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________________________________________________________________________ 

Summary 
 

 

Most if not all animals spend a considerable amount of their time within a 24-hour day in 

the sleep state. Several benefits for the organisms have been ascribed to sleep and a 

reduction in daily sleep amount can have various deleterious effects. However, the daily 

sleep amount varies considerably between different species and varies also between 

individuals within the same species. This has been mainly described in several human 

populations and the underlying causes of the variation such as gender, age or genetic 

variability have been reported in the literature. The focus of this dissertation is to provide 

a detailed description of behavioural aspects of sleep in a wild bird population. Using 

little infrared-sensitive cameras I recorded blue tits while roosting in nestboxes at night. 

 

In chapter 1, I showed that the amount of sleep per night in blue tits follows 

predominantly the length of the night, at least during the winter months from November 

to March and is interrupted by many (short) awake phases. The reduction in sleep 

duration between the longest and shortest night was about 4.8 hours and blue tits have to 

be able to tolerate such reduced sleep amounts in the course of the season. My results 

further demonstrate that in mid-winter during long nights the birds start to sleep relatively 

late in comparison to sunset suggesting that they need to expand their activities as much 

as possible to obtain enough food. Males and females clearly differ in their sleep 

behaviour. This suggests that the sexes either differ in their sleep requirements, in their 

sleep quality or in trade-offs with other activities. Repeated measurements of most of the 

individuals allowed me to determine the individual consistency in sleep behaviour. 

 

In chapter 2, I could show that environmental factors such as night temperature and 

seasonal date not only influence temporal sleep parameters but also nocturnal sleep-wake 

cycles. Nighttime sleep could be categorized into being rhythmic or arrhythmic and 

differed in many aspects regarding this categorization. Birds showed significant 
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repeatability in rhythmicity, suggesting a genetic basis of this trait, but the period length 

of the rhythms was not repeatable. 

 

After finding strong individual consistency and inter-individual as well as sex-specific 

variation in temporal organization of sleep I investigated the influence of sleep 

parameters on reproductive success in chapter 3. My results did not show any association 

between variation in sleep behaviour and reproductive success in females, but I found 

associations in males that contradicted my expectations. The probability of gaining extra-

pair paternity was higher in males that began to sleep earlier and slept longer. Further, I 

showed that partners of a breeding pair were mated assortatively in regard to their 

awakening times in the morning, but that broods of pairs with more dissimilar awakening 

times had higher fledging success. 

 

In the last chapter I aimed to examine the underlying genetic causes of the phenotypic 

variability. Therefore, I needed to identify informative polymorphisms in candidate genes 

of blue tits in a first step. In chapter 4, I describe the strategy that led to the identification 

of eleven polymorphisms with a high potential of being functional in genes which are 

involved in the regulation of circadian rhythms.  

 

Finally, in chapter 5 I tested for associations between the described genetic 

polymorphisms and sleep phenotypes. My results revealed four significant associations 

between single nucleotide polymorphisms of three different genes and three sleep 

phenotypes. However, the number of significant results and the most significant result in 

my analyses could just as well have occurred by chance, given the large number of tests. I 

can therefore neither give evidence for an association between the genetic and phenotypic 

variations nor can I rule out such an association. 

 

To conclude, in this dissertation I present several novel findings on the sleep behaviour of 

wild birds, with a special focus on temporal sleep parameters. My findings provide new 

insights on effects of environmental factors, sex, age and individuality on sleep behaviour 

and on the relationship between sleep and reproductive success. On the other hand, the 
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question about the genetic causes of inter-individual variation remains unanswered but 

gives possibilities for future research. 
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General Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
“If sleep does not serve an absolutely vital function, then it is the biggest mistake the evolutionary process 

has ever made.” (Rechtschaffen 1971) 

 

 

Sleep is a ubiquitous behaviour in the animal kingdom. It takes a considerable proportion 

of our lives every day. Not surprisingly, sleep has attracted the attention of many 

researchers over the past decades and which has led to numerous publications on this 

topic. Despite much attention, the reasons why we sleep are still not completely 

understood and are the focus of continuous debate among sleep scientists. The vast 

majority of studies on sleep have focused on mammals, particularly humans. It is rather 

straightforward to collect large sample sizes on human sleep habits by using 

questionnaires or observing subjects in sleep laboratories. Further, medical science has 

contributed knowledge about sleep in humans by examining sleep disorders and their 

underlying causes. However, studying sleep in animals and especially in wild animals 
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under natural conditions is far more challenging and therefore much less studies have 

been published. This dissertation has as its main aim to describe different aspects of sleep 

behaviour in a free-living population of a passerine bird – the blue tit Cyanistes 

caeruleus. 

 

In the following sections, I will first give some general information about sleep in 

animals and briefly describe the organization, functions and regulation of sleep. Then, I 

will summarize the literature on sleep in birds. Finally, I will introduce the study 

organism, the blue tit, describe some general methods of the study and provide an outline 

of this thesis. 

 

Sleep in the animal kingdom 

 

All organisms on earth have to deal with daily changing environmental conditions that 

are caused by the earth’s rotation. The most conspicuous change that occurs every day is 

the change between light and darkness, i.e. day and night. Living organisms have to cope 

with these extremely unequal states throughout their lives. Plants for example, can be 

observed to open and close their flowers according to the presence or absence of light. 

Most animals concentrate their main activities such as foraging/feeding, reproductive 

behaviour or territory defense on either day or night and are consequently well adapted in 

their physiology to the prevailing conditions during this portion of the 24-h cycle. The 

remaining time that is not filled with active behaviour, animals usually spend resting or 

sleeping. 

 

Sleep is clearly among the most prominent of animal behaviours. Sleep has been found in 

most (if not all) species that have been studied so far (Cirelli and Tononi 2008; Siegel 

2008), including the fruit fly Drosophila melanogaster (Hendricks et al. 2000), the 

zebrafish Danio rerio (Zhdanova et al. 2001; Yokogawa et al. 2007), the tree frog Hyla 

septentrionalis (Hobson et al. 1968), lizards (Ayala-Guerrero and Huitron-Resendiz 

1991; Ayala-Guerrero and Mexicano 2008), birds (Amlaner and Ball 1983; Roth et al. 

2006) and mammals (Zepelin et al. 1994). The definition of sleep is not straightforward 
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but it must be distinguished from rest and other distinct physiological states such as 

hibernation or torpor. A clear definition is necessary to determine whether a studied 

organism sleeps or not (Siegel 2008). Criteria that define sleep (at least in mammals) are 

usually immobility, an elevated arousal threshold, a stereotypic or species-specific 

posture, rapid reversibility through stimulation (Campbell and Tobler 1984; Cirelli and 

Tononi 2008) and closure of the eyes (Kavanau 1997). These are behavioural criteria and 

were described first. Later, electrophysiological criteria measured through electrical 

activity in the brain as indicators of sleep and wakefulness were also considered for a 

definition of sleep, predominantly in mammals and birds (Campbell and Tobler 1984).  

 

The daily sleep amount of an animal can either be concentrated into a single sleep bout 

per 24 h, which is referred to as monophasic sleep (e.g. humans) or it can be partitioned 

into many sleep bouts alternated with waking phases, called polyphasic sleep (e.g. cats). 

Polyphasic sleep seems to be the ancestral situation in mammals and is associated with 

smaller body size and longer sleep durations (Capellini et al. 2008). Capellini et al. also 

hypothesized that polyphasic sleep is an adaptation to high predation risk, but they failed 

to find support for this idea. In contrast, they found polyphasic species to sleep in more 

protected sites. Most bird taxa are monophasic sleepers, but waterfowl and shorebirds are 

mostly polyphasic sleepers (Amlaner and Ball 1983). Not only does the phasing of sleep 

within a 24h-day vary between species, but also the daily amount of sleep. Some 

mammalian species such as horses and elephants only sleep 3-4 hours per day (Zepelin et 

al. 1994; Siegel 2005) while others, like the armadillo (Chaetophractus villous) spend up 

to 20 hours asleep (Affanni et al. 2001). At least two explanations are possible for this 

great inter-specific variation: the need for specific functional benefits of sleep varies 

between species (Zepelin et al. 1994; Lesku et al. 2006), or there are constraints on sleep 

time that differ between species (Allison and Cicchetti 1976). Species under higher risk 

of predation, for example, spend less time in a potentially “vulnerable” sleep state 

(Allison and Cicchetti 1976). Further, depending on foraging constraints and food 

availability, species vary in the amount of time that is available for sleep. Generally it has 

been observed that carnivores have the highest and herbivores the lowest daily sleep 

amount among mammals (Siegel 2005). In herbivores there is a negative correlation 
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between daily sleep duration and body mass, and there is an overall negative relationship 

between body mass and sleep amount in terrestrial mammals (Siegel 2005). Carnivores 

tend to sleep longer than predicted by their body mass alone. Because of their generally 

safe sleep places and the consumption of highly energetic food there is no necessity for 

continuous activity, which in turn allows them additional sleep time. 

 

Organization of sleep 

 

Mammals and birds are the only taxonomic groups that are known to exhibit two distinct 

brain states during sleep: rapid eye movement (REM) sleep - also called paradoxical 

sleep - and slow-wave sleep (SWS) - also called non-REM sleep (Campbell and Tobler 

1984; Rattenborg 2006; Mignot 2008). During SWS the electroencephalogram (EEG) 

measurement of brain activity shows high-amplitude, synchronized, slow waves. The 

amount of slow-wave activity reflects sleep intensity. When slow-wave activity is high it 

is more difficult to awaken an animal from sleep. In contrast, during REM sleep the EEG 

is similar to the characteristics of wakefulness, with low-amplitude and high-frequency 

patterns. Loss of muscle tone (except in the ocular muscles) distinguishes REM sleep 

from wakefulness. During REM sleep, when most of our dreams occur, behavioural 

quiescence is maintained aside from frequent small twitches.  

 

The two states, SWS and REM sleep, alternate in a “sleep cycle” that is repeated one or 

more times during a sleep bout (Szymczak et al. 1993; Zepelin et al. 1994) and is an 

example of an “ultradian” rhythm. Both total sleep duration and the duration of the 

individual sleep cycles (time taken to cycle from SWS through REM sleep to waking) 

varies between species. The length of the sleep cycles seems to be determined by body 

mass and brain size, at least in mammals, with small animals showing shorter sleep 

cycles (Siegel 2005) and spending more time in SWS (Allison and Cicchetti 1976). In 

addition to different physiological characteristics the two sleep states also seem to serve 

different functions. 
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Sleep functions and sleep deprivation 

 

Why do animals sleep when they sacrifice opportunities to find mates, forage or invest in 

offspring during that time? Sleep is a largely exclusive state that precludes an animal 

from performing other tasks. Furthermore, sleep might not only be in conflict with other 

behaviours, it may even have substantial costs for animals. Compared to awake and alert 

animals, sleeping animals are relatively unresponsive and unaware of their environment 

and consequently experience an increased risk of predation and are less able to respond to 

changing environmental conditions.  

 

To outweigh these costs, it seems likely that sleep must provide some vital functions to 

an organism. However, the functional benefits of sleep are still less well understood than 

those of other activities such as mating or foraging. On the other hand it has been 

proposed that sleeping may be less dangerous for an animal than roaming around, 

wasting energy and exposing itself to predators (Cirelli and Tononi 2008). In 

concordance with this the “null hypothesis” of the function of sleep states that it is not 

required, but just a behaviour that is adopted when animals cannot be usefully engaged in 

any other activity (Meddis 1975; Cirelli and Tononi 2008). The observed large variation 

in sleep duration across species could then easily be explained.  

 

A variety of other, more complex functions of sleep have been described in the literature. 

SWS might be important for energy conservation and help to balance the costs of 

endothermy (Berger 1975; Berger and Phillips 1995), because it is associated with a 

reduction in body temperature and it is the state through which torpor and hibernation are 

entered. However, the energy conservation hypothesis remains controversial (Mignot 

2008). Energy savings during sleep are small and dolphins for example show continuous 

movement during sleep (Zepelin et al. 1994). Sleep, and here especially REM sleep, 

seems to be beneficial to the brain as suggested by the fact that species with larger 

relative brain mass show a greater proportion of REM sleep (Lesku et al. 2006).  
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Sleep might play a role in memory consolidation and learning (Walker 2005; Walker and 

Stickgold 2006; Gais et al. 2007), as shown for humans (Plihal and Born 1997; Marshall 

et al. 2006) and birds (Jackson et al. 2008). However, this hypothesis also remains 

controversial (Vertes and Eastman 2000; Siegel 2001; Vertes 2004) and it is not totally 

clear what the molecular mechanisms are that make sleep beneficial for memory 

consolidation. Further, it has been suggested that sleep, and again especially REM sleep, 

is involved in brain maturation, supported by the finding that REM sleep decreases from 

birth to adulthood (Roffwarg et al. 1966; Jouvet-Mounier et al. 1969; Marks et al. 1995). 

The immune system may also benefit from sleep (Preston et al. 2009; Lange and Born 

2011) and components of the immune system may even influence regulation of sleep 

(Opp 2005; Krueger 2008; Imeri and Opp 2009). There is no reason to believe that sleep 

only serves a single function, given these different possible benefits of sleep, but the 

functions are still a topic of much debate. 

 

The importance and necessity of sufficient sleep for animals becomes most evident by the 

many studies that have reported negative consequences of long and short-term sleep 

deprivation. Among those are negative effects on vigilance, mood, cognitive performance 

and an increased risk of diabetes in humans, impaired recognition memory in mice or 

damage in brain and blood cells in rats (Ferrara and De Gennaro 2001; Van Dongen et al. 

2003; Spiegel et al. 2005; Palchykova et al. 2006; Andersen et al. 2009). However, 

pigeons that were experimentally deprived of sleep did not show the “sleep deprivation 

syndrome” with hyperphagia, weight loss and debilitated appearance as rats did 

(Rechtschaffen and Bergmann 2002; Newman et al. 2009). Further, during migration 

birds are able to tolerate a natural sleep reduction for long periods of time without 

obvious deficits in cognitive function (Rattenborg et al. 2004). Nevertheless, birds and 

mammals show similarities in recovery sleep after sleep deprivation with elevated REM 

sleep and increased slow-wave activity during SWS (Tobler and Borbely 1986; Jones et 

al. 2008; Martinez-Gonzalez et al. 2008; Newman et al. 2009) suggesting a similar 

regulation of at least some aspects of sleep. 
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Regulation of sleep 

 

Sleep is regulated by two principle mechanisms: a homeostatically controlled sleep drive 

and a circadian oscillator (Borbély 1982; Daan et al. 1984; Borbely and Achermann 

1999; Landgraf et al. 2012). Sleep propensity builds up during waking and declines 

during sleep whereas the circadian oscillator is sleep-independent and determines the 

appropriate timing of sleep. The two processes are assumed to interact. Borbely and 

Achermann (1999) suggested a third process underlying sleep regulation, an ultradian 

process occurring within the sleep episode, which is represented by alternating non-REM 

and REM sleep states.  

 

The anatomical substrate underlying the homeostatic process still remains elusive 

whereas the components and underlying mechanisms of the circadian oscillator have 

been described in detail. The first studies that identified genes as constituents of circadian 

clocks were carried out in fruit flies Drosophila melanogaster (Konopka and Benzer 

1971), algae Chlamydomonas reinhardi (Bruce 1972), fungi Neurospora crassa 

(Feldman and Hoyle 1973) and eventually in mice (Vitaterna et al. 1994). Later, a variety 

of these so-called “clock genes”, making up the intracellular machinery of the circadian 

oscillator, were discovered in other mammals and birds. They were found to be highly 

conserved between taxa (Dunlap 1999; Young and Kay 2001; Bell-Pedersen et al. 2005). 

Due to transcriptional-translational feedback loops the clock genes are transcribed 

rhythmically (Panda et al. 2002; Reppert and Weaver 2002).  

 

In birds, the positive limb of the feedback loop is represented by the transcription factors 

CLOCK and BMAL1 which heterodimerize and activate the transcription of two 

PERIOD genes (PER2, PER3), two CRYPTOCHROME genes (CRY1, CRY2) and other 

clock controlled genes (Bell-Pedersen et al. 2005). PER and CRY proteins translocate 

back into the nucleus where they act as the negative limb of the loop by down-regulating 

transcription. Post-transcriptional control is mediated through phosphorylation of the 

proteins by casein kinases (CKIε and CKIδ) (Reppert and Weaver 2002). In addition to 

these core clock genes, several other genes are important for the regulation and 



  General Introduction 18 

generation of circadian rhythms in behaviour. Circadian clocks operate in nearly all cells 

and tissues and are organized hierarchically. The main circadian pacemakers in birds are 

the pineal gland, the retina and the suprachiasmatic nuclei (SCN), regulating secondary 

circadian clocks in peripheral tissues (Gwinner and Brandstaetter 2001; Bell-Pedersen et 

al. 2005) and they are reset by external light stimuli. 

 

Sleep in birds 

 

Although many studies focused on the molecular basis and functions of sleep, sleep has 

received little attention from behavioural ecologists. In particular, sleep in birds has not 

been studied to a great extent yet and most studies on avian sleep are limited to captive 

animals with the focus on physiological characteristics (e.g. Ookawa and Gotoh 1965; 

Berger and Walker 1972; Walker and Berger 1972; Szymczak et al. 1996). However, 

studies on sleep in wild animals are important to understand ecological and evolutionary 

mechanisms. It has been shown that sleep behaviour in captive animals can vary 

tremendously from the behaviour of wild individuals (Rattenborg et al. 2008), therefore it 

is of great importance to study sleep in animals under natural conditions without direct 

human influences. The under-representation of literature covering sleep behaviour in wild 

birds may be related to the fact that sleeping birds are difficult to observe, especially at 

night, and that birds are easily disturbed. Some birds roost in cavities, some in trees or 

dense shrubs, and others on the water or out at sea.  

 

Behavioural aspects of avian sleep have been investigated in a few studies. For example 

there are studies on vigilance in sleeping birds (Lendrem 1983; 1984; Dominguez 2003; 

Beauchamp 2011), on the influence of temperature on sleep behaviour in captive birds 

(Wellmann and Downs 2009), on effects of ectoparasite presence on sleep amount in 

incubating females (Christe et al. 1996; Tripet et al. 2002), on sleep depth in relation to 

the time of day (Dewasmes and Loos 2002), on tactile arousal thresholds in sleeping 

penguins (Dewasmes and Telliez 2000), and on responses to predator odour in sleeping 

great tits (Amo et al. 2011).  
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When asleep, birds adopt different postures (summarized in Amlaner and Ball (1983)): 

they either put their bill under the scapular feathers (e.g. commonly seen in small 

passerines), under the wings (e.g. penguins), or on the back (e.g. birds with long necks 

such as flamingos). Birds might sleep with the bill pointing forward, or put their head on 

the ground (e.g. large flightless species like ostrich and emu). 

 

The total sleep duration per day varies between different bird species and so does the 

length of individual sleep bouts. Sleep bouts can be as short as a few seconds, but can 

also last several minutes or even hours (Klima 1966; Hamerstrom and Janick 1973; 

Szymczak et al. 1993; Gauthier-Clerc et al. 2002). Based on a literature analysis covering 

32 bird species (16 families) Amlaner and Ball (1983) report an average total sleep time 

of 6.9 ± 0.7 (mean ± s.e.) hours, with a great variability of several hours between species. 

The greatest variability could be observed in passerines and other small birds and the best 

predictor of sleep duration was night length and latitude (Amlaner and Ball 1983). 

 

Study species: the blue tit 

 

I chose the blue tit (Cyanistes caeruleus) as study organism. Blue tits are small passerine 

birds (10.5-12 cm, 10-12 g) in the family Paridae, that are common throughout temperate 

and subarctic Europe and western Asia. In most of their range, blue tits are resident and 

non-migratory. Especially during winter blue tits can often be seen at bird feeders in 

urban areas as part of mixed-species flocks. They breed in deciduous or mixed woodlands 

(preferably oak) and use cavities such as tree holes as nesting sites, but also readily 

accept artificial nestboxes. This makes the blue tit an ideal study species in the field of 

ecology because breeding parameters can be easily measured. Nestboxes are also used for 

roosting at night during the winter months. The two sexes are similar in size and plumage 

characteristics, although females are slightly paler than males (less UV blue (Andersson 

et al. 1998; Hunt et al. 1998)). Most males and females form socially monogamous pairs 

in the breeding season with biparental brood care, but social polygyny is not uncommon 

(Kempenaers 1994). About 30-50% of females also engage in copulations with males 

other than their social mate (extra-pair males) leading to about 11-14% of all young being 
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extra-pair offspring (Kempenaers et al. 1997). Clutches contain in general 6-12 eggs that 

are incubated by the female only. 

 

General methods 

 

I carried out my study in a blue tit population near Landsberg am Lech in Southern 

Germany (Westerholz, 48°08’ N, 10°53’ E). The population was established in 2007 for a 

long-term study on the breeding biology of blue tits. The study area is an unmanaged part 

of mixed deciduous woodland, which is dominated by oak trees (Quercus sp.). It contains 

277 nestboxes with an entrance hole of 26 mm. There are around 60-80 breeding attempts 

of blue tit pairs each breeding season and nestboxes are used for roosting at night 

between November and March by 14-77 (mean = 40) individuals. During regular night 

catches in winter, all new individuals roosting in nestboxes are banded, measured (tarsus 

and wing length, weight) and a blood sample is taken for genetic analyses. During the 

breeding season, a variety of breeding parameters of the birds are collected every year, 

such as date of the first egg of each breeding female, clutch size, number of hatchlings 

and number of fledglings. All adults are caught at least once to measure them, to equip 

them with unique rings and an RFID transponder and to take a small blood sample for 

genetic analyses. All nestlings are banded with a unique ring, measured and bled once at 

an age of 14 days. Therefore a comprehensive dataset on breeding success and fitness 

traits of individuals in this population is available for analyses. 

 

I video-recorded the birds while they were present in the nestbox at night during the 

winter months. For this purpose I put together small camera systems, consisting of a 

black-and-white infrared-sensitive camera (Fig. 1a), attached to the nestbox lid and 

connected via a long cable to a digital recorder which was stored in a water-proof plastic 

box placed on the ground under the nestbox (Fig. 1b). Six LEDs emitting infrared light 

were placed around each camera lens. The plastic box also contained two rechargeable 

lead-acid batteries that supplied enough power for the whole system to record on two 

consecutive nights. Above each nestbox I fixed a small data logger to record temperature 

and light intensities. Blue tits are very territorial and use the same roost site over days or 



General Introduction   21

even months, if they do not get disturbed. This allowed me to record most of the 

individuals repeated times (up to 22 times in the case of one individual). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1a Mini-camera attached to the    Fig. 1b Camera system installed at a  
inside of a nestbox lid, surrounded     nestbox in the forest 
by six infrared light LEDs 
 
 

 

 

 

 

 

 

 

 

 
   Fig. 2 Picture produced by the camera system 
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Outline of the thesis 

 

The general aim of the work reported on in this thesis was to describe in detail the sleep 

behaviour of a free-living bird. More specifically, I investigated (1) variation in temporal 

parameters of sleep and the factors associated with this variation, (2) whether there is 

individual variation in sleep-wake cycles, i.e. in the level of rhythmicity and period 

length, (3) whether variation in sleep behaviour is associated with fitness-related traits, 

(4) whether there are naturally occurring polymorphisms in candidate genes with a high 

likelihood of being functional and (5) whether associations can be detected between these 

genetic polymorphisms and inter-individual variation in sleep phenotypes. 

 

In chapter 1, I report on an investigation of temporal aspects of sleep behaviour in the 

field. I quantified and described the sleep behaviour of blue tits under free-living 

conditions. I focused on variation in sleep behaviour between individuals and 

investigated which of the environmental (season, local light conditions) and individual 

(age and sex) factors influence sleep parameters. Further, I investigated whether 

individuals show consistency in their behaviour and compared within- and between-

individual variation. 

 

Chapter 2 focuses on ultradian rhythms. Here, I looked more closely at the nocturnal 

sleep-wake cycles of blue tits and analysed whether there is rhythmicity and variation in 

period length. I tested whether factors such as sex, age, environmental parameters and 

individuality influence periodicity. 

 

In chapter 3, I report on the relationships between inter-individual variation in temporal 

aspects of sleep and fitness-related traits. I used detailed information on breeding 

parameters of the individuals that were available from a long-term population study, and 

tested whether differences in sleep behaviour are related to variation in reproductive 

success. 
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In chapter 4, I describe two different search strategies to find likely functional 

polymorphisms in avian candidate genes that are involved in the regulation of circadian 

rhythms. This approach can be applied when searching for polymorphisms with a 

functional or adaptive relevance in non-model organisms for which whole genome 

sequences are not available. 

 

In chapter 5, I report on the testing of associations between the polymorphisms in 

candidate genes for circadian rhythms described in chapter 4 and inter-individual 

variability in various sleep phenotypes. Because of the multiple-tests performed, the 

occurrence of false-positive results is enhanced. I applied a permutation procedure to 

evaluate my results study-wide. 

 

Following the main chapters, I summarize and discuss the results and give an outlook for 

future research in a general discussion. 
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Chapter One 
________________________________________________________________________ 

Variation in sleep behaviour in free-living blue tits,  

Cyanistes caeruleus: effects of sex, age and environment 

 

 

Corinna Steinmeyer, Holger Schielzeth, Jakob C. Mueller and Bart Kempenaers 

 

ABSTRACT 

 

Although sleep is fundamental for survival, not much is known about sleep behaviour in free-

living animals and between-individual variation in sleep patterns has hardly been studied, except 

in humans. We analyzed sleep behaviour in a free-living population of blue tits in southern 

Germany. We recorded individuals roosting in nestboxes between November and April using 

infrared-sensitive cameras. We investigated the following sleep parameters: time of entering and 

leaving the nestbox, sleep onset, awakening time, sleep duration, midpoint of sleep, latency to 

sleep and frequency and duration of nocturnal awakenings. Sleep onset, awakening time and 

sleep duration followed seasonal changes in day length. Blue tits slept ca. 4.8 h longer in winter 

than in spring. During the night, birds woke up between 23 and 230 times, but this did not change 

seasonally. Local light conditions influenced awakening time: birds at brighter locations woke up 

earlier. Females slept on average 15 minutes longer per night than males and this sex difference 

became more pronounced in early spring. Although females spent a greater proportion of the 

night awake than males, they still slept more overall. First-year birds spent more time in the 

nestbox after waking up and left the nestbox later in the morning than older individuals. 

Repeatability estimates showed that individuals were consistent in their sleep behaviour over the 

two-year study period. Our results indicate that sleep patterns are individual-specific traits in blue 

tits. We suggest that the observed sex difference in sleep duration is caused by sexual selection. 

 

____________________ 

Animal Behaviour (2010), 80: 853-864 
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INTRODUCTION 

 

Sleep is a widespread behaviour in the animal kingdom being found in most if not all 

animals (Cirelli and Tononi 2008; Siegel 2008). It is generally defined as a rapidly 

reversible state of immobility and greatly reduced responsiveness (Siegel 2008). Animals 

spend a considerable proportion of each day and of their entire lifetime asleep (Zepelin et 

al. 1994). Daily sleep duration can vary tremendously among species. For example, 

elephants and horses apparently require only a few hours of sleep, whereas the armadillo 

(Chaetophractus villosus), opossum (Didelphis sp.) and some species of bats spend about 

three quarters of a 24-hour day sleeping (Van Twyver and Allison 1970; Meddis 1975; 

Zepelin et al. 1994; Affanni et al. 2001). In addition to inter-specific variation in sleep 

requirements, there is also substantial variation in sleep duration among individuals of a 

single species. Individual variation in duration and other characteristics of sleep 

behaviour has only been studied in detail in humans (Webb and Agnew 1970; Webb and 

Friel 1971; Roenneberg et al. 2003; Dijk and von Schantz 2005; Buckelmüller et al. 

2006) and is partly explained by effects of gender and age (Lindberg et al. 1997; Hume et 

al. 1998; Dijk et al. 2000; Jean-Louis et al. 2000; Van Cauter et al. 2000). 

 

Because sleep is such a ubiquitous phenomenon, it most likely serves important adaptive 

functions. However, there is still considerable debate about what these functions are. The 

early hypothesis that sleep is simply a state animals adopt when they do not have 

anything else to do (Meddis 1975) is clearly untenable. Many studies have shown 

negative consequences for animals that were deprived of sleep. For example, sleep 

deprivation induced DNA damage in brain and blood cells in rats (Andersen et al. 2009) 

and negatively affected vigilance, mood and motor or cognitive performance in humans 

(Ferrara and De Gennaro 2001; Van Dongen et al. 2003). Sleep may have a restorative 

function for the brain (Tononi and Cirelli 2006; Mignot 2008) and it may be essential for 

memory consolidation (Solodkin et al. 1985; Walker and Stickgold 2006; Jackson et al. 

2008; Mignot 2008). Sleep may also serve to conserve energy or to reduce exposure to 

predators (Meddis 1975; Zepelin et al. 1994; Lima and Rattenborg 2007), although this 

would also be accomplished through simple resting.  
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Despite the fact that sleep is ubiquitous and despite strong empirical evidence that sleep 

is important for an individual’s health, sleep behaviour has received little attention in 

studies of animal behaviour and behavioural ecology. Most studies on sleep and its 

functions have been conducted in captivity on mammals, and there is an extensive 

literature covering sleep related issues in humans. Studies on sleep in birds are mostly 

limited to captive birds, especially pigeons and chickens, and focus on physiological 

characteristics of sleep (Ookawa and Gotoh 1965; Berger and Walker 1972; Van Twyver 

and Allison 1972; Walker and Berger 1972; Ayala-Guerrero 1989; Ayala-Guerrero et al. 

2003). These studies have found that birds show two distinct sleep states (slow-wave 

sleep, SWS and rapid-eye-movement sleep, REM) characterized by changes in brain 

activity remarkably similar to those in mammals (Rattenborg 2006; Rattenborg et al. 

2009). Furthermore, previous studies have shown that at least some bird species are able 

to engage in unihemispheric sleep (Szymczak et al. 1996; Rattenborg et al. 1999; Bobbo 

et al. 2002; Bobbo et al. 2006a; b; Fuchs et al. 2006).  

 

Only a handful of studies considered behavioural aspects of sleep in birds. A few 

investigated sleep and vigilance in relation to season or to the position of individuals 

within a flock (Lendrem 1983; Gauthier-Clerc et al. 2000; Dominguez 2003). One study 

investigated the influence of temperature on sleep behaviour in three passerine birds in 

captivity (Wellmann and Downs 2009). Another study experimentally investigated the 

effect of the presence of ectoparasitic hen fleas in nests of great tits (Parus major) on the 

total amount of sleep (Christe et al. 1996).  

 

To our knowledge, individual variation in sleep behaviour has not yet been systematically 

studied in any free-living bird. Studies in the wild are important because sleep behaviour 

of animals observed in captivity may differ substantially from behaviour shown in the 

natural environment (Dunnett and Hinde 1953; Rattenborg et al. 2008). The general aim 

of our study is to investigate sleep behaviour in a natural population of blue tits 

(Cyanistes caeruleus). The blue tit is a widespread and common passerine bird in Europe 

and parts of northern Africa. In Germany, blue tits are year-round resident and inhabit 
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deciduous and mixed woodlands, as well as parks and gardens. They breed in natural 

cavities, but readily accept artificial nestboxes. We made use of the fact that in winter 

blue tits regularly roost in the nestboxes, which allowed us to monitor their night-time 

behaviour without disturbance. 

 

The specific aims of this study were threefold: (1) to describe seasonal variation in 

several variables reflecting the timing and duration of sleep; (2) to test whether factors 

such as local light conditions, temperature, individual age and sex explain some of the 

within-season variation; and (3) to estimate the proportion of variation in sleep behaviour 

that is individual-specific (individuality). Because most knowledge about inter-individual 

variation in sleep behaviour comes from studies in humans, we discuss our findings in 

comparison to human sleep patterns. 

 

METHODS 

 

Study Site and General Field Procedures 

The study was carried out during the winter seasons 2007-2008 and 2008-2009 in a 

population of blue tits in southern Germany (Westerholz, 48°08’N 10°53’E). The study 

site (39 ha) is a natural reserve (“Naturwaldreservat”) dominated by oak trees (Quercus 

sp.) and forms the north-eastern tip of a larger mixed deciduous forest. In November-

December 2006, we put up 277 nestboxes (12 × 15 cm and 25 cm high) with an entrance 

hole of 26 mm, which excludes the larger great tit. Blue tits readily accepted nestboxes 

for roosting during winter and for breeding. 

 

We caught blue tits inside the nestboxes during monthly checks at night in winter 

(November-February in both seasons) and once during nestling feeding (May-June in the 

breeding seasons 2007 and 2008). We determined age by comparing the coloration of 

primary and secondary coverts and classified individuals as either yearling or adult 

(Svensson 1992). We marked each bird with a numbered metal band of the German 

ringing scheme and with a unique combination of three plastic colour bands. We also 

took a 10-50 µl blood sample from the brachial vein for genetic analyses and implanted a 
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RFID transponder (Biomark Inc., Idaho, U.S.A.) subcutaneously between the shoulder 

blades. This allowed us to determine the identity of individuals occupying a nestbox at 

night without disturbing the sleeping bird (see Recording Sleep Behaviour). Transponders 

were 8.5 mm long, 2.1 mm in diameter and weighed 0.067 g (0.6% of the average body 

mass of an adult blue tit). We did not encounter any problems during implantation and all 

birds behaved normally after release.  

 

Recording Sleep Behaviour 

Every four weeks we checked all nestboxes at night for sleeping birds using a handheld 

transponder reader (EUR 1000 Multi-Chip from EURO I.D., Weilerswist, Germany), 

which we moved around the outside of the nestbox. Our previous observations suggested 

that only rarely a bird carrying a transponder is missed using this technique. The 

following day, we installed infrared sensitive cameras in all boxes where a roosting blue 

tit had been detected. We also cleaned nestboxes of faeces to attain higher movie quality. 

Cameras were programmed to record on two consecutive nights between an hour before 

sunset and an hour after sunrise. We refer to these two consecutive nights as a recording 

session. We recorded 13-37 individuals (median 27) per night. We never observed two 

birds in a nestbox at the same time. 

 

The infrared sensitive black-and-white cameras (S/W-Kamera modul 1 from Conrad 

Electronic, www.conrad.de) were attached to the nestbox lid. As a light source, we placed 

six LEDs emitting infrared light (peak wavelength 940 nm) invisible to the blue tit eye 

(Hart et al. 2000; Hart 2001) around each camera objective. We connected each camera 

to a digital recorder (Abus, TV8450), that saved the recording on a 2GB SD card. Power 

for all electrical devices was supplied by lead-acid batteries (Panasonic, LC-R067R2P). 

To obtain information about the microclimate at a nestbox, we fixed a Hobo Data Logger 

(Onset Computer Corporation, Bourne, MS, U.S.A.) just above each nestbox. The 

sensitive electrodes of the loggers pointed in the direction of the entrance hole and 

recorded light intensity (in lx) and temperature (in degrees C) at 1 min intervals. Based 

on the logged data we calculated mean light intensities at each nestbox in the evening (30 
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min before – 30 min after sunset) and in the morning (30 min before – 30 min after 

sunrise), and the mean night temperature (between 2300 and 0000 hours). 

 

In the first season (early January to late March 2008) we recorded 69 individuals (45 

males, 24 females) during four recording sessions (total of eight nights). Of these 69 

individuals, 21 (30.4%) were yearlings. In the second season (mid-November 2008 to 

early April 2009), we recorded 60 individuals (37 males, 23 females) during six 

recording sessions (total of 12 nights). Seven of the 60 individuals (11.7%) were 

yearlings. Thirty-three individuals were recorded in both winters. Thus, in total we 

obtained 532 recordings of 96 different blue tit individuals (60 males, 36 females), with 

an average ± SD of 5.5 ± 3.7 recordings per individual (range 1-18). In 94% of cases 

individuals were recorded on both nights of one session. 

 

Sleep Parameters 

We used PowerDirector NE Express from CyberLink (www.cyberlink.com) to analyse 

the video recordings. We quantified 10 parameters of blue tit sleeping behaviour (for 

definitions, see below): (1) sleep onset; (2) awakening time; (3) entry time; (4) leaving 

time; (5) evening latency; (6) morning latency; (7) sleep duration; (8) midpoint of sleep; 

(9) frequency of awakenings per hour; and (10) the proportion of time spent awake per 

night (excluding evening and morning latency). We chose to record these 10 sleep 

parameters because they reflect parameters that are commonly used in human sleep 

studies, in particular those that assess individual ‘chronotypes’ (Hume et al. 1998; Park et 

al. 2002; Roenneberg et al. 2003; Roenneberg et al. 2004; Kronholm et al. 2006).  

 

A bird was considered asleep when it showed the classical sleep position with the beak 

pointing backwards and tucked under the scapulars and feathers fluffed (Amlaner and 

Ball 1983). It was usually easy to distinguish sleep phases from awake phases, because 

awake birds were mostly active preening or moving around in the nestbox. Only a few 

cases were more ambiguous, when a bird sat quietly for some time with its head pointing 

forward. This typically happened in the morning before the bird left the nestbox and we 

considered these periods as awake phases.  
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We defined sleep onset as the time when the first sleep bout of at least 30 seconds started. 

In birds, sleep bouts can be as short as 10 seconds (as measured via brain activity 

patterns; Rattenborg, personal communication, (Szymczak et al. 1993) and we 

occasionally observed birds in the sleeping position for less than 30 s. However, we did 

not include these shorter bouts to define the onset of sleep, because usually birds still 

moved intensely during these first short sleep bouts. We defined awakening time as the 

time when the last sleep bout of minimum 10 s ended. We defined sleep duration as the 

difference between awakening time and sleep onset and calculated the midpoint of sleep 

by adding half of the sleep duration to the time of sleep onset. Awakenings during the 

night were counted when they lasted more than 2 s. If birds only turned their head from 

one side to the other within 1-2 s they were not considered to be awake. Sleep bouts 

between awakening phases had to last a minimum of 10 s, otherwise two consecutive 

awake phases were pooled (including the short sleep bout). We defined entry time as the 

time of entering the nestbox in the evening and leaving time as the time of leaving the 

nestbox in the morning. Generally birds entered the nestbox once in the evening and 

stayed inside until they left again the next morning. In four cases, we observed that a bird 

left again after entering in the evening to return 7-13 min later. In one case, a blue tit left 

the nestbox in the morning, but returned to it within 17 min. In these exceptional cases 

we used times of the second entry or first exit, respectively, as entry and leaving times. 

We defined evening latency as the difference (in min) between entry time and sleep onset 

and morning latency as the difference (in min) between awakening time and leaving time.  

 

Data Analysis 

We converted entry times, leaving times, times of sleep onset and awakening times to 

times relative to sunset or sunrise (reference data from the town of Kaufering which is ca. 

7 km from our study site). We log-transformed evening and morning latencies, which 

reduced the right skew of these two parameters.  

 

In a first step, we decomposed the phenotypic variance in relative time of entry, sleep 

onset, awakening and leaving, and in sleep duration into four main components: long-
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term environmental (seasonal) effects; short-term environmental variation shared among 

nestboxes; consistency within individual birds; and residual variation (not shared among 

nestboxes). We did so by fitting univariate linear mixed-effect models that included sex 

and age (yearling versus adult) as fixed effects and with recording session, recording date 

and bird identity as random effects. We extracted the variance explained by the three 

random effects and the residual variance and calculated the proportion of the variance 

explained by these factors. 

 

In a second step, we tested the effects of sex, age and light intensity at the nestbox on 

different sleep parameters, and we determined the variance components due to individual 

(individual consistency) and nestbox (spatial heterogeneity) after controlling for seasonal 

effects. In this analysis, temperature measurements were not included because differences 

between nestboxes are negligible. Some sleep parameters showed seasonal changes not 

only in their mean values, but also in their variances around the mean. This produces 

patterns of heteroscedasticity, which violates the assumption of identically distributed 

residuals and will affect the significance tests of fixed effects. Transformation did not 

solve this issue. Therefore, we standardized entry time, leaving time, sleep onset, 

awakening time, sleep duration, midpoint of sleep and morning and evening latency for 

the analyses by subtracting the date-specific mean from the raw values and dividing by 

the date-specific standard deviation. This standardization removed seasonal and date-

specific changes in means and variances and both factors (recording session and date) 

were therefore excluded from models with standardized values. We fitted univariate 

linear mixed models with sex, age and mean light intensity at the nestbox as fixed effects 

and individual and nestbox identity as crossed random effects (in 40 nestboxes more than 

one and up to four individuals were recorded in different nights and 58 individuals were 

recorded in two to five different nestboxes). Variance components were converted to 

proportion of variance explained and their significance was tested by likelihood ratio 

tests. 

 

The time when individuals entered the nestbox in the evening (entry time, standardized) 

and the time when they began to sleep (sleep onset, standardized) were highly correlated 
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(r528 = 0.98). Similarly, we found a strong correlation between the time when birds woke 

up (awakening time, standardized) and when they left the nestbox in the morning (leaving 

time, standardized: r519 = 0.82). Therefore, we further focus on sleep onset and 

awakening time.  

 

We did not apply standardizations in the analysis of nocturnal awakenings, because 

seasonal effects for these traits were very weak. Therefore, we fitted separate linear 

mixed effect models for frequency of awakenings and proportion of time spent awake as 

dependent variable, including sex and age as fixed effects and bird identity, nestbox, 

recording date and recording session as random effects. As for the other parameters we 

then estimated variance components of the random factors.  

 

We tested temperature effects on evening latency, morning latency, frequency of 

awakenings and proportion of time spent awake (the other parameters were strongly 

influenced by light). We calculated the average difference in mean night temperature and 

the average difference in sleep parameters between each of two consecutive recording 

nights and fitted linear models with difference in mean temperature as the independent 

variable and each sleep parameter as response variable.  

 

Finally, we analyzed the relationship between sleep onset and awakening time and 

between evening and morning latency, by fitting models with awakening time (or 

morning latency) as the response variable and sleep onset (or evening latency), sex, age 

and mean light intensity as fixed effects, and bird and nestbox identity as random effects. 

However, before fitting the models, we decomposed the explanatory variable sleep onset 

(or evening latency) into its between-individual and its within-individual component 

(Van de Pol and Wright 2009) and fitted these two as separate predictors. This allowed us 

to evaluate within- and between-individual correlations separately. 

 

Owing to occasional technical failure (i.e. discharged batteries, poor quality of the 

recording) and to the fact that information about age was not available for all individuals, 

we have varying numbers of missing values in the analyses. In the final models we 
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included 498-509 observations of 94 individuals in 127-128 different nestboxes for 

parameters 1-8. For parameters describing nocturnal awakenings (9, 10) we included 442 

observations of 89 individuals in 119 nestboxes. We defined the beginning of the 

breeding season as the date when the first nest material was found in a nestbox in the 

study area. Following this definition, six recordings (in March and April) belonged to the 

breeding season, while all others (November - February) were considered the 

nonbreeding (winter) season. 

 

All analyses were conducted in R 2.9.0 (http://cran.r-project.org) using the lmer function 

from the lme4 package for mixed models (Bates et al. 2008) and the cor.test function 

from the stats package for Pearson correlations.  

 

Ethical Note 

A recent study showed that subcutaneous implantation of passive integrated transponder 

(PIT) tags did not negatively influence fledging success, survival and recruitment of great 

tits (Nicolaus et al. 2008). These PIT tags are essentially the same as the RFID 

transponders we used. In our study population, RFID transponders have been applied 

since the beginning of 2007. We did not observe long or short-term effects of 

implantation on condition of adults and chicks. Recaptured individuals carrying a 

transponder did not significantly differ in their body mass from new captures without 

transponder (after correcting for age and tarsus length, N = 225, P = 0.49) and in all cases 

the transponder was well-placed and the lesion well-healed. Adults did not modify their 

feeding behaviour after implantation during the breeding season. There was no difference 

in mean brood mass between nests with newly implanted adults and recaptures (N = 204, 

P = 0.76; measured four days after capture). Permits were obtained from the Bavarian 

government and the Bavarian regional office for forestry LWF. 

 

 

 

 

 

http://cran.r-project.org/
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RESULTS 

 

Seasonal Patterns in Timing and Duration of Sleep 

The average time of sleep onset showed a strong seasonal pattern: individuals began to 

sleep earliest in December and latest in April (Table 1). Sleep onset relative to sunset also 

changed seasonally (Table 1, Fig. 1a). During the shortest days in November-January, 

most birds began to sleep after sunset when average light intensities were low 

(approaching 0 lx), whereas birds started to sleep before sunset in February-March at 

higher light intensities (50-400 lx). In April, the average onset of sleep coincided with 

sunset. In all cases, birds started to sleep before the end of civil twilight (when the centre 

of the sun is 6° below the horizon). Recording session explained 33% of the variance in 

relative sleep onset times, while recording date within sessions explained 14%. Individual 

identity explained an additional 23% of the variation. 

 

The average awakening times showed a similar seasonal pattern (Table 1, Fig. 1b). Of the 

total variance in relative awakening time, 17% was explained by recording session, 15% 

by recording night (within session) and 39% by individual identity. Independent of the 

season, most blue tits woke up before sunrise but after the start of civil twilight (when the 

sun is 6° below the horizon), usually at low light intensities (0-20 lx). 

 

Sleep duration increased from November to December and decreased from January to 

April (Table 2, Fig. 2). Relative sleep duration also followed the patterns of relative sleep 

onset and awakening time, with recording session explaining 26% of the variance, 

recording night within session 17% and individual identity 29%. 

 

Variation in Times Awake in the Nestbox 

Evening and morning latency did not show obvious seasonal changes (Table 2), and were 

usually short, with evening latency being shorter and less variable (mean ± SD = 3.1 ± 

0.8 min,) than morning latency (5.6 ± 1.6 min). In the evening, after entering the box, 

birds moved or looked around in the nestbox, preened their plumage and fluffed up their 

feathers. After the birds woke up in the morning, we observed them stretching, preening, 
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moving inside the box and sitting at the entrance hole looking outside. Between two 

consecutive recording nights, birds on average had longer evening and morning latencies 

when mean night temperatures were higher (linear models; N = 202; evening latency: d = 

13.04 ± 4.02 SE, Z = 3.25, P = 0.01; morning latency: d = 24.85 ± 10.06 SE, Z = 2.47, P 

= 0.04). 

 
Table 1 
Mean, SD (in min) and range (earliest-latest) of time of sleep onset and awakening for each recording date 

Date Session Sunset Sunrise Sleep onset  Awakening time 
    N Mean SD Range  N Mean SD Range 
12 Nov 2008 1 16:42 7:21 29 16:44 5.35 16:32-16:53  29 7:03 5.66 6:52-7:13 
13 Nov 2008 1 16:41 7:22 29 16:42 6.38 16:30-16:53  28 7:06 5.32 6:56-7:18 
10 Dec 2008 2 16:23 7:57 21 16:30 6.00 16:20-16:41  22 7:42 6.28 7:24-7:50 
11 Dec 2008 2 16:23 7:58 26 16:31 7.06 16:16-16:41  26 7:40 7.03 7:23-7:50 
2 Jan 2008 3 16:34 8:06 34 16:50 7.09 16:39-17:02  34 7:49 7.34 7:36-8:05 
3 Jan 2008 3 16:35 8:06 33 16:48 9.42 16:20-16:58  31 7:48 7.13 7:22-7:59 
14 Jan 2009 4 16:49 8:02 22 16:54 13.86 16:23-17:09  22 7:46 6.84 7:36-8:02 
15 Jan 2009 4 16:51 8:01 22 16:59 12.55 16:29-17:14  22 7:49 7.51 7:35-8:05 
30 Jan 2008 5 17:12 7:47 37 17:08 10.44 16:41-17:26  37 7:34 5.35 7:25-7:42 
31 Jan 2008 5 17:13 7:46 34 17:15 13.10 16:47-17:35  28 7:37 7.50 7:25-7:49 
11 Feb 2009 6 17:33 7:28 25 17:23 13.63 16:54-17:44  25 7:17 6.84 7:06-7:37 
12 Feb 2009 6 17:34 7:27 23 17:25 15.62 16:48-17:50  24 7:14 6.05 7:04-7:30 
27 Feb 2008 7 17:57 7:01 32 17:48 8.21 17:30-18:09  32 6:39 5.80 6:24-6:49 
28 Feb 2008 7 17:58 6:59 33 17:48 8.91 17:26-18:06  33 6:48 6.02 6:35-7:09 
18 Mar 2009 8 18:26 6:21 19 18:22 9.34 18:01-18:41  19 6:02 7.32 5:50-6:15 
19 Mar 2009 8 18:28 6:19 22 18:05 10.87 17:44-18:22  22 6:04 6.23 5:55-6:19 
27 Mar 2008 9 18:40 6:03 33 18:30 10.92 18:00-18:54  33 5:47 7.91 5:36-6:06 
28 Mar 2008 9 18:41 6:01 28 18:39 9.93 18:19-18:56  28 5:43 9.23 5:32-6:02 
7 Apr 2009 10 18:56 5:41 15 18:55 6.45 18:44-19:06  15 5:19 12.22 4:53-5:34 
8 Apr 2009 10 18:57 5:39 13 18:56 7.65 18:43-19:07  11 5:19 13.55 4:47-5:36 

Local times of sunset and sunrise (the following morning) are also given. All times refer to Central European 
Time. 
 

 

On average ± SD, birds woke up between 38 ± 10 and 99 ± 50 times (range 23-230) on 

different recording nights with an average frequency of 2.8 ± 0.6 to 9.5 ± 4.8 awakenings 

per hour (Table 3). During these awakening phases birds usually preened, scratched, 

stretched legs and wings or moved inside the box. The number of awakenings per night 

did not change seasonally, but increased highly in April. Given the changes in sleep 

duration, the frequency of awakenings decreased from a mean ± SD of 3.8 ± 0.6 

awakening phases per hour in November to 3.0 ± 0.6 in December and then increased to 
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9.5 ± 4.8 in April (Table 3). Recording session explained 32% of the variance in 

frequency of awakenings whereas recording night within session explained only 2%. The 

duration of the longest continuous sleep bout was highest in the first half of January and 

shortest in April (Table 3). Recording session explained 30% of the variance in the 

maximum duration of sleep bouts, whereas recording night explained 3%. On average, 

birds spent 92-99% of their sleep duration actually asleep, which corresponds to a total 

time spent awake at night of 12 ± 6 min SD (range 5-27 min) in February and 49 ± 25 

min (range 17-93 min) in April (Table 3). Recording session explained 33% of the 

variance in the proportion of time spent awake, whereas recording night explained 7%. 

Birds woke up more frequently at night and spent a greater proportion of the night awake 

when the night was warmer (linear models; N = 202; frequency awake: d = 0.18 ± 0.05 

SE, Z = 3.59, P = 0.007; proportion awake: d = 0.0033 ± 0.00069 SE, Z = 4.80, P = 

0.001). 

 
Table 2 
Mean, SD and range (shortest-longest) of sleep duration (in h), evening latency (time difference between entry of 
nestbox and sleep onset, in min) and morning latency (time difference between awakening and leaving the 
nestbox, in min) for each recording date 

Date Sleep duration (h)  Evening latency (min)  Morning latency (min) 
 N Mean SD Range  N Mean SD Range  N Mean SD Range 
12 Nov 2008 29 14.3 0.2 14.1-14.6  29 2.9 1.1 1.5-6.8  29 5.2 3.5 0.4-12.7 
13 Nov 2008 28 14.4 0.2 14.1-14.7  29 3.5 1.4 1.2-7.7  29 5.7 4.8 0.2-18.2 
10 Dec 2008 21 15.2 0.2 14.8-15.5  21 2.2 1.2 0.9-4.7  22 6.6 6.3 0.2-23.7 
11 Dec 2008 26 15.2 0.2 14.7-15.5  26 2.2 1.0 0.7-5.5  26 5.5 6.6 0.3-28.1 
2 Jan 2008 34 15.0 0.2 14.6-15.4  34 2.8 1.8 1.3-11.7  34 7.2 6.1 0.8-27.7 
3 Jan 2008 31 15.0 0.2 14.7-15.4  33 2.6 1.4 1.0-5.7  31 5.9 5.6 0.6-26.6 
14 Jan 2009 22 14.9 0.3 14.5-15.4  22 2.8 0.8 1.0-4.4  22 6.4 6.3 0.3-28.1 
15 Jan 2009 22 14.8 0.3 14.3-15.4  22 2.3 0.7 1.0-3.8  22 6.3 6.8 0.1-31.3 
30 Jan 2008 37 14.4 0.2 14.0-15.0  37 2.5 1.0 0.9-5.5  37 4.8 3.4 0.4-12.5 
31 Jan 2008 28 14.4 0.3 13.9-15.0  34 2.5 0.8 0.9-4.2  28 6.9 4.8 1.1-16.5 
11 Feb 2009 25 13.9 0.3 13.5-14.4  25 2.6 1.7 0.8-8.6  25 7.8 8.3 0.5-36.1 
12 Feb 2009 23 13.8 0.3 13.3-14.7  23 2.4 0.8 1.1-4.1  24 6.7 9.2 0.3-43.7 
27 Feb 2008 32 12.9 0.2 12.5-13.2  32 3.0 1.7 1.0-9.2  32 3.1 2.6 0.1-9.3 
28 Feb 2008 33 13.0 0.2 12.7-13.7  33 4.0 2.0 1.0-9.6  33 6.3 5.8 0.5-23.3 
18 Mar 2009 19 11.7 0.3 11.4-12.2  19 3.9 2.1 1.1-9.1  19 2.9 2.4 0.3-7.5 
19 Mar 2009 22 12.0 0.3 11.6-12.6  22 2.7 1.6 0.6-6.7  22 1.7 1.2 0.2-4.5 
27 Mar 2008 33 11.3 0.3 10.8-11.8  33 3.5 1.9 0.9-7.5  33 3.1 2.9 0.5-14.4 
28 Mar 2008 28 11.1 0.3 10.6-11.7  28 4.0 2.0 1.0-9.7  28 3.9 4.3 0.5-21.7 
7 Apr 2009 15 10.4 0.2 9.8-10.7  15 4.6 2.2 1.3-8.6  15 5.4 5.1 0.3-17.2 
8 Apr 2009 11 10.4 0.3 9.7-10.9  13 4.3 2.2 1.4-9.7  11 5.6 6.0 0.8-16.4 
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Figure 1. Seasonal changes in (a) sleep onset and (b) awakening time for female (filled circles) and male 
(open circles) blue tits. Times are given in minutes relative to sunset or sunrise (negative values indicate 
time before, positive values time after sunset/sunrise). Values of two consecutive nights within one 
recording session were averaged. Means and SD are shown. Sample sizes (number of individuals) are 
indicated above the X-axis. 

(a) 

12 Nov 10 Dec 02 Jan 14 Jan 30 Jan 11 Feb 27 Feb 18 Mar 27 Mar 07 Apr

-40

-30

-20

-10

0

10

20

25 23 28 18 30 19 24 11 18 35 3 7 4 7 6 11 11 15 13N= N= N= N= N= N= N= N= N= N=N= N= N= N= N= N= N= N= N= N=

S
le

ep
 o

ns
et

 re
la

tiv
e 

to
 s

un
se

t

Breeding seasonWinter

12 Nov 10 Dec 02 Jan 14 Jan 30 Jan 11 Feb 27 Feb 18 Mar 27 Mar 07 Apr

-40

-30

-20

-10

0

Date

Aw
ak

en
in

g 
tim

e 
re

la
tiv

e 
to

 s
un

ris
e

Breeding seasonWinter(b) 



Chapter One   45

12 Nov 10 Dec 02 Jan 14 Jan 30 Jan 11 Feb 27 Feb 18 Mar 27 Mar 07 Apr

10

11

12

13

14

15

5 3 6 4 7 6 11 11 15 1325 23 28 18 30 19 24 11 18 4N= N= N= N= N= N= N= N= N= N=

Date

S
le

ep
du

ra
tio

n
(h

)

12 Nov 10 Dec 02 Jan 14 Jan 30 Jan 11 Feb 27 Feb 18 Mar 27 Mar 07 Apr

10

11

12

13

14

15

5 3 6 4 7 6

12 Nov 10 Dec 02 Jan 14 Jan 30 Jan 11 Feb 27 Feb 18 Mar 27 Mar 07 Apr

10

11

12

13

14

15

5 3 6 4 7 6 11 11 15 1325 23 28 18 30 19 24 11 18 4N= N= N= N= N= N= N= N= N= N=

Date

S
le

ep
du

ra
tio

n
(h

)

Breeding seasonWinter

Effects of Local Light Conditions 

Each nestbox in the study area was exposed to slightly different light conditions due to 

variation in the direction of the entrance hole and variation in the surrounding vegetation. 

Light intensity measured at the nestbox in the evening had no effect on entry time, sleep 

onset, sleep duration and midpoint of sleep, but it significantly influenced evening 

latency (Table 4). However, in contrast to our expectations, birds started sleeping later in 

darker locations, i.e. they spent more time in the box before sleep onset and they slept 

less long in total. Light intensity at the nestboxes in the morning had no effect on 

morning latency, leaving time, sleep duration and midpoint of sleep, but significantly 

predicted awakening time (Table 4). As expected, birds that slept in brighter locations 

woke up earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Seasonal changes in sleep duration (h) for female (filled circles) and male (open circles) blue tits. 
Values of two consecutive nights within one recording session were averaged. Means and SD are shown. 
Sample sizes (number of individuals) are indicated above the X-axis. 
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Table 3 
Mean, SD and range of frequency of nocturnal awakenings (awakenings per hour), proportion of the night birds 
spent awake and duration of the longest continuous sleep bout (in min) for each recording date 

Date N  Frequency of awakenings  Proportion time spent awake  Maximum sleep bout (min) 
   Mean SD Range  Mean SD Range  Mean SD Range 
12 Nov 2008 24  3.8 0.6 2.5-5.6  0.03 0.01 0.01-0.05  93.5 27.5 45.8-147.8 
13 Nov 2008 23  3.9 0.6 2.8-5.1  0.04 0.02 0.02-0.08  96.2 27.4 55.9-157.6 
10 Dec 2008 20  3.3 0.6 2.6-4.5  0.02 0.01 0.01-0.04  112.1 39.6 60.0-211.4 
11 Dec 2008 25  3.0 0.6 2.3-4.2  0.02 0.01 0.01-0.03  116.3 34.3 62.0-197.9 
2 Jan 2008 28  3.3 0.8 1.9-5.1  0.02 0.01 <0.01-0.03  121.2 38.9 64.6-237.5 
3 Jan 2008 26  3.5 0.8 2.0-5.1  0.02 0.01 0.01-0.03  123.1 38.0 68.9-246.6 
14 Jan 2009 14  3.5 0.9 2.7-6.1  0.03 0.01 0.01-0.04  114.1 33.7 53.9-190.9 
15 Jan 2009 14  3.1 0.7 2.1-4.6  0.02 0.01 0.01-0.04  129.8 61.7 51.7-245.5 
30 Jan 2008 33  3.7 0.8 2.2-6.0  0.03 0.02 0.01-0.07  109.8 37.9 50.4-219.8 
31 Jan 2008 26  3.8 0.8 2.3-5.7  0.03 0.01 0.01-0.07  101.4 25.5 54.4-155.5 
11 Feb 2009 23  3.0 0.9 1.8-5.3  0.02 0.01 0.01-0.04  118.2 40.4 59.3-202.2 
12 Feb 2009 21  2.8 0.6 1.9-4.2  0.01 0.01 0.01-0.03  120.2 45.5 45.4-195.2 
27 Feb 2008 30  4.0 1.6 2.4-10.2  0.02 0.02 0.01-0.09  89.0 28.2 40.6-157.0 
28 Feb 2008 32  5.2 1.6 3.2-9.6  0.04 0.02 0.02-0.11  71.6 20.6 34.7-131.8 
18 Mar 2009 13  3.8 1.5 1.9-7.8  0.03 0.01 0.01-0.04  85.5 22.3 57.0-123.7 
19 Mar 2009 16  3.2 0.9 2.0-5.1  0.02 0.01 0.01-0.03  115.3 34.0 69.5-191.9 
27 Mar 2008 31  4.8 2.5 2.2-14.0  0.03 0.02 0.01-0.09  80.9 34.4 34.3-197.2 
28 Mar 2008 26  4.5 1.3 2.8-7.6  0.04 0.02 0.01-0.07  71.6 21.9 34.4-122.9 
7 Apr 2009 14  7.8 5.1 3.1-22.3  0.06 0.04 0.03-0.14  50.3 24.4 17.6-106.1 
8 Apr 2009 11  9.5 4.8 4.3-20.5  0.08 0.04 0.03-0.15  39.6 17.6 20.8-74.1 

 

 

 

 

Effects of Sex and Age 

Sleep behaviour of blue tits was both age and sex dependent (Table 4). In the evening, 

males on average entered the nestbox and started to sleep 9 min later than females. In the 

morning, males woke up on average 6 min earlier than females and they left the nestbox 

on average 9 min earlier. This sex difference was most pronounced at the end of the 

winter. During the start of the breeding season (March-April), males on average woke up 

15 min earlier than females (versus 3 min during the winter, November-February). 

Overall, there was a strong sex effect on sleep duration (Fig. 2), whereby males slept on 

average 15 min less than females. This effect was again most pronounced at the 

beginning of the breeding season; during March-April males slept 24 min less than 

females (versus 11 min during the winter, November-February).  



Chapter One   47

 

We also found a difference in morning latencies between females and males (Table 4). 

After waking up, females stayed on average 134 s longer in the nestbox than males. 

Midpoint of sleep and evening latency were not significantly affected by sex (Table 4). 

There was no significant difference in the frequency of awakenings per night between 

males and females (linear mixed model: d = 0.52 ± 0.39 SE, Z = 1.34, P = 0.18). 

However, we found that females spent a greater proportion of the time between sleep 

onset and awakening time actually awake (mean ± SD = 0.035 ± 0.02) than males (0.026 

± 0.01; linear mixed model: d = 0.01 ± 0.003 SE, Z = 3.26, P = 0.001).  

 

An individual’s age did not influence entry time, sleep onset, evening latency, awakening 

time, sleep duration or midpoint of sleep (Table 4). However, we found a significant 

effect on leaving time and morning latency (Table 4). Yearlings spent on average 2 min 

longer in the nestbox after waking up, and left the nestbox on average 4 min later than 

adult birds. This age effect was only pronounced during the winter (leaving time: d = -

0.60 ± 0.16 SE, Z = -3.79, P < 0.001; morning latency: d = -0.49 ± 0.15 SE, Z = -3.18, P 

< 0.002) and disappeared during the breeding season (leaving time: d = 0.07 ± 0.17 SE, Z 

= 0.40, P > 0.6; morning latency: d = -0.37 ± 0.28 SE, Z = -1.35, P = 0.18).  

 

Longitudinal analysis of seven individuals (six males and one female) that were recorded 

as yearlings in the first winter and as adults in the second winter confirmed the cross-

sectional age effect on leaving time. Leaving times were significantly earlier when 

individuals were adult (paired t test: t6 = -2.47, P = 0.05). Although not significant, the 

longitudinal comparison of morning latencies showed a similar trend. Individuals spent 

less time in the nestbox after waking up when they were adults (paired t test: t6 = -1.22, P 

= 0.27). 

 

Nocturnal awakenings were also age-dependent. Yearlings spent a slightly greater 

proportion of the night awake (mean ± SD = 0.032 ± 0.02) than adults (0.029 ± 0.02; 

linear mixed model: d = -0.008 ± 0.003 SE, Z = -3.09, P = 0.002) and adults had longer 

continuous sleep bouts than yearlings (d = 0.22 ± 0.09, Z = 2.47, P = 0.01). 
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Individuality in Sleep Behaviour 

After controlling for season, sex, age and light conditions there was still considerable 

variation in all sleep parameters and a substantial part of this variation was between-

individual variation. Individuals were consistent in their sleeping behaviour, such that 

most investigated sleep parameters showed highly significant repeatabilities of about 0.4 

(Table 5). Repeatabilities for the two sexes were generally similar, with the exception of 

awakening time and leaving time where females showed a higher and lower repeatability 

than males, respectively (details not shown). Note that repeatability estimates are less 

accurate for females, because we recorded considerably less females than males. 

 

 

 
Table 5 
Repeatabilities of sleep parameters for individual blue tits or for particular nestboxes 

Sleep parameter N    Individual  Nestbox 
 Obs Ind Box  R χ2 P  R χ2 P 
Entry time* 509 94 128  0.38 55.92 <0.0001  0.08 5.48 0.02 
Sleep onset* 509 94 128  0.41 65.21 <0.0001  0.06 3.77 0.05 
Awakening time* 500 94 127  0.46 99.15 <0.0001  0.18 32.80 <0.0001 
Leaving time* 502 94 127  0.41 84.63 <0.0001  0.23 41.29 <0.0001 
Evening latency* 509 94 128  0.26 29.26 <0.0001  0.12 9.01 0.003 
Morning latency* 500 94 127  0.38 76.43 <0.0001  0.20 25.82 <0.0001 
Sleep duration* 498 94 127  0.38 69.74 <0.0001  0.19 32.71 <0.0001 
Midpoint of sleep* 498 94 127  0.42 74.00 <0.0001  0.00 <0.0001 0.99 
Frequency of awakenings (N/h) 442 89 119  0.44 65.01 <0.0001  0.09 9.08 0.003 
Proportion time spent awake 442 89 119  0.25 65.30 <0.0001  0.18 45.09 <0.0001 

Estimates are variance components from a linear mixed model for each sleep parameter with individual and 
nestbox identity fitted as random factors. Significance of the effects was calculated by likelihood ratio tests 
separately for the two components with one degree of freedom. Sample sizes N are given for the total number of 
observations (Obs), the number of individuals (Ind) and the number of different nestboxes (Box). 
*Controlled for seasonal effects by standardization. 
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Sleep onset and awakening time were negatively correlated, both between individuals 

(linear mixed model: b = -0.26 ± 0.11 SE, Z = -2.35, P = 0.02) and within individuals (b 

= -0.13 ± 0.04 SE, Z = -2.96, P = 0.003). Thus, individuals that started sleeping earlier in 

the evening woke up later the next morning and vice versa (Fig. 3a). A negative 

correlation suggests that there are long-sleeping and short-sleeping individuals, whereas a 

positive correlation would have indicated that there are evening and morning types (birds 

sleep the same amount but shift the timing of sleep). 

 

The time birds spent in the nestbox before sleep onset (evening latency) and the time they 

spent in the box after waking up (morning latency) were strongly positively correlated 

between individuals (linear mixed model: b = 0.49 ± 0.10 SE, Z = 4.67, P < 0.0001; Fig. 

3b), but not within individuals (b = 0.05 ± 0.04 SE, Z = 1.07, P = 0.28). This means that 

some individuals showed longer latencies than others, while a day with a short latency in 

the evening did not predict a short latency in the morning (after accounting for between-

individual differences). 
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Figure 3. Between-individual correlations (a) between sleep onset and awakening time and (b) between 
evening and morning latency. Values were standardized within recording dates and averaged within 
individuals. Males are shown with open and females with closed circles. Points indicate means and lines 
standard errors. The size of the dots reflects the number of observations: smallest = 1-2, intermediate = 3-9, 
largest = 10-18 observations per individual. Total N=36 for females, 60 for males. (a) Regression lines for 
females (solid) and males (dashed). The slopes for males and females were not significantly different (t92 = 
0.24, P = 0.81). (b) The dashed line shows the regression line for males and females combined. 

(a) 

(b) 
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DISCUSSION 

 

Our study comprehensively describes the sleep behaviour of a population of free-living 

blue tits roosting in nestboxes. Most sleep variables changed seasonally, largely 

following changes in day length. We found additional effects of the light intensity near 

the roosting site (nestbox) on awakening time and evening latency. Males generally slept 

less than females by starting to sleep later and waking up earlier. This pattern was most 

pronounced in the early breeding season. First-year birds left the nestbox on average later 

than adults and they spent a greater proportion of the night awake, but overall they did 

not differ from adults in their sleep duration. Repeated measurements of the same 

individuals revealed a significant repeatability of the majority of sleep parameters, 

suggesting that sleep behaviour is an individual-specific trait. 

 

Our results are restricted to individuals that used artificial nestboxes for roosting. 

Although there were ample free boxes available for roosting, a substantial proportion of 

the population did not roost in a nestbox. We do not know where these birds roosted, and 

we cannot exclude that their sleeping behaviour differed from birds that roosted in boxes. 

In this population, the risk of predation inside the nestbox is essentially zero, there is 

negligible intra- and inter-specific competition for nestboxes (an excess of boxes with 

small entrance hole excluding most other species is available in the study site), and birds 

are relatively well-protected from weather conditions. Hence, it can be expected that 

sleep disturbance is minimal in nestboxes, and this could affect the quality and quantity 

of sleep. Information on sleep behaviour of blue tits outside nestboxes is not available, 

and is difficult to obtain. 

 

Seasonal Changes and Light Effects 

Sleep onset and awakening time of blue tits were strongly related to sunset and sunrise. It 

is likely that light intensity itself functions as the main Zeitgeber. This is supported by 

our observation that light intensity in the morning predicted awakening time. Blue tits 

slept longest in December and January when the days were shortest, and progressively 
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slept less with increasing day length. Over the course of the study, sleep duration 

decreased by about five hours. This suggests that blue tits can tolerate a large range of 

sleep durations. We did not find evidence that blue tits compensated for the varying 

length of the night, for example by adjusting the amount of time they spent awake while 

in the nestbox. On the contrary, we observed a higher frequency of night-time 

awakenings in the early breeding season when nights became shorter compared to mid-

winter. Thus, blue tits seemed to have less continuous sleep at the beginning of the 

breeding season. 

 

As shown for migrating passerines, birds are indeed capable of dramatically reducing 

their daily amount of sleep, at least during migration, without showing typical 

consequences of sleep deprivation (Rattenborg et al. 2004). To cope with changing sleep 

duration blue tits could possibly adjust the depth of their sleep. Differences in sleep depth 

have already been observed in other species: blackbirds showed deeper sleep towards the 

end of the night, as measured by arousal thresholds (Szymczak et al. 1996) and king 

penguins, Aptenodytes patagonicus, increased sleep depth in the afternoon compared to 

the morning (Dewasmes and Loos 2002). However, white-crowned sparrows, 

Zonotrichia leucophrys gambelii, did not compensate for the reduction of sleep during 

migratory nights by increased sleep depth (Rattenborg et al. 2004). 

 

Similar to mammals, birds show SWS and REM sleep that are unequally distributed 

across the night (Szymczak et al. 1993; Rattenborg et al. 2000). Each sleep state might 

serve a different function (Siegel 2005). When reducing the total amount of sleep, birds 

could change the proportion of these two states if one is more important for health or 

survival than the other. After short-term sleep deprivation pigeons, Columbia livia, 

showed a slight increase in REM sleep and a more frequent switching between SWS and 

REM sleep during the recovery night (Tobler and Borbely 1988; Martinez-Gonzalez et al. 

2008). This shows that birds are able to alter sleep composition, at least in response to 

sleep deprivation. 
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In theory, birds could also compensate for varying sleep duration at night by periods of 

sleep during daytime. This is perhaps unlikely, because birds in general are monophasic 

sleepers (except for some shorebirds and waterfowl), who spend a distinct proportion of 

the 24h day asleep (Amlaner and Ball 1983). In blackbirds, diurnal sleep was extremely 

rarely seen (Szymczak et al. 1996). However, during periods of nocturnal migration 

Swainson’s thrushes were shown to increase their daytime sleep as a response to reduced 

night-time sleep (Fuchs et al. 2006). We cannot exclude that blue tits slept outside the 

nestbox or in other nestboxes during daytime, but we never observed a blue tit sleeping in 

a nestbox during day (based on full daytime recordings on four recording sessions). 

 

Meddis (1975) proposed that sleep is little more than a spare time activity which enforces 

inactivity during times of the day when it would be dangerous and/or energetically 

unproductive to be active. If indeed blue tits seek the secure shelter of a nestbox as soon 

as it gets too dark to orientate or engage in other activities such as foraging, one would 

expect that birds always enter the nestboxes at approximately the same light intensity. 

However, this was not the case. In mid-winter (November-January) birds entered and 

started to sleep when there was almost no detectable light, whereas later in the year birds 

entered the nestboxes before sunset when light intensity was still relatively high. This 

suggests that birds might be forced to expand their activities beyond the short winter 

days, most likely to obtain enough food to survive the night.  

 

Most blue tits woke up before sunrise, independently of the season, which is in agreement 

with observations on other birds including the closely related great tit (Hinde 1952; 

Dunnett and Hinde 1953; Fisler 1962). Like our blue tits, great tits started to sleep earlier 

relative to sunset in spring than in mid-winter. Weather conditions also seemed to 

influence the decision of a bird to start roosting or to wake up, but this may be because of 

the association with variation in light intensity (Dunnett and Hinde 1953; Davis 1958). 

We observed the largest differences in relative sleep onset or relative time of waking up 

between two consecutive nights when weather conditions changed. Rain or snowfall 

resulted in earlier roost times and later wakeup times in connection with low light 

intensities.  
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In contrast to Wellmann and Downs (2009), who found no significant effect of 

temperature on the amount of sleep in three songbird species held in captivity, we found 

that changes in sleep behaviour of blue tits between two consecutive nights were related 

to changes in mean night temperature. We observed more nocturnal awakenings in 

warmer nights, as well as longer evening and morning latencies. However, the latter 

could also be influenced by weather or light conditions, because overcast and rainy nights 

were warmer than clear nights within the same recording session.  

 

Unexpectedly, birds that roosted in nestboxes that received comparatively little light in 

the evening had longer sleep latencies. We had expected a positive correlation, under the 

hypothesis that the absence of light triggers the onset of sleep and the appearance of light 

triggers awakening. Birds that entered darker nestboxes should therefore spend less time 

awake in the box before sleep onset. This was obviously not the case. Why latency to 

sleep correlated negatively with light intensity remains puzzling. 

 

Sex and Age 

Our results clearly show that sleep behaviour is sex dependent. Males started to sleep 

later and woke up earlier than females and consequently males slept less per night. There 

are at least three explanations for a sex effect on sleep behaviour. (1) Male and female 

blue tits might have different sleep requirements, because of sex differences in 

physiology or in daytime activities. During the early breeding season, for example, 

females might have higher sleep requirements, because their bodies start to prepare 

physiologically for the energy demanding egg production and incubation. If females 

spend more time foraging and can obtain sufficient food faster, they could spend more 

time sleeping. (2) Males and females may differ in the quality of their sleep. For example, 

males might wake up less often during the night, or they might spend different 

proportions of their sleep time in the two sleep states. Indeed, we found that females were 

awake during the night slightly longer than males. However, after subtracting the amount 

of time spent awake per night from total sleep duration, males still slept significantly less 

than females. (3) Males and females may face different trade-offs with other activities. 
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The sex difference in total sleep duration was most obvious at the beginning of the 

breeding season, when male-male competition is most intense. Males need to establish 

and defend territories and they sing in the early morning (dawn chorus), particularly 

when their mate is fertile. Activities such as dawn song can already be performed early in 

the morning, at times when it may not be bright enough to forage efficiently (Verner 

1965). Females spent more time in the nestbox after waking up (P = 0.05), which also 

supports the idea that males need more time to engage in other activities, such as singing 

and territory defence. 

 

Yearlings woke up only slightly later than adults, but spent considerably more time in the 

nestbox and hence flew out later compared to adult birds. This pattern was also seen in a 

longitudinal analysis of the same individuals in different years. Although one would 

expect that first-year birds need more time to forage than adult birds (e.g. because of 

differences in experience and dominance), they may also face different trade-offs (e.g. 

higher risk of predation). We often observed individuals spending a considerable amount 

of time sitting at the entrance hole looking out and jumping back and forth between the 

entrance hole and the bottom of the box before eventually flying out. The effect of age on 

awakening and leaving time was only observed during winter and decreased towards the 

breeding season. These effects were also present when only males were considered, 

which is surprising, given that Poesel et al. (2006) showed that, during the breeding 

season, adult male blue tits started their dawn song earlier than yearling males. Males that 

began to sing earlier were more likely to gain extra-pair paternity and had more mating 

partners, increasing their reproductive success (Poesel et al. 2006). This suggests that 

awakening time or at least the time of leaving the nestbox may be influenced by sexual 

selection. 

 

Sleep duration was unaffected by age, at least when comparing yearlings and adults. 

Apparently, first-year blue tits do not have different sleep requirements than adult birds. 

However, there might be an age effect on sleep behaviour earlier in life (before the first 

winter), or later in life (as observed in humans; e.g. Hume et al. 1998; Kronholm et al. 

2006). In our study population yearlings seemed to have a more interrupted sleep than 
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older birds, since they spent a significantly larger proportion of the night awake and had 

shorter continuous sleep bouts. 

 

Individual Consistency in Sleeping Behaviour 

Despite strong effects of environmental factors on sleep behaviour in blue tits, we also 

found consistent variation between individuals in all investigated sleep parameters. Time 

of sleep onset differed as much as 56 min between individual males and 45 min between 

individual females. Similarly, individual variation in awakening time amounted to about 

37 min in males and 41 min in females on a given day. Previous work also described 

substantial inter-individual differences in nightly resting times in blue and great tits. For 

example, Dunnett and Hinde (1953) studied four blue tits in aviaries and observed a 

range in emergence time from the nestbox of about half an hour on a given morning. 

Field observations by Hinde (1952) revealed differences of 35 min in roosting times 

(entering the nestbox) for both blue tits (N = 11) and great tits (N = 11-23) during a 

particular evening, and differences in emergence time (leaving the nestbox) of 14 min for 

blue tits (N = 3-6 individuals) and 18 min for great tits (N = 3-15 individuals) on a given 

morning.  

 

In humans, it is well-known that individuals vary dramatically in their daily sleep 

duration (Aeschbach et al. 2001; Aeschbach et al. 2003; Van Dongen et al. 2005), with 

short sleepers sleeping less than six hours and long sleepers more than nine hours. There 

is also variation in the preferred sleep timing, usually referred to as ‘morningness’ and 

‘eveningness’ (Kerkhof 1985; Van Dongen et al. 2005), although this may partly be due 

to social and cultural factors. We did not find evidence for the existence of morning or 

evening types in our population of blue tits. Instead, we found that relatively late sleep 

onset was linked with early awakening times and vice versa, both between and within 

individuals. This suggests that variation in the duration of sleep is more important, with 

populations consisting of long and short sleepers.  

 

Most phenotypic sleep traits we investigated were highly repeatable within individuals 

and might therefore be regarded as ‘personality’ traits (Réale et al. 2007). The regulation 
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of sleep and sleep timing might be genetically determined or related to individual quality 

or long-term condition. There is general agreement that sleep regulation has a 

homeostatic and a genetic basis (Dijk and Czeisler 1995; Andretic et al. 2008; Vassalli 

and Dijk 2009). Sleep patterns in humans are not only repeatable but also heritable, as 

indicated by twin and family-based studies. For example, de Castro (2002) found that 

genetic influences on sleep patterns accounted for 21-41% of the variance. Klei et al. 

(2005) reported heritabilities of 12-29% for different sleep measures and Gottlieb et al. 

(2007) provided heritability estimates of 17-22% for sleep duration and bed time. 

Obviously, whether sleep behaviour is also heritable in birds remains to be shown.  

 

Causes and Consequences of Variation in Sleep Behaviour 

Further study is required to understand the causes and consequences of variation in sleep 

behaviour in natural populations of animals. For example, sleep demand could be 

condition-dependent, or dependent on daytime activity. Beginning to sleep early and 

waking up late may be costly in terms of lost opportunities, during winter when foraging 

time is limited, or during the breeding season when competition for mates and territories 

takes place.  

 

Some of the variation in sleep duration may be explained by variation in infestation with 

parasites. As shown in great tits, females in nests that were experimentally infested with 

ectoparasitic hen fleas increased their investment in nest sanitation at a cost of sleep 

duration compared to females in non-infested nests (Christe et al. 1996). On the other 

hand, total sleep duration increased during infection in animals, including humans 

(Bryant et al. 2004).  

 

In our study, most blue tits slept in nestboxes without any nest material, which may have 

reduced the number of ectoparasites. During handling in winter or during the nestling 

phase, we did not observe any parasites except feather mites, but a more detailed study on 

the effect of ectoparasites on sleep in blue tits would be useful. We would expect that 

ectoparasite presence or prevalence particularly influences the frequency or duration of 

the awake phases that interrupted sleep. These phases were usually rather short, only a 
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few seconds, but they could last up to about 20 min. The number of times an individual 

woke up within one night varied considerably (see Results). Birds often scratched or 

preened during these awake phases, suggesting that the total amount of time spent awake 

at night may be associated with parasite infestation. We note that the time an individual 

spent awake at night was the least repeatable of all tested sleep parameters, suggesting it 

may be more influenced by external factors such as parasite load or daytime activity 

levels.  

 

Our results show that sleep duration of the same individuals also varied from one night to 

the next. It would be interesting to test whether this was related to daytime activity levels 

or to the amount of sleep acquired in previous nights (Horne and Minard 1985; Tobler 

and Borbely 1988; Driver and Taylor 2000).  

 

Conclusion 

This study shows that environmental factors (season, local light conditions and 

temperature) predict sleep parameters in free-living blue tits. Several aspects of sleep 

behaviour, in particular overall sleep duration, differed between males and females, or 

were dependent on the age of the individual. This might reflect sex- or age-dependent 

trade-offs between sleep and other activities. We found consistent variation between 

individuals in their sleep behaviour, suggesting that sleep behaviour is an individual-

specific trait. It remains to be investigated to what extent these sleep patterns are heritable 

and whether and how sleep behaviour is related to other individual life-history traits and 

to fitness. Different sleep traits could be advantageous under different environmental 

conditions, or they could reflect individual health or quality.  
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Chapter Two 
________________________________________________________________________ 

Individual variation in sleep-wake rhythms in free-living birds 
 

 

Jakob C. Mueller, Corinna Steinmeyer and Bart Kempenaers 

 

ABSTRACT 

 

Ultradian rhythms such as sleep-wake periodicities during the night might represent basic rest-

activity cycles of organisms. However, in contrast to circadian rhythms, little is known about the 

underlying oscillators and molecular mechanisms of such rhythms. A fundamental step for the 

understanding of the mechanisms is the analysis of variation in sleep-wake cycles in free-living 

animals, which can help in estimating the relative importance of genetic and environmental 

influence on the rhythmicity. We analysed variation in the level of rhythmicity and period length 

in a natural population of blue tits (Cyanistes caeruleus). Our results indicate that the expression 

of periodicity in sleep-wake patterns, but not the period length, has a strong individual-specific 

basis. Within-individual repeatability estimates of periodicity ranged between 25 and 45% when 

data from males and females were combined. In addition, periodicity was influenced by specific 

environmental factors such as night temperature, season, and age of the individual. Most 

strikingly, decreasing night temperature negatively affected periodicity of sleep-wake patterns, 

potentially via a hypothermic response of the birds. Our results further suggest that period length 

is influenced by photoperiod. Blue tits showed longer sleep-wake rhythms when the nights were 

longer. These observations are consistent with a genetic basis for the incidence of rhythmic sleep-

wake behaviour in addition to environmental modifications of their specific expression. 

 

__________ 
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INTRODUCTION 

 

Much of the daily behaviour of animals as well as the underlying physiological processes 

show a rhythmic pattern. This rhythmicity can be categorized into circadian with a period 

length of around 24 hours and ultradian with a period length of less than 24 hours.  

Whereas circadian rhythms have been extensively studied, less attention has been 

devoted to ultradian rhythms. Most short-term rhythms differ from circadian rhythms in 

that they do not correspond to any known environmental periodicity (D’Olimpio and 

Renzi 1998). Hence, a pure endogenous control of ultradian rhythms has been proposed 

(Daan and Aschoff 1981; Wollnik 1989) and a genetic basis of short-term rhythms has 

been detected in mice (Dowse et al. 2010; Pasquali et al. 2010) and rats (Buettner and 

Wollnik 1984; Wollnik et al. 1987). Ultradian rhythms sometimes display remarkably 

precise oscillatory features and are important components in the temporal organization of 

behaviour (Daan and Aschoff 1981). Typical examples are the repetition of rapid eye 

movements (REM) approximately every 90 minutes during sleep in adult humans (Pace-

Schott and Hobson 2002) and locomotor activity patterns in voles with a period length of 

2-3 hours (Gerkema et al. 1990) and in mice with periods of 3-5 hours (Dowse et al. 

2010). It has been suggested that ultradian periodicity is controlled independently of 

circadian rhythms (Wollnik 1989; Dowse 2008), but it has also been argued that these 

short-period oscillators could represent the actual frequency standard of the circadian 

clock system, in particular because clocks with shorter oscillator periods perform more 

precisely (Paetkau et al. 2006; Dowse et al. 2010). The neural pacemaker system and the 

molecular mechanism of ultradian clocks, however, are largely unknown (Gerkema and 

Daan 1985; Pace-Schott and Hobson 2002).  

 

Although prominent in many biological systems, there is little known about the possible 

function of ultradian rhythmicity. In voles, the ultradian feeding and activity rhythms are 

adjusted to provide optimal timing of food intake and digestive pauses (Daan and 

Slopsema 1978). Also in voles, ultradian activity patterns are synchronized among 

conspecifics in order to reduce individual predation risk (Daan and Aschoff 1981). 

Moreover, the level of social synchronization and spatial cohesion was linked to the 
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presence of distinct ultradian rhythmicity in group activity of Japanese quails (Coturnix 

japonica) (Lumineau et al. 2001; Formanek et al. 2009). In the context of sleep it has 

been argued that frequent shifts between sleep phases with low and high arousal 

thresholds allow a periodic screening of the sleep environment for danger signals (Voss 

2004). Indeed, behavioural reactivity, arousability and attention changes over the 

NREM/REM cycle with deep SWS and phasic REM sleep being the most vulnerable 

periods of sleep (Voss 2004). Activity rhythms during the day may also be related to 

sleep rhythms at night. These basic rest-activity cycles are considered relics from early 

ontogenetic feeding and rest cycles (Kleitman 1982; D’Olimpio and Renzi 1998). If true, 

the functional significance of nighttime rhythms needs to be considered in the context of 

daytime periodicities, such as variation in the timing of feeding or vigilance (Romeijn 

and Van Someren 2011).  

 

Most studies on sleep and its function have been conducted on humans or on captive 

mammals, but little is known about the pattern and function of sleep cycles in free-living 

animals. Studying sleep in free-living animals under natural conditions may be important, 

because it has been shown that sleep behaviour of animals observed in captivity can 

differ substantially from behaviour shown in the natural environment (Rattenborg et al. 

2008). Under natural conditions, intrinsic ultradian behavioural cycles of a day-active 

animal might best be studied during the night when there is little locomotor activity and 

little interaction with conspecifics. Also the night environment appears to be relatively 

homogeneous in temperature and light conditions. In a previous study we described that 

sleep in a free-living population of the blue tit Cyanistes caeruleus, a small passerine 

bird, is organized as short sleep bouts with regular interspersed awakenings (Steinmeyer 

et al. 2010). Here, we examine 1) whether these awakenings appear in a rhythmic fashion 

with an ultradian period length, 2) whether rhythmicity and period length are individually 

repeatable, 3) whether there are sex- or age-specific differences in rhythm parameters, 

and 4) whether and how environmental parameters influence ultradian periodicity. We 

calculate repeatability, a measure of the relative amount of between-individual variation, 

and use it as an indication of the relative significance of genetic versus environmental 

influence on rhythmicity.  
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METHODS 

 

Study site and general field procedures 

The study was carried out between January 2008 and April 2009 in a wild population of 

blue tits in a natural reserve in southern Germany (Westerholz, 48°08’N, 10°53’E). The 

study site with 277 wooden nestboxes is situated in a mixed deciduous forest with many 

oak trees (Quercus sp.). Adult birds were caught inside the nestboxes in winter 

(November – February) during monthly checks at night and once during nestling feeding 

(May – June) when chicks were nine to eleven days old. We banded each bird with a 

numbered metal band of the German ringing scheme and a unique combination of three 

plastic bands. We determined the age of the birds by comparing the coloration of primary 

and secondary coverts and classified individuals as yearlings or older (Svensson 1992). 

Upon first catch, we implanted each bird with a RFID transponder and took a 10-50 µl 

blood sample from the brachial vein for genetic sexing according to Griffiths et al. 

(1998). 

 

Recording sleep behaviour and night temperature 

To monitor sleep behaviour we recorded blue tits roosting in nestboxes with infrared-

sensitive cameras monthly for two consecutive nights in the winters 2008 (January – 

March) and 2008/2009 (November – April). Cameras were attached to the nestbox lid, 

illuminated by six infrared light LEDs with a peak wavelength of 940 nm and connected 

to a small digital recorder that was programmed to record between an hour before sunset 

and an hour after sunrise. Dataloggers on top of each nestbox recorded temperature at 1 

min intervals. We used mean temperature between sleep start and sleep end of the 

corresponding bird as night temperature. Each night the identity of the sleeping bird was 

determined with a hand-held RFID transponder reader from outside the nestbox. 

Wakeups occurred in 37 % of these identity checks and were discarded from the data. 

 

When a bird showed the classical sleep position with the beak pointing backwards and 

tucked under the scapulars and the feathers fluffed we considered it asleep (Amlaner and 
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Ball 1983). Awake birds were usually moving the head, moving around in the nestbox or 

actively sorting feathers or preening and were therefore easy to distinguish from sleeping 

birds. We defined sleep onset as the time when the first sleep bout of at least 30 sec 

started and awakening time as the time when the last sleep bout of minimum 10 sec 

ended. Nocturnal awakenings had to last a minimum of 2 sec to be counted and be 

separated by at least 10 sec of sleep to be considered as individual wake phases. For a 

more detailed description of the recording and analysis of the sleep behaviour see 

Steinmeyer et al. (2010). 

 

Spectral and statistical analyses 

We transformed the behavioural sleep data of each recorded night into a time series of 

“proportion awake per minute interval”. Hence a single night consists of between 582 

(9.7 h) and 930 (15.5 h) time sampling intervals. Before analysis we discarded 15 

datapoints each at the beginning and at the end of the night, in order to exclude 

behavioural patterns associated with falling asleep and waking up. We used the R 

package (R Development Core Team 2011) to plot the data, to calculate autocorrelations 

and to estimate spectral densities of the time series by periodograms. The periodograms 

are calculated using a fast Fourier transformation and smoothed by moving averages of 

10 adjacent spikes. Period lengths in rhythmic nights (see definition below) were 

estimated using maximum entropy spectral analysis (MESA) (Burg 1967) implemented 

in a Fortran program (Dowse 2007). Prediction error filter coefficient was set to 90. 

MESA is described as a high resolution technique that is well-suited to short noisy time 

series (Dowse 2009; Dowse et al. 2010).  

 

For each night and each individual, we classified the sleep behaviour as rhythmic or 

arrhythmic based on the following 2 criteria. Criterion 1 considers a night significantly 

rhythmic if the maximal observed spectral density outranges the maximal spectral 

densities from 1000 data permutations of the same night. Criterion 2 is more stringent 

and uses as a significance threshold for highly rhythmic nights two times the maximal 

spectral density of the permutations. This latter criterion highly correlates with a visual 

categorization of the periodograms into those with a single major periodicity (single 
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strong peak) and into those with noisy rhythms. We employed the maximal spectral 

density of the periodogram as a measure of the clarity in periodicity, because it relates to 

the variance explained by a single frequency.  

 

Repeatabilities (general between years, months and days) of periodicity parameters for 

individual blue tits were calculated with the R package rptR (Nakagawa and Schielzeth 

2010) and lme4 (Bates et al. 2011). For Gaussian data (e.g. spectral density and period 

length) we estimated repeatability by a LMM-based procedure using REML, its 95% 

confidence intervals by parametric bootstrapping (1000 runs) and significance by a 

likelihood ratio test. For binary data (e.g. categorization into rhythmic and arrhythmic 

nights according to criteria 1 and 2), with dispersion parameter fixed to 1, we calculated 

the residual variance as π2/3 (Nakagawa and Schielzeth 2010). We calculated 

approximate confidence intervals of repeatability estimates in binary models according to 

formulae (6) and (7) in Nakagawa and Schielzeth (2010). All estimates were adjusted for 

potential confounding factors by including sex, age, temperature and seasonal date (linear 

and quadratic term) as fixed variables and date and nestbox as random factors. Seasonal 

date is defined as increasing day numbers starting from November 4th in each of the two 

study periods. 

 

We fitted generalized linear mixed models to test the effects of sex, age (yearlings, 

adults), night temperature and seasonal date plus all interactions with sex using the R 

packages lme4 (Bates et al. 2011) and languageR (Baayen 2011). We included seasonal 

date (see definition above) with linear and quadratic term to consider potential effects of 

non-linear photoperiod changes. Seasonal date and temperature were centered prior to 

analysis. All models included date, nestbox and individual ID as random factors to 

account for random temporal and spatial effects and to avoid pseudoreplication.  We 

report odds ratios with 95 % confidence intervals for the logistic regressions and 

unstandardized regression coefficients with 95% highest probability density intervals for 

the linear regressions. The latter were estimated by MCMC sampling of 10000 runs. An 

extended model for testing the specific effect of perceived risk on periodicity also 
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included the yes-no categorization into nights where the bird did or did not wake up due 

to the identity check. 

 

RESULTS 

 

Rhythmicity 

We recorded 129 nights for a total of 36 females and found significant rhythmicity of 

sleep in 108 nights (84 %) in comparison to permutated data (crit. 1). Following the more 

stringent criteria (crit. 2), 57 nights (44 %) appeared as highly rhythmic. All females 

except one showed at least one rhythmic night (crit. 1) and 25 females had at least one 

highly rhythmic night (crit. 2). We recorded 335 nights for 58 males in total, of which 

271 nights (81 %) were significantly rhythmic (crit. 1) and 133 nights (40 %) were highly 

rhythmic (crit. 2). All males but two showed at least one rhythmic night (crit. 1) and 44 

males had at least one highly rhythmic night (crit. 2). Rhythmic and arrhythmic nights 

differ in many aspects (compare figures 1 A and C): rhythmic nights show longer awake 

bouts, regularly alternating positive and negative correlation coefficients in the 

autocorrelogram and high spectral densities at specific frequencies/periods, whereas 

arrhythmic nights have in general fewer and shorter awake bouts. Average frequency of 

awakenings equals 3.1 and 4.2 per hour and duration of awakenings equals 15 and 27 sec 

in arrhythmic and rhythmic nights according to crit. 1, respectively. These differences are 

significant: Welch two sample t-tests, P<0.0001. 

 

All repeatability estimates of rhythmicity for individual birds were significant (table 1). 

This holds true both for the categorizations into (highly) rhythmic and arrhythmic nights 

(according to crit. 1 and 2) and for the quantitative measure of spectral density. All three 

measures are highly inter-correlated and are suggestive of the same interpretation, i.e. a 

strong individually-based component in periodicity. Repeatability estimates for females 

were slightly higher than those for males, but this was not significant (all P > 0.05; t-test 

for R value difference after Fisher’s z transformation). 
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Figure 1. Sleep-awake patterns and corresponding autocorrelograms, periodograms and MESA 
spectrograms (in this order from top to bottom) of A) a rhythmic night (February 28th 2008 of female 
B2V8439), B) the permuted data of the same rhythmic night, and C) an arrhythmic night (December 11th 
2008 of male B1P5982). For the latter, periodogram and MESA is shown with enlarged ordinate scales. 
The simple confidence intervals of the autocorrelograms are based on the assumption of uncorrelated series 
with no correction for multiple testing. 
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We found a strong temperature effect on rhythmicity (table 2). A one-degree increase in 

midnight temperature increased the odds (i.e. the relative chance) of having rhythmic 

nights by 48 or 23 % for the two definitions of periodicity (crit. 1 or 2), respectively. 

Similarly, spectral density, a basic quantitative component of the categorization into 

rhythmic sleep behaviour, also showed a positive correlation with temperature.  In 

addition there was a linear seasonal effect on periodicity with an estimated 3 % decrease 

per day of the odds of showing rhythmic nights (table 2). For spectral density we also 

found that adults showed fewer rhythmic nights than yearlings (table 2). Periodicity was 

independent of sex (table 2). None of the interactions between sex and age, temperature 

or seasonal date was significant (not shown; all p-values > 0.05). We did not find an 

effect of wakeups during the nestbox checks on periodicity in the extended model (see 

methods). 

 

 

 
Table 1 
Repeatability (R) and 95% CI of periodicity parameters for individual blue tits 

 All   Males   Females  
Periodicity 
parameter 

Nights 
(Individuals) 

R (CI)  Nights 
(Individuals) 

R (CI)  Nights 
(Individuals) 

R (CI) 

Rhythmicity 
(crit.1)a d 

442 (92) 0.45 **** 
(0.35 - 0.55) 

 317 (56) 0.39 ** 
(0.26 - 0.52) 

 125 (36) 0.54 ** 
(0.36 - 0.72) 

Rhythmicity 
(crit.2)a d 

442 (92) 0.31 **** 
(0.21 - 0.42) 

 317 (56) 0.29 **  
(0.17 - 0.42) 

 125 (36) 0.40 *  
(0.20 - 0.60) 

Spectral  
density b 

442 (92) 0.25 **** 
(0.14 - 0.35) 

 317 (56) 0.19 *** 
(0.04 - 0.33) 

 125(36) 0.35 ****  
(0.21 - 0.50) 

Period length 
(crit.1)c 

347 (89) 0.09  
(0 - 0.15) 

 247 (54)  0 
(0 - 0.08) 

 100 (35) 0.14 
(0 - 0.36) 

Period length 
(crit.2)c 

171 (67) 0.07 
(0 - 0.23) 

 119 (43) 0 
(0 - 0.18) 

 52 (24) 0  
(0 - 0.47) 

* P<0.05; ** P<0.01; *** P<0.001; **** P<0.0001; estimates are adjusted for potential confounding 
variables (see methods); sample sizes here can differ from total nights recorded due to few missing values 
in the confounding variables; a categorization into rhythmic and arrhythmic nights according to criteria 1 or 
2 (see methods); b log-transformed; c only rhythmic nights according to the indicated criteria; d logit scale 
repeatability estimates; significant results in bold. 
 

 

 



  Chapter Two 78 

 
Table 2  
Effects of sex, age, temperature and seasonal date on sleep periodicity parameters. Odds ratios with 95% 
confidence intervals (in brackets) are given for the categorical response variables (rhythmicity according to 
criteria 1 and 2). Note that an odds ratio of 1 would indicate no effect. MCMC regression coefficients with 
95% highest probability density intervals are given for the continuous response variables (spectral density, 
period lengths) 

Periodicity 
parameter 

Sexfemale Ageadults Temperature Seasonal date (Seasonal date)2  

Rhythmicity 
(crit.1) 

0.69 
(0.02 - 23.45) 

0.57 
(0.14 - 2.23) 

1.48 *** 
(1.21 - 1.81) 

0.97 ** 
(0.96 - 0.99) 

0.99 
(0.99 - 1.00) 

Rhythmicity 
(crit.2) 

1.46 
(0.24 - 8.91) 

0.73 
(0.31 - 1.71) 

1.23 **** 
(1.11 - 1.36) 

0.99 
(0.98 - 1.00) 

0.99 
(0.99 -1.00) 

Spectral 
densitya 

0.15 
(-0.65 - 0.91) 

-0.46 * 
(-0.81 - -0.08) 

0.16 **** 
(0.09 - 0.23) 

-0.01 * 
(-0.01 - -0.0004) 

-0.0001 
(-0.0002 - 0.0001) 

Period length 
(crit.1) 

-0.05 
(-0.30 - 0.19) 

0.05 
(-0.06 - 0.16) 

0.01 
(-0.01 - 0.03) 

-0.002 ** 
(-0.004 - -0.001) 

-0.00004 * 
(-0.0001 - -0.00001) 

Period length 
(crit.2) 

-0.14 
(-0.52 - 0.19) 

-0.02 
(-0.19 - 0.14) 

0.002 
(-0.028 - 0.031) 

-0.003 * 
(-0.005 - -0.0003) 

-0.00004 
(-0.0001 - 0.0000) 

* P<0.05; ** P<0.01; *** P<0.001; **** P<0.0001; for sample sizes see table 1; all models included date, 
nestbox and ID as random factors; a log-transformed; significant results in bold. 
 

 

Period length 

Among the subset of significantly rhythmic nights, we found major period length 

estimates ranging between 0.9 and 6.2 hours with an accumulation around the median at 

2.2 hours (see figure 2). After visual inspection of the data, we discarded the 16 nights 

(from 14 individuals) with outlying period lengths of more than 4 hours for further 

analyses, because of their complex patterns with mostly multiple periods. The remaining 

nights had a median period length of 2.14 hours with 5 % and 95 % quantiles of 1.49 and 

2.83 hours, respectively. The subset of highly rhythmic nights (crit.2) showed a median 

period length of 2.21 hours with 5% and 95% quantiles of 1.54 and 2.94 hours, 

respectively. Repeatability of period length in rhythmic nights for individual birds was 

not significant, irrespective of the selection threshold used to define rhythmic nights 

(table 1). 
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Figure 2. Histogram of estimated period lengths in the rhythmic nights selected by criterion 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. Partial residual plot showing the adjusted relationship between seasonal date (linear and 
quadratic term) and period length in rhythmic nights (crit.1). Model includes sex, age, temperature and all 
interactions with sex as fixed effects and date, nestbox and ID as random effects. The black line represents 
the adjusted prediction from the full model with the linear and quadratic term of seasonal date included. 
The plotted data include multiple measurements per ID. Night length is plotted in blue.  
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Season significantly affected period length (table 2): for the subset of rhythmic nights 

according to criterion 1 both a linear and a quadratic relationship with seasonal date was 

detected. Period length decreased by an estimated 7 to 11 seconds per day while 

approaching the breeding season. Again, males and females did not significantly differ in 

period length itself, or in interaction with age, temperature or season. The relationship 

between seasonal date and period length followed a curvilinear function, whose trajectory 

resembled the variation in night length, i.e. the time period between sunset and sunrise 

(figure 3). The arousal during the nestbox checks caused a reduction in mean period 

length of 0.16 hours (subset of highly rhythmic nights; extended model; P=0.03). 

 

DISCUSSION 

 

In females and males 82.5% of the recorded nights showed a signature of periodicity in 

awake-sleep patterns and about 42% of the nights had a single clear major rhythm of 

relatively long awakening bouts (several minutes).  In addition to these regular long 

awakenings, blue tits often woke up for short periods (less than one minute) mainly in the 

first third of the night. These short awakenings were also seen in the arrhythmic nights, 

where most or all of the regular long awake phases were missing. These sleep-awake 

patterns suggest that arrhythmicity arises through an increase in sleep depth or an 

increase in arousal thresholds, thus interfering with the basic and regular sleep-awake 

rhythm. In line with this we found a strong correlation between the level of rhythmicity 

(spectral density) and the previously described sleep parameter ‘proportion of time spent 

awake’ (Steinmeyer et al. 2010) (r=0.79, P<0.0001, N=464). Phases of nocturnal 

hypothermia could alter the awakening threshold, although little is known about this 

relationship in birds (McKechnie and Lovegrove 2002). It is however known that in 

mammals circadian and ultradian rhythms in body temperature are coupled to rhythms in 

sleep and vigilance (Van Someren 2006; Romeijn and Van Someren 2011). The quite 

variable avian hypothermic responses are determined by a suite of ecological and 

physiological factors including food availability, ambient temperature, hormone levels, 

and breeding cycle (McKechnie and Lovegrove 2002). For blue tits it has been shown 
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that they can down-regulate their nocturnal body temperature by a few degrees Celsius 

during cold winter nights (Nord et al. 2009; 2011). In support of this explanation we 

found a strong relationship between night temperature and rhythmicity. On colder nights 

blue tits showed less rhythmicity coupled with fewer and shorter awake phases. In 

conclusion, rhythmicity is not a pure endogenous and fixed phenomenon, but its 

expression can be strongly modified by environmental factors such as temperature. 

 

We found an age effect on spectral density, indicating that yearlings were more rhythmic 

than adults. Birds are known to be able to modify their nocturnal hypothermic response 

(and potentially concomitantly rhythmic sleep-awake patterns) in relation to the 

perceived risk of predation. For example, when pigeons were exposed during daytime to 

a model of a flying hawk, they did not decrease their body temperature as much as 

control pigeons during the following night (Laurila and Hohtola 2005). Work on zebra 

finches (Taeniopygia guttata) suggests an effect of stress hormones on energy 

metabolism and possibly on nocturnal arousal and sleep fragmentation (Spencer and 

Verhulst 2008). Assuming that older birds are more dominant (Korsten et al. 2007) and 

more experienced, they should be able to select apparently safer roosting places than 

yearlings. Great tits, for example try to avoid roosting cavities containing traces of 

predator presence (Ekner and Tryjanowski 2008). If the perceived risk of predation is 

higher in juveniles, because suboptimal nestboxes were chosen for roosting, regular and 

frequent awakening bouts would allow a periodic screening of the sleep environment for 

danger signals. Similar concepts of the maintenance of a protective field in novel or 

unpredictable sleep environments have been described in humans (Voss 2004). Regular 

visual inspection of the environment becomes more important, if other cues (e.g. 

olfactory cues) to detect predators are less effective (Amo et al. 2011). Our extended 

model results, however, do not corroborate our hypothesis of the effect of perceived risk 

on the strength of periodicity. Arousals during identity checks did not influence 

rhythmicity, but they did affect period length. Hence, perceived risk of predation seems 

to strengthen the protective field via faster sleep-wake cycles.  
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On top of the described environmental and age effects we found a significant individual-

specific component on the level of periodicity. Repeatability estimates range between 19 

and 54% in males and females, respectively. This could indicate a genetic basis for the 

incidence of rhythmic sleep-awake behaviour. In contrast, repeatability of period length 

was estimated to be close to zero, leaving little margin for a genetic basis of period length 

in sleep-wake patterns of blue tits. These results are different from the ones observed 

among inbred mice strains kept under controlled conditions: the period length of ultradian 

rhythms, but not the power of these rhythms differed among mice strains (Dowse et al. 

2010; Pasquali et al. 2010). In rats, however, strains also differed in the incidence of 

ultradian rhythms, which was shown to be heritable by cross breeding experiments 

(Wollnik et al. 1987). There is also variation in ultradian feeding activity rhythmicity 

among Japanese quail individuals, which appears to be positively correlated with the 

circadian rhythmicity (Lumineau et al. 2001; Formanek et al. 2009). One can speculate 

that if the level of rhythmicity reflects the level of hypothermic response in winter nights, 

then individual differences in basic metabolism could underlie the significant 

repeatabilities observed in blue tits. As expected, body temperature and metabolic rate 

covary, as shown in sleeping great tits (Amo et al. 2011). In this framework the pattern of 

sleep-awake cycles could be seen as an emergent trait based on the metabolic control to 

balance energy reserves of an individual and its expenditure during the night. Measures 

of resting metabolic rates are highly heritable in blue tits (Nilsson et al. 2009) and are 

expected to be related to other physiological, behavioural or life history traits as proposed 

by the pace-of-life syndrome concept (Reale et al. 2010). Further studies are needed to 

analyze the relationship between sleep-awake patterns and metabolic rate. 

 

Very little is known about seasonal effects on ultradian rhythmicity in animals. For 

instance in free-living common voles (Microtus arvalis) a 2h-rhythm in day-time activity 

was evident in winter, but not during the breeding season in summer (Hoogenboom et al. 

1984). Similarly, we found slightly more blue tits rhythmically sleeping in winter than in 

spring after adjustment for temperature. This pattern mainly arose by a decrease of 

rhythmic nights in March and April. Further analysis is needed to clarify whether this 



Chapter Two   83

pattern represents compensation for shorter nights or to physiological changes when 

approaching the breeding season. 

 

Interestingly, period length in rhythmic birds covaried with photoperiod. Birds sleeping 

in shorter nights had shorter sleep-awake rhythms than birds sleeping in longer nights. A 

similar seasonal trajectory was observed for sleep duration (Steinmeyer et al. 2010). The 

change in predicted period length, however, did not completely compensate night length 

in a way that all nights would show the same number of sleep-awake cycles. Our results 

indicate that photoperiod length or light intensity may play a role in the control of 

ultradian periodicity, potentially via an interaction between light and neuronal 

components of the circadian system. A recent study in the social vole (Microtus socialis) 

revealed significant ultradian rhythms in metabolic rate with period length being 

inversely related to irradiance level during the photophase (Zubidat et al. 2010). A similar 

influence of light intensity on ultradian patterns of activity was found in the leaf-eared 

mice (Phyllotis xanthopygus) (Kramer and Birney 2001). Also in red deer (Cervus 

elaphus) higher frequencies in activity and feeding rhythms were found in spring, 

summer and autumn compared to winter (Berger et al. 2002). 

 

Estimated period lengths of the sleep-wake rhythms were variable with a median of 2.14 

hours for the rhythmic nights and 2.21 hours for the highly rhythmic nights. Ultradian 

periodicities of different behavioural traits have been reported with periods between 

about 1 hour and up to about 18 hours (Kleitman 1982; Dowse et al. 2010). Sleep-wake 

cycles in Drosophila with periodicities of 1.4 and 2.2 hours were regulated in a sex-

dependent manner by diet (Catterson et al. 2010). In birds only little information about 

ultradian periodicity is available. Japanese quails showed a feeding activity rhythm with a 

period of approximately 40 min (Lumineau et al. 2001; Formanek et al. 2009). Barn owl 

(Tyto alba) nestlings changed period length of their rest/activity rhythms with age in the 

range between 2 and 12 hours (Wuntke 2003). We can only speculate about the 

significance of finding period lengths of about 2 hours, as there is nothing known about 

the molecular basis of the ultradian clock. The observed sleep-wake cycles could reflect 

basic rest-activity cycles, which are considered as a relic from early ontogenetic feeding 
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and rest cycles or NREM/REM sleep cycles (Kleitman 1982; D’Olimpio and Renzi 

1998). Zebra finches showed frequent shifts between REM (or SWS) and intermediate 

stage (IR) sleep phases, but this was in the range of seconds (Low et al. 2008). Low et al. 

(2008) also showed a rhythm between predominantly SWS and REM sleep with a period 

of about 10 – 20 mins. Thus, the detected ultradian sleep-wake cycle does not directly 

correspond with REM/SWS cycles in birds. Further studies in a single species are 

warranted to investigate whether the sleep-awake periodicity represents a multiple of the 

REM/SWS sleep periodicity.  
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Chapter Three 
________________________________________________________________________ 

Individual variation in sleep behaviour in blue tits:  

assortative mating and associations with fitness-related traits 
 

 

Corinna Steinmeyer, Jakob C. Mueller and Bart Kempenaers 

 

ABSTRACT 

 

Sleep is ubiquitous in animals, but there is great inter- and intraspecific variation in the daily 

amount of sleep that is needed. Considerable sleep loss is known to impair health and 

performance of individuals, but not much is known about the fitness consequences of naturally 

occurring variation in sleep behaviour. Here we test for assortative mating in sleep behaviour and 

for correlations between sleep phenotypes and reproductive success and survival in a free-living 

blue tit population. Partners of a breeding pair were mated assortatively in regard to their 

awakening times, but not for other sleep parameters. In female blue tits sleep parameters were not 

significantly correlated with laying date or clutch size. Females that had extra-pair young in their 

brood did not differ in awakening time, or in any other sleep parameter, compared to females 

without extra-pair young. In males, the probability of siring extra-pair young was related to sleep 

onset and sleep duration, but not as predicted. Males that began to sleep earlier and slept longer 

were more likely to sire extra-pair offspring. None of the sleep parameters were significantly 

correlated with survival of first-year birds. Our results suggest that there is no strong effect of 

variation in sleep behaviour on fitness in blue tits, at least under natural conditions. Such a 

relationship might only become evident when natural sleep patterns are disturbed, for example 

due to anthropogenic noise or light pollution. 

 

__________ 

Submitted to Journal of Avian Biology 
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INTRODUCTION 
 

Although the functions of sleep are not well understood, most researchers agree that 

sufficient daily sleep seems fundamental for well-being and health. This view is based on 

numerous studies that report on the negative consequences of sleep loss or deprivation 

(Ayas et al. 2003; Van Dongen et al. 2003; Patel et al. 2004; Vgontzas et al. 2004; 

Gottlieb et al. 2005; Spiegel et al. 2005; Gangwisch et al. 2006; Irwin et al. 2006; Lim 

and Dinges 2008; Van Cauter et al. 2008; Andersen et al. 2009; Cohen et al. 2009; Okun 

2011). It has further been shown that daily sleep duration varies tremendously between 

species. Some animals need only a few hours of sleep whereas others spend a great 

proportion of their day in the sleep state (Van Twyver and Allison 1970; 1972; Meddis 

1975; Zepelin et al. 1994; Affanni et al. 2001).  

 

Studies in humans have also shown substantial between-individual variation in sleep 

duration and other aspects of sleep behaviour such as morningness-eveningness, 

nocturnal awakenings and sleep latency (Webb and Agnew 1970; Webb and Friel 1971; 

Burazeri et al. 2003; Roenneberg et al. 2003; Kronholm et al. 2006; Cavallera and 

Giudici 2008; Ohayon 2010; Kripke et al. 2011). However, studies on natural variation in 

sleep behaviour in other species are scarce. Anderson and McGrew (1984) report on 

asynchronous awakening times in groups of free-living Guinea Baboons (Papio papio) 

with juveniles becoming active earlier than adult males and Lodwick et al. (2004) found 

variation in the duration of active periods in chimpanzees in relation to sex, rank and 

reproductive status. In birds, two studies showed that manipulation of the flea density in 

the nest led to a decrease in sleep duration in incubating female blue tits Cyanistes 

caeruleus (Tripet et al. 2002) and great tits Parus major (Christe et al. 1996). In a large-

scale study on free-living birds, we previously showed that individual blue tits vary 

consistently in several sleep parameters such as sleep onset, awakening time, sleep 

duration, evening and morning latencies and nocturnal awakenings (Steinmeyer et al. 

2010), suggesting that sleep behaviour is an individual specific trait.  
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A question that remains unaddressed – except in humans – is whether and to what extent 

individual variation in sleep behaviour has fitness consequences. There are several 

reasons why one would expect such a relationship, in general, and in blue tits in 

particular. First, studies in humans have shown that extremely short as well as very long 

sleep durations are associated with reduced longevity (Kripke et al. 2002; Burazeri et al. 

2003; Kripke et al. 2011; Kronholm et al. 2011), although this remains controversial 

(Horne 2011). Other studies showed that pregnant women suffering sleep deprivation had 

higher risks of preterm delivery and were more likely to have caesarean sections (Chang 

et al. 2010; Naghi et al. 2011). Second, in many bird species, being active early in the 

morning seems advantageous for males at least during the breeding season when 

territorial and reproductive behaviours are most prominent. For example, in blue tits and 

eastern kingbirds Tyrannus tyrannus, male success in gaining extra-pair paternity was 

associated with early dawn singing (Poesel et al. 2006; Dolan et al. 2007), and in eastern 

kingbirds early singing males were also paired to females breeding earlier in the season 

(Murphy et al. 2008) which is generally an indicator for higher breeding success. In 

accordance with the idea that sexual selection could act on being active earlier during the 

day or longer overall, we showed previously that sleep duration is on average shorter in 

male than in female blue tits, in particular closer to the breeding season (Feb-March) 

(Steinmeyer et al. 2010). If extra-pair copulations occur early in the morning we would 

expect a correlation between awakening time or sleep duration and male success in siring 

extra-pair young. 

 

Our aims in this exploratory study were twofold. First, we tested for assortative mating in 

sleep behaviour in a wild population of blue tits to investigate whether individuals with 

similar or dissimilar phenotypes mate. In human couples, partners were assortatively 

mated in regard to their morningness-eveningness preference and this was due to initial 

assortment rather than convergence after pair formation (Randler and Kretz 2011). 

Second, we investigated correlations between individual sleep phenotypes and 

reproductive success and survival of blue tits. Here we focus on sleep duration, sleep 

onset, awakening time, frequency of awakenings and proportion of time spent awake as 
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measurements of sleep behaviour, because those parameters are the ones least influenced 

by environmental conditions and directly linked to sleep. 

 

METHODS 

 

Study site and field procedures 

The study was carried out between January 2008 and June 2010 in a wild population of 

blue tits in a natural reserve in southern Germany (Westerholz, 48°08’N, 10°53’E). The 

study site (39 ha) is situated in a mixed deciduous forest and dominated by oak trees 

(Quercus sp.). In the winter of 2006, we put up 277 wooden nestboxes (dimensions: 12 x 

15 cm x 25 cm) with an entrance hole of 26 mm diameter that were readily accepted by 

blue tits for roosting during winter and for breeding. Adult birds were caught inside the 

nestboxes in winter (November – February) during monthly checks at night and once 

during nestling feeding (May – June) when chicks were nine or ten days old. We banded 

each bird with a numbered metal band of the German ringing scheme and a unique 

combination of three plastic colour bands. We determined the age of the birds by 

comparing the coloration of primary and secondary coverts and classified individuals as 

yearlings or older (Svensson 1992), measured their tarsus, wing length (3rd primary) and 

body mass and - from all new captures - we took a 10-50 µl blood sample from the 

brachial vein for genetic analyses. Each individual also received a RFID transponder 

(Biomark Inc., Boise, Idaho, U.S.A.), implanted subcutaneously between the shoulder 

blades. In the breeding season we checked all nestboxes weekly during nest building, 

daily just before and during laying and at least weekly during the nestling stage. We 

recorded laying date (date of first egg), clutch size and the number of hatchlings and 

fledglings. We banded nestlings when they were 14 days old with a metal ring, measured 

them (tarsus length and body mass) and took a 10-50 µl blood sample from the brachial 

vein for molecular sexing and paternity analysis. In addition, we collected all unhatched 

eggs and dead nestlings and extracted DNA for sexing and paternity analyses.  

 

 

 



Chapter Three   93

Recording and analysis of sleep behaviour 

A detailed description of how we recorded and analyzed sleep phenotypes can be found 

in Steinmeyer et al. (2010). In brief, we recorded blue tits roosting in nestboxes with 

infrared-sensitive cameras for two consecutive nights each month in the winters 2007-

2008 (January – March), 2008-2009 (November – April) and 2009-2010 (November – 

March). Cameras were attached to the nestbox lid, and the box illuminated by six infrared 

light LEDs with a peak wavelength of 940 nm. Each camera was connected to a digital 

recorder (Abus, TV8450) that was programmed to record between an hour before sunset 

and an hour after sunrise. We used lead-acid rechargeable batteries (Panasonic, LC-

R067R2P) as power sources for all electrical devices. 

 

From the nighttime video recordings we quantified different parameters of blue tit sleep 

behaviour and here we focus on the following: (1) sleep onset, (2) awakening time, (3) 

sleep duration, (4) frequency of awakenings per hour throughout the night and (5) the 

proportion of time spent awake per night. We considered a bird asleep when it showed 

the classical sleep position with the beak pointing backwards and tucked under the 

scapulars and the feathers fluffed (Amlaner and Ball 1983). It was easy to distinguish 

sleep from wakefulness, because awake birds were usually actively preening and moving 

around in the nestbox. We defined sleep onset as the time when the first sleep bout of at 

least 30 s started and awakening time as the time when the last sleep bout of minimum 10 

s ended. Sleep onset was highly correlated with the time of entering the nestbox in the 

evening (Pearson’s R=0.96) and awakening time was highly correlated with emergence 

time in the morning (Pearson’s R=0.80). We defined sleep duration as the period between 

awakening time and sleep onset. Nocturnal awakenings had to last a minimum of 2 s to 

be counted and be separated by at least 10 s of sleep to be considered as individual wake 

phases. We calculated the frequency of awakenings per hour by dividing the total number 

of wake phases (between sleep onset and awakening time) by the sleep duration. To 

calculate the percentage of time a bird spent awake per night we divided the sum of the 

durations of all wake phases between sleep onset and awakening time by the sleep 

duration and multiplied by 100. The frequency of awakenings and percentage of time 

spent awake was only analyzed for the winters 2007/08 and 2008/09. 
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Fitness measurements 

We measured reproductive success of all recorded individuals that bred during the 2008-

2010 breeding season. We used laying date, clutch size and the presence of extra-pair 

young in the brood as measures of female reproductive behaviour, and total number of 

sired eggs, i.e. the number of offspring sired with the social female (within-pair) plus the 

total number of extra-pair offspring sired, and extra-pair paternity gain (yes/no) as 

estimates of male reproductive success. Mean fledging mass (mass of the chicks on day 

14 averaged per brood) and fledging success of a nest (measured as the proportion of 

fledglings over the number of hatchlings) were used to estimate the reproductive 

performance of a breeding pair. Nestboxes with complete brood failure where none of the 

eggs hatched or none of the chicks fledged and second nesting attempts were excluded 

from the analyses. We also determined the survival probability of first-year birds 

(yearlings) from winter to the subsequent breeding season as a proxy for fitness. We only 

considered yearlings because the exact age of many of the adult birds was unknown and 

mortality rate changes with age (Møller and De Lope 1999; Orell and Belda 2002). 

 

Statistical analysis 

We analyzed relationships between the sleep parameters and fitness measurements from 

the subsequent breeding season. For the analyses of assortative mating and individual 

reproductive success in males and females we centered sleep parameters within recording 

date and sex by subtracting the date-specific mean from the raw values in order to 

eliminate seasonal changes and day-specific differences due to e.g. weather. For analyses 

on reproductive performance of the pair we centered sleep parameters within recording 

date for both sexes together, which allowed for obtaining differences between males and 

females in raw units of minutes. Most individuals were recorded more than once 

(mean=3.8, N=206) per winter season, so we averaged the centered values within winter 

to obtain one measurement for each bird and parameter per year. Laying date was 

centered within year for the whole breeding population (including also females that we 

did not video-record during winter). 
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All statistical tests were conducted using the free software R 2.10.0 (http://cran.r-

project.org). We tested for assortative mating using Pearson’s correlation coefficients, 

based on all breeding pairs where the sleep of both partners had been recorded. Here, we 

used centered sleep parameters because using the raw values of the measurements is 

rather difficult. First, the sleep parameters vary greatly between recording dates and 

second the differences between males and females (especially in awakening times) 

increase close to the breeding season (Steinmeyer et al. 2010). We also looked at the 

synchrony of actual awakening times between both partners of a pair for two recording 

dates separately. This was only possible for the two dates where both partners of seven 

and six pairs respectively had been recorded. On all other recording dates both partners of 

less than five breeding pairs had been recorded and the two partners of six pairs had 

never been recorded in the same night. We analyzed the effects of individual sleep 

parameters on estimates of fitness using mixed effects models (Pinheiro and Bates 2000) 

with the add-on R package lme4 (Bates et al. 2008). Males and females were analyzed 

separately, except for survival, because here the female dataset was too small for 

meaningful analysis (N=10 females). All models included the fitness measure as the 

response variable, the sleep parameters as predictors, age (yearling or adult) and year (3 

levels) as cofactors and individual identity as a random effect. 

 

We used glmm’s with binomial error structure to analyze the effect of sleep behaviour on 

1) the probability of gaining extra-pair parenthood (i.e. the presence of at least one 

offspring in a nest other than the social nest for males and the presence of at least one 

extra-pair young in the social nest for females) and 2) on survival of first-year birds. For 

fledging mass and fledging success we fitted two models: (1) using the breeding pair’s 

average sleep parameters (centered within date for both sexes) as predictors, (2) using the 

absolute difference in sleep parameters (centered within date for both sexes) of both 

partners within a pair as the predictor to estimate the effect of the pair 

similarity/dissimilarity on the success of the brood.  

 

We analyzed the frequency of awakenings and proportion of time spent awake together in 

one model and also combined sleep onset and awakening time in one model. We could 

http://cran.r-project.org/
http://cran.r-project.org/
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not analyze nocturnal awakening parameters and the other sleep parameters together in 

the same model since we had a smaller dataset for the awakening parameters (two winter 

seasons instead of three). Sleep duration was always analyzed separately since it was 

highly correlated with sleep onset (Pearson’s R=-0.86) and with awakening time 

(Pearson’s R=0.65) and therefore would lead to high collinearity in the models. We thus 

ran three separate models to test five different sleep parameters. We are aware of the 

problem of multiple testing that arises from this approach, but this is an exploratory study 

and there are no previous studies available from which we could have deduced a priori 

hypotheses. 

 

RESULTS 

 

Assortative mating for sleep behaviour 

Of all sleep parameters, only awakening time was significantly positively correlated 

between pair members (Table 1, Figure 1). Hence, early (late) awakening females were 

mated to males that also woke up relatively early (late). However, we did not find 

significant correlations between male and female actual awakening times (Pearson’s 

correlations: Rdate1=0.23, Pdate1=0.62, Ndate1=7; Rdate2=-0.58, Pdate2=0.22, Ndate2=6). 

 

 
Table 1 
Test for assortative mating for sleep behaviour: Pearson’s  
correlations between sleep parameters of pair members 

Sleep parameter R P N 

Sleep duration 0.27 0.15 29 
Sleep onset 0.20 0.30 29 
Awakening time 0.40 0.03 29 
Frequency awakenings 0.15 0.57 15 
Percentage awake 0.02 0.95 15 

 



Chapter Three   97

-10 -5 0 5 10

-1
0

-5
0

5
10

Awakening time (female)

A
w

ak
en

in
g 

tim
e 

(m
al

e)

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Awakening times of males in relation to awakening times of  
their female partner. Awakening times were centered within day and  
are plotted in minutes difference from the mean. 
 

 

Sleep behaviour and female reproductive success 

Laying date and clutch size varied significantly among years, but there was no significant 

effect of female age, nor of any of the sleep parameters (Table 2). If females that 

generally wake up earlier are more likely to engage in extra-pair copulations, we would 

expect awakening time or sleep duration to be related to extra-pair paternity. However, 

females that had extra-pair young in their nest did not differ significantly in any of the 

sleep parameters from females that did not have extra-pair young (Table 3). Neither year, 

nor female age was a significant cofactor in these models. 
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Table 2 
Influence of sleep parameters on laying date and clutch size in female blue tits 

 Laying date  Clutch size 

 Estimate SE Z P N  Estimate SE Z P N 

Intercept -2.53 1.42 -1.79 0.08 59  9.52 0.55 17.32 <0.0001 61 
Sleep duration <0.01 0.04 0.08 0.94 59  -0.01 0.02 -0.82 0.41 61 
Season 20091) 2.20 0.83 2.64 0.01 59  1.16 0.39 2.95 0.005 61 
Season 20101) 0.15 0.97 0.15 0.88 59  0.48 0.42 1.12 0.27 61 
Age2) -0.24 1.36 -0.18 0.86 59  0.82 0.50 1.65 0.10 61 
            
Intercept -2.34 1.43 -1.63 0.11 59  9.40 0.55 17.04 <0.0001 61 
Sleep onset 0.03 0.06 0.53 0.60 59  -0.01 0.02 -0.32 0.75 61 
Awakening time 0.10 0.11 0.96 0.34 59  -0.05 0.04 -1.36 0.18 61 
Season 20091) 2.10 0.84 2.50 0.02 59  1.21 0.40 3.02 0.004 61 
Season 20101) 0.05 0.98 0.05 0.96 59  0.51 0.43 1.20 0.24 61 
Age2) -0.36 1.37 -0.26 0.80 59  0.91 0.49 1.84 0.07 61 
            
Intercept -2.80 1.67 -1.67 0.11 36  10.31 0.84 12.35 <0.0001 36 
Frequency awakenings -0.18 0.24 -0.74 0.47 36  0.01 0.12 0.05 0.96 36 
Percentage awake -0.22 0.30 -0.73 0.47 36  -0.03 0.15 -0.20 0.84 36 
Season 20091) 2.71 0.60 4.54 <0.01 36  0.95 0.43 2.21 0.04 36 
Age2) -0.33 1.77 -0.19 0.85 36  -0.01 0.84 -0.01 0.99 36 

1) compared to the reference season 2008; 2) adults compared to yearlings 
 

 

Sleep behaviour and male reproductive success 

Sleep onset and sleep duration significantly affected male extra-pair success (Table 3). 

Males that sired at least one extra-pair young started to sleep earlier and slept longer than 

males without extra-pair young. In both cases the effect sizes were very small (1-2% 

increase in probability of obtaining extra-pair young, see Table 3) and the mean 

difference in sleep duration between males with and without extra-pair young were only 

about five minutes (Figure 2). Male extra-pair success did not differ between years and 

was not influenced by age. 

Neither year, nor any of the tested sleep parameters correlated significantly with the total 

number of eggs a male sired but adults sired significantly more eggs than yearlings 

(Table 4). 
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Table 3 
Effect of different sleep parameters on the probability of gaining extra-pair young in male and female blue tits. 
Estimated parameters are back-transformed from linear mixed models with binomial error structure with their 
95% confidence intervals (CI, corrected for multiple comparisons, see Hothorn et al. (2008)) and represent a 
deviation from the random probability of gaining extra-pair young of 0.5 

Females  Males 
 Estimate CI Z P N  Estimate CI Z P N 

Intercept 0.32 0.05-0.81 -0.84 0.40 61  0.43 0.15-0.77 -0.47 0.64 82 
Sleep duration 0.50 0.48-0.51 -0.27 0.79 61  0.51 0.50-0.53 2.40 0.02 82 
Season 20091) 0.59 0.22-0.88 0.54 0.59 61  0.30 0.08-0.69 -1.30 0.19 82 
Season 20101) 0.46 0.14-0.82 -0.22 0.83 61  0.31 0.10-0.65 -1.43 0.15 82 
Age2) 0.71 0.25-0.95 1.14 0.26 61  0.68 0.31-0.91 1.23 0.22 82 
            
Intercept 0.30 0.04-0.81 -0.98 0.33 61  0.43 0.14-0.78 -0.49 0.63 82 
Sleep onset 0.49 0.47-0.52 -0.62 0.54 61  0.48 0.47-0.50 -2.08 0.04 82 
Awakening time 0.48 0.44-0.52 -1.35 0.18 61  0.51 0.48-0.55 1.13 0.26 82 
Season 20091) 0.60 0.21-0.89 0.60 0.55 61  0.30 0.07-0.70 -1.30 0.19 82 
Season 20101) 0.47 0.13-0.83 -0.19 0.85 61  0.31 0.10-0.67 -1.38 0.17 82 
Age2) 0.73 0.26-0.96 1.27 0.20 61  0.68 0.30-0.91 1.24 0.21 82 
            
Intercept 0.09 0.002-0.82 -1.49 0.14 36  0.31 0.07-0.72 -1.15 0.25 47 
Frequency 
awakenings 0.34 0.16-0.59 -1.62 0.11 36 

 
0.51 0.28-0.73 0.06 0.95 47 

Percentage awake 0.58 0.41-0.72 1.21 0.23 36  0.45 0.23-0.70 -0.48 0.63 47 
Season 20091) 0.55 0.14-0.90 0.23 0.82 36  0.31 0.08-0.71 -1.19 0.24 47 
Age2) 0.93 0.25-0.99 1.77 0.08 36  0.76 0.29-0.96 1.42 0.16 47 

1) compared to the reference season 2008; 2) adults compared to yearlings 
 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 2. Sleep duration (a) and sleep onset (b) in minutes difference from the mean (± SD) for males that 
did not (=No) and did (=Yes) sire extra-pair young. 
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Table 4 
Influence of sleep parameters on the number of sired eggs in male blue tits 

Estimate SE Z P N 

Intercept 8.82 0.62 14.21 <0.0001 73 
Sleep duration 0.03 0.02 1.47 0.15 73 
Season 20091) 0.22 0.74 0.30 0.77 73 
Season 20101) -0.78 0.61 -1.29 0.20 73 
Age2) 1.64 0.62 2.64 0.01 73 
      
Intercept 8.78 0.63 13.85 <0.0001 73 
Sleep onset -0.04 0.03 -1.42 0.16 73 
Awakening time 0.02 0.06 0.26 0.80 73 
Season 20091) 0.25 0.75 0.33 0.74 73 
Season 20101) -0.72 0.63 -1.15 0.25 73 
Age2) 1.63 0.63 2.60 0.01 73 
      
Intercept 8.74 0.75 11.62 <0.0001 39 
Frequency awakenings 0.43 0.47 0.92 0.36 39 
Percentage awake -0.11 0.52 -0.20 0.84 39 
Season 20091) 0.15 0.79 0.19 0.85 39 
Age2) 1.74 0.90 1.93 0.06 39 

1) compared to the reference season 2008; 2) adults compared to yearlings 
 

 

 

Reproductive performance of the pair 

Because we found some evidence for assortative mating in regard to sleep behaviour, we 

tested the effect of similarity between partners and the average of the sleep parameters of 

both partners on the performance of the brood. We did not find any correlation between 

the average sleep parameters of a pair and mean nestling mass or fledging success (Table 

5). However, we found a significant positive effect of the difference in awakening times 

on fledging success of the brood with broods from more dissimilar pairs in regard to the 

partners’ awakening times having a higher fledging success (Table 5). Mean nestling 

mass and fledging success varied significantly among years, and were affected by age of 

the male. 
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Table 5 
Influence of the difference (Δ) in sleep parameters between the male and female of a breeding pair, as well as the 
pair’s average of the male and female sleep parameter (mean) on success of the brood, measured as average 
nestling body mass (at day 14) and fledging success (number of fledglings over number of hatchlings) 

  Nestling body mass  Fledging success 
 N Estimate SE Z P  Estimate SE Z P 

Intercept 27 8.38 0.80 10.49 <0.0001  1.65 0.88 1.88 0.06 
Sleep duration           
   Δ 27 0.01 0.02 0.44 0.67  0.03 0.02 1.08 0.28 
   mean 27 0.001 0.03 0.04 0.97  0.02 0.03 0.61 0.54 
Season 20091) 27 1.12 0.49 2.27 0.03  1.59 0.71 2.25 0.02 
Season 20101) 27 0.14 0.46 0.30 0.77  -0.33 0.46 -0.73 0.47 
Age male2) 27 1.11 0.61 1.81 0.09  1.01 0.53 1.89 0.06 
Age female2) 27 -0.07 0.45 -0.15 0.88  -0.84 0.65 -1.30 0.20 
           
Intercept 27 8.51 0.81 10.49 <0.0001  1.53 0.89 1.72 0.09 
Sleep onset           
   Δ 27 -0.01 0.02 -0.30 0.77  -0.004 0.03 -0.14 0.89 
   mean 27 -0.02 0.03 -0.61 0.55  0.003 0.04 0.09 0.93 
Awakening time           
   Δ 27 0.05 0.04 1.44 0.17  0.12 0.05 2.29 0.02 
   mean 27 -0.06 0.06 -0.93 0.36  0.07 0.07 0.90 0.37 
Season 20091) 27 1.16 0.49 2.35 0.03  1.66 0.72 2.31 0.02 
Season 20101) 27 0.19 0.46 0.41 0.69  -0.34 0.46 -0.75 0.45 
Age male2) 27 0.94 0.64 1.48 0.16  1.19 0.59 2.02 0.04 
Age female2) 27 -0.17 0.46 -0.37 0.72  -0.80 0.65 -1.22 0.22 
           
Intercept 15 6.34 0.81 7.88 <0.0001  -0.94 1.37 -0.68 0.50 
Frequency awakenings           
   Δ 15 -0.10 0.34 -0.28 0.79  -0.62 0.60 -1.03 0.30 
   mean 15 -0.23 0.31 -0.74 0.48  -1.02 0.60 -1.68 0.09 
Percentage awake           
   Δ 15 -0.01 0.20 -0.07 0.94  0.66 0.42 1.59 0.11 
   mean 15 -0.24 0.23 -1.07 0.31  -0.45 0.50 -0.90 0.37 
Season 20091) 15 1.19 0.33 3.56 0.01  1.62 0.83 1.95 0.05 
Age male2) 15 2.37 0.37 6.36 0.0001  2.28 1.07 2.12 0.03 
Age female2) 15 0.97 0.53 1.83 0.10  1.05 1.01 1.03 0.30 

1) compared to the reference season 2008; 2) adults compared to yearlings 
 

 

Yearling survival 

We did not find significant effects of any of the sleep parameters on survival of first-year 

birds in our study population. Survival did not significantly differ between years or 

between sexes. However, birds with earlier awakening times seemed to be somewhat 

more likely to survive from winter to breeding season (Table 6). The effect of sleep 



  Chapter Three 102 

duration was in the same direction, with birds that slept shorter being more likely to 

survive (Table 6). 

 
Table 6  
Effect of sleep parameters on the probability of survival of yearling blue tits from winter to the following 
breeding season. Estimated parameters are back-transformed from linear mixed models with binomial error 
structure with their 95% confidence intervals (CI, corrected for multiple comparisons, see Hothorn et al. (2008)) 
and represent a deviation from the random probability of survival of 0.5 

 Estimate CI Z P N 

Intercept 0.40 0.16-0.70 -0.83 0.41 43 
Sleep duration 0.49 0.47-0.5 -1.42 0.16 43 
Season 20091) 0.84 0.19-0.99 1.36 0.18 43 
Season 20101) 0.78 0.32-0.96 1.59 0.11 43 
Sex2) 0.79 0.23-0.98 1.35 0.18 43 
      
Intercept 0.41 0.15-0.73 -0.70 0.48 43 
Sleep onset 0.50 0.48-0.53 0.43 0.67 43 
Awakening time 0.47 0.43-0.51 -1.79 0.07 43 
Season 20091) 0.85 0.17-0.99 1.37 0.17 43 
Season 20101) 0.75 0.27-0.96 1.36 0.17 43 
Sex2) 0.79 0.21-0.98 1.30 0.20 43 
      
Intercept 0.48 0.22-0.75 -0.16 0.87 28 
Frequency awakenings 0.43 0.18-0.73 -0.56 0.58 28 
Percentage awake 0.54 0.31-0.76 0.42 0.67 28 
Season 20091) 0.85 0.19-0.99 1.38 0.17 28 
Sex2) 0.47 0.05-0.94 -0.12 0.91 28 

1) compared to the reference season 2008; 2) females compared to males 
 

 

DISCUSSION 

 

To our knowledge this is the first study that looked at fitness consequences of variation in 

sleep behaviour in a wild bird population. Such a link can be assumed given that all 

animals sleep and that an experimental reduction in daily sleep time has several negative 

consequences. Further, in birds being active early in the morning during the female fertile 

period is advantageous, at least for males (Poesel et al. 2006; Dolan et al. 2007; Murphy 

et al. 2008). We found assortative mating of blue tit social partners for awakening time 

and against our expectation we found that males with earlier sleep onset and longer sleep 

duration were more likely to sire at least one extra-pair young. In addition we found that 
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broods of dissimilar pairs in regard to the female’s and male’s awakening time had a 

higher fledging success. 

 

Assortative mating for individual sleep patterns 

Our data suggest that blue tit breeding pairs were mated assortatively in regard to their 

relative awakening times in the morning. We found a similar trend for assortative mating 

for sleep onset and consequently also for sleep duration. So far, assortative mating for 

sleep related parameters has only been shown in humans. Partners of a married couple 

were similar in their morningness-eveningness disposition (husband-wife correlation: 

0.23), even after correcting for age and length of marriage, suggesting that the correlation 

reflects assortative mate choice rather than effects of cohabitation during marriage (Hur 

et al. 1998).  

 

Similarities in timing of daily sleep/activity patterns might increase the probability that 

pair members meet, e.g. early active females might be more likely to encounter early 

singing males. Unfortunately, we know too little about the process of mating and pair-

bonding to assess the importance of timing of activity, except in the context of extra-pair 

paternity (discussed below). Nevertheless, in early spring, males woke up and became 

active significantly earlier than females (on average 10-20 min) (Steinmeyer et al. 2010). 

Hence, females that woke up relatively early would resemble males that woke up 

relatively late, arguing against the hypothesis that assortative mating for awakening time 

is linked to an increased probability of encountering potential mates. When looking at the 

absolute awakening times of partners of a pair on days on which both partners had been 

recorded we did not find a correlation between the males’ and females’ awakening times. 

Here, we could only analyse two recording dates because on all other dates partners of 

too few pairs had been recorded. Our data suggest that birds mated assortatively in regard 

to their phenotypic traits (waking up early or waking up late in comparison to the 

population) rather than true synchrony in awakening times. 

 

From an evolutionary point of view, it also remains unclear why assortative mating for 

the timing of sleep/activity would be important. In fact, one could argue that it would be 
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advantageous for species with biparental care to mate disassortatively because this would 

maximize the daily period over which young would receive care. Similarity or 

dissimilarity between partners of a breeding pair in regard to the most relevant sleep 

parameters (sleep onset, awakening time and sleep duration) did not correlate with 

nestling mass but indeed we found that fledging success in broods where partners had 

more dissimilar awakening times was higher. Hence, there is some evidence that 

disassortative mating in blue tits is related to the success of the brood.  

 

Sleep behaviour and female reproductive success 

In females we could not find any significant correlation between sleep parameters and 

fitness measurements.  

We might have expected a link between the frequency of nocturnal awakenings or 

proportion of nighttime spent awake with one of the fitness measurements, such as laying 

date. If fragmentation of sleep indicates sleep quality we would have expected birds with 

fewer awakenings and hence better sleep quality to have higher fitness. At least in 

mammals it could be shown that stress leads to more fragmented sleep with more 

frequent arousals (Tiba et al. 2003; Gronli et al. 2004). Similarly, infestation of the nest 

with parasites (fleas) led to reduced nightly sleep and more frequent nocturnal 

awakenings in great tits (Christe et al. 1996). In our study, no ectoparasites were found on 

the birds caught in winter, and the recordings were made during cold winter months when 

nestboxes did not contain nest material.  

 

On the other hand, there are also reasons to assume a positive relationship between an 

individual’s condition and the number of nightly awakenings. Several studies suggest that 

individuals in better body condition do not sleep as deep as those in poor condition and 

therefore wake up more often during the night. For example, blue tits that carried less fat 

reserves reduced their rest-phase body temperature more than birds with larger fat scores 

(Nord et al. 2011) and lower body temperatures result in higher arousal thresholds and 

consequently lead to less frequent awakenings (Geiser and Ruf 1995). 
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Sleep behaviour and male reproductive success 

We found significant correlations between sleep parameters of male blue tits and fitness 

measurements: males with earlier sleep onset and longer sleep durations were more likely 

to gain extra-pair paternity. Assuming that sleep behaviour in the winter and early spring 

reflects sleep behaviour during the breeding season, this is the opposite pattern we 

expected. Males that started their dawn singing earlier (naturally, or under influence of 

artificial night lighting) were more likely to gain extra-pair young and had more mating 

partners (Poesel et al. 2006; Kempenaers et al. 2010). Similarly, male eastern kingbirds 

that began singing earlier relative to sunrise sired the most extra-pair young (Dolan et al. 

2007). Hence, if anything, we expected that males with inherently earlier awakening 

times or shorter sleep duration would be more successful at gaining extra-pair paternity. 

Similarly, one could argue that early-rising females should be more likely to have their 

young sired by extra-pair males (Halfwerk et al. 2011), but this was not supported by our 

data. Females in dissimilar pairs (in regard to awakening time) or females with earlier 

awakening times were not more likely to obtain extra-pair young (LMM: Estimate=0.01, 

SE=0.02, Z=0.48, P=0.64). Possibly, awakening times of males and females might be 

regulated differently during the fertile period and not reflect those measured during 

winter and early spring. Unfortunately, male sleep behaviour cannot be investigated 

during the breeding season, because males do not sleep inside nestboxes. 

 

Conclusion 

Altogether we did not find strong evidence that individual sleep behaviour influences 

reproductive success and survival in blue tits, although we could previously show 

consistent inter-individual variation in sleep parameters. Possibly there is no (strong) 

relationship between sleep behaviour and reproductive success. If under strong selection 

individual variation in sleep phenotypes might be smaller than observed. Here, we 

investigated natural variation in sleep behaviour. Effects on fitness-related traits might 

only be visible if natural sleep patterns get disturbed, e.g. due to anthropogenic noise or 

light pollution. This could be the focus of further experimental work.  

Alternatively, sleep behaviour of birds during winter and early spring – even though 

repeatable within and across years (Steinmeyer et al. 2010) – might not reflect sleep and 
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activity patterns during the breeding season, when other selection pressures act. Indeed, it 

is known that birds can seasonally modify their “normal” sleep patterns, for example 

during migration (Rattenborg et al. 2004). 
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Chapter Four 
________________________________________________________________________ 

Search for informative polymorphisms in candidate genes:  

clock genes and circadian behaviour in blue tits 
 

 

Corinna Steinmeyer, Jakob C. Mueller and Bart Kempenaers 

 

ABSTRACT 

 

The identification of functional polymorphisms in genes that underlie behavioural trait variation 

is a challenging but intriguing task in evolutionary biology. Given the wealth of genomic data and 

the increasing number of genotype-phenotype association studies in model organisms, one can 

ask whether and how this information can be used for non-model organisms. Here we describe 

two strategies to search for likely functional polymorphisms in candidate genes in a bird species 

that has been intensively studied by behavioural and population ecologists, the blue tit Cyanistes 

caeruleus. In the first approach we searched for repeating elements in coding regions of the 

genome using information about repeats in Gallus gallus genes. The rationale is that tandem-

repeat elements have a high potential to be polymorphic and functional. The second strategy 

aimed to replicate reported genotype-phenotype association studies by extrapolating results from 

model organisms to our study species. Both strategies showed high success rates with respect to 

finding homologous gene regions and potentially informative genetic variants in the genes 

AANAT, ADCYAP1, CKIε, CLOCK, CREB1, NPAS2 and PERIOD2. 

 

_____________ 

Genetica (2009), 136: 109-117 
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INTRODUCTION 

 

Genome-wide association studies are becoming an increasingly effective tool for 

identifying genetic factors contributing to complex traits (Amos 2007). This approach, 

however, is only applicable to genetic model species with available genome sequences 

and genome-wide polymorphism data. The majority of species including several 

ecological model species lack these data and it is unlikely that this situation will 

substantially change in the near future. Therefore the candidate gene approach is an 

appropriate choice when searching for functional or adaptively relevant polymorphisms 

in genetic non-model organisms (Tabor et al. 2002; Fitzpatrick et al. 2005). In this 

approach, functional genes identified from studies in genetic model organisms, such as 

Caenorhabditis elegans, Drosophila melanogaster, Mus musculus or Homo sapiens serve 

as ‘candidate genes’ for similar phenotypic traits in other organisms. The structure of 

many genes and their cellular functions are highly conserved between evolutionary 

divergent animal taxa which makes this approach promising (Fitzpatrick et al. 2005). For 

example, information about the genetic basis of complex traits obtained from Drosophila 

has been used as a model for human traits and diseases (Mackay and Anholt 2006).  

 

Once a gene is identified it is even more intriguing to find functional genetic 

polymorphisms in the non-model species that vary with the trait of interest. Various 

research strategies to detect functionally important genetic variation in natural 

populations have been proposed (Vasemagi and Primmer 2005), and several species-

specific polymorphisms in candidate genes have been detected e.g. (Abzhanov et al. 

2006; Fidler et al. 2007). The latter study replicated previously reported associations 

between a dopamine receptor D4 variant and human personality in a wild bird species. 

Interestingly, the avian functional polymorphism – although different in type - was 

located in the same genomic region (exon) as the mammalian polymorphism (Fidler et al. 

2007). 

 

In this paper we describe two different strategies to find naturally occurring 

polymorphisms in candidate genes, which are likely to have functional consequences for 
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circadian behavioural and physiological rhythms in birds. The circadian clock is perhaps 

the aspect of animal behaviour most fully characterised at the molecular level (Bell-

Pedersen et al. 2005). This knowledge can be utilized in a candidate gene approach to 

analyse the influence of natural genetic variation on circadian behaviour. Our species of 

interest is the blue tit Cyanistes caeruleus, which is a common European passerine bird. 

Free-living populations of blue tits are studied by many research groups across Europe, 

mostly in the context of population or behavioural ecology. Johnsen et al. (2007) for 

example reported a polymorphic tandem repeat in the CLOCK gene, one of the core 

genes involved in generating endogenous rhythms. The authors reported a correlation 

between the CLOCK repeat length and latitude of different blue tit populations.  

 

 

Strategy I: search for tandem repeats in exonic regions 

 

Rationale and approach 

The first strategy was to look for simple tandem repeat elements in exons of the candidate 

genes, either in protein coding regions or in untranslated regions (UTRs). It has been 

shown that the mutation rate of microsatellites is higher than that of non-repeat sequences 

(Jeffreys et al. 1988). These mutations are a consequence of different mechanisms such 

as unequal crossingover, gene conversion or replication slippage, that lead to a change in 

sequence length (Nikitina and Nazarenko 2004). Several studies have shown that the 

number of repeats at mini-/microsatellite loci can influence different aspects of gene 

function. In particular, increasing length of trinucleotide repeats are associated with 

various inherited neurodegenerative disorders in humans (e.g. fragile X syndrome 

(Verkerk et al. 1991), Huntington disease (Mirkin 2007), Spinocerebellar ataxias (Orr and 

Zoghbi 2007) and Friedreich ataxia (Campuzano et al. 1996)). Many of these disorders 

involve repeats which produce polyglutamine tracts in the amino acid sequence, i.e. they 

directly affect protein structure. Gene expression can also be altered by other mechanisms 

such as degradation of mRNA, decrease in protein production, an increase in DNA 

methylation resulting in the absence of gene expression, repressed transcription through 

increased nucleosome stability or gene silencing (Pieretti et al. 1991; Wang et al. 1994; 
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Imagawa et al. 1995; Choong et al. 1996). The relevance of tandem repeats in gene 

regulation was emphasized by a study showing that trinucleotide repeats in 

Saccharomyces cerevisiae are more frequent in open reading frames (ORFs) of genes that 

encode proteins involved in the regulation of transcription than in any other type of ORF 

(Young et al. 2000). Furthermore, dinucleotide repeats have the ability to form left-

handed Z-DNA which plays a role in regulation of transcription due to altered DNA 

structure and protein binding affinity (Comings 1998).  

 

In order to find repeating elements with a high probability of showing functional 

polymorphisms in clock genes, we first queried the National Center for Biotechnology 

Information (NCBI) database on the web (http://www.ncbi.nlm.nih.gov/) with the 

following key words: “biological rhythm* or biological timing or circadian rhythm* or 

central clock and Eukaryota”. Secondly, we queried the University of California Santa 

Cruz (UCSC) Genome browser (http://www.genome.ucsc.edu/cgi-bin/hgGateway) 

searching for “Simple tandem repeats within RefSeq exons of chicken”. The NCBI query 

resulted in a list of 206 genes that have been reported to have a function related to the 

endogenous clock. The UCSC query resulted in a list of 438 genes that are known to 

contain simple tandem repeats in exons of annotated genes of the chicken (Gallus gallus). 

The intersection between the two sets of genes contained the following five genes: 

CLOCK (circadian locomotor output cycles kaput protein), NPAS2 (neuronal PAS 

domain protein 2), ADCYAP1 (=PACAP, adenylate cyclase activating polypeptide 1), 

CREB1 (cAMP responsive element binding protein 1, containing two distinct repeats), 

CSNK1A1 (casein kinase 1 alpha 1) (see Table 1). CSNK1A1 contains a repeat sequence 

with a period length of about 1,700 base-pairs. Therefore it is unlikely to show a 

polymorphism and consequently was not considered further. 

 

We then BLASTed the chicken mRNA sequence of the exon comprising the repeat against 

the NCBI databases “nucleotide collection” and “Non-human, non-mouse ESTs” limiting 

the search to “Aves” and against the zebra finch (Taeniopygia guttata) WGS database of 

the NCBI trace archives (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). The chicken 

sequence and an aligned sequence of a second bird species (in these cases sequences of 
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zebra finch or wild turkey Meleagris gallopavo) were used to generate primer 

oligonucleotides flanking the requested exon. For designing forward and reverse primers 

for PCR amplification we used the program PrimaClade 

(http://www.umsl.edu/services/kellogg/primaclade.html), which is suited to design 

primers from multiple-species alignments. Primers were between 18 and 26 base-pairs in 

length and had one to three degenerated positions if necessary (Supplementary Table). 

After amplifying the targeted sequence of the blue tit genome in a thermocycler 

(Supplementary table) we ran the PCR products of each gene from 16 presumably 

unrelated adult individuals on a 10% polyacrylamid gel. If bands on the gel showed any 

inter-individual difference due to length variance of the amplified products we confirmed 

the presence of a polymorphism by running the fragments on an ABI 3130 sequencer. For 

this purpose we used fluorescently labeled forward primers in the PCR reactions.  

 

RESULTS 

 

We amplified each of the requested exons of the four candidate genes in the blue tit 

genome (Table 1). Four of the five simple tandem repeats of interest were also found in 

the blue tit (Table 2). Furthermore, these repeats were polymorphic: in a sample of 148 

presumably unrelated blue tits sampled in 2007 in our study population (Westerholz, 

48°08’N 10°53’E, Southern Germany) the number of alleles varied between 5 and 7 

(Table 2). Sequencing one carrier of each occurring allele confirmed that the detected 

variation in length of the alleles is caused by different copy numbers of the repeating 

elements. Genotype proportions were in Hardy-Weinberg equilibrium (Table 2, all 

P>0.1). We also tested whether the developed primers for the tandem repeats could be 

used in another songbird, the blackcap (Sylvia atricapilla). In a sample of 70 individuals 

from Southern France (43°31’N 4°43’E), we could directly genotype all four 

microsatellites. All markers were in Hardy-Weinberg equilibrium except for NPAS2 

which turned out to be monomorphic in this sample. Heterozygosity values ranged 

between 0.30 and 0.69. 
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Strategy II: search based on reported genotype-phenotype associations 

 

Rationale and approach 

The second strategy to find functionally important polymorphisms in genes involved in 

generating endogenous rhythms was based on reported genotype-phenotype associations 

in model organisms. First, we searched Web of Science (http://apps.isiknowledge.com) 

for articles reporting an association between polymorphisms in clock genes and a relevant 

phenotype. We used key words such as: “polymorphism AND sleep”, “circadian rhythm 

AND polymorphism”, “clock gene AND sleep”, “circadian rhythms AND gene”, 

“polymorphism AND clock” or in general “polymorphism AND bird AND association”. 

 

In total, 24 studies tried to link a naturally occurring allelic variation in a clock gene with 

a phenotype that is influenced by the endogenous circadian clock (Table 3). Phenotypes 

investigated in humans were either extreme diurnal preferences classified as morningness 

or eveningness (Horne and Ostberg 1976), or a variety of sleeping patterns, including 

various sleep disorders (Table 3). In non-human animals, studies reported the period 

length of different behavioural rhythms. For further work, we selected those studies that 

reported a significant association between genotype and phenotype. 

 

Second, we attempted to localize the position of the investigated polymorphism in the 

homologous bird gene. In the case of single nucleotide polymorphisms (SNPs) located in 

protein-coding regions, we proceeded as follows. First, we identified the position of the 

amino acid encoded by the polymorphic codon in the organism as reported in the original 

paper. We then aligned the amino acid sequence of the entire protein from the reported 

organism with the chicken genome in the UCSC browser. If we found a good alignment 

between the protein region of interest and a sequence in the chicken genome, we aligned 

the complete protein of chicken from the NCBI database entry to the chicken genome in 

the UCSC browser. In the resulting protein-DNA alignment the intron-exon structure of 

the chicken gene is shown, and we could determine the exon comprising the potentially 

polymorphic codon.  
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For SNPs located in UTRs of a gene and for the tandem repeat in exon 18 of PERIOD 3 

(see Table 3), the respective mRNA sequence of the model organism obtained from the 

NCBI database was directly aligned to the chicken genome. This was done by a NCBI 

“BLAST” (Altschul et al. 1997, Benson et al. 2008, http://www.ncbi.nlm.nih.gov/ 

blast/Blast.cgi) and UCSC “BLAT” (Kent 2002, http://www.genome.ucsc.edu/cgi-

bin/hgBlat?command=start&org=Chicken&db=galGal3&hgsid=104455251) homology 

search. The best alignment was then tested for consensus in the region of the studied 

polymorphism.  

 

To amplify the sequences of interest in the blue tit we designed PCR primers as described 

above for the tandem repeat sequences. The goal was to amplify the entire exon 

containing the homologous position of the polymorphism of interest. Degenerated 

primers were developed from the alignment between chicken and zebra finch, or, if no 

zebra finch sequence was available, between chicken and human, Japanese quail 

(Coturnix japonica) or starling (Sturnus vulgaris) sequences (Supplementary Table). 

After PCR amplification of genomic DNA from blue tits (Supplementary Table), the 

PCR products of 10-14 presumably unrelated adult individuals were directly sequenced. 

Electropherograms were studied by manual inspection and sequences then aligned by 

using the programme Bioedit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and 

screened for sequence variations in either heterozygous or homozygous forms.  

 

The ABI PRISM® SNaPshot™ Multiplex Kit (Pati et al. 2004) was then used to genotype 

149 presumably unrelated adults sampled in our population in 2007 for each detected 

exonic SNP.  

 

RESULTS 

 

In total, we studied polymorphisms at 18 different sites (17 SNPs and one VNTR = 

variable number tandem repeats) in 10 genes for which a significant association to a 

behavioural trait was reported (Table 3). Fourteen of these published polymorphisms 

were discovered in human genes, the remaining four in Drosophila, mouse (Mus 
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musculus) and Syrian hamster (Mesocricetus auratus). For seven of the SNPs we could 

identify the exact position in the homologous exon of four different chicken genes. At six 

sites the amino acid and the nucleotides in the mRNA coding for this amino acid were 

identical between chicken and the studied organism. At one SNP site (exon 4 of AANAT; 

Table 3) the coded amino acid was not identical between chicken and the reported 

species, but we still found high similarity at the surrounding amino acids. We obtained a 

specific PCR product for the blue tit of these seven target regions. For the marker CKIδ 

no polymorphisms were detected in the sample of 10 blue tit sequences. 

 

Overall, we discovered seven exonic SNPs in the amplified fragments of blue tit DNA in 

the genes AANAT (2 SNPs), PERIOD 2 (2 SNPs) and CKIε (3 SNPs). SNP sites were 

located between 1 and 79 base-pairs away from the position of the reported SNP in the 

model-organism. All detected SNPs in blue tits were silent (synonymous).  

For six of these seven SNPs we genotyped 149 individuals and detected two alleles at 

each locus (Table 4). Genotyping of one SNP in CKIε failed so far. Genotype frequencies 

for the six SNPs were not significantly different from those expected under Hardy-

Weinberg equilibrium (Table 4, all P>0.3). We found significant linkage disequilibrium 

between the two SNPs in the gene PERIOD2 and between the two SNPs in the gene CKIε 

(D’(PERIOD2)=0.995, P(PERIOD2)=0.035; D’(CKIε)=0.998, P(CKIε)<0.0001). 
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Table 3 Reported studies in different species that aimed to link a circadian phenotype with a certain 
polymorphism in one of the clock genes 

Gene Species Region Original name of 
polymorphisma  

Amino acid 
change 

Phenotype Assocication Publication 

CLOCK Human Exon 17 A1982G Yes DSPS and N-24 No (Iwase et al. 2002) 
  Exon 17 G1955A Yes DSPS and N-24 No (Iwase et al. 2002) 
  3' UTR T3111C No Morningness-eveningness  Yes (Mishima et al. 

2005) 
     Morningness-eveningness Yes (Katzenberg et al. 

1998) 
     Morningness-eveningness, 

DSPS 
No (Robilliard et al. 

2002) 
     DSPS and N-24 No (Iwase et al. 2002) 
     Morningness-eveningness, 

DSPS 
No (Pedrazzoli et al. 

2007) 
  5' UTR T257G No Morningness-eveningness, 

DSPS 
No (Pedrazzoli et al. 

2007) 
PERIOD1 Human Exon 18 T2434C No Morningness-eveningness  Yes (Carpen et al. 2006) 
  Exon 18 A2548G No Morningness-eveningness No (Katzenberg et al. 

1999) 
PERIOD2 Human Exon 17 A2106G Yes ASPS Yes (Toh et al. 2001) 
  Promotor  C-1228T No Morningness-eveningness No (Carpen et al. 2005) 
  5'UTR C111G No Morningness-eveningness Yes (Carpen et al. 2005) 
  Exon 23 G3853A Yes Morningness-eveningness No (Carpen et al. 2005) 
PERIOD3 Human Exon 15, 

17, 18, 20 
T1940G, C2590G, 
T3110C, A3473A, 
del(3031-3084nt) 

Yes DSPS (haplotype analyses 
across all five loci) 

Yes (Ebisawa et al. 
2001) 

  Exon 18 4-/5-repeat =  Morningness-eveningness Yes (Jones et al. 2007) 
   del(3031-3084nt)  Morningness-eveningness, 

DSPS 
Yes (Archer et al. 2003) 

  Exon 15 T1940G Yes Morningness-eveningness Yes (Johansson et al. 
2003) 

AANATc Human Promotor T-542G No Sleep pattern No (Wang et al. 2004) 
  Promotor G-263C No Sleep pattern Yes (Wang et al. 2004) 
     DSPS No (Hohjoh et al. 2003) 
  Exon 4 C702T No DSPS No (Hohjoh et al. 2003) 
  Exon 4 C756T No DSPS No (Hohjoh et al. 2003) 
  Exon 4 G619A Yes DSPS Yes (Hohjoh et al. 2003) 
CKIδd Human Exon 2 T44Ab Yes FASPS Yes (Xu et al. 2005) 
CKIεe Human Exon 9 G1223A Yes DSPS and N-24 Yes (Takano et al. 2004) 
MTNR1af Human Exon 1 C160T Yes DSPS and N-24 No (Ebisawa et al. 

1999) 
  Exon 2 C470T Yes DSPS and N-24 No (Ebisawa et al. 

1999) 
MTNR1bg Human Exon 1 G71A Yes DSPS and N-24 No (Ebisawa et al. 

2000) 
  Exon 1 C196T Yes DSPS and N-24 No (Ebisawa et al. 

2000) 
PRNhf Human Exon 2 D178Nb Yes Fatal familial insomnia   Yes (Tafti et al. 2005) 
TIMELESS Human Exon 20 A2634G Yes Morningness-eveningness No (Pedrazzoli et al. 

2000) 
HLA DR1 Human       DSPS No (Hohjoh et al. 1999) 
doubletime Drosophila Exon 3 dbtL Yes Period of behavioural 

rhythm 
Yes (Kloss et al. 1998) 

  Exon 3 dbtS Yes Period of behavioural 
rhythm 

Yes (Kloss et al. 1998) 

Rab3ai Mouse Exon 2 A3144G Yes Shortened circadian period Yes (Kapfhamer et al. 
2002) 

CKIεe Hamster Pos. 532 R178Cb Yes Free-running rhythm Yes (Lowrey et al. 2000) 
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DSPS, Delayed sleep phase syndrome; (F)ASPS, (Familial) advanced sleep phase syndrome; N-24, Non-24-hour 
sleep-wake syndrome; SNP, Single nucleotide polymorphism; VNTR, Variable number of tandem repeats 
a Usually refers to nucleotide exchange and the nucleotide position 
b Amino acid change and its position in the protein 
c Arylalkylamine N-acetyltransferase 
d Casein kinase 1 delta 
e Casein kinase 1 epsilon 
f Melatonin 1a receptor 
g Melatonin 1b receptor 
h Prion protein 
i Ras-associated binding protein 3a 
 

 

 
Table 4 Single nucleotide polymorphisms (SNP) in three clock genes of blue tits. Major nucleotides are 
underlined. Sample size N = 149 

Gene name Nucleotide 
variants 

Major allele 
frequency 

HObs
b,c HExp

b,c χ2c Pc 

SNP1 C/T 0.91 0.18 0.17 1.48 0.36 AANAT 
SNP2 G/A 0.93 0.13 0.13 0.77 0.62 
SNP1 G/A 0.87 0.22 0.23 0.10 0.74 PERIOD2 
SNP2 C/T 0.91 0.17 0.17 0.05 1 

CKIε - tau SNP1 C/T 0.94 0.12 0.11 0.62 0.65 
 SNP2 C/T 0.57 0.45 0.49 1.06 0.32 
CKIε - dbt SNP3 T/G -a -a - a -a -a 
a Information not yet available 
b Observed (Obs) and Expected (Exp) heterozygosity 
c Calculated with R (http://www.r-project.org) using the package “genetics” 
 

 

DISCUSSION 

 

We reported high success rates for two strategies to detect potentially functional 

polymorphisms in candidate genes of interest. The first approach was to search for 

tandem repeats in exonic regions of genes. All four target regions that contained tandem 

repeats in chicken genes could be amplified in the homologous blue tit genes. Backström 

et al. (2008) designed primers at conserved sites between chicken and zebra finch, and 

found cross-species primer amplification success for blue tits of 83% (N=122 markers 

tested). Difficulties referring to cross-species primer design turned out to be of minor 

importance in both strategies of our study. Only three out of eleven pairs of primers 

designed from chicken and another bird reference species did not amplify the 

homologous fragment in blue tits and this problem could be solved by designing new sets 

of primers. Furthermore, four of the five studied tandem repeats could be found in the 
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blue tit and they were polymorphic. Thus, gene-associated tandem repeats seem to be 

highly conserved among the class of Aves.  

 

In contrast, it is estimated that only 13-25% of anonymous microsatellites developed for 

specific passerines co-amplify in other passerine species (Primmer et al. 1996; Hansson 

et al. 2005; Dawson et al. 2006). However, this relatively low cross-species amplification 

success may be due to variable primer binding sites, and not to the absence of the tandem 

repeat itself. In general, tandem repeats have a high potential to be functional and 

polymorphic (Contente et al. 2002; Iglesias et al. 2004; Nikitina and Nazarenko 2004). 

Therefore, this group of markers – if available - could be a first choice for testing 

genotype-phenotype associations.  

 

Our second strategy was to focus on gene regions (particularly exons), for which positive 

associations with phenotypic traits had already been reported. Our analysis showed a high 

success rate in finding a polymorphism in the target region. In summary, we were able to 

detect 1-2 polymorphisms in four blue tit regions that showed high homology to the 

target regions of human, Drosophila and hamster. Although the detected SNPs in blue tit 

genes are silent, they might have functional consequences by mechanisms affecting 

mRNA structure (Shen et al. 1999; Duan et al. 2003; Kimchi-Sarfaty et al. 2007) or pre-

mRNA splicing (Cartegni et al. 2002). In total we sequenced about 2,180 base-pairs of 

genomic blue tit DNA, of which 1,630 base-pairs were exonic and 550 base-pairs 

intronic. Thus SNPs in exons occurred on average every 233 base-pairs in the single blue 

tit population we studied. This is more frequent than the estimate reported for collared 

flycatchers Ficedula albicollis (on average one SNP in every 550 base-pairs of coding 

sequence; Backström et al. (2008)), but it has to be considered that our calculation is 

based on a rather short DNA sequence of about 2.2 kb. 

 

Both search strategies revealed only a small number of polymorphisms with the 

likelihood of being functional. This can now be tested by association with behavioural 

traits of interest. Thus, the advantage of this approach – in contrast to large-scale 

genotyping – is that it reduces the multiple testing problem and the costs. A prerequisite 
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for these approaches is that the genes underlying phenotypic traits are already known. 

Many other strategies, for example QTL mapping (Flint and Mott 2001), candidate gene 

approach (Tabor et al. 2002) and targeted mutation (knock-out and knock-in technologies 

(Austin et al. 2004; Rago et al. 2007)) have recently been developed to find the genetic 

basis of phenotypic traits. The approach described here allows us to investigate in a 

following study whether particular genetic polymorphisms are associated with variability 

in phenotypes, under the assumption that the function of a gene is conserved between 

different animal taxa. The candidate-gene strategy is appropriate for the majority of 

organisms where no databases for genetic polymorphisms are available. A clear 

disadvantage of that approach in contrast to whole genome studies is that relevant 

polymorphisms might be missed. 
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Chapter Five 
________________________________________________________________________ 

Testing for associations between candidate genes for circadian 

rhythms and individual variation in sleep behaviour in blue tits 

 

 

Corinna Steinmeyer, Bart Kempenaers and Jakob C. Mueller 

 

ABSTRACT 

 

The regulation of sleep in animals is controlled by environmental factors, homeostatic 

mechanisms and endogenous circadian oscillators. The molecular mechanisms underlying such 

circadian oscillators have been described in detail and a variety of genes that are components of 

these molecular clocks have been reported. In addition to inter-specific variation in the temporal 

organization of sleep, there is significant intra-specific variation in different organisms. From 

numerous studies in humans it is known that polymorphisms in the regulatory clock genes are 

causing such variation but knowledge about associations between naturally occurring 

polymorphisms and sleep patterns in wild animals is scarce. In this study, we investigated the 

phenotypic sleep correlates of eleven previously described polymorphisms in seven candidate 

genes within a free-living blue tit Cyanistes caeruleus population. We detected associations 

between four single nucleotide polymorphisms and three of the nine tested sleep parameters 

representing temporal organization. Awakening time was associated with polymorphisms in 

AANAT and PERIOD2, morning latency with a polymorphism in CKIε and the duration of the 

longest sleep bout with a second polymorphism in AANAT. However, by a permutation procedure 

we showed that the number of significant results and the most significant association has a study-

wide likelihood of 46.7% and 5.9% respectively. Further replication studies are needed to 

evaluate the potential associations. 
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INTRODUCTION 

 

Almost all organisms live in a constantly fluctuating environment. Many of these 

fluctuations occur predictably over the course of the day due to the earth’s rotation. It is 

beneficial for an individual to anticipate the diurnal changes in order to adjust its 

physiology and behaviour accordingly (Hastings 1997; Emerson et al. 2008), for example 

searching an appropriate roosting place in the evening or awakening in the morning are 

key behaviours in the diurnal activity cycles. This anticipation is enabled by molecular 

clocks which show an endogenous rhythm of approximately 24 hours. To be effective, 

biological clocks need to be entrained by environmental signals such as light, so that the 

rhythms they drive run at exactly 24 hours. 

 

In birds the main circadian pacemakers are the pineal gland, the retina and the 

suprachiasmatic nuclei (SCN) that regulate secondary circadian clocks in the peripheral 

tissues (Gwinner and Brandstaetter 2001; Bell-Pedersen et al. 2005). The importance in 

generating rhythms by the pineal gland and the retina varies between species, but both 

these organs secrete melatonin into the bloodstream with a circadian periodicity (Bell-

Pedersen et al. 2005). Generally, the circadian oscillator is made up by an intracellular 

machinery with a number of so-called “clock genes” which are transcribed rhythmically 

due to transcriptional-translational feedback loops (Young and Kay 2001; Panda et al. 

2002; Reppert and Weaver 2002; Hastings and Herzog 2004). The following genes have 

been discovered to be key elements of the circadian clock mechanism in birds: CLOCK, 

BMAL1, NPAS2, PERIOD2, PERIOD3, CRY1, CRY2 and CKIε (Chong et al. 2003; Doi 

et al. 2004; Bell-Pedersen et al. 2005). Beside these core clock genes a variety of other 

genes is involved in controlling circadian rhythms in behaviour, e.g. genes involved in 

light entrainment of the molecular clocks or in the downstream control of circadian 

behaviour (diurnal hormone levels) (Fidler et al. 2004; Nagy and Csernus 2007; Shimizu 

and Fukada 2007). Temporal sleep patterns in animals are supposed to be directly 

influenced by the circadian clock in addition to a homeostatic regulation (Dijk and 

Czeisler 1995; Dijk and Archer 2009) 
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Reports of behavioural associations with naturally occurring polymorphisms or 

spontaneous mutations in animal clock genes are rare. For example, a study on Syrian 

hamsters Mesocricetus auratus identified a mutation in CKIε leading to aberrant 

circadian phenotypes (Lowrey et al. 2000). Microsatellite variation in the CLOCK gene 

was found to be associated with variation in timing of breeding in females of a free-living 

blue tit population (Liedvogel et al. 2009) and the ADCYAP1 microsatellite marker was 

linked to variation in migratory behaviour in blackcaps Sylvia atricapilla (Mueller et al. 

2011). In humans however, a number of naturally occurring polymorphisms in clock 

genes were shown to be associated with sleep behaviour or disorders. In the CLOCK gene 

two different SNPs could be linked to variation in morningness/eveningness or sleep 

duration (Katzenberg et al. 1998; Mishima et al. 2005; Allebrandt et al. 2010). Further, 

different SNPs and a variable number tandem repeat polymorphism in the three PERIOD 

genes and in the casein kinases I epsilon and delta (Takano et al. 2004; Xu et al. 2005) 

were associated with morningness/eveningness or advanced or delayed sleep phase 

syndrome (Ebisawa et al. 2001; Toh et al. 2001; Archer et al. 2003; Johansson et al. 

2003; Carpen et al. 2005; Carpen et al. 2006; Jones et al. 2007). 

 

Previously, we identified eleven possibly functional polymorphisms in seven different 

clock genes in a natural blue tit Cyanistes caeruleus population (Steinmeyer et al. 2009). 

We followed two search strategies to find informative genetic polymorphisms related to 

circadian behaviour. First, we looked for exonic simple tandem repeat elements in 

candidate genes, i.e. genes that are known to be involved in the regulation of circadian 

rhythms, in the chicken genome and tried to identify these repeat elements in the 

homologous blue tit genes. Second, we used reported genotype-phenotype associations in 

model organisms as a template and attempted to localize the position of the underlying 

polymorphisms in the homologous blue tit genes. These two strategies led to the 

detection of four polymorphic microsatellite markers in the genes ADCYAP1, CLOCK, 

CREB1, NPAS2 and two single nucleotide polymorphisms (SNPs) in AANAT, two SNPs 

in PERIOD2 and three SNPs in CKIε in a population of blue tits (Steinmeyer et al. 2009). 

Given that the investigated clock genes and their proteins are highly conserved between 

different taxa and that they play a crucial role in the generation of circadian rhythms in an 
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organism, it is likely that polymorphisms in these genes influence temporal sleep 

patterns. In a study on sleep behaviour in the same blue tit population we found 

consistent inter-individual variation with high repeatability values in different sleep 

parameters, especially with regard to temporal measurements of sleep (Steinmeyer et al. 

2010). The high repeatability estimates suggest substantial heritability of sleep 

parameters. 

 

Here, we test for associations between the previously described set of candidate 

polymorphisms in avian clock genes and the observed variation in sleep phenotypes in 

blue tits. We use sleep parameters as quantifiable phenotypes since sleep is directly 

controlled by the circadian clock and represents a distinct behavioural state, which is easy 

to measure. We test for (a) general associations between the different genotypes at the 

candidate loci and nine different sleep parameters and (b) specific associations between 

the average allele length in individuals for microsatellites or the allele copy number for 

SNPs and the nine sleep parameters. We then (c) evaluate the single-locus results at a 

study-wide level using a permutation procedure. 

 

METHODS 

 

Field procedures and recording of sleep phenotypes 

Birds were recorded in a wild population of blue tits, using artificial nestboxes for 

breeding and roosting, in southern Germany (Westerholz, 48°08’N, 10°53’E). We caught 

adult birds inside the nestboxes during monthly checks at night in winter (November – 

February) and once during the period of nestling feeding (May – June). Birds were 

equipped with a numbered metal band of the German ringing scheme, a unique colour 

combination for identification and a RFID transponder. We determined age of the birds 

(Svensson 1992) and took a blood sample from the brachial vein for genetic analyses. We 

banded nestlings with a metal ring when they were 14 days old and took a blood sample 

for paternity analysis. Every 4 weeks during three winter seasons (January 2008 - March 

2010), birds were monitored for two consecutive nights while roosting in nestboxes by 

using a little infrared camera attached to the nestbox lid and connected to a digital 
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recorder. From the video recordings we measured the following sleep parameters: (1) 

sleep onset (the time when the first sleep bout of at least 30 s started), (2) awakening time 

(the time when the last sleep bout of at least 10 s ended), (3) sleep duration (time 

difference between sleep onset and awakening time), (4) midpoint of sleep (adding half 

of the sleep duration to the time of sleep onset), (5) evening latency (time difference 

between entering the nestbox in the evening and sleep onset), (6) morning latency (time 

difference between awakening time and leaving the nestbox in the morning), (7) longest 

sleep bout (duration of the longest sleep phase that was not interrupted by an awake 

phase), (8) frequency of nocturnal awakenings (average number of awake phases per 

hour), and (9) proportion of time spent awake (total duration of all awake phases divided 

by the sleep duration). We further measured light intensity (in lux) with data loggers at 

the nestboxes and calculated mean light intensities at each nestbox in the evening (30 min 

before – 30 min after sunset) and in the morning (30 min before – 30 min after sunrise). 

For more details on recording procedure and quantification of sleep parameters see 

Steinmeyer et al. (2010). 

 

Genotyping of informative polymorphisms 

Gene regions containing the polymorphic microsatellite markers were amplified in 

multiplex polymerase chain reactions (PCRs) using a Qiagen Multiplex PCR Master Mix. 

We used the primers for ADCYAP1, CLOCK, CREB1 and NPAS2 published in 

Steinmeyer et al. (2009) with forward primers end-labelled with fluorescent dyes. We 

separated and detected PCR products on an ABI 3130 xl Genetic Analyzer and used the 

software GeneMapper 4.0 for analyses. We amplified four gene regions containing seven 

SNP markers in PCRs using the primers for AANAT, CKIε, CKIε-tau and PERIOD2 

published in Steinmeyer et al. (2009). We genotyped SNP markers using the SNaPshot 

Multiplex Kit (Applied Biosystems) containing fluorescently labeled ddNTPs. SNaPshot 

products were separated and detected on an ABI 3130 xl Genetic Analyzer and analysed 

with GeneMapper 4.0. Altogether we obtained the genotypes at all 11 loci (Table 1) for 

149 individuals (99 males and 50 females) for which sleep parameters had been recorded 

(total of 803 night recordings).  
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Statistical analysis 

We calculated Hardy-Weinberg Equilibrium for microsatellite markers using Cervus 

3.0.3 (http://www.fieldgenetics.com/pages/home.jsp) and for SNPs using the genetics 

package (Warnes 2011) with the free software R 2.10.0 (http://cran.r-project.org). 

Linkage Disequilibrium between pairs of markers that are located within the same gene 

region was also calculated with the genetics package in R. For both analyses we excluded 

31 individuals from the dataset because they were offspring or siblings of other 

individuals in the dataset. 

 

We used two different encodings of the genotypes, to test for an association between 

genetic markers and different sleep parameters. First, we used the basic full genotype 

model, treating each genotype as a different level. This allows to distinguish between 

each individual genotype (e.g. 162/162 and 161/163). Second, we used more powerful 

encoding models by calculating the mean allele length per individual for microsatellites 

and the number of one of the two alleles (the most common) per individual for SNPs. 

Although more powerful (due to a reduction in degrees of freedom), these models assume 

a linear allele length effect (microsatellites) and an allele dosage effect (SNPs). 

 

We tested associations between individual sleep parameters and genotypes using linear 

mixed-effects models with normal error distribution while correcting for sex, age 

(yearling or adult) and light intensity at the nestbox as fixed effects. These covariates, 

except for light intensity in the models with frequency of awakenings, proportion of time 

spent awake and longest sleep bout as response variable, were selected because of their 

shown influence on the sleep parameters (Steinmeyer et al. 2010). To account for the fact 

that some of the recorded birds were related (parent-offspring or sibling relationships) we 

defined a unique number for each family and included individual identity (to account for 

repeated measures of individuals) nested within family identity as random effects in the 

models. Sleep parameters were standardized for each recording date by subtracting the 

date-specific mean from the raw values and dividing by the date-specific standard 

deviation, which removes seasonal and date-specific changes in means and variances. 
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To evaluate the study-wide significance, we conducted 1000 permutations by assigning 

multi-locus genotypes randomly to the individual ID and creating hereby 1000 new 

datasets. Both, the covariance structure among the different sleep parameters and among 

the genetic markers remained unchanged. The repeated measures of the same individual 

were assigned to a single individual in the permuted dataset, to keep the variance 

explained by individuality (random factor) unchanged in the models. We compared the 

number of significantly associated loci per permutation to the number of significant 

associations in our original datasets and estimated the probability to obtain a p-value in 

the permutations that is smaller than the minimum p-value of the original data. We 

performed the permutation procedure separately for the full genotype models and the 

specific genotype models. All calculations were carried out in R 2.10.0 using the nlme 

package for linear mixed models (Pinheiro et al. 2-01). 

 

 

RESULTS 

 

Genetic polymorphisms 

Microsatellite markers revealed between four and nine alleles and SNPs two different 

alleles (Table 1). All markers except for CREB1 were in Hardy-Weinberg Equilibrium 

(Table 1). Given the number of tests (9 independent markers in the 7 gene regions, see 

below) this deviation from Hardy-Weinberg Equilibrium does not remain study-wide 

significant after Bonferroni correction. We found high correlations between the CKIε 

SNP and the CKIε-tau SNP 1 (r=0.67, P <0.0001) and between CKIε-tau SNP 1 and SNP 

2 (r=0.29, P <0.0001). Although located in the same gene region, there was no significant 

correlation between CKIε SNP and CKIε-tau SNP 2 (r=0.12, P=0.06), between SNP 1 

and SNP 2 in AANAT (r=-0.03, P =0.67) and between SNP 1 and SNP 2 in PERIOD2 

(r=-0.09, P =0.17). 
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Table 1 
Allele number and names, allele frequency, observed (HObs) and expected (HExp) heterozygosity and Hardy-
Weinberg test results (p-values) of all microsatellite and SNP markers. Sample size equals 118 presumably 
unrelated blue tit individuals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a for microsatellites 
b for SNPs (major nucleotides are underlined) 
 

 

 

Associations in the original dataset 

The full genotype models applied to all microsatellite and SNP markers revealed in total 

four significant associations with sleep parameters (Table 2). SNP 2 in AANAT and SNP 

2 in the gene PERIOD2 associated significantly with awakening time, after controlling 

for an effect of sex (standardized effect size=0.75, SE=0.13, P<0.0001; females waking 

up later than males) and local light conditions (standardized regression coefficient=-0.09, 

SE=0.03, P<0.01; birds in brighter locations waking up earlier). Individuals that are 

homozygous for the G-allele at SNP 2 in AANAT (85% of all typed individuals) woke up 

earlier (on average 2.5 minutes) than those with G/A genotypes (15% of all typed 

individuals). Homozygous individuals for the C-allele at SNP 2 in PERIOD 2 (92% of all 

typed individuals) also woke up earlier (about 3 minutes) than heterozygotes with C/T 

(8% of all typed individuals). CKIε-tau SNP 2 associated significantly with the length of 

morning latency, after controlling for an effect of sex (standardized effect size=0.33, 

SE=0.12, P<0.01; with females having longer morning latencies). Individuals with C/T 

genotypes (49% of all typed individuals) showed the shortest morning latencies, those 

Marker No of 
allelesa/allelesb 

Major allele 
frequency 

HObs HExp P 

ADCYAP1 9 0.47 0.64 0.61 0.25 
CLOCK 4 0.62 0.60 0.56 0.09 
CREB1 6 0.81 0.3 0.33 0.01 
NPAS2 6 0.37 0.75 0.74 0.32 
AANAT SNP 1 C/T 0.89 0.20 0.20 1 
AANAT SNP 2 A/G 0.91 0.17 0.16 0.59 
CKIε SNP A/G 0.84 0.28 0.27 0.73 
CKIε-tau SNP 1 C/T 0.92 0.15 0.14 0.62 
CKIε-tau SNP 2 C/T 0.51 0.50 0.50 1 
PERIOD2 SNP 1 A/G 0.83 0.29 0.28 1 
PERIOD2 SNP 2 C/T 0.96 0.08 0.07 1 



Chapter Five   139

with T/T genotypes (27% of all typed individuals) the longest. The average difference in 

morning latencies between these two genotypes was about 1.8 minutes. SNP 1 in the gene 

AANAT associated with the duration of the longest sleep bout, after controlling for an 

effect of age (standardized effect size=0.31, SE=0.13, P=0.02; longer sleep bouts in adult 

birds compared to yearlings). Carrying two copies of the T-allele (0.01% of all typed 

individuals, i.e. just one individual) was associated with the longest sleep bouts whereas 

individuals with two copies of the C-allele (77% of all typed individuals) showed the 

shortest sleep bouts (about 47 minutes difference). Longest sleep bouts of heterozygotes 

were on average 17 minutes longer than those of individuals with C/C genotypes. 

 

The mean allele length models revealed no significant association between the four tested 

microsatellite markers and the nine sleep parameters (Table 3). In models testing allele 

dosage effects between the SNPs and sleep parameters we found three significant 

associations (Table 3). SNP 2 in AANAT and SNP 2 in PERIOD2 associated with 

awakening time. These models captured the same information as the full genotype 

models described above, because only two different genotypes were detected in both 

markers (AANAT: G/G and G/A, PERIOD2: C/C and C/T) in our dataset. Further, we 

found a significant negative association between the number of C-alleles at locus AANAT 

SNP 1 and the duration of the longest sleep bout. This association was also significant 

when the full genotype model was applied. 

 

Evaluation by permuted datasets 

In the permuted datasets with the full genotype models we found between zero and 12 

significant results, with a peak at 2 significant results per permutation (Figure 1a). The 

probability to get the same or a greater number of significant results as in our original 

dataset was 46.7 %. The smallest significant p-value which we obtained in the full 

genotype models for the association between AANAT SNP 1 and the duration of the 

longest sleep bout was P=0.005. The probability to obtain a p-value smaller than this at 

any locus in the permuted datasets was 17.6 %. 

 



  Chapter Five 140 

In the permuted datasets with mean allele length of the microsatellites and allele dosage 

of the SNP markers we obtained between zero and 17 significant results, with a peak at 4 

significant results per permutation (Figure 1b). With a probability of 78 % we obtained 

the same or a greater number of significant results as in our original dataset by chance. 

The smallest p-value that we observed in the original dataset occurred in 5.9 % of the 

permutations. 
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DISCUSSION 

 

We found four significant associations between our candidate loci and the sleep 

parameters awakening time, morning latency and duration of the longest sleep bout in full 

genotype models and three associations with awakening time and duration of the longest 

sleep bout with the specific models. The three association signals of the specific models 

were a subset of the four association signals of the genotype models. A priori we had 

good reasons to select the eleven polymorphisms which we tested in the association 

analyses because all selected microsatellites and SNPs except for one (CKIε SNP) are 

located in exonic regions of genes related to circadian rhythms and therefore likely 

candidates to be functional in the context of sleep variation (Steinmeyer et al. 2009). 

Previous studies in other organisms have shown significant associations between 

polymorphisms in a homologous or nearby codon and sleep disorders or abnormalities in 

sleep/wake rhythms. We selected sleep parameters that represent the temporal 

organization of sleep, which is supposed to be regulated by the circadian clock. Further, 

in a previous study we showed that most of these sleep parameters are highly repeatable 

within individuals (repeatability measures between 0.38 and 0.46) and hence can be 

regarded as individual-specific traits that might be genetically determined (Steinmeyer et 

al. 2010). 

 

The strongest a priori candidate for showing an association in our study was the 

microsatellite marker in the CLOCK gene that codes for a polyglutamine (poly-Q) repeat. 

This poly-Q region was found to serve as a transcriptional trans-activation domain 

(Gekakis et al. 1998) and appears to be highly evolutionary conserved (Saleem et al. 

2001). The CLOCK protein is one of the core elements in the circadian oscillator hence a 

modified protein structure is most likely to influence circadian behaviour. In humans, the 

CAG-tandem repeats being responsible for the poly-Q sequence variation in birds were 

not polymorphic (Saleem et al. 2001), but other polymorphisms were found in the coding 

regions of the gene that have phenotypic effects, for example influence diurnal preference 

or sleep duration (Katzenberg et al. 1998; Mishima et al. 2005; Allebrandt et al. 2010). In 

blue tits and Chinook salmon Oncorhynchus tshawytscha however, a latitudinal cline in 
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allele frequencies at the CLOCK poly-Q locus has been identified in an inter-population 

comparison, suggesting that this gene shows local adaptation to latitudinal gradients in 

photoperiod (Johnsen et al. 2007; O'Malley and Banks 2008). Liedvogel et al. (2009) 

reported that timing of breeding and incubation duration correlated with the number of 

poly-Q repeats in a population of blue tits, with early breeding females having fewer 

poly-Q repeats. Despite these expectations of CLOCK having an influence on circadian 

or circannual rhythms, we did not find an association between the avian CLOCK 

polymorphism and sleep behaviour. 

 

Another polymorphism in our list of tested candidates that is presumably coding is the 

trinucleotide repeat in the gene NPAS2. Again, this polymorphism leads to a variable 

number of poly-Q repeats in the protein. To our knowledge there is no study that 

describes an association between a naturally occurring polymorphism in the NPAS2 gene 

and variation in circadian behaviour, although NPAS2 is one of the core clock genes. We 

also did not find any evidence for an association with the sleep parameters we 

investigated. 

 

All other polymorphisms that we tested, except for one intronic SNP in the CKIε (not 

considered further in Steinmeyer et al. (2009)) were exonic but non-coding because they 

are either located in UTRs (untranslated regions) of the gene or are silent nucleotide 

exchanges that do not lead to a modification of the amino acid sequence. All the 

originally associated SNP polymorphisms in the organisms that we used as a template 

were coding, i.e. resulted in an amino acid change. Nevertheless, non-coding 

polymorphisms might also have functional consequences. For example, microsatellites 

with varying length can alter gene expression through an influence on mRNA 

degradation, DNA methylation or nucleosome stability (Pieretti et al. 1991; Wang et al. 

1994; Imagawa et al. 1995; Choong et al. 1996). The microsatellites in the genes 

ADCYAP1 and CREB1 are located in the 3’UTRs which are known to be regulatory 

elements also involved in post-transcriptional processes (Bartel 2009; Chatterjee and Pal 

2009). Simple sequence repeats in 3’UTRs have been suggested to cause transcription 

slippage and therefore modify regulatory functions (Li et al. 2004). Silent SNPs can 
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affect mRNA structure or pre-mRNA splicing and therefore can have functional 

consequences (Shen et al. 1999; Cartegni et al. 2002; Duan et al. 2003; Kimchi-Sarfaty et 

al. 2007) as might be the case in an association between a SNP in the human PERIOD2 

gene and diurnal preference (Carpen et al. 2005). 

 

Although the observed number of associations is not study-wide significant, we discuss 

why some of the singly significant genotype-phenotype associations are worth further 

investigation. First, single nucleotide polymorphisms in the CKIε gene were good 

candidates, because associations with circadian rhythm disorders have already been 

shown in a variety of other species. In humans a non-synonymous SNP was associated 

with delayed sleep phase syndrome and non-24h sleep-wake syndrome (Takano et al. 

2004), a non-synonymous point mutation in Syrian hamsters shortens the period length of 

circadian rhythms (Lowrey et al. 2000) and point mutations in the homologous gene 

(doubletime) of Drosophila either shorten or lengthen the period of the behavioural 

rhythm (Kloss et al. 1998).We detected three different SNPs in the homologous blue tit 

CKIε and one of them (CKIε-tau SNP 2) showed a significant association with morning 

latency in the full genotype model. This SNP is located close (5 base-pairs) to the 

position of the mutation detected in the hamster CKIε gene which influences the length of 

the free-running circadian rhythm. This association was absent when tested in the allele 

dosage model. Indeed the strongest difference was observed between the heterozygotes 

(C/T) and homozygotes for the T-allele. Second, variants in AANAT which codes for the 

rate-limiting enzyme (arylalkylamine-N-acetyltransferase) in the synthesis of melatonin, 

and thus being involved in the regulation of daily oscillations of the melatonin level 

(Klein and Weller 1970; Binkley et al. 1973; Ganguly et al. 2002) are likely to affect 

phenotypes. It has been suggested that a point mutation in the promoter region of the 

human AANAT gene is a determinant of late/short sleep patterns (Wang et al. 2004) and 

that another single nucleotide polymorphism (causing an amino acid substitution) is 

associated with DSPS (Hohjoh et al. 2003). We observed a linear effect of the presence 

or absence of one of the two alleles of SNP 1 in the gene AANAT on the duration of the 

longest continuous sleep bout. Heterozygous individuals showed intermediate durations 

of the longest sleep bouts, whereas homozygotes for the C-allele had the shortest and 
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homozygotes for the T-allele the longest sleep bouts. However, there was only one 

individual carrying two T-alleles. Although this was the strongest observed association in 

our study, permutation analyses in the full genotype models and allele dosage models 

showed that such small p-values can be obtained with a chance of 17.6 and 5.9%, 

respectively. The second SNP in AANAT is located in close proximity to the first and 

showed an association with awakening time. Third, various studies have also reported 

associations between polymorphisms in all three human PERIOD genes and diurnal 

preferences or sleep disorders (Ebisawa et al. 2001; Toh et al. 2001; Carpen et al. 2005; 

Carpen et al. 2006; Jones et al. 2007). We found a possible association between SNP 2 in 

PERIOD2 and awakening time. Interestingly, the SNP in the blue tit gene was near (~ 

50bp) the missense mutation in the homologous human PERIOD2 that is assumed to 

cause advanced sleep phase syndrome which is characterized by extremely early sleep 

onset and awakening time (Toh et al. 2001). 

 

Although we carefully selected candidate polymorphisms, we still performed a large 

number of tests (eleven markers and nine phenotypes with partial interdependencies), 

which increases the risk of false positive results (type I error). This is a general known 

issue in genome-wide association studies, usually examining thousands of SNPs, but also 

in medium-sized candidate-gene approaches. With independent markers Bonferroni 

corrections can be applied, but this inflates type 2 errors (false negatives) (Johnson et al. 

2010). Here, we evaluated the multiple test results by a permutation procedure that 

maintained the partial dependency structure among phenotypes and among genotypes of 

different loci (linkage disequilibrium structure). Our results suggest that the number of 

significant associations we found could have occurred by chance alone (47 or 78% 

likelihood for the full genotype or specific models, respectively). Even the smallest p-

value for the association between AANAT and the longest sleep bout was observed in 5.9 

% of the random datasets. On the other hand, effect sizes of genotype-phenotype 

associations are expected to be rather small. The sample size of 149 individuals in our 

study is relatively small for genotype-phenotype association studies and may not be 

sufficient to rule out a potential association. We therefore consider our candidate gene 
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approach on the temporal organization of sleep as a preliminary analysis to generate 

hypotheses that need further evaluation. 
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General Discussion 
 

Although sleep is a widespread and fundamental behaviour in the animal kingdom it has 

hardly been studied in animals living under natural conditions. The importance of studies 

carried out under natural conditions in order to understand ecological and evolutionary 

mechanisms is emphasized by findings of Rattenborg et al. (2008). The authors reported 

that sleep behaviour in captive animals (sloths, Bradypus variegatus) varied considerably 

from sleep of wild conspecifics. Thus, the major objective of this thesis was to investigate 

behavioural aspects of sleep in a common passerine bird, the blue tit, and investigate the 

underlying genetic basis of the sleep parameters. This is the first study in which sleep 

phenotypes have been recorded for a large sample of free-living birds (151 individuals). I 

applied behavioural criteria to define sleep in the blue tits: following Amlaner and Ball 

(1983), a bird was considered asleep when it showed the classical sleep position with the 

beak tucked under the scapulars and feathers fluffed. When birds were not in this sleep 

position, they were actively preening, scratching or moving around in the nestbox and 

therefore considered awake.  

 

I examined individual variation in sleep parameters and the factors that influence these 

parameters and I was able to provide evidence that temporal organization of sleep in blue 

tits is strongly affected by specific external factors, differs between males and females 

and is highly repeatable. From this I concluded that sleep behaviour might represent an 

individual specific trait comparable to personality (chapter 1). 

 

High repeatability is also present in periodicity of sleep-wake patterns but not in period 

length as reported in chapter 2. Sleep-wake rhythms were influenced by environmental 

conditions as well, such as night temperature and photoperiod. The results from the first 

two chapters show that sleep is not a static behaviour in blue tits but changes seasonally 

for several of the measured components and might show a trade-off with other 

physiological demands or activities. 
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In a next step (chapter 3) I investigated whether individual-specific variation is associated 

with fitness-related traits, such as timing of egg laying, success in gaining extra-pair 

paternity or survival and whether males and females mate assortatively or disassortatively 

in regard to their sleep phenotypes. Although I had good reasons to predict such a link 

given some existing knowledge from the literature, I did not find strong evidence that 

sleep behaviour is associated with fitness in blue tits. Either, the studied parameters did 

not influence reproductive measurements at all or such relationships were not evident 

under fluctuating natural conditions and would only be observable when sleep is 

disturbed experimentally. 

 

Finally, I aimed to uncover the genetic causes underlying the phenotypic variation 

described in the first chapter with a candidate gene approach. This approach is an 

appropriate choice in studies of genetic non-model organisms for which whole genome 

sequences are not available. Although I successfully identified a set of genetic variants in 

different blue tit genes with a high likelihood of being functional (chapter 4), I did not 

find conclusive evidence that single polymorphisms were associated with phenotypic 

variation in sleep behaviour in my study population (chapter 5). All singly significant 

associations I observed could have occurred by chance and emphasize the importance of 

repeated testing. The results can be seen as generating hypothetical associations that need 

further testing. 

 

 

Roosting in nestboxes – costs and benefits 

 

Bird species that use nestboxes as breeding sites often use them for roosting as well. 

Among the species most commonly found to be roosting in nestboxes in Germany are 

great tits (Parus major), nuthatches (Sitta europaea), blue tits and tree sparrows (Passer 

montanus) whereas great spotted woodpeckers (Dendrocopos major), lesser spotted 

woodpeckers (Dendrocopos minor), starlings (Sturnus vulgaris), marsh tits (Poecile 

palustris) and short-toed treecreepers (Certhia brachydactyla) can occasionally be found 
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(Winkel and Hudde 1988). Interestingly, blue tits of two study populations in Corsica 

never use nestboxes for roosting at night whereas those of populations in mainland 

southern France regularly do (Dhondt et al. 2010). Roosting in nestboxes (or cavities in 

general) has both benefits and costs. One obvious advantage is energy saving due to 

thermal benefits, especially when temperatures are low in winter (Walsberg 1986; 

McCafferty et al. 2001; Paclik and Weidinger 2007; Velky et al. 2010). Consequently, 

overnight weight loss can directly be reduced (Dhondt and Eyckerman 1979). Second, 

predation risk (especially by owls) is reduced in nestboxes. For example, great tits that 

regularly slept in nestboxes were less often predated by owls than birds that did not roost 

in boxes (Drent 1987). A third advantage is that birds can occupy and defend potential 

breeding sites before the breeding season actually starts.  

 

On the other hand, it can be disadvantageous to roost in nestboxes if they contain 

ectoparasites from the previous breeding season, especially when old nest-material is still 

present. Nocturnal predation risk by small mammals and snakes can also be increased in 

nestboxes (Dunn 1977; Orell 1989; Sorace et al. 2000), because there is no chance of 

escaping once a bird has been detected. In our study population, there is basically no risk 

of predation or inter-specific competition inside the boxes. The small-holed nestboxes 

can only be entered by very few species and snakes have never been encountered in the 

study area. Further, all nest-material is removed after each breeding season which 

minimizes ectoparasite abundance. Therefore the nestboxes I used for the nighttime 

recordings represent optimal roosting sites for blue tits. Nevertheless, intra-specific 

competition might occur, leading to higher occupancy rates by dominant males. Indeed, 

the usage of the nestboxes as roosting sites by the two sexes varied between months in 

our study population. At the beginning and in the middle of winter about 80% of the 

recorded birds were males whereas 50-70% of the recorded birds in spring were females. 

Adult birds were more abundant throughout the three study winters than yearlings. The 

proportion of recorded birds that were categorized as yearlings was between 12 and 31% 

each winter, whereas the proportion of yearlings during the following breeding seasons 

was between 37 and 53%. Although there were plenty of empty nestboxes available 

within the study site, it is clear that not all birds present in the population roosted in a 



  General Discussion 156 

nestbox. Hence, I cannot rule out that birds roosting in the boxes represent a sub-sample 

of the whole population with specific characteristics, e.g. being high quality or dominant 

individuals. While sleeping in nestboxes, the blue tits might behave differently compared 

to birds roosting in other sites. On the other hand, nestboxes represent relatively 

standardized conditions for all individuals, allowing direct between-individual 

comparisons. 

 

Factors explaining individual variation in sleep parameters 

 

Environmental factors 

In a comparative study on temporal sleep characteristics in birds Amlaner and Ball 

(1983) showed great differences in total sleep duration between bird species. They found 

a very strong effect of latitude and daylength on sleep duration. Species living at higher 

latitudes slept in total shorter (r = -0.62) and so did species that experienced shorter night 

length (r = -0.7). Overall, daylength accounted for about 50% of the variance in sleep 

duration. In my analyses on temporal aspects of sleep behaviour I found that sleep 

duration within the same species changes over the course of the season in accordance 

with changing daylength. Blue tits slept the longest on long winter nights in December 

and January and decreased their nighttime sleep by about 5 hours with decreasing length 

of the night towards spring (chapter 1). The same pattern has been observed in captive 

starlings (Sturnus vulgaris), rooks (Corvus frugilegus) and White-crowned sparrows 

(Zonotrichia leucophrys gambelii) (Szymczak 1986; 1987; Jones et al. 2010). Obviously, 

light conditions strongly affect the decision of the birds whether to sleep or not to sleep. 

Moreover, when weather conditions were bad (e.g. rain or snowfall), blue tits tended to 

start sleeping earlier and wake up later compared to nice days, but weather effects cannot 

be disentangled from light effects in my dataset. These findings are in accordance with 

the null hypothesis of sleep, which asserts that sleep is the safest and most efficient state 

when no other activities are possible (Meddis 1975).  

 

Nevertheless, the time of entering the nestbox and sleep onset in our blue tit population 

was not triggered by the same light conditions throughout the season. In mid-winter, blue 
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tits began to sleep relatively late when there was almost no light detectable whereas they 

advanced the onset of sleep in relation to sunset in spring (chapter 1). To obtain enough 

food in order to survive the night, the birds might be forced to expand their active periods 

as long as possible during mid-winter even though light conditions might be suboptimal. 

Alternatively, blue tits might have a certain sleep demand per day and therefore start to 

sleep relatively early in spring when light conditions would still allow other activities 

such as foraging. This would coincide with other functions of sleep, e.g. restorative 

functions.  

 

Other parameters of sleep also changed over the course of the season. Towards early 

spring, I observed an increased frequency of nocturnal awakenings and shorter 

continuous sleep bouts compared to mid-winter nights (chapter 1). This contradicts the 

assumption that birds compensate for shorter sleep duration by increasing sleep intensity 

(at least behaviourally measured). Further, period length of sleep-wake cycles was shorter 

when nights were shorter (chapter 2). Altogether, the results suggest that physiological 

conditions, influencing sleep behaviour vary between winter and spring. Further studies 

on sleep quality (EEG measurements) should shed more light on the regulation of 

seasonal sleep compensation. 

 

One proposed function of sleep is the conservation of energy (Berger and Phillips 1993; 

Berger and Phillips 1995). Therefore one could assume that animals increase sleep 

duration or intensity when exposed to low ambient temperatures. King penguins 

(Aptenodytes patagonicus), for example, reduced their sleeping time when ambient 

temperature increased over 10°C (Dewasmes et al. 2001). However, other published 

studies show opposite results. In glaucous-winged gulls (Larus glaucescens), sleep 

decreased when birds were exposed to thermal loading but did not change under cooling 

manipulations (Opp et al. 1987). Total sleep time in little penguins (Eudyptula minor) 

was reduced during exposure to cold as a result of a reduction in length of sleep periods 

(Stahel et al. 1984) whereas sleep time in emperor penguins (Aptenodytes forsteri) did not 

differ under cold and thermo-neutral conditions (Buchet et al. 1986). Similar results were 

reported by Wellmann and Downs (2009). In a study on three African passerine birds the 
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authors did not find differences in sleep amount between two temperature conditions (5 

and 25°C). In my observations on blue tits, I cannot easily uncouple ambient temperature 

effects on sleep parameters from light conditions, as mean night temperatures are the 

lowest in mid winter when darkness is longest. However, when comparing two 

consecutive nights, on which daylength is approximately the same I found differences in 

the frequency of nocturnal awakenings and the proportion of time spent awake according 

to variation in temperature. During warmer nights, blue tits were more awake (chapter 1) 

and they were more likely to show rhythmic sleep-wake cycles (chapter 2).  

 

Birds, besides mammals, are the only taxonomic group that was found to engage in the 

two electrographically distinguished sleep states SWS and REM sleep (Rattenborg 2006; 

Rattenborg et al. 2009). These sleep states alternate throughout a sleep bout, presumably 

serve different functions (see General Introduction) and seem to be influenced by 

temperature. In response to higher ambient temperatures, rooks were observed to change 

the percentage of REM sleep from 1% to about 3% and increase the duration of sleep 

cycles (SWS+REM) by several minutes (Szymczak 1989). The reduction in awakenings 

and rhythmicity during nights with lower temperatures which I observed in the blue tits 

might be linked to an altered composition of SWS and REM phases. This again might be 

caused by a controlled down-regulation of body temperature during sleep (hypothermia). 

It is known from other studies that blue tits are able to reduce their body temperature by 

up to 5°C while sleeping (Nord et al. 2009; Nord et al. 2011). 

 

Age effects 

Sleep in humans is strongly age and gender dependent. Frequent nocturnal awakenings, 

difficulties to fall asleep and early awakening are the main issues found in older people 

(Bliwise 1993; Prinz 1995; Ancoli-Israel 1997; Van Someren 2000). From early 

childhood to adolescence total sleep duration decreases conspicuously (Iglowstein et al. 

2003) and sleep duration is further reduced in older people (Hume et al. 1998; Dijk et al. 

1999). In accordance with earlier awakening times in elderly, the mid-point of sleep is 

advanced compared to young people (Hume et al. 1998). In addition, age-dependent 
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differences in the amount of SWS and REM sleep were found (Hume et al. 1998) and 

sleep-wake patterns in elderly people were generally more regular (Kramer et al. 1999).  

 

What causes these age-related changes, predominantly phase advances? Presumably, 

alterations of the circadian timing system with ageing are the reason for age-related 

changes in sleep structure and disruptions in sleep-wake cycles (Cajochen et al. 2006; 

Nakamura et al. 2011). The observed earlier awakening times in older people were found 

to be accompanied by advances of the core body temperature and melatonin rhythms 

(Dijk et al. 2000). Not only in humans, but also in hamsters (Mesocricetus auratus) the 

circadian clock is influenced by age (Turek et al. 1995).  

 

My results showed that most temporal sleep parameters in blue tits were unaffected by 

age (chapter 1), at least in the two defined age classes. Sleep onset, awakening time, sleep 

duration and midpoint of sleep did not differ between yearlings and adults. However, age 

effects on sleep behaviour might only become observable when comparing very old and 

young (immature) individuals. We found differences in morning latency between 

yearling and adult birds, but we argued that these were more likely caused by experience 

or other trade-offs than by endogenous factors or sleep requirements (chapter 1). In 

addition, adult birds showed fewer rhythmic nights than yearlings (chapter 2). 

Differences in subcutaneous fat depots between juveniles and adults could be a possible 

explanation for this observation. In a study on body hypothermia in response to increased 

roost-site temperature, blue tits with greater fat reserves maintained their body 

temperature at higher levels compared to individuals with lower reserves (Nord et al. 

2011). Generally, adult birds are more likely to be dominant, which positively affects 

individual food predictability, and it is hypothesized that with increasing resource 

predictability energy reserves should decrease (Ekman and Lilliendahl 1993; Gosler 

1996). Subordinate juvenile blue tits might therefore carry higher fat reserves (Gosler 

1996), allowing them to maintain higher body temperatures during sleep, which may lead 

to more regular and longer nocturnal awakenings. 
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Sex effects and reproductive success 

Longer total sleep time and difficulties of maintaining sleep have been reported by 

human females (Lindberg et al. 1997). Chronotype distribution also seems to be related to 

gender in humans, with eveningness being present more often in men and morningness 

more often in women (Lehnkering and Siegmund 2007). In birds, only one other study 

reported variation in sleep behaviour between males and females. This study showed that 

in captive starling males slept less than females (Szymczak 1985). I also found significant 

differences in sleep parameters between male and female blue tits (chapter 1). First, 

females generally entered the nestbox and began to sleep earlier than males. Second, 

females woke up and left the nestbox later than males. Consequently, sleep duration in 

females was on average 15 min longer than in males. Third, females spent more time in 

the nestbox after waking up in the morning and fourth, females spent a greater proportion 

of the night awake. However, the observed differences were not consistent throughout the 

winter season. The differences between males and females in awakening time and sleep 

duration were largest in early spring, at the beginning of the breeding season. This 

suggests that sleep behaviour might also be shaped by sexual selection. Indeed, the 

breeding season poses different constraints, requirements and physiological demands on 

the two sexes. Early in the season, males may be more engaged in territory defense and 

male-male competition.  

 

The results from chapter 1 led to the assumption that there is high pressure on waking up 

early in the morning in general, as awakening times were always before sunrise. Sexual 

selection might additionally act on starting activities early in the morning in males, 

leading to stronger sex differences. This is supported by other studies showing higher 

reproductive success for males that start dawn chorus early in the morning (Poesel et al. 

2006; Dolan et al. 2007; Murphy et al. 2008). Interestingly, I did not find evidence that 

early awakening males had higher fitness than those with comparatively late awakening 

times (chapter 3). More specifically, my results did neither show an effect of awakening 

time on extra-pair success nor an effect of any sleep parameter on the number of sired 

eggs. Contrary to the predictions, I have found that males with early sleep onset and long 

sleep durations were more likely to sire at least one extra-pair young. It appears that long-
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sleeping males in winter might be of high quality or dominant individuals that can 

‘afford’ long sleep durations (due to high food availability) and are more likely to be 

chosen by females as extra-pair partners. However, I did not record sleep behaviour in the 

breeding season and therefore I do not have information about sleep durations of males 

during the time of the season when extra-pair copulations take place.  

 

In females, variation in sleep behaviour may also influence fitness, given the importance 

of sleep for health and body maintenance (see General Introduction) and the overall costs 

of reproduction. Females that are less efficient in foraging during the day may need to 

expand their daytime activity as much as possible. Those females might in general show 

later sleep onset and earlier awakening times and have lower breeding success due to 

poor body condition. However, I did not find any correlations between sleep parameters 

and female fitness measurements such as laying date, clutch size and obtaining extra-pair 

young in females (chapter 3). It has been reported that females using nestboxes for 

roosting during winter have in general comparatively early laying dates (Dhondt and 

Eyckerman 1979). Indeed, females that I recorded during winter initiated clutches 

significantly earlier in the following breeding season than all other females after 

correcting for age (LMM for three study years combined: Estimate=-1.8, SE=0.7, Z=-2.5, 

P=0.01). Individual sleep behaviour of those females might therefore not further 

influence laying date. 

 

Individuality 

Besides the environmental effects (photoperiod, local light intensity), and the effects of 

sex and age I found considerable variation in sleep parameters between individuals 

(chapter 1). Sleep duration for example varied by as much as 68 minutes in adult males 

on one recording night and by 52 minutes in adult females. The maximum variation in 

sleep onset times of adult males on the same day was about 60 minutes and 44 minutes in 

adult females; differences in individual awakening times were up to 27 minutes for males 

and 41 minutes for females. In general, blue tits did not show continuous sleep 

throughout the night, but many sleep bouts interrupted by short awakenings. The number 
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of these awakenings varied between 35 and 154 times in males and between 32 and 230 

times in females within the same night.  

 

Different factors might influence the individual quantity and quality of sleep at night. As 

described in the introduction, sleeping animals are exposed to higher predation risks. 

Hence the perceived risk of predation may affect sleep. For example, rats have been 

shown to change their circadian sleep period from night to day following changes in 

predator activity (Fenn and Macdonald 1995). During the breeding season male mallards 

(Anas platyrhynchos) with conspicuous nuptial plumage increased their peeking rates 

(short eye-openings) compared to non-breeding periods when carrying more cryptic 

plumage (Lendrem 1983). Another example is a study, where barbary doves (Streptopelia 

risoria) were exposed to a potential predator (ferret, Mustela furo), which led to higher 

peeking rates than a group of birds without predator encounters (Lendrem 1984). 

Perceived predation risk can also influence the degree of nocturnal hypothermia (Laurila 

and Hohtola 2005) which again is associated with changes in sleep patterns. However, 

there is no evidence that birds can perceive and react to predator odour once they have 

fallen asleep (Amo et al. 2011).  

 

In general, experiences made during the day might modify subsequent sleep. At least in 

humans it has been experimentally shown that sleep characteristics after a day with novel, 

stimulating environments differ from sleep following stereotypic days (Horne and Minard 

1985). Inter-individual differences in sleep behaviour may also be related to aspects of 

body condition. More specifically, fat scores can differ between individuals and affect 

sleep parameters (as discussed above under age effects). Further, sleep can be affected by 

parasite infections. For example, experimentally increased ectoparasite load in the nest 

led to reduced sleeping time of brooding female great tits (Christe et al. 1996) and altered 

sleep bouts in female blue tits (Tripet et al. 2002). Although nestboxes were free of nest 

material when I recorded blue tits, and we never observed fleas and only rarely feather 

mites when handling the birds during night catches, the possibility remains that some 

individuals carried ectoparasites or were infected with endoparasites.  
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Repeated measurements of sleep parameters of the majority of individuals allowed us to 

estimate how consistent individual blue tits were in their sleep behaviour, i.e. how much 

of the total phenotypic variance is explained by between-individual variance, referred to 

as repeatability (Nakagawa and Schielzeth 2010). Repeatability estimates of most sleep 

parameters were relatively high (0.25-0.46) and also the expression of rhythmicity in 

nocturnal sleep-wake cycles was significantly repeatable (chapter 1 and 2). The human 

literature also suggests that there is great variability in individual timing and duration of 

sleep and in sleep architecture. Short sleepers characteristically need less than 6 hours of 

sleep per night, whereas long sleepers spend about 8 hours or more asleep (Webb and 

Agnew 1970; Webb and Friel 1971; Krueger and Friedman 2009; Kripke et al. 2011). 

Those groups show differences in EEG patterns, suggesting that sleep “efficiency” varies 

between individuals (Webb and Agnew 1970). I used the identity checks at night to test 

arousal thresholds of the birds, as the hand-held transponder reader device emits a 

standardized “beep” sound of about 2 s when it detects a transponder. Birds that did or 

did not wake up due to the check did not differ in any of the sleep parameters, giving no 

evidence for different sleep depth in long or short sleepers.  

 

Two chronotypes have been characterized in humans: evening-types (staying up late at 

night, getting up with difficulty, being tired when waking up) and morning-types (waking 

up early, early sleep onset, being refreshed on waking up) (Roenneberg et al. 2003; 

Cavallera and Giudici 2008). Further, EEG characteristics during SWS were variable 

between individuals but stable within individuals when recorded on several nights, 

providing a unique “fingerprint” (Buckelmüller et al. 2006). Besides cultural and life-

style factors influencing sleep length and timing in humans, there is evidence for a 

genetic component as well. Twin studies provide convincing evidence that sleep 

architecture, variance in slow-wave sleep, diurnal preference and sleep EEG profiles are 

highly heritable (Webb and Campbell 1983; Linkowski 1999; Koskenvuo et al. 2007; De 

Gennaro et al. 2008). Broad sense heritability for several self-reported sleep measures 

was estimated as 21-41% (de Castro 2002).  
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In order to understand the biological basis and manifestations of a trait or disorder it is 

important to understand the underpinning genetic factors. Much research has focused on 

the genetics of sleep during the past. Especially in the context of human sleep disorders a 

variety of genetic variants have been discovered that seem to be associated with sleep 

traits. In animals however, research has focused predominantly on the description of 

aberrant circadian rhythms under free-running conditions, due to artificially introduced 

mutations or gene knock-outs. For non-model organisms, where genomes are not 

sequenced and family pedigrees are not available, some commonly used strategies to find 

the genetic basis of phenotypic traits (e.g. linkage studies, genome-wide association 

studies) are not applicable. In chapter 4, I summarize studies that describe published 

associations between polymorphisms in clock genes and variation in sleep behaviour 

(mainly in humans) and describe how they can be used in a candidate gene approach. 

Ultimately, I was not able to pinpoint a single detected polymorphism in blue tits which 

causes the observed phenotypic variability in sleep behaviour (chapter 5), although 

several associations were suggestive. Further work is needed to resolve the genetic basis 

of sleep variation in birds. 

 

 

Future directions 

 

This study reports for the first time details about sleep behaviour of a large sample of 

free-living passerine birds and investigates some of the causes and consequences of the 

observed intraspecific variation. Our results can be used for further research to examine 

additional factors causing variation between sexes, age classes and individuals. For 

example, it would be worthwhile to measure individual body mass and score 

subcutaneous fat as indicators of general body condition close to the date of recording 

and search for correlations with sleep parameters. Also a more in-depth study of parasite 

abundance in relation to sleep might be worthwhile. Another aspect, which is linked to 

body mass and fat score, is the basal metabolic rate (BMR) of individuals. BMR can be 

influential on hypothermia and variation in BMR may therefore explain variation in sleep 

behaviour. 
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I described the successful identification of likely functional polymorphisms in candidate 

genes. However, all detected SNPs in the blue tit genes were synonymous, i.e. the amino 

acid sequence remains unchanged and protein function might not be influenced. A further 

search for non-synonymous polymorphisms in the exons of core clock genes might thus 

be warranted to further test for associations with variability in sleep behaviour. This 

needs large-scale sequencing, a project which is now underway. Our results do suggest 

that some polymorphisms may explain variation in sleep behaviour in blue tits. Hence, an 

alternative strategy could be the replication of this study in another population of blue tits 

or in a related species. If an association between one of the reported polymorphisms with 

the same phenotypic trait would be found, this would provide strong supporting evidence 

for a true association. 
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