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 “Men ought to know that from nothing else but the brain come joys, delights, 

laughter and sports, and sorrows, griefs, despondency, and lamentations. And by 

this, in an especial manner, we acquire wisdom and knowledge, and see and hear 

and know what are foul and what are bad and what are good, what are sweet and 

what are unsavoury….And by the same organ we become mad and delirious, and 

fear and terrors assail us.…All these things we endure from the brain when it is not 

healthy….In these ways I am of the opinion that the brain exercises the greatest 

power in the man.” 

   -Hippocrates, on the Sacred Disease (Fourth century B.C.) 
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Abstract 
 
 
Anxiety disorders are among the most common psychiatric diseases and 

contribute to the development of other psychiatric conditions, such as major 

depression, leading to a high impairment of daily life quality. Although it is obvious 

that the physiological architecture of neuronal networks and its modifications are 

essential for the ability of the brain to process incoming information and to control 

highly organized behaviour, the mechanisms underlying anxiety disorders still remain 

poorly understood.  

We focused our attention on two brain structures, which are strongly involved 

in emotional responses of mammals, namely the hippocampus and the amygdala. 

Both structures belong to the limbic system and play fundamental roles in information 

processing. Recent findings indicate that alterations in neuronal network properties of 

these two brain areas critically contribute to the development of such disorders. To 

potentially uncover changes in neuronal network features associated with abnormal 

anxiety, we performed experiments in a well-established animal model of extremes in 

trait anxiety, the high vs. low anxiety-related behaviour (HAB/LAB) mice. HAB mice 

exposed to an enriched environment (HAB E.E.) and stressed LAB mice (LAB Str.) 

were also used in the present study. HAB E.E. animals showed decreased anxiety 

compared to standard HABs, whereas LAB Str. animals displayed an increase in 

anxiety levels compared to standard LABs. Anxiety levels were measured by means 

of the elevated plus maze. For our investigations, we employed classical 

electrophysiological techniques and high-speed voltage-sensitive dye imaging (VSDI) 

in acute hippocampal (dorsal & ventral) and amygdalar brain slices. 

Field potential recordings revealed that HAB animals exhibit weaker long-term 

potentiation at CA3-CA1 synapses (CA1 LTP) in the dorsal hippocampus and an 

increased LTP in the ventral hippocampus compared to LAB and control CD1 mice. 

These observations could support the idea of an exacerbated activation of the 

“emotional” (ventral) hippocampus concomitantly with a decreased activity in the 

“cognitive” (dorsal) hippocampus, findings that have also been made in patients 

suffering from anxiety disorders. 

To examine whether neuronal activity propagation through the amygdala 

differs between HAB, HAB E.E., LAB and LAB Str. mice, we used a quantitative 

VSDI approach. Our results demonstrate that HAB animals exhibit stronger neuronal 
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activity propagation through the amygdala compared to LAB mice. This indicates that 

differences in anxiety levels may correlate with the effectiveness of neuronal activity 

flow through the amygdalar network. Our study also provides strong evidence that 

environmentally induced shifts in trait anxiety are associated with changes in intrinsic 

amygdalar network properties. 

To summarize, HAB animals showed increased “excitability” in the ventral 

hippocampus and in the amygdalar network, both structures known to be involved in 

the control of emotional states and in the stress response in mammals. In addition, 

the differences in amygdalar network activity were rescued by environmental 

conditions (enriched environment). Dysregulation of these structures could lead to 

the “pathologic anxiety-like” behaviour, which can be observed in HAB animals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  6 

1 Introduction........................................................................................................... 8 

1.1 Anxiety: physiology and pathology ............................................................... 8 
1.1.1 From emotion to pathology ................................................................... 8 
1.1.2 Neurobiology of stress ........................................................................ 10 

1.1.2.1 Definition and overview ................................................................... 10 
1.1.2.2 The HPA axis................................................................................... 11 
1.1.2.3 Glucocorticoids: action and effects .................................................. 13 
1.1.2.4 Regulation and termination of the HPA axis response .................... 14 
1.1.2.5 Dysregulation of the HPA axis and mental disorders....................... 16 

1.2 The limbic system....................................................................................... 18 
1.2.1 The hippocampus................................................................................ 18 

1.2.1.1 Hippocampal anatomy..................................................................... 19 
1.2.1.2 Hippocampal afferences.................................................................. 21 
1.2.1.3 Hippocampal efferences.................................................................. 24 
1.2.1.4 Synaptic plasticity in the hippocampal CA1 area ............................. 25 
1.2.1.5 Functional differentiation within the hippocampus ........................... 30 

1.2.2 The amygdala ..................................................................................... 34 
1.2.2.1 Anatomy .......................................................................................... 34 
1.2.2.2 Divisions and locations .................................................................... 37 

1.2.2.2.1 The basolateral group ................................................................ 37 
1.2.2.2.2 The superficial or cortical-like group........................................... 37 
1.2.2.2.3 The centromedial group ............................................................. 38 
1.2.2.2.4 Connectivity................................................................................ 38 

1.2.3 Amygdala, stress and anxiety ............................................................. 42 
1.3 Animal models of human psychopathology ................................................ 44 

1.3.1 An animal model of trait anxiety: The HAB/LAB mouse model ........... 45 

2 Aim of the study.................................................................................................. 47 

3 Material & Methods ............................................................................................ 48 

3.1 Animals ...................................................................................................... 48 
3.2 Electrophysiology ....................................................................................... 48 

3.2.1 Preparation of brain slices................................................................... 48 
3.2.2 Field excitatory postsynaptic potential (fEPSP) recording................... 49 

3.2.2.1 Equipment ....................................................................................... 49 
3.2.2.2 Data recording ................................................................................. 51 
3.2.2.3 Experimental protocols .................................................................... 51 
3.2.2.4 Data storage and analysis ............................................................... 52 

3.2.3 Patch clamp recordings....................................................................... 53 
3.2.3.1 Recording electrodes & data acquisition ......................................... 53 
3.2.3.2 Whole-cell recording........................................................................ 54 
3.2.3.3 Recording of GABAA receptor-mediated miniature inhibitory 
postsynaptic currents (mIPSCs) .................................................................... 55 
3.2.3.4 Data analysis & statistics ................................................................. 55 

3.3 Voltage-sensitive dye imaging (VSDI) ........................................................ 55 
3.3.1 Di-4-aminonaphtylethenylpyridinium (Di-4-ANEPPS).......................... 55 
3.3.2 Preparation and staining of brain slices for VSDI recordings .............. 56 
3.3.3 VSDI equipment & data acquisition..................................................... 56 
3.3.4 Data processing & analysis ................................................................. 58 
3.3.5 Statistics.............................................................................................. 60 

4 Results ............................................................................................................... 61 



  7 

4.1 HAB/LAB animal model.............................................................................. 61 
4.1.1 Behavioural characterization of the HAB/LAB mice ............................ 61 
4.1.2 Synaptic transmission and plasticity in the hippocampus of the 
HAB/LAB animals.............................................................................................. 62 

4.1.2.1 Ventral hippocampus....................................................................... 62 
4.1.2.2 Dorsal hippocampus........................................................................ 65 

4.1.3 Investigation of amygdalar network features....................................... 67 
4.1.3.1 Neuronal network activation and VSDI recordings .......................... 67 
4.1.3.2 Investigation of GABAergic neurotransmission in BLA neurons of 
HAB and LAB mice ........................................................................................ 76 

 
5 Discussion .......................................................................................................... 78 

5.1 Striking variations in the expression of long-term potentiation along the 
septotemporal axis of the hippocampus between animals of the HAB/LAB mouse 
model ................................................................................................................... 78 
5.2 Correlations between neuronal activity propagation through the amygdala 
network and anxiety phenotypes in the HAB/LAB mouse model .......................... 81 

 
6 List of abbreviations............................................................................................ 89 

7 Acknowledgements ............................................................................................ 91 

8 List of figures ...................................................................................................... 93 

9 Curriculum vitae ................................................................................................. 95 

10 Publications ........................................................................................................ 96 

11 References ......................................................................................................... 97 

12 Declaration / Erklärung..................................................................................... 122 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction  8 

1 Introduction 
 

1.1 Anxiety: physiology and pathology 
 

1.1.1 From emotion to pathology 
 

What are emotions? Why do we need emotions? How can they influence and 

contribute to the way an animal or a person acts in his environment? How can 

emotions motivate an individual to choose a certain pattern of behaviour to avoid a 

dangerous situation or to get a reward? What are the brain mechanisms underlying 

emotions and motivation? All these questions and many more are the main interest 

of researchers all over the world in the field of neuroscience and 

psychopharmacology. A major motivation to answer these questions is not only to 

understand how the brain works, but also to contribute to the understanding and 

treatment of mood / mental disorders (Rolls, 2000).  

It is important to note that fear and anxiety by themselves are not only of 

pathological relevance, but are Nature’s first defence reaction, as the ability to sense 

a potential danger before it strikes. In the natural environment, organisms are 

exposed to a large number of events that might have potentially grave 

consequences, including death. The risk management, for example to escape from 

predators or other dangerous situations, is a key problem of survival. Because such 

risks have very large consequences for the reproductive fitness, it is likely that 

evolution created a well conserved neurobiological system directed toward them 

(Woody and Szechtman, 2011). Even if fear and anxiety are closely related to each 

other, there is no interchangeable relationship between them. It is also important to 

distinguish between these two reactions: Fear is a reaction to a external stimulation 

and characterized through episodic appearance and autonomic hyper-arousal when 

the individual is exposed to a threatening stimulus (Pavuluri et al., 2002). Anxiety, in 

contrast, is characterized by a chronic or continuous appearance, not related to an 

external stimulus. Persons which experience anxiety, tend to be hyper-aroused even 

in on an ongoing basis (Pavuluri et al., 2002).  

Unfortunately, this “surviving” program, which serves as a protection from a 

potential danger, has a price. It is also the basis for human suffering and 

psychological indisposition. In the past two decades, interest has strongly increased 

in the pathophysiology of anxiety disorders because they appear to be the most 



Introduction  9 

prevalent mental disorders in the world. A systematic review on behalf of the 

European College of Neuropsychopharmacology (ECNP) Task Force on “Size and 

Burden of Mental Disorders in Europe” reported that anxiety disorders had 12-month 

and lifetime prevalence rates of approximately 12.0% and 21.1% respectively 

(Wittchen et al., 2005). These disorders are not only characterized by a massive 

reduction in life quality, but also by an early age of onset and prolonged course with a 

marked impairment of social and occupational functions and a strong tendency to 

develop psychiatric comorbidity (such as depression and substance abuse) (Wittchen 

and Jacobi, 2005). Furthermore, patients suffering from anxiety disorders have an 

increased risk of attempted and completed suicide (Sareen et al., 2005; Hawgood 

and De Leo, 2008). As already mentioned, there is a high level of comorbidity 

between anxiety disorders and major depression (Wittchen and Jacobi, 2005), 

bipolar disorders (Henry et al., 2003; Gaudiano and Miller, 2005), schizophrenia 

(Buckley et al., 2009), substance misuse (Castle, 2008; Ziedonis et al., 2008; Crippa 

et al., 2009; Robinson et al., 2009), and physical illness (Davies et al., 2007; Roy-

Byrne et al., 2008). 

The standard of health care appears in many cases to be suboptimal and the 

effectiveness of pharmacological and psychological treatment interventions can be 

disappointing (Baldwin et al., 2010). In the field of psychopharmacological treatment, 

the 20th century showed a major development in available drugs. Many patients do 

not respond or tolerate common pharmacological approaches (antidepressants) and 

psychological interventions (Garner et al., 2009). Although recently developed 

medications are better tolerated, they are not necessarily more effective than the 

previous generations of psychotropic drugs (Durham et al., 2004). Despite some 

advances in the scientific understanding of the basic neurobiology of anxiety and its 

cognitive and behavioural characteristics, the causes of anxiety disorders remain 

largely unknown.  

Importantly, while many of the behavioural and physiological features of fear 

resemble those found under stressful conditions, stress is usually considered to be 

causal to anxiety and anxious subjects usually show a hyperresponse to stress.  
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1.1.2 Neurobiology of stress 
 

1.1.2.1 Definition and overview 
 

All organisms constantly interact with their external environment, receiving 

information through their sensory systems. Anxiety and fear serve as a physiological 

“surviving” process, by setting an organism under alarm when a potential threat 

appears. Environmental or physical changes, independent on their negative 

(threat/punishment) or positive (reward) nature, produce a spectrum of physiological 

responses to allow the organisms to adapt to the special needs of every situation. In 

face of a potential danger, these adaptations maximize the chance for an organism to 

survive from a frightening situation. The stereotypic, relatively nonspecific adaptive 

response of our body to any demand has been referred to in 1936 by Hans Selye 

under the term “stress”. According to Selye, stress is defined as the interaction 

between a deforming force and the resistance of the organism to this force (Selye, 

1973; Selye, 1998). Conditions that challenge homeostasis (the complex dynamic 

body equilibrium = set point) by intrinsic or extrinsic adverse forces are referred as 

“stressors”. These stressors can be separated into three major categories according 

to their different nature (psychological or physiological) (Van de Kar and Blair, 1999): 

 

1) Stressors based on learned response from the threat of prospective 

hostile conditions (like fear after exposure to a novel uncontrollable 

environment) can be defined as psychological stressors.  

2) Stressors like pain, foot shock or immobilization represent in a 

physical stimulus and have a strong psychological component.  

3) Stressors threatening cardiovascular homeostasis like haemorrhage, 

orthostatic stress, body exercise or heat exposure.  

 

In spite of these differences, a common property of all these stressors is that 

they lead to adaptive responses to bring the homeostasis back to the initial set point. 

Under unexpected and potentially dangerous situations, animals exhibit an alarm 

reaction, mainly considered as non-specific and immediate behavioural response 

(such as startle), followed by a specific pattern of behavioural responses (e.g. flight 

and fight). These responses are mediated by the neuroendocrine systems (Tsigos 

and Chrousos, 2002; Engelmann et al., 2004; Ulrich-Lai and Herman, 2009).  
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1) The sympatho-adrenergic system (SAS), a part of the autonomic nervous 

system, provides a very fast response to a threatening situation and prepares the 

animal, through changes of physiological parameters and activation of behavioural 

responses, for a successful escape from the threat by active coping. The SAS 

activates brainstem nuclei, the vagal nerve (nerve X) and the medulla of the surrenal 

glands, leading to the release of adrenaline and noradrenaline into the bloodstream. 

This is followed by adaption on energy metabolism (e.g., direction of oxygen and 

nutrients to the brain, gluconeogenesis, lipolysis, inhibition of growth, and 

reproductive systems, containment of inflammatory responses) and behaviour 

pattern (e.g., increased arousal, vigilance and cognition, suppression of feeding and 

reproductive behaviour) (Engelmann et al., 2004). 

 

2) The hypothalamic-pituitary-adrenocortical (HPA) axis 
In contrast to the activation of the SAS, whenever an encounter is perceived to be 

aversive and cannot be controlled via a fight/flight reaction, passive coping occurs. 

This is associated with the activation of the HPA axis and leads to hormonal changes 

influencing both energy balance and behaviour (Koolhaas et al., 1999; Engelmann et 

al., 2004). Since the HPA axis plays a major role in the control and the regulation of 

stress and anxiety, it is important to describe it in detail. 

 
 

1.1.2.2 The HPA axis  
 

The HPA axis regulates the physiological and behavioural response to stress. 

Neurons of the medial parvocellular subdivision of the paraventricular nucleus 

(mpPVN) of the hypothalamus synthesize corticotropin-releasing hormone (CRH) 

and send projections to the median eminence, where they release CRH into the 

hypophysial portal blood vessels. The mpPVN receives synaptic innervation from 

neurons known to receive and process first- or second-order inputs from somatic 

nociceptors, visceral afferences or humoral sensory pathways. Once released, CRH 

acts upon specific cells of the anterior pituitary: the corticotrophs. CRH binds to G 

protein-coupled receptor (CRHR1/CRHR2) on the cell membrane of corticotrophs 

and activates an intracellular cascade, in turn leading to the synthesis and the 

release of the adrenocorticotropic hormone/corticotrophin (ACTH) into the general 

circulation. ACTH stimulates the synthesis and the secretion of glucocorticoids 
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(corticosterone in rodents and cortisol in humans) from the cortex of the adrenal 

glands, which act as the final effectors of the HPA axis (Chang et al., 1993; Chen et 

al., 1993; Vita et al., 1993; Chalmers et al., 1995; Perrin et al., 1995; Herman et al., 

2002; Reul and Holsboer, 2002; Tsigos and Chrousos, 2002; Charmandari et al., 

2005) (Figure 1-1). 
The mpPVN neurons also co-express a number of other peptides such as 

arginin-vasopressin (AVP) (Herman et al., 2002). AVP also exerts a modulatory 

effect on ACTH release from corticotroph cells, by acting in synergy with CRH. 

However, CRH remains the main ACTH secretion factor (Herman et al., 2002). 

Activation of the HPA axis is generally characterized by a short release of 

ACTH, followed by a turn-off signal generated by the negative feedback of 

glucocorticoids on ACTH and CRH release (Herman et al., 2003). 

 

-

-

Physiological stressor 
adaptations

--

--

Physiological stressor 
adaptations  

Figure 1-1: The HPA axis 
Simplified schematic illustration of the central components of the HPA axis. 
Paraventricular nucleus (PVN) of the hypothalamus: Corticotropin-relasing hormone 
(CRH); Adrenocorticotropic hormone (ACTH).  
Adapted from http://www.richslatcher.com/research/health.html 

 



Introduction  13 

1.1.2.3 Glucocorticoids: action and effects 
 

Glucocorticoids are the final effectors of the HPA axis and participate in the 

adaptation to stress and restore homeostasis, by enhancing emotional arousal, 

energy balance and promoting motivational and cognitive processes (Habib et al., 

2001; Carrasco and Van de Kar, 2003; Fink, 2007; de Kloet et al., 2008). Under 

normal conditions, glucocorticoid release follows a circadian rhythm, with a peak at 

the initiation of the awaking cycle. This seems to be critical to organize the functional 

tone of sleep- and daily-related events (Herman et al., 2003; Hermann et al., 2003; 

de Kloet et al., 2008). 

The effect of glucocorticoids is mediated through two receptor subtypes: the 

mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). In rodents, it 

has been shown that the MR has a higher affinity for corticosterone (Kd ≈ 1 nM) and 

plays a well-established role in synchronizing limbic circuits to maintain homeostasis. 

The GR has a lower affinity (Kd ≈ 5 nM) for corticosterone and only becomes active 

after stress exposure or during the ultradian cycles of the circadian rhythm. The 

activation of GR contributes to the stress response by facilitating recovery of brain 

activity, coordinating energy distribution and readjusting corticosterone baseline 

levels through a retrograde inhibitory loop of the HPA axis (De Kloet and Reul, 1987). 

MR is mostly localized on neurons of the limbic system, namely, the medial prefrontal 

cortex (mPFC), the amygdala and the hippocampus. GRs are ubiquitously expressed 

throughout the brain in neurons but also in glial cells; they are expressed at 

particularly high levels in the PVN and in the hippocampus (Reul and de Kloet, 1985). 

Both receptors act as ligand-dependent transcription factors, i.e. induce or 

repress gene expression (Carrasco and Van de Kar, 2003; de Kloet et al., 2008). In 

the unbound form, they are located in the cytoplasma. The binding of corticosterone 

leads to a translocation of the ligand-receptor complex to the nucleus. Once in the 

nucleus, gene transcription is activated through the binding of this complex to specific 

DNA sequences, or through indirect interactions with other transcription factors 

(Beato and Sanchez-Pacheco, 1996). MR and GR share almost identical genome-

binding sequences but they do not bind to the same sets of genes, therefore, 

activation of each receptor can lead to distinct cellular responses.  

For many years, glucocorticoids were believed to exclusively produce a 

delayed and long-lasting response after stress exposure. However, recent studies 
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show that corticosteroids influence a wide range of behaviours and responses of the 

endocrine system within minutes, on a timescale which is too short to be associated 

with genomic effects (de Kloet et al., 1999; Haller et al., 2008; Riedemann et al., 

2010). The cellular basis of these rapid effects remains poorly understood and 

controversial (Riedemann et al., 2010; Groeneweg et al., 2011). In general, fast non-

genomic responses are those that occur within the first 20 minutes of increased 

steroid secretion, a much shorter timeframe than required for gene regulated and 

protein synthesis effects (Riedemann et al., 2010).  

 

 

1.1.2.4 Regulation and termination of the HPA axis response 
 

Generally, the stress-induced activation of the HPA axis is designed to be 

acute and limited to a short period. This short-term activation ensures that the 

concomitant anti-reproductive, anti-growth, catabolic and immunosuppressive effects 

do not injure the body state (Tsigos and Chrousos, 2002). As important it is to 

understand how the HPA axis is activated during stress, as important it is to 

understand what mechanisms are responsible for the limitation and the termination of 

this response since, depending on the quality, intensity and duration of the stress, the 

organism may not be able to adapt sufficiently, resulting in chronically elevated levels 

of glucocorticoids; the latter are known to be damaging at both the peripheral and 

brain levels. 

An important modulation of the HPA axis activity occurs through activation of 

γ-aminobutyric acid (GABA) inhibitory neurocircuits. It has been shown that lesions in 

the bed nucleus of the stria terminalis (BNST), the medial preoptic area (MPOA) and 

the hypothalamus induce an increased ACTH and corticosterone secretion under 

basal or stress conditions. All these areas contain remarkable populations of 

GABAergic neurons. It has also been found that, after stress exposure, these areas 

show increased mRNA levels of glutamic acid decarboxylase (GAD), the GABA 

synthesis enzyme. Studies with targeted lesions also point to the regulatory function 

of the lateral septum, the mPFC and the hippocampus on the HPA axis. Indeed, 

lesions within these brain regions can increase corticosterone secretion in response 

to stress. One possible explanation could be that excitatory projecting neurons from 

the mPFC and the hippocampus excite GABAergic neurons of the BNST, the MPOA 
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and the hypothalamus, and thus decrease the activity of the HPA axis (Herman et al., 

2003; Herman et al., 2005; Baumann and Turpin, 2010).  

 

Regulation of the HPA axis is also directly mediated by corticosterone at 

different levels: PVN, pituitary and higher brain areas, but also on different timescales 

according to the fast non-genomic or slow genomic effects. Thus, corticosterone 

release can lead to a down-regulation of the transcription of CRH and AVP genes in 

the hypothalamus. The mechanisms underlying fast non-genomic feedback inhibition 

is poorly understood until now (Groeneweg et al., 2011).  

At the hypothalamic level, the excitability of PVN neurons was reduced by 

application of corticostreroids in a rapid but prolonged manner (Groeneweg et al., 

2011). Tasker et al. were able to show that application of high doses of 

corticosterone (100 nM - 1 µM) reduce the frequency of miniature excitatory 

postsynaptic currents (mEPSCs) in PVN neurons (Tasker, 2006; Tasker et al., 2006). 

Fast non-genomic effects of corticosteroids have also been described at the level of 

the anterior pituitary gland (Groeneweg et al., 2011). Inhibition of ACTH release was 

seen 1 min after corticosteroid administration. This action was insensitive to protein 

synthesis inhibitors and therefore, is believed to be mediated by non-genomic 

pathways (Keller-Wood and Dallman, 1984). Rapid non-genomic effects of 

corticosterone release have also been observed in the hippocampus and the 

amygdala (Groeneweg et al., 2011). Administration of corticosterone to hippocampal 

neurons for 5 min significantly enhanced the frequency of mEPSCs, i.e. the opposite 

effect as observed in the PVN (Karst et al., 2005; Olijslagers et al., 2008). This effect 

was found in wild-type and GR-knockout mice, but not in MR-knockout mice, 

suggesting that rapid corticosterone actions in the hippocampus are mediated by 

MRs (Karst et al., 2005). Stressful experiences also activate the amygdala, which 

can be seen as the emotional centre of the brain (Roozendaal et al., 2009). Genomic 

effects of corticosterone in the amygdala occur in an opposite direction to those 

observed in the hippocampus, i.e. they enhance neuronal activity in the amygdala 

(Duvarci and Pare, 2007; Mitra and Sapolsky, 2008) and reduce activity and plasticity 

in the hippocampus (Alfarez et al., 2002; Alfarez et al., 2009). An interesting finding 

with respect to the non-genomic actions of corticosterone in the amygdala is the 

demonstration that MR and GR are located in the plasma membrane of amygdalar 

neurons (Johnson et al., 2005; Prager et al., 2010). In basolateral amygdalar (BLA) 
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neurons, corticosterone induces a marked enhancement in mEPSC frequency, 

comparable to the effects observed in the hippocampus. This enhancement of 

mEPSC frequency after corticosterone administration was MR-dependent and 

nongenomic in nature (Karst et al., 2010).  

 

Corticosterone also downregulates the activity of the HPA axis through 

negative feedback by higher brain areas. Lesions of the hippocampus lead to 

elevated CRH and AVP mRNA levels in mpPVN neurons. This effect occurs not only 

during stress, but can also be observed under basal conditions, suggesting that 

corticosterone-mediated negative feedback is reduced after damage of the 

hippocampus (Mizoguchi et al., 2003). Similar to this regulatory effect, administration 

of glucocorticoids into the mPFC or MPOA produced a blockade of stress hormone 

secretion under restraint stress conditions. The exact mechanisms underlying this 

inhibitory feedback are still not known. However, all of the observed findings indicate 

that corticosterone interacts with neuronal relay stations to increase inhibitory control 

of HPA axis activity (Fink, 2007).  

 

 

1.1.2.5 Dysregulation of the HPA axis and mental disorders 
 

Under stressful and basal conditions, the neuronal control of the HPA axis 

activity, through the regulation of the mpPVN activity and glucocorticoid secretion, 

appears to be crucial for the well-being and health of the organism. Stress-induced 

alterations in neuroendocrine control are likely to be associated with the 

pathogenesis of depression and anxiety disorders. Several reports demonstrated that 

dysregulation of the HPA axis is observed in a large percentage of patients suffering 

from depression (Carroll et al., 1981; Holsboer, 1983; Arana et al., 1985; Holsboer, 

1999b). Severe anxiety and depression are stress-related disorders and have been 

hypothesised to result from an exaggerated stimulation of one or more of the CRH-

modulated pathways mediating the stress responses. Patients suffering from strong 

melancholic depression show physiological and behavioural symptoms, associated 

with an enhanced activation of the CRH system, including comorbid anxiety and 

agitation (Gold et al., 1996; Holsboer, 1999b). The assumption that chronic CRH 

hypersecretion could play a crucial role in the aetiology of major depression has been 
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supported by post-mortem measurements of very high concentrations of CRH in the 

cerebrospinal fluid of severely depressed suicide victims (Gold et al., 1996; Hucks et 

al., 1997). 

The anxiogenic effect of CRH is mediated via the activation of CRHR1 

(Holsboer, 1999; Dautzenberg and Hauger, 2002). CRHR1 knock-out mice show 

reduced anxiety-related behaviour on the elevated plus maze (EPM) and in the light-

dark box test. Both behavioural paradigms measure the anxiety level of the tested 

animals (Smith et al., 1998; Timpl et al., 1998). Inhibition of CRHR1 expression by 

central administration of CRHR1 antisense RNA or treatment of rats with non-

peptidergic antagonists that selectively block CRHR1 also produce anxiolytic-like 

effects (Liebsch et al., 1995; Schulz et al., 1996; Heinrichs et al., 1997; Skutella et 

al., 1998; Deak et al., 1999; Liebsch et al., 1999; Okuyama et al., 1999). 

Neuroendocrine alterations could also be caused by dysfunctions of the limbic 

regions involved in feedback inhibition, such as the hippocampus, the mPFC and the 

amygdala. Imaging studies link changes in the activity or in the volume of these brain 

structures with the development of mood disorders, such as major depression and 

pathological states of anxiety (Drevets et al., 1992a; Drevets et al., 1992b; Sapolsky, 

1996; Herman and Cullinan, 1997; Mataix-Cols and Phillips, 2004; Freitas-Ferrari et 

al., 2010). Corticosteroid receptors (MR and GR) are also likely to play a critical role 

in maintaining homeostasis. They are highly expressed in the hippocampus and 

amygdala and genetically- or stress-induced disturbances in the expression of these 

receptors lead to changes in the activation patterns and the feedback loops, which in 

turn modulate neuronal excitability, stress responsiveness and behavioural 

adaptation to situations of enhanced susceptibility to disease (Tronche et al., 1999; 

Wei et al., 2012). 

To summarise, the activation of the HPA axis maximises the survival rate of 

mammals under dangerous conditions, by acute alterations in cardiovascular activity, 

glucose, protein and fat metabolism, but also by influencing cognitive processes, to 

maintain internal homeostasis. The neuronal and endocrine control of the HPA 

activity appears crucial for the health of an individual, whereas its dysregulation can 

lead to mental and metabolic disorders or cardiovascular diseases. Since the HPA 

axis seems to be strongly involved in the pathophysiology of stress-related diseases, 

intensive research is needed in order to identify central mechanisms underlying the 

neuroendocrine stress responses and how alterations contribute to the pathogenesis 
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of such disorders. Regulatory neuronal circuits could serve as targets for future 

therapeutic approaches, providing a better treatment of patients suffering from 

stress-related pathologies. The limbic-hypothalamic system appears to be a good 

target for such approaches. 

 

 

1.2 The limbic system 
 

The limbic system, a part of the telencephalon, regroups allocortical areas (i.e. 

olfactory cortex, amygdala, and hippocampal formation, including the subicular 

cortices) and transitional areas between the allocortex and isocortex (i.e. nearly all 

parahippocampal and cingulate cortices, but also caudal orbital and medial prefrontal 

cortex, part of the temporal polar cortex, the ventral part of the agranular and 

dysgranular insular cortex, and also the mammillary bodies, the anterior thalamic 

nuclei and their connections) (Groen et al., 2008).  

These limbic areas are functionally diverse, but the high degree of connectivity 

between them suggests that they comprise an underlying unity. The limbic system is 

strongly involved in emotional responses on the one hand and learning and memory 

on the other hand. Given the link between limbic regions, stress and stress-related 

disorders, it is important to understand the role played by these structures in stress 

integration, memory consolidation and emotional interpretation of sensory stimuli. 

Based on the fact that the hippocampus and the amygdala are strongly 

involved in the regulation of the HPA axis activity, and, therefore, most likely also in 

the pathogenesis of stress-related disorders, the present study mainly focused on 

these two limbic structures. 

 

 

1.2.1 The hippocampus 
 

The hippocampus is located in the temporal lobe of the cerebral cortex and is 

composed of four distinct regions: the dentate gyrus (DG), the cornu ammonis 3 

(CA3), the cornu ammonis 1 (CA1), and the subiculum (Andersen et al., 2007) 

(Figure 1-2). 
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1.2.1.1 Hippocampal anatomy 
 

a- The dentate gyrus 

The DG is composed of three layers. The most superficial one, the molecular layer, is 

a relatively cell-free layer. Deeper to the molecular layer lies the granular cell layer. 

Between the granular cell layer and the proximal end of the cornu ammonis is the 

polymorphic layer located. The granular cell layer contains the principle cells of the 

DG, namely the granule cells which send their axonal projections, the so-called 

mossy fibers, and make synapses on the dendrites of the principle cells of the CA3 

region. The DG also contains GABAergic interneurons, such as basket cells (Ribak 

and Seress, 1983). 

 

b- The CA3 subfield 

The CA3 subfield is composed of four layers. The most superficial one is called the 

stratum radiatum. Below this layer lies the stratum lucidum. These two layers consist 

of the mossy fibers coming from the DG and of the dendrites of the pyramidal cells 

which lie in the third layer, the stratum pyramidale. The deepest layer, the stratum 

oriens, can be defined as an infrapyramidal region containing the axonal projections 

of the pyramidal neurons, the so-called Schaffer collaterals (Andersen et al., 2007). 

The pyramidal cells are excitatory neurons and are the most prominent cell type in 

the CA3 subfield. As in the DG, the CA3 region also contains a fairly heterogenous 

population of interneurons (Freund and Buzsaki, 1996). 

 

c- The CA1 subfield 

The CA1 subfield is also composed of four layers. The most superficial one is the 

stratum lacunosum moleculare, which contains fibers coming from cortical regions (ie 

the enthorhinal cortex). Below this layer lies the stratum radiatum containing the 

Schaffer collaterals which make synapses on the apical dendrites of the principle 

cells, the pyramidal cells, which lie in the third layer, the pyramidal layer. As in the 

CA3 subfield, the deepest layer is called the stratum oriens and contains the axonal 

projections of the CA1 pyramidal cells to the subiculum. The CA1 pyramidal cells are 

excitatory neurons that are slightly smaller than CA3 pyramidal neurons (Andersen et 

al., 2007). Finally, the CA1 subfield also contains a heterogenous population of 

inhibitory interneurons (Freund and Buzsaki, 1996). 
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d- The subiculum 

The CA1/subiculum border is abruptly marked by a widening of the pyramidal cell 

layer. The CA1 stratum radiatum also ends at this border and is replaced by the 

molecular layer of the subiculum. The deepest portion of this layer receives axonal 

projections from CA1 and contains the dendrites of the principal cells of the subicular 

pyramidal layer, whereas the superficial portion receives direct innervation from the 

enthorhinal cortex. The stratum oriens is no longer present in the subiculum (Greene 

and Totterdell, 1997; Andersen et al., 2007). The principal cell layer of the subiculum 

contains large pyramidal cells, defined according to their electrical properties as 

regular firing and bursting pyramidal cells (Greene and Totterdell, 1997). Intermingled 

among the pyramidal cells are many smaller neurons representing the subicular 

interneurons. 

 

 
Figure 1-2: Summary of the organisation of hippocampal pyramidal cells 

Dentate Gyrus (DG); Cornus ammoni 3 area (CA3); Cornus ammoni 1 area (CA1). 
Adapted from http://anatomie.vetmed.uni-
leipzig.de/external/hippocampus/hippocampus_moos.html 
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1.2.1.2 Hippocampal afferences 
 

a- To the dentate gyrus  

The most prominent subcortical input to the DG is the projections from the 

septal nuclei. Septal fibers strongly innervate cells of the polymorphic layer, mostly in 

a region subadjacent to the granular cell layer (Mosko et al., 1973; Swanson et al., 

1978; Baisden et al., 1984). The DG is also innervated by the hypothalamus, the 

strongest projections coming from the supramammillary nucleus which terminate in a 

narrow zone of the molecular layer, located superficially to the granular cell layer 

(Wyss et al., 1979; Vertes, 1992; Magloczky et al., 1994). In addition, the DG also 

receives prominent input from the locus coeruleus. These fibres mainly target the 

polymorphic layer of the DG and extend into the stratum lucidum of the CA3 subfield 

(Pickel et al., 1974; Swanson and Hartman, 1975; Loughlin et al., 1986).  

 However, the major input to the DG arises from the entorhinal cortex via the 

perforant pathway (Ramòn y Cajal, 1893). Cells located in layer II of the entorhinal 

cortex project to the DG, although a minor part of these projections arise from layer 

IV (Steward and Scoville, 1976). Projections from the entorhinal cortex are only 

restricted to the superficial two-thirds of the molecular layer of the DG (Nafstad, 

1967; Hjorth-Simonsen and Jeune, 1972). The perforant path can be divided into two 

parts, the lateral and medial perforant path, according to the region of origin and 

pattern of termination (Andersen et al., 2007). Fibres coming from the lateral 

entorhinal area terminate in the most superficial third of the molecular layer and 

fibres originating from the medial entorhinal area terminate in the middle third of the 

molecular layer.  

 

b- To the CA3 area 

Like the DG, the CA3 subfield receives projections from the entorhinal cortex. 

The origin and laminar terminal distribution of the perforant path projections to the 

CA3 are similar to those of the DG (Witter, 1993). On one hand, projections from the 

lateral entorhinal cortex terminate superficially in the stratum lacunosum-moleculare. 

On the other hand, those from the medial entorhinal area terminate in the deep half 

of this layer. One remarkable feature of intra-hippocampal connectivity is that the 

majority of its synaptic input arises from within its own boundaries. Thus, the CA3 

pyramidal cells are heavily innervated by collaterals from their own axons (called 



Introduction  22 

associational connections) and from axons of the contralateral CA3 subfield 

(Andersen et al., 2007). The CA3 is the only brain region which receives direct 

projections from the DG and the mossy fibres projecting to CA3 arise exclusively 

from the granular cells and terminate in a relatively narrow zone, mainly located just 

above the CA3 pyramidal cell layer (Blackstad, 1956; Gaarskjaer, 1978; Swanson et 

al., 1978; Claiborne et al., 1986). 

 The major subcortical input to the CA3 subfield is provided by the septal 

projections, arising primarily from the medial septal nucleus and the nucleus of the 

diagonal band of Broca. These projections terminate most heavily in the stratum 

oriens and to a lesser extent in the stratum radiatum (Andersen et al., 2007). Tracing 

studies recently showed that CA3, especially its temporal parts, receives a direct 

input from the amygdaloid complex (Pikkarainen et al., 1999; Pitkanen et al., 2000). 

These projections arise from the caudomedial portion of the parvocellular division of 

the basal nucleus and terminate in the stratum oriens and stratum radiatum.  

 

c- To the CA1 area 

Similar to the DG and the CA3 area, the CA1 subfield is also directly 

innervated by the entorhinal cortex. However, the organisation of these projections is 

fundamentally different compared to the projections to the CA3 area (Andersen et al., 

2007). First, the afferences arise from cells in layer III (and not layer II). Secondly, the 

distribution of terminals is not laminar but topographically organised. According to 

this organisation, fibres arising from the lateral entorhinal area terminate in the distal 

portion of the CA1, whereas fibres originating from the medial entorhinal area 

terminate in the proximal portion of the CA1 area, close to the CA3 border. 

Consequently, depending on where a CA1 pyramidal cell is located in the transverse 

axis of the hippocampus, it receives inputs from different parts of the entorhinal 

cortex.  

Tracing experiments have shown that CA1 receives inputs from the 

amygdaloid complex (Pikkarainen et al., 1999; Pitkanen et al., 2000). This input 

originates mainly from the caudomedial part of the parvocellular division of the basal 

nucleus and terminates heavily in the stratum oriens and stratum radiatum. Like the 

CA3 area, CA1 also receives substantial septal projections, but weaker as compared 

to CA3. The septal fibres are most densely distributed in the stratum oriens 

(Andersen et al., 2007).  
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Pyramidal neurons of the CA1 area receive their strongest innervation from 

pyramidal cells of the CA3 subfield. The distribution pattern of these terminals 

strongly depends on the location of the CA3 cells from which they arise. Each CA3 

pyramidal neuron gives rise to highly collateralised axons that follow both a 

transverse and oblique orientation through CA1 (Ishizuka et al., 1990). These 

projections terminate on the basal dendrites in the stratum oriens and the apical 

dendrites in the stratum radiatum. The probability for a CA1 neuron to be innervated 

by a particular CA3 cell depends on its transverse position and septotemporal level. 

Distal CA3 pyramidal neurons are more likely to innervate proximal CA1 pyramidal 

cells whereas proximal CA3 cells are more likely to innervate distal CA1 neurons.  

 

d- To the subiculum 

White et al. showed in a combined neuroanatomical and electrophysiological 

study, that projections from the anterior cingulate cortex reach the subiculum (White 

et al., 1990). However, this finding is still under debate. Other projections to the 

subiculum arise from the perirhinal cortex, but terminate only in its proximal third 

(Andersen et al., 2007). 

The proximal subfield of the subiculum is also innervated by projections from 

the parvocellular portion of the basal nucleus and the posterior cortical nucleus of the 

amygdala, and the adjacent amygdalo-hippocampal area (Pitkanen et al., 2000). 

Another source of afferences to the subiculum arises from the supramammillary 

region, which strongly projects to its temporal part. This portion of the subiculum also 

receives an input from the premammillary nucleus.  

Thalamic projections mainly arise from the nucleus reuniens, the 

paraventricular nucleus, and the parataenial nucleus. The midline thalamic 

projections appear to be largely restricted to the molecular layer of the subiculum. 

The projections to the subiculum arise from various intermingled populations of 

neurons in the nucleus reuniens (Andersen et al., 2007). 

Another source of afferent projections to the subiculum arises from the 

brainstem, namely the noradrenergic locus coeruleus, the dopaminergic ventral 

tegmental area, and the serotoninergic median and dorsal raphe nuclei (Andersen et 

al., 2007).  
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1.2.1.3 Hippocampal efferences 
 

The hippocampus sends projections to numerous other brain regions. For 

example, CA1 pyramidal cells give rise to reciprocal projections to the entorhinal 

cortex (Naber et al., 2001). The projection cells send most of their axons to the same 

region of the entorhinal cortex from which they receive their inputs. Another major 

connection is with the neocortex. However, only selected parts of the hippocampus 

form direct connections with the neocortex. CA1 pyramidal neurons give rise to return 

projections to the perirhinal cortex. CA1 cells located in the septal part of the 

hippocampus also project to the retrosplenial cortex, and those located at mid-

septotemporal levels provide substantial projections to the medial frontal lobe. The 

temporal two-thirds of the distal part of CA1 is reciprocally connected with the 

amygdaloid complex (Andersen et al., 2007).  

The subiculum appears to be a major source of efferent projections from the 

hippocampus. After the discovery by Swanson and Cowan that the subiculum, rather 

than the cornu ammonis, is the origin of the major subcortical connections to the 

diencephalon and brainstem, it was widely accepted that the subiculum is one of the 

two primary output structures of the hippocampus (Swanson and Cowan, 1975; 

Swanson et al., 1981; Ishizuka, 2001; Kloosterman et al., 2003a). The subiculum 

projects to the presubiculum, as a series of pathways, distributing information that 

has been processed in the DG, the cornus ammoni and the subiculum to a series of 

cortical and subcortical structures. Therefore, the subiculum can be seen as the last 

relay station in the entorhinal-hippocampal loop (Andersen et al., 2007). The 

subiculum also sends strong projections to the medial and ventral orbitofrontal 

cortices, the prelimbic and infralimbic cortices and the anterior cingulate cortex 

(Verwer et al., 1997).  

The initial temporal third of the subiculum also gives rise to reciprocal 

projections to the amygdaloid complex. The majority of these projections terminate in 

the accessory basal nucleus and a few of them reach several other nuclei other than 

the lateral nucleus. The ventral subiculum sends projections to the BNST and to the 

ventral part of the claustrum or endopiriform nucleus (Andersen et al., 2007).  

Finally, the strongest subcortical connections of the subiculum are to the 

nucleus accumbens, the mammillary nuclei, and the hypothalamus. Subicular fibers 

terminate throughout the nucleus accumbens, but most densely in its caudomedial 
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part. A major feature of these connections is their unidirectional projection. The 

subicular projections to the mammillary nuclei consist of fibers originating mainly from 

the septal two-thirds of the subiculum and form the main input to this structure. Fibers 

of the subiculum also project to the lateral hypothalamic region, adjacent to the 

lateral mammillary nucleus.  

 

 

1.2.1.4 Synaptic plasticity in the hippocampal CA1 area 
 

a- Definition 

For more than a century, it has been suggested that the ability of the brain to 

translate and accumulate experiences into various forms of long-lasting memories, 

can be attributed to activity-dependent changes in the synaptic communication 

between neurons (Bliss and Collingridge, 1993; Malenka and Nicoll, 1999). Such 

plasticity has been extensively studied in the hippocampus. Experimental evidence 

for this hypothesis first came in 1973, when Bliss and Lomo showed that repetitive 

activation of excitatory synapses in the hippocampus caused a robust and persistent 

enhancement in synaptic strength (Bliss and Lomo, 1973). This phenomenon was 

referred as long-term potentiation (LTP) and, since then, has been the subject of 

intense investigations. It is commonly accepted, that experimentally induced LTP 

serves as a powerful tool to elucidate the cellular and molecular mechanisms by 

which the brain can store information (Malenka and Nicoll, 1999). LTP can be elicited 

at all excitatory synapses in the hippocampus, and can also be observed in other 

brain regions. Growing experimental evidence confirms the assumption that it 

underlies at least certain forms of memory (Morris et al., 1990; Doyere and Laroche, 

1992).  

LTP can be induced by a number of different experimental protocols, the most 

common is tetanic stimulation of afferents (typically a train of 100 stimuli at 100 Hz). 

LTP has three basic characteristics: input-specificity, associativity and cooperativity. 

Input-specificity means that, when LTP is triggered at one set of synapses at a 

particular cell, the evoked increase in synaptic transmission normally does not occur 

at other synapses on this cell (Andersen et al., 1977). This property is a major 

advantage because it increases the storage capacity of individual neurons. 

Cooperativity means that there is an intensity threshold for induction of LTP; “weak” 
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tetanic stimulation, which activates relatively few afferent fibres, does not trigger LTP. 

The threshold which has to be overstepped in order to produce LTP is a complex 

function of the intensity and pattern of tetanic stimulation. LTP is associative in the 

sense that a “weak” input can be potentiated if it is active at the same time as a 

strong tetanus takes place in a separate but convergent input (McNaughton et al., 

1978; Levy and Steward, 1979).  

 

b- Mechanisms 

The contribution of several excitatory amino-acid receptor subtypes to LTP 

induction has been widely reviewed in the literature. It has been shown that CA1-LTP 

requires the activation of postsynaptic N-methyl-D-aspartate (NMDA) receptors. The 

important role of the NMDA receptor is based on its specific properties, especially the 

voltage-dependent block of its pore by Mg2+. In order to open the NMDA channel 

and, thus, to induce LTP, it is necessary that two events occur simultaneously: 1) the 

membrane has to be sufficiently depolarised to release the Mg2+ block from the pore; 

2) L-glutamate has to bind to the NMDA receptor, which in turn promotes the opening 

of the channel.  

Depolarisation of the postsynaptic membrane is achieved by activation of a 

second type of glutamate receptor, i.e. the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor. The AMPA receptor forms a channel 

permeable to monovalent cations (Na+ and K+) and is responsible for basal synaptic 

transmission. In case of a LTP induction, the tetanic stimulation leads to the release 

of high amounts of glutamate from the presynaptic bouton, which binds to AMPA 

receptors thereby depolarising the postsynaptic membrane. This depolarisation 

entails Mg2+ dissociation from its binding site within the NMDA receptor pore. 

Glutamate binds to the NMDA receptor allowing the opening of the channel and Ca2+ 

and Na+ influx in to the dendritic spine. The rise of intracellular Ca2+ concentration is 

the critical trigger for LTP because it activates signal transduction pathways, leading 

finally to the increase in synaptic strength (Collingridge, 1987; Bashir et al., 1991; 

Bliss and Collingridge, 1993; Malenka and Nicoll, 1999; Lu et al., 2001; Malenka and 

Bear, 2004). Several molecules have been shown to play a key role in LTP induction, 

with α-calcium-calmodulin-dependent protein kinase II (CaMKII) being perhaps the 

most important (Teyler and DiScenna, 1987; Gustafsson and Wigstrom, 1988; Bliss 

and Collingridge, 1993; Larkman and Jack, 1995; Nicoll and Malenka, 1995; Lisman 
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et al., 2002). The final step of LTP induction is the phosphorylation of AMPA 

receptors by CaMKII, which in turn leads to the stabilisation of these receptors in the 

plasma membrane and to the insertion of new AMPA receptors (Barria et al., 1997) 

(Figure 1-3).  

 

a) b)a) b)

 
Figure 1-3: Schematic Illustration of LTP induction  
  a) Released glutamate from the presynaptic bouton acts on both AMPA receptors 

(AMPARs) and NMDA receptors (NMDARs). Under resting membrane potential, 
NMDARs are blocked by Mg2+, therefore, Na+ flows only through the AMPA receptor. 
Depolarisation of the postsynaptic cell releases the Mg2+ block of the NMDA receptor 
channel, and Na+/Ca2+ enters the dendritic spine through the NMDA receptors. This is 
the critical trigger for LTP. b) The postsynaptic increase in Ca2+ concentration 
activates CaMKII, which in turn phosphorylates already inserted AMPA receptors. 
CaMKII is also believed to influence the subsynaptic localisation of AMPA receptors 
such that more AMPA receptors are delivered to the synaptic plasma membrane. 
Adapted from Malenka and Nicoll, (1999).  

 
It has been shown that postsynaptic application of CaMKII inhibitors or the 

genetic deletion of a critical CaMKII subunit prevents LTP induction (Malenka et al., 

1989; Malinow et al., 1989; Bliss and Collingridge, 1993). In contrast, increased 

expression of constitutively active CaMKII in CA1 cells leads to an enhancement of 

synaptic transmission and LTP (Pettit et al., 1994; Lledo et al., 1995). Several other 

protein kinases have also been implicated in LTP: protein kinase C (PKC), cAMP-

dependent protein kinase (PKA), the tyrosine kinase (Src), and mitogen-activated 

protein kinases (MAPK). Whether these kinases are mediators or modulators of LTP 

remains to be determined (Lynch, 2004).  

Is the increase in synaptic strength during LTP primarily generated due 

postsynaptic modifications or due presynaptic change in transmitter release? It is 

now widely accepted that the major mechanism underlying the expression of CA1-

LTP involves an increase in the number of AMPARs in the plasma membrane at 

synapses, secondary to activity-dependent changes in AMPAR trafficking (Malenka 
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and Nicoll, 1999; Malinow and Malenka, 2002; Song and Huganir, 2002; Bredt and 

Nicoll, 2003). In addition, an increase in the single-channel conductance of AMPARs 

via direct CaMKII-mediated phosphorylation of the AMPA receptor subunit GluR1 

contributes to increased synaptoc strength (Benke et al., 1998; Malenka and Nicoll, 

1999; Soderling and Derkach, 2000; Lee et al., 2002).  

An important observation is that LTP lasts for hours, days or even weeks. This 

requires gene transcription and protein synthesis (Abraham and Williams, 2003; 

Kandel and Pittenger, 2003; Lynch, 2004; Malenka and Bear, 2004) and involves 

structural remodelling of synapses, including growth of new dendritic spines, 

enlargement of pre-existing spines and their associated postsynaptic densities and 

splitting of single postsynaptic densities and spines into two functional synapses 

(Yuste and Bonhoeffer, 2001; Abraham and Williams, 2003). This structural 

remodelling of dendritic spines implies modifications of the cell cytoskeleton. In vivo 

studies have demonstrated that LTP is accompanied by a long-lasting increase in F-

actin content in spines, thus inhibiting actin depolymerisation (Fukazawa et al., 

2003). The notion that actin cytoskeleton reorganisation is strongly involved in 

maintaining LTP is also supported by studies showing that inhibitors of actin 

polymerisation impair LTP (Kim and Lisman, 1999; Krucker et al., 2000). 

 

c- Functional significance of LTP 

It is commonly accepted that long-lasting changes in the strength of synaptic 

connections are critical components of the neural mechanisms underlying learning 

and memory. LTP provided the first experimental analogue of these postulated 

learning-induced changes in synaptic connectivity in the brain (Bliss and Collingridge, 

1993; O'Mara et al., 2000; Morris et al., 2003; Neves et al., 2008). 

Since Morris et al (1986) discovered that hippocampal NMDA receptor 

blockade prevents spatial learning but not visual discrimination learning, a variety of 

experimental studies confirmed that NMDA receptor activation is necessary for a 

wide range of different forms of learning and memory (Morris et al., 1986). Moser 

demonstrated that chronic intraventricular infusion of 2-amino-5-phosphonovalerate 

(AP5), an NMDA receptor antagonist, impaired hippocampal LTP and also spatial 

learning (Moser et al., 1993; Moser and Moser, 1998b). The findings of this initial 

pharmacological study are complemented by studies in which the NMDA receptor 

was genetically modified. Tsien et al. (1996) showed, by region-specific gene 
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targeting that the NMDA receptor channel in the hippocampal CA1 region is essential 

for LTP and spatial learning (Tsien et al., 1996). By means of analyses of the 

functional properties of various NMDA receptor subunits, another study showed that 

disruption of the GluRε1 (NR2A) gene results in the reduction of hippocampal LTP 

and impairment of Morris water maze learning (Kiyama et al., 1998). 

Taken together, the findings described above are in line with the assumption 

that synaptic plasticity is the cellular correlate of certain forms of learning and 

memory.  

 

d- Short-term plasticity 

Like LTP, short term plasticity has been also observed at many chemical 

synapses (Zucker, 1989; Wang and Kelly, 1997; Lopez, 2001). One of the most 

studied forms of short term plasticity is the paired-pulse facilitation (PPF).  

PPF is an experimental protocol consisting of giving 2 electrical stimuli on 

presynaptic terminals with a short interstimulus interval (ranging from 25 to 400 ms) 

and recording the resulting excitatory postsynaptic potentials (fEPSP). From these 

recordings, the paired-pulse ratio (PPR) is calculated as: PPR= amplitude fEPSP2/ 

amplitude fEPSP1. When this PPR is larger 1, we called it PPF. In certain cases, the 

PPR can be smaller than 1 and we talked about paired-pulse depression (PPD). The 

PPR is a way to study rapid modifications occurring at synapses and also give an 

idea about the release probability of neurotransmitter at these synapses.  

For example at CA3-CA1 synapses, the application of this protocol leads to a 

PPF. The underlying mechanism of PPF is associated with a rise in Ca2+ levels in the 

presynaptic bouton in response to the 1st pulse. When the second pulse is given with 

a short delay (25-100 ms), the residual Ca2+ from the 1st pulse cannot be buffered, 

and the rise in intracellular Ca2+ due to the 2nd pulse leads to the fusion of more 

vesicles and thus to the release of higher amount of neurotransmitter in the synaptic 

cleft (Miledi and Parker, 1981; Charlton et al., 1982; Wang and Kelly, 1997). This 

mechanism is known as the theory of “the residual calcium” (Manabe et al., 1993; 

Christie and Abraham, 1994; Lopez, 2001). 
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1.2.1.5 Functional differentiation within the hippocampus 
 

The functional role of a particular brain region depends on the afferent and 

efferent connectivity with other brain structures. Ramòn y Cajal (1901) and Lorente 

de Nò (1934) established for the first time a basic cytoarchitectonic scheme of the 

hippocampus (Cajal, 1901; Lorente De Nó, 1934). In his pioneering work, Cajal 

described alterations across the longitudinal axis of the hippocampus. He 

distinguished two perforant pathways coming from the entorhinal cortex (i.e. the 

“superior” and “inferior”), today referred as to the “dorsal” and “ventral” hippocampus. 

Lorente de Nò divided the “ammonic system”, based on the different afferent inputs 

across the dorso-ventral axis, into three main segments. He postulated that, even if 

there is no sharp boundary, each of these segments has specific structural 

characteristics.  

Generally, the hippocampus is defined as a unidirectional transverse loop of 

excitatory synapses, through the “trisynaptic pathway” and the subiculum. Although 

this intrinsic connectivity appears to be consistent along the longitudinal axis of the 

hippocampus, afferent and efferent connectivity changes along the dorso-ventral axis 

(Moser and Moser, 1998b). The enthorinal cortex can be divided into three parallel 

band-like zones: the caudolateral, the intermediate, and the rostromedial zone. Each 

of them acts as a relatively independent functional unit, based on the fact that they 

receive different inputs and give rise to separate efferent outputs, and that direct 

connections between them are almost absent (Insausti et al., 1997; Dolorfo and 

Amaral, 1998; Burwell, 2000). The entorhinal cortex, which innervates all the 

hippocampus in a topographically ordered pattern, receives also direct projections 

back from both the CA1 and subiculum following the same topographic organisation 

along the longitudinal axis (Naber et al., 2001; Kloosterman et al., 2003b; Cenquizca 

and Swanson, 2007). 

 

a- The dorsal hippocampus 

The afferences projecting specifically to the dorsal hippocampus originate from 

the caudolateral zone of the entorhinal cortex, and mainly carry visuo-spatial 

information (via the adjacent perirhinal and postrhinal cortex). 

The dorsal CA1 pyramidal neurons raise massive sequential, multi-synaptic 

and presumably feed-forward excitatory projections to the dorsal parts of the 
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subiculum, as the main output from the dorsal hippocampus (Swanson and Cowan, 

1977; Witter and Groenewegen, 1990; Amaral et al., 1991). These efferent 

projections contact different brain areas. The retrosplenial and anterior cingulate 

cortices receive the most prominent projections from the dorsal CA1 and subiculum. 

These two cortical areas are involved in cognitive processing of visuo-spatial 

information, memory formation and environmental exploration (Han et al., 2003; 

Frankland et al., 2004; Jones and Wilson, 2005; Lavenex et al., 2006). 

Other projections from the dorsal subiculum innervate, through the 

postcommissural fornix, the medial and lateral mammillary nuclei and the anterior 

thalamic complex (Kishi et al., 2000; Ishizuka, 2001). This neuronal network 

represents the most important interface to create a cognitive map for the spatial 

navigation system, giving the opportunity to orientate in a known environment (Taube 

et al., 1990; Muller et al., 1996; Jeffery, 2007; Fanselow and Dong, 2010).  

Previous studies have shown that the dorsal hippocampus is connected with 

areas mediating cognitive processes, such as learning, memory, navigation and 

exploration (Fanselow and Dong, 2010). One famous report is the human case H.M. 

suffering of severe anterograde and retrograde amnesia after bilateral surgical 

removal of the medial temporal lobe (Scoville and Milner, 1957). This patient showed 

a massive impairment of memory functions, including recognition of previously 

presented words or figures, and the loss of memory for the position of objects (Milner 

et al., 1968). Patients with locally restricted damage of the hippocampus showed 

similar impairments, indicating that the hippocampus is involved in many mnemonic 

operations of the medial temporal lobe (Rempel-Clower et al., 1996).  

Selective lesions at different levels of the longitudinal axis of the hippocampus 

in rats demonstrate that the animal behaviour is differentially affected depending on 

the dorsal or ventral location of these lesions (Moser et al., 1993). This is confirmed 

by the observation that rats with lesions within the dorsal hippocampus showed the 

same behavioural impairment as animals with complete hippocampal disruption, 

leading to severe impairment in spatial learning (Moser et al., 1993). Numerous other 

studies revealed similar effects of dorsal cytotoxic lesions on spatial memory 

(Bannerman et al., 1999; Bannerman et al., 2002; Bannerman et al., 2003). These 

results were not observed with lesions of the ventral hippocampus (Hock and 

Bunsey, 1998; Bannerman et al., 1999; Bannerman et al., 2002; Pothuizen et al., 

2004).  
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Pharmacological studies also confirm these findings. Local microinfusions of 

drugs, disrupting normal neuronal activity in the dorsal hippocampus revealed similar 

results (Moser and Moser, 1998a; Tuvnes et al., 2003). Electrophysiological single 

unit recordings (Jung et al., 1994), c-fos activation studies (Vann et al., 2000) and 

structural magnetic resonance imaging (RMI) studies (Maguire et al., 2000) also 

support a preferential role for the dorsal hippocampus in spatial learning and 

memory. All these experimental findings are consistent with the anatomical 

connectivity of the dorsal hippocampus. The major input from primary sensory 

cortical areas to the dorsal hippocampus, enables this region to serve as a unique 

regulatory relay station regarding spatial learning and memory.  

 

b- The ventral hippocampus 

The ventral hippocampus primarily receives olfactory, visceral and gustatory 

inputs from the intermediate zone of the entorhinal cortex (Ishizuka et al., 1990; 

Insausti et al., 1997; Dolorfo and Amaral, 1998; Cenquizca and Swanson, 2007). 

The ventral hippocampus is strongly connected with the olfactory bulb and 

several other primary olfactory cortical areas, including the anterior olfactory nucleus 

and the endopiriform nucleus (Cenquizca and Swanson, 2007; Roberts et al., 2007). 

The ventral CA1 pyramidal neurons and ventral subiculum exhibit strong bidirectional 

connectivity with the major amygdalar nuclei, namely the lateral, basolateral and 

central nuclei (Kishi et al., 2000; Pitkanen et al., 2000; Petrovich et al., 2001; 

Cenquizca and Swanson, 2007). Thus, the amygdala does not only receive inputs 

from the ventral CA1 area and the subiculum, but also projects to this areas. 

The ventral CA1 area and the subiculum also share bidirectional connections 

with the infralimbic, prelimbic, and agranular insular cortices (Chiba, 2000; Jones and 

Wilson, 2005; Hoover and Vertes, 2007; Roberts et al., 2007). These prefrontal 

cortical structures establish a network of parallel and segregated descending fibers 

through the lateral septum and the BNST. This unique network innervates the 

periventricular and medial zones of the hypothalamus and, therefore, participates in 

the regulation of three basic classes of motivated behaviours with strong emotional 

aspects: ingestion, reproduction and defence (Kishi et al., 2000; Dong et al., 2001; 

Petrovich et al., 2001; Herman et al., 2005; Dong and Swanson, 2006).  

The network composed of the ventral CA1 and subiculum as well as the 

adjacent posterior amygdalar nucleus specifically controls neuroendocrine activating, 
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via the strong projections to the ventral part of the lateral septum (LSv) and 

anteromedial nucleus of the BNST (Canteras et al., 1992; Risold et al., 1997; Dong et 

al., 2001). It is also important to mention that the ventral hippocampus and the medial 

band of the lateral and medial entorhinal cortices project directly to the caudomedial 

nucleus accumbens, which is strongly involved in reward processing and motivation 

as well as feeding behaviour (Kelley et al., 2005a; Kelley et al., 2005b). To 

summarise, the afferent and efferent connections of the ventral hippocampus 

suggest that this structure is ideally located to modulate the impact of emotional 

experience and to regulate affective states, such as anxiety and stress (Fanselow 

and Dong, 2010). 

 

This idea is supported by previous studies. Lesions of the ventral 

hippocampus induce effects similar to those induced by benzodiazepine treatment in 

unconditioned anxiety tasks in rats. The animals show: 1) reduced hyponeophagia, 

i.e. they eat more readily in potentially anxiogenic and unfamiliar environments 

(Bannerman et al., 2002; Bannerman et al., 2003), 2) increased social interaction 

(Bannerman et al., 2002), 3) faster reaction to pass from the black to the white 

compartment during a two compartment box test (Bannerman et al., 2003), 4) 

increased proportion of time in a more anxiogenic division of the successive alleys 

apparatus, a modified version of the elevated plus maze (Bannerman et al., 2002; 

Kjelstrup et al., 2002). In each of these tests, lesions of the ventral hippocampus 

induce a strong anxiolytic-like effect. On the contrary, these effects were not 

observed in rats with dorsal lesions (Bannerman et al., 2002; Kjelstrup et al., 2002; 

McHugh et al., 2004). One useful parameter to measure anxious behaviour is 

defecation, which is increased after exposure to an anxiogenic environment. Animals 

with ventral hippocampal lesions show reduced defecation both in the bright part of 

the open field test and also during contextual fear conditioning, although there were 

no differences between sham and lesioned animals in defecation levels in the home 

cage (Bannerman et al., 2002). Kjelstrup and colleagues reported that complete and 

ventral hippocampal lesions reduce the defecation score, compared to sham and 

dorsal hippocampal lesioned animals, following confinement in a bright chamber 

(Kjelstrup et al., 2002). With respect to the regulatory action of the hippocampus on 

the stress response, it is important to mention that ventrally lesioned animals show a 
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smaller increase in plasma corticosterone concentration after stress exposure 

compared to control animals (Kjelstrup et al., 2002). 

 

In summary, anatomical and lesion studies clearly indicate regional 

differentiation within the hippocampus. The dorsal part can be seen as the “cold” 

hippocampus, which stands as the gate of declarative memories, independently of 

their emotional content. On the other hand, the ventral hippocampus is intimately 

linked to emotions, regulates stress and anxiety responses and, therefore, can be 

seen as the “hot” hippocampus. Dysregulation of the “hot” hippocampus is thus often 

associated with affective disorders, such as diseases and anxiety disorders 

(Fanselow and Dong, 2010). 

 

 

1.2.2 The amygdala 
 

The amygdala is a heterogeneous collection of ~13 nuclei located at the 

medial perimeter of the temporal lobe. A variety of different functions has been 

attributed to the amygdaloid complex over the last 10-20 years. New imaging data 

obtained in humans elucidate a role of the amygdala in determining the emotional 

significance of sensory stimuli, memory consolidation, attention, fear, anxiety and the 

perception of body movements (Davis, 1992; Adolphs et al., 1994; Pitkanen et al., 

1997; Whalen et al., 2001; Adolphs et al., 2002). These functions are important for 

the successful coping with the daily social environment (Adolphs et al., 1998; Morris 

et al., 1998). The amygdaloid complex is structurally diverse; its nuclei and cortical 

areas differ in terms of cytoarchitecture, histochemistry, and connectivity. Additionally 

the amygdaloid complex is further characterised by extensive internuclear and 

intranuclear connections. 

 

 

1.2.2.1 Anatomy 
 

According to the nomenclature established by Price et al (1987), the 

amygdaloid complex can be separated into various nuclei and cortical areas (JL 
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Price et al., 1987). Since then, this nomenclature, with some modifications, has been 

used to investigate the anatomical constitution of the amygdaloid complex (Pitkanen 

et al., 1997; Jolkkonen and Pitkanen, 1998). Amygdalar nuclei can be divided into 

three groups (Figure 1-4): 

 

 1) The deep or basolateral group: -lateral nucleus 

       -basolateral nucleus 

       -accessory basal nucleus 

 2) The superficial or cortical-like group: -cortical nuclei 

       -nucleus of the lateral olfactory  
        tract 

 3) The centromedial group:  -medial nuclei 

       -central nuclei  

 

The intercalated cell masses and the amygdalo-hippocampal area are a separate set 

of nuclei that do not fall in any of these groups and are listed separately.  

As described for the hippocampus, the connectivity between the different 

nuclei and the afferent and efferent connections between the amygdala and other 

brain areas are the key to understand how the amygdala responds to biologically 

significant events and orchestrates appropriate responses. Based on intra-

amygdaloid connectivity, there are three separate levels of information processing 

(Pitkanen et al., 1997): 

 

 Internuclear connections: between two nuclei 

 Intradivisional connections: within one subdivision of a nucleus 

 Interdivisional connections: between separate subdivisions of a nucleus 
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Figure 1-4: Schematic illustration of the amygdaloid complex of the rat 

The amygdaloid complex in the rat is subdivided into various nuclei and cortical areas. 
Panel A is more rostral than panel B. Most of the nuclei have subdivisions and 
compose the anatomical and functional units of the amygdala. The different nuclei are 
divided into groups as described in the text.  
Blue represent the nuclei of the basolateral nuclei, yellow are the cortical group and 
green for the centromedial group. 
ABmc: Accessory basal magnocellular subdivision; ABpc: accessory basal 
parvicellular subdivision; AHAl: amygdalo-hippocampal area, lateral division; BAOT: 
bed nucleus of the accessory olfactory tract; Bi: basal nucleus intermediate division; 
Bmc: basal nucleus magnocellular division; Bpc: basal nucleus parvicellular division; 
Cec: central nucleus capsular division; Cei: central nucleus intermediate division; Cel: 
central nucleus lateral division; Cem: central nucleus medial division; Coa: cortical 
nucleus anterior division; Cop: cortical nucleus posterior division; Ldl: lateral nucleus 
dorsolateral division; Lm: lateral nucleus medial division; Lvl: lateral nucleus 
ventrolateral division; Mcd: medial amygdala dorsal subdivision; Mcv: medial amygdala 
ventral subdivision; Mr: medial amygdala rostral subdivision; PAC: periamygdaloid 
cortex; PACm: periamygdaloid cortex medial division. Adapted from Pitkanen et al. 
(1997) ; Sah et al. (2003).  
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1.2.2.2 Divisions and locations 
 

1.2.2.2.1 The basolateral group 
 

 The basolateral or deep group of nuclei is composed of the lateral nucleus 

(LA), the basolateral nucleus (BLA), sometimes also called the basal nucleus, and 

the accessory basal nucleus, also known as the basomedial nucleus. 

 The LA is located in the dorsal part of the amygdala, medial to the external 

capsula and lateral to both the central nucleus (rostrally) and the lateral ventricle 

(caudally) (Aggleton, 2000). Ventrally, the LA borders the BLA and is separated into 

three subdivisions: the dorsolateral, the ventrolateral and the medial subdivision (Sah 

et al., 2003).  

 The BLA is located rostral to the LA, medial to the external capsula and 

lateral to the central nucleus. It is composed of three subdivisions: magnocellular, 

intermediate and parvocellular subdivisions. When the intermediate and parvocellular 

divisions appear (more caudally), the BLA is located ventral to the LA and dorsal to 

the accessory basal nucleus. Caudally, the BLA lies lateral to the lateral ventricle.  

 The accessory basal nucleus borders the BLA dorsally and the 

periamygdaloid cortex ventrally. At caudal levels, it is located dorsal to the lateral 

division of the amygdalo-hippocampal area. 

 

 

1.2.2.2.2 The superficial or cortical-like group 
 

The superficial group consists of nuclei with cortical characteristics since they 

are located at the surface of the brain and show a layered structure (Sah et al., 2003; 

Andersen et al., 2007). The nucleus of the lateral olfactory tract, the bed nucleus of 

the accessory olfactory tract (BAOT), the anterior and posterior cortical nucleus (CoA 

and CoP) and the periamygdaloid cortex (PAC) form this group. The BAOT lies at the 

most rostral part of the amygdala and is bordered laterally by the CoA.  

The CoA is located lateral to the nucleus of the lateral olfactory tract, rostrally 

and caudally to the medial nucleus. The CoP is located in the most caudal part of the 

amygdala where it borders the amygdalo-hippocampal area dorsally and the 

periamygdaloid cortex laterally (Aggleton, 2000; Sah et al., 2003).  
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The periamygdaloid cortex is subdivided in: the medial division and the sulcal 

division, and is located ventral to the BLA.  

 

 

1.2.2.2.3 The centromedial group 
 

The centromedial group is located in the dorsomedial portion of the 

amygdaloid complex and consists of the central amygdala (CeA), the medial 

amygdala, and the amygdaloid part of the BNST (Sah et al., 2003; Andersen et al., 

2007).  

The CeA is divided in four parts: the capsular, lateral, medial and intermediate 

subdivision. The CeA is located medial to the LA and the BLA nuclei and lateral to 

the stria terminalis. Caudally, the CeA ends at the lateral ventricle appears (Aggleton, 

2000). 

The medial nucleus starts at the edge of the nucleus of the lateral olfactory 

tract and extends caudally to the beginning of the lateral ventricle. The medial 

nucleus is also divided in three parts: rostral, central and caudal.  

The amygdaloid part of the BNST is based on the innervations of the BNST 

and the caudodorsal regions of the substantia inominata (ventral pallidum), from the 

the centromedial amygdala. These two regions have similar efferent connections to 

the outgoing projections of the amygdala, and are therefore, characterised as part of 

the amygdaloid complex (Sah et al., 2003). 

 

 

1.2.2.2.4 Connectivity 
 

Studies, which used anterograde or retrograde tracer injections into various 

amygdalar, cortical or subcortical regions, provide data about afferent and efferent 

pathways to and from the amygdaloid complex (Aggleton, 2000). Each amygdaloid 

nucleus receives inputs from a variety of distinct brain regions. The efferent 

projections from the amygdala also reach numerous brain regions, including cortical 

and subcortical areas (McDonald, 1998; Aggleton, 2000).  
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a- Afferent projections to the amygdala 

According to the origin of the afferences, inputs to the amygdala can be 

separated into two main categories (Aggleton, 2000):  

- those coming from the hypothalamus or the brainstem  

- those arising from cortical and thalamic structures  

Hypothalamic and brainstem inputs arise from regions associated with autonomic 

responses, whereas cortical and thalamic inputs convey information from sensory 

areas and structures associated with memory formation.  

The cerebral cortex is the major source of sensory information to the 

amygdala (McDonald, 1998). Most of the projections are ipsilateral and enter the 

amygdala via the external capsula (Mascagni et al., 1993). The majority of these 

projections arise from association areas and forward processed information by a 

series of cortico-cortical loops. The inputs convey modality-specific or polymodal 

sensory information. The amygdala receives inputs about all modalities: 

somatosensory, auditory, visual, olfactory, gustatory and visceral.  

Cwith respect to somatosensory inputs, most afferences reach the amygdala 

via the dysgranular parietal insular cortex in the parietal lobe (Shi and Cassell, 1998). 

These projections target the LA, the BLA, and the CeA (McDonald and Jackson, 

1987; Shi and Cassell, 1998, 1999). Somatosensory information also reaches the 

amygdala via projections from the pontine parabrachial nucleus and thalamic nuclei, 

the medial portion of the medial geniculate and the posterior internuclear nucleus. All 

these nuclei have been suggested to be involved in nociception (Ledoux et al., 1987; 

Bernard et al., 1989; Bordi and LeDoux, 1994; Sah et al., 2003). 

Auditory and visual information reach the amygdala from association areas, 

rather than from the primary cortex (Mascagni et al., 1993; Shi and Cassell, 1997; 

Sah et al., 2003). Tracing studies have shown that these projections arise from 

cortical layers II and IV of the auditory cortex (Te3) and reach the LA through the 

dorsolateral subdivision (LeDoux et al., 1991; Shi and Cassell, 1997). Subcortical 

acoustic inputs arise from the thalamic medial geniculate nucleus and target the 

same areas of the LA (LeDoux et al., 1990; LeDoux et al., 1991; Turner and 

Herkenham, 1991; Sah et al., 2003). Like the auditory inputs, visual cortical 

projections to the amygdala originate from thalamic and high-order visual areas (Shi 

and Davis, 2001). Cortical projections from these areas terminate in the dorsal 
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subdivision of the LA, the CeA, and some in the magnocellular basal nucleus (Sah et 

al., 2003).  

Projections from the main and accessory olfactory bulbs as well as the primary 

olfactory cortex target the nucleus of the lateral olfactory tract, the anterior cortical 

nucleus, and the periamygdaloid cortex. The accessory olfactory bulb projects to the 

bed nucleus of the accessory olfactory tract, the medial nucleus and the posterior 

cortical amygdala (Scalia and Winans, 1975). The piriform cortex and the anterior 

olfactory nucleus send projections to the LA, BLA and accessory basal nuclei (Luskin 

and Price, 1983). 

Gustatory and visceral primary areas in the anterior and posterior insular 

cortices provide strong projections to the dorsal subdivision of the LA, the posterior 

BLA, and the CeA (Shi and Cassell, 1998). Gustatory and visceral information arise 

also from subcortical structures, and both cortical and subcortical inputs converge in 

the amygdaloid complex (McDonald, 1998).  

 

The amygdala also receives major polymodal sensory inputs from the 

prefrontal and perirhinal cortices and the hippocampus, structures that are strongly 

involved in the regulation of behaviour and reward circuitries (Rolls, 2000). 

Projections from the prefrontal cortex reach the BLA, but also the LA, as well as the 

accessory basal, central, and medial nucleus (McDonald et al., 1996). Areas related 

to long-term declarative memory (e.g. the perirhinal, entorhinal, parahippocampal 

cortices, and the hippocampus) have strong reciprocal connections with the 

amygdala. The perirhinal cortex sends the heaviest projections to the medial division 

of the LA and also innervates the BLA and the cortical nucleus (Shi and Cassell, 

1999). Compared to the perirhinal cortex, the entorhinal cortex seems to project to 

most of the amygdalar nuclei (McGaugh et al., 1996). The afferent inputs from the 

hippocampus originate from the subicular region and, although the BLA is the main 

target structure, other nuclei are also likely to be innervated (Canteras and Swanson, 

1992).  

 

In summary, the amygdala receives information from all sensory systems. In 

combination with afferent inputs from the medial temporal lobe, the amygdala 

appears to be in a unique position to form associations between current sensory 

inputs and past experiences.  
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 b- Intra-amygdaloid connectivity and efferences  

Tracing studies enable tracking of the intranuclear and internuclear 

connectivity within the amygdala (Krettek and Price, 1978; Aggleton, 2000). These 

studies show that sensory information enters the amygdala through the LA where it is 

processed before a lateral-to-medial progression to the medial and central nuclei, 

which act as the main output areas of the amygdala (Pitkanen et al., 1997).  

Within the LA, strong rostrocaudal as well as interdivisional connections have 

been described (Pitkanen et al., 1995). The dorsolateral subdivision projects to the 

medial subdivision and also to the lateral subdivision of the LA. Unimodal sensory 

inputs enter the LA laterally, while polymodal inputs from the declarative memory 

system invade the medial subdivision of the LA (Aggleton, 2000). The lateral to 

medial intranuclear connections within the LA suggests that the medial subdivision 

acts as a site of integration between sensory information and past experience. 

Neurons of the LA send heavy projections to the BLA, the accessory basal nucleus 

and the capsular part of the CeA (Smith and Pare, 1994; Pitkanen et al., 1995). 

Except for the CeA, these regions also send projections back to the LA, mostly into 

its medial and ventrolateral subdivision (Savander et al., 1996; Savander et al., 

1997). 

The BLA and the accessory basal nucleus receive strong cortical inputs and 

have extensive internuclear and intranuclear connections. The parvocellular 

subdivision of the BLA projects to the magnocellular and intermediate subdivisions 

(Savander et al., 1995). The largest projection from the BLA is to the medial 

subdivision of the CeA (Savander et al., 1995; Savander et al., 1996). Projections 

from the BLA to the CeA play a key role in controlling the outflow of processed 

information from the amygdaloid complex (Savander et al., 1995; Savander et al., 

1996). The accessory basal nucleus has extensive rostrocaudal connections and 

sends projections to the LA, the CeA, and the medial nuclei (Savander et al., 1995).  

The CeA forms the major source of efferences and receives projections from 

all other amygdalar nuclei, with only a few reciprocal connections (Pitkanen et al., 

1997; Jolkkonen and Pitkanen, 1998). It is important to mention that the lateral 

subdivision of the CeA is also innervated by cortical and subcortical areas (Aggleton, 

2000), suggesting that it acts as a site of integration of input signals.  

The internuclear connections to the CeA are mostly restricted to the medial 

and capsular subdivisions. The CeA also has extensive intradivisional and 
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interdivisional connections (Jolkkonen and Pitkanen, 1998). The capsular and lateral 

parts of the CeA send strong projections to the medial, but only few connections to 

the intermediate subdivision. The medial subdivision projects to the capsular 

subdivision and generates the main output of the amygdala to the hypothalamus and 

the brainstem. The projections are responsible for the activation of autonomic and 

endocrine stress responses (Savander et al., 1996). 

 

 

1.2.3 Amygdala, stress and anxiety 
 

In the past two decades, the amygdala has increasingly been implicated in the 

pathophysiology of anxiety disorders, and becomes more and more accepted as a 

key structure concerning the regulation of fear and anxiety. In contrast to the 

prefrontal cortex and the hippocampus, the amygdala drives the HPA axis (Herman 

et al., 2003). Stimulation of the amygdala promotes corticosteroid biosynthesis and 

secretion from the adrenal cortex (Redgate and Fahringer, 1973; Saito et al., 1989). 

Studies using localised stimulations and lesions showed that the central, medial and 

basolateral nuclei control the release of ACTH from the anterior pituitary (Herman et 

al., 2003). 

The BLA has been implicated in emotional arousal and stress-induced CRH-

mediated modulation of stress and anxiety states (Roozendaal et al., 2002; 

Roozendaal et al., 2004). CRHR1 is strongly expressed in BLA magnocellular 

neurons (Chen et al., 2000), which project to the hippocampus, thereby contributing 

to the consolidation of emotional memories (Pare, 2003). CRHR1 activation 

increases the excitability of these projection neurons. Consequently, release of CRH 

in the BLA has been hypothesised to contribute to the regulation of stress-induced 

anxiety states (Rainnie et al., 1992; Rainnie et al., 2004). Consistently, repeated 

administration of low doses of CRH (50 fmol) can lead to increased activity of BLA 

neurons upon future stress exposure and to the development of sustained anxiety 

(Sajdyk et al., 1999; Sandi et al., 2008). Stress exposure can also lead to an 

enhancement in synaptic strength within the BLA, further contributing to the 

development of chronic enhanced anxiety levels (Rainnie et al., 2004; Shekhar et al., 

2005). Repeated local infusions of urocortin (an endogenous CRHR2 agonist) into 

the BLA increase anxiety levels in rodents, with electrophysiolocical recordings from 
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BLA neurons showing a reduction in spontaneous as well as evoked GABAergic 

transmission and, thus, a hyperexcitability of BLA circuits (Rainnie et al., 2004). 

These findings are consistent with recent evidence for an inverse relationship 

between GABAergic inhibition in the BLA and anxious behaviour. Interestingly, these 

effects can be reversed by enriched environmental (E.E.) stimulation (Sztainberg et 

al., 2010). Rodents exposed to a combination of social, cognitive, sensory, and motor 

stimulation display reduced levels of emotionality-related measures such as 

defecation, freezing, and anxiety levels (Fox et al., 2006). Sztainberg et al. (2010) 

showed that one possible molecular mechanism underlying this phenomenon is 

reduction of CRHR1 expression in the BLA (Sztainberg et al., 2010).  

Modulation of electrical activity in the BLA by CRH can lead to long-lasting 

functional and structural changes. Indeed, acute and chronic stress leads to 

remodelling of synapses and dendritic branching in the BLA and medial amygdala 

that correlates with increased anxiety levels (Vyas et al., 2002; Vyas and Chattarji, 

2004; Vyas et al., 2004; Vyas et al., 2006). A single stress episode of 2 h in rats is 

sufficient to increase spine density on principal neurons in the BLA, an effect that 

also correlates with increased anxiety (Mitra et al., 2005).  

Compared to acute stress, chronic stress induces a more widespread increase 

in spine density, affecting both primary and secondary dendrites of BLA principal 

neurons (Mitra et al., 2005). This effect is accompanied by a dendritic growth in 

pyramidal and stellate neurons of the BLA (Vyas et al., 2002; Vyas et al., 2004; Vyas 

et al., 2006) and enhanced anxiety (Mitra and Sapolsky, 2008). This dendritic 

hypertrophy probably involves increased corticosterone levels. Mitra and colleagues 

(2008) showed that chronic, high-dose administration of corticosterone for ten days 

induces dendritic hypertrophy in the BLA and increases anxiety levels (Mitra and 

Sapolsky, 2008). Thus, effects of chronic stress on anxiety seem to be mediated at 

least in part by a remodelling of dendritic arborisation in the BLA (Mitra and Sapolsky, 

2008). 

Excessive amygdalar activity, with or without presentation of emotional stimuli, 

has been described in patients suffering from social anxiety disorder (Birbaumer et 

al., 1998; Stein et al., 2002; Phan et al., 2006), posttraumatic stress disorder (Rauch 

et al., 2000; Shin et al., 2005), panic disorders, and generalised anxiety disorders 

(Thomas et al., 2001).  
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Taken together, clinical and preclinical studies highlight the amygdala as a 

major relay station for the regulation of anxiety levels, depending on environmental 

factors. Dysregulation of amygdalar activity leads to the development of anxiety 

disorders. In particular, the BLA appears to be an important nucleus because of its 

ability to integrate diverse stressful stimuli. Release of CRH and corticosteroids can 

alter synaptic strength and dendritic morphology within the BLA, thus leading to an 

enhanced excitability of pyramidal neurons. 

 

 

1.3 Animal models of human psychopathology 
 

In the last two decades, new brain imaging techniques have led to major 

advances in the understanding of psychiatric conditions (Stein et al., 2002; Anand 

and Shekhar, 2003; Stein et al., 2007). However, research on humans has, beside 

ethical reasons, been limited by numerous factors. In order to understand the 

mechanisms underlying such complex disorders, the use of animal models is 

indispensable.  

A variety of animal models have played an important role in the development 

of many widely used psychopharmacological treatments and strongly contributed to a 

better understanding of psychopathologies (McKinney, 2001). Nevertheless, many 

animal models also have certain disadvantages. There is no “perfect” animal model 

which recapitulates all aspects of a complex human disease such as mood disorders. 

Ideally, animal models should mimic the specific features experienced by patients 

with respect to etiology, symptomatology, treatment, and biological background 

(McKinney, 2001). An animal model must fulfil three main criteria in order to be 

considered a valid model. Construct validity (the causal conditions) and face validity 

(diagnosed symptoms) should be similar to those observed in patients, and predictive 

validity (pharmacological treatment of the animals should produce the same 

quantifiable effects as those seen in patients). 

There are numerous ways to induce psychopathological symptoms in rodents. 

Exposure of animals to certain environmental conditions, e.g. to a stressful or 

enriched environment, can modulate the stress response in a way that it mimics 

human stress-related pathologies (Schmidt et al., 2003; Weaver et al., 2004; Friske 

and Gammie, 2005; Schmidt et al., 2007; Touma et al., 2008). As an alternative to 
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transgenic animal models, selective breeding has found to be a strong tool to 

uncover the genetic background of mental disorders (Phillips et al., 2002; Swallow 

and Garland, 2005; Touma et al., 2008). In the selective breeding approach, 

individuals lying at the extremes of the response curve are selectively bred for their 

contrasting trait phenotypes for multiple generations (Liebsch et al., 1998b; Liebsch 

et al., 1998a; Kromer et al., 2005; Touma et al., 2008). This selective bidirectional 

breeding improves the frequency of genetic modifications related to a bidirectional 

shift in the animal’s trait phenotype from the mean of the strain (Kromer et al., 2005; 

Landgraf et al., 2007). Heritability features of the trait can be analysed and later 

generations can be evaluated on the basis of neurobiological correlates of the trait. 

Successfully developed examples of this selective breeding approach comprise mice 

and rats selected for extremes in anxiety-related behaviour, namely high anxiety-

related behaviour (HAB) and low anxiety-related behaviour (LAB) (Kromer et al., 

2005; Landgraf et al., 2007) 

 

 

1.3.1 An animal model of trait anxiety: The HAB/LAB mouse model 
 

One approach to better understand the neurobiological underpinning of 

anxiety-related behaviour is the development of a psychogenetically selected animal 

model, selected for trait anxiety. This model originates from one outbred rat or mouse 

strain selected over generations such that it is reliable, consistent and robust 

(Landgraf, 2003). 

For the high (HAB) and low (LAB) anxiety-related behaviour animal model, 

Wistar rats were bred and selected based on their anxiety phenotype on the elevated 

plus maze (EPM) (Landgraf and Wigger, 2002; Landgraf, 2003; Salomé et al., 2004; 

Landgraf et al., 2007). The EPM represent one of the most widely used behavioural 

tests to characterise anxiety levels in rodents and the anxiolytic or anxiogenic effects 

of drugs (Rodgers and Johnson, 1995; Hogg, 1996). This “approach-avoidance” 

behavioural paradigm relies on the observations that rats and mice show higher 

levels of exploration in enclosed alleys and avoid the open, non-protected arms of a 

maze (Pellow et al., 1985; Lister, 1987).  

After inbreeding for several generations, HAB and LAB lines exhibit stable 

bidirectional anxiety phenotypes, with HAB rats showing symptoms of pathological 
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anxiety (Liebsch et al., 1998b; Liebsch et al., 1998a; Landgraf and Wigger, 2002). 

These rats fulfill all three criteria of a valid animal model and display high genetic 

homogeneity. HAB animals allow the investigation of multiple genetic and 

environmental factors which contribute to trait anxiety. In order to reduce the possible 

influence of genetic drift and the concomitant risk of false associations between the 

gene of interest and a given phenotype, different sublines are evaluated at the same 

time (Kromer et al., 2005; Bunck et al., 2009).  

Although HAB/LAB rats represent a powerful tool for the investigation of 

behavioural and neuroendocrine features of trait anxiety, rats are limited in terms of 

investigations using molecular genetic approaches (Kromer et al., 2005). Genetic 

approaches are better realisable in the mouse, whose genome has been fully 

sequenced making the mouse a powerful model to uncover candidate genes and 

gene products underlying trait anxiety (Tarantino and Bucan, 2000). To exploit these 

advantages, a mouse model was developed based on CD1 strain mice, employing 

the same breeding paradigm as that described for HAB/LAB rats. This bidirectional 

breeding led to the creation of two inbred lines that, independent of gender, show 

extreme differences in trait anxiety phenotypes (Kromer et al., 2005). The HAB/LAB 

mouse model also exhibits differences in other metrics, including depression-like and 

explorative behaviours. HAB mice are not only more anxious on the EPM, compared 

to LAB mice, but also show less signs of risk assessment and emit more ultrasonic 

vocal calls (USV), measures associated with high anxiety levels (Kromer et al., 

2005). In the forced swim and the tail-suspension tests, HAB mice display higher 

scores of immobility than LAB mice, indicating increased depression-like behaviour 

(Kromer et al., 2005). The latter findings are consistent with the clinical observation of 

a comorbid appearance of anxiety disorders and depression. Furthermore, cognitive 

differences are observed between HAB/LAB mice. In the social discrimination test, 

HAB animals need a longer time to discriminate between a novel and a familiar 

ovariectomised female as LAB animals. In the Y-maze and the Morris water maze 

tests, similar cognitive differences can be found between mice of both groups 

(Bunck, 2008). Thus, the HAB/LAB mouse model serves as a good tool to investigate 

neurophysiological, genetic, and environmental factors.  

 

 

 



Aim of the study  47 

2 Aim of the study 
 

Although it is obvious that the physiological architecture of neuronal networks 

and its modifications are essential for the brain to process incoming information and 

to control highly organised behaviour, the mechanisms which control anxiety are still 

poorly understood. The aim of this thesis was to uncover changes in the 

characteristics of neuronal networks that may contribute to abnormal anxiety states.  

 

This work addressed the following questions:  

 

a. Do HAB and LAB mice differ in terms of basal neurotransmission 

and/or plasticity at CA3-CA1 synapses in the ventral hippocampus? 

 

b. Is there a regional dissociation within the hippocampus (dorsal vs. 

ventral) in basal neurotransmission and/or plasticity at CA3-CA1 

synapses between HAB/LAB mice? 

 

c. Is the efficacy of evoked neuronal activity propagation through the 

amygdalar network different in HAB and LAB mice? 

 

d. Are environmental factors sufficiently strong to modulate the anxiety 

phenotype and the efficacy of neuronal activity propagation through 

the amygdala network in HAB/LAB animals? 
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3 Material & Methods 
 

3.1 Animals 
 

All animal lines, except for the HAB enriched environment mice (HAB E.E.), 

were housed in same sex groups ranging from two to five mice. The transparent 

polycarbonate cages (type 2 – macrolone, 25.5x19.5x13.8 cm) furnished with wood 

chip bedding and wood shaving nesting material (Product codes: LTE E-001 and 

NBS E-001, ABEDD-LAB and VET Service GmbH, Vienna, Austria) were kept at the 

animal facility of the Max Planck Institute of Psychiatry in Munich and maintained 

under standard laboratory conditions (light-dark cycle: 12 h, light on at 7:00 AM; 

temperature: 22 ± 1°C; relative humidity 55 ± 10%). Food and tap water were 

available ad libitum.  

The HAB E.E. animals, which were exposed to an environmental enrichment, 

were housed under conditions allowing increased stimuli interactions. The E.E. 

cages, constructed of a 85 x 75 x 20 cm transparent polycarbonate, contained the 

following enrichment items: polyvinyl chloride box; increased nesting material; the 

Mouse House a red transparent Perspex nest box; the Refuge, a plastic tubes tunnel 

system; and wooden toys. Nesting material was replaced weekly, whereas some of 

the enrichment items, such as the running wheels, were never removed. 

The data presented here were obtained from 8- to 12- week old male mice. 

Behavioural paradigms and electrophysiological experiments were separated in order 

to allow at least one week of intermittent recovery. 

 

 

3.2 Electrophysiology 
 

3.2.1 Preparation of brain slices 
 

The following slice preparation procedure was carried out between 6:00 and 

9:00 AM. The animals were anesthetised using isoflurane (Abbott Deutschland, 

Wiesbaden, Germany) and decapitated using an animal guillotine. All of the following 

steps were carried out in ice-cold artificial cerebrospinal fluid (ACSF) saturated with 
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carbogen (95% O2/5% CO2) The ACSF (pH 7.4) contained (in mM): NaCl, 125; KCl, 

2.5; NaHCO3, 25; NaH2PO4, 1.25; CaCl2, 2; MgCl2, 1; glucose, 25. The brain was 

rapidly removed from the cranial cavity and the frontal cortex and the cerebellum 

were dissected. The brain was then glued on the slicing stage with Histoacryl®. The 

slicing stage was immediately placed in the cutting dish of the vibratome (HM650V, 

Thermo Scientific). Depending on the kind of experiment, various types of slices were 

prepared:  

 

1) 400 µm coronal slices containing the amygdala (Rammes et al., 2000). 

2) 350 µm parasagittal slices containing the dorsal hippocampus (Eder et al., 

2003).  

3) 350 µm horizontal slices containing the ventral hippocampus. 

 

To clearly distinguish between the dorsal and the ventral part of the hippocampus, 

the brain was glued on the dorsal surface of the cortex and slices were obtained by 

cutting from the ventral to the dorsal axis. Brain slices, containing the structure were 

transferred into a storage glass vial filled with carbogenated ACSF. Slices were 

incubated for 30 min at 34°C and afterwards stored at room temperature (22-24°C) 

for at least 90 min. For patch-clamp recordings, slices were only incubated for 30 min 

at 34°C before the beginning of the experiment.  

 

 

3.2.2 Field excitatory postsynaptic potential (fEPSP) recording 
 

3.2.2.1 Equipment 
 

All electrophysiological recordings were performed on a steel plate platform 

mounted on a vibration-cushioned table (TMC, USA, Peabody; MA). In order to 

minimize extraneous electrical noise, a Faraday cage (TMC, USA, Peabody; MA) 

was placed around this steel plate platform. In the recording chamber, brain slices 

were permanently superfused with carbogenated ACSF via a peristaltic pump 

(Ismatec, Glattburg, Germany) with a constant flow of 3.5 ml/minute. A platinum 

frame covered with two nylon threads (“grid”) fixes the slice on the bottom of the 
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recording chamber. The stimulation and recording electrodes were positionned in the 

slice by means of micromanipulators. 

For stimulation, a custom-made bipolar tungsten electrode (insulated to the 

tips 50 µm diameter) was placed within the CA1 Stratum radiatum to stimulate the 

Schaffer collateral-commissural pathway (Figure 3-1). Recording electrodes were 

pulled from 1.5 mm diameter fibre-filled borosilicate glass pipettes (Harvard 

Apparatus, Edenbridge, Kent, UK) on a horizontal puller (DMZ Puller; Zeitz, 

Martinsried, Germany). The open tip resistance of these electrodes varied between 

0.7 and 1.1 MΩ. The electrodes were backfilled with ACSF. 

 

Stim RecStim Rec

 
 

Figure 3-1: Section of the mouse brain adapted from “The mouse brain” (G. Paxinos, 2008) 
Parasagital section of the mouse brain adapted from “The mouse brain” (G. Paxinos, 
2008). For field potential recordings, stimulus and recording electrodes were placed in 
the Stratum radiatum of the dorsal CA1 hippocampus subfield. CA1-3: Cornu 
ammonis; Rad: Stratum radiatum; SLu: Stratum lucidum; LMol: Stratum lacunosum 
moleculare; Mol: molecular layer of the Dentate gyrus; GrDG: granular layer of the 
Dentate gyrus; PoDG: Polymorphic layer of the Dentate gyrus.  
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3.2.2.2 Data recording 
 

An external stimulus generator (Npi electronic; Tamm, Germany) was 

triggered every 15 s by the Pulse software 8.0 (HEKA Elektronik; Lambrecht/ Pfals, 

Germany), through a digital/analog converter (HEKA Elektronik; Lambrecht/ Pfals, 

Germany). Square pulse electrical stimuli (50 µs pulse width, voltage stimulation) 

were applied to the neuronal tissue. The recorded field potentials were low-pass 

filtered at 1 kHz and digitised at 5 kHz (Figure 3-2). 
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Figure 3-2: Schematic illustration of the extracellular recording set-up 

 

 

3.2.2.3 Experimental protocols 
 

For each experiment in the hippocampus, the recordings were conducted in three 

steps: 

1) Basal neuro transmission at CA3-CA1 synapses was evaluated by 

means of input-output relationships. The input is defined as the 

amplitude of the fibre volley (Figure 3-3), representing the strength 

of action potential activity in the Schaffer collateral-commissural 

pathway. The stimulation intensity was adjusted in a manner to 

produce fibre volley amplitudes of approximately 20, 40, 80, 120 and 



Material & Methods  52 

200µV. The amplitudes of the resultant fEPSPs, are defined as the 

output.  

2) Paired-pulse facilitation (PPF) was analysed. PPF was assessed 

using interstimulus intervals of 25, 50, 100, 200 and 400 ms. 

3) Long-term synaptic plasticity was investigated by evoking LTP by 

application of high-frequency stimulation (HFS, 100 Hz/1 s). For this 

purpose triggering device (Master-8; Uziel St., Jerusalem, Israel), 

connected to the external stimulator, was manually activated for the 

generation of the HFS. The amplitudes of the fEPSPs were 

normalised to the mean amplitude of the fEPSPs acquired of the last 

10 min of baseline recording.  
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Figure 3-3: Representative recording trace acquired during fEPSP recording in area CA1 of 

the hippocampus 
a) Stimulus artefact; b) Amplitude of the fibre volley; c) Amplitude of the fEPSP 

 

 

3.2.2.4 Data storage and analysis 
 

Recorded signals were stored on the hard disk of a power Macintosh 7100 

computer. Amplitudes of fEPSPs were analysed using the Pulse Software and 

macros written in Igor Pro (version 6.12a; WaveMetrics, Oregon, USA). SigmaStat 

3.5 (Statcon, Witzenhausen, Germany) was used for statistical analysis. 
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3.2.3 Patch clamp recordings 
 

Slices were placed in a submerged recording chamber and fixed with a grid. 

Slices were permanently superfused with carbogenated ACSF via a peristaltic pump 

(Ismatec, Glattburg, Germany) at a flow rate of 3.5 ml/ minute.  

Patch-clamp recordings were made from principal neurons of the BLA that 

were visually identified using an infrared videomicroscope (Zeiss Axioskop; Carl 

Zeiss, Munich, Germany). The enhanced visibility of neuronal structures reached in 

brain slices imaged with infrared light comes from the reduced dispersion of infrared 

light compared to visible light (Dodt and Zieglgansberger, 1990; Dodt, 1993). 

Neurons were selected depending on their appearance. Cells with a high contrast, a 

rough and angular appearance, and a visible nucleus were excluded. Only cells with 

smooth and soft-looking membranes, that could easily dimpled by the tip of the patch 

pipette, were selected for recordings. 

The recording chamber, the microscope, and the recording pipette were 

independently moved by means of three micromanipulators (Luigs and Neumann; 

Ratingen, Germany). 

 

 

3.2.3.1 Recording electrodes & data acquisition 
 

The recording electrodes were made in a two-step process. First, patch 

pipettes with an open tip resistance of 6 to 8 MΩ were pulled and subsequently heat-

polished. Both steps were carried out using a horizontal puller (DMZ Puller; Zeitz, 

Martinsried, Germany). The electrodes were backfilled with intracellular solution and 

placed in a pipette holder. An Ag/AgCl wire is required to provide electrical 

connection between the intracellular solution and a head-stage (SEC 10L NPI 

Electronic GmbH, Tamm, Germany). The head-stage serves as a first amplifying 

interface between the main amplifier and the recorded cell. The patch clamp amplifier 

contains the measuring and clamping circuitry, and in turn process the experimental 

commands, such as holding potential and voltage steps (Molleman, 2003). The 

amplifier, according to the principle of discontinuous single-electrode voltage clamp, 

periodically alternated between measuring the voltage and injection current. To 

provide commands and acquire data, electrical signals were low-pass filtered at 1 
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KHz and converted from analog to digital format, and vice versa. An analog/ digital 

digital/ analog interface (ITC 16; HEKA Elektronik Dr. Schulze GmbH, 

Lambrecht/Pfalz, Germany) digitalised the data with a sampling rate of 10 KHz. Data 

were recorded and stored with Pulse-software (version 8.5, HEKA Elektronik Dr 

Schulze GmbH) on a MacIntosh computer. 

 

 

3.2.3.2 Whole-cell recording 
 

One major factor to obtain a successful patch clamp recording is to reach the 

cell membrane without damage or contamination of the pipette by debris in the bath. 

To avoid such a contamination, a positive pressure was applied to the pipette 

through a syringe connected to a three-way-stopcock. The electrode was placed in 

the recording chamber by careful navigation with the micromanipulators. Once in the 

bath, the offset of the pipette was eliminated and secondly the resistance of the 

electrode was compensated. 

After choosing a cell in the BLA, the pipette tip was positioned close to the 

plasma membrane by visual control. The contact between the pipette’s tip and the 

cell should not traumatise the membrane of the neuron. In order to have the most 

optimal experimental conditions, the final approach was monitored on a high 

magnification camera. After removing the positive pressure, the plasma membrane 

and the tip of the pipette started to seal together. After reaching a resistance of 100 

MΩ, the amplifier was switched to the voltage clamp mode (holding potential of -70 

mV) to reach a resistance of at least 1 GΩ. This step is confirmed by the virtual 

absence of leak current between the tip of the electrode and the membrane fragment 

inside the pipette, as the result of the high resistance of the gigaseal. 

To achieve the whole-cell configuration, the patch of membrane under the 

pipette`s tip is broken by applying a small negative pressure. The intracellular 

solution of the pipette is then in direct contact with the cytoplasm, and dialysis of both 

solutions can take place. Before starting the recording, a resting period of 5 min was 

observed to allow the complete dialysis between the intracellular solution and the 

cytoplasm of the recorded cell.  
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3.2.3.3 Recording of GABAA receptor-mediated miniature inhibitory 
postsynaptic currents (mIPSCs) 

 

The pipette solution for GABAA receptor-mediated mIPSCs recordings was 

composed of (in mM): Cesiummethanesulfonat, 100; CsCl, 60; Lidocain N-Ethyl-

Chlorid, 5; Hepes, 10; EGTA, 0.2; MgCl2, 1; Mg-ATP, 1; Na3GTP, 0.3; pH 7.3. 

To isolate GABAA receptor-mediated mIPSCs, different blockers were added 

to the extracellular bath solution: D-AP5 (50 µM) to block NMDA receptors, NBQX (5 

µM) to block AMPA and kainate receptors, and TTX (1 µM) to block the voltage-gated 

sodium channels. Control experiments showed that the remaining postsynaptic 

currents are completely abolished after addition of the GABAA receptor antagonist 

bicuculline (10 µM), confirming that the recorded mIPSCs were mediated by GABAA 

receptors. 

 

 

3.2.3.4 Data analysis & statistics 
 

Only neurons with a resting membrane potential (RMP) between -60 and -75 

mV were analysed. Recordings showing changes in the access resistance by more 

than 15% were collected. GABAA receptor mediated mIPSCs were recorded for 15 

min and analysed using the Mini Analysis software (version 6.0.9; Synaptosoft Inc., 

Fort Lee, NJ, USA). The signal was separated from the noise by definition of a 

threshold: this threshold was set to five times of the mean square root of noise value. 

SigmaStat (version 3.5.; Systat Software, Inc., Point Richmond, CA, USA) was 

used for statistical analysis.  

 

 

3.3 Voltage-sensitive dye imaging (VSDI) 
 

3.3.1 Di-4-aminonaphtylethenylpyridinium (Di-4-ANEPPS) 
 

A stock solution (20.8 mM) of Di-4-ANEPPS (Sigma-Aldrich GmbH; Munich, 

Germany) was prepared in 100% DMSO and stored at -20ºC in 7.6 µl batches. The 
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ANEPP dyes were developed by Leslie Loew and colleagues (Fluhler et al., 1985). 

The maximum fluorescence excitation/emission wavelengths of di-4-ANEPPS are 

~475/617 nm. 

 
Figure 3-4: Chemical formula of Di-4-ANEPPS 

Di-4-ANEPPS was used for the VSDI recordings. 4: the number of carbons in each of 
the alkyl chains; ANE: aminonaphthethenyl; PS: propylsulfonate 

 

 

3.3.2 Preparation and staining of brain slices for VSDI recordings 
 

Coronal amygdalar slices (400 µm) were prepared as described in the 

paragraph 3.2.1. After 30 min of incubation at 34°C, the slices were stained with Di-4-

ANEPPS. Slices were submerged in carbogenated ACSF containing 7.5 µg/ml of the 

dye (< 0.1% DMSO) and incubated at room temperature (22-24°C) for 15 minutes. 

Following the staining procedure, slices were set aside in pure carbogenated ACSF 

for at least 30 min (von Wolff et al., 2011). 

 

 

3.3.3 VSDI equipment & data acquisition 
 

The MiCAM02 hard- and software package (BrainVision, Tokyo, Japan) was 

used for the VSDI recordings. The software triggered the MiCAM02 processing unit, 

which in turn was connected to a halogen lamp (Moritex, MHAB-150W), the shutter 

and the charge-coupled device (CCD) camera (MiCAM02-HR). For excitation of the 

dye, light was passed through green light filter (wavelength of ~475 nm), while 

emitted fluorescence was collected in the range of red light (wavelength of ~617 nm). 

The tandem-lens fluorescence microscope was equipped with the MiCAM02-HR 

camera and the 2X and 1X lens at the objective and condensing side, respectively.  
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Figure 3-5: Schematic illustration of the VSDI set-up adapted from Tominaga et al., (2000) 

 

Collected images were transmitted via the processing unit to the BrainVision 

software on the computer. Acquisition settings were as followed: 88x60 pixels frame 

size, 36.4x40.0 µm pixel size, and 2.2 ms sampling time. For each acquisition, 8 

images were recorded at intervals of 10 sec and averaged. To minimize noise during 

optical recordings, slices were superfused with carbogenated ACSF using a 

combination of gravity system (for influx) and a peristaltic pump (for outflow). That 

way, vibrations at the surface of the submerged slices were avoided. A bipolar 

platinum/ iridium cluster electrode (25 µm pole diameter; FHC, Bowdoinham, ME, 

USA) was used to evoke neuronal activity. The stimulus electrode was placed in the 

lateral amygdala, closed to the capsula externa (Figure 3-6). Square pulse electrical 

stimuli (200 µs pulse width, voltage stimulation) were applied to the neuronal tissue 

of three different intensities (10, 17.5, 25 Volt).  
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Figure 3-6: Coronal section of the mouse brain adapted from “The mouse brain” G. 

Paxinos, (2008) 
For VSDI recordings, the stimulus electrode was placed in the dorso-lateral part of the 
lateral amygdala. LaDL: lateral amygdaloid nucleus dorsolateral; BLA: basolateral 
amygdaloid nucleus anterior; CeL: central amygdaloid nucleus lateral division; CeC: 
central amygdaloid nucleus capsular division; CeMPV: central amygdaloid nucleus 
medial posteroventral division. 

 

 

3.3.4 Data processing & analysis 
 

The fractional change in fluorescence (ΔF/F) was calculated. For all 

recordings, ΔF/F values were temporally and spatially smoothed by a 3x3x3 average 

filter. For quantification of neuronal population activity propagation in amygdalar 

nuclei, three circular regions of interest (ROIs) were manually set according to 

anatomical landmarks. The first ROI (4 pixels radius) was placed in the LA between 

the stimulus electrode and the BLA. A second ROI (6 pixels radius) was placed in the 

BLA, ventral to the dorsolateral part of the LA and close to the medial division of the 

capsula externa. A third ROI (5 pixels radius) covered the CeA. (Figure 3-7, left 

panel; representative recording are depicted in the right panel). 

 

Stim 
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Figure 3-7: Regions of interest (ROIs) in the three amygdalar nuclei under investigation 

 

The average of smoothed ΔF/F values within a particular ROI served as final 

measure of neuronal population activity. For further analysis, the peak amplitude of 

the fast, depolarisation-mediated VSDI signal (FDS) was calculated (Figure 3-8). 
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Figure 3-8: Quantification of the fast, depolarisation-mediated VSDI signal 

To quantify the fast, depolarisation-mediated VSDI signal (FDS), the mean value of 
the background ΔF/F between 103.4-107.8 ms (blue box) was subtracted from the 
value of the peak ΔF/F (red arrow) 

 

 

3.3.5 Statistics 
 

The unpaired student t-test run in SigmaStat (version 3.5.; Systat Software, 

Inc., Point Richmond, CA, USA), was used for the statistical analysis. 
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4 Results 
 

4.1 HAB/LAB animal model 
 

4.1.1 Behavioural characterisation of the HAB/LAB mice 
 

All animals used in this study were tested on the elevated plus-maze (EPM) at 

the age of 7 weeks. Based on the results of this behavioural characterisation, 

animals were separated in different groups:  

 

   -HAB 

   -LAB 

   -Control CD1  

   -HAB E.E. 

   -HAB E.E. not responding to the enriched environment 

    (HAB E.E. n.r.) 

   -LAB exposed to chronic unpredictable stress 

     (LAB Str.) 

 

The behavioural phenotyping was performed by members of the RG Landgraf.  

 

The main criterion for the separation in the different anxiety phenotypes was 

the percentage of time spent on the open arms of the EPM. Animals spending less 

than 10% of the time on the open arms were defined as HAB mice (Figure 4-1). On 

the contrary, animals spending more than 70% of the time on the open arms were 

defined as LAB mice (Figure 4-1). CD1 mice were chosen as the control group 

(same genetic background) exhibiting intermediate percentage of time spent on the 

open arms (30-50%, Figure 4-1). 
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Figure 4-1: Anxiety-related behaviour on the elevated plus-maze (EPM) 

 The graph shows the percentage of time spent on the open arms of the EPM. HAB 
animals spent significantly less time on the open arms (9.7 ± 1.1%) than control CD1 
(37.8 ± 2.5%) and LAB (75.7 ± 3.2%) mice indicating the most anxious behaviour of all 
groups. Data are shown as mean ± SEM. nHAB = 7, nCD1 = 8, nLAB = 9; *** p < 0.001. 
 

 

 

4.1.2 Synaptic transmission and plasticity in the hippocampus of the 
HAB/LAB animals 

 

4.1.2.1 Ventral hippocampus 
 

There is increasing evidence that the hippocampus is not only involved in the 

formation of memories, but also plays a major role in sensory information processing 

and control of emotional-behaviour. The nature of the anatomical connections to and 

from the different parts along the septo-temporal axis, together with recent studies 

using selective lesions of the dorsal and ventral part of the hippocampus, point to the 

ventral part as an important area for the regulation of anxiety behaviour.  

Based on this evidence, the ventral hippocampus was chosen as the first 

target of investigation in this study. In order to uncover potential differences in 

glutamatergic synaptic transmission and plasticity between HAB and LAB animals, 

fEPSP recordings were performed in the ventral hippocampus. HAB animals showed 

a decrease in basal neuronal transmission at CA3-CA1 synapses compared to LAB 

animals (Figure 4-2a). On the contrary, the paired-pulse ratio (PPR) was not 

significantly different between the two groups, indicating that CA3-CA1 synapses in 
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HAB and LAB animals exhibit an identical probability of glutamate release (Figure 4-
2b). However, compared to the CD1 control mice, both HAB and LAB showed 

increased PPR, but no significant difference in the input-output relationship.  

 

 
 
Figure 4-2: Basal synaptic transmission and short-term plasticity at CA3-CA1 synapses in 

the ventral hippocampus 
(a) Input-output relationship: fEPSP amplitude is plotted as a function of the fiber 
volley amplitude. Basal synaptic transmission at CA3-CA1 synapses is decreased in 
HAB (red dots) compared to LAB (blue dots) animals. This relationship is not 
significantly different between HAB and LAB animals compared to the CD1 control 
(grey dots) counterparts. 
(b) Paired-pulse ratio (PPR): The PPR is significantly increased in LAB (blue dots) and 
HAB mice (red dots) compared to the CD1 control group (grey dots) at interstimulus 
intervals of 25, 50, 100, 200 and 400 ms. 
$: comparison of LAB and HAB animals. Data are all shown as mean ± SEM. nLAB = 
17, nCD1 = 18, nHAB = 21 ; * p < 0.05, ** p < 0.01, *** p < 0.001 

 
 

To test for potential differences in long-term synaptic plasticity, LTP was 

induced by high-frequency stimulation (HFS, 100 Hz/1 s) after 20 min of stable 

baseline recording. The results showed a significantly increased LTP in HAB 

compared to LAB and CD1 animals (LTP1: min 50-55, 49.11 ± 3.9 % in HAB vs. 

32.53 ± 3.7 % in LAB vs. 25.14 ± 1.8 % in CD1; LTP 2: min 85-90, 70.26 ± 6.3 % in 

HAB vs. 50.02 ± 6 % in LAB vs. 39.33 ± 3.3 % in CD1; Figure 4-3). 
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Figure 4-3: Long-term potentiation (LTP) at CA3-CA1 synapses in the ventral hippocampus 
of HAB, LAB, and CD1 animals 
(a) LTP at CA3-CA1 synapses is increased in HAB (red dots) compared to LAB (blue 
dots) and CD1 control animals (grey dots). After 20 min of baseline recording, high-
frequency stimulation (HFS, black arrow) was applied to the Schaffer collateral-
commissural pathway. Changes in synaptic strength were then monitored for 35 min 
before applying a second HFS. Data are normalised to the mean fEPSP amplitude of 
the last 10 min of baseline recording.  
(b) Statistical evaluation of the LTP experiment.  
Data are shown as mean ± SEM. nLAB= 17, nCD1 = 17, nHAB = 18; ** p < 0.01, 
*** p < 0.001. 
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4.1.2.2 Dorsal hippocampus 
 

Our previous findings for the ventral hippocampus raised the question whether 

similar differences between HAB and LAB mice can also be observed in the dorsal 

hippocampus. On that account we performed the same electrophysiological 

experiments in the dorsal CA1 subfield. 

HAB and LAB mice showed a weaker basal synaptic efficacy than CD1 mice. 

Contrary to the ventral hippocampus, no significant difference was found between 

HAB and LAB animals (Figure 4-4a). The PPR at the interstimulus intervals of 25, 50 

and 100 ms significantly differed between LAB and CD1 control animals. At an 

interstimulus interval of 400 ms, we also detected a difference between HAB and 

CD1 mice (Figure 4-4b). 

 

 
Figure 4-4: Basal synaptic transmission and short-term plasticity in the dorsal 

hippocampus 
(a) Input-Output relationship: fEPSP amplitude is plotted as a function of the fiber 
volley amplitude. The basal synaptic transmission at CA3-CA1 synapses is decreased 
in HAB (red dots) and LAB (blue dots) animals compared to the CD1 control (grey 
dots) counterparts. This relationship is not significantly different between HAB and 
LAB animals.  
(b) Paired-pulse ratio (PPR): The PPR is significantly reduced in LAB (blue dots) 
compared to the CD1 control group (grey dots) for interstimulus intervals 25, 50, 100, 
and 400 ms, indicating an increased release probability of glutamate at CA3-CA1 
synapses  
§: comparison between LAB and CD1 animals; * p<0.05, ** p< 0.01, *** p<0.001. For 
interstimulus interval 400 ms, PPR is also decreased in HAB compared to CD1 mice 
(# comparison between HAB and CD1 animals; ** p< 0.01). 
Data are shown as mean ± SEM. nLAB = 17, nCD1 = 18, nHAB = 21 

 
 

In the LTP experiments, we obtained opposite results as in the ventral 

hippocampus. In slices from HAB animals the magnitude of LTP was significantly 

lower than in slices from LAB and CD1 control animals (LTP1: min 50-55, 22.50 ± 2.2 
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% in HAB vs. 34.41 ± 3.3 % in LAB vs. 38.76 ± 3.1 % in CD1; LTP2: min 85-90 in 

HAB vs. 55.35 ± 5.6 % in LAB vs. 53.76 ± 4.7% in CD1; Figure 4-5). 

 

 
Figure 4-5: Long-term potentiation (LTP) at CA3-CA1 synapses in the dorsal hippocampus 

of HAB, LAB, and CD1 animals 
(a) LTP at CA3-CA1 synapses is reduced in HAB (red dots) compared to LAB (blue 
dots) and CD1 control animals (grey dots). After 20 min of baseline recording, high-
frequency stimulation (HFS, black arrow) was applied to the Schaffer collateral-
commissural pathway. Changes in synaptic strength were then monitored for 35 min. 
Data are normalised to minutes the mean fEPSP amplitude of the last 10 min of 
baseline recordigs.  
(b) Statistical evaluation of the LTP experiment. 
Data are shown as mean ± SEM. nLAB = 17, nCD1 = 17, nHAB = 18; ** p < 0.01, 
*** p < 0.001 
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4.1.3 Investigation of amygdalar network features 
 

4.1.3.1 Neuronal network activation and VSDI recordings 
 

Based on the observation that patients with generalised anxiety disorder 

exhibit abnormal neuronal activity in the amygdala and due to the fact that this limbic 

structure plays a crucial role in the regulation of anxiety states, we considered that 

differences in neuronal activity propagation through the amygdalar network might be 

causally related to different anxiety phenotypes. 

We first established an in vitro assay allowing a quantitative imaging of evoked 

neuronal activity propagation through important amygdalar subfields. Electrical 

stimuli (10, 17.5 and 25 V) were applied to the dorsal part of the LA to elicit a fast, 

depolarisation-mediated VSDI signal (FDS) propagating through the LA, the BLA and 

the CeA. The FDSs in these amygdalar subregions were strong enough for a clear 

discrimination from the background noise and could be enhanced by increasing the 

stimulus intensity indicating that they were not saturated (Figure 4-6).  
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Figure 4-6: Voltage-sensitive dye imaging (VSDI) of neuronal activity propagation through 

the amygdalar network 
(a) Representative filmstrip showing the propagation of an evoked fast, depolarisation-
mediated VSDI signal (FDS) after electrical stimulation (25 V). The white circles 
illustrate the regions of interest (ROIs) used for the calculation of neuronal activity 
within the three amygdalar subnuclei. The position of the stimulus electrode is given 
by the white arrow. Changes in neuronal activity are reflected by the fractional change 
in fluorescence (ΔF/F). Warmer colours indicate stronger neuronal activity. 
(b) Relationship between stimulation intensity and FDS peak amplitudes in the LA, 
BLA, and CeA of slices obtained from HAB and LAB mice. Note the linear relationship 
between the stimulation intensity and FDS peak amplitudes in both groups. 
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In order to further characterise the FDS, a series of pharmacological 

experiments was performed. The FDSs, which reflect action potentials as well as 

excitatory postsynaptic potentials (von Wolff et al., 2011), were strongly diminished 

by the glutamate receptor antagonist AP5 [50 µM) and NBQX (5 µM) and completely 

abolished by the voltage-gated sodium channel blocker TTX (1µM) (Figure 4-7). 

 

 

 
Figure 4-7: Pharmacological characterisation of fast, depolarisation-mediated imaging 

signals (FDSs) in the amygdala 
 Acquisitions were made at intervals of 5 min. Data are normalised to the mean value 
of the fractional change in fluorescence (ΔF/F) of the VSDI recordings during baseline 
conditions. Time courses of experiments depicted for the LA, BLA and CeA. Bath 
application of the ionotropic glutamate receptor antagonists NBQX and AP5 at 
maximal effective concentrations strongly reduced the FDSs in the LA, BLA, and CeA. 
Coapplication of the voltage-gated sodium channel blocker TTX at a maximal effective 
concentration fully abolished the caused FDSs in all three subnuclei of the amygdala.  

 

An antagonism of GABAA receptors with bicuculline (Bic.; 10µM) induced an 

increase in the FDS peak amplitude, indicating that the FDS signal also comprises a 

GABAergic component. The FDS peak amplitude of the BLA nucleus shows a 

stronger increase after bicucullin application compared to the enhancement of the 

FDS peak amplitude in LA and CeA, indicating a higher density of interneurons within 

the BLA compared to the LA and CeA (Figure 4-8).  
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Figure 4-8: Pharmacological characterisation of fast, depolarisation-mediated imaging 

signals (FDSs) in the amygdala 
Bath application of the GABAA receptor antagonist bicuculline (Bic) increased the FDS 
peak amplitude in the LA, BLA, and CeA (LA: 56.8 ± 5.6%, BLA: 90.2 ± 9.5%, CeA 
49.2 ± 6.3%) 

 
For a quantitative analysis of neuronal activity flow through the amygdalar 

network, ratios of FDS peak amplitudes, serving as a kind of Input-output 

relationship, were calculated (BLA/LA and CeA/LA). These ratios did not significantly 

differ for the three stimulation intensities. Therefore, we calculated average ratios 

over the three stimulation intensities (Figure 4-9). 
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Figure 4-9: Ratios of FDS peak amplitudes (BLA/LA and CeA/LA) for the different stimulus 

intensities 
 

 

HAB animals showed significantly higher BLA/LA and CeA/LA ratios of FDS 

peak amplitudes than LAB and CD1 control mice (HAB; BLA/LA: 0.47 ± 0.01 & 

CeA/LA: 0.31 ± 0.03 vs. LAB; BLA/LA: 0.36 ± 0.02 & CeA/LA: 0.17 ± 0.01 vs. CD1; 

BLA/LA 0.35 ± 0.02 & CeA/LA: 0.22 ± 0.01, Figure 4-10). LAB animals did not show 

a significant difference in the BLA/LA ratio but a lower CeA/LA ratio compared to the 

CD1 mice.  

 

 
Figure 4-10: Ratio of neuronal activity in the amygdala 

VSDI reveals differences in evoked neuronal activity propagation through the 
amygdalar network between HAB, CD1, and LAB mice. 
Data are shown as mean ± SEM. nHAB = 13, nCD1 = 16, nLAB = 12; * p<0.05, ** p < 0.01, 
and *** p < 0.001. 
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Numerous studies provide strong evidence for a link between anxiety levels, stress, 

and amygdalar network activity. Stress hormones increase anxiety concomitantly 

with an enhancement in neuronal network activity in the amygdala, whereas the 

exposure to an enriched environment reduces anxiety, indicating an anxiolytic effect 

of the environmental enrichment. It thus appears of high importance to investigate 

potential relationships between environment, neuronal activity in the amygdala and 

anxiety levels. On that account, HAB mice were housed in an enriched environment 

(HAB E.E.) and LAB mice exposed to chronic unpredictable stressful conditions (LAB 

Str.). These environmental changes indeed affected anxiety-like behaviour in both 

groups (Figure 4-11). 

 

 

 
Figure 4-11: Effects of environmental alterations on anxiety levels on the EPM 

(a) Effect of enriched environment on anxiety in HAB mice. Enrichment of the 
environment induced an anxiolytic effect in HAB mice. Note the still significant 
difference existing between HAB E.E and CD1 mice. 
(b) Effect of chronic unpredictable stress on anxiety in LAB mice. The stress caused 
an anxiogenic effect in LAB mice.  
Data are shown as mean ± SEM. nHAB = 7, nHAB E.E. = 14, nCD1 = 8, nLAB = 9, nLAB Str. = 7; 
*** p < 0.001. 
 

 

Next, we investigated whether observed effects of stress and enrichment on 

anxiety-related behaviour are reflected in changes in the BLA/LA and CeA/LA ratios. 

In fact, in slices obtained from HAB E.E. mice, we observed significantly lower 

BLA/LA and CeA/LA ratios than in slices prepared from HAB animals. As for the 

behavioural measurements, HAB E.E. mid displayed a phenotype between the HAB 

and CD1 group with respect to the BLA/LA ratio. This was, however, not the cause 
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for the CeA/LA ratio (HAB; BLA/LA: 0.47 ± 0.01 & CeA/LA: 0.31 ± 0.03 vs. HAB E.E; 

BLA/LA: 0.39 ± 0.02 & CeA/LA: 0.18 ± 0.01 vs. CD1; BLA/LA: 0.35 ± 0.02 & CeA/LA: 

0.22 ± 0.01, Figure 4-12). 

 
Figure 4-12: Effects of environmental enrichment on amygdalar network activity in HAB 

animals 
Data are shown as mean ± SEM. nHAB = 13, nHAB E.E. = 25, nCD1 = 16; *** p < 0.001. 
 
 

 

However, the anxiolytic effect of environmental enrichment can not be 

observed in all animals which are exposed to enriched conditions. Therefore, a new 

group was created, consisting of animals which were not responding to the 

environmental enrichment (HAB E.E.n.r.). Animals of the HAB E.E.n.r. group show 

no decrease in anxiety levels indicated by the time that these animals spent in the 

open arms of the EPM (HAB: 9.68 ± 1.2%, HAB E.E.: 19.23 ± 2.5%.; HAB E.E.n.r.: 

9.22 ± 2.8% Figure 4-13). In these animals, the BLA/LA ratio was not significantly 

different to the animals of the HAB and HAB E.E. group. This was also the case for 

the CeA/LA ratio (HAB; BLA/LA: 0.47 ± 0.01 & CeA/LA: 0.31 ± 0.03 vs. HAB E.E; 

BLA/LA: 0.39 ± 0.02 & CeA/LA: 0.18 ± 0.01 vs. HAB E.E.n.r.; BLA/LA 0.45 ± 0.03 & 

CeA/LA: 0.27 ± 0.03, Figure 4-13). 
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Figure 4-13: Characterisation of anxiety levels and amygdalar network activity in animals 

insensitive to enriched environment (HAB E.E.n.r) 
(a) Anxiety-related behaviour on the EPM.  
(b) Neuronal activity propagation in the amygdala  
Data are shown as mean ± SEM. nHAB = 7, nHAB E.E.n.r. = 6, nHAB E.E. = 14;* p < 0.05, 
** p < 0.01, *** p < 0.001  

 

An opposite environmental modulation of anxiety-related behaviour could be 

observed in LAB mice exposed to chronic unpredictable stress. The time that LAB 

Str. animals spent on the open arms of the EPM was significantly reduced compared 

to LAB mice (Figure 4-14), indicating an anxiogenic effect of the stress. The BLA/LA 

ratio was significantly higher than measured in the animals of the LAB and CD1 

group. This was, however, not the case for the CeA/LA ratio (LAB; BLA/LA: 0.36 ± 

0.02 & CeA/LA: 0.17 ± 0.01 vs. LAB Str.; BLA/LA: 0.51 ± 0.06 & CeA/LA: 0.22 ± 0.02 

vs. CD1 BLA/LA: 0.35 ± 0.02 & Ce/LA: 0.22 ± 0.01, Figure 4-14). 
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Figure 4-14: Effects of chronic unpredictable stress on amygdalar network activity in LAB 

animals 
Data are shown as mean ± SEM. nLAB = 9, nLAB Str. = 7, nCD1 = 16; * p < 0.05.  

 
 

Up to here, I show that there is a clear correlation between the strength of 

anxiety-related behaviour on the EPM and the magnitude of evoked neuronal activity 

propagation from the LA to the CeA. As a final step in data analysis, I therefore 

plotted the values of time on open arms as measured in all mice in the study, against 

the respective CeA/LA ratio. This preceding confirmed a relationship between anxiety 

levels and the neuronal network dynamics investigated in the amygdala (Figure 4-
15). 

 



Results  76 

 
Figure 4-15: VSDI revealed a statistically significant correlation between anxiety phenotypes 

in mice and neuronal activity propagation in the amygdalar network 
 

 

4.1.3.2 Investigation of GABAergic neurotransmission in BLA neurons of 
HAB and LAB mice 

 

There is evidence for an altered GABAergic inhibitory control of amygdalar 

activity in anxiety disorders (Millan, 2003). Benzodiazepines, the most frequently 

clinically used anxiolytic drugs, exert their effects through the modulation of GABAA 

receptors (Nemeroff, 2003). In addition, changes in GABAA receptor expression were 

observed in the limbic system of patients suffering from panic disorder by [14C] 

flumazenil positron emission tomography (Hasler et al., 2008). Alterations in 

GABAergic neurotransmission in the amygdala do not only modulate fear and anxiety 

under non-pathological conditions, but also predispose individuals to pathological 

trait anxiety (Shen et al., 2010). Therefore, experiments were performed to test for 

potential differences in GABAergic inhibition in the BLA of HAB and LAB animals. For 

this purpose, recordings of GABAA receptor-mediated miniature inhibitory 

postsynaptic currents (mIPSCs) were conducted in principal BLA neurons. These 
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recordings did not reveal differences in the frequency or amplitude of mIPSCs 

between HAB and LAB animals (HAB mean frequency: 1.56 ± 0.2 Hz vs. LAB mean 

frequency: 1.76 ± 0.2 Hz; HAB mean amplitude: 13.54 ± 0.7 pA vs. LAB mean 

amplitude: 12.92 ± 0.5 pA, Figure 4-16). 

 

 
Figure 4-16: Comparison of the amplitude and frequency of mIPSCs in BLA principal 

neurons between HAB and LAB mice 
Representative recordings traces.  
Amplitude and frequency analysis of mIPSCs in HAB and LAB mice.  
Data are shown as mean ± SEM. nLAB = 26, nHAB = 38 
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5 Discussion 
 

5.1 Striking variations in the expression of long-term potentiation 
along the septotemporal axis of the hippocampus between 
animals of the HAB/LAB mouse model 
 

 

Using acute brain slices, I investigated basal neurotransmission and plasticity at 

CA3-CA1 synapses along the septotemporal axis of the hippocampus in HAB, LAB 

and CD1 mice. Anxiety disorders, as well as other stress related brain disorders, 

frequently result from a dysregulation of the amygdala and HPA axis. Thus, it is of 

particular important to understand how the hippocampus regulates the activity of 

these two neuronal systems. The present study revealed that basal neuro-

transmission at CA3-CA1 synapses in the dorsal hippocampus (DH) is weaker in 

HAB and LAB animals compared to CD1 mice, without a significant difference 

between HAB and LAB animals. Also paired-pulse facilitation was not different 

between HAB and LAB mice. In the ventral hippocampus (VH), LAB animals showed 

a stronger synaptic transmission compared to HAB animals. The paired-pulse ratio, 

however did not point to difference in the probability of glutamate release between 

the two groups.  

It has been shown that stress can affect several brain functions, including 

synaptic transmission and plasticity (such as LTP) (Kim and Yoon, 1998; Garcia, 

2002; Kim et al., 2006). For example, CA1 LTP induction is impaired in rats exposed 

to stress, such as an inescapable foot-shock (Foy et al., 1987; Shors et al., 1989). 

This effect of stress on hippocampal plasticity has been postulated to be mediated by 

the release of high doses of corticosterone. Indeed, administration of corticosterone 

either in vivo, controlled by implanting corticosterone pellets in adrenalectomised rats 

(Diamond et al., 1992), or in vitro (Pavlides et al., 1996; Alfarez et al., 2002) 

produced the same impairment of LTP. However, recent studies indicate that the 

corticosterone effect on LTP is more complex than originally believed. These studies 

show that animals exposed to stressful conditions display a decrease in the 

magnitude of LTP at the CA3-CA1 synapses in the DH (Yang et al., 2004). In 

contrast, LTP in the VH of stressed animals is markedly enhanced (Maggio and 

Segal, 2007a, b, 2010, 2011). 
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The latter results obtained after acute stress exposure are similar to the here 

presented findings in the HAB/LAB mouse model, supporting the idea of a functional 

differentiation between the DH and the VH. This idea was first described after lesion 

studies. Lesions of the DH impair cognitive performances whereas lesions of the VH 

affect emotional processes (Kjelstrup et al., 2002). The importance of a regulation of 

amygdala and HPA axis activity by the VH has been well established over the last 

decade (Degroot and Treit, 2004). Thus, the increased anxiety levels in HAB mice 

could result, at least in part, from the enhancement of LTP in the VH, providing 

stronger excitatory input to the amygdala, leading to an “overactivation” of this brain 

structure.  

Possible explanation for the decreased LTP in the DH and increased LTP in the 

VH of HAB mice is an asymmetrical expression of corticosteroid receptors along the 

septotemporal axis. Corticosterone mediates its effects through the activation of two 

types of receptors, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors 

(de Kloet et al., 2005). The original view was that both types of receptors act as 

nuclear transcription factors, modifying protein synthesis and, therefore, producing 

slow, long-lasting changes in the functioning of neurons (de Kloet et al., 1993; Joels, 

1999, 2001). However, recent findings point to a localisation of MR and GR also in 

the plasma membrane (Maggio and Segal, 2010; Groeneweg et al., 2011). These 

membrane-bound MRs and GRs induce fast, non-genomic effects, such as a 

modulation of ionic conductances. This can lead to changes in the excitability of 

neurons (Karst et al., 2005; de Kloet et al., 2008). 

In a recent study, Maggio and Segal described a differential effect of 

corticosterone on IPSCs in the DH and VH inherited from differential expression of 

corticosteroid receptors in these hippocampal regions. In the DH, corticoterone 

increased the amplitude of IPSCs in CA1 pyramidal cells by approximately 60% 

(Maggio and Segal, 2009). This effect is mediated by GR since it is completely 

abolished by specific GR antagonist RU38486 (mifepristone) (Avital et al., 2006). The 

increase in GABAergic inhibition should hyperpolarise CA1 pyramidal neurons, thus 

possible impairing induction of CA1-LTP.  

On the contrary, corticosterone decreases the frequency of mIPSCs in CA1 

pyramidal neurons of the VH, suggesting a reduction in inhibitory inputs to these 

cells. This decrease in inhibition could facilitate CA1 LTP induction. Another study 

shows similar results. In this work, physiological concentrations of corticosteron 



Discussion  80 

enhance LTP in the VH through the activation of MRs. This effect could be blocked 

by the MR antagonist spironolactone (Avital et al., 2006; Maggio and Segal, 2010). 

These results are supported by a recent publications demonstrating that GRs and 

MRs are differentially expressed along the septotemporal axis of the hippocampus. 

The VH is enriched in MRs, whereas the DH contains more GRs (Robertson et al., 

2005).  

Although all of the above mentioned effects of corticosterone were observed 

after acute stress, they may also underlie the electrophysiological alterations here 

observed in HAB mice. It would be necessary to investigate whether a selective GR 

antagonist is able to block the impairment of LTP in the DH of HAB animals. The 

enhancement of LTP in the VH, however, should be reversed by application of a 

selective MR antagonist. In this context, it appears also important to study the 

expression of GRs and MRs in the hippocampus of HAB and CD1 control animals. 

This could be done by Western blot analysis and/ or in situ hybridization. Since the 

HAB/LAB mouse model is based on inborn trait anxiety, it also would be interesting 

to examine effects of a chronic treatment with a MR antagonist on anxiety levels in 

HAB mice. That way, one could get important hints for an involvement of the VH in 

high anxious behaviour. 

 Our data clearly show an enhancement of LTP in the VH and an impairment of 

LTP in the DH in HAB mice compared to control CD1 animals. Reduced DH LTP and 

simultaneously enhanced VH LTP could at the same time suppress the cognitive 

route of the hippocampus to cortical structures (e.g. cingulated and prefrontal cortex), 

and enhance the emotional route of the VH to the amygdala. This may explain why 

patients suffering from mood/stress-disorders often show an exaggeration of 

acquired fear responses as well as enhanced activity levels in the amygdala that is 

accompanied by a suppression of prefrontal cortical functions (Rauch et al., 2006; 

Milad et al., 2009). 
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Figure 5-1: Schematic diagram of proposed mechanism by which corticosterone could 

differently modulate LTP in the dorsal (DH) and ventral hippocampus (VH) 
 In the DH, activation of membrane-located GRs increases IPSCs amplitude and 
frequency. This leads to a hyperpolarisation of the cell membrane impairing induction 
of LTP. In the VH, activation of membrane-located MRs reduces IPSCs frequency, 
leading to an increased excitability of neurons which could favour LTP induction. 
Adapted from Maggio and Segal (2010). 

 

 

5.2 Correlations between neuronal activity propagation through the 
amygdala network and anxiety phenotypes in the HAB/LAB 
mouse model 
 

Understanding the contribution of neuronal network activity to the development 

of certain behavioural patterns could improve the ability to design more effective 

therapeutic approaches to treat affective and stress-related disorders. The present 

study demonstrates a correlation between neuronal activity flow through the 

amygdala and anxious behaviour, which appears not to be mediated by differences 

in GABAergic synaptic transmission. Another important finding is that anxiety levels 

can be modulated by alteration in environmental conditions, leading to a down- or up-

regulation of the amygdala network activity studied. Exposure of animals to an 

environmental enrichment exerts an anxiolytic effect, which is associated with 

decreased activity propagation through the amygdalar network. On the contrary, 

chronic unpredictable stress induces an anxiogenic effect, correlated with stronger 

neuronal activity propagation. Based on the existing literature, it is likely that changes 

in the CRH system represent the mechanism underlying the environmentally induced 

alterations in neuronal network activity. 
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 The unique anatomical circuitry of the amygdala has repeatedly been shown, 

in both animal and human studies, to be crucial for the regulation of anxiety 

responses (Pesold and Treit, 1995; LeDoux, 2000; Rauch et al., 2000; Stein et al., 

2002; Anand and Shekhar, 2003; Phan et al., 2006; Siegle et al., 2007; Stein et al., 

2007). Different lines of evidence corroborate that glutamatergic excitation and 

GABAergic feed-forward inhibition are in a sensitive equilibrium in order to 

appropriately regulate anxiety states. It is widely accepted that an enhancement in 

GABAergic feed-forward inhibition in the different amygdalar nuclei leads to an 

anxiolytic effect. Application of glutamate receptor antagonists into the BLA reduces 

anxious behaviour (Kim et al., 1993; Davis et al., 1994; Sajdyk and Shekhar, 1997). 

The BLA is under tonic GABAergic inhibition and a blockade of this inhibition causes 

increased anxiety levels, conditioned avoidance, and sympathetically mediated 

cardiovascular activation (Davis et al., 1994; Shekhar et al., 2003). Excitation of BLA 

neurons via stress-mediated CRH release enhances anxiety (Shekhar et al., 2003). 

All these studies point to the BLA as a regulatory subnucleus, which significantly 

contributes to the modulation of anxiety, autonomic responses, and the development 

of anxiety disorders.  

 In order to address the question if there are differences in amygdalar network 

activity between HAB, LAB, and control CD1 mice, I employed the VSDI technique 

for the experiments. The high temporal and spatial resolution of this method allows 

the propagation of evoked neuronal activity through the whole amygdalar network to 

be studied. We calculated ratios of neuronal activity between the main input area 

(LA) and two important output regions, namely the CeA and the BLA. These ratios 

gave us the ability to form a kind of input-output relationship of the amygdala. The 

main emphasis was to characterise circuit dynamics at the whole network level. In 

order to analyse “pathological modifications”, it is particularly important to understand 

how the activation of a complete brain “module” can lead to an altered behavioural 

outcome. Therefore, it is essential to not only analyse the characteristics of single 

neurons, but also the “whole aggregate response”, which is the result of complex 

cellular interactions within the neuronal network (Figure 5-2). 
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Figure 5-2: Schematic diagram of principal connections within the three main areas of the 

amygdaloid complex based on in vitro electrophysiological recording and 
anatomical data 
Many other connections, mostly subcortical projections, are not depicted to simplify 
the illustration. It is important to characterise the whole network response, in order to 
understand the contribution of a particular brain area to the formation of complex 
behavioural patterns. Therefore, the focus of this study was not only directed to single 
synapses or a certain neuronal population, but also to the whole amygdala. Adapted 
from Davis et al. (1994). 

 

The data presented here indicate that different anxiety levels can correlate 

with differences in the effectiveness of neuronal activity propagation through the 

amygdalar network. HAB animals which spent the shortest time on the open arms of 

the EPM, showed the highest BLA/LA and CeA/LA ratios. In contrast, LAB mice 

which spent the longest time on the open arms of the EPM, displayed no significant 

differences in the BLA/LA ratio compared to CD1 animals, but a reduction in the 

CeA/LA ratio. According to these results, it is clear that there are differences in 

intrinsic amygdalar network features between HAB, LAB and CD1 mice. 

To investigate whether the differences in amygdalar network characteristics in 

the HAB/LAB mouse model might come from changes in GABAergic 

neurotransmission, I performed mIPSCs recordings in principal BLA neurons. The 

analysis of the amplitude and the frequency of the mIPSCs, however did not provide 

evidences for such alterations. 

The enhanced activity propagation within the amygdala of HAB animals could 

contribute to the development of the high anxious behavioural phenotype. 

Considering the anatomical connections of the CeA with brain structures such as the 
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hypothalamus or the locus coeruleus (Davis et al., 1994), increased amygdala 

innervation of these structures may lead to the physiological concomitant effects of 

anxiety (sympathetic activation, increased respiration, activation of the HPA axis; 

Figure 5-3). 

 

 
Figure 5-3: Description of selected efferences of the central nucleus of the amygdala to 

hypothalamic and brainstem regions 
Possible contribution of these connections to specific behavioural characteristics of 
anxiety. Adapted from Davis et al. (1994). 

 
 

A key question of this study was whether manipulations of environmental 

conditions can modify innate anxiety and amygdalar network activity. Answering this 

question is of particular interest, since a huge body of evidence indicates that the 

interaction between environmental parameters and genetic factors plays a critical 

role in the pathogenesis of stress-related mental disorders (Sztainberg et al., 2010). 

It has been shown that physiological and psychological health can benefit from 

environmental stimulation (Fox et al., 2006). Animals which maintained under 

enriched environment (E.E.), exhibit reduced levels of emotionality-related responses 

such as defecation, freezing, and anxiety (Chamove, 1989; Benaroya-Milshtein et al., 

2004). 

An anxiolytic effect of E.E. was tested on the EPM. HAB E.E. mice spent 

significantly more time on the open arms corroborating the anxiolytic effect of 

environmental stimulation. This anxiolytic effect was accompanied by a reduction of 
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the BLA/LA and CeA/LA activity ratios. Not all HAB E.E. animals responded to the 

environmental enrichment. These non-responders also did not show changes in 

BLA/LA and CeA/LA activity ratios. This suggests that the decrease in the activity 

propagation within the amygdala is causally linked to the anxiolytic effect of the E.E..  

The molecular mechanisms underlying the effects of E.E. have been the focus 

of many studies investigating memory formation and neurological disorders 

(Nithianantharajah and Hannan, 2006). Concerning the anxiolytic effect of E.E., it has 

been hypothesised that E.E. causes an increase in the expression of glucocorticoid 

receptors in the hippocampus (Mohammed et al., 1993; Olsson et al., 1994), which 

enhances glucocorticoid sensitivity and, thus, negative feedback from the 

hippocampus to the HPA axis (Fox et al., 2006; Sztainberg et al., 2010). 

Furthermore, the anxiolytic effect of E.E. has been reported to be associated with a 

reduction in CRHR1 mRNA expression in the BLA (Sztainberg et al., 2010). These 

findings are in line with an other study showing that chronic administration of the 

benzodiazepine alprazolam decreases CRHR1 mRNA expression in the BLA 

(Skelton et al., 2000). Moreover, the anxiogenic action produced by CRH in rats is 

most likely mediated via activation of CRHR1 (Heinrichs et al., 1997; Sajdyk et al., 

1999; Rainnie et al., 2004; Shekhar et al., 2005). 

Prolonged exposure to stressful conditions leads to behavioural abnormalities 

inducing cognitive impairments as well as affective disorders. Early studies on the 

effects of stress demonstrated that changes in the amygdala are more likely to be 

responsible for the affective aspects of stress-related disorders (Vyas et al., 2004). 

The amygdala is crucially involved in emotional learning and represents a critical part 

of the neural circuitry which regulates stress response and anxiety (Vyas et al., 

2004). In the present study, LAB animals exposed to chronic unpredictable stress 

(LAB Str.) confirm the anxiogenic effect of some stressful conditions. LAB Str. 

animals exhibited a stronger anxious behaviour then LAB animals, as revealed by 

behavioural testing on the EPM. These animals showed a significant increase in the 

BLA/LA activity ratio. This finding is in line with results from other studies 

demonstrating that chronic stress exposure can cause dendritic hypertrophy in the 

BLA, leading to an enhanced anxiety-like behaviour (Vyas et al., 2003). Two hours of 

immobilisation stress per day repeated for 10 consecutive days increase anxiety 

levels and dendritic growth in the BLA. The latter effect is accompanied by a robust 

increase in spine density across primary and secondary dendrites of BLA spiny 
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neurons (Mitra et al., 2005). Hence, the higher BLA/LA ratio in LAB Str. animals 

compared to the LAB counterparts could be caused by a stress-induced neuronal 

remodelling in the amygdala involving an increased spinogenesis (Mitra et al., 2005).  

Although various neurotransmitter and peptide systems have been implicated 

in the regulation of the stress response, the CRH system seems to play an 

outstanding role in the control of biological cascades during stressful conditions (Vale 

et al., 1981; Rivier and Vale, 1983; de Kloet et al., 2005). Dysregulation of CRH-

mediated stress responses can lead to the development of physiological and 

psychological effects and many studies have linked chronic hyperactivation of the 

CRH-system to stress-related emotional diseases such as depression and anxiety 

disorders (Holsboer, 1999a; Zorrilla and Koob, 2004; de Kloet et al., 2005; McEwen, 

2005; Holsboer and Ising, 2008). Data from studies using animal models indicate 

anxiogenic-like behavioural effects after CRH administration and an anxiolytic-like 

impact of selective CRHR1 antagonists. These findings, point to an important role of 

CRH in the pathophysiology of anxiety disorders (Holsboer, 1999a; Zorrilla and Koob, 

2004; de Kloet et al., 2005; McEwen, 2005; Holsboer and Ising, 2008). Several 

anatomical and behavioural studies could show that the BLA is strongly involved in 

CRH-induced anxiety-related physiological and behavioural responses. 

Administration of CRH into the BLA induces a dose-dependent and long-lasting 

anxiety-like response, mediated through the CRHR1 (Gehlert et al., 2005). Contrary 

knockdown of CRHR1 in the BLA provided an anxiolytic-like phenotype (Sztainberg 

et al., 2010).  

Environmental factors could exert their anxiolytic or anxiogenic effect through 

a modulation of the CRH system. Innate differences in the CRH system in HAB and 

LAB animals might thus contribute to the different anxiety phenotypes. In a previous 

study performed in brain slices (Avrabos, 2008), CRH (125 nM) caused a stronger 

increase in the excitability of BLA neurons in HAB mice compared to LAB animals. 

This difference in CRH sensitivity between HAB and LAB mice might result from a 

difference in the CRHR1 density, with HAB animals having a higher expression rate 

of CRHR1 in BLA neurons. Chronic hyperactivation of the CRH system in HAB 

animals could result in an increased synaptic density and hypertrophy of BLA 

neurons. This may explaining the stronger neuronal activity propagation thought the 

amygdalar network of these mice. Activation of CRHR1 and remodelling of BLA 

neurons could also be the reason for the increase in anxiety-like behaviour and 
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activity propagation observed in LAB Str. compared to LAB mice. The anxiolytic 

effect of E.E. may be attributed to a downregulation of the CRHR1 mRNA in the BLA, 

as it is described by Sztainberg and colleagues (Sztainberg et al., 2010). This could 

explain the weaker neuronal activity propagation in the amygdala of HAB EE 

compared to HAB and HAB EE non responders.  

 
Figure 5-4: Schematic diagram of possible mechanisms involved in the regulation of 

anxiety-like behaviour 
The CRH system could act as an interface between environmental factors and 
regulation of neuronal activity. The amygdala, and especially the BLA nucleus, shows 
a high expression of CRHR1. According to the results of other studies, stress seems 
to mediate the anxiogenic effect at least in part by activation of the CRHR1 in the BLA. 
Exposure to chronic stressful conditions leads to remodulation of dendritic spines 
within the amygdala and to a hypertrophy of principal BLA neurons. These 
observations are in line with findings of the present study. Exposure to stressful 
conditions induced a clear anxiogenic effect and an increase in activity propagation 
through the amygdala of stressed animals. On the contrary, animals maintained in an 
enriched environment showed reduced anxiety levels and a decrease in the activity 
propagation. Previous studies support the view that E.E. exerts his anxiolytic effect via 
a downregulation of CRHR1 in the BLA. 

 

Despite the need of further investigations, the present study revealed 

differences in the efficiency of neuronal activity propagation through the amygdala 

network, which strongly correlates with different levels of anxiety. The data also 

provide evidence that environmental factors are able to counterbalance behavioural 

phenotypes through the modulation of neuronal network activity in the amygdala. 
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According to recent studies, a modulation of the CRH system within the amygdala 

could significantly contribute to the appearance of altered anxiety phenotypes.  
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6 List of abbreviations 
 

 

ACSF    artificial cerebrospinal fluid 
ACTH   adrenocorticotropic hormone/corticotrophin  
AP5   2-amino-5-phosphonovalerate 
AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  
AVP   arginin-vasopressin  
 
BAOT   bed nucleus of the accessory olfactory tract 
Bic    bicuculline  
BLA   basolateral amygdalar  
BNST   bed nucleus of the stria terminalis  
 
CA1   cornu ammonis 1  
CA3   cornu ammonis 3  
CaMKII  α-calcium-calmodulin-dependent protein kinase II  
CCD   charge-coupled device camera  
CeA   central amygdala  
CRH   corticotropin-releasing hormone 
CRHR1/CRHR2 corticotropin-releasing hormone receptor 1/2 
CoA/CoP  anterior and posterior cortical nucleus  
 
DG   dentate gyrus  
DH    dorsal hippocampus  
Di-4-ANEPPS di-4-aminonaphtylethenylpyridinium  
 
E.E.   enriched environment 
EPM   elevated plus maze 
 
FDS   fast depolarization-mediated VSDI signal  
fEPSP   field excitatory postsynaptic potential 
ΔF/F   fractional change in fluorescence 
 
GABA   γ-aminobutyric acid 
GAD   glutamic acid decarboxylase 
GR    glucocorticoid receptor 
 
HAB   high anxiety-related behaviour 
HAB E.E.  HAB enriched environment mice 
HAB E.E. n.r. HAB E.E. not responding to the enriched environment 
HFS    high-frequency stimulation 
HPA   hypothalamic-pituitary-adrenocortical axis 
 

LA   lateral nucleus 
LAB   low anxiety-related behaviour  
LAB Str.  LAB stress mice  
LTP   long-term potentiation 
LSv   ventral part of the lateral septum 
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MAPK   mitogen-activated protein kinases 
mEPSCs  miniature excitatory postsynaptic currents 
mIPSCs  miniature inhibitory postsynaptic currents 
mPFC   medial prefrontal cortex 
mpPVN  medial parvocellular subdivision of the paraventricular nucleus 
MPOA   medial preoptic area 
MR   mineralocorticoid receptor  
 
NMDA   N-methyl-D-aspartate receptors 
 
PAC   periamygdaloid cortex 
PKA   cAMP-dependent protein kinase 
PKC   protein kinase C 
PPD   paired pulse depression 
PPF   paired-pulse facilitation 
PPR   paired-pulse ratio  
PVN   paraventricular nucleus of the hypothalamus 
 
RMI    structural magnetic resonance imaging 
RMP   resting membrane potential 
ROIs   regions of interest 
 
SAS   sympatho-adrenergic system 
 
USV   ultrasonic vocal calls 
 
VH   ventral hippocampus 
VSDI   voltage-sensitive dye imaging 
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