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Loss-of-function mutations in the parkin gene (PARK2) and

PINK1 gene (PARK6) are associated with autosomal recessive

parkinsonism. PINK1 deficiency was recently linked to mito-

chondrial pathology in human cells and Drosophila melano-
gaster, which can be rescued by parkin, suggesting that both

genes play a role in maintaining mitochondrial integrity. Here

we demonstrate that an acute down-regulation of parkin in

human SH-SY5Y cells severely affects mitochondrial morphol-

ogy and function, a phenotype comparable with that induced by

PINK1 deficiency. Alterations in both mitochondrial morphol-

ogy and ATP production caused by either parkin or PINK1 loss

of function could be rescued by the mitochondrial fusion pro-

teins Mfn2 and OPA1 or by a dominant negative mutant of the

fission protein Drp1. Both parkin and PINK1 were able to sup-

pressmitochondrial fragmentation induced byDrp1.Moreover,

in Drp1-deficient cells the parkin/PINK1 knockdown pheno-

type did not occur, indicating that mitochondrial alterations

observed in parkin- or PINK1-deficient cells are associatedwith

an increase in mitochondrial fission. Notably, mitochondrial

fragmentation is an early phenomenon upon PINK1/parkin

silencing that also occurs in primary mouse neurons and Dro-
sophila S2 cells. We propose that the discrepant findings in

adult flies can be explained by the time of phenotype analysis

and suggest that in mammals different strategies may have

evolved to cope with dysfunctional mitochondria.

Many lines of evidence suggest that mitochondrial dysfunc-

tion plays a central role in the pathogenesis of Parkinson dis-

ease, starting from the early observation that the complex I

inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in-

duced acute and irreversible parkinsonism in young drug

addicts (for review, see Refs. 1–3). In support of a crucial role of

mitochondria in Parkinson disease, several Parkinson disease-

associated gene products directly or indirectly impinge on

mitochondrial integrity (for review, see Refs. 4–6). A clear link

between Parkinson disease genes and mitochondria has

recently emerged from studies on PINK1 (PTEN-induced puta-

tive kinase 1), a mitochondrial serine/threonine kinase, and

parkin, a cytosolic E3 ubiquitin ligase. Drosophila parkin null

mutants displayed reduced life span,male sterility, and locomo-

tor defects due to apoptotic flight muscle degeneration (7). The

earliest manifestation of muscle degeneration and defective

spermatogenesis was mitochondrial pathology, exemplified by

swollen mitochondria and disintegrated cristae. Remarkably,

Drosophila PINK1 null mutants shared marked phenotypic

similarities with parkin mutants, and parkin could compensate

for the PINK1 loss-of-function phenotype but not vice versa,

leading to the conclusion that PINK1 and parkin function in a

common genetic pathway with parkin acting downstream of

PINK1 (8–10). We recently demonstrated that PINK1 defi-

ciency in cultured human cells causes alterations in mitochon-

drial morphology, which can be rescued by wild type parkin but

not by pathogenic parkin mutants (11). We now present evi-

dence that parkin plays an essential role in maintaining mito-

chondrial integrity. RNAi3-mediated knockdown of parkin

increases mitochondrial fragmentation and decreases cellular

ATP production. Notably, mitochondrial fragmentation

induced by PINK1/parkin deficiency is observed not only in

human neuroblastoma cells but also in primarymouse neurons

and insect S2 cells. Alterations in mitochondrial morphology

are early manifestations of parkin/PINK1 silencing that are not

caused by an increase in apoptosis. The mitochondrial pheno-

type observed in parkin- or PINK1-deficient cells can morpho-

logically and functionally be rescued by the increased expres-

sion of a dominant negative mutant of the fission-promoting

protein Drp1. Moreover, manifestation of the PINK1/parkin

knockdown phenotype is dependent on Drp1 expression, indi-

* This work was supported by the Deutsche Forschungsgemeinschaft (SFB
596 and CEF Macromolecular Complexes), German Ministry for Education
and Research (Nationales Genomforschungsnetz plus “Functional Genom-
ics of Parkinson’s Disease”), the Helmholtz Alliance Alliance “Mental Health
in an Ageing Society,” the Virtual Institute of “Neurodegeneration and
Ageing,” the Center for Integrated Protein Science Munich, and the Hans
and Ilse Breuer Foundation.

□S The on-line version of this article (available at http://www.jbc.org) contains
supplemental Figs. 1–3.

1 These authors contributed equally to this work.
2 To whom correspondence should be addressed: Schillerstr. 44, D-80336

Munich, Germany. Tel.: 49-89-2180-75483; Fax: 49-89-2180-75415; E-mail:
Konstanze.Winklhofer@med.uni-muenchen.de.

3 The abbreviations used are: RNAi, RNA interference; pAb, polyclonal anti-
body; mAb, monoclonal antibody; DiOC6(3), 3,3�-dihexyloxacarbocyanine
iodide; siRNA, small interfering RNA; EYFP, enhanced yellow fluorescent
protein; DAPI, 4�,6-diamidino-2-phenylindole; TUNEL, TdT-mediated dUTP
nick end labeling; shRNA, short hairpin RNA; dsRNA, double-stranded RNA.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 284, NO. 34, pp. 22938 –22951, August 21, 2009
© 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

22938 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 284 • NUMBER 34 • AUGUST 21, 2009

 a
t U

B
M

 B
ib

lio
th

e
k
 G

ro
s
s
h
a
d
e
rn

 o
n
 A

u
g
u
s
t 2

5
, 2

0
0

9
 

w
w

w
.jb

c
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://www.jbc.org/cgi/content/full/M109.035774/DC1
Supplemental Material can be found at: 

31



cating that an acute loss of parkin or PINK1 function increases

mitochondrial fission.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents—The following antibodies were

used: anti-parkin rabbit polyclonal antibody (pAb) hP1 (12),

anti-parkin mouse monoclonal antibody (mAb) PRK8 (Milli-

pore, Schwalbach, Germany), anti-parkin polyclonal antibody

2132 (Cell Signaling, Danvers, MA), anti-FLAG M2 mAb

(Sigma), anti-FLAG M2 horseradish peroxidase mAb (Sigma),

anti-�-actin mAb (Sigma), anti-Drp1 mAb (BD Transduction

Laboratories), anti-Mfn2 pAb (Sigma), anti-OPA1 pAb (13),

anti-PINK1 pAB (Novus Biologicals, Hamburg, Germany),

penta-His horseradish peroxidase conjugate mouse IgG (Qia-

gen, Hilden, Germany), horseradish peroxidase-conjugated

anti-mouse and anti-rabbit IgG antibody (Promega, Mann-

heim, Germany), anti-active caspase-3 pAb (Promega), anti-V5

mAb (Invitrogen), cyanine 3 (Cy3)-conjugated anti-rabbit IgG

antibody (Dianova, Hamburg, Germany), anti-neuron specific

� III Tubulin rabbit-pAb (Abcam, Cambridge, UK), and CyTM

3-conjugated Affinity Pure Donkey anti-rabbit IgG (heavy and

light chain) (Jackson ImmunoResearch, Newmarket, Suffolk,

UK). Staurosporine, rotenone, cycloheximide, and carbonyl

cyanide 3-chlorophenylhydrazonewere purchased fromSigma,

complete protease inhibitor mixture was from Roche Applied

Science, and 3,3�-dihexyloxacarbocyanine iodide (DiOC6(3)),

and MitoTracker Red CMXRos was from Invitrogen.

DNA Constructs—The following constructs were described

previously: wild type human parkin, W453X, R42P, G430D,

�1–79 parkin mutant (12, 14, 15), PINK1-V5 and PINK1-

G309D-V5 (11), Mfn2-His6, OPA1-MycHis, Drp1-EYFP,

Drp1(K38E)-ECFP (16, 17), and Bcl-2-FLAG (18). Mfn2 con-

taining a C-terminal FLAG tag was subcloned into

pcDNA3.1/Zeo (�) (Invitrogen). Drp1 was subcloned into the

pCMV-Tag 2B (Stratagene, Amsterdam, Netherlands) vector

adding an N-terminal FLAG tag. mCherry (19) was subcloned

into the pCS2� vector. For the generation of small interfering

RNA (siRNA)-resistant wild type parkin, four silent mutations

were introduced into the siRNA target sequence by PCR. The

plasmid encoding enhanced yellow fluorescent protein (EYFP)

was purchased from Clontech (Mountainview, CA).

Lentiviruses—The sequence of the PINK1 shRNA 5�-GCG
GTA ATT GAC TAC AGC AAA-3�, which corresponds to

nucleotides 1353–1373 of the PINK1 gene, was cloned into the

pLL3.7 vector via the HpaI and XhoI cloning sites. The shRNA

is driven by a U6 promotor. The green fluorescent protein por-

tion of the pLL3.7 vector was exchanged by cloning a cytomeg-

alovirus-driven mito-EYFP (pEYFP-mito, Clontech) into the

NheI and EcoRI site. As a control virus we used the same virus

without the PINK1 shRNA sequence. Lentiviruses were pro-

duced in HEK293T cells as described by Consiglio et al. (20).

The titer of the viruses ranged from 4 � 108 to 1 � 109 colony-

forming units/ml. The infection efficiency of primary neurons

was not affected by different titers. shRNAs were designed

using the pSico-Oligomaker 1.5 (developed by A. Ventura).

Conditional knockdowns were generated by cloning shRNAs

into pSico as described previously (21).

Cell Culture, Transfection, and RNA Interference—SH-SY5Y

(DSMZ number ACC 209) cells were transfected with Lipo-

fectamine Plus (Invitrogen) according to the manufacturer’s

instructions. Drosophila S2 cells were cultivated in Schneider’s

Drosophilamedium (Invitrogen) supplemented with 10% heat-

inactivated fetal calf serum (Sigma) and maintained at 26 °C.

Transfection of S2 cells was performed in 12-well plates in

serum-free medium with 5 �g of dsRNA. Serum-containing

medium was added 45 min after transfection. For RNA inter-

ference, SH-SY5Y cells were reverse-transfected with Stealth

siRNA (Invitrogen) using Lipofectamine RNAiMAX (Invitro-

gen). For each target gene at least two different effective siRNAs

were used. For RNAi treatment of Drosophila S2 cells, the fol-

lowing clones from the DrosophilaGenomics Resource Center

(Bloomington, IN) were used: parkin (SD01679) and PINK1

(GH20931). They served as templates for T7-tagged primers,

which were designed by a program for the de novo design of

long dsRNAs (E-RNAi Webservice, German Cancer Research

Center): T7-parkin forward primer, 5�-taa tac gac tca cta tag

ggC TGT TGA CAC GCG AGG AGT A-3�, and T7-parkin

reverse primer, 5�-taa tac gac tca cta tag ggA TTT TGG ACA

GGG CTT TGT G-3�; T7-PINK1 forward primer, 5�- taa tac

gac tca cta tag ggG CCA TGT ACA AGGAGA CGG T-3�, and
PINK1 reverse primer, 5�-taa tac gac tca cta tag ggA TTGAGT

ACG GCA AAC GGA C-3�. After synthesis of T7-cDNA tem-

plates by PCR, theAmbionMegascript RNA synthesis kit (Aus-

tin, TX) was used to generate dsRNA.

Preparation, Transduction, and Analysis of Primary Mouse

Hippocampal Neurons—Hippocampi of C57/BL6 mice from

two different litters were prepared at embryonic stage E15.5

and transferred to dissection medium (48.8 ml of Hanks’ bal-

anced salt solution (Invitrogen), 500 �l of HEPES (1 M, Invitro-

gen), 600 �l of MgSO4 (1 M), and 500 �l of penicillin/strepto-
mycin (100�, Invitrogen)). Tissuewaswashedwith prewarmed

trypsin 0.05% with EDTA (Invitrogen) 2 times, trypsinated for

15 min at 37 °C, and thereafter washed 3 times in culture

medium (48 ml of Neurobasal (Invitrogen), 1 ml of B-27

(Invitrogen), 500 �l of L-glutamine (Invitrogen), and 500 �l of
penicillin/streptomycin (100�)). Cells were dispersed with a

fire-polished tip of a Pasteur pipette. 40 � 103 cells were culti-

vated on poly-D-lysine-coated coverslips in 24-well plates. On

day 4 cells were infected with lentiviruses. Three days after

infection cells were fixed in 4% paraformaldehyde for 10 min.

Neurons were detected by immunocytochemistry using anti-

neuron-specific � III tubulin rabbit pAB (Abcam) as primary

antibody andCyTM 3-conjugated affinity pure donkey anti-rab-

bit IgG (H�L) as secondary antibody (Jackson Immuno-

Research). Pictures were acquired using confocal microscopy

(LSM 510, Carl Zeiss, Göttingen, Germany) to analyze the

length of mitochondria in soma and processes. For quantifica-

tion of mitochondrial lengths, a specified analysis software

(Axiovision 4.7, Carl Zeiss) was used. Classification of mito-

chondria was done as follows: fragmented mitochondria (�0.5

�m), intermediatemitochondria (0.5–5�m), and tubularmito-

chondria (�5 �m).

Quantitative RT-PCR—For the analysis of parkin or PINK 1

knockdown efficiencies, quantitative real-time PCR was per-

formed. Total cellular RNA from human SH-SY5Y and Dro-

Parkin, PINK1, and Mitochondria
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sophila S2 cells was isolated at the time indicated and treated

withDNase I (RNeasymini kit; Qiagen). cDNAwas synthesized

from 1 mg of total RNA using a High-Capacity cDNA reverse

transcription kit (Applied Biosystems, Foster City, CA). For

human SH-SY5Y cells, RT-PCR was performed with 2� Taq-

Man Universal PCRMaster Mix and TaqMan Gene expression

assay (parkin: Hs00247755_m1, PINK1: Hs02330592_s1;

Applied Biosystems). ForDrosophila S2 cells RT-PCR was per-

formed with 2� Power SYBR Green PCRMaster Mix (Applied

Biosystems) and 1 �M concentrations of each primer pair (S2

parkin forward primer, 5�-AGC CTC CAA GCC TCT AAA

TG-3�; S2 parkin reverse primer, 5�-CACGGACTCTTTCTT

CAT CG-3�; S2 PINK1 forward primer, 5�-GCT TTC CCC

TACCCTCCAC-3�; S2 PINK1 reverse primer, 5�-GCA CTA-

CAT TGA CCA CCG ATT-3�; S2 Rp49 forward primer,

5�-CCA AGC ACT TCA TCC GCC ACC-3�; S2 Rp49 reverse

primer, 5�-GCG GGT GCG CTT GTT CGA TCC-3�) (22).
Quantification was performed with 7500 Fast Real Time PCR

System (Applied Biosystems). Triplicates were performed with

each primer set for each RNA sample. RNA expression was

normalized with respect to an endogenous reference gene;

�-actin for SH-SY5Y cells and Rp49 for S2 cells, respectively.

Relative expression was calculated for each gene using the delta

delta cycle threshold method. For quantification of the knock-

down efficiency in primary neuronal cultures, cells were pre-

pared and cultivated as described above and lysed directly on

the plate according to themanual of the RNeasymini kit (Qia-

gen). cDNA was transcribed using cDNA reverse transcrip-

tion kit (Applied Biosystems). Quantitative PCR was per-

formed with the TaqMan expression assay (PINK1 mouse:

4m00550827_m1) with �-actin as an internal control.

Western Blotting—SDS-PAGE and Western blotting was

described previously (14). Antigens were detected with the

enhanced chemiluminescence (ECL) detection system (Amer-

sham Biosciences) or the Immobilon Western chemilumines-

cent horseradish peroxidase substrate (Millipore).

Fluorescent Staining of Mitochondria—SH-SY5Y cells were

grown on 15-mm glass coverslips, and S2 cells were grown on

coverslips coated with concanavalin A (Sigma). Cells were fluo-

rescently labeledwith either 0.1�MDiOC6(3) or 0.05�MMito-

Tracker Red CMXRos in cell culture medium for 15 min. After

washing coverslips with medium, living cells were analyzed for

mitochondrial morphology by fluorescence microscopy as

described previously (11, 13) using a Leica DMRB microscope

(Leica,Wetzlar, Germany). Cells were categorized in either two

or three classes according to their mitochondrial morphology:

tubular, fragmented, or highly connected. Cells displaying an

intact network of tubular mitochondria were classified as tubu-

lar. When this network was disrupted and mitochondria

appeared predominantly spherical or rod-like, they were clas-

sified as fragmented. Cells with considerably elongated mito-

chondria that were more interconnected were classified as

highly connected. The mitochondrial morphology of at least

300 cells per plate was determined in a blinded manner, i.e. the

researcher was blind to transfection status. Quantifications

were based on triplicates of at least three (SH-SY5Y cells) or two

(S2 cells) independent experiments.

Measurement of Cellular ATP Levels—Cellular steady state

ATP levels were measured using the ATP Bioluminescence

assay kit HS II (Roche Applied Science) according to the man-

ufacturer’s instructions. SH-SY5Y cells were reversely trans-

fected with the indicated siRNAs and/or DNA constructs. 24 h

before harvesting cells, the culture medium was replaced by

medium containing 3 mM glucose. Cells were washed twice

with phosphate-buffered saline, scraped off the plate, and lysed

according to the provided protocol. Bioluminescence of the

samples was determined using an LB96V luminometer

(Berthold Technologies), analyzed with WinGlow Software

(BertholdTechnologies), and normalized to total protein levels.

Each transfection was performed at least in triplicate, and all

experiments were repeated at least three times.

Apoptosis Assays—For detection of apoptotic cells the

ApopTag Fluorescein Direct in Situ Apoptosis detection kit

(Chemicon, Temecula, CA) was used according to the manu-

facturer’s protocol. Briefly, SH-SY5Y/S2 cells were grown on

glass coverslips. At days 1, 2, 3, and 4 after siRNA/dsRNA trans-

fection the positive controls were incubatedwith staurosporine

(1 �M, SH-SY5Y cells) or cycloheximide (10 �M, S2 cells) for 4

and 6 h, respectively. The cells were fixed with 1% paraformalde-

hyde for 10 min at room temperature, permeabilized with a 2:1

mixture of ethanol and acetic acid for 5min at �20 °C, and equil-

ibrated with the supplied buffer. Fixed cells were incubated with

Working StrengthTdTenzyme in ahumidified chamber for 1h at

37 °C in the dark. After washing with Working Strength Stop/

Wash buffer (Chemicon, Temecula, CA) for 10min at room tem-

perature cells were mounted onto glass coverslides using Fluor-

Save Reagent (Calbiochem/Merck KGaA). Nuclei were stained

using 4�,6-diamidino-2-phenylindole (DAPI). To detect cells

undergoing apoptosis, the number of TdT-mediated dUTP

nick end labeling (TUNEL)-positive cells of at least 300

DAPI-stained cells was determined using aZeissAxioscope 2 plus

microscope (Carl Zeiss). Quantifications were based on at least

three independent experiments. Activation of caspase-3 was

determinedasdescribedpreviously (18, 23).Briefly, SH-SY5Ycells

were grownon glass coverslips. 3 days after transfection cells were

incubated with rotenone (10 �M, 3 h) as a positive control. The

cellswere then fixed, andactivated caspase-3wasdetectedby indi-

rect immunofluorescence. Nuclei were stained with DAPI, and

caspase-3-positive cells were quantified as outlined above.

Statistical Analyses—For cell culture experiments, data are

expressed as the means 	 S.E. Experiments were performed in

triplicate and repeated at least three times. Statistical analysis

was carried out using analysis of variance; *, p � 0.05; **, p �
0.01; ***, p � 0.001. For primary mouse hippocampal neurons,

data are expressed as themeans	 S.E. Statistical analysis of the

mitochondrial lengths were carried out using analysis of vari-

ance. The statistical analysis of the fragmented and intermedi-

ate mitochondria were analyzed via analysis of variance,

whereas the p values of tubular mitochondria were calculated

via Fisher’s Exact Test. *, p � 0.05; **, p � 0.01; ***, p � 0.001.

RESULTS

Down-regulation of Parkin Induces Fragmentation of the

Mitochondrial Network—We recently reported that RNAi-me-

diated down-regulation of PINK1 in cultured human cells

Parkin, PINK1, and Mitochondria
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results in abnormal mitochondrial morphology, which can be

rescued by the enhanced expression of parkin (11). To address

a possible role of parkin in mitochondrial integrity, we per-

formed life cell imaging by fluorescence microscopy in human

SH-SY5Y cells after siRNA-mediated down-regulation of par-

kin. Under physiological conditions, the majority of the cells

(about 70%) showed a network of tubular mitochondria, which

is in line with previous reports (24–26). Upon knockdown of

FIGURE 1. Down-regulation of parkin by RNAi leads to alterations in mitochondrial morphology. A and B, SH-SY5Y cells transfected with control siRNA or siRNA
targeting parkin were stained with the fluorescent dye DiOC6(3) to visualize mitochondria and analyzed by fluorescence microscopy. The analysis was performed 3
days after transfection. Cells displaying an intact network of tubular mitochondria were classified as tubular. When this network was disrupted and mitochondria
appeared predominantly spherical or rod-like, they were classified as fragmented. B, for quantification, the mitochondrial morphology of at least 300 cells per plate was
determined in a blinded manner. Quantifications were based on triplicates of at least three independent experiments. Shown is the percentage of cells with frag-
mented or truncated mitochondria. Lower panel, the efficiency of parkin knockdown is shown by Western blotting using the monoclonal anti-parkin antibody PRK8.
�-Actin was used as a loading control. C, SH-SY5Y cells were transfected with parkin-specific siRNA and either siRNA-resistant wild type (wt) parkin, �1–79, W453X,
G430D, or R42P mutant parkin. The cells were analyzed by fluorescence microscopy as described under A. Lower panel, expression of parkin or parkin mutants was
analyzed by Western blotting using the monoclonal anti-parkin antibody PRK8. Please note that the overexpression of parkin gives rise to two parkin species,
full-length parkin of 52 kDa and a smaller parkin species of about 42 kDa, due to the usage of the second translation initiation site (15).

Parkin, PINK1, and Mitochondria
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parkin, the percentage of cells with truncated or fragmented

mitochondria significantly increased from about 30% in control

siRNA-treated cells up to 70% (Fig. 1, A and B). This alteration

inmitochondrialmorphology also occurredwhen a secondpar-

kin-specific siRNA was used (Fig. 1B) and could be prevented

by the co-transfection of siRNA-resistant wild type parkin (Fig.

1C), demonstrating the specificity of the effects observed. The

pathogenic parkin mutants W453X, G430D, and R42P did not

Parkin, PINK1, and Mitochondria
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show rescue activity (Fig. 1C). Notably, the �1–79 parkin

mutant, which lacks the N-terminal ubiquitin-like domain and

is generated in vivo due to the presence of an internal trans-

lation initiation site at codon 80 (15), could not compensate

for the mitochondrial phenotype observed in parkin-defi-

cient cells. The �1–79 mutant has been reported previously

to be impaired in its neuroprotective capacity and ubiquity-

lation activity (14, 27). These results indicate that an acute

loss of parkin function significantly affects mitochondrial

morphology.

Alterations in Mitochondrial Morphology and Cellular ATP

Production Caused by Parkin or PINK1 Deficiency Can Be Res-

cued by Mfn2, OPA1, or Dominant Negative Drp1—In our pre-

vious study we usedHeLa cells to assess the effects of PINK1 on

mitochondrial morphology. HeLa cells do not express parkin

due to the localization of the parkin gene within FRA6E (6q26),

a common fragile site of the human genome that is frequently

mutated in ovarian tumors (28). To compare the effects of par-

kin andPINK1onmitochondria, we treated SH-SY5Y cellswith

PINK1-specific siRNA. The effects onmitochondrial morphol-

ogy induced by PINK1 deficiency were comparable with those

observed in HeLa cells. Moreover, PINK1-deficient SH-SY5Y

displayed qualitative and quantitative alterations similar to par-

kin-deficient SH-SY5Y cells, i.e. a significant increase in the

percentage of cells with truncated or fragmentedmitochondria

(Fig. 2, A and B). Consistent with the data from Drosophila

melanogaster, we observed that parkin rescues the mitochon-

drial pathology in PINK1-deficient cells (Fig. 2B), whereas

enhanced PINK1 expression cannot compensate for the parkin

knockdownphenotype (Fig. 2D). Also in linewith the flymodel,

a simultaneous down-regulation of parkin and PINK1 did not

enhance alterations in mitochondrial morphology observed in

a single parkin or PINK1 knockdown (Fig. 2C). As no anti-

PINK1 antibody is available to detect endogenous PINK1 in

SH-SY5Y cells (29, 30), we verified the PINK1 knockdown effi-

ciencies by real-time PCR (Fig. 2C, lower panel). Based on the

observation that Bcl-2 suppressed the mitochondrial pheno-

type in PINK1 nullDrosophilamutants (9), we tested a possible

effect of Bcl-2 in our model. However, overexpression of Bcl-2

had no effect on the mitochondrial morphology in parkin- or

PINK1-deficient human cells (Fig. 2, D and E), suggesting that

the increase in mitochondrial fragmentation was not a conse-

quence of apoptosis (see also Fig. 6).

The increased percentage of cells with fragmented mito-

chondria observed in parkin- or PINK1-deficient cells

prompted us to address the question of whether mitochondrial

dynamicsmight be perturbed by a loss of parkin or PINK1 func-

tion. Overexpression of Mfn2, which mediates mitochondrial

outer membrane fusion, or OPA1, implicated in inner mem-

brane fusion, prevented the changes in mitochondrial mor-

phology induced by parkin or PINK1 knockdown (Fig. 3, A and

B, and supplemental Fig. 1). In line with these observations,

overexpression of a dominant negative mutant of the fission-

promoting GTPase Drp1 (Drp1 K38E) fully reverted the mor-

phological mitochondrial alterations in parkin- or PINK1-defi-

cient cells (Fig. 3, C and D, and supplemental Fig. 1). To test

whether manipulating mitochondrial dynamics might have an

impact on mitochondrial function in parkin- or PINK1-defi-

cient cells, we determined steady state cellular ATP levels. ATP

levels were significantly decreased in parkin-deficient cells (to

66.3 	 4.7%) and PINK-deficient cells (to 70.9 	 6.9%; Fig. 3E).

Co-transfection of siRNA-resistant parkin or PINK1 prevented

ATP depletion in parkin- or PINK1-deficient cells, confirming

specificity of the observed effects (Fig. 3E). Consistent with the

effect onmitochondrial morphology, parkin could compensate

for the impaired ATP production caused by PINK1 silencing

(Fig. 3E). Remarkably, increased expression of Drp1 K38E,

Mfn2, or OPA1 also prevented the drop in ATP production

caused by parkin or PINK1 depletion (Fig. 3, F and G). Collec-

tively, these results indicate that the morphological alterations

in parkin- and PINK1-deficient cells are functionally relevant.

Manifestation of the Parkin/PINK1 Knockdown Phenotype Is

Dependent on Drp1 Expression—Our observations suggested

that a loss of parkin or PINK1 function is associated with an

imbalance in the fusion-to-fission rate. However, it remained

unclear whether the mitochondrial phenotype was a conse-

quence of reduced fusion or increased fission activity. To

address this question experimentally, we first analyzedwhether

processing of OPA1 is altered under parkin or PINK1 knock-

down conditions. The dynamin family GTPase OPA1 is a key

player in promotingmitochondrial innermembrane fusion and

regulating cristaemorphology. Because of extensive alternative

splicing and posttranslational proteolytic processing of OPA1,

several isoforms are generated in mammalian cells. Recent

studies revealed that OPA1 processing is implicated in the reg-

ulation of OPA1 function (13, 31, 32). It has been proposed that

increased proteolytic processing of OPA1 large to small iso-

forms in energetically compromised mitochondria reduces the

fusion-promoting activity of OPA1 (13). The pattern of endog-

enous OPA1 isoforms in parkin or PINK1 knockdown cells was

analyzed by Western blotting. The mitochondrial uncoupler

carbonyl cyanide m-chlorophenylhydrazone induced a

decrease in longer isoforms and an increase in shorter OPA1

isoforms; however, no alterations in OPA1 processing were

FIGURE 2. PINK1-deficient SH-SY5Y cells show alterations in mitochondrial morphology similar to parkin-deficient cells. A, SH-SY5Y cells transfected
with control siRNA or siRNA targeting PINK1 were stained with the fluorescent dye DiOC6(3) to visualize mitochondria and analyzed by fluorescence micros-
copy as described in Fig. 1. B, down-regulation of PINK1 by RNAi leads to an increase in mitochondrial fragmentation, which can be rescued by parkin. SH-SY5Y
cells were transfected with PINK1-specific siRNA and either siRNA-resistant PINK1 or wild type parkin. The cells were analyzed by fluorescence microscopy as
described in Fig. 1. Right panel, expression of PINK1 and parkin was analyzed by Western blotting using a monoclonal anti-V5 antibody or the anti-parkin
anti-serum hP1. pPINK1, precursor form; mPINK1, mature form. C, simultaneous down-regulation of parkin and PINK1 does not increase mitochondrial frag-
mentation over the single parkin or PINK1 knockdown. SH-SY5Y cells were transfected with parkin-specific siRNA and/or PINK1-specific siRNA, and the cells
were analyzed by fluorescence microscopy as described above. Lower panel, efficiency of PINK1 and/or parkin down-regulation was determined by quantita-
tive RT-PCR as described under “Experimental Procedures.” D and E, anti-apoptotic Bcl-2 has no effect on the mitochondrial morphology in parkin or PINK1
knockdown cells. PINK1 cannot rescue the parkin knockdown phenotype (D). SH-SY5Y cells were transfected with parkin-specific siRNA (D) or PINK1-specific
siRNA (E) and a Bcl-2 or PINK1 expression plasmid. The cells were analyzed as described in Fig. 1. Lower panels, expression of Bcl-2 and PINK1 was analyzed by
Western blotting. ***, p � 0.001.
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observed upon transient down-regulation of parkin or PINK1

(Fig. 4A). The same results were obtained using stable PINK1

knockdown cells (data not shown). Thus, the effects of parkin

or PINK1 down-regulation on mitochondrial morphology are

not caused by a decrease in fusion mediated by proteolytically

processed OPA1.

FIGURE 3. Abnormal mitochondrial morphology and function caused by parkin or PINK1 loss of function can be rescued by increasing mitochondrial
fusion or decreasing fission. SH-SY5Y cells were cotransfected with siRNA targeting either parkin or PINK1 and the constructs indicated. The cells were
analyzed as described under Fig. 1. A–D, Mfn2, OPA1, and dominant negative Drp1 (Drp1 K38E) rescued the mitochondrial phenotype observed in parkin or
PINK1 knockdown cells. Shown is the percentage of cells with fragmented or truncated mitochondria. **, p � 0.01; ***, p � 0.001. wt, wild type. Right panel of
each set, expression of Mfn2, OPA1, or Drp1 was analyzed by Western blotting. See supplemental Fig. 1 for mitochondrial images. E–G, steady state cellular ATP
levels were measured in SH-SY5Y cells transfected with either parkin siRNA or PINK1 siRNA, and the expression plasmids are indicated. The analysis was
performed 3 days after transfection.

FIGURE 4. A, RNAi-mediated knockdown of parkin or PINK1 does not alter proteolytic processing of OPA1. SH-SY5Y cells transfected with control siRNA or siRNA
targeting parkin or PINK1 were analyzed by Western blotting using a polyclonal antibody against OPA1. As a positive control to induce OPA1 processing, cells
were treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP; 20 �M, 30 min). B, parkin and PINK1 (at higher expression levels) can reduce mitochondrial
fission induced by Drp1. SH-SY5Y cells were transfected with the constructs indicated. 24 h after transfection mitochondrial morphology of transfected cells
(identified by the coexpression of mCherry) was assessed as described in Fig. 1. Lower panel, expression levels of Drp1-FLAG, parkin, and PINK1-V5 in SH-SY5Y
cells. 10 �g of protein were loaded per lane. See supplemental Fig. 2 for mitochondrial images. wt, wild type. C, in Drp1-deficient cells the mitochondrial
phenotype induced by parkin knockdown does not occur. SH-SY5Y cells were transfected with the siRNAs indicated, and mitochondrial morphology was
determined as described in Fig. 1. Right panel, the efficiency of Drp1 and parkin down-regulation by RNAi was shown by Western blotting using a monoclonal
anti-Drp1 antibody and the anti-parkin antibody PRK8. �-Actin was used as a loading control. ***, p � 0.001.
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An increase in shorter and less tubular mitochondria could

also be a consequence of increased mitochondrial fission. To

test whether this scenario applies to the effect of parkin and

PINK1 on mitochondrial dynamics, we addressed the question

ofwhetherDrp1might be implicated inmediating the parkin or

PINK1 knockdown phenotype. First, we analyzed whether par-

kin or PINK1 might have an impact on mitochondrial fission

induced by Drp1. This experiment revealed that the overex-

pression of neither parkin nor PINK1 induced significant

changes in the mitochondrial morphology of transfected

SH-SY5Y cells (Fig. 4B and supplemental Fig. 2). However,

overexpression of Drp1 increased the percentage of transfected

SH-SY5Y cells with fragmented mitochondria from 31.8%

under control conditions to 71.0%. Remarkably, coexpression

of parkin prevented mitochondrial fragmentation induced by

Drp1, whereas �1–79 parkin had no effect (Fig. 4B and supple-

mental Fig. 2). PINK1 was also able to suppress Drp1-induced

mitochondrial fragmentation but only at higher expression lev-

els (Fig. 4B and supplemental Fig. 2). Second, we analyzed the

consequences of parkin down-regulation in cells deficient in

Mfn2 or Drp1. Mitochondrial fragmentation observed inMfn2

knockdown cells was not influenced by parkin nor by increased

parkin expression or by parkin deficiency (supplemental Fig. 3,

A and B). In cells treated with Drp1-specific siRNA, the typical

increase in cells with fragmented mitochondria upon down-

regulation of parkin did not occur (Fig. 4C). Thus, Drp1 expres-

sion is necessary to mediate the effects of parkin down-regula-

tion on mitochondrial morphology.

Of note, the extent of tubular and

highly connected mitochondria,

which typically occurs in Drp1-defi-

cient cells, was similar in cells lack-

ing either Drp1 or Drp1 and parkin

(Fig. 4C), indicating that mitochon-

drial fusion is not impaired in par-

kin-deficient cells. The same results

were obtained whenwe used PINK1

siRNA instead of parkin siRNA

(data not shown). These results cor-

roborate that the mitochondrial

phenotype induced by parkin or

PINK1 deficiency is mediated by

increased fission.

Mitochondrial Fission Is an Early

Phenotype of Parkin or PINK1 Defi-

ciency That Also Occurs in Drosoph-

ila S2 Cells and Primary Mouse

Neurons—It has recently been dem-

onstrated that parkin or PINK1

mutant phenotypes in flies can be

rescued by increasing mitochon-

drial fission or decreasing fusion

(33–36). To explain the discrepant

results obtained in our model, we

performed a comparative analysis of

human SH-SY5Y cells andDrosoph-

ila S2 cells. For the down-regulation

of parkin and PINK1 in S2 cells, we

tested 2 and 3 different dsRNAs, respectively, which were all

effective as determined by quantitative RT-PCR and showed

the same effects on mitochondrial morphology. For the exper-

iments shown in Figs. 5 and 6, we used the most effective dsR-

NAs, resulting in a 60–70% reduction in parkin- or PINK1-

specific mRNA in comparison to control dsRNA-treated S2

cells (Fig. 6B). To monitor alterations in mitochondrial mor-

phology, we performed time course experiments and analyzed

the mitochondrial morphology of parkin- or PINK1-deficient

S2 cells by fluorescence microscopy 48, 60, and 72 h after

dsRNA treatment. We observed the most obvious increase in

fragmented mitochondria in parkin- and/or PINK1-deficient

S2 cells on day 2 after dsRNA treatment (Fig. 5), explaining why

two previous studies analyzing only day 3 or 4 failed to observe

mitochondrial fission induced by parkin or PINK1 loss of func-

tion (33, 34). Indeed, on day 3 after dsRNA treatment, we

observed onlyminor differences (parkin- or PINK1 knockdown

S2 cells) or no significant differences (parkin/PINK1 double

knockdown S2 cells) to control cells. We never saw an increase

inmitochondrial fusion in parkin- or PINK1 dsRNA-treated S2

cells. However, we noticed a dense network of fine thread-like

mitochondria on days 3 and 4 after dsRNA treatment, but these

mitochondria also occurred in control dsRNA-treated cells. In

comparison to human SH-SY5Y cells, the extent of mitochon-

drial fragmentation was lower (about 70% of SH-SY5Y cells

versus 40–50% of S2 cells), and in contrast to S2 cells, the frag-

mented state in SH-SY5Y cells persisted for days. Asmitochon-

FIGURE 5. In Drosophila S2 cells, mitochondrial fragmentation is an early phenotype of parkin and/or
PINK1 loss of function. S2 cells grown on glass coverslips were treated with control dsRNA and parkin- and/or
PINK1-specific dsRNA. 48 h (day 2), 60 h (day 3), and 72 h (day 4, data not shown) after dsRNA treatment, S2 cells
were stained with the fluorescent dye DiOC6(3) to visualize mitochondria and analyzed by fluorescence micros-
copy. Cells were categorized in three classes according to their mitochondrial morphology. For quantification,
the mitochondrial morphology of at least 300 cells per plate was determined in a blinded manner. Quantifica-
tions were based on triplicates of at least two independent experiments. Shown is the percentage of cells with
a tubular mitochondrial network (white columns), fragmented or truncated mitochondria (black columns), or a
dense network of thin mitochondria (gray columns). Lower panel, fluorescence microscopy images to illustrate
the different categories of mitochondrial morphologies. Efficiencies of parkin and PINK1 down-regulation is
shown in Fig. 6B. **, p � 0.01; ***, p � 0.001.
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drial fragmentation can occur as a consequence of apoptosis,

we analyzed apoptotic cell death in parkin- or PINK1-deficient

SH-SY5Y or S2 cells over a period of 4 days after siRNA treat-

ment. Importantly, mitochondrial fission induced by parkin or

PINK1 deficiency was not associated with an increase in apo-

ptosis. At the timewe observed an increase in fragmentedmito-

chondria in parkin- or PINK1-depleted SH-SY5Y or S2 cells,

there was no activation of apoptosis as determined by a TUNEL

assay (Fig. 6, A–D). An additional approach to analyze apopto-

tic cell death did not reveal SH-SY5Y cells positive for activated

caspase-3 upon parkin/PINK1 down-regulation (Fig. 6F). In

conclusion, our comparative analysis revealed that mitochon-

drial fission induced by parkin or PINK1 loss of function occurs

both in humanSH-SY5Y cells and insect S2 cells; however, in S2

cells this seems to be an early and transient phenotype.

In a next step we included primary mouse hippocampal neu-

rons in our analysis and monitored mitochondrial morphology

upon transducing primary neurons by a lentivirus expressing

PINK1 shRNA and mito-EYFP (PINK1 shRNA) or mito-EYFP

(control, Fig. 7A). 60% of the cells were transduced, and the

overall PINK1 knockdown efficiency was 50% (determined by

quantitative RT-PCR). First we determined the lengths ofmito-

chondria in primary neurons. To consider possible differences

in neuronal soma andprocesses, we assessed the length ofmito-

chondria in both compartments separately. Primary hippocam-

pal neurons deficient for PINK1 showed a significant decrease

in the length of mitochondria both in soma (0.81 �m 	 0.01 in

control to 0.68 	 0.05 �m in PINK1 shRNA, p 
 0.014) and

processes (1.26 	 0.04 �m in control to 1.16 	 0.04 �m in

PINK1 shRNA, p 
 0.006) (Fig. 7B). Consequently, average

mitochondrial length (soma and processes) was significantly

decreased in PINK1 knockdown neurons (0.85 	 0 �m) com-

pared with neurons transduced with the control virus (1.02 	
0.02 �m; p� 0.001). These differences in mitochondrial length

were paralleled by an increase in the percentage of fragmented

mitochondria (�0.5�m; PINK1 shRNA, 15.0	 1.12%; control,

9.6 	 1.03%; p � 0.001) and a decrease in the percentage of

intermediate (0.5–5 �m; PINK1 shRNA, 84.9 	 1.1%; control,

89.7 	 1.03%; p 
 0.002) and tubular mitochondria (�5 �m;

PINK1 shRNA, 0.85	 0.07%; control, 1.03	 1.03%; p
 0.005)

in PINK shRNA neurons in comparison to neurons transduced

with control virus (Fig. 7C). Thus, our results in primarymouse

hippocampal neurons demonstrated a subtle but highly signif-

icant mitochondrial phenotype that is consistent with that

observed in SH-SY5Y and Drosophila S2 cells.

DISCUSSION

Several studies reported that loss of PINK1 function causes

mitochondrial dysfunction (26, 30, 37–47). Parkin has been

reported to compensate for PINK1 deficiency in the fly model,

and we, therefore, addressed the question of whether parkin

itself plays a role in maintaining mitochondrial integrity. We

previously could show that parkin is a stress-responsive protein

with a wide neuroprotective capacity and that pathogenic

mutations and severe proteotoxic stress can induce inactivation

of parkin (12, 14, 15, 23).We nowpresent evidence that a loss of

parkin function impairs mitochondrial morphology, dynamics,

and function. Moreover, the mitochondrial phenotype of par-

kin-deficient cells is similar to that of PINK1-deficient cells.

Parkin- or PINK1-deficient SH-SY5Y cells showed a significant

increase in the percentage of cells with truncated or fragmented

mitochondria alongwith a decrease in cellularATPproduction.

Themitochondrial phenotype couldmorphologically and func-

tionally be prevented by the enhanced expression of Mfn2,

OPA1, or dominant negative Drp1, suggesting that a decrease

in mitochondrial fusion or an increase in fission is associated

with a loss of parkin or PINK1 function. Several lines of evi-

dence indicated that an increase in mitochondrial fragmenta-

tion is responsible for the alterations observed in parkin- or

PINK1-deficient cells. First, the mitochondrial phenotype in

parkin- or PINK1-deficient cells was not observed in Drp1-

deficient cells. Second, parkin as well as PINK1 suppressed

mitochondrial fission induced by Drp1. These results are con-

sistent with a recent publication from Sandebring et al. (30)

who observed an increase in Drp1-dependent mitochondrial

fission in PINK1-deficient human neuroblastoma cells.

A possible role of parkin and PINK1 in modulating mito-

chondrial morphology/dynamics emerged from recent studies

inDrosophila (33–36). In flies, the parkin or PINK1 flight mus-

cle phenotype was suppressed by an increase in mitochondrial

fission and a decrease in fusion, leading to the conclusion that

the PINK1/parkin pathway promotes mitochondrial fission.

Interestingly, we did not observe fragmentation of mitochon-

dria uponoverexpression of parkin or PINK1 in human cells; on

FIGURE 6. The increase in mitochondrial fragmentation observed in parkin- or PINK1-deficient S2 or SH-SY5Y cells is not associated with an increase
in apoptosis. A, S2 cells were treated with control dsRNA and parkin-specific or PINK1-specific dsRNA. At days 2, 3, and 4 after treatment, cells were fixed and
permeabilized. Apoptotic cells were detected by fluorescently labeling the free 3�-OH ends of DNA strand breaks (TUNEL). As a positive control, cells were
treated with cycloheximide (10 �M, 6 h). Shown is the percentage of apoptotic cells, determined by the number of TUNEL-positive cells of at least 300
DAPI-stained cells. Quantifications were based on at least three independent experiments. B, parkin or PINK1 knockdown efficiencies in S2 cells corresponding
to the experiments shown in Figs. 5A and 6A. Cells were harvested at days 2, 3, and 4 after treatment. Total cellular RNA was isolated and subjected to
quantitative RT-PCR using parkin- and PINK1-specific primers. The amount of RNA of each sample was normalized with respect to the endogenous house-
keeping gene Rp49. The efficiencies of the parkin/PINK1 double knockdown are shown in the right panel. C, SH-SY5Y cells were transfected with control siRNA
and parkin-specific or PINK1-specific siRNA. At days 1, 2, 3, and 4 after transfection, cells were fixed and permeabilized. Apoptotic cells were detected by the
TUNEL assay described in A. As a positive control, cells were treated with staurosporine (1 �M, 4 h). Shown is the percentage of apoptotic cells, determined by
the number of TUNEL-positive cells of at least 300 DAPI-stained cells. Quantifications were based on at least three independent experiments. D, quantification
of parkin or PINK1 knockdown efficiencies in SH-SY5Y cells corresponding to the experiment shown under C. SH-SY5Y cells were harvested at days 1, 2, 3, and
4 after siRNA transfection. Total cellular RNA was isolated and subjected to quantitative RT-PCR using parkin- and PINK1-specific primers. The amount of mRNA
of each sample was normalized with respect to the endogenous housekeeping gene �-actin. E, examples of the direct immunofluorescence analysis described
under C. Apoptotic cells (TUNEL-positive) were fluorescein-labeled (green), and nuclei were stained with DAPI (blue). F, in addition to the TUNEL assay, a single
cell analysis for activated caspase-3 was performed in SH-SY5Y cells. Two days after transfection with siRNA, SH-SY5Y cells were fixed, permeabilized, and
analyzed by indirect immunofluorescence. Activation of caspase-3 was detected using an anti-active caspase-3 antibody. As a positive control, cells were
treated with rotenone (10 �M, 3 h). Shown is the percentage of apoptotic cells, determined by the number of activated caspase-3-positive cells of at least 300
DAPI-stained cells. Quantifications were based on triplicates of at least three independent experiments.
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FIGURE 7. PINK1-deficient primary mouse hippocampal neurons show a decrease in the length of mitochondria and an increase in mitochondrial
fragmentation. A, hippocampal cells of E15.5 C57/BL6 mice were transduced with pLL3.7 � mito-EYFP lentivirus for control or pLL.3.7 � PINK1 shRNA
mito-EYFP for down-regulation of PINK1. Mito-EYFP expression was used to determine mitochondrial morphology (green). To visualize neurons, cells were
detected with the anti-� III tubulin antibody by immunocytochemistry (red). B, for quantification, the lengths of mitochondria of 40 neurons per group were
determined. Shown is the mean mitochondrial length with S.E. in the soma, processes, and in the whole neuron. Down-regulation of PINK1 by shRNA led to
significant decrease in mitochondrial length throughout the neuronal cell (soma, p 
 0.014; processes, p 
 0.006; whole neuron, p � 0.001). C, mitochondria
were categorized into fragmented (�0.5 �m), intermediate (0.5–5 �m), and tubular (�5 �m). Shown is the percentage 	 S.E. of mitochondria in these
categories in whole neurons (n 
 40). PINK1 down-regulation via shRNA resulted in a significant increase in fragmented (p � 0.001) mitochondria at the
expense of intermediate (p 
 0.002) and tubular (p 
 0.005) mitochondria.
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the contrary, parkin and PINK1 prevented mitochondrial frag-

mentation induced by Drp1. In line with this observation, the

parkin and PINK1 knockdown phenotype in human cells was

rescued by increasing mitochondrial fusion and decreasing fis-

sion. The parkin/PINK1 studies in flies and mammalian cells

appear controversial at first glance. However, our comparative

analysis of the consequences of parkin or PINK1 down-regula-

tion in human,mouse, and insect cells revealed that two aspects

might be relevant to explain the discrepant findings. First, the

time of phenotype analysis seems to be crucial, and second,

there could be differences between arthropods andmammals in

the regulation of mitochondrial dynamics and/or in the elimi-

nation of dysfunctional mitochondria, especially in highly spe-

cialized tissues such as flightmuscles. Althoughwe looked at an

acutemanifestation of parkin or PINK1 knockdown in cultured

cells, the phenotype observed in adult flies might be influenced

by compensatory effects. In support of this scenario, we did

observe a significant increase in mitochondrial fragmentation

upon parkin or PINK1 knockdown in cultured insect cells, but

thiswas an early and transient phenomenon.Conceptually, flies

might try to rescue the parkin/PINK1 null phenotype by acti-

vating fusion in an effort to dilute dysfunctional mitochondria.

However, in tissues with high energy demands, such as flight

muscles, this strategy might not be beneficial in the end, as

increased fusion eventually leads to the contamination of the

whole mitochondrial network with dysfunctional contents.

This might explain why parkin/PINK1 null flies show a pheno-

type in such tissues that can be rescued by increasing fission,

possibly favoring the elimination of dysfunctional mitochon-

dria by mitophagy. In accordance with this concept, a recent

study proposed that parkin can promote autophagic clearance

of dysfunctional mitochondria (48). Moreover, regulation of

the fusion machinery seems to be more complex in mammals

compared with insects. Flies do not have the two mitofusins

Mfn1 andMfn2, but have only dmnf/Marf, whereas the expres-

sion of Fzo is restricted to the male germ line (49). In addition,

regulation of OPA1 function might be different in flies. For

example, the presenilin-associated rhomboid-like (PARL) pro-

tease, implicated in OPA1 processing, harbors a highly con-

served N-terminal regulatory domain inmammals which is not

found in insects (24). Phosphorylation of this vertebrate-spe-

cific domain inhibits mitochondrial fragmentation, a regula-

torymechanism that obviously emerged during vertebrate evo-

lution (24). Consequently, controversial reports on the effects

of proteins influencingmitochondrial dynamics may be at least

partially attributed to differences in the complex regulation of

these proteins.

Our initial observation that PINK1 deficiency causes alter-

ations in mitochondrial morphology in cultured human cells

(11) has also been reported by other groups (26, 30, 45, 46),

whereas others observed bioenergetic deficits but failed to

detectmorphological changes (39, 47). This can be explained by

the fact that morphological alterations occur early upon par-

kin/PINK1 down-regulation and aremore prominent in a tran-

sient knockdown in comparison to a stable knockdown.

Accordingly, we observed a decrease in mitochondrial length

and connectivity also in primary mouse neurons as an early

response to PINK1 down-regulation that can be compensated

at later stages, explaining why PINK1 knock-out mice do not

show obvious morphological mitochondrial alterations. How-

ever, mitochondrial quality control and compensatory mecha-

nisms might not be sufficient to fully restore mitochondrial

function, especially in neuronal populations with a low bioen-

ergetic threshold and a high oxidative burden, such as dopa-

minergic neurons in the substantia nigra.

The next important step will be to address the question of

whether parkin/PINK1 play a direct role in the regulation of

mitochondrial morphology or dynamics. Recent research

revealed that the activity and subcellular localization of Drp1 is

regulated by posttranslational modifications, such as phospho-

rylation, ubiquitylation, and sumoylation (for review, see Ref.

50); therefore, Drp1 would be a prime candidate for such direct

regulatory effects. On the other hand, it is also conceivable that

parkin or PINK1 exert an indirect effect onmitochondrialmor-

phology by influencing mitochondrial functions, such as com-

plex I activity, or mitochondrial quality control. In this context

it will be important to understand the functional interplay

betweenPINK1 andparkin and to focus on compensatory path-

ways that are induced after PINK1/parkin loss of function.
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Loss of the Parkinson’s disease-linked gene
DJ-1 perturbs mitochondrial dynamics
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Growing evidence highlights a role for mitochondrial dysfunction and oxidative stress as underlying contri-
butors to Parkinson’s disease (PD) pathogenesis. DJ-1 (PARK7) is a recently identified recessive familial PD
gene. Its loss leads to increased susceptibility of neurons to oxidative stress and death. However, its mech-
anism of action is not fully understood. Presently, we report that DJ-1 deficiency in cell lines, cultured neur-
ons, mouse brain and lymphoblast cells derived from DJ-1 patients display aberrant mitochondrial
morphology. We also show that these DJ-1-dependent mitochondrial defects contribute to oxidative
stress-induced sensitivity to cell death since reversal of this fragmented mitochondrial phenotype abrogates
neuronal cell death. Reactive oxygen species (ROS) appear to play a critical role in the observed defects, as
ROS scavengers rescue the phenotype and mitochondria isolated from DJ-1 deficient animals produce more
ROS compared with control. Importantly, the aberrant mitochondrial phenotype can be rescued by the
expression of Pink1 and Parkin, two PD-linked genes involved in regulating mitochondrial dynamics and
quality control. Finally, we show that DJ-1 deficiency leads to altered autophagy in murine and human
cells. Our findings define a mechanism by which the DJ-1-dependent mitochondrial defects contribute to
the increased sensitivity to oxidative stress-induced cell death that has been previously reported.

INTRODUCTION

Parkinson’s disease (PD), the second most common neurodegen-
erative disorder, is characterized by the progressive loss of
neurons within the substantia nigra pars compacta (1,2).
Though the pathogenic mechanisms underlying PD are not
well understood, growing evidence supports a role for mitochon-
drial dysfunction, oxidative stress and more recently autophagy.
Mitochondrial dysfunction was initially tied to PD in studies

demonstrating the presence of aberrant mitochondrial function
in idiopathic PD patients (3,4). Moreover, several dopamin-

ergic toxins acted as mitochondrial toxins by inhibiting the
electron transport chain, producing toxic-free radicals in the
process (5,6). Since this time, several familial PD genes,
including, Parkin (PARK2), Pink1 (PARK6) and DJ-1
(PARK7), have been linked to mitochondria. Their loss
results in abnormal mitochondrial morphology (7,8). Interest-
ingly, the interplay of Pink1 and Parkin dynamically regulates
mitochondrial morphology via mitochondrial fission/fusion
and also affects mitochondrial quality control (9–11). As the
function of Pink1 and Parkin in these contexts continues to
be elucidated, the role(s) of DJ-1 is less understood.
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Homozygous loss-of-function mutations in DJ-1 (PARK7)
result in early onset PD (12). Several lines of evidence, includ-
ing our own, indicate that DJ-1 protects neurons against oxi-
dative stress-induced cell death (13,14). It has been
postulated that DJ-1 exerts its protective function by regulat-
ing mitochondrial homeostasis or participating in the oxidative
stress response either serving as an antioxidant scavenger or a
redox sensor (14–17). More recently, DJ-1 was found to affect
mitochondrial quality control (18,19). Given the importance of
reactive oxygen species (ROS) in regulating mitochondrial
dynamics and the observations that loss of Pink1 and Parkin
has also been linked to mitochondrial dysfunction, we
wanted to address whether DJ-1 also affects mitochondrial
dynamics and function.
Here we examined mitochondrial morphology and function

in DJ-1 deficient tissues and hypothesized that loss of DJ-1
would produce a fragmented mitochondrial phenotype,
accounting increased sensitivity to cell death of DJ-1 deficient
neurons previously reported (14). We demonstrate that DJ-1
deficiency leads to a fragmented mitochondrial phenotype in
multiple contexts including neurons and human DJ-1 patient
cells. Second, we provide evidence that ROS plays a critical
role in this fragmentation phenotype and that DJ-1 deficiency
results in elevated ROS levels. Third, we show that this mito-
chondrial phenotype is an important contributor to the sensi-
tivity to oxidative stress caused by the loss of DJ-1. Fourth,
we show that Pink1 and Parkin can rescue the mitochondrial
fragmentation induced by the loss of DJ-1. Finally, we also
show that the loss of DJ-1 results in increased autophagic
activity.

RESULTS

Loss of DJ-1 alters mitochondrial morphology and
dynamics

Based upon the growing evidence for mitochondrial mor-
phology and dynamics as underlying contributors to PD, we
first investigated a role for DJ-1 in mitochondrial remodeling.
Primary cortical neurons and mouse embryonic fibroblasts
(MEFs) from DJ-1+/+ or DJ-12/2 embryos (E15.5) were cul-
tured. Mitochondria were quantified and binned according to
length, as done previously (20). As shown in Figure 1A and
quantified in Figure 1B, mitochondrial lengths in DJ-1+/+

primary cortical neurons at 3 days in vitro were significantly
longer and less fragmented than in DJ-12/2 neurons. This
fragmented mitochondrial phenotype was also evident in
MEFs (Fig. 1C and D) and in vivo in the striatum of
DJ-1+/+ and DJ-12/2 mice (Fig. 1E and F). Thus, the frag-
mented morphology appears to be a more generalized
phenomenon rather than restricted to a specific cell type,
occurring both in vitro and in vivo. These data demonstrate
that mitochondrial morphology is altered with the loss of DJ-1.
To address whether the DJ-1-dependent mitochondrial frag-

mentation was related to alterations in mitochondrial fusion
rates, DJ-1+/+ or DJ-12/2 MEFs were transduced with a
matrix-targeted photoactivatable GFP lentivirus (PA-GFP).
PA-GFP was activated in �10% of the cell using a 405 nm
laser line at 75% intensity (21). Upon photoactivation, the
spread of the GFP signal throughout the mitochondrial reticu-

lum was assessed immediately post-activation and following
20 min (Fig. 2A). The data in Figure 2B demonstrate that
mitochondrial fusion in MEFs is decreased by 30% DJ-12/2

when compared with DJ-1+/+. Steady-state levels of the
mitochondrial fission and fusion proteins, Dynamin
Related Protein-1 (Drp1) and mitofusin 1 (MFN1) were also
measured to determine whether the loss of DJ-1 would result
in altered expression. As shown in Figure 2C, Drp1 levels
were not altered, while decreases in the levels of MFN1
were observed.

Figure 1. DJ-1 deficiency results in altered mitochondrial morphology in vitro
and in vivo. (A) Primary cortical neurons (3 DIV) and (C) MEFs from wild-
type (WT) and knockout (KO) DJ-1 embryos were harvested and fixed as
described under Materials and Methods and immunostained with antibodies
to Tom20 to visualize mitochondria. Quantification of mitochondrial lengths
in (B) primary cortical neurons and (D) MEFs was done as described pre-
viously [Jahani-Asl et al. (20); n ¼ 4 independent experiments with a
minimum of 500 mitochondria/experiment counted]. Scale Bar ¼ 2 mm.
∗P , 0.05 versus respective +/+ control. (E) Electron microscopic images
of WT and KO DJ-1 striatum prepared as described in Materials and
Methods. (F) Quantification of mitochondrial diameters in the striatum of
WT and KO DJ-1 mice from three mice/genotype. Scale bar ¼ 500 nm.
∗P , 0.05 versus respective WT DJ-1 control. DIV, days in vitro. White
arrows in (E) depict mitochondria.
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Rescue of mitochondrial length in DJ-12/2 neurons
abrogates neuronal cell death

Our previous work has shown that overexpression of DJ-1 pro-
tects primary cortical neurons from oxidative stress (14). Here
we report that DJ-1 deficiency promotes mitochondrial frag-
mentation. To determine whether these phenomena are linked,
primary cortical neurons from DJ-1+/+ and DJ-12/2 embryos
were infected with dominant-negative dynamin-related protein
1 (DRP1K38E), a mutant form of the mitochondrial fission
factor that promotes an elongated mitochondrial reticulum
when expressed in cells. Expression levels of Drp1 K38E are
shown in Figure 3A and were previously described (21).
When primary cortical neurons were subjected to oxidative
stress in the form of MPP+ (10 mM), a metabolite of the
parkinsonism-inducing drug MPTP (22) for 48 h, the hypersen-
sitive DJ-12/2 neurons showed an increase in cell death.
However, DJ-12/2 cortical neurons infected with DRP1K38E
were completely protected from the toxic effects of MPP+

suggesting that mitochondrial fragmentation contributes to oxi-
dative stress-induced sensitivity to cell death (Fig. 3B).

NAC treatment rescues the mitochondrial phenotype in
DJ-12/2 neurons

ROS can significantly influence mitochondrial morphology,
producing a fragmented phenotype (23). Thus, to assess
whether the DJ-1-dependent mitochondrial morphology is
related to ROS, we determined whether quenching with
N-acetyl-L-cysteine (NAC) might affect mitochondrial frag-
mentation observed in DJ-1 deficient cells. DJ-1+/+ and
DJ-12/2 primary cortical neurons were incubated with the
ROS scavenger NAC (1 mM) for 48 h (Fig. 4A). Quantification
of mitochondrial lengths in vehicle-treated (VEH) DJ-1+/+

and DJ-12/2 neurons revealed a similar pattern of mitochon-
drial morphology deficits as described in Figure 1. While treat-
ment with NAC did not significantly alter mitochondrial
length in the DJ-1+/+ neurons, treatment of DJ-12/2

neurons with NAC completely reversed the mitochondrial
fragmentation where the percentage of mitochondria exhibit-
ing lengths greater than 3 mm increased (i.e. 1.14+ 0.305%
in KO-VEH to 32.144+ 3.141% in KO-NAC; Fig. 2B) and
the percentage of fragmented mitochondria decreased (i.e.

Figure 2. Mitochondrial fusion is decreased with DJ-1 deficiency. (A) Confocal images of mitochondria from DJ-1+/+ (WT) and DJ-12/2 (KO) MEFs transduced
with mitochondrial matrix-targeted DS-red and PA-GFP lentiviruses as described in the Supplementary Information. Images shown are from pre-activation (Pre),
immediately following activation (Post) in a small region of interest (indicated by open white circles) as well as following 20 min (20′) of activation.
(B) Quantification of mitochondrial fusion 20 min post-activation from DJ-1+/+ (n ¼ 14 cells) and DJ-12/2 (n ¼ 12 cells) MEFs. (C) Protein extracts were
made from DJ-1+/+ and DJ-12/2 MEFs and subjected to western blotting for Drp-1, Mfn1 and actin (for loading control). Data shown are representative of at
least three independent experiments. (D) Quantification of Drp1 and MFN1 protein levels, corrected with actin for loading in DJ-1 WT and KOMEFs. ∗P , 0.05.
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,0.5 mm; 15.928+ 3.03% in KO-VEH versus 0.198+
0.038% in KO-NAC; Fig. 4B), suggesting that elevated
levels of ROS can cause mitochondrial fragmentation, which
can be reversed if ROS levels are reduced.

Wild-type DJ-1 but not the DJ-1 C106A mutant rescue
mitochondrial morphology defects

It has been previously reported that DJ-1 exerts its effect on
oxidative stress via an isoelectric pH shift resulting in a
more acidic molecule (24). Importantly, the residue that
appears to be sensitive to oxidative modification, in particular
hydrogen peroxide-induced oxidation, is a cysteine residue in
position 106 (25,26). Thus, to provide additional relevance for
the role of ROS and the importance of DJ-1 and oxidative
stress in the regulation of mitochondrial morphology, we
investigated whether DJ-1 itself actively regulates mitochon-
drial morphology and to further ascertain whether the DJ-1
mutant that is defective in handling ROS would fail to
rescue the DJ-1 deficient phenotype. DJ-1+/+ and DJ-12/2

cortical neurons were infected with adenoviruses encoding
GFP (as a control), wild-type DJ-1 (DJ-1) or an oxidant
mutant form of DJ-1 (C106A). This DJ-1 mutant harbors a
cysteine to alanine point mutation at amino acid 106 rendering
the oxidative capacity of DJ-1 non-functional. Expression
levels of viruses are shown in Supplementary Material,
Fig. S1. As shown in Figure 5A and quantified in Figure 5B,
DJ-1+/+ or DJ-12/2 cortical neurons infected with GFP
virus alone display the wild-type mitochondrial phenotype as
shown in Figure 1, demonstrating that viral expression of
GFP alone does not significantly alter mitochondrial length.
Next, while overexpression of DJ-1 had no effect on mito-
chondrial morphology in DJ-1+/+ neurons, DJ-1 expression
in DJ-12/2 neurons increased the percentage of mitochondria
exhibiting lengths greater than 3 mm (5.15+ 0.826% in
KO-GFP versus 47.97+ 12.51% in KO DJ-1) and decreased
the percentage of fragmented mitochondria (42.00+ 2.56%
in KO-GFP versus 1.403+ 1.4% in KO DJ-1) supporting
the idea that wild-type DJ-1 plays a role in regulating mito-
chondrial morphology. On the other hand, the oxidant
mutant C106A cannot recapitulate the full rescue displayed
by WT DJ-1 indicating that the redox function of DJ-1 is criti-
cal in promoting a fused mitochondrial reticulum.

DJ-1 deficiency alters ROS production

If ROS were indeed important in promoting the fragmented
mitochondrial phenotype induced by DJ-1 deficiency, we
would expect that ROS production would be elevated in mito-
chondria isolated from DJ-12/2 mice when compared with
DJ-1+/+ controls. Accordingly, we isolated mitochondrial
fractions from brain and skeletal muscle; tissues typically
associated with high metabolic requirements and mitochondria
and are therefore significant sources of ROS. As predicted, we
observed that H2O2 production in mitochondria isolated from
DJ-12/2 mice is increased 1.4-fold (P , 0.05) compared with
DJ-1+/+ controls in both brain (Fig. 6) and skeletal muscle
(Supplementary Material, Fig. S2A), respectively. In either
tissue, H2O2 production in the DJ-12/2 animals was not
further increased with the addition of the mitochondrial
Complex I inhibitor rotenone, suggesting that ROS production
in DJ-1 deficient mitochondria is generated primarily via
Complex I. Despite the increased H2O2 production, we did
not observe gross differences in mitochondrial function

Figure 3. Mitochondrial length is critical for neuronal cell survival.
(A) Primary cortical neurons infected with either GFP or DN-Drp1 were
treated with vehicle (Veh) or MPP+ (10 mM) for 24 h. (B) Cell survival
was assessed by counting infected cells with intact or dead nuclei plotting
the ratio of live:dead cells in treated and untreated DJ-1+/+ and DJ-12/2

(n ¼ 3 independent experiments, each experiment was performed in triplicate).

Figure 4. NAC rescues the mitochondrial morphology in DJ-1-deficient
primary cortical neurons. (A) Confocal images of neurons taken from
vehicle- (VEH) and NAC-treated (NAC) WT and KO neurons. Neurons
were harvested and fixed 48 h post-treatment and immunostained with anti-
bodies to Tom20 (red) to visualize mitochondria. Scale bar ¼ 2 mm. Inset:
lower magnification images. (B) Quantification of mitochondrial lengths as
described previously [Jahani-Asl et al. (20); n ¼ 3 independent experiments
with a minimum of 500 mitochondria/experiment were counted]. Scale
bar ¼ 2 mm. ∗P , 0.05 versus respective controls.
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measurements that were performed such as mitochondrial
respiration and citrate synthase activity in DJ-12/2 mice, at
least in the brain (Supplementary Material, Fig. S2B
and S2C). However, it should be noted that both mitochondrial
respiration and citrate synthase activity were decreased
in skeletal muscle (Supplementary Material, Fig. S2D
and S2E).

Pink1 and Parkin rescue mitochondrial length in DJ-12/2

primary cortical neurons

Previous work conducted in Drosophila has demonstrated that
Pink1 and Parkin participate in mitochondrial remodeling and
are part of the same genetic pathway where Pink1 is upstream
of Parkin (9–11,27–29). More recent evidence in mammalian
cells is supportive of this notion and also implicates Parkin and
Pink1 in the regulation of autophagy, a lysosomal degradation
pathway responsible for the degradation of damaged proteins
and organelles, including mitochondria (29–31). Thus, we
determined whether Pink1 and Parkin could rescue the
mitochondrial phenotype in DJ-12/2 primary cortical
neurons. Accordingly, we infected DJ-1+/+ and DJ-12/2

primary cortical neurons with Pink1 and Parkin viruses, and
quantified mitochondrial length as before. Viral expression
of Parkin was confirmed in Supplementary Material, Fig. S3.

Viral expression of Pink1 was previously described (32). As
shown in Figure 7A and C and quantified in Figure 7B and
D, overexpression of either Pink1 or Parkin in DJ-12/2

primary cortical neurons promoted an increase in the percen-
tage of mitochondria that were greater than 3 mm in length
(5.151+ 0.826% in KO-GFP versus 44.08+ 1.646% in
KO-Pink; Fig. 7B and 1.686+ 0.133% in KO-GFP versus
30.126+ 8.068% in KO-Parkin; Fig. 7D) and decreased the
percentage of fragmented mitochondrial (i.e. ,0.5 mm;
42.00+ 2.562%; Fig. 7B in KO-GFP versus 0.948+ .271%
in KO-Pink1 and 34.108+ 5.50% in KO-GFP versus
4.888+ 2.924% in KO-Parkin; Fig. 7D) respectively,
suggesting that both Pink1 and Parkin can rescue the fragmen-
tation phenotype observed with the loss of DJ-1.
To further confirm these findings, we also quantified the

percentage of cells that contained fragmented mitochondria a
dopaminergic cell line (SH-5Y5Y) in which DJ-1 was transi-
ently knocked down and subsequently overexpressed with
Parkin or Pink1. Confirmation of DJ-1, Pink1 and Parkin over-
expression is shown in Supplementary Material, Fig. S4A,
S4B and S4C, respectively. As seen in DJ-12/2 primary cor-
tical neurons, transient knockdown of DJ-1 produced a signifi-
cant increase in cells exhibiting fragmented mitochondria and
this phenotype could be prevented with overexpression of
DJ-1, Pink1 or Parkin (Fig. 7E and F).

DJ-1 deficiency results in enhanced autophagic flux

As mentioned above, Pink1 and Parkin have both been impli-
cated in the regulation of autophagy in response to mitochon-
drial damage (9–11,30,31). Our present data show that the
loss of DJ-1 leads to increased mitochondrial ROS production
and fragmentation. Since both of these parameters are linked
with autophagy, we evaluated whether a downstream autopha-
gic response might also be altered with DJ-1 deficiency. To
this end, we employed conventional autophagy assays includ-
ing the evaluation of steady-state microtubule-associated
protein light chain 3-II (LC3-II) and the LC3-associated
protein p62, under basal conditions as well as GFP-LC3
puncta formation (33). As shown in Figure 8A, the markers

Figure 5. Restoration of wild-type mitochondrial phenotype upon
re-expression of DJ-1 in vitro. (A) Confocal images from WT and KO DJ-1
primary cortical neurons infected with GFP, GFP-DJ-1 and GFP-DJ-1
C106A adenoviruses as described in Materials and Methods. Neurons were
harvested and fixed 48 h post-infection and immunostained with antibodies
to Tom20 (red) to visualize mitochondria. Inset: lower magnification
images. (B) Quantification of mitochondrial lengths as described previously
[Jahani-Asl et al. (20); n ¼ 3 independent experiments with a minimum of
500 mitochondria/experiment that were counted per condition]. ∗P , 0.05
versus respective controls.

Figure 6. Brain mitochondria isolated from DJ-1 deficient animals produce
more ROS. H2O2 production was measured in mitochondria isolated from
WT and KO DJ-1 brains. ∗P , 0.05 versus WT DJ-1 (P/M, pyruvate/
malate; Rot, rotenone).
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Figure 7. Rescue of mitochondrial morphology with Pink1 and Parkin in a DJ-1-deficient background. (A) Confocal images from WT and KO DJ-1 primary
cortical neurons infected with GFP or GFP-PINK1 adenoviruses as described in Materials and Methods. Neurons were harvested and fixed 48 h post-infection
and immunostained with antibodies to Tom20 (red) to visualize mitochondria. Inset: lower magnification images. (B) Quantification of mitochondrial lengths as
described previously [Jahani-Asl et al. (20); n ¼ 3 independent experiments with a minimum of 500 mitochondria/experiment that were counted per condition].
Scale bar ¼ 5 mm. ∗P , 0.05 versus respective controls. (C) Confocal images from WT and KO DJ-1 primary cortical neurons infected with eGFP or eGFP-
Parkin adeno-associated viruses as described in Materials and Methods. Neurons were harvested and fixed 4 days post-infection and immunostained with
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of autophagy p62 and LC3-II levels in DJ-12/2 mouse
embryonic fibroblasts (MEFs) are decreased compared with
DJ-1+/+ controls, indicating that the loss of DJ-1 results in a
reduction in autophagosomes since levels of LC3-II correlate
with autophagosome number (34,35). This reduction can
either be attributed to the downregulation of autophagosome
formation or enhanced autophagic degradation (34). The use
of bafilomycin A1, a late inhibitor of autophagy (34), restores
steady-state p62 as well as LC3-II protein levels suggesting
that the loss of DJ-1 enhances autophagic degradation, in
other words autophagic activity is overactive. Next, we
made use of the H1299 cell line in which GFP-LC3 is stably
expressed and transiently reduced DJ-1 protein levels via
siRNA to confirm the DJ-1-dependent perturbations in the
autophagic pathway. As shown in Figure 8B, at 48 h post-
transfection, the level of DJ-1 was significantly reduced
upon transfection of a siRNA specifically targeted to DJ-1.
The effect of DJ-1 knockdown was accompanied by a signifi-
cant decrease in p62 levels, and an increased accumulation of
cleaved GFP demonstrating that autophagic activity is
enhanced by transient knockdown of DJ-1 (Fig. 8B). This
was further observed with immunofluorescence where GFP
puncta formation was increased by 1.5-fold (P, 0.05) with
transient knockdown of DJ-1 (Fig. 8C and D). Given the
recent involvement of Parkin and PINK1 in the regulation of
mitochondria specific autophagy (mitophagy), we also
assessed the steady-state levels of mitochondrial markers to
determine whether DJ-1 may also play a role. As shown in
Figure 8E, loss of DJ-1 does not induce significantly altering
the expression of cytochrome c oxidase (COX) subunits of
complex I or complex V. Furthermore, expression of the
outer mitochondrial membrane marker Tom20 was also
unchanged. This suggests that mitophagy, at least at a gross
level, is not affected by the loss of DJ-1. This theory is sup-
ported by initial observations that Parkin is not significantly
recruited to mitochondria in DJ-1 KO cells under basal con-
ditions (Joselin et al., unpublished data).

Mitochondrial morphology and autophagy are also
perturbed in human DJ-1-linked Parkinson’s disease

Finally, to provide evidence that the DJ-1-dependent pertur-
bations in mitochondrial homeostasis also extend to a human
model of DJ-1-linked PD, we obtained human lymphoblasts
isolated from control and PD patients. The PD lymphoblasts
were obtained from an Italian and Dutch family, respectively
(12). The previously described L166P pathogenic mutation
found in the Italian family consists of a leucine to proline sub-
stitution at amino acid 166, while the Deletion (Del) mutation,
found in a Dutch family, results from a complete loss of exons
1–5 (12). As shown in Figure 9A, similar to the pattern of

mitochondrial morphology observed in DJ-1+/+ and DJ-12/2

murine tissues, electron microscopic analysis of lymphoblasts
isolated from human PD patients (L166P, DEL) contained a
greater percentage of fragmented mitochondria compared
with control lymphoblasts (i.e. ,0.5 mm; 41.578+2.41%
and 48.316+6.02% in PD versus 12.62+3.03% and
9.755+2.23% in controls) and a smaller percentage of
mitochondria that were longer than .1.0 mm (23.019+
0.84% and 23.997+0.94% in PD versus 41.578+2.41%
and 48.316+6.02% in controls; Fig. 9B). We also evaluated
whether autophagy was similarly affected in human
DJ-1-linked PD and observed that p62 was decreased in
both PD patient cell lines when compared with CTRL lympho-
blasts (Fig. 9C). These data confirm that the mitochondrial
morphology as well as changes in autophagic markers
observed in DJ-1+/+ and DJ-12/2 are also present in human
DJ-1-linked PD.

DISCUSSION

Mitochondrial dysfunction appears to contribute to the pro-
gression of sporadic PD and it has been postulated that
excess ROS produced as the result of mitochondrial dysfunc-
tion may be an important reason for which neurons exhibit
increased sensitivity to oxidative stress-induced neuronal cell
death (36,37). Emerging evidence points to underlying
defects in mitochondrial morphology and dynamics as a
potential mechanism to explain this increased sensitivity
(38). In PD, this relationship is significant since several
PD-linked genes (DJ-1, Parkin, Pink1) have been found to
reside or translocate to the mitochondrial compartments
(7,8,29,39–42), participate in mitochondrial remodeling
(7,9–11) and actively regulate mitochondrial quality control
(18,19,41–43). Of the three PD-linked genes that have been
associated with mitochondria, the least is known regarding
the role of DJ-1.

Mitochondrial morphology, dynamics and ROS
production are altered by the loss of DJ-1

We first began our investigation by characterizing the impact
of DJ-1 deficiency on mitochondrial morphology and function
under steady-state conditions in a variety of experimental
systems. We demonstrated both in vitro and in vivo neuronal
and non-neuronal cells, as well as in brain tissue that mito-
chondria are significantly more fragmented with the loss of
DJ-1. Importantly, we also extended these findings to human
DJ-1-linked PD to convincingly implicate that an aberrant
DJ-1-dependent mitochondrial phenotype in a more disease
relevant model. We also demonstrated that the mitochondrial
phenotype produced by the loss of DJ-1 contributes to the

antibodies to Tom20 (red) to visualize mitochondria. Inset: lower magnification images. (D) Quantification of mitochondrial lengths as described previously
[Jahani-Asl et al. (20); n ¼ 3 independent experiments with a minimum of 500 mitochondria/experiment that were counted per condition]. Scale bar ¼
5 mm. ∗P , 0.05 versus respective controls. (E) Confocal images from SH-5Y5Y cells in which DJ-1 has been knocked down via siRNA, and transfected
with DJ-1, Parkin or PINK1 as described in the Materials and Methods. Inset: lower magnification images. (F) Quantification of at least 300 cells/condition
was performed as described in the Materials and Methods. Data are representative of at least three independent experiments where each condition was done
in triplicate. OE, overexpression. Scale bar ¼ 5 mm. ∗P , 0.05 versus siDJ-1- and #P , 0.05 versus siDJ-1.
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oxidative stress-induced sensitivity to cell death since rever-
sal of the mitochondrial phenotype by overexpression of
DN-Drp1 to rescue mitochondrial fragmentation abrogated
neuronal cell death induced by MPP+. Is the fragmented
phenotype a result of increased fission or decreased
fusion? Since mitochondrial fusion rates and the steady
state levels of the mitochondrial fusion protein MFN1 are
decreased in DJ-1 deficient cells, we would be tempted to
speculate that mitochondrial fusion is decreased. However,
our results also do not rule out that an increase in mitochon-

drial fission is also a possibility. Indeed, during the prep-
aration of this manuscript, Krebiehl et al. (44)
demonstrated that altered mitochondrial morphology
induced by the loss of DJ-1 could be attributed to changes
in mitochondrial fission. The implications of decreased or
increased mitochondrial fusion or fission that occurs with
DJ-1 deficiency could readily explain the increased sensi-
tivity of these cells to oxidative stress (14), as it is known
that fragmented mitochondria precedes apoptosis, or alterna-
tively renders mitochondria more susceptible to death-
inducing stimuli (20,45–48).

ROS is important in establishing the DJ-1-dependent
phenotype

Based on the known impact of excess ROS on mitochondrial
morphology (23), we suspected that the increased ROS pro-
duced by mitochondria from DJ-12/2 animals could be
responsible for the fragmented phenotype. Indeed, we con-
firmed this hypothesis by first demonstrating that scavenging
ROS with the use of NAC or WT DJ-1 (itself a suspected
free radical scavenger), but not an oxidant mutant of DJ-1
(C106A), was able to rescue the fragmented phenotype
observed in DJ-1 deficient primary cortical neurons. Our
data also show that while the excess H2O2 produced within
mitochondria by the loss of DJ-1 is sufficient to alter mito-
chondrial morphology, they are not produced in sufficient con-
centrations to cause overt changes in mitochondrial oxygen
consumption and citrate synthase activity, at least in the

Figure 8. Cells deficient for DJ-1 undergo enhanced autophagic activity.
(A) Proteins were extracted from WT and KO DJ-1 MEFs treated with (+)
or without (2) Bafilomycin (10 mg/ml, 3 h) and subjected to western blotting
for p62 and LC3-I and LC3-II levels. Numbers below representative images
refer to fold changes versus WT (-Baf) after correction for actin. Data are
representative of three independent experiments. (B) Total cell lysates from
H1299 cells stably expressing GFP-LC3 and transfected with either scrambled
(Scr) or a siRNA against DJ-1 (siDJ-1) were analyzed by western blotting for
DJ-1, p62 and free GFP. Data are representative of at least three independent
experiments. (C) Confocal images of H1299 cells stably expressing GFP-LC3
cells transfected with either scrambled (Scr) or a siRNA against DJ-1 (siDJ-1).
(D) The density of GFP puncta in Scr versus siDJ-1 conditions was analyzed in
at least 150 cells/condition. Data are representative of three independent
experiments ∗P , 0.05, siDJ-1 versus. Scr. control. Scale bar ¼ 2 mm.
(E) Total cell lysates from DJ-1 WT and KO MEFs were subjected to
western blotting for COX V, COX I and Tom20 levels (n.s., non-specific
band was used as a loading control). Data are representative of five to seven
independent experiments.

Figure 9. Mitochondrial morphology and autophagy are also perturbed in
human DJ-1-linked PD. (A) EM images of mitochondria from human lympho-
blasts isolated from healthy control (C48 and GEPA) and PD (L166P and Del)
patients. (B) Quantification of mitochondrial diameters in human lymphoblasts
(n ¼ 4; at least 200 mitochondria/experiment were counted). Scale bar ¼
500 nm. ∗P , 0.05, PD versus control. (C) Total protein was extracted from
human control (CTRL), and PD (L166P and Del) lymphoblasts were subjected
to western blotting for DJ-1, p62 and actin. Data are quantified as the relative
changes in steady state protein levels corrected for loading using actin. Five
independent experiments are represented. ∗P , 0.05, PD versus control.
White arrows in (A) depict mitochondria.
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brain. In all likelihood, these factors contribute to the lack of
any gross neuronal abnormalities including dopaminergic
neuron numbers in the substantia nigra, fiber densities and
dopamine levels in the striatum and the absence of any behav-
ioral deficits in untreated DJ-1 deficient mice (14). It is there-
fore more likely that DJ-1 deficiency compromises the
sub-cellular milieu rendering them more vulnerable to
additional stress. Indeed, the observation that DJ-1 deficiency
does not seem to grossly affect mitophagy leading to the
accumulation, instead of the removal of fragmented mitochon-
dria further adds to this possibility. This theory is also sup-
ported by initial observations that Parkin is not significantly
recruited to mitochondria in DJ-1 KO cells under basal con-
ditions (Joselin et al., unpublished data).
Indeed, as we have previously demonstrated, DJ-1 deficient

animals/cells are hypersensitive to MPTP or hydrogen per-
oxide treatment and this hypersensitization results in the pre-
viously described dopaminergic cell death and behavioral
deficits, effectively recapitulating some pathological and clini-
cal features of human PD (14).

Pink1 and Parkin can rescue DJ-1 deficient mitochondrial
fragmentation

We also assessed the relationship of DJ-1 with Parkin and
Pink1, two recessively linked PD genes, as they have all
been implicated in regulating aspects of mitochondrial mor-
phology and/or dynamics. Previous studies using the Droso-
phila melanogaster model have shown that the loss of Pink1
and Parkin independently compromise mitochondrial integrity
(9,11,28,49). Since double mutants produce an identical phe-
notype to each mutant alone, and overexpression of Parkin
rescues Pink1 deficits but not vice versa, it was postulated
that they function in the same pathway with Pink1 positioned
upstream of Parkin (9,11,28,49). More recently, it has been
shown that Pink1 and Parkin actively participate in mitochon-
drial quality control (18,19,41–43). Given that DJ-1
deficiency induces oxidative stress and mitochondrial
defects, we hypothesized that overexpression of these mito-
chondrial quality control factors would rescue the DJ-1
deficient mitochondrial phenotype. We confirmed this hypoth-
esis using two different models. First, Pink1 and Parkin were
overexpressed in DJ-1 deficient primary cortical neurons. In
this model, overexpression of either Pink1 or Parkin rescued
the fragmented mitochondrial phenotype in DJ-1 deficient
cells. Second, we used a dopaminergic cell line to overexpress
Pink1 and Parkin in cells where DJ-1 levels were reduced
down by siRNA. Similar to our findings in primary cortical
neurons, the DJ-1-induced fragmentation phenotype produced
by knockdown of DJ-1 was reversed with overexpression of
either Pink1 or Parkin. It is important to stress that the exact
mechanistic link between DJ-1 and Pink/Parkin is not clear.
However, we would propose that DJ-1 somehow modulates
the actions or activity of Pink1 and/or Parkin, possibly via
its effect on the ROS environment. Given the effects of
Parkin and PINK1 deficiency on antioxidant capacity and
ROS production (50–52), it is also tempting to speculate
that overexpression of either gene could potentially ameliorate
that ROS milieu of the DJ-1 deficient cells, thereby reversing

the fragmented phenotype. Alternatively, a more direct regu-
lation is also possible.

DJ-1 deficiency increases autophagic activity

Increasing evidence has implicated several PD-linked genes
including Pink and Parkin in the process of autophagy
(18,19,41–43). Two recently published studies have now
implicated DJ-1 (19,44). We also pursued this phenomenon
in the present manuscript and suggest that the loss of DJ-1 pro-
motes enhanced autophagy resulting in increased turnover.
According to Mizushima and Yoshimori (34) and Rubinsztein
et al. (35), a loss in the levels of the autophagy markers LC3-II
and p62 at a given time is either attributed to a downregulation
of autophagosome formation or enhanced degradation. If the
level of LC3-II or p62 rises following incubation with autop-
hagy inhibitors such as Bafilomycin A1, as was seen in the
present study, it is considered that during the course of the
experimental time frame that the number of molecules
degraded exceeds the number being produced. We further
assessed the effect of transient DJ-1 knockdown on autophagic
activity and found that within 48 h of DJ-1 knockdown, the
autophagy was increased, as measured by the decrease in
p62 levels and the increase in LC3 puncta formation. It has
previously been shown that following acute starvation, autop-
hagy is increased and that prolonged starvation leads to exces-
sive activity and turnover (35). Acute starvation led to
decreased p62 levels and LC3 puncta formation, whereas a
complete loss of LC3-II levels was observed during prolonged
starvation. By analogy, one could interpret that acute DJ-1
knockdown results increase autophagic activity, while germ-
line deletion is associated with excessive autophagic activity
resulting in increased turnover. In either condition, autophagic
activity is enhanced with DJ-1 deficiency. Future studies will
more carefully evaluate the nature of this phenomenon.
Additionally, whetherDJ-1more directly regulates the autopha-
gic response or merely influences the ROS environment leading
to increased flux is unknown and warrants further study. The
evidence suggesting that ROS triggers autophagy would be in
keeping with the latter suggestion (53–55). Furthermore, the
idea that DJ-1 participates in the Pink1/Parkin pathway tempt-
ingly suggests the possibility that DJ-1 could modulate Pink1/
Parkin activity and thereby regulate autophagic activity.
Alternatively, DJ-1 may more directly regulate additional
upstream activators of autophagy, including mTOR and
AMPK, which has been suggested previously (19). More
careful analyses will be required to validate these possibilities.
In conclusion, this study demonstrates that DJ-1 plays an

active role in the remodeling of mitochondria and regulation
of autophagy. Cells lacking DJ-1 display a fragmented mito-
chondrialmorphology that can be rescuedwithROS scavengers,
wild-type DJ-1, Parkin and Pink1. This DJ-1-dependent mito-
chondrial morphology contributes to oxidative stress-induced
sensitivity to cell death since reversal of this mitochondrial phe-
notype abrogates neuronal cell death. Finally, we also show that
DJ deficiency leads to altered autophagy in DJ-1-deficient
murine and human cells. We propose that under conditions of
oxidative stress, these derangements may account for the
reported increased sensitivity to cell death of DJ-1 deficient
neurons.
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MATERIALS AND METHODS

Antibodies

The following antibodies were used in this study: mouse
anti-Drp-1 (BD Transduction), chicken anti-MFN1 (Novus
Biological), rabbit anti-MFN2 (Santa Cruz), mouse
anti-COX V (Mitosciences), mouse anti-COX I (Mitos-
ciences), rabbit anti-Tom20 (Santa Cruz), rabbit anti-LC3
(Novus Biologicals), guinea pig anti-p62 (ARP), mouse
anti-p62 (Santa Cruz), mouse anti DJ-1 (Stressgen), mouse
anti-parkin mouse PRK8 (Santa Cruz), anti-PINK1 polyclonal
antibody (Novus Biologicals), anti-DJ1 polyclonal antibody
(Abcam),mouse anti-&b-cactin (Sigma), horseradish
peroxidase-conjugated secondary antibodies (Bio-Rad).

Cell lines, transfections, viral infections and plasmids

MEFs and primary cortical neurons were derived from E14.5–
15.5 transgenic DJ-1 animals as previously described (14).
Immortalized human lymphoblasts obtained from DJ-1-linked
PD (Del or L166P) or healthy controls were cultured as
described previously (56). H1299 cell line stably expressing
GFP-LC3 cultured as previously described (57). SH-5Y5Y
cells were cultivated as previously described (58). For RNA
interference, SH-5Y5Y or H1299 cells were reverse-
transfected with Stealth siRNA (Invitrogen) using Lipofecta-
mine RNAiMAX (Invitrogen) or siRNA (Santa Cruz) using
siLentFect (Bio-Rad), respectively, according to the manufac-
turer’s instructions. DNA Constructs (SH-5Y5Y cells): Human
wild-type (wt) parkin and human wild-type PINK1 were
described earlier (49,59). Human wild-type DJ was amplified
from a human brain cDNA library and inserted into the
pcDNA3.1 vector (Invitrogen). Viral plasmids and infections
(primary cortical neurons): for rescue studies, cortical
neurons were harvested from DJ-1+/+ or DJ-12/2 littermate
embryos (produced by a heterozygote cross) at E15.5 and
plated at a density of 150 000 cells per well (24-well dish)
on glass cover slips coated with 1XPoly-D-Lysine. Viral par-
ticles expressing GFP, DJ-1, DJ-1 C106A, Pink1 or Parkin
were administered at a multiplicity of infection (MOI) of 30
at the time of plating. Cortical neurons infected with DJ-1,
DJ-1C106A and Pink1 were harvested 48 h following infec-
tion. Cortical neurons infected with Parkin were harvested 4
days post-infection and plating. For cell survival studies, cor-
tical neurons harvested as described above were infected with
either control (EGFP) adenovirus or dominant-negative Drp-1
(ECFP-C1 DLVP K38E) adenoviruses at MOI of 40 and then
immediately seeded into 24-well plates at an approximate
density of 350 000 neurons/well. Neurons were cultured for
3 days and then treated with 10 mM MPP+ for 24 h.

Cell survival

Neuronal survival was evaluated by assessing nuclear integrity
of GFP/CFP-positive neurons as done previously (14).

Citrate synthase activity

Maximal activity of citrate synthase (EC 4.1.3.7) was
measured at 258C in previously frozen homogenate and mito-
chondria from brain and skeletal as previously described (60).

Confocal microscopy/immunofluoresence/mitochondrial
fusion rates

Confocal images were acquired with a 63× objective (1.4) by
an inverted Laser Scanning Microscope (LSM510 META,
Zeiss). Mitochondrial fusion rates were calculated as pre-
viously described (21).

Generation and genotyping of DJ-1 mice

The generation and genotype of the DJ-1 deficient mice has
previously been described in detail (61).

H2O2 generation

Mitochondrial H2O2 production rate was determined in freshly
isolated mitochondria from sketelal muscle and brain using
the p-hydroxyphenylacetate (PHPA) fluorometric assay (62).
Mitochondria (0.1 mg/ml) were incubated in standard incu-
bation medium (IM: 120 mM KCl, 1 mM EGTA, 5 mM

KH2PO4, 2 mMMgCl2 and 3 mMHEPES; pH 7.4) supplemented
with 0.3% defatted BSA.H2O2 productionwasmonitored for up
to 25 min using a temperature-controlled fluorimeter (BioTek,
FLx800) at 378C. Fluorescence readings were converted to
H2O2 production rates by use of a standard curve.

Immunofluoresence (primary cortical neurons and MEFs)

Cortical neurons orMEFswere fixedwith 4%PFAdiluted in cell
culture medium for 15 min at 378C. Cells were then washed 3×
with 1XPBS. Immediately following this, cells were permeabi-
lized and blocked with 10% normal goat serum-0.1% Triton X/
PBS for 1 h at room temperature. Cells were then stained with
Tom-20 (1:100, a kind gift from Dr Gordon Shore or from
Santa Cruz) or cytochrome c (1:100, BD Biosciences, in 5%
normal goat serumovernight at 48C) for the visualization ofmito-
chondria. The following day, cells were washed 3× with 5%
normal goat serum/PBS and then incubated for 1 h with the
appropriate Alexa conjugated fluorophores in 5% normal goat
serum/PBS. Cells were then washed 3× with 1XPBS, rinsed in
sterile H2O and mounted onto microscope slides using Gel
Mount (Sigma).

Fluorescent staining of mitochondria and western blot
analysis (SH-5Y5Y cells)

SH-5Y5Y cells were grown on 15 mm glass cover slips. Cells
were fluorescently labeled with 0.1 mM DiOC6 (3) in cell
culture medium for 15 min. After washing the cover slips
with medium, living cells were analyzed for mitochondrial
morphology by fluorescence microscopy using a Leica
DMRB microscope (Leica, Wetzlar, Germany). Cells were
categorized in two classes according to their mitochondrial
morphology: tubular or fragmented. Cells displaying an
intact network of tubular mitochondria were classified as
tubular. When this network was disrupted and mitochondria
appeared predominantly spherical or rod-like, they were
classified as fragmented. The mitochondrial morphology of
at least 300 cells per plate was determined in a blinded
manner, i.e. the researcher was blind to the transfection status.
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Quantifications were based on triplicates of at least three inde-
pendent experiments. Proteins were analyzed by SDS–PAGE
and western blotting using polyvinylidene difluoride mem-
branes (Millipore, Schwalbach, Germany). The membranes
were blocked with 5% non-fat dry milk in TBS containing
0.1% Tween 20 (TBS-T) for 1 h at room temperature and then
incubated with the primary antibody in blocking solution for
16 h at 48C. After extensive washing with TBS-T, the mem-
branes were incubated with HRP-conjugated secondary anti-
body for 60 min at room temperature. Following washing with
TBS-T, the antigen was detected with the enhanced chemilumi-
nescence (ECL) detection system or ECL plus detection system
(Amersham Biosciences, Freiburg, Germany).

Immunoblotting

Cell lysis was carried out identically for both MEFs and
neurons. Cells were washed twice with PBS, scraped in lysis
buffer containing 50 mM Tris–HCl pH 7.5, 100 mM NaCl,
0.4% Triton X-100, 1 mM DTT and 1× protease inhibitor
cocktail (Roche). Samples were kept on ice for 20 min and
then spun with maximal speed at 20 000g at 48C for 5 min.
Protein quantification was carried out using both Bradford
(Bio-Rad) and BCA (Pierce) methods. Fifteen micrograms
of each lysate was electrophoresed on 12% SDS–
polyacrylamide gels, or 4–20% gradient gels (Invitrogen)
and transferred to polyvinylidene fluoride (PVDF) or nitrocel-
lulose membranes (Millipore). For tissue lysates, 15 mg of
each tissue lysate was electrophoresed on 12% SDS–PAGE
gels and transferred to polyvinylidene fluoride (PVDF) or
nitrocellulose membranes (Millipore).

Isolation of mitochondria

DJ-1+/+ or DJ-12/2 mice (4–6 months old) were euthanized
by decapitation for isolation of skeletal muscle and brain mito-
chondria. Isolation of skeletal muscle mitochondria was per-
formed using a modified method of Chappell and Perry (63),
as previously described in detail (64). Brain mitochondria
were isolated as described (50).

Lentivirus production and transduction

Lentiviral vectors were generated by transient transfection in
293T cells using PEI. The constructs for manufacturing the
lentiviruses were obtained from Addgene.org. Protocols used
to manufacture and purify lentiviruses were done according
to Tronolab’s protocols (www.tronolab.com).

Oxygen consumption

Oxygen consumption was measured in isolated brain mito-
chondria (0.3 mg/ml) at 378C using a Clark-type oxygen elec-
trode (Hansatech, Norfolk, UK), incubated in standard
incubation medium (IM: 120 mM KCl, 1 mM EGTA, 5 mM

KH2PO4, 2 mM MgCl2 and 3 mM HEPES; pH 7.4) containing
0.3% defatted BSA and assumed to contain 406 nmol O/ml at
378C (65). State 3 (maximum phosphorylating) respiration
was determined using 5 mM glutamate/5 mM malate as sub-
strate, and 500 mM ADP. State 4 (non-phosphorylating or

maximal leak-dependent respiration) was determined follow-
ing addition of oligomycin (8 mg/ml). All measurements
were performed in duplicate.

Statistical analyses

Unless otherwise described, data analysis was carried out
using independent two-tailed t-tests. Significance was
marked by ∗ when P , 0.05. All data are presented as
means+SEM.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Aggregation of a-synuclein (aS) is involved in the patho-

genesis of Parkinson’s disease (PD) and a variety of related

neurodegenerative disorders. The physiological function

of aS is largely unknown. We demonstrate with in vitro

vesicle fusion experiments that aS has an inhibitory func-

tion on membrane fusion. Upon increased expression in

cultured cells and in Caenorhabditis elegans, aS binds to

mitochondria and leads to mitochondrial fragmentation.

In C. elegans age-dependent fragmentation of mitochon-

dria is enhanced and shifted to an earlier time point upon

expression of exogenous aS. In contrast, siRNA-mediated

downregulation of aS results in elongated mitochondria

in cell culture. aS can act independently of mitochon-

drial fusion and fission proteins in shifting the dynamic

morphologic equilibrium of mitochondria towards red-

uced fusion. Upon cellular fusion, aS prevents fusion

of differently labelled mitochondrial populations. Thus,

aS inhibits fusion due to its unique membrane interaction.

Finally, mitochondrial fragmentation induced by expres-

sion of aS is rescued by coexpression of PINK1, parkin or

DJ-1 but not the PD-associated mutations PINK1 G309D

and parkin D1–79 or by DJ-1 C106A.

The EMBO Journal (2010) 29, 3571–3589. doi:10.1038/

emboj.2010.223; Published online 14 September 2010

Subject Categories: membranes & transport; neuroscience

Keywords: a-synuclein; mitochondria; neurodegeneration;

Parkinson’s disease

Introduction

A characteristic feature of Parkinson’s disease (PD) is the

intracellular deposition of Lewy bodies, which are predomi-

nantly composed of a-synuclein (aS). This 140 amino acid

protein is widely distributed throughout the brain and

expressed at high levels in neurons where it can reach con-

centrations of 0.5–1% of total protein (i.e. 30–60mM) (Iwai

et al, 1995; Spillantini et al, 1997; Bodner et al, 2009). In Lewy

bodies, aS is arranged in fibrils with a b-sheet like structure

(Der-Sarkissian et al, 2003; Chen et al, 2007). It is assumed that

the pathogenicity of aS is associated with aggregation of the

protein, which involves formation of small neurotoxic oligo-

mers that eventually mature to larger insoluble deposits (Lee

et al, 2004a; Haass and Selkoe, 2007; Kramer and Schulz-

Schaeffer, 2007; Kostka et al, 2008; Kayed et al, 2009). A similar

cascade of protein aggregation and precipitation is causative for

the onset of other neurodegenerative diseases, such as

Alzheimer’s disease (Dobson, 2003; Haass and Selkoe, 2007).

A remarkable property of aS is its structural flexibility

(Davidson et al, 1998; Beyer, 2007; Uversky, 2007). The

protein is essentially unstructured in dilute aqueous solution

(Uversky, 2002), whereas a-helical folding occurs upon bind-

ing to lipid surfaces. The NMR-derived structure of SDS-

micelle-bound aS revealed two anti-parallel aligned amphi-

pathic a-helices, the ‘N-helix’ spanning residues 3 through 37

and the ‘C-helix’ spanning residues 45 through 92. The

C-terminal domain, which contains approximately 40 amino

acids of which 14 are negatively charged and 2 positively

charged, remains unstructured (Lee et al, 2004b; Ulmer and

Bax, 2005; Ulmer et al, 2005). The structure of membrane-

bound aS cannot be resolved by NMR as the rotation of

vesicles is too slow. However, other biophysical techniques

including electron spin resonance and circular dichroism

(CD) revealed that a-helical folding also occurs for the N-

terminal region when aS binds to membranes (Nuscher et al,

2004; Beyer, 2007; Jao et al, 2008; Drescher et al, 2008a).

However, whether membrane-bound aS assumes a single

extended a-helix, a broken helix or multiple structures

(including oligomers) is unclear (Drescher et al, 2008a, b;

Bodner et al, 2009; Ferreon et al, 2009; Perlmutter et al, 2009;

Trexler and Rhoades, 2009). It has also been reported that aS
binds to synaptic vesicles (Maroteaux et al, 1988; Jensen

et al, 1998; Abeliovich et al, 2000; Kahle et al, 2000; Murphy

et al, 2000; Cabin et al, 2002; Chandra et al, 2004, 2005;

Jo et al, 2004; Yavich et al, 2004; Larsen et al, 2006; Ben

Gedalya et al, 2009) as well as to mitochondria (Martin et al,

2006; Nakamura et al, 2008; Shavali et al, 2008). Biophysical

studies from our laboratory revealed that binding of aS to

highly curved bilayers leads to a stabilization of defects in the

lipid packing (Nuscher et al, 2004; Cornell and Taneva, 2006;

Kamp and Beyer, 2006). This motivated us to investigate

whether aS could have an impact on membrane fusion.

So far little is known about the biological consequences of

binding of aS to intracellular membranes. Studies in yeast
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revealed that overexpression of aS leads to cellular toxicity by

interfering with vesicular transport between the endoplasmic

reticulum and the Golgi complex (Cooper et al, 2006).

Fragmentation of the Golgi apparatus was also reported in

neurons containing Pale bodies, pathological deposits known

as early stages of Lewy bodies (Gosavi et al, 2002; Fujita et al,

2006; Lee et al, 2006). Moreover, functional impairment of

mitochondria was caused by expression of wild type or

mutant aS (Hsu et al, 2000; Orth et al, 2003; Smith et al,

2005; Parihar et al, 2008, 2009).

Although one of the well-described biochemical properties

of aS is membrane binding associated with a structural

switch, the biological function of the membrane-associated

variant is unclear. Here, we demonstrate for the first time that

aS inhibits fusion of model membranes. Biophysical studies

led us to investigate the consequences of enhanced aS levels

on membrane fusion in vivo. Life imaging in cultured cells

and Caenorhabditis elegans demonstrates that expression of

aS induces mitochondrial fragmentation, whereas down-

regulation of aS leads to elongation of mitochondria. Strik-

ingly, the mitochondrial phenotype caused by expression of

aS could be rescued by coexpression of three recessive

PD-associated genes, PINK1, parkin and DJ-1, but not the

corresponding familial PD-associated mutants PINK1 G309D,

and parkin D1–79 or by the synthetic mutant DJ-1 C106A

(Waak et al, 2009).

Results

aS inhibits membrane fusion in vitro

We tested the effect of aS in several ‘classic’ fusion assays

using protein-free model membranes. In our first protocol, we

used small unilamellar vesicles (SUVs) consisting of dipalmi-

toyl-phosphatidylcholine (DPPC), which are known to fuse

below the chain-melting temperature Tm, increasing their

diameter from 30 to 70 nm (Schullery et al, 1980a, b; Gaber

and Sheridan, 1982). This spontaneous fusion is a very slow

process (Supplementary Figure S1). Trace amounts of non-

ionic detergent C12E8 accelerate the fusion of DPPC-SUV,

particularly at temperatures just below Tm (the gel to

liquid–crystalline phase transition of bilayers of DPPC occurs

at Tm¼ 411C). We measured vesicle fusion by following

changes in the static light scattering. At 361C a suspension

of DPPC-SUV reached maximal light scattering values within

10min after detergent addition (Figure 1A). Fusion was

suppressed when the experiment was performed in the pre-

sence of increasing amounts of aS and was blocked comple-

tely at lipid/aS ratios p200mole/mole (3 mM aS), that is at

concentrations where aS binding to vesicles saturates

(Nuscher et al, 2004). We also applied dynamic light scatter-

ing (DLS) experiments, which demonstrated the increase

in diameter of fusing vesicles (Supplementary Figure S2).

To confirm that the increase in light scattering of fusing

vesicles was not an aggregation artifact, we used two fluor-

escent membrane fusion assays. In a lipid-mixing assay, NBD

fluorescence of ‘donor’ vesicles was completely quenched

prior to addition of detergent. Upon fusion of donor vesicles

and vesicles without fluorescent probes, lipid mixing abo-

lishes the quenching effect. Membrane fusion, monitored by

this technique could be reduced by increasing amounts of aS
(Figure 1B). Alternatively, in a contents-mixing assay we

repeated the C12E8-induced fusion of DPPC-SUV by mixing

equal amounts of vesicles with trapped Tb3þ -citrate with

vesicles containing dipicholinic acid (DPA). Formation of the

Tb3þ–DPA complex led to a strong increase in fluorescence

(Figure 1C). Almost no fluorescence increase was observed

after addition of aS at a lipid/protein molar ratio 200:1,

indicating that fusion was effectively inhibited. Together,

these independent experiments support the inhibition of

membrane fusion by aS.
Considering the domain structure of lipid-bound aS, the

question arises whether its anti-fusogenic behaviour is due to

stabilization of packing defects in the bilayer (Kamp and

Beyer, 2006), or rather to membrane repulsion caused by

the negatively charged C-terminal domain. To distinguish

between these two possibilities, the fusion assay was re-

peated using an aS mutant lacking the last 24 amino acids

of the C-terminus. This fragment (aS1–116) was still capable

of completely suppressing membrane fusion (Figure 1D). On

the contrary, a peptide composed of 25 amino acids of the

C-terminus of aS (aS116–140), as well as a peptide comprised

of 25 amino acids of the centre region of aS (aS41–65), was

not capable of inhibiting membrane fusion (Figure 1D). We

also compared the anti-fusogenic effect of aS with other

membrane-binding proteins. Cytochrome c and lysozyme

have similar molecular weights as aS. Both are globular

proteins with a net positive charge known to bind to mem-

brane surfaces. Cytochrome c and lysozyme did not signifi-

cantly slow down the fusion of DPPC-SUV (Figure 1E).

Exchangeable apolipoproteins have structural similarities to

aS and share stabilization of lipid packing because of the

binding of a ‘sided’ helix to the lipid surface (Derksen et al,

1996; Nuscher et al, 2004; Cornell and Taneva, 2006; Beyer,

2007). Interestingly, apolipoprotein A-I (ApoA-I) blocked the

fusion completely, just like aS (Figure 1E). These findings

indicate that the folding and membrane interaction of the

N-terminal domain rather than the negative charges of the

C-terminal domain are responsible for the anti-fusogenic

effect of aS.
To test whether the effect of aS also applies to vesicles

composed of other lipids, we investigated fusion of vesicles

composed of negatively charged palmitoyl-oleoyl-phosphati-

dylserine (POPS), triggered by Ca2þ -ions (Wilschut et al,

1980). Fusion was initiated by adding CaCl2 and was com-

plete within 10min after the addition (Figure 1F). When aS
was added after the addition of Ca2þ , the fusion rate was

reduced 410 times. Again, we compared the anti-fusogenic

effect of aS with other membrane-binding proteins. In this

case, we used cytochrome c and poly-lysine. Poly-lysine,

like cytochrome c, is expected to bind to negatively charged

membranes (Zhang and Rowe, 1994). Cytochome c had

no effect even at a 10-fold higher molar concentration than

aS. Poly-lysine reduced the fusion rate about five times

(Figure 1F). Having established the suppression of membrane

fusion by aS in classic fusion assays of vesicles composed of

only one kind of lipid, we wondered whether aS would also

suppress fusion of membranes of lipid mixtures mimicking

compositions of biological membranes. The effect of aS
on polyethyleneglycol (PEG)-mediated fusion of vesicles

composed of a lipid mixture with reported optimal fusion

potential (Haque et al, 2001) is shown in Figure 1G. The

suppression of fusion by aS was significant, although higher

amounts of aS were required compared with the DPPC-SUV

and POPS-SUV, probably because of a lower affinity of aS to
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the membranes comprised of the chosen lipid mixture. Finally,

rapid spontaneous fusion can be achieved upon mixing of

vesicles with opposite interfacial net charges (Pantazatos and

MacDonald, 1999; Lei and MacDonald, 2003). In this assay,

fusion was complete after about 3 sec (Figure 1H). Again fusion

was reduced by aS. Taken together, these findings demonstrate

that aS selectively blocks membrane fusion in a number of

independent in vitro fusion assay systems.
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aS impairs mitochondrial fusion in cultured cells

Mitochondria change their morphology because of continu-

ous fusion and fission (Detmer and Chan, 2007; Westermann,

2008). In addition, mitochondrial morphology and function is

affected by loss of parkin or PINK1 function, which are both

associated with familial PD (Kitada et al, 1998; Valente et al,

2004; Exner et al, 2007; Dagda et al, 2009; Lutz et al, 2009;

Morais et al, 2009; Sandebring et al, 2009). To prove whether

enhanced levels of aS, as observed in sporadic PD (Sharon

et al, 2003; Chiba-Falek et al, 2006; Grundemann et al, 2008)

as well as in familial PD associated with a triplication of the

aS gene (Singleton et al, 2003), influence the balance be-

tween mitochondrial fission and fusion, we overexpressed aS
in neuronal SH-SY5Y cells. This was particularly interesting

as aS has been reported to bind to intracellular membranes

including mitochondria (Nakamura et al, 2008; Shavali et al,

2008). Changes in mitochondrial morphology were moni-

tored by imaging of cells, transfected with mito-GFP. When

wild-type aS was overexpressed in SH-SY5Y cells, increased

mitochondrial fragmentation was observed (Figure 2A).

Quantification of the relative amounts of cells with fragmen-

ted mitochondria revealed that upon overexpression of aS,
the number of cells that display fragmented mitochon-

dria increased from 34% under control conditions to 46%

(Figure 2B). Expression of similar amounts of mutant

aS-A30P or A53T led to fragmentation of mitochondria to

the same extent as the wild-type protein (Figures 2A–C). This

is consistent with the finding that mutants of aS also bind to

model membranes (Nuscher et al, 2004; Ramakrishnan et al,

2006; Giannakis et al, 2008; Karpinar et al, 2009; Perlmutter

et al, 2009). b-Synuclein (bS) shares a number of biological

and biophysical properties with aS, including binding to lipid

surfaces (Nuscher et al, 2004; Beyer, 2007). We therefore

investigated if bS may also affect mitochondrial fusion/

fission. Indeed, both orthologs lead to the formation

of fragmented mitochondria (Figures 2D–F), suggesting a

redundant function of aS and bS.
To further address the question whether the increase

in mitochondrial fragmentation observed in aS-expressing
SH-SY5Y cells is due to alterations in mitochondrial fusion,

we performed a PEG fusion assay (Niemann et al, 2005;

Malka et al, 2007) (Figure 3). A first set of cells was

transiently cotransfected with mito-GFP and aS or empty vector

as a control. Another set of cells was cotransfected with

mito-DsRed and aS or vector. At 8h after transfection, both

sets of cells were mixed and plated on coverslips.

After 16h, fusion of cocultured cells was induced by a 90-s

treatment with PEG and fused cells were further incubated

in the presence of cycloheximide for 5h. Mitochondria

of fused cells were analysed by confocal microscopy.

Mitochondrial fusion is indicated by extensive colocalization

of mito-GFP and mito-DsRed in control cells (Figures 3A and

B). In contrast, upon overexpression of aS colocalization was

dramatically reduced demonstrating that aS blocks mito-

chondrial fusion.

Mitochondria are known to fragment in stress situations

(Westermann, 2008; Cho et al, 2010). To exclude that

the changes in mitochondrial phenotype caused by aS
overexpression are due to a secondary stress response, we

performed control experiments to prove whether mitochon-

drial function was impaired by the expression of aS. The

membrane potential in SH-SY5Y cells expressing mito-GFP

was evaluated by TMRM fluorescence intensity of the

mitochondria. There was no difference in TMRM fluores-

cence intensity when we compared the vector control cells

with cells expressing aS (Figures 4A and B). In addition, no

reduction of ATP production was observed in cells expressing

wt-aS, aS A30P or aS A53T compared with the control-

transfected cells (Figures 4C and D).

aS enhances age-dependent mitochondrial

fragmentation in C. elegans

In line with our observations in cultured cells, when ex-

pressed in C. elegans body wall muscles (BWMs) wt-aS led to

dramatic alterations of mitochondrial morphology and

also to mitochondrial fragmentation (Figure 5). As C. elegans

BWMs contain a highly stereotyped planar arrangement

of mitochondria (Figure 5A) they are particularly suited for

the analysis of mitochondrial morphology. To visualize

mitochondria, we used the transmembrane domain of the

outer mitochondrial membrane protein TOM70 fused to CFP

(Labrousse et al, 1999). Moderate expression of aS led to the

formation of extremely thin and highly interconnected

mitochondria (Figures 5B and D) in about 20–40% of

the transgenic BWMs. However, the majority, 50–70% of

aS-expressing BWMs contained highly fragmented mitochon-

dria that are roundish in their appearance (Figures 5C and D)

in all independent transgenic strains analysed. Strikingly, a

similar mitochondrial fragmentation was observed in aged

7-day-old worms in the absence of exogenous aS expression

(Figure 5E), suggesting that mitochondrial fragmentation also

happens during the normal ageing process of the BWM tissue.

C. elegans BWMs are particularly susceptible to ageing and

have been shown to gradually and progressively deteriorate

with age (Herndon et al, 2002). C. elegans mean life span

is about 12–18 days. After reaching adulthood, C. elegans

hermaphrodites lay all their eggs within approximately 3 days

and then persist through a post-reproductive period were

senescent decline is evident (Herndon et al, 2002). As C.

elegans animals still grow after reaching adulthood, aged

BWMs were bigger in size (Figure 5E). Interestingly, ectopic

expression of aS accelerated the mitochondrial aging pheno-

type (Figures 5E and F).

aS expression also led to mitochondrial fragmentation in

neurons (Figures 5G–I). In neuronal cell bodies, we distin-

guished three categories of mitochondrial morphology:

ring-like [R], tubular [T] or fragmented [F] mitochondria.

Wild-type neurons mostly contained ring-like and long tubu-

lar mitochondria, whereas aS-expressing neurons showed

mostly fragmented mitochondria. These observations confir-

med that aS expression in living organisms leads to mito-

chondrial fragmentation in a tissue-independent manner.

aS is enriched at the mitochondrial outer membrane

To assess whether the increased mitochondrial fragmentation

seen upon aS overexpression is caused by a direct binding of

aS to mitochondrial membranes, we analysed mitochondrial

morphology and the subcellular localization of aS by high

pressure freeze (HPF) immuno-electron microscopy (EM).

We did not observe any changes in the morphology of the

mitochondrial cristae by aS expression as seen in the HPF-EM

images (Figure 6A). We detected aS by using polyclonal aS
antibodies on 90 nm thin immuno-EM sections of plastic

embedded and HPF fixed SH-SY5Y cells. Label density was
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Figure 2 Mitochondrial fragmentation imaged in SH-SY5Y cells expressing aS. (A) Images of fluorescently labelled mitochondria. The panels
display representative individual cells either control transfected (co) or transfected with wild-type aS (aS-wt), aS A30P or aS A53T. Scale
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estimated by calculating the number of gold particles per mm2

of the EM image. Three different areas were measured: the

cytosol, the inside of mitochondria and the mitochondrial

membrane. The mitochondrial membrane area was calcu-

lated as length of the membrane (mm) multiplied with

0.03 mm, because of possible shift of the gold particle of

15 nm in both directions of the membrane (Hoppert, 2003).

When aS was overexpressed, it was detected at the mitochon-

drial membrane, whereas no aS signal was found inside

mitochondria (Figures 6B and C). The amount of aS bound

to the mitochondrial membrane was evaluated statistically

(Figure 6C). About 38 gold particles were detected per

mm2 mitochondrial membrane area, whereas less than one

aS signal was detected per mm2 of cytosol. Because of the

fact that HPF immuno-EM is a post-embedding labelling

technique, the labelling intensity is usually lower than with

classical fixation pre-embedding techniques. Therefore, endo-

genous aS was near the detection limit. These findings

suggest that aS induces mitochondrial fragmentation by

direct binding to the outer mitochondrial membrane.
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Pink-1, parkin and DJ-1 rescue aS-induced changes

in mitochondrial morphology

Previously it was shown that familial PD-associated genes

can confer stress protection (Palacino et al, 2004; Clark et al,

2006; Park et al, 2006). We therefore investigated whether

Pink-1, parkin and DJ-1 protect from aS-induced mitochon-

drial fragmentation. Strikingly, coexpression of wild-type

PINK1, wild-type parkin, wild-type DJ-1 with aS rescued

the morphological phenotype caused by aS (Figure 7A). How-

ever, the mitochondrial fragmentation caused by aS over-

expression could not be rescued by coexpression of the

familial PD-associated mutants PINK1 G309D or by a parkin

mutant lacking the N-terminal ubiquitin-like domain

(D1–79), which is impaired in its ubiquitylation activity and

neuroprotective capacity (Henn et al, 2007). The synthetic

loss of function DJ-1–1 C106A mutant that prevents oxidation

at the active centre (Waak et al, 2009) also failed to rescue the

mitochondrial fragmentation (Figure 7A). Expression of wild-

type PINK1, wild-type parkin and wild-type DJ-1 and each

mutant alone did not affect mitochondrial morphology

(Figure 7B).

Downregulation of aS forces mitochondrial fusion

To further substantiate the physiological relevance of the

involvement of aS in modulating mitochondrial morphology,

we used a siRNA knockdown approach to study physiological

consequences of aS loss-of-function. As aS binds to mito-

chondria (Figure 6) (Li et al, 2007; Cole et al, 2008; Devi et al,

2008; Nakamura et al, 2008; Parihar et al, 2008), we assumed

that a loss of aS may lead to the opposite effect as observed

upon overexpression, namely to an increase of cells with

elongated mitochondria (Figure 8). Knockdown of aS by

siRNA considerably reduced aS protein levels (Figure 8C).

Under these conditions, a significant increase in the number

of cells with elongated mitochondria (13%) was observed

(Figures 8A and B). Mitochondrial tubules were extended

through the entire cell, which was rarely observed in control

transfected (4%) or untransfected cells. Expression of siRNA

resistant aS reverted this phenotype to control levels (5%),

demonstrating the specificity of the knockdown effect. In

these experiments, mitochondrial morphology was moni-

tored using the fluorescent dye DiOC6(3). Similar results

were obtained when we imaged mitochondria labelled with

mito-GFP (Supplementary Figure S5).

To independently confirm that aS suppresses mitochon-

drial fusion, we induced fragmentation via the addition of the

respiratory chain uncoupler CCCP (Ishihara et al, 2003). After

1 h, CCCP was removed and the recovery of mitochon-

drial morphology was monitored over the next 45min in

the presence of endogenous aS or upon siRNA-mediated
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knockdown of aS. After CCCP treatment, the number of

mitochondria with normal morphology was dramatically

reduced (Figure 8D). Over the next 45min in the absence of

CCCP physiological mitochondrial morphology recovered

significantly faster upon reduction of aS as in the presence

of normal aS levels. Similarly, the amount of fragmented

mitochondria dramatically increased during the 1-h treatment

with CCCP. The number of fragmented mitochondria then
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declined significantly faster in cells with reduced aS levels.

These findings therefore further support that aS directly

inhibits mitochondrial fusion.

aS-mediated mitochondrial fragmentation is

independent of mitochondrial fusion and fission

proteins

We next shifted the dynamic equilibrium of mitochondria

towards increased fusion and investigated whether this can

be antagonized by addition of aS. This was done on the one

hand by expression of the fusion-promoting proteins Mfn1,

Mfn2 and Opa1 or on the other hand by downregulation of

the fission-promoting protein Drp1. Overexpression of aS did

not affect expression levels or subcellular localization of

Mfn1, Mfn2, Opa1 or Drp1. Furthermore, no aberrant proces-

sing of Opa1 was observed (Duvezin-Caubet et al, 2006)

(Supplementary Figure S7). Nevertheless, the appearance of

a higher number of cells with elongated and highly connected

mitochondria, as observed upon expression of Mfn1, Mfn2 or

Opa1 alone was reduced by coexpression of aS (Figure 9A).

Moreover, expression of Mfn2 together with the downregula-

tion of aS had an additive effect in inducing mitochondrial

elongation (Figure 9B). Likewise, knockdown of Drp1 with

siRNA leads to an increase in elongated mitochondria, in-

dicating reduced mitochondrial fission. This increase was

significantly less when aS was overexpressed. Similarly,

elongation of mitochondria was induced by expression of

the dominant-negative Drp1 K38E mutant. Again, coexpres-

sion with aS reduced the number of cells with elongated

mitochondria (Figures 9C and D).

Discussion

Familial PD is not only caused by missense mutations within

the aS gene, but also by a gene duplication/triplication,

which leads to enhanced protein levels of aS (Singleton

et al, 2003; Ibanez et al, 2004). Moreover, in patients with

sporadic PD, an increase of aS mRNA and oligomers was

observed (Sharon et al, 2003; Chiba-Falek et al, 2006;

Grundemann et al, 2008). A polymorphism in the SNCA

promoter increases gene expression and PD susceptibility

(Maraganore et al, 2006). Two recent large genome-wide

association studies concordantly revealed that common var-

iants in SNCA increase the risk of PD (Satake et al, 2009;

Simon-Sanchez et al, 2009). aS has a high propensity to bind

to lipid membranes in vitro and multiple evidence exists

that aS may affect vesicular trafficking, Golgi structure and

mitochondrial function, although a unifying cellular mech-

anism behind these observations is not known (Cooper et al,

2006; Fujita et al, 2006; Larsen et al, 2006; Gitler et al, 2008;

Parihar et al, 2009). On the basis of biophysical studies, our

hypothesis has been that aS inhibits membrane fusion.

Undoubtedly, proteins and Ca2þ ions have an essential role

in the regulation, targeting and triggering of fusing mem-

branes in vivo (Weber et al, 1998; Nickel et al, 1999; Tamm

et al, 2003; Liu et al, 2005; Chen et al, 2006; Dennison et al,

2006; Takamori et al, 2006). However, a necessary require-

ment for any membrane fusion is mixing of the lipids

(Chernomordik et al, 1995; Chernomordik and Kozlov,

2003; Lentz, 2007; Weinreb and Lentz, 2007; Piomelli et al,

2007). High curvature of membranes causes defects in the

packing of the lipids, which are necessary to trigger the

formation of a fusion stalk (Chernomordik et al, 1995;

Dennison et al, 2006). As aS seals defects in stressed bilayers

(Kamp and Beyer, 2006), we expected that aS might inhibit

membrane fusion (see model in Figure 10). Although we

recognize that the in vitro fusion assays do not fully represent

in vivo membrane fusion events, the biophysical experiments

provided the basis for the in vivo experiments. We therefore

first studied the influence of aS binding to lipid vesicles in

vitro and in a next step investigated the effects of aS expres-

sion in the living cell and in an animal model. In this study,

aS inhibited fusion in all in vitro fusion assays applied.

Differential scanning calorimetry experiments further sup-

ported our hypothesis that aS suppresses fusion due to its

unique interaction with the membrane (Supplementary

Figure S1). In control experiments, no significant decrease

in the fusion rate was found with cytochrome c and lyso-

zyme. Thus, partial coating of the lipid/water interface by

proteins with a net positive charge affected the fusion only

marginally. Poly-lysine inhibited fusion but to a much lesser

extent compared with aS. One poly-lysine molecule contains

about 500 lysine residues. At the lipid/protein molar ratio

used, a large fraction of the outer surface would be coated by

poly-lysine. In this case, the fusion would be inhibited by

charge repulsion. In contrast, ApoA-I inhibited fusion as

efficiently as aS. As the biological function of apolipoproteins

is to stabilize plasma lipoproteins (Gursky, 2005; Cornell and

Taneva, 2006), we conclude that ApoA-I suppresses fusion of

membranes probably by a similar mechanism as aS. Finally,
fusion was also blocked with a truncated aS, lacking the

charged C-terminal domain. These observations support our

hypothesis that aS inhibits membrane fusion by stabilizing

the lipid packing of stressed bilayers, independently of other

protein factors that might be involved in the fusion machin-

ery of membranes.

Investigating in vivo effects of aS on mitochondrial fusion

was particularly interesting, as morphological changes and

Figure 5 aS expression leads to mitochondrial fragmentation in C. elegans muscles and neurons. (A) In wild-type muscles without expression
of aS, mitochondria are forming regular tubular structures. (B, C) Expression of human aS leads to changes in mitochondrial morphology,
which can be classified into two categories: (B) very thin and highly interconnected tubules and (C) fragmented vesicular mitochondria. Scale
bars¼ 10mm. (D) Quantification of the relative appearance of wild-type-like, fragmented, and thin mitochondria in independent transgenic
lines expressing aS-mYFP. Expression levels of aS-mYFP were analysed by western blot using tubulin as a loading control. All lanes originate
from the same gel. Only the lanes of those transgenic lines, which were chosen for imaging due to good penetrance and fluorescent signal, are
shown here. (E) Mitochondrial fragmentation is also observed in aged 7-day-old wild-type body wall muscles. Scale bar¼ 10mm. (F)
Mitochondrial morphologies are compared between 3 day versus 7-day-old muscles without (right graph) and with aS-mYFP expression (left
graph). (G, H) Images show TOM70-CFP-labelled mitochondria in motoneurons of young adult C. elegans. Arrowheads label neuronal cell
bodies, indicating the morphological category. The mitochondrial morphology in neuronal cell bodies was grouped into three categories: ring-
like [R], tubular [T] or fragmented [F] mitochondria. Wild-type neurons mostly contain ring-like and long tubular mitochondria (G), whereas
aS-expressing neurons show mostly fragmented mitochondria in cell bodies as well as in the axons (H). Scale bars¼ 5mm. (I) Quantification of
relative occurrence of ring-like, tubular and fragmented mitochondria and aS-mYFP expression levels.
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dysfunction of mitochondria have frequently been reported

as a consequence of a loss of function of familial PD-asso-

ciated genes such as PINK1 and parkin (Exner et al, 2007;

Dagda et al, 2009; Lutz et al, 2009; Sandebring et al, 2009).

Moreover, localization of aS to mitochondria has also been

reported (Li et al, 2007; Cole et al, 2008; Devi et al, 2008;

Nakamura et al, 2008; Parihar et al, 2008) and was confirmed

in this study. We found evidence that aS is functionally

involved in fusion of mitochondrial membranes. This was

demonstrated by different approaches: (i) when cells were

transfected with aS, a significantly larger amount of the cells

displayed fragmented mitochondria (Figure 2). Similarly,
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increased fragmentation of mitochondria was observed,

when aS was expressed in BWMs and neurons of C. elegans

(Figure 5). Interestingly, overexpression of aS accelerated a

mitochondrial phenotype associated with physiological aging

(Figure 5). As aging is a major risk factor for PD, this finding

may have fundamental implications for the understanding of

disease progression. (ii) The opposite phenotype, namely an

elongation of mitochondria, occurred upon siRNA-mediated

knockdown of aS (Figure 8). (iii) The experiment from

Figure 8D showed that re-elongation of mitochondria upon

CCCP-induced fragmentation was faster when aS levels were

suppressed by aS siRNA. (iv) Specific enrichment of aS at

mitochondrial outer membranes was visualized by immuno-

EM. Notably, under conditions of mitochondrial fragment-

ation, cristae structure and length was unchanged and

morphology was not affected on the level of EM. These

experiments support the idea that aS binds to the outer

membrane of mitochondria and inhibits or reduces their

fusion. (v) When the plasma membranes of two populations

of cells with differently coloured mitochondria were fused,

subsequent mitochondrial fusion was significantly reduced

when aS was overexpressed (Figure 3). (vi) When fusion was

elevated by overexpression of the fusion-promoting proteins

Mfn1, Mfn2 and Opa1, by downregulation of the fission-

promoting protein Drp1 or by expression of the dominant-

negative mutant Drp1-K38E, we observed a backshift of the

equilibrium towards reduced fusion by coexpression of aS.
Together, these data indicated that aS is not interacting

directly with proteins involved in fusion or fission machi-

neries. We propose that the influence of aS on mitochondrial

dynamics is based on its interaction with membrane lipids,

preventing the necessary formation of a fusion stalk, an idea

that is strongly supported by our in vitro fusion experiments.

Moreover, aS could inhibit lipid fusion events in protein-

assisted mitochondrial fusion.

An alternative explanation for the observed effects of aS
on mitochondrial dynamics would be that aS enhances

mitochondrial fission. This is unlikely as the free-energy

change involved with the structural switch of aS upon

membrane binding (Nuscher et al, 2004) is not enough to

cause fission and mitochondrial fission is a GTP requiring

event (Westermann, 2008). The experiment of Figure 3, in

which fusion of red and green labelled mitochondria in

fused cells was slower when aS was overexpressed, can

only be explained by an inhibitory effect of aS on fusion.

Furthermore, the experiment from Figure 8D showed that

re-elongation of mitochondria upon CCCP-induced fragmen-

tation was faster when cytosolic aS levels were suppressed by

aS siRNA. As during the re-elongation phase hardly any

mitochondrial fission occurs, the slower re-elongation in

the presence of aS can only be explained by a specific

inhibitory effect of aS on the fusion of mitochondrial mem-

branes. Another alternative explanation for the observed

effects of aS on mitochondrial dynamics would be that aS
expression alters the levels of expression of fission or fusion

proteins, their subcellular localizations and/or post-transla-

tional modifications. However, no such effects were observed

(Supplementary Figure S7).

We suggest that aS may have a general protective role

preventing spontaneous membrane fusion. A rather unselec-

tive lipid membrane binding of aS independent of the in-

dividual fusion machineries suggests a pleiotropic function

of aS. Indeed, there is evidence that aS directly affects

Golgi morphology as well as priming of synaptic vesicles

(Gosavi et al, 2002; Fujita et al, 2006; Larsen et al, 2006).

Interestingly, a recent genome-wide screen for yeast genes

that rescue aS-mediated toxicity revealed several conserved

genes involved in vesicular trafficking including the evolu-

tionarily conserved Rab1 GTPase Ypt1 (Cooper et al, 2006). In

subsequent experiments, the authors were also able to show

that Rab1 overexpression in the model systems C. elegans and

Drosophila melanogaster were similarly effective to amelio-

rate aS-induced cellular toxicity. In combination with in vitro

ER-to-Golgi transport assays, this strongly indicates that
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overexpression of aS affects vesicle fusion at the Golgi and

not vesicle budding at the ER (Gitler et al, 2008). According to

our data, these observations may now be attributed to the

lipid membrane-binding properties of aS rather than a genetic

interaction of aS and the Rab GTPase Ypt1. However, in a

cellular context, some organelles might be preferentially

bound by aS and binding might depend on aS expression

levels. Indeed, in our cell system, a preferential binding to

mitochondria was observed. In contrast, in embryonic hip-

pocampal neurons a mild overexpression of aS reduced

reclustering of synaptic vesicles, with no apparent change

in the rate of fusion (Nemani et al, 2010). However, it was

unclear if binding of aS to synaptic vesicles was directly

affected. Interestingly, our study revealed that the inhibition
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of mitochondrial fusion by aS could be rescued by coexpres-

sion of PINK1, Parkin or DJ-1 but not by the PD related PINK1

G309D and parkin D(–79), or by DJ-1 C106A. As PINK1,

parkin and DJ-1 have no homologues in S. cerevisiae, they

could not be found in the extended genome-wide screen

(Cooper et al, 2006; Gitler et al, 2009). Our findings are in

line with data from D. melanogaster, where aS-induced loss

of climbing activity and degeneration of the retina was

rescued by PINK1 or parkin (Haywood and Staveley, 2006;

Todd and Staveley, 2008). So far, it can only be speculated

how this beneficial effect of PINK1 and parkin could be

mediated. Obviously, PINK1, parkin and DJ-1 can function-

ally interact to maintain mitochondrial morphology and

function and to protect against adverse effects of aS over-

expression. This functional interaction does not necessarily

involve a direct interaction between these proteins, it is rather

conceivable that different pathways converge at the level of

mitochondrial integrity. As PINK1, parkin and DJ-1 are

known to protect cells against mitochondrial stress (Canet-

Aviles et al, 2004; Palacino et al, 2004; Kim et al, 2005; Clark

et al, 2006; Park et al, 2006; Exner et al, 2007; Henn et al,

2007; Wood-Kaczmar et al, 2008) they could exert a protec-

tive effect on mitochondria that counteracts negative effects

of aS accumulation. Our data do not exclude that the rescuing

effects of the recessive PD-associated genes may work via

interaction with the fusion/fission machinery.

Taken together, our findings suggest that aS gene duplica-

tions or triplications may lead to increased amounts of aS
binding to mitochondria, which inhibits mitochondrial fusion

and would therefore trigger disease pathology. In contrast,

the missense mutations may rather affect other cellular path-

ways such as aggregation (Karpinar et al, 2009; Tsika et al,

2010). Further support to our finding that altered mitochon-

drial dynamics induced by aS might contribute to PD pathol-

ogy comes from a recent finding that Pink1 and Parkin affect

mitophagy in an ubiquitination-dependent manner (Geisler

et al, 2010). Therefore, the changes in mitochondrial

dynamics and turnover might render neurons susceptible to

degeneration in PD.

Materials and methods

Chemicals
Phospholipids (1-palmityl-2-oleoyl-sn-glycero-3-phospho-choline (POPC),
dipalmitoyl-sn-glycero-3-phospho-choline (DPPC), dioleoyl-sn-glycero-
3-phosphocholine (DOPC), 1-palmityl-2-oleoyl-sn-glycero-3-phospho-
serine (POPS), dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE)
and 1-palmityl-2-oleoyl-sn-glycero-3-ethyl-phosphocholine (PCþ ))
were purchased from Avanti Polar Lipids (Alabaster, AL).
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N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-
phospho-ethanolamine (NBD-PE) and rhodamine-B 1,2-dihexadeca-
noyl-sn-glycero-3-phosphoethanolamine (Rh-PE) were purchased
from Invitrogen. Bovine Brain Sphingomyelin (BBSM), cholesterol,
Cytochrome c (MW 13kDa), Poly-L-lysine (MW 67kDa), lysozyme
(MW 14.3 kDa) and ApoA-I (MW 28.3kDa) were purchased from
Sigma. PEG octa-n-dodecylether detergent (C12E8) was purchased
from Fluka.

Protein preparations
Recombinant aS (wt-aS) was prepared, purified and desalted as
described before (Kahle et al, 2001). Lyophilized aliquots were kept
at �201C. Stock solutions of 0.1–0.2mg/ml aS were kept at 41C for
not longer than 1 week. CD and DLS showed that the protein was in
random-coil conformation and that no aggregates were present.
The construct aS1–116, lacking the last 24 amino acids from the
C-terminus was generated by PCR amplification of the aS gene with
the 50-oligonucleotide primer GGAATTCCATATGGATGTATTCATGA
AAGGACTT, and the 30-oligonucleotide primer GGAATTCCATATG
TTACATATCTTCCAGAATTCCTTCCTG containing the NdeI restric-
tion site. Amplimers were subcloned into the NdeI site of pET-5a
(Novagen, San Diego, CA), and constructs used to transform
Escherichia coli BL21 (DE3). The construct was confirmed by DNA
sequencing and the expressed mutant checked by mass spectro-
metry. Peptides aS (41–65) and aS (116–140) were purchased from
PANATecs GmbH.

A cytochrome c stock solution (1mM) in water was prepared and
calibrated with a spectrophotometer using e550�539¼ 20.1mM�1 for
reduced cytochrome c.

Vesicle preparation
SUVs were prepared by sonicating the hydrated lipids 20min
(pulsed mode 20%) under Argon at 451C above the phase
transition temperature of the lipids. SUV were usually diluted to a
final lipid concentration of o1mM to slow down spontaneous
fusion. For SUV containing a mixture of lipids, the lipids were first
mixed in chloroform. Chloroform was evaporated with nitrogen gas
and 1h vacuum. For cholesterol-containing vesicles, the lipids were
mixed in 1ml of tert-butanol. After overnight lyophilization, buffer
was added to the lipids. Lipids were always vortexed and hydrated
at least 1 h prior to sonication.

Fusion experiments using static light scattering
DPPC-SUV in phosphate buffer (20mM Na-Phosphate, 100mM KCl,
pH 7.4) were prepared as described above and diluted in a
temperature controlled, stirred fluorescence cuvet (2.5ml) to
a final lipid concentration of 600mM. Static light scattering was
measured with a Jasco FP-6300 Fluorimeter with excitation and

emission both at 500 nm. Aliquots of protein were added using a
Hamilton Syringe through a pinhole in the lid of the instrument.
Fusion was initiated by mixing quickly 15ml of a 5mM C12E8 stock
solution (final C12E8: 30mM, lipid/detergent ratio¼ 20mole/mole).

Lipid-mixing assay
We incorporated 2mole % NBD-PE and 2mole % Rhodamine-PE in
the vesicles of DPPC-SUV. In these ‘donor’ vesicles, the fluorescence
of NBD was completely quenched by Rhodamine. However, when
these vesicles fuse with a 10-fold excess of vesicles without
fluorescent probes, lipid-mixing results in dilution of the probes,
which neutralizes the quenching effect, that is the NBD-fluores-
cence increases (Struck et al, 1981). Excitation was at 450nm and
emission at 530nm. Experiments were done at a total lipid
concentration of 625 mM, and fusion was triggered with C12E8
(lipid/detergent ratio¼ 20mole/mole).

Contents-mixing assay
Vesicles A: 8mg DPPC hydrated in 1ml DPA buffer (100mM KCl,
20mM Hepes-NaOH, 75mM DPA, pH 7.4) were sonicated at 451C
for 20min under Argon. External buffer was replaced by Hepes
buffer (20mM Hepes-NaOH, 150mM KCl, pH 7.4) using a Sephadex
G75 Column, at 451C, eluting with Hepes buffer. Final lipid
concentration was about 5mM. Vesicles were stored at 451C to
prevent fusion. Vesicles B were prepared as vesicles A, except that
Terbium buffer was trapped (100mM KCl, 20mM Hepes-NaOH,
75mM Citrate, 7.5mM TbCl3, pH 7.4). Fusion experiment: stirred
cuvet at 301C with 1.75ml Hepes bufferþ 2ml 1M EDTA (final EDTA
concentration 1mM)þ 125 ml Vesicles Aþ 125 ml vesicles B (final
total lipid concentration about 625 mM). Fusion was induced by
adding 12.5 ml C12E8 stock solution (final lipid/C12E8¼ 20mole/
mole). Formation of the Tb3þ–DPA complex due to mixing of the
contents of the SUV was revealed by the Terbium fluorescence
(lem¼ 454nm, excitation at 276 nm). Any Tb3þ that had leaked to
the external buffer was bound to EDTA resulting in total suspension
of the Terbium fluorescence. The experiment was repeated in the
presence of aS (lipid/aS¼ 200mole/mole).

Calcium-induced fusion
Fusion assay: donor vesicles (POPS-SUV with 2mole % NBD-PE
and 2mole % Rhodamine PE) were mixed with a 10-fold excess of
acceptor vesicles (POPS-SUV) in 2.5ml stirred Hepes buffer (20mM
Hepes-NaOH, 100mM KCl, pH 7.4.) at RT (final donor lipid
concentration: 2mM, acceptor lipid concentration: 20 mM). Fusion
was initiated after 2min by adding 25 ml of a 100mM CaCl2 stock
solution (final CaCl2: 1mM).

Inhibition of fusionFusion stalk

αS

A B

Figure 10 Amodel of inhibition of membrane fusion by aS. (A) Formation of a fusion stalk in the absence of aS. Two membranes achieve close
proximity, possibly assisted by a docking machine (not drawn). Curvature in at least one of the fusing membranes causes stress in the packing
of the lipids (see inset, the red lipids are not ideally packed), which is necessary to enable fusion of the leaflets of the two fusing membranes
and the formation of a fusion stalk. (B) Binding of aS to curved membranes seals the packing defects and therefore inhibits the formation of a
fusion stalk.
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Spontaneous fusion of vesicles with opposite charges
measured with stop-flow fluorescence
Experiments were carried out with a Jasco J-810 CD Spectrometer
equipped with a BioLogic mSFM-20 stop-flow extension. Fluores-
cence was measured by setting the photomultiplier at 90 degree
angle and placing a 500nm cutoff filter in front of it. Excitation was
at 450nm with open slit (20nm). Donor vesicles (SUV of PCþ with
2% NBD-PE and 2% Rh-PE) were put into one syringe and acceptor
vesicles (POPS-SUV) in the other. Equal volumes of both syringes
were rapidly mixed and subsequent fluorescence changes mon-
itored after the dead time of mixing (about 8 ms). Final lipid
concentration of POPS-SUV was 50 mM and PCþ -SUV was 10mM.

PEG-induced vesicle fusion
SUV composed of DOPC:DOPE:BBSM:cholesterol (molar ratio
35:30:15:20) were prepared in phosphate buffer (20mM Na-
Phosphate, 100mM KCl, pH 7.4) by sonication. Fusion of ‘donor’
vesicles (including 2mole % NBD-PE and 2mole % Rh-PE) with a
10-fold excess of ‘acceptor’ vesicles (containing no fluorescent
lipids) was initiated by addition of 4% (w/w) of PEG (Polyethy-
leneglycol 8000).

Cell culture and transfection
SH-SY5Y human neuroblastoma cells were cultured in DMEM F-12
with glutamine (Lonza) supplemented with 15% (v/v) fetal calf
serum, non-essential amino acids (Invitrogen) and penicillin/
streptomycin. Transfection was performed with Lipofectamine/Plus
(Invitrogen) according to the manufacturer’s instructions. Vectors
for expression of aS wt, A30P and A53T mutants as described
(Hasegawa et al, 2004) and for expression of DJ-1 C106A as
described (Waak et al, 2009) were kindly provided by P Kahle
(Laboratory of Functional Neurogenetics, Hertie Institute for
Clinical Brain Research, Tübingen, Germany). The following DNA
constructs have been described before: PINK1 wt and PINK1 G309D
(Exner et al, 2007), parkin wt and parkin D1–79 (Winklhofer et al,
2003; Henn et al, 2005), DJ-1 wt (Gorner et al, 2004), Mfn2, Opa1,
Drp1(K38E)-ECFP (Harder et al, 2004; Neuspiel et al, 2005), mito-
DsRED (Okita et al, 2004). The human Mfn1 cDNA sequence
(BC040557) was obtained from Open Biosystems and subcloned
into pcDNA6A/V5-His (Invitrogen) using NheI and XhoI. bS was
subcloned into pcDNA6A/V5 using HindIII and XhoI. Mito-GFP was
purchased from Invitrogen. For RNA interference, cells were
transfected with HP-validated siRNA directed against the 30UTR of
aS or non-targeting control siRNA (Qiagen). Downregulation of
Drp1 was performed as described (Lutz et al, 2009).

Fluorescent staining of mitochondria
For visualization of mitochondria, SH-SY5Y cells were cotransfected
with mito-GFP (Invitrogen), fixed for 15min in 4% paraformalde-
hyde in phosphate-buffered saline (PBS) at room temperature.
Coverslips were mounted onto glass slides using ProLong Gold
Antifade Reagent (Invitrogen) for analysis. A series of images along
the z axis were taken with an inverted laser scanning confocal
microscope (Zeiss Axiovert 200M), with a � 100/1.4 DIC oil
immersion lens and projected into a single image using the maximal
projection tool of the LSM 510 confocal software (Zeiss). For life-cell
imaging, SH-SY5Y cells were seeded on poly-L-lysine-coated cover-
slips. On the day after transfection, cells were fluorescently labelled
with 0.1mM DiOC6(3) (Molecular Probes) in medium for 15min.
Coverslips were rinsed in PBS and living cells were analysed for
mitochondrial morphology by fluorescence microscopy using a
Leica DMRB microscope. Transfected cells were identified by
coexpression of mCherry for life-cell imaging or by coexpression
of mito-GFP. Cells that displayed a network of filamentous
mitochondria (see Figures 2A and D and 8A; control transfected)
were classified as normal, cells with a disrupted network of
mitochondria (see Figure 2A; aS wt, A30P and A53T and Figure 2D
aS and bS) were classified as fragmented, cells with much extended
mitochondrial tubules were classified as elongated (see Figure 8A;
siRNA aS). Data are mean values of at least three independent
experiments. Fragmentation was induced by incubation of cells in
10 mM carbonyl cyanide 3-chlorophenylhydrazone (CCCP) for 1 h.
The medium was replaced by fresh medium without CCCP and after
different time points cells were fixed and mounted onto glass slides.
Cells that displayed a network of filamentous mitochondria were
classified as normal, cells with fragmented or partially re-elongated
mitochondria were classified as fragmented.

Measurement of mitochondrial membrane potential with
TMRM
SH-SY5Y cells were seeded on poly-L-lysine-coated coverslips. On
the day after transfection, cells were fluorescently labelled with
20nM TMRM (Molecular Probes) in imaging buffer (116mM NaCl,
5.4mM KCl, 0.4mM MgSO4, 20mM HEPES, 0.9mM Na2HPO4,
1.2mM CaCl2, 10mM glucose, 20mM taurine, 5mM pyruvate, pH
7.4) for 60min at room temperature as described (Davidson et al,
2007). Pictures were taken with an inverted laser scanning confocal
microscope (Zeiss LSM 510 Meta) with a � 100/1.4 DIC oil
immersion lens at lowest setting of the HeNe (543 nm) laser. The
intensity of the TMRM signal in the area of mito-GFP and TMRM
signal colocalization was measured in life cells using the LSM 510
confocal software (Zeiss).

Measurement of cellular ATP levels
Cellular steady-state ATP levels were measured using the ATP
Bioluminescence assay kit HS II (Roche Applied Science) according
to the manufacturer’s instructions. SH-SY5Y cells were plated on
six-well plates. After 24 h, cells were transfected using Lipofecta-
mine/Plus (Invitrogen) with the indicated DNA constructs. At 20h
before harvesting cells, the culture medium was replaced by
medium containing 3mM glucose. Cells were washed twice with
PBS, scraped off the plate, and lysed according to the provided
protocol. Bioluminescence of the samples was determined using an
LB96V luminometer (Berthold Technologies), analysed with Win-
Glow Software (Berthold Technologies) and normalized to total
protein levels. Each transfection was performed in duplicate, and all
experiments were repeated at least five times.

PEG cellular fusion assay
SH-SY5Y cells were transiently transfected with either mitochond-
rially targeted green fluorescent protein (mito-GFP) or mitochond-
rially targeted DsRED (mito-RFP) and either empty vector or aS. At
8 h after transfection, cells were coplated (ratio 1:1) on coverslips
and cocultivated for 16 h. Then, fusion of cocultured cells
was induced by a 90-s treatment with a pre-warmed solution of
50% (w/v) PEG 3350 in PBS, followed by extensive washing with
pre-warmed PBS. After additional cocultivation for 5 h in cell
culture medium, cells were fixed with 3.7% (v/v) formaldehyde in
PBS. After two washes with PBS, coverslips were mounted and then
analysed using confocal microscopy (Zeiss LSM 510 Meta) in a
blinded manner. To inhibit de novo synthesis of fluorescent
proteins, 30min before PEG treatment cells were incubated with
the protein synthesis inhibitor cyclohexymide (40 mg/ml), which
was subsequently added to all solutions and tissue culture media
until the cells were fixed. Cell hybrids from two independent
experiments were analysed in a blinded manner for mitochondrial
fusion using Zeiss LSM 510 Meta Software. Per experiment at least
40 cell hybrids were analysed. The percent mitochondrial fusion
indicates the rate of overlap between green and red mitochondrially
targeted fluorescent proteins expressed in one cell hybrid.

Antibodies
Protein expression was controlled by separation of 0.25% Triton
X-100 cell lysates on SDS gels, followed by immunoblotting with the
following antibodies: aS rat monoclonal antibody against human aS
(116–131) peptide MPVDPDNEAYEMPSEE, (Kahle et al, 2000),
PINK1 polyclonal antibody BC100–494 (Novus Biologicals), parkin
polyclonal antibody 2132 (Cell Signaling), DJ-1 rabbit polyclonal
antiserum 3407 (Gorner et al, 2007), Mfn1 polyclonal antibody
(Novus Biologicals), Mfn2 polyclonal antibody (Sigma), Opa1
polyclonal antibody (Duvezin-Caubet et al, 2006) Drp1 monoclonal
antibody (BD Transduction Laboratories), Tim23 monoclonal anti-
body (BD Bioscience), calreticulin polyclonal antibody (Calbio-
chem), V5 monoclonal antibody (Invitrogen), calnexin poly-
clonal antibody (StressGen), GFP mouse monoclonal (Roche) and
b-actin monoclonal antibody (Sigma). Bound antibodies were
detected with the enhanced chemiluminescence detection system
(Amersham) or the Immobilon western chemoluminescent HRP
substrate (Millipore).

Statistical analysis
Statistical analysis was carried out using ANOVA (*Pp0.05;
**Pp0.01; ***Pp0.001).
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C. elegans: generation of transgenic animals, fluorescence
microscopy
C. elegans strains were cultured at 201C as described previously
(Karpinar et al, 2009). To express human aS in C. elegans BWMs, aS
was fused to mYFP citrine at the C-terminus and cloned under the
control of the myo-3-promoter in the expression vector pPD115.62
(Pmyo-3Hgfp, kindly provided by A Fire) replacing gfp (Karpinar
et al, 2009). C-terminal fusion of aS with YFP has been used before
and it has been shown that it does not significantly change the
structure of the protein or its aggregation properties (van Ham et al,
2010). To create transgenic C. elegans expressing the mitochondrial
marker TOM70-CFP in muscle cells, an injection mix containing
Pmyo-3Htom70-cfp (5 ng/ml, kindly provided by A van der Bliek,
UCLA) and the coinjection-marker pRF4 (rol-6(su1006sd); 40 ng/ml)
was injected into the gonads of young adults as described (Mello
et al, 1991). To create transgenic worms expressing aS-YFP in
addition to the mitochondrial marker, worms were injected with a
plasmid mix additionally containing Pmyo-3HaS-yfp (55 ng/ml for
gzEx119 and 30ng/ml for gzEx120 and gzEx121). All injection mixes
were adjusted to a total DNA concentration of 100 ng/ml by addition
of pBluescript II (Stratagene). Transgenic animals were imaged on
the first day of adulthood while being anaesthetized with 50mM
NaN3 in M9 buffer and mounted on 2% agarose pads. Imaging
was performed using an UltraviewVox spinning disk microscope
(Perkin Elmer) with a � 100/1.40 oil immersion objective. The
morphological appearance of mitochondria in BWMs of transgenic
strains were classified into three categories: (i) wild-type like,
(ii) fragmented or (iii) thin and highly interconnected. The
classification was done on z-stacks, which were projected into a
single plane using the extended focus tool of the Volocity software
(Perkin Elmer).

In order to analyse the changes in mitochondrial morphology
occurring during aging, we compared the mitochondrial morphol-
ogy in muscle cells of young adult worms (3 days after hatching)
with that of worms in the post-reproductive stage (7 days after
hatching).

For neuronal expression, the myo3-promoter in was replaced by
the neuronal rab-3-promoter creating Prab-3Htom70-cfp (5 ng/ml)
and Prab-3HaS-yfp (30ng/ml), respectively (the respective plasmid
concentrations in the injection mixes are indicated). Motor neu-
rons were imaged as described previously for BWMs. Mitochondrial
appearance in neuronal cell bodies was classified into three
categories: as (i) ring-like, (ii) tubular or (iii) highly fragmented.
aS expression levels were determined by western blotting using
either a polyclonal rabbit aS antibody (Anaspec) or monoclonal rat
aS antibody 15G7 and normalized against a-tubulin using the
monoclonal mouse antibody 12G10 (DSHB).

Electron microscopy
Culture cells were grown on Thermonox discs and mounted
between two 10 mm deep aluminium platelets (Microscopy Services,
Flintbek) and immediately frozen using a BalTec HPM 10. Freeze
substitution was carried out in a Leica AFS2. For morphological
investigations, incubations were at �901C for 100h in 0.1% tannic
acid, 7 h in 2% OsO4, and at �201C for 16 h in 2% OsO4, followed
by embedding in EPON at RT. For immunostaining, incubations
were at �901C for 100h in 1.5% uranyl acetate, followed
by embedding in Lowicryl HM20 at �451C (Rostaing et al, 2004)
(all solutions w/v in dry acetone). EPON sections were 50 nm,
Lowicryl sections 90 nm. Lowicryl sections were stained with anti-
synuclein antibodies (rabbit, AnaSpec Inc.) and 10nm Goat-anti-
rabbit-gold. Washing was done on 50mM PBS with 0.05%
Tween20. In all, 50 nm EPON sections were post-stained with
saturated uranyl acetate in 75% methanol and 4% lead citrate
(Reynolds, 1963). In all, 90 nm Lowicryl sections were post-stained
with 6% phoshotungstic acid. Micrographs were taken with a
1024�1024 CCD detector (Proscan CCD HSS 512/1024; Proscan
Electronic Systems, Scheuring, Germany) in a Zeiss EM 902A,
operated in the bright field mode.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Dorothea-Schlözer-Programm of the Georg-August-Universität
Göttingen. We thank Sabine Odoy for excellent technical assistance,
P Kahle and H McBride for providing plasmids, the Hans and Ilse
Breuer Foundation for the confocal microscope and M Klingenberg
and H Steiner for critical discussions of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH,
Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A,
Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking
alpha-synuclein display functional deficits in the nigrostriatal
dopamine system. Neuron 25: 239–252

Ben Gedalya T, Loeb V, Israeli E, Altschuler Y, Selkoe DJ, Sharon R
(2009) Alpha-synuclein and polyunsaturated fatty acids promote
clathrin-mediated endocytosis and synaptic vesicle recycling.
Traffic 10: 218–234

Beyer K (2007) Mechanistic aspects of Parkinson’s disease.
a-synuclein and the biomembrane. Cell Biochem Biophys 47:
285–299

Bodner CR, Dobson CM, Bax A (2009) Multiple tight phospholipid-
binding modes of alpha-synuclein revealed by solution NMR
spectroscopy. J Mol Biol 390: 775–790

Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain
KL, Orrison B, Chen A, Ellis CE, Paylor R, Lu B, Nussbaum RL
(2002) Synaptic vesicle depletion correlates with attenuated
synaptic responses to prolonged repetitive stimulation in mice
lacking alpha-synuclein. J Neurosci 22: 8797–8807

Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C,
Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR
(2004) The Parkinson’s disease protein DJ-1 is neuroprotective
due to cysteine-sulfinic acid-driven mitochondrial localization.
Proc Natl Acad Sci USA 101: 9103–9108

Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X, Hammer
RE, Battaglia G, German DC, Castillo PE, Sudhof TC (2004) Double-
knockout mice for alpha- and beta-synucleins: effect on synaptic
functions. Proc Natl Acad Sci USA 101: 14966–14971

Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof
TC (2005) Alpha-synuclein cooperates with CSPalpha in prevent-
ing neurodegeneration. Cell 123: 383–396

Chen M, Margittai M, Chen J, Langen R (2007) Investigation
of alpha-synuclein fibril structure by site-directed spin labeling.
J Biol Chem 282: 24970–24979

Chen X, Arac D, Wang TM, Gilpin CJ, Zimmerberg J, Rizo J (2006)
SNARE-mediated lipid mixing depends on the physical state of
the vesicles. Biophys J 90: 2062–2074

Chernomordik L, Kozlov MM, Zimmerberg J (1995) Lipids
in biological membrane fusion. J Membr Biol 146: 1–14

Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay
in fusion and fission of biological membranes. Annu Rev
Biochem 72: 175–207

Chiba-Falek O, Lopez GJ, Nussbaum RL (2006) Levels of alpha-
synuclein mRNA in sporadic Parkinson disease patients. Mov
Disord 21: 1703–1708

Cho DH, Nakamura T, Lipton SA (2010) Mitochondrial dynamics in
cell death and neurodegeneration. Cell Mol Life Sci (in press)

Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay
BA, Guo M (2006) Drosophila pink1 is required for mitochondrial

a-Synuclein inhibits mitochondrial fusion
F Kamp et al

The EMBO Journal VOL 29 | NO 20 | 2010 &2010 European Molecular Biology Organization3586

73



function and interacts genetically with parkin. Nature 441:
1162–1166

Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL (2008)
Mitochondrial translocation of alpha-synuclein is promoted by
intracellular acidification. Exp Cell Res 314: 2076–2089

Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B,
Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell
GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM,
Lindquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and
Rab1 rescues neuron loss in Parkinson’s models. Science 313:
324–328

Cornell RB, Taneva SG (2006) Amphipathic helices as mediators
of the membrane interaction of amphitropic proteins, and as
modulators of bilayer physical properties. Curr Protein Pept Sci
7: 539–552

Dagda RK, Cherra III SJ, Kulich SM, Tandon A, Park D, Chu CT
(2009) Loss of PINK1 function promotes mitophagy through
effects on oxidative stress and mitochondrial fission. J Biol
Chem 284: 13843–13855

Davidson SM, Yellon D, Duchen MR (2007) Assessing mitochondrial
potential, calcium, and redox state in isolated mammalian cells
using confocal microscopy. Methods Mol Biol 372: 421–430

Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization
of a-synuclein secondary structue upon bindung to synthetic
membranes. J Biol Chem 273: 9443–9449

Dennison SM, Bowen ME, Brunger AT, Lentz BR (2006) Neuronal
SNAREs do not trigger fusion between synthetic membranes
but do promote PEG-mediated membrane fusion. Biophys J 90:
1661–1675

Der-Sarkissian A, Jao CC, Chen J, Langen R (2003) Structural
organization of a-synuclein fibrils studied by site-directed spin
labeling. J Biol Chem 278: 37530–37535

Derksen A, Gantz D, Small DM (1996) Calorimetry of apolipopro-
tein-A1 binding to phosphatidylcholine-triolein-cholesterol emul-
sions. Biophys J 70: 330–338

Detmer SA, Chan DC (2007) Functions and dysfunctions of mito-
chondrial dynamics. Nat Rev Mol Cell Biol 8: 870–879

Devi L, Raghavendran V, Prabhu BM, Avadhani NG,
Anandatheerthavarada HK (2008) Mitochondrial import and
accumulation of {alpha}-sy. J Biol Chem 283: 9089–9100

Dobson CM (2003) Protein folding and misfolding. Nature 426:
884–890

Drescher M, Godschalk F, Veldhuis G, van Rooijen BD,
Subramaniam V, Huber M (2008a) Spin-label EPR on alpha-
synuclein reveals differences in the membrane binding affinity
of the two antiparallel helices. Chembiochem 9: 2411–2416

Drescher M, Veldhuis G, van Rooijen BD, Milikisyants S,
Subramaniam V, Huber M (2008b) Antiparallel arrangement of
the helices of vesicle-bound alpha-synuclein. J Am Chem Soc 130:
7796–7797

Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A,
Hansson A, Chomyn A, Bauer MF, Attardi G, Larsson NG,
Neupert W, Reichert AS (2006) Proteolytic processing of OPA1
links mitochondrial dysfunction to alterations in mitochondrial
morphology. J Biol Chem 281: 37972–37979

Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C, Gispert S,
Carballo-Carbajal I, Berg D, Hoepken HH, Gasser T, Kruger R,
Winklhofer KF, Vogel F, Reichert AS, Auburger G, Kahle PJ,
Schmid B, Haass C (2007) Loss-of-function of human PINK1
results in mitochondrial pathology and can be rescued by parkin.
J Neurosci 27: 12413–12418

Ferreon AC, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of
alpha-synuclein binding and conformational switching probed
by single-molecule fluorescence. Proc Natl Acad Sci USA 106:
5645–5650

Fujita Y, Ohama E, Takatama M, Al-Sarraj S, Okamoto K (2006)
Fragmentation of Golgi apparatus of nigral neurons with alpha-
synuclein-positive inclusions in patients with Parkinson’s dis-
ease. Acta Neuropathol 112: 261–265

Gaber BP, Sheridan JP (1982) Kinetic and thermodynamic studies of
the fusion of small unilamellar phospholipid vesicles. Biochim
Biophys Acta 685: 87–93

Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle
PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is
dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12: 119–131

Giannakis E, Pacifico J, Smith DP, Hung LW, Masters CL,
Cappai R, Wade JD, Barnham KJ (2008) Dimeric structures of

alpha-synuclein bind preferentially to lipid membranes. Biochim
Biophys Acta 1778: 1112–1119

Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ,
Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM, Barlowe C,
Lindquist S (2008) The Parkinson’s disease protein alpha-synu-
clein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA
105: 145–150

Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill
KJ, Caldwell KA, Caldwell GA, Cooper AA, Rochet JC, Lindquist S
(2009) Alpha-synuclein is part of a diverse and highly conserved
interaction network that includes PARK9 and manganese toxicity.
Nat Genet 41: 308–315

Gorner K, Holtorf E, Odoy S, Nuscher B, Yamamoto A, Regula JT,
Beyer K, Haass C, Kahle PJ (2004) Differential effects of
Parkinson’s disease-associated mutations on stability and folding
of DJ-1. J Biol Chem 279: 6943–6951

Gorner K, Holtorf E, Waak J, Pham TT, Vogt-Weisenhorn DM,
Wurst W, Haass C, Kahle PJ (2007) Structural determinants of
the C-terminal helix-kink-helix motif essential for protein
stability and survival promoting activity of DJ-1. J Biol Chem
282: 13680–13691

Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ (2002) Golgi fragmentation
occurs in the cells with prefibrillar alpha-synuclein aggregates
and precedes the formation of fibrillar inclusion. J Biol Chem 277:
48984–48992

Grundemann J, Schlaudraff F, Haeckel O, Liss B (2008) Elevated
alpha-synuclein mRNA levels in individual UV-laser-microdis-
sected dopaminergic substantia nigra neurons in idiopathic
Parkinson’s disease. Nucleic Acids Res 36: e38

Gursky O (2005) Apolipoprotein structure and dynamics. Curr Opin
Lipidol 16: 287–294

Haass C, Selkoe DJ (2007) Soluble protein oligomers in neuro-
degeneration: lessons from the Alzheimer0s amyloid beta-peptide.
Nat Rev Mol Cell Biol 8: 101–112

Haque ME, McIntosh TJ, Lentz BR (2001) Influence of lipid compo-
sition on physical properties and PEG-mediated fusion of curved
and uncurved model membrane vesicles: ‘nature’s own fusogenic
lipid bilayer’. Biochemistry 40: 4340–4348

Harder Z, Zunino R, McBride H (2004) Sumo1 conjugates mito-
chondrial substrates and participates in mitochondrial fission.
Curr Biol 14: 340–345

Hasegawa T, Matsuzaki M, Takeda A, Kikuchi A, Akita H, Perry G,
Smith MA, Itoyama Y (2004) Accelerated alpha-synuclein
aggregation after differentiation of SH-SY5Y neuroblastoma
cells. Brain Res 1013: 51–59

Haywood AF, Staveley BE (2006) Mutant alpha-synuclein-induced
degeneration is reduced by parkin in a fly model of Parkinson’s
disease. Genome 49: 505–510

Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener
E, Nakaso K, Culmsee C, Berninger B, Krappmann D, Tatzelt J,
Winklhofer KF (2007) Parkin mediates neuroprotection through
activation of IkappaB kinase/nuclear factor-kappaB signaling.
J Neurosci 27: 1868–1878

Henn IH, Gostner JM, Lackner P, Tatzelt J, Winklhofer KF (2005)
Pathogenic mutations inactivate parkin by distinct mechanisms.
J Neurochem 92: 114–122

Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner
KM, Sakano Y, Paupard MC, Hall DH, Driscoll M (2002)
Stochastic and genetic factors influence tissue-specific decline
in ageing C. elegans. Nature 419: 808–814

Hoppert M (2003) Microscopic Techniques in Biotechnology.
Weinheim: Wiley-VCH

Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M,
Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) alpha-
synuclein promotes mitochondrial deficit and oxidative stress.
Am J Pathol 157: 401–410

Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P,
Agid Y, Durr A, Brice A (2004) Causal relation between alpha-
synuclein gene duplication and familial Parkinson’s disease.
Lancet 364: 1169–1171

Ishihara N, Jofuku A, Eura Y, Mihara K (2003) Regulation
of mitochondrial morphology by membrane potential, and
DRP1-dependent division and FZO1-dependent fusion reaction
in mammalian cells. Biochem Biophys Res Commun 301:
891–898

Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA,
Kittel A, Saitoh T (1995) The precursor protein of non-A beta

a-Synuclein inhibits mitochondrial fusion
F Kamp et al

&2010 European Molecular Biology Organization The EMBO Journal VOL 29 | NO 20 | 2010 3587

74



component of Alzheimer0s disease amyloid is a presynaptic
protein of the central nervous system. Neuron 14: 467–475

Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure
of membrane-bound alpha-synuclein from site-directed spin
labeling and computational refinement. Proc Natl Acad Sci USA
105: 19666–19671

Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998)
Binding of alpha-synuclein to brain vesicles is abolished
by familial Parkinson’s disease mutation. J Biol Chem 273:
26292–26294

Jo E, Darabie AA, Han K, Tandon A, Fraser PE, McLaurin J (2004)
alpha-Synuclein-synaptosomal membrane interactions: implica-
tions for fibrillogenesis. Eur J Biochem 271: 3180–3189

Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H,
Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst
A, Kremmer E, Kretzschmar HA, Haass C (2000) Subcellular
localization of wild-type and Parkinson’s disease-associated
mutant alpha-synuclein in human and transgenic mouse brain.
J Neurosci 20: 6365–6373

Kahle PJ, Neumann M, Ozmen L, Müller V, Odoy S, Okamoto N,
Jacobsen H, Iwatsubo T, Trojanowski JQ, Takahashi H,
Wakabayashi K, Bogdanovic N, Riederer P, Kreschmar HA,
Haass C (2001) Selective insolubility of alpha-synuclein in
human Lewy Body diseases is recapitulated in a transgenic
mouse model. Am J Pathol 159: 2215–2225

Kamp F, Beyer K (2006) Binding of a-synuclein affects the lipid
packing in bilayers of small vesicles. J Biol Chem 281: 9251–9259

Karpinar DP, Balija MB, Kugler S, Opazo F, Rezaei-Ghaleh N,
Wender N, Kim HY, Taschenberger G, Falkenburger BH, Heise
H, Kumar A, Riedel D, Fichtner L, Voigt A, Braus GH, Giller K,
Becker S, Herzig A, Baldus M, Jackle H et al (2009) Pre-fibrillar
alpha-synuclein variants with impaired beta-structure increase
neurotoxicity in Parkinson’s disease models. EMBO J 28:
3256–3268

Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall
J, Glabe C (2009) Annular protofibrils are a structurally and
functionally distinct type of amyloid oligomer. J Biol Chem 284:
4230–4237

Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S,
Wakeham A, You-Ten AJ, Kalia SK, Horne P, Westaway D, Lozano
AM, Anisman H, Park DS, Mak TW (2005) Hypersensitivity of DJ-
1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrin-
dine (MPTP) and oxidative stress. Proc Natl Acad Sci USA 102:
5215–5220

Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y,
Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998)
Mutations in the parkin gene cause autosomal recessive juvenile
parkinsonism. Nature 392: 605–608

Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A,
Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan
W, Ross CA, Kretzschmar H, Giese A (2008) Single-particle
characterization of iron-induced pore-forming alpha -synuclein
oligomers. J Biol Chem 283: 10992–11003

Kramer ML, Schulz-Schaeffer WJ (2007) Presynaptic alpha-synu-
clein aggregates, not Lewy bodies, cause neurodegeneration in
dementia with Lewy bodies. J Neurosci 27: 1405–1410

Labrousse AM, Zappaterra MD, Rube DA, VanderBliek AM (1999)
C. elegans dynamin-related protein DRP-1 controls severing of the
mitochondrial outer membrane. Mol Cell 4: 815–826

Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi
AZ, Savalle M, Nemani V, Chaudhry FA, Edwards RH, Stefanis L,
Sulzer D (2006) a-Synuclein overexpression in PC12 and chro-
maffin cells impairs catecholamine release by interfering with a
late step in exocytosis. J Neurosci 26: 11915–11922

Lee HJ, Khoshaghideh F, Lee S, Lee SJ (2006) Impairment of
microtubule-dependent trafficking by overexpression of alpha-
synuclein. Eur J Neurosci 24: 3153–3162

Lee HJ, Khoshaghideh F, Patel S, Lee SJ (2004a) Clearance of alpha-
synuclein oligomeric intermediates via the lysosomal degradation
pathway. J Neurosci 24: 1888–1896

Lee JC, Langen R, Hummel PA, Gray HB, Winkler JR (2004b) Alpha-
synuclein structures from fluorescence energy-transfer kinetics:
implications for the role of the protein in Parkinson’s disease.
Proc Natl Acad Sci USA 101: 16466–16471

Lei G, MacDonald RC (2003) Lipid bilayer vesicle fusion: inter-
mediates captured by high-speed microfluorescence spectro-
scopy. Biophys J 85: 1585–1599

Lentz BR (2007) PEG as a tool to gain insight into membrane fusion.
Eur Biophys J 36: 315–326

Li WW, Yang R, Guo JC, Ren HM, Zha XL, Cheng JS, Cai DF (2007)
Localization of alpha-synuclein to mitochondria within midbrain
of mice. Neuroreport 18: 1543–1546

Liu T, Tucker WC, Bhalla A, Chapman ER, Weisshaar JC (2005)
SNARE-driven, 25-millisecond vesicle fusion in vitro. Biophys J
89: 2458–2472

Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Laemmermann K,
Brunner B, Kurz-Drexler A, Vogel F, Reichert AS, Bouman L, Vogt-
Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer KF (2009)
Loss of parkin or PINK1 function increases DRP1-dependent
mitochondrial fragmentation. J Biol Chem 284: 22938–22951

Malka F, Aure K, Goffart S, Spelbrink JN, Rojo M (2007)
The mitochondria of cultured mammalian cells: I. Analysis by
immunofluorescence microscopy, histochemistry, subcellular
fractionation, and cell fusion. Methods Mol Biol 372: 3–16

Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP,
Kruger R, Rocca WA, Schneider NK, Lesnick TG, Lincoln SJ,
Hulihan MM, Aasly JO, Ashizawa T, Chartier-Harlin MC,
Checkoway H, Ferrarese C, Hadjigeorgiou G, Hattori N,
Kawakami H, Lambert JC et al (2006) Collaborative analysis of
alpha-synuclein gene promoter variability and Parkinson disease.
JAMA 296: 661–670

Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a
neuron-specific protein localized to the nucleus and presynaptic
nerve terminal. J Neurosci 8: 2804–2815

Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA,
Price DL, Lee MK (2006) Parkinson’s disease alpha-synuclein
transgenic mice develop neuronal mitochondrial degeneration
and cell death. J Neurosci 26: 41–50

Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient
gene transfer in C. elegans: extrachromosomal maintenance and
integration of transforming sequences. EMBO J 10: 3959–3970

Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant
M, Haddad D, Frezza C, Mandemakers W, Vogt-Weisenhorn D,
Van Coster R, Wurst W, Scorrano L, De Strooper B (2009)
Parkinson’s disease mutations in PINK1 result in decreased
complex I activity and deficient synaptic function. EMBO Mol
Med 1: 99–111

Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins
are developmentally expressed, and alpha-synuclein regulates the
size of the presynaptic vesicular pool in primary hippocampal
neurons. J Neurosci 20: 3214–3220

Nakamura K, Nemani VM, Wallender EK, Kaehlcke K, Ott M,
Edwards RH (2008) Optical reporters for the conformation of
alpha-synuclein reveal a specific interaction with mitochondria.
J Neurosci 28: 12305–12317

Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MJ,
Chaudhry FA, Nicoli RA, Edwards RH (2010) Increased expression
of alpha-synuclein reduces neurotransmitter release by inhibiting
synaptic vesicle reclustering after endocytosis. Neuron 65: 66–79

Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H (2005)
Activated mitofusin 2 signals mitochondrial fusion, interferes
with Bax activation, and reduces susceptibility to radical induced
depolarization. J Biol Chem 280: 25060–25070

Nickel W, Weber T, McNew JA, Parlati F, Sollner TH, Rothman JE
(1999) Content mixing and membrane integrity during membrane
fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc
Natl Acad Sci USA 96: 12571–12576

Niemann A, Ruegg M, La Padula V, Schenone A, Suter U (2005)
Ganglioside-induced differentiation associated protein 1 is a
regulator of the mitochondrial network: new implications for
Charcot-Marie-Tooth disease. J Cell Biol 170: 1067–1078

Nuscher B, Kamp F, Mehnert T, Odoy S, Haass C, Kahle PJ, Beyer K
(2004) a-synuclein has a high affinity for packing defects in a
bilayer membrane. A thermodynamics study. J Biol Chem 21:
21966–21975

Okita C, Sato M, Schroeder T (2004) Generation of optimized yellow
and red fluorescent proteins with distinct subcellular localization.
Biotechniques 36: 418–422, 424

Orth M, Tabrizi SJ, Schapira AH, Cooper JM (2003) Alpha-synuclein
expression in HEK293 cells enhances the mitochondrial sensitiv-
ity to rotenone. Neurosci Lett 351: 29–32

Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M,
Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative
damage in parkin-deficient mice. J Biol Chem 279: 18614–18622

a-Synuclein inhibits mitochondrial fusion
F Kamp et al

The EMBO Journal VOL 29 | NO 20 | 2010 &2010 European Molecular Biology Organization3588

75



Pantazatos DP, MacDonald RC (1999) Directly observed membrane
fusion between oppositely charged phospholipid bilayers.
J Membr Biol 170: 27–38

Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008)
Mitochondrial association of alpha-synuclein causes oxidative
stress. Cell Mol Life Sci 65: 1272–1284

Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2009)
Alpha-synuclein overexpression and aggregation exacerbates im-
pairment of mitochondrial functions by augmenting oxidative
stress in human neuroblastoma cells. Int J Biochem Cell Biol 41:
2015–2024

Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M,
Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila
PINK1 mutants is complemented by parkin. Nature 441:
1157–1161

Perlmutter JD, Braun AR, Sachs JN (2009) Curvature dynamics of a-
synuclein familial Parkinson disease mutants: molecular simula-
tions of the micelle- and bilayer-bound forms. J Biol Chem 284:
7177–7189

Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist’s guide to
lipidomics. Nat Rev 8: 743–754

Ramakrishnan M, Jensen PH, Marsh D (2006) Association of alpha-
synuclein and mutants with lipid membranes: spin-label ESR and
polarized IR. Biochemistry 45: 3386–3395

Reynolds ES (1963) The use of lead citrate at high pH as an electron-
opaque stain in electron microscopy. J Cell Biol 17: 208–212

Rostaing P, Weimer RM, Jorgensen EM, Triller A, Bessereau JL
(2004) Preservation of immunoreactivity and fine structure of
adult C. elegans tissues using high-pressure freezing. J Histochem
Cytochem 52: 1–12

Sandebring A, Thomas KJ, Beilina A, van der Brug M, Cleland MM,
Ahmad R, Miller DW, Zambrano I, Cowburn RF, Behbahani H,
Cedazo-Minguez A, Cookson MR (2009) Mitochondrial altera-
tions in PINK1 deficient cells are influenced by calcineurin-
dependent dephosphorylation of dynamin-related protein 1.
PLoS One 4: e5701

Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M,
Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H,
Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H,
Sakoda S, Yamamoto M, Hattori N, Murata M et al (2009)
Genome-wide association study identifies common variants at
four loci as genetic risk factors for Parkinson’s disease. Nat Genet
41: 1303–1307

Schullery SE, Schmidt CF, Felgner P, Tillack TW, Thompson TE
(1980a) Fusion of dipalmitoylphosphatidylcholine vesicles.
Biochemistry 19: 3919–3923

Schullery SE, Schmidt CF, Felgner P, Tillack TW, Thompson TE
(1980b) Fusion of dipalmitoylphosphatidylcholine vesicles.
Biochemistry 19: 3919–3923

Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA,
Selkoe DJ (2003) The formation of highly soluble oligomers of
a-synuclein is regulated by fatty acids and enhanced in
Parkinson’s disease. Neuron 37: 583–595

Shavali S, Brown-Borg HM, Ebadi M, Porter J (2008) Mitochondrial
localization of alpha-synuclein protein in alpha-synuclein over-
expressing cells. Neurosci Lett 439: 125–128

Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D,
Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R,
Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA,
Illig T, Gieger C, Houlden H et al (2009) Genome-wide association
study reveals genetic risk underlying Parkinson’s disease. Nat
Genet 41: 1308–1312

Singleton AB, Farrer M, Johnson J, Singleton A, Hague S,
Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R,
Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C,
Cookson MR, Muenter M, Baptista M, Miller D, Blancato J et al
(2003) alpha-Synuclein locus triplication causes Parkinson’s
disease. Science 302: 841

Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL,
Dawson TM, Ross CA (2005) Endoplasmic reticulum stress and
mitochondrial cell death pathways mediate A53T mutant alpha-
synuclein-induced toxicity. Hum Mol Genet 14: 3801–3811

Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R,
Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:
839–840

Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance
energy transfer to monitor membrane fusion. Biochemistry 20:
4093–4099

Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D,
Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner
B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y,
Klingauf J, Grubmuller H, Heuser J et al (2006) Molecular
anatomy of a trafficking organelle. Cell 127: 831–846

Tamm LK, Crane J, Kiessling V (2003) Membrane fusion: a structur-
al perspective on the interplay of lipids and proteins. Curr Opin
Struct Biol 13: 453–466

Todd AM, Staveley BE (2008) Pink1 suppresses alpha-synuclein-
induced phenotypes in a Drosophila model of Parkinson’s dis-
ease. Genome 51: 1040–1046

Trexler A, Rhoades E (2009) a-Synuclein binds large unilamellar
vesicles as an extended helix. Biochemistry 48: 2304–2306

Tsika E, Moysidou M, Guo J, Cushman M, Gannon P,
Sandaltzopoulos R, Giasson BI, Krainc D, Ischiropoulos H,
Mazzulli JR (2010) Distinct region-specific alpha-synuclein oligo-
mers in A53T transgenic mice: implications for neurodegenera-
tion. J Neurosci 30: 3409–3418

Ulmer TS, Bax A (2005) Comparison of structure and dynamics of
micelle-bound human alpha-synuclein and Parkinson disease
variants. J Biol Chem 280: 43179–43187

Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and
dynamics of micelle-bound human alpha-synuclein. J Biol Chem
280: 9595–9603

Uversky VN (2002) What does it mean to be natively unfolded? Eur
J Biochem 269: 2–12

Uversky VN (2007) Neuropathology, biochemistry, and biophysics
of alpha-synuclein aggregation. J Neurochem 103: 17–37

Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K,
Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese
A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S,
Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B
et al (2004) Hereditary early-onset Parkinson’s disease caused by
mutations in PINK1. Science 304: 1158–1160

van Ham TJ, Esposito A, Kumita JR, Hsu ST, Kaminski Schierle GS,
Kaminski CF, Dobson CM, Nollen EA, Bertoncini CW (2010)
Towards multiparametric fluorescent imaging of amyloid forma-
tion: studies of a YFP model of alpha-synuclein aggregation.
J Mol Biol 395: 627–642

Waak J, Weber SS, Gorner K, Schall C, Ichijo H, Stehle T, Kahle PJ
(2009) Oxidizable residues mediating protein stability and cyto-
protective interaction of DJ-1 with apoptosis signal-regulating
kinase 1. J Biol Chem 284: 14245–14257

Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M,
Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal
machinery for membrane fusion. Cell 92: 759–772

Weinreb G, Lentz BR (2007) Analysis of membrane fusion as a two-
state sequential process: evaluation of the stalk model. Biophys J
92: 4012–4029

Westermann B (2008) Molecular machinery of mitochondrial fusion
and fission. J Biol Chem 283: 13501–13505
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ABSTRACT: 
Overexpression or mutation of �-Synuclein is associated with protein aggregation 
and interferes with a number of cellular processes, including mitochondrial integrity 
and function. We used a whole-genome screen in the fruit fly Drosophila 
melanogaster to search for novel genetic modifiers of human [A53T]�-Synuclein-
induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein 
tumor necrosis factor receptor associated protein-1 (TRAP1) was found to enhance 
age-dependent loss of fly head dopamine (DA) and DA neuron number resulting 
from [A53T]�-Synuclein expression. In addition, decreased TRAP1 expression in 
[A53T]�-Synuclein-expressing flies resulted in enhanced loss of climbing ability and 
sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue 
these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical 
neurons rescued [A53T]�-Synuclein-induced sensitivity to rotenone treatment. In 
human (non)neuronal cell lines, small interfering RNA directed against TRAP1 
enhanced [A53T]�-Synuclein-induced sensitivity to oxidative stress treatment. 
[A53T]�-Synuclein directly interfered with mitochondrial function, as its expression 
reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 
overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial 
morphology caused by [A53T]�-Synuclein overexpression in human SH-SY5Y cells. 
These results indicate that [A53T]�-Synuclein toxicity is intimately connected to 
mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons 
and human cell lines can be achieved using overexpression of the mitochondrial 
chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be 
phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link 
of PINK1 via TRAP1 to �-Synuclein. 

 
AUTHOR SUMMARY:  
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, 
pathologically characterized by loss of dopaminergic neurons in the substantia nigra 
pars compacta brain region. Mutations in �-Synuclein or gene duplication or 
triplication result in autosomal-dominant inherited PD. Indeed, aggregated and 
insoluble �-Synuclein is found in Lewy bodies, a pathological hallmark common to 
both sporadic and hereditary forms of PD. In order to better define �-Synuclein’s 
pathogenic mechanism, we first used a fly genetic screen to search for novel genetic 
modifiers of mutant human [A53T]�-Synuclein neurotoxicity. We identified the 
mitochondrial chaperone protein TRAP1 as a novel modifier of the toxicity induced 
by [A53T]�-Synuclein. [A53T]�-Synuclein-induced toxicity was enhanced when 
TRAP1 expression was decreased, while overexpression of human TRAP1 
(hTRAP1) provided a rescue. 
Cell culture experiments further demonstrated that [A53T]�-Synuclein directly 
interferes with a number of mitochondrial functions, including Complex I ATP 
production, mitochondrial fragmentation and sensitivity to oxidative stress. These 
effects could be blocked by TRAP1 overexpression. As mitochondrial dysfunction 
has previously been linked to mutations in several other genes associated with 
genetic PD, these data provide further evidence of a common mitochondrial-centric 
mechanism of PD pathogenesis.  
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INTRODUCTION: 
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease 
behind Alzheimer’s disease (AD), with an incidence rate of approximately 110 - 300 
per 100,000 persons above the age of 50 [1]. The movement disorder is 
characterized by the selective death of dopaminergic neurons in the substantia nigra 
pars compacta (SNc) [2]. Death of SNc neurons results in a reduction of dopamine 
(DA) levels within their key efferent target, the striatum [3]. Mitochondrial Complex I 
activity deficit and evidence of enhanced oxidative stress within affected brain 
regions are also observed in PD [4-6]. Age and pesticide/herbicide exposure are the 
most important disease risk factors [7-9]. Importantly, there is no clinical therapy 
available that has been shown to slow or reverse PD. 

While the majority of PD is diagnosed as idiopathic, 5 - 10 % of cases are 
attributable to familial forms of PD [10]. Although genetic PD represents only a small 
percentage of patients, mutations in these genes point to underlying biochemical 
pathways that could also be relevant to sporadic PD patients. Three missense 
mutations in the small pre-synaptic protein �-Synuclein (SNCA/PARK1/4; GenBank 
ID 6622) have been shown to result in autosomal-dominant PD. A critical effect of 
protein dose on pathology is implicated by disease-causing gene duplication and 
triplication [11-14]. �-Synuclein is also a major protein component of the Lewy 
Bodies (LB), the key histologic feature of dopaminergic and non-dopaminergic 
neurons found in PD patients [15]. Thus, �-Synuclein is strongly suggested to be a 
causal factor in PD pathogenesis. 

Human �-Synuclein mutation or overexpression results in cytotoxicity, with 
[A53T]�-Synuclein being the most toxic variant known. Direct cell loss can be 
induced in both in vitro and in vivo models of yeast, C. elegans, Drosophila, rat, 
mouse, and non-human primate [16-23]. The formation of �-Synuclein oligomers 
from their native unfolded state is linked to cell membrane damage and results in 
dysfunction of multiple cell systems such as the ubiquitin proteasome system, the 
endoplasmic reticulum and lysosomes [24-31]. Recent data also suggests that �-
Synuclein plays a role in modulating both mitochondrial function and damage. �-
Synuclein-overexpressing cells exhibit multiple markers of mitochondrial dysfunction, 
including increased protein oxidation, increased ROS production, loss of 
mitochondrial membrane potential and reduced Complex I activity [32-38]. Several 
groups have demonstrated that �-Synuclein's entry in mitochondria is mediated via 
an N-terminal mitochondrial targeting sequence, with localization at the inner 
membrane [37,38]. Moreover, PD patient brain histology shows �-Synuclein 
accumulation within mitochondria of the SNc and striatum, a feature absent in control 
brains [38]. Mitochondrial dysfunction associated with adenosine triphosphate (ATP) 
depletion and electron transport chain (ETC) defects reduces the cell's ability to 
handle oxidative protein damage and cellular tasks, suggesting a possible reason for 
cell death.  

In PD patient brains, early DA reduction indicates the withdrawal of SNc 
striatal projections, finally resulting in DA neuron loss and PD-related symptoms of 
rigidity and akinesia. In flies, expression of [A53T]�-Synuclein is accompanied by an 
age-dependent loss of DA and DA neurons, respectively. Thus, fly head DA levels 
provide an indirect readout for [A53T]�-Synuclein-induced toxicity. To further 
investigate the mechanism and identify novel modifiers of �-Synuclein toxicity, we 
performed a genome-wide genetic screen in Drosophila. In this screen, we identified, 
among other gene products, the mitochondrial chaperone protein TRAP1 (GenBank 
ID 10131) as a novel modifier of [A53T]�-Synuclein-induced DA loss. TRAP1 has 
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previously been shown to function downstream of the PD-related serine/threonine 
kinase PINK1 (GenBank ID 65018). PINK1-induced phosphorylation of TRAP1 
seems to be necessary for the protein's protective effects against oxidative stress 
[39]. In our report we further characterize the functional consequences of TRAP1 
reduction or overexpression in Drosophila, in primary neurons and dopaminergic cell 
lines and the effects on mitochondrial morphology and function.  

 
RESULTS:  
Expression of Human [A53T]�-Synuclein in Fly Heads and Genetic Screening 
for Modification of [A53T]�-Synuclein Toxicity 
Expression of �-Synuclein in Drosophila is established as a useful model of PD [21]. 
As the fly lacks an �-Synuclein homolog, this model relies on ectopic expression of 
human �-Synuclein using the UAS/GAL4 system [40]. We have previously analyzed 
DA neuron number in aged flies, expressing different mutant variants of �-Synuclein. 
Compared to controls, wild type �-Synuclein did not cause a decline in DA neuron 
number. Moreover, locomotion was not impaired in aged wild type �-Synuclein-
expressing flies [41]. Based on these results, we chose [A53T]�-Synuclein for our 
screening. With single copy expression of a UAS:[A53T]�-Synuclein transgene 
(A53T) in aminergic neurons (dopa decarboxylase-GAL4 driver, ddc-GAL4) (Figure 
1A), no difference to overall fly fitness, as assessed by longevity, was observed 
(Figure 1B). In contrast, expression of two transgene copies, resulting in higher 
expression levels (Figure 1A), caused earlier lethality compared to controls (Figure 
1B). However, when we measured DA levels of flies expressing one copy of 
[A53T]�-Synuclein under control of ddc-GAL4 (ddc>A53T), we noticed a significant 
decrease in DA levels with aging (Figure 1C). Thus, measuring DA levels using high 
performance liquid chromatography represents a sensitive system to address DA 
levels in fly heads. After carefully addressing sensitivity, specificity and 
reproducibility of our readout marker (Figure 1D, Figure S1), we decided to perform a 
genome-wide screen to identify modifiers of [A53T]�-Synuclein-induced DA loss in 
vivo. Thus, flies with expression of [A53T]�-Synuclein in aminergic neurons were 
crossbred to fly lines carrying chromosomal deletions (deficiencies), utilizing the 
“Bloomington Deficiency Kit”. Progeny were screened for changes in DA loss over 
time (a summary of the screen results is given in Supporting Information). Although 
detailed single gene analysis is still ongoing, we identified a large number of genes 
coding for proteins involved in mitochondrial function within the candidate 
deficiencies. Therefore, we additionally cross-referenced our data with results from a 
genome-wide RNAi-screen, set to identify modulators of mitochondrial function [42]. 
Common genes were screened for alteration of [A53T]�-Synuclein-toxicity with 
respect to viability and DA loss.  

TRAP1 Modification of [A53T]�-Synuclein Toxicity in the Fly 
Among the deficiencies screened, Df(2R)nap9 caused the greatest enhancement of 
[A53T]�-Synuclein-induced DA loss of all non-lethal interacting deficiencies. Of the 
153 genes deleted by Df(2R)nap9, we found TRAP1 reduction to enhance [A53T]�-
Synuclein-induced DA loss. The loss-of-function allele TRAP1[KG06242] (hereafter 
referred to as TRAP1[KG], Figure S2) caused a reduction of fly head DA levels 
similar to those of Df(2R)nap9 (data not shown). However, TRAP1[KG] did not alter 
DA levels (Figure 1D). Thus, flies with reduced TRAP1 in combination with the ddc-
GAL4 driver (TRAP1[KG]/+; ddc/+) served as controls in later analysis. TRAP1 is a 
mitochondrial chaperone, recently reported as a downstream phosphorylation target 
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of the PD protein PINK1 in rat and human cell lines [39]. As both fly and human 
TRAP1 share high sequence homology, we generated a UAS-transgenic fly to 
express human TRAP1 (hTRAP1). Interestingly, overexpression of hTRAP1 in fly 
heads was able to provide a rescue effect against [A53T]�-Synuclein-induced DA 
loss (Figure 2A). The effects of TRAP1 on DA levels were also reflected by its effect 
on tyrosine hydroxylase (TH)-positive neurons. ddc>A53T expressing flies showed 
increased loss of TH-positive neurons if TRAP1 levels were reduced (Figure 2B). In 
contrast, hTRAP1 overexpression was able to restore [A53T]�-Synuclein-induced 
loss of TH-positive neurons to control levels. Interestingly, ddc-driven overexpression 
of hTRAP1 did not increase longevity of ddc>A53T heterozygous flies (not shown). 
In PD patients, a reduction in brain DA content is later followed by neuronal decline. 
The same seems to hold true for flies. Although no reduction in longevity of 
ddc>A53T/+ flies is observed, these flies display a significant reduction in DA 
content. A more pronounced dopamine reduction (ddc>A53T/ddc>A53T) results in 
neuronal decline, eventually leading to early death, reflected by a significantly 
shortened lifespan (Figure 1B). This might explain why TRAP1 will still provide 100% 
protection against loss of neurons (Figure 2B), even if DA levels have already started 
to decline (Figure 2A).  

PD is clinically defined as a movement disorder. Thus, key to an animal disease 
model recapitulating this phenotype is loss of locomotor ability. Locomotion in flies is 
measurable using the negative geotaxis assay. In agreement with previous reports, 
ddc>A53T flies showed an age-related deficit in climbing ability [21,43]. Notably, ddc-
driven hTRAP1 expression was able to significantly rescue the locomotion deficit in 
ddc>A53T flies (Figure 2C). Therefore, taken together, these data indicate that the 
rescue of head DA content is sufficient to restore motor ability.  
Our data suggest that TRAP1 protects from toxic effects induced by [A53T]�-
Synuclein. However, TRAP1 might also provide protection to any toxic insult. To 
address this possibility, we examined if TRAP1 provides protection against toxicity 
induced by the expression of other well-known toxic proteins/peptides. 

Eye-specific expression (GMR-GAL4) of either human Tau or SCA3-derived 
polyglutamine stretches (PolyQ) in the fly eye result in a rough eye phenotype 
(REP). These REPs are sensitive to genetic modifiers and have successfully been 
used for screening [44,45]. Interestingly, overexpression of TRAP1 did not show a 
rescue of the PolyQ-induced REP. Moreover, silencing of TRAP1 by RNAi did not 
enhance the REP (Figure 2D). Similar results were obtained with Tau-expressing 
flies (not shown). A general protective role of TRAP1 in any toxic trigger is therefore 
unlikely but appears to be specific for �-Synuclein toxicity.  

Modification of [A53T]�-Synuclein Toxicity by TRAP1 in Rat Primary Cortical 
Neuron Culture 
In flies, overexpression of hTRAP1 was able to reduce [A53T]�-Synuclein-induced 
loss of DA in fly heads and loss of DA neurons, respectively. Thus, to additionally 
confirm that overexpression of hTRAP1 is able to rescue [A53T]�-Synuclein-induced 
sensitivity in vertebrate neurons, we used terminally-differentiated rat primary neuron 
cultures. Lentiviral infection specificity and efficacy in these cells was first verified 
(Figure 3A, B). As the neurons did not display robust toxicity upon [A53T]�-Synuclein 
expression alone, cells were exposed to low doses of the mitochondrial Complex I 
inhibitor rotenone. Compared to GFP-virus infected cells (control), co-expression of 
[A53T]�-Synuclein significantly enhanced cell loss (Figure 3C). In agreement with fly 
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data, coincident overexpression of TRAP1 restored survival to control values. 
Interestingly, expression of TRAP1 alone enhanced survival beyond that of control 
cells, indicative of a protective effect of TRAP1 on neurons independent of effects on 
[A53T]�-Synuclein-induced toxicity.  

Modification of [A53T]�-Synuclein Toxicity by TRAP1 in Human HEK293 Cell 
Culture 
To study the functional role of TRAP1, we used both TRAP1 overexpression and 
specific knockdown by small interfering RNA (siRNA) in HEK293 cells. Two different 
siRNAs directed against TRAP1 were first compared for efficacy. Both were able to 
reduce endogenous TRAP1 expression in HEK293 cells (Figure S3). The most 
efficient siRNA was used for all further investigations. 
To confirm whether treatment of HEK293 cells mimicked the in vivo fly and in vitro 
rat neuron data concerning TRAP1 and stress sensitivity, HEK293 cells were treated 
overnight with a low dose of either hydrogen peroxide (Figure 4A) or the Complex I 
inhibitor rotenone (Figure 4B). [A53T]�-Synuclein expression enhanced cell 
sensitivity to both stressors. Reduction in TRAP1 expression further reduced survival 
in the presence of [A53T]�-Synuclein. For both, rotenone and hydrogen peroxide 
treatment, overexpression of TRAP1 in the context of [A53T]�-Synuclein expression 
attenuated the decrease in cell survival. The magnitude of the rescue effect was 
greatest when cells were exposed to rotenone (Figure 4A, B). In cells without 
[A53T]�-Synuclein expression, reduction of TRAP1 also caused stress sensitization. 
These data corroborate the reported function of TRAP1 as a protective mitochondrial 
chaperone [46-48]. 
Previous reports have indicated that [A53T]�-Synuclein may interfere with 
mitochondrial respiration, in particular with Complex I function [34]. Given the noted 
rescue effect of TRAP1 on rotenone-treated cells with or without [A53T]�-Synuclein 
expression, we hypothesized that the TRAP1 effect on [A53T]�-Synuclein may in 
part be related to altered ETC function. Thus, ATP production via Complex I was 
assayed in cells without oxidative stress, to evaluate the general effects of [A53T]�-
Synuclein on ETC in combination with altered TRAP1 levels. Expression of [A53T]�-
Synuclein reduced Complex I activity in HEK293 cells (Figure 4C). TRAP1-silencing 
enhanced this reduction, while TRAP1 overexpression rescued the [A53T]�-
Synuclein-induced defect. In light of the defects observed in [A53T]�-Synuclein-
induced Complex I ATP production (Figure 4C), total ATP levels in the cell were also 
investigated. Only cells expressing [A53T]�-Synuclein in combination with siTRAP1 
showed a reduction of total ATP levels (Figure 4D). Although [A53T]�-Synuclein 
alone significantly reduced Complex I activity, overall ATP levels were unchanged. 
Loss of mitochondrial membrane potential predisposes cells to apoptosis. [A53T]�-
Synuclein has been suggested to adopt an alpha-helical conformation that could 
perforate membranes. At the same time, TRAP1 protection against apoptosis has 
been suggested to act via inhibition of opening mitochondrial permeability transition 
pore (PTP) [49]. The mitochondrial membrane potential is thought to indirectly reflect 
the state of the PTP. Cells were thus assessed for mitochondrial membrane potential 
using the mitochondrial membrane dye, JC-1. Only cells expressing [A53T]�-
Synuclein in combination with siTRAP1 showed a loss of mitochondrial membrane 
potential (Figure 4E).  
Finally, to exclude the possibility that altered Complex I ATP production might be due 
to varying quantites of mitochondria within the cells, instead of a functional deficit in 
the ETC, cell samples were probed for two mitochondrial proteins, VDAC1 and 
COX4. No major differences were observed for expression of VDAC1 and COX4 
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(Figure S4A). This suggests the detected decrease in Complex I ATP production 
resulted from a functional ETC deficit. JC-1 is an excellent dye to measure 
mitochondrial membrane potential and because of the color switch following 
depolarization, it makes it easy to normalize to cell density. However, JC-1 has been 
superseded by other dyes, like TMRM, with respect to the potential artifact of local 
concentration changes. With regard to this potential problem, we repeated 
mitochondrial membrane potential measurements using TMRM. In addition, we 
wanted to exclude potential off-target effects by siRNA treatment. Therefore, we 
generated HEK293 cells with stable expression of shTRAP1 constructs resulting in a 
roughly 90 % loss of TRAP1 protein levels (Figure S5A). In stable TRAP1-silenced 
cells, a significant reduction in membrane potential was observed after [A53T]�-
Synuclein expression. This effect was absent in cells expressing scrambled shRNA, 
again indicating that TRAP1-silencing in combination with [A53T]�-Synuclein 
expression causes opening of mitochondrial PTP (Figure S5B). 

Effect of TRAP1 Mutation on [A53T]�-Synuclein-Induced Toxicity 
The human TRAP1 ATPase domain shares high homology with both other HSP90 
proteins and TRAP1 orthologs found in other species (Figure S6). Recently, the 
ATPase domain of yeast HSP90 has been shown to be required for its HSP90 
function. The mutation of a specific amino acid within the ATPase domain was 
sufficient to inhibit ATP binding [50]. This amino acid is highly conserved in both 
HSP90 and TRAP1 proteins (Figure S6). We therefore exchanged the aspartic acid 
at position 158 for asparagine (TRAP1[D158N]), creating a putative non-functional 
ATPase domain. Introducing the D158N mutation did not interfere with TRAP1 
protein turnover, as expression in HEK293 cells resulted in similar abundance of 
TRAP1[D158N] and TRAP1[WT] proteins (Figure 5A). 
Next, we asked if TRAP1[D158N] is as effective as TRAP1[WT] in protecting 
[A53T]�-Synuclein-expressing cells from oxidative stress. Cells overexpressing 
[A53T]�-Synuclein treated overnight with rotenone displayed a robust reduction in 
cell survival, which was rescued by TRAP1[WT] overexpression (Figure 4B). In 
contrast, overexpression of TRAP1[D158N] was less effective (Figure 5B). Similar 
results were observed when we tested ATP production by Complex I. In the context 
of [A53T]�-Synuclein expression without oxidative stress, TRAP1[WT] rescued 
[A53T]�-Synuclein-induced decrease in Complex I ATP production (Figure 5C), while 
TRAP1[D158N] showed significantly lower degree of rescue ability. Finally, cell 
lysates were again analyzed for abundance of the mitochondrial proteins VDAC1 
and COX4. No changes in VDAC1 or COX4 protein levels were observed in cell 
lysates expressing either TRAP1[WT] or mutant TRAP1[D158N] (Figure S4B). These 
data thus indicate that mutant TRAP1 expression does not alter the overall 
mitochondrial content, arguing in favor of a functional ETC Complex deficit, rather 
than a deficit due to diminished numbers of mitochondrial/ETC components in the 
cell. 
Recent data show that �-Synuclein impairs mitochondrial fusion, leading to 
fragmented mitochondria. Interestingly, the �-Synuclein-induced mitochondrial 
fragmentation can be attenuated by co-expression of PINK1, Parkin and DJ-1, but 
not by PD-linked mutant variants of these proteins [51]. Therefore, we sought to 
determine if TRAP1 is also able of attenuating �-Synuclein-induced mitochondrial 
fragmentation in SH-SY5Y cells. The [A53T]�-Synuclein-induced punctate 
mitochondrial staining was reversed to a tubular mitochondrial network by 
TRAP1[WT] co-expression. In contrast, co-expression of TRAP1[D158N] showed no 
effect (Figure 6A, B). The expression of both TRAP1 variants alone had no impact 
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on mitochondrial integrity. Verification of protein expression levels revealed robust �-
Synuclein and TRAP1 expression after transfection with respective plasmids (Figure 
6C). Thus, the impaired rescue ability of TRAP1[D158N] in comparison to 
TRAP1[WT] cannot be explained by the lower abundance of TRAP1[D158N] protein. 
It is rather the consequence of an altered function of the inherent ATPase function of 
TRAP1[D158N]. In addition, we asked if reduced TRAP1 levels might enhance 
mitochondrial fragmentation induced by [A53T]�-Synuclein expression. We noticed 
that TRAP1-silencing increased the number of cells with fragmented mitochondria. 
Combining TRAP1-silencing with [A53T]�-Synuclein expression enhanced 
fragmentation of mitochondria even further (Figure 7A, B). Effective TRAP1-silencing 
and [A53T]�-Synuclein expression was confirmed by Western blot analysis (Figure 
7C).  

Localization of [A53T]�-Synuclein to Mitochondria and Protein-Protein 
Interaction with TRAP1 in HEK293 Cell Culture 
TRAP1 is defined as a mitochondrial molecular chaperone and has been shown to 
be protective against oxidative stress-induced cell death via multiple postulated 
mechanisms including cytochrome c release inhibition, interference with caspase-3 
activation and attenuation of ROS production [39,46,48,52-54]. We thus 
hypothesized that TRAP1 might directly antagonize �-Synuclein mitochondrial-
related toxicity. Confirming that TRAP1 is indeed found in the mitochondria, co-
localization studies in HEK293 cells revealed a strong overlap between TRAP1 
staining with “Mitotracker Orange”-labeled mitochondria (Figure S7A). Therefore, it 
was interesting to see if �-Synuclein might also localize with mitochondria, as 
previously reported [33,37,38]. To determine this, we performed cell fractionation 
experiments to separate cytoplasmic and mitochondrial enriched fractions. Using 
Western blotting, these fractions and input control were compared for the content of 

endogenous, VDAC1 (mitochondrial outer membrane protein), �-Tubulin (cytosol) 
and �-Synuclein proteins. Whereas the input showed abundance of all tested 

proteins, the cytosolic fraction displayed expected cytosolic proteins �-Tubulin and �-

Synuclein. In the mitochondria enriched fraction, no contaminating protein from �-
Tubulin could be detected. Importantly, exogenous [A53T]�-Synuclein protein was 
found within the mitochondria enriched fraction (Figure S7B).  
Given the strong rescue effect of TRAP1 on toxicity induced by [A53T]�-Synuclein in 
various systems (flies, primary rat neurons, and human cells), this implies at least a 
genetic interaction of these proteins. Whether there is a direct interaction of [A53T]�-
Synuclein and TRAP1 awaits further analysis. 

DISCUSSION: 
�-Synuclein plays an important role in PD pathogenesis. However, the mechanisms 
that actually lead to �-Synuclein-induced neurotoxicity remain unresolved. To gain 
insights into the disease mechanisms triggered by �-Synuclein, we performed a 
genome-wide modifier screen on [A53T]�-Synuclein-induced toxicity in flies. We 
used [A53T]�-Synuclein for our screen because its overexpression in flies results in 
a robust Parkinsonian phenotype [21,55-57]. Toxicity induced by �-Synuclein or its 
mutant variants is rather low and eye-specific expression of A53T does not cause 
rough eye phenotypes (REPs). Such REPs induced by eye-specific expression of 
toxic proteins provide an excellent tool for screens and have successfully been used 
in the past to identify genetic interactions applying alterations in eye morphology due 
to photoreceptor degeneration as an endpoint. Given the low toxicity of [A53T]�-
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Synuclein, such screening approaches could not be conducted with regard to �-
Synuclein-induced toxicity in flies. Our genetic screen fulfilled two important 
requirements: it utilized (i) an age-dependent model of [A53T]�-Synuclein toxicity, 
and (ii) an endpoint that is relevant to PD, this being the loss of dopamine. However, 
apart of being used as a neurotransmitter, DA in flies is also used for cuticle tanning. 
Thus, we cannot exclude the possibility that cuticle-derived DA might contribute to 
the overall DA in fly heads. Therefore, the measured decline is not only connected to 
DA loss in neurons. Nevertheless, secondary readouts like locomotion 
measurements or DA neuron counts indicate a strong correlation between 
decreased head DA content and proper function of DA neurons. 

One of the candidates identified in our screen was the mitochondrial chaperone 
TRAP1. Consistent with our results, a genetic screen for alteration of �-Synuclein 
aggregation, conducted in C. elegans, identified R151.7, a homologue to Drosophila 
and human TRAP1, as a candidate worm gene. Knockdown of R151.7 resulted in 
premature �-Synuclein aggregation [58]. Although aggregation was not assayed in 
our screen, this finding acts as an external confirmation that TRAP1 genetically 
interacts with �-Synuclein in different in vivo systems.  
In multiple cell culture systems, TRAP1 has been shown to provide anti-apoptotic 
functions [48,52,53] as high levels of TRAP1 reduce the release of key factors 
involved in apoptosis, including Apoptosis Inducing Factor-1 and Cytochrome c, and 
additionally prevents Caspase-3 cleavage [39,46,48,59]. The direct mechanisms by 
which TRAP1 might inhibit apoptosis were not examined in this study. However, 
given that overexpression of TRAP1 in both rat primary neurons and HEK293 cells 
was able to enhance cell survival after rotenone treatment, we hypothesize that anti-
apoptotic mechanisms might in part be responsible for rescue of [A53T]�-Synuclein 
toxicity by TRAP1. This is in agreement with the observation that PD-associated 
neuronal death involves apoptotic cell death [60-63]. In addition, the effects of 
TRAP1 modulation on ATP synthesis and activities of the ETC support a 
mitochondrial function. For more than two decades, biochemical studies, the 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and transgenic animal models 
have implicated mitochondrial dysfunction in the pathogenesis of PD [5,64-71]. 
Genetic data, including mutations in PINK-1, Parkin, DJ-1, and HtrA2, have now 
specifically linked PD to both dysfunction and morphological change of the 
mitochondria [72-80]. However, the relationship of �-Synuclein pathology and 
mitochondrial dysfunction has been less clear. Our data are compatible with a 
localization of [A53T]�-Synuclein either in mitochondria or in mitochondrial 
membranes. Recent findings, though, have indicated that �-Synuclein may be 
localized to the outer mitochondrial membrane in pathological conditions and induce 
morphological changes of mitochondria by inhibiting mitochondrial fusion and 
enhancing mitochondrial fragmentation [51]. These morphological changes were 
rescued by overexpression of wild type PINK1, Parkin, and DJ-1 [51]. We show here 
that TRAP1 overexpression is also able to reverse [A53T]�-Synuclein-induced 
mitochondrial fragmentation.  
Interestingly, TRAP1 has been identified as a substrate of the serine/threonine 
kinase PINK1. Phosphorylation of TRAP1 by PINK1 seems to be required for the 
protective effects mediated by PINK1. Combining these data with our findings leads 
to a potential pathogenic model, in which [A53T]�-Synuclein induces mitochondrial 
stress impairing, most likely, Complex I of the ECT by an as yet unidentified 
mechanism. Overexpression of TRAP1 counteracts this effect in flies, primary 
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neurons and human neuronal as well as non-neuronal cells. TRAP1[D158N] is less 
effective in protecting from [A53T]�-Synuclein-induced detrimental effects. The 
finding suggests that a functional ATPase domain is required for TRAP1 function.�
 
METHODS: 
Fly Stocks 
Flies were raised and maintained on standard cornmeal-yeast-molasses-agar food at 
25°C unless otherwise noted. Non-RNAi stocks were obtained from the Bloomington 
Drosophila Stock Centre, UAS-RNAi stocks either from the Vienna Drosophila RNAi 
Center (VDRC) or from National Institute of Genetics (NIG-fly, Japan). Bloomington 
lines used were: Wild type flies (Oregon R; referred to as + in text), w1118;; P{Ddc-
GAL4.L}4.36 (BL7009; ddc: dopa decarboxylase, aminergic neuron specific driver, 
referred to in text as ddc-GAL4), w*; P{UAS-lacZ.B}Bg4-2-4b (BL1777; referred to in 
text as UAS-LacZ), y1w67c23; P{SUPor-P}Trap1KG06242 (BL14032; referred to in text as 
TRAP1[KG]), w[*]; P{w[+mC]=longGMR-GAL4} (BL8605; referred to as GMR-GAL4 
in text),� w[1118]; P{w[+mC]=UAS-HsapHSPA1L.W}53.1 (BL7455; expresses 
HSPA1L, the human homolog of HSP70 under GAL4 control; referred to as HSP70 
in text), w[1118]; P{w[+mC]=UAS-mitoGFP.AP} (BL8443; expresses GFP with a 
mitochondrial import signal; referred to as mito-GFP in text) and w[*]; 
P{w[+mC]=UAS-Hsap\MJD.tr-Q78}c211.2 (BL8150; expresses a HA-tagged C-
terminal fragment of the human Machado-Joseph Disease/Spinocerebellar Ataxia 3 
protein with a 78 repeat polyglutamine tract; referred to in text as PolyQ). For stable 
eye-specific expression of PolyQ, GMR-GAL4 driver was recombined with PolyQ 
transgene (GMR>PolyQ in text).� Fly lines suitable for GFP (yw;; UAS-GFP) or 
human [A53T]�-Synuclein (yw;; UAS-[A53T]�-Synuclein [41]) expression (referred to 
in text as GFP or A53T, respectively). Stable expression under control of the ddc 
driver (w[*];; ddc-GAL4>UAS-GFP; w[*];; ddc-GAL4>UAS-GFP) were generated by 
recombination (flies referred to in text as ddc>GFP or ddc>A53T).�
Transgenic flies expressing human TRAP1 (hTRAP1) were generated by BestGene 
Inc. In brief, human TRAP1 cDNA was sub-cloned from pcDNA3.1+ vector into 
pUASattB using KpnI and XbaI restriction sites. hTRAP1 expression in these 
transgenic flies (w;; UAS-hTRAP1/TM3, Sb; referred to in text as hTRAP1) was 
verified by Western blotting. 

Genetic Deficiency Screen Breeding 
The Bloomington Deficiency Kit was utilized for screening purposes 
(http://flystocks.bio.indiana.edu/Browse/df/dfkit_retired_July2009.htm). In general, a 
specific deficiency line was crossbred with ddc>A53T flies. Male offspring 
(ddc>A53T flies in combination with the respective deficiency) was selected and 
aged. At ages 1 and 4 weeks, a minimum of 9 flies was collected for later 
measurement of head DA using HPLC. 

Measurement of Fly Head Dopamine (DA) using HPLC 
Liquid nitrogen flash frozen fly heads were homogenized (Precellys 24 homogenizer) 
in homogenization buffer (0.1 M perchloric acid/ 3 % trichloric acid solution). 50 μl of 
supernatant from each sample were used for HPLC analysis (Dionex Ultimate 3000; 
running buffer: 57 mM citric acid, 43 mM sodium acetate, 0.1 mM EDTA, 1 mM 
octane sulfonic acid, 20 % methanol). Samples were separated on a 
chromatographic column (Dionex Acclaim C18, 5 μm, 2.1x 150 mm column, at 
25°C), and DA was electrochemically detected on a graphite electrode (Dionex ED50 
Electrochemical detector with following conditions: disposable carbon electrode at 
0.8 V, flow rate 0.2 ml/min). DA (Sigma-Aldrich) standards of 0.1 μM, 0.25 μM and 
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0.4 μM were used for creation of a standard curve. Chromeleon 6.6 software was 
used for HPLC data analysis. 

Fly Longevity and Oxidative Stress Assays 
Longevity assays were performed as previously described [81]. For oxidative stress 
assays a minimum of 20 male flies (2-3 days of age) was kept on filter papers 
soaked with paraquat (20 mM paraquat dichloride in 5 % sucrose). Survival of flies 
was scored on a daily base. Fresh paraquat/sucrose solution was supplied daily. 

Negative Geotaxis Assay  
Fly climbing was assessed in accordance with previously published protocols 
[21,43,82]. Flies were aged on normal yeast medium. At ages 1 and 4 weeks, 
climbing was assessed (20 flies per genotype). Flies were individually placed in a 
graduated cylinder, and allowed to climb for 15 s. Maximum height attained was 
recorded, and analysis was repeated 3 times per time point, with 3 trials at one 
minute intervals recorded at each time point. 

Immunohistochemistry 
Fly brains were dissected in cold PBS, washed in a PBS/ 0.1 % Triton X (PBT), fixed 
in 4 % PFA (30 min, 4°C), and blocked in PBT containing 5 % normal goat serum 
(overnight, 4°C). For TH staining, brains were incubated with primary anti-TH 
antibody (1:100; rabbit polyclonal, AB152, Chemicon International/ Millipore) for 2 
days, 4°C, and subsequently with fluorescent secondary anti-rabbit antibody (1:200; 
AlexaFluor-555 or Cy3; Invitrogen/Jackson Immunological Research) for 3.5 hours. 
Afterwards, brains were mounted in Vectashield (Vector Labs). The number of TH-
positive neurons was determined on Z-stacked confocal sections (1 �m, Leica DM 
IRE2, Laser) [83]. At least 15 brains were analyzed per genotype. 

Protein Collection and Western Blotting 
Fly heads were homogenized in RIPA buffer (50 mM Tris, pH 8.0, 0.15 M NaCl, 0.1 
% SDS, 1.0 % NP-40, 0.5 % Na-Deoxycholate, 2 mM EDTA, Complete™ Protease 
Inhibitors (Roche Applied Sciences), pH 7.4), centrifuged, and the supernatant was 
collected. 
Cell culture protein samples were collected after washing cells in ice cold PBS, 
followed by lysis in RIPA buffer for 30 min on ice. Cell debris was removed by 
centrifugation, and supernatants were collected. 
For Western blot analysis, protein samples were separated via SDS-PAGE gel and 
then transferred onto nitrocellulose membrane. Blocking in skim milk was followed by 
overnight primary antibody incubation. The primary antibodies used were as follows: 
mouse anti-�-Synuclein (1:1000; Cell Signaling); mouse anti-Drosophila Syntaxin 

(1:2000 Developmental Studies Hybridoma Bank (DSHB)), mouse anti-�-Tubulin 
(1:500, DSHB); mouse anti-� Tubulin (1:10,000; Sigma-Aldrich); mouse anti-TRAP1 
(1:1000; BD Biosystems); mouse anti-phospho-tyrosine (PY99) (1:200; Santa Cruz 
Biotechnology); mouse anti-phospho-threonine (H2) (1:200: Santa Cruz 
Biotechnology); mouse anti-phospho-serine (16B4) (1:200; Santa Cruz 
Biotechnology); mouse anti-Cytochrome c (1:500; Santa Cruz Biotechnology); rabbit 
anti-VDAC1 (0.3 �g/ml; Abcam); mouse anti-COX IV (2 �g/ml; Abcam); rabbit anti-
GFP polyclonal (1:1000; Santa Cruz Biotechnology). 
Appropriate secondary anti-mouse or rabbit horseradish peroxidase-linked 
antibodies (1:10,000) were obtained from GE Healthcare. Membranes were 
incubated with the secondary antibody for one hour, followed by signal detection 
using the Chemiglow substrate (Biozym). 

Total RNA isolation, cDNA preparation and Real Time PCR  
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Method for fly head RNA isolation was adapted from the following link: 
http://www.ou.edu/journals/dis/DIS84/Tec2%20Bertucci/Bertucci.htm. 20 fly heads 
per tube were used for RNA isolation. RNA samples were treated with DNase 
following manufacturer’s instructions (Promega RQ1 RNase-Free DNase kit). Total 
RNA from cultured cells was prepared from cells using Qiagen RNeasy Mini kit 
(Qiagen). RNA was used for cDNA production via reverse transcription using the 
iScript cDNA Synthesis Kit (BioRad). Real-time PCR measurements were performed 
using the SYBR Green (Thermo Fisher Scientific) reagent following manufacturer’s 
instructions for preparation of PCR samples. Gene of interest signal was compared 
to that of control gene expression (�-Actin5c for fly samples and 18S for human 
samples) using the 2-��Ct method [84]. No-RT controls were performed to exclude for 
genomic DNA sample contamination. PCR reactions were followed by generation of 
a dissociation curve to check for side product generation.  
Amplification conditions for fly samples were as follows: 5 min at 95°C, 40 cycles of: 
30 s at 95°C, 30 s at 58°C, 60 s at 72°C, followed by 10 min at 72°C. Gene of 
interest was normalized to control �-Actin5c signal. 
The primers used were as follows:  
Fly �-Actin5c:  for: 5�-ccagtcattcctttcaaacc-3�,  

rev: 5�-gcaacttcttcgtcacacatt-3� 
Fly TRAP1:   for: 5�-aggcagagtcaccgatcc-3�,  

rev: 5�-tgatgcctgcttggtctc-3� 
Amplification conditions for cell culture samples were as follows: 5 min at 95°C, 40 
cycles of: 30 s at 94°C, 30 s at 60°C, 60 s at 72°C, followed by 10 min at 72°C. Gene 
of interest was normalized to control 18S signal.  
Primers were as follows:  
Human 18S: Quantitect primers (Qiagen, Germany). 
Human TRAP1:  for: 5’-cagaccaatgccgagaaag-3’  

rev: 5’-caccagctcttcctgtgtca-3’ 

 
Cell culture 
Cloning and �������� mutagenesis 
Full length human �-Synuclein cDNA (423 bp), carrying the [A53T] mutation (cDNA a 
gift from Dr. Felipe Opazo, European Neuroscience Institute, Göttingen, Germany) 
was subcloned into the pcDNA3.1+ expression vector (Invitrogen) using HindIII and 
EcoRV restriction sites. Full length human TRAP1 cDNA (2115 bp) was amplified 
from human HEK293 cell cDNA samples. BglII and XhoI restriction sites were 
introduced using following primers: 

for: 5’-gaagatctatggcgcgcgagctgcgggcgctgctgc-3’, 
rev: 5’- ccgctcgagtcagtgtcgctccagggccttgaca-3’. 

TRAP1 cDNA was then cloned into the pcDNA3.1+ vector using the BglII, XhoI sites. 
In vitro mutagenesis of human TRAP1 in pcDNA3.1+ was carried out using the 
QuickChange Site-Directed Mutagenesis kit (Stratagene) following manufacturer's 
instructions. Sites for mutagenesis were based on conserved sites found in the 
ATPase domain (see Figure S6 for sequence homology). PCR cycling parameters 
were used as suggested by Stratagene, with a specific extension time of 8 min and 
16 cycles for all reactions. Primers used for generating the mutants were as follows: 
TRAP1[D158N]:   for: 5´- ggcaccatcaccatccagaatactggtatcggg-3` 

rev: 5´- cccgataccagtattctggatggtgatggtgcc-3` 
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Lentivirus preparation 
Full length human TRAP1 or [A53T]�-Synuclein cDNA was subcloned into a third 
generation lentiviral vector pRRLsin.cPPT.PGK/GFP.WPRE (Tronolab), excluding 
the GFP cassette. The GFP-expressing virus served as a control [85].  

Cells, plasmid transfection and viral infection 
Human HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM), 
supplemented with 10 % fetal calf serum, 100 units/ml penicillin, and 100 mg/ml 
streptomycin. Transfection of plasmids and small interfering RNA (siRNA) into 
HEK293 cells was completed using Metafectene (Biontex) following manufacturer’s 
instructions. siRNAs used for gene knockdown experiments were obtained from 
Qiagen: MAPK1 control siRNA (Qiagen 1027277); 2 different TRAP1 siRNAs 
(Flexitube siRNA SI03066364 and siRNA SI00115150); a scrambled siRNA for 
control (Allstars Negative Control, 1027280). Final concentration of siRNA used was 
10 nM. Cells were seeded on poly-L lysine (PLL) coated plates (35,000 cells/cm2) 
and then transfected 48 hours before experimentation. 
Primary cortical rat neurons were prepared from E18 rat embryos, following 
previously published procedures [65]. Neurons were seeded on poly-ornithin-coated 
24-well plates at a density of 125,000 cells/cm2. Cells were maintained in Neurobasal 
medium (Gibco/Invitrogen), supplemented with 5 �g/ml transferrin, 1 % PSN, 0.5 mM 
L-Glutamine, 2 % B27 supplement. Primary neurons were infected equimolarly with 
lentiviruses one day after isolation and then cultured for 6 days before experimental 
use. 
SH-SY5Y cells (DSMZ number ACC 209) were cultured in DMEM F-12 with 
glutamine (Lonza) supplemented with 15 % (v/v) fetal calf serum, non-essential 
amino acids (Invitrogen) and penicillin/streptomycin. Transfections were performed 
using Lipofectamine Plus (Invitrogen) according to the manufacturer’s instructions. 
The following plasmids were described earlier: [A53T]�-Synuclein and mito-DsRed 
[51]. For downregulation of TRAP1, SH-SY5Y cells were reversely transfected with 
the indicated siRNA and co-transfected with mito-DsRed and empty vector or 
[A53T]�-Synuclein using Lipofectamin RNAiMax (Invitrogen) according to the 
manufacturers instruction. 24 hours after transfection, fresh medium was added. 
Cells were analyzed 48 h after transfection. 
Fluorescent staining of mitochondria 
SH-SY5Y cells were plated on 15 mm glass coverslips and co-transfected with mito-
DsRed and the indicated DNA constructs. At 24 h after transfection, cells were 
washed twice with ice-cold PBS, fixed with 3.7 % paraformaldehyde for 10 minutes 
at room temperature and washed twice with PBS before mounting the coverslips. 
Transfected cells were identified by co-expression of mito-DsRed. Cells were 
categorized in two classes according to their mitochondrial morphology [75]. Cells 
displaying an intact network of tubular mitochondria were classified as tubular. When 
this network was disrupted and mitochondria appeared predominantly spherical or 
rod-like, they were classified as fragmented. The mitochondrial morphology of at 
least 300 cells per coverslip was determined in a blinded manner using a Leica 
DMRB microscope. Quantifications were based on triplicates of at least three 
independent experiments. Confocal images of representative cells were obtained 
using a Zeiss LSM 510 microscope. �-Synuclein was detected using a monoclonal 
anti-rat antibody described previously [51]. �-Actin was detected using a monoclonal 
antibody from Sigma. 

Cell Culture Oxidative Stress Testing and Measurement of Cell Viability 
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Cells were incubated for 16 hours in the presence of either hydrogen peroxide (100 
�M) or rotenone in DMSO (HEK293: 200 �M, rat cortical: 1 �M rotenone). Rotenone 
control cells were treated with equivalent amount of DMSO alone. After overnight 
oxidative stress treatment, cells were fixed in 4 % PFA for 10 min, before 
permeabilization in PBT for 10 min. Cells were incubated with Hoechst nuclear stain 
for 30 min before imaging on a fluorescent microscope (Leica DMI6000B). Using a 
macro within the Leica Qwin V3 quantification software, cell number remaining in 
each well was assessed by counting total fluorescent nuclei (6 images per well at 
10X, with minimum 6 wells per genotype in a 24-well culture dish). 
ATP Synthesis Assay 
Method was adapted from [86]. Cells were trypsinized and washed three times in 
cold PBS. Cells were then resuspended in incubation medium (2x105 cells/ml, 25 
mM Tris, 125 mM KCl, 2 mM K+EDTA, 10 mM KH2PO4, pH 7.4) and permeabilized 
with digitonin (40 �g/ml). To measure ATP produced via complexes I, III, IV, 2x104 
cells (minimum of 8 replicates per experiment) were resuspended in a complex 
incubation medium supplemented with 1 mg/ml BSA, 2 mM ADP, 10 mM glutamate, 
2 mM malate. After incubation for 20 min at 37°C, the reaction was stopped by 
addition of 6 % perchloric acid, and samples were neutralized with 3 M K2CO3. ATP 
in each sample was measured in a plate reader using the CellTiter-Glo Luminescent 
reagent (Promega) following manufacturer-provided instructions. Total ATP levels 
were obtained using an ATP standard curve (ATP from Sigma), with final calculation 
expressing ATP as pmoles ATP per minute per 1 million cells, and plotted as 
percentage of control values. 

Measurement of Steady State Cellular ATP 
2x104 HEK293 cells/well were seeded (12 replicates per experiment) in an opaque 
white 96-well plate. Total ATP levels were measured as stated above. 
Assessment of Mitochondrial Membrane Potential 
Following manufacturer-provided instructions, cells (6 replicates per experiment) in a 
96-well plate (black sided, clear bottom) were incubated with the mitochondrial probe 
JC-1 (3 �g/ml; Invitrogen) in full medium for 30 min at 37°C. After washing in PBS, 
JC-1 mitochondrial aggregates were measured in a plate reader (excitation: 530 nm, 
emission: 590 nm). As a control, JC-1 fluorescence was measured in the presence 
of the mitochondrial membrane potential inhibitor CCCP (Carbonyl cyanide m-
chlorophenylhydrazone, 50 μM). Protein content per well was quantified using the 
Bradford assay. Fluorescence in relation to total protein was displayed as 
percentage of control values. 

Immunocytochemistry 
Cells were plated on PLL-coated glass slips. 48 hours after transfection, cells were 
fixed in 4 % PFA for 10 min, permeabilized in PBT for 10 min, followed by blocking in 
1 % BSA and overnight incubation with the primary antibody at 4°C. Antibodies used: 
monoclonal rat anti-�-Synuclein (1:500, Alexis Biochemicals/Enzo Life Sciences); 
monoclonal mouse anti-NeuN (1:500, Chemicon); monoclonal mouse anti-TRAP1 
(1:300, Alexis Biochemicals). For visualization of mitochondria cells pretreated for 4 
hours with 1 �M rotenone, the cells were incubated with Mitotracker Orange 
CMTMRos (300 nM, following manufacturer's instructions, Invitrogen) for 30 min at 
37°C prior to fixation. Cells were incubated with respective secondary antibodies for 
one hour (all secondary antibodies 1:1000, anti-mouse or rat AlexaFluor-488, 543, 
633, Invitrogen), and mounted using Mowiol (Calbiochem), with or without the anti-
bleaching agent DABCO or nuclear stain Hoechst (Sigma-Aldrich). 

Immunoprecipitation (IP)  
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Protein was collected from HEK293 cells over-expressing �-Synuclein alone or both 
�-Synuclein and TRAP1, using the above described method for protein isolation and 
quantification from cell culture, with or without a 4 hour pre-treatment with 1 �M 
rotenone. IP procedure followed the general procedure supplied with the Protein A 
Agarose beads (Roche). To reduce background due to unspecific binding, protein 
samples were first pre-incubated with Protein A Agarose beads for 4 hours at 4°C. 
After removal of agarose beads by centrifugation, protein samples were incubated 
overnight at 4°C with either mouse anti-�-Synuclein monoclonal (Cell Signaling) or 
mouse anti-TRAP1 monoclonal (BD Biosystems) antibody. Incubation of samples 
with rabbit anti-GFP polyclonal served as a negative control. Protein A agarose 
beads were then added to the samples and incubated for 2 hours at 4°C. Agarose-
antibody-antigen complexes were collected by centrifugation and washed three 
times in ice-cold RIPA buffer before running the samples on polyacrylamide gels and 
proceeding with Western botting. 

Mitochondrial isolation 
Mitochondria were isolated from HEK293 cells transfected with [A53T]�-Synuclein 
using the following protocol: Cells were suspended in MB buffer (70 mM sucrose, 10 
mM HEPES, 1 mM EDTA, 210 nM Mannitol (pH 7.5) and protease inhibitors), 
homogenized with an injection needle (27G ¾“ 19mm, 5-6 strokes) and centrifuged 
at 750 xg for 7 min. After centrifugation the pellet was resuspended in MB buffer, 
homogenized using the same injection needle and centrifuged. This procedure was 
repeated four times. The resulting supernatants were pooled and centrifuged at 
10000 xg for 30 min. This mitochondria-containing pellet was resuspended in MB 
buffer and further centrifugated at 1500 xg for 20 min. The purity of the resulting 
mitochondrial pellet was examined by Western blotting using specific antibodies 

directed against �-Tubulin, VDAC and �-Synuclein.  
Statistics 
Data was analyzed using GraphPad Prism 4.0 (GraphPad Software Inc.), using 1-
way ANOVA followed by Newman-Keuls post testing. Use of a 2-way ANOVA was 
noted in the text. Survival data were analyzed with the Kaplan-Meier analysis 
method and the Log Rank Test for curve statistical comparison analysis. Statistical 
significance referred to as: *p<0.05; **p<0.01; ***p<0.001. All data is presented as 
mean ± SEM. 
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FIGURE LEGENDS 
 

Figure 1. [A53T]�-Synuclein expression in fly heads results in age-dependent 
loss of DA. (A) Western blot showing abundance of human [A53T]�-Synuclein after 
aminergic neuron (ddc-GAL4)-specific expression in lysates of fly heads. While flies 
without [A53T]�-Synuclein transgene do not show any detectable signal for [A53T]�-
Synuclein in Western blot, an increase of [A53T]�-Synuclein protein levels was 
observed by increasing the copy number of transgenes. Syntaxin served as a 
loading control and molecular weight markers are indicated. (B) Whereas 
ddc>A53T/+ flies displayed no significant difference in longevity as compared to 
ddc/+ flies, flies homozygous for ddc>A53T showed a significant decrease (p<0.001, 
Log rank test). (C) Compared to controls (ddc/+), ddc>A53T/+ flies showed a 
significant age-dependent loss of DA at 3 and 4 weeks post eclosion (*p<0.05 vs. 
control). (D) Only ddc>A53T flies showed a significant decrease (***p<0.001) in DA 
concentration in fly heads at 4 weeks. Comparisons of multiple controls were not 
significant (4 week values as per cent of 1 week values; ANOVA followed by 
Newman-Keuls Multiple Comparison Test). 

Figure 2. TRAP1 overexpression mitigates detrimental effects induced by 
neuronal [A53T]�-Synuclein expression. (A) Overexpression of [A53T]�-Synuclein 
under control of ddc-GAL4 resulted in reduction of DA in fly heads at 4 weeks, which 
was potentiated by TRAP1 deficiency (TRAP1[KG]/+;ddc>A53T/+), but mitigated by 
TRAP1 overexpression (ddc>A53T/hTRAP1). (B) ddc>A53T flies display a reduction 
of TH-positive neurons, which was potentiated by TRAP1 deficiency, but rescued to 
control levels by TRAP1 overexpression. (C) In negative geotaxis assays ddc>A53T 
flies displayed a time-dependent decline in locomotion. Reduction of TRAP1 
enhanced the inability to climb (although not significant), while overexpression of 
hTRAP1 provided a significant rescue effect (comparison of ddc>A53T/+ vs 
ddc>A53T/hTRAP1 at 4 weeks: p<0.05). Statistics in (A, B): ANOVA followed by 
Newman-Keuls Multiple Comparison Test; (C): 2-way ANOVA followed by Bonferroni 
post-hoc tests. Displayed are biologically relevant comparisons. *p<0.05; **p<0.01; 
***p<0.001; ns = not significant. (D) Alterations in TRAP1 levels did not influence 
PolyQ-induced rough eye phenotypes. Light micrographs of external eye structures 
show that PolyQ-induced REP was suppressed by parallel expression of HSP70. In 
contrast, neither overexpression of hTRAP1 or silencing of endogenous TRAP1 by 
RNAi had an obvious impact on external eye structure. Expression of mitochondrial 
localized GFP (mito-GFP) served as control.  

Figure 3. TRAP1 overexpression protects rat cortical neurons from [A53T]�-
Synuclein-induced sensitivity to rotenone. (A) Western blot analysis of cells 
infected with lentivirus promoting either GFP, TRAP1 or [A53T]�-Synuclein 
expression. For visualization, the blot was probed with either TRAP1- or �-Synuclein 
specific antibodies, respectively. ß-Actin was used for normalization. (B) Rat cortical 
neurons infected with lentivirus promoting GFP expression were stained for neuronal 
marker NeuN (red) and DNA (Hoechst, blue). A high percentage of cells showed co-
localization between GFP and the neuronal marker NeuN, indicative for high 
infection efficacy. Scale bar indicates 43 μm. (C) Quantification of cell survival after 
16 h of rotenone treatment of cells infected with viruses mediating expression of 
indicated protein. Significant differences compared to control (GFP) are indicated. All 
other comparisons revealed highly significant differences (p<0.001) in statistical 
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analysis (ANOVA followed by Newman-Keuls multiple comparison test). **p<0.01; 
***p<0.001; ns = not significant. 

Figure 4. Alterations in TRAP1 levels influence [A53T]�-Synuclein-induced 
sensitivity to oxidative stress and mitochondrial effects in HEK293 cells. 
HEK293 cells were transfected with plasmids promoting [A53T]�-Synuclein or 
TRAP1 expression. Empty vector transfection served as control. In addition, RNAi-
mediated silencing of endogenous TRAP1 was induced (siTRAP1). Cells transfected 
with indicated plasmid combinations were treated with (A) hydrogen peroxide (100 
μm) or (B) rotenone (200 �M) to induce oxidative stress. Cell numbers were 
analyzed to monitor survival. (C-E) HEK293 without oxidative stress treatment 
overexpressing the indicated proteins, or with RNAi-mediated silencing of TRAP1 
were analyzed for (C) ATP production via Complex I, (D) total ATP content, and (E) 
mitochondrial membrane potential. Statistical analysis of displayed bar graphs was 
performed using ANOVA followed by Newman-Keuls multiple comparison test. (A, B) 
Biologically relevant comparisons are indicated in bar graphs. (C) Differences 
compared to control are indicated. (A, B, C) A detailed summary of all comparisons 
is summarized in Figure S8. (D, E) Only cells with [A53T]�-Synuclein expression and 
TRAP1 reduction displayed significant differences in statistical analysis as indicated 
in graph. All other comparisons were not significant. *p<0.05; **p<0.01; ***p<0.001; 
ns = not significant. 

Figure 5. Effect of TRAP1 mutation on modification of [A53T]�-Synuclein 
toxicity. (A) Western blot analysis of HEK293 lysates transfected with indicated 
constructs showed similar expression levels of TRAP1[WT] and TRAP1[D158N] and 
a reduction of endogenous TRAP1 by siTRAP1. Blot was probed with TRAP1-
specific antibody. ß-Actin served as loading control. (B, C) Effect of TRAP1[WT] and 
TRAP1[D158N] on [A53T]�-Synuclein-induced effects in HEK293 cells. (B) Effect of 
TRAP1[D158N] on [A53T]�-Synuclein-induced toxicity. Cell survival after rotenone 
(200 μM) treatment was monitored. Compared to TRAP1[WT], cells expressing 
TRAP1[D158N] displayed a significant reduction in survival (t-test, **p<0.01). (C) 
Assessment of ATP production via Complex I in unstressed cells with [A53T]�-
Synuclein expression revealed a significant reduction of ATP levels in 
TRAP1[D158N] versus TRAP1[WT] expressing cells (t-test, ***p<0.001). 

Figure 6. Inhibition of mitochondrial fusion by [A53T]�-Synuclein is rescued by 
TRAP1. SH-SY5Y cells were co-transfected with the indicated constructs and mito-
DsRed to visualize mitochondria. The mitochondrial morphology of transfected cells 
was analyzed by fluorescence microscopy. (A) Confocal images of representative 
cells displaying either an intact tubular mitochondrial network (control) or a 
fragmentation of this network (A53T). Co-expression of TRAP1[WT] prevented 
[A53T]�-Synuclein-induced mitochondrial fragmentation, whereas the 
TRAP1[D158N] mutant did not show rescue activity. Overexpression of either wild 
type or mutant TRAP1 alone did not influence mitochondrial morphology under 
steady state conditions. (B) For quantification, the mitochondrial morphology of at 
least 300 transfected cells per coverslip was determined in a blinded manner. 
Quantifications were based on triplicates of at least three independent experiments. 
Shown is the percentage of cells with fragmented mitochondria. (C) Expression 

levels of [A53T]�-Synuclein and TRAP1 were analyzed by Western blotting. �-Actin 
served as a loading control. ***p<0.001 (ANOVA). 
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Figure 7. Transient siRNA-mediated knockdown of TRAP1 increases [A53T]�-
Synuclein-induced mitochondrial fragmentation. SH-SY5Y cells were co-
transfected with the siRNAs and plasmids indicated. Mitochondria were visualized by 
DsRed targeted to mitochondria (mito-DsRed). (A) Confocal images taken of 
representative cells displaying either an intact tubular mitochondrial network (control 
siRNA) or a fragmentation of the network (control siRNA + A53T). Transient 
knockdown of TRAP1 causes mitochondrial fragmentation itself (TRAP1 siRNA), 
additional co-expression of [A53T]�-Synuclein aggravated this phenotype and led to 
an overall increase in cells showing a fragmented mitochondrial network (TRAP1 
siRNA + A53T). (B) For quantification, at least 300 transfected cells per coverslip 
were analyzed. The mitochondrial morphology was determined in a blinded manner. 
Quantifications are based on triplicates of three independent experiments. (C) 
Expression levels of [A53T]�-Synuclein and TRAP1 were analyzed by Western 
Blotting. �-Actin was used as a loading control. **p�0.01; ***p�0.001 (ANOVA). 

Figure legends Supplementary Information 

Figure S1. Validation, specificity and sensitivity of HPLC to measure fly head 
DA. (A) Number of fly heads for single measurement varied from 3 - 30 and absolute 
DA amounts measured by HPLC were analyzed via linear regression; r2 = 0.997 (n = 
3). (B) Fly heads collected at indicated time of day were analyzed for DA using 
HPLC. Significant difference (ANOVA followed by Newman-Keuls Multiple 
Comparison Test) between time points noted: *p<0.05 vs. 10:30 and 16:30 (n = 3). 
(C) Wild type flies (one day post eclosion) were daily treated with tyrosine 

hydroxylase inhibitor �-methyltyrosine (�-MT). Fly heads were collected at 2-day 
intervals for measurement of DA using HPLC: Significant differences (t-test): *p<0.05 
for Control (untreated) vs. 5 mM �-MT (n = 3). 

Figure S2. Determination of TRAP1 transcript abundance. Flies heterozygous for 
P-element insertion TRAP1[KG] displayed a significant reduction in trap1 transcript 
levels normalized to actin5C independent of [A53T]�-Synuclein expression (t-test, 
compared to respective control; **p<0.01; ***p<0.001). 

Figure S3. Immunocytochemistry of [A53T]�-Synuclein-expressing HEK293 
cells with overexpression or downregulation of TRAP1. (A) HEK293 cells 
transfected with [A53T]�-Synuclein were stained for TRAP1 (red), �-Synuclein 
(green) and DNA (blue). Merged picture is shown (right column). Upper panel: 
[A53T]�-Synuclein expressing cells co-transfected with empty vector. Middle panel: 
[A53T]�-Synuclein expressing cells with siTRAP1. Lower panel: Cells with [A53T]�-
Synuclein and TRAP1 overexpression (scale bar = 24 �m). (B) Transfection with 
siTRAP1 reduced endogenous TRAP1 transcripts (in relation to �-Actin). (C) Both 
siTRAP1-1 and siTRAP1-2 resulted in significant knockdown of TRAP1 expression 
(ANOVA followed by Newman-Keuls Multiple Comparison Test; n = 3; ***p<0.001; ns 
= not significant). 

Figure S4. Assessment of mitochondrial proteins. Changes in mitochondrial 
function by (A) alterations of TRAP1 levels or (B) expression of mutant 
TRAP1[D158N] are not caused by a decrease in overall mitochondrial load. Western 
blot analysis of HEK293 transfected with indicated constructs were assayed for 
abundance of the mitochondrial proteins VDAC1 and COX4. �-Actin served as 
loading control. 
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Figure S5. Stable silencing of TRAP1 causes a reduction in membrane 
potential of [A53T]�-Synuclein-expressing cells. We stably silenced TRAP1 in 
HEK293 cells using Lentiviruses-expressing short hairpin RNA (shRNA). (A) 
Silencing of TRAP1 was verified by Western blot. In contrast to HEK cells with stable 
expression of a scrambled shRNA construct, TRAP1-silenced cells displayed a 
strong reduction of TRAP1 protein load. Quantification of Western blots (n � 3) 
normalized with either VDAC or Tubulin revealed a strong reduction of TRAP1 in 
cells expressing shTRAP1 (95.43 +/-1.25 %). The presence of similar amounts of 
VDAC in relation to Tubulin between scrambled shRNA-expressing and TRAP1-
silenced cells indicates that mitochondrial load is not effected by shTRAP1. (B) 
Membrane potential was measured using the dye TMRM. Cells with stable 
expression of either of scrambled shRNA or TRAP1 shRNA were co-transfected with 

pEPFP-N1, in combination with pCDNA3.1 or pCDNA3.1-[A53T]�-Synuclein. 2 days 
after transfection cells were treated with 200 nM TMRM for 30 minutes at 37°C. 
Fluorescence was measured at 573 nm (TMRM) and 509 nm (EGFP) and plotted as 
relative intensity (TMRM/GFP). Cells expressing scrambled shRNA displayed non-

significant (ns) changes in membrane potential with or without [A53T]�-Synuclein-

expression. In contrast, expression of [A53T]�-Synuclein caused a significant 
reduction in membrane potential of TRAP1-silenced cells (***p<0.001). Statistic: 2-
way ANOVA followed by Bonferroni post-hoc tests. 

Figure S6. Protein sequence data for TRAP1 used for mutant generation. (A) 
Protein sequence alignment showing conserved aspartic acid in HSP90 ATPase 
domains. The indicated conserved amino acid is reported to be critical for ATPase 
function in yeast Hsp82. Moreover, this aspartic acid is conserved in ATPase 
domains of human TRAP1 (position 158). (B) Multiple sequence comparison of 
TRAP1 proteins from different species showed a high degree of conservation of this 
aspartic acid in the ATPase domain. Alignments were performed using ClustalW2 
(http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

Figure S7. Localization of TRAP1 and [A53T]�-Synuclein to the mitochondria. 
(A) Mitochondrial localization of TRAP1. Confocal section of HEK293 cells stained 
with the mitochondrial marker “Mitotracker Orange” (red), hTRAP1-specific antibody 
(green) and Hoechst nuclear stain (blue). A high degree of co-localization of red and 
green fluorescent signals is apparent in overlay. Scale bar indicates 27 �m. (B) Cell 
fractionation assay indicates localization of [A53T]�-Synuclein in mitochondria-
enriched fraction. Samples derived after fractionation were used for Western blot 

analysis. Blots were probed with specific antibodies detecting �-Synuclein, VDAC1 
and ß-Tubulin. Fractions analyzed (input, cytoplasmic and mitochondrial-enriched 
fraction) are indicated. 

Figure S8. Detailed statistical analysis of the data shown in Figure 4. Summary 
of statistical analysis of bar graphs in Figure 4A, B & C (ANOVA followed by 
Newman-Keuls multiple comparison test). *p<0.05; **p<0.01; ***p<0.001; ns = not 

significant. 
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Loss-of-function mutations in the Parkin gene (PARK2) are
responsible for the majority of autosomal recessive Parkinson

disease. A growing body of evidence indicates that misfolding

and aggregation of Parkin is a major mechanism of Parkin inac-

tivation, accounting for the loss-of-function phenotype of vari-

ous pathogenic Parkin mutants. Remarkably, wild-type Parkin

is also prone to misfolding under certain cellular conditions,

suggesting a more general role of Parkin in the pathogenesis of

Parkinson disease. We now show that misfolding of Parkin can

lead to two phenotypes: the formation of detergent-insoluble,

aggregated Parkin, or destabilization of Parkin resulting in an

accelerated proteasomal degradation. By combining two patho-

genic Parkin mutations, we could demonstrate that destabili-

zation of Parkin is dominant over the formation of detergent-

insoluble Parkin aggregates. Furthermore, a comparative

analysis with HHARI, an E3 ubiquitin ligase with an RBR

domain highly homologous to that of Parkin, revealed that fold-

ing of Parkin is specifically dependent on the integrity of the

C-terminal domain, but not on the presence of a putative PDZ-

binding motif at the extreme C terminus.

Parkinson disease (PD)2 is the second most common neuro-

degenerative disease after Alzheimer disease. Although most

PD cases occur sporadically, familial variants share important

features with sporadic PD, most notably the demise of dopa-

minergic neurons in the substantia nigra pars compacta. Con-

sequently, insight into the function of PD-associated genes

might promote our understanding of pathogenic mechanisms

not only in familial, but also in sporadic PD. Five genes have

unambiguously been linked to PD over the past decade, the

genes encoding �-synuclein and LRRK2 for autosomal domi-

nant PD, and those encoding Parkin, PINK1, andDJ-1 for auto-

somal recessive PD (reviewed in Refs. 1–3). So far, over a hun-

dred different pathogenic mutations in the parkin gene have

been identified, which account for the majority of autosomal

recessive PD cases. Parkin is a member of the RBR (ring

between ring fingers) protein family, characterized by the pres-

ence of two RING domains (really interesting new gene), which

flank a cysteine-rich in-between RINGs (IBR) domain. Simi-

larly to other RBR proteins, Parkin has an E3 ubiquitin ligase

activity, mediating the attachment of ubiquitin to substrate

proteins (4–6). Parkin can obviously mediate different modes

of ubiquitylation, including monoubiquitylation, multiple

monoubiquitylation, and polyubiquitylation both via lysine 48

and lysine 63, depending on the experimental conditions and

the putative Parkin substrate analyzed (reviewed in Refs. 7 and

8). Importantly, the neuroprotective activity of Parkin seems to

be associated with its ability to promote degradation-indepen-

dent ubiquitylation (9, 10).

Different lines of evidence indicate that pathogenic parkin

mutations result in a loss of Parkin function. Our initial studies

revealed that misfolding and aggregation is characteristic for

C-terminal deletion mutants of Parkin based on the following

biochemical features specific for mutant Parkin: 1) insolubility

in non-ionic and ionic detergents; 2) sedimentation in a sucrose

step gradient; 3) resistance to a limited proteolytic digestion; 4)

loss of membrane association; and 5) formation of scattered

aggregates in cells determined by immunocytochemistry (11,

12). Alterations in the detergent solubility of Parkin and forma-

tion of Parkin aggregates/inclusion bodies have also been

reported for various Parkinmissensemutants (13–18).We also

observed that even wild-type Parkin is prone to misfolding

under severe oxidative stress (12). Remarkably, insoluble, cate-

chol-modified Parkin could be detected in the substantia nigra

of patients suffering from sporadic PD, suggesting a more gen-

eral role of Parkin in the pathogenesis of PD (19). In support of

this concept, the E3 ligase activity of Parkin has been shown to

be impaired by nitrosative stress, and there is indeed evidence

for the presence of S-nitrosylated Parkin in the brains of PD

patients (20, 21).

Based on our finding that the deletion of C-terminal amino

acids results in misfolding and aggregation of Parkin, we per-

formed a comparative analysis of Parkin and HHARI, an E3

ubiquitin ligase with an highly homologous RBR domain.

Although Parkin and HHARI share their propensity to misfold

under severe oxidative stress, HHARI tolerates C-terminal

deletions. However, the C-terminal domain of HHARI can-

not rescue folding of C-terminally truncated Parkin. Instead,

Parkin-HHARI fusion proteins are characterized by destabi-

lization and rapid proteasomal degradation. This observa-

tion prompted us to analyze the two different phenotypes of
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Parkin misfolding, i.e. aggregation or destabilization, in

more detail with a special focus on the specific role of the C

terminus in Parkin folding.

EXPERIMENTAL PROCEDURES

Expression Constructs, Cell Culture, and Transfections—The

following constructs were described previously: wild-type (wt)

human Parkin, the W453X (�453–465), and R42P Parkin

mutant, HA-ubiquitin, and IKK�-FLAG (11, 12). Amino acid

deletions and substitutions of Parkin were introduced by PCR

cloning techniques: �FDV (�463–465), Parkin-D.m.CT (chi-

meric construct of human Parkin 1–450 andDrosophila Parkin

468–482), V465E, V465A, D464A, F463A, and R42P-W453X.

All constructs were inserted into the pcDNA3.1 plasmid. The

cDNA of HHARI was amplified by PCR from the RZPD clone

IRATp970D0877D with the following primer pair: forward 5�-
GCGGCTGAATTCGGATGGACTCGGACGAGGGCTAC-

3�, reverse 5�-GGAGGCGGCCGCTCAGTCCTCAATGTAC-
TCCCACAG-3�. The amplified fragment was digestedwith the

restriction enzymes EcoRI and NotI and cloned into the

pCMV-HA vector to obtain an N-terminally HA-tagged cDNA

of HHARI. A C-terminal HHARI deletion mutant (�377–557)
was generated using PCR cloning techniques, as well as fusion

proteins of Parkin andHHARI: Parkin 1–449/HHARI 376–557

(449/376), Parkin 1–453/HHARI 379–557 (453/379), and Par-

kin 1–453/HHARI 395–557 (453/395). The plasmids encoding

enhanced yellow fluorescent protein and cyan fluorescent pro-

tein (control protein) were purchased fromClontech. SH-SY5Y

(GermanResourceCentre for BiologicalMaterial numberACC

209) and HEK293T (ATCC number CRL-1573) cells were cul-

tivated and transfectedwith Lipofectamine/Plus (Invitrogen) as

described earlier.

Antibodies and Reagents—The following antibodies were

used: anti-Parkin rabbit polyclonal antibody (pAb) hP1 (12),

anti-Parkin pAb #4230 (Cell Signaling), anti-Parkin mouse

monoclonal antibody PRK8 (mAb, Millipore) anti-HA (mAb,

Roche Applied Science), anti-active caspase-3 pAb (Promega,

Madison, WI), Alexa 555-conjugated goat anti-rabbit pAb,

anti-FLAG M2-HRP mAb, anti-HA-HRP mAb, anti-�-actin
mAb (Sigma), anti-transferrin-receptor mAb (Zymed Labora-

tories Inc.), anti-glyceraldehyde-3-phosphate dehydrogenase

mAb (Ambion), anti-LDH pAb (Santa Cruz Biotechnology,

Santa Cruz, CA), anti-GFP mAb (BD Biosciences), horseradish

peroxidase (HRP)-conjugated anti-mouse, and anti-rabbit IgG

antibody (Promega). Kainate was purchased from Calbiochem,

and complete protease inhibitor mixture from Roche Applied

Science.

Western Blot Analysis—Proteins were analyzed by SDS-

PAGE and Western blotting using polyvinylidene difluoride

membranes (Millipore). The polyvinylidene difluoride mem-

braneswere blockedwith blocking solution containing 5%non-

fat drymilk inTBS containing 0.1%Tween 20 (TBS-T) for 1 h at

room temperature and then incubated with the primary anti-

body in blocking solution for 16 h at 4 °C. After extensive

washing with TBS-T, the membranes were incubated with

HRP-conjugated secondary antibody for 40 min at room tem-

perature. Following washing with TBS-T, the antigen was

detected with the enhanced chemiluminescence (ECL) detec-

tion system (Amersham Biosciences).

Detergent Solubility Assay—As described earlier (22), trans-

fected cells were harvested and lysed in detergent buffer (0.1%

Triton X-100 or 0.5% Triton X-100/0.5% sodium deoxycholate

in PBS). After centrifugation at 16,000 � g for 20 min at 4 °C,

supernatant and pellet fractions were separated. The pellet

fraction was washed with lysis buffer and resuspended in Lae-

mmli sample buffer in a volume equal to the supernatant. To

compare the relative distribution of the protein of interest,

equal percentages of detergent-soluble and -insoluble fractions

were analyzed by Western blotting.

Metabolic Labeling of Cellular Proteins—Cells were

starved for 30 min in methionine-free Dulbecco’s modified

Eagle’s medium (Invitrogen) and then labeled with 300

�Ci/ml Pro-mix L-[35S] in vitro cell label mix (Amersham

Biosciences) in methionine-free Dulbecco’s modified Eagle’s

medium for 1 h (pulse). When indicated, the proteasomal

inhibitor MG132 (Calbiochem) was present during the pulse

and chase periods. For the chase, labeling medium was

removed, and cells were washed twice and then incubated in

complete Dulbecco’s modified Eagle’s medium for 1 h.

Radiolabeled cells were lysed in detergent buffer and frac-

tionated into detergent-soluble and -insoluble fractions as

described above. The supernatants were precleared with

protein A-Sepharose (Pierce) for 30 min, the primary anti-

body hP1 was added, and the samples were incubated at 4 °C

for 16 h. The antigen-antibody complexes were captured by

the addition of immobilized protein A and then washed

three times with detergent buffer. Proteins present in the

immunoprecipitates were released from the protein A-

Sepharose by the addition of Laemmli sample buffer con-

taining 1% SDS and heating at 95 °C for 5 min. Immunopre-

cipitates were analyzed by SDS-PAGE. Gels were impregnated

with Amplify (Amersham Biosciences), dried, and exposed to

film.

Ubiquitylation Assay—Parkin or Parkin mutants, HA-ubiq-

uitin, and when indicated IKK�-FLAG were co-transfected in

HEK293T cells. One day after transfection, protein lysates

were prepared in denaturing lysis buffer (50 mM Tris/HCl,

pH 7.4, 5 mM EDTA, 1% SDS, 15 units/ml DNase I, and

protease inhibitor mixture) and incubated at 95 °C for 5 min.

Protein extracts were diluted 1:10 with non-denaturing lysis

buffer (50 mM Tris/HCl, pH 7.4, 300 mM NaCl, 5 mM EDTA,

1% Triton X-100, and protease inhibitor mixture). Immuno-

precipitation of Parkin was performed with hP1 pAb fol-

lowed by an incubation with protein A beads (Pierce); immu-

noprecipitation of IKK�-FLAG was performed with M2

FLAG-agarose (Sigma). Immunoprecipitated proteins and

input samples were analyzed by Western blotting using the

antibodies indicated.

Immunocytochemistry and Fluorescence Microscopy—SH-

SY5Y or HEK293T cells were grown on glass coverslips, trans-

fected, fixed 1 day after transfection in 3% paraformaldehyde/

sucrose in PBS for 10 min at room temperature, and

permeabilized with 0.2% Triton X-100. Fixed cells were incu-

bated with primary antibody (diluted in 1% bovine serum albu-

min and 10% goat serum) for 1 h at room temperature. After

Aberrant Folding of Pathogenic Parkin Mutants
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washes with PBS, the coverslips were incubated with fluores-

cently labeled secondary antibodies for 1 h at room tempera-

ture. Finally, cells were embedded in Mowiol mounting

medium (Calbiochem). Images were obtained on a Zeiss LSM

510 confocal microscope.

Membrane Fractionation—Transfected cells were har-

vested, incubated in hypo-osmotic buffer, and Dounce

homogenized. After a low speed spin the homogenate was

mixed with 60% iodixanol (Optiprep, Axis Shield) to obtain a

final iodixanol concentration of 40%. The mixture was over-

laid in a SW55 tube with 2.5 ml of 28% iodixanol diluted with

TNE (50 mM Tris, 150 mM NaCl, pH 7.4) and 1 ml TNE on

top. After ultracentrifugation in an MLS 50 swing-out rotor

(Beckman) at 165,000 � g for 3 h, fractions were collected

from top to bottom. Aliquots of these fractions were ana-

lyzed by Western blotting.

Fractionation of Mouse Brain Tissue—Mouse brains were

isolated from 2-month-old mice, homogenized with 10 strokes

in a glass potter in hypotonic buffer (20 mM citrate, 1 mM

EDTA, and protease inhibitormix). The tissue was further pro-

cessed by a step of freeze-thaw using liquid nitrogen. After

addition of 1% Brij-53 (Pierce), homogenates were low spin

centrifuged to yield a post-nuclear supernatant. Glycerol was

added to the post-nuclear supernatant to a final concentration

of 5%. An ultracentrifugation step of 130,000 � g for 60 min at

4 °C resulted in a cytosolic fraction and a membrane fraction.

The membrane fraction was resuspended in hypotonic buffer

containing 1% Triton X-100 and ultracentrifuged for another

30 min. The supernatant and cytosolic fractions were analyzed

by Western blotting.

Apoptosis Assay—Activation of caspase-3 was determined as

described previously (23). Briefly, SH-SY5Y cellswere grownon

glass coverslips. 24 h after transfection, cells were incubated

with kainate (500 �M) for 3 h. The cells were then fixed with 3%

paraformaldehyde for 20 min, permeabilized with 0.2% Triton

X-100 for 10 min at room temperature, and blocked with 1%

bovine serum albumin in PBS for 1 h at room temperature.

Fixed cells were incubated with anti-active caspase-3 antibody

overnight at 4 °C, washed, and incubated with Alexa 555-con-

jugated secondary antibody for 1 h at room temperature. After

extensive washing, cells were mounted onto glass slides and

examined by fluorescence microscopy using a Zeiss Axioscope

2 plus microscope. To detect cells undergoing apoptosis, the

number of activated caspase-3-positive cells out of at least 300

transfected cells was determined. Quantifications were based

on at least three independent experiments.

Stress Treatment and Proteasomal Inhibition—To induce

oxidative stress, transfected cells were incubated with 10 or 20

mM H2O2 in PBS for 30 min, harvested, and lysed in detergent

buffer containing 0.5% Triton X-100/sodium deoxycholate in

PBS. For inhibition of the proteasome, cells were treated with 5

�M MG132 (Calbiochem) for 16 h or 30 �M for 1 h during

metabolic labeling.

Statistical Analysis—Data were expressed as means 	 S.E.

All transfections were performed in triplicates and repeated

at least three times. Quantification of Western blots was

performed with the FluoChem 8900 detection system and

the Alpha Ease FC software. Statistical analysis among

groups was performed using one-way analysis of variance. p

values were �0.05.

RESULTS

HHARI Is Sensitive to Stress-inducedMisfolding butTolerates

C-terminal Deletions—Another E3 ubiquitin ligase harboring

an RBR domain is encoded by the human homologue of Dro-

sophila ariadne (HHARI) gene. In comparison to Parkin,

HHARI contains a glycine-rich region but lacks the N-terminal

UBL domain (Fig. 1A). Recently, the solution structure of

HHARI RING2 was determined by NMR studies, revealing a

distinct topology of RING2 from classic RINGs (24). Based on

the high sequence homology of RING2 between HHARI and

Parkin, Capili and coworkers proposed a similar fold for Parkin

RING2. To test whether the propensity of Parkin tomisfold is a

common feature of RBR proteins or a unique feature of Parkin,

we generated a deletion mutant of HHARI (HHARI P378X),

which was truncated behind the RBR domain, similarly to the

pathogenic ParkinW453Xmutant. A detergent solubility assay

after expression of the mutants in HEK293T cells revealed that

in comparison to wild-type (wt) HHARI there was no signifi-

cant increase in the detergent-insoluble fraction when P378X

was analyzed (Fig. 1B, right panel). In contrast, the Parkin

W453X mutant almost quantitatively adopted an insoluble

conformation under the same conditions (Fig. 1B, left panel),

indicating that HHARI is significantly less sensitive to C-termi-

nal truncations. Next we analyzed the propensity of Parkin and

HHARI to misfold under severe oxidative stress. HEK293T

cells transiently expressing wt Parkin or wt HHARI were sub-

jected to hydrogen peroxide treatment and analyzed by the

detergent solubility assay. As shown in Fig. 1C, high level oxi-

dative stress induced themisfolding of bothParkin andHHARI,

whereas yellow fluorescent protein was not affected under the

same conditions. In conclusion, Parkin and HHARI share the

sensitivity to stress-induced misfolding, which seems to be

attributable to the cysteine-richRBRdomain. The arrangement

of cysteines within RING domains is crucial to stabilize the native

conformation, thus oxidation of critical cysteine residues will

result in a collapse of the tertiary structure. However, the sensitiv-

ity to C-terminal deletions seems to be specific to Parkin.

TheC-terminal PortionAdjacent to RING2 ofHHARICannot

Replace That of Parkin—To better understand the role of the C

terminus in Parkin folding, we addressed the question of

whether the C-terminal domain distal to RING2 of HHARI can

compensate for the folding defect of C-terminally truncated

Parkin. The rationale of this approach was the observation that

folding of non-classic RING domains extends into the adjacent

C-terminal region to stabilize RING2 (24). Because RING2 of

Parkin andHHARI are supposed to share the tertiary structure,

it is conceivable that the C-terminal domain of HHARI allows

stabilization of Parkin RING2. To address this possibility

experimentally, we generated three Parkin-HHARI chimeric

constructs, differing in the length of either the Parkin or

HHARI fragment (449/376, 453/379, and 453/395, Fig. 1D).

HEK293T cells were transiently transfected with the chimeric

constructs and analyzed by a detergent solubility assay 1 day

after transfection. Surprisingly, we could not detect either of

the chimeric proteins in a Western blot analysis. To test the
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possibility of an increased proteasomal degradation of the chi-

meric proteins, we performed pulse/chase experiments in

449/376-expressing cellsmetabolically labeledwith [35S]methi-

onine and analyzed the chimeric protein by immunoprecipita-

tion. Indeed, �50% of the chimeric protein was degraded dur-

ing the pulse (60 min), and after a

chase of 60 min the protein could

only be detected in the presence of

MG132 (Fig. 1E). We then repeated

the Western blot analysis and incu-

bated the transfected cells in the

presence of the proteasomal inhibi-

tor MG132 for 16 h. It turned out

that the chimeric proteins could be

stabilized byMG132, but all of them

were present in a predominantly

detergent-insoluble conformation

(Fig. 1F). Thus, the C-terminal

domain of HHARI could not com-

pensate for the folding defect

observed for C-terminal deletion

mutants of Parkin. Moreover,

replacement of the C-terminal

domain of Parkin next to RING2 by

that of HHARI not only induced the

formation of detergent-insoluble

Parkin, but also led to a destabiliza-

tion of the chimeric protein. These

observations indicate that the

C-terminal domain of Parkin exerts

an essential and specific function in

folding and stabilization of Parkin.

Misfolding of Pathogenic Parkin

Mutants Can Lead to Aggregation

or Destabilization of Parkin—The

destabilization of Parkin-HHARI

fusion proteins reminded us of

some pathogenic Parkin mutants,

which are also characterized by an

accelerated proteasomal degrada-

tion. We reported previously that

missense mutations within the

N-terminal UBL domain induce a

destabilization of Parkin (11). We

now wondered whether this desta-

bilization might be another mani-

festation of Parkin misfolding. To

test this possibility, we expressed

the R42P Parkin mutant in the

absence and in the presence of the

proteasomal inhibitor MG132.

Indeed, the larger Parkin species (52

kDa), which comprises the UBL and

thus the pathogenic mutation, was

only detectable in the presence of

the proteasomal inhibitor and pre-

dominantly occurred in the deter-

gent-insoluble fraction (Fig. 2A).

Please note that the smaller Parkin species (42 kDa) is generated

due to the presence of an internal translation initiation site at

codon 80, consequently, the smaller Parkin species lacks the

UBL domain (11). This experiment indicated that the R42P

mutant is degraded by the proteasome, because it obviously

FIGURE 1. Folding characteristics of Parkin and HHARI. A, modular structure of Parkin and HHARI. B, Parkin
is particularly vulnerable to C-terminal truncations. HEK293T cells were transiently transfected with wild-
type (wt) and truncated mutants of Parkin or HA-tagged HHARI, harvested, lysed in 0.1% Triton X-100 or
0.5% Triton X-100/0.5% deoxycholate (DOC). Detergent-soluble (S) and insoluble (P) fractions were
obtained by centrifugation and analyzed by Western blotting. Parkin was detected by the hP1 antiserum,
and HHARI by an anti-HA monoclonal antibody. C, Parkin and HHARI are similarly vulnerable to misfolding
induced by oxidative stress. HEK293T cells transiently expressing Parkin, HHARI, or yellow fluorescent
protein (as a non-RBR protein) were treated with H2O2 at the concentrations indicated. After 30 min, cells
were harvested, lysed in 0.5% Triton X-100/0.5% deoxycholate (DOC), and analyzed by the detergent solubility
assay and Western blotting. D–F, chimeric Parkin proteins containing the C-terminal portion of HHARI adjacent
to RING2 are detergent-insoluble and rapidly degraded by the proteasome. D, schematic presentation of the
chimeric Parkin/HHARI proteins. E, HEK 293T cells transiently expressing the Parkin-HHARI construct 449/376
or wt Parkin were metabolically labeled with medium containing [35S]methionine for 1 h (pulse) and chased for
1 h in the presence or absence of the proteasomal inhibitor MG132. The proteins were immunoprecipitated
using the anti-Parkin antiserum hP1. F, the three chimeric Parkin/HHARI proteins and wt Parkin were transiently
expressed in HEK293T cells in the presence or absence of the proteasomal inhibitor MG132 (5 �M, 16 h) and
analyzed by the detergent solubility assay as described under B.
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does not adopt a native conformation, similarly to the chimeric

Parkin-HHARI constructs. Given that the formation of rela-

tively stable detergent-insoluble aggregates is also a conse-

quence of Parkin misfolding, exemplified by C-terminal dele-

tion mutants and various point mutants, we asked which

phenotype of Parkin misfolding might be dominant over the

other. To this end, we generated the R42P-W453X double Par-

kin mutant. To facilitate the interpretation of the results, the

internal translation initiation site, i.e.methionine at position 80

was replaced by threonine, which occurs at position 80 in

murine Parkin. Remarkably, the R42P-W453X double Parkin

mutant could be detected only in the presence of the proteaso-

mal inhibitor MG132 in an almost exclusively detergent-insol-

uble conformation, indicating that destabilization of Parkin is

dominant over the formation of stable aggregates (Fig. 2A). In

line with the detergent solubility assay, immunofluorescence

experiments performed with SH-SY5Y cells showed typical

scattered aggregates of the W453X Parkin mutant, but almost

no expression of theR42P-W453Xdouble Parkinmutant under

steady state conditions (Fig. 2B). The weak staining of R42P-

expressing cells can be explained by the presence of the smaller

Parkin species, which lacks the R42P mutation and therefore is

not misfolded. We used SH-SY5Y cells for immunocyto-

chemistry, because HEK293T cells display a disadvanta-

geous nucleus-to-cytoplasm ratio for the analysis of cytoso-

lic proteins. To provide evidence

that the misfolding phenotype of

Parkin mutants is not a cell type-

specific phenomenon, we per-

formed immunofluorescence ex-

periments also in HEK293T cells

and detergent solubility assays in

SH-SY5Y cells (Fig. 2C).

The Putative PDZ-binding Motif

at the C Terminus Is Dispensable for

Parkin Folding—In previous studies

we showed that pathogenic C-ter-

minal truncations lead to misfold-

ing and aggregation of Parkin (11,

12). Remarkably, the deletion of

three C-terminal amino acids was

sufficient to drastically interfere

with the native folding of Parkin,

leading to the formation of deter-

gent-insoluble, aggregated Parkin

(Fig. 3A). It has been suggested that

the three amino acids (FDV) at the

extreme C terminus of Parkin func-

tion as a PDZ-binding motif, which

can mediate an interaction with the

PDZ domain-containing proteins

CASK and PICK1 (25, 26). We

therefore addressed the question of

whether this motif is necessary for

Parkin to obtain or stabilize its

native conformation. Interestingly,

whereas other functional domains

of Parkin, such as the UBL, RING1,

RING2, and the IBR, are highly conserved between species, the

FDV motif is present only in mammalian species, but not in

non-mammalian vertebrates (Gallus gallus, Fugu rubripes, and

Danio rerio) or non-vertebrates (Drosophila melanogaster,

Anopheles gambiae, and Caenorhabditis elegans, Fig. 3B). The

FDV sequence of Parkin falls into the class II PDZ-binding

motif�-X-�, where� is a hydrophobic amino acid andX is any

amino acid. To destroy the putative PDZ-binding motif, we

replaced valine at position 465 by glutamic acid (V465E), a

mutation that has been reported previously to disrupt PDZ-de-

pendent interactions (27). In addition, we replaced the C-ter-

minal domain of human Parkin (amino acids 451–465) by that

of Drosophila melanogaster Parkin (amino acids 468–482),

which lacks the C-terminal valine residue and thus a functional

PDZ-binding motif (Parkin-D.m.CT). The detergent solubility

assay revealed that both PDZ mutants, V465E and Parkin-

D.m.CT, were almost entirely found in the detergent-soluble

fraction, similarly to wt Parkin (Fig. 3C, upper panel). In line

with this observation, the indirect immunofluorescence analy-

sis did not show differences in the cellular distribution of wt

Parkin and the C-terminal Parkin mutants (Fig. 3C, lower

panel). To determine which amino acid of the FDV motif is

crucial for Parkin folding, we replaced either phenylalanine,

aspartate, or valine with alanine (V465A, D464A, and F463A).

We observed that only the F463A mutant adopts a detergent-

FIGURE 2. Two phenotypes of Parkin misfolding. A, HEK293T cells were transiently transfected with wt or
mutant Parkin and treated the proteasomal inhibitor MG132 (5 �M, 16 h). Parkin present in the soluble and
insoluble fraction was analyzed by the Western blotting as described under Fig. 1B. B, SH-SY5Y cells transiently
expressing wt Parkin or the mutants indicated were analyzed by indirect immunofluorescence using the
anti-parkin antiserum hP1. C, the misfolding phenotype of mutant Parkin is not cell type-specific. Upper panel:
SH-SY5Y were transiently transfected with either wt or W453X Parkin. A detergent solubility assay was per-
formed as described under Fig. 1B. The asterisk (left panel) indicates a non-specific band. Lower panel: HEK293T
cells transiently expressing wt or W453X Parkin were analyzed by indirect immunofluorescence using the
anti-Parkin antiserum hP1.
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insoluble conformation and forms aggregates in cells, indicat-

ing that the phenylalanine at position 463 is essential (Fig. 3D).

Of note, in contrast to the putative PDZ-binding motif, this

phenylalanine is conserved between all species (Fig. 3B).

Membrane Association of Parkin Is Independent on the Integ-

rity of the Putative PDZ-binding Motif—PDZ domains act as

modules and scaffolds for protein-protein interactions and play

a prominent role in organizing protein complexes at the plasma

membrane.We and others have observed that Parkin can asso-

ciate with membranes (11, 25, 28–30), which is recapitulated

here for endogenous Parkin in SH-SY5Y cells (Fig. 4E) and

mouse Parkin in brain lysates (Fig. 4F). Therefore, we analyzed

a possible role of the putative PDZ-binding motif in targeting

Parkin to membranes. HEK293T cells were transiently trans-

fected with wt Parkin or the C-terminal PDZ Parkin mutants

(V465E, Parkin-D.m.CT), and cell homogenates were fraction-

ated by a density gradient centrifugation. The majority of wt

Parkin was found in the bottom fractions, representing the

cytosolic fractions. However, a fraction of wt Parkin colocalized

with the transferrin receptor, indicatingmembrane association

of Parkin (Fig. 4A). The Parkin constructs with amutated PDZ-

binding motif, Parkin-D.m.CT and V465E, were not signifi-

cantly impaired in their ability to associate with membranes,

FIGURE 3. Role of the putative PDZ-binding motif in Parkin folding.
A, deletion of the last three amino acids (FDV), comprising a putative PDZ-
binding motif, leads to misfolding of Parkin. HEK293T (detergent solubility
assay) or SH-SY5Y cells (indirect immunofluorescence) were transfected with
wt Parkin or C-terminally truncated Parkin (�FDV) and analyzed as described
in Fig. 2 (A and B). B, alignment of Parkin C termini of different species. The FDV
motif is conserved only in mammalian species. C, the integrity of the FDV
motif is dispensable for Parkin folding. HEK293T and SH-SY5Y cells were tran-
siently transfected with wt Parkin or the Parkin mutants Parkin-D.m.CT (the
last 15 amino acids of human wt Parkin replaced by the respective C-terminal
amino acids of Drosophila parkin) or V465E (putative PDZ-binding motif dis-
rupted) and analyzed by the detergent solubility assay and indirect immuno-
fluorescence. D, the presence of phenylalanine at position 463 is crucial for
Parkin folding. HEK293T and SH-SY5Y cells were analyzed as described above.

FIGURE 4. The putative PDZ-binding motif is not necessary for the bind-
ing of Parkin to cellular membranes. A–C, HEK293T cells were transiently
transfected with wt Parkin or the Parkin mutants indicated. Total cell homo-
genates were subjected to density gradient centrifugation, and eight frac-
tions were analyzed by Western blotting using antibodies against Parkin, the
cytosolic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH), or
the transmembrane protein transferrin receptor (TFR). D, quantification of
membrane-associated Parkin or Parkin mutants (three independent experi-
ments). Error bars indicate 	 S.E.; n.s., not significant. E and F, membrane
association of endogenous Parkin. E, homogenates of SH-SY5Y cells were
subjected to density gradient centrifugation and analyzed as described
above. F, homogenates of mouse brain tissue were differentially centrifuged
to enrich a microsomal fraction. To identify cytosolic (C)- and membrane (M)-
enriched fractions, transferrin receptor (TFR) and lactate dehydrogenase
(LDH) antibodies were used.
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suggesting that the integrity of the putative PDZ binding motif

is not essential for membrane targeting, at least under steady-

state conditions (Fig. 4, B–D). Of note, the fraction of mem-

brane-associated endogenous parkinmight even be higher, due

to saturation of Parkin-binding sites at the membrane.

Parkin Lacking a Functional PDZ-bindingMotif at the CTer-

minus Is Not Impaired in Its Neuroprotective Capacity—Parkin

has been shown to protect neurons from stress-induced cell

death in variousmodel systems (reviewed in Refs. 7 and 31).We

recently showed that activation of theNF-�B signaling pathway

is an essential prerequisite for the neuroprotective capacity of

Parkin (10). Given that PDZ domains have the capacity to

assemble components of signaling pathways to specific subcel-

lular sites, we reasoned that the putative PDZ-binding domain

might play a role in orchestrating signaling pathways thatmedi-

ate the neuroprotective activity of Parkin. To test this hypoth-

esis, we analyzed the cytoprotective activity of Parkin mutants

with a non-functional PDZ-binding motif. For this assay we

used SH-SY5Y cells, which are characterized by a neuron-like

phenotype and a dopaminergic capacity. SH-SY5Y cells tran-

siently expressingwt ormutant Par-

kin were incubated in the presence

or absence of kainate, an excitotoxin

that activates ionotrophic gluta-

mate receptors. Apoptotic cells

were identified by indirect immu-

nofluorescence using an antibody

specific for activated caspase-3. As

shown in Fig. 5A, the protective

activity of V465E and Parkin-

D.m.CT in response to kainate

treatmentwas comparable to that of

wt Parkin. Thus, the putative PDZ-

binding motif at the C terminus of

Parkin seems not to contribute to

the neuroprotective activity of Par-

kin. To extend the functional analy-

sis, we performed ubiquitylation

experiments. Wt or mutant Parkin

was co-expressed with HA-tagged

ubiquitin in HEK293T cells, immu-

noprecipitated with an anti-Parkin

antibody, and subjected toWestern

blotting using an anti-HA anti-

body. No significant differences in

the amount of ubiquitylated Parkin

could be detected (Fig. 5B). Next we

tested the activity of wt and mutant

Parkin to enhance ubiquitylation of

IKK�/NEMO (10). HEK293T cells

were co-transfected with wt or

mutant Parkin and FLAG-tagged

IKK�/NEMO and HA-tagged ubiq-

uitin. Immunoprecipitation under

denaturing conditions was per-

formed with an anti-FLAG anti-

body, and precipitated proteins

were subjected to a Western blot

analysis using an anti-HA antibody. This experiment revealed

that destroying the putative PDZ-binding motif at the C termi-

nus does not interfere with the capacity of Parkin to promote

ubiquitylation of IKK�/NEMO (Fig. 5C). Ubiquitylation of

IKK�/NEMOwas evenhigher in the presence of theC-terminal

Parkin mutants; however, this observation can be explained by

differences in the Parkin expression level. Nevertheless, the

ubiquitylation activity of Parkin seems not to be dependent on

the presence of the C-terminal PDZ-binding motif.

DISCUSSION

The formation ofmisfolded protein conformers is a common

pathological denominator in various neurodegenerative dis-

eases. PD is a paradigm for the possible consequences of protein

misfolding. Misfolding can induce a gain of toxic function,

exemplified by �-synuclein, a loss of physiological function, as
shown for Parkin, or even a combination of both, which seems

to apply to �-synuclein (reviewed in Ref. 32). Misfolding of

Parkin induced by pathogenic mutations or cellular stress has

been established as a major mechanism of Parkin inactivation,

FIGURE 5. A, the neuroprotective activity of Parkin is not dependent on the putative PDZ-binding motif.
SH-SY5Y cells were co-transfected with the indicated Parkin construct and yellow fluorescent protein to
visualize transfected cells. 24 h after transfection, cells were incubated with 500 �M kainate for 3 h at 37 °C,
fixed, permeabilized, and analyzed by indirect immunofluorescence using an antibody against active
caspase 3. Shown is the percentage of apoptotic cells among the transfected cells. *, p � 0.05; n.s., not signif-
icant. B, ubiquitylation of Parkin and PDZ Parkin mutants. HEK293T cells were transfected with the indicated
Parkin constructs and HA-tagged ubiquitin. Parkin was immunoprecipitated under denaturing conditions and
analyzed by Western blotting using an anti-HA antibody. C, ubiquitylation of IKK� by Parkin and PDZ Parkin
mutants. HEK293T cells co-expressing wt or mutant Parkin, IKK�-FLAG, and HA-ubiquitin and were lysed, and
IKK� was immunoprecipitated with an anti-FLAG antibody under denaturing conditions. The immunocom-
plexes were analyzed by Western blotting using an anti-HA antibody.
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accentuating a possible pathological role of Parkin even in spo-

radic PD (11–21, 33–35). It is obvious that the high cysteine

content found in the RBR domain predisposes Parkin to oxida-

tive stress-induced inactivation andmisfolding, a phenomenon

that has recently been shown experimentally (36). Interestingly,

in comparison to other RBR proteins Parkin seems to be

uniquely sensitive to dopamine-induced inactivation (33, 36).

Unfortunately, the three-dimensional structure of full-

length Parkin has not been determined so far, which might be

due to the high propensity of Parkin to misfold and the conse-

quent difficulties in generating sufficient amounts of natively

folded recombinant Parkin. In this study we describe two dif-

ferent manifestations of Parkin misfolding, leading to a loss of

Parkin function. Pathogenic mutations leading to conforma-

tional alterations can induce either the formation of detergent-

insoluble, aggregated Parkin, or the destabilization of Parkin,

resulting in its rapid proteasomal degradation. In addition, we

addressed intrinsic determinants of Parkin folding with a spe-

cial focus on the role of the C-terminal domain.

Role of the Putative PDZ-binding Motif in Parkin Folding—

Based on our previous observation that the deletion of more than

twoC-terminal amino acids drastically interferedwith the folding

of Parkin, we concentrated on a possible functional role of the last

three C-terminal amino acids of Parkin, which have been pro-

posed to constitute a PDZ-binding motif (25). Whereas all the

other domains are highly conserved between species, the puta-

tive PDZ-binding motif can only be found in mammalian spe-

cies, compatible with an additional function evolved in mam-

mals. Replacing the C-terminal domain of human Parkin by

that ofDrosophila Parkin (Parkin-D.m.CT), which lacks a PDZ-

binding motif as well as converting the predicted PDZ-binding

motif into a non-functional one (V465E), did not alter the fold-

ing properties of Parkin. Because interactions between PDZ

proteins and PDZ-binding motifs mediate the assembly of pro-

tein complexes specifically at membranes, we expected that the

putative PDZ-binding domain of Parkin is involved in the tar-

geting of Parkin to membranes. However, we could not detect

significant differences between wild-type Parkin and mutant

Parkin (Parkin-D.m.CT, V465E) in binding to cellular mem-

branes determined by density gradient centrifugation under

steady-state conditions. This observation does not exclude the

possibility that, under certain conditions, for example in

response to a specific stimulus, a transient PDZ-dependent

interaction occurs. To determine the functional relevance of

the putative PDZ-binding domain, we tested the neuroprotec-

tive capacity of the PDZ Parkinmutants in comparison to wild-

type Parkin. Both mutants lacking a functional PDZ-binding

domain (Parkin-D.m.CT and V465E) protected neuronal

cells from stress-induced cell death similarly to wild-type

Parkin. In line with this observation, the ubiquitylation

activity of the PDZ Parkin mutants was not impaired in com-

parison to wild-type Parkin. Our results allow two interpre-

tations. Either the C-terminal FDV motif is not an authentic

PDZ-binding domain (no conservation between species,

only low stringency consensus sequence), or an interaction

of Parkin with PDZ proteins, such as CASK or PICK1 (25,

26), is associated with other properties or activities of Parkin

than those we addressed in our study (folding, membrane

association, neuroprotective activity).

The Two Facets of Parkin Misfolding: Aggregation and

Degradation—To further address the role of the C-terminal

domain in Parkin folding, we performed a comparative analysis

between Parkin and HHARI, which also contains an RBR

domain close to the C terminus. We found that HHARI is sen-

sitive to oxidative stress-inducedmisfolding similarly to Parkin,

which is in line with recent observations (33, 36). However, the

propensity tomisfold uponC-terminal truncationswas specific

for Parkin. We then replaced the C-terminal portion of Parkin

by that of HHARI, to test whether the tolerance to C-terminal

truncations can be transferred to Parkin. This strategy was

based on the commonly held view that RING2 of the RBR

domain extends into the adjacent C-terminal region to stabilize

its fold (24). Surprisingly, different strategies to generate such a

chimeric Parkin-HHARI protein resulted in the formation of

unstable, misfolded conformers. Thus, although the RBR

domain of Parkin and HHARI show a high degree of homology

and possibly the same fold, the role of the C terminus in Parkin

folding is unique.

Destabilization of Parkin is also induced by some pathogenic

missense mutations within the UBL domain (11). The behavior

of the chimeric Parkin-HHARI proteins led us to uncover the

reason for the instability of the R42P mutant, which we

described previously as the most unstable UBL mutant. Our

results indicate that this mutant is rapidly degraded by the pro-

teasome due to the formation of a non-native conformer. Our

findings are in line with a recent study on the folding and struc-

ture of the UBL domain of Parkin. Safadi and Shaw showed by

NMR spectroscopy that the R42P mutation causes the com-

plete unfolding of the UBL (37).

In conclusion, our study demonstrates that conformational

alterations of Parkin induced by pathogenic mutations can lead

to either a decrease in detergent solubility and aggregation or

destabilization of Parkin. Although our observations are based

on overexpression of pathogenic Parkinmutants and aggregate

formation not necessarily occurs in patients (38), there are con-

sistent biochemical differences between wild-type Parkin and

mutant Parkin, which are not dependent on expression levels:

alterations in detergent solubility, sedimentation in a sucrose

gradient, and resistance to a limited proteolytic digestion

(C-terminal deletion mutants) as well as rapid proteasomal

degradation (R42P). The fact that misfolding of Parkin can

occur in two facets, aggregation or destabilization, is an inter-

esting feature, which needs further mechanistic analysis. Con-

ceptually, pathogenic mutations might induce the formation of

different Parkin conformers or might affect Parkin folding at

distinct stages of the folding pathway.
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Parkin is transcriptionally regulated by ATF4: evidence
for an interconnection between mitochondrial stress
and ER stress

L Bouman1, A Schlierf1, AK Lutz1, J Shan2, A Deinlein1, J Kast1, Z Galehdar3, V Palmisano1, N Patenge4, D Berg4, T Gasser4,

R Augustin5, D Trümbach5, I Irrcher3, DS Park3,6, W Wurst5,7, MS Kilberg2, J Tatzelt1 and KF Winklhofer*,1

Loss of parkin function is responsible for the majority of autosomal recessive parkinsonism. Here, we show that parkin is not
only a stress-protective, but also a stress-inducible protein. Both mitochondrial and endoplasmic reticulum (ER) stress induce
an increase in parkin-specific mRNA and protein levels. The stress-induced upregulation of parkin is mediated by ATF4, a
transcription factor of the unfolded protein response (UPR) that binds to a specific CREB/ATF site within the parkin promoter.
Interestingly, c-Jun can bind to the same site, but acts as a transcriptional repressor of parkin gene expression. We also present
evidence that mitochondrial damage can induce ER stress, leading to the activation of the UPR, and thereby to an upregulation of
parkin expression. Vice versa, ER stress results in mitochondrial damage, which can be prevented by parkin. Notably, the activity
of parkin to protect cells from stress-induced cell death is independent of the proteasome, indicating that proteasomal
degradation of parkin substrates cannot explain the cytoprotective activity of parkin. Our study supports the notion that parkin
has a role in the interorganellar crosstalk between the ER and mitochondria to promote cell survival under stress, suggesting
that both ER and mitochondrial stress can contribute to the pathogenesis of Parkinson’s disease.
Cell Death and Differentiation advance online publication, 26 November 2010; doi:10.1038/cdd.2010.142

Mitochondrial dysfunction has long been implicated in the
pathogenesis of Parkinson’s disease (PD). Mitochondrial
toxins targeting complex I of the electron transport chain can
induce acute parkinsonism in humans and are being used to
model PD in animals. More recently, several PD-associated
genes have been shown to influence mitochondrial function,
morphology, dynamics and turnover (reviewed in Winklhofer
and Haass1 and Schapira2). In addition to mitochondrial
dysfunction, several lines of evidence indicate that endoplas-
mic reticulum (ER) stress may contribute to the pathogenesis
of PD (reviewed in Wang and Takahashi3 and Lindholm
et al.4). First, toxins such as MPTP, 6-OHDA or rotenone,
used to induce parkinsonism in animal models, have been
shown to cause ER stress.5–7 Second, ER stress accounts for
at least some aspects of a-synuclein toxicity. a-Synuclein has
been shown to block ER to Golgi vesicular trafficking in
different model systems,8 and overexpression of a-synuclein
can induce ER stress.8,9 Finally, ER stress has been
documented in dopaminergic neurons of the parkinsonian
brain, exemplified by increased levels of phospho-PERK,
phospho-eIF2a and caspase-4.10,11 The link between PD and

ER dysfunction was recently reinforced by the observation
that the E3 ubiquitin ligase parkin can protect cells from ER
stress-induced cell death induced by the overexpression of
Pael-R, a putative parkin substrate prone to misfolding within
the secretory pathway.12,13 Mutations in the parkin gene were
identified as a cause of early onset PD in Japanese families.14

Since then, more than 100 mutations have been described in
patients of diverse ethnic backgrounds, accounting for the
majority of autosomal recessive parkinsonism.
ER stress originates from the accumulation of unfolded

secretory proteins, perturbations in calcium homeostasis or
redox status, alterations in glycosylation or energy depriva-
tion. The ER has evolved sophisticated stress response
signaling pathways collectively called the unfolded protein
response (UPR), destined to increase the ER folding capacity,
to reduce the folding load and to restore ER homeostasis
(reviewed in Ron and Walter15). Conversely, when ER stress
conditions are severe or persistent, apoptotic cell death is
induced (reviewed in Kim et al.16).
Recent research revealed that the ER physically and

functionally interacts with mitochondria to influence key
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aspects of cellular physiology and viability (reviewed in Pizzo
and Pozzan17). Interactions between these organelles
allow the exchange of metabolites and are implicated in the
regulation of calcium signaling and cell death pathways. Our
study shows that parkin expression is increased on ER stress
and mitochondrial stress through the PERK/ATF4 branch of
the UPR. Increased expression of parkin prevents ER stress-
induced mitochondrial damage and cell death, providing
evidence for a functional link between parkin, ER stress and
mitochondrial integrity.

Results

Mitochondrial membrane dissipation causes ER stress
and leads to transcriptional upregulation of parkin. The
protonophore CCCP is being used to induce mitochondrial
damage in various model systems. CCCP renders the
mitochondrial inner membrane permeable for protons and
causes dissipation of the proton gradient. We previously
observed that the complex I inhibitor rotenone induces
an upregulation of parkin mRNA and protein levels.18

CCCP has recently been shown to cause the translocation
of parkin to damaged mitochondria, which are then removed
by autophagy.19 We, therefore addressed the question
whether CCCP might also have an impact on the
transcriptional regulation of parkin. Parkin transcripts were
significantly increased both in CCCP-treated SH-SY5Y cells
and primary mouse cortical neurons (Figures 1a and b). To
get insight into the underlying mechanism, we screened
the parkin promoter for possible binding sites (BSs) of stress-
regulated transcription factors by using TFSEARCH (http://
www.cbrc.jp/research/db/TFSEARCH.html).20 We discovered
a putative CREB/ATF site in the parkin promoter located from
�169 to�161bp relative to the transcriptional start site (TSS).
A further in-depth analysis identified this site as a possible
binding sequence for ATF4 (Figures 1c and 3a). The CREB/
ATF site within the parkin promoter is conserved among
species (Figure 1c), supporting the notion that this site might
be functionally relevant. An additional ATF4-binding site is
located downstream of the TSS within the first intron of
human, bovine and rodent parkin (Figure 1c).
ATF4 is a transcription factor, which is activated under ER

stress. Some toxins used to model PD have been associated
with ER stress, therefore we analyzed whether mitochondrial
membrane dissipation induced by CCCP can cause ER stress.
Regulation of gene expression in response to ER stress is
mediated by the UPR, a stress-response program that re-
establishes cellular homeostasis by the combinatorial action of
specific transcription factors, binding to ER stress-responsive
elements in the regulatory regions of UPR target genes
(reviewed in Ron and Walter15). To test whether CCCP induces
ER stress, we cloned a luciferase reporter construct containing
the ER stress-responsive element ERSE-II (ERSE-II-luc,
Supplementary Figure 5). Treatment of cells transiently expres-
sing the luciferase reporter construct with tunicamycin (TM)
induced an increase in luciferase expression, demonstrating the
functionality of this ER stress reporter construct (Figure 1d).
Moreover, CCCP was also able to significantly increase
luciferase expression from ERSE-II-luc (Figure 1d). In addition,
we quantified mRNA levels of the ER chaperone BiP, which is a

major target of the UPR. CCCP treatment caused an upregula-
tion of BiP mRNA, indicating that the mitochondrial toxin CCCP
can induce ER stress (Figure 1e).

Parkin gene expression is upregulated in response
to ER stress. In a next step, we tested whether
expression of parkin is influenced by ER stress. SH-SY5Y
cells were incubated with either the ER Ca2þ -ATPase
inhibitor thapsigargin (TG) or the N-glycosylation inhibitor
TM. Both ER stressors significantly increased the levels of
parkin mRNA with a maximum at 12 h after treatment
(Figures 2a and b). Another classical inducer of ER stress
is amino acid starvation. We therefore made use of
L-histidinol, a histidine analog, which inhibits activation of
histidine by histidyl-tRNA synthetase. Also in this ER stress
paradigm, parkin mRNA levels increased (Figure 2c).
Notably, the upregulation of parkin under ER stress,
induced by TG, TM or L-histidinol, was also observed on
the protein level (Figures 2d–f), and was not restricted to SH-
SY5Y cells, as a significant upregulation of parkin in
response to TG or TM treatment was also observed in
HEK293T cells, mouse embryonic fibroblasts (MEF) and
primary mouse cortical neurons (Figures 2g–i). Interestingly,
the upregulation of parkin upon ER stress in not dependent
on PINK1 expression (data not shown).

Parkin is a target of the UPR through the PERK/ATF4
pathway. To test whether the putative ATF4-binding site
within the parkin promoter mediates upregulation of parkin in
response to ER stress, we created a luciferase reporter
construct using the pGL3-luc promoter vector containing the
putative ATF4-binding site (in triplicate) in front of a
sequence coding for luciferase (park-luc, Figure 3a). As a
positive control, we cloned the confirmed ATF4-binding site
of the IGFBP1 promoter21 analogously to the park-luc
construct. This control construct was termed ATF4-
responsive element (ATF4RE)-luc (Figure 3a). As a
negative control, we cloned a mutant park-luc construct,
harboring two point mutations in the putative ATF4-binding
motif (mut. park-luc, Figure 3a). We tested park-luc in
comparison with ATF4RE-luc under ER stress conditions
and observed that luciferase expression from both reporter
constructs was increased to a similar extent, whereas mutant
park-luc behaved like the pGL3-luc vector control, both in
HEK293T and SH-SY5Y cells (Figure 3b). Of note, CCCP
treatment also induced increased transcription from both
ATF4RE-luc and park-luc (Supplementary Figures 1A and
B). Moreover, forced expression of ATF4 or upstream PERK
also activated transcription from park-luc (Figure 3C). In line
with this observation, dominant-negative ATF4DN, which
lacks the N-terminal transcriptional activation domain,22

significantly interfered with the ER stress-induced activation
of park-luc (Figure 3d).
To increase experimental evidence for a role of endogen-

ous ATF4 in mediating the transcriptional upregulation of
parkin under ER stress, we knocked down ATF4 expression
by RNAi. SH-SY5Y cells were transfected with ATF4 small-
interfering RNA (siRNA) or control siRNA, and the efficiency of
the ATF4 knockdown was verified at the mRNA and protein
level (Figure 4a, right panel). Of note, ATF4 is specifically
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Figure 1 Mitochondrial stress induced by CCCP activates the UPR and leads to an upregulation of parkin. (a) Parkin mRNA levels are increased in response to
mitochondrial membrane dissipation, induced by CCCP. SH-SY5Y cells were incubated with 10 mM CCCP for the indicated time. Cells were collected and total cellular RNA
was isolated and subjected to quantitative RT-PCR using parkin-specific primers. The amount of RNA of each sample was normalized with respect to the endogenous
housekeeping gene b-actin. Shown is the fold increase of parkin-specific mRNA compared with untreated control cells. (b) Parkin mRNA is upregulated upon CCCP treatment
in primary mouse cortical neurons. Primary cortical neurons derived from embryonic mouse brain were incubated with CCCP (10mM) for 12 h and analyzed as described in (a).
(c) Human, mouse, bovine and equine promoter sequences of parkin, which are elongated downstream of the transcription start site (TSS) by 150 bp. Red arrow indicates the
TSS and positions are denoted with relative to the TSS. The CREB/ATF-binding sites are indicated by semicircles. Red, yellow and blue semicircles are predicted by three
different binding motifs, which correspond to a Genomatix-defined family of 14 matrices describing the CREB/ATF-binding site. The red and yellow colored binding sites are
conserved between Homo sapiens, Bos taurus and Equus caballus, and H. sapiens and E. caballus, respectively, whereas the blue binding site is conserved across all four
species. The green semicircles (not conserved) are additional binding sites. Downstream of the TSS, in the first intron of the parkin gene, an additional CREB/ATF-binding site
is located in H. sapiens, Mus musculus and B. taurus. The consensus ATF4-binding site is written in bold letters. hsa, Homo sapiens; mmu, Mus musculus; bta, Bos taurus;
eca, Equus caballus. (d and e) CCCP activates the UPR and causes ER stress. (d) The ER stress luciferase reporter construct ER stress-response element II (ERSE-II-luc) is
activated by CCCP. HEK293T cells were transfected with the ERSE-II-luc reporter. At 24 h after transfection, the cells were treated with 10 mM CCCP for 24 h. As a positive
control, the cells were treated with the ER stressor tunicamycin (2mg/ml, 24 h). Shown is the fold induction of luciferase activity in CCCP-treated cells in comparison with
non-treated control cells. Quantification is based on triplicates of at least three independent experiments. (e) BiP expression is increased in response to CCCP treatment. As
an indicator of ER stress, BiP mRNA levels were analyzed in SH-SY5Y cells treated with CCCP (10 mM) for the indicated time by quantitative RT-PCR as described in
Figure 1a. Tunicamycin (2mg/ml) was used as a positive control to induce ER stress. ***Po0.001, **Po0.01
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induced after ER stress, whereas under non-stress conditions
expression levels are low. Remarkably, in ATF4-deficient
cells, the upregulation of parkin induced by ER stress (TG) or
mitochondrial stress (CCCP) was significantly reduced
(Figure 4a, left panel). The same results were obtained
employing two different ATF4-specific siRNA duplexes (data
not shown). Moreover, we analyzed the transcriptional
regulation of parkin in primary cortical neurons derived from
ATF4-knockout mice.23 The upregulation of parkin on ER
stress was significantly reduced in ATF4-deficient neurons
(Figure 4b), indicating that ATF4 indeed has an important role
in the stress-induced regulation of parkin expression.
Interestingly, in our experimental approach, a transient
downregulation of ATF4 had a more severe effect on the
stress-induced regulation of parkin than a stable knockout of
ATF4. It is conceivable that compensatory effects in
ATF4-knockout mice account for this observation.

Finally, binding of ATF4 to the parkin promoter could
be demonstrated by chromatin immunoprecipitation (ChIP)
assays using a polyclonal anti-ATF4 antibody. A rabbit
polyclonal antibody (pAb) against chicken IgG was used as
a nonspecific control. After isolation of crosslinked chromatin
from cells incubated with or without TG, immunoprecipitated
DNA was analyzed by real-time PCR. The ChIP analysis
revealed specific binding of ATF4 to the parkin promoter after
2 and 8h of TG treatment in both HEK293T and SH-SY5Y
cells (Figure 4c).

c-Jun acts as a transcriptional repressor of parkin and
has a dominant effect on ATF4. When we performed
electrophoretic mobility shift assays using the putative ATF4-
binding site of the parkin promoter as a radiolabeled probe
(park oligo), we observed a second complex in addition to the
ATF4–DNA complex. This complex showed a reduced
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Figure 2 Parkin gene expression is upregulated in response to ER stress. (a and b) Parkin mRNA levels are increased under ER stress induced by thapsigargin
or tunicamycin. SH-SY5Y cells were incubated with 1 mM thapsigargin (TG) (a) or 2 mg/ml tunicamycin (TM) (b) for the indicated time. Cells were collected and total cellular
RNA was isolated and subjected to quantitative RT-PCR using parkin-specific primers. The amount of RNA of each sample was normalized with respect to the endogenous
housekeeping gene b-actin. The same results were obtained when 18sRNA was used as a control gene (data not shown). Shown is the fold increase of parkin-specific mRNA
compared with untreated control cells. (c) Amino acid starvation leads to an upregulation of parkin mRNA. SH-SY5Y cells were treated with 2 mM L-histidinol in cell culture
medium, containing 10% dialysed FCS, for 14 h. The cells were then collected and total cellular RNA was isolated and subjected to quantitative RT-PCR using parkin-specific
primers as described under Figure 1a. (d–f) Parkin protein expression is increased after ER stress induced by TG, TM, or amino acid starvation. Expression of endogenous
parkin after treatment of SH-SY5Y cells with TG (d), TM (e) or L-histidinol (f) for 14 h was analyzed by western blotting using the anti-parkin mAb PRK8. Loading was controlled
by re-probing the blots for b-actin. The western blot image (e) was re-arranged by excluding one line, as indicated by a white line; all samples originate from one gel.
(g–i) Parkin mRNA is upregulated on ER stress in HEK293T cells, mouse embryonic fibroblasts and primary mouse cortical neurons. HEK293 T cells (g), mouse embryonic
fibroblasts (h), or primary cortical neurons derived from embryonic mouse brain (i) were incubated with TG (1 mM) or TM (2 mg/ml; primary cortical neurons: 3 mg/ml) for 12 or
8 h and 12 h (primary cortical neurons) and analyzed as described in (a). ***Po0.001, **Po0.01, *Po0.05
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mobility in comparison with the ATF4–park oligo complex,
and its relative intensity was increased after ER stress
(Figure 5a, lanes 1, 2). By testing various antibodies against

transcription factors that could bind to the CREB/ATF site for
their potential to supershift the upper band, we found that
c-Jun is also able to bind to the park oligo. The respective
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Figure 3 Transcriptional upregulation of parkin under ER stress is mediated by ATF4. (a) Schematic representation of the consensus ATF4-binding site, the putative
ATF4-binding site within the parkin promoter and the luciferase reporter constructs cloned for the analysis described in the following: park-luc contains the putative ATF4-
binding site of the parkin promoter in triplicate, mutant park-luc habors two point mutations within the putative ATF4-binding site, and ATF4RE-luc contains the confirmed
ATF4-binding site of the insulin growth factor binding protein 1 (IGFBP1) promoter in triplicate. Of note, the putative binding site for ATF4 within the parkin promoter is located
on the complementary strand in 50-30 direction. (b) The park-luc reporter construct is induced after ER stress. HEK293 T cells or SH-SY5Y cells were transfected with either
the control luciferase reporter construct pGL3-luc (vector), the ATF4RE-luc construct containing the confirmed ATF4-binding site, the park-luc construct or the park-luc
construct with a mutated ATF4 binding site (mut. park). At 8 h after transfection, cells were incubated with 1 mM thapsigargin (TG) and collected after 14 h of treatment. Shown
is the fold induction of luciferase activity in stressed cells compared with the non-stressed control based on triplicates of at least three independent experiments. (c) Increased
expression of ATF4 or upstream PERK induces transcription from the park-luc reporter construct. HEK293T cells were co-transfected with the ATF4RE-luc reporter plasmid or
the park-luc reporter plasmid and ATF4, PERK or GFP (as a control). As a positive control, one set of cells was treated with TG as described under (b) Shown is the fold
induction of luciferase activity compared with GFP-expressing control cells based on triplicates of at least three independent experiments (left panel). Expression levels of
ATF4 and PERK were analyzed by immunoblotting using the anti-ATF4 pAb C-20 or the anti-myc mAb 9E10 (right panels). Notably, TG treatment (1 mM, 14 h) induced the
increased expression of endogenous ATF4. Loading was controlled by re-probing the blots for b-actin. (d) A dominant-negative mutant of ATF4 (ATF4DN) interferes with the
activation of the park-luc reporter construct in response to ER stress. HEK293T cells were co-transfected with the park-luc reporter plasmid and ATF4, ATF4DN, or GFP (as a
control). At 8 h after transfection, cells were incubated with 1mM TG for 14 h. Shown is the fold induction of luciferase activity in comparison with GFP-expressing control cells
based on triplicates of at least three independent experiments (left panel). Expression levels of ATF4 and ATF4DN were analyzed by immunoblotting using the anti-ATF4 pAb
C-20 (right panel). Loading was controlled by re-probing the blots for b-actin. ***Po0.001, **Po0.01, n.s.¼ not significant
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Figure 4 ATF4 binds to the parkin promoter and mediates parkin upregulation in response to ER and mitochondrial stress. (a) ER and mitochondrial stress-induced
upregulation of parkin is impaired in ATF4-deficient cells. SH-SY5Y cells were transfected with ATF4-specific or control siRNA duplexes. Two days later, cells were
re-transfected with siRNA duplexes and then incubated with 1 mM TG or 10mMCCCP for 14 h. The cells were collected and analyzed as described in Figure 1a by quantitative
RT-PCR using parkin-specific or ATF4-specific primers. The amount of RNA of each sample was normalized with respect to b-actin. Shown is the fold increase of parkin
mRNA in response to TG or CCCP treatment (left panel). The efficiency of ATF4 downregulation was determined by quantitative RT-PCR (right panel) and western blotting
(lower right panel) using the anti-ATF4 pAb C-20. (b) ER stress-induced upregulation of parkin is impaired in primary cortical neurons from ATF4-knockout mice. Primary
cortical neurons from ATF4-deficient or wild-type mice were treated with tunicamycin (3mg/ml) for 8 h. Total RNA was isolated and analyzed using parkin-specific primers as
described in Figure 1a. (c) ATF4 binds to the parkin promoter in vivo. HEK293T cells or SH-SY5Y cells incubated with or without 300 nM TG for 2 and 8 h were used to perform
a ChIP analysis using a pAb specific for ATF4 in comparison with a nonspecific rabbit IgG. For the final real-time PCR step, primers specific for the parkin promoter region were
used. ***Po0.001, **Po0.01, *Po0.05

Figure 5 c-Jun suppresses the upregulation of parkin after ER stress. (a) c-Jun binds to the parkin oligonucleotide harboring the CREB/ATF-binding site. HEK293 T cells
were incubated with 2 mM thapsigargin (TG) and collected after 3 h. Nuclear extracts were prepared and tested for binding to the 32P-labeled oligonucleotide comprising the
putative ATF4-binding site within the parkin promoter (park oligo; lanes 1–5) by an electrophoretic mobility shift assay (EMSA). The labeled oligonucleotides were incubated
with nuclear extracts in the absence or presence of a 100-fold excess of unlabeled park oligo (lane 5) to compete with the binding reaction. To test for supershift activity, the
anti-c-Jun pAb (N) sc-45X (lane 3) or the anti-ATF4 pAb C-20 (lane 4) was added to the binding reaction. (b) c-Jun decreases transcription from the park-luc reporter after ER
stress. HEK293 T cells were co-transfected with the park-luc reporter construct and c-Jun or GFP (as a control). Eight hours after transfection, the cells were treated with 1mM
TG for 14 h. Shown is the fold induction of luciferase activity in c-Jun-expressing cells in comparison with GFP-expressing control cells based on triplicates of at least three
independent experiments. Expression levels of c-Jun were analyzed by immunoblotting using the anti-c-Jun pAb (N) sc-45 (lower panel). Protein (3 mg) of total cell lysates was
loaded. Loading was controlled by re-probing the blots for b-actin. (c) c-Jun suppresses the ATF4-mediated activation of the park-luc construct. HEK293 T cells
were co-transfected with the park-luc reporter plasmid and either GFP (as a control), ATF4 plus GFP or ATF4 plus c-Jun. Eight hours after transfection, the cells were treated
with 1 mM TG for 14 h. Shown is the fold induction of luciferase activity in ATF4-expressing cells in comparison with ATF4- and c-Jun-expressing cells based on triplicates of at
least three independent experiments. Expression levels of ATF4 and c-Jun were analyzed by immunoblotting using the anti-ATF4 pAb C-20 or the anti-c-Jun pAb (N) sc-45.
Protein (3 mg) of total cell lysates was loaded. Loading was controlled by re-probing the blots for b-actin (lower panel). (d) ER stress-induced upregulation of parkin is increased
in c-Jun-deficient cells. SH-SY5Y cells were transfected with c-Jun-specific or control siRNA duplexes. One day later, cells were re-transfected with siRNA duplexes and
incubated with 1mM TG for 14 h. The cells were collected and analyzed as described in Figure 1a by quantitative RT-PCR using parkin-specific primers. The amount of RNA of
each sample was normalized with respect to b-actin. Shown is the fold increase of parkin mRNA in response to TG treatment (upper panel). The efficiency of c-Jun
downregulation was determined by western blotting using the anti-c-Jun anti-c-Jun pAb (N) sc-45 (lower panel). Protein (30mg) of total cell lysates was loaded. (e) JNK3
decreases transcription from the park-luc reporter. HEK293 T cells were co-transfected with the park-luc reporter plasmid and JNK3 or GFP (as a control). Twenty four hours
after transfection, the cells were treated with 1mM TG for 8 h. Shown is the fold induction of luciferase activity in JNK3-expressing cells in comparison with GFP-expressing
control cells based on triplicates of at least three independent experiments. Expression levels of JNK3 were analyzed by immunoblotting using an anti-JNK pAB (lower panel).
Loading was controlled by re-probing the blots for b-actin. (f) The JNK inhibitor SP600125 increases parkin upregulation in response to ER stress. SH-SY5Y cells were treated
with or without the JNK inhibitor SP600125 (10 mM) for 24 h. Thapsigargin was added after 10 h for additional 14 h. To quantify parkin-specific mRNA, cells were collected and
analyzed as described in Figure 1a for quantitative RT-PCR using parkin-specific primers. The amount of RNA of each sample was normalized with respect to b-actin. Shown
is the fold increase of parkin mRNA. Parkin protein levels were analyzed by immunoblotting using an anti-parkin PRK8 mAb (lower panel). The efficiency of SP600125 was
controlled by blotting against phosphorylated c-Jun using the phospho-specific anti-c-Jun antibody X (Ser63) II pAb. Protein (15 mg) of total cell lysates was loaded. Loading
was controlled by re-probing the blots for c-Jun and b-actin. ***Po0.001, **Po0.01, *Po0.05
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band was supershifted by an anti-c-Jun antibody (Figure 5a,
lane 3) and was competed by an excess of unlabeled park
oligo (Figure 5a, lane 5). To test whether c-Jun might have
an impact on the transcriptional regulation of parkin, we
first analyzed the effect of c-Jun on the park-luc reporter
construct. Interestingly, increased levels of c-Jun significantly
reduced transcription from park-luc under ER stress
(Figure 5b). Moreover, c-Jun suppressed the ATF4-induced
activation of park-luc, both under basal and ER stress
conditions, indicating a dominant-negative effect (Figure 5c).
Next we performed a c-Jun knockdown approach by RNAi.
c-Jun-specific siRNA duplexes were transfected into
SH–SY5Y cells, resulting in a reduction of c-Jun mRNA by
B87% under normal conditions and by B69% under ER
stress conditions (Supplementary Figure 2). The knockdown
efficiency was also verified at the protein level (Figure 5d,

lower panel). Notably, in c-Jun-deficient cells, parkin
upregulation in response to ER stress was significantly
increased and also in non-stressed cells more parkin was
expressed when c-Jun was silenced (Figure 5d, upper
panel). These results indicate that c-Jun can bind to the
ATF4-binding site within the parkin promoter to mediate
repression of parkin expression. c-Jun is a major target
of JNKs, a subfamily of the MAPK superfamily. JNK1 and
JNK2 are ubiquitously expressed, whereas JNK3 is primarily
found in brain, heart and testes. As JNK3 has been linked
to cell death in several models of neurodegene-
ration (reviewed in Waetzig and Herdegen24), we tested
whether it has an impact on parkin expression. Increased
expression of JNK3 indeed significantly suppressed trans-
cription from the park-luc construct (Figure 5e). Moreover,
treatment of cells with the JNK inhibitor SP600125 increased
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parkin mRNA and protein levels both under stress and
non-stress conditions (Figure 5f).

Parkin protects cells from ER stress-induced cell
death. Conceptually, upregulation of parkin in response to
ER stress might help to preserve cellular function and
survival within the adaptive phase of the UPR. To test the
capacity of parkin to protect cells from ER stress-induced
toxicity, we treated SH-SY5Y cells transiently expressing
wildtype (wt) or mutant parkin with TG or TM. Cells
undergoing apoptosis were analyzed by indirect fluore-
scence using an antibody specific for activated caspase-3.
In contrast to control cells and cells expressing patho-

genic parkin mutants, cells overexpressing wt parkin
were protected against apoptosis induced by ER stress
(Figure 6a). To increase evidence for a role of endogenous
parkin in coping with ER stress, we analyzed the
consequences of a parkin knockdown induced by RNAi.
Parkin knockdown cells showed a significant increase in
apoptotic cells after ER stress in comparison with control
siRNA-transfected cells (Figure 6b). A decrease in the
viability of parkin-deficient SH-SY5Y and HEK293T cells
after ER stress was also observed by employing the MTT
assay (Supplementary Figures 3A and B). Notably, the
increased vulnerability of parkin-deficient cells to ER stress-
induced cell death could be rescued by the expression of
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Figure 6 Parkin protects cells from ER stress-induced cell death. (a) Increased expression of wild-type (wt) parkin protects cells from ER stress-induced cell death.
SH-SY5Y cells were co-transfected with EYFP (as a control) and wt parkin or the pathogenic parkin mutants G430D or DUBL. Twenty four hours after transfection, cells were
incubated with 10mM thapsigargin (TG) or 5 mg/ml tunicamycin (TM) at 37 1C for 8 h, fixed, permeabilized, and then the activation of caspase-3 was analyzed by indirect
immunofluorescence using an anti-active caspase-3 pAb. Shown is the percentage of apoptotic cells among transfected cells. Parkin expression levels were determined by
immunoblotting using the anti-parkin PRK8 mAb. Loading was controlled by re-probing the blots for b-actin (lower panel). (b) Parkin-deficient cells are more vulnerable to ER
stress-induced cell death. SH-SY5Y cells were transfected with parkin-specific or control siRNA duplexes and co-transfected with EYFP (as a control) or siRNA-resistant wt
parkin (rescue parkin). Three days later, the cells were stressed with TG (10mM) for 8 h fixed, permeabilized, and then the activation of caspase-3 was analyzed by indirect
immunofluorescence as described in A. Parkin expression levels were determined by immunoblotting using the anti-parkin PRK8 mAb. Loading was controlled by re-probing
the blots for b-actin (lower panel). (c) Mouse embryonic fibroblasts (MEFs) derived from parkin-knockout mice are more vulnerable to ER stress than wt MEFs. MEFs from wt
or parkin-knockout (ko) mice were stressed with TG (10 mM) for 16 h and then cellular viability was determined by the MTT assay. Shown is the relative viability of ko MEFs in
comparison with wt MEFs after TG treatment. Quantification is based on five independent experiments. (d) Skin fibroblasts of patients carrying pathogenic mutations in the
parkin gene are more vulnerable to ER stress. Skin fibroblasts from patients and control indivduals were stressed with tunicamycin (TM, 10 mM) for 24 h, fixed, permeabilized,
and then the activation of caspase-3 was analyzed by indirect immunofluorescence as described in (a). ***Po 0.001, **Po0.01, *Po0.05
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siRNA-resistant parkin, confirming a parkin-specific effect
(Figure 6b). In addition, we analyzed the viability of MEFs
derived from parkin-knockout mice25 under ER stress
conditions. In comparison with MEFs derived from wt mice,
the parkin-knockout MEFs showed a decreased viability
under ER stress induced by TG (Figure 6c). Moreover,
primary skin fibroblasts from three patients with mutations in
the parkin gene displayed a significant increase in cell death
in response to TM treatment compared with age- and
gender-matched control fibroblasts from healthy individuals
(Figure 6d). Of note, levels of CHOP, phospho-c-Jun
and phospho-JNK, which have been associated with
the proapoptotic branch of ER stress pathways, were
increased in patient fibroblasts under ER stress
(Supplementary Figure 4).

Parkin does not decrease the level of ER stress and
functions independently from the proteasome. The
experiments described above established a protective role
of parkin in response to ER stress. To address the question

whether parkin may have an effect on the severity of ER
stress, we quantified the mRNA levels of the ER chaperone
BiP in parkin-knockdown cells in response to ER stress. After
ER stress induced by TG, BiP, mRNA was highly
upregulated (B15-fold compared with untreated cells).
Interestingly, downregulation of parkin had no significant
impact on BiP mRNA levels, both under basal conditions and
ER stress (Figure 7a). In addition, parkin-knockout MEFs did
not show increased levels of BiP mRNA after TG or TM
treatment when compared with control MEFs (Figure 7b).
These results indicated that the transient or stable loss of
parkin does not cause ER stress. In line with these results,
increased expression of parkin did not significantly influence
the level of ER stress as monitored by luciferase reporter
assays using four different ER stress-responsive elements
(ESRE, ERSE-II, UPR and ATF4RE), which cover
all branches of the UPR (Figure 7c and Supplementary
Figure 5). In a next step, we tested whether the protective
activity of parkin under ER stress is dependent on
the proteasome. SH-SY5Y cells were exposed to TG in the
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Figure 7 Parkin has no direct effect on ER stress. (a) Parkin deficiency does not increase the level of ER stress. SH-SY5Y cells were transfected with parkin-specific
or control siRNA duplexes. Three days later, the cells were stressed with 1 mM thapsigargin (TG) for 5 h. As an indicator of ER stress BiP mRNA levels were analyzed by
quantitative RT-PCR as described in Figure 1a (left panel). To test for the efficiency of parkin knockdown, parkin mRNA levels were quantified in parallel (right panel). (b) The
level of ER stress is not increased in mouse embryonic fibroblasts (MEFs) derived from parkin-knockout mice. MEFs from wildtype (wt) or parkin-knockout (ko) mice were
stressed with 1 mM TG or 2mg/ml tunicamycin (TM) for 5 h. The levels of BiP mRNA were analyzed by RT-PCR as described in Figure 1a. (c) Overexpression of parkin has no
influence on the ER stress level determined by ER stress reporter constructs. HEK293 T cells were co-transfected with the ER stress reporter plasmids indicated
(Supplementary Figure 5) and either parkin or GFP (as a control). Twenty four hours after transfection, the cells were treated with 1 mM TG for 8 h. Shown is the fold induction
of luciferase activity in parkin-expressing cells in comparison with GFP-expressing control cells. Quantification is based on triplicates of at least three independent experiments.
Expression levels of parkin were analyzed by immunoblotting using the anti-parkin pAb 2132 (lower panel). Loading was controlled by re-probing the blots for b-actin. (d and e)
The protective activity of parkin after ER stress is independent of the proteasome. (d) The efficiency of proteasomal inhibition by epoxomycin was demonstrated by an
accumulation of endogenous p53 and ubiquitylated proteins. For immunoblotting, an anti-p53 and anti-ubiquitin mAb was used. Loading was controlled by re-probing the blots
for b-actin. (e) Proteasomal inhibition does not impair the protective activity of parkin. SH-SY5Y cells were cotransfected with EYFP (as a control) or wild-type parkin. Twenty
four hours after transfection, cells were incubated with 10mM thapsigargin (TG) and/or epoxomycin (epox, 0.1 or 10mM ) for 8 h, fixed, permeabilized, and then activation of
caspase-3 was analyzed as described in Figure 6a. ***Po0.001, **Po0.01, n.s.¼ not significant
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presence of the proteasomal inhibitor epoxomycin. First, we
used a non-toxic concentration of epoxomycin (0.1 mM),
which efficiently inhibited the proteasome, as shown by an
increase in endogenous p53 levels and an accumulation of
ubiquitylated proteins (Figure 7d). Notably, the efficiency of
parkin to protect against ER stress-induced cell death was
not impaired when the proteasome was inhibited.
Furthermore, increasing parkin expression also prevented
cell death induced by a toxic concentration of epoxomycin
(10mM), indicating that protein degradation through the
proteasome is not required for the acute prosurvival effect
of parkin (Figure 7e).

Parkin interferes with ER stress-induced mitochondrial
damage. Obviously, parkin does not reduce ER stress
per se, but it can protect cells from ER stress-induced cell
death. Based on the fact that parkin has an impact on
mitochondrial integrity,26 we analyzed the effect of ER stress
on mitochondrial morphology and determined whether parkin
might have a role in this pathway. SH-SY5Y cells were
incubated with the fluorescent dye DiOC6(3) to visualize
mitochondria in living cells by fluorescence microscopy.
Under normal conditions, when mitochondrial fusion and
fission activities are balanced, cells show a tubular mito-
chondrial network. When fission is increased with relative to
fusion, small rod-like or spherical mitochondria can be
observed, which are classified as fragmented. Typically,
about 70% of SH-SY5Y cells show a tubular mitochondrial
network under normal conditions, the remaining 30% are
characterized by fragmented mitochondria.26,27 ER stress,
induced by either TM or TG increased the percentage of
cells with fragmented mitochondria up to 70% (Figure 8a).
Remarkably, enhanced expression of parkin significantly
reduced ER stress-induced mitochondrial fragmentation
(Figures 8a and b). Moreover, we observed that parkin
loss of function increases the vulnerability of cells to ER
stress-induced mitochondrial dysfunction, as cellular ATP
production in response to ER stress was significantly
reduced in parkin-deficient SH-SY5Y cells (Figure 8c).
Thus, parkin maintains mitochondrial integrity under ER
stress, and prevents alterations in mitochondrial morphology
and bioenergetics.

Discussion

In this study, we show that parkin is transcriptionally
upregulated by mitochondrial and ER stress via the UPR to
promote viability under cellular stress. We identified the
transcription factor ATF4 as a key factor in the stress-induced
regulation of parkin expression, which binds to a CREB/ATF
site within the parkin promoter. An essential role for ATF4 in
the regulation of parkin expression was substantiated by the
following observations: First, a dominant-negative ATF4
mutant prevented ER stress-induced upregulation of parkin.
Second, in ATF4-knockdown cells and primary neurons from
ATF4-knockout mice, parkin upregulation in response to ER
stress was significantly impaired. Finally, we could demon-
strate by a ChIP assay that ATF4 indeed binds to the parkin
promoter. Our analysis also revealed that c-Jun acts as a
transcriptional repressor of parkin. Intriguingly, c-Jun can bind

to the same site within the parkin promoter as ATF4 to induce
downregulation of parkin expression. What might be the
physiological relevance of this observation? Conceptually,
c-Jun may terminate the ATF4-mediated upregulation
of parkin expression by competing with ATF4 on the parkin
promoter. In line with this scenario, we observed that
c-Jun has a dominant effect on ATF4; it can suppress
ATF4-mediated upregulation of parkin expression. It is also
conceivable that severe or prolonged ER stress leads to a
preferential binding of c-Jun to the parkin promoter to
suppress cytoprotective pathways and to favor the elimination
of irreversibly damaged cells by proapoptotic pathways.
In support of this view, CHOP, a proapoptotic transcription
factor activated upon severe or prolonged ER stress,
suppressed parkin expression (Supplementary Figure 6).
Parkin transcription was also repressed by JNK3, a kinase
upstream of c-Jun, which has been implicated in neuronal cell
death pathways in dopaminergic neurons.28,29 Indeed, our
data show that the use of a JNK inhibitor is able to increase
parkin expression, particularly under stress conditions. Inter-
estingly, parkin has been reported to suppress JNK activity in
cellular models and Drosophila melanogaster.30,31 In line with
these studies, we observed that phospho-JNK and phospho-
c-Jun levels are increased in parkin-deficient patient fibro-
blasts under ER stress (Supplementary Figure 4). Our finding
that the JNK pathway can negatively regulate parkin gene
expression suggests a reciprocal interaction between parkin
and JNK3, which might be instrumental in the dichotomy of
cell survival and death. Depending on the cellular context and
the severity of stress conditions, parkin can shift the balance
towards cell survival by attenuating JNK3 signaling, whereas
JNK3 gaining the upper hand, suppresses prosurvival path-
ways, either directly or indirectly, for example by inhibiting the
expression of parkin.
The increased expression of parkin in response to ER

stress clearly serves as a cytoprotective function. Cells
overexpressing wt but not mutant parkin are protected against
ER stress-induced cell death, whereas parkin-deficient cells
show an increased vulnerability to ER stress. It will now be
interesting to determine which cell types are affected in their
response to stress by the loss of parkin function. On the basis
of the emerging concept of non-cell autonomous cell death in
neurodegeneration, it is conceivable that an impaired stress
response in glial cells in the neighborhood of dopaminergic
cells can contribute to nigrostriatal degeneration.
Neither an acute nor a permanent loss of parkin function

per se causes ER stress. Furthermore, increased parkin
expression does not decrease the severity of ER stress,
arguing against a direct role of parkin in the ERAD pathway. In
support of this notion, the antiapoptotic activity of parkin is
independent of the proteasome. We observed that proteaso-
mal inhibition does not impair the ability of parkin to prevent
ER stress-induced cell death. Which activity of parkin might
then be responsible for its protective effect under ER stress?
In this context, it is important to note that organellar stress
within cells cannot be regarded in an isolated manner. In fact,
our study adds evidence for an interaction between the ER
and mitochondria in response to stress.32 ER stress can
induce mitochondrial stress, resulting in a bioenergetic deficit
and mitochondrial fragmentation. Our working model would
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suggest that, at this interplay, parkin seems to enter the stage,
preventing the pathophysiological consequences of ER stress
on mitochondrial integrity (Figure 9). The next important step
will be to figure out what the precise role of parkin might be in
the communication between the ER and mitochondria.

Materials and Methods
DNA constructs. The following constructs were described previously:
wt human parkin, G430D, DUBL mutant parkin,18 ATF4,33 ATF4DN,22 PERK,34

c-Jun,35 JNK3,36 Bcl-2-FLAG37 and mCherry.26 To generate siRNA-resistant parkin,
four silent mutations were introduced into human wt parkin, to prevent binding of
parkin-specific siRNA1 (Invitrogen, Karlsruhe, Germany). The following mutations
were introduced by standard PCR cloning techniques: C 1038 to T, G 1044 to A,
C 1053 to A and A 1059 to G. The luciferase reporter constructs were cloned by
subcloning the UPR element (UPRE), the ER stress response element (ERSE),
ERSE-II, the ATF4 binding site of the IGFBP-1 promoter (ATF4RE) or the ATF4
binding element of the parkin promoter (PARK) in triplicate flanked by NheI and BglII
restriction sites into the pGL3 promoter vector (Promega, Mannheim, Germany). To
generate the renilla luciferase construct, the SV40 promoter from the pGL3 vector
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Figure 8 Parkin prevents mitochondrial damage and dysfunction induced by ER stress. (a and b) Increased parkin expression suppresses ER stress-induced
mitochondrial fragmentation. SH-SY5Y cells were transfected with parkin or mCherry (as a control). One day after transfection, the cells were treated with thapsigargin
(TG, 1mM for 5 or 16 h) or tunicamycin (TM, 2 mg/ml for 5 or 16 h). Mitochondria were visualized by life cell microscopy after incubating cells with the fluorescent dye DiOC6(3).
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mitochondria. Quantifications were based on triplicates of three independent experiments. For each experimentX300 cells per coverslip of triplicate samples were assessed.
Expression levels of parkin were analyzed by immunoblotting using the anti-parkin pAb 2132 (lower panel). Loading was controlled by re-probing the blots for b-actin.
(b) Examples of mitochondrial morphologies of the experiment described in (a). Treatment of cells with TG or TM cause a disruption of the tubular mitochondrial network, which
can be suppressed by increased parkin expression. (c) Parkin deficiency increases ATP depletion in response to ER stress. SH-SY5Y cells were transfected with parkin or
control siRNA duplexes. On day 2 after transfection, the cells were shifted to low-glucose medium containing 3mM glucose instead of 25mM. On day 3, the cells were treated
with 2 mg/ml tunicamycin (TM) for 5 h and the steady-state cellular ATP levels were measured by a bioluminescence assay. Cultured cells derived from tumors derive almost all
of their energy from aerobic glycolysis rather than mitochondrial oxidative phosphorylation; in addition, stimulation of glycolysis in the presence of glucose inhibits mitochondrial
respiration. Therefore, low glucose concentrations in the medium forces the cells to relay on oxidative phosphorylation to generate sufficient ATP. ***Po0.001, **Po0.01
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was subcloned into the phRL-TK vector (Promega), thereby replacing the HSV-TK
promoter. The plasmids encoding enhanced yellow fluorescent protein (EYFP) and
enhanced green fluorescent protein (EGFP) were purchased from Clontech
(Mountain View, CA, USA).

Cell culture and transfections. SH-SY5Y (DSMZ number ACC 209) and
HEK293T (ATCCC number CRL-1573) cells were transfected with Lipofectamine
Plus (Invitrogen) according to the manufacturer’s instructions. For RNA interference,
SH-SY5Y or HEK293T cells were reversely transfected with Stealth siRNA
(Invitrogen) using Lipofectamine RNAiMAX (Invitrogen) for SH-SY5Y cells and
Lipofectamine 2000 (Invitrogen) for the HEK293T cells.

Antibodies and reagents. The following antibodies were used: anti-parkin
mouse monoclonal antibody (mAb) PRK8 (Millipore, Schwalbach, Germany);
anti-parkin pAb 2132, anti-ubiquitin P4D1 pAb (Cell Signaling Technology, Danvers,
MA, USA); anti-SAPK/JNK pAb, anti-phospho-SAPK/JNK (Thr183/Tyr185) pAb and
anti-phospho-c-Jun (Ser63) II rabbit pAb (Cell Signaling Technology); anti-CHOP
mAb (Santa Cruz Biotechnology, Santa Cruz, CA, USA); anti-b-actin mAb, anti-Flag
M2 mAb and anti-myc 9E10 mAb (Sigma, Taufkirchen, Germany); anti-c-Jun (N)
sc45 rabbit pAb, anti-c-Jun (N) sc45X rabbit pAb, anti-CREB-2 C-20 rabbit pAb and
anti-TRAF6 (H-274) rabbit pAb (Santa Cruz Biotechnology); anti-ATF4 pAB
(Cocalico Biologicals, Reamstown, PA, USA); anti-p53 mAb (Calbiochem/Merck,
Darmstadt, Germany); anti-active caspase-3 rabbit pAb (Promega); Alexa
555-conjugated goat anti-rabbit pAb (Sigma); horseradish peroxidase (HRP)-
conjugated anti-mouse and anti-rabbit IgG antibody (Promega). Thapsigargin was
purchased from Sigma, TM from Fluka/Sigma (Taufkirchen, Germany), epoxomycin
from Calbiochem, L-histidinol from Sigma, the JNK inhibitor SP600125 from Enzo Life
Sciences (Loerrach, Germany), and dialysed FCS and 3,30-dihexyloxacarbocyanine
iodide (DiOC6(3)) from Invitrogen. The mounting medium Mowiol (Calbiochem) was
supplemented with 40 6-diamidino-2-phenylindole (Sigma).

Western blot analysis. SDS-PAGE and western blotting was described
earlier.18 Antigens were detected with the enhanced chemiluminescence detection
system (Amersham Biosciences, Freiburg, Germany) or the Immobilon Western
chemoluminiscent HRP substrate (Millipore).

Mouse embryonic fibroblast cultures. Primary mouse fibroblasts were
isolated from parkin-knockout and wt mice with the same genetic background.25

E12.5 mouse embryos were extracted, and the head and inner organs were
removed. The remaining tissue was dissociated by trypsination and trituration.

Primary cortical neuronal culture. Cortical neurons were cultured from
wt or ATF4 transgenic mouse embryos at E14.5–E15.5 days of gestation and
individually dissected. Briefly, neurons from each embryo were plated individually,
into six-well dishes (B3 million cells/well) coated with poly-D-lysine (100mg/ml)
in serum-free medium (MEM/F12 (1:1) supplemented with 6 mg/ml D-glucose,
100mg/ml transferrin, 25mg/ml insulin, 20 nM progesterone, 60 mM putrescine and
30 nM selenium) as described previously.38 At 2 days in vitro, cortical neurons were
treated with TM (3 mg/ml) for 8 h. Stock solutions of TM were prepared in DMSO
(Sigma Aldrich, Oakville, ON, Canada) and diluted in culture media immediately
before addition. Total RNA was isolated from cells at indicated time points using
TRIzol reagent as per manufacturer’s instructions (Invitrogen). Concentrations of
RNA were measured on a spectrophotometer at l260 nm.

Human primary fibroblast cultures. Punch-skin biopsy samples were
taken from PD patients with compound heterozygous mutations (c101delAG, het.
del ex3/4; patients 1 and 2) or a heterozygous mutation (het. dupl. ex7; patient 3) in
the parkin gene. Genotyping was performed using direct DNA sequencing and the
Multiplex ligation-dependent probe amplification parkin gene dosage kits (P051;
MRC-Holland, Amsterdam, Holland), covering all exons of the parkin gene, as
well as other known Mendelian PD genes. Sex and age-matched control fibroblasts
from healthy individuals were provided by the Department of Orthopedics
(Universitätsklinik für Orthopädie, Eberhard Karls University, Tübingen,
Germany). Chopped tissue pieces were placed into a tissue culture flask and
carefully covered with maintenance medium (RPMI medium supplemented with
10% fetal bovine serum and 1% penicillin/streptomycin, 1 mM sodium pyruvate).
Cultures were kept at 37 1C in a humidified atmosphere containing 5% CO2.
Collected fibroblasts were aliquoted and frozen for storage between passages 2
and 10.

Real-timeRT-PCR. Real-time RT-PCR was performed, as described before.18

Briefly, SH-SY5Y cells were incubated with 1 mM TG, 2 mg/ml TM, 10 mM CCCP or
10mM SP600125 for the indicated time. Total cellular RNA was isolated according
to manufacturer’s instructions (RNaesy mini kit, QIAGEN, Hilden, Germany). cDNA
was synthesized using iScript cDNA Synthesis Kit (Bio-Rad, München, Germany).
For the quantification of human parkin mRNA, the TaqMan Gene Expression Assay
(parkin: Hs01038827-m1; beta actin: P/N 4326315E; 18sRNA: P/N 4319413E)
(Applied Biosystems, Foster City, CA, USA) was used. For all other mRNA
quantifications, PCR reactions were performed with 2� Power SYBR Green PCR
Master Mix (Applied Biosystems) and 1 mM of each primer pair; mouse (m) parkin
forward primer (F): 50-AAACCGGATGAGTGGTGAGT-30; m-parkin reverse primer
(R): 50-AGCTACCGACGTGTCCTTGT-30; m-actin-b F: 50-AGCCTTCCTTCTTGGG
TATG-30; m-actin-b R: 50-GGTCTTTACGGATGTCAACG-30; m-BiP F: 50-GCCTCA
TCGGACGCACTT-30; m-BiP R: 50-GGGGCAAATGTCTTGGTT-30; human (h) ATF4:
F: 50-CCCTTCACCTTCTTACAACCTC-30; h-ATF4 R: 50-GTCTGGCTTCCTATCTC
CTTCA-30; h-c-Jun F 50-CGCCTGATAATCCAGTCCA-30; h-c-Jun R: 50-CCTGCTC
ATCTGTCACGTTC-30 ; h-BIP F: 50-GCTCGACTCGAATTCCAAAG-30; h-BIP R:
50-GATCACCAGAGAGCACACCA-30; h-actin-b F: 50-TGGACTTCGAGCAAGAGA
TG-30; h-actin-b R: 50-AGGAAGGAAGGCTGGAAGAG-30. Quantification was
performed with 7500 Fast Real Time System (Applied Biosystems) based on
triplicates per primer set. Gene expression was normalized with respect to
endogenous housekeeping control genes, b-actin and 18sRNA, which were not
influenced by ER stress. Relative expression was calculated for each gene using the
DDCT method. Statistical analysis of RT-PCR data is based on at least three
independent experiments with tripicates samples.

Luciferase assays. HEK293T or SH-SY5Y cells transiently expressing renilla
luciferase and firefly luciferase reporter plasmids were subjected to the stress
treatment indicated. Luciferase activity of cell lysates was determined
luminometrically using an LB96V luminometer (Berthold Technologies, Bad
Wildbad, Germany) by the dual luciferase assay system (Promega) as specified
by the manufacturer. The measured values were analyzed with WinGlow Software
(Berthold Technologies). Quantification was based on at least three independent
experiments. For each experiment, each transfection was performed at least in
triplicate.

Apoptosis and cell viability assays. Activation of caspase-3 was
determined as described previously.37 Briefly, SH-SY5Y cells or skin fibroblasts
were grown on glass coverslips. Twenty four hours after transfection (for parkin
knockdown 3 days later), cells were incubated with TG, TM and/or epoxomycin as

ER stress mitochondrial stress 

stress-induced cell death 

parkin

c-Jun ATF4 

PERK 

Figure 9 Interplay between ER stress, mitochondrial stress and parkin. ER
stress can induce mitochondrial damage, such as alterations in mitochondrial
morphology and bioenergetics. Conversely, mitochondrial stress can induce ER
stress, reflected by the induction of the unfolded protein response (UPR). Parkin is
transcriptionally upregulated in response to both mitochondrial and ER stress by
ATF4, a transcription factor of the UPR. The stress-induced transcriptional
upregulation of parkin is antagonized by c-Jun, which is activated by the JNK
pathway. Increased expression of parkin under stress conditions protects cells from
stress-induced cell death, explaining the high vulnerability of parkin-deficient cells
to cellular stress
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indicated. The cells were then fixed, and activated caspase-3 detected by indirect
immunofluorescence using an anti-active caspase-3 antibody. To detect cells
undergoing apoptosis, the number of activated caspase-3-positive cells out of at
least 300 transfected cells was determined using a Zeiss Axioscope 2 plus
microscope (Carl Zeiss, Göttingen, Germany). Quantifications were based on
triplicates of at least three (SH-SY5Y cells) or two (human skin fibroblasts)
independent experiments. For each experiment X300 cells per coverslip of
triplicate samples were assessed. For the cell viability assays, SH-SY5Y cells,
HEK293T cells or MEFs were plated into 12-well plates. SH-SY5Y cells and
HEK293T cells were reversely transfected with parkin or control siRNA. Two days
later, the cells were stressed with TM or TG as indicated and the Vybrant MTT Cell
Proliferation Assay was performed according to manufacturer’s instructions
(Invitrogen).

Electrophoretic mobility shift assay. Nuclear extracts were prepared as
described earlier.18 For the binding reaction, 10mg of extracts were incubated with
10mM HEPES (pH 7.9), 50mM NaCl, 5 mM MgCl2, 2 mM DTT, 0.1 mM EDTA, 5%
glycerol, 10mg BSA, 2mg poly(dI-dC) and 0.2 ng (20 000 cpm) of 32P-labeled,
double-stranded park oligonucleotide (50-CCCCGGTGACGTAAGATTGC-30) in a
final volume of 20ml. For supershift assays, 0.2mg of the ATF4 antibody or 2 mg of
the c-Jun (N) sc45X antibody, for competition experiments 50 ng (100� ) of
cold-park oligonucleotide was added to the binding reaction. After binding on ice for
30min, mixtures were loaded onto non-denaturating 4% polyacrylamide gels in
0.5� TBE (45mM Tris borate and 1mM EDTA). Gels were electrophoresed at 41C
for 4 h at 160 V, dried, and exposed for autoradiography at �801C.

Chromatin immunoprecipitation. HEK293T or SH-SY5Y cells were
replenished with fresh medium 12 h before initiating all treatments to ensure that
the cells were in the basal state. To trigger the UPR, fresh medium containing
300 nM TG was added. To monitor ATF4 binding to the parkin gene, a ChIP assay
was performed as previously described.39 The ATF4 antibody was a rabbit
polycolonal antibody. Enrichment of DNA at the parkin promoter region that contains
the potential ATF4 binding site was analyzed with quantitative real-time PCR. A 5 ml
aliquot of DNA was mixed with 62.5 pmol of each PCR primer and 12.5ml of SYBR
Green PCR master mix (Applied Biosystems) in a 25 ml total volume. The real-time
PCR was performed with a DNA Engine Opticon 3 system (Bio-Rad). The reaction
mixtures were incubated at 951C for 15min, followed by amplification at 951C for
15 s and 601C for 60 s for 35 cycles. All experiments were performed in triplicate
and each sample was subjected to PCR in duplicate. The primers used were:
forward: 50-GTTGCTAAGCGACTGGTCAA-30 and reverse: 50-CAGCCCCCCACC
GCCGCC-30.

Fluorescent staining of mitochondria. SH-SY5Y cells were grown on
15mm glass coverslips, and were fluorescently labeled with 0.1mM DiOC6(3) in cell
culture medium for 15min. After washing the coverslips with medium, living cells
were analyzed for mitochondrial morphology by fluorescence microscopy as
described previously26 using a Leica DMRB microscope (Leica, Wetzlar, Germany).
Cells were categorized in two classes according to their mitochondrial morphology:
tubular or fragmented. Quantifications were based on three independent
experiments. For each experiment, the mitochondrial morphology of X300
transfected cells per coverslip of triplicate samples was assessed.

Measurement of cellular ATP levels. A quantitative determination of ATP
in SH-SY5Y cells was performed using the ATP Bioluminescence Assay Kit HS II
(Roche, Mannheim, Germany) according to the manufacturer’s instructions. Briefly,
SH-SY5Y cells were reversely transfected with the indicated siRNA duplexes.
Twenty four hours before collecting, the culture medium was replaced by low-
glucose medium containing 3mM instead of 25mM glucose. Five hours, before the
measurement, cells were treated with 2 mg/ml TM. Cells were washed twice with
PBS, scraped off the plate and then lysed according to the provided protocol. The
ATP content of the samples was determined using an LB96 V luminometer
(Berthold Technologies), analyzed with WinGlow Software (Berthold Technologies)
and normalized to total protein levels. Quantification was based on at least three
independent experiments. For each experiment, each transfection was performed at
least in triplicate.

Bioinformatics. Transcription factor (TF) BSs were identified by the
TFSEARCH20 and the MatInspector40 program. All sequences were derived from
the promoter sequence retrieval database ElDorado 02-2010 (Genomatix, Munich,

Germany). Promoter sequences of parkin from four different mammalian species
were aligned with the DiAlign TF program40 in the Genomatix software suite GEMS
Launcher to evaluate the overall promoter similarity and to identify conserved
CREB/ATF BSs. The promoter sequences were defined as in ElDorado and
elongated at the 30 end of the promoter (downstream) by 150 bp. Position weight
and matrices were used according to Matrix Family Library Version 8.2
(Genomatix) (January 2010) for promoter analyses. The BSs were considered as
‘conserved BSs’ if the promoter sequences of human and the orthologs can be
aligned in the region of CREB/ATF BSs with the help of the DiAlign TF program
(using default settings).

Statistical analysis. Data were expressed as means±S.E. Statistical
analysis was carried out using ANOVA. *Po0.05, **Po0.01, ***Po0.001.
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