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SUMMARY 

 

SUMMARY 

Conditional gene expression systems are valuable tools for herpesviral research. As yet, all 

available expression systems base on two features: first, an expression cassette with responsive 

elements and second, the inducer, i.e. a chemical compound or a protein. In this study, a novel 

inducible expression system has been developed, that bases on intrinsic features of herpesviruses, 

thus conditional expression is turned on by wild type virus infection. This has been achieved by 

exploiting the herpesvirus origin of lytic replication (oriLyt) of the murine Cytomegalovirus 

(MCMV) to activate the expression of adjacent genes. Cell lines carrying an episomal vector, with 

a reporter or transgene combined with the oriLyt were constructed. These oriLyt-based replicon 

vectors were silenced in uninfected cells; however, virus infection liberated the plasmids from 

histone-deacetylase-induced inactivation. Replication of the episome after infection led to a very 

strong induction of gene expression by up to 1.000-fold. This virus-inducible expression system 

opened a wide range of application possibilities. 

 A variety of diseases attributed to herpesvirus infections in livestock has a high 

economical impact. Vaccines have been developed; but several disadvantages limit their general 

application. Intracellular immunization is discussed as an option to vaccination. Hereby a viral 

dominant–negative protein is used to prevent herpesvirus dissemination in the animal cell. 

Previous attempts were unsuccessful due to strong side effects of the constitutively expressed 

transgenic dominant-negative proteins. An important step towards the implementation was 

achieved by constructing the replicon vector system, as transgene expression is activated by a 

wild type virus infection itself without using chemicals or genetically modified viruses. The results 

of the present study show that viral infection specifically activated the expression of a dominant-

negative transgene, which in turn inhibited viral growth. 

 The trans-complementation of late herpesviral proteins is very demanding. Incorrect 

expression timing and insufficient transgene amounts hamper the successful production of trans-

complemented viruses. Furthermore, isolated and high expression of viral proteins can be toxic 

for the cell. These problems were overcome with the replicon vector system. Using glycoprotein 

O and the transmembrane protein M50 it was demonstrated in this study that the system even 

enables the expression of toxic proteins. 

  Furthermore, the replicon vector was used to generate a transgenic mouse line (VIOLA). 

This mouse line expressed the reporter gene only upon infection with MCMV. The expression 

was inducible in explant cultures of the mouse but not in vivo. This interesting property of the 

VIOLA mice might be used to study herpesvirus-induced chromatin remodeling. 
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ZUSAMMENFASSUNG 

Konditionale Expressionssysteme sind wertvolle Werkzeuge für die Forschung an Herpesviren. 

Bisher hatten alle erhältlichen Expressionssysteme eine gemeinsame Eigenschaft. Sie basieren auf 

zwei Bestandteilen: erstens einer Expressionskassette mit schaltbaren Elementen und zweitens 

einem induzierenden Molekül oder Protein. In dieser Arbeit wurde ein neuartiges induzierbares 

Expressionssytem entwickelt, dass auf natürlichen Eigenschaften von Herpesviren zurückgreift 

und damit durch eine Infektion mit Wildtyp-Viren angeschaltet werden kann. Dafür wurde der 

herpesvirale Ursprung der lytischen DNA-Replikation (oriLyt) des murinen Zytomegalievirus 

verwendet, um benachbarte Gene zu aktivieren. Zell-Linien wurden erzeugt, die ein Trans- oder 

Reportergen mit dem oriLyt auf einem episomalen Vektor enthalten. Diese oriLyt-basierenden 

Replikonvektoren wurden in nichtinfizierten Zellen inaktiviert; aber durch Virusinfektion 

konnten die Plasmide von der Histone-Deacetylase- abhängigen Stilllegung befreit werden. Die 

gleichzeitige Replikation des Vektors führte zu einer sehr starken Induktion der Genexpression 

um das tausendfache. Dieses neue Virus-induzierbare Expressionsystem eröffnet eine weite 

Reihe von Anwendungsmöglichkeiten. 

 Herpesviren sind wichtige Pathogene, die sowohl Mensch als Tier befallen. Durch 

Herpesviren hervorgerufene Erkrankungen verursachen erheblichen ökonomischen Schaden in 

der Nutztierhaltung. Impfstoffe für Nutztiere wurden entwickelt; mehrere Nachteile schränken 

jedoch ihre allgemeine Anwendung ein. Als Alternative ist das Konzept der intrazellulären 

Immunisierung denkbar. Hierbei wird in den tierischen Zellen ein virales, dominant-negatives 

(DN) Transgen verwendet, das die Ausbreitung der Infektion verhindern soll. Bisherige Versuche 

schlugen aufgrund der starken Nebeneffekte der konstitutiv exprimierten transgenen DN 

Proteine fehl. Ein wichtiger Schritt zur Implementierung wurde durch die Konstruktion der 

Replikonvektoren erreicht, da die Transgene durch die Infektion mit dem Wildtyp-Virus aktiviert 

werden, ohne die Notwendigkeit chemische Verbindungen oder genetisch modifizierte Viren zu 

benutzen. Die Ergebnisse dieser Studie zeigen, dass eine Infektion die dominant-negativen 

Transgene spezifisch anschaltet und dabei die Ausbreitung des Virus verhindert. 

 Die Trans-Komplementierung von späten herpesviralen Proteinen stellt eine 

Herausforderung dar. Die erfolgreiche Produktion von trans-komplementierten Viren wird durch 

mangelnde Transgene Menge und falsche Expressionszeitpunkte beeinträchtigt. Außerdem kann 

die isolierte und hohe Expression von viralen Proteinen toxisch für die Zelle sein. Diese 

Probleme wurden durch das Replikonvektor-System gelöst. Mit Hilfe des Glycoproteins O und 

des transmembranen Proteins M50 konnte in dieser Arbeit gezeigt werden, dass das 

Replikonsystem sogar die Expression von toxischen Proteinen ermöglicht.  



ZUSAMMENFASSUNG 

 

Schließlich wurde der Vektor zur Erzeugung einer transgenen Mauslinie (VIOLA) verwendet, die 

das Reportergen Luciferase abhängig von der viralen Infektion mit MCMV exprimiert. Die 

Expression war in Explant-Kulturen, aber nicht in der lebenden Maus induzierbar. Diese 

bemerkenswerte Eigenschaft der VIOLA-Maus könnte eventuell zur Untersuchung von 

Herpesvirus-bedingter Chromatin Umstrukturierungen dienen. 
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1 INTRODUCTION 

1.1 Herpesviruses 

Herpesviruses comprise a very large class of double-stranded DNA viruses, with over 200 

different species identified so far. They possess a broad host spectrum, as almost if not all 

vertebrates and even some invertebrates analyzed to date harbor at least one specific herpesvirus 

[1]. Still, a common feature of herpesviruses is their primary association with one particular host 

species. The ongoing identification of new virus species led to a re-classification of herpesviruses 

by the International Committee on Taxonomy of Viruses in 2009. The old family of 

herpesviridae is now split into three families and incorporated in the new order herpesvirales [2] 

(Figure 1). 

 

 

Figure 1: Taxonomy of herpesviruses 

Due to newly identified species the herpesvirus taxonomy has been updated in 2009 [2]. The order of herpesvirales is 
now divided into three families. The most important family, the herpesviridae, is grouped in three distinct 
subfamilies. For each of the subfamilies viruses infecting humans have been identified. Shown are also species 
infecting mice with the exception of the species MuHV-3, MuHV-5 and MuHV-6, which are not assigned to any 
subfamily yet. Up to date no alpha-herpesvirus infecting mice were isolated. 

 

 The ability to establish a life-long latency after primary infection is a hallmark of 

herpesvirus infection [3]. Recurrent infection can emerge by reactivation from this silent state, in 

which only few herpesviral genes are expressed. Herpesvirus infection, in general, leads to a mild, 
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asymptomatic course through the long evolutionary adaptation of virus and host immune system 

[4]. However, severe manifestations of disease can arise in case of primary infection, re-infection 

or reactivation of immunocompromised hosts, as elderly, during pregnancy or 

immunosuppression in correlation with solid or bone marrow transplantation. Moreover, some 

herpesviruses possess also oncogenic potential [5].  

 The medical and economically most relevant family is the family of herpesviridae that 

infects mammals, birds and reptiles. The herpesviridae are divided into three major subfamilies, 

namely α-, β- and γ-herpesvirinae. Herpesviruses infecting and causing disease in humans can be 

found in any of these subfamilies. These are herpes simplex virus 1(HSV-1; above all herpes 

labialis, encephalitis, keratoconjunctivitis), herpes simplex virus 2 (HSV-2; herpes genitalis), 

varicella-zoster virus (VZV; chicken pox, zoster/shingles), human cytomegalovirus (HCMV; 

hepatitis, pneumonia, leucopenia, gastrointestinal disease, retinitis),  human herpesvirus 6 (HHV-

6; Roseola infantum), human herpesvirus 7 (HHV-7, Roseola infantum), Epstein-Barr virus 

(EBV; infectious mononucleosis, Burkitt’s lymphoma) and Kaposi’s sarcoma-associated virus 

(KSHV; Kaposi’s sarcoma, morbus Castleman). The grouping to one of the subfamilies is largely 

based on their tissue tropism as well as characteristics of productive infection [5]. The members 

of the α-herpesvirinae possess a broad cell tropism and reside in their latent stage mainly in 

sensory neurons of trigeminal ganglia [6]. They can infect several host cell cultures in vitro and 

possess a short and effective replication cycle leading to rapid destruction of infected cells [1]. γ-

herpesvirinae infect fewer cell types productively and reside primarily in lymphoid and myeloid 

cells in their latent stage causing lymphoproliferativ diseases [7]. Characteristic for the β- 

subfamily is a long replication cycle and relatively broad cell tropism. Latently infected cells are 

often found in cells derived from the myeloid lineage [8], but many other cell types seem to 

harbor latent genomes as well [9]. A subgroup of the β-herpesviruses, the cytomegaloviruses 

(CMV), is of major clinical importance. CMV’s are named in accordance with the appearance of 

greatly enlarged cells with intracellular and intranuclear inclusion bodies. Human CMV (HCMV) 

plays an important role in infection of immunocompromised individuals such as transplant or 

AIDS patients, and infection of the fetus or newborn. Congenital infection leads to long-lasting 

health problems in 50 % of the cases as mental retardation, hearing or vision loss, growth 

problems and others [10]. Hence, calculating the cost of congenital acquired HCMV disease to 

the health care system and the threat to human health, the Institute of Medicine selected HCMV 

to the most needed viral vaccine [11].  
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1.2 Herpesvirus morphology 

All herpesviruses share the same morphology with an icosahedral capsid embedded in a 

proteinaceous layer called the tegument and are surrounded by a lipid envelope covered by 

several glycoproteins (Figure 2). The linear double-stranded DNA (ranging from 124-230 kb in 

length) is packed in form of a torus [12] and encodes between 70 - 230 genes, depending on the 

subfamily. The icosahedral capsid is about 100 nm in size, and consists of 162 capsomers. Four 

proteins shape the capsid. The major capsid protein (MCP) forms pentons and hexons that are 

connected by trimers, which are built by the minor capsid protein and minor capsid binding 

protein [13]. These are then decorated by the smallest capsid protein (SCP), which is the least 

conserved of the capsid proteins [14]. While SCP is essential in β-herpesvirinae it is dispensable in 

other subfamilies.  

 

Figure 2: Morphology of a herpesvirus virion 

A) Schematic illustration and B) positive stain electron microscopic picture of a herpesvirus virion. (modified from 
[15]). C) Reconstitution of a herpesvirus capsid from cryo-electromicroscopy. The position of the small capsid 
protein (SCP) on the tips of hexon and penton bases is depicted in dark grey (modified from [16]). 

 

 The capsid is surrounded by the tegument, a protein layer that consists of several 

proteins (and some RNA), and might possess an ordered layered structure [17]. These proteins 

modulate host functions without the need of prior viral protein synthesis. They help the virus to 

evade the immune system and to start its own gene expression [18]. Herpesviruses acquire their 

final envelope, which is covered with a plethora of different glycoproteins and – complexes [19]. 

The number, amount and type of glycoproteins varies between different herpesviruses. In total 

the mature virion reaches a size of 120 – 260 nm.  
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1.3 Herpesvirus replication cycle 

Herpesviruses enter the cell by different ways and therefore not only one specific but many 

receptors have been identified that might play a role in attachment [20, 21]. Furthermore, fusion 

of the envelope with the plasma membrane or a membrane of the endosome can be used 

depending on the cell type to be infected [22, 23]. Right after entry, the tegument proteins hide 

the virus from the immune system, fend off apoptotic mechanisms and, in some cases, shut off 

host protein synthesis [4]. Using other tegument proteins, capsids travel along microtubules to 

the microtubule organizing center (MTOC), from where they are further transported to nuclear 

pores. There, capsids partially disassemble and inject the viral DNA into the nucleus [24]. Inside 

the nucleus either latent or lytic replication cycle is started. In the lytic cycle, immediate early 

proteins are expressed stimulated by proteins brought by the virion [25] or are directly 

transcribed by the host RNA polymerase II [26]. These immediate early proteins start the cascade 

of a precisely regulated gene expression [27].  Early gene products are triggered by immediate 

early viral transcription factors and thus are not or little transcribed without the presence of these 

viral factors. 

 Early gene expression leads a. o. to amplification of the viral DNA producing long and 

branched concatemeric DNA (see chapter 1.4). Recently, the dogma of the mechanism of 

herpesviral DNA replication has been challenged. At present, it is unclear whether linear or 

circularized genomes serve as templates. After viral DNA replication has started expression of 

true-late genes is induced [28, 29]. The concatemeric DNA is cleaved in unit length genomes and 

is immediately packed into the freshly assembled capsids. Capsids egress from the nucleus by 

budding through the nuclear membrane ― the first envelopment and de-envelopment process 

[19]. In the cytoplasm, the tegument assembles around the capsids and gain their final 

glycoprotein covered envelope by budding into the TGN [19]. Mature virions are released by 

fusion with the plasma membrane (see Figure 3). 
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Figure 3: Schematic model of a herpesvirus replication cycle. 

(1) Herpesvirus particles bind via glycoproteins to largely undefined receptors at the cell membrane. (2) Entry 
follows after fusion of the envelope with the plasma membrane (in fibroblasts) or via receptor mediated endocytosis 
(not depicted here). (3) Capsids travel via microtubules to the MTOC and then to nuclear pores, where the viral 
genome is released into the nucleus after partial destabilization of the capsid. (4) The viral genome circularizes and 
the cascade of gene expression starts with immediate early genes being transcribed, (5) which in turn activate early 
genes. Early gene products drive a. o. (6) the viral DNA replication and subsequently late gene expression is started. 
At the beginning viral genomes are amplified via a theta-replication or a recombination dependent replication. 
Replication continues probably by rolling circle amplification. (7) Long branched concatemers are finally produced. 
(8) Several late proteins build the viral capsids that (9) are packed with linear unique length genomes. (10) Nuclear 
capsid bud through the inner nuclear membrane, (11) leading to enveloped capsids in the perinuclear space, which 
are (12) released into the cytoplasm by a de-envelopment step. (13) Tegument proteins assemble around the capsid in 
the cytoplasm and particles are targeted to the TGN, where they acquire their final envelope covered with viral 
glycoproteins. (14) Exocytotic vesicles fuse with the plasma membrane and thereby (15) release the mature 
enveloped virion into the extracellular space. 

 

1.4 DNA replication of herpesviruses 

As herpesviruses have two alternative lifecycles (latent and lytic), their DNA replication has 

adapted to these different needs. During lytic replication a high number of viral genomes is 

produced. Many viral as well as some cellular proteins are actively involved in the replication of 

viral DNA, which is initiated from the origin of lytic DNA replication (oriLyt). Most knowledge 

of the mechanism of herpesviral DNA amplification arises from work on HSV-1, while little 

information is available about this mechanism in other herpesviruses. In general the DNA 

replication follows two essential steps. The initiation of DNA replication is the first step. A 

variety of mechanisms to recognize the origin of replication, to dissociate and open the double 

helix, and to recruit the replication proteins are exploited by herpesviruses. The second part, the 

DNA synthesis step however seems to be conserved. 
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Figure 4: Types of DNA replication 

Three types of DNA replication are discussed for herpesvirus genome amplification. A) Rolling Circle Amplification. 
The DNA strand is nicked and new DNA is synthesized on the 3’ end, while the 5’ end is displaced from the 
heteroduplex. The complementary strand is synthesized with the displaced strand as template. This type of 
replication can produce long concatemeric genomes. B) Theta-replication. At an origin of replication specialized 
protein initiate unwinding of DNA. Replication of the DNA is bi-directional. Thereby two circular daughter 
genomes are produced. C) D-loop (or Displacement-loop) Replication. A DNA strand invades the double helix and 
replaces the complementary strand, resulting in a short stretch of a triple helix. This serves as a primer for DNA 
synthesis. A second replication origin is activated as the D-loop expands and synthesizes the complementary strand. 
Two circular genomes are produced by the D-loop like replication. 

 

 The commonly accepted model for herpesvirus DNA amplification involves the 

formation of circular genomes after entry of the genome into the cell. Theta-replication and 

subsequent rolling circle amplification are thought to generate highly concatemeric and branched 

genome intermediates [30]. While the existence of head-to tail concatemers and the ability to 

amplify oriLyt-containing plasmids provide proof for the existence of a rolling circle 

amplification phase, there is no experimental evidence to support the theta-replication mode [31] 

(for comparison of the replication types see Figure 4). However, this theory explains the 

dependence on cellular topoisomerase II at the early amplification stages and the non-linear 

kinetics [32]. Rolling circle amplification alone cannot explain the highly branched viral 
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concatemeric genomes. Theoretical explanations could be redundant initiation, recombination 

intermediates or strand evasion; however unambiguous evidence for these mechanism is lacking 

[31]. While data are conflicting, most experimental evidence points to circular genomes as 

templates for DNA replication [32]. Wilkinson and Weller proposed the involvement of 

homologous recombination and D-loop formation as a model for DNA initiation followed by 

rolling circle amplification [33], which better explains the observed branched structures then the 

old model. 

1.4.1 Proteins required for herpesviral DNA replication 

The core machinery of the lytic DNA replication consisting of six proteins is conserved in all 

herpesviruses and resembles functional analogues of eukaryotic replication proteins [34]. These 

are a DNA polymerase with a processivity factor, three proteins building a helicase-primase 

complex and one single-stranded DNA binding protein. However, the initiation of lytic DNA 

replication and the sequences and structures of oriLyts are highly diverse between the 

subfamilies. Furthermore, the mechanisms of initiation of DNA replication seem to be as diverse 

as the replication origins themselves. Origin binding or origin activating proteins (OBP) are also 

not conserved ― speaking for a co-evolution of activating proteins and origin sequences [35, 36]. 

Remarkably, the core set of replication proteins can be exchanged by herpesviruses of another 

class, yet, the origin binding/activating protein and the origin of replication must belong to the 

same herpesvirus [36]. 

1.4.2 Structure of herpesviral replication origins and initiation of DNA replication 

1.4.2.1  Structure of replication origins of α-herpesviruses 

Not only the structure, but also the number of replication origins is variable among the 

subfamilies. Herpesviruses of the α-subfamily possess three replication origins, according to their 

positioning in the genomic segment. It is unclear, why α-herpesviruses harbor three origins, as 

any of these origins suffices for replication and reactivation from latency [37-39]. In contrast, β-

herpesvirinae harbor only one oriLyt and γ-herpesviruses encode 2 to 3 replication origins. 
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Figure 5: Structure of various herpesviral genomes and position of replication origins 

Depicted is the overall organization of various α-, β- and γ- herpesviral genomes. Terminal Repeats (TR), Internal 
Repeat (IR), Unique Region /long /short (U, UL, US), Repeat ( R). 

  

 All three origins of α- herpesviruses represent compact short palindromic sequences. 

The two oriS are identical, whereby one of them might have been acquired due to duplication of 

the terminal sequence. Moreover, most of the α-herpesviruses use the conserved sequence 

GTTCGCAC as binding site for the origin binding protein. This motif can be found in high 

affinity binding sites (Box I) and low affinity binding sites (Box II and Box III). The first step in 

HSV-1 origin licensing, meaning origin activation, is the binding of protein OBP (UL9) as a 

dimer to 10 bp motifs in Boxes I,II and III [40]. Although UL9 contains a helicase domain, ATP-

dependent unwinding of DNA could not been shown on long double-stranded DNA stretches 

[34]. UL9 works rather in a corporate fashion with the single-strand DNA binding protein UL29 

(alias ICP8) and forms a hairpin structure by complementary base-pairing of Box I and Box III 

[34, 41]. The binding of UL9 might thereby result in bending, distortion and destabilization of 

the superhelicity of the origin [41]. Changes in the conformation and the strand separation could 

then allow binding of the helicase/primase complex UL5/UL52/UL8 to the origin, as well as the 

recruitment of the other replication enzymes [42](Figure 6). Leading and lagging strand synthesis 

is then facilitated by the herpesvirus encoded DNA polymerase, which can be specifically 

blocked with nucleoside analogous like phosphonoacetic acid [43]. 
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Figure 6: Model of herpes simplex virus type-1 DNA replication ( from [44]) 

1–3: successive binding, looping, and distortion of oriS by the UL9 protein (UL9). Boxes I, II, represent the UL9 
protein recognition sites. The converging arrows indicate the relative orientation of Boxes I and II. The diverging 
arrows indicate transcription from the ICP4 and ICP22/47 promoters. 4: binding of ICP8 to the UL9 protein and 
distorted DNA. 5: ATP-dependent DNA unwinding that generates ICP8-coated DNA strands. 6A: recruitment of 
DNA helicase-primase (UL8-5/52) by UL9 protein followed by primer synthesis (curved line) and dissociation of UL9 
protein. 6B: recruitment of DNA polymerase -primase (Pol α-Primase) by UL9 protein followed by primer synthesis 
(curved line) and elongation, and dissociation of UL9 protein and DNA polymerase-primase. 7: Unwinding of the 
DNA replication fork and lagging-strand priming by the DNA helicase-primase. Leading- and lagging-strand DNA 
synthesis promoted by the HSV-1 DNA polymerase (Pol/UL42). The arrows indicate the direction of translocation 
of the DNA replication proteins or that of the DNA.  

 

1.4.2.2 Structure of replication origins of β-herpesviruses 

With respect to their replication origins the subfamily of β-herpesviruses is divided into the 

roseoloviruses (HHV6 and HHV7) and CMVs. While the roseoloviruses encode an OBP and the 

respective recognition site homologous to the α-subfamily, CMVs harbor a unique replication 

origin with no homology to any herpesviral replication origin of the other subfamilies. 

Furthermore, no classical OBP could be identified. Compared to the minimal sequence of the 

replication origins of HSV-1 of 45 bp or 144 bp respectively, the minimal length for CMVs 

oriLyt sequences are much larger, with 1.4 kb for HCMV [45], 1.7 kb for murine cytomegalovirus 

(MCMV) [46] or 1.3 kb for simian cytomegalovirus (SCMV) [47]. In HCMV, additional 

sequences flanking the oriLyt up to 4 kb in total length increase the replication efficiency in vitro 
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[45-48]. The analysis of sequence requirements of the HCMV oriLyt in the viral context 

furthermore revealed that besides this quite large minimal oriLyt sequence the accessory regions 

in the viral genome are absolutely required to produce infectious viruses [49].  

 The overall organization of the CMV oriLyt sequence is asymmetric and at least two 

domains can be distinguished. In domain I a high number of direct (DR) and indirect repeats 

(IR), as well as palindromic sequences and A/T rich regions of varying length can be found. It 

also contains an unrepeated essential stretch of pyrimidine residues, coined the Y-block [48, 50]. 

Furthermore, the oriLyt sequences includes several consensus motifs for cellular transcription 

factor binding sites (Sp1, CRE, MLTF/USF) [48]. The most extensively studied CMV oriLyt, the 

HCMV oriLyt, was shown to include an essential promoter element that is responsive to the IE2 

and UL84 protein [51, 52]. This element can be substituted by an SV40 early promoter, indicating 

that transcription is important for the functionality of the oriLyt [52]. The promoter element was 

suggested to be bidirectional as the orientation relative to the second domain was not relevant for 

activity of the oriLyt. Domain II is less complex and very G/C rich. Moreover, the HCMV oriLyt 

harbors a stable DNA/RNA hybrid structure with stem loops [53], which are bound by the UL84 

protein [54]. Binding of UL84 was proposed to change the conformation of this area [54]. This 

resembles the UL9 induced hairpin-formation and duplex-distortion of HSV-1. The function and 

necessity of UL84 is discussed controversially, as in some experimental set ups and virus strains 

the presence of UL84 was essential [55] and in others not [56]. 
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Figure 7: Organization of the MCMV replication origin 

Depicted is the overall organization of the MCMV oriLyt. A) GC-content of the minimal oriLyt region (nt position 
according to pSM3fr).The Y-block has been annotated according to sequence alignment with RCMV and HCMV.  
B)The oriLyt of MCMC harbors many indirect (IR) and direct repeats (DR) and palindromic sequences (P). C) The 
oriLyt contains many transcription factor binding sites e.g. for AP2, AP3, C/REB and TBP (predicted by the 
program PROMO [57]. 

 The oriLyt sequence of MCMV harbors many direct and indirect repeats, palindromic 

sequences and transcription factor binding sites. These are structural elements which are also 

present in HCMV, yet there is no sequence homology between MCMV and HCMV oriLyt. The 

proteins necessary for oriLyt-dependent DNA replication of MCMV are not yet identified. 

Although it has been proposed that it might be the homologue of HCMV, there is no 

experimental evidence. However, the core replication components are conserved. Concerns arise, 

whether the M84 protein of MCMV is a real homologue to UL84 as it is only distantly related 

and not essential for replication in cell culture [58, 59]. However, no other MCMV protein shares 

significant homology to UL84 either. The question if the MCMV oriLyt harbors a RNA/DNA 

hybrid like the human one has not been addressed so far.  
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1.4.2.3 Structure of replication origins of γ-herpesviruses 

In contrast to α- and β-herpesviruses, most γ-herpesviruses have clearly specialized replication 

origins for their latent or lytic replication. The most studied γ-herpesvirus is the Epstein-Barr-

Virus (EBV). Its latent replication origin oriP leads to a one-per-cell-cycle replication of the 

circular EBV plasmid, mediated by the viral protein EBNA-1 and the cellular replication 

machinery. Additionally, the EBV genome encodes two lytic replication origins. Similar to HSV-1 

the reason for several lytic replication origins is not clear. The mechanisms of latent and lytic 

replication have little in common and possess independent cis- and trans-activating factors 

pointing to separate mechanisms [60]. There is no sequence homology of the oriLyt of EBV to 

those of the α-herpesvirus subfamily, but some features resemble structures of the β-herpesvirus 

subfamily. 

 The murine herpesvirus 68 (MHV68) serves as a mouse model for γ-herpesvirus 

infection. MHV68 does not encode a classical oriP but harbors two different lytic replication 

origins. A 1.25 kbp minimal oriLyt sequence is located at the right end of the linear genome 

within the M5 - M6 region [61], whereas the second one is 600 bp in length and locates in the 

M10 locus on the left side of the genome [62, 63]. The homologous elements of both oriLyt 

sequences revealed several essential CCAAT boxes, as well as auxiliary 40 bp GC-rich repeats at 

the 3’ end and an AT-rich palindrome [62]. Proteins necessary for the activation of MHV68 

oriLyts have not been identified, yet. 

1.5 Genetic tools to study herpesvirus biology  

Cloning the herpesvirus genomes into bacterial artificial chromosomes (BAC) has paved the way 

for modern herpesvirus genetics [64] (see Figure 8). Thus modifications to the herpesviral 

genome can be prepared in the bacterial cell and ongoing improvements to the reverse genetic 

tool set enable now any mutation to be introduced into the herpesviral genome.  
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Figure 8: Methods of herpesvirus mutagenesis.  

A) Site-directed mutagenesis in eukaryotic cells. A linear DNA fragment containing the mutation and a marker gene 

(red box) flanked by sequences homologous to the viral target sequence, is transfected into virus-infected cells. By 

homologous recombination (dashed lines) the marker gene is inserted into the viral genome. Recombinant viruses 

and wild-type viruses need further separation. B) The cosmid approach. Overlapping fragments spanning the entire 

virus genome are cloned as cosmids. A mutation is introduced into one fragment (red box). After transfection into 

permissive cells, the virus genome is reassembled by several homologous recombination events generation the 

mutant virus progeny. C) The principle of viral bacterial artificial chromosome (BAC) mutagenesis. The viral genome 

is maintained as a BAC in E.coli. Mutant viral BACs can be generated using various mutagenesis approaches /red 

arrow). Recombinant viral BAC DNA is transfected into cells and the mutant virus progeny is reconstituted. (from 

[65]) 

 

 Observing phenotypes caused by mutation of herpesviral genes and comparison to wt 

allow delineating their function. To correlate a phenotype to the introduced mutation needs 

always the controls of reverted mutants to exclude that the observed phenotype is due to 

unwanted side effects during the cloning procedure. At the moment, routine sequencing of a 

complete herpesviral genome is not cost-effective and restriction pattern analysis and southern 

blotting may not allow the detection of all mutations [66]. Therefore, the reversion of the 

introduced mutation, which should lead to the wt phenotype, is an appropriate method. Various 

complementation methods have been developed for this purpose (see figure Figure 9). Cis-

complementation, whether it takes place in bacteria or the host cell, exchanges the mutant allel 

with the wt allel on its original position. This bears some risks if other genetic elements span the 

region of interest. Non-annotated overlapping genes, which might have been destroyed by the 

mutation, will be corrected by this way as well; therefore this procedure does not absolutely allow 

the correlation of the mutation and the phenotype, but helps to exclude spontaneous mutation 

on other positions in the genome.  
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Figure 9: Different approaches for confirmation of the mutation-phenotype connection. 

 A) Cis—complementation in cells allows reversion of the mutation to the wild type (wt) sequence. By transfection 

of cells with the mutant BAC genome (I) or infection with the mutant virus (II) and co-transfection of a DNA 

fragment carrying the wt sequence and appropriate viral homologies, the mutation (M) can be reverted to the wt 

sequence. Since revertant and mutant viruses need further separation, this approach only works efficiently if one can 

select for the revertant, e.g., if it has a growth advantage over the mutant virus. B) Cis-complementation of viral 

BACs in E. coli is best performed by shuttle plasmid mutagenesis. The shuttle plasmid carrying the wt sequence and 

appropriate homologies is introduced into E. coli carrying the mutant BAC plasmid. By RecA-mediated homologous 

recombination, the wt sequence is inserted at the mutation site without leaving any operational sequences. After 

transfection of the revertant BAC genome into permissive cells, a homogenous revertant population is gained 

without any further need for selection against mutant viruses. C) Protein trans-complementation in cells. Cells that 

express the viral wt gene product permanently (I) or transiently by an additional expression vector (II) are 

superinfected with the mutant virus. This allows transient complementation of the mutant phenotype if the 

expression times and levels of the wt gene product are appropriate. D) Ectopic cis-complementatin using viral 

BACS. (from [66]) 
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 Ectopic cis-complementation, meaning the insertion of the gene on another position in 

the genome prevents this problem [66]. However, knowledge of the position where this gene 

should be introduced needs to be collected first. Otherwise, again phenotypes can be falsely 

attributed. The best option is to trans-complement the protein by growth on complementing cell 

lines. Trans-complementation is still a difficult task, especially for late herpesvirus proteins. 

Incorrect timing, aberrant intracellular distribution due to missing viral interaction partners and 

incorrect expression levels of the viral protein may explain poor complementation results. 

Toxicity of the gene products and suitable cell lines limit the approach even more [66]. 

 Several trans-complementing cell lines constitutively expressing the viral proteins have 

been described. Nevertheless, many viral proteins need to be expressed conditionally to 

circumvent the above mentioned problems. Today, systems for inducible gene expression 

typically require the use of small chemical compounds such as tetracyclin or doxycyclin (as in the 

case of Tet-on/Tet-off systems)[67] or rapamycin (for FKBP12-based systems)[68]. In these 

systems, gene expression is activated synchronously and irrespective of the state of virus 

replication in all cells [69]. This could again limit the usage, as the protein is expressed at incorrect 

times regarding the viral life cycle. To adjust the timing problem, transcription activators can be 

cloned into the herpesviral genome under control of a promoter, which is activated at the desired 

time point [70].  Similarly, recombination systems like Cre/loxP and FLP/FRT can be used. 

However, this alternative needs always the manipulation of the viral genome.  

 Trans-complemented viruses are not only interesting for research purposes, but there is 

also an increasing market for spread-deficient or so called single-cycle vaccines. In these vaccines 

an essential gene is deleted, which needs to be compensated by growth on complementing cell 

lines [71]. Thereby the vaccine can infect the cell only once and thereby induce an immune 

response. Yet, without the essential protein further virus spread is inhibited. For vaccine 

development it is not desired that the vector includes bacterial sequences, therefore the above 

mentioned conditional expression systems cannot be applied. Production of sufficient trans-

complemented virus is therefore a limiting step in the application of these viruses. 
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1.6 Vaccination against herpesvirus disease 

Studies on human and animal vaccination against herpesvirus infection and disease began in the 

1970s. Since then, several vaccination concepts have been tested or realized. These can be 

classified in five general types: inactivated virus vaccines, subunit vaccines, DNA vaccines, 

attenuated virus vaccines, and markerless vaccines. Several vaccines against animal-herpesviruses 

are on the market, but there is only one licensed vaccine against a human herpesviruses, namely 

against varicella zoster virus. 

 Inactivated virus vaccines although helpful to contain diverse virus infections, have not 

been very successful in case of herpesviruses [72, 73]. Subunit vaccines contain isolated antigens 

of major virus components such as glycoproteins or structural proteins. Some of these vaccines 

showed good results in the prevention of herpesvirus-associated diseases due to a high 

neutralizing antibody response [74]. However, subunit vaccines are prone to failure due to 

different virus serotypes or virus mutations. Furthermore, several doses and adjuvants are 

typically necessary to obtain sufficient immune responses [75]. Modified live attenuated vaccines, 

possess usually a good immunogenicity as they express most of the antigen subsets and can 

replicate in the host, without causing disease. In the classical approaches virus strains were 

attenuated by several passages in cell culture. The adaptation to the cell culture conditions usually 

led to loss of gene functions that were necessary for virus pathogenesis in vivo. Many licensed 

vaccines have been generated by this way, as measles, mumps and rubella vaccine[76]. Yet, the 

mutations that arise are uncontrolled and the cause for attenuation is not always clear. The only 

herpesvirus vaccine on the market is a life-attenuated vaccine, namely the OKA-strain against 

varicella-zoster virus [77]. Attempts to create life-attenuated vaccines by similar procedures failed 

for other human herpesvirus. The right balance between immunogenicity and attenuation is hard 

to obtain. Thus, several vaccine trials were stopped, as they were either causing disease symptoms 

or did not prevent infection and disease of wt infection [78]. Thus, recent strategies involve the 

targeted attenuation of herpesvirus by reverse-genetics methods.  The highest safety level coupled 

with strong immunogenicity is achieved by single-cycle /spread-deficient vaccines. These 

vaccines lack one or several essential genes for virus replication but possess most of the antigen 

repertoire of the wild type (wt) virus. As proof of principle the vaccine MCMV-∆M94 

demonstrated that the immune response elicited by the first target cells is sufficient to control 

MCMV disease [71]. A drawback of these vaccines is the necessity to culture them on trans-

complementing cell lines and with this the poor efficacy of vaccine production. 
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1.7 Animal Herpesviruses  

1.7.1 Vaccination against animal herpesviruses 

The class of herpesviruses is very large (see chapter 1.1) and of course comprises many subtypes 

infecting domestic and livestock animals. Important pathogens among these are pseudo rabies 

virus (PRV), which leads to Aujeszky’s disease in pigs, bovine herpesvirus 1 (BHV-1), causing e.g. 

infectious rhinotracheitis and infectious pustular vulvovaginitis, Marek’s disease virus (MDV) and 

gallid herpesvirus 1 infecting poultry, and cyprinide herpesvirus affecting the increasing industry 

of fish farms. Symptoms of herpesvirus infection of animals share common features with those 

infecting human reaching from localized vesicular eruptions of surface epithelia, to diffuse and 

widespread damage of the mucosa of the respiratory, digestive and genital tracts, damage of the 

vascular epithelium and necrosis of liver, lymphoid and other tissues, as well as specific neuron 

damage such as diffuse meningo-encephalitis [79]. An exception to the strict species specificity of 

one herpesviruses to one natural host is seen with PRV. The transmission of PRV to cattle, 

sheep, goats, dogs, cats, foxes, rats and mice causes neuropathologic diseases and is irretrievably 

fatal [79, 80]. As in humans, fetuses and newborns are more susceptible to severe or lethal 

outcomes through herpesvirus infection, while infection of adult animals is typically less severe. 

Still the infection causes big economic losses to animal husbandry through loss of weight, 

decrease of milk or egg production and also restrictions in the international livestock trade [72]. 

As herpesvirus infections can lead to abortion and infertility, animal reproduction is also affected. 

Due to the nature of herpesvirus infection, latently infected animals can spread the virus in the 

herds upon reactivation.   

 For many animal species complete prevention of disease by attenuated herpesvirus 

vaccines has been reported [72, 81, 82]. Unfortunately, they generally keep some residual 

virulence and stay latently in the host. Furthermore, they cannot prevent infection with wt virus 

and establishment of latent wt virus infection [83, 84]. Furthermore, recombination of wt and 

vaccine virus towards new serotypes has been reported [85]. This is alarming, as in case of MDV 

the transmission of wt virus in the vaccinated flocks has led to more virulent strains and thus to 

the failure of vaccines [86]. The general policy in Europe has thus changed to an eradication 

program for BHV-1 and PRV-1, which includes a test and slaughter policy or test and removal 

program [87]. Upon these terms sero-positive herds have to be culled. Furthermore, marker 

vaccines and the so-called DIVA (differentiating infected from vaccinated animal) strategy 

contributed to the success of the eradication programs and many countries, Germany included, 

are now free of BHV-1 or PRV-1. As a further safety step, vaccination in these countries is even 
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prohibited. However, the eradication programs and the related vaccination prohibition keep the 

risk, that infections of non-immune herds can occur at any time through transmission from wild 

life animals, like BHV infections of dairy cows by dear, or pigs by PRV infected wild sows [88, 

89]. Testing of wild life animals revealed the underestimation of wild life infection and the risk of 

spill over infections. Also the restructuring of farming procedures towards an animal friendly 

breeding in outside cages opens the door for re-infection of healthy herds by contacts with wild 

life.  

 As vaccination against herpesviruses always resulted in the persistence of the wt virus in 

vaccinated animals, a better solution to eradicate the virus is certainly needed. The usage of 

intracellular immunization to protect livestock from infection and disease might be an alternative 

provided that necessary acceptance among consumers is gained. 

 

1.7.2 Intracellular Immunization against herpesviruses 

The term ‛intracellular immunization’ was coined by Baltimore in 1988 [90] and describes the 

expression of dominant-negative proteins (DN) in cells to inhibit viral replication. A cell that 

carries a transgenic DN protein should thus be rendered resistant to virus infection. DN proteins 

are protein mutants that exert a null-phenotype even in the presence of a functional wt protein 

(reviewed in [91], see 1.8 ). The idea of intracellular immunization was postulated in response to 

the finding of Friedmann and colleagues, that a truncated transcription activator VP16 of HSV-1, 

which was inserted into the cellular genome can provide DN resistance against HSV-1 infection 

in cell culture [92].  

 Based on this concept, other groups have tried to transfer this in vitro phenotype to 

mouse models. A dominant negative ICP4 mutant (X25) of HSV-1 that sequesters functional 

ICP4 monomers into nonfunctional heterodimeric complexes was used to generate the first 

transgenic mouse carrying an DN mutant against a herpesvirus [93, 94]. Four transgenic mouse 

lines were generated by microinjection of linearized DNA fragments encoding the X25 mutant 

under control of its own viral promoter. Copy numbers of the transgene ranged from 2 to 10 per 

cell in mouse lines. Although the general principle could be proven, only the mouse line with the 

highest copy number showed a relevant reduction of viral titer in the range of 5-13 fold [93]. In in 

vitro experiments a copy number of 40 per cell was necessary to inhibit plaque formation by the 

factor of 38 [94]. A higher copy number of the transgene was proposed to be necessary to 

achieve resistance. Unfortunately, although X25 expression was driven by the viral ICP4 

promoter and therefore should be activated in infected cells, also in uninfected cells expression of 
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X25 was observed. Furthermore, strong side effects were routinely observed in all the transgenic 

mouse lines, with one mouse line having only a third of the normal weight of non-transgenic 

weaning siblings [93]. As ICP4 operates by forming a complex with the TATA-binding protein 

and TFIIB to activate or repress transcription, it is possible that the DN protein still has some 

intrinsic potential to interact with cellular proteins and thereby disturbs host cell transcription [91, 

95].  

 Another group implemented intracellular immunization to PRV. In this case the DN 

protein consisted of a chimeric protein consisting of the DNA binding domain of IE180 of PRV 

and the tail-truncated VP16 of HSV-1, lacking the transcription activation domain [96]. Infection 

of transgenic cell lines with PRV-1 and HSV-1 revealed specific inhibition of PRV by the IE180 

DN protein [97]. One transgenic mouse line expressing the chimeric DN under control of the 

interferon inducible Mx-1 promoter could be obtained that transferred the transgene to the F1 

generation. This line carried five copies of the transgene and could successfully inhibit lethal PRV 

infection. In particular 15 of 18 control mice died upon challenge with PRV LD50 whereas 16 of 

18 transgenic mice survived the challenge [98]. Low constitutive expression of the transgene was 

observed, although the Mx-1 promoter should drive expression only by induction with interferon 

α and β [98]. Again, mice exhibited severe side effects as seen with the X25 mutant, namely heavy 

weight loss, dwarf phenotype, bad reproduction and a high ratio of females at birth. Therefore, 

intracellular immunization against herpesviruses is possible but seems to need a tight control of 

the DN protein in the uninfected state as well as an appropriate target protein that does not 

influence host cell functions. This goal, however, is demanding as the inducible systems generally 

used today need either administration of small chemical compounds or genetic modification of 

the virus. Neither system is not appropriate for livestock applications, as the drug would not be 

administered before the start of disease symptoms and infection occurs with wt virus. An 

efficient intracellular immunization should inhibit virus spread already in the first infected target 

cells, so that manifestation of the disease does not even occur. Therefore, a successful and safe 

implementation of intracellular immunization calls for an inducible system that is tight and in 

same time is activated by the wild type virus (only). 

 Thus a suitable method to construct stable cell lines and animals is pivotal in order to 

test such inducible systems and an appropriate DN protein in cell culture and that furthermore 

allows the transfer of the technology to livestock.  
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1.8 Dominant-negative herpesviral proteins 

Dominant-negative proteins are mutants capable to inhibit the wt protein in a cell in the way that 

it causes the cell to be deficient in the function of the gene product [91]. Meaning the wt protein 

cannot fulfill its full function in the presence of the DN protein.  Dominant-negative (DN) 

proteins can be used for the identification of protein function, identification of pathways and for 

the inhibition of viral replication by intracellular immunization. Several DN proteins of 

herpesviruses have been reported, some which were found by chance others which were 

generated by purpose. The development of a random insertional mutagenesis protocol by 

transpon based insertions facilitated the screening of any herpesviral gene for DN mutations [99].  

Three MCMV genes were subjected to such a DN screen in the past [99-101]. Interestingly in all 

proteins at least one mutation could be found that possessed DN activity. The strength of 

individual DN proteins was found to be diverse. The DN mutants of the protein M50 and M94 

were in general rather weak in their ability to inhibit viral proliferation, if they were encoded in 

the viral genome. DN mutants of the protein M53, were found to block viral spread completely. 

  An attempt to tag the small capsid protein SCP of MCMV with the green fluorescent 

protein (GFP) led to a fusion protein (GFPSCP) that elicits a strong DN effect on capsid export 

from the nucleus [102]. Viruses encoding the GFPSCP protein accumulate capsids in nuclear 

speckles and were unable to spread to neighboring cells in vitro [103]. In mice infected with an 

MCMV mutant, encoding a Tet-regulated GFPSCP, viral titers were markedly reduced e.g. in 

lungs reaching three orders of magnitude [103]. Thus GFPSCP is very useful as a model DN, as 

it exhibits a strong DN effect and additionally it can be easily monitored by its fluorescence. 
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1.9 The non-viral episomal vector pEPI for the generation of stable cell 

lines and transgenic animal  

The construction of transgenic cell lines is a fundamental tool for life science research to 

characterize proteins, to produce biological compounds like monoclonal antibodies, and also to 

complement virus deletion mutants. Several techniques have been established over time to 

manipulate the cell genome to express a foreign gene. In principle two approaches can be 

differentiated. Either the gene is integrated into the host genome, at a certain position or 

randomly, or it is maintained extrachromosomally as an episome.  

 A non-viral episomal self-replicating vector has been described that bases on a surface 

matrix attachment region (S/MAR) and a functional eukaryotic or viral origin of replication [104]. 

S/MAR elements are eukaryotic sequences that flexibly anchor the genome in loops to the 

nuclear matrix [105]. They are typically A/T rich (up to 70 %), enriched in DNA topoisomerase 

II binding sites, and do not harbor recognizable consensus sequences [106]. They are often 

associated with chromosomal origins of bidirectional replication [104] and are thought to elicit 

duplex strand destabilization,  a necessary function for DNA replication and transcription [106]. 

 An S/MAR element of the human β-interferon gene [107] was identified being 

sufficient to allow a stable episomal maintenance and once-per-cell cycle replication of a vector 

without the need of antibiotic selection pressure [108-111]. Due to its episomal maintenance the 

vector was termed pEPI-1. Although an SV40 origin of replication is included in this pEPI 

vector, its episomal persistence is independent of the large T antigen [104] and can be replaced by 

other replication origins [112]. As a prerequisite for episomal maintenance of pEPI, the direction 

of transcription needs to run into the S/MAR, most likely to generate an accessible chromatin 

structure. In the original pEPI vector an egfp gene under control of the human CMV immediate 

early promoter is thus positioned before the S/MAR site, without a transcription termination 

signal prior to the S/MAR element. The A/T rich S/MAR site itself contains also two AATAA 

signals that serve as minimal polyA sites. Furthermore a cryptic transcription termination signal is 

present 1500- 1700 bp inside the S/MAR element [113]. 

 In immunoprecipitation studies pEPI was associated with the cellular scaffold 

attachment factor A (SAF-A) [114]. SAF-A is typically involved in partitioning eukaryotic 

genomes into independent chromatin loops by attaching DNA via S/MAR regions to the nuclear 

scaffold or matrix [115]. The S/MAR element was taken from the human β-interferon gene [107], 

however artificial MAR elements, containing the SAF-A binding site, can also replace the 
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eukaryotic element [112]. Vector numbers in transfected cells were usually in the range of 2 to 10 

copies per cell [104, 111]. The vector pEPI was found to replicate synchronously once-per-cell 

cycle in early S-phase and components of the origin recognition complex could be precipitated in 

CHIP assays, such as Orc1, Orc2 and Mcm3 [116]. Interestingly, replication can start from any 

position of the plasmid [116]. Fluorescence in situ hybridization (FISH) revealed the attachment 

of pEPI vectors to metaphase chromosomes. However, they are not covalently bound as they 

can be separated from the chromosomes by higher shear forces during preparation of the 

metaphase spread [111].  

 The vector pEPI was used in a variety of different cell lines in vitro and supports a 

constitutive transgene expression in e.g. CHO, K562, HaCat cell lines and others [109, 112, 117]. 

Remarkably, the transgene expression was silenced in cells of murine origin, such as in the 

murine erythroleukemia cell line (MEL) [118], murine fibroblasts (NIH3T3) [119], immortalized 

murine embryonic fibroblasts (IMEF ) [120] but also in the human cell lines HEK293 [119] and 

HCT116 [120]. Interestingly, the episome could also be maintained episomally in the silenced 

status [118].  

 The vector attributes can also function in vivo. Transgenic pig fetuses were generated by 

sperm mediated gene transfer expressing GFP from the pEPI vector [121]. In 12 of 18 fetuses 

episomal pEPI vectors were isolated with less than 10 copies per cell. However, only 9 of 12 

fetuses with episomal plasmids expressed the transgene, but then in all analyzed tissues [121].
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1.10 Aim of the thesis 

In this work a novel gene expression system had to be constructed that had to fulfill several 

criteria: 

1. It should be inducible by viral infection without the need of modifying the virus genome. 

2. It should allow a temporally high expression of the transgenic protein. 

3. It should be activated under ‘late’ expression kinetics. 

 

The newly generated replicon vector system had to be tested for several applications. 

1. Intracellular Immunization 

 Previous studies on intracellular immunization revealed the absolute necessity of a strict 

control of the DN gene, as transgenic mice suffered from uncontrolled transgene expression (see 

chapter 1.7.2). Using the dominant-negative viral fusion protein GFPSCP, the suitability of the 

replicon system for the implementation of intracellular immunization should be evaluated. 

2. Trans-complementation of late herpesviral proteins 

 Correct expression kinetics and expression strength are important for successful trans-

complementation of viruses lacking essential late proteins. With two model proteins, the 

glycoprotein O and the toxic transmembrane protein M50, the efficacy of the replicon system to 

trans-complement the corresponding deletion viruses should be tested. 

3. Possibility to use the expression system in vivo 

 In order to analyze whether the newly generated expression system is compatible with in 

vivo applications, transgenic mouse lines had to be created and analyzed. 
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2 MATERIAL 

2.1 Devices 

Bacterial shaker ISF- 1- W Kühner, Birsfelden, CH 

Bio-Photometer  Eppendorf, Hamburg, D 

Centrifuges:  

5417 R  Eppendorf, Hamburg, D 

AvantiTM J-20xp  Beckman Coulter, Krefeld, D 

8-55M ultracentrifuge Beckman Coulter, Krefeld, D 

Multifuge 3 S-R Heraeus Instruments, Gera, D 

Confocal microscope Axiovert 200M Zeiss, Jena, D 

Developing-machine Optimax TR MS Laborgeräte, Wiesloch, D 

Fluorescence microscope 1x71 Olympus, Hamburg, D  

Flow cytometer Epics XL-MCL  Beckman Coulter, Krefeld, D 

Gene PulserTM Bio-Rad, Munich, D 

Hybridization Oven Unitherm 6/12 Uniequib, Planegg, D 

Incubator B5050E  Heraeus Instruments, Hanau, D 

Incubator BB16CU Haraeus Instruments, Hanau, D 

Incubator Shaker ISF-1-W Kühner, Birsfelden, CH 

Light microscope Axiovert 25 Zeiss Carl, D 

Microplate luminometer LB960 Berthold, Bad-Wildbad, D 

Mini-PROTEAN3 Cell Bio-Rad, Munich, D 

ND-1000 Spectrophotometer Nanodrop, USA  

PerfectBlueTM, electrophoresis system Peqlab, Erlangen, D 

Photo documentation apparatus EagleEye Bio-Rad, Munich, D 

Roller mixer SRT Stuart, Staffordshire, UK 

Semi-Dry-Transfer Cell Trans-BlotSD  Bio-Rad, Munich, D 

Sonifier-bath SONOREX SUPER RK 103H Bandelin, Berlin, D 

TGradient, PCR Machine Biometra, Göttingen, D 

Thermomixer 5436  Eppendorf, Hamburg, D 

Tissue cell culture lamina flow BDK, Sonnenbühl-Genkingen, D 

UV-Crosslinker  Vilbour-Lourmat, Eberhardzell, D 
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Vortex-Mixer Bender/Hobein, Zürich, CH 

Water Bath F10  Julabo, Seelbach D  

Shaking water bath GFL 1090 Gesellschaft für Labortechnik, Burgwedel, D 

2.2 Consumables 

Cell culture dishes (20 cm2; 55 cm2; 145 cm2) Becton Dickinson, Heidelberg, D 

Cell culture plates (6-, 12-, 24-, 48-, 96-well) Becton Dickinson, Heidelberg, D 

Cell culture flasks (25cm2, 75cm2) Becton Dickinson, Heidelberg, D 

Cell scrapers (25-, 39 cm) Costar, Bodenheim, D  

Cryotubes  Nunc, Thermo Fisher Scientific, Langenselbold, D 

Chemiluminoscence film HyperfilmTMECL GE Healthcare Bioscience, Freiburg, D 

Combitips plus (5 mL, 10 mL) Eppendorf, Hamburg, D 

Electroporation cuvettes  Bio-Rad, Munich, D 

Falcon conical tubes (15 mL, 50 mL) Becton Dickinson, Heidelberg, D 

Hybond-P membrane GE Healthcare Bioscience, Freiburg, D 

Hybond-N+ membrane GE Healthcare Bioscience, Freiburg, D 

Nylon-Membrane, positively charged Roche, Mannheim, D 

Pipettes (5 mL, 10 mL, 25 mL) Sarstedt, Nümbrecht, D 

Reaction tubes (1.5 mL, 2 mL) Eppendorf, Hamburg, D 

Whatman paper  Macherey-Nagel, Düren, D  

Ultracentrifugation tubes Beckman Coulter, Krefeld, D 

2.3  Reagents 

All common chemicals were obtained by Roth (Karlsruhe D), Sigma-Aldrich (Deisenhofen, D), 

Becton Dickinson (Heidelberg, D), Invitrogen (Karlsruhe, D), Merk (Darmstadt, D) or Fluka 

(Karlsruhe, D) unless otherwise specified. 

Restriction cloning enzymes and their buffers were purchased from NEB (Frankfurt/Main, D). 

2.4 Commercial Kits 

Crimson Taq, PCR system NEB, Frankfurt/Main, D 

DNeasy Blood and Tissue Kit Qiagen, Hilden, D 

DIG Nucleic Acid Detection Kit Roche Diagnostics, Mannheim, D 

Dual-Luciferase assay system Promega, Madison, USA 

ECL plus western blotting detection system GE Healthcare, Freiburg, D 
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Expand high fidelity PCR system Roche Diagnostics, Mannheim, D 

Gel extraction kit Qiagen, Hilden, D 

GFX micro plasmid purification kit GE Healthcare Bioscience, Freiburg, D 

Nucleobond PC100 Macherey-Nagel, Düren, D  

PCR purification kit Qiagen, Hilden; D 

PCR DIG Probe Synthesis Kit Roche Diagnostics, Mannheim, D 

Taqman 1000 RxN PCR Core Reagents Applied Biosystems, Foster City, USA 

 

2.5 Antibodies 

antibody species application source 

Α-GFP (ab290) rabbit polyclonal  WB 1:2500 Abcam, Cambridge, USA 

α-dig-Fluorescein-Fab sheep FISH Roche, Mannheim, D 

Avidin-Cy3.5 not applicable FISH Rockland, Gilbertsville, 
USA 

α-IE1/3 (CHROMA 101) mouse polyclonal  WB 1:1000 

IF: 1:500 

Stipan Jonjic, Rijeka, 
Croatia 

α- HA (3F10) rat WB: 1:1000 Roche, Mannheim, D 

α-actin (20-33) rabbit WB: 1:1000 Sigma- Aldrich, Hamburg, 
D 

2.6 Bacterial strains 

strain genotype application source 

DH10B F– mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ 
∆M15 ∆lacX74 recA1 endA1 araD139 ∆(ara leu) 
7697 galU galK rpsL nupG λ– (Strep R) 

Maintenance of BACs Invitrogen 
Karlsruhe, D 

PIR1 F- ∆lac169 rpoS(am) robA1 creC510 hsdR514 
endA recA1 uidA(∆Mlu I)::pir-116 

Maintenance of vectors with 
R6Kγ origin of replication 

Invitrogen 
Karlsruhe, D 

SCS110 rpsL (Strr) thr leu endA thi-1 lacY galK  tonA 
tsx dam dcm supE44 ∆(lac-proAB) [F´ traD36 
proAB 

Generation of dcm/dam 
methylation free DNA. 

Stratagene, Cedar 
Creek, USA 

XL1-
blue 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 
relA1 lac[F´ proAB lacIqZ∆M15 Tn10 (Tetr)] 

Routine cloning of plasmid 
DNA 

Stratagene Cedar 
Creek, USA 

NEB10- 

beta 

araD139 ∆(ara-leu)7697 fhuA lacX74 galK (Φ80 
∆(lacZ)M15) mcrA galU recA1 endA1 nupG 
rpsL (StrR) ∆(mrr-hsdRMS-mcrBC) 

Efficient transformation of 
methylated DNA from 
eukaryotic sources 

NEB, 
Frankfurt/Main, 
D 
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2.7 Eukaryotic cell lines 

cell line type origin 

NIH3T3 murine fibroblasts (ATCC®: CRL-1658™) 

M2-10B4 murine bone marrow stromal cells (ATCC®: CRL-1972™) 

MHEC-5T murine heart endothelial cells [122] 

SVEC4-10 murine lymphoid endothelial cell line (SV40 
transformed) 

[123] 

mES E14 Murine embryonic stem cell line [124] 

2.8 Viruses 

Virus name reconstituted from origin 

wt-MCMV pSM3fr-MCK-2fl [125] 

MCMV-gfp pSM3fr-∆m157-egfp [126] 

MCMV-luc pSM3fr-∆m157-luc [126] 

MCMV-mCherry pSM3fr-∆1-16gfpscpIRESmCherry kindly provided by Zsolt Ruzsics, Max 
von Pettenkofer Institut, LMU 

MCMV-∆M50 pSM3fr-∆1-
16∆M50:gfp/gfpscpIRESmCherry 

kindly provided by Zsolt Ruzsics, Max 
von Pettenkofer Institut, LMU 

 

2.9 Oligonucleotides 

primer  sequence application 

H5-MCMV-orilyt-
ori6kan-for 

5’-GGCGGGAGCGACGGGGGCGAGCTGGAGA 
GATCGTCGTCCGCCATGCTAGCACGCGTGCCA
GTGTTACAACCAATTAACC -3’ 

pick-up cloning of MCMV-
oriLyt 

H3-MCMV-oriLyt-
ori6kan-rev 

5′-GAACGACCCCCGCTCCTGTATAATTTCGAT 
GCCGGGGAGGTCGCCACGCGTCTGAAGATC 
AGCAGTTCAACCTGTT-3′ 

pick-up cloning of MCMV-
oriLyt 

bsr-for-taqman 5′-CCTCATTGAAAGAGCAACGGCTAC-3′ qPCR Detection of bsr  

bsr-rev-taqman 5′-GCACCACGAGTTCTGCACAAGGT-3′ qPCR Detection of bsr 

LBR-for 5′-GGAAGTTTGTTGAGGGTGAAGTGGT-3′ qPCR Detection of lbr 

LBR-rev 5′-CCAGTTCGGTGCCATCTTTGTATTT-3′ qPCR Detection of lbr 

M54-for  5′-ATCATCCGTTGCATCTCGTTG-3′ PCR detection of M54 

M54-rev 5′-CGCCATCTGTATCCGTCCAT-3′ PCR detection of M54 

M74-for 5′-TCCGGACAACGTCTTTCCC-3′ PCR detection of M74 



MATERIAL 

28 

 

M74-rev 5′-ATCATCCGTTGCATCTCGTTG-3′ PCR detection of M74 

P(SV40) probe-for 5′-TACCGAGCTCTTACGCGTGC-3′ PCR detection of luc, VIOLA 
genotyping, Southern probe 

pA(SV40)-probe-
rev 

5′-TAAGATACATTGATGAGTTTGGA-3′ PCR detection of luc, VIOLA 
genotyping, Southern probe 

P(M143)-HindIII-
rev 

5′-CCAAGACAAGCTTCGCGCACG-3′ Cloning of Promoter M143 into 
pEpibo-luc 

P(M143)-KpnI-for 5′-CCAAGACAAGCTTCGCGCACG-3′ Cloning of Promoter M143 into 
pEpibo-luc 

P(M53)-KpnI-for 5′-CAGCTGGTACCGACCATGGCG-3′ Cloning of Promoter M53 into 
pEpibo-luc 

P(M53)-HindIII-rev 5′-
GGCTCCTAATAAGCTTACTTCTCGACGGTGAA
G-3′ 

Cloning of Promoter M53 into 
pEpibo-luc 

P(CMVie)-KpnI-for 5′-TTACAATTTACGGTACCAGCGCGCGTTG-3′ Cloning of Promoter CMVie 
into pEpibo-luc 

P(CMVie)-HindIII-
rev 

5′-
TTAGCCAAAGCTTGAGAGCTCTGCTTATATAG-
3′ 

Cloning of Promoter CMVie 
into pEpibo-luc 

P(M94)-KpnI-for 5′-TTCGCATCAGGTACCGGTTCGCCGTGATC-3′ Cloning of Promoter M94 into 
pEpibo-luc 

P(M94)-HindIII-rev 5′-GTCGCCATAAGCTTGGTCTACCTGCAGCTG-
3′ 

Cloning of Promoter M94 into 
pEpibo-luc 

bsr-for-FISH 5′-ATGGCCAAGCCTTTGTCTCA-3′ Generation of a bsr FISH probe  

bsr-rev-FISH 5′-AGATCGAGAAGCACCTGTCG-3′ Generation of a bsr FISH probe 

gfpscp-for-FISH 5′- AGCAAGGGCGAGGAGCTGTT -3′ Generation of a GFPSCP FISH 
probe 

gfpscp-rev-FISH 5′-TAGCGATCGAGAGCATCCGC-3′ Generation of a GFPSCP FISH 
probe 

 

2.10 Plasmids and bacterial artificial chromosomes 

plasmid name features origin 

p06kan Cloning vector with kanamycin cassette 
and R6K origin of replication 

kindly provided by Brigitte Rupp, Max 
von Pettenkofer-Institute, LMU 

pCR3 Cloning vector, encoding for the human 
CMVie promoter 

Invitrogen, Karlsruhe, D 

pkD46 L-Arabinose inducible expression of 
recombinases red α, -β, -γ and temperature 
sensitive replication origin oriR101 

[127] 
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pGL3-control Luciferase reporter vector: 

Firefly luciferase under control of 
SV40minimal promoter 

Promega, Mannheim, D 

pTK-RL Luciferase reporter vector: 

Renilla luciferase under control of 
Thymidin Kinase promoter 

Promega, Mannheim, D 

pHSB5 Hyperactive Sleeping Beauty kindly provided by A. Erhardt, Max von 
Pettenkofer- Institute, LMU 

pMSB5 Mutated Sleeping Beauty kindly provided by A. Erhardt, Max von 
Pettenkofer- Institute, LMU 

pTMCS Transposon vector for Sleeping Beauty kindly provided by A. Erhardt, Max von 
Pettenkofer- Institute, LMU 

pGPSie1/ie3-ie2 Plasmid encoding entire ie-1/2 and ie3 
locus 

kindly provided by K. Eisenächer, 
Medizinische Klinik und Poliklinik, TMU 

 

Table 1: Newly generated plasmids 

plasmid name features 

pT-mOrange Transposon for Sleeping Beauty containing Hygromycin 
resistance gene (hyg) and mOrange gene driven by the human 
CMVie promoter flanked by inverted repeats (IR)  

pT-gfpscp Transposon for Sleeping Beauty containing hyg and dominant-
negative gfpscp driven by the human CMVie promoter gene 
flanked by IR 

B45-gfpscp Episomal papillomavirus vector with gfpscp under control of the 
methallotheonein promoter, Kan, NeoR 

p06kan-MCMVoriLyt p06kan harbouring a 3824bp region of the oriLyt of MCMV, 
KanR  

pEpibo-luc Episomal plasmid with firefly luciferase gene (luc) under control 
of the SV40 minimal promoter, BSR 

pEpibo-P(CMVie)-luc Episomal plasmid with firefly luciferase gene (luc) under control 
of the human CMVie promoter, BSR 

pEpibo-P(M143)-luc Episomal plasmid with gene under control of the M143 
promoter (904 bp; [128]),BSR 

pEpibo-P(M53)-luc Episomal plasmid with luc under control of the M53 promoter 
(502 bp ), BSR 

pEpibo-P(M94)-luc Episomal plasmid with luc under control of the M94 promoter 
(600bp), BSR 

pEpibo-luc-ori Episomal plasmid with luc under SV40 minimal control and the 
MCMV oriLyt, BSR 

pEpibo-gfpscp-ori Episomal plasmid with gfpscp under SV40 minimal control and 
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the MCMV oriLyt, BSR 

pEpibo-gO-ori Episomal plasmid with gO under SV40 minimal control and the 
MCMV oriLyt, BSR 

pEpiNo-M50-ori Episomal plasmid with M50 under SV40 minimal control and the 
MCMV oriLyt, BSR 
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3 METHODS 

3.1 Microbiological methods 

3.1.1  Cultivation of Escherichia coli 

According to the intended application, different E. coli strains were used. All E. coli cultures were 

grown in low-salt Luria Broth (LB) medium at 37 °C. Single colonies were achieved by dispersing 

bacteria on petri dishes on LB-agar medium with appropriate antibiotics. Liquid cultures were 

grown in LB-medium with appropriate antibiotics under constant shaking at 180 rpm at 37 °C. 

To conserve E. coli strains, equal volumes of an o.n. culture and 50 % (v/v) sterile glycerol were 

mixed and stored at -80 °C.  

LB-medium(low salt)  antibiotics 

10 g Bacto Tryptone 100 µg/ml Ampicillin  

  5 g yeast extract 100 µg/ml Blasticidin S 

  5 g NaCl   25 µg/ml Chloramphenicol 

Add H2O to 1l   50 µg/ml Kanamycin 

     30 µg/ml Zeocin 

 

LB-agar 

7.5 g Agar per 500ml LB-Medium 

3.1.2 Preparation of electrocompetent E. coli 

To generate electrocompetent cells, 200 ml pre-warmed LB-medium was inoculated with 5 ml of 

an o.n. culture and cultivated until bacteria reached an OD600 of 0.45 . All subsequent steps were 

performed at 4 °C with sterile pre-chilled buffers and equipment. After incubation on ice for 30 

min, bacteria were centrifuged at 5000 × g for 10 min. Supernatants were completely discarded 

and the pellet resuspended in 150 ml ddH2O. Centrifugation steps were repeated three times 

while washing the bacteria with 150 ml 10 % (v/v) glycerol. After the last centrifugation step the 

pellet was resuspended in 1 ml 10 % (v/v) glycerol and aliquots of 50 µl were snap-frozen in 

liquid nitrogen and stored at -80 °C.  

3.1.3 Transformation of E. coli by electroporation 

Aliquots of electrocompetent cells were thawed on ice and  approx. 25 - 50 ng vector DNA was 

added directly. The mixture was then transferred to pre-chilled electroporation cuvettes (0.2 mm). 
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DNA transfer into bacteria was achieved by a short high-voltage electrical discharge of 2.5 kV, 

25 µF and 400 Ω. Immediately after the pulse, 1 ml pre-warmed SOC-Medium was added and 

the culture was transferred to round-bottom culture tubes for 1 h incubation at 37 °C at 180 rpm. 

Cells were plated on LB-agar with selective antibiotics in appropriate dilutions and cultured o.n. 

at 37 °C. Typical transformation efficiencies of 108-109cfu/µg control vector pUC19 were 

achieved. 

SOC-Medium: 

2 %    Tryptone 

0.5 % Yeast Extract 

10 mM NaCl  

2.5 mM KCl 

10 mM MgCl2 

10 mM MgSO4 

20 mM Glucose (freshly added)  

 

 

3.2 Molecular biological methods 

3.2.1 Isolation of nucleic acid from bacteria 

3.2.1.1 Small scale isolation of nucleic acid from bacteria 

Plasmids: 

Isolation of plasmid DNA from E. coli has was performed from 2 ml liquid o.n. culture with the 

GFX Micro Plasmid Kit according to manufacturer’s instructions.  

BACs:  

Due to the size of BACs coding for the MCMV genome (~ 230 kb), small scale column-based 

purification with commercial plasmid purification kits was not suitable. Therefore, an alkaline 

lysis procedure with subsequent phenol-chloroform extraction and DNA precipitation by 

isopropanol was performed.  Briefly, a single clone was picked and cultured in 10 ml of LB-

medium with appropriate antibiotics at 37 °C o.n.. Cells were centrifuged at 3500 rpm for 15 min 

at RT and the bacterial pellet was then resupended in 200 µl cold resuspension buffer. For 
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alkaline lysis, 200 µl lysis buffer was added and solutions mixed by gentle inversions. Precipitation 

of proteins and chromosomal DNA was achieved by adding 400 µl neutralization buffer. After 

10 min incubation on ice, precipitates were sedimented by centrifugation at 20,000 × g  for 

10 min. Supernatants were transferred into a fresh 2 ml reaction tube and BAC DNA extracted 

by addition of 1 ml phenol/chloroform and centrifugation at 20,000 × g  for 5 min. BAC DNA, 

in the upper phase, was than precipitated with 1 ml isopropanol at 20,000 × g  for 30 min. Salts 

were removed by washing the DNA pellet with 70 % (v/v) EtOH and another centrifugation at 

20,000 × g  for 10 min. The supernatant was discarded, pellet allowed to air-dry and the BAC 

DNA was then dissolved in 100 µl 10 mM Tris-HCl pH 7.5.  

Resuspension Buffer pH 8.0 Lysis Buffer  Neutralization Buffer pH 4.8 

 25 mM Tris/HCl 200 mM NaOH 3 M KAc 

10 mM EDTA 1 % (w/v) SDS 

100 mg/l RNase A,  

 

3.2.1.2 Large scale isolation of nucleic acid from bacteria  

Isolation of plasmids and BACs in large scale volume was performed with Nucleobond PC100 

Kit according to manufacturer’s instructions. 

Concentration and purity of the isolated nucleic acids were determined by UV extinction 

measurement with the Nanodrop spectrometer and agarose gel electrophoresis. Correctness of 

mutagenesis on plasmids and BACs were verified by restriction fragment analysis and sequencing. 

3.2.2 Isolation of nucleic acid from eukaryotic cells 

3.2.2.1 Extraction of genomic DNA for molecular biological assays  

Extraction of genomic DNA from cultured cell lines as well as from murine tissues have been 

performed with the Qiagen DNeasy Blood & Tissue Kit according to manufacturer’s 

instructions, with the exception that vortexing was avoided to minimize shearing of genomic 

DNA.   

3.2.2.2  Extraction of genomic DNA from mouse tails for genotyping 

VIOLA mice progeny were bred as heterozygotes and were genotyped for the presence of the luc 

gene. To this end, 0.5 -1 cm mouse tails pieces were digested o.n. with 500 µl proteinase K buffer 

supplemented with 19,2 µg proteinase K at 55 °C under constant shaking. The next day, samples 

were vortexed for 30 s and residual debris removed by centrifugation at 20,000 × g for 2 min at 
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RT. The supernatants were transferred into a fresh tube, mixed with 500 µl isopropanol and 

DNA was pelleted by centrifugation at 20,000 × g for 20 min at RT. Next, the pellet was washed 

with 500 µl 70 % EtOH to remove salts by another centrifugation for 10 min. Supernatants were 

aspired, the genomic DNA dried at 37 °C and finally resuspended in 100 µl 10 mM Tris-HCl, 

pH 7.5. Typically 2 µl of the digest were used for genotyping via PCR (see 3.2.4.2.1). 

Proteinase K-Buffer: 

200 mM  NaCL 

100 mM Tris pH 8 

    5 mM EDTA 

1 % (w/v) SDS 

 

3.2.3 Cloning Techniques 

3.2.3.1 Restriction enzyme digest 

Restriction fragment analysis as well as the preparation of linear DNA fragments was performed 

with restriction endonucleases. For analytical analysis 1 µg of plasmid DNA was digested with 

5 U restriction enzyme for 1 h. Preparative digests 10 µg DNA were digested with 25 U 

restriction enzyme for 3 h. Temperature and buffers were adjusted according to manufacturer’s 

instructions. Digestion of genomic DNA was performed with at least 8 U restriction enzyme/µg 

DNA o.n. 

3.2.3.2 DNA precipitation 

For concentration or removal of reaction components DNA was precipitated from solution by 

addition of 1/10 volume 3 M sodium acetate (pH 5.3) and three volumes 100 % ethanol. The 

solution was mixed and either incubated at -80 °C for 20 min or on ice for 1 h. DNA was 

subsequently precipitated by centrifugation at 20,000 × g at 4 °C for 30 min. The DNA pellet 

was washed with 70 % ethanol. After another centrifugation at 20,000 × g at 4 °C for 10 min, the 

pellet was dried at 45 °C. DNA was subsequently resuspended in 10 mM Tris-HCl, pH 7.5.  

3.2.3.3 Blunting of DNA overhangs by Klenow polymerase 

For cloning fragments with incompatible restriction sites, fragments were subjected to Klenow 

Polymerase that fills in 5´ overhangs and removes 3´ overhangs of digested restriction sites to 

form blunt ends. The reaction was performed in 1 × NEB 2 buffer supplemented with dNTP to 

a final concentration of 33 µM. One unit Klenow Polymerase per µg DNA was added in a total 
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volume of 50 µl. After 15 min incubation at RT, the reaction was stopped by addition of 2 µl 

0.5 M EDTA prior to heat inactivation at 75 °C for 20 min. Before using the blunted fragment in 

further cloning steps, DNA was purified via QIAquick PCR Purification Kit according to 

manufacturer’s instructions. 

3.2.3.4 Dephosphorylation of DNA fragments 

To avoid re-circularization of restriction enzyme digested vector DNA, fragments were 

dephosphorylated with 1 U/µg Antarctic phosphatase for 1 h at 37 °C. The enzyme was 

inactivated at 65 °C for 10 min and linearized fragments were purified via QIAquick PCR 

Purification Kit according to manufacturer’s instructions. 

3.2.3.5 Purification of DNA from agarose gels 

For isolation of DNA fragments from agarose gels (3.2.4.1), fragments were excised on a trans-

illuminator with longwave UV light and purified with the QIAquick Gel Extraction Kit according 

to manufacturer’s instructions.  

3.2.3.6 Ligation of DNA fragments 

DNA fragments were ligated using T4 DNA ligase with a molar ratio of 1:3 between vector 

(100 ng) and insert. Ligation was performed in a total reaction volume of 20 µl with 400 U T4 

DNA ligase in 1× T4 DNA Ligase buffer in a water bath at 16 °C o.n. In control reactions, insert 

fragments were replaced with the same volume water. Typically 50 µl electrocompetent bacteria 

were transformed with 4 µl of the ligation reaction.  

3.2.3.7 Manipulation of bacterial artificial chromosomes by homologous recombination 

Due to the big size of BACs coding for the entire herpesviral genomes, standard cloning 

procedures are not feasible [66]. To generate herpesviral mutants, homologous recombination of 

linear fragments with the BAC DNA was applied according to the protocol established by 

Wagner and colleagues [129]. 

 In this work, a kanamycin selection cassette was inserted next to the origin of replication 

(see Figure 15) by homologous recombination. To this end, a linear fragment (containing a 

kanamycin selection marker, the bacterial origin of replication R6K and 40 bp sequences 

homologues to the viral genome on both sites) was amplified from the plasmid p06kan by PCR 

with the primer H3-MCMVori-ori6kan-for and H5-MCMVori-ori6kan-rev. The fragment was 

purified by DNA precipitation (see 3.2.3.2) and electrocompetent L-Arabinose induced DH10B 

bacteria harbouring pSM3fr and pKD46 were transformed with 1.5 µg. By induction with L-
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Arabinose, recombinases were expressed in a controlled manner and mediated the recombination 

of the linear fragment and the homologous region on the BAC during 2 h incubation at 37 °C. 

Bacteria containing an insertion of the kanamycin cassette were selected by growing on LB-

CAM-KAN-agar plates. Correct insertion was confirmed by RFLP analysis of the candidate 

pSM3fr-ori6kan BAC clones.  

3.2.4 Analyzing nucleic acid 

3.2.4.1 Agarose gel electrophoresis 

For analysis of restriction fragments, digested DNA was separated by agarose gel electrophoresis. 

Plasmid DNA solutions in 1 × loading dye were analyzed in 1 or 2 % agarose/TAE gels, whereas 

0.8 % agarose/TBE gels were used for restriction fragments of BAC DNA. Voltage and duration 

of electrophoresis were adjusted to the length of the fragments to be analyzed. Before pouring 

the gels, ethidium bromide was added to a final concentration of 0.005 % (v/v) allowing the 

visualization of the DNA under UV-light with the Eagle-Eye imaging system. 

TAE-buffer (1 ×), pH 7.3 TBE-Buffer (1 ×), pH 8.3 10 × Loading Dye 

40 mM Tris-Acetate 90 mM Tris-HCl 15 % (w/v) Ficoll 

  1 mM EDTA 90 mM boric acid 50 mM Tris-HCl, pH 7.5 

   1 mM EDTA 2.5 mg/ml Orange G 

 

3.2.4.2  Polymerase chain reaction 

3.2.4.2.1 Touch-down PCR 

Polymerase chain reaction (PCR) allows the amplification of DNA and was used for different 

purposes, like genotyping cell clones and mice strains, subcloning genes by introduction of 

mutated sequences or restriction sites, creating linear fragments for homologous recombination 

and labeling of DNA with modified nucleotides. In all cases, the amplification of the target DNA 

was based on a touch-down PCR having the following program conditions (Figure 10). 

 

Figure 10: Schematic diagram of a touch-down PCR 
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 An elongation temperature of 72 °C was used to amplify high quality DNA for labeling 

probes or further subcloning with the Expand High Fidelity PCR System (Roche). Genotyping 

has been performed with the more robust PCR system Crimson Taq using an elongation 

temperature of 68 °C. Reaction conditions were used according to manufacturer’s instruction. If 

needed Mg2+ concentration has been adjusted or 5 % DMSO added for complex structured 

templates. 

3.2.4.2.2 Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) was performed with the TaqMan technology. In this case, 

amplification of the template was detected by a fluorescence resonance energy transfer (FRET) 

based probe. Single stranded probes 5’-FAM (Fluorophore) and 3’-TAMRA (Quencher) labeled- 

were designed complementary to the amplicon of the murine lamin B receptor gene (lbr) and the 

Blasticidin S resistance gene (bsr) (Table 2).  

Table 2: TaqMan –Probes 

probe sequence feature 

5’ FAM-lbr-sense-TAMRA 3’ CTGAGCCACGACAACAAATCCCAGCTCT
AC 

binds within the sense strand of 
the lbr gene 

5’FAM-bsr-sense-TAMRA 3’ CATCTCTGAAGACTACAGCGTCGCCA binds within the sense strand of 
the bsr gene 

  

Table 3: qPCR Reaction Set up 

reagents volume program 

Forward-Primer [8 µM] 2.5 µl  

Reverse-Primer [8 µM] 2,5 µl 

Taqman-Probe [2 µM] 5 µl 

buffer A [10x] 5 µl 

MgCl2 [25 mM] 8 µl 

dXTP-Mix [2.5 & 5 mM] 4 µl 

UNG [1 U/µl] 0.5 µl 

AmpliTaqGold [5 U/µl] 0.25 µl 

ddH2O (ROTH) 12.25 µl 

 Template 10 µl  
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 To estimate the copies of transgene in stable cell lines or mice, amplification of the bsr 

gene was correlated relative to the endogenous lbr gene. PCR was set up with the Taqman 1000 

RXN core reagents in triplicates (Table 3). This includes the labeling of PCR-amplicons with 

Uracil and its degradation in following PCRs by adding the heat-instable enzyme uracil-DNA-

glycosylase to minimize carry over contamination. 

3.2.4.3 Southern Blot 

Southern blot experiments were performed to analyze the status of transgenes in stable cell lines 

or mice. The technique bases on the protocol established by Edward Southern [130]. 

Electrophoretically separated restriction fragments of genomic DNA were transferred onto a 

nylon membrane and hybridized with labeled probes.  

3.2.4.3.1 PCR labeling of probes for Southern Blot analysis 

Probes for Southern blot analysis (3.2.4.3) were generated by PCR amplification with 

digoxigenin-labeled dUTPs with the PCR DIG Probe-Synthesis kit according to manufacturer’s 

instructions. Dot blot analysis and agarose gel electrophoresis was used to verify sufficient 

incorporation of digoxigenin into the probe. Optimal concentration of probes for hybridization 

in Southern blot experiments was evaluated empirically. 

3.2.4.3.2 Agarose electrophoresis for Southern blot 

Genomic DNA (gDNA) was prepared according to the protocol described in section 3.2.2. 10 µg 

was digested with an appropriate restriction enzyme o.n. DNA was loaded with 1 × GelPilot 

Loading Dye (Qiagen, Hilden, D) on a 0.5 % TAE-agarose gel and electrophoresis was 

performed at 80 V for 16 h. The gel was stained afterwards in an ethidium bromide bath and 

photographed with a fluorescent ruler to determine the running distance of the marker 

fragments. Subsequently, the gel was destained in water before continuing with capillary transfer. 

3.2.4.3.3 Capillary transfer of gDNA 

 Electrophoretically separated gDNA must be pretreated to be efficiently transferred to a 

positively charged nylon membrane (Roche). As the target DNA fragments were in general over 

10 kb in size, the DNA was depurinated by submerging the gel in 0.25 N HCl until the 

bromphenol-blue contained in the loading dye turned yellow. Thereby the fragments break into 

smaller pieces. After a short wash in ddH2O, DNA fragments were denatured in 0.5 N NaOH/ 

1.5 M NaCl until the color of bromphenol changed back to blue. The pH of the gel was 

neutralized by submerging the gel in 1M Tris /1.5 M NaCl (pH 7.4) for 15 min. In the meantime 
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the nylon membrane was submerged in ddH2O and than equilibrated in 20 × SSC. The capillary 

transfer was set up as depicted in Figure 11.  

 

 

 

 

 

 

Figure 11: Upward Capillary transfer modified from Sambrook and Russel [131] 

Transfer of the DNA was carried out by capillary forces from 20 × SSC transfer buffer that is drawn from the 
reservoir through the gel onto the membrane. The paper towels and weight help to maintain a constant stream of 
buffer. 

 Capillary transfer was performed at RT o.n. Then, the DNA was crosslinked onto the 

wet nylon membrane in an UV-linker by 0.125 Joule/cm2. Salt crystals from the 20 × SSC were 

removed by rinsing the membrane with ddH2O. Thereupon, the DNA was air-dried before 

continuing with the hybridization procedure. 

20 × SSC pH 7.0 

   3 M NaCl 

0.3 M Na-Citrate 

 

3.2.4.3.4 Vacuum transfer 

Vacuum transfer of DNA was performed alternatively to capillary transfer. This method is able 

to create sharper bands and can be accomplished in a shorter time. To this end, the vacuum 

blotter was set up with agarose gel, nylone membrane and Whatman paper. Each soaked in 20 × 

SSC according to manufacturer’s instructions. Depurination was performed directly on the 

vacuum blot, by soaking 0.25 N HCl through the gel while applying constant pressure of 0.2 bar 

until the indicator bromphenolblue of the loading dye turned yellow. Excess solution was 

removed before addition of 0.5 N NaOH/ 1.5 M NaCl to denature the genomic DNA until the 

indicator turned blue. Neutralization solution (1 M Tris /1.5 M NaCl pH 7.4) was added for 10 

min. Final transfer of gDNA was achieved by soaking 20 × SSC buffer through the gel for 1.5 h. 
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Crosslinking of the DNA and preparation of the nylon membrane was performed as described 

previously ( see section 3.2.4.3.3).   

3.2.4.3.5 Hybridization of probe 

To minimize unspecific binding of probe to gDNA, the nylon membrane was pre-hybridized 

with DIG-Easy Hyb solution. At least 20 ml of the pre-hybridization solution were added to the 

membrane in roller-bottles. Incubation was performed at a defined hybridization temperature for 

2-3 h. The success of a southern blot analysis is strongly dependent on the right hybridization 

temperature and probe concentration. The latter one was evaluated empirically ― not exceeding 

25 ng/ml―. A starting point to find the optimal hybridization conditions can be calculated with 

following equation:  

Tm= 49.82 + 0.41 × % GC - (600/l)  

Thyb = Tm- (20 °C to 25 °C) 

(with Tm = melting temperatue; Thyb = hybridization temperature, % GC = percent GC-content, l = length of probe) 

 

Table 4: Conditions of Southern blot probes 

probe optimal hybridization temperature optimal concentration 

S2-luc-dig 37 °C 20 ng/ml 

S3-gfpscp-dig 47 °C 15 ng/ml 

 

 The probe was first diluted in 50 µl ddH2O, boiled 5 min at 95 °C, immediately put on 

ice to achieve single stranded DNA and then added to 20 ml pre-warmed DIG-easy hyb solution. 

The probe was carefully mixed in the solution and then added to the membrane. Hybridization 

was performed for 16 - 24 h. Unbound probe was removed by two washes with a low-stringency 

buffer ( 2 × SSC, 0.1 % SDS) at 37 °C or RT for 30 min and 10 min respectively, followed by 

two washes with a high-stringency buffer (0.5 x SSC, 0.1 % SDS) at  65 °C for 10 min each. 

3.2.4.3.6 Detection of labeled target DNA  

For detection of the labeled target DNA an alkaline phosphatase conjugated anti-DIG-antibody 

that specifically hydrolyzes the chemiluminescent substrate CDP-star was used allowing detection 

of emitted light on an X-ray film (Hyperfilm ECL, GE Healthcare). The DIG luminescence 

detection kit and CDP-Star were used according to manufacturer’s instruction.  
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3.2.4.4 Fluorescence in situ hybridization (FISH) 

Fluorescence in situ hybridization (FISH) is a technique to visualize the locus of a DNA 

sequence in the genome. Basic steps involve the preparation of metaphase spreads, generation of 

specific probes and their hybridization to the chromosomes, as well as detection of the probes by 

immunofluorescence-labeling.  

3.2.4.4.1 Preparation of metaphase chromosome spreads 

FISH hybridization was performed on condensed metaphase chromosomes. NIH3T3 were split 

one day before preparation on a 10 cm2 plate at a ratio of 1:3. Demecolcin (Sigma-Aldrich) was 

added to a final concentration of 0.1 µg/ml to the cell culture medium to yield a maximum of 

metaphase cells. After 2 h incubation found herein to be optimal for NIH3T3, rounded and 

detached metaphase cells were harvested into a 15 ml falcon tube. After centrifugation at 300 × g 

for 5 min, cells were washed with pre-warmed PBS (37 °C) and finally resuspended in 0.5 ml 

PBS. At a minimal vortex speed, 10 ml of 37 °C warm hypotonic solution was added dropwise 

and cells swelled during the following 15 min incubation in a 37 °C water bath. Than 1 ml 

fixative was added, the suspension was carefully inverted and incubated at RT for another 15 

min. Cells were centrifuged at 300 × g at RT for 5 min, supernatants discarded, carefully 

resuspended in 1 ml of residual solution and finally resolved in 7 ml fixative. This step was 

repeated three times at 4 °C. Afterwards, the cells were resuspended in 1 ml fixative and 

incubated at -20 °C for at least 10 min. Three to four drops of this suspension was dropped from 

at least 40 cm distance onto ice cold water covered slides that were purified by sonification and 

pre-chilled to 0 °C. Slides were incubated on a 40 °C hot plate with high humidity and finally 

dried at RT. After one week of incubation at RT in the dark, metaphase spreads were further 

processed.  

Hypotonic Solution 

0.91 % (w/v) tri-sodiumcitrate-dihydrate 

pre-warmed to 37 °C, freshly prepared 

Fixative 

3 volumes methanol : 1  volume glacial acid  

pre-chilled to  -20 °C, freshly prepared 

 

3.2.4.4.2 Probe preparation 

Efficient labeling of probes is very important for successful FISH analysis to achieve a good 

signal to noise ratio. Probes were either directly labeled by incorporation of 

Diethylamincoumarin-dUTP (DEAC-dUTP) or were labeled with digoxigenin-dUTP or biotin-

dATP allowing indirect detection via fluorescence coupled antibodies, i.e. anti-dig-Fab or anti-
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biotin-Fab. The incorporation of the modified nucleotides was performed by PCR or 

nicktranslation. The optimal length for probes is 300 – 500 bp. Longer PCR fragments were 

digested with appropriate restriction enzyme or digested with DNase I. Probes were denatured 

with 1/10 volume of 3 M NaAc, 2.5 volumes of 100 % EtOH and 1 µl salmon sperm DNA, to 

prevent unspecific binding. The mixture was centrifuged at 20,000 × g for 20 min, supernatant 

was discarded and the DNA pellet was washed with 150 µl ice-cold 70 % EtOH. After another 

centrifugation step, the pellet was dried in a vacuum-centrifuge at 65 °C for 5 min. Probes (for 

one hybridization window with 25 µl) were dissolved in 5 µl 100 % formamide and denatured in 

a 37 °C waterbath for 30 min. Renaturation of the single stranded probe was inhibited by 

addition of 5 µl 40 % dextransulfate in 2 × SSC. The mixture was further incubated at 72 °C for 

5 min to improve denaturation and subsequently incubated at 37 °C for 30 min. This mix was 

stored at      - 20 °C until use and applied without further treatment. 

 The commercial available mouse-pancentromeric FISH probe mouse-Pan-Cy3 (BioCat, 

Heidelberg, D), was used as control and directly applied for hybridization after denaturation at 

72 °C for 10 min.  

3.2.4.4.3 Hybridization of FISH probes 

Before hybridization, metaphase spreads were treated with pepsin and RNAse to remove cell 

debris.  To this end, the previously prepared metaphase slides were washed with 2 × SSC for 5 

min at RT. Then 200 µl RNAse solution (0.2 mg/ml RNAse A in 2 × SSC) was added to the 

coverslide. After 30 min incubation in a dark moist chamber at 37 °C, slides were washed three 

times with 2 × SSC. For the pepsin digest, prewarmed 50 ml ddH2O to 37 °C was mixed with 

100 µl 5 N HCl and 15 µl 10 % pepsin. Slides were incubated therein for 70 s, to allow the 

digestion of cytoplasmic proteins without destroying the chromosome structures. Immediately 

afterwards, slides were washed two times with PBS for 5 min at RT and then with an ascending 

ethanol row of 70 %, 90 % and 100 % respectively at 4 °C for 3 min each. Subsequently, slides 

were air-dried in a dark chamber.  

 To denature the chromosomal DNA, slides were put into a 72 °C hot denaturation 

solution (70 % Formamide/ 2 × SSC) for 105 s and immediately transferred to -20 °C pre-chilled 

70 % EtOH. Slides were dehydrated by putting them into an increasing -20 °C chilled ethanol 

row for 5 min each (70 %, 90 %, 100 % ethanol). Finally, slides were air-dried in a dark chamber. 

 For the hybridization, a 10 µl drop of the probe mixture (3.2.4.4.2) was set on the slide 

and covered by an 18 mm × 18 mm cover slip by sealing the edges with the rubber glue 
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Fixogum. Slides were heated to 72 °C for 2 min, then transferred to 37 °C water bath in a closed 

metal chamber and incubated for 2 - 3 days. 

3.2.4.4.4 Fluorescence-Immunodetection 

Hardened fixogum was removed and coverslides carefully removed by dipping slides into 2 × 

SSC 0.2 % Tween-20. All following steps were performed under light protection of the slides. 

Slides were washed three times with 2 × SSC 0.2 % Tween-20 at 42 °C for 5 min, three times 

with 0.75 × SSC at 60 °C for 5min and once again at 42 °C for 5 min with 2 × SSC 0.2 % 

Tween-20. Unspecific binding sites for antibodies were blocked with 3 % BSA for 30 min at 

37 °C. Slides were washed again at 42 °C with 2 × SSC 0.2 % Tween-20 for 5 min.  

 Immunolabeling of the probes was achieved by adding anti-biotin-Cy3.5 (1 : 3000 in 

1 % BSA) binding to the biotin labeled probes and anti-dig-fluorescein antibody (1 : 150 in 1 % 

BSA). Incubation was performed for 45 min at 37 °C in a humidified chamber. Excessive 

antibodies were washed away by incubating slides three times at 42 °C in 2 × SSC for 5 min. 

DNA was counterstained with 0.05 µg/ml DAPI in 2 × SSC solution for 2 min in a dark moist 

chamber and washed with ddH2O for 5 min. Slides were air-dried afterwards. To minimize fading 

of the fluorescence marker phenylendiamindihydrochlorid was added to the slides and covered 

by a cover slide.  

3.3 Tissue culture techniques 

3.3.1 Culturing eukaryotic cell lines 

All mammalian primary cells and cell lines were cultured under sterile conditions at 37 °C, 95 % 

humidity and 7 % CO2. Cell lines were passaged on a regular basis. To this end, old medium was 

removed from adherent cells and cells were washed with PBS. After detachment with 0.25 % 

Trypsin/EDTA (Gibco, Karlsruhe, D), cells were resuspended in 10 ml culture medium and a 

portion of the cells was transferred on a new culture plate with fresh medium according to the 

split ratio in shown in Table 5. 

Table 5: Culture conditions of used cell lines 

cell line type medium split ratio antibiotics for  selection 

NIH3T3 continuous murine 
fibroblast cell line 

DMEM, 10 % FCS, 1% 
Pen/Strep 

1:6 

every 3-4 days 

200 µg/ml G418 

  10 µg/ml BS 

  50 µg/ml Hygromycin 

MHEC-5T continuous murine 
heart endothelial cell  

DMEM, 10 % FCS, 1% 1:8   10 µg/ml BS 
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line Pen/Strep every 3-4 days 

M210-B4 continuous bone 
marrow stromal cell 
line 

RPMI, 10 % FCS, 1% 
Pen/Strep 

1:4 

every 3-4 days 

 2,5 µg/ml BS 

SVEC4-10 continuous murine 
endothelial cell line, 
SV40 transformed 

DMEM, 10 % FCS,1 % 
Pen/Strep 

1:8 

every 3-4 days 

 10 µg/ml BS 

MEF primary murine 
embryonic fibroblasts 

DMEM, 10 % FCS, 1 % 
Pen/Strep 

1:2, on demand  

mES murine embryonic 
stem cells 

DMEM, 15 % FCS, 1 % 
NEAA, 
1 % L-glutamine, 
1 % Nucleosides, 
 0.1mM β-mercaptoethanol, 
 1 % Pen/Strep 
1 × 103 Units/ml murine LIF 
(Active Bioscience) 

change media 
daily 

 

split 1:6 

every 2-3 days 

 10 µg/ml BS 

 % in (v/v), 0.6 % (w/v) Penicillin/ 1.3 % (w/v) Streptomycin (Pen/Strep)  

3.3.2 Transfection of eukaryotic cells 

Lipofection 

Transfections of cell lines were routinely performed by lipofection with the reagent Transit3T3 

(Mirus) for all mentioned cell lines according to manufacturer’s instructions.  

Nucleofection 

Transfection of mES was performed by nucleofection with the AMAXA nucleofector (Lonza) 

according to manufacturer’s instructions (prog. A-013). 

3.3.3 Generation of stable cell lines with the pEPI vectors 

For the generation of stable cell lines, cells were seeded in 6-well plates one day before 

transfection to a confluence of 70 % at maximum. Cells were transfected with 1 µg freshly 

prepared plasmids via lipofection or mock transfected. The next day, transfection efficiency was 

controlled via fluorescence microscopy, either by the fluorescence marker encoded on the test 

plasmid itself or by a fluorescent transfection control. Cells of one 6-well were split onto a 10 cm 

dish and antibiotics added according to Table 5. Untransfected control cells typically died within 

one week. Cell lines were either kept as pools or cell clones were subcloned using limiting 

dilution. 
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3.3.4 Isolation of cell clones 

All cell clones in this work were obtained by limiting dilution with one exception; mES cell 

clones for blastocyst injections were gained by picking cell clones. For the isolation of cell clones 

by limiting dilution, cells were trypsinized, resuspended in appropriate medium and counted. Cell 

suspensions of 0.5 cells, 1 cell or 3 cells per 100 µl respecitively were made. These suspensions 

were seeded into 96 well plates, with 100 µl per well. Wells were controlled for single clones and 

grown up to stable cell lines under appropriate antibiotic selection.  

3.3.5 Cryoconservation of cell lines 

For long term maintenance of cell lines, cells were stored in liquid nitrogen. To this end, cells 

were incubated to 80 - 90 % confluence on 175 cm2 dish. Cells were trypsinized and pelleted by 

centrifugation at 800 × g for 5 min. The pellet was resuspended in 3 ml freezing medium and 

aliquoted in three cryotubes with 1 ml each. Cells were incubated at -80 °C for one day in special 

isopropanol-filled container that allow a slow cooling of the cells and then transferred to the gas 

phase of a liquid nitrogen tank. 

Freezing medium 

40 % FCS 

10 % DMSO 

50 % of the respective growth medium 

3.3.6 Mouse explants cultures 

For the cultivation of mouse explants tissue a protocol was established that combines the needs 

for simplicity and requirements of the different cell types. As explants cultures were taken from 

each mouse individually, only a very limited amount of cells was available. Successful explants of 

heart, kidney, lung, spleen, salivary gland, bone marrow and fat tissue were obtained.  

 One mouse at a time was sacrificed, fur disinfected with 70 % EtOH and eviscerated. 

Organs were washed with PBS several times to remove as much blood as possible. Heart, kidney, 

lung, spleen and salivary gland were minced into small pieces in 2.5 ml freshly prepared 

dissociation buffer, incubated at 37 °C for 30 - 60 min and dispersed by pipetting up and down 

with a wide bore pipette tip from time to time until a smooth homogenate was obtained. The 

homogenate was pressed through a 100 µm strainer and resuspended in 10 ml DMEM. Cells 

were centrifuged at 300 x g for 5 min at RT. Supernatants removed and resuspended in 5 ml of 

the appropriate cell culture medium. Cells were seeded on gelatine coated 75 cm2 tissue flasks. 

The same procedure was performed for fat tissue, with the exception that it was not minced and 
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cells containing a high amount of lipids do not pellet by centrifugation but were recovered also 

from the top of the medium. For the extraction of bone marrow, femure and tibia of one leg was 

removed and the tips clipped. The bone marrow was rinsed out with PBS, and cells resuspended 

in 10 ml DMEM. Cells were centrifuged as above and finally resuspended in 5 ml mmES-

Medium. Medium was exchanged daily for one week and then every third day. 

Dissociation buffer 

12.5 mM HEPES in PBS 

200 U/ml DNase I 

13 Wünsch U/ml Liberase 

 

Table 6: Media for mouse explant tissues 

medium ingredients  organ / cell type 

mmES 407.5 ml DMEM 

75 ml FCS 

5  ml Pen/Strep 

5  ml L-Glutamine  

5 ml non-essential amino acids (100x) 

3.5 µl β-mercaptoethanol 

2.5 ml Fungizone (1.25 µg/ml Amphothericin 
B) 

Heart, kidney, salivary gland, bone marrow, fat, 
muscle 

LSGS 402.5 ml DMEM 

 75 ml FCS 

 5 ml Pen/Strep 

 5 ml L-Glutamine 

 5 ml non-essential amino acids 

 3.5 µl β-Mercaptoethanol 

 2.5 ml Fungizone 

 5 ml 1 × LSGS (Invitrogen) 

 (1 µg/ml hydrocortisone; 

 10 ng/ml human epidermal growth factor; 

  3 ng/ml basic fibroblast growth factor; 

 10 µg/ml heparin) 

lung 
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Spleen - 
medium 

432.5 ml RPMI 1640 

50 ml FCS 

1 ml 1M HEPES  

5 ml Pen/Strep 

2.5 ml Fungizone 

spleen 

  

3.3.7 Flow cytometry 

Fluorescence based flow cytometry assay was performed for the analysis of expression profiles of 

fluorescent proteins in stable cell lines. To this end, at least 5 x 105 tissue cultured cells were 

harvested by Trypsin digest, washed with PBS and finally resuspended in 1 ml PBS with 2 % 

FCS. The parental cell lines were used as negative controls to determine the autofluorescence of 

the cells. Measurement was performed with the flow cytometer Epics XL-MCL (Beckman 

Coulter).   

3.4 Virological Methods 

3.4.1 Reconstitution of viruses from BACs 

The cloning of the MCMV genome as a bacterial artificial chromosome (BAC) allows the 

manipulation of the viral genome, its characterization and control of the modification in bacterial 

cells [64]. To obtain viruses from BAC encoded genomes, permissive cells were transfected with 

the corresponding BAC. As a positive control for reconstitution, the BAC pSM3fr-MCK-2fl 

encoding wt-MCMV genome was used. To this end, MEF cells or transgenic NIH3T3 cells were 

seeded in 6-well dishes one day before transfection. 1.5 µg freshly prepared BAC-DNA was 

transfected with the help of Mirus Transit3T3 transfection reagent. Cells were split the next day 

onto a 10 cm dish, whereby the old supernatant is added back. Plaques from reconstituted viruses 

arose typically at 4-5 days after. In case of attenuated viruses, plaque formation and lysis was 

delayed and cells were split with transferring the supernatants until lysis occured. After complete 

lysis of the cells, supernatants were stored at -80 °C for further processing.  

 To remove the BAC cassette from the virus genome, which tolerates some oversize, 

viruses had to be passaged on MEF cells. To this end, a 6 well of confluent MEF cells were 

infected with the viruses for 1 h and then supernatant was replaced by fresh medium and waited 

until cells were completely lysed. After four rounds of passaging, the BAC cassette, encoding a 
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bacterial origin of replication and the chloramphenicol resistance gene, was typically removed 

from the viral genome and virus stocks were produced. 

3.4.2 Production of virus stocks 

For production of high titer MCMV virus stocks, six 175 cm2 dishes of confluent M210-B4 cells 

were trypsinized, washed and resuspended in 400 ml medium. Cells were infected in suspension 

with an MOI of about 0.1 and plated on 20 × 175 cm2 dishes. Typically after 4 – 5 days complete 

cell lysis occured and supernatant as well as residual cells were harvested in 250 ml beakers. All 

steps for the preparation were performed on ice with pre-chilled material. The virus/ cell 

suspension was centrifuged at 6,500 × g for 15 min at 4 °C. The supernatant was collected and 

stored on ice. The pellet was resuspended and cells cracked by homogenization in a glass douncer 

to liberate intracellular virions. By centrifugation at 20,000 × g for 10 min, cell debris was 

removed and the supernatant pooled with the supernatant put on ice. Virions were than pelleted 

by centrifugation of the supernatants for 3 h at 25,000 × g and again homogenized by douncing 

in a volume of 4 ml DMEM. This homogenate was loaded on top of 10 ml 15 % sucrose cushion 

and centrifugation tubes (SW28) completely filled up with virus stock buffer (VSB). By 1h 

ultracentrifugation at 20,000 × g in a swing bucket rotor (SW28, Beckmann), purified virus 

particles were pelleted. Supernatants were discarded and the virions resuspended in 1.5 ml VSB 

by homogenization in a douncer. For virus stocks that were to be used in mouse experiments 

another centrifugation step was performed to clear the suspension. To this end, the virus stock 

was two times centrifuged at 1,300 × g at 4 °C for 2 min and the pellet was discarded. The virus 

stock was then aliquoted in 50 – 100 µl and stored at -80 °C. 

VSB (pH 7.8) 

50 mM Tris-HCl  

12 mM KCl 

5 mM EDTA 

autoclave 

 

3.4.3  Virus growth analysis 

Typically virus growth analysis is performed to compare growth kinetics of two different viruses. 

In this thesis, virus growth analysis was mainly performed to evaluate the productivity of 

different stable cell clones infected with the same virus.  
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 Cells of different cell lines were harvested, counted and the viability of the cells was 

checked. 1 × 105 cells were seeded per well of a 12-well plate, with three wells per timepoint were 

analyzed for virus titers and a fourth well was used to determine cell density. Cells were allowed 

to attach for 4 - 5 h before infection with wt-MCMV (or a fluorescence marker containing 

MCMV) at an MOI of 0.1 in a volume of 1 ml. Virus suspension was washed away after one hour 

incubation at 37 °C. Subsequently, virus suspension was replaced by 1 ml fresh culture medium. 

Supernatants from cells were collected at the respective time points of growth analysis and kept 

at -80 °C until plaque assay was performed to determine virus titer. In addition, uninfected cells 

were counted daily to monitor the cell density and thus growth properties of the different cell 

lines. 

3.4.4 Plaque assay 

Plaque assays were performed to determine virus titer of cell culture supernatants or virus stocks. 

To this end, serial 1:10 dilutions of virus supernatants were performed in 500 µl MEF-medium. 

200 µl of these virus dilutions, typically ranging from 10-1-10-7, were transferred to 48 well plates, 

seeded previously with a confluent MEF monolayer. After 1 h incubation at 37 °C, virus dilutions 

were removed and 400 µl carboxymethylcellulose-containing medium added. Due to the high 

viscosity of this medium, viral particles cannot diffuse through the medium and a local plaque 

will arise by cell-to-cell spread on the spot where a plaque forming unit (PFU) infected the MEF 

monolayer. Plaques were counted by a light microscope at day 4 post infection. 

 The virus titer is calculated by the following equation: 

)2.0(
)/(

mldilutionvirusplatedofvolume

factordilutionplaquescountedofnumber
mlPFUtitervirus

∗=   

Carboxymethylcellulose-containing Medium 

3.75 g Carboxymethylcellulose 

388 ml H2O 

to be autoclaved before supplementation with 

25 ml FCS 

50 ml 10 × MEM 

5 ml L-Glutamine 

2.5 ml non essential amino acids 

5 ml Pen/Strep 

24.7 ml NaHCO3 (7.5 %)  
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3.5 In vivo experiments 

All animals were housed at the animal facility of the Max von Pettenkofer- Institute or the animal 

facility of the department of Molecular Animal Breeding and Biotechnology, LMU, under 

specified-pathogen-free (SPF) conditions. Animal experiments were approved by the Regierung 

Oberbayern, the responsible office of the state of Bavaria.  

3.5.1 Generation of VIOLA mouse strains 

The mES cell line E14 was transfected with pEpibo-luc-ori by nucleofection. Positive cells were 

selected with 5 µg/ml BS for three days. Appropriate clones were selected after partial 

differentiation of the clones by removal of LIF and feeder layers to allow productive infection 

with MCMV [132]. Selected clones were injected into C57BL/6 blastocysts and implanted into 

foster NMRI mothers (Chair of Molecular animal breeding and biotechnology, LMU). Chimeras 

were backcrossed to 129X1/SvJ mice (Jackson) and analyzed for presence of the transgene by 

PCR with the primer P(SV40)-probe-for and pA(SV40)-probe-rev (4.4.2). Two lines were 

obtained, which were named VIOLA (virus inducible oriLyt-dependent luciferase animal) line A 

and B. 

129-VIOLA-A: derived from mES clone A3, backcrossed to 129X1/SvJ 

129-VIOLA-B: derived from mES clone B8, backcrossed to 129X1/SvJ 

3.5.2 Invasive bioluminescence detection 

As a pre-experiment, invasive analysis of bioluminescence was performed with the VIOLA-A line 

mice. To this end, two animals of VIOLA-A and two animals of the background strain 

129X1/SvJ were infected with 1 × 105 PFU wt-MCMV in a volume of 300 µl in PBS 

intravenously (i.v). One mouse of the VIOLA line and one of the background strain were not 

infected and served as background controls. Mice were sacrificed at day 2 or day 5 post infection. 

Organs and tissues (kidney, spleen, liver, lungs, heart, salivary gland, brain, fat and muscle) were 

harvested, homogenized by filtring through a cell strainer with a 100 µm pore size and 

resuspended in 5 ml MEF-Medium. One ml of the homogenates was pelleted by centrifugation at 

1,300 × g for 5 min. The supernatant was discarded and cells were washed with PBS. The 

centrifugation step was repeated and the pellet was finally resuspended in 1 × Passive Lysis 

Buffer (Promega). After 10 min lysis at 37 °C, FL expression of the lysates was measured with a 

bioluminescence reader (Berthold).  
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3.5.3 Non-invasive bioluminescence imaging 

For non-invasive bioluminescence imaging, VIOLA-A mice were infected i.v. with wt-MCMV or 

mock treated with PBS. As a positive control mice of the background strain 129X1/SvJ were 

infected with MCMV-luc, which constitutively expresses FL [71]. To measure the background 

bioluminescence, one measurement was performed before infection of the mice. To this end, 

3 mg Na-D-Luciferin in 200 µl PBS were injected intraperitoneal (i.p). After 5 min mice were 

anesthetized with 2.5 % isofluroan gas in a whole body chamber. Respiration and response to 

rear foot reflex stimulation was constantly monitored. When mice were fully anaesthetized, they 

were transferred to the IVIS Lumina measurement chamber onto nosecone inhalators. Isofluran 

concentration was set down to 1.5 %, a non-irritating eye cream was applied and measurement 

performed on 37 °C pre-warmed heating plates. 

 

3.6 Biochemical analysis 

3.6.1 In vitro Luciferase assay 

Bioluminescence measurements were performed to quantify induction of luciferase reporter gene 

expression under various conditions.  

3.6.1.1 Transient transfections 

Expression studies in transient transfection assays were performed with a dual bioluminenscence 

reporter measurement, whereby the expression of firefly luciferase (FL) under control of 

different promoters was normalized to a control vector constitutively expressing Renilla 

luciferase. To this end, NIH3T3 cells were seeded on a 12-well plate to 70 % confluence. Cells 

were transfected in duplicates with 1 µg test plasmid (e.g. pEpibo-P(SV40)-luc) and 100 ng 

control vector pTK-RL using the transfection reagent Transit3T3 (Mirus, Madison, USA) 

according to manufacturer’s instructions. Duplicate transfections were pooled and split on 8 wells 

of a 24-well plate the day after. Half of the wells were infected with MCMV at an MOI of 0.5. 

The other half was used as uninfected control. 24 h or 48 h after infection cells were lysed in 

100 µl 1 × Passive Lysis Buffer (Promega, Mannheim, D) on 37 °C for 10 min. Bioluminescence 

measurement was performed with 10 µl of the lysates in duplicates with the Microplate 

luminometer (LB960, Berthold). 40 µl of luciferin (Promega, Mannheim, D) and 20 µl of 

colenterazine (Promega, Mannheim, D) were injected into each well and light measured over 10 s. 
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For the evaluation of FL expression, corresponding relative light units (RLU) of Renilla luciferase 

was used for normalization. 

3.6.1.2 Stable cell lines 

Induction of FL expression by MCMV infection was analyzed in cells stably transfected with 

plasmids pEpibo-luc or pEpibo-luc-ori. Therefore, uninfected and infected cells were compared. 

To this end, 105 cells per well were plated in 12-well plates and allowed to attach for 3 – 4 hours. 

Half of the wells were infected with MCMV at an MOI of 0.5 and the other half left untreated. 

Cells were lysed 24 h or 36 h post infection performed as described above. 

3.6.2 Bradford Assay 

Protein concentration of cell lysates was determined by Bradford assay[133]. The principle of the 

assay is based on the ability of Coomassie-Brilliant blue to bind to proteins and the resulting 

absorption shift from 465 nm to 595 nm. Concentration of the cell lysates was correlated to a 

BSA standard curve. To this end, 1-10 µl cell lysates (harvested with Lysis Buffer B or Passive 

Lysis Buffer, Promega to be compatible with the assay) were mixed with 1 ml of 1:5 diluted 

Bradford Reagent (BioRad). After 5 min incubation, solutions where measured in the photometer 

at OD595 and concentration of the protein solution determined.  

Lysis Buffer B (pH 6.8): 

62.5 mM  Tris 

    6  M Urea 

10 % (v/v)  Glycerol 

  2 % (v/v)  SDS 

 

3.6.3 SDS-PAGE  

SDS-polyacrylamid gel electrophoresis (SDS-PAGE, [134] ) and western blot were performed to 

analyze the expression of recombinant proteins from cell lines and viruses. For the separation of 

proteins according to their molecular weight discontinuous SDS-PAGE with the buffer system of 

Fling & Gregerson [135] was used. For equal loading, protein concentrations were assessed by 

Bradford assay (see section 3.6.2).  Protein samples were denatured prior to loading in total lysis 

buffer or lysis buffer B and heated for 10 min at 95 °C. For very viscous samples with high 

gDNA content, 2 µl of Benzonase (Roche) was added to the samples and incubated for 30 min 

on ice. A prestained protein marker was loaded on each gel to correlate separation of the protein 
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samples to the size of the marker proteins (NEB, Prestained ColorPlus). Gels were cast as 

described in Table 7, and run for 15 min at 80 V, to allow a slow running into the stacking gel, 

and then for 60 min at 175V. In general, separated proteins were further processed by western 

blot analysis. 

Table 7: Composition of gels for SDS-PAGE 

 

 

reagent stacking gel resolving gel 

 5 % 10 % 12 % 15 % 

Acrylamid 30 % 830 µl 3.3 ml 4 ml 5 ml 

Gel Buffer 4x 1.25 ml 2.5 ml 2.5 ml 2.5 ml 

ddH2O 3.25 ml 4 ml 3.3 ml 2.3 ml 

TEMED 100 µl 100 µl 100 µl 100 µl 

10 % APS 20µl 5 µl 5 µl 5 µl 

Total Lysis Buffer 4 x Resolving Gel Buffer (pH 8.8) 

62.5 mM Tris 1.5 M Tris 

2 % (v/v) SDS 0.4 % SDS 

10 % (v/v) Glycerol  

6 M urea 4 x Stacking gel buffer (pH 6.8) 

0.01 % (w/v) bromphenolblue 0.5 M Tris 

0.01 % (w/v) phenolred 0.4 % SDS 

5 % (v/v) β-mercaptoethanol  

 5 x SDS loading buffer (pH6.8) 

10 × Laemmli buffer 300 mM Tris 

25 mM Tris 10 % SDS 

10 % SDS 30 % Glycerol 

250 mM Glycine 0.01 % (w/v) bromphenolblue 

 0.01 % (w/v) phenolred 

 5 % (v/v) ß-mercaptoethanol 
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3.6.4 Western blot 

Western blot analysis is a sensitive method to detect specific proteins by an immunochemical 

reaction. Proteins separated by SDS-PAGE were transferred by Semi-Dry electroblotting 

(BioRad, TransBlotSC) onto a activated PVDF-membrane (GE Healthcare, Hybond-P) in 

western blotting buffer with 19 V for 40-60 min, depending on the designated protein mass. 

Afterwards membranes were incubated with a suitable blocking buffer (5 % skimmed-milk or 

5 % BSA or 5 % FCS in TBS-T 0.1) for 1 h at RT under constant agitation. Primary antibodies 

diluted in blocking buffer were bound during o.n. incubation at 4 °C on a roller mixer. After five 

subsequent washes with washing buffer (TBS-T 0.1 or TBS-T 0.2.5) for 10 min each, membranes 

were incubated with an appropriate secondary antibody coupled to horse radish peroxidase 

(HRP) dissolved in blocking buffer at RT for 2 h. Unbound antibodies were washed off by five 

subsequent washes with washing buffer for 10 min each. Chemiluminescence induced by the 

HRP-tagged proteins was detected with ECLPLUS Western Blot Detection System (GE 

Healthcare) on an X-ray film (Hyperfilm ECL, GE Healthcare) according to manufacturer’s 

instructions. 

Western blotting buffer Washing buffer (TBS-T 0.1 or TBS-T 0.25) 

  25 mM Tris 150 mM NaCl 

192 mM glycine   10 mM Tris/HCl 

20 % (v/v) methanol 0.1 % or  0.25 % Tween-20 

 

3.6.5 Immunofluorescence 

For the detection of the immediate early protein 1 (ie-1) of MCMV, immunofluorescence analysis 

was performed. Cells grown on plates were fixed for 5 min with acetone/methanol (1:1) at RT. 

After three subsequent washes with PBS, primary antibody CHROMA101 (kindly provided by 

Stipan Jonjic, Croatia) was added 1:200 diluted in 5 % FCS/PBS to the cells and incubated for 

45 min at 37 °C. Cells were washed three times with PBS and incubated with a secondary anti-

mouse-Cy3 antibody 1: 5000 diluted in 5 % FCS/PBS at 37 °C for 1 h. After another three 

subsequent washing steps, nuclei of the cells were counterstained with 5 µg/ml Hoechst 333258 

(Invitrogen, Karlsruhe, D) in PBS for 1 min. Finally, cells were again washed three times and 

analyzed by fluorescence microscopy. 
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4 RESULTS 

4.1 Construction of an virus inducible system on the episomal vector 

pEPI 

Episomal vectors provide interesting features that were thought to be advantageous for the 

construction of the novel expression system. Most important, episomal vectors do not integrate 

into the host chromatin, thus are independent from positional effects of the surrounding host 

chromatin, which in turn results in more reliable expression rates and furthermore they possess a 

lower risk for insertional mutagenesis that limits their usage in vivo. 

 A non-viral episomal vector, namely pEPI-1 has been originally described by Piechaczek 

and colleagues [136]. Several follow-up studies underlined the previous findings and highlighted 

the benefits of this episomal vector. 

 

 

Figure 12: Vector map of pEpibo 

The gfp gene and the neomycin resistance 
gene of the original pEPI vector were 
replaced by mOrange and the blasticidin S 
resistance gene (bsr). The modified vector 
was termed pEpibo. P(hCMVie) = 
immediate early HCMV Promoter, 
S/MAR= surface matrix attachment region, 
MCS = multiple cloning site, P(SV40ie) = 
SV40 immediate early promoter/ori, 
pA(TK) = Thymidin kinase poly A site, f1 
ori = phage origin of replication, colE1 ori 
= bacterial origin of replication. 

 

 

 Fluorescence and antibiotic marker of the original pEPI vector were changed for this 

project; i.e. the gfp gene was replaced by the mOrange gene to distinguish its fluorescence from the 

dominant-negative protein GFPSCP, which was used at later time points of this study. 

Furthermore, the neomycin resistance was exchanged to a blasticidin S resistance gene (bsr), 

which allows improved selection in NIH3T3 cells. The resulting vector was termed pEpibo 

(Figure 12). 
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4.1.1 Trans-activation of viral promoters during infection  

Using inducible expression systems is a good way to avoid toxic side-effects, often associated 

with high and constitutive expression levels. It is known that many herpesviral promoters can be 

induced in trans, meaning that viral transcription factors bind and activate promoter sequences 

inserted into the host chromatin upon infection [137]. However, strength of expression levels as 

well as tightness of the promoters in the non-induced, meaning in this case the non-infected 

status, has not been assayed, yet.  

 As mentioned above (see section 1.3) herpesviruses proteins can be divided in three 

kinetic classes, according to the time point of protein production in the virus life cycle. The first 

proteins that can be detected after infection are termed ‘immediate-early’ proteins. The genes of 

these proteins are instantly activated by factors provided in the virion or are directly transcribed 

by the host RNA polymerase II. Some immediate-early proteins are transcription activators that 

in turn activate early genes and the gene products can be detected around 6 hours post infection. 

Late proteins arise after about 16 h post infection and can be divided in leaky-late and true-late 

proteins. True-late genes need in contrast to leaky-late genes DNA replication of the genome for 

transcription.  

 Several viral promoters, belonging to different kinetic classes were used to test if the 

intrinsic feature of the virus to activate its own promoters could be exploited to generate a virus 

inducible expression system. Thus different promoter sequences of MCMV together with a firefly 

luciferase open reading frame were cloned into the multiple cloning site of pEpibo. One 

promoter of an early gene, namely M143 [128], and two of late genes, namely M53 [138] and M94 

[100], as well as the strong human CMV immediate-early promoter (P(hCMVie)) and the minimal 

SV40 promoter were tested. Only for the promoter of M143, namely P(M143), a detailed 

promoter analysis was available [128] and length of the promoter region was adopted as 

described therein. For P(M53) and P(M94) a 500 bp long sequence upstream of the start codon 

was used. P(hCMVie) was derived from the vector pCR3 and the minimal P(SV40) from pGL3-

control.  

 First, induction of FL expression driven by the different promoters was tested. NIH3T3 

cells were co-transfected with one of the pEpibo-P(X)-luc plasmids, as well as the control 

plasmid pTK-RL encoding for Renilla luciferase for transfection normalization. After 

transfection, cells were split and infected with MCMV or were mock treated. FL expression was 

measured 24 h and 48 h p.i. and was normalized to Renilla luciferase expression. 
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 The minimal SV40 promoter was not induced by MCMV infection, neither at 24 h nor 

48 h p.i. (Figure 13). All other viral promoters were induced in trans. Nevertheless, none of the 

promoters was completely silent prior to infection and the overall induction level was quite low. 

The P(hCMVie), one of the strongest known promoters, drove the highest FL expression, as 

expected, and FL expression was enhanced 2.5-fold at 24 h p.i. and 5-fold at 48 h p.i. by MCMV 

infection. However, the basal constitutive expression in uninfected cells remained high. The 

highest ratio of induction was seen with the early promoter P(M143), where FL expression was 

increased 7.5-fold at 24 h p.i., but dropped to 2.5-fold after 48 h p.i. in accordance with the 

typical early gene expression pattern. While the late P(M94) showed already some response to the 

MCMV infection at 24 h p.i. and increased to 6.8-fold induction at 48 h p.i., the expression 

controlled by the second late promoter P(M53) did not increase at 24 h p.i. and only a 2-fold 

induction was measured at 48 h p.i. Furthermore, P(M53) was the weakest of all tested 

promoters. 

 

 

Figure 13: Trans-activation of herpesviral promoters by infection. 

NIH3T3 cells were transfected with either pEpibo-P(SV40)-luc, or the respective constructs with the human 
immediate early promoter P(CMVie), the early promoter P(M143) as well as the two late promoters P(M53) and 
P(M94). Firefly luciferase expression was normalized to the renilla expression by the co-transfection of pTK-RL. 
Cells were infected with MCMV at an MOI of 0.1 and 24 h (A, white) or 48 h p.i. (B, grey) and a bioluminescence 
assay was performed.  
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4.1.2 Construction and characterization of the replicon vector – Induction of gene 

expression by plasmid replication 

As the induction of the viral promoters by trans-activation (see section 4.1.1) was low, another 

possibility to increase gene expression was needed. Herpesviruses can replicate plasmids 

containing their lytic replication origins (oriLyts) in trans [45, 46]. Therefore, we tested if the 

addition of the MCMV oriLyt to the pEpibo-luc vector would cause vector replication and thus 

enhance gene expression during infection. Ideally, the transgene should act like a true-late gene 

and would not be transcribed before infection and replication (Figure 14).  

 

 

Figure 14: Concept of oriLyt-induced gene expression.  

While the gene expression from the episomal plasmid should ideally be silent in uninfected cells, infection with 

MCMV should activate DNA replication of the episome via activation of the incorporated MCMV oriLyt (blue) and 

replication of the plasmid, thus inducing and increasing reporter gene (luc) expression. 
 

 In order to construct such an episomal vector containing the oriLyt, the oriLyt-sequence 

had to be obtained from the MCMV genome first. The location of the minimal oriLyt region in 

the MCMV genome was published by Masse and colleagues in 1997 [46]. The borders of the 

region were not well defined and no further study of the oriLyt region has been performed. Yet, 

the oriLyt sequences of the CMVs are known to be complex, containing several inverted and 

direct repeats as well as several runs of identical nucleotides (see 1.4.2.2). This makes the oriLyt 

sequence a very difficult template for PCR reactions. To facilitate the cloning of the MCMV 

oriLyt from the viral BAC pSM3fr into a smaller plasmid, a ‛pick-up-strategy’ was designed. It has 

been described for other herpesvirus origins that additional sequences next to the minimal oriLyt 

can have enhancing effects on replication [139]. Therefore, a 3.9 kb DNA fragment rather than 

the minimal oriLyt sequence (1.7kb) was cloned. To do so, a PCR fragment containing the 

selective bacterial replication origin oriR6K together with a kanamycin resistance gene was 

amplified, which is flanked by MluI restriction sites as well as one NheI restriction site on the 5′-

site of the construct (Figure 15A). In addition, homologous sequences at both ends allowed the 
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recombination of the PCR fragment into the MCMV BAC genome into the 5′- site of the oriLyt 

sequence. The m58 gene partially overlaps with the oriLyt region, therefore the oriR6K-kan 

fragment was recombined into the ORF behind the start ATG, thereby disrupting the expression 

unit of m58. Another gene, namely m59, was originally annotated inside the minimal oriLyt 

region. However, later expression profiling indicated that this gene does not exist [140]. Correct 

insertion of the PCR fragment was analyzed by fragment length polymorphism of the respective 

BAC clones (Figure 15 B). As the MCMV genome encodes another NheI site on the 3'-site of the 

oriLyt sequence, the replication origin together with the PCR fragment could be excised by NheI 

restriction digestion. The DNA fragment was ligated to a functional bacterial plasmid, which can 

be selected by kanamycin and growth in the oriR6K specialized E. coli PIR1. From ten selected 

clones of the ligation reaction, nine did contain the plasmid p06kan-MCMV-oriLyt (Figure 15 C). 

 

Figure 15: Cloning of pEpibo-luc-ori. 

A pick-up-strategy was designed to clone the complex and repetitive oriLyt of MCMV into the transfer vector 
p06kan-MCMV-oriLyt. Homologous recombination was used to insert a PCR fragment containing a kanamycin 
resistance gene and a selective bacterial origin oriR6K flanked by MluI restriction sites and one additional NheI 
restriction site into the viral BAC pSM3fr encoding the entire MCMV genome. B) Successful insertion of the PCR-
fragment into pSM3fr was analyzed by restriction digest. (lane 1, 1kb Marker, lane 2 native pSM3fr digested with 
AseI, lane 3 pSM3fr-oriR6kan digested with AseI, lane 4 pSM3fr-oriR6kan with NheI). Additional bands due to the 
correct recombination are marked with an asterisk. C) After the recombination the oriLyt can be excised by a NheI 
digest together with oriR6K and kanR gene and ligated to the vector p06kan-MCMV-oriLyt. Due to the selection 
with the antibiotic and the growth in PIR1 E.coli that can maintain oriR6K vectors, plasmids obtained contained in 9 
of 10 cases the wanted vector. D) By a MluI digest the oriLyt could then be transferred into the pEpibo vector. 
Insertion of a FL reporter gene (luc) upstream of the oriLyt allowed a sensitive measurement of oriLyt induced gene 
activation. 
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 The MluI restriction sites initially flanking the PCR fragment now flanked the oriLyt 

sequence in the plasmid p06kan-MCMV-oriLyt after ligation. Thus the oriLyt sequence became 

transferable via these restriction sites into the pEpibo vector, resulting in the replicon vector 

pEpibo-MCMV-orilyt. To test whether oriLyt-mediated amplification of the replicon vector 

indeed increased gene expression a FL reporter gene (luc) was cloned into the vector (Figure 15 

D). This should allow sensitive and quantitative measurements of the transgene expression in a 

bioluminescence assay. The expression of the FL reporter gene was set under the control of the 

minimal SV40 promoter, as this promoter is not influenced by MCMV infection (Figure 13). The 

changes of gene expression in response to MCMV infection should thus depend entirely on the 

effect of the MCMV oriLyt-induced replication of the vector. The resulting replicon vector was 

named pEpibo-luc-ori (Figure 15 D).  

4.1.2.1 Infection can reactivate silenced gene expression of the replicon vector 

To test whether expression of the reporter gene from the replicon vector is enhanced upon 

infection, NIH3T3 were stably transfected with pEpibo-luc-ori. FL expression was measured in 

two stable cell pools, NIH3T3: luc-ori t1 and NIH3T3: luc-ori t2 (luc-ori t1, luc-ori t2) over time. 

In both a strong decline of bioluminescence was found during ongoing culture of the cell pools 

(Figure 16 A, plain bars). In one pool, i.e. luc-ori t1, the expression of the reporter gene dropped 

under detection limit after 16 weeks. If the same transfectants, however, were infected with 

MCMV at an MOI of 0.5 strong reporter gene expression was detected by bioluminescence after 

24 h p.i. (Figure 16 A, hatched bars). Reporter gene expression was up to a 1000-fold higher than 

in non-infected cells. While in the cell pool luc-ori t1 the ability to induce FL after infection 

declined over time, in the cell pool luc-ori t2 induction strength after 16 weeks was as strong as 

after the first week.  
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Figure 16: Infection with MCMV reactivates silenced reporter gene expression. 

In two stable NIH3T3 cell pools transfected with pEpibo-luc-ori (luc-ori t1, luc-ori t2) expression of FL was 
measured in relative light units (RLU) over time. Reporter gene expression is lost in uninfected cells over time. 
Infection of luc-ori t1 and t2 with MCMV (MOI of 0.5) however induced high expression of FL 24 h p.i.. NIH3T3 
served as control to determine background (BG) signal. (B) FL expression is inactivated by histone deacetylation. 
Cell clones derived from subcloning luc-ori t1 were subjected to treatments for 36 h with 25 µM 5′-azacytidine 
(5′Aza, gray bars), an inhibitor of CpG-methylation or 330 nM trichostatin A (TSA, black bars), an inhibitor of 
histone deacetylases. FL expression was analyzed in comparison to untreated control (mock, white bars). Recovery of 
FL expression was significantly enhanced by decondensing histone packaging through TSA treatment in three of 
four isolated clones. (*** p < 0.001, ns  p> 0.05, Two-Way-Anova, depicted is mean + SD). RLU (relative light 
units), p.i. post infection, weeks = weeks post transfection of pEpibo-luc-ori 

 

 To examine the mechanism of bioluminescence regulation in murine fibroblasts, four 

isolated cell clones that were derived from luc-ori t1 after 16 weeks of selection were treated with 

trichostatin A (TSA) or 5′-azacytidine (5′-Aza). TSA is a well known inhibitor of histone 

deacetylase thus indirectly lifting histone-dependent silencing mechanisms [141]. 5′-Aza is 

inhibiting methylation of cytosines after incorporation of the modified nucleotide into the 

genomic DNA [142]. In three of the four isolated cell clones (luc-ori cl. 1 to cl.3) a low FL 

expression level was detected in the untreated cells (Figure 16 B, white bars). If 330 nM TSA was 

added for 36 h, FL reporter gene expression increased by approximately 100-fold in the three cell 

clones (black bars). Bioluminescence in cell clone luc-ori cl.4 could never be detected in any 

condition. Changes in luciferase expression due to 5′-Aza treatment were not significant (grey 

bars) in the cell clones luc-ori cl.1 to cl.3. Therefore, the silencing of the transgene expression in 

the cell lines is most likely due to the inaccessibility of the gene for RNA polymerase due to 

condensed chromatin packaging, which was lifted upon MCMV infection (Figure 16A, hatched 

bars). 
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4.1.2.2 Immediate early proteins cannot remove silencing from pEpibo-luc-ori 

The previous experiments showed that the replicon vector was silenced in the stable cell lines by 

a histone deacetylase-dependent mechanism. For HSV-1 [143], HCMV [144] and MCMV [145] it 

has been described that viral immediate early proteins can inhibit de-novo silencing by histone 

deacetylase (HDAC), which prevents inactivation of incoming viral genomes. To assess whether 

the immediate early proteins of MCMV are, in the present case, able to recover reporter gene 

expression from the silenced cell lines, luc-ori cl. 1 cells were transfected with the plasmid pGPS-

ie1/ie3-ie2. This plasmid encodes the entire immediate early locus and should produce all known 

isoforms (kindly provided by K. Eisenächer). Expression of the ie1 and ie3 protein was 

controlled by immunofluorescence staining with an anti-ie1/3 antibody (Figure 17 A) and 

bioluminescence was measured in the treated and the untreated cells. The expression of the 

immediate early proteins did not result in an increase of reporter gene expression but rather in a 

slight decrease (Figure 17 B). Thus, the immediate early proteins are not directly involved in the 

removal of FL silencing on the pEpibo-luc-ori construct. 

 

Figure 17: Immediate early proteins do not induce luciferase expression. 

luc-ori cl. 1 cell were transfected with a plasmid encoding immediate early proteins ie1, ie2 and ie3 or were mock 
transfected. 52 h post transfection the presence of the ie1/3 proteins was analyzed by staining with the antibody 
CHROMA101. Cell nuclei where counterstained with DAPI. (B) Transfection of the ie proteins (black bar) alone 
cannot induce FL expression in luc-ori cl. 1 cells. Moreover, a significant drop in background expression compared 
to the mock transfected cells (gray bar) could be detected. (***: p < 0.001, ns: p >0.05, Students t-test, depicted is 
mean + SD) 
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4.1.2.3 Induction of reporter gene expression requires oriLyt sequence 

To test whether reactivation of reporter gene expression is dependent on the oriLyt sequence, 

NIH3T3 cells were transfected with pEpibo-luc-ori or pEpibo-P(SV40)-luc (see section 4.1.1) 

and stable cell pools were isolated. Both vectors differ only in the presence or absence of the 

oriLyt sequence.  

 

Figure 18: Only construct with oriLyt is activated by 
viral infection. 
Stable cell pools were generated by transfecting NIH3T3 
with pEpibo-luc (luc t1) or pEpibo-luc-ori (luc-ori t3). 
Cells were infected with MCMV at an MOI of 1 and 
bioluminescence analysis was performed 36 h post 
infection. Induction of FL expression was calculated as a 
ratio of RLU of infected and uninfected cells. The pool 
luc-t1 did not induce FL after MCMV infection, while luc-
ori t3 was inducible as previously shown, thus 
demonstrating that the oriLyt is needed for the activation 
of reporter gene expression. 

 

 After two months of culturing, the transfectants NIH3T3:luc t1 (luc t1, derived from 

pEpibo-P(SV40)-luc) as well as NIH3T3:luc-ori t3 (luc-ori t3, derived from pEpibo-luc-ori) were 

analyzed for their ability to induce FL expression upon MCMV infection. In both stable cell 

pools a low background signal of FL could be detected (data not shown). In the luc-ori t3 pool a 

> 40-fold increase of luciferase expression could be seen upon infection. Notably, reporter gene 

expression in the luc t1 cells did not change upon infection (Figure 18). Thus, the reactivation of 

the replicon vector from silencing was dependent on the presence of the MCMV oriLyt 

sequence.   

 The replicon system was tested in different cell types, murine stromal fibroblast cells 

M2-10B4, murine heart endothelial cells MHEC-5T and SV40 transformed murine endothelial 

cells SVEC4-10. Cells were transfected with the vector pEpibo-P(SV40)-luc or pEpibo-luc-ori. 

Stable cell pools were selected and reporter gene expression was measured in infected and non-

infected cells. Irrespective of the cell type, only cells transfected with the replicon vector, 

containing the oriLyt sequence, could be induced upon infection (Figure 19). All cells were 

infected with an equal virus load. However, the permissivity of the cell types for MCMV is 

variable, with the MHEC-5T cells being least infectable, which might explain the differences in 

the induction strengths. In summary, the replicon vector worked in all tested cell types.  
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Figure 19: Induction of the replicon vector in 
different cell types. 
NIH3T3, M2-10B4, MHEC-5T and SVEC4-10 were 
transfected with pEpibo-P(SV40)-luc (luc) or pEpibo-luc-
ori (luc-ori). Stable pools of the transfectants were 
selected. Cells were infected with MCMV at an MOI of 1 
and bioluminescence analysis was performed 36 h post 
infection. Induction of FL expression was calculated as a 
ratio of the RLU of infected and uninfected cells. In all 
different cell types, luc-ori cell pools could be induced 
upon infection with MCMV, while in luc cell pools 
infection did not influence FL expression.  

 

4.1.2.4  Virus specific activation of the oriLyt-expression system 

Herpesviruses usually are species specific and cannot productively infect another animal than 

their specific host. There are two herpesviruses that naturally infect mice, namely MCMV 

belonging to the β-herpesviruses and the murine herpesviruses 68 (MHV68), a γ-herpesvirus. No 

herpesvirus of the α-subfamily could be isolated from mice so far. All herpesviruses share the 

major six proteins needed for replication (see 1.4.1), but possess different oriLyt sequences and 

specific proteins for their activation. To examine if the MCMV-based oriLyt expression system 

can be non specifically activated by a herpesvirus of a different subfamily luc-ori cl. 1 cells were 

infected with MCMV or MHV68 at an MOI of 0.1 and induction of FL expression was measured 

36 h p.i. after (Figure 20).  

 

 

Figure 20 : MHV68 infection cannot activate MCMV 
orilyt-based expression system 
luc-ori cl. 1 cells were infected with MCMV or MHV68 at 
an MOI of 0.1. 36 h p.i. cells were harvested and 
bioluminescence was measured. Depicted is the ratio of 
infected to uninfected cells. While induction was at 1000-
fold by infection with MCMV, MHV68 infection resulted 
only in 5 to 10–fold induction of the MCMV oriLyt-based 
expression system. 

 

 

While MCMV induced luciferase expression by ~1000-fold, MHV68 infection resulted only in a 

5 to 10-fold increase of reporter gene expression. This is indicative for a highly specific activation 
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of the system that is dependent on the correct oriLyt sequence and its specific oriLyt activation 

protein.  

4.1.2.5 Activation is dependent on viral DNA amplification  

As the induction of reporter gene expression was dependent on the oriLyt sequence of the 

episomal vector, the necessity of viral DNA replication for the activation of the luciferase was 

addressed. To do so, the four luc-ori cell clones 1 to 4, as well as NIH3T3 as control were 

infected with MCMV at an MOI of 0.5 (hatched bars, Figure 21) or left untreated (full bars). 

Furthermore PAA, a specific inhibitor of the viral DNA polymerase, was added (black bars). 

Infection with MCMV induced gene expression in a range of 100 to 1000-fold in three of four 

cell clones (Figure 21), in accordance with the clones that could be reactivated with TSA (Figure 

16). Treatment of infected cells with PAA however blocked the induction of the reporter gene 

expression completely. The presence of the drug did not influence basal luciferase expression in 

uninfected cells. Therefore, not only the presence of the oriLyt in the sequence but also the 

functionality of the viral DNA polymerase is needed for the activation of the adjacent reporter 

gene. 

 

Figure 21: Induction of reporter gene expression depends on viral DNA amplification. 

Four luc-ori cell clones were tested for their response to MCMV infection. A low basal level of luciferase signal 
could be detected in three of four isolated cell clones (white bar). By infection with MCMV with an MOI of 0.5, FL 
expression was induced up to 1000-fold (white, hatched bar). To determine if the induction is dependent on viral 
DNA amplification, a specific inhibitor (PAA) was added to either uninfected (black bars) or infected (black, hatched 
bars) cell clones. While PAA did not have any influence on uninfected cells, it could block the increase of FL in the 
infected cells completely. Thus, the activation is highly dependent on viral DNA amplification. (p.i., post infection; 
BG = Background; ***: p < 0.001, ns: p >0.05, Two-Way-ANOVA, depicted is mean + SD) 

 



RESULTS 

66 

 

 To find out if DNA replication or just the activation of the oriLyt is necessary for the 

induction, a time course (12, 15, 18, 21, 24 and 26 h p.i.) of reporter gene induction upon 

infection was performed. The co-translational folding of FL is very fast and lies in the range of 

20 min [146] and has a half-life of three to four hours [147], and thus does not contribute much 

to the shape of time course. The exact onset of MCMV DNA replication has not been analyzed 

in detail so far, but FACS measurement of total DNA content stained by propidium iodide in 

MCMV infected NIH3T3 roughly revealed the expected DNA replication onset at about 16 h p.i. 

[148]. Induction of luciferase expression was assayed under five conditions: either PAA was 

added directly after the infection, after 12 h p.i., 15 h p.i., 18 h p.i. or the measurements were 

performed in absence of the drug. If PAA was added prior to the onset of viral DNA replication 

(0 h p.i., 12 h p.i.) [149] no induction of FL was detected. If PAA was administered after DNA 

replication had just started, a reduced level of induction could be detected that was dependent on 

the elapsed time since addition. In infected cells without inhibitor an exponential increase of 

luciferase expression could be seen after 18 h p.i. Therefore, it can be concluded, that the 

activation of reporter gene expression in the stable cell lines requires viral DNA replication and 

increases further with ongoing replication. Furthermore it can be reasoned that the start of viral 

DNA replication in NIH3T3 probably takes place earlier than reported and begins already 

between 12 and 15 h p.i. 

 

Figure 22: Time course of FL induction. 

luc-ori cl. 1 cells were infected with wt-MCMV at an MOI of 0.5. At 12, 15, 18, 21, 24 and 26 h p.i. induction of FL 
was measured. In addition the replication inhibitor PAA was added after; either immediately at infection, at 12, 15 or 
18 h p.i. (indicated by the arrows). Induction without PAA, starts before 15 h p.i. and increases exponentially (black 
bars).  If PAA is added before viral DNA replication takes place, no induction of FL appears (white and light gray). 
Whereas induction can be blocked in a dose related fashion the later PAA is added to the infected cells (gray and 
dark gray).  
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4.1.2.6 MCMV infection amplifies replicon vector 

As the induction of reporter gene expression was dependent on viral DNA replication, it was 

reasonable to ask whether also the episomal plasmid itself was amplified by viral infection. 

Therefore, quantitative real time PCR was performed on uninfected (plain bars, Figure 23 A) and 

infected luc-ori cell clones (hatched bars, Figure 23 A). Amplification of the vector was measured 

by detection of the blasticidin resistance gene (bsr) on the vector pEpibo-luc-ori and normalized 

to the endogenous lamin B receptor gene (lbr). Results are presented as relative copies of the 

pEpibo-luc-ori vector per lbr. A significant increase of pEpibo-luc-ori copies of more than 50-

fold could be detected in the infected cell lines luc-ori cl. 1-3. Only in the luc-ori cl. 4 clone that 

was not responsive to viral infection there was no increase in copy numbers.  

 

Figure 23: Amplification of  pEpibo-luc-ori in infected cells. 

A) The vector pEpibo-luc-ori is amplified after infection. NIH3T3 or luc-ori cl. 1 to 4 were infected with wt-MCMV 
with an MOI of 1 (hatched bar) or left untreated (closed bar, mock). 36 h p.i. quantitative realtime PCR was 
performed to determine copy numbers of the PCR products bsr (Blasticidin resistance gene on vector) and lbr 
(cellular lamin B receptor gene). Shown is the mean of triplicates of bsr relative to lbr copy numbers with standard 
deviation. B ) and C) Strong induction of luciferase correlates with amplification of the vector. luc-ori cl. 1 cells were 
subjected to several treatments; cells were infected with MCMV (white hatched bars) or MHV68 (black hatched) bars 
at an MOI of 1 or 330 nM TSA was added to the cells. 300 µg/ml phosphonoacetic acid (PAA) or 100 µg/ml 
phosphonoformic acid (PF) was added to MCMV infected cells. Bioluminescence measurements (B) or qPCR (C) 
was performed.  
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 To strengthen the correlation between amplification of vector DNA and induction of 

reporter gene expression qPCR analysis under different conditions was performed. Luc-ori cl. 1 

cells were infected with MCMV or MHV68 at an MOI of 1 and additionally treated with the viral 

replication inhibitors PAA and phosphonoformate (PF) (Figure 23 B and C). Under these 

conditions, only luc-ori cl. 1 cells infected with MCMV induced strong FL expression of 2500-

fold, which correlated with an amplification of the vector DNA of 50-fold. In contrast, treatment 

with 300 ng/ml TSA partially resolved silencing, but did not lead to vector amplification. 

Accordingly, FL induction by TSA treatment was 100-fold less effective than infection. Thus, 

vector DNA replication is a prerequisite for strong expression of the reporter gene.  

 Southern blot analyses of uninfected and infected cell lines were performed to analyze 

the status of the pEpibo-luc-ori plasmid DNA before and after replication. Although the 

pEpibo-luc-ori plasmid could not be detected in the uninfected cells, strong specific signals were 

found for the three cell lines luc-ori cl. 1-3, which were also responding to MCMV infection with 

strong FL induction (Figure 16). The infected luc-ori cl.1-3 exhibited band patterns of amplified 

pEpibo-luc-ori vectors (Figure 24).  

 

Figure 24: Southern blot of uninfected and infected luc-ori cell clones. 

Amplification and conformation of the pEpibo-luc-ori vector were analyzed by Southern blotting. 10 µg genomic 
DNA of uninfected and infected (MOI of 0.5, 24 h p.i.) luc-ori clones cl.1 to 4 as well as NIH3T3 was digested with 
PstI. 10 ng and 1 ng of PstI-linearized plasmid DNA was loaded as control. The blot was treated with a dig-labeled 
probe directed against the luc gene. (* = single-unit, episomal plasmid; 1= concatemeric bands, 2 = probably 
supercoiled plasmid form) 

 

The strongest signal was detected at 11 kb, the same height as the linearized loading control of 

pEpibo-luc-ori. Yet, additional weaker bands appeared migrating at positions higher as well as 

lower as the single unit size. This indicated first, that the replicon vector replicates similar to the 
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MCMV genome and second exists as supercoiled and relaxed plasmid forms, as well as in the 

form of concatemers typical for herpesvirus genomes during replication. No specific bands could 

be detected in the non responsive clone luc-ori cl.4 (Figure 24).  

 

4.1.2.7 Induction of FL expression from the oriLyt based system in comparison to virus 

encoded FL expression 

In order to compare the expression strengths of the replicon vector system with direct transgene 

expression by the virus, luciferase expression encoded by MCMV-luc virus and the ori-luc cells 

was compared. The luc gene in the MCMV-luc virus is expressed by the strong CMVie promoter 

and starts with early kinetics after viral infection, thus also expressing the FL earlier than the 

replicon system. The expression of the replicon vector and the MCMV-luc were comparable at 

very low MOI, but the virus induces a stronger signal at higher infection doses.  Thus, although 

the replicon system induces strong and accumulating gene expression, it cannot completely 

compete with the FL expression encoded by the virus under early kinetics. Nevertheless, the 

differences were only 10-fold at an MOI of 0.5, which is quite small given that virus-encoded 

expression has a head start whereas replicon-derived expression of FL starts 16 h later. 

 

Figure 25: Comparison of expression strength of virus 
or luc-ori driven luciferase production. 
NIH3T3 cells were infected with MCMV-luc, a virus 
encoding a firefly luciferase under the strong immediate 
early hCMV Promoter, and luc-ori cl. 1 cells were infected 
with wt-MCMV at the indicated MOIs. 30 h p.i. cells were 
harvested and bioluminescence measured.  
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4.2 Intracellular immunization with the DN GFPSCP in the replicon 

system 

Previous attempts to realize intracellular immunization by the means of several other expression 

systems (data not shown) indicated that some important prerequisites need to be fulfilled. First of 

all, a strong expression of the inhibitory protein is necessary to block virus spread. Second, 

positional effects can be minimized by the usage of extrachromosomal elements. Initial 

experiments using the luciferase as reporter gene showed that the oriLyt-based replicon system 

combined both criteria. As a next step, the suitability of the replicon vector with respect to 

intracellular immunization was evaluated. To do so, the luc gene of the pEpibo-luc-ori episome 

was replaced by the inhibitory gene DN gfpscp (see section 1.8). While in permissive host cells 

MCMV multiplies and spreads to neighboring cells, in cells carrying the pEpibo-gfpscp-ori 

episome, viral DNA replication should strongly induce the gene expression of the viral 

dominant-negative fusion protein GFPSCP (see section 1.8) and appropriate expression levels of 

this inhibitor should block further budding of viral capsids from the nucleus into the cytoplasm 

resulting in the block of virus maturation and spread to uninfected cells (Figure 26).  

 

Figure 26: Schema of oriLyt induced expression of the dominant-negative protein GFPSCP. 

In MCMV-permissive cells, MCMV enters the cell and replicates its DNA in the nucleus. Viral capsids are filled with 
the virus genome and bud through the inner nuclear membrane. After acquiring the tegument in the cytoplasma, 
MCMV exhits by budding through the cell membrane. Gfpscp-ori cell lines, stably carrying the episome pEpibo-
gfpscp-ori, encoding a dominant negative version of the small capsid protein (SCP) of MCMV fused to the 
fluorescent protein GFP should be resistant to MCMV infection. During an infection with MCMV, pEpibo-gfpscp-
ori should be replicated and thereby the expression of the inhibitory protein should be induced, which in turn should 
block egress of viral capsids from the nucleus. 
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4.2.1 Validation of MCMV infection and spread on cell lines carrying the replicon 

pEpibo-gfpscp-ori  

To test the hypothesis of intracellular immunization on the basis of the oriLyt-based expression 

system, two MCMV-permissive cell lines NIH3T3 and M210-B4 cells were stably transfected 

with the plasmid pEpibo-gfpscp-ori and stable cell clones were isolated.  

 In contrast to NIH3T3 cells, MCMV spread was visibly reduced on gfpscp-ori cells. 

After infection with wt-MCMV at an MOI of 0.5, full lysis occurred at day 3 p.i. in NIH3T3 cells, 

while only small plaques were found in the gfpscp-ori cl.3 culture (Figure 27 A). Remarkably, 

silencing of the gfpscp gene happened much faster than the luc gene and within two weeks after 

transfection no fluorescence signal could be detected in uninfected cells (Figure 27 B). However, 

expression of GFPSCP was strongly induced by infection (Figure 27 B). In infected cells 

GFPSCP localizes to the cytoplasm and is then transported by the help of the major capsid 

protein into the nucleus, where it localizes in nuclear speckles. At very late stages of infection the 

induced GFPSCP production is so strong that the complete cell fluoresces brightly. 

 

 

Figure 27: Infection pattern of 
gfpscp-ori cl.3 
A) NIH3T3 and gfpscp-ori cl.3 
cells were equally infected with wt-
MCMV at an MOI of 0.5. Three 
days post infection brightfild 
microscopy pictures were taken. B) 
gfpscp-ori cl.3 cells were infected 
with wt-MCMV at an MOI of 0.5. 
Brigthfield and fluorescence micro-
scopy pictures were taken 5 d p.i. 
Uninfected cells do not express 
GFPSCP. After infection GFPSCP 
is induced. 

 

 

 To check whether and to what extend various gfpscp-ori clones were able to inhibit 

viral spread, they were infected with MCMV at an MOI of 0.1 and virus growth analysis was 

performed. In NIH3T3:gfpscp-ori cl. 3 and M210-B4:gfpscp-ori cl. 3 the system was inducible by 

MCMV infection and GFP fluorescence could be detected. In the other cell clones either a weak 

constitutive or no GFP expression at all was found. 
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 Only clones producing GFPSCP in response to MCMV infection were able to reduce 

viral spread. In case of NIH3T3:gfpscp-ori cl. 3 a reduction of ~ 250-fold virus titer could be 

detected on day 3 and 5 in comparison to the wt-NIH3T3 cells, which represents a 99.5 % 

inhibition of MCMV. In the M210-B4:gfpscp-ori cl. 3 also a strong reduction of 100-fold could 

be measured on day 3, which then dropped to a 10-fold reduction on day 5. All other clones 

possessed either very weak or lacked inhibitory potential (Figure 28).  

 

 

Figure 28: Virus growth analysis of wt-MCMV on NIH3T3:gfpscp-ori and M210B4:gfpscp-ori lines  

NIH3T3 or M210-B4 cells respectively were transfected with pEpibo-gfpscp-ori. Stable cell clones were isolated and 
tested for their potential to inhibit MCMV spread. One NIH3T3:gfpscp-ori clone (cl. 3 green bar, left) out of five (cl. 
1 to 5) could reduce MCMV titer up to  250-fold, meaning a 99.5 % inhibition of MCMV spread compared to the 
parental cell line (black bar). In the M210-B4: gfpscp-ori clones (cl. 1 to 4) also one clone (cl. 3, green bar, right) was 
able to reduce virus titer by 100-fold on day 3 and 10-fold on day 5. 

 

4.2.2 The vector pEpibo-gfpscp-ori is maintained as an episome 

As individual clones of NIH3T3:gfpscp-ori showed a different antiviral potential, the status of 

the vector DNA pEpibo-gfpscp-ori in cells was analyzed. To this end, Southern blot analysis of 

the stable cell clones was performed with a dig-labeled DNA probe detecting the gfpscp gene. In 

case of an episomal maintenance one band at the size of the full length plasmid is expected, when 

the genomic DNA is digested with an restriction enzyme that cuts only once in the plasmid. As 

control for the Southern blot experiment linearized pEpibo-gfpscp-ori plasmids were loaded. 

Three specific bands recognized by the gfpscp probe could be detected in gfpscp-ori cl. 3 (lane 3, 

Figure 29), the lowest band possessing the expected size of the linearized plasmid of 11.5 kb and 

two higher bands (red asterisks). 
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 In another independent clone (gfpscp-ori cl. 8, lane 5) that also responded with 

GFPSCP expression to infection the same pattern was detected. In cl. 7, however, a weak 

constitutively expressing clone, two bands at approximately 9 kb and 2.7 kb were marked by the 

probe (black asterisks, lane 4) indicating that the plasmid has partially integrated into the host 

genome. In cl. 1 (lane 2) no specific signal was detectable over background pattern of NIH3T3 

(lane 1). In this case an integration of only the bsr gene seems likely, as this clone did not express 

GFPSCP at all. Function or failure to inhibit MCMV spread thus seems to be associated with the 

genomic status of the pEpibo-gfpscp-ori plasmid.  

 

Figure 29: Southern blot of uninfected gfpscp-ori cell 
lines.  
To determine the status of the pEpibo-gfpscp-ori plasmid in 
the different NIH3T3 cell clones Southern blot experiments 
were performed. Genomic DNA of NIH3T3 (lane 1), gfpscp-
ori cl. 1 (lane 2), gfpscp-ori cl. 3 (lane 3), gfpscp-ori cl. 7 (lane 
4), gfpscp-ori cl. 8 (lane 5),  0,5 pg, 5,0 pg, 50 pg and 0,5 ng of 
pEpibo-gfpscp-ori (lane 6 to 9) was digested with PstI. A 1 kb 
Marker was loaded as size control (lane 10). Southern blots 
were hybridized with a dig-labeled probe against the gfpscp 
gene. Red asterisks mark bands additionally appearing to 
background of NIH3T3 in the lines that are responsive to 
MCMV infection. Black asterisks mark the bands that appear 
in the line NIH3T3:gfpscp-ori cl. 7 that constitutively 
expresses GFP but does not respond to MCMV infection. 

 

 

 

 

 The Southern blot hybridization detected three bands specific for the gfpscp-probe, 

whereas only one band was expected for the episomal state. Thus the plasmid status of pEpibo-

gfpscp-ori was further analyzed by fluorescence in situ hybridization (FISH). Thereby it should 

be clarified if the plasmid might was integrated in tandem repeats or whether bands resembled 

different conformation forms representing artifacts of incomplete restriction enzyme digest. 

 To detect different subregions of the plasmids at the same time, a multicolor FISH was 

performed. Probes were generated against the gfpscp gene (FITC-labeled, green), the bsr gene 

(Cy3.5-labeled, pink) and the oriLyt region (DEAC-labeled, red). All probes co-localized to 

extrachromosomal elements in the metaphase spreads of gfpscp-ori cl. 3 that could not be 

detected in the NIH3T3 control. In 18 metaphase spreads, on average two extrachromosomal 

spots were found. Note, that smaller DNA fragments can drift much further than chromosomes 

and thus might not have been attributed belonging to the spread of the analyzed cell. In many 



 

cases, the spots seemed to be close to centromeres or telomeres of the acrocentric mouse 

chromosomes. As mouse chromosomes are difficult to distinguish, it could not be completely 

determined whether the extrachromosom

However spots where clearly also found completely free and unconnected. This fits well to the 

published behavior of pEPI-1 episomes

linked to chromosomes [111]. In some metaphase spreads

also found. Although it has been publish

[108], the ratio in the gfpscp-ori cl.

Still, in the cell line gfpscp-ori cl.

is mainly in an episomal form. 

 

Figure 30: Fluorescence in situ hybridization of gfpscp

Metaphase spread of uninfected NIH3T3:

gfpscp gene (green), bsr gene (pink) or oriLyt

chromosomal spots, indicating an episomal persistence of pEpibo
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Inhibition of MCMV infection 

strong GFPSCP expression. Next to the delayed start of the DN expression o

that perhaps not all MCMV-infected cells 

fusion protein GFPSCP. Such 

potential of the cell line. To address this question, gfpscp

MCMV-mCherry. In this virus 

SCP with the help of an IRES site placed behind the viral ORF. Thereby expression of the 

mCherry protein starts under late kinetics after viral replication has taken place. In th
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cases, the spots seemed to be close to centromeres or telomeres of the acrocentric mouse 

chromosomes. As mouse chromosomes are difficult to distinguish, it could not be completely 

whether the extrachromosomal spots were associated with any specific chromosome. 

also found completely free and unconnected. This fits well to the 

1 episomes (see section 1.9), which are described to be 

. In some metaphase spreads, integration events 

found. Although it has been published that pEPI-1 integrations occur with less than 5

ori cl. 3 line lies higher at approximately 10 %

ori cl. 3 that is responding to MCMV infection the 

 

hybridization of gfpscp-ori cl. 3. 

NIH3T3:gfpscp-ori cl. 3 (4n = 76). Three different probes complementary to the 

gene (pink) or oriLyt (red) were used. All probes co-localized to DAPI stained extra

chromosomal spots, indicating an episomal persistence of pEpibo-gfpscp-ori.  

Fidelity of activation of the oriLyt-expression system by infection

 in the NIH3t3:gfpscp-ori cl. 3 cell line was not complete 

Next to the delayed start of the DN expression o

infected cells equally respond to the infection and express the 

 cells would allow MCMV spread and thus reduc

To address this question, gfpscp-ori cl. 3 cells were infected with 

In this virus the red fluorescence protein is co-expressed together 

SCP with the help of an IRES site placed behind the viral ORF. Thereby expression of the 

mCherry protein starts under late kinetics after viral replication has taken place. In th
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cases, the spots seemed to be close to centromeres or telomeres of the acrocentric mouse 

chromosomes. As mouse chromosomes are difficult to distinguish, it could not be completely 
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events of the plasmid were 
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ori cl. 3 (4n = 76). Three different probes complementary to the 
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expression system by infection 

cell line was not complete despite a 

Next to the delayed start of the DN expression one reason could be 

respond to the infection and express the DN 

MCMV spread and thus reduce the inhibitory 

cells were infected with 

together with the wt-

SCP with the help of an IRES site placed behind the viral ORF. Thereby expression of the 

mCherry protein starts under late kinetics after viral replication has taken place. In that way, 



 

mCherry, encoded on the virus 

approximately the same time.

expression can be compared in the infected cells.

high coincidence of GFPSCP and mC

cell compartments depending on the time course of infection and mCherry being localized to the 

whole cell (Figure 31). A correlation

underestimated as the fluorescence signal of GFPSCP 

Thus activation of the silenced replicon plasmid is 

residual spread is not due to individual cell fates. 

 

Figure 31: Fluorescence microscopy of NIH3T3:gfpscp

NIH3T3: gfpscp-ori cl. 3 was infected with MCMV
late promoter of scp at an MOI of 0.1. Three days post infection fluorescence microscopy was performed. Infected 
cells were detected by the red mCherry fluorescence
showing the typical ‘speckles’ pattern. A very high 
observed, speaking for the specificity as well as the efficiency of reactivation from the silenced 

 

4.2.4 Comparison of expression strength of GFPSCP driven by the oriLyt system or by 

the virus 

Considering the results that nearly all infected cells express 

entirely in NIH3T3:gfpscp-ori 

rather than the fidelity of activation. As 

viral spread completely when encoded as a second gene copy by the 

SVTgfpscp) [103], the expression strength of both systems w

were infected with wt-MCMV to determine background fluorescence or with the MCMV

SVTgfpscp and NIH3T3:gfpscp

Fluorescence pictures were taken 
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mCherry, encoded on the virus and GFPSCP, encoded by the host cell should be expressed at 

approximately the same time. Thus the infection marker mCherry and the 

expression can be compared in the infected cells. Fluorescence microscopy revealed an extremely 

high coincidence of GFPSCP and mCherry fluorescence, whereby GFPSCP is found at different 

cell compartments depending on the time course of infection and mCherry being localized to the 

correlation of over 95 % could be detected, which might eventually be 

fluorescence signal of GFPSCP is weaker than the strong

silenced replicon plasmid is probably reliable in all infected cells 

residual spread is not due to individual cell fates.  

: Fluorescence microscopy of NIH3T3:gfpscp-ori cl. 3 infected with MCMV-

was infected with MCMV-mCherry, expressing the fluorescence marker mCherry under the 
0.1. Three days post infection fluorescence microscopy was performed. Infected 

herry fluorescence. Induction of GFPSCP was produced only in the infected cells, 
showing the typical ‘speckles’ pattern. A very high (> 95 %) correlation of GFP to mCherry fluorescence could be 
observed, speaking for the specificity as well as the efficiency of reactivation from the silenced 

Comparison of expression strength of GFPSCP driven by the oriLyt system or by 

that nearly all infected cells express GFPSCP, the failure 

ori cl. 3 might be rather due to the expression strength of the protein 

rather than the fidelity of activation. As it was found before that the DN GFPSCP

when encoded as a second gene copy by the viral genome (MCMV

, the expression strength of both systems was compared. To this end, NIH3T3 

MCMV to determine background fluorescence or with the MCMV

gfpscp-ori cl. 3 cells were infected with wt-MCMV at 

luorescence pictures were taken 16 h p.i. (Figure 32).  
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s produced only in the infected cells, 
correlation of GFP to mCherry fluorescence could be 

observed, speaking for the specificity as well as the efficiency of reactivation from the silenced status. 

Comparison of expression strength of GFPSCP driven by the oriLyt system or by 

failure to block MCMV 

due to the expression strength of the protein 

DN GFPSCP could inhibit 

viral genome (MCMV-

as compared. To this end, NIH3T3 

MCMV to determine background fluorescence or with the MCMV-

MCMV at an MOI of 1. 
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Figure 32: Comparison of GFPSCP expression from the inducible cell line and the inducible virus. 

Fluorescence and brightfield microscopy was applied to evaluate the expression strength of the inducible gfpscp-ori 

cl. 3 cell line in comparison to the infection of NIH3T3 with MCMV-SVTgfpscp, which expresses the inhibitory 

protein under control of a Tet-ON CMV/SV40enhancer-Promoter. A) As control NIH3T3 were infected with wt-

MCMV. B) gfpscp-ori cl.3 does not express GFPSCP in the uninfected state, but GFPSCP is induced upon 

infection. C) NIH3T3 were infected with an MCMV-SVTgfpscp. Without Doxycyclin (Dox) weak background 

expression of GFPSCP can be seen, indicating that the system is not absolutely tight. Under induction with Dox, a 

strong expression of GFPSCP that exceeds the level obtained from the NIH3T3: gfpscp-ori cell line can be seen. All 

infections were performed with an MOI of 1, fluorescence pictures were taken 16 h p.i.. 

 While a considerable expression of GFPSCP could be already detected from the cells 

infected with MCMV-SVTgfpscp in absence of doxycyclin needed for gene induction, indicating 

leaky control of the gene cassette, no expression of GFPSCP was found in uninfected gfpscp-ori 

cl. 3. However, doxycyclin induction of the viral encoded expression of gfpscp produced a much 

stronger signal than the viral induced gfpscp-ori cl. 3 cells. Similarly to the data obtained with the 

luc-ori and MCMV-luc comparison (see Figure 25), the cell line cannot cope with the expression 

strength of the virus at early time points. The expression strength increases during replication in 
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the oriLyt cells, so does expression of the viral-encoded gene. The GFPSCP DN was selected for 

proof-of-principle of the replicon vector, yet it may not be the optimal DN for intracellular 

immunization, which is reflected by the fact that the basal leaky expression of GFPSCP in the 

viral context was not even inhibitory for virus spread [103]. A protein target with a lower 

constitutive abundance than the wt MCMV SCP protein, close to 900 copy numbers per virion 

should be a better target for competitive inhibition [16]. 
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4.3 Trans-complementation of MCMV late viral proteins by the replicon 

vector 

True-late herpesviral proteins are expressed only after DNA replication has occurred and true-

late promoters need an oriLyt sequence in cis for appropriate timing. Thus, late protein 

complementation has been a difficult task. In order to test, whether the replicon system would be 

suitable to trans-complement late viral transgenes two exemplary genes, coding for MCMV 

proteins, were cloned into the pEpibo-oriLyt vector. One was the glycoprotein gO of MCMV 

and the other the transmembrane protein M50, which is involved in the egress of MCMV from 

the nucleus. No M50 trans-complementing cell line could be generated via traditional methods 

due to toxicity of the protein [150]. 

 

4.3.1 Trans-complementing MCMV∆gO on NIH3T3:gO-ori 

The glycoprotein O governs cell-type specific entry of MCMV, like its homologue in HCMV 

[22]. In fibroblasts MCMV∆gO is restricted to focal spread, meaning that the virus still infects 

the neighboring cell by cell-to-cell contact but is not able to spread via the supernatant. Deletion 

of gO in MCMV leads to a 100 to 500-fold reduction of total virus release into the supernatant. 

In order to trans-complement this growth defect, the cell line NIH3T3:gO-ori (gO-ori) was 

generated. 

  

 

Figure 33: Virus growth analysis of MCMV∆gO on the trans-complementing cell line NIH3T3:gO-ori 

NIH3T3 (striped bars) or NIH3T3:gO-ori (plain bars) were infected with wt-MCMV (white bars) or MCMV∆gO 
(black bars) at an MOI of 0.05 with centrifugal enhancement respectively. Supernatants of infected cells were 
harvested at the indicated time points post infection and infectious virus in the supernatants was analyzed by 
standard plaque assay. The cell line gO-ori can effectively rescue the deletion of gO of MCMV. 



RESULTS 

79 

 

 The virus growth analysis was performed on NIH3T3 and NIH3T3:gO-ori to determine 

the ability to trans-complement MCMV∆gO on the replicon-based cell line. MCMV∆gO and wt-

MCMV grew to comparable titers on NIH3T3:gO-ori, thus the release defect of infectious virus 

could be completely rescued (Figure 33). Furthermore, the trans-complemented 

MCMV∆gO/trans gO virus was not restricted to the focal spread pattern as the deletion virus on 

NIH3T3, but spread like wt virus on gO-ori cells (Figure 34). 

 

Figure 34: Virus spread pattern of MCMV∆gO on NIH3T3 and gO-ori cells 

NIH3T3 and gO-ori cells were infected with MCMV∆gO or wt-MCMV respectively at an MOI of 0.05 with 
centrifugal enhancement. Five days post infection MCMV infected cells were stained with anti-IE1/3 antibody 
CHROMA 101. (bar = 100 µm) 

 

 As the replicon vector possesses homologous sequences to the viral genome, 

recombination due to homologous pairing could occur that would lead to reversion of the gO 

deletion. The m74 gene coding for gO overlaps with the coding region of gN. Thus m74 could 

only be partially deleted in MCMV∆gO leaving 782 bp of homologous sequence. To address the 

question whether recombination occurs, PCR analysis detecting the m74 gene coding for gO was 

performed on supernatants harvested from the virus growth analysis experiment on day 5 (Figure 

33) of MCMV∆gO on gO-ori and NIH3T3. In order to discriminate between the m74 gene on 

the replicon vector in the cells and the virus genome, supernatants were cleared by centrifugation 

and liberated cellular DNA was digested with Benzonase. Lack of cellular debris was controlled 

by amplifying the cellular gene lbr in the purified supernatants, while integrity of the viral DNA 
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was controlled by amplification of the M54 gene, coding for the viral polymerase. All 

supernatants were positive for the M54 gene and negative for the lbr gene (Figure 35). The m74 

gene however was detected only in wt-MCMV genomes, but not in MCMV∆gO whether or not 

it descended from NIH3T3 or gO-ori cells. Thus, no recombination within the m74 gene locus 

was detected by PCR analysis. Furthermore, a phenotypic reversion of MCMV∆gO, meaning loss 

of the cell-to-cell spread restriction was never observed (data not shown). 

 

 

 
 
 
Figure 35: PCR test for recombination of MCMV∆gO 
with pEpibo-gO-ori 
Supernatants of virus harvested from the virus growth 
experiment (Figure 33) were analyzed for the 
recombination between the viral genome and the replicon 
vector. M54 gene, indicating viral genomes, were 
amplified with PCR primers M54-for and M54-rev. As 
indicator for cellular debris PCR detecting lbr was 
performed with primers LBR-for and LBR-rev. Presence 
of the m74 gene in wt-MCMV and deletion viruses was 
performed with primers m74-for and m74-rev. 

 

 

 

4.3.2 Trans-complementing MCMV∆M50 on NIH3T3:M50-ori 

As a second proof-of-principle, the trans-complementation of the viral M50 protein with the 

replicon system was analyzed. The protein M50 belongs to the essential nuclear egress complex 

of MCMV. M50 is a type II membrane protein of approximately 35 kDa, which is located in the 

inner nuclear membrane and recruits viral as well as cellular partners [99]to promote the egress of 

viral capsids form the nucleus to the cytoplasm. Isolated constitutive expression of M50 was 

found to be toxic for the cell and thus no trans-complementing cell line could be constructed by 

conventional methods [150]. 

 For the generation of the M50-ori cell line a C-terminal HA-tagged M50 ORF was 

inserted into the vector pEpiNo-luc-ori, replacing the luc gene. NIH3T3 cells were transfected 

with the resulting vector pEpiNo-M50-ori and two stable cell pools were obtained two weeks 

post transfection by selection with G418. Western blot experiments were performed with the two 

cell pools M50-ori t1 and t2 under infection and mock conditions (Figure 36). Interestingly, no 

M50HA expression was detected in the uninfected state, already at this early stage of analysis, 
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indicating a very fast silencing process of the M50HA gene. However, infection did induce a 

strong M50HA signal in both cell pools. Loading of the blots was controlled by detecting actin 

and the viral infection rate by detecting IE1/3. Both cell pools expressed M50HA at comparable 

levels after infection. 

 

Figure 36: Western blot analysis of M50-ori cell pools 

Detection of the M50HA protein (~35 kDa) in cell lysates of NIH3T3, M50-ori t1 and M50-ori t2. To analyze the 
induction of M50HA, the respective cell lines were infected with wt-MCMV at an MOI of 1 or mock treated and cell 
lysates harvested 36 h p.i. Viral load was analyzed by detection of IE1/IE3 (76 kDa/89 kDa) and cellular load was 
analyzed by detecting actin (42 kDa). No expression of M50HA could be detected in uninfected cells, whereas a 
strong induction of the protein was observed after infection of the M50-ori t1 and t2 cell pools. 

 

 M50 is an essential protein for MCMV. To assess the ability to trans-complement a M50 

deletion virus, the BAC pSM3fr-∆1-16-∆M50-F (MCMV∆M50), which encodes a gfp gene at the 

endogenous position of M50 and as a late fluorescence marker mCherry with an IRES site behind 

the endogenous scp ORF, was transfected into M50-ori t1, M50-ori t2 and NIH3T3. The parental 

BAC without M50 deletion served as positive control (MCMV-mCherry). At three days post 

transfection first plaques of MCMV∆M50 were detectable in the M50-ori t1 and t2 cell pools but 

not in NIH3T3. At five days post transfection, full lysis of the cells by the reconstituted viruses 

occurred. In contrast, MCMV∆M50 could not be reconstituted on NIH3T3 cells, due to the lack 

of the essential M50 protein, and no plaques were detectable up to the end of the experiment 

four weeks post transfection. This indicates a very effective reconstitution of the deletion virus in 

the M50-ori cell pools. 
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 In order to assess the reversion of MCMV∆M50 to a wt-MCMV virus, supernatants of 

M50HA trans-complemented MCMV∆M50 (MCMV∆M50/M50HA) were harvested one day 

after full lysis occurred in the reconstitution plates and titrated on M50-ori and NIH3T3 cells by 

TCID50. Remarkably, the viral titer of 2 × 107 TCID50/ml of the trans-complemented virus was 

comparable with viral titers obtained with wt-MCMV. However, genetic reversion did also occur, 

as few plaques could be detected after infection of NIH3T3 or MEF cells with 

MCMV∆M50/M50HA at high titers. This recombination could be detected in 1 out of 104 to 105 

PFU when complemented on the M50-ori cell pools. 

 The subcloning of the cell pools led to a variety of clones, which showed major 

differences regarding their performance, as already seen with the other replicon constructs. From 

twelve subcloned M50-ori cell lines, three clones failed to reconstitute pSM3fr-∆1-16-∆M50F 

(MCMV∆M50 BAC). In six cell clones only a slow reconstitution compared to the wt controls 

was observed, as seven days post transfection only very small plaques were detectable and 

reconstituted virus spreaded very slowly in these cultures. In three further subclones M50-ori cl 

1.7, M50-ori cl 1.8 and M50-ori cl. 2.1 a very efficient and fast reconstitution of the MCMV∆M50 

BAC was found. Serial dilution of MCMV∆M50/M50HA derived from M50-ori cl 2.1 on 

NIH3T3 and M50-ori showed again a very high titer of the reconstituted virus of 5.4 × 107 

PFU/ml. Fluorescence microscopy detecting the reporter protein mCherry of 

MCMV∆M50/M50HA indicated an effective spread on M50-ori cl 2.1 cells, while infection 

stopped after initial infection on NIH3T3 cells (Figure 37). Thus the rate of recombination of the 

virus on M50-ori cl 2.1 cells was much lower than recombination rates of viruses reconstituted 

on the M50-ori cell pools.  
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Figure 37: Fluorescence imaging of MCMV∆M50-mCherry/trans M50HA on NIH3T3 and M50-ori cells 

Supernatants derived from the reconstitution of MCMV∆M50-mCherry on M50-ori cl.2.1 cells were serially diluted 
and used to infect NIH3T3 and M50-ori cells. Fluorescence images were performed detecting the mCherry signal 
derived from the reconstituted virus. While on M50-ori cells, the trans-complemented virus spreaded to neighboring 
cells and formed plaques after 5 days of incubation, the same supernatant only initially infected NIH3T3 cells, but d 
spread to neighboring cells.  

 

 With aging of the cell clones even better performances regarding viral titers and smaller 

recombination rates were observed. Virus reconstitution on M50-ori 1.7, 1.8 and 2.1 in parallel 

resulted again in very high titers of reconstituted viruses. Especially the clone 2.1, performed 

extremely well with a titer of 3.4 × 108 TCID50/ml, while recombined viruses titrated on NIH3T3 

were under the detection limit of the assay with 8,3 × 101 TCID50/ml (Table 8). Although 

recombination rates were sometimes extremely low, no cell clone was isolated whose progeny did 

not form any plaque in NIH3T3 cells, meaning that recombination could not be entirely 

excluded. 

 

Table 8 : Reconstitution of MCMV∆M50 on various M50-ori cell lines  

BAC pSM3fr-∆1-16-∆M50-F was reconstituted on different M50-ori cell lines. After full cell lysis, supernatants were 
harvested and titrated on M50-ori (the respective cell line) or NIH3T3 cells via TCID50. (n.d.= not detectable). 

experiment cell line for 
reconstitution 

titer of reconstituted virus detection limit 
on M50-ori cells on NIH3T3 cells 

(reversion rates) 
No. 1 M50-ori t1 5.4 × 106 TCID50/ml 1.2 × 103 TCID50/ml 4.3 × 102 TCID50/ml 

M50-ori t2 2.5 × 107 TCID50/ml 1.2 × 103 TCID50/ml 4.3 × 102 TCID50/ml 
No. 2 M50-ori t1 2.5 × 107 TCID50/ml 1.2 × 103 TCID50/ml 4.3 × 102 TCID50/ml 

M50-ori t2 7.9 × 107 TCID50/ml 7.9 × 102 TCID50/ml 4.3 × 102 TCID50/ml 
M50-ori 2.1 5.4 × 107 TCID50/ml 7.9 × 102 TCID50/ml 4.3 × 102 TCID50/ml 

No. 3 M50-ori cl. 1.7 1.1 × 107 TCID50/ml n.d. 8,3 × 101 TCID50/ml 
M50-ori cl. 1.8 2.3 × 105 TCID50/ml n.d. 8,3 × 101 TCID50/ml 
M50-ori cl. 2.1 3.4 × 108 TCID50/ml n.d. 8,3 × 101 TCID50/ml 
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4.4 In vivo analysis of the replicon system- generation of the transgenic 

mouse line VIOLA 

In order to test if the induction principle of the oriLyt-expression system can be eventually used 

for intracellular immunization principles in transgenic animals, the system had to be evaluated in 

the in vivo situation. So far, the episomal vector pEPI-1 has not been used for the generation of 

transgenic mice. Successful establishment of episomes was demonstrated in transgenic pig fetuses 

generated via sperm mediated gene transfer [151]. This technique of gene delivery is not 

commonly applied for the generation of transgenic mice, where the use of either microinjection 

of DNA into the pronucleus of fertilized oocytes or the injection of embryonic stem cells (ES) 

into blastocysts are common procedures. As the latter one allows the pre-selection of suitable 

transgenic ES cells, generation of transgenic replicon-carrying mice was performed by this 

technique.  

 Firefly luciferase (FL) is a non-toxic and very sensitive expression marker. Therefore, FL 

was preferred over the DN GFPSCP as a transgene for the first generation of the transgenic mice 

to test functionality in vivo. The general outline of the strategy followed the scheme presented in 

Figure 38. ES cells were transfected and isolated cell clones were selected for virus-induced 

expression of FL. Responding ES cells were then used for the transfer into blastocysts and 

generation of chimeras. Progeny of the chimeras were subsequently checked for germ line 

transmission of the pEpibo-luc-ori plasmid and the resulting mouse lines were evaluated for their 

ability to express FL upon MCMV infection. The newly generated mouse line was termed 

VIOLA for virus induced oriLyt-dependent luciferase animal. 
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Figure 38: Outline of VIOLA generation and selection 
Generation of virus inducible oriLyt-dependent luciferase animal (VIOLA). mES cell clones were transfected with 
pEpibo-luc-ori and (1.) pre-selected for their induction capacity by MCMV infection in vitro. (2.) Mouse lines were 
analyzed for expression of FL before and after infection in explant cultures of several organs. 

 

4.4.1 Transfection and selection of mES clones for the generation of transgenic mice 

Murine embryonic stem cells (mouse line 129 14.1, [124]) were transfected with pEpibo-luc-ori 

by nucleofection (Amaxa). Two different conditions for further culture and selection were tested. 

mES cells need to be grown on feeder cells to maintain their pluripotent state. Either mES cells 

were grown on mitomycin-inactivated luc-ori cl.4 cells (carrying the bsr restistance gene, 

condition A) or mitomycin-inactivated MEF feeder cells (condition B).To select for positively 

transfected mES cells, Blasticidin S was added to the culture medium. In case of condition B 

selection of transfected mES cells with Blasticidin S kills also the feeder layer cells, whereas under 

condition A feeder cells survive due to the integrated bsr copy, but might not provide all 

necessary factors to keep the cells pluripotent.  
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Figure 39: Differentiation of transfected mES clones. 
As mES cell clones cannot be productively infected with MCMV, cells were differentiated according to the protocol 
of Matsukage et al. [132]. Undifferentiated mES cell cultures (upper row) are differentiated by withdrawal of the 
Leukemia inhibitory factor (LIF) and feeder cells. Differentiate cultures formed spikey fibroblast like cells 
surrounding mES colonies after three weeks. Feeder layers in condition A are NIH3T3:luc-ori cl.4 and MEF in 
condition B. 

 Four cell clones of each condition were picked, grown up and splitted in two parts. One 

part was frozen for later blastocyst injection, the other one expanded for in vitro-testing of the 

clones. MCMV can infect mES cells only after differentiation, therefore cells were differentiated 

first. Cells were differentiated by removing feeder cells and LIF according to the protocol of 

Matsukage et al. [132]. After three weeks of continuous culturing, morphology of the mES cells 

changed to a fibroblast-like appearance (Figure 39) 

 Clones were then infected with MCMV and a bioluminescence assay was performed 

36 h post infection.  As permissivity to MCMV is dependent on differentiation status of the cells, 

the results are only semi-quantitive. Nevertheless, cells either responded to MCMV infection 

(even only in the range of two-fold) or did not express luciferase at all. Two clones, A3 and B8, 

one from each condition, were selected for the generation of the transgenic animals as they 

showed a clear FL induction upon infection. 
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Figure 40: Selection of transfected mES clones by inducibility upon MCMV infection. 

A) Differentiated mES clones were mock treated (white) or infected with MCMV (hatched). In three clones A10, B1 
and B9 no expression of FL could be detected (BG: Background of substrate luciferin). In all other clones induction 
of FL could be detected upon MCMV infection. B) The fold induction of luciferase expression was calculated as 
ratio of the RLU of infected to non-infected cells. Three clones A3, B8 and B11 showed an explicit induction upon 
MCMV infection. Clones A3 (VIOLA-A) and B8 (VIOLA-B) were chosen for the generation of transgenic mice. 

 

4.4.2 Testing of the generated VIOLA- mouse lines 

4.4.2.1 Inheritance of pEpibo-luc-ori in the mouse line VIOLA 

Viable chimeras were born from both blastocyst transfers of mES clones A3 and B8. Agouti 

coat-color indicated a successful germ-line transmission in the C57BL6 blastocyts (black fur) in 

the first generation (F1), and mice progeny were screened by PCR for the presence of the luc 

transgene (Figure 41). From both transfers one mouse line each could be bred that transferred 

the luc gene to its progeny. The lines were termed VIOLA (virus-inducible oriLyt dependent 

animal) line A or B respectively. 

Figure 41: Genotyping PCR of VIOLA mice. 

Depicted is a typical result from a genoytyping PCR of the 
VIOLA-A line. Genomic DNA was extracted from 
mouse tail pieces and subjected to PCR analysis with the 
primer P(SV40)-probe-for and pA(SV40)-probe-rev, 
which amplifies the 2.2 kb luc gene. Genomic DNA from 
luc-ori cl. 1 line was used as positive control (+). 

 

 VIOLA lines inherited the luc transgene stably over several generations. Surprisingly, it 

followed a typical mendalian pattern, as around the half of the progeny carried the transgene 

when crossed to a non-transgenic background mouse (Figure 42). 
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Figure 42: Pedigree of VIOLA-A line.  

Yellow symbols represent animals positive for the 
luciferase transgene. Black symbols represent wt animals. 
Round symbols indicate female mice, squares male mice. 
42.1 % of the progeny of the chimera were positive for 
the transgene. 

 

 

4.4.2.2 Southern blot analysis of pEpibo-luc-ori status in VIOLA 

In this study, the first transgenic mouse based on the episomal pEPI vector system was 

described. Therefore, the replicon vector was analyzed regarding its maintenance type in the 

VIOLA mice genomes. Genomic DNA of uninfected mice was extracted from mouse tails and 

was subjected to Southern blot hybridization. A probe detecting the luc gene was used for the 

detection of the vector. Linearized pEpibo-luc-ori vector served as positive control and for the 

estimation of vector copies. Two mice of the VIOLA-B line and five of the VIOLA-A line were 

analyzed. For episomal persistence of the replicon vector only a single band was expected. Yet, in 

all mice, two bands with equal and lower size than the linearized vector were obtained after 

restriction digestion with an enzyme that cuts only once in the pEpibo-luc-ori plasmid. Thus, 

signals in all mice corresponded to a pattern typical for vector integration (Figure 43). While the 

signal for unique length was present there was also a band of lower size detectable with the same 

signal strength. The presence of episomal vector copies cannot be formally excluded but the 

presence of additional bands with the same intensity as the unique size band, indicate a mainly 

integrated presence. Hybridization signal of the 100 pg control and the signals obtained from the 

mice had comparable signal strength, thus the vector copy number can be roughly determined to 

be between 1-10 copies per cell. 
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Figure 43: Southern blot analysis of VIOLA lines.  

Genomic DNA of 129X1/SvJ or two VIOLA- B and five VIOLA-A mouse tails (of the 3rd and 4th generation) was 
extracted and digested with PstI. As control the vector pEpibo-luc-ori was linearized with PstI and loaded at different 
amounts (100 ng, 10ng, 1 ng, 100 pg, 10 pg, 1 pg). Asterisks mark specific bands probed with an anti-luc-dig probe, 
indicating an integration of the pEpibo-luc-ori constructs in the VIOLA lines.  

 

4.4.2.3 Non-invasive bioluminescence imaging of VIOLA-lines 

As the luciferase gene should be activated by infection in the replicon system, the VIOLA lines 

were infected with MCMV and analyzed by non-invasive bioluminescence imaging. To determine 

whether the VIOLA mice would produce bioluminescence signal after infection, three mice of 

the VIOLA line were infected i.v. with 1×106 PFU wt-MCMV into the tail vein. As controls the 

background line 129X1/SvJ was also infected with wt-MCMV or, for a positive control with 

MCMV-luc with 1 × 105 PFU, respectively. Bioluminescence signal was measured daily over a 

period of five days. To determine the background FL signal, bioluminescence images were taken 

from all mice before infection. No bioluminescence signal could be detected in any of the non 

infected VIOLA mice (data not shown). Bioluminescence signals in the positive control mice, 

129X1/SvJ, infected with MCMV-luc followed a typical infection pattern (Figure 44).  
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Figure 44: Non-invasive imaging of VIOLA-lines and controls 

From left: 129X1/SvJ infected with 1 × 105 PFU/ml MCMV-luc, 129X1/SvJ infected with 1 × 106 PFU/ml wt-
MCMV, or VIOLA infected with 1 × 106 PFU/ml wt-MCMV. Depicted is one exemplary VIOLA mouse of three 
animals in the experiment. Mice were injected with 300 µl 50 mM Luciferin and anesthetized with 2 % isofluran gas. 
Bioluminescence images were taken with the IVIS Lumina imaging system, with 5 min exposure time and highest 
binning rate of 8 pixels. 129X1/SvJ mice infected with MCMV-luc served as positive control and followed a typical 
MCMV infection pattern. Depicted are images taken one, two and three days post infection. VIOLA mice did not 
produce infection specific bioluminescence signals.  

 

 A local infection of the tail and also the liver as well as the spleen was monitored at the 

first days of infection (Figure 44). At day 3 and 4, infection of kidneys can be seen (data not 

shown). Infection of the lungs can be monitored from day 3 on. Very weak signals can be also 

detected in salivary glands at day 5 (data not shown). No bioluminescence signal was detected in 

the negative control mouse 129X1/SvJ infected with wt-MCMV at any time point. Unexpectedly, 

also all VIOLA mice did not show any bioluminescence signal as response to infection at any 

time point.  
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 In order to exclude that the mice were not sufficiently infected, virus titers were 

determined in several organs of VIOLA mice infected with 1 × 106 PFU wt-MCMV and 

bioluminescence assays were performed in the organ homogenates in parallel. Again, no 

bioluminescence signal was detectable in infected organs of VIOLA mice. Determination of virus 

titers in the organ homogenates revealed normal virus titers according to the typical course of 

dissemination. Thus failure of FL expression is not due to a lack of MCMV infection in the 

transgenic mice. 

  

Figure 45: Virus titers in infected VIOLA mice 

In order to exclude that failure of bioluminescence 
induction is due to lacking infection in the transgenic 
mice, viral titers in organ homogenates were determined. 
VIOLA mice were infected with 1 × 106 PFU/ml wt-
MCMV and sacrificed at day 5. Organs were 
homogenized and virus titers determined with standard 
plaque assay. Titration of the organs revealed normal 
viral loads (black squares). (DL = detection limit of each 
organ respectively; depicted is the standard deviation) 

 

 

4.4.2.4 Ex vivo analysis of VIOLA explants cultures 

To analyze the lack of induction in more detail, explants cultures of mice were made. To this end, 

a simple and versatile protocol for the extraction and cultivation of different organ and tissues 

from individual mice had to be developed (see 3.3.6). Lungs, kidney, heart and fat tissue of four 

VIOLA mice, two of the 2nd and two of the 3rd generation, as well as a 129X1/SvJ were extracted 

and explanted. Cultures were grown until at least two confluent 6 well dishes could be obtained. 

Explant cultures of the majority of organs were obtained, however, as the protocol was not 

optimized for each organ specifically, some extractions failed. Cultures were infected with wt-

MCMV at a calculated MOI of 0.5 or left untreated. Infection density was always lower than the 

calculated dose, as permissive as well as non-permissive cells were extracted. As the proportion of 

these cells were not equal, infection density could not be equalized. Thus results reflect only 

semi-quantitative data. In contrast to the bioluminescence assays in infected animals and their 

organ extracts we found induction of FL in tissue cultures derived from these mice (Figure 46). 

In one mouse induction of 500-fold could be detected in one organ, and no induction could be 

seen in cells from another organ of the same mouse, which reflected the different permissivity of 
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MCMV to certain cell types. FL expression correlated typically with the presence or absence of 

rounded cells, a marker for CMV infection (data not shown). 

 

 

Figure 46: Induction of FL in VIOLA explant cultures upon MCMV infection. 

Mice of the second and third generation of VIOLA-A were sacrificed and various organ and tissues were explanted. 
Shown are explants cultures of lung, kidney, fat and heart that were infected with MCMV or left untreated (not for 
all animals all organ explants were successful). Due to the inhomogeneity of the explants cultures infection could not 
be equalized therefore RLU values represent only semi-quantitative results. Notably, in almost all tissues and 
cultures, FL expression could be induced after infection although no signal could be detected in uninfected cells. 
(BG: Background of luciferin) 

 

 In addition, bone marrow, heart, muscle, fat, spleen and salivary gland tissue were 

explanted of a mouse of the fourth VIOLA generation. Again, specific signals could be obtained 

from extracted tissues. However induction strength was altogether very low in all assayed organs 

(Figure 47), which might be due to the loss of episomal persistence of the replicon vector. Thus, 

the VIOLA mice could be specifically induced upon infection, meaning that the replicon 

expression system can be transferred into the mouse model. However, the induction was only 

detectable in explant cultures but not in vivo. 
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Figure 47 Induction of FL in explant cultures of 

various organs from the 4th generation of VIOLA 

Explant cultures of bone marrow (BM), heart (He), 
muscle (Mu), fat tissue (Fa), spleen (sp) and salivary 
gland (Sg) of a VIOLA mouse of the 4th generation was 
infected with wt-MCMV and bioluminescence assay was 
performed. Signal strength of the induction was very 
low, but induction of FL expression could be detected in 
any of the explanted organ. (BG = background of 
luciferin) 
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5 DISCUSSION 

The replicon system established herein offers a wide application range: successful 

implementations were shown for the study of herpesviral DNA replication, intracellular 

immunization, and trans-complementation of late herpesviral genes. 

 

5.1 Advantages and disadvantages of non-viral episomal plasmid pEPI 

for the generation of stable cell lines  

Pre-experiments (data not shown) indicated that episomal maintenance is an interesting feature 

for the establishment of stable cell lines. Especially, the independence of positional effects 

appeared favorable for reliable expression rates. The major disadvantage of episomal expression 

vectors is the unfaithful distribution of vectors during cell division. In contrast to this, the reliable 

once-per-cell cycle and even distribution to daughter cells is one of the key features of pEPI 

vectors. The essential element of these vectors is the cellular surface matrix attachment site 

(S/MAR) sequence that regulates the episomal maintenance of the vector (see chapter 1.9).  

 While in many human cell types, transgene expression derived from pEPI vectors was 

stable and not subjected to CpG-dependent silencing [109], transgene expression was always 

silenced in all cell types tested in this thesis. In accordance with the results from Jenke et al. [109] 

methylation-dependent silencing was not found in the replicon vectors, as cells did not respond 

to 5'-azacytidine treatment. In contrast, expression of the reporter gene through the replicon 

vectors was strongly silenced by a HDAC-dependent mechanism. This stands in line with results 

from Papapetrou et al. [118], who found also a HDAC-dependent silencing of a pEPI vector in 

murine MEL cells. Detailed studies on transgene expression of pEPI vectors in MEL cells 

revealed strong regulation at the chromatin level [120]. The vector is heavily chromatinized with 

histone H3 that becomes acetylated after treatment with TSA, leading to transcriptional 

activation (as also seen with the replicon vector). Therefore, Tessadori et al. concluded that pEPI-

derived vectors are regulated ‘remarkably’ similar to host genes and are also responsive to histone 

modulation. Interestingly, inactivation of reporter gene expression on pEPI in MEL cells or the 

replicon vectors in the NIH3T3 cells did not result in vector loss although an active transcription 

unit was reported to be a crucial pre-requisite for vector maintenance [112]. Tessadori et al., 

however, also found regulation by H3K9 methylation and direct methylation of DNA. The 

literature regarding methylation of pEPI vectors is, however, contradictory [109, 113, 118]. 

Differences in chromatin modifications indicate a species-specific or cell type-specific mode of 



DISCUSSION 

95 

 

action of pEPI vectors and S/MAR elements. Interestingly, the kinetic of silencing was 

dependent on the type of transgene, as the genes for the toxic M50 and the GFPSCP proteins 

were much faster inactivated than the luc gene. This indicates once more the influence of the host 

chromatin on the regulation of the replicon vector in order to inactivate ‘unwanted’ genes.  

 While transgene silencing points to a limited use of the standard pEPI vectors in murine 

cells, the reliable inactivation of the vector served as tool for viral trans-activation of gene 

expression in the replicon system. Stable cell clones with the replicon vector were kept under 

continuous antibiotic selection pressure in this work. Failure of the antibiotic in one case did 

result in loss of the vector (data not shown). This is contradictory to published results in which a 

silenced pEPI vector remained stable without selection [118]. By transcribing the antibiotic 

resistance gene, even at low levels during selection, the S/MAR site might promote stronger 

association to chromatin as proposed by Jenke et al. [110]. This would explain the genomic 

integration of the replicon vector in mice lacking selection pressure. Silencing of the episome 

would thus result in poor maintenance of the vector, as no transcription would run into the 

S/MAR element and hold it in an open, meaning active, conformation. 

 Transgenic mice on the basis of the pEPI vector have not been generated so far. 

However, transient gene therapy studies with the pEPI vector have been described in mice. 

Intravenous injection of pEPI-1 into mice did not result in prolonged transgene (luciferase) 

expression or DNA persistence when compared to a conventional plasmid [152] indicating that 

the vector is not automatically maintained as an episome in mice. In the original pEPI vector an 

hCMVie promoter controls the transcription unit running into the S/MAR site. In several 

studies, including this one, this promoter has been found to be prone to epigenetic silencing [113, 

153]. However, change of the hCMVie promoter to cell type-specific promoters, as alpha 1-

antitrypsin, or novel synthetic promoters, as CMV-EF1α hybrid promoter, offers the possibility 

to influence the duration of transgene expression and with it maintenance of the derivative vector 

[152, 153]. Thus, transgene expression and vector stability are closely linked properties. In this 

replicon system, however, silencing of the transgene expression was important for transgene 

regulation. Inhibition of silencing would prevent the usage of cell-toxic transgenes. This leads to 

a dilemma, as discontinuous expression seems to be detrimental for stability but favorable for 

expression of toxic proteins. Murine S/MAR sites, as identified in the α-globin gene [154], and 

constitutive promoters could enhance transgene expression and thereby also the stability of the 

vector. It needs to be tested, if the second transcription unit downstream of the S/MAR site, 

which harbors the transgene, might be still silenced in this case or not. As S/MAR sites do also 
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work as insulators [155], individual transcription units on the replicon vectors could principally be 

regulated independently. This hypothesis is supported by the fact that the antibiotic resistance 

gene was always active ex vivo in this study by continuous addition of antibiotics to the cell culture 

while the reporter gene was inactivated. Still, balancing the two effects might be difficult to 

achieve in vivo. 

 

5.2 Induction of transgene expression through DNA replication 

The herpesviral expression profile is determined by a cascade of gene induction, with sequential 

immediate-early, early and late gene expression. This cascade is (besides other elements) achieved 

by usage of different viral transcription activators that possess specific binding sites in promoters 

of genes. Therefore, it was reasonable to assume that by using viral promoters the specific 

induction of a gene can be obtained. Several studies showed the possibility to activate herpesviral 

promoters in trans [137]. Here, five representative viral promoters were tested for their 

responsiveness to MCMV infection. To this end, the promoters P(M143), P(M53) and P(M94) as 

well as the control promoters P(hCMVie) and P(SV40) were cloned upstream of an firefly 

luciferase ORF into the vector pEpibo. The FL expression under control of the minimal P(SV40) 

was unaffected by MCMV infection and thus was used as control henceforth to dissect additional 

regulatory effects in further experiments. For the MCMV promoters, induction could be 

detected, which corresponded to the expected kinetic profile. Nevertheless, the overall induction 

levels were quite low, limiting their usage for further studies. However, the expression driven by 

isolated late herpesviral promoters in trans does not reflect the expression kinetics in the viral 

context and the expression from such constructs is started under early kinetics. In the context of 

viral infection, the dependence on DNA replication in cis for true-late gene expression is a well 

known phenomenon and defines a true-late viral protein. The mechanism of this ‘cis-dependent’ 

regulation, however, is not yet understood. 

 Replicon expression aimed at very strong expression to cope with expression levels 

reached during natural viral infection. It is known that plasmids containing herpesviral origins of 

replication-sequences can be replicated in trans [156]. However, it was not known whether 

combining an oriLyt sequence to an expression unit has an enhancing effect on transcription. 

There are controversial opinions about the cooperativity of replication and transcription. It has 

been stated that DNA replication and transcription are two exclusive mechanisms, which would 

hinder each other as the DNA sequence is occupied by the respective binding proteins [157]. The 

other opinion supports the view that DNA replication enhances adjacent gene transcription 
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[158]. As herpesvirus true-late gene expression is dependent on DNA replication of the viral 

genome it was unlikely that amplification of the replicon vector would hinder the expression of 

the encoded transgenes. Indeed, MCMV infection, more precisely viral DNA replication, induced 

the expression of the encoded transgenes in replicon vector-transfected cells. Experimental 

evidence was given by inhibition of the viral DNA polymerase by a drug, which blocked 

induction of the transgene, while the presence of the oriLyt sequence in the vector was necessary 

to obtain induction. This supports an obligatory role of DNA amplification of the replicon 

construct for transgene induction. Due to this feature, the oriLyt-containing pEPI constructs 

were coined here as replicon vectors. 

 The induction of gene expression from replicon vectors was generally remarkably high, 

up to 1,000-fold induction of FL expression at 36 h post infection in independently isolated cell 

clones. Already the mere amplification of the template could account for this effect. On the other 

hand, DNA replication and replication forks could change chromatin structures, which would 

make the gene more accessible to the transcription apparatus. In the present tests, the induction 

of the transgene upon infection was around 10 to 100-fold higher than by reactivating the 

construct from silencing by trichostatin A, even if the maximal non-toxic concentration of TSA 

was added (data not shown). Thus, both aspects account for the induction of the replicon vector, 

as the vector is released from silencing, and the number of vector copies that means the 

transcription templates is increased. 

 In many herpesviral oriLyt sequences functional or cryptic promoters have been 

identified. Therefore, adjacent ORFs can be principally transcribed by activation of oriLyt 

promoters. Yet, the influence of an unknown promoter in the MCMV oriLyt sequence on the 

replicon vector can be excluded, as the oriLyt is positioned downstream of the transgene 

expression unit. Another possibility for induction of the transgene could be the existence of an 

enhancer element within the oriLyt sequence. In this case, the enhancer is either directly activated 

by DNA replication or the trans-acting factor that activates the enhancer is a viral late protein in 

order to explain the inhibitory effect of PAA. Although PAA acts directly on the DNA 

replication apparatus by mimicking the pyrophosphate leaving group of the nucleotide transit 

reaction [159], PAA inhibits not only DNA replication but also all subsequent DNA replication-

dependent steps like late gene expression. True-late proteins are not expressed under PAA 

treatment. Therefore, the inhibition of the transgene expression on the replicon vector using 

PAA can in principle reflect the lack of a late viral protein. Therefore, it cannot be formally 
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excluded that the presence of certain (late) trans-acting transcription factors suffices for induction 

of gene expression, without the need to replicate the construct. 

 In the γ-herpesvirus MHV68, viral proteins were identified that are essential for late 

viral transcription. Deletion of these genes causes inhibition of late gene transcription while 

DNA replication is not affected [160, 161]. These findings, therefore, partially refute the dogma 

of late gene transcription and replication forming an inseparable unit. Recently, the deletion of 

UL79 of HCMV has been found to cause the same phenotype as seen in MHV68 [162]. The 

HCMV protein UL79 shares 51 % amino-acid sequence identity with the yet uncharacterized 

M79 protein of MCMV. It is likely, that the proteins present functional homologues. In this case, 

it might be interesting to see, whether the replicon system could be activated by an MCMV∆M79 

virus and how or if the transgene expression might change. 

 To obtain clarity if DNA amplification or induction of a late gene is the trigger for 

activation of the reporter gene, the MCMV replication proteins, especially the oriLyt activating 

protein, need to be identified. If cells carrying the replicon can be induced solely by the replicator 

proteins, DNA replication and with it the change of the chromatin state should be sufficient to 

activate adjacent gene transcription. If these proteins cannot activate the transgene, it would be 

more likely that activation is dependent on, or due to, a late viral transcription factor. CHIP 

analysis could help in both cases to identify the viral proteins bound to the replicon vector.  

 Induction of genes adjacent to replication origins is not limited to viral genomes. An 

interesting observation has changed the former static view of replication origins. In metazoa 

several classes of replication origins exist, of which some are activated very early during S-phase 

and others activated later on [163]. Usually early-firing replication origins are found in actively 

transcribed regions but are not limited thereto. Furthermore, not all potential origins are used 

during DNA replication as initiators for the replication fork. Some are only passively duplicated 

like any other DNA sequence [164]. Remarkably, some replication origins are only used during 

certain stages of development of the organism. This implicates regulatory effects between 

replication origins on gene expression and effects of transcription on origin usage [165]. A simple 

model for the activation or desilencing of genes during DNA replication was described by Wolffe 

in 1991 [166]. Every nucleosome is displaced in front of the replication fork. With ongoing time 

the newly synthesized DNA is again packed in nucleosomes. In excess of transcription factors 

that can bind to the promoter elements of the deliberated DNA, further packaging into tighter 

nucleosome structures is inhibited. Thereby, replication opens a window of opportunity to 

reorganize epigenetic imprinting and transcription factor binding on the replicated genes [158, 
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165]. Similarly, incoming herpesviral genomes are rapidly packaged by histones that are again 

removed during DNA synthesis [167], which might contribute to the DNA replication-

dependent expression of true-late genes. Furthermore, this model could also explain the 

desilencing effect of the replicon vector after DNA replication. (Figure 48)  

 

Figure 48: Model of the disruption and reassembly 
of nucleosomes during DNA replication. 
In order to facilitate DNA replication nucleosomes are 
disrupted in front of the replication fork. First original 
H3-H4 histones are reassembled in a random fashion 
and can be exchanged by H3-H4 molecules with 
different posttranslational modified marks (PTM) 
(picture taken from [168]). This replication dependent 
removal of nucleosomes thus opens the opportunity to 
modify the epigenetic landmark or by access of 
transcription factors might even inhibit formation of 
nucleosomes. 

 

 

 A genome-wide study in Saccharomyces cerevisiae revealed that most genes are transcribed 

without being influenced by DNA replication [169]. However, in 3.5% of the genes DNA 

replication was necessary to start gene expression, e.g. genes coding for histones are highly 

upregulated by DNA replication. This indicates that DNA replication or origin activation could 

have an impact on adjacent gene expression even in higher eukaryotes. Still, regulation via this 

way is apparently only rarely used. 

5.3 Intracellular immunization with the replicon vector 

Herpesviruses are important pathogens for humans as well as for livestock. For some livestock 

specific vaccines were successfully constructed, which prevent disease in the animals. However, 

cases of vaccine failures and emergence of more virulent virus strains have been reported in 

vaccinated livestock, because such vaccines do not eradicate the virus but rather prevent 

symptoms of the disease. Herpesviral vaccines stay latent in the host, a basic feature of 

herpesviral infection, and are able to spread within the flocks [83]. This led to the prohibition of 

vaccination for some of the livestock species such as pigs and cattle [170]. The use of dominant-

negative proteins to block virus infection, also termed intracellular immunization, has been 

proposed as an alternative to generate resistant animals. Yet, previous attempts to realize this 

concept have mainly failed due to toxicity of the constitutively expressed viral DN proteins 
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(summarized in section 1.7.2). In the present study several expression systems were evaluated. To 

this end, a replicon system was constructed offering for the first time the possibility to induce 

expression of transgenes, activated by viral wild type infection and concomitantly to produce high 

amounts of transgenic protein. Besides the advantages of an inducible system regarding health 

and safety, acceptance for such transgenic animals by consumers is likely to increase as the 

protein is not expressed in the uninfected animal. 

 Previous studies with DN proteins of HSV-1 were hampered by the strong toxicity of 

the transgenes. There were also attempts to generate inducible expression systems, either by 

usage of herpesviral promoters or by chemically inducible systems. Sheppard et al. tried to 

circumvent the toxicity of an HSV-1 DN mutant by using the ICP4 promoter of HSV-1, which is 

activated by herpesviral transcription factors [94]. Nevertheless, constitutive expression of the 

DN was found already in absence of infection and the toxicity of the transgene could not be 

avoided. Similar results were obtained in the present study, when MCMV promoters of different 

kinetic classes were used. Although all promoters were inducible by infection and the expression 

correlated to the expected time of activation, none of the promoters was inactive in uninfected 

cells. Usually, only short promoter stretches of 500 bp were used to ‘preliminary’ define the 

promoter regions, however, there is only little information about regulatory elements in these 

promoters and adjacent regions. Lack of inhibitory transcription factor binding sites or silencers, 

in the minimal 500 bp promoters, might result in the uncontrolled leaky expression of the 

isolated promoters. Due to overlapping coding sequences, borders of genetic elements, especially 

promoters are hard to define. Usage of longer promoter sequences might help to get tighter 

regulations, but bears the risk to include genetic elements of overlapping or the complementary 

strand sequences.  

 Obviously, herpesviruses are able to strictly control the timing of gene expression and 

protein production during infection. Recent data from Marcinowski et al. (personal 

communication) point to an even more complex mechanism to regulate gene expression, as the 

transcription of true-late genes can be found during a short period at immediate-early time points 

although no protein can be detected at this stage. Viral post-transcriptional regulation, however, 

has so far not been analyzed at large and might be difficult to translate into an expression 

cassette. 

 A major improvement to the regulation of dominant-negative proteins for intracellular 

immunization was achieved by the replicon vector system. The host-mediated silencing of the 

expression cassettes was highly reproducible in all assayed cell types in this study, although the 
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time period, until complete inactivation was reached, was dependent on the individual transgenes. 

‘Harmful’ proteins were, in general, inactivated much faster than non-toxic proteins. For 

example, the regulation of the GFPSCP was extremely tight, as no fluorescence could be detected 

in uninfected cells. The infection of the GFPSCP-ori cells with MCMV-mCherry revealed a high 

correlation of the infection marker mCherry and induced GFP fluorescence. Although the 

correlation was calculated to be greater than 95 %, this number might even be underestimated as 

the fluorescence signals of mCherry are typically higher than the GFP signals and ‘negative’ cells, 

carrying only one fluorescence signal could be possibly re-evaluated at later stages of infection. 

The mCherry gene was set under control of the late SCP promoter; still the timing might not be 

completely identical, although the replicon system is also activated under late kinetics, which 

might lead to a miscalculation of fluorescence correlation. 

 Although the replicon expression system drives a very strong gene expression, MCMV 

spread could not be completely blocked in GFPSCP-ori cell lines. In contrast to the cell lines, a 

recombinant virus encoding the DN protein in the viral genome was not able to spread [103]. In 

this case, expression of the DN occurred in early kinetics and thus the inhibitory protein had a 

headstart before the onset of expression of the wt scp gene. The DN was more abundant 

compared to the wt protein and could occupy binding sites before the wt protein is even present. 

As the replicon system is activated in late kinetics, it is much harder to out-compete the wt SCP 

protein. Note that SCP is one of the most abundant proteins in the viral capsid [171]. The 

GFPSCP protein was only selected to demonstrate proof-of-principle, as the expression of the 

DN is simple to monitor by the marker. Other DN proteins, which are less abundant, might be 

better targets to inhibit MCMV spread.  

 Most remarkable, the replicon system having on average two copies per cell reached the 

same inhibitory potential as another previously tested episomal papilloma virus-derived vector 

system B45, which is maintained with 50 to 100 copies per cell and constitutively expresses 

GFPSCP (data not shown). The low copy number of replicon vectors in cells is probably 

advantageous to reduce potential side effects. As 2 to 10 copies of pEPI-vector were typically 

found per cell and in particular 2 copies of the DN replicon vector in the GFPSCP-ori cl. 3 

clone, it is possible that cell lines with a higher initial vector load might result in a stronger 

inhibition of MCMV spread. In this case, it is unlikely that the presence of few more replicon 

vectors will cause stronger side effects, as the additional DN genes are most likely subjected to 

silencing as well. 
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  Generation of virus-resistant animals is the aim of intracellular immunization. As a first 

test of functionality of the replicon vector in vivo, a firefly luciferase transgene was used to 

generate transgenic mice. In the resulting VIOLA mice (standing for virus-inducible oriLyt-

dependent luciferase animal) the bioluminescence of the transgene is easier to monitor and to 

quantify compared to an inhibitory DN protein, which should be used in the end. Testing the 

replicon vector in vivo led, however, to unexpected results. In particular, the expression of the 

replicon vector encoded transgene was detectable only after infection in explant cultures but not 

in the living animal. Furthermore, the replicon vector was not stably maintained as an episome in 

the VIOLA mice. Rather integration of the replicon vector was found. Without having 

explanations and answers to these findings, it had no point to generate transgenic animals with 

the GFPSCP containing replicon.  

 To gain more information on these peculiar results, it has to be completely ruled out 

whether the total FL signal in VIOLA was too weak to be detected due to a rather low infection 

density in mice compared to the tissue culture experiments or whether there was really no 

induction of transgene expression upon infection in vivo. If the former assumption is correct, the 

induction in individual infected cells could still inhibit viral spread. Unfortunately, the vector 

integrated in the genomes of VIOLA mice. This, however, makes the expression dependent on 

positional effects of the integrated vector. Positional effects might thus also explain the failure of 

the VIOLA-B line in contrast to the VIOLA-A line, which showed also different integration 

patterns in the Southern blot experiments. Large numbers of animals will be needed to screen for 

expression of the transgene before and after infection using an integrating construct. Therefore 

optimization of the vector for episomal maintenance is necessary before applying the replicon 

system. The fact that episomal maintenance was found in transgenic pigs with the pEPI-EGFP 

vector [151] opens however a window of opportunity to directly translate the replicon system to 

the pseudorabies virus, which is an important veterinary pathogen (see section 1.7). Therefore, if 

the pEPI-vector is already suitable for the usage in swine, further adaptation of the replicon 

vector to mice seems not to be essential. Notably, the sequence of the origin of replication of 

pseudorabies virus is well defined [172] and should be thus easily transferable to the replicon 

system. 

 

5.4 Usage of the replicon vector to study MCMV oriLyt function 

DNA replication of the β- herpesvirus subfamily is not completely understood yet. While some 

work has been published on human CMV (HCMV), almost no data is available for any of the 
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other cytomegaloviruses used as models for HCMV disease, like rat CMV, guinea pig CMV or 

MCMV. While eleven proteins are necessary to replicate an oriLyt-containing vector in HCMV, 

no information is available, which proteins are necessary for the DNA replication of MCMV, 

although the core set of proteins is conserved [30]. The study of DNA replication on MCMV 

might be of special interest as HCMV, like MCMV, does not harbor a special latent origin of 

replication. Moreover, only one replication origin has been identified for cytomegaloviruses in 

contrast to other herpesviruses, which harbor up to three origins of replication. Still, HCMV 

resides latently in actively replicating cells as for example myeloid stem cells [173]. To prevent the 

loss of the viral genome during division of the host cell an active DNA replication process 

appears to be necessary. Therefore, the oriLyt of HCMV, like that of MCMV must provide the 

factors for latent DNA replication. Although there is no sequence homology between the oriLyt 

of MCMV and HCMV, the structural composition and functional elements, such as direct and 

indirect repeats, A/T-rich regions, Y-block and transcription factor-rich binding sites are shared 

[45, 46]. Studying HCMV latency in humans is extremely difficult: information on time-point and 

course of infection in patients without pathological findings and availability of tissue-samples is 

restricted. Therefore a detailed knowledge of MCMV DNA replication and in vivo studies might 

be helpful to elucidate the general mechanism of replication in latency. 

 Identification of the proteins necessary for DNA replication of HSV-1 has been 

performed by a method proposed by Challberg [156]. Viral genome fragments were ligated, cells 

transfected with the plasmids, and super-infected with the respective herpesvirus. Amplification 

of the plasmid with the potential origin of replication was analyzed by Southern blot 

hybridization and several oriLyt sequences were identified by this way [45, 46, 63, 174-177]. Later 

on, plasmids containing oriLyt sequences were co-transfected with several plasmids containing 

herpesviral genes, to clarify which individual proteins were necessary for the amplification [156]. 

Although often successful, this strategy is very tedious and time consuming. In this work, a strict 

correlation of DNA replication and induction of gene expression of the replicon vector was 

found. Applying the replicon vector principle would simplify the identification all replication 

proteins. Superinfection of the luc-ori cells and subsequent bioluminescence assays would 

simplify the procedure. While the Challberg-method relies on Southern Blot analysis as read-out 

of DNA amplification, the DNA replication of the replicon vector is simply monitored by FL 

expression. Southern blot experiments extend over a period of four to five days, a 

bioluminescence assay of the replicon vector system can be performed in less than one hour. 

Optionally, quantitative PCR, which is also the more precise and direct proof for DNA 

amplification compared to the bioluminescence experiments can be added to verify findings from 
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the bioluminescence assay. Yet, the bioluminescence assay is cheaper and less prone to errors 

compared to qPCR, which makes it very interesting for a fast high-throughput screening.  

 Notably, even the minimal oriLyt sequence of MCMV has been mapped only roughly 

and no key elements have been assigned yet. The HCMV oriLyt possesses two important regions, 

whereby one region can be replaced by an SV40 promoter [52]. The replicon vector contains also 

a SV40 promoter close to the oriLyt sequence. This could contribute to the connection of 

replication and gene induction, if the SV40 promoter directing FL expression would mimic part 

of the oriLyt sequence. Several viral as well as cellular transcription factor binding sites have been 

mapped to the HCMV oriLyt sequence, but none of these have been analyzed in detail. 

Mutagenesis of the oriLyt sequence in the replicon vector instead of mutagenesis of the viral 

genome should give clearer results, as there is no risk of analyzing side effects due to overlapping 

ORFs or promoters. A RNA/DNA hybrid has been found in the HCMV oriLyt [178], thus it 

would be interesting to know if MCMV possess also RNA/DNA hybrid regions and how these 

elements regulate DNA replication. Furthermore, miRNAs have been identified close to the 

oriLyt [179]. There is no information about their role, yet. Again, these questions can be 

addressed in the replicon system using the FL expression of the pEpibo-luc-ori vector as a simple 

read-out. 

 The induction of DNA replication varies between the herpesvirus subfamilies. While 

the mode of action is very well analyzed in α-herpesviruses only little knowledge is available for 

the other subfamilies. The origin binding protein of the α-subfamily and also that of the 

roseoloviruses initiates DNA replication by forming a cruciform/hairpin structure by 

complementary intrastrand base pairing, which leads to strand separation and recruitment of the 

core replication proteins [180]. In γ-herpesviruses a hairpin structure is also a key element to the 

initiation of DNA replication. There, an imperfect preformed hairpin within a repetitive element 

is recognized by a viral transcription factor and is an important feature of DNA replication 

initiation [181]. A common herpesviral mechanism of DNA initiation based on the formation 

and stabilization of such secondary elements has been proposed [36]. In cytomegaloviruses no 

hairpin structure has been identified yet, although there are several inverted repeats that would 

allow such a conformation. DNA conformation analysis of the oriLyt might be more easily 

accessible in the replicon vector than in the large MCMV genome, with a size of about 230 kb. 
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5.5 Trans-complementation of late viral proteins with the replicon vector 

Protein trans-complementation is an important tool to study mutant herpesviral genomes carrying 

deletion of essential or non-essential genes. To analyze and control the effect of a targeted 

deletion, in order to exclude additional unwanted mutations in the viral genome, revertants of the 

generated mutants are generated. Genetic reversion is a common procedure, where the original 

sequence is reintroduced into the deleted region. This bears, however, the risk to ‘overlook 

construction flaws’ [182] that originate from overlapping gene or regulatory regions, which will 

be also corrected by genetic reversion but not by trans-complementation. Therefore additional 

information may be gained by reversion of a virus mutant phenotype through trans-

complementation. Furthermore, transient complementation of a mutant virus can help to study 

the function of the protein. 

 Especially the trans-complementation of late herpesviral proteins is a difficult task. 

Improper timing and expression levels on the one hand can hamper the correct localization of 

the proteins, while on the other hand isolate expression, i.e. without the co-expression of viral 

binding partners, can lead to toxicity. Particularly, construction of correctly timed expression is 

hindered by the very nature of herpesviral late gene expression. Only limited information about 

the regulation of true-late gene expression is available. As discussed earlier (see section 5.2) one 

remarkable feature is their dependency on DNA replication for the induction of gene expression 

[183]. Removal of late gene promoters from the viral genome and their insertion into the cellular 

genome resulted in wrong, namely early, expression [184]. Correlation of DNA replication and 

late gene expression was demonstrated by the fact that incoming genomes, which were not 

replicated yet, cannot serve as template for late gene expression [183]. Moreover, late gene 

expression could be restored if a late gene promoter or a minimal promoter was present together 

with a lytic origin in cis [185, 186]. Deviations from this principle exist in that some late gene 

promoters were dependent on DNA replication in trans [187]. Although trans-complementation of 

late herpesviral protein is so difficult to achieve with the constitutive expression cassettes, 

nobody has tried to construct an expression cassette mimicking herpesviral late gene expression 

to our knowledge. 

  ‘Toxic’ proteins have to be expressed via conditional systems. The most common 

inducible expression systems are the Tet-ON/Tet-OFF system [67] or the FKBP12 [68] system, 

which rely on the administration of small chemical compounds. By the addition of the 

compound, activation takes place synchronously in all cells in the culture. This activation is 
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independent from the state of virus replication in all cells. In contrast the oriLyt-based system 

uses viral DNA replication as signal for the induction. Moreover, the expression of the transgene 

follows the natural route of late kinetics in the replicon system as the expression increases in 

proportion with the amplification of the vector DNA. Thus each cell is activated individually 

upon infection with incoming virus, which leads to appropriate and correct timing of the late 

transgene. It has to be noted, that due to the replication dependency the system is only suitable 

for trans-complementation of late but not of early viral transgenes. 

 The TET-regulatory system has been successfully used to trans-complement the late 

protein M94 of MCMV [71]. In this case, the M94 gene in the viral genome was replaced by the 

gene encoding the tetracycline transcription activator (tTA) and a cell line encoding the M94 gene 

under control of the tetracycline response element (TRE) was constructed. In this setting the 

virus lacking M94 induces the expression of M94 upon infection in this cell line. By this elegant 

way the tTA protein is produced at the time point the endogenous M94 protein would be 

activated and binds to the TRE element, which leads to the transcription of the transgenic M94. 

In this case, the protein is produced at the correct time point. However, an increase of transgene 

expression as it is achieved with the replicon system does not take place here. While the tTA-

TRE method allowed trans-complementation of the essential M94 protein, the mutant production 

in large scale was tedious (personal communication, C. Mohr). A further disadvantage of the 

system is the necessity to modify the viral genome for presence of bacterial elements in the 

inducing expression cassette within. Especially for vaccine production, bacterial sequences within 

the viral genome should be avoided. The replicon system, in contrast, is activated by wt virus and 

thus allows more possibilities for the design of virus mutants. Moreover the system is not marred 

by the presence of ‘foreign’ DNA elements. 

 Usage of the replicon system for protein trans-complementation was demonstrated with 

two viral proteins, namely gO and M50. In case of the non-essential glycoprotein O, the deletion 

of the gene causes a 2 to 2.5 fold order of magnitude smaller amount of virus in supernatants and 

a strict cell-associated spread. Growth on the complementing cell line gO-ori of the MCMV∆gO 

mutant restored the phenotype, meaning that the virus is no longer restricted to a focal spread 

pattern and releases similar amounts of virus compared to the wt situation. Thus the replicon 

system was suitable to trans-complement even such a difficult transgene like a glycoprotein. Due 

to the host-mediated silencing of the transgenes, the question whether the system is also suitable 

to trans-complement a toxic protein was addressed. Previous attempts to generate M50-

complementing cell lines via common methods failed [150]. In contrast, the creation of M50-
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complementing cell line with the replicon system was very successful. No difference to any other 

non-toxic transgene was detectable regarding efficacy of cell line generation. This was due to the 

fast host-mediated shut-off of the M50 transgene expression. Western Blot analysis revealed the 

absence of the protein in uninfected cells and a high induction of the protein in infected cells. 

Very high titers of MCMV∆M50 virus could be grown on the M50-ori cell lines speaking for the 

high efficacy of trans-complementation. Furthermore, reconstitution of ∆M50 virus from 

transfected BACs was just as quick as the reconstitution of wt virus.  

 Trans-complementation bears the risk of reversion of the mutant virus to wt sequences 

due to recombination of homologous sequences. Viral genes are often organized in an 

overlapping fashion in the genome. Therefore deletion of an open reading frame is not always 

possible, as the neighbouring gene would be affected as well. Furthermore, the replicon vector 

carries the oriLyt-sequence, which of course is present in the viral genome as well. While no 

recombination of MCMV∆gO could be detected when propagated in the gO-ori cells, reversion 

of the M50 deletion was found after propagation on the M50-ori cells. In both cases there were 

complementary sequences in the replicon vector and the viral genome as the genes could not be 

completely deleted due to overlapping coding sequences. However, the selection pressure on 

MCMV-∆M50 is much higher, as the gene is essential for virus spread. The deletion of gO causes 

only a reduction in viral release and a change in the mode of virus entry. The detection of 

recombination is however much more sensitive in case of M50 as a few recombined genomes 

have a growth advantage on non-complementing cells, as these are the only virus mutants that 

are able to survive. The recombination rate in the cell pools was high with 1 of 104 viruses. Yet, 

the recombination rate in the isolated M50-ori cell clone 2.1 was very low with less than 1 of 108 

viruses. Maybe, the presence of non-functional cells in the cell pool, i.e. cells only having the 

resistance marker integrated but not the transgene as seen in the luc-ori cl.4 line, increases the 

selection pressure towards recombined genomes. In case of gO, recombination via phenotypic 

assays is much more difficult to detect as the protein is not essential for virus amplification. Yet, 

even PCR analysis could not detect any recombination of MCMV∆gO with the replicon vector. 

Furthermore, no recombined viruses where found by immuno-histology in mice infected with 

trans-complemented MCMV∆gO (personal communication B. Adler), where recombination 

would provide a major growth advantage and selection pressure would be also very high. It needs 

to be determined what favors recombination with the replicon vector and how it might be 

prevented. 
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 Single cycle viruses (see section 1.6) are of rising importance for vaccine development 

[71, 188]. A single cycle virus is a virus lacking an essential gene in its genome but is trans-

complemented with the respective protein in order to allow the infection of the host. Still, the 

virus cannot spread further to neighboring cells. The major advantage of this vaccination strategy 

is the presentation of almost all antigens and the high safety in comparison to attenuated 

vaccines. A major limitation with single cycle viruses for vaccination is the necessity to trans-

complement the missing protein. Vaccine production needs to be safe as well as efficient in order 

to be applicable. The trans-complementation of essential genes with the replicon vector system 

might help to improve the latter point, as the titers that were obtained after trans-complementing 

mutant viruses in replicon cell lines were comparable to wt titers. Yet, the degree of 

recombination of the vector might limit the usage of the system for vaccine production at this 

stage.  

  

5.6 Difference between ex vivo and in vivo performance of the replicon 

vector system 

While the replicon vector could be very successfully used in tissue culture, its performance in 

mice was disappointing. The question remained why the bioluminescence signal upon infection 

could be easily detected in explanted tissue culture but not in the living animal. A simple solution 

would be to hold the detection limit of the non-invasive bioluminescence signal to account for 

the lack of the FL signal. However, measurements were performed with maximal sensitivity 

settings. Under such conditions it has been possible to detect even as few as 500 to 1000 

bioluminescent cells in vivo [189]. Regarding the infection dose of 1 × 106 PFU wt-MCMV, the 

initial amount of infected cells is much higher as the cell number in the former mentioned reports 

― without even taking further dissemination in account. The high bioluminescence values in 

tissue culture were obtained with an MOI of 0.5; this infectious density is not reached in vivo in 

the first place. However, when amplification and spread takes place high titers can be locally 

obtained, which should have resulted in detectable FL signals. Furthermore, also low MOI 

infection as 0.01 gave a measurable signal in the luc-ori cells.  

 Even invasive bioluminescence assays on organ homogenates were not successful either 

(data not shown), although the sensitivity is here even much higher, as the signal is not blocked 

by fur or tissue. The induction of gene expression was however readily detectable in explanted 

tissue cultures of the VIOLA mice. Still, the bioluminescence values were rather low, compared 

to the data of the luc-ori cell line. One possible explanation for the low induction is the 
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integration of the replicon vector into the host genome. Although the general opinion of 

herpesviral replication proposes the initiation of replication from circular genomes, the 

hypothesis has been challenged as the lytic replication may originate from linear templates [190]. 

Replication of integrated origin of replication sequences of HSV-1 (oriS) has been reported [191]. 

Previous experiments with an oriS associated with an expression unit in an integrated vector, 

proposed that the replication origin had no influence on gene expression [192]. However, as the 

data obtained in that study was derived from integrated constructs, the two data sets, namely with 

and without oriS, were not directly comparable as the influence of positional effects was not 

taken into account. In the line with this, also integrated replicon constructs might be subjected to 

positional effects. This could cause failure of the system or lower induction strength in general. 

Yet, in case of the VIOLA mice, this does not explain the difference between in vivo and ex vivo 

experiments, as the construct has always the same genomic position even if the integration 

decreases full replicon strength. 

 The curious difference of the replicon system in the VIOLA mice is reminiscent to the 

behavior of herpesviral genomes. The hallmark of herpesvirus infection is establishment of latent 

infection. In the latent infection almost no gene expression occurs and no viral progeny is 

produced. A reliable observation is the reactivation of herpesviruses from latently infected cells 

after explantation of tissue [193, 194]. Interestingly, addition of histone deacetylase inhibitors like 

TSA can enhance the reactivation rate. Thus, it can be concluded that the chromatin state of the 

herpesviral genome is involved in the establishment and maintenance of latency. During 

explantation major epigenetic changes occur, which release the latent genomes from the silenced 

state. A similar effect might be active with the replicon vector as well. It might be that the vector 

is in a chromatin state that is inaccessible for the DNA replication machinery of MCMV and 

therefore the induction of gene expression is hindered in vivo. During explantation, a less tight 

meta-stable chromatin status may be established, which can be than resolved during infection. To 

address this question, the epigenetic status of uninfected and infected cells from mice and 

explanted tissue needs to be analyzed. CHIP experiments should show different histone marks to 

proof this hypothesis. 
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5.7 Concluding remarks 

In this study, a herpesvirus lytic origin of replication was combined with the transcription unit 

from an episomal vector to generate a novel inducible expression system, namely the replicon 

vector, which is induced by infection with wt virus. Transgene expression of the replicon vector 

was reliably silenced in all tested cell types. However, upon viral infection, de-silencing and 

activation of the replicon vector led to a >1000-fold increase in induced gene expression. The 

novel and major advantage of the replicon system over other inducible system resides in the 

usage of fundamental viral processes. Wt virus infection suffices and no chemical compound has 

to be added in order to achieve induction of transgene expression. Instead, the DNA replication 

of the infecting virus does also lead to the DNA amplification of the replicon vector, which, in 

turn, releases the vector from silencing and activates gene expression. Due to the increase in 

vector templates a remarkably strong induction of transgene expression was achieved. Therefore, 

the expression of the transgene was much stronger when compared to conventional expression 

systems and can almost cope with the strength of viral expression itself. Moreover, fluorescence 

imaging revealed a nearly perfect correlation of infected cells and cells expressing the marker 

protein. Thus, the transgene is only expressed in the virus infected cell, which undergoes a lytic 

infection cycle. This, of course, prevents toxic side effect by unwanted expression of the 

transgene protein and thus solves the major problem that marred previous applications like 

intracellular immunization and trans-complementation of toxic proteins.  

 The non-viral episomal vector system pEPI offered an interesting opportunity for the 

construction of the replicon vector. Previous reports highlighted the stable expression and 

maintenance of the vector in the absence of antibiotic selection pressure. Silencing of the 

encoded transgene was, however, found in all cell types tested, while FISH analysis revealed the 

mainly episomal persistence of the vector in vitro. Although, this limits the usage of the pEPI 

vector for other purposes were a reliable constitutive expression is needed, it was very 

advantageous for the goal of this study, as an extremely low or no background expression could 

be detected. The generation of transgenic mouse lines based on the non-viral and episomal pEPI 

vector background can be reported herein for the first time, although unfortunately, the vector 

failed to persist in the episomal state in vivo. This emphasizes, while pEPI vectors are used for 

gene therapy in many other studies, which were mainly in vitro, that translation of such system to 

the living transgenic animal certainly needs further (re-) evaluation to consider the demands on 

the vector for reliable performance and to finally proof the concepts in vivo. In other words, the 

results shown herein demonstrate – not for the first time – that data obtained from in vitro 
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experiments are not directly translatable to the living animal. Thus, further studies and re-

evaluation of the in vivo findings made herein are needed. It remains open if and how a transgenic 

mouse stably homing an episomal vector can be generated.  

 Yet, the data obtained in this study, helped to solve important aspects on the way to 

implement intracellular immunization to livestock. A major improvement was the lack of toxic 

side effects seen with constitutively expressed dominant-negative transgenes by using a suitable, 

i.e. an inducible, system. The trigger to activate the inducible system must rely within the virus 

itself to achieve a fast inhibition of the infection and, moreover, prevent further spread of the 

virus. Trans-activation of viral promoters was considered as one possibility to obtain a virus-

specific induction, however, with respect to the strength of expression, the activation of viral 

promoters (encoded in the host chromatin) by transcription factors provided by the viral 

infection in trans was rather low. Yet, high expression of the dominant-negative protein is 

necessary in order to block viral spread. The replicon vector provides here the basis for extremely 

high expression levels that can partially cope with levels obtained during viral infection. 

Nevertheless, full inhibition of virus spread could not be achieved with the DN GFPSCP used in 

this study. Targeting proteins, that have lower abundance than the small capsid protein, with 900 

copies per virion, might shift the DN to wt ratio resulting in stronger inhibition. An interesting 

late protein target could be e.g. the portal protein, which is present only twelve times per capsid. 

 The expression and especially the trans-complementation of late herpesviral protein was a 

difficult task as true-late viral proteins are only expressed after viral replication has taken place. 

Out of the viral context, true-late promoters are generally activated with an early kinetic. This 

wrong expression timing often caused problems in trans-complementation resulting in low virus 

yields. This is an unwanted side effect in vaccine production, for example. With the replicon 

vector system viruses lacking the glycoprotein O or the toxic transmembrane protein M50 could 

be successfully trans-complemented to high virus titers. Thus, the replicon system closes the gap 

for production of such virus deletion mutants.  This would allow, if transferable to viruses 

infecting man, to generate spread-deficient vaccines. These should be promising candidates for 

vaccination against infection and/or reactivation of human herpesvirus infections. 
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7 APPENDIX 

7.1  Abbreviations 

BAC  Bacterial artificial chromosome 

BHV-1 Bovine herpesvirus -1 

Bsr Blasticidin S resistance gene 

BS Blasticidin S 

BSA Bovine serum albumin 

CAM Chloramphenicol 

DEAC Diethylamincoumarin 

DN Dominant negative 

DNA Deoxyribonucleic acid 

DR Direct repeats 

dNTP Desoxynucleotide triphosphate 

EBV Epstein-Barr virus 

FCS Fetal calf serum 

FL Firefly luciferase 

gDNA Genomic DNA 

H Hour 

HCMV Human cytomegalovirus 

h p.i. Hours post infection 

i.p. Intraperitoneal 

i.v. Intravenous 

IR Inverted repeats 

KAN Kanamycin 

KSHV Kaposi’s Sarcoma virus 

LB Luria broth 

Lbr Lamin B receptor gene 

LIF Leukemia inhibitory factor 

Luc Firefly luciferase gene 

MCMV Murine cytomegalovirus 

MDV Marek’s disease virus 
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MHV68 Murine herpesvirus 68 

min  Minutes 

MOI Multiplicity of infection 

NEAA Non-essential amino acids 

NTP Nucleoside triphosphates 

OBP Origin binding protein 

o.n. O.n. 

Ori Origin of replication  

oriLyt Origin of lytic replication 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PRV Pseudorabies virus 

qPCR Quantitative PCR 

RFLP Restriction fragment length polymorphism 

RT Room temperature 

SB Sleeping Beauty 

TGN Trans-Golgi network 

URR Upstream regulatory region 

Wt Wild type 
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