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Abstract

Insights into the developmental processes during which the brain forms from the neuroepithel ium

may provide a deeper understanding how the brain works. The Rho family of small GTPases is

known for its many cell biological functions such as regulation of the cytoskeleton, gene

expression, cel l migration, adhesion, cel l polarity and the cell cycle. All of these functions are of

importance during the formation of the cerebral neocortex, which consists of the generation of its

different cel l types, their migration to their destination and their maturation to a functional

network. These roles have been mostly established in vitro using dominant negative or

constitutively active constructs. Since these approaches are often not entirely specific for single

pathways, this work used the Cre/loxP system to genetical ly delete an individual member of the

Rho family, RhoA, to examine its role fol lowing a loss-of-function approach. Specifical ly, we

examined a mouse line where part of the RhoA gene has been deleted by means of the

Emx1 : :Cre mouse line. This idea is based on previous experiences with the deletion of Cdc42 in

the developing neocortex, which leads to a loss of apical progenitors. RhoA often works as a

functional antagonist to Cdc42.

Using immunofluorescence, we could detect a loss of RhoA at embryonic day 1 2 (E1 2) in

Emx1 : :Cre-positive offspring carrying the floxed RhoA-construct in both al leles (cKO). At E1 4, we

detected an increase in mitotic cel ls to 1 60% (±25%, p<0,05) that decreased to 1 40% (±1 0%,

p<0,05) at E1 6. In addition, these mitoses were no longer restricted to their specific zones, but

rather scattered throughout the developing cortex. This change did not coincide with a severely

changed proportion of Pax6-pos. apical progenitors and Tbr2-pos. basal progenitors.

Investigating the cellular architecture of the developing cortex, we observed a loss of the radial

orientation of radial gl ial cel ls, l ikely due to the disruption of the apical band of adherens

junctions, which is the first effect observed after loss of the protein, and the consequent

formation of rosette l ike structures in the brain parenchyma.

Despite the severe cortical malformations at embryonic stages, the mice get born and reach the

age of weaning at no apparent difference from the Mendelian rate. These post-natal animals

display a phenotype known as subcortical band heterotopia or "double-cortex". The phenotype is

characterized by changes in the formation of the cortical layers. Between the characteristic six-

layered structure of the cortex (homotopic cortex) and the ventricle, we found a second,

unlayered neuronal structure embedded in the white matter (heterotopic cortex). By means of

immunofluorescence and BrdU birthdating experiments, we observed that this structure consists

of neurons of al l layers and generated at al l stages of neurogenesis, with late-born neurons of

upper-layer identity being the majority. In addition, we found astrocytes and interneurons rather

evenly distributed throughout both cortical structures.

Final ly, by using in-utero electroporation to delete RhoA in individual cel ls, we found out that the

misplacements of neurons in the heterotopic cortex was not due to an inabil ity of RhoA-neg.

neurons to migrate. This lead us to the conclusion, that the neuronal misplacement is a

secondary effect, which occurs due to the observed disruption of the radial gl ial structure.



Looking for molecular pathways that may be at the start of these defects, we could observe a

decrease of F-actin levels in RhoA-neg. progenitor cel ls in culture. Since F-actin stabil izes

adherens junctions, RhoA's regulation of actin levels might indeed be at the origin "double-

cortex" phenotype.

Taken together, our data show an important role of RhoA in developing cortex. In addition they

show, that defects in the radial gl ial scaffold are enough to induce the formation of a "double-

cortex".
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1 . Introduction

No other organ is as intriguing to us as the brain – the source of our intel l igence, personality and

hence identity. Yet, after decades of research, we are sti l l far from understanding it.

Understanding the developmental processes during which this complex structure is formed from

the relatively simple neuroepithel ium, might serve as valuable introduction into the functions of

the brain – step-by-step as they are formed. This work tries to provide its own little stone to an

immense picture, by examining a small aspect in the development of the neocortex.

1 .1 . Cortical development

1 .1 .1 . Anatomy of the developing cortex

For future orientation, I wil l briefly introduce the anatomy of the developing neocortex at around

embryonic day 1 2 (E1 2), because at this stage, the main cell types covered by this work are

already present.

The developing cortex is restricted at its apical side by the l iquid-fi l led ventricle and at its basal

side by the basement membrane, an extracellular matrix mainly composed of laminins, col lagen

IV, nidogen, heparan sulphate proteoglycans and enriched in growth factors (Paulsson M 1 992,

Timpl R 1 996, Erickson AC and Couchman JR 2000, Colognato H and ffrench-Constant C 2004).

The main population of cel ls is cal led radial gl ia. Their cel l somata are located at the ventricle,

but their processes span through the entire cortex, contacting the ventricular surface apical ly and

the basement membrane basally (Ramon y Cajal S 1 995). At E1 2, they have mostly replaced an

earl ier cel l type, the neuroepithel ial progenitors (Hartfuss E et al. 2001 , Malatesta P et al. 2003).

Radial gl ia merit a more detai led description that wil l fol low in the next section. The zone closest

to the ventricle, where all radial gl ial somata reside, is cal led the ventricular zone.

Directly basally to the ventricular zone lies the subventricular zone, which is more distinguishable

at later stages (Gray GE et al. 1 990). This is a secondary prol iferative zone hosting the “basal

progenitor” cel ls that wil l also be described in more detai l further on in the text.

Adjacent to the subventricular zone develops the intermediate zone. I t is initial ly formed by the

corticofugal axons of the earl iest cortical neurons, which are later met by the thalamocortical

axons arriving in the cortex (Price DJ et al. 2006). Also the fol lowing waves of both incoming and

outgoing axons grow along the same tract. The resulting bundles of axons wil l later get

myelinated and form the adult “white matter”, together with astrocytes and oligodendrocytes.

A thin layer of neurons that have already been produced directly from neuroepithel ial cel ls is

present at the basal side. This layer is cal led the preplate (Marin-Padil la M 1 971 , Frotscher M

1 997, Soriano E and Del Rio JA 2005). At the apical surface, new projection neurons are

generated and migrate then into the preplate to form the cortical plate.

The first wave of arriving neurons splits the preplate into the subplate and the marginal zone.

Part of the marginal zone remains the most basical layer of the cortical plate. The fol lowing

neurons wil l al l settle directly underneath the marginal zone, i .e. on top of the earl ier-generated

neurons, thus forming the cortical plate in an inward-out manner (Fig. 1 ).
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Fig. 1 : Schematic drawing of the developing cortex

(A) Overview

The coloured bands indicate the relative positions of the different zones. For simplification, the medial part

and most of the ventral telencephalon have been removed (dashed lines). The thicknesses are arbitrary, for

details refer to B. The boxed area indicates a radial column as they are shown in detail in B.

(B) The zones of the developing cortex at different stages

The ventricular zone (VZ) is populated by the somata of radial glia (red). The preplate (PP) is formed by the

most early-born neurons (dark green). Later, basal progenitors (orange) settle in the subventricular zone

(SVZ). The first wave of neurons (light green) generated by radial glia splits the preplate in the outer

marginal Zone (MZ) and the inner subplate (SP) and forms the cortical plate (CP) in between. Corticofugal

and thalamocortical axons (yellow, elongated) form the intermediate zone (IZ).

The solid black line indicates the basement membrane. The dashed line does not indicate permeability, but

illustrates that the ventricle is not separated from the cortex by a membrane.

Adapted from (Dehay C and Kennedy H 2007).

1 .1 .2. Radial gl ia

As mentioned above, radial gl ia have a bipolar morphology with two processes that span the

entire cortex. The apical process has an endfoot that forms cell-cel l junctions with its neighbours;

the basal process is anchored to the basement membrane (Shoukimas GM and Hinds JW 1 978,

Mollgard K et al. 1 987, Astrom KE and Webster HD 1 991 , Aaku-Saraste E et al. 1 996) (Fig. 2).



- 3 -

Despite their early discovery, the true nature of radial gl ia has long remained

undiscovered. In particular due to their distinct morphology they were presumed to

provide some sort of scaffold. As indeed, neurons could be found in close contact

with the radial processes, their role in guiding newborn neurons on their migration

to the cortical plate seemed revealed (Rakic P 1 972). These observations are sti l l

val id and further studies, especial ly those using time-lapse microscopy, have

provided more evidence to the role of radial gl ia in neuronal migration (Hatten ME

1 999, Nadarajah B et al. 2003). As a matter of fact, this function also plays an

important role in the present study.

Nowadays, however, the main interest in radial gl ia is due to their role as the progenitors of

nearly al l neural cel ls in the mammalian cortex, a site that was long overlooked. Based on the

mitotic figures that they display in electron microscopy and their uptake of triturated Thymidine

(H3Thy) or the Thymidine analogue 5-Bromo-2-deoxyuridine (BrdU), they had already been

recognized as dividing. However, as they transform into astrocytes after the end of

neurogenesis, they were thought to be purely astrogenic and to coexist with neuroepithel ial

progenitors or a sti l l unidentified pool of neuronal precursors (Malatesta P et al. 2000, Noctor SC

et al. 2001 , Campbell K and Gotz M 2002, Gotz M et al. 2002, Kriegstein AR and Gotz M 2003,

Pinto L and Gotz M 2007). Only much later it was discovered, that a culture only consisting of

radial gl ia, purified by fluorescence-activated cell sorting (FACS), would give rise to both

astrocytes and neurons in vitro. This result was soon confirmed by using different approaches,

such as live imaging, not only in vitro but also in vivo (Malatesta P et al. 2000, Miyata T et al.

2001 , Noctor SC et al. 2001 ).

Neuroepithel ial progenitors, in contrast, had already been well recognized as progenitor cel ls, so

are radial gl ia just a subtype of neuroepithel ial progenitors? Indeed, both cell types share a lot of

characteristics. Most strikingly, they both share the same polarized morphology, even though

neuroepithel ial progenitors natural ly have to span a much shorter distance. On the molecular

level, they share the expression of the intermediate fi lament Nestin (Misson JP et al. 1 988,

Edwards MA et al. 1 990, Chanas-Sacre G et al. 2000, Hartfuss E et al. 2001 ), RC1 and RC2

(Misson JP et al. 1 988, Hartfuss E et al. 2001 , Mori T et al. 2005). There are, however, many

proteins expressed in radial gl ia, which they rather share with reactive astrocytes (Ridet JL et al.

1 997, Doetsch F et al. 1 999, Fawcett JW and Asher RA 1 999, Seri B et al. 2001 , Doetsch F et al.

2002, Seri B et al. 2004), such as GLAST (Shibata T et al. 1 997, Malatesta P et al. 2000,

Hartfuss E et al. 2001 ), GS (Akimoto J et al. 1 993), S1 00β, TnC (Gotz M et al. 1 998), Vimentin

(Schnitzer J et al. 1 981 ) or BLBP (Hartfuss E et al. 2001 ). This is another reason, why these

cells were considered purely astrogl ial and it added to the surprise when it was proven that

precisely these glial-marker-expressing cells gave rise to neurons.

Fig. 2 Schematic drawing of radial glial cells

The radial glia (red) touch the basement membrane (black line) at their basal end. Their

apical endfeet form cell-cell junctions (cyan) with the neighbouring cells. The endfeet are in

direct contact to the ventricle (purple), which is filled with cerebrospinal fluid (CSF).
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More importantly, also functional differences exist between radial gl ia and neuroepithel ial

progenitors. The latter divide mostly symmetrical ly, producing two neuroepithel ial progenitors

and thus enlarging the progenitor pool. In contrast, radial gl ia need a mechanism that al lows

them to generate differentiated cells without depleting their own population. In principle, this can

be achieved with the right balance between self-renewing and differentiating symmetric cel l

divisions. However, it has been observed that, especial ly from mid-neurogenesis onwards, the

main mode of cell division in radial gl ia is rather asymmetric (Noctor SC et al. 2004, Pinto L and

Gotz M 2007), so that during each division the mother cell can both self-renew and generate a

differentiated cell . A common conclusion is, that the lateral expansion of the brain surface is

completed before the onset of neurogenesis, and later stages rather increase the thickness of

the cortex (Huttner WB and Kosodo Y 2005, Pontious A et al. 2008).

Synchronous with their cel l cycle, neuroepithel ial progenitors and radial gl ia display a migratory

phenomenon called interkinetic nuclear migration. Their nuclei migrate up and down the

ventricular zone in a way such that they undergo S-phase at their basal turning point and divide

at the ventricular surface. This phenomenon has been identified relatively early (Sauer FC 1 935)

and it is the reason for the pseudostratified appearance of the neuroepithel ium. Even though this

pattern of migration seems noteworthy, it is not a prerequisite for cel l division, as progression

through the cell cycle can sti l l occur when interkinetic nuclear migration is inhibited (Messier PE

1 978, Murciano A et al. 2002, Baye LM and Link BA 2008, Schenk J et al. 2009, Taverna E and

Huttner WB 201 0). On the other hand, interkinetic nuclear migration is itself dependant on the

cell cycle, and changes in the length of the latter do change the speed of interkinetic nuclear

migration so that the nuclei wil l sti l l be at their basal turning point in S-phase and at the

ventricular surface in M-phase (Lange C et al. 2009, Pilaz LJ et al. 2009, Taverna E and Huttner

WB 201 0).

Another peculiarity is the highly polarized morphology, which is again shared by neuroepithel ial

progenitors and radial gl ia. This apico-basal polarity continues at the molecular level, where

several proteins have been shown to localize distinctly to the apical or the baso-lateral part of the

cell . Some amongst them, such as Cdc42 or Par3 (Cappello S et al. 2006, Costa MR et al. 2008)

have already been shown to influence the behaviour of the progenitor cel ls and even change

their cel l fate. Other approaches have focussed on changing the cells' behaviour by interfering

with radial gl ial morphology (Haubst N et al. 2006), but despite the resulting disorganization of

the overal l cortical structure, no changes in cell fate could be observed, and on the single-cel l

level, an apical "pole" was sti l l detectable (Schmid M-T 2008).

1 .1 .3. Basal progenitors

As early as 1 973, another zone of prol iferation has been described in the developing cortex, in

between ventricular and intermediate zone (Smart IH 1 973). I t took unti l the development of

sophisticated time-lapse video microscopy, to spark deeper interest in this cel l population that

then turned out to consist of a very different, multipolar cel l type without contact to the ventricle.

Unlike neuroepithel ial progenitors or radial gl ia, these cells do not express Pax6 nor genes of the

Hes-family, but can rather be characterized by their expression of the non-coding RNA Svet1

(Tarabykin V et al. 2001 ) and the transcription factors Tbr1 /2 (Englund C et al. 2005), Cux1 /2
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(Nieto M et al. 2004, Zimmer C et al. 2004), Ngn2 (Miyata T et al. 2004) and Satb2 (Britanova O

et al. 2005). Albeit detectable as early as E11 (Smart IH 1 973, Nieto M et al. 2004, Zimmer C et

al. 2004, Englund C et al. 2005, Wu SX et al. 2005) their population increases over time and

forms a distinct anatomic region, the subventricular zone, around mid-neurogenesis (E1 4) (Viti J

et al. 2003, Gotz M and Barde YA 2005).

Imaging techniques allowed to observe the division of basal progenitors directly and to fol low

their fate. Contrary to former believes, that the subventricular zone would contain mainly gl ial

progenitors (Takahashi T et al. 1 995), these studies could show that basal progenitors divide

symmetrical ly to produce pairs of neurons (Haubensak W et al. 2004, Miyata T et al. 2004,

Noctor SC et al. 2004, Wu SX et al. 2005), or undergo up to three rounds of – also symmetric –

prol iferative divisions (Noctor SC et al. 2004, Pontious A et al. 2008).

As for their function, they had been speculated to be an independent progenitor population,

giving rise to upper layer neurons (Tarabykin V et al. 2001 , Zimmer C et al. 2004). This theory

emerged mainly because they share expression of Cux1 /2, Satb2 and Svet1 with upper layer

neurons (Tarabykin V et al. 2001 , Nieto M et al. 2004, Zimmer C et al. 2004, Britanova O et al.

2005) but exist already before those neurons are generated (Zimmer C et al. 2004).

In the meantime, it has become clear that basal progenitors cannot self-renew for more than

three rounds and that they are themselves generated by radial gl ia and neuroepithel ial

progenitors (Miyata T et al. 2004, Noctor SC et al. 2004). As this happens at the ventricular

surface, they subsequently have to migrate. The current model is, that basal progenitors are

intermediate progenitors that increase the neuronal output of a single radial gl ia. This way, the

output at a given point in time could be regulated by the radial gl ia producing a basal progenitor

instead of directly producing a neuron, and the rounds of prol iferative cell divisions that the basal

progenitor then undergoes before producing neurons (Pontious A et al. 2008).

1 .1 .4. The layered structure of the cortex

At the end of development, the mammalian cortex has reached its characteristic six-layered

structure. Neurons are considered to belong to a certain layer, if their somata are located within

that layer.

The first neurons, which are already generated by neuroepithel ial progenitors around E11 , form

the preplate. The neurons that are generated after the formation of the preplate migrate into the

preplate, spl itting it into the outer marginal zone and the inner subplate (Caviness VS, Jr. 1 982,

Wood JG et al. 1 992, Del Rio JA et al. 2000, Hevner RF et al. 2003, Casanova MF and Trippe J,

2nd 2006). The marginal zone forms layer I , consisting mostly of Cajal-Retzius cells, which are

marked by their expression of Reelin and/or Calretinin (D'Arcangelo G et al. 1 997, Frotscher M

1 997, Soriano E and Del Rio JA 2005, Casanova MF and Trippe J, 2nd 2006). Those neurons

that spl it the preplate form layer VI and the fol lowing neurons settle on top of the previous layers

thus generating the next layers in an inward-out manner (Bayer SA et al. 1 991 ).

These layers can be distinguished by their expression of certain transcription factors. The upper

layers I I and I I I express Cux1 /2, Brn1 /2 and the non-coding RNA Svet1 . Neurons from layer IV

and V express ER81 and layer VI-neurons are positive for Tbr1 and Foxp2 (Molyneaux BJ et al.

2007).
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More importantly, each layer has a certain function in the wiring of the neuronal network.

Stereotypical ly, thalamocortical efferents arrive in layer IV, which relays the signals to the upper

layers I I and I I I , a connection that forms the so-cal led "ascending pathway". The layers I I /I I I are

the most heavily interconnected layers, including many connections across the corpus callosum,

which connects the two brain hemispheres (Elberger AJ 1 993, Douglas RJ and Martin KA 2004).

Their output is connected to the deep layers V and VI via the "descending pathway". Layer VI

provides a feedback signal l ing to the thalamus, whereas layer V is the source of the subcortical

connections to midbrain, brainstem, cerebellum (via the brainstem), striatum and the spinal cord

(Gilbert CD and Wiesel TN 1 983, Douglas RJ and Martin KA 2004, Shipp S 2007). Obviously,

this pattern is a strong general ization. Historical ly, most information has been gained from the

visual cortex of the cat.

1 .1 .5. Neuronal migration

In order to reach their layer after birth in the ventricular or subventricular zone, neurons have to

be able to migrate. Since they migrate radial ly away from their place of birth, this is referred to as

"radial migration", in contrast to "tangential migration", which refers to the horizontal movement

of neurons that also occurs (Walsh C and Cepko CL 1 992, O'Rourke NA et al. 1 995, O'Rourke

NA et al. 1 997). There are, however, different mechanisms by which radial migration can be

achieved.

One of these mechanisms is dependent on radial gl ia and called "locomotion". The mechanism

of neurons migrating along radial gl ial fibres, which was concluded from electron microscopy

pictures showing neurons in close apposition to these processes (Rakic P 1 972), may have led

to an underestimation of the role of radial gl ia in neurogenesis, but nevertheless turned out to be

correct. Observations, according to which all migrating (pyramidal) neurons were aligned in

paral lel to radial gl ial processes (Misson JP et al. 1 991 ) and not to e.g. neuronal processes

(Rakic P 1 971 , 1 972, 1 990) provided another indication that radial migration was indeed

dependant on radial gl ia. Time-lapse experiments final ly al lowed direct observation of migrating

neurons (Hatten ME 1 999). Locomotion could mainly be detected at later stages of development.

The migrating cells display a moti le leading process with constant length. The movement is not

constant but saltatory, reaching an average speed of around 35µm/h (Nadarajah B et al. 2001 ).

Based on Golgi stainings, another mode of migration had been proposed, where the migrating

neurons seemed to have direct contact to the basement membrane (Berry M and Rogers AW

1 965). Later, this kind of cel ls was also discovered by means of immunohistochemistry (Brittis PA

et al. 1 995). As for locomotion, time-lapse experiments turned out to reveal most information

about this mode of migration that is known today as "somal translocation". When a radial gl ia

divides to produce a neuron, this neuron can inherit the radial process and pull itself up towards

the basement membrane. Upon entering the subventricular zone, it wil l lose its connection to the

ventricle (Miyata T et al. 2001 ). Neurons performing somal translocation show a more constant

movement than it is seen in locomotion and move at an average speed of around 60µm/h. The

radial ly oriented process, which has a length of 60-95µm when the soma is sti l l in the outer

ventricular zone, becomes thicker and shorter during migration and its basal process remains

attached to the pial surface. Sometimes a small trai l ing process is seen in addition. I t has to be
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noted, that electron microscopy would be needed to confirm a real attachment of the basal

process to the basement membrane. Also, there is a lack of agreement concerning the

inheritance of the radial process, as also the outgrowth of the process before the onset of

migration has been observed (Nadarajah B et al. 2001 ).

The current model is, that somal translocation is the prevalent mode of migration at the early

stages, especial ly during formation of the preplate, when the distances to be bridged are sti l l

rather short. Consequently, locomotion is dominating at later stages and also overal l the most

frequent mode of radial migration (Nadarajah B et al. 2001 ).

Mixed modes have been observed as well . In addition to the long-range somal translocation

described above, a locomoting neuron can undergo short-range somal translocation, too, as

soon as its process has reached the marginal zone (Nadarajah B et al. 2001 , Chai X et al. 2009).

Also the opposite can happen, as recently basal progenitors have been observed, that use

somal translocation to reach the subventricular zone and that become multipolar once they have

arrived there (Tabata H et al. 2009).

The third mode of migration, "multipolar migration", has been discovered most recently. From

around E1 4 on, multipolar cel ls have been described, that also migrate radial ly. Their population

increases and constitutes 20% of all migrating neurons at E1 5. They form and retract multiple

processes that might serve to sense environmental cues. The soma moves rapidly (1 -3µm/min)

towards the branching point of such a process, pauses there unti l one process is retracted and

then fol lows the remaining process (Nadarajah B et al. 2001 ). Initial ly, these cells were thought

to be a small population of dorsal ly generated interneurons (Anderson SA et al. 1 997, Nadarajah

B et al. 2001 , Anderson SA et al. 2002, Letinic K et al. 2002, Nadarajah B et al. 2003), but in the

meantime it has been shown that radial ly migrating neurons can sojourn in the subventricular

zone in a multipolar state, during which they can also spread tangential ly (Tabata H and

Nakajima K 2003, Noctor SC et al. 2004).

1 .2. The Rho GTPases

As of today, the molecular mechanisms involved in the formation of the neocortex are sti l l far

from understood. Our lab has performed genetic screens to find genes with expression patterns

that suggest an involvement in corticogenesis (Pinto L et al. 2008). In this screen, several

members of the Rho GTPases appeared.

The family of Rho GTPases is a subfamily of Ras GTPases that is present in al l eukaryotic cel ls

(Jaffe AB and Hall A 2005). There are 22 mammalian genes for Rho GTPases that can be

clustered in different subfamil ies (Aspenstrom P et al. 2004, Jaffe AB and Hall A 2005). They

function as molecular switches that are inactive in their GDP-bound form. Upon exchange of

GDP against GTP they get activated and can interact with a big variety of effector molecules. So

far, over 50 different effector proteins have been discovered, including scaffold proteins, kinases

and other enzymes. With the exception of some atypical Rho GTPases (Pacary E et al. 2011 ),

the active form inactivates itself by its intrinsic GTPase activity (Jaffe AB and Hall A 2005).

Different classes of activating and inactivating proteins can transduce signals to the GTPases

and add specificity to the system. Guanosine exchange factors (GEFs) constitute the activators.

They catalyze the exchange of GDP against GTP (Schmidt A and Hall A 2002, Jaffe AB and Hall
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A 2005). There are two different classes of inactivating proteins. GTPase activating proteins

(GAPs) increase the GTPase activity (Bernards A 2003), whereas guanosine dissociation

inhibitors (GDIs) block the dissociation of GDP from the GTPase and also sequester the GTPase

out of the membrane, which is mostly their place of action (Olofsson B 1 999).

1 .2.1 . Regulation of the cytoskeleton

Rho GTPases are probably best examined for their regulation of the cytoskeleton, especial ly for

the formation of actin-rich protrusions. Activation of Cdc42 typical ly leads to the formation of

fi lopodia and the activation of Rac to lamell ipodia (Etienne-Mannevil le S and Hall A 2002). To

form these protrusions, but also for various other cellular functions, they can induce actin

polymerization. The most important actin-binding molecules in this context are Arp2/3 (Mil lard TH

et al. 2004), which is downstream of Cdc42 (Ho HY et al. 2004) and Rac (Eden S et al. 2002,

Innocenti M et al. 2004), and the Formins, mDias in mice, which are downstream of Rho

(Zigmond SH 2004). To provide dynamics, there must also be means to depolymerize and

restructure actin fi laments. Both Cdc42/Rac and Rho can do this via the Cofi l in pathway (Ohashi

K et al. 2000, Dawe HR et al. 2003, Pollard TD and Borisy GG 2003, Ghosh M et al. 2004,

DesMarais V et al. 2005, Jaffe AB and Hall A 2005).

Rho GTPases can also regulate the microtubule part of the cytoskeleton. Cdc42/Rac activity

typical ly leads to assembly and stabil ization of microtubules (Daub H et al. 2001 , Cassimeris L

2002, Etienne-Mannevil le S and Hall A 2003). Depending on the context, Rho activation can lead

to either stabil ization (Palazzo AF et al. 2001 , Wen Y et al. 2004) or destabil ization (Arimura N et

al. 2000, Fukata Y et al. 2002) (Fig. 3).

Fig. 3 Regulation of the cyto-

skeleton

Activation of Rho GTPases

usually leads to actin poly-

merization and microtubule

growth.

In addition, RhoA can mediate

acto-myosin contractility.

From (Govek EE et al. 2005)
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1 .2.2. Regulation of gene expression

Besides their effects on the cytoskeleton Rho GTPases are also involved in gene expression.

This can, however, also be tightly l inked to the cytoskeleton, namely the serum response factor

(SRF) pathway. SRF is a transcription factor that activates the corresponding serum response

element (SRE) to initiate the transcription of immediate early genes (IEGs) (Jaffe AB and Hall A

2005). To do so, it needs MAL as a coactivator. To function as such, MAL needs to be present in

the nucleus, which, in turn, can only happen when MAL is not bound to the monomeric form of

actin, G-actin. I f Rho activity lowers the amount of G-actin present in the cell by actin

polymerization, which is the net outcome of Rho activation in most cel ls, more MAL wil l be free to

bind SRF (Miral les F et al. 2003).

Besides this mode of regulation, there are other, actin-independent, pathways that can involve

Rho GTPases, such as the JNK- and MAPK-pathways, which are known to affect transcription in

other molecular pathways (Burbelo PD et al. 1 995, Coso OA et al. 1 995, Minden A et al. 1 995,

Teramoto H et al. 1 996, Puls A et al. 1 999, Gallagher ED et al. 2004).

1 .2.3. Function in cel l migration

Cell migration typical ly starts with the extension of a process into new areas. Both Cdc42 and

Rac1 are concentrated on the leading edge of migrating cells to promote the actin polymerization

needed for this kind of membrane extensions (Arthur WT and Burridge K 2001 , Raftopoulou M

and Hall A 2004). I t has been shown that both GTPases are required for cell migration in scratch

wound assays of fibroblast, astrocyte and epithel ial cel l cultures, where especial ly Cdc42

regulates the direction (Nobes CD and Hall A 1 999, Etienne-Mannevil le S and Hall A 2001 ,

Tzima E et al. 2003, Watanabe T et al. 2004, Cau J and Hall A 2005, Gomes ER et al. 2005,

Robel S et al. 2011 ), but also in neuronal migration (Kawauchi T et al. 2003, Konno D et al.

2005, Yoshizawa M et al. 2005, Chen L et al. 2007, Tahirovic S et al. 201 0). Interestingly, also

constitutively active constructs of Cdc42 or Rac1 inhibited migration in these experiments, which

shows how crucial the level of activation is.

After extension of the leading process, the process attaches to the environment and the acto-

myosin cytoskeleton generates contracti le forces to move the nucleus. Especial ly the Rho-

subfamily plays a role in the formation of adhesion and the generation of acto-myosin

contractions at the rear of the cell (Luo L 2000, Ridley AJ 2001 , Ridley AJ et al. 2003). For this

reason, its inhibition blocks migration in certain systems (Paterson HF et al. 1 990, Stasia MJ et

al. 1 991 , Hinsch KD et al. 1 993, Miura Y et al. 1 993, Takaishi K et al. 1 993, Jay PY et al. 1 995).

Nucleokinesis seems to be particularly dependant on acto-myosin function (Hatten ME 2002,

Schaar BT and McConnell SK 2005) and consequently, macrophages can sti l l extend processes

if RhoA is blocked, but the nucleus is unable to fol low (Allen WE et al. 1 997, Allen WE et al.

1 998). More interestingly (in the context of this work), the same holds true for precerebellar

neurons (Causeret F et al. 2004).

But the situation is not as straightforward as it might seem at first and the cell adhesion mediated

by RhoA also inhibits cel l movement (Couchman JR and Rees DA 1 979, Paszek MJ et al. 2005,

Marin O et al. 2006). The net outcome of RhoA activity is thus dependent on the cell type.

Especial ly flat cel ls with stress fibres are strongly attached to the extracellular matrix with focal
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adhesions, and are therefore kept in their place by RhoA activity. Examples are MDCK cells

migrating along a growth factor gradient (Ridley AJ et al. 1 995) or primary fibroblasts closing a

scratch wound (Nobes CD and Hall A 1 999). In contrast, RhoA can be necessary for the

amoeboid movement of round cells without stress fibres (Sahai E and Marshall CJ 2003). But

even though neurons do not have stress fibres (Guasch RM et al. 1 998), and despite the positive

role of RhoA in nucleokinesis of precerebellar neurons (Causeret F et al. 2004), recent data

indicate that RhoA usually is a negative regulator for radial migration of cortical neurons

(Kholmanskikh SS et al. 2003, Besson A et al. 2004, Hand R et al. 2005, Ge W et al. 2006,

Nguyen L et al. 2006).

1 .2.4. Function in cel l adhesion

Also cell adhesion often starts with cells contacting each other with fi lopodia or lamell ipodia

before the actual junctions are formed (Jacinto A et al. 2000, Vasioukhin V et al. 2000, Ehrl ich JS

et al. 2002). Both Rho and Rac have been found necessary for the formation of adherens

junctions since they stabil ize actin fi laments required to form the actin-mediated adhesion belt

(Braga VM et al. 1 997, Hordijk PL et al. 1 997, Takaishi K et al. 1 997, Mall iri A et al. 2004). In

addition, interactions between Rho and α-catenin, an important part of adherens junctions, are

known from work performed in drosophila (Magie CR et al. 2002, Vaezi A et al. 2002).

1 .2.5. Function in cel l polarity

Cdc42 activates the Par-complex, consisting of Par3, Par6 and the atypical protein kinase C

(aPKC), that has been shown to be necessary for adherens junction formation in various cell

types (Izumi Y et al. 1 998, I toh M et al. 2001 , Suzuki A et al. 2001 , Yamanaka T et al. 2001 ,

Hirose T et al. 2002, Gibson MC and Perrimon N 2003).

Besides the maintenance of tissue integrity, these junctions also delineate the apical from the

baso-lateral membrane domain (Gotz M and Huttner WB 2005). Cdc42 and the Par-complex

seem to play a general role in the establishment of cel l polarity. In neuronal cel ls, these proteins

are also enriched in the developing axon. Disruption of this signal l ing pathway leads to polarity

defects l ike neurons without axons or with multiple axons (Shi SH et al. 2003, Schwamborn JC

and Puschel AW 2004, Jaffe AB and Hall A 2005).

These observations fit to other observations where Cdc42 was necessary for polarized

behaviour of cel ls, including budding sites in mating yeast, cel ls migrating along a chemotactic

gradient or monolayer cultures closing a scratch wound (Allen WE et al. 1 998, Nobes CD and

Hall A 1 999, Li Z et al. 2003, Cau J and Hall A 2005, Robel S et al. 2011 ).

Another effect on polarity is known from drosophila, where Cdc42 and the Par-complex are

necessary for asymmetric cel l division (Etienne-Mannevil le S and Hall A 2001 , Gotta M et al.

2001 , Ahringer J 2003, Peterson FC et al. 2004). In mammals, there is an ongoing discussion

about the role of cel l polarity in cel l fate decisions (Gotz M and Huttner WB 2005, Zhong W and

Chia W 2008, Kosodo Y and Huttner WB 2009). I t has been found that in mice the Par-complex

promotes radial gl ial cel l fate (Costa MR et al. 2008) and that upon loss of Cdc42, which

activates the Par-complex, radial gl ia change into basal progenitors (Cappello S et al. 2006) and

thereby lose their abil ity to divide asymmetrical ly.
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1 .2.6. Regulation of the cell cycle

Another role of Rho GTPases is cel l cycle progression. Cdc42 and Rac as well as Rho seem to

be important for G1 progression (Yamamoto M et al. 1 993, Olson MF et al. 1 995) by regulating

Cdk2 and the expression of cyclins (Weber JD et al. 1 997, Westwick JK et al. 1 997, Olson MF et

al. 1 998, Hu W et al. 1 999, Joyce D et al. 1 999, Mettouchi A et al. 2001 , Sahai E et al. 2001 ,

Welsh CF et al. 2001 , Lai JM et al. 2002, Vidal A et al. 2002, Chou MM et al. 2003, Roovers K

and Assoian RK 2003, Roovers K et al. 2003).

Again, it is also due to their function in the cytoskeleton, that they play another major role in the

cell cycle as acto-myosin is needed for centrosome positioning (Rosenblatt J et al. 2004).

Furthermore, Rho and some of its effectors localize at the cleavage furrow (Glotzer M 2001 ),

probably to activate myosin which leads to the ring contraction necessary for cytokinesis

(Matsumura F et al. 1 998, Komatsu S et al. 2000, Yamashiro S et al. 2003).

1 .3. Aim of this study

Rho GTPases are involved in al l stages of corticogenesis. Their function in the cytoskeleton, cel l

adhesion and cell polarity means a potential role for the formation and maintenance of the

characteristic shapes of both radial gl ia and neurons, their influence in gene expression can be

of consequence for cell fate decisions and regulation of the cell cycle can play a role for the

prol iferation of neural progenitors and the cell cycle exit of mature neurons. Considering the

significance of Cdc42 in the developing cortex (Cappello S et al. 2006), the examination of

RhoA, which usually is a functional antagonist of Cdc42 (Postma FR et al. 1 996, Kozma R et al.

1 997, Hall A 1 998), is a logical next step. The opposite effect of loss of Cdc42 function would be

a loss of basal progenitors, but due to the variety of effects in different cel l types, the outcome is

hard to predict.

Even though the functions of RhoA seem to be well characterized at first, it is sti l l not possible to

answer its role in cortical development. This has several reasons:

Many of the existing studies used antagonists against Rho effectors, that are relatively specific

for the effector itself, but unspecific for the activating GTPase. As we have seen, Rho GTPases

are a family of very homologue proteins and there is substantial crosstalk between the different

signal l ing pathways. Especial ly dominant-negative or constitutively active constructs are prone to

influence several pathways. The dominant negative constructs are changed in a way that either

always leaves them in their inactive GDP-bound form, or they can no longer bind their effector

molecule. However, different Rho GTPases often interact with the same molecules, so that for

example a dominant negative RhoA might inhibit an effector that would usually be activated by

RhoC. Investigating the role of a single family member without influencing other signal l ing

pathways is therefore challenging. Since even a single subfamily of small GTPases can be

involved in so many different cel lular functions, it is especial ly interesting to differentiate between

the individual effects of the different family members.

In addition, studies in other regions of the CNS have shown, that the role of RhoA is highly

region specific (Herzog D et al. 2011 , Katayama K et al. 2011 ). Therefore it is difficult to transfer

insights from other brain regions to the development of the neocortex.

Here, we want to address the role of RhoA in corticogenesis by specifical ly deleting RhoA.
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2. Results

2.1 . The Emx1 : :Cre | | RhoA fl mouse model is an appropriate tool to investigate RhoA in the

developing cerebral cortex

Much of the work done on Rho GTPase signall ing stems from studies conducted in

invertebrates, cel l culture or even cell-free assays. But the interacting molecules expressed in a

certain cel l , their local isation and hence the entire pathways have shown to differ significantly

from one cell type to another (Jaffe AB and Hall A 2005, Wu X et al. 2006). In addition, the

developing brain is a complex three-dimensional structure, and due to its known involvement in

the cytoskeleton, this structure may indeed be directly l inked with the function of RhoA.

Even regarding only the function of RhoA itself, it is rather l ikely to be sti l l involved in several

cel lular functions in paral lel . They may, however, differ in their importance or their function may

be redundant. I t is therefore difficult to predict to which phenotype a loss-of-function approach

would lead.

These considerations in mind, we decided for a genetic approach to delete only the gene of

interest in the cells and at the stage of interest. For this, we crossed a mouse-l ine in which the

third exon of the RhoA gene, containing the start-codon, is flanked by loxP-sites (RhoA fl)

(Jackson B et al. 2011 ), with the Emx1 : :Cre-l ine (Iwasato T et al. 2004) that expresses Cre-

recombinase in neuroepithel ial progenitors and radial gl ia from E9,5 on. After recombination, the

loss of the start-codon wil l stop the expression of any RhoA without any truncated proteins being

produced.

Though RhoA-expression, on the mRNA level, has been reported to be restricted to the

ventricular zone (Ge W et al. 2006, Pinto L et al. 2008), the protein could be detected in the

control sections throughout the developing cortex (Fig. 4A, C).

In the conditional knock-out (cKO) brain, RhoA protein has disappeared by E1 2 (Fig. 4B).

Consistent with a recombination that is restricted to neuroepithel ial progenitors and radial gl ia,

immunoreactivity is sti l l detectable in meninges, blood vessels and the ventral telencephalon,

where the Emx1 promoter is not active (arrows in Fig. 4B, D).

These results confirmed the mouse model as suitable to investigate the role of RhoA in the

developing cortex.

2.2. Prol iferation in the RhoA-deficient cortex

We started examining cell divisions. Not only is the rate of cel l divisions an important feature of

progenitor cel ls, but their local isation also gives us first hints at tissue architecture and the

progenitor cel l types. This is because usually radial gl ia only divide at the ventricular surface

whereas basal progenitors divide in the subventricular zone.

To detect dividing cells, we performed a staining for PH3, which is detectable in late G2/M-phase

of the cell cycle on sections of the cerebral cortex of embroys age E1 2, E1 4 and E1 6. In the

control, the signal is indeed restricted to the ventricular surface (Fig. 5A-A’’ , C-C’’ , E-E’’) and,

especial ly at mid- and late neurogenesis, also present in the subventricular zone (Fig. 5C-C’’ , E-

E’’). This is clearly different in the cKO. At E1 2, clusters of PH3 positive nuclei can be seen

inside the cerebral cortex parenchyma and only what seems a minority of divisions are located at

the ventricular surface. At this stage, this is restricted to the caudal and intermediate levels. The
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Fig. 4 Tissue specific loss of

RhoA protein

(A-D) Coronal sections of

embryonic control and cKO

brains immunostained for

RhoA

Starting E1 2 (A-B) the cKO

has lost RhoA protein in a

region specific manner (B).

Meninges (men), ganglionic

eminence (GE), blood vessels

(arrows, examples) remain

immunopositive for RhoA as

they do not express Cre-

recombinase under the Emx1

promoter.

scale bars: 1 00µm

most lateral parts are not affected either (Fig. 5B-B’’). At later stages, mitoses are more and

more scattered throughout the parenchyma (Fig. 5D-D’’) unti l the ventricular surface is virtual ly

free of cell divisions (Fig. 5F-F’’).

As the number of immunopositive cells seemed increased, we quantified the number of PH3

positive cells per area. They were clearly increased at E1 4 (1 62±25%, p<0,05) and E1 6

(1 42±1 0%, p<0,05) (Fig. 5G). This hyperprol iferation fol lows the same caudal to rostral gradient

as the mislocalization. Even though statistic significance could only be shown for intermediate

levels at E1 4 (1 62±9%, p<0,01 ) and rostral levels at E1 6 (1 72±1 4%, p<0,05), a clear trend is

visible (Fig. 5G’).

Another method to observe differences in prol iferation uses flow cytometry. During S-phase, cel ls

synthesize the DNA for another daughter cel l . Therefore, during G2/M-phase, shortly before cell

division, a cell has twice the DNA-content of a cell in G1 or G0. The DNA content of an individual

cel l gives us information about its phase in the cell cycle and the distribution of cel l cycle phases

over a cell population al lows us to determine the rate of prol iferation. We fixed and

permeabil ized cortical cel ls from E1 2 and E1 4 mouse embryos, labelled the DNA with propidium

iodide and analysed them. There were no differences detectable at E1 2 (Fig. 5H-I ). Surprisingly,

at E1 4 there was hardly any difference in cells in G2/M-phase, which is a discrepancy to the

results of the PH3 staining. However, the population of cel ls in S-phase increased from 6,3% in

the control to 1 0,7% in the cKO (Fig. 5J-K). This means an increase to 1 70% (i.e. cKO/ctrl=1 ,7

n.s.), which fits to the PH3 data.

B

C D

A
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2.3. The increase in basal divisions is not a result of identity

To understand the unusual spread of cell divisions away from the ventricular surface, we

examined the prol iferating cell types in more detai l . Usually, the cells that divide at basal

positions are basal progenitors. The change in position could thus be the consequence of a

change in cell fate (Cappello S et al. 2006). Therefore, E1 4 sections were stained for Tbr2 to

identify basal progenitors and Pax6 to identify radial gl ia. None of the populations seems to have

drastical ly changed in amount, but their organisation is completely abolished (Fig. 6). In the

control, there is a distinct band of Pax6 positive cells in the ventricular zone and the beginning of

the subventricular zone. Apart from presumably newly specified basal progenitors that are

migrating towards the subventricular zone, al l Tbr2 positive cells form a band in the

subventricular zone (Fig. 6A). In the cKO, however, both cell types are completely intermingled

(Fig. 6B). Only in some places a pattern is visible, that consists of a ring of radial gl ia nuclei

surrounded by basal progenitors (Fig. 6B’ arrowheads).

Fig. 5 Loss of RhoA leads to hyperproliferation

(A-F’’) Coronal brain sections immunostained for the mitotic marker PH3

DAPI as nuclear counterstain

Note the clusters of mitotic cells (arrows).

At early stages, lateral parts of the cerebral cortex are not affected yet (arrowheads).

scale bars 1 00µm

(G, G’) Quantification of PH3-positive cells/area

Different regions (rostral, intermediate, caudal) were either pooled (G) or compared independently (G’).

heteroskedastic t-test; means ± standard deviations; *: p<0,05, **: p<0,01 ; 3 litters per age and genotype

(H-K) Distribution of cell cycle phases in the cell population

The data was gained by measuring the DNA content of propidium iodide-labelled cells by flow cytometry.

1 litter each

2.4. Radial gl ia lose their radial orientation

As Pax6 only reveals the radial gl ia nuclei, we stained for the intermediate fi lament Nestin and its

post-translational ly modified form RC2 to get a better understanding of the morphology and

orientation of these cells. In addition, β-I I I -tubul in was used to investigate localisation and

morphology of neurons in the mutant cortex.

As before, no obvious difference could be seen at rostral levels of the E1 2 cortex (Fig. 7A-B). At

caudal levels, however, the most apparent difference are clusters of neurons, which are located

at the ventricular surface (Fig. 7B’-B''). In the control, only few neurons are seen outside the

cortical plate (Fig. 7B). Presumably, they are either migrating towards the cortical plate or they

belong to the β-I I I -tubul in positive basal progenitors. Upon very close observation, the radial

pattern of radial gl ia seems lost at some places, giving a clumped impression (Fig. 7B’’).

Qualitatively, the observations are the same at E1 4, although in a more progressed state.

Throughout the mutant cortex neurons can be seen, many of them outside of the cortical plate

(Fig. 7F-H’), which seems thinner in the cKO compared to the control (Fig. 7C-E’). The “radial

gl ia clumps” are now clearly visible as round or elongated “rosettes” (Fig. 7H-H’’’ arrowheads).
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Fig. 6 Progenitor cell identity

(A-B’) Cortical E1 4 brain sections immunostained for different progenitor populations

Radial glia were identified by immunostaining for Pax6 and basal progenitors by immunostaining for Tbr2.

B’ is a magnification of B.

Note the rosettes with Pax6-positive cells in the centre surrounded by Tbr2-positive cells (arrowheads).

ctx: cortex, V: ventricle, GE: ganglionic eminence

scale bars: 1 00µm

As a consequence of this clustering, part of the radial gl ia population sti l l reaches the basement

membrane, whereas other are clearly misoriented (Fig. 7H’’-H’’’).
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Fig. 7 Structure of radial glia and neurons

(A-B’’) Cortical E1 2 brain sections immunostained for radial glia and neurons

radial glia were detected by RC2 immunostaining and neurons were labelled with β-III-tubulin

immunostaining.

Note the misplaced neurons at the ventricular surface (arrowheads) and the clumped radial glia (asterisks).

B’’ is a magnification of B’.

CP: cortical plate

scale bars 1 00µm

(C-H’’’) Cortical E1 4 brain sections immunostained for radial glia and neurons

Radial glia were detected by Nestin immunostaining and neurons were labelled with β-III-tubulin

immunostaining.

Note the rosette-like clusters of radial glia (arrowheads).

(H’’-H’’’) Higher magnifications of the Nestin immunostaining in H’ without β-III-tubulin

The centres of the rosettes (arrowheads) can be clearly seen now. Towards the apical side (down), the radial

glia seem misoriented whereas towards the basal side (up), radial glial fibres still reach the basement

membrane.

scale bars: 1 00µm
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This mutant shows many misplaced neurons and there are strong indications for a disruption of

the radial gl ia structure. In the context of neuronal migration, the clear bipolar structure of radial

gl ia is an important feature that al lows locomoting neurons to use them as a scaffold to migrate

from their place of birth at the ventricular surface to the cortical plate. To see if the mutant radial

gl ia are sti l l in contact with both the apical and the basal side of the cortex, a suspension of the

red fluorescent l ipophil ic tracer DiI was injected into the ventricle of a PFA-fixed E1 4 brain, and

crystals of the green fluorescent l ipophil ic tracer DiO were placed on the pial surface of the

cerebral cortex, after removal of the meninges. Due to its l ipophil icity these substances can only
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In the cKO experiment, much less of the dye reaches the opposite side of the cortex, and the

labelled cells also don’t seem paral lely oriented in a radial manner (Fig. 8B-B’’ , D).

2.5. Loss of RhoA leads to disruption of adherens junctions and formation of rosettes

As the radial orientation is a hallmark of radial gl ia, we went on to investigate how this change in

morphology came about. Usually, the radial gl ial endfeet are anchored to one another at the

ventricular surface by adherens junctions. Defective adherens junctions have been shown to

lead to tissue disorganisation (Ganzler-Odenthal SI and Redies C 1 998, Machon O et al. 2003,

Lien WH et al. 2006).

We stained for cadherins, an extracellular adherens junction component, and for β-catenin, an

diffuse within the membrane of a labelled cell . In the control, the red signal can also be detected

at the basal surface (Fig. 8A, A’’), which means that cel ls that could only come in contact with the

dye at the ventricle reach all the way up to the basal surface. Conversely, there are also cells

that contacted the green dye and reach down to the apical surface (Fig. 8A, A’, C). Please note

that the green labell ing spreads much more tangential ly, because also neurons from the cortical

plate get labelled with the DiO crystals.

DiI/DiO DiO
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A A' A''

B B' B''
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D

Fig. 8 Tracing of radial glial processes

(A-D) Radial glia stained with lipophilic tracers from the basal and apical surface

DiI suspension was injected into the ventricle of an E1 4 brain to trace the cells with contact to the ventricle.

DiO crystals were placed on the basal surface to trace with contact to the basal surface.

A’-B’’ are the single channels of A-B.

C-D are selected examples showing an especially clear view of the radial glial processes in the control (C)

and their disturbance (D) in the cKO.

scale bars: 1 00µm
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internal component that anchors cadherins to the cytoskeleton. In the control, as in rostral E1 2

cKO cerebral cortex sections, the stainings show an overlapping intense continuous band along

the ventricular surface (Fig. 9A, A’, B). Again, in caudal cKO sections this is no longer the case.

Though not entirely absent, the band at the ventricular surface is disrupted and in some cases

continuing into the parenchyma (Fig. 9B’-B’’’). In addition, there are again circular structures

present inside the parenchyma (Fig. 9B’).

At E1 4, the disruption at the ventricular surface in the cKO looks even more severe, with only

some double-stained patches remaining (Fig. 9D). This is, with the exception of the

hippocampus anlage, where the β-catenin immunostaining is sti l l present. Also at this stage, the

rosettes are visible as clusters of adherens junctions (Fig. 9D’’ , D’’’). Their centre is devoid of

nuclei (Fig. 9D’), indicating that al l cel l somata are on the outside of the rosettes.

When seen from inside the ventricle, the pattern formed by adherens junctions is a honeycomb-

l ike structure outl ining the apical membrane framed by adherens junctions of the radial gl ia. In

higher magnification this is sometimes visible due to a sl ightly oblique cutting angle. To

determine with more confidence, that the immunopositive l ines are indeed adherens junctions,

we scanned the section at a high Z-resolution (oversampled at 0,3µm) and rotated the resulting

3D reconstruction to get an “en face” view of the ventricular surface (Fig. 9E). This was done

with β-catenin-stained sections as well as with sections where F-actin, which is present at high

concentration in adherens junctions, was revealed by means of labelled Phalloidin.

In the area where the virtual section plane is paral lel to the ventricular surface, a clear

honeycomb pattern is seen in the control tissue, indicating that the staining indeed reveals

adherens junctions (Fig. 9F, H). In the cKO, the staining pattern is very diffuse and only at small

remaining spots reminiscent of the control pattern (Fig. 9G, I ).

The most rel iable method for the detection of adherens junctions, is electron microscopy (EM).

We analyzed cerebral cortices of E1 3 embryos to be sure that the adherens junctions were just

disrupted.

Not only did the control show the presence of adherens junctions connecting the radial gl ial

endfeet at the ventricular surface, but in addition numerous mitotic figures showed the cell

divisions in this area (Fig. 9J-J’).

In some areas, the situation in the cKO (Fig. 9K-K’) was sti l l identical to the control. Considering

the age of the embryos, the relatively rostral section plane and the presence of parts with

remaining adherens junctions even at E1 4, this is not unexpected. However, there are also areas

of the ventricular surface where no more adherens junctions could be identified (Fig. 9L). This

confirms the immunostaining and the loss of apical adherens junctions. Consequently, the cells

in this region gave a rather disorganized impression, with curled processes and no radial

orientation. Also the nuclei did not show the condensed chromatin of dividing cells. Just l ike in

the immunostainings, there were, however, regions inside the parenchyma where several cel ls

were connected with adherens junctions, forming a rosette structure. These cells showed mitotic

nuclei in proximity to the junctions and are connected at their endfeet (Fig. 9M-M’).

Taken together, these observations show that fol lowing the loss of RhoA protein at E1 2, the band

of adherens junctions at the ventricular surface gets disrupted. Some radial gl ia remain,

however, sti l l connected and clump inside the parenchyma to form rosette-l ike clusters.
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Fig. 9 Disrupted adherens

junctions in the cKO

(A-B’’’) E1 2 brain sections

immunostained for adherens

junction components

The intracellular adherens

junction component β-catenin

and the extracellular

cadherins were labelled by

immunostaining. At this

stage, no disruption in the

chain of adherens junctions

at the ventricular surface is

visible at rostral levels (A, B).

Caudal section levels (A’-B’)

show first disruptions in the

chain of adherens junctions

(box) and rosettes where

adherens junctions are

concentrated inside the

parenchyma (arrows).

B’’ is the marked region of B’

in higher magnification. The

loss of adhesion at the

ventricular surface can be

seen more clearly (box). A

part of the chain of adherens

junctions has moved inside

the parenchyma.

B’’’ is a higher magnification

of the marked region of B’’,

only showing the β-catenin

immunostaining. The

remaining band of adherens

junctions, as well as the band

inside the parenchyma, show

the honeycomb pattern

typical of adherens junctions

(arrows).

scale bars: 1 00µm
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(C-D’’’) E1 4 brain sections immunostained for adherens junction components

The sections were stained for β-catenin and pan-cadherins like A-B. DAPI was used as a nuclear

counterstain.

The double-positive band of adherens junctions along the ventricular surface is severely disrupted, with the

exception of the hippocampus anlage (HA).

The single channels of a magnification of the highlighted region in D (D’-D’’’) clearly shows that the rosettes

consist of an accumulation of adherens junctions in their centre, which is devoid of nuclei.

scale bars: 1 00µm

(E-I) En face view of the apical adherens junctions

E1 4 brain sections were stained for β-catenin (F-G) or F-actin (H-I), which is also highly concentrated at

adherens junctions. A 3D reconstruction was produced of confocal stacks of 20µm cryosections. The stack

was rotated so that the ventricular surface is seen en-face from the ventricle (E). Both stainings show the

characteristic honeycomb pattern formed by the apical rings of adherens junctions in the control (F, H). The

cKO (G, I) shows only diffuse staining at the ventricular surface.

scale bars: 1 0µm
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(J-M’) electron microscopy pictures of E1 3 cortical brain sections

In the control case (J-J’), adherens junctions (arrows) connect the radial glia at the ventricular surface.

Almost all nuclei at this apical position have the condensed chromatin structure of dividing cells.

J’ is a higher magnification of J.

At some positions, the adherens junctions (arrows) are still intact in the cKO (K-K’). The nuclei also have

condensed chromatin here.

K’ is a higher magnification of K.

In many places in the cKO, the band of adherens junctions is no longer present at the ventricular surface

(L).

L’ is a higher magnification of L showing what might be the remnants of an adherens junction (question

mark) in the tangle of misoriented processes.

The rosettes (M-M’) consist of radial glia with their endfeet connected by adherens junctions (arrows). Near

this ectopic ventricular surface mitotic figures can be seen.

M’ is a higher magnification of M.

scale bars: 1 µm

E
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2.6. cKO animals are born at expected Mendelian rate

Considering the strong phenotype at embryonic stages, it seemed surprising that mutant pups

were born alive and reached adulthood. At the age of weaning, at around 4 weeks of age, no

significant differences from the Mendelian ratio could be observed. This way it was possible to

gain data about the further progression of the phenotype.

2.7. Loss of RhoA leads to formation of a “double-cortex”

To get a first impression of the adult brain structure, a staining for the neuronal nucleic marker

NeuN was performed. To ful ly appreciate the extent of the observation, it is useful to briefly

recapitulate the wildtype anatomy. Directly overlying the ventricle and the hippocampus we can

distinguish the white matter by its absence of neuronal nuclei. On top of the white matter fol low

the six layers of the neocortex, of which the less dense layer IV and the virtual ly cel l free layer I

are appreciable in the staining (Fig. 1 0A-A'). The cKO shows a stark contrast to this general

architecture (Fig. 1 0B-B’). Here we can distinguish two structures consisting of neurons that are

separated by an immunonegative band, reminiscent of the white matter. Only the upper basal

structure shows the less dense band of layer IV. The lower structure only shows some areas that

are devoid of neurons. This type of brain malformation, where two cortical structures are

separated by a band of white matter is often called a “double-cortex” (Bielas S et al. 2004).

Furthermore, the recognizable layer I is penetrated by neurons in rostral positions, a phenotype

called “cobblestone lissencephaly” (Bielas S et al. 2004).

In order to identify the changes in anatomy more closely and to ensure that the non-neuronal

band in the cKO is indeed the white matter, we combined stainings for GFAP and S1 00β to

identify al l astrocytes. Like the white matter in the control (Fig. 1 0C-C’), the band in the cKO was

populated by fibrous GFAP-positive cells (Fig. 1 0D-D’). As in the control, more GFAP signal was

visible at the pia. In the cKO, a thin GFAP positive band was seen directly adjacent to the

ventricle and the hippocampus (Fig. 1 0D-D’’). Both “cortices” in the cKO were virtual ly free of

GFAP positive cells, as was the control cortex.

S1 00β is also expressed in grey matter astrocytes and in ependymal cel ls (Fig. 1 0C-C’). This

also seems to be the case in the cKO, where these cells populate both cortices at similar

density, which also roughly corresponds to the density in the control. Also in the cKO, a very thin

band of GFAP-positive cells can be seen adjacent to the ventricle (Fig. 1 0D’’). This is noteworthy,

because two different types of "double-cortices" can be distinguished: periventricular heterotopia
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(PH), where the lower cortex is directly adjacent to the ventricle, and subcortical band

heterotopia (SBH), where the lower cortex is embedded in the white matter, which seems to be

the case here.

Identification of the third neural l ineage, ol igodendrocytes, would help us to determine if we

identified both the white matter and the periventricular heterotopia correctly. We stained for the

myelin produced by these cells, namely the myelin antigen MAG. Not only in the control, but also

in the cKO was the white matter intensely stained (Fig. 1 0E-F). I t is now safe to assume that also

in the cKO we are indeed looking at the white matter. Also a thin band overlying ventricle and

hippocampus is stained and meets the white matter at caudal levels (Fig. 1 0F’), confirming the

subcortical band heterotopia case of a "double-cortex".

So far we have learned, that our mouse model has two cortices separated by the white matter,

but we sti l l know nothing about the neurons inside these cortices. An important feature of the

cortex is its layered structure. Already at early developmental stages, we observed a severe

disorganisation in the cKO cortex. Since the structure of the adult cortex is also severely altered,

it is important to find out if the neurons of the correct layer identity were generated.

Neurons of different layers can be distinguished by their gene expression. We performed

stainings for different proteins to identify the specific neuronal subtype.

Cux1 labels the uppermost and therefore latest-born neurons of layer I I -IV (Fig. 1 0G). They

appear to make up a large part of the lower neuronal structure in the cKO cerebral cortex (Fig.

1 0H-H’). The upper cortex looks surprisingly normal. I t is, however, somewhat thinner than in the

control and protrudes into layer I at the places where the ectopias have been observed before.

At the centre of those ectopias, the band appears particularly thin (Fig. 1 0H, asterisk).

Tbr1 is expressed by the early born neurons, which make out layer VI . Fewer of them are

present in the lower cortex, but they sti l l form a neat band on top of the white matter in the upper

cortex (Fig. 1 0J-J’). Remarkably, they even seem to concentrate towards the bottom of the lower

structure. I t is interesting to note that at the ectopias they sometimes protrude even past the

upper layer neurons into layer I (compare asterisk in Fig. 1 0H and J).

The last marker shown in Fig. 1 0 is Ctip2, which labels the lower layers V-VI . I t is also only

sparsely expressed in the lower cortex of the cKO and forms a band at its expected position in

the upper cortex (Fig. 1 0L-L’).

Since the upper cortex shows the same layering as the wildtype and since it is correctly

positioned above the white matter, we wil l further refer to it as “homotopic cortex”. In contrast,

the lower structure wil l be called “heterotopic cortex”, because it is embedded in the white

matter.

Usually, the layers are generated in a sequential pattern from the inside towards the outside.

After we had seen the distribution of layer markers in the cKO brain, we decided to analyze if

they were also generated in the normal sequence. We therefore injected BrdU at different times

of gestation (E1 2, E1 4, E1 6) and observed the pattern of BrdU-positive cells at the same

postnatal stage (p7).

The inside-out pattern is very clear in the control (Fig. 1 0M, O, Q). As suggested by the previous

set of experiments, it is also preserved in the homotopic cortex (Fig. 1 0N, P, R). The heterotopic



- 29 -

cortex, in contrast, contains neurons born at al l stages of gestation in an intermingled pattern

with no obvious organization. The majority of the neurons in the heterotopic cortex are born at

E1 6, the cells born at E1 2 contribute least to the heterotopic cortex.

One should not forget that not al l neurons in the cortex are also generated there. The place of

birth of nearly al l GABAergic interneurons is the ganglionic eminence. These neurons are not

affected by the Emx1 : :Cre l ine, as Emx1 and hence also Cre are only expressed in the cortex

(Iwasato T et al. 2004). Nevertheless, it is interesting to see where these cells migrate in the

mutant environment and whether they would enter the heterotopic cortex. One possibi l ity to

identify GABAergic neurons is their expression of GAD67. We performed in-situ hybridisation

against GAD67 mRNA to visualize them. Both in the control and the cKO, the difference between

cortex and the more intensely labelled basal ganglia (BG) is clearly visible (Fig. 1 0S-T’). The

white matter, which hardly contains neuronal somata, is virtual ly free of staining in both cases.

The control cortex and both of the cKO cortices do not show a noteworthy difference in cell

density and distribution.

Figure 1 0: Cellular identity of the cKO cortex

(A-B’) Adult brain sections immunostained for neurons

NeuN shows a heterotopic (het) neuronal mass that is separated from the normotopic cortex by a band of

white matter (WM). There are also neurons that protrude into layer I (asterisk).

A’ and B’ are magnifications of the indicated regions in A and B.

The cell sparse layers I and IV are indicated.

scale bars: 1 00µm

(C-D’’) Adult brain sections immunostained for astrocytes

Different types of astrocytes were identified by immunostainings for GFAP and S1 00β. Like in the control,

S1 00β only labels grey matter astrocytes. Their density is comparable in control and cKO. (C’,D’ show a

magnified area corresponding to the marked regions in A,B) GFAP mainly labels the fibrous astrocytes of

the white matter (WM). Between ventricle and the heterotopic cortex appears a thin band of GFAP-positive

cells. (D’’, magnification of boxed region in D).

scale bars: 1 00µm

(E-F’) Adult sagittal brain sections immunostained for oligodendrocytes

The oligodendrocyte marker MAG clearly identifies the white matter. In higher magnification (F’) one can

appreciate the thin band of white matter (WM) remaining between ventricle and the heterotopic cortex.
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NB: In F and F’ the septum also produces a strong immunopositive band, which is inside the ventricle.

(G-L) Adult sagittal brain sections immunostained for different layer markers

Cux1 (G-H’) labels neurons of layer II-IV, Tbr1 (I-J’) labels neurons of layer VI and Ctip2 labels neurons of

layer V-VI (K-L’). All layer markers are present in the normotopic and the heterotopic cortex, but upper layer

neurons clearly form the majority. Apart from the ectopia in layer I, the normotopic cortex is correctly

layered like the wildtype.

G’-L’ are magnifications of G-L that represent areas comparable to the ones highlighted in A-B.

NB: Due to the pre-treatment, the Ctip2 immunostaining produces a strong background in the white matter

(WM) (K-L). It can be distinguished from the correct nuclear signal by its fibrous appearance (K’-L’).

scale bars: 1 00µm
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(M-R) Postnatal coronal brain sections with neurons labelled according to their date of birth

Pregnant mice were injected with BrdU at different times of gestation. Accordingly, neurons generated at

E1 2, E1 4 and E1 6 will be BrdU positive in the corresponding p7 brain sections.

The inside-out formation of the control cortex (M, O, Q) is preserved in the normotopic cortex of the cKO (N,

P, Q). The heterotopic cortex contains neurons generated at all examined stages with a clear majority of

late-born neurons (Q).

scale bars: 1 00µm

(S-T’) Postnatal coronal brain sections stained for GABAergic neurons

GAD67 mRNA that marks GABAergic neurons was revealed in p7 brain sections by means of in situ

hybridisation. These interneurons represent only a minor cell population in the cortex in contrast to the

basal ganglion (BG). Their density in both cortices of the cKO is comparable to the control cortex.

WM
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2.8. The formation of the "double-cortex" is not cel l-autonomous

Obviously, some of the neurons have problems reaching their destination in the cortical plate

and thus form the heterotopic cortex. RhoA has been implicated in migration, so the loss of it

might well lead to migration defects. On the other hand, we have observed disorganisation of the

radial gl ial scaffold that might also lead to this phenotype. Since the Emx1 : :Cre l ine already

recombines at the radial gl ia stage, it is difficult to tel l these effects apart. A loss of RhoA in the

newborn neurons only, would leave the radial gl ial scaffold intact. This approach could thus

show, if RhoA is indeed needed for neuronal migration. The Ngn2-Cre line (Berger J et al. 2004)

does not recombine in radial gl ia, but recombines in neurons very early after they become

postmitotic.

At p3, the animals were perfused and the anatomy of the early postnatal cortex was examined.

We used DAPI to reveal overal l anatomy, and NeuN to see the distribution of neurons. The

pattern of NeuN as an indication for the, albeit not completed, neuronal layering looked very

similar in the cKO compared to the control (Fig. 1 1 A-B'). The only peculiarity that we were able to

observe in the cKO brain was the white matter, which was not compact but had a loose spider-

web like appearance that made cutting difficult (Fig. 1 1 B-B', D-D').

Unluckily, it is difficult to draw conclusions from the absence of an effect, because the reasons

might as well be of technical nature. In this case, we cannot be sure, that we have indeed lost

RhoA in the young neurons. We could not get the RhoA staining working in postnatal sections

either, so we decided to examine embryonic stages for loss of RhoA. However, the examination

of E1 4 sections showed no reduction of (Fig. 1 1 E-F''').

An alternative mouse line, the Nex: :Cre l ine (Goebbels S et al. 2006) showed the same problem

that no reduction in RhoA could be observed at E1 4 (Fig. 1 1 G-H''').

Figure 11 : Deletion of RhoA with neuronal Cre-lines

(A-B’) Postnatal coronal brain sections of Ngn2-Cre RhoA cKOs immunostained for neurons

p3 coronal brain cryosections of control and Ngn2-Cre +/- | RhoA fl/fl (cKO) mice. The neuronal NeuN

immunostaining does not reveal any histological difference that might be indicative of a double-cortex.

DAPI was used as a nuclear counterstain.

A’ and B’ are more caudal sections of the same brain as A and B.

scale bars: 1 00µm

(C-D’) Postnatal coronal brain vibratome sections of Ngn2-Cre RhoA cKOs

p3 coronal brain sections of control and Ngn2-Cre +/- | RhoA fl/fl (cKO) were prepared at the vibratome. The

cKO (D, D’) seems to have a white matter phenotype. Parts of the brain are not compact but consist of

spaced fibres. These structures are virtually impossible to keep intact in cryosections (B, B’)

scale bars: 1 00µm

(E-H’’’) Embryonic sections of neuronal Cre-lines examined for loss of RhoA

The Ngn2-Cre mouse line (E-F’’’) and the Nex: :Cre mouse line (G-H’’’) were used to generate control and Cre

+/- | RhoA fl/fl (cKO) mice. Coronal E1 4 brain sections of rostral and caudal levels were immunostained for

RhoA. No reduction in RhoA protein levels could be observed in the cKOs.

X’ and X’’’ are magnifications of the cortical plate of X and X’’.

scale bars: 1 00µm
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So we devised another set of experiments to distinguish a migration defect of the neurons

themselves from a secondary migration defect that is due to morphological changes in the radial

gl ia. Such a secondary migration defect should not appear if only few radial gl ia are affected so

that enough of the scaffold remains to make migration possible. In utero electroporation gives us

the possibi l ity to affect only some of the cells. In addition, the method is known to quickly achieve

high levels of Cre recombinase, which enhances the chance of quick and successful

recombination. So we electroporated RhoA fl/fl embryos at E1 4 in utero with pCIG2 expressing

Cre-IRES-GFP to delete RhoA and used the same plasmid in wildtype embryos as a control.

When the brains were examined three days later, at E1 7, for localisation of GFP positive cells,

we found that the Cre-electroporated RhoA-fl/fl cel ls were not delayed in their migration, but that

even more of them reached cortical plate, than of the electroporated cells in the control (Fig.

1 2A-B''''). This would rather indicate accelerated migration! In addition, the neurons gave the

impression of perfectly healthy, morphological ly normal neurons. As in the control, they were
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mostly bipolar (Fig. 1 2B''-B''''). We repeated the experiment with a longer survival of 5 days, i .e.

the embryos were electroporated at E1 4 and examined at E1 9, just before birth. This time, we

used pCIG2 expressing IRES-GFP without Cre as control plasmid and injected it into RhoA fl/fl

mice, to avoid delaying the migration in the control by potential side effects of Cre. Nevertheless,

this experiment also showed no reduction in Cre-electroporated RhoA-fl/fl cel ls reaching the

cortical plate (Fig. 1 2C-D'''). These results strongly speak for the scaffold hypothesis, where the

neurons in the cKO are not themselves unable to migrate but are rather lacking an intact radial

gl ial scaffold to enable their migration.

One surprising observation in the 5-day-experiment were groups of neurons which would not

stop at the basal boundary of the cortex but migrate further, creating mushroom shaped ectopias

(Fig. 1 2E-E'') that very much reminded us of the ectopias in layer I that we saw in the adult

cKOs. Apparently this aspect of the adult phenotype does indeed come from the loss of RhoA in

the neurons themselves.

Figure 1 2: Cell-autonomous effects of RhoA-deletion by in-utero electroporation

A-B’’’’ In utero electroporated embryos after 3 days

E1 4 embryos were electroporated with a Cre-IRES-GFP construct and examined at E1 7. Wildtype (WT)

embryos were used as control (A-A’’’’) and RhoA fl/fl embryos to examine the loss of RhoA (B-B’’’’). A and B

and their magnifications A’ and B’ show comparable radial distributions of the electroporated cells in

control and experiment. The higher magnifications of different cortical regions of the experiment (B’’-B’’’’)

show morphologically normal neurons with mostly bipolar morphology. The cortical plate (B’’) does not

show less, but rather more incoming neurons than the wildtype cortical plate (A’’).

scale bars: 1 00µm

C-E’’ In utero electroporated embryos after 5 days

E1 4 RhoA fl/fl embryos were electroporated with a Cre-IRES-GFP construct (D-E’’) or with an IRES-GFP

construct as control (C-C’’’’) and examined just before birth at E1 9. C and D and their magnifications C’ and

D’ show again comparable radial distributions of the electroporated cells. Higher magnifications of the

cortical plate (C’’-C’’’ and D’’-D’’’) show morphologically normal neurons that are not reduced in number in

the experiment (D’’-D’’’).

E and its magnifications E’-E’’ show RhoA-negative neurons that do not respect the boundaries of the

cortex and produce a mushroom shaped ectopia. The neurons themselves are otherwise morphologically

normal.

CP: cortical plate, IZ: intermediate zone, SVZ subventricular zone, VZ: ventriculare zone

scale bars: 1 00µm
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2.9. The localisation of Reelin-positive cells is unchanged

We set out to further investigate the cellular mechanisms of the subcortical band heterotopia

phenotype. Reelin does not only play an almost historical role in he regulation of migration,

which sti l l is far from being elucidated, but there are also crossl inks with RhoA signall ing

(Bernard O 2006, Chai X et al. 2009). For this reason, we examined its localisation in embryonic

cortices to check for disruption of the Reelin positive Cajal-Retzius cell layer or ectopic

expression of Reelin at apical locations. Briefly, neither could be observed at the stages

examined (Fig. 1 3).
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2.1 0. F-actin levels are reduced in RhoA-deficient progenitors

As RhoA has been shown to affect the actin cytoskeleton (Ridley AJ and Hall A 1 992), we

examined actin fibres. They are dynamical ly regulated and are undergoing constant

polymerization and depolymerization. In addition, the actin monomers play an important role in

gene expression, including genes that further regulate the cytoskeleton (see introduction). Thus,

the pools of monomeric G-actin and F-actin fibres have to remain in constant balance. To

examine these pools at the cellular level, we prepared primary cultures of dissociated E1 4

cortices of control and cKO mice. The cells were kept in culture for differentiation for either one

day (1 div) or six days (6 div). The cells were then stained for G- and F-actin. Whereas changes

in G-actin levels could not be observed, F-actin was clearly decreased after 1 div (Fig. 1 4A-D'').

Interestingly, the difference in F-actin levels was no longer visible after 6 div (Fig. 1 4E-H'').
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Figure 1 3: Reelin expression

A-D Embryonic coronal brain sections immunostained for Reelin

E1 2 (A-B) and E1 4 (C-D) sections of control and cKO (Emx1 : :Cre) mice were immunostained for Reelin. At

both stages, the cKO (B, D) does not show an altered expression of Reelin, especially no ectopic apical

expression.
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Figure 1 4: Changes in the G- to F-actin balance

(A-D’’) Monomeric actin and actin fibres in primary cortical cell cultures after 1 div

Primary cortical cell cultures were prepared of the cortices of E1 4 control (A-A’’, C-C’’) and cKO mice (B-B’’,

D-D’’) and kept in vitro for 1 day. They were stained for monomeric actin (G-actin) with Alexa 488-labeled

DNAse I and stained for actin fibres (F-actin) with Texas Red-labelled phalloidin. The single channels in X’
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and X’’ are coloured with the colour scheme displayed on the labels that shows the lowest intensity black-

blue and the highest intensity yellow-white. The cKO clearly shows a decreased intensity in F-actin staining

(B, B’’, D, D’’).

C-D’’ are magnifications of A-B’’.

scale bars: 1 00µm
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(E-H’’) Monomeric actin and actin fibres in primary cortical cell cultures after 6div

Primary cultures identical to the ones used in A-D’’ were kept in vitro for differentiation for 6 days and the

stained for G- and F-actin as before. The decrease in F-actin is no longer visible (F, F’’ , H, H’’).

G-H’’ are magnifications of E-F’’.

scale bars: 1 00µm
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3. Discussion

3.1 . Summary

Here, we used a cKO approach to assess the role of RhoA in the developing central nervous

system in a time and tissue specific manner. Recombination in the brain was restricted to the

neural tissue of the dorsal telencephalon, resulting in loss of RhoA protein at E1 2, an early stage

of neurogenesis.

We discovered transient hyperprol iferation that reaches its peak at midneurogenesis (E1 4), and

leads to 1 ,3x increase in adult cortex size.

The hyperprol iferation is accompanied by a scattering of progenitor cel ls throughout the cerebral

cortex. This is probably due to a disruption of adherens junctions, which is the first effect we

could observe after loss of the protein. This disruption also leads to severe disturbances of the

radial gl ial scaffold, which loses its radial orientation.

In adult animals, we could observe the formation of a characteristic subcortical band heterotopia

with a correctly layered, albeit thinner, normotopic cortex and a heterotopic cortex that is

embedded inside the white matter. Strikingly, both the normotopic and the heterotopic cortex

contain neurons of al l layers, even though the late-born upper layer neurons form a clear

majority in the heterotopic cortex. In addition, we observed type I I cobblestone ectopias

protruding into layer I of the cKO.

We used in utero electroporations, which allowed us to delete RhoA in individual cel ls while

leaving the scaffold mainly intact. In the course of those experiments, we found strong evidence

that the formation of the heterotopia is not due to a cell-intrinsic incapacity of neurons to migrate.

Our results rather favour the hypothesis, that the heterotopia is formed as a consequence of a

partial ly disrupted radial gl ial scaffold, which can no longer serve all locomoting neurons as a

substrate to migrate into the cortical plate.

On a cellular level, we saw a severe lack of F-actin in primary cells made from cKO cerebral

cortex, which fits well to RhoA activity leading to actin polymerization.

3.2. Suitabil ity of the RhoA fl mouse line

As only the RhoA gene had been flanked by loxP sites in the first place, no other genes could be

affected. This is a strong advantage, especial ly compared to dominant negative or constitutively

active constructs, which by their very nature are prone to interact with similar signal l ing

pathways. Unluckily, those have been widely used to study the role of Rho GTPases so far. Even

RNA interference techniques can lead to off-target effects and, in high levels, their exogenous

presence alone can have unwanted effects on the cells. So far, there have been few reports on

side-effects of Cre (Forni PE et al. 2006), but comparing the heterozygous cKO, retaining only

one allele of RhoA, and Cre negative control animals, we never noticed any differences, even on

the electron microscopic level.

The recombination is as previously shown (Iwasato T et al. 2000, Cappello S et al. 2006, Schmid

M-T 2008), and by E1 2 RhoA protein has disappeared in al l neural tissues of the dorsal

telencephalon. Corresponding to the Emx1 : :Cre expression, we see remaining protein in the

ganglionic eminence, blood vessels, the meninges and the choroid plexus. This also confirms

the specificity of the antibody used for this study. The loss of RhoA, however, takes place later
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than expected. Emx1 : :Cre expression usually starts around E9,5 (Iwasato T et al. 2004), and

another Rho GTPase, Cdc42, disappeared already shortly afterwards (Cappello S et al. 2006).

This could be explained by a higher protein stabil ity of RhoA. We were also unable to delete

RhoA by using different mouse lines with neuron-specific expression of Cre. This also indicates a

high stabil ity of the protein. In prol iferating cells, such as radial gl ia, the protein already present

before the deletion of its gene is not only degraded but also diluted with each division of the cell .

This is possible in the Emx1 : :Cre mouse line, which recombines in mitotical ly active radial gl ia,

but not in mouse lines that express Cre recombinase in postmitotic cel ls.

We discovered a rather ubiquitous expression pattern of RhoA, which differed from prior studies

that reported it to be expressed strongest in the ventricular zone of E1 2 and E1 4 embryos (Ge W

et al. 2006, Pinto L et al. 2008). These studies had however been carried out by means of in situ

hybridisation, which sometimes gives a poor prognosis of the resulting protein levels. Even a low

mRNA level, that might be under the detection threshold of an in situ hybridisation, can lead to

protein expression. Taking again into account the presumably high protein stabil ity, it can indeed

be enough to maintain the protein in neurons.

3.3. Prol iferation

At mid-neurogenesis, two days after loss of RhoA protein, we saw a clear hyperprol iferation

effect. I t lasted unti l E1 6, but whereas at E1 4 the prol iferation was most prominent at caudal

levels, at E1 6 it was most prominent at rostral levels and had returned almost to normal caudally.

Thus, the effect seems to be transient (at least at caudal levels) and fol lows the caudal to rostral

Emx1 expression gradient.

Interestingly, the opposite effect has been found in the spinal cord, where increased apoptosis

and cell cycle exit lead to reduced cell numbers (Herzog D et al. 2011 ), highl ighting the region-

specific role of RhoA in the development of the nervous system.

Since RhoA has been implicated in cel l cycle regulation via various pathways (Bustelo XR et al.

2007), there are a number of ways how the overprol iferation phenotype observed in the cKO

cortex could be explained. A well known way in which RhoA regulates gene transcription, is the

SRF pathway. SRF is a sensor for the balance between monomeric G-actin and polymerized F-

actin. I ts Co-activator MAL binds to G-actin and can not translocate into the nucleus in this form.

Only the unbound form can get into the nucleus and bind to SRF, thus initiating the transcription

of SRF target genes (Vartiainen MK et al. 2007, Connelly JT et al. 201 0). RhoA activation

general ly leads to actin polymerization, which means a reduction of G-actin and increased SRF

activity. As expected, we observed reduced F-actin formation in cKO cells, which should lead to

a reduction of SRF signall ing. Consistent with the model, S. Cappello in our lab found a 30%

increase in G-actin levels in the cKO cortex. Furthermore, she also detected increased MAL

levels in cytoplasmic fractions of cKO cortex tissue (Cappello S et al. 2011 ). Taken together, the

reduced formation of F-actin does lead to an increased G-actin pool, which keeps more MAL

outside the nucleus than is the case in the wildtype. SRF activity has already been shown to

promote differentiation in epidermal stem cells whereas its inhibition keeps them in a prol iferative

state (Connelly JT et al. 201 0). Also in certain cancer cells, inhibition of SRF is amongst the
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mechanisms that lead to aberrant prol iferation (Yoshio T et al. ). As we found this pathway in

RhoA mutant cel ls, it is a l ikely cause of the hyperprol iferation.

In addition, in the developing midbrain, where prol iferation is also increased upon loss of RhoA,

an increased expression of target genes of the hedgehog pathway has been found (Katayama K

et al. 2011 ).

3.4. Adherens junctions

Even though actin has an important function in regulating gene expression, its role as a part of

the cytoskeleton is more obvious. As such, it also takes part in the stabil ization of cel l adhesions

and is actual ly necessary for the active formation of adherens junctions in different epithel ia

(Vasioukhin V and Fuchs E 2001 ). We could directly visual ize the network formed by actin fibres

at the ventricular surface, and we could show the loss thereof in the cKO. The reduction of F-

actin is a possible cause for the destabil ization and later disruption of this network. As we did not

directly delete adherens junction proteins, such as catenins and cadherins, the passive formation

of adherens junctions, or the maintenance of existing ones, can be affected to a lesser extent

than in adherens junction mutants. This way, the adherens junctions at the ventricular surface,

that are under tension due to the pressure from the cerebrospinal fluid, can disrupt, but once the

resulting stripes of connected tissue have clustered to rosettes inside the parenchyma, they are

less stressed and can remain there for longer periods of time. A similar phenomenon has already

been observed when cell-cel l junctions in the chick spinal chord have been disrupted by means

of a cadherin blocking antibody (Ganzler-Odenthal SI and Redies C 1 998). The resulting

scattering of progenitor cel ls has also been observed in other mutants with adherens junction

defects (Machon O et al. 2003, Cappello S et al. 2006, Lien WH et al. 2006).

These results correspond to findings for the deletion of RhoA in the developing midbrain and

spinal cord (Herzog D et al. 2011 , Katayama K et al. 2011 ). Both mutants also show loss of

apical adherens junctions and scattering of progenitor cel ls with the formation of rosettes. In

addition, in the spinal cord it was shown, that the formin mDia1 , which regulates actin

polymerisation downstream of RhoA, is no longer localised at the apical adherens junctions,

after loss of RhoA. Further experiments by the same group also showed, that expression of a

dominant negative form of mDia1 could reproduce the loss of apical adherens junctions (Herzog

D et al. 2011 ).

3.5. The "double-cortex"

Considering the initial scattering of progenitor cel ls, the resulting adult cortex is surprisingly well

organized. Especial ly the normotopic cortex shows an intact organization in the typical six layers.

Also non-neuronal cel ls are correctly localized. This is different to other Rho GTPase mutants,

such as Cdc42, that show strong astrogl iosis (Cappello S et al. 2006, Robel S et al. 2009).

In addition, the GABAergic neurons generated in the GE sti l l arrive in both cortices, so some

guidance cues must remain intact.

Even more intriguing than the molecular organization of the heterotopia is its function. For one

thing, al l layer markers are expressed in the heterotopic cortex, so it is interesting to know, if this

part also receives sensory input, and if it is able to respond adequately. In addition, we have
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seen that especial ly the normotopic cortex maintains a high degree of organization, comparable

to wildtype cortices, but that does not necessari ly mean that it is also functional. We chose the

primary visual cortex as a model system and collaborated with M. Caleo to investigate this point

(Cappello S et al. 2011 ). His experiments showed, that visual stimuli could sti l l induce the

expression of the immediate early genes (IEG) c-Fos and Egr-1 in a region specific manner in

the somatosensory areals of both the normotopic and the heterotopic cortex, albeit at a much

lower level than in control animals. This means, that also functional arealization sti l l exists in the

cKO.

I t should be kept in mind, that the SRF pathway which seems inhibited in the cKO is upstream of

IEG expression and both c-Fos and Egr-1 are known SRF targets (Herschman HR 1 991 ). To

investigate the response to visual stimuli further, visual evoked potentials (VEPs) were recorded

in the cKO cortex. When the visual stimuli consisted of square wave gratings, there was hardly

any response at al l . However, there were responses to flashes of l ight, but those were greatly

reduced in amplitude and appeared with increased latency, compared to control animals. So

although there is a sl ight response to sensory stimuli in the correct areas of the cKO and even in

the corresponding heterotopic cortex, the functional responsiveness of V1 is greatly reduced in

mutant mice.

Defects in the innervation of the cortex might be a possible explanation for the reduced

responsiveness. However, vGlut2, which is selectively expressed in geniculocortical synapses

(Coleman JE et al. 201 0) could be labelled in a stripe of layer IV. In addition, it was possible to

retrogradely label geniculocortical cel ls in the thalamus by intracortical injections of FluoroGold,

so thalamocortical connectivity was sti l l intact. To exclude any anatomical defects in retino-

geniculo-cortical projections at al l , intraocular injections of the cholera toxin β-subunit were used

to anterogradely label the projections from the retina into the geniculate. As all of these

experiments confirmed the intact innervation, the reduced responses have to be due to the

altered intracortical connectivity.

In fact, abnormal Rho signall ing has been found to be a frequent cause for mental retardation,

because the coordination of the actin cytoskeleton is essential for the formation dendrites, spines

and synapses (Ramakers GJ 2002).

3.6. Hypothesis

Our results so far indicate that the formation of the subcortical band heterotopia is a

consequence of the disorganized scaffold, rather than due to the inabil ity of the neurons to

migrate. A potential problem of the electroporation experiments is the high stabil ity that RhoA

seems to have. I f RhoA would be essential for the initiation of migration, we might have missed

this effect if RhoA protein disappeared too late. On the other hand, we do not only electroporate

the Cre-construct into neurons, but also into progenitor cel ls. These cells can sti l l divide before

they produce RhoA-deficient neurons, so that in those neurons the protein should be sufficiently

di luted. I f these neurons were to have a migration defect, they would form a second population in

the apical regions. However, we could not see a second population remaining behind, rather al l

electroporated cells migrated as one group, l ike in the control experiments.
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To exclude any doubt left, S. Cappello performed a beautiful set of transplantation experiments

(Cappello S et al. 2011 ). First, RhoA-deficient neurons from E1 4 cKO cortices were dissociated,

labelled and transplanted in-utero into the ventricle of E1 4 wildtype embryos. These neurons had

already lost RhoA protein by E1 2 but reached the cortical plate just as well as neurons from

wildtype donor animals. This excludes any inabil ity to migrate. Final ly, to prove that the scaffold

alone can in fact cause subcortical band heterotopia, cortical neurons from E1 4 wildtype donors

were transplanted into E1 4 cKO hosts. At E1 7, the majority of the transplanted cells either

reached the cortical plate, or virtual ly al l cel ls remained in apical locations. This finding is

consistent with the theory that depending on the environment a neuron is located, it can either

reach the cortical plate by translocating along intact radial gl ial fibres, or remains at its initial

location if the radial processes are misoriented. I f the host embryos were examined two days

after birth, a distinction between heterotopic and normotopic cortex could already be made and

85% of the transplanted cells remained in the lower cortex.

As an additional obstacle, these neurons first had to integrate into the cortex. In addition, they

start their migration even more apical ly than the endogenous neurons of the host embryos,

which are born inside rosettes, further basally. Taking this into consideration, we have two

populations that form either the normotopic or the heterotopic cortex, even though all of them are

wildtype neurons. This observation clearly proves that it is possible to generate subcortical band

heterotopia with a normally layered normotopic cortex by only interfering with the radial gl ial

scaffold.

Since RhoA controls the actin polymerization, which is necessary for migration (Rivas RJ and

Hatten ME 1 995), one might expect that the deletion of RhoA would interfere with cell migration.

Especial ly the myosin I I -regulated acto-myosin contracti l i ty, which is downstream of RhoA, has

been shown to be required for nucleokinesis (Hatten ME 2002, Schaar BT and McConnell SK

2005), and in fact macrophages (Allen WE et al. 1 997, Allen WE et al. 1 998), but also

precerebellar neurons (Causeret F et al. 2004), can sti l l extend processes if RhoA is inhibited,

but the nucleus is unable to fol low. RhoA also stabil izes cell junctions, which counteract

migration if they are too strong (Couchman JR and Rees DA 1 979, Nobes CD and Hall A 1 995,

Lauffenburger DA and Horwitz AF 1 996, Kaibuchi K et al. 1 999, Vial E et al. 2003), and during

the last years, several groups observed that RhoA actual ly inhibits migration in cortical neurons

(Kholmanskikh SS et al. 2003, Besson A et al. 2004, Hand R et al. 2005, Ge W et al. 2006,

Nguyen L et al. 2006, Pacary E et al. 2011 ).

S. Cappello saw that the decrease in F-actin was less severe in neurons (Cappello S et al. 2011 )

which could explain the lack of difference in F-actin after keeping cortical cel ls in culture for 6

days, because less progenitors and mostly differentiated cells wil l remain in the dish. In addition

to the changes in the actin pool, S. Cappello found similar results for tubul in. The stable

acetylated form is reduced, especial ly in radial gl ia, and correspondingly the dynamic tyrosinated

form is increased (Cappello S et al. 2011 ). This means, that the entire cytoskeleton of radial gl ia

becomes less stable and more dynamic, so that it does not longer maintain the radial scaffold

needed for migration.
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3.7. Clinical relevance of a "double-cortex"

The “double-cortex” is a phenotype of cl inical interest, because it occurs in human patients as a

brain malformation associated with mental retardation and epilepsy (Guerrini R and Parrini E

2009).

One form is periventricular heterotopia where, unl ike in our mouse model, the heterotopic cortex

is placed immediately adjacent to the ventricle, without a separating band of white matter. This

malformation has been associated with defects in the initiation of migration. Fi lamin-A is a

protein expressed from the X-chromosome. Due to random X-inactivation, female patients

develop a mosaic phenotype with normal neurons forming the normotopic and mutant neurons

forming the heterotopic cortex. This kind of mosaic expression is the typical and more trivial

cause for “double-cortices”. Fi lamin-A binds to actin and forms actin-cross-l inks and stress fibres

(Ross ME and Walsh CA 2001 , Bielas S et al. 2004, Robertson SP 2004, Guerrini R and Parrini

E 2009). Another gene that leads to the formation of periventricular heterotopia is Arfgef2. I ts

product, the Big2 protein is involved in vesicle trafficking. Inhibition of Big2 leads to intracellular

mislocalizations of β-catenin and E-cadherin, suggesting that Big2 may less play a role in

migration, but migrational defects may rather be due to a scaffold effect as we observed it in our

mouse model (Bielas S et al. 2004, Sheen VL et al. 2004, Guerrini R and Parrini E 2009).

The probably most famous gene responsible for “double-cortices” is doublecortin (DCX), named

after this phenotype (Gleeson JG et al. 1 998). I t leads to an X-l inked brain malformation that

belongs to the subcortical band heterotopia type of “double-cortices”, which is associated with

defects in ongoing migration. DCX is a microtubule associated protein whose function in

regulating and stabil izing the cytoskeleton is sti l l not entirely understood. Surprisingly, DCX

hemizygous mice do not display subcortical band heterotopia, and even the ful l knockout has

only mild defects in hippocampal lamination. Even more intriguing is the acute knock-down of

DCX in-utero by siRNA, which does result in subcortical band heterotopia. So apparently, cel ls

can compensate for an early loss of DCX but otherwise it is sti l l needed for migration. A reason

might be the upregulation of the doublecortin-l ike kinase 1 (Dclk1 ), since the DCX/Dclk1 double-

mutant does also display migration defects. The formation of subcortical band heterotopia in this

mouse model is not surprising as again a genetic mosaic is created (Gleeson JG et al. 1 998,

Ross ME and Walsh CA 2001 , Bai J et al. 2003, Bielas S et al. 2004, Reiner O and Coquelle FM

2005, Deuel TA et al. 2006, Koizumi H et al. 2006, Guerrini R and Parrini E 2009).

Conversely, in human patients the ful l loss of DCX, such as in male patients, leads to a more

severe form of cortical malformation, which is cal led l issencephaly, the complete absence of gyri

and sulci with only four rudimentary layers formed. But most l issencephalic patients carry a

mutation in another microtubule associated protein, Lis1 . Again, the heterozygous mutation of

Lis1 in mice has only minor defects in layer targeting (Reiner O et al. 1 993, Gleeson JG et al.

1 998, Ross ME and Walsh CA 2001 , Bielas S et al. 2004, Reiner O and Coquelle FM 2005,

Guerrini R and Parrini E 2009).

Unlike this classical type 1 l issencephaly, type 2 lissencephaly is a disorder that is accompanied

by mushroom shaped ectopias in and beyond layer I , which give the brain surface a

cobblestone-l ike appearance. They are also of cl inical interest as they are l inked to the

congenital muscular dystrophies (CMD) (Bielas S et al. 2004). I t is common in mutations of the
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glycosyltransferases that act on α-dystroglycan (Satz JS et al. 201 0). In addition, it is known from

the conditional focal adhesion kinase (FAK) mutant mouse that also displays disruptions in the

basement membrane and subsequent migration beyond the boundaries of the cortex (Beggs HE

et al. 2003), or defects in other basement membrane proteins l ike integrins (Georges-Labouesse

E et al. 1 998, Belvindrah R et al. 2007), Perlecan (Costel l M et al. 1 999) or laminin-γ1 (Haubst N

et al. 2006). This phenotype is also part of the RhoA mutant phenotype described here, and

indeed, focal adhesion kinase is an effector of RhoA. But interestingly, this particular aspect most

l ikely has a cell-autonomous cause, as it also appeared in the in utero electroporations (Cappello

S et al. 2011 ). Therefore, it is more likely that the RhoA-deficient neurons do not respond to stop

signals any more. One candidate for mediating this effect might be Reelin, that acts as a stop

signal via a pathway involving n-Cofi l in phosphorylation (Chai X et al. 2009), which probably

involves RhoA and its effector LIMK. The fact that the migration defects in Lis1 +/- neurons

(Kholmanskikh SS et al. 2003) and in Ngn2 -/- cel ls (Hand R et al. 2005) can actual ly be

overcome by inhibition of RhoA, also speaks for a role of RhoA in relaying stop signals.

Interestingly, al l of these malformations are associated with epilepsies, whereas we so far have

no indication of spontaneous seizures or an increased lethal ity in adult mutant animals. While

this should be investigated in more detai l , the decreased responsiveness of the mutant cortex

might also keep the excitation of the neurons low enough not to reach the seizure threshold. In

addition, inhibitory GABAergic neurons can sti l l invade the cortex.

3.8. Importance of this work

Final ly, the real surprise of this study is the formation of subcortical band heterotopia without a

direct migration defect of the newborn neurons themselves, but solely due to the radial gl ial

scaffold. The fact is, that usually the radial scaffold was not examined at al l , which is

understandable, because the human patients were only examined after birth, when the

(mal)formation of the cortex was completed. As it seems the most straightforward explanation for

layering defects, neuronal migration was simply assumed to be the cause (Ross ME and Walsh

CA 2001 , Bielas S et al. 2004, Guerrini R and Parrini E 2009). This may well be true in some

cases, but the present results indicate that the model needs to be challenged and the aetiology

of these defects are sti l l far from being understood. Even the seemingly simple cases of mosaic

expression of mutant genes might not be so simple to explain after al l . For example, in the DCX

shRNA model there are also wildtype neurons found that contribute to the heterotopic cortex (Bai

J et al. 2003). The necessity of an intact scaffold for neuronal migration is one possibi l ity to

explain non cell-autonomous effects and should be examined in more detai l , in the future.

The problems to examine these developmental malformations highl ight the need for more animal

models. There are other animal models for subcortical band heterotopia present, but the

aetiology of these “double-cortices” is also not yet ful ly understood. These examples include the

TISH rat (Lee KS et al. 1 997, Schottler F et al. 2001 , Trotter SA et al. 2006), the HeCo mouse

(Croquelois A et al. 2009) and the RA-GEF1 mutant mouse (Bilasy SE et al. 2009). In the first

two examples, even the mutated genes are sti l l unknown. They bear, however, some

resemblance to the RhoA model, because in both cases progenitor cel ls are scattered. Sti l l ,

recent examinations of the TISH rat showed that apical adherens junctions are sti l l intact and
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that very early in development a secondary germinal zone close to the preplate is formed. The

radial gl ial scaffold is sl ightly disorganized in the early heterotopic cortex, but remains intact in

the basal part. The basal prol iferative zone also sti l l contributes to both cortices (Fitzgerald MP et

al. 2011 ). These results insofar confirm our results, as also in our model neurons generated at

different positions can reach the normotopic cortex as long as they are born in an intact

environment.

So far, the RhoA mouse looks l ike a valuable tool to gain a further understanding of the genesis

of subcortical band heterotopia. The gene is known and many pathways have been revealed in

vitro, and in addition we have a firm idea of how exactly the phenotype comes about.
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4.1 . Chemicals

4. Materials and Methods
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4.2. Solutions
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4.3. Commercial kits

4.4. Immunohistochemistry

4.4.1 . Primary antibodies



- 64 -

4.4.3. Chemicals used for histology

4.5. Mouse lines

The Emx1 tm1 (Cre)I tois a knock-in l ine that expresses Cre recombinase under the control of the

endogenous Emx1 promoter. Expression starts around E1 0 and is cortex-specific (Iwasato T et

al. 2004).

RhoAtm1 Brakis a conditional KO line, where exon 3, containing the start codon, is flanked by loxP

sites (Jackson B et al. 2011 ).

Neurod6tm1 (cre)Kan mice express Cre-recombinase in the NeuroD6 locus, also called the Nex locus

(Goebbels S et al. 2006).

The Tg(Neurog2-cre/GFP) mouse line is a transgenic l ine in which the E1 -Ngn2 enhancer and a

human beta-globin minimal promoter drive the expression of Cre and, behind the IRES

sequence, GFP (Berger J et al. 2004).

The mice have a heterogeneous genetic background. As wildtype mates, C57/Bl6 mice were

used.

4.4.2. Secondary antibodies
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4.6. Plasmids

pCIG2 and PCIG2-Cre express IRES-GFP or Cre-IRES-GFP under control of a CMV-enhancer

and a chicken β-actin promoter (Hand R et al. 2005). They are a kind gift from C. Schuurmans.

4.7. Lab animals

4.7.1 . Animal husbandry

All mice were kept in the facil ity “Kleintierhaus” of the Helmholtz Center Munich according to

FELASA regulations.

For maintenance of the l ines, the fol lowing breeding schemes were used:

For experiments, the fol lowing breeding schemes were used:

Since heterozygous cKOs were phenotypical ly identical to wildtype, both Cre-negative animals

and heterozygous cKOs were used as control (ctrl).

4.7.2. Plug check

For the production of embryos, mice were mated in the evening and separated the next morning

around 7a.m. To determine if the female might have been impregnated, the presence of a

vaginal plug was determined. This day was defined E0.
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4.7.3. Genotyping

A small piece of tai l was incubated in 500µl lysis buffer over night at 55°C. Hair and remaining

tissue were removed by short centrifugation in a tabletop centrifuge. DNA was precipitated with

an equal volume of isopropanole, purified by centrifugation and dissolved over night in TE buffer

at 55°C.

The actual genotyping was performed by PCR using the fol lowing protocols.

Emx1 : :Cre

1 0x PCR buffer 2,0µl

Q-solution 4,0µl

primer fw (1 0µM) 1 ,0µl

primer rev (1 0µM) 1 ,0µl

primer Cre (1 0µM) 1 ,0µl

dNTPs (1 0mM) 0,5µl

Taq polymerase 0,3µl

DNA 2,0µl

H2O ad 20,0µl

program (touchdown-PCR):

4min @ 95°C

1 0 cycles:

30sec@ 95°C

30sec@ 95-94°C (decrease 0,1 °C/cycle)

1 min @ 72°C

30 cycles:

30sec@ 95°C

30sec@ 64,5°C

30sec@ 72°C

7min @ 72°C

hold @ 20°C

primers:

fw 5’ GTGAGTGCATGTGCCAGGCTT G 3’

rev 5’ TGGGGTGAGGATAGTTGAGCGC 3’

Cre 5’ GCGGCATAACCAGTGAAACAGC 3’

expected products:

WT ca. 200bp

TG ca. 500bp
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RhoA floxed allele

1 0x PCR buffer 2,0µl

primer JVH11 (1 0µM) 2,0µl

primer JVH1 5 (1 0µM) 2,0µl

primer Cre (0,2µM) 1 ,0µl

dNTPs (1 0mM) 0,4µl

Taq polymerase 0,2µl

DNA 2,0µl

H2O ad 20,0µl

program

2min @ 94°C

35 cycles:

30sec@ 94°C

30sec@ 55°C

30sec@ 72°C

1 0min @ 72°C

hold @ 20°C

primers:

JVH11 5’ AGCCAGCCTCTTGACCGATTTA 3’

JVH1 5 5’ TGTGGGATACCGTTTGAGCAT 3’

expected products:

WT 297bp

fl 393bp

Cre (used for Ngn2: :Cre and Nex: :Cre):

1 0x PCR buffer 2,0µl

Q-solution 4,0µl

primer Cre 3’ (1 0µM) 0,8µl

primer Cre 5’ (1 0µM) 0,8µl

dNTPs (1 0mM) 0,4µl

Taq polymerase 0,2µl

DNA 2,0µl

H2O ad 20,0µl
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The products were analysed by gel electrophoresis. The gels were prepared of 1 ,5% agarose in

TBE containing 1 0µg/mL ethidium bromide.

4.8. Cell culture

4.8.1 . Coating

Coversl ips were cleaned by rinsing in acetone, 30 min boil ing in EtOH/0,7% HCl, washing in

1 00% EtOH. twice. After drying at RT, they were autoclaved for 2hrs at 1 80°C. They were placed

in 24 well plates and wetted with steri le PBS. PBS was removed and the coversl ips incubated in

1 % PDL dissolved in PBS for at least 2hrs at 37°C. After washing with three changes of Mil l iQ

water, they were dried at room temperature under a laminar air flow and stored at 4°C.

4.8.2. Primary culture

Pregnant mothers were kil led by cervical dislocation. The uteri were removed and transported in

ice cold HBSS containing 0,01 M HEPES. The embryonic brain was taken out. The meninges

were removed from the telencephalon as much as possible. Then, the olfactory bulb was

removed, the cortex was separated from the rest of the telencephalon and the hippocampus

anlage was removed. The whole dissection was carried out in ice cold HBSS/HEPES. The

cortices were left in 2ml Eppendorf tubes unti l they settled. The solution was then replaced with

0,5ml Trypsin/EDTA and the tissue was incubated at 37°C for 1 5min. Enzymatic dissociation was

stopped by adding 1 ml DMEM containing 1 0% FCS and 1% PeSt. The tissue was further

program (step-down PCR)

2min @ 95°C

1 0 cycles:

30sec@ 95°C

30sec@ 63°C

30sec@ 72°C

35 cycles:

30sec@ 95°C

30sec@ 53°C

30sec@ 72°C

5min @ 72°C

hold @ 20°C

primers:

CRE 3' 5’ TTCGGATCATCAGCTACCC 3’

CRE 5' 5’ AACATGCTTCATCGTCGG 3’

expected products:

WT no product

Cre 41 9bp
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mechanical ly dissociated by trituration with a flame-polished Pasteur pipette. The tissue was

centrifuged for 5min at 1 72*g and resuspended in DMEM containing 1 0% FCS and 1% PeSt.

500.000 cells/well were plated in 0,5ml on PDL-coated coversl ips.

The next day 0,5ml DMEM/B27/1 % PeSt was added. Every second day 0,5ml of the medium

was replaced with 0,5ml fresh DMEM containing 1 x B27 and 1% PeSt.

At the end of the experiment, cel ls were fixed with 4% PFA/PBS for 1 5min at room temperature.

4.8.3. Flow cytometry

Cortices were dissected and dissociated as for primary cultures but suspended in ice cold 70%

EtOH instead of cell culture medium. They were kept at -20°C for one week. Afterwards, cel ls

were washed with PBS and suspended in PBS containing 1 0% FCS. DNA was stained with

1 mg/ml propidium iodide for 5min. Cells from E1 4 cortices were stained against β-I I I -tubul in in

PBS containing 1 0% FCS for 1 5min at room temperature to analyze only progenitor cel ls. The

cells were analyzed with a BD FACSCalibur flow cytometer. Cell cycle analysis was carried out

with Flow Explorer, WinMDI and the cylchred software (Fig. 1 5).
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4.9. Immunohistochemistry

4.9.1 . Preparation of embryonic and early postnatal brains

Brains or heads were removed as described for primary cell cultures. They were fixed in 4%

PFA/PBS at 4°C according to the fol lowing table:

After fixation they were incubated in 30%(m/m) sucrose/PBS. The solution was changed

immediately to avoid di lution by remaining PBS. For cryoprotection, they were incubated at 4°C

unti l they sank. Afterwards, they were careful ly dried with a soft tissue and briefly immersed in

TissueTek to remove adhering sucrose, which would prevent firm contact with the TissueTek.

Then the brains were oriented in a plastic mould fi l led with TissueTek and rapidly frozen by

immersing the lower half of the mould in isopentane cooled to -79°C. The specimen was sealed

airtight to prevent drying and stored at -20°C unti l cutting.

For cutting, the resulting block was oriented and cut coronally on a cryostat. Sections were

stored on SuperFrost+ microscopic sl ides at -20°C.

4.9.2. Preparation of older postnatal/adult brains

Animals were deeply anesthetized with Ketamine (1 00mg/kg) and Xylazine (20mg/kg) and fixed

on a styrofoam board under a fume hood. A needle was inserted into the left ventricle of the

heart and the right atrium was cut open. The blood was removed by transcardial perfusion by

means of a peristaltic pump, then the mouse was fixated by transcardial perfusion with about

1 50ml 4% PFA/PBS. The flow rate was kept under 1 00µl/s to ensure sufficient penetration of

PFA into the tissue. The brain was post fixed over night with 4% PFA/PBS at 4°C.

Cryoprotection was carried out essential ly as for embryonic brains. For adult brains, the

hemispheres were separated along the midl ine. Brains were frozen analogue to embryonic

brains. Adult brains were cut sagittal ly in 20µm thick sections and postnatal brains coronally in

20µm thick sections on a cryostat. Sections were stored on SuperFrost+ microscopic sl ides at

-20°C.

4.9.3. Preparation of vibratome sections

3% agarose in PBS was melted in a microwave oven and left in a water bath at 55°C to cool

down while remaining l iquid. For temperature sensitive tissue, especial ly specimen containing

fluorescent proteins, low-melting agarose was used and cooled down to 37°C. The brain was

embedded in the agarose in a plastic mould and cooled down at room temperature unti l the

agarose had solidified. The block was then cut in the desired orientation and sectioned on a

vibratome. The sections were kept in PBS containing 0,1 % Na-azide at 4°C.



- 71 -

4.9.4. General staining procedure

Cryosections were rehydrated with PBS and incubated with the primary antibody diluted in PBS

containing 0,5% Triton-X and 1 0% NGS over night at 4°C. After washing with PBS, the sections

were incubated with the secondary antibody diluted in PBS containing 0,5% Triton-X and 1 0%

NGS for 1 ,5hrs at room temperature. After final washing with PBS, the sections were mounted

with AquaPolymount.

Vibratome sections were stained essential ly the same way, but the incubations with AB took

place for three days at 4°C.

Fixed cells were treated the same way, only rehydration was not necessary. The coversl ips were

instead quickly rinsed in PBS.

4.9.5. Special treatments

4.9.5.1 . Boil ing

For unmasking of antigens, sections were boiled in 0,01 M sodium citrate (pH6) using a

microwave oven. Sections of embryonic brains were boiled for 8min, sections of adult brains

were boiled for 30min.

4.9.5.2. HCl treatment

For denaturation of DNA, sections were incubated for 30min with 2M HCl. The pH was

readjusted by a 1 5min incubation in 0,1 M Sodium-tetraborate (pH8,5) and washing with PBS.

4.9.5.3. Tyramide signal amplification (TSA)

Tyramide signal amplification can greatly enhance the signal by using an enzymatic reaction to

couple the fluorophore to cell organelles. With its help one can also use two primary antibodies

generated in the same host on the same section. To do so, one antibody is di luted below the

detection l imit of a normal secondary antibody (typical ly 50-1 00x the standard dilution) and its

signal then enhanced by tyramide signal amplification. Afterwards, the next primary antibody can

be used.

The sections were washed in TNT wash buffer. Then endogenous peroxidase activity was

quenched by a 30min incubation with 0,3% H2O2 in TNT. After three washing steps, the sections

were incubated with the primary antibody diluted in TNB Blocking Buffer. After washing, a

biotinylated secondary antibody was used. Sections were washed again and incubated with a

horseradish-peroxidase coupled Streptavidin (1 :200). To reveal the signal, Fluorescein-tyramide,

di luted 1 :1 00 in the provided amplification buffer, was added for 7min.
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4.9.6. Stainings in this work

Alexa-coupled antibodies were diluted 1 :1 000, Cy3-coupled antibodies were diluted 1 :1 00 and

biotinylated antibodies were diluted 1 :200.

Nuclei were visual ized by staining with DAPI (0,02mg/ml in PBS) for 1 0min.

F-actin can be detected by fluorescently labelled phalloidin, whereas G-actin can be detected by

labelled DNAse-I . The reagents are diluted in PBS according to the manufacturer’s manual and

added to the specimen for 1 5min.

4.1 0. In situ hybridisation

4.1 0.1 . In-vitro transcription

The cDNA containing plasmid was linearized with an appropriate restriction enzyme. After

digestion DNA was purified by use of a column (Qiagen).

Transcription was performed by incubating 1 ,5ml of the fol lowing mixture for 2hrs at 37°C:

1 µg DNA

2µl DIG labelled dNTPs

4µl 5x Stratagene buffer

1 µl RNAse inhibitor

1 µl RNA polymerase

The RNA product was cleaned using the RNeasy mini kit.
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4.1 0.2. Hybridisation

Tissue sections were incubated in hybridisation buffer containing 1 50ng RNA probe at 65°C over

night. Subsequently, sections were washed 3 times in washing solution at 65°C and twice in

MABT at room-temperature. Sections were blocked in blocking solution for 1 hr and RNA probes

were detected by Anti-Digoxigenin-AP Fab fragments (Roche) in blocking solution over night at

room temperature. Sections were washed 4 times with MABT and developed in staining solution

for 1 -3 days at 4°C.

4.1 1 . Nucleophil ic tracers

Brains of E1 4 embryos had their meninges removed and were fixed with PFA. CM-DiI was

diluted 1 :1 0 in PBS, thus forming a very fine precipitate, and injected into the ventricles. Some

small crystals of DiO were pressed against surface of the brain. The brains were incubated over

night on 0,5% PFA/PBS, embedded in agarose and cut into 200µm sections on a vibratome.

4.1 2. Surgery

4.1 2.1 . Anaesthesia

Mice were anesthetized with Fentanyl (0,05mg/kg), Midazolam (5mg/kg) and Medetomidine

(0,5mg/kg). After the operation, the anaesthesia was antagonized with Buprenorphine

(0,1 mg/kg), Atipamezole (2,5mg/kg) and Flumazenil (0,5mg/kg). The partial antagonist/agonist

nature of Buprenorphine ensures sufficient postoperative analgesia.

4.1 2.2. In utero electroporation

Plasmids were mixed with Fast Green (2.5mg/µl) and injected into the cerebral ventricles at a

concentration of 1 µg/µl using a glass micropipette. After injection, electroporation was performed

using five 50V pulses spaced at 200 ms, which were applied with 5mm tweezer-style electrodes

(Protech) using a BTX square-wave electroporator (Harvard Apparatus).

4.1 3. Image analysis

4.1 3.1 . Image acquisition

Fluorescent images were taken on an Olympus FluoView1 000 confocal microscope and saved

in the proprietary OIF-format.

Care was taken to use the same settings for control and experimental brain sections.

When a picture was bigger than one field of view, it was stitched together with one of the

fol lowing software: FluoView Multiple region acquisition, Photoshop or ImageJ with one of the

fol lowing plugins: MosaicJ, Stitching or TurboReg.

4.1 3.2. Image processing

When necessary, ImageJ was used to adjust brightness and contrasts and to set thresholds.

Colour information was never changed in a non-l inear manner. All processing steps were carried

out on pictures of control and experiment in the same manner.
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4.1 3.3. Quantitative analysis

Images, including the scaling information, were imported as Hyperstacks into ImageJ, where

distances or areas could be measured directly. Cells were counted manually, using the Cell

Counter plugin.
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