (Huberman and Niell 2011).

17
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Therefore, the results of our study from the mouse retina are readily comparable to the

results from other laboratories interested in mouse vision in a larger context.

2.2 Tissue Preparation

All experimental procedures were performed in accordance with institutional guidelines

of the Max Planck Institute of Neurobiology, Martinsried, Germany. A mouse was dark

adapted for at least 30 min, sacrificed by cervical dislocation, and eyes were enucleated

quickly and kept in oxygenated (95% O2 and 5% CO2) Ames’ medium buffered with

22mM NaHCO3 to maintain pH 7.4 (Sigma-Aldrich, St. Louis, USA; Ames and Nesbett

1981). In some eyes, the superior part was marked before enucleation to know the axes

of the tissue. The eyes were then hemisected under a stereo zoom dissection microscope

(model SZX7, Olympus, Japan) equipped with infra-red illumination and a pair of night

vision goggles (model PS-14, ATN Corporation, San Francisco, USA) attached to the

microscope’s eye pieces. The posterior eye-cup was stored in oxygenated Ames’ medium

at room temperature till further use. The retina was isolated from the eye-cup just prior

to the electrophysiology experiments. We have observed that it is critical to complete

the dissection within 10-15 min to get a healthy retina and stable recordings, as has

been noted by others (Wei et al. 2010). All the procedures mentioned above were

carried out in a dark room, with minimal dim red light illumination when necessary.

2.3 Electrophysiology

Spike trains of ganglion cells were recorded using planar microelectrode array (MEA;

Multi Channel Systems, Reutlingen, Germany) with 60 electrodes, each of 10 µm diam-

eter and a minimum spacing of 100µm between the electrodes(Fig. 2.1; see tom Dieck

et al. 2012). One half of the retina with ganglion cell side down was placed on the

electrode array and gently held in place by a dialysis membrane attached to a plastic

holder. Prior to mounting on the electrode array, the vitreous humour was removed

carefully from the retina to improve better contact with the electrodes. The retina was

continuously superfused with oxygenated Ames’ medium at 8-10 ml/min. The medium

was warmed with an in-line heater (model PH01; Multi Channel Systems) just before

it entered the MEA recording chamber which was also maintained between 33℃ and

35℃. We rested the preparation in this setting for at least 45-60 min before the start of

the recording to ensure better contact of electrodes and good signal-to-noise ratio. The

temperature and flow rate were continuously monitored; constant temperature and flow
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rate of the medium proved critical to achieve stable recordings of at least 3-4 hours.

Voltage traces from electrodes were amplified, band-pass filtered between 300 Hz and

5 kHz and stored digitally (25 kHz sampling rate) for offline analysis.

2.4 Visual Stimulation

Visual stimuli were generated by custom written software in C++ with OpenGL li-

braries. The stimulus display on a cathode ray tube (CRT) monitor was projected onto

the photoreceptor layer of the retina using a mirror and projection lens. Each pixel

of the monitor impinged on a 6 µm x 6 µm area on the retina. The 100 Hz temporal

refresh rate of the monitor was fast enough to be assumed as a continuous image for

the retina. A light-tight Faraday’s cage around the recording set-up ensured that the

retinas were driven only by the visual stimuli presented. All the stimuli used in this

study were in photopic light levels. We used two set-ups with monitor intensities 10.19

mW/m2 and 18.23 mW/m2, and did not find any difference in the results. We also

simultaneously generated a small light pulse in a corner of the stimulus monitor during

every change in the stimulus. We recoded this pulse using a photodiode, which served

as a marker for stimulus timing.

2.5 Spike Sorting

Recording using microelectrode array poses significant challenges in identifying and

isolating spikes from a single cell. There are two main issues to be considered: 1)

signals from two or more cells could be picked up by one electrode, 2) signals from one

cell could be picked by two or more electrodes. These issues were addressed by spike

shape cluster analysis, considering spike shape as a ‘signature’ of each cell (Pouzat

et al. 2002). Spikes of different shapes were assigned to different clusters and thus to

different cells. Also, spike events with identical timings in neighbouring channels (i.e.,

electrodes) were taken together as one cluster and thus as signal from one cell. In this

way duplication of the same cell was avoided. Only well separated clusters with a clear

refractory period between the spikes were used in this study. Spike sorting incorporating

these principles were done using custom-written software (originally developed by Dr.

Ofer Mazor, Harvard University, Cambridge, USA) in Igor Pro 6.03A (WaveMetrics,

Lake Oswego, USA). We also routinely marked and isolated axonal spikes by their

typical triphasic shape.
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Multi-electrode array Mouse retina 

Mirror

Stimulus screen
100 µm

100 ms
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Figure 2.1: Schematic illustration of the electrophysiology set-up. The visual stimulus

generated on a computer screen is projected on to the retina mounted on a multi-electrode array.

The voltage traces from several channels are amplified and stored in a recording computer for

further processing and analysis. A sample voltage trace from one channel (highlighted in red

on the recording screen) is shown on the lower right.
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2.6 Basic Characterization of Ganglion Cells

Retinal ganglion cells were characterized by a series of stimuli to reveal their basic

cellular properties. The characterization included, polarity of response (ON, OFF,

ON-OFF), receptive field estimation, X and Y cell analysis, direction selectivity and

linear-nonlinear systems analysis. Characterizing the ganglion cells is an important

step before analyzing them for a novel stimulus of interest.

2.6.1 Polarity of Response

The fundamental characterization of a ganglion cell is its response polarity. Hart-

line (1938) found that some cells respond to light increments, some respond to light

decrements, while others responded to both. To determine the response polarity, we

presented a full field square wave light step stimulus with step duration of 500ms. Thus,

the stimulus consisted of a full step increment and a full step decrement of light level.

Spike responses were recorded for a duration of 2-3 min. Cells responding to increment

steps were classified as ON cells, those responding to decrement steps as OFF cells and

those responding to both increments and decrements as ON-OFF cells (Fig. 2.2).

500 ms

ON Cell OFF Cell ON-OFF Cell

20
 T

ria
ls

Figure 2.2: ON, OFF, ON-OFF cells. The ganglion cells were classified based on their

response to periodic flashes of light. For each representative cell type, responses to 20 successive

presentations are shown. Stimulus phase is indicated at the bottom of each panel.

2.6.2 Spike Triggered Average

We analysed the ganglion cell for its filtering properties, which is given by ‘spike-

triggered analysis’. We stimulated the retina with a pseudorandom Gaussian white
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noise stimulus, where the intensity of the full field stimulus was changed every 20ms

(Fig. 2.3 A). A short temporal window of stimulus preceding every spike is collected to

give an ensemble of stimuli that elicited the response of a cell (Fig. 2.3 B). An average

of such a stimulus ensemble is referred to as spike triggered average (STA; Fig. 2.3 C),

which is given by

A =
1

N

N∑
i=1

si

where, N is the total number of spikes, and si is the stimulus vector preceding spike

i. The shape of the STA also reveals the response polarity of the cell. A positive

peak preceding a spike represents the cell’s preference of light increments and thus

corresponds to an ON cell (Fig. 2.3 C left). Similarly, a negative peak represents an

OFF cell(Fig. 2.3 C right). However, the classification based on STA does not allow the

identification of an ON-OFF cell and all the cells are classified as either ON or OFF.

The STA also represents the linear filter of a cell (Chichilnisky 2001, Schwartz et al.

2006). The biphasic shape of the STA corresponds to the sensitivity of the cell to

temporal frequency of the stimulus. For example, an increased biphasicness could be

interpreted as a decreased sensitivity to low temporal frequencies.

2.6.3 Receptive Field Estimation

The response of a ganglion cell is influenced best by a light stimulus in a restricted area

of visual space. The region on the retina which collects the stimulus of this region is

commonly referred to as ‘receptive field’ (Kuffler 1953). The receptive field of a ganglion

cell is estimated by a white noise analysis (Chichilnisky 2001). We stimulated the retina

with a pseudorandom binary white-noise flickering checker-board stimulus. Each field

of the checker-board was 60µm on a side and was changed randomly to either black

or white every 20ms (Fig. 2.4 A). The average 800ms stimulus preceding every spike

was computed. This average stimulus has two parts - time course of the stimulus and

spatial location. A 2D Gaussian fit of the spatial part is used as a best approximation of

the receptive field of the ganglion cell (Fig. 2.4 B). This method identified the receptive

field size and position of many simultaneously recorded cells. In a typical recording we

obtained a heterogeneous population of about 15 - 30 cells with different receptive field

sizes (Fig. 2.4 C).
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Figure 2.3: Spike triggered average (STA). A) Schematic of a Gaussian white noise

stimulus. The intensity of the stimulus screen was changed every 20 ms with values drawn

randomly from a Gaussian distribution. B) A sequence of stimulus where the light intensity

deviation from mean contrast is plotted as a function of time and the response of a ganglion cell

is shown below. The average stimulus segment preceding every spike (illustrated in red box for

three sample spikes in red) is computed to produce a “spike triggered average (STA)”. C) STAs

for an ON cell and an OFF cell. Time zero is the occurrence of a spike. The temporal STA

represents the linear filter of a cell. Note the biphasic shape of the filters in the examples shown

here. Different cells exhibit varying levels of biphasic shape which represents the sensitivity to

temporal frequencies of the stimulus.
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Figure 2.4: Receptive field estimation. A) Spatio-temporal binary white noise stimulus,

where each square (or stixel) in the flickering checker-board was changed to either black or

white every 20 ms in a pseudorandom fashion. The size of each square on the retina is 60 x

60 µm2. Shown here are sample screen-shots of stimulus appearing 20 ms apart. B) Spatial

component of spike triggered average (STA), resolves the region of stimulus that evoked spikes.

A 2D Gaussian fit (white ellipse) is the best approximation of a ganglion cell’s receptive field

centre. Note that this measurement does not reveal the receptive field surround. C) Receptive

fields of 15 cells recorded simultaneously. Red ellipse is the receptive field of the cell shown

in B. Note the different sizes of receptive fields. The square indicates the outline of the 60

electrode array (700µm x 700µm). Receptive fields lying outside the electrode array region were

measured from the cells’ axons passing through the recording region.

2.6.4 X- and Y- Cell Analysis

Ganglion cells can be classified into two functional classes - X-like cells with linear

summation over their receptive fields and Y-like with non-linear summation (Enroth-

Cugell and Robson 1966). We identified the cells as X-like and Y-like based on their

response profile to reversing sinusoidal grating stimuli. A sinusoidal grating with bar

width of 480µm was presented. The intensities of the grating was reversed every 560ms.

After 30 repetitions of each reversing grating, the spatial phase of the grating was

shifted by 45°. Thus reversing gratings in eight spatial phases were presented. X cells

responded with a preferred and null phase, whereas Y cells responded to all the phases
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(Enroth-Cugell and Robson 1966). We applied Fourier analysis to deduce the first

harmonic (F1) and the second harmonic (F2) components of the response amplitudes.

Y cells had a strong second harmonic response component (i.e. F2>F1), whereas X

cells did not (Hochstein and Shapley 1976, Freeman et al. 2010). We also calculated

a nonlinearity index, which is the ratio of the mean of the second harmonic to the

maximum of the first harmonic for all spatial phases (Hochstein and Shapley 1976,

Carcieri et al. 2003) to objectively classify the cells. Cells with nonlinearity index > 1

were classified as Y-like, < 0.5 as X-like and between 0.5 and 1 as intermediate types

(Fig. 2.5).

2.6.5 Direction Selectivity

A subset of ganglion cells in the mouse retina is direction selective (Weng et al. 2005, Sun

et al. 2006, Elstrott et al. 2008, Kim et al. 2008). We identified the direction selective

ganglion cells by presenting a full-field drifting square wave grating (700µm /period)

stimulus in eight different directions. The stimulus lasted for 5 s in one direction,

followed by 2 s grey screen, followed by 5 s drifting grating in a different direction and

so on. We presented two variations of the stimulus (1s /period; velocity 22.5° /s; or

0.5s /period; velocity 45° /s), with no difference in the results. The average spike rate,

r(ϕ) for each direction ϕ was calculated and represented in a polar plot (Fig. 2.6 A).

We calculated the mean preferred direction ϕp as the angle of vector sum in a polar

plot of responses,

ϕp = arg
∑
k

r(ϕk)eiϕk

where, the eight directions are given by ϕk = 0°, 45°, 90°, 135°, 180°, 225°, 270°and

315°.

We computed a direction selective index which is the length of the vector sum divided

by sum of all responses,

D = |
∑
k

r(ϕk)eiϕk |/
∑
k

r(ϕk)

The index ranges from 0 to 1, where 0 represents for a cell with equal responses in all

directions and 1 represents a cell responding in only one direction. We classified cells

with index ≥ 0.2 as direction selective.

Apart from direction selective cells, we also found orientation selective cells (Fig. 2.6 B, C)

in the mouse retina. These cells responded to either vertically or horizontally oriented
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Figure 2.5: X- and Y-cell analysis. Ganglion cells were classified based on their property

of stimulus integration over space. A sinusoidal grating stimulus with a stripe width of 480µm

was presented. The stripe intensities were reversed every 560 ms as indicated in top panels

in A and B. After 30 repetitions of each reversing grating, the spatial phase of the stimulus

was shifted by 45°. A) A representative X-like cell, which responded to only one phase of the

reversing grating, indicating linear summation of stimulus. Note that the phases 45°and 225°are

“null phases” with no response. B) A representative Y-like cell, which responded to both the

phases of the reversing grating, indicating nonlinear summation of stimulus. C & D) Fourier

analysis of response amplitudes of X-cell and Y-cell illustrated in A and B respectively. Note

that typically F1 > F2 for X-cell and F2 > F1 for Y-cell.
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Figure 2.6: Direction and orientation selectivity. Polar plots showing mean spike rate

of responses to square-wave grating motion is eight directions. The mean spike rates were

computed for 30 repeats of the stimulus each direction. A) An example of direction selective

cell. The arrow indicates the mean preferred direction of the cell. B) An example of a vertical

orientation selective cell. This cell responded to preferably vertical grating moving in orthogonal

axis in both the directions. C) An example of horizontal orientation selective cell. This cell

responded to preferably horizontal grating moving in orthogonal axis in both the directions.

stimulus moving in either of the orthogonal directions. Orientation selective cells have

been described in the rabbit retina (Levick 1967, He et al. 1998, Venkataramani and

Taylor 2010), but there are no reports for mouse retina to date. This study is the first

report to identify both vertical and horizontal orientation selective cells in the mouse

retina.





3. Encoding of Saccadic Scene

Changes

3.1 Eye Movements and Vision

Fast and sudden eye movements known as ‘saccades’ form an essential feature of visual

behaviour (Land 1999). We make saccades to scan our visual scene in everyday life.

The scene could be static - like a picture of a face (Yarbus 1967), or dynamic - like

a game of cricket (Land and McLeod 2000). The strategy for most animals including

humans is to constantly reposition the gaze to different target locations in the scene

by making ballistic saccades (Land 1999). Thus the visual information acquired by

the retina is a sequence of brief ‘snapshots’ interrupted by saccadic ‘motion blur’. In

such a scenario, the information transmitted by the retinal ganglion cells is critical for

the downstream brain centres to make sense of the visual world (Barlow 1981, Meister

and Berry 1999). How does the retina cope with such impending saccades and encode

information reliably about our visual world?

Saccade-like image shifts are known to strongly modulate the activity of a retinal gan-

glion cell. Noda and Adey (1974b) showed that saccadic eye movements elicited strong

spiking activity in some ganglion cells of cat retina, whereas Roska and Werblin (2003)

showed suppression of activity in some ganglion cells of rabbit retina.

Little is known, however, about how the responses to saccade-like motion signals in-

teract with the encoding of image content at the subsequent fixations. Earlier investi-

gations about coding strategies of fixations revealed some interesting phenomena. The

initial period of fixation has been shown to provide the most information about ob-

ject size in archer fish retina (Segev et al. 2007). In rabbit retina, sudden changes in

mean luminance induced by saccade-like shifts elicits a variety of responses in differ-

ent ganglion cells ranging from strong activation to strong suppression (Amthor et al.

2005). In salamander retina, certain OFF ganglion cells change their response polarity

29
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to ON-like for a brief period, after a saccade-like image shift (Geffen et al. 2007). These

studies taken together underscore that saccades modulate the ganglion cell response to

a fixated image. However, these reports did not take into account the history of the

fixated stimulus. In other words, it is not known how the stimulus history (i.e., the

saccade and an earlier fixation) shapes the response to the current fixation (i.e., the

visual ‘snapshot’ of the world).

In this study, we address this question by analysing ganglion cell responses in isolated

mouse retina to simulated saccadic scene changes. For half of the recorded ganglion

cells, we found strong spiking activity during saccades. This supports the idea that

the retina actively encodes the saccade and may signal abrupt scene changes to the

downstream centres. Furthermore, we characterized the responses to the newly fixated

image. While there appears to be only little influence of the motion signal itself on

the responses, the responses depended strongly on the history of the stimulus before

the saccade. This suggests that retinal signals under saccadic vision may encode image

transitions rather than the currently fixated image. Based on this analysis we classified

the ganglion cells into five response types.

3.2 The Saccade Stimulus

The stimulus in our experiments was designed to mimic a saccade-like scenario with

brief image fixations separated by global motion. The saccade duration of 100 ms and

amplitude range of 8°to 40°was chosen to be approximately close to that observed in

mouse (duration: ≈ 60ms and average amplitude: ≈ 14°; maximum amplitude: ≈ 40°;
Sakatani & Isa, 2007). The duration of fixated image was 800ms, chosen to be slightly

longer than average fixation of ≈ 300ms to ≈ 400ms observed in many animals. The

slightly longer duration of fixation ensured that each fixation influenced only the next

fixation and not the subsequent fixations. This way, for each fixation we minimized

the effects of ‘history of history’. So the stimulus was a sequence of 800ms fixations

separated by 100ms saccade-like transitions.

Fixation Images: The fixation images consisted of square-wave gratings at four dif-

ferent spatial phases(Fig. 3.1 B). These four different images were labelled as image

No. 1, No. 2, No. 3 and No. 4. The sequence of these fixation images was chosen in a

pseudorandom order. The width of each bar of the grating was either 240µm or 120µm.

The bar width was chosen in such a way that it covers the receptive field centre of a

small cell (receptive field <150µm).
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Figure 3.1: The saccade stimulus. A) A schematic illustration of saccadic eye movements,

when an observer views a stationary grating. The fixations at four regions of interest are

indicated as 1, 2, 3 and 4. The ellipses at each of those fixations indicate the receptive field of

a ganglion cell. The image for a ganglion cell is different at each of these fixations as shown

in the right. Note that another ganglion cell would experience a completely different image,

thus creating several possible images for a cell even when viewing a simple grating shown in

this example. The possibilities also increase due to the fact that there are several cell classes

with varied receptive field sizes. B) Since the retina is stationary in our recording set-up, we

mimicked the fixations by presenting stationary grating at four different spatial phases each

labelled 1, 2, 3 and 4. C) The stimulus configuration. A saccadic scene change is mimicked by

presenting a sequence of fixation and saccade-like motions by shifting the image. The fixation

images are chosen randomly from one of the four images depicted in B. Refer to Table 3.1 for

different spatio-temporal parameters of stimulus used in this study.
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Grating

period

(µm)

Fixation

duration

(ms)

Motion

duration

(ms)

Motion

period

Saccade

ampli-

tude

(µm on

retina)

Saccade

ampli-

tude

(degrees)

Stimulus 1 480 800 100 ≈ 2 480, 720,

960 or

1200

16°, 24°or

32° or 40°

Stimulus 2 480 800 100 ≈ 1 240, 360,

480 or

600

8°, 12°,
16° or 20°

Stimulus 3 240 800 100 ≈ 2 240, 360,

480 or

600

8°, 12°,
16° or 20°

Table 3.1: Parameters of different saccade stimulus used in this study

Transition: The transition between fixation images lasted for 100ms. The transition

from one fixation to the next fixation in the sequence mimicked a saccade-like motion

(Fig. 3.1 C). That is, the fixated image moved for approximately one full period de-

pending on the next image. We also ensured the shifts are at least half a period or more

to avoid shorter amplitudes such as one-fourth period. For a stimulus with grating bar

width of 240µm, consider a sequence of fixations images 3, 3, 1, 2. The transition from

3 to 3 would be a motion of one period of grating, the transition from 3 to 1 would

be half a period and transition from 1 to 2 would be one and one-fourth of a period.

For stimulus with grating bar width 120µm the transition was approximately two pe-

riods so that the motion distance covered across the visual space is the same for both

the stimuli. The distances covered by motion in both the stimuli were 240µm, 360µm,

480µm and 600µm, on the retina. These values correspond to approximately 8°, 12°,
16° and 20° of visual angle for a mouse, as 1° of visual angle corresponds to 31 µm on

the retina (Remtulla and Hallett 1985).

3.3 Analysis of Responses to the Saccade Stimulus

We recorded a total of 114 retinal ganglion cells (RGC) from six retinas isolated from

five mice. We tested different variants of the saccade stimulus (Table 3.1) initially.

We did not find major differences in RGC response to these stimuli and we performed
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majority of our experiments with Stimulus 3 (see Table 3.1). So we combined the results

from all the three stimuli from different retinas.

We analysed the RGC responses to both the saccade-like motion and the fixation after a

saccade. For a sample cell illustrated in Fig. 3.2 A, we analysed the stimulus transition

image 1Ô image 2. This cell did not respond to the presentation of image 1 or to

the saccade-like motion, but there was an increase in firing rate ≈ 70ms after image

2 appeared. We call the image 1 in this transition as the ‘starting image’ and image

2 as the ‘target image’, considering this image to be target of the saccadic gaze shift.

Thus, the short stimulus sequence illustrated in Fig. 3.2 A is “starting image - saccade

- target image”. From looking at this transition alone, it appears that the cell prefers

image 2 over image 1. Since our stimulus consisted of four fixation images (Fig. 3.1 B),

16 possible transition scenarios emerge (1Ô1, 1Ô2, 1Ô3, 1Ô4, 2Ô1 and so on). We

analysed the spike responses to all these 16 transitions, and the results are displayed

in one matrix plot, as illustrated in Fig. 3.2 B. Our stimulus presentation was long

enough (≈ 15min) to have about 30 repeats of each of these scenarios interleaved and

we constructed a peri-stimulus time histogram (PSTH) of the spike responses for each

scenario (Fig. 3.2 C). The matrix plot of PSTH revealed the characteristic feature of

each cell; its response to each target image for different histories of starting image. The

sample cell illustrated in Fig. 3.2 prefers image 2, almost independent of its stimulus

history, and this cell does not respond to saccade-like motion. This response type is the

characteristic feature of this cell. Applying the same analysis strategy to all the cells,

we found there were different response profiles. We elaborate on each of these response

profiles in the next section.

3.4 Five Types of Responses to the Newly Fixated Im-

age

We characterized the response of a ganglion cell to the newly fixated image after a

saccade. The analysis of the entire ganglion cell population in our data revealed that

different cells had different response patterns, both to target image and saccade-like mo-

tion. Based on this analysis we could classify the ganglion cells into different ‘response

types’. Of the five types, except Response Type I, all types responded to saccade-like

motion.

Response Type I - Classical Encoder: Cells that responded to their preferred

stimulus irrespective of starting image were classified as ‘Classical Encoders’. The
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example cell illustrated here, responded to target image 2 preferentially, irrespective

of its temporal history (Fig. 3.2 B, C). Although there are some differences in the

peak firing rates and response latencies, it is clear that target image 2 is the preferred

stimulus. In our recordings, we also found cells that had two or rarely three preferred

fixated images. The cells of this type were also characterized by their sustained firing

pattern (Fig. 3.2 A, B). These characteristics indicate that these cells are most likely

analogous to the pixel detectors identified in cat (beta cells; Saito 1983) and primates

(midget cells; Benardete and Kaplan 1997, Dacey 1993). Furthermore, there was either

no response or suppressed spiking activity during the saccade in most scenarios. Roska

and Werblin (2003) described similar cells that were strongly suppressed by saccadic

shifts in the rabbit retina. However, they did not analyse the fixations after the saccade.

It is likely that the Classical Encoder type described by us is a mouse analogue of the

cells described in rabbit. Classical Encoders formed half of all our recorded cells (n=57

out of 114 cells).

Response Type II - Offset Detector: Surprisingly, we found cells that responded

only to the saccade-like motion part of the stimulus and not to any of the fixated

images (Fig.3.3). Further experiments (detailed later in Section 3.8) where uniform

grey illumination presented in place of motion also produced similar results. Thus

Figure 3.2 (following page): Analysis of RGC response to the saccade stimulus.

A) Top: The stimulus sequence fixation image 1 Ô motion Ô fixation image 2.

Middle: Raster plot show response of a ganglion cell to the 20 interleaved repeats of stimulus

sequence shown above. The duration of saccade-like motion is indicated in the grey shaded

region. The example cell shown here responded reliably to fixation image 2 but not to motion

or fixation image 1.

Bottom: Peri-stimulus time histogram averaged over all the trials shown in the raster plot.

Spikes were averaged in 10 ms bins and represented in Hz. The image before the saccade-like

motion is designated as starting image and the image after the motion is designated as a target

image. Here only one combination of stimulus is shown, namely fixation image 1 Ô motion Ô

fixation image 2.

B) The voltage traces from extracellular recording shows the responses to all target images

with different starting images. Only the response to motion and initial 300ms of target image

is shown. The duration of saccadic motion is depicted in grey shaded region. The rectangle at

1Ô2 indicates the response window highlighted in A.

C) Peri-stimulus time histograms (PSTH) of responses shown in B. This cell did not respond

to the motion in most of the stimulus combinations. Also the cell’s preferred responses were to

target image 2 irrespective of the starting image. We classified such cells with one or more pre-

ferred target images as Classical Encoder.The rectangle at 1Ô2 indicates the response window

highlighted in A.
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it was evident that the responses were most likely triggered by the offset of an earlier

fixated image (i.e., starting image) rather than actual saccade-like motion itself. So they

were classified as ‘Offset Detector ’. Similar cells that respond to saccade-like motion

have been described previously in cats (Noda and Adey 1974b), but the response to the

fixation image has not been investigated. It is likely that Offset Detector is a specialized

feature detector, which preferentially codes for transitions rather than fixations. 12%

of the recorded cells were of this type (n=14).

Response Type III - Indifferent Encoder: Another group of cells responded to

both saccade-like motion and all the fixation images (Fig. 3.4). Since these cells were

indifferent to the stimulus features and responded to all images, we classified them as

‘Indifferent Encoder ’. It is possible that these cells are a group of heterogeneous cell

types, or the saccadic scene shifts are not the best suited stimulus. These cells may or

may not act as feature detectors in saccadic vision. Nevertheless, they report every fix-

ation and every transition. The variation in their peak firing rate and response latencies

may be influenced by their immediate temporal history. However, these variations do

not affect our present classification, which is based on overall response profile. These

cells formed 14% of our recorded cells (n=16).

Response Type IV - Change Detector: This type also responded to saccade-like

motion, but it had an interesting pattern in its response to fixation images. The spiking

activity to the target image was strongly affected by the history of the stimulus before

the saccade. It responded to the target image only if the starting image was a different

one (Fig. 3.5). The responses to fixations after the saccade during the scenarios 1Ô1,

2Ô2, 3Ô3 and 4Ô4 were completely abolished (note the diagonal along the matrix plots

in Fig. 3.5). Since they responded only to a change in the fixations, we classified them

as ‘Change Detector ’. This response type is a highly selective feature detector, in that it

compares the fixations before and after a saccade and reports if the stimulus is different.

In other words, this type encodes the difference across saccades. Although, this type

responds to saccadic transition, surprisingly the history even before the saccade strongly

influences the responses. Thus, the response to fixations is influenced by a ‘temporal

context’. This type formed 8% of the cells recorded (n=9). Additionally, the response

profile of the cells (8 out of 9 cells) was neither transient nor sustained (Fig. 3.5) with

a lower peak firing rate.

Response Type V - Similarity Detector: Saccade-like motion elicited a response

in this type also but its response profile to fixations was quite opposite to that of a

Change Detector. It responded to the target image only if the starting image was the

same (Fig. 3.6). There was a strong response to fixations after the scenarios only during
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Figure 3.3: Offset Detector.Sample traces (A) and peri-stimulus time histograms (B) show

results of a cell that responded preferably to saccadic motion (grey shaded region) rather than

for any of the fixated images. The responses are most likely to offset of the starting image

rather than saccadic motion (see text for details). We classified such cells as Offset detector.

Conventions are as in Fig. 3.2.
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Figure 3.4: Indifferent Encoder. Sample traces (A) and peri-stimulus time histograms

(B) show results of a cell that responded to saccadic motion (grey shaded region) and to all

fixated images. Since the cells responded to all aspects of the stimulus we classified such cells

as Indifferent encoder. Conventions are as in Fig. 3.2.
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Figure 3.5: Change Detector. Sample traces (A) and peri-stimulus time histograms (B)

show results of a cell with complex response profile. The sample cell shown here responded to

the saccade-like motion (grey shaded region), but the response to the target image was different.

This cell did not respond to a target image if the preceding starting image was also the same

image (Note the lack of response to target image along the diagonal). In other words, the cell

responded primarily to fixations that are different across the saccades. We classified such cells

as Change detector. Conventions are as in Fig. 3.2.
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the scenarios 1Ô1, 2Ô2, 3Ô3 and 4Ô4 (note the diagonal along the matrix plots in

Fig. 3.6). This response type acts as a specialized feature detector in that it reports

the scenarios, where the fixations before and after the saccade have a similar image. In

other words, this type encodes the similarity across saccades. Hence we call this type

‘Similarity Detector ’. It is an example of invariant coding, that this type responds to

all images invariantly, but only under a certain ‘temporal context’. 16% of cells in our

data set were of this type (n=18). Furthermore, the cells of this type had a transient

response profile.

3.5 Automated Classification of Response Types

The classification of response types described in our study is based on complex response

patterns of 16 saccadic transitions. Therefore, cell type distinction was initially made

by visual inspection based on the features described in the previous section (see Sec-

tion 3.4). We then tried to find objective criteria based on a few appropriately chosen

response parameters that capture the cell types. We considered the peak firing rate,

the spike count and the integral over PSTH of target image as parameters. The spike

count as a parameter was not appropriate as it fails for cells that have high base line

firing (i.e., maintained rate). It also fails for cells that respond with a burst of spikes

for certain features of stimuli and more sustained firing for other features. The integral

over the PSTH also suffers for the same reasons. The peak firing rate does not suffer

from the disadvantages mentioned above. Thus, we attempted automated classification,

using peak firing rate of the target image as a parameter (Fig. 3.7 A-E). This automated

classification is done to address the issue of subjectivity in manual classification.

We easily classified the Offset Detector when the peak firing rate of responses to saccade-

like motion is 1.5 times (on average) to that of target image (Fig. 3.7 B). We also easily

classified Indifferent Encoder when there is little or no modulation in the peak firing

rates of responses to target image (Fig. 3.7 A). For classifying other cells, we applied

Fourier analysis to obtain relative weights contributing to different patterns in peak

firing rate. In other words, these relative weights are the strengths of components in

each axis in the matrix plot. We also calculated the difference in mean peak firing rates

of responses in the diagonal of the matrix plots to off-diagonal rates (Fig. 3.7 C-E). The

difference in strength of each axes is plotted against the difference in mean diagonal

response and off-diagonal response. For Change Detector and Similarity Detector the

modulation along the diagonal axis of the matrix contributed in their classification.

For Classical Encoder the difference in relative weights contributed to their clustering
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Figure 3.6: Similarity Detector. Sample traces (A) and peri-stimulus time histograms (B)

show results of a cell with complex response profile. The sample cell shown here responded to

the saccade-like motion (grey shaded region), but the response to the target image was different.

This cell responds to a target image preferably only if the preceding starting image is also the

same image (Note the strong response to target image along the diagonal). Therefore, this cell

preferentially responds to fixations that are similar across saccades. We classified such cells as

Similarity Detector. Conventions are as in Fig. 3.2.
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(Fig. 3.7 F).

Our automated clustering of cells based on response to saccade stimulus captured the

different response types (Fig. 3.7 F). But a closer look revealed that the cells farther

from threshold were very distinct examples of response type, whereas the ones closer

to the threshold showed a slightly different response profile, underscoring variations

within each group.

3.6 Distribution of Response Types

The Classical Encoder type is the predominant response type in our recording. About

half of the recorded cells (57 of 114 cells from 6 retinae; Fig. 3.8) are of this type.

These cells showed either no response or suppression of spiking activity during saccades

(Fig. 3.2), as shown by Roska and Werblin (2003). The other four response types

formed the remaining half of the cells. These cells respond to saccade like motion

with a short burst of spikes (Fig. 3.3-Fig. 3.6). Similar responses to saccades had been

reported earlier in cats (Noda and Adey 1974b, Noda 1975). This supports the idea

that the retina actively encodes the saccade and may signal abrupt scene changes to

the downstream centres. These four types seemed to be equally distributed except for

Change Detectors which are least numerous with just 8% (n=9). This could be due to

sampling bias in a multi-electrode array (MEA) or Change Detectors may actually be

a small proportion of total cells. How can one response type, i.e., Classical Encoder

dominate the recordings? We cannot rule out a bias in sampling ganglion cells in our

MEA recordings. However, the basic characterization of ganglion cells described in the

next section (see Section 3.7) reveals that they are small cells and are obviously the

most numerous type. Nevertheless, the distribution of response types might still closely

Figure 3.7 (following page): Cell type clustering. A-E) Mean peak firing rate of target

images of each cell type is shown. We used peak firing rates as a parameter to analyze the

ganglion cell response. For indifferent encoder (A) and offset detector (B) there is only a

minimal or nil modulation of peak firing rates and were easily clustered. For other cells the

modulation is apparent and distinct for each cell type. Classical encoder (C) show modulation

in one of the axes whereas, similarity and change detector (D & E) show modulation along the

diagonal. F) We applied Fourier analysis to better capture the different components of mean

firing rates that contribute to a cell type. The difference in strength of each axes is plotted

against the difference in mean diagonal response and off-diagonal response. This captures three

response types - classical encoder, similarity and change detector. The cells in C, D & E are

highlighted as thick circles in F.
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match the actual distribution of cells in the retina.

CD
8%

CE
50%

IE
14%

OD
12%

SiD
16%

CD - Change Detector (n=9)

CE - Classical Encoder (n=57)

IE - Indifferent Encoder (n=16)

OD - Offset Detector (n=14)

SiD - Similarity Detector (n=18)

Figure 3.8: Response type distribution. Half of the recoded cells are classical encoders (57

of 114 cells from 6 retinae), which are also the cells with nil or minimal response to saccade-like

motion. Indeed, there was suppression in cells that had a high maintained rate. The other half

of the cells responded to saccade-like motion. The distribution is nearly equal among the four

response types, except for change detector which was only 8%. This could be due to sampling

bias in our multi-electrode array recordigs or may actually be a small proportion of total cells.

3.7 General Characterization of Ganglion Cells

Having classified the ganglion cell responses based on our specific saccade-like stimulus,

we wanted to know if each response type is a specific class of ganglion cell. To this

end, we characterized the ganglion cells for their basic response properties like response

polarity, filtering property, receptive field size and X-, Y-like response property. Results

from each of these characterizations are given in detail below.

Response Polarity - ON, OFF, ON-OFF Cell Types: We classified ganglion cells

based on their response to periodic light flashes switching between black and white

every 500ms. We found 51 ON, 29 OFF and 34 ON-OFF cells out of 114 cells recorded.

Within each saccadic response type, the distribution of ON, OFF and ON-OFF cells

was different. Only Classic Encoders and Indifferent Encoders had all three cell types.

Indifferent Encoders consisted of mostly ON-OFF cells (Fig. 3.9 A). It is not surprising,

since these cells responded to motion and all fixated images (Fig. 3.4). Surprisingly,

there were no OFF cells in Change Detector and no ON cells in Similarity Detector.

These response types encode opposite features under saccadic vision and are apparently

of opposite cell types as well. This already indicates that at least some response types
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are of specific cell class. Also, we found no OFF cells in Offset Detector. These results

indicate that at least there are some differences in such a simple classification among

different response types.
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Figure 3.9: ON, OFF, ON-OFF cell type distribution. A) Classical encoders and

indifferent encoders are comprised of all three cell types albeit in different proportions. But

there were no OFF cells in offset detectors and change detectors, and no ON cells in similarity

detectors. B) The classification based on linear filter shape does not have ON-OFF cell class.

Note the high proportion of OFF cells in similarity detectors.

Response Polarity - Based on STA Shape: We further classified ganglion cells into

ON and OFF based on spike triggered average (STA; see Section 2.6.2; also Fig. 3.10 A).

STA is the average stimulus that triggered a spike, when stimulated with a Gaussian

white noise stimulus. Since the classification is based on the first peak in the STA,

there is no ON-OFF cell type in this classification (Fig. 3.9 B). Again, the results show

there are fewer ON cells in Similarity Detector type, but Change Detector type had

many OFF cells due to the fact most ON-OFF cells were classified as OFF cells here.

For similar reasons, Indifferent Encoder also had many OFF cells.

Biphasic Index: STA also represents the linear filter of a cell (Chichilnisky, 2001;

Schwartz, 2006). The biphasic shape of the STA corresponds to sensitivity of the cell

to the temporal frequency of the stimulus. For example, an increased biphasicness

could be interpreted as a decreased sensitivity to low temporal frequencies (Zaghloul

et al. 2007). The biphasic index was calculated as the ratio of the second peak (s2)

to the first peak (s1) of the STA (Fig. 3.10 A). The values range between 0 and 1,

where 0 is least biphasic and 1 is highly biphasic. About two-thirds of Classic Encoder

cells are less biphasic (Fig. 3.10 B). More than half of Similarity Detector cells are

more biphasic(Fig. 3.10 F), indicating that these cells are sensitive to high temporal
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frequencies. The other response types did not show a clear pattern in their distribution

indicating heterogeneity in their distributions (Fig. 3.10 C-E).
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Figure 3.10: Biphasic index distributions. A) Illustration showing the calculation of

biphasic index. The biphasic shape of the linear filter (STA) is a characteristic feature of a

cell. The values range between 0 and 1, where 0 is least biphasic and 1 is highly biphasic. B-

F) Biphasic index distributions for the response types. About two-thirds of classical encoders

(B) are less biphasic, whereas about half of similarity detectors are highly biphasic (F). Other

response types have mixed distributions and do not show a clear trend.

Receptive Field Size Distribution: We estimated the size of receptive field centre

of a ganglion cell by white noise analysis (see Section 2.6.3). We found ganglion cells
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ranging from ≈ 150µm in diameter to ≈ 400µm. About 70% of Classical Encoders are

small cells with receptive field size of ≈ 150µm. The remaining 30% cells consisted

of heterogeneous population of cells with receptive field size ranging from 200µm to

400µm. About half of Similarity Detector cells were medium sized cells (≈ 250µm) and

Change Detectors were mostly large cells (≈ 350µm). There was no clear pattern of

receptive field size distribution among other response types (Fig. 3.11).
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Figure 3.11: Receptive field size distributions. About two-thirds of classical encoders are

smaller cells with receptive field diameter of ≈ 150µm. Nearly half of similarity detectors are

medium sized with receptive field diameter of ≈ 250µm, and half of change detectors are bigger

cells with receptive field size of ≈ 350µm. Cells of offset detectors and indifferent encoders do

not show a clear trend.

X, Y cell Analysis: We presented sinusoidal reversing grating at different spatial

phases to classify the ganglion cells to X-like and Y-like (see Section 2.6.4 for details;



48 3.7. General Characterization of Ganglion Cells

Fig. 2.5). This analysis indicates the response nonlinearity of a ganglion cell. X-like cells

are linear cells whereas Y-like cells are nonlinear (Enroth-Cugell and Robson 1966). The

ganglion cell responses were Fourier analysed and a nonlinearity index was calculated

(ratio of second harmonic to first harmonic F2/F1; see Section 2.6.4; Hochstein and

Shapley 1976). Cells with nonlinearity index > 1 were classified as Y-like, < 0.5 as X-

like and between 0.5 and 1 as intermediate types. We found that most Classic Encoder

cells were X-like, while most of the other cell types were intermediate type or Y-like

(Fig. 3.12, Note that nearly 11% of cells with nonlinearity index > 2.5 is not displayed

in the histogram).

0 0.5 1 1.5 2
0

5

10

15

20

25

30

Nonlinearity Index

%
 C

el
ls

Classical Encoders
All other Response Types

Figure 3.12: Nonlinearity index distribution. Nonlinearity index <0.5 are classified as

X-like cells and >1 are classified as Y-like cells. Cells with values between 0.5 and 1 tend be

a mixture of non X- and Y- cells. Most of classical encoders are X-like cells, whereas most of

all other response types are Y-like. Many cells in both the groups fall under intermediate cell

type. Four cells (nearly 11% of other response type) with values > 2.5 are not shown in the

histogram.

The general characterization of ganglion cells leads to interesting conclusions about

saccadic response types. In general Classic Encoder cells were mostly X-like (Fig. 3.12),

have small receptive field (Fig. 3.11) and sustained firing pattern (Fig. 3.2 B, C). It is

known from several studies that X-like cells have small receptive fields and sustained

firing pattern (Enroth-Cugell and Robson 1966, Hochstein and Shapley 1976, Freeman

et al. 2010) as found in our recordings. Added to this is their least bihphasicness

(Fig. 3.10 B), indicating their linear filter to prefer lower temporal frequencies. All these

facts indicate that Classic Encoder cells are most likely to be one specific functional
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class of cells.

Nearly three-fourths of Similarity Detector cells are OFF cell (3.9 A), they are Y-like,

have transient firing pattern (Fig. 3.6) and are mostly with medium receptive field

centre size (≈ 250µm; Fig. 3.11), indicating they are most likely OFF α-cell or X5 cell

type in the classification of Hong et al. (2011). Similarly, Change Detector cells are of

mostly ON type (Fig. 3.9 A), and with large receptive field centres (≈ 350µm; Fig.3.11),

indicating these cells to be most likely ON α-cell or X7 cell type in the classification

of Hong et al. (2011). By contrast, other response types were characterized as mostly

Y-like cells, with intermediate to large receptive field and transient response properties,

but did not indicate to any of the anatomical or functional cell classes described in the

mouse retina.

3.8 Saccades and Eye-blinks Elicit Similar Responses

To test if different response types were due to saccade-like motion, we characterised the

ganglion cells for the stimulus segments where the transition between fixation images

was a grey image instead of a saccade (Fig. 3.13). The grey transition between fixations

could be considered as an eye-blink in a larger sense, although the real eye-blink reduces

light falling on the retina by a hundred fold (Burr 2005). The intensity of the grey image

used here was the mean of intensities between black and white bars of the grating. The

transition between the fixated images was either saccade or eye-blink chosen randomly

(Fig. 3.13). To our surprise we found that the ganglion cell responses were similar to

that of a saccade stimulus (Fig. 3.14). Thus the response during transition may not be

due to a saccade-like motion but to offset of an earlier image i.e., starting image. Also

we found all the responses of ganglion cells to target images were essentially similar

to both the stimuli. The classification of response types did not change at all. These

results indicate that these response types do not necessarily arise due to the saccade-

like motion stimulus. It is likely that the image falling on the retina during the fast

saccade-like motion is blurred resembling a static grey image. Thus a brief transition

between fixations - be it a motion stimulus or a static grey image (or an eye-blink) - is

sufficient to cause a variety of response types described in this study.
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Figure 3.13: Saccadic stimulus with interleaved eye-blinks. The transitions between

fixations are either saccade or eye-blinks chosen randomly. The eye-blink stimulus consisted of

mean grey intensity.

3.9 Results from Rabbit and Axolotl Retina

Our results from the mouse retina are the first of its kind in characterizing responses to

fixations after a saccade. Previous reports on saccade-like experiments were performed

in retinas from a variety of animals like rabbit (Roska and Werblin 2003, Amthor et al.

2005), cat (Noda and Adey 1974b), salamander (Geffen et al. 2007) and archer fish

(Segev et al. 2007). However the goals and conclusions of these studies were different. In

order to test if our results are unique to mouse retina or if it is more general phenomenon

to vertebrate retina, we performed additional experiments in rabbit (n=1) and axolotl

retina (Ambystoma mexicanum an amphibian model; n=1).

We found all the response types in rabbit except Classical Encoders (Fig. 3.15). Again,

as in the mouse retina, the responses were similar to saccades and eye-blinks. In the

axolotl retina, we found all the response types except Classical Encoders and Indifferent

Encoders (Fig. 3.16). Note that the ganglion cells of axolotl retina have high response

latency to light flashes as high as 180ms (data not shown). Hence, the response to the

100ms transition (saccade or eye-blink) appears after the transition is over. In Fig. 3.16,

the first peak is the response to transition and the second peak is the response to the

fixations.

Since we performed just one recording each in rabbit and axolotl we cannot say if
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Figure 3.14: Responses arise not necessarily by saccade-like motion but also by brief

grey stimulus. The brief grey transitions between fixations that resembled like an eye-blink

scenario elicited a similar response to those of saccadic scene changes. All the response types

responded in a similar fashion to saccade stimulus when presented with a brief grey stimulus

resembling an eye-blink. These results indicate that the saccadic scene change and eye-blinks

drive ganglion cells identically. Conventions are as in Fig. 3.2. Scale bar : abscissa-100ms,

ordinate-100Hz.
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the retina lacks the missing response types or it is purely a problem of low sampling.

Nevertheless, the presence of other intriguing response types, especially similarity and

change detector shows that saccades elicit complex response patterns in rabbit and

axolotl similar to mouse retina. Although more thorough experiments are necessary in

other species, the results from rabbit and axolotl indicate that our results of the mouse

retina could be a more general phenomenon for the vertebrate retina.
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Figure 3.15: Results from rabbit retina. The results from one rabbit retina show similar

results to mouse retina, except we did not find classical encoder. Conventions are as in Fig. 3.2.

Scale bar : abscissa-100ms, ordinate-100Hz
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Figure 3.16: Results from axolotl retina. The results from one axolotl retina show similar

results to mouse retina, except we did not find classical encoder and indifferent encoder. Note

that the axolotl retina has high response latency and due to this fact the response to saccadic

transition appears after the end of transition. The second peak is the response to the fixations.

Conventions are as in Fig. 3.2. Scale bar : abscissa-200ms, ordinate-50Hz
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3.10 Chapter Summary

During saccadic vision, the information acquired by the retina is a sequence of brief

‘snapshots’ interrupted by saccadic ‘motion blur’. We found half of all our recorded

cells respond to saccade like motion with a short burst of spikes (Fig. 3.3-Fig. 3.6).

This supports the idea that retina actively encodes the saccade and may signal abrupt

scene changes to the downstream centres. The rest of the RGCs in our recordings

showed either no response or suppression of spiking activity during saccades (Fig. 3.2).

Furthermore, we characterized the ganglion cell responses to fixation after a saccade.

Our results indicate that the image transitions matter the most, rather than appearance

of new image itself. The responses to the new image were influenced by the history of the

stimulus before a saccade, suggesting that the saccadic vision may provide ‘temporal

context’ to the retinal coding. Moreover, we could classify ganglion cells into five

response types indicating the presence of at least five parallel channels of information

for saccadic vision. Similar results for eye-blink experiments indicate that the retinal

coding strategy for saccades and eye-blinks are similar.



4. Effects of Remote Stimulation

4.1 Extra-Classical Receptive Field

Each ganglion cell is primarily sensitive to visual signals in a small area of space, the

cell’s spatial receptive field (Hartline 1938).The receptive field region usually comprises

a roughly concentric centre and an antagonistic surround (Kuffler 1953). However, it

has been known that the motion signals far-beyond the receptive field modulate the

cell’s response to stimuli in its receptive field. The remote stimulus such as a rapid shift

or motion of the image in the periphery can modify various response characteristics of a

ganglion cell (McIlwain 1964, Krüger and Fischer 1973, Fischer et al. 1975, Barlow et al.

1977, Enroth-Cugell and Jakiela 1980, Geffen et al. 2007). Hence, the region remote

to the cell’s classical receptive field has been denoted as ‘extra classical receptive field’

(Passaglia et al. 2009).

The effects of remote stimulation have been studied in several species including, sala-

mander (Werblin 1972, Cook and McReynolds 1998), turtle (Schwartz 1973), cat (McIl-

wain 1964, 1966, Barlow et al. 1977), rabbit (Watanabe and Tasaki 1980, Taylor 1999),

guinea pig (Demb et al. 1999) and monkey retinas (Solomon et al. 2006), and have

been called ‘shift effect’ and ‘periphery effect’. In salamander retina the global motion

evoked by a spinning windmill like pattern activates glycinergic amacrine cells which in

turn inhibit ganglion cells (Werblin 1972, Werblin and Copenhagen 1974, Thibos and

Werblin 1978, Cook and McReynolds 1998). On the other hand, in mammals there

are contradictory reports that show remote stimulus causing both excitation (McIlwain

1964, 1966, Krüger and Fischer 1973, Noda and Adey 1974a, Fischer et al. 1975, Bar-

low et al. 1977, Ross et al. 2001) and inhibiton (Enroth-Cugell and Jakiela 1980, Demb

et al. 1999, Taylor 1999, Flores-Herr et al. 2001).

Global motion signals caused by saccades effectively influences the extra-classical re-

ceptive field. We have shown in the previous chapter (Chapter 3) that the saccade-like

stimulus evokes a variety of responses in the ganglion cells. In this chapter, we re-

55
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visit the effects of remote stimulation with the aim of exploring them in the context of

saccade-like scene changes. To this end, we record the spiking activity of ganglion cells

in isolated mouse retinas with extracellular multielectrode arrays. During the record-

ing, we present various light stimuli to the receptive fields of the cells in the presence or

absence of remote stimulation. As remote stimuli, we apply moving as well as contrast

reversing gratings with different spatial and temporal scales. The response character-

istics are then compared to the filtering properties of the neurons as measured with

white-noise experiments and reverse-correlation analyses.

4.2 The Remote Stimulus Configuration

The remote stimuli in earlier studies have used several patterns ranging from a sectored

windmill to sinusoidal gratings. In this study, we designed a simple stimulus config-

uration with a central region of 1100 µm x 1100 µm (centred on the multielectrode

array) and a far-periphery (the ‘extra-classical receptive field’). The central region

was surrounded by a 100µm thick grey border to separate the stimulus in the central

region from the far-periphery. The stimulus in the centre consisted of uniform illumi-

nation, light steps or Gaussian white-noise. As a remote stimulus in the far-periphery,

we presented drifting or reversing square-wave gratings at different spatial frequencies

(Fig. 4.1 A). The remote stimuli used in this study are simple but at the same time

cover a range of different interesting features used in the past. For example, the drift-

ing grating is a continuous motion stimulus and similar to the continuous motion of

spinning windmill (used by Werblin 1972, Werblin and Copenhagen 1974, Thibos and

Werblin 1978, Enroth-Cugell and Jakiela 1980, Cook and McReynolds 1998). The re-

versing grating represents a stimulus similar to a sudden shift in the far-periphery (used

by Fischer et al. 1975, Barlow et al. 1977, Geffen et al. 2007). We recorded ganglion

cell responses to centre stimuli with or without remote stimulation. We also estimated

the receptive field of a ganglion cell by white-noise analysis (see Section 2.6.3). Only

cells with receptive fields within the centre region are included for further analysis

(Fig. 4.1 B).
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Figure 4.1: Remote stimulation modulates the spontaneous activity. A) Schematic

illustration of the remote stimulus. A grey uniform illumination was presented in the central

1100 µm x 1100 µm. The white ellipse represents the receptive field of a ganglion cell. In the far

surround, as a remote stimulus, a square-wave grating stimulus at different spatial periods either

drifting or reversing at 1Hz was presented. B) Receptive estimation by white noise analysis of

an example ganglion cell. The black square represents the central uniform illumination region.

Only cells with receptive fields well within the central region were included for further analysis.

C) Modulation of spontaneous activity of the cell shown in B, to both reversing gratings (top)

and drifting gratings (bottom) at different grating periods. The red dotted line indicates the

maintained rate of the ganglion cell under uniform illumination without any remote gratings.

For lower spatial frequencies of gratings, there is both suppression and enhancement of the

maintained rate.
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4.3 Remote Stimulation Both Enhances and Suppresses

the Mean Firing Rate

Stimulation of the extra-classical receptive field is known to modulate the maintained

rate of ganglion cells. McIlwain (1964) first reported an increase in mean firing rate

due to a high contrast motion stimulus in the far-periphery, which was confirmed by

several studies (Krüger and Fischer 1973, Fischer et al. 1975, Barlow et al. 1977).

There were other studies that reported suppression of mean firing rate (Enroth-Cugell

and Jakiela 1980, Krüger 1980, Rapaport and Stone 1988). These conflicting reports

might have arisen because of differences in stimulus parameters. Also the dependence

of spatial scale on these effects has remained controversial. Here we revisit these issues

and systematically study the effects on maintained rate by using two types of stimuli -

drifting gratings and reversing gratings.

The stimulus consisted of uniform grey illumination of a central region of 1100 µm x

1100 µm and either drifting or reversing grating at 1 Hz in the periphery (Fig. 4.1 A).

We presented remote gratings with five different spatial frequencies. The period of the

gratings ranged from 2000µm to 62.5µm. Remote gratings modulated only a subset of

ganglion cells - ON cells (6 out of 10 cells), OFF cells (4 out of 10 cells) and ON-OFF

cells (5 out of 6 cells). To our surprise we found both increase and decrease of mean

firing for both drifting and reversing gratings. Also the effects were stronger for gratings

of lower spatial frequency (Fig. 4.1 C). The reversing grating elicited sharp decreases

and increases, whereas drift gratings elicited slow changes in the firing rate. However,

gratings with a spatial period of 125µm had an overall suppression of mean firing rate

(Fig. 4.1 C). Gratings with a period of 62.5µm did not affect the maintained rate. Thus

our results reconcile earlier conflicting reports about the modulation of mean firing rate

and dependence of spatial scale of remote stimulation. But how could one explain both

enhancement and suppression of mean firing rate? One possible explanation is that the

remote stimulus primarily suppresses the mean firing rate and that the enhancement

arises from rebound excitation (Mitra and Miller 2007, Margolis and Detwiler 2007)

due to disinhibition (Li et al. 1992, Manu and Baccus 2011).

4.4 Remote Stimulation Suppresses the Evoked Response

After testing the effects of remote stimulation on maintained rate, the next step is to

study the effects on light evoked responses of ganglion cells. We presented light steps
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(100% contrast steps) for the central 900µm x 900µm region (Fig. 4.2 B). The central

region was separated from the background by a 100µm wide grey border. We chose

three different remote stimuli - 1) light steps in counter phase (Fig. 4.2 A); 2) reversing

gratings in two different spatial frequencies; 3) drifting gratings in two different spatial

frequencies (grating period 2000µm and 500µm; Fig. 4.2 C, D respectively).

Remote stimulation (both reversing and drifting gratings) suppressed the ganglion cell

responses. Again, we found the effects only in a subset of ganglion cells, where the

remote stimulus also modulated the mean firing rate. The example ganglion cell shown

here is an ON sustained cell. To our surprise, we found that the remote stimulus in

counter phase enhanced the initial response to the light steps (Fig. 4.2 A). The reversing

grating suppressed both transient and sustained components of the response, but not

completely. The drifting grating suppressed the transient component and completely

abolished the sustained component. Although the remote gratings enhanced maintained

rate (Fig. 4.2 C), no enhancement of evoked response were found in our recordings.

4.5 Remote Stimulation Decreases the Contrast Sen-

sitivity

Retinal ganglion cells are sensitive to small changes in contrasts, as low as 3-4% (Dhin-

gra et al. 2003). Since the remote stimulus suppressed the response to 100% contrast

steps, we hypothesised that responses to weaker stimuli may be affected. Therefore, we

wanted to know if a remote stimulus affected the contrast sensitivity of a cell. To this

end, we tested the cell’s response to different contrast steps with and without gratings

in the extra-classical receptive field. We used 5%, 10% and 20% contrast steps in the

centre region. As expected, increasing the strength of the stimulus elicited a stronger

response (Fig. 4.3 A, B). The remote stimulus - both drifting and reversing gratings;

both low and high spatial frequencies - suppressed the responses of 10% and 20% con-

trast steps and completely abolished the response to 5% contrast steps (Fig. 4.3 D).

4.6 Remote Stimulus Modifies the Response Gain

The suppression of evoked responses by reducing the contrast sensitivity (Fig. 4.3 C, D)

could arise from a change in the response gain, or more specifically by the ‘contrast

gain control’ mechanism (Shapley and Victor 1978). To test this hypothesis, we applied

Linear-Nonlinear (LN) system analysis. The LN model has been shown to capture the
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Figure 4.2: Remote stimulation suppresses the evoked activity. A) The stimulus

comprised of light flashes in the central 900 µm x 900 µm region. The far surround comprised

of light flashes in the opposite polarity. The dotted ellipse represents the receptive field of a

ganglion cell. A 100µm thick grey border separated the central region and the far surround.

The response of a ganglion cell is in the lower panel. The dotted line indicates the maintained

rate of the ganglion cell under uniform illumination without any remote gratings. The stimulus

phase of the central region is indicated at the bottom. B) The stimulus was similar as in A, but

with far surround only with uniform grey illumination. C) Here the far surround comprised of

low spatial frequency grating, either reversing or drifting. D) Here the far surround comprised

of high spatial frequency grating, either reversing or drifting. Note the response of central

stimulation is suppressed by varying degrees for different stimulus conditions.
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Figure 4.3: Remote stimulation decreases the contrast sensitivity. A) The stimulus

comprised of light flashes in the central 900 µm x 900 µm region. The light flashes were presented

in three different contrast levels. The dotted ellipse represents the receptive field of a ganglion

cell. The far surround comprised of light flashes in the opposite polarity. A 100 µm thick grey

border separated the central region and the far surround. The response of a ganglion cell is in

the lower panel. The responses are stronger for stronger contrast steps. The stimulus phase

of the central region is indicated at the bottom. B) The stimulus was similar as in A, but

with far surround only with uniform grey illumination. C) Here the far surround comprised of

low spatial frequency grating, either reversing or drifting. D) Here the far surround comprised

of high spatial frequency grating, either reversing or drifting. Note the strong suppression of

response to 5% contrast steps in the presence of remote gratings.
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Figure 4.4: Remote stimulation modifies the response gain. A) The central 900 µm

x 900 µm region was presented with a Gaussian white noise stimulus, where the stimulus

intensities were drawn randomly every 20 ms from a Gaussian distribution. The dotted ellipse

represents the receptive field of a ganglion cell. The far surround was presented with either a

uniform grey illumination or reversing gratings. B) The spike triggered average (STA) which

represents the linear filter of a ganglion cell, did not change in the presence of remote gratings.

C) The nonlinearity which represents the response gain of a ganglion cell was shifted to the right

in the presence of remote gratings, indicating the increased threshold and lowered sensitivity of

the cell.

response of a ganglion cell to its visual stimulus, and has been used to study the response

gain (Chichilnisky 2001, Chander and Chichilnisky 2001). We presented a Gaussian

white noise flicker stimulus in the central region (900µm x 900µm), with or without

reversing remote gratings in the extra classical receptive field (Fig. 4.4 A). The central

region was separated from the background remote stimulus by a 100µm wide grey

border. The linear filter computed as the spike triggered average (STA) did not change

when remote gratings were presented (Fig. 4.4 B). But the nonlinearity which represents

the response gain (i.e., input - output relationship) shifted to the right and the slope

reduced in the presence of reversing remote gratings. The rightward shift implies an

increase in threshold to spike and the reduced slope on the other hand indicated a

reduced responsiveness (i.e., gain) of the ganglion cell in the presence of remote gratings.

This is consistent with abolishing responses to low contrast in the presence of remote

gratings (Fig. 4.3 C, D). Taken together, the suppressive far-surround contributes to
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the retinal contrast gain control mechanism.

4.7 Chapter Summary

A saccadic scene change introduces global motion signals in the retina. Motion signals

at a remote region in space affect the response properties of a ganglion cell to local

stimulation in its receptive field. However, several studies show contradictory results,

and the role of remote stimulus in modulating the cell’s response remains inconclusive.

In this study, we revisited these effects in the mouse retina and found that the remote

stimulus 1) primarily suppresses the ganglion cell activity, but also enhances the mean

firing rate, 2) suppresses the centre response of a ganglion cell, 3) reduces the contrast

sensitivity of a ganglion cell, 4) increases the spike threshold, and 5) modulates the

response gain. We propose that the contrast gain control mechanism may provide

‘spatial context’ to the ganglion cell responses in the presence of remote gratings.





5. Evaluation of Ganglion Cell

Activity after Gene Therapy

Inherited retinal degenerative diseases are characterized by selective and progressive

loss of specific cell types of the retina, such as photoreceptors and retinal pigment

epithelium (Hartong et al. 2006, Sundaram et al. 2012) usually due to a defective gene.

These diseases are of a broad spectrum with several genes implicated. Currently there

are no effective treatment strategies to restore vision in retinal degenerative diseases

in humans. Gene therapy offers a promising approach to restore vision and there are

several studies that successfully replaced the missing gene and restored the partial

function of the retina in different animal models (Ali et al. 2000, Acland et al. 2001,

Alexander et al. 2007, Mancuso et al. 2009, Komaromy et al. 2010, Beltran et al. 2012).

However, there is only indirect evidence of restoration of ganglion cell activity after

gene therapy such as visual behaviour. A direct evaluation would be to measure the

ganglion cell activity. In the present study, we took advantage of the multi-electrode

array recordings and evaluated the ganglion cell activity after gene therapy in a mouse

model of achromatopsia.

5.1 CNGA3-/- Mouse Model of Achromatopsia

Phototransduction is a process by which light signals are converted to electrical signals

in the photoreceptors. The cyclic nucleotide-gated (CNG) channels stand at the end

of the phototransduction process and translate the light-dependent changes of cyclic

guanosine monophosphate (cGMP) levels into electrical activity, which in turn controls

the release of neurotransmitters (Kaupp et al. 1989, Hirano et al. 2000). CNG channels

comprise two structurally related subunit types, the A and B subunits. The A subunits

form the ion-conducting unit and the B subunits function as modulators (Zagotta and

Siegelbaum 1996, Gerstner et al. 2000). The CNG channel is a heterotetramer composed

of two CNGA and CNGB subunits: CNGA1/B1 in rods and CNGA3/B3 in cones (Peng
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et al. 2004). Nearly one-third of all cases of complete achromatopsia - which severely

impairs cone-mediated vision - in humans are caused by gene mutation in either A3 or

B3 subunit of cyclic nucleotide gated (CNG) channels (Kohl et al. 2005). The complete

lack of cone function in achromatopsia results in daytime blindness, lack of colour

discrimination, poor visual acuity, pendular nystagmus and photophobia (Kohl et al.

1998, Michaelides et al. 2004, Thiadens et al. 2009).

Similar to human phenotype, genetic inactivation of CNGA3 in mice leads to selec-

tive loss of cone-mediated light responses accompanied by morphological, structural

and molecular changes and finally results in cone death (Biel et al. 1999, Michalakis

et al. 2005). These changes occur before completion of photoreceptor development, and

include a disorganization of cone outer segments, downregulation and mislocalization

of cone opsins, and downregulation of other outer segment proteins (Michalakis et al.

2005). Cone degeneration is evident from the second postnatal week and proceeds

faster in ventral and nasal parts of the retina, and ventral cones are almost completely

missing after the third postnatal week, while the number and morphology of rods were

unaffected (Michalakis et al. 2005). Thus, the CNGA3-/- mouse provides an ideal model

for exploring approaches that have a goal to restore cone vision in achromatopsia.

Currently, there are no effective treatment strategies available to restore vision in

humans with retinal degeneration. In the recent years, there has been considerable

progress in developing gene therapy for retinal degeneration using recombinant adeno-

associated viral (rAAV) vectors in a variety of animal models including rodents, canines

and primates (Ali et al. 2000, Acland et al. 2001, Alexander et al. 2007, Mancuso et al.

2009, Komaromy et al. 2010). The success in animal models has led to human clinical

trials (Bainbridge et al. 2008, Cideciyan et al. 2008, Hauswirth et al. 2008, Maguire et al.

2008), with one study to replace RPE65 gene in Leber congenital amaurosis (Bennett

et al. 2012) proving successful in rescuing partial vision.

In the present study, our collaborators Dr. S. Michalakis, Dr. M. Biel (Ludwig Max-

imilians University, Munich), Dr. R. Mülfriedel and Dr. M. Seeliger (Eberhard Karls

University, Tübingen) successfully devised a rAAV mediated gene therapy strategy in

CNGA3-/- mouse model. Analyis of cone morphology, expression of CNGA3 and other

proteins, electroretinogram and behaviour of treated mice showed the rescue of func-

tional defects resulting from congenital absence of CNGA3 channel. Thus, the question

arises whether the network of the retina functions in a normal way and whether the

ganglion cells respond to visual stimulation in photopic light levels.

As our part of the study, we show that the rescue of restoration of cone function and

morphology results in proper transmission of light-evoked signals by measuring ganglion
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cell activity with a multielectrode array. The results presented in this chapter together

with the results of our collaborators have been published (Michalakis et al. 2010).

5.2 Subretinal Injection of rAAV Vectors

Among different gene delivery systems including non-viral and viral vectors, recom-

binant adeno-associated viral (rAAV) vectors are found to be particularly effective

(Conley et al. 2008, Sundaram et al. 2012). Our collaborators designed rAAV vec-

tors that drive expression of the mouse CNGA3 complementary DNA under control of

a 0.5.kb fragment of the mouse blue opsin (S-opsin) promoter (Akimoto et al. 2004).

The viral vector particles were packaged with an Y719F-modified AAV5 capsid (AAV5-

mBP-CNGA3) that results in higher resistance to proteosomal degradation (Petrs-Silva

et al. 2009). They delivered 6-9 x 109 rAAV genomic particles into the subretinal space

within the central to ventral part of the retina of 12 to 14-day-old CNGA3-/- mice

(Fig. 5.1). The success of the procedure was monitored using scanning laser ophthal-

moscopy and optical coherence tomography. It turned out that a single subretinal

injection (1-1.5µl volume) covered ≈ 30% of the total retina.

5.3 Visual Stimulation

In recordings from treated retinas, placement of the retina on the multi-electrode array

roughly aimed at covering the electrode array with the treated region of the retina. To

visually stimulate the retina, the screen of a CRT monitor was focused with standard

optics onto the photoreceptor layer, covering the recorded piece of retina. Periodic

flashes were produced by switching the monitor display every 1 second between black

and white, with a contrast (white-black)/(white+black) = 0.97. Overall light level was

controlled with neutral density filters in the light path. Recordings for different light

levels were always performed in the order of increasing intensities. For each light level,

a 10-15 min adaptation period at constant illumination preceded the recordings.

5.4 Results

Ten weeks post-treatment, clear signs of functional recovery were found in electroretino-

gram (ERG). At dim light levels, there was no difference between treated and un-

treated groups, thus signifying that the procedure did not interfere with the existing
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rod-mediated visual pathway. The rescue of cone function was demonstrated by ERG

measurements at photopic light levels (Michalakis et al. 2010). Immunocytochemistry

revealed the expression of CNGA3 proteins in the injected region but not the untreated

part of the retina. CNGA3 was produced as a result of the gene therapy and was

able to restore expression of CNGB3. Furthermore, these proteins were localized in

the cone outer segments along with S-opsin (Short wavelength) and M-opsin (medium

wavelength), which was not the case in untreated retina. Also the gene therapy resulted

in the establishment of a functional visual cascade and delay of degeneration in treated

CNGA3-/- mouse (Michalakis et al. 2010). The animals were tested for vision-guided

behaviour that highly depends on cone-mediated vision under photopic light condi-

tions. The test was a modified version of Morris water maze (two-choice cued water

maze task). Wild-type mice were able to discriminate between two platforms and were

matched by treated animals, but not by untreated animals (Michalakis et al. 2010).

Having shown the efficacy of gene therapy by above mentioned tests, it is important to

test if the cones in the treated retinas reliably transferred their signals and if the signals

were sufficient to drive the ganglion cell. To this end, we performed multielectrode

array recordings to measure the spiking activity of ganglion cells from isolated retinas of

treated and untreated eyes of CNGA3-/- mice (Fig. 5.1). As expected for a retina limited

to rod function only, ganglion cells from untreated CNGA3-/- mice responded well at

low-light levels, but did not show any light-evoked activity under photopic conditions

(Fig. 5.1 B, D). Much in contrast, many neurons in treated regions displayed strong

light-evoked activity for both low- and high-light levels Fig. 5.1 A, C). Specifically, 33

out of a total of 46 recorded ganglion cells from three retinas displayed clear light-

evoked spiking activity at photopic light levels, indicating that transmission of cone

signals to the inner retina was re-established in the treated retinas.

Among these 33 ganglion cells with photopic responses, the response characteristics

revealed ON-type cells, as well as OFF-type and ON-OFF-type cells. Most cells had

the same response type at all light levels (12 ON cells, 11 OFF cells, 6 ON-OFF cells);

four cells had ON-OFF characteristics at low light intensity, but were classified as

either ON-type or OFF-type at high light level (Table 5.1). This may be due to the

fact that only a subset of cones are transduced by the rAAV vector and express CNGA3

within the ON-OFF ganglion cell’s receptive field. These results indicate that all major

response types of ganglion cells are restored by the treatment and that the basic cell-

type specification is upheld.
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Figure 5.1: Gene replacement therapy restores responsiveness of ganglion cells to

photopic stimuli in CNGA3-/- mice. (A, B) Spike trains of different types of ganglion

cells from (A) treated and (B) untreated CNGA3-/- mice. Spikes were measured in response to

periodic flashes of light at three different intensity levels (left). For each condition, responses

to 10 successive presentations are shown. Stimulus phase is indicated at the bottom. The

spike trains obtained from the treated mice show reliable response patterns for all applied light

intensities. By contrast, ganglion cells from untreated retinas do not respond to light flashes

at the highest light level, which corresponds to photopic conditions. Instead, some cells at this

light level display spontaneous activity, which is not locked to the stimulus presentation. (C, D)

Sample voltage traces recorded from the ON cells shown in A and B, respectively. The image

is adapted from Michalakis et al. (2010).
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Cell type Scotopic Photopic

ON 12 ON 12

OFF 0

ON-OFF 0

OFF 11 ON 0

OFF 11

ON-OFF 0

ON-OFF 10 ON 2

OFF 2

ON-OFF 6

Table 5.1: Distribution of cell types in treated retinas under different light levels

5.5 Chapter Summary

Gene therapy offers a promising approach in treating inherited retinal degenerative

disorders. Success in gene therapy for retinal dystrophies depends on the reliable rescue

of ganglion cell activity. Here, we evaluated the ganglion cell activity with a multi-

electrode array. We show that the rAAV mediated gene therapy successfully rescued

ganglion cell activity in a CNGA3-/- mouse model of achromatopsia. Also, the basic

response types in ganglion cells were restored.



6. Summary & Discussion

The task of the visual system is to extract behaviourally relevant information from the

visual scene. A common strategy for most animals ranging from insects to humans is

to constantly reposition gaze by making saccades within the scene (Land 1999). This

‘fixate and saccade’ strategy seems to pose a challenge, as it introduces a highly blurred

image on the retina during a saccade, but at the same time acquires a ‘snapshot’ of

the world during every fixation (Tatler 2001). The visual signals on the retina are thus

segmented into brief image fixations separated by global motion. What is the response

of a ganglion cell to ‘motion blur’ caused by a saccade, and how does it influence the

response to subsequent fixations? Also, how does the global motion signal influence the

response dynamics of a ganglion cell? In this thesis, we addressed these questions by

two complementary approaches.

First, we analysed the retinal ganglion cell responses to simulated saccades (Chapter 3).

We analysed two important aspects of the response - 1) response during a saccade-like

motion, 2) response to fixation images. For about half of the recorded cells, we found

strong spiking activity during the saccade. This supports the idea that the retina ac-

tively encodes the saccade and may signal the abrupt scene change to downstream brain

areas. Furthermore, we characterized the responses to the newly fixated image. While

there appears to be only little influence of the preceding motion signal itself on these

responses, the responses depended strongly on the image content during the fixation

period prior to the saccade. Thus, saccadic vision may provide ‘temporal context’ to

each fixation, and ganglion cells encode image transitions rather than currently fixated

images. Based on this perspective, we classified retinal ganglion cells into five response

types, suggesting that the retina encodes at least five parallel channels of information

under saccadic visual stimulation. The five response types identified in this study are

as follows:

1) Classical Encoders - Response only to preferred stimuli

2) Offset Detectors - Response only to the saccade
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3) Indifferent Encoders - Response to all fixated images

4) Change Detectors - Response only when the new image after the saccade differs from

the previous image

5) Similarity Detectors - Response only when the new image after the saccade is similar

to the previous image

Second, we analysed the influence of global motion signals on the response of a retinal

ganglion cell to the stimulus in its receptive field (Chapter 4).The stimulus beyond the

receptive field is designated as remote stimulus. We chose simple stimulus (Fig. 4.1 A)

that represent various configurations used in earlier studies, thus allowing us to compare

our results. We show that the remote stimulus both enhances and suppresses the mean

firing rate, but only suppresses the evoked activity. Furthermore, we show that the

remote stimulus decreases the contrast sensitivity (Fig.4.3) and modifies the response

gain (Fig. 4.4). Thus, the ganglion cells encode the stimulus in relation to the whole

scene, rather than purely respond to the stimulus in the receptive field. Our results

suggest that the global motion signals provide ‘spatial context’ to the response of the

stimulus within the receptive field.

6.1 Stimulus History and Context-Dependent Responses

to Fixation

In this study, we showed that the responses depended strongly on the history of the

stimulus before the saccade. We also showed that the cells could be classified into five

response types in such a scenario. Thus, the ganglion cells do not merely convey the

information of a fixated image, they convey the information with a ‘context’, i.e., taking

history into consideration. We have shown that the response to a particular fixated

image is not the same, when the preceding stimulus history is different. Except Offset

Detectors, all other response types showed a marked difference in their response to a

fixated image, when the preceding stimulus history is different. For Classical Encoders

and Indifferent Encoders, the responses varied by a change in latency and firing rate.

For Change Detectors and Similarity Detectors, the responses varied dramatically.

Our results are particularly interesting, given the fact that the periods of fixations are

the most informative about our visual environment. Also, if the gaze is stabilized, the

visual perception fades away as fast as ≈ 100ms (Martinez-Conde et al. 2004), under-

scoring the importance of the initial period of fixation. This initial period of fixation
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after a saccade has been shown to provide the most information in archer fish retina

(Segev et al. 2007). Earlier reports have shown that the firing rate of many ganglion

cells increases just after a saccade (rabbit: Roska and Werblin 2003; archer fish: Segev

et al. 2007), suggesting that the release of suppression from saccades actually drive the

ganglion cells much stronger and make them more informative. Another study showed

that the sudden mean luminance changes caused by saccade-like shifts modulated the

ganglion cell response ranging from strong suppression to strong activation (Amthor

et al. 2005). Saccades are also shown to cause dramatic effects on certain OFF cells

to transiently produce ON responses, just after a saccade (Geffen et al. 2007). These

studies show that saccades modulate the response to a fixated image, by eliciting a

variety of different responses. Nevertheless, the earlier studies mentioned above have

not taken into account the history of the stimulus before the saccade.

Stimulus history dependence and providing context to the present stimulus have been

shown in motoneurones (Powers et al. 2005) and in different brain regions including

retina (Chiao and Masland 2003, Wark et al. 2009), LGN (Fellous et al. 2004), MT (Fel-

lous et al. 2004, Schlack et al. 2007) and in auditory cortex (DeWeese and Zador 1998,

Watkins and Barbour 2008, Asari and Zador 2009). Our study reaffirms that neurons

have the capacity to encode the information about the stimulus and additionally add

‘context’ taking recent history into consideration (see DeWeese and Zador 1998, Ko-

rding et al. 2007). Thus, saccades may provide context to each fixation, and ganglion

cells encode image transitions rather than the currently fixated image.

6.2 What Causes a Particular Response Type?

Classical Encoders are the predominant response type, and are mostly X-like cells

(Fig. 3.12). X cells are characterized by sustained response and also responded with a

preferred and null phase to reversing gratings (Enroth-Cugell and Robson 1966, Stein

et al. 1983). Thus, the response profile of Classical Encoders, which are also spatial

phase dependent and have sustained firing (Fig. 3.2 A, B), is easily explained by their

basic physiological property.

Response types other than Classical Encoders are mostly Y-like cells, which respond

with ‘bursty’ firing to fast moving gratings (Stein et al. 1983). This property explains

the transient firing during saccade-like scene shifts. But Y cell properties alone could

not explain the response to fixated images. For Change Detectors, long-lasting adapta-

tion might cause the response attenuation if the same stimulus appears after a saccade.

Synaptic facilitation may cause enhanced response in Similarity Detectors if the same
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stimulus appears after a saccade. Alternatively, there may be a common circuitry that

differentially modulates these two types simultaneously, producing opposite response

patterns. More than half of Indifferent Encoders are ON-OFF cells, thus explaining

their response to all of the fixated images. Offset Detectors may have a similar mech-

anism to local edge detectors (LED) which respond only to moving edges and not to

fixated images.

6.3 Comparison with Other Classification

Retinal ganglion cells of mouse have been classified extensively by several research

groups based on morphology, physiology, dendritic arborisation, dendritic thickness,

molecular and genetic markers, projection to different brain regions etc (Doi et al.

1995, Sun et al. 2002, Carcieri et al. 2003, Badea and Nathans 2004, Kong et al. 2005,

Völgyi et al. 2005, 2009, Coombs et al. 2006, Hattar et al. 2006, Loopuijt et al. 2007,

Huberman et al. 2008, 2009, Kim et al. 2008, Siegert et al. 2009, Yonehara et al. 2008,

2009, 2011, Farrow and Masland 2011, Hong et al. 2011, Kay et al. 2011, Rivlin-Etzion

et al. 2011). The five response types described in our study arise when ganglion cells

were tested with a specific type of stimulus namely the saccade stimulus. We sought

to look into some of the earlier classifications and see how well our classification fits or

deviates from the existing schema.

Comparison with anatomical/morphological classification: There are at least 12 types of

ganglion cells based on anatomical classification alone (Badea and Nathans 2004, Kong

et al. 2005, Coombs et al. 2006, Völgyi et al. 2009).We wanted to know if each response

type belongs to a specific anatomical or morphological cell class. In our experiments

we do not have access to the morphology of a ganglion cell. Nevertheless, the receptive

field size of a ganglion cell estimated by reverse correlation (see Section 2.6.3; Fig. 2.4)

offers some clue about a cell’s dendritic field size. Our results show that each response

type comprises cells with different receptive field sizes (Fig. 3.11). Classical Encoders

were mostly small cells (≈ 150µm) though some large cells were also found. The other

response types are even more heterogeneous, comprising cells with different receptive

field sizes . Thus it is clear that a response type may contain more than one anatomical

cell class.

Comparison with functional classification: We used a nonlinearity index to classify cells

into X-like and Y-like. Although we found X-like and Y-like cells, they did not form

separate group of cells, rather formed a continuum as reported by Carcieri et al. (2003).

Classical Encoders were mostly X-like, although some Y-like cells were found. The rest
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of the cells, on the other hand, were mostly Y-like, although some X-like cells were

present. Y-like cells in mouse are known to have three anatomical subtypes based on

their electrical coupling patterns (Völgyi et al. 2005). It is not clear if each of these

subtypes corresponds to different response types described in our study.

Furthermore we also identified direction selective and orientation selective cells in our

recordings, but they do not cluster into a single response type.

While it is difficult to assign different cell classes to different response types, one cell

class stands out - X-like cells which have small receptive field (≈ 150µm), brisk sustained

response pattern, also known as beta cell (based on soma size). This cell type form

≈ 70% of Classical Encoders. Y-like cells are characterized by medium to large receptive

fields and brisk transient response. They are known as alpha cells (based on soma

size) and form majority of rest of response types Offset Detector, Indifferent Encoder

and Similarity Detector. The cells of Change Detector have slightly different response

pattern indicating a non-X and non-Y cell type. The response profile of the cells (8

out of 9 cells) was neither transient nor sustained (Fig.3.5) with a lower peak firing

rate. Thus we could identify at least three physiological cell classes with each forming

predominantly but not exclusively three groups of response types. These three broad

physiological cell classes may correspond to S-units (mostly X cells), T-units (mostly Y

cells) and M-units described in cat retina during a saccade, described by (Noda 1975).

While there are no OFF cells in Change Detector, there are no ON cells in Similarity

Detector. These are two opposite response types and most likely opposite cell types.

In guinea pig retina, it is common to find an ON cell - OFF cell pair (unpublished

observation). It is likely that they may exist in mouse retina as well and function as

Change Detector - Similarity Detector cell pair.

6.4 Does the Retina Contribute to Saccadic Suppres-

sion?

During saccadic eye movements, the image on the retina is highly blurred, but our

visual perception to this motion blur is suppressed. This process is known as ‘saccadic

suppression’ and it is an important phenomenon, so that we can perceive a stable vi-

sual world (Volkmann 1962, Beeler 1967, Noda and Adey 1974a, Burr et al. 1994, Ross

et al. 2001). Saccadic suppression has been observed in several species including rodents

(Lee et al. 2007, Phongphanphanee et al. 2011), cat (Noda and Adey 1974a), monkey

(Ross et al. 2001) and human (Beeler 1967). It is also observed at different stages in
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visual processing including lateral geniculate nucleus (LGN; Noda and Adey 1974a),

primary visual cortex (V1; Wurtz 2008) and extra striate cortex MT and MST (Wurtz

2008). It has been suggested that elevation of visual threshold in LGN during an eye

movement could cause saccadic suppression (Adey and Noda 1973). The elevation of

visual threshold in LGN was also observed when the eye is stable but the image across

the retina is moved, suggesting a significant retinal component to saccadic suppression

(Adey and Noda 1973, Noda and Adey 1974a). Later Noda and Adey (1974b) showed

that some ganglion cells strongly responded to saccadic eye movements. They sug-

gested that the active response of retinal ganglion cell might contribute to the observed

threshold elevation in LGN and thus to saccadic suppression. Another study, showed

that some ganglion cells are inhibited by saccades and suggested this could contribute

to saccadic suppression (Roska and Werblin 2003). Our results consolidated these two

contradicting reports. We found that half our cells responded actively to saccade. The

other half of the cells did not respond (some cells were suppressed) to saccades. But

to what extent does the retina contribute to saccadic suppression? Which of these two

response types - actively spiking or suppressed - contribute? It is not only tough to

predict which of these types contribute, but if there is any evidence to retinal contribu-

tion at all, since saccadic suppression is observed even before an eye movement (Ross

et al. 2001). Thus the role of the retina for saccadic suppression is inconclusive. So,

what may these responses be useful for? Perhaps, the actively spiking ganglion cells

report “yes, there was a saccade” to different downstream centres that receive corollary

discharge from higher brain centres about the impending saccade initiation and thus

suppression. In our recordings the cells that actively spike during a saccade are clas-

sified further into four types, it may be conceivable that each one of these projects to

different downstream centres conveying the information.

6.5 Retinal Signals during Eye-blinks

Our vision is often interrupted by both spontaneous and intentional eye blinks, to pro-

tect our eye from dust and other tiny objects and to moisten and oxygenate our corneas.

We blink 10-15 times a minute, with each blink lasting 100-150 ms (similar to saccade

duration) and reducing incoming light levels by 100 fold (Burr 2005). Although each

blink causes a mini ‘black-out’, it goes almost unnoticed. The visual perception during

an eye blink is suppressed and the process is thought to be by the same mechanism as

saccadic suppression (Volkmann 1986, Ridder and Tomlinson 1995, 1997, Burr 2005).

Similar to saccadic suppression, blink suppression occurs even when there is a retinal

stimulation (Volkmann et al. 1982, Bristow et al. 2005). So, what signals does the
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retina send during and after an eye blink?

Eye blinks are also a common feature in rodents, although the blink rate is slightly

lower at 5-6 blinks per minute (Kaminer et al. 2011). Our experiments where the

transition between fixations is just a grey image instead of saccade-like motion can be

considered to mimic eye blink. Our results suggest that the retinal signals during such

a ‘grey-out’ are similar to signals during a saccade (Fig. 3.14) and may provide signals

to downstream centres that received a corollary discharge about the impending eye

blink. Also the responses to fixation after such a grey image are similar to signals after

a saccade. We found the same five response types as for saccade-like scene shifts. Thus

fixation after an eye blink may provide segregated information to different downstream

visual centres. Furthermore, our results suggest that the retinal signals during saccade-

like scene changes and eye blinks are similar, just like saccadic suppression and blink

suppression are similar.

6.6 Parallel Processing during Saccadic Scene Changes

The retina of several species consists of at least ten types of ganglion cells (mouse: Sun

et al. 2002, Kong et al. 2005, Coombs et al. 2006, Farrow and Masland 2011; rat: Huxlin

and Goodchild 1997; rabbit: Rockhill et al. 2002; cat: O’Brien et al. 2002; monkey:

Dacey et al. 2003; human: Kolb et al. 1992). Each one of these types encodes different

features of the same visual scene, thus providing parallel channels of information to

downstream centres (Lennie 1980, Roska and Werblin 2001, Masland 2001, 2011, Wässle

2004, Nassi and Callaway 2009). The five response types for fixation images described

in our study reinforce the concept of parallel processing in the context of saccadic scene

changes. The visual channels described in our study range from simple pixel detectors

to cells that encode either difference or similarity across saccades. There may be more

than one cell type that represents a response type; nevertheless there are at least five

channels of information.

Each one of these types may project to different regions of the brain, like superior

colliculus (SC) and LGN. X cells project to LGN and rarely to SC, whereas a single Y

cell projects to both SC and LGN (Nelson and Kolb 2004). A recent study by Kay et al.

(2011) shows that subsets of ON-OFF directionally selective ganglion cells project to

distinct brain targets. In our recordings, most Classical Encoders are X-like (Fig. 3.12)

and thus their information is probably projected to LGN. Since this type forms half

of the cells, it is likely that there is more than one anatomical cell type within this

response type. And each of these cell types could project to different targets within
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LGN, thus providing segregated information to different targets.

On the other hand, a single Y cell projects to both SC and LGN, thus possibly conveying

the same information to different targets. Our results show that most cells other than

Classical Encoder are Y-like. Also they respond to saccade-like image shifts. They are

again sub-classified into four response types. Saccadic suppression is strongest in SC

(Wurtz, 2008). Saccade initiation takes place in inferior layers of SC (Lee et al. 2007,

Wurtz 2008, Phongphanphanee et al. 2011). These cells are connected to superficial

cells that receive inputs from retina and corollary discharge from cortex. It makes

sense that SC receives Y cell inputs that respond to saccades. The sub types of Y cells

may project to different layers of LGN as well as conveying ‘context’ dependent visual

information about the fixation.

6.7 Mechanism Underlying the Effects of Remote Stim-

ulation

We found that the remote stimulus both enhances and suppresses mean firing rate

(Fig. 4.1), but only suppresses the evoked activity. How are these effects brought

about? In salamander and mammalian retinas, inhibition of ganglion cell responses

to centre stimuli is amacrine cell mediated. In the salamander retina, it has been

shown that wide-field glycinergic amacrine cells in the far-surround inhibit the ganglion

cells (Werblin 1972, Werblin and Copenhagen 1974, Thibos and Werblin 1978, Cook

and McReynolds 1998). In the cat and guinea pig retina the remote gratings inhibit

through GABAergic wide-field amacrine cell (Frishman and Linsenmeier 1982, Zaghloul

et al. 2007). It is likely that the same inhibitory mechanism causes suppression of

mean firing rate in the presence of remote stimulation. But, how does one explain

the enhancement of mean firing rate by remote stimulation (Fig. 4.1)? There are

two possible mechanisms 1) rebound excitation and 2) disinhibition. Inhibition of a

retinal ganglion cell causes hyperpolarization, and the termination of hyperpolarization

results in ‘rebound excitation’ (Mitra and Miller 2007, Margolis and Detwiler 2007).

Disinhibition is the timely release from inhibition of a ganglion cell. Enhancement

of ganglion cell firing through ‘disinhibition’ from the far-periphery was first shown

by Ikeda and Wright (1972) and later by Li et al. (1992). Our results show that the

enhancement of mean firing rate follows suppression, and is in phases closely matching

the reversing gratings. Whereas in drifting motion the enhancement and suppressin

are tonic, indicating the effects of remote stimulus following the stimulus phase. It

has been shown that the inhibitory effects were stronger in the OFF ganglion cells
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in guinea pig retina (Zaghloul et al. 2007). Hence, it is likely that the disinhibitory

effects were stronger in OFF cells. Our results show the enhancement of mean firing

rate in both ON and OFF cells. However, the enhancement was stronger in OFF cells,

thus complementing earlier reports. We found further evidence for ‘rebound excitation’

or ‘disinhibition’ in OFF cells. Both ON cells and OFF cells showed suppression of

responses in the presence of remote gratings, but only in OFF cells we found burst of

spikes 500ms after the onset of a non-preferred light step (Fig. 4.2 and Fig. 4.3). This

response is unlikely a response to the light step but a rebound firing to the remote

gratings which change their phase every 500ms.

6.8 Remote Stimulation and Contrast Gain Control

The retina adapts to the stimulus statistics and accordingly adjusts its response. In-

crease in visual contrast reduces the sensitivity of the ganglion cell, a phenomenon

known as ‘contrast gain control’ (Shapley and Victor 1978). This phenomenon is well

studied in the retina (Chander and Chichilnisky 2001, Kim and Rieke 2001, Baccus and

Meister 2002, Demb 2002, Zaghloul et al. 2005). We show that the remote stimulus sup-

pressed the visually evoked responses (Fig. 4.2) and completely abolished the responses

to the weaker stimulus (Fig. 4.3). This suppression is achieved by increased threshold

for response and reduced gain (Fig. 4.4). Our results provide a direct evidence for the

presence of a ‘contrast gain control’ mechanism in the presence of remote stimulation.

A similar gain control mechanism by remote stimulation has been shown in the guinea

pig (Zaghloul et al. 2007) and monkey retinas (Solomon et al. 2006). Thus the retina

adapts not only to local stimulus statistics, but to a stimulus over a wider region in

space.

6.9 Remote Stimulation in Other Visual Areas

The effects of remote stimulation have been found not only in the retina but throughout

the visual system (Allman et al. 1985, Albright and Stoner 2002). It has been observed

in LGN (Valberg et al. 1985, Derrington and Felisberti 1998, Bonin et al. 2005, Alitto

and Usrey 2008), visual cortex (Rizzolatti and Camarda 1977) and specialized areas

of extra striate cortex (Albright and Stoner 2002). The surround suppression and

contrast gain control in the retina seems to be the major contributor to the effects

seen in LGN (Felisberti and Derrington 1999, 2001, Bonin et al. 2005, Alitto and Usrey

2008). In an elegant set of experiments, Alitto and Usrey (2008) found out that the



80 6.10. Implications for Visual Information Processing

effects observed in the LGN originate from the retina and ruled out the possibility of

cortical feedback. Solomon et al. (2002) suggested that the suppressive effects of remote

stimulation observed in visual cortical neurons could originate from feedforward inputs

from LGN. However, the effects of remote stimulus are stronger in the LGN (Kaplan

et al. 1987, Cheng et al. 1995), indicating further fine tuning of the effects may take

place at each successive stages. Nevertheless, it is clear that the primary site of origin

of these effects is the retina.

6.10 Implications for Visual Information Processing

The remote stimulus described in this study mimics a sudden shift of scene (reversing

gratings) or an eye movement similar to smooth pursuit eye movement (drifting grat-

ings), both of which are types of saccade. We wanted to know how the global stimulus

interacts with the encoding properties of local stimulus. In Chapter 3, we studied the

responses of ganglion cells to global saccade-like motion stimuli and found five channels

of information encoding in the retina. We found that the effects of remote stimulus

in all cell types described in the Chapter 3. Thus these effects might act as an extra

layer of information processing over and above the five channels of encoding. In such a

scenario, what are the implications of such an effect of extra-classical receptive field? A

natural visual scene is rich in features. When making an eye movement, each ganglion

cell responds to the stimulus in its receptive field, taking into account the stimulus

history and also spatial structure in the far surround. The stimulus in the far sur-

round provides a spatial ‘context’ to the present stimulus. Thus the retina effectively

integrates stimuli over wide regions of visual space. While we found both suppression

and enhancement of mean firing rate in the retina, similar effects of both suppression

and facilitation have been reported in LGN (Felisberti and Derrington 1999). The fact

that these effects of remote stimulation are found all through the pathway provides a

natural way of local-global stimulus comparisons (Allman et al. 1985) and may provide

important context to encode objects in space.
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The central finding of this study is that the natural vision involving eye movements and

eye-blinks provides context to the retinal coding. Furthermore, we have identified the

presence of at least five parallel channels of information in the retinal output. These

results offer new insights into the sensory processing in the retina under active vision.

At the systems level, it would be interesting to know the precise neural circuits that

generate the different response types. Further experiments would be needed to identify

the different circuit elements that contribute to a particular response type. The first

set of experiments would be to record the ganglion cells under whole-cell patch clamp

mode to measure the excitatory and inhibitory currents. Moreover, the availability of

pharmacological agents to block specific channels or to silence different interneurons in

the retina would help in teasing apart the circuits involved.

Exploring the quantitative circuit models that explain the input-output relationship of

the observed responses would be of great interest. The well-known Linear-Nonlinear

(LN) model, which has been used to describe the ganglion cell responses, is not sufficient

to explain certain features especially complex response pattern during saccadic vision.

For example, the modulation of ganglion cell spiking activity by remote stimulation is

one such scenario. Extending the LN model to include the parameters of the remote

stimulus would be the next logical step. For this, one needs to identify the specific

features of the remote stimulus that contribute to the observed results. Examples

include, considering the spatio-temporal features such as grating bar width, motion

velocity and direction. Moreover, one should test if such an extension of LN model also

explains the responses of individual response types. Such an improved model would be

useful in testing the sensitivity of a ganglion cell under different conditions including

saccades and eye-blinks.

Understanding the population coding strategies would be the next step. Retinal gan-

glion cells are known to fire correlated, anti-correlated and synchronous spikes. It has

been suggested that such interactions of cells in the network carry substantial infor-

mation to downstream centres (Meister and Berry 1999). How do the five response
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types interact at the network level? To test the network interaction, one should pro-

ceed at two levels; 1) the interaction among the cells of the same response types and,

2) interaction among different response types. At present, we could record ≈ 25 cells

simultaneously with 60 electrode arrays. However, this does not yield sufficient number

of cells of a single response type to quantitatively model the network. To achieve the

goal, we could turn to newer arrays with 252 electrodes, where one could record 100

to 150 cells simultaneously. Such a recording would give us sufficient levels of cells of

each type to measure synchrony, correlation and redundancy present in the population

code.

Does each response type present a genuine cell type and sample the visual scene in

a “mosaic” arrangement? It is important to know the morphological identity and the

distribution of each type in the retina. The availability of transgenic mouse models

with fluorescent markers to specific subsets of ganglion cells have helped in identifying

a few functional cell types (Kim et al. 2008, 2010, Zhang et al. 2012). Also, a set of

≈ 100 transgenic mouse lines with different labelled cell types has been described by

Siegert at al (2009). Systematic analysis of a select set of mouse lines from this database

would be the next step in identifying the cell types. Such an approach would help us in

establishing morphology-function relationship. Also, it would resolve if there are any

subtypes in each of the response types.

Our results could be useful in improving the existing strategies of restoring vision in

retinal degenerative diseases. We have identified the generic pixel detectors (Classical

Encoder) and other functional types. Present strategies of retinal prosthesis that involve

the stimulation of ganglion cells do not involve selective activation of specific population

of ganglion cells (Javaheri et al. 2006). We suggest that the development of a prosthesis

that takes care of selective activation of different cell types would greatly improve the

existing ones.

It would be interesting to know how our results add to the present understanding

of signal processing at successive stages of the visual system. Naturally, the following

questions arise. What is the specific target site for each of the visual channels identified

here? How is this segregated information utilized by the downstream centres? Does

the feature detection in the retina actually contribute to the decision making and thus

behaviour of the animal? The answers to these questions rely on careful design of

experiments using a variety of techniques, ranging from anatomy, electrophysiology,

functional imaging and behavioural studies. One promising approach is two-photon

calcium imaging of several cells of visual cortex in freely behaving animals. Recent

studies have demonstrated the potential of such an approach by resolving long standing
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questions in vision research (Dombeck et al. 2007, Kerr and Nimmerjahn 2012, Keller

et al. 2012).

Closure

At the beginning of this thesis, we pointed out the challenges of sensory coding un-

der naturalistic stimulus conditions. We approached this problem by studying retinal

coding in the presence of saccades. We found that there are five response types includ-

ing generic pixel detectors and cells that encode either similarity or difference across

saccades. This suggests that saccadic vision provides temporal context to retinal cod-

ing. Also, there are at least five parallel channels of information already segregated

at the level of the retina. Moreover, we showed that retinal coding in the presence of

eye-blinks is amazingly similar to the coding under saccadic vision. We further showed

that the global motion signals during saccades that modulate ganglion cell activity

may provide spatial context to ganglion cell coding. Our results strengthen the notion

that the retina does not just provide generic filtered information, but provides highly

processed information about different features of the visual world. Our identification of

new response types seems to add complexity to retinal coding, but offers new insights to

sensory coding. We hope that the results presented in this thesis will lead to interesting

directions in vision research.
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Ölveczky BP, Baccus SA, and Meister M (2003) Segregation of object and background

motion in the retina, Nature 423(6938):401–8.

Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F, Bennicelli J, Banfi S,

Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B,

Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X,

Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell

JW, Auricchio A, High KA, and Bennett J (2008) Safety and efficacy of gene transfer

for leber’s congenital amaurosis, N Engl J Med 358(21):2240–8.

Mancuso K, Hauswirth WW, Li Q, Connor TB, Kuchenbecker JA, Mauck MC, Neitz

J, and Neitz M (2009) Gene therapy for red-green colour blindness in adult primates,

Nature 461(7265):784–7.

Manu M and Baccus SA (2011) Disinhibitory gating of retinal output by transmission

from an amacrine cell, Proc Natl Acad Sci U S A 108(45):18447–52.

Margolis DJ and Detwiler PB (2007) Different mechanisms generate maintained activity

in on and off retinal ganglion cells, J Neurosci 27(22):5994–6005.

Marshel JH, Garrett ME, Nauhaus I, and Callaway EM (2011) Functional specialization

of seven mouse visual cortical areas, Neuron 72(6):1040–54.

Martinez-Conde S, Macknik SL, and Hubel DH (2004) The role of fixational eye move-

ments in visual perception, Nat Rev Neurosci 5(3):229–40.

Masland RH (2001) The fundamental plan of the retina, Nat Neurosci 4(9):877–86.

Masland RH (2011) Cell populations of the retina: the proctor lecture, Invest Ophthal-

mol Vis Sci 52(7):4581–91.

McIlwain JT (1964) Receptive fields of optic tract axons and lateral geniculate cells:

Peripheral extent and barbiturate sensitivity, J Neurophysiol 27:1154–73.

McIlwain JT (1966) Some evidence concerning the physiological basis of the periphery

effect in the cat’s retina, Exp Brain Res 1(3):265–71.

Meister M and Berry MJ (1999) The neural code of the retina, Neuron 22(3):435–50.

Meister M, Pine J, and Baylor DA (1994) Multi-neuronal signals from the retina: ac-

quisition and analysis, J Neurosci Methods 51(1):95–106.

Michaelides M, Hunt DM, and Moore AT (2004) The cone dysfunction syndromes, Br

J Ophthalmol 88(2):291–7.



Bibliography 95

Michalakis S, Geiger H, Haverkamp S, Hofmann F, Gerstner A, and Biel M (2005) Im-

paired opsin targeting and cone photoreceptor migration in the retina of mice lacking

the cyclic nucleotide-gated channel cnga3, Invest Ophthalmol Vis Sci 46(4):1516–24.
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Wässle H (2004) Parallel processing in the mammalian retina, Nat Rev Neurosci

5(10):747–57.
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