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1. Introduction 
 

 
Innate and adaptive immunity are the two branches of the immune system. Cells of the innate 

immune system sense microbial presence by recognizing non-processed antigens, known as 

pathogen-associated molecular patterns (PAMP) using invariant pattern recognition receptors 

(PRR) in an antigen-independent manner.  Macrophages and granulocytes are subsequently 

activated, providing „immediate care“ (within hours) while restricting the spreading of an infection. 

 

On the other hand, cells of the adaptive immune system, comprising the T and B lymphocytes, are 

stimulated in an antigen-specific manner, and rely on additional instructions from the cells of the 

innate immune system to get activated.  The resulting adaptive response is directed against one 

specific antigen. Furthermore, it is characterised by its immunological memory functions, providing 

long-lasting protection against invading pathogens, and is responsible for the discrimination 

between self and non-self.  

 

Antigen-presenting cells (APCs) are critical for the initiation and modulation of adaptive immune 

responses. Dendritic cells (DCs), known as the most potent APCs, represent a crucial link between 

the innate and the adaptive immune system, playing a central role in T lymphocyte activation and 

differentiation into T helper and cytotoxic T cells. In brief, the life cycle DCs can be simplified as 

follows: immature DCs are ideally positioned as sentinels in the bloodstream, mucosa or residing in 

tissues, sampling for incoming pathogens. In their immature state, they are highly efficient in 

antigen capture, processing and presentation with major histocompatibility complex (MHC) 

molecules - a prerequisite for T-cell activation. Upon activation, they undergo a process of 

maturation, up-regulating co-stimulatory molecules and migrating to the T cell-rich regions of lymph 

nodes where priming of corresponding naïve T cells occurs, resulting in the initiation of a T cell-

mediated response.  

 

In addition to their pivotal role in bridging the innate to the adaptive immune system, DCs have 

been found to be involved in the pathology of autoimmune diseases, cancer, organ rejections and 

graft versus host reactions (Banchereau et al., 2006). In recent years, there has been an 

increasing interest to exploit DCs to launch a specific T cell-mediated immune response against 

cancer cells. However, poor results obtained in early clinical trials have dampened the initial 

enthusiasm about DC-based immunotherapy. 

 

In current studies, factors contributing to the minor success of DC-based immunotherapy against 

cancer are being identified. Continuous investigation of DC biology will not only be helpful in  
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understanding the pathophysiology of diseases, but also in improving target-oriented therapeutic 

approaches. Thus, the generation of highly effective DC eligible for anti-tumour therapy is the main 

objective of this doctoral thesis. 

 

 

1.1. Dendritic cells 
 

1.1.1. Dendritic cell subsets 

 

Like all immune cells, DCs originate from hematopoietic stem cells. It is widely accepted that there 

are two main differentiation pathways of DCs, generating three major DC subsets: (i) myeloid DCs 

(also known as interstitial DCs), (ii) Langerhans cells (LC)-DCs, and (iii) plasmacytoid DCs (pDCs).  

Along the myeloid pathway, CD34+ haematopoietic stem cells differentiate in either CD11c+CD1a+ 

Langerhans precursor cells or CD11c+CD1a- interstitial DC precursor cells (Liu et al., 2001). While 

epidermal Langerhans cells stimulate cytotoxic T cells, interstitial DCs are localized in the dermis 

and other tissues, and promote B cell differentiation. Furthermore, the common myeloid progenitor 

gives rise to monocytes, differentiating into myeloid interstitial DCs under the influence of 

granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). CD34+ -

pDCs, believed to be of lymphoid origin, are characterized by the secretion of large amounts of 

type I interferons (interferon-� and interferon-�) in response to viral infections. 

 

Recent murine in vivo studies demonstrated that Langerhans cells are derived from monocyte 

precursors (Banchereau et al., 2006). Though some data support the theory that human 

monocytes also represent a relevant in vivo precursor population for DCs (Banchereau et al., 

1998), it remains to be determined whether monocyte-derived DCs have biological significance in 

humans.  

 

 

1.1.2 Functional plasticity of dendritic cells 

 

In contrast to the initial belief that the developmental origin exclusively defines the functional 

specialization of distinct DC subsets, it has become evident that the local microenvironment, 

antigen dose, nature of microbial stimulus and maturational status of DCs modulate the final 

outcome of a T-cell mediated response (Pulendran et al., 2004). In vitro studies demonstrated that 

neither a TH1 (T helper) nor a TH2 response was an intrinsic feature of specific DC subset (Vieira et 

al., 2000) : while DCs cultured with IL-10 induced TH2 responses, interferon-�-primed (IFN-�) DCs 

were found to be potent inducers of TH1 responses. Similarly, monocyte-derived DCs (moDCs)  
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matured with interleukin-1�� ����1���and tumour necrosis factor-� (TNF-�) were demonstrated to 

induce a TH1 response, while the supplementation of prostaglandin E2 (PGE2) rapidly induced the 

secretion of TH2 cytokines (Kalinski et al., 1998). Likewise, the influence of the microenvironment 

on DC differentiation was underlined in experiments demonstrating that DCs localized in different 

tissues elicited different responses. For instance, splenic DCs were found to induce the secretion 

of TH1 cytokines, whereas DCs localised in Peyer's patches secreted TH2 cytokines (Iwasaki et al., 

1999). 

 

 

1.1.3. Antigen uptake, processing and presentation 

 

Immature DCs sense microbial presence via recognition of pathogen-associated molecular 

patterns (PAMPs) by means of their pattern recognition receptors (PRRs) or through inflammatory 

cytokines present in the microenvironment. PAMPs represent highly evolutionary conserved 

patterns found on all microorganisms, that are essential for their survival (and therefore difficult to 

alter) and distinct from the host’s patterns. Following recognition, immature DCs capture antigens 

in vivo by phagocytosis, receptor-mediated endocytosis or macropinocytosis (Guermonprez et al., 

2002). Experimentally, DCs have been shown additionally to internalise latex and zymosan beads 

(Inaba et al. 1993) as well as apoptotic bodies (Parr et al. 1991; Rescigno et al. 2000).  

 

In order to be recognised by T cells, the captured antigens need to be processed and displayed in 

association with self MHC molecules in a process known as antigen presentation. The presentation 

of antigenic peptides on either MHC class I or MHC class II molecules determines the type of T 

cells to be primed – a feature described as the T-cell restriction of the immune system. MHC class 

I-restricted presentation of intracellular or endogenous antigens leads to activation of CD8+ 

cytotoxic T lymphocytes (CTL). In contrast, presentation of exogenous antigens on MHC class II 

molecules activates CD4+ T helper cells, thereby eliciting either a TH1 or a TH2 response. While a 

TH1 response is characterised by the activation of macrophages, cytotoxic T cells and other 

effector cells, a TH2 response results in the activation of B lymphocytes, with the subsequent 

formation of immunoglobulins.  

 

In addition to these classical pathways of antigen presentation, DCs are capable of presenting 

exogenous peptides on MHC class I molecules, a process called “cross-presentation” (Trombetta 

et al., 2005). It represents an important feature of DCs, resulting in the activation of CD8+ T cells 

against tumour and viral antigens that are otherwise not accessible to the classical MHC class I 

pathway. Furthermore, cross-presentation in DCs was reported to play an important role in 

transplantation and autoimmune diseases (Ackerman et al. 2004). 
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1.1.4. Maturation of dendritic cells 

 

DC maturation is characterised by the development of features optimising the efficacy of DCs in T-

cell priming. It is a continuous process, initiated in the periphery following encounter to pathogens, 

and completed upon T-cell encounter. Microbial-derived stimuli (e.g. Toll-like receptors), pro-

inflammatory mediators (PGE2, TNF-�), T-cell derived signals (CD40 ligand), and immune 

complexes acting on Fc receptors as well as sensors for cell death are known to induce maturation 

in DCs.  

 

DC maturation is characterised by the up-regulation of membrane-associated co-stimulatory 

molecules, such as CD86 (cluster of differentiation) and CD80, as well as increased expression of 

the specific DC marker CD83 and MHC molecules (Banchereau et al., 1998). CD83 is one of the 

best-known maturation markers in DCs. Its functional role has not been completely elucidated, but 

it has been reported to influence T cell differentiation (Lechmann et al., 2002).  

 

Concomitant to the up-regulation of co-stimulatory molecules, DCs undergo co-ordinated changes 

in the expression of adhesion molecules accompanied by cytoskeletal re-organisations. For 

instance, mannose-receptors are down-regulated and DCs lose their capacity to capture antigens. 

Likewise, they become unresponsive to immature DC-associated chemokines such as 

macrophage inflammatory protein (MIP-) 1� and MIP-3� (Caux et al. 2002). 

 

 

1.1.5. Migration of dendritic cells  

 

To encounter and activate T lymphocytes, DCs migrate to secondary lymphoid organs. The 

process of DC maturation is closely related to DC migration: while up-regulating the chemokine 

receptors CCR7, DCs migrate to the lymph nodes via the afferent lymphatic system or high-

endothelial venules (HEV). Upon CCR7 expression, mature DCs respond to MIP-3� (also known 

as Exodus 3, ELC [EBI ligand chemokine], CCL 19 [chemokine ligand]) and 6Ckine (also known as 

SLC [secondary lymphoid tissue chemokine], Exodus 2 or CCL21), both highly expressed by 

stromal cells in the T cell rich zones of lymph nodes. Interestingly, CCR7+ naïve T cells were also 

reported to enter lymph nodes in response to 6Ckine (Willimann et al., 1998). Likewise, CCR7 

expression was found in B cells as well as in non-immune cells in various malignancies (Förster et 

al., 2008).   

 

The key role of CCR7 in migration was demonstrated in a mouse knock-out model, whereby 

CCR7- mice failed to migrate to lymph nodes while exhibiting an impaired immune response (Gunn  
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et al., 1999). In addition to its central role in chemotaxis, CCR7 was found to exert regulatory 

effects on DCs. Its expression has been associated with an extended longevity of DCs, caused by 

an inhibition of apoptosis. Furthermore, an increase in migratory speed was observed in CCR7+ 

DCs (Sanchez-Sanchez et al., 2004). Concomitant with the up-regulation of CCR7, changes in the 

cytoarchitecture of DCs were observed in terms of re-organisation of the actin cytoskeleton and the 

development of dendritic protrusions (Sanchez-Sanchez et al., 2006). 

 

However, in contrast to early assumptions, there is increasing evidence that migration is not limited 

to mature DCs: immature DCs expressing CCR7 in the absence of inflammatory signals were also 

found to home to the lymph nodes. These “semi-mature” DCs are believed to contribute to 

peripheral immunological tolerance against self-antigens (Sanchez-Sanchez et al., 2006). 

 

 

1.2. Dendritic cells and T-cell mediated immunity  
 

Naïve T lymphocytes rely on interactions with APCs for their differentiation and expansion in 

effector T cells. DCs deliver three key signals required for the clonal expansion and differentiation 

of T cells:  

 

� Signal 1: MHC/peptide complex associated with T-cell receptor (TCR) 

� Signal 2: co-stimulatory signals required for the survival and expansion of T cells 

�   Signal 3: co-stimulatory signals involved in directing the differentiation into different  

     subsets of effector T cells 

 

 

1.2.1. T-cell subsets 

 

While the priming of CD8+ T cells results in a single set of effector cells, namely the cytotoxic T 

lymphocytes (CTL), the differentiation pathway of the CD4+ subpopulation is more complex giving 

rise to several types of T helper cells, namely the TH1, TH2 or T regulatory cells.  

 

TH1 cells are characterised by the secretion of IFN-�, IL-2, TNF-� and TNF-�, enhancing the 

bactericidal activity of macrophages for the eradication of intracellular pathogens. The predominant 

inducers of a TH1 differentiation by DCs are IL-12 and IFN-�. On the other hand, IL-4, IL-5, IL-6 and 

IL-13 are the major cytokines secreted by TH2 cells, optimal for the production of antibodies, and 

are involved in the elimination of extracellular pathogens, including helminthes and nematodes. 

The differentiation of TH2 cells is promoted by the presence of PGE2, TNF-�, IL-1 and TGF-�  
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(transforming growth factor) . With regard to T regulatory cells involved in immunological tolerance, 

the synthesis of IL-10 has been shown to promote their differentiation in the absence of co-

stimulatory molecules by DCs.  

 

 

1.2.2. Interleukin-12 

 

Secretion of IL-12 is essential to resist infections against bacteria and parasites. Activation of an 

antigen-specific TH1 response represents its major role. As a potent inducer of IFN-� secretion by 

natural killer (NK) cells and T cells, it favours the differentiation and proliferation of precursor T 

helper cells into effector T cells. DCs have been found to be one of the main producers of IL-12. 

Recent studies have shown that IL-12 also possesses anti-tumour functions. However, the exact 

mechanisms involved are not fully understood. Unlike its effects on T helper cells, IL-12 exerts no 

polarising effects on the differentiation of CD8+ T cells, but was found to increase their cytotoxic 

potential and functional avidity (antigen sensitivity) - an important aspect to be considered in anti-

tumour regimes (Xu et al., 2006).  

 

The bioactive form of IL-12 is a covalently linked heterodimer cytokine formed by a p35 subunit 

(also called IL-12�, a 35 kDa light chain) and a p40 subunit (the heavy 40 kDa chain, also called 

IL-12�), which is secreted by activated APCs, including macrophages, monocytes and DCs. 

Although IL-12 is predominantly produced by DCs upon CD40 ligation while interacting with TH1 

cells, IFN-� or IL-4 have also been found to be required for its secretion (Snidjers et al., 1998). 

Regarding the IL-12 receptor, it consists of the IL-12R-�1 and the IL-12-�2 polypeptide chains 

(Presky et al., 1996), mainly expressed by T cells and NK cells. They have been found lately to be 

additionally expressed by B cells. Interestingly, the IL-12 receptor is absent in most resting T cells, 

and is up-regulated upon its activation mediated by the T cell receptor.  
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1.3. Clinical applications of dendritic cells 
 

Steinman’s publication about the potential roles of DCs in clinical medicine considered the 

following three aspects (Steinman et al. 2007):                                                                                  

 

 

   
 

 

 

 

 

 

 

  
 

 

1.3.1. Dendritic cells and tolerance 

 

One of the fascinating features of the adaptive immune system is its ability to discriminate between 

self and non-self. DCs play an important role in central as well as peripheral tolerance. By inducing 

negative clonal selection during T cell development, they ensure the elimination of T lymphocytes 

recognising self-antigens on thymic cells. In the context of peripheral tolerance, tolerogenic DCs 

are involved in the induction of anergy (T cells are refractory to activation, due to the absence of 

co-stimulatory molecules) or deletion of autoreactive T cells (Hawiger et al., 2001).  

 

 

1.3.2. Dendritic cells and clinical immunology 

 

Considering their pivotal functions in controlling immunity, DCs also play a role in the development 

of autoimmune diseases, transplantation, immunodeficiency as well as resistance to infection and 

to tumours. For instance, increased numbers and activations of DCs have been observed in 

patients with psoriasis and rheumatoid arthritis. Moreover, DCs have been found to be the source 

of cytokine over-production associated with autoimmunity (Banchereau et al., 2006). 

Correspondingly, excessive TNF-� was observed in rheumatoid arthritis and psoriasis (Lowes et 

al., 2005). Likewise, plasmocytoid DCs were found to release large amounts of type I IFN in 

systemic lupus erythematosus (Benett et al., 2003). In transplantation, DCs have been described  

Roles of DCs in clinical medicine 

Modulation of immune 
responses 

 
- Resistance to infection 
- Resistance to cancer 
- Tolerance induction 

Disease development 
 

- Autoimmunity 
- Graft-vs-Host reaction 
- Immune evasion 
- Tumour pathogenesis 

Disease treatment 
 

- DC-based    
  immunotherapy 
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as the key initiators of T-cell induced responses in graft versus host reactions; recipient DCs were 

found to capture graft antigens and stimulate alloreactive T lymphocytes. 

 

Additionally, DCs are believed to participate in the development of cancer. Tumours suppress 

immunity by several pathways, and are capable of evading the immune system by exploiting DCs. 

For instance, tumours have been demonstrated to condition DCs to form suppressive T cells like 

FOXP3+ (Ghiringhelli et al., 2005) or IL-13-producing CD4+ T cells (Aspord et al., 2007). The 

secretion of IL-6, vascular endothelial growth factor (VEGF) and IL-10 by tumour cells have also 

been reported to exert inhibitory effects on DCs (Steinman et al., 2007). On the other hand, DCs 

infiltrating colon and basal-cell cancers were found to be CD80- and CD83-deficient, emphasizing 

the necessity of functional DCs to mount an antigen-T cell anti-tumour response.  

 

 

1.3.3. Dendritic cell-based cancer immunotherapy 

 

In comparison to conventional anti-tumour regimes, the advantages of immunotherapy lie in their 

non-toxic and specific effects. T-cell mediated immunity is thus a potent therapeutical approach to 

consider in the treatment of cancer.  DCs represent optimal candidates for the treatment of cancer 

based on the following facts (Steinman et al., 2007): 

 

� DCs have been detected in tumours 

� tumour cells express molecularly defined antigens  

� DCs are capable of presenting tumour antigens and activating different arms of 

cell-mediated resistance, namely NK cells and T cells 

� ex vivo generated DCs retain their immuno-stimulatory capacity in cancer 

patients  

� DC-based vaccines can induce long-term immunity and tumour protection in vivo 

 

The induction of a T-cell mediated anti-tumour response can be achieved by two DC-based 

approaches. In the first approach, ex vivo generated DCs are loaded with tumour antigens, and re-

injected in the patient. The second strategy is based on the direct targeting of DCs in vivo. 

However, despite the induction of T-cell responses and some cases of tumour regression observed 

in early clinical trials with DC vaccines, relevant clinical responses and effects on survival are 

reported only very rarely (Steinman et al., 2007).  
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1.4. Isolation of dendritic cells 
 

DCs can be isolated directly from peripheral blood, or generated in vitro from CD34+ hematogenic 

stem cells or from CD14+ monocytes. Monocytes can be isolated from peripheral blood, buffy coats 

or leukapheresis by plastic adherence, immunomagnetic selection or elutriation. Alternatively, DCs 

can be expanded in vivo by injections with cytokines termed “DC-poietins” including Flt3-ligand, 

GM-CSF and G-CSF (Maraskovsky et al., 1996; Pulendran et al., 1999). Their scarcity (accounting 

for only 0.1 % of the mononuclear cells) and the difficulty encountered in isolating and maintaining 

them in culture represented the two major obstacles for experimental and clinical use of peripheral 

blood DCs in early trials. 

 

To date, the gold standard is based on the generation of monocyte-derived DCs in vitro from 

peripheral blood : monocytes are isolated from the peripheral blood mononuclear cells and cultured 

for 5-7 days with GM-CSF and IL-4 (Sallutsto et al., 1994; Romani et al., 1994), followed by 

stimulation for another two days with pro-inflammatory mediators (Jonuleit et al., 1997).  

 

 

1.4.1. Stimuli used for dendritic cell maturation in vitro 

 

1.4.1.1. Pro-inflammatory mediators: Prostaglandin E2, tumour necrosis factor-� and   
 interleukin-1� 

 
Physiologically, pro-inflammatory mediators are secreted mainly by monocytes and macrophages 

at inflammatory sites. Previous studies of our group demonstrated that single pro-inflammatory 

mediators were incapable of inducing phenotypic maturation of monocyte-derived DCs. However, 

PGE2 and TNF-� acted synergistically in inducing full DC maturation, and the supplementation with 

IL1-� enhanced the IL-12 secretory potential of DCs (Dauer et al., 2003). On the other hand, IL-6 

was found to be indispensable in the differentiation of FastDC.  

 

PGE2 is one of the most reliable and powerful mediators known to induce maturation of DCs. More 

importantly, it has been shown to be indispensable for the development of migratory capacities of 

DCs by regulating the sensitivity of CCR7; the exact mechanisms involved are not fully understood. 

Its signalling cascade involves G-proteins, mediated by the subunits EP4 (prostaglandin E 

receptor) and EP2 receptors in humans (Legler et al., 2006).  

 

IFN-� is a cytokine with antiviral properties secreted predominantly by plasmacytoid DCs. 

Excessive IFN-� in the serum of systemic lupus erythematosus patients was reported to induce the  
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differentiation of monocytes into DCs (Blanco et al., 2001). In vitro studies with monocyte-derived 

DCs showed that IFN-� induced maturation when supplemented with other cytokines (Luft et al., 

2002). Furthermore, the supplementation of IFN-� was shown to enhance survival and prevent the 

reversion of DCs to an immature phenotype (Dauer et al., 2006). 

 

 

1.4.1.2. Pathogen-derived signals: Toll-like receptors  

 

Toll-like receptors (TLRs) are innate receptors that sense microbial products and trigger DC 

maturation and cytokine production. To date, twelve TLRs have been identified in mammals, and 

each of them is stimulated by a distinct set of microbial compounds. TLRs are composed of 

integral membrane glycoproteins with extracellular domains containing varying numbers of leucine-

rich repeats and a cytoplasmic signalling domain homologous to the IL-1 receptor, called the 

Toll/IL-1R domain (TIR domain) (Bowie et al., 2000). Although TLRs are expressed by a large 

variety of cells including macrophages, B cells, T cells, and non-immune cells such as fibroblasts 

and epithelial cells, DCs exhibit the broadest repertoire of TLRs. Unlike other receptors recognising 

microbial ligands, only TLRs are capable of inducing DC maturation directly. Localised in different 

cellular compartments, they are expressed in a differential manner in distinct DC subsets. Myeloid 

DCs express all TLRs except TLR7 and TLR9, which are expressed selectively by plasmacytoid 

DCs (Jarossay et al., 2001). While most of the TLRs are expressed at the cell surface, TLR7, TLR8 

and TLR9 are localised in endosomes. However, the exact intracellular localisation of TLR3 

remains to be determined (Napolitani et al., 2005). Table 1 gives a summary of the different TLRs 

as well as their corresponding ligands. 
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Table 1: 

Microbial components Species TLR usage 

 

Bacteria 

LPS Gram negative bacteria TLR4 

Diacyl lipopeptides Mycoplasma TLR6/TLR2 

LTA Group B Streptococcus TLR6/TLR2 

Triacyl lipopeptides Bacteria and mycobacteria TLR1/TLR2 

Porins Neisseria TLR2 

Flagellin Flagellated bacteria TLR5 

CpG-DNA Bacteria and mycobacteria TLR9 

Not determined Uropathogenic bacteria TLR11 

 
Viruses 

DNA Viruses TLR9 

dsRNA Viruses TLR3 

ssRNA RNA viruses TLR7 and TLR8 

Hemagglutinin protein Measles virus TLR2 

Envelope proteins RSV TLR4 

 

Fungi 

Mannan Candida albicans TLR4 

Zymosan Saccharomyces cerevisiae TLR6/TRL2 

Glucuronoxylomannan Cryptococcus neoformans TLR2 and TLR4 

 

Parasites 

Glycoinositolphospholipids Trypanosoma TLR2 

Hemozoin Plasmodium TLR9 

Profilin-like molecule Toxoplasma gondii TLR11 

 
 (modified from Akira et al., 2006) 

 
The engagement of TLRs by microbial components triggers the activation of signalling cascades, 

which initiates the induction of the gene expression of pro-inflammatory mediators, involved in 

antimicrobial host defence. The two signalling pathways identified in TLRs are the inflammatory 

MyD88-dependent pathway and the interferon-dependent pathway. The inflammatory signalling       
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pathway acts via the adapter molecule, MyD88 (myeloid differentiation factor 88), binding to the 

cytoplasmic portion of all TLRs except TLR3, or TIRAP (Toll-like receptor adaptor protein), which 

binds only TLR2 and TLR4. Both lead eventually to the activation of NF-�B (nuclear factor kappa-

light-chain-enhancer of activated B cells) (Fitzgerald et al., 2001). The activation of NF-�B via TLRs 

results in the secretion of mediators such as IL1, IL6, IL12 and TNF-�. On the other hand, via the 

MyD88-independent pathway, IFN-� or IFN-� are secreted in response to stimulation with TLR3, 4, 

7, and 9 (Akira et al., 2006). The release of these cytokines is a key process channelling signals of 

the innate system to the induction of a cellular response. The set of TLRs stimulated determines 

the cytokine profile induced, resulting in diverse adaptive immune responses. Interestingly, it has 

been demonstrated that the maximum cytokine production was induced by a combination of TLR 

agonists as compared with single TLR agonists. TLR synergy was equally observed in the TH1 

polarising capacity of DCs (Napolitani et al., 2005). 

 
In the experiments described below, the TLR agonists R848 and LPS were used as microbial-

derived signals for DC maturation. The physiological ligands for human TLR8 have been identified 

as GU-rich ssRNA (Heil et al., 2004; Diebold et al., 2004), whereas the synthetic nucleoside 

analogs binding to TLR7/8 comprise imiquimod (R837) and resiquimod (R848), as well as the 

guanine nucleotide analogs like loxoribine. Showing high homology, TLR7 and TLR8, recognise 

viral ssRNA with different but overlapping specificities. TLR8-activation results in the induction of 

type I IFN secretion, acting antivirally. Additionally, their intracellular localization reflects their 

optimisation in detecting micro-organisms reaching the cytosolic compartments, as it is in the case 

in viral invasion. Clinically, TLR8 agonists are used for their antiviral properties. 

Lipopolysaccharides (LPS), recognised by the extracellular TLR4, were originally known as 

endotoxins, are compounds consisting of a lipid and polysaccharide part, found in the structural 

cell wall of Gram-negative bacteria. During infections, LPS is liberated from bacterial cell walls. 

 

 

1.4.1.3. T-cell derived signals: CD40 ligand and interferon-� 

 

CD40 ligand (CD40L) is a 50 kDa glycoprotein of the TNF receptor superfamily, which is primarily 

expressed by T cells. It activates CD40-expressing DCs leading to the expression of high levels of 

co-stimulatory molecules. CD40-CD40 ligand interaction is additionally associated with an 

enhanced survival in DCs (Caux et al., 1994) and is indispensable in the priming and expansion of 

antigen-specific CD4+ T cells.  

 

IFN-� is a potent antiviral cytokine, blocking viral replication and eliminating viruses from infected 

cells. Early studies have demonstrated that mice deficient in IFN-� had impaired immune  
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responses in vivo, with an increased susceptibility to microbial pathogens and viruses (Szabo et 

al., 2003). While NK cells and T cells are the most potent sources of IFN-�, macrophages, B cells 

and DCs have also been identified as IFN-�-secreting cells. IFN-� has been demonstrated to 

enhance the production of IL-12 by DCs, matured with either LPS or pro-inflammatory mediators 

(Vieira et al., 2000). IFN-� polarises immature DCs to stimulate TH1 cells. TH1 cells secreting IFN-� 

activate macrophages, thereby potentiating the resulting inflammatory response (Grewal et al., 

1998). 

 

 

1.5. Short-term culture protocols  

 

During the past few years, it has been shown repeatedly that monocyte-derived DCs can be 

generated in a shorter time span than above. Short-term protocols using calcium-mobilising agents 

for maturation (Czerniecki et al., 1997) or maturation with IL-4 or IFN-� (Dauer et al., 2003; Xu et 

al., 2003) have been described. The interest in short-term protocol is based on the assumption that 

a more rapid differentiation process represents more closely physiological conditions in vivo. On 

the other hand, in terms of methodology, short-term protocols confer the advantages of reducing 

costs and labour as well as the risks of contamination.   

 

Previously, in our working group, a novel protocol was established, whereby monocyte-derived 

DCs undergoing all the processes of DC-differentiation were generated within only 48 hours, 

referred to as FastDCs (Dauer et al., 2003). In this work, higher levels of co-stimulatory molecules 

were measured when moncocytes were incubated for 24 hours with GM-CSF and IL-4, and the 

conventional stimulatory combination, PGE2, TNF-� and IL1-�, was added for further 24 hours of 

incubation, as compared with a single-step differentiation (GM-CSF and IL-4 plus conventional 

stimulatory combination added at the beginning of the culture for 48 hours). Additionally, it was 

found that monocytes cultured with GM-CSF or GM-CSF and pro-inflammatory mediators in the 

absence of IL-4 failed to develop DC features.  

 

Comparative analysis between the different pro-inflammatory mediators revealed that complete 

immunophenotypic DC maturation (CD83> 50%) was elicited only in combinations including PGE2 

and TNF-�, or when IL-1� was substituted for TNF-� in the presence of PGE2. Moreover, IL-1� 

was found to synergise with PGE2 and TNF-� to induce the secretion of IL-12. In contrast, IL-6 was 

found to be superfluous in the maturation of FastDCs. 

 

IL-12 secretion is a key event in the activation of T cells and a critical requirement in DC-based 

immunotherapy. Low levels ofIL-12 could be detected in mature FastDC, which was enhanced  
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upon addition of CD40L and IFN-�. On the other hand, no IL-12p70 secretion could be induced 

unless supplemented by CD40 ligand and IFN-�. With respect to their ability in activating CD8+ T 

cells in an antigen-specific manner, FastDCs and moDCs were found to be equally capable of 

inducing T cell proliferation using tetanus toxoid (TT) as a model antigen. While comparable levels 

of IFN-� were measured in the supernatants of both FastDC and moDC, no IL-4 was detected in all 

supernatants. 

 

The functional characteristics of FastDCS and monocyte-derived DCs were further analysed in a 

comparative study (Dauer et al., 2005). Interestingly, in comparison to moDCs, a higher yield with 

more than 95% purity and viability was obtained with FastDCs. Regarding their migratory 

capacities, both populations were readily capable of migrating in response to 6ckine. Likewise, 

FastDCs were found to be capable of equally priming tumour-antigen specific cytotoxic T cell 

responses as shown in a melanoma antigen model: While a higher lytic activity was observed in 

the FastDC population in the chromium release assay, comparable levels of IFN-�-producing CD8+ 

T cells were measured in monocyte-derived DCs and FastDC. Though superior in FastDCs, only 

low levels of IL-12p70 could be detected. 

 

Considering that the maintenance of a mature DC phenotype while homing to the lymph node is a 

pre-requisite for T cell priming, the following set of experiments were performed :  DC viability and 

immunophenotype were assessed in moDCs cultured for additional 6 days without further 

supplementation of growth factors or cytokines (wash-out cultures) following maturation. Moreover, 

comparative studies were conducted to analyse the influence of CD40L, IFN-� and IFN-�. To this 

end, monocytes were cultured for 24 hours with GM-CSF and IL-4 on day 1, while maturation was 

induced with PGE2, TNF-�, IL-6 and IL1-� for 36 hours. CD40 ligand and IFN-� were added during 

the last 24 hours of maturation whereas IFN-� was added on day 1: after 24 hours of maturation, 

90% of DCs were alive and exhibited the typical mature DC immunophenotype 

CD83+CD80+CD86highMHChigh. An increased viability and enhanced maturational degree were 

observed in mature DCs supplemented with CD40 ligand and IFN-�. Furthermore, their 

supplementation was associated with a lower re-expression of CD14 (monocytic phenotype). 

Supplementation with IFN-� did not affect DC yield and survival, neither its ability to prime 

autologous naïve T cells or migratory potential. In contrast, a higher expression of co-stimulatory 

molecules was observed while CD14 re-expression was delayed. Both effects were more 

pronounced when CD40L and IFN-� were added in the last 24 hours of incubation.  IL-12p70 

deficiency was observed in all wash-out cultures, independent of IFN- � supplementation (Dauer et 

al., 2006). 
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In summary, the previous works in our working group established a new short-term protocol for the 

generation of DCs within 48 hours. FastDCs were capable of exhibiting a fully mature 

immunophenotype and migrating in response to 6ckine. Moreover, the ability of antigen-pulsed 

FastDCs to prime a tumour-antigen-specific cytotoxic T cell response was demonstrated in the 

aforementioned experiments. Upon maturation with the set of pro-inflammatory mediators including 

PGE2/TNF-�/IL-1�, IL-6 was found to be dispensable. Under the above conditions, FastDCs were 

found to be poor inducers of IL-12p70. The maturity cocktail consisting of PGE2, TNF-� and IL1-� 

for the maturation of DCs was used in the experiments described below and referred to as the 

“conventional” stimulatory combination.  

 

 

1.6. Questions addressed 
 

Based on the experimental data available and our own results on the generation of FastDCs in 

previous experiments, the following questions were addressed in the work described here: 

 

� The influence of IFN-� on the differentiation of FastDCs  

� Maintenance of a mature immunophenotype of FastDCs in wash-out cultures 

� Comparison between proinflammatory-based and pathogen-derived activation of 

FastDCs 

� Optimisation of the FastDC protocol for DC-based cancer immunotherapy 
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2. Methods 
 

 

2.1. Reagents and materials 

 

2.1.1. Apparatus 

 
Incubator Heraeus (Hanau, D) 

FACSCalibur Becton Dickinson (Heidelberg, D) 

Centrifuge Sepatech Omnifuge Heraeus (Munich, D) 

Centrifuge 5417 R Eppendorf (Hamburg, D)  

Vortexer Janke & Kunkel (Staufen, D) 

Weighing scale Sartorius (Göttingen, D) 

Ice machine Ziegra (Isernhagen, D) 

Phase contrast microscope Zeiss (Jena, D) 

MidiMACS Miltenyi Biotec (Bergisch Gladbach, D) 

1480 Wizard 3_ � Counter Wallac Oy (Turku, FI) 

Multistep pipette (Multipette plus) Eppendorf (Hamburg, D) 

Pipettes (Eppendorf reference) Eppendorf (Hamburg, D) 

Pipettus (Pipetus akku)                 Hirschmann (Eberstadt, D) 

LaminAir HB 2472S Heraeus (Munich, D) 

96 well MicroCellHarvester Skatron (Ismaning, D) 

ELISA-Reader MRX Dynatech Laboratories (Burlington, USA) 

 
 
2.1.2. Plastic materials 

 
175 cm2/175 cm2 culture flasks Greiner (Frickenhausen, D) 

6- / 12- / 96 well round bottom tissue culture 
plates 

Greiner (Frickenhausen, D) 

96-well flat bottom tissue culture plates Greiner (Frickenhausen, D) 

Cell scraper Eppendorf (Hamburg, D) 

Pipette tips Sarstedt (Nümbrecht, D) 

Transwells 5.0 µm pore size, 6.5 mm diameter Corning Incorporated (NY, USA) 

MACS Separation columns LS Miltenyi Biotech (B-Gladbach, D) 

5 ml polystyrene round bottom tubes BD Labware Europe (Meylan, F) 
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 2.1.3. Reagents 

 

Heparin-sodium Ratiopharm (Ulm, D) 

Sodium chloride (NaCl) 0.9% Baxter (Lessines, B) 

Brefeldin A SIGMA (Missouri, USA) 

FIX & PERM Reagents Invitrogen Corporation (Carlsbad CA, USA) 

Strep-Tactin PE IBA GmbH (Göttingen; D) 

Recombinant MHCI-Strep  IBA GmbH (Göttingen; D) 

FITC-Dextran Sigma-Aldrich (Steinheim, D) 

Tween 20 Sigma-Aldrich (Steinheim, D) 

Trypan blue Sigma-Aldrich (Steinheim, D) 

Triton X Sigma-Aldrich (Taufkirchen, D) 

Ortho-mune-Lysis Reagent Ortho-Clinical Diagnostics (Neckarsgmünd, D) 

Phorbol-Myristat Acetate (PMA) Sigma-Aldrich (Steinheim, D) 

Calcium-Ionomycin Sigma-Aldrich (Steinheim, D) 

Na 251CrO4 Hartmann Analytic (Braunschweig, D) 

FACS Flow Becton Dickinson (Heidelberg, D) 

FACSSafe Becton Dickinson (Heidelberg, D) 

Ethylen-Diamin-Tetra-Acetic acid (EDTA) Sigma-Aldrich (Steinheim, D) 

5,6-Carboxyflurescein Diacetat  Sigma (St. Louis, USA) 

Succinimidyl Ester (CFSE) 

 
 

2.1.4. Frequently used buffers 

 
RPMI-complete media (=DC-media) 

RPMI-media 

2% volume human AB serum 

100 IU/ml penicillin 

100 µg/ml streptomycin 

2 mM L-glutamine 

 

 

MACS-buffer: 

PBS) 

0.5% volume HSA 

2 .68 mM EDTA 

pH = 7.2 
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Erythrocyte-lysis buffer : 

Ortho-mune lysis reagent in PBS 

 

 

2.1.5. Reagents for cell culture 

 

RPMI 1640 media Biochrom (Berlin, D)  

Human AB-Serum BioWhittaker (Walkersville, USA) 

Phosphate buffered saline (PBS) PAA (Linz, A) 

2% volume human AB serum BioWhittaker (Walkersville MD, USA) 

Ficoll Hypaque Biochrom (Berlin, D) 

Penicillin PAA (Linz, A) 

Streptomycin PAA (Linz, A) 

L-glutamine PAA (Linz, A) 

Phosphate buffered saline (PBS) PAA (Linz, A) 

Human Serum Albumin (HSA) Baxter (Lessines, B) 

Bovine serum albumin (BSA) Sigma (St. Louis, USA) 

Fetal calf serum (FCS) Gibco BRL (Paisley, UK) 

 

 

2.1.6. Monoclonal antibodies 

 
Name  Specificity  Clone Fluorescence Company 

Anti-human CCR7 CCR7 150503 APC R&D Systems  

Anti-human CD83 CD83 HB15e FITC BD Biosciences 

Anti-human CD14 CD14 M5E2 APC BD Biosciences 

Anti-human CD80 CD80 L307.4 PE BD Biosciences 

Anti-CD4 CD4 RPA-T4 APC BD Biosciences 

Anti-human IFN-� IFN-� B27 ALEXA 488 CALTAG Laboratories 

Anti-human CD86 CD86 2331(FUN-1) PE BD Biosciences 

Anti-CD8 CD8 RPA-T8 APC BD Biosciences 

Anti-HLA-DR HLA-DR L243 PerCP BD Biosciences 

Anti-CD3 CD3 HIT3A FITC BD Biosciences 
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2.1.7. Cytokines and chemokines 

 

GM-CSF Novartis (Basel, CH)  

Interleukin-1� Strathmann Biotech GmbH (Hannover, D) 

Interleukin-2 Strathmann Biotech GmbH (Hannover, D) 

Interleukin-4 Promega (Madison, WI, USA) 

Interleukin-7 Strathmann Biotech GmbH (Hannover, D) 

Interferon-� Strathmann Biotech GmbH (Hannover, D) 

PGE2  Sigma-Aldrich (Steinheim, D) 

TNF-� R&D Systems (Wiesbaden, D) 

CD40 ligand Amgen (Thousand Oaks, CA USA) 

Recombinant human Interferon-� Strathmann Biotech GmbH (Hannover, D) 

Recombinant Human Exodus-2/CCL21 PeproTech Inc. (USA) 

Ultra Pure E.Coli LPS InvivoGen (San Diego CA, USA) 

R848 Kindly provided from Dr. V. Hornung (Division of  

 Infectious Diseases and Immunology, University  

 of Massachusetts Medical School, MA, USA) 
 

 

2.1.8. Enzyme-linked immunosorbent assays (ELISA) 

 
Human IL-12 (p70) ELISA set BD Biosciences (San Diego CA, USA) 

Human IL-4 ELISA set BD Biosciences (San Diego CA, USA) 

Human IFN-� ELISA set BD Biosciences (San Diego CA, USA)  
 

 

2.1.9. Magnetic activated cell sorting (MACS) 

 

Pan T Cell isolation kit II human Miltenyi Biotec (Bergisch Gladbach, D) 

CD14 MicroBeads human Miltenyi Biotec (Bergisch Gladbach, D) 
 

 

2.1.10 Peptides 

 

The MART-1 peptides (ELAGIGILTV, position 26-35) were produced at Jerini Peptide Technologies 

(Berlin, D). The HIV-POL peptides (ILKEPVHGV, position 476-484) were synthesised on a multiple 

peptide synthesizer (peptide synthesizer 433A, Applied Biosystems, Forster City, CA) at the GSF 

Research Institute Munich. 
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2.1.11. T2 cell line     

 

The T2 cell line was obtained from the American Type Culture Collection (ATCC CRL-1992). A 

transporter associated with antigen (TAP)-deficient cell line composed of the fusion of a 

lymphoblastic B-cell line with a lymphoblastic T-cell line. The T2 cell line is HLA-A2+ and was 

maintained in FCS-media for use as target cells in the chromium release assay. 

 

 

2.2. Cell isolation and cell culture 

 

2.2.1. Cell culture 

 

All cell cultures were maintained in a cell culture incubator at 37°C in 5% CO2 and 5% air humidity. 

Cell manipulations were performed in a sterile environment under a laminar air flow hood. Unless 

mentioned otherwise, cell cultures were maintained in DC-media (RPMI-media, 2% volume human 

AB serum, 100 IU/ml penicillin, 100 µg/ml streptomycin and 2 mM glutamine). 

 

 

2.2.2. Counting of cells and cell viability 

 
Cell viability and cell counts were assessed by the trypan blue exclusion test. Trypan blue, a dye 

taken up by dead cells, and excluded by living cells, was used to distinguish between viable and 

non-viable cells. To this end, 90 µl of trypan blue was added to 10 µl of the cell suspension. 10 µl of 

the mixture was then transferred in a hemocytometer, where the non-stained viable cells were 

counted under the light microscope. 

 

 

2.2.3. Enrichment of monocytes by cell adhesion 

 
PBMC was prepared using the Ficoll Hypaque gradient centrifugation. 200 ml of full blood was 

obtained from volunteer healthy donors by venous punction, heparinised (50 IU heparin/ml blood), 

and diluted 1:1 with sodium chloride (NaCl). 30 ml of this dilution was stratified cautiously on 15 ml 

Biocoll (Ficoll) and centrifuged 1000g at 20°C for 20 minutes. The buffy coat, containing 

predominantly monocytes (found between the upper layer [plasma] and the Ficoll-Paque layer) 

was collected and washed three times with NaCl. Cells were re-suspended in fresh DC-media (20 

ml DC-media/200 ml blood) and incubated at 37°C for 1 hour in tissue culture flasks. After two 

washings with PBS, non-adherent cells (mainly lymphocytes) were either preserved for further cell  
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isolations or discarded when not needed. The adherent fraction was incubated overnight at 37°C 

with DC-media (20 ml DC-media/200 ml blood), and harvested the next day with the cell scraper. 

Cell viability and cell counts were assessed by the trypan exclusion method. 

 

 

2.2.3.1. Generation of FastDC in vitro 

 

24h 24h

Precursor Immature DC Fast DC

High endocytosis
High CCR6, CCR1, CCR5

Low CCR7
Low CD83, CD86, CD80

Low endocytosis
Low CCR6, CCR1, CCR5

High CCR7
High CD83, CD86, CD80
Upregulation of MHCII

+ GM-CSF
+ IL-4

+ Pro-inflammatory 
mediators

 

Diagram 1 - Generation of conventional FastDCs  

 

The following protocol, established in our laboratory, illustrates the generation of mature DCs from 

monocytes within 48 hours (Dauer et al., 2003): PBMC was prepared by Ficoll Hypaque gradient 

density, and monocytes were isolated by cell adhesion. Cells were adjusted to a concentration of 

106 cells/ml DC-media in a 6 well-plate. Monocytes were cultured for 24 hours with either GM-CSF 

(1000 U/ml ) and IL-4 (500 U/ml), or supplemented additionally with IFN-� (500 U/ml), and followed 

by maturation with the following stimuli, either alone or in combinations for another 24 hours:  

PGE2 (1 µM), TNF-� (1000 U/ml), IL-1� (10 ng/ml) , LPS (1 µg/ml), R848 (2.5 µg/ml), CD40L (500 

ng/ml), IFN-� (1000 U/ml). DCs were harvested with a cell scraper, washed twice with PBS and re-

suspended in fresh DC-media for further investigation. Subsequently, DCs were counted manually 

with the hemocytometer. DC-immunophenotype was analysed by flow cytometry. The cell culture 

supernatant was collected and frozen to -20°C for further cytokine analysis. DCs generated with 

this protocol are referred to as FastDCs. 
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2.2.3.2. Standard protocol for the generation of monocytes-derived dendritic cells 

 

Analogous to the protocol described above, monocytes were cultured for 6 days with GM-CSF 

(1000 U/ml ) and IL-4 (500 U/ml), or supplemented additionally with IFN-� (500 U/ml), followed by 

maturation with the following stimuli, either alone or in combinations for another 24 hours:  PGE2 (1 

µM), TNF-� (1000 U/ml), IL-1� (10 ng/ml) , CD40L (500 ng/ml), IFN-� (1000 U/ml). 

Immunophenotype was analysed by flow cytometry. The cell culture supernatant was collected and 

frozen to -20°C for further cytokine analysis. DCs generated with this protocol are referred to as 

monocytes-derived DCs (moDCs). 

 

 

2.2.3.3. Immature DC 

 
Monocytes cultured with GM-CSF and IL-4 without additional stimuli are referred to as immature 

DCs in this work. 

 

 

2.2.4. Isolation of T-cells by magnetic cell sorting (MACS) 

 

T-cells were isolated from the non-adherent fraction of the PBMC using the Pan T Cell isolation kit 

(Miltenyi Biotech, B-Gladbach) by negative selection of MACS following the manufacturer's 

instructions. In this case, the non-T-cell fraction (B cells, natural killer cells, DC, monocytes, 

granulocytes and erythroid cells) was magnetically labeled, while the unlabeled T-cell fraction 

eluted through the column : the cell suspension was first incubated with a cocktail of biotin-

conjugated antibodies against CD14, CD16, CD19, CD36, CD56, CD123, and CD235a 

(Glycophorin A), followed by magnetic labeling with Antibiotin-Microbeads. Next, the cell 

suspension was loaded onto the MACS column placed in the magnetic field of the MACS 

Separator. Non-T cells were retained on the column, and the effluent containing the unlabeled 

enriched T cell fraction, consisting of all the T-cell subpopulations (so-called panT-cells) was 

collected for further use. 
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2.3. Analytical methods 
 

2.3.1. Phase-contrast microscopy 

 

Cell morphology was analysed by phase-contrast microscopy, by 10-100x magnification. 

 

 

2.3.2. Enzyme-linked immunosorbent assay (ELISA) 

 

The enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration of 

proteins released in the supernatants of cell cultures. The protocol was performed according to the 

manufacturer's recommendations: in a first step, monoclonal antibodies against the cognate 

protein were coated to a 96 well-plate overnight. Standards were prepared by serial dilutions from 

the stock standard provided. Following to coating, the standards and supernatant were added to 

the well-plates for 2 hours (cognate protein binds to the coated immobilised antibody). Next, 

unbound proteins were washed away, and the „detection antibody“(specific against the coated 

antibody), a biotinylated-antibody, was added, followed by incubation with Streptavidin-horseradish 

peroxidase, producing an antibody-antigen-antibody „sandwich“. The wells were washed and the 

substrate (enzyme catalysing a reaction, forming a coloured substance) was added.  The resulting 

change in colour, proportional to the concentration of the protein examined, was analysed by a 

photometer. Together with the standard serial dilutions, the concentration of the examined protein 

was quantified. 

 

 

2.3.3. Fluorescent-activated cell-sorting (FACS) 

 

Fluorescent-activated cell-sorting is a specialised type of flow cytometry, used for counting, 

examining and sorting heterogeneous mixture of biological cells simultaneously, based upon the 

specific light scattering and fluorescent characteristics of each cell. In short, the mixture to be 

analysed was passed as a stream of fluid through a beam of light. Depending on the cell volume, 

or on the granularity, i.e. shape of nucleus, amount and type of cytoplasmic granules or membrane 

roughness, scattered light was detected by either the forward scatter (cell volume) or the side 

scatter SSC (granularity). In another step, cells were incubated with fluorescence-conjugated 

antibodies. These fluorescent molecules were excited to emit light by the laser, which was then 

detected.  
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2.3.3.1. Staining of cell surface CD (cluster of differentiation) molecules 
 

Cell surface CD molecules were detected by staining with FITC-, PE-, APC- or PerCP-labeled 

antibodies specific for these CD molecules. Here, 3.5 µl of the labeled antibodies were incubated 

in the dark for 30 minutes with 100.000 DCs/100 µl.  Next, DCs were washed twice with 3 ml PBS, 

and re-suspended in 100 µl PBS, analysed by flow cytometry and evaluated by CellQuest software 

(Becton, Dickinson). 

 

 

2.3.3.2 Staining of intracellular interferon-� 

 
A modified version of immunofluorescent staining was used to detect IFN-� intracellularly and 

characterise the immunophenotype of T cells simultaneously in one experiment. First, T cells were 

activated in a co-culture with antigen-loaded DCs, and cell surface molecules, CD8, CD4 and CD3, 

were identified in the conventional staining. Next, cells were fixed to preserve their morphological 

scatter characteristics, and permeabilised, thereby allowing fluorescent-labeled antibodies to 

access intracellular structures. To maximise IFN-� synthesis, ionomycin (calcium ionophore) and 

Phorbol-Myristat Acetate (PMA) [phorbol ester/PKC activator] were supplemented (activating the 

signalling pathway of IFN-� secretion). To block the secretion of IFN-�, Brefeldin A (inhibitor of the 

Golgi apparatus and thus the secretory potential of cells) was added at a later point.  

 

T cells were co-cultured with Melan-A-loaded DCs, and intracellular IFN-� staining was performed 

in a second re-stimulation from co-cultured T cells (concentration: 4x 106 cells/ml with loaded DCs 

at a concentration of 0.4 x 106 cells/ml): Cell suspension was incubated in a 4ml-tube for two hours 

at 37°C in the incubator. For positive controls, ionomycin (500 ng/ml) and PMA (50 ng/ml) were 

added to the cell suspension, as well as the isotype control ALEXA-FITC. At the end of incubation, 

100 µl of Brefeldin A (1 µg/ml), were added to all samples for four hours at 37°C. To phenotype 

cells, conventional cell surface staining for CD3, CD8 and CD4 was performed: samples were 

incubated for 15 minutes on ice in the dark, with 4 µl of each of the corresponding fluorescent-

labeled antibodies. Next, all samples were incubated for 15 minutes at room temperature with 100 

µl of Reagent A (Fixation Media). Cells were washed with PBS, and 100 µl of Reagent B 

(Permeabilization Media) was added, followed by the addition of 3.5 µl of ALEXA-FITC to all 

samples and isotype control, and incubated for 20 minutes at room temperature. Next, all samples 

were washed twice with PBS, and the pellets were re-suspended in 100 µl PBS, and analysed by 

flow cytometry. 
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2.3.3.3 Streptamer Fluorescent T-labeling and isolation via FACS  

 

One of the pre-requisite for T-cell activation is the presentation of its specific antigen in the context 

of MHC molecules (major histocompatibility complexes). The Streptamer technology enables the 

reversible staining of antigen-specific functional T cells. Strep-tags are short peptides binding to 

Strep-Tactin. Recombinant proteins attached to Strep-tags can be isolated from immobilised Strep-

tactin by elution. In a modified approach, MHC I streptamers (in our case, MHCI-Strep HLA-A*201 

MART 1 peptide) were multimerised with Strep-Tactin labeled with R-Phycoerythrin. Upon binding 

of T lymphocytes expressing the corresponding T-cell receptor, antigen-specific T cells can be 

detected by FACS analysis. After the selective isolation of these T cells, the MHCI Strep-tag fusion 

proteins dissociate spontaneously from the TCR, and the staining can be removed by the addition 

of biotin. Thus, the isolated T cells can be re-used for further experiments. Under our experimental 

settings, the use of MHC I streptamers was restricted to the staining of CD8+ T cells specific for 

MART 1 peptide in stimulated T cells cultured with Melan-A-loaded DCs. 

 

A master mix was prepared, including 5 µl Strep-Tactin-PE, 4 µl MHC I-Strep HLA-A*0201 MART-1 

peptide, and 41 µl FACS-buffer (PBS + 0.5% BSA) per sample, and incubated on ice in the dark for 

45 minutes. Co-cultured T cells were prepared to a concentration of 3 x 106/ml and were incubated 

with 50 µl of the pre-incubated Strep-Tactin-PE/MHCI master mix for 45 minutes in the dark. For 

isotype staining, one sample was treated similarly without the master mix. During the last 20 

minutes of incubation, 3 µl of CD8-APC were added to the samples for the additional identification 

of the CD8+-subpopulation. Finally, samples were washed twice with the FACS-buffer, and 

resuspended in 100 µl FACS-buffer for flow cytometrical analysis.  

 

 

2.3.3.4 Endocytosis assay (FITC-dextran uptake) 

 

Monocytes were isolated from PBMC and cultured with GM-CSF/IL-4, or GM-CSF/IL-4 plus IFN-� 

(500 U/ml) for 24 hours. Next, immature DCs (106 cells/ml) were harvested and incubated with 

FITC-dextran (0.5 mg/ml) for 37°C for two hours. Cells were counterstained with CD14-APC for 30 

minutes in the dark. Finally, cells were washed extensively with PBS. FITC-dextran uptake was 

analysed by flow cytometry and quantified as mean fluorescence intensity. Unspecific FITC-

dextran uptake was assessed by incubating cells for two hours on ice. 
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2.3.3.5. Pinocytosis assay (Panc-tumor-cells uptake) 

 

Pancreas tumour cells (Panc-cells) were detached from tissue culture flasks with 0.2% EDTA 

(ethylene diamine tetraacetic acid) for 5 minutes at 37°C and washed extensively with PBS. Panc-

cells (5 x 106/ml) were incubated with CFSE (10 µM) for 20 minutes in the dark. Cells were washed 

twice and re-suspended in culture media. Next, panc-cells were incubated in a water bath at 43°C 

for two hours. Cells were transferred to tissue culture flasks and incubated overnight at 37°C. 

 

Monocytes were prepared from PBMC and incubated with either GM-CSF/IL-4, or GM-CSF/IL-4 

plus IFN-� (500 U/ml) for 24 hours. Panc-cells (106/ml) were incubated with immature DCs (106/ml) 

at 37°C for two hours. Next, cells were counterstained with MHCII-PerCP. Uptake of panc-cells was 

analysed by flow cytometry and quantified by mean fluorescence intensity. Unspecific panc-cells 

uptake was assessed by incubating cells on ice for two hours. 

 

 

2.3.4. Cell migration assay 

 
DCs migrate upon maturation, expressing the chemokine receptor CCR7, to the secondary 

lymphoid organs in response to 6Ckine, secreted by the T-lymphocytes. To analyse the in vitro 

chemotactical response of DCs, a cell migration assay was performed. To this end, transwell 

inserts (diameter: 6.5 mm; pore size: 5.0 µm; tissue culture treated) were used, across which 

CCR7+ -DCs migrate through the pores of a membrane in response to 6Ckine found in the lower 

compartments of the well plates (diagram 1). 

 

Transwell inserts

Upper compartment

Lower compartment

Membrane

 
                                                  Diagram 2 – Cell migration assay 

 

To this end, transwell inserts were placed in 24-well plates. 600 µl of DC-media alone or 

supplemented with 6CKine (100 ng/ml) were added in the lower chambers of 24-well plates. Next, 

freshly prepared mature FastDCs (2 x 104 cells/ml) were loaded in the transwell inserts and 

incubated for 2 hours at 37°C. Following incubation, DCs were harvested and concentrated to a 

volume of 50 µl. Cells were counted with a hemocytometer. All assay conditions were triplicated.  
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2.3.5. Induction of antigen-specific T-cell responses 

 

2.3.5.1. Co-culture of FastDC with autologous T-cells 

 

Autologous T-cells were isolated from the non-adherent fraction of the PBMC using the Pan T Cell 

isolation kit (Miltenyi Biotech, B-Gladbach) by negative selection of MACS following the 

manufacturer's instructions, and were incubated with culture media containing IL-2 (10 U/ml) and 

IL-7 (10 ng/ml), which was replaced every 2 days. FastDCs were prepared from healthy HLA-

A*0201 donors according to the protocol described above and pulsed with Melan-A/MART-1 (10 

µM) or left unloaded during the last four hours of maturation. Next, DCs were harvested and 

washed extensively, and co-cultured with autologous T cells at a ratio of 1:10. Culture media 

(including IL-2 and IL-7) was replaced every two days. Re-stimulations were performed weekly for 

two weeks with freshly prepared unloaded or peptide-pulsed FastDCs. CTL were harvested five 

days after the second re-stimulation and used in the standard 51Cr release assay. 

 

 

2.3.5.2. Radiolabeling of target cells 

 

HLA-A2 positive T2 cells, obtained from the American Type Culture Collection (ATCC CRL-1992), 

were used as target cells in the 51Cr release assay. T2 cells were incubated with either the cognate 

or control peptide (MelanA-MART1 or HIV-pol, both at a concentration of 10 µM) for four hours at 

37°C. Next target cells were radiolabeled with 100 µCi Na2
51Cr O4 for 1 hour at 37°C. Target cells 

were washed four times and adjusted to a concentration of 3x103 cells/ml.  

 

 

2.3.5.3. Standard   51Cr release assay * 

 

The chromium release assay was used to determine the lytic potential of cytotoxic T cells (effector 

cells) activated by mature FastDCs loaded with MelanA-MART-1 (melanoma-associated antigen 

most frequently recognised by tumour-reactive CTL derived from HLA A*0201 melanoma patients). 

This assay is based on the antigen-specific recognition and lysis of target cells, previously 

radiolabeled with 51Cr and loaded with MelanA-MART1. The Cr released in the supernatant, 

proportional to the lysis of target cells, is measured in a gamma-counter. 

 

 

                                                 
* (in cooperation with Prof. Dr. R. Wank, Department of Immunonlogy, Ludwigs-Maximilian-Universität, Munich). 
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Next, 100 µl of CTL were added at various effector: target cells (E: T ratios ranging from 80:1 to 

20:1) to 100 µl of target cells in 96-well round bottom plates. After four hours of incubation at 37°C, 

50 µ of the culture supernatant was harvested and counted in a gamma-counter. The maximum Cr 

release was determined by the addition of 10% Triton X and spontaneous release was assessed 

by adding complete media to target cells without effector cells.  The percentage specific lysis was 

calculated with the formula: [(experimental counts – spontaneous counts)/(maximal counts – 

spontaneous counts)] x 100 %. All assay conditions were triplicated.  

 

 

2.3.6. Statistical analysis 

 

Data were presented as arithmetical mean + SEM (standard error of the mean). The statistical 

significance was determined by means of the paired student t-test. Differences were considered 

statistically significant for p < 0.05 (represented by asterisks in bar charts). 
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3. Results 
 

 

3.1. Influence of interferon-alpha on FastDC differentiation, terminal 

maturation and antigen uptake  

 

3.1.1 Differentiation and terminal maturation 

 

Survival and maintenance of a mature phenotype after withdrawal of cytokines and growth 

factors are essential for the use of DC preparations in vaccination protocols. Standard 

monocyte-derived DCs (Feuerstein et al, 2000) as well as FastDCs (Dauer et al, 2006) 

survive for up to five to six days in wash-out cultures without further replacement of cytokines 

or growth factors.  ere, we analysed the influence of IFN� on the expression of maturation 

markers in FastDCs in wash-out cultures. To this end, monocytes were incubated either with 

GM-CSF and IL-4, or with GM-CSF and IL-4 plus IFN-�. After 24 hours, maturation was 

induced by incubation with PGE2, TNF-�, and IL-1� for further 24 hours. The maturational 

stage was determined by assessing the phenotypical expression of the cell surface 

molecules CD83, CD80, CD14 and MHC II at 24, 48, 76 and 96 hours after stimulation, 

without further replacement of cytokines or growth factors. 

 

As shown in figure 1, a fully mature phenotype (CD83+CD80+MHCHighCD14-) was exhibited 

24 hours after maturation in unprimed or IFN-�–primed-FastDCs. Without further cytokine 

supplementation, CD80 and MHCII expression persisted up to 76h after maturation whereas 

the expression of CD83 prevailed up to 48h, and was downregulated thereafter. No 

significant difference was observed in the pattern of expression of CD83, CD80, and MHC II 

in FastDCs treated with IFN-�. Likewise, independent of IFN-�-treatment, a marginal up-

regulation of CD14 in FastDC was observed 96 hours following maturation. 
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Fig. 1: FastDCs maintain mature immunophenotype and are CD14 - in wash-out 
cultures. Monocytes were cultured 24 hours with either GM-CSF/IL-4 or GM-CSF/IL-4+IFN-
�, and further matured for 24 hours with pro-inflammatory mediators PGE2, TNF-�, and IL-
1�. 24h, 48h, 76h and 96h after addition of pro-inflammatory mediators, FastDCs were 
analysed by flow cytometry.  
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3.1.2 Antigen uptake 

 

3.1.2.1 Uptake of FITC-labeled dextran 

 
Antigen uptake, process and presentation in the context of MHC molecules are hallmarks of 

immature DCs. The uptake of FITC-labeled dextran (dextran is a polymer of anhydroglucose) 

occurs via receptor-mediated endocytosis, similar to the uptake of exogenous antigens. To 

this end, we examined the uptake of FITC-labeled dextran after culture with GM-CSF/IL-4 or 

GM/IL-4 plus IFN-� for 24 and 48 hours. Next, unprimed immature FastDCs and IFN- �-

primed immature FastDCs were incubated for 30 minutes at 37°C or on ice (representing the 

negative control) and quantified as mean fluorescence intensity by flow cytometry. 

 

Fig. 2 shows that supplementation with IFN-� left the endocytic capacity of immature 

FastDCs unaffected. A 3-fold increase in FITC-dextran uptake was measured in immature 

DCs cultured for 48 hours as compared with 24 hours.  
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Fig. 2: Endocytosis of FITC-dextran by immature FastDC. Monocytes isolated from 
peripheral blood were differentiated for 24 hours or 48 hours with GM-CSF/IL-4 or GM/IL-4 
plus IFN-�. Unprimed or IFN-�-primed immature DCs were incubated for 30 minutes with 
FITC-dextran, at 37°C or on ice (negative controls). The uptake of FITC-dextran was 
quantified as mean fluorescence intensity (MFI) by FACS-analysis.  
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3.1.2.2 Uptake of CFSE-labeled apoptotic pancreatic carcinoma cells by FastDC 

 
DCs have been reported to take up apoptotic tumour cells or cell fragments, so called 

apoptotic bodies, and subsequently present tumour antigens to T cells. To this end, the ability 

of FastDCs to take up and process antigens from apoptotic pancreatic tumour (PANC1-) cells 

was investigated. As shown in figure 3, unprimed as well as IFN-�-primed immature FastDCs 

were equally able to take up CFSE-labeled apoptotic pancreatic tumour cells. 
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Fig. 3: Endocytosis of CFSE-labeled apoptotic pancreatic tumour cells in immature 
FastDC. Monocytes isolated from peripheral blood were cultured with GM-CSF/IL-4 or GM-
CSF/IL-4 plus IFN-� for 24 hours. Immature FastDC were then incubated for two hours with 
CFSE-labeled apoptotic pancreatic tumour cells, at 37°C or on ice (negative control). The 
uptake was analysed by flow cytometry, and measured as MFI. 
 

Taken together, in this first set of experiments we were able to show that FastDCs are 

terminally differentiated DCs maintaining a mature phenotype even after withdrawal of 

cytokines and growth factors, and are capable of efficiently taking up soluble and whole cell-

derived antigens. Supplementation of FastDC cultures with IFN-� influenced none of these 

functions significantly and can thus be omitted from the FastDC generation protocol. 
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3.2. Optimisation of the FastDC protocol: use of toll-like receptor 

agonists for stimulation  

 

FastDCs matured with pro-inflammatory mediators expressed a fully mature phenotype and 

migrated in response to 6Ckine, but showed inefficient secretion of IL-12p70, which is 

essential for the promotion of a TH1 response.  

 

The aim of the following experiments was thus to investigate the potential role of TLR 

agonists in the stimulation of FastDCs and their effects on maturation, cytokine production, 

migration and T cell activation. To this end, a combination of TLR agonists, namely LPS and 

R848, as well as the additional influence of the T-cell derived signals CD40L and IFN-�, was 

investigated in FastDCs. 

 

 

3.2.1. FastDC immunophenotype and IL-12p70 synthesis upon TLR-based activation 

 

DC maturation is a pre-requisite to induce efficiently antitumour cytotoxic T cell responses, 

while IL-12p70 has been demonstrated repeatedly to be necessary for promoting a TH1 

response. In the following experiment, we analysed the effects of the different stimuli 

mentioned below, alone or in combination, on the immunophenotype of FastDCs. Isolated 

monocytes were cultured with GM-CSF/IL-4 for 24 hours according to the FastDC protocol, 

followed by maturation for another 24 hours. Maturational status, as characterised by the up-

regulation of CD83 and CD80, was assessed by FACS analysis. The supernatants were 

collected for the measurement of IL-12p70 by ELISA. 

 

Fig. 4 shows that stimulation with the pro-inflammatory mediators PGE2/TNF-�/IL-1� led to a 

greater up-regulation of maturation markers as compared to TLR agonists used alone or in 

combination. R848 was found to be a moderate inducer of maturation, whereby additional 

stimulus with either IFN-�, CD40L or LPS did not raise its potential to up-regulate CD80 or 

CD83. As already known, FastDCs treated with PGE2/TNF-�/IL-1� failed to induce the 

synthesis of IL-12p70. Similarly, LPS-treated FastDCs were deficient in IL-12p70. Although 

stimulation with R848 alone, or in combination with IFN-�, could trigger IL-12p70 secretion, 

cytokine secretion was enhanced when R848 was used in combination with CD40L and IFN-

�; IL-12p70 secretion could be even maximised upon additional stimulation with LPS. 
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Fig. 4: Immunophenotype after maturation with either pro-inflammatory mediators or 
TLR-derived signals in FastDC. Monocytes were isolated from PBMC, and incubated 24 
hours with GM-CSF/IL-4, and matured subsequently for another 24 hours with different 
combinations of stimuli as shown above. The control represents monocytes incubated with 
GM-CSF/IL-4 for 48 hours only. Expression of surface molecules was determined by FACS 
analysis. The secretion of IL-12p70 was measured by ELISA. 
 
 

 

GM-CSF/IL-4 + + + + + + + + + + 
PGE2/TNF-�/IL-1� - + + - - - - - - - 
LPS - - - + + - - - + - 
R848 - - - - - + + + + - 
IFN-�  - - + + + - + + + + 
CD40L - - + - + - - + + + 
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3.2.2. Migration and CCR7 expression by FastDC upon TLR-based activation 

 

In addition to the expression of maturation markers and secretion of functional IL-12, we 

investigated the migratory capacity and CCR7 expression by TLR-activated FastDCs.  

 

As shown in figure 5, the highest migratory potential in response to the CCR7 ligand, 6Ckine, 

was observed in FastDCs stimulated in the presence of PGE2 (so-called “conventional 

FastDC”) and could not be enhanced by additional T-cell derived signalling. In contrast, only 

minimal migration could be observed in TLR-activated FastDC (<15% vs. > 50% in 

conventional FastDCs). Less than 5% of the FastDCs subsets migrated spontaneously in the 

absence of 6Ckine. Monocytes incubated with only GM-CSF and IL-4 did not show migration 

in response to 6Ckine. 
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Fig.5: Migration in response to 6ckine in differently matured FastDC. Monocytes were 
isolated from PBMC, stimulated 24 hours with GM-CSF/IL-4, and subsequently matured as 
indicated above After maturation, the FastDCs were analysed in a transwell system for 
migration in response to a 6CKine gradient. 
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3.2.3. PGE2 and TLR-based FastDC 

 

Next, we examined the correlation between the different modes of activation on CCR7 

expression and migratory response to 6Ckine. Furthermore, we analysed the influence of 

PGE2 on the migration and secretion of IL-12p70 in TLR-stimulated FastDCs.  

 

As shown in figure 6, phenotypical maturation and CCR7 expression were achieved under all 

conditions, although the highest level of CCR7 expression could be observed in FastDCs 

stimulated with TLR agonists, T cell-derived signals and PGE2. Irrespective of CCR7 

expression, no migration was observed in TLR-treated FastDCs. However, upon 

supplementation of TLR-derived FastDCs with PGE2, a higher percentage of migration could 

be induced in comparison to conventional FastDCs matured with PGE2/TNF-�/IL1�. With 

respect to IL-12p70 secretion, consistent with previous results, IL-12p70 deficiency was 

observed in conventional FastDC whereas high levels of IL-12p70 were measured in TLR-

activated FastDCs. Surprisingly, the addition of PGE2 to TLR ligands restored the migratory 

capacity of FastDC without affecting the high secretion of IL-12p70 (figure 7). 
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Fig.6: FastDC after maturation with either pro-inflammatory mediators, TLR-derived 
signals or TLR-derived signals plus PGE 2. Monocytes were isolated from PBMC, 
stimulated 24 hours with GM-CSF/IL-4, and subsequently matured for 24 hours as indicated 
above. Immunophenotype was analysed by flow cytometry. 
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Fig.7: FastDC after maturation with either pro-inflammatory mediators, TLR-derived 
signals or TLR-derived signals plus PGE 2 . Monocytes were isolated from PBMC, 
stimulated 24 hours with GM-CSF/IL-4, and subsequently matured for 24 hours as indicated 
above. After maturation, FastDCs were incubated for 2 hours, either with 6Ckine, or with DC-
media. Migration was analysed by the cell migration assay. The supernatant was collected 
for measurement of IL-12p70 by ELISA. 

%
 m

ig
ra

te
d

without 6Ckine

+ 6Ckine

0

75

50

25

100

GM-CSF/IL-4 PGE2/TNF-�/
IL-1�

R848/LPS/CD40L/IFN�
+ PGE2

R848/LPS/
CD40L/IFN�



 38 

 

Taken together, although conventional FastDCs matured with PGE2/TNF-�/IL-1� showed the 

highest degree of phenotypical maturation and the highest migratory potential, they 

completely failed to secrete IL-12p70. On the other hand, the combined maturation with TLR 

agonists and T-cell derived signals resulted in FastDCs exhibiting an inferior degree of 

phenotypical maturation, yet inducing very high levels of IL-12p70 secretion. In the absence 

of PGE2, TLR-activated FastDCs did not migrate in response to 6Ckine despite high levels of 

CCR7 expression. This specific defect was overcome by the addition of PGE2 without 

impeding the capacity for secretion of functional IL-12p70. 

 

 

3.2.4. Generation of multifunctional FastDCs using pro-inflammatory mediators in 

combination with TLR agonists 

 

The next experiments were performed to investigate on the influence of T-cell derived signals 

as well as PGE2 on TLR-based FastDCs with respect to immunophenotype, CCR7 

expression, and migration as well as IL-12p70 secretion.  

 

As shown in figure 8, in the absence of T-cell derived signals, CD40L and IFN-�, CCR7 

expression was up-regulated in FastDCs stimulated with R848 and LPS. CCR7 expression 

could be further enhanced in the presence of PGE2. Likewise, the migratory capacity of 

FastDCs matured with R848 and LPS was restored upon supplementation with PGE2, 

independent of T-cell signalling (figure 9).  However, though PGE2 did not abort IL-12p70 

secretion in TLR-stimulated FastDCs, IL-12p70 secretion was maximised in TLR-stimulated 

FastDCs in the presence of CD40L and IFN-�. 
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Fig. 8a: Up-regulation of co-stimulatory molecules and chemokine receptor CCR7 after 
maturation with different combinations of pro-inflammatory mediators, TLR-agonists 
and T cell-derived signals. Monocytes were isolated from PBMC, and incubated 24 hours 
with GM-CSF/IL-4, and matured for another 24 hours with the different combinations of 
stimuli as indicated. Immunophenotye was determined by FACs analysis. The control 
represents monocytes incubated with GM-CSF/IL-4 for 48 hours. 
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Fig. 8b: Up-regulation of co-stimulatory molecules and chemokine receptor CCR7 after 
maturation with different combinations of pro-inflammatory mediators, TLR-agonists 
and T cell-derived signals. Monocytes were isolated from PBMC, and incubated 24 hours 
with GM-CSF/IL-4, and matured for another 24 hours with the different combinations of 
stimuli as indicated. Immunophenotye was determined by FACs analysis. The control 
represents monocytes incubated with GM-CSF/IL-4 for 48 hours. 
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Fig. 9: PGE 2 restores migratory capacities of TLR-activated FastDC without affecting 
IL-12p70 synthesis. Monocytes were isolated from PBMC, stimulated 24 hours with GM-
CSF/IL-4, and matured as indicated above. After maturation, FastDCs were incubated for 2 
hours, either with 6Ckine, or with DC-media, and chemotaxis was analysed in a cell migration 
assay. The supernatant was collected for measurement of IL-12p70 by ELISA. 
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Taken together, the combination of LPS and R848 with PGE2 resulted in the generation of 

multifunctional FastDC capable of migration and IL-12p70 secretion. Migration was restored 

in the presence of PGE2 in TLR-activated FastDCs. IL-12p70 secretion was not aborted in 

the presence of PGE2. Furthermore, the secretion of IL-12p70 could be maximised upon 

supplementation with T-cell derived signals, CD40L and IFN-�. 

 

 

3.3. Induction of antigen-specific T-cell responses by FastDC  

 

The induction of a T-cell mediated response is a critical requirement for the use DCs in anti-

tumoural vaccination. The following experiments were performed to investigate and compare 

the efficiency of FastDCs to induce a tumour antigen-specific T cell response upon activation 

with TLR agonists or pro-inflammatory mediators (as described in the “materials and 

methods” section) : lytic activity of cytotoxic T cells in a chromium release assay, 

measurement of the IFN-� released in the co-cultures by ELISA, and the identification of 

CD8+ binding specifically to fluorescently labeled MHC-I/peptide complexes (streptamers). 

 

As shown in figure 10, TLR-activated FastDC were readily capable of, but not superior to 

their conventional counterparts, in priming Melan-A-specific cytotoxic T cell responses in 

vitro, as detected by the chromium release assay using Melan-A-loaded T2 cells as target 

cells. The differently matured FastDCs displayed equal target specificity: lytic activity was 

neither enhanced in co-cultures of unpulsed FastDCs nor in cultures of T2 cells loaded with 

the irrelevant peptide HIV-pol. 
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Fig. 10: Priming of Melan-A-specific cytotoxic T cells by differently matured FastDC- A 
co-culture of autologous T cells with Melan-A-pulsed or unpulsed FastDC stimulated with the 
above stimuli was performed. Five days after the second re-stimulation, T cells were 
harvested and incubated with  51Cr-labeled T2 cells (at different ratios) loaded previously with 
Melan-A or the irrelevant peptide, HIV pol. Supernatants were collected four hours later for 
measurement of the Cr released specific lysis was calculated. 
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While abundant IFN-� was detected in the supernatants of all cultures after the second re-

stimulation with the different Melan-A-pulsed FastDCs, very low levels or no IL-4 (TH2 

polarising cytokine) could be detected (Fig. 11 and 12). However, levels of IFN-� in co-

cultures with Melan-A-pulsed TLR-activated FastDC were more than 2 times higher than 

those from co-cultures with conventional Melan-A-pulsed FastDCs.  

 
 
 
 
 

PGE2/TNF-�/ IL-1�/CD40L/IFN� + MelanA

PGE2/TNF-�/ IL-1�

PGE2/TNF-�/ IL-1� + MelanA

R848/LPS/CD40L/IFN�+MelanA

R848/LPS/CD40L/IFN�

Co-culture 1st re-stimulation 2nd re-stimulation

10

20

30

40

50

0

IF
N
�

[n
g/

m
l]

*

 
 
 
Fig. 11: IFN-� secretion in co-cultures of autologous T cells with differently activated 
FastDC. FastDC generated as indicated were pulsed with Melan-A for 4 hours or left 
unpulsed, followed by the co-culture with autologous T cells. 2 days after each re-stimulation 
with freshly prepared FastDCs, the supernatants were collected and the secretion of IFN-� 
was quantified by ELISA. 
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Fig. 12: IL-4 secretion in co-cultures of autologous T cells with differently activated 
FastDC. FastDC generated as indicated were pulsed with Melan-A for 4 hours or left 
unpulsed, followed by the co-culture with autologous T cells. 2 days after each re-stimulation 
with freshly prepared FastDCs, the supernatants were collected and the secretion of IL-4 was 
quantified by ELISA. 
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Intracellular cytokine staining and analysis of MHC-I/Melan-A-peptide complexes binding of 

CD8+ T cells confirmed the activation of tumour-antigen specific CTL in co-cultures with 

either conventional or TLR-activated FastDCS : Intracellular staining of  IFN-� in CD8+  T cells 

was detected in both TLR-stimulated and conventional Melan-A-loaded FastDCs. The 

frequency of MHC-I/Melan-A peptide complexes binding to CD8+ in the flow cytometric 

analysis was higher, though not significantly, in the co-cultures of TLR-stimulated Melan-A-

pulsed FastDCs as compared with the conventional counterparts (Fig. 13 and 14). 

 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: Intracellular IFN- �-staining in CD8 + T cells of co-cultures with the different 
FastDC preparations. Differently matured FastDCs were co-cultured with autologous T 
cells, followed by two successive re-stimulations with newly generated unpulsed FastDC or 
FastDC pulsed with Melan-A. Two days after the second re-stimulation, intracellular IFN-�-
staining of CD8+ T cells from the different co-cultures as described in the “materials and 
methods” section was performed and analysed by flow cytometry. 
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Fig. 14: MHC-I/Melan-A-peptide complexes binding of CD8 + T cells after co-cuture with 
the differently activated FastDC. After co-culture and two re-stimualtions of autologous T 
cells with the differently activated FastDC, binding of CD8+ T cells to MHC-I/Melan-A-petide 
complexes was determined by FACS analysis. T cells from the co-culture with unloaded 
FastDCs either stimulated with pro-infalmmatory mediators or TLR- ligands served as 
controls. 
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As expected, relevant levels of IL-12p70 secretion could only be detected in co-cultures with 

TLR-activated FastDCs, despite comparable activation of antigen-specific T cell responses in 

conventionally activated FastDCs (figure 15).  
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Fig. 15: IL-12p70 secretion in FastDC in the differently activated FastDC. Monocytes 
were isolated from PBMC, and incubated 24 hours with GM-CSF and IL-4, and matured 
subsequently for another 24 hours with the different combinatory stimuli.  
 

 

Taken together, in the set of experiments described above, TLR-activated FastDCs showed 

equal capacity to prime tumour antigen-specific CTL responses while having a higher 

potential to elicit a TH1 immune response as compared to their conventional counterparts. 

While no significant differences in the level of unspecific T cell-activation was observed, 

higher levels of IFN-� secretion could be detected in co-cultures of autologous T cells with 

TLR-activated FastDCs, in accordance with their unique capacity to secrete high levels of IL-

12p70.  
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4. Discussion  
 

 

4.1. Summary of the results  

 

With regard to the positive effects of IFN-� on DC differentiation and function reported in the 

literature, we first investigated whether the addition of IFN-� to GM-CSF/IL-4 during the 

differentiation of FastDCs from monocytes influenced terminal differentiation, survival or the 

capacity for antigen uptake and could detect no significant effects. FastDCs maintained 

mature immunophenotype in wash-out cultures and readily took up soluble as well as cell-

derived antigens independent of additional supplementation with IFN-�.  

 

The main objective of the second part of this doctoral thesis was to modify the FastDC 

protocol in order to generate DCs fulfilling all the criteria required to improve the efficiency of 

DC vaccines: 

 

� mature immunophenotype  

� migration in response to 6Ckine 

� secretion of high levels of IL12-p70 

� ability to prime effectively antigen-specific cytotoxic T cells 

 

To this end, we tried to overcome the specific defect of the so-called conventional FastDC 

activated with the pro-inflammatory mediators PGE2/TNF-�/IL-1� to secrete functional IL-

12p70 by activation with the TLR agonists R848 and LPS, either used alone or in 

combination with the T cell-derived stimuli CD40L and IFN-�. 

  

In comparison with TLR-activated FastDCs, the conventional maturation cocktail was found 

to trigger the highest expression of co-stimulatory molecules, despite the inefficacy in IL-

12p70 secretion. In contrast, TLR agonists, alone or in combination, could not induce 

complete mature immunophenotype, unless used in combination with T-cell derived signals, 

CD40L and IFN-�. High levels of IL-12p70 were produced by FastDCs stimulated with TLR-

agonists used alone or in combination, which could be maximised in FastDCs after the 

combined use of TLR7/8 and TLR4-agonists, together with CD40L and IFN-�. TLR-activated 

FastDCs expressed equal levels of CCR7 as compared to conventional FastDCs. However, 

irrespective of CCR7 expression and semi-mature phenotype, they failed to migrate towards  
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6Ckine, unless supplemented with PGE2. Importantly, elevated levels of IL-12p70 could still 

be induced in the presence of PGE2 in TLR-derived FastDCs. 

 

Irrespective of the mode of activation, FastDCs were capable of inducing the antigen-specific 

activation and expansion of CD8+ T cells. However, CTLs derived from co-cultures with TLR-

stimulated FastDCs appeared to be moderately superior in priming CD8+ T-cells. CTLs 

primed by conventional or TLR-stimulated FastDC displayed equal target specificity. 

Importantly, multifunctional FastDCs, capable of both migration and cytokine secretion, could 

be generated using TLR agonists and PGE2 in combination. 

 

 

4.2. Comparison with the literature 
 

4.2.1. FastDC and short term protocols 

 

The traditional 7-day protocol has long been considered as the gold standard to generate 

DCs for experimental and clinical purposes: monocytes are incubated with GM-CSF and IL-4 

for 5 days, followed by maturation for additional 2 days with cytokines, T-cell derived signals 

or microbial-derived stimuli. However, increasing evidence from animal studies implies that 

only 24 to 48 hours are required for the differentiation of dendritic cells from monocyte 

precursors in vivo (Palucka and Banchereau, 2002; Randolph et al., 1998), emphasizing that 

rapid culture techniques reflect more closely the process of DC differentiation in vivo.  

 

The development of short-term protocols was pioneered by the team of Czerniecki using 

calcium-mobilizing agents for maturation. Alternatively, the use of IL-4 or IFN-� has also been 

reported to induce maturation within 2-3 days. Recently, our working group showed that 

functional mature dendritic cells, so-called FastDC, could be generated within 48 hours, with 

equal capacity for antigen uptake, T-cell priming and migration. In comparison to the 

conventional protocol, a higher yield with more than 95% purity and viability was achieved 

(Dauer et al., 2003). Technically, the FastDC protocol is not only more convenient in terms of 

practicability, but additionally lowers costs, labour, time and risks of microbial contamination.  

 

According to a recent comparative study, the FastDC protocol was demonstrated to be 

adaptable to full-scale GMP-production of DC required for clinical trials. In this respect, it may 

represent a promising strategy enabling doctors to treat more patients in a shorter period of 

time (Jarnjak-Jankovic et al., 2007). Taking these advantages into consideration, the short- 



 51 

 

term protocol illustrates a superior model for the study of human DC biology and represents a 

highly standardised method to generate dendritic cells in a reproducible manner, eligible for 

cellular-based immunotherapy.  

 

4.2.2. Determination of antigen-specific T-cell responses 

 

Cellular immune responses are currently assessed by measuring cytotoxicity, proliferation or 

release of cytokines by T-cells. The chromium release assay is a semi-quantitative assay, 

measuring the lytic potential of cytotoxic T lymphocytes. However, in addition to being time-

consuming, labour-intensive and not very sensitive, it does not provide information about the 

type of cells involved. Similarly, while total cytokine secretion is essentially analysed by 

enzyme-linked immunoassays, it is not possible to determine the type and number of cells 

actually secreting those cytokines.  

 

On account of this, T-cell responses can additionally be assessed with new single-cell 

assays. Using the streptamer approach, the frequency of CD8+
 T-cells binding specifically to 

Melan A-MHC I-StrepTag-PE can be measured by FACS analysis. In order to detect 

simultaneously the cytokine produced, and also to define the subtype and frequency of IFN-

�-secreting cells, an intracellular staining as well as a conventional staining of cell surface 

molecules were performed, and analysed by flow cytometry. Both assays showed a similar 

trend, with an enhancement in the frequency of CD8+ T cells detected in Melan-A-pulsed 

populations as compared with unloaded populations. Consistent with previous published 

data, Melan-A-specific CD8+
 T cells were detected to a higher level in the streptamer assay 

than intracellular IFN� + T cells (Rothenfusser et al., 2004; Whiteside et al., 2003). However, 

this disparity observed might be due to different measuring time points. Nevertheless, these 

improved techniques are not entirely satisfactory. For instance, the necessity to identify the 

patient’s haplotype, and the limited availability of MHC class I/peptide multimers restrict their 

use on a larger scale. Therefore, the above assays used exclusively to monitor T cell 

responses would be suboptimal, and a combination of several assays will show more validity 

in experimental settings as well as in clinical immunomonitoring. 
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4.2.3. FastDC and interferon-� 

 

It is currently believed that DCs represent terminally differentiated cells, having a low survival 

rate after the withdrawal of cytokines and growth factors (Feuerstein et al., 2000). Our 

working group showed previously that FastDCs in wash-out cultures survived up to six days 

and reverted to an immature phenotype unless stimulated with T-cell signals (Dauer et al., 

2006). IFN-� shows in vivo controversial effects on the differentiation of dendritic cells. IFN-� 

was reported to be a poor inducer of DC maturation in the absence of other stimuli and was 

demonstrated to impair maturation in moDCs (Dauer et al., 2003). However, in combination 

with IL-1� and IL-4, it was found to enhance CD40L-mediated IL-12p70 secretion (Luft et al., 

2002). Furthermore, analogous to moDCs, maturation was superior in FastDCs treated with 

PGE2, TNF-�, and IL-1� in the presence of IFN-� (Luft et al., 2001; Dauer et al., 2006). 

Interestingly, in contrast to moDC, no reversion to an immature phenotype was observed in 

IFN-�-primed FastDC. With respect to endocytosis, IFN�-primed FastDCs showed an inferior 

tendency, though not significantly, to internalise FITC-dextran or CFSE-labeled pancreas 

tumour cells than unprimed FastDCs. 

 

 

4.2.4. IL-12p70 deficiency and migration in conventional FastDC  

 

PGE2, required at early stages of maturation, has been demonstrated to be indispensable to 

deploy the migratory capacities of DCs (Legler et al., 2006). Consistent with previous 

published data, conventional FastDCs migrated readily in response to 6Ckine (Scandella et 

al. 2002, Luft et al. 2002). In that regard, chemotaxis in CCR7+ DC deployed by PGE2 has 

been attributed to podosome dissolution, induction of high-speed migration (Van Helden et al. 

2006) and the formation of less adherent cells, linked with a lower expression of activated �1-

integrin, thereby favouring migration. 

 

It is generally accepted that IL-12p70 deficiency limits significantly the use in DC cancer 

vaccines. In accordance with several studies, we could reaffirm the inhibitory effects of PGE2 

on IL-12p70 secretion in conventional FastDCs. Previous studies with conventional FastDCs 

showed that total IL-12 (IL-12p70 + IL-12p40) could be induced upon additional stimulation 

with CD40L, whereas moderate levels of IL-12p70 secretion could not be enhanced, unless 

supplemented with IFN-� (Dauer et al., 2003). Under our experimental settings, no IL-12p70 

secretion was triggered upon additional IFN-�-stimulus. The underlying mechanisms of the 

antagonistic effects of PGE2 on IL-12p70 secretion have not been completely clarified.   
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Bioactive IL-12p70 is not secreted constitutively, but regulated by the synchronous 

expression of subunits, p35 and p40, in the same cell (Trinchieri et al. 2003). The selective 

induction of IL-12p40 homodimers has been reported to account for the suppression of IL-

12p70 by PGE2 (Kalinski et al. 2001). On the other hand, an increase in cAMP, caused by 

PGE2 has also been associated with a deficiency in IL-12p70 secretion (Van der Pouw Kraan 

et al. 1998). 

 

 

4.2.5. Maximum IL-12p70 secretion in TLR-derived FastDC  

 

DCs exhibit the broadest repertoire of TLRs, expressed constitutively or inducible in different 

cell types (Kadowaki et al. 2001; Jarossay et al. 1998). In accordance with several studies of 

moDCs, despite comparable maturation with single TLR agonists, high levels of IL-12p70 

secretion could be elicited unless stimulated with a combination of TLR agonists, confirming 

the synergistic effects reported by Napolitani et al. Likewise, IL-12p70 secretion could be 

maximised upon CD40 ligation in the presence of IFN-� (Snidjers et al. 1998). These findings 

illustrate the potential of dendritic cells to secrete large amounts of IL-12p70, developing only 

in response to multiple microbial signals combined with T-cell derived signals. Furthermore, 

IL-12p70 secretion was suggested to be regulated by a feedback loop, in which DC:T-cell 

contact via CD40-CD40L induces IL-12p70 secretion, followed by the secretion of IFN-�, 

which sustains DCs to secrete IL-12p70 (Boullart et al., 2008). The concept of TLR-based 

activation with T-cell derived signals is also supported by a very recent study showing that 

co-electroporation of moDCs with mRNA encoding CD40L and TLR4 resulted in high levels 

of IL-12p70 secretion (Dauer et al., 2008). Moreover, an induction in the expression of the 

p35 subunit (the limiting factor in the synthesis of bioactive IL-12p70) was associated with 

CD40 ligation (Schulz et al. 2000). Recent experimental data suggests that the synergetic 

effects of TLR4 and TLR8 in moDCs result from the activation of both TLR transducing 

signalling pathways, the MyD88-dependent and interferon-dependent pathways 

(Bohnenkamp et al. 2007). Moreover, Napolitani et al. demonstrated that IL-12p70 secretion 

could be elicited only when different TLR ligands were added in a time window of four hours. 

This finding implies that the engagement of several TLRs and the subsequent synergistic 

effects induced are tightly controlled. This may represent in vivo, a “combinatorial security 

code”, ensuring that an immune response will be initiated only in the presence of invading 

pathogens (expressing several TLR ligands simultaneously).  
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4.2.6. Poor migration in TLR-stimulated FastDC  

 

Irrespective of the up-regulation of CCR7 expression, PGE2 is imperative to license migration 

in DCs (Scandella et al. 2002, Luft et al. 2002). This finding could be reaffirmed in our 

experiments. Migration was observed in conventional FastDCs, whereas CCR7+ TLR-

stimulated FastDCs failed to undergo chemotaxis to 6Ckine under our experimental settings. 

The physiological significance or the exact mechanisms involved in rendering CCR7 in a 

responsive state by PGE2, or other leukotrienes found at inflammatory sites (Randolph et al., 

2005) are still under debate. It is assumed that PGE2 interferes in the signalling pathways of 

CCR7, resulting in a cytoarchitectural reorganization during migration. A stronger adherence 

was observed in DCs treated with R848 or IFN-� in comparison to PGE2 (Lehner et al., 

2008). This finding could explain the immobility of TLR-activated FastDCs. At the molecular 

level, stimulation of PGE2 via EP2 and/or EP4 receptors has been shown to be a requisite to 

license the functionality of CCR7 (Scandella et al. 2002). On the other hand, in a murine 

study, CD38 has also been identified to be involved in CCR7 licencing (Partida-Sanchez et 

al. 2004).  

 

 

4.2.7. Migration is restored and IL-12p70 secretion is not aborted in TLR-matured 

FastDC supplemented with PGE2  

 

Poor DC migration and low IL-12p70 secretion are drawbacks of the currently used DC 

vaccines. The use of PGE2 in maturity cocktails have been reported repeatedly to account for 

the low secretory potential of moDCs. Under our experimental settings, supplemented PGE2 

could restore the migratory capacities of FastDC matured with agonists of TLR7/8 and TLR4, 

in the presence of CD40L and IFN-�, without inhibiting their IL-12p70 secretions. Recent 

findings demonstrated that the secretion of IL-12p70 could not be further intensified upon 

prolonged stimulus with LPS (Kalinski et al. 1997) or CD40L (Langenkamp et al. 2000), 

implying that IL-12p70 is secreted in a primary and a secondary manner. Under the 

assumption that PGE2 is acting on the secondary cytokine secretion, it is believed that the 

TLR-derived stimuli launch the primary cytokine secretion, which cannot be neutralised by 

PGE2. Moreover, PGE2 could counteract the enhanced adherence observed in DCs treated 

with TLR agonists.  

 

Interestingly, migration and secretion of IL-12p70 could be triggered, though to a lesser 

extent, in FastDCs treated with R848, LPS and PGE2 in the absence of CD40L and IFN-�.   
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On the other hand, PGE2 supplemented with CD40L and IFN-� failed to induce IL-12p70 

secretion. These findings underline the necessity of T-cell derived signals upon maturation 

with PGE2 in the absence of TLR signals, and inversely imply that TLR signals are sufficient 

to trigger the secretion of IL-12p70 in a T-cell independent manner. 

 

 

4.2.8. Migratory vs. pro-inflammatory dendritic cells 

 

Its inevitable requirement to initiate migration in DCs, and its antagonistic effects on the 

secretion of IL-12p70, make PGE2 one of the most controversial mediators used in DC 

protocols. The induction of a TH1 response is dependent on the production of IL-12p70 by 

DCs. Maturation in the presence of PGE2 resulted in the formation of migratory FastDCs 

incapable of inducing the secretion of IL-12p70. On the other hand, DCs matured under the 

influence of TLR-derived stimuli and T-cell derived signals, without PGE2, developed into 

“sessile” FastDCs with high levels of IL-12p70. This central dogma observed already in early 

studies with moDCs led to the concept of a “pro-inflammatory phenotype” or “cytokine-

secreting” phenotype under the influence of PGE2 (Luft et al., 2002).  

 

What could be the functions of such DCs migrating to the lymph nodes, but unable to 

“converse with T cells”? Recent works have suggested that this subset of DCs might be 

involved in self-tolerance, presenting self-antigens in a “steady-state”. Moreover, 

inflammatory mediators are not only secreted in response to infection, but also to trauma or 

tissue injury, during which DCs mature without TLR-derived stimuli. In this way, IL-12p70 

deficient DCs “involuntarily activated“can prevent an excessive or inadequate activation of a 

cell-mediated response. 

 

Migration to the lymph nodes offers the greatest opportunity for DC to encounter T cells. 

What could be the physiological relevance of “sessile” CCR7-positive DCs“conditioning their 

environments” with the secretion of large amounts of IL-12p70, as generated in TLR-derived 

FastDCs? It has been suggested that CCR7+ immobile FastDCs with maximum IL-12p70 

secretion  could correspond  in vivo to sessile DCs localised originally in lymph nodes (where 

CD40 ligation would also occur), sampling soluble antigens which have drained there directly 

(Randolph et al. 2005). Alternatively, they might be immobilised purposely at the sites of 

challenge, recruiting there either naïve “passerby” T cells or other immune cells with killing 

properties to confine the inflammatory processes, or sustain DC:T-cell dialog facilitating 

maturation while recruiting T effector cells. 
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4.2.9. Activation of an antigen-specific immunity  

 

In contrast to CD4+ T cells, IL12-p70  has been reported to be involved in enhancing 

functional avidity in CD8+ T cells (i.e. the activation of cytotoxic T cells with potent capacity to 

recognise and kill tumour cells), but showed no influence on cytokine secretion (Xu et al. 

2006). Although we observed a tendency towards enhanced activation of Melan-A-specific 

CTL in TLR-derived FastDCs, conventional FastDCs deficient in IL-12p70 secretion were 

found to sensitise equally CD8+
 T cells to lyse target T2 cells. This implies that in our in vitro 

model, T-cell activation occurred predominantly in an IL-12p70-independent manner. 

Likewise, the secretory profile of IFN-� was comparable in both sets of FastDCs, 

independent of the secretion of IL-12p70. Importantly, in another study of our working group, 

the supplementation of PGE2 did not influence the capacity of FastDCs to activate Melan-A-

specific CTLs. Accordingly, equal levels of IFN-� were measured in co-cultures of TLR-

derived FastDCs and TLR-derived FastDCs in the presence of PGE2. Analogous to our 

previous experiments, compared to conventional FastDCs, more than a two-fold increase 

was induced in co-cultures of TLR-derived FastDCs (Dauer et al., 2008). 

 

 

4.2.10. IL-12p70 secretion and antitumour immunity 

 

The ability of IL-12p70 to induce antigen-specific immunity is reflected not only by its ability to 

induce TH1 and CTL responses, but also to increase the production of opsonizing and 

complement-fixing IgG antibodies, shown to have antitumour activity in vivo. These findings 

indicated that the direct administration of IL-12p70 could be efficient in antitumour therapies. 

However, excessive toxicity in the form of inflammatory responses and the moderate 

responses in clinical trials have dampened this enthusiasm greatly (Trinchieri et al., 2003). 

Thus, the induction of IL-12p70 secretion in vivo in DC vaccines represents a more reliable 

and efficient pathway with less adverse effects to mount an antitumour response. On account 

of this, the identification of factors inhibiting IL-12p70 secretion is another important aspect to 

be considered to improve DC-based cancer vaccines. For example, tumour-induced 

suppression has been associated with the inhibition of IL-12p70, caused by IL-10 and TGF-�. 

The latter were shown to be potent cAMP-inducers and inhibitors of the transcription of IL-12 

genes (Trinchieri et al., 2003; Tarbell et al. 2006). 
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4.3. Clinical relevance  

 

4.3.1. Minor success of first-generation DC vaccines 

 

Although tumour regression has been observed occasionally, no studies have yet shown to 

improve survival in DC-based vaccines (Steinman et al. 2007). The route of administration, 

the loading of the antigens, or the selected antigens pulsed with DCs were also reported to 

be suboptimal (Steinman et al. 2007; Aarntzen et al. 2008). The migratory potential of PGE2 

in maturity cocktails was utilised at the expense of IL-12p70 deficiency. Only 1% of DCs 

injected was found to migrate to the secondary lymphoid organs (De Vries et al. 2003). 

Moreover, DC vaccines in early clinical trials were applied exclusively to late-stage cancer 

patients. Recent findings have shown that CTL responses following DC-based vaccination 

were found to be stronger and long-lasting in stage II melanoma patients with minimal 

residual disease than stage IV melanoma patients with large tumours. Antitumour 

immunosuppression by tumour cells has been another factor recently identified to counteract 

the effects of DC vaccines. Furthermore, a lack of standardization in protocols for the ex vivo 

generation and maturation of DCs, study design as well as patient selection, made it 

unfeasible to analyse and define more clearly the criteria required to design an optimal DC 

vaccine.  

 

 

4.3.2. Optimal DC quality with TLR ligands and PGE2 for DC-based immunotherapy 

 

Suboptimal phenotypic maturation and reduced migratory capacity have been proposed to 

be drawbacks of single TLR-derived DC vaccination (Dauer et al., 2008).  There is 

substantial evidence that the combined activation of immature DCs with TLR-ligands, T-cell 

derived signals and PGE2 is optimal for the large-scale generation of clinical grade migratory 

TH1-polarizing DCs (Zobywalski et al., 2007; Boullart et al., 2008). These findings have been 

paralleled by our own observations in the FastDC protocol. Furthermore, TLR-matured 

FastDCs with PGE2 and CD40L as well as IFN-� showed an enhanced tendency to expand 

CTLs in the Melan-A model as compared with conventional DCs (Dauer et al. 2008).  

Interestingly, the supplementation of PGE2 in TLR-activated DCs was associated with a 

reduction of IL-10 secretion (Boullart et al., 2008). Hence, it does not only improve the 

efficiency in terms of enhanced antitumour cell-mediated reponse but also acts as an 

opponent of tumour-induced immunosuppression. This new FastDC population opens new 

routes for improving the efficacy of DC vaccines in antitumour therapy.  
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4.3.3. Future perspectives  

 

Referring to recent studies on the efficacy of DC-based vaccines, hereunder is a re-

evaluation and definition of the criteria essential to exploit DCs in anti-tumour regimes: 

 

� Viability and purity of DC should exceed 75% 

� High-quality DC : Fully mature phenotype, CCR7+ expression with 

migration 

� Generation of Th1 polarizing DCs with high IL-12 secretion 

� Counteracting antitumour immunosuppression 

� Standardization of culture protocols and immunomonitoring techniques 

� Standardization in  study design and patient selection 

 

 

4.3.4. DC-based therapy and adjuvant antitumour therapy 

 

Traditional vaccines prevent the outbreak of infectious diseases by inducing long-lived 

immunity against specific microbial antigens. In contrast, DC-based cancer vaccines are 

based on the exploitation of DC to induce immunity specifically against tumour antigens to 

treat a clinically established cancer. Cell-mediated immunity is a powerful non-toxic and 

selective line of defence against cancer, acting complementarily to the traditional antitumour 

therapy regimes including surgery, chemotherapy, and radiotherapy.  
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5. Summary 
 

 

Monocyte-derived DCs generated with a standard 7-day protocol have contributed largely to 

the knowledge available about their biology. Nevertheless, increasing evidence shows that 

the short-term FastDC protocol represents a rapid assay, resembling more closely 

physiological instances, superior in generating ex vivo DCs. 

 

Summarising our results, under our experimental settings, mature FastDCs could be 

generated under the concerted influence of microbial-derived stimuli, the TLR agonists R848 

and LPS, combined with T-cell derived stimuli, CD40L and IFN-�, in the presence of PGE2. 

While exhibiting a mature phenotype, such FastDC generated could, for the first time, induce 

high levels of IL-12p70 and show high migratory capabilities in the presence of PGE2. 

Extrapolating these findings at the physiological level, FastDCs can differentiate along two 

pathways. The first subset may represent DCs found at inflammatory sites sampling for 

"passerby-T cells" in the presence of PGE2, or activating cells of the immune system with 

killing properties, thereby providing “primary immediate care” and restraining the infection at 

the inflammatory site. On the other hand, the second subset characterises those migrating to 

the lymph nodes for the expansion and differentiation of T helper cells. In addition to their 

efficient TH1 polarizing potential, they were capable of activating and expanding selectively 

CD8+
 T cells into cytotoxic effector cells, and enhancing high levels of secretory IFN-�. Taken 

together, the FastDC protocol including the above combinatory maturity cocktail offers a new 

gold standard for the large-scale generation and exploitation of DCs for DC-based 

immunotherapies and DC-research.  

 

Furthermore, this work illustrates the elaborate and flexible programs that DCs are having at 

their disposal, generating different subsets “on demand”, instructed by the stimuli and signals 

found at the inflammatory sites. Migration and IL-12p70 secretion have been two crucial 

objectives in DC studies. Following to improvements in isolating procedures, recent findings 

are exemplifying how mediators can modulate the development of a plethora of DC subsets. 

The physiological correlation between “artificial” DC subsets and in vivo DCs is 

unpredictable, and critical interpretation of the results is essential.  
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6. Zusammenfassung 
 
Die Verwendung dendritischer Zellen zu experimentellen oder klinischen Zwecken war 

anfänglich insbesondere durch die suboptimalen Bedingungen in Bezug auf ihre Isolierung 

und Kultur erschwert. Erst durch die Entwicklung der Isolierungsmethode nach Sallusto 

(Sallusto et al. 1994 Romani et al., 1994) konnte vieles über DC aufgeklärt werden. Diese 

Methode wird noch heute als Goldstandard verwendet. Dabei werden Monozyten aus dem 

peripheren Blut isoliert, 5-7 Tage mit GM-CSF und IL-4 inkubiert, und anschließend mit pro-

inflammatorischen Mediatoren (Jonuleit et al., 1997) stimuliert.  

 

In den letzten Jahren konnte gezeigt werden, dass die Isolierung DC aus Monozyten auch in 

einer kürzeren Zeitspanne möglich ist. Czerniecki et al., 1997 verwendeten Kalzium- 

Ionophoren während Dauer et al. IL-4 oder IFN-� (Dauer et al., 2003) zur Aktivierung 

benutzen. Das besondere Interesse an solchen „short-term“ Protokollen liegt in der 

Annahme, dass eine schnellere in vitro Differenzierung die physiologischen Prozesse in vivo 

besser widerspiegelt. Außerdem ist die Methodik nicht nur ökonomischer, sondern die 

Kontaminationsgefahr konnte ebenfalls gesenkt werden. 

 

In unserer eigenen Arbeitsgruppe wurde ein Protokoll zur Generierung von DC aus 

Monozyten innerhalb von 48 Stunden, die sogenannte FastDC, beschrieben (Dauer et al. 

2003). Mit dem Stimulationscocktail PGE2/TNF-�/IL-1� konnten reife stabile FastDC generiert 

werden, die einen reifen Immunophänotyp aufwiesen, ein migrierendes Potenzial zeigten, 

jedoch nur wenig IL-12p70 sezernierten.  

 

In unseren aktuellen Ergebnissen konnten wir zeigen, dass anhand von mikrobiellen Stimuli 

wie dem TLR Agonisten R848 und LPS kombiniert mit T-Zell-abhängigen Faktoren wie 

CD40L und IFN-� in Anwesenheit von PGE2, reife dendritische Zellen, sogenannte FastDC, 

generiert werden konnten. Diese wiesen einen reifen Phänotyp auf, sezernierten erstmalig 

hohe Mengen an IL-12p70 und zeigten gleichzeitig ein hohes migratorisches Potenzial in 

Gegenwart von PGE2. Die FastDC übten einen signifikanten polarisierenden Effekt auf T- 

Helfer Zellen, TH1, aus. Außerdem waren die FastDC in der Lage CD8+
 T- Zellen in 

zytotoxischen T- Effektorzellen zu differenzieren, welche hohe Mengen an IFN-� sezernieren. 

 
Betrachtet man diese Ergebnisse auf physiologischer Ebene, so können FastDC in zwei 

Subtypen differenziert werden: Die erste Subpopulation repräsentiert die DC, die man in 

entzündetem Gewebe findet und die in Gegenwart von PGE2 die Einwanderung von T-Zellen 

fördern oder Zellen des Immunsystems mit zytotoxischen Eigenschaften aktivieren. Sie stellt  
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somit eine Art „primäre Soforthilfe“ dar. Die andere Subpopulation beinhaltet die DC, die in 

Lymphknoten migrieren und dort die Differenzierung und Expansion von T-Helfer Zellen 

induzieren, und somit die zelluläre Immunantwort fördern. 

 

Zusammenfassend stellt das FastDC-Protokoll mit dem oben dargestellten 

Stimulationscocktail einen neuen überlegenen Goldstandard zur Generierung und 

Verwendung von funktionsfähigen DC  für DC- basierte Immunotherapien und DC-Forschung 

dar. 

 

Diese Arbeit zeigt wie DC komplexe und flexible Programme zur Verfügung besitzen, um 

verschiedene Subklassen von DC „bei Bedarf“ zu generieren, gesteuert von Stimuli und 

Signalen am Inflammationsort. Migration und IL-12p70-Sekretion stellen die zwei wichtigsten 

Ziele in DC-Studien. In Folge der Verbesserungen der Isolierungsprozeduren konnten neue 

Erkenntnisse gewonnen werden wie Mediatoren die Generierung einer Fülle von DC- 

Subpopulationen bewirken. Die Korrelation zwischen „artifiziellen“ DC Subpopulationen und 

in vivo DC ist jedoch schwer einschätzbar und eine kritische Interpretation der 

Datenergebnissen ist daher unerlässlich. 
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8. Abbreviations 
 

 

APC antigen-presenting cell(s) 

CCL chemokine ligand 

CCR7 chemokine receptor 7 

CD cluster of differentiation 

CD40L CD40 ligand 

CLP common lymphoid progenitors 

CMP common myeloid progenitors 

CTL cytotoxic T lymphpcytes 

cpm counts per minute 

DC dendritic cell 

DCs dendritic cells 

EDTA ethylen-Diamin-Tetra-Acetic acid 

ELC EBI ligand chemokine 

ELISA enzyme linked immunosorbent assay 

EP prostaglandin E receptor 

ER endoplasmatic reticulum 

FACS fluorescence activated cell sorting 

FCS fetal calf serum 

FOXP3 forkhead box P3 

FSC forward scatter 

Flt FMS-like tyrosine kinase 

GM-CSF granulocyte macrophage - colony stimulating factor 

h hour(s) 

HEV high endothelial venules 

HPV human papilloma virus 

HSA human serum albumin 

IFN interferon 

IL interleukin 

IRF interferon gamma regulator factors 

LPS lipopolysaccharide 

MACS magnetic activated cell sorting 

MAPK mitogen activated protein kinases 
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MFI mean fluorescence intensity 

MHC major histocompatibility complex 

min minute(s) 

MIP macrophage inflammatory protein 

moDCs monocyte-derived dendritic cells 

MyD88 myeloid differentiation factor 88 

NF-KB Nuclear factor „kappa-light-chain-enhancer“ of activated B cells 

NK natural killer 

NOD nucleotide-binding oligomerization 

PAMP pathogen-associated molecular pattern 

PBMC peripheral blood mononuclear cells 

PBS phosphate buffered saline 

pDC plasmacytoid DC 

PGE2 prostaglandin E2 

PRR pattern recognition receptor 

RANTES Regulated on activation normal T cell expresssed and secreted 

RIG retinoid acid-inducible gene 

RLR RIG-like receptor 

SEM standard error of the mean 

SSC sideward scatter 

SLC secondary lymphoid tissue chemokine 

TAA tumour-associated antigens 

TAP transporters associated with antigen processing 

TCR T cell receptor 

TGF-� transforming growth factor beta 

TIR Toll/IL-1R  

TIRAP Toll-like receptor adaptor protein 

TLR Toll-like receptor 

TNF tumour necrosis factor 

VEGF vascular endothelial growth factor 
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