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R. Rivière, S. Weis, S. Deléglise, E. Garvartin, O. Arcizet, A. Schliesser, and T. J. Kip-
penberg

[14] Phononics 2011, Santa Fe, USA, (June 2011), Invited talk
“Cooling of a Micromechanical Oscillator into the Quantum Regime”
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Zusammenfassung

Im Rahmen dieser Arbeit beschreibe ich die Kühlung von makroskopischen, harmonisch os-
zillierenden Massen in der Größenordnung von 10 ng in die Nähe des quantenmechanischen
Grundzustandes. Um die Kühlung durchzuführen, nutzen wir die Licht-Materie Wechsel-
wirkung aus, die die mechanischen Freiheitsgrade über den Strahlungsdruck des Lichts im
Resonator an eine Resonatormode koppelt. Die verzögerte Antwort des kohärenten op-
tischen Feldes auf mechanische Vibrationen führt zu einem viskosen Strahlungsdruck und
damit zu einer Kraft die eine Kühlung der Bewegung bewirkt. Die theoretischen Grundla-
gen dieser Kühlung mittels dynamischer Rückwirkung werden in Kapitel 1 erläutert.

In Kapitel 2 wird das verwendete experimentelle System vorgestellt: Der Quarzglas
Mikrotoroid Resonator. Der Vorteil dieses Resonators ist, dass in ihm optische Flüstergal-
leriemoden hoher Finesse (nahe 106) mit einer radial schwingenden mechanischen Mode im
Radiofrequenzbereich (mehrere 10MHz) koppeln können.

Kapitel 3 zeigt eine detaillierte Beschreibung der experimentellen Erfolge die Kühlung
des Systems zu verstärken und damit die durchschnittliche Besetzungszahl von Phononen,
Quanten mechanischer Energie, weiter zu reduzieren. Des Weiteren werden verschiedene
Quellen mechanischer Verluste untersucht und durch Optimierung der mechanischen Struk-
tur, wodurch die Kopplung der mechanischen Mode an die warme Umgebung reduziert
wird, verringert. Mit Hilfe der hierfür neu entwickelten, über Speichen befestigten Mi-
krotoroid-Resonatoren wird die Dämpfung des Systems durch Kopplung an andere Moden
reduziert und auf intrinsische Materialeigenschaften von Quarzglas minimiert. Um die
Temperatur der Umgebung selbst zu reduzieren, wird das Experiment zunächst in einem
4He Kryostaten gekühlt. Dies ermöglicht die Beobachtung neuartiger dispersiver optis-
cher Eigenschaften von Quarzglas und eine Untersuchung der Thermalisierung der Probe
bei tiefen Temperaturen. Zur weiteren Kühlung wird der Aufbau schließlich in einen
3He Kryostaten mit einer Betriebstemperatur von 850mK implementiert. Die Kühlung
wird unter Verwendung eines Homodyninterferometers zur Messung von Vibrationen mit
quantenlimitierter Empfindlichkeit beschrieben. Voraussetzung für eine Kühlung in den
Grundzustand ist, dass sich das System im Aufgelösten-Seitenband-Regime befindet. Wir
erreichen eine mittlere Phononenbesetzungszahl von 9 ± 1 und die Tatsache, dass auss-
chließlich einfache technische Schwierigkeiten ein weiteres Kühlen einschränken zeigt, dass
der entwickelte experimentelle Aufbau optimiert ist, um Signaturen von Quanteneffekten
eines makroskopischen mechanischen Oszillators, gekühlt durch dynamische Rückwirkung,
aufzuzeigen. Abschließend wird der Effekt der Licht-Materie Wechselwirkung auf die op-
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tischen Eigenschaften des Resonators gemessen und analysiert. Damit wird die erstmalige
Beobachtung von optomechanisch induzierter Transparenz beschrieben. Dies zeigt anhand
experimenteller Messungen die Interaktion zwischen Licht und mechanischen Schwingun-
gen.



Abstract

In this thesis, I report on the cooling of a macroscopic harmonic mechanical oscillator of
mass on the order of 10 ng close to its quantum ground state. To perform the refrigeration,
we exploit the optomechanical interaction that couples the mechanical degree of freedom
to an optical cavity mode via the light’s radiation pressure. The delayed response of the
intracavity field upon mechanical vibration leads to a viscous intracavity radiation pressure
force responsible for the dynamical backaction cooling, as is theoretically introduced in
chapter 1.

In chapter 2, we review the experimental system accommodating this process: the
silica microtoroidal cavity. It advantageously hosts a significant optomechanical coupling
between the supported high-finesse (close to 106) optical whispering-gallery modes and the
mechanical radial breathing mode oscillating at radio frequencies (tens of MHz).

In chapter 3, we detail the experimental efforts performed to improve the effect of the
cooling on the system and thus to reach a lower average number of mechanical energy
quanta, or phonons. The various sources of mechanical dissipations are studied. Their
magnitude is diminished by optimizing the mechanical structure, therefore reducing the
coupling of the mechanical mode to its warm thermal environment. In the newly developed
spoke-anchored toroidal microcavities, engineering the intermode coupling minimizes the
system’s damping down to the limit imposed by the properties of the vitreous silica ma-
terial. To reduce the temperature of the environment itself, the experiment is pre-cooled
first in a prototype 4He cryostat. This enables the observation of novel dispersive optical
properties of fused silica and the study of the sample’s thermalization at cryogenic tempera-
tures. To further increase the pre-cooling, the setup is finally implemented in a colder 3He
cryostat operated at 850mK. Using the balanced homodyne interferometer constructed to
detect the mechanical vibration with quantum-limited sensitivity, we report on the cooling
performed in the resolved-sideband configuration that is fundamentally required to reach
the ground state. A mean phonon occupancy of 9 ± 1 is achieved. The fact that only
simple technical problems limit further cooling proves that the developed experimental
system is finally optimized for revealing quantum signatures of a macroscopic mechanical
oscillator cooled by dynamical backaction. Finally, the effect of the optomechanical inter-
action on the optical properties of the cavity is measured and analyzed, leading to the first
observation of optomechanically induced transparency. This constitutes an experimental
manifestation of the mutual character of interaction between light and mechanical motion.
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Chapter 1

Theory of cavity optomechanics

1.1 Introduction

The optical interferometric measurement is today’s most sensitive technique to detect small
displacements. Gravitational wave detectors take advantage of this principle to measure
tiny space-time fluctuations resulting from gravitational waves passing through. Despite
an achieved sensitivity in relative space dilatation below 10−21, this phenomenon, predicted
almost a century ago by Einstein, has not yet been directly experimentally verified. The
scientific investigations undertaken to further improve the detection performance revealed
that the probing light affects the suspended mirrors of the interferometer via the backaction,
mediated by the light’s radiation pressure. In these detectors, the quantum aspect of this
phenomenon – the quantum backaction – puts a strong limit on the sensitivity [1, 2].
Nevertheless, as predicted already four decades ago by Braginsky in his pioneering work
[3, 4], the radiation pressure force can also be used to amplify a mechanical vibration,
or intriguingly, to cool it down by adding extra optical damping, both within a process
referred to as dynamical backaction.

The radiation pressure force carried by the light was in fact formally known to the
scientific community beforehand, since Maxwell’s theory of electromagnetism. Its existence
had even been conjectured earlier, in the 17th century, by Kepler after he observed that a
comet’s tail always points opposite to the sun. The first experimental evidence of radiation
pressure effects on a mechanical mass was independently demonstrated later by Lebedew
[5] and by Nichols and Hull [6] in 1901 by observing that a mirror-covered fan could start
rotating under the sole action of light. It is nonetheless within the context of “laser cooling”
of atoms that the radiation pressure of light has first been put into practice to refrigerate
a mechanical vibration. In the 1970ies, it has been demonstrated theoretically as well as
experimentally that radiation pressure cooling can lead to the observation of the freeze-out
of the mechanical motion of neutral atoms [7, 8] and harmonically trapped ions [9, 10].
As with gravitational wave detectors, the quantum character of the process leads to a
fundamental limit on the lowest attainable temperature. The strength of this quantum
backaction can however be arbitrarily reduced for trapped ions when operating in the
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“resolved-sideband limit” where the mechanical vibration frequency exceeds the linewidth
of the atomic transition, therefore enabling reaching the ions’ motional ground state.

Recently, the advances of microfabrication have made it conceivable to envisage the
experimental extension of this phenomenon to much larger scales [11]. By combining a
macroscopic mechanical oscillator with an optical resonator, it is possible to use the op-
tomechanical coupling to cool down the oscillatory movement of the mass. In the resolved-
sideband regime (where the resonator’s optical linewidth exceeds the oscillator’s mechan-
ical resonance frequency) [12, 13, 14], the macroscopic object can be cooled down to its
motional ground state. This emerging field of cavity optomechanics opens then new in-
teresting physical possibilities by enabling the preparation of the mechanical oscillator in
a low entropy state while simultaneously harnessing the mutual coupling to measure the
vibration.

The perspectives opened by this implementation are immense and numerous particu-
larities of quantum mechanics previously observed at a microscopic scale are now within
reach for mechanical systems closer to our everyday-life environment. This has recently
sparked off various theoretical analyses demonstrating that the optomechanical system can
host peculiar non-classical phenomena such as quantum state superposition of macrosco-
pic mirrors [15], quantum entanglement of an optical cavity mode and a mechanical mode
[16, 17] or quantum squeezing of a mechanical mode [18].

In this chapter, we pave the theoretical ground of the optomechanical coupling and the
resulting dynamical backaction cooling [19, 20, 21].

Section 1.2 describes the cooling process in the generic optomechanical system made of
a Fabry-Perot cavity for which the back mirror is mounted on a mechanical oscillator. The
quantum Hamiltonian of the system is described and the resulting equations of motion
of the mechanical and optical modes are used to characterize the static and dynamical
backaction of the light acting on the mechanical system. The latter is responsible for the
change of the dynamics of the oscillator by modifying the apparent mechanical oscillation
frequency – the optical spring effect – and by modifying the effective damping of the
mechanical oscillator, which leads to the amplification or the cooling of the mechanical
mode. The quantum character of the optical field is discussed and it is demonstrated
that the concomitant residual phonon occupancy reaches values much lower than one in
the optimum configuration of the resolved sidebands. Finally, the regime of dynamical
amplification is reviewed and the analogy with the “sideband cooling” of trapped ions is
presented, bridging the gap between the two fields.

In section 1.3, the detection of the mechanical motion enabled by the optomechanical
coupling is discussed from a quantum perspective. The notion of measurement quantum
imprecision and backaction is introduced, and the optimal set of parameters allowing to
reach the standard quantum limit of optical measurements is presented.
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1.2 Theoretical framework of cooling

The theoretical framework of cavity optomechanics is built from the very generic scheme
depicted in Fig. 1.1. This scheme applies to any experimental system consisting of an
electromagnetic resonator for which one of the boundaries is can move to a significant
extent. Any mechanical displacement will then change the electromagnetic pathlength and
thus affect the electromagnetic resonance frequency.

0 L+x(t) 

s in

sout

a

Figure 1.1: Schematic optomechanical system in the illustrative case of an optical Fabry-Perot
cavity consisting of one fixed coupling mirror and one movable back mirror. sin, sout and a
represent the incoming pumping field, the outgoing field and the intracavity field, respectively.

In the illustrative picture of Fig. 1.1, the optical resonator is pumped by an external
field sin through the input mirror, located at fixed position at the origin, leading to an
intracavity field build up. The electromagnetic mode is described here as an optical mode
for convenience, but the formalism applies at lower electromagnetic frequencies as well,
for instance in the context of superconducting microwave electromechanical devices. For
simplicity of the theoretical framework Following the simple formalism introduced by Haus
[22], the intracavity amplitude is defined here to normalize its modulus square |a|2 to the
intracavity photon number The intracavity energy is then simply given by ~ωl|a|2, where
~ is the reduced Planck constant and ωl the wave angular frequency. In this picture, the
back mirror of the resonator is a reflecting mirror of mass meff attached to a spring with
spring constant km, constituting a one-dimensional mechanical oscillator. The coordinate
of the back mirror is x(t)+L, where L is the coordinate in the absence of oscillations. For
a small displacement x(t) compared to L, the resonance angular frequency of the optical
resonator can be developed to first order in displacement into

ω ≈ ωc +Gx(t), (1.1)

where ωc is the resonance angular frequency for the optical resonator of length L in the
absence of any oscillations and G is the optomechanical coupling constant defined by

G = −ωc

L
. (1.2)

The condition of small oscillatory amplitudes ensures that the mechanical oscillator remains
harmonic.
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1.2.1 Hamiltonian of the optomechanical system

When the previously described classical physical quantities are replaced by their quantum
operators, the quantum Hamiltonian of the optomechanical reads [23]

Ĥ = Ĥm + Ĥem + Ĥint, (1.3)

with

Ĥm =
1

2meff

(
m2

effΩ
2
mx̂

2 + p̂2
)
, (1.4)

Ĥem = ~ωc

(
â†â+

1

2

)
+ i~

√
κex

(
ŝinâ

†e−iωlt − ŝ†inâe
+iωlt

)
, (1.5)

Ĥint = ~Gx̂â†â, (1.6)

where Ωm =
√

km
meff

is the mechanical resonance angular frequency.

• Ĥm is the Hamiltonian operator of the mechanical oscillator with x̂ and p̂ being the
coordinate and momentum quantum operators.

• Ĥem is the Hamiltonian operator of the electromagnetic resonator with â† and â
denoting the creation and annihilation operators of the intracavity field, respectively.
The last term in the expression of Ĥem accounts for the laser drive of the intracavity
optical mode by the external field ŝin of angular frequency ωl through the input mirror
of external decay rate κex.

• Ĥint is the Hamiltonian of the mutual interaction responsible for the physical phe-
nomena observed in cavity optomechanics. The optomechanical coupling can be thus
understood by taking successively the two complementary point of views of the me-
chanical resonator and the optical field. For the latter, a small displacement of the
mirror is responsible for a change in the resonance frequency, as can be seen by
deriving in the Heisenberg picture the equation of motion for the amplitude of the
intracavity field:

dâ

dt
=

i

~
[Ĥem + Ĥint, â] = −i(ωc +Gx̂)â. (1.7)

If we now take the point of view of the mirror, the coupling is responsible for a force,
that is defined as the rate of variation of the momentum due to the optical field

F̂rp =
dp̂

dt
=

i

~
[Ĥint, p̂] = −~Gâ†â = −2~k

c

2L
n̂p, (1.8)

with c being the speed of light in vacuum and n̂p = â†â the intracavity photon
number. The last expression of equation (1.8) describes the intuitive picture that
the radiation pressure force acting on the movable mirror comes from the momentum
transfer −2~k of the n̂p intracavity photons per round-trip of duration τrt = 2L/c.
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Since historically the electromagnetic field was actually used to measure the evolution of
the mechanical oscillator, its influence on the mechanical oscillator mediated here by the
radiation pressure has been named backaction.

The presented model can be conveniently expressed using only dimensionless creation
and annihilation operators for the optical and mechanical variables. For the mechanical
oscillator, the phonon is introduced as the quantum of mechanical energy

Ĥm = ~Ωm

(
b̂†b̂+ 1/2

)
, (1.9)

with the phonon number operator being n̂ = b̂†b̂, using the mechanical creation and an-
nihilation operators b̂† and b̂, respectively. The interaction Hamiltonian is then expressed
as

Ĥint = g0â
†â(b̂† + b̂), (1.10)

where g0 is the vacuum optomechanical coupling rate [24]. This constant determines the
mutual interaction energy of the coupled degrees of freedom and describes alone all the
dynamics of the optomechanical interaction at any scale. It is expressed by

g0 = G× xzpf , (1.11)

where
xzpf =

√
~/(2meffΩm) (1.12)

is the zero-point fluctuation of the mechanical oscillator.

1.2.2 Equations of motion

From the Hamiltonian (1.3), the Heisenberg-Langevin approach [25] is used to derive the
equations of motion of the quantum operators of interest p̂ and â, given by

d

dt
x̂(t) = p̂(t)/meff , (1.13)

d

dt
p̂(t) = −meffΩ

2
mx̂(t)− Γm

d

dt
p̂(t)− ~Gâ†(t)â(t) +meff

√
Γmξ̂th(t), (1.14)

d

dt
â(t) = i∆â(t)− κ

2
â(t)− iGx̂(t)â(t) +

√
κexŝin(t) +

√
κ0ŝvac(t). (1.15)

For simplicity, the previous frame is transformed to a frame rotating at the angular fre-
quency ωl of the driving electromagnetic field, thus introducing the detuning ∆ = ωl − ωc.
In addition to the conservative dynamics of the system, the irreversible coupling to the
environment through the optical (κ) and mechanical losses (Γm) are introduced using the
Heisenberg-Langevin approach. The electromagnetic decay rate κ is then

κ = κ0 + κex (1.16)

where κ0 accounts for the intracavity losses. As in Ref. [22] and without a loss of generality,
we take κex as real. ξ̂th is the Brownian noise operator acting on the mechanical oscillator
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and ŝvac is the vacuum field noise operator of the intracavity field. Both terms are direct
manifestations of the fluctuation-dissipation theorem [25].

To separate the static and dynamical contributions from the coupled equations (1.14)
and (1.15) each time dependent operator is linearized around its mean value: â(t) =
ā + δâ(t), ŝin(t) = s̄in + δŝin(t) and x̂(t) = x̄ + δx̂(t) [12, 13, 14]. As we operate in a
regime where the mean values are much larger than the fluctuations, we can then drop all
products involving more than one fluctuator. Additionally, the phase of the input field s̄in
is chosen such that ā is real and we assume a strong coherent drive ā � 1.

1.2.3 Static backaction

The mutual coupling of the mechanical and optical modes is first described in the simple
particular case of a static phenomenon.

The mean values of both modes are affected by the optomechanical coupling characteri-
zed by the Hamiltonian operator Ĥint expressed in (1.6). Using the linearization procedure
previously introduced, the mean field terms of the coupled equations (1.14) and (1.15)
when noise terms are dropped become

Ω2
mx̄ = − ~G

meff

ā2, (1.17)(
−i(∆−Gx̄) +

κ

2

)
ā =

√
κexs̄in. (1.18)

Equation (1.17) denotes a shift in the mean position of the moving mirror, proportional
to the value of the radiation pressure. Reciprocally, equation (1.18) shows that the optical
resonance frequency is shifted by an amount proportional to the mechanical displacement.
Since the static mechanical displacement is proportional to the intracavity photon num-
ber ā2, the latter effect is equivalent to a change of optical path resulting from a third
order non-linear optical susceptibility. As a consequence, a bistable regime appears upon
sweeping the pump field with regards to the resonator resonance frequency. This specta-
cular phenomenon has been experimentally demonstrated in a pioneering experiment in an
optical Fabry-Perot cavity in the group of Walther in 1983 [26]

In the following study however, only the effect the backaction has on the detuning
of the pump field s̄in compared to the resonator resonance frequency is considered. The
corresponding normalized detuning is thus defined as

∆̄ = ∆−Gx̄. (1.19)

1.2.4 Dynamical backaction

The main focus in this work is on the dynamical effects leading to the dynamical backaction
of the light’s radiation pressure onto the mirror. Indeed, this phenomenon is responsible
for the optical spring and damping effects as first described by Braginsky in 1967 [3] and
for the quantum backaction: those effects will be especially studied in the experimental
part of this work.
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To describe these phenomena, we study the time-dependent terms introduced in section
1.2.2. Keeping the modified detuning introduced in the previous section, we obtain

d2

dt2
δx̂(t) = −Ω2

mδx̂(t)− Γmδ
d

dt
x̂(t)− ~G

meff

ā
(
δâ†(t) + δâ(t)

)
+
√
Γmξ̂th(t), (1.20)

d

dt
δâ(t) =

(
+i∆̄− κ

2

)
δâ(t)− iGāδx̂(t) +

√
κexδŝin(t) +

√
κ0δŝvac(t), (1.21)

d

dt
δâ†(t) =

(
−i∆̄− κ

2

)
δâ†(t) + iGāδx̂(t) +

√
κexδŝ

†
in(t) +

√
κ0δŝ

†
vac(t). (1.22)

After Fourier transform1, the set of equations becomes

−Ω2δx̂(Ω) = −Ω2
mδx̂(Ω) + iΩΓmδx̂(Ω)−

~G
meff

ā
(
δâ†(Ω) + δâ(Ω)

)
+
√
Γmδξ̂th(Ω), (1.23)

−iΩδâ(Ω) =
(
+i∆̄− κ

2

)
δâ(Ω)− iGāδx̂(Ω) +

√
κexδŝin(Ω) +

√
κ0δŝvac(Ω), (1.24)

−iΩδâ†(Ω) =
(
−i∆̄− κ

2

)
δâ†(Ω) + iGāδx̂(Ω) +

√
κexδŝ

†
in(Ω) +

√
κ0δŝ

†
vac(Ω), (1.25)

where the property of the Fourier transform δâ†(Ω) = (δ(−Ω))† was used as well as the
property δx̂†(Ω) = δx̂(Ω) for a Hermitian operator. The correlation functions of the noise
operators are given by

〈δŝin(Ω)δŝ†in(Ω′)〉 = 2πδ (Ω + Ω′) , (1.26)

〈δŝvac(Ω)δŝ†vac(Ω′)〉 = 2πδ (Ω + Ω′) , (1.27)

for the electromagnetic noise operators and

〈δξ̂th(Ω)δξ̂†th(Ω
′)〉 = 2πδ (Ω + Ω′) ~m−1

eff Ω

(
coth

(
~Ω

2kBTm

)
+ 1

)
, (1.28)

for the mechanical noise operator, kB being the Boltzmann constant and Tm the mechanical
bath temperature. Note that this double sided-spectrum is not an even function of Ω. It
can be shown that the antisymmetric part of the noise spectrum is due to the (small)
contribution of the quantum noise to the total Brownian force [27].

From Eq. (1.8), the dynamical radiation pressure force fluctuations acting on the mov-
able mirror become

δF̂rp(Ω) = −~Gā
(
δâ†(Ω) + δâ(Ω)

)
. (1.29)

The derivation from expressions (1.24) and (1.25) subsequently gives

δâ(Ω) =
−iGā

−i(∆̄ + Ω) + κ
2

δx̂(Ω) +
1

−i(∆̄ + Ω) + κ
2

(
√
κexδŝin(Ω) +

√
κ0δŝvac(Ω)) , (1.30)

δâ†(Ω) =
+iGā

+i(∆̄− Ω) + κ
2

δx̂(Ω) +
1

+i(∆̄− Ω) + κ
2

(√
κexδŝ

†
in(Ω) +

√
κ0δŝ

†
vac(Ω)

)
, (1.31)

1The Fourier transform used here is f(Ω) =
∫ +∞
−∞ f(t)e+iΩt dt.
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where the intracavity field fluctuations depend on the mechanical coordinate fluctuations
δx̂(Ω), and on the pump and vacuum field fluctuations. Therefore, by recasting Eqs. (1.30)
and (1.31) into Eq. (1.29), the radiation pressure force fluctuations evaluate to

δF̂rp(Ω) =− ~G2ā2
(

∆̄ + Ω

(∆̄ + Ω)2 + (κ/2)2
+

∆̄− Ω

(∆̄− Ω)2 + (κ/2)2

)
δx̂(Ω)

+ i~G2ā2
(

κ/2

(∆̄ + Ω)2 + (κ/2)2
− κ/2

(∆̄− Ω)2 + (κ/2)2

)
δx̂(Ω)

− ~Gā
1

−i(∆̄ + Ω) + κ
2

(
√
κexδŝin(Ω) +

√
κ0δŝvac(Ω))

− ~Gā
1

+i(∆̄− Ω) + κ
2

(√
κexδŝ

†
in(Ω) +

√
κ0δŝ

†
vac(Ω)

)
.

(1.32)

This expression shows that the radiation pressure force δF̂rp(Ω) originating from the intra-
cavity electromagnetic field is partly dependent on the displacement δx̂(Ω) of the movable
mirror. This force has three distinct components:

• The first line of equation (1.32) corresponds to the component of δF̂rp that is in phase
with the mechanical coordinate δx̂(Ω). The light therefore acts as a spring obeying
the Hooke’s law and the corresponding effect is called the optical spring effect.

• The second line corresponds to the component of δF̂rp that is in quadrature with
the mechanical coordinate δx̂(Ω). It is therefore proportional to the velocity of the
mechanical oscillator and acts as a viscosity. It is the optical damping effect.

• The third and fourth lines correspond to the radiation pressure force resulting from
the fluctuations of the pump field and of the intracavity vacuum field, coupled through
the two loss channels. Experimentally, we will use optical lasers exhibiting quantum
noise limited fluctuations both on the phase and amplitude quadratures. Conse-
quently, the only source of fluctuations introduced by the radiation pressure force
will be of quantum nature, and the effects of the fluctuations described here are
responsible for the quantum backaction.

Note that if the cavity has an very large bandwidth κ compared to the mechanical dis-
placement angular frequency Ωm, it will respond almost instantaneously and therefore the
intracavity field induced radiation pressure force will not have any significant in-quadrature
component, leading to a negligible optical damping effect.

Optical spring and damping effects are the two manifestations of the dynamical back-
action of the intracavity electromagnetic field onto the mechanical oscillator. Further-
more,the cooling of the mechanical oscillator results from the optical damping and a
simultaneous introduction of reduced force fluctuations from the coherent optical field.
Hence, the detailed description of the dynamical backaction in the next sections will set
the theoretical ground for the cooling work.
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1.2.5 Optical spring and damping effects

To get a precise understanding, the equation of motion of the mechanical oscillator Eq. (1.23)
is rearranged to

χ−1
m (Ω)δx̂(Ω) = δF̂rp(Ω) + δF̂th(Ω) (1.33)

with
χm(Ω) = m−1

eff

(
Ω2

m − Ω2 − iΓmΩ
)−1

(1.34)

being the intrinsic mechanical susceptibility of the movable mirror and

δF̂th(Ω) = meff

√
Γmξ̂th(Ω) (1.35)

the thermal Langevin force.
Recasting Eq. (1.32) into Eq. (1.33) gives

χ−1
eff (Ω)δx̂(Ω) = δF̂ qba

rp (Ω) + δF̂th(Ω), (1.36)

where the effective susceptibility is defined as

χeff(Ω) = m−1
eff

((
Ω2

m +
kdba
meff

(Ω)

)
− Ω2 − i (Γm + Γdba(Ω))Ω

)−1

. (1.37)

The additional spring and damping induced by the dynamical backaction “dba” have been
included. δF̂ qba

rp (Ω) corresponds to the radiation pressure force fluctuations resulting from
the quantum backaction effect

δF̂ qba
rp (Ω) =− ~Gā

1

−i(∆̄ + Ω) + κ
2

(
√
κexδŝin(Ω) +

√
κ0δŝvac(Ω))

− ~Gā
1

+i(∆̄− Ω) + κ
2

(√
κexδŝ

†
in(Ω) +

√
κ0δŝ

†
vac(Ω)

)
.

(1.38)

Because of its stochastic nature, arising from the quantum noises, δF̂ qba
rp (Ω) acts as a

fluctuating force driving the mechanical oscillator during the cooling process.
The expressions of the additional mechanical parameters are given by

kdba(Ω) = ~G2ā2
(

∆̄ + Ω

(∆̄ + Ω)2 + (κ/2)2
+

∆̄− Ω

(∆̄− Ω)2 + (κ/2)2

)
, (1.39)

Γdba(Ω) =
~G2ā2

meffΩ

(
κ/2

(∆̄ + Ω)2 + (κ/2)2
− κ/2

(∆̄− Ω)2 + (κ/2)2

)
. (1.40)

If the induced changes of the mechanical parameters are small compared to Ωm and κ,
the susceptibility can be simplified for the range of interest Ω ≈ Ωm. Thus, the effective
frequency Ωeff and damping Γeff accounting for the dynamical backaction are given by [28]

Ωeff ≈ Ωm + g20 ā
2

(
∆̄ + Ωm

(∆̄ + Ωm)2 + (κ/2)2
+

∆̄− Ωm

(∆̄− Ωm)2 + (κ/2)2

)
, (1.41)

Γeff ≈ Γm + 2g20 ā
2

(
κ/2

(∆̄ + Ωm)2 + (κ/2)2
− κ/2

(∆̄− Ωm)2 + (κ/2)2

)
. (1.42)
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In the context of cooling, we are mostly interested in maximizing the optical damping.
From Eq. (1.42), it is shown that in the limit κ/Ωm → 0 this happens for the optimum
detuning ∆̄ = −Ωm.

1.2.6 Quantum backaction

Besides dynamical backaction, when the quantum nature of the optical field is considered
quantum fluctuations come into play and are responsible for the quantum backaction des-
cribed in this section. It can be simply understood as a stochastic radiation pressure force
that acts on the movable mirror.

From the expression of the radiation pressure force fluctuations (1.38), the quantum
backaction force spectral density2 reads

Sqba
FF (Ω) = ~2G2ā2κ

(
1

(∆̄ + Ω)2 + (κ/2)2

)
, (1.43)

where the relations (1.26) and (1.27) on the correlations of the pump field and intracavity
field noise operators and Eq. (1.16) are used. Once again, the double-sided spectrum
associated with this quantum noise is not symmetric with respect to the Fourier frequency
Ω.

1.2.7 Dynamical backaction cooling

The optical damping derived in (1.42) leads to the optical cooling of the mechanical mode
of angular frequency Ωm, in a process known dynamical backaction cooling or also cold
damping, which is detailed here. Indeed, according to the fluctuation-dissipation theorem,
a net cooling of the mechanical mode is achieved when reduced force fluctuations are
introduced during the damping mechanism. The fundamental limitation of the process
arises however from the quantum fluctuations (1.43) introduced by the optical field. We
show here also that the resulting minimum occupancy is brought close to zero in the
resolved-sideband configuration.

When the mechanical oscillator is subjected to the dynamical backaction force and the
Langevin force, the mean value of its mechanical coordinate fluctuations evaluates to

〈δx̂2〉 =
∫ +∞

−∞
|χeff(Ω)|2

(
Sth
FF (Ω) + Sqba

FF (Ω)
) dΩ

2π
(1.44)

= 2

∫ +∞

0

|χeff(Ω)|2
(
S̄th
FF (Ω) + S̄qba

FF (Ω)
) dΩ

2π
, (1.45)

where the symmetrized spectra S̄FF (Ω) = (SFF (Ω) + SFF (−Ω)) /2, and the optical spring
and damping effects are included in the effective susceptibility χeff(Ω). The symmetrized

2The definition of the double-sided spectral density Sff (Ω) given by 2πδ(Ω+Ω′)Sff (Ω) = 〈δf̂(Ω)δf̂(Ω′)〉
is used here [29].
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thermal force fluctuation spectral density is derived from the correlator presented in Eq. (1.28)
and from Eq. (1.35). It is given by

S̄th
FF (Ω) = meffΓm~Ωcoth

(
~Ω

2kBTm

)
. (1.46)

This noise spectrum can be easily rewritten as a function of the Bose occupation number
of the bath at temperature Tm, n̄m = 1

e
~Ω

kBTm −1

, evaluating to

S̄th
FF (Ω) = 2meffΓm~Ω (n̄m + 1/2) . (1.47)

We introduce the simplified notations of the expressions (1.42) and (1.43):

Γeff = Γm +A− − A+ (1.48)

S̄qba
FF (Ω) ≈ S̄qba

FF (Ωm) = ~meffΩm (A− +A+) , (1.49)

with

A± = g20 ā
2κ

(
1

(∆̄∓ Ωm)2 + (κ/2)2

)
. (1.50)

The coefficients A+ and A− are proportional respectively to the Stokes and anti-Stokes
scattering rates of intracavity photons, as explained in detail in section 1.2.9. Cooling then
occurs when A− > A+ and heating occurs in the opposite situation.

For small fluctuations around the mechanical frequency, we evaluate

〈δx̂2〉 = (2meffΓm(n̄m + 1/2)~Ωm + ~meffΩm (A− +A+))

∫ +∞

−∞
|χeff(Ω)|2

dΩ

2π

=
(n̄m + 1/2)~

meffΩm

(
Γm

Γeff

)
+

~
2meffΩm

(
A− +A+

Γeff

)
,

(1.51)

where the integral has been simply calculated with the approximation Ωeff ≈ Ωm, thus
giving ∫ +∞

−∞
|χeff(Ω)|2

dΩ

2π
=

1

2m2
effΩ

2
mΓeff

. (1.52)

The equipartition of the mean energy 〈E〉 of the movable mirror is then used to get

〈E〉 = meffΩ
2
m〈δx̂2〉, (1.53)

where the mean energy is considered equally distributed among the kinetic and the poten-
tial energy [30].

Since 〈E〉 = ~Ωm(n̄ + 1/2) (1.9), the mean value of the phonon occupancy can be
deduced from (1.51) the expression

n̄ = n̄m
Γm

Γeff

+
A+

Γeff

. (1.54)
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By increasing the value of Γeff when detuning the laser to the cavity’s red side (ωl < ωc),
one modifies the temperature and therefore the phonon occupancy of the mechanical os-
cillator. Importantly, this process cools the mechanical mode because the fluctuations
introduced are comparatively low. Interestingly, the contribution of the total quantum
backaction driving the oscillator is indissociable from the zero-point motion of the me-
chanical oscillator and it is simultaneously responsible for the minimum phonon occupancy
achieved by laser cooling.

For a significant cooling such that Γeff � nmΓm, the final phonon occupancy saturates
to a minimum value given by

n̄min(∆̄) = −1

4

(∆̄ + Ωm)
2 + (κ/2)2

∆̄Ωm

, (1.55)

which is the limit imposed by the quantum backaction. A detailed physical insight of this
phenomenon is given in section 1.2.9 by comparing the laser cooling presented here with
the case of laser cooling of ions. The laser optimally detuned to

∆̄opt = −Ωm

√
1 +

(κ/2)2

Ω2
m

+ 1 (1.56)

leads to a minimum phonon occupancy of

n̄min(∆̄opt) =
1

2

(√
(κ/2)2

Ω2
m

+ 1− 1

)
. (1.57)

In this configuration, the minimum saturation occupancy goes to zero only if the relation
κ � Ωm holds. This condition is called the resolved-sideband condition and is fundamen-
tally necessary to reach the ground state of the mechanical oscillator with the dynamical
backaction cooling process described along this section [12, 13, 14]. Under this condition,
the minimum phonon occupancy reads

n̄min(∆̄opt) '
κ2

16Ω2
m

, (1.58)

indeed going to zero whereas in the opposite configuration κ � Ωm it reads

n̄min(∆̄opt) '
κ

4Ωm

(1.59)

and precludes reaching the motional ground state.
Within the introduced framework additional conditions have to be considered:

• The thermal occupation of the electromagnetic field in the case of an optical laser is
kBT/~ωl � 1 and is therefore neglected [31]. Experiments using a microwave field
are, on the contrary, affected by this thermal occupation.
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• To avoid obtaining an overdamped mechanical oscillator during the cooling process,
the condition Ωm > Γmn̄m [13] must be fulfilled.

• The condition κ > Γmn̄m precludes cooling limited by the decay rate of the cavity
[31]. This effect appears when the approximation Γm � κ introduced in (1.41) and
(1.42) breaks down.

1.2.8 Dynamical backaction heating and amplification

At a positive laser detuning close to +Ωm, the optically-induced damping is negative, re-
ducing the effective damping. As long as Γeff > 0, the mechanical oscillator is in a thermal
state and it is possible to use equation (1.54) to estimate the corresponding phonon occu-
pation number, which increases. In this regime, the dynamical backaction provides gain
to the mechanical oscillator: the oscillator’s response to a force increases with increasing
intracavity power. Consequently, this phenomenon is called dynamical backaction amplifi-
cation.

The limiting situation Γeff → 0 is achieved for an input field beyond the threshold

|s̄in|2threshold =
κ

κex

Γmκ

16g20Ωm

(
Ω2

m + (κ/2)2
) (

4Ω2
m + (κ/2)2

)
(1.60)

at a positive detuning of ∆̄ = +Ωm. In this regime, the mechanical oscillator undergoes self-
induced sinusoidal oscillations. This is demonstrated by solving the equations of motion
(1.14) and (1.15) in this particular case. Even when the thermal noise is not considered,
the motion of the movable mirror is oscillatory at an angular frequency Ωm [32].

There, the description of the evolution of the body’s trajectory is non-linear and multi-
stability of the amplitude of the oscillator with change of the intracavity power is observed,
leading to the onset of a complex array of attractors [33]. Eventually, upon high enough
intracavity power, the phase space trajectory of the movable mirror becomes erratic, cor-
responding to a chaotic behavior of the canonical variables of the mechanical oscillator
[34].

1.2.9 The sideband picture - analogy with atomic cooling

Cooling a movable mass using the radiation pressure of the light was actually initially
studied, predicted and performed in the context of laser cooling of atoms. It is therefore
worthwhile to introduce the sideband picture used to describe this process and to highlight
the analogy with the optomechanical case.

In the context of atomic spectroscopy, it is of interest to reduce the thermal motion of
the atoms. In 1975, two independent proposals from Wineland and Dehmelt for ionized
atoms [9] and from Hänsch and Schawlow for a gas of neutral atoms [7] described the
phenomenon of laser cooling. Soon after, the experimental demonstration of the technique
was performed by Wineland in 1978 [10] for ionized atoms and by Andreev for neutral
atoms in 1981 [8].
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Sideband cooling of trapped ions

To underline the analogy with optomechanics, we consider the particular case of the laser
cooling of a trapped ion [35, 36]. The motion of its center of mass in the harmonic trap
with a frequency Ωm is analog to the motion of the movable mirror.

Due to this sinusoidal movement, the ion exhibits absorption sidebands at ωc ±mΩm

with m ∈ N [37], where ωc is the ion’s atomic transition of lifetime κ−1. When the laser is
detuned to ωl = ωc − Ωm, the first absorption sideband is driven. Consequently, the ion
absorbs a photon of energy ~(ωc − Ωm) but spontaneously re-emits one of higher energy
~ωc (neglecting the recoil). The emitted photon thus removes energy from the ion and the
phenomenon leads to motional sideband cooling of the ion. In this process, a phonon of
energy ~Ωm is annihilated, leading to the reduction of the mechanical excitation. Like in
the optomechanical case, the motional ground state of the ion can only be reached in the
resolved-sideband regime κ � Ωm. The resulting limiting mechanical occupation number
is given by

n̄min =
1

16

κ2

Ω2
m

, (1.61)

which goes to zero in the strong resolved-sideband regime, analogously to the optomechan-
ics case expressed in Eq. (1.58). Resolved-sideband cooling has led to the first observation
of the ground state of a single trapped 198Hg+ ion by Wineland in 1989 [38].

Sideband cooling in optomechanics

The same description of sideband cooling applies in optomechanics. It corresponds then
to the enhancement by the cavity of the anti-Stokes sideband upon adequate detuning of
the cooling laser to ∆̄ = −Ωm. The scattering rates of the Stokes and anti-Stokes first
sidebands are given respectively by (n̄ + 1)A+ and n̄A−, as illustrated in Fig. 1.2, with
A± defined in equation (1.50) and n̄ being the phonon occupation number. They can be
directly derived from Fermi’s Golden Rule [13, 27] applied to the interaction Hamiltonian
Ĥint. The rates’ dependency on laser detuning illustrates the scattering enhancement
provided by the optical cavity and modeled by the Lorentzian profile on Fig. 1.2. Cooling
of the mechanical oscillator occurs when n̄A− > (n̄ + 1)A+, corresponding to a positive
optical damping, leading to Γeff > Γm. The ultimate limit on the occupancy imposed
by quantum backaction can be simply understood in this scattering picture: when both
scattering rates are equal, the phonon occupancy saturates to n̄min = A+/(A− − A+).

Importantly, optically probing the strength of the Stokes and anti-Stokes sidebands
(which are proportional to the scattering rates) gives direct access to the measurement
of the phonon occupancy number of the mechanical oscillator. When a resonant laser is
used (∆̄ = 0), A+ = A− therefore the sideband strengths differ by a factor of (n̄ + 1)/n̄.
For n̄ → 0, the contrast diverges, constituting an ultimate proof of ground state cooling
of the massive mirror. A similar method, called sideband spectroscopy, has been used to
experimentally demonstrate the first ground state cooling of a trapped ion [38]. It should
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Figure 1.2: Sideband picture of the optomechanical cooling. Stokes and anti-Stokes scattering
at the angular frequency ωl −Ωm and ωl +Ωm of the carrier at ωl, weighted by the optical cavity
Lorentzian. The scattering rates of the carrier into the Stokes and anti-Stokes sideband are
respectively (n̄+ 1)A+ and n̄A−. Maximum cooling is achieved when the anti-Stokes sideband is
resonant with the cavity at ωc.

also be noted that the process of backaction amplification introduced in the section 1.2.8
also applies in the case of trapped ions [39].
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1.3 Detection sensitivity

The coupling of a cavity optical mode and a mechanical mode was initially studied in the
context of highly sensitive position detection, such as in gravitational wave interferometers.
The detection principle is based on the phase shift acquired by the reflected field ŝout close
to the cavity resonance. As shown in figure 1.3, the mechanical fluctuations of the movable
mirror modulate the intracavity optical path. As a consequence, the resonant probe beam
experiences a phase modulation: by comparing the output field phase fluctuations with a
phase reference, like in a homodyne interferometer, the mechanical motion is detected.

In this section, the measurement quantum imprecision and the measurement back-
action resulting from the quantum fluctuations of the probing field are introduced. The
total uncertainty of the measurement process is detailed and the optimum measurement
configuration, leading to a minimum uncertainty called the standard quantum limit, is
explained.

1.3.1 Measurement imprecision and measurement backaction

Figure 1.3 represents the output field amplitude (upper panel) and phase (lower panel) for
κex = κ and κex = κ/2, respectively, when compared to the input field. Those different
coupling conditions illustrate the visible effect of the resonance condition on the output
field: full extinction for the output intensity and π phase shift for the phase difference.
These are calculated using equations (1.18) - (1.19) and using the output field expression

ŝout = ŝin −
√
κexâ. (1.62)

We intentionally omit the π-shift acquired upon reflection for the case of a Fabry-Perot
cavity as it does not influence the physical interpretation of the detection sensitivity.

As described in section 1.2.6, quantum intensity fluctuations of the input field and of
the intracavity vacuum field are responsible for the radiation pressure fluctuations leading
to a minimum achievable phonon number for the cooling process expressed in equation
(1.57). Simultaneously, the quantum phase fluctuations of the output field set a limit on
the minimum mechanical motion detectable. We first describe these phenomena in the
restricted case of resonant probing of the cavity ∆̄ = 0. Using equations (1.62), (1.30) and
(1.31) and the definition of the spectral density given in footnote 2, the spectral density of
the phase of the output field reads

S̄ ŝout
qq (Ω) = 1 +

16G2|s̄in|2

Ω2 + (κ/2)2

(κex

κ

)2
S̄xx(Ω). (1.63)

We use here the usual definitions of the quadratures with the intracavity field taken as
the phase reference [21] and the properties of the correlators (1.26) and (1.27). The first
term on the right-hand side of equation (1.63) corresponds to the phase noise background
coming from the quantum noises of the input and intracavity fields, and the second term
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Figure 1.3: Squared amplitude (upper panel) and phase (lower panel) of the output field ŝout re-
lative to the input field ŝin, representing the two experimentally accessible quantities. The squared
amplitude shows full extinction at ∆̄ = 0 for the critical coupling condition κex = κ/2. For
the phase difference, the maximum shift upon scanning of the detuning ∆̄ occurs for a strongly
overcoupled cavity, where the external coupling losses are dominant over all other source of losses
(κex → κ). The mechanical displacement of the movable mirror modulates the cavity optical path
that transduces into a phase modulation detectable with conventional homodyne interferometry.

denotes the transduction of the mechanical motion filtered out by the cavity bandwidth.
Thus, the minimum detectable mechanical displacement spectral density is given by

S̄qi
xx(Ω) =

Ω2 + (κ/2)2

16G2|s̄in|2

(
κ

κex

)2

, (1.64)

corresponding to the measurement imprecision due to the fundamental quantum noise, or
quantum imprecision “qi”. The minimum detectable displacement decreases with increa-
sing input power, as expected from a phase measurement limited by the quantum phase
noise of the measuring coherent field.

However, upon increasing the readout laser power, the intracavity photon number fluc-
tuations augment and perturb the movable mirror due to the radiation pressure. This
unavoidable disturbance corresponds to the measurement backaction previously described
and initially discussed by Braginsky [1] and Caves [2] in the context of gravitational wave
detectors. Due to its quantum nature, this is called the quantum backaction “qba”, the ex-
pression of which is given in Eq. (1.43). By disturbing the conjugate variable (momentum),
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the continuous measurement of the position leads to an unavoidable backaction on the sys-
tem. As required by the principles of quantum mechanics, the product of the imprecision
and backaction in the measurement verifies the inequality:

S̄qi
xx(Ω)× S̄qba

FF (Ω) =

(
~
2

)2(
1

κex/κ

)
≥
(
~
2

)2

. (1.65)

1.3.2 Total measurement uncertainty

The total uncertainty on the position measurement of the mechanical oscillator reads

S̄tot
xx (Ω) = S̄qi

xx(Ω) + |χm(Ω)|2S̄qba
FF (Ω), (1.66)

with the mechanical susceptibility χm(Ω) given by Eq. (1.34). It corresponds to the total
noise measured by the phase detector when the quantum noises from the optical probe are
taken into account. Expression (1.66) is then rearranged into

S̄tot
xx (Ω) = S̄min

xx (Ω)
1

2

(
p(Ω) +

1

p(Ω)

)
, (1.67)

with S̄min
xx (Ω) = ~|χm(Ω)|(κ/κex)

1/2 and p(Ω) = 8~G2

Ω2+(κ/2)2
|χm(Ω)||s̄in|2 (κex/κ)

3/2 . At the

optimum input power p(Ω)∆̄=0 = p(Ω)opt = 1, S̄tot
xx (Ω) = S̄min

xx (Ω), and for an overcoupled
cavity where κex → κ

S̄tot
xx (Ω) = S̄SQL

xx (Ω) = ~|χm(Ω)|. (1.68)

In this situation, the values of the measurement quantum imprecision and backaction are
optimized and the total uncertainty in the measurement of the mechanical oscillator’s
position corresponds to the standard quantum limit (SQL) [2]. However, when evaluated
at the mechanical resonance frequency Ω = Ωm, the total noise spectral density at the
SQL is exactly equal to the zero point fluctuations “zpf” as expressed in Eq. (1.12). The
corresponding displacement spectral density evaluates then to

S̄SQL
xx (Ωm) = S̄zpf

xx (Ωm) =
~

meffΓmΩm

. (1.69)

Note that this calculation assumes no correlations between the 2 terms limiting the dis-
placement sensitivity, which is the case when studying a cavity probed at resonance. There
exists a more fundamental limit, called the ultimated quantum limit [40], which can be
achieved when exploiting existing quantum correlations between the noise terms.

Figure 1.4 shows the total position uncertainty normalized to the SQL uncertainty
when the normalized coupling power p(Ω)/popt(Ω) is swept. At low normalized power
p(Ω) � popt(Ω), the total uncertainty is dominated by the measurement imprecision in-
duced by the phase noise (negative slope asymptote). On the contrary, at high normalized
power p(Ω) � popt(Ω), the total position measurement is dominated by the measurement
backaction (positive slope asymptote).
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Figure 1.4: Total uncertainty on the position measurement normalized to the value at optimum
normalized power (red curve) at detuning ∆̄ = 0.

In experimental situations, where the cooling laser detuned to ∆̄ = ∆̄opt is used as
the measurement field, the expression of the measurement imprecision calculated using the
same previous procedure is given by

S̄qi
xx(Ωm) =

Ω2
m

4G2|s̄in|2
. (1.70)

Similarly, the measurement backaction is given by

S̄qba
FF (Ωm) =

2G2~2|s̄in|2

Ω2
m

, (1.71)

evaluated for simplicity at the mechanical resonance frequency Ω = Ωm and for κex � κ0

[41]. It should be pointed out that the imprecision-backaction product at this detuning is
at least a factor of two higher than in the optimum case where the cavity is resonantly
probed (Eq. (1.65)). However, evaluating the total uncertainty as in the case of resonant
pumping is much more complex, since the modification of the mechanical susceptibility has
to be taken into account. It is even possible to beat the SQL expressed in equation (1.68)
with a detuned cavity, under the condition of a large cavity bandwidth κ � Ωm, as it has
been shown both theoretically [42] and experimentally [43] in the group of A. Heidmann.
Other schemes involving multiple optical resonances reduce the input power required to
reach the SQL [44].

The fundamental quantum limits described in this section are imposed by the coherent
readout field: indeed, the presence of additional classical noise in the field quadratures
deteriorates the sensitivity which is circumvented in this work by the use of quantum
limited lasers.

Finally, it is important to note that the SQL presented here corresponds to the optimum
sensitivity of a continuous linear measurement type known as amplitude-and-phase mea-
surements [45]. This type of measurement introduces quantum backaction to the system
resulting from the non-commutation and the time-variation of the generalized coordinate
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x̂(t) and momentum p̂(t) of the mechanical oscillator being measured. When measuring
x̂(t) with a certain precision, p̂(t) is simultaneously randomly kicked and after time evo-
lution, this random kick is fed back into x̂(t). Several schemes have been proposed to
perform what is called a quantum non-demolition measurement [45, 46].

By quadratically coupling the mechanical displacement to the cavity resonance fre-
quency, it is possible to perform quantum counting measurements [47], where the observable
n̂p = â†â is measured rather than the mechanical quadrature x̂. Experimental implemen-
tations of such a coupling have been recently done in the group of J. Harris [48, 49] by
replacing the generic optomechanical system sketched in fig Fig. 1.1 by a ”membrane-in-
the-middle” setup.

Another scheme relies on the measurement of constants of the motion of the mechani-
cal oscillator, so that random kicks are never fed back into the measured variable [45, 46]:
this can be achieved by monitoring either the sine or the cosine quadrature of the oscil-
lator [50, 46, 18]. This scheme can even lead to the quadrature noise squeezing of the
mechanical oscillator, since the measurement uncertainty is only randomly kicking the
non-monitored quadrature. Experimentally, this is achieved by simultaneously pumping
an optomechanical cavity with two input fields detuned at −Ωm and Ωm respectively, as
already demonstrated in the group of K. Schwab [51].



Chapter 2

Silica toroidal microresonators as
candidates for cavity optomechanics

2.1 Introduction

The theoretical framework given in chapter 1 was described using a unidimensional Fabry-
Perot cavity as a model system. Thought, the interaction has been experimentally im-
plemented during the past two decades in a myriad of different optomechanical systems.
Indeed, dynamical backaction cooling using radiation pressure was recently performed in
various experimental systems such as a Fabry-Perot cavity with a back mirror mounted
on a microcantilever [52, 53], a silica microtoroidal cavity [54, 55] and a silica microsphere
cavity [56] with movable boundaries, a Fabry-Perot cavity with a mechanical membrane in
the middle [48], an optomechanical crystal [57], and a superconducting microwave cavity
capacitively coupled to a mechanical nanobeam [58] or to a mechanical membrane [59]. Ad-
ditionally, a similar optomechanical configuration was used in other systems to dynamically
detect the oscillator’s position and apply an external viscous force to cool the mechanical
mode [60, 61, 62]. In fact, the radiation pressure force can even be used as viscous force
to perform this “feedback” cooling [63, 64, 65, 66].

The optomechanical system used in this work is a silica1 microtoroidal resonator sup-
porting optical whispering-gallery modes of a Q factor exceeding 108. This type of optical
mode, initially studied in 1989 in silica microspheres in the group of Braginsky [67], has
shown record values of optical Q exceeding 109 and micron-size modal confinement, making
this kind of structure particularly well-adapted for the observation of non-linear optical ef-
fects in glass [67, 68, 69]. It is the unique fabrication method based on the melting of
a glass fiber or rod to form a solid droplet of vitreous silica that allows to reach surface
roughness on the nm-scale, consequently leading to reduced scattering and long photon
storage time in the visible and near infrared range, as allowed by the transparency of glass
[70]. Combining the remarkable optical properties of whispering-gallery modes with the

1To take into account today’s usual nomenclature, throughout this thesis the term “silica” refers to
vitreous silicon dioxide whereas “quartz” refers to its crystalline form.
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geometrical control provided by microfabrication was achieved in 2003 in the group of
Vahala [71] and lead to the first fabrication of on-chip silica microtoroidal cavities.

These systems have also supported the observation of various optical non-linear effects
such as the Kerr effect [72, 73] which can result in the generation of frequency combs
[74, 75], stimulated Raman scattering [76, 77, 78] and thermal bistable behavior [79]. It
was, however, the first measurements of the mechanical vibrations of the toroid [80] and
of dynamical backaction amplification [81, 82] that triggered the work on dynamical back-
action cooling of toroidal microresonators. Moreover, the mechanical control over the
structure provided by the tools of microfabrication makes it a promising candidate for the
implementation of cavity optomechanics. It makes dynamical backaction cooling to the mo-
tional ground state of a mechanical mode of silica microtoroids conceivable: their intrinsic
properties put them in the resolved-sideband regime, and their on-chip implementation
facilitates integration in a cryogenic environment.

This chapter introduces the optical and mechanical properties of silica toroidal mi-
croresonators. In section 2.2, starting with the analytical derivation in spheres, the optical
whispering-gallery modes are calculated using the accurate oblate spheroidal approxima-
tion. The sources of optical losses for spheres and toroids are reviewed and discussed in
the context of optomechanics. The tapered-fiber technique used to couple light in these
structures is also briefly introduced. In section 2.3, calculations of the mechanical modes
supported by spheres are presented, and we show that, despite the reduced number of
symmetries in toroids, numerical simulations allow precise predictions of their resonance
properties. Finally, we show in section 2.4 that the complex spatial extension of the me-
chanical radial breathing modes and the optical whispering-gallery modes can be simply
parametrized to an effective displacement and an effective mass equivalent to the generic
system described in chapter 1.
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2.2 Optical modes in silica toroidal resonators

At St Paul’s cathedral in London, the gallery under the dome exhibits a particular acoustic
phenomenon: whispers from a person speaking along the gallery’s walls can be clearly heard
again as coming from the person’s back. This phenomenon was studied by Lord Rayleigh
[83] who called this effect whispering-gallery phenomenon: in essence, the acoustic wave
creeps along the walls of the gallery made of stone, undergoing total internal reflections
over the circumference of the gallery.

In this section, we review the similar phenomenon occurring for electromagnetic waves
undergoing total internal reflections in a dielectric sphere. The supported modes are thus
named whispering-gallery modes (WGM) and exhibit resonance condition when the trajec-
tory of the optical wave following the perimeter of the sphere is equal to an integer number
of the optical wavelength, thus leading to constructive interference.

2.2.1 Analytic derivation of optical modes in spheres

To calculate the mode profile in the sphere of diameter R, we consider the propagation of
an electromagnetic wave in spherical coordinates of variables (r, θ, ϕ). The details of the
resolution can be found in [84, 85, 86]. The jth eigenmode’s electric field at the vector

coordinate ~r is expressed as ~̃Ej(~r, t) = ~Ej(~r)e
−iωjt with ωj being the angular frequency

of the mode. Its complex spatial amplitude obeys the Helmholtz equation (the mode
identification number j is dropped for readability)

∆ ~E(~r) + k2(~r) · ~E(~r) = 0, (2.1)

with ~∇· ~E(~r) = 0 and k(~r) = n(~r)ω/c. n(~r) is the position dependent refractive index and
c is the speed of light in vacuum. n(~r) equals the refractive index of silica n inside the
sphere and the refractive index of air nair ' 1 outside.

For a homogeneous medium, the solutions for the field are calculated using the Debye
potentials [85] or by resolving the eikonal equation [84, 86]. Both methods lead to an
exact solution for spheres. For its similarity with the problem in toroids, it is interesting
to remind the main solutions and to describe the particular case of the WGM that will be
used in the context of optomechanics.

The calculated modes can be separated in two classes, transverse electric (TE) and
transverse magnetic (TM), characterized by their integer mode numbers (q, l,m). The
azimuthal mode number m denotes the sinusoidal dependence of the electric field on the
azimuthal angle which is proportional to (eimϕ). Thus, m is the number of full azimuthal
train waves and for a WGM pumped at resonance, with m ' 2πRn/λ where λ denotes
the wavelength in vacuum. The polar dependence of the field is given by the Legendre
polynomials Pm

l (cosθ), with m ∈ [−l; +l]. Therefore, the number of field nodes in the
polar direction is given by |l−m|. Finally, the radial mode number q denotes the number
of solutions of the characteristic equation of the TE and TM fields and q − 1 corresponds
to the number of nodes in the radial direction.
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The class of TM and TE modes of interest is the WGM type with q = 1 (no nodes in the
radial direction) and |l−m| = 0 (no nodes in the polar direction). The complete description
shows that the field is proportional to the Bessel function of the first kind Jl+ 1

2
(k(~r)r) for

r ≤ R inside the sphere, and the Hankel function of the first kind H
(1)

l+ 1
2

(k(~r)r) for r > R,

thus outside the sphere [85]. Consequently, since the WGM ideally “clings” on the internal
surface of the sphere, this corresponds to l � 1. Due to the significant spatial extension
outside the sphere, WGMs can be coupled with a waveguide. We show also that their
spatial position allows significant coupling to strain waves.

2.2.2 Approximated derivation of optical modes in toroids

For toroids with reduced number of symmetries as compared to spheres, there are no
analytic solutions for all supported modes. Using perturbation analysis [87], it is however
possible to get accurate analytical results that are very close to numerical simulations
obtained with a finite element method (FEM) [88].
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Figure 2.1: (a) Scanning electron microscope (SEM) picture of a toroidal silica microcavity
supporting both optical whispering-gallery modes and mechanical modes. (b) Schematic illustration
of the profile of the toroid structure and its important parameters: the major diameter R, the
toroid’s minor diameter rt, the disk’s oxide thickness td and the supporting pillar radius rp. (c)
Optical micrograph of a toroid. The tapered fiber used to externally couple the optical mode is
visible. The arrows represent the trajectory of the driving field sin, the intracavity field a and the
output field sout in analogy with the generic scheme of Fig. 1.1. Adapted from Ref. [89].

Another accurate approach is to calculate the optical mode only in the particular case of
WGM where the geometrical structure of the torus can be safely approximated by an oblate
spheroidal [90, 91, 92]. The problem has then a cylindrical symmetry (spatial coordinates



2.2 Optical modes in silica toroidal resonators 25

(r, θ, z)) facilitating the approximate analytical expression of the mode [21]. Considering
the typical representation of toroids in Fig. 2.1, the electric field is given by [93]

Eζ =

 E0e
− z2

2r2z Jm
(
Tm1r/R̄

)
eimϕ r < R,

1
P
E0e

− z2

2r2z Jm
(
Tm1r/R̄

)
eimϕe−α(r−R) r > R,

(2.2)

with R̄ = R + P
k0

√
n2−1

being the effective radius and Tm1 denoting the first zero2 of Jm
[94, 95]. The wave number in vacuum is k0 = 2π/λ. Although optical modes in spheroids
are not pure TE or TM, those from the present approximation can be safely treated as
such with ζ ' z and P = 1 for TE-like modes and ζ ' ρ and P = 1/n2 for TM-like modes.
The mode width rz in the z direction is given by

rz =
R3/4r

1/4
t√

m

m

(1−R/(4m2r))1/4
, (2.3)

illustrating the significant mode confinement inherent to toroids responsible for a smaller
modal volume than for spheres. Importantly, the meridional confinement depends on the
major radius R. The decay length of the evanescent field in the radial direction is then

α−1 ' λ

2π
√
n2 − 1

, (2.4)

where we note the role of the refractive index in the mode confinement and the scaling with
λ. In the same approximation, the mode number m of the fundamental mode is expressed

using nk0R =
√
T 2
m1 +m

√
R/rt−Pn/

√
n2 − 1 which leads to the same approximation for

a WGM as already explained for spheres.
A numerical simulation of the localization of the TE and TM WGM in a toroid with a

radius of 16µm is displayed in Fig. 2.2. It shows that the mode profile is “pressed” against
the dielectric interface and evanescently extends outside. In Ref. [21], it is shown that the
predictions from the analytical approximation and the numerical simulations deviate by
only a few percent.

2.2.3 Analysis of whispering-gallery mode losses in microtoroids

In equation (1.16), the total decay rate κ of the optical mode is defined as the sum of the
intrinsic decay rate of the cavity κ0 and the external decay rate due to the coupling to
the output mode κex. The description valid for the Fabry-Perot cavity used in chapter 1
holds for a toroid and the details of the coupling using a tapered fiber will be explained
in section 2.2.4. The reflow of the silica disk during the microfabrication produces toroids
with small surface asperities (few nm surface roughness). Consequently, surface scattering
is reduced and the storage time of WGMs reaches a record value of tens of ns. In the

2For WGMs, the approximation Tm1 ' m+ 1.8558m1/3 +O(m−1/3) can be used, as m � 1.
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Figure 2.2: Finite element method (FEM) simulation of a normalized electric field squared
amplitude of a WGM illustrating the equatorial localization of the mode near the surface, as well
as the evanescent part of the field outside of the dielectric torus, for TM (a) and TE (b) mode
types. The arrows corresponds to the field direction and amplitude. Adapted from [21].

context of optomechanics, it is nonetheless crucial to thoroughly characterize the losses as
they influence the resolved-sideband parameter and the absorption heating.

For the intracavity decay rate κ0, several mechanisms contribute to the losses:

κ0 = κrad + κmat + κwat + κsca. (2.5)

The intrinsic quality factor is then given by

Q−1
0 = Q−1

rad +Q−1
mat +Q−1

wat +Q−1
sca. (2.6)

• The reflection of the WGM optical field on the inner curved surface of the resonator
is not total. Part of the field is radiated outside. The resulting radiation losses are
analytically estimated following the calculation of the mode profile and its associated
eigenvalues as detailed in Ref. [85] for a sphere or in Ref. [92] for a spheroid, or using
perturbation analysis as in Ref. [87]. The latter provides an estimation of Qrad > 1011

for a torus of dimensions of R > 40µm and rt > 2µm as typically used in this work.

• Material losses are expressed by Qmat = 2πn/αλ, where α is the loss due to absorp-
tion by the silica material and Rayleigh scattering induced by bulk inhomogeneities.
At visible and near-infrared wavelengths, fused silica is very transparent, leading to
an estimated Qmat ' 1010 for a sphere at 630 nm [96] and more than 1011 for higher
wavelengths [97]. Moreover, the fabrication method of the silica itself strongly in-
fluences its absorption properties. To grow silica from silicon wafers, two distinct
methods are employed: wet oxidation where the oxidation is mediated by water and
dry oxidation using dioxygen [98]. Unavoidably, water and hydroxyl group OH in-
corporates in the silica structure grown from wet oxidation [99] typically used for our
samples. This leads to extra material absorption compared to the dry method [100].
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• Another important source of losses originates from the absorption by the water layer
that unavoidably deposits on the surface of the resonator. Indeed, the fabrication
method leaves the fused silica subjected to adsorption of H2O molecules from the
ambient air within typically 100 s after formation [96]. The layer couples to the
evanescent part of the external field and absorbs power, thereby heating the structure.
Experimental results demonstrate that this phenomenon significantly contributes to
the overall loss mechanism at 1550 nm for silica toroids (typical Q of 108) [101] and
spheres (typical Q of a few times 108) [101], together with bulk absorption.

• At lower wavelengths, the total losses are dominated by light scattering from the
surface inhomogeneities [102, 101]. The surface scattering quality factor is Qsca ∝
λ3/σ2B2, where σ is the root-mean-square surface roughness and B the correlation
length [97], which were measured to be 2 nm and 5 nm respectively for a typical silica
sphere employing a similar fabrication method as in this work [102]. For toroids,
the stronger polar confinement leads to a Q factor more strongly dominated by Qsca

compared to spheres since the field couples to the interface over a larger surface. This
explains why toroids reach scattering-limited Q ' 108 [101] while spheres exhibit
higher values up to 8 · 109 [96, 102], close to theoretical estimations [97] at 780 nm.

In the context of optomechanics, it is then justified to work at lower wavelengths where
the losses are dominated by surface scattering. There, experimentally achieved optical Q
are similar to those obtained at higher wavelength but losses by absorption are compara-
tively reduced, avoiding extra heating.

2.2.4 Optical fiber taper coupling to optical resonator modes

In the model presented in chapter 1, the Fabry-Perot cavity is pumped using a free space
laser. For simplicity, overlapping of the cavity and laser modes is assumed and the external
coupling rate κex comes from the input mirror’s transmission. Although free space coupling
is used for spheres [103], deformed spheres [104], even in the context of optomechanics [56],
waveguide coupling is normally employed with WGMs. Historically, the prism coupling
technique was initially used [67] but the bulkiness of the setup and the multimode operation
of the system is penalizing for applications in sensitive optical detection. For eroded
optical fibers, single mode coupling is achieved with large spheres’ WGM, although with
low efficiency [105]. It is then the tapered fiber coupling method, which combines efficient
single-mode coupling with limited setup dimensions, that is more appropriate for sensitive
optomechanics experiments. Its fundamental properties are briefly reviewed in this section.
On the experimental side, the fabrication technique of tapered fibers used in our group is
described in Appendix B.

Taper coupling

The tapered fiber is obtained by melting a standard silica optical fiber with a flame while
stretching it until the melted waist reaches a diameter of the order of the wavelength.
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The taper supports then single mode waveguide propagation in the glass rod, where the
surrounding air constitutes the cladding medium. As expected from a highly confined
waveguide, part of the field propagates evanescently outside the tapered fiber and can be
coupled to the WGM. For a tapered region of diameter rf , the radial dependence of the
expression of the electric field Ef(r) is proportional to [106]

Ef(r) ∝
{

J0(kfr)/J0(kfrf) r ≤ rf ,
exp (−γf(r − rf)) r > rf ,

(2.7)

with the radial evanescent decay constant given by

γf = αf
K1(αfrf)

K0(αfrf)
, (2.8)

with K0 and K1 denoting the modified Hankel functions of zero and first order. The term
αf is equal to

√
β2
f − k2n2

cl, with kf =
√

k2n2
f − β2

f , nf and ncl being the refractive index of
the tapered fiber and the cladding respectively, the latter being air in this case (ncl ' 1).

For typical taper radii rf of the order of λ used in our work, the propagation constant
simply approximates to [107]

βf '
√
k2n2

f − (2.405)2/r2f . (2.9)

Coupling of the fiber taper mode to the WGM is achieved not only by spatial over-
lapping but also by matching the propagation constants of both, as efficient excitation of
the WGM requires that both fields remain in phase across the interaction region. In the
approximation given by equation (2.9), the propagation constant is varied with the radius
of the taper. Experimentally, phase-matching is achieved by displacing the toroid along
the axis of the tapered region, until the optimum taper radius rf is reached. For typical
toroids (R > 10µm) and tapers (rf . λ), the phase-matching region extends over hundreds
of µm along the taper which makes the condition particularly easy to fulfill [90, 108].

Coupling regimes

Unlike for usual Fabry-Perot resonators, the external coupling rate of WGM resonators
can be varied by changing the distance d between the waveguide and the resonator. In this
case, the external coupling rate is expressed by κex ∝ exp (−γf (d− rf)) [106]. Different
coupling regimes can therefore be accessed over a displacement of the order of λ using
commercially available positioners [109]. For convenience, the coupling parameter

ηc = κex/κ (2.10)

is introduced, with ηc ∈ [0; 1].
By varying d, typical toroids can be undercoupled (ηc < 1/2, incident field mostly

transmitted), critically coupled (ηc < 1/2, full destructive interference of the input and
cavity field) or undercoupled (ηc > 1/2, intracavity field mostly transmitted).
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Ideality

When approaching the taper to the near-field of the cavity, it is desirable to achieve coup-
ling only to the fundamental mode of the waveguide. Unavoidably, in usual experimental
situations, the taper propagates higher order “ho” modes that may couple to the WGM,
This additional coupling to a lossy waveguide mode (that does not propagate out of the
taper) leads to an extra decay rate κho. In addition, the taper may scatter light when ap-
proached in the vicinity of the optical mode, inducing an additional decay κrad. Therefore,
the “ideality” of the coupling is defined as

I =
κex

κex + κho + κrad

, (2.11)

quantifying the relative coupling of the WGM to the fundamental mode of the waveguide.
The possibility to fabricate tapers supporting only the fundamental mode and the adiabatic
nature of the fiber to taper transition allows to reach idealities of more than 99.97%, while
simultaneously having a strongly coupled fundamental mode κex ' 104(κho + κrad + κ0)
[110].
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2.3 Mechanical modes in silica toroidal resonators

In contrast with the generic scheme introduced in chapter 1, optomechanical coupling in
our monolithic cavities arises between the whispering-gallery mode and an internal mode
of vibration of the structure. Microtoroids, however, support a large number of mechanical
modes that cannot be simply derived analytically. For their similarities with modes in
toroids, the analytical derivation of acoustic modes in spheres is first presented in this
section. The results of numerical simulations are introduced and we show next that they
accurately predict the resonance frequency values experimentally measured [89]. We focus
on the radial breathing mode corresponding to a peripheral oscillation that couples the
strongest to the optical whispering-gallery mode and we briefly discuss its different loss
mechanisms.

2.3.1 Supported mechanical modes in toroids

Analytical derivation in the case of spheres

The derivation of acoustic modes in silica microspheres is reminded here. The following
calculations are based on Ref. [20] and are summarized in Ref. [111] where analytical
derivations, finite element method (FEM) simulations and experimental measurements are
shown to agree satisfyingly. The deformation of a sphere induced by an acoustic wave is
described by the displacement vector ~u(~r, t) that denotes the displacement of a point to
the coordinate ~r at a time t. In an isotropic homogeneous medium (such as silica), the
equation of motion of the displacement field reads [112]

ρ~̈u(~r, t) = (λ+ 2µ) ~∇ ·
(
~∇ · ~u(~r, t)

)
− µ~∇×

(
~∇× ~u(~r, t)

)
, (2.12)

with ρ being the material density and with the Lamé coefficients defined as

λ =
σE

(1 + σ)(1− 2σ)
, (2.13)

µ =
E

2(1 + σ)
. (2.14)

σ is the Poisson’s ratio and E the Young’s modulus of the material.
Equation (2.12) admits a discrete number of solutions within the sphere. These acoustic

modes are decomposed as [20]

~u(~r, t) =
∑
n

~un(~r, t) =
∑
n

cn(t)~u
0
n(~r) =

∑
n

c̄n~u
0
n(~r)e

−iΩnt, (2.15)

where c̄n is the displacement amplitude of a mode of index n oscillating at an angular
frequency Ωn and ~u0

n(~r), is the displacement pattern normalized such that∫
V
~u0
n(~r)~u

0
n′(~r)d3r∫

V
d3r

= δ(n− n′). (2.16)



2.3 Mechanical modes in silica toroidal resonators 31

To solve the equation of motion (2.12), the scalar potential φq(~r, t) and the vector

potential ~Φq(~r, t) defining the displacement vector are introduced [113]

~u(~r, t) = ~∇φ0(~r, t) + ~∇× ~Φ1(~r, t) + ~∇× ~∇× ~Φ2(~r, t). (2.17)

The potentials are given in spherical coordinates by

~Φq(~r, t) = rφq(~r, t)~er for q = 1, 2 (2.18)

and

φq(~r, t) =
∑
l,m

Aqnlmjl

(
Ωnlmr

vq

)
Y m
l (θ, ϕ)e−iΩnlmt, (2.19)

where jl is the spherical Bessel function of index l, Y m
l the spherical harmonic function,

Aqnlm a normalization constant and ~er the radial unity vector. v0 =
√

(λ+ 2µ)/ρ is the

longitudinal sound velocity and v1 = v2 =
√
µ/ρ is the transverse sound velocity. The

acoustic modes are characterized by their integer mode numbers comprising the radial
mode number n (n = 0, 1, 2, . . .), the angular mode number l (l = 0, 1, 2, . . .), and the
azimuthal mode number m (m ∈ [−l, l]) and by their angular eigenfrequencies Ωnlm.

The mode of interest realizing the strongest optomechanical coupling to the WGM
is the radial breathing mode (RBM) characterized by (n, l,m) = (1, 0, 0), for which the
displacement field is purely radial. Its displacement pattern reads

~u0(~r) =
A

r2
(sin(kr)− kr cos(kr))~er, (2.20)

where the mode numbers are dropped for readability, and where k = Ωm/v0 is the wavenum-
ber given by the characteristic equation. We take Ωm as the mechanical angular frequency
of the mode of interest for consistency with chapter 1. Thus, we have(

1− 1

4

v20
v21

k2R2

)
tan(kR)

kR
− 1 = 0 (2.21)

from the calculation of the strain tensor, for a sphere of radius R [20]. For fused silica,
this equation is solved for kR ' 2.4005 and gives the mechanical angular frequency of the
RBM of the sphere Ωm ' 2.4005v0/R. It estimates to 91.2MHz for a sphere of diameter
50µm. The resonance frequency estimated by FEM simulation is less than 1% different,
proving the relevance of the numerical model to estimate the parameters of the mechanical
modes supported by the spheres.

Numerical modeling in the case of silica toroids

Using FEM simulation tools, acoustic modes can be accurately estimated in toroids despite
the absence of analytical derivations due to their reduced number of symmetries. Figure
2.3 shows FEM simulation results illustrating the displacement pattern of the various
mechanical modes supported by the structure, with exaggerated displacement [89]. As in
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Figure 2.3: Three dimensional FEM simulations of the 19 first mechanical modes showing
the exaggerated and color-coded displacement patterns. Mode 14 is the RBM, which couples the
strongest to the optical mode. Adapted from Ref. [89]. Inset: RBM displacement on a different
geometry closer to the type of samples used in chapter 3. Adapted from Ref. [55].

the case of spheres, the acoustic mode that couples the most strongly to the WGM is the
RBM, numbered 14 in Fig. 2.3. Its displacement pattern is illustrated in the inset, with a
frequency Ωm/2π = 75MHz for a radius R = 22µm.

The experimental values of 19 different modes ranging from 1 to 100MHz deviate by less
than 2% when compared to numerically simulated values. The FEM simulation therefore
appears as a powerful tool for investigating the mechanical properties of toroids. It is
used in section 3.2.2 for the engineering of mechanical losses of the RBM induced by the
coupling to other supported modes.

In silica microtoroids, typical RBM resonance frequencies are much larger than typical
optical linewidths at 780 nm (on the order of 1MHz). When the cavity is close to critically
coupled, the optomechanical system is then in the resolved-sideband regime. Silica micro-
toroids satisfy therefore the fundamental condition required to reach the motional ground
state.

2.3.2 Mechanical losses

The mechanical mode under consideration is subject to several types of mechanical losses
adding up. The total mechanical damping rate yields

Γm = Γgas + Γclamp + Γmat + Γother, (2.22)

leading to a mechanical quality factor given by

Q−1
m = Ωm/Γm = Q−1

gas +Q−1
clamp +Q−1

mat +Q−1
other. (2.23)

The contributions to the damping from the surrounding gas (Q−1
gas), from the clamping

of the moving mass (Q−1
clamp) and from the material (Q−1

mat) require particular attention in
the context of optomechanics and are described in section 3.2.
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Although not dominant in our system at room and low temperatures, other fundamental
contributions are responsible for Q−1

other and are summarized in Ref. [21]:

• Thermoelastic damping comes from delayed flow of the heat generated by the strain
field propagating in the medium [114].

• Surface effects such as oxidation, adsorption, and irregularities constitute also another
source of dissipation [115].
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2.4 Optomechanical coupling

The complex 3D geometry of the system makes its parametrization less straightforward
than in the case of the linear Fabry-Perot cavity depicted in Fig. 1.1. Consequently, in
this section, we introduce the effective displacement and the effective mass parametrically
equivalent to x(t) and meff for the simplified case, allowing to apply the theoretical conside-
rations given in chapter 1 to the non-trivial geometrical structures of the microtoroids.

2.4.1 Effective displacement

To map the complex three-dimensional vectorial displacement ~un(~r, t) onto a simple one-
dimensional scalar displacement x(t), we introduce the weighting function ~w(~r) and define
the displacement as

x(t) =

∫
V

~w(~r) · ~u(~r, t)d3r =
∑
n

cn(t)

∫
V

~w(~r) · ~u0
n(~r)d

3r

≡
∑
n

cn(t)〈~w(~r) · ~u0
n(~r)〉. (2.24)

The integral 〈~w(~r) · ~u0
n(~r)〉 defines the relative spatial overlap of the strain wave and the

optical field. The frequency shift induced by this scalar displacement is however determined
by the optomechanical coupling constant G = dωc/dx.

In experiments using the Fabry-Perot cavity configuration where the back mirror moves
as a whole, the weighting function is simply defined using the Gaussian profile of the
intracavity mode, which can be analytically derived [19]. For WGMs in toroids, an accurate
approximation can be made by considering the mechanical displacement as a perturbation
of the electromagnetic mode due to the displacement of polarizable material (we consider
here a magnetic permeability of glass close to unity). The weighting function then reads
[20]

~w(~r) ≈ 1

2πR
δ(z − z0)δ(r −R)~er, (2.25)

where z = z0 is the coordinate of the equatorial plane. This expression approximates the
spatial overlap to be confined to the periphery of the toroid at r = R with zero transverse
extension. Recasting Eq. (2.25) in Eq. (2.24) shows that for a toroid the scalar displacement
is simply the change of the cavity radius and the optomechanical coupling constant is then
given by G = −ωc/R. It should be noted additionally that the change of refractive index
induced by the strain accounts for less than 20% of the frequency shift [20, 82].

2.4.2 Effective mass

The scalar displacement x(t) changes the angular resonance frequency of the cavity Ωc by
an amount quantified by the optomechanical coupling parameter G. Similarly, the spatial
overlap of the optical and mechanical mode redefines the mechanical susceptibility of the
mechanical mode through the effective mass meff introduced here.
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We consider the potential energy Un of the n-th mode of interest

Un =
1

2
MnΩn(cn(t))

2 (2.26)

with

Mn =

∫
V

ρ|~u0
n(~r)|2dV (2.27)

simply being the moving mass of the n-th mechanical mode. We then use the normalized
displacement defined in Eq. (2.24) in the case of the n-th mode and recast it into Eq. (2.26)
Un = 1

2
meff,nΩn(xn(t))

2 with the effective mass defined by

meff,n =
Mn

〈~w(~r) · ~u0
n(~r)〉2

. (2.28)

For the typical toroidal resonators used, the values of the effective mass range from 0.5 to
2× 10−11 kg.

The optomechanical system presented in this chapter is parametrized to the unidimen-
sional system of chapter 1, with an effective displacement x(t) and an effective mass meff

taking into account the complex spatial extensions of both optical and mechanical modes.
In addition, it is shown that the electromagnetic radiation pressure force within the clas-
sical framework of the propagating mode exerts a force in the radial direction exactly
equivalent to the radiation pressure force derived in Eq. (1.8) [20]. Hence, the theoretical
framework introduced using the simple unidimensional model can be directly applied with
the parametrization of the structure described in this chapter.
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Chapter 3

Optomechanical cooling to low
phonon occupancy

3.1 Introduction

In the two previous chapters, it has been theoretically demonstrated that silica microtoroids
are promising candidates for the implementation of dynamical backaction cooling mediated
by radiation pressure: their intrinsic properties make the preparation and detection of the
mechanical radial breathing mode in its quantum ground state conceivable.

A proof-of-principle experiment demonstrated the phenomenon in silica microtoroids
in the group in 2006 by reducing the phonon occupancy of a 58-MHz mechanical radial
breathing mode from more than 100 000 at room temperature down to ∼ 4 000. Diverse
factors have limited the performance: the equation describing the mean number of final
phonons (1.54)

n̄ = n̄m
Γm

Γeff

+ n̄min

allows us to analyze those factors separately. Nevertheless, this pioneer accomplishment
does not answer the question of whether it is experimentally possible to use dynamical back-
action to cool the mechanical oscillator to its motional ground state and to subsequently
detect a genuine quantum signature. By proving a phonon occupancy of 9±1 solely limited
by simple technical issues, the experimental work presented here strongly suggests that the
aim is within reach. Moreover, very recent follow-up measurements performed in our group
combining the optimizations suggested here demonstrated an occupancy of 1.7± 0.1 [54],
offering convincing evidence for the relevance of the approach used here. All experimental
efforts that have paved the way to the aforementioned results are presented in this chapter.

In section 3.2, the coupling of the mechanical oscillator to the thermal environment
is studied by looking at the various mechanisms that contribute to the mechanical dissi-
pation Γm. The damping related to the surrounding gas and the intermodal coupling are
negated, respectively, by placing the sample in a low-vacuum chamber and by modifying
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the geometrical structure to incorporate spokes, making use of the mechanical engineer-
ing control provided by microfabrication technologies [116]. The mechanical dissipation,
after these optimizations, is dominated by the material dissipation mostly due to silica
defect states. The temperature dependence of the mechanical properties induced by these
two-level systems are thoroughly studied.

In section 3.3, the quantum aspect of the cooling process leading to the minimum oc-
cupation n̄min is considered more deeply. The fundamentally required resolved-sideband
configuration is experimentally demonstrated for the first time in the context of optome-
chanics [117].

In section 3.4, the influence of the thermal environment at the average occupancy n̄m

is reduced by cryogenically refrigerating the sample using a 4He cryostat. Due to this suc-
cessful implementation, it is possible to explore novel optical dispersive properties intrinsic
to the whispering-gallery mode configuration of the silica resonators [118], and to study
the thermodynamical aspects of the cryogenic cooling [119]. The success of this technical
achievement is proven by laser cooling the mechanical mode down to a phonon occupancy
of 63 ± 20 [41], providing the first demonstration of cavity optomechanics at cryogenic
temperatures and achieving a phonon occupancy on par with other similar experiments
[56, 53].

The final optimization of the experiment using a 3He refrigeration technology is demon-
strated in section 3.5 by measuring a final phonon occupancy of 9±1 using a purpose-built
balanced homodyne interferometer [55]. Although the cooling in this case is still limited by
the excess heating resulting from the absorption of the light transversely scattered by the
tapered fiber, this result demonstrates that the experiment set up for this analysis can host
the dynamical backaction cooling down to the motional ground state of the macroscopic
oscillator.

Finally, section 3.6 reports on the effect of the mutual optomechanical interaction on
the optical properties of the resonator. Because this phenomenon shares strong similarities
with atomic electromagnetically induced transparency, it is referred to as optomechanically
induced transparency; its first observation is reported here [120].
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3.2 Reduction of the mechanical dissipation

The reduction of the mechanical damping of mechanical oscillators is a crucial aspect that
has received significant considerations, especially in the field of atomic force microscopy
(AFM). Since its inception in 1986 [121], the most common AFM principle resides on the
detection of the change of frequency of a mechanical oscillator probing the atomic force
gradient of a sample’s surface. To improve the detection sensitivity, experimental efforts
have focused on increasing the oscillator’s mechanical Q. The performances achieved had a
major impact on recent successful mechanical detection of single spin magnetic force [122],
single adsorbed gold atom masses [123] and single adsorbed protein masses [124].

Similarly, in the context of optomechanics, it is crucial to the reduce the mechanical
dissipation to augment the sensitivity and to lower the thermal noise level (see equation
(1.46)). This section presents the efforts required to produce optomechanical systems whose
mechanical dissipations are dominantly limited by the intrinsic properties of the material
used. By operating at low pressures below 1mbar, gas friction is rendered negligible and
allows to study the acoustic emission in spectrally-close modes responsible for the clamping
damping. By proper mechanical engineering of the vibrating structure, the contribution
due to intermode coupling is negated and the dissipations inherent to silica thus becomes
the dominant mechanism, at both room and cryogenic temperatures.

3.2.1 Gas damping

When a mechanical object oscillates in its surrounding gas, it experiences a force propor-
tional to its velocity adding extra friction Qgas to the oscillating movement (see Eq. (2.23)).
Depending on the pressure, three regimes corresponding to three different damping mecha-
nisms occur [125]:

• Viscous regime. When the mean free path of molecules is smaller than the charac-
teristic dimension of the device, the interaction rate between molecules is very high
and the damping mechanism is usually described by introducing a gas viscosity. Si-
multaneously, the inertial force of the gas modifies the resonant frequency of the
mechanical oscillator.

• Molecular regime. In the opposite situation, molecules of the gas are non interacting
among each others and damping of the motion solely comes then from collisions with
independent molecules [115].

• Intrinsic regime. When the number of gas molecules is low enough to neglect their
influence on the motion, damping mechanisms are dominated by the intrinsic pro-
perties of the mechanical oscillator.

Construction of the vacuum chamber

To reach the intrinsic regime, the experimental coupling setup – including the toroid, the
tapered fiber on the holder and the positioners – is placed in a vacuum chamber.
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Figure 3.1: Picture (a) and 3D rendering (b) of the vacuum chamber designed to host a full
coupling stage. The vacuum construction allows to reach a base pressure of 6× 10−3mbar using
only the rotary pump (Leybold DB16) and below 10−5mbar using a turbomolecular pump (TP)
(Leybold TD20) backed by the rotary pump. Coupling in vacuum is enabled by the combined use
two 3-axes displacement stages using piezoelectric stepper motors (New Focus 8302-UHV) for
coarse positioning and a piezoelectric flexural stage (Physik Instrument P-611 series) for fine
positioning. The toroid-taper distance is monitored with two appropriate high working distance
microscopes located outside the chamber imaging through the top (non represented) and the side
vacuum-tight windows. MV: manual valve.

In Fig. 3.1, the chamber is evacuated using a turbomolecular pump backed by a rotary
pump, allowing a significant pumping speed at a pressure below 10−5mbar. ISO-standard
(Viton R©) vacuum joints are used for the chamber as the best compromise among ease of
operation, cost, and targeted pressure residing in the high vacuum regime.

To maintain low oil contamination within the pumping circuit, an activated alumina
trap is placed before the rotary pump to avoid back diffusion of the lubricating oil. The
turbomolecular pump bearings are ceramics-based, avoiding the use of oil for lubrication
and therefore keeping the chamber free of contamination from this pump. Measurements
of optical quality factors of silica toroids in the evacuated chamber show no contamination.

After thorough pumping of the chamber, a base pressure below 10−5mbar is reached.
Under usual experimental conditions, the chamber is evacuated to the base pressure, then
the valves are closed. The pressure is then slowly made to rise thus allowing to measure
the mechanical Q factor versus the pressure spanning over 8 orders of magnitude.
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Measurements of mechanical quality factors

Measuring the mechanical Q of toroids placed in the vacuum chamber enables to charac-
terize the intrinsic regime of the mechanical oscillator. For experimental practicality, the
technique of the side-of-the-fringe detection technique is employed.
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Figure 3.2: (a) Side-of-the-fringe detection setup. A 1550 nm fiber-coupled external cavity diode
laser (ECDL) (New Focus Velocity series) probes the toroid placed inside the vacuum chamber.
Matching of the polarization is ensured using a fiber polarization controller (FPC). The pho-
todetected transmission signal (New Focus 1811 InGaAs, fiber coupled) provides the error signal
for the locking electronics. The photodetector’s (PD) bandwidth is of 125MHz, larger than the
typically detected mechanical fluctuations below 100MHz. OSC: oscilloscope. ESA: electrical
spectrum analyzer. (b) Side-of-the-fringe detection principle. When the laser is detuned by ±κ/2,
thermally driven mechanical vibrations modulate the intensity of the output field sout. Electrical
spectrum analysis of the photodetected intensity allows to infer the mechanical parameters.

As depicted in Fig. 3.2 (a), a 1550 nm external cavity diode laser (ECDL) is used
for characterization. The large mode-hop free detuning range of the Littman-Metcalf
configuration allows to quickly address the desired optical resonance frequency of the toroid.
Using the positioners, the critical coupling condition ηc = 1/2 is reached for better contrast
in the transmission signal. Then, when the appropriate DC electric signal is subtracted,
the transmission signal is directly used as an error signal to be fed back into the electric
input of the ECDL frequency tuning port. An appropriate electronic closed-loop circuit
ensures the locking mechanism. Thus, the laser is locked at a detuning ∆̄ = |κ/2| with a
locking bandwidth limited by the actuator at ∼ 2 kHz. This bandwidth is sufficiently large
at low input powers to maintain locking even in the presence of the detuning non-linearity
induced by absorption heating.

The principle of this detection is described in Fig. 3.2 (b). When the readout laser
is detuned from the optical cavity resonance frequency, mechanical fluctuations are di-
rectly transduced into intensity fluctuations that are spectrally analyzed. This technique
is particularly convenient for the rapid test of many samples at room temperature and
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its construction is simple. From the parity of Ωeff and Γeff (Eqs. (1.41) and (1.42)), ra-
diation pressure effects that unavoidably affect the mechanical parameters can be simply
subtracted from two successive measurements at ∆̄ = −κ/2 and ∆̄ = +κ/2. In addi-
tion, at room temperature, this technique is sensitive enough to enable low input power
measurements precluding thermal effects.

The measurements of the mechanical quality factor Qm = Ωm/Γm when the environ-
mental pressure is varied from atmospheric pressure (ca. 1000mbar) to less than 0.1mbar
are presented in Fig. 3.3 for a typical toroid (a) and for a disk (b). The clamping-induced
damping is optimized for these samples as explained in the next section. The intrinsic
damping regime is reached for a pressure below 1mbar.
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Figure 3.3: Mechanical quality factor of the radial breathing mode of a silica toroid (a) and
of a silica disk (b) versus pressure. The mechanical frequency is 47.4MHz for the toroid and
37.1MHz for the disk. The vertical error bars account for the radiation pressure induced change
of Qm. The horizontal error bars account for the slow pressure drift between two consecutive
measurements. As pressure drops, Qm of the toroid increases from 5600 to 17300. The regime
of intrinsic dissipation is achieved at a pressure below 1mbar, symbolized by the dashed gray
asymptote. A similar behavior is observed for the disk.

For the cryogenic implementation, it is therefore possible to use exchange gas pressures
of 1mbar to thermalize the sample without degrading the mechanical Q.
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3.2.2 Clamping-induced damping

The mechanical attachment of the moving mass to the environment results in clamping-
induced damping. Particular attention has been given to this type of losses in the com-
munity of cantilever-based detection [126] and of gravitational wave interferometers [127],
where high mechanical Q oscillators are desirable for improved sensitivity. For toroids,
clamping losses can be addressed due to the control over the geometrical parameters of the
structure using microfabrication.

In this section, we measure the mechanical quality factor versus the size of the pillar and
show that it exhibits a non-linear dependency [116]. This is explained by mechanical mode
coupling, leading to the hybridization of the mechanical parameters of the radial breathing
mode with contiguous modes, especially with the flexural mode of the central disk. Using
a novel microfabrication technique, “spoke” toroids are designed to reduce this coupling.
These structures exhibit a measured mechanical Q reaching up to 50000 at a frequency
above 20MHz, solely limited by damping due to the material at room temperature.

Measurement of the coupling to the neighboring modes

To study the influence of the attachment of the mechanical structure to the substrate,
the mechanical Q of the RBM is measured for varying pillar diameters. Between each
measurements, the toroid is placed in the etching chamber introduced in appendix A and
a controlled train of etching pulses is applied to progressively reduce the pillar radius rp to
the desired value. Figure 3.4 (a) shows the results of these measurements for six different
toroids at room pressure. A reproducible drop of the mechanical Q is clearly observed at
specific undercuts u = (R− rp)/R (Fig. 2.1), with R being the major radius of the toroid.

An insight on this observation is given by comparing the measured RBM mechanical
frequencies with the numerically simulated frequencies of the modes supported by the
structure and spectrally adjacent to the RBM. The comparison depicted in Fig. 3.4 (b)
shows that at specific undercuts, a neighboring mode is pulled spectrally closer to the RBM
but avoids crossing, revealing a significant coupling.

To have a precise description at the phenomenon, we focus on the RBM “r” and flexural
“f” mode of the disk (mode 8 in Fig. 2.3), and their mutual coupling. Both mechanical
parameters of the modes have a strong linear dependency on the undercut that can be
approximated as

Ωr,f = Ω
(0)
r,f + Ω

(1)
r,f u (3.1)

Γr,f = Γ
(0)
r,f + Γ

(1)
r,f u. (3.2)

They correspond to the bare values, experimentally unaccessible as u is varied because
coupling has to be accounted for. We then parameterize the two modes by two coupled
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Figure 3.4: Radial breathing mode’s (RBM) mechanical Q and frequency versus relative un-
dercut. (a) Measured mechanical Q of the RBM of 6 toroids versus undercut. A reproducible
drop of mechanical Q is visible for undercuts u ≈ 0.7 and u &≈ 0.95. (b) Measured mechanical
frequency of the RBM (blue dots) versus undercut showing the avoided crossing. The red lines
correspond to the numerically simulated mechanical frequencies of the modes supported by the
structure. The mode coupling phenomenon is illustrated by the corresponding evolution of the
simulated displacement patterns, shown in inset. Adapted from Ref. [116].

harmonic mechanical oscillators whose equations of motion are

ẍr + Γrẋr + Ω2
rxr + C2xf = 0 (3.3)

ẍf + Γf ẋf + Ω2
f xf + C2xr = 0, (3.4)

with C being the coupling parameter. This system supports a couple of eigensolutions
(+,−) (normal modes) whose respective frequencies and dampings are given by

Ω± +
i

2
Γ± =

1

2
(Ωr + Ωf) +

i

4
(Γr + Γf)±

√(
1

2
(Ωr + Ωf) +

i

4
(Γr − Γf)

)2

+
C4

4ΩrΩf

. (3.5)

Figure 3.5 shows a fit of the data to the model described by Eq. (3.5). The bare para-
meters given by expressions (3.1) and (3.2) are represented by the dashed lines. The fitted
solid lines show an agreement with the experimental points, outputting as a fit parameter
a coupling C/2π = 14MHz. This is a significantly high value compared to the bare
frequencies. This important coupling of the oscillatory motions of both modes originates
from the particular geometry of the toroid. The torus is offset from the equatorial plane of
symmetry of the disk, thus the radial motion induces vertical displacement. Additionally,
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Figure 3.5: Comparative mechanical Q (a) and frequency (b) versus relative undercut for the
RBM and the flexural mode of a radius R ≈ 28µm and thickness td = 1µm toroid. The mea-
sured values (dots) are fitted with the analytical model of expression (3.5) (solid line) with Q
factors Q± = Ω±/Γ± and frequencies Ω±. The avoided crossing between the modes illustrate
their mutual coupling. The dashed lines represent the bare values Γr,f and Ωr,f . The numerically
simulated displacement patterns illustrate the mode hybridization through the crossing. Adapted
from Ref. [116].

the disk is clamped only on its bottom side, therefore enhancing the vertical displacement
under radial oscillations.

When u is varied, the bare frequencies get closer until hybridization becomes important.
The two coupled eigenmodes mix frequencies and dampings, and both measured mechanical
Qs drops, as observed in Figs. 3.4 (a) and 3.5 (a).

To increase the mechanical Q, the geometrical parameters of the structure are scanned
to find a toroid combining reduced intermode coupling and a small attachment section.
The optimum geometry is hit for toroids supported by a “needle pillar” exhibiting an
intrinsic mechanical Q of 31000 for a pillar diameter close to 500 nm as shown in Fig. 3.6.
This type of structure, which is relatively easy to fabricate, will be used in a cryogenic
environment to perform the dynamical backaction cooling.

Mechanical Q engineering

Inspired by the work performed in the context of fundamental studies of mechanical dis-
sipations [128], the clamping losses are quantified using numerical tools. The results are
subsequently used to perform geometrical optimization of the structure.

When hybridizing to other modes, the mechanical energy of the RBM is ultimately
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Figure 3.6: Scanning electron microscope picture of a needle-pillar supported structure exhibiting
an intrinsic mechanical Q of 31000 at 73.5MHz. During the imaging, the structure was broken
close to its weakest point, revealing the top of the supporting needle pillar. Adapted from Ref. [117].

radiated through the pillar. To quantify this loss, the power Pmech carried by the emitted
mechanical wave is numerically evaluated and the parameter D is introduced [116]

D =
ΩmEmech

Pmech

= Emech

(
ρcsΩm

∫
Ap

|∆z(r)|2dA

)−1

, (3.6)

where Emech is the total stored mechanical RBM energy, ρ the material density, cs the
sound velocity and ∆z(r) the vertical displacement of the pillar/disk interface of section
Ap. This parameter is the ratio of the energy stored to the energy radiated per cycle
and is homogeneous with a Q factor. Comparisons of simulated D and experimental
results reveal a proportionality Qclamp = αclamp D [116] where the prefactor αclamp ≈ 3
accounts for the impedance mismatching that cannot be simulated with the current model.
Thus, experimental mechanical Q limited by clamping-induced damping can be numerically
quantified.

Engineering of the coupling parameter C is technically difficult because its value is in-
herent to the fabrication technique employed to produce the toroids. However, frequency
mismatching of the RBM with neighboring modes is controllable over the size of the struc-
ture. It is moreover directly affecting ∆z(r) and can therefore be numerically quantified
by D. To increase D, the central disk is cut into smaller geometrical forms whose eigenfre-
quencies are mismatching the RBM frequency. An implementation of this optimization is
to have the outer rim carried by spokes (Fig. 3.7) of defined lengths and widths controlled
during the microfabrication process.

The fabrication process of the spoke toroids is detailed in Fig. 3.8. It is adapted from
the conventional process presented in appendix A allowing the fabrication of high optical
finesse cavities. Importantly, optical quality factors are not affected by the newly developed
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Figure 3.7: Scanning electron micrograph of a R ' 45µm spoke toroid (scale bars of 5µm
each). The insets show the deviation from ideal pattern transfer, resulting from both incorrect
optical projection (rounding of the corners) and SiO2 chemical etching isotropy (curved vertical
steps). Adapted from Ref. [116]

process, therefore decoupling optical and mechanical performance engineering on the same
optomechanical system.

Spoke toroids with mechanical Q as high as 50000 are measured for RBM frequencies
above 20MHz. Experimentally, it is shown that these samples do not see their mechanical
Q strongly affected by the further reduction of the pillar diameter, additionally proving
that mode hybridization is strongly controlled and optimized. Figure 3.9 (a) shows a
numerically simulated displacement pattern of the RBM of an optimized spoke toroid
illustrating the localization of the mechanical displacement to the outer rim. Negligible
power is carried by the outcoupled mechanical wave, thus leading to a high mechanical Q
of the RBM.

Although very high values of D are numerically simulated, measurements show that
the value of Qm ' 50000 cannot be exceeded at room temperature. Indeed, it corresponds
to the limit set by the material dissipation, as illustrated in Fig. 3.9 (a). The blue points
are measurements of the mechanical Q of various spoke structures, plotted versus their
parameter D numerically evaluated after estimation of the geometry of the structure.
Clearly, the mechanical Qs saturate at a value determined by Qmat and estimated using
the model presented in the next section. The solid line is a fit of the experimental points

with the model Qm =
(
(αclampD)−1 +Q−1

mat

)−1
. The fit parameter αclamp is slightly lower

than previously estimated because impedance mismatching conditions are modified by the
use of different oxide thicknesses td.

It can be thus concluded that clamping-induced damping is made quantitatively neg-
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Figure 3.8: Microfabrication steps of a spoke toroid, adapted from the fabrication steps of a
normal toroid presented in appendix A.
(a) After optical photolithography, the patterns of the spoke disks are chemically etched in the
SiO2 layer, eventually using a Süss MA6 mask aligner for its better imaging and pattern transfer
performance compared to the MJB3 model. (b) A second photoresist pad is deposited onto the
first etched structure, blanking the spoke openings. (c) The isotropic etching with gaseous XeF2

pulses releases the outer rim, since the etching reactant is highly selective with both SiO2 and
photoresist. Contact between the outer rim and the formed silicon pillar is ensured by stopping
the etching accordingly. (d) The remaining photoresist pad is thoroughly removed using cycles
of acetone, isopropanol, DI water and oxygen plasma ashing. (e),(f) Using a CO2 laser reflow
technique, the toroid is formed according to the same principle as for normal toroids, as thermal
contact of the melting region to the Si pillar is ensured (see appendix A). Previous considerations
for the reflow process still hold. (g) A second train of XeF2 pulses is applied, releasing the spokes
without measurably affecting the toroid’s optical properties. Adapted from Ref. [116].
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Figure 3.9: (a) Measured mechanical Q versus parameter D for spoke toroids (blue dots) and
normal toroids (black dots). The dashed line represents the mechanical Q versus the parameter
D as previously estimated. The experimental mechanical Q saturates to Qm ' 50000 as expected
when material dissipation is taken into account. The horizontal error bars come from the uncer-
tainty of the simulated D-parameter due to the deviations of the simulated geometry with reality.
b) Displacement pattern of a geometrically-optimized spoke toroid simulated using FEM simula-
tions, revealing the very low acoustic emission of the RBM to the central part. The simulated
structure corresponds to the measured spoke exhibiting Qm = 50000 at 24MHz. Adapted from
Ref. [116]

ligible at room temperature compared to material damping, by using proper fabrication
engineering assisted with numerical estimation of the clamping losses. It leaves the mecha-
nical Q solely limited by material losses with values comparable with specifically designed
oscillators, such as tensioned silicon nitride beams [129] for frequencies above 20MHz.
Importantly, this is achieved without affecting the optical quality factor of the optome-
chanical device. Other approaches to describe the clamping-induced damping consider the
phonon tunneling through the pillar [130] and the destructive interference of the radiated
mechanical waves [131]. Recently, experimental results in the context of optomechanics
reported an equivalent numerical prediction and experimental mechanical Q of 51000 for
a frequency around 2MHz [132].

3.2.3 Material damping

Using a Peltier heater placed in the vacuum chamber directly underneath the chip, the
temperature of a spoke toroid is varied from room temperature to 400K. The measured
Qm then grows from 32000 to 80000 for a 38MHz RBM [116]. This increase results from
the temperature dependence of the material dissipations and their estimations reveal the
following contributions at room temperature:

• Network viscosity : the mechanical wave modulates the thermally excited modes and
therefore their effective temperature. Return to equilibrium with a finite delay is
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responsible for material damping and stiffness [133]. This phenomenon can also be
referred to as anharmonicity induced by the mechanical wave to the vibrational bath.
It is shown that this is a limiting source of dissipation, on the same order of magnitude
as two-level-system-induced losses [116].

• Thermally activated relaxation of two-level system (TLS): the mechanical wave coup-
les to the glass defects parametrized as energy TLS; delayed relaxation is responsible
for damping and frequency shift [134].

Quantitatively, TLS-induced dissipation dominates at cryogenic temperatures. It is
therefore thoroughly studied in this section. The three main regimes of dissipation, the
thermally activated regime (TAR), the tunneling regime (TR) and the resonant interaction
regime (RIR) are presented. Experimental data spanning from room temperature down
to liquid 3He temperatures are discussed, and the different contributions from the three
damping mechanisms are detailed. The implementation of the cryogenic experiment using
4He and 3He technology is discussed in sections 3.4.1 and 3.4.7, respectively.

Two-level-system induced damping

The physics of the TLS in amorphous solids derives from the simplified model of the tun-
neling of an atom across a potential barrier. In 1927, the vibrational spectrum of amonia
was explained by Hund from the quantum tunneling of the nitrogen atom from one posi-
tion to the symmetric one across the plane formed by the three hydrogen atoms [135]. The
atom occupies two energetically-similar positions separated by a potential barrier lifting
the energy degeneracy. The energy diagram can therefore be described by a two-level sys-
tem also referred to as a tunneling state. The same phenomenon was considered in solids
by Pauling in 1930 [136] and in glasses in 1972, to explain the anomalous thermodynam-
ical properties observed [137, 138]. This model is currently accepted for explaining the
mechanical properties of glasses from cryogenic temperatures to room temperature and we
present here the discussion from Enss and Hunklinger [139], focusing on silica.

In a theoretically perfect crystalline lattice of quartz (Fig. 3.10 (a)), each atom occupies
only one site, corresponding to the coordinate where its energy is minimized. For vitreous
silica however, due to the loss of long-range order, bonding angles may vary within the
lattice. Consequently, atoms or groups of atoms can occupy several local energy-minimum
positions, as depicted by A, B and C in Fig. 3.10 (b). Although simplified, this illustration
still provides a clear picture of the phenomenon. The problem is parametrized by an energy
TLS and the particle considered (which is not restricted by the model to be a unique atom)
may tunnel through the potential barrier of height V between the two levels separated by
a distance d and of initial energy asymmetry ∆0 (Fig. 3.10 (c)). The corresponding tunnel
energy splitting is given by

∆1 = ~Ω1e
−λ, (3.7)

for the intrinsic oscillation angular frequency within the individual atomic sites Ω1, and
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Figure 3.10: 2D structure of crystalline and glassy SiO2 and two-level system configuration. (a)
Crystalline structure of quartz. (b) Vitreous structure of silica in which atoms (A,B) or group of
atoms (C) can occupy energetically-similar conformations. Adapted from Ref. [140]. (c) Each site
is parametrized by a double-well potential, each well being separated by a distance d and shifted by
an energy ∆0. The potential barrier of height V is responsible for the tunneling coupling strength
∆1 within the two sites of splitting energy levels E. Adapted from Ref. [55].

with the corresponding tunneling parameter

λ ≈
√

2mV

~2
d

2
, (3.8)

depending on the mass m of the tunneling particle. Due to the tunneling, the new eigen-
modes of the coupled system exhibit an energy splitting of

E =
√
∆2

0 +∆2
1. (3.9)

Strain fields deform the TLS potential, altering ∆0 and ∆1 in quantitative different
ways and subsequently perturb the thermal equilibrium in the population of the two energy
levels. Relaxation towards equilibrium occurs after a relaxation time τ and the delayed
response yields a complex susceptibility of the medium, leading to a strain field velocity
shift and attenuation. Electromagnetic fields also couple to TLS and are affected similarly.

For TLS in glasses, the main channel of relaxation is the coupling to thermal phonons.
Transitions between the two levels are governed by different mechanisms as the temperature
is varied:

• At high temperatures, thermally activated transitions between the two levels occur,
involving many thermal phonons. The relaxation time follows the Arrhenius law for
this thermally activated regime.
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• For intermediate temperatures such as kBT & E, the thermal energy is generally too
low for activating jumps, and the main transition mechanism is tunneling through
the barrier V . This process is the tunneling regime.

• For low temperatures such as kBT . E, the thermal energy is too low to induce the
two relaxation processes previously described. Simultaneously, the population im-

balance given by ∆N ∝ tanh
(

E
2kBT

)
augments; therefore, direct resonant absorption

of phonons of angular frequency Ωm = E/~ is the main mechanism responsible for
the transitions. Although not being a relaxation process, this transition mechanism
is responsible for damping and shift of the speed of sound at very low temperatures.

General expression of the relaxation

If relaxation is the dominant process, the general expression of the mean free path of
phonons is given by

l−1(T ) =
1

ρc3s

∫∫ (
−∂n0

∂E

)
4B2∆

2
0

E2

Ω2
mτ

1 + Ω2
mτ

2
P̄ (∆0, λ) d∆0 dλ, (3.10)

with

n0 =
1

eE/kBT + 1
(3.11)

being the Boltzmann repartition function, τ the relaxation time of the individual TLS,
cs the speed of sound, ρ the mass density of the solid and B is the coefficient linking a
deformation δe to a change of E via δE = 2B(∆0/E)δe. Because of the irregularity of the
amorphous structure, a distribution of the different TLS potential parameters is introduced
with P̄ (∆0, λ). This is the volume density of TLS with an energy asymmetry between ∆0

and ∆0 + d∆0 and a with tunnel parameter between λ and λ + dλ. The integration is
performed on all interacting TLSs. The corresponding mechanical quality factor is given
by

Q−1
m (T ) =

csl
−1(T )

Ωm

. (3.12)

From the Kramers-Kronig relations, the change of the speed of sound is calculated and the
corresponding shift in mechanical resonance frequency is given by

δΩm(T ) = − Ωm

2ρc2s

∫∫ (
−∂n0

∂E

)
4B2∆

2
0

E2

1

1 + Ω2
mτ

2
P̄ (∆0, λ) d∆0 dλ. (3.13)

The frequency dependent terms in expressions (3.12) and (3.13) describe a Debye relaxator.
Hence, the maximum damping is observed when the condition Ωmτ = 1 is fulfilled.
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The thermally activated regime

For silica glass and at the mechanical frequency of interest for the RBM (tens of MHz
range), the dominant relaxation process is the thermally activated transition for tempera-
ture above 10K. The relaxation time is given by [141, 134]

τTAR ≈ τ1e
V/kBT , (3.14)

where τ1 represents the period of oscillation in individual wells.
Fig. 3.11 shows the measurements of Q−1

m and of the relative frequency shift (Ωm −
Ω0)/Ω0 of two toroid RBMs, with Ω0 arbitrarily measured, for a temperature range from
room temperature down to 1.65K. The inverse mechanical Q exhibits a significant increase
of two orders of magnitude at a temperature T ≈ 50K, as expected from mechanical losses
dominated by TLS relaxation in glass. The shape of the inverse mechanical Q curve can
be interpreted from the temperature dependence of τTAR. When T is varied, the TLSs
with potential barrier V satisfying the Debye relaxator condition ΩmτTAR = 1 participate
dominantly to the mechanical losses.
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Figure 3.11: TLS-induced variation of the inverse mechanical Q (main figure) and mechanical
frequency (inset) from room temperature down to liquid 4He temperature. The two figures show
the experimental points measured from the radial breathing mode of two different toroids. The
solid line of the main figure is a fit according to the expression of Q−1

m (3.15). The data measured
from Ref. [142] are superimposed on the graph, illustrating the quantitative correspondence with
a dedicated acoustic wave attenuation experiment. The inset shows the corresponding relative
frequency shift, where the solid line is a plot of the equation (3.17) using the same values as in
the main figure. Adapted from Ref. [118].

In the main part of Fig. 3.11, the solid line is a fit to the expression

Q−1
m = Q−1

clamp +Q−1
TAR, (3.15)
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using only the inverse clamping Q as a fit parameter. The simplified expression of the
inverse mechanical Q governed by thermally activated relaxation is [134]

Q−1
TAR = CΦ

(√
2kBT

∆C

)
1

kBT

∫ ∞

0

(
V

V0

)−ζ

e
− V 2

2V 2
0

Ωmτ1e
V/(kBT )

1 + Ω2
mτ

2
1 e

2V/(kBT )
dV, (3.16)

where Φ(z) is the error function Φ(z) = 2√
π

∫ z

0
e−x2

dx and C the tunneling strength. The
TLS potential parameter distributions are simplified and ∆C and V0 are introduced as the
asymmetry cutoff value and the potential barrier cutoff value respectively [134]. The values
of τ0, V0, V0/∆C, ζ and C given in this article are directly used in the fit of Fig. 3.11. The
agreement above 10K proves that Qm can be quantified using the presented model in this
temperature range.

The associated frequency shift is given by

δΩTAR = −ΩmC

2
Φ

(√
2kBT

∆C

)
1

kBT

∫ ∞

0

(
V

V0

)−ζ

e
− V 2

2V 2
0

1

1 + Ω2
mτ

2
1 e

2V/(kBT )
dV. (3.17)

Although fitting correctly at low temperature, the evident failure at temperature above
∼ 30K comes from the previously introduced network viscosity contribution that is not
included in the model.

The tunneling regime

Below 10K, the thermal activation of TLS transitions decreases. The level transition
process is here dominated by the tunneling of the particle through the barrier at tempera-
tures between ∼ 0.1K and ∼ 10K for frequencies of tens of MHz. In this regime, the
relaxation time is

τtun = τm
E2

∆2
1

, (3.18)

with the (inverse) maximum relaxation rate

τ−1
m =

3

c5s

B2

2πρ~4
E3 coth

(
E

2kBT

)
. (3.19)

Parametrizing expressions (3.12) and (3.13) in terms of energy splitting E and parameter
u = τ−1

tun/τ
−1
m yields [139, 143]

Q−1
tun(T ) =

2P̄B2

ρc2s

∫ ∞

0

(
−∂n0

∂E

)
Ωmτm

∫ 1

0

√
1− u

u2 + Ω2
mτ

2
m

du dE (3.20)

and

δΩtun(T ) = −ΩmP̄B2

ρc2s

∫ ∞

0

(
−∂n0

∂E

)∫ 1

0

u
√
1− u

u2 + Ω2
mτ

2
m

du dE,

where it is assumed that P̄ (E, λ) = P̄ is constant, which is experimentally consistent.
Two asymptotic behaviors can be distinguished:
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• for T of typically a few kelvin, Q−1
tun(T ) is independent of T and follows a plateau

value given by

Q−1
plateau =

π

2

P̄B2

ρc2s
. (3.21)

In this temperature range, there is always a significant amount of TLSs satisfying
the Debye relaxator condition.

• for T lower than typically a few kelvin however, the condition Ωmτm � 1 holds and
the mechanical absorption therefore decreases with T , yielding [143]

Q−1
slope ≈

9ζ(3)

π

ΩmP̄B4

ρ2c7s~4
(kBT )

3 , (3.22)

with ζ(s) being the Riemann zeta function of s. Notably, the inverse Q factor exhibits
a cubic temperature dependence. This justifies going from a commercial 4He cryostat
(base temperature of ∼ 1.65K) to a 3He cryostat (operated at a temperature of
∼ 0.85K) as an improvement of more than three for a mechanical Q solely limited
by TLS losses is reachable.

Figure 3.12 shows the measurement of the inverse Q and the relative mechanical fre-
quency for a span of temperatures addressing the TR and the RIR for Ωm/(2π) = 76.3MHz.
The fit model is

Ωm(T ) = Ωupt + δΩtun(T ) + δΩres(T ), (3.23)

Q−1
m (T ) = Q−1

cla +Q−1
tun(T ) +Q−1

res(T ), (3.24)

where Ωupt is the unperturbed angular frequency in the absence of TLS-induced effects,
and Q−1

res(T ) and δΩres(T ) are the contributions from the RIR expressed in Eqs. (3.25)
and (3.26), respectively. For the frequency shift, the resonant interaction contribution
dominates up to ∼ 2K whereas it plays a minor role on the inverse Q thermal dependence.
Since the effects are governed by two different regimes, one expects two different densities
of contributing TLSs interceding in the dissipation and the frequency shift. The fit to the
data then gives for the mechanical Q: P̄Qm = 4.6 × 1045 m−3 and for the frequency shift:
P̄Ωm = 2.5 × 1045m−3 with B = 1.1 × 10−19 J, showing reasonable agreement with values
given in the literature [144].

The resonant interaction regime

What has been presented up to now in term of TLS damping is a relaxation mechanism.
When working at lower temperatures or higher oscillation frequencies, the relaxation con-
tribution is reduced so that one can observe the regime where the phonons resonantly
interact with a few TLSs. This is called the resonant interacting regime, and corresponds
to a situation where the phonon energy is close to the TLS energy so that coherent pro-
cesses take place. This has been first observed and subsequently widely studied in the field
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Figure 3.12: Variation of mechanical frequency (a) and inverse mechanical Q (b) from 10K
down to liquid 3He temperature due to TLS for a 76.3MHz toroid. Solid lines are uncoupled fits
of the model (3.23) and (3.24). The agreement holds in the tunneling and resonant regime. The
temperature-independent Q−1

clamp extracted from the fit is plotted in line ii). Its subtraction from
measured data yields to the possible damping limited solely by TLS-induced effect, materialized
by the squares and by the line iii). At temperatures below the ones shown, damping by resonant
interaction with TLS (line iv) becomes dominant. Ω0 is measured at the temperature T = 620mK.
Adapted from Ref. [55].

of acoustic wave propagation in amorphous medium [139]. This interaction is responsible
for an additional damping term as well as a modified frequency shift, whose expressions
are given by:

Q−1
res(T ) =

πP̄B2

ρc2s
tanh

(
~Ωm

2kBT

)
(3.25)

δΩres(T ) =
ΩmP̄B2

ρc2s
ln

(
T

T0

)
, (3.26)

where T0 is a reference temperature. Note that the damping term increases when working
at lower temperatures or higher frequencies, which is due to the increased population
imbalance between the two states of the TLS resonantly interacting. The logarithmic
frequency shift is clearly visible in Fig. 3.13, which suggests that resonant interaction have
to be considered in our experiments. Importantly, it is possible to saturate the TLSs
with phonons, and finally equilibrate the populations of the two levels, thus reducing the
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Figure 3.13: Mechanical Q versus resonant driving for a 1st (a) and 3rd-oder (b) mechanical
RBM at 0.6K. Vertical error bars correspond to the fitting uncertainty, horizontal error bars to
the displacement calibration error. The increase of mechanical Q at high frequency is attributed
to a saturation phenomenon from the mechanical drive.

resonant phonon absorption. One then expects to observe an increase of the mechanical
quality factor when increasing the driving amplitude of the system, as it has been observed
in acoustic waves propagation. This would represent a signature of coherent mechanical
interaction between the oscillator and the TLS.

For higher mechanical frequencies, the population imbalance for a given temperature is
higher. For a 228MHz 3rd-order mechanical RBM at 0.6K, the resonant contribution on
the mechanical Q is expected to have the same order of magnitude as the tunneling con-
tribution. It is estimated to account for ∼ 10% of the measured Q−1

m [145]. By coherently
driving the mode, it is possible to augment the TLS excitation and to populate the excited
level until reaching equal population, or saturation of the TLS. The contribution on the
mechanical dissipation then decreases.

Figure 3.13 compares the mechanical Q values of two oscillators at 78 (a) and 228MHz
(b) subjected to a coherent drive. The mechanical Q of the 78MHz oscillator does not
visibly change over 3 orders of driving magnitude, the material dissipations being here
dominated by the tunneling regime. When reproducing this measurement on the higher
frequency mode (228 MHz), one can observe a trend in which the mechanical quality factor
increases with the driving amplitude, as expected from resonant TLS interaction. Note
that additional measurements will be necessary to confirm this observation. However,
both the saturation amplitude and the change in mechanical damping are of the same
order of magnitude as theoretically expected [143]. The ultra-low amplitude at which one
expects to see the saturation underlines the difficulty of this experiment and the degree of
control required. For the 228MHz mode, the theoretical estimation shows that the resonant
oscillation amplitude required to saturate the TLSs corresponds to the observation [145].

The description of the TLS model in glass gives here a complete characterization of the
mechanical dissipation (and dispersion) at the temperature range of interest. The strong
thermal dependence described here will prove to be an extra tool to characterize the increase
of temperature due to intracavity light absorption [55]. This “TLS thermometer” provides
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an additional way to estimate the mechanical mode temperature, since localized heating
consecutive to light absorption is difficult to estimate using conventional thermometers. In
addition, by going to lower temperatures or higher mechanical frequencies, it is possible to
study the resonant interaction of a phonon with a TLS and to perform similar experiments
as in electrodynamics: population saturation [146] and phonon echoes [147].
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3.3 The resolved-sideband regime

In the classical picture, the phonon occupancy can be reduced to arbitrarily low values by
simply increasing the red-detuned input field s̄in and thus maximizing the optical damping
effect. However, when reaching low phonon occupancy n̄ the quantum optical noises inter-
fering in the process significantly influence the cooling dynamics and have to be considered.
Ultimately, they are responsible for the minimum occupancy expressed in Eq. (1.57) at op-
timum detuning. The limit imposed by quantum backaction on the phonon occupancy is
minimized in the resolved-sideband (RSB) regime where the oscillation angular frequency
Ωm strongly exceeds the cavity decay rate κ [12, 14, 13].

In this section, it is experimentally demonstrated that laser cooling in a microtoroidal
cavity is performed in this regime. Although measuring a large optical damping in this
experiment, the occupancy achieved is limited by the classical noise in the cooling diode
laser. To avoid this, we use for the rest of the cooling work a Ti:sapphire laser exhibiting
quantum-noise limited operation at the experimental parameters of interest.

Reduction of the required intracavity power

Fig. 3.14 illustrates the technical advantage of performing cooling in the RSB regime. The
plotted curve shows the normalized average intracavity photon number ā2 required to cool
an optomechanically coupled mechanical oscillator down to n̄ = 1 versus the RSB factor
Ωm/κ. The detuning is always taken optimum as expressed in Eq. (1.56). An increase of
the RSB factor results in a significant decrease of the required intracavity photon number,
for the same phonon occupancy achieved. Unavoidable non-linearities consequent to high
intracavity intensities are then strongly reduced. Heating due to intracavity absorption by
the silica toroid is also lowered and its influence on the final phonon occupancy reduced
accordingly. This aspect is particularly important when thermalizing the sample in a
cryostat with cooling power on the order of a mW. At Ωm/κ ≈ 0.18, the divergence shows
that quantum backaction prevents cooling down to a phonon occupancy n̄ = 1.

Experimental demonstration of the resolved-sideband regime

The study pursued in chapter 2 reveals that typical silica microtoroids can reach a RSB
factor of more than 10. In this configuration, the reduction of the phonon occupancy by
dynamical backaction cooling saturates to n̄min(∆opt) < 10−3. To experimentally prove
this regime, the transmission spectrum of a vibrating microtoroidal cavity is recorded.

From the equation of motion of the intracavity field, the output field is first calculated
using the theoretical framework introduced in chapter 1. For an intense coherent input
field, the quantum operators introduced are identified with their expectation values and the
noise terms are dropped. For simplicity, the time evolution of the mechanical displacement
is considered sinusoidal:

x(t) = x0sin (Ωmt) . (3.27)
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Figure 3.14: Normalized mean intracavity photon number required to obtain a cooling to an oc-
cupancy n̄ = 1 versus resolved-sideband factor Ωm/κ. The cavity is pumped at optimum detuning,
ensuring the lowest input power.

The equation of motion of the intracavity field is

ȧ(t) = (−iωc − κ/2− iGx0sin (Ωmt)) a(t) +
√
ηcκs̄ine

−iωlt. (3.28)

The solution is then given by [117]

a(t) =
√
ηcκs̄in

+∞∑
n=−∞

inJn(β)

−i(∆− nΩm) + κ/2
e−i(ωl−nΩm)t−iβcos(Ωmt), (3.29)

after a time t � κ−1 allowing for intracavity field build-up, with β = ωc

R
x0

Ωm
= −G x0

Ωm
being

the modulation factor used in the Jacobi-Anger expansion and Jn being the Bessel function
of the first kind and of index n.

The output field is measured with a photodetector giving a signal proportional to

|sout|2 = |s̄ine−iωlt −√
ηcκa(t)|2. (3.30)

The signal is filtered with a low-pass filter of bandwidth much lower than the mechanical
frequency Ωm/(2π). Thus, only the DC terms are kept in expression (3.30) in which
expression (3.29) is integrated. The measured signal is then proportional to [20]

|sout|2DC ∝ |s̄in|2
+∞∑

n=−∞

J2
n(β)

(∆− nΩm)2 + (κ/2)2
. (3.31)

The measured transmission spectrum is a symmetric succession of motional sidebands of
individual linewidth κ equally spaced by Ωm. The relative weight of the sidebands is
determined by the modulation index β.
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For a mechanical oscillator thermally driven at room temperature, the oscillation am-
plitude is small enough to consider β � 1 and to neglect terms in (3.29) in order of β
higher than 1. Taking J0(β) ≈ 1 and J±1(β) ≈ ±β/2, the intracavity field can thus be
expanded into

a(t) =
√
ηcκs̄in

1

−i∆+ κ/2
e−iωlt

+
√
ηcκs̄in

βΩm/2

−i∆+ κ/2

(
e−i(ωl−Ωm)t

−i(∆− Ωm) + κ/2
− e−i(ωl+Ωm)t

−i(∆ + Ωm) + κ/2

)
. (3.32)

The vibrating cavity builds up a pair of Stokes and anti-Stokes sidebands in the intracavity
field at ωl − Ωm and ωl + Ωm that are weighted by the cavity Lorentzian profile.

Interestingly, the relative weights of the sidebands in the recorded output signal power
is analog to the relative scattering rates of the sidebands introduced in section 1.2.9 for
n̄ � 1. As described previously, this analogy breaks down for low phonon occupancy (n̄
on the order of smaller than 1) and the deviation from the classical case is a direct proof
of the quantum aspect of the mechanical oscillator.

Figure 3.15 shows the transmission spectrum of a toroid recorded with a scanning diode
laser of low input power. The cavity is subjected to another strong blue-detuned laser to
amplify the mechanical oscillations as described in section 1.2.8. The input field is kept
above the threshold given by expression (1.60) to ensure coherent self-oscillation of the
mechanical oscillator. Clearly, the sidebands are resolved, proving that experimentally the
optomechanical system is in the RSB regime.

Next, dynamical backaction cooling is performed on another sample exhibiting a RSB
factor of 7. At an input power Pin = ~ωl|s̄in|2 = 2.7mW, an effective damping of Γeff =
2π × 1.56MHz is achieved on a radial breathing mode of intrinsic damping Γm = 2π ×
1.3 kHz (needle-pillar toroid in vacuum) [117]. Due to the high RSB factor, this is achieved
with a small fraction of intracavity power. It is then estimated that the environmental
temperature of the sample is not affected by absorption induced heating. Simply calculating
the resulting phonon occupancy n̄ ' n̄mΓm/Γeff gives an average final occupancy of less
than 200, starting from room temperature. Measurements reveal however a much higher
final occupancy of 5900. A detailed analysis reveals that the diode laser [148] used for
cooling carries excess classical frequency noise at the Fourier frequency of interest. The
resulting intracavity radiation pressure fluctuations act as a source of classical backaction
responsible for an extra heating of the mechanical oscillator during the cooling process. To
avoid this effect, the cooling is performed in the following with a Ti:sapphire laser with
quantum limited fluctuations.

Quantum limited laser: Ti:sapphire laser

The continuous-wave Ti:sapphire laser used in this work exhibits shot-noise limited opera-
tion [149, 150] for both field quadratures, for Fourier frequencies above 1MHz and for the
power of interest on the order of the mW, as experimentally measured. The long-range
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Figure 3.15: Motional sidebands on the transmission spectrum of a toroidal cavity subjected to
an external 1064 nm-Nd:YAG blue-detuned laser (amplification regime beyond the self-oscillation
power threshold). The blue points are experimental data recorded from DC photodetection of the
transmission of a scanning diode laser. The red line is a fit of the model (3.31) with the modulation
index β as free parameter. The linewidth of each motional sideband is κ and the spacing is Ωm,
thus illustrating the deep RSB factor of more than 20 of this optomechanical system. Mechanical
frequency: Ωm/(2π) = 73.5MHz, optical linewidth: κ/(2π) = 3.2MHz. Adapted from Ref. [117].

tunability makes the laser additionally convenient for probing toroidal cavities with a large
free spectral range of ∼ 2.5 nm at wavelengths close to 780 nm.

Figure 3.16 depicts the optical layout of the laser. Because of the homogeneous broade-
ning of the gain medium, the laser oscillation is single-mode. The strongest mode imposes
itself and a set of cascaded optical filters (birefringent filter, thin étalon and thick étalon,
successively) selects the desired longitudinal mode. Due to the broadband gain of the
Ti:sapphire crystal, the wavelength of the emitted mode can be selected within the span
allowed by the optics set (750 nm to 870 nm). Two piezoelectrically positionable mirrors
(slow and fast PZT) and an electro-optical modulator (EOM) are used for fast wavelength
actuation, spanning up to 30GHz without readjustment of the mode-selective components.

Both analog and digital locking of the frequency-selecting parts proved to be robust
in a normal laboratory environment including acoustically noisy devices such as vacuum
pumps. Using the slow and fast PZT and the EOM, the output TEM00 mode can be locked
to the resonance of a stable reference cavity (finesse of ∼300) to reduce its drift and its
linewidth down to 50 kHz rms [151].
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Figure 3.16: Optical layout of the quantum-limited Ti:sapphire laser used in the experiment.
The Ti:sapphire crystal is pumped with a 1064 nm light from a Nd:YVO4 crystal that is frequency
doubled to 532 nm using a LiB3O5 (or LBO) crystal outputting 6W (Spectra Physics Millenia
6s laser). The Nd:YVO4 crystal is pumped with a diode laser. The present configuration allows
optical output of a TEM00 at a wavelength comprised between 750 and 870 nm, at a maximum
output power of 800mW. The length of the Ti:sapphire cavity is adjusted using the slow and fast
piezoelectric positioners (PZT) to displace the mirrors. The single longitudinal mode is selected
successively by the birefringent filter (BiFi or Lyot filter), the thin étalon (ThinE) and the thick
étalon (ThickE), that are mechanically controlled. Spatial hole burning is avoided by favoring one
propagation direction in the ring cavity using a Faraday rotator (FR) and the out of plane mirror
acting as an polarization selective element. Fast actuation of the optical path is provided by an
extra electro-optic modulator (EOM) of large bandwidth compared to piezoelectrically transduced
actuators. Adapted from Ref. [151].

It can then be concluded that due to the high resolved-sideband factor of the toroidal
microcavities and to the quantum noise limited laser used for the cooling, limitations from
the classical and quantum backaction of the cooling field are reduced down to a negligible
level.
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3.4 Reduction of the environmental temperature

Placing the optomechanical system in a cryogenic environment is a straightforward way to
lower its phonon occupancy by more than two orders of magnitude. Exploiting the mature
technology of cryogenics to reduce the bath occupation n̄m constitutes a leap towards the
ground state, without jeopardizing benefits from laser cooling.

Placing a toroidal microcavity in a cryostat, thermalizing it to its base temperature of
1.65K and coupling light using a tapered fiber is an endeavor that was first accomplished
in our group. Additionally, only few studies [68, 152] have been performed on the behavior
of silica whispering-gallery mode microresonators at cryogenic temperatures. The technical
success of this implementation at low temperatures therefore allows the study of unexplored
domains that reveals intriguing optical properties of silica resonators.

In this section, the prototype cryostat using 4He as a coolant is presented, along with
the technical modifications on the cryohead hosting the toroidal cavity and the coupling
device: indeed, the fiber taper coupling technique used at room temperature is modified to
a cryotaper. Next, the dispersive and thermodynamical properties of the silica microtoroids
are quantified and the laser cooling down to an occupancy of 63 ±20 is presented. Finally,
motivated by the studies of the mechanical properties of silica described in section 3.2.3
and the success of the developed prototype setup, the final experimental 3He cryostat is
constructed, with its details and performances being described here.

3.4.1 The prototype helium-4 cryostat

A previous unsuccessful attempt to thermalize a 4.5µm AlGaAs microdisk to the base
pressure of a 4He continuous flow cryostat [153] was convincing enough to consider imple-
menting our experiment in a cryostat of larger cooling power. This poor performance was
attributed to the low heat extraction mechanism from the sample placed in high vacuum,
based on thermal conduction through the supporting structure attached to a “cold finger”.
Even by enlarging the thermal anchoring to the cooled part of the cryostat using copper
braids, the effective cooling power on the sample was too small in this case to ensure effi-
cient thermalization. In our case, the shaping of the supporting disk of the toroid to spokes
in our case further reduces the thermal anchoring of the hot spot being here the modal
volume in which the intracavity light is absorbed. Consequently, another paradigm is used
for cryogenically cooling our sample, based on thermalization to a low pressure exchange
gas, itself cooled by the cryogenic device. A gas pressure on the order of 1mbar is used
since it has been demonstrated in section 3.2.1 that at this pressure range, the gas does
not damp the mechanical oscillator.

The cryostat

The prototype cryostat is a low-pressure 4He exchange gas cryostat based on Oxford In-
strument OptistatSXM. The cooling process is named static exchange gas cooling since the
volume into which the cryoprobe is inserted is not subjected to any gas circulation apart



3.4 Reduction of the environmental temperature 65

from unavoidable gas convection. This class of device provides a cooling power exceeding
a mW and the generated vibrations are low enough to perform sensitive experiments such
as atomic force microscopy.

Figure 3.17 shows an on-scale simplified drawing of the cryostat. This device does not
have a liquid N2 shield as a first cooling stage because it would be a source of extra vibra-
tions due to the boiling of the liquid nitrogen (according to the manufacturer). Instead,
radiation shields made of a stack of insulating layers are directly cooled by the exhaust gas
from the 4.3-L liquid 4He tank.

From this reservoir, the cooling liquid 4He is admitted into a capillary tube through
a needle valve that allows very fine control of the liquid’s flux and therefore of the coo-
ling power of the cryostat. The coolant is then circulated using a rotary pump (Oxford
Instrument EPS40) of 40m3/h and evaporated at an adjustable rate, thus adjusting the
vapor pressure, the working temperature and the cooling power of the cryostat. The
heat is extracted by the flux of cooling helium from the experimental chamber via the
heat exchanger. Thereafter, the evaporated cooling 4He gas is pumped away. Inside the
experimental chamber, the exchange 4He gas thermalizes the sample with the chamber’s
cooled walls. By using a built-in electric heater and a temperature sensor, the cryostat
temperature is locked to ±0.1K accuracy over 10min for the temperature range of interest
down to 1.65K.

The specific mechanical construction provided by the manufacturer ensures low vibra-
tion level of the whole device. In addition, because of its rather small size (82 cm to the top
of the experimental tube), the cryostat is placed on a usual optical table and benefits from
its acoustic isolation. To cut off extra vibrations from the rotary pump, the connecting
hose is firmly clamped to the ground.

Two separated vacuum circuits are connected to the setup: one for pumping the insula-
tion vacuum prior to cool down and another one to regulate the pressure of the cooling and
exchange 4He gas. For the former, an oil filter is added to the rotary pump (Leybold D16B)
to avoid contamination via diffusion. The simplified piping presented in Fig. 3.17 allows
to fill the experimental chamber with exchange 4He gas directly from the evaporation port
of the capillary tube, therefore providing a very pure source of gas. This technique avoids
the contamination of the chamber with unwanted gases such as H2O or N2 that may freeze
on the sample and deteriorate its properties. Eventually, frozen contaminants can be sub-
limated by pointing a 5W Coherent Verdi laser (532 nm) directly onto the sample through
the optical windows of the cryostat.

A set of mechanical, Pirani and capacitance gauges monitors the relevant pressures.
The latter (Pfeiffer CMR 361) is the most precise utilized to record the environmental
pressure of the sample under study.

Under the normal conditions presented in Appendix C, the holding time of the cryostat
is ∼8 h at a temperature around 4.2K. Prior to cool down, careful purging of the cooling
circuit must be performed with gaseous 4He filtered using a liquid N2 trap to avoid icing
the fragile needle valve. Below 4.2K, excellent temperature stability is reached solely using
the needle valve opening to regulate the pumping pressure of the dry rotary pump.



66 3. Optomechanical cooling to low phonon occupancy

liquid

cooling

helium-4

insulating

vacuum

heat exchanger

optical access

experimental

chamber

cryohead

cryoprobe

heater

electrical cables optical fibers

needle-valve 

controlled

capillary

radiation shield

radiation shields

gaseous

exchange

helium-4

43.8mm

6
5
.4

 c
m

built-in

thermometer

supporting feet

Figure 3.17: Technical layout of the helium-4 cryostat describing the commercial Oxford Instru-
ment OptistatSXM static exchange gas cryostat (on scale), the modified top-loading cryoprobe,
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The cryohead

This cryostat model is designed to host microscopy experiments. To adapt it to our con-
figuration involving a silica microtoroid coupled with a tapered fiber, specific engineering
was required.

The cryoprobe already shown in Fig. 3.17 is a probe from the manufacturer, modified
to host the cryohead comprising the whole coupling setup (Fig. 3.18). It is compacted
to fit into the experimental chamber of diameter 43.8mm. To avoid that elements of the
head vibrate under excitation from the rotary pumps, the cryohead is specifically designed
in a compact way, avoiding floppy mechanical elements of low resonance frequencies. The
present design proves to be outstandingly stable and coupling can be successfully performed
in an acoustically noisy laboratory environment.

Figures 3.18 (a) and (b) show a photograph and a 3D rendering of the cryohead,
respectively. The sample is clamped using a mechanical claw onto a holder that can
be smoothly slided and attached to the piezoelectric displacers without risk for the nearby
cryotaper. Opposite to the sample chip, the cryotaper (detailed in the next section) is
attached to a mechanical slide that allows adjusting the position to ensure proper phase-
matching (see section 2.2.4) prior to cooling, by scanning longitudinally the taper region
until finding the correct position. Under normal experimental conditions, it does not
need further adjustment at low temperatures. Figure 3.18 (c) symbolically represents the
translation axis allowed on the cryohead to ensure optimum coupling.

To accurately measure the temperature as close as possible from the sample, two Si and
RuO2 diodes are attached to the cryohead. The latter, an Oxford Instruments T1-202 diode
(not represented on Fig. 3.17), allows the most precise temperature measurement. Using
an Agilent 34401A digital multimeter, its temperature-dependent resistivity is measured
with an uncertainty close to ±10mK.

This mechanism proves to successfully allow coupling of silica microtoroid in a cryogenic
environment and its principle is reused in the 3He cryostat (section 3.4.7).

3.4.2 Taper coupling at low temperature

The fiber taper coupling technique presents the advantage of single-mode and high cou-
pling efficiency to whispering-gallery modes, and tunable coupling from the under- to the
overcoupled regime. To preserve those advantages at low temperature, the tapered fiber
used at room temperature is adapted as a cryotaper.

The cryotaper

To keep the it straightly tensioned after cool down, the fiber taper is glued, using UV
epoxy glue, to a C-shaped piece of glass presented in Fig. 3.19 (a) and (b). Since it is
made of essentially the same material as the taper, the fiber remains properly tensioned
at all temperatures, as experimentally verified. The UV epoxy glue is used because it
does not contract when cured. Thus, the taper tension properly adjusted during the
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Figure 3.18: Picture and technical layout of the cryohead. (a) Picture of the cryohead without
the protecting plate. The thermometer is a Lakeshore DT-670B-CO Si. (b) 3D rendering of
the cryohead showing the piezoelectric positioners (Attocube Systems ANPx101/LT/HV, “low
temperature high vacuum” version) supporting the 3-part sample holder and the cryotaper placed
on the mechanical slide, supported by the rigid frame. The protecting plate avoids damaging shocks
during the cryoprobe insertion. (c) Not on-scale symbolic drawing of the coupling mechanism. The
two piezoelectric positioners displace the clamped chip so as to approach the desired toroid in the
near-field of the mechanical-slide supported cryotaper when the cryoprobe is inserted and cooled
down in the cryostat.

fabrication process remains unchanged during the gluing and thereafter during the cool
down operation. On Fig. 3.19 (c), the geometrical arrangement of the cryotaper is schemed,
showing the trench in the glass slide hosting the acrylate buffer of the glass fiber.

Fabrication

This novel construction requires a specific fabrication technique (Fig. 3.20) adapted from
the successful fiber taper fabrication protocol presented in Appendix B. By adjusting the
flame at the position described in Fig. 3.20 (a), high transmission (> 95%) tapers are
obtained. Pulling the flame further or closer to the fiber allows to define the glass fiber
length subjected to the H2 flame and therefore the final length of the taper region. Hence,
the tapered fiber is crafted to ensure gluing the acrylate buffer to the C-shaped glass,
improving the overall mechanical robustness. In Fig. 3.20 (c), the tension of the taper
is tested by approaching a dummy toroid, snapping it to the taper, retracting it and
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Figure 3.19: Picture and technical layout of the cryotaper. (a) Picture of a finalized cryotaper.
(b) On-scale 3D rendering of the cryotaper showing the trench for hosting the buffer of the optical
fiber (245µm diameter) and the sanded surface for better glue adhesion. (c) Technical layout
describing the usual configuration of the cryotaper. To avoid shearing of the glass fiber during
manipulation, the taper is crafted to dimensions such that the acrylate buffer is glued to the glass
slide with simultaneously the uncovered central part of the glass fiber being still in contact with
the support to avoid having a long suspended length subjected to large amplitude vibrations.

measuring the “snap-back distance” [20]. Until this reaches less than a typical toroid
radius, the taper is tensioned further using the micrometer screw displacing the fiber holder.
Cleaning, using droplets of liquid acetone or isopropanol, can safely be performed to remove
dusts that may aggregate during the previous steps. After approaching and gluing under
microscope monitoring (Fig. 3.20 (e) and (f)), the cryotaper is released (Fig. 3.20 (g)) and
placed on the cryohead. The taper is normally fabricated using one long optical fiber to
avoid having fragile fiber splices inside the cooled experimental chamber

3.4.3 Thermalization

The previously described engineering efforts to couple a toroidal microcavity in a cryogenic
environment aim to thermalize the mechanical radial breathing mode to the base tempera-
ture of the cryostat. By measuring the effective temperature of the mode at low input
power, we show that the sample is efficiently thermalized. This proves the relevance of the
exchange gas pre-cooling technique for whispering-gallery resonators.

To experimentally prove the thermalization, this section introduces the Pound-Drever-
Hall (PDH) detection technique that allows to measure and quantify the mechanical motion
of the mechanical mode with a significant sensitivity. The effective temperature is then
measured and the resulting measurements of the thermalization are detailed, demonstrating
a thermal phonon occupancy of ∼ 600.
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Figure 3.20: Fabrication and installation steps of the cryotaper.
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The Pound-Drever-Hall detection technique

Although the method ultimately employed for detecting low occupancy is the balanced
homodyne interferometer (section 3.5.1), a simple way to measure the phase fluctuations
induced by the thermal motion is to use the PDH phase detection [154]. Compared to the
side-of-the-fringe technique presented in section 3.2.1, this one uses an on-resonance pro-
bing laser therefore precluding any dynamical backaction effects that modify the measured
mechanical spectrum. We remind here the principle of this method [155].

Figure 3.21 (a) shows the important parts of the optical and electronics setup. The
laser s0(t) oscillating at ωl is sent through a phase modulator (EOM) driven at a frequency
Ωpdh/(2π), usually several times larger than the cavity linewidth κ. Modulation sidebands
build up at ωl ± Ωpdh and the expression of the field out of the EOM is given by

sin(t) = s0(t)
(
J0(β) + iJ1(β)e

iΩpdht + iJ1(β)e
−iΩpdht

)
, (3.33)

where the first order Jacobi-Anger expansion is used for small modulation indices β. When
sin(t) is coupled to the cavity with ωl ' ωc, only the carrier resonantly interacts with it.
The output field sout(t) is then phase-shifted compared to sin(t) by an amount that gives
information on the detuning: it is approximated to be linearly proportional to the detuning
∆. If only the carrier is measured, the phase shift information is lost as the photodetection
only provides a signal proportional to the squared amplitude of the field.

Here, the two sidebands are non-resonant with the cavity and are consequently mostly
transmitted. The photodetection voltage , which is the squared amplitude of the sum of
the carrier and the two sidebands, therefore carries a term oscillating at Ωpdh corresponding
to the beat of the two sidebands with the carrier.

Next, the demodulation of the output voltage of the photodetector at Ωpdh with the
proper phase shift and low-pass filtering (of bandwidth much smaller than Ωpdh) keeps only
the DC signal linearly proportional to the carrier. It switches sign at the detuning ∆ = 0
and can be directly used as a locking signal.

Figure 3.21 (b) shows a broadband error signal for a modulation frequency Ωpdh/(2π) =
100MHz and a cavity linewidth of ∼ 10MHz. The frequency range where locking can be
achieved is much larger than the cavity linewidth, comprised in between −Ωpdh and Ωpdh

[155]. This signal is then fed back into the laser frequency control (here the piezoelec-
trically displaced external mirror of the cavity) to lock it on resonance. The part of
the error function centered in ∆ = 0 can be approximated as a linear function of slope
dVerr

d∆
= −8J0(β)J1(β)|s̄0|2 ηcκ [19]. The mechanically induced phase fluctuations are therefore

transduced into voltage fluctuations that are detected by the electrical spectrum analyzer
(Fig. 3.21 (a)).

A detailed derivation shows that the detected voltage spectral density is given by [19]

S̄err
V V (Ω) = (8|s̄0|2J0(β)J1(β)

ηc
κ
)2

G2

1 + ( Ω
κ/2

)2
S̄xx(Ω). (3.34)

This formula demonstrates that the mechanical fluctuations filtered by the cavity are trans-
duced by the PDH detection technique.



72 3. Optomechanical cooling to low phonon occupancy

L
o

c
k
in

g

e
le

c
tro

n
ic

s

laser

F
P

C
EDFA

calibration

PDH

cryostat

FPC

100MHz

-200 -100 0 100 200

Detuning � (MHz)

E
rr

o
r 

s
ig

n
a

l 
V

  
  
(a

.u
.)

e
rr

d� ≃0

ESA

attenuator
dVerr

s0
sin

a) b)

�pdh

�cal

Figure 3.21: Pound-Drever-Hall (PDH) detection scheme. (a) In-fiber optical and electronic
scheme of the PDH locking and detection. EOM: electro-optic modulator, EDFA: erbium-doped
fiber amplifier, ESA: electrical spectrum analyzer. (b) PDH error signal feedback into the laser for
locking to the cavity resonance. Close to resonance, the mechanically-induced intracavity phase
fluctuations are transduced into voltage fluctuations according to the central linear transduction
slope.

Practically, the implementation of this technique is simpler than a homodyne detection.
In addition, the proper use of an optical attenuator and an erbium-doped fiber amplifier
(EDFA) to amplify the optical output signal allows to perform measurements at low input
powers to avoid intracavity absorption heating. With this method, the thermalization of
the RBM can be entirely characterized.

Measurement of the thermalization to the cryostat’s base temperature

The measured mechanical spectra are calibrated by adding a coherent phase modulation
of modulation depth βcal at an angular frequency Ωcal close to Ωm. The phase fluctuations
induced by the thermally driven mechanical fluctuations are compared to this controlled
phase modulation. The frequency difference of the two must be comprised well within the
bandwidth of the cavity to ensure equivalent transduction but must also be higher than
several times Γm to avoid coherent driving of the mechanical mode.

The driven EOM modulates the phase of the incoming field ωl t+ βcalsin(Ωcalt), giving
the instantaneous angular frequency ωl(t) = ωl + βcalΩcalcos(Ωcalt) of variance

〈δω2
l 〉 = β2

calΩ
2
cal/2. (3.35)

After photodetection and demodulation, this variance is plotted as a peak of area
A × RBW ∝ 〈δω2

l 〉 by the spectrum analyzer, with A being the height of the peak and
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Figure 3.22: Thermalization in the 4He cryostat. (a) Mechanical displacement noise spectrum
taken at Tcryo ' 1.65K and a pressure of 4mbar. The red line is a fit of the mechanical spectrum
with the background, each separately represented by the dashed lines. The effective temperature of
the mechanical mode is extracted from the mechanical trace. (b) Effective temperature of the RBM
versus the cryostat’s temperature measured with the commercial Si diode. The correspondence with
the guide to the eye illustrates the thermalization of the mechanical mode to the cryostat.

RBW the given effective resolution bandwidth1. The mechanical fluctuations also give rise
to a frequency variance of

〈δω2
c 〉 = G2〈δx2〉 (3.36)

that is also recorded by the spectrum analyzer, withG = −ωc/R. Thus, a simple estimation
of the toroid’s radius R (for example with a microscope) and of the cavity resonance
frequency ωc/(2π) allows to estimate G and subsequently allows to calibrate the mechanical
displacement noise measured (Fig. 3.22 (a)), knowing the root mean square of the applied
voltage source and the calibration of the EOM.

The effective temperature Teff = meffΩ
2
m〈δx2〉/kB (for Teff � ~Ωm/(2kB)) is extracted

from the Lorentzian integral of the calibrated spectrum (Fig. 3.22 (a)). The effective mass
of the mode is estimated similarly, from the calibrated displacement noise spectrum of a
thermalized mechanical mode such that Teff = Tm, with Tm measured independently with
an external thermometer.

Figure 3.22 (b) shows the effective temperature of a 62-MHz RBM versus the tempera-
ture of the exchange gas of the experimental chamber of the cryostat measured with the Si
diode. The excellent thermalization is clearly marked by the agreement of the experimental
points to the linear guide to the eye, from 40K down to 1.8K, the latter corresponding
to a phonon occupancy of 600. From 1.8K down to 1.65K, the thermalization is proven
despite the inaccuracy if the Si diode (points removed from Fig. 3.22).

1The effective resolution bandwidth is independently given by the device to directly calculate the area
of the peak by knowing its height, for any used spectral filter.
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The cryogenic cooling of a toroidal microcavity is successfully achieved down to li-
quid 4He temperatures, therefore enabling the exploration of optical properties of those
structures.

3.4.4 Optical cryogenic properties of silica microtoroids

The optical dissipative properties of the silica microtoroids are unaltered at cryogenic
temperatures. The study of their dispersive response is, on the other hand, of particular
interest in the context of laser cooling. Indeed, the heating resulting from intracavity
absorption induces a shift in the optical resonance frequency responsible for the bistable
behavior of the intracavity power versus detuning [79]. Consequently, one side of the cavity
spectrum is stable when subjected to a pump laser since the resonance frequency follows
the fluctuations of the laser frequency whereas the other side is instable. At cryogenic
temperatures, the situation is opposite to room temperature [68]: the red side (ωl < ωc) is
stable, allowing to optimally red-detune the cooling laser and to perform cooling without
the need for complex fast locking devices.

In this section, the measurements of the static frequency shift from the cryostat base
temperature to 40K is analyzed, and the signature of a deposited film of liquid 4He is
subsequently observed.

Static thermal frequency shift

The shift of the optical resonance frequency for temperatures from 40K down to 1.65K
is presented in Fig. 3.23 (main figure). Notably, the slope of the thermal dependency
switches sign at T ∗ = 13.3K. We attribute this behavior to the temperature dependence
of the refractive index of silica [68] and to the refractive index of the surrounding gaseous
4He.

For a homogeneously thermalized toroidal cavity (we use here optical powers sufficiently
low to preclude parasitic effects), the frequency shift results from a change of optical length
L ≈ 2πR for a whispering-gallery mode and from a change of effective refractive index neff

given by
1

ωc(T )

dωc(T )

dT
= −αSiO2(T )−

1

neff

dneff

dT
, (3.37)

where αSiO2(T ) is the expansion coefficient of silica that becomes negligible for T . 5K
[156, 157]. The effective refractive index takes into account the fact that the optical field
propagates not only inside the silica toroid but also outside, in the external environment
(see section 2.2.2). Consequently, the evanescent field (the energy of which corresponds to
few percent of the total mode energy for pump wavelengths close to 1550 nm [158]) probes
the thermal dependence of the refractive index of the surrounding exchange 4He gas.

At low temperatures, a liquid layer containing superfluid 4He deposits on the surface
of the microtoroid and significantly alters the dispersion of the evanescent field. The inset
of Fig. 3.23 is a zoom on the low temperature part of a frequency shift trace taken with
thermodynamic conditions favoring such a deposition (high pressure and low temperature).
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Figure 3.23: Optical resonance shift for varying temperatures down to 1.65K. The main figure
shows the optical resonance frequency ωc(T ) for varying cryostat temperature Tcryo from 40K down
to the base temperature 1.65K, there at a pressure of the order of a mbar. The thermal dependence
of the resonance frequency varies from dωc(T )

dT = 2π×(+120MHz/K) at 2K to 2π×(−200MHz/K)
at 30K through 0 at T ∗ ' 13.3K. The inset zooms on the region below 3K for a pressure ten
times higher and shows the factor of 5 increase of the slope dωc(T )

dT . The slope switches sign upon
further cooling, signaling the preponderant contribution of superfluid 4He. Adapted from [118].

For Tcryo just above 1.8K, the slope of the frequency shift is four times larger compared
to the main figure (pressure one order of magnitude lower and low temperature). This
is attributed to the influence of the larger density of gaseous 4He and the correspon-
ding increase of dnHe/dT . At Tcryo ' 1.8K, a film of helium II (conceptual “mixture”
of normal and superfluid 4He, according to the two-fluid model [159]) deposits and the
slope abruptly changes from +500MHz/K to -500MHz/K as expected from the particular
dispersive property of the layer [160].

Principle of the thermal bistability

The thermal dependence of the resonance frequency shift leads to a non-linear behavior of
the intracavity power for a varying laser detuning known as thermal bistability [67].

The mean intracavity power, proportional to ā2, is absorbed at a rate κabs and provides
the heat source term describing the following Fourier equation of the subsequent increase
in temperature δT (~r, t) at the coordinate vector ~r

δṪ (~r, t)−D∆T (~r, t) =
κabs

ρcp
~ωl|a(t) · ~v(~r)|2, (3.38)

with D = k/(ρcp) being the diffusion constant, k the thermal conductivity, ρ the density
and cp the specific heat capacity. ~v(~r) is the normalized spatial distribution of the optical
mode [20].
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Considering very slow time-variations of the heat source compared to the time constants
involved (typically below 1ms at both room [161] and low temperatures), the temperature
of the toroid homogeneously increases. Neglecting the influence of the spatial extension of
the mode, the increase of temperature due to absorption is approximated to

δT = χstat
th κabs~ωlā

2, (3.39)

with χstat
th given in K/W standing for the static coefficient of temperature increase per

absorbed intracavity power.
At room temperature, the thermal dependence of the frequency shift is approximated

to be linear. The expression of the resonance frequency is therefore given by

ωc(T + δT ) = ωc(T ) +
dωc(T )

dT
δT, (3.40)

with dωc(T )
dT

= −1.28GHz/K [20]. The expression of the static intracavity photon number
is then

ā2 =
ηcκ|s̄in|2

(κ/2)2 + (ωl − ωc(T )− dωc(T )
dT

χstat
th κabs~ωlā2)2

. (3.41)

If the induced distortion of the resonance frequency is larger than κ/2, this expression
supports three real solutions in ā2 leading to two turning points corresponding to infinite
slopes dā2

d∆(T )
which are the particular signatures of the bistable behavior. Figure 3.24 shows

this three real solutions and the corresponding resonance frequency distortion compared
to the “cold” case, reproducing the qualitative behavior encountered at room temperature.
The distortion of the resonance frequency and the consequent evolution of the intracavity
power follows the evolution of the laser when scanning from the blue side (ωl > ωc) of the
cavity. On the contrary, it evolutes oppositely to the laser when scanning from the red side.
Consequently, the cavity is responding unstably to a laser pumping its red side. In the
context of laser cooling, this effect obliges to lock the laser on the red side with complex
fast feedback systems.

Low-temperature thermal multistability

Because of the switch of sign of the thermal shift, the situation is opposite for T < T ∗,the
red side becoming stable upon pumping. Complex locking devices fast enough to com-
pensate the thermal instability are then not required to perform the laser cooling. Figure
3.25 (a) shows the measurement and the simulation of the reversed bistability for T < T ∗

for an input power low enough to still approximate a linear thermal shift of the resonance
frequency as in Eq. (3.40). Upon increase of the input power, the temperature elevation
due to absorption becomes too strong and the approximation breaks down: the resonance
frequency does not shift linearly with detuning and the bistable triangle distorts (Fig. 3.25
(b)). From the plot in Fig. 3.23, the frequency is then approximated by the polynomial
function of fourth order in T

ωc(T ) =
4∑

i=0

µiδT
i, (3.42)
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Figure 3.24: Bistable intracavity power in the case of a linear frequency decrease upon absorption
heating (solid blue line) compared to the same cavity in the absence of any absorption (dashed
blue line). The corresponding cavity detuning is plotted with absorption (orange solid line) and
without (orange dashed lines). The sign and strength of the deviation from the “cold” cavity is
proportional to the thermal dependency of ωc(T ), in this case linear. The arrows denote the scan
jumps at the turning points.

with µi = {−214.9, 157.2, 15.32, 0.6512,−0.0104} in MHz/Ki.

The expression of the intracavity photon number then reads

ā2 =
ηcκ|s̄in|2

(κ/2)2 + (ωl −
∑4

i=0 µi(T + χstat
th κabs~ωlā2)i)2

, (3.43)

using the approximation given in expression (3.39). This highly non-linear equation des-
cribes the optical multistability. Note that for an input power sufficiently high to heat
the cavity to T + δT > T ∗, the resonance distortion changes sign and two more branches
appear.

The multistable mechanism allows to quantify the parameter χstat
th relating the absorbed

intracavity power to the elevation of temperature. The fact that this parameter doubles
when the pressure is decreased by one order of magnitude from 5 to 0.5mbar emphasizes
the importance of the thermalization through gas at these pressures. This result is of
particular interest for the laser cooling operations as static heating due to intracavity
powers is undesired.

The same measurement performed in the presence of a helium II layer clearly shows an
alteration of the bistable trace in Fig. 3.25 (d). The apparition of the shoulder in the scan
and the observed strong splitting (≈ 70MHz) are both attributed to the presence of the
liquid layer.
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Figure 3.25: Multistable intracavity power for pump powers 13 (a), 131 (b) and 260µW (c)
at T = 2.3K (higher panels). The corresponding simulations according to Eqs. (3.42-3.43) with
the same input power ratio are shown in the lower panels. The cold cavity linewidth is κ/(2π) =
14MHz. (d) Typical bistable intracavity power in the presence of a helium-II film. The splitting
is accredited to be genuine to the deposition of a fluid layer onto the torus surface.

3.4.5 Thermal response

Although showing the influence of the exchange gas on the static absorption, the optical
measurements presented in the previous section do not give an insight on the dynamics
of the propagation of the absorption-induced heat inside the toroid. To analyze this, the
dynamical thermal response is recorded using a pump-and-probe experimental scheme.
An amplitude-modulated pump laser is locked on one resonance and induces a propaga-
ting thermal wave evanescently extending in the structure. The elevation of temperature
along this propagation length modulates the resonance frequency that is recorded and
demodulated, characterizing the thermal response of the toroid.

This section presents the setup used to characterize the toroid’s thermal response at
varying cryogenic temperatures. The observed influence of the surrounding exchange 4He
in the heat extraction mechanism is discussed. In addition, when a layer of helium II
deposits, the response trace shows a clear signature of a resonance effect attributed to the
generation of a superfluid “third sound” [162].
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Diffusion in silica

The temporal dynamics of the heat extraction mechanisms in toroids are fully characterized
using a pump-and-probe scheme. The heat generated from the absorbed intracavity light
can flow via two media: the silicon pillar after diffusion in the silica disk or the surrounding
4He gas. The former phenomenon is analytically presented in the simple case where the
latter is neglected.

The heat propagation through silica is governed by the equation of heat diffusion given
in Eq. (3.38). As expected from a temperature source [163] oscillating at an angular
frequency Ω, the generated thermal wave propagates and decays over a characteristic length
lc =

√
D/Ω. The resulting oscillating elevation of temperature δT changes the cavity’s

length and refractive index, therefore inducing a modulation of the optical path detected
by a resonant probe laser using the PDH frequency detection technique.

For low modulation frequencies, lc is much larger than the toroid’s periphery-pillar
distance L = R − rp. The thermal wave thus extends to the strongly thermally anchored
silica region above the silicon pillar, for which δT is assumed to be equal to zero. The flow of
heat through the pillar prevents additional elevation of temperature per cycle, resulting in
a flat thermal response when decreasing Ω, transduced as a measured response’s amplitude
plateau. The phase difference between the heat source and temperature oscillation in this
regime is close to zero. In essence, the structure “thermalizes” at each cycle.

On the contrary, for modulation frequencies such that lc is much smaller than L, the
thermal front wave cannot reach the pillar at each cycle. Hence, the amount of deposited
energy per cycle decreases for increasing frequency and leads to a decreasing elevation
of temperature. This is the frequency-dependent amplitude response. The modulation
frequency at the junction of these two regimes is the cutoff frequency of the diffusion
phenomenon.

To analytically derive the complex temperature response from the equation (3.38),
the geometry of the system is simplified by considering a disk of radius R and thickness
td supported by a pillar of radius rp. The disk can be considered thermally insulated
from the surrounding medium. The localization of the heat source, the optical mode,
is approximated to the peripheral wall of the disk, simplifying Eq. (3.38) after Fourier
transform to (in polar coordinates)

iΩδT (r,Ω)−D
1

r

∂

∂r

(
r
∂

∂r

)
δT (r,Ω) =

κabs

ρcp

δK(r −R)

2πRtd
~ωlā

2. (3.44)

The analytical solution for the elevation of temperature at r = R reads [20]

δT (R,Ω) ≈ δT1

1 + iΩ/Ω1

, (3.45)
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with

δT1 = −~ωlκabsā
2 1

2πktd
ln(rp/R), (3.46)

Ω1 =
4 ln(rp/R)

1− (rp/R)2 + 2 ln(rp/R)(1 + ln(rp/R))

D

R2
. (3.47)

For large frequencies Ω � Ω1, lc becomes comparable to the radius r0 of the optical
mode. The radial extension of the heat source must then be taken as non-zero. It is
approximated as a circle of radius r0 localized at r ≈ R. As in the previous case, at low
frequencies the elevation of temperature is small and localized whereas at high frequencies
the heat wave propagates and the elevation on the center of the disk saturates. The
elevation of temperature at r ≈ R is then given by

δT (R,Ω) ≈ δT2

1 + iΩ/Ω2

, (3.48)

with
Ω2 = D/r20. (3.49)

For a toroid of minor diameter much larger than several wavelengths, the mode radius is
r0 ≈ 1.8Rm−2/3 [20], where m is the azimuthal mode number. The two derived cutoff
frequencies characterize the diffusion mechanism in silica for a given geometry. Measured
deviations from the presented ideal model additionally inform on the presence of gas ther-
malization breaking down the assumed analytical approximations.

Pump-and-probe measurements

Figure 3.26 (a) depicts the setup used to perform the pump-and-probe measurements. The
amplitude-modulated pump laser is thermally locked on one resonance of the toroid and
provides the modulated heat source. The probe laser is locked on a spectrally distant mode.
Demodulation of the probe laser’s PDH error signal by the network analyzer provides
the amplitude and phase thermal responses of the toroid’s resonance frequency. It thus
allows to record and characterize the cutoff frequencies and amplitudes of the different heat
extraction mechanisms (Fig. 3.26 (b)).

The total variation of the cavity’s resonance frequency is given by [20]

δωc(Ω) = (δωth(Ω) + δωK + δωrp(Ω)) , (3.50)

where δωrp relates to the radiation pressure force coming from the modulated intracavity
light. The responses are studied here at frequencies below 10MHz, lower than the cavity
bandwidth of 25MHz. The cavity low-pass filtering effect on the pump and the probe
modulations has thus an insignificant influence on the presented results. For the radiation-
pressure induced frequency shift modeled by δωrp(Ω), the RBM is estimated to vibrate at
a frequency above 50MHz and is also not taken into account in the present discussion. In
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Figure 3.26: Pump-and-probe setup (a) and recorded amplitude and phase-difference traces (b).
(a) The network analyzer (NA) modulates the amplitude of the thermally-locked pump laser at
the scanning angular frequency Ω and demodulates the AC part of the PDH signal, recording the
amplitude and phase responses. The cross-talk between the two lasers is reduced using a tunable
étalon filter. The input powers and wavelengths of the pump and probe are 10µW and 1521 nm
and 20µW and 1563 nm, respectively. (b) Measured amplitude and phase-difference (orange dots)
of the thermal response of a 60µm-diameter toroid cooled to 9.9K using ∼ 2mbar of gaseous
4He. The fitted curve (blue line) corresponds to a two-pole response of 29 kHz and 2.0MHz cutoff
frequencies. Each of them is separately represented by a dashed gray line in the amplitude trace.

the context of dynamical backaction cooling, it has been estimated that the influence of
the thermal effect at typical mechanical frequencies of the radial breathing mode is two
orders of magnitude lower than the radiation pressure effect [28]. Finally, the instantaneous
contribution of the Kerr effect δωK is simply taken as a frequency-independent background
in the frequency range considered.

The variation of the optical resonance frequency due to the thermal modulation reads

δωth(Ω) ≈ −ωc

(∫ R

0

αδT (r,Ω) dr/R +

∫ R+r0

R−r0

1

n

dn

dT
δT (r,Ω) dr/(2ro)

)
. (3.51)

The integrals account for the different spatial influences of the elevation of temperature on
the change of optical resonance frequency. The effects on the surrounding gas are neglected.
At r ≈ R where the probe mode is localized, δT (r,Ω) is the sum of both contributions
expressed in Eqs. (3.46) and (3.48).

Figure 3.27 shows the fitted cutoff frequencies for cryostat temperatures varying from
5 to 37K, with pressures varying from 2 to 46mbar (low pressure measurements) and from
80 to 260mbar (high pressure measurements).

The approximated model given by Eq. (3.51) suggests to fit two low-pass filters to
account for the diffusion in glass only. For Tcryo above 13K, the fitted cutoff frequencies
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follow the trend given by the theoretical expressions for the first pole (Eq. (3.47)) and the
second pole (Eq. (3.49)) estimated using the tabulated values of silica’s thermal properties
[164, 165, 166]. A first manifestation of the influence of the surrounding gas onto the
thermal response is the systematic increase by a factor of two of the cutoff frequency of the
first pole at high pressures. For Tcryo below 13K and high pressures, however, the first pole
approximation expressed by Eq. (3.45) breaks down and cannot be analytically estimated
as a first-order low-pass filter. Numerical simulations currently on-going in the group show
that both phenomena can be accurately predicted when the diffusion through the gaseous
4He is included in the model. Another intriguing aspect discovered at low temperature is
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Figure 3.27: Response cutoff frequencies versus cryostat temperature for low and high pressures
(more than one order of magnitude difference). The red and blue lines correspond respectively to
the estimation of the cutoff frequencies given by Eqs. (3.47-3.49) using tabulated thermal transport
coefficients of silica [164, 165, 166]. The cutoff frequencies are obtained by fitting a two-pole model
plus background for which the amplitude and frequencies are fitted parameters. The fit tolerance
is an average estimation from several fit processes outputting fitted traces of similar confidence
coefficients. For the high pressure measurements, the first low-pass filter approximation breaks
down below 13K.

the fact that the cutoff frequency of the second pole reaches high values (more than 1MHz)
and evolves inversely than theoretically expected.

Those observations highlight the preponderant role of the exchange 4He at low tempera-
tures in the heat dynamics of the sample, whereas the gas plays a negligible role at room
temperature [20]. This conclusion justifies the exchange gas technology used for therma-
lizing the toroidal microcavity and confirms the relevance of this type of cryostat design
when going to even lower temperatures, using an exchange gas 3He cryostat.

Finally, another interesting aspect revealed by the pump-and-probe measurements is
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that the different contributions to the variation of the resonance frequency strongly cancel
each other at Tcryo close to T ∗, reducing the amplitude of the thermal response by more
than 20 dB up to 107MHz. This phenomenon can be exploited in the context of stabi-
lized cavities [167]. The pressure dependency of the cancellation temperature suggests
furthermore that a significant role is played by the gaseous 4He.

Superfluid 4He signature

When decreasing the temperature below ∼ 2K, a film of helium II deposits. In the res-
ponse amplitude curve, its contribution manifests itself as the oscillatory trace shown in
Fig. 3.28. Cancellation peaks of similar free spectral ranges are detected, suggesting that
the generated heat transport wave undergoes a cavity effect with a cavity dispersion of
-40 kHz/MHz. From the thermal dispersion of ∼ −500 kHz/K, it is supposed that the
type of wave generated is intrinsic to helium II films, known as the “third sound” [162].
Its existence has been theoretically derived [168] and experimentally demonstrated [169]
by Atkins five decades ago. Since trace (i) is a convolution of trace (ii) with an extra
interferometric term, it could signify that this thermal surface wave dispersively modulates
the propagation medium of the optical wave. Measurements performed with a 980 nm
pump laser show a significantly modified spectrum. This suggests additionally that the
spatial boundary conditions of the third sound cavity partially depend on the wavelength
and could be due to the regularly spaced hot spots generated by the standing pump wave.
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Figure 3.28: Calibrated amplitude response in the presence of a film of superfluid 4He (i) and
of normal liquid 4He (ii) at a pressure of a few tens of mbar and a temperature of 2.17K. The
cancellation effect observed is attributed to the destructive interference of a generated superfluid
third sound wave in a cavity-like spatial confinement.
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3.4.6 Dynamical backaction cooling in the helium-4 cryostat

The studies performed in previous sections on the reduction of the mechanical dissipations
(section 3.2), on the classical and quantum backaction (section 3.3) and on the reduction
of the environmental temperature (sections 3.4.1 to 3.4.5) aim towards the reduction of
the phonon occupancy. Implementation of cryogenic pre-cooling and resolved-sideband
optomechanical cooling came to the fore in 2008 with the first ever reported cryogenic
cooling results from our group [41], quickly followed by other groups using microspheres
[56] and beam nanoresonators [53].

Laser cooling

Here, the experiment is performed in the cryostat at a temperature close to Tcryo = 1.65K,
with an exchange gas pressure of tens of mbar to ensure significant thermalization. The
study pursued on silica two-level-systems in section 3.2.3 shows that the mechanical Q
drops by one order of magnitude when cryogenically cooling from room temperature to
the cryostat’s base temperature. Spoke optimization in this regime is useless and the
simple needle-pillar samples are therefore superfluous as optomechanical systems, with a
TLS-limited mechanical Q of ∼ 2000 at 66MHz.

The detection of the phase fluctuations of the output field is performed using a balanced
homodyne interferometer detailed in section 3.5.1. Subsequent calibrated spectral analysis
directly provides the mechanical spectrum from which the effective temperature Teff of the
radial breathing mode is extracted. The Ti:sapphire laser is thermally locked to the red
side of the optical cavity and serves as both cooling and readout laser.

Starting at room temperature, the mechanical spectrum of the RBM of a 30−µm radius
toroid is recorded (Fig. 3.29 (a), red trace). With an optical linewidth κ/(2π) ≈ 19MHz in
normal experimental conditions (slightly overcoupled), the ratio Ωm/κ is larger than three.
The resolved-sideband regime is then reached and the cooling process therefore benefits
from both a reduced limitation due to quantum backaction and a reduced intracavity
heating (section 3.3). Measured with a low input power, the effective temperature of the
RBM is first cryogenically reduced to reach a phonon occupancy of 530 at the cryostat’s
base temperature (Fig. 3.29 (a), green traces). Thereafter, laser cooling is performed by
simultaneously increasing the power of the laser, detuned to ∆̄opt, to 200µW (Fig. 3.29
(a), blue traces) to reach an effective mechanical linewidth of Γeff/(2π) = 370 kHz. The
corresponding phonon occupancy averaged from several measurements is n̄ = 63 ± 20 for
an effective temperature of Teff = 200± 60mK.

Intracavity absorption estimation

This cooling performance is limited by the intracavity light absorption that unavoidably
elevates the environmental temperature of the mechanical oscillator. Its influence is quan-
tified here.

In Fig. 3.30, the measured effective temperatures are plotted versus the measured ef-
fective linewidths (blue points) obtained when the laser power is increased. The deviation
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Figure 3.29: Cryogenic pre-cooling and laser cooling. (a) Effective temperature Teff of a 65.1-
MHz mechanical RBM versus cryostat temperature Tcryo starting at room temperature (red), then
subjected to cryogenic cooling (green) and finally to laser cooling (blue), down to an occupancy
n̄ = 63 ± 20. The dashed line is a guide to the eye denoting perfect thermalization to the 4He
cryostat. Each value is an average of several measurements. The varying experimental conditions
are responsible for scattered values denoted by the error bars (< 30%). Global heating of the
experimental chamber by the laser is responsible for the measured increase of Tcryo. (b) Recorded
and Lorentzian-fitted mechanical spectra for various points in (a) for which noise thermometry is
used to infer Teff . The model includes the shift of the intrinsic mechanical parameters resulting
from the silica two-level system when the temperature increases because of absorption. For the
blue traces, laser cooling is performed to increase the effective linewidth Γeff at input powers of
190 and 200µW. The sharp peak is the calibration peak, the other peak on the red side of the
RBM is an unaffected mechanical resonance.

from the ideal case without absorption (blue solid lines) is modeled by the fit taking into ac-
count the absorption-induced elevation of temperature (dashed green lines). For increasing
input powers, Γeff increases but the concomitant increase of the environmental temperature
due to intracavity absorption leads to a saturation of the total effective temperature. In
trace (a), the corresponding increase of the environmental temperature estimated from the
deviation is denoted by the red dashed line. The temperature dependence of the intrin-
sic mechanical parameters (strongly dominated by silica two-level systems) is taken into
account. From the study of section 3.2.3, it is clear that the elevation of temperature
penalizes additionally the cooling performance by degrading the intrinsic mechanical pa-
rameters of the oscillator. This illustrates the dramatic effect of the intracavity absorption
on the cooling process in the cryogenic environment.

The beneficial effect of the deep resolved-sideband (RSB) regime on this issue, explained
in section 3.3, is nevertheless illustrated by performing laser cooling on another sample
exhibiting a smaller RSB factor close to 1 (Fig. 3.30 (b)). The deviation in this case is
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Figure 3.30: Quantification of intracavity absorption heating for two different samples of
resolved-sideband factor 3 (a) and 1 (b), subjected to laser cooling. Both graphs show Teff ver-
sus Γeff and compare the ideal case (blue line) with measurements (filled points). The fit (green
dashed line) accounts for the intracavity laser absorption and for the TLS mechanical effects (the
latter only for (a)). Open points are measurements in the absence of laser cooling. The extracted
corresponding environment temperature is denoted by the red dashed line in (a).

much more important and demonstrates experimentally the advantage of using samples
with high RSB factors in cryogenic environments with limited thermalization capabilities.
This aspect will be pushed further to achieve an even lower phonon occupancy in the 3He
cryostat.

Imprecision-backaction product

The experiment is considered from the quantum measurement perspective theoretically in-
troduced in section 1.3. The extracted raise of temperature for the high RSB ratio sample
allows to calculate the total thermal force fluctuations S̄th

FF (Ωm) ≈ (8 × 10−15N/
√
Hz)2

from expression (1.46). Subtracting the contribution of the cryostat temperature, the
classical backaction mostly resulting from the measurement field absorption heating is es-
timated to be S̄cba

FF (Ωm) ≈ (4×10−15N
√
Hz)2. Indeed, the quantum contribution S̄qba

FF (Ωm)
from expression (1.71) is one order of magnitude smaller and therefore neglected.

Consequently, the imprecision-backaction product resulting from the sole contribution
of the optical measurement field is estimated to be S̄qi

xxS̄
cba
FF ≈ (100)2 (~/2)2. The quan-

tum imprecision measured from the background of the calibrated mechanical spectra is
S̄qi
xx(Ωm) ≈ (1.4 × 10−18m/

√
Hz)2, formally expressed by Eq. (1.70). From the measure-

ment perspective, reducing the intracavity laser absorption allows to reduce the classical
backaction that alters the total measurement uncertainty. This point is analyzed when
implementing the experiment in the next cryostat.
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As a conclusion, the experimental work undertaken to implement the coupling setup in
the prototype cryostat has proven to be successful and sets the ground for the next cryostat
using 3He. All technical innovations reviewed in this section can simply be adapted and the
studies pursued on the thermalization and on the material dissipations are still of prime
relevance in the new experimental setup.

3.4.7 The experimental helium-3 cryostat

The study conducted in section 3.2.3 predicts a decrease by a factor of more than 3 of
the mechanical dissipations dominated by silica two-level system by going from 1.65K to
850mK. At this 3He temperature, the characterization of a 76.3MHz oscillator demon-
strates a mechanical Q of ∼ 7100 (Fig. 3.12), more than three times higher than measured
in the prototype cryostat’s base temperature during the cooling run [41]. Combined with
the large effective damping Γeff > 1.5MHz already experimentally achieved in the deep
resolved-sideband regime at room temperature (section 3.3), operating at such a modest
pre-cooling temperature would lower the phonon occupancy of the mechanical oscillator
close to 1. The motional sideband asymmetry would then reach an experimentally clearly
visible ratio of almost 3 dB. This statement justifies the implementation of the coupling
setup into the experimental 3He exchange gas cryostat presented in this section, using the
technical knowledge obtained during the construction of the prototype cryostat. The rele-
vance of the similar refrigeration principle is proven by thermalizing the mechanical mode
to a phonon occupancy below 200 at 600mK. Laser cooling experiments in this setup are
nevertheless performed at 850mK to benefit from a significant thermalization of the sample
at the vapor pressure of 3He of 2.8mbar.

3He vaporizes at 3.19K, hence at lower temperature than 4He at room pressure. Thus,
a cryostat with an equivalent vacuum technology vaporizing a bath of 3He reaches a lower
base temperature. This is the principle of the employed Oxford Instruments HelioxTL
cryostat. In essence, the construction is the same as the previously described 4He cryostat
except that the experimental chamber is filled with 3He that liquefies and drops at the
bottom. There, its vaporization is strongly forced by a mounted charcoal pump leading
to a lowering of the bath temperature down to 400mK and thermalizing the mounted
cryoprobe to 600mK.

Figure 3.31 (a) depicts the 3He cryostat with the on-scale drawings of the different
reservoirs and the symbolic drawings of the tubings2. As for the previous one, this cryostat
is designed to host mechanically sensitive experiments and is therefore particularly adapted
for our sensitive coupling setup.

A Leybold TMP 361 turbomolecular pump ensures that high vacuum is reached in the
insulation vacuum space before cryogenic operation. For the refrigeration process itself,
a liquid N2 shielding provides the first cooling stage and reduces the evaporation rate of
the second cooling stage which is the 24-L liquid 4He reservoir. The latter is connected
through a needle valve to the “1-K pot” that fills with 4.2-K liquid 4He. This sub-reservoir

2See Ref. [170] for the standard vacuum graphic symbols used.
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is thermally anchored to the experimental chamber. Appropriate pumping with a rotary
pump lowers its temperature to ∼ 1.3K, simultaneously lowering the temperature of the
experimental chamber and liquefying the 3He residing inside. When a sufficient bath of
liquid 3He forms at the bottom of the chamber, its temperature is lowered even more by
pumping it with a charcoal “cryosorption” pump of maximum pumping speed of 2200m3/h,
providing a cooling rate of more than a mW at the working temperature of the experiment
(850mK) for a holding time of ∼ 6 h.

The pumping speed of the cryosorption pump is adjusted by varying its temperature,
therefore controlling the cryostat’s base temperature. To this end, a digital feedback loop
controls a heater and provides a temperature stability below 1mK at an operating tem-
perature below 1.2K.

The cryoprobe construction allows to remove the sample while the cryostat is kept at
low temperature (typically 4He temperature) using a vacuum lock that can be evacuated
to high vacuum (see Fig. 3.31). A full swap normally requires 24 h as the evacuation of
the lock before cooling necessitates long turbomolecular pumping to remove contaminating
species such as N2 or organic materials unavoidably depositing during manipulation.
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Figure 3.32: Mechanical radial breathing mode thermalization curve in the helium-3 cryostat,
reaching an occupancy below 200 at 600mK confirming the efficiency of the exchange gas technique
for toroidal microresonators. The data points are taken with a Koheras 1550 nm erbium fiber laser
at a power below 1µW locked to the resonance of a WGM.

The cryohead (Fig. 3.31 (b)) is designed to adapt the one of the 4He cryostat (Fig. 3.18
(b)) to the even more confined space of 38mm in diameter of the current cryostat. An
additional constraint is to leave enough passage to ensure a significant pumping speed
across the cryohead to evaporate the bath of the liquid 3He residing at the bottom of
the chamber. Additionally, a protecting cup covers the whole cryohead to ensure that
the gaseous stream of the evaporation does not mechanically drive the cryotaper into
motion. The spatial approach of the resonator to the cryotaper is ensured by two slip-
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stick motion piezoelectric displacers (Attocube Systems AG ANPx51/LT) and the phase
matching is adjusted at room temperature using the same type of mechanical slide as
previously described. The temperature of the cryohead Tcryo is measured with a Lakeshore
CX-1010-CI-0.3L Cernox sensor resistively readout with a Model 336 controller.

The setup proved to be appropriately designed, allowing stable coupling of the resonator
and thermalization down to 600mK or less than 200 phonons for the 76.3-MHz RBM
investigated, as depicted on Fig. 3.32. The excellent agreement of the experimental points
(blue dots) with the line (red guide to the eye) proves the thermalization of the mechanical
mode with the cryogenic device.
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3.5 Measurement of low phonon numbers

The previous sections of this chapter introduced the various improvements intended to
lower the phonon occupancy of the mechanical radial breathing mode subjected to dynam-
ical backaction cooling. The performance leap achieved with the 3He setup makes it par-
ticularly relevant to envisage observing quantum signatures of the mechanical oscillator in
the near future. Previously, quantum effects were observed in a simply thermodynamically
cooled HF oscillator piezoelectrically coupled to a superconducting qubit [171]. Although
scientifically interesting, this cooling scheme is confined to the material spectrum usable
with superconducting qubits and to mechanical oscillators with resonance frequencies high
enough to exhibit a quantum temperature reachable by conventional cryogenics. Other at-
tempts to reach an occupancy below one were limited by the intrinsic thermal noise of the
optical field used at radio frequencies [58], that were only recently overcome [59]. Recently,
at optical frequencies, a phonon occupancy of 0.85±0.04 [57] was very recently measured
in an optomechanical crystal.

This section presents the proof-of-principle of optomechanical cooling of a toroidal res-
onator close to its quantum ground state in the experimental cryostat. Using a specifically
built homodyne detection, mechanical spectra are recorded with a sensitivity down to
3.2 × 10−19 m/

√
Hz. The effective temperature is extracted from the optical spring and

damping effects and compared with the independent estimation given by calibrating noise
spectra, allowing to estimate a cooling down to 9 ± 1 phonon occupancy. Importantly,
intracavity light absorption is significantly reduced compared to the previous cooling at-
tempt due to a resolved-sideband factor more than three times higher. In addition, the
imprecision-backaction product is lowered closer to the Heisenberg limit, as expected from
the measurement improvement. The thermal dependence of the two-level system induced
damping is exploited to quantify the excess heating resulting from the absorption of the
light transversely scattered from the coupling waveguide. This relatively basic effect is
shown to be the main limitation of the cooling performance of this experimental run.

3.5.1 The balanced homodyne detection

To detect small fluctuations of the mechanical oscillator subjected to cooling, the detecting
field should carry the least classical fluctuations. For this reason, we are using the quantum-
limited Ti:sapphire laser (section 3.3) to simultaneously cool and probe the optomechanical
system. In addition, the phase quadrature of the output field should be detected and
amplified above any other sources of detection noise for any arbitrary input power. The
side-of-the-fringe technique introduced in section 3.2.1 does not satisfy the last condition, as
its sensitivity scales with the intracavity power. For the PDH detection technique detailed
in section 3.4.3, the amplification of the signal also requires to increase the input field s0,
therefore suffering from the same limitation.

The best detection technique in terms of sensitivity is achieved with a balanced ho-
modyne interferometer which directly addresses and amplifies the phase quadrature of the
output field sout. Conceptually, the laser field is split into two parts: the signal field which
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probes the cavity and the strong local oscillator (LO) field sLO. Each field runs along a dif-
ferent arm of the interferometer. After running each path and acquiring a controlled phase
difference, the two fields mix on a beam splitter. The AC component of the subtraction of
the photodetected signals from both ports is then the product of the mean strong LO field
and the fluctuations of the signal field’s quadrature oscillating in phase with the LO field.
Varying the phase difference thus allows to address and amplify the desired quadrature of
the signal field probing the cavity.

The fundamentals of the detection are detailed here, and the experimental implemen-
tation is described, along with the various additions relevant to the cooling experiment.

Principle of the detection

The principle of the balanced homodyne detector is simplified in Fig. 3.33 [172]. In this
Mach-Zehnder type interferometer, the laser source is split into two fields: the signal field
and the local oscillator field. They acquire a phase difference φ due to the difference of
optical path lengths of the two arms controlled by the positioner. The output field exiting
the cavity sout carrying the mechanically induced phase fluctuations is reflected by the
polarizing beam splitter PBS1, whereas the strong local oscillator field sLO is transmitted.
The two fields are then spatially co-located but of orthogonal polarizations and do not
interfere on PBS1. Then, the λ/2 waveplate rotates both polarizations by 45◦ and makes
them interfere on PBS2. The reflected “r” and transmitted “t” fields then read (the fields’
mean values are taken real in this section)

sr(t) =
1√
2

(
sout(t)− sLO(t)e

iφ
)
, (3.52)

st(t) =
1√
2

(
sout(t) + sLO(t)e

iφ
)
. (3.53)

The subtracted “-” photodetected optical power is given by

P−(t) = Pt(t)− Pr(t) = sout(t)s
∗
LO(t)e

−iφ + s∗out(t)sLO(t)e
iφ, (3.54)

(3.55)

giving rise to the measured voltage at the photodiode V−(t).
The linearization procedure gives for the mean value

V̄− ∝ 2s̄outs̄LOcos(φ), (3.56)

and for the time dependent fluctuations

δV−(t) ∝ s̄LO
(
δsout(t)e

−iφ + δs∗out(t)e
iφ
)
+ s̄out

(
δsLO(t)e

iφ + δs∗LO(t)e
+iφ
)
. (3.57)

For a strong local oscillator s̄LO � s̄out in Eq. (3.57), the signal δV−(t) is proportional
to the fluctuation of one quadrature of the output field sout amplified by the strong field.
The measured signal is then proportional to

δV−(t) ∝ s̄LO
(
δsout(t)e

−iφ + δs∗out(t)e
iφ
)
. (3.58)
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Figure 3.33: Simplified scheme of the balanced homodyne detection principle. The polarization
of each field is symbolically represented, and their projection on the axis of the polarizing beam
splitters (PBS) are given in insets. “r”: reflection, “t” transmission.

The phase difference φ determines the quadrature angle of the field fluctuations that is
amplified by the local oscillator’s mean field s̄LO. Thanks to the strong amplification by
the factor s̄LO, the quantum noise of the signal s̄out can be made dominant over all sources
of technical noise, allowing to reach the best detection sensitivity authorized by quantum
mechanical limitations.

Practically, the mean value of the subtracted photovoltage Eq. (3.56) provides an error
signal proportional to cos(φ) to the feedback loop, stabilizing then the phase difference φ.
Locking the LO phase in order to get a zero value for V̄−, one gets a value of φ = π/2, for
which the detector measures the phase quadrature fluctuations of the output field.

Experimental setup

The experimental setup of the balanced homodyne detector is depicted in Fig. 3.34.
From the Ti:sapphire laser described in section 3.3, a small portion of the 780 nm colli-

mated beam is collected. It is then directed to a Pound-Drever-Hall detection setup (section
3.4.3) to lock the frequency of the longitudinal mode of interest to the frequency of the
TEM00 mode of a thermally stabilized and vacuum-operated external Fabry-Perot cavity
(RefCell). The locking error signal is recorded and the output optical mode imaged with a
CCD camera (picture inset) to ensure proper locking. The main beam is directed through
an electro-optic modulator and various beam attenuation units before being fed to the
Mach-Zehnder interferometer using a polarization-maintaining fiber (dark blue coating).
In addition, a 780 nm diode laser can be coupled to the signal arm to quickly determine
the resonator’s resonance. The beat with the Ti:sapphire beam indicates its detuning, thus
allowing proper frequency adjustment. The mixed fields outputting the interferometer are
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focused on the two photodetectors of a 80MHz balanced photoreceiver (BPR, New Focus
1807-FS). After proper spectral selection using a digital filter (Stanford Research Systems
SR560), the mean value of the subtracted photosignal is fed back to the two piezoelectric
positioners providing a slow long-range (low-pass bandwidth of 0.3Hz) and fast (band-pass
bandwidth from 0.1Hz to 100 kHz) displacement to keep the phase difference π/2, main-
taining the mean value of the homodyne signal to 0. The former compensates slow thermal
drifts whereas the latter compensates fast acoustic vibrations, their tuning ranges being
respectively 950 and ∼ 10µm. Along the beam path, various stages of power measure-
ments are included. Ideally, the detector should be configured so that light collected from
the signal arm is reflected from the polarizing beam splitter PBS1 as in Fig. 3.34 to avoid
that the intrinsic higher losses in transmission reduces the amount of light collected. The
sensitivity of the current non-ideal configuration allows nevertheless satisfying detection of
the mechanical modes.

The spatial overlap of the signal and LO beams on PBS2 is calculated from the inter-
ference fringes by scanning the optical path difference with the low frequency generator
(LFG) [173]. Experimental values of 85% overlap are typically obtained. The balancing of
the interferometer is performed by simply phase modulating the input beam and modifying
the length of the LO fiber until the interference fringes vanish. Even more accurate ba-
lancing is achieved by minimizing the fringes detected with an electrical spectrum analyzer
(ESA).

Demodulation of the signal phase fluctuations with an ESA (Agilent MXA N9020A)
gives after proper averaging the mechanical spectrum that is further analyzed to quantify
the optical spring and damping effect. Under optimum conditions and after cryogenic
pre-cooling, the sensitivity of the detector at the mechanical frequency of interest around
70MHz reaches 3.2× 10−19 m/

√
Hz as detailed in the next section, a value that permits to

envisage detection of the zero point motion of the mechanical oscillator. The amplification
provided by the LO ensures that the optical shot noise is at least 10 dB higher than the
electronic noise of the detections circuit under normal operation.

The calibration of the mechanical spectrum is equivalent to the description given in
section 3.4.3. The network analyzer in zero-span configuration provides the calibration
tone being applied to the Ti:sapphire’s EOM and detected using the homodyne signal.

Additionally, by scanning the phase modulation of the calibration with the network
analyzer, the optical transmission of the cavity is measured. Essentially, the phase modu-
lation generates an upper and lower sideband from the detuned laser. When the laser
is detuned to −Ωm and in the RSB regime, only the former interacts with the cavity
after passing through the signal arm. Then, upon demodulation of the beat with the LO
carrier, the NA measures a signal proportional to the transmission of the cavity, therefore
plotting the transmission of the toroidal cavity relevant for the optomechanically induced
transparency measurements detailed in section 3.6.
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3.5.2 Dynamical backaction cooling

Measurements of dynamical backaction effects

Dynamical backaction cooling on the mechanical radial breathing mode of a toroid placed
in the cryostat down to a phonon occupancy of 9± 1 is now performed. First, the optical
spring and damping effects are characterized from the mechanical spectra detected with
the balanced homodyne detector. Besides, the estimated elevation of temperature due
to intracavity absorption is shown to be strongly reduced as a consequence of the record
resolved-sideband factor of more than 10 achieved. Then, using this novel thermometry
method based on the thermal dependence of TLS-induced dissipation, the elevation of
temperature due to scattering from the taper is characterized. This phenomenon is shown
to limit the cooling performance and the imprecision-backaction product.

Figure 3.35 shows the effective frequency Ωeff and linewidth Γeff of the radial breathing
mode of a needle-pillar microtoroid when the cooling laser is scanned across the lower
sidebands of the two split resonances. The experiment is performed at 850mK with a
measured pressure of 2.8mbar, ensuring significant thermalization.

The double dispersive and dissipative signature of the radiation pressure effect comes
from the split of the whispering-gallery mode, as represented on the inset. Backscattering
of the light couples the counter-clockwise “ccw” and clockwise “cw” modes, therefore lifting
the degeneracy of the eigenmodes of the system. The expression of the radiation pressure
force acting on the mechanical mode is then modified. Since the fields are classical and
coherent, the operators introduced in expressions (1.13) to (1.15) are identified with their
expectation values, and the quantum optical noises are dropped. The equations of motion
of the two counter-propagating modes are then given by

ȧccw(t) = (i(∆−Gx(t))− κ/2)accw(t) + i
γ

2
acw(t) +

√
ηcκsin(t), (3.59)

ȧcw(t) = (i(∆−Gx(t))− κ/2)acw(t) + i
γ

2
accw(t). (3.60)

with γ being the coupling rate between the two modes. The eigenmodes of the steady-state
of this set of equations are given by the following linear combinations

a+ = (accw(t) + acw(t))/
√
2, (3.61)

a− = (accw(t)− acw(t))/
√
2. (3.62)

The exerted radiation pressure force is then [55]

Frp = −~G(|a+(t)|2 + |a−(t)|2), (3.63)

since the spatial projection of the cross-terms proportional to cos(mϕ)sin(mϕ) on the
rotationally symmetric mechanical RBM cancels (m is the azimuthal mode number of the
WGM). The radiation pressure forces from the light in both eigenmodes simply add.
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Figure 3.35: Effective mechanical frequency (a) and linewidth (b) recorded when the 2mW-
power laser is scanned through the lower motional sideband of the split optical mode (modeled in
inset). The sample is a 25 − µm radius needle-pillar microtoroid supporting a mechanical RBM
of effective mass of 20±5ng and exhibiting a coupling factor G ≈ 2π × 16GHz/nm. Blue points
are the output parameters of the Lorentzian fits performed on the mechanical spectra, the orange
line is a coupled fit to Eqs. (3.69 - 3.70). Adapted from Ref. [55].

The equations of motion then read

ẍ(t) = −Ω2
mx̂(t)− Γmẋ(t)−

~G
meff

(|a+(t)|2 + |a−(t)|2) +
√
Γmξth(t), (3.64)

ȧ+(t) =
(
i(∆ + γ/2−Gx(t))− κ

2

)
a+(t) +

√
ηcκ

2
sin(t), (3.65)

ȧ−(t) =
(
i(∆− γ/2−Gx(t))− κ

2

)
a−(t) +

√
ηcκ

2
sin(t). (3.66)

Using the linearization procedure of the small fluctuations of parameters around their
mean values introduced in section 1.2.2, the expression of the effective mechanical suscep-
tibility is given by

χ−1
eff (Ω) = χ−1

m (Ω)− iΩmmeffh(Ω). (3.67)
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The radiation pressure induced modification of the susceptibility is then given by

h(Ω) = 2g20
∑
σ=±

|āσ|2
(
Lσ(∆̄ + Ω)− L∗

σ(∆̄− Ω)
)
, (3.68)

considering the high-Q approximation, and after Fourier transform. The function L±(∆̄) =(
−i(∆̄± γ/2) + κ/2

)−1
is the Lorentzian expression of each eigenmodes’ mean value ā± =√

ηcκ/2L±(∆̄)s̄in [55]. ∆̄ is the laser detuning accounting for the static mechanical shift
of the resonance.

When the cooling laser is scanned, the modification of the intracavity power results in
a detuning dependent elevation of temperature due to absorption. Because of the silica
two-level systems, it changes the intrinsic mechanical properties of the RBM. The total
effective change therefore reads

Ωeff ' Ωm(T ) + Re[f(Ωm)], (3.69)

Γeff ' Γm(T ) + Im[f(Ωm)]/2, (3.70)

where Ωm(T ) and Γm(T ) are given by expressions (3.23) and (3.24), respectively. This
model is used to perform a coupled fit of the effective frequency and linewidth of the
RBM varying with detuning (orange line in Fig. 3.35). Since the determination of the
mechanical resonance frequency is less prone to fit errors, its weight in the coupled fit is
a factor of ten higher. Excellent agreement is found when accounting for an elevation of
temperature δTWGM dependent on the (detuning dependent) intracavity power according
to δTWGM = χstat

th κabs(|a+|2 + |a−|2)~ωl. The total environmental temperature of the RBM
is therefore given by

T ≈ Tcryo + δTWGM + δTstray. (3.71)

The last term is the elevation of temperature determined by monitoring the change of
Q−1

m (T ) at high detunings and negligible intracavity power. The heating is here attributed
to the absorption of the stray light transversely scattered from the tapered fiber by dusts
aggregating on the taper region.

For the run described in Fig. 3.35, δTWGM ≈ 70mK on the lower sideband and δTstray

is estimated to be 220mK. Although small in absolute terms, the stray light heating
deteriorates the mechanical quality factor from Qm(Tcryo) ' 8700 to Qm(Tcryo + δTstray) '
5970 at 71.76MHz, therefore contributing significantly to the reduction of the performance
of the cooling process. The fitted parameters κ, γ and sin are found to be in good agreement
with the independent estimations from the measurements of the transmission of the cavity,
giving κ ≈ 2π × 6MHz, γ ≈ 2π × 30MHz and Pin = |s̄in|2~ωl ≈ 2mW.

Phonon occupation

The previous analysis of the optical spring and damping effects allows to extract the phonon
occupation by using expression (1.54), taking into account the elevation of temperature
due to absorption. The minimum phonon occupation is less than 10−3 for the RSB factor of
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Figure 3.36: Cooling factor (Tcryo + δTstray)/Teff and phonon occupancy n̄ versus detuning of
the cooling laser for 2mW (a) and 4mW (b) input power. Blue points are occupancy derived
directly from the noise spectrum whereas the orange lines show the occupancy extracted from the
fitted optical spring and damping effect depicted in Fig. 3.35. The inset shows the displacement
noise (DN) at optimum detuning ∆̄opt = −Ωm − γ

2 in (a). Adapted from Ref. [55].

more than 10 for the present experiment. Figure 3.36 (a) shows the calculated cooling factor
(Tcryo+ δTstray)/Teff and the corresponding phonon occupation for the previously described
run (orange line). To test the consistency of the estimation of Teff = T × Γm(T )/Γeff ,
it is compared with the effective temperature extracted from noise thermometry directly
performed on relatively calibrated mechanical spectra, as explained in section 3.4.3. The
good agreement demonstrates the correctness of the model used to characterize the different
sources of heating. Optomechanical amplification of the phase modulation (oscillating at a
frequency close to Ωm although away from the mechanical bandwidth) is taken into account
according to the model described in Ref. [43].

Figure 3.36 (b) shows this comparison for a 4mW input power for which the stray
light heating elevation of temperature evaluates to δTstray = 400mK whereas the elevation
due to intracavity absorption is too small to be discerned. With an intrinsic mechanical
quality factor of Qm(Tcryo + δTstray) = 4880, the estimation from the coupled fit of the
optical spring and damping effect yields n̄ = 10. The inferred noise temperature gives
an even lower occupancy of 9 ± 1, the uncertainty being dominated by systematic errors
estimated from the deviations of both methods.
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Imprecision-backaction product

In the context of quantum measurements introduced in section 1.3, the amount of back-
action introduced by the measurement is quantified. The imprecision-backaction product
expressed in Eq. (1.65) considers only quantum fluctuations of the probing laser, exhibiting
a minimum of (~/2)2. Upon experimental measurements, the laser unavoidably introduces
excess force fluctuations via intracavity and stray light absorption heating. This is quan-
tified here at the optimum detuning leading to the lowest occupancy.

The imprecision of the measurement is straightforwardly estimated from the calibrated
background of the recorded mechanical spectrum, as the one showed in the inset of Fig. 3.35.
It evaluates to

S̄imp
xx ≡ S̄imp

xx (Ωm) = (3.2× 10−19 m/
√
Hz)2.

Its measured linear dependence on the laser input power Pin shows that it is strongly
dominated by the quantum noise of the input laser. Consequently, the quantum imprecision
expressed in Eq. (1.64) is approximated by S̄qi

xx(Ωm) ≈ S̄imp
xx .

From expression (1.46), the total thermal force noise at a temperature T (for kBT
~Ωm

� 1)
is expressed as

S̄th
FF ≈ 2meffkBTΓm(T ), (3.72)

leading to
S̄th
FF ≈ 2meffkBTeffΓeff , (3.73)

in the presence of optical spring and damping effects, simply using the expression of the
effective temperature given by Teff ≈ T · Γm(T )/Γeff . It evaluates to

S̄th
FF = ((8± 2)× 10−15 N/

√
Hz)2,

where Γeff and Teff are extracted from the fits to the detuning series, evaluated at the
optimum detuning ∆̄opt = −Ωm− γ

2
. This value gives a conservative estimate of the classical

measurement backaction, considering all force noise as a classical backaction. The classical
backaction solely originating from the measurement (i.e. from the laser) is estimated by
subtracting from the total thermal force noise the contribution of the nonzero temperature
of the cryostat. The thermal force noise originating from this bath

S̄cryo
FF = 2meffkBTcryoΓm(Tcryo), (3.74)

is estimated to
S̄cryo
FF = ((5± 1)× 10−15 N/

√
Hz)2.

Tcryo and Γm(Tcryo) are extracted from independent low input power measurements where
the mechanical radial breathing mode is thermalized to the cryostat’s temperature. Finally,
the excess classical backaction force noise evaluates to

S̄cba
FF ' S̄th

FF − S̄cryo
FF = ((6± 2)× 10−15 N/

√
Hz)2,

accounting for 60% of the thermal force fluctuations driving the mechanical oscillator.
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The quantum backaction expressed in (1.71) for optimum detuning is evaluated to
(10−15 N/

√
Hz)2 in our case, therefore being negligible in the total imprecision-backaction

product. It yields the (for kBT
~Ωm

� 1)

S̄qi
xx(S̄

th
FF + S̄qba

FF ) ≈ S̄qi
xxS̄

th
FF = (49± 8)2

(
~
2

)2

.

Considering only the classical backaction as measurement backaction, the product is at
least a factor of 2 smaller than for the cooling run performed in the 4He cryostat. In an
ideal measurement, this product is equal to (~/2)2, corresponding to the best compromise
between the quantum imprecision and the quantum backaction. In this experimental run,
the classical backaction is dominated by the light transversely scattering off the taper
and being absorbed by the toroid. Upon resolution of this problem, it is then possible
to perform measurements for which the measurement backaction would be dominated by
quantum fluctuations.

Using dynamical backaction cooling via intracavity radiation pressure, the described ex-
perimental performance demonstrates the feasibility of refrigerating a silica microtoroid to
the quantum ground state after pre-cooling in the experimental 3He cryostat and using the
quantum-limited Ti:sapphire laser combined with the balanced homodyne detection. The
technical obstacle that limits the reported performance can be simply removed by fabrica-
ting the tapered fiber in a clean atmosphere and by avoiding the penetration of aggregating
contaminants in the cryostat, as it is currently performed in the group. Although the final
phonon occupancy of 9 ± 1 is still too high to observe quantum effects such as motional
sideband asymmetry with a good accuracy, the achieved performance is still comparable
to recent results reporting phonon occupancies of 3.8 ± 1.3 in 2010 [58], and 0.34 ± 0.05
[59] in electromechanics and 0.85 ± 0.04 [57] in optomechanics in 2011. The constructed
experiment is therefore a promising candidate for the observation of dynamical backaction
cooling down to the motional ground state. Very recently in the group, laser cooling of
optimized spoke toroids with higher vacuum optomechanical coupling rates have led to the
cooling of the mechanical mode down to 1.7 ± 0.1 phonon occupancy. Along these lines,
another interesting approach is to perform feedback cooling and quantum limited detection
on an external mechanical oscillator coupled to the evanescent part of the circulating field
of a toroid. Complete decoupling of the two degrees of freedom allow efficient engineering
the parameters of the system, eventually putting it into premier position for cooling to the
quantum ground state [174, 175].



102 3. Optomechanical cooling to low phonon occupancy

3.6 Optomechanically induced transparency

The study pursued so far on the optomechanical interaction has been focused on the
resulting modification of the mechanical response and the deriving cooling effect. From
the mutual aspect of this coupling, it is justified to expect a reciprocal modification of
the dispersive and dissipative properties of the optical cavity. To observe this effect, a
weak laser probes the optomechanical system subjected to another intense laser detuned
at ∆̄ = −Ωm maximizing the optomechanical coupling. When the beat frequency of the
two lasers is equal to the mechanical resonance frequency, a destructive interference renders
the cavity transparent upon probing.

The classical aspect of the phenomenon is explained here, starting from the coupled
equations of motion of the optical and mechanical modes. The experimental manifesta-
tions of the optomechanically induced transparency are measured for the first time [120],
demonstrating a transparency of more than 80% in the optimal configuration. There-
after, the quantum analogy between this effect and the atomic electromagnetically induced
transparency [176, 177] is demonstrated.

3.6.1 Principle of the optomechanically induced transparency

To obtain a physical understanding of the problem, the equations of motions introduced
in section 1.2.2 are considered in more detail [120]. Since the fields are classical and
coherent, the operators introduced in expressions (1.13) to (1.15) are identified with their
expectation values, and the quantum and thermal noises are dropped. The driving field is
here sin(t) = (s̄in + δsin(t))e

−iωlt. The equations of motion are solved for the perturbation
term δsin(t) = sp e

−iΩt being the “probe” of the optical cavity subjected to the “coupling”
field s̄in. The probe field oscillates at an angular frequency ωp = ωl + Ω.

To proceed, the ansatz

δa(t) = A−e−iΩt + A+e+iΩt, (3.75)

δa∗(t) = (A+)∗e−iΩt + (A−)∗e+iΩt, (3.76)

δx(t) = Xe−iΩt +X∗e+iΩt, (3.77)

is introduced. The problem is analyzed in the case where the coupling laser is detuned to the
lower motional sideband ∆̄ ' −Ωm, with the static shift of the resonance frequency included
in the modified detuning ∆̄. The probe field’s transmission at the angular frequency ωl+Ω
depends on A−; therefore, the equations of interest deduced from Eqs. (1.23) to (1.25) are

(−i(∆̄ + Ω) +
κ

2
)A− = −iGāX +

√
ηcκsp, (3.78)

(+i(∆̄− Ω) +
κ

2
)(A+)∗ = +iGāX, (3.79)

meff(Ω
2
m − Ω2 − iΓmΩ)X = −~Gā(A− + (A+)∗). (3.80)
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The intracavity probe amplitude is then given by

A− = F (Ω)sp =
1 + if(Ω)

−i(∆̄ + Ω) + κ/2 + 2∆̄f(Ω)

√
ηcκsp, (3.81)

with

f(Ω) = ~g2ā2
χm(Ω)

i(∆̄− Ω) + κ/2
, (3.82)

where χm is the mechanical susceptibility. F (Ω) denotes the absorption of the probe by
the cavity.

The introduced system of coupled equations allows to approach the physical interpre-
tation of the phenomenon. The beat of the intracavity coupling and probe fields gener-
ates a radiation pressure force oscillating at Ω. For Ω close to the mechanical resonance
frequency Ωm, the mechanical oscillator is coherently driven. The resulting mechanical
oscillations subsequently generate Stokes and anti-Stokes scattering out of the intraca-
vity coupling field. If the system is in the resolved-sideband regime, Stokes scattering is
strongly off-resonance therefore only the anti-Stokes field builds up in the cavity at the
angular frequency ωl + Ω. The scattered field is thus degenerate with the probe field,
therefore interfering with it destructively. This phenomenon, called optomechanically in-
duced transparency (OMIT), opens a transparency window centered at Ωm = Ω in the
cavity transmission.
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Figure 3.37: Optomechanically induced transparency principle. (a) OMIT configuration. The
cavity subjected to a strong coupling laser at ωl is probed by a weak laser at a frequency ωp =
ωl+Ω. (b) Normalized intracavity probe power and mechanical oscillation amplitude exhibiting the
simultaneous optical transparency and mechanical coherent driving at the two-photon resonance
condition Ω = Ωm. See text for details. Adapted from Ref. [120].

Figure 3.37 describes the phenomenon in the resolved-sideband regime and for ∆̄ =
−Ωm (a), illustrating the coherent mechanical driving by the modulated intracavity radia-
tion pressure beat (b, lower panel) leading to the optical transparency (b, upper panel) at
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the condition Ω = Ωm. In analogy with atomic electromagnetically induced transparency
(EIT), it is called the two-photon resonance condition.

To clarify our analysis of the OMIT phenomenon, the set of equations (3.75) to (3.77)
is considered in the resolved sideband regime. For a coupling laser detuned at ∆̄ = −Ωm,
the lower sideband is off-resonance; therefore, the term A+ is neglected. The normalized
mechanical coordinate amplitude X̃ = X/xzpf (see Eq. (1.11)) is introduced. Using the
high-Q approximation for the mechanical oscillator, the equations of motion approximate
then to

(Ωm − Ω− iΓm/2) X̃ + Ωc/2A
− = 0, (3.83)(

−∆̄− Ω− iκ/2
)
A− + Ωc/2 X̃ = −i

√
ηcκsp, (3.84)

where Ωc = 2Gāxzpf is the field-enhanced coupling rate proportional to the square root of
the mean field intracavity photon number. The rearrangement of the coupled equations
of motion gives a different perspective of the physical principle. For ∆̄ < 0, equations
(3.83) and (3.84) suggest to consider the optical mode and the mechanical mode as two
harmonic oscillators, with very different damping rates, coupled at a rate Ωc controlled by
the coupling field, as illustrated in Fig. 3.38 (a). By increasing the coupling rate such that
Ωc ≈

√
κΓm (weak coupling regime), a sharp optical transparency window appears for a

two-photon detuning close to the mechanical resonance (b). By increasing the pump power
further, such that Ωc > κ, two separated absorption peaks can be distinguished (strong
coupling regime). These peaks are the consequence of the splitting between the two normal
modes of the coupled system.
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Figure 3.38: (a) Optomechanical oscillators coupled at the rate Ωc. Absorption of the optical
cavity at the detuning ∆̄ = −Ωm in the weak (b) and strong coupling regime (c).

From expressions (3.83) and (3.84), the weak intracavity field can then be expressed by

A− = FRSB(Ω)sp =

√
ηcκ

−i(∆̄ + Ω) + κ/2 + Ω2
c/4

−i(−Ωm+Ω)+Γm/2

sp, (3.85)

where FRSB(Ω) is the absorption function of the cavity in the RSB regime.
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3.6.2 Optomechanically induced transparency measurements

Measurement of the cavity transmission

The detection of the transmission of the optical cavity subjected to the strong detuned
field is performed using the phase modulation-demodulation scheme already mentioned in
section 3.5.1. Before entering the homodyne interferometer, the carrier is phase modulated
at a frequency Ω. The resulting field is split in the two arms of the interferometers. The
modulation frequency is swept in order for the upper sideband to be scanned through the
optical resonance of the cavity.

The signal and local oscillator fields are entering the Mach-Zehnder combining element
with the expressions

sout(t) = s̄out

(
tc + tusi

β

2
e+iΩt + tlsi

β

2
e−iΩt

)
, (3.86)

sLO(t) = s̄LOe
iφ

(
1 + i

β

2
e+iΩt + i

β

2
e−iΩt

)
, (3.87)

where tc, tus and tls, are the complex field cavity’s transmission functions for respectively the
carrier, the upper sideband and lower sideband. We use here the Jacobi-Anger expansion
for modulation depth β � 1. φ is the locked phase difference between signal and local
oscillator optical paths.

In the resolved-sideband regime, only the upper sideband close to resonance interacts
with the cavity; therefore, tc ' tls ' 1. For the upper sideband, the transmission func-
tion is tus = tp = 1 − √

ηcκF (Ω), with F (Ω) being the absorption function expressed in
Eq. (3.81) in the general case and in Eq. (3.85) in the resolved-sideband regime, and tp the
transmission of the cavity. The phase difference between the signal and LO mean fields
is actively locked to φ = π/2 by maintaining the mean homodyne signal to 0. Neglecting
terms of order higher than 1 in the small modulation index β, the voltage V−(t) measured
across the photodetector’s output is proportional to the photodetected power expressed in
Eq. (3.54). Using expressions (3.86) and (3.87), it reads

V−(t) ∝ cos(Ωt) (1− Re(tp)) + sin(Ωt) (Im(tp)) . (3.88)

The network analyzer demodulates the recorded signal V−(t) at the angular frequency Ω
and outputs a signal proportional to the square modulus of 1− t∗p, therefore proportional
to |F (Ω)|2, thus allowing the characterization of the OMIT.

Experimental results

The main feature of the measured OMIT effect is shown in Fig. 3.39. The normalized signal
measured by the homodyne detector |F ′(Ω)|2 is plotted versus the scanning frequency of
the weak probe beam Ω for mean field detunings ∆̄ varying from -69.1 to -35.4MHz. The
recorded trace is normalized to isolate the OMIT effect versus coupling variations that may
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Figure 3.39: Optomechanically induced transparency measurements. Normalized transmission
plotted versus the modulation frequency Ω for various mean field detunings ∆̄. The measured op-
tomechanical system is a needle-pillar toroid thermalized at 3.8K (155mbar gaseous 3He exchange
gas pressure) and having a mechanical radial breathing mode resonance frequency of 51.8MHz.
The optical and mechanical dissipation rates are κ/2π ≈ 15MHz and Γm/2π ≈ 41 kHz, respec-
tively. Adapted from Ref. [120].

induce changes of the homodyne signal. The figure shows the transparency opening in the
cavity’s transmission at the two-photon resonance condition Ω = Ωm for each detuning.

The transmission window of the cavity is controllable with the coupling field. The detail
of the transparency window highlighted in yellow in Fig. 3.39 is shown in Fig. 3.40, for
varying coupling powers. In the weak coupling case Ωc smaller or close to

√
κΓm and for

∆̄ = −Ωm the OMIT window is a transmission window t′p corresponding to a Lorentzian
function of linewidth [120]

ΓOMIT = Γm + Ω2
c/κ, (3.89)

varying linearly with the input power and with a peak value

t′p(Ω = Ωm) =

(
Ω2

c/κ

Γm + Ω2
c/κ

)2

. (3.90)

The parameters of the Lorentzian transmission window are measured in Fig. 3.40 for input
powers increasing from 0.125 to 6.5mW. They follow the expected behavior, showing a
maximum transparency of 81%.

The dissipative feature of the transmission is simultaneously accompanied with a fre-
quency dispersion. The group velocity of a resonant light pulse (of bandwidth much shorter
than the optical cavity bandwidth) can be consequently significantly reduced [120]. The
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Figure 3.40: Power dependence of the transparency parameters. (a) Zoom on the transparency
window at the condition ∆̄ = −Ωm (yellow highlight in Fig. 3.39) for varying input powers ~ωls̄in
from 0.125 to 6.5mW. The corresponding Lorentzian transparency peak value is plotted, agreeing
with the model expressed in Eq. (3.90). (b) Lorentzian transparency linewidth versus input power,
exhibiting the expected agreement with the model expressed in Eq. (3.89). Adapted from Ref. [120].

acquired group delay is then given by

τg = − d

dω
(arg(tp(ω))) , (3.91)

which leads to

τg = 2/ΓOMIT, (3.92)

in the weak coupling regime and for Ω = Ωm. This group delay can be used to slow down
optical pulses.

3.6.3 Analogy to atomic Electromagnetically Induced Transparency

The OMIT phenomenon is named in the same way as the atomic EIT based on their
similarity. Therefore, considering the full quantum description of the optomechanical in-
teraction using photons and phonons, the system can also be described as a three-level
system exhibiting a similar configuration as for atomic EIT.

Atomic state coherence

The physics of atomic EIT, first demonstrated in 1991 in the group of S. E. Harris in a
vapor of Sr atoms [178], involves the coherence of the atomic states [177]. To catch its
fundamentals, the phenomenon of coherent population trapping (CPT) is described first.
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Figure 3.41: Coherent population trapping example from a degenerate three-level atomic sys-
tem. (a) Atomic state basis (left) and corresponding coupled state basis (right). The disk’s area
graphically represent the level populations. Adapted from Ref. [179]. (b) Specific configuration of
the electromagnetically induced transparency. See text for details.

For a degenerate atomic three-level system (Fig. 3.41 (a), left), we consider the usual
atomic state basis with its fundamental levels |g〉 and |m〉 initially equally populated. Un-
der two resonant optical fields E, it is possible to redefine the usual atomic state basis into
a coupled basis with the two lower levels being the linear combinations |±〉 ∝ α|g〉±β|m〉.
α and β are proportional to the field applied on the |m〉 → |e〉 and |g〉 → |e〉 transitions,
respectively. The configuration obtained corresponds to an optical pumping (Fig. 3.41,
(a) right) to the coupled state |−〉 that does not couple to the field, trapping therefore
the population into a dark state (other name of CPT). Consequently, the population is
trapped in a state that is a coherent superposition of the two lower levels and which does
not interact with the field [179]. Indeed, the dark state does not couple to the field as a
consequence of the destructive interference of both transition routes to the excited state
in the usual basis [25].

The EIT is a particular case of CPT for which the two lower levels are non degenerated
and the coupling field Ec applied on the transition from the metastable state to the excited
state |m〉 → |e〉 is strong compared to the probe field Ep.

Again here, the population is initially in the ground level |g〉. The transition from |g〉
to the metastable level |m〉 is dipole forbidden, with a corresponding decay rate Γmg being
very small compared to the decay rate of the excited state to the ground state Γeg. As in
the CPT case, the two possible transition routes destructively interfere when probed with
Ep. Thereby, the process does not populate neither |e〉 nor |m〉 and trap the population
to the ground state. Exact destructive interference occurs when the probe field is resonant
(two-photon condition): in this case, the transparency achieved is limited by Γmg for a
given power [177].

The atomic EIT analogy

The analogy between the atomic levels and the optomechanical levels is evident from the
description given in Fig. 3.42. The energy levels of the optomechanical system are taken
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Figure 3.42: Atomic EIT - OMIT energy level analogy. (Left) atomic EIT configuration in a
Λ system. Similarly (right), an arbitrary set of three-level system equivalent to the atomic EIT
case is considered in the optomechanical system.

to be |np, n〉, meaning the photon occupation of the optical resonator and the phonon
occupation of the mechanical oscillator. Conceptually, three levels can be arbitrarily con-
sidered (Fig. 3.42, right) in pure analogy with the atomic EIT case (Fig. 3.42, left). In
the resolved-sideband regime, the weak probe field oscillating at ωp adds intracavity pho-
tons whereas the strong coupling field oscillating at ωc adds an intracavity photons by
annihilating mechanical phonons.

For the atomic case, the semi-classical model expressed in Ref. [176] shows that the
coherence Sge expressed in the relevant rotating frame of the coupling laser is given by

Sge =
iµge/(2~)

−i((ωc − ωgm − ωme) + Ω) + Γeg/2 +
Ω2

c/4
−i(−ωgm+Ω)+Γmg/2

Ep. (3.93)

This expression is analog to expression (3.85), the parameters given in table 3.1, with the
explicit atomic level frequencies ω and dipole moment µ.

Atomic EIT OMIT
main transition coherence Sge intracavity weak field amplitude A−

forbidden transition coherence Sgm normalized mechanical amplitude X̃
lower state energy difference ~ωgm phonon energy ~Ωm

field-enhanced Rabi frequency Ωc = µmeEc/~ optomechanical coupling Ωc = 2Gāxzpf

Table 3.1: Atomic EIT and OMIT parameter comparison. Adapted from Ref. [120]
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The analogy thus demonstrated is actually expected if the quantum interaction Hamil-
tonian expressed in Eq. (1.10) is rearranged by displacing the operators â and b̂ by their
steady-state values, yielding

Ĥint = ~
Ωc

2

(
â† + â

) (
b̂† + b̂

)
. (3.94)

In the resolved-sideband regime, with an intense laser tuned at the lowest sideband, the
interaction Hamiltonian in the rotating wave approximation becomes

Ĥint = ~
Ωc

2

(
â†b̂+ âb̂†

)
. (3.95)

The resulting Hamiltonian is the Beam Splitter Hamiltonian, analogous to the Jaynes-
Cummings Hamiltonian except that it couples two harmonic oscillators [180, 31] via the
term (âb̂† + â†b̂) instead of a harmonic oscillator and a two-level system via the product
(âσ̂+ + â†σ̂−) (where σ̂− , σ̂+ are the lowering and raising operators, respectively, in the
two-level system).

The reported observations are the first demonstration of OMIT [120], measured also
shortly after in an optomechanical crystal [181]. The phenomenon analyzed and experi-
mentally observed in this section corresponds, however, to the case where the coupling,
accounted for by the field-enhanced coupling rate Ωc, is weak compared to the optical
losses (Ωc,Γm � κ). In this regime, the transparency phenomenon is similar to the atomic
EIT. In the case where the coupling rate exceeds both damping rates κ and Γm, the op-
tomechanical system enters in the strong coupling regime, in its classical interpretation.
The peculiar manifestation of this regime is the splitting of the two normal modes of the
strongly coupled system, proportional to Ωc. In time domain, the amplitudes of the me-
chanical and optical modes subjected to a pulsed excitation undergo a Rabi-like periodic
evolution, resulting from the beat of the normal modes. This strong coupling has been
recently observed in the group in spoke structures optimized to increase the vacuum op-
tomechanical coupling rate [54]. Previous experiments reported the same regime in the
electromechanical [182] and optomechanical [183] context, the later experiment showing
however only normal mode splitting of the mechanical spectrum.



Chapter 4

Summary and outlook

4.1 Summary of the doctoral work

In this thesis, the cooling of a macroscopic harmonic mechanical oscillator close to its
quantum ground state was realized. We have thus demonstrated the feasibility to observe
in the near-future purely quantum effects on objects whose dimensions are equivalent to
those of tangible ones.

To realize this experimental challenge, we have chosen a platform that presents a coup-
ling between a mechanical oscillator and the optical mode of a resonator, which enables
us to exploit the principle of dynamical backaction cooling via the radiation pressure of
the light. The vitreous silica microtoroidal cavities of dimensions typically comprised
between 10 and 100µm have been found to be a judicious candidate for diverse reasons.
First, the high optical finesse – close to 106 – of the supported whispering-gallery modes
allows an important intracavity power enhancement which makes the effect of radiation
pressure larger. Moreover, due to the transparency of glass, these cavities support high
quality optical modes in the visible and near infrared, thus permitting us to harness widely
commercially available ultra-stable laser sources. Finally, this type of microstructures hosts
mechanical modes oscillating in the frequency range from 30 to 120MHz, where external
parasitic acoustic noise is negligible. These properties have directly placed the selected
system in a prominent position to observe the cooling to the ground state of motion.

In this doctoral work, the various experimental aspects limiting the aforementioned
performance have all been addressed in the purpose of the final objective. First thing, the
dynamical backaction cooling competes with the unavoidable thermalization of the mode
with its mechanical environment. To favor the effect of cooling over the thermalization to
the environment in order to achieve a low final mode temperature, two approaches were
followed.

First, the sources of mechanical dissipations that determine the coupling rate of the
mode to its environment have been carefully studied. This has permitted to engineer the
system such as to reduce these losses by more than an order of magnitude, reaching a record
mechanical quality factor value of 50 000 at 24MHz at room temperature. By placing the
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mechanical structure in a purpose-built vacuum chamber, the effect of the gas damping
was diminished until the regime where intrinsic properties of the structure govern the
dissipations was reached. This enabled us to highlight the major role played by intermode
coupling, which was finally reduced by fabricating spoke-anchored microtoroids using a
newly developed microfabrication method [116]. Thus, in this optimized structures, the
mechanical damping is strongly dominated by the intrinsic properties of the glass materials,
rather than its geometry.

Subsequently, the thermal fluctuations directly driving the mechanical oscillator were
significantly reduced by placing it in a cryostat. First, the principle of cryogenic operation
has been demonstrated in an exchange gas 4He cryostat [41], and afterwards in a similar
type of apparatus using 3He. Thermalization of the sample to an operating temperature
of 850mK was achieved, using a pressure on the order of 1mbar. This corresponds to the
optimal configuration in light of the trade-off between the thermalization of the structure
at cryogenic temperatures and the properties of dissipation of amorphous silica [55]. In the
course of this work, interesting properties of vitreous silica have been discovered, notably
the inversion of the thermal bistable effect below ∼ 13K which enabled us on the one hand
to overcome laser locking problems on the red side of the optical cavity (corresponding
to the cooling configuration) and on the other hand, to observe interesting non-linear
properties conducting to measurable multistable effects [118].

Another aspect to take into account is the fluctuating radiation pressure force intro-
duced by the laser itself that perturbs the cooling process, by providing extra driving
to the mechanical oscillator. The pursued studies have revealed that the classical part
of these fluctuations can be negated by employing a quantum-limited Ti:sapphire laser.
Conveniently, parasitic acoustic fluctuations are negligible at the ultrasonic mechanical
frequencies considered. Furthermore, the quantum nature of this phenomenon can be
moderated only if – as in the case of the sideband cooling of ions – the resolved-sideband
regime is reached, which we have directly observed experimentally [117].

The combination of all these experimental advances lead to the observation, using a
dedicated balanced homodyne detection, of a phonon occupancy – figure of merit of the
cavity optomechanics field – of 9±1 [55]. This is more than two orders of magnitude lower
than the proof-of-principle measurement [28] and we demonstrated in addition that this
value is now limited by purely technical aspects such as the heating due to the absorption
of the light scattering off the coupling tapered fiber. All other limitations considered in
the course of this thesis have been reduced with success.

Finally, the realized experimental conditions permitted to measure another interesting
aspect of the mutual optomechanical coupling on the optical properties of the cavity itself.
By harnessing a phase modulation-demodulation technique authorized by the configuration
of the detector, we measured the phenomenon of optomechanically induced transparency
corresponding to the weak coupling of both mechanical and optical resonators, highlighting
another perspective of the optomechanical coupling [120].
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4.2 Outlook

The work described in this thesis has enabled us to make large improvements on the process
of cooling a mechanical oscillator, bringing its phonon occupancy close to zero. Nonethe-
less, the quantum regime of the macroscopic mechanical oscillator can be unambiguously
identified only through measurements reporting a pure quantum signature and for which
classical theory fails to describe the observation.

An example of such measurements is the detection of the strength difference of the
motional sidebands of the probed cavity that is expected for very small occupation numbers.
In pure analogy with the detection of the motional ground state of trapped ions, the
scattering rates of these Stokes and anti-Stokes sidebands are proportional to n̄+1 and n̄,
respectively, where n̄ is the average phonon occupancy of the oscillator subjected to laser
cooling. This phenomenon is the direct consequence of the quantum formulation of the
cooling process, obeying Fermi’s Golden Rule. One possibility to measure the asymmetry
is to resonantly probe the optical cavity with another weak laser and to subsequently
heterodyne the output field, as in the experimental setup already installed in the group
[117]. Such measurements are being currently investigated.

Another interesting aspect of the optomechanical coupling that will be of prime interest
in the near future is to achieve the “quantum coherent coupling” condition for which the
optomechanical coupling rate overcomes both decoherence rates of the optical and mecha-
nical mode to their respective environment. This regime, which has recently been reached
in our group by optimizing the spoke structures and measuring them in the 3He cryostat
[54], directly allows the study of quantum interactions, putting the optomechanical system
into a class of experimental systems such as single atoms in high-finesse cavities [184]. This
regime opens numerous perspectives by enabling the transfer of non-classical states of the
light field onto the macroscopic oscillator [180]. Additionally, it makes it conceivable to use
the optomechanical system as a transducer between a robust solid-state qubit attached to
the mechanical mass and an optical communication channel conveying the quantum state
on large distances [185]. The emerging field of cavity quantum optomechanics thus opens
new perspectives in the application of counter-intuitive quantum concepts to macroscopic
objects.
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Appendix A

Microfabrication of silica
microtoroids

The on-chip microtoroids previously described and used in this work are microfabricated
in clean room facilities whereas the final steps such as silicon gaseous etching and laser re-
flow are performed in usual laboratory environment, such as in the Max-Planck-Institut für
Quantenoptik. The process described here was implemented in the clean room of Prof. Jörg
P. Kotthaus at the Ludwig-Maximilians-Universität in Munich. A similar process is imple-
mented for the group at the Center of Micronanotechnology (CMI) at the Ecole Fédérale
Polytechnique de Lausanne in Switzerland.

Photolithography and silica wet etch

The process uses widely commercially available 〈100〉-oriented. 3-inch diameter, ∼ 400−µm
thickness, undoped (resistivity > 20Ω · cm) Czochralski-grown silicon wafers. They come
with a polished layer of thermally grown oxide using the wet (Virginia Semiconductor,
Si-Mat) or dry (HLL Munich) growing method, of thickness typically between 1 to 3µm.

The process is summarized in Fig. A.1. A droplet of photoresist is spun using a
spincoater and softbaked to flatten the deposited layer (Fig. A.1 step (a)), enabling UV
lithography through a predesigned quartz-Cr photomask to illuminate the desired surface.
Compared to microspheres, microtoroids enable a wide range of geometries as photomasks
(fabricated by ML&C) defining the patterns can be designed using commercial computer-
aided design (CAD) software (AutoCAD). After development of the photactivated resist
(figure A.1 step (b)), the remaining photoresist pads are hardbaked to ensure resistance
during the etching using hydrofluoric acid in a buffered solution NH4F:HF (Fig. A.1 step
(b)).

Anistropic etching of the SiO2 takes place following [186]

SiO2 + 6HF → H2SiF6 + 2H2O. (A.1)

Quarter circle etching profiles are observed only if adhesion promotion of the photoresist
is used to avoid creeping of the HF at the SiO2/photoresist interface. This phenomenon is
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Figure A.1: Microfabrication of the toroidal microcavities (a) Spinning of the photoresist (Ship-
ley S-1813) on top of a crystalline Si wafer with a thermally-grown micron-thick polished SiO2

layer. Potential irregularities in the photoresist’s thickness are flattened by softbake at 110 ◦C for
1min. (b) A photoresist disk remains after photolithographic UV illumination (Karl Süss MJB3
mask aligner) through the photomask and proper development (Microposit MF-319) of the illumi-
nated photoresist. After hardbake at 115 ◦C for 10min for hardening the photoresit, the stack is
subjected to buffered NH4F:HF (12.5 or 7:1) isotropic wet etching that removes the unprotected
SiO2. (c) After thorough cleaning of the wafer using acetone, isopropanol, di-ionized (DI) water
and compressed nitrogen for drying, the Si material of the photolithographed wafer is isotropically
etched with pulses of gaseous XeF2. (d) Using an out of focal plane illumination from a CW CO2

laser emitting at 10.6µm, the rim of the protruding glass is melted, forming the toroidal shape.
(e) Eventually, a second run of isotropic XeF2 etching is performed to reduce the attaching pillar
diameter, without affecting the surface quality of the previously formed toroid, leading to the final
shape of the structure (f).

however exploited to produce sharp edged microdisks with enhanced light confinement of
the WGM [187, 188].

After removal of the masking photoresist using conventional cleaning, the silica pads
are ready for silicon under-etching (Fig. A.1 step (c)). The wafer is then cleaved along
crystallographic axis using a diamond tip to prepare the chips in their final shape to
enable further straight taper coupling. At the CMI, automatic trenching of the wafer is
performed.
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Silicon dry etch

To confine the light in the silica, the underlying silicon of higher refractive index is removed.
XeF2 in its gaseous form etches Si isotropically with a selectivity of more than 1000 : 1
relative to SiO2 [189], according to the reaction [190]

2XeF2 + Si → 2Xe(g) + SiF4(g). (A.2)

The etching takes place in a commercially available computer-controlled reaction cham-
ber similar to the one described in Ref. [190]. Pulses of sublimated gaseous XeF2 of con-
trollable duration and pressure are admitted in the etching chamber. The etching progress
is monitored through the control top-window of the etching chamber using a microscope.
Several precautions have to be taken to ensure isotropic uniform etching: pulses have to
be of low pressure (< 140Pa) and low duration (30 s), the chip has to be ideally placed in
an adjusted top-opened box to avoid side etching effects and the gas should be admitted
slowly in the chamber using a needle valve to avoid turbulence effects. Etching rates are
typically < 1µm/pulse. Importantly, the chip should be carefully dried before etching to
avoid parasitic reactions involving H2O.

Laser reflow

The edges of the wet etched disks are left with residual asperities that eventually couple to
the whispering-gallery mode, inducing scattering losses. To smooth out the surface and to
form the toroidal shape previously presented, an intense laser beam is applied one-by-one
to each released disk using a CO2 laser emitting at a wavelength of 10.6µm, as detailed in
Ref. [71].

The silica efficiently absorbs the light [70]. When the pulse of light is applied, the
rim of the disk heats up strongly comparatively to the center of the disk, the silicon
pillar evacuating the heat to the substrate with a conductivity 100 times higher than the
silica. In addition, silicon is transparent at this wavelength and its thermal conductivity
is 100 times larger than for silica. Therefore, the temperature of the rim of the disk
dramatically increases compared to the center. The effect is additionally enhanced by the
temperature-dependent absorption of SiO2 [191]. Eventually, the disk periphery reaches
the glass transition temperature, melts, and because of surface tension the droplet takes
the form of a toroid. After toroid formation, the cross-section available for laser light
absorption decreases, responsible for the cool down of the toroid and the self-termination
of the reflow process. The central part of the disk is normally left undeformed after this
step. The major diameter R and the minor diameter rt of the formed toroid can be adjusted
by varying the diameter of the the supporting pillar rp at the previous etching step. For
decreasing rp, the amount of glass participating to the toroid’s formation increases, thereby
leading to a toroid with smaller R and larger rt.

The used setup is depicted in Ref. [20] and comprises a Synrad 48-1 CO2 laser emitting
a Gaussian-shaped TEM00 optical mode that is directed to the desired microdisk using
appropriate ZnSe optics and monitored using a microscope. The chip is placed out of the
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focal plane of the focusing lens to avoid non-uniform intensity on the small-scale of the
disk.

Although self-terminating, the process should be visually monitored, as extra heating
of the disk may happen upon exaggerated illumination. This may lead to prejudicial
deformation influencing further optimization of the mechanical properties of the disk. In
addition, it has been realized after a second etching set (Fig. A.1, step (e)) that intense
laser heating may lead to the post-formation of a thin layer of silicon oxide that deviates
the resulting structure from its optimal shape depicted in Figs. 2.1 (a) and A.1 (e). The
role of this second etch on the mechanical engineering of the structure is described in detail
in section 3.2.2.
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Fabrication of tapered optical fibers

Tapered fibers are fabricated using a flame from a H2 torch to melt a commercial single-
mode glass-fiber propagating 1550-nm (Corning SMF-28 or similar model from other manu-
facturers) or 780-nm (Nufern 780HP) light for the optomechanics experiment.

The buffer made of acrylate is removed using stripping device and the denuded part
is thoroughly cleaned with isopropanol and lens wipes. It is then placed on a specially
designed taper holder allowing axial elongation of the fiber with very small transverse mo-
tion. Next, the holder is positioned on a stage made of two counter-propagating computer
controlled stepper motors used for stretching. Manual positioning allows to adjust the
placement of the denuded fiber on top of the blue combustion cone of a H2 flame so as to
obtain homogeneous heating of the glass to be elongated and to avoid contamination from
imperfect combustion. The transmission of the whole fiber is monitored at the appropri-
ate wavelength, as well as the diameter of the melted region using a microscope mounted
camera.

As detailed in Ref. [192], coupling of the fundamental mode with higher order modes
upon reduction of rf leads to oscillations of the transmission easily recorded in transmis-
sion. When the beat disappears, the fabricated taper is close to single mode propagation
condition, although experimental verification is difficult in the presented configuration of
the fabrication setup. After cool down, the taper holder elongation is manually adjusted
to ensure optimum tensioning of the taper using the experimental procedure described in
[20]. Tapers of more than 95% transmission are typically achieved using the previously
described technique.

Taper fabrication methods may be varied to ensure better reproducibility, using electric
resistance heating [192], CO2 laser melting or chemical etching. In our group, we designed
a final step of taper transfer to a glass holder, glued with low-contraction UV epoxy glue for
having rigid tapers to be mounted in an acoustically noisy environment such as a cryostat.
Since the fiber and the glass are made essentially of the same material, the tapered fiber
remains properly tensioned upon thermal expansion or contraction during the cool down.
The fabrication steps are described in figure 3.19 and successfully achieved coupling with
usual cryogenic equipments running.
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Appendix C

Manipulation procedure of the
prototype helium-4 cryostat

This procedure chronologically describes the steps for reaching the base temperature of the
prototype 4He cryostat starting from room temperature. It is based on the manual of the
Oxford Instruments (OI) OptistatSXM. The setup is detailed in section 3.4.1.

Preparation of the cryoprobe

1. The cryohead is prepared. The sample and the cryotaper are placed on the cryoprobe
(Fig. C.1 (c)). The cryoprobe stands on the test setup (Fig. C.1 (b)).

2. Using non-powdered gloves, the cryoprobe is cleaned with optical lens tissue and
isopropanol to remove organic species that may have deposited during previous ma-
nipulations.

3. The electrical connections are verified. The coupling is achieved on the desired toroid
(Fig. C.1 (a)). Phase matching is achieved and the mechanical slide is screwed.

4. The optical fiber feedthrough is adjusted. Vacuum glue (Varian Torr seal) is used to
seal any vacuum leak. More than 80% transmission is typically achieved throughout
the whole cryostat.

Insertion of the cryoprobe at room temperature

1. The cryoprobe is carefully inserted in the experimental chamber using a lifting rope.
Shocks are avoided as they may misalign the cryotaper.

2. The alignment of the optical accesses with the cameras is adjusted.

3. The cryoprobe is clamped to the tube. Alignment is re-checked as compression of
the O-ring may displace the cryoprobe down by few mm. Everything is blocked after
this step.
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4. The experimental chamber is pumped with the rotary pump (OI EPS40) below
10−1mbar to ensure evacuation of outgassing materials.

Cooling of the cryostat and the cryoprobe

1. The insulating vacuum is pumped with the turbomolecular pump below 10−5mbar.
Once reached, the valve is closed as the cryopumping of the cold cryostat maintain
lower pressures (below 10−6mbar as measured with the Penning gauge).

2. The cooling 4He reservoir and the heat exchange circuit is cyclically purged with
clean gaseous 4He and pumped with the dry pump. The gas is cleaned from water
and gaseous nitrogen using a liquid N2 trap. This step ensures that no contaminants
ice on the fragile needle valve (Fig. C.2 (b) and (c)). Precooling with liquid nitrogen
is not recommended as it may contaminate the circuit and freeze inside.

3. The reservoir is filled directly with liquid 4He. The level is regularly checked with a
manual gauge.

4. Once filled to 100%, the transfer can is removed and a cold time range of ∼ 8 hours
is expected in normal experimental conditions.

5. The needle valve is opened to accelerate the cooling down of the experimental cham-
ber. It can be achieved from room temperature typically in 2 hours. Ideally, no
exchange gas is admitted during the process so that the cryoprobe thermalizes slower
than the cooled inner walls of the experimental chamber. This ensures that contam-
inating materials preferentially adsorb on the walls.

6. Once 4.2K is reached in the chamber, exchange 4He gas is admitted in the chamber
directly from the evaporated cooling 4He using the vacuum tubings described in
Fig. 3.17. This ensures that uncontaminated He gas is used for the heat exchange.

7. The temperature of the experimental chamber (as measured with the RuO2 or Si
diode) is determined by adjusting the pumping flux of the rotary pump. A com-
promise has to be found between cooling power, base temperature and vibrations
induced by a large flux of cooling 4He through the cooling circuit. Base temperature
of 1.65K in the experimental chamber is achieved and coupling the toroid is possible
within the configuration described.

8. Heating up of the probe is typically achieved in ∼ 24 hours by simply letting the
whole cryostat thermalize to room temperature. It can be accelerated by using the
built-in electric heater. During heat-up, contaminating species unavoidably deposit
on the cryoprobe, especially if the process is accelerated using the heater.
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(b) (c)(a)

Figure C.1: (a) The cryostat installed on top of the optical table. (b) The cryoprobe probe test
setup. (c) The cryoprobe.

(a) (b)

(c)

Figure C.2: Photographs of the opened prototype cryostat. (a) The radiation shield comprising
the experimental chamber. (b) The needle valve stick. (c) Zoom-in of the needle valve.
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Appendix D

Gallery of on-chip optical
microstructures

100µm100µm 100µm

Figure D.1: On-chip silica optical delay elements. Collaboration with the group of K. J. Vahala,
California Institute of Technology.

20µm 20µm

Figure D.2: Spoke silica toroidal and disk microresonators
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10µm10µm

Figure D.3: Spoke silica toroidal microresonator
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[54] Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., and Kippenberg, T. J.,
“Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,”
Nature 482, 63 (2012).
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