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1.1 Background and purpose 

Background: Tumor growth strongly depends on oxygen and nutrient supply 1, 2. Thus, 

inhibition of tumor induced blood vessel recruitment, i.e. tumor angiogenesis, is a 

highly rational concept to treat cancer 2. The vast majority of approved drugs that have 

been designed for this purpose selectively interfere with one or few pro-angiogenic 

signaling cascades, predominantly with the VEGF pathway 3. The benefits of these 

agents were lower than expected. This is mainly due to complex intertwining signaling 

networks in tumor angiogenesis, which can compensate inhibition 4-7.  

Conventionally used anti-cancer drugs, like tubulin antagonists exhibit desirable anti-

angiogenic ‘side effects’ with reduced toxicity, when used at low and frequently applied 

doses 8. Numerous of such ‘metronomic dosing’ combinations show synergistic 

benefits 8-10. Tubulysins, a novel class of tubulin antagonists from unusual microbes, 

called myxobacteria 11 exhibit quite impressive anti-cancer and anti-angiogenic 

potential far beyond the level of the clinically established agents paclitaxel and 

vinblastine 12, 13. However, their supply is an issue, as for many natural compounds, 

which hampers clinical development 14. This problem was tried to be solved by total 

synthesis attempts, which are inefficient due to challenging structural features 15. But 

total synthesis strategies of simplified analogues have been successful and efficient 15-

17. The most promising of these synthesized analogues, pretubulysin, was identified as 

direct precursor to tubulysins 18 and is almost similarly active in cancer cells compared 

to its more complex relatives 19.  

First part of the work: Since no information about the anti-angiogenic profile of 

pretubulysin was available, we tested its potential in angiogenesis assays in vitro in 

comparison to an established relative, tubulysin A 13. Furthermore, we compared seven 

modified pretubulysinerivatives 15, 16. Finally, the most promising pretubulysin-like 

compound from the in vitro evaluations, pretubulysin itself, was assessed in an in vivo 

tumor model 20.  

Second part of the work: Besides tubulin, other central cellular structures might be 

promising targets for the anti-angiogenic approach in tumor therapy. The vacuolar  

H+-ATPase (v-ATPase) could be such a target, since it is closely associated with 

migration and invasion of cancer 21-23 and endothelial cells 24, 25. Moreover, v-ATPases 

are known to influence intracellular membrane trafficking 23, 26, 27.  

Based on this, we decided to study the impact of a specific v-ATPase inhibitor on 

cellular angiogenesis assays in vitro, with emphasis on the analysis of function and 

distribution of the most important angiogenesis receptor: VEGFR2 6, 28. We 

hypothesized to find a possible mechanism for anti-angiogenic effects of v-ATPase 

inhibition via disturbance of VEGFR2 traffic.  
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1.2 Tumor angiogenesis  

Angiogenesis is defined as the formation of new blood vessels from the pre-existing 

vasculature. In healthy adults angiogenesis induction and termination is tightly 

regulated by pro- and anti-angiogenic factors. This facilitates controlled physiological 

processes like wound healing, female reproductive cycling and the general 

maintenance of tissue homeostasis 29, 30. In contrast to that, cancer, inflammatory 

diseases, or age related macular degeneration, represent uncontrolled scenarios with 

sustained, pathological angiogenesis29, 31. One reason for the permanent induction of 

angiogenesis in the tumor context is an imbalanced ratio between enormous tumor 

growth and metabolic rate on the one hand, and insufficient supply with oxygen and 

nutrients on the other.  

To cope with the resulting hypoxia, tumors start an expression program, called 

‘angiogenic switch’. By continuous activation of transcription factors like the hypoxia 

inducible factor (HIF) 31 and of oncogenes, such as ras, myc or c-kit 3,  pro-angiogenic 

growth factors (e.g. vascular endothelial growth factor, VEGF) and other factors such 

as proteases (e.g. matrix metalloprotease 9, MMP-9) are continuously secreted, and 

stimulate the neovascularization process, which drives tumor growth and metastasis 3, 

31 (Fig.1.1).  

 

Fig. 1.1 Simplified model of tumor angiogenesis. In quiescent state, endothelial cells (ec) are 
enveloped by a basement membrane (bm) and pericytes (pc), thus keeping the vascular shape 

29, 32
. This 

structure is destroyed by tumor derived proteases (e.g. MMP-9, depicted as scissors) 
29, 33, 34

.  
Pro-angiogenic growth factors are simultaneously secreted to activate endothelial cells and to serve as 
orientation cues for sprouting tip cells 

31, 32
. These endothelial cells break through the porous basement 

membrane. By amplification of proliferation and survival signaling, the number of endothelial cells is 
increased and maintained. Finally, new capillaries are formed and provide ongoing tumor growth and 
metastasis 

29, 31, 32
. Similarly, other strategies of vessel formation, like the recruitment of endothelial 

progenitors are used, as reviewed by Jain and Carmeliet 
30

. 
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1.2.1 Tumor angiogenesis – signaling and ways to interfere   

VEGF-A, often simply referred to as VEGF, belongs to a family of growth factors with 

five members in mammalians (VEGF A-D and placental growth factor (PlGF)). 

VEGF plays a dominant role in physiological and pathological angiogenesis, including 

tumor angiogenesis. It transduces its pro-angiogenic effects mainly via VEGFR2,  

a receptor tyrosine kinase (RTK) 28, 35. The central cellular functions, that are regulated 

via this axis are endothelial cell survival, proliferation and migration 36 (Fig. 1.2).  

A characteristic feature, which discriminates this growth factor system from others, is 

the induction of vascular permeability. This also explains the high leakiness of tumor 

vessels due to VEGF over-expression 29, 36, 37.   

 

Fig. 1.2 The VEGF/VEGFR2 axis in control of angiogenesis functions. VEGFR2 is a receptor tyrosine 
kinase (RTK), that in response to its ligand VEGF dimerizes and autophosphorylates specific intracellular 
tyrosine residues (indicated by numbers). In the following, various signaling cascades like the PI3K/Akt  
pathway, and corresponding cellular functions, e.g. cell survival are activated. Image from Olsson et al. 

36
 

The list of selective anti-angiogenic drugs is headed by the anti-VEGF antibody 

bevacizumab, which is approved for the treatment of a variety of solid tumors in 

combination with chemotherapy or immune-therapy 30, 38-40. Other approved anti-VEGF 

drugs belong to the class of receptor tyrosine kinase inhibitors (RTKIs) and affect 

multiple pro-angiogenic (e.g. VEGFR2 and Tie2) and oncogenic RTKs (e.g. c-Kit and 

Raf). However, tumors develop various evasion mechanisms like the over-expression 

of alternative pro-angiogenic molecules, which limits clinical success 3, 4, 41.  
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One of the intertwining pro-angiogenic pathways, which provide an escape mechanism 

to anti-VEGF therapy, is the Notch system. Tie2 and FGF among others extend the 

complexity of the image 4, 5.  

In addition to ‘specific’ anti-angiogenic agents, conventional cytotoxic anti-cancer drugs 

have recently been recognized for their ‘unspecific’ anti-angiogenic potential, when 

frequently applied at low concentrations 8. In preclinical models it was even shown that 

tumors, which were per se resistant to the chemotherapeutic, could be effectively 

treated with this ‘metronomic chemotherapy’ schedule 42, 43. The combination with 

specific anti-angiogenic drugs, such as bevacizumab, often resulted in a further 

improved outcome of this approach 8, 9, 42, 43. 

Hence, for the improvement of antitumor therapy it takes both: development of novel 

‘specific’ anti-angiogenic drugs 44, and of multi-talented chemotherapeutics, that are 

evaluated for their anti-cancer activity but also for their anti-angiogenic potential 45, 46.    

1.2.2 Microbial derived anti-cancer drugs 

Microorganisms are considered as significant contributors to the discovery of 

innovative and potent anti-cancer drugs 47. Particularly the recent reinforcement of 

myxobacteria research by the groups of Reichenbach and Höfle further extended the 

pharmacological repertoire 48. To date at least 100 novel core structures with highly 

diverse bioactivities, many of them cancer relevant, 49 have been identified in 

myxobacteria.  

The compounds applied in the present work, all have direct or indirect microbial origin, 

either from myxobacteria or from streptomyces species. See Material and Methods 

chapter for chemical structures, Fig. 2.1 and 2.2.  

Tubulysin A (TubA) is a microtubule destabilizing agent 12, which is isolated from the 

myxobacterial strains Archangium gephyra and Angiococcus disciformis, though at 

very low yield (0.3 mg/ l) 50. Recently,  TubA has shown to have very promising anti-

cancer and anti-angiogenic activities in vitro and in vivo 13, 51, but the step into clinical 

use was hampered by its poor supply 17, 19, also due to complicated total synthesis 15. 

An alternative to tubulysin might be pretubulysin (Prt), a direct biosynthesis precursor 

to tubulysins 18. Prt can be efficiently produced by total synthesis. In addition, its anti-

cancer activities are fairly close to its complex tubulysin relatives 18, 19. Based on the 

pretubulysin structure, various derivatives were synthesized 15, 16. In the first part, we 

tested Prt and seven Prt derivatives for their anti-angiogenic potential in comparison to 

tubulysin A. 

In the second part, we applied a specific v-ATPase inhibitor, concanamycin A 

(ConcmA), Fig. 2.2 52, 53. This compound is produced by Streptomyces 

diastatochromogenes 54. We used ConcmA to study anti-angiogenic effects of  
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v-ATPase inhibition on a cell functional and mechanistic level, thereby focusing on 

VEGFR2 function. 

1.3 Targets in focus – Microtubules and v-ATPases  

1.3.1 Microtubules 

Together with microfilaments and intermediate filaments, microtubules form the 

eukaryotic cytoskeleton, which provides cellular shape, stability and polarization, 

‘highway function’ for the transport of various cargo, cell division and migration 45, 55-57.  

Microtubules are highly dynamic tube-shaped polymers with a polar assembly: One 

end, which is called (-) end, finishes with α-tubulin. This side is embedded at the origin 

of microtubule growth, the microtubule organization centre (MTOC)58, Fig. 1.3.  

The other end finishes with β-tubulin and is called (+) end. At this side, α- and β-tubulin 

heterodimers are constantly integrated, and again separated from the polymer, a 

behavior called ‘dynamic instability’ 45. Tubulin inhibitors can either subtly modulate this 

process at small concentration, or completely destabilize, respectively stabilize the 

polymer at higher concentration (see Fig. 1.3). Tubulysin A binds to a specific region 

within the Vinca domain (peptide binding site) and destabilizes the polymer 12, 59. 

Pretubulysin is assumed to similarly bind to this site 19, 60. 

 

Fig. 1.3 A) Assembly of microtubules. Soluble heterodimers of α- and β-tubulin align together to a short 
microtubule nucleus, which is elongated into a polymeric cylinder, with β-tubulin at one end, called (+) end, 
and α-tubulin at the other, (-) end. At the (+) end, dimers are constantly added or released, leading to 
phases of growth or shrinkage, respectively.  
B) Main drug binding domains. Microtubule destabilizing drugs usually bind either to the Vinca domain, 
at the (+) end of microtubules (orange triangles, e.g. vinca alkaloids, dolastatins or tubulysins) or to the 
Colchicine domain, situated within α- and β-tubulin of soluble subunits, that get incorporated and 
destabilize the polymer (green squares, e.g. colchicines, combretastatins). Stabilizing agents such as 
taxanes (paclitaxel, shown as yellow stars) bind at the inner surface of the polymer on β-tubulin (Taxane 
domain). Myxobacteria derived epothilones bind close nearby at a distinct site and thus can be used in 
cases of taxane resistance

61
. Images and binding sites adapted from Dumontet and Jordan 

45
. 
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1.3.1.1 Microtubules – relevant functions in cancer and  
tumor angiogenesis 
 

The importance of microtubules in both anti-cancer 45, 62  and anti-angiogenic 

strategies8, 46, 63 is not coincidental. In proliferating cells (Fig. 1.4 A), the highly dynamic 

mitotic spindle apparatus is particularly vulnerable to tubulin inhibition. This leads to a 

certain specificity of tubulin antagonists to fast dividing cells45.  

Interphase microtubule dynamics are strongly required during processes of migration 
56, 64 and differentiation, i.e. capillary formation, of endothelial cells 55, 65.  

Here, microtubule dynamics provide transport function56, which leads to a polarized 

distribution of signaling molecules, such as small Rho-GTPases, and cytoskeletal 

elements (actin, intermediary filaments), which themselves generate a polarized actin 

cytoskeleton, that drives migration 64, 66 (see Fig. 1.4 B). Interestingly, tubulin 

antagonists have been shown to exert anti-angiogenic effects at very low, non-toxic 

concentrations, which do not affect cell cycling 46, 67, 68. Thus, it can be discriminated 

between anti-mitotic and non-mitotic effects.  

 

 

Fig. 1.4 Microtubule functions in A) dividing and in B) interphase cells A) Assembly of the mitotic 
spindle. B) Cell migration and polarization depend on microtubules. Interphase microtubules lead to 
asymmetric distribution of signaling molecules, such as small Rho-GTPases, e.g. Rac-1 and Cdc42 (green 
ovals), which lead to the formation of a polarized actin network, with membrane protrusion  
(L: lammelipodia and F: filopodia) at the progressing leading edge and stress fibers (S) across the whole 
cell which generate membrane retraction at the lagging edge 

64, 66
. Note, that the microtubule origin, the 

microtubule organizing centre (MTOC), is similarly re-orientated towards the direction of migration
69

.  
Image in B adapted from Watanabe et al. 

64
 

1.3.2 V-ATPases  

Vacuolar H+-ATPases (v-ATPases) are heteromultimeric ATP-driven proton pumps, 

that are ubiquitously expressed in membranes of eukaryotic cells in order to regulate 

pH in vesicular compartments, the cytoplasm and the extracellular space 70.  

Tight control of pH is essential to a plethora of physiological processes 70, as for 

instance receptor mediated endocytosis 71, 72, membrane trafficking 27, homeostasis of 

bone tissue, or renal acid secretion 70. Hence, malfunction of these enzymes can cause 
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diseases such as osteopetrosis 73 or renal acidosis 70. The other way around, over-

expression of v-ATPases is evidently associated with other severe diseases such as 

osteoporosis and cancer 70, 72. This has evoked great interest of biomedical research 22, 

70 in terms of inhibiting v-ATPases as anti-osteoporosis and anti-cancer approach 74.   

The assembly of v-ATPases appears complex (see Fig. 1.5), but the functional 

principle is simple: Two major domains, one situated in the cytoplasm (V1), and the 

other one largely integrated in membranes (V0), build the holoenzyme. V1 provides ATP 

hydrolysis. Released energy is transduced into rotation of the membrane embedded 

proteolipid ring in the V0 domain, whereby protons get translocated (see Fig. 1.5). The 

enzyme activity is regulated by reversible association and dissociation 72.  

 

Fig. 1.5 Assembly of v-ATPases and principle of proton transprt. The cytoplasmic part (V1) consists of 
eight different proteins with the putative stoichiometry A3B3CDE2FG2H, whereas the membrane integrated 
part (V0) contains six different proteins (a1, c4-5, c’1, c’’1, d1 and e1) 

74
. When the holoenzyme is assembled, 

ATP is hydrolyzed in the V1 part (via A and B), energy is translated by the circulating rotor (D, F, d) into 
rotation of the membrane integrated proteolipid ring (built of c,c’ and c’’). Protons pass the membrane via 
two hemi-channels (located in subunit a) by intermediate binding to glutamate (in c, c’, c’’ and a) and 
arginine residues (in subunit a). Peripheral stalks (G, E, H, C, and the N-terminal domain of a) are used to 
stabilize the connection between V1 and V0. The horizontal stalk of subunit a is likely to prevent passive 
rotation and thus uncontrolled proton translocation 

72
. Image from Forgac 

72
. 

The first specific inhibitors of v-ATPases, the plecomacrolides bafilomycin and 

concanamycin (ConcmA) were discovered in 1984 in Streptomyces strains 53, 54, 75.  

By screenings in further natural sources (e.g. marine sponges 76 or myxobacteria 77, 78) 

new potent classes of v-ATPase antagonists, e.g. benzolactone enamides 

(salicylamide 76 and apicularen 77) and macrolactones (archazolid 78), were identified. 

Indolyls were the first synthetic inhibitors, inspired by the bafilomycin structure 74, 79.  

Astonishingly, it seems that most v-ATPase inhibitors, including concanamycin A, block 

v-ATPase function via binding to the subunit c proteolipid ring or nearby to the  

subunit a, though with clear differences concerning their exact binding site 52, 74, 80-83. 
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With respect to their high inhibition potency on isolated enzyme (EC50 in low nanomolar 

range74), interference with proteolipid ring rotation or proton association seems to be 

the most efficient inhibitory strategy 74, 80.  

1.3.2.1 V-ATPases  –  relevant functions in cancer  
and tumor angiogenesis  

 

Cancer cells and cancer associated endothelial cells (Fig 1.6 A) are exposed to a 

highly acidic environment, caused by the upregulated metabolic rate and poor oxygen 

supply within the tumor tissue 31, 84. To cope with these hostile living conditions, tumors 

evolve strategies for acid elimination 84. One of these strategies is the increased 

expression of v-ATPases at the plasma membrane (pm v-ATPases) 22, 25, since this 

creates a slight alkaline intracellular pH, which is favorable for cell proliferation and 

tumor cell survival 84. Furthermore, acidification of the tumor environment is detrimental 

to most chemotherapeutics, which often are weak bases and cannot reach intracellular 

targets in protonated status 84.  

In terms of cell migration and matrix invasion, it was reported, that highly invasive 

tumor cells and endothelial cells, over-express pm v-ATPases at the leading edge, 

which creates an intracellular pH gradient (Fig 1.6) 21, 24, 25. Similarly to the function of a 

polarized microtubule cytoskeleton, 64 it was proposed that intracellular pH asymmetry 

determines asymmetric actin polymerization, which generates cell migration 21, 64 

(Fig.1.4 and Fig.1.6). Moreover, low extracellular pH is reported to activate proteases 

which degrade and remodel the extracellular matrix (ECM), and thus facilitate cell 

invasion and migration into the underlying tissues21, 34. Relevant for tumor angiogenesis 

is also the finding, that pm v-ATPases may differentially activate certain isoforms of 

these proteases (e.g. MMP 9) 34, which are described to release sequestered growth 

factors, particularly VEGF, from the ECM 33, and thus further sustain the angiogenic 

switch (Fig. 1.6). 



1  Introduction 16 

 

Fig. 1.6 Functions of plasma membranous v-ATPases with relevance to cancer and angiogenesis.  
Enhanced expression of plasmalemmal (pm) v-ATPases at the leading edge of migrating cells (endothelial 
cells or cancer cells) provides a polarized intracellular pH, which might favor the formation of an 
asymmetric actin network (S: Stress fibers, L: Lammelipodia, F: Filopodia). Acidification of extracellular 
space activates proteolytic enzymes (Matrix metalloproteinases, scissors) to degrade matrix proteins and 
release pro-angiogenic growth factors 

33
, which in turn promote tumor angiogenesis.  

Proposed mechanism adapted from Perez-Sayans et al. 
21

 and Bergers et al. 
33

.   

V-ATPases are distributed along the whole endo- and exocytic pathway (Fig. 1.7) and 

known to control crucial functions such as membrane trafficking 27, 70, 85.  

Therefore, besides pm v-ATPases, intracellular v-ATPases display a further potential 

‘target’, whose functional inhibition might contribute to anti-cancer or anti-angiogenic 

effects. 

Recently, Wiedmann and colleagues could demonstrate, that the application of low 

nanomolar doses of a v-ATPase inhibitor disturbs intracellular membrane traffic in 

highly invasive cancer cells, and thus potently inhibits cancer cell migration and matrix 

invasion.  

The treatment induced a delay in endocytosis of EGFR. Furthermore, v-ATPase 

inhibition disorganized the spatial distribution of EGFR and Rac-1, and consequently 

the activation of Rac-1 23, 86.  

1.3.3 VEGFR2 trafficking as target of v-ATPase inhibition  

The intracellular trafficking of VEGFR2 could be similarly affected by v-ATPase 

inhibition. But it has to be considered that its trafficking behavior is unique among 

RTKs, Fig 1.7. One characteristic feature is the steady state cycling between cell 

surface and intracellular compartments under non-stimulated conditions with approx. 

40 % of VEGFR2 being resident in an intracellular sorting compartment 87. The 

receptor recycling rate is increased under stimulation with VEGF 28, 87, 88. In contrast to 

that, the vast majority of EGFR resides at the cell surface in non stimulated condition, 

and gets largely internalized upon stimulation with EGF 89.  
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Fig. 1.7 Distribution of intracellular v-ATPases 
70

 and regular VEGFR2 trafficking 
28

. 
 
Intracellular v-ATPases provide constant pH levels, specific for each membrane compartment along  
the endocytic pathway 

70
.  

VEGFR2 undergoes a unique way of receptor trafficking. Characteristic are for instance two VEGFR2 
fractions at the cell surface. One is constantly internalized via clathrin dependent endocytosis, the other 
one is stabilized by VE-cadherin. Internalized VEGFR2 traffics via early endosomes and sorting 
endosomes back to the surface (short loop). Another recycling pathway goes via the perinuclear recycling 
compartment (PNRC, long loop), and a third putative loop goes via a src containing (src+)  
compartment 

28, 87
. Minor portions of VEGFR2 get lost in lysosomes. Stimulation with VEGF does not 

increase receptor uptake, as for  EGFR 
89

, but accelerates intracellular trafficking and slightly increases  
lysosomal degradation 

28
. Image adapted from Scott et al.

28
 and Hinton et al.

70
 

1.4 Aims  

In the first part, we wanted to evaluate the anti-angiogenic potential of a chemically 

accessible tubulysin precursor, pretubulysin, and seven of its derivatives in comparison 

with the anti-angiogenic established but poorly accessible tubulysin A. Further, we 

wanted to assess the most active candidate of in vitro tests in an  

in vivo tumor model for inhibition of tumor growth and tumor vascularization.    

In the second part, we wanted to characterize the influence of v-ATPase inhibition on 

VEGFR2 trafficking, by measuring key parameters on function and distribution of the 

receptor in endothelial cells. We wanted to test, if these parameters could be 

connected to angiogenesis related cell functional changes after v-ATPase inhibition. 
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2.1 Materials  

2.1.1 Test compounds 

 

Fig. 2.1 A) Chemical structures of tubulysin A (TubA) and pretubulysin (Prt); TubA and Prt each 
contain four different amino acids. Prt lacks the acyloxy-side moieties, which are introduced after assembly 
of the tetrapeptidic core. In addition, Prt has a different C-terminal amino-acid than TubA (Tup instead of 
Tut)

18
. B) Prt-analogues were either modified at N/C terminal position or at central position

15, 16
.  

Abbreviations: D-Mep (N-Methylated D-pipecolic acid), L-Ile (L-Isoleucine), Tuv (Tubuvaline with   
C-acetoxy and N,O-acetal moeities), dTuv (C-desacetoxy-tubuvaline), Tut (Tubutyrosine),  
Tup (Tubuphenylalanine). Structural differences from Prt are indicated by dotted circles (A) or by red color 
(B). Structures adapted from Ullrich et al., Burkhart et al. 

15, 16
 and from A.Ullrich and J.Burkhart, personal 

communication.  

AU815

AU954 

AU816 

A

B

Tubulysin A (TubA) Pretubulysin (Prt)

JB337 

JB375 

JB338 

D-Mep L-Ile Tuv Tut TupdTuvD-Mep L-Ile

AU825
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Fig. 2.2 Chemical structure of Concanamycin A (ConcmA). ConcmA is a specific v-ATPase inhibitor 
with plecomacrolide structure. Structure adapted from Huss et al.

74
 

2.1.1.1 Tubulin inhibitors 

Pretubulysin (Prt) and derivatives thereof (Fig. 2.1) were kindly provided from  

Dr. Angelika Ullrich and Dr. Jens Burkhart from the Institute of Organic Chemistry, 

Saarland University, Chair Prof. Uli Kazmaier15, 16. Tubulysin A (TubA), Fig. 2.1 A, was 

purchased from Merck Calbiochem (Darmstadt, Germany). 10 mM stock solutions of 

the compounds were prepared in DMSO. The final DMSO concentration did not exceed 

0.3 %, a concentration verified not to affect respective experimental parameters. 

2.1.1.2 V-ATPase inhibitors 

Concanamycin A (ConcmA), Fig.2.2, was purchased from Alexis Biochemicals (Enzo 

Life Sciences Inc., Lörrach, Germany). DMSO stock solutions of 0.5 mM were kept in  

1 µl aliquots at – 80 °C and were used once to avoid repeated freeze-thaw cycles.  

The highest final DMSO concentration in the experiments with ConcmA did not exceed  

60 ppm.  

2.1.2 Technical equipment 

 

Table 2.1 Technical Equipment 

Name Device Producer 

AB7300 RT-PCR Real-time PCR system Applied Biosystems, Foster 
City, CA, USA 

Axioskop Upright microscope Zeiss, Jena, Germany 

Axiovert 200 Inverted microscope Zeiss, Jena, Germany 

‘The Brick’ Heat and CO2-flow rate 
controlling device 

Life imaging services, Basel, 
Switzerland 

Concanamycin A (ConcmA)
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Name Device Producer 

Culture flasks, plates, 
dishes, cell scrapers 

Disposable cell culture 
material 

TPP, Trasadingen, 
Switzerland 

Custom made climate 
chamber  

Life cell observation on 
Axiovert 200 

Ibidi GmbH, Munich, 
Germany  

Curix 60 Tabletop film processor Agfa, Cologne, Germany 

E835, EV202 Electrophoresis power 
supplies 

Consort,  Turnhout, Belgium 

FACScalibur Flow cytometer Becton Dickinson, 
Heidelberg, Germany 

Heating block Heating block Peqlab, Erlangen, Germany 

HT 50 Climate controlling device Ibidi GmbH, Munich, 
Germany 

Imago-QE camera  and 
appending software  

Life cell observation on 
Axiovert 200 

Till Phototonics Gräfelfing, 
Germany 

LSM 510 Meta Confocal laser scanning 
microscope 

Zeiss, Jena, Germany 

Mikro 220R Table centrifuge Hettich, Tuttlingen, Germany 

Nanodrop® ND-1000 Spectrophotometer Peqlab, Wilmington, DE, 
USA 

AMAXA Nucleofector II Electroporation device Lonza GmbH, Cologne, 
Germany 

Odyssey 2.1 Infrared Imaging System  LI-COR Biosciences, 
Lincoln, NE, USA 

Olympus BX41 Clinical microscope Olympus, Hamburg, 
Germany 

SpectraFluor PlusTM Microplate multifunction 
reader 

Tecan, Männedorf, Austria 

Spectrophotometer DU 
7500 

Diode array photometer Beckmann Coulter, Krefeld, 
Germany 

SunriseTM Microplate absorbance 
reader 

Tecan, Männedorf, Austria 

Vi-CellTM XR Cell viability analyzer Beckman Coulter, Krefeld, 
Germany 
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Name Device Producer 

µ-slide Chemotaxis; 
Angiogenesis; 8 well   

µ - slides for microscopy Ibidi GmbH, Munich, 
Germany 

 

2.1.3 Biochemicals, inhibitors, dyes and cell culture reagents 

 

Table 2.2 Biochemicals, inhibitors, dyes and cell culture reagents 

Reagent Provider 

Accustain®  paraformaldehyde Sigma-Aldrich, Taufkirchen, Germany 

Amphotericin B PAA Laboratories, Pasching, Austria 

BC Assay reagent Interchim, Montlucon, France 

Bovine Serum Albumin (BSA) Sigma-Aldrich, Taufkirchen, Germany 

Collagen G Biochrom AG, Berlin, Germany 

Collagenase A Biochrom AG, Berlin, Germany 

Complete® mini EDTA free Roche diagnostics, Penzberg, Germany 

Coomassie brilliant blue G250 Carl Roth, Karlsruhe, Germany 

DMEM  PAA Laboratories, Pasching, Austria 

DMSO AppliChem, Darmstadt, Germany 

EGTA-K AppliChem, Darmstadt, Germany 

Endothelial Cell Growth Medium (ECGM) PromoCell, Heidelberg, Germany 

FCS gold PAA Laboratories, Pasching, Austria 

Fibronectin  BD Biosciences, Heidelberg, Germany 

FluorSave™ Reagent mounting medium Merck, Darmstadt, Germany 

GTP  Sigma Aldrich, Taufkirchen, Germany 

Leibowitz Medium L15 Biochrom AG, Berlin, Germany 

M199 Medium PAA Laboratories, Pasching, Austria 

MAP - rich tubulin from porcine brain  Cytoskeleton Inc., Denver, CO, USA 

Matrigel™ BD Biosciences, Heidelberg, Germany 

MgSO4 Merck, Darmstadt, Germany 

NaF  Merck, Darmstadt, Germany 

Na3VO4  ICN Biomedicals, Aurora, OH, USA 

Page RulerTM Prestained Protein Ladder Fermentas, St. Leon-Rot, Germany 

Penicillin, Streptomycin PAA Laboratories, Pasching, Austria 
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Reagent Provider 

PIPES AppliChem, Darmstadt, Germany 

PMSF  Sigma-Aldrich, Taufkirchen, Germany 

Streptavidin-agarose beads Millipore, Temecula, CA, USA 

Sulfo-NHS-lc-biotin  Interchim, Montluҫon, France   

Tris HCl Sigma Aldrich Taufkirchen, Germany 

Triton X-100 Merck, Darmstadt, Germany 

Tween®20 BDH/Prolabo®, Ismaning, Germany 

VEGF 165, human recombinant PeproTech GmbH, Hamburg, Germany 

 

2.1.4 Cell culture media and buffers 

The following cell culture media and buffers were used as indicated.  

2.1.4.1 Cell culture media 

 

Table 2.3 Cell growth media 

Endothelial Cell Growth medium  HuH7 Cell Growth Medium 

ECGM PromoCell 500 ml  DMEM  500 ml 

Supplement Mix  #C-39215 23.5 ml  FCS 50 ml 

FCS gold 50 ml    

Penicillin/Streptomycin 5 ml    

Amphothericin B 5 ml    

 

Before use, FCS gold and FCS were heat inactivated at 56°C for 30 min. FCS aliquots 

were kept at -20°C for storage. Regularly, cell media were tested for mycoplasma 

contamination with the Venor®GeM PCR detection kit (Minerva Biolabs, Berlin, 

Germany). 
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Table 2.4 Starvation media 

Starvation Medium  pH buffered starvation Medium 

M199 500 ml  Leibowitz Medium L15 500 ml 

 

Table 2.5 Freezing medium 

Freezing medium 

FCS gold 10% 

DMSO 10% 

ECGM or HuH7 growth medium   

 

2.1.4.2 Coating matrices 
 

If not other stated, Collagen G was used for coating cell culture plastic surfaces 

Table 2.6 Coating solution 

Collagen G 

Collagen G 

PBS 

0.001% 

  

 

2.1.4.3 Cell detachment and isolation media 

 

Table 2.7 Cell detachment media 

Trypsin/EDTA (T/E)  Collagenase A for HUVEC isolation 

Trypsin 0.05%  Collagenase A 0.01% 

EDTA  0.20%  PBS+ Mg2+/Ca2+  

PBS     

 

Table 2.8 Stopping medium 

Stopping medium  

M199 500ml  

FCS   
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2.1.4.4 Commonly used buffers 

 

Table 2.9 Commonly used buffers 

PBS (pH 7.4)  PBS + Mg2+/Ca2+ 

NaCl  132.2 mM  NaCl  137 mM 

Na2HPO4  10.4 mM  KCl 2.68 mM 

KH2PO4  3.2 mM  Na2HPO4  8.10 mM 

H2O   KH2PO4  1.47 mM 

   MgCl2  0.25 mM 

   H2O   

 

2.2 Methods  

2.2.1 Cell culture  

2.2.1.1 Cell lines  

2.2.1.1.1 Human Microvascular Endothelial Cells (HMEC-1) 

 

Human Microvascular Endothelial Cells (HMEC-1) were obtained from the Centre for 

Disease Control and Prevention (CDC, Atlanta, GA, USA) and were used until twelfth 

passage maximum. This immortalized cell line was originally created by transfection of 

human dermal microvascular endothelial cells with a SV40 large T-antigen containing 

plasmid. Still, HMEC-1 are known to retain characteristics of primary endothelial cells in 

shape and function 90. We used HMEC-1 for experiments on endothelial cell 

proliferation, cell cycle distribution, DNA fragmentation, tube formation and in assays 

using immune-cytochemistry. Furthermore, HMEC-1 were assessed for changes on 

lysosomal pH, cell morphology, endothelial wound repair, cell to matrix adhesion, ruffle 

formation, VEGF induced signaling and for the biochemical analysis of VEGFR2 

surface levels. 

2.2.1.1.2 Primary human umbilical vein endothelial cells (HUVEC) 

 

Primary human umbilical vein endothelial cells (HUVEC) were freshly isolated by 

Collagenase A treatment, as previously described 91. The human umbilical cords 

therefore were kindly provided from Munich hospitals and from the Munich 
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surroundings: Klinikum München Pasing, Frauenklinik München West/Krüsmannklinik, 

Rotkreuzklinikum München, and Wolfart Klinik Gräfelfing and were kept at 4°C in 

PBS+Ca2+/Mg2+ containing penicillin (100 U/ml) and streptomycin (100 µg/ml) until 

isolation procedure. HUVEC were used at passage #3 for the following assays: 

endothelial wound repair, chemotaxis, cell matrix adhesion, DNA fragmentation, Rac-1 

activation, tube formation, immune-cytochemistry assays, siRNA transfection combined 

with scratch migration, cell morphology assays and for the biochemical analysis of 

VEGFR2 surface levels.  

2.2.1.1.3 HuH7- human hepatocellular carcinoma cell line  
 

HuH7 cells were obtained from the Japan Health Science Research Bank (JCR B0403) 

and cultivated in DMEM medium containing 10% FCS. They were used between 

passage #10 and #14 for a subcutaneous xenograft tumor model in SCID mice (2.2.7). 

Furthermore, HuH7 cells were tested in an in vitro proliferation assay (2.2.5).  

2.2.1.2 Cell passaging and cultivation 

 

For passaging and seeding, confluent cells were washed twice with pre-warmed PBS 

to remove serum and growth factors, the cells were detached by incubation with 1-2 ml 

Trypsin/EDTA (T/E) for a few minutes at 37 °C (HUVEC: 1-2 min, HMEC-1: 3 min, 

HuH7: 5 min). To saturate trypsin and EDTA with a surplus of substrate, 10 ml   

stopping medium were added. Cells were poured into 50 ml falcons and centrifuged for 

5 min at 180 rcf. The supernatant was discarded and cells were resuspended in the 

referred growth medium. Subsequently, cells were either split at a ratio of 1:3 into new 

flasks or used for experiments. In the latter case, cell numbers are indicated for the 

respective experiment. For a better adhesion and cell function, surface materials were 

precoated with 0.001% collagen G (Hersteller Biochrom, Berlin) or with another coating 

matrix, when indicated. Cell concentration and viability were determined using 

ViCELLTM cell viability analyzer (Beckman Coulter, Krefeld, Germany).  All cell lines 

were cultured under constant humidity at 37°C with 5% CO2 in a cell incubator 

(Heraeus, Hanau, Germany).  

2.2.1.3 Cell freezing and thawing 
 

For long term cell storage, cells were kept in liquid nitrogen. Before freezing, confluent 

cells from a 150 cm2 flask were trypsinized, centrifuged in stopping medium (180 rcf, 5 

min) and resuspended to 2 x 106 cells/ml in ice-cold freezing medium. Then, aliquots of 

1.5 ml were distributed in cryovials and kept at -80 °C for 24 h. Finally, cells were 

transferred into liquid nitrogen tanks for long term storage. For thawing, an aliquot in a 

cryovial was warmed to 37 °C. The contained cell suspension was then immediately 
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dissolved in pre-warmed stopping medium, centrifuged (180 rcf, 5 min) in order to 

remove residual DMSO and finally resuspended in the respective growth medium and 

cultivated in a precoated 75 cm2 culture flask.  

2.2.2 Confocal microscopy  

By use of immune-cytochemistry or chemical fluorescence labeling, sub-cellular 

structures were analyzed with a confocal microscope (Zeiss LSM 510 META, Zeiss, 

Oberkochen, Germany). The staining procedures are described below. 

2.2.2.1 Microtubule staining 

 

30.000 HMEC-1 were seeded into 0,001% collagen G coated 8-well µ-slides (Ibidi, 

Martinsried, Germany) and stimulated  with Tubulysin A (TubA); Pretubulysin (Prt) or 

the Prt-derivatives for 16 h. Cell extraction buffer (80 mM PIPES pH 6,8; 1 mM MgCl2, 

5 mM EGTA-K and 0.5%Triton X-100) was used in order to remove monomeric and 

dimeric tubulin subunits to reduce background staining. After 30 sec of extraction, cells 

were fixed for 10 min by adding glutaraldehyde to final 0.5%. Excess glutaraldehyde 

was removed and quenched with 0.1% NaBH4 in PBS for 7 min. Cells were washed 

thoroughly with PBS again, blocked with PBS 0.2% BSA  and stained for α-tubulin and 

nuclei (see 2.2.2.2. for immune-staining procedure and table for antibodies, reagents  

and dilutions). 

2.2.2.2 v-ATPase subunit c staining in migrating human endothelial cells 

 

100.000 HMEC-1 and HUVEC were seeded into 8-well µ-slides from Ibidi and left 

untreated to grow to confluent level. Cell monolayers were scratched using a yellow 

pipette tip. Detached cells were removed by washing twice with pre-warmed PBS+. 

Endothelial cells were allowed to migrate for 8 h, to establish a migration leading edge. 

All further incubation steps were performed under gentle agitation at RT. Cells were 

fixed with 4% paraformaldehyde for 10 min. For permeabilization, cells were incubated 

for 2 min with 0.2% Triton/PBS. As blocking solution 1% BSA/PBS was added and 

incubated for 10 min. Antibodies were diluted in 0.1% Triton/1% BSA/PBS. Samples 

were generally incubated with the primary antibodies for 1 h at RT, followed by three 

washing steps with PBS+ and the 1 h incubation with the secondary antibodies and 

staining reagent rhodamine phalloidin for f-actin for 1 h. Hoechst 33342 was added for 

5 min at a concentration of 0.05 µg/ml, if nucleus staining was required. Cells were 

then washed further three times with PBS+ and finally covered with 1 drop FluorSave 

mounting medium and a glass coverslip (custom made by Helmut Saur Laborbedarf, 

Reutlingen, Germany). Thus, samples could be stored at 4 °C until analysis at the 

confocal microscope.  
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Besides by immune-cytochemistry, subunit c protein in untreated HMEC-1 and HUVEC 

monolayers were determined by Western blot analysis, see 2.2.10.  

2.2.2.3 pH dependent detection of lysosomes 

 

Lysosomes in ConcmA treated HMEC-1 were labeled by 2 h incubation with 75 nM 

LysoTracker® Red. Nuclei were stained by addition of 0.1µg/ml Hoechst 33342,  

5 min. Here, no washing steps, fixation or coverslips were used prior to confocal 

microscopy. Lysosomal pH dependent staining was analyzed 2 h and 24 h after 

ConcmA addition.  

2.2.2.4 Immune-staining of VEGFR2 

 

In HMEC-1, VEGFR2 was either stained alone (after 2 and 24 h ConcmA treatment) or 

together with markers for the endocytic pathway (after 24 h ConcmA treatment) using 

appropriate primary antibodies and fluorophore-labeled secondary antibodies (see 

table). In addition, nuclei were stained with Hoechst 33342, as described (2.2.2.3.).   

Table 2.10 Primary antibodies used for immune-cytochemistry 

Antigen Source Dilution Provider 

α-tubulin  rabbit  1:100 Abcam 

subunit c (ATP6L) rabbit  1:100 Millipore 

VEGFR2  mouse 1:400 Abcam  

VEGFR2  rabbit  1:200 Cell Signaling 

Lamp 1  mouse  1:400 Hybridoma Bank, Univ. of IOWA, USA 

Caveolin 1 rabbit  1:100 Novus Biologicals 

Rab 5a rabbit  1:100 Santa Cruz 

Clathrin HC rabbit  1:500 Abcam 

 

Table 2.11 Secondary antibodies used for immune-cytochemistry 

Antibody Dilution Provider 

Alexa Fluor® 488 goat anti-mouse IgG (H+L) 1:600 Molecular Probes 

Alexa Fluor® 647 chicken anti-rabbit IgG (H+L) 1:600 Molecular Probes 
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Table 2.12 Staining reagents used for immune-cytochemistry 

Staining reagent  Dilution Provider 

Rhodamin-phalloidin 1:400 Molecular Probes 

Hoechst 33342 (Bisbenzimide) 1:1000 Sigma-Aldrich  

 

2.2.3 Tubulin polymerization assay 

Porcine brain tubulin, enriched with Microtubule-associated proteins (MAP) was 

obtained from Cytoskeleton Inc. (Cat.# ML116 Denver, CO, USA). Tubulin 

polymerization was monitored by use of turbidometry as described by Gaskin et al. 92. 

Samples (200 µl, 10 µM tubulin) dissolved in polymerisation buffer (0.1 molar PIPES, 

pH 6.6, 1 mM EGTA, 1 mM MgSO4, and 1 mM GTP) were rapidly warmed to 37 °C in a 

water-jacketed cuvette holder of a diode array photometer (Spectrophotometer DU 

7500, Beckmann Coulter, Krefeld, Germany). Absorbance at 350 nm was monitored in 

absence and presence of TubA, Prt or Prt-derivatives at indicated concentrations.  

This experiment was kindly performed by Jennifer Herrmann from the Helmholtz 

Centre for Pharmaceutical Research, University of Saarland, Saarbrücken, Germany. 

2.2.4 Flow cytometry 

2.2.4.1 Quantification of nuclear fragmentation and cell cycle 

 

In order to determine, the extent of cytotoxicity contribution to the overall inhibition of 

functional parameters important for angiogenic morphogenesis (Rac-1 activation, ruffle 

formation, migration, chemotaxis, tube formation), HMEC-1 or HUVEC, respectively, 

were incubated with the compounds in 24 well plates at the same density, drug:cell 

ratio and within appropriate time frames as in the respective functional assays (24 h or 

48 h). As one late indicator for cell death, the nuclear fragmentation was determined 

according to Nicoletti et al 93. In brief, after treatment, cells were harvested on ice and 

incubated in a hypotonic buffer (0.1% sodium citrate, 0.1% Triton X-100 and 50 µg/ml 

propidium iodide (PI)) overnight at 4°C, and then analyzed by flow cytometry on a 

FACScalibur (Becton Dickinson, Heidelberg, Germany) using Cell Quest Pro Software 

(Becton Dickinson, Heidelberg, Germany). Nuclei to the left of the G1-peak containing 

hypodiploid DNA were considered as fragmented. In the same set of experiments the 

percentage of cells in G2/M phase was evaluated using the Flow Jo software (Tree Star 

Inc. Ashland, OR, USA).  
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2.2.4.2 Determination of membrane integrity 

 

As an independent marker for cytotoxicity, membrane integrity was tested by 

examining the uptake of PI in non-permeabilized cells in situ subsequently to the 

functional assay (e.g. in the scratch assay, 24 well format). Cells were incubated with 

10 µg/ml PI, not containing any detergent, for 30 min. Under these conditions, PI only 

can enter cells with a damaged cell membrane (i.e. dead cells). Cells were harvested 

on ice and analyzed by flow cytometry or for PI fluorescence. PI-positive cells were 

gated and analyzed using Cell Quest Pro Software. Alternatively, tubes generated on 

Matrigel™, or HUVEC from scratch assays in a 96 well format, were incubated with 

propidium iodide to detect dead cells in situ by fluorescence microscopy.  

2.2.5 Proliferation assay 

The Proliferation assay was performed according to NCI protocols for angiogenesis. 

Briefly, 1.500 HMEC-1 per well were seeded into 96 well plates in 100 µl of media.  

After 24 h, one plate of control cells was fixed and stained with crystal violet solution. 

The other plates were incubated with increasing concentrations of the compounds to 

be tested for 72 h. After this time, cells were fixed and stained as well with crystal violet 

solution (0.5% crystal violet in 20% methanol) for 10 min. Unbound crystal violet was 

removed by rinsing with distilled water and cells were subsequently air dried. Crystal 

violet, which mainly binds to DNA, was eluted from cells with 0.1 M sodium citrate in 

50% ethanol. The absorbance of crystal violet is proportional to the cell number and 

was determined at 540nm with Magellan 6 (TECAN, Männedorf, Switzerland). By 

comparing the staining intensity at day 3 of treatment with staining intensity of 

untreated cells at day 0, the relative proliferation was calculated. Proliferation of 

untreated cells was set as 100%. For the investigation of effects of Tubulysin A and 

Pretubulysin on the proliferation of the HuH7 tumor cells, used in the in vivo assay 

(2.2.7), the same protocol was used. 

2.2.6 Angiogenic morphogenesis assays 

For assays connected to endothelial migration and differentiation (scratch assay, 

chemotaxis assay, Rac-1 activation), primary endothelial cells (HUVEC) were used 

instead of HMEC-1, since they yielded more stable effects. Nevertheless, scratch 

migration and tube formation experiments with ConcmA were performed by comparing 

both cell lines HUVEC and HMEC-1, since it was reported, that microvascular 

endothelial cells exhibit higher migratory potential than macrovascular endothelial cells 

due to different pm v-ATPase expression 25.  
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2.2.6.1 Migration scratch assay 
 

In preparation of the scratch assay, cells were seeded into 24 well plates at densities of 

0.75 x 105 per well and were grown to confluency. A wound of approx. 1 mm was 

inflicted into the monolayers by scratching with a yellow pipette tip. Detached cells 

were removed by washing with PBS+. Remaining cells were incubated for 16 h either 

in starvation medium (free of growth factors and serum, 0% migration), culture medium 

(100% migration) or culture medium containing increasing concentrations of the test 

compounds. When ConcmA was applied, confluent cells had been pre-incubated for  

24 h prior to scratch infliction additionally to the presence of compound for the duration 

of the migration assay. Then, cells were washed with PBS+ and fixed with 4% 

formaldehyde for 10 min at RT. One image was taken of each well (centre position) on 

an inverted light microscope (Axiovert 200; Zeiss, Jena Germany) with a  

5x lens using an Imago-QE camera system and the appending software (Till Photonics, 

Graefelfing, Germany). For quantification, these images were analyzed with 

WimScratch Wound Healing Module (WIMASIS, Munich, Germany). This online 

software tool is able to distinguish the cell-covered from the wounded area by using an 

algorithm based on brightness and contrast values. The increase of cell covered area 

correlates with the ability of the HUVEC to migrate into the wound. Relative migration 

was calculated related to control and to starvation control.  

2.2.6.2 Migration scratch assay with siRNA transfected HUVEC 
 

For siRNA transfected HUVEC (2.2.11), the scratch assay protocol was slightly 

alterated. Transfected cells were seeded into precoated 96 well plates at a 

concentration of 80.000 and 100.000/100 µl to quickly reach confluent levels overnight. 

24 h after transfection, monolayers were scratched, using a multi scratch device 

(custom made LMU Munich), resulting in an equal wound size of approx. 0.7 mm. For 

evaluation, the initial wound size was compared to the final wound size after 16 h of 

incubation using the same optical devices as described above. 
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2.2.6.3 Chemotaxis assay 

 

 

Fig. 2.3 Chemotaxis assay, gradient assembly. (A) Cross section of a chemotaxis slide and (B) bird 
perspective on the observation area bearing adhered HUVEC. (B) Two reservoirs, above and below the 
observation field, contain either 30% FCS or starvation medium (M199 or L15). Thus, a serum gradient of 
0% to 10% FCS is established in the middle of these reservoirs, where the HUVEC are seeded. HUVEC 
movement is observed for 20 h. Finally, their orientation ability for the higher serum concentration is 
evaluated. Image (A) adapted from Ibidi GmbH, chemotaxis application note 14. 

Prior to the chemotaxis assay, 10 µl of 5 x 106 HUVEC (suspended in ECGM) were 

seeded into ‘µ-slides chemotaxis’ chambers coated with collagen IV (Ibidi, Martinsried, 

Germany) and incubated for 1 h at 37°C. In order to remove growth factors and 

unattached cells, HUVEC were cautiously flushed twice with M199 (used in the case of 

external CO2 supply) or L15 (used when no CO2 supply was available). Then, a FCS 

gradient from 0% FCS to 10% FCS inside of the cell observation chamber  

(Fig. 2.3) was created either with M199 or with L15, according to the manufacturer’s 

application note. Life cell imaging was performed with the setup described under 

‘Migration scratch assay’, either using a device able to follow one single experiment, or 

alternatively using a motorized stage combined with autofocus (x,y,z), which allows the 

observation of three experiments in parallel (appending software LA Tillvision). Climate 

was kept at 37° C, 5% CO2 or buffered pH (L15), and 80% relative humidity.  Images of 

cell migration were obtained every 10 min for 20 h. For analysis, Image J plugins 

‘Manual Tracking’ and ‘Chemotaxis Analysis’ (National Institutes of Health, USA) were 

used. These tracking modules allow assessment of both, overall migration parameters, 

such as the total path, a cell has covered (accumulative distance) and directional 

parameters such as the ‘air-line distance’ (Euclidean distance) and the tendency of 

forward migration to the higher serum concentration (y-forward index).  

For Prt evaluation, HUVEC were directly treated with Prt or TubA for the duration of the 

chemotaxis experiment (20 h). For experiments with ConcmA, HUVEC were treated as 

described in 2.2.6.1. Only vital cells were taken into account for the chemotaxis 

evaluation.  

FCS 30%

FCS 0%

FCS 30% FCS 0%

0% FCS

10% FCS

A B
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2.2.6.4 Cell adhesion and ruffle formation 

 

HMEC-1 were pre-treated for 24 h with ConcmA and then seeded at densities of 0.75 x 

105 cells per well inro 24 well plates. Adhesion surfaces had been precoated with 

various matrix solutions (0.001% collagen G, 25µg/ml fibronectin, 10% Matrigel™) for 

30 min at RT. Alternatively, plates were left uncoated to test cell plastic adhesion. After 

an incubation of 30 min at 37°C, supernatants were discarded and unbound cells were 

removed by once washing with pre-warmed PBS+. Remaining adhered cells were fixed 

using 4% formaldehyde. For analysis, two central images were taken per well, 10 x 

magnification (Axiovert 200, Zeiss, QE Imago camera). Cells were counted and 

number of cells with clear ruffle formation was calculated in % of total adhered cells. 

2.2.6.5 Rac-1 pulldown assay 

 

Confluent HUVEC monolayers were either treated for 24 h with 10 nM of ConcmA or 

left untreated. Rac-1 activation was then induced by seeding each 4 Mio cells on 

collagen precoated 100 cm dishes, as previously described (2.2.6.4). After 30 min, 

cells were harvested on ice and the Rac-1 pulldown was performed with a biochemical 

kit (Product # 16118, Pierce, Thermo Scientific Inc., Rockford, IL USA) according to the 

manufacturer’s instructions. Thereby, the binding domain of a downstream substrate of 

Rac-1, called PAK, was used to extract the active GTP-bound Rac-1 from the total cell 

lysate. After the pulldown, probes were mixed with 2 x Laemmli sample buffer (see 

table 2.15 for content), and stored at -20 °C until separation in a SDS-PAGE (2.2.10.3) 

and Western Blot analysis (2.2.10).   

2.2.6.6 Tube formation assay 

 

Growth Factor reduced MatrigelTM (BD Discovery Labware, Bedford MA, USA) was 

placed into the lower chambers of µ-slide angiogenesis wells (Ibidi), and hardened for 

30 min at 37 °C.  For the evaluation of Prt and derivatives, test compounds (500 µl of 

2x the final concentration) were each mixed with 500 µl of HMEC-1 (4 x 105/ml). 50 µl 

of this suspension was placed into µ-slides angiogenesis wells, containing hardened 

Matrigel. Cells were incubated for 16 h. For the characterization of v-ATPase inhibitor 

ConcmA, confluent HMEC-1 and HUVEC monolayers in 6 well plates were pretreated 

for 24 h, prior to the protocol as described for Prt evalution. For evaluation, one Image 

per well was taken on the Axiovert 200 microscope as described in 2.2.6.1.  

The images were processed with the tube formation module of WIMASIS Image 

Analysis (Munich, Germany). This online software module identifies cellular tubes on a 

multiparametric basis (depending on brightness and contrast differences, length and 

width of the structure) and interprets tubes and non-tube complexes using an 
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automated mathematic algorithm. Drug effects were assessed, analyzing total tube 

length and number of tube connecting nodes. In situ cytotoxicity tests were performed 

as described in 2.2.4.2. 

2.2.7 Subcutaneous murine tumor xenograft model 

HuH7 liver tumor cells (5 million per mouse) were subcutaneously injected into 6-8 

week old female SCID (severe combined immune deficiency) mice  

(CB17/lcr-PrkdcSCID/lcrlcocrl from Charles River; Wilmington, MA, USA). Six days 

after tumor cell application, when tumors had reached a detectable volume of 

approximately 10-15 mm3, mice were treated intravenously every second day either 

with 0.1 mg/kg Prt dissolved in PBS or with PBS alone for a total of 5 treatments. 

Tumor volume was determined continuously with a caliper for the duration of the 

treatment. Mouse weight and general health status were observed throughout the 

experiment to exclude severe side effects caused by treatment. 

At day 16 after tumor cell application mice were sacrificed, tumors were excised and 

tumor mass was determined. Tumors were formalin fixed, paraffin embedded and cut 

into 5 µm slices. Immunostaining for microvessels and nuclei was performed according 

the manufacturer’s protocol of VECTASTAIN Elite ABC kit (Vector Laboratories Inc., 

Burlingame, CA, USA) using a CD31 antibody (BD Biosciences 553370) and 

hematoxylin (Sigma-Aldrich), respectively. From every tumor four images were 

obtained with a 10 x lense. Within each of the overview fields, four high power (40 x) 

images were obtained (image area 0.0355 mm2). These 40x pictures were used for 

vessel counting. Data for tumor volume, tumor weight, microvessel density, and mice 

weight are expressed as means ± SEM. Five and six mice were used in the control 

group and in the Prt group respectively. All in vivo experiments were performed 

according to the legal terms for animal experiments of the local administration 

(Government of Upper Bavaria). 

This in vivo experiment was kindly performed by Laura Schreiner, Dr. Johanna Liebl 

and Dr. Michael Guenther, Department of Pharmacy, Ludwig-Maximilians-University 

Munich. 

2.2.8 VEGF induced signaling in HMEC-1 

HMEC-1 were seeded into 6 well plates at 0.4 106 per 2 ml per well and were allowed 

to reach confluent state. Then, cells were treated either for 2 h or for 20 h with 1, 3 or 

10 nmolar ConcmA. In order, to decrease signaling background, HMEC-1 were washed 

twice with PBS and incubated for 4 h in serum free medium (M199, PAA, Laboratories, 

Pasching, Austria). ConcmA was also present during this serum deprivation period. 

50ng/ml VEGF-A (rh VEGF165, Peprotech, Hamburg Germany) was added to the 



2  Materials and Methods 35 

medium for 10 min in order to stimulate Akt (S473) and ERK1/2 (T202/Y204) 

phosphorylation. Most adequate VEGFR2 (Y1775) phosphorylation was achieved after 

2 min of incubation with VEGF. One positive and two negative controls were used: 

(VEGF/ConcmA +/-; VEGF/ConcmA -/- and VEGF/ConcmA -/10 nM, respectively). 

After VEGF stimulation, cells were further processed as described in 2.2.10.  

2.2.9 Biochemical quantification of extracellular VEGFR2 levels  

HMEC-1 and HUVEC were seeded at concentrations of 0.5 x 106 into 60 cm dishes.  

Confluent endothelial monolayers were treated for 22 h with ConcmA in ECGM and  

2 h under serum deprivation, in order to assess the VEGFR2 surface levels after 

ConcmA treatment in serum deprived condition. Cell surface proteins were covalently 

labeled with a membrane impermeant biotinylation reagent (sulfo-NHS-lc-biotin, 

Uptima, France), as schematically described in Fig. 2.4.  

All steps were performed on ice. At start, cell monolayers were washed twice with ice-

cold PBS, PBS was completely removed. Ice-cold sulfo-NHS-lc-biotin (0.2 mg/ml in 

PBS, 10ml per dish) was added, 30 min gentle rocking on ice. Unreacted biotin was 

saturated by washing three times with 100 mM glycine PBS solution, third time for  

15 min, gentle rocking on ice. Endothelial monolayers were washed three times with 

PBS. PBS was completely removed. 500 µl of cell lysis buffer was added per well and 

kept on for 15 min (see table 2.13 for lysis buffer content, enough for four treatment 

groups). Meanwhile, streptavidin agarose beads (Uptima, France) were washed once 

with lysis buffer for equilibration. Cell lysates were centrifuged at 14.000 rcf for 10 min 

at 4° C and one sample (20 µl) was taken to represent the total cellular VEGFR2. 

Remaining lysate was incubated with equilibrated streptavidin agarose beads (200µl 

50% beads slurry per 500 µl lysate) by gentle shaking for 1 h at 4°C. Beads were 

collected by centrifugation at 14.000 rcf for 10 min. Supernatant, representing the 

intracellular VEGFR2 pool, was removed. Beads were cautiously washed three times 

with lysis buffer, using a syringe. Protein was extracted from the beads by mixture with 

2x SDS sample buffer (see table 2.15 for content) and heating at 95°C for 5 min. This 

protein fraction represents the surface VEGFR2 pool. As negative control, HMEC-1 

and HUVEC were treated with PBS instead of surface biotinylation reagent and were 

tested for VEGFR2 levels in the beads fraction. Probes were mixed with 2 x SDS 

buffer, boiled for 5 min at 95°C and kept at -20°C until separation with SDS-PAGE and 

western blot analysis (2.2.10).   
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Fig. 2.4 Biochemical quantification of surface receptor levels. Only receptors located at the cell 
surface get biotinylated by the membrane impermeant ‘surface biotin’ (left part of the image). After cell 
lysis (middle part of the image), this receptor fraction can be separated from the non-biotinylated receptors 
(B) by precipitation with streptavidin, bound to agarose beads (A). 

Table 2.13 Lysis buffer used for surface biotinylation assay 

Lysis buffer for surface biotinylation, 40 ml 

Tris, pH 7.5 75 mM 

NaCl 200 mM 

TX-100 1.5 % 

NP-40 0.75 % 

NaF 15 mM 

Na3VO4 1.5 mM 

EDTA                       1 mM 

Complete® mini EDTA free 1 tablet per 40 ml 

 

2.2.10 Western blot analysis 

2.2.10.1 Protein sample preparation 
 

For protein harvest, confluent HMEC-1 or HUVEC in 6 well plates were put on ice and 

washed once with ice-cold PBS, which was completely removed with a Pasteur pipette. 

RIPA-lysis buffer (used for the verification of subunit c protein expression in HMEC-1 

and HUVEC) or lysis buffer for phosphorylated proteins (used for VEGF-signaling 

experiments 2.2.8) was added, 130 µl per well, see Table 2.14. Then, cell plates were 

immediately put into -80°C. Earliest one h later, frozen cell samples were put onto ice. 

A

B

‘surface biotin‘

streptavidin
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Lysate was scraped off using cell scrapers (TPP, Trasadingen, Switzerland) and 

transferred to pre-cooled Eppendorf tubes (Peske, Aindling-Arnhofen, Germany) to 

incubate on ice for 5 min. Then, cell lysates were centrifuged (14.000 rcf, 10 min, 4°C) 

and supernatant was transferred into new pre-cooled Eppendorf tubes. One sample of 

the supernatant (5 µl) was diluted 1:10 in H2O for protein quantification with the 

Bradford method (2.2.10.2). The remaining cell lysate was mixed with 5x SDS sample 

buffer, heated at 95°C for 5 min and was kept frozen at -20°C until SDS PAGE (see 

2.2.10.3). Protein concentrations were adjusted according to the values of the Bradford 

experiment by mixing the samples with adequate volumes of 1x SDS sample buffer, 

before SDS PAGE.  

Table 2.14 Commonly used cell lysis buffers for Western Blot analysis 

RIPA buffer   Lysis buffer for phosphoproteins 

Tris/HCl (pH 7.4) 50 mM  Tris/HCl (pH 7.4) 50 mM 

NaCl 150 mM  NaCl 150 mM 

Nonidet NP 40 1%  Nonidet NP 40 1% 

Deoxycholic acid 0.25%  Deoxycholic acid 0.25% 

SDS 0.10%  SDS 0.10% 

H2O   Na3VO4 0.3 mM 

Complete®mini EDTAfree 4.0 mM  NaF 1.0 mM 

PMSF 1.0 mM  β-Glycerophosphate 3.0 mM 

Na3VO4 1.0 mM  Pyrophosphate 10 mM 

NaF 1.0 mM  H2O  

   Complete®mini EDTAfree 4.0 mM 

   PMSF 1.0 mM 

   H2O2 600 µM 

 

Table 2.15 Protein sample buffers 

5x SDS-sample buffer   3x Laemmli buffer 

Tris/HCl (pH 6.8) 3.125 M  Tris/HCl (pH 6.8) 187.5 mM 

Glycerol 10 ml  SDS 6% 

SDS 5%  Glycerol 30% 

DTT 2%  Bromphenol blue 0.025% 

Pryonin Y 0.025%  H2O  

H2O   β-Mercaptoethanol 12.5% 
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2.2.10.2 Protein quantification 
 

Total protein amount in cell lysate was determined according to Bradford et al. 94.  

A defined BSA dilution series (from 500 µg/ml to 0 µg/ml (H2O)) was used for standard 

calibration. Protein samples were diluted 1:10 in H2O. 10 µl aliquots of protein sample 

dilutions and BSA standard respectively, were added to a 96 well flat bottom plate.  

190 µl of the Bradford reagent (Coomassie brilliant blue G 250 concentrate was diluted 

1:5 in H2O) were added per sample. Probes were incubated for 5 min and absorbances 

were finally analyzed with the SpectraFluor Plus™ (Tecan, Männedorf, Austria).      

2.2.10.3 SDS-PAGE 
 

Protein samples were boiled for 5 min at 95°C and briefly centrifuged before equal 

amounts of protein were loaded onto the SDS-gel. For identification of protein, 

PageRuler™ pre-stained 10-170 kDa or Spectra Multicolor™ high range protein 10-260 

kDa, both from Fermentas, St. Leon-Rot, Germany were used (1x 1µl per approx. 40µl 

1x SDS sample buffer per gel). As described by Laemmli et al. 95, proteins were 

separated in a discontinuous  SDS - PAGE, using first a stacking gel, pH 6.8 to focus 

proteins at a common starting line (Electrophoresis conditions 100 V, 20 min), and then 

a separation gel, pH 8.8 (Electrophoresis conditions 200 V, 45 min) with adequate 

polyacrylamid concentrations depending on the weight of the protein of interest (see 

table 2.16). The apparatus for SDS-PAGE performance was the Mini Protean III 

system from Bio-Rad (Munich, Germany). Power supplies E835 were from Consort, 

Belgium.  

Table 2.16 Preparation of SDS-PAGE 

Separation gel 
7.5%/10%/12% 

  Stacking gel   

RotiphoreseTM Gel 30 25% 
/33.3% 

/40% 

 RotiphoreseTM Gel 30 17% 

Tris (pH 8.8) 375 mM  Tris (pH 6.8) 125 mM 

SDS 0.1%  SDS 0.1% 

TEMED 0.1%  TEMED 0.2% 

APS 0.05%  APS 0.1% 

H2O   H2O  

 

 



2  Materials and Methods 39 

Table 2.17 Electrophoresis buffer for SDS-PAGE 

Electrophoresis buffer 
 

Tris 4.9 mM 

Glycine 38 mM 

SDS 0.1% 

H2O  

 

2.2.10.4 Tank blotting 

 

Table 2.18 Tank buffer 

5x Tank buffer  1x Tank buffer 

Tris base 240 mM  5x Tank buffer 20 % 

Glycine 195 mM  Methanol 20 % 

SDS  0.05%  SDS 0.01% 

H2O   H2O  

 

After SDS-PAGE, the separation gel was transferred into a blotting sandwich soaked  

in 1 x pre-cooled Tank buffer. Assembly of the sandwich: cathode-pad, blotting paper, 

separation gel, nitrocellulose membrane (Hybond-ECL™, Amersham Bioscience, 

Freiburg, Germany), blotting paper, anode-pad. All parts of the sandwich, except for 

the separation gel, were soaked in 1 x pre-cooled Tank buffer for 15 min. The 

assembled sandwich was kept for further 5 min in the cool 1xTank buffer before 

running the tank blot. For Tank blot electrophoresis, the sandwich was pushed into the 

Mini Trans Blot® system (Bio-Rad, Munich, Germany), 1x Tank Buffer was poured into 

the tank. For cooling, a cassette filled with ice was pushed into the tank as well. 

Transfer was either carried out at 4°C at 23 V overnight or at 4°C for 90 min at 100 V 

under stirring conditions. 

2.2.10.5 Protein detection 

 

In order to get an impression about the homogeneity of gel loading, polyacrylamid gels 

were stained after Tank Blotting with Coomassie-blue for 30 min, and de-stained with 

Coomassie-destaining solution for 20 min and washed with water overnight.    
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Table 2.19 Coomassie staining and de-staining solutions 

Coomassie staining solution  Coomassie de-staining solution 

Coomassie blue 3.0 g  Glacial acetic acid 100 ml 

Glacial acetic acid 100 ml  Ethanol 333 ml 

Ethanol 450 ml    

H2O ad 1 l  H2O ad 1 l 

 

2.2.10.5.1 Enhanced Chemiluminescence (ECL) 

 

Membranes that were incubated with HRP-labeled secondary antibodies, were washed 

with PBS-T, (4 x 5 min, RT).  For ECL reaction, luminol (5-Amino-2,3-dihydro-1,4-

phthalazinedione) was used as a substrate. The membrane was incubated with ECL 

solution for 1 minute, excluded from light. The resulting luminescence was detected by 

exposure of the membrane to a X-ray film (Super RX, Fuji, Düsseldorf, Germany). This 

film was developed with a Curix 60 system (Agfa-Gevaert AG, Cologne, Germany) for 

adequate durations. 

Table 2.20 ECL solution 

ECL solution  

Tris (pH 8.5) 100 mM 

luminol  2.5 mM 

p-Coumaric acid  1 mM 

H2O2 17 µM 

H2O  

2.2.10.5.2 LI-COR detection method 
 

When incubated with secondary antibodies coupled to IR(infrared)DyeTM 800 or Alexa 

Fluor® 680 (emission at 800 and 700 nm, respectively), membranes were washed as 

described in 2.2.10.5.1, and then analyzed with the Odyssey imaging system (Li-COR 

Biosciences, Lincoln, NE, USA), allowing the quantification of each band’s intensity.   

 

Table 2.21 Primary antibodies used for Western Blot analysis 

Antigen Source Dilution In Provider 

β-actin  mouse  1:2000 5% Blotto-T Millipore 

β-tubulin  mouse  1:1000 1% Blotto-T Santa Cruz 
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ATP6V0C (subunit c)  rabbit  1:1000 5% BSA-T Novus Biolog. 

Akt rabbit 1:1000 5% BSA-T Cell Signaling 

p-Akt (S473) mouse 1:1000 5% Blotto-T Cell Signaling 

Erk 1/2 rabbit 1:1000 1% Blotto-T Cell Signaling 

p-Erk1/2 (T202/Y204) mouse 1:1000 1% Blotto-T Cell Signaling 

VEGFR2  rabbit 1:1000 5% BSA-T Cell Signaling 

p-VEGFR2 (Y1175) rabbit 1:1000 5% BSA-T Cell Signaling 

Rac-1  mouse 1:1000 3 %BSA-T  Pierce 

 

Table 2.22 Secondary antibodies used for Western Blot analysis 

Source, Antigen, Label Dilution In Provider 

Goat anti-mouse IgG1 HRP 1:1000 1% Blotto-T Biozol 

Goat anti mouse IgG22b HRP 1:2000 1% Blotto-T Biozol 

Goat anti-mouse IgG HRP 1:2000 1% Blotto-T Santa Cruz 

Goat anti-rabbit IgG HRP 1:2000 1% Blotto-T Dianova 

Goat anti-mouse IgG Alexa Fluor® 680 1:20.000 1% Blotto-T Molecular 
Probes 

Goat anti-rabbit IgG Alexa Fluor® 680 1:20.000 1% Blotto-T Molecular 
Probes 

Goat anti-rabbit IgG H+L 
IRDyeTM 800CW 

1:20.000 1% Blotto-T LI-COR 
Biosciences 

 

 

2.2.10.6 Quantification of band intensity 

 

Developed x-ray films were photographed using an illuminated table, and a LuCam 

system (Lumenera, Ottawa, ON, CA). Intensity of bands was densitometrically 

quantified with ImageJ Gel analyzer (Version 1.43q; NIH, Bethesda, MD, USA). When 

the Li-COR system was used, band intensities were quantified with the appending 

Odyssey software (v 1.2, Li-COR Biosciences, Lincoln, NE, USA). Band intensities 

were normalized to loading controls (β-actin, β-tubulin). 

2.2.11 siRNA transfection 

In order to downregulate gene expression of the subunit c, HUVEC were transfected 

with a mix of four siRNAs on human ATP6V0C (ON-TARGET plus® SMART pool, Cat # 
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L-017620-01-0005, Thermo Scientific Dharmacon®). In brief, HUVEC were trypsinized 

and adjusted to a cell number of 2 x 106. This suspension was centrifuged, supernatant 

was removed and cells were re-suspended in 90 µl of HUVEC Nucleofactor Solution 

(AMAXA). This suspension was mixed with 10 µl (3 µg or 200 pmol) of target siRNA or 

control siRNA (ON-TARGET plus® control siRNA; Cat #: D-001810-01-05, Dharmacon). 

Cells were transfected in cuvettes using the AMAXA electroporation apparatus 

(program A – 034), then immediately pre-warmed ECGM was added for cell recovery. 

For a scratch assay on 96 well format (2.2.6.2), 0.8 to 1 x 105 of transfected cells were 

seeded per well. Additionally, cell aliquots of 0.4 x 106 were seeded into one well of a 

12 well plate. 24 h after transfection, efficiency of mRNA downregulation was assessed 

by real time PCR within the 12-well probe and in parallel, scratch assay was started.       

 

Table 2.23  Target sequences of ON-TARGET plus
® 

SMART pool on human ATP6V0C 

siRNA name Target Sequence 

J-017620-12, ATP6V0C CCAGCUAUCUAUAACCUUA 

J-017620-11, ATP6V0C CCCGACUAUUCGUGGGCAU 

J-017620-10, ATP6V0C GCUCUGUGUAUGCGGAUGA 

J-017620-09, ATP6V0C GGCACAGCCAAGAGCGGUA 

 

2.2.12 Quantification of mRNA 

2.2.12.1 mRNA isolation 

 

Total mRNA was isolated with the RNeasy Kit from Qiagen (Hilden, Germany) 

according to the producer’s protocol. RNA was eluted in RNAse free water and RNA 

concentrations were determined using the NanoDrop spectrophotometer (Peqlab, 

Wilmington, DE, USA). 

2.2.12.2 Reverse Transcriptase reaction 

 

With the high capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA, USA) which includes random primers, the isolated mRNA (0.9 µg used per 

reaction) was written into cDNA. The reaction was run at 37°C for 2 h. cDNA aliquots 

were stored at 4°C until performing quantitative RT-PCR.   
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2.2.12.3 Quantificative Real-Time PCR 

 

For the quantitative RT-PCR the ABI 7300 Real Time PCR system with the TaqMan® 

Universal PCR Mastermix (Life Technologies Corporation, Carlsbad , CA, USA) with 

the program described below was used. Probes and primers for the v-ATPase subunit 

c (ATP6L) were also from Life Technologies, supplied as a mix. As control gene,  

GAPDH (glycerinaldehyd-3-phosphat-dehydrogenase, forward/reverse primer and 

probe sequence mix were supplied from Biomers, Ulm, Germany) was used. 

Fluorescence development was analyzed with the ABI 7300 appending software. For 

evaluation, relative quantification according to the Pfaffl 96  was used. 

Table 2.24 RT-PCR thermal program 

RT PCR thermal program  

95°C 5 min  

   

(40 cycles)   

95°C 30 sec  

55°C 30 sec  

72°C 30 sec  

   

72°C 5 min  

4°C  ∞  

 

2.2.13 Statistical analysis 

 

Graph Pad Prism (Graph Pad Software, La Jolla, CA, USA) was used for statistical 

calculations. For comparison of two groups, Student’s unpaired t-test was performed. 

Three or more groups were compared by one way analysis of variance (ANOVA), 

followed by Bonferroni’s or Dunnett’s multiple comparisons versus control. EC50 values 

were calculated with nonlinear curve fitting, variable slope.  All experiments were, if not 

differently indicated, performed at least three times in duplicates/triplicates/sextupli-

cates. Results are expressed as means ± SEM. P values < 0.05 were considered as 

significant. 
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3.1 Depolymerization of the microtubule cytoskeleton 
in HMEC-1 endothelial cells 

 

Fig. 3.1 MT depolymerization in proliferating HMEC-1. Representative immune-fluorescence stainings 
of microtubules (green) after 16 h of treatment with TubA, Prt, (Fig. A middle and left panels) or the Prt-
derivatives (A: right panel and all panels in B - C). Blue: nuclear staining. 

16h JB337 16h JB375 

16h Prt 16h TubA 16h AU816 

16h AU954

16h AU825 16h AU815 16h JB338

10nM 10nM 30nM 

30nM 30nM 100nM 

100nM 

300nM 

300nM 300nM 

1µM 1µM 

10µM 10µM 10µM 

30µM 30µM 30µM 

A

B

C

control

0,3%DMSO

0,3%DMSO
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We initially tested whether, and at which concentrations pretubulysin (Prt) and its 

derivatives act destructive on the microtubule cytoskeleton in intact proliferating 

endothelial cells, using tubulysin A (TubA) as reference compound.  

Therefore, we performed an immunefluorescence-staining in HMEC-1 treated with the 

indicated compound for 16 h. The concentrations were chosen in order to achieve 

complete microtubule depolymerization. Control cells show intact, long and polarized 

microtubules (Fig. 3.1 A, B, C, the very left panel), whereas addition of Prt or TubA 

decreased both microtubule (MT) polarization and MT total mass at 10 and 30 nmolar, 

with Prt (Fig. 3.1 A left panels and middle panels). To achieve the same level of MT 

breakdown with AU816, 100 nmolar were necessary (Fig. 3.1 A right panels). The 

intermediately potent derivatives JB337, JB375 and AU954 had to be dosed either at 

300 nmolar, or 1 µmolar, respectively, for similar effects (Fig. 3.1 B left to right panels). 

The substances with the lowest potency, AU825, AU815 and JB338 had to be used at 

concentrations of at least 30 µmolar (Fig 3.1 C from the left to the right panels), i.e. 

about three orders of magnitude higher than those of TubA and Prt which clearly 

indicates a loss of activity due to chemical variation of Prt.  

3.2 Effects of pretubulysin (Prt) on endothelial cell 
growth and survival   

3.2.1 Prt inhibits proliferation of HMEC-1 similarly to TubA 

Using a three day incubation of sparse HMEC-1 with final crystal violet staining, the 

growth inhibitory potential for every compound and a potency ranking were established. 

The most potent anti-proliferative agents (Fig. 3.2 left panel) were TubA (EC50  

1.2 nmolar), Prt (EC50 2.3 nmolar) and AU816 (EC50 4.4 nmolar). The phenyl- and 

phenoxypretubulysins JB337 and JB375 still exhibited EC50 values at low nanomolar 

levels (13.2 nmolar and 55 nmolar, respectively), followed by the 2,3-

didehydropretubulysin AU954 with 60 nmolar (Fig. 3.2 middle panel). The remaining 

Prt-derivatives were three orders of magnitude less potent than TubA and Prt.  

AU825 and AU815, both Prt-derivatives with N- and C-terminal alterations (Fig. 2.1) 

had EC50 values of 1.3 µmolar and 1.6 µmolar. The central substitution of a triazole ring 

showed a further loss of function (EC50 2.1 µmolar, Fig 3.2 right panel). EC50 values 

with 95% confidence intervals are summarized in table 3.1. 
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Fig. 3.2 TubA, Prt and Prt-derivatives inhibit endothelial cell proliferation. Compounds were classified 
into three groups of different potencies (left, middle and right panels), whereby Prt had a growth inhibitory 
potency comparable to TubA. Data are means ± SEM of three independent experiments.

* 
significantly 

different from control p< 0.05, 1-way ANOVA, Bonferroni’s multiple comparison test 

3.2.2 Prt causes anti-mitotic effects similarly to TubA 

 

Tubulin inhibitors induce cell cycle arrest in the G2/M phase and consequently 

apoptosis by interfering with the assembly of the mitotic spindle apparatus 97. In order 

to test these anti-mitotic effects with Prt and its derivatives, HMEC-1 were treated for 

24 h and 48 h using the same set of concentrations as in the proliferation assay at sub-

confluent status. 

After 24 h, nuclear fragmentation in HMEC-1 occurred at negligible levels (Fig. 3.3 B), 

whereas a dose dependent G2/M arrest was clearly detectable at this time (Fig. 3.3 A).    
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Fig. 3.3 (A) G2/M arrest and (B) nuclear fragmentation in HMEC-1 after 24 h of treatment with TubA, Prt 
and Prt-derivatives. Data are means ± SEM of three different independent experiments for each 
compound. 
 

After 48 h, a clear dose-dependent induction of G2/M arrest (Fig. 3.4 A) and nuclear 

fragmentation (Fig. 3.4 B) in HMEC-1 was detectable for all derivatives, whereby the 

order of ranking in this assay totally matched with that in the proliferation assay, with 

TubA and Prt being the most potent candidates (Fig. 3.4 left panel). 
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Fig. 3.4 Analysis of G2/M arrest and nuclear fragmentation in HMEC-1 after 48 h of treatment with 
TubA, Prt and Prt-derivatives. Similar to the proliferation assay, compounds were classified into three 
groups of different potencies (left, middle and right panels). Prt induces G2M/arrest and nucleic 
fragmentation at a similar degree as TubA (Fig A and B left panels). Data are means ± SEM of three 
independent experiments. 

*
 p < 0.05 vs. untreated controls, 1-way ANOVA, Bonferroni’s multiple 

comparison 

3.3 Effects of pretubulysin (Prt) on endothelial cell (EC) 
migration 

Migration of endothelial cells (EC) is a hallmark of angiogenesis. Therefore the 

compounds were evaluated both in tests on migration into a wounded HUVEC 

monolayer (scratch assay) and on chemotactic migration towards a serum gradient. 

3.3.1 Prt inhibits EC wound healing similarly to TubA 

Prt, TubA and AU816 efficiently inhibited wound closure in an endothelial cell 

monolayer  in a dose dependent manner with EC50 values of 5.3 nmolar, 3.4 nmolar 
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and 11 nmolar, respectively, whereas JB337, JB375 and AU954 exhibited EC50 of  

26 nmolar, 260 nmolar and 200 nmolar. Chemical variations as done for the three 

remaining compounds led to a drastic decrease of anti-migratory potential (Fig. 3.5, 

right panel). All EC50 values are summarized in table 3.1. Figure 3.5 B depicts 

representative images of scratch assays. Importantly, Prt was only slightly less potent 

than TubA itself, once more indicating Prt to be a potent alternative. 

 

Fig. 3.5 A) TubA, Prt and Prt-derivatives concentration dependently inhibit endothelial cell 
migration.  Data are means ± SEM for three independent experiments, 

*
p<0.05 vs. untreated controls, 1-

way ANOVA, Bonferroni’s multiple comparison. B) Representative images of the wound closure in an 
HUVEC monolayer in absence or presence of Pretubulysin or in the absence of growth factors 
(‘starvation’). The cell free area is gray, the area covered with cells as detected by the imaging software is 
depicted in green.   

3.3.2 Prt impairs EC chemotaxis similarly to TubA 

To analyze, whether both TubA and Prt inhibit cellular motility per se or only the ability 

to orientate, a two-dimensional chemotaxis assay was performed. Fig. 3.6 A shows 

three representative trackings of HUVEC in a 0 to 10% FCS gradient. The directional 

components of migration (y-forward index and mean Euclidean distance) were 

significantly inhibited by either 3 nmolar of Prt or TubA (Fig 3.6 B1). The non-directional 

aspect with the accumulative distance was not significantly affected by the same 

treatment indicating that at this concentration the cells were still able to move. 

However, as velocity of movement was significantly reduced (Fig. 3.6 B1), it can be 

assumed, that overall motility at least begins to be hampered by the concentrations in 

the investigated time frame. Furthermore, the mean number of tracked cells per 

experiment is not significantly affected (Fig. 3.6 B2), suggesting a non-toxic effect.  
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Fig. 3.6 Prt inhibits serum directed chemotaxis in HUVEC at similar level as TubA  
A) Representative trackings of the chemotactic movement of endothelial cells in a serum gradient. 
The starting point of each single cell is placed in the centre of the diagrams. Red tracks: cells migrating 
against the gradient, black tracks: cells migrating along the gradient. In the control most cells migrated 
directionally, while in the presence of Prt or TubA, cells lost their sense for orientation.   
B) Quantitative analysis of the chemotaxis experiments. B1) shows reduced parameters of 
directionality (Y-forward and Euclidean distance), while motility as such (accumulative distance) is not 
significantly inhibited and velocity only starts to be hampered. B2) Mean number of tracked cells per 
experiment is not significantly reduced. Data are means ± SEM of three independent experiments. 

* 

Significantly different from controls, p < 0.05, n.s.: not significant, 1-way ANOVA, Bonferroni’s multiple 
comparison 

3.3.3 Cytotoxic side effects of Prt during migration inhibition 

Measurement of nuclear fragmentation with TubA or Prt in time matched experiments, 

showed no dramatic increase in HUVEC at concentrations up to 30 nmolar, indicating 

that effects on migration are not primarily due to cytotoxity (Fig. 3.7). This is in line with 

the HMEC-1 experiments, where relevant nucleic fragmentation occurred after 48 h, 

but not after 24 h (Fig 3.4 and Fig 3.3). 
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Fig. 3.7 Nuclear fragmentation in HUVEC after 24 h, treated under similar conditions as for the 
migration assays with TubA and Prt, is negligible. (N=3) 

3.4 Tube formation on MatrigelTM 

The tube formation (formation of capillary like structures) on Matrigel™ is an in vitro 

assay that recapitulates many complex features of angiogenesis. By measuring 

number of node points and total tube length, tube formation of HMEC-1 endothelial 

cells was quantitatively determined after 16 h.  

3.4.1 Prt inhibits EC tube formation similarly to TubA 
 

Again, we could see a totally different inhibitory potential among the derivatives, with 

Prt (representative images shown in Fig 3.8 A) and TubA being similarly active and the 

strongest tube formation inhibitors, followed by AU816 (Fig. 3.8 B1).  

TubA and Prt showed an approximate 50-70 % decrease of tube length and node 

number at about 30 nmolar. The resulting ranking order was concordant with all 

previous experiments (Fig 3.8 B2-B3).   
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Fig. 3.8 TubA, Prt and Prt-derivatives inhibit endothelial tube formation. A) Representative images of 
Prt-treated HMEC-1 after 16 h of tube formation on Matrigel, 5x magnification.  B) Quantitative evaluation 
of branching point number connecting the tubes (left panels from B1 to B3) and total tube length (right 
panels from B1 to B3) using WIMASIS software.  Data are means ± SEM of three independent 
experiments. 

*
Significantly different from controls, p < 0.05, n.s. not significant, 1-way ANOVA, Bonferroni 

t-test 
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3.4.2 Cytotoxic side effects of Prt in the tube formation assay  

As determined by measurement of nuclear fragmentation, in sub-confluent HMEC-1 no 

drastic cytotoxic effects occurred within 24 h (Fig. 3.3). Furthermore, no substantial 

amount of dead cells was detected by fluorescence microscopy of PI uptake during 

tube formation in situ in comparison to untreated cells (Fig. 3.9). 

 

Fig. 3.9 In situ propidium iodide (PI) uptake in the HMEC-1 tube formation assay. 10µg/mL PI was 
added to the media, to test membrane integrity. No significant difference in Prt-treated cells could be 
detected in comparison to control cells. Representative light transmission (upper panels) and fluorescence 
(lower panels) images, 10x magnification, similar x,y,z settings, from three independent experiments   

3.5 Inhibition of tubulin polymerization in vitro  

To get an impression, whether the different efficacies of the compounds might have a 

cell based origin (e.g. by different drug membrane penetration, metabolism or export), 

all compounds were also tested in a cell-free tubulin polymerization assay using 

turbidimetry.  

Among all tested compounds TubA, Prt and AU816 were the most potent (Fig. 3.10, 

left panel). 1 µmolar of TubA, as well as 2 µmolar of Prt or AU816 led to a comparable 

residual tubulin polymerization of about 50% and less. To reach similar effects, a 10-

fold higher concentration had to be used for all other Prt derivatives (middle and right 

panel). JB 375 (18%); JB337 (35.7%) and AU954 (37.2%) had an intermediate potency 

(middle panel), whereas JB338 (40.3%), AU815 (57%) and AU825 (75.15%) had the 

weakest influence on tubulin polymerization (right panel). 

10nM Prt 30nM Prtcontrol 3nM Prt
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Fig. 3.10 Tubulysin A (TubA), pretubulysin (Prt) and prt-derivatives inhibit tubulin polymerization in 

vitro. Purified tubulin was allowed to polymerize in vitro alone or in the presence of selected 
concentrations of TubA, Prt and Prt-derivatives. Changes in relative absorbance correlate to tubulin 
polymerization. Compounds with similar potency are grouped together, (left, middle, right panel). 
n=1 

3.6 In vivo HuH7 xenograft tumor model  

3.6.1 Prt reduces HuH7 tumor growth and vascularization  
in vivo 

In a murine xenograft tumor model with HuH7 cells (hepatocellular carcinoma), Prt 

treatment arrested tumor growth in contrast to saline treatment (Fig. 3.11 A), which 

finally led to a significant 17-fold reduction of tumor mass sixteen days after tumor cell 

application (Fig. 3.11 B) in comparison to control group.  

Focusing on angiogenesis aspects in immune-histological analysis (Fig. 3.11 D), we 

detected a significantly lower microvessel density in tumor slices of Prt treated mice in 

comparison to the control group (Fig. 3.11 E). A further hint towards reduced tumor 

vascularization under treatment with Prt is the different phenotype of the tumors: while 

in the controls the tumors were dark red and filled with blood, the Prt treated tumors 

were not only smaller, but also strikingly pale (Fig. 3.11 C). 

Importantly, the animal weight did not differ significantly between the Prt and the 

control group during the treatment period (Fig.3.11 F), which argues against acute and 

severe side effects in mice.  
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Fig. 3.11 In vivo xenograft tumor assay using metronomic application of pretubulysin.  

A) HuH7 tumor growth curves. Starting at day six after tumor cell application, mice were treated i.v. 
either with 0.1 mg/kg Prt (dissolved in 200 µl PBS) or 200 µl PBS alone. Arrows indicate days of treatment. 
B) Final HuH7 tumor mass. C) Images of explanted tumors. Note the obvious decrease in size and 
color due to lesser blood perfusion in the treatment group. D) Microvessel density images: slices were 
stained for CD31 (red) and nuclei (Hematoxylin, blue). Scale bars indicate 20 µm.  
E) Quantitative evaluation of vessel density; n=80 (40x images for both Control and Prt treated groups) 
for microvessel counting. F) Animal weight curves. To exclude severe side effects, the weight of the mice 
was determined routinely throughout the period of treatment. n=5 mice for control and 6 mice for Prt group, 
respectively. Data are expressed as means ± SEM. * p<0.05; n.s. no significant difference between 
treatment and control; unpaired t-test. 
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3.6.2 In vitro growth inhibition of HuH7 cells 

The influence of Prt on HuH7 proliferation was tested in vitro (Fig 3.12), where it 

effectively reduced HuH7 cell increase with an EC50 of 1.5 nmolar, TubA in this case 

had an EC50 of 0.2 nmolar.  

 

 

Fig. 3.12 Growth inhibition curves of HuH7 cells, treated with Prt or with TubA. Data are means ± SEM 
of three independent experiments. * p<0.05 vs. control, One way ANOVA, Dunnett’s multiple comparison.   
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3.7 Synopsis of EC50 values  

Tabelle 3.1 Synopsis of EC50 values. Where appropriate, EC50 values are indicated as best fit values and 
95% Confidence Interval (CI). 
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4.1 Expression and sub-cellular distribution of the 
v-ATPase 16kDa subunit c in human endothelial 
cells  

For the start, we tested HMEC-1 and HUVEC for the expression and distribution of a 

constitutive element of the v-ATPase complex, the membrane integrated 16kDa  

subunit c (syn.: ductin or ATP6L). By western blot analysis, the subunit c protein was 

detected in both endothelial cell types. (Fig. 4.1 A).  

Under migratory conditions in a scratch assay, we performed an immune-fluorescent 

staining (Fig. 4.1 B), since the v-ATPase has been described to be expressed at the 

leading edge in migrating cells, particularly in microvascular endothelial cells, where it 

contributes to migration and invasion 22, 25. 

In our setting, the vast majority of subunit c protein (green) appears diffusively 

distributed in vesicular patterns in both HMEC-1 (microvascular endothelial cells) and 

HUVEC (macrovascular endothelial cells). In HMEC-1, only a very thin line of  

subunit c molecules can be detected at the leading edge together with lamellipodia 

structures, that are clearly defined by staining for filamentous actin (Fig. 4.1 B red ).  

 

Fig. 4.1 Endothelial subunit c (ATP6L) expression. (A) Western blot detection of HMEC-1 and HUVEC  
subunit c protein (n=3). (B) Immune-cytochemistry images of subunit c distribution (green) under migratory 
conditions in HMEC-1 (left panel) and HUVEC (right panel) (n=3). F-actin is depicted in red. 
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4.2 Effects of concanamycin A (ConcmA) on lysosomal 
pH and cell morphology in human endothelial cells  

4.2.1 ConcmA quickly increases lysosomal pH in HMEC-1 

The inhibitory activity of Concanamycin A (ConcmA) on endothelial cell v-ATPases was 

confirmed by the use of the pH dependent staining reagent Lysotracker® Red that 

accumulates in acidic vesicles like lysosomes in live cells. Nanomolar concentrations of 

ConcmA clearly increase the lysosomal pH in HMEC-1 within 4 h as indicated by the 

loss of red staining (Fig. 4.2, middle and right panels). 

 

Fig. 4.2 ConcmA quickly alkalizes lysosomes in HMEC-1 at nanomolar dose. Confocal images from 
HMEC-1 treated with ConcmA. Lysotracker Red was added for 2 h to stain acidic lysosomes (n=3), nuclei 
are shown in blue. 

4.2.2 Morphological changes in EC in response to ConcmA 

Many publications describe morphological changes in a broad range of eukaryotic 

organisms in correlation to genetic or pharmacological inhibition of v-ATPases 23, 98, 99. 

Having shown the primary effects of ConcmA on lysosomal pH, we next were 

interested in the secondary effects on cellular shape of endothelial cells after different 

time points of ConcmA treatment. 

HUVEC, treated with low nanomolar concentrations of ConcmA, did not alter their cell 

shape after 2 h but after 20 h, as observed with phase contrast microscopy (Fig. 4.3 A 

upper and lower panels, respectively). At the latter time point, treated HUVEC clearly 

increased in cell size and appear less flat than untreated cells (Fig. 4.3 A lower panels).  

In a high magnified detail of phase contrast images (Fig. 4.3 B), clear accumulations of 

enlarged vesicles can be seen.  

Control 1nM 3nM

4h ConcmA
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Fig. 4.3 (A) Time and dose dependent increase of cell size in HUVEC after ConcmA addition.  
40 x phase contrast images (n=3). (B) Detailed image from (A) showing increase in vesicle size and 
number. 

4.3 Influences of v-ATPase inhibition on angiogenesis 
related cell functions in vitro  

4.3.1 Endothelial cell growth and survival 

Co-incubation of sparse HMEC-1 with ConcmA, efficiently reduced the cell proliferation 

within 72 h. The EC50 value for this assay was calculated as 0.24 nM (Fig. 4.4.).   
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Fig. 4.4 Dose dependent growth curve of HMEC-1 treated with concanamycin A. Data are means ± 
SEM. of three independent experiments, 

*
 p<0.001 vs. control. One way ANOVA, Dunnett’s multiple 

comparison test 

Suppression of endothelial cell proliferation by ConcmA might be associated with the 

induction of cell cycle arrest and apoptosis similar to tubulin inhibitors 97. In order to test 

this hypothesis, proliferating HMEC-1 were treated with ConcmA for  

24 h and 48 h. Subsequently, the DNA content was analyzed by flow cytometry.      

After 24 h of ConcmA treatment, no obvious DNA fragmentation as a late sign of 

apoptosis occurred (Fig. 4.5 A, left side). Cell cycle distribution was not affected as well 

at this time point (Fig. 4.5 B, left side). After 48 h however, a clear increase of sub-

diploid cells, i.e. dead cells, could be detected in HMEC-1 (Fig 4.5 A, right side). 

Furthermore, at this point of treatment, the cell cycle distribution was shifted from a 

G0/G1-phase majority to higher percentages in S- and G2/M-phase, suggesting, that 

endothelial cell cycle progression was blocked or delayed (Fig 4.5 B, right side). 
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Fig. 4.5 Flow cytometry analysis of DNA content in HMEC-1 after ConcmA treatment.  
(A) Quantification of cells with fragmented nucleus, i.e. apoptotic cells. B) Quantification of cell cycle 
distribution. N=3, Data are means ± SEM., 

*
p<0.05, One Way ANOVA, Dunnett’s multiple comparison 

Next we tested, if the anti-proliferative and anti-survival effects observed in HMEC-1 in 

response to ConcmA could be connected to impaired VEGF signaling. Therefore we 

investigated the phosphorylation of two serine threonine kinases that among other 

functions translate the mitogenic and prosurvival signaling downstream of VEGF, Akt 

and ERK1/2 100, 101. While in untreated HMEC-1 the addition of VEGF resulted in a clear 

phosphorylation of both kinases (Fig 4.6 A-D, lane 2), pre-treatment with ConcmA 

reduced the VEGF induced activation at different extent and different kinetics for Akt 

and ERK1/2. Activation of Akt was already hampered after 6 h incubation with 10 nM 

ConcmA (A, lane 6) and completely abolished after 24 h incubation with 3 and 10 nM 

ConcmA (C, lane 5 and 6). In contrast, ERK1/2 activation was only reduced to the half 

after 24 h incubation with 3 nM and 10 nM ConcmA (D, lane 5 and 6) or not affected at 

all after 6 h incubation (Fig. 4.6 B).  
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Fig. 4.6 Effects of concanamycinA on the VEGF induced phosphorylation of Akt (S473) and ERK1/2 
(T202/Y204) in HMEC-1. A and C: 6 h and 24 h pre-treatment with ConcmA prior to VEGF stimulation, 
time and dose dependently abolished VEGF induced phosphorylation (S473) of Akt, (A n=4, C n=5).  
B and D: VEGF stimulated ERK1/2 phosphorylation (T202/Y204) was completely unaffected by 6 h pre-
incubation with ConcmA. In contrast, after 24 h with 3 and 10 nM ConcmA,  ERK1/2 activation levels were 
reduced by half, compared to control (lane 2) (B and D, n=3). For quantification, Western blots were 
densitometrically analyzed using Image J. The ratio P-Kinase/total Kinase was calculated and normalized 
to loading control, either β-tubulin or actin. VEGF treated control cells were set as positive control  
(100% phosphorylation, black columns). Data are means ± SEM. 
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4.3.2 Endothelial cell migration  

 

From the results on endothelial cell growth and survival, we had the impression that 

relevant inhibitory effects of nanomolar ConcmA concentrations occurred after  

20 to 24 h, but not immediately. 

This was corroborated by experiences with archazolids, potent v-ATPase inhibitors 

from myxobacteria that were previously tested in migrating cancer cells 23 and in 

endothelial cells (personal communication, S.Zahler). Thus, we chose a 24 h pre-

stimulation of confluent endothelial cells, followed by presence of v-ATPase inhibitor in 

the functional assay as experimental condition for cell functional assays (prolonged 

treatment), if not differently stated.  

Knowing, that with this scheme the probability of toxic side events increases, we 

performed in situ cytotoxicity tests, where possible.    

4.3.2.1 Wound healing assay (scratch assay) 

 

Endothelial cell migration within wounded HUVEC and HMEC-1 monolayers was 

potently inhibited by prolonged ConcmA treatment with EC50 values of 1.5 nM and  

3 nM respectively (Fig 4.7 B).  

The in situ uptake of propidium iodide (PI), used as a cytotoxicity control, was very 

slightly increased in treated HUVEC (15% vs. 5% in control cells, Fig. 4.7 C, left 

diagram), as determined by flow cytometry. This value was similar to starvation 

induced cell death (Fig 4.7 C, st.).  

In HMEC-1, such cytotoxic effects were not detectable (Fig. 4.7 C, right diagram). 
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Fig. 4.7 ConcmA inhibits endothelial migration in the wound healing assay. (A) Representative 
images of wounded HUVEC and HMEC-1 monolayers, 16 h after wound infliction, 5 x magnification. 
WIMScratch quantification software (WIMASIS, Munich) colorizes cell covered area in green and cell free 
area in gray. (B) Quantification of relative wound healing (% of control). (C) PI- uptake, a marker for cell 
death, was determined by flow cytometry. Abbrevations: ctrl, untreated control cells; st, starved cells.  
Data are means ± SEM, n=3. * p< 0.05, One way ANOVA, Dunnett’s multiple comparison   

Importantly, we could show, that not only pharmacological inhibition, but also 

knockdown of the v-ATPase subunit c (ATP6L) by use of siRNA, significantly impaired 

the HUVEC migration in a scratch assay (Fig 4.8 A and B), confirming the importance 

of this v-ATPase element for cell migration. The knockdown efficiency was 

demonstrated by real time PCR analysis (Fig.4.8 C). The PI in situ incubation of 

HUVEC at the end of the wound repair confirmed no increased cytotoxity due to the 

knockdown (Fig 4.8 D). 
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Fig. 4.8 Knockdown of ATP6L impairs endothelial cell migration in a HUVEC monolayer.  
(A) Representative images from wound size in HUVEC monolayers, directly after wound infliction (0 h), 
and 16 h later. HUVEC had been transfected with control or with ATP6L targeting siRNA, 24 h before 
scratch infliction. (B) Quantification of wound repair, related to control (%). (C) x-fold ratio of ATP6L mRNA 
expression in ATP6L target siRNA transfected group against control group, as determined by RT-PCR 
analysis, 24 h after siRNA transfection. mRNA values were normalized against the GAPDH control gene. 
(D) In situ PI (propidium iodide) uptake is negligible in both, control and ATP6L siRNA transfected cells, as 
determined by fluorescence microscopy. Representative light transmission (upper panels) and 
fluorescence (lower panels) images, 10 x magnification, similar x,y,z settings. Data are means ± SEM, 
from three independent experiments, *p<0.05, unpaired t-test 

4.3.2.2 Chemotaxis assay  

 

Having observed significant anti-migratory effects in the scratch assay, we next tested 

single aspects of migration (orientation and overall motility), using the two dimensional 

FCS chemotaxis assay. Orientation parameters, such as the y-forward index and the 

Euclidean distance (Fig. 4.9 B1) were significantly decreased by prolonged treatment 

with 3 nM ConcmA. This was however not a pure effect on cell orientation, since the 

walking radius in the tracking plots (Fig. 4.9 A), and the accumulative distance and 

velocity (Fig. 4.9 B1) were also clearly decreased by ConcmA. Furthermore, cell 

viability seemed to be affected. The number of apparent viable cells was decreased by 
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ConcmA (Fig. 4.9 B2). This effect is not statistically significant, but has to be 

considered for interpretation. 

 

Fig. 4.9 Serum orientated chemotaxis of HUVEC is decreased by ConcmA treatment.  
(A) Representative plots of HUVEC tracks, normalized to one common starting point in the middle of the 
plot. Along the y-axis, a 0-10% serum gradient was set up. (B1) Quantification of directional (y-forward 
index and Euclidean distance) and non-directional values (accumulative distance and velocity) describing 
the chemotactical movement. (B2) The mean number of tracked cells per experiment is decreased by 
ConcmA. Data are means ± SEM of four independent experiments, *P < 0.05, ns: no significant difference 
to control. One way ANOVA, Dunnett’s multiple comparison. 

4.3.3 Endothelial cell – matrix interaction 

 

A crucial pre-condition for both, endothelial cell migration and capillary 

formation (in vitro referred to as tube formation), is the ability of endothelial cells 

to interact with the matrix environment in order to perform matrix induced 

morphogenic changes 102, 103.  

Thus, we next tested the influence of 24 h ConcmA treatment on cell matrix 

adhesion per se and on the degree of matrix induced formation of membrane 

protrusions, so called ‘ruffles’ (Fig. 4.10 A). By counting adhered HMEC-1 

endothelial cells on various matrix protein coatings (Fig. 4.10 B), no significant 
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change could be detected. However, the degree of prominent ruffle formation in 

adhered HMEC-1 was clearly decreased (Fig. 4.10 C).    

 

Fig. 4.10 ConcmA affects matrix induced ruffle formation in HMEC-1.  (A) HMEC-1 were pre-treated 
for 24 h and then seeded either on collagen, fibronectin, diluted matrigel or on plastic. After 30 min, cells 
were fixed with formaldehyde and analyzed by microscopy. Representative images at 20x magnification. 
Note the loss of sharp membrane protrusions (ruffles) in treated HMEC-1. (B and C): Quantification of 
adhered cells (B) and of ruffle formation (C). Two central images per setting and experiment were 
evaluated. Data are means ± SEM, n=3, *p< 0.05, One way ANOVA, Dunnett’s mulltple comparison. 

In HUVEC treated with ConcmA, we could also observe a clear decrease in ruffle 
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explanation for this effect, since the small Rho GTPase Rac-1 is known to be highly 

active in lamellipodia formation and consequently membrane ruffling 104.  

Indeed, by use of a pulldown assay, we could detect 50 % lower collagen adhesion 

induced Rac-1 activation after ConcmA pre-inubation (Fig. 4.11 B). 

 

Fig. 4.11 ConcmA reduces ruffle formation in HUVEC, an effect associated with a decrease of  
Rac-1 activation (A) Representative images of HUVEC, 30 min after being seeded on collagen, either 
treated or untreated with ConcmA, 40x magnification, phase contrast microscopy, n=3.   
(B) Rac-GTP pull-down of HUVEC, being adhered to Collagen for 30min B1) Western Blot of active, GTP-
bound Rac-1 (upper panel). Total Rac-1 and actin indicate equal loading (lower panel).  
B2) Quantification of five independent experiments, activated Rac-1 band intensity was normalized to the 
total Rac-1 amount and related to control. Data are means ± SEM, * P< 0.05, unpaired t-test. 

4.3.4 Tube formation on MatrigelTM  

We have observed clear inhibitory effects of ConcmA on endothelial cell migration, 

ruffle formation and Rac-1 activation. Therefore, we next tested the effect of v-ATPase 

inhibition in a more complex setting, measuring the degree of capillary formation (tube 

formation) of pretreated HUVEC and HMEC-1 on MatrigelTM.  

Astonishingly, we observed completely different cell type specific effects of ConcmA in 

this assay. In HUVEC, tube formation was dose dependently decreased   

(Fig. 4.12 A, upper panels), however HMEC-1 were not affected at all by ConcmA, 

even when treated with 10-fold higher concentrations (Fig. 4.12 A, lower panels).  
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By quantification of node number and total tube length, tube formation in treated 

HMEC-1 appears to be increased (Fig. 4.12 B, black columns). 

The same impression comes up for HUVEC treated with 1nM of ConcmA (Fig. 4.12 B 

white columns). 

 

Fig. 4.12 Tube formation after prolonged treatment with ConcmA. (A) Representative images of 
treated HUVEC (top panel) and HMEC-1 (bottom panel), 16 h after seeding on Matrigel

TM
, 5x 

magnification  B) Quantitative evaluation of branching point number connecting the tubes (node no., left 
panel) and total tube length (right panel) using WIMTube module from WIMASIS, Munich.   
Data are means ± SEM, n=3, * p<0.05, One way ANOVA, Dunnett’s multiple comparison 

Since the membrane surface of the established tubes (in Fig 4.12), seemed to be 

roughened in both HUVEC and HMEC-1 compared to the control cells, we assumed 

cytotoxic effects. Indeed, in situ PI staining revealed a massive loss of membrane 

integrity in treated HUVEC as determined by fluorescence microscopy, suggesting an 

increase of cell death 105 (Fig. 4.13 A). However, in the HMEC-1 tube formation assay, 

we could not detect a relevant increase in cell death by this method (Fig 4.13 B, lower 

panels), which further indicates a different endothelial cell specific sensitivity. 
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Fig. 4.13 Tube formation, in situ cytotoxicity test. 10µg/ml of propidium iodide (PI) was added to the 
tube supernatant for 30 min. PI uptake was analyzed by fluorescence microscopy. A) ConcmA treated 
HUVEC obviously lost membrane integrity, a late sign of cell death 

105
, indicated by incorporation of PI at 

higher levels than control cells. B) ConcmA treated HMEC-1 exhibited no increased cytotoxic phenotype 
vs. control, as determined by this assay. Representative light transmission images (upper panels) and 
fluorescence images (lower panels), 10xmagnification, similar x,y,z settings, n=3 

4.4 Influences of v-ATPase inhibition on VEGFR2  

VEGF is recognized as the most prominent pro-angiogenic growth factor, which signals 

mainly via the VEGFR2 axis 106. We wanted to elucidate, whether ConcmA affects the 

function and distribution of this key receptor, which then could be taken as an 

explanation to anti-angiogenic effects, apart from inhibition of plasma membrane  

v-ATPases 25. 

4.4.1 VEGFR2 function  

VEGF induces the dimerization and subsequent autophosphorylation of VEGFR2 at a 

number of tyrosine residues e.g. tyrosine 1175, which consequently leads to the 

activation of downstream signaling cascades and the corresponding cellular function, 

e.g. survival, proliferation, migration 36, 107.  
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In HMEC-1, pre-treated with 10 nM of ConcmA for 24 h, VEGFR2 autophosphorylation 

at tyrosine 1175 was reduced by 50 % (Fig. 4.14 A, B). Moreover, it appears that the 

treatment with ConcmA leads to reduction of intact VEGFR2 in HMEC-1 (Fig 4.14 C), 

this effect was increased by addition of VEGF (Fig 4.14 A and C, lane 6).  

Corroborating this impression, at the same time, VEGFR2 fragments of 130 kDa and 

80 kDa (Fig. 4.14, E and F, lane 3 and 6) accumulated in HMEC-1, treated with 10 nM 

of ConcmA.  

Thus, it seems that ConcmA impairs intrinsic VEGFR2 sensitivity on the one hand. 

On the other it promotes VEGF induced VEGFR2 degradation, which additionally 

weakens the signaling sensitivity.  

 

Fig. 4.14 ConcmA treatment reduces VEGF induced autophosphorylation of VEGFR2 and 
decreases total level of intact VEGFR2 A) Representative Western blots of phosphorylated VEGFR2 
(Y1775) and total amount of VEGFR2. B) Densitometric quantification of phosphorylation level of VEGFR2 
(Y1775) related to VEGF control (black column). C) Quantification of intact VEGFR2 (230 kDa), related to 
VEGF free control (white column). D) Representative Western blots of 130 kDa and 80 kDa fragments of  
VEGFR2. E and F) Quantification of 130 kDa and 80 kDa VEGFR2 fragments, respectively, related to  
VEGF free control (white columns). Band intensities were normalized to β-tubulin.  
Data are means ± SEM. from three independent experiments. # p<0.05, *p<0.01, one way ANOVA, 
Dunnett’s multiple comparison. 
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4.4.2 VEGFR2 distribution 

4.4.2.1 VEGFR2 at the cell surface 

 

Endothelial cells exhibit a relatively stable steady state of VEGFR2 between the cell 

surface (approximately 50 % of the total VEGFR2) and intracellular compartments 28, 87. 

Surface pools are stabilized e.g. by interactions with VE-cadherin 108, 109. We wanted to 

know, whether surface VEGFR2 levels under serum reduced conditions would be 

affected by prolonged ConcmA treatment, in order to answer the question, if the 

reduced autophosphorylation of the receptor (Fig. 4.14 B) might be due to reduced 

surface levels prior to stimulation with VEGF. Therefore, after a 2 h starvation period, 

surface receptors were labeled, using a membrane-impermeant biotinylation reagent 

(Materials and Methods, 2.2.9).  

By Western blot analysis, we could detect a dose dependent reduction of VEGFR2 

surface pools by 20 to 30% (Fig 4.15). As confirmation for the specificity of this method, 

biotinylation negative controls (0/-) contained almost no VEGFR2 in the ‘surface 

fraction’ (Fig 4.15 A, lane 1). Furthermore, the membrane integrity was unaffected, as 

shown by the absence of actin in the surface fraction (Fig 4.15 A, upper panels). 

Altogether, these findings support the impression, that the VEGFR2 surface pool is 

reduced by prolonged ConcmA treatment, thus weakening the sensitivity to VEGF 

stimulation (Fig. 4.14 B). 
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Fig. 4.15 VEGFR2 surface levels are reduced in HMEC-1 and HUVEC after ConcmA treatment. 
(A) Immune-blot detection of VEGFR2 in surface fractions upon surface biotinylation reaction, and total 
lysates of HUVEC and HMEC-1, respectively. (B) Densitometric quantification of surface VEGFR2 in 
relation to surface biotinylated control (0/+) in %.  n=3 for both HUVEC and HMEC-1. Data are means ± 
SEM. *p<0.05, one way ANOVA, Dunnett’s multiple comparison. 

4.4.2.2 VEGFR2 in intracellular compartments 

 

Having investigated effects on the surface distribution of VEGFR2, we next assessed 

the influence of ConcmA on intracellular VEGFR2 levels, using immune-cytochemistry. 

By confocal microscopy, we could observe a clear time and dose dependent formation 

of VEGFR2 containing vesicles after ConcmA addition. This process started after 2 h 

with relatively diffuse accumulations at 3 nM and 10 nM and was evident after 24 h, 

already at a concenctration of 1 nM (Fig 4.16 A). We could exclude that these 

accumulations were caused by higher VEGFR2 expression, as we could not detect  

increased but rather decreased VEGFR2 protein levels in a Western blot (Fig 4.16 B),  

consistent with previous findings (Fig. 4.14 C).  
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Fig. 4.16 VEGFR2 accumulates over time in enlarged vesicles in response to prolonged ConcmA 
treatment. (A) Representative immune-cytochemistry images of HMEC-1, after 2 h (upper panel) and 24 h 
(lower panel) incubation with ConcmA. VEGFR2 is depicted in green, nuclei are depicted in blue, n=2 for  
2 h and n=3 for 24 h setting. (B) As confirmed by Western blot experiment, the overall amount of VEGFR2 
is decreased rather than increased by ConcmA, underlining that enlarged VEGFR2 vesicles derive from 
altered distribution and not from increased protein synthesis, n=3.   

In order to clarify, whether VEGFR2 accumulates in a specific compartment, we 

performed an immune-fluorescent co-labeling of selected marker proteins characteristic 

for the upper and lower parts of the endocytic pathway. 

Since it is known, that VEGFR2 internalization is controlled in part by caveolin 110, a 

membrane protein, we labeled both VEGFR2 and caveolin1 (Cav1), with adequate 

immune-staining. By confocal microscopy, we could not detect merging areas between 

the VEGFR2 positive vesicles and Cav1 (Fig. 4.17, upper panels).  

Yet another surface protein, clathrin, which is known to mediate receptor tyrosine 

kinase internalization 111, 112, was additionally tested for co-localization with VEGFR2 

patterns. Here, we could also find no overlapping with VEGFR2 (Fig. 4.17, lower 

panels) in pattern or color, suggesting that VEGFR2 is not trapped in a semi-

internalized state or surface near compartment, which is in line with the observed 

decrease of extracellular receptor levels ( Fig 4.15).     
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Fig. 4.17 Confocal images of co-immune stainings of VEGFR2 with RTK internalization regulating 
proteins upon ConcmA treatment. VEGFR2 accumulating vesicles (depicted in green) don’t merge with 
Caveolin (upper panel in red, Cav1: caveolin 1) or with Clathrin-immune-staining pattern (lower panel in 
red, Clath-HC: clathrin heavy chain). Nuclei are shown in blue. N=3 

As further possibility for the identity of the VEGFR2 accumulating vesicles, we used 

immune-staining for a marker of early endosomes, Rab5. However, we could not detect 

merging structures between Rab5 and VEGFR2 patterns (Fig. 4.18, upper panel), 

since shape and color of both were clearly different.  

Next, we tested if the lysosomal compartment, known as the place for receptor 

degradation 111, might be identical with VEGFR2 containing vesicles. Therefore we 

applied co-immune-staining for a lysosomal marker, lysosomal associated marker 

protein1, Lamp1. Here, we could find clear merging patterns between VEGFR2 and 

Lamp1 staining (Fig. 4.18, lower panels), which were increasing in intensity in response 

to higher concentrations of ConcmA. This suggests that prolonged v-ATPase inhibition 

leads to entrapment of VEGFR2 in lysosomes. 
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Fig. 4.18 Prolonged ConcmA treatment leads to the accumulation of VEGFR2 in lysosomes.  
Upper panel: The immune-staining pattern for a marker of early endosomes, Rab5, does not merge with 
the VEGFR2 pattern. Lower panel: By application of co-immunestaining for a lysosome marker (Lamp1), 
clear merging with VEGFR2 pattern can be detected, depending on the ConcmA concentration. 
Representative images are shown for each marker, n=3. VEGFR2 is depicted in green, respective markers 
are depicted in red, merging structures are depicted in yellow, nuclei are shown in blue. 
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5.1 Natural anti-cancer drugs with anti-angiogenic 
profile 

One highly causal strategy in the battle on cancer is the inhibition of tumor 

angiogenesis, since this process is a common feature to solid tumors, which 

continuously fuels cancer growth and moreover is a pre-requisite to metastases 2, 31, 113.  

Many selective anti-angiogenic drugs, that are used in tumor therapy, inhibit only one 

or few angiogenesis signaling pathways, predominantly the VEGF/VEGFR2 axis (e.g. 

bevacizumab, sorafenib). This specific approach turned out to be clinically less efficient 

than expected 3, 114, due to compensation by other signaling networks, such as for 

example the Notch complex 4, 5, 114.  

Conventional cytotoxic chemotherapeutics, such as DNA or microtubule binding drugs, 

were recently considered for their anti-angiogenic potential in a therapeutic regimen of 

frequently low dosed application (‘metronomic chemotherapy’), with the aim to 

decrease adverse side effects 8, 9, 42, 43, 115. Hence, the tumor endothelium displays a 

further important target for cytotoxic drugs. In contrast to cancer cells, the genetically 

more stable endothelial cells possess the advantages of lower tendency to become 

drug-resistant and of being directly addressable via the blood stream 8, 116.  

In the present work, we have evaluated two pharmacologically distinct groups of 

cytotoxic natural compounds or derivatives thereof concerning their potential to inhibit 

angiogenesis. These compounds target either tubulin, an ‘established’ cellular structure 

for the anti-angiogenic approach 46, 55, 117, or the vacuolar  H+ - ATPase (v-ATPase), 

which is yet ‘unestablished’ in the sense of only few preclinical studies in the field of 

angiogenesis inhibition 24, 25. 

For a better overview, the results of both parts will be first discussed one by one, and 

then combined in a final outlook discussion. 

5.2 Anti-angiogenic effects of pretubulysin and 
analogues 

For decades, natural tubulin binding agents (nTBAs) or TBAs based on natural leads 

are established in the therapy of cancer 45. The number of compounds in this field is 

growing as a result of screenings in marine, botanical and myxobacterial sources 45, 49, 

118-120. Among the features that novel agents have to possess in order to improve tumor 

therapy are insensitivity to chemoresistance 45, 121, less neurotoxicity, increased tumor 

specificity45 and, last but not least, the ability to exert anti-angiogenic activity, even at 

low, non-toxic concentrations 46, 67, 69, 117, 122. 
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In the first part of this work, we assessed pretubulysin (Prt), a chemically accessible 

precursor 18 of the microtubule-depolymerizing tubulysins 11, and pretubulysin 

analogues for their anti-angiogenic effects. Tubulysin A (TubA) itself already has been 

evaluated as a very potent anti-angiogenic drug 13, and the application of polymeric 

tubulysin peptide nanoparticles has been reported to reduce tumor growth in colorectal 

and non-small cell lung carcinoma 51. However, due to tedious and inefficient natural 

supply 11, 19 and chemically challenging synthesis of TubA, clinical progress was 

hampered to date 17. In contrast, the chemistry of the biosynthetic precursor Prt is less 

complex and suitable for efficient total synthesis as well as numerous chemical 

modification 15, 16, 18, 60. 

5.2.1 Pretubulysin exhibits similar activity as tubulysin A in 
cellular angiogenesis assays 

Comparison of Prt and TubA revealed a similar efficacy in all in vitro angiogenesis 

assays. This makes pretubulysin an attractive and simplified alternative, in terms of use 

as an anti-angiogenic compound and for structure activity studies. This is in line with 

findings of Herrmann and colleagues who found nearly similar activity of Prt and 

tubulysins in multiple cancer cell functional tests and in tubulin studies 19.  

5.2.2 Pretubulysin derivatives display a continuous structure 
activity relationship throughout all assays 

The tested Prt analogues were chemically altered at different sites of the tetra-peptidic 

skeleton, either at the C- or N- terminus 15 or in the centre of the molecule 16. 

Importantly, these alterations had a consistent influence on the pharmacological 

potential in all test systems, which finally led to the classification of compounds into 

three groups of either high (tubulysin A, pretubulysin and AU816), intermediate (JB337, 

JB375, AU954) or low potency (AU825, JB338, AU815). This ranking order matched 

with the results of the in vitro tubulin polymerization assay and the assay on 

microtubule depolymerization, suggesting that a different binding affinity to tubulin is 

the most likely explanation for different bioactivity among these compared agents.  

With respect to the structure, it can be said, that an intact piperidin ring at the  

N-terminus and an intact (2-desmethyl or 2,3 didehydro)-tubuphenylalanine at the  

C-terminus seem to be prerequisite for high pharmacological efficacy, since small 

alterations at these positions caused dramatic loss of activity (Fig. 2.1 B, left panel). 

Replacement of the central C-desacetoxy-tubuvaline block in pretubulysin by 

alternative spacers leads in cases of phenyl- and phenoxypretubulysin (JB337 and 

JB375, respectively) to moderate loss of activity, while the introduction of a triazole 

containing spacer (in JB338) is deleterious (Fig. 2.1 A and B right panel).       



5  Discussion and Outlook 83 

5.2.3 Anti-angiogenic effects of pretubulysin and tubulysinA 
can be discriminated into ‘mitotic’ and ‘non-mitotic’ 

Many investigations reveal that tubulin binding agents (TBAs) modulate the microtubule 

cytoskeleton in endothelial cells in a fairly subtle fashion, without necessarily being 

cytotoxic 46, 117. By these modulations, angiogenesis relevant transport processes of 

both, non-membranous cargo 56 and of vesicles carrying important signaling complexes 
63, 64, 67, 123, are disturbed. Moreover, the re-orientation of the microtubule organizing 

centre (MTOC) is impaired by non-mitotic TBA concentrations, inhibiting cell 

polarization and thus oriented migration 69, 124. 

Indeed, in our study we can distinguish between mitotic and non-mitotic effects of the 

test compounds, since prominent cell cycle arrest and consequently cell death occurs 

at late time points (48 h), while inhibition of migration and tube formation is significant 

at earlier time points, when cell death is not yet prominent both in HMEC-1 and in 

HUVEC. Furthermore, it is shown in the chemotaxis assay, that predominantly the 

tendency of serum orientated migration is impaired, while overall motility is not 

significantly affected (Fig. 3.6). Hence, loss of orientation may truly be the primary 

cause of these early anti-angiogenic effects as described by Hotchkiss et al. 69.        

5.2.4 Pretubulysin blocks hepatocellular carcinoma (HCC) 
growth and vascularization in an in vivo murine model 

As final assessment, we applied Prt in a subcutaneous murine xenograft model, with 

hepatocellular carcinoma cells (HuH7), since these tumors are known to be very well 

vascularized 125. TubA itself has already been tested in colorectal and non-small cell 

lung carcinoma murine xenograft models 51. Interestingly, in the report by Schluep et al. 
51, TubA did not show pronounced reduction of tumor growth, limited to its toxicity.  

Only linking of this compound to cyclodextrin-polyethylenepolymer nanoparticles, which 

allowed a sustained release of the drug, resulted in a safe and effective tumor size 

reduction and prolonged survival 51. In our study, Prt showed no obvious toxicity at a 

metronomic schedule of 0.1mg/kg given i.v. every second day, as indicated by the 

absence of weight loss (Fig 3.11). 

Still it caused a dramatic reduction of tumor growth. This might be partly due to direct 

affection of HuH7 proliferation, since we saw a prominent reduction of growth of this 

cell line in vitro at similar concentrations as for HMEC-1 (table 3.1). 

Most importantly, Prt had an obvious inhibiting effect on tumor angiogenesis, with 

respect to the significant reduction of mean vascular density and the clearly visible 

absence of blood perfusion (Fig 3.11 C, D, E). 
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5.2.5 Conclusion – part 1  

All together, we proofed that Prt, a chemically accessible tubulysin precursor, exhibits 

very potent anti-angiogenic effects despite considerable simplification in comparison to 

its more complex relative TubA (Fig. 1.3) in vitro. Most importantly, Prt diminishes 

cancer growth and perfusion in vivo at frequent application without the occurrence of 

severe side effects. Some of the analogues based on Prt still retain high anti-

angiogenic efficacy, giving important insights in structure activity relationship. 

5.3 Anti-angiogenic effects of v-ATPase inhibition – 
Role of VEGFR2 function 

V-ATPases are evidently involved in numerous physiological, but similarly in 

pathological processes, making them an attractive target for the development of 

therapeutics 70, 74, with high expectations in the fields of cancer and osteoporosis 23, 52, 

126. 

In cancer research, particular interest was so far concentrated on the participation  

of v-ATPases in multi-drug resistance 127-130 and cancer metastasis 22, 23, 34, 131.  

To our knowledge, only two publications exist, that describe the role of v-ATPases in a 

tumor angiogenesis relevant context. Rojas et al. found, that high v-ATPase levels at 

the plasma membrane (pm v-ATPases) increase endothelial cell migration 25, whereas 

non-migrating endothelial cells from a diabetic model show a clearly reduced pm  

v-ATPase expression 24.  

However complex morphogenic events during angiogenesis such as capillary formation 

were not yet analyzed under influence of v-ATPase inhibition. Furthermore and most 

important, the impact of v-ATPase inhibition on angiogenesis signaling appears rather 

unelucidated. Therefore, we have used a specific v-ATPase inhibitor, concanamycin A 

(ConcmA) to test its anti-angiogenic effects on the cellular and the receptor level, 

focusing on the function and sub-cellular distribution of the most important pro-

angiogenic receptor: VEGFR2.  

5.3.1 Kinetics of morphological changes in endothelial cells in 
response to v-ATPase inhibition  

One primary consequence of v-ATPase inhibition is the collapse of finely regulated  

pH gradients 74 in vesicular compartments along the secretory and endocytic pathway 

in eukaryotic cells 85. This is often accompanied by morphological changes of the 

referred organelles 98, 99, 132. We found that 3 nmolar of ConcmA were sufficient to 

increase lysosomal pH in HMEC-1 (Fig. 4.2) within four hours. Clear morphological 

changes, like the accumulation of enlarged vacuoles and increase of cell size, occur in 
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HUVEC at similarly low concentrations, however with a delay of approximately fifteen 

hours after lysosmoal alkalization (Fig. 4.3). HMEC-1 also change their morphology 

within this time frame, but to a less prominent extent, probably due to their smaller size 

(data not shown). The interval between effects on pH and vacuolar swelling was also 

demonstrated in a previous study 23, and seems to be shorter at 10 to 100 fold higher 

drug concentrations, inferred from studies that used a similarly active v-ATPase 

inhibitor, bafilomycin 52, 85, 99. With the intention to use the lowest effective 

concentrations, we continued experiments with 1-10 nmolar ConcmA. 

5.3.2 Influences of v-ATPase inhibition on endothelial cell 
proliferation and survival  

Enhanced endothelial cell proliferation and survival are key hallmarks during the 

angiogenesis process 101, 133.  Thus we assessed the impact of v-ATPase blockade on 

these parameters. We found that ConcmA efficiently inhibits HMEC-1 endothelial cell 

proliferation at subnanomolar concentrations (Fig. 4.4), which does not come as a 

surprise, since v-ATPase inhibitors are known to be strong anti-proliferative agents 134. 

The analysis of DNA content reveals an impaired cell cycle progression in  

HMEC-1 after 48 h (Fig. 4.5 B) in response to ConcmA. In parallel, increased nuclear 

fragmentation can be detected, indicating that cell death is additionally occurring105.  

Concerning kinetics, tubulin antagonists like TubA and Prt already show the onset of 

impaired cell cycle progression in endothelial cells after 24 h (Fig. 3.3 A). At this time 

point, no such effects can be seen with ConcmA (Fig 4.5 B), corroborating the 

impression of certain latency until cellular functions are inhibited by low nanomolar 

concentrations of v-ATPase inhibitors.  

VEGF generates pleiotropic pro-angiogenic signaling via VEGFR2 6, 36. The serine and 

threonine kinases Akt and ERK1/2 are two main switch-points, that translate VEGFR2 

activation into increased endothelial cell proliferation 135, 136 and survival 100, 101, 137 

among other cell functions 36. The VEGF induced activation of Akt in  

HMEC-1 starts to be impaired after 6 h incubation with ConcmA (Fig. 4.6 A), whereas 

ERK1/2 activation is unaffected at this time point (Fig 4.6 B). A pretreatment of 24 h 

with the inhibitor completely abolishes the effect of VEGF on Akt (Fig 4.6 C) and 

reduces ERK1/2 activation to the half level compared to control (Fig. 4.6 D). This is 

astonishing, as it demonstrates a different sensitivity of both kinase networks to the  

v-ATPase inhibitor. With respect to the high importance of v-ATPases in membrane 

trafficking 27, a different dependence on spatial distribution might be the cause for this 

disparity. Interestingly, in migrating SKBR3 breast cancer cells it was indeed shown, 

that Akt distribution and function both are impaired by v-ATPase inhibition, while EGF 

induced ERK1/2 activation was even increased (Romina M.Wiedmann, Dissertation 

LMU München, 2011). 
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5.3.3 Effects of v-ATPase inhibition on endothelial cell 
migration and differentiation functions 

The role of v-ATPases in endothelial cell migration and invasion has been previously 

analyzed in two studies from the Martinez-Zaguilan group. Therein it was 

demonstrated, that enhanced expression of v-ATPases at the plasma membrane of the 

cellular leading edge (pm v-ATPases) increases endothelial cell migration and 

invasion, respectively 24, 25. Similarly, it was reported, that microvascular endothelial 

cells are particularly sensitive to v-ATPase inhibition. This was constituted with 

increased expression of pm v-ATPases 25 in contrast to macrovascular cells.  

Our model of microvascular cells, HMEC-1, expresses only marginally higher pm  

v-ATPase levels under migrating condition in comparison to the macrovascular 

HUVEC. In both cell lines, the vast majority of v-ATPases is distributed in intracellular 

vesicles (Fig. 4.1). 

In a wound healing assay, we could not observe any inhibition of migration upon direct 

addition of v-ATPase antagonists, both in HMEC-1 and in HUVEC (S.Zahler, personal 

communication). This is in line with findings of Wiedmann and colleagues, who 

analyzed cancer cell migration under influence of low dosed archazolid B 23, a novel 

and very potent v-ATPase inhibitor from myxobacteria 78, 138.  

However with 24 h pre-incubation and sustained treatment with ConcmA during the  

assay (16 h), efficient inhibition of wound healing can be obtained similarly in HMEC-1 

and HUVEC (Fig. 4.7 A and B). With respect to cytotoxic events, it must be considered, 

that in the wound healing assay all cells, except for those adjacent to the wound, are in 

close intercellular contact. Hence, increased activity of the cell to cell connecting VE-

cadherin 139 may decrease cytotoxic effects in response to ConcmA, as observed in 

HMEC-1 (Fig. 4.7 C). Astonishingly, HUVEC show a slight increase in cell death, 

indicating an endothelial cell specific sensitivity to ConcmA (Fig. 4.7 C). In order to 

estimate eventual off-target effects, we applied knockdown of the specific target of 

ConcmA 52, the v-ATPase subunit c (ATP6L), in HUVEC. Then, we performed a similar 

wound healing assay. Thereby we could confirm the importance of this v-ATPase 

element in endothelial cell migration. Importantly, in this setting no significant cytotoxic 

events occurred (Fig 4.8).  

For the assessment of chemotactic endothelial cell migration, we tested HUVEC 

movement in a two dimensional FCS gradient 67, 91. Here, ConcmA does not only inhibit 

cell orientation, but the general cellular motility (Fig. 4.9 B1), which stands in strong 

contrast to the fine disturbance of direction parameters by pretubulysin and tubulysin A 

(Fig. 3.6 B1). Furthermore, due to the prolonged presence of ConcmA (total of 40 h) 

and to the isolated cellular state in this assay, cytotoxity may substantially contribute to 

the overall effect (Fig. 4.9 B2). 
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From a mechanistic point of view, we were interested in important signaling molecules 

controlling the migration process. The essential role of the small Rho-GTPases Rac-1, 

Cdc42 and RhoA in cell migration and polarization is well defined 66, 140-142. Rac-1 for 

instance contributes to cell motility by induction of protrusive sheet-like actin polymers 

(lamellipodia), which are clearly visible as ‘ruffles’ at the cell front. This activity can be 

either induced by cell-matrix interaction or growth factor stimulation142. We showed, 

that ConcmA pre-treatment in HMEC-1 and HUVEC significantly impairs the formation 

of ruffles upon cell-matrix adhesion (Fig. 4.10 C and 4.11 A), without prominent effects 

on adhesion per se (Fig 4.10 B). According to reduced lamellipodia formation, we could 

demonstrate an impaired Rac-1 activation under similar conditions (Fig. 4.11 B).  

Besides adhesion and migration, Rac1 is required for even more complex morphogenic 

events like lumen formation 102, 140, 141. Hence, we expected an inhibitory effect of 

prolonged v-ATPase inhibition on endothelial cell capillary formation.  

Interestingly, we found a cell line specific effect on this functional aspect. HUVEC show 

massive reduction of tube length and number of connection points (nodes) at 3 nmolar 

ConmA, while capillary formation of HMEC-1 appears to be even increased, though 

treated with tenfold higher concentration (Fig. 4.12). We further found, that the 

membrane surface in both cell lines looks remarkably ‘blebby’, when treated with 

ConcmA, which we interpreted as a sign of cell death 105. Indeed, after prolonged 

ConcmA incubation (24h + 16h) HUVEC lose membrane integrity, as indicated by the 

uptake of a normally membrane impermeant fluorescent dye, propidium iodide. In 

comparison, HMEC-1 still possess membrane integrity (Fig. 4.13). Thus, inhibition of 

tube formation appears to be rather a secondary consequence of cell death than a 

subtle inhibition of differentiation as observed with low dosed tubulin antagonists.  

5.3.4 Function and distribution of VEGFR2 in response to 
prolonged v-ATPase inhibition 

V-ATPases are functionally integrated in the process of membrane trafficking 27, 72. 

Thus, v-ATPase inhibition may alter trafficking of important signaling molecules, 

similarly to the inhibition of microtubule trafficking function56, 64.  

We hence hypothesized, that v-ATPase inhibition could alter VEGFR2 trafficking and 

signaling function as explanation for the observed cell functional effects.  

As a primary result to support this idea, VEGF induced auto-activation of the receptor is 

decreased by 24 h treatment with low dosed ConcmA in HMEC-1 (Fig. 4.14 B).  

This suggests less sensitivity to the ligand, possibly due to reduced surface expression. 

Indeed under similar conditions, we could detect a decrease of surface receptor levels 

by 20-30%, both in HUVEC and HMEC-1 (Fig. 4.15). 

In addition, the overall amount of intact VEGFR2 was clearly diminished (Fig. 4.14 C).  

At the same time, receptor fragments accumulated (Fig. 4.14 D-F). Recently, Bruns 
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and others 143 have described such VEGFR2 fragments as a result of VEGF induced 

limited proteolysis within endosomes. They had observed similar VEGFR2 fragment 

accumulations upon concomitant use of bafilomycin and VEGF stimulation143, and have 

proposed a blockade in endosome to lysosome trafficking, and inactivation of 

lysosomal enzymes 143, 144.  

In our experimental setup, we could detect intracellular vacuolar accumulations of 

VEGFR2 in HMEC-1 (Fig. 4.16). These vacuoles were identified as lysosomes  

(Fig. 4.18). Thus, we suggest that the endosomal lysosomal trafficking might not be  

blocked 144 but delayed by low nmolar concentrations of ConcmA.  

Furthermore, we could exclude, that VEGFR2 accumulations are located in endocytic 

compartments characterized by markers for membranes (Caveolin) 110, internalization 

proteins (Clathrin) 145, or endosomes (Rab5) 146. All together, this leads to the 

impression, that prolonged treatment with a v-ATPase inhibitor predominantly induces 

a one way route towards lysosomes with impaired recycling to the membrane. By 

alkalization, lysosomal enzymes are inactivated, which leads to a dose dependent 

accumulation of VEGFR2 fragments. 

Our findings (impaired endothelial cell proliferation, survival and migration, combined 

with a decrease of VEGFR2 function and signaling, less surface expression and 

increased receptor degradation), are in close similarity to those of Mannell and 

coworkers147.  They recently reported, that VEGFR2 trafficking and angiogenesis 

related cell functions can be effectively disturbed by application of an inhibitor of 

ARNO, which itself, together with Arf6, is an important interaction partner of  

v-ATPases. Hurtado-Lorenzo and others found, that the connection between Arf6, 

ARNO and v-ATPases is subtly controlled by pH 148, 149. This strikingly suggests, that  

v-ATPase inhibition impairs the fine regulated interaction of v-ATPases with ARNO and 

Arf6, and thus disorganizes the membrane trafficking function.  

5.3.5 Conclusion – part 2 

Rojas and colleagues correlated over-expression of plasma membrane v-ATPases with 

highly active endothelial cell migration and invasion 24, 25, hence important angiogenesis 

related functions. They further demonstrated that microvascular endothelial cells, which 

express high levels of pm v-ATPases react particularly sensitive to v-ATPase inhibition, 

in contrast to macrovascular endothelial cells25.  

In our work we could show, that both macro- and microvascular endothelial cells 

(HUVEC and HMEC-1, respectively) exhibit impaired angiogenesis related cell 

functions, in connection with decreased VEGFR2 function and distribution, putatively 

as a consequence of disorganized membrane trafficking in response to  

v-ATPase inhibition. 
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To our knowledge, this connection is presented for the first time and displays a novel 

explanation for anti-angiogenic effects in response to v-ATPase inhibition.  

5.4 Outlook 

The high anti-cancer 19 and anti-angiogenic 20 potential of pretubulysin in vitro and in 

vivo, together with its reliable supply, should lead to further investigations in  

pre-clinical and potentially clinical studies. Furthermore, its less complex structure in 

comparison to tubulysins makes it suitable for chemical modification in the sense of 

developing new analogues 16, which can serve in improving the understanding of ‘drug 

target biology’ 60, and of signaling influences. A further possible application could be 

the design of smart delivery systems, as demonstrated for tubulysin A 51.  

V-ATPase research is still quite young, with respect to the discovery of the first specific 

antagonist, i.e. pharmacological tool, bafilomycin in 198475.  If one thinks of the multiple 

functions of v-ATPases that have been elucidated until today 72, 148, 150, 151, it appears 

that effects of v-ATPase inhibition could be pleiotropic or even completely chaotic. But 

this impression can also arise for the approach of tubulin antagonism 56, 64, 67, 152-154, 

which is clinically established since decades45. Thus, understanding of signaling will be 

one important key to further development and potentially to the clinical application of  

v-ATPase antagonists. 

In the field of tumor angiogenesis only few publications about the role v-ATPase 

antagonism exist 24, 25. We could show an important role of v-ATPase activity for the 

distribution and function of VEGFR2. To discriminate, whether differential effects occur 

upon v-ATPase inhibition, one should investigate further receptors with importance in 

angiogenesis. Notch activation for instance is known to depend on v-ATPase function 
155, 156. In contrast, the relationship between v-ATPases and other important pro-

angiogenic signaling systems, like for example Ang1 and Ang2/Tie2 and FGF/FGFRs, 

appears rather unelucidated. 

Besides promising in vitro results, it could be recently demonstrated, that v-ATPase 

inhibitors exhibit also considerable anti-tumor effects in vivo 23, 157. Archazolid B was 

shown to reduce the tumor metastasis in a syngeneic breast cancer model 23. Further 

tests with archazolid in a xenograft model of herceptin resistant breast cancer cells, 

referred to as JIMT-1 158, resulted in clearly reduced tumor growth (personal 

communication, K. v. Schwarzenberg). But the level of tumor vascularization, in terms 

of vascular structure and density, still needs to be histologically analyzed, to determine 

whether anti-angiogenic effects might have contributed to the anti-tumor effect.  

Thus, many findings about v-ATPases as target for anti-angiogenic approaches are 

promising, but the potential and the involved signaling mechanisms, such as inhibition 

of VEGFR2, still need to be further investigated.   
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6.1 Part 1: Anti-angiogenic potential of the tubulysin 
precursor pretubulysin and its analogues 

Tubulysins are highly potent tubulin binding agents of myxobacterial origin. Tubulysin A 

was recently evaluated as a very potent anti-angiogenic agent. Its supply however is 

inefficient due to low biosynthesis rate and challenging chemical synthesis, 

respectively. A structurally simplified tubulysin precursor, pretubulysin, is efficiently 

available and modifiable via total chemical synthesis.  

We tested the anti-angiogenic effects of this compound and seven of its analogues in 

vitro and could demonstrate that pretubulysin shows nearly similar efficacy (EC50 in the 

low nmolar range in cellular angiogenesis assays) as tubulysin A. The seven 

pretubulysin analogues possess various structural modifications, and showed 

moderate (EC50 about 100nmolar) or dramatic loss of activity (EC50 about 10µmolar), 

giving important insights in structure activity relationships. 

In vivo, pretubulysin blocked tumor growth of hepatocellular carcinoma xenografts in 

SCID mice and reduced tumor vessel density by 70%. Pretubulysin has the advantage 

towards tubulysin A to be efficiently available via chemical synthesis and is thus a 

highly attractive anti-angiogenic alternative with very high potency in vitro and in vivo.  

6.2 Part 2: Characterization of anti-angiogenic effects 
of the v-ATPase inhibitor concanamycin A, with 
emphasis on VEGFR2 function   

In the second part of the present work, we analyzed inhibitory effects of prolonged  

(24h – 40 h) and low dosed (1-10nmolar) application of a specific v-ATPase inhibitor 

(concanamycin A) on angiogenesis related cellular functions in HUVEC and HMEC-1 

endothelial cells. We found, that the treatment predominantly affected endothelial cell 

proliferation, survival and migration. Astonishingly, in vitro capillary formation appears 

only to be indirectly inhibited in HUVEC, but not in HMEC-1, as a consequence of 

cytotoxicity. We analyzed the signaling function of the most important pro-angiogenic 

growth factor and its receptor (VEGF A/VEGFR2) in endothelial cells upon v-ATPase 

inhibition, and found a decreased activation of key signaling markers (Akt, ERK1/2 and 

VEGFR2). In addition, VEGFR2 sub-cellular localization was significantly changed, with 

decreased levels at the cell surface and increased levels in large intracellular 

compartments that were identified as lysosomes. Furthermore, v-ATPase inhibition was 

found to increase VEGF induced receptor degradation. 

Thus, we propose decreased VEGFR2 function and maintenance, putatively caused by 

disturbed receptor trafficking, as a novel explanation for anti-angiogenic effects, 

observed after v-ATPase inhibition. 
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8.1 Abbreviations  

Table 8.1 List of Abbreviations 

  µg, µl, µM  microgram,microliter,micromolar 

ANOVA  analysis of variance 

approx.  approximate(ly) 

APS  ammoniumpersulfate  

Arf6  ADP ribosylation factor 6 

ARNO  Arf nucleotide binding site opener 

ATP  adenosine triphosphate 

BSA   bovine serum albumine  

cDNA  complementary desoxyribonucleic acid 

ConcmA  concanamycin A 

DMEM  Dulbecco’s modified eagle medium 

DMSO   dimethylsulfoxid 

DTT  dithiothreitol 

EC  endothelial cell(s) 

EC50  half maximal effective concentration 

ECGM  endothelial cell growth medium 

ECL  enhanced chemiluminescence  

ECM   extracellular matrix 

EDTA  ethylene diamine tetraacetic acid 

EGF  epidermal growth factor 

EGFR  epidermal growth factor receptor 

EGTA  ethylene glycol tetraacetic acid 

ERK1/2  extracellular signal regulated kinases  

FACS  fluorescence activated cell sorting 

FCS  fetal calf serum 

Fig.  figure 

GTP  guanosine triphosphate 

h  hour 

HCC  hepatocellular carcinoma 

HFS  hypotonic fluorescent solution 
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HRP  horse raddish peroxidase 

kDa  kilo Dalton 

l   liter 

LSM  laser scanning microscope 

MAP  microtubule associated proteins 

MAPK  mitogen activated protein kinase(s) 

mg, ml, mM  milligram, milliliter, millimolar 

min  minute(s) 

MMP  matrix metalloprotease 

mRNA  messenger ribonucleic acid 

nM  nanomolar 

nt siRNA  non targeting small interfering ribonucleic acid 

PAA  polyacrylamide 

PAGE  polyacrylamide gel electrophoresis 

PBS  phosphate buffered saline  

PBS-T  phosphate buffered saline with 0.1 % Tween 20 

pc  pericyte(s) 

PlGF  placental growth factor 

PIPES  1,4-piperazinebis(ethanesulfonic acid) 

pm  plasma membrane or plasma membranous 

ppm   parts per million 

PMSF  phenylmethanesulfonylfluoride 

PNRC  perinuclear recycling compartment 

Prt  pretubulysin 

rcf  relative centrifugal force 

RT  room temperature 

RT PCR  reverse transcriptase polymerase chain reaction 

RTK  receptor tyrosine kinase  

RTKI  receptor tyrosine kinase inhibitor 

S, T, Y, #  serine, threonine, tyrosine, kinase phosphorylation residues  

SDS  sodium dodecylsulfate  

sec   second(s) 

siRNA  small interfering ribonucleic acid 
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8.2 Publications 

8.2.1 Original publications 

Rath S, Liebl J, Fürst R, Ullrich A, Burkhart JL, Kazmaier U, Herrmann J, Müller R, 

Günther M, Schreiner L, Wagner E, Vollmar AM, Zahler S. Anti-angiogenic effects of 

the tubulysin precursor pretubulysin and of simplified pretubulysinerivatives. Br J 

Pharmacol. 2012, Epub ahead of print  

8.2.2 Poster presentations 

Rath S, Fürst R, Ullrich A, Burkhart JL, Vollmar AM, Kazmaier U, Zahler, S. Anti-

angiogenic potential of pretubulysin and its derivatives in vitro. 77th Annual Meeting of 

the Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und 

Toxikologie, March 30 – April 1, 2011, Frankfurt a.M., Germany. Naunyn- 

Schiedeberg‘s Archives of Pharmacology, 2011; 383 Suppl.1, Abstract P066.  

Rath S, Fürst R, Ullrich A, Burkhart JL, Herrmann J, Liebl J, Günther M, Vollmar AM, 

Kazmaier U, Zahler S. Anti-angiogenic potential of Pretubulysin and ist derivatives. 

Joint Meeting European Society of Microcirculation (ESM) and Society of 

Microcirculation and Vascular Biology (GfMVB), October 13-16 2011, Munich, 

Germany. Journal of Vascular Research, 2011; 48 Suppl. 1, Abstract P120. 

8.2.3 Oral presentations 

Rath S, Liebl J, Fürst R, Ullrich A, Burkhart JL, Kazmaier U, Herrmann J, Müller R, 

Günther M, Schreiner L, Wagner E, Vollmar AM, Zahler S. Inhibition of angiogenesis by 

pretubulysin and its derivatives. International Congress Natural Anticancer Drugs,  

June 30 - July 4, 2012, Olomouc, Czech Republic. Biomedical Papers, 2012, Vol 156, 

Supplement 1, June 2012, Abstract O-26.  

TBA  tubulin binding agent(s) 

TEMED  tetramethylethylenediamine 

Tris  tris(hydroxymethyl)aminomethane 

TubA  tubulysin A 

VE-cadherin  vascular endothelium cadherin 

VEGF  vascular endothelial growth factor 

VEGFR2  vascular endothelial growth factor receptor 2 
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